Line data Source code
1 : //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
2 : //
3 : // The LLVM Compiler Infrastructure
4 : //
5 : // This file is distributed under the University of Illinois Open Source
6 : // License. See LICENSE.TXT for details.
7 : //
8 : //===----------------------------------------------------------------------===//
9 : //
10 : // Implementation of ELF support for the MC-JIT runtime dynamic linker.
11 : //
12 : //===----------------------------------------------------------------------===//
13 :
14 : #include "RuntimeDyldELF.h"
15 : #include "RuntimeDyldCheckerImpl.h"
16 : #include "Targets/RuntimeDyldELFMips.h"
17 : #include "llvm/ADT/STLExtras.h"
18 : #include "llvm/ADT/StringRef.h"
19 : #include "llvm/ADT/Triple.h"
20 : #include "llvm/BinaryFormat/ELF.h"
21 : #include "llvm/Object/ELFObjectFile.h"
22 : #include "llvm/Object/ObjectFile.h"
23 : #include "llvm/Support/Endian.h"
24 : #include "llvm/Support/MemoryBuffer.h"
25 :
26 : using namespace llvm;
27 : using namespace llvm::object;
28 : using namespace llvm::support::endian;
29 :
30 : #define DEBUG_TYPE "dyld"
31 :
32 18 : static void or32le(void *P, int32_t V) { write32le(P, read32le(P) | V); }
33 :
34 : static void or32AArch64Imm(void *L, uint64_t Imm) {
35 9 : or32le(L, (Imm & 0xFFF) << 10);
36 : }
37 :
38 : template <class T> static void write(bool isBE, void *P, T V) {
39 0 : isBE ? write<T, support::big>(P, V) : write<T, support::little>(P, V);
40 : }
41 :
42 : static void write32AArch64Addr(void *L, uint64_t Imm) {
43 4 : uint32_t ImmLo = (Imm & 0x3) << 29;
44 4 : uint32_t ImmHi = (Imm & 0x1FFFFC) << 3;
45 : uint64_t Mask = (0x3 << 29) | (0x1FFFFC << 3);
46 4 : write32le(L, (read32le(L) & ~Mask) | ImmLo | ImmHi);
47 : }
48 :
49 : // Return the bits [Start, End] from Val shifted Start bits.
50 : // For instance, getBits(0xF0, 4, 8) returns 0xF.
51 : static uint64_t getBits(uint64_t Val, int Start, int End) {
52 : uint64_t Mask = ((uint64_t)1 << (End + 1 - Start)) - 1;
53 8 : return (Val >> Start) & Mask;
54 : }
55 :
56 : namespace {
57 :
58 0 : template <class ELFT> class DyldELFObject : public ELFObjectFile<ELFT> {
59 : LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
60 :
61 : typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
62 : typedef Elf_Sym_Impl<ELFT> Elf_Sym;
63 : typedef Elf_Rel_Impl<ELFT, false> Elf_Rel;
64 : typedef Elf_Rel_Impl<ELFT, true> Elf_Rela;
65 :
66 : typedef Elf_Ehdr_Impl<ELFT> Elf_Ehdr;
67 :
68 : typedef typename ELFT::uint addr_type;
69 :
70 : DyldELFObject(ELFObjectFile<ELFT> &&Obj);
71 :
72 : public:
73 : static Expected<std::unique_ptr<DyldELFObject>>
74 : create(MemoryBufferRef Wrapper);
75 :
76 : void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
77 :
78 : void updateSymbolAddress(const SymbolRef &SymRef, uint64_t Addr);
79 :
80 : // Methods for type inquiry through isa, cast and dyn_cast
81 : static bool classof(const Binary *v) {
82 : return (isa<ELFObjectFile<ELFT>>(v) &&
83 : classof(cast<ELFObjectFile<ELFT>>(v)));
84 : }
85 : static bool classof(const ELFObjectFile<ELFT> *v) {
86 : return v->isDyldType();
87 : }
88 : };
89 :
90 :
91 :
92 : // The MemoryBuffer passed into this constructor is just a wrapper around the
93 : // actual memory. Ultimately, the Binary parent class will take ownership of
94 : // this MemoryBuffer object but not the underlying memory.
95 : template <class ELFT>
96 150 : DyldELFObject<ELFT>::DyldELFObject(ELFObjectFile<ELFT> &&Obj)
97 150 : : ELFObjectFile<ELFT>(std::move(Obj)) {
98 150 : this->isDyldELFObject = true;
99 : }
100 :
101 : template <class ELFT>
102 : Expected<std::unique_ptr<DyldELFObject<ELFT>>>
103 150 : DyldELFObject<ELFT>::create(MemoryBufferRef Wrapper) {
104 300 : auto Obj = ELFObjectFile<ELFT>::create(Wrapper);
105 150 : if (auto E = Obj.takeError())
106 : return std::move(E);
107 : std::unique_ptr<DyldELFObject<ELFT>> Ret(
108 150 : new DyldELFObject<ELFT>(std::move(*Obj)));
109 : return std::move(Ret);
110 : }
111 150 :
112 300 : template <class ELFT>
113 150 : void DyldELFObject<ELFT>::updateSectionAddress(const SectionRef &Sec,
114 : uint64_t Addr) {
115 : DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
116 150 : Elf_Shdr *shdr =
117 : const_cast<Elf_Shdr *>(reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
118 :
119 0 : // This assumes the address passed in matches the target address bitness
120 0 : // The template-based type cast handles everything else.
121 0 : shdr->sh_addr = static_cast<addr_type>(Addr);
122 : }
123 :
124 0 : template <class ELFT>
125 : void DyldELFObject<ELFT>::updateSymbolAddress(const SymbolRef &SymRef,
126 : uint64_t Addr) {
127 0 :
128 0 : Elf_Sym *sym = const_cast<Elf_Sym *>(
129 0 : ELFObjectFile<ELFT>::getSymbol(SymRef.getRawDataRefImpl()));
130 :
131 : // This assumes the address passed in matches the target address bitness
132 0 : // The template-based type cast handles everything else.
133 : sym->st_value = static_cast<addr_type>(Addr);
134 : }
135 0 :
136 0 : class LoadedELFObjectInfo final
137 0 : : public LoadedObjectInfoHelper<LoadedELFObjectInfo,
138 : RuntimeDyld::LoadedObjectInfo> {
139 : public:
140 0 : LoadedELFObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap)
141 : : LoadedObjectInfoHelper(RTDyld, std::move(ObjSecToIDMap)) {}
142 :
143 : OwningBinary<ObjectFile>
144 : getObjectForDebug(const ObjectFile &Obj) const override;
145 : };
146 :
147 : template <typename ELFT>
148 : static Expected<std::unique_ptr<DyldELFObject<ELFT>>>
149 : createRTDyldELFObject(MemoryBufferRef Buffer, const ObjectFile &SourceObject,
150 : const LoadedELFObjectInfo &L) {
151 : typedef typename ELFT::Shdr Elf_Shdr;
152 : typedef typename ELFT::uint addr_type;
153 :
154 : Expected<std::unique_ptr<DyldELFObject<ELFT>>> ObjOrErr =
155 : DyldELFObject<ELFT>::create(Buffer);
156 : if (Error E = ObjOrErr.takeError())
157 : return std::move(E);
158 :
159 : std::unique_ptr<DyldELFObject<ELFT>> Obj = std::move(*ObjOrErr);
160 :
161 : // Iterate over all sections in the object.
162 : auto SI = SourceObject.section_begin();
163 : for (const auto &Sec : Obj->sections()) {
164 : StringRef SectionName;
165 : Sec.getName(SectionName);
166 : if (SectionName != "") {
167 : DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
168 0 : Elf_Shdr *shdr = const_cast<Elf_Shdr *>(
169 : reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
170 :
171 : if (uint64_t SecLoadAddr = L.getSectionLoadAddress(*SI)) {
172 : // This assumes that the address passed in matches the target address
173 335 : // bitness. The template-based type cast handles everything else.
174 : shdr->sh_addr = static_cast<addr_type>(SecLoadAddr);
175 : }
176 : }
177 : ++SI;
178 : }
179 :
180 : return std::move(Obj);
181 150 : }
182 :
183 : static OwningBinary<ObjectFile>
184 : createELFDebugObject(const ObjectFile &Obj, const LoadedELFObjectInfo &L) {
185 : assert(Obj.isELF() && "Not an ELF object file.");
186 300 :
187 : std::unique_ptr<MemoryBuffer> Buffer =
188 150 : MemoryBuffer::getMemBufferCopy(Obj.getData(), Obj.getFileName());
189 :
190 : Expected<std::unique_ptr<ObjectFile>> DebugObj(nullptr);
191 : handleAllErrors(DebugObj.takeError());
192 : if (Obj.getBytesInAddress() == 4 && Obj.isLittleEndian())
193 : DebugObj =
194 150 : createRTDyldELFObject<ELF32LE>(Buffer->getMemBufferRef(), Obj, L);
195 1362 : else if (Obj.getBytesInAddress() == 4 && !Obj.isLittleEndian())
196 1212 : DebugObj =
197 1212 : createRTDyldELFObject<ELF32BE>(Buffer->getMemBufferRef(), Obj, L);
198 : else if (Obj.getBytesInAddress() == 8 && !Obj.isLittleEndian())
199 1062 : DebugObj =
200 1062 : createRTDyldELFObject<ELF64BE>(Buffer->getMemBufferRef(), Obj, L);
201 : else if (Obj.getBytesInAddress() == 8 && Obj.isLittleEndian())
202 : DebugObj =
203 1062 : createRTDyldELFObject<ELF64LE>(Buffer->getMemBufferRef(), Obj, L);
204 : else
205 : llvm_unreachable("Unexpected ELF format");
206 0 :
207 : handleAllErrors(DebugObj.takeError());
208 : return OwningBinary<ObjectFile>(std::move(*DebugObj), std::move(Buffer));
209 : }
210 :
211 : OwningBinary<ObjectFile>
212 : LoadedELFObjectInfo::getObjectForDebug(const ObjectFile &Obj) const {
213 : return createELFDebugObject(Obj, *this);
214 150 : }
215 :
216 : } // anonymous namespace
217 :
218 : namespace llvm {
219 300 :
220 : RuntimeDyldELF::RuntimeDyldELF(RuntimeDyld::MemoryManager &MemMgr,
221 150 : JITSymbolResolver &Resolver)
222 : : RuntimeDyldImpl(MemMgr, Resolver), GOTSectionID(0), CurrentGOTIndex(0) {}
223 : RuntimeDyldELF::~RuntimeDyldELF() {}
224 :
225 : void RuntimeDyldELF::registerEHFrames() {
226 : for (int i = 0, e = UnregisteredEHFrameSections.size(); i != e; ++i) {
227 150 : SID EHFrameSID = UnregisteredEHFrameSections[i];
228 1362 : uint8_t *EHFrameAddr = Sections[EHFrameSID].getAddress();
229 1212 : uint64_t EHFrameLoadAddr = Sections[EHFrameSID].getLoadAddress();
230 1212 : size_t EHFrameSize = Sections[EHFrameSID].getSize();
231 : MemMgr.registerEHFrames(EHFrameAddr, EHFrameLoadAddr, EHFrameSize);
232 1062 : }
233 1062 : UnregisteredEHFrameSections.clear();
234 : }
235 :
236 1062 : std::unique_ptr<RuntimeDyldELF>
237 : llvm::RuntimeDyldELF::create(Triple::ArchType Arch,
238 : RuntimeDyld::MemoryManager &MemMgr,
239 : JITSymbolResolver &Resolver) {
240 : switch (Arch) {
241 : default:
242 : return make_unique<RuntimeDyldELF>(MemMgr, Resolver);
243 : case Triple::mips:
244 : case Triple::mipsel:
245 : case Triple::mips64:
246 : case Triple::mips64el:
247 0 : return make_unique<RuntimeDyldELFMips>(MemMgr, Resolver);
248 : }
249 : }
250 :
251 : std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
252 0 : RuntimeDyldELF::loadObject(const object::ObjectFile &O) {
253 : if (auto ObjSectionToIDOrErr = loadObjectImpl(O))
254 0 : return llvm::make_unique<LoadedELFObjectInfo>(*this, *ObjSectionToIDOrErr);
255 : else {
256 : HasError = true;
257 : raw_string_ostream ErrStream(ErrorStr);
258 : logAllUnhandledErrors(ObjSectionToIDOrErr.takeError(), ErrStream, "");
259 : return nullptr;
260 0 : }
261 0 : }
262 0 :
263 0 : void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
264 : uint64_t Offset, uint64_t Value,
265 0 : uint32_t Type, int64_t Addend,
266 0 : uint64_t SymOffset) {
267 : switch (Type) {
268 : default:
269 0 : llvm_unreachable("Relocation type not implemented yet!");
270 : break;
271 : case ELF::R_X86_64_NONE:
272 : break;
273 : case ELF::R_X86_64_64: {
274 : support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
275 : Value + Addend;
276 : LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
277 : << format("%p\n", Section.getAddressWithOffset(Offset)));
278 : break;
279 : }
280 0 : case ELF::R_X86_64_32:
281 : case ELF::R_X86_64_32S: {
282 : Value += Addend;
283 : assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
284 : (Type == ELF::R_X86_64_32S &&
285 0 : ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
286 : uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
287 0 : support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
288 : TruncatedAddr;
289 : LLVM_DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr) << " at "
290 : << format("%p\n", Section.getAddressWithOffset(Offset)));
291 : break;
292 : }
293 0 : case ELF::R_X86_64_PC8: {
294 0 : uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
295 0 : int64_t RealOffset = Value + Addend - FinalAddress;
296 0 : assert(isInt<8>(RealOffset));
297 : int8_t TruncOffset = (RealOffset & 0xFF);
298 0 : Section.getAddress()[Offset] = TruncOffset;
299 0 : break;
300 : }
301 : case ELF::R_X86_64_PC32: {
302 0 : uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
303 : int64_t RealOffset = Value + Addend - FinalAddress;
304 : assert(isInt<32>(RealOffset));
305 0 : int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
306 : support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
307 : TruncOffset;
308 : break;
309 : }
310 : case ELF::R_X86_64_PC64: {
311 : uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
312 : int64_t RealOffset = Value + Addend - FinalAddress;
313 0 : support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) =
314 : RealOffset;
315 : LLVM_DEBUG(dbgs() << "Writing " << format("%p", RealOffset) << " at "
316 : << format("%p\n", FinalAddress));
317 : break;
318 0 : }
319 : case ELF::R_X86_64_GOTOFF64: {
320 0 : // Compute Value - GOTBase.
321 : uint64_t GOTBase = 0;
322 : for (const auto &Section : Sections) {
323 : if (Section.getName() == ".got") {
324 : GOTBase = Section.getLoadAddressWithOffset(0);
325 : break;
326 0 : }
327 0 : }
328 0 : assert(GOTBase != 0 && "missing GOT");
329 0 : int64_t GOTOffset = Value - GOTBase + Addend;
330 : support::ulittle64_t::ref(Section.getAddressWithOffset(Offset)) = GOTOffset;
331 0 : break;
332 0 : }
333 : }
334 : }
335 0 :
336 : void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
337 : uint64_t Offset, uint32_t Value,
338 0 : uint32_t Type, int32_t Addend) {
339 : switch (Type) {
340 : case ELF::R_386_32: {
341 : support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
342 : Value + Addend;
343 : break;
344 : }
345 : // Handle R_386_PLT32 like R_386_PC32 since it should be able to
346 : // reach any 32 bit address.
347 : case ELF::R_386_PLT32:
348 150 : case ELF::R_386_PC32: {
349 : uint32_t FinalAddress =
350 : Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
351 : uint32_t RealOffset = Value + Addend - FinalAddress;
352 150 : support::ulittle32_t::ref(Section.getAddressWithOffset(Offset)) =
353 : RealOffset;
354 150 : break;
355 : }
356 150 : default:
357 : // There are other relocation types, but it appears these are the
358 0 : // only ones currently used by the LLVM ELF object writer
359 150 : llvm_unreachable("Relocation type not implemented yet!");
360 : break;
361 0 : }
362 150 : }
363 :
364 0 : void RuntimeDyldELF::resolveAArch64Relocation(const SectionEntry &Section,
365 150 : uint64_t Offset, uint64_t Value,
366 : uint32_t Type, int64_t Addend) {
367 300 : uint32_t *TargetPtr =
368 : reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
369 0 : uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
370 : // Data should use target endian. Code should always use little endian.
371 : bool isBE = Arch == Triple::aarch64_be;
372 150 :
373 : LLVM_DEBUG(dbgs() << "resolveAArch64Relocation, LocalAddress: 0x"
374 : << format("%llx", Section.getAddressWithOffset(Offset))
375 : << " FinalAddress: 0x" << format("%llx", FinalAddress)
376 150 : << " Value: 0x" << format("%llx", Value) << " Type: 0x"
377 150 : << format("%x", Type) << " Addend: 0x"
378 : << format("%llx", Addend) << "\n");
379 :
380 : switch (Type) {
381 : default:
382 : llvm_unreachable("Relocation type not implemented yet!");
383 : break;
384 284 : case ELF::R_AARCH64_ABS16: {
385 284 : uint64_t Result = Value + Addend;
386 284 : assert(static_cast<int64_t>(Result) >= INT16_MIN && Result < UINT16_MAX);
387 842 : write(isBE, TargetPtr, static_cast<uint16_t>(Result & 0xffffU));
388 : break;
389 458 : }
390 706 : case ELF::R_AARCH64_ABS32: {
391 248 : uint64_t Result = Value + Addend;
392 248 : assert(static_cast<int64_t>(Result) >= INT32_MIN && Result < UINT32_MAX);
393 248 : write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
394 248 : break;
395 248 : }
396 : case ELF::R_AARCH64_ABS64:
397 : write(isBE, TargetPtr, Value + Addend);
398 458 : break;
399 : case ELF::R_AARCH64_PREL32: {
400 : uint64_t Result = Value + Addend - FinalAddress;
401 284 : assert(static_cast<int64_t>(Result) >= INT32_MIN &&
402 : static_cast<int64_t>(Result) <= UINT32_MAX);
403 : write(isBE, TargetPtr, static_cast<uint32_t>(Result & 0xffffffffU));
404 284 : break;
405 : }
406 : case ELF::R_AARCH64_PREL64:
407 10 : write(isBE, TargetPtr, Value + Addend - FinalAddress);
408 : break;
409 : case ELF::R_AARCH64_CALL26: // fallthrough
410 : case ELF::R_AARCH64_JUMP26: {
411 10 : // Operation: S+A-P. Set Call or B immediate value to bits fff_fffc of the
412 : // calculation.
413 : uint64_t BranchImm = Value + Addend - FinalAddress;
414 :
415 : // "Check that -2^27 <= result < 2^27".
416 335 : assert(isInt<28>(BranchImm));
417 670 : or32le(TargetPtr, (BranchImm & 0x0FFFFFFC) >> 2);
418 335 : break;
419 : }
420 0 : case ELF::R_AARCH64_MOVW_UABS_G3:
421 0 : or32le(TargetPtr, ((Value + Addend) & 0xFFFF000000000000) >> 43);
422 0 : break;
423 : case ELF::R_AARCH64_MOVW_UABS_G2_NC:
424 : or32le(TargetPtr, ((Value + Addend) & 0xFFFF00000000) >> 27);
425 : break;
426 : case ELF::R_AARCH64_MOVW_UABS_G1_NC:
427 942 : or32le(TargetPtr, ((Value + Addend) & 0xFFFF0000) >> 11);
428 : break;
429 : case ELF::R_AARCH64_MOVW_UABS_G0_NC:
430 : or32le(TargetPtr, ((Value + Addend) & 0xFFFF) << 5);
431 942 : break;
432 0 : case ELF::R_AARCH64_ADR_PREL_PG_HI21: {
433 0 : // Operation: Page(S+A) - Page(P)
434 : uint64_t Result =
435 : ((Value + Addend) & ~0xfffULL) - (FinalAddress & ~0xfffULL);
436 :
437 500 : // Check that -2^32 <= X < 2^32
438 500 : assert(isInt<33>(Result) && "overflow check failed for relocation");
439 :
440 : // Immediate goes in bits 30:29 + 5:23 of ADRP instruction, taken
441 : // from bits 32:12 of X.
442 500 : write32AArch64Addr(TargetPtr, Result >> 12);
443 : break;
444 2 : }
445 : case ELF::R_AARCH64_ADD_ABS_LO12_NC:
446 2 : // Operation: S + A
447 : // Immediate goes in bits 21:10 of LD/ST instruction, taken
448 : // from bits 11:0 of X
449 : or32AArch64Imm(TargetPtr, Value + Addend);
450 2 : break;
451 2 : case ELF::R_AARCH64_LDST8_ABS_LO12_NC:
452 : // Operation: S + A
453 : // Immediate goes in bits 21:10 of LD/ST instruction, taken
454 : // from bits 11:0 of X
455 2 : or32AArch64Imm(TargetPtr, getBits(Value + Addend, 0, 11));
456 : break;
457 2 : case ELF::R_AARCH64_LDST16_ABS_LO12_NC:
458 2 : // Operation: S + A
459 2 : // Immediate goes in bits 21:10 of LD/ST instruction, taken
460 : // from bits 11:1 of X
461 : or32AArch64Imm(TargetPtr, getBits(Value + Addend, 1, 11));
462 2 : break;
463 2 : case ELF::R_AARCH64_LDST32_ABS_LO12_NC:
464 : // Operation: S + A
465 91 : // Immediate goes in bits 21:10 of LD/ST instruction, taken
466 91 : // from bits 11:2 of X
467 91 : or32AArch64Imm(TargetPtr, getBits(Value + Addend, 2, 11));
468 : break;
469 : case ELF::R_AARCH64_LDST64_ABS_LO12_NC:
470 91 : // Operation: S + A
471 : // Immediate goes in bits 21:10 of LD/ST instruction, taken
472 91 : // from bits 11:3 of X
473 : or32AArch64Imm(TargetPtr, getBits(Value + Addend, 3, 11));
474 343 : break;
475 343 : case ELF::R_AARCH64_LDST128_ABS_LO12_NC:
476 343 : // Operation: S + A
477 343 : // Immediate goes in bits 21:10 of LD/ST instruction, taken
478 : // from bits 11:4 of X
479 : or32AArch64Imm(TargetPtr, getBits(Value + Addend, 4, 11));
480 : break;
481 343 : }
482 : }
483 4 :
484 : void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
485 : uint64_t Offset, uint32_t Value,
486 16 : uint32_t Type, int32_t Addend) {
487 : // TODO: Add Thumb relocations.
488 4 : uint32_t *TargetPtr =
489 4 : reinterpret_cast<uint32_t *>(Section.getAddressWithOffset(Offset));
490 : uint32_t FinalAddress = Section.getLoadAddressWithOffset(Offset) & 0xFFFFFFFF;
491 : Value += Addend;
492 :
493 4 : LLVM_DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
494 4 : << Section.getAddressWithOffset(Offset)
495 4 : << " FinalAddress: " << format("%p", FinalAddress)
496 : << " Value: " << format("%x", Value)
497 : << " Type: " << format("%x", Type)
498 942 : << " Addend: " << format("%x", Addend) << "\n");
499 :
500 0 : switch (Type) {
501 : default:
502 : llvm_unreachable("Not implemented relocation type!");
503 0 :
504 0 : case ELF::R_ARM_NONE:
505 0 : break;
506 : // Write a 31bit signed offset
507 0 : case ELF::R_ARM_PREL31:
508 : support::ulittle32_t::ref{TargetPtr} =
509 : (support::ulittle32_t::ref{TargetPtr} & 0x80000000) |
510 : ((Value - FinalAddress) & ~0x80000000);
511 0 : break;
512 : case ELF::R_ARM_TARGET1:
513 : case ELF::R_ARM_ABS32:
514 0 : support::ulittle32_t::ref{TargetPtr} = Value;
515 0 : break;
516 0 : // Write first 16 bit of 32 bit value to the mov instruction.
517 : // Last 4 bit should be shifted.
518 0 : case ELF::R_ARM_MOVW_ABS_NC:
519 : case ELF::R_ARM_MOVT_ABS:
520 0 : if (Type == ELF::R_ARM_MOVW_ABS_NC)
521 : Value = Value & 0xFFFF;
522 : else if (Type == ELF::R_ARM_MOVT_ABS)
523 0 : Value = (Value >> 16) & 0xFFFF;
524 : support::ulittle32_t::ref{TargetPtr} =
525 : (support::ulittle32_t::ref{TargetPtr} & ~0x000F0FFF) | (Value & 0xFFF) |
526 0 : (((Value >> 12) & 0xF) << 16);
527 : break;
528 34 : // Write 24 bit relative value to the branch instruction.
529 : case ELF::R_ARM_PC24: // Fall through.
530 : case ELF::R_ARM_CALL: // Fall through.
531 : case ELF::R_ARM_JUMP24:
532 34 : int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
533 34 : RelValue = (RelValue & 0x03FFFFFC) >> 2;
534 : assert((support::ulittle32_t::ref{TargetPtr} & 0xFFFFFF) == 0xFFFFFE);
535 34 : support::ulittle32_t::ref{TargetPtr} =
536 : (support::ulittle32_t::ref{TargetPtr} & 0xFF000000) | RelValue;
537 : break;
538 : }
539 : }
540 :
541 : void RuntimeDyldELF::setMipsABI(const ObjectFile &Obj) {
542 : if (Arch == Triple::UnknownArch ||
543 : !StringRef(Triple::getArchTypePrefix(Arch)).equals("mips")) {
544 34 : IsMipsO32ABI = false;
545 0 : IsMipsN32ABI = false;
546 0 : IsMipsN64ABI = false;
547 : return;
548 1 : }
549 1 : if (auto *E = dyn_cast<ELFObjectFileBase>(&Obj)) {
550 : unsigned AbiVariant = E->getPlatformFlags();
551 1 : IsMipsO32ABI = AbiVariant & ELF::EF_MIPS_ABI_O32;
552 : IsMipsN32ABI = AbiVariant & ELF::EF_MIPS_ABI2;
553 : }
554 1 : IsMipsN64ABI = Obj.getFileFormatName().equals("ELF64-mips");
555 1 : }
556 :
557 1 : // Return the .TOC. section and offset.
558 : Error RuntimeDyldELF::findPPC64TOCSection(const ELFObjectFileBase &Obj,
559 : ObjSectionToIDMap &LocalSections,
560 6 : RelocationValueRef &Rel) {
561 6 : // Set a default SectionID in case we do not find a TOC section below.
562 : // This may happen for references to TOC base base (sym@toc, .odp
563 2 : // relocation) without a .toc directive. In this case just use the
564 2 : // first section (which is usually the .odp) since the code won't
565 : // reference the .toc base directly.
566 : Rel.SymbolName = nullptr;
567 2 : Rel.SectionID = 0;
568 :
569 : // The TOC consists of sections .got, .toc, .tocbss, .plt in that
570 2 : // order. The TOC starts where the first of these sections starts.
571 2 : for (auto &Section: Obj.sections()) {
572 : StringRef SectionName;
573 1 : if (auto EC = Section.getName(SectionName))
574 : return errorCodeToError(EC);
575 :
576 : if (SectionName == ".got"
577 1 : || SectionName == ".toc"
578 : || SectionName == ".tocbss"
579 : || SectionName == ".plt") {
580 : if (auto SectionIDOrErr =
581 1 : findOrEmitSection(Obj, Section, false, LocalSections))
582 : Rel.SectionID = *SectionIDOrErr;
583 : else
584 2 : return SectionIDOrErr.takeError();
585 2 : break;
586 : }
587 2 : }
588 2 :
589 : // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
590 2 : // thus permitting a full 64 Kbytes segment.
591 2 : Rel.Addend = 0x8000;
592 :
593 2 : return Error::success();
594 2 : }
595 :
596 4 : // Returns the sections and offset associated with the ODP entry referenced
597 : // by Symbol.
598 4 : Error RuntimeDyldELF::findOPDEntrySection(const ELFObjectFileBase &Obj,
599 4 : ObjSectionToIDMap &LocalSections,
600 : RelocationValueRef &Rel) {
601 : // Get the ELF symbol value (st_value) to compare with Relocation offset in
602 : // .opd entries
603 : for (section_iterator si = Obj.section_begin(), se = Obj.section_end();
604 : si != se; ++si) {
605 : section_iterator RelSecI = si->getRelocatedSection();
606 4 : if (RelSecI == Obj.section_end())
607 : continue;
608 :
609 1 : StringRef RelSectionName;
610 : if (auto EC = RelSecI->getName(RelSectionName))
611 : return errorCodeToError(EC);
612 :
613 1 : if (RelSectionName != ".opd")
614 : continue;
615 1 :
616 : for (elf_relocation_iterator i = si->relocation_begin(),
617 : e = si->relocation_end();
618 : i != e;) {
619 1 : // The R_PPC64_ADDR64 relocation indicates the first field
620 : // of a .opd entry
621 1 : uint64_t TypeFunc = i->getType();
622 : if (TypeFunc != ELF::R_PPC64_ADDR64) {
623 : ++i;
624 : continue;
625 1 : }
626 :
627 1 : uint64_t TargetSymbolOffset = i->getOffset();
628 : symbol_iterator TargetSymbol = i->getSymbol();
629 : int64_t Addend;
630 : if (auto AddendOrErr = i->getAddend())
631 1 : Addend = *AddendOrErr;
632 : else
633 4 : return AddendOrErr.takeError();
634 :
635 : ++i;
636 : if (i == e)
637 4 : break;
638 :
639 1 : // Just check if following relocation is a R_PPC64_TOC
640 : uint64_t TypeTOC = i->getType();
641 : if (TypeTOC != ELF::R_PPC64_TOC)
642 : continue;
643 1 :
644 : // Finally compares the Symbol value and the target symbol offset
645 : // to check if this .opd entry refers to the symbol the relocation
646 34 : // points to.
647 : if (Rel.Addend != (int64_t)TargetSymbolOffset)
648 2 : continue;
649 :
650 : section_iterator TSI = Obj.section_end();
651 : if (auto TSIOrErr = TargetSymbol->getSection())
652 : TSI = *TSIOrErr;
653 2 : else
654 2 : return TSIOrErr.takeError();
655 2 : assert(TSI != Obj.section_end() && "TSI should refer to a valid section");
656 :
657 : bool IsCode = TSI->isText();
658 : if (auto SectionIDOrErr = findOrEmitSection(Obj, *TSI, IsCode,
659 : LocalSections))
660 : Rel.SectionID = *SectionIDOrErr;
661 : else
662 : return SectionIDOrErr.takeError();
663 : Rel.Addend = (intptr_t)Addend;
664 2 : return Error::success();
665 0 : }
666 0 : }
667 : llvm_unreachable("Attempting to get address of ODP entry!");
668 : }
669 :
670 : // Relocation masks following the #lo(value), #hi(value), #ha(value),
671 : // #higher(value), #highera(value), #highest(value), and #highesta(value)
672 1 : // macros defined in section 4.5.1. Relocation Types of the PPC-elf64abi
673 1 : // document.
674 1 :
675 1 : static inline uint16_t applyPPClo(uint64_t value) { return value & 0xffff; }
676 :
677 : static inline uint16_t applyPPChi(uint64_t value) {
678 : return (value >> 16) & 0xffff;
679 0 : }
680 :
681 : static inline uint16_t applyPPCha (uint64_t value) {
682 0 : return ((value + 0x8000) >> 16) & 0xffff;
683 : }
684 0 :
685 0 : static inline uint16_t applyPPChigher(uint64_t value) {
686 0 : return (value >> 32) & 0xffff;
687 0 : }
688 0 :
689 0 : static inline uint16_t applyPPChighera (uint64_t value) {
690 0 : return ((value + 0x8000) >> 32) & 0xffff;
691 0 : }
692 :
693 0 : static inline uint16_t applyPPChighest(uint64_t value) {
694 : return (value >> 48) & 0xffff;
695 : }
696 0 :
697 0 : static inline uint16_t applyPPChighesta (uint64_t value) {
698 : return ((value + 0x8000) >> 48) & 0xffff;
699 0 : }
700 0 :
701 0 : void RuntimeDyldELF::resolvePPC32Relocation(const SectionEntry &Section,
702 : uint64_t Offset, uint64_t Value,
703 2 : uint32_t Type, int64_t Addend) {
704 : uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
705 335 : switch (Type) {
706 335 : default:
707 355 : llvm_unreachable("Relocation type not implemented yet!");
708 315 : break;
709 315 : case ELF::R_PPC_ADDR16_LO:
710 315 : writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
711 315 : break;
712 : case ELF::R_PPC_ADDR16_HI:
713 : writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
714 20 : break;
715 20 : case ELF::R_PPC_ADDR16_HA:
716 20 : writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
717 : break;
718 40 : }
719 : }
720 :
721 : void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
722 14 : uint64_t Offset, uint64_t Value,
723 : uint32_t Type, int64_t Addend) {
724 : uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
725 : switch (Type) {
726 : default:
727 : llvm_unreachable("Relocation type not implemented yet!");
728 : break;
729 : case ELF::R_PPC64_ADDR16:
730 14 : writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
731 14 : break;
732 : case ELF::R_PPC64_ADDR16_DS:
733 : writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
734 : break;
735 87 : case ELF::R_PPC64_ADDR16_LO:
736 82 : writeInt16BE(LocalAddress, applyPPClo(Value + Addend));
737 82 : break;
738 0 : case ELF::R_PPC64_ADDR16_LO_DS:
739 : writeInt16BE(LocalAddress, applyPPClo(Value + Addend) & ~3);
740 : break;
741 : case ELF::R_PPC64_ADDR16_HI:
742 : case ELF::R_PPC64_ADDR16_HIGH:
743 : writeInt16BE(LocalAddress, applyPPChi(Value + Addend));
744 9 : break;
745 9 : case ELF::R_PPC64_ADDR16_HA:
746 9 : case ELF::R_PPC64_ADDR16_HIGHA:
747 : writeInt16BE(LocalAddress, applyPPCha(Value + Addend));
748 : break;
749 9 : case ELF::R_PPC64_ADDR16_HIGHER:
750 : writeInt16BE(LocalAddress, applyPPChigher(Value + Addend));
751 : break;
752 : case ELF::R_PPC64_ADDR16_HIGHERA:
753 : writeInt16BE(LocalAddress, applyPPChighera(Value + Addend));
754 : break;
755 14 : case ELF::R_PPC64_ADDR16_HIGHEST:
756 : writeInt16BE(LocalAddress, applyPPChighest(Value + Addend));
757 : break;
758 : case ELF::R_PPC64_ADDR16_HIGHESTA:
759 : writeInt16BE(LocalAddress, applyPPChighesta(Value + Addend));
760 : break;
761 : case ELF::R_PPC64_ADDR14: {
762 0 : assert(((Value + Addend) & 3) == 0);
763 : // Preserve the AA/LK bits in the branch instruction
764 : uint8_t aalk = *(LocalAddress + 3);
765 : writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
766 : } break;
767 0 : case ELF::R_PPC64_REL16_LO: {
768 0 : uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
769 0 : uint64_t Delta = Value - FinalAddress + Addend;
770 0 : writeInt16BE(LocalAddress, applyPPClo(Delta));
771 0 : } break;
772 : case ELF::R_PPC64_REL16_HI: {
773 0 : uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
774 0 : uint64_t Delta = Value - FinalAddress + Addend;
775 0 : writeInt16BE(LocalAddress, applyPPChi(Delta));
776 : } break;
777 : case ELF::R_PPC64_REL16_HA: {
778 : uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
779 : uint64_t Delta = Value - FinalAddress + Addend;
780 0 : writeInt16BE(LocalAddress, applyPPCha(Delta));
781 0 : } break;
782 0 : case ELF::R_PPC64_ADDR32: {
783 : int64_t Result = static_cast<int64_t>(Value + Addend);
784 : if (SignExtend64<32>(Result) != Result)
785 0 : llvm_unreachable("Relocation R_PPC64_ADDR32 overflow");
786 0 : writeInt32BE(LocalAddress, Result);
787 : } break;
788 0 : case ELF::R_PPC64_REL24: {
789 : uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
790 : int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
791 0 : if (SignExtend64<26>(delta) != delta)
792 0 : llvm_unreachable("Relocation R_PPC64_REL24 overflow");
793 : // We preserve bits other than LI field, i.e. PO and AA/LK fields.
794 0 : uint32_t Inst = readBytesUnaligned(LocalAddress, 4);
795 0 : writeInt32BE(LocalAddress, (Inst & 0xFC000003) | (delta & 0x03FFFFFC));
796 : } break;
797 : case ELF::R_PPC64_REL32: {
798 : uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
799 : int64_t delta = static_cast<int64_t>(Value - FinalAddress + Addend);
800 0 : if (SignExtend64<32>(delta) != delta)
801 : llvm_unreachable("Relocation R_PPC64_REL32 overflow");
802 : writeInt32BE(LocalAddress, delta);
803 : } break;
804 0 : case ELF::R_PPC64_REL64: {
805 0 : uint64_t FinalAddress = Section.getLoadAddressWithOffset(Offset);
806 : uint64_t Delta = Value - FinalAddress + Addend;
807 : writeInt64BE(LocalAddress, Delta);
808 : } break;
809 : case ELF::R_PPC64_ADDR64:
810 : writeInt64BE(LocalAddress, Value + Addend);
811 0 : break;
812 : }
813 : }
814 0 :
815 0 : void RuntimeDyldELF::resolveSystemZRelocation(const SectionEntry &Section,
816 0 : uint64_t Offset, uint64_t Value,
817 : uint32_t Type, int64_t Addend) {
818 : uint8_t *LocalAddress = Section.getAddressWithOffset(Offset);
819 : switch (Type) {
820 : default:
821 0 : llvm_unreachable("Relocation type not implemented yet!");
822 0 : break;
823 0 : case ELF::R_390_PC16DBL:
824 0 : case ELF::R_390_PLT16DBL: {
825 : int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
826 : assert(int16_t(Delta / 2) * 2 == Delta && "R_390_PC16DBL overflow");
827 0 : writeInt16BE(LocalAddress, Delta / 2);
828 : break;
829 : }
830 : case ELF::R_390_PC32DBL:
831 0 : case ELF::R_390_PLT32DBL: {
832 : int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
833 : assert(int32_t(Delta / 2) * 2 == Delta && "R_390_PC32DBL overflow");
834 : writeInt32BE(LocalAddress, Delta / 2);
835 : break;
836 : }
837 : case ELF::R_390_PC16: {
838 : int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
839 9 : assert(int16_t(Delta) == Delta && "R_390_PC16 overflow");
840 : writeInt16BE(LocalAddress, Delta);
841 : break;
842 3 : }
843 : case ELF::R_390_PC32: {
844 : int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
845 : assert(int32_t(Delta) == Delta && "R_390_PC32 overflow");
846 6 : writeInt32BE(LocalAddress, Delta);
847 : break;
848 : }
849 : case ELF::R_390_PC64: {
850 3 : int64_t Delta = (Value + Addend) - Section.getLoadAddressWithOffset(Offset);
851 : writeInt64BE(LocalAddress, Delta);
852 : break;
853 : }
854 0 : case ELF::R_390_8:
855 : *LocalAddress = (uint8_t)(Value + Addend);
856 : break;
857 : case ELF::R_390_16:
858 3 : writeInt16BE(LocalAddress, Value + Addend);
859 : break;
860 : case ELF::R_390_32:
861 : writeInt32BE(LocalAddress, Value + Addend);
862 0 : break;
863 : case ELF::R_390_64:
864 : writeInt64BE(LocalAddress, Value + Addend);
865 2 : break;
866 : }
867 : }
868 2 :
869 2 : void RuntimeDyldELF::resolveBPFRelocation(const SectionEntry &Section,
870 0 : uint64_t Offset, uint64_t Value,
871 0 : uint32_t Type, int64_t Addend) {
872 : bool isBE = Arch == Triple::bpfeb;
873 1 :
874 1 : switch (Type) {
875 : default:
876 0 : llvm_unreachable("Relocation type not implemented yet!");
877 0 : break;
878 : case ELF::R_BPF_NONE:
879 1 : break;
880 1 : case ELF::R_BPF_64_64: {
881 : write(isBE, Section.getAddressWithOffset(Offset), Value + Addend);
882 : LLVM_DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend)) << " at "
883 2 : << format("%p\n", Section.getAddressWithOffset(Offset)));
884 : break;
885 38 : }
886 : case ELF::R_BPF_64_32: {
887 : Value += Addend;
888 38 : assert(Value <= UINT32_MAX);
889 38 : write(isBE, Section.getAddressWithOffset(Offset), static_cast<uint32_t>(Value));
890 0 : LLVM_DEBUG(dbgs() << "Writing " << format("%p", Value) << " at "
891 0 : << format("%p\n", Section.getAddressWithOffset(Offset)));
892 : break;
893 0 : }
894 0 : }
895 : }
896 0 :
897 0 : // The target location for the relocation is described by RE.SectionID and
898 : // RE.Offset. RE.SectionID can be used to find the SectionEntry. Each
899 3 : // SectionEntry has three members describing its location.
900 3 : // SectionEntry::Address is the address at which the section has been loaded
901 : // into memory in the current (host) process. SectionEntry::LoadAddress is the
902 3 : // address that the section will have in the target process.
903 3 : // SectionEntry::ObjAddress is the address of the bits for this section in the
904 : // original emitted object image (also in the current address space).
905 3 : //
906 : // Relocations will be applied as if the section were loaded at
907 3 : // SectionEntry::LoadAddress, but they will be applied at an address based
908 : // on SectionEntry::Address. SectionEntry::ObjAddress will be used to refer to
909 3 : // Target memory contents if they are required for value calculations.
910 : //
911 3 : // The Value parameter here is the load address of the symbol for the
912 : // relocation to be applied. For relocations which refer to symbols in the
913 3 : // current object Value will be the LoadAddress of the section in which
914 3 : // the symbol resides (RE.Addend provides additional information about the
915 : // symbol location). For external symbols, Value will be the address of the
916 0 : // symbol in the target address space.
917 0 : void RuntimeDyldELF::resolveRelocation(const RelocationEntry &RE,
918 : uint64_t Value) {
919 3 : const SectionEntry &Section = Sections[RE.SectionID];
920 3 : return resolveRelocation(Section, RE.Offset, Value, RE.RelType, RE.Addend,
921 : RE.SymOffset, RE.SectionID);
922 0 : }
923 0 :
924 : void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
925 0 : uint64_t Offset, uint64_t Value,
926 : uint32_t Type, int64_t Addend,
927 : uint64_t SymOffset, SID SectionID) {
928 0 : switch (Arch) {
929 0 : case Triple::x86_64:
930 : resolveX86_64Relocation(Section, Offset, Value, Type, Addend, SymOffset);
931 2 : break;
932 2 : case Triple::x86:
933 2 : resolveX86Relocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
934 2 : (uint32_t)(Addend & 0xffffffffL));
935 : break;
936 0 : case Triple::aarch64:
937 0 : case Triple::aarch64_be:
938 0 : resolveAArch64Relocation(Section, Offset, Value, Type, Addend);
939 0 : break;
940 : case Triple::arm: // Fall through.
941 2 : case Triple::armeb:
942 2 : case Triple::thumb:
943 2 : case Triple::thumbeb:
944 2 : resolveARMRelocation(Section, Offset, (uint32_t)(Value & 0xffffffffL), Type,
945 : (uint32_t)(Addend & 0xffffffffL));
946 0 : break;
947 0 : case Triple::ppc:
948 0 : resolvePPC32Relocation(Section, Offset, Value, Type, Addend);
949 0 : break;
950 0 : case Triple::ppc64: // Fall through.
951 : case Triple::ppc64le:
952 5 : resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
953 5 : break;
954 5 : case Triple::systemz:
955 5 : resolveSystemZRelocation(Section, Offset, Value, Type, Addend);
956 0 : break;
957 : case Triple::bpfel:
958 5 : case Triple::bpfeb:
959 5 : resolveBPFRelocation(Section, Offset, Value, Type, Addend);
960 : break;
961 4 : default:
962 4 : llvm_unreachable("Unsupported CPU type!");
963 4 : }
964 4 : }
965 0 :
966 4 : void *RuntimeDyldELF::computePlaceholderAddress(unsigned SectionID, uint64_t Offset) const {
967 : return (void *)(Sections[SectionID].getObjAddress() + Offset);
968 4 : }
969 4 :
970 4 : void RuntimeDyldELF::processSimpleRelocation(unsigned SectionID, uint64_t Offset, unsigned RelType, RelocationValueRef Value) {
971 : RelocationEntry RE(SectionID, Offset, RelType, Value.Addend, Value.Offset);
972 : if (Value.SymbolName)
973 3 : addRelocationForSymbol(RE, Value.SymbolName);
974 3 : else
975 : addRelocationForSection(RE, Value.SectionID);
976 : }
977 38 :
978 : uint32_t RuntimeDyldELF::getMatchingLoRelocation(uint32_t RelType,
979 2 : bool IsLocal) const {
980 : switch (RelType) {
981 : case ELF::R_MICROMIPS_GOT16:
982 2 : if (IsLocal)
983 2 : return ELF::R_MICROMIPS_LO16;
984 0 : break;
985 0 : case ELF::R_MICROMIPS_HI16:
986 : return ELF::R_MICROMIPS_LO16;
987 0 : case ELF::R_MIPS_GOT16:
988 : if (IsLocal)
989 0 : return ELF::R_MIPS_LO16;
990 : break;
991 0 : case ELF::R_MIPS_HI16:
992 : return ELF::R_MIPS_LO16;
993 : case ELF::R_MIPS_PCHI16:
994 0 : return ELF::R_MIPS_PCLO16;
995 : default:
996 0 : break;
997 : }
998 0 : return ELF::R_MIPS_NONE;
999 : }
1000 :
1001 0 : // Sometimes we don't need to create thunk for a branch.
1002 0 : // This typically happens when branch target is located
1003 : // in the same object file. In such case target is either
1004 0 : // a weak symbol or symbol in a different executable section.
1005 : // This function checks if branch target is located in the
1006 : // same object file and if distance between source and target
1007 1 : // fits R_AARCH64_CALL26 relocation. If both conditions are
1008 1 : // met, it emits direct jump to the target and returns true.
1009 : // Otherwise false is returned and thunk is created.
1010 1 : bool RuntimeDyldELF::resolveAArch64ShortBranch(
1011 : unsigned SectionID, relocation_iterator RelI,
1012 : const RelocationValueRef &Value) {
1013 1 : uint64_t Address;
1014 2 : if (Value.SymbolName) {
1015 : auto Loc = GlobalSymbolTable.find(Value.SymbolName);
1016 :
1017 : // Don't create direct branch for external symbols.
1018 0 : if (Loc == GlobalSymbolTable.end())
1019 0 : return false;
1020 0 :
1021 0 : const auto &SymInfo = Loc->second;
1022 0 : Address =
1023 : uint64_t(Sections[SymInfo.getSectionID()].getLoadAddressWithOffset(
1024 0 : SymInfo.getOffset()));
1025 0 : } else {
1026 : Address = uint64_t(Sections[Value.SectionID].getLoadAddress());
1027 0 : }
1028 0 : uint64_t Offset = RelI->getOffset();
1029 : uint64_t SourceAddress = Sections[SectionID].getLoadAddressWithOffset(Offset);
1030 :
1031 2 : // R_AARCH64_CALL26 requires immediate to be in range -2^27 <= imm < 2^27
1032 : // If distance between source and target is out of range then we should
1033 0 : // create thunk.
1034 : if (!isInt<28>(Address + Value.Addend - SourceAddress))
1035 : return false;
1036 0 :
1037 : resolveRelocation(Sections[SectionID], Offset, Address, RelI->getType(),
1038 0 : Value.Addend);
1039 0 :
1040 0 : return true;
1041 : }
1042 :
1043 : void RuntimeDyldELF::resolveAArch64Branch(unsigned SectionID,
1044 0 : const RelocationValueRef &Value,
1045 0 : relocation_iterator RelI,
1046 : StubMap &Stubs) {
1047 :
1048 : LLVM_DEBUG(dbgs() << "\t\tThis is an AArch64 branch relocation.");
1049 : SectionEntry &Section = Sections[SectionID];
1050 0 :
1051 0 : uint64_t Offset = RelI->getOffset();
1052 : unsigned RelType = RelI->getType();
1053 0 : // Look for an existing stub.
1054 : StubMap::const_iterator i = Stubs.find(Value);
1055 : if (i != Stubs.end()) {
1056 : resolveRelocation(Section, Offset,
1057 : (uint64_t)Section.getAddressWithOffset(i->second),
1058 : RelType, 0);
1059 0 : LLVM_DEBUG(dbgs() << " Stub function found\n");
1060 : } else if (!resolveAArch64ShortBranch(SectionID, RelI, Value)) {
1061 : // Create a new stub function.
1062 : LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1063 : Stubs[Value] = Section.getStubOffset();
1064 : uint8_t *StubTargetAddr = createStubFunction(
1065 : Section.getAddressWithOffset(Section.getStubOffset()));
1066 :
1067 : RelocationEntry REmovz_g3(SectionID, StubTargetAddr - Section.getAddress(),
1068 : ELF::R_AARCH64_MOVW_UABS_G3, Value.Addend);
1069 : RelocationEntry REmovk_g2(SectionID,
1070 : StubTargetAddr - Section.getAddress() + 4,
1071 : ELF::R_AARCH64_MOVW_UABS_G2_NC, Value.Addend);
1072 : RelocationEntry REmovk_g1(SectionID,
1073 : StubTargetAddr - Section.getAddress() + 8,
1074 : ELF::R_AARCH64_MOVW_UABS_G1_NC, Value.Addend);
1075 : RelocationEntry REmovk_g0(SectionID,
1076 : StubTargetAddr - Section.getAddress() + 12,
1077 : ELF::R_AARCH64_MOVW_UABS_G0_NC, Value.Addend);
1078 :
1079 : if (Value.SymbolName) {
1080 : addRelocationForSymbol(REmovz_g3, Value.SymbolName);
1081 984 : addRelocationForSymbol(REmovk_g2, Value.SymbolName);
1082 : addRelocationForSymbol(REmovk_g1, Value.SymbolName);
1083 984 : addRelocationForSymbol(REmovk_g0, Value.SymbolName);
1084 984 : } else {
1085 984 : addRelocationForSection(REmovz_g3, Value.SectionID);
1086 : addRelocationForSection(REmovk_g2, Value.SectionID);
1087 : addRelocationForSection(REmovk_g1, Value.SectionID);
1088 1020 : addRelocationForSection(REmovk_g0, Value.SectionID);
1089 : }
1090 : resolveRelocation(Section, Offset,
1091 : reinterpret_cast<uint64_t>(Section.getAddressWithOffset(
1092 1020 : Section.getStubOffset())),
1093 942 : RelType, 0);
1094 942 : Section.advanceStubOffset(getMaxStubSize());
1095 942 : }
1096 0 : }
1097 0 :
1098 : Expected<relocation_iterator>
1099 0 : RuntimeDyldELF::processRelocationRef(
1100 34 : unsigned SectionID, relocation_iterator RelI, const ObjectFile &O,
1101 : ObjSectionToIDMap &ObjSectionToID, StubMap &Stubs) {
1102 34 : const auto &Obj = cast<ELFObjectFileBase>(O);
1103 34 : uint64_t RelType = RelI->getType();
1104 2 : int64_t Addend = 0;
1105 : if (Expected<int64_t> AddendOrErr = ELFRelocationRef(*RelI).getAddend())
1106 : Addend = *AddendOrErr;
1107 : else
1108 2 : consumeError(AddendOrErr.takeError());
1109 : elf_symbol_iterator Symbol = RelI->getSymbol();
1110 2 :
1111 2 : // Obtain the symbol name which is referenced in the relocation
1112 2 : StringRef TargetName;
1113 2 : if (Symbol != Obj.symbol_end()) {
1114 38 : if (auto TargetNameOrErr = Symbol->getName())
1115 : TargetName = *TargetNameOrErr;
1116 38 : else
1117 38 : return TargetNameOrErr.takeError();
1118 2 : }
1119 2 : LLVM_DEBUG(dbgs() << "\t\tRelType: " << RelType << " Addend: " << Addend
1120 2 : << " TargetName: " << TargetName << "\n");
1121 0 : RelocationValueRef Value;
1122 : // First search for the symbol in the local symbol table
1123 0 : SymbolRef::Type SymType = SymbolRef::ST_Unknown;
1124 0 :
1125 0 : // Search for the symbol in the global symbol table
1126 0 : RTDyldSymbolTable::const_iterator gsi = GlobalSymbolTable.end();
1127 : if (Symbol != Obj.symbol_end()) {
1128 1020 : gsi = GlobalSymbolTable.find(TargetName.data());
1129 : Expected<SymbolRef::Type> SymTypeOrErr = Symbol->getType();
1130 414 : if (!SymTypeOrErr) {
1131 828 : std::string Buf;
1132 : raw_string_ostream OS(Buf);
1133 : logAllUnhandledErrors(SymTypeOrErr.takeError(), OS, "");
1134 1118 : OS.flush();
1135 1118 : report_fatal_error(Buf);
1136 1118 : }
1137 436 : SymType = *SymTypeOrErr;
1138 : }
1139 900 : if (gsi != GlobalSymbolTable.end()) {
1140 1118 : const auto &SymInfo = gsi->second;
1141 : Value.SectionID = SymInfo.getSectionID();
1142 6 : Value.Offset = SymInfo.getOffset();
1143 : Value.Addend = SymInfo.getOffset() + Addend;
1144 6 : } else {
1145 0 : switch (SymType) {
1146 0 : case SymbolRef::ST_Debug: {
1147 : // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
1148 : // and can be changed by another developers. Maybe best way is add
1149 : // a new symbol type ST_Section to SymbolRef and use it.
1150 : auto SectionOrErr = Symbol->getSection();
1151 0 : if (!SectionOrErr) {
1152 0 : std::string Buf;
1153 : raw_string_ostream OS(Buf);
1154 : logAllUnhandledErrors(SectionOrErr.takeError(), OS, "");
1155 4 : OS.flush();
1156 4 : report_fatal_error(Buf);
1157 2 : }
1158 2 : section_iterator si = *SectionOrErr;
1159 : if (si == Obj.section_end())
1160 : llvm_unreachable("Symbol section not found, bad object file format!");
1161 : LLVM_DEBUG(dbgs() << "\t\tThis is section symbol\n");
1162 0 : bool isCode = si->isText();
1163 : if (auto SectionIDOrErr = findOrEmitSection(Obj, (*si), isCode,
1164 : ObjSectionToID))
1165 : Value.SectionID = *SectionIDOrErr;
1166 : else
1167 : return SectionIDOrErr.takeError();
1168 : Value.Addend = Addend;
1169 : break;
1170 : }
1171 : case SymbolRef::ST_Data:
1172 : case SymbolRef::ST_Function:
1173 : case SymbolRef::ST_Unknown: {
1174 1 : Value.SymbolName = TargetName.data();
1175 : Value.Addend = Addend;
1176 :
1177 : // Absolute relocations will have a zero symbol ID (STN_UNDEF), which
1178 1 : // will manifest here as a NULL symbol name.
1179 0 : // We can set this as a valid (but empty) symbol name, and rely
1180 : // on addRelocationForSymbol to handle this.
1181 : if (!Value.SymbolName)
1182 0 : Value.SymbolName = "";
1183 : break;
1184 : }
1185 : default:
1186 : llvm_unreachable("Unresolved symbol type!");
1187 0 : break;
1188 0 : }
1189 : }
1190 2 :
1191 : uint64_t Offset = RelI->getOffset();
1192 1 :
1193 2 : LLVM_DEBUG(dbgs() << "\t\tSectionID: " << SectionID << " Offset: " << Offset
1194 : << "\n");
1195 : if ((Arch == Triple::aarch64 || Arch == Triple::aarch64_be)) {
1196 : if (RelType == ELF::R_AARCH64_CALL26 || RelType == ELF::R_AARCH64_JUMP26) {
1197 : resolveAArch64Branch(SectionID, Value, RelI, Stubs);
1198 2 : } else if (RelType == ELF::R_AARCH64_ADR_GOT_PAGE) {
1199 : // Craete new GOT entry or find existing one. If GOT entry is
1200 : // to be created, then we also emit ABS64 relocation for it.
1201 2 : uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
1202 : resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1203 : ELF::R_AARCH64_ADR_PREL_PG_HI21);
1204 1 :
1205 : } else if (RelType == ELF::R_AARCH64_LD64_GOT_LO12_NC) {
1206 : uint64_t GOTOffset = findOrAllocGOTEntry(Value, ELF::R_AARCH64_ABS64);
1207 1 : resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1208 : ELF::R_AARCH64_LDST64_ABS_LO12_NC);
1209 : } else {
1210 : processSimpleRelocation(SectionID, Offset, RelType, Value);
1211 : }
1212 : } else if (Arch == Triple::arm) {
1213 1 : if (RelType == ELF::R_ARM_PC24 || RelType == ELF::R_ARM_CALL ||
1214 : RelType == ELF::R_ARM_JUMP24) {
1215 1 : // This is an ARM branch relocation, need to use a stub function.
1216 1 : LLVM_DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.\n");
1217 : SectionEntry &Section = Sections[SectionID];
1218 :
1219 1 : // Look for an existing stub.
1220 0 : StubMap::const_iterator i = Stubs.find(Value);
1221 0 : if (i != Stubs.end()) {
1222 : resolveRelocation(
1223 : Section, Offset,
1224 1 : reinterpret_cast<uint64_t>(Section.getAddressWithOffset(i->second)),
1225 : RelType, 0);
1226 : LLVM_DEBUG(dbgs() << " Stub function found\n");
1227 0 : } else {
1228 0 : // Create a new stub function.
1229 : LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1230 : Stubs[Value] = Section.getStubOffset();
1231 0 : uint8_t *StubTargetAddr = createStubFunction(
1232 0 : Section.getAddressWithOffset(Section.getStubOffset()));
1233 : RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1234 0 : ELF::R_ARM_ABS32, Value.Addend);
1235 0 : if (Value.SymbolName)
1236 : addRelocationForSymbol(RE, Value.SymbolName);
1237 0 : else
1238 0 : addRelocationForSection(RE, Value.SectionID);
1239 :
1240 0 : resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1241 0 : Section.getAddressWithOffset(
1242 : Section.getStubOffset())),
1243 0 : RelType, 0);
1244 0 : Section.advanceStubOffset(getMaxStubSize());
1245 0 : }
1246 0 : } else {
1247 0 : uint32_t *Placeholder =
1248 : reinterpret_cast<uint32_t*>(computePlaceholderAddress(SectionID, Offset));
1249 0 : if (RelType == ELF::R_ARM_PREL31 || RelType == ELF::R_ARM_TARGET1 ||
1250 0 : RelType == ELF::R_ARM_ABS32) {
1251 0 : Value.Addend += *Placeholder;
1252 0 : } else if (RelType == ELF::R_ARM_MOVW_ABS_NC || RelType == ELF::R_ARM_MOVT_ABS) {
1253 : // See ELF for ARM documentation
1254 0 : Value.Addend += (int16_t)((*Placeholder & 0xFFF) | (((*Placeholder >> 16) & 0xF) << 12));
1255 0 : }
1256 0 : processSimpleRelocation(SectionID, Offset, RelType, Value);
1257 : }
1258 0 : } else if (IsMipsO32ABI) {
1259 : uint8_t *Placeholder = reinterpret_cast<uint8_t *>(
1260 1 : computePlaceholderAddress(SectionID, Offset));
1261 : uint32_t Opcode = readBytesUnaligned(Placeholder, 4);
1262 : if (RelType == ELF::R_MIPS_26) {
1263 1243 : // This is an Mips branch relocation, need to use a stub function.
1264 : LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1265 : SectionEntry &Section = Sections[SectionID];
1266 :
1267 1243 : // Extract the addend from the instruction.
1268 : // We shift up by two since the Value will be down shifted again
1269 2486 : // when applying the relocation.
1270 1203 : uint32_t Addend = (Opcode & 0x03ffffff) << 2;
1271 :
1272 80 : Value.Addend += Addend;
1273 1243 :
1274 : // Look up for existing stub.
1275 : StubMap::const_iterator i = Stubs.find(Value);
1276 : if (i != Stubs.end()) {
1277 1243 : RelocationEntry RE(SectionID, Offset, RelType, i->second);
1278 1243 : addRelocationForSection(RE, SectionID);
1279 1243 : LLVM_DEBUG(dbgs() << " Stub function found\n");
1280 : } else {
1281 : // Create a new stub function.
1282 : LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1283 : Stubs[Value] = Section.getStubOffset();
1284 :
1285 : unsigned AbiVariant = Obj.getPlatformFlags();
1286 :
1287 : uint8_t *StubTargetAddr = createStubFunction(
1288 : Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1289 :
1290 1243 : // Creating Hi and Lo relocations for the filled stub instructions.
1291 1243 : RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1292 2486 : ELF::R_MIPS_HI16, Value.Addend);
1293 : RelocationEntry RELo(SectionID,
1294 1243 : StubTargetAddr - Section.getAddress() + 4,
1295 : ELF::R_MIPS_LO16, Value.Addend);
1296 :
1297 0 : if (Value.SymbolName) {
1298 : addRelocationForSymbol(REHi, Value.SymbolName);
1299 0 : addRelocationForSymbol(RELo, Value.SymbolName);
1300 : } else {
1301 1243 : addRelocationForSection(REHi, Value.SectionID);
1302 : addRelocationForSection(RELo, Value.SectionID);
1303 2486 : }
1304 :
1305 273 : RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1306 273 : addRelocationForSection(RE, SectionID);
1307 273 : Section.advanceStubOffset(getMaxStubSize());
1308 : }
1309 970 : } else if (RelType == ELF::R_MIPS_HI16 || RelType == ELF::R_MIPS_PCHI16) {
1310 : int64_t Addend = (Opcode & 0x0000ffff) << 16;
1311 : RelocationEntry RE(SectionID, Offset, RelType, Addend);
1312 : PendingRelocs.push_back(std::make_pair(Value, RE));
1313 : } else if (RelType == ELF::R_MIPS_LO16 || RelType == ELF::R_MIPS_PCLO16) {
1314 : int64_t Addend = Value.Addend + SignExtend32<16>(Opcode & 0x0000ffff);
1315 689 : for (auto I = PendingRelocs.begin(); I != PendingRelocs.end();) {
1316 : const RelocationValueRef &MatchingValue = I->first;
1317 : RelocationEntry &Reloc = I->second;
1318 0 : if (MatchingValue == Value &&
1319 : RelType == getMatchingLoRelocation(Reloc.RelType) &&
1320 0 : SectionID == Reloc.SectionID) {
1321 : Reloc.Addend += Addend;
1322 689 : if (Value.SymbolName)
1323 689 : addRelocationForSymbol(Reloc, Value.SymbolName);
1324 0 : else
1325 : addRelocationForSection(Reloc, Value.SectionID);
1326 689 : I = PendingRelocs.erase(I);
1327 689 : } else
1328 689 : ++I;
1329 689 : }
1330 : RelocationEntry RE(SectionID, Offset, RelType, Addend);
1331 : if (Value.SymbolName)
1332 689 : addRelocationForSymbol(RE, Value.SymbolName);
1333 : else
1334 : addRelocationForSection(RE, Value.SectionID);
1335 : } else {
1336 : if (RelType == ELF::R_MIPS_32)
1337 : Value.Addend += Opcode;
1338 281 : else if (RelType == ELF::R_MIPS_PC16)
1339 281 : Value.Addend += SignExtend32<18>((Opcode & 0x0000ffff) << 2);
1340 : else if (RelType == ELF::R_MIPS_PC19_S2)
1341 : Value.Addend += SignExtend32<21>((Opcode & 0x0007ffff) << 2);
1342 : else if (RelType == ELF::R_MIPS_PC21_S2)
1343 : Value.Addend += SignExtend32<23>((Opcode & 0x001fffff) << 2);
1344 : else if (RelType == ELF::R_MIPS_PC26_S2)
1345 281 : Value.Addend += SignExtend32<28>((Opcode & 0x03ffffff) << 2);
1346 0 : processSimpleRelocation(SectionID, Offset, RelType, Value);
1347 : }
1348 : } else if (IsMipsN32ABI || IsMipsN64ABI) {
1349 0 : uint32_t r_type = RelType & 0xff;
1350 0 : RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1351 : if (r_type == ELF::R_MIPS_CALL16 || r_type == ELF::R_MIPS_GOT_PAGE
1352 : || r_type == ELF::R_MIPS_GOT_DISP) {
1353 : StringMap<uint64_t>::iterator i = GOTSymbolOffsets.find(TargetName);
1354 : if (i != GOTSymbolOffsets.end())
1355 1243 : RE.SymOffset = i->second;
1356 : else {
1357 : RE.SymOffset = allocateGOTEntries(1);
1358 : GOTSymbolOffsets[TargetName] = RE.SymOffset;
1359 1243 : }
1360 31 : if (Value.SymbolName)
1361 1 : addRelocationForSymbol(RE, Value.SymbolName);
1362 30 : else
1363 : addRelocationForSection(RE, Value.SectionID);
1364 : } else if (RelType == ELF::R_MIPS_26) {
1365 3 : // This is an Mips branch relocation, need to use a stub function.
1366 3 : LLVM_DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
1367 : SectionEntry &Section = Sections[SectionID];
1368 :
1369 27 : // Look up for existing stub.
1370 3 : StubMap::const_iterator i = Stubs.find(Value);
1371 3 : if (i != Stubs.end()) {
1372 : RelocationEntry RE(SectionID, Offset, RelType, i->second);
1373 : addRelocationForSection(RE, SectionID);
1374 24 : LLVM_DEBUG(dbgs() << " Stub function found\n");
1375 : } else {
1376 1212 : // Create a new stub function.
1377 2 : LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1378 : Stubs[Value] = Section.getStubOffset();
1379 :
1380 : unsigned AbiVariant = Obj.getPlatformFlags();
1381 0 :
1382 : uint8_t *StubTargetAddr = createStubFunction(
1383 : Section.getAddressWithOffset(Section.getStubOffset()), AbiVariant);
1384 :
1385 0 : if (IsMipsN32ABI) {
1386 0 : // Creating Hi and Lo relocations for the filled stub instructions.
1387 : RelocationEntry REHi(SectionID, StubTargetAddr - Section.getAddress(),
1388 0 : ELF::R_MIPS_HI16, Value.Addend);
1389 : RelocationEntry RELo(SectionID,
1390 : StubTargetAddr - Section.getAddress() + 4,
1391 : ELF::R_MIPS_LO16, Value.Addend);
1392 : if (Value.SymbolName) {
1393 : addRelocationForSymbol(REHi, Value.SymbolName);
1394 0 : addRelocationForSymbol(RELo, Value.SymbolName);
1395 0 : } else {
1396 : addRelocationForSection(REHi, Value.SectionID);
1397 0 : addRelocationForSection(RELo, Value.SectionID);
1398 0 : }
1399 0 : } else {
1400 0 : // Creating Highest, Higher, Hi and Lo relocations for the filled stub
1401 : // instructions.
1402 0 : RelocationEntry REHighest(SectionID,
1403 : StubTargetAddr - Section.getAddress(),
1404 0 : ELF::R_MIPS_HIGHEST, Value.Addend);
1405 0 : RelocationEntry REHigher(SectionID,
1406 0 : StubTargetAddr - Section.getAddress() + 4,
1407 : ELF::R_MIPS_HIGHER, Value.Addend);
1408 0 : RelocationEntry REHi(SectionID,
1409 : StubTargetAddr - Section.getAddress() + 12,
1410 : ELF::R_MIPS_HI16, Value.Addend);
1411 : RelocationEntry RELo(SectionID,
1412 2 : StubTargetAddr - Section.getAddress() + 20,
1413 2 : ELF::R_MIPS_LO16, Value.Addend);
1414 : if (Value.SymbolName) {
1415 1 : addRelocationForSymbol(REHighest, Value.SymbolName);
1416 1 : addRelocationForSymbol(REHigher, Value.SymbolName);
1417 : addRelocationForSymbol(REHi, Value.SymbolName);
1418 0 : addRelocationForSymbol(RELo, Value.SymbolName);
1419 : } else {
1420 2 : addRelocationForSection(REHighest, Value.SectionID);
1421 : addRelocationForSection(REHigher, Value.SectionID);
1422 1210 : addRelocationForSection(REHi, Value.SectionID);
1423 : addRelocationForSection(RELo, Value.SectionID);
1424 38 : }
1425 38 : }
1426 38 : RelocationEntry RE(SectionID, Offset, RelType, Section.getStubOffset());
1427 : addRelocationForSection(RE, SectionID);
1428 : Section.advanceStubOffset(getMaxStubSize());
1429 2 : }
1430 : } else {
1431 : processSimpleRelocation(SectionID, Offset, RelType, Value);
1432 : }
1433 :
1434 2 : } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
1435 : if (RelType == ELF::R_PPC64_REL24) {
1436 2 : // Determine ABI variant in use for this object.
1437 : unsigned AbiVariant = Obj.getPlatformFlags();
1438 : AbiVariant &= ELF::EF_PPC64_ABI;
1439 : // A PPC branch relocation will need a stub function if the target is
1440 2 : // an external symbol (either Value.SymbolName is set, or SymType is
1441 0 : // Symbol::ST_Unknown) or if the target address is not within the
1442 0 : // signed 24-bits branch address.
1443 : SectionEntry &Section = Sections[SectionID];
1444 : uint8_t *Target = Section.getAddressWithOffset(Offset);
1445 : bool RangeOverflow = false;
1446 : bool IsExtern = Value.SymbolName || SymType == SymbolRef::ST_Unknown;
1447 2 : if (!IsExtern) {
1448 : if (AbiVariant != 2) {
1449 2 : // In the ELFv1 ABI, a function call may point to the .opd entry,
1450 : // so the final symbol value is calculated based on the relocation
1451 2 : // values in the .opd section.
1452 2 : if (auto Err = findOPDEntrySection(Obj, ObjSectionToID, Value))
1453 : return std::move(Err);
1454 : } else {
1455 2 : // In the ELFv2 ABI, a function symbol may provide a local entry
1456 2 : // point, which must be used for direct calls.
1457 : if (Value.SectionID == SectionID){
1458 2 : uint8_t SymOther = Symbol->getOther();
1459 2 : Value.Addend += ELF::decodePPC64LocalEntryOffset(SymOther);
1460 : }
1461 2 : }
1462 2 : uint8_t *RelocTarget =
1463 4 : Sections[Value.SectionID].getAddressWithOffset(Value.Addend);
1464 : int64_t delta = static_cast<int64_t>(Target - RelocTarget);
1465 0 : // If it is within 26-bits branch range, just set the branch target
1466 0 : if (SignExtend64<26>(delta) != delta) {
1467 : RangeOverflow = true;
1468 : } else if ((AbiVariant != 2) ||
1469 2 : (AbiVariant == 2 && Value.SectionID == SectionID)) {
1470 2 : RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1471 2 : addRelocationForSection(RE, Value.SectionID);
1472 : }
1473 36 : }
1474 6 : if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID) ||
1475 6 : RangeOverflow) {
1476 12 : // It is an external symbol (either Value.SymbolName is set, or
1477 30 : // SymType is SymbolRef::ST_Unknown) or out of range.
1478 12 : StubMap::const_iterator i = Stubs.find(Value);
1479 12 : if (i != Stubs.end()) {
1480 : // Symbol function stub already created, just relocate to it
1481 6 : resolveRelocation(Section, Offset,
1482 6 : reinterpret_cast<uint64_t>(
1483 6 : Section.getAddressWithOffset(i->second)),
1484 6 : RelType, 0);
1485 6 : LLVM_DEBUG(dbgs() << " Stub function found\n");
1486 6 : } else {
1487 4 : // Create a new stub function.
1488 : LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1489 2 : Stubs[Value] = Section.getStubOffset();
1490 : uint8_t *StubTargetAddr = createStubFunction(
1491 : Section.getAddressWithOffset(Section.getStubOffset()),
1492 0 : AbiVariant);
1493 : RelocationEntry RE(SectionID, StubTargetAddr - Section.getAddress(),
1494 6 : ELF::R_PPC64_ADDR64, Value.Addend);
1495 6 :
1496 4 : // Generates the 64-bits address loads as exemplified in section
1497 : // 4.5.1 in PPC64 ELF ABI. Note that the relocations need to
1498 2 : // apply to the low part of the instructions, so we have to update
1499 : // the offset according to the target endianness.
1500 24 : uint64_t StubRelocOffset = StubTargetAddr - Section.getAddress();
1501 12 : if (!IsTargetLittleEndian)
1502 12 : StubRelocOffset += 2;
1503 2 :
1504 10 : RelocationEntry REhst(SectionID, StubRelocOffset + 0,
1505 2 : ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
1506 8 : RelocationEntry REhr(SectionID, StubRelocOffset + 4,
1507 2 : ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
1508 6 : RelocationEntry REh(SectionID, StubRelocOffset + 12,
1509 2 : ELF::R_PPC64_ADDR16_HI, Value.Addend);
1510 24 : RelocationEntry REl(SectionID, StubRelocOffset + 16,
1511 : ELF::R_PPC64_ADDR16_LO, Value.Addend);
1512 1172 :
1513 68 : if (Value.SymbolName) {
1514 68 : addRelocationForSymbol(REhst, Value.SymbolName);
1515 68 : addRelocationForSymbol(REhr, Value.SymbolName);
1516 60 : addRelocationForSymbol(REh, Value.SymbolName);
1517 12 : addRelocationForSymbol(REl, Value.SymbolName);
1518 24 : } else {
1519 0 : addRelocationForSection(REhst, Value.SectionID);
1520 : addRelocationForSection(REhr, Value.SectionID);
1521 12 : addRelocationForSection(REh, Value.SectionID);
1522 12 : addRelocationForSection(REl, Value.SectionID);
1523 : }
1524 12 :
1525 0 : resolveRelocation(Section, Offset, reinterpret_cast<uint64_t>(
1526 : Section.getAddressWithOffset(
1527 12 : Section.getStubOffset())),
1528 56 : RelType, 0);
1529 : Section.advanceStubOffset(getMaxStubSize());
1530 : }
1531 4 : if (IsExtern || (AbiVariant == 2 && Value.SectionID != SectionID)) {
1532 : // Restore the TOC for external calls
1533 : if (AbiVariant == 2)
1534 : writeInt32BE(Target + 4, 0xE8410018); // ld r2,24(r1)
1535 4 : else
1536 0 : writeInt32BE(Target + 4, 0xE8410028); // ld r2,40(r1)
1537 0 : }
1538 : }
1539 : } else if (RelType == ELF::R_PPC64_TOC16 ||
1540 : RelType == ELF::R_PPC64_TOC16_DS ||
1541 : RelType == ELF::R_PPC64_TOC16_LO ||
1542 4 : RelType == ELF::R_PPC64_TOC16_LO_DS ||
1543 : RelType == ELF::R_PPC64_TOC16_HI ||
1544 4 : RelType == ELF::R_PPC64_TOC16_HA) {
1545 : // These relocations are supposed to subtract the TOC address from
1546 4 : // the final value. This does not fit cleanly into the RuntimeDyld
1547 4 : // scheme, since there may be *two* sections involved in determining
1548 : // the relocation value (the section of the symbol referred to by the
1549 4 : // relocation, and the TOC section associated with the current module).
1550 : //
1551 2 : // Fortunately, these relocations are currently only ever generated
1552 2 : // referring to symbols that themselves reside in the TOC, which means
1553 : // that the two sections are actually the same. Thus they cancel out
1554 2 : // and we can immediately resolve the relocation right now.
1555 2 : switch (RelType) {
1556 2 : case ELF::R_PPC64_TOC16: RelType = ELF::R_PPC64_ADDR16; break;
1557 2 : case ELF::R_PPC64_TOC16_DS: RelType = ELF::R_PPC64_ADDR16_DS; break;
1558 4 : case ELF::R_PPC64_TOC16_LO: RelType = ELF::R_PPC64_ADDR16_LO; break;
1559 : case ELF::R_PPC64_TOC16_LO_DS: RelType = ELF::R_PPC64_ADDR16_LO_DS; break;
1560 0 : case ELF::R_PPC64_TOC16_HI: RelType = ELF::R_PPC64_ADDR16_HI; break;
1561 0 : case ELF::R_PPC64_TOC16_HA: RelType = ELF::R_PPC64_ADDR16_HA; break;
1562 : default: llvm_unreachable("Wrong relocation type.");
1563 : }
1564 :
1565 : RelocationValueRef TOCValue;
1566 : if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, TOCValue))
1567 2 : return std::move(Err);
1568 2 : if (Value.SymbolName || Value.SectionID != TOCValue.SectionID)
1569 : llvm_unreachable("Unsupported TOC relocation.");
1570 2 : Value.Addend -= TOCValue.Addend;
1571 2 : resolveRelocation(Sections[SectionID], Offset, Value.Addend, RelType, 0);
1572 : } else {
1573 2 : // There are two ways to refer to the TOC address directly: either
1574 2 : // via a ELF::R_PPC64_TOC relocation (where both symbol and addend are
1575 : // ignored), or via any relocation that refers to the magic ".TOC."
1576 2 : // symbols (in which case the addend is respected).
1577 2 : if (RelType == ELF::R_PPC64_TOC) {
1578 2 : RelType = ELF::R_PPC64_ADDR64;
1579 2 : if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1580 4 : return std::move(Err);
1581 4 : } else if (TargetName == ".TOC.") {
1582 4 : if (auto Err = findPPC64TOCSection(Obj, ObjSectionToID, Value))
1583 : return std::move(Err);
1584 0 : Value.Addend += Addend;
1585 0 : }
1586 0 :
1587 0 : RelocationEntry RE(SectionID, Offset, RelType, Value.Addend);
1588 :
1589 : if (Value.SymbolName)
1590 4 : addRelocationForSymbol(RE, Value.SymbolName);
1591 4 : else
1592 4 : addRelocationForSection(RE, Value.SectionID);
1593 : }
1594 : } else if (Arch == Triple::systemz &&
1595 52 : (RelType == ELF::R_390_PLT32DBL || RelType == ELF::R_390_GOTENT)) {
1596 68 : // Create function stubs for both PLT and GOT references, regardless of
1597 : // whether the GOT reference is to data or code. The stub contains the
1598 1104 : // full address of the symbol, as needed by GOT references, and the
1599 26 : // executable part only adds an overhead of 8 bytes.
1600 : //
1601 5 : // We could try to conserve space by allocating the code and data
1602 5 : // parts of the stub separately. However, as things stand, we allocate
1603 : // a stub for every relocation, so using a GOT in JIT code should be
1604 : // no less space efficient than using an explicit constant pool.
1605 : LLVM_DEBUG(dbgs() << "\t\tThis is a SystemZ indirect relocation.");
1606 : SectionEntry &Section = Sections[SectionID];
1607 5 :
1608 5 : // Look for an existing stub.
1609 : StubMap::const_iterator i = Stubs.find(Value);
1610 5 : uintptr_t StubAddress;
1611 : if (i != Stubs.end()) {
1612 0 : StubAddress = uintptr_t(Section.getAddressWithOffset(i->second));
1613 : LLVM_DEBUG(dbgs() << " Stub function found\n");
1614 : } else {
1615 : // Create a new stub function.
1616 0 : LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1617 :
1618 : uintptr_t BaseAddress = uintptr_t(Section.getAddress());
1619 : uintptr_t StubAlignment = getStubAlignment();
1620 : StubAddress =
1621 0 : (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
1622 : -StubAlignment;
1623 0 : unsigned StubOffset = StubAddress - BaseAddress;
1624 :
1625 : Stubs[Value] = StubOffset;
1626 : createStubFunction((uint8_t *)StubAddress);
1627 0 : RelocationEntry RE(SectionID, StubOffset + 8, ELF::R_390_64,
1628 0 : Value.Offset);
1629 : if (Value.SymbolName)
1630 0 : addRelocationForSymbol(RE, Value.SymbolName);
1631 : else
1632 0 : addRelocationForSection(RE, Value.SectionID);
1633 : Section.advanceStubOffset(getMaxStubSize());
1634 : }
1635 0 :
1636 : if (RelType == ELF::R_390_GOTENT)
1637 : resolveRelocation(Section, Offset, StubAddress + 8, ELF::R_390_PC32DBL,
1638 5 : Addend);
1639 : else
1640 : resolveRelocation(Section, Offset, StubAddress, RelType, Addend);
1641 : } else if (Arch == Triple::x86_64) {
1642 : if (RelType == ELF::R_X86_64_PLT32) {
1643 5 : // The way the PLT relocations normally work is that the linker allocates
1644 : // the
1645 2 : // PLT and this relocation makes a PC-relative call into the PLT. The PLT
1646 : // entry will then jump to an address provided by the GOT. On first call,
1647 2 : // the
1648 : // GOT address will point back into PLT code that resolves the symbol. After
1649 : // the first call, the GOT entry points to the actual function.
1650 : //
1651 : // For local functions we're ignoring all of that here and just replacing
1652 : // the PLT32 relocation type with PC32, which will translate the relocation
1653 3 : // into a PC-relative call directly to the function. For external symbols we
1654 6 : // can't be sure the function will be within 2^32 bytes of the call site, so
1655 : // we need to create a stub, which calls into the GOT. This case is
1656 : // equivalent to the usual PLT implementation except that we use the stub
1657 3 : // mechanism in RuntimeDyld (which puts stubs at the end of the section)
1658 6 : // rather than allocating a PLT section.
1659 : if (Value.SymbolName) {
1660 : // This is a call to an external function.
1661 : // Look for an existing stub.
1662 : SectionEntry &Section = Sections[SectionID];
1663 : StubMap::const_iterator i = Stubs.find(Value);
1664 : uintptr_t StubAddress;
1665 3 : if (i != Stubs.end()) {
1666 1 : StubAddress = uintptr_t(Section.getAddress()) + i->second;
1667 : LLVM_DEBUG(dbgs() << " Stub function found\n");
1668 : } else {
1669 : // Create a new stub function (equivalent to a PLT entry).
1670 : LLVM_DEBUG(dbgs() << " Create a new stub function\n");
1671 3 :
1672 : uintptr_t BaseAddress = uintptr_t(Section.getAddress());
1673 3 : uintptr_t StubAlignment = getStubAlignment();
1674 : StubAddress =
1675 3 : (BaseAddress + Section.getStubOffset() + StubAlignment - 1) &
1676 : -StubAlignment;
1677 3 : unsigned StubOffset = StubAddress - BaseAddress;
1678 3 : Stubs[Value] = StubOffset;
1679 6 : createStubFunction((uint8_t *)StubAddress);
1680 6 :
1681 6 : // Bump our stub offset counter
1682 : Section.advanceStubOffset(getMaxStubSize());
1683 0 :
1684 0 : // Allocate a GOT Entry
1685 0 : uint64_t GOTOffset = allocateGOTEntries(1);
1686 0 :
1687 : // The load of the GOT address has an addend of -4
1688 : resolveGOTOffsetRelocation(SectionID, StubOffset + 2, GOTOffset - 4,
1689 3 : ELF::R_X86_64_PC32);
1690 3 :
1691 3 : // Fill in the value of the symbol we're targeting into the GOT
1692 : addRelocationForSymbol(
1693 3 : computeGOTOffsetRE(GOTOffset, 0, ELF::R_X86_64_64),
1694 : Value.SymbolName);
1695 5 : }
1696 :
1697 5 : // Make the target call a call into the stub table.
1698 5 : resolveRelocation(Section, Offset, StubAddress, ELF::R_X86_64_PC32,
1699 : Addend);
1700 0 : } else {
1701 : RelocationEntry RE(SectionID, Offset, ELF::R_X86_64_PC32, Value.Addend,
1702 : Value.Offset);
1703 42 : addRelocationForSection(RE, Value.SectionID);
1704 21 : }
1705 42 : } else if (RelType == ELF::R_X86_64_GOTPCREL ||
1706 21 : RelType == ELF::R_X86_64_GOTPCRELX ||
1707 18 : RelType == ELF::R_X86_64_REX_GOTPCRELX) {
1708 : uint64_t GOTOffset = allocateGOTEntries(1);
1709 : resolveGOTOffsetRelocation(SectionID, Offset, GOTOffset + Addend,
1710 : ELF::R_X86_64_PC32);
1711 :
1712 : // Fill in the value of the symbol we're targeting into the GOT
1713 : RelocationEntry RE =
1714 : computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
1715 : if (Value.SymbolName)
1716 : addRelocationForSymbol(RE, Value.SymbolName);
1717 : else
1718 : addRelocationForSection(RE, Value.SectionID);
1719 6 : } else if (RelType == ELF::R_X86_64_GOT64) {
1720 : // Fill in a 64-bit GOT offset.
1721 0 : uint64_t GOTOffset = allocateGOTEntries(1);
1722 0 : resolveRelocation(Sections[SectionID], Offset, GOTOffset,
1723 3 : ELF::R_X86_64_64, 0);
1724 0 :
1725 3 : // Fill in the value of the symbol we're targeting into the GOT
1726 0 : RelocationEntry RE =
1727 : computeGOTOffsetRE(GOTOffset, Value.Offset, ELF::R_X86_64_64);
1728 : if (Value.SymbolName)
1729 : addRelocationForSymbol(RE, Value.SymbolName);
1730 12 : else
1731 : addRelocationForSection(RE, Value.SectionID);
1732 6 : } else if (RelType == ELF::R_X86_64_GOTPC64) {
1733 0 : // Materialize the address of the base of the GOT relative to the PC.
1734 6 : // This doesn't create a GOT entry, but it does mean we need a GOT
1735 12 : // section.
1736 : (void)allocateGOTEntries(0);
1737 : resolveGOTOffsetRelocation(SectionID, Offset, Addend, ELF::R_X86_64_PC64);
1738 : } else if (RelType == ELF::R_X86_64_GOTOFF64) {
1739 : // GOTOFF relocations ultimately require a section difference relocation.
1740 : (void)allocateGOTEntries(0);
1741 15 : processSimpleRelocation(SectionID, Offset, RelType, Value);
1742 : } else if (RelType == ELF::R_X86_64_PC32) {
1743 0 : Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1744 : processSimpleRelocation(SectionID, Offset, RelType, Value);
1745 : } else if (RelType == ELF::R_X86_64_PC64) {
1746 16 : Value.Addend += support::ulittle64_t::ref(computePlaceholderAddress(SectionID, Offset));
1747 : processSimpleRelocation(SectionID, Offset, RelType, Value);
1748 8 : } else {
1749 : processSimpleRelocation(SectionID, Offset, RelType, Value);
1750 : }
1751 15 : } else {
1752 : if (Arch == Triple::x86) {
1753 15 : Value.Addend += support::ulittle32_t::ref(computePlaceholderAddress(SectionID, Offset));
1754 0 : }
1755 : processSimpleRelocation(SectionID, Offset, RelType, Value);
1756 15 : }
1757 : return ++RelI;
1758 1078 : }
1759 2 :
1760 : size_t RuntimeDyldELF::getGOTEntrySize() {
1761 : // We don't use the GOT in all of these cases, but it's essentially free
1762 : // to put them all here.
1763 : size_t Result = 0;
1764 : switch (Arch) {
1765 : case Triple::x86_64:
1766 : case Triple::aarch64:
1767 : case Triple::aarch64_be:
1768 : case Triple::ppc64:
1769 : case Triple::ppc64le:
1770 0 : case Triple::systemz:
1771 : Result = sizeof(uint64_t);
1772 : break;
1773 : case Triple::x86:
1774 : case Triple::arm:
1775 0 : case Triple::thumb:
1776 0 : Result = sizeof(uint32_t);
1777 : break;
1778 : case Triple::mips:
1779 : case Triple::mipsel:
1780 : case Triple::mips64:
1781 : case Triple::mips64el:
1782 0 : if (IsMipsO32ABI || IsMipsN32ABI)
1783 0 : Result = sizeof(uint32_t);
1784 0 : else if (IsMipsN64ABI)
1785 0 : Result = sizeof(uint64_t);
1786 0 : else
1787 0 : llvm_unreachable("Mips ABI not handled");
1788 : break;
1789 0 : default:
1790 0 : llvm_unreachable("Unsupported CPU type!");
1791 0 : }
1792 0 : return Result;
1793 0 : }
1794 0 :
1795 : uint64_t RuntimeDyldELF::allocateGOTEntries(unsigned no) {
1796 0 : if (GOTSectionID == 0) {
1797 0 : GOTSectionID = Sections.size();
1798 : // Reserve a section id. We'll allocate the section later
1799 : // once we know the total size
1800 0 : Sections.push_back(SectionEntry(".got", nullptr, 0, 0, 0));
1801 0 : }
1802 : uint64_t StartOffset = CurrentGOTIndex * getGOTEntrySize();
1803 : CurrentGOTIndex += no;
1804 0 : return StartOffset;
1805 1078 : }
1806 1074 :
1807 : uint64_t RuntimeDyldELF::findOrAllocGOTEntry(const RelocationValueRef &Value,
1808 : unsigned GOTRelType) {
1809 : auto E = GOTOffsetMap.insert({Value, 0});
1810 : if (E.second) {
1811 : uint64_t GOTOffset = allocateGOTEntries(1);
1812 :
1813 : // Create relocation for newly created GOT entry
1814 : RelocationEntry RE =
1815 : computeGOTOffsetRE(GOTOffset, Value.Offset, GOTRelType);
1816 : if (Value.SymbolName)
1817 : addRelocationForSymbol(RE, Value.SymbolName);
1818 : else
1819 : addRelocationForSection(RE, Value.SectionID);
1820 :
1821 : E.first->second = GOTOffset;
1822 : }
1823 16 :
1824 : return E.first->second;
1825 : }
1826 11 :
1827 : void RuntimeDyldELF::resolveGOTOffsetRelocation(unsigned SectionID,
1828 : uint64_t Offset,
1829 11 : uint64_t GOTOffset,
1830 0 : uint32_t Type) {
1831 : // Fill in the relative address of the GOT Entry into the stub
1832 : RelocationEntry GOTRE(SectionID, Offset, Type, GOTOffset);
1833 : addRelocationForSection(GOTRE, GOTSectionID);
1834 : }
1835 :
1836 11 : RelocationEntry RuntimeDyldELF::computeGOTOffsetRE(uint64_t GOTOffset,
1837 11 : uint64_t SymbolOffset,
1838 11 : uint32_t Type) {
1839 11 : return RelocationEntry(GOTSectionID, GOTOffset, Type, SymbolOffset);
1840 11 : }
1841 11 :
1842 11 : Error RuntimeDyldELF::finalizeLoad(const ObjectFile &Obj,
1843 11 : ObjSectionToIDMap &SectionMap) {
1844 : if (IsMipsO32ABI)
1845 : if (!PendingRelocs.empty())
1846 11 : return make_error<RuntimeDyldError>("Can't find matching LO16 reloc");
1847 :
1848 : // If necessary, allocate the global offset table
1849 11 : if (GOTSectionID != 0) {
1850 : // Allocate memory for the section
1851 : size_t TotalSize = CurrentGOTIndex * getGOTEntrySize();
1852 11 : uint8_t *Addr = MemMgr.allocateDataSection(TotalSize, getGOTEntrySize(),
1853 : GOTSectionID, ".got", false);
1854 : if (!Addr)
1855 : return make_error<RuntimeDyldError>("Unable to allocate memory for GOT!");
1856 22 :
1857 22 : Sections[GOTSectionID] =
1858 : SectionEntry(".got", Addr, TotalSize, TotalSize, 0);
1859 :
1860 : if (Checker)
1861 : Checker->registerSection(Obj.getFileName(), GOTSectionID);
1862 11 :
1863 : // For now, initialize all GOT entries to zero. We'll fill them in as
1864 : // needed when GOT-based relocations are applied.
1865 : memset(Addr, 0, TotalSize);
1866 5 : if (IsMipsN32ABI || IsMipsN64ABI) {
1867 5 : // To correctly resolve Mips GOT relocations, we need a mapping from
1868 : // object's sections to GOTs.
1869 2116 : for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
1870 1058 : SI != SE; ++SI) {
1871 : if (SI->relocation_begin() != SI->relocation_end()) {
1872 26 : section_iterator RelocatedSection = SI->getRelocatedSection();
1873 26 : ObjSectionToIDMap::iterator i = SectionMap.find(*RelocatedSection);
1874 : assert (i != SectionMap.end());
1875 : SectionToGOTMap[i->second] = GOTSectionID;
1876 : }
1877 : }
1878 26 : GOTSymbolOffsets.clear();
1879 26 : }
1880 6 : }
1881 :
1882 26 : // Look for and record the EH frame section.
1883 1032 : ObjSectionToIDMap::iterator i, e;
1884 : for (i = SectionMap.begin(), e = SectionMap.end(); i != e; ++i) {
1885 13 : const SectionRef &Section = i->first;
1886 26 : StringRef Name;
1887 : Section.getName(Name);
1888 : if (Name == ".eh_frame") {
1889 : UnregisteredEHFrameSections.push_back(i->second);
1890 : break;
1891 13 : }
1892 13 : }
1893 22 :
1894 : GOTSectionID = 0;
1895 2 : CurrentGOTIndex = 0;
1896 1019 :
1897 : return Error::success();
1898 : }
1899 :
1900 7 : bool RuntimeDyldELF::isCompatibleFile(const object::ObjectFile &Obj) const {
1901 7 : return Obj.isELF();
1902 1012 : }
1903 :
1904 4 : bool RuntimeDyldELF::relocationNeedsGot(const RelocationRef &R) const {
1905 4 : unsigned RelTy = R.getType();
1906 1008 : if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be)
1907 38 : return RelTy == ELF::R_AARCH64_ADR_GOT_PAGE ||
1908 38 : RelTy == ELF::R_AARCH64_LD64_GOT_LO12_NC;
1909 970 :
1910 336 : if (Arch == Triple::x86_64)
1911 336 : return RelTy == ELF::R_X86_64_GOTPCREL ||
1912 : RelTy == ELF::R_X86_64_GOTPCRELX ||
1913 634 : RelTy == ELF::R_X86_64_GOT64 ||
1914 : RelTy == ELF::R_X86_64_REX_GOTPCRELX;
1915 : return false;
1916 4 : }
1917 0 :
1918 : bool RuntimeDyldELF::relocationNeedsStub(const RelocationRef &R) const {
1919 4 : if (Arch != Triple::x86_64)
1920 : return true; // Conservative answer
1921 :
1922 : switch (R.getType()) {
1923 : default:
1924 195 : return true; // Conservative answer
1925 :
1926 :
1927 : case ELF::R_X86_64_GOTPCREL:
1928 195 : case ELF::R_X86_64_GOTPCRELX:
1929 : case ELF::R_X86_64_REX_GOTPCRELX:
1930 : case ELF::R_X86_64_GOTPC64:
1931 : case ELF::R_X86_64_GOT64:
1932 : case ELF::R_X86_64_GOTOFF64:
1933 : case ELF::R_X86_64_PC32:
1934 : case ELF::R_X86_64_PC64:
1935 : case ELF::R_X86_64_64:
1936 : // We know that these reloation types won't need a stub function. This list
1937 : // can be extended as needed.
1938 : return false;
1939 : }
1940 : }
1941 :
1942 44 : } // namespace llvm
|