Line data Source code
1 : //===-- RuntimeDyldImpl.h - Run-time dynamic linker for MC-JIT --*- C++ -*-===//
2 : //
3 : // The LLVM Compiler Infrastructure
4 : //
5 : // This file is distributed under the University of Illinois Open Source
6 : // License. See LICENSE.TXT for details.
7 : //
8 : //===----------------------------------------------------------------------===//
9 : //
10 : // Interface for the implementations of runtime dynamic linker facilities.
11 : //
12 : //===----------------------------------------------------------------------===//
13 :
14 : #ifndef LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_RUNTIMEDYLDIMPL_H
15 : #define LLVM_LIB_EXECUTIONENGINE_RUNTIMEDYLD_RUNTIMEDYLDIMPL_H
16 :
17 : #include "llvm/ADT/SmallVector.h"
18 : #include "llvm/ADT/StringMap.h"
19 : #include "llvm/ADT/Triple.h"
20 : #include "llvm/ExecutionEngine/RTDyldMemoryManager.h"
21 : #include "llvm/ExecutionEngine/RuntimeDyld.h"
22 : #include "llvm/ExecutionEngine/RuntimeDyldChecker.h"
23 : #include "llvm/Object/ObjectFile.h"
24 : #include "llvm/Support/Debug.h"
25 : #include "llvm/Support/ErrorHandling.h"
26 : #include "llvm/Support/Format.h"
27 : #include "llvm/Support/Host.h"
28 : #include "llvm/Support/Mutex.h"
29 : #include "llvm/Support/SwapByteOrder.h"
30 : #include <map>
31 : #include <system_error>
32 : #include <unordered_map>
33 :
34 : using namespace llvm;
35 : using namespace llvm::object;
36 :
37 : namespace llvm {
38 :
39 : class Twine;
40 :
41 : #define UNIMPLEMENTED_RELOC(RelType) \
42 : case RelType: \
43 : return make_error<RuntimeDyldError>("Unimplemented relocation: " #RelType)
44 :
45 : /// SectionEntry - represents a section emitted into memory by the dynamic
46 : /// linker.
47 1568 : class SectionEntry {
48 : /// Name - section name.
49 : std::string Name;
50 :
51 : /// Address - address in the linker's memory where the section resides.
52 : uint8_t *Address;
53 :
54 : /// Size - section size. Doesn't include the stubs.
55 : size_t Size;
56 :
57 : /// LoadAddress - the address of the section in the target process's memory.
58 : /// Used for situations in which JIT-ed code is being executed in the address
59 : /// space of a separate process. If the code executes in the same address
60 : /// space where it was JIT-ed, this just equals Address.
61 : uint64_t LoadAddress;
62 :
63 : /// StubOffset - used for architectures with stub functions for far
64 : /// relocations (like ARM).
65 : uintptr_t StubOffset;
66 :
67 : /// The total amount of space allocated for this section. This includes the
68 : /// section size and the maximum amount of space that the stubs can occupy.
69 : size_t AllocationSize;
70 :
71 : /// ObjAddress - address of the section in the in-memory object file. Used
72 : /// for calculating relocations in some object formats (like MachO).
73 : uintptr_t ObjAddress;
74 :
75 : public:
76 : SectionEntry(StringRef name, uint8_t *address, size_t size,
77 : size_t allocationSize, uintptr_t objAddress)
78 906 : : Name(name), Address(address), Size(size),
79 : LoadAddress(reinterpret_cast<uintptr_t>(address)), StubOffset(size),
80 906 : AllocationSize(allocationSize), ObjAddress(objAddress) {
81 : // AllocationSize is used only in asserts, prevent an "unused private field"
82 : // warning:
83 : (void)AllocationSize;
84 : }
85 :
86 : StringRef getName() const { return Name; }
87 :
88 0 : uint8_t *getAddress() const { return Address; }
89 :
90 : /// Return the address of this section with an offset.
91 0 : uint8_t *getAddressWithOffset(unsigned OffsetBytes) const {
92 : assert(OffsetBytes <= AllocationSize && "Offset out of bounds!");
93 1291 : return Address + OffsetBytes;
94 : }
95 :
96 0 : size_t getSize() const { return Size; }
97 :
98 0 : uint64_t getLoadAddress() const { return LoadAddress; }
99 39 : void setLoadAddress(uint64_t LA) { LoadAddress = LA; }
100 :
101 : /// Return the load address of this section with an offset.
102 0 : uint64_t getLoadAddressWithOffset(unsigned OffsetBytes) const {
103 : assert(OffsetBytes <= AllocationSize && "Offset out of bounds!");
104 567 : return LoadAddress + OffsetBytes;
105 : }
106 :
107 0 : uintptr_t getStubOffset() const { return StubOffset; }
108 :
109 0 : void advanceStubOffset(unsigned StubSize) {
110 28 : StubOffset += StubSize;
111 : assert(StubOffset <= AllocationSize && "Not enough space allocated!");
112 0 : }
113 :
114 0 : uintptr_t getObjAddress() const { return ObjAddress; }
115 : };
116 :
117 : /// RelocationEntry - used to represent relocations internally in the dynamic
118 : /// linker.
119 : class RelocationEntry {
120 : public:
121 : /// SectionID - the section this relocation points to.
122 : unsigned SectionID;
123 :
124 : /// Offset - offset into the section.
125 : uint64_t Offset;
126 :
127 : /// RelType - relocation type.
128 : uint32_t RelType;
129 :
130 : /// Addend - the relocation addend encoded in the instruction itself. Also
131 : /// used to make a relocation section relative instead of symbol relative.
132 : int64_t Addend;
133 :
134 : struct SectionPair {
135 : uint32_t SectionA;
136 : uint32_t SectionB;
137 : };
138 :
139 : /// SymOffset - Section offset of the relocation entry's symbol (used for GOT
140 : /// lookup).
141 : union {
142 : uint64_t SymOffset;
143 : SectionPair Sections;
144 : };
145 :
146 : /// True if this is a PCRel relocation (MachO specific).
147 : bool IsPCRel;
148 :
149 : /// The size of this relocation (MachO specific).
150 : unsigned Size;
151 :
152 : // ARM (MachO and COFF) specific.
153 : bool IsTargetThumbFunc = false;
154 :
155 : RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend)
156 239 : : SectionID(id), Offset(offset), RelType(type), Addend(addend),
157 186 : SymOffset(0), IsPCRel(false), Size(0), IsTargetThumbFunc(false) {}
158 :
159 : RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend,
160 : uint64_t symoffset)
161 1123 : : SectionID(id), Offset(offset), RelType(type), Addend(addend),
162 : SymOffset(symoffset), IsPCRel(false), Size(0),
163 1123 : IsTargetThumbFunc(false) {}
164 :
165 : RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend,
166 : bool IsPCRel, unsigned Size)
167 70 : : SectionID(id), Offset(offset), RelType(type), Addend(addend),
168 23 : SymOffset(0), IsPCRel(IsPCRel), Size(Size), IsTargetThumbFunc(false) {}
169 :
170 : RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend,
171 : unsigned SectionA, uint64_t SectionAOffset, unsigned SectionB,
172 : uint64_t SectionBOffset, bool IsPCRel, unsigned Size)
173 23 : : SectionID(id), Offset(offset), RelType(type),
174 17 : Addend(SectionAOffset - SectionBOffset + addend), IsPCRel(IsPCRel),
175 40 : Size(Size), IsTargetThumbFunc(false) {
176 23 : Sections.SectionA = SectionA;
177 23 : Sections.SectionB = SectionB;
178 : }
179 :
180 : RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend,
181 : unsigned SectionA, uint64_t SectionAOffset, unsigned SectionB,
182 : uint64_t SectionBOffset, bool IsPCRel, unsigned Size,
183 : bool IsTargetThumbFunc)
184 6 : : SectionID(id), Offset(offset), RelType(type),
185 6 : Addend(SectionAOffset - SectionBOffset + addend), IsPCRel(IsPCRel),
186 12 : Size(Size), IsTargetThumbFunc(IsTargetThumbFunc) {
187 6 : Sections.SectionA = SectionA;
188 6 : Sections.SectionB = SectionB;
189 : }
190 : };
191 :
192 : class RelocationValueRef {
193 : public:
194 : unsigned SectionID;
195 : uint64_t Offset;
196 : int64_t Addend;
197 : const char *SymbolName;
198 : bool IsStubThumb = false;
199 1296 : RelocationValueRef() : SectionID(0), Offset(0), Addend(0),
200 1296 : SymbolName(nullptr) {}
201 :
202 : inline bool operator==(const RelocationValueRef &Other) const {
203 6 : return SectionID == Other.SectionID && Offset == Other.Offset &&
204 12 : Addend == Other.Addend && SymbolName == Other.SymbolName &&
205 6 : IsStubThumb == Other.IsStubThumb;
206 : }
207 : inline bool operator<(const RelocationValueRef &Other) const {
208 45 : if (SectionID != Other.SectionID)
209 4 : return SectionID < Other.SectionID;
210 41 : if (Offset != Other.Offset)
211 9 : return Offset < Other.Offset;
212 32 : if (Addend != Other.Addend)
213 0 : return Addend < Other.Addend;
214 32 : if (IsStubThumb != Other.IsStubThumb)
215 0 : return IsStubThumb < Other.IsStubThumb;
216 32 : return SymbolName < Other.SymbolName;
217 : }
218 : };
219 :
220 : /// Symbol info for RuntimeDyld.
221 : class SymbolTableEntry {
222 : public:
223 : SymbolTableEntry() = default;
224 :
225 : SymbolTableEntry(unsigned SectionID, uint64_t Offset, JITSymbolFlags Flags)
226 : : Offset(Offset), SectionID(SectionID), Flags(Flags) {}
227 :
228 0 : unsigned getSectionID() const { return SectionID; }
229 0 : uint64_t getOffset() const { return Offset; }
230 : void setOffset(uint64_t NewOffset) { Offset = NewOffset; }
231 :
232 0 : JITSymbolFlags getFlags() const { return Flags; }
233 :
234 : private:
235 : uint64_t Offset = 0;
236 : unsigned SectionID = 0;
237 : JITSymbolFlags Flags = JITSymbolFlags::None;
238 : };
239 :
240 : typedef StringMap<SymbolTableEntry> RTDyldSymbolTable;
241 :
242 : class RuntimeDyldImpl {
243 : friend class RuntimeDyld::LoadedObjectInfo;
244 : friend class RuntimeDyldCheckerImpl;
245 : protected:
246 : static const unsigned AbsoluteSymbolSection = ~0U;
247 :
248 : // The MemoryManager to load objects into.
249 : RuntimeDyld::MemoryManager &MemMgr;
250 :
251 : // The symbol resolver to use for external symbols.
252 : JITSymbolResolver &Resolver;
253 :
254 : // Attached RuntimeDyldChecker instance. Null if no instance attached.
255 : RuntimeDyldCheckerImpl *Checker;
256 :
257 : // A list of all sections emitted by the dynamic linker. These sections are
258 : // referenced in the code by means of their index in this list - SectionID.
259 : typedef SmallVector<SectionEntry, 64> SectionList;
260 : SectionList Sections;
261 :
262 : typedef unsigned SID; // Type for SectionIDs
263 : #define RTDYLD_INVALID_SECTION_ID ((RuntimeDyldImpl::SID)(-1))
264 :
265 : // Keep a map of sections from object file to the SectionID which
266 : // references it.
267 : typedef std::map<SectionRef, unsigned> ObjSectionToIDMap;
268 :
269 : // A global symbol table for symbols from all loaded modules.
270 : RTDyldSymbolTable GlobalSymbolTable;
271 :
272 : // Keep a map of common symbols to their info pairs
273 : typedef std::vector<SymbolRef> CommonSymbolList;
274 :
275 : // For each symbol, keep a list of relocations based on it. Anytime
276 : // its address is reassigned (the JIT re-compiled the function, e.g.),
277 : // the relocations get re-resolved.
278 : // The symbol (or section) the relocation is sourced from is the Key
279 : // in the relocation list where it's stored.
280 : typedef SmallVector<RelocationEntry, 64> RelocationList;
281 : // Relocations to sections already loaded. Indexed by SectionID which is the
282 : // source of the address. The target where the address will be written is
283 : // SectionID/Offset in the relocation itself.
284 : std::unordered_map<unsigned, RelocationList> Relocations;
285 :
286 : // Relocations to external symbols that are not yet resolved. Symbols are
287 : // external when they aren't found in the global symbol table of all loaded
288 : // modules. This map is indexed by symbol name.
289 : StringMap<RelocationList> ExternalSymbolRelocations;
290 :
291 :
292 : typedef std::map<RelocationValueRef, uintptr_t> StubMap;
293 :
294 : Triple::ArchType Arch;
295 : bool IsTargetLittleEndian;
296 : bool IsMipsO32ABI;
297 : bool IsMipsN32ABI;
298 : bool IsMipsN64ABI;
299 :
300 : // True if all sections should be passed to the memory manager, false if only
301 : // sections containing relocations should be. Defaults to 'false'.
302 : bool ProcessAllSections;
303 :
304 : // This mutex prevents simultaneously loading objects from two different
305 : // threads. This keeps us from having to protect individual data structures
306 : // and guarantees that section allocation requests to the memory manager
307 : // won't be interleaved between modules. It is also used in mapSectionAddress
308 : // and resolveRelocations to protect write access to internal data structures.
309 : //
310 : // loadObject may be called on the same thread during the handling of of
311 : // processRelocations, and that's OK. The handling of the relocation lists
312 : // is written in such a way as to work correctly if new elements are added to
313 : // the end of the list while the list is being processed.
314 : sys::Mutex lock;
315 :
316 : virtual unsigned getMaxStubSize() = 0;
317 : virtual unsigned getStubAlignment() = 0;
318 :
319 : bool HasError;
320 : std::string ErrorStr;
321 :
322 : uint64_t getSectionLoadAddress(unsigned SectionID) const {
323 2212 : return Sections[SectionID].getLoadAddress();
324 : }
325 :
326 : uint8_t *getSectionAddress(unsigned SectionID) const {
327 342 : return Sections[SectionID].getAddress();
328 : }
329 :
330 : void writeInt16BE(uint8_t *Addr, uint16_t Value) {
331 24 : if (IsTargetLittleEndian)
332 : sys::swapByteOrder(Value);
333 24 : *Addr = (Value >> 8) & 0xFF;
334 24 : *(Addr + 1) = Value & 0xFF;
335 : }
336 :
337 0 : void writeInt32BE(uint8_t *Addr, uint32_t Value) {
338 33 : if (IsTargetLittleEndian)
339 : sys::swapByteOrder(Value);
340 39 : *Addr = (Value >> 24) & 0xFF;
341 39 : *(Addr + 1) = (Value >> 16) & 0xFF;
342 39 : *(Addr + 2) = (Value >> 8) & 0xFF;
343 33 : *(Addr + 3) = Value & 0xFF;
344 0 : }
345 :
346 : void writeInt64BE(uint8_t *Addr, uint64_t Value) {
347 8 : if (IsTargetLittleEndian)
348 : sys::swapByteOrder(Value);
349 8 : *Addr = (Value >> 56) & 0xFF;
350 8 : *(Addr + 1) = (Value >> 48) & 0xFF;
351 8 : *(Addr + 2) = (Value >> 40) & 0xFF;
352 8 : *(Addr + 3) = (Value >> 32) & 0xFF;
353 8 : *(Addr + 4) = (Value >> 24) & 0xFF;
354 8 : *(Addr + 5) = (Value >> 16) & 0xFF;
355 8 : *(Addr + 6) = (Value >> 8) & 0xFF;
356 8 : *(Addr + 7) = Value & 0xFF;
357 : }
358 :
359 15 : virtual void setMipsABI(const ObjectFile &Obj) {
360 15 : IsMipsO32ABI = false;
361 15 : IsMipsN32ABI = false;
362 15 : IsMipsN64ABI = false;
363 15 : }
364 :
365 : /// Endian-aware read Read the least significant Size bytes from Src.
366 : uint64_t readBytesUnaligned(uint8_t *Src, unsigned Size) const;
367 :
368 : /// Endian-aware write. Write the least significant Size bytes from Value to
369 : /// Dst.
370 : void writeBytesUnaligned(uint64_t Value, uint8_t *Dst, unsigned Size) const;
371 :
372 : /// Generate JITSymbolFlags from a libObject symbol.
373 : virtual Expected<JITSymbolFlags> getJITSymbolFlags(const SymbolRef &Sym);
374 :
375 : /// Modify the given target address based on the given symbol flags.
376 : /// This can be used by subclasses to tweak addresses based on symbol flags,
377 : /// For example: the MachO/ARM target uses it to set the low bit if the target
378 : /// is a thumb symbol.
379 989 : virtual uint64_t modifyAddressBasedOnFlags(uint64_t Addr,
380 : JITSymbolFlags Flags) const {
381 989 : return Addr;
382 : }
383 :
384 : /// Given the common symbols discovered in the object file, emit a
385 : /// new section for them and update the symbol mappings in the object and
386 : /// symbol table.
387 : Error emitCommonSymbols(const ObjectFile &Obj,
388 : CommonSymbolList &CommonSymbols, uint64_t CommonSize,
389 : uint32_t CommonAlign);
390 :
391 : /// Emits section data from the object file to the MemoryManager.
392 : /// \param IsCode if it's true then allocateCodeSection() will be
393 : /// used for emits, else allocateDataSection() will be used.
394 : /// \return SectionID.
395 : Expected<unsigned> emitSection(const ObjectFile &Obj,
396 : const SectionRef &Section,
397 : bool IsCode);
398 :
399 : /// Find Section in LocalSections. If the secton is not found - emit
400 : /// it and store in LocalSections.
401 : /// \param IsCode if it's true then allocateCodeSection() will be
402 : /// used for emmits, else allocateDataSection() will be used.
403 : /// \return SectionID.
404 : Expected<unsigned> findOrEmitSection(const ObjectFile &Obj,
405 : const SectionRef &Section, bool IsCode,
406 : ObjSectionToIDMap &LocalSections);
407 :
408 : // Add a relocation entry that uses the given section.
409 : void addRelocationForSection(const RelocationEntry &RE, unsigned SectionID);
410 :
411 : // Add a relocation entry that uses the given symbol. This symbol may
412 : // be found in the global symbol table, or it may be external.
413 : void addRelocationForSymbol(const RelocationEntry &RE, StringRef SymbolName);
414 :
415 : /// Emits long jump instruction to Addr.
416 : /// \return Pointer to the memory area for emitting target address.
417 : uint8_t *createStubFunction(uint8_t *Addr, unsigned AbiVariant = 0);
418 :
419 : /// Resolves relocations from Relocs list with address from Value.
420 : void resolveRelocationList(const RelocationList &Relocs, uint64_t Value);
421 :
422 : /// A object file specific relocation resolver
423 : /// \param RE The relocation to be resolved
424 : /// \param Value Target symbol address to apply the relocation action
425 : virtual void resolveRelocation(const RelocationEntry &RE, uint64_t Value) = 0;
426 :
427 : /// Parses one or more object file relocations (some object files use
428 : /// relocation pairs) and stores it to Relocations or SymbolRelocations
429 : /// (this depends on the object file type).
430 : /// \return Iterator to the next relocation that needs to be parsed.
431 : virtual Expected<relocation_iterator>
432 : processRelocationRef(unsigned SectionID, relocation_iterator RelI,
433 : const ObjectFile &Obj, ObjSectionToIDMap &ObjSectionToID,
434 : StubMap &Stubs) = 0;
435 :
436 : void applyExternalSymbolRelocations(
437 : const StringMap<JITEvaluatedSymbol> ExternalSymbolMap);
438 :
439 : /// Resolve relocations to external symbols.
440 : Error resolveExternalSymbols();
441 :
442 : // Compute an upper bound of the memory that is required to load all
443 : // sections
444 : Error computeTotalAllocSize(const ObjectFile &Obj,
445 : uint64_t &CodeSize, uint32_t &CodeAlign,
446 : uint64_t &RODataSize, uint32_t &RODataAlign,
447 : uint64_t &RWDataSize, uint32_t &RWDataAlign);
448 :
449 : // Compute GOT size
450 : unsigned computeGOTSize(const ObjectFile &Obj);
451 :
452 : // Compute the stub buffer size required for a section
453 : unsigned computeSectionStubBufSize(const ObjectFile &Obj,
454 : const SectionRef &Section);
455 :
456 : // Implementation of the generic part of the loadObject algorithm.
457 : Expected<ObjSectionToIDMap> loadObjectImpl(const object::ObjectFile &Obj);
458 :
459 : // Return size of Global Offset Table (GOT) entry
460 0 : virtual size_t getGOTEntrySize() { return 0; }
461 :
462 : // Return true if the relocation R may require allocating a GOT entry.
463 0 : virtual bool relocationNeedsGot(const RelocationRef &R) const {
464 0 : return false;
465 : }
466 :
467 : // Return true if the relocation R may require allocating a stub.
468 94 : virtual bool relocationNeedsStub(const RelocationRef &R) const {
469 94 : return true; // Conservative answer
470 : }
471 :
472 : public:
473 299 : RuntimeDyldImpl(RuntimeDyld::MemoryManager &MemMgr,
474 : JITSymbolResolver &Resolver)
475 299 : : MemMgr(MemMgr), Resolver(Resolver), Checker(nullptr),
476 598 : ProcessAllSections(false), HasError(false) {
477 299 : }
478 :
479 : virtual ~RuntimeDyldImpl();
480 :
481 : void setProcessAllSections(bool ProcessAllSections) {
482 299 : this->ProcessAllSections = ProcessAllSections;
483 : }
484 :
485 0 : void setRuntimeDyldChecker(RuntimeDyldCheckerImpl *Checker) {
486 299 : this->Checker = Checker;
487 0 : }
488 :
489 : virtual std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
490 : loadObject(const object::ObjectFile &Obj) = 0;
491 :
492 84 : uint8_t* getSymbolLocalAddress(StringRef Name) const {
493 : // FIXME: Just look up as a function for now. Overly simple of course.
494 : // Work in progress.
495 84 : RTDyldSymbolTable::const_iterator pos = GlobalSymbolTable.find(Name);
496 168 : if (pos == GlobalSymbolTable.end())
497 : return nullptr;
498 : const auto &SymInfo = pos->second;
499 : // Absolute symbols do not have a local address.
500 84 : if (SymInfo.getSectionID() == AbsoluteSymbolSection)
501 : return nullptr;
502 84 : return getSectionAddress(SymInfo.getSectionID()) + SymInfo.getOffset();
503 : }
504 :
505 978 : JITEvaluatedSymbol getSymbol(StringRef Name) const {
506 : // FIXME: Just look up as a function for now. Overly simple of course.
507 : // Work in progress.
508 978 : RTDyldSymbolTable::const_iterator pos = GlobalSymbolTable.find(Name);
509 1956 : if (pos == GlobalSymbolTable.end())
510 : return nullptr;
511 : const auto &SymEntry = pos->second;
512 : uint64_t SectionAddr = 0;
513 824 : if (SymEntry.getSectionID() != AbsoluteSymbolSection)
514 : SectionAddr = getSectionLoadAddress(SymEntry.getSectionID());
515 824 : uint64_t TargetAddr = SectionAddr + SymEntry.getOffset();
516 :
517 : // FIXME: Have getSymbol should return the actual address and the client
518 : // modify it based on the flags. This will require clients to be
519 : // aware of the target architecture, which we should build
520 : // infrastructure for.
521 824 : TargetAddr = modifyAddressBasedOnFlags(TargetAddr, SymEntry.getFlags());
522 824 : return JITEvaluatedSymbol(TargetAddr, SymEntry.getFlags());
523 : }
524 :
525 133 : std::map<StringRef, JITEvaluatedSymbol> getSymbolTable() const {
526 : std::map<StringRef, JITEvaluatedSymbol> Result;
527 :
528 507 : for (auto &KV : GlobalSymbolTable) {
529 241 : auto SectionID = KV.second.getSectionID();
530 : uint64_t SectionAddr = 0;
531 241 : if (SectionID != AbsoluteSymbolSection)
532 : SectionAddr = getSectionLoadAddress(SectionID);
533 241 : Result[KV.first()] =
534 241 : JITEvaluatedSymbol(SectionAddr + KV.second.getOffset(), KV.second.getFlags());
535 : }
536 :
537 133 : return Result;
538 : }
539 :
540 : void resolveRelocations();
541 :
542 : void resolveLocalRelocations();
543 :
544 : static void finalizeAsync(std::unique_ptr<RuntimeDyldImpl> This,
545 : std::function<void(Error)> OnEmitted,
546 : std::unique_ptr<MemoryBuffer> UnderlyingBuffer);
547 :
548 : void reassignSectionAddress(unsigned SectionID, uint64_t Addr);
549 :
550 : void mapSectionAddress(const void *LocalAddress, uint64_t TargetAddress);
551 :
552 : // Is the linker in an error state?
553 0 : bool hasError() { return HasError; }
554 :
555 : // Mark the error condition as handled and continue.
556 : void clearError() { HasError = false; }
557 :
558 : // Get the error message.
559 : StringRef getErrorString() { return ErrorStr; }
560 :
561 : virtual bool isCompatibleFile(const ObjectFile &Obj) const = 0;
562 :
563 : virtual void registerEHFrames();
564 :
565 : void deregisterEHFrames();
566 :
567 2 : virtual Error finalizeLoad(const ObjectFile &ObjImg,
568 : ObjSectionToIDMap &SectionMap) {
569 2 : return Error::success();
570 : }
571 : };
572 :
573 : } // end namespace llvm
574 :
575 : #endif
|