Line data Source code
1 : //===- AsmWriter.cpp - Printing LLVM as an assembly file ------------------===//
2 : //
3 : // The LLVM Compiler Infrastructure
4 : //
5 : // This file is distributed under the University of Illinois Open Source
6 : // License. See LICENSE.TXT for details.
7 : //
8 : //===----------------------------------------------------------------------===//
9 : //
10 : // This library implements `print` family of functions in classes like
11 : // Module, Function, Value, etc. In-memory representation of those classes is
12 : // converted to IR strings.
13 : //
14 : // Note that these routines must be extremely tolerant of various errors in the
15 : // LLVM code, because it can be used for debugging transformations.
16 : //
17 : //===----------------------------------------------------------------------===//
18 :
19 : #include "llvm/ADT/APFloat.h"
20 : #include "llvm/ADT/APInt.h"
21 : #include "llvm/ADT/ArrayRef.h"
22 : #include "llvm/ADT/DenseMap.h"
23 : #include "llvm/ADT/None.h"
24 : #include "llvm/ADT/Optional.h"
25 : #include "llvm/ADT/STLExtras.h"
26 : #include "llvm/ADT/SetVector.h"
27 : #include "llvm/ADT/SmallString.h"
28 : #include "llvm/ADT/SmallVector.h"
29 : #include "llvm/ADT/StringExtras.h"
30 : #include "llvm/ADT/StringRef.h"
31 : #include "llvm/ADT/iterator_range.h"
32 : #include "llvm/BinaryFormat/Dwarf.h"
33 : #include "llvm/Config/llvm-config.h"
34 : #include "llvm/IR/Argument.h"
35 : #include "llvm/IR/AssemblyAnnotationWriter.h"
36 : #include "llvm/IR/Attributes.h"
37 : #include "llvm/IR/BasicBlock.h"
38 : #include "llvm/IR/CFG.h"
39 : #include "llvm/IR/CallSite.h"
40 : #include "llvm/IR/CallingConv.h"
41 : #include "llvm/IR/Comdat.h"
42 : #include "llvm/IR/Constant.h"
43 : #include "llvm/IR/Constants.h"
44 : #include "llvm/IR/DebugInfoMetadata.h"
45 : #include "llvm/IR/DerivedTypes.h"
46 : #include "llvm/IR/Function.h"
47 : #include "llvm/IR/GlobalAlias.h"
48 : #include "llvm/IR/GlobalIFunc.h"
49 : #include "llvm/IR/GlobalIndirectSymbol.h"
50 : #include "llvm/IR/GlobalObject.h"
51 : #include "llvm/IR/GlobalValue.h"
52 : #include "llvm/IR/GlobalVariable.h"
53 : #include "llvm/IR/IRPrintingPasses.h"
54 : #include "llvm/IR/InlineAsm.h"
55 : #include "llvm/IR/InstrTypes.h"
56 : #include "llvm/IR/Instruction.h"
57 : #include "llvm/IR/Instructions.h"
58 : #include "llvm/IR/LLVMContext.h"
59 : #include "llvm/IR/Metadata.h"
60 : #include "llvm/IR/Module.h"
61 : #include "llvm/IR/ModuleSlotTracker.h"
62 : #include "llvm/IR/ModuleSummaryIndex.h"
63 : #include "llvm/IR/Operator.h"
64 : #include "llvm/IR/Statepoint.h"
65 : #include "llvm/IR/Type.h"
66 : #include "llvm/IR/TypeFinder.h"
67 : #include "llvm/IR/Use.h"
68 : #include "llvm/IR/UseListOrder.h"
69 : #include "llvm/IR/User.h"
70 : #include "llvm/IR/Value.h"
71 : #include "llvm/Support/AtomicOrdering.h"
72 : #include "llvm/Support/Casting.h"
73 : #include "llvm/Support/Compiler.h"
74 : #include "llvm/Support/Debug.h"
75 : #include "llvm/Support/ErrorHandling.h"
76 : #include "llvm/Support/Format.h"
77 : #include "llvm/Support/FormattedStream.h"
78 : #include "llvm/Support/raw_ostream.h"
79 : #include <algorithm>
80 : #include <cassert>
81 : #include <cctype>
82 : #include <cstddef>
83 : #include <cstdint>
84 : #include <iterator>
85 : #include <memory>
86 : #include <string>
87 : #include <tuple>
88 : #include <utility>
89 : #include <vector>
90 :
91 : using namespace llvm;
92 :
93 : // Make virtual table appear in this compilation unit.
94 : AssemblyAnnotationWriter::~AssemblyAnnotationWriter() = default;
95 :
96 : //===----------------------------------------------------------------------===//
97 : // Helper Functions
98 : //===----------------------------------------------------------------------===//
99 :
100 : namespace {
101 :
102 762 : struct OrderMap {
103 : DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
104 :
105 : unsigned size() const { return IDs.size(); }
106 16834 : std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
107 :
108 : std::pair<unsigned, bool> lookup(const Value *V) const {
109 32 : return IDs.lookup(V);
110 : }
111 :
112 : void index(const Value *V) {
113 : // Explicitly sequence get-size and insert-value operations to avoid UB.
114 13502 : unsigned ID = IDs.size() + 1;
115 13502 : IDs[V].first = ID;
116 : }
117 : };
118 :
119 : } // end anonymous namespace
120 :
121 14900 : static void orderValue(const Value *V, OrderMap &OM) {
122 14900 : if (OM.lookup(V).first)
123 : return;
124 :
125 : if (const Constant *C = dyn_cast<Constant>(V))
126 5184 : if (C->getNumOperands() && !isa<GlobalValue>(C))
127 2416 : for (const Value *Op : C->operands())
128 1264 : if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
129 936 : orderValue(Op, OM);
130 :
131 : // Note: we cannot cache this lookup above, since inserting into the map
132 : // changes the map's size, and thus affects the other IDs.
133 13502 : OM.index(V);
134 : }
135 :
136 762 : static OrderMap orderModule(const Module *M) {
137 : // This needs to match the order used by ValueEnumerator::ValueEnumerator()
138 : // and ValueEnumerator::incorporateFunction().
139 : OrderMap OM;
140 :
141 1676 : for (const GlobalVariable &G : M->globals()) {
142 914 : if (G.hasInitializer())
143 : if (!isa<GlobalValue>(G.getInitializer()))
144 690 : orderValue(G.getInitializer(), OM);
145 914 : orderValue(&G, OM);
146 : }
147 906 : for (const GlobalAlias &A : M->aliases()) {
148 : if (!isa<GlobalValue>(A.getAliasee()))
149 60 : orderValue(A.getAliasee(), OM);
150 144 : orderValue(&A, OM);
151 : }
152 774 : for (const GlobalIFunc &I : M->ifuncs()) {
153 : if (!isa<GlobalValue>(I.getResolver()))
154 0 : orderValue(I.getResolver(), OM);
155 12 : orderValue(&I, OM);
156 : }
157 2844 : for (const Function &F : *M) {
158 4200 : for (const Use &U : F.operands())
159 36 : if (!isa<GlobalValue>(U.get()))
160 36 : orderValue(U.get(), OM);
161 :
162 2082 : orderValue(&F, OM);
163 :
164 2082 : if (F.isDeclaration())
165 : continue;
166 :
167 3058 : for (const Argument &A : F.args())
168 1322 : orderValue(&A, OM);
169 3728 : for (const BasicBlock &BB : F) {
170 1992 : orderValue(&BB, OM);
171 6980 : for (const Instruction &I : BB) {
172 16656 : for (const Value *Op : I.operands())
173 7188 : if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
174 : isa<InlineAsm>(*Op))
175 1724 : orderValue(Op, OM);
176 4988 : orderValue(&I, OM);
177 : }
178 : }
179 : }
180 762 : return OM;
181 : }
182 :
183 1528 : static void predictValueUseListOrderImpl(const Value *V, const Function *F,
184 : unsigned ID, const OrderMap &OM,
185 : UseListOrderStack &Stack) {
186 : // Predict use-list order for this one.
187 : using Entry = std::pair<const Use *, unsigned>;
188 : SmallVector<Entry, 64> List;
189 6602 : for (const Use &U : V->uses())
190 : // Check if this user will be serialized.
191 5074 : if (OM.lookup(U.getUser()).first)
192 9900 : List.push_back(std::make_pair(&U, List.size()));
193 :
194 1528 : if (List.size() < 2)
195 : // We may have lost some users.
196 : return;
197 :
198 : bool GetsReversed =
199 2984 : !isa<GlobalVariable>(V) && !isa<Function>(V) && !isa<BasicBlock>(V);
200 : if (auto *BA = dyn_cast<BlockAddress>(V))
201 32 : ID = OM.lookup(BA->getBasicBlock()).first;
202 : llvm::sort(List, [&](const Entry &L, const Entry &R) {
203 : const Use *LU = L.first;
204 : const Use *RU = R.first;
205 : if (LU == RU)
206 : return false;
207 :
208 : auto LID = OM.lookup(LU->getUser()).first;
209 : auto RID = OM.lookup(RU->getUser()).first;
210 :
211 : // If ID is 4, then expect: 7 6 5 1 2 3.
212 : if (LID < RID) {
213 : if (GetsReversed)
214 : if (RID <= ID)
215 : return true;
216 : return false;
217 : }
218 : if (RID < LID) {
219 : if (GetsReversed)
220 : if (LID <= ID)
221 : return false;
222 : return true;
223 : }
224 :
225 : // LID and RID are equal, so we have different operands of the same user.
226 : // Assume operands are added in order for all instructions.
227 : if (GetsReversed)
228 : if (LID <= ID)
229 : return LU->getOperandNo() < RU->getOperandNo();
230 : return LU->getOperandNo() > RU->getOperandNo();
231 : });
232 :
233 1460 : if (std::is_sorted(
234 : List.begin(), List.end(),
235 0 : [](const Entry &L, const Entry &R) { return L.second < R.second; }))
236 : // Order is already correct.
237 : return;
238 :
239 : // Store the shuffle.
240 855 : Stack.emplace_back(V, F, List.size());
241 : assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
242 4034 : for (size_t I = 0, E = List.size(); I != E; ++I)
243 6358 : Stack.back().Shuffle[I] = List[I].second;
244 : }
245 :
246 16834 : static void predictValueUseListOrder(const Value *V, const Function *F,
247 : OrderMap &OM, UseListOrderStack &Stack) {
248 16834 : auto &IDPair = OM[V];
249 : assert(IDPair.first && "Unmapped value");
250 16834 : if (IDPair.second)
251 : // Already predicted.
252 : return;
253 :
254 : // Do the actual prediction.
255 13502 : IDPair.second = true;
256 18946 : if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
257 1528 : predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
258 :
259 : // Recursive descent into constants.
260 : if (const Constant *C = dyn_cast<Constant>(V))
261 5184 : if (C->getNumOperands()) // Visit GlobalValues.
262 5242 : for (const Value *Op : C->operands())
263 2222 : if (isa<Constant>(Op)) // Visit GlobalValues.
264 2190 : predictValueUseListOrder(Op, F, OM, Stack);
265 : }
266 :
267 762 : static UseListOrderStack predictUseListOrder(const Module *M) {
268 762 : OrderMap OM = orderModule(M);
269 :
270 : // Use-list orders need to be serialized after all the users have been added
271 : // to a value, or else the shuffles will be incomplete. Store them per
272 : // function in a stack.
273 : //
274 : // Aside from function order, the order of values doesn't matter much here.
275 : UseListOrderStack Stack;
276 :
277 : // We want to visit the functions backward now so we can list function-local
278 : // constants in the last Function they're used in. Module-level constants
279 : // have already been visited above.
280 2844 : for (const Function &F : make_range(M->rbegin(), M->rend())) {
281 2082 : if (F.isDeclaration())
282 : continue;
283 3728 : for (const BasicBlock &BB : F)
284 1992 : predictValueUseListOrder(&BB, &F, OM, Stack);
285 3058 : for (const Argument &A : F.args())
286 1322 : predictValueUseListOrder(&A, &F, OM, Stack);
287 3728 : for (const BasicBlock &BB : F)
288 6980 : for (const Instruction &I : BB)
289 16656 : for (const Value *Op : I.operands())
290 6680 : if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
291 2232 : predictValueUseListOrder(Op, &F, OM, Stack);
292 3728 : for (const BasicBlock &BB : F)
293 6980 : for (const Instruction &I : BB)
294 4988 : predictValueUseListOrder(&I, &F, OM, Stack);
295 : }
296 :
297 : // Visit globals last.
298 1676 : for (const GlobalVariable &G : M->globals())
299 914 : predictValueUseListOrder(&G, nullptr, OM, Stack);
300 2844 : for (const Function &F : *M)
301 2082 : predictValueUseListOrder(&F, nullptr, OM, Stack);
302 906 : for (const GlobalAlias &A : M->aliases())
303 144 : predictValueUseListOrder(&A, nullptr, OM, Stack);
304 774 : for (const GlobalIFunc &I : M->ifuncs())
305 12 : predictValueUseListOrder(&I, nullptr, OM, Stack);
306 1676 : for (const GlobalVariable &G : M->globals())
307 914 : if (G.hasInitializer())
308 766 : predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
309 906 : for (const GlobalAlias &A : M->aliases())
310 144 : predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
311 774 : for (const GlobalIFunc &I : M->ifuncs())
312 12 : predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
313 2844 : for (const Function &F : *M)
314 4200 : for (const Use &U : F.operands())
315 36 : predictValueUseListOrder(U.get(), nullptr, OM, Stack);
316 :
317 762 : return Stack;
318 : }
319 :
320 305035 : static const Module *getModuleFromVal(const Value *V) {
321 : if (const Argument *MA = dyn_cast<Argument>(V))
322 7214 : return MA->getParent() ? MA->getParent()->getParent() : nullptr;
323 :
324 : if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
325 12565 : return BB->getParent() ? BB->getParent()->getParent() : nullptr;
326 :
327 : if (const Instruction *I = dyn_cast<Instruction>(V)) {
328 262753 : const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
329 262677 : return M ? M->getParent() : nullptr;
330 : }
331 :
332 : if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
333 1206 : return GV->getParent();
334 :
335 : if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
336 10 : for (const User *U : MAV->users())
337 10 : if (isa<Instruction>(U))
338 10 : if (const Module *M = getModuleFromVal(U))
339 : return M;
340 : return nullptr;
341 : }
342 :
343 : return nullptr;
344 : }
345 :
346 13996 : static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
347 13996 : switch (cc) {
348 65 : default: Out << "cc" << cc; break;
349 414 : case CallingConv::Fast: Out << "fastcc"; break;
350 502 : case CallingConv::Cold: Out << "coldcc"; break;
351 9 : case CallingConv::WebKit_JS: Out << "webkit_jscc"; break;
352 9 : case CallingConv::AnyReg: Out << "anyregcc"; break;
353 23 : case CallingConv::PreserveMost: Out << "preserve_mostcc"; break;
354 15 : case CallingConv::PreserveAll: Out << "preserve_allcc"; break;
355 68 : case CallingConv::CXX_FAST_TLS: Out << "cxx_fast_tlscc"; break;
356 46 : case CallingConv::GHC: Out << "ghccc"; break;
357 144 : case CallingConv::X86_StdCall: Out << "x86_stdcallcc"; break;
358 128 : case CallingConv::X86_FastCall: Out << "x86_fastcallcc"; break;
359 5842 : case CallingConv::X86_ThisCall: Out << "x86_thiscallcc"; break;
360 157 : case CallingConv::X86_RegCall: Out << "x86_regcallcc"; break;
361 123 : case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break;
362 33 : case CallingConv::Intel_OCL_BI: Out << "intel_ocl_bicc"; break;
363 34 : case CallingConv::ARM_APCS: Out << "arm_apcscc"; break;
364 610 : case CallingConv::ARM_AAPCS: Out << "arm_aapcscc"; break;
365 753 : case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
366 15 : case CallingConv::AArch64_VectorCall: Out << "aarch64_vector_pcs"; break;
367 28 : case CallingConv::MSP430_INTR: Out << "msp430_intrcc"; break;
368 13 : case CallingConv::AVR_INTR: Out << "avr_intrcc "; break;
369 13 : case CallingConv::AVR_SIGNAL: Out << "avr_signalcc "; break;
370 28 : case CallingConv::PTX_Kernel: Out << "ptx_kernel"; break;
371 100 : case CallingConv::PTX_Device: Out << "ptx_device"; break;
372 22 : case CallingConv::X86_64_SysV: Out << "x86_64_sysvcc"; break;
373 35 : case CallingConv::Win64: Out << "win64cc"; break;
374 334 : case CallingConv::SPIR_FUNC: Out << "spir_func"; break;
375 227 : case CallingConv::SPIR_KERNEL: Out << "spir_kernel"; break;
376 2206 : case CallingConv::Swift: Out << "swiftcc"; break;
377 37 : case CallingConv::X86_INTR: Out << "x86_intrcc"; break;
378 14 : case CallingConv::HHVM: Out << "hhvmcc"; break;
379 16 : case CallingConv::HHVM_C: Out << "hhvm_ccc"; break;
380 25 : case CallingConv::AMDGPU_VS: Out << "amdgpu_vs"; break;
381 6 : case CallingConv::AMDGPU_LS: Out << "amdgpu_ls"; break;
382 8 : case CallingConv::AMDGPU_HS: Out << "amdgpu_hs"; break;
383 6 : case CallingConv::AMDGPU_ES: Out << "amdgpu_es"; break;
384 12 : case CallingConv::AMDGPU_GS: Out << "amdgpu_gs"; break;
385 134 : case CallingConv::AMDGPU_PS: Out << "amdgpu_ps"; break;
386 16 : case CallingConv::AMDGPU_CS: Out << "amdgpu_cs"; break;
387 1726 : case CallingConv::AMDGPU_KERNEL: Out << "amdgpu_kernel"; break;
388 : }
389 13996 : }
390 :
391 : enum PrefixType {
392 : GlobalPrefix,
393 : ComdatPrefix,
394 : LabelPrefix,
395 : LocalPrefix,
396 : NoPrefix
397 : };
398 :
399 4904626 : void llvm::printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name) {
400 : assert(!Name.empty() && "Cannot get empty name!");
401 :
402 : // Scan the name to see if it needs quotes first.
403 4904626 : bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
404 : if (!NeedsQuotes) {
405 56621486 : for (unsigned i = 0, e = Name.size(); i != e; ++i) {
406 : // By making this unsigned, the value passed in to isalnum will always be
407 : // in the range 0-255. This is important when building with MSVC because
408 : // its implementation will assert. This situation can arise when dealing
409 : // with UTF-8 multibyte characters.
410 51846825 : unsigned char C = Name[i];
411 51846825 : if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
412 : C != '_') {
413 : NeedsQuotes = true;
414 : break;
415 : }
416 : }
417 : }
418 :
419 : // If we didn't need any quotes, just write out the name in one blast.
420 4904626 : if (!NeedsQuotes) {
421 4774661 : OS << Name;
422 4774661 : return;
423 : }
424 :
425 : // Okay, we need quotes. Output the quotes and escape any scary characters as
426 : // needed.
427 : OS << '"';
428 129965 : printEscapedString(Name, OS);
429 : OS << '"';
430 : }
431 :
432 : /// Turn the specified name into an 'LLVM name', which is either prefixed with %
433 : /// (if the string only contains simple characters) or is surrounded with ""'s
434 : /// (if it has special chars in it). Print it out.
435 4620643 : static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
436 4620643 : switch (Prefix) {
437 : case NoPrefix:
438 : break;
439 : case GlobalPrefix:
440 : OS << '@';
441 : break;
442 : case ComdatPrefix:
443 : OS << '$';
444 : break;
445 : case LabelPrefix:
446 : break;
447 : case LocalPrefix:
448 : OS << '%';
449 : break;
450 : }
451 4620643 : printLLVMNameWithoutPrefix(OS, Name);
452 4620643 : }
453 :
454 : /// Turn the specified name into an 'LLVM name', which is either prefixed with %
455 : /// (if the string only contains simple characters) or is surrounded with ""'s
456 : /// (if it has special chars in it). Print it out.
457 3937334 : static void PrintLLVMName(raw_ostream &OS, const Value *V) {
458 3937334 : PrintLLVMName(OS, V->getName(),
459 : isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
460 3937334 : }
461 :
462 : namespace {
463 :
464 : class TypePrinting {
465 : public:
466 61507 : TypePrinting(const Module *M = nullptr) : DeferredM(M) {}
467 :
468 : TypePrinting(const TypePrinting &) = delete;
469 : TypePrinting &operator=(const TypePrinting &) = delete;
470 :
471 : /// The named types that are used by the current module.
472 : TypeFinder &getNamedTypes();
473 :
474 : /// The numbered types, number to type mapping.
475 : std::vector<StructType *> &getNumberedTypes();
476 :
477 : bool empty();
478 :
479 : void print(Type *Ty, raw_ostream &OS);
480 :
481 : void printStructBody(StructType *Ty, raw_ostream &OS);
482 :
483 : private:
484 : void incorporateTypes();
485 :
486 : /// A module to process lazily when needed. Set to nullptr as soon as used.
487 : const Module *DeferredM;
488 :
489 : TypeFinder NamedTypes;
490 :
491 : // The numbered types, along with their value.
492 : DenseMap<StructType *, unsigned> Type2Number;
493 :
494 : std::vector<StructType *> NumberedTypes;
495 : };
496 :
497 : } // end anonymous namespace
498 :
499 : TypeFinder &TypePrinting::getNamedTypes() {
500 6173 : incorporateTypes();
501 : return NamedTypes;
502 : }
503 :
504 6173 : std::vector<StructType *> &TypePrinting::getNumberedTypes() {
505 6173 : incorporateTypes();
506 :
507 : // We know all the numbers that each type is used and we know that it is a
508 : // dense assignment. Convert the map to an index table, if it's not done
509 : // already (judging from the sizes):
510 12346 : if (NumberedTypes.size() == Type2Number.size())
511 5711 : return NumberedTypes;
512 :
513 462 : NumberedTypes.resize(Type2Number.size());
514 1454 : for (const auto &P : Type2Number) {
515 : assert(P.second < NumberedTypes.size() && "Didn't get a dense numbering?");
516 : assert(!NumberedTypes[P.second] && "Didn't get a unique numbering?");
517 1984 : NumberedTypes[P.second] = P.first;
518 : }
519 462 : return NumberedTypes;
520 : }
521 :
522 : bool TypePrinting::empty() {
523 17389 : incorporateTypes();
524 17389 : return NamedTypes.empty() && Type2Number.empty();
525 : }
526 :
527 49852 : void TypePrinting::incorporateTypes() {
528 49852 : if (!DeferredM)
529 : return;
530 :
531 17397 : NamedTypes.run(*DeferredM, false);
532 17397 : DeferredM = nullptr;
533 :
534 : // The list of struct types we got back includes all the struct types, split
535 : // the unnamed ones out to a numbering and remove the anonymous structs.
536 : unsigned NextNumber = 0;
537 :
538 : std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
539 59458 : for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
540 42061 : StructType *STy = *I;
541 :
542 : // Ignore anonymous types.
543 42061 : if (STy->isLiteral())
544 9733 : continue;
545 :
546 32328 : if (STy->getName().empty())
547 1007 : Type2Number[STy] = NextNumber++;
548 : else
549 31321 : *NextToUse++ = STy;
550 : }
551 :
552 : NamedTypes.erase(NextToUse, NamedTypes.end());
553 : }
554 :
555 : /// Write the specified type to the specified raw_ostream, making use of type
556 : /// names or up references to shorten the type name where possible.
557 10607323 : void TypePrinting::print(Type *Ty, raw_ostream &OS) {
558 10607323 : switch (Ty->getTypeID()) {
559 295595 : case Type::VoidTyID: OS << "void"; return;
560 41162 : case Type::HalfTyID: OS << "half"; return;
561 272621 : case Type::FloatTyID: OS << "float"; return;
562 206520 : case Type::DoubleTyID: OS << "double"; return;
563 12182 : case Type::X86_FP80TyID: OS << "x86_fp80"; return;
564 3849 : case Type::FP128TyID: OS << "fp128"; return;
565 1013 : case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
566 235575 : case Type::LabelTyID: OS << "label"; return;
567 18977 : case Type::MetadataTyID: OS << "metadata"; return;
568 2864 : case Type::X86_MMXTyID: OS << "x86_mmx"; return;
569 2618 : case Type::TokenTyID: OS << "token"; return;
570 : case Type::IntegerTyID:
571 : OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
572 : return;
573 :
574 : case Type::FunctionTyID: {
575 : FunctionType *FTy = cast<FunctionType>(Ty);
576 223990 : print(FTy->getReturnType(), OS);
577 111995 : OS << " (";
578 289280 : for (FunctionType::param_iterator I = FTy->param_begin(),
579 289280 : E = FTy->param_end(); I != E; ++I) {
580 354570 : if (I != FTy->param_begin())
581 95543 : OS << ", ";
582 177285 : print(*I, OS);
583 : }
584 111995 : if (FTy->isVarArg()) {
585 42674 : if (FTy->getNumParams()) OS << ", ";
586 42674 : OS << "...";
587 : }
588 : OS << ')';
589 : return;
590 : }
591 : case Type::StructTyID: {
592 : StructType *STy = cast<StructType>(Ty);
593 :
594 745686 : if (STy->isLiteral())
595 102616 : return printStructBody(STy, OS);
596 :
597 643070 : if (!STy->getName().empty())
598 622953 : return PrintLLVMName(OS, STy->getName(), LocalPrefix);
599 :
600 20117 : incorporateTypes();
601 20117 : const auto I = Type2Number.find(STy);
602 20117 : if (I != Type2Number.end())
603 20107 : OS << '%' << I->second;
604 : else // Not enumerated, print the hex address.
605 10 : OS << "%\"type " << STy << '\"';
606 : return;
607 : }
608 : case Type::PointerTyID: {
609 : PointerType *PTy = cast<PointerType>(Ty);
610 2836859 : print(PTy->getElementType(), OS);
611 2836859 : if (unsigned AddressSpace = PTy->getAddressSpace())
612 30548 : OS << " addrspace(" << AddressSpace << ')';
613 : OS << '*';
614 : return;
615 : }
616 : case Type::ArrayTyID: {
617 : ArrayType *ATy = cast<ArrayType>(Ty);
618 323771 : OS << '[' << ATy->getNumElements() << " x ";
619 323771 : print(ATy->getElementType(), OS);
620 : OS << ']';
621 : return;
622 : }
623 : case Type::VectorTyID: {
624 : VectorType *PTy = cast<VectorType>(Ty);
625 948801 : OS << "<" << PTy->getNumElements() << " x ";
626 948801 : print(PTy->getElementType(), OS);
627 : OS << '>';
628 : return;
629 : }
630 : }
631 0 : llvm_unreachable("Invalid TypeID");
632 : }
633 :
634 135012 : void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
635 135012 : if (STy->isOpaque()) {
636 1764 : OS << "opaque";
637 1764 : return;
638 : }
639 :
640 133248 : if (STy->isPacked())
641 : OS << '<';
642 :
643 133248 : if (STy->getNumElements() == 0) {
644 576 : OS << "{}";
645 : } else {
646 132672 : StructType::element_iterator I = STy->element_begin();
647 132672 : OS << "{ ";
648 132672 : print(*I++, OS);
649 471173 : for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
650 338501 : OS << ", ";
651 338501 : print(*I, OS);
652 : }
653 :
654 132672 : OS << " }";
655 : }
656 133248 : if (STy->isPacked())
657 : OS << '>';
658 : }
659 :
660 : namespace llvm {
661 :
662 : //===----------------------------------------------------------------------===//
663 : // SlotTracker Class: Enumerate slot numbers for unnamed values
664 : //===----------------------------------------------------------------------===//
665 : /// This class provides computation of slot numbers for LLVM Assembly writing.
666 : ///
667 : class SlotTracker {
668 : public:
669 : /// ValueMap - A mapping of Values to slot numbers.
670 : using ValueMap = DenseMap<const Value *, unsigned>;
671 :
672 : private:
673 : /// TheModule - The module for which we are holding slot numbers.
674 : const Module* TheModule;
675 :
676 : /// TheFunction - The function for which we are holding slot numbers.
677 : const Function* TheFunction = nullptr;
678 : bool FunctionProcessed = false;
679 : bool ShouldInitializeAllMetadata;
680 :
681 : /// The summary index for which we are holding slot numbers.
682 : const ModuleSummaryIndex *TheIndex = nullptr;
683 :
684 : /// mMap - The slot map for the module level data.
685 : ValueMap mMap;
686 : unsigned mNext = 0;
687 :
688 : /// fMap - The slot map for the function level data.
689 : ValueMap fMap;
690 : unsigned fNext = 0;
691 :
692 : /// mdnMap - Map for MDNodes.
693 : DenseMap<const MDNode*, unsigned> mdnMap;
694 : unsigned mdnNext = 0;
695 :
696 : /// asMap - The slot map for attribute sets.
697 : DenseMap<AttributeSet, unsigned> asMap;
698 : unsigned asNext = 0;
699 :
700 : /// ModulePathMap - The slot map for Module paths used in the summary index.
701 : StringMap<unsigned> ModulePathMap;
702 : unsigned ModulePathNext = 0;
703 :
704 : /// GUIDMap - The slot map for GUIDs used in the summary index.
705 : DenseMap<GlobalValue::GUID, unsigned> GUIDMap;
706 : unsigned GUIDNext = 0;
707 :
708 : /// TypeIdMap - The slot map for type ids used in the summary index.
709 : StringMap<unsigned> TypeIdMap;
710 : unsigned TypeIdNext = 0;
711 :
712 : public:
713 : /// Construct from a module.
714 : ///
715 : /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
716 : /// functions, giving correct numbering for metadata referenced only from
717 : /// within a function (even if no functions have been initialized).
718 : explicit SlotTracker(const Module *M,
719 : bool ShouldInitializeAllMetadata = false);
720 :
721 : /// Construct from a function, starting out in incorp state.
722 : ///
723 : /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
724 : /// functions, giving correct numbering for metadata referenced only from
725 : /// within a function (even if no functions have been initialized).
726 : explicit SlotTracker(const Function *F,
727 : bool ShouldInitializeAllMetadata = false);
728 :
729 : /// Construct from a module summary index.
730 : explicit SlotTracker(const ModuleSummaryIndex *Index);
731 :
732 : SlotTracker(const SlotTracker &) = delete;
733 : SlotTracker &operator=(const SlotTracker &) = delete;
734 :
735 : /// Return the slot number of the specified value in it's type
736 : /// plane. If something is not in the SlotTracker, return -1.
737 : int getLocalSlot(const Value *V);
738 : int getGlobalSlot(const GlobalValue *V);
739 : int getMetadataSlot(const MDNode *N);
740 : int getAttributeGroupSlot(AttributeSet AS);
741 : int getModulePathSlot(StringRef Path);
742 : int getGUIDSlot(GlobalValue::GUID GUID);
743 : int getTypeIdSlot(StringRef Id);
744 :
745 : /// If you'd like to deal with a function instead of just a module, use
746 : /// this method to get its data into the SlotTracker.
747 0 : void incorporateFunction(const Function *F) {
748 252441 : TheFunction = F;
749 252441 : FunctionProcessed = false;
750 0 : }
751 :
752 0 : const Function *getFunction() const { return TheFunction; }
753 :
754 : /// After calling incorporateFunction, use this method to remove the
755 : /// most recently incorporated function from the SlotTracker. This
756 : /// will reset the state of the machine back to just the module contents.
757 : void purgeFunction();
758 :
759 : /// MDNode map iterators.
760 : using mdn_iterator = DenseMap<const MDNode*, unsigned>::iterator;
761 :
762 10578 : mdn_iterator mdn_begin() { return mdnMap.begin(); }
763 : mdn_iterator mdn_end() { return mdnMap.end(); }
764 : unsigned mdn_size() const { return mdnMap.size(); }
765 : bool mdn_empty() const { return mdnMap.empty(); }
766 :
767 : /// AttributeSet map iterators.
768 : using as_iterator = DenseMap<AttributeSet, unsigned>::iterator;
769 :
770 0 : as_iterator as_begin() { return asMap.begin(); }
771 : as_iterator as_end() { return asMap.end(); }
772 : unsigned as_size() const { return asMap.size(); }
773 : bool as_empty() const { return asMap.empty(); }
774 :
775 : /// GUID map iterators.
776 : using guid_iterator = DenseMap<GlobalValue::GUID, unsigned>::iterator;
777 :
778 : /// These functions do the actual initialization.
779 : inline void initializeIfNeeded();
780 : void initializeIndexIfNeeded();
781 :
782 : // Implementation Details
783 : private:
784 : /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
785 : void CreateModuleSlot(const GlobalValue *V);
786 :
787 : /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
788 : void CreateMetadataSlot(const MDNode *N);
789 :
790 : /// CreateFunctionSlot - Insert the specified Value* into the slot table.
791 : void CreateFunctionSlot(const Value *V);
792 :
793 : /// Insert the specified AttributeSet into the slot table.
794 : void CreateAttributeSetSlot(AttributeSet AS);
795 :
796 : inline void CreateModulePathSlot(StringRef Path);
797 : void CreateGUIDSlot(GlobalValue::GUID GUID);
798 : void CreateTypeIdSlot(StringRef Id);
799 :
800 : /// Add all of the module level global variables (and their initializers)
801 : /// and function declarations, but not the contents of those functions.
802 : void processModule();
803 : void processIndex();
804 :
805 : /// Add all of the functions arguments, basic blocks, and instructions.
806 : void processFunction();
807 :
808 : /// Add the metadata directly attached to a GlobalObject.
809 : void processGlobalObjectMetadata(const GlobalObject &GO);
810 :
811 : /// Add all of the metadata from a function.
812 : void processFunctionMetadata(const Function &F);
813 :
814 : /// Add all of the metadata from an instruction.
815 : void processInstructionMetadata(const Instruction &I);
816 : };
817 :
818 : } // end namespace llvm
819 :
820 32393 : ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M,
821 32393 : const Function *F)
822 32393 : : M(M), F(F), Machine(&Machine) {}
823 :
824 143532 : ModuleSlotTracker::ModuleSlotTracker(const Module *M,
825 143532 : bool ShouldInitializeAllMetadata)
826 : : ShouldCreateStorage(M),
827 143532 : ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {}
828 :
829 : ModuleSlotTracker::~ModuleSlotTracker() = default;
830 :
831 165878 : SlotTracker *ModuleSlotTracker::getMachine() {
832 165878 : if (!ShouldCreateStorage)
833 122491 : return Machine;
834 :
835 43387 : ShouldCreateStorage = false;
836 : MachineStorage =
837 86774 : llvm::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata);
838 43387 : Machine = MachineStorage.get();
839 43387 : return Machine;
840 : }
841 :
842 43015 : void ModuleSlotTracker::incorporateFunction(const Function &F) {
843 : // Using getMachine() may lazily create the slot tracker.
844 43015 : if (!getMachine())
845 : return;
846 :
847 : // Nothing to do if this is the right function already.
848 43015 : if (this->F == &F)
849 : return;
850 42903 : if (this->F)
851 54 : Machine->purgeFunction();
852 42903 : Machine->incorporateFunction(&F);
853 42903 : this->F = &F;
854 : }
855 :
856 4035 : int ModuleSlotTracker::getLocalSlot(const Value *V) {
857 : assert(F && "No function incorporated");
858 4035 : return Machine->getLocalSlot(V);
859 : }
860 :
861 1390 : static SlotTracker *createSlotTracker(const Value *V) {
862 : if (const Argument *FA = dyn_cast<Argument>(V))
863 16 : return new SlotTracker(FA->getParent());
864 :
865 : if (const Instruction *I = dyn_cast<Instruction>(V))
866 1166 : if (I->getParent())
867 1166 : return new SlotTracker(I->getParent()->getParent());
868 :
869 : if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
870 179 : return new SlotTracker(BB->getParent());
871 :
872 : if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
873 20 : return new SlotTracker(GV->getParent());
874 :
875 : if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
876 0 : return new SlotTracker(GA->getParent());
877 :
878 : if (const GlobalIFunc *GIF = dyn_cast<GlobalIFunc>(V))
879 0 : return new SlotTracker(GIF->getParent());
880 :
881 : if (const Function *Func = dyn_cast<Function>(V))
882 9 : return new SlotTracker(Func);
883 :
884 : return nullptr;
885 : }
886 :
887 : #if 0
888 : #define ST_DEBUG(X) dbgs() << X
889 : #else
890 : #define ST_DEBUG(X)
891 : #endif
892 :
893 : // Module level constructor. Causes the contents of the Module (sans functions)
894 : // to be added to the slot table.
895 129015 : SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata)
896 129015 : : TheModule(M), ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
897 :
898 : // Function level constructor. Causes the contents of the Module and the one
899 : // function provided to be added to the slot table.
900 1370 : SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata)
901 1370 : : TheModule(F ? F->getParent() : nullptr), TheFunction(F),
902 1370 : ShouldInitializeAllMetadata(ShouldInitializeAllMetadata) {}
903 :
904 69 : SlotTracker::SlotTracker(const ModuleSummaryIndex *Index)
905 69 : : TheModule(nullptr), ShouldInitializeAllMetadata(false), TheIndex(Index) {}
906 :
907 2036318 : inline void SlotTracker::initializeIfNeeded() {
908 2036318 : if (TheModule) {
909 27158 : processModule();
910 27158 : TheModule = nullptr; ///< Prevent re-processing next time we're called.
911 : }
912 :
913 2036318 : if (TheFunction && !FunctionProcessed)
914 164952 : processFunction();
915 2036318 : }
916 :
917 874 : void SlotTracker::initializeIndexIfNeeded() {
918 874 : if (!TheIndex)
919 : return;
920 69 : processIndex();
921 69 : TheIndex = nullptr; ///< Prevent re-processing next time we're called.
922 : }
923 :
924 : // Iterate through all the global variables, functions, and global
925 : // variable initializers and create slots for them.
926 27158 : void SlotTracker::processModule() {
927 : ST_DEBUG("begin processModule!\n");
928 :
929 : // Add all of the unnamed global variables to the value table.
930 115303 : for (const GlobalVariable &Var : TheModule->globals()) {
931 88145 : if (!Var.hasName())
932 5952 : CreateModuleSlot(&Var);
933 88145 : processGlobalObjectMetadata(Var);
934 : auto Attrs = Var.getAttributes();
935 88145 : if (Attrs.hasAttributes())
936 33 : CreateAttributeSetSlot(Attrs);
937 : }
938 :
939 28375 : for (const GlobalAlias &A : TheModule->aliases()) {
940 1217 : if (!A.hasName())
941 4 : CreateModuleSlot(&A);
942 : }
943 :
944 27239 : for (const GlobalIFunc &I : TheModule->ifuncs()) {
945 81 : if (!I.hasName())
946 0 : CreateModuleSlot(&I);
947 : }
948 :
949 : // Add metadata used by named metadata.
950 49035 : for (const NamedMDNode &NMD : TheModule->named_metadata()) {
951 57502 : for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
952 35625 : CreateMetadataSlot(NMD.getOperand(i));
953 : }
954 :
955 397082 : for (const Function &F : *TheModule) {
956 369924 : if (!F.hasName())
957 : // Add all the unnamed functions to the table.
958 39 : CreateModuleSlot(&F);
959 :
960 369924 : if (ShouldInitializeAllMetadata)
961 54563 : processFunctionMetadata(F);
962 :
963 : // Add all the function attributes to the table.
964 : // FIXME: Add attributes of other objects?
965 369924 : AttributeSet FnAttrs = F.getAttributes().getFnAttributes();
966 369924 : if (FnAttrs.hasAttributes())
967 243522 : CreateAttributeSetSlot(FnAttrs);
968 : }
969 :
970 : ST_DEBUG("end processModule!\n");
971 27158 : }
972 :
973 : // Process the arguments, basic blocks, and instructions of a function.
974 164952 : void SlotTracker::processFunction() {
975 : ST_DEBUG("begin processFunction!\n");
976 164952 : fNext = 0;
977 :
978 : // Process function metadata if it wasn't hit at the module-level.
979 164952 : if (!ShouldInitializeAllMetadata)
980 162530 : processFunctionMetadata(*TheFunction);
981 :
982 : // Add all the function arguments with no names.
983 421579 : for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
984 586531 : AE = TheFunction->arg_end(); AI != AE; ++AI)
985 256627 : if (!AI->hasName())
986 84798 : CreateFunctionSlot(&*AI);
987 :
988 : ST_DEBUG("Inserting Instructions:\n");
989 :
990 : // Add all of the basic blocks and instructions with no names.
991 476801 : for (auto &BB : *TheFunction) {
992 311849 : if (!BB.hasName())
993 22824 : CreateFunctionSlot(&BB);
994 :
995 2657737 : for (auto &I : BB) {
996 4691776 : if (!I.getType()->isVoidTy() && !I.hasName())
997 752618 : CreateFunctionSlot(&I);
998 :
999 : // We allow direct calls to any llvm.foo function here, because the
1000 : // target may not be linked into the optimizer.
1001 2345888 : if (auto CS = ImmutableCallSite(&I)) {
1002 : // Add all the call attributes to the table.
1003 177460 : AttributeSet Attrs = CS.getAttributes().getFnAttributes();
1004 177460 : if (Attrs.hasAttributes())
1005 56852 : CreateAttributeSetSlot(Attrs);
1006 : }
1007 : }
1008 : }
1009 :
1010 164952 : FunctionProcessed = true;
1011 :
1012 : ST_DEBUG("end processFunction!\n");
1013 164952 : }
1014 :
1015 : // Iterate through all the GUID in the index and create slots for them.
1016 69 : void SlotTracker::processIndex() {
1017 : ST_DEBUG("begin processIndex!\n");
1018 : assert(TheIndex);
1019 :
1020 : // The first block of slots are just the module ids, which start at 0 and are
1021 : // assigned consecutively. Since the StringMap iteration order isn't
1022 : // guaranteed, use a std::map to order by module ID before assigning slots.
1023 : std::map<uint64_t, StringRef> ModuleIdToPathMap;
1024 218 : for (auto &ModPath : TheIndex->modulePaths())
1025 80 : ModuleIdToPathMap[ModPath.second.first] = ModPath.first();
1026 149 : for (auto &ModPair : ModuleIdToPathMap)
1027 80 : CreateModulePathSlot(ModPair.second);
1028 :
1029 : // Start numbering the GUIDs after the module ids.
1030 69 : GUIDNext = ModulePathNext;
1031 :
1032 387 : for (auto &GlobalList : *TheIndex)
1033 318 : CreateGUIDSlot(GlobalList.first);
1034 :
1035 : // Start numbering the TypeIds after the GUIDs.
1036 69 : TypeIdNext = GUIDNext;
1037 :
1038 69 : for (auto TidIter = TheIndex->typeIds().begin();
1039 170 : TidIter != TheIndex->typeIds().end(); TidIter++)
1040 16 : CreateTypeIdSlot(TidIter->second.first);
1041 :
1042 : ST_DEBUG("end processIndex!\n");
1043 69 : }
1044 :
1045 305238 : void SlotTracker::processGlobalObjectMetadata(const GlobalObject &GO) {
1046 : SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1047 305238 : GO.getAllMetadata(MDs);
1048 312747 : for (auto &MD : MDs)
1049 7509 : CreateMetadataSlot(MD.second);
1050 305238 : }
1051 :
1052 217093 : void SlotTracker::processFunctionMetadata(const Function &F) {
1053 217093 : processGlobalObjectMetadata(F);
1054 583360 : for (auto &BB : F) {
1055 2839408 : for (auto &I : BB)
1056 2473141 : processInstructionMetadata(I);
1057 : }
1058 217093 : }
1059 :
1060 2473141 : void SlotTracker::processInstructionMetadata(const Instruction &I) {
1061 : // Process metadata used directly by intrinsics.
1062 : if (const CallInst *CI = dyn_cast<CallInst>(&I))
1063 : if (Function *F = CI->getCalledFunction())
1064 174415 : if (F->isIntrinsic())
1065 354829 : for (auto &Op : I.operands())
1066 : if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
1067 21542 : if (MDNode *N = dyn_cast<MDNode>(V->getMetadata()))
1068 14321 : CreateMetadataSlot(N);
1069 :
1070 : // Process metadata attached to this instruction.
1071 : SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1072 : I.getAllMetadata(MDs);
1073 2646806 : for (auto &MD : MDs)
1074 173665 : CreateMetadataSlot(MD.second);
1075 2473141 : }
1076 :
1077 : /// Clean up after incorporating a function. This is the only way to get out of
1078 : /// the function incorporation state that affects get*Slot/Create*Slot. Function
1079 : /// incorporation state is indicated by TheFunction != 0.
1080 209592 : void SlotTracker::purgeFunction() {
1081 : ST_DEBUG("begin purgeFunction!\n");
1082 209592 : fMap.clear(); // Simply discard the function level map
1083 209592 : TheFunction = nullptr;
1084 209592 : FunctionProcessed = false;
1085 : ST_DEBUG("end purgeFunction!\n");
1086 209592 : }
1087 :
1088 : /// getGlobalSlot - Get the slot number of a global value.
1089 29938 : int SlotTracker::getGlobalSlot(const GlobalValue *V) {
1090 : // Check for uninitialized state and do lazy initialization.
1091 29938 : initializeIfNeeded();
1092 :
1093 : // Find the value in the module map
1094 29938 : ValueMap::iterator MI = mMap.find(V);
1095 29938 : return MI == mMap.end() ? -1 : (int)MI->second;
1096 : }
1097 :
1098 : /// getMetadataSlot - Get the slot number of a MDNode.
1099 304148 : int SlotTracker::getMetadataSlot(const MDNode *N) {
1100 : // Check for uninitialized state and do lazy initialization.
1101 304148 : initializeIfNeeded();
1102 :
1103 : // Find the MDNode in the module map
1104 304148 : mdn_iterator MI = mdnMap.find(N);
1105 304148 : return MI == mdnMap.end() ? -1 : (int)MI->second;
1106 : }
1107 :
1108 : /// getLocalSlot - Get the slot number for a value that is local to a function.
1109 1481671 : int SlotTracker::getLocalSlot(const Value *V) {
1110 : assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
1111 :
1112 : // Check for uninitialized state and do lazy initialization.
1113 1481671 : initializeIfNeeded();
1114 :
1115 1481671 : ValueMap::iterator FI = fMap.find(V);
1116 1481671 : return FI == fMap.end() ? -1 : (int)FI->second;
1117 : }
1118 :
1119 203172 : int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
1120 : // Check for uninitialized state and do lazy initialization.
1121 203172 : initializeIfNeeded();
1122 :
1123 : // Find the AttributeSet in the module map.
1124 203172 : as_iterator AI = asMap.find(AS);
1125 203172 : return AI == asMap.end() ? -1 : (int)AI->second;
1126 : }
1127 :
1128 304 : int SlotTracker::getModulePathSlot(StringRef Path) {
1129 : // Check for uninitialized state and do lazy initialization.
1130 304 : initializeIndexIfNeeded();
1131 :
1132 : // Find the Module path in the map
1133 304 : auto I = ModulePathMap.find(Path);
1134 608 : return I == ModulePathMap.end() ? -1 : (int)I->second;
1135 : }
1136 :
1137 462 : int SlotTracker::getGUIDSlot(GlobalValue::GUID GUID) {
1138 : // Check for uninitialized state and do lazy initialization.
1139 462 : initializeIndexIfNeeded();
1140 :
1141 : // Find the GUID in the map
1142 462 : guid_iterator I = GUIDMap.find(GUID);
1143 462 : return I == GUIDMap.end() ? -1 : (int)I->second;
1144 : }
1145 :
1146 39 : int SlotTracker::getTypeIdSlot(StringRef Id) {
1147 : // Check for uninitialized state and do lazy initialization.
1148 39 : initializeIndexIfNeeded();
1149 :
1150 : // Find the TypeId string in the map
1151 39 : auto I = TypeIdMap.find(Id);
1152 78 : return I == TypeIdMap.end() ? -1 : (int)I->second;
1153 : }
1154 :
1155 : /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
1156 5995 : void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
1157 : assert(V && "Can't insert a null Value into SlotTracker!");
1158 : assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
1159 : assert(!V->hasName() && "Doesn't need a slot!");
1160 :
1161 5995 : unsigned DestSlot = mNext++;
1162 5995 : mMap[V] = DestSlot;
1163 :
1164 : ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1165 : DestSlot << " [");
1166 : // G = Global, F = Function, A = Alias, I = IFunc, o = other
1167 : ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
1168 : (isa<Function>(V) ? 'F' :
1169 : (isa<GlobalAlias>(V) ? 'A' :
1170 : (isa<GlobalIFunc>(V) ? 'I' : 'o')))) << "]\n");
1171 5995 : }
1172 :
1173 : /// CreateSlot - Create a new slot for the specified value if it has no name.
1174 860240 : void SlotTracker::CreateFunctionSlot(const Value *V) {
1175 : assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
1176 :
1177 860240 : unsigned DestSlot = fNext++;
1178 860240 : fMap[V] = DestSlot;
1179 :
1180 : // G = Global, F = Function, o = other
1181 : ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
1182 : DestSlot << " [o]\n");
1183 860240 : }
1184 :
1185 : /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
1186 393213 : void SlotTracker::CreateMetadataSlot(const MDNode *N) {
1187 : assert(N && "Can't insert a null Value into SlotTracker!");
1188 :
1189 : // Don't make slots for DIExpressions. We just print them inline everywhere.
1190 393213 : if (isa<DIExpression>(N))
1191 : return;
1192 :
1193 385430 : unsigned DestSlot = mdnNext;
1194 385430 : if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
1195 : return;
1196 136069 : ++mdnNext;
1197 :
1198 : // Recursively add any MDNodes referenced by operands.
1199 551164 : for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1200 : if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
1201 162093 : CreateMetadataSlot(Op);
1202 : }
1203 :
1204 300407 : void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
1205 : assert(AS.hasAttributes() && "Doesn't need a slot!");
1206 :
1207 300407 : as_iterator I = asMap.find(AS);
1208 300407 : if (I != asMap.end())
1209 259112 : return;
1210 :
1211 41295 : unsigned DestSlot = asNext++;
1212 41295 : asMap[AS] = DestSlot;
1213 : }
1214 :
1215 : /// Create a new slot for the specified Module
1216 80 : void SlotTracker::CreateModulePathSlot(StringRef Path) {
1217 80 : ModulePathMap[Path] = ModulePathNext++;
1218 80 : }
1219 :
1220 : /// Create a new slot for the specified GUID
1221 318 : void SlotTracker::CreateGUIDSlot(GlobalValue::GUID GUID) {
1222 318 : GUIDMap[GUID] = GUIDNext++;
1223 318 : }
1224 :
1225 : /// Create a new slot for the specified Id
1226 16 : void SlotTracker::CreateTypeIdSlot(StringRef Id) {
1227 16 : TypeIdMap[Id] = TypeIdNext++;
1228 16 : }
1229 :
1230 : //===----------------------------------------------------------------------===//
1231 : // AsmWriter Implementation
1232 : //===----------------------------------------------------------------------===//
1233 :
1234 : static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1235 : TypePrinting *TypePrinter,
1236 : SlotTracker *Machine,
1237 : const Module *Context);
1238 :
1239 : static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
1240 : TypePrinting *TypePrinter,
1241 : SlotTracker *Machine, const Module *Context,
1242 : bool FromValue = false);
1243 :
1244 2423834 : static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
1245 87482 : if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) {
1246 : // 'Fast' is an abbreviation for all fast-math-flags.
1247 : if (FPO->isFast())
1248 3194 : Out << " fast";
1249 : else {
1250 84288 : if (FPO->hasAllowReassoc())
1251 320 : Out << " reassoc";
1252 84288 : if (FPO->hasNoNaNs())
1253 295 : Out << " nnan";
1254 84288 : if (FPO->hasNoInfs())
1255 109 : Out << " ninf";
1256 84288 : if (FPO->hasNoSignedZeros())
1257 167 : Out << " nsz";
1258 84288 : if (FPO->hasAllowReciprocal())
1259 82 : Out << " arcp";
1260 84288 : if (FPO->hasAllowContract())
1261 50 : Out << " contract";
1262 84288 : if (FPO->hasApproxFunc())
1263 52 : Out << " afn";
1264 : }
1265 : }
1266 :
1267 101348 : if (const OverflowingBinaryOperator *OBO =
1268 : dyn_cast<OverflowingBinaryOperator>(U)) {
1269 101348 : if (OBO->hasNoUnsignedWrap())
1270 8020 : Out << " nuw";
1271 101348 : if (OBO->hasNoSignedWrap())
1272 66286 : Out << " nsw";
1273 12756 : } else if (const PossiblyExactOperator *Div =
1274 : dyn_cast<PossiblyExactOperator>(U)) {
1275 12756 : if (Div->isExact())
1276 855 : Out << " exact";
1277 : } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
1278 195492 : if (GEP->isInBounds())
1279 176420 : Out << " inbounds";
1280 : }
1281 2423834 : }
1282 :
1283 1309697 : static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
1284 : TypePrinting &TypePrinter,
1285 : SlotTracker *Machine,
1286 : const Module *Context) {
1287 : if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1288 1014722 : if (CI->getType()->isIntegerTy(1)) {
1289 40244 : Out << (CI->getZExtValue() ? "true" : "false");
1290 24548 : return;
1291 : }
1292 : Out << CI->getValue();
1293 990174 : return;
1294 : }
1295 :
1296 : if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1297 : const APFloat &APF = CFP->getValueAPF();
1298 18779 : if (&APF.getSemantics() == &APFloat::IEEEsingle() ||
1299 8203 : &APF.getSemantics() == &APFloat::IEEEdouble()) {
1300 : // We would like to output the FP constant value in exponential notation,
1301 : // but we cannot do this if doing so will lose precision. Check here to
1302 : // make sure that we only output it in exponential format if we can parse
1303 : // the value back and get the same value.
1304 : //
1305 : bool ignored;
1306 17620 : bool isDouble = &APF.getSemantics() == &APFloat::IEEEdouble();
1307 : bool isInf = APF.isInfinity();
1308 : bool isNaN = APF.isNaN();
1309 17620 : if (!isInf && !isNaN) {
1310 17075 : double Val = isDouble ? APF.convertToDouble() : APF.convertToFloat();
1311 : SmallString<128> StrVal;
1312 17075 : APF.toString(StrVal, 6, 0, false);
1313 : // Check to make sure that the stringized number is not some string like
1314 : // "Inf" or NaN, that atof will accept, but the lexer will not. Check
1315 : // that the string matches the "[-+]?[0-9]" regex.
1316 : //
1317 : assert(((StrVal[0] >= '0' && StrVal[0] <= '9') ||
1318 : ((StrVal[0] == '-' || StrVal[0] == '+') &&
1319 : (StrVal[1] >= '0' && StrVal[1] <= '9'))) &&
1320 : "[-+]?[0-9] regex does not match!");
1321 : // Reparse stringized version!
1322 34150 : if (APFloat(APFloat::IEEEdouble(), StrVal).convertToDouble() == Val) {
1323 : Out << StrVal;
1324 : return;
1325 : }
1326 : }
1327 : // Otherwise we could not reparse it to exactly the same value, so we must
1328 : // output the string in hexadecimal format! Note that loading and storing
1329 : // floating point types changes the bits of NaNs on some hosts, notably
1330 : // x86, so we must not use these types.
1331 : static_assert(sizeof(double) == sizeof(uint64_t),
1332 : "assuming that double is 64 bits!");
1333 : APFloat apf = APF;
1334 : // Floats are represented in ASCII IR as double, convert.
1335 1054 : if (!isDouble)
1336 650 : apf.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
1337 : &ignored);
1338 2108 : Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true);
1339 : return;
1340 : }
1341 :
1342 : // Either half, or some form of long double.
1343 : // These appear as a magic letter identifying the type, then a
1344 : // fixed number of hex digits.
1345 1159 : Out << "0x";
1346 1159 : APInt API = APF.bitcastToAPInt();
1347 1159 : if (&APF.getSemantics() == &APFloat::x87DoubleExtended()) {
1348 : Out << 'K';
1349 634 : Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4,
1350 317 : /*Upper=*/true);
1351 634 : Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1352 317 : /*Upper=*/true);
1353 317 : return;
1354 842 : } else if (&APF.getSemantics() == &APFloat::IEEEquad()) {
1355 : Out << 'L';
1356 432 : Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1357 216 : /*Upper=*/true);
1358 648 : Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1359 216 : /*Upper=*/true);
1360 626 : } else if (&APF.getSemantics() == &APFloat::PPCDoubleDouble()) {
1361 : Out << 'M';
1362 54 : Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
1363 27 : /*Upper=*/true);
1364 81 : Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
1365 27 : /*Upper=*/true);
1366 599 : } else if (&APF.getSemantics() == &APFloat::IEEEhalf()) {
1367 : Out << 'H';
1368 599 : Out << format_hex_no_prefix(API.getZExtValue(), 4,
1369 599 : /*Upper=*/true);
1370 : } else
1371 0 : llvm_unreachable("Unsupported floating point type");
1372 842 : return;
1373 : }
1374 :
1375 276196 : if (isa<ConstantAggregateZero>(CV)) {
1376 15432 : Out << "zeroinitializer";
1377 15432 : return;
1378 : }
1379 :
1380 : if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
1381 324 : Out << "blockaddress(";
1382 324 : WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
1383 : Context);
1384 324 : Out << ", ";
1385 324 : WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
1386 : Context);
1387 324 : Out << ")";
1388 324 : return;
1389 : }
1390 :
1391 : if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
1392 8151 : Type *ETy = CA->getType()->getElementType();
1393 : Out << '[';
1394 8151 : TypePrinter.print(ETy, Out);
1395 : Out << ' ';
1396 8151 : WriteAsOperandInternal(Out, CA->getOperand(0),
1397 : &TypePrinter, Machine,
1398 : Context);
1399 25851 : for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1400 17700 : Out << ", ";
1401 17700 : TypePrinter.print(ETy, Out);
1402 : Out << ' ';
1403 17700 : WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
1404 : Context);
1405 : }
1406 : Out << ']';
1407 8151 : return;
1408 : }
1409 :
1410 : if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
1411 : // As a special case, print the array as a string if it is an array of
1412 : // i8 with ConstantInt values.
1413 24453 : if (CA->isString()) {
1414 16813 : Out << "c\"";
1415 16813 : printEscapedString(CA->getAsString(), Out);
1416 : Out << '"';
1417 16813 : return;
1418 : }
1419 :
1420 7640 : Type *ETy = CA->getType()->getElementType();
1421 : Out << '[';
1422 7640 : TypePrinter.print(ETy, Out);
1423 : Out << ' ';
1424 7640 : WriteAsOperandInternal(Out, CA->getElementAsConstant(0),
1425 : &TypePrinter, Machine,
1426 : Context);
1427 19097 : for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
1428 11457 : Out << ", ";
1429 11457 : TypePrinter.print(ETy, Out);
1430 : Out << ' ';
1431 11457 : WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter,
1432 : Machine, Context);
1433 : }
1434 : Out << ']';
1435 7640 : return;
1436 : }
1437 :
1438 : if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1439 27372 : if (CS->getType()->isPacked())
1440 : Out << '<';
1441 : Out << '{';
1442 : unsigned N = CS->getNumOperands();
1443 27372 : if (N) {
1444 : Out << ' ';
1445 27372 : TypePrinter.print(CS->getOperand(0)->getType(), Out);
1446 : Out << ' ';
1447 :
1448 27372 : WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
1449 : Context);
1450 :
1451 112359 : for (unsigned i = 1; i < N; i++) {
1452 84987 : Out << ", ";
1453 84987 : TypePrinter.print(CS->getOperand(i)->getType(), Out);
1454 : Out << ' ';
1455 :
1456 84987 : WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
1457 : Context);
1458 : }
1459 : Out << ' ';
1460 : }
1461 :
1462 : Out << '}';
1463 27372 : if (CS->getType()->isPacked())
1464 : Out << '>';
1465 27372 : return;
1466 : }
1467 :
1468 200464 : if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
1469 22595 : Type *ETy = CV->getType()->getVectorElementType();
1470 : Out << '<';
1471 22595 : TypePrinter.print(ETy, Out);
1472 : Out << ' ';
1473 22595 : WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter,
1474 : Machine, Context);
1475 202490 : for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){
1476 179895 : Out << ", ";
1477 179895 : TypePrinter.print(ETy, Out);
1478 : Out << ' ';
1479 179895 : WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter,
1480 : Machine, Context);
1481 : }
1482 : Out << '>';
1483 22595 : return;
1484 : }
1485 :
1486 177869 : if (isa<ConstantPointerNull>(CV)) {
1487 23378 : Out << "null";
1488 23378 : return;
1489 : }
1490 :
1491 154491 : if (isa<ConstantTokenNone>(CV)) {
1492 620 : Out << "none";
1493 620 : return;
1494 : }
1495 :
1496 153871 : if (isa<UndefValue>(CV)) {
1497 45034 : Out << "undef";
1498 45034 : return;
1499 : }
1500 :
1501 : if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1502 108837 : Out << CE->getOpcodeName();
1503 108837 : WriteOptimizationInfo(Out, CE);
1504 108837 : if (CE->isCompare())
1505 : Out << ' ' << CmpInst::getPredicateName(
1506 236 : static_cast<CmpInst::Predicate>(CE->getPredicate()));
1507 108837 : Out << " (";
1508 :
1509 : Optional<unsigned> InRangeOp;
1510 : if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
1511 49625 : TypePrinter.print(GEP->getSourceElementType(), Out);
1512 49625 : Out << ", ";
1513 : InRangeOp = GEP->getInRangeIndex();
1514 49625 : if (InRangeOp)
1515 1371 : ++*InRangeOp;
1516 : }
1517 :
1518 320514 : for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1519 211677 : if (InRangeOp && unsigned(OI - CE->op_begin()) == *InRangeOp)
1520 1371 : Out << "inrange ";
1521 211677 : TypePrinter.print((*OI)->getType(), Out);
1522 : Out << ' ';
1523 211677 : WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
1524 211677 : if (OI+1 != CE->op_end())
1525 102840 : Out << ", ";
1526 : }
1527 :
1528 108837 : if (CE->hasIndices()) {
1529 3 : ArrayRef<unsigned> Indices = CE->getIndices();
1530 6 : for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1531 3 : Out << ", " << Indices[i];
1532 : }
1533 :
1534 108837 : if (CE->isCast()) {
1535 55845 : Out << " to ";
1536 55845 : TypePrinter.print(CE->getType(), Out);
1537 : }
1538 :
1539 : Out << ')';
1540 : return;
1541 : }
1542 :
1543 0 : Out << "<placeholder or erroneous Constant>";
1544 : }
1545 :
1546 65034 : static void writeMDTuple(raw_ostream &Out, const MDTuple *Node,
1547 : TypePrinting *TypePrinter, SlotTracker *Machine,
1548 : const Module *Context) {
1549 65034 : Out << "!{";
1550 236839 : for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1551 171805 : const Metadata *MD = Node->getOperand(mi);
1552 171805 : if (!MD)
1553 1100 : Out << "null";
1554 : else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
1555 77491 : Value *V = MDV->getValue();
1556 77491 : TypePrinter->print(V->getType(), Out);
1557 : Out << ' ';
1558 77491 : WriteAsOperandInternal(Out, V, TypePrinter, Machine, Context);
1559 : } else {
1560 93214 : WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1561 : }
1562 171805 : if (mi + 1 != me)
1563 108844 : Out << ", ";
1564 : }
1565 :
1566 65034 : Out << "}";
1567 65034 : }
1568 :
1569 : namespace {
1570 :
1571 : struct FieldSeparator {
1572 : bool Skip = true;
1573 : const char *Sep;
1574 :
1575 34904 : FieldSeparator(const char *Sep = ", ") : Sep(Sep) {}
1576 : };
1577 :
1578 0 : raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
1579 20 : if (FS.Skip) {
1580 37850 : FS.Skip = false;
1581 0 : return OS;
1582 : }
1583 133765 : return OS << FS.Sep;
1584 : }
1585 :
1586 : struct MDFieldPrinter {
1587 : raw_ostream &Out;
1588 : FieldSeparator FS;
1589 : TypePrinting *TypePrinter = nullptr;
1590 : SlotTracker *Machine = nullptr;
1591 : const Module *Context = nullptr;
1592 :
1593 0 : explicit MDFieldPrinter(raw_ostream &Out) : Out(Out) {}
1594 : MDFieldPrinter(raw_ostream &Out, TypePrinting *TypePrinter,
1595 : SlotTracker *Machine, const Module *Context)
1596 12527 : : Out(Out), TypePrinter(TypePrinter), Machine(Machine), Context(Context) {
1597 : }
1598 :
1599 : void printTag(const DINode *N);
1600 : void printMacinfoType(const DIMacroNode *N);
1601 : void printChecksum(const DIFile::ChecksumInfo<StringRef> &N);
1602 : void printString(StringRef Name, StringRef Value,
1603 : bool ShouldSkipEmpty = true);
1604 : void printMetadata(StringRef Name, const Metadata *MD,
1605 : bool ShouldSkipNull = true);
1606 : template <class IntTy>
1607 : void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true);
1608 : void printBool(StringRef Name, bool Value, Optional<bool> Default = None);
1609 : void printDIFlags(StringRef Name, DINode::DIFlags Flags);
1610 : template <class IntTy, class Stringifier>
1611 : void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString,
1612 : bool ShouldSkipZero = true);
1613 : void printEmissionKind(StringRef Name, DICompileUnit::DebugEmissionKind EK);
1614 : void printNameTableKind(StringRef Name,
1615 : DICompileUnit::DebugNameTableKind NTK);
1616 : };
1617 :
1618 : } // end anonymous namespace
1619 :
1620 5412 : void MDFieldPrinter::printTag(const DINode *N) {
1621 10824 : Out << FS << "tag: ";
1622 10824 : auto Tag = dwarf::TagString(N->getTag());
1623 5412 : if (!Tag.empty())
1624 5407 : Out << Tag;
1625 : else
1626 5 : Out << N->getTag();
1627 5412 : }
1628 :
1629 1427 : void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) {
1630 2854 : Out << FS << "type: ";
1631 2854 : auto Type = dwarf::MacinfoString(N->getMacinfoType());
1632 1427 : if (!Type.empty())
1633 1427 : Out << Type;
1634 : else
1635 0 : Out << N->getMacinfoType();
1636 1427 : }
1637 :
1638 74 : void MDFieldPrinter::printChecksum(
1639 : const DIFile::ChecksumInfo<StringRef> &Checksum) {
1640 148 : Out << FS << "checksumkind: " << Checksum.getKindAsString();
1641 74 : printString("checksum", Checksum.Value, /* ShouldSkipEmpty */ false);
1642 74 : }
1643 :
1644 35814 : void MDFieldPrinter::printString(StringRef Name, StringRef Value,
1645 : bool ShouldSkipEmpty) {
1646 35814 : if (ShouldSkipEmpty && Value.empty())
1647 : return;
1648 :
1649 48982 : Out << FS << Name << ": \"";
1650 24491 : printEscapedString(Value, Out);
1651 24491 : Out << "\"";
1652 : }
1653 :
1654 67823 : static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD,
1655 : TypePrinting *TypePrinter,
1656 : SlotTracker *Machine,
1657 : const Module *Context) {
1658 67823 : if (!MD) {
1659 569 : Out << "null";
1660 569 : return;
1661 : }
1662 67254 : WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1663 : }
1664 :
1665 121214 : void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD,
1666 : bool ShouldSkipNull) {
1667 121214 : if (ShouldSkipNull && !MD)
1668 : return;
1669 :
1670 135616 : Out << FS << Name << ": ";
1671 67808 : writeMetadataAsOperand(Out, MD, TypePrinter, Machine, Context);
1672 : }
1673 :
1674 : template <class IntTy>
1675 83932 : void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) {
1676 83932 : if (ShouldSkipZero && !Int)
1677 : return;
1678 :
1679 85246 : Out << FS << Name << ": " << Int;
1680 : }
1681 4239 :
1682 4239 : void MDFieldPrinter::printBool(StringRef Name, bool Value,
1683 : Optional<bool> Default) {
1684 : if (Default && Value == *Default)
1685 20 : return;
1686 : Out << FS << Name << ": " << (Value ? "true" : "false");
1687 12952 : }
1688 12952 :
1689 : void MDFieldPrinter::printDIFlags(StringRef Name, DINode::DIFlags Flags) {
1690 : if (!Flags)
1691 11506 : return;
1692 :
1693 607 : Out << FS << Name << ": ";
1694 607 :
1695 : SmallVector<DINode::DIFlags, 8> SplitFlags;
1696 : auto Extra = DINode::splitFlags(Flags, SplitFlags);
1697 698 :
1698 : FieldSeparator FlagsFS(" | ");
1699 66134 : for (auto F : SplitFlags) {
1700 66134 : auto StringF = DINode::getFlagString(F);
1701 : assert(!StringF.empty() && "Expected valid flag");
1702 : Out << FlagsFS << StringF;
1703 73022 : }
1704 : if (Extra || SplitFlags.empty())
1705 : Out << FlagsFS << Extra;
1706 29778 : }
1707 :
1708 29778 : void MDFieldPrinter::printEmissionKind(StringRef Name,
1709 : DICompileUnit::DebugEmissionKind EK) {
1710 39889 : Out << FS << Name << ": " << DICompileUnit::emissionKindString(EK);
1711 : }
1712 :
1713 17920 : void MDFieldPrinter::printNameTableKind(StringRef Name,
1714 17920 : DICompileUnit::DebugNameTableKind NTK) {
1715 10385 : if (NTK == DICompileUnit::DebugNameTableKind::Default)
1716 : return;
1717 15070 : Out << FS << Name << ": " << DICompileUnit::nameTableKindString(NTK);
1718 : }
1719 :
1720 7535 : template <class IntTy, class Stringifier>
1721 : void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value,
1722 : Stringifier toString, bool ShouldSkipZero) {
1723 17308 : if (!Value)
1724 9773 : return;
1725 :
1726 12011 : Out << FS << Name << ": ";
1727 : auto S = toString(Value);
1728 7535 : if (!S.empty())
1729 0 : Out << S;
1730 : else
1731 : Out << Value;
1732 1178 : }
1733 :
1734 2356 : static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N,
1735 1178 : TypePrinting *TypePrinter, SlotTracker *Machine,
1736 : const Module *Context) {
1737 1178 : Out << "!GenericDINode(";
1738 : MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1739 1178 : Printer.printTag(N);
1740 : Printer.printString("header", N->getHeader());
1741 940 : if (N->getNumDwarfOperands()) {
1742 : Out << Printer.FS << "operands: {";
1743 : FieldSeparator IFS;
1744 : for (auto &I : N->dwarf_operands()) {
1745 10312 : Out << IFS;
1746 : writeMetadataAsOperand(Out, I, TypePrinter, Machine, Context);
1747 10312 : }
1748 7686 : Out << "}";
1749 : }
1750 5252 : Out << ")";
1751 2626 : }
1752 2626 :
1753 2626 : static void writeDILocation(raw_ostream &Out, const DILocation *DL,
1754 : TypePrinting *TypePrinter, SlotTracker *Machine,
1755 0 : const Module *Context) {
1756 : Out << "!DILocation(";
1757 2068 : MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1758 : // Always output the line, since 0 is a relevant and important value for it.
1759 2068 : Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false);
1760 1966 : Printer.printInt("column", DL->getColumn());
1761 : Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false);
1762 204 : Printer.printMetadata("inlinedAt", DL->getRawInlinedAt());
1763 102 : Printer.printBool("isImplicitCode", DL->isImplicitCode(),
1764 102 : /* Default */ false);
1765 102 : Out << ")";
1766 : }
1767 0 :
1768 : static void writeDISubrange(raw_ostream &Out, const DISubrange *N,
1769 8244 : TypePrinting *TypePrinter, SlotTracker *Machine,
1770 : const Module *Context) {
1771 8244 : Out << "!DISubrange(";
1772 5720 : MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1773 : if (auto *CE = N->getCount().dyn_cast<ConstantInt*>())
1774 5048 : Printer.printInt("count", CE->getSExtValue(), /* ShouldSkipZero */ false);
1775 2524 : else
1776 2524 : Printer.printMetadata("count", N->getCount().dyn_cast<DIVariable*>(),
1777 2524 : /*ShouldSkipNull */ false);
1778 : Printer.printInt("lowerBound", N->getLowerBound());
1779 0 : Out << ")";
1780 : }
1781 :
1782 20 : static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N,
1783 : TypePrinting *, SlotTracker *, const Module *) {
1784 : Out << "!DIEnumerator(";
1785 20 : MDFieldPrinter Printer(Out);
1786 : Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false);
1787 20 : if (N->isUnsigned()) {
1788 20 : auto Value = static_cast<uint64_t>(N->getValue());
1789 20 : Printer.printInt("value", Value, /* ShouldSkipZero */ false);
1790 5 : Printer.printBool("isUnsigned", true);
1791 : } else {
1792 20 : Printer.printInt("value", N->getValue(), /* ShouldSkipZero */ false);
1793 : }
1794 15 : Out << ")";
1795 : }
1796 5 :
1797 : static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N,
1798 20 : TypePrinting *, SlotTracker *, const Module *) {
1799 20 : Out << "!DIBasicType(";
1800 : MDFieldPrinter Printer(Out);
1801 12003 : if (N->getTag() != dwarf::DW_TAG_base_type)
1802 : Printer.printTag(N);
1803 : Printer.printString("name", N->getName());
1804 12003 : Printer.printInt("size", N->getSizeInBits());
1805 : Printer.printInt("align", N->getAlignInBits());
1806 : Printer.printDwarfEnum("encoding", N->getEncoding(),
1807 24006 : dwarf::AttributeEncodingString);
1808 24006 : Printer.printDIFlags("flags", N->getFlags());
1809 12003 : Out << ")";
1810 12003 : }
1811 24006 :
1812 : static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N,
1813 12003 : TypePrinting *TypePrinter, SlotTracker *Machine,
1814 12003 : const Module *Context) {
1815 : Out << "!DIDerivedType(";
1816 285 : MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1817 : Printer.printTag(N);
1818 : Printer.printString("name", N->getName());
1819 285 : Printer.printMetadata("scope", N->getRawScope());
1820 : Printer.printMetadata("file", N->getRawFile());
1821 266 : Printer.printInt("line", N->getLine());
1822 265 : Printer.printMetadata("baseType", N->getRawBaseType(),
1823 : /* ShouldSkipNull */ false);
1824 20 : Printer.printInt("size", N->getSizeInBits());
1825 : Printer.printInt("align", N->getAlignInBits());
1826 570 : Printer.printInt("offset", N->getOffsetInBits());
1827 285 : Printer.printDIFlags("flags", N->getFlags());
1828 285 : Printer.printMetadata("extraData", N->getRawExtraData());
1829 : if (const auto &DWARFAddressSpace = N->getDWARFAddressSpace())
1830 0 : Printer.printInt("dwarfAddressSpace", *DWARFAddressSpace,
1831 : /* ShouldSkipZero */ false);
1832 0 : Out << ")";
1833 : }
1834 0 :
1835 0 : static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N,
1836 0 : TypePrinting *TypePrinter,
1837 0 : SlotTracker *Machine, const Module *Context) {
1838 0 : Out << "!DICompositeType(";
1839 : MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1840 0 : Printer.printTag(N);
1841 : Printer.printString("name", N->getName());
1842 0 : Printer.printMetadata("scope", N->getRawScope());
1843 0 : Printer.printMetadata("file", N->getRawFile());
1844 : Printer.printInt("line", N->getLine());
1845 0 : Printer.printMetadata("baseType", N->getRawBaseType());
1846 : Printer.printInt("size", N->getSizeInBits());
1847 0 : Printer.printInt("align", N->getAlignInBits());
1848 : Printer.printInt("offset", N->getOffsetInBits());
1849 0 : Printer.printDIFlags("flags", N->getFlags());
1850 0 : Printer.printMetadata("elements", N->getRawElements());
1851 0 : Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(),
1852 0 : dwarf::LanguageString);
1853 0 : Printer.printMetadata("vtableHolder", N->getRawVTableHolder());
1854 0 : Printer.printMetadata("templateParams", N->getRawTemplateParams());
1855 : Printer.printString("identifier", N->getIdentifier());
1856 0 : Printer.printMetadata("discriminator", N->getRawDiscriminator());
1857 0 : Out << ")";
1858 0 : }
1859 :
1860 3621 : static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N,
1861 : TypePrinting *TypePrinter,
1862 : SlotTracker *Machine, const Module *Context) {
1863 3621 : Out << "!DISubroutineType(";
1864 : MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1865 3621 : Printer.printDIFlags("flags", N->getFlags());
1866 3621 : Printer.printDwarfEnum("cc", N->getCC(), dwarf::ConventionString);
1867 3621 : Printer.printMetadata("types", N->getRawTypeArray(),
1868 3621 : /* ShouldSkipNull */ false);
1869 7242 : Out << ")";
1870 3621 : }
1871 :
1872 7242 : static void writeDIFile(raw_ostream &Out, const DIFile *N, TypePrinting *,
1873 7242 : SlotTracker *, const Module *) {
1874 7242 : Out << "!DIFile(";
1875 7242 : MDFieldPrinter Printer(Out);
1876 3621 : Printer.printString("filename", N->getFilename(),
1877 3621 : /* ShouldSkipEmpty */ false);
1878 27 : Printer.printString("directory", N->getDirectory(),
1879 : /* ShouldSkipEmpty */ false);
1880 3621 : // Print all values for checksum together, or not at all.
1881 3621 : if (N->getChecksum())
1882 : Printer.printChecksum(*N->getChecksum());
1883 1674 : Printer.printString("source", N->getSource().getValueOr(StringRef()),
1884 : /* ShouldSkipEmpty */ true);
1885 : Out << ")";
1886 1674 : }
1887 :
1888 1674 : static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N,
1889 1674 : TypePrinting *TypePrinter, SlotTracker *Machine,
1890 1674 : const Module *Context) {
1891 1674 : Out << "!DICompileUnit(";
1892 3348 : MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1893 1674 : Printer.printDwarfEnum("language", N->getSourceLanguage(),
1894 3348 : dwarf::LanguageString, /* ShouldSkipZero */ false);
1895 3348 : Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
1896 3348 : Printer.printString("producer", N->getProducer());
1897 3348 : Printer.printBool("isOptimized", N->isOptimized());
1898 1674 : Printer.printString("flags", N->getFlags());
1899 3348 : Printer.printInt("runtimeVersion", N->getRuntimeVersion(),
1900 : /* ShouldSkipZero */ false);
1901 1674 : Printer.printString("splitDebugFilename", N->getSplitDebugFilename());
1902 1674 : Printer.printEmissionKind("emissionKind", N->getEmissionKind());
1903 1674 : Printer.printMetadata("enums", N->getRawEnumTypes());
1904 1674 : Printer.printMetadata("retainedTypes", N->getRawRetainedTypes());
1905 1674 : Printer.printMetadata("globals", N->getRawGlobalVariables());
1906 1674 : Printer.printMetadata("imports", N->getRawImportedEntities());
1907 : Printer.printMetadata("macros", N->getRawMacros());
1908 2068 : Printer.printInt("dwoId", N->getDWOId());
1909 : Printer.printBool("splitDebugInlining", N->getSplitDebugInlining(), true);
1910 : Printer.printBool("debugInfoForProfiling", N->getDebugInfoForProfiling(),
1911 2068 : false);
1912 : Printer.printNameTableKind("nameTableKind", N->getNameTableKind());
1913 4136 : Out << ")";
1914 4136 : }
1915 2068 :
1916 : static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N,
1917 2068 : TypePrinting *TypePrinter, SlotTracker *Machine,
1918 2068 : const Module *Context) {
1919 : Out << "!DISubprogram(";
1920 0 : MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1921 : Printer.printString("name", N->getName());
1922 0 : Printer.printString("linkageName", N->getLinkageName());
1923 : Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1924 0 : Printer.printMetadata("file", N->getRawFile());
1925 : Printer.printInt("line", N->getLine());
1926 0 : Printer.printMetadata("type", N->getRawType());
1927 : Printer.printBool("isLocal", N->isLocalToUnit());
1928 : Printer.printBool("isDefinition", N->isDefinition());
1929 0 : Printer.printInt("scopeLine", N->getScopeLine());
1930 0 : Printer.printMetadata("containingType", N->getRawContainingType());
1931 0 : Printer.printDwarfEnum("virtuality", N->getVirtuality(),
1932 : dwarf::VirtualityString);
1933 0 : if (N->getVirtuality() != dwarf::DW_VIRTUALITY_none ||
1934 0 : N->getVirtualIndex() != 0)
1935 : Printer.printInt("virtualIndex", N->getVirtualIndex(), false);
1936 1178 : Printer.printInt("thisAdjustment", N->getThisAdjustment());
1937 : Printer.printDIFlags("flags", N->getFlags());
1938 : Printer.printBool("isOptimized", N->isOptimized());
1939 1178 : Printer.printMetadata("unit", N->getRawUnit());
1940 : Printer.printMetadata("templateParams", N->getRawTemplateParams());
1941 2356 : Printer.printMetadata("declaration", N->getRawDeclaration());
1942 : Printer.printMetadata("retainedNodes", N->getRawRetainedNodes());
1943 1178 : Printer.printMetadata("thrownTypes", N->getRawThrownTypes());
1944 1178 : Out << ")";
1945 2356 : }
1946 1178 :
1947 2356 : static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N,
1948 : TypePrinting *TypePrinter, SlotTracker *Machine,
1949 1178 : const Module *Context) {
1950 2356 : Out << "!DILexicalBlock(";
1951 1178 : MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1952 1178 : Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1953 1178 : Printer.printMetadata("file", N->getRawFile());
1954 1178 : Printer.printInt("line", N->getLine());
1955 1178 : Printer.printInt("column", N->getColumn());
1956 2356 : Out << ")";
1957 2356 : }
1958 2356 :
1959 : static void writeDILexicalBlockFile(raw_ostream &Out,
1960 2356 : const DILexicalBlockFile *N,
1961 1178 : TypePrinting *TypePrinter,
1962 1178 : SlotTracker *Machine,
1963 : const Module *Context) {
1964 4239 : Out << "!DILexicalBlockFile(";
1965 : MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1966 : Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1967 4239 : Printer.printMetadata("file", N->getRawFile());
1968 : Printer.printInt("discriminator", N->getDiscriminator(),
1969 4239 : /* ShouldSkipZero */ false);
1970 4239 : Out << ")";
1971 4239 : }
1972 4239 :
1973 8478 : static void writeDINamespace(raw_ostream &Out, const DINamespace *N,
1974 4239 : TypePrinting *TypePrinter, SlotTracker *Machine,
1975 8478 : const Module *Context) {
1976 8478 : Out << "!DINamespace(";
1977 8478 : MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1978 4239 : Printer.printString("name", N->getName());
1979 4239 : Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1980 : Printer.printBool("exportSymbols", N->getExportSymbols(), false);
1981 4239 : Out << ")";
1982 4144 : }
1983 524 :
1984 8478 : static void writeDIMacro(raw_ostream &Out, const DIMacro *N,
1985 8478 : TypePrinting *TypePrinter, SlotTracker *Machine,
1986 8478 : const Module *Context) {
1987 4239 : Out << "!DIMacro(";
1988 4239 : MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1989 4239 : Printer.printMacinfoType(N);
1990 4239 : Printer.printInt("line", N->getLine());
1991 4239 : Printer.printString("name", N->getName());
1992 4239 : Printer.printString("value", N->getValue());
1993 4239 : Out << ")";
1994 : }
1995 840 :
1996 : static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N,
1997 : TypePrinting *TypePrinter, SlotTracker *Machine,
1998 840 : const Module *Context) {
1999 : Out << "!DIMacroFile(";
2000 840 : MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2001 840 : Printer.printInt("line", N->getLine());
2002 1680 : Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
2003 1680 : Printer.printMetadata("nodes", N->getRawElements());
2004 840 : Out << ")";
2005 840 : }
2006 :
2007 256 : static void writeDIModule(raw_ostream &Out, const DIModule *N,
2008 : TypePrinting *TypePrinter, SlotTracker *Machine,
2009 : const Module *Context) {
2010 : Out << "!DIModule(";
2011 : MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2012 256 : Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2013 : Printer.printString("name", N->getName());
2014 256 : Printer.printString("configMacros", N->getConfigurationMacros());
2015 256 : Printer.printString("includePath", N->getIncludePath());
2016 512 : Printer.printString("isysroot", N->getISysRoot());
2017 : Out << ")";
2018 256 : }
2019 256 :
2020 :
2021 143 : static void writeDITemplateTypeParameter(raw_ostream &Out,
2022 : const DITemplateTypeParameter *N,
2023 : TypePrinting *TypePrinter,
2024 143 : SlotTracker *Machine,
2025 : const Module *Context) {
2026 143 : Out << "!DITemplateTypeParameter(";
2027 143 : MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2028 286 : Printer.printString("name", N->getName());
2029 143 : Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false);
2030 143 : Out << ")";
2031 : }
2032 1427 :
2033 : static void writeDITemplateValueParameter(raw_ostream &Out,
2034 : const DITemplateValueParameter *N,
2035 1427 : TypePrinting *TypePrinter,
2036 : SlotTracker *Machine,
2037 1427 : const Module *Context) {
2038 2854 : Out << "!DITemplateValueParameter(";
2039 1427 : MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2040 1427 : if (N->getTag() != dwarf::DW_TAG_template_value_parameter)
2041 1427 : Printer.printTag(N);
2042 1427 : Printer.printString("name", N->getName());
2043 : Printer.printMetadata("type", N->getRawType());
2044 39 : Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false);
2045 : Out << ")";
2046 : }
2047 39 :
2048 : static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N,
2049 78 : TypePrinting *TypePrinter,
2050 39 : SlotTracker *Machine, const Module *Context) {
2051 39 : Out << "!DIGlobalVariable(";
2052 39 : MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2053 39 : Printer.printString("name", N->getName());
2054 : Printer.printString("linkageName", N->getLinkageName());
2055 39 : Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2056 : Printer.printMetadata("file", N->getRawFile());
2057 : Printer.printInt("line", N->getLine());
2058 39 : Printer.printMetadata("type", N->getRawType());
2059 : Printer.printBool("isLocal", N->isLocalToUnit());
2060 39 : Printer.printBool("isDefinition", N->isDefinition());
2061 39 : Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration());
2062 39 : Printer.printMetadata("templateParams", N->getRawTemplateParams());
2063 39 : Printer.printInt("align", N->getAlignInBits());
2064 39 : Out << ")";
2065 39 : }
2066 39 :
2067 : static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N,
2068 : TypePrinting *TypePrinter,
2069 163 : SlotTracker *Machine, const Module *Context) {
2070 : Out << "!DILocalVariable(";
2071 : MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2072 : Printer.printString("name", N->getName());
2073 : Printer.printInt("arg", N->getArg());
2074 163 : Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2075 : Printer.printMetadata("file", N->getRawFile());
2076 163 : Printer.printInt("line", N->getLine());
2077 163 : Printer.printMetadata("type", N->getRawType());
2078 163 : Printer.printDIFlags("flags", N->getFlags());
2079 163 : Printer.printInt("align", N->getAlignInBits());
2080 : Out << ")";
2081 271 : }
2082 :
2083 : static void writeDILabel(raw_ostream &Out, const DILabel *N,
2084 : TypePrinting *TypePrinter,
2085 : SlotTracker *Machine, const Module *Context) {
2086 271 : Out << "!DILabel(";
2087 : MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2088 271 : Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2089 13 : Printer.printString("name", N->getName());
2090 271 : Printer.printMetadata("file", N->getRawFile());
2091 271 : Printer.printInt("line", N->getLine());
2092 271 : Out << ")";
2093 271 : }
2094 271 :
2095 : static void writeDIExpression(raw_ostream &Out, const DIExpression *N,
2096 675 : TypePrinting *TypePrinter, SlotTracker *Machine,
2097 : const Module *Context) {
2098 : Out << "!DIExpression(";
2099 675 : FieldSeparator FS;
2100 : if (N->isValid()) {
2101 675 : for (auto I = N->expr_op_begin(), E = N->expr_op_end(); I != E; ++I) {
2102 675 : auto OpStr = dwarf::OperationEncodingString(I->getOp());
2103 675 : assert(!OpStr.empty() && "Expected valid opcode");
2104 675 :
2105 1350 : Out << FS << OpStr;
2106 675 : for (unsigned A = 0, AE = I->getNumArgs(); A != AE; ++A)
2107 1350 : Out << FS << I->getArg(A);
2108 1350 : }
2109 675 : } else {
2110 675 : for (const auto &I : N->getElements())
2111 1350 : Out << FS << I;
2112 675 : }
2113 675 : Out << ")";
2114 : }
2115 5165 :
2116 : static void writeDIGlobalVariableExpression(raw_ostream &Out,
2117 : const DIGlobalVariableExpression *N,
2118 5165 : TypePrinting *TypePrinter,
2119 : SlotTracker *Machine,
2120 5165 : const Module *Context) {
2121 5165 : Out << "!DIGlobalVariableExpression(";
2122 5165 : MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2123 5165 : Printer.printMetadata("var", N->getVariable());
2124 10330 : Printer.printMetadata("expr", N->getExpression());
2125 5165 : Out << ")";
2126 10330 : }
2127 10330 :
2128 5165 : static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N,
2129 5165 : TypePrinting *TypePrinter, SlotTracker *Machine,
2130 : const Module *Context) {
2131 13 : Out << "!DIObjCProperty(";
2132 : MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2133 : Printer.printString("name", N->getName());
2134 13 : Printer.printMetadata("file", N->getRawFile());
2135 : Printer.printInt("line", N->getLine());
2136 13 : Printer.printString("setter", N->getSetterName());
2137 13 : Printer.printString("getter", N->getGetterName());
2138 13 : Printer.printInt("attributes", N->getAttributes());
2139 26 : Printer.printMetadata("type", N->getRawType());
2140 13 : Out << ")";
2141 13 : }
2142 :
2143 0 : static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N,
2144 : TypePrinting *TypePrinter,
2145 : SlotTracker *Machine, const Module *Context) {
2146 0 : Out << "!DIImportedEntity(";
2147 : MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
2148 0 : Printer.printTag(N);
2149 0 : Printer.printString("name", N->getName());
2150 0 : Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
2151 : Printer.printMetadata("entity", N->getRawEntity());
2152 : Printer.printMetadata("file", N->getRawFile());
2153 0 : Printer.printInt("line", N->getLine());
2154 0 : Out << ")";
2155 0 : }
2156 :
2157 : static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
2158 0 : TypePrinting *TypePrinter,
2159 0 : SlotTracker *Machine,
2160 : const Module *Context) {
2161 0 : if (Node->isDistinct())
2162 0 : Out << "distinct ";
2163 : else if (Node->isTemporary())
2164 657 : Out << "<temporary!> "; // Handle broken code.
2165 :
2166 : switch (Node->getMetadataID()) {
2167 : default:
2168 : llvm_unreachable("Expected uniquable MDNode");
2169 657 : #define HANDLE_MDNODE_LEAF(CLASS) \
2170 : case Metadata::CLASS##Kind: \
2171 657 : write##CLASS(Out, cast<CLASS>(Node), TypePrinter, Machine, Context); \
2172 657 : break;
2173 657 : #include "llvm/IR/Metadata.def"
2174 657 : }
2175 : }
2176 52 :
2177 : // Full implementation of printing a Value as an operand with support for
2178 : // TypePrinting, etc.
2179 52 : static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
2180 : TypePrinting *TypePrinter,
2181 52 : SlotTracker *Machine,
2182 52 : const Module *Context) {
2183 104 : if (V->hasName()) {
2184 52 : PrintLLVMName(Out, V);
2185 52 : return;
2186 104 : }
2187 52 :
2188 52 : const Constant *CV = dyn_cast<Constant>(V);
2189 52 : if (CV && !isa<GlobalValue>(CV)) {
2190 : assert(TypePrinter && "Constants require TypePrinting!");
2191 76 : WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
2192 : return;
2193 : }
2194 76 :
2195 : if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
2196 76 : Out << "asm ";
2197 76 : if (IA->hasSideEffects())
2198 76 : Out << "sideeffect ";
2199 76 : if (IA->isAlignStack())
2200 76 : Out << "alignstack ";
2201 152 : // We don't emit the AD_ATT dialect as it's the assumed default.
2202 76 : if (IA->getDialect() == InlineAsm::AD_Intel)
2203 76 : Out << "inteldialect ";
2204 : Out << '"';
2205 102896 : printEscapedString(IA->getAsmString(), Out);
2206 : Out << "\", \"";
2207 : printEscapedString(IA->getConstraintString(), Out);
2208 : Out << '"';
2209 102896 : return;
2210 19912 : }
2211 82984 :
2212 1 : if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
2213 : WriteAsOperandInternal(Out, MD->getMetadata(), TypePrinter, Machine,
2214 205792 : Context, /* FromValue */ true);
2215 0 : return;
2216 0 : }
2217 :
2218 : char Prefix = '%';
2219 : int Slot;
2220 : // If we have a SlotTracker, use it.
2221 : if (Machine) {
2222 : if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2223 102896 : Slot = Machine->getGlobalSlot(GV);
2224 : Prefix = '@';
2225 : } else {
2226 : Slot = Machine->getLocalSlot(V);
2227 5112794 :
2228 : // If the local value didn't succeed, then we may be referring to a value
2229 : // from a different function. Translate it, as this can happen when using
2230 : // address of blocks.
2231 5112794 : if (Slot == -1)
2232 2984738 : if ((Machine = createSlotTracker(V))) {
2233 2984738 : Slot = Machine->getLocalSlot(V);
2234 : delete Machine;
2235 : }
2236 : }
2237 : } else if ((Machine = createSlotTracker(V))) {
2238 : // Otherwise, create one to get the # and then destroy it.
2239 1309596 : if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2240 1309596 : Slot = Machine->getGlobalSlot(GV);
2241 : Prefix = '@';
2242 : } else {
2243 : Slot = Machine->getLocalSlot(V);
2244 2285 : }
2245 2285 : delete Machine;
2246 1534 : Machine = nullptr;
2247 2285 : } else {
2248 10 : Slot = -1;
2249 : }
2250 2285 :
2251 149 : if (Slot != -1)
2252 : Out << Prefix << Slot;
2253 2285 : else
2254 2285 : Out << "<badref>";
2255 2285 : }
2256 :
2257 2285 : static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
2258 : TypePrinting *TypePrinter,
2259 : SlotTracker *Machine, const Module *Context,
2260 : bool FromValue) {
2261 16765 : // Write DIExpressions inline when used as a value. Improves readability of
2262 : // debug info intrinsics.
2263 16765 : if (const DIExpression *Expr = dyn_cast<DIExpression>(MD)) {
2264 : writeDIExpression(Out, Expr, TypePrinter, Machine, Context);
2265 : return;
2266 : }
2267 :
2268 : if (const MDNode *N = dyn_cast<MDNode>(MD)) {
2269 799410 : std::unique_ptr<SlotTracker> MachineStorage;
2270 : if (!Machine) {
2271 29909 : MachineStorage = make_unique<SlotTracker>(Context);
2272 : Machine = MachineStorage.get();
2273 : }
2274 769130 : int Slot = Machine->getMetadataSlot(N);
2275 : if (Slot == -1)
2276 : // Give the pointer value instead of "badref", since this comes up all
2277 : // the time when debugging.
2278 : Out << "<" << N << ">";
2279 769130 : else
2280 1019 : Out << '!' << Slot;
2281 1019 : return;
2282 1019 : }
2283 :
2284 : if (const MDString *MDS = dyn_cast<MDString>(MD)) {
2285 371 : Out << "!\"";
2286 : printEscapedString(MDS->getString(), Out);
2287 : Out << '"';
2288 29 : return;
2289 : }
2290 :
2291 342 : auto *V = cast<ValueAsMetadata>(MD);
2292 : assert(TypePrinter && "TypePrinter required for metadata values");
2293 371 : assert((FromValue || !isa<LocalAsMetadata>(V)) &&
2294 : "Unexpected function-local metadata outside of value argument");
2295 :
2296 : TypePrinter->print(V->getValue()->getType(), Out);
2297 : Out << ' ';
2298 : WriteAsOperandInternal(Out, V->getValue(), TypePrinter, Machine, Context);
2299 799410 : }
2300 :
2301 : namespace {
2302 2 :
2303 : class AssemblyWriter {
2304 : formatted_raw_ostream &Out;
2305 329017 : const Module *TheModule = nullptr;
2306 : const ModuleSummaryIndex *TheIndex = nullptr;
2307 : std::unique_ptr<SlotTracker> SlotTrackerStorage;
2308 : SlotTracker &Machine;
2309 : TypePrinting TypePrinter;
2310 : AssemblyAnnotationWriter *AnnotationWriter = nullptr;
2311 : SetVector<const Comdat *> Comdats;
2312 7645 : bool IsForDebug;
2313 7645 : bool ShouldPreserveUseListOrder;
2314 : UseListOrderStack UseListOrders;
2315 : SmallVector<StringRef, 8> MDNames;
2316 : /// Synchronization scope names registered with LLVMContext.
2317 270450 : SmallVector<StringRef, 8> SSNs;
2318 270450 : DenseMap<const GlobalValueSummary *, GlobalValue::GUID> SummaryToGUIDMap;
2319 5 :
2320 : public:
2321 : /// Construct an AssemblyWriter with an external SlotTracker
2322 270450 : AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M,
2323 270450 : AssemblyAnnotationWriter *AAW, bool IsForDebug,
2324 : bool ShouldPreserveUseListOrder = false);
2325 :
2326 25 : AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2327 : const ModuleSummaryIndex *Index, bool IsForDebug);
2328 :
2329 : void printMDNodeBody(const MDNode *MD);
2330 : void printNamedMDNode(const NamedMDNode *NMD);
2331 :
2332 : void printModule(const Module *M);
2333 45089 :
2334 45089 : void writeOperand(const Value *Op, bool PrintType);
2335 : void writeParamOperand(const Value *Operand, AttributeSet Attrs);
2336 45089 : void writeOperandBundles(ImmutableCallSite CS);
2337 : void writeSyncScope(const LLVMContext &Context,
2338 : SyncScope::ID SSID);
2339 : void writeAtomic(const LLVMContext &Context,
2340 : AtomicOrdering Ordering,
2341 : SyncScope::ID SSID);
2342 : void writeAtomicCmpXchg(const LLVMContext &Context,
2343 : AtomicOrdering SuccessOrdering,
2344 5833 : AtomicOrdering FailureOrdering,
2345 : SyncScope::ID SSID);
2346 5833 :
2347 : void writeAllMDNodes();
2348 : void writeMDNode(unsigned Slot, const MDNode *Node);
2349 : void writeAllAttributeGroups();
2350 :
2351 : void printTypeIdentities();
2352 : void printGlobal(const GlobalVariable *GV);
2353 : void printIndirectSymbol(const GlobalIndirectSymbol *GIS);
2354 : void printComdat(const Comdat *C);
2355 : void printFunction(const Function *F);
2356 : void printArgument(const Argument *FA, AttributeSet Attrs);
2357 : void printBasicBlock(const BasicBlock *BB);
2358 : void printInstructionLine(const Instruction &I);
2359 : void printInstruction(const Instruction &I);
2360 :
2361 : void printUseListOrder(const UseListOrder &Order);
2362 : void printUseLists(const Function *F);
2363 :
2364 : void printModuleSummaryIndex();
2365 : void printSummaryInfo(unsigned Slot, const ValueInfo &VI);
2366 : void printSummary(const GlobalValueSummary &Summary);
2367 : void printAliasSummary(const AliasSummary *AS);
2368 : void printGlobalVarSummary(const GlobalVarSummary *GS);
2369 : void printFunctionSummary(const FunctionSummary *FS);
2370 : void printTypeIdSummary(const TypeIdSummary &TIS);
2371 : void printTypeTestResolution(const TypeTestResolution &TTRes);
2372 : void printArgs(const std::vector<uint64_t> &Args);
2373 : void printWPDRes(const WholeProgramDevirtResolution &WPDRes);
2374 : void printTypeIdInfo(const FunctionSummary::TypeIdInfo &TIDInfo);
2375 : void printVFuncId(const FunctionSummary::VFuncId VFId);
2376 : void
2377 : printNonConstVCalls(const std::vector<FunctionSummary::VFuncId> VCallList,
2378 : const char *Tag);
2379 : void
2380 : printConstVCalls(const std::vector<FunctionSummary::ConstVCall> VCallList,
2381 : const char *Tag);
2382 :
2383 : private:
2384 : /// Print out metadata attachments.
2385 : void printMetadataAttachments(
2386 : const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
2387 : StringRef Separator);
2388 :
2389 : // printInfoComment - Print a little comment after the instruction indicating
2390 : // which slot it occupies.
2391 : void printInfoComment(const Value &V);
2392 :
2393 : // printGCRelocateComment - print comment after call to the gc.relocate
2394 : // intrinsic indicating base and derived pointer names.
2395 : void printGCRelocateComment(const GCRelocateInst &Relocate);
2396 : };
2397 :
2398 : } // end anonymous namespace
2399 :
2400 : AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2401 : const Module *M, AssemblyAnnotationWriter *AAW,
2402 : bool IsForDebug, bool ShouldPreserveUseListOrder)
2403 : : Out(o), TheModule(M), Machine(Mac), TypePrinter(M), AnnotationWriter(AAW),
2404 : IsForDebug(IsForDebug),
2405 : ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
2406 : if (!TheModule)
2407 : return;
2408 : for (const GlobalObject &GO : TheModule->global_objects())
2409 : if (const Comdat *C = GO.getComdat())
2410 : Comdats.insert(C);
2411 : }
2412 :
2413 : AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2414 : const ModuleSummaryIndex *Index, bool IsForDebug)
2415 : : Out(o), TheIndex(Index), Machine(Mac), TypePrinter(/*Module=*/nullptr),
2416 : IsForDebug(IsForDebug), ShouldPreserveUseListOrder(false) {}
2417 :
2418 : void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
2419 : if (!Operand) {
2420 : Out << "<null operand!>";
2421 : return;
2422 : }
2423 : if (PrintType) {
2424 : TypePrinter.print(Operand->getType(), Out);
2425 : Out << ' ';
2426 : }
2427 : WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
2428 : }
2429 :
2430 : void AssemblyWriter::writeSyncScope(const LLVMContext &Context,
2431 : SyncScope::ID SSID) {
2432 : switch (SSID) {
2433 : case SyncScope::System: {
2434 : break;
2435 : }
2436 : default: {
2437 : if (SSNs.empty())
2438 : Context.getSyncScopeNames(SSNs);
2439 :
2440 : Out << " syncscope(\"";
2441 : printEscapedString(SSNs[SSID], Out);
2442 : Out << "\")";
2443 : break;
2444 : }
2445 : }
2446 : }
2447 :
2448 52932 : void AssemblyWriter::writeAtomic(const LLVMContext &Context,
2449 : AtomicOrdering Ordering,
2450 52932 : SyncScope::ID SSID) {
2451 : if (Ordering == AtomicOrdering::NotAtomic)
2452 : return;
2453 158796 :
2454 52932 : writeSyncScope(Context, SSID);
2455 : Out << " " << toIRString(Ordering);
2456 : }
2457 1402969 :
2458 28710 : void AssemblyWriter::writeAtomicCmpXchg(const LLVMContext &Context,
2459 : AtomicOrdering SuccessOrdering,
2460 : AtomicOrdering FailureOrdering,
2461 69 : SyncScope::ID SSID) {
2462 69 : assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
2463 : FailureOrdering != AtomicOrdering::NotAtomic);
2464 207 :
2465 : writeSyncScope(Context, SSID);
2466 3398972 : Out << " " << toIRString(SuccessOrdering);
2467 3398972 : Out << " " << toIRString(FailureOrdering);
2468 0 : }
2469 0 :
2470 : void AssemblyWriter::writeParamOperand(const Value *Operand,
2471 3398972 : AttributeSet Attrs) {
2472 1817283 : if (!Operand) {
2473 1817283 : Out << "<null operand!>";
2474 : return;
2475 3398972 : }
2476 :
2477 : // Print the type
2478 3746 : TypePrinter.print(Operand->getType(), Out);
2479 : // Print parameter attributes list
2480 3746 : if (Attrs.hasAttributes())
2481 : Out << ' ' << Attrs.getAsString();
2482 : Out << ' ';
2483 : // Print the operand
2484 424 : WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
2485 424 : }
2486 39 :
2487 : void AssemblyWriter::writeOperandBundles(ImmutableCallSite CS) {
2488 424 : if (!CS.hasOperandBundles())
2489 848 : return;
2490 424 :
2491 424 : Out << " [ ";
2492 :
2493 : bool FirstBundle = true;
2494 3746 : for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
2495 : OperandBundleUse BU = CS.getOperandBundleAt(i);
2496 3037 :
2497 : if (!FirstBundle)
2498 : Out << ", ";
2499 3037 : FirstBundle = false;
2500 :
2501 : Out << '"';
2502 3037 : printEscapedString(BU.getTagName(), Out);
2503 3037 : Out << '"';
2504 :
2505 : Out << '(';
2506 709 :
2507 : bool FirstInput = true;
2508 : for (const auto &Input : BU.Inputs) {
2509 : if (!FirstInput)
2510 : Out << ", ";
2511 : FirstInput = false;
2512 :
2513 709 : TypePrinter.print(Input->getType(), Out);
2514 709 : Out << " ";
2515 709 : WriteAsOperandInternal(Out, Input, &TypePrinter, &Machine, TheModule);
2516 709 : }
2517 :
2518 406376 : Out << ')';
2519 : }
2520 406376 :
2521 0 : Out << " ]";
2522 0 : }
2523 :
2524 : void AssemblyWriter::printModule(const Module *M) {
2525 : Machine.initializeIfNeeded();
2526 406376 :
2527 : if (ShouldPreserveUseListOrder)
2528 406376 : UseListOrders = predictUseListOrder(M);
2529 83880 :
2530 406376 : if (!M->getModuleIdentifier().empty() &&
2531 : // Don't print the ID if it will start a new line (which would
2532 406376 : // require a comment char before it).
2533 : M->getModuleIdentifier().find('\n') == std::string::npos)
2534 : Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
2535 186508 :
2536 186508 : if (!M->getSourceFileName().empty()) {
2537 : Out << "source_filename = \"";
2538 : printEscapedString(M->getSourceFileName(), Out);
2539 1550 : Out << "\"\n";
2540 : }
2541 :
2542 3189 : const std::string &DL = M->getDataLayoutStr();
2543 1639 : if (!DL.empty())
2544 : Out << "target datalayout = \"" << DL << "\"\n";
2545 1639 : if (!M->getTargetTriple().empty())
2546 89 : Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
2547 :
2548 : if (!M->getModuleInlineAsm().empty()) {
2549 1639 : Out << '\n';
2550 3278 :
2551 1639 : // Split the string into lines, to make it easier to read the .ll file.
2552 : StringRef Asm = M->getModuleInlineAsm();
2553 1639 : do {
2554 : StringRef Front;
2555 : std::tie(Front, Asm) = Asm.split('\n');
2556 2894 :
2557 1255 : // We found a newline, print the portion of the asm string from the
2558 338 : // last newline up to this newline.
2559 : Out << "module asm \"";
2560 : printEscapedString(Front, Out);
2561 1255 : Out << "\"\n";
2562 1255 : } while (!Asm.empty());
2563 1255 : }
2564 :
2565 : printTypeIdentities();
2566 1639 :
2567 : // Output all comdats.
2568 : if (!Comdats.empty())
2569 1550 : Out << '\n';
2570 : for (const Comdat *C : Comdats) {
2571 : printComdat(C);
2572 17389 : if (C != Comdats.back())
2573 17389 : Out << '\n';
2574 : }
2575 17389 :
2576 762 : // Output all globals.
2577 : if (!M->global_empty()) Out << '\n';
2578 34778 : for (const GlobalVariable &GV : M->globals()) {
2579 : printGlobal(&GV); Out << '\n';
2580 : }
2581 17389 :
2582 34778 : // Output all aliases.
2583 : if (!M->alias_empty()) Out << "\n";
2584 17389 : for (const GlobalAlias &GA : M->aliases())
2585 17389 : printIndirectSymbol(&GA);
2586 34778 :
2587 17389 : // Output all ifuncs.
2588 : if (!M->ifunc_empty()) Out << "\n";
2589 : for (const GlobalIFunc &GI : M->ifuncs())
2590 : printIndirectSymbol(&GI);
2591 17389 :
2592 24812 : // Output global use-lists.
2593 17389 : printUseLists(nullptr);
2594 23236 :
2595 : // Output all of the functions.
2596 17389 : for (const Function &F : *M)
2597 107 : printFunction(&F);
2598 : assert(UseListOrders.empty() && "All use-lists should have been consumed");
2599 :
2600 : // Output all attribute groups.
2601 : if (!Machine.as_empty()) {
2602 : Out << '\n';
2603 336 : writeAllAttributeGroups();
2604 : }
2605 :
2606 : // Output named metadata.
2607 336 : if (!M->named_metadata_empty()) Out << '\n';
2608 336 :
2609 336 : for (const NamedMDNode &Node : M->named_metadata())
2610 336 : printNamedMDNode(&Node);
2611 :
2612 : // Output metadata.
2613 17389 : if (!Machine.mdn_empty()) {
2614 : Out << '\n';
2615 : writeAllMDNodes();
2616 17389 : }
2617 2997 : }
2618 42938 :
2619 25549 : void AssemblyWriter::printModuleSummaryIndex() {
2620 25549 : assert(TheIndex);
2621 22552 : Machine.initializeIndexIfNeeded();
2622 :
2623 : Out << "\n";
2624 :
2625 17389 : // Print module path entries. To print in order, add paths to a vector
2626 102301 : // indexed by module slot.
2627 84912 : std::vector<std::pair<std::string, ModuleHash>> moduleVec;
2628 : std::string RegularLTOModuleName = "[Regular LTO]";
2629 : moduleVec.resize(TheIndex->modulePaths().size());
2630 : for (auto &ModPath : TheIndex->modulePaths())
2631 17389 : moduleVec[Machine.getModulePathSlot(ModPath.first())] = std::make_pair(
2632 18583 : // A module id of -1 is a special entry for a regular LTO module created
2633 1194 : // during the thin link.
2634 : ModPath.second.first == -1u ? RegularLTOModuleName
2635 : : (std::string)ModPath.first(),
2636 17389 : ModPath.second.second);
2637 17470 :
2638 81 : unsigned i = 0;
2639 : for (auto &ModPair : moduleVec) {
2640 : Out << "^" << i++ << " = module: (";
2641 17389 : Out << "path: \"";
2642 : printEscapedString(ModPair.first, Out);
2643 : Out << "\", hash: (";
2644 226540 : FieldSeparator FS;
2645 209151 : for (auto Hash : ModPair.second)
2646 : Out << FS << Hash;
2647 : Out << "))\n";
2648 : }
2649 34778 :
2650 12197 : // FIXME: Change AliasSummary to hold a ValueInfo instead of summary pointer
2651 12197 : // for aliasee (then update BitcodeWriter.cpp and remove get/setAliaseeGUID).
2652 : for (auto &GlobalList : *TheIndex) {
2653 : auto GUID = GlobalList.first;
2654 : for (auto &Summary : GlobalList.second.SummaryList)
2655 17389 : SummaryToGUIDMap[Summary.get()] = GUID;
2656 : }
2657 37984 :
2658 20595 : // Print the global value summary entries.
2659 : for (auto &GlobalList : *TheIndex) {
2660 : auto GUID = GlobalList.first;
2661 34778 : auto VI = TheIndex->getValueInfo(GlobalList);
2662 10578 : printSummaryInfo(Machine.getGUIDSlot(GUID), VI);
2663 10578 : }
2664 :
2665 17389 : // Print the TypeIdMap entries.
2666 : for (auto TidIter = TheIndex->typeIds().begin();
2667 69 : TidIter != TheIndex->typeIds().end(); TidIter++) {
2668 : Out << "^" << Machine.getTypeIdSlot(TidIter->second.first)
2669 69 : << " = typeid: (name: \"" << TidIter->second.first << "\"";
2670 : printTypeIdSummary(TidIter->second.second);
2671 69 : Out << ") ; guid = " << TidIter->first << "\n";
2672 : }
2673 : }
2674 :
2675 69 : static const char *
2676 69 : getWholeProgDevirtResKindName(WholeProgramDevirtResolution::Kind K) {
2677 69 : switch (K) {
2678 218 : case WholeProgramDevirtResolution::Indir:
2679 240 : return "indir";
2680 : case WholeProgramDevirtResolution::SingleImpl:
2681 : return "singleImpl";
2682 160 : case WholeProgramDevirtResolution::BranchFunnel:
2683 : return "branchFunnel";
2684 : }
2685 : llvm_unreachable("invalid WholeProgramDevirtResolution kind");
2686 : }
2687 149 :
2688 80 : static const char *getWholeProgDevirtResByArgKindName(
2689 80 : WholeProgramDevirtResolution::ByArg::Kind K) {
2690 160 : switch (K) {
2691 80 : case WholeProgramDevirtResolution::ByArg::Indir:
2692 : return "indir";
2693 480 : case WholeProgramDevirtResolution::ByArg::UniformRetVal:
2694 400 : return "uniformRetVal";
2695 80 : case WholeProgramDevirtResolution::ByArg::UniqueRetVal:
2696 : return "uniqueRetVal";
2697 : case WholeProgramDevirtResolution::ByArg::VirtualConstProp:
2698 : return "virtualConstProp";
2699 : }
2700 387 : llvm_unreachable("invalid WholeProgramDevirtResolution::ByArg kind");
2701 318 : }
2702 542 :
2703 224 : static const char *getTTResKindName(TypeTestResolution::Kind K) {
2704 : switch (K) {
2705 : case TypeTestResolution::Unsat:
2706 : return "unsat";
2707 387 : case TypeTestResolution::ByteArray:
2708 318 : return "byteArray";
2709 318 : case TypeTestResolution::Inline:
2710 318 : return "inline";
2711 : case TypeTestResolution::Single:
2712 : return "single";
2713 : case TypeTestResolution::AllOnes:
2714 69 : return "allOnes";
2715 170 : }
2716 16 : llvm_unreachable("invalid TypeTestResolution kind");
2717 32 : }
2718 16 :
2719 16 : void AssemblyWriter::printTypeTestResolution(const TypeTestResolution &TTRes) {
2720 : Out << "typeTestRes: (kind: " << getTTResKindName(TTRes.TheKind)
2721 69 : << ", sizeM1BitWidth: " << TTRes.SizeM1BitWidth;
2722 :
2723 : // The following fields are only used if the target does not support the use
2724 : // of absolute symbols to store constants. Print only if non-zero.
2725 9 : if (TTRes.AlignLog2)
2726 : Out << ", alignLog2: " << TTRes.AlignLog2;
2727 : if (TTRes.SizeM1)
2728 4 : Out << ", sizeM1: " << TTRes.SizeM1;
2729 : if (TTRes.BitMask)
2730 4 : // BitMask is uint8_t which causes it to print the corresponding char.
2731 : Out << ", bitMask: " << (unsigned)TTRes.BitMask;
2732 : if (TTRes.InlineBits)
2733 0 : Out << ", inlineBits: " << TTRes.InlineBits;
2734 :
2735 : Out << ")";
2736 : }
2737 :
2738 4 : void AssemblyWriter::printTypeIdSummary(const TypeIdSummary &TIS) {
2739 : Out << ", summary: (";
2740 : printTypeTestResolution(TIS.TTRes);
2741 1 : if (!TIS.WPDRes.empty()) {
2742 : Out << ", wpdResolutions: (";
2743 1 : FieldSeparator FS;
2744 : for (auto &WPDRes : TIS.WPDRes) {
2745 1 : Out << FS;
2746 : Out << "(offset: " << WPDRes.first << ", ";
2747 : printWPDRes(WPDRes.second);
2748 0 : Out << ")";
2749 : }
2750 : Out << ")";
2751 : }
2752 0 : Out << ")";
2753 : }
2754 :
2755 0 : void AssemblyWriter::printArgs(const std::vector<uint64_t> &Args) {
2756 : Out << "args: (";
2757 0 : FieldSeparator FS;
2758 : for (auto arg : Args) {
2759 0 : Out << FS;
2760 : Out << arg;
2761 0 : }
2762 : Out << ")";
2763 : }
2764 0 :
2765 : void AssemblyWriter::printWPDRes(const WholeProgramDevirtResolution &WPDRes) {
2766 : Out << "wpdRes: (kind: ";
2767 0 : Out << getWholeProgDevirtResKindName(WPDRes.TheKind);
2768 0 :
2769 0 : if (WPDRes.TheKind == WholeProgramDevirtResolution::SingleImpl)
2770 : Out << ", singleImplName: \"" << WPDRes.SingleImplName << "\"";
2771 :
2772 : if (!WPDRes.ResByArg.empty()) {
2773 0 : Out << ", resByArg: (";
2774 0 : FieldSeparator FS;
2775 0 : for (auto &ResByArg : WPDRes.ResByArg) {
2776 0 : Out << FS;
2777 0 : printArgs(ResByArg.first);
2778 : Out << ", byArg: (kind: ";
2779 0 : Out << getWholeProgDevirtResByArgKindName(ResByArg.second.TheKind);
2780 0 : if (ResByArg.second.TheKind ==
2781 0 : WholeProgramDevirtResolution::ByArg::UniformRetVal ||
2782 : ResByArg.second.TheKind ==
2783 0 : WholeProgramDevirtResolution::ByArg::UniqueRetVal)
2784 0 : Out << ", info: " << ResByArg.second.Info;
2785 :
2786 16 : // The following fields are only used if the target does not support the
2787 16 : // use of absolute symbols to store constants. Print only if non-zero.
2788 16 : if (ResByArg.second.Byte || ResByArg.second.Bit)
2789 16 : Out << ", byte: " << ResByArg.second.Byte
2790 4 : << ", bit: " << ResByArg.second.Bit;
2791 :
2792 13 : Out << ")";
2793 9 : }
2794 9 : Out << ")";
2795 9 : }
2796 9 : Out << ")";
2797 : }
2798 4 :
2799 : static const char *getSummaryKindName(GlobalValueSummary::SummaryKind SK) {
2800 16 : switch (SK) {
2801 16 : case GlobalValueSummary::AliasKind:
2802 : return "alias";
2803 0 : case GlobalValueSummary::FunctionKind:
2804 0 : return "function";
2805 : case GlobalValueSummary::GlobalVarKind:
2806 0 : return "variable";
2807 0 : }
2808 0 : llvm_unreachable("invalid summary kind");
2809 : }
2810 0 :
2811 0 : void AssemblyWriter::printAliasSummary(const AliasSummary *AS) {
2812 : Out << ", aliasee: ";
2813 9 : // The indexes emitted for distributed backends may not include the
2814 9 : // aliasee summary (only if it is being imported directly). Handle
2815 17 : // that case by just emitting "null" as the aliasee.
2816 : if (AS->hasAliasee())
2817 9 : Out << "^" << Machine.getGUIDSlot(SummaryToGUIDMap[&AS->getAliasee()]);
2818 8 : else
2819 : Out << "null";
2820 9 : }
2821 1 :
2822 : void AssemblyWriter::printGlobalVarSummary(const GlobalVarSummary *GS) {
2823 5 : // Nothing for now
2824 4 : }
2825 4 :
2826 4 : static std::string getLinkageName(GlobalValue::LinkageTypes LT) {
2827 7 : switch (LT) {
2828 8 : case GlobalValue::ExternalLinkage:
2829 4 : return "external";
2830 : case GlobalValue::PrivateLinkage:
2831 : return "private";
2832 2 : case GlobalValue::InternalLinkage:
2833 : return "internal";
2834 : case GlobalValue::LinkOnceAnyLinkage:
2835 : return "linkonce";
2836 4 : case GlobalValue::LinkOnceODRLinkage:
2837 1 : return "linkonce_odr";
2838 1 : case GlobalValue::WeakAnyLinkage:
2839 : return "weak";
2840 4 : case GlobalValue::WeakODRLinkage:
2841 : return "weak_odr";
2842 1 : case GlobalValue::CommonLinkage:
2843 : return "common";
2844 9 : case GlobalValue::AppendingLinkage:
2845 9 : return "appending";
2846 : case GlobalValue::ExternalWeakLinkage:
2847 : return "extern_weak";
2848 224 : case GlobalValue::AvailableExternallyLinkage:
2849 : return "available_externally";
2850 : }
2851 177 : llvm_unreachable("invalid linkage");
2852 : }
2853 34 :
2854 : // When printing the linkage types in IR where the ExternalLinkage is
2855 : // not printed, and other linkage types are expected to be printed with
2856 0 : // a space after the name.
2857 : static std::string getLinkageNameWithSpace(GlobalValue::LinkageTypes LT) {
2858 : if (LT == GlobalValue::ExternalLinkage)
2859 13 : return "";
2860 13 : return getLinkageName(LT) + " ";
2861 : }
2862 :
2863 : void AssemblyWriter::printFunctionSummary(const FunctionSummary *FS) {
2864 13 : Out << ", insts: " << FS->instCount();
2865 22 :
2866 : FunctionSummary::FFlags FFlags = FS->fflags();
2867 2 : if (FFlags.ReadNone | FFlags.ReadOnly | FFlags.NoRecurse |
2868 13 : FFlags.ReturnDoesNotAlias) {
2869 : Out << ", funcFlags: (";
2870 0 : Out << "readNone: " << FFlags.ReadNone;
2871 : Out << ", readOnly: " << FFlags.ReadOnly;
2872 0 : Out << ", noRecurse: " << FFlags.NoRecurse;
2873 : Out << ", returnDoesNotAlias: " << FFlags.ReturnDoesNotAlias;
2874 111017 : Out << ")";
2875 111017 : }
2876 : if (!FS->calls().empty()) {
2877 178 : Out << ", calls: (";
2878 : FieldSeparator IFS;
2879 25147 : for (auto &Call : FS->calls()) {
2880 : Out << IFS;
2881 33538 : Out << "(callee: ^" << Machine.getGUIDSlot(Call.first.getGUID());
2882 : if (Call.second.getHotness() != CalleeInfo::HotnessType::Unknown)
2883 1039 : Out << ", hotness: " << getHotnessName(Call.second.getHotness());
2884 : else if (Call.second.RelBlockFreq)
2885 27276 : Out << ", relbf: " << Call.second.RelBlockFreq;
2886 : Out << ")";
2887 10424 : }
2888 : Out << ")";
2889 2802 : }
2890 :
2891 4361 : if (const auto *TIdInfo = FS->getTypeIdInfo())
2892 : printTypeIdInfo(*TIdInfo);
2893 3116 : }
2894 :
2895 2446 : void AssemblyWriter::printTypeIdInfo(
2896 : const FunctionSummary::TypeIdInfo &TIDInfo) {
2897 690 : Out << ", typeIdInfo: (";
2898 : FieldSeparator TIDFS;
2899 0 : if (!TIDInfo.TypeTests.empty()) {
2900 : Out << TIDFS;
2901 : Out << "typeTests: (";
2902 : FieldSeparator FS;
2903 : for (auto &GUID : TIDInfo.TypeTests) {
2904 : auto TidIter = TheIndex->typeIds().equal_range(GUID);
2905 295735 : if (TidIter.first == TidIter.second) {
2906 295735 : Out << FS;
2907 184942 : Out << GUID;
2908 221586 : continue;
2909 : }
2910 : // Print all type id that correspond to this GUID.
2911 177 : for (auto It = TidIter.first; It != TidIter.second; ++It) {
2912 177 : Out << FS;
2913 : auto Slot = Machine.getTypeIdSlot(It->second.first);
2914 177 : assert(Slot != -1);
2915 177 : Out << "^" << Slot;
2916 : }
2917 2 : }
2918 2 : Out << ")";
2919 2 : }
2920 2 : if (!TIDInfo.TypeTestAssumeVCalls.empty()) {
2921 2 : Out << TIDFS;
2922 2 : printNonConstVCalls(TIDInfo.TypeTestAssumeVCalls, "typeTestAssumeVCalls");
2923 : }
2924 177 : if (!TIDInfo.TypeCheckedLoadVCalls.empty()) {
2925 39 : Out << TIDFS;
2926 : printNonConstVCalls(TIDInfo.TypeCheckedLoadVCalls, "typeCheckedLoadVCalls");
2927 121 : }
2928 82 : if (!TIDInfo.TypeTestAssumeConstVCalls.empty()) {
2929 82 : Out << TIDFS;
2930 82 : printConstVCalls(TIDInfo.TypeTestAssumeConstVCalls,
2931 84 : "typeTestAssumeConstVCalls");
2932 40 : }
2933 3 : if (!TIDInfo.TypeCheckedLoadConstVCalls.empty()) {
2934 82 : Out << TIDFS;
2935 : printConstVCalls(TIDInfo.TypeCheckedLoadConstVCalls,
2936 39 : "typeCheckedLoadConstVCalls");
2937 : }
2938 : Out << ")";
2939 177 : }
2940 69 :
2941 177 : void AssemblyWriter::printVFuncId(const FunctionSummary::VFuncId VFId) {
2942 : auto TidIter = TheIndex->typeIds().equal_range(VFId.GUID);
2943 69 : if (TidIter.first == TidIter.second) {
2944 : Out << "vFuncId: (";
2945 69 : Out << "guid: " << VFId.GUID;
2946 : Out << ", offset: " << VFId.Offset;
2947 69 : Out << ")";
2948 35 : return;
2949 35 : }
2950 : // Print all type id that correspond to this GUID.
2951 77 : FieldSeparator FS;
2952 42 : for (auto It = TidIter.first; It != TidIter.second; ++It) {
2953 42 : Out << FS;
2954 30 : Out << "vFuncId: (";
2955 30 : auto Slot = Machine.getTypeIdSlot(It->second.first);
2956 : assert(Slot != -1);
2957 : Out << "^" << Slot;
2958 : Out << ", offset: " << VFId.Offset;
2959 24 : Out << ")";
2960 12 : }
2961 24 : }
2962 :
2963 12 : void AssemblyWriter::printNonConstVCalls(
2964 : const std::vector<FunctionSummary::VFuncId> VCallList, const char *Tag) {
2965 : Out << Tag << ": (";
2966 35 : FieldSeparator FS;
2967 : for (auto &VFuncId : VCallList) {
2968 69 : Out << FS;
2969 13 : printVFuncId(VFuncId);
2970 26 : }
2971 : Out << ")";
2972 69 : }
2973 10 :
2974 20 : void AssemblyWriter::printConstVCalls(
2975 : const std::vector<FunctionSummary::ConstVCall> VCallList, const char *Tag) {
2976 69 : Out << Tag << ": (";
2977 7 : FieldSeparator FS;
2978 7 : for (auto &ConstVCall : VCallList) {
2979 : Out << FS;
2980 : Out << "(";
2981 69 : printVFuncId(ConstVCall.VFunc);
2982 7 : if (!ConstVCall.Args.empty()) {
2983 7 : Out << ", ";
2984 : printArgs(ConstVCall.Args);
2985 : }
2986 69 : Out << ")";
2987 69 : }
2988 : Out << ")";
2989 53 : }
2990 53 :
2991 53 : void AssemblyWriter::printSummary(const GlobalValueSummary &Summary) {
2992 42 : GlobalValueSummary::GVFlags GVFlags = Summary.flags();
2993 42 : GlobalValue::LinkageTypes LT = (GlobalValue::LinkageTypes)GVFlags.Linkage;
2994 42 : Out << getSummaryKindName(Summary.getSummaryKind()) << ": ";
2995 42 : Out << "(module: ^" << Machine.getModulePathSlot(Summary.modulePath())
2996 : << ", flags: (";
2997 : Out << "linkage: " << getLinkageName(LT);
2998 : Out << ", notEligibleToImport: " << GVFlags.NotEligibleToImport;
2999 : Out << ", live: " << GVFlags.Live;
3000 22 : Out << ", dsoLocal: " << GVFlags.DSOLocal;
3001 11 : Out << ")";
3002 11 :
3003 22 : if (Summary.getSummaryKind() == GlobalValueSummary::AliasKind)
3004 : printAliasSummary(cast<AliasSummary>(&Summary));
3005 11 : else if (Summary.getSummaryKind() == GlobalValueSummary::FunctionKind)
3006 11 : printFunctionSummary(cast<FunctionSummary>(&Summary));
3007 11 : else
3008 : printGlobalVarSummary(cast<GlobalVarSummary>(&Summary));
3009 :
3010 : auto RefList = Summary.refs();
3011 23 : if (!RefList.empty()) {
3012 : Out << ", refs: (";
3013 23 : FieldSeparator FS;
3014 : for (auto &Ref : RefList) {
3015 55 : Out << FS;
3016 32 : Out << "^" << Machine.getGUIDSlot(Ref.getGUID());
3017 32 : }
3018 : Out << ")";
3019 23 : }
3020 23 :
3021 : Out << ")";
3022 14 : }
3023 :
3024 14 : void AssemblyWriter::printSummaryInfo(unsigned Slot, const ValueInfo &VI) {
3025 : Out << "^" << Slot << " = gv: (";
3026 35 : if (!VI.name().empty())
3027 21 : Out << "name: \"" << VI.name() << "\"";
3028 21 : else
3029 21 : Out << "guid: " << VI.getGUID();
3030 21 : if (!VI.getSummaryList().empty()) {
3031 20 : Out << ", summaries: (";
3032 20 : FieldSeparator FS;
3033 : for (auto &Summary : VI.getSummaryList()) {
3034 21 : Out << FS;
3035 : printSummary(*Summary);
3036 14 : }
3037 14 : Out << ")";
3038 : }
3039 224 : Out << ")";
3040 224 : if (!VI.name().empty())
3041 224 : Out << " ; guid = " << VI.getGUID();
3042 435 : Out << "\n";
3043 224 : }
3044 224 :
3045 224 : static void printMetadataIdentifier(StringRef Name,
3046 224 : formatted_raw_ostream &Out) {
3047 224 : if (Name.empty()) {
3048 224 : Out << "<empty name> ";
3049 224 : } else {
3050 : if (isalpha(static_cast<unsigned char>(Name[0])) || Name[0] == '-' ||
3051 224 : Name[0] == '$' || Name[0] == '.' || Name[0] == '_')
3052 13 : Out << Name[0];
3053 211 : else
3054 177 : Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
3055 : for (unsigned i = 1, e = Name.size(); i != e; ++i) {
3056 : unsigned char C = Name[i];
3057 : if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
3058 : C == '.' || C == '_')
3059 224 : Out << C;
3060 36 : else
3061 : Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
3062 87 : }
3063 51 : }
3064 51 : }
3065 :
3066 36 : void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
3067 : Out << '!';
3068 : printMetadataIdentifier(NMD->getName(), Out);
3069 224 : Out << " = !{";
3070 224 : for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
3071 : if (i)
3072 318 : Out << ", ";
3073 636 :
3074 318 : // Write DIExpressions inline.
3075 212 : // FIXME: Ban DIExpressions in NamedMDNodes, they will serve no purpose.
3076 : MDNode *Op = NMD->getOperand(i);
3077 106 : if (auto *Expr = dyn_cast<DIExpression>(Op)) {
3078 318 : writeDIExpression(Out, Expr, nullptr, nullptr, nullptr);
3079 224 : continue;
3080 : }
3081 448 :
3082 224 : int Slot = Machine.getMetadataSlot(Op);
3083 224 : if (Slot == -1)
3084 : Out << "<badref>";
3085 224 : else
3086 : Out << '!' << Slot;
3087 318 : }
3088 318 : Out << "}\n";
3089 212 : }
3090 318 :
3091 318 : static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
3092 : formatted_raw_ostream &Out) {
3093 163982 : switch (Vis) {
3094 : case GlobalValue::DefaultVisibility: break;
3095 163982 : case GlobalValue::HiddenVisibility: Out << "hidden "; break;
3096 1 : case GlobalValue::ProtectedVisibility: Out << "protected "; break;
3097 : }
3098 28 : }
3099 164009 :
3100 163955 : static void PrintDSOLocation(const GlobalValue &GV,
3101 : formatted_raw_ostream &Out) {
3102 78 : // GVs with local linkage or non default visibility are implicitly dso_local,
3103 1790303 : // so we don't print it.
3104 1626322 : bool Implicit = GV.hasLocalLinkage() ||
3105 1626322 : (!GV.hasExternalWeakLinkage() && !GV.hasDefaultVisibility());
3106 172677 : if (GV.isDSOLocal() && !Implicit)
3107 1626317 : Out << "dso_local ";
3108 : }
3109 10 :
3110 : static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,
3111 : formatted_raw_ostream &Out) {
3112 163982 : switch (SCT) {
3113 : case GlobalValue::DefaultStorageClass: break;
3114 0 : case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
3115 0 : case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
3116 0 : }
3117 0 : }
3118 0 :
3119 0 : static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
3120 0 : formatted_raw_ostream &Out) {
3121 : switch (TLM) {
3122 : case GlobalVariable::NotThreadLocal:
3123 : break;
3124 0 : case GlobalVariable::GeneralDynamicTLSModel:
3125 0 : Out << "thread_local ";
3126 0 : break;
3127 0 : case GlobalVariable::LocalDynamicTLSModel:
3128 : Out << "thread_local(localdynamic) ";
3129 : break;
3130 0 : case GlobalVariable::InitialExecTLSModel:
3131 0 : Out << "thread_local(initialexec) ";
3132 0 : break;
3133 : case GlobalVariable::LocalExecTLSModel:
3134 0 : Out << "thread_local(localexec) ";
3135 : break;
3136 0 : }
3137 0 : }
3138 :
3139 295735 : static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA) {
3140 : switch (UA) {
3141 295735 : case GlobalVariable::UnnamedAddr::None:
3142 : return "";
3143 5844 : case GlobalVariable::UnnamedAddr::Local:
3144 73 : return "local_unnamed_addr";
3145 : case GlobalVariable::UnnamedAddr::Global:
3146 295735 : return "unnamed_addr";
3147 : }
3148 295735 : llvm_unreachable("Unknown UnnamedAddr");
3149 : }
3150 :
3151 : static void maybePrintComdat(formatted_raw_ostream &Out,
3152 237060 : const GlobalObject &GO) {
3153 234614 : const Comdat *C = GO.getComdat();
3154 295735 : if (!C)
3155 15965 : return;
3156 295735 :
3157 : if (isa<GlobalVariable>(GO))
3158 295735 : Out << ',';
3159 : Out << " comdat";
3160 295735 :
3161 : if (GO.getName() == C->getName())
3162 1804 : return;
3163 2751 :
3164 : Out << '(';
3165 295735 : PrintLLVMName(Out, C->getName(), ComdatPrefix);
3166 : Out << ')';
3167 86197 : }
3168 :
3169 86197 : void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
3170 : if (GV->isMaterializable())
3171 : Out << "; Materializable\n";
3172 365 :
3173 365 : WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
3174 365 : Out << " = ";
3175 33 :
3176 33 : if (!GV->hasInitializer() && GV->hasExternalLinkage())
3177 33 : Out << "external ";
3178 892 :
3179 892 : Out << getLinkageNameWithSpace(GV->getLinkage());
3180 892 : PrintDSOLocation(*GV, Out);
3181 32 : PrintVisibility(GV->getVisibility(), Out);
3182 32 : PrintDLLStorageClass(GV->getDLLStorageClass(), Out);
3183 32 : PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
3184 : StringRef UA = getUnnamedAddrEncoding(GV->getUnnamedAddr());
3185 86197 : if (!UA.empty())
3186 : Out << UA << ' ';
3187 :
3188 295735 : if (unsigned AddressSpace = GV->getType()->getAddressSpace())
3189 : Out << "addrspace(" << AddressSpace << ") ";
3190 : if (GV->isExternallyInitialized()) Out << "externally_initialized ";
3191 : Out << (GV->isConstant() ? "constant " : "global ");
3192 : TypePrinter.print(GV->getValueType(), Out);
3193 :
3194 : if (GV->hasInitializer()) {
3195 : Out << ' ';
3196 0 : writeOperand(GV->getInitializer(), false);
3197 : }
3198 :
3199 294460 : if (GV->hasSection()) {
3200 : Out << ", section \"";
3201 294460 : printEscapedString(GV->getSection(), Out);
3202 294460 : Out << '"';
3203 : }
3204 : maybePrintComdat(Out, *GV);
3205 28710 : if (GV->getAlignment())
3206 7634 : Out << ", align " << GV->getAlignment();
3207 28710 :
3208 : SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3209 28710 : GV->getAllMetadata(MDs);
3210 : printMetadataAttachments(MDs, ", ");
3211 :
3212 : auto Attrs = GV->getAttributes();
3213 3487 : if (Attrs.hasAttributes())
3214 : Out << " #" << Machine.getAttributeGroupSlot(Attrs);
3215 :
3216 : printInfoComment(*GV);
3217 84922 : }
3218 84922 :
3219 0 : void AssemblyWriter::printIndirectSymbol(const GlobalIndirectSymbol *GIS) {
3220 : if (GIS->isMaterializable())
3221 84922 : Out << "; Materializable\n";
3222 84922 :
3223 : WriteAsOperandInternal(Out, GIS, &TypePrinter, &Machine, GIS->getParent());
3224 84922 : Out << " = ";
3225 9011 :
3226 : Out << getLinkageNameWithSpace(GIS->getLinkage());
3227 169844 : PrintDSOLocation(*GIS, Out);
3228 84922 : PrintVisibility(GIS->getVisibility(), Out);
3229 169844 : PrintDLLStorageClass(GIS->getDLLStorageClass(), Out);
3230 169844 : PrintThreadLocalModel(GIS->getThreadLocalMode(), Out);
3231 169844 : StringRef UA = getUnnamedAddrEncoding(GIS->getUnnamedAddr());
3232 84922 : if (!UA.empty())
3233 84922 : Out << UA << ' ';
3234 29757 :
3235 : if (isa<GlobalAlias>(GIS))
3236 84922 : Out << "alias ";
3237 2134 : else if (isa<GlobalIFunc>(GIS))
3238 84922 : Out << "ifunc ";
3239 208605 : else
3240 84922 : llvm_unreachable("Not an alias or ifunc!");
3241 :
3242 84922 : TypePrinter.print(GIS->getValueType(), Out);
3243 73918 :
3244 73918 : Out << ", ";
3245 :
3246 : const Constant *IS = GIS->getIndirectSymbol();
3247 84922 :
3248 14894 : if (!IS) {
3249 29788 : TypePrinter.print(GIS->getType(), Out);
3250 14894 : Out << " <<NULL ALIASEE>>";
3251 : } else {
3252 84922 : writeOperand(IS, !isa<ConstantExpr>(IS));
3253 84922 : }
3254 50914 :
3255 : printInfoComment(*GIS);
3256 : Out << '\n';
3257 84922 : }
3258 84922 :
3259 : void AssemblyWriter::printComdat(const Comdat *C) {
3260 : C->print(Out);
3261 84922 : }
3262 33 :
3263 : void AssemblyWriter::printTypeIdentities() {
3264 84922 : if (TypePrinter.empty())
3265 84922 : return;
3266 :
3267 1275 : Out << '\n';
3268 1275 :
3269 0 : // Emit all numbered types.
3270 : auto &NumberedTypes = TypePrinter.getNumberedTypes();
3271 1275 : for (unsigned I = 0, E = NumberedTypes.size(); I != E; ++I) {
3272 1275 : Out << '%' << I << " = type ";
3273 :
3274 2550 : // Make sure we print out at least one level of the type structure, so
3275 1275 : // that we do not get %2 = type %2
3276 2550 : TypePrinter.printStructBody(NumberedTypes[I], Out);
3277 2550 : Out << '\n';
3278 2550 : }
3279 1275 :
3280 1275 : auto &NamedTypes = TypePrinter.getNamedTypes();
3281 274 : for (unsigned I = 0, E = NamedTypes.size(); I != E; ++I) {
3282 : PrintLLVMName(Out, NamedTypes[I]->getName(), LocalPrefix);
3283 1275 : Out << " = type ";
3284 1194 :
3285 81 : // Make sure we print out at least one level of the type structure, so
3286 81 : // that we do not get %FILE = type %FILE
3287 : TypePrinter.printStructBody(NamedTypes[I], Out);
3288 0 : Out << '\n';
3289 : }
3290 1275 : }
3291 :
3292 1275 : /// printFunction - Print all aspects of a function.
3293 : void AssemblyWriter::printFunction(const Function *F) {
3294 : // Print out the return type and name.
3295 : Out << '\n';
3296 :
3297 0 : if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
3298 0 :
3299 : if (F->isMaterializable())
3300 1275 : Out << "; Materializable\n";
3301 :
3302 : const AttributeList &Attrs = F->getAttributes();
3303 1275 : if (Attrs.hasAttributes(AttributeList::FunctionIndex)) {
3304 1275 : AttributeSet AS = Attrs.getFnAttributes();
3305 1275 : std::string AttrStr;
3306 :
3307 0 : for (const Attribute &Attr : AS) {
3308 25549 : if (!Attr.isStringAttribute()) {
3309 0 : if (!AttrStr.empty()) AttrStr += ' ';
3310 : AttrStr += Attr.getAsString();
3311 17389 : }
3312 17389 : }
3313 :
3314 : if (!AttrStr.empty())
3315 6173 : Out << "; Function Attrs: " << AttrStr << '\n';
3316 : }
3317 :
3318 6173 : Machine.incorporateFunction(F);
3319 13338 :
3320 1984 : if (F->isDeclaration()) {
3321 : Out << "declare";
3322 : SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3323 : F->getAllMetadata(MDs);
3324 1984 : printMetadataAttachments(MDs, " ");
3325 992 : Out << ' ';
3326 : } else
3327 : Out << "define ";
3328 :
3329 37493 : Out << getLinkageNameWithSpace(F->getLinkage());
3330 31320 : PrintDSOLocation(*F, Out);
3331 31320 : PrintVisibility(F->getVisibility(), Out);
3332 : PrintDLLStorageClass(F->getDLLStorageClass(), Out);
3333 :
3334 : // Print the calling convention.
3335 62640 : if (F->getCallingConv() != CallingConv::C) {
3336 31320 : PrintCallingConv(F->getCallingConv(), Out);
3337 : Out << " ";
3338 : }
3339 :
3340 : FunctionType *FT = F->getFunctionType();
3341 209538 : if (Attrs.hasAttributes(AttributeList::ReturnIndex))
3342 : Out << Attrs.getAsString(AttributeList::ReturnIndex) << ' ';
3343 209538 : TypePrinter.print(F->getReturnType(), Out);
3344 : Out << ' ';
3345 209538 : WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
3346 : Out << '(';
3347 209538 :
3348 6 : // Loop over the arguments, printing them...
3349 : if (F->isDeclaration() && !IsForDebug) {
3350 209538 : // We're only interested in the type here - don't print argument names.
3351 209538 : for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) {
3352 146516 : // Insert commas as we go... the first arg doesn't get a comma
3353 : if (I)
3354 : Out << ", ";
3355 1871795 : // Output type...
3356 1725279 : TypePrinter.print(FT->getParamType(I), Out);
3357 342050 :
3358 684100 : AttributeSet ArgAttrs = Attrs.getParamAttributes(I);
3359 : if (ArgAttrs.hasAttributes())
3360 : Out << ' ' << ArgAttrs.getAsString();
3361 : }
3362 146516 : } else {
3363 136083 : // The arguments are meaningful here, print them in detail.
3364 : for (const Argument &Arg : F->args()) {
3365 : // Insert commas as we go... the first arg doesn't get a comma
3366 209538 : if (Arg.getArgNo() != 0)
3367 : Out << ", ";
3368 209538 : printArgument(&Arg, Attrs.getParamAttributes(Arg.getArgNo()));
3369 71934 : }
3370 : }
3371 71934 :
3372 71934 : // Finish printing arguments...
3373 71934 : if (FT->isVarArg()) {
3374 : if (FT->getNumParams()) Out << ", ";
3375 137604 : Out << "..."; // Output varargs portion of signature!
3376 : }
3377 419076 : Out << ')';
3378 209538 : StringRef UA = getUnnamedAddrEncoding(F->getUnnamedAddr());
3379 419076 : if (!UA.empty())
3380 419076 : Out << ' ' << UA;
3381 : // We print the function address space if it is non-zero or if we are writing
3382 : // a module with a non-zero program address space or if there is no valid
3383 209538 : // Module* so that the file can be parsed without the datalayout string.
3384 8784 : const Module *Mod = F->getParent();
3385 8784 : if (F->getAddressSpace() != 0 || !Mod ||
3386 : Mod->getDataLayout().getProgramAddressSpace() != 0)
3387 : Out << " addrspace(" << F->getAddressSpace() << ")";
3388 : if (Attrs.hasAttributes(AttributeList::FunctionIndex))
3389 209538 : Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes());
3390 12672 : if (F->hasSection()) {
3391 419076 : Out << " section \"";
3392 209538 : printEscapedString(F->getSection(), Out);
3393 209538 : Out << '"';
3394 209538 : }
3395 : maybePrintComdat(Out, *F);
3396 : if (F->getAlignment())
3397 209538 : Out << " align " << F->getAlignment();
3398 : if (F->hasGC())
3399 213095 : Out << " gc \"" << F->getGC() << '"';
3400 : if (F->hasPrefixData()) {
3401 141161 : Out << " prefix ";
3402 79373 : writeOperand(F->getPrefixData(), true);
3403 : }
3404 282322 : if (F->hasPrologueData()) {
3405 : Out << " prologue ";
3406 141161 : writeOperand(F->getPrologueData(), true);
3407 141161 : }
3408 26016 : if (F->hasPersonalityFn()) {
3409 : Out << " personality ";
3410 : writeOperand(F->getPersonalityFn(), /*PrintType=*/true);
3411 : }
3412 327595 :
3413 : if (F->isDeclaration()) {
3414 189991 : Out << '\n';
3415 87508 : } else {
3416 189991 : SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
3417 : F->getAllMetadata(MDs);
3418 : printMetadataAttachments(MDs, " ");
3419 :
3420 : Out << " {";
3421 209538 : // Output all of the function's basic blocks.
3422 4839 : for (const BasicBlock &BB : *F)
3423 4839 : printBasicBlock(&BB);
3424 :
3425 209538 : // Output the function's use-lists.
3426 209538 : printUseLists(F);
3427 209538 :
3428 53344 : Out << "}\n";
3429 : }
3430 :
3431 : Machine.purgeFunction();
3432 209538 : }
3433 209538 :
3434 209497 : /// printArgument - This member is called for every argument that is passed into
3435 154 : /// the function. Simply print it out
3436 209538 : void AssemblyWriter::printArgument(const Argument *Arg, AttributeSet Attrs) {
3437 146516 : // Output type...
3438 209538 : TypePrinter.print(Arg->getType(), Out);
3439 1372 :
3440 2744 : // Output parameter attributes list
3441 1372 : if (Attrs.hasAttributes())
3442 : Out << ' ' << Attrs.getAsString();
3443 209538 :
3444 209538 : // Output name, if available...
3445 23371 : if (Arg->hasName()) {
3446 209538 : Out << ' ';
3447 414 : PrintLLVMName(Out, Arg);
3448 209538 : }
3449 30 : }
3450 30 :
3451 : /// printBasicBlock - This member is called for each basic block in a method.
3452 209538 : void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
3453 145 : if (BB->hasName()) { // Print out the label if it exists...
3454 145 : Out << "\n";
3455 : PrintLLVMName(Out, BB->getName(), LabelPrefix);
3456 209538 : Out << ':';
3457 1712 : } else if (!BB->use_empty()) { // Don't print block # of no uses...
3458 1712 : Out << "\n; <label>:";
3459 : int Slot = Machine.getLocalSlot(BB);
3460 : if (Slot != -1)
3461 209538 : Out << Slot << ":";
3462 71934 : else
3463 : Out << "<badref>";
3464 : }
3465 137604 :
3466 137604 : if (!BB->getParent()) {
3467 : Out.PadToColumn(50);
3468 137604 : Out << "; Error: Block without parent!";
3469 : } else if (BB != &BB->getParent()->getEntryBlock()) { // Not the entry block?
3470 449555 : // Output predecessors for the block.
3471 311951 : Out.PadToColumn(50);
3472 : Out << ";";
3473 : const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
3474 137604 :
3475 : if (PI == PE) {
3476 137604 : Out << " No predecessors!";
3477 : } else {
3478 : Out << " preds = ";
3479 209538 : writeOperand(*PI, false);
3480 209538 : for (++PI; PI != PE; ++PI) {
3481 : Out << ", ";
3482 : writeOperand(*PI, false);
3483 : }
3484 189991 : }
3485 : }
3486 189991 :
3487 : Out << "\n";
3488 :
3489 189991 : if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
3490 123483 :
3491 : // Output all of the instructions in the basic block...
3492 : for (const Instruction &I : *BB) {
3493 189991 : printInstructionLine(I);
3494 179339 : }
3495 179339 :
3496 : if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
3497 189991 : }
3498 :
3499 : /// printInstructionLine - Print an instruction and a newline character.
3500 311992 : void AssemblyWriter::printInstructionLine(const Instruction &I) {
3501 311992 : printInstruction(I);
3502 281748 : Out << '\n';
3503 281748 : }
3504 281748 :
3505 30244 : /// printGCRelocateComment - print comment after call to the gc.relocate
3506 2805 : /// intrinsic indicating base and derived pointer names.
3507 2805 : void AssemblyWriter::printGCRelocateComment(const GCRelocateInst &Relocate) {
3508 2805 : Out << " ; (";
3509 2805 : writeOperand(Relocate.getBasePtr(), false);
3510 : Out << ", ";
3511 0 : writeOperand(Relocate.getDerivedPtr(), false);
3512 : Out << ")";
3513 : }
3514 311992 :
3515 0 : /// printInfoComment - Print a little comment after the instruction indicating
3516 0 : /// which slot it occupies.
3517 311992 : void AssemblyWriter::printInfoComment(const Value &V) {
3518 : if (const auto *Relocate = dyn_cast<GCRelocateInst>(&V))
3519 174385 : printGCRelocateComment(*Relocate);
3520 174385 :
3521 174385 : if (AnnotationWriter)
3522 : AnnotationWriter->printInfoComment(V, Out);
3523 174385 : }
3524 884 :
3525 : static void maybePrintCallAddrSpace(const Value *Operand, const Instruction *I,
3526 173501 : raw_ostream &Out) {
3527 173501 : // We print the address space of the call if it is non-zero.
3528 235045 : unsigned CallAddrSpace = Operand->getType()->getPointerAddressSpace();
3529 61544 : bool PrintAddrSpace = CallAddrSpace != 0;
3530 61544 : if (!PrintAddrSpace) {
3531 : const Module *Mod = getModuleFromVal(I);
3532 : // We also print it if it is zero but not equal to the program address space
3533 : // or if we can't find a valid Module* to make it possible to parse
3534 : // the resulting file even without a datalayout string.
3535 311992 : if (!Mod || Mod->getDataLayout().getProgramAddressSpace() != 0)
3536 : PrintAddrSpace = true;
3537 311992 : }
3538 : if (PrintAddrSpace)
3539 : Out << " addrspace(" << CallAddrSpace << ")";
3540 2591892 : }
3541 2279900 :
3542 : // This member is called for each Instruction in a function..
3543 : void AssemblyWriter::printInstruction(const Instruction &I) {
3544 311992 : if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
3545 311992 :
3546 : // Print out indentation for an instruction.
3547 : Out << " ";
3548 2279900 :
3549 2279900 : // Print out name if it exists...
3550 2279900 : if (I.hasName()) {
3551 2279900 : PrintLLVMName(Out, &I);
3552 : Out << " = ";
3553 : } else if (!I.getType()->isVoidTy()) {
3554 : // Print out the def slot taken.
3555 485 : int SlotNum = Machine.getLocalSlot(&I);
3556 485 : if (SlotNum == -1)
3557 485 : Out << "<badref> = ";
3558 485 : else
3559 485 : Out << '%' << SlotNum << " = ";
3560 485 : }
3561 485 :
3562 : if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
3563 : if (CI->isMustTailCall())
3564 : Out << "musttail ";
3565 2401194 : else if (CI->isTailCall())
3566 : Out << "tail ";
3567 485 : else if (CI->isNoTailCall())
3568 : Out << "notail ";
3569 2401194 : }
3570 1283 :
3571 2401194 : // Print out the opcode...
3572 : Out << I.getOpcodeName();
3573 186508 :
3574 : // If this is an atomic load or store, print out the atomic marker.
3575 : if ((isa<LoadInst>(I) && cast<LoadInst>(I).isAtomic()) ||
3576 186508 : (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
3577 186508 : Out << " atomic";
3578 186508 :
3579 186496 : if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak())
3580 : Out << " weak";
3581 :
3582 : // If this is a volatile operation, print out the volatile marker.
3583 186496 : if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) ||
3584 : (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
3585 : (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
3586 186481 : (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
3587 78 : Out << " volatile";
3588 186508 :
3589 : // Print out optimization information.
3590 : WriteOptimizationInfo(Out, &I);
3591 2314997 :
3592 2314997 : // Print out the compare instruction predicates
3593 : if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
3594 : Out << ' ' << CmpInst::getPredicateName(CI->getPredicate());
3595 2314997 :
3596 : // Print out the atomicrmw operation
3597 : if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
3598 2314997 : Out << ' ' << AtomicRMWInst::getOperationName(RMWI->getOperation());
3599 773257 :
3600 773257 : // Print out the type of the operands...
3601 3083480 : const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
3602 :
3603 704340 : // Special case conditional branches to swizzle the condition out to the front
3604 704340 : if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
3605 38 : const BranchInst &BI(cast<BranchInst>(I));
3606 : Out << ' ';
3607 1408604 : writeOperand(BI.getCondition(), true);
3608 : Out << ", ";
3609 : writeOperand(BI.getSuccessor(0), true);
3610 : Out << ", ";
3611 183244 : writeOperand(BI.getSuccessor(1), true);
3612 176 :
3613 183068 : } else if (isa<SwitchInst>(I)) {
3614 8255 : const SwitchInst& SI(cast<SwitchInst>(I));
3615 174813 : // Special case switch instruction to get formatting nice and correct.
3616 54 : Out << ' ';
3617 : writeOperand(SI.getCondition(), true);
3618 : Out << ", ";
3619 : writeOperand(SI.getDefaultDest(), true);
3620 2314997 : Out << " [";
3621 : for (auto Case : SI.cases()) {
3622 : Out << "\n ";
3623 2314997 : writeOperand(Case.getCaseValue(), true);
3624 407837 : Out << ", ";
3625 1799 : writeOperand(Case.getCaseSuccessor(), true);
3626 : }
3627 2314997 : Out << "\n ]";
3628 69 : } else if (isa<IndirectBrInst>(I)) {
3629 : // Special case indirectbr instruction to get formatting nice and correct.
3630 : Out << ' ';
3631 2314997 : writeOperand(Operand, true);
3632 2304482 : Out << ", [";
3633 4612790 :
3634 982 : for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
3635 17361 : if (i != 1)
3636 : Out << ", ";
3637 : writeOperand(I.getOperand(i), true);
3638 2314997 : }
3639 : Out << ']';
3640 : } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
3641 : Out << ' ';
3642 139402 : TypePrinter.print(I.getType(), Out);
3643 : Out << ' ';
3644 :
3645 : for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
3646 1964 : if (op) Out << ", ";
3647 : Out << "[ ";
3648 : writeOperand(PN->getIncomingValue(op), false); Out << ", ";
3649 2314997 : writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
3650 : }
3651 : } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
3652 2314997 : Out << ' ';
3653 : writeOperand(I.getOperand(0), true);
3654 59534 : for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
3655 59534 : Out << ", " << *i;
3656 59534 : } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
3657 59534 : Out << ' ';
3658 59534 : writeOperand(I.getOperand(0), true); Out << ", ";
3659 59534 : writeOperand(I.getOperand(1), true);
3660 : for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
3661 2255463 : Out << ", " << *i;
3662 : } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
3663 : Out << ' ';
3664 1156 : TypePrinter.print(I.getType(), Out);
3665 1156 : if (LPI->isCleanup() || LPI->getNumClauses() != 0)
3666 1156 : Out << '\n';
3667 1156 :
3668 1156 : if (LPI->isCleanup())
3669 3977 : Out << " cleanup";
3670 2821 :
3671 5642 : for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
3672 2821 : if (i != 0 || LPI->isCleanup()) Out << "\n";
3673 2821 : if (LPI->isCatch(i))
3674 : Out << " catch ";
3675 1156 : else
3676 2254307 : Out << " filter ";
3677 :
3678 231 : writeOperand(LPI->getClause(i), true);
3679 231 : }
3680 231 : } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(&I)) {
3681 : Out << " within ";
3682 845 : writeOperand(CatchSwitch->getParentPad(), /*PrintType=*/false);
3683 614 : Out << " [";
3684 387 : unsigned Op = 0;
3685 614 : for (const BasicBlock *PadBB : CatchSwitch->handlers()) {
3686 : if (Op > 0)
3687 231 : Out << ", ";
3688 : writeOperand(PadBB, /*PrintType=*/true);
3689 28219 : ++Op;
3690 28219 : }
3691 28219 : Out << "] unwind ";
3692 : if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest())
3693 84296 : writeOperand(UnwindDest, /*PrintType=*/true);
3694 56077 : else
3695 56077 : Out << "to caller";
3696 56077 : } else if (const auto *FPI = dyn_cast<FuncletPadInst>(&I)) {
3697 56077 : Out << " within ";
3698 : writeOperand(FPI->getParentPad(), /*PrintType=*/false);
3699 : Out << " [";
3700 9465 : for (unsigned Op = 0, NumOps = FPI->getNumArgOperands(); Op < NumOps;
3701 9465 : ++Op) {
3702 18985 : if (Op > 0)
3703 9520 : Out << ", ";
3704 : writeOperand(FPI->getArgOperand(Op), /*PrintType=*/true);
3705 2580 : }
3706 2580 : Out << ']';
3707 2580 : } else if (isa<ReturnInst>(I) && !Operand) {
3708 5202 : Out << " void";
3709 2622 : } else if (const auto *CRI = dyn_cast<CatchReturnInst>(&I)) {
3710 : Out << " from ";
3711 1857 : writeOperand(CRI->getOperand(0), /*PrintType=*/false);
3712 1857 :
3713 1857 : Out << " to ";
3714 1857 : writeOperand(CRI->getOperand(1), /*PrintType=*/true);
3715 : } else if (const auto *CRI = dyn_cast<CleanupReturnInst>(&I)) {
3716 1857 : Out << " from ";
3717 923 : writeOperand(CRI->getOperand(0), /*PrintType=*/false);
3718 :
3719 2919 : Out << " unwind ";
3720 1062 : if (CRI->hasUnwindDest())
3721 1062 : writeOperand(CRI->getOperand(1), /*PrintType=*/true);
3722 1001 : else
3723 : Out << "to caller";
3724 61 : } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
3725 : // Print the calling convention being used.
3726 1062 : if (CI->getCallingConv() != CallingConv::C) {
3727 : Out << " ";
3728 : PrintCallingConv(CI->getCallingConv(), Out);
3729 306 : }
3730 306 :
3731 306 : Operand = CI->getCalledValue();
3732 : FunctionType *FTy = CI->getFunctionType();
3733 625 : Type *RetTy = FTy->getReturnType();
3734 319 : const AttributeList &PAL = CI->getAttributes();
3735 13 :
3736 319 : if (PAL.hasAttributes(AttributeList::ReturnIndex))
3737 319 : Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
3738 :
3739 306 : // Only print addrspace(N) if necessary:
3740 : maybePrintCallAddrSpace(Operand, &I, Out);
3741 84 :
3742 : // If possible, print out the short form of the call instruction. We can
3743 222 : // only do this if the first argument is a pointer to a nonvararg function,
3744 : // and if the return type is not a pointer to a function.
3745 770 : //
3746 770 : Out << ' ';
3747 770 : TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
3748 1225 : Out << ' ';
3749 : writeOperand(Operand, false);
3750 455 : Out << '(';
3751 223 : for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
3752 455 : if (op > 0)
3753 : Out << ", ";
3754 770 : writeParamOperand(CI->getArgOperand(op), PAL.getParamAttributes(op));
3755 2210879 : }
3756 75831 :
3757 : // Emit an ellipsis if this is a musttail call in a vararg function. This
3758 233 : // is only to aid readability, musttail calls forward varargs by default.
3759 233 : if (CI->isMustTailCall() && CI->getParent() &&
3760 : CI->getParent()->getParent() &&
3761 233 : CI->getParent()->getParent()->isVarArg())
3762 233 : Out << ", ...";
3763 :
3764 330 : Out << ')';
3765 330 : if (PAL.hasAttributes(AttributeList::FunctionIndex))
3766 : Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
3767 330 :
3768 330 : writeOperandBundles(CI);
3769 118 : } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
3770 : Operand = II->getCalledValue();
3771 212 : FunctionType *FTy = II->getFunctionType();
3772 : Type *RetTy = FTy->getReturnType();
3773 : const AttributeList &PAL = II->getAttributes();
3774 183244 :
3775 5169 : // Print the calling convention being used.
3776 10338 : if (II->getCallingConv() != CallingConv::C) {
3777 : Out << " ";
3778 : PrintCallingConv(II->getCallingConv(), Out);
3779 : }
3780 183244 :
3781 183244 : if (PAL.hasAttributes(AttributeList::ReturnIndex))
3782 183244 : Out << ' ' << PAL.getAsString(AttributeList::ReturnIndex);
3783 :
3784 183244 : // Only print addrspace(N) if necessary:
3785 7842 : maybePrintCallAddrSpace(Operand, &I, Out);
3786 :
3787 : // If possible, print out the short form of the invoke instruction. We can
3788 183244 : // only do this if the first argument is a pointer to a nonvararg function,
3789 : // and if the return type is not a pointer to a function.
3790 : //
3791 : Out << ' ';
3792 : TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
3793 : Out << ' ';
3794 183244 : writeOperand(Operand, false);
3795 540334 : Out << '(';
3796 183244 : for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
3797 183244 : if (op)
3798 183244 : Out << ", ";
3799 769819 : writeParamOperand(II->getArgOperand(op), PAL.getParamAttributes(op));
3800 403331 : }
3801 246250 :
3802 806662 : Out << ')';
3803 : if (PAL.hasAttributes(AttributeList::FunctionIndex))
3804 : Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
3805 :
3806 : writeOperandBundles(II);
3807 176 :
3808 183420 : Out << "\n to ";
3809 : writeOperand(II->getNormalDest(), true);
3810 92 : Out << " unwind ";
3811 : writeOperand(II->getUnwindDest(), true);
3812 183244 : } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
3813 183244 : Out << ' ';
3814 56405 : if (AI->isUsedWithInAlloca())
3815 : Out << "inalloca ";
3816 183244 : if (AI->isSwiftError())
3817 : Out << "swifterror ";
3818 : TypePrinter.print(AI->getAllocatedType(), Out);
3819 3264 :
3820 3264 : // Explicitly write the array size if the code is broken, if it's an array
3821 3264 : // allocation, or if the type is not canonical for scalar allocations. The
3822 : // latter case prevents the type from mutating when round-tripping through
3823 : // assembly.
3824 3264 : if (!AI->getArraySize() || AI->isArrayAllocation() ||
3825 43 : !AI->getArraySize()->getType()->isIntegerTy(32)) {
3826 86 : Out << ", ";
3827 : writeOperand(AI->getArraySize(), true);
3828 : }
3829 3264 : if (AI->getAlignment()) {
3830 861 : Out << ", align " << AI->getAlignment();
3831 : }
3832 :
3833 3264 : unsigned AddrSpace = AI->getType()->getAddressSpace();
3834 : if (AddrSpace != 0) {
3835 : Out << ", addrspace(" << AddrSpace << ')';
3836 : }
3837 : } else if (isa<CastInst>(I)) {
3838 : if (Operand) {
3839 3264 : Out << ' ';
3840 9698 : writeOperand(Operand, true); // Work with broken code
3841 3264 : }
3842 3264 : Out << " to ";
3843 3264 : TypePrinter.print(I.getType(), Out);
3844 9573 : } else if (isa<VAArgInst>(I)) {
3845 3045 : if (Operand) {
3846 1306 : Out << ' ';
3847 6090 : writeOperand(Operand, true); // Work with broken code
3848 : }
3849 : Out << ", ";
3850 3264 : TypePrinter.print(I.getType(), Out);
3851 3264 : } else if (Operand) { // Print the normal way.
3852 218 : if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
3853 : Out << ' ';
3854 3264 : TypePrinter.print(GEP->getSourceElementType(), Out);
3855 : Out << ',';
3856 3264 : } else if (const auto *LI = dyn_cast<LoadInst>(&I)) {
3857 3264 : Out << ' ';
3858 3264 : TypePrinter.print(LI->getType(), Out);
3859 3264 : Out << ',';
3860 : }
3861 319768 :
3862 319768 : // PrintAllTypes - Instructions who have operands of all the same type
3863 118 : // omit the type from all but the first operand. If the instruction has
3864 319768 : // different type operands (for example br), then they are all printed.
3865 27 : bool PrintAllTypes = false;
3866 319768 : Type *TheType = Operand->getType();
3867 :
3868 : // Select, Store and ShuffleVector always print all types.
3869 : if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
3870 : || isa<ReturnInst>(I)) {
3871 : PrintAllTypes = true;
3872 638048 : } else {
3873 318280 : for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
3874 1496 : Operand = I.getOperand(i);
3875 1496 : // note that Operand shouldn't be null, but the test helps make dump()
3876 : // more tolerant of malformed IR
3877 319768 : if (Operand && Operand->getType() != TheType) {
3878 316732 : PrintAllTypes = true; // We have differing types! Print them all!
3879 : break;
3880 : }
3881 : }
3882 319768 : }
3883 1210 :
3884 : if (!PrintAllTypes) {
3885 1628209 : Out << ' ';
3886 203403 : TypePrinter.print(TheType, Out);
3887 203403 : }
3888 203403 :
3889 : Out << ' ';
3890 203403 : for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
3891 203403 : if (i) Out << ", ";
3892 1424806 : writeOperand(I.getOperand(i), PrintAllTypes);
3893 50 : }
3894 50 : }
3895 50 :
3896 : // Print atomic ordering/alignment for memory operations
3897 50 : if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
3898 50 : if (LI->isAtomic())
3899 1424756 : writeAtomic(LI->getContext(), LI->getOrdering(), LI->getSyncScopeID());
3900 : if (LI->getAlignment())
3901 145867 : Out << ", align " << LI->getAlignment();
3902 145867 : } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
3903 145867 : if (SI->isAtomic())
3904 : writeAtomic(SI->getContext(), SI->getOrdering(), SI->getSyncScopeID());
3905 428938 : if (SI->getAlignment())
3906 428938 : Out << ", align " << SI->getAlignment();
3907 428938 : } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
3908 : writeAtomicCmpXchg(CXI->getContext(), CXI->getSuccessOrdering(),
3909 : CXI->getFailureOrdering(), CXI->getSyncScopeID());
3910 : } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
3911 : writeAtomic(RMWI->getContext(), RMWI->getOrdering(),
3912 : RMWI->getSyncScopeID());
3913 : } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
3914 1419640 : writeAtomic(FI->getContext(), FI->getOrdering(), FI->getSyncScopeID());
3915 : }
3916 :
3917 1411765 : // Print Metadata info.
3918 2411748 : SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD;
3919 : I.getAllMetadata(InstMD);
3920 : printMetadataAttachments(InstMD, ", ");
3921 1142111 :
3922 : // Print a nice comment.
3923 : printInfoComment(I);
3924 : }
3925 389694 :
3926 : void AssemblyWriter::printMetadataAttachments(
3927 : const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
3928 : StringRef Separator) {
3929 : if (MDs.empty())
3930 : return;
3931 :
3932 923669 : if (MDNames.empty())
3933 752417 : MDs[0].second->getContext().getMDKindNames(MDNames);
3934 752417 :
3935 : for (const auto &I : MDs) {
3936 : unsigned Kind = I.first;
3937 1419640 : Out << Separator;
3938 3788587 : if (Kind < MDNames.size()) {
3939 2368947 : Out << "!";
3940 4737894 : printMetadataIdentifier(MDNames[Kind], Out);
3941 : } else
3942 : Out << "!<unknown kind #" << Kind << ">";
3943 : Out << ' ';
3944 : WriteAsOperandInternal(Out, I.second, &TypePrinter, &Machine, TheModule);
3945 : }
3946 428938 : }
3947 2342 :
3948 428938 : void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
3949 420574 : Out << '!' << Slot << " = ";
3950 : printMDNodeBody(Node);
3951 407837 : Out << "\n";
3952 1256 : }
3953 407837 :
3954 397368 : void AssemblyWriter::writeAllMDNodes() {
3955 : SmallVector<const MDNode *, 16> Nodes;
3956 709 : Nodes.resize(Machine.mdn_size());
3957 709 : for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
3958 : I != E; ++I)
3959 982 : Nodes[I->second] = cast<MDNode>(I->first);
3960 982 :
3961 : for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
3962 512 : writeMDNode(i, Nodes[i]);
3963 : }
3964 : }
3965 :
3966 : void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
3967 : WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
3968 2314997 : }
3969 :
3970 : void AssemblyWriter::writeAllAttributeGroups() {
3971 2314997 : std::vector<std::pair<AttributeSet, unsigned>> asVec;
3972 2314997 : asVec.resize(Machine.as_size());
3973 :
3974 2609457 : for (SlotTracker::as_iterator I = Machine.as_begin(), E = Machine.as_end();
3975 : I != E; ++I)
3976 : asVec[I->second] = *I;
3977 2609457 :
3978 : for (const auto &I : asVec)
3979 : Out << "attributes #" << I.second << " = { "
3980 132215 : << I.first.getAsString(true) << " }\n";
3981 12704 : }
3982 :
3983 275594 : void AssemblyWriter::printUseListOrder(const UseListOrder &Order) {
3984 143379 : bool IsInFunction = Machine.getFunction();
3985 143379 : if (IsInFunction)
3986 143379 : Out << " ";
3987 143379 :
3988 286758 : Out << "uselistorder";
3989 : if (const BasicBlock *BB =
3990 0 : IsInFunction ? nullptr : dyn_cast<BasicBlock>(Order.V)) {
3991 143379 : Out << "_bb ";
3992 143379 : writeOperand(BB->getParent(), false);
3993 : Out << ", ";
3994 : writeOperand(BB, false);
3995 : } else {
3996 102707 : Out << " ";
3997 205414 : writeOperand(Order.V, true);
3998 : }
3999 102707 : Out << ", { ";
4000 102707 :
4001 : assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
4002 10578 : Out << Order.Shuffle[0];
4003 : for (unsigned I = 1, E = Order.Shuffle.size(); I != E; ++I)
4004 21156 : Out << ", " << Order.Shuffle[I];
4005 10578 : Out << " }\n";
4006 113285 : }
4007 205414 :
4008 : void AssemblyWriter::printUseLists(const Function *F) {
4009 113285 : auto hasMore =
4010 205414 : [&]() { return !UseListOrders.empty() && UseListOrders.back().F == F; };
4011 : if (!hasMore())
4012 10578 : // Nothing to do.
4013 : return;
4014 :
4015 102707 : Out << "\n; uselistorder directives\n";
4016 : while (hasMore()) {
4017 : printUseListOrder(UseListOrders.back());
4018 0 : UseListOrders.pop_back();
4019 : }
4020 0 : }
4021 :
4022 0 : //===----------------------------------------------------------------------===//
4023 0 : // External Interface declarations
4024 0 : //===----------------------------------------------------------------------===//
4025 :
4026 0 : void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4027 0 : bool ShouldPreserveUseListOrder,
4028 0 : bool IsForDebug) const {
4029 0 : SlotTracker SlotTable(this->getParent());
4030 : formatted_raw_ostream OS(ROS);
4031 855 : AssemblyWriter W(OS, SlotTable, this->getParent(), AAW,
4032 855 : IsForDebug,
4033 855 : ShouldPreserveUseListOrder);
4034 740 : W.printFunction(this);
4035 : }
4036 855 :
4037 : void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
4038 855 : bool ShouldPreserveUseListOrder, bool IsForDebug) const {
4039 0 : SlotTracker SlotTable(this);
4040 0 : formatted_raw_ostream OS(ROS);
4041 0 : AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug,
4042 0 : ShouldPreserveUseListOrder);
4043 : W.printModule(this);
4044 855 : }
4045 855 :
4046 : void NamedMDNode::print(raw_ostream &ROS, bool IsForDebug) const {
4047 855 : SlotTracker SlotTable(getParent());
4048 : formatted_raw_ostream OS(ROS);
4049 : AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug);
4050 855 : W.printNamedMDNode(this);
4051 4034 : }
4052 2324 :
4053 855 : void NamedMDNode::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4054 855 : bool IsForDebug) const {
4055 : Optional<SlotTracker> LocalST;
4056 154993 : SlotTracker *SlotTable;
4057 : if (auto *ST = MST.getMachine())
4058 156235 : SlotTable = ST;
4059 : else {
4060 : LocalST.emplace(getParent());
4061 : SlotTable = &*LocalST;
4062 : }
4063 387 :
4064 : formatted_raw_ostream OS(ROS);
4065 855 : AssemblyWriter W(OS, *SlotTable, getParent(), nullptr, IsForDebug);
4066 : W.printNamedMDNode(this);
4067 : }
4068 :
4069 : void Comdat::print(raw_ostream &ROS, bool /*IsForDebug*/) const {
4070 : PrintLLVMName(ROS, getName(), ComdatPrefix);
4071 : ROS << " = comdat ";
4072 :
4073 : switch (getSelectionKind()) {
4074 149 : case Comdat::Any:
4075 : ROS << "any";
4076 : break;
4077 298 : case Comdat::ExactMatch:
4078 149 : ROS << "exactmatch";
4079 : break;
4080 : case Comdat::Largest:
4081 298 : ROS << "largest";
4082 149 : break;
4083 149 : case Comdat::NoDuplicates:
4084 : ROS << "noduplicates";
4085 17389 : break;
4086 : case Comdat::SameSize:
4087 34777 : ROS << "samesize";
4088 17389 : break;
4089 : }
4090 34778 :
4091 17389 : ROS << '\n';
4092 17388 : }
4093 :
4094 1 : void Type::print(raw_ostream &OS, bool /*IsForDebug*/, bool NoDetails) const {
4095 2 : TypePrinting TP;
4096 1 : TP.print(const_cast<Type*>(this), OS);
4097 2 :
4098 1 : if (NoDetails)
4099 1 : return;
4100 :
4101 7 : // If the type is a named struct type, print the body as well.
4102 : if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
4103 : if (!STy->isLiteral()) {
4104 : OS << " = type ";
4105 7 : TP.printStructBody(STy, OS);
4106 : }
4107 : }
4108 0 :
4109 : static bool isReferencingMDNode(const Instruction &I) {
4110 : if (const auto *CI = dyn_cast<CallInst>(&I))
4111 : if (Function *F = CI->getCalledFunction())
4112 7 : if (F->isIntrinsic())
4113 14 : for (auto &Op : I.operands())
4114 7 : if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
4115 7 : if (isa<MDNode>(V->getMetadata()))
4116 : return true;
4117 25549 : return false;
4118 25549 : }
4119 25549 :
4120 : void Value::print(raw_ostream &ROS, bool IsForDebug) const {
4121 25549 : bool ShouldInitializeAllMetadata = false;
4122 25311 : if (auto *I = dyn_cast<Instruction>(this))
4123 25311 : ShouldInitializeAllMetadata = isReferencingMDNode(*I);
4124 25311 : else if (isa<Function>(this) || isa<MetadataAsValue>(this))
4125 11 : ShouldInitializeAllMetadata = true;
4126 11 :
4127 11 : ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata);
4128 202 : print(ROS, MST, IsForDebug);
4129 202 : }
4130 202 :
4131 16 : void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST,
4132 16 : bool IsForDebug) const {
4133 16 : formatted_raw_ostream OS(ROS);
4134 9 : SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
4135 9 : SlotTracker &SlotTable =
4136 9 : MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
4137 : auto incorporateFunction = [&](const Function *F) {
4138 : if (F)
4139 : MST.incorporateFunction(*F);
4140 25549 : };
4141 :
4142 44882 : if (const Instruction *I = dyn_cast<Instruction>(this)) {
4143 44882 : incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr);
4144 44882 : AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug);
4145 : W.printInstruction(*I);
4146 44882 : } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
4147 0 : incorporateFunction(BB->getParent());
4148 : AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug);
4149 : W.printBasicBlock(BB);
4150 : } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
4151 86 : AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug);
4152 84 : if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
4153 84 : W.printGlobal(V);
4154 : else if (const Function *F = dyn_cast<Function>(GV))
4155 : W.printFunction(F);
4156 : else
4157 34826 : W.printIndirectSymbol(cast<GlobalIndirectSymbol>(GV));
4158 : } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) {
4159 : V->getMetadata()->print(ROS, MST, getModuleFromVal(V));
4160 3400 : } else if (const Constant *C = dyn_cast<Constant>(this)) {
4161 9644 : TypePrinting TypePrinter;
4162 : TypePrinter.print(C->getType(), OS);
4163 7 : OS << ' ';
4164 : WriteConstantInternal(OS, C, TypePrinter, MST.getMachine(), nullptr);
4165 : } else if (isa<InlineAsm>(this) || isa<Argument>(this)) {
4166 : this->printAsOperand(OS, /* PrintType */ true, MST);
4167 : } else {
4168 35398 : llvm_unreachable("Unknown value to print out!");
4169 : }
4170 : }
4171 34826 :
4172 572 : /// Print without a type, skipping the TypePrinting object.
4173 : ///
4174 : /// \return \c true iff printing was successful.
4175 70796 : static bool printWithoutType(const Value &V, raw_ostream &O,
4176 35398 : SlotTracker *Machine, const Module *M) {
4177 35398 : if (V.hasName() || isa<GlobalValue>(V) ||
4178 : (!isa<Constant>(V) && !isa<MetadataAsValue>(V))) {
4179 35671 : WriteAsOperandInternal(O, &V, nullptr, Machine, M);
4180 : return true;
4181 35671 : }
4182 71342 : return false;
4183 : }
4184 35671 :
4185 : static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType,
4186 35100 : ModuleSlotTracker &MST) {
4187 35100 : TypePrinting TypePrinter(MST.getModule());
4188 : if (PrintType) {
4189 : TypePrinter.print(V.getType(), O);
4190 : O << ' ';
4191 35097 : }
4192 70194 :
4193 35097 : WriteAsOperandInternal(O, &V, &TypePrinter, MST.getMachine(),
4194 : MST.getModule());
4195 41 : }
4196 82 :
4197 41 : void Value::printAsOperand(raw_ostream &O, bool PrintType,
4198 : const Module *M) const {
4199 496 : if (!M)
4200 : M = getModuleFromVal(this);
4201 10 :
4202 : if (!PrintType)
4203 238 : if (printWithoutType(*this, O, nullptr, M))
4204 : return;
4205 0 :
4206 : SlotTracker Machine(
4207 4 : M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this));
4208 : ModuleSlotTracker MST(Machine, M);
4209 101 : printAsOperandImpl(*this, O, PrintType, MST);
4210 101 : }
4211 :
4212 101 : void Value::printAsOperand(raw_ostream &O, bool PrintType,
4213 180 : ModuleSlotTracker &MST) const {
4214 180 : if (!PrintType)
4215 : if (printWithoutType(*this, O, MST.getMachine(), MST.getModule()))
4216 0 : return;
4217 :
4218 35671 : printAsOperandImpl(*this, O, PrintType, MST);
4219 : }
4220 :
4221 : static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD,
4222 : ModuleSlotTracker &MST, const Module *M,
4223 341650 : bool OnlyAsOperand) {
4224 : formatted_raw_ostream OS(ROS);
4225 363133 :
4226 348 : TypePrinting TypePrinter(M);
4227 320511 :
4228 320511 : WriteAsOperandInternal(OS, &MD, &TypePrinter, MST.getMachine(), M,
4229 : /* FromValue */ true);
4230 :
4231 : auto *N = dyn_cast<MDNode>(&MD);
4232 : if (OnlyAsOperand || !N || isa<DIExpression>(MD))
4233 34499 : return;
4234 :
4235 68998 : OS << " = ";
4236 34499 : WriteMDNodeBodyInternal(OS, N, &TypePrinter, MST.getMachine(), M);
4237 13360 : }
4238 :
4239 : void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const {
4240 : ModuleSlotTracker MST(M, isa<MDNode>(this));
4241 34499 : printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
4242 : }
4243 34499 :
4244 : void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
4245 344447 : const Module *M) const {
4246 : printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
4247 344447 : }
4248 47989 :
4249 : void Metadata::print(raw_ostream &OS, const Module *M,
4250 344447 : bool /*IsForDebug*/) const {
4251 333191 : ModuleSlotTracker MST(M, isa<MDNode>(this));
4252 312054 : printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
4253 : }
4254 :
4255 64786 : void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST,
4256 64786 : const Module *M, bool /*IsForDebug*/) const {
4257 32393 : printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
4258 : }
4259 :
4260 10563 : void ModuleSummaryIndex::print(raw_ostream &ROS, bool IsForDebug) const {
4261 : SlotTracker SlotTable(this);
4262 10563 : formatted_raw_ostream OS(ROS);
4263 8459 : AssemblyWriter W(OS, SlotTable, this, IsForDebug);
4264 : W.printModuleSummaryIndex();
4265 : }
4266 2106 :
4267 : #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4268 : // Value::dump - allow easy printing of Values from the debugger.
4269 8405 : LLVM_DUMP_METHOD
4270 : void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
4271 :
4272 189 : // Type::dump - allow easy printing of Types from the debugger.
4273 : LLVM_DUMP_METHOD
4274 189 : void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
4275 :
4276 8405 : // Module::dump() - Allow printing of Modules from the debugger.
4277 : LLVM_DUMP_METHOD
4278 : void Module::dump() const {
4279 : print(dbgs(), nullptr,
4280 8405 : /*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true);
4281 8216 : }
4282 :
4283 189 : // Allow printing of Comdats from the debugger.
4284 189 : LLVM_DUMP_METHOD
4285 : void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4286 :
4287 2 : // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
4288 4 : LLVM_DUMP_METHOD
4289 2 : void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4290 2 :
4291 : LLVM_DUMP_METHOD
4292 8178 : void Metadata::dump() const { dump(nullptr); }
4293 :
4294 8178 : LLVM_DUMP_METHOD
4295 8178 : void Metadata::dump(const Module *M) const {
4296 : print(dbgs(), M, /*IsForDebug=*/true);
4297 14 : dbgs() << '\n';
4298 : }
4299 28 :
4300 14 : // Allow printing of ModuleSummaryIndex from the debugger.
4301 14 : LLVM_DUMP_METHOD
4302 : void ModuleSummaryIndex::dump() const { print(dbgs(), /*IsForDebug=*/true); }
4303 211 : #endif
|