Line data Source code
1 : //===-- Constants.cpp - Implement Constant nodes --------------------------===//
2 : //
3 : // The LLVM Compiler Infrastructure
4 : //
5 : // This file is distributed under the University of Illinois Open Source
6 : // License. See LICENSE.TXT for details.
7 : //
8 : //===----------------------------------------------------------------------===//
9 : //
10 : // This file implements the Constant* classes.
11 : //
12 : //===----------------------------------------------------------------------===//
13 :
14 : #include "llvm/IR/Constants.h"
15 : #include "ConstantFold.h"
16 : #include "LLVMContextImpl.h"
17 : #include "llvm/ADT/STLExtras.h"
18 : #include "llvm/ADT/SmallVector.h"
19 : #include "llvm/ADT/StringMap.h"
20 : #include "llvm/IR/DerivedTypes.h"
21 : #include "llvm/IR/GetElementPtrTypeIterator.h"
22 : #include "llvm/IR/GlobalValue.h"
23 : #include "llvm/IR/Instructions.h"
24 : #include "llvm/IR/Module.h"
25 : #include "llvm/IR/Operator.h"
26 : #include "llvm/Support/Debug.h"
27 : #include "llvm/Support/ErrorHandling.h"
28 : #include "llvm/Support/ManagedStatic.h"
29 : #include "llvm/Support/MathExtras.h"
30 : #include "llvm/Support/raw_ostream.h"
31 : #include <algorithm>
32 :
33 : using namespace llvm;
34 :
35 : //===----------------------------------------------------------------------===//
36 : // Constant Class
37 : //===----------------------------------------------------------------------===//
38 :
39 3166 : bool Constant::isNegativeZeroValue() const {
40 : // Floating point values have an explicit -0.0 value.
41 : if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
42 520 : return CFP->isZero() && CFP->isNegative();
43 :
44 : // Equivalent for a vector of -0.0's.
45 : if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
46 83 : if (CV->getElementType()->isFloatingPointTy() && CV->isSplat())
47 41 : if (CV->getElementAsAPFloat(0).isNegZero())
48 : return true;
49 :
50 : if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
51 2 : if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
52 0 : if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
53 : return true;
54 :
55 : // We've already handled true FP case; any other FP vectors can't represent -0.0.
56 2605 : if (getType()->isFPOrFPVectorTy())
57 : return false;
58 :
59 : // Otherwise, just use +0.0.
60 2591 : return isNullValue();
61 : }
62 :
63 : // Return true iff this constant is positive zero (floating point), negative
64 : // zero (floating point), or a null value.
65 2000507 : bool Constant::isZeroValue() const {
66 : // Floating point values have an explicit -0.0 value.
67 : if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
68 471 : return CFP->isZero();
69 :
70 : // Equivalent for a vector of -0.0's.
71 : if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
72 996 : if (CV->getElementType()->isFloatingPointTy() && CV->isSplat())
73 168 : if (CV->getElementAsAPFloat(0).isZero())
74 : return true;
75 :
76 : if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
77 121 : if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
78 0 : if (SplatCFP && SplatCFP->isZero())
79 : return true;
80 :
81 : // Otherwise, just use +0.0.
82 2000005 : return isNullValue();
83 : }
84 :
85 63356240 : bool Constant::isNullValue() const {
86 : // 0 is null.
87 : if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
88 : return CI->isZero();
89 :
90 : // +0.0 is null.
91 : if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
92 47864 : return CFP->isZero() && !CFP->isNegative();
93 :
94 : // constant zero is zero for aggregates, cpnull is null for pointers, none for
95 : // tokens.
96 43841018 : return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this) ||
97 : isa<ConstantTokenNone>(this);
98 : }
99 :
100 1776053 : bool Constant::isAllOnesValue() const {
101 : // Check for -1 integers
102 : if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
103 : return CI->isMinusOne();
104 :
105 : // Check for FP which are bitcasted from -1 integers
106 : if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
107 160 : return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
108 :
109 : // Check for constant vectors which are splats of -1 values.
110 : if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
111 412 : if (Constant *Splat = CV->getSplatValue())
112 53 : return Splat->isAllOnesValue();
113 :
114 : // Check for constant vectors which are splats of -1 values.
115 : if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) {
116 7668 : if (CV->isSplat()) {
117 4710 : if (CV->getElementType()->isFloatingPointTy())
118 1416 : return CV->getElementAsAPFloat(0).bitcastToAPInt().isAllOnesValue();
119 8004 : return CV->getElementAsAPInt(0).isAllOnesValue();
120 : }
121 : }
122 :
123 : return false;
124 : }
125 :
126 1315 : bool Constant::isOneValue() const {
127 : // Check for 1 integers
128 : if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
129 : return CI->isOne();
130 :
131 : // Check for FP which are bitcasted from 1 integers
132 : if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
133 0 : return CFP->getValueAPF().bitcastToAPInt().isOneValue();
134 :
135 : // Check for constant vectors which are splats of 1 values.
136 : if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
137 0 : if (Constant *Splat = CV->getSplatValue())
138 0 : return Splat->isOneValue();
139 :
140 : // Check for constant vectors which are splats of 1 values.
141 : if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) {
142 0 : if (CV->isSplat()) {
143 0 : if (CV->getElementType()->isFloatingPointTy())
144 0 : return CV->getElementAsAPFloat(0).bitcastToAPInt().isOneValue();
145 0 : return CV->getElementAsAPInt(0).isOneValue();
146 : }
147 : }
148 :
149 : return false;
150 : }
151 :
152 4728 : bool Constant::isMinSignedValue() const {
153 : // Check for INT_MIN integers
154 : if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
155 4624 : return CI->isMinValue(/*isSigned=*/true);
156 :
157 : // Check for FP which are bitcasted from INT_MIN integers
158 : if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
159 0 : return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
160 :
161 : // Check for constant vectors which are splats of INT_MIN values.
162 : if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
163 0 : if (Constant *Splat = CV->getSplatValue())
164 0 : return Splat->isMinSignedValue();
165 :
166 : // Check for constant vectors which are splats of INT_MIN values.
167 : if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) {
168 104 : if (CV->isSplat()) {
169 14 : if (CV->getElementType()->isFloatingPointTy())
170 0 : return CV->getElementAsAPFloat(0).bitcastToAPInt().isMinSignedValue();
171 14 : return CV->getElementAsAPInt(0).isMinSignedValue();
172 : }
173 : }
174 :
175 : return false;
176 : }
177 :
178 1543 : bool Constant::isNotMinSignedValue() const {
179 : // Check for INT_MIN integers
180 : if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
181 1532 : return !CI->isMinValue(/*isSigned=*/true);
182 :
183 : // Check for FP which are bitcasted from INT_MIN integers
184 : if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
185 0 : return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
186 :
187 : // Check for constant vectors which are splats of INT_MIN values.
188 : if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
189 3 : if (Constant *Splat = CV->getSplatValue())
190 1 : return Splat->isNotMinSignedValue();
191 :
192 : // Check for constant vectors which are splats of INT_MIN values.
193 : if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) {
194 8 : if (CV->isSplat()) {
195 6 : if (CV->getElementType()->isFloatingPointTy())
196 0 : return !CV->getElementAsAPFloat(0).bitcastToAPInt().isMinSignedValue();
197 6 : return !CV->getElementAsAPInt(0).isMinSignedValue();
198 : }
199 : }
200 :
201 : // It *may* contain INT_MIN, we can't tell.
202 : return false;
203 : }
204 :
205 296 : bool Constant::isFiniteNonZeroFP() const {
206 : if (auto *CFP = dyn_cast<ConstantFP>(this))
207 253 : return CFP->getValueAPF().isFiniteNonZero();
208 86 : if (!getType()->isVectorTy())
209 : return false;
210 141 : for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i) {
211 112 : auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i));
212 110 : if (!CFP || !CFP->getValueAPF().isFiniteNonZero())
213 : return false;
214 : }
215 : return true;
216 : }
217 :
218 52 : bool Constant::isNormalFP() const {
219 : if (auto *CFP = dyn_cast<ConstantFP>(this))
220 32 : return CFP->getValueAPF().isNormal();
221 40 : if (!getType()->isVectorTy())
222 : return false;
223 72 : for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i) {
224 53 : auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i));
225 52 : if (!CFP || !CFP->getValueAPF().isNormal())
226 1 : return false;
227 : }
228 : return true;
229 : }
230 :
231 98 : bool Constant::hasExactInverseFP() const {
232 : if (auto *CFP = dyn_cast<ConstantFP>(this))
233 58 : return CFP->getValueAPF().getExactInverse(nullptr);
234 80 : if (!getType()->isVectorTy())
235 : return false;
236 71 : for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i) {
237 64 : auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i));
238 59 : if (!CFP || !CFP->getValueAPF().getExactInverse(nullptr))
239 33 : return false;
240 : }
241 : return true;
242 : }
243 :
244 98 : bool Constant::isNaN() const {
245 : if (auto *CFP = dyn_cast<ConstantFP>(this))
246 92 : return CFP->isNaN();
247 12 : if (!getType()->isVectorTy())
248 : return false;
249 19 : for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i) {
250 14 : auto *CFP = dyn_cast_or_null<ConstantFP>(this->getAggregateElement(i));
251 13 : if (!CFP || !CFP->isNaN())
252 : return false;
253 : }
254 : return true;
255 : }
256 :
257 202 : bool Constant::containsUndefElement() const {
258 404 : if (!getType()->isVectorTy())
259 : return false;
260 735 : for (unsigned i = 0, e = getType()->getVectorNumElements(); i != e; ++i)
261 614 : if (isa<UndefValue>(getAggregateElement(i)))
262 : return true;
263 :
264 : return false;
265 : }
266 :
267 : /// Constructor to create a '0' constant of arbitrary type.
268 4939468 : Constant *Constant::getNullValue(Type *Ty) {
269 4939468 : switch (Ty->getTypeID()) {
270 4737710 : case Type::IntegerTyID:
271 4737710 : return ConstantInt::get(Ty, 0);
272 588 : case Type::HalfTyID:
273 588 : return ConstantFP::get(Ty->getContext(),
274 1176 : APFloat::getZero(APFloat::IEEEhalf()));
275 3065 : case Type::FloatTyID:
276 3065 : return ConstantFP::get(Ty->getContext(),
277 6130 : APFloat::getZero(APFloat::IEEEsingle()));
278 3211 : case Type::DoubleTyID:
279 3211 : return ConstantFP::get(Ty->getContext(),
280 6422 : APFloat::getZero(APFloat::IEEEdouble()));
281 619 : case Type::X86_FP80TyID:
282 619 : return ConstantFP::get(Ty->getContext(),
283 1238 : APFloat::getZero(APFloat::x87DoubleExtended()));
284 58 : case Type::FP128TyID:
285 58 : return ConstantFP::get(Ty->getContext(),
286 116 : APFloat::getZero(APFloat::IEEEquad()));
287 : case Type::PPC_FP128TyID:
288 15 : return ConstantFP::get(Ty->getContext(),
289 30 : APFloat(APFloat::PPCDoubleDouble(),
290 15 : APInt::getNullValue(128)));
291 : case Type::PointerTyID:
292 97435 : return ConstantPointerNull::get(cast<PointerType>(Ty));
293 96220 : case Type::StructTyID:
294 : case Type::ArrayTyID:
295 : case Type::VectorTyID:
296 96220 : return ConstantAggregateZero::get(Ty);
297 547 : case Type::TokenTyID:
298 547 : return ConstantTokenNone::get(Ty->getContext());
299 0 : default:
300 : // Function, Label, or Opaque type?
301 0 : llvm_unreachable("Cannot create a null constant of that type!");
302 : }
303 : }
304 :
305 14043 : Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
306 : Type *ScalarTy = Ty->getScalarType();
307 :
308 : // Create the base integer constant.
309 14043 : Constant *C = ConstantInt::get(Ty->getContext(), V);
310 :
311 : // Convert an integer to a pointer, if necessary.
312 : if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
313 1 : C = ConstantExpr::getIntToPtr(C, PTy);
314 :
315 : // Broadcast a scalar to a vector, if necessary.
316 : if (VectorType *VTy = dyn_cast<VectorType>(Ty))
317 1 : C = ConstantVector::getSplat(VTy->getNumElements(), C);
318 :
319 14043 : return C;
320 : }
321 :
322 668319 : Constant *Constant::getAllOnesValue(Type *Ty) {
323 : if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
324 661492 : return ConstantInt::get(Ty->getContext(),
325 1322984 : APInt::getAllOnesValue(ITy->getBitWidth()));
326 :
327 : if (Ty->isFloatingPointTy()) {
328 : APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
329 12 : !Ty->isPPC_FP128Ty());
330 12 : return ConstantFP::get(Ty->getContext(), FL);
331 : }
332 :
333 : VectorType *VTy = cast<VectorType>(Ty);
334 6815 : return ConstantVector::getSplat(VTy->getNumElements(),
335 6815 : getAllOnesValue(VTy->getElementType()));
336 : }
337 :
338 3657269 : Constant *Constant::getAggregateElement(unsigned Elt) const {
339 : if (const ConstantAggregate *CC = dyn_cast<ConstantAggregate>(this))
340 1674659 : return Elt < CC->getNumOperands() ? CC->getOperand(Elt) : nullptr;
341 :
342 : if (const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(this))
343 354896 : return Elt < CAZ->getNumElements() ? CAZ->getElementValue(Elt) : nullptr;
344 :
345 : if (const UndefValue *UV = dyn_cast<UndefValue>(this))
346 5013 : return Elt < UV->getNumElements() ? UV->getElementValue(Elt) : nullptr;
347 :
348 : if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
349 1622567 : return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt)
350 : : nullptr;
351 : return nullptr;
352 : }
353 :
354 5332 : Constant *Constant::getAggregateElement(Constant *Elt) const {
355 : assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
356 : if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt))
357 5332 : return getAggregateElement(CI->getZExtValue());
358 : return nullptr;
359 : }
360 :
361 319141 : void Constant::destroyConstant() {
362 : /// First call destroyConstantImpl on the subclass. This gives the subclass
363 : /// a chance to remove the constant from any maps/pools it's contained in.
364 638282 : switch (getValueID()) {
365 0 : default:
366 0 : llvm_unreachable("Not a constant!");
367 : #define HANDLE_CONSTANT(Name) \
368 : case Value::Name##Val: \
369 : cast<Name>(this)->destroyConstantImpl(); \
370 : break;
371 : #include "llvm/IR/Value.def"
372 : }
373 :
374 : // When a Constant is destroyed, there may be lingering
375 : // references to the constant by other constants in the constant pool. These
376 : // constants are implicitly dependent on the module that is being deleted,
377 : // but they don't know that. Because we only find out when the CPV is
378 : // deleted, we must now notify all of our users (that should only be
379 : // Constants) that they are, in fact, invalid now and should be deleted.
380 : //
381 319141 : while (!use_empty()) {
382 : Value *V = user_back();
383 : #ifndef NDEBUG // Only in -g mode...
384 : if (!isa<Constant>(V)) {
385 : dbgs() << "While deleting: " << *this
386 : << "\n\nUse still stuck around after Def is destroyed: " << *V
387 : << "\n\n";
388 : }
389 : #endif
390 : assert(isa<Constant>(V) && "References remain to Constant being destroyed");
391 0 : cast<Constant>(V)->destroyConstant();
392 :
393 : // The constant should remove itself from our use list...
394 : assert((use_empty() || user_back() != V) && "Constant not removed!");
395 : }
396 :
397 : // Value has no outstanding references it is safe to delete it now...
398 319141 : delete this;
399 319141 : }
400 :
401 2475945 : static bool canTrapImpl(const Constant *C,
402 : SmallPtrSetImpl<const ConstantExpr *> &NonTrappingOps) {
403 : assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
404 : // The only thing that could possibly trap are constant exprs.
405 : const ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
406 : if (!CE)
407 : return false;
408 :
409 : // ConstantExpr traps if any operands can trap.
410 2210173 : for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
411 : if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) {
412 2746 : if (NonTrappingOps.insert(Op).second && canTrapImpl(Op, NonTrappingOps))
413 14 : return true;
414 : }
415 : }
416 :
417 : // Otherwise, only specific operations can trap.
418 : switch (CE->getOpcode()) {
419 : default:
420 : return false;
421 : case Instruction::UDiv:
422 : case Instruction::SDiv:
423 : case Instruction::URem:
424 : case Instruction::SRem:
425 : // Div and rem can trap if the RHS is not known to be non-zero.
426 24 : if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
427 24 : return true;
428 : return false;
429 : }
430 : }
431 :
432 2473573 : bool Constant::canTrap() const {
433 : SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps;
434 2473573 : return canTrapImpl(this, NonTrappingOps);
435 : }
436 :
437 : /// Check if C contains a GlobalValue for which Predicate is true.
438 : static bool
439 61651 : ConstHasGlobalValuePredicate(const Constant *C,
440 : bool (*Predicate)(const GlobalValue *)) {
441 : SmallPtrSet<const Constant *, 8> Visited;
442 : SmallVector<const Constant *, 8> WorkList;
443 61651 : WorkList.push_back(C);
444 61651 : Visited.insert(C);
445 :
446 126369 : while (!WorkList.empty()) {
447 : const Constant *WorkItem = WorkList.pop_back_val();
448 : if (const auto *GV = dyn_cast<GlobalValue>(WorkItem))
449 1432 : if (Predicate(GV))
450 : return true;
451 133238 : for (const Value *Op : WorkItem->operands()) {
452 3802 : const Constant *ConstOp = dyn_cast<Constant>(Op);
453 3802 : if (!ConstOp)
454 1 : continue;
455 3801 : if (Visited.insert(ConstOp).second)
456 3079 : WorkList.push_back(ConstOp);
457 : }
458 : }
459 : return false;
460 : }
461 :
462 58050 : bool Constant::isThreadDependent() const {
463 : auto DLLImportPredicate = [](const GlobalValue *GV) {
464 : return GV->isThreadLocal();
465 : };
466 58050 : return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
467 : }
468 :
469 3601 : bool Constant::isDLLImportDependent() const {
470 : auto DLLImportPredicate = [](const GlobalValue *GV) {
471 : return GV->hasDLLImportStorageClass();
472 : };
473 3601 : return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
474 : }
475 :
476 146137 : bool Constant::isConstantUsed() const {
477 146256 : for (const User *U : users()) {
478 : const Constant *UC = dyn_cast<Constant>(U);
479 : if (!UC || isa<GlobalValue>(UC))
480 : return true;
481 :
482 72736 : if (UC->isConstantUsed())
483 : return true;
484 : }
485 : return false;
486 : }
487 :
488 915422 : bool Constant::needsRelocation() const {
489 : if (isa<GlobalValue>(this))
490 : return true; // Global reference.
491 :
492 : if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
493 219 : return BA->getFunction()->needsRelocation();
494 :
495 : // While raw uses of blockaddress need to be relocated, differences between
496 : // two of them don't when they are for labels in the same function. This is a
497 : // common idiom when creating a table for the indirect goto extension, so we
498 : // handle it efficiently here.
499 : if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
500 149372 : if (CE->getOpcode() == Instruction::Sub) {
501 : ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
502 : ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
503 99 : if (LHS && RHS && LHS->getOpcode() == Instruction::PtrToInt &&
504 99 : RHS->getOpcode() == Instruction::PtrToInt &&
505 6 : isa<BlockAddress>(LHS->getOperand(0)) &&
506 105 : isa<BlockAddress>(RHS->getOperand(0)) &&
507 : cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
508 : cast<BlockAddress>(RHS->getOperand(0))->getFunction())
509 : return false;
510 : }
511 :
512 : bool Result = false;
513 1450441 : for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
514 1320846 : Result |= cast<Constant>(getOperand(i))->needsRelocation();
515 :
516 : return Result;
517 : }
518 :
519 : /// If the specified constantexpr is dead, remove it. This involves recursively
520 : /// eliminating any dead users of the constantexpr.
521 4340292 : static bool removeDeadUsersOfConstant(const Constant *C) {
522 : if (isa<GlobalValue>(C)) return false; // Cannot remove this
523 :
524 3852193 : while (!C->use_empty()) {
525 : const Constant *User = dyn_cast<Constant>(C->user_back());
526 : if (!User) return false; // Non-constant usage;
527 1607281 : if (!removeDeadUsersOfConstant(User))
528 : return false; // Constant wasn't dead
529 : }
530 :
531 316329 : const_cast<Constant*>(C)->destroyConstant();
532 316329 : return true;
533 : }
534 :
535 :
536 2688400 : void Constant::removeDeadConstantUsers() const {
537 : Value::const_user_iterator I = user_begin(), E = user_end();
538 : Value::const_user_iterator LastNonDeadUser = E;
539 7870331 : while (I != E) {
540 : const Constant *User = dyn_cast<Constant>(*I);
541 : if (!User) {
542 : LastNonDeadUser = I;
543 : ++I;
544 2545403 : continue;
545 : }
546 :
547 2733011 : if (!removeDeadUsersOfConstant(User)) {
548 : // If the constant wasn't dead, remember that this was the last live use
549 : // and move on to the next constant.
550 : LastNonDeadUser = I;
551 : ++I;
552 2458891 : continue;
553 : }
554 :
555 : // If the constant was dead, then the iterator is invalidated.
556 274120 : if (LastNonDeadUser == E) {
557 : I = user_begin();
558 147504 : if (I == E) break;
559 : } else {
560 : I = LastNonDeadUser;
561 : ++I;
562 : }
563 : }
564 2688400 : }
565 :
566 :
567 :
568 : //===----------------------------------------------------------------------===//
569 : // ConstantInt
570 : //===----------------------------------------------------------------------===//
571 :
572 1011159 : ConstantInt::ConstantInt(IntegerType *Ty, const APInt &V)
573 1011159 : : ConstantData(Ty, ConstantIntVal), Val(V) {
574 : assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
575 1011159 : }
576 :
577 435898 : ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
578 435898 : LLVMContextImpl *pImpl = Context.pImpl;
579 435898 : if (!pImpl->TheTrueVal)
580 10862 : pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
581 435898 : return pImpl->TheTrueVal;
582 : }
583 :
584 266037 : ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
585 266037 : LLVMContextImpl *pImpl = Context.pImpl;
586 266037 : if (!pImpl->TheFalseVal)
587 8483 : pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
588 266037 : return pImpl->TheFalseVal;
589 : }
590 :
591 33681 : Constant *ConstantInt::getTrue(Type *Ty) {
592 : assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1.");
593 33681 : ConstantInt *TrueC = ConstantInt::getTrue(Ty->getContext());
594 : if (auto *VTy = dyn_cast<VectorType>(Ty))
595 48 : return ConstantVector::getSplat(VTy->getNumElements(), TrueC);
596 : return TrueC;
597 : }
598 :
599 8260 : Constant *ConstantInt::getFalse(Type *Ty) {
600 : assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1.");
601 8260 : ConstantInt *FalseC = ConstantInt::getFalse(Ty->getContext());
602 : if (auto *VTy = dyn_cast<VectorType>(Ty))
603 59 : return ConstantVector::getSplat(VTy->getNumElements(), FalseC);
604 : return FalseC;
605 : }
606 :
607 : // Get a ConstantInt from an APInt.
608 93898313 : ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
609 : // get an existing value or the insertion position
610 93898313 : LLVMContextImpl *pImpl = Context.pImpl;
611 93898313 : std::unique_ptr<ConstantInt> &Slot = pImpl->IntConstants[V];
612 93898312 : if (!Slot) {
613 : // Get the corresponding integer type for the bit width of the value.
614 1011159 : IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
615 1011159 : Slot.reset(new ConstantInt(ITy, V));
616 : }
617 : assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth()));
618 93898312 : return Slot.get();
619 : }
620 :
621 9554027 : Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
622 9555627 : Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
623 :
624 : // For vectors, broadcast the value.
625 : if (VectorType *VTy = dyn_cast<VectorType>(Ty))
626 1600 : return ConstantVector::getSplat(VTy->getNumElements(), C);
627 :
628 : return C;
629 : }
630 :
631 21168976 : ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, bool isSigned) {
632 42337952 : return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
633 : }
634 :
635 1510 : ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
636 1510 : return get(Ty, V, true);
637 : }
638 :
639 8448 : Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
640 8448 : return get(Ty, V, true);
641 : }
642 :
643 35716128 : Constant *ConstantInt::get(Type *Ty, const APInt& V) {
644 35716128 : ConstantInt *C = get(Ty->getContext(), V);
645 : assert(C->getType() == Ty->getScalarType() &&
646 : "ConstantInt type doesn't match the type implied by its value!");
647 :
648 : // For vectors, broadcast the value.
649 : if (VectorType *VTy = dyn_cast<VectorType>(Ty))
650 636 : return ConstantVector::getSplat(VTy->getNumElements(), C);
651 :
652 : return C;
653 : }
654 :
655 297 : ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, uint8_t radix) {
656 594 : return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
657 : }
658 :
659 : /// Remove the constant from the constant table.
660 0 : void ConstantInt::destroyConstantImpl() {
661 0 : llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!");
662 : }
663 :
664 : //===----------------------------------------------------------------------===//
665 : // ConstantFP
666 : //===----------------------------------------------------------------------===//
667 :
668 9375 : static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
669 9375 : if (Ty->isHalfTy())
670 425 : return &APFloat::IEEEhalf();
671 8950 : if (Ty->isFloatTy())
672 5225 : return &APFloat::IEEEsingle();
673 3725 : if (Ty->isDoubleTy())
674 3543 : return &APFloat::IEEEdouble();
675 182 : if (Ty->isX86_FP80Ty())
676 119 : return &APFloat::x87DoubleExtended();
677 63 : else if (Ty->isFP128Ty())
678 53 : return &APFloat::IEEEquad();
679 :
680 : assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
681 10 : return &APFloat::PPCDoubleDouble();
682 : }
683 :
684 1096 : Constant *ConstantFP::get(Type *Ty, double V) {
685 1096 : LLVMContext &Context = Ty->getContext();
686 :
687 1096 : APFloat FV(V);
688 : bool ignored;
689 1096 : FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
690 : APFloat::rmNearestTiesToEven, &ignored);
691 1096 : Constant *C = get(Context, FV);
692 :
693 : // For vectors, broadcast the value.
694 : if (VectorType *VTy = dyn_cast<VectorType>(Ty))
695 112 : return ConstantVector::getSplat(VTy->getNumElements(), C);
696 :
697 : return C;
698 : }
699 :
700 0 : Constant *ConstantFP::get(Type *Ty, const APFloat &V) {
701 0 : ConstantFP *C = get(Ty->getContext(), V);
702 : assert(C->getType() == Ty->getScalarType() &&
703 : "ConstantFP type doesn't match the type implied by its value!");
704 :
705 : // For vectors, broadcast the value.
706 : if (auto *VTy = dyn_cast<VectorType>(Ty))
707 0 : return ConstantVector::getSplat(VTy->getNumElements(), C);
708 :
709 : return C;
710 : }
711 :
712 0 : Constant *ConstantFP::get(Type *Ty, StringRef Str) {
713 0 : LLVMContext &Context = Ty->getContext();
714 :
715 0 : APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
716 0 : Constant *C = get(Context, FV);
717 :
718 : // For vectors, broadcast the value.
719 : if (VectorType *VTy = dyn_cast<VectorType>(Ty))
720 0 : return ConstantVector::getSplat(VTy->getNumElements(), C);
721 :
722 : return C;
723 : }
724 :
725 543 : Constant *ConstantFP::getNaN(Type *Ty, bool Negative, unsigned Type) {
726 543 : const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
727 543 : APFloat NaN = APFloat::getNaN(Semantics, Negative, Type);
728 543 : Constant *C = get(Ty->getContext(), NaN);
729 :
730 : if (VectorType *VTy = dyn_cast<VectorType>(Ty))
731 6 : return ConstantVector::getSplat(VTy->getNumElements(), C);
732 :
733 : return C;
734 : }
735 :
736 7485 : Constant *ConstantFP::getNegativeZero(Type *Ty) {
737 7485 : const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
738 : APFloat NegZero = APFloat::getZero(Semantics, /*Negative=*/true);
739 7485 : Constant *C = get(Ty->getContext(), NegZero);
740 :
741 : if (VectorType *VTy = dyn_cast<VectorType>(Ty))
742 3486 : return ConstantVector::getSplat(VTy->getNumElements(), C);
743 :
744 : return C;
745 : }
746 :
747 :
748 504151 : Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
749 : if (Ty->isFPOrFPVectorTy())
750 7387 : return getNegativeZero(Ty);
751 :
752 496764 : return Constant::getNullValue(Ty);
753 : }
754 :
755 :
756 : // ConstantFP accessors.
757 187756 : ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
758 187756 : LLVMContextImpl* pImpl = Context.pImpl;
759 :
760 187756 : std::unique_ptr<ConstantFP> &Slot = pImpl->FPConstants[V];
761 :
762 187756 : if (!Slot) {
763 : Type *Ty;
764 31467 : if (&V.getSemantics() == &APFloat::IEEEhalf())
765 1130 : Ty = Type::getHalfTy(Context);
766 30337 : else if (&V.getSemantics() == &APFloat::IEEEsingle())
767 15537 : Ty = Type::getFloatTy(Context);
768 14800 : else if (&V.getSemantics() == &APFloat::IEEEdouble())
769 13397 : Ty = Type::getDoubleTy(Context);
770 1403 : else if (&V.getSemantics() == &APFloat::x87DoubleExtended())
771 942 : Ty = Type::getX86_FP80Ty(Context);
772 461 : else if (&V.getSemantics() == &APFloat::IEEEquad())
773 380 : Ty = Type::getFP128Ty(Context);
774 : else {
775 : assert(&V.getSemantics() == &APFloat::PPCDoubleDouble() &&
776 : "Unknown FP format");
777 81 : Ty = Type::getPPC_FP128Ty(Context);
778 : }
779 31467 : Slot.reset(new ConstantFP(Ty, V));
780 : }
781 :
782 187756 : return Slot.get();
783 : }
784 :
785 251 : Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) {
786 251 : const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
787 753 : Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative));
788 :
789 : if (VectorType *VTy = dyn_cast<VectorType>(Ty))
790 6 : return ConstantVector::getSplat(VTy->getNumElements(), C);
791 :
792 : return C;
793 : }
794 :
795 31467 : ConstantFP::ConstantFP(Type *Ty, const APFloat &V)
796 : : ConstantData(Ty, ConstantFPVal), Val(V) {
797 : assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
798 : "FP type Mismatch");
799 31467 : }
800 :
801 5333 : bool ConstantFP::isExactlyValue(const APFloat &V) const {
802 5333 : return Val.bitwiseIsEqual(V);
803 : }
804 :
805 : /// Remove the constant from the constant table.
806 0 : void ConstantFP::destroyConstantImpl() {
807 0 : llvm_unreachable("You can't ConstantFP->destroyConstantImpl()!");
808 : }
809 :
810 : //===----------------------------------------------------------------------===//
811 : // ConstantAggregateZero Implementation
812 : //===----------------------------------------------------------------------===//
813 :
814 353882 : Constant *ConstantAggregateZero::getSequentialElement() const {
815 707764 : return Constant::getNullValue(getType()->getSequentialElementType());
816 : }
817 :
818 1034 : Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
819 2068 : return Constant::getNullValue(getType()->getStructElementType(Elt));
820 : }
821 :
822 0 : Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
823 0 : if (isa<SequentialType>(getType()))
824 0 : return getSequentialElement();
825 0 : return getStructElement(cast<ConstantInt>(C)->getZExtValue());
826 : }
827 :
828 354916 : Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
829 354916 : if (isa<SequentialType>(getType()))
830 353882 : return getSequentialElement();
831 1034 : return getStructElement(Idx);
832 : }
833 :
834 354934 : unsigned ConstantAggregateZero::getNumElements() const {
835 354934 : Type *Ty = getType();
836 : if (auto *AT = dyn_cast<ArrayType>(Ty))
837 166085 : return AT->getNumElements();
838 : if (auto *VT = dyn_cast<VectorType>(Ty))
839 187814 : return VT->getNumElements();
840 1035 : return Ty->getStructNumElements();
841 : }
842 :
843 : //===----------------------------------------------------------------------===//
844 : // UndefValue Implementation
845 : //===----------------------------------------------------------------------===//
846 :
847 2480 : UndefValue *UndefValue::getSequentialElement() const {
848 4960 : return UndefValue::get(getType()->getSequentialElementType());
849 : }
850 :
851 2527 : UndefValue *UndefValue::getStructElement(unsigned Elt) const {
852 5054 : return UndefValue::get(getType()->getStructElementType(Elt));
853 : }
854 :
855 0 : UndefValue *UndefValue::getElementValue(Constant *C) const {
856 0 : if (isa<SequentialType>(getType()))
857 0 : return getSequentialElement();
858 0 : return getStructElement(cast<ConstantInt>(C)->getZExtValue());
859 : }
860 :
861 5007 : UndefValue *UndefValue::getElementValue(unsigned Idx) const {
862 5007 : if (isa<SequentialType>(getType()))
863 2480 : return getSequentialElement();
864 2527 : return getStructElement(Idx);
865 : }
866 :
867 5013 : unsigned UndefValue::getNumElements() const {
868 5013 : Type *Ty = getType();
869 : if (auto *ST = dyn_cast<SequentialType>(Ty))
870 2483 : return ST->getNumElements();
871 2530 : return Ty->getStructNumElements();
872 : }
873 :
874 : //===----------------------------------------------------------------------===//
875 : // ConstantXXX Classes
876 : //===----------------------------------------------------------------------===//
877 :
878 : template <typename ItTy, typename EltTy>
879 : static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
880 27366 : for (; Start != End; ++Start)
881 26816 : if (*Start != Elt)
882 : return false;
883 : return true;
884 : }
885 :
886 : template <typename SequentialTy, typename ElementTy>
887 318075 : static Constant *getIntSequenceIfElementsMatch(ArrayRef<Constant *> V) {
888 : assert(!V.empty() && "Cannot get empty int sequence.");
889 :
890 : SmallVector<ElementTy, 16> Elts;
891 1832462 : for (Constant *C : V)
892 : if (auto *CI = dyn_cast<ConstantInt>(C))
893 1514387 : Elts.push_back(CI->getZExtValue());
894 : else
895 : return nullptr;
896 213226 : return SequentialTy::get(V[0]->getContext(), Elts);
897 : }
898 203674 :
899 : template <typename SequentialTy, typename ElementTy>
900 : static Constant *getFPSequenceIfElementsMatch(ArrayRef<Constant *> V) {
901 : assert(!V.empty() && "Cannot get empty FP sequence.");
902 539941 :
903 : SmallVector<ElementTy, 16> Elts;
904 336267 : for (Constant *C : V)
905 : if (auto *CFP = dyn_cast<ConstantFP>(C))
906 : Elts.push_back(CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
907 108194 : else
908 : return nullptr;
909 69025 : return SequentialTy::getFP(V[0]->getContext(), Elts);
910 : }
911 :
912 : template <typename SequenceTy>
913 718744 : static Constant *getSequenceIfElementsMatch(Constant *C,
914 : ArrayRef<Constant *> V) {
915 649719 : // We speculatively build the elements here even if it turns out that there is
916 : // a constantexpr or something else weird, since it is so uncommon for that to
917 : // happen.
918 53085 : if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
919 : if (CI->getType()->isIntegerTy(8))
920 9577 : return getIntSequenceIfElementsMatch<SequenceTy, uint8_t>(V);
921 : else if (CI->getType()->isIntegerTy(16))
922 : return getIntSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
923 : else if (CI->getType()->isIntegerTy(32))
924 124925 : return getIntSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
925 : else if (CI->getType()->isIntegerTy(64))
926 115348 : return getIntSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
927 : } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
928 : if (CFP->getType()->isHalfTy())
929 8420 : return getFPSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
930 : else if (CFP->getType()->isFloatTy())
931 20298 : return getFPSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
932 : else if (CFP->getType()->isDoubleTy())
933 : return getFPSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
934 : }
935 355675 :
936 : return nullptr;
937 335377 : }
938 :
939 : ConstantAggregate::ConstantAggregate(CompositeType *T, ValueTy VT,
940 12789 : ArrayRef<Constant *> V)
941 : : Constant(T, VT, OperandTraits<ConstantAggregate>::op_end(this) - V.size(),
942 1681 : V.size()) {
943 : std::copy(V.begin(), V.end(), op_begin());
944 :
945 : // Check that types match, unless this is an opaque struct.
946 6085 : if (auto *ST = dyn_cast<StructType>(T))
947 : if (ST->isOpaque())
948 4404 : return;
949 : for (unsigned I = 0, E = V.size(); I != E; ++I)
950 : assert(V[I]->getType() == T->getTypeAtIndex(I) &&
951 3346 : "Initializer for composite element doesn't match!");
952 : }
953 12841 :
954 : ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
955 : : ConstantAggregate(T, ConstantArrayVal, V) {
956 : assert(V.size() == T->getNumElements() &&
957 79773 : "Invalid initializer for constant array");
958 : }
959 66932 :
960 : Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
961 : if (Constant *C = getImpl(Ty, V))
962 25560 : return C;
963 : return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V);
964 148 : }
965 :
966 : Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) {
967 : // Empty arrays are canonicalized to ConstantAggregateZero.
968 654 : if (V.empty())
969 : return ConstantAggregateZero::get(Ty);
970 506 :
971 : for (unsigned i = 0, e = V.size(); i != e; ++i) {
972 : assert(V[i]->getType() == Ty->getElementType() &&
973 296 : "Wrong type in array element initializer");
974 : }
975 831 :
976 : // If this is an all-zero array, return a ConstantAggregateZero object. If
977 : // all undef, return an UndefValue, if "all simple", then return a
978 : // ConstantDataArray.
979 6665 : Constant *C = V[0];
980 : if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
981 5834 : return UndefValue::get(Ty);
982 :
983 : if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
984 1536 : return ConstantAggregateZero::get(Ty);
985 :
986 : // Check to see if all of the elements are ConstantFP or ConstantInt and if
987 : // the element type is compatible with ConstantDataVector. If so, use it.
988 12732 : if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
989 : return getSequenceIfElementsMatch<ConstantDataArray>(C, V);
990 :
991 : // Otherwise, we really do want to create a ConstantArray.
992 63364 : return nullptr;
993 : }
994 101264 :
995 : StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
996 : ArrayRef<Constant*> V,
997 10949 : bool Packed) {
998 : unsigned VecSize = V.size();
999 5317 : SmallVector<Type*, 16> EltTypes(VecSize);
1000 : for (unsigned i = 0; i != VecSize; ++i)
1001 : EltTypes[i] = V[i]->getType();
1002 :
1003 20174 : return StructType::get(Context, EltTypes, Packed);
1004 : }
1005 29714 :
1006 :
1007 : StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
1008 4683 : bool Packed) {
1009 : assert(!V.empty() &&
1010 6321 : "ConstantStruct::getTypeForElements cannot be called on empty list");
1011 : return getTypeForElements(V[0]->getContext(), V, Packed);
1012 : }
1013 :
1014 38450 : ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
1015 : : ConstantAggregate(T, ConstantStructVal, V) {
1016 64258 : assert((T->isOpaque() || V.size() == T->getNumElements()) &&
1017 : "Invalid initializer for constant struct");
1018 : }
1019 5241 :
1020 : // ConstantStruct accessors.
1021 664 : Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
1022 : assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
1023 : "Incorrect # elements specified to ConstantStruct::get");
1024 :
1025 2186 : // Create a ConstantAggregateZero value if all elements are zeros.
1026 : bool isZero = true;
1027 3044 : bool isUndef = false;
1028 :
1029 : if (!V.empty()) {
1030 595 : isUndef = isa<UndefValue>(V[0]);
1031 : isZero = V[0]->isNullValue();
1032 329 : if (isUndef || isZero) {
1033 : for (unsigned i = 0, e = V.size(); i != e; ++i) {
1034 : if (!V[i]->isNullValue())
1035 : isZero = false;
1036 1664 : if (!isa<UndefValue>(V[i]))
1037 : isUndef = false;
1038 2670 : }
1039 : }
1040 : }
1041 329 : if (isZero)
1042 : return ConstantAggregateZero::get(ST);
1043 90 : if (isUndef)
1044 : return UndefValue::get(ST);
1045 :
1046 : return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
1047 848 : }
1048 :
1049 1516 : ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
1050 : : ConstantAggregate(T, ConstantVectorVal, V) {
1051 : assert(V.size() == T->getNumElements() &&
1052 90 : "Invalid initializer for constant vector");
1053 : }
1054 11 :
1055 : // ConstantVector accessors.
1056 : Constant *ConstantVector::get(ArrayRef<Constant*> V) {
1057 : if (Constant *C = getImpl(V))
1058 42 : return C;
1059 : VectorType *Ty = VectorType::get(V.front()->getType(), V.size());
1060 62 : return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V);
1061 : }
1062 :
1063 11 : Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) {
1064 : assert(!V.empty() && "Vectors can't be empty");
1065 : VectorType *T = VectorType::get(V.front()->getType(), V.size());
1066 :
1067 336860 : // If this is an all-undef or all-zero vector, return a
1068 : // ConstantAggregateZero or UndefValue.
1069 : Constant *C = V[0];
1070 : bool isZero = C->isNullValue();
1071 : bool isUndef = isa<UndefValue>(C);
1072 :
1073 318075 : if (isZero || isUndef) {
1074 21129 : for (unsigned i = 1, e = V.size(); i != e; ++i)
1075 296946 : if (V[i] != C) {
1076 9725 : isZero = isUndef = false;
1077 287221 : break;
1078 81866 : }
1079 205355 : }
1080 205355 :
1081 : if (isZero)
1082 25464 : return ConstantAggregateZero::get(T);
1083 675 : if (isUndef)
1084 12057 : return UndefValue::get(T);
1085 6411 :
1086 5646 : // Check to see if all of the elements are ConstantFP or ConstantInt and if
1087 5646 : // the element type is compatible with ConstantDataVector. If so, use it.
1088 : if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
1089 : return getSequenceIfElementsMatch<ConstantDataVector>(C, V);
1090 :
1091 : // Otherwise, the element type isn't compatible with ConstantDataVector, or
1092 320780 : // the operand list contains a ConstantExpr or something else strange.
1093 : return nullptr;
1094 : }
1095 :
1096 : Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) {
1097 : // If this splat is compatible with ConstantDataVector, use it instead of
1098 302574 : // ConstantVector.
1099 20298 : if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
1100 282276 : ConstantDataSequential::isElementTypeCompatible(V->getType()))
1101 9577 : return ConstantDataVector::getSplat(NumElts, V);
1102 272699 :
1103 69025 : SmallVector<Constant*, 32> Elts(NumElts, V);
1104 203674 : return get(Elts);
1105 203674 : }
1106 :
1107 24604 : ConstantTokenNone *ConstantTokenNone::get(LLVMContext &Context) {
1108 664 : LLVMContextImpl *pImpl = Context.pImpl;
1109 11638 : if (!pImpl->TheNoneToken)
1110 6321 : pImpl->TheNoneToken.reset(new ConstantTokenNone(Context));
1111 5317 : return pImpl->TheNoneToken.get();
1112 5317 : }
1113 :
1114 : /// Remove the constant from the constant table.
1115 : void ConstantTokenNone::destroyConstantImpl() {
1116 : llvm_unreachable("You can't ConstantTokenNone->destroyConstantImpl()!");
1117 16080 : }
1118 :
1119 : // Utility function for determining if a ConstantExpr is a CastOp or not. This
1120 : // can't be inline because we don't want to #include Instruction.h into
1121 : // Constant.h
1122 : bool ConstantExpr::isCast() const {
1123 15501 : return Instruction::isCast(getOpcode());
1124 831 : }
1125 14670 :
1126 148 : bool ConstantExpr::isCompare() const {
1127 14522 : return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
1128 12841 : }
1129 1681 :
1130 1681 : bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
1131 : if (getOpcode() != Instruction::GetElementPtr) return false;
1132 860 :
1133 11 : gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
1134 419 : User::const_op_iterator OI = std::next(this->op_begin());
1135 90 :
1136 329 : // The remaining indices may be compile-time known integers within the bounds
1137 329 : // of the corresponding notional static array types.
1138 : for (; GEPI != E; ++GEPI, ++OI) {
1139 : if (isa<UndefValue>(*OI))
1140 : continue;
1141 : auto *CI = dyn_cast<ConstantInt>(*OI);
1142 : if (!CI || (GEPI.isBoundedSequential() &&
1143 168925 : (CI->getValue().getActiveBits() > 64 ||
1144 : CI->getZExtValue() >= GEPI.getSequentialNumElements())))
1145 : return false;
1146 : }
1147 :
1148 : // All the indices checked out.
1149 : return true;
1150 : }
1151 :
1152 : bool ConstantExpr::hasIndices() const {
1153 : return getOpcode() == Instruction::ExtractValue ||
1154 : getOpcode() == Instruction::InsertValue;
1155 : }
1156 :
1157 : ArrayRef<unsigned> ConstantExpr::getIndices() const {
1158 49888 : if (const ExtractValueConstantExpr *EVCE =
1159 49888 : dyn_cast<ExtractValueConstantExpr>(this))
1160 : return EVCE->Indices;
1161 :
1162 49888 : return cast<InsertValueConstantExpr>(this)->Indices;
1163 : }
1164 69498 :
1165 69498 : unsigned ConstantExpr::getPredicate() const {
1166 : return cast<CompareConstantExpr>(this)->predicate;
1167 105652 : }
1168 :
1169 : Constant *
1170 71029 : ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
1171 : assert(Op->getType() == getOperand(OpNo)->getType() &&
1172 71029 : "Replacing operand with value of different type!");
1173 324 : if (getOperand(OpNo) == Op)
1174 : return const_cast<ConstantExpr*>(this);
1175 :
1176 : SmallVector<Constant*, 8> NewOps;
1177 : for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1178 : NewOps.push_back(i == OpNo ? Op : getOperand(i));
1179 :
1180 : return getWithOperands(NewOps);
1181 : }
1182 :
1183 70705 : Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
1184 70715 : bool OnlyIfReduced, Type *SrcTy) const {
1185 7 : assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
1186 :
1187 81770 : // If no operands changed return self.
1188 543 : if (Ty == getType() && std::equal(Ops.begin(), Ops.end(), op_begin()))
1189 : return const_cast<ConstantExpr*>(this);
1190 :
1191 : Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr;
1192 70155 : switch (getOpcode()) {
1193 16080 : case Instruction::Trunc:
1194 : case Instruction::ZExt:
1195 : case Instruction::SExt:
1196 : case Instruction::FPTrunc:
1197 : case Instruction::FPExt:
1198 : case Instruction::UIToFP:
1199 34888 : case Instruction::SIToFP:
1200 : case Instruction::FPToUI:
1201 : case Instruction::FPToSI:
1202 34888 : case Instruction::PtrToInt:
1203 34888 : case Instruction::IntToPtr:
1204 114078 : case Instruction::BitCast:
1205 237570 : case Instruction::AddrSpaceCast:
1206 : return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced);
1207 69776 : case Instruction::Select:
1208 : return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2], OnlyIfReducedTy);
1209 : case Instruction::InsertElement:
1210 : return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2],
1211 23030 : OnlyIfReducedTy);
1212 : case Instruction::ExtractElement:
1213 : return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy);
1214 : case Instruction::InsertValue:
1215 23030 : return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices(),
1216 : OnlyIfReducedTy);
1217 : case Instruction::ExtractValue:
1218 103841 : return ConstantExpr::getExtractValue(Ops[0], getIndices(), OnlyIfReducedTy);
1219 103841 : case Instruction::ShuffleVector:
1220 : return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2],
1221 : OnlyIfReducedTy);
1222 103841 : case Instruction::GetElementPtr: {
1223 : auto *GEPO = cast<GEPOperator>(this);
1224 : assert(SrcTy || (Ops[0]->getType() == getOperand(0)->getType()));
1225 111748 : return ConstantExpr::getGetElementPtr(
1226 : SrcTy ? SrcTy : GEPO->getSourceElementType(), Ops[0], Ops.slice(1),
1227 : GEPO->isInBounds(), GEPO->getInRangeIndex(), OnlyIfReducedTy);
1228 : }
1229 : case Instruction::ICmp:
1230 : case Instruction::FCmp:
1231 : return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1],
1232 : OnlyIfReducedTy);
1233 111748 : default:
1234 111713 : assert(getNumOperands() == 2 && "Must be binary operator?");
1235 111713 : return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData,
1236 111713 : OnlyIfReducedTy);
1237 52797 : }
1238 82922 : }
1239 :
1240 82922 :
1241 : //===----------------------------------------------------------------------===//
1242 : // isValueValidForType implementations
1243 :
1244 : bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
1245 111713 : unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
1246 2385 : if (Ty->isIntegerTy(1))
1247 109363 : return Val == 0 || Val == 1;
1248 830 : return isUIntN(NumBits, Val);
1249 : }
1250 217066 :
1251 : bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
1252 : unsigned NumBits = Ty->getIntegerBitWidth();
1253 15196 : if (Ty->isIntegerTy(1))
1254 15196 : return Val == 0 || Val == 1 || Val == -1;
1255 : return isIntN(NumBits, Val);
1256 : }
1257 15196 :
1258 : bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
1259 : // convert modifies in place, so make a copy.
1260 331182 : APFloat Val2 = APFloat(Val);
1261 331182 : bool losesInfo;
1262 : switch (Ty->getTypeID()) {
1263 131673 : default:
1264 263346 : return false; // These can't be represented as floating point!
1265 :
1266 : // FIXME rounding mode needs to be more flexible
1267 331182 : case Type::HalfTyID: {
1268 : if (&Val2.getSemantics() == &APFloat::IEEEhalf())
1269 331182 : return true;
1270 : Val2.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &losesInfo);
1271 : return !losesInfo;
1272 : }
1273 331182 : case Type::FloatTyID: {
1274 331182 : if (&Val2.getSemantics() == &APFloat::IEEEsingle())
1275 : return true;
1276 : Val2.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &losesInfo);
1277 331182 : return !losesInfo;
1278 106162 : }
1279 199320 : case Type::DoubleTyID: {
1280 : if (&Val2.getSemantics() == &APFloat::IEEEhalf() ||
1281 : &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1282 : &Val2.getSemantics() == &APFloat::IEEEdouble())
1283 : return true;
1284 : Val2.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &losesInfo);
1285 331182 : return !losesInfo;
1286 6182 : }
1287 325000 : case Type::X86_FP80TyID:
1288 320 : return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
1289 : &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1290 : &Val2.getSemantics() == &APFloat::IEEEdouble() ||
1291 : &Val2.getSemantics() == &APFloat::x87DoubleExtended();
1292 324680 : case Type::FP128TyID:
1293 320780 : return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
1294 : &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1295 : &Val2.getSemantics() == &APFloat::IEEEdouble() ||
1296 : &Val2.getSemantics() == &APFloat::IEEEquad();
1297 : case Type::PPC_FP128TyID:
1298 : return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
1299 : &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1300 13330 : &Val2.getSemantics() == &APFloat::IEEEdouble() ||
1301 : &Val2.getSemantics() == &APFloat::PPCDoubleDouble();
1302 : }
1303 39988 : }
1304 13328 :
1305 12644 :
1306 : //===----------------------------------------------------------------------===//
1307 686 : // Factory Function Implementation
1308 686 :
1309 : ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
1310 : assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
1311 2755 : "Cannot create an aggregate zero of non-aggregate type!");
1312 2755 :
1313 2755 : std::unique_ptr<ConstantAggregateZero> &Entry =
1314 304 : Ty->getContext().pImpl->CAZConstants[Ty];
1315 2755 : if (!Entry)
1316 : Entry.reset(new ConstantAggregateZero(Ty));
1317 :
1318 : return Entry.get();
1319 0 : }
1320 0 :
1321 : /// Remove the constant from the constant table.
1322 : void ConstantAggregateZero::destroyConstantImpl() {
1323 : getContext().pImpl->CAZConstants.erase(getType());
1324 : }
1325 :
1326 1901915 : /// Remove the constant from the constant table.
1327 1901915 : void ConstantArray::destroyConstantImpl() {
1328 : getType()->getContext().pImpl->ArrayConstants.remove(this);
1329 : }
1330 48149349 :
1331 48149349 :
1332 : //---- ConstantStruct::get() implementation...
1333 : //
1334 1281 :
1335 1281 : /// Remove the constant from the constant table.
1336 : void ConstantStruct::destroyConstantImpl() {
1337 1122 : getType()->getContext().pImpl->StructConstants.remove(this);
1338 : }
1339 :
1340 : /// Remove the constant from the constant table.
1341 : void ConstantVector::destroyConstantImpl() {
1342 4031 : getType()->getContext().pImpl->VectorConstants.remove(this);
1343 2909 : }
1344 :
1345 : Constant *Constant::getSplatValue() const {
1346 1043 : assert(this->getType()->isVectorTy() && "Only valid for vectors!");
1347 1043 : if (isa<ConstantAggregateZero>(this))
1348 : return getNullValue(this->getType()->getVectorElementType());
1349 : if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
1350 : return CV->getSplatValue();
1351 : if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
1352 : return CV->getSplatValue();
1353 : return nullptr;
1354 : }
1355 :
1356 20585498 : Constant *ConstantVector::getSplatValue() const {
1357 20585498 : // Check out first element.
1358 20585498 : Constant *Elt = getOperand(0);
1359 : // Then make sure all remaining elements point to the same value.
1360 : for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
1361 7 : if (getOperand(I) != Elt)
1362 : return nullptr;
1363 : return Elt;
1364 6 : }
1365 :
1366 1 : const APInt &Constant::getUniqueInteger() const {
1367 : if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
1368 : return CI->getValue();
1369 6082 : assert(this->getSplatValue() && "Doesn't contain a unique integer!");
1370 6082 : const Constant *C = this->getAggregateElement(0U);
1371 : assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
1372 : return cast<ConstantInt>(C)->getValue();
1373 : }
1374 0 :
1375 : //---- ConstantPointerNull::get() implementation.
1376 : //
1377 0 :
1378 0 : ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
1379 : std::unique_ptr<ConstantPointerNull> &Entry =
1380 : Ty->getContext().pImpl->CPNConstants[Ty];
1381 0 : if (!Entry)
1382 0 : Entry.reset(new ConstantPointerNull(Ty));
1383 :
1384 0 : return Entry.get();
1385 : }
1386 :
1387 7619 : /// Remove the constant from the constant table.
1388 : void ConstantPointerNull::destroyConstantImpl() {
1389 : getContext().pImpl->CPNConstants.erase(getType());
1390 : }
1391 :
1392 15221 : UndefValue *UndefValue::get(Type *Ty) {
1393 300 : std::unique_ptr<UndefValue> &Entry = Ty->getContext().pImpl->UVConstants[Ty];
1394 : if (!Entry)
1395 7319 : Entry.reset(new UndefValue(Ty));
1396 7319 :
1397 6874 : return Entry.get();
1398 : }
1399 :
1400 : /// Remove the constant from the constant table.
1401 : void UndefValue::destroyConstantImpl() {
1402 : // Free the constant and any dangling references to it.
1403 : getContext().pImpl->UVConstants.erase(getType());
1404 : }
1405 :
1406 : BlockAddress *BlockAddress::get(BasicBlock *BB) {
1407 : assert(BB->getParent() && "Block must have a parent");
1408 : return get(BB->getParent(), BB);
1409 : }
1410 6874 :
1411 2 : BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1412 2 : BlockAddress *&BA =
1413 0 : F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1414 0 : if (!BA)
1415 0 : BA = new BlockAddress(F, BB);
1416 33 :
1417 33 : assert(BA->getFunction() == F && "Basic block moved between functions");
1418 0 : return BA;
1419 0 : }
1420 0 :
1421 2 : BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1422 2 : : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
1423 0 : &Op<0>(), 2) {
1424 0 : setOperand(0, F);
1425 0 : setOperand(1, BB);
1426 : BB->AdjustBlockAddressRefCount(1);
1427 : }
1428 :
1429 630 : BlockAddress *BlockAddress::lookup(const BasicBlock *BB) {
1430 279 : if (!BB->hasAddressTaken())
1431 : return nullptr;
1432 :
1433 10 : const Function *F = BB->getParent();
1434 : assert(F && "Block must have a parent");
1435 10 : BlockAddress *BA =
1436 10 : F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB));
1437 83 : assert(BA && "Refcount and block address map disagree!");
1438 : return BA;
1439 83 : }
1440 83 :
1441 : /// Remove the constant from the constant table.
1442 : void BlockAddress::destroyConstantImpl() {
1443 : getFunction()->getType()->getContext().pImpl
1444 : ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1445 : getBasicBlock()->AdjustBlockAddressRefCount(-1);
1446 : }
1447 :
1448 61 : Value *BlockAddress::handleOperandChangeImpl(Value *From, Value *To) {
1449 : // This could be replacing either the Basic Block or the Function. In either
1450 61 : // case, we have to remove the map entry.
1451 0 : Function *NewF = getFunction();
1452 : BasicBlock *NewBB = getBasicBlock();
1453 :
1454 : if (From == NewF)
1455 36132 : NewF = cast<Function>(To->stripPointerCasts());
1456 : else {
1457 36132 : assert(From == NewBB && "From does not match any operand");
1458 0 : NewBB = cast<BasicBlock>(To);
1459 : }
1460 :
1461 : // See if the 'new' entry already exists, if not, just update this in place
1462 58767 : // and return early.
1463 : BlockAddress *&NewBA =
1464 : getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1465 : if (NewBA)
1466 58767 : return NewBA;
1467 :
1468 : getBasicBlock()->AdjustBlockAddressRefCount(-1);
1469 :
1470 : // Remove the old entry, this can't cause the map to rehash (just a
1471 3410 : // tombstone will get added).
1472 3410 : getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1473 : getBasicBlock()));
1474 2222 : NewBA = this;
1475 2222 : setOperand(0, NewF);
1476 : setOperand(1, NewBB);
1477 38773 : getBasicBlock()->AdjustBlockAddressRefCount(1);
1478 38773 :
1479 : // If we just want to keep the existing value, then return null.
1480 38773 : // Callers know that this means we shouldn't delete this value.
1481 38773 : return nullptr;
1482 : }
1483 16155 :
1484 32310 : //---- ConstantExpr::get() implementations.
1485 16155 : //
1486 16155 :
1487 : /// This is a utility function to handle folding of casts and lookup of the
1488 0 : /// cast in the ExprConstants map. It is used by the various get* methods below.
1489 0 : static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty,
1490 : bool OnlyIfReduced = false) {
1491 147 : assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1492 294 : // Fold a few common cases
1493 147 : if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1494 294 : return FC;
1495 147 :
1496 214 : if (OnlyIfReduced)
1497 428 : return nullptr;
1498 214 :
1499 428 : LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1500 214 :
1501 68 : // Look up the constant in the table first to ensure uniqueness.
1502 136 : ConstantExprKeyType Key(opc, C);
1503 68 :
1504 136 : return pImpl->ExprConstants.getOrCreate(Ty, Key);
1505 68 : }
1506 :
1507 : Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty,
1508 : bool OnlyIfReduced) {
1509 : Instruction::CastOps opc = Instruction::CastOps(oc);
1510 : assert(Instruction::isCast(opc) && "opcode out of range");
1511 : assert(C && Ty && "Null arguments to getCast");
1512 : assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
1513 128351 :
1514 : switch (opc) {
1515 : default:
1516 : llvm_unreachable("Invalid cast opcode");
1517 : case Instruction::Trunc:
1518 128351 : return getTrunc(C, Ty, OnlyIfReduced);
1519 128351 : case Instruction::ZExt:
1520 22241 : return getZExt(C, Ty, OnlyIfReduced);
1521 : case Instruction::SExt:
1522 128351 : return getSExt(C, Ty, OnlyIfReduced);
1523 : case Instruction::FPTrunc:
1524 : return getFPTrunc(C, Ty, OnlyIfReduced);
1525 : case Instruction::FPExt:
1526 0 : return getFPExtend(C, Ty, OnlyIfReduced);
1527 0 : case Instruction::UIToFP:
1528 0 : return getUIToFP(C, Ty, OnlyIfReduced);
1529 : case Instruction::SIToFP:
1530 : return getSIToFP(C, Ty, OnlyIfReduced);
1531 10385 : case Instruction::FPToUI:
1532 10385 : return getFPToUI(C, Ty, OnlyIfReduced);
1533 10385 : case Instruction::FPToSI:
1534 : return getFPToSI(C, Ty, OnlyIfReduced);
1535 : case Instruction::PtrToInt:
1536 : return getPtrToInt(C, Ty, OnlyIfReduced);
1537 : case Instruction::IntToPtr:
1538 : return getIntToPtr(C, Ty, OnlyIfReduced);
1539 : case Instruction::BitCast:
1540 32263 : return getBitCast(C, Ty, OnlyIfReduced);
1541 32263 : case Instruction::AddrSpaceCast:
1542 32263 : return getAddrSpaceCast(C, Ty, OnlyIfReduced);
1543 : }
1544 : }
1545 113 :
1546 113 : Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
1547 113 : if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1548 : return getBitCast(C, Ty);
1549 1697977 : return getZExt(C, Ty);
1550 : }
1551 1697977 :
1552 44440 : Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
1553 : if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1554 1658731 : return getBitCast(C, Ty);
1555 : return getSExt(C, Ty);
1556 10924 : }
1557 :
1558 : Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
1559 : if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1560 11463 : return getBitCast(C, Ty);
1561 : return getTrunc(C, Ty);
1562 11463 : }
1563 :
1564 26731 : Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
1565 22166 : assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1566 : assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
1567 : "Invalid cast");
1568 :
1569 : if (Ty->isIntOrIntVectorTy())
1570 22481408 : return getPtrToInt(S, Ty);
1571 :
1572 22481047 : unsigned SrcAS = S->getType()->getPointerAddressSpace();
1573 : if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace())
1574 361 : return getAddrSpaceCast(S, Ty);
1575 :
1576 361 : return getBitCast(S, Ty);
1577 : }
1578 :
1579 : Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S,
1580 : Type *Ty) {
1581 : assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1582 732168 : assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
1583 :
1584 732168 : if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
1585 732168 : return getAddrSpaceCast(S, Ty);
1586 35338 :
1587 : return getBitCast(S, Ty);
1588 732168 : }
1589 :
1590 : Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, bool isSigned) {
1591 : assert(C->getType()->isIntOrIntVectorTy() &&
1592 0 : Ty->isIntOrIntVectorTy() && "Invalid cast");
1593 0 : unsigned SrcBits = C->getType()->getScalarSizeInBits();
1594 0 : unsigned DstBits = Ty->getScalarSizeInBits();
1595 : Instruction::CastOps opcode =
1596 3701178 : (SrcBits == DstBits ? Instruction::BitCast :
1597 3701178 : (SrcBits > DstBits ? Instruction::Trunc :
1598 3701178 : (isSigned ? Instruction::SExt : Instruction::ZExt)));
1599 78568 : return getCast(opcode, C, Ty);
1600 : }
1601 3701178 :
1602 : Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
1603 : assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1604 : "Invalid cast");
1605 0 : unsigned SrcBits = C->getType()->getScalarSizeInBits();
1606 : unsigned DstBits = Ty->getScalarSizeInBits();
1607 0 : if (SrcBits == DstBits)
1608 0 : return C; // Avoid a useless cast
1609 : Instruction::CastOps opcode =
1610 269 : (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
1611 : return getCast(opcode, C, Ty);
1612 269 : }
1613 :
1614 : Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
1615 1448 : #ifndef NDEBUG
1616 : bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1617 1448 : bool toVec = Ty->getTypeID() == Type::VectorTyID;
1618 1448 : #endif
1619 991 : assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1620 : assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
1621 : assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
1622 1448 : assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1623 : "SrcTy must be larger than DestTy for Trunc!");
1624 :
1625 991 : return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced);
1626 991 : }
1627 :
1628 : Constant *ConstantExpr::getSExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
1629 : #ifndef NDEBUG
1630 : bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1631 991 : bool toVec = Ty->getTypeID() == Type::VectorTyID;
1632 : #endif
1633 62 : assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1634 62 : assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
1635 : assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
1636 : assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1637 2 : "SrcTy must be smaller than DestTy for SExt!");
1638 :
1639 : return getFoldedCast(Instruction::SExt, C, Ty, OnlyIfReduced);
1640 2 : }
1641 :
1642 2 : Constant *ConstantExpr::getZExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
1643 : #ifndef NDEBUG
1644 : bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1645 : bool toVec = Ty->getTypeID() == Type::VectorTyID;
1646 907 : #endif
1647 907 : assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1648 1814 : assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
1649 : assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
1650 907 : assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1651 : "SrcTy must be smaller than DestTy for ZExt!");
1652 20 :
1653 : return getFoldedCast(Instruction::ZExt, C, Ty, OnlyIfReduced);
1654 : }
1655 :
1656 : Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
1657 : #ifndef NDEBUG
1658 20 : bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1659 : bool toVec = Ty->getTypeID() == Type::VectorTyID;
1660 : #endif
1661 : assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1662 : assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1663 : C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1664 : "This is an illegal floating point truncation!");
1665 : return getFoldedCast(Instruction::FPTrunc, C, Ty, OnlyIfReduced);
1666 : }
1667 :
1668 20 : Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced) {
1669 20 : #ifndef NDEBUG
1670 : bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1671 : bool toVec = Ty->getTypeID() == Type::VectorTyID;
1672 : #endif
1673 : assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1674 : assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1675 : C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1676 9 : "This is an illegal floating point extension!");
1677 : return getFoldedCast(Instruction::FPExt, C, Ty, OnlyIfReduced);
1678 9 : }
1679 :
1680 : Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
1681 : #ifndef NDEBUG
1682 : bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1683 : bool toVec = Ty->getTypeID() == Type::VectorTyID;
1684 : #endif
1685 9 : assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1686 : assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1687 : "This is an illegal uint to floating point cast!");
1688 : return getFoldedCast(Instruction::UIToFP, C, Ty, OnlyIfReduced);
1689 : }
1690 :
1691 : Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
1692 : #ifndef NDEBUG
1693 4750386 : bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1694 : bool toVec = Ty->getTypeID() == Type::VectorTyID;
1695 : #endif
1696 : assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1697 4750386 : assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1698 : "This is an illegal sint to floating point cast!");
1699 : return getFoldedCast(Instruction::SIToFP, C, Ty, OnlyIfReduced);
1700 2274803 : }
1701 :
1702 : Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced) {
1703 2269493 : #ifndef NDEBUG
1704 : bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1705 : bool toVec = Ty->getTypeID() == Type::VectorTyID;
1706 : #endif
1707 : assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1708 2269493 : assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1709 : "This is an illegal floating point to uint cast!");
1710 : return getFoldedCast(Instruction::FPToUI, C, Ty, OnlyIfReduced);
1711 2107139 : }
1712 :
1713 : Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) {
1714 : #ifndef NDEBUG
1715 : bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1716 : bool toVec = Ty->getTypeID() == Type::VectorTyID;
1717 : #endif
1718 2107139 : assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1719 0 : assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1720 0 : "This is an illegal floating point to sint cast!");
1721 494631 : return getFoldedCast(Instruction::FPToSI, C, Ty, OnlyIfReduced);
1722 494631 : }
1723 68467 :
1724 68467 : Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy,
1725 549452 : bool OnlyIfReduced) {
1726 549452 : assert(C->getType()->isPtrOrPtrVectorTy() &&
1727 1013 : "PtrToInt source must be pointer or pointer vector");
1728 1013 : assert(DstTy->isIntOrIntVectorTy() &&
1729 869 : "PtrToInt destination must be integer or integer vector");
1730 869 : assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1731 76 : if (isa<VectorType>(C->getType()))
1732 76 : assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1733 10094 : "Invalid cast between a different number of vector elements");
1734 10094 : return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced);
1735 12 : }
1736 12 :
1737 59 : Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy,
1738 59 : bool OnlyIfReduced) {
1739 13443 : assert(C->getType()->isIntOrIntVectorTy() &&
1740 13443 : "IntToPtr source must be integer or integer vector");
1741 10070 : assert(DstTy->isPtrOrPtrVectorTy() &&
1742 10070 : "IntToPtr destination must be a pointer or pointer vector");
1743 957859 : assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1744 957859 : if (isa<VectorType>(C->getType()))
1745 1094 : assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1746 1094 : "Invalid cast between a different number of vector elements");
1747 : return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced);
1748 : }
1749 :
1750 143 : Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy,
1751 143 : bool OnlyIfReduced) {
1752 0 : assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
1753 143 : "Invalid constantexpr bitcast!");
1754 :
1755 : // It is common to ask for a bitcast of a value to its own type, handle this
1756 14074 : // speedily.
1757 14074 : if (C->getType() == DstTy) return C;
1758 13766 :
1759 308 : return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced);
1760 : }
1761 :
1762 71 : Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy,
1763 71 : bool OnlyIfReduced) {
1764 4 : assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) &&
1765 67 : "Invalid constantexpr addrspacecast!");
1766 :
1767 : // Canonicalize addrspacecasts between different pointer types by first
1768 277329 : // bitcasting the pointer type and then converting the address space.
1769 : PointerType *SrcScalarTy = cast<PointerType>(C->getType()->getScalarType());
1770 : PointerType *DstScalarTy = cast<PointerType>(DstTy->getScalarType());
1771 : Type *DstElemTy = DstScalarTy->getElementType();
1772 : if (SrcScalarTy->getElementType() != DstElemTy) {
1773 277329 : Type *MidTy = PointerType::get(DstElemTy, SrcScalarTy->getAddressSpace());
1774 4063 : if (VectorType *VT = dyn_cast<VectorType>(DstTy)) {
1775 : // Handle vectors of pointers.
1776 273266 : MidTy = VectorType::get(MidTy, VT->getNumElements());
1777 273266 : }
1778 535 : C = getBitCast(C, MidTy);
1779 : }
1780 272731 : return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced);
1781 : }
1782 :
1783 14399 : Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
1784 : unsigned Flags, Type *OnlyIfReducedTy) {
1785 : // Check the operands for consistency first.
1786 : assert(Instruction::isBinaryOp(Opcode) &&
1787 : "Invalid opcode in binary constant expression");
1788 28798 : assert(C1->getType() == C2->getType() &&
1789 38 : "Operand types in binary constant expression should match");
1790 :
1791 14361 : #ifndef NDEBUG
1792 : switch (Opcode) {
1793 : case Instruction::Add:
1794 581998 : case Instruction::Sub:
1795 : case Instruction::Mul:
1796 : assert(C1->getType() == C2->getType() && "Op types should be identical!");
1797 581998 : assert(C1->getType()->isIntOrIntVectorTy() &&
1798 581998 : "Tried to create an integer operation on a non-integer type!");
1799 : break;
1800 581998 : case Instruction::FAdd:
1801 570371 : case Instruction::FSub:
1802 545734 : case Instruction::FMul:
1803 581998 : assert(C1->getType() == C2->getType() && "Op types should be identical!");
1804 : assert(C1->getType()->isFPOrFPVectorTy() &&
1805 : "Tried to create a floating-point operation on a "
1806 0 : "non-floating-point type!");
1807 : break;
1808 : case Instruction::UDiv:
1809 0 : case Instruction::SDiv:
1810 0 : assert(C1->getType() == C2->getType() && "Op types should be identical!");
1811 0 : assert(C1->getType()->isIntOrIntVectorTy() &&
1812 : "Tried to create an arithmetic operation on a non-arithmetic type!");
1813 : break;
1814 0 : case Instruction::FDiv:
1815 0 : assert(C1->getType() == C2->getType() && "Op types should be identical!");
1816 : assert(C1->getType()->isFPOrFPVectorTy() &&
1817 : "Tried to create an arithmetic operation on a non-arithmetic type!");
1818 535767 : break;
1819 : case Instruction::URem:
1820 : case Instruction::SRem:
1821 : assert(C1->getType() == C2->getType() && "Op types should be identical!");
1822 : assert(C1->getType()->isIntOrIntVectorTy() &&
1823 : "Tried to create an arithmetic operation on a non-arithmetic type!");
1824 : break;
1825 : case Instruction::FRem:
1826 : assert(C1->getType() == C2->getType() && "Op types should be identical!");
1827 : assert(C1->getType()->isFPOrFPVectorTy() &&
1828 : "Tried to create an arithmetic operation on a non-arithmetic type!");
1829 535767 : break;
1830 : case Instruction::And:
1831 : case Instruction::Or:
1832 656401 : case Instruction::Xor:
1833 : assert(C1->getType() == C2->getType() && "Op types should be identical!");
1834 : assert(C1->getType()->isIntOrIntVectorTy() &&
1835 : "Tried to create a logical operation on a non-integral type!");
1836 : break;
1837 : case Instruction::Shl:
1838 : case Instruction::LShr:
1839 : case Instruction::AShr:
1840 : assert(C1->getType() == C2->getType() && "Op types should be identical!");
1841 : assert(C1->getType()->isIntOrIntVectorTy() &&
1842 : "Tried to create a shift operation on a non-integer type!");
1843 656401 : break;
1844 : default:
1845 : break;
1846 262639 : }
1847 : #endif
1848 :
1849 : if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
1850 : return FC; // Fold a few common cases.
1851 :
1852 : if (OnlyIfReducedTy == C1->getType())
1853 : return nullptr;
1854 :
1855 : Constant *ArgVec[] = { C1, C2 };
1856 : ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
1857 262639 :
1858 : LLVMContextImpl *pImpl = C1->getContext().pImpl;
1859 : return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
1860 3089 : }
1861 :
1862 : Constant *ConstantExpr::getSizeOf(Type* Ty) {
1863 : // sizeof is implemented as: (i64) gep (Ty*)null, 1
1864 : // Note that a non-inbounds gep is used, as null isn't within any object.
1865 : Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1866 : Constant *GEP = getGetElementPtr(
1867 : Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1868 : return getPtrToInt(GEP,
1869 3089 : Type::getInt64Ty(Ty->getContext()));
1870 : }
1871 :
1872 996 : Constant *ConstantExpr::getAlignOf(Type* Ty) {
1873 : // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
1874 : // Note that a non-inbounds gep is used, as null isn't within any object.
1875 : Type *AligningTy = StructType::get(Type::getInt1Ty(Ty->getContext()), Ty);
1876 : Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0));
1877 : Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
1878 : Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1879 : Constant *Indices[2] = { Zero, One };
1880 : Constant *GEP = getGetElementPtr(AligningTy, NullPtr, Indices);
1881 996 : return getPtrToInt(GEP,
1882 : Type::getInt64Ty(Ty->getContext()));
1883 : }
1884 85 :
1885 : Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
1886 : return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
1887 : FieldNo));
1888 : }
1889 :
1890 : Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
1891 : // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
1892 85 : // Note that a non-inbounds gep is used, as null isn't within any object.
1893 : Constant *GEPIdx[] = {
1894 : ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
1895 10106 : FieldNo
1896 : };
1897 : Constant *GEP = getGetElementPtr(
1898 : Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1899 : return getPtrToInt(GEP,
1900 : Type::getInt64Ty(Ty->getContext()));
1901 : }
1902 :
1903 10106 : Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1,
1904 : Constant *C2, bool OnlyIfReduced) {
1905 : assert(C1->getType() == C2->getType() && "Op types should be identical!");
1906 34 :
1907 : switch (Predicate) {
1908 : default: llvm_unreachable("Invalid CmpInst predicate");
1909 : case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
1910 : case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
1911 : case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
1912 : case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
1913 : case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
1914 34 : case CmpInst::FCMP_TRUE:
1915 : return getFCmp(Predicate, C1, C2, OnlyIfReduced);
1916 :
1917 86 : case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT:
1918 : case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
1919 : case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
1920 : case CmpInst::ICMP_SLE:
1921 : return getICmp(Predicate, C1, C2, OnlyIfReduced);
1922 : }
1923 : }
1924 :
1925 86 : Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2,
1926 : Type *OnlyIfReducedTy) {
1927 : assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
1928 22202 :
1929 : if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
1930 : return SC; // Fold common cases
1931 :
1932 : if (OnlyIfReducedTy == V1->getType())
1933 : return nullptr;
1934 :
1935 : Constant *ArgVec[] = { C, V1, V2 };
1936 : ConstantExprKeyType Key(Instruction::Select, ArgVec);
1937 :
1938 22202 : LLVMContextImpl *pImpl = C->getContext().pImpl;
1939 : return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
1940 : }
1941 39690 :
1942 : Constant *ConstantExpr::getGetElementPtr(Type *Ty, Constant *C,
1943 : ArrayRef<Value *> Idxs, bool InBounds,
1944 : Optional<unsigned> InRangeIndex,
1945 : Type *OnlyIfReducedTy) {
1946 : if (!Ty)
1947 : Ty = cast<PointerType>(C->getType()->getScalarType())->getElementType();
1948 : else
1949 : assert(
1950 : Ty ==
1951 39690 : cast<PointerType>(C->getType()->getScalarType())->getContainedType(0u));
1952 :
1953 : if (Constant *FC =
1954 3280051 : ConstantFoldGetElementPtr(Ty, C, InBounds, InRangeIndex, Idxs))
1955 : return FC; // Fold a few common cases.
1956 :
1957 : // Get the result type of the getelementptr!
1958 : Type *DestTy = GetElementPtrInst::getIndexedType(Ty, Idxs);
1959 : assert(DestTy && "GEP indices invalid!");
1960 : unsigned AS = C->getType()->getPointerAddressSpace();
1961 3280051 : Type *ReqTy = DestTy->getPointerTo(AS);
1962 :
1963 3217068 : unsigned NumVecElts = 0;
1964 : if (C->getType()->isVectorTy())
1965 : NumVecElts = C->getType()->getVectorNumElements();
1966 2223 : else for (auto Idx : Idxs)
1967 : if (Idx->getType()->isVectorTy())
1968 : NumVecElts = Idx->getType()->getVectorNumElements();
1969 :
1970 : if (NumVecElts)
1971 : ReqTy = VectorType::get(ReqTy, NumVecElts);
1972 :
1973 2223 : if (OnlyIfReducedTy == ReqTy)
1974 : return nullptr;
1975 2223 :
1976 2223 : // Look up the constant in the table first to ensure uniqueness
1977 367 : std::vector<Constant*> ArgVec;
1978 : ArgVec.reserve(1 + Idxs.size());
1979 : ArgVec.push_back(C);
1980 0 : for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
1981 : assert((!Idxs[i]->getType()->isVectorTy() ||
1982 367 : Idxs[i]->getType()->getVectorNumElements() == NumVecElts) &&
1983 : "getelementptr index type missmatch");
1984 2223 :
1985 : Constant *Idx = cast<Constant>(Idxs[i]);
1986 : if (NumVecElts && !Idxs[i]->getType()->isVectorTy())
1987 1024098 : Idx = ConstantVector::getSplat(NumVecElts, Idx);
1988 : ArgVec.push_back(Idx);
1989 : }
1990 :
1991 : unsigned SubClassOptionalData = InBounds ? GEPOperator::IsInBounds : 0;
1992 : if (InRangeIndex && *InRangeIndex < 63)
1993 : SubClassOptionalData |= (*InRangeIndex + 1) << 1;
1994 : const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
1995 : SubClassOptionalData, None, Ty);
1996 :
1997 : LLVMContextImpl *pImpl = C->getContext().pImpl;
1998 : return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1999 : }
2000 :
2001 : Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS,
2002 : Constant *RHS, bool OnlyIfReduced) {
2003 : assert(LHS->getType() == RHS->getType());
2004 : assert(CmpInst::isIntPredicate((CmpInst::Predicate)pred) &&
2005 : "Invalid ICmp Predicate");
2006 :
2007 : if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
2008 : return FC; // Fold a few common cases...
2009 :
2010 : if (OnlyIfReduced)
2011 : return nullptr;
2012 :
2013 : // Look up the constant in the table first to ensure uniqueness
2014 : Constant *ArgVec[] = { LHS, RHS };
2015 : // Get the key type with both the opcode and predicate
2016 : const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, pred);
2017 :
2018 : Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2019 : if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2020 : ResultTy = VectorType::get(ResultTy, VT->getNumElements());
2021 :
2022 : LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2023 : return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2024 : }
2025 :
2026 : Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS,
2027 : Constant *RHS, bool OnlyIfReduced) {
2028 : assert(LHS->getType() == RHS->getType());
2029 : assert(CmpInst::isFPPredicate((CmpInst::Predicate)pred) &&
2030 : "Invalid FCmp Predicate");
2031 :
2032 : if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
2033 : return FC; // Fold a few common cases...
2034 :
2035 : if (OnlyIfReduced)
2036 : return nullptr;
2037 :
2038 : // Look up the constant in the table first to ensure uniqueness
2039 : Constant *ArgVec[] = { LHS, RHS };
2040 : // Get the key type with both the opcode and predicate
2041 : const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, pred);
2042 :
2043 : Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2044 : if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2045 : ResultTy = VectorType::get(ResultTy, VT->getNumElements());
2046 :
2047 : LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2048 : return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2049 : }
2050 :
2051 : Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx,
2052 : Type *OnlyIfReducedTy) {
2053 1024098 : assert(Val->getType()->isVectorTy() &&
2054 : "Tried to create extractelement operation on non-vector type!");
2055 : assert(Idx->getType()->isIntegerTy() &&
2056 12160 : "Extractelement index must be an integer type!");
2057 :
2058 : if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
2059 12118 : return FC; // Fold a few common cases.
2060 :
2061 : Type *ReqTy = Val->getType()->getVectorElementType();
2062 12118 : if (OnlyIfReducedTy == ReqTy)
2063 12118 : return nullptr;
2064 :
2065 : // Look up the constant in the table first to ensure uniqueness
2066 797 : Constant *ArgVec[] = { Val, Idx };
2067 : const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec);
2068 :
2069 797 : LLVMContextImpl *pImpl = Val->getContext().pImpl;
2070 797 : return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2071 : }
2072 797 :
2073 797 : Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
2074 : Constant *Idx, Type *OnlyIfReducedTy) {
2075 : assert(Val->getType()->isVectorTy() &&
2076 38 : "Tried to create insertelement operation on non-vector type!");
2077 : assert(Elt->getType() == Val->getType()->getVectorElementType() &&
2078 : "Insertelement types must match!");
2079 38 : assert(Idx->getType()->isIntegerTy() &&
2080 38 : "Insertelement index must be i32 type!");
2081 38 :
2082 38 : if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
2083 38 : return FC; // Fold a few common cases.
2084 :
2085 38 : if (OnlyIfReducedTy == Val->getType())
2086 38 : return nullptr;
2087 :
2088 : // Look up the constant in the table first to ensure uniqueness
2089 0 : Constant *ArgVec[] = { Val, Elt, Idx };
2090 0 : const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec);
2091 0 :
2092 : LLVMContextImpl *pImpl = Val->getContext().pImpl;
2093 : return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
2094 0 : }
2095 :
2096 : Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
2097 : Constant *Mask, Type *OnlyIfReducedTy) {
2098 0 : assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
2099 : "Invalid shuffle vector constant expr operands!");
2100 0 :
2101 0 : if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
2102 : return FC; // Fold a few common cases.
2103 0 :
2104 0 : unsigned NElts = Mask->getType()->getVectorNumElements();
2105 : Type *EltTy = V1->getType()->getVectorElementType();
2106 : Type *ShufTy = VectorType::get(EltTy, NElts);
2107 92640 :
2108 : if (OnlyIfReducedTy == ShufTy)
2109 : return nullptr;
2110 :
2111 92640 : // Look up the constant in the table first to ensure uniqueness
2112 0 : Constant *ArgVec[] = { V1, V2, Mask };
2113 488 : const ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec);
2114 :
2115 : LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
2116 : return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
2117 : }
2118 :
2119 488 : Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
2120 : ArrayRef<unsigned> Idxs,
2121 92152 : Type *OnlyIfReducedTy) {
2122 : assert(Agg->getType()->isFirstClassType() &&
2123 : "Non-first-class type for constant insertvalue expression");
2124 :
2125 92152 : assert(ExtractValueInst::getIndexedType(Agg->getType(),
2126 : Idxs) == Val->getType() &&
2127 : "insertvalue indices invalid!");
2128 : Type *ReqTy = Val->getType();
2129 1214 :
2130 : if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs))
2131 : return FC;
2132 :
2133 1214 : if (OnlyIfReducedTy == ReqTy)
2134 : return nullptr;
2135 :
2136 107 : Constant *ArgVec[] = { Agg, Val };
2137 : const ConstantExprKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
2138 :
2139 107 : LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2140 : return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2141 : }
2142 107 :
2143 107 : Constant *ConstantExpr::getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs,
2144 : Type *OnlyIfReducedTy) {
2145 : assert(Agg->getType()->isFirstClassType() &&
2146 18118848 : "Tried to create extractelement operation on non-first-class type!");
2147 :
2148 : Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
2149 : (void)ReqTy;
2150 18118848 : assert(ReqTy && "extractvalue indices invalid!");
2151 181350 :
2152 : assert(Agg->getType()->isFirstClassType() &&
2153 : "Non-first-class type for constant extractvalue expression");
2154 : if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs))
2155 : return FC;
2156 :
2157 18118848 : if (OnlyIfReducedTy == ReqTy)
2158 18118848 : return nullptr;
2159 :
2160 : Constant *ArgVec[] = { Agg };
2161 : const ConstantExprKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
2162 17853107 :
2163 : LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2164 17853107 : return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2165 17853107 : }
2166 :
2167 : Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
2168 35706214 : assert(C->getType()->isIntOrIntVectorTy() &&
2169 : "Cannot NEG a nonintegral value!");
2170 53624090 : return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
2171 71542004 : C, HasNUW, HasNSW);
2172 : }
2173 :
2174 17853107 : Constant *ConstantExpr::getFNeg(Constant *C) {
2175 51 : assert(C->getType()->isFPOrFPVectorTy() &&
2176 : "Cannot FNEG a non-floating-point value!");
2177 17853107 : return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
2178 : }
2179 :
2180 : Constant *ConstantExpr::getNot(Constant *C) {
2181 : assert(C->getType()->isIntOrIntVectorTy() &&
2182 17852986 : "Cannot NOT a nonintegral value!");
2183 17852986 : return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
2184 53623798 : }
2185 :
2186 : Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
2187 : bool HasNUW, bool HasNSW) {
2188 : unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2189 35770812 : (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2190 35770812 : return get(Instruction::Add, C1, C2, Flags);
2191 11 : }
2192 35770812 :
2193 : Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
2194 : return get(Instruction::FAdd, C1, C2);
2195 17852986 : }
2196 17852986 :
2197 56118 : Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
2198 : bool HasNUW, bool HasNSW) {
2199 : unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2200 : (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2201 17852986 : return get(Instruction::Sub, C1, C2, Flags);
2202 17852986 : }
2203 :
2204 : Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
2205 105626 : return get(Instruction::FSub, C1, C2);
2206 : }
2207 :
2208 : Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
2209 : bool HasNUW, bool HasNSW) {
2210 : unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2211 105626 : (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2212 : return get(Instruction::Mul, C1, C2, Flags);
2213 : }
2214 2859 :
2215 : Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
2216 : return get(Instruction::FMul, C1, C2);
2217 : }
2218 2851 :
2219 : Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
2220 : return get(Instruction::UDiv, C1, C2,
2221 : isExact ? PossiblyExactOperator::IsExact : 0);
2222 2851 : }
2223 2851 :
2224 0 : Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
2225 : return get(Instruction::SDiv, C1, C2,
2226 2851 : isExact ? PossiblyExactOperator::IsExact : 0);
2227 2851 : }
2228 :
2229 : Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
2230 495 : return get(Instruction::FDiv, C1, C2);
2231 : }
2232 :
2233 : Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
2234 : return get(Instruction::URem, C1, C2);
2235 : }
2236 495 :
2237 : Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
2238 : return get(Instruction::SRem, C1, C2);
2239 4 : }
2240 :
2241 : Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
2242 : return get(Instruction::FRem, C1, C2);
2243 4 : }
2244 :
2245 : Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
2246 : return get(Instruction::And, C1, C2);
2247 4 : }
2248 4 :
2249 0 : Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
2250 : return get(Instruction::Or, C1, C2);
2251 4 : }
2252 4 :
2253 : Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
2254 : return get(Instruction::Xor, C1, C2);
2255 363373 : }
2256 :
2257 : Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
2258 : bool HasNUW, bool HasNSW) {
2259 : unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2260 : (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2261 : return get(Instruction::Shl, C1, C2, Flags);
2262 363373 : }
2263 :
2264 : Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
2265 101 : return get(Instruction::LShr, C1, C2,
2266 101 : isExact ? PossiblyExactOperator::IsExact : 0);
2267 : }
2268 :
2269 : Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
2270 101 : return get(Instruction::AShr, C1, C2,
2271 : isExact ? PossiblyExactOperator::IsExact : 0);
2272 : }
2273 101 :
2274 101 : Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty,
2275 : bool AllowRHSConstant) {
2276 : assert(Instruction::isBinaryOp(Opcode) && "Only binops allowed");
2277 200949 :
2278 : // Commutative opcodes: it does not matter if AllowRHSConstant is set.
2279 : if (Instruction::isCommutative(Opcode)) {
2280 : switch (Opcode) {
2281 : case Instruction::Add: // X + 0 = X
2282 : case Instruction::Or: // X | 0 = X
2283 : case Instruction::Xor: // X ^ 0 = X
2284 : return Constant::getNullValue(Ty);
2285 : case Instruction::Mul: // X * 1 = X
2286 200949 : return ConstantInt::get(Ty, 1);
2287 : case Instruction::And: // X & -1 = X
2288 : return Constant::getAllOnesValue(Ty);
2289 0 : case Instruction::FAdd: // X + -0.0 = X
2290 : // TODO: If the fadd has 'nsz', should we return +0.0?
2291 : return ConstantFP::getNegativeZero(Ty);
2292 : case Instruction::FMul: // X * 1.0 = X
2293 0 : return ConstantFP::get(Ty, 1.0);
2294 : default:
2295 : llvm_unreachable("Every commutative binop has an identity constant");
2296 0 : }
2297 0 : }
2298 :
2299 : // Non-commutative opcodes: AllowRHSConstant must be set.
2300 3417 : if (!AllowRHSConstant)
2301 : return nullptr;
2302 :
2303 : switch (Opcode) {
2304 : case Instruction::Sub: // X - 0 = X
2305 3417 : case Instruction::Shl: // X << 0 = X
2306 : case Instruction::LShr: // X >>u 0 = X
2307 : case Instruction::AShr: // X >> 0 = X
2308 0 : case Instruction::FSub: // X - 0.0 = X
2309 0 : return Constant::getNullValue(Ty);
2310 0 : case Instruction::SDiv: // X / 1 = X
2311 : case Instruction::UDiv: // X /u 1 = X
2312 0 : return ConstantInt::get(Ty, 1);
2313 : case Instruction::FDiv: // X / 1.0 = X
2314 : return ConstantFP::get(Ty, 1.0);
2315 : default:
2316 0 : return nullptr;
2317 : }
2318 : }
2319 0 :
2320 0 : Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
2321 : switch (Opcode) {
2322 : default:
2323 95 : // Doesn't have an absorber.
2324 : return nullptr;
2325 :
2326 : case Instruction::Or:
2327 : return Constant::getAllOnesValue(Ty);
2328 :
2329 : case Instruction::And:
2330 : case Instruction::Mul:
2331 : return Constant::getNullValue(Ty);
2332 95 : }
2333 : }
2334 95 :
2335 : /// Remove the constant from the constant table.
2336 : void ConstantExpr::destroyConstantImpl() {
2337 1 : getType()->getContext().pImpl->ExprConstants.remove(this);
2338 : }
2339 :
2340 1 : const char *ConstantExpr::getOpcodeName() const {
2341 : return Instruction::getOpcodeName(getOpcode());
2342 : }
2343 1 :
2344 1 : GetElementPtrConstantExpr::GetElementPtrConstantExpr(
2345 : Type *SrcElementTy, Constant *C, ArrayRef<Constant *> IdxList, Type *DestTy)
2346 : : ConstantExpr(DestTy, Instruction::GetElementPtr,
2347 167624 : OperandTraits<GetElementPtrConstantExpr>::op_end(this) -
2348 : (IdxList.size() + 1),
2349 : IdxList.size() + 1),
2350 : SrcElementTy(SrcElementTy),
2351 : ResElementTy(GetElementPtrInst::getIndexedType(SrcElementTy, IdxList)) {
2352 167624 : Op<0>() = C;
2353 : Use *OperandList = getOperandList();
2354 : for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
2355 : OperandList[i+1] = IdxList[i];
2356 : }
2357 :
2358 167624 : Type *GetElementPtrConstantExpr::getSourceElementType() const {
2359 : return SrcElementTy;
2360 : }
2361 5 :
2362 : Type *GetElementPtrConstantExpr::getResultElementType() const {
2363 : return ResElementTy;
2364 5 : }
2365 :
2366 : //===----------------------------------------------------------------------===//
2367 5 : // ConstantData* implementations
2368 5 :
2369 : Type *ConstantDataSequential::getElementType() const {
2370 : return getType()->getElementType();
2371 493019 : }
2372 :
2373 : StringRef ConstantDataSequential::getRawDataValues() const {
2374 493019 : return StringRef(DataElements, getNumElements()*getElementByteSize());
2375 493019 : }
2376 :
2377 : bool ConstantDataSequential::isElementTypeCompatible(Type *Ty) {
2378 65 : if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) return true;
2379 : if (auto *IT = dyn_cast<IntegerType>(Ty)) {
2380 : switch (IT->getBitWidth()) {
2381 65 : case 8:
2382 : case 16:
2383 : case 32:
2384 97195 : case 64:
2385 : return true;
2386 : default: break;
2387 97195 : }
2388 : }
2389 : return false;
2390 46436 : }
2391 :
2392 46436 : unsigned ConstantDataSequential::getNumElements() const {
2393 46436 : if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
2394 46436 : return AT->getNumElements();
2395 : return getType()->getVectorNumElements();
2396 : }
2397 1 :
2398 1 :
2399 : uint64_t ConstantDataSequential::getElementByteSize() const {
2400 : return getElementType()->getPrimitiveSizeInBits()/8;
2401 583121 : }
2402 :
2403 583121 : /// Return the start of the specified element.
2404 583121 : const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
2405 583121 : assert(Elt < getNumElements() && "Invalid Elt");
2406 : return DataElements+Elt*getElementByteSize();
2407 : }
2408 70 :
2409 70 :
2410 : /// Return true if the array is empty or all zeros.
2411 : static bool isAllZeros(StringRef Arr) {
2412 9254 : for (char I : Arr)
2413 : if (I != 0)
2414 9254 : return false;
2415 9254 : return true;
2416 9254 : }
2417 :
2418 : /// This is the underlying implementation of all of the
2419 12 : /// ConstantDataSequential::get methods. They all thunk down to here, providing
2420 12 : /// the correct element type. We take the bytes in as a StringRef because
2421 : /// we *want* an underlying "char*" to avoid TBAA type punning violations.
2422 : Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
2423 22194 : assert(isElementTypeCompatible(Ty->getSequentialElementType()));
2424 44387 : // If the elements are all zero or there are no elements, return a CAZ, which
2425 22194 : // is more dense and canonical.
2426 : if (isAllZeros(Elements))
2427 : return ConstantAggregateZero::get(Ty);
2428 21212 :
2429 42396 : // Do a lookup to see if we have already formed one of these.
2430 21212 : auto &Slot =
2431 : *Ty->getContext()
2432 : .pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr))
2433 42 : .first;
2434 42 :
2435 : // The bucket can point to a linked list of different CDS's that have the same
2436 : // body but different types. For example, 0,0,0,1 could be a 4 element array
2437 2 : // of i8, or a 1-element array of i32. They'll both end up in the same
2438 2 : /// StringMap bucket, linked up by their Next pointers. Walk the list.
2439 : ConstantDataSequential **Entry = &Slot.second;
2440 : for (ConstantDataSequential *Node = *Entry; Node;
2441 70 : Entry = &Node->Next, Node = *Entry)
2442 70 : if (Node->getType() == Ty)
2443 : return Node;
2444 :
2445 1 : // Okay, we didn't get a hit. Create a node of the right class, link it in,
2446 1 : // and return it.
2447 : if (isa<ArrayType>(Ty))
2448 : return *Entry = new ConstantDataArray(Ty, Slot.first().data());
2449 2175 :
2450 2175 : assert(isa<VectorType>(Ty));
2451 : return *Entry = new ConstantDataVector(Ty, Slot.first().data());
2452 : }
2453 3293 :
2454 3293 : void ConstantDataSequential::destroyConstantImpl() {
2455 : // Remove the constant from the StringMap.
2456 : StringMap<ConstantDataSequential*> &CDSConstants =
2457 133 : getType()->getContext().pImpl->CDSConstants;
2458 133 :
2459 : StringMap<ConstantDataSequential*>::iterator Slot =
2460 : CDSConstants.find(getRawDataValues());
2461 8393 :
2462 : assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
2463 8393 :
2464 8393 : ConstantDataSequential **Entry = &Slot->getValue();
2465 8393 :
2466 : // Remove the entry from the hash table.
2467 : if (!(*Entry)->Next) {
2468 1182 : // If there is only one value in the bucket (common case) it must be this
2469 2363 : // entry, and removing the entry should remove the bucket completely.
2470 1182 : assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
2471 : getContext().pImpl->CDSConstants.erase(Slot);
2472 : } else {
2473 607 : // Otherwise, there are multiple entries linked off the bucket, unlink the
2474 690 : // node we care about but keep the bucket around.
2475 607 : for (ConstantDataSequential *Node = *Entry; ;
2476 : Entry = &Node->Next, Node = *Entry) {
2477 : assert(Node && "Didn't find entry in its uniquing hash table!");
2478 667684 : // If we found our entry, unlink it from the list and we're done.
2479 : if (Node == this) {
2480 : *Entry = Node->Next;
2481 : break;
2482 : }
2483 : }
2484 643440 : }
2485 611540 :
2486 : // If we were part of a list, make sure that we don't delete the list that is
2487 : // still owned by the uniquing map.
2488 611540 : Next = nullptr;
2489 10086 : }
2490 10086 :
2491 21671 : /// getFP() constructors - Return a constant with array type with an element
2492 21671 : /// count and element type of float with precision matching the number of
2493 51 : /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
2494 : /// double for 64bits) Note that this can return a ConstantAggregateZero
2495 51 : /// object.
2496 92 : Constant *ConstantDataArray::getFP(LLVMContext &Context,
2497 92 : ArrayRef<uint16_t> Elts) {
2498 0 : Type *Ty = ArrayType::get(Type::getHalfTy(Context), Elts.size());
2499 0 : const char *Data = reinterpret_cast<const char *>(Elts.data());
2500 : return getImpl(StringRef(Data, Elts.size() * 2), Ty);
2501 : }
2502 : Constant *ConstantDataArray::getFP(LLVMContext &Context,
2503 : ArrayRef<uint32_t> Elts) {
2504 24244 : Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
2505 : const char *Data = reinterpret_cast<const char *>(Elts.data());
2506 : return getImpl(StringRef(Data, Elts.size() * 4), Ty);
2507 : }
2508 81 : Constant *ConstantDataArray::getFP(LLVMContext &Context,
2509 : ArrayRef<uint64_t> Elts) {
2510 : Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
2511 : const char *Data = reinterpret_cast<const char *>(Elts.data());
2512 : return getImpl(StringRef(Data, Elts.size() * 8), Ty);
2513 81 : }
2514 16 :
2515 : Constant *ConstantDataArray::getString(LLVMContext &Context,
2516 16 : StringRef Str, bool AddNull) {
2517 4 : if (!AddNull) {
2518 4 : const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data());
2519 : return get(Context, makeArrayRef(Data, Str.size()));
2520 : }
2521 :
2522 : SmallVector<uint8_t, 64> ElementVals;
2523 : ElementVals.append(Str.begin(), Str.end());
2524 584264 : ElementVals.push_back(0);
2525 584264 : return get(Context, ElementVals);
2526 : }
2527 :
2528 : /// get() constructors - Return a constant with vector type with an element
2529 : /// count and element type matching the ArrayRef passed in. Note that this
2530 1565 : /// can return a ConstantAggregateZero object.
2531 1565 : Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
2532 : Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size());
2533 7093 : const char *Data = reinterpret_cast<const char *>(Elts.data());
2534 : return getImpl(StringRef(Data, Elts.size() * 1), Ty);
2535 7093 : }
2536 : Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2537 : Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size());
2538 : const char *Data = reinterpret_cast<const char *>(Elts.data());
2539 : return getImpl(StringRef(Data, Elts.size() * 2), Ty);
2540 275473 : }
2541 275473 : Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2542 275473 : Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size());
2543 : const char *Data = reinterpret_cast<const char *>(Elts.data());
2544 108837 : return getImpl(StringRef(Data, Elts.size() * 4), Ty);
2545 108837 : }
2546 : Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2547 : Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size());
2548 550810 : const char *Data = reinterpret_cast<const char *>(Elts.data());
2549 550810 : return getImpl(StringRef(Data, Elts.size() * 8), Ty);
2550 : }
2551 : Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
2552 : Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2553 : const char *Data = reinterpret_cast<const char *>(Elts.data());
2554 : return getImpl(StringRef(Data, Elts.size() * 4), Ty);
2555 550810 : }
2556 : Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
2557 550810 : Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2558 1669716 : const char *Data = reinterpret_cast<const char *>(Elts.data());
2559 2237812 : return getImpl(StringRef(Data, Elts.size() * 8), Ty);
2560 550810 : }
2561 :
2562 87174408 : /// getFP() constructors - Return a constant with vector type with an element
2563 87174408 : /// count and element type of float with the precision matching the number of
2564 : /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
2565 : /// double for 64bits) Note that this can return a ConstantAggregateZero
2566 16629503 : /// object.
2567 16629503 : Constant *ConstantDataVector::getFP(LLVMContext &Context,
2568 : ArrayRef<uint16_t> Elts) {
2569 : Type *Ty = VectorType::get(Type::getHalfTy(Context), Elts.size());
2570 : const char *Data = reinterpret_cast<const char *>(Elts.data());
2571 : return getImpl(StringRef(Data, Elts.size() * 2), Ty);
2572 : }
2573 57716953 : Constant *ConstantDataVector::getFP(LLVMContext &Context,
2574 57716953 : ArrayRef<uint32_t> Elts) {
2575 : Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2576 : const char *Data = reinterpret_cast<const char *>(Elts.data());
2577 2106037 : return getImpl(StringRef(Data, Elts.size() * 4), Ty);
2578 2106037 : }
2579 : Constant *ConstantDataVector::getFP(LLVMContext &Context,
2580 : ArrayRef<uint64_t> Elts) {
2581 408163 : Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2582 408163 : const char *Data = reinterpret_cast<const char *>(Elts.data());
2583 : return getImpl(StringRef(Data, Elts.size() * 8), Ty);
2584 : }
2585 330724 :
2586 : Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
2587 : assert(isElementTypeCompatible(V->getType()) &&
2588 : "Element type not compatible with ConstantData");
2589 330724 : if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2590 : if (CI->getType()->isIntegerTy(8)) {
2591 : SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
2592 : return get(V->getContext(), Elts);
2593 : }
2594 : if (CI->getType()->isIntegerTy(16)) {
2595 : SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
2596 5756601 : return get(V->getContext(), Elts);
2597 : }
2598 655356 : if (CI->getType()->isIntegerTy(32)) {
2599 5101245 : SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
2600 : return get(V->getContext(), Elts);
2601 : }
2602 : assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
2603 23059407 : SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
2604 23059407 : return get(V->getContext(), Elts);
2605 : }
2606 :
2607 : if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2608 19258092 : if (CFP->getType()->isHalfTy()) {
2609 : SmallVector<uint16_t, 16> Elts(
2610 19258092 : NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2611 : return getFP(V->getContext(), Elts);
2612 : }
2613 : if (CFP->getType()->isFloatTy()) {
2614 : SmallVector<uint32_t, 16> Elts(
2615 : NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2616 1263150 : return getFP(V->getContext(), Elts);
2617 1246745 : }
2618 : if (CFP->getType()->isDoubleTy()) {
2619 : SmallVector<uint64_t, 16> Elts(
2620 : NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2621 : return getFP(V->getContext(), Elts);
2622 : }
2623 : }
2624 : return ConstantVector::getSplat(NumElts, V);
2625 : }
2626 996562 :
2627 :
2628 : uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
2629 : assert(isa<IntegerType>(getElementType()) &&
2630 996562 : "Accessor can only be used when element is an integer");
2631 16405 : const char *EltPtr = getElementPointer(Elt);
2632 :
2633 : // The data is stored in host byte order, make sure to cast back to the right
2634 : // type to load with the right endianness.
2635 980157 : switch (getElementType()->getIntegerBitWidth()) {
2636 980157 : default: llvm_unreachable("Invalid bitwidth for CDS");
2637 : case 8:
2638 : return *reinterpret_cast<const uint8_t *>(EltPtr);
2639 : case 16:
2640 : return *reinterpret_cast<const uint16_t *>(EltPtr);
2641 : case 32:
2642 : return *reinterpret_cast<const uint32_t *>(EltPtr);
2643 980157 : case 64:
2644 991861 : return *reinterpret_cast<const uint64_t *>(EltPtr);
2645 11704 : }
2646 722132 : }
2647 710428 :
2648 : APInt ConstantDataSequential::getElementAsAPInt(unsigned Elt) const {
2649 : assert(isa<IntegerType>(getElementType()) &&
2650 : "Accessor can only be used when element is an integer");
2651 269729 : const char *EltPtr = getElementPointer(Elt);
2652 223751 :
2653 : // The data is stored in host byte order, make sure to cast back to the right
2654 : // type to load with the right endianness.
2655 45978 : switch (getElementType()->getIntegerBitWidth()) {
2656 : default: llvm_unreachable("Invalid bitwidth for CDS");
2657 : case 8: {
2658 0 : auto EltVal = *reinterpret_cast<const uint8_t *>(EltPtr);
2659 : return APInt(8, EltVal);
2660 : }
2661 0 : case 16: {
2662 : auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
2663 : return APInt(16, EltVal);
2664 0 : }
2665 : case 32: {
2666 : auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
2667 : return APInt(32, EltVal);
2668 : }
2669 : case 64: {
2670 : auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
2671 0 : return APInt(64, EltVal);
2672 : }
2673 : }
2674 : }
2675 0 :
2676 : APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
2677 : const char *EltPtr = getElementPointer(Elt);
2678 :
2679 : switch (getElementType()->getTypeID()) {
2680 0 : default:
2681 0 : llvm_unreachable("Accessor can only be used when element is float/double!");
2682 : case Type::HalfTyID: {
2683 0 : auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
2684 0 : return APFloat(APFloat::IEEEhalf(), APInt(16, EltVal));
2685 0 : }
2686 : case Type::FloatTyID: {
2687 : auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
2688 : return APFloat(APFloat::IEEEsingle(), APInt(32, EltVal));
2689 : }
2690 : case Type::DoubleTyID: {
2691 : auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
2692 0 : return APFloat(APFloat::IEEEdouble(), APInt(64, EltVal));
2693 0 : }
2694 : }
2695 : }
2696 :
2697 : float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
2698 : assert(getElementType()->isFloatTy() &&
2699 : "Accessor can only be used when element is a 'float'");
2700 19 : return *reinterpret_cast<const float *>(getElementPointer(Elt));
2701 : }
2702 19 :
2703 19 : double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
2704 38 : assert(getElementType()->isDoubleTy() &&
2705 : "Accessor can only be used when element is a 'float'");
2706 102 : return *reinterpret_cast<const double *>(getElementPointer(Elt));
2707 : }
2708 102 :
2709 102 : Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
2710 204 : if (getElementType()->isHalfTy() || getElementType()->isFloatTy() ||
2711 : getElementType()->isDoubleTy())
2712 337 : return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
2713 :
2714 337 : return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
2715 337 : }
2716 674 :
2717 : bool ConstantDataSequential::isString(unsigned CharSize) const {
2718 : return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(CharSize);
2719 759786 : }
2720 :
2721 759786 : bool ConstantDataSequential::isCString() const {
2722 : if (!isString())
2723 713224 : return false;
2724 :
2725 : StringRef Str = getAsString();
2726 :
2727 46562 : // The last value must be nul.
2728 46562 : if (Str.back() != 0) return false;
2729 :
2730 : // Other elements must be non-nul.
2731 : return Str.drop_back().find(0) == StringRef::npos;
2732 : }
2733 :
2734 : bool ConstantDataVector::isSplat() const {
2735 14183 : const char *Base = getRawDataValues().data();
2736 14183 :
2737 14183 : // Compare elements 1+ to the 0'th element.
2738 14183 : unsigned EltSize = getElementByteSize();
2739 : for (unsigned i = 1, e = getNumElements(); i != e; ++i)
2740 9616 : if (memcmp(Base, Base+i*EltSize, EltSize))
2741 9616 : return false;
2742 9616 :
2743 19232 : return true;
2744 : }
2745 65118 :
2746 65118 : Constant *ConstantDataVector::getSplatValue() const {
2747 65118 : // If they're all the same, return the 0th one as a representative.
2748 130236 : return isSplat() ? getElementAsConstant(0) : nullptr;
2749 : }
2750 110185 :
2751 110185 : //===----------------------------------------------------------------------===//
2752 110185 : // handleOperandChange implementations
2753 220370 :
2754 : /// Update this constant array to change uses of
2755 0 : /// 'From' to be uses of 'To'. This must update the uniquing data structures
2756 0 : /// etc.
2757 0 : ///
2758 0 : /// Note that we intentionally replace all uses of From with To here. Consider
2759 : /// a large array that uses 'From' 1000 times. By handling this case all here,
2760 0 : /// ConstantArray::handleOperandChange is only invoked once, and that
2761 0 : /// single invocation handles all 1000 uses. Handling them one at a time would
2762 0 : /// work, but would be really slow because it would have to unique each updated
2763 0 : /// array instance.
2764 : ///
2765 : void Constant::handleOperandChange(Value *From, Value *To) {
2766 : Value *Replacement = nullptr;
2767 : switch (getValueID()) {
2768 : default:
2769 : llvm_unreachable("Not a constant!");
2770 : #define HANDLE_CONSTANT(Name) \
2771 730 : case Value::Name##Val: \
2772 : Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To); \
2773 730 : break;
2774 730 : #include "llvm/IR/Value.def"
2775 1460 : }
2776 :
2777 7152 : // If handleOperandChangeImpl returned nullptr, then it handled
2778 : // replacing itself and we don't want to delete or replace anything else here.
2779 7152 : if (!Replacement)
2780 7152 : return;
2781 14304 :
2782 : // I do need to replace this with an existing value.
2783 6353 : assert(Replacement != this && "I didn't contain From!");
2784 :
2785 6353 : // Everyone using this now uses the replacement.
2786 6353 : replaceAllUsesWith(Replacement);
2787 12706 :
2788 : // Delete the old constant!
2789 : destroyConstant();
2790 12651 : }
2791 :
2792 : Value *ConstantArray::handleOperandChangeImpl(Value *From, Value *To) {
2793 : assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2794 8983 : Constant *ToC = cast<Constant>(To);
2795 1331 :
2796 1331 : SmallVector<Constant*, 8> Values;
2797 : Values.reserve(getNumOperands()); // Build replacement array.
2798 7652 :
2799 1152 : // Fill values with the modified operands of the constant array. Also,
2800 1152 : // compute whether this turns into an all-zeros array.
2801 : unsigned NumUpdated = 0;
2802 6500 :
2803 4564 : // Keep track of whether all the values in the array are "ToC".
2804 4564 : bool AllSame = true;
2805 : Use *OperandList = getOperandList();
2806 : unsigned OperandNo = 0;
2807 1936 : for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2808 1936 : Constant *Val = cast<Constant>(O->get());
2809 : if (Val == From) {
2810 : OperandNo = (O - OperandList);
2811 : Val = ToC;
2812 7336 : ++NumUpdated;
2813 : }
2814 254 : Values.push_back(Val);
2815 127 : AllSame &= Val == ToC;
2816 : }
2817 3541 :
2818 : if (AllSame && ToC->isNullValue())
2819 3766 : return ConstantAggregateZero::get(getType());
2820 1883 :
2821 : if (AllSame && isa<UndefValue>(ToC))
2822 1658 : return UndefValue::get(getType());
2823 :
2824 3316 : // Check for any other type of constant-folding.
2825 1658 : if (Constant *C = getImpl(getType(), Values))
2826 : return C;
2827 :
2828 0 : // Update to the new value.
2829 : return getContext().pImpl->ArrayConstants.replaceOperandsInPlace(
2830 : Values, this, From, ToC, NumUpdated, OperandNo);
2831 : }
2832 19048572 :
2833 : Value *ConstantStruct::handleOperandChangeImpl(Value *From, Value *To) {
2834 : assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2835 19048572 : Constant *ToC = cast<Constant>(To);
2836 :
2837 : Use *OperandList = getOperandList();
2838 :
2839 19048572 : SmallVector<Constant*, 8> Values;
2840 0 : Values.reserve(getNumOperands()); // Build replacement struct.
2841 14029558 :
2842 14029558 : // Fill values with the modified operands of the constant struct. Also,
2843 220638 : // compute whether this turns into an all-zeros struct.
2844 220638 : unsigned NumUpdated = 0;
2845 3049489 : bool AllSame = true;
2846 3049489 : unsigned OperandNo = 0;
2847 1748887 : for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) {
2848 1748887 : Constant *Val = cast<Constant>(O->get());
2849 : if (Val == From) {
2850 : OperandNo = (O - OperandList);
2851 : Val = ToC;
2852 142126 : ++NumUpdated;
2853 : }
2854 : Values.push_back(Val);
2855 142126 : AllSame &= Val == ToC;
2856 : }
2857 :
2858 : if (AllSame && ToC->isNullValue())
2859 142126 : return ConstantAggregateZero::get(getType());
2860 0 :
2861 51595 : if (AllSame && isa<UndefValue>(ToC))
2862 51595 : return UndefValue::get(getType());
2863 51595 :
2864 : // Update to the new value.
2865 19305 : return getContext().pImpl->StructConstants.replaceOperandsInPlace(
2866 19305 : Values, this, From, ToC, NumUpdated, OperandNo);
2867 19305 : }
2868 :
2869 45799 : Value *ConstantVector::handleOperandChangeImpl(Value *From, Value *To) {
2870 45799 : assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2871 45799 : Constant *ToC = cast<Constant>(To);
2872 :
2873 25427 : SmallVector<Constant*, 8> Values;
2874 25427 : Values.reserve(getNumOperands()); // Build replacement array...
2875 : unsigned NumUpdated = 0;
2876 : unsigned OperandNo = 0;
2877 : for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2878 : Constant *Val = getOperand(i);
2879 : if (Val == From) {
2880 67194 : OperandNo = i;
2881 67194 : ++NumUpdated;
2882 : Val = ToC;
2883 67194 : }
2884 0 : Values.push_back(Val);
2885 0 : }
2886 3542 :
2887 3542 : if (Constant *C = getImpl(Values))
2888 7084 : return C;
2889 :
2890 41290 : // Update to the new value.
2891 41290 : return getContext().pImpl->VectorConstants.replaceOperandsInPlace(
2892 82580 : Values, this, From, ToC, NumUpdated, OperandNo);
2893 : }
2894 22362 :
2895 22362 : Value *ConstantExpr::handleOperandChangeImpl(Value *From, Value *ToV) {
2896 44724 : assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
2897 : Constant *To = cast<Constant>(ToV);
2898 :
2899 : SmallVector<Constant*, 8> NewOps;
2900 : unsigned NumUpdated = 0;
2901 85 : unsigned OperandNo = 0;
2902 : for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2903 : Constant *Op = getOperand(i);
2904 85 : if (Op == From) {
2905 : OperandNo = i;
2906 : ++NumUpdated;
2907 115 : Op = To;
2908 : }
2909 : NewOps.push_back(Op);
2910 115 : }
2911 : assert(NumUpdated && "I didn't contain From!");
2912 :
2913 3781485 : if (Constant *C = getWithOperands(NewOps, getType(), true))
2914 7527911 : return C;
2915 3746426 :
2916 105222 : // Update to the new value.
2917 : return getContext().pImpl->ExprConstants.replaceOperandsInPlace(
2918 3728874 : NewOps, this, From, To, NumUpdated, OperandNo);
2919 : }
2920 :
2921 250112 : Instruction *ConstantExpr::getAsInstruction() {
2922 250112 : SmallVector<Value *, 4> ValueOperands(op_begin(), op_end());
2923 : ArrayRef<Value*> Ops(ValueOperands);
2924 :
2925 2105 : switch (getOpcode()) {
2926 2105 : case Instruction::Trunc:
2927 : case Instruction::ZExt:
2928 : case Instruction::SExt:
2929 2105 : case Instruction::FPTrunc:
2930 : case Instruction::FPExt:
2931 : case Instruction::UIToFP:
2932 2105 : case Instruction::SIToFP:
2933 : case Instruction::FPToUI:
2934 : case Instruction::FPToSI:
2935 1306 : case Instruction::PtrToInt:
2936 : case Instruction::IntToPtr:
2937 : case Instruction::BitCast:
2938 1666686 : case Instruction::AddrSpaceCast:
2939 1666686 : return CastInst::Create((Instruction::CastOps)getOpcode(),
2940 : Ops[0], getType());
2941 : case Instruction::Select:
2942 1666686 : return SelectInst::Create(Ops[0], Ops[1], Ops[2]);
2943 3632120 : case Instruction::InsertElement:
2944 1997202 : return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]);
2945 : case Instruction::ExtractElement:
2946 : return ExtractElementInst::Create(Ops[0], Ops[1]);
2947 : case Instruction::InsertValue:
2948 : return InsertValueInst::Create(Ops[0], Ops[1], getIndices());
2949 : case Instruction::ExtractValue:
2950 1658766 : return ExtractValueInst::Create(Ops[0], getIndices());
2951 : case Instruction::ShuffleVector:
2952 1658766 : return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]);
2953 :
2954 : case Instruction::GetElementPtr: {
2955 : const auto *GO = cast<GEPOperator>(this);
2956 : if (GO->isInBounds())
2957 : return GetElementPtrInst::CreateInBounds(GO->getSourceElementType(),
2958 : Ops[0], Ops.slice(1));
2959 : return GetElementPtrInst::Create(GO->getSourceElementType(), Ops[0],
2960 : Ops.slice(1));
2961 : }
2962 : case Instruction::ICmp:
2963 : case Instruction::FCmp:
2964 : return CmpInst::Create((Instruction::OtherOps)getOpcode(),
2965 : (CmpInst::Predicate)getPredicate(), Ops[0], Ops[1]);
2966 :
2967 : default:
2968 : assert(getNumOperands() == 2 && "Must be binary operator?");
2969 8606 : BinaryOperator *BO =
2970 : BinaryOperator::Create((Instruction::BinaryOps)getOpcode(),
2971 17212 : Ops[0], Ops[1]);
2972 0 : if (isa<OverflowingBinaryOperator>(BO)) {
2973 0 : BO->setHasNoUnsignedWrap(SubclassOptionalData &
2974 : OverflowingBinaryOperator::NoUnsignedWrap);
2975 : BO->setHasNoSignedWrap(SubclassOptionalData &
2976 : OverflowingBinaryOperator::NoSignedWrap);
2977 : }
2978 : if (isa<PossiblyExactOperator>(BO))
2979 : BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
2980 : return BO;
2981 : }
2982 : }
|