Line data Source code
1 : //===- DataLayout.cpp - Data size & alignment routines ---------------------==//
2 : //
3 : // The LLVM Compiler Infrastructure
4 : //
5 : // This file is distributed under the University of Illinois Open Source
6 : // License. See LICENSE.TXT for details.
7 : //
8 : //===----------------------------------------------------------------------===//
9 : //
10 : // This file defines layout properties related to datatype size/offset/alignment
11 : // information.
12 : //
13 : // This structure should be created once, filled in if the defaults are not
14 : // correct and then passed around by const&. None of the members functions
15 : // require modification to the object.
16 : //
17 : //===----------------------------------------------------------------------===//
18 :
19 : #include "llvm/IR/DataLayout.h"
20 : #include "llvm/ADT/DenseMap.h"
21 : #include "llvm/ADT/StringRef.h"
22 : #include "llvm/ADT/Triple.h"
23 : #include "llvm/IR/Constants.h"
24 : #include "llvm/IR/DerivedTypes.h"
25 : #include "llvm/IR/GetElementPtrTypeIterator.h"
26 : #include "llvm/IR/GlobalVariable.h"
27 : #include "llvm/IR/Module.h"
28 : #include "llvm/IR/Type.h"
29 : #include "llvm/IR/Value.h"
30 : #include "llvm/Support/Casting.h"
31 : #include "llvm/Support/ErrorHandling.h"
32 : #include "llvm/Support/MathExtras.h"
33 : #include <algorithm>
34 : #include <cassert>
35 : #include <cstdint>
36 : #include <cstdlib>
37 : #include <tuple>
38 : #include <utility>
39 :
40 : using namespace llvm;
41 :
42 : //===----------------------------------------------------------------------===//
43 : // Support for StructLayout
44 : //===----------------------------------------------------------------------===//
45 :
46 278869 : StructLayout::StructLayout(StructType *ST, const DataLayout &DL) {
47 : assert(!ST->isOpaque() && "Cannot get layout of opaque structs");
48 278869 : StructAlignment = 0;
49 278869 : StructSize = 0;
50 278869 : IsPadded = false;
51 278869 : NumElements = ST->getNumElements();
52 :
53 : // Loop over each of the elements, placing them in memory.
54 771277 : for (unsigned i = 0, e = NumElements; i != e; ++i) {
55 492408 : Type *Ty = ST->getElementType(i);
56 492408 : unsigned TyAlign = ST->isPacked() ? 1 : DL.getABITypeAlignment(Ty);
57 :
58 : // Add padding if necessary to align the data element properly.
59 492408 : if ((StructSize & (TyAlign-1)) != 0) {
60 8166 : IsPadded = true;
61 16332 : StructSize = alignTo(StructSize, TyAlign);
62 : }
63 :
64 : // Keep track of maximum alignment constraint.
65 492408 : StructAlignment = std::max(TyAlign, StructAlignment);
66 :
67 492408 : MemberOffsets[i] = StructSize;
68 492408 : StructSize += DL.getTypeAllocSize(Ty); // Consume space for this data item
69 : }
70 :
71 : // Empty structures have alignment of 1 byte.
72 278869 : if (StructAlignment == 0) StructAlignment = 1;
73 :
74 : // Add padding to the end of the struct so that it could be put in an array
75 : // and all array elements would be aligned correctly.
76 278869 : if ((StructSize & (StructAlignment-1)) != 0) {
77 7050 : IsPadded = true;
78 14100 : StructSize = alignTo(StructSize, StructAlignment);
79 : }
80 278869 : }
81 :
82 : /// getElementContainingOffset - Given a valid offset into the structure,
83 : /// return the structure index that contains it.
84 271306 : unsigned StructLayout::getElementContainingOffset(uint64_t Offset) const {
85 : const uint64_t *SI =
86 271306 : std::upper_bound(&MemberOffsets[0], &MemberOffsets[NumElements], Offset);
87 : assert(SI != &MemberOffsets[0] && "Offset not in structure type!");
88 271306 : --SI;
89 : assert(*SI <= Offset && "upper_bound didn't work");
90 : assert((SI == &MemberOffsets[0] || *(SI-1) <= Offset) &&
91 : (SI+1 == &MemberOffsets[NumElements] || *(SI+1) > Offset) &&
92 : "Upper bound didn't work!");
93 :
94 : // Multiple fields can have the same offset if any of them are zero sized.
95 : // For example, in { i32, [0 x i32], i32 }, searching for offset 4 will stop
96 : // at the i32 element, because it is the last element at that offset. This is
97 : // the right one to return, because anything after it will have a higher
98 : // offset, implying that this element is non-empty.
99 271306 : return SI-&MemberOffsets[0];
100 : }
101 :
102 : //===----------------------------------------------------------------------===//
103 : // LayoutAlignElem, LayoutAlign support
104 : //===----------------------------------------------------------------------===//
105 :
106 : LayoutAlignElem
107 1884911 : LayoutAlignElem::get(AlignTypeEnum align_type, unsigned abi_align,
108 : unsigned pref_align, uint32_t bit_width) {
109 : assert(abi_align <= pref_align && "Preferred alignment worse than ABI!");
110 : LayoutAlignElem retval;
111 1884911 : retval.AlignType = align_type;
112 1884911 : retval.ABIAlign = abi_align;
113 1884911 : retval.PrefAlign = pref_align;
114 1884911 : retval.TypeBitWidth = bit_width;
115 1884911 : return retval;
116 : }
117 :
118 : bool
119 13969 : LayoutAlignElem::operator==(const LayoutAlignElem &rhs) const {
120 13969 : return (AlignType == rhs.AlignType
121 : && ABIAlign == rhs.ABIAlign
122 13969 : && PrefAlign == rhs.PrefAlign
123 27938 : && TypeBitWidth == rhs.TypeBitWidth);
124 : }
125 :
126 : //===----------------------------------------------------------------------===//
127 : // PointerAlignElem, PointerAlign support
128 : //===----------------------------------------------------------------------===//
129 :
130 : PointerAlignElem
131 164565 : PointerAlignElem::get(uint32_t AddressSpace, unsigned ABIAlign,
132 : unsigned PrefAlign, uint32_t TypeByteWidth,
133 : uint32_t IndexWidth) {
134 : assert(ABIAlign <= PrefAlign && "Preferred alignment worse than ABI!");
135 : PointerAlignElem retval;
136 164565 : retval.AddressSpace = AddressSpace;
137 164565 : retval.ABIAlign = ABIAlign;
138 164565 : retval.PrefAlign = PrefAlign;
139 164565 : retval.TypeByteWidth = TypeByteWidth;
140 164565 : retval.IndexWidth = IndexWidth;
141 164565 : return retval;
142 : }
143 :
144 : bool
145 1118 : PointerAlignElem::operator==(const PointerAlignElem &rhs) const {
146 1118 : return (ABIAlign == rhs.ABIAlign
147 1117 : && AddressSpace == rhs.AddressSpace
148 1117 : && PrefAlign == rhs.PrefAlign
149 1117 : && TypeByteWidth == rhs.TypeByteWidth
150 2235 : && IndexWidth == rhs.IndexWidth);
151 : }
152 :
153 : //===----------------------------------------------------------------------===//
154 : // DataLayout Class Implementation
155 : //===----------------------------------------------------------------------===//
156 :
157 31831 : const char *DataLayout::getManglingComponent(const Triple &T) {
158 31831 : if (T.isOSBinFormatMachO())
159 : return "-m:o";
160 27273 : if (T.isOSWindows() && T.isOSBinFormatCOFF())
161 1521 : return T.getArch() == Triple::x86 ? "-m:x" : "-m:w";
162 : return "-m:e";
163 : }
164 :
165 : static const LayoutAlignElem DefaultAlignments[] = {
166 : { INTEGER_ALIGN, 1, 1, 1 }, // i1
167 : { INTEGER_ALIGN, 8, 1, 1 }, // i8
168 : { INTEGER_ALIGN, 16, 2, 2 }, // i16
169 : { INTEGER_ALIGN, 32, 4, 4 }, // i32
170 : { INTEGER_ALIGN, 64, 4, 8 }, // i64
171 : { FLOAT_ALIGN, 16, 2, 2 }, // half
172 : { FLOAT_ALIGN, 32, 4, 4 }, // float
173 : { FLOAT_ALIGN, 64, 8, 8 }, // double
174 : { FLOAT_ALIGN, 128, 16, 16 }, // ppcf128, quad, ...
175 : { VECTOR_ALIGN, 64, 8, 8 }, // v2i32, v1i64, ...
176 : { VECTOR_ALIGN, 128, 16, 16 }, // v16i8, v8i16, v4i32, ...
177 : { AGGREGATE_ALIGN, 0, 0, 8 } // struct
178 : };
179 :
180 147944 : void DataLayout::reset(StringRef Desc) {
181 147944 : clear();
182 :
183 147943 : LayoutMap = nullptr;
184 147943 : BigEndian = false;
185 147943 : AllocaAddrSpace = 0;
186 147943 : StackNaturalAlign = 0;
187 147943 : ProgramAddrSpace = 0;
188 147943 : ManglingMode = MM_None;
189 : NonIntegralAddressSpaces.clear();
190 :
191 : // Default alignments
192 1923271 : for (const LayoutAlignElem &E : DefaultAlignments) {
193 1775327 : setAlignment((AlignTypeEnum)E.AlignType, E.ABIAlign, E.PrefAlign,
194 1775327 : E.TypeBitWidth);
195 : }
196 147944 : setPointerAlignment(0, 8, 8, 8, 8);
197 :
198 147944 : parseSpecifier(Desc);
199 147916 : }
200 :
201 : /// Checked version of split, to ensure mandatory subparts.
202 1955207 : static std::pair<StringRef, StringRef> split(StringRef Str, char Separator) {
203 : assert(!Str.empty() && "parse error, string can't be empty here");
204 1955207 : std::pair<StringRef, StringRef> Split = Str.split(Separator);
205 1955207 : if (Split.second.empty() && Split.first != Str)
206 1 : report_fatal_error("Trailing separator in datalayout string");
207 1955206 : if (!Split.second.empty() && Split.first.empty())
208 1 : report_fatal_error("Expected token before separator in datalayout string");
209 1955205 : return Split;
210 : }
211 :
212 : /// Get an unsigned integer, including error checks.
213 1079548 : static unsigned getInt(StringRef R) {
214 : unsigned Result;
215 1 : bool error = R.getAsInteger(10, Result); (void)error;
216 : if (error)
217 1 : report_fatal_error("not a number, or does not fit in an unsigned int");
218 1079547 : return Result;
219 : }
220 :
221 : /// Convert bits into bytes. Assert if not a byte width multiple.
222 : static unsigned inBytes(unsigned Bits) {
223 507471 : if (Bits % 8)
224 1 : report_fatal_error("number of bits must be a byte width multiple");
225 74681 : return Bits / 8;
226 : }
227 :
228 3316 : static unsigned getAddrSpace(StringRef R) {
229 3316 : unsigned AddrSpace = getInt(R);
230 3316 : if (!isUInt<24>(AddrSpace))
231 3 : report_fatal_error("Invalid address space, must be a 24-bit integer");
232 3313 : return AddrSpace;
233 : }
234 :
235 147944 : void DataLayout::parseSpecifier(StringRef Desc) {
236 295888 : StringRepresentation = Desc;
237 807862 : while (!Desc.empty()) {
238 : // Split at '-'.
239 659946 : std::pair<StringRef, StringRef> Split = split(Desc, '-');
240 659946 : Desc = Split.second;
241 :
242 : // Split at ':'.
243 659946 : Split = split(Split.first, ':');
244 :
245 : // Aliases used below.
246 : StringRef &Tok = Split.first; // Current token.
247 : StringRef &Rest = Split.second; // The rest of the string.
248 :
249 : if (Tok == "ni") {
250 : do {
251 45 : Split = split(Rest, ':');
252 45 : Rest = Split.second;
253 45 : unsigned AS = getInt(Split.first);
254 45 : if (AS == 0)
255 0 : report_fatal_error("Address space 0 can never be non-integral");
256 45 : NonIntegralAddressSpaces.push_back(AS);
257 45 : } while (!Rest.empty());
258 :
259 39 : continue;
260 : }
261 :
262 : char Specifier = Tok.front();
263 659905 : Tok = Tok.substr(1);
264 :
265 659905 : switch (Specifier) {
266 : case 's':
267 : // Ignored for backward compatibility.
268 : // FIXME: remove this on LLVM 4.0.
269 : break;
270 4902 : case 'E':
271 4902 : BigEndian = true;
272 4902 : break;
273 87920 : case 'e':
274 87920 : BigEndian = false;
275 87920 : break;
276 : case 'p': {
277 : // Address space.
278 43888 : unsigned AddrSpace = Tok.empty() ? 0 : getInt(Tok);
279 16622 : if (!isUInt<24>(AddrSpace))
280 1 : report_fatal_error("Invalid address space, must be a 24bit integer");
281 :
282 : // Size.
283 43887 : if (Rest.empty())
284 1 : report_fatal_error(
285 : "Missing size specification for pointer in datalayout string");
286 43886 : Split = split(Rest, ':');
287 43886 : unsigned PointerMemSize = inBytes(getInt(Tok));
288 43884 : if (!PointerMemSize)
289 1 : report_fatal_error("Invalid pointer size of 0 bytes");
290 :
291 : // ABI alignment.
292 43883 : if (Rest.empty())
293 1 : report_fatal_error(
294 : "Missing alignment specification for pointer in datalayout string");
295 43882 : Split = split(Rest, ':');
296 43882 : unsigned PointerABIAlign = inBytes(getInt(Tok));
297 43882 : if (!isPowerOf2_64(PointerABIAlign))
298 1 : report_fatal_error(
299 : "Pointer ABI alignment must be a power of 2");
300 :
301 : // Size of index used in GEP for address calculation.
302 : // The parameter is optional. By default it is equal to size of pointer.
303 : unsigned IndexSize = PointerMemSize;
304 :
305 : // Preferred alignment.
306 : unsigned PointerPrefAlign = PointerABIAlign;
307 43881 : if (!Rest.empty()) {
308 3960 : Split = split(Rest, ':');
309 3960 : PointerPrefAlign = inBytes(getInt(Tok));
310 3960 : if (!isPowerOf2_64(PointerPrefAlign))
311 1 : report_fatal_error(
312 : "Pointer preferred alignment must be a power of 2");
313 :
314 : // Now read the index. It is the second optional parameter here.
315 3959 : if (!Rest.empty()) {
316 6 : Split = split(Rest, ':');
317 6 : IndexSize = inBytes(getInt(Tok));
318 6 : if (!IndexSize)
319 0 : report_fatal_error("Invalid index size of 0 bytes");
320 : }
321 : }
322 43880 : setPointerAlignment(AddrSpace, PointerABIAlign, PointerPrefAlign,
323 : PointerMemSize, IndexSize);
324 43879 : break;
325 : }
326 259824 : case 'i':
327 : case 'v':
328 : case 'f':
329 : case 'a': {
330 : AlignTypeEnum AlignType;
331 : switch (Specifier) {
332 0 : default: llvm_unreachable("Unexpected specifier!");
333 : case 'i': AlignType = INTEGER_ALIGN; break;
334 50175 : case 'v': AlignType = VECTOR_ALIGN; break;
335 88706 : case 'f': AlignType = FLOAT_ALIGN; break;
336 10788 : case 'a': AlignType = AGGREGATE_ALIGN; break;
337 : }
338 :
339 : // Bit size.
340 259824 : unsigned Size = Tok.empty() ? 0 : getInt(Tok);
341 :
342 259824 : if (AlignType == AGGREGATE_ALIGN && Size != 0)
343 1 : report_fatal_error(
344 : "Sized aggregate specification in datalayout string");
345 :
346 : // ABI alignment.
347 259823 : if (Rest.empty())
348 1 : report_fatal_error(
349 : "Missing alignment specification in datalayout string");
350 259822 : Split = split(Rest, ':');
351 259822 : unsigned ABIAlign = inBytes(getInt(Tok));
352 259822 : if (AlignType != AGGREGATE_ALIGN && !ABIAlign)
353 1 : report_fatal_error(
354 : "ABI alignment specification must be >0 for non-aggregate types");
355 :
356 : // Preferred alignment.
357 : unsigned PrefAlign = ABIAlign;
358 259821 : if (!Rest.empty()) {
359 74681 : Split = split(Rest, ':');
360 74681 : PrefAlign = inBytes(getInt(Tok));
361 : }
362 :
363 259821 : setAlignment(AlignType, ABIAlign, PrefAlign, Size);
364 :
365 259815 : break;
366 : }
367 300704 : case 'n': // Native integer types.
368 : while (true) {
369 300704 : unsigned Width = getInt(Tok);
370 300704 : if (Width == 0)
371 1 : report_fatal_error(
372 : "Zero width native integer type in datalayout string");
373 300703 : LegalIntWidths.push_back(Width);
374 300703 : if (Rest.empty())
375 : break;
376 209033 : Split = split(Rest, ':');
377 209033 : }
378 : break;
379 81235 : case 'S': { // Stack natural alignment.
380 81235 : StackNaturalAlign = inBytes(getInt(Tok));
381 81235 : break;
382 : }
383 149 : case 'P': { // Function address space.
384 149 : ProgramAddrSpace = getAddrSpace(Tok);
385 147 : break;
386 : }
387 3167 : case 'A': { // Default stack/alloca address space.
388 3167 : AllocaAddrSpace = getAddrSpace(Tok);
389 3166 : break;
390 : }
391 : case 'm':
392 85738 : if (!Tok.empty())
393 1 : report_fatal_error("Unexpected trailing characters after mangling specifier in datalayout string");
394 85737 : if (Rest.empty())
395 1 : report_fatal_error("Expected mangling specifier in datalayout string");
396 85736 : if (Rest.size() > 1)
397 0 : report_fatal_error("Unknown mangling specifier in datalayout string");
398 85736 : switch(Rest[0]) {
399 1 : default:
400 1 : report_fatal_error("Unknown mangling in datalayout string");
401 72422 : case 'e':
402 72422 : ManglingMode = MM_ELF;
403 72422 : break;
404 8729 : case 'o':
405 8729 : ManglingMode = MM_MachO;
406 8729 : break;
407 1508 : case 'm':
408 1508 : ManglingMode = MM_Mips;
409 1508 : break;
410 1688 : case 'w':
411 1688 : ManglingMode = MM_WinCOFF;
412 1688 : break;
413 1388 : case 'x':
414 1388 : ManglingMode = MM_WinCOFFX86;
415 1388 : break;
416 : }
417 : break;
418 1 : default:
419 1 : report_fatal_error("Unknown specifier in datalayout string");
420 : break;
421 : }
422 : }
423 147916 : }
424 :
425 9750 : DataLayout::DataLayout(const Module *M) {
426 4875 : init(M);
427 4875 : }
428 :
429 4875 : void DataLayout::init(const Module *M) { *this = M->getDataLayout(); }
430 :
431 1113 : bool DataLayout::operator==(const DataLayout &Other) const {
432 1113 : bool Ret = BigEndian == Other.BigEndian &&
433 : AllocaAddrSpace == Other.AllocaAddrSpace &&
434 1113 : StackNaturalAlign == Other.StackNaturalAlign &&
435 1112 : ProgramAddrSpace == Other.ProgramAddrSpace &&
436 1112 : ManglingMode == Other.ManglingMode &&
437 2224 : LegalIntWidths == Other.LegalIntWidths &&
438 3337 : Alignments == Other.Alignments && Pointers == Other.Pointers;
439 : // Note: getStringRepresentation() might differs, it is not canonicalized
440 1113 : return Ret;
441 : }
442 :
443 : DataLayout::AlignmentsTy::iterator
444 247954319 : DataLayout::findAlignmentLowerBound(AlignTypeEnum AlignType,
445 : uint32_t BitWidth) {
446 247954319 : auto Pair = std::make_pair((unsigned)AlignType, BitWidth);
447 : return std::lower_bound(Alignments.begin(), Alignments.end(), Pair,
448 : [](const LayoutAlignElem &LHS,
449 : const std::pair<unsigned, uint32_t> &RHS) {
450 0 : return std::tie(LHS.AlignType, LHS.TypeBitWidth) <
451 : std::tie(RHS.first, RHS.second);
452 247954318 : });
453 : }
454 :
455 : void
456 2035147 : DataLayout::setAlignment(AlignTypeEnum align_type, unsigned abi_align,
457 : unsigned pref_align, uint32_t bit_width) {
458 2035147 : if (!isUInt<24>(bit_width))
459 1 : report_fatal_error("Invalid bit width, must be a 24bit integer");
460 2035146 : if (!isUInt<16>(abi_align))
461 1 : report_fatal_error("Invalid ABI alignment, must be a 16bit integer");
462 2035145 : if (!isUInt<16>(pref_align))
463 1 : report_fatal_error("Invalid preferred alignment, must be a 16bit integer");
464 2035144 : if (abi_align != 0 && !isPowerOf2_64(abi_align))
465 1 : report_fatal_error("Invalid ABI alignment, must be a power of 2");
466 2035143 : if (pref_align != 0 && !isPowerOf2_64(pref_align))
467 1 : report_fatal_error("Invalid preferred alignment, must be a power of 2");
468 :
469 2035142 : if (pref_align < abi_align)
470 1 : report_fatal_error(
471 : "Preferred alignment cannot be less than the ABI alignment");
472 :
473 2035141 : AlignmentsTy::iterator I = findAlignmentLowerBound(align_type, bit_width);
474 980236 : if (I != Alignments.end() &&
475 2035138 : I->AlignType == (unsigned)align_type && I->TypeBitWidth == bit_width) {
476 : // Update the abi, preferred alignments.
477 150228 : I->ABIAlign = abi_align;
478 150228 : I->PrefAlign = pref_align;
479 : } else {
480 : // Insert before I to keep the vector sorted.
481 1884913 : Alignments.insert(I, LayoutAlignElem::get(align_type, abi_align,
482 1884910 : pref_align, bit_width));
483 : }
484 2035142 : }
485 :
486 : DataLayout::PointersTy::iterator
487 299295862 : DataLayout::findPointerLowerBound(uint32_t AddressSpace) {
488 : return std::lower_bound(Pointers.begin(), Pointers.end(), AddressSpace,
489 : [](const PointerAlignElem &A, uint32_t AddressSpace) {
490 0 : return A.AddressSpace < AddressSpace;
491 299295862 : });
492 : }
493 :
494 191824 : void DataLayout::setPointerAlignment(uint32_t AddrSpace, unsigned ABIAlign,
495 : unsigned PrefAlign, uint32_t TypeByteWidth,
496 : uint32_t IndexWidth) {
497 191824 : if (PrefAlign < ABIAlign)
498 1 : report_fatal_error(
499 : "Preferred alignment cannot be less than the ABI alignment");
500 :
501 191823 : PointersTy::iterator I = findPointerLowerBound(AddrSpace);
502 191823 : if (I == Pointers.end() || I->AddressSpace != AddrSpace) {
503 164565 : Pointers.insert(I, PointerAlignElem::get(AddrSpace, ABIAlign, PrefAlign,
504 164565 : TypeByteWidth, IndexWidth));
505 : } else {
506 27258 : I->ABIAlign = ABIAlign;
507 27258 : I->PrefAlign = PrefAlign;
508 27258 : I->TypeByteWidth = TypeByteWidth;
509 27258 : I->IndexWidth = IndexWidth;
510 : }
511 191823 : }
512 :
513 : /// getAlignmentInfo - Return the alignment (either ABI if ABIInfo = true or
514 : /// preferred if ABIInfo = false) the layout wants for the specified datatype.
515 245919177 : unsigned DataLayout::getAlignmentInfo(AlignTypeEnum AlignType,
516 : uint32_t BitWidth, bool ABIInfo,
517 : Type *Ty) const {
518 : AlignmentsTy::const_iterator I = findAlignmentLowerBound(AlignType, BitWidth);
519 : // See if we found an exact match. Of if we are looking for an integer type,
520 : // but don't have an exact match take the next largest integer. This is where
521 : // the lower_bound will point to when it fails an exact match.
522 245919178 : if (I != Alignments.end() && I->AlignType == (unsigned)AlignType &&
523 245735757 : (I->TypeBitWidth == BitWidth || AlignType == INTEGER_ALIGN))
524 245721627 : return ABIInfo ? I->ABIAlign : I->PrefAlign;
525 :
526 197551 : if (AlignType == INTEGER_ALIGN) {
527 : // If we didn't have a larger value try the largest value we have.
528 34753 : if (I != Alignments.begin()) {
529 : --I; // Go to the previous entry and see if its an integer.
530 34753 : if (I->AlignType == INTEGER_ALIGN)
531 34753 : return ABIInfo ? I->ABIAlign : I->PrefAlign;
532 : }
533 162798 : } else if (AlignType == VECTOR_ALIGN) {
534 : // By default, use natural alignment for vector types. This is consistent
535 : // with what clang and llvm-gcc do.
536 162779 : unsigned Align = getTypeAllocSize(cast<VectorType>(Ty)->getElementType());
537 162779 : Align *= cast<VectorType>(Ty)->getNumElements();
538 162779 : Align = PowerOf2Ceil(Align);
539 162779 : return Align;
540 : }
541 :
542 : // If we still couldn't find a reasonable default alignment, fall back
543 : // to a simple heuristic that the alignment is the first power of two
544 : // greater-or-equal to the store size of the type. This is a reasonable
545 : // approximation of reality, and if the user wanted something less
546 : // less conservative, they should have specified it explicitly in the data
547 : // layout.
548 : unsigned Align = getTypeStoreSize(Ty);
549 19 : Align = PowerOf2Ceil(Align);
550 19 : return Align;
551 : }
552 :
553 : namespace {
554 :
555 15583 : class StructLayoutMap {
556 : using LayoutInfoTy = DenseMap<StructType*, StructLayout*>;
557 : LayoutInfoTy LayoutInfo;
558 :
559 : public:
560 22158 : ~StructLayoutMap() {
561 : // Remove any layouts.
562 138544 : for (const auto &I : LayoutInfo) {
563 127465 : StructLayout *Value = I.second;
564 : Value->~StructLayout();
565 127465 : free(Value);
566 : }
567 11079 : }
568 :
569 : StructLayout *&operator[](StructType *STy) {
570 38587598 : return LayoutInfo[STy];
571 : }
572 : };
573 :
574 : } // end anonymous namespace
575 :
576 5574992 : void DataLayout::clear() {
577 : LegalIntWidths.clear();
578 : Alignments.clear();
579 : Pointers.clear();
580 5574992 : delete static_cast<StructLayoutMap *>(LayoutMap);
581 5574992 : LayoutMap = nullptr;
582 5574992 : }
583 :
584 5491329 : DataLayout::~DataLayout() {
585 2745664 : clear();
586 2745665 : }
587 :
588 38587598 : const StructLayout *DataLayout::getStructLayout(StructType *Ty) const {
589 38587598 : if (!LayoutMap)
590 31166 : LayoutMap = new StructLayoutMap();
591 :
592 38587598 : StructLayoutMap *STM = static_cast<StructLayoutMap*>(LayoutMap);
593 38587598 : StructLayout *&SL = (*STM)[Ty];
594 38587598 : if (SL) return SL;
595 :
596 : // Otherwise, create the struct layout. Because it is variable length, we
597 : // malloc it, then use placement new.
598 278869 : int NumElts = Ty->getNumElements();
599 : StructLayout *L = (StructLayout *)
600 278869 : safe_malloc(sizeof(StructLayout)+(NumElts-1) * sizeof(uint64_t));
601 :
602 : // Set SL before calling StructLayout's ctor. The ctor could cause other
603 : // entries to be added to TheMap, invalidating our reference.
604 278869 : SL = L;
605 :
606 278869 : new (L) StructLayout(Ty, *this);
607 :
608 278869 : return L;
609 : }
610 :
611 22926214 : unsigned DataLayout::getPointerABIAlignment(unsigned AS) const {
612 : PointersTy::const_iterator I = findPointerLowerBound(AS);
613 22926214 : if (I == Pointers.end() || I->AddressSpace != AS) {
614 : I = findPointerLowerBound(0);
615 : assert(I->AddressSpace == 0);
616 : }
617 22926214 : return I->ABIAlign;
618 : }
619 :
620 5296986 : unsigned DataLayout::getPointerPrefAlignment(unsigned AS) const {
621 : PointersTy::const_iterator I = findPointerLowerBound(AS);
622 5296986 : if (I == Pointers.end() || I->AddressSpace != AS) {
623 : I = findPointerLowerBound(0);
624 : assert(I->AddressSpace == 0);
625 : }
626 5296986 : return I->PrefAlign;
627 : }
628 :
629 146585488 : unsigned DataLayout::getPointerSize(unsigned AS) const {
630 : PointersTy::const_iterator I = findPointerLowerBound(AS);
631 146585488 : if (I == Pointers.end() || I->AddressSpace != AS) {
632 : I = findPointerLowerBound(0);
633 : assert(I->AddressSpace == 0);
634 : }
635 146585488 : return I->TypeByteWidth;
636 : }
637 :
638 26761094 : unsigned DataLayout::getPointerTypeSizeInBits(Type *Ty) const {
639 : assert(Ty->isPtrOrPtrVectorTy() &&
640 : "This should only be called with a pointer or pointer vector type");
641 : Ty = Ty->getScalarType();
642 26761094 : return getPointerSizeInBits(cast<PointerType>(Ty)->getAddressSpace());
643 : }
644 :
645 124177785 : unsigned DataLayout::getIndexSize(unsigned AS) const {
646 : PointersTy::const_iterator I = findPointerLowerBound(AS);
647 124177785 : if (I == Pointers.end() || I->AddressSpace != AS) {
648 : I = findPointerLowerBound(0);
649 : assert(I->AddressSpace == 0);
650 : }
651 124177785 : return I->IndexWidth;
652 : }
653 :
654 118383713 : unsigned DataLayout::getIndexTypeSizeInBits(Type *Ty) const {
655 : assert(Ty->isPtrOrPtrVectorTy() &&
656 : "This should only be called with a pointer or pointer vector type");
657 : Ty = Ty->getScalarType();
658 118383713 : return getIndexSizeInBits(cast<PointerType>(Ty)->getAddressSpace());
659 : }
660 :
661 : /*!
662 : \param abi_or_pref Flag that determines which alignment is returned. true
663 : returns the ABI alignment, false returns the preferred alignment.
664 : \param Ty The underlying type for which alignment is determined.
665 :
666 : Get the ABI (\a abi_or_pref == true) or preferred alignment (\a abi_or_pref
667 : == false) for the requested type \a Ty.
668 : */
669 336351143 : unsigned DataLayout::getAlignment(Type *Ty, bool abi_or_pref) const {
670 : AlignTypeEnum AlignType;
671 :
672 : assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
673 336351143 : switch (Ty->getTypeID()) {
674 : // Early escape for the non-numeric types.
675 0 : case Type::LabelTyID:
676 : return (abi_or_pref
677 0 : ? getPointerABIAlignment(0)
678 0 : : getPointerPrefAlignment(0));
679 : case Type::PointerTyID: {
680 : unsigned AS = cast<PointerType>(Ty)->getAddressSpace();
681 : return (abi_or_pref
682 28220653 : ? getPointerABIAlignment(AS)
683 5296559 : : getPointerPrefAlignment(AS));
684 : }
685 61519912 : case Type::ArrayTyID:
686 61519912 : return getAlignment(cast<ArrayType>(Ty)->getElementType(), abi_or_pref);
687 :
688 : case Type::StructTyID: {
689 : // Packed structure types always have an ABI alignment of one.
690 16935964 : if (cast<StructType>(Ty)->isPacked() && abi_or_pref)
691 : return 1;
692 :
693 : // Get the layout annotation... which is lazily created on demand.
694 16244448 : const StructLayout *Layout = getStructLayout(cast<StructType>(Ty));
695 16244448 : unsigned Align = getAlignmentInfo(AGGREGATE_ALIGN, 0, abi_or_pref, Ty);
696 31187065 : return std::max(Align, Layout->getAlignment());
697 : }
698 : case Type::IntegerTyID:
699 : AlignType = INTEGER_ALIGN;
700 : break;
701 1328007 : case Type::HalfTyID:
702 : case Type::FloatTyID:
703 : case Type::DoubleTyID:
704 : // PPC_FP128TyID and FP128TyID have different data contents, but the
705 : // same size and alignment, so they look the same here.
706 : case Type::PPC_FP128TyID:
707 : case Type::FP128TyID:
708 : case Type::X86_FP80TyID:
709 : AlignType = FLOAT_ALIGN;
710 1328007 : break;
711 3378570 : case Type::X86_MMXTyID:
712 : case Type::VectorTyID:
713 : AlignType = VECTOR_ALIGN;
714 3378570 : break;
715 0 : default:
716 0 : llvm_unreachable("Bad type for getAlignment!!!");
717 : }
718 :
719 229674614 : return getAlignmentInfo(AlignType, getTypeSizeInBits(Ty), abi_or_pref, Ty);
720 : }
721 :
722 244216510 : unsigned DataLayout::getABITypeAlignment(Type *Ty) const {
723 244216510 : return getAlignment(Ty, true);
724 : }
725 :
726 : /// getABIIntegerTypeAlignment - Return the minimum ABI-required alignment for
727 : /// an integer type of the specified bitwidth.
728 116 : unsigned DataLayout::getABIIntegerTypeAlignment(unsigned BitWidth) const {
729 116 : return getAlignmentInfo(INTEGER_ALIGN, BitWidth, true, nullptr);
730 : }
731 :
732 30614720 : unsigned DataLayout::getPrefTypeAlignment(Type *Ty) const {
733 30614720 : return getAlignment(Ty, false);
734 : }
735 :
736 51 : unsigned DataLayout::getPreferredTypeAlignmentShift(Type *Ty) const {
737 51 : unsigned Align = getPrefTypeAlignment(Ty);
738 : assert(!(Align & (Align-1)) && "Alignment is not a power of two!");
739 51 : return Log2_32(Align);
740 : }
741 :
742 869784 : IntegerType *DataLayout::getIntPtrType(LLVMContext &C,
743 : unsigned AddressSpace) const {
744 869784 : return IntegerType::get(C, getIndexSizeInBits(AddressSpace));
745 : }
746 :
747 37072185 : Type *DataLayout::getIntPtrType(Type *Ty) const {
748 : assert(Ty->isPtrOrPtrVectorTy() &&
749 : "Expected a pointer or pointer vector type.");
750 37072185 : unsigned NumBits = getIndexTypeSizeInBits(Ty);
751 37072185 : IntegerType *IntTy = IntegerType::get(Ty->getContext(), NumBits);
752 : if (VectorType *VecTy = dyn_cast<VectorType>(Ty))
753 85 : return VectorType::get(IntTy, VecTy->getNumElements());
754 : return IntTy;
755 : }
756 :
757 0 : Type *DataLayout::getSmallestLegalIntType(LLVMContext &C, unsigned Width) const {
758 0 : for (unsigned LegalIntWidth : LegalIntWidths)
759 0 : if (Width <= LegalIntWidth)
760 0 : return Type::getIntNTy(C, LegalIntWidth);
761 : return nullptr;
762 : }
763 :
764 1201 : unsigned DataLayout::getLargestLegalIntTypeSizeInBits() const {
765 : auto Max = std::max_element(LegalIntWidths.begin(), LegalIntWidths.end());
766 1201 : return Max != LegalIntWidths.end() ? *Max : 0;
767 : }
768 :
769 1273375 : Type *DataLayout::getIndexType(Type *Ty) const {
770 : assert(Ty->isPtrOrPtrVectorTy() &&
771 : "Expected a pointer or pointer vector type.");
772 1273375 : unsigned NumBits = getIndexTypeSizeInBits(Ty);
773 1273375 : IntegerType *IntTy = IntegerType::get(Ty->getContext(), NumBits);
774 : if (VectorType *VecTy = dyn_cast<VectorType>(Ty))
775 0 : return VectorType::get(IntTy, VecTy->getNumElements());
776 : return IntTy;
777 : }
778 :
779 16389348 : int64_t DataLayout::getIndexedOffsetInType(Type *ElemTy,
780 : ArrayRef<Value *> Indices) const {
781 : int64_t Result = 0;
782 :
783 : generic_gep_type_iterator<Value* const*>
784 : GTI = gep_type_begin(ElemTy, Indices),
785 : GTE = gep_type_end(ElemTy, Indices);
786 49211054 : for (; GTI != GTE; ++GTI) {
787 : Value *Idx = GTI.getOperand();
788 79786 : if (StructType *STy = GTI.getStructTypeOrNull()) {
789 : assert(Idx->getType()->isIntegerTy(32) && "Illegal struct idx");
790 79786 : unsigned FieldNo = cast<ConstantInt>(Idx)->getZExtValue();
791 :
792 : // Get structure layout information...
793 79786 : const StructLayout *Layout = getStructLayout(STy);
794 :
795 : // Add in the offset, as calculated by the structure layout info...
796 79786 : Result += Layout->getElementOffset(FieldNo);
797 : } else {
798 : // Get the array index and the size of each array element.
799 32741920 : if (int64_t arrayIdx = cast<ConstantInt>(Idx)->getSExtValue())
800 12132031 : Result += arrayIdx * getTypeAllocSize(GTI.getIndexedType());
801 : }
802 : }
803 :
804 16389348 : return Result;
805 : }
806 :
807 : /// getPreferredAlignment - Return the preferred alignment of the specified
808 : /// global. This includes an explicitly requested alignment (if the global
809 : /// has one).
810 12053956 : unsigned DataLayout::getPreferredAlignment(const GlobalVariable *GV) const {
811 12053956 : unsigned GVAlignment = GV->getAlignment();
812 : // If a section is specified, always precisely honor explicit alignment,
813 : // so we don't insert padding into a section we don't control.
814 12053956 : if (GVAlignment && GV->hasSection())
815 : return GVAlignment;
816 :
817 : // If no explicit alignment is specified, compute the alignment based on
818 : // the IR type. If an alignment is specified, increase it to match the ABI
819 : // alignment of the IR type.
820 : //
821 : // FIXME: Not sure it makes sense to use the alignment of the type if
822 : // there's already an explicit alignment specification.
823 12053204 : Type *ElemType = GV->getValueType();
824 12053204 : unsigned Alignment = getPrefTypeAlignment(ElemType);
825 12053204 : if (GVAlignment >= Alignment) {
826 : Alignment = GVAlignment;
827 11360571 : } else if (GVAlignment != 0) {
828 7081 : Alignment = std::max(GVAlignment, getABITypeAlignment(ElemType));
829 : }
830 :
831 : // If no explicit alignment is specified, and the global is large, increase
832 : // the alignment to 16.
833 : // FIXME: Why 16, specifically?
834 12053204 : if (GV->hasInitializer() && GVAlignment == 0) {
835 11354000 : if (Alignment < 16) {
836 : // If the global is not external, see if it is large. If so, give it a
837 : // larger alignment.
838 11350970 : if (getTypeSizeInBits(ElemType) > 128)
839 : Alignment = 16; // 16-byte alignment.
840 : }
841 : }
842 : return Alignment;
843 : }
844 :
845 : /// getPreferredAlignmentLog - Return the preferred alignment of the
846 : /// specified global, returned in log form. This includes an explicitly
847 : /// requested alignment (if the global has one).
848 540412 : unsigned DataLayout::getPreferredAlignmentLog(const GlobalVariable *GV) const {
849 540412 : return Log2_32(getPreferredAlignment(GV));
850 : }
|