Line data Source code
1 : //===-- AArch64A57FPLoadBalancing.cpp - Balance FP ops statically on A57---===//
2 : //
3 : // The LLVM Compiler Infrastructure
4 : //
5 : // This file is distributed under the University of Illinois Open Source
6 : // License. See LICENSE.TXT for details.
7 : //
8 : //===----------------------------------------------------------------------===//
9 : // For best-case performance on Cortex-A57, we should try to use a balanced
10 : // mix of odd and even D-registers when performing a critical sequence of
11 : // independent, non-quadword FP/ASIMD floating-point multiply or
12 : // multiply-accumulate operations.
13 : //
14 : // This pass attempts to detect situations where the register allocation may
15 : // adversely affect this load balancing and to change the registers used so as
16 : // to better utilize the CPU.
17 : //
18 : // Ideally we'd just take each multiply or multiply-accumulate in turn and
19 : // allocate it alternating even or odd registers. However, multiply-accumulates
20 : // are most efficiently performed in the same functional unit as their
21 : // accumulation operand. Therefore this pass tries to find maximal sequences
22 : // ("Chains") of multiply-accumulates linked via their accumulation operand,
23 : // and assign them all the same "color" (oddness/evenness).
24 : //
25 : // This optimization affects S-register and D-register floating point
26 : // multiplies and FMADD/FMAs, as well as vector (floating point only) muls and
27 : // FMADD/FMA. Q register instructions (and 128-bit vector instructions) are
28 : // not affected.
29 : //===----------------------------------------------------------------------===//
30 :
31 : #include "AArch64.h"
32 : #include "AArch64InstrInfo.h"
33 : #include "AArch64Subtarget.h"
34 : #include "llvm/ADT/BitVector.h"
35 : #include "llvm/ADT/EquivalenceClasses.h"
36 : #include "llvm/CodeGen/MachineFunction.h"
37 : #include "llvm/CodeGen/MachineFunctionPass.h"
38 : #include "llvm/CodeGen/MachineInstr.h"
39 : #include "llvm/CodeGen/MachineInstrBuilder.h"
40 : #include "llvm/CodeGen/MachineRegisterInfo.h"
41 : #include "llvm/CodeGen/RegisterClassInfo.h"
42 : #include "llvm/CodeGen/RegisterScavenging.h"
43 : #include "llvm/Support/CommandLine.h"
44 : #include "llvm/Support/Debug.h"
45 : #include "llvm/Support/raw_ostream.h"
46 : using namespace llvm;
47 :
48 : #define DEBUG_TYPE "aarch64-a57-fp-load-balancing"
49 :
50 : // Enforce the algorithm to use the scavenged register even when the original
51 : // destination register is the correct color. Used for testing.
52 : static cl::opt<bool>
53 : TransformAll("aarch64-a57-fp-load-balancing-force-all",
54 : cl::desc("Always modify dest registers regardless of color"),
55 : cl::init(false), cl::Hidden);
56 :
57 : // Never use the balance information obtained from chains - return a specific
58 : // color always. Used for testing.
59 : static cl::opt<unsigned>
60 : OverrideBalance("aarch64-a57-fp-load-balancing-override",
61 : cl::desc("Ignore balance information, always return "
62 : "(1: Even, 2: Odd)."),
63 : cl::init(0), cl::Hidden);
64 :
65 : //===----------------------------------------------------------------------===//
66 : // Helper functions
67 :
68 : // Is the instruction a type of multiply on 64-bit (or 32-bit) FPRs?
69 : static bool isMul(MachineInstr *MI) {
70 1770 : switch (MI->getOpcode()) {
71 : case AArch64::FMULSrr:
72 : case AArch64::FNMULSrr:
73 : case AArch64::FMULDrr:
74 : case AArch64::FNMULDrr:
75 : return true;
76 : default:
77 : return false;
78 : }
79 : }
80 :
81 : // Is the instruction a type of FP multiply-accumulate on 64-bit (or 32-bit) FPRs?
82 1693 : static bool isMla(MachineInstr *MI) {
83 3386 : switch (MI->getOpcode()) {
84 : case AArch64::FMSUBSrrr:
85 : case AArch64::FMADDSrrr:
86 : case AArch64::FNMSUBSrrr:
87 : case AArch64::FNMADDSrrr:
88 : case AArch64::FMSUBDrrr:
89 : case AArch64::FMADDDrrr:
90 : case AArch64::FNMSUBDrrr:
91 : case AArch64::FNMADDDrrr:
92 : return true;
93 1489 : default:
94 1489 : return false;
95 : }
96 : }
97 :
98 : //===----------------------------------------------------------------------===//
99 :
100 : namespace {
101 : /// A "color", which is either even or odd. Yes, these aren't really colors
102 : /// but the algorithm is conceptually doing two-color graph coloring.
103 : enum class Color { Even, Odd };
104 : #ifndef NDEBUG
105 : static const char *ColorNames[2] = { "Even", "Odd" };
106 : #endif
107 :
108 : class Chain;
109 :
110 : class AArch64A57FPLoadBalancing : public MachineFunctionPass {
111 : MachineRegisterInfo *MRI;
112 : const TargetRegisterInfo *TRI;
113 : RegisterClassInfo RCI;
114 :
115 : public:
116 : static char ID;
117 1114 : explicit AArch64A57FPLoadBalancing() : MachineFunctionPass(ID) {
118 1114 : initializeAArch64A57FPLoadBalancingPass(*PassRegistry::getPassRegistry());
119 1114 : }
120 :
121 : bool runOnMachineFunction(MachineFunction &F) override;
122 :
123 1099 : MachineFunctionProperties getRequiredProperties() const override {
124 1099 : return MachineFunctionProperties().set(
125 1099 : MachineFunctionProperties::Property::NoVRegs);
126 : }
127 :
128 1106 : StringRef getPassName() const override {
129 1106 : return "A57 FP Anti-dependency breaker";
130 : }
131 :
132 1099 : void getAnalysisUsage(AnalysisUsage &AU) const override {
133 1099 : AU.setPreservesCFG();
134 1099 : MachineFunctionPass::getAnalysisUsage(AU);
135 1099 : }
136 :
137 : private:
138 : bool runOnBasicBlock(MachineBasicBlock &MBB);
139 : bool colorChainSet(std::vector<Chain*> GV, MachineBasicBlock &MBB,
140 : int &Balance);
141 : bool colorChain(Chain *G, Color C, MachineBasicBlock &MBB);
142 : int scavengeRegister(Chain *G, Color C, MachineBasicBlock &MBB);
143 : void scanInstruction(MachineInstr *MI, unsigned Idx,
144 : std::map<unsigned, Chain*> &Active,
145 : std::vector<std::unique_ptr<Chain>> &AllChains);
146 : void maybeKillChain(MachineOperand &MO, unsigned Idx,
147 : std::map<unsigned, Chain*> &RegChains);
148 : Color getColor(unsigned Register);
149 : Chain *getAndEraseNext(Color PreferredColor, std::vector<Chain*> &L);
150 : };
151 : }
152 :
153 : char AArch64A57FPLoadBalancing::ID = 0;
154 :
155 85109 : INITIALIZE_PASS_BEGIN(AArch64A57FPLoadBalancing, DEBUG_TYPE,
156 : "AArch64 A57 FP Load-Balancing", false, false)
157 200146 : INITIALIZE_PASS_END(AArch64A57FPLoadBalancing, DEBUG_TYPE,
158 : "AArch64 A57 FP Load-Balancing", false, false)
159 :
160 : namespace {
161 : /// A Chain is a sequence of instructions that are linked together by
162 : /// an accumulation operand. For example:
163 : ///
164 : /// fmul def d0, ?
165 : /// fmla def d1, ?, ?, killed d0
166 : /// fmla def d2, ?, ?, killed d1
167 : ///
168 : /// There may be other instructions interleaved in the sequence that
169 : /// do not belong to the chain. These other instructions must not use
170 : /// the "chain" register at any point.
171 : ///
172 : /// We currently only support chains where the "chain" operand is killed
173 : /// at each link in the chain for simplicity.
174 : /// A chain has three important instructions - Start, Last and Kill.
175 : /// * The start instruction is the first instruction in the chain.
176 : /// * Last is the final instruction in the chain.
177 : /// * Kill may or may not be defined. If defined, Kill is the instruction
178 : /// where the outgoing value of the Last instruction is killed.
179 : /// This information is important as if we know the outgoing value is
180 : /// killed with no intervening uses, we can safely change its register.
181 : ///
182 : /// Without a kill instruction, we must assume the outgoing value escapes
183 : /// beyond our model and either must not change its register or must
184 : /// create a fixup FMOV to keep the old register value consistent.
185 : ///
186 0 : class Chain {
187 : public:
188 : /// The important (marker) instructions.
189 : MachineInstr *StartInst, *LastInst, *KillInst;
190 : /// The index, from the start of the basic block, that each marker
191 : /// appears. These are stored so we can do quick interval tests.
192 : unsigned StartInstIdx, LastInstIdx, KillInstIdx;
193 : /// All instructions in the chain.
194 : std::set<MachineInstr*> Insts;
195 : /// True if KillInst cannot be modified. If this is true,
196 : /// we cannot change LastInst's outgoing register.
197 : /// This will be true for tied values and regmasks.
198 : bool KillIsImmutable;
199 : /// The "color" of LastInst. This will be the preferred chain color,
200 : /// as changing intermediate nodes is easy but changing the last
201 : /// instruction can be more tricky.
202 : Color LastColor;
203 :
204 : Chain(MachineInstr *MI, unsigned Idx, Color C)
205 0 : : StartInst(MI), LastInst(MI), KillInst(nullptr),
206 : StartInstIdx(Idx), LastInstIdx(Idx), KillInstIdx(0),
207 0 : LastColor(C) {
208 : Insts.insert(MI);
209 : }
210 :
211 : /// Add a new instruction into the chain. The instruction's dest operand
212 : /// has the given color.
213 : void add(MachineInstr *MI, unsigned Idx, Color C) {
214 162 : LastInst = MI;
215 162 : LastInstIdx = Idx;
216 162 : LastColor = C;
217 : assert((KillInstIdx == 0 || LastInstIdx < KillInstIdx) &&
218 : "Chain: broken invariant. A Chain can only be killed after its last "
219 : "def");
220 :
221 : Insts.insert(MI);
222 : }
223 :
224 : /// Return true if MI is a member of the chain.
225 705 : bool contains(MachineInstr &MI) { return Insts.count(&MI) > 0; }
226 :
227 : /// Return the number of instructions in the chain.
228 : unsigned size() const {
229 85 : return Insts.size();
230 : }
231 :
232 : /// Inform the chain that its last active register (the dest register of
233 : /// LastInst) is killed by MI with no intervening uses or defs.
234 : void setKill(MachineInstr *MI, unsigned Idx, bool Immutable) {
235 0 : KillInst = MI;
236 0 : KillInstIdx = Idx;
237 0 : KillIsImmutable = Immutable;
238 : assert((KillInstIdx == 0 || LastInstIdx < KillInstIdx) &&
239 : "Chain: broken invariant. A Chain can only be killed after its last "
240 : "def");
241 : }
242 :
243 : /// Return the first instruction in the chain.
244 0 : MachineInstr *getStart() const { return StartInst; }
245 : /// Return the last instruction in the chain.
246 0 : MachineInstr *getLast() const { return LastInst; }
247 : /// Return the "kill" instruction (as set with setKill()) or NULL.
248 0 : MachineInstr *getKill() const { return KillInst; }
249 : /// Return an instruction that can be used as an iterator for the end
250 : /// of the chain. This is the maximum of KillInst (if set) and LastInst.
251 0 : MachineBasicBlock::iterator end() const {
252 0 : return ++MachineBasicBlock::iterator(KillInst ? KillInst : LastInst);
253 : }
254 119 : MachineBasicBlock::iterator begin() const { return getStart(); }
255 :
256 : /// Can the Kill instruction (assuming one exists) be modified?
257 0 : bool isKillImmutable() const { return KillIsImmutable; }
258 :
259 : /// Return the preferred color of this chain.
260 0 : Color getPreferredColor() {
261 169 : if (OverrideBalance != 0)
262 60 : return OverrideBalance == 1 ? Color::Even : Color::Odd;
263 109 : return LastColor;
264 : }
265 :
266 : /// Return true if this chain (StartInst..KillInst) overlaps with Other.
267 : bool rangeOverlapsWith(const Chain &Other) const {
268 44 : unsigned End = KillInst ? KillInstIdx : LastInstIdx;
269 44 : unsigned OtherEnd = Other.KillInst ?
270 : Other.KillInstIdx : Other.LastInstIdx;
271 :
272 44 : return StartInstIdx <= OtherEnd && Other.StartInstIdx <= End;
273 : }
274 :
275 : /// Return true if this chain starts before Other.
276 0 : bool startsBefore(const Chain *Other) const {
277 0 : return StartInstIdx < Other->StartInstIdx;
278 : }
279 :
280 : /// Return true if the group will require a fixup MOV at the end.
281 : bool requiresFixup() const {
282 400 : return (getKill() && isKillImmutable()) || !getKill();
283 : }
284 :
285 : /// Return a simple string representation of the chain.
286 : std::string str() const {
287 : std::string S;
288 : raw_string_ostream OS(S);
289 :
290 : OS << "{";
291 : StartInst->print(OS, /* SkipOpers= */true);
292 : OS << " -> ";
293 : LastInst->print(OS, /* SkipOpers= */true);
294 : if (KillInst) {
295 : OS << " (kill @ ";
296 : KillInst->print(OS, /* SkipOpers= */true);
297 : OS << ")";
298 : }
299 : OS << "}";
300 :
301 : return OS.str();
302 : }
303 :
304 : };
305 :
306 : } // end anonymous namespace
307 :
308 : //===----------------------------------------------------------------------===//
309 :
310 14080 : bool AArch64A57FPLoadBalancing::runOnMachineFunction(MachineFunction &F) {
311 14080 : if (skipFunction(F.getFunction()))
312 : return false;
313 :
314 14074 : if (!F.getSubtarget<AArch64Subtarget>().balanceFPOps())
315 : return false;
316 :
317 : bool Changed = false;
318 : LLVM_DEBUG(dbgs() << "***** AArch64A57FPLoadBalancing *****\n");
319 :
320 199 : MRI = &F.getRegInfo();
321 199 : TRI = F.getRegInfo().getTargetRegisterInfo();
322 199 : RCI.runOnMachineFunction(F);
323 :
324 454 : for (auto &MBB : F) {
325 255 : Changed |= runOnBasicBlock(MBB);
326 : }
327 :
328 : return Changed;
329 : }
330 :
331 255 : bool AArch64A57FPLoadBalancing::runOnBasicBlock(MachineBasicBlock &MBB) {
332 : bool Changed = false;
333 : LLVM_DEBUG(dbgs() << "Running on MBB: " << MBB
334 : << " - scanning instructions...\n");
335 :
336 : // First, scan the basic block producing a set of chains.
337 :
338 : // The currently "active" chains - chains that can be added to and haven't
339 : // been killed yet. This is keyed by register - all chains can only have one
340 : // "link" register between each inst in the chain.
341 : std::map<unsigned, Chain*> ActiveChains;
342 255 : std::vector<std::unique_ptr<Chain>> AllChains;
343 : unsigned Idx = 0;
344 2025 : for (auto &MI : MBB)
345 1770 : scanInstruction(&MI, Idx++, ActiveChains, AllChains);
346 :
347 : LLVM_DEBUG(dbgs() << "Scan complete, " << AllChains.size()
348 : << " chains created.\n");
349 :
350 : // Group the chains into disjoint sets based on their liveness range. This is
351 : // a poor-man's version of graph coloring. Ideally we'd create an interference
352 : // graph and perform full-on graph coloring on that, but;
353 : // (a) That's rather heavyweight for only two colors.
354 : // (b) We expect multiple disjoint interference regions - in practice the live
355 : // range of chains is quite small and they are clustered between loads
356 : // and stores.
357 : EquivalenceClasses<Chain*> EC;
358 374 : for (auto &I : AllChains)
359 : EC.insert(I.get());
360 :
361 374 : for (auto &I : AllChains)
362 282 : for (auto &J : AllChains)
363 163 : if (I != J && I->rangeOverlapsWith(*J))
364 64 : EC.unionSets(I.get(), J.get());
365 : LLVM_DEBUG(dbgs() << "Created " << EC.getNumClasses() << " disjoint sets.\n");
366 :
367 : // Now we assume that every member of an equivalence class interferes
368 : // with every other member of that class, and with no members of other classes.
369 :
370 : // Convert the EquivalenceClasses to a simpler set of sets.
371 255 : std::vector<std::vector<Chain*> > V;
372 374 : for (auto I = EC.begin(), E = EC.end(); I != E; ++I) {
373 : std::vector<Chain*> Cs(EC.member_begin(I), EC.member_end());
374 119 : if (Cs.empty()) continue;
375 : V.push_back(std::move(Cs));
376 : }
377 :
378 : // Now we have a set of sets, order them by start address so
379 : // we can iterate over them sequentially.
380 : llvm::sort(V,
381 : [](const std::vector<Chain *> &A, const std::vector<Chain *> &B) {
382 0 : return A.front()->startsBefore(B.front());
383 : });
384 :
385 : // As we only have two colors, we can track the global (BB-level) balance of
386 : // odds versus evens. We aim to keep this near zero to keep both execution
387 : // units fed.
388 : // Positive means we're even-heavy, negative we're odd-heavy.
389 : //
390 : // FIXME: If chains have interdependencies, for example:
391 : // mul r0, r1, r2
392 : // mul r3, r0, r1
393 : // We do not model this and may color each one differently, assuming we'll
394 : // get ILP when we obviously can't. This hasn't been seen to be a problem
395 : // in practice so far, so we simplify the algorithm by ignoring it.
396 255 : int Parity = 0;
397 :
398 358 : for (auto &I : V)
399 206 : Changed |= colorChainSet(std::move(I), MBB, Parity);
400 :
401 255 : return Changed;
402 : }
403 :
404 0 : Chain *AArch64A57FPLoadBalancing::getAndEraseNext(Color PreferredColor,
405 : std::vector<Chain*> &L) {
406 0 : if (L.empty())
407 0 : return nullptr;
408 :
409 : // We try and get the best candidate from L to color next, given that our
410 : // preferred color is "PreferredColor". L is ordered from larger to smaller
411 : // chains. It is beneficial to color the large chains before the small chains,
412 : // but if we can't find a chain of the maximum length with the preferred color,
413 : // we fuzz the size and look for slightly smaller chains before giving up and
414 : // returning a chain that must be recolored.
415 :
416 : // FIXME: Does this need to be configurable?
417 : const unsigned SizeFuzz = 1;
418 0 : unsigned MinSize = L.front()->size() - SizeFuzz;
419 0 : for (auto I = L.begin(), E = L.end(); I != E; ++I) {
420 0 : if ((*I)->size() <= MinSize) {
421 : // We've gone past the size limit. Return the previous item.
422 0 : Chain *Ch = *--I;
423 : L.erase(I);
424 0 : return Ch;
425 : }
426 :
427 0 : if ((*I)->getPreferredColor() == PreferredColor) {
428 : Chain *Ch = *I;
429 : L.erase(I);
430 0 : return Ch;
431 : }
432 : }
433 :
434 : // Bailout case - just return the first item.
435 : Chain *Ch = L.front();
436 : L.erase(L.begin());
437 0 : return Ch;
438 : }
439 :
440 103 : bool AArch64A57FPLoadBalancing::colorChainSet(std::vector<Chain*> GV,
441 : MachineBasicBlock &MBB,
442 : int &Parity) {
443 : bool Changed = false;
444 : LLVM_DEBUG(dbgs() << "colorChainSet(): #sets=" << GV.size() << "\n");
445 :
446 : // Sort by descending size order so that we allocate the most important
447 : // sets first.
448 : // Tie-break equivalent sizes by sorting chains requiring fixups before
449 : // those without fixups. The logic here is that we should look at the
450 : // chains that we cannot change before we look at those we can,
451 : // so the parity counter is updated and we know what color we should
452 : // change them to!
453 : // Final tie-break with instruction order so pass output is stable (i.e. not
454 : // dependent on malloc'd pointer values).
455 : llvm::sort(GV, [](const Chain *G1, const Chain *G2) {
456 : if (G1->size() != G2->size())
457 : return G1->size() > G2->size();
458 : if (G1->requiresFixup() != G2->requiresFixup())
459 : return G1->requiresFixup() > G2->requiresFixup();
460 : // Make sure startsBefore() produces a stable final order.
461 : assert((G1 == G2 || (G1->startsBefore(G2) ^ G2->startsBefore(G1))) &&
462 : "Starts before not total order!");
463 : return G1->startsBefore(G2);
464 : });
465 :
466 103 : Color PreferredColor = Parity < 0 ? Color::Even : Color::Odd;
467 222 : while (Chain *G = getAndEraseNext(PreferredColor, GV)) {
468 : // Start off by assuming we'll color to our own preferred color.
469 : Color C = PreferredColor;
470 119 : if (Parity == 0)
471 : // But if we really don't care, use the chain's preferred color.
472 : C = G->getPreferredColor();
473 :
474 : LLVM_DEBUG(dbgs() << " - Parity=" << Parity
475 : << ", Color=" << ColorNames[(int)C] << "\n");
476 :
477 : // If we'll need a fixup FMOV, don't bother. Testing has shown that this
478 : // happens infrequently and when it does it has at least a 50% chance of
479 : // slowing code down instead of speeding it up.
480 72 : if (G->requiresFixup() && C != G->getPreferredColor()) {
481 : C = G->getPreferredColor();
482 : LLVM_DEBUG(dbgs() << " - " << G->str()
483 : << " - not worthwhile changing; "
484 : "color remains "
485 : << ColorNames[(int)C] << "\n");
486 : }
487 :
488 119 : Changed |= colorChain(G, C, MBB);
489 :
490 119 : Parity += (C == Color::Even) ? G->size() : -G->size();
491 119 : PreferredColor = Parity < 0 ? Color::Even : Color::Odd;
492 : }
493 :
494 103 : return Changed;
495 : }
496 :
497 119 : int AArch64A57FPLoadBalancing::scavengeRegister(Chain *G, Color C,
498 : MachineBasicBlock &MBB) {
499 : // Can we find an appropriate register that is available throughout the life
500 : // of the chain? Simulate liveness backwards until the end of the chain.
501 119 : LiveRegUnits Units(*TRI);
502 119 : Units.addLiveOuts(MBB);
503 119 : MachineBasicBlock::iterator I = MBB.end();
504 119 : MachineBasicBlock::iterator ChainEnd = G->end();
505 363 : while (I != ChainEnd) {
506 : --I;
507 244 : Units.stepBackward(*I);
508 : }
509 :
510 : // Check which register units are alive throughout the chain.
511 : MachineBasicBlock::iterator ChainBegin = G->begin();
512 : assert(ChainBegin != ChainEnd && "Chain should contain instructions");
513 : do {
514 : --I;
515 424 : Units.accumulate(*I);
516 424 : } while (I != ChainBegin);
517 :
518 : // Make sure we allocate in-order, to get the cheapest registers first.
519 119 : unsigned RegClassID = ChainBegin->getDesc().OpInfo[0].RegClass;
520 238 : auto Ord = RCI.getOrder(TRI->getRegClass(RegClassID));
521 701 : for (auto Reg : Ord) {
522 701 : if (!Units.available(Reg))
523 : continue;
524 204 : if (C == getColor(Reg))
525 119 : return Reg;
526 : }
527 :
528 : return -1;
529 : }
530 :
531 119 : bool AArch64A57FPLoadBalancing::colorChain(Chain *G, Color C,
532 : MachineBasicBlock &MBB) {
533 : bool Changed = false;
534 : LLVM_DEBUG(dbgs() << " - colorChain(" << G->str() << ", "
535 : << ColorNames[(int)C] << ")\n");
536 :
537 : // Try and obtain a free register of the right class. Without a register
538 : // to play with we cannot continue.
539 119 : int Reg = scavengeRegister(G, C, MBB);
540 119 : if (Reg == -1) {
541 : LLVM_DEBUG(dbgs() << "Scavenging (thus coloring) failed!\n");
542 : return false;
543 : }
544 : LLVM_DEBUG(dbgs() << " - Scavenged register: " << printReg(Reg, TRI) << "\n");
545 :
546 : std::map<unsigned, unsigned> Substs;
547 662 : for (MachineInstr &I : *G) {
548 143 : if (!G->contains(I) && (&I != G->getKill() || G->isKillImmutable()))
549 96 : continue;
550 :
551 : // I is a member of G, or I is a mutable instruction that kills G.
552 :
553 : std::vector<unsigned> ToErase;
554 1515 : for (auto &U : I.operands()) {
555 2046 : if (U.isReg() && U.isUse() && Substs.find(U.getReg()) != Substs.end()) {
556 210 : unsigned OrigReg = U.getReg();
557 210 : U.setReg(Substs[OrigReg]);
558 210 : if (U.isKill())
559 : // Don't erase straight away, because there may be other operands
560 : // that also reference this substitution!
561 204 : ToErase.push_back(OrigReg);
562 977 : } else if (U.isRegMask()) {
563 0 : for (auto J : Substs) {
564 0 : if (U.clobbersPhysReg(J.first))
565 0 : ToErase.push_back(J.first);
566 : }
567 : }
568 : }
569 : // Now it's safe to remove the substs identified earlier.
570 532 : for (auto J : ToErase)
571 : Substs.erase(J);
572 :
573 : // Only change the def if this isn't the last instruction.
574 328 : if (&I != G->getKill()) {
575 281 : MachineOperand &MO = I.getOperand(0);
576 :
577 340 : bool Change = TransformAll || getColor(MO.getReg()) != C;
578 126 : if (G->requiresFixup() && &I == G->getLast())
579 : Change = false;
580 :
581 209 : if (Change) {
582 204 : Substs[MO.getReg()] = Reg;
583 204 : MO.setReg(Reg);
584 :
585 : Changed = true;
586 : }
587 : }
588 : }
589 : assert(Substs.size() == 0 && "No substitutions should be left active!");
590 :
591 : if (G->getKill()) {
592 : LLVM_DEBUG(dbgs() << " - Kill instruction seen.\n");
593 : } else {
594 : // We didn't have a kill instruction, but we didn't seem to need to change
595 : // the destination register anyway.
596 : LLVM_DEBUG(dbgs() << " - Destination register not changed.\n");
597 : }
598 : return Changed;
599 : }
600 :
601 1770 : void AArch64A57FPLoadBalancing::scanInstruction(
602 : MachineInstr *MI, unsigned Idx, std::map<unsigned, Chain *> &ActiveChains,
603 : std::vector<std::unique_ptr<Chain>> &AllChains) {
604 : // Inspect "MI", updating ActiveChains and AllChains.
605 :
606 : if (isMul(MI)) {
607 :
608 231 : for (auto &I : MI->uses())
609 154 : maybeKillChain(I, Idx, ActiveChains);
610 154 : for (auto &I : MI->defs())
611 77 : maybeKillChain(I, Idx, ActiveChains);
612 :
613 : // Create a new chain. Multiplies don't require forwarding so can go on any
614 : // unit.
615 77 : unsigned DestReg = MI->getOperand(0).getReg();
616 :
617 : LLVM_DEBUG(dbgs() << "New chain started for register "
618 : << printReg(DestReg, TRI) << " at " << *MI);
619 :
620 77 : auto G = llvm::make_unique<Chain>(MI, Idx, getColor(DestReg));
621 77 : ActiveChains[DestReg] = G.get();
622 : AllChains.push_back(std::move(G));
623 :
624 1693 : } else if (isMla(MI)) {
625 :
626 : // It is beneficial to keep MLAs on the same functional unit as their
627 : // accumulator operand.
628 204 : unsigned DestReg = MI->getOperand(0).getReg();
629 204 : unsigned AccumReg = MI->getOperand(3).getReg();
630 :
631 204 : maybeKillChain(MI->getOperand(1), Idx, ActiveChains);
632 408 : maybeKillChain(MI->getOperand(2), Idx, ActiveChains);
633 204 : if (DestReg != AccumReg)
634 72 : maybeKillChain(MI->getOperand(0), Idx, ActiveChains);
635 :
636 204 : if (ActiveChains.find(AccumReg) != ActiveChains.end()) {
637 : LLVM_DEBUG(dbgs() << "Chain found for accumulator register "
638 : << printReg(AccumReg, TRI) << " in MI " << *MI);
639 :
640 : // For simplicity we only chain together sequences of MULs/MLAs where the
641 : // accumulator register is killed on each instruction. This means we don't
642 : // need to track other uses of the registers we want to rewrite.
643 : //
644 : // FIXME: We could extend to handle the non-kill cases for more coverage.
645 324 : if (MI->getOperand(3).isKill()) {
646 : // Add to chain.
647 : LLVM_DEBUG(dbgs() << "Instruction was successfully added to chain.\n");
648 162 : ActiveChains[AccumReg]->add(MI, Idx, getColor(DestReg));
649 : // Handle cases where the destination is not the same as the accumulator.
650 162 : if (DestReg != AccumReg) {
651 36 : ActiveChains[DestReg] = ActiveChains[AccumReg];
652 : ActiveChains.erase(AccumReg);
653 : }
654 162 : return;
655 : }
656 :
657 : LLVM_DEBUG(
658 : dbgs() << "Cannot add to chain because accumulator operand wasn't "
659 : << "marked <kill>!\n");
660 0 : maybeKillChain(MI->getOperand(3), Idx, ActiveChains);
661 : }
662 :
663 : LLVM_DEBUG(dbgs() << "Creating new chain for dest register "
664 : << printReg(DestReg, TRI) << "\n");
665 42 : auto G = llvm::make_unique<Chain>(MI, Idx, getColor(DestReg));
666 42 : ActiveChains[DestReg] = G.get();
667 : AllChains.push_back(std::move(G));
668 :
669 : } else {
670 :
671 : // Non-MUL or MLA instruction. Invalidate any chain in the uses or defs
672 : // lists.
673 4791 : for (auto &I : MI->uses())
674 3302 : maybeKillChain(I, Idx, ActiveChains);
675 2369 : for (auto &I : MI->defs())
676 880 : maybeKillChain(I, Idx, ActiveChains);
677 :
678 : }
679 : }
680 :
681 0 : void AArch64A57FPLoadBalancing::
682 : maybeKillChain(MachineOperand &MO, unsigned Idx,
683 : std::map<unsigned, Chain*> &ActiveChains) {
684 : // Given an operand and the set of active chains (keyed by register),
685 : // determine if a chain should be ended and remove from ActiveChains.
686 0 : MachineInstr *MI = MO.getParent();
687 :
688 0 : if (MO.isReg()) {
689 :
690 : // If this is a KILL of a current chain, record it.
691 0 : if (MO.isKill() && ActiveChains.find(MO.getReg()) != ActiveChains.end()) {
692 : LLVM_DEBUG(dbgs() << "Kill seen for chain " << printReg(MO.getReg(), TRI)
693 : << "\n");
694 0 : ActiveChains[MO.getReg()]->setKill(MI, Idx, /*Immutable=*/MO.isTied());
695 : }
696 0 : ActiveChains.erase(MO.getReg());
697 :
698 0 : } else if (MO.isRegMask()) {
699 :
700 : for (auto I = ActiveChains.begin(), E = ActiveChains.end();
701 0 : I != E;) {
702 0 : if (MO.clobbersPhysReg(I->first)) {
703 : LLVM_DEBUG(dbgs() << "Kill (regmask) seen for chain "
704 : << printReg(I->first, TRI) << "\n");
705 0 : I->second->setKill(MI, Idx, /*Immutable=*/true);
706 : ActiveChains.erase(I++);
707 : } else
708 : ++I;
709 : }
710 :
711 : }
712 0 : }
713 :
714 0 : Color AArch64A57FPLoadBalancing::getColor(unsigned Reg) {
715 1088 : if ((TRI->getEncodingValue(Reg) % 2) == 0)
716 0 : return Color::Even;
717 : else
718 0 : return Color::Odd;
719 : }
720 :
721 : // Factory function used by AArch64TargetMachine to add the pass to the passmanager.
722 1114 : FunctionPass *llvm::createAArch64A57FPLoadBalancing() {
723 1114 : return new AArch64A57FPLoadBalancing();
724 : }
|