Line data Source code
1 : //===-- AArch64AdvSIMDScalar.cpp - Replace dead defs w/ zero reg --===//
2 : //
3 : // The LLVM Compiler Infrastructure
4 : //
5 : // This file is distributed under the University of Illinois Open Source
6 : // License. See LICENSE.TXT for details.
7 : //
8 : //===----------------------------------------------------------------------===//
9 : // When profitable, replace GPR targeting i64 instructions with their
10 : // AdvSIMD scalar equivalents. Generally speaking, "profitable" is defined
11 : // as minimizing the number of cross-class register copies.
12 : //===----------------------------------------------------------------------===//
13 :
14 : //===----------------------------------------------------------------------===//
15 : // TODO: Graph based predicate heuristics.
16 : // Walking the instruction list linearly will get many, perhaps most, of
17 : // the cases, but to do a truly thorough job of this, we need a more
18 : // wholistic approach.
19 : //
20 : // This optimization is very similar in spirit to the register allocator's
21 : // spill placement, only here we're determining where to place cross-class
22 : // register copies rather than spills. As such, a similar approach is
23 : // called for.
24 : //
25 : // We want to build up a set of graphs of all instructions which are candidates
26 : // for transformation along with instructions which generate their inputs and
27 : // consume their outputs. For each edge in the graph, we assign a weight
28 : // based on whether there is a copy required there (weight zero if not) and
29 : // the block frequency of the block containing the defining or using
30 : // instruction, whichever is less. Our optimization is then a graph problem
31 : // to minimize the total weight of all the graphs, then transform instructions
32 : // and add or remove copy instructions as called for to implement the
33 : // solution.
34 : //===----------------------------------------------------------------------===//
35 :
36 : #include "AArch64.h"
37 : #include "AArch64InstrInfo.h"
38 : #include "AArch64RegisterInfo.h"
39 : #include "llvm/ADT/Statistic.h"
40 : #include "llvm/CodeGen/MachineFunction.h"
41 : #include "llvm/CodeGen/MachineFunctionPass.h"
42 : #include "llvm/CodeGen/MachineInstr.h"
43 : #include "llvm/CodeGen/MachineInstrBuilder.h"
44 : #include "llvm/CodeGen/MachineRegisterInfo.h"
45 : #include "llvm/Support/CommandLine.h"
46 : #include "llvm/Support/Debug.h"
47 : #include "llvm/Support/raw_ostream.h"
48 : using namespace llvm;
49 :
50 : #define DEBUG_TYPE "aarch64-simd-scalar"
51 :
52 : // Allow forcing all i64 operations with equivalent SIMD instructions to use
53 : // them. For stress-testing the transformation function.
54 : static cl::opt<bool>
55 : TransformAll("aarch64-simd-scalar-force-all",
56 : cl::desc("Force use of AdvSIMD scalar instructions everywhere"),
57 : cl::init(false), cl::Hidden);
58 :
59 : STATISTIC(NumScalarInsnsUsed, "Number of scalar instructions used");
60 : STATISTIC(NumCopiesDeleted, "Number of cross-class copies deleted");
61 : STATISTIC(NumCopiesInserted, "Number of cross-class copies inserted");
62 :
63 : #define AARCH64_ADVSIMD_NAME "AdvSIMD Scalar Operation Optimization"
64 :
65 : namespace {
66 : class AArch64AdvSIMDScalar : public MachineFunctionPass {
67 : MachineRegisterInfo *MRI;
68 : const TargetInstrInfo *TII;
69 :
70 : private:
71 : // isProfitableToTransform - Predicate function to determine whether an
72 : // instruction should be transformed to its equivalent AdvSIMD scalar
73 : // instruction. "add Xd, Xn, Xm" ==> "add Dd, Da, Db", for example.
74 : bool isProfitableToTransform(const MachineInstr &MI) const;
75 :
76 : // transformInstruction - Perform the transformation of an instruction
77 : // to its equivalant AdvSIMD scalar instruction. Update inputs and outputs
78 : // to be the correct register class, minimizing cross-class copies.
79 : void transformInstruction(MachineInstr &MI);
80 :
81 : // processMachineBasicBlock - Main optimzation loop.
82 : bool processMachineBasicBlock(MachineBasicBlock *MBB);
83 :
84 : public:
85 : static char ID; // Pass identification, replacement for typeid.
86 5 : explicit AArch64AdvSIMDScalar() : MachineFunctionPass(ID) {
87 5 : initializeAArch64AdvSIMDScalarPass(*PassRegistry::getPassRegistry());
88 5 : }
89 :
90 : bool runOnMachineFunction(MachineFunction &F) override;
91 :
92 5 : StringRef getPassName() const override { return AARCH64_ADVSIMD_NAME; }
93 :
94 5 : void getAnalysisUsage(AnalysisUsage &AU) const override {
95 5 : AU.setPreservesCFG();
96 5 : MachineFunctionPass::getAnalysisUsage(AU);
97 5 : }
98 : };
99 : char AArch64AdvSIMDScalar::ID = 0;
100 : } // end anonymous namespace
101 :
102 199037 : INITIALIZE_PASS(AArch64AdvSIMDScalar, "aarch64-simd-scalar",
103 : AARCH64_ADVSIMD_NAME, false, false)
104 :
105 168 : static bool isGPR64(unsigned Reg, unsigned SubReg,
106 : const MachineRegisterInfo *MRI) {
107 168 : if (SubReg)
108 : return false;
109 168 : if (TargetRegisterInfo::isVirtualRegister(Reg))
110 168 : return MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::GPR64RegClass);
111 0 : return AArch64::GPR64RegClass.contains(Reg);
112 : }
113 :
114 312 : static bool isFPR64(unsigned Reg, unsigned SubReg,
115 : const MachineRegisterInfo *MRI) {
116 312 : if (TargetRegisterInfo::isVirtualRegister(Reg))
117 32 : return (MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::FPR64RegClass) &&
118 304 : SubReg == 0) ||
119 128 : (MRI->getRegClass(Reg)->hasSuperClassEq(&AArch64::FPR128RegClass) &&
120 : SubReg == AArch64::dsub);
121 : // Physical register references just check the register class directly.
122 16 : return (AArch64::FPR64RegClass.contains(Reg) && SubReg == 0) ||
123 8 : (AArch64::FPR128RegClass.contains(Reg) && SubReg == AArch64::dsub);
124 : }
125 :
126 : // getSrcFromCopy - Get the original source register for a GPR64 <--> FPR64
127 : // copy instruction. Return zero_reg if the instruction is not a copy.
128 180 : static MachineOperand *getSrcFromCopy(MachineInstr *MI,
129 : const MachineRegisterInfo *MRI,
130 : unsigned &SubReg) {
131 180 : SubReg = 0;
132 : // The "FMOV Xd, Dn" instruction is the typical form.
133 360 : if (MI->getOpcode() == AArch64::FMOVDXr ||
134 : MI->getOpcode() == AArch64::FMOVXDr)
135 0 : return &MI->getOperand(1);
136 : // A lane zero extract "UMOV.d Xd, Vn[0]" is equivalent. We shouldn't see
137 : // these at this stage, but it's easy to check for.
138 180 : if (MI->getOpcode() == AArch64::UMOVvi64 && MI->getOperand(2).getImm() == 0) {
139 0 : SubReg = AArch64::dsub;
140 0 : return &MI->getOperand(1);
141 : }
142 : // Or just a plain COPY instruction. This can be directly to/from FPR64,
143 : // or it can be a dsub subreg reference to an FPR128.
144 180 : if (MI->getOpcode() == AArch64::COPY) {
145 168 : if (isFPR64(MI->getOperand(0).getReg(), MI->getOperand(0).getSubReg(),
146 168 : MRI) &&
147 24 : isGPR64(MI->getOperand(1).getReg(), MI->getOperand(1).getSubReg(), MRI))
148 24 : return &MI->getOperand(1);
149 144 : if (isGPR64(MI->getOperand(0).getReg(), MI->getOperand(0).getSubReg(),
150 144 : MRI) &&
151 144 : isFPR64(MI->getOperand(1).getReg(), MI->getOperand(1).getSubReg(),
152 : MRI)) {
153 136 : SubReg = MI->getOperand(1).getSubReg();
154 136 : return &MI->getOperand(1);
155 : }
156 : }
157 :
158 : // Otherwise, this is some other kind of instruction.
159 : return nullptr;
160 : }
161 :
162 : // getTransformOpcode - For any opcode for which there is an AdvSIMD equivalent
163 : // that we're considering transforming to, return that AdvSIMD opcode. For all
164 : // others, return the original opcode.
165 : static unsigned getTransformOpcode(unsigned Opc) {
166 0 : switch (Opc) {
167 : default:
168 : break;
169 : // FIXME: Lots more possibilities.
170 : case AArch64::ADDXrr:
171 : return AArch64::ADDv1i64;
172 0 : case AArch64::SUBXrr:
173 : return AArch64::SUBv1i64;
174 0 : case AArch64::ANDXrr:
175 : return AArch64::ANDv8i8;
176 0 : case AArch64::EORXrr:
177 : return AArch64::EORv8i8;
178 0 : case AArch64::ORRXrr:
179 : return AArch64::ORRv8i8;
180 : }
181 : // No AdvSIMD equivalent, so just return the original opcode.
182 : return Opc;
183 : }
184 :
185 : static bool isTransformable(const MachineInstr &MI) {
186 0 : unsigned Opc = MI.getOpcode();
187 : return Opc != getTransformOpcode(Opc);
188 : }
189 :
190 : // isProfitableToTransform - Predicate function to determine whether an
191 : // instruction should be transformed to its equivalent AdvSIMD scalar
192 : // instruction. "add Xd, Xn, Xm" ==> "add Dd, Da, Db", for example.
193 0 : bool AArch64AdvSIMDScalar::isProfitableToTransform(
194 : const MachineInstr &MI) const {
195 : // If this instruction isn't eligible to be transformed (no SIMD equivalent),
196 : // early exit since that's the common case.
197 0 : if (!isTransformable(MI))
198 0 : return false;
199 :
200 : // Count the number of copies we'll need to add and approximate the number
201 : // of copies that a transform will enable us to remove.
202 : unsigned NumNewCopies = 3;
203 : unsigned NumRemovableCopies = 0;
204 :
205 0 : unsigned OrigSrc0 = MI.getOperand(1).getReg();
206 0 : unsigned OrigSrc1 = MI.getOperand(2).getReg();
207 : unsigned SubReg0;
208 : unsigned SubReg1;
209 0 : if (!MRI->def_empty(OrigSrc0)) {
210 : MachineRegisterInfo::def_instr_iterator Def =
211 0 : MRI->def_instr_begin(OrigSrc0);
212 : assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
213 0 : MachineOperand *MOSrc0 = getSrcFromCopy(&*Def, MRI, SubReg0);
214 : // If the source was from a copy, we don't need to insert a new copy.
215 0 : if (MOSrc0)
216 : --NumNewCopies;
217 : // If there are no other users of the original source, we can delete
218 : // that instruction.
219 0 : if (MOSrc0 && MRI->hasOneNonDBGUse(OrigSrc0))
220 : ++NumRemovableCopies;
221 : }
222 0 : if (!MRI->def_empty(OrigSrc1)) {
223 : MachineRegisterInfo::def_instr_iterator Def =
224 0 : MRI->def_instr_begin(OrigSrc1);
225 : assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
226 0 : MachineOperand *MOSrc1 = getSrcFromCopy(&*Def, MRI, SubReg1);
227 0 : if (MOSrc1)
228 0 : --NumNewCopies;
229 : // If there are no other users of the original source, we can delete
230 : // that instruction.
231 0 : if (MOSrc1 && MRI->hasOneNonDBGUse(OrigSrc1))
232 0 : ++NumRemovableCopies;
233 : }
234 :
235 : // If any of the uses of the original instructions is a cross class copy,
236 : // that's a copy that will be removable if we transform. Likewise, if
237 : // any of the uses is a transformable instruction, it's likely the tranforms
238 : // will chain, enabling us to save a copy there, too. This is an aggressive
239 : // heuristic that approximates the graph based cost analysis described above.
240 0 : unsigned Dst = MI.getOperand(0).getReg();
241 : bool AllUsesAreCopies = true;
242 0 : for (MachineRegisterInfo::use_instr_nodbg_iterator
243 0 : Use = MRI->use_instr_nodbg_begin(Dst),
244 : E = MRI->use_instr_nodbg_end();
245 0 : Use != E; ++Use) {
246 : unsigned SubReg;
247 0 : if (getSrcFromCopy(&*Use, MRI, SubReg) || isTransformable(*Use))
248 0 : ++NumRemovableCopies;
249 : // If the use is an INSERT_SUBREG, that's still something that can
250 : // directly use the FPR64, so we don't invalidate AllUsesAreCopies. It's
251 : // preferable to have it use the FPR64 in most cases, as if the source
252 : // vector is an IMPLICIT_DEF, the INSERT_SUBREG just goes away entirely.
253 : // Ditto for a lane insert.
254 0 : else if (Use->getOpcode() == AArch64::INSERT_SUBREG ||
255 : Use->getOpcode() == AArch64::INSvi64gpr)
256 : ;
257 : else
258 : AllUsesAreCopies = false;
259 : }
260 : // If all of the uses of the original destination register are copies to
261 : // FPR64, then we won't end up having a new copy back to GPR64 either.
262 0 : if (AllUsesAreCopies)
263 0 : --NumNewCopies;
264 :
265 : // If a transform will not increase the number of cross-class copies required,
266 : // return true.
267 0 : if (NumNewCopies <= NumRemovableCopies)
268 0 : return true;
269 :
270 : // Finally, even if we otherwise wouldn't transform, check if we're forcing
271 : // transformation of everything.
272 0 : return TransformAll;
273 : }
274 :
275 40 : static MachineInstr *insertCopy(const TargetInstrInfo *TII, MachineInstr &MI,
276 : unsigned Dst, unsigned Src, bool IsKill) {
277 80 : MachineInstrBuilder MIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
278 80 : TII->get(AArch64::COPY), Dst)
279 40 : .addReg(Src, getKillRegState(IsKill));
280 : LLVM_DEBUG(dbgs() << " adding copy: " << *MIB);
281 : ++NumCopiesInserted;
282 40 : return MIB;
283 : }
284 :
285 : // transformInstruction - Perform the transformation of an instruction
286 : // to its equivalant AdvSIMD scalar instruction. Update inputs and outputs
287 : // to be the correct register class, minimizing cross-class copies.
288 0 : void AArch64AdvSIMDScalar::transformInstruction(MachineInstr &MI) {
289 : LLVM_DEBUG(dbgs() << "Scalar transform: " << MI);
290 :
291 0 : MachineBasicBlock *MBB = MI.getParent();
292 0 : unsigned OldOpc = MI.getOpcode();
293 : unsigned NewOpc = getTransformOpcode(OldOpc);
294 : assert(OldOpc != NewOpc && "transform an instruction to itself?!");
295 :
296 : // Check if we need a copy for the source registers.
297 0 : unsigned OrigSrc0 = MI.getOperand(1).getReg();
298 0 : unsigned OrigSrc1 = MI.getOperand(2).getReg();
299 : unsigned Src0 = 0, SubReg0;
300 : unsigned Src1 = 0, SubReg1;
301 : bool KillSrc0 = false, KillSrc1 = false;
302 0 : if (!MRI->def_empty(OrigSrc0)) {
303 : MachineRegisterInfo::def_instr_iterator Def =
304 0 : MRI->def_instr_begin(OrigSrc0);
305 : assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
306 0 : MachineOperand *MOSrc0 = getSrcFromCopy(&*Def, MRI, SubReg0);
307 : // If there are no other users of the original source, we can delete
308 : // that instruction.
309 0 : if (MOSrc0) {
310 0 : Src0 = MOSrc0->getReg();
311 : KillSrc0 = MOSrc0->isKill();
312 : // Src0 is going to be reused, thus, it cannot be killed anymore.
313 : MOSrc0->setIsKill(false);
314 0 : if (MRI->hasOneNonDBGUse(OrigSrc0)) {
315 : assert(MOSrc0 && "Can't delete copy w/o a valid original source!");
316 0 : Def->eraseFromParent();
317 : ++NumCopiesDeleted;
318 : }
319 : }
320 : }
321 0 : if (!MRI->def_empty(OrigSrc1)) {
322 : MachineRegisterInfo::def_instr_iterator Def =
323 0 : MRI->def_instr_begin(OrigSrc1);
324 : assert(std::next(Def) == MRI->def_instr_end() && "Multiple def in SSA!");
325 0 : MachineOperand *MOSrc1 = getSrcFromCopy(&*Def, MRI, SubReg1);
326 : // If there are no other users of the original source, we can delete
327 : // that instruction.
328 0 : if (MOSrc1) {
329 0 : Src1 = MOSrc1->getReg();
330 : KillSrc1 = MOSrc1->isKill();
331 : // Src0 is going to be reused, thus, it cannot be killed anymore.
332 : MOSrc1->setIsKill(false);
333 0 : if (MRI->hasOneNonDBGUse(OrigSrc1)) {
334 : assert(MOSrc1 && "Can't delete copy w/o a valid original source!");
335 0 : Def->eraseFromParent();
336 : ++NumCopiesDeleted;
337 : }
338 : }
339 : }
340 : // If we weren't able to reference the original source directly, create a
341 : // copy.
342 0 : if (!Src0) {
343 0 : SubReg0 = 0;
344 0 : Src0 = MRI->createVirtualRegister(&AArch64::FPR64RegClass);
345 0 : insertCopy(TII, MI, Src0, OrigSrc0, KillSrc0);
346 : KillSrc0 = true;
347 : }
348 0 : if (!Src1) {
349 0 : SubReg1 = 0;
350 0 : Src1 = MRI->createVirtualRegister(&AArch64::FPR64RegClass);
351 0 : insertCopy(TII, MI, Src1, OrigSrc1, KillSrc1);
352 : KillSrc1 = true;
353 : }
354 :
355 : // Create a vreg for the destination.
356 : // FIXME: No need to do this if the ultimate user expects an FPR64.
357 : // Check for that and avoid the copy if possible.
358 0 : unsigned Dst = MRI->createVirtualRegister(&AArch64::FPR64RegClass);
359 :
360 : // For now, all of the new instructions have the same simple three-register
361 : // form, so no need to special case based on what instruction we're
362 : // building.
363 0 : BuildMI(*MBB, MI, MI.getDebugLoc(), TII->get(NewOpc), Dst)
364 0 : .addReg(Src0, getKillRegState(KillSrc0), SubReg0)
365 0 : .addReg(Src1, getKillRegState(KillSrc1), SubReg1);
366 :
367 : // Now copy the result back out to a GPR.
368 : // FIXME: Try to avoid this if all uses could actually just use the FPR64
369 : // directly.
370 0 : insertCopy(TII, MI, MI.getOperand(0).getReg(), Dst, true);
371 :
372 : // Erase the old instruction.
373 0 : MI.eraseFromParent();
374 :
375 : ++NumScalarInsnsUsed;
376 0 : }
377 :
378 : // processMachineBasicBlock - Main optimzation loop.
379 63 : bool AArch64AdvSIMDScalar::processMachineBasicBlock(MachineBasicBlock *MBB) {
380 : bool Changed = false;
381 490 : for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;) {
382 : MachineInstr &MI = *I++;
383 427 : if (isProfitableToTransform(MI)) {
384 36 : transformInstruction(MI);
385 : Changed = true;
386 : }
387 : }
388 63 : return Changed;
389 : }
390 :
391 : // runOnMachineFunction - Pass entry point from PassManager.
392 63 : bool AArch64AdvSIMDScalar::runOnMachineFunction(MachineFunction &mf) {
393 : bool Changed = false;
394 : LLVM_DEBUG(dbgs() << "***** AArch64AdvSIMDScalar *****\n");
395 :
396 63 : if (skipFunction(mf.getFunction()))
397 : return false;
398 :
399 63 : MRI = &mf.getRegInfo();
400 63 : TII = mf.getSubtarget().getInstrInfo();
401 :
402 : // Just check things on a one-block-at-a-time basis.
403 126 : for (MachineFunction::iterator I = mf.begin(), E = mf.end(); I != E; ++I)
404 63 : if (processMachineBasicBlock(&*I))
405 : Changed = true;
406 : return Changed;
407 : }
408 :
409 : // createAArch64AdvSIMDScalar - Factory function used by AArch64TargetMachine
410 : // to add the pass to the PassManager.
411 5 : FunctionPass *llvm::createAArch64AdvSIMDScalar() {
412 5 : return new AArch64AdvSIMDScalar();
413 : }
|