LCOV - code coverage report
Current view: top level - lib/Target/AArch64 - AArch64ISelDAGToDAG.cpp (source / functions) Hit Total Coverage
Test: llvm-toolchain.info Lines: 1425 1791 79.6 %
Date: 2018-10-20 13:21:21 Functions: 48 75 64.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : //===-- AArch64ISelDAGToDAG.cpp - A dag to dag inst selector for AArch64 --===//
       2             : //
       3             : //                     The LLVM Compiler Infrastructure
       4             : //
       5             : // This file is distributed under the University of Illinois Open Source
       6             : // License. See LICENSE.TXT for details.
       7             : //
       8             : //===----------------------------------------------------------------------===//
       9             : //
      10             : // This file defines an instruction selector for the AArch64 target.
      11             : //
      12             : //===----------------------------------------------------------------------===//
      13             : 
      14             : #include "AArch64TargetMachine.h"
      15             : #include "MCTargetDesc/AArch64AddressingModes.h"
      16             : #include "llvm/ADT/APSInt.h"
      17             : #include "llvm/CodeGen/SelectionDAGISel.h"
      18             : #include "llvm/IR/Function.h" // To access function attributes.
      19             : #include "llvm/IR/GlobalValue.h"
      20             : #include "llvm/IR/Intrinsics.h"
      21             : #include "llvm/Support/Debug.h"
      22             : #include "llvm/Support/ErrorHandling.h"
      23             : #include "llvm/Support/KnownBits.h"
      24             : #include "llvm/Support/MathExtras.h"
      25             : #include "llvm/Support/raw_ostream.h"
      26             : 
      27             : using namespace llvm;
      28             : 
      29             : #define DEBUG_TYPE "aarch64-isel"
      30             : 
      31             : //===--------------------------------------------------------------------===//
      32             : /// AArch64DAGToDAGISel - AArch64 specific code to select AArch64 machine
      33             : /// instructions for SelectionDAG operations.
      34             : ///
      35             : namespace {
      36             : 
      37             : class AArch64DAGToDAGISel : public SelectionDAGISel {
      38             : 
      39             :   /// Subtarget - Keep a pointer to the AArch64Subtarget around so that we can
      40             :   /// make the right decision when generating code for different targets.
      41             :   const AArch64Subtarget *Subtarget;
      42             : 
      43             :   bool ForCodeSize;
      44             : 
      45             : public:
      46             :   explicit AArch64DAGToDAGISel(AArch64TargetMachine &tm,
      47             :                                CodeGenOpt::Level OptLevel)
      48        1206 :       : SelectionDAGISel(tm, OptLevel), Subtarget(nullptr),
      49        1206 :         ForCodeSize(false) {}
      50             : 
      51          50 :   StringRef getPassName() const override {
      52          50 :     return "AArch64 Instruction Selection";
      53             :   }
      54             : 
      55       14750 :   bool runOnMachineFunction(MachineFunction &MF) override {
      56       14750 :     ForCodeSize = MF.getFunction().optForSize();
      57       14750 :     Subtarget = &MF.getSubtarget<AArch64Subtarget>();
      58       14750 :     return SelectionDAGISel::runOnMachineFunction(MF);
      59             :   }
      60             : 
      61             :   void Select(SDNode *Node) override;
      62             : 
      63             :   /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
      64             :   /// inline asm expressions.
      65             :   bool SelectInlineAsmMemoryOperand(const SDValue &Op,
      66             :                                     unsigned ConstraintID,
      67             :                                     std::vector<SDValue> &OutOps) override;
      68             : 
      69             :   bool tryMLAV64LaneV128(SDNode *N);
      70             :   bool tryMULLV64LaneV128(unsigned IntNo, SDNode *N);
      71             :   bool SelectArithExtendedRegister(SDValue N, SDValue &Reg, SDValue &Shift);
      72             :   bool SelectArithImmed(SDValue N, SDValue &Val, SDValue &Shift);
      73             :   bool SelectNegArithImmed(SDValue N, SDValue &Val, SDValue &Shift);
      74             :   bool SelectArithShiftedRegister(SDValue N, SDValue &Reg, SDValue &Shift) {
      75        2096 :     return SelectShiftedRegister(N, false, Reg, Shift);
      76             :   }
      77             :   bool SelectLogicalShiftedRegister(SDValue N, SDValue &Reg, SDValue &Shift) {
      78        1478 :     return SelectShiftedRegister(N, true, Reg, Shift);
      79             :   }
      80             :   bool SelectAddrModeIndexed7S8(SDValue N, SDValue &Base, SDValue &OffImm) {
      81             :     return SelectAddrModeIndexed7S(N, 1, Base, OffImm);
      82             :   }
      83             :   bool SelectAddrModeIndexed7S16(SDValue N, SDValue &Base, SDValue &OffImm) {
      84             :     return SelectAddrModeIndexed7S(N, 2, Base, OffImm);
      85             :   }
      86             :   bool SelectAddrModeIndexed7S32(SDValue N, SDValue &Base, SDValue &OffImm) {
      87          15 :     return SelectAddrModeIndexed7S(N, 4, Base, OffImm);
      88             :   }
      89             :   bool SelectAddrModeIndexed7S64(SDValue N, SDValue &Base, SDValue &OffImm) {
      90          18 :     return SelectAddrModeIndexed7S(N, 8, Base, OffImm);
      91             :   }
      92             :   bool SelectAddrModeIndexed7S128(SDValue N, SDValue &Base, SDValue &OffImm) {
      93             :     return SelectAddrModeIndexed7S(N, 16, Base, OffImm);
      94             :   }
      95             :   bool SelectAddrModeIndexed8(SDValue N, SDValue &Base, SDValue &OffImm) {
      96         465 :     return SelectAddrModeIndexed(N, 1, Base, OffImm);
      97             :   }
      98             :   bool SelectAddrModeIndexed16(SDValue N, SDValue &Base, SDValue &OffImm) {
      99         326 :     return SelectAddrModeIndexed(N, 2, Base, OffImm);
     100             :   }
     101             :   bool SelectAddrModeIndexed32(SDValue N, SDValue &Base, SDValue &OffImm) {
     102        1940 :     return SelectAddrModeIndexed(N, 4, Base, OffImm);
     103             :   }
     104             :   bool SelectAddrModeIndexed64(SDValue N, SDValue &Base, SDValue &OffImm) {
     105        6360 :     return SelectAddrModeIndexed(N, 8, Base, OffImm);
     106             :   }
     107             :   bool SelectAddrModeIndexed128(SDValue N, SDValue &Base, SDValue &OffImm) {
     108        2006 :     return SelectAddrModeIndexed(N, 16, Base, OffImm);
     109             :   }
     110             :   bool SelectAddrModeUnscaled8(SDValue N, SDValue &Base, SDValue &OffImm) {
     111          49 :     return SelectAddrModeUnscaled(N, 1, Base, OffImm);
     112             :   }
     113             :   bool SelectAddrModeUnscaled16(SDValue N, SDValue &Base, SDValue &OffImm) {
     114          66 :     return SelectAddrModeUnscaled(N, 2, Base, OffImm);
     115             :   }
     116             :   bool SelectAddrModeUnscaled32(SDValue N, SDValue &Base, SDValue &OffImm) {
     117         114 :     return SelectAddrModeUnscaled(N, 4, Base, OffImm);
     118             :   }
     119             :   bool SelectAddrModeUnscaled64(SDValue N, SDValue &Base, SDValue &OffImm) {
     120          99 :     return SelectAddrModeUnscaled(N, 8, Base, OffImm);
     121             :   }
     122             :   bool SelectAddrModeUnscaled128(SDValue N, SDValue &Base, SDValue &OffImm) {
     123          73 :     return SelectAddrModeUnscaled(N, 16, Base, OffImm);
     124             :   }
     125             : 
     126             :   template<int Width>
     127           0 :   bool SelectAddrModeWRO(SDValue N, SDValue &Base, SDValue &Offset,
     128             :                          SDValue &SignExtend, SDValue &DoShift) {
     129       11603 :     return SelectAddrModeWRO(N, Width / 8, Base, Offset, SignExtend, DoShift);
     130             :   }
     131           0 : 
     132             :   template<int Width>
     133           0 :   bool SelectAddrModeXRO(SDValue N, SDValue &Base, SDValue &Offset,
     134             :                          SDValue &SignExtend, SDValue &DoShift) {
     135           0 :     return SelectAddrModeXRO(N, Width / 8, Base, Offset, SignExtend, DoShift);
     136             :   }
     137           0 : 
     138             : 
     139           0 :   /// Form sequences of consecutive 64/128-bit registers for use in NEON
     140             :   /// instructions making use of a vector-list (e.g. ldN, tbl). Vecs must have
     141           0 :   /// between 1 and 4 elements. If it contains a single element that is returned
     142             :   /// unchanged; otherwise a REG_SEQUENCE value is returned.
     143           0 :   SDValue createDTuple(ArrayRef<SDValue> Vecs);
     144             :   SDValue createQTuple(ArrayRef<SDValue> Vecs);
     145           0 : 
     146             :   /// Generic helper for the createDTuple/createQTuple
     147           0 :   /// functions. Those should almost always be called instead.
     148             :   SDValue createTuple(ArrayRef<SDValue> Vecs, const unsigned RegClassIDs[],
     149           0 :                       const unsigned SubRegs[]);
     150             : 
     151             :   void SelectTable(SDNode *N, unsigned NumVecs, unsigned Opc, bool isExt);
     152             : 
     153             :   bool tryIndexedLoad(SDNode *N);
     154             : 
     155       11503 :   void SelectLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
     156             :                      unsigned SubRegIdx);
     157             :   void SelectPostLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
     158             :                          unsigned SubRegIdx);
     159             :   void SelectLoadLane(SDNode *N, unsigned NumVecs, unsigned Opc);
     160             :   void SelectPostLoadLane(SDNode *N, unsigned NumVecs, unsigned Opc);
     161             : 
     162             :   void SelectStore(SDNode *N, unsigned NumVecs, unsigned Opc);
     163             :   void SelectPostStore(SDNode *N, unsigned NumVecs, unsigned Opc);
     164             :   void SelectStoreLane(SDNode *N, unsigned NumVecs, unsigned Opc);
     165             :   void SelectPostStoreLane(SDNode *N, unsigned NumVecs, unsigned Opc);
     166             : 
     167             :   bool tryBitfieldExtractOp(SDNode *N);
     168             :   bool tryBitfieldExtractOpFromSExt(SDNode *N);
     169             :   bool tryBitfieldInsertOp(SDNode *N);
     170             :   bool tryBitfieldInsertInZeroOp(SDNode *N);
     171             :   bool tryShiftAmountMod(SDNode *N);
     172             : 
     173             :   bool tryReadRegister(SDNode *N);
     174             :   bool tryWriteRegister(SDNode *N);
     175             : 
     176             : // Include the pieces autogenerated from the target description.
     177             : #include "AArch64GenDAGISel.inc"
     178             : 
     179             : private:
     180             :   bool SelectShiftedRegister(SDValue N, bool AllowROR, SDValue &Reg,
     181             :                              SDValue &Shift);
     182             :   bool SelectAddrModeIndexed7S(SDValue N, unsigned Size, SDValue &Base,
     183             :                                SDValue &OffImm);
     184             :   bool SelectAddrModeIndexed(SDValue N, unsigned Size, SDValue &Base,
     185             :                              SDValue &OffImm);
     186             :   bool SelectAddrModeUnscaled(SDValue N, unsigned Size, SDValue &Base,
     187             :                               SDValue &OffImm);
     188             :   bool SelectAddrModeWRO(SDValue N, unsigned Size, SDValue &Base,
     189             :                          SDValue &Offset, SDValue &SignExtend,
     190             :                          SDValue &DoShift);
     191             :   bool SelectAddrModeXRO(SDValue N, unsigned Size, SDValue &Base,
     192             :                          SDValue &Offset, SDValue &SignExtend,
     193             :                          SDValue &DoShift);
     194             :   bool isWorthFolding(SDValue V) const;
     195             :   bool SelectExtendedSHL(SDValue N, unsigned Size, bool WantExtend,
     196             :                          SDValue &Offset, SDValue &SignExtend);
     197             : 
     198             :   template<unsigned RegWidth>
     199             :   bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos) {
     200             :     return SelectCVTFixedPosOperand(N, FixedPos, RegWidth);
     201             :   }
     202             : 
     203             :   bool SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos, unsigned Width);
     204             : 
     205             :   bool SelectCMP_SWAP(SDNode *N);
     206             : 
     207             : };
     208             : } // end anonymous namespace
     209             : 
     210             : /// isIntImmediate - This method tests to see if the node is a constant
     211             : /// operand. If so Imm will receive the 32-bit value.
     212             : static bool isIntImmediate(const SDNode *N, uint64_t &Imm) {
     213             :   if (const ConstantSDNode *C = dyn_cast<const ConstantSDNode>(N)) {
     214             :     Imm = C->getZExtValue();
     215             :     return true;
     216             :   }
     217             :   return false;
     218             : }
     219           0 : 
     220          32 : // isIntImmediate - This method tests to see if a constant operand.
     221             : // If so Imm will receive the value.
     222           0 : static bool isIntImmediate(SDValue N, uint64_t &Imm) {
     223           0 :   return isIntImmediate(N.getNode(), Imm);
     224             : }
     225           0 : 
     226           0 : // isOpcWithIntImmediate - This method tests to see if the node is a specific
     227             : // opcode and that it has a immediate integer right operand.
     228             : // If so Imm will receive the 32 bit value.
     229             : static bool isOpcWithIntImmediate(const SDNode *N, unsigned Opc,
     230             :                                   uint64_t &Imm) {
     231             :   return N->getOpcode() == Opc &&
     232             :          isIntImmediate(N->getOperand(1).getNode(), Imm);
     233             : }
     234             : 
     235             : bool AArch64DAGToDAGISel::SelectInlineAsmMemoryOperand(
     236             :     const SDValue &Op, unsigned ConstraintID, std::vector<SDValue> &OutOps) {
     237             :   switch(ConstraintID) {
     238             :   default:
     239             :     llvm_unreachable("Unexpected asm memory constraint");
     240        1206 :   case InlineAsm::Constraint_i:
     241             :   case InlineAsm::Constraint_m:
     242             :   case InlineAsm::Constraint_Q:
     243             :     // We need to make sure that this one operand does not end up in XZR, thus
     244             :     // require the address to be in a PointerRegClass register.
     245             :     const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
     246             :     const TargetRegisterClass *TRC = TRI->getPointerRegClass(*MF);
     247             :     SDLoc dl(Op);
     248           0 :     SDValue RC = CurDAG->getTargetConstant(TRC->getID(), dl, MVT::i64);
     249           0 :     SDValue NewOp =
     250             :         SDValue(CurDAG->getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
     251             :                                        dl, Op.getValueType(),
     252             :                                        Op, RC), 0);
     253             :     OutOps.push_back(NewOp);
     254             :     return false;
     255             :   }
     256             :   return true;
     257        2695 : }
     258        2824 : 
     259             : /// SelectArithImmed - Select an immediate value that can be represented as
     260             : /// a 12-bit value shifted left by either 0 or 12.  If so, return true with
     261           2 : /// Val set to the 12-bit value and Shift set to the shifter operand.
     262             : bool AArch64DAGToDAGISel::SelectArithImmed(SDValue N, SDValue &Val,
     263             :                                            SDValue &Shift) {
     264           0 :   // This function is called from the addsub_shifted_imm ComplexPattern,
     265           0 :   // which lists [imm] as the list of opcode it's interested in, however
     266           2 :   // we still need to check whether the operand is actually an immediate
     267             :   // here because the ComplexPattern opcode list is only used in
     268             :   // root-level opcode matching.
     269             :   if (!isa<ConstantSDNode>(N.getNode()))
     270             :     return false;
     271           2 : 
     272           2 :   uint64_t Immed = cast<ConstantSDNode>(N.getNode())->getZExtValue();
     273             :   unsigned ShiftAmt;
     274           4 : 
     275             :   if (Immed >> 12 == 0) {
     276           4 :     ShiftAmt = 0;
     277             :   } else if ((Immed & 0xfff) == 0 && Immed >> 24 == 0) {
     278             :     ShiftAmt = 12;
     279           2 :     Immed = Immed >> 12;
     280             :   } else
     281             :     return false;
     282             : 
     283             :   unsigned ShVal = AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt);
     284             :   SDLoc dl(N);
     285             :   Val = CurDAG->getTargetConstant(Immed, dl, MVT::i32);
     286             :   Shift = CurDAG->getTargetConstant(ShVal, dl, MVT::i32);
     287             :   return true;
     288           0 : }
     289             : 
     290             : /// SelectNegArithImmed - As above, but negates the value before trying to
     291             : /// select it.
     292             : bool AArch64DAGToDAGISel::SelectNegArithImmed(SDValue N, SDValue &Val,
     293             :                                               SDValue &Shift) {
     294             :   // This function is called from the addsub_shifted_imm ComplexPattern,
     295             :   // which lists [imm] as the list of opcode it's interested in, however
     296           0 :   // we still need to check whether the operand is actually an immediate
     297             :   // here because the ComplexPattern opcode list is only used in
     298           0 :   // root-level opcode matching.
     299             :   if (!isa<ConstantSDNode>(N.getNode()))
     300             :     return false;
     301           0 : 
     302             :   // The immediate operand must be a 24-bit zero-extended immediate.
     303           0 :   uint64_t Immed = cast<ConstantSDNode>(N.getNode())->getZExtValue();
     304             : 
     305             :   // This negation is almost always valid, but "cmp wN, #0" and "cmn wN, #0"
     306             :   // have the opposite effect on the C flag, so this pattern mustn't match under
     307           0 :   // those circumstances.
     308             :   if (Immed == 0)
     309             :     return false;
     310           0 : 
     311           0 :   if (N.getValueType() == MVT::i32)
     312           0 :     Immed = ~((uint32_t)Immed) + 1;
     313             :   else
     314             :     Immed = ~Immed + 1ULL;
     315             :   if (Immed & 0xFFFFFFFFFF000000ULL)
     316             :     return false;
     317             : 
     318           0 :   Immed &= 0xFFFFFFULL;
     319             :   return SelectArithImmed(CurDAG->getConstant(Immed, SDLoc(N), MVT::i32), Val,
     320             :                           Shift);
     321             : }
     322             : 
     323             : /// getShiftTypeForNode - Translate a shift node to the corresponding
     324             : /// ShiftType value.
     325             : static AArch64_AM::ShiftExtendType getShiftTypeForNode(SDValue N) {
     326           0 :   switch (N.getOpcode()) {
     327             :   default:
     328             :     return AArch64_AM::InvalidShiftExtend;
     329           0 :   case ISD::SHL:
     330             :     return AArch64_AM::LSL;
     331             :   case ISD::SRL:
     332             :     return AArch64_AM::LSR;
     333             :   case ISD::SRA:
     334           0 :     return AArch64_AM::ASR;
     335           0 :   case ISD::ROTR:
     336             :     return AArch64_AM::ROR;
     337           0 :   }
     338           0 : }
     339             : 
     340           0 : /// Determine whether it is worth it to fold SHL into the addressing
     341           0 : /// mode.
     342           0 : static bool isWorthFoldingSHL(SDValue V) {
     343             :   assert(V.getOpcode() == ISD::SHL && "invalid opcode");
     344           0 :   // It is worth folding logical shift of up to three places.
     345           0 :   auto *CSD = dyn_cast<ConstantSDNode>(V.getOperand(1));
     346             :   if (!CSD)
     347             :     return false;
     348             :   unsigned ShiftVal = CSD->getZExtValue();
     349             :   if (ShiftVal > 3)
     350             :     return false;
     351           0 : 
     352           0 :   // Check if this particular node is reused in any non-memory related
     353             :   // operation.  If yes, do not try to fold this node into the address
     354             :   // computation, since the computation will be kept.
     355           0 :   const SDNode *Node = V.getNode();
     356           0 :   for (SDNode *UI : Node->uses())
     357           0 :     if (!isa<MemSDNode>(*UI))
     358           0 :       for (SDNode *UII : UI->uses())
     359           0 :         if (!isa<MemSDNode>(*UII))
     360           0 :           return false;
     361           0 :   return true;
     362           0 : }
     363             : 
     364             : /// Determine whether it is worth to fold V into an extended register.
     365             : bool AArch64DAGToDAGISel::isWorthFolding(SDValue V) const {
     366             :   // Trivial if we are optimizing for code size or if there is only
     367             :   // one use of the value.
     368           0 :   if (ForCodeSize || V.hasOneUse())
     369             :     return true;
     370             :   // If a subtarget has a fastpath LSL we can fold a logical shift into
     371             :   // the addressing mode and save a cycle.
     372             :   if (Subtarget->hasLSLFast() && V.getOpcode() == ISD::SHL &&
     373           0 :       isWorthFoldingSHL(V))
     374           0 :     return true;
     375           0 :   if (Subtarget->hasLSLFast() && V.getOpcode() == ISD::ADD) {
     376           0 :     const SDValue LHS = V.getOperand(0);
     377             :     const SDValue RHS = V.getOperand(1);
     378             :     if (LHS.getOpcode() == ISD::SHL && isWorthFoldingSHL(LHS))
     379             :       return true;
     380             :     if (RHS.getOpcode() == ISD::SHL && isWorthFoldingSHL(RHS))
     381             :       return true;
     382           0 :   }
     383           0 : 
     384           0 :   // It hurts otherwise, since the value will be reused.
     385           0 :   return false;
     386           0 : }
     387             : 
     388             : /// SelectShiftedRegister - Select a "shifted register" operand.  If the value
     389             : /// is not shifted, set the Shift operand to default of "LSL 0".  The logical
     390             : /// instructions allow the shifted register to be rotated, but the arithmetic
     391           0 : /// instructions do not.  The AllowROR parameter specifies whether ROR is
     392             : /// supported.
     393             : bool AArch64DAGToDAGISel::SelectShiftedRegister(SDValue N, bool AllowROR,
     394           0 :                                                 SDValue &Reg, SDValue &Shift) {
     395           0 :   AArch64_AM::ShiftExtendType ShType = getShiftTypeForNode(N);
     396             :   if (ShType == AArch64_AM::InvalidShiftExtend)
     397             :     return false;
     398           0 :   if (!AllowROR && ShType == AArch64_AM::ROR)
     399           0 :     return false;
     400           0 : 
     401           0 :   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
     402           0 :     unsigned BitSize = N.getValueSizeInBits();
     403           0 :     unsigned Val = RHS->getZExtValue() & (BitSize - 1);
     404           0 :     unsigned ShVal = AArch64_AM::getShifterImm(ShType, Val);
     405           0 : 
     406           0 :     Reg = N.getOperand(0);
     407           0 :     Shift = CurDAG->getTargetConstant(ShVal, SDLoc(N), MVT::i32);
     408             :     return isWorthFolding(N);
     409             :   }
     410             : 
     411             :   return false;
     412             : }
     413             : 
     414             : /// getExtendTypeForNode - Translate an extend node to the corresponding
     415             : /// ExtendType value.
     416             : static AArch64_AM::ShiftExtendType
     417             : getExtendTypeForNode(SDValue N, bool IsLoadStore = false) {
     418             :   if (N.getOpcode() == ISD::SIGN_EXTEND ||
     419        3574 :       N.getOpcode() == ISD::SIGN_EXTEND_INREG) {
     420             :     EVT SrcVT;
     421        3574 :     if (N.getOpcode() == ISD::SIGN_EXTEND_INREG)
     422         369 :       SrcVT = cast<VTSDNode>(N.getOperand(1))->getVT();
     423             :     else
     424         369 :       SrcVT = N.getOperand(0).getValueType();
     425             : 
     426             :     if (!IsLoadStore && SrcVT == MVT::i8)
     427             :       return AArch64_AM::SXTB;
     428         267 :     else if (!IsLoadStore && SrcVT == MVT::i16)
     429         534 :       return AArch64_AM::SXTH;
     430             :     else if (SrcVT == MVT::i32)
     431             :       return AArch64_AM::SXTW;
     432         267 :     assert(SrcVT != MVT::i64 && "extend from 64-bits?");
     433         267 : 
     434         267 :     return AArch64_AM::InvalidShiftExtend;
     435             :   } else if (N.getOpcode() == ISD::ZERO_EXTEND ||
     436             :              N.getOpcode() == ISD::ANY_EXTEND) {
     437             :     EVT SrcVT = N.getOperand(0).getValueType();
     438             :     if (!IsLoadStore && SrcVT == MVT::i8)
     439             :       return AArch64_AM::UXTB;
     440             :     else if (!IsLoadStore && SrcVT == MVT::i16)
     441             :       return AArch64_AM::UXTH;
     442             :     else if (SrcVT == MVT::i32)
     443        3998 :       return AArch64_AM::UXTW;
     444        3998 :     assert(SrcVT != MVT::i64 && "extend from 64-bits?");
     445             : 
     446             :     return AArch64_AM::InvalidShiftExtend;
     447         212 :   } else if (N.getOpcode() == ISD::AND) {
     448             :     ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
     449             :     if (!CSD)
     450         119 :       return AArch64_AM::InvalidShiftExtend;
     451             :     uint64_t AndMask = CSD->getZExtValue();
     452         212 : 
     453          37 :     switch (AndMask) {
     454         175 :     default:
     455          45 :       return AArch64_AM::InvalidShiftExtend;
     456             :     case 0xFF:
     457         130 :       return !IsLoadStore ? AArch64_AM::UXTB : AArch64_AM::InvalidShiftExtend;
     458             :     case 0xFFFF:
     459             :       return !IsLoadStore ? AArch64_AM::UXTH : AArch64_AM::InvalidShiftExtend;
     460           0 :     case 0xFFFFFFFF:
     461        3786 :       return AArch64_AM::UXTW;
     462             :     }
     463          62 :   }
     464          62 : 
     465           0 :   return AArch64_AM::InvalidShiftExtend;
     466          62 : }
     467           0 : 
     468             : // Helper for SelectMLAV64LaneV128 - Recognize high lane extracts.
     469          62 : static bool checkHighLaneIndex(SDNode *DL, SDValue &LaneOp, int &LaneIdx) {
     470             :   if (DL->getOpcode() != AArch64ISD::DUPLANE16 &&
     471             :       DL->getOpcode() != AArch64ISD::DUPLANE32)
     472           0 :     return false;
     473        3724 : 
     474             :   SDValue SV = DL->getOperand(0);
     475             :   if (SV.getOpcode() != ISD::INSERT_SUBVECTOR)
     476             :     return false;
     477         170 : 
     478             :   SDValue EV = SV.getOperand(1);
     479         170 :   if (EV.getOpcode() != ISD::EXTRACT_SUBVECTOR)
     480             :     return false;
     481             : 
     482          45 :   ConstantSDNode *DLidx = cast<ConstantSDNode>(DL->getOperand(1).getNode());
     483          78 :   ConstantSDNode *EVidx = cast<ConstantSDNode>(EV.getOperand(1).getNode());
     484          50 :   LaneIdx = DLidx->getSExtValue() + EVidx->getSExtValue();
     485          98 :   LaneOp = EV.getOperand(0);
     486          12 : 
     487          12 :   return true;
     488             : }
     489             : 
     490             : // Helper for SelectOpcV64LaneV128 - Recognize operations where one operand is a
     491             : // high lane extract.
     492             : static bool checkV64LaneV128(SDValue Op0, SDValue Op1, SDValue &StdOp,
     493             :                              SDValue &LaneOp, int &LaneIdx) {
     494             : 
     495         540 :   if (!checkHighLaneIndex(Op0.getNode(), LaneOp, LaneIdx)) {
     496        1080 :     std::swap(Op0, Op1);
     497             :     if (!checkHighLaneIndex(Op0.getNode(), LaneOp, LaneIdx))
     498             :       return false;
     499             :   }
     500         109 :   StdOp = Op1;
     501         109 :   return true;
     502             : }
     503             : 
     504          52 : /// SelectMLAV64LaneV128 - AArch64 supports vector MLAs where one multiplicand
     505          52 : /// is a lane in the upper half of a 128-bit vector.  Recognize and select this
     506             : /// so that we don't emit unnecessary lane extracts.
     507             : bool AArch64DAGToDAGISel::tryMLAV64LaneV128(SDNode *N) {
     508           0 :   SDLoc dl(N);
     509           0 :   SDValue Op0 = N->getOperand(0);
     510           0 :   SDValue Op1 = N->getOperand(1);
     511           0 :   SDValue MLAOp1;   // Will hold ordinary multiplicand for MLA.
     512             :   SDValue MLAOp2;   // Will hold lane-accessed multiplicand for MLA.
     513           0 :   int LaneIdx = -1; // Will hold the lane index.
     514             : 
     515             :   if (Op1.getOpcode() != ISD::MUL ||
     516             :       !checkV64LaneV128(Op1.getOperand(0), Op1.getOperand(1), MLAOp1, MLAOp2,
     517             :                         LaneIdx)) {
     518         270 :     std::swap(Op0, Op1);
     519             :     if (Op1.getOpcode() != ISD::MUL ||
     520             :         !checkV64LaneV128(Op1.getOperand(0), Op1.getOperand(1), MLAOp1, MLAOp2,
     521         270 :                           LaneIdx))
     522             :       return false;
     523         270 :   }
     524             : 
     525             :   SDValue LaneIdxVal = CurDAG->getTargetConstant(LaneIdx, dl, MVT::i64);
     526           0 : 
     527           0 :   SDValue Ops[] = { Op0, MLAOp1, MLAOp2, LaneIdxVal };
     528             : 
     529             :   unsigned MLAOpc = ~0U;
     530             : 
     531             :   switch (N->getSimpleValueType(0).SimpleTy) {
     532             :   default:
     533        2584 :     llvm_unreachable("Unrecognized MLA.");
     534             :   case MVT::v4i16:
     535        2584 :     MLAOpc = AArch64::MLAv4i16_indexed;
     536        2584 :     break;
     537        2584 :   case MVT::v8i16:
     538        2584 :     MLAOpc = AArch64::MLAv8i16_indexed;
     539        2584 :     break;
     540             :   case MVT::v2i32:
     541        2639 :     MLAOpc = AArch64::MLAv2i32_indexed;
     542          55 :     break;
     543             :   case MVT::v4i32:
     544             :     MLAOpc = AArch64::MLAv4i32_indexed;
     545        2653 :     break;
     546          69 :   }
     547             : 
     548        2584 :   ReplaceNode(N, CurDAG->getMachineNode(MLAOpc, dl, N->getValueType(0), Ops));
     549             :   return true;
     550             : }
     551           0 : 
     552             : bool AArch64DAGToDAGISel::tryMULLV64LaneV128(unsigned IntNo, SDNode *N) {
     553           0 :   SDLoc dl(N);
     554             :   SDValue SMULLOp0;
     555             :   SDValue SMULLOp1;
     556             :   int LaneIdx;
     557           0 : 
     558           0 :   if (!checkV64LaneV128(N->getOperand(1), N->getOperand(2), SMULLOp0, SMULLOp1,
     559           0 :                         LaneIdx))
     560             :     return false;
     561             : 
     562             :   SDValue LaneIdxVal = CurDAG->getTargetConstant(LaneIdx, dl, MVT::i64);
     563           0 : 
     564             :   SDValue Ops[] = { SMULLOp0, SMULLOp1, LaneIdxVal };
     565           0 : 
     566           0 :   unsigned SMULLOpc = ~0U;
     567             : 
     568           0 :   if (IntNo == Intrinsic::aarch64_neon_smull) {
     569           0 :     switch (N->getSimpleValueType(0).SimpleTy) {
     570             :     default:
     571           0 :       llvm_unreachable("Unrecognized SMULL.");
     572             :     case MVT::v4i32:
     573             :       SMULLOpc = AArch64::SMULLv4i16_indexed;
     574           0 :       break;
     575           0 :     case MVT::v2i64:
     576             :       SMULLOpc = AArch64::SMULLv2i32_indexed;
     577             :       break;
     578         146 :     }
     579             :   } else if (IntNo == Intrinsic::aarch64_neon_umull) {
     580         146 :     switch (N->getSimpleValueType(0).SimpleTy) {
     581         146 :     default:
     582             :       llvm_unreachable("Unrecognized SMULL.");
     583             :     case MVT::v4i32:
     584         292 :       SMULLOpc = AArch64::UMULLv4i16_indexed;
     585             :       break;
     586             :     case MVT::v2i64:
     587             :       SMULLOpc = AArch64::UMULLv2i32_indexed;
     588           0 :       break;
     589             :     }
     590           0 :   } else
     591             :     llvm_unreachable("Unrecognized intrinsic.");
     592             : 
     593             :   ReplaceNode(N, CurDAG->getMachineNode(SMULLOpc, dl, N->getValueType(0), Ops));
     594           0 :   return true;
     595           0 : }
     596           0 : 
     597           0 : /// Instructions that accept extend modifiers like UXTW expect the register
     598             : /// being extended to be a GPR32, but the incoming DAG might be acting on a
     599             : /// GPR64 (either via SEXT_INREG or AND). Extract the appropriate low bits if
     600             : /// this is the case.
     601           0 : static SDValue narrowIfNeeded(SelectionDAG *CurDAG, SDValue N) {
     602             :   if (N.getValueType() == MVT::i32)
     603           0 :     return N;
     604             : 
     605           0 :   SDLoc dl(N);
     606           0 :   SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32);
     607           0 :   MachineSDNode *Node = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
     608           0 :                                                dl, MVT::i32, N, SubReg);
     609             :   return SDValue(Node, 0);
     610             : }
     611             : 
     612           0 : 
     613             : /// SelectArithExtendedRegister - Select a "extended register" operand.  This
     614           0 : /// operand folds in an extend followed by an optional left shift.
     615             : bool AArch64DAGToDAGISel::SelectArithExtendedRegister(SDValue N, SDValue &Reg,
     616             :                                                       SDValue &Shift) {
     617           0 :   unsigned ShiftVal = 0;
     618             :   AArch64_AM::ShiftExtendType Ext;
     619           0 : 
     620           0 :   if (N.getOpcode() == ISD::SHL) {
     621             :     ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
     622             :     if (!CSD)
     623             :       return false;
     624             :     ShiftVal = CSD->getZExtValue();
     625             :     if (ShiftVal > 4)
     626             :       return false;
     627         396 : 
     628             :     Ext = getExtendTypeForNode(N.getOperand(0));
     629         315 :     if (Ext == AArch64_AM::InvalidShiftExtend)
     630             :       return false;
     631             : 
     632          81 :     Reg = N.getOperand(0).getOperand(0);
     633          81 :   } else {
     634             :     Ext = getExtendTypeForNode(N);
     635          81 :     if (Ext == AArch64_AM::InvalidShiftExtend)
     636             :       return false;
     637             : 
     638             :     Reg = N.getOperand(0);
     639             : 
     640             :     // Don't match if free 32-bit -> 64-bit zext can be used instead.
     641        3051 :     if (Ext == AArch64_AM::UXTW &&
     642             :         Reg->getValueType(0).getSizeInBits() == 32 && isDef32(*Reg.getNode()))
     643             :       return false;
     644             :   }
     645             : 
     646        3051 :   // AArch64 mandates that the RHS of the operation must use the smallest
     647             :   // register class that could contain the size being extended from.  Thus,
     648             :   // if we're folding a (sext i8), we need the RHS to be a GPR32, even though
     649             :   // there might not be an actual 32-bit value in the program.  We can
     650         191 :   // (harmlessly) synthesize one by injected an EXTRACT_SUBREG here.
     651         191 :   assert(Ext != AArch64_AM::UXTX && Ext != AArch64_AM::SXTX);
     652             :   Reg = narrowIfNeeded(CurDAG, Reg);
     653             :   Shift = CurDAG->getTargetConstant(getArithExtendImm(Ext, ShiftVal), SDLoc(N),
     654         159 :                                     MVT::i32);
     655         159 :   return isWorthFolding(N);
     656             : }
     657             : 
     658         154 : /// If there's a use of this ADDlow that's not itself a load/store then we'll
     659             : /// need to create a real ADD instruction from it anyway and there's no point in
     660        2856 : /// folding it into the mem op. Theoretically, it shouldn't matter, but there's
     661        2856 : /// a single pseudo-instruction for an ADRP/ADD pair so over-aggressive folding
     662             : /// leads to duplicated ADRP instructions.
     663             : static bool isWorthFoldingADDlow(SDValue N) {
     664         181 :   for (auto Use : N->uses()) {
     665             :     if (Use->getOpcode() != ISD::LOAD && Use->getOpcode() != ISD::STORE &&
     666             :         Use->getOpcode() != ISD::ATOMIC_LOAD &&
     667          23 :         Use->getOpcode() != ISD::ATOMIC_STORE)
     668         197 :       return false;
     669           6 : 
     670             :     // ldar and stlr have much more restrictive addressing modes (just a
     671             :     // register).
     672             :     if (isStrongerThanMonotonic(cast<MemSDNode>(Use)->getOrdering()))
     673             :       return false;
     674             :   }
     675             : 
     676             :   return true;
     677             : }
     678         252 : 
     679         252 : /// SelectAddrModeIndexed7S - Select a "register plus scaled signed 7-bit
     680         252 : /// immediate" address.  The "Size" argument is the size in bytes of the memory
     681         252 : /// reference, which determines the scale.
     682             : bool AArch64DAGToDAGISel::SelectAddrModeIndexed7S(SDValue N, unsigned Size,
     683             :                                                   SDValue &Base,
     684             :                                                   SDValue &OffImm) {
     685             :   SDLoc dl(N);
     686             :   const DataLayout &DL = CurDAG->getDataLayout();
     687             :   const TargetLowering *TLI = getTargetLowering();
     688             :   if (N.getOpcode() == ISD::FrameIndex) {
     689           0 :     int FI = cast<FrameIndexSDNode>(N)->getIndex();
     690           0 :     Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
     691           0 :     OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
     692           0 :     return true;
     693             :   }
     694           0 : 
     695             :   // As opposed to the (12-bit) Indexed addressing mode below, the 7-bit signed
     696             :   // selected here doesn't support labels/immediates, only base+offset.
     697             : 
     698           0 :   if (CurDAG->isBaseWithConstantOffset(N)) {
     699           0 :     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
     700             :       int64_t RHSC = RHS->getSExtValue();
     701             :       unsigned Scale = Log2_32(Size);
     702             :       if ((RHSC & (Size - 1)) == 0 && RHSC >= -(0x40 << Scale) &&
     703             :           RHSC < (0x40 << Scale)) {
     704             :         Base = N.getOperand(0);
     705             :         if (Base.getOpcode() == ISD::FrameIndex) {
     706             :           int FI = cast<FrameIndexSDNode>(Base)->getIndex();
     707             :           Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
     708           0 :         }
     709             :         OffImm = CurDAG->getTargetConstant(RHSC >> Scale, dl, MVT::i64);
     710             :         return true;
     711           0 :       }
     712           0 :     }
     713             :   }
     714           0 : 
     715           0 :   // Base only. The address will be materialized into a register before
     716           0 :   // the memory is accessed.
     717           0 :   //    add x0, Xbase, #offset
     718           0 :   //    stp x1, x2, [x0]
     719             :   Base = N;
     720             :   OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
     721             :   return true;
     722             : }
     723             : 
     724           0 : /// SelectAddrModeIndexed - Select a "register plus scaled unsigned 12-bit
     725             : /// immediate" address.  The "Size" argument is the size in bytes of the memory
     726           0 : /// reference, which determines the scale.
     727             : bool AArch64DAGToDAGISel::SelectAddrModeIndexed(SDValue N, unsigned Size,
     728           0 :                                               SDValue &Base, SDValue &OffImm) {
     729           0 :   SDLoc dl(N);
     730           0 :   const DataLayout &DL = CurDAG->getDataLayout();
     731           0 :   const TargetLowering *TLI = getTargetLowering();
     732           0 :   if (N.getOpcode() == ISD::FrameIndex) {
     733           0 :     int FI = cast<FrameIndexSDNode>(N)->getIndex();
     734             :     Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
     735           0 :     OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
     736           0 :     return true;
     737             :   }
     738             : 
     739             :   if (N.getOpcode() == AArch64ISD::ADDlow && isWorthFoldingADDlow(N)) {
     740             :     GlobalAddressSDNode *GAN =
     741             :         dyn_cast<GlobalAddressSDNode>(N.getOperand(1).getNode());
     742             :     Base = N.getOperand(0);
     743             :     OffImm = N.getOperand(1);
     744             :     if (!GAN)
     745           0 :       return true;
     746           0 : 
     747           0 :     if (GAN->getOffset() % Size == 0) {
     748             :       const GlobalValue *GV = GAN->getGlobal();
     749             :       unsigned Alignment = GV->getAlignment();
     750             :       Type *Ty = GV->getValueType();
     751             :       if (Alignment == 0 && Ty->isSized())
     752             :         Alignment = DL.getABITypeAlignment(Ty);
     753       11097 : 
     754             :       if (Alignment >= Size)
     755             :         return true;
     756       11097 :     }
     757             :   }
     758       11097 : 
     759         881 :   if (CurDAG->isBaseWithConstantOffset(N)) {
     760         881 :     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
     761         881 :       int64_t RHSC = (int64_t)RHS->getZExtValue();
     762         881 :       unsigned Scale = Log2_32(Size);
     763             :       if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 && RHSC < (0x1000 << Scale)) {
     764             :         Base = N.getOperand(0);
     765       10216 :         if (Base.getOpcode() == ISD::FrameIndex) {
     766             :           int FI = cast<FrameIndexSDNode>(Base)->getIndex();
     767        1503 :           Base = CurDAG->getTargetFrameIndex(FI, TLI->getPointerTy(DL));
     768        1503 :         }
     769        1503 :         OffImm = CurDAG->getTargetConstant(RHSC >> Scale, dl, MVT::i64);
     770        1503 :         return true;
     771             :       }
     772             :     }
     773        1352 :   }
     774        1351 : 
     775        1351 :   // Before falling back to our general case, check if the unscaled
     776        1351 :   // instructions can handle this. If so, that's preferable.
     777        1351 :   if (SelectAddrModeUnscaled(N, Size, Base, OffImm))
     778        1119 :     return false;
     779             : 
     780        1351 :   // Base only. The address will be materialized into a register before
     781             :   // the memory is accessed.
     782             :   //    add x0, Xbase, #offset
     783             :   //    ldr x0, [x0]
     784             :   Base = N;
     785        8733 :   OffImm = CurDAG->getTargetConstant(0, dl, MVT::i64);
     786             :   return true;
     787        9370 : }
     788             : 
     789        4685 : /// SelectAddrModeUnscaled - Select a "register plus unscaled signed 9-bit
     790        4265 : /// immediate" address.  This should only match when there is an offset that
     791        8530 : /// is not valid for a scaled immediate addressing mode.  The "Size" argument
     792         390 : /// is the size in bytes of the memory reference, which is needed here to know
     793         780 : /// what is valid for a scaled immediate.
     794             : bool AArch64DAGToDAGISel::SelectAddrModeUnscaled(SDValue N, unsigned Size,
     795        4265 :                                                  SDValue &Base,
     796        4265 :                                                  SDValue &OffImm) {
     797             :   if (!CurDAG->isBaseWithConstantOffset(N))
     798             :     return false;
     799             :   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
     800             :     int64_t RHSC = RHS->getSExtValue();
     801             :     // If the offset is valid as a scaled immediate, don't match here.
     802             :     if ((RHSC & (Size - 1)) == 0 && RHSC >= 0 &&
     803        4468 :         RHSC < (0x1000 << Log2_32(Size)))
     804             :       return false;
     805             :     if (RHSC >= -256 && RHSC < 256) {
     806             :       Base = N.getOperand(0);
     807             :       if (Base.getOpcode() == ISD::FrameIndex) {
     808             :         int FI = cast<FrameIndexSDNode>(Base)->getIndex();
     809             :         const TargetLowering *TLI = getTargetLowering();
     810        4067 :         Base = CurDAG->getTargetFrameIndex(
     811        4067 :             FI, TLI->getPointerTy(CurDAG->getDataLayout()));
     812        4067 :       }
     813             :       OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i64);
     814             :       return true;
     815             :     }
     816             :   }
     817             :   return false;
     818             : }
     819             : 
     820           0 : static SDValue Widen(SelectionDAG *CurDAG, SDValue N) {
     821             :   SDLoc dl(N);
     822             :   SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32);
     823           0 :   SDValue ImpDef = SDValue(
     824           0 :       CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, MVT::i64), 0);
     825             :   MachineSDNode *Node = CurDAG->getMachineNode(
     826           0 :       TargetOpcode::INSERT_SUBREG, dl, MVT::i64, ImpDef, N, SubReg);
     827             :   return SDValue(Node, 0);
     828           0 : }
     829           0 : 
     830           0 : /// Check if the given SHL node (\p N), can be used to form an
     831           0 : /// extended register for an addressing mode.
     832           0 : bool AArch64DAGToDAGISel::SelectExtendedSHL(SDValue N, unsigned Size,
     833           0 :                                             bool WantExtend, SDValue &Offset,
     834           0 :                                             SDValue &SignExtend) {
     835             :   assert(N.getOpcode() == ISD::SHL && "Invalid opcode.");
     836           0 :   ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1));
     837           0 :   if (!CSD || (CSD->getZExtValue() & 0x7) != CSD->getZExtValue())
     838             :     return false;
     839           0 : 
     840           0 :   SDLoc dl(N);
     841             :   if (WantExtend) {
     842             :     AArch64_AM::ShiftExtendType Ext =
     843             :         getExtendTypeForNode(N.getOperand(0), true);
     844             :     if (Ext == AArch64_AM::InvalidShiftExtend)
     845             :       return false;
     846          11 : 
     847             :     Offset = narrowIfNeeded(CurDAG, N.getOperand(0).getOperand(0));
     848          11 :     SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, dl,
     849             :                                            MVT::i32);
     850          11 :   } else {
     851          11 :     Offset = N.getOperand(0);
     852             :     SignExtend = CurDAG->getTargetConstant(0, dl, MVT::i32);
     853          11 :   }
     854             : 
     855             :   unsigned LegalShiftVal = Log2_32(Size);
     856             :   unsigned ShiftVal = CSD->getZExtValue();
     857             : 
     858         471 :   if (ShiftVal != 0 && ShiftVal != LegalShiftVal)
     859             :     return false;
     860             : 
     861             :   return isWorthFolding(N);
     862             : }
     863         942 : 
     864             : bool AArch64DAGToDAGISel::SelectAddrModeWRO(SDValue N, unsigned Size,
     865             :                                             SDValue &Base, SDValue &Offset,
     866             :                                             SDValue &SignExtend,
     867         471 :                                             SDValue &DoShift) {
     868             :   if (N.getOpcode() != ISD::ADD)
     869         264 :     return false;
     870         264 :   SDValue LHS = N.getOperand(0);
     871             :   SDValue RHS = N.getOperand(1);
     872             :   SDLoc dl(N);
     873         118 : 
     874         118 :   // We don't want to match immediate adds here, because they are better lowered
     875          59 :   // to the register-immediate addressing modes.
     876             :   if (isa<ConstantSDNode>(LHS) || isa<ConstantSDNode>(RHS))
     877         207 :     return false;
     878         207 : 
     879             :   // Check if this particular node is reused in any non-memory related
     880             :   // operation.  If yes, do not try to fold this node into the address
     881             :   // computation, since the computation will be kept.
     882         266 :   const SDNode *Node = N.getNode();
     883             :   for (SDNode *UI : Node->uses()) {
     884         266 :     if (!isa<MemSDNode>(*UI))
     885             :       return false;
     886             :   }
     887         241 : 
     888             :   // Remember if it is worth folding N when it produces extended register.
     889             :   bool IsExtendedRegisterWorthFolding = isWorthFolding(N);
     890           0 : 
     891             :   // Try to match a shifted extend on the RHS.
     892             :   if (IsExtendedRegisterWorthFolding && RHS.getOpcode() == ISD::SHL &&
     893             :       SelectExtendedSHL(RHS, Size, true, Offset, SignExtend)) {
     894           0 :     Base = LHS;
     895           0 :     DoShift = CurDAG->getTargetConstant(true, dl, MVT::i32);
     896           0 :     return true;
     897           0 :   }
     898           0 : 
     899             :   // Try to match a shifted extend on the LHS.
     900             :   if (IsExtendedRegisterWorthFolding && LHS.getOpcode() == ISD::SHL &&
     901             :       SelectExtendedSHL(LHS, Size, true, Offset, SignExtend)) {
     902             :     Base = RHS;
     903           0 :     DoShift = CurDAG->getTargetConstant(true, dl, MVT::i32);
     904             :     return true;
     905             :   }
     906             : 
     907             :   // There was no shift, whatever else we find.
     908             :   DoShift = CurDAG->getTargetConstant(false, dl, MVT::i32);
     909           0 : 
     910           0 :   AArch64_AM::ShiftExtendType Ext = AArch64_AM::InvalidShiftExtend;
     911           0 :   // Try to match an unshifted extend on the LHS.
     912             :   if (IsExtendedRegisterWorthFolding &&
     913             :       (Ext = getExtendTypeForNode(LHS, true)) !=
     914             :           AArch64_AM::InvalidShiftExtend) {
     915           0 :     Base = RHS;
     916             :     Offset = narrowIfNeeded(CurDAG, LHS.getOperand(0));
     917             :     SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, dl,
     918           0 :                                            MVT::i32);
     919           0 :     if (isWorthFolding(LHS))
     920           0 :       return true;
     921           0 :   }
     922           0 : 
     923             :   // Try to match an unshifted extend on the RHS.
     924             :   if (IsExtendedRegisterWorthFolding &&
     925             :       (Ext = getExtendTypeForNode(RHS, true)) !=
     926           0 :           AArch64_AM::InvalidShiftExtend) {
     927           0 :     Base = LHS;
     928           0 :     Offset = narrowIfNeeded(CurDAG, RHS.getOperand(0));
     929           0 :     SignExtend = CurDAG->getTargetConstant(Ext == AArch64_AM::SXTW, dl,
     930           0 :                                            MVT::i32);
     931             :     if (isWorthFolding(RHS))
     932             :       return true;
     933             :   }
     934           0 : 
     935             :   return false;
     936             : }
     937             : 
     938           0 : // Check if the given immediate is preferred by ADD. If an immediate can be
     939           0 : // encoded in an ADD, or it can be encoded in an "ADD LSL #12" and can not be
     940             : // encoded by one MOVZ, return true.
     941           0 : static bool isPreferredADD(int64_t ImmOff) {
     942           0 :   // Constant in [0x0, 0xfff] can be encoded in ADD.
     943           0 :   if ((ImmOff & 0xfffffffffffff000LL) == 0x0LL)
     944           0 :     return true;
     945           0 :   // Check if it can be encoded in an "ADD LSL #12".
     946           0 :   if ((ImmOff & 0xffffffffff000fffLL) == 0x0LL)
     947             :     // As a single MOVZ is faster than a "ADD of LSL #12", ignore such constant.
     948             :     return (ImmOff & 0xffffffffff00ffffLL) != 0x0LL &&
     949             :            (ImmOff & 0xffffffffffff0fffLL) != 0x0LL;
     950           0 :   return false;
     951           0 : }
     952             : 
     953           0 : bool AArch64DAGToDAGISel::SelectAddrModeXRO(SDValue N, unsigned Size,
     954           0 :                                             SDValue &Base, SDValue &Offset,
     955           0 :                                             SDValue &SignExtend,
     956           0 :                                             SDValue &DoShift) {
     957           0 :   if (N.getOpcode() != ISD::ADD)
     958           0 :     return false;
     959             :   SDValue LHS = N.getOperand(0);
     960             :   SDValue RHS = N.getOperand(1);
     961             :   SDLoc DL(N);
     962             : 
     963             :   // Check if this particular node is reused in any non-memory related
     964             :   // operation.  If yes, do not try to fold this node into the address
     965             :   // computation, since the computation will be kept.
     966             :   const SDNode *Node = N.getNode();
     967             :   for (SDNode *UI : Node->uses()) {
     968             :     if (!isa<MemSDNode>(*UI))
     969         457 :       return false;
     970             :   }
     971             : 
     972         366 :   // Watch out if RHS is a wide immediate, it can not be selected into
     973             :   // [BaseReg+Imm] addressing mode. Also it may not be able to be encoded into
     974          16 :   // ADD/SUB. Instead it will use [BaseReg + 0] address mode and generate
     975          15 :   // instructions like:
     976             :   //     MOV  X0, WideImmediate
     977             :   //     ADD  X1, BaseReg, X0
     978             :   //     LDR  X2, [X1, 0]
     979       11503 :   // For such situation, using [BaseReg, XReg] addressing mode can save one
     980             :   // ADD/SUB:
     981             :   //     MOV  X0, WideImmediate
     982             :   //     LDR  X2, [BaseReg, X0]
     983       11503 :   if (isa<ConstantSDNode>(RHS)) {
     984             :     int64_t ImmOff = (int64_t)cast<ConstantSDNode>(RHS)->getZExtValue();
     985        5060 :     unsigned Scale = Log2_32(Size);
     986        5060 :     // Skip the immediate can be selected by load/store addressing mode.
     987             :     // Also skip the immediate can be encoded by a single ADD (SUB is also
     988             :     // checked by using -ImmOff).
     989             :     if ((ImmOff % Size == 0 && ImmOff >= 0 && ImmOff < (0x1000 << Scale)) ||
     990             :         isPreferredADD(ImmOff) || isPreferredADD(-ImmOff))
     991             :       return false;
     992             : 
     993       11324 :     SDValue Ops[] = { RHS };
     994        6313 :     SDNode *MOVI =
     995             :         CurDAG->getMachineNode(AArch64::MOVi64imm, DL, MVT::i64, Ops);
     996             :     SDValue MOVIV = SDValue(MOVI, 0);
     997             :     // This ADD of two X register will be selected into [Reg+Reg] mode.
     998             :     N = CurDAG->getNode(ISD::ADD, DL, MVT::i64, LHS, MOVIV);
     999             :   }
    1000             : 
    1001             :   // Remember if it is worth folding N when it produces extended register.
    1002             :   bool IsExtendedRegisterWorthFolding = isWorthFolding(N);
    1003             : 
    1004             :   // Try to match a shifted extend on the RHS.
    1005             :   if (IsExtendedRegisterWorthFolding && RHS.getOpcode() == ISD::SHL &&
    1006             :       SelectExtendedSHL(RHS, Size, false, Offset, SignExtend)) {
    1007             :     Base = LHS;
    1008             :     DoShift = CurDAG->getTargetConstant(true, DL, MVT::i32);
    1009             :     return true;
    1010        9388 :   }
    1011             : 
    1012             :   // Try to match a shifted extend on the LHS.
    1013             :   if (IsExtendedRegisterWorthFolding && LHS.getOpcode() == ISD::SHL &&
    1014             :       SelectExtendedSHL(LHS, Size, false, Offset, SignExtend)) {
    1015        4552 :     Base = RHS;
    1016        5025 :     DoShift = CurDAG->getTargetConstant(true, DL, MVT::i32);
    1017        4669 :     return true;
    1018             :   }
    1019          25 : 
    1020             :   // Match any non-shifted, non-extend, non-immediate add expression.
    1021          50 :   Base = LHS;
    1022             :   Offset = RHS;
    1023             :   SignExtend = CurDAG->getTargetConstant(false, DL, MVT::i32);
    1024          50 :   DoShift = CurDAG->getTargetConstant(false, DL, MVT::i32);
    1025             :   // Reg1 + Reg2 is free: no check needed.
    1026             :   return true;
    1027             : }
    1028         342 : 
    1029             : SDValue AArch64DAGToDAGISel::createDTuple(ArrayRef<SDValue> Regs) {
    1030             :   static const unsigned RegClassIDs[] = {
    1031         517 :       AArch64::DDRegClassID, AArch64::DDDRegClassID, AArch64::DDDDRegClassID};
    1032         175 :   static const unsigned SubRegs[] = {AArch64::dsub0, AArch64::dsub1,
    1033         119 :                                      AArch64::dsub2, AArch64::dsub3};
    1034         119 : 
    1035         119 :   return createTuple(Regs, RegClassIDs, SubRegs);
    1036             : }
    1037             : 
    1038             : SDValue AArch64DAGToDAGISel::createQTuple(ArrayRef<SDValue> Regs) {
    1039         255 :   static const unsigned RegClassIDs[] = {
    1040          32 :       AArch64::QQRegClassID, AArch64::QQQRegClassID, AArch64::QQQQRegClassID};
    1041          32 :   static const unsigned SubRegs[] = {AArch64::qsub0, AArch64::qsub1,
    1042          32 :                                      AArch64::qsub2, AArch64::qsub3};
    1043          32 : 
    1044             :   return createTuple(Regs, RegClassIDs, SubRegs);
    1045             : }
    1046             : 
    1047         191 : SDValue AArch64DAGToDAGISel::createTuple(ArrayRef<SDValue> Regs,
    1048         191 :                                          const unsigned RegClassIDs[],
    1049         191 :                                          const unsigned SubRegs[]) {
    1050         191 :   // There's no special register-class for a vector-list of 1 element: it's just
    1051             :   // a vector.
    1052         191 :   if (Regs.size() == 1)
    1053             :     return Regs[0];
    1054             : 
    1055             :   assert(Regs.size() >= 2 && Regs.size() <= 4);
    1056             : 
    1057             :   SDLoc DL(Regs[0]);
    1058             : 
    1059             :   SmallVector<SDValue, 4> Ops;
    1060             : 
    1061         149 :   // First operand of REG_SEQUENCE is the desired RegClass.
    1062             :   Ops.push_back(
    1063             :       CurDAG->getTargetConstant(RegClassIDs[Regs.size() - 2], DL, MVT::i32));
    1064             : 
    1065             :   // Then we get pairs of source & subregister-position for the components.
    1066             :   for (unsigned i = 0; i < Regs.size(); ++i) {
    1067             :     Ops.push_back(Regs[i]);
    1068             :     Ops.push_back(CurDAG->getTargetConstant(SubRegs[i], DL, MVT::i32));
    1069             :   }
    1070         385 : 
    1071             :   SDNode *N =
    1072             :       CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, MVT::Untyped, Ops);
    1073           0 :   return SDValue(N, 0);
    1074             : }
    1075             : 
    1076             : void AArch64DAGToDAGISel::SelectTable(SDNode *N, unsigned NumVecs, unsigned Opc,
    1077             :                                       bool isExt) {
    1078           0 :   SDLoc dl(N);
    1079           0 :   EVT VT = N->getValueType(0);
    1080             : 
    1081             :   unsigned ExtOff = isExt;
    1082             : 
    1083           0 :   // Form a REG_SEQUENCE to force register allocation.
    1084             :   unsigned Vec0Off = ExtOff + 1;
    1085             :   SmallVector<SDValue, 4> Regs(N->op_begin() + Vec0Off,
    1086             :                                N->op_begin() + Vec0Off + NumVecs);
    1087             :   SDValue RegSeq = createQTuple(Regs);
    1088           0 : 
    1089           0 :   SmallVector<SDValue, 6> Ops;
    1090             :   if (isExt)
    1091             :     Ops.push_back(N->getOperand(1));
    1092           0 :   Ops.push_back(RegSeq);
    1093           0 :   Ops.push_back(N->getOperand(NumVecs + ExtOff + 1));
    1094           0 :   ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, VT, Ops));
    1095             : }
    1096             : 
    1097             : bool AArch64DAGToDAGISel::tryIndexedLoad(SDNode *N) {
    1098           0 :   LoadSDNode *LD = cast<LoadSDNode>(N);
    1099           0 :   if (LD->isUnindexed())
    1100             :     return false;
    1101             :   EVT VT = LD->getMemoryVT();
    1102          14 :   EVT DstVT = N->getValueType(0);
    1103             :   ISD::MemIndexedMode AM = LD->getAddressingMode();
    1104             :   bool IsPre = AM == ISD::PRE_INC || AM == ISD::PRE_DEC;
    1105          14 : 
    1106             :   // We're not doing validity checking here. That was done when checking
    1107          14 :   // if we should mark the load as indexed or not. We're just selecting
    1108             :   // the right instruction.
    1109             :   unsigned Opcode = 0;
    1110          14 : 
    1111          14 :   ISD::LoadExtType ExtType = LD->getExtensionType();
    1112          14 :   bool InsertTo64 = false;
    1113          14 :   if (VT == MVT::i64)
    1114             :     Opcode = IsPre ? AArch64::LDRXpre : AArch64::LDRXpost;
    1115             :   else if (VT == MVT::i32) {
    1116          14 :     if (ExtType == ISD::NON_EXTLOAD)
    1117          12 :       Opcode = IsPre ? AArch64::LDRWpre : AArch64::LDRWpost;
    1118          14 :     else if (ExtType == ISD::SEXTLOAD)
    1119          28 :       Opcode = IsPre ? AArch64::LDRSWpre : AArch64::LDRSWpost;
    1120          28 :     else {
    1121          14 :       Opcode = IsPre ? AArch64::LDRWpre : AArch64::LDRWpost;
    1122             :       InsertTo64 = true;
    1123        6792 :       // The result of the load is only i32. It's the subreg_to_reg that makes
    1124             :       // it into an i64.
    1125        6792 :       DstVT = MVT::i32;
    1126             :     }
    1127          49 :   } else if (VT == MVT::i16) {
    1128          98 :     if (ExtType == ISD::SEXTLOAD) {
    1129             :       if (DstVT == MVT::i64)
    1130          49 :         Opcode = IsPre ? AArch64::LDRSHXpre : AArch64::LDRSHXpost;
    1131             :       else
    1132             :         Opcode = IsPre ? AArch64::LDRSHWpre : AArch64::LDRSHWpost;
    1133             :     } else {
    1134             :       Opcode = IsPre ? AArch64::LDRHHpre : AArch64::LDRHHpost;
    1135             :       InsertTo64 = DstVT == MVT::i64;
    1136             :       // The result of the load is only i32. It's the subreg_to_reg that makes
    1137             :       // it into an i64.
    1138             :       DstVT = MVT::i32;
    1139             :     }
    1140           3 :   } else if (VT == MVT::i8) {
    1141             :     if (ExtType == ISD::SEXTLOAD) {
    1142           8 :       if (DstVT == MVT::i64)
    1143           7 :         Opcode = IsPre ? AArch64::LDRSBXpre : AArch64::LDRSBXpost;
    1144           1 :       else
    1145           1 :         Opcode = IsPre ? AArch64::LDRSBWpre : AArch64::LDRSBWpost;
    1146             :     } else {
    1147           0 :       Opcode = IsPre ? AArch64::LDRBBpre : AArch64::LDRBBpost;
    1148             :       InsertTo64 = DstVT == MVT::i64;
    1149             :       // The result of the load is only i32. It's the subreg_to_reg that makes
    1150             :       // it into an i64.
    1151           0 :       DstVT = MVT::i32;
    1152             :     }
    1153             :   } else if (VT == MVT::f16) {
    1154           4 :     Opcode = IsPre ? AArch64::LDRHpre : AArch64::LDRHpost;
    1155             :   } else if (VT == MVT::f32) {
    1156           1 :     Opcode = IsPre ? AArch64::LDRSpre : AArch64::LDRSpost;
    1157             :   } else if (VT == MVT::f64 || VT.is64BitVector()) {
    1158           1 :     Opcode = IsPre ? AArch64::LDRDpre : AArch64::LDRDpost;
    1159             :   } else if (VT.is128BitVector()) {
    1160           2 :     Opcode = IsPre ? AArch64::LDRQpre : AArch64::LDRQpost;
    1161             :   } else
    1162             :     return false;
    1163             :   SDValue Chain = LD->getChain();
    1164           2 :   SDValue Base = LD->getBasePtr();
    1165             :   ConstantSDNode *OffsetOp = cast<ConstantSDNode>(LD->getOffset());
    1166             :   int OffsetVal = (int)OffsetOp->getZExtValue();
    1167           5 :   SDLoc dl(N);
    1168             :   SDValue Offset = CurDAG->getTargetConstant(OffsetVal, dl, MVT::i64);
    1169           1 :   SDValue Ops[] = { Base, Offset, Chain };
    1170             :   SDNode *Res = CurDAG->getMachineNode(Opcode, dl, MVT::i64, DstVT,
    1171           1 :                                        MVT::Other, Ops);
    1172             :   // Either way, we're replacing the node, so tell the caller that.
    1173           3 :   SDValue LoadedVal = SDValue(Res, 1);
    1174             :   if (InsertTo64) {
    1175             :     SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32);
    1176             :     LoadedVal =
    1177           3 :         SDValue(CurDAG->getMachineNode(
    1178             :                     AArch64::SUBREG_TO_REG, dl, MVT::i64,
    1179             :                     CurDAG->getTargetConstant(0, dl, MVT::i64), LoadedVal,
    1180           1 :                     SubReg),
    1181             :                 0);
    1182           1 :   }
    1183          25 : 
    1184          14 :   ReplaceUses(SDValue(N, 0), LoadedVal);
    1185          13 :   ReplaceUses(SDValue(N, 1), SDValue(Res, 0));
    1186          13 :   ReplaceUses(SDValue(N, 2), SDValue(Res, 2));
    1187             :   CurDAG->RemoveDeadNode(N);
    1188             :   return true;
    1189          49 : }
    1190          49 : 
    1191             : void AArch64DAGToDAGISel::SelectLoad(SDNode *N, unsigned NumVecs, unsigned Opc,
    1192          98 :                                      unsigned SubRegIdx) {
    1193             :   SDLoc dl(N);
    1194          49 :   EVT VT = N->getValueType(0);
    1195          49 :   SDValue Chain = N->getOperand(0);
    1196          98 : 
    1197             :   SDValue Ops[] = {N->getOperand(2), // Mem operand;
    1198             :                    Chain};
    1199             : 
    1200          49 :   const EVT ResTys[] = {MVT::Untyped, MVT::Other};
    1201           2 : 
    1202             :   SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
    1203           2 :   SDValue SuperReg = SDValue(Ld, 0);
    1204             :   for (unsigned i = 0; i < NumVecs; ++i)
    1205             :     ReplaceUses(SDValue(N, i),
    1206             :         CurDAG->getTargetExtractSubreg(SubRegIdx + i, dl, VT, SuperReg));
    1207             : 
    1208             :   ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 1));
    1209             : 
    1210          49 :   // Transfer memoperands.
    1211          49 :   MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
    1212          49 :   CurDAG->setNodeMemRefs(cast<MachineSDNode>(Ld), {MemOp});
    1213          49 : 
    1214             :   CurDAG->RemoveDeadNode(N);
    1215             : }
    1216             : 
    1217         120 : void AArch64DAGToDAGISel::SelectPostLoad(SDNode *N, unsigned NumVecs,
    1218             :                                          unsigned Opc, unsigned SubRegIdx) {
    1219             :   SDLoc dl(N);
    1220         120 :   EVT VT = N->getValueType(0);
    1221         120 :   SDValue Chain = N->getOperand(0);
    1222             : 
    1223             :   SDValue Ops[] = {N->getOperand(1), // Mem operand
    1224         120 :                    N->getOperand(2), // Incremental
    1225             :                    Chain};
    1226         120 : 
    1227             :   const EVT ResTys[] = {MVT::i64, // Type of the write back register
    1228         240 :                         MVT::Untyped, MVT::Other};
    1229             : 
    1230         475 :   SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
    1231         710 : 
    1232         355 :   // Update uses of write back register
    1233             :   ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 0));
    1234         120 : 
    1235             :   // Update uses of vector list
    1236             :   SDValue SuperReg = SDValue(Ld, 1);
    1237         120 :   if (NumVecs == 1)
    1238         240 :     ReplaceUses(SDValue(N, 0), SuperReg);
    1239             :   else
    1240         120 :     for (unsigned i = 0; i < NumVecs; ++i)
    1241         120 :       ReplaceUses(SDValue(N, i),
    1242             :           CurDAG->getTargetExtractSubreg(SubRegIdx + i, dl, VT, SuperReg));
    1243         236 : 
    1244             :   // Update the chain
    1245             :   ReplaceUses(SDValue(N, NumVecs + 1), SDValue(Ld, 2));
    1246         236 :   CurDAG->RemoveDeadNode(N);
    1247         236 : }
    1248             : 
    1249             : void AArch64DAGToDAGISel::SelectStore(SDNode *N, unsigned NumVecs,
    1250             :                                       unsigned Opc) {
    1251         236 :   SDLoc dl(N);
    1252             :   EVT VT = N->getOperand(2)->getValueType(0);
    1253         236 : 
    1254             :   // Form a REG_SEQUENCE to force register allocation.
    1255             :   bool Is128Bit = VT.getSizeInBits() == 128;
    1256         472 :   SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
    1257             :   SDValue RegSeq = Is128Bit ? createQTuple(Regs) : createDTuple(Regs);
    1258             : 
    1259         472 :   SDValue Ops[] = {RegSeq, N->getOperand(NumVecs + 2), N->getOperand(0)};
    1260             :   SDNode *St = CurDAG->getMachineNode(Opc, dl, N->getValueType(0), Ops);
    1261             : 
    1262             :   // Transfer memoperands.
    1263         236 :   MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
    1264          40 :   CurDAG->setNodeMemRefs(cast<MachineSDNode>(St), {MemOp});
    1265             : 
    1266         864 :   ReplaceNode(N, St);
    1267        1296 : }
    1268         648 : 
    1269             : void AArch64DAGToDAGISel::SelectPostStore(SDNode *N, unsigned NumVecs,
    1270             :                                           unsigned Opc) {
    1271         236 :   SDLoc dl(N);
    1272         236 :   EVT VT = N->getOperand(2)->getValueType(0);
    1273         236 :   const EVT ResTys[] = {MVT::i64,    // Type of the write back register
    1274             :                         MVT::Other}; // Type for the Chain
    1275         149 : 
    1276             :   // Form a REG_SEQUENCE to force register allocation.
    1277             :   bool Is128Bit = VT.getSizeInBits() == 128;
    1278         149 :   SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
    1279             :   SDValue RegSeq = Is128Bit ? createQTuple(Regs) : createDTuple(Regs);
    1280             : 
    1281         149 :   SDValue Ops[] = {RegSeq,
    1282         149 :                    N->getOperand(NumVecs + 1), // base register
    1283         298 :                    N->getOperand(NumVecs + 2), // Incremental
    1284             :                    N->getOperand(0)};          // Chain
    1285         149 :   SDNode *St = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
    1286         447 : 
    1287             :   ReplaceNode(N, St);
    1288             : }
    1289         149 : 
    1290         298 : namespace {
    1291             : /// WidenVector - Given a value in the V64 register class, produce the
    1292         149 : /// equivalent value in the V128 register class.
    1293         149 : class WidenVector {
    1294             :   SelectionDAG &DAG;
    1295         144 : 
    1296             : public:
    1297             :   WidenVector(SelectionDAG &DAG) : DAG(DAG) {}
    1298         144 : 
    1299         144 :   SDValue operator()(SDValue V64Reg) {
    1300             :     EVT VT = V64Reg.getValueType();
    1301             :     unsigned NarrowSize = VT.getVectorNumElements();
    1302             :     MVT EltTy = VT.getVectorElementType().getSimpleVT();
    1303         144 :     MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize);
    1304         144 :     SDLoc DL(V64Reg);
    1305         288 : 
    1306             :     SDValue Undef =
    1307             :         SDValue(DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, WideTy), 0);
    1308         144 :     return DAG.getTargetInsertSubreg(AArch64::dsub, DL, WideTy, Undef, V64Reg);
    1309         144 :   }
    1310         288 : };
    1311         288 : } // namespace
    1312             : 
    1313         144 : /// NarrowVector - Given a value in the V128 register class, produce the
    1314         144 : /// equivalent value in the V64 register class.
    1315             : static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) {
    1316             :   EVT VT = V128Reg.getValueType();
    1317             :   unsigned WideSize = VT.getVectorNumElements();
    1318             :   MVT EltTy = VT.getVectorElementType().getSimpleVT();
    1319             :   MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2);
    1320             : 
    1321             :   return DAG.getTargetExtractSubreg(AArch64::dsub, SDLoc(V128Reg), NarrowTy,
    1322             :                                     V128Reg);
    1323          85 : }
    1324             : 
    1325           0 : void AArch64DAGToDAGISel::SelectLoadLane(SDNode *N, unsigned NumVecs,
    1326           0 :                                          unsigned Opc) {
    1327             :   SDLoc dl(N);
    1328           0 :   EVT VT = N->getValueType(0);
    1329           0 :   bool Narrow = VT.getSizeInBits() == 64;
    1330           0 : 
    1331             :   // Form a REG_SEQUENCE to force register allocation.
    1332             :   SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
    1333           0 : 
    1334           0 :   if (Narrow)
    1335             :     transform(Regs, Regs.begin(),
    1336             :                    WidenVector(*CurDAG));
    1337             : 
    1338             :   SDValue RegSeq = createQTuple(Regs);
    1339             : 
    1340             :   const EVT ResTys[] = {MVT::Untyped, MVT::Other};
    1341         122 : 
    1342         122 :   unsigned LaneNo =
    1343             :       cast<ConstantSDNode>(N->getOperand(NumVecs + 2))->getZExtValue();
    1344         122 : 
    1345         122 :   SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, dl, MVT::i64),
    1346             :                    N->getOperand(NumVecs + 3), N->getOperand(0)};
    1347         122 :   SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
    1348         122 :   SDValue SuperReg = SDValue(Ld, 0);
    1349             : 
    1350             :   EVT WideVT = RegSeq.getOperand(1)->getValueType(0);
    1351          26 :   static const unsigned QSubs[] = { AArch64::qsub0, AArch64::qsub1,
    1352             :                                     AArch64::qsub2, AArch64::qsub3 };
    1353             :   for (unsigned i = 0; i < NumVecs; ++i) {
    1354          26 :     SDValue NV = CurDAG->getTargetExtractSubreg(QSubs[i], dl, WideVT, SuperReg);
    1355          26 :     if (Narrow)
    1356             :       NV = NarrowVector(NV, *CurDAG);
    1357             :     ReplaceUses(SDValue(N, i), NV);
    1358          26 :   }
    1359             : 
    1360          26 :   ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 1));
    1361           5 :   CurDAG->RemoveDeadNode(N);
    1362           5 : }
    1363             : 
    1364          26 : void AArch64DAGToDAGISel::SelectPostLoadLane(SDNode *N, unsigned NumVecs,
    1365             :                                              unsigned Opc) {
    1366          26 :   SDLoc dl(N);
    1367             :   EVT VT = N->getValueType(0);
    1368             :   bool Narrow = VT.getSizeInBits() == 64;
    1369          52 : 
    1370             :   // Form a REG_SEQUENCE to force register allocation.
    1371          52 :   SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
    1372          26 : 
    1373          52 :   if (Narrow)
    1374             :     transform(Regs, Regs.begin(),
    1375             :                    WidenVector(*CurDAG));
    1376          52 : 
    1377             :   SDValue RegSeq = createQTuple(Regs);
    1378             : 
    1379         102 :   const EVT ResTys[] = {MVT::i64, // Type of the write back register
    1380          76 :                         RegSeq->getValueType(0), MVT::Other};
    1381          76 : 
    1382          13 :   unsigned LaneNo =
    1383         152 :       cast<ConstantSDNode>(N->getOperand(NumVecs + 1))->getZExtValue();
    1384             : 
    1385             :   SDValue Ops[] = {RegSeq,
    1386          26 :                    CurDAG->getTargetConstant(LaneNo, dl,
    1387          26 :                                              MVT::i64),         // Lane Number
    1388          26 :                    N->getOperand(NumVecs + 2),                  // Base register
    1389             :                    N->getOperand(NumVecs + 3),                  // Incremental
    1390          94 :                    N->getOperand(0)};
    1391             :   SDNode *Ld = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
    1392             : 
    1393          94 :   // Update uses of the write back register
    1394          94 :   ReplaceUses(SDValue(N, NumVecs), SDValue(Ld, 0));
    1395             : 
    1396             :   // Update uses of the vector list
    1397          94 :   SDValue SuperReg = SDValue(Ld, 1);
    1398             :   if (NumVecs == 1) {
    1399          94 :     ReplaceUses(SDValue(N, 0),
    1400          37 :                 Narrow ? NarrowVector(SuperReg, *CurDAG) : SuperReg);
    1401          37 :   } else {
    1402             :     EVT WideVT = RegSeq.getOperand(1)->getValueType(0);
    1403          94 :     static const unsigned QSubs[] = { AArch64::qsub0, AArch64::qsub1,
    1404             :                                       AArch64::qsub2, AArch64::qsub3 };
    1405             :     for (unsigned i = 0; i < NumVecs; ++i) {
    1406          94 :       SDValue NV = CurDAG->getTargetExtractSubreg(QSubs[i], dl, WideVT,
    1407             :                                                   SuperReg);
    1408             :       if (Narrow)
    1409         188 :         NV = NarrowVector(NV, *CurDAG);
    1410             :       ReplaceUses(SDValue(N, i), NV);
    1411             :     }
    1412          94 :   }
    1413          94 : 
    1414          94 :   // Update the Chain
    1415          94 :   ReplaceUses(SDValue(N, NumVecs + 1), SDValue(Ld, 2));
    1416          94 :   CurDAG->RemoveDeadNode(N);
    1417         188 : }
    1418             : 
    1419             : void AArch64DAGToDAGISel::SelectStoreLane(SDNode *N, unsigned NumVecs,
    1420         188 :                                           unsigned Opc) {
    1421             :   SDLoc dl(N);
    1422             :   EVT VT = N->getOperand(2)->getValueType(0);
    1423             :   bool Narrow = VT.getSizeInBits() == 64;
    1424          94 : 
    1425          45 :   // Form a REG_SEQUENCE to force register allocation.
    1426           1 :   SmallVector<SDValue, 4> Regs(N->op_begin() + 2, N->op_begin() + 2 + NumVecs);
    1427             : 
    1428         144 :   if (Narrow)
    1429             :     transform(Regs, Regs.begin(),
    1430             :                    WidenVector(*CurDAG));
    1431         288 : 
    1432         216 :   SDValue RegSeq = createQTuple(Regs);
    1433         216 : 
    1434         216 :   unsigned LaneNo =
    1435         108 :       cast<ConstantSDNode>(N->getOperand(NumVecs + 2))->getZExtValue();
    1436         432 : 
    1437             :   SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, dl, MVT::i64),
    1438             :                    N->getOperand(NumVecs + 3), N->getOperand(0)};
    1439             :   SDNode *St = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
    1440             : 
    1441          94 :   // Transfer memoperands.
    1442          94 :   MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
    1443          94 :   CurDAG->setNodeMemRefs(cast<MachineSDNode>(St), {MemOp});
    1444             : 
    1445          35 :   ReplaceNode(N, St);
    1446             : }
    1447             : 
    1448          35 : void AArch64DAGToDAGISel::SelectPostStoreLane(SDNode *N, unsigned NumVecs,
    1449          35 :                                               unsigned Opc) {
    1450             :   SDLoc dl(N);
    1451             :   EVT VT = N->getOperand(2)->getValueType(0);
    1452          35 :   bool Narrow = VT.getSizeInBits() == 64;
    1453             : 
    1454          35 :   // Form a REG_SEQUENCE to force register allocation.
    1455           7 :   SmallVector<SDValue, 4> Regs(N->op_begin() + 1, N->op_begin() + 1 + NumVecs);
    1456           7 : 
    1457             :   if (Narrow)
    1458          35 :     transform(Regs, Regs.begin(),
    1459             :                    WidenVector(*CurDAG));
    1460             : 
    1461          70 :   SDValue RegSeq = createQTuple(Regs);
    1462             : 
    1463          70 :   const EVT ResTys[] = {MVT::i64, // Type of the write back register
    1464          35 :                         MVT::Other};
    1465          70 : 
    1466             :   unsigned LaneNo =
    1467             :       cast<ConstantSDNode>(N->getOperand(NumVecs + 1))->getZExtValue();
    1468          35 : 
    1469          70 :   SDValue Ops[] = {RegSeq, CurDAG->getTargetConstant(LaneNo, dl, MVT::i64),
    1470             :                    N->getOperand(NumVecs + 2), // Base Register
    1471          35 :                    N->getOperand(NumVecs + 3), // Incremental
    1472          35 :                    N->getOperand(0)};
    1473             :   SDNode *St = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
    1474          72 : 
    1475             :   // Transfer memoperands.
    1476             :   MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
    1477          72 :   CurDAG->setNodeMemRefs(cast<MachineSDNode>(St), {MemOp});
    1478          72 : 
    1479             :   ReplaceNode(N, St);
    1480             : }
    1481          72 : 
    1482             : static bool isBitfieldExtractOpFromAnd(SelectionDAG *CurDAG, SDNode *N,
    1483          72 :                                        unsigned &Opc, SDValue &Opd0,
    1484          36 :                                        unsigned &LSB, unsigned &MSB,
    1485          36 :                                        unsigned NumberOfIgnoredLowBits,
    1486             :                                        bool BiggerPattern) {
    1487          72 :   assert(N->getOpcode() == ISD::AND &&
    1488             :          "N must be a AND operation to call this function");
    1489          72 : 
    1490             :   EVT VT = N->getValueType(0);
    1491             : 
    1492             :   // Here we can test the type of VT and return false when the type does not
    1493         144 :   // match, but since it is done prior to that call in the current context
    1494             :   // we turned that into an assert to avoid redundant code.
    1495         144 :   assert((VT == MVT::i32 || VT == MVT::i64) &&
    1496          72 :          "Type checking must have been done before calling this function");
    1497          72 : 
    1498          72 :   // FIXME: simplify-demanded-bits in DAGCombine will probably have
    1499         144 :   // changed the AND node to a 32-bit mask operation. We'll have to
    1500             :   // undo that as part of the transform here if we want to catch all
    1501             :   // the opportunities.
    1502          72 :   // Currently the NumberOfIgnoredLowBits argument helps to recover
    1503         144 :   // form these situations when matching bigger pattern (bitfield insert).
    1504             : 
    1505          72 :   // For unsigned extracts, check for a shift right and mask
    1506          72 :   uint64_t AndImm = 0;
    1507             :   if (!isOpcWithIntImmediate(N, ISD::AND, AndImm))
    1508        1184 :     return false;
    1509             : 
    1510             :   const SDNode *Op0 = N->getOperand(0).getNode();
    1511             : 
    1512             :   // Because of simplify-demanded-bits in DAGCombine, the mask may have been
    1513             :   // simplified. Try to undo that
    1514             :   AndImm |= maskTrailingOnes<uint64_t>(NumberOfIgnoredLowBits);
    1515             : 
    1516        2368 :   // The immediate is a mask of the low bits iff imm & (imm+1) == 0
    1517             :   if (AndImm & (AndImm + 1))
    1518             :     return false;
    1519             : 
    1520             :   bool ClampMSB = false;
    1521             :   uint64_t SrlImm = 0;
    1522             :   // Handle the SRL + ANY_EXTEND case.
    1523             :   if (VT == MVT::i64 && Op0->getOpcode() == ISD::ANY_EXTEND &&
    1524             :       isOpcWithIntImmediate(Op0->getOperand(0).getNode(), ISD::SRL, SrlImm)) {
    1525             :     // Extend the incoming operand of the SRL to 64-bit.
    1526             :     Opd0 = Widen(CurDAG, Op0->getOperand(0).getOperand(0));
    1527             :     // Make sure to clamp the MSB so that we preserve the semantics of the
    1528             :     // original operations.
    1529             :     ClampMSB = true;
    1530             :   } else if (VT == MVT::i32 && Op0->getOpcode() == ISD::TRUNCATE &&
    1531             :              isOpcWithIntImmediate(Op0->getOperand(0).getNode(), ISD::SRL,
    1532             :                                    SrlImm)) {
    1533        1184 :     // If the shift result was truncated, we can still combine them.
    1534             :     Opd0 = Op0->getOperand(0).getOperand(0);
    1535             : 
    1536         851 :     // Use the type of SRL node.
    1537             :     VT = Opd0->getValueType(0);
    1538             :   } else if (isOpcWithIntImmediate(Op0, ISD::SRL, SrlImm)) {
    1539             :     Opd0 = Op0->getOperand(0);
    1540         851 :   } else if (BiggerPattern) {
    1541             :     // Let's pretend a 0 shift right has been performed.
    1542             :     // The resulting code will be at least as good as the original one
    1543         851 :     // plus it may expose more opportunities for bitfield insert pattern.
    1544             :     // FIXME: Currently we limit this to the bigger pattern, because
    1545             :     // some optimizations expect AND and not UBFM.
    1546             :     Opd0 = N->getOperand(0);
    1547             :   } else
    1548             :     return false;
    1549          88 : 
    1550          23 :   // Bail out on large immediates. This happens when no proper
    1551             :   // combining/constant folding was performed.
    1552          10 :   if (!BiggerPattern && (SrlImm <= 0 || SrlImm >= VT.getSizeInBits())) {
    1553             :     LLVM_DEBUG(
    1554             :         (dbgs() << N
    1555             :                 << ": Found large shift immediate, this should not happen\n"));
    1556         407 :     return false;
    1557           5 :   }
    1558             : 
    1559             :   LSB = SrlImm;
    1560           4 :   MSB = SrlImm + (VT == MVT::i32 ? countTrailingOnes<uint32_t>(AndImm)
    1561             :                                  : countTrailingOnes<uint64_t>(AndImm)) -
    1562             :         1;
    1563           8 :   if (ClampMSB)
    1564             :     // Since we're moving the extend before the right shift operation, we need
    1565          38 :     // to clamp the MSB to make sure we don't shift in undefined bits instead of
    1566         443 :     // the zeros which would get shifted in with the original right shift
    1567             :     // operation.
    1568             :     MSB = MSB > 31 ? 31 : MSB;
    1569             : 
    1570             :   Opc = VT == MVT::i32 ? AArch64::UBFMWri : AArch64::UBFMXri;
    1571             :   return true;
    1572          13 : }
    1573             : 
    1574             : static bool isBitfieldExtractOpFromSExtInReg(SDNode *N, unsigned &Opc,
    1575             :                                              SDValue &Opd0, unsigned &Immr,
    1576             :                                              unsigned &Imms) {
    1577             :   assert(N->getOpcode() == ISD::SIGN_EXTEND_INREG);
    1578          65 : 
    1579             :   EVT VT = N->getValueType(0);
    1580             :   unsigned BitWidth = VT.getSizeInBits();
    1581             :   assert((VT == MVT::i32 || VT == MVT::i64) &&
    1582             :          "Type checking must have been done before calling this function");
    1583             : 
    1584             :   SDValue Op = N->getOperand(0);
    1585          65 :   if (Op->getOpcode() == ISD::TRUNCATE) {
    1586          94 :     Op = Op->getOperand(0);
    1587          65 :     VT = Op->getValueType(0);
    1588             :     BitWidth = VT.getSizeInBits();
    1589          65 :   }
    1590             : 
    1591             :   uint64_t ShiftImm;
    1592             :   if (!isOpcWithIntImmediate(Op.getNode(), ISD::SRL, ShiftImm) &&
    1593             :       !isOpcWithIntImmediate(Op.getNode(), ISD::SRA, ShiftImm))
    1594          10 :     return false;
    1595             : 
    1596          65 :   unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits();
    1597          65 :   if (ShiftImm + Width > BitWidth)
    1598             :     return false;
    1599             : 
    1600         251 :   Opc = (VT == MVT::i32) ? AArch64::SBFMWri : AArch64::SBFMXri;
    1601             :   Opd0 = Op.getOperand(0);
    1602             :   Immr = ShiftImm;
    1603             :   Imms = ShiftImm + Width - 1;
    1604             :   return true;
    1605         251 : }
    1606         251 : 
    1607             : static bool isSeveralBitsExtractOpFromShr(SDNode *N, unsigned &Opc,
    1608             :                                           SDValue &Opd0, unsigned &LSB,
    1609             :                                           unsigned &MSB) {
    1610         251 :   // We are looking for the following pattern which basically extracts several
    1611         251 :   // continuous bits from the source value and places it from the LSB of the
    1612          11 :   // destination value, all other bits of the destination value or set to zero:
    1613          11 :   //
    1614          11 :   // Value2 = AND Value, MaskImm
    1615             :   // SRL Value2, ShiftImm
    1616             :   //
    1617             :   // with MaskImm >> ShiftImm to search for the bit width.
    1618         495 :   //
    1619             :   // This gets selected into a single UBFM:
    1620             :   //
    1621             :   // UBFM Value, ShiftImm, BitWide + SrlImm -1
    1622           7 :   //
    1623           7 : 
    1624             :   if (N->getOpcode() != ISD::SRL)
    1625             :     return false;
    1626           7 : 
    1627           7 :   uint64_t AndMask = 0;
    1628           7 :   if (!isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, AndMask))
    1629           7 :     return false;
    1630           7 : 
    1631             :   Opd0 = N->getOperand(0).getOperand(0);
    1632             : 
    1633         348 :   uint64_t SrlImm = 0;
    1634             :   if (!isIntImmediate(N->getOperand(1), SrlImm))
    1635             :     return false;
    1636             : 
    1637             :   // Check whether we really have several bits extract here.
    1638             :   unsigned BitWide = 64 - countLeadingOnes(~(AndMask >> SrlImm));
    1639             :   if (BitWide && isMask_64(AndMask >> SrlImm)) {
    1640             :     if (N->getValueType(0) == MVT::i32)
    1641             :       Opc = AArch64::UBFMWri;
    1642             :     else
    1643             :       Opc = AArch64::UBFMXri;
    1644             : 
    1645             :     LSB = SrlImm;
    1646             :     MSB = BitWide + SrlImm - 1;
    1647             :     return true;
    1648             :   }
    1649             : 
    1650         348 :   return false;
    1651             : }
    1652             : 
    1653             : static bool isBitfieldExtractOpFromShr(SDNode *N, unsigned &Opc, SDValue &Opd0,
    1654         307 :                                        unsigned &Immr, unsigned &Imms,
    1655             :                                        bool BiggerPattern) {
    1656             :   assert((N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) &&
    1657          30 :          "N must be a SHR/SRA operation to call this function");
    1658             : 
    1659             :   EVT VT = N->getValueType(0);
    1660          60 : 
    1661             :   // Here we can test the type of VT and return false when the type does not
    1662             :   // match, but since it is done prior to that call in the current context
    1663             :   // we turned that into an assert to avoid redundant code.
    1664          15 :   assert((VT == MVT::i32 || VT == MVT::i64) &&
    1665          15 :          "Type checking must have been done before calling this function");
    1666          12 : 
    1667          12 :   // Check for AND + SRL doing several bits extract.
    1668             :   if (isSeveralBitsExtractOpFromShr(N, Opc, Opd0, Immr, Imms))
    1669           0 :     return true;
    1670             : 
    1671          12 :   // We're looking for a shift of a shift.
    1672          12 :   uint64_t ShlImm = 0;
    1673          12 :   uint64_t TruncBits = 0;
    1674             :   if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, ShlImm)) {
    1675             :     Opd0 = N->getOperand(0).getOperand(0);
    1676             :   } else if (VT == MVT::i32 && N->getOpcode() == ISD::SRL &&
    1677             :              N->getOperand(0).getNode()->getOpcode() == ISD::TRUNCATE) {
    1678             :     // We are looking for a shift of truncate. Truncate from i64 to i32 could
    1679         348 :     // be considered as setting high 32 bits as zero. Our strategy here is to
    1680             :     // always generate 64bit UBFM. This consistency will help the CSE pass
    1681             :     // later find more redundancy.
    1682             :     Opd0 = N->getOperand(0).getOperand(0);
    1683             :     TruncBits = Opd0->getValueType(0).getSizeInBits() - VT.getSizeInBits();
    1684             :     VT = Opd0.getValueType();
    1685         348 :     assert(VT == MVT::i64 && "the promoted type should be i64");
    1686             :   } else if (BiggerPattern) {
    1687             :     // Let's pretend a 0 shift left has been performed.
    1688             :     // FIXME: Currently we limit this to the bigger pattern case,
    1689             :     // because some optimizations expect AND and not UBFM
    1690             :     Opd0 = N->getOperand(0);
    1691             :   } else
    1692             :     return false;
    1693             : 
    1694         348 :   // Missing combines/constant folding may have left us with strange
    1695             :   // constants.
    1696             :   if (ShlImm >= VT.getSizeInBits()) {
    1697             :     LLVM_DEBUG(
    1698             :         (dbgs() << N
    1699             :                 << ": Found large shift immediate, this should not happen\n"));
    1700         336 :     return false;
    1701          15 :   }
    1702         130 : 
    1703             :   uint64_t SrlImm = 0;
    1704             :   if (!isIntImmediate(N->getOperand(1), SrlImm))
    1705             :     return false;
    1706             : 
    1707             :   assert(SrlImm > 0 && SrlImm < VT.getSizeInBits() &&
    1708           2 :          "bad amount in shift node!");
    1709           2 :   int immr = SrlImm - ShlImm;
    1710           4 :   Immr = immr < 0 ? immr + VT.getSizeInBits() : immr;
    1711             :   Imms = VT.getSizeInBits() - ShlImm - TruncBits - 1;
    1712         319 :   // SRA requires a signed extraction
    1713             :   if (VT == MVT::i32)
    1714             :     Opc = N->getOpcode() == ISD::SRA ? AArch64::SBFMWri : AArch64::UBFMWri;
    1715             :   else
    1716          12 :     Opc = N->getOpcode() == ISD::SRA ? AArch64::SBFMXri : AArch64::UBFMXri;
    1717             :   return true;
    1718             : }
    1719             : 
    1720             : bool AArch64DAGToDAGISel::tryBitfieldExtractOpFromSExt(SDNode *N) {
    1721             :   assert(N->getOpcode() == ISD::SIGN_EXTEND);
    1722          29 : 
    1723             :   EVT VT = N->getValueType(0);
    1724             :   EVT NarrowVT = N->getOperand(0)->getValueType(0);
    1725             :   if (VT != MVT::i64 || NarrowVT != MVT::i32)
    1726             :     return false;
    1727             : 
    1728             :   uint64_t ShiftImm;
    1729             :   SDValue Op = N->getOperand(0);
    1730          58 :   if (!isOpcWithIntImmediate(Op.getNode(), ISD::SRA, ShiftImm))
    1731             :     return false;
    1732             : 
    1733             :   SDLoc dl(N);
    1734             :   // Extend the incoming operand of the shift to 64-bits.
    1735          20 :   SDValue Opd0 = Widen(CurDAG, Op.getOperand(0));
    1736          20 :   unsigned Immr = ShiftImm;
    1737          20 :   unsigned Imms = NarrowVT.getSizeInBits() - 1;
    1738             :   SDValue Ops[] = {Opd0, CurDAG->getTargetConstant(Immr, dl, VT),
    1739             :                    CurDAG->getTargetConstant(Imms, dl, VT)};
    1740          16 :   CurDAG->SelectNodeTo(N, AArch64::SBFMXri, VT, Ops);
    1741             :   return true;
    1742          16 : }
    1743             : 
    1744             : static bool isBitfieldExtractOp(SelectionDAG *CurDAG, SDNode *N, unsigned &Opc,
    1745             :                                 SDValue &Opd0, unsigned &Immr, unsigned &Imms,
    1746           0 :                                 unsigned NumberOfIgnoredLowBits = 0,
    1747             :                                 bool BiggerPattern = false) {
    1748             :   if (N->getValueType(0) != MVT::i32 && N->getValueType(0) != MVT::i64)
    1749           0 :     return false;
    1750           0 : 
    1751           0 :   switch (N->getOpcode()) {
    1752           0 :   default:
    1753             :     if (!N->isMachineOpcode())
    1754             :       return false;
    1755             :     break;
    1756           0 :   case ISD::AND:
    1757           0 :     return isBitfieldExtractOpFromAnd(CurDAG, N, Opc, Opd0, Immr, Imms,
    1758             :                                       NumberOfIgnoredLowBits, BiggerPattern);
    1759             :   case ISD::SRL:
    1760             :   case ISD::SRA:
    1761           0 :     return isBitfieldExtractOpFromShr(N, Opc, Opd0, Immr, Imms, BiggerPattern);
    1762             : 
    1763           0 :   case ISD::SIGN_EXTEND_INREG:
    1764           0 :     return isBitfieldExtractOpFromSExtInReg(N, Opc, Opd0, Immr, Imms);
    1765           0 :   }
    1766           0 : 
    1767             :   unsigned NOpc = N->getMachineOpcode();
    1768             :   switch (NOpc) {
    1769             :   default:
    1770        2338 :     return false;
    1771             :   case AArch64::SBFMWri:
    1772             :   case AArch64::UBFMWri:
    1773             :   case AArch64::SBFMXri:
    1774        2338 :   case AArch64::UBFMXri:
    1775         114 :     Opc = NOpc;
    1776             :     Opd0 = N->getOperand(0);
    1777        4448 :     Immr = cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
    1778         441 :     Imms = cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
    1779         441 :     return true;
    1780             :   }
    1781             :   // Unreachable
    1782        1184 :   return false;
    1783        1184 : }
    1784        1184 : 
    1785         348 : bool AArch64DAGToDAGISel::tryBitfieldExtractOp(SDNode *N) {
    1786             :   unsigned Opc, Immr, Imms;
    1787         348 :   SDValue Opd0;
    1788             :   if (!isBitfieldExtractOp(CurDAG, N, Opc, Opd0, Immr, Imms))
    1789         251 :     return false;
    1790         251 : 
    1791             :   EVT VT = N->getValueType(0);
    1792             :   SDLoc dl(N);
    1793             : 
    1794           6 :   // If the bit extract operation is 64bit but the original type is 32bit, we
    1795             :   // need to add one EXTRACT_SUBREG.
    1796             :   if ((Opc == AArch64::SBFMXri || Opc == AArch64::UBFMXri) && VT == MVT::i32) {
    1797           0 :     SDValue Ops64[] = {Opd0, CurDAG->getTargetConstant(Immr, dl, MVT::i64),
    1798             :                        CurDAG->getTargetConstant(Imms, dl, MVT::i64)};
    1799             : 
    1800             :     SDNode *BFM = CurDAG->getMachineNode(Opc, dl, MVT::i64, Ops64);
    1801           0 :     SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, dl, MVT::i32);
    1802           0 :     ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, dl,
    1803           0 :                                           MVT::i32, SDValue(BFM, 0), SubReg));
    1804           0 :     return true;
    1805           0 :   }
    1806             : 
    1807             :   SDValue Ops[] = {Opd0, CurDAG->getTargetConstant(Immr, dl, VT),
    1808             :                    CurDAG->getTargetConstant(Imms, dl, VT)};
    1809             :   CurDAG->SelectNodeTo(N, Opc, VT, Ops);
    1810             :   return true;
    1811        1507 : }
    1812             : 
    1813        1507 : /// Does DstMask form a complementary pair with the mask provided by
    1814        1507 : /// BitsToBeInserted, suitable for use in a BFI instruction. Roughly speaking,
    1815             : /// this asks whether DstMask zeroes precisely those bits that will be set by
    1816             : /// the other half.
    1817         134 : static bool isBitfieldDstMask(uint64_t DstMask, const APInt &BitsToBeInserted,
    1818             :                               unsigned NumberOfIgnoredHighBits, EVT VT) {
    1819             :   assert((VT == MVT::i32 || VT == MVT::i64) &&
    1820             :          "i32 or i64 mask type expected!");
    1821             :   unsigned BitWidth = VT.getSizeInBits() - NumberOfIgnoredHighBits;
    1822          67 : 
    1823          14 :   APInt SignificantDstMask = APInt(BitWidth, DstMask);
    1824           7 :   APInt SignificantBitsToBeInserted = BitsToBeInserted.zextOrTrunc(BitWidth);
    1825             : 
    1826          14 :   return (SignificantDstMask & SignificantBitsToBeInserted) == 0 &&
    1827           7 :          (SignificantDstMask | SignificantBitsToBeInserted).isAllOnesValue();
    1828          14 : }
    1829             : 
    1830             : // Look for bits that will be useful for later uses.
    1831             : // A bit is consider useless as soon as it is dropped and never used
    1832             : // before it as been dropped.
    1833         120 : // E.g., looking for useful bit of x
    1834          60 : // 1. y = x & 0x7
    1835         120 : // 2. z = y >> 2
    1836          60 : // After #1, x useful bits are 0x7, then the useful bits of x, live through
    1837             : // y.
    1838             : // After #2, the useful bits of x are 0x4.
    1839             : // However, if x is used on an unpredicatable instruction, then all its bits
    1840             : // are useful.
    1841             : // E.g.
    1842             : // 1. y = x & 0x7
    1843          39 : // 2. z = y >> 2
    1844             : // 3. str x, [@x]
    1845             : static void getUsefulBits(SDValue Op, APInt &UsefulBits, unsigned Depth = 0);
    1846             : 
    1847          39 : static void getUsefulBitsFromAndWithImmediate(SDValue Op, APInt &UsefulBits,
    1848             :                                               unsigned Depth) {
    1849             :   uint64_t Imm =
    1850          39 :       cast<const ConstantSDNode>(Op.getOperand(1).getNode())->getZExtValue();
    1851             :   Imm = AArch64_AM::decodeLogicalImmediate(Imm, UsefulBits.getBitWidth());
    1852         117 :   UsefulBits &= APInt(UsefulBits.getBitWidth(), Imm);
    1853         117 :   getUsefulBits(Op, UsefulBits, Depth + 1);
    1854             : }
    1855             : 
    1856             : static void getUsefulBitsFromBitfieldMoveOpd(SDValue Op, APInt &UsefulBits,
    1857             :                                              uint64_t Imm, uint64_t MSB,
    1858             :                                              unsigned Depth) {
    1859             :   // inherit the bitwidth value
    1860             :   APInt OpUsefulBits(UsefulBits);
    1861             :   OpUsefulBits = 1;
    1862             : 
    1863             :   if (MSB >= Imm) {
    1864             :     OpUsefulBits <<= MSB - Imm + 1;
    1865             :     --OpUsefulBits;
    1866             :     // The interesting part will be in the lower part of the result
    1867             :     getUsefulBits(Op, OpUsefulBits, Depth + 1);
    1868             :     // The interesting part was starting at Imm in the argument
    1869             :     OpUsefulBits <<= Imm;
    1870             :   } else {
    1871             :     OpUsefulBits <<= MSB + 1;
    1872             :     --OpUsefulBits;
    1873          10 :     // The interesting part will be shifted in the result
    1874             :     OpUsefulBits <<= OpUsefulBits.getBitWidth() - Imm;
    1875             :     getUsefulBits(Op, OpUsefulBits, Depth + 1);
    1876          20 :     // The interesting part was at zero in the argument
    1877          10 :     OpUsefulBits.lshrInPlace(OpUsefulBits.getBitWidth() - Imm);
    1878          10 :   }
    1879          10 : 
    1880          10 :   UsefulBits &= OpUsefulBits;
    1881             : }
    1882          20 : 
    1883             : static void getUsefulBitsFromUBFM(SDValue Op, APInt &UsefulBits,
    1884             :                                   unsigned Depth) {
    1885             :   uint64_t Imm =
    1886             :       cast<const ConstantSDNode>(Op.getOperand(1).getNode())->getZExtValue();
    1887          20 :   uint64_t MSB =
    1888             :       cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
    1889          20 : 
    1890           8 :   getUsefulBitsFromBitfieldMoveOpd(Op, UsefulBits, Imm, MSB, Depth);
    1891           8 : }
    1892             : 
    1893           8 : static void getUsefulBitsFromOrWithShiftedReg(SDValue Op, APInt &UsefulBits,
    1894             :                                               unsigned Depth) {
    1895           8 :   uint64_t ShiftTypeAndValue =
    1896             :       cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
    1897          12 :   APInt Mask(UsefulBits);
    1898          12 :   Mask.clearAllBits();
    1899             :   Mask.flipAllBits();
    1900          12 : 
    1901          12 :   if (AArch64_AM::getShiftType(ShiftTypeAndValue) == AArch64_AM::LSL) {
    1902             :     // Shift Left
    1903          12 :     uint64_t ShiftAmt = AArch64_AM::getShiftValue(ShiftTypeAndValue);
    1904             :     Mask <<= ShiftAmt;
    1905             :     getUsefulBits(Op, Mask, Depth + 1);
    1906             :     Mask.lshrInPlace(ShiftAmt);
    1907          20 :   } else if (AArch64_AM::getShiftType(ShiftTypeAndValue) == AArch64_AM::LSR) {
    1908             :     // Shift Right
    1909          20 :     // We do not handle AArch64_AM::ASR, because the sign will change the
    1910             :     // number of useful bits
    1911             :     uint64_t ShiftAmt = AArch64_AM::getShiftValue(ShiftTypeAndValue);
    1912          20 :     Mask.lshrInPlace(ShiftAmt);
    1913             :     getUsefulBits(Op, Mask, Depth + 1);
    1914          20 :     Mask <<= ShiftAmt;
    1915             :   } else
    1916          20 :     return;
    1917          20 : 
    1918             :   UsefulBits &= Mask;
    1919           0 : }
    1920             : 
    1921             : static void getUsefulBitsFromBFM(SDValue Op, SDValue Orig, APInt &UsefulBits,
    1922           0 :                                  unsigned Depth) {
    1923             :   uint64_t Imm =
    1924           0 :       cast<const ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue();
    1925           0 :   uint64_t MSB =
    1926             :       cast<const ConstantSDNode>(Op.getOperand(3).getNode())->getZExtValue();
    1927           0 : 
    1928             :   APInt OpUsefulBits(UsefulBits);
    1929             :   OpUsefulBits = 1;
    1930           0 : 
    1931           0 :   APInt ResultUsefulBits(UsefulBits.getBitWidth(), 0);
    1932             :   ResultUsefulBits.flipAllBits();
    1933           0 :   APInt Mask(UsefulBits.getBitWidth(), 0);
    1934             : 
    1935             :   getUsefulBits(Op, ResultUsefulBits, Depth + 1);
    1936             : 
    1937             :   if (MSB >= Imm) {
    1938             :     // The instruction is a BFXIL.
    1939           0 :     uint64_t Width = MSB - Imm + 1;
    1940           0 :     uint64_t LSB = Imm;
    1941             : 
    1942             :     OpUsefulBits <<= Width;
    1943             :     --OpUsefulBits;
    1944             : 
    1945             :     if (Op.getOperand(1) == Orig) {
    1946             :       // Copy the low bits from the result to bits starting from LSB.
    1947           0 :       Mask = ResultUsefulBits & OpUsefulBits;
    1948             :       Mask <<= LSB;
    1949             :     }
    1950           0 : 
    1951             :     if (Op.getOperand(0) == Orig)
    1952           0 :       // Bits starting from LSB in the input contribute to the result.
    1953             :       Mask |= (ResultUsefulBits & ~OpUsefulBits);
    1954             :   } else {
    1955           0 :     // The instruction is a BFI.
    1956             :     uint64_t Width = MSB + 1;
    1957           0 :     uint64_t LSB = UsefulBits.getBitWidth() - Imm;
    1958           0 : 
    1959           0 :     OpUsefulBits <<= Width;
    1960             :     --OpUsefulBits;
    1961           0 :     OpUsefulBits <<= LSB;
    1962             : 
    1963           0 :     if (Op.getOperand(1) == Orig) {
    1964             :       // Copy the bits from the result to the zero bits.
    1965           0 :       Mask = ResultUsefulBits & OpUsefulBits;
    1966             :       Mask.lshrInPlace(LSB);
    1967             :     }
    1968           0 : 
    1969           0 :     if (Op.getOperand(0) == Orig)
    1970             :       Mask |= (ResultUsefulBits & ~OpUsefulBits);
    1971           0 :   }
    1972             : 
    1973           0 :   UsefulBits &= Mask;
    1974           0 : }
    1975             : 
    1976             : static void getUsefulBitsForUse(SDNode *UserNode, APInt &UsefulBits,
    1977           0 :                                 SDValue Orig, unsigned Depth) {
    1978             : 
    1979           0 :   // Users of this node should have already been instruction selected
    1980             :   // FIXME: Can we turn that into an assert?
    1981             :   if (!UserNode->isMachineOpcode())
    1982           0 :     return;
    1983           0 : 
    1984             :   switch (UserNode->getMachineOpcode()) {
    1985           0 :   default:
    1986           0 :     return;
    1987           0 :   case AArch64::ANDSWri:
    1988             :   case AArch64::ANDSXri:
    1989           0 :   case AArch64::ANDWri:
    1990             :   case AArch64::ANDXri:
    1991           0 :     // We increment Depth only when we call the getUsefulBits
    1992             :     return getUsefulBitsFromAndWithImmediate(SDValue(UserNode, 0), UsefulBits,
    1993             :                                              Depth);
    1994             :   case AArch64::UBFMWri:
    1995           0 :   case AArch64::UBFMXri:
    1996           0 :     return getUsefulBitsFromUBFM(SDValue(UserNode, 0), UsefulBits, Depth);
    1997             : 
    1998             :   case AArch64::ORRWrs:
    1999             :   case AArch64::ORRXrs:
    2000           0 :     if (UserNode->getOperand(1) != Orig)
    2001             :       return;
    2002         551 :     return getUsefulBitsFromOrWithShiftedReg(SDValue(UserNode, 0), UsefulBits,
    2003             :                                              Depth);
    2004             :   case AArch64::BFMWri:
    2005             :   case AArch64::BFMXri:
    2006             :     return getUsefulBitsFromBFM(SDValue(UserNode, 0), Orig, UsefulBits, Depth);
    2007         551 : 
    2008             :   case AArch64::STRBBui:
    2009             :   case AArch64::STURBBi:
    2010         256 :     if (UserNode->getOperand(0) != Orig)
    2011             :       return;
    2012             :     UsefulBits &= APInt(UsefulBits.getBitWidth(), 0xff);
    2013             :     return;
    2014             : 
    2015             :   case AArch64::STRHHui:
    2016             :   case AArch64::STURHHi:
    2017             :     if (UserNode->getOperand(0) != Orig)
    2018          10 :       return;
    2019          10 :     UsefulBits &= APInt(UsefulBits.getBitWidth(), 0xffff);
    2020             :     return;
    2021             :   }
    2022          20 : }
    2023             : 
    2024           6 : static void getUsefulBits(SDValue Op, APInt &UsefulBits, unsigned Depth) {
    2025             :   if (Depth >= 6)
    2026           6 :     return;
    2027             :   // Initialize UsefulBits
    2028           0 :   if (!Depth) {
    2029           0 :     unsigned Bitwidth = Op.getScalarValueSizeInBits();
    2030             :     // At the beginning, assume every produced bits is useful
    2031             :     UsefulBits = APInt(Bitwidth, 0);
    2032          25 :     UsefulBits.flipAllBits();
    2033             :   }
    2034           7 :   APInt UsersUsefulBits(UsefulBits.getBitWidth(), 0);
    2035             : 
    2036           7 :   for (SDNode *Node : Op.getNode()->uses()) {
    2037             :     // A use cannot produce useful bits
    2038           7 :     APInt UsefulBitsForUse = APInt(UsefulBits);
    2039           7 :     getUsefulBitsForUse(Node, UsefulBitsForUse, Op, Depth);
    2040             :     UsersUsefulBits |= UsefulBitsForUse;
    2041           5 :   }
    2042             :   // UsefulBits contains the produced bits that are meaningful for the
    2043           5 :   // current definition, thus a user cannot make a bit meaningful at
    2044             :   // this point
    2045           5 :   UsefulBits &= UsersUsefulBits;
    2046           5 : }
    2047             : 
    2048             : /// Create a machine node performing a notional SHL of Op by ShlAmount. If
    2049             : /// ShlAmount is negative, do a (logical) right-shift instead. If ShlAmount is
    2050         522 : /// 0, return Op unchanged.
    2051         522 : static SDValue getLeftShift(SelectionDAG *CurDAG, SDValue Op, int ShlAmount) {
    2052           0 :   if (ShlAmount == 0)
    2053             :     return Op;
    2054         522 : 
    2055         467 :   EVT VT = Op.getValueType();
    2056             :   SDLoc dl(Op);
    2057         467 :   unsigned BitWidth = VT.getSizeInBits();
    2058         467 :   unsigned UBFMOpc = BitWidth == 32 ? AArch64::UBFMWri : AArch64::UBFMXri;
    2059             : 
    2060         522 :   SDNode *ShiftNode;
    2061             :   if (ShlAmount > 0) {
    2062        1073 :     // LSL wD, wN, #Amt == UBFM wD, wN, #32-Amt, #31-Amt
    2063             :     ShiftNode = CurDAG->getMachineNode(
    2064             :         UBFMOpc, dl, VT, Op,
    2065         551 :         CurDAG->getTargetConstant(BitWidth - ShlAmount, dl, VT),
    2066             :         CurDAG->getTargetConstant(BitWidth - 1 - ShlAmount, dl, VT));
    2067             :   } else {
    2068             :     // LSR wD, wN, #Amt == UBFM wD, wN, #Amt, #32-1
    2069             :     assert(ShlAmount < 0 && "expected right shift");
    2070             :     int ShrAmount = -ShlAmount;
    2071             :     ShiftNode = CurDAG->getMachineNode(
    2072             :         UBFMOpc, dl, VT, Op, CurDAG->getTargetConstant(ShrAmount, dl, VT),
    2073             :         CurDAG->getTargetConstant(BitWidth - 1, dl, VT));
    2074             :   }
    2075             : 
    2076             :   return SDValue(ShiftNode, 0);
    2077          80 : }
    2078          80 : 
    2079          78 : /// Does this tree qualify as an attempt to move a bitfield into position,
    2080             : /// essentially "(and (shl VAL, N), Mask)".
    2081           2 : static bool isBitfieldPositioningOp(SelectionDAG *CurDAG, SDValue Op,
    2082             :                                     bool BiggerPattern,
    2083           2 :                                     SDValue &Src, int &ShiftAmount,
    2084           2 :                                     int &MaskWidth) {
    2085             :   EVT VT = Op.getValueType();
    2086             :   unsigned BitWidth = VT.getSizeInBits();
    2087           2 :   (void)BitWidth;
    2088             :   assert(BitWidth == 32 || BitWidth == 64);
    2089           0 : 
    2090             :   KnownBits Known;
    2091             :   CurDAG->computeKnownBits(Op, Known);
    2092           0 : 
    2093             :   // Non-zero in the sense that they're not provably zero, which is the key
    2094             :   // point if we want to use this value
    2095             :   uint64_t NonZeroBits = (~Known.Zero).getZExtValue();
    2096           2 : 
    2097           2 :   // Discard a constant AND mask if present. It's safe because the node will
    2098             :   // already have been factored into the computeKnownBits calculation above.
    2099           2 :   uint64_t AndImm;
    2100             :   if (isOpcWithIntImmediate(Op.getNode(), ISD::AND, AndImm)) {
    2101             :     assert((~APInt(BitWidth, AndImm) & ~Known.Zero) == 0);
    2102           2 :     Op = Op.getOperand(0);
    2103             :   }
    2104             : 
    2105             :   // Don't match if the SHL has more than one use, since then we'll end up
    2106             :   // generating SHL+UBFIZ instead of just keeping SHL+AND.
    2107        1589 :   if (!BiggerPattern && !Op.hasOneUse())
    2108             :     return false;
    2109             : 
    2110             :   uint64_t ShlImm;
    2111        1589 :   if (!isOpcWithIntImmediate(Op.getNode(), ISD::SHL, ShlImm))
    2112             :     return false;
    2113             :   Op = Op.getOperand(0);
    2114             : 
    2115             :   if (!isShiftedMask_64(NonZeroBits))
    2116        1589 :     return false;
    2117        1589 : 
    2118             :   ShiftAmount = countTrailingZeros(NonZeroBits);
    2119             :   MaskWidth = countTrailingOnes(NonZeroBits >> ShiftAmount);
    2120             : 
    2121        1589 :   // BFI encompasses sufficiently many nodes that it's worth inserting an extra
    2122             :   // LSL/LSR if the mask in NonZeroBits doesn't quite match up with the ISD::SHL
    2123             :   // amount.  BiggerPattern is true when this pattern is being matched for BFI,
    2124             :   // BiggerPattern is false when this pattern is being matched for UBFIZ, in
    2125             :   // which case it is not profitable to insert an extra shift.
    2126             :   if (ShlImm - ShiftAmount != 0 && !BiggerPattern)
    2127             :     return false;
    2128         786 :   Src = getLeftShift(CurDAG, Op, ShlImm - ShiftAmount);
    2129             : 
    2130             :   return true;
    2131             : }
    2132             : 
    2133        2843 : static bool isShiftedMask(uint64_t Mask, EVT VT) {
    2134             :   assert(VT == MVT::i32 || VT == MVT::i64);
    2135             :   if (VT == MVT::i32)
    2136             :     return isShiftedMask_32(Mask);
    2137        1460 :   return isShiftedMask_64(Mask);
    2138             : }
    2139          88 : 
    2140             : // Generate a BFI/BFXIL from 'or (and X, MaskImm), OrImm' iff the value being
    2141             : // inserted only sets known zero bits.
    2142             : static bool tryBitfieldInsertOpFromOrAndImm(SDNode *N, SelectionDAG *CurDAG) {
    2143             :   assert(N->getOpcode() == ISD::OR && "Expect a OR operation");
    2144          82 : 
    2145          82 :   EVT VT = N->getValueType(0);
    2146             :   if (VT != MVT::i32 && VT != MVT::i64)
    2147             :     return false;
    2148             : 
    2149             :   unsigned BitWidth = VT.getSizeInBits();
    2150             : 
    2151             :   uint64_t OrImm;
    2152          82 :   if (!isOpcWithIntImmediate(N, ISD::OR, OrImm))
    2153             :     return false;
    2154          80 : 
    2155             :   // Skip this transformation if the ORR immediate can be encoded in the ORR.
    2156          80 :   // Otherwise, we'll trade an AND+ORR for ORR+BFI/BFXIL, which is most likely
    2157             :   // performance neutral.
    2158             :   if (AArch64_AM::isLogicalImmediate(OrImm, BitWidth))
    2159           0 :     return false;
    2160             : 
    2161           0 :   uint64_t MaskImm;
    2162          27 :   SDValue And = N->getOperand(0);
    2163             :   // Must be a single use AND with an immediate operand.
    2164             :   if (!And.hasOneUse() ||
    2165             :       !isOpcWithIntImmediate(And.getNode(), ISD::AND, MaskImm))
    2166             :     return false;
    2167             : 
    2168         373 :   // Compute the Known Zero for the AND as this allows us to catch more general
    2169             :   // cases than just looking for AND with imm.
    2170             :   KnownBits Known;
    2171         746 :   CurDAG->computeKnownBits(And, Known);
    2172             : 
    2173             :   // Non-zero in the sense that they're not provably zero, which is the key
    2174             :   // point if we want to use this value.
    2175         159 :   uint64_t NotKnownZero = (~Known.Zero).getZExtValue();
    2176             : 
    2177             :   // The KnownZero mask must be a shifted mask (e.g., 1110..011, 11100..00).
    2178         159 :   if (!isShiftedMask(Known.Zero.getZExtValue(), VT))
    2179             :     return false;
    2180             : 
    2181             :   // The bits being inserted must only set those bits that are known to be zero.
    2182             :   if ((OrImm & NotKnownZero) != 0) {
    2183             :     // FIXME:  It's okay if the OrImm sets NotKnownZero bits to 1, but we don't
    2184          34 :     // currently handle this case.
    2185             :     return false;
    2186             :   }
    2187             : 
    2188           9 :   // BFI/BFXIL dst, src, #lsb, #width.
    2189             :   int LSB = countTrailingOnes(NotKnownZero);
    2190           9 :   int Width = BitWidth - APInt(BitWidth, NotKnownZero).countPopulation();
    2191             : 
    2192             :   // BFI/BFXIL is an alias of BFM, so translate to BFM operands.
    2193             :   unsigned ImmR = (BitWidth - LSB) % BitWidth;
    2194             :   unsigned ImmS = Width - 1;
    2195             : 
    2196           7 :   // If we're creating a BFI instruction avoid cases where we need more
    2197           7 :   // instructions to materialize the BFI constant as compared to the original
    2198             :   // ORR.  A BFXIL will use the same constant as the original ORR, so the code
    2199             :   // should be no worse in this case.
    2200             :   bool IsBFI = LSB != 0;
    2201           7 :   uint64_t BFIImm = OrImm >> LSB;
    2202             :   if (IsBFI && !AArch64_AM::isLogicalImmediate(BFIImm, BitWidth)) {
    2203             :     // We have a BFI instruction and we know the constant can't be materialized
    2204           7 :     // with a ORR-immediate with the zero register.
    2205             :     unsigned OrChunks = 0, BFIChunks = 0;
    2206             :     for (unsigned Shift = 0; Shift < BitWidth; Shift += 16) {
    2207             :       if (((OrImm >> Shift) & 0xFFFF) != 0)
    2208           7 :         ++OrChunks;
    2209             :       if (((BFIImm >> Shift) & 0xFFFF) != 0)
    2210             :         ++BFIChunks;
    2211             :     }
    2212             :     if (BFIChunks > OrChunks)
    2213             :       return false;
    2214             :   }
    2215           7 : 
    2216           7 :   // Materialize the constant to be inserted.
    2217             :   SDLoc DL(N);
    2218             :   unsigned MOVIOpc = VT == MVT::i32 ? AArch64::MOVi32imm : AArch64::MOVi64imm;
    2219           7 :   SDNode *MOVI = CurDAG->getMachineNode(
    2220           7 :       MOVIOpc, DL, VT, CurDAG->getTargetConstant(BFIImm, DL, VT));
    2221             : 
    2222             :   // Create the BFI/BFXIL instruction.
    2223             :   SDValue Ops[] = {And.getOperand(0), SDValue(MOVI, 0),
    2224             :                    CurDAG->getTargetConstant(ImmR, DL, VT),
    2225             :                    CurDAG->getTargetConstant(ImmS, DL, VT)};
    2226             :   unsigned Opc = (VT == MVT::i32) ? AArch64::BFMWri : AArch64::BFMXri;
    2227           7 :   CurDAG->SelectNodeTo(N, Opc, VT, Ops);
    2228          11 :   return true;
    2229             : }
    2230             : 
    2231             : static bool tryBitfieldInsertOpFromOr(SDNode *N, const APInt &UsefulBits,
    2232          16 :                                       SelectionDAG *CurDAG) {
    2233          12 :   assert(N->getOpcode() == ISD::OR && "Expect a OR operation");
    2234           6 : 
    2235          12 :   EVT VT = N->getValueType(0);
    2236           7 :   if (VT != MVT::i32 && VT != MVT::i64)
    2237             :     return false;
    2238           4 : 
    2239             :   unsigned BitWidth = VT.getSizeInBits();
    2240             : 
    2241             :   // Because of simplify-demanded-bits in DAGCombine, involved masks may not
    2242             :   // have the expected shape. Try to undo that.
    2243             : 
    2244             :   unsigned NumberOfIgnoredLowBits = UsefulBits.countTrailingZeros();
    2245           6 :   unsigned NumberOfIgnoredHighBits = UsefulBits.countLeadingZeros();
    2246             : 
    2247             :   // Given a OR operation, check if we have the following pattern
    2248             :   // ubfm c, b, imm, imm2 (or something that does the same jobs, see
    2249             :   //                       isBitfieldExtractOp)
    2250           6 :   // d = e & mask2 ; where mask is a binary sequence of 1..10..0 and
    2251           6 :   //                 countTrailingZeros(mask2) == imm2 - imm + 1
    2252             :   // f = d | c
    2253           6 :   // if yes, replace the OR instruction with:
    2254             :   // f = BFM Opd0, Opd1, LSB, MSB ; where LSB = imm, and MSB = imm2
    2255             : 
    2256             :   // OR is commutative, check all combinations of operand order and values of
    2257         466 :   // BiggerPattern, i.e.
    2258             :   //     Opd0, Opd1, BiggerPattern=false
    2259             :   //     Opd1, Opd0, BiggerPattern=false
    2260             :   //     Opd0, Opd1, BiggerPattern=true
    2261         932 :   //     Opd1, Opd0, BiggerPattern=true
    2262             :   // Several of these combinations may match, so check with BiggerPattern=false
    2263             :   // first since that will produce better results by matching more instructions
    2264             :   // and/or inserting fewer extra instructions.
    2265         252 :   for (int I = 0; I < 4; ++I) {
    2266             : 
    2267             :     SDValue Dst, Src;
    2268             :     unsigned ImmR, ImmS;
    2269             :     bool BiggerPattern = I / 2;
    2270         252 :     SDValue OrOpd0Val = N->getOperand(I % 2);
    2271         252 :     SDNode *OrOpd0 = OrOpd0Val.getNode();
    2272             :     SDValue OrOpd1Val = N->getOperand((I + 1) % 2);
    2273             :     SDNode *OrOpd1 = OrOpd1Val.getNode();
    2274             : 
    2275             :     unsigned BFXOpc;
    2276             :     int DstLSB, Width;
    2277             :     if (isBitfieldExtractOp(CurDAG, OrOpd0, BFXOpc, Src, ImmR, ImmS,
    2278             :                             NumberOfIgnoredLowBits, BiggerPattern)) {
    2279             :       // Check that the returned opcode is compatible with the pattern,
    2280             :       // i.e., same type and zero extended (U and not S)
    2281             :       if ((BFXOpc != AArch64::UBFMXri && VT == MVT::i64) ||
    2282             :           (BFXOpc != AArch64::UBFMWri && VT == MVT::i32))
    2283             :         continue;
    2284             : 
    2285             :       // Compute the width of the bitfield insertion
    2286             :       DstLSB = 0;
    2287             :       Width = ImmS - ImmR + 1;
    2288             :       // FIXME: This constraint is to catch bitfield insertion we may
    2289             :       // want to widen the pattern if we want to grab general bitfied
    2290             :       // move case
    2291         998 :       if (Width <= 0)
    2292             :         continue;
    2293         831 : 
    2294             :       // If the mask on the insertee is correct, we have a BFXIL operation. We
    2295         831 :       // can share the ImmR and ImmS values from the already-computed UBFM.
    2296         831 :     } else if (isBitfieldPositioningOp(CurDAG, OrOpd0Val,
    2297             :                                        BiggerPattern,
    2298         831 :                                        Src, DstLSB, Width)) {
    2299             :       ImmR = (BitWidth - DstLSB) % BitWidth;
    2300             :       ImmS = Width - 1;
    2301             :     } else
    2302             :       continue;
    2303         831 : 
    2304             :     // Check the second part of the pattern
    2305             :     EVT VT = OrOpd1Val.getValueType();
    2306             :     assert((VT == MVT::i32 || VT == MVT::i64) && "unexpected OR operand");
    2307          60 : 
    2308             :     // Compute the Known Zero for the candidate of the first operand.
    2309         746 :     // This allows to catch more general case than just looking for
    2310             :     // AND with imm. Indeed, simplify-demanded-bits may have removed
    2311             :     // the AND instruction because it proves it was useless.
    2312          35 :     KnownBits Known;
    2313          35 :     CurDAG->computeKnownBits(OrOpd1Val, Known);
    2314             : 
    2315             :     // Check if there is enough room for the second operand to appear
    2316             :     // in the first one
    2317          35 :     APInt BitsToBeInserted =
    2318             :         APInt::getBitsSet(Known.getBitWidth(), DstLSB, DstLSB + Width);
    2319             : 
    2320             :     if ((BitsToBeInserted & ~Known.Zero) != 0)
    2321             :       continue;
    2322         794 : 
    2323             :     // Set the first operand
    2324             :     uint64_t Imm;
    2325          78 :     if (isOpcWithIntImmediate(OrOpd1, ISD::AND, Imm) &&
    2326          78 :         isBitfieldDstMask(Imm, BitsToBeInserted, NumberOfIgnoredHighBits, VT))
    2327             :       // In that case, we can eliminate the AND
    2328             :       Dst = OrOpd1->getOperand(0);
    2329             :     else
    2330             :       // Maybe the AND has been removed by simplify-demanded-bits
    2331         113 :       // or is useful because it discards more bits
    2332             :       Dst = OrOpd1Val;
    2333             : 
    2334             :     // both parts match
    2335             :     SDLoc DL(N);
    2336             :     SDValue Ops[] = {Dst, Src, CurDAG->getTargetConstant(ImmR, DL, VT),
    2337             :                      CurDAG->getTargetConstant(ImmS, DL, VT)};
    2338             :     unsigned Opc = (VT == MVT::i32) ? AArch64::BFMWri : AArch64::BFMXri;
    2339         113 :     CurDAG->SelectNodeTo(N, Opc, VT, Ops);
    2340             :     return true;
    2341             :   }
    2342             : 
    2343             :   // Generate a BFXIL from 'or (and X, Mask0Imm), (and Y, Mask1Imm)' iff
    2344         226 :   // Mask0Imm and ~Mask1Imm are equivalent and one of the MaskImms is a shifted
    2345             :   // mask (e.g., 0x000ffff0).
    2346         113 :   uint64_t Mask0Imm, Mask1Imm;
    2347             :   SDValue And0 = N->getOperand(0);
    2348             :   SDValue And1 = N->getOperand(1);
    2349             :   if (And0.hasOneUse() && And1.hasOneUse() &&
    2350             :       isOpcWithIntImmediate(And0.getNode(), ISD::AND, Mask0Imm) &&
    2351          39 :       isOpcWithIntImmediate(And1.getNode(), ISD::AND, Mask1Imm) &&
    2352          39 :       APInt(BitWidth, Mask0Imm) == ~APInt(BitWidth, Mask1Imm) &&
    2353             :       (isShiftedMask(Mask0Imm, VT) || isShiftedMask(Mask1Imm, VT))) {
    2354          29 : 
    2355             :     // ORR is commutative, so canonicalize to the form 'or (and X, Mask0Imm),
    2356             :     // (and Y, Mask1Imm)' where Mask1Imm is the shifted mask masking off the
    2357             :     // bits to be inserted.
    2358          56 :     if (isShiftedMask(Mask0Imm, VT)) {
    2359             :       std::swap(And0, And1);
    2360             :       std::swap(Mask0Imm, Mask1Imm);
    2361             :     }
    2362         170 : 
    2363          85 :     SDValue Src = And1->getOperand(0);
    2364             :     SDValue Dst = And0->getOperand(0);
    2365          85 :     unsigned LSB = countTrailingZeros(Mask1Imm);
    2366             :     int Width = BitWidth - APInt(BitWidth, Mask0Imm).countPopulation();
    2367             : 
    2368             :     // The BFXIL inserts the low-order bits from a source register, so right
    2369             :     // shift the needed bits into place.
    2370             :     SDLoc DL(N);
    2371             :     unsigned ShiftOpc = (VT == MVT::i32) ? AArch64::UBFMWri : AArch64::UBFMXri;
    2372             :     SDNode *LSR = CurDAG->getMachineNode(
    2373         167 :         ShiftOpc, DL, VT, Src, CurDAG->getTargetConstant(LSB, DL, VT),
    2374         167 :         CurDAG->getTargetConstant(BitWidth - 1, DL, VT));
    2375         134 : 
    2376             :     // BFXIL is an alias of BFM, so translate to BFM operands.
    2377          21 :     unsigned ImmR = (BitWidth - LSB) % BitWidth;
    2378         364 :     unsigned ImmS = Width - 1;
    2379          15 : 
    2380             :     // Create the BFXIL instruction.
    2381             :     SDValue Ops[] = {Dst, SDValue(LSR, 0),
    2382             :                      CurDAG->getTargetConstant(ImmR, DL, VT),
    2383             :                      CurDAG->getTargetConstant(ImmS, DL, VT)};
    2384           8 :     unsigned Opc = (VT == MVT::i32) ? AArch64::BFMWri : AArch64::BFMXri;
    2385             :     CurDAG->SelectNodeTo(N, Opc, VT, Ops);
    2386             :     return true;
    2387             :   }
    2388             : 
    2389           8 :   return false;
    2390           8 : }
    2391           8 : 
    2392           8 : bool AArch64DAGToDAGISel::tryBitfieldInsertOp(SDNode *N) {
    2393             :   if (N->getOpcode() != ISD::OR)
    2394             :     return false;
    2395             : 
    2396             :   APInt NUsefulBits;
    2397             :   getUsefulBits(SDValue(N, 0), NUsefulBits);
    2398           8 : 
    2399             :   // If all bits are not useful, just return UNDEF.
    2400           8 :   if (!NUsefulBits) {
    2401             :     CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0));
    2402             :     return true;
    2403           8 :   }
    2404           8 : 
    2405             :   if (tryBitfieldInsertOpFromOr(N, NUsefulBits, CurDAG))
    2406             :     return true;
    2407             : 
    2408           8 :   return tryBitfieldInsertOpFromOrAndImm(N, CurDAG);
    2409           8 : }
    2410             : 
    2411           8 : /// SelectBitfieldInsertInZeroOp - Match a UBFIZ instruction that is the
    2412             : /// equivalent of a left shift by a constant amount followed by an and masking
    2413             : /// out a contiguous set of bits.
    2414             : bool AArch64DAGToDAGISel::tryBitfieldInsertInZeroOp(SDNode *N) {
    2415             :   if (N->getOpcode() != ISD::AND)
    2416             :     return false;
    2417             : 
    2418           0 :   EVT VT = N->getValueType(0);
    2419           0 :   if (VT != MVT::i32 && VT != MVT::i64)
    2420           0 :     return false;
    2421             : 
    2422             :   SDValue Op0;
    2423           0 :   int DstLSB, Width;
    2424             :   if (!isBitfieldPositioningOp(CurDAG, SDValue(N, 0), /*BiggerPattern=*/false,
    2425             :                                Op0, DstLSB, Width))
    2426           0 :     return false;
    2427           0 : 
    2428           0 :   // ImmR is the rotate right amount.
    2429             :   unsigned ImmR = (VT.getSizeInBits() - DstLSB) % VT.getSizeInBits();
    2430             :   // ImmS is the most significant bit of the source to be moved.
    2431           0 :   unsigned ImmS = Width - 1;
    2432           0 : 
    2433             :   SDLoc DL(N);
    2434           0 :   SDValue Ops[] = {Op0, CurDAG->getTargetConstant(ImmR, DL, VT),
    2435             :                    CurDAG->getTargetConstant(ImmS, DL, VT)};
    2436             :   unsigned Opc = (VT == MVT::i32) ? AArch64::UBFMWri : AArch64::UBFMXri;
    2437             :   CurDAG->SelectNodeTo(N, Opc, VT, Ops);
    2438             :   return true;
    2439             : }
    2440           0 : 
    2441           0 : /// tryShiftAmountMod - Take advantage of built-in mod of shift amount in
    2442           0 : /// variable shift/rotate instructions.
    2443             : bool AArch64DAGToDAGISel::tryShiftAmountMod(SDNode *N) {
    2444           0 :   EVT VT = N->getValueType(0);
    2445           0 : 
    2446           0 :   unsigned Opc;
    2447             :   switch (N->getOpcode()) {
    2448           0 :   case ISD::ROTR:
    2449             :     Opc = (VT == MVT::i32) ? AArch64::RORVWr : AArch64::RORVXr;
    2450           0 :     break;
    2451             :   case ISD::SHL:
    2452           0 :     Opc = (VT == MVT::i32) ? AArch64::LSLVWr : AArch64::LSLVXr;
    2453             :     break;
    2454             :   case ISD::SRL:
    2455           0 :     Opc = (VT == MVT::i32) ? AArch64::LSRVWr : AArch64::LSRVXr;
    2456             :     break;
    2457           0 :   case ISD::SRA:
    2458             :     Opc = (VT == MVT::i32) ? AArch64::ASRVWr : AArch64::ASRVXr;
    2459             :     break;
    2460           0 :   default:
    2461           0 :     return false;
    2462           0 :   }
    2463           0 : 
    2464             :   uint64_t Size;
    2465             :   uint64_t Bits;
    2466             :   if (VT == MVT::i32) {
    2467             :     Bits = 5;
    2468             :     Size = 32;
    2469           0 :   } else if (VT == MVT::i64) {
    2470           0 :     Bits = 6;
    2471             :     Size = 64;
    2472             :   } else
    2473           0 :     return false;
    2474             : 
    2475           0 :   SDValue ShiftAmt = N->getOperand(1);
    2476           0 :   SDLoc DL(N);
    2477             :   SDValue NewShiftAmt;
    2478           0 : 
    2479           0 :   // Skip over an extend of the shift amount.
    2480             :   if (ShiftAmt->getOpcode() == ISD::ZERO_EXTEND ||
    2481           0 :       ShiftAmt->getOpcode() == ISD::ANY_EXTEND)
    2482           0 :     ShiftAmt = ShiftAmt->getOperand(0);
    2483             : 
    2484           0 :   if (ShiftAmt->getOpcode() == ISD::ADD || ShiftAmt->getOpcode() == ISD::SUB) {
    2485           0 :     SDValue Add0 = ShiftAmt->getOperand(0);
    2486             :     SDValue Add1 = ShiftAmt->getOperand(1);
    2487             :     uint64_t Add0Imm;
    2488             :     uint64_t Add1Imm;
    2489             :     // If we are shifting by X+/-N where N == 0 mod Size, then just shift by X
    2490             :     // to avoid the ADD/SUB.
    2491             :     if (isIntImmediate(Add1, Add1Imm) && (Add1Imm % Size == 0))
    2492           0 :       NewShiftAmt = Add0;
    2493             :     // If we are shifting by N-X where N == 0 mod Size, then just shift by -X to
    2494             :     // generate a NEG instead of a SUB of a constant.
    2495           0 :     else if (ShiftAmt->getOpcode() == ISD::SUB &&
    2496             :              isIntImmediate(Add0, Add0Imm) && Add0Imm != 0 &&
    2497             :              (Add0Imm % Size == 0)) {
    2498             :       unsigned NegOpc;
    2499           0 :       unsigned ZeroReg;
    2500             :       EVT SubVT = ShiftAmt->getValueType(0);
    2501           0 :       if (SubVT == MVT::i32) {
    2502             :         NegOpc = AArch64::SUBWrr;
    2503             :         ZeroReg = AArch64::WZR;
    2504             :       } else {
    2505             :         assert(SubVT == MVT::i64);
    2506           0 :         NegOpc = AArch64::SUBXrr;
    2507             :         ZeroReg = AArch64::XZR;
    2508           0 :       }
    2509             :       SDValue Zero =
    2510           0 :           CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, ZeroReg, SubVT);
    2511           0 :       MachineSDNode *Neg =
    2512           0 :           CurDAG->getMachineNode(NegOpc, DL, SubVT, Zero, Add1);
    2513             :       NewShiftAmt = SDValue(Neg, 0);
    2514             :     } else
    2515             :       return false;
    2516             :   } else {
    2517           0 :     // If the shift amount is masked with an AND, check that the mask covers the
    2518           0 :     // bits that are implicitly ANDed off by the above opcodes and if so, skip
    2519             :     // the AND.
    2520             :     uint64_t MaskImm;
    2521             :     if (!isOpcWithIntImmediate(ShiftAmt.getNode(), ISD::AND, MaskImm))
    2522           0 :       return false;
    2523           0 : 
    2524             :     if (countTrailingOnes(MaskImm) < Bits)
    2525             :       return false;
    2526           0 : 
    2527           0 :     NewShiftAmt = ShiftAmt->getOperand(0);
    2528             :   }
    2529             : 
    2530             :   // Narrow/widen the shift amount to match the size of the shift operation.
    2531             :   if (VT == MVT::i32)
    2532             :     NewShiftAmt = narrowIfNeeded(CurDAG, NewShiftAmt);
    2533             :   else if (VT == MVT::i64 && NewShiftAmt->getValueType(0) == MVT::i32) {
    2534             :     SDValue SubReg = CurDAG->getTargetConstant(AArch64::sub_32, DL, MVT::i32);
    2535             :     MachineSDNode *Ext = CurDAG->getMachineNode(
    2536           0 :         AArch64::SUBREG_TO_REG, DL, VT,
    2537             :         CurDAG->getTargetConstant(0, DL, MVT::i64), NewShiftAmt, SubReg);
    2538           0 :     NewShiftAmt = SDValue(Ext, 0);
    2539           0 :   }
    2540             : 
    2541           0 :   SDValue Ops[] = {N->getOperand(0), NewShiftAmt};
    2542             :   CurDAG->SelectNodeTo(N, Opc, VT, Ops);
    2543             :   return true;
    2544             : }
    2545             : 
    2546             : bool
    2547           0 : AArch64DAGToDAGISel::SelectCVTFixedPosOperand(SDValue N, SDValue &FixedPos,
    2548           0 :                                               unsigned RegWidth) {
    2549             :   APFloat FVal(0.0);
    2550           0 :   if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N))
    2551           0 :     FVal = CN->getValueAPF();
    2552             :   else if (LoadSDNode *LN = dyn_cast<LoadSDNode>(N)) {
    2553           0 :     // Some otherwise illegal constants are allowed in this case.
    2554             :     if (LN->getOperand(1).getOpcode() != AArch64ISD::ADDlow ||
    2555             :         !isa<ConstantPoolSDNode>(LN->getOperand(1)->getOperand(1)))
    2556             :       return false;
    2557           0 : 
    2558           0 :     ConstantPoolSDNode *CN =
    2559           0 :         dyn_cast<ConstantPoolSDNode>(LN->getOperand(1)->getOperand(1));
    2560           0 :     FVal = cast<ConstantFP>(CN->getConstVal())->getValueAPF();
    2561           0 :   } else
    2562             :     return false;
    2563             : 
    2564           0 :   // An FCVT[SU] instruction performs: convertToInt(Val * 2^fbits) where fbits
    2565             :   // is between 1 and 32 for a destination w-register, or 1 and 64 for an
    2566             :   // x-register.
    2567           0 :   //
    2568           0 :   // By this stage, we've detected (fp_to_[su]int (fmul Val, THIS_NODE)) so we
    2569           0 :   // want THIS_NODE to be 2^fbits. This is much easier to deal with using
    2570             :   // integers.
    2571             :   bool IsExact;
    2572             : 
    2573           0 :   // fbits is between 1 and 64 in the worst-case, which means the fmul
    2574             :   // could have 2^64 as an actual operand. Need 65 bits of precision.
    2575           0 :   APSInt IntVal(65, true);
    2576             :   FVal.convertToInteger(IntVal, APFloat::rmTowardZero, &IsExact);
    2577           0 : 
    2578             :   // N.b. isPowerOf2 also checks for > 0.
    2579             :   if (!IsExact || !IntVal.isPowerOf2()) return false;
    2580           0 :   unsigned FBits = IntVal.logBase2();
    2581           0 : 
    2582           0 :   // Checks above should have guaranteed that we haven't lost information in
    2583             :   // finding FBits, but it must still be in range.
    2584             :   if (FBits == 0 || FBits > RegWidth) return false;
    2585             : 
    2586           0 :   FixedPos = CurDAG->getTargetConstant(FBits, SDLoc(N), MVT::i32);
    2587             :   return true;
    2588           0 : }
    2589             : 
    2590             : // Inspects a register string of the form o0:op1:CRn:CRm:op2 gets the fields
    2591             : // of the string and obtains the integer values from them and combines these
    2592             : // into a single value to be used in the MRS/MSR instruction.
    2593             : static int getIntOperandFromRegisterString(StringRef RegString) {
    2594             :   SmallVector<StringRef, 5> Fields;
    2595             :   RegString.split(Fields, ':');
    2596             : 
    2597             :   if (Fields.size() == 1)
    2598             :     return -1;
    2599             : 
    2600             :   assert(Fields.size() == 5
    2601             :             && "Invalid number of fields in read register string");
    2602           0 : 
    2603             :   SmallVector<int, 5> Ops;
    2604             :   bool AllIntFields = true;
    2605           0 : 
    2606             :   for (StringRef Field : Fields) {
    2607             :     unsigned IntField;
    2608             :     AllIntFields &= !Field.getAsInteger(10, IntField);
    2609             :     Ops.push_back(IntField);
    2610           0 :   }
    2611             : 
    2612           0 :   assert(AllIntFields &&
    2613           0 :           "Unexpected non-integer value in special register string.");
    2614             : 
    2615             :   // Need to combine the integer fields of the string into a single value
    2616             :   // based on the bit encoding of MRS/MSR instruction.
    2617             :   return (Ops[0] << 14) | (Ops[1] << 11) | (Ops[2] << 7) |
    2618             :          (Ops[3] << 3) | (Ops[4]);
    2619          15 : }
    2620             : 
    2621          15 : // Lower the read_register intrinsic to an MRS instruction node if the special
    2622             : // register string argument is either of the form detailed in the ALCE (the
    2623          30 : // form described in getIntOperandsFromRegsterString) or is a named register
    2624             : // known by the MRS SysReg mapper.
    2625             : bool AArch64DAGToDAGISel::tryReadRegister(SDNode *N) {
    2626             :   const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(N->getOperand(1));
    2627             :   const MDString *RegString = dyn_cast<MDString>(MD->getMD()->getOperand(0));
    2628             :   SDLoc DL(N);
    2629             : 
    2630             :   int Reg = getIntOperandFromRegisterString(RegString->getString());
    2631             :   if (Reg != -1) {
    2632          12 :     ReplaceNode(N, CurDAG->getMachineNode(
    2633             :                        AArch64::MRS, DL, N->getSimpleValueType(0), MVT::Other,
    2634          10 :                        CurDAG->getTargetConstant(Reg, DL, MVT::i32),
    2635          10 :                        N->getOperand(0)));
    2636             :     return true;
    2637             :   }
    2638             : 
    2639             :   // Use the sysreg mapper to map the remaining possible strings to the
    2640             :   // value for the register to be used for the instruction operand.
    2641             :   auto TheReg = AArch64SysReg::lookupSysRegByName(RegString->getString());
    2642             :   if (TheReg && TheReg->Readable &&
    2643           4 :       TheReg->haveFeatures(Subtarget->getFeatureBits()))
    2644           2 :     Reg = TheReg->Encoding;
    2645             :   else
    2646             :     Reg = AArch64SysReg::parseGenericRegister(RegString->getString());
    2647             : 
    2648             :   if (Reg != -1) {
    2649             :     ReplaceNode(N, CurDAG->getMachineNode(
    2650             :                        AArch64::MRS, DL, N->getSimpleValueType(0), MVT::Other,
    2651           7 :                        CurDAG->getTargetConstant(Reg, DL, MVT::i32),
    2652           7 :                        N->getOperand(0)));
    2653           7 :     return true;
    2654             :   }
    2655             : 
    2656           7 :   return false;
    2657           7 : }
    2658           1 : 
    2659             : // Lower the write_register intrinsic to an MSR instruction node if the special
    2660             : // register string argument is either of the form detailed in the ALCE (the
    2661           1 : // form described in getIntOperandsFromRegsterString) or is a named register
    2662           1 : // known by the MSR SysReg mapper.
    2663             : bool AArch64DAGToDAGISel::tryWriteRegister(SDNode *N) {
    2664             :   const MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(N->getOperand(1));
    2665             :   const MDString *RegString = dyn_cast<MDString>(MD->getMD()->getOperand(0));
    2666             :   SDLoc DL(N);
    2667           6 : 
    2668           6 :   int Reg = getIntOperandFromRegisterString(RegString->getString());
    2669           2 :   if (Reg != -1) {
    2670           1 :     ReplaceNode(
    2671             :         N, CurDAG->getMachineNode(AArch64::MSR, DL, MVT::Other,
    2672           5 :                                   CurDAG->getTargetConstant(Reg, DL, MVT::i32),
    2673             :                                   N->getOperand(2), N->getOperand(0)));
    2674           6 :     return true;
    2675           1 :   }
    2676             : 
    2677             :   // Check if the register was one of those allowed as the pstatefield value in
    2678           1 :   // the MSR (immediate) instruction. To accept the values allowed in the
    2679           1 :   // pstatefield for the MSR (immediate) instruction, we also require that an
    2680             :   // immediate value has been provided as an argument, we know that this is
    2681             :   // the case as it has been ensured by semantic checking.
    2682             :   auto PMapper = AArch64PState::lookupPStateByName(RegString->getString());
    2683             :   if (PMapper) {
    2684             :     assert (isa<ConstantSDNode>(N->getOperand(2))
    2685             :               && "Expected a constant integer expression.");
    2686             :     unsigned Reg = PMapper->Encoding;
    2687             :     uint64_t Immed = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
    2688             :     unsigned State;
    2689           8 :     if (Reg == AArch64PState::PAN || Reg == AArch64PState::UAO || Reg == AArch64PState::SSBS) {
    2690           8 :       assert(Immed < 2 && "Bad imm");
    2691           8 :       State = AArch64::MSRpstateImm1;
    2692             :     } else {
    2693             :       assert(Immed < 16 && "Bad imm");
    2694           8 :       State = AArch64::MSRpstateImm4;
    2695           8 :     }
    2696           1 :     ReplaceNode(N, CurDAG->getMachineNode(
    2697           1 :                        State, DL, MVT::Other,
    2698             :                        CurDAG->getTargetConstant(Reg, DL, MVT::i32),
    2699           1 :                        CurDAG->getTargetConstant(Immed, DL, MVT::i16),
    2700           1 :                        N->getOperand(0)));
    2701             :     return true;
    2702             :   }
    2703             : 
    2704             :   // Use the sysreg mapper to attempt to map the remaining possible strings
    2705             :   // to the value for the register to be used for the MSR (register)
    2706             :   // instruction operand.
    2707             :   auto TheReg = AArch64SysReg::lookupSysRegByName(RegString->getString());
    2708           7 :   if (TheReg && TheReg->Writeable &&
    2709           7 :       TheReg->haveFeatures(Subtarget->getFeatureBits()))
    2710             :     Reg = TheReg->Encoding;
    2711             :   else
    2712           1 :     Reg = AArch64SysReg::parseGenericRegister(RegString->getString());
    2713           2 :   if (Reg != -1) {
    2714             :     ReplaceNode(N, CurDAG->getMachineNode(
    2715           1 :                        AArch64::MSR, DL, MVT::Other,
    2716             :                        CurDAG->getTargetConstant(Reg, DL, MVT::i32),
    2717             :                        N->getOperand(2), N->getOperand(0)));
    2718             :     return true;
    2719             :   }
    2720             : 
    2721             :   return false;
    2722           3 : }
    2723             : 
    2724           1 : /// We've got special pseudo-instructions for these
    2725             : bool AArch64DAGToDAGISel::SelectCMP_SWAP(SDNode *N) {
    2726             :   unsigned Opcode;
    2727           1 :   EVT MemTy = cast<MemSDNode>(N)->getMemoryVT();
    2728             : 
    2729             :   // Leave IR for LSE if subtarget supports it.
    2730             :   if (Subtarget->hasLSE()) return false;
    2731             : 
    2732             :   if (MemTy == MVT::i8)
    2733           6 :     Opcode = AArch64::CMP_SWAP_8;
    2734           6 :   else if (MemTy == MVT::i16)
    2735           2 :     Opcode = AArch64::CMP_SWAP_16;
    2736           1 :   else if (MemTy == MVT::i32)
    2737             :     Opcode = AArch64::CMP_SWAP_32;
    2738           5 :   else if (MemTy == MVT::i64)
    2739           6 :     Opcode = AArch64::CMP_SWAP_64;
    2740           1 :   else
    2741             :     llvm_unreachable("Unknown AtomicCmpSwap type");
    2742             : 
    2743           1 :   MVT RegTy = MemTy == MVT::i64 ? MVT::i64 : MVT::i32;
    2744           1 :   SDValue Ops[] = {N->getOperand(1), N->getOperand(2), N->getOperand(3),
    2745             :                    N->getOperand(0)};
    2746             :   SDNode *CmpSwap = CurDAG->getMachineNode(
    2747             :       Opcode, SDLoc(N),
    2748             :       CurDAG->getVTList(RegTy, MVT::i32, MVT::Other), Ops);
    2749             : 
    2750             :   MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
    2751          76 :   CurDAG->setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp});
    2752             : 
    2753             :   ReplaceUses(SDValue(N, 0), SDValue(CmpSwap, 0));
    2754             :   ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 2));
    2755             :   CurDAG->RemoveDeadNode(N);
    2756          76 : 
    2757             :   return true;
    2758             : }
    2759             : 
    2760             : void AArch64DAGToDAGISel::Select(SDNode *Node) {
    2761             :   // If we have a custom node, we already have selected!
    2762             :   if (Node->isMachineOpcode()) {
    2763             :     LLVM_DEBUG(errs() << "== "; Node->dump(CurDAG); errs() << "\n");
    2764             :     Node->setNodeId(-1);
    2765             :     return;
    2766             :   }
    2767           0 : 
    2768             :   // Few custom selection stuff.
    2769             :   EVT VT = Node->getValueType(0);
    2770           4 : 
    2771           4 :   switch (Node->getOpcode()) {
    2772          12 :   default:
    2773           4 :     break;
    2774             : 
    2775             :   case ISD::ATOMIC_CMP_SWAP:
    2776           4 :     if (SelectCMP_SWAP(Node))
    2777           8 :       return;
    2778             :     break;
    2779           4 : 
    2780           4 :   case ISD::READ_REGISTER:
    2781           4 :     if (tryReadRegister(Node))
    2782             :       return;
    2783           4 :     break;
    2784             : 
    2785             :   case ISD::WRITE_REGISTER:
    2786      194002 :     if (tryWriteRegister(Node))
    2787             :       return;
    2788      194002 :     break;
    2789             : 
    2790             :   case ISD::ADD:
    2791        3259 :     if (tryMLAV64LaneV128(Node))
    2792             :       return;
    2793             :     break;
    2794             : 
    2795      386966 :   case ISD::LOAD: {
    2796             :     // Try to select as an indexed load. Fall through to normal processing
    2797      193483 :     // if we can't.
    2798             :     if (tryIndexedLoad(Node))
    2799             :       return;
    2800             :     break;
    2801          76 :   }
    2802          76 : 
    2803             :   case ISD::SRL:
    2804             :   case ISD::AND:
    2805             :   case ISD::SRA:
    2806           7 :   case ISD::SIGN_EXTEND_INREG:
    2807           7 :     if (tryBitfieldExtractOp(Node))
    2808             :       return;
    2809             :     if (tryBitfieldInsertInZeroOp(Node))
    2810             :       return;
    2811           8 :     LLVM_FALLTHROUGH;
    2812           8 :   case ISD::ROTR:
    2813             :   case ISD::SHL:
    2814             :     if (tryShiftAmountMod(Node))
    2815             :       return;
    2816        2584 :     break;
    2817        2584 : 
    2818             :   case ISD::SIGN_EXTEND:
    2819             :     if (tryBitfieldExtractOpFromSExt(Node))
    2820             :       return;
    2821        6792 :     break;
    2822             : 
    2823             :   case ISD::OR:
    2824        6792 :     if (tryBitfieldInsertOp(Node))
    2825             :       return;
    2826             :     break;
    2827             : 
    2828             :   case ISD::EXTRACT_VECTOR_ELT: {
    2829        1507 :     // Extracting lane zero is a special case where we can just use a plain
    2830             :     // EXTRACT_SUBREG instruction, which will become FMOV. This is easier for
    2831             :     // the rest of the compiler, especially the register allocator and copyi
    2832             :     // propagation, to reason about, so is preferred when it's possible to
    2833        1507 :     // use it.
    2834             :     ConstantSDNode *LaneNode = cast<ConstantSDNode>(Node->getOperand(1));
    2835        1440 :     // Bail and use the default Select() for non-zero lanes.
    2836             :     if (LaneNode->getZExtValue() != 0)
    2837             :       break;
    2838             :     // If the element type is not the same as the result type, likewise
    2839             :     // bail and use the default Select(), as there's more to do than just
    2840        1921 :     // a cross-class COPY. This catches extracts of i8 and i16 elements
    2841             :     // since they will need an explicit zext.
    2842             :     if (VT != Node->getOperand(0).getValueType().getVectorElementType())
    2843             :       break;
    2844          89 :     unsigned SubReg;
    2845          89 :     switch (Node->getOperand(0)
    2846             :                 .getValueType()
    2847             :                 .getVectorElementType()
    2848             :                 .getSizeInBits()) {
    2849         467 :     default:
    2850         467 :       llvm_unreachable("Unexpected vector element type!");
    2851             :     case 64:
    2852             :       SubReg = AArch64::dsub;
    2853             :       break;
    2854        1505 :     case 32:
    2855             :       SubReg = AArch64::ssub;
    2856             :       break;
    2857             :     case 16:
    2858             :       SubReg = AArch64::hsub;
    2859             :       break;
    2860        1505 :     case 8:
    2861             :       llvm_unreachable("unexpected zext-requiring extract element!");
    2862        3010 :     }
    2863             :     SDValue Extract = CurDAG->getTargetExtractSubreg(SubReg, SDLoc(Node), VT,
    2864             :                                                      Node->getOperand(0));
    2865             :     LLVM_DEBUG(dbgs() << "ISEL: Custom selection!\n=> ");
    2866             :     LLVM_DEBUG(Extract->dumpr(CurDAG));
    2867             :     LLVM_DEBUG(dbgs() << "\n");
    2868        1600 :     ReplaceNode(Node, Extract.getNode());
    2869             :     return;
    2870             :   }
    2871         456 :   case ISD::Constant: {
    2872         456 :     // Materialize zero constants as copies from WZR/XZR.  This allows
    2873         456 :     // the coalescer to propagate these into other instructions.
    2874         456 :     ConstantSDNode *ConstNode = cast<ConstantSDNode>(Node);
    2875           0 :     if (ConstNode->isNullValue()) {
    2876           0 :       if (VT == MVT::i32) {
    2877             :         SDValue New = CurDAG->getCopyFromReg(
    2878             :             CurDAG->getEntryNode(), SDLoc(Node), AArch64::WZR, MVT::i32);
    2879             :         ReplaceNode(Node, New.getNode());
    2880         165 :         return;
    2881             :       } else if (VT == MVT::i64) {
    2882         165 :         SDValue New = CurDAG->getCopyFromReg(
    2883         129 :             CurDAG->getEntryNode(), SDLoc(Node), AArch64::XZR, MVT::i64);
    2884             :         ReplaceNode(Node, New.getNode());
    2885         129 :         return;
    2886             :       }
    2887             :     }
    2888             :     break;
    2889         912 :   }
    2890         456 : 
    2891             :   case ISD::FrameIndex: {
    2892             :     // Selects to ADDXri FI, 0 which in turn will become ADDXri SP, imm.
    2893             :     int FI = cast<FrameIndexSDNode>(Node)->getIndex();
    2894         456 :     unsigned Shifter = AArch64_AM::getShifterImm(AArch64_AM::LSL, 0);
    2895         456 :     const TargetLowering *TLI = getTargetLowering();
    2896             :     SDValue TFI = CurDAG->getTargetFrameIndex(
    2897             :         FI, TLI->getPointerTy(CurDAG->getDataLayout()));
    2898             :     SDLoc DL(Node);
    2899             :     SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, DL, MVT::i32),
    2900             :                       CurDAG->getTargetConstant(Shifter, DL, MVT::i32) };
    2901        4704 :     CurDAG->SelectNodeTo(Node, AArch64::ADDXri, MVT::i64, Ops);
    2902             :     return;
    2903         651 :   }
    2904        1302 :   case ISD::INTRINSIC_W_CHAIN: {
    2905         651 :     unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
    2906             :     switch (IntNo) {
    2907             :     default:
    2908         240 :       break;
    2909         480 :     case Intrinsic::aarch64_ldaxp:
    2910         240 :     case Intrinsic::aarch64_ldxp: {
    2911             :       unsigned Op =
    2912             :           IntNo == Intrinsic::aarch64_ldaxp ? AArch64::LDAXPX : AArch64::LDXPX;
    2913             :       SDValue MemAddr = Node->getOperand(2);
    2914             :       SDLoc DL(Node);
    2915             :       SDValue Chain = Node->getOperand(0);
    2916             : 
    2917             :       SDNode *Ld = CurDAG->getMachineNode(Op, DL, MVT::i64, MVT::i64,
    2918             :                                           MVT::Other, MemAddr, Chain);
    2919         168 : 
    2920             :       // Transfer memoperands.
    2921             :       MachineMemOperand *MemOp =
    2922         168 :           cast<MemIntrinsicSDNode>(Node)->getMemOperand();
    2923         336 :       CurDAG->setNodeMemRefs(cast<MachineSDNode>(Ld), {MemOp});
    2924             :       ReplaceNode(Node, Ld);
    2925         336 :       return;
    2926         168 :     }
    2927         336 :     case Intrinsic::aarch64_stlxp:
    2928             :     case Intrinsic::aarch64_stxp: {
    2929             :       unsigned Op =
    2930         400 :           IntNo == Intrinsic::aarch64_stlxp ? AArch64::STLXPX : AArch64::STXPX;
    2931        1200 :       SDLoc DL(Node);
    2932             :       SDValue Chain = Node->getOperand(0);
    2933             :       SDValue ValLo = Node->getOperand(2);
    2934             :       SDValue ValHi = Node->getOperand(3);
    2935          16 :       SDValue MemAddr = Node->getOperand(4);
    2936             : 
    2937             :       // Place arguments in the right order.
    2938          16 :       SDValue Ops[] = {ValLo, ValHi, MemAddr, Chain};
    2939          16 : 
    2940             :       SDNode *St = CurDAG->getMachineNode(Op, DL, MVT::i32, MVT::Other, Ops);
    2941          16 :       // Transfer memoperands.
    2942             :       MachineMemOperand *MemOp =
    2943          32 :           cast<MemIntrinsicSDNode>(Node)->getMemOperand();
    2944             :       CurDAG->setNodeMemRefs(cast<MachineSDNode>(St), {MemOp});
    2945             : 
    2946             :       ReplaceNode(Node, St);
    2947             :       return;
    2948          16 :     }
    2949          32 :     case Intrinsic::aarch64_neon_ld1x2:
    2950          16 :       if (VT == MVT::v8i8) {
    2951             :         SelectLoad(Node, 2, AArch64::LD1Twov8b, AArch64::dsub0);
    2952             :         return;
    2953          16 :       } else if (VT == MVT::v16i8) {
    2954             :         SelectLoad(Node, 2, AArch64::LD1Twov16b, AArch64::qsub0);
    2955             :         return;
    2956          16 :       } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
    2957             :         SelectLoad(Node, 2, AArch64::LD1Twov4h, AArch64::dsub0);
    2958          16 :         return;
    2959          16 :       } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
    2960          16 :         SelectLoad(Node, 2, AArch64::LD1Twov8h, AArch64::qsub0);
    2961          16 :         return;
    2962             :       } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
    2963             :         SelectLoad(Node, 2, AArch64::LD1Twov2s, AArch64::dsub0);
    2964          16 :         return;
    2965             :       } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
    2966          32 :         SelectLoad(Node, 2, AArch64::LD1Twov4s, AArch64::qsub0);
    2967             :         return;
    2968             :       } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
    2969          16 :         SelectLoad(Node, 2, AArch64::LD1Twov1d, AArch64::dsub0);
    2970          32 :         return;
    2971             :       } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
    2972          16 :         SelectLoad(Node, 2, AArch64::LD1Twov2d, AArch64::qsub0);
    2973             :         return;
    2974             :       }
    2975             :       break;
    2976             :     case Intrinsic::aarch64_neon_ld1x3:
    2977           1 :       if (VT == MVT::v8i8) {
    2978           1 :         SelectLoad(Node, 3, AArch64::LD1Threev8b, AArch64::dsub0);
    2979             :         return;
    2980           1 :       } else if (VT == MVT::v16i8) {
    2981           1 :         SelectLoad(Node, 3, AArch64::LD1Threev16b, AArch64::qsub0);
    2982             :         return;
    2983           2 :       } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
    2984           2 :         SelectLoad(Node, 3, AArch64::LD1Threev4h, AArch64::dsub0);
    2985             :         return;
    2986           2 :       } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
    2987           2 :         SelectLoad(Node, 3, AArch64::LD1Threev8h, AArch64::qsub0);
    2988             :         return;
    2989           2 :       } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
    2990           2 :         SelectLoad(Node, 3, AArch64::LD1Threev2s, AArch64::dsub0);
    2991             :         return;
    2992           2 :       } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
    2993           2 :         SelectLoad(Node, 3, AArch64::LD1Threev4s, AArch64::qsub0);
    2994             :         return;
    2995           2 :       } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
    2996           2 :         SelectLoad(Node, 3, AArch64::LD1Threev1d, AArch64::dsub0);
    2997             :         return;
    2998           2 :       } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
    2999           2 :         SelectLoad(Node, 3, AArch64::LD1Threev2d, AArch64::qsub0);
    3000             :         return;
    3001             :       }
    3002             :       break;
    3003             :     case Intrinsic::aarch64_neon_ld1x4:
    3004           1 :       if (VT == MVT::v8i8) {
    3005           1 :         SelectLoad(Node, 4, AArch64::LD1Fourv8b, AArch64::dsub0);
    3006             :         return;
    3007           1 :       } else if (VT == MVT::v16i8) {
    3008           1 :         SelectLoad(Node, 4, AArch64::LD1Fourv16b, AArch64::qsub0);
    3009             :         return;
    3010           2 :       } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
    3011           2 :         SelectLoad(Node, 4, AArch64::LD1Fourv4h, AArch64::dsub0);
    3012             :         return;
    3013           2 :       } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
    3014           2 :         SelectLoad(Node, 4, AArch64::LD1Fourv8h, AArch64::qsub0);
    3015             :         return;
    3016           2 :       } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
    3017           2 :         SelectLoad(Node, 4, AArch64::LD1Fourv2s, AArch64::dsub0);
    3018             :         return;
    3019           2 :       } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
    3020           2 :         SelectLoad(Node, 4, AArch64::LD1Fourv4s, AArch64::qsub0);
    3021             :         return;
    3022           2 :       } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
    3023           2 :         SelectLoad(Node, 4, AArch64::LD1Fourv1d, AArch64::dsub0);
    3024             :         return;
    3025           2 :       } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
    3026           2 :         SelectLoad(Node, 4, AArch64::LD1Fourv2d, AArch64::qsub0);
    3027             :         return;
    3028             :       }
    3029             :       break;
    3030             :     case Intrinsic::aarch64_neon_ld2:
    3031           1 :       if (VT == MVT::v8i8) {
    3032           1 :         SelectLoad(Node, 2, AArch64::LD2Twov8b, AArch64::dsub0);
    3033             :         return;
    3034           1 :       } else if (VT == MVT::v16i8) {
    3035           1 :         SelectLoad(Node, 2, AArch64::LD2Twov16b, AArch64::qsub0);
    3036             :         return;
    3037           2 :       } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
    3038           2 :         SelectLoad(Node, 2, AArch64::LD2Twov4h, AArch64::dsub0);
    3039             :         return;
    3040           2 :       } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
    3041           2 :         SelectLoad(Node, 2, AArch64::LD2Twov8h, AArch64::qsub0);
    3042             :         return;
    3043           2 :       } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
    3044           2 :         SelectLoad(Node, 2, AArch64::LD2Twov2s, AArch64::dsub0);
    3045             :         return;
    3046           2 :       } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
    3047           2 :         SelectLoad(Node, 2, AArch64::LD2Twov4s, AArch64::qsub0);
    3048             :         return;
    3049           2 :       } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
    3050           2 :         SelectLoad(Node, 2, AArch64::LD1Twov1d, AArch64::dsub0);
    3051             :         return;
    3052           2 :       } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
    3053           2 :         SelectLoad(Node, 2, AArch64::LD2Twov2d, AArch64::qsub0);
    3054             :         return;
    3055             :       }
    3056             :       break;
    3057             :     case Intrinsic::aarch64_neon_ld3:
    3058           5 :       if (VT == MVT::v8i8) {
    3059           5 :         SelectLoad(Node, 3, AArch64::LD3Threev8b, AArch64::dsub0);
    3060             :         return;
    3061           1 :       } else if (VT == MVT::v16i8) {
    3062           1 :         SelectLoad(Node, 3, AArch64::LD3Threev16b, AArch64::qsub0);
    3063             :         return;
    3064           2 :       } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
    3065           2 :         SelectLoad(Node, 3, AArch64::LD3Threev4h, AArch64::dsub0);
    3066             :         return;
    3067           2 :       } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
    3068           2 :         SelectLoad(Node, 3, AArch64::LD3Threev8h, AArch64::qsub0);
    3069             :         return;
    3070           2 :       } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
    3071           2 :         SelectLoad(Node, 3, AArch64::LD3Threev2s, AArch64::dsub0);
    3072             :         return;
    3073           4 :       } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
    3074           4 :         SelectLoad(Node, 3, AArch64::LD3Threev4s, AArch64::qsub0);
    3075             :         return;
    3076           2 :       } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
    3077           2 :         SelectLoad(Node, 3, AArch64::LD1Threev1d, AArch64::dsub0);
    3078             :         return;
    3079           1 :       } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
    3080           1 :         SelectLoad(Node, 3, AArch64::LD3Threev2d, AArch64::qsub0);
    3081             :         return;
    3082             :       }
    3083             :       break;
    3084             :     case Intrinsic::aarch64_neon_ld4:
    3085           2 :       if (VT == MVT::v8i8) {
    3086           2 :         SelectLoad(Node, 4, AArch64::LD4Fourv8b, AArch64::dsub0);
    3087             :         return;
    3088           2 :       } else if (VT == MVT::v16i8) {
    3089           2 :         SelectLoad(Node, 4, AArch64::LD4Fourv16b, AArch64::qsub0);
    3090             :         return;
    3091           3 :       } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
    3092           3 :         SelectLoad(Node, 4, AArch64::LD4Fourv4h, AArch64::dsub0);
    3093             :         return;
    3094           2 :       } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
    3095           2 :         SelectLoad(Node, 4, AArch64::LD4Fourv8h, AArch64::qsub0);
    3096             :         return;
    3097           1 :       } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
    3098           1 :         SelectLoad(Node, 4, AArch64::LD4Fourv2s, AArch64::dsub0);
    3099             :         return;
    3100           2 :       } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
    3101           2 :         SelectLoad(Node, 4, AArch64::LD4Fourv4s, AArch64::qsub0);
    3102             :         return;
    3103           2 :       } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
    3104           2 :         SelectLoad(Node, 4, AArch64::LD1Fourv1d, AArch64::dsub0);
    3105             :         return;
    3106           1 :       } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
    3107           1 :         SelectLoad(Node, 4, AArch64::LD4Fourv2d, AArch64::qsub0);
    3108             :         return;
    3109             :       }
    3110             :       break;
    3111             :     case Intrinsic::aarch64_neon_ld2r:
    3112           1 :       if (VT == MVT::v8i8) {
    3113           1 :         SelectLoad(Node, 2, AArch64::LD2Rv8b, AArch64::dsub0);
    3114             :         return;
    3115           3 :       } else if (VT == MVT::v16i8) {
    3116           3 :         SelectLoad(Node, 2, AArch64::LD2Rv16b, AArch64::qsub0);
    3117             :         return;
    3118           3 :       } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
    3119           3 :         SelectLoad(Node, 2, AArch64::LD2Rv4h, AArch64::dsub0);
    3120             :         return;
    3121           2 :       } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
    3122           2 :         SelectLoad(Node, 2, AArch64::LD2Rv8h, AArch64::qsub0);
    3123             :         return;
    3124           1 :       } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
    3125           1 :         SelectLoad(Node, 2, AArch64::LD2Rv2s, AArch64::dsub0);
    3126             :         return;
    3127           1 :       } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
    3128           1 :         SelectLoad(Node, 2, AArch64::LD2Rv4s, AArch64::qsub0);
    3129             :         return;
    3130           2 :       } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
    3131           2 :         SelectLoad(Node, 2, AArch64::LD2Rv1d, AArch64::dsub0);
    3132             :         return;
    3133           1 :       } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
    3134           1 :         SelectLoad(Node, 2, AArch64::LD2Rv2d, AArch64::qsub0);
    3135             :         return;
    3136             :       }
    3137             :       break;
    3138             :     case Intrinsic::aarch64_neon_ld3r:
    3139           1 :       if (VT == MVT::v8i8) {
    3140           1 :         SelectLoad(Node, 3, AArch64::LD3Rv8b, AArch64::dsub0);
    3141             :         return;
    3142           1 :       } else if (VT == MVT::v16i8) {
    3143           1 :         SelectLoad(Node, 3, AArch64::LD3Rv16b, AArch64::qsub0);
    3144             :         return;
    3145           2 :       } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
    3146           2 :         SelectLoad(Node, 3, AArch64::LD3Rv4h, AArch64::dsub0);
    3147             :         return;
    3148           2 :       } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
    3149           2 :         SelectLoad(Node, 3, AArch64::LD3Rv8h, AArch64::qsub0);
    3150             :         return;
    3151           1 :       } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
    3152           1 :         SelectLoad(Node, 3, AArch64::LD3Rv2s, AArch64::dsub0);
    3153             :         return;
    3154           1 :       } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
    3155           1 :         SelectLoad(Node, 3, AArch64::LD3Rv4s, AArch64::qsub0);
    3156             :         return;
    3157           1 :       } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
    3158           1 :         SelectLoad(Node, 3, AArch64::LD3Rv1d, AArch64::dsub0);
    3159             :         return;
    3160           1 :       } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
    3161           1 :         SelectLoad(Node, 3, AArch64::LD3Rv2d, AArch64::qsub0);
    3162             :         return;
    3163             :       }
    3164             :       break;
    3165             :     case Intrinsic::aarch64_neon_ld4r:
    3166           1 :       if (VT == MVT::v8i8) {
    3167           1 :         SelectLoad(Node, 4, AArch64::LD4Rv8b, AArch64::dsub0);
    3168             :         return;
    3169           1 :       } else if (VT == MVT::v16i8) {
    3170           1 :         SelectLoad(Node, 4, AArch64::LD4Rv16b, AArch64::qsub0);
    3171             :         return;
    3172           2 :       } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
    3173           2 :         SelectLoad(Node, 4, AArch64::LD4Rv4h, AArch64::dsub0);
    3174             :         return;
    3175           2 :       } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
    3176           2 :         SelectLoad(Node, 4, AArch64::LD4Rv8h, AArch64::qsub0);
    3177             :         return;
    3178           1 :       } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
    3179           1 :         SelectLoad(Node, 4, AArch64::LD4Rv2s, AArch64::dsub0);
    3180             :         return;
    3181           1 :       } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
    3182           1 :         SelectLoad(Node, 4, AArch64::LD4Rv4s, AArch64::qsub0);
    3183             :         return;
    3184           1 :       } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
    3185           1 :         SelectLoad(Node, 4, AArch64::LD4Rv1d, AArch64::dsub0);
    3186             :         return;
    3187           1 :       } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
    3188           1 :         SelectLoad(Node, 4, AArch64::LD4Rv2d, AArch64::qsub0);
    3189             :         return;
    3190             :       }
    3191             :       break;
    3192             :     case Intrinsic::aarch64_neon_ld2lane:
    3193           1 :       if (VT == MVT::v16i8 || VT == MVT::v8i8) {
    3194           1 :         SelectLoadLane(Node, 2, AArch64::LD2i8);
    3195             :         return;
    3196           1 :       } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
    3197           1 :                  VT == MVT::v8f16) {
    3198             :         SelectLoadLane(Node, 2, AArch64::LD2i16);
    3199           2 :         return;
    3200           2 :       } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
    3201             :                  VT == MVT::v2f32) {
    3202           2 :         SelectLoadLane(Node, 2, AArch64::LD2i32);
    3203           2 :         return;
    3204             :       } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
    3205           1 :                  VT == MVT::v1f64) {
    3206           1 :         SelectLoadLane(Node, 2, AArch64::LD2i64);
    3207             :         return;
    3208           1 :       }
    3209           1 :       break;
    3210             :     case Intrinsic::aarch64_neon_ld3lane:
    3211           1 :       if (VT == MVT::v16i8 || VT == MVT::v8i8) {
    3212           1 :         SelectLoadLane(Node, 3, AArch64::LD3i8);
    3213             :         return;
    3214           1 :       } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
    3215           1 :                  VT == MVT::v8f16) {
    3216             :         SelectLoadLane(Node, 3, AArch64::LD3i16);
    3217             :         return;
    3218             :       } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
    3219             :                  VT == MVT::v2f32) {
    3220           1 :         SelectLoadLane(Node, 3, AArch64::LD3i32);
    3221           1 :         return;
    3222             :       } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
    3223             :                  VT == MVT::v1f64) {
    3224           3 :         SelectLoadLane(Node, 3, AArch64::LD3i64);
    3225           3 :         return;
    3226             :       }
    3227             :       break;
    3228           3 :     case Intrinsic::aarch64_neon_ld4lane:
    3229           3 :       if (VT == MVT::v16i8 || VT == MVT::v8i8) {
    3230             :         SelectLoadLane(Node, 4, AArch64::LD4i8);
    3231             :         return;
    3232           3 :       } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
    3233           3 :                  VT == MVT::v8f16) {
    3234             :         SelectLoadLane(Node, 4, AArch64::LD4i16);
    3235             :         return;
    3236             :       } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
    3237             :                  VT == MVT::v2f32) {
    3238           1 :         SelectLoadLane(Node, 4, AArch64::LD4i32);
    3239           1 :         return;
    3240             :       } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
    3241             :                  VT == MVT::v1f64) {
    3242           3 :         SelectLoadLane(Node, 4, AArch64::LD4i64);
    3243           3 :         return;
    3244             :       }
    3245             :       break;
    3246           3 :     }
    3247           3 :   } break;
    3248             :   case ISD::INTRINSIC_WO_CHAIN: {
    3249             :     unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
    3250           1 :     switch (IntNo) {
    3251           1 :     default:
    3252             :       break;
    3253             :     case Intrinsic::aarch64_neon_tbl2:
    3254             :       SelectTable(Node, 2,
    3255             :                   VT == MVT::v8i8 ? AArch64::TBLv8i8Two : AArch64::TBLv16i8Two,
    3256           1 :                   false);
    3257           1 :       return;
    3258             :     case Intrinsic::aarch64_neon_tbl3:
    3259             :       SelectTable(Node, 3, VT == MVT::v8i8 ? AArch64::TBLv8i8Three
    3260           3 :                                            : AArch64::TBLv16i8Three,
    3261           3 :                   false);
    3262             :       return;
    3263             :     case Intrinsic::aarch64_neon_tbl4:
    3264           3 :       SelectTable(Node, 4, VT == MVT::v8i8 ? AArch64::TBLv8i8Four
    3265           3 :                                            : AArch64::TBLv16i8Four,
    3266             :                   false);
    3267             :       return;
    3268           1 :     case Intrinsic::aarch64_neon_tbx2:
    3269           1 :       SelectTable(Node, 2,
    3270             :                   VT == MVT::v8i8 ? AArch64::TBXv8i8Two : AArch64::TBXv16i8Two,
    3271             :                   true);
    3272             :       return;
    3273             :     case Intrinsic::aarch64_neon_tbx3:
    3274        1802 :       SelectTable(Node, 3, VT == MVT::v8i8 ? AArch64::TBXv8i8Three
    3275        5406 :                                            : AArch64::TBXv16i8Three,
    3276             :                   true);
    3277             :       return;
    3278             :     case Intrinsic::aarch64_neon_tbx4:
    3279             :       SelectTable(Node, 4, VT == MVT::v8i8 ? AArch64::TBXv8i8Four
    3280           4 :                                            : AArch64::TBXv16i8Four,
    3281             :                   true);
    3282             :       return;
    3283           4 :     case Intrinsic::aarch64_neon_smull:
    3284             :     case Intrinsic::aarch64_neon_umull:
    3285           2 :       if (tryMULLV64LaneV128(IntNo, Node))
    3286             :         return;
    3287             :       break;
    3288           2 :     }
    3289             :     break;
    3290           2 :   }
    3291             :   case ISD::INTRINSIC_VOID: {
    3292             :     unsigned IntNo = cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue();
    3293           2 :     if (Node->getNumOperands() >= 3)
    3294             :       VT = Node->getOperand(2)->getValueType(0);
    3295           2 :     switch (IntNo) {
    3296             :     default:
    3297             :       break;
    3298           2 :     case Intrinsic::aarch64_neon_st1x2: {
    3299             :       if (VT == MVT::v8i8) {
    3300           2 :         SelectStore(Node, 2, AArch64::ST1Twov8b);
    3301             :         return;
    3302             :       } else if (VT == MVT::v16i8) {
    3303           2 :         SelectStore(Node, 2, AArch64::ST1Twov16b);
    3304             :         return;
    3305           2 :       } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
    3306             :         SelectStore(Node, 2, AArch64::ST1Twov4h);
    3307             :         return;
    3308           2 :       } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
    3309         146 :         SelectStore(Node, 2, AArch64::ST1Twov8h);
    3310             :         return;
    3311         146 :       } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
    3312             :         SelectStore(Node, 2, AArch64::ST1Twov2s);
    3313             :         return;
    3314             :       } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
    3315             :         SelectStore(Node, 2, AArch64::ST1Twov4s);
    3316             :         return;
    3317         217 :       } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
    3318         434 :         SelectStore(Node, 2, AArch64::ST1Twov2d);
    3319         217 :         return;
    3320         199 :       } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
    3321             :         SelectStore(Node, 2, AArch64::ST1Twov1d);
    3322             :         return;
    3323             :       }
    3324             :       break;
    3325             :     }
    3326           2 :     case Intrinsic::aarch64_neon_st1x3: {
    3327           2 :       if (VT == MVT::v8i8) {
    3328             :         SelectStore(Node, 3, AArch64::ST1Threev8b);
    3329           2 :         return;
    3330           2 :       } else if (VT == MVT::v16i8) {
    3331             :         SelectStore(Node, 3, AArch64::ST1Threev16b);
    3332           3 :         return;
    3333           3 :       } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
    3334             :         SelectStore(Node, 3, AArch64::ST1Threev4h);
    3335           3 :         return;
    3336           3 :       } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
    3337             :         SelectStore(Node, 3, AArch64::ST1Threev8h);
    3338           4 :         return;
    3339           4 :       } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
    3340             :         SelectStore(Node, 3, AArch64::ST1Threev2s);
    3341           4 :         return;
    3342           4 :       } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
    3343             :         SelectStore(Node, 3, AArch64::ST1Threev4s);
    3344           4 :         return;
    3345           4 :       } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
    3346             :         SelectStore(Node, 3, AArch64::ST1Threev2d);
    3347           4 :         return;
    3348           4 :       } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
    3349             :         SelectStore(Node, 3, AArch64::ST1Threev1d);
    3350             :         return;
    3351             :       }
    3352             :       break;
    3353             :     }
    3354           2 :     case Intrinsic::aarch64_neon_st1x4: {
    3355           2 :       if (VT == MVT::v8i8) {
    3356             :         SelectStore(Node, 4, AArch64::ST1Fourv8b);
    3357           2 :         return;
    3358           2 :       } else if (VT == MVT::v16i8) {
    3359             :         SelectStore(Node, 4, AArch64::ST1Fourv16b);
    3360           3 :         return;
    3361           3 :       } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
    3362             :         SelectStore(Node, 4, AArch64::ST1Fourv4h);
    3363           3 :         return;
    3364           3 :       } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
    3365             :         SelectStore(Node, 4, AArch64::ST1Fourv8h);
    3366           4 :         return;
    3367           4 :       } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
    3368             :         SelectStore(Node, 4, AArch64::ST1Fourv2s);
    3369           4 :         return;
    3370           4 :       } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
    3371             :         SelectStore(Node, 4, AArch64::ST1Fourv4s);
    3372           4 :         return;
    3373           4 :       } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
    3374             :         SelectStore(Node, 4, AArch64::ST1Fourv2d);
    3375           4 :         return;
    3376           4 :       } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
    3377             :         SelectStore(Node, 4, AArch64::ST1Fourv1d);
    3378             :         return;
    3379             :       }
    3380             :       break;
    3381             :     }
    3382           2 :     case Intrinsic::aarch64_neon_st2: {
    3383           2 :       if (VT == MVT::v8i8) {
    3384             :         SelectStore(Node, 2, AArch64::ST2Twov8b);
    3385           2 :         return;
    3386           2 :       } else if (VT == MVT::v16i8) {
    3387             :         SelectStore(Node, 2, AArch64::ST2Twov16b);
    3388           3 :         return;
    3389           3 :       } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
    3390             :         SelectStore(Node, 2, AArch64::ST2Twov4h);
    3391           3 :         return;
    3392           3 :       } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
    3393             :         SelectStore(Node, 2, AArch64::ST2Twov8h);
    3394           4 :         return;
    3395           4 :       } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
    3396             :         SelectStore(Node, 2, AArch64::ST2Twov2s);
    3397           4 :         return;
    3398           4 :       } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
    3399             :         SelectStore(Node, 2, AArch64::ST2Twov4s);
    3400           4 :         return;
    3401           4 :       } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
    3402             :         SelectStore(Node, 2, AArch64::ST2Twov2d);
    3403           4 :         return;
    3404           4 :       } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
    3405             :         SelectStore(Node, 2, AArch64::ST1Twov1d);
    3406             :         return;
    3407             :       }
    3408             :       break;
    3409             :     }
    3410          10 :     case Intrinsic::aarch64_neon_st3: {
    3411          10 :       if (VT == MVT::v8i8) {
    3412             :         SelectStore(Node, 3, AArch64::ST3Threev8b);
    3413           2 :         return;
    3414           2 :       } else if (VT == MVT::v16i8) {
    3415             :         SelectStore(Node, 3, AArch64::ST3Threev16b);
    3416           3 :         return;
    3417           3 :       } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
    3418             :         SelectStore(Node, 3, AArch64::ST3Threev4h);
    3419           3 :         return;
    3420           3 :       } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
    3421             :         SelectStore(Node, 3, AArch64::ST3Threev8h);
    3422           2 :         return;
    3423           2 :       } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
    3424             :         SelectStore(Node, 3, AArch64::ST3Threev2s);
    3425           4 :         return;
    3426           4 :       } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
    3427             :         SelectStore(Node, 3, AArch64::ST3Threev4s);
    3428           2 :         return;
    3429           2 :       } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
    3430             :         SelectStore(Node, 3, AArch64::ST3Threev2d);
    3431           3 :         return;
    3432           3 :       } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
    3433             :         SelectStore(Node, 3, AArch64::ST1Threev1d);
    3434             :         return;
    3435             :       }
    3436             :       break;
    3437             :     }
    3438           4 :     case Intrinsic::aarch64_neon_st4: {
    3439           4 :       if (VT == MVT::v8i8) {
    3440             :         SelectStore(Node, 4, AArch64::ST4Fourv8b);
    3441           4 :         return;
    3442           4 :       } else if (VT == MVT::v16i8) {
    3443             :         SelectStore(Node, 4, AArch64::ST4Fourv16b);
    3444           3 :         return;
    3445           3 :       } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
    3446             :         SelectStore(Node, 4, AArch64::ST4Fourv4h);
    3447           3 :         return;
    3448           3 :       } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
    3449             :         SelectStore(Node, 4, AArch64::ST4Fourv8h);
    3450           2 :         return;
    3451           2 :       } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
    3452             :         SelectStore(Node, 4, AArch64::ST4Fourv2s);
    3453           2 :         return;
    3454           2 :       } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
    3455             :         SelectStore(Node, 4, AArch64::ST4Fourv4s);
    3456           2 :         return;
    3457           2 :       } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
    3458             :         SelectStore(Node, 4, AArch64::ST4Fourv2d);
    3459           2 :         return;
    3460           2 :       } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
    3461             :         SelectStore(Node, 4, AArch64::ST1Fourv1d);
    3462             :         return;
    3463             :       }
    3464             :       break;
    3465             :     }
    3466           2 :     case Intrinsic::aarch64_neon_st2lane: {
    3467           2 :       if (VT == MVT::v16i8 || VT == MVT::v8i8) {
    3468             :         SelectStoreLane(Node, 2, AArch64::ST2i8);
    3469           4 :         return;
    3470           4 :       } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
    3471             :                  VT == MVT::v8f16) {
    3472           3 :         SelectStoreLane(Node, 2, AArch64::ST2i16);
    3473           3 :         return;
    3474             :       } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
    3475           3 :                  VT == MVT::v2f32) {
    3476           3 :         SelectStoreLane(Node, 2, AArch64::ST2i32);
    3477             :         return;
    3478           2 :       } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
    3479           2 :                  VT == MVT::v1f64) {
    3480             :         SelectStoreLane(Node, 2, AArch64::ST2i64);
    3481           2 :         return;
    3482           2 :       }
    3483             :       break;
    3484           2 :     }
    3485           2 :     case Intrinsic::aarch64_neon_st3lane: {
    3486             :       if (VT == MVT::v16i8 || VT == MVT::v8i8) {
    3487           2 :         SelectStoreLane(Node, 3, AArch64::ST3i8);
    3488           2 :         return;
    3489             :       } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
    3490             :                  VT == MVT::v8f16) {
    3491             :         SelectStoreLane(Node, 3, AArch64::ST3i16);
    3492             :         return;
    3493             :       } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
    3494           2 :                  VT == MVT::v2f32) {
    3495           2 :         SelectStoreLane(Node, 3, AArch64::ST3i32);
    3496             :         return;
    3497             :       } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
    3498           4 :                  VT == MVT::v1f64) {
    3499           4 :         SelectStoreLane(Node, 3, AArch64::ST3i64);
    3500             :         return;
    3501             :       }
    3502           2 :       break;
    3503           2 :     }
    3504             :     case Intrinsic::aarch64_neon_st4lane: {
    3505             :       if (VT == MVT::v16i8 || VT == MVT::v8i8) {
    3506           5 :         SelectStoreLane(Node, 4, AArch64::ST4i8);
    3507           5 :         return;
    3508             :       } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
    3509             :                  VT == MVT::v8f16) {
    3510             :         SelectStoreLane(Node, 4, AArch64::ST4i16);
    3511             :         return;
    3512             :       } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
    3513           2 :                  VT == MVT::v2f32) {
    3514           2 :         SelectStoreLane(Node, 4, AArch64::ST4i32);
    3515             :         return;
    3516             :       } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
    3517           4 :                  VT == MVT::v1f64) {
    3518           4 :         SelectStoreLane(Node, 4, AArch64::ST4i64);
    3519             :         return;
    3520             :       }
    3521           2 :       break;
    3522           2 :     }
    3523             :     }
    3524             :     break;
    3525           3 :   }
    3526           3 :   case AArch64ISD::LD2post: {
    3527             :     if (VT == MVT::v8i8) {
    3528             :       SelectPostLoad(Node, 2, AArch64::LD2Twov8b_POST, AArch64::dsub0);
    3529             :       return;
    3530             :     } else if (VT == MVT::v16i8) {
    3531             :       SelectPostLoad(Node, 2, AArch64::LD2Twov16b_POST, AArch64::qsub0);
    3532           2 :       return;
    3533           2 :     } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
    3534             :       SelectPostLoad(Node, 2, AArch64::LD2Twov4h_POST, AArch64::dsub0);
    3535             :       return;
    3536           4 :     } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
    3537           4 :       SelectPostLoad(Node, 2, AArch64::LD2Twov8h_POST, AArch64::qsub0);
    3538             :       return;
    3539             :     } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
    3540           2 :       SelectPostLoad(Node, 2, AArch64::LD2Twov2s_POST, AArch64::dsub0);
    3541           2 :       return;
    3542             :     } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
    3543             :       SelectPostLoad(Node, 2, AArch64::LD2Twov4s_POST, AArch64::qsub0);
    3544           3 :       return;
    3545           3 :     } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
    3546             :       SelectPostLoad(Node, 2, AArch64::LD1Twov1d_POST, AArch64::dsub0);
    3547             :       return;
    3548             :     } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
    3549             :       SelectPostLoad(Node, 2, AArch64::LD2Twov2d_POST, AArch64::qsub0);
    3550             :       return;
    3551             :     }
    3552             :     break;
    3553             :   }
    3554           2 :   case AArch64ISD::LD3post: {
    3555           2 :     if (VT == MVT::v8i8) {
    3556             :       SelectPostLoad(Node, 3, AArch64::LD3Threev8b_POST, AArch64::dsub0);
    3557           2 :       return;
    3558           2 :     } else if (VT == MVT::v16i8) {
    3559             :       SelectPostLoad(Node, 3, AArch64::LD3Threev16b_POST, AArch64::qsub0);
    3560           2 :       return;
    3561           2 :     } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
    3562             :       SelectPostLoad(Node, 3, AArch64::LD3Threev4h_POST, AArch64::dsub0);
    3563           2 :       return;
    3564           2 :     } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
    3565             :       SelectPostLoad(Node, 3, AArch64::LD3Threev8h_POST, AArch64::qsub0);
    3566           4 :       return;
    3567           4 :     } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
    3568             :       SelectPostLoad(Node, 3, AArch64::LD3Threev2s_POST, AArch64::dsub0);
    3569           4 :       return;
    3570           4 :     } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
    3571             :       SelectPostLoad(Node, 3, AArch64::LD3Threev4s_POST, AArch64::qsub0);
    3572           4 :       return;
    3573           4 :     } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
    3574             :       SelectPostLoad(Node, 3, AArch64::LD1Threev1d_POST, AArch64::dsub0);
    3575           4 :       return;
    3576           4 :     } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
    3577             :       SelectPostLoad(Node, 3, AArch64::LD3Threev2d_POST, AArch64::qsub0);
    3578             :       return;
    3579             :     }
    3580             :     break;
    3581             :   }
    3582           2 :   case AArch64ISD::LD4post: {
    3583           2 :     if (VT == MVT::v8i8) {
    3584             :       SelectPostLoad(Node, 4, AArch64::LD4Fourv8b_POST, AArch64::dsub0);
    3585           2 :       return;
    3586           2 :     } else if (VT == MVT::v16i8) {
    3587             :       SelectPostLoad(Node, 4, AArch64::LD4Fourv16b_POST, AArch64::qsub0);
    3588           2 :       return;
    3589           2 :     } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
    3590             :       SelectPostLoad(Node, 4, AArch64::LD4Fourv4h_POST, AArch64::dsub0);
    3591           2 :       return;
    3592           2 :     } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
    3593             :       SelectPostLoad(Node, 4, AArch64::LD4Fourv8h_POST, AArch64::qsub0);
    3594           4 :       return;
    3595           4 :     } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
    3596             :       SelectPostLoad(Node, 4, AArch64::LD4Fourv2s_POST, AArch64::dsub0);
    3597           4 :       return;
    3598           4 :     } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
    3599             :       SelectPostLoad(Node, 4, AArch64::LD4Fourv4s_POST, AArch64::qsub0);
    3600           4 :       return;
    3601           4 :     } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
    3602             :       SelectPostLoad(Node, 4, AArch64::LD1Fourv1d_POST, AArch64::dsub0);
    3603           4 :       return;
    3604           4 :     } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
    3605             :       SelectPostLoad(Node, 4, AArch64::LD4Fourv2d_POST, AArch64::qsub0);
    3606             :       return;
    3607             :     }
    3608             :     break;
    3609             :   }
    3610           2 :   case AArch64ISD::LD1x2post: {
    3611           2 :     if (VT == MVT::v8i8) {
    3612             :       SelectPostLoad(Node, 2, AArch64::LD1Twov8b_POST, AArch64::dsub0);
    3613           2 :       return;
    3614           2 :     } else if (VT == MVT::v16i8) {
    3615             :       SelectPostLoad(Node, 2, AArch64::LD1Twov16b_POST, AArch64::qsub0);
    3616           2 :       return;
    3617           2 :     } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
    3618             :       SelectPostLoad(Node, 2, AArch64::LD1Twov4h_POST, AArch64::dsub0);
    3619           2 :       return;
    3620           2 :     } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
    3621             :       SelectPostLoad(Node, 2, AArch64::LD1Twov8h_POST, AArch64::qsub0);
    3622           4 :       return;
    3623           4 :     } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
    3624             :       SelectPostLoad(Node, 2, AArch64::LD1Twov2s_POST, AArch64::dsub0);
    3625           4 :       return;
    3626           4 :     } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
    3627             :       SelectPostLoad(Node, 2, AArch64::LD1Twov4s_POST, AArch64::qsub0);
    3628           4 :       return;
    3629           4 :     } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
    3630             :       SelectPostLoad(Node, 2, AArch64::LD1Twov1d_POST, AArch64::dsub0);
    3631           4 :       return;
    3632           4 :     } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
    3633             :       SelectPostLoad(Node, 2, AArch64::LD1Twov2d_POST, AArch64::qsub0);
    3634             :       return;
    3635             :     }
    3636             :     break;
    3637             :   }
    3638           2 :   case AArch64ISD::LD1x3post: {
    3639           2 :     if (VT == MVT::v8i8) {
    3640             :       SelectPostLoad(Node, 3, AArch64::LD1Threev8b_POST, AArch64::dsub0);
    3641           2 :       return;
    3642           2 :     } else if (VT == MVT::v16i8) {
    3643             :       SelectPostLoad(Node, 3, AArch64::LD1Threev16b_POST, AArch64::qsub0);
    3644           2 :       return;
    3645           2 :     } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
    3646             :       SelectPostLoad(Node, 3, AArch64::LD1Threev4h_POST, AArch64::dsub0);
    3647           2 :       return;
    3648           2 :     } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
    3649             :       SelectPostLoad(Node, 3, AArch64::LD1Threev8h_POST, AArch64::qsub0);
    3650           4 :       return;
    3651           4 :     } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
    3652             :       SelectPostLoad(Node, 3, AArch64::LD1Threev2s_POST, AArch64::dsub0);
    3653           4 :       return;
    3654           4 :     } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
    3655             :       SelectPostLoad(Node, 3, AArch64::LD1Threev4s_POST, AArch64::qsub0);
    3656           4 :       return;
    3657           4 :     } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
    3658             :       SelectPostLoad(Node, 3, AArch64::LD1Threev1d_POST, AArch64::dsub0);
    3659           4 :       return;
    3660           4 :     } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
    3661             :       SelectPostLoad(Node, 3, AArch64::LD1Threev2d_POST, AArch64::qsub0);
    3662             :       return;
    3663             :     }
    3664             :     break;
    3665             :   }
    3666           2 :   case AArch64ISD::LD1x4post: {
    3667           2 :     if (VT == MVT::v8i8) {
    3668             :       SelectPostLoad(Node, 4, AArch64::LD1Fourv8b_POST, AArch64::dsub0);
    3669           2 :       return;
    3670           2 :     } else if (VT == MVT::v16i8) {
    3671             :       SelectPostLoad(Node, 4, AArch64::LD1Fourv16b_POST, AArch64::qsub0);
    3672           2 :       return;
    3673           2 :     } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
    3674             :       SelectPostLoad(Node, 4, AArch64::LD1Fourv4h_POST, AArch64::dsub0);
    3675           2 :       return;
    3676           2 :     } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
    3677             :       SelectPostLoad(Node, 4, AArch64::LD1Fourv8h_POST, AArch64::qsub0);
    3678           4 :       return;
    3679           4 :     } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
    3680             :       SelectPostLoad(Node, 4, AArch64::LD1Fourv2s_POST, AArch64::dsub0);
    3681           4 :       return;
    3682           4 :     } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
    3683             :       SelectPostLoad(Node, 4, AArch64::LD1Fourv4s_POST, AArch64::qsub0);
    3684           4 :       return;
    3685           4 :     } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
    3686             :       SelectPostLoad(Node, 4, AArch64::LD1Fourv1d_POST, AArch64::dsub0);
    3687           4 :       return;
    3688           4 :     } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
    3689             :       SelectPostLoad(Node, 4, AArch64::LD1Fourv2d_POST, AArch64::qsub0);
    3690             :       return;
    3691             :     }
    3692             :     break;
    3693             :   }
    3694           2 :   case AArch64ISD::LD1DUPpost: {
    3695           2 :     if (VT == MVT::v8i8) {
    3696             :       SelectPostLoad(Node, 1, AArch64::LD1Rv8b_POST, AArch64::dsub0);
    3697           2 :       return;
    3698           2 :     } else if (VT == MVT::v16i8) {
    3699             :       SelectPostLoad(Node, 1, AArch64::LD1Rv16b_POST, AArch64::qsub0);
    3700           2 :       return;
    3701           2 :     } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
    3702             :       SelectPostLoad(Node, 1, AArch64::LD1Rv4h_POST, AArch64::dsub0);
    3703           2 :       return;
    3704           2 :     } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
    3705             :       SelectPostLoad(Node, 1, AArch64::LD1Rv8h_POST, AArch64::qsub0);
    3706           4 :       return;
    3707           4 :     } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
    3708             :       SelectPostLoad(Node, 1, AArch64::LD1Rv2s_POST, AArch64::dsub0);
    3709           4 :       return;
    3710           4 :     } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
    3711             :       SelectPostLoad(Node, 1, AArch64::LD1Rv4s_POST, AArch64::qsub0);
    3712           4 :       return;
    3713           4 :     } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
    3714             :       SelectPostLoad(Node, 1, AArch64::LD1Rv1d_POST, AArch64::dsub0);
    3715           4 :       return;
    3716           4 :     } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
    3717             :       SelectPostLoad(Node, 1, AArch64::LD1Rv2d_POST, AArch64::qsub0);
    3718             :       return;
    3719             :     }
    3720             :     break;
    3721             :   }
    3722           2 :   case AArch64ISD::LD2DUPpost: {
    3723           2 :     if (VT == MVT::v8i8) {
    3724             :       SelectPostLoad(Node, 2, AArch64::LD2Rv8b_POST, AArch64::dsub0);
    3725           2 :       return;
    3726           2 :     } else if (VT == MVT::v16i8) {
    3727             :       SelectPostLoad(Node, 2, AArch64::LD2Rv16b_POST, AArch64::qsub0);
    3728           2 :       return;
    3729           2 :     } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
    3730             :       SelectPostLoad(Node, 2, AArch64::LD2Rv4h_POST, AArch64::dsub0);
    3731           2 :       return;
    3732           2 :     } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
    3733             :       SelectPostLoad(Node, 2, AArch64::LD2Rv8h_POST, AArch64::qsub0);
    3734           4 :       return;
    3735           4 :     } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
    3736             :       SelectPostLoad(Node, 2, AArch64::LD2Rv2s_POST, AArch64::dsub0);
    3737           4 :       return;
    3738           4 :     } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
    3739             :       SelectPostLoad(Node, 2, AArch64::LD2Rv4s_POST, AArch64::qsub0);
    3740           0 :       return;
    3741           0 :     } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
    3742             :       SelectPostLoad(Node, 2, AArch64::LD2Rv1d_POST, AArch64::dsub0);
    3743           4 :       return;
    3744           4 :     } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
    3745             :       SelectPostLoad(Node, 2, AArch64::LD2Rv2d_POST, AArch64::qsub0);
    3746             :       return;
    3747             :     }
    3748             :     break;
    3749             :   }
    3750           2 :   case AArch64ISD::LD3DUPpost: {
    3751           2 :     if (VT == MVT::v8i8) {
    3752             :       SelectPostLoad(Node, 3, AArch64::LD3Rv8b_POST, AArch64::dsub0);
    3753           2 :       return;
    3754           2 :     } else if (VT == MVT::v16i8) {
    3755             :       SelectPostLoad(Node, 3, AArch64::LD3Rv16b_POST, AArch64::qsub0);
    3756           2 :       return;
    3757           2 :     } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
    3758             :       SelectPostLoad(Node, 3, AArch64::LD3Rv4h_POST, AArch64::dsub0);
    3759           2 :       return;
    3760           2 :     } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
    3761             :       SelectPostLoad(Node, 3, AArch64::LD3Rv8h_POST, AArch64::qsub0);
    3762           4 :       return;
    3763           4 :     } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
    3764             :       SelectPostLoad(Node, 3, AArch64::LD3Rv2s_POST, AArch64::dsub0);
    3765           4 :       return;
    3766           4 :     } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
    3767             :       SelectPostLoad(Node, 3, AArch64::LD3Rv4s_POST, AArch64::qsub0);
    3768           4 :       return;
    3769           4 :     } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
    3770             :       SelectPostLoad(Node, 3, AArch64::LD3Rv1d_POST, AArch64::dsub0);
    3771           4 :       return;
    3772           4 :     } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
    3773             :       SelectPostLoad(Node, 3, AArch64::LD3Rv2d_POST, AArch64::qsub0);
    3774             :       return;
    3775             :     }
    3776             :     break;
    3777             :   }
    3778           2 :   case AArch64ISD::LD4DUPpost: {
    3779           2 :     if (VT == MVT::v8i8) {
    3780             :       SelectPostLoad(Node, 4, AArch64::LD4Rv8b_POST, AArch64::dsub0);
    3781           2 :       return;
    3782           2 :     } else if (VT == MVT::v16i8) {
    3783             :       SelectPostLoad(Node, 4, AArch64::LD4Rv16b_POST, AArch64::qsub0);
    3784           2 :       return;
    3785           2 :     } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
    3786             :       SelectPostLoad(Node, 4, AArch64::LD4Rv4h_POST, AArch64::dsub0);
    3787           2 :       return;
    3788           2 :     } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
    3789             :       SelectPostLoad(Node, 4, AArch64::LD4Rv8h_POST, AArch64::qsub0);
    3790           4 :       return;
    3791           4 :     } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
    3792             :       SelectPostLoad(Node, 4, AArch64::LD4Rv2s_POST, AArch64::dsub0);
    3793           4 :       return;
    3794           4 :     } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
    3795             :       SelectPostLoad(Node, 4, AArch64::LD4Rv4s_POST, AArch64::qsub0);
    3796           4 :       return;
    3797           4 :     } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
    3798             :       SelectPostLoad(Node, 4, AArch64::LD4Rv1d_POST, AArch64::dsub0);
    3799           4 :       return;
    3800           4 :     } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
    3801             :       SelectPostLoad(Node, 4, AArch64::LD4Rv2d_POST, AArch64::qsub0);
    3802             :       return;
    3803             :     }
    3804             :     break;
    3805             :   }
    3806           2 :   case AArch64ISD::LD1LANEpost: {
    3807           2 :     if (VT == MVT::v16i8 || VT == MVT::v8i8) {
    3808             :       SelectPostLoadLane(Node, 1, AArch64::LD1i8_POST);
    3809           2 :       return;
    3810           2 :     } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
    3811             :                VT == MVT::v8f16) {
    3812           2 :       SelectPostLoadLane(Node, 1, AArch64::LD1i16_POST);
    3813           2 :       return;
    3814             :     } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
    3815           2 :                VT == MVT::v2f32) {
    3816           2 :       SelectPostLoadLane(Node, 1, AArch64::LD1i32_POST);
    3817             :       return;
    3818           4 :     } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
    3819           4 :                VT == MVT::v1f64) {
    3820             :       SelectPostLoadLane(Node, 1, AArch64::LD1i64_POST);
    3821           4 :       return;
    3822           4 :     }
    3823             :     break;
    3824           4 :   }
    3825           4 :   case AArch64ISD::LD2LANEpost: {
    3826             :     if (VT == MVT::v16i8 || VT == MVT::v8i8) {
    3827           4 :       SelectPostLoadLane(Node, 2, AArch64::LD2i8_POST);
    3828           4 :       return;
    3829             :     } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
    3830             :                VT == MVT::v8f16) {
    3831             :       SelectPostLoadLane(Node, 2, AArch64::LD2i16_POST);
    3832             :       return;
    3833             :     } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
    3834           4 :                VT == MVT::v2f32) {
    3835           4 :       SelectPostLoadLane(Node, 2, AArch64::LD2i32_POST);
    3836             :       return;
    3837             :     } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
    3838           5 :                VT == MVT::v1f64) {
    3839           5 :       SelectPostLoadLane(Node, 2, AArch64::LD2i64_POST);
    3840             :       return;
    3841             :     }
    3842           8 :     break;
    3843           8 :   }
    3844             :   case AArch64ISD::LD3LANEpost: {
    3845             :     if (VT == MVT::v16i8 || VT == MVT::v8i8) {
    3846           5 :       SelectPostLoadLane(Node, 3, AArch64::LD3i8_POST);
    3847           5 :       return;
    3848             :     } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
    3849             :                VT == MVT::v8f16) {
    3850             :       SelectPostLoadLane(Node, 3, AArch64::LD3i16_POST);
    3851             :       return;
    3852             :     } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
    3853           4 :                VT == MVT::v2f32) {
    3854           4 :       SelectPostLoadLane(Node, 3, AArch64::LD3i32_POST);
    3855             :       return;
    3856             :     } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
    3857           4 :                VT == MVT::v1f64) {
    3858           4 :       SelectPostLoadLane(Node, 3, AArch64::LD3i64_POST);
    3859             :       return;
    3860             :     }
    3861           8 :     break;
    3862           8 :   }
    3863             :   case AArch64ISD::LD4LANEpost: {
    3864             :     if (VT == MVT::v16i8 || VT == MVT::v8i8) {
    3865           8 :       SelectPostLoadLane(Node, 4, AArch64::LD4i8_POST);
    3866           8 :       return;
    3867             :     } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
    3868             :                VT == MVT::v8f16) {
    3869             :       SelectPostLoadLane(Node, 4, AArch64::LD4i16_POST);
    3870             :       return;
    3871             :     } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
    3872           4 :                VT == MVT::v2f32) {
    3873           4 :       SelectPostLoadLane(Node, 4, AArch64::LD4i32_POST);
    3874             :       return;
    3875             :     } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
    3876           4 :                VT == MVT::v1f64) {
    3877           4 :       SelectPostLoadLane(Node, 4, AArch64::LD4i64_POST);
    3878             :       return;
    3879             :     }
    3880           8 :     break;
    3881           8 :   }
    3882             :   case AArch64ISD::ST2post: {
    3883             :     VT = Node->getOperand(1).getValueType();
    3884           8 :     if (VT == MVT::v8i8) {
    3885           8 :       SelectPostStore(Node, 2, AArch64::ST2Twov8b_POST);
    3886             :       return;
    3887             :     } else if (VT == MVT::v16i8) {
    3888             :       SelectPostStore(Node, 2, AArch64::ST2Twov16b_POST);
    3889             :       return;
    3890             :     } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
    3891           4 :       SelectPostStore(Node, 2, AArch64::ST2Twov4h_POST);
    3892           4 :       return;
    3893             :     } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
    3894             :       SelectPostStore(Node, 2, AArch64::ST2Twov8h_POST);
    3895           4 :       return;
    3896           4 :     } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
    3897             :       SelectPostStore(Node, 2, AArch64::ST2Twov2s_POST);
    3898             :       return;
    3899           8 :     } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
    3900           8 :       SelectPostStore(Node, 2, AArch64::ST2Twov4s_POST);
    3901             :       return;
    3902             :     } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
    3903           8 :       SelectPostStore(Node, 2, AArch64::ST2Twov2d_POST);
    3904           8 :       return;
    3905             :     } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
    3906             :       SelectPostStore(Node, 2, AArch64::ST1Twov1d_POST);
    3907             :       return;
    3908          24 :     }
    3909          24 :     break;
    3910             :   }
    3911           2 :   case AArch64ISD::ST3post: {
    3912           2 :     VT = Node->getOperand(1).getValueType();
    3913             :     if (VT == MVT::v8i8) {
    3914           2 :       SelectPostStore(Node, 3, AArch64::ST3Threev8b_POST);
    3915           2 :       return;
    3916             :     } else if (VT == MVT::v16i8) {
    3917           2 :       SelectPostStore(Node, 3, AArch64::ST3Threev16b_POST);
    3918           2 :       return;
    3919             :     } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
    3920           2 :       SelectPostStore(Node, 3, AArch64::ST3Threev4h_POST);
    3921           2 :       return;
    3922             :     } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
    3923           4 :       SelectPostStore(Node, 3, AArch64::ST3Threev8h_POST);
    3924           4 :       return;
    3925             :     } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
    3926           4 :       SelectPostStore(Node, 3, AArch64::ST3Threev2s_POST);
    3927           4 :       return;
    3928             :     } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
    3929           4 :       SelectPostStore(Node, 3, AArch64::ST3Threev4s_POST);
    3930           4 :       return;
    3931             :     } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
    3932           4 :       SelectPostStore(Node, 3, AArch64::ST3Threev2d_POST);
    3933           4 :       return;
    3934             :     } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
    3935             :       SelectPostStore(Node, 3, AArch64::ST1Threev1d_POST);
    3936             :       return;
    3937          24 :     }
    3938          24 :     break;
    3939             :   }
    3940           2 :   case AArch64ISD::ST4post: {
    3941           2 :     VT = Node->getOperand(1).getValueType();
    3942             :     if (VT == MVT::v8i8) {
    3943           2 :       SelectPostStore(Node, 4, AArch64::ST4Fourv8b_POST);
    3944           2 :       return;
    3945             :     } else if (VT == MVT::v16i8) {
    3946           2 :       SelectPostStore(Node, 4, AArch64::ST4Fourv16b_POST);
    3947           2 :       return;
    3948             :     } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
    3949           2 :       SelectPostStore(Node, 4, AArch64::ST4Fourv4h_POST);
    3950           2 :       return;
    3951             :     } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
    3952           4 :       SelectPostStore(Node, 4, AArch64::ST4Fourv8h_POST);
    3953           4 :       return;
    3954             :     } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
    3955           4 :       SelectPostStore(Node, 4, AArch64::ST4Fourv2s_POST);
    3956           4 :       return;
    3957             :     } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
    3958           4 :       SelectPostStore(Node, 4, AArch64::ST4Fourv4s_POST);
    3959           4 :       return;
    3960             :     } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
    3961           4 :       SelectPostStore(Node, 4, AArch64::ST4Fourv2d_POST);
    3962           4 :       return;
    3963             :     } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
    3964             :       SelectPostStore(Node, 4, AArch64::ST1Fourv1d_POST);
    3965             :       return;
    3966          24 :     }
    3967          24 :     break;
    3968             :   }
    3969           2 :   case AArch64ISD::ST1x2post: {
    3970           2 :     VT = Node->getOperand(1).getValueType();
    3971             :     if (VT == MVT::v8i8) {
    3972           2 :       SelectPostStore(Node, 2, AArch64::ST1Twov8b_POST);
    3973           2 :       return;
    3974             :     } else if (VT == MVT::v16i8) {
    3975           2 :       SelectPostStore(Node, 2, AArch64::ST1Twov16b_POST);
    3976           2 :       return;
    3977             :     } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
    3978           2 :       SelectPostStore(Node, 2, AArch64::ST1Twov4h_POST);
    3979           2 :       return;
    3980             :     } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
    3981           4 :       SelectPostStore(Node, 2, AArch64::ST1Twov8h_POST);
    3982           4 :       return;
    3983             :     } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
    3984           4 :       SelectPostStore(Node, 2, AArch64::ST1Twov2s_POST);
    3985           4 :       return;
    3986             :     } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
    3987           4 :       SelectPostStore(Node, 2, AArch64::ST1Twov4s_POST);
    3988           4 :       return;
    3989             :     } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
    3990           4 :       SelectPostStore(Node, 2, AArch64::ST1Twov1d_POST);
    3991           4 :       return;
    3992             :     } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
    3993             :       SelectPostStore(Node, 2, AArch64::ST1Twov2d_POST);
    3994             :       return;
    3995          24 :     }
    3996          24 :     break;
    3997             :   }
    3998           2 :   case AArch64ISD::ST1x3post: {
    3999           2 :     VT = Node->getOperand(1).getValueType();
    4000             :     if (VT == MVT::v8i8) {
    4001           2 :       SelectPostStore(Node, 3, AArch64::ST1Threev8b_POST);
    4002           2 :       return;
    4003             :     } else if (VT == MVT::v16i8) {
    4004           2 :       SelectPostStore(Node, 3, AArch64::ST1Threev16b_POST);
    4005           2 :       return;
    4006             :     } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
    4007           2 :       SelectPostStore(Node, 3, AArch64::ST1Threev4h_POST);
    4008           2 :       return;
    4009             :     } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
    4010           4 :       SelectPostStore(Node, 3, AArch64::ST1Threev8h_POST);
    4011           4 :       return;
    4012             :     } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
    4013           4 :       SelectPostStore(Node, 3, AArch64::ST1Threev2s_POST);
    4014           4 :       return;
    4015             :     } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
    4016           4 :       SelectPostStore(Node, 3, AArch64::ST1Threev4s_POST);
    4017           4 :       return;
    4018             :     } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
    4019           4 :       SelectPostStore(Node, 3, AArch64::ST1Threev1d_POST);
    4020           4 :       return;
    4021             :     } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
    4022             :       SelectPostStore(Node, 3, AArch64::ST1Threev2d_POST);
    4023             :       return;
    4024          24 :     }
    4025          24 :     break;
    4026             :   }
    4027           2 :   case AArch64ISD::ST1x4post: {
    4028           2 :     VT = Node->getOperand(1).getValueType();
    4029             :     if (VT == MVT::v8i8) {
    4030           2 :       SelectPostStore(Node, 4, AArch64::ST1Fourv8b_POST);
    4031           2 :       return;
    4032             :     } else if (VT == MVT::v16i8) {
    4033           2 :       SelectPostStore(Node, 4, AArch64::ST1Fourv16b_POST);
    4034           2 :       return;
    4035             :     } else if (VT == MVT::v4i16 || VT == MVT::v4f16) {
    4036           2 :       SelectPostStore(Node, 4, AArch64::ST1Fourv4h_POST);
    4037           2 :       return;
    4038             :     } else if (VT == MVT::v8i16 || VT == MVT::v8f16) {
    4039           4 :       SelectPostStore(Node, 4, AArch64::ST1Fourv8h_POST);
    4040           4 :       return;
    4041             :     } else if (VT == MVT::v2i32 || VT == MVT::v2f32) {
    4042           4 :       SelectPostStore(Node, 4, AArch64::ST1Fourv2s_POST);
    4043           4 :       return;
    4044             :     } else if (VT == MVT::v4i32 || VT == MVT::v4f32) {
    4045           4 :       SelectPostStore(Node, 4, AArch64::ST1Fourv4s_POST);
    4046           4 :       return;
    4047             :     } else if (VT == MVT::v1i64 || VT == MVT::v1f64) {
    4048           4 :       SelectPostStore(Node, 4, AArch64::ST1Fourv1d_POST);
    4049           4 :       return;
    4050             :     } else if (VT == MVT::v2i64 || VT == MVT::v2f64) {
    4051             :       SelectPostStore(Node, 4, AArch64::ST1Fourv2d_POST);
    4052             :       return;
    4053          24 :     }
    4054          24 :     break;
    4055             :   }
    4056           2 :   case AArch64ISD::ST2LANEpost: {
    4057           2 :     VT = Node->getOperand(1).getValueType();
    4058             :     if (VT == MVT::v16i8 || VT == MVT::v8i8) {
    4059           2 :       SelectPostStoreLane(Node, 2, AArch64::ST2i8_POST);
    4060           2 :       return;
    4061             :     } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
    4062           2 :                VT == MVT::v8f16) {
    4063           2 :       SelectPostStoreLane(Node, 2, AArch64::ST2i16_POST);
    4064             :       return;
    4065           2 :     } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
    4066           2 :                VT == MVT::v2f32) {
    4067             :       SelectPostStoreLane(Node, 2, AArch64::ST2i32_POST);
    4068           4 :       return;
    4069           4 :     } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
    4070             :                VT == MVT::v1f64) {
    4071           4 :       SelectPostStoreLane(Node, 2, AArch64::ST2i64_POST);
    4072           4 :       return;
    4073             :     }
    4074           4 :     break;
    4075           4 :   }
    4076             :   case AArch64ISD::ST3LANEpost: {
    4077           4 :     VT = Node->getOperand(1).getValueType();
    4078           4 :     if (VT == MVT::v16i8 || VT == MVT::v8i8) {
    4079             :       SelectPostStoreLane(Node, 3, AArch64::ST3i8_POST);
    4080             :       return;
    4081             :     } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
    4082          24 :                VT == MVT::v8f16) {
    4083          24 :       SelectPostStoreLane(Node, 3, AArch64::ST3i16_POST);
    4084             :       return;
    4085           4 :     } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
    4086           4 :                VT == MVT::v2f32) {
    4087             :       SelectPostStoreLane(Node, 3, AArch64::ST3i32_POST);
    4088             :       return;
    4089           4 :     } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
    4090           4 :                VT == MVT::v1f64) {
    4091             :       SelectPostStoreLane(Node, 3, AArch64::ST3i64_POST);
    4092             :       return;
    4093           8 :     }
    4094           8 :     break;
    4095             :   }
    4096             :   case AArch64ISD::ST4LANEpost: {
    4097           8 :     VT = Node->getOperand(1).getValueType();
    4098           8 :     if (VT == MVT::v16i8 || VT == MVT::v8i8) {
    4099             :       SelectPostStoreLane(Node, 4, AArch64::ST4i8_POST);
    4100             :       return;
    4101             :     } else if (VT == MVT::v8i16 || VT == MVT::v4i16 || VT == MVT::v4f16 ||
    4102          24 :                VT == MVT::v8f16) {
    4103          24 :       SelectPostStoreLane(Node, 4, AArch64::ST4i16_POST);
    4104             :       return;
    4105           4 :     } else if (VT == MVT::v4i32 || VT == MVT::v2i32 || VT == MVT::v4f32 ||
    4106           4 :                VT == MVT::v2f32) {
    4107             :       SelectPostStoreLane(Node, 4, AArch64::ST4i32_POST);
    4108             :       return;
    4109           4 :     } else if (VT == MVT::v2i64 || VT == MVT::v1i64 || VT == MVT::v2f64 ||
    4110           4 :                VT == MVT::v1f64) {
    4111             :       SelectPostStoreLane(Node, 4, AArch64::ST4i64_POST);
    4112             :       return;
    4113           8 :     }
    4114           8 :     break;
    4115             :   }
    4116             :   }
    4117           8 : 
    4118           8 :   // Select the default instruction
    4119             :   SelectCode(Node);
    4120             : }
    4121             : 
    4122          24 : /// createAArch64ISelDag - This pass converts a legalized DAG into a
    4123          24 : /// AArch64-specific DAG, ready for instruction scheduling.
    4124             : FunctionPass *llvm::createAArch64ISelDag(AArch64TargetMachine &TM,
    4125           4 :                                          CodeGenOpt::Level OptLevel) {
    4126           4 :   return new AArch64DAGToDAGISel(TM, OptLevel);
    4127             : }

Generated by: LCOV version 1.13