Line data Source code
1 : //==- AArch64PromoteConstant.cpp - Promote constant to global for AArch64 --==//
2 : //
3 : // The LLVM Compiler Infrastructure
4 : //
5 : // This file is distributed under the University of Illinois Open Source
6 : // License. See LICENSE.TXT for details.
7 : //
8 : //===----------------------------------------------------------------------===//
9 : //
10 : // This file implements the AArch64PromoteConstant pass which promotes constants
11 : // to global variables when this is likely to be more efficient. Currently only
12 : // types related to constant vector (i.e., constant vector, array of constant
13 : // vectors, constant structure with a constant vector field, etc.) are promoted
14 : // to global variables. Constant vectors are likely to be lowered in target
15 : // constant pool during instruction selection already; therefore, the access
16 : // will remain the same (memory load), but the structure types are not split
17 : // into different constant pool accesses for each field. A bonus side effect is
18 : // that created globals may be merged by the global merge pass.
19 : //
20 : // FIXME: This pass may be useful for other targets too.
21 : //===----------------------------------------------------------------------===//
22 :
23 : #include "AArch64.h"
24 : #include "llvm/ADT/DenseMap.h"
25 : #include "llvm/ADT/SmallVector.h"
26 : #include "llvm/ADT/Statistic.h"
27 : #include "llvm/IR/BasicBlock.h"
28 : #include "llvm/IR/Constant.h"
29 : #include "llvm/IR/Constants.h"
30 : #include "llvm/IR/Dominators.h"
31 : #include "llvm/IR/Function.h"
32 : #include "llvm/IR/GlobalValue.h"
33 : #include "llvm/IR/GlobalVariable.h"
34 : #include "llvm/IR/IRBuilder.h"
35 : #include "llvm/IR/InlineAsm.h"
36 : #include "llvm/IR/InstIterator.h"
37 : #include "llvm/IR/Instruction.h"
38 : #include "llvm/IR/Instructions.h"
39 : #include "llvm/IR/IntrinsicInst.h"
40 : #include "llvm/IR/Module.h"
41 : #include "llvm/IR/Type.h"
42 : #include "llvm/Pass.h"
43 : #include "llvm/Support/Casting.h"
44 : #include "llvm/Support/CommandLine.h"
45 : #include "llvm/Support/Debug.h"
46 : #include "llvm/Support/raw_ostream.h"
47 : #include <algorithm>
48 : #include <cassert>
49 : #include <utility>
50 :
51 : using namespace llvm;
52 :
53 : #define DEBUG_TYPE "aarch64-promote-const"
54 :
55 : // Stress testing mode - disable heuristics.
56 : static cl::opt<bool> Stress("aarch64-stress-promote-const", cl::Hidden,
57 : cl::desc("Promote all vector constants"));
58 :
59 : STATISTIC(NumPromoted, "Number of promoted constants");
60 : STATISTIC(NumPromotedUses, "Number of promoted constants uses");
61 :
62 : //===----------------------------------------------------------------------===//
63 : // AArch64PromoteConstant
64 : //===----------------------------------------------------------------------===//
65 :
66 : namespace {
67 :
68 : /// Promotes interesting constant into global variables.
69 : /// The motivating example is:
70 : /// static const uint16_t TableA[32] = {
71 : /// 41944, 40330, 38837, 37450, 36158, 34953, 33826, 32768,
72 : /// 31776, 30841, 29960, 29128, 28340, 27595, 26887, 26215,
73 : /// 25576, 24967, 24386, 23832, 23302, 22796, 22311, 21846,
74 : /// 21400, 20972, 20561, 20165, 19785, 19419, 19066, 18725,
75 : /// };
76 : ///
77 : /// uint8x16x4_t LoadStatic(void) {
78 : /// uint8x16x4_t ret;
79 : /// ret.val[0] = vld1q_u16(TableA + 0);
80 : /// ret.val[1] = vld1q_u16(TableA + 8);
81 : /// ret.val[2] = vld1q_u16(TableA + 16);
82 : /// ret.val[3] = vld1q_u16(TableA + 24);
83 : /// return ret;
84 : /// }
85 : ///
86 : /// The constants in this example are folded into the uses. Thus, 4 different
87 : /// constants are created.
88 : ///
89 : /// As their type is vector the cheapest way to create them is to load them
90 : /// for the memory.
91 : ///
92 : /// Therefore the final assembly final has 4 different loads. With this pass
93 : /// enabled, only one load is issued for the constants.
94 : class AArch64PromoteConstant : public ModulePass {
95 : public:
96 : struct PromotedConstant {
97 : bool ShouldConvert = false;
98 : GlobalVariable *GV = nullptr;
99 : };
100 : using PromotionCacheTy = SmallDenseMap<Constant *, PromotedConstant, 16>;
101 :
102 : struct UpdateRecord {
103 : Constant *C;
104 : Instruction *User;
105 : unsigned Op;
106 :
107 : UpdateRecord(Constant *C, Instruction *User, unsigned Op)
108 12 : : C(C), User(User), Op(Op) {}
109 : };
110 :
111 : static char ID;
112 :
113 1119 : AArch64PromoteConstant() : ModulePass(ID) {
114 1119 : initializeAArch64PromoteConstantPass(*PassRegistry::getPassRegistry());
115 : }
116 :
117 7 : StringRef getPassName() const override { return "AArch64 Promote Constant"; }
118 :
119 : /// Iterate over the functions and promote the interesting constants into
120 : /// global variables with module scope.
121 1113 : bool runOnModule(Module &M) override {
122 : LLVM_DEBUG(dbgs() << getPassName() << '\n');
123 1113 : if (skipModule(M))
124 : return false;
125 : bool Changed = false;
126 : PromotionCacheTy PromotionCache;
127 18534 : for (auto &MF : M) {
128 17421 : Changed |= runOnFunction(MF, PromotionCache);
129 : }
130 : return Changed;
131 : }
132 :
133 : private:
134 : /// Look for interesting constants used within the given function.
135 : /// Promote them into global variables, load these global variables within
136 : /// the related function, so that the number of inserted load is minimal.
137 : bool runOnFunction(Function &F, PromotionCacheTy &PromotionCache);
138 :
139 : // This transformation requires dominator info
140 1113 : void getAnalysisUsage(AnalysisUsage &AU) const override {
141 1113 : AU.setPreservesCFG();
142 : AU.addRequired<DominatorTreeWrapperPass>();
143 : AU.addPreserved<DominatorTreeWrapperPass>();
144 1113 : }
145 :
146 : /// Type to store a list of Uses.
147 : using Uses = SmallVector<std::pair<Instruction *, unsigned>, 4>;
148 : /// Map an insertion point to all the uses it dominates.
149 : using InsertionPoints = DenseMap<Instruction *, Uses>;
150 :
151 : /// Find the closest point that dominates the given Use.
152 : Instruction *findInsertionPoint(Instruction &User, unsigned OpNo);
153 :
154 : /// Check if the given insertion point is dominated by an existing
155 : /// insertion point.
156 : /// If true, the given use is added to the list of dominated uses for
157 : /// the related existing point.
158 : /// \param NewPt the insertion point to be checked
159 : /// \param User the user of the constant
160 : /// \param OpNo the operand number of the use
161 : /// \param InsertPts existing insertion points
162 : /// \pre NewPt and all instruction in InsertPts belong to the same function
163 : /// \return true if one of the insertion point in InsertPts dominates NewPt,
164 : /// false otherwise
165 : bool isDominated(Instruction *NewPt, Instruction *User, unsigned OpNo,
166 : InsertionPoints &InsertPts);
167 :
168 : /// Check if the given insertion point can be merged with an existing
169 : /// insertion point in a common dominator.
170 : /// If true, the given use is added to the list of the created insertion
171 : /// point.
172 : /// \param NewPt the insertion point to be checked
173 : /// \param User the user of the constant
174 : /// \param OpNo the operand number of the use
175 : /// \param InsertPts existing insertion points
176 : /// \pre NewPt and all instruction in InsertPts belong to the same function
177 : /// \pre isDominated returns false for the exact same parameters.
178 : /// \return true if it exists an insertion point in InsertPts that could
179 : /// have been merged with NewPt in a common dominator,
180 : /// false otherwise
181 : bool tryAndMerge(Instruction *NewPt, Instruction *User, unsigned OpNo,
182 : InsertionPoints &InsertPts);
183 :
184 : /// Compute the minimal insertion points to dominates all the interesting
185 : /// uses of value.
186 : /// Insertion points are group per function and each insertion point
187 : /// contains a list of all the uses it dominates within the related function
188 : /// \param User the user of the constant
189 : /// \param OpNo the operand number of the constant
190 : /// \param[out] InsertPts output storage of the analysis
191 : void computeInsertionPoint(Instruction *User, unsigned OpNo,
192 : InsertionPoints &InsertPts);
193 :
194 : /// Insert a definition of a new global variable at each point contained in
195 : /// InsPtsPerFunc and update the related uses (also contained in
196 : /// InsPtsPerFunc).
197 : void insertDefinitions(Function &F, GlobalVariable &GV,
198 : InsertionPoints &InsertPts);
199 :
200 : /// Do the constant promotion indicated by the Updates records, keeping track
201 : /// of globals in PromotionCache.
202 : void promoteConstants(Function &F, SmallVectorImpl<UpdateRecord> &Updates,
203 : PromotionCacheTy &PromotionCache);
204 :
205 : /// Transfer the list of dominated uses of IPI to NewPt in InsertPts.
206 : /// Append Use to this list and delete the entry of IPI in InsertPts.
207 0 : static void appendAndTransferDominatedUses(Instruction *NewPt,
208 : Instruction *User, unsigned OpNo,
209 : InsertionPoints::iterator &IPI,
210 : InsertionPoints &InsertPts) {
211 : // Record the dominated use.
212 0 : IPI->second.emplace_back(User, OpNo);
213 : // Transfer the dominated uses of IPI to NewPt
214 : // Inserting into the DenseMap may invalidate existing iterator.
215 : // Keep a copy of the key to find the iterator to erase. Keep a copy of the
216 : // value so that we don't have to dereference IPI->second.
217 0 : Instruction *OldInstr = IPI->first;
218 : Uses OldUses = std::move(IPI->second);
219 : InsertPts[NewPt] = std::move(OldUses);
220 : // Erase IPI.
221 0 : InsertPts.erase(OldInstr);
222 0 : }
223 : };
224 :
225 : } // end anonymous namespace
226 :
227 : char AArch64PromoteConstant::ID = 0;
228 :
229 85109 : INITIALIZE_PASS_BEGIN(AArch64PromoteConstant, "aarch64-promote-const",
230 : "AArch64 Promote Constant Pass", false, false)
231 85109 : INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
232 200151 : INITIALIZE_PASS_END(AArch64PromoteConstant, "aarch64-promote-const",
233 : "AArch64 Promote Constant Pass", false, false)
234 :
235 1119 : ModulePass *llvm::createAArch64PromoteConstantPass() {
236 1119 : return new AArch64PromoteConstant();
237 : }
238 :
239 : /// Check if the given type uses a vector type.
240 3162 : static bool isConstantUsingVectorTy(const Type *CstTy) {
241 3164 : if (CstTy->isVectorTy())
242 : return true;
243 3164 : if (CstTy->isStructTy()) {
244 4 : for (unsigned EltIdx = 0, EndEltIdx = CstTy->getStructNumElements();
245 5 : EltIdx < EndEltIdx; ++EltIdx)
246 4 : if (isConstantUsingVectorTy(CstTy->getStructElementType(EltIdx)))
247 : return true;
248 3163 : } else if (CstTy->isArrayTy())
249 4 : return isConstantUsingVectorTy(CstTy->getArrayElementType());
250 : return false;
251 : }
252 :
253 : /// Check if the given use (Instruction + OpIdx) of Cst should be converted into
254 : /// a load of a global variable initialized with Cst.
255 : /// A use should be converted if it is legal to do so.
256 : /// For instance, it is not legal to turn the mask operand of a shuffle vector
257 : /// into a load of a global variable.
258 0 : static bool shouldConvertUse(const Constant *Cst, const Instruction *Instr,
259 : unsigned OpIdx) {
260 : // shufflevector instruction expects a const for the mask argument, i.e., the
261 : // third argument. Do not promote this use in that case.
262 0 : if (isa<const ShuffleVectorInst>(Instr) && OpIdx == 2)
263 0 : return false;
264 :
265 : // extractvalue instruction expects a const idx.
266 0 : if (isa<const ExtractValueInst>(Instr) && OpIdx > 0)
267 0 : return false;
268 :
269 : // extractvalue instruction expects a const idx.
270 0 : if (isa<const InsertValueInst>(Instr) && OpIdx > 1)
271 0 : return false;
272 :
273 0 : if (isa<const AllocaInst>(Instr) && OpIdx > 0)
274 0 : return false;
275 :
276 : // Alignment argument must be constant.
277 0 : if (isa<const LoadInst>(Instr) && OpIdx > 0)
278 0 : return false;
279 :
280 : // Alignment argument must be constant.
281 0 : if (isa<const StoreInst>(Instr) && OpIdx > 1)
282 0 : return false;
283 :
284 : // Index must be constant.
285 0 : if (isa<const GetElementPtrInst>(Instr) && OpIdx > 0)
286 0 : return false;
287 :
288 : // Personality function and filters must be constant.
289 : // Give up on that instruction.
290 0 : if (isa<const LandingPadInst>(Instr))
291 0 : return false;
292 :
293 : // Switch instruction expects constants to compare to.
294 0 : if (isa<const SwitchInst>(Instr))
295 0 : return false;
296 :
297 : // Expected address must be a constant.
298 0 : if (isa<const IndirectBrInst>(Instr))
299 0 : return false;
300 :
301 : // Do not mess with intrinsics.
302 : if (isa<const IntrinsicInst>(Instr))
303 0 : return false;
304 :
305 : // Do not mess with inline asm.
306 : const CallInst *CI = dyn_cast<const CallInst>(Instr);
307 0 : return !(CI && isa<const InlineAsm>(CI->getCalledValue()));
308 : }
309 :
310 : /// Check if the given Cst should be converted into
311 : /// a load of a global variable initialized with Cst.
312 : /// A constant should be converted if it is likely that the materialization of
313 : /// the constant will be tricky. Thus, we give up on zero or undef values.
314 : ///
315 : /// \todo Currently, accept only vector related types.
316 : /// Also we give up on all simple vector type to keep the existing
317 : /// behavior. Otherwise, we should push here all the check of the lowering of
318 : /// BUILD_VECTOR. By giving up, we lose the potential benefit of merging
319 : /// constant via global merge and the fact that the same constant is stored
320 : /// only once with this method (versus, as many function that uses the constant
321 : /// for the regular approach, even for float).
322 : /// Again, the simplest solution would be to promote every
323 : /// constant and rematerialize them when they are actually cheap to create.
324 5602 : static bool shouldConvertImpl(const Constant *Cst) {
325 5602 : if (isa<const UndefValue>(Cst))
326 : return false;
327 :
328 : // FIXME: In some cases, it may be interesting to promote in memory
329 : // a zero initialized constant.
330 : // E.g., when the type of Cst require more instructions than the
331 : // adrp/add/load sequence or when this sequence can be shared by several
332 : // instances of Cst.
333 : // Ideally, we could promote this into a global and rematerialize the constant
334 : // when it was a bad idea.
335 5198 : if (Cst->isZeroValue())
336 : return false;
337 :
338 4134 : if (Stress)
339 : return true;
340 :
341 : // FIXME: see function \todo
342 8256 : if (Cst->getType()->isVectorTy())
343 : return false;
344 3158 : return isConstantUsingVectorTy(Cst->getType());
345 : }
346 :
347 : static bool
348 18521 : shouldConvert(Constant &C,
349 : AArch64PromoteConstant::PromotionCacheTy &PromotionCache) {
350 : auto Converted = PromotionCache.insert(
351 18521 : std::make_pair(&C, AArch64PromoteConstant::PromotedConstant()));
352 18521 : if (Converted.second)
353 5602 : Converted.first->second.ShouldConvert = shouldConvertImpl(&C);
354 18521 : return Converted.first->second.ShouldConvert;
355 : }
356 :
357 0 : Instruction *AArch64PromoteConstant::findInsertionPoint(Instruction &User,
358 : unsigned OpNo) {
359 : // If this user is a phi, the insertion point is in the related
360 : // incoming basic block.
361 : if (PHINode *PhiInst = dyn_cast<PHINode>(&User))
362 0 : return PhiInst->getIncomingBlock(OpNo)->getTerminator();
363 :
364 : return &User;
365 : }
366 :
367 12 : bool AArch64PromoteConstant::isDominated(Instruction *NewPt, Instruction *User,
368 : unsigned OpNo,
369 : InsertionPoints &InsertPts) {
370 : DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(
371 12 : *NewPt->getParent()->getParent()).getDomTree();
372 :
373 : // Traverse all the existing insertion points and check if one is dominating
374 : // NewPt. If it is, remember that.
375 12 : for (auto &IPI : InsertPts) {
376 4 : if (NewPt == IPI.first || DT.dominates(IPI.first, NewPt) ||
377 : // When IPI.first is a terminator instruction, DT may think that
378 : // the result is defined on the edge.
379 : // Here we are testing the insertion point, not the definition.
380 0 : (IPI.first->getParent() != NewPt->getParent() &&
381 0 : DT.dominates(IPI.first->getParent(), NewPt->getParent()))) {
382 : // No need to insert this point. Just record the dominated use.
383 : LLVM_DEBUG(dbgs() << "Insertion point dominated by:\n");
384 : LLVM_DEBUG(IPI.first->print(dbgs()));
385 : LLVM_DEBUG(dbgs() << '\n');
386 4 : IPI.second.emplace_back(User, OpNo);
387 4 : return true;
388 : }
389 : }
390 8 : return false;
391 : }
392 :
393 8 : bool AArch64PromoteConstant::tryAndMerge(Instruction *NewPt, Instruction *User,
394 : unsigned OpNo,
395 : InsertionPoints &InsertPts) {
396 : DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(
397 8 : *NewPt->getParent()->getParent()).getDomTree();
398 8 : BasicBlock *NewBB = NewPt->getParent();
399 :
400 : // Traverse all the existing insertion point and check if one is dominated by
401 : // NewPt and thus useless or can be combined with NewPt into a common
402 : // dominator.
403 8 : for (InsertionPoints::iterator IPI = InsertPts.begin(),
404 : EndIPI = InsertPts.end();
405 8 : IPI != EndIPI; ++IPI) {
406 0 : BasicBlock *CurBB = IPI->first->getParent();
407 0 : if (NewBB == CurBB) {
408 : // Instructions are in the same block.
409 : // By construction, NewPt is dominating the other.
410 : // Indeed, isDominated returned false with the exact same arguments.
411 : LLVM_DEBUG(dbgs() << "Merge insertion point with:\n");
412 : LLVM_DEBUG(IPI->first->print(dbgs()));
413 : LLVM_DEBUG(dbgs() << "\nat considered insertion point.\n");
414 0 : appendAndTransferDominatedUses(NewPt, User, OpNo, IPI, InsertPts);
415 0 : return true;
416 : }
417 :
418 : // Look for a common dominator
419 0 : BasicBlock *CommonDominator = DT.findNearestCommonDominator(NewBB, CurBB);
420 : // If none exists, we cannot merge these two points.
421 0 : if (!CommonDominator)
422 : continue;
423 :
424 0 : if (CommonDominator != NewBB) {
425 : // By construction, the CommonDominator cannot be CurBB.
426 : assert(CommonDominator != CurBB &&
427 : "Instruction has not been rejected during isDominated check!");
428 : // Take the last instruction of the CommonDominator as insertion point
429 : NewPt = CommonDominator->getTerminator();
430 : }
431 : // else, CommonDominator is the block of NewBB, hence NewBB is the last
432 : // possible insertion point in that block.
433 : LLVM_DEBUG(dbgs() << "Merge insertion point with:\n");
434 : LLVM_DEBUG(IPI->first->print(dbgs()));
435 : LLVM_DEBUG(dbgs() << '\n');
436 : LLVM_DEBUG(NewPt->print(dbgs()));
437 : LLVM_DEBUG(dbgs() << '\n');
438 0 : appendAndTransferDominatedUses(NewPt, User, OpNo, IPI, InsertPts);
439 0 : return true;
440 : }
441 8 : return false;
442 : }
443 :
444 12 : void AArch64PromoteConstant::computeInsertionPoint(
445 : Instruction *User, unsigned OpNo, InsertionPoints &InsertPts) {
446 : LLVM_DEBUG(dbgs() << "Considered use, opidx " << OpNo << ":\n");
447 : LLVM_DEBUG(User->print(dbgs()));
448 : LLVM_DEBUG(dbgs() << '\n');
449 :
450 12 : Instruction *InsertionPoint = findInsertionPoint(*User, OpNo);
451 :
452 : LLVM_DEBUG(dbgs() << "Considered insertion point:\n");
453 : LLVM_DEBUG(InsertionPoint->print(dbgs()));
454 : LLVM_DEBUG(dbgs() << '\n');
455 :
456 12 : if (isDominated(InsertionPoint, User, OpNo, InsertPts))
457 4 : return;
458 : // This insertion point is useful, check if we can merge some insertion
459 : // point in a common dominator or if NewPt dominates an existing one.
460 8 : if (tryAndMerge(InsertionPoint, User, OpNo, InsertPts))
461 : return;
462 :
463 : LLVM_DEBUG(dbgs() << "Keep considered insertion point\n");
464 :
465 : // It is definitely useful by its own
466 8 : InsertPts[InsertionPoint].emplace_back(User, OpNo);
467 : }
468 :
469 0 : static void ensurePromotedGV(Function &F, Constant &C,
470 : AArch64PromoteConstant::PromotedConstant &PC) {
471 : assert(PC.ShouldConvert &&
472 : "Expected that we should convert this to a global");
473 0 : if (PC.GV)
474 0 : return;
475 0 : PC.GV = new GlobalVariable(
476 0 : *F.getParent(), C.getType(), true, GlobalValue::InternalLinkage, nullptr,
477 0 : "_PromotedConst", nullptr, GlobalVariable::NotThreadLocal);
478 0 : PC.GV->setInitializer(&C);
479 : LLVM_DEBUG(dbgs() << "Global replacement: ");
480 : LLVM_DEBUG(PC.GV->print(dbgs()));
481 : LLVM_DEBUG(dbgs() << '\n');
482 : ++NumPromoted;
483 : }
484 :
485 0 : void AArch64PromoteConstant::insertDefinitions(Function &F,
486 : GlobalVariable &PromotedGV,
487 : InsertionPoints &InsertPts) {
488 : #ifndef NDEBUG
489 : // Do more checking for debug purposes.
490 : DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
491 : #endif
492 : assert(!InsertPts.empty() && "Empty uses does not need a definition");
493 :
494 0 : for (const auto &IPI : InsertPts) {
495 : // Create the load of the global variable.
496 0 : IRBuilder<> Builder(IPI.first);
497 0 : LoadInst *LoadedCst = Builder.CreateLoad(&PromotedGV);
498 : LLVM_DEBUG(dbgs() << "**********\n");
499 : LLVM_DEBUG(dbgs() << "New def: ");
500 : LLVM_DEBUG(LoadedCst->print(dbgs()));
501 : LLVM_DEBUG(dbgs() << '\n');
502 :
503 : // Update the dominated uses.
504 0 : for (auto Use : IPI.second) {
505 : #ifndef NDEBUG
506 : assert(DT.dominates(LoadedCst,
507 : findInsertionPoint(*Use.first, Use.second)) &&
508 : "Inserted definition does not dominate all its uses!");
509 : #endif
510 : LLVM_DEBUG({
511 : dbgs() << "Use to update " << Use.second << ":";
512 : Use.first->print(dbgs());
513 : dbgs() << '\n';
514 : });
515 0 : Use.first->setOperand(Use.second, LoadedCst);
516 : ++NumPromotedUses;
517 : }
518 : }
519 0 : }
520 :
521 6 : void AArch64PromoteConstant::promoteConstants(
522 : Function &F, SmallVectorImpl<UpdateRecord> &Updates,
523 : PromotionCacheTy &PromotionCache) {
524 : // Promote the constants.
525 14 : for (auto U = Updates.begin(), E = Updates.end(); U != E;) {
526 : LLVM_DEBUG(dbgs() << "** Compute insertion points **\n");
527 : auto First = U;
528 8 : Constant *C = First->C;
529 : InsertionPoints InsertPts;
530 : do {
531 12 : computeInsertionPoint(U->User, U->Op, InsertPts);
532 12 : } while (++U != E && U->C == C);
533 :
534 : auto &Promotion = PromotionCache[C];
535 8 : ensurePromotedGV(F, *C, Promotion);
536 8 : insertDefinitions(F, *Promotion.GV, InsertPts);
537 : }
538 6 : }
539 :
540 17421 : bool AArch64PromoteConstant::runOnFunction(Function &F,
541 : PromotionCacheTy &PromotionCache) {
542 : // Look for instructions using constant vector. Promote that constant to a
543 : // global variable. Create as few loads of this variable as possible and
544 : // update the uses accordingly.
545 17421 : SmallVector<UpdateRecord, 64> Updates;
546 59513 : for (Instruction &I : instructions(&F)) {
547 : // Traverse the operand, looking for constant vectors. Replace them by a
548 : // load of a global variable of constant vector type.
549 221055 : for (Use &U : I.operands()) {
550 102029 : Constant *Cst = dyn_cast<Constant>(U);
551 : // There is no point in promoting global values as they are already
552 : // global. Do not promote constant expressions either, as they may
553 : // require some code expansion.
554 120945 : if (!Cst || isa<GlobalValue>(Cst) || isa<ConstantExpr>(Cst))
555 102017 : continue;
556 :
557 : // Check if this constant is worth promoting.
558 18521 : if (!shouldConvert(*Cst, PromotionCache))
559 : continue;
560 :
561 : // Check if this use should be promoted.
562 14 : unsigned OpNo = &U - I.op_begin();
563 14 : if (!shouldConvertUse(Cst, &I, OpNo))
564 : continue;
565 :
566 12 : Updates.emplace_back(Cst, &I, OpNo);
567 : }
568 : }
569 :
570 17421 : if (Updates.empty())
571 : return false;
572 :
573 6 : promoteConstants(F, Updates, PromotionCache);
574 6 : return true;
575 : }
|