LCOV - code coverage report
Current view: top level - lib/Target/AArch64/MCTargetDesc - AArch64AddressingModes.h (source / functions) Hit Total Coverage
Test: llvm-toolchain.info Lines: 246 285 86.3 %
Date: 2018-10-20 13:21:21 Functions: 20 20 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : //===- AArch64AddressingModes.h - AArch64 Addressing Modes ------*- C++ -*-===//
       2             : //
       3             : //                     The LLVM Compiler Infrastructure
       4             : //
       5             : // This file is distributed under the University of Illinois Open Source
       6             : // License. See LICENSE.TXT for details.
       7             : //
       8             : //===----------------------------------------------------------------------===//
       9             : //
      10             : // This file contains the AArch64 addressing mode implementation stuff.
      11             : //
      12             : //===----------------------------------------------------------------------===//
      13             : 
      14             : #ifndef LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64ADDRESSINGMODES_H
      15             : #define LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64ADDRESSINGMODES_H
      16             : 
      17             : #include "llvm/ADT/APFloat.h"
      18             : #include "llvm/ADT/APInt.h"
      19             : #include "llvm/ADT/bit.h"
      20             : #include "llvm/Support/ErrorHandling.h"
      21             : #include "llvm/Support/MathExtras.h"
      22             : #include <cassert>
      23             : 
      24             : namespace llvm {
      25             : 
      26             : /// AArch64_AM - AArch64 Addressing Mode Stuff
      27             : namespace AArch64_AM {
      28             : 
      29             : //===----------------------------------------------------------------------===//
      30             : // Shifts
      31             : //
      32             : 
      33             : enum ShiftExtendType {
      34             :   InvalidShiftExtend = -1,
      35             :   LSL = 0,
      36             :   LSR,
      37             :   ASR,
      38             :   ROR,
      39             :   MSL,
      40             : 
      41             :   UXTB,
      42             :   UXTH,
      43             :   UXTW,
      44             :   UXTX,
      45             : 
      46             :   SXTB,
      47             :   SXTH,
      48             :   SXTW,
      49             :   SXTX,
      50             : };
      51             : 
      52             : /// getShiftName - Get the string encoding for the shift type.
      53        2534 : static inline const char *getShiftExtendName(AArch64_AM::ShiftExtendType ST) {
      54        2534 :   switch (ST) {
      55           0 :   default: llvm_unreachable("unhandled shift type!");
      56             :   case AArch64_AM::LSL: return "lsl";
      57         340 :   case AArch64_AM::LSR: return "lsr";
      58         388 :   case AArch64_AM::ASR: return "asr";
      59          51 :   case AArch64_AM::ROR: return "ror";
      60          54 :   case AArch64_AM::MSL: return "msl";
      61          66 :   case AArch64_AM::UXTB: return "uxtb";
      62          81 :   case AArch64_AM::UXTH: return "uxth";
      63          66 :   case AArch64_AM::UXTW: return "uxtw";
      64          27 :   case AArch64_AM::UXTX: return "uxtx";
      65          65 :   case AArch64_AM::SXTB: return "sxtb";
      66          72 :   case AArch64_AM::SXTH: return "sxth";
      67          90 :   case AArch64_AM::SXTW: return "sxtw";
      68          23 :   case AArch64_AM::SXTX: return "sxtx";
      69             :   }
      70             :   return nullptr;
      71             : }
      72             : 
      73             : /// getShiftType - Extract the shift type.
      74             : static inline AArch64_AM::ShiftExtendType getShiftType(unsigned Imm) {
      75        4542 :   switch ((Imm >> 6) & 0x7) {
      76             :   default: return AArch64_AM::InvalidShiftExtend;
      77             :   case 0: return AArch64_AM::LSL;
      78             :   case 1: return AArch64_AM::LSR;
      79             :   case 2: return AArch64_AM::ASR;
      80             :   case 3: return AArch64_AM::ROR;
      81             :   case 4: return AArch64_AM::MSL;
      82             :   }
      83             : }
      84             : 
      85             : /// getShiftValue - Extract the shift value.
      86             : static inline unsigned getShiftValue(unsigned Imm) {
      87       10164 :   return Imm & 0x3f;
      88             : }
      89             : 
      90             : /// getShifterImm - Encode the shift type and amount:
      91             : ///   imm:     6-bit shift amount
      92             : ///   shifter: 000 ==> lsl
      93             : ///            001 ==> lsr
      94             : ///            010 ==> asr
      95             : ///            011 ==> ror
      96             : ///            100 ==> msl
      97             : ///   {8-6}  = shifter
      98             : ///   {5-0}  = imm
      99             : static inline unsigned getShifterImm(AArch64_AM::ShiftExtendType ST,
     100             :                                      unsigned Imm) {
     101             :   assert((Imm & 0x3f) == Imm && "Illegal shifted immedate value!");
     102             :   unsigned STEnc = 0;
     103             :   switch (ST) {
     104           0 :   default:  llvm_unreachable("Invalid shift requested");
     105             :   case AArch64_AM::LSL: STEnc = 0; break;
     106             :   case AArch64_AM::LSR: STEnc = 1; break;
     107             :   case AArch64_AM::ASR: STEnc = 2; break;
     108             :   case AArch64_AM::ROR: STEnc = 3; break;
     109             :   case AArch64_AM::MSL: STEnc = 4; break;
     110             :   }
     111         330 :   return (STEnc << 6) | (Imm & 0x3f);
     112             : }
     113             : 
     114             : //===----------------------------------------------------------------------===//
     115             : // Extends
     116             : //
     117             : 
     118             : /// getArithShiftValue - get the arithmetic shift value.
     119             : static inline unsigned getArithShiftValue(unsigned Imm) {
     120         547 :   return Imm & 0x7;
     121             : }
     122             : 
     123             : /// getExtendType - Extract the extend type for operands of arithmetic ops.
     124             : static inline AArch64_AM::ShiftExtendType getExtendType(unsigned Imm) {
     125             :   assert((Imm & 0x7) == Imm && "invalid immediate!");
     126             :   switch (Imm) {
     127             :   default: llvm_unreachable("Compiler bug!");
     128             :   case 0: return AArch64_AM::UXTB;
     129             :   case 1: return AArch64_AM::UXTH;
     130             :   case 2: return AArch64_AM::UXTW;
     131             :   case 3: return AArch64_AM::UXTX;
     132             :   case 4: return AArch64_AM::SXTB;
     133             :   case 5: return AArch64_AM::SXTH;
     134             :   case 6: return AArch64_AM::SXTW;
     135             :   case 7: return AArch64_AM::SXTX;
     136             :   }
     137             : }
     138             : 
     139             : static inline AArch64_AM::ShiftExtendType getArithExtendType(unsigned Imm) {
     140         597 :   return getExtendType((Imm >> 3) & 0x7);
     141             : }
     142             : 
     143             : /// Mapping from extend bits to required operation:
     144             : ///   shifter: 000 ==> uxtb
     145             : ///            001 ==> uxth
     146             : ///            010 ==> uxtw
     147             : ///            011 ==> uxtx
     148             : ///            100 ==> sxtb
     149             : ///            101 ==> sxth
     150             : ///            110 ==> sxtw
     151             : ///            111 ==> sxtx
     152             : inline unsigned getExtendEncoding(AArch64_AM::ShiftExtendType ET) {
     153         259 :   switch (ET) {
     154           0 :   default: llvm_unreachable("Invalid extend type requested");
     155             :   case AArch64_AM::UXTB: return 0; break;
     156             :   case AArch64_AM::UXTH: return 1; break;
     157             :   case AArch64_AM::UXTW: return 2; break;
     158             :   case AArch64_AM::UXTX: return 3; break;
     159             :   case AArch64_AM::SXTB: return 4; break;
     160             :   case AArch64_AM::SXTH: return 5; break;
     161             :   case AArch64_AM::SXTW: return 6; break;
     162             :   case AArch64_AM::SXTX: return 7; break;
     163             :   }
     164             : }
     165             : 
     166             : /// getArithExtendImm - Encode the extend type and shift amount for an
     167             : ///                     arithmetic instruction:
     168             : ///   imm:     3-bit extend amount
     169             : ///   {5-3}  = shifter
     170             : ///   {2-0}  = imm3
     171             : static inline unsigned getArithExtendImm(AArch64_AM::ShiftExtendType ET,
     172             :                                          unsigned Imm) {
     173             :   assert((Imm & 0x7) == Imm && "Illegal shifted immedate value!");
     174         259 :   return (getExtendEncoding(ET) << 3) | (Imm & 0x7);
     175             : }
     176             : 
     177             : /// getMemDoShift - Extract the "do shift" flag value for load/store
     178             : /// instructions.
     179             : static inline bool getMemDoShift(unsigned Imm) {
     180           0 :   return (Imm & 0x1) != 0;
     181             : }
     182             : 
     183             : /// getExtendType - Extract the extend type for the offset operand of
     184             : /// loads/stores.
     185             : static inline AArch64_AM::ShiftExtendType getMemExtendType(unsigned Imm) {
     186         870 :   return getExtendType((Imm >> 1) & 0x7);
     187             : }
     188             : 
     189             : /// getExtendImm - Encode the extend type and amount for a load/store inst:
     190             : ///   doshift:     should the offset be scaled by the access size
     191             : ///   shifter: 000 ==> uxtb
     192             : ///            001 ==> uxth
     193             : ///            010 ==> uxtw
     194             : ///            011 ==> uxtx
     195             : ///            100 ==> sxtb
     196             : ///            101 ==> sxth
     197             : ///            110 ==> sxtw
     198             : ///            111 ==> sxtx
     199             : ///   {3-1}  = shifter
     200             : ///   {0}  = doshift
     201             : static inline unsigned getMemExtendImm(AArch64_AM::ShiftExtendType ET,
     202             :                                        bool DoShift) {
     203             :   return (getExtendEncoding(ET) << 1) | unsigned(DoShift);
     204             : }
     205             : 
     206             : static inline uint64_t ror(uint64_t elt, unsigned size) {
     207       57000 :   return ((elt & 1) << (size-1)) | (elt >> 1);
     208             : }
     209             : 
     210             : /// processLogicalImmediate - Determine if an immediate value can be encoded
     211             : /// as the immediate operand of a logical instruction for the given register
     212             : /// size.  If so, return true with "encoding" set to the encoded value in
     213             : /// the form N:immr:imms.
     214        9069 : static inline bool processLogicalImmediate(uint64_t Imm, unsigned RegSize,
     215             :                                            uint64_t &Encoding) {
     216        9069 :   if (Imm == 0ULL || Imm == ~0ULL ||
     217        3802 :       (RegSize != 64 &&
     218        3802 :         (Imm >> RegSize != 0 || Imm == (~0ULL >> (64 - RegSize)))))
     219             :     return false;
     220             : 
     221             :   // First, determine the element size.
     222             :   unsigned Size = RegSize;
     223             : 
     224             :   do {
     225        9223 :     Size /= 2;
     226             :     uint64_t Mask = (1ULL << Size) - 1;
     227             : 
     228        9223 :     if ((Imm & Mask) != ((Imm >> Size) & Mask)) {
     229        8118 :       Size *= 2;
     230        8118 :       break;
     231             :     }
     232        1105 :   } while (Size > 2);
     233             : 
     234             :   // Second, determine the rotation to make the element be: 0^m 1^n.
     235             :   uint32_t CTO, I;
     236        8214 :   uint64_t Mask = ((uint64_t)-1LL) >> (64 - Size);
     237        8214 :   Imm &= Mask;
     238             : 
     239             :   if (isShiftedMask_64(Imm)) {
     240        5607 :     I = countTrailingZeros(Imm);
     241             :     assert(I < 64 && "undefined behavior");
     242       11214 :     CTO = countTrailingOnes(Imm >> I);
     243             :   } else {
     244        2607 :     Imm |= ~Mask;
     245        2607 :     if (!isShiftedMask_64(~Imm))
     246             :       return false;
     247             : 
     248         506 :     unsigned CLO = countLeadingOnes(Imm);
     249         506 :     I = 64 - CLO;
     250         506 :     CTO = CLO + countTrailingOnes(Imm) - (64 - Size);
     251             :   }
     252             : 
     253             :   // Encode in Immr the number of RORs it would take to get *from* 0^m 1^n
     254             :   // to our target value, where I is the number of RORs to go the opposite
     255             :   // direction.
     256             :   assert(Size > I && "I should be smaller than element size");
     257        6113 :   unsigned Immr = (Size - I) & (Size - 1);
     258             : 
     259             :   // If size has a 1 in the n'th bit, create a value that has zeroes in
     260             :   // bits [0, n] and ones above that.
     261        6113 :   uint64_t NImms = ~(Size-1) << 1;
     262             : 
     263             :   // Or the CTO value into the low bits, which must be below the Nth bit
     264             :   // bit mentioned above.
     265        6113 :   NImms |= (CTO-1);
     266             : 
     267             :   // Extract the seventh bit and toggle it to create the N field.
     268        6113 :   unsigned N = ((NImms >> 6) & 1) ^ 1;
     269             : 
     270        6113 :   Encoding = (N << 12) | (Immr << 6) | (NImms & 0x3f);
     271        6113 :   return true;
     272             : }
     273             : 
     274             : /// isLogicalImmediate - Return true if the immediate is valid for a logical
     275             : /// immediate instruction of the given register size. Return false otherwise.
     276             : static inline bool isLogicalImmediate(uint64_t imm, unsigned regSize) {
     277             :   uint64_t encoding;
     278        5708 :   return processLogicalImmediate(imm, regSize, encoding);
     279             : }
     280             : 
     281             : /// encodeLogicalImmediate - Return the encoded immediate value for a logical
     282             : /// immediate instruction of the given register size.
     283             : static inline uint64_t encodeLogicalImmediate(uint64_t imm, unsigned regSize) {
     284         646 :   uint64_t encoding = 0;
     285         646 :   bool res = processLogicalImmediate(imm, regSize, encoding);
     286             :   assert(res && "invalid logical immediate");
     287             :   (void)res;
     288         646 :   return encoding;
     289             : }
     290             : 
     291             : /// decodeLogicalImmediate - Decode a logical immediate value in the form
     292             : /// "N:immr:imms" (where the immr and imms fields are each 6 bits) into the
     293             : /// integer value it represents with regSize bits.
     294        3635 : static inline uint64_t decodeLogicalImmediate(uint64_t val, unsigned regSize) {
     295             :   // Extract the N, imms, and immr fields.
     296        3635 :   unsigned N = (val >> 12) & 1;
     297        3635 :   unsigned immr = (val >> 6) & 0x3f;
     298        3635 :   unsigned imms = val & 0x3f;
     299             : 
     300             :   assert((regSize == 64 || N == 0) && "undefined logical immediate encoding");
     301        3635 :   int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f));
     302             :   assert(len >= 0 && "undefined logical immediate encoding");
     303        3635 :   unsigned size = (1 << len);
     304        3635 :   unsigned R = immr & (size - 1);
     305        3635 :   unsigned S = imms & (size - 1);
     306             :   assert(S != size - 1 && "undefined logical immediate encoding");
     307        3635 :   uint64_t pattern = (1ULL << (S + 1)) - 1;
     308       60635 :   for (unsigned i = 0; i < R; ++i)
     309             :     pattern = ror(pattern, size);
     310             : 
     311             :   // Replicate the pattern to fill the regSize.
     312        4802 :   while (size != regSize) {
     313        1167 :     pattern |= (pattern << size);
     314        1167 :     size *= 2;
     315             :   }
     316        3635 :   return pattern;
     317             : }
     318             : 
     319             : /// isValidDecodeLogicalImmediate - Check to see if the logical immediate value
     320             : /// in the form "N:immr:imms" (where the immr and imms fields are each 6 bits)
     321             : /// is a valid encoding for an integer value with regSize bits.
     322         236 : static inline bool isValidDecodeLogicalImmediate(uint64_t val,
     323             :                                                  unsigned regSize) {
     324             :   // Extract the N and imms fields needed for checking.
     325         236 :   unsigned N = (val >> 12) & 1;
     326         236 :   unsigned imms = val & 0x3f;
     327             : 
     328         236 :   if (regSize == 32 && N != 0) // undefined logical immediate encoding
     329             :     return false;
     330         236 :   int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f));
     331         236 :   if (len < 0) // undefined logical immediate encoding
     332             :     return false;
     333         236 :   unsigned size = (1 << len);
     334         236 :   unsigned S = imms & (size - 1);
     335         236 :   if (S == size - 1) // undefined logical immediate encoding
     336           1 :     return false;
     337             : 
     338             :   return true;
     339             : }
     340             : 
     341             : //===----------------------------------------------------------------------===//
     342             : // Floating-point Immediates
     343             : //
     344        1828 : static inline float getFPImmFloat(unsigned Imm) {
     345             :   // We expect an 8-bit binary encoding of a floating-point number here.
     346             : 
     347        1828 :   uint8_t Sign = (Imm >> 7) & 0x1;
     348        1828 :   uint8_t Exp = (Imm >> 4) & 0x7;
     349        1828 :   uint8_t Mantissa = Imm & 0xf;
     350             : 
     351             :   //   8-bit FP    IEEE Float Encoding
     352             :   //   abcd efgh   aBbbbbbc defgh000 00000000 00000000
     353             :   //
     354             :   // where B = NOT(b);
     355             : 
     356             :   uint32_t I = 0;
     357        1828 :   I |= Sign << 31;
     358        1828 :   I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
     359        1828 :   I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
     360        1828 :   I |= (Exp & 0x3) << 23;
     361        1828 :   I |= Mantissa << 19;
     362        1828 :   return bit_cast<float>(I);
     363             : }
     364             : 
     365             : /// getFP16Imm - Return an 8-bit floating-point version of the 16-bit
     366             : /// floating-point value. If the value cannot be represented as an 8-bit
     367             : /// floating-point value, then return -1.
     368          46 : static inline int getFP16Imm(const APInt &Imm) {
     369          46 :   uint32_t Sign = Imm.lshr(15).getZExtValue() & 1;
     370          92 :   int32_t Exp = (Imm.lshr(10).getSExtValue() & 0x1f) - 15;  // -14 to 15
     371          46 :   int32_t Mantissa = Imm.getZExtValue() & 0x3ff;  // 10 bits
     372             : 
     373             :   // We can handle 4 bits of mantissa.
     374             :   // mantissa = (16+UInt(e:f:g:h))/16.
     375          46 :   if (Mantissa & 0x3f)
     376             :     return -1;
     377          42 :   Mantissa >>= 6;
     378             : 
     379             :   // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
     380          42 :   if (Exp < -3 || Exp > 4)
     381             :     return -1;
     382          40 :   Exp = ((Exp+3) & 0x7) ^ 4;
     383             : 
     384          40 :   return ((int)Sign << 7) | (Exp << 4) | Mantissa;
     385             : }
     386             : 
     387          46 : static inline int getFP16Imm(const APFloat &FPImm) {
     388          46 :   return getFP16Imm(FPImm.bitcastToAPInt());
     389             : }
     390             : 
     391             : /// getFP32Imm - Return an 8-bit floating-point version of the 32-bit
     392             : /// floating-point value. If the value cannot be represented as an 8-bit
     393             : /// floating-point value, then return -1.
     394         429 : static inline int getFP32Imm(const APInt &Imm) {
     395         429 :   uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
     396         858 :   int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127
     397         429 :   int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits
     398             : 
     399             :   // We can handle 4 bits of mantissa.
     400             :   // mantissa = (16+UInt(e:f:g:h))/16.
     401         429 :   if (Mantissa & 0x7ffff)
     402             :     return -1;
     403         418 :   Mantissa >>= 19;
     404             :   if ((Mantissa & 0xf) != Mantissa)
     405             :     return -1;
     406             : 
     407             :   // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
     408         418 :   if (Exp < -3 || Exp > 4)
     409             :     return -1;
     410         393 :   Exp = ((Exp+3) & 0x7) ^ 4;
     411             : 
     412         393 :   return ((int)Sign << 7) | (Exp << 4) | Mantissa;
     413             : }
     414             : 
     415         429 : static inline int getFP32Imm(const APFloat &FPImm) {
     416         429 :   return getFP32Imm(FPImm.bitcastToAPInt());
     417             : }
     418             : 
     419             : /// getFP64Imm - Return an 8-bit floating-point version of the 64-bit
     420             : /// floating-point value. If the value cannot be represented as an 8-bit
     421             : /// floating-point value, then return -1.
     422        6692 : static inline int getFP64Imm(const APInt &Imm) {
     423       13384 :   uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
     424       13384 :   int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023;   // -1022 to 1023
     425             :   uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL;
     426             : 
     427             :   // We can handle 4 bits of mantissa.
     428             :   // mantissa = (16+UInt(e:f:g:h))/16.
     429        6692 :   if (Mantissa & 0xffffffffffffULL)
     430             :     return -1;
     431        6669 :   Mantissa >>= 48;
     432             :   if ((Mantissa & 0xf) != Mantissa)
     433             :     return -1;
     434             : 
     435             :   // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
     436        6669 :   if (Exp < -3 || Exp > 4)
     437             :     return -1;
     438        6543 :   Exp = ((Exp+3) & 0x7) ^ 4;
     439             : 
     440        6543 :   return ((int)Sign << 7) | (Exp << 4) | Mantissa;
     441             : }
     442             : 
     443         250 : static inline int getFP64Imm(const APFloat &FPImm) {
     444         250 :   return getFP64Imm(FPImm.bitcastToAPInt());
     445             : }
     446             : 
     447             : //===--------------------------------------------------------------------===//
     448             : // AdvSIMD Modified Immediates
     449             : //===--------------------------------------------------------------------===//
     450             : 
     451             : // 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh
     452             : static inline bool isAdvSIMDModImmType1(uint64_t Imm) {
     453           0 :   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
     454           0 :          ((Imm & 0xffffff00ffffff00ULL) == 0);
     455             : }
     456             : 
     457             : static inline uint8_t encodeAdvSIMDModImmType1(uint64_t Imm) {
     458             :   return (Imm & 0xffULL);
     459             : }
     460             : 
     461             : static inline uint64_t decodeAdvSIMDModImmType1(uint8_t Imm) {
     462             :   uint64_t EncVal = Imm;
     463             :   return (EncVal << 32) | EncVal;
     464             : }
     465             : 
     466             : // 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00
     467             : static inline bool isAdvSIMDModImmType2(uint64_t Imm) {
     468           0 :   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
     469           0 :          ((Imm & 0xffff00ffffff00ffULL) == 0);
     470             : }
     471             : 
     472             : static inline uint8_t encodeAdvSIMDModImmType2(uint64_t Imm) {
     473           0 :   return (Imm & 0xff00ULL) >> 8;
     474             : }
     475             : 
     476             : static inline uint64_t decodeAdvSIMDModImmType2(uint8_t Imm) {
     477             :   uint64_t EncVal = Imm;
     478             :   return (EncVal << 40) | (EncVal << 8);
     479             : }
     480             : 
     481             : // 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00
     482             : static inline bool isAdvSIMDModImmType3(uint64_t Imm) {
     483           0 :   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
     484           0 :          ((Imm & 0xff00ffffff00ffffULL) == 0);
     485             : }
     486             : 
     487             : static inline uint8_t encodeAdvSIMDModImmType3(uint64_t Imm) {
     488           0 :   return (Imm & 0xff0000ULL) >> 16;
     489             : }
     490             : 
     491             : static inline uint64_t decodeAdvSIMDModImmType3(uint8_t Imm) {
     492             :   uint64_t EncVal = Imm;
     493             :   return (EncVal << 48) | (EncVal << 16);
     494             : }
     495             : 
     496             : // abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00
     497             : static inline bool isAdvSIMDModImmType4(uint64_t Imm) {
     498           0 :   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
     499           0 :          ((Imm & 0x00ffffff00ffffffULL) == 0);
     500             : }
     501             : 
     502             : static inline uint8_t encodeAdvSIMDModImmType4(uint64_t Imm) {
     503           0 :   return (Imm & 0xff000000ULL) >> 24;
     504             : }
     505             : 
     506             : static inline uint64_t decodeAdvSIMDModImmType4(uint8_t Imm) {
     507             :   uint64_t EncVal = Imm;
     508             :   return (EncVal << 56) | (EncVal << 24);
     509             : }
     510             : 
     511             : // 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh
     512             : static inline bool isAdvSIMDModImmType5(uint64_t Imm) {
     513           0 :   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
     514           0 :          (((Imm & 0x00ff0000ULL) >> 16) == (Imm & 0x000000ffULL)) &&
     515           0 :          ((Imm & 0xff00ff00ff00ff00ULL) == 0);
     516             : }
     517             : 
     518             : static inline uint8_t encodeAdvSIMDModImmType5(uint64_t Imm) {
     519             :   return (Imm & 0xffULL);
     520             : }
     521             : 
     522             : static inline uint64_t decodeAdvSIMDModImmType5(uint8_t Imm) {
     523             :   uint64_t EncVal = Imm;
     524             :   return (EncVal << 48) | (EncVal << 32) | (EncVal << 16) | EncVal;
     525             : }
     526             : 
     527             : // abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00
     528             : static inline bool isAdvSIMDModImmType6(uint64_t Imm) {
     529           0 :   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
     530           0 :          (((Imm & 0xff000000ULL) >> 16) == (Imm & 0x0000ff00ULL)) &&
     531           0 :          ((Imm & 0x00ff00ff00ff00ffULL) == 0);
     532             : }
     533             : 
     534             : static inline uint8_t encodeAdvSIMDModImmType6(uint64_t Imm) {
     535           0 :   return (Imm & 0xff00ULL) >> 8;
     536             : }
     537             : 
     538             : static inline uint64_t decodeAdvSIMDModImmType6(uint8_t Imm) {
     539             :   uint64_t EncVal = Imm;
     540             :   return (EncVal << 56) | (EncVal << 40) | (EncVal << 24) | (EncVal << 8);
     541             : }
     542             : 
     543             : // 0x00 0x00 abcdefgh 0xFF 0x00 0x00 abcdefgh 0xFF
     544             : static inline bool isAdvSIMDModImmType7(uint64_t Imm) {
     545           0 :   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
     546           0 :          ((Imm & 0xffff00ffffff00ffULL) == 0x000000ff000000ffULL);
     547             : }
     548             : 
     549             : static inline uint8_t encodeAdvSIMDModImmType7(uint64_t Imm) {
     550           0 :   return (Imm & 0xff00ULL) >> 8;
     551             : }
     552             : 
     553             : static inline uint64_t decodeAdvSIMDModImmType7(uint8_t Imm) {
     554             :   uint64_t EncVal = Imm;
     555             :   return (EncVal << 40) | (EncVal << 8) | 0x000000ff000000ffULL;
     556             : }
     557             : 
     558             : // 0x00 abcdefgh 0xFF 0xFF 0x00 abcdefgh 0xFF 0xFF
     559             : static inline bool isAdvSIMDModImmType8(uint64_t Imm) {
     560           0 :   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
     561           0 :          ((Imm & 0xff00ffffff00ffffULL) == 0x0000ffff0000ffffULL);
     562             : }
     563             : 
     564             : static inline uint64_t decodeAdvSIMDModImmType8(uint8_t Imm) {
     565             :   uint64_t EncVal = Imm;
     566             :   return (EncVal << 48) | (EncVal << 16) | 0x0000ffff0000ffffULL;
     567             : }
     568             : 
     569             : static inline uint8_t encodeAdvSIMDModImmType8(uint64_t Imm) {
     570           0 :   return (Imm & 0x00ff0000ULL) >> 16;
     571             : }
     572             : 
     573             : // abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh
     574             : static inline bool isAdvSIMDModImmType9(uint64_t Imm) {
     575           0 :   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
     576           0 :          ((Imm >> 48) == (Imm & 0x0000ffffULL)) &&
     577           0 :          ((Imm >> 56) == (Imm & 0x000000ffULL));
     578             : }
     579             : 
     580             : static inline uint8_t encodeAdvSIMDModImmType9(uint64_t Imm) {
     581             :   return (Imm & 0xffULL);
     582             : }
     583             : 
     584             : static inline uint64_t decodeAdvSIMDModImmType9(uint8_t Imm) {
     585             :   uint64_t EncVal = Imm;
     586             :   EncVal |= (EncVal << 8);
     587             :   EncVal |= (EncVal << 16);
     588             :   EncVal |= (EncVal << 32);
     589             :   return EncVal;
     590             : }
     591             : 
     592             : // aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff gggggggg hhhhhhhh
     593             : // cmode: 1110, op: 1
     594         609 : static inline bool isAdvSIMDModImmType10(uint64_t Imm) {
     595         609 :   uint64_t ByteA = Imm & 0xff00000000000000ULL;
     596         609 :   uint64_t ByteB = Imm & 0x00ff000000000000ULL;
     597         609 :   uint64_t ByteC = Imm & 0x0000ff0000000000ULL;
     598         609 :   uint64_t ByteD = Imm & 0x000000ff00000000ULL;
     599         609 :   uint64_t ByteE = Imm & 0x00000000ff000000ULL;
     600         609 :   uint64_t ByteF = Imm & 0x0000000000ff0000ULL;
     601         609 :   uint64_t ByteG = Imm & 0x000000000000ff00ULL;
     602         609 :   uint64_t ByteH = Imm & 0x00000000000000ffULL;
     603             : 
     604         958 :   return (ByteA == 0ULL || ByteA == 0xff00000000000000ULL) &&
     605         349 :          (ByteB == 0ULL || ByteB == 0x00ff000000000000ULL) &&
     606         266 :          (ByteC == 0ULL || ByteC == 0x0000ff0000000000ULL) &&
     607         230 :          (ByteD == 0ULL || ByteD == 0x000000ff00000000ULL) &&
     608         143 :          (ByteE == 0ULL || ByteE == 0x00000000ff000000ULL) &&
     609         141 :          (ByteF == 0ULL || ByteF == 0x0000000000ff0000ULL) &&
     610         749 :          (ByteG == 0ULL || ByteG == 0x000000000000ff00ULL) &&
     611         138 :          (ByteH == 0ULL || ByteH == 0x00000000000000ffULL);
     612             : }
     613             : 
     614          82 : static inline uint8_t encodeAdvSIMDModImmType10(uint64_t Imm) {
     615          82 :   uint8_t BitA = (Imm & 0xff00000000000000ULL) != 0;
     616          82 :   uint8_t BitB = (Imm & 0x00ff000000000000ULL) != 0;
     617          82 :   uint8_t BitC = (Imm & 0x0000ff0000000000ULL) != 0;
     618          82 :   uint8_t BitD = (Imm & 0x000000ff00000000ULL) != 0;
     619          82 :   uint8_t BitE = (Imm & 0x00000000ff000000ULL) != 0;
     620          82 :   uint8_t BitF = (Imm & 0x0000000000ff0000ULL) != 0;
     621          82 :   uint8_t BitG = (Imm & 0x000000000000ff00ULL) != 0;
     622          82 :   uint8_t BitH = (Imm & 0x00000000000000ffULL) != 0;
     623             : 
     624             :   uint8_t EncVal = BitA;
     625          82 :   EncVal <<= 1;
     626          82 :   EncVal |= BitB;
     627          82 :   EncVal <<= 1;
     628          82 :   EncVal |= BitC;
     629          82 :   EncVal <<= 1;
     630          82 :   EncVal |= BitD;
     631          82 :   EncVal <<= 1;
     632          82 :   EncVal |= BitE;
     633          82 :   EncVal <<= 1;
     634          82 :   EncVal |= BitF;
     635          82 :   EncVal <<= 1;
     636          82 :   EncVal |= BitG;
     637          82 :   EncVal <<= 1;
     638          82 :   EncVal |= BitH;
     639          82 :   return EncVal;
     640             : }
     641             : 
     642         339 : static inline uint64_t decodeAdvSIMDModImmType10(uint8_t Imm) {
     643             :   uint64_t EncVal = 0;
     644         339 :   if (Imm & 0x80) EncVal |= 0xff00000000000000ULL;
     645         339 :   if (Imm & 0x40) EncVal |= 0x00ff000000000000ULL;
     646         339 :   if (Imm & 0x20) EncVal |= 0x0000ff0000000000ULL;
     647         339 :   if (Imm & 0x10) EncVal |= 0x000000ff00000000ULL;
     648         339 :   if (Imm & 0x08) EncVal |= 0x00000000ff000000ULL;
     649         339 :   if (Imm & 0x04) EncVal |= 0x0000000000ff0000ULL;
     650         339 :   if (Imm & 0x02) EncVal |= 0x000000000000ff00ULL;
     651         339 :   if (Imm & 0x01) EncVal |= 0x00000000000000ffULL;
     652         339 :   return EncVal;
     653             : }
     654             : 
     655             : // aBbbbbbc defgh000 0x00 0x00 aBbbbbbc defgh000 0x00 0x00
     656             : static inline bool isAdvSIMDModImmType11(uint64_t Imm) {
     657           0 :   uint64_t BString = (Imm & 0x7E000000ULL) >> 25;
     658           0 :   return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
     659           0 :          (BString == 0x1f || BString == 0x20) &&
     660           0 :          ((Imm & 0x0007ffff0007ffffULL) == 0);
     661             : }
     662             : 
     663          24 : static inline uint8_t encodeAdvSIMDModImmType11(uint64_t Imm) {
     664          24 :   uint8_t BitA = (Imm & 0x80000000ULL) != 0;
     665          24 :   uint8_t BitB = (Imm & 0x20000000ULL) != 0;
     666          24 :   uint8_t BitC = (Imm & 0x01000000ULL) != 0;
     667          24 :   uint8_t BitD = (Imm & 0x00800000ULL) != 0;
     668          24 :   uint8_t BitE = (Imm & 0x00400000ULL) != 0;
     669          24 :   uint8_t BitF = (Imm & 0x00200000ULL) != 0;
     670          24 :   uint8_t BitG = (Imm & 0x00100000ULL) != 0;
     671          24 :   uint8_t BitH = (Imm & 0x00080000ULL) != 0;
     672             : 
     673             :   uint8_t EncVal = BitA;
     674          24 :   EncVal <<= 1;
     675          24 :   EncVal |= BitB;
     676          24 :   EncVal <<= 1;
     677          24 :   EncVal |= BitC;
     678          24 :   EncVal <<= 1;
     679          24 :   EncVal |= BitD;
     680          24 :   EncVal <<= 1;
     681          24 :   EncVal |= BitE;
     682          24 :   EncVal <<= 1;
     683          24 :   EncVal |= BitF;
     684          24 :   EncVal <<= 1;
     685          24 :   EncVal |= BitG;
     686          24 :   EncVal <<= 1;
     687          24 :   EncVal |= BitH;
     688          24 :   return EncVal;
     689             : }
     690             : 
     691             : static inline uint64_t decodeAdvSIMDModImmType11(uint8_t Imm) {
     692             :   uint64_t EncVal = 0;
     693             :   if (Imm & 0x80) EncVal |= 0x80000000ULL;
     694             :   if (Imm & 0x40) EncVal |= 0x3e000000ULL;
     695             :   else            EncVal |= 0x40000000ULL;
     696             :   if (Imm & 0x20) EncVal |= 0x01000000ULL;
     697             :   if (Imm & 0x10) EncVal |= 0x00800000ULL;
     698             :   if (Imm & 0x08) EncVal |= 0x00400000ULL;
     699             :   if (Imm & 0x04) EncVal |= 0x00200000ULL;
     700             :   if (Imm & 0x02) EncVal |= 0x00100000ULL;
     701             :   if (Imm & 0x01) EncVal |= 0x00080000ULL;
     702             :   return (EncVal << 32) | EncVal;
     703             : }
     704             : 
     705             : // aBbbbbbb bbcdefgh 0x00 0x00 0x00 0x00 0x00 0x00
     706             : static inline bool isAdvSIMDModImmType12(uint64_t Imm) {
     707           0 :   uint64_t BString = (Imm & 0x7fc0000000000000ULL) >> 54;
     708           0 :   return ((BString == 0xff || BString == 0x100) &&
     709           0 :          ((Imm & 0x0000ffffffffffffULL) == 0));
     710             : }
     711             : 
     712          15 : static inline uint8_t encodeAdvSIMDModImmType12(uint64_t Imm) {
     713          15 :   uint8_t BitA = (Imm & 0x8000000000000000ULL) != 0;
     714          15 :   uint8_t BitB = (Imm & 0x0040000000000000ULL) != 0;
     715          15 :   uint8_t BitC = (Imm & 0x0020000000000000ULL) != 0;
     716          15 :   uint8_t BitD = (Imm & 0x0010000000000000ULL) != 0;
     717          15 :   uint8_t BitE = (Imm & 0x0008000000000000ULL) != 0;
     718          15 :   uint8_t BitF = (Imm & 0x0004000000000000ULL) != 0;
     719          15 :   uint8_t BitG = (Imm & 0x0002000000000000ULL) != 0;
     720          15 :   uint8_t BitH = (Imm & 0x0001000000000000ULL) != 0;
     721             : 
     722             :   uint8_t EncVal = BitA;
     723          15 :   EncVal <<= 1;
     724          15 :   EncVal |= BitB;
     725          15 :   EncVal <<= 1;
     726          15 :   EncVal |= BitC;
     727          15 :   EncVal <<= 1;
     728          15 :   EncVal |= BitD;
     729          15 :   EncVal <<= 1;
     730          15 :   EncVal |= BitE;
     731          15 :   EncVal <<= 1;
     732          15 :   EncVal |= BitF;
     733          15 :   EncVal <<= 1;
     734          15 :   EncVal |= BitG;
     735          15 :   EncVal <<= 1;
     736          15 :   EncVal |= BitH;
     737          15 :   return EncVal;
     738             : }
     739             : 
     740             : static inline uint64_t decodeAdvSIMDModImmType12(uint8_t Imm) {
     741             :   uint64_t EncVal = 0;
     742             :   if (Imm & 0x80) EncVal |= 0x8000000000000000ULL;
     743             :   if (Imm & 0x40) EncVal |= 0x3fc0000000000000ULL;
     744             :   else            EncVal |= 0x4000000000000000ULL;
     745             :   if (Imm & 0x20) EncVal |= 0x0020000000000000ULL;
     746             :   if (Imm & 0x10) EncVal |= 0x0010000000000000ULL;
     747             :   if (Imm & 0x08) EncVal |= 0x0008000000000000ULL;
     748             :   if (Imm & 0x04) EncVal |= 0x0004000000000000ULL;
     749             :   if (Imm & 0x02) EncVal |= 0x0002000000000000ULL;
     750             :   if (Imm & 0x01) EncVal |= 0x0001000000000000ULL;
     751             :   return (EncVal << 32) | EncVal;
     752             : }
     753             : 
     754             : /// Returns true if Imm is the concatenation of a repeating pattern of type T.
     755             : template <typename T>
     756         178 : static inline bool isSVEMaskOfIdenticalElements(int64_t Imm) {
     757          94 :   auto Parts = bit_cast<std::array<T, sizeof(int64_t) / sizeof(T)>>(Imm);
     758           0 :   return all_of(Parts, [&](T Elem) { return Elem == Parts[0]; });
     759             : }
     760             : 
     761             : /// Returns true if Imm is valid for CPY/DUP.
     762             : template <typename T>
     763             : static inline bool isSVECpyImm(int64_t Imm) {
     764         914 :   bool IsImm8 = int8_t(Imm) == Imm;
     765         834 :   bool IsImm16 = int16_t(Imm & ~0xff) == Imm;
     766             : 
     767             :   if (std::is_same<int8_t, typename std::make_signed<T>::type>::value)
     768          80 :     return IsImm8 || uint8_t(Imm) == Imm;
     769             : 
     770             :   if (std::is_same<int16_t, typename std::make_signed<T>::type>::value)
     771         236 :     return IsImm8 || IsImm16 || uint16_t(Imm & ~0xff) == Imm;
     772             : 
     773         580 :   return IsImm8 || IsImm16;
     774             : }
     775             : 
     776             : /// Returns true if Imm is valid for ADD/SUB.
     777             : template <typename T>
     778             : static inline bool isSVEAddSubImm(int64_t Imm) {
     779             :   bool IsInt8t =
     780             :       std::is_same<int8_t, typename std::make_signed<T>::type>::value;
     781         673 :   return uint8_t(Imm) == Imm || (!IsInt8t && uint16_t(Imm & ~0xff) == Imm);
     782             : }
     783             : 
     784             : /// Return true if Imm is valid for DUPM and has no single CPY/DUP equivalent.
     785          62 : static inline bool isSVEMoveMaskPreferredLogicalImmediate(int64_t Imm) {
     786          62 :   if (isSVECpyImm<int64_t>(Imm))
     787             :     return false;
     788             : 
     789             :   auto S = bit_cast<std::array<int32_t, 2>>(Imm);
     790             :   auto H = bit_cast<std::array<int16_t, 4>>(Imm);
     791             :   auto B = bit_cast<std::array<int8_t, 8>>(Imm);
     792             : 
     793          60 :   if (isSVEMaskOfIdenticalElements<int32_t>(Imm) && isSVECpyImm<int32_t>(S[0]))
     794             :     return false;
     795          52 :   if (isSVEMaskOfIdenticalElements<int16_t>(Imm) && isSVECpyImm<int16_t>(H[0]))
     796             :     return false;
     797          34 :   if (isSVEMaskOfIdenticalElements<int8_t>(Imm) && isSVECpyImm<int8_t>(B[0]))
     798             :     return false;
     799          10 :   return isLogicalImmediate(Imm, 64);
     800             : }
     801             : 
     802             : inline static bool isAnyMOVZMovAlias(uint64_t Value, int RegWidth) {
     803        2314 :   for (int Shift = 0; Shift <= RegWidth - 16; Shift += 16)
     804        2034 :     if ((Value & ~(0xffffULL << Shift)) == 0)
     805             :       return true;
     806             : 
     807             :   return false;
     808             : }
     809             : 
     810             : inline static bool isMOVZMovAlias(uint64_t Value, int Shift, int RegWidth) {
     811         115 :   if (RegWidth == 32)
     812         655 :     Value &= 0xffffffffULL;
     813             : 
     814             :   // "lsl #0" takes precedence: in practice this only affects "#0, lsl #0".
     815         904 :   if (Value == 0 && Shift != 0)
     816             :     return false;
     817             : 
     818         901 :   return (Value & ~(0xffffULL << Shift)) == 0;
     819             : }
     820             : 
     821         117 : inline static bool isMOVNMovAlias(uint64_t Value, int Shift, int RegWidth) {
     822             :   // MOVZ takes precedence over MOVN.
     823         128 :   if (isAnyMOVZMovAlias(Value, RegWidth))
     824             :     return false;
     825             : 
     826         125 :   Value = ~Value;
     827         115 :   if (RegWidth == 32)
     828          65 :     Value &= 0xffffffffULL;
     829             : 
     830             :   return isMOVZMovAlias(Value, Shift, RegWidth);
     831             : }
     832             : 
     833        1136 : inline static bool isAnyMOVWMovAlias(uint64_t Value, int RegWidth) {
     834        1136 :   if (isAnyMOVZMovAlias(Value, RegWidth))
     835             :     return true;
     836             : 
     837             :   // It's not a MOVZ, but it might be a MOVN.
     838          86 :   Value = ~Value;
     839          86 :   if (RegWidth == 32)
     840          25 :     Value &= 0xffffffffULL;
     841             : 
     842             :   return isAnyMOVZMovAlias(Value, RegWidth);
     843             : }
     844             : 
     845             : } // end namespace AArch64_AM
     846             : 
     847             : } // end namespace llvm
     848             : 
     849             : #endif

Generated by: LCOV version 1.13