LCOV - code coverage report
Current view: top level - lib/Target/AMDGPU - AMDGPUAtomicOptimizer.cpp (source / functions) Hit Total Coverage
Test: llvm-toolchain.info Lines: 120 135 88.9 %
Date: 2018-10-20 13:21:21 Functions: 8 9 88.9 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : //===-- AMDGPUAtomicOptimizer.cpp -----------------------------------------===//
       2             : //
       3             : //                     The LLVM Compiler Infrastructure
       4             : //
       5             : // This file is distributed under the University of Illinois Open Source
       6             : // License. See LICENSE.TXT for details.
       7             : //
       8             : //===----------------------------------------------------------------------===//
       9             : //
      10             : /// \file
      11             : /// This pass optimizes atomic operations by using a single lane of a wavefront
      12             : /// to perform the atomic operation, thus reducing contention on that memory
      13             : /// location.
      14             : //
      15             : //===----------------------------------------------------------------------===//
      16             : 
      17             : #include "AMDGPU.h"
      18             : #include "AMDGPUSubtarget.h"
      19             : #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
      20             : #include "llvm/CodeGen/TargetPassConfig.h"
      21             : #include "llvm/IR/IRBuilder.h"
      22             : #include "llvm/IR/InstVisitor.h"
      23             : #include "llvm/Transforms/Utils/BasicBlockUtils.h"
      24             : 
      25             : #define DEBUG_TYPE "amdgpu-atomic-optimizer"
      26             : 
      27             : using namespace llvm;
      28             : 
      29             : namespace {
      30             : 
      31             : enum DPP_CTRL {
      32             :   DPP_ROW_SR1 = 0x111,
      33             :   DPP_ROW_SR2 = 0x112,
      34             :   DPP_ROW_SR4 = 0x114,
      35             :   DPP_ROW_SR8 = 0x118,
      36             :   DPP_WF_SR1 = 0x138,
      37             :   DPP_ROW_BCAST15 = 0x142,
      38             :   DPP_ROW_BCAST31 = 0x143
      39             : };
      40             : 
      41             : struct ReplacementInfo {
      42             :   Instruction *I;
      43             :   Instruction::BinaryOps Op;
      44             :   unsigned ValIdx;
      45             :   bool ValDivergent;
      46             : };
      47             : 
      48             : class AMDGPUAtomicOptimizer : public FunctionPass,
      49             :                               public InstVisitor<AMDGPUAtomicOptimizer> {
      50             : private:
      51             :   SmallVector<ReplacementInfo, 8> ToReplace;
      52             :   const LegacyDivergenceAnalysis *DA;
      53             :   const DataLayout *DL;
      54             :   DominatorTree *DT;
      55             :   bool HasDPP;
      56             : 
      57             :   void optimizeAtomic(Instruction &I, Instruction::BinaryOps Op,
      58             :                       unsigned ValIdx, bool ValDivergent) const;
      59             : 
      60             :   void setConvergent(CallInst *const CI) const;
      61             : 
      62             : public:
      63             :   static char ID;
      64             : 
      65          30 :   AMDGPUAtomicOptimizer() : FunctionPass(ID) {}
      66             : 
      67             :   bool runOnFunction(Function &F) override;
      68             : 
      69          15 :   void getAnalysisUsage(AnalysisUsage &AU) const override {
      70             :     AU.addPreserved<DominatorTreeWrapperPass>();
      71             :     AU.addRequired<LegacyDivergenceAnalysis>();
      72             :     AU.addRequired<TargetPassConfig>();
      73          15 :   }
      74             : 
      75             :   void visitAtomicRMWInst(AtomicRMWInst &I);
      76             :   void visitIntrinsicInst(IntrinsicInst &I);
      77             : };
      78             : 
      79             : } // namespace
      80             : 
      81             : char AMDGPUAtomicOptimizer::ID = 0;
      82             : 
      83             : char &llvm::AMDGPUAtomicOptimizerID = AMDGPUAtomicOptimizer::ID;
      84             : 
      85         150 : bool AMDGPUAtomicOptimizer::runOnFunction(Function &F) {
      86         150 :   if (skipFunction(F)) {
      87             :     return false;
      88             :   }
      89             : 
      90         150 :   DA = &getAnalysis<LegacyDivergenceAnalysis>();
      91         150 :   DL = &F.getParent()->getDataLayout();
      92             :   DominatorTreeWrapperPass *const DTW =
      93         150 :       getAnalysisIfAvailable<DominatorTreeWrapperPass>();
      94         150 :   DT = DTW ? &DTW->getDomTree() : nullptr;
      95         150 :   const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>();
      96         150 :   const TargetMachine &TM = TPC.getTM<TargetMachine>();
      97             :   const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F);
      98         150 :   HasDPP = ST.hasDPP();
      99             : 
     100             :   visit(F);
     101             : 
     102         150 :   const bool Changed = !ToReplace.empty();
     103             : 
     104         254 :   for (ReplacementInfo &Info : ToReplace) {
     105         104 :     optimizeAtomic(*Info.I, Info.Op, Info.ValIdx, Info.ValDivergent);
     106             :   }
     107             : 
     108             :   ToReplace.clear();
     109             : 
     110         150 :   return Changed;
     111             : }
     112             : 
     113          72 : void AMDGPUAtomicOptimizer::visitAtomicRMWInst(AtomicRMWInst &I) {
     114             :   // Early exit for unhandled address space atomic instructions.
     115          72 :   switch (I.getPointerAddressSpace()) {
     116             :   default:
     117          16 :     return;
     118             :   case AMDGPUAS::GLOBAL_ADDRESS:
     119             :   case AMDGPUAS::LOCAL_ADDRESS:
     120             :     break;
     121             :   }
     122             : 
     123             :   Instruction::BinaryOps Op;
     124             : 
     125          72 :   switch (I.getOperation()) {
     126             :   default:
     127             :     return;
     128             :   case AtomicRMWInst::Add:
     129             :     Op = Instruction::Add;
     130             :     break;
     131          36 :   case AtomicRMWInst::Sub:
     132             :     Op = Instruction::Sub;
     133          36 :     break;
     134             :   }
     135             : 
     136             :   const unsigned PtrIdx = 0;
     137             :   const unsigned ValIdx = 1;
     138             : 
     139             :   // If the pointer operand is divergent, then each lane is doing an atomic
     140             :   // operation on a different address, and we cannot optimize that.
     141          72 :   if (DA->isDivergent(I.getOperand(PtrIdx))) {
     142           0 :     return;
     143             :   }
     144             : 
     145          72 :   const bool ValDivergent = DA->isDivergent(I.getOperand(ValIdx));
     146             : 
     147             :   // If the value operand is divergent, each lane is contributing a different
     148             :   // value to the atomic calculation. We can only optimize divergent values if
     149             :   // we have DPP available on our subtarget, and the atomic operation is 32
     150             :   // bits.
     151          24 :   if (ValDivergent && (!HasDPP || (DL->getTypeSizeInBits(I.getType()) != 32))) {
     152          16 :     return;
     153             :   }
     154             : 
     155             :   // If we get here, we can optimize the atomic using a single wavefront-wide
     156             :   // atomic operation to do the calculation for the entire wavefront, so
     157             :   // remember the instruction so we can come back to it.
     158          56 :   const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
     159             : 
     160          56 :   ToReplace.push_back(Info);
     161             : }
     162             : 
     163         294 : void AMDGPUAtomicOptimizer::visitIntrinsicInst(IntrinsicInst &I) {
     164             :   Instruction::BinaryOps Op;
     165             : 
     166         294 :   switch (I.getIntrinsicID()) {
     167             :   default:
     168         246 :     return;
     169             :   case Intrinsic::amdgcn_buffer_atomic_add:
     170             :   case Intrinsic::amdgcn_struct_buffer_atomic_add:
     171             :   case Intrinsic::amdgcn_raw_buffer_atomic_add:
     172             :     Op = Instruction::Add;
     173             :     break;
     174          39 :   case Intrinsic::amdgcn_buffer_atomic_sub:
     175             :   case Intrinsic::amdgcn_struct_buffer_atomic_sub:
     176             :   case Intrinsic::amdgcn_raw_buffer_atomic_sub:
     177             :     Op = Instruction::Sub;
     178          39 :     break;
     179             :   }
     180             : 
     181             :   const unsigned ValIdx = 0;
     182             : 
     183          78 :   const bool ValDivergent = DA->isDivergent(I.getOperand(ValIdx));
     184             : 
     185             :   // If the value operand is divergent, each lane is contributing a different
     186             :   // value to the atomic calculation. We can only optimize divergent values if
     187             :   // we have DPP available on our subtarget, and the atomic operation is 32
     188             :   // bits.
     189          18 :   if (ValDivergent && (!HasDPP || (DL->getTypeSizeInBits(I.getType()) != 32))) {
     190           6 :     return;
     191             :   }
     192             : 
     193             :   // If any of the other arguments to the intrinsic are divergent, we can't
     194             :   // optimize the operation.
     195         358 :   for (unsigned Idx = 1; Idx < I.getNumOperands(); Idx++) {
     196         310 :     if (DA->isDivergent(I.getOperand(Idx))) {
     197          24 :       return;
     198             :     }
     199             :   }
     200             : 
     201             :   // If we get here, we can optimize the atomic using a single wavefront-wide
     202             :   // atomic operation to do the calculation for the entire wavefront, so
     203             :   // remember the instruction so we can come back to it.
     204          48 :   const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
     205             : 
     206          48 :   ToReplace.push_back(Info);
     207             : }
     208             : 
     209         104 : void AMDGPUAtomicOptimizer::optimizeAtomic(Instruction &I,
     210             :                                            Instruction::BinaryOps Op,
     211             :                                            unsigned ValIdx,
     212             :                                            bool ValDivergent) const {
     213         104 :   LLVMContext &Context = I.getContext();
     214             : 
     215             :   // Start building just before the instruction.
     216         104 :   IRBuilder<> B(&I);
     217             : 
     218         104 :   Type *const Ty = I.getType();
     219         104 :   const unsigned TyBitWidth = DL->getTypeSizeInBits(Ty);
     220         104 :   Type *const VecTy = VectorType::get(B.getInt32Ty(), 2);
     221             : 
     222             :   // This is the value in the atomic operation we need to combine in order to
     223             :   // reduce the number of atomic operations.
     224         104 :   Value *const V = I.getOperand(ValIdx);
     225             : 
     226             :   // We need to know how many lanes are active within the wavefront, and we do
     227             :   // this by getting the exec register, which tells us all the lanes that are
     228             :   // active.
     229             :   MDNode *const RegName =
     230         104 :       llvm::MDNode::get(Context, llvm::MDString::get(Context, "exec"));
     231         104 :   Value *const Metadata = llvm::MetadataAsValue::get(Context, RegName);
     232             :   CallInst *const Exec =
     233         208 :       B.CreateIntrinsic(Intrinsic::read_register, {B.getInt64Ty()}, {Metadata});
     234             :   setConvergent(Exec);
     235             : 
     236             :   // We need to know how many lanes are active within the wavefront that are
     237             :   // below us. If we counted each lane linearly starting from 0, a lane is
     238             :   // below us only if its associated index was less than ours. We do this by
     239             :   // using the mbcnt intrinsic.
     240         104 :   Value *const BitCast = B.CreateBitCast(Exec, VecTy);
     241         104 :   Value *const ExtractLo = B.CreateExtractElement(BitCast, B.getInt32(0));
     242         104 :   Value *const ExtractHi = B.CreateExtractElement(BitCast, B.getInt32(1));
     243         104 :   CallInst *const PartialMbcnt = B.CreateIntrinsic(
     244         104 :       Intrinsic::amdgcn_mbcnt_lo, {}, {ExtractLo, B.getInt32(0)});
     245         104 :   CallInst *const Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_hi, {},
     246         104 :                                             {ExtractHi, PartialMbcnt});
     247             : 
     248         104 :   Value *const MbcntCast = B.CreateIntCast(Mbcnt, Ty, false);
     249             : 
     250             :   Value *LaneOffset = nullptr;
     251         104 :   Value *NewV = nullptr;
     252             : 
     253             :   // If we have a divergent value in each lane, we need to combine the value
     254             :   // using DPP.
     255         104 :   if (ValDivergent) {
     256             :     // First we need to set all inactive invocations to 0, so that they can
     257             :     // correctly contribute to the final result.
     258          40 :     CallInst *const SetInactive = B.CreateIntrinsic(
     259          20 :         Intrinsic::amdgcn_set_inactive, Ty, {V, B.getIntN(TyBitWidth, 0)});
     260             :     setConvergent(SetInactive);
     261          20 :     NewV = SetInactive;
     262             : 
     263             :     const unsigned Iters = 6;
     264          20 :     const unsigned DPPCtrl[Iters] = {DPP_ROW_SR1,     DPP_ROW_SR2,
     265             :                                      DPP_ROW_SR4,     DPP_ROW_SR8,
     266             :                                      DPP_ROW_BCAST15, DPP_ROW_BCAST31};
     267          20 :     const unsigned RowMask[Iters] = {0xf, 0xf, 0xf, 0xf, 0xa, 0xc};
     268             : 
     269             :     // This loop performs an inclusive scan across the wavefront, with all lanes
     270             :     // active (by using the WWM intrinsic).
     271         140 :     for (unsigned Idx = 0; Idx < Iters; Idx++) {
     272         240 :       CallInst *const DPP = B.CreateIntrinsic(Intrinsic::amdgcn_mov_dpp, Ty,
     273         120 :                                               {NewV, B.getInt32(DPPCtrl[Idx]),
     274         120 :                                                B.getInt32(RowMask[Idx]),
     275         120 :                                                B.getInt32(0xf), B.getFalse()});
     276             :       setConvergent(DPP);
     277         240 :       Value *const WWM = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, DPP);
     278             : 
     279         120 :       NewV = B.CreateBinOp(Op, NewV, WWM);
     280         120 :       NewV = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, NewV);
     281             :     }
     282             : 
     283             :     // NewV has returned the inclusive scan of V, but for the lane offset we
     284             :     // require an exclusive scan. We do this by shifting the values from the
     285             :     // entire wavefront right by 1, and by setting the bound_ctrl (last argument
     286             :     // to the intrinsic below) to true, we can guarantee that 0 will be shifted
     287             :     // into the 0'th invocation.
     288             :     CallInst *const DPP =
     289          60 :         B.CreateIntrinsic(Intrinsic::amdgcn_mov_dpp, {Ty},
     290          20 :                           {NewV, B.getInt32(DPP_WF_SR1), B.getInt32(0xf),
     291          20 :                            B.getInt32(0xf), B.getTrue()});
     292             :     setConvergent(DPP);
     293          40 :     LaneOffset = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, DPP);
     294             : 
     295             :     // Read the value from the last lane, which has accumlated the values of
     296             :     // each active lane in the wavefront. This will be our new value with which
     297             :     // we will provide to the atomic operation.
     298          20 :     if (TyBitWidth == 64) {
     299           0 :       Value *const ExtractLo = B.CreateTrunc(NewV, B.getInt32Ty());
     300             :       Value *const ExtractHi =
     301           0 :           B.CreateTrunc(B.CreateLShr(NewV, B.getInt64(32)), B.getInt32Ty());
     302           0 :       CallInst *const ReadLaneLo = B.CreateIntrinsic(
     303           0 :           Intrinsic::amdgcn_readlane, {}, {ExtractLo, B.getInt32(63)});
     304             :       setConvergent(ReadLaneLo);
     305           0 :       CallInst *const ReadLaneHi = B.CreateIntrinsic(
     306           0 :           Intrinsic::amdgcn_readlane, {}, {ExtractHi, B.getInt32(63)});
     307             :       setConvergent(ReadLaneHi);
     308           0 :       Value *const PartialInsert = B.CreateInsertElement(
     309           0 :           UndefValue::get(VecTy), ReadLaneLo, B.getInt32(0));
     310             :       Value *const Insert =
     311           0 :           B.CreateInsertElement(PartialInsert, ReadLaneHi, B.getInt32(1));
     312           0 :       NewV = B.CreateBitCast(Insert, Ty);
     313          20 :     } else if (TyBitWidth == 32) {
     314          20 :       CallInst *const ReadLane = B.CreateIntrinsic(Intrinsic::amdgcn_readlane,
     315          20 :                                                    {}, {NewV, B.getInt32(63)});
     316             :       setConvergent(ReadLane);
     317          20 :       NewV = ReadLane;
     318             :     } else {
     319           0 :       llvm_unreachable("Unhandled atomic bit width");
     320             :     }
     321             :   } else {
     322             :     // Get the total number of active lanes we have by using popcount.
     323          84 :     Instruction *const Ctpop = B.CreateUnaryIntrinsic(Intrinsic::ctpop, Exec);
     324          84 :     Value *const CtpopCast = B.CreateIntCast(Ctpop, Ty, false);
     325             : 
     326             :     // Calculate the new value we will be contributing to the atomic operation
     327             :     // for the entire wavefront.
     328          84 :     NewV = B.CreateMul(V, CtpopCast);
     329          84 :     LaneOffset = B.CreateMul(V, MbcntCast);
     330             :   }
     331             : 
     332             :   // We only want a single lane to enter our new control flow, and we do this
     333             :   // by checking if there are any active lanes below us. Only one lane will
     334             :   // have 0 active lanes below us, so that will be the only one to progress.
     335         104 :   Value *const Cond = B.CreateICmpEQ(MbcntCast, B.getIntN(TyBitWidth, 0));
     336             : 
     337             :   // Store I's original basic block before we split the block.
     338         104 :   BasicBlock *const EntryBB = I.getParent();
     339             : 
     340             :   // We need to introduce some new control flow to force a single lane to be
     341             :   // active. We do this by splitting I's basic block at I, and introducing the
     342             :   // new block such that:
     343             :   // entry --> single_lane -\
     344             :   //       \------------------> exit
     345             :   Instruction *const SingleLaneTerminator =
     346         104 :       SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr);
     347             : 
     348             :   // Move the IR builder into single_lane next.
     349         104 :   B.SetInsertPoint(SingleLaneTerminator);
     350             : 
     351             :   // Clone the original atomic operation into single lane, replacing the
     352             :   // original value with our newly created one.
     353         104 :   Instruction *const NewI = I.clone();
     354         104 :   B.Insert(NewI);
     355         104 :   NewI->setOperand(ValIdx, NewV);
     356             : 
     357             :   // Move the IR builder into exit next, and start inserting just before the
     358             :   // original instruction.
     359         104 :   B.SetInsertPoint(&I);
     360             : 
     361             :   // Create a PHI node to get our new atomic result into the exit block.
     362         104 :   PHINode *const PHI = B.CreatePHI(Ty, 2);
     363         104 :   PHI->addIncoming(UndefValue::get(Ty), EntryBB);
     364         104 :   PHI->addIncoming(NewI, SingleLaneTerminator->getParent());
     365             : 
     366             :   // We need to broadcast the value who was the lowest active lane (the first
     367             :   // lane) to all other lanes in the wavefront. We use an intrinsic for this,
     368             :   // but have to handle 64-bit broadcasts with two calls to this intrinsic.
     369             :   Value *BroadcastI = nullptr;
     370             : 
     371         104 :   if (TyBitWidth == 64) {
     372          48 :     Value *const ExtractLo = B.CreateTrunc(PHI, B.getInt32Ty());
     373             :     Value *const ExtractHi =
     374          48 :         B.CreateTrunc(B.CreateLShr(PHI, B.getInt64(32)), B.getInt32Ty());
     375             :     CallInst *const ReadFirstLaneLo =
     376          24 :         B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractLo);
     377             :     setConvergent(ReadFirstLaneLo);
     378             :     CallInst *const ReadFirstLaneHi =
     379          24 :         B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractHi);
     380             :     setConvergent(ReadFirstLaneHi);
     381          24 :     Value *const PartialInsert = B.CreateInsertElement(
     382          24 :         UndefValue::get(VecTy), ReadFirstLaneLo, B.getInt32(0));
     383             :     Value *const Insert =
     384          24 :         B.CreateInsertElement(PartialInsert, ReadFirstLaneHi, B.getInt32(1));
     385          24 :     BroadcastI = B.CreateBitCast(Insert, Ty);
     386          80 :   } else if (TyBitWidth == 32) {
     387             :     CallInst *const ReadFirstLane =
     388         160 :         B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, PHI);
     389             :     setConvergent(ReadFirstLane);
     390             :     BroadcastI = ReadFirstLane;
     391             :   } else {
     392           0 :     llvm_unreachable("Unhandled atomic bit width");
     393             :   }
     394             : 
     395             :   // Now that we have the result of our single atomic operation, we need to
     396             :   // get our individual lane's slice into the result. We use the lane offset we
     397             :   // previously calculated combined with the atomic result value we got from the
     398             :   // first lane, to get our lane's index into the atomic result.
     399         104 :   Value *const Result = B.CreateBinOp(Op, BroadcastI, LaneOffset);
     400             : 
     401             :   // Replace the original atomic instruction with the new one.
     402         104 :   I.replaceAllUsesWith(Result);
     403             : 
     404             :   // And delete the original.
     405         104 :   I.eraseFromParent();
     406         104 : }
     407             : 
     408           0 : void AMDGPUAtomicOptimizer::setConvergent(CallInst *const CI) const {
     409         412 :   CI->addAttribute(AttributeList::FunctionIndex, Attribute::Convergent);
     410           0 : }
     411             : 
     412       85105 : INITIALIZE_PASS_BEGIN(AMDGPUAtomicOptimizer, DEBUG_TYPE,
     413             :                       "AMDGPU atomic optimizations", false, false)
     414       85105 : INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
     415       85105 : INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
     416      199024 : INITIALIZE_PASS_END(AMDGPUAtomicOptimizer, DEBUG_TYPE,
     417             :                     "AMDGPU atomic optimizations", false, false)
     418             : 
     419          15 : FunctionPass *llvm::createAMDGPUAtomicOptimizerPass() {
     420          15 :   return new AMDGPUAtomicOptimizer();
     421             : }

Generated by: LCOV version 1.13