Line data Source code
1 : //===-- ARMTargetMachine.cpp - Define TargetMachine for ARM ---------------===//
2 : //
3 : // The LLVM Compiler Infrastructure
4 : //
5 : // This file is distributed under the University of Illinois Open Source
6 : // License. See LICENSE.TXT for details.
7 : //
8 : //===----------------------------------------------------------------------===//
9 : //
10 : //
11 : //===----------------------------------------------------------------------===//
12 :
13 : #include "ARMTargetMachine.h"
14 : #include "ARM.h"
15 : #include "ARMMacroFusion.h"
16 : #include "ARMSubtarget.h"
17 : #include "ARMTargetObjectFile.h"
18 : #include "ARMTargetTransformInfo.h"
19 : #include "MCTargetDesc/ARMMCTargetDesc.h"
20 : #include "llvm/ADT/Optional.h"
21 : #include "llvm/ADT/STLExtras.h"
22 : #include "llvm/ADT/StringRef.h"
23 : #include "llvm/ADT/Triple.h"
24 : #include "llvm/Analysis/TargetTransformInfo.h"
25 : #include "llvm/CodeGen/ExecutionDomainFix.h"
26 : #include "llvm/CodeGen/GlobalISel/CallLowering.h"
27 : #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
28 : #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
29 : #include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
30 : #include "llvm/CodeGen/GlobalISel/Legalizer.h"
31 : #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
32 : #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
33 : #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
34 : #include "llvm/CodeGen/MachineFunction.h"
35 : #include "llvm/CodeGen/MachineScheduler.h"
36 : #include "llvm/CodeGen/Passes.h"
37 : #include "llvm/CodeGen/TargetPassConfig.h"
38 : #include "llvm/IR/Attributes.h"
39 : #include "llvm/IR/DataLayout.h"
40 : #include "llvm/IR/Function.h"
41 : #include "llvm/Pass.h"
42 : #include "llvm/Support/CodeGen.h"
43 : #include "llvm/Support/CommandLine.h"
44 : #include "llvm/Support/ErrorHandling.h"
45 : #include "llvm/Support/TargetParser.h"
46 : #include "llvm/Support/TargetRegistry.h"
47 : #include "llvm/Target/TargetLoweringObjectFile.h"
48 : #include "llvm/Target/TargetOptions.h"
49 : #include "llvm/Transforms/Scalar.h"
50 : #include <cassert>
51 : #include <memory>
52 : #include <string>
53 :
54 : using namespace llvm;
55 :
56 : static cl::opt<bool>
57 : DisableA15SDOptimization("disable-a15-sd-optimization", cl::Hidden,
58 : cl::desc("Inhibit optimization of S->D register accesses on A15"),
59 : cl::init(false));
60 :
61 : static cl::opt<bool>
62 : EnableAtomicTidy("arm-atomic-cfg-tidy", cl::Hidden,
63 : cl::desc("Run SimplifyCFG after expanding atomic operations"
64 : " to make use of cmpxchg flow-based information"),
65 : cl::init(true));
66 :
67 : static cl::opt<bool>
68 : EnableARMLoadStoreOpt("arm-load-store-opt", cl::Hidden,
69 : cl::desc("Enable ARM load/store optimization pass"),
70 : cl::init(true));
71 :
72 : // FIXME: Unify control over GlobalMerge.
73 : static cl::opt<cl::boolOrDefault>
74 : EnableGlobalMerge("arm-global-merge", cl::Hidden,
75 : cl::desc("Enable the global merge pass"));
76 :
77 : namespace llvm {
78 : void initializeARMExecutionDomainFixPass(PassRegistry&);
79 : }
80 :
81 113919 : extern "C" void LLVMInitializeARMTarget() {
82 : // Register the target.
83 113919 : RegisterTargetMachine<ARMLETargetMachine> X(getTheARMLETarget());
84 113919 : RegisterTargetMachine<ARMLETargetMachine> A(getTheThumbLETarget());
85 113919 : RegisterTargetMachine<ARMBETargetMachine> Y(getTheARMBETarget());
86 113919 : RegisterTargetMachine<ARMBETargetMachine> B(getTheThumbBETarget());
87 :
88 113919 : PassRegistry &Registry = *PassRegistry::getPassRegistry();
89 113919 : initializeGlobalISel(Registry);
90 113919 : initializeARMLoadStoreOptPass(Registry);
91 113919 : initializeARMPreAllocLoadStoreOptPass(Registry);
92 113919 : initializeARMParallelDSPPass(Registry);
93 113919 : initializeARMCodeGenPreparePass(Registry);
94 113919 : initializeARMConstantIslandsPass(Registry);
95 113919 : initializeARMExecutionDomainFixPass(Registry);
96 113919 : initializeARMExpandPseudoPass(Registry);
97 113919 : initializeThumb2SizeReducePass(Registry);
98 113919 : }
99 :
100 3446 : static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
101 3446 : if (TT.isOSBinFormatMachO())
102 : return llvm::make_unique<TargetLoweringObjectFileMachO>();
103 2504 : if (TT.isOSWindows())
104 127 : return llvm::make_unique<TargetLoweringObjectFileCOFF>();
105 2377 : return llvm::make_unique<ARMElfTargetObjectFile>();
106 : }
107 :
108 : static ARMBaseTargetMachine::ARMABI
109 6892 : computeTargetABI(const Triple &TT, StringRef CPU,
110 : const TargetOptions &Options) {
111 6892 : StringRef ABIName = Options.MCOptions.getABIName();
112 :
113 6892 : if (ABIName.empty())
114 6668 : ABIName = ARM::computeDefaultTargetABI(TT, CPU);
115 :
116 : if (ABIName == "aapcs16")
117 : return ARMBaseTargetMachine::ARM_ABI_AAPCS16;
118 : else if (ABIName.startswith("aapcs"))
119 : return ARMBaseTargetMachine::ARM_ABI_AAPCS;
120 : else if (ABIName.startswith("apcs"))
121 : return ARMBaseTargetMachine::ARM_ABI_APCS;
122 :
123 0 : llvm_unreachable("Unhandled/unknown ABI Name!");
124 : return ARMBaseTargetMachine::ARM_ABI_UNKNOWN;
125 : }
126 :
127 3446 : static std::string computeDataLayout(const Triple &TT, StringRef CPU,
128 : const TargetOptions &Options,
129 : bool isLittle) {
130 3446 : auto ABI = computeTargetABI(TT, CPU, Options);
131 : std::string Ret;
132 :
133 3446 : if (isLittle)
134 : // Little endian.
135 : Ret += "e";
136 : else
137 : // Big endian.
138 : Ret += "E";
139 :
140 3446 : Ret += DataLayout::getManglingComponent(TT);
141 :
142 : // Pointers are 32 bits and aligned to 32 bits.
143 : Ret += "-p:32:32";
144 :
145 : // ABIs other than APCS have 64 bit integers with natural alignment.
146 3446 : if (ABI != ARMBaseTargetMachine::ARM_ABI_APCS)
147 : Ret += "-i64:64";
148 :
149 : // We have 64 bits floats. The APCS ABI requires them to be aligned to 32
150 : // bits, others to 64 bits. We always try to align to 64 bits.
151 3446 : if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
152 : Ret += "-f64:32:64";
153 :
154 : // We have 128 and 64 bit vectors. The APCS ABI aligns them to 32 bits, others
155 : // to 64. We always ty to give them natural alignment.
156 3446 : if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
157 : Ret += "-v64:32:64-v128:32:128";
158 2593 : else if (ABI != ARMBaseTargetMachine::ARM_ABI_AAPCS16)
159 : Ret += "-v128:64:128";
160 :
161 : // Try to align aggregates to 32 bits (the default is 64 bits, which has no
162 : // particular hardware support on 32-bit ARM).
163 : Ret += "-a:0:32";
164 :
165 : // Integer registers are 32 bits.
166 : Ret += "-n32";
167 :
168 : // The stack is 128 bit aligned on NaCl, 64 bit aligned on AAPCS and 32 bit
169 : // aligned everywhere else.
170 3446 : if (TT.isOSNaCl() || ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16)
171 : Ret += "-S128";
172 3408 : else if (ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS)
173 : Ret += "-S64";
174 : else
175 : Ret += "-S32";
176 :
177 3446 : return Ret;
178 : }
179 :
180 : static Reloc::Model getEffectiveRelocModel(const Triple &TT,
181 : Optional<Reloc::Model> RM) {
182 3446 : if (!RM.hasValue())
183 : // Default relocation model on Darwin is PIC.
184 2738 : return TT.isOSBinFormatMachO() ? Reloc::PIC_ : Reloc::Static;
185 :
186 : if (*RM == Reloc::ROPI || *RM == Reloc::RWPI || *RM == Reloc::ROPI_RWPI)
187 : assert(TT.isOSBinFormatELF() &&
188 : "ROPI/RWPI currently only supported for ELF");
189 :
190 : // DynamicNoPIC is only used on darwin.
191 708 : if (*RM == Reloc::DynamicNoPIC && !TT.isOSDarwin())
192 : return Reloc::Static;
193 :
194 : return *RM;
195 : }
196 :
197 : static CodeModel::Model getEffectiveCodeModel(Optional<CodeModel::Model> CM) {
198 3446 : if (CM)
199 : return *CM;
200 : return CodeModel::Small;
201 : }
202 :
203 : /// Create an ARM architecture model.
204 : ///
205 3446 : ARMBaseTargetMachine::ARMBaseTargetMachine(const Target &T, const Triple &TT,
206 : StringRef CPU, StringRef FS,
207 : const TargetOptions &Options,
208 : Optional<Reloc::Model> RM,
209 : Optional<CodeModel::Model> CM,
210 3446 : CodeGenOpt::Level OL, bool isLittle)
211 3446 : : LLVMTargetMachine(T, computeDataLayout(TT, CPU, Options, isLittle), TT,
212 : CPU, FS, Options, getEffectiveRelocModel(TT, RM),
213 : getEffectiveCodeModel(CM), OL),
214 3446 : TargetABI(computeTargetABI(TT, CPU, Options)),
215 10338 : TLOF(createTLOF(getTargetTriple())), isLittle(isLittle) {
216 :
217 : // Default to triple-appropriate float ABI
218 3446 : if (Options.FloatABIType == FloatABI::Default) {
219 : if (isTargetHardFloat())
220 350 : this->Options.FloatABIType = FloatABI::Hard;
221 : else
222 2929 : this->Options.FloatABIType = FloatABI::Soft;
223 : }
224 :
225 : // Default to triple-appropriate EABI
226 3446 : if (Options.EABIVersion == EABI::Default ||
227 : Options.EABIVersion == EABI::Unknown) {
228 : // musl is compatible with glibc with regard to EABI version
229 2795 : if ((TargetTriple.getEnvironment() == Triple::GNUEABI ||
230 2642 : TargetTriple.getEnvironment() == Triple::GNUEABIHF ||
231 2617 : TargetTriple.getEnvironment() == Triple::MuslEABI ||
232 3587 : TargetTriple.getEnvironment() == Triple::MuslEABIHF) &&
233 : !(TargetTriple.isOSWindows() || TargetTriple.isOSDarwin()))
234 792 : this->Options.EABIVersion = EABI::GNU;
235 : else
236 2610 : this->Options.EABIVersion = EABI::EABI5;
237 : }
238 :
239 3446 : if (TT.isOSBinFormatMachO()) {
240 942 : this->Options.TrapUnreachable = true;
241 942 : this->Options.NoTrapAfterNoreturn = true;
242 : }
243 :
244 3446 : initAsmInfo();
245 3446 : }
246 :
247 : ARMBaseTargetMachine::~ARMBaseTargetMachine() = default;
248 :
249 : const ARMSubtarget *
250 264082 : ARMBaseTargetMachine::getSubtargetImpl(const Function &F) const {
251 264082 : Attribute CPUAttr = F.getFnAttribute("target-cpu");
252 264082 : Attribute FSAttr = F.getFnAttribute("target-features");
253 :
254 264082 : std::string CPU = !CPUAttr.hasAttribute(Attribute::None)
255 56141 : ? CPUAttr.getValueAsString().str()
256 320223 : : TargetCPU;
257 264082 : std::string FS = !FSAttr.hasAttribute(Attribute::None)
258 377420 : ? FSAttr.getValueAsString().str()
259 377420 : : TargetFS;
260 :
261 : // FIXME: This is related to the code below to reset the target options,
262 : // we need to know whether or not the soft float flag is set on the
263 : // function before we can generate a subtarget. We also need to use
264 : // it as a key for the subtarget since that can be the only difference
265 : // between two functions.
266 : bool SoftFloat =
267 528164 : F.getFnAttribute("use-soft-float").getValueAsString() == "true";
268 : // If the soft float attribute is set on the function turn on the soft float
269 : // subtarget feature.
270 : if (SoftFloat)
271 456 : FS += FS.empty() ? "+soft-float" : ",+soft-float";
272 :
273 290216 : auto &I = SubtargetMap[CPU + FS];
274 264082 : if (!I) {
275 : // This needs to be done before we create a new subtarget since any
276 : // creation will depend on the TM and the code generation flags on the
277 : // function that reside in TargetOptions.
278 3076 : resetTargetOptions(F);
279 3076 : I = llvm::make_unique<ARMSubtarget>(TargetTriple, CPU, FS, *this, isLittle);
280 :
281 3076 : if (!I->isThumb() && !I->hasARMOps())
282 6 : F.getContext().emitError("Function '" + F.getName() + "' uses ARM "
283 3 : "instructions, but the target does not support ARM mode execution.");
284 : }
285 :
286 264082 : return I.get();
287 : }
288 :
289 : TargetTransformInfo
290 113109 : ARMBaseTargetMachine::getTargetTransformInfo(const Function &F) {
291 113109 : return TargetTransformInfo(ARMTTIImpl(this, F));
292 : }
293 :
294 3399 : ARMLETargetMachine::ARMLETargetMachine(const Target &T, const Triple &TT,
295 : StringRef CPU, StringRef FS,
296 : const TargetOptions &Options,
297 : Optional<Reloc::Model> RM,
298 : Optional<CodeModel::Model> CM,
299 3399 : CodeGenOpt::Level OL, bool JIT)
300 6798 : : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}
301 :
302 47 : ARMBETargetMachine::ARMBETargetMachine(const Target &T, const Triple &TT,
303 : StringRef CPU, StringRef FS,
304 : const TargetOptions &Options,
305 : Optional<Reloc::Model> RM,
306 : Optional<CodeModel::Model> CM,
307 47 : CodeGenOpt::Level OL, bool JIT)
308 94 : : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}
309 :
310 : namespace {
311 :
312 : /// ARM Code Generator Pass Configuration Options.
313 : class ARMPassConfig : public TargetPassConfig {
314 : public:
315 3088 : ARMPassConfig(ARMBaseTargetMachine &TM, PassManagerBase &PM)
316 3088 : : TargetPassConfig(TM, PM) {
317 3088 : if (TM.getOptLevel() != CodeGenOpt::None) {
318 : ARMGenSubtargetInfo STI(TM.getTargetTriple(), TM.getTargetCPU(),
319 2633 : TM.getTargetFeatureString());
320 2633 : if (STI.hasFeature(ARM::FeatureUseMISched))
321 90 : substitutePass(&PostRASchedulerID, &PostMachineSchedulerID);
322 : }
323 3088 : }
324 :
325 : ARMBaseTargetMachine &getARMTargetMachine() const {
326 2801 : return getTM<ARMBaseTargetMachine>();
327 : }
328 :
329 : ScheduleDAGInstrs *
330 281 : createMachineScheduler(MachineSchedContext *C) const override {
331 281 : ScheduleDAGMILive *DAG = createGenericSchedLive(C);
332 : // add DAG Mutations here.
333 281 : const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>();
334 : if (ST.hasFusion())
335 10 : DAG->addMutation(createARMMacroFusionDAGMutation());
336 281 : return DAG;
337 : }
338 :
339 : ScheduleDAGInstrs *
340 11 : createPostMachineScheduler(MachineSchedContext *C) const override {
341 11 : ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
342 : // add DAG Mutations here.
343 11 : const ARMSubtarget &ST = C->MF->getSubtarget<ARMSubtarget>();
344 : if (ST.hasFusion())
345 4 : DAG->addMutation(createARMMacroFusionDAGMutation());
346 11 : return DAG;
347 : }
348 :
349 : void addIRPasses() override;
350 : void addCodeGenPrepare() override;
351 : bool addPreISel() override;
352 : bool addInstSelector() override;
353 : bool addIRTranslator() override;
354 : bool addLegalizeMachineIR() override;
355 : bool addRegBankSelect() override;
356 : bool addGlobalInstructionSelect() override;
357 : void addPreRegAlloc() override;
358 : void addPreSched2() override;
359 : void addPreEmitPass() override;
360 : };
361 :
362 : class ARMExecutionDomainFix : public ExecutionDomainFix {
363 : public:
364 : static char ID;
365 2569 : ARMExecutionDomainFix() : ExecutionDomainFix(ID, ARM::DPRRegClass) {}
366 2557 : StringRef getPassName() const override {
367 2557 : return "ARM Execution Domain Fix";
368 : }
369 : };
370 : char ARMExecutionDomainFix::ID;
371 :
372 : } // end anonymous namespace
373 :
374 85105 : INITIALIZE_PASS_BEGIN(ARMExecutionDomainFix, "arm-execution-domain-fix",
375 : "ARM Execution Domain Fix", false, false)
376 85105 : INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)
377 199024 : INITIALIZE_PASS_END(ARMExecutionDomainFix, "arm-execution-domain-fix",
378 : "ARM Execution Domain Fix", false, false)
379 :
380 3088 : TargetPassConfig *ARMBaseTargetMachine::createPassConfig(PassManagerBase &PM) {
381 3088 : return new ARMPassConfig(*this, PM);
382 : }
383 :
384 2829 : void ARMPassConfig::addIRPasses() {
385 2829 : if (TM->Options.ThreadModel == ThreadModel::Single)
386 1 : addPass(createLowerAtomicPass());
387 : else
388 2828 : addPass(createAtomicExpandPass());
389 :
390 : // Cmpxchg instructions are often used with a subsequent comparison to
391 : // determine whether it succeeded. We can exploit existing control-flow in
392 : // ldrex/strex loops to simplify this, but it needs tidying up.
393 2829 : if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy)
394 7542 : addPass(createCFGSimplificationPass(
395 : 1, false, false, true, true, [this](const Function &F) {
396 : const auto &ST = this->TM->getSubtarget<ARMSubtarget>(F);
397 : return ST.hasAnyDataBarrier() && !ST.isThumb1Only();
398 : }));
399 :
400 2829 : TargetPassConfig::addIRPasses();
401 :
402 : // Match interleaved memory accesses to ldN/stN intrinsics.
403 2829 : if (TM->getOptLevel() != CodeGenOpt::None)
404 2569 : addPass(createInterleavedAccessPass());
405 2829 : }
406 :
407 2829 : void ARMPassConfig::addCodeGenPrepare() {
408 2829 : if (getOptLevel() != CodeGenOpt::None)
409 2569 : addPass(createARMCodeGenPreparePass());
410 2829 : TargetPassConfig::addCodeGenPrepare();
411 2829 : }
412 :
413 2829 : bool ARMPassConfig::addPreISel() {
414 2829 : if (getOptLevel() != CodeGenOpt::None)
415 2569 : addPass(createARMParallelDSPPass());
416 :
417 5398 : if ((TM->getOptLevel() != CodeGenOpt::None &&
418 2852 : EnableGlobalMerge == cl::BOU_UNSET) ||
419 : EnableGlobalMerge == cl::BOU_TRUE) {
420 : // FIXME: This is using the thumb1 only constant value for
421 : // maximal global offset for merging globals. We may want
422 : // to look into using the old value for non-thumb1 code of
423 : // 4095 based on the TargetMachine, but this starts to become
424 : // tricky when doing code gen per function.
425 2568 : bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) &&
426 : (EnableGlobalMerge == cl::BOU_UNSET);
427 : // Merging of extern globals is enabled by default on non-Mach-O as we
428 : // expect it to be generally either beneficial or harmless. On Mach-O it
429 : // is disabled as we emit the .subsections_via_symbols directive which
430 : // means that merging extern globals is not safe.
431 2568 : bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO();
432 2568 : addPass(createGlobalMergePass(TM, 127, OnlyOptimizeForSize,
433 : MergeExternalByDefault));
434 : }
435 :
436 2829 : return false;
437 : }
438 :
439 2801 : bool ARMPassConfig::addInstSelector() {
440 2801 : addPass(createARMISelDag(getARMTargetMachine(), getOptLevel()));
441 2801 : return false;
442 : }
443 :
444 35 : bool ARMPassConfig::addIRTranslator() {
445 35 : addPass(new IRTranslator());
446 35 : return false;
447 : }
448 :
449 35 : bool ARMPassConfig::addLegalizeMachineIR() {
450 35 : addPass(new Legalizer());
451 35 : return false;
452 : }
453 :
454 35 : bool ARMPassConfig::addRegBankSelect() {
455 35 : addPass(new RegBankSelect());
456 35 : return false;
457 : }
458 :
459 35 : bool ARMPassConfig::addGlobalInstructionSelect() {
460 35 : addPass(new InstructionSelect());
461 35 : return false;
462 : }
463 :
464 2829 : void ARMPassConfig::addPreRegAlloc() {
465 2829 : if (getOptLevel() != CodeGenOpt::None) {
466 2569 : addPass(createMLxExpansionPass());
467 :
468 2569 : if (EnableARMLoadStoreOpt)
469 2569 : addPass(createARMLoadStoreOptimizationPass(/* pre-register alloc */ true));
470 :
471 2569 : if (!DisableA15SDOptimization)
472 2568 : addPass(createA15SDOptimizerPass());
473 : }
474 2829 : }
475 :
476 2829 : void ARMPassConfig::addPreSched2() {
477 2829 : if (getOptLevel() != CodeGenOpt::None) {
478 2569 : if (EnableARMLoadStoreOpt)
479 2569 : addPass(createARMLoadStoreOptimizationPass());
480 :
481 5138 : addPass(new ARMExecutionDomainFix());
482 2569 : addPass(createBreakFalseDeps());
483 : }
484 :
485 : // Expand some pseudo instructions into multiple instructions to allow
486 : // proper scheduling.
487 2829 : addPass(createARMExpandPseudoPass());
488 :
489 2829 : if (getOptLevel() != CodeGenOpt::None) {
490 : // in v8, IfConversion depends on Thumb instruction widths
491 5138 : addPass(createThumb2SizeReductionPass([this](const Function &F) {
492 13375 : return this->TM->getSubtarget<ARMSubtarget>(F).restrictIT();
493 : }));
494 :
495 5138 : addPass(createIfConverter([](const MachineFunction &MF) {
496 13369 : return !MF.getSubtarget<ARMSubtarget>().isThumb1Only();
497 : }));
498 : }
499 2829 : addPass(createThumb2ITBlockPass());
500 2829 : }
501 :
502 2829 : void ARMPassConfig::addPreEmitPass() {
503 8487 : addPass(createThumb2SizeReductionPass());
504 :
505 : // Constant island pass work on unbundled instructions.
506 2829 : addPass(createUnpackMachineBundles([](const MachineFunction &MF) {
507 14590 : return MF.getSubtarget<ARMSubtarget>().isThumb2();
508 : }));
509 :
510 : // Don't optimize barriers at -O0.
511 2829 : if (getOptLevel() != CodeGenOpt::None)
512 2569 : addPass(createARMOptimizeBarriersPass());
513 :
514 2829 : addPass(createARMConstantIslandPass());
515 2829 : }
|