Line data Source code
1 : //===- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions -------===//
2 : //
3 : // The LLVM Compiler Infrastructure
4 : //
5 : // This file is distributed under the University of Illinois Open Source
6 : // License. See LICENSE.TXT for details.
7 : //
8 : //===----------------------------------------------------------------------===//
9 :
10 : #include "ARMFeatures.h"
11 : #include "Utils/ARMBaseInfo.h"
12 : #include "MCTargetDesc/ARMAddressingModes.h"
13 : #include "MCTargetDesc/ARMBaseInfo.h"
14 : #include "MCTargetDesc/ARMMCExpr.h"
15 : #include "MCTargetDesc/ARMMCTargetDesc.h"
16 : #include "llvm/ADT/APFloat.h"
17 : #include "llvm/ADT/APInt.h"
18 : #include "llvm/ADT/None.h"
19 : #include "llvm/ADT/STLExtras.h"
20 : #include "llvm/ADT/SmallSet.h"
21 : #include "llvm/ADT/SmallVector.h"
22 : #include "llvm/ADT/StringMap.h"
23 : #include "llvm/ADT/StringRef.h"
24 : #include "llvm/ADT/StringSwitch.h"
25 : #include "llvm/ADT/Triple.h"
26 : #include "llvm/ADT/Twine.h"
27 : #include "llvm/MC/MCContext.h"
28 : #include "llvm/MC/MCExpr.h"
29 : #include "llvm/MC/MCInst.h"
30 : #include "llvm/MC/MCInstrDesc.h"
31 : #include "llvm/MC/MCInstrInfo.h"
32 : #include "llvm/MC/MCObjectFileInfo.h"
33 : #include "llvm/MC/MCParser/MCAsmLexer.h"
34 : #include "llvm/MC/MCParser/MCAsmParser.h"
35 : #include "llvm/MC/MCParser/MCAsmParserExtension.h"
36 : #include "llvm/MC/MCParser/MCAsmParserUtils.h"
37 : #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
38 : #include "llvm/MC/MCParser/MCTargetAsmParser.h"
39 : #include "llvm/MC/MCRegisterInfo.h"
40 : #include "llvm/MC/MCSection.h"
41 : #include "llvm/MC/MCStreamer.h"
42 : #include "llvm/MC/MCSubtargetInfo.h"
43 : #include "llvm/MC/MCSymbol.h"
44 : #include "llvm/MC/SubtargetFeature.h"
45 : #include "llvm/Support/ARMBuildAttributes.h"
46 : #include "llvm/Support/ARMEHABI.h"
47 : #include "llvm/Support/Casting.h"
48 : #include "llvm/Support/CommandLine.h"
49 : #include "llvm/Support/Compiler.h"
50 : #include "llvm/Support/ErrorHandling.h"
51 : #include "llvm/Support/MathExtras.h"
52 : #include "llvm/Support/SMLoc.h"
53 : #include "llvm/Support/TargetParser.h"
54 : #include "llvm/Support/TargetRegistry.h"
55 : #include "llvm/Support/raw_ostream.h"
56 : #include <algorithm>
57 : #include <cassert>
58 : #include <cstddef>
59 : #include <cstdint>
60 : #include <iterator>
61 : #include <limits>
62 : #include <memory>
63 : #include <string>
64 : #include <utility>
65 : #include <vector>
66 :
67 : #define DEBUG_TYPE "asm-parser"
68 :
69 : using namespace llvm;
70 :
71 : namespace {
72 :
73 : enum class ImplicitItModeTy { Always, Never, ARMOnly, ThumbOnly };
74 :
75 : static cl::opt<ImplicitItModeTy> ImplicitItMode(
76 : "arm-implicit-it", cl::init(ImplicitItModeTy::ARMOnly),
77 : cl::desc("Allow conditional instructions outdside of an IT block"),
78 : cl::values(clEnumValN(ImplicitItModeTy::Always, "always",
79 : "Accept in both ISAs, emit implicit ITs in Thumb"),
80 : clEnumValN(ImplicitItModeTy::Never, "never",
81 : "Warn in ARM, reject in Thumb"),
82 : clEnumValN(ImplicitItModeTy::ARMOnly, "arm",
83 : "Accept in ARM, reject in Thumb"),
84 : clEnumValN(ImplicitItModeTy::ThumbOnly, "thumb",
85 : "Warn in ARM, emit implicit ITs in Thumb")));
86 :
87 : static cl::opt<bool> AddBuildAttributes("arm-add-build-attributes",
88 : cl::init(false));
89 :
90 : enum VectorLaneTy { NoLanes, AllLanes, IndexedLane };
91 :
92 : class UnwindContext {
93 : using Locs = SmallVector<SMLoc, 4>;
94 :
95 : MCAsmParser &Parser;
96 : Locs FnStartLocs;
97 : Locs CantUnwindLocs;
98 : Locs PersonalityLocs;
99 : Locs PersonalityIndexLocs;
100 : Locs HandlerDataLocs;
101 : int FPReg;
102 :
103 : public:
104 1317 : UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {}
105 :
106 897 : bool hasFnStart() const { return !FnStartLocs.empty(); }
107 169 : bool cantUnwind() const { return !CantUnwindLocs.empty(); }
108 277 : bool hasHandlerData() const { return !HandlerDataLocs.empty(); }
109 :
110 : bool hasPersonality() const {
111 150 : return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty());
112 : }
113 :
114 230 : void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); }
115 56 : void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); }
116 78 : void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); }
117 77 : void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); }
118 16 : void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); }
119 :
120 41 : void saveFPReg(int Reg) { FPReg = Reg; }
121 0 : int getFPReg() const { return FPReg; }
122 :
123 1 : void emitFnStartLocNotes() const {
124 1 : for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end();
125 2 : FI != FE; ++FI)
126 2 : Parser.Note(*FI, ".fnstart was specified here");
127 1 : }
128 :
129 3 : void emitCantUnwindLocNotes() const {
130 3 : for (Locs::const_iterator UI = CantUnwindLocs.begin(),
131 6 : UE = CantUnwindLocs.end(); UI != UE; ++UI)
132 6 : Parser.Note(*UI, ".cantunwind was specified here");
133 3 : }
134 :
135 3 : void emitHandlerDataLocNotes() const {
136 3 : for (Locs::const_iterator HI = HandlerDataLocs.begin(),
137 6 : HE = HandlerDataLocs.end(); HI != HE; ++HI)
138 6 : Parser.Note(*HI, ".handlerdata was specified here");
139 3 : }
140 :
141 6 : void emitPersonalityLocNotes() const {
142 : for (Locs::const_iterator PI = PersonalityLocs.begin(),
143 : PE = PersonalityLocs.end(),
144 : PII = PersonalityIndexLocs.begin(),
145 : PIE = PersonalityIndexLocs.end();
146 19 : PI != PE || PII != PIE;) {
147 13 : if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer()))
148 20 : Parser.Note(*PI++, ".personality was specified here");
149 3 : else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer()))
150 6 : Parser.Note(*PII++, ".personalityindex was specified here");
151 : else
152 0 : llvm_unreachable(".personality and .personalityindex cannot be "
153 : "at the same location");
154 : }
155 6 : }
156 :
157 455 : void reset() {
158 455 : FnStartLocs = Locs();
159 455 : CantUnwindLocs = Locs();
160 455 : PersonalityLocs = Locs();
161 455 : HandlerDataLocs = Locs();
162 455 : PersonalityIndexLocs = Locs();
163 455 : FPReg = ARM::SP;
164 455 : }
165 : };
166 :
167 : class ARMAsmParser : public MCTargetAsmParser {
168 : const MCRegisterInfo *MRI;
169 : UnwindContext UC;
170 :
171 : ARMTargetStreamer &getTargetStreamer() {
172 : assert(getParser().getStreamer().getTargetStreamer() &&
173 : "do not have a target streamer");
174 1194 : MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
175 : return static_cast<ARMTargetStreamer &>(TS);
176 : }
177 :
178 : // Map of register aliases registers via the .req directive.
179 : StringMap<unsigned> RegisterReqs;
180 :
181 : bool NextSymbolIsThumb;
182 :
183 0 : bool useImplicitITThumb() const {
184 12566 : return ImplicitItMode == ImplicitItModeTy::Always ||
185 0 : ImplicitItMode == ImplicitItModeTy::ThumbOnly;
186 : }
187 :
188 0 : bool useImplicitITARM() const {
189 7486 : return ImplicitItMode == ImplicitItModeTy::Always ||
190 0 : ImplicitItMode == ImplicitItModeTy::ARMOnly;
191 : }
192 :
193 : struct {
194 : ARMCC::CondCodes Cond; // Condition for IT block.
195 : unsigned Mask:4; // Condition mask for instructions.
196 : // Starting at first 1 (from lsb).
197 : // '1' condition as indicated in IT.
198 : // '0' inverse of condition (else).
199 : // Count of instructions in IT block is
200 : // 4 - trailingzeroes(mask)
201 : // Note that this does not have the same encoding
202 : // as in the IT instruction, which also depends
203 : // on the low bit of the condition code.
204 :
205 : unsigned CurPosition; // Current position in parsing of IT
206 : // block. In range [0,4], with 0 being the IT
207 : // instruction itself. Initialized according to
208 : // count of instructions in block. ~0U if no
209 : // active IT block.
210 :
211 : bool IsExplicit; // true - The IT instruction was present in the
212 : // input, we should not modify it.
213 : // false - The IT instruction was added
214 : // implicitly, we can extend it if that
215 : // would be legal.
216 : } ITState;
217 :
218 : SmallVector<MCInst, 4> PendingConditionalInsts;
219 :
220 13742 : void flushPendingInstructions(MCStreamer &Out) override {
221 : if (!inImplicitITBlock()) {
222 : assert(PendingConditionalInsts.size() == 0);
223 13648 : return;
224 : }
225 :
226 : // Emit the IT instruction
227 : unsigned Mask = getITMaskEncoding();
228 : MCInst ITInst;
229 : ITInst.setOpcode(ARM::t2IT);
230 94 : ITInst.addOperand(MCOperand::createImm(ITState.Cond));
231 94 : ITInst.addOperand(MCOperand::createImm(Mask));
232 94 : Out.EmitInstruction(ITInst, getSTI());
233 :
234 : // Emit the conditonal instructions
235 : assert(PendingConditionalInsts.size() <= 4);
236 208 : for (const MCInst &Inst : PendingConditionalInsts) {
237 114 : Out.EmitInstruction(Inst, getSTI());
238 : }
239 94 : PendingConditionalInsts.clear();
240 :
241 : // Clear the IT state
242 94 : ITState.Mask = 0;
243 94 : ITState.CurPosition = ~0U;
244 : }
245 :
246 52 : bool inITBlock() { return ITState.CurPosition != ~0U; }
247 24248 : bool inExplicitITBlock() { return inITBlock() && ITState.IsExplicit; }
248 13878 : bool inImplicitITBlock() { return inITBlock() && !ITState.IsExplicit; }
249 :
250 : bool lastInITBlock() {
251 3014 : return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask);
252 : }
253 :
254 : void forwardITPosition() {
255 21193 : if (!inITBlock()) return;
256 : // Move to the next instruction in the IT block, if there is one. If not,
257 : // mark the block as done, except for implicit IT blocks, which we leave
258 : // open until we find an instruction that can't be added to it.
259 5931 : unsigned TZ = countTrailingZeros(ITState.Mask);
260 5931 : if (++ITState.CurPosition == 5 - TZ && ITState.IsExplicit)
261 2763 : ITState.CurPosition = ~0U; // Done with the IT block after this.
262 : }
263 :
264 : // Rewind the state of the current IT block, removing the last slot from it.
265 : void rewindImplicitITPosition() {
266 : assert(inImplicitITBlock());
267 : assert(ITState.CurPosition > 1);
268 9 : ITState.CurPosition--;
269 9 : unsigned TZ = countTrailingZeros(ITState.Mask);
270 : unsigned NewMask = 0;
271 9 : NewMask |= ITState.Mask & (0xC << TZ);
272 9 : NewMask |= 0x2 << TZ;
273 9 : ITState.Mask = NewMask;
274 : }
275 :
276 : // Rewind the state of the current IT block, removing the last slot from it.
277 : // If we were at the first slot, this closes the IT block.
278 0 : void discardImplicitITBlock() {
279 : assert(inImplicitITBlock());
280 : assert(ITState.CurPosition == 1);
281 0 : ITState.CurPosition = ~0U;
282 0 : }
283 :
284 : // Return the low-subreg of a given Q register.
285 0 : unsigned getDRegFromQReg(unsigned QReg) const {
286 0 : return MRI->getSubReg(QReg, ARM::dsub_0);
287 : }
288 :
289 : // Get the encoding of the IT mask, as it will appear in an IT instruction.
290 : unsigned getITMaskEncoding() {
291 : assert(inITBlock());
292 94 : unsigned Mask = ITState.Mask;
293 2863 : unsigned TZ = countTrailingZeros(Mask);
294 2863 : if ((ITState.Cond & 1) == 0) {
295 : assert(Mask && TZ <= 3 && "illegal IT mask value!");
296 2748 : Mask ^= (0xE << TZ) & 0xF;
297 : }
298 : return Mask;
299 : }
300 :
301 : // Get the condition code corresponding to the current IT block slot.
302 : ARMCC::CondCodes currentITCond() {
303 : unsigned MaskBit;
304 24 : if (ITState.CurPosition == 1)
305 : MaskBit = 1;
306 : else
307 337 : MaskBit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1;
308 :
309 3198 : return MaskBit ? ITState.Cond : ARMCC::getOppositeCondition(ITState.Cond);
310 : }
311 :
312 : // Invert the condition of the current IT block slot without changing any
313 : // other slots in the same block.
314 : void invertCurrentITCondition() {
315 5 : if (ITState.CurPosition == 1) {
316 0 : ITState.Cond = ARMCC::getOppositeCondition(ITState.Cond);
317 : } else {
318 5 : ITState.Mask ^= 1 << (5 - ITState.CurPosition);
319 : }
320 : }
321 :
322 : // Returns true if the current IT block is full (all 4 slots used).
323 : bool isITBlockFull() {
324 114 : return inITBlock() && (ITState.Mask & 1);
325 : }
326 :
327 : // Extend the current implicit IT block to have one more slot with the given
328 : // condition code.
329 : void extendImplicitITBlock(ARMCC::CondCodes Cond) {
330 : assert(inImplicitITBlock());
331 : assert(!isITBlockFull());
332 : assert(Cond == ITState.Cond ||
333 : Cond == ARMCC::getOppositeCondition(ITState.Cond));
334 29 : unsigned TZ = countTrailingZeros(ITState.Mask);
335 : unsigned NewMask = 0;
336 : // Keep any existing condition bits.
337 29 : NewMask |= ITState.Mask & (0xE << TZ);
338 : // Insert the new condition bit.
339 29 : NewMask |= (Cond == ITState.Cond) << TZ;
340 : // Move the trailing 1 down one bit.
341 29 : NewMask |= 1 << (TZ - 1);
342 29 : ITState.Mask = NewMask;
343 : }
344 :
345 : // Create a new implicit IT block with a dummy condition code.
346 : void startImplicitITBlock() {
347 : assert(!inITBlock());
348 94 : ITState.Cond = ARMCC::AL;
349 94 : ITState.Mask = 8;
350 94 : ITState.CurPosition = 1;
351 94 : ITState.IsExplicit = false;
352 : }
353 :
354 : // Create a new explicit IT block with the given condition and mask. The mask
355 : // should be in the parsed format, with a 1 implying 't', regardless of the
356 : // low bit of the condition.
357 : void startExplicitITBlock(ARMCC::CondCodes Cond, unsigned Mask) {
358 : assert(!inITBlock());
359 2769 : ITState.Cond = Cond;
360 2769 : ITState.Mask = Mask;
361 2769 : ITState.CurPosition = 0;
362 2769 : ITState.IsExplicit = true;
363 : }
364 :
365 : void Note(SMLoc L, const Twine &Msg, SMRange Range = None) {
366 2971 : return getParser().Note(L, Msg, Range);
367 : }
368 :
369 : bool Warning(SMLoc L, const Twine &Msg, SMRange Range = None) {
370 2165 : return getParser().Warning(L, Msg, Range);
371 : }
372 :
373 : bool Error(SMLoc L, const Twine &Msg, SMRange Range = None) {
374 5058 : return getParser().Error(L, Msg, Range);
375 : }
376 :
377 : bool validatetLDMRegList(const MCInst &Inst, const OperandVector &Operands,
378 : unsigned ListNo, bool IsARPop = false);
379 : bool validatetSTMRegList(const MCInst &Inst, const OperandVector &Operands,
380 : unsigned ListNo);
381 :
382 : int tryParseRegister();
383 : bool tryParseRegisterWithWriteBack(OperandVector &);
384 : int tryParseShiftRegister(OperandVector &);
385 : bool parseRegisterList(OperandVector &);
386 : bool parseMemory(OperandVector &);
387 : bool parseOperand(OperandVector &, StringRef Mnemonic);
388 : bool parsePrefix(ARMMCExpr::VariantKind &RefKind);
389 : bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType,
390 : unsigned &ShiftAmount);
391 : bool parseLiteralValues(unsigned Size, SMLoc L);
392 : bool parseDirectiveThumb(SMLoc L);
393 : bool parseDirectiveARM(SMLoc L);
394 : bool parseDirectiveThumbFunc(SMLoc L);
395 : bool parseDirectiveCode(SMLoc L);
396 : bool parseDirectiveSyntax(SMLoc L);
397 : bool parseDirectiveReq(StringRef Name, SMLoc L);
398 : bool parseDirectiveUnreq(SMLoc L);
399 : bool parseDirectiveArch(SMLoc L);
400 : bool parseDirectiveEabiAttr(SMLoc L);
401 : bool parseDirectiveCPU(SMLoc L);
402 : bool parseDirectiveFPU(SMLoc L);
403 : bool parseDirectiveFnStart(SMLoc L);
404 : bool parseDirectiveFnEnd(SMLoc L);
405 : bool parseDirectiveCantUnwind(SMLoc L);
406 : bool parseDirectivePersonality(SMLoc L);
407 : bool parseDirectiveHandlerData(SMLoc L);
408 : bool parseDirectiveSetFP(SMLoc L);
409 : bool parseDirectivePad(SMLoc L);
410 : bool parseDirectiveRegSave(SMLoc L, bool IsVector);
411 : bool parseDirectiveInst(SMLoc L, char Suffix = '\0');
412 : bool parseDirectiveLtorg(SMLoc L);
413 : bool parseDirectiveEven(SMLoc L);
414 : bool parseDirectivePersonalityIndex(SMLoc L);
415 : bool parseDirectiveUnwindRaw(SMLoc L);
416 : bool parseDirectiveTLSDescSeq(SMLoc L);
417 : bool parseDirectiveMovSP(SMLoc L);
418 : bool parseDirectiveObjectArch(SMLoc L);
419 : bool parseDirectiveArchExtension(SMLoc L);
420 : bool parseDirectiveAlign(SMLoc L);
421 : bool parseDirectiveThumbSet(SMLoc L);
422 :
423 : StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode,
424 : bool &CarrySetting, unsigned &ProcessorIMod,
425 : StringRef &ITMask);
426 : void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst,
427 : bool &CanAcceptCarrySet,
428 : bool &CanAcceptPredicationCode);
429 :
430 : void tryConvertingToTwoOperandForm(StringRef Mnemonic, bool CarrySetting,
431 : OperandVector &Operands);
432 : bool isThumb() const {
433 : // FIXME: Can tablegen auto-generate this?
434 203371 : return getSTI().getFeatureBits()[ARM::ModeThumb];
435 : }
436 :
437 72445 : bool isThumbOne() const {
438 72445 : return isThumb() && !getSTI().getFeatureBits()[ARM::FeatureThumb2];
439 : }
440 :
441 168249 : bool isThumbTwo() const {
442 168249 : return isThumb() && getSTI().getFeatureBits()[ARM::FeatureThumb2];
443 : }
444 :
445 : bool hasThumb() const {
446 511 : return getSTI().getFeatureBits()[ARM::HasV4TOps];
447 : }
448 :
449 : bool hasThumb2() const {
450 316 : return getSTI().getFeatureBits()[ARM::FeatureThumb2];
451 : }
452 :
453 : bool hasV6Ops() const {
454 39 : return getSTI().getFeatureBits()[ARM::HasV6Ops];
455 : }
456 :
457 : bool hasV6T2Ops() const {
458 79 : return getSTI().getFeatureBits()[ARM::HasV6T2Ops];
459 : }
460 :
461 : bool hasV6MOps() const {
462 1000 : return getSTI().getFeatureBits()[ARM::HasV6MOps];
463 : }
464 :
465 : bool hasV7Ops() const {
466 997 : return getSTI().getFeatureBits()[ARM::HasV7Ops];
467 : }
468 :
469 : bool hasV8Ops() const {
470 15740 : return getSTI().getFeatureBits()[ARM::HasV8Ops];
471 : }
472 :
473 : bool hasV8MBaseline() const {
474 208 : return getSTI().getFeatureBits()[ARM::HasV8MBaselineOps];
475 : }
476 :
477 : bool hasV8MMainline() const {
478 : return getSTI().getFeatureBits()[ARM::HasV8MMainlineOps];
479 : }
480 :
481 : bool has8MSecExt() const {
482 : return getSTI().getFeatureBits()[ARM::Feature8MSecExt];
483 : }
484 :
485 : bool hasARM() const {
486 387 : return !getSTI().getFeatureBits()[ARM::FeatureNoARM];
487 : }
488 :
489 : bool hasDSP() const {
490 : return getSTI().getFeatureBits()[ARM::FeatureDSP];
491 : }
492 :
493 : bool hasD16() const {
494 50877 : return getSTI().getFeatureBits()[ARM::FeatureD16];
495 : }
496 :
497 : bool hasV8_1aOps() const {
498 : return getSTI().getFeatureBits()[ARM::HasV8_1aOps];
499 : }
500 :
501 : bool hasRAS() const {
502 2 : return getSTI().getFeatureBits()[ARM::FeatureRAS];
503 : }
504 :
505 257 : void SwitchMode() {
506 257 : MCSubtargetInfo &STI = copySTI();
507 257 : uint64_t FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb));
508 : setAvailableFeatures(FB);
509 257 : }
510 :
511 : void FixModeAfterArchChange(bool WasThumb, SMLoc Loc);
512 :
513 : bool isMClass() const {
514 2254 : return getSTI().getFeatureBits()[ARM::FeatureMClass];
515 : }
516 :
517 : /// @name Auto-generated Match Functions
518 : /// {
519 :
520 : #define GET_ASSEMBLER_HEADER
521 : #include "ARMGenAsmMatcher.inc"
522 :
523 : /// }
524 :
525 : OperandMatchResultTy parseITCondCode(OperandVector &);
526 : OperandMatchResultTy parseCoprocNumOperand(OperandVector &);
527 : OperandMatchResultTy parseCoprocRegOperand(OperandVector &);
528 : OperandMatchResultTy parseCoprocOptionOperand(OperandVector &);
529 : OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &);
530 : OperandMatchResultTy parseTraceSyncBarrierOptOperand(OperandVector &);
531 : OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &);
532 : OperandMatchResultTy parseProcIFlagsOperand(OperandVector &);
533 : OperandMatchResultTy parseMSRMaskOperand(OperandVector &);
534 : OperandMatchResultTy parseBankedRegOperand(OperandVector &);
535 : OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low,
536 : int High);
537 : OperandMatchResultTy parsePKHLSLImm(OperandVector &O) {
538 22 : return parsePKHImm(O, "lsl", 0, 31);
539 : }
540 : OperandMatchResultTy parsePKHASRImm(OperandVector &O) {
541 14 : return parsePKHImm(O, "asr", 1, 32);
542 : }
543 : OperandMatchResultTy parseSetEndImm(OperandVector &);
544 : OperandMatchResultTy parseShifterImm(OperandVector &);
545 : OperandMatchResultTy parseRotImm(OperandVector &);
546 : OperandMatchResultTy parseModImm(OperandVector &);
547 : OperandMatchResultTy parseBitfield(OperandVector &);
548 : OperandMatchResultTy parsePostIdxReg(OperandVector &);
549 : OperandMatchResultTy parseAM3Offset(OperandVector &);
550 : OperandMatchResultTy parseFPImm(OperandVector &);
551 : OperandMatchResultTy parseVectorList(OperandVector &);
552 : OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index,
553 : SMLoc &EndLoc);
554 :
555 : // Asm Match Converter Methods
556 : void cvtThumbMultiply(MCInst &Inst, const OperandVector &);
557 : void cvtThumbBranches(MCInst &Inst, const OperandVector &);
558 :
559 : bool validateInstruction(MCInst &Inst, const OperandVector &Ops);
560 : bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out);
561 : bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands);
562 : bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands);
563 : bool isITBlockTerminator(MCInst &Inst) const;
564 : void fixupGNULDRDAlias(StringRef Mnemonic, OperandVector &Operands);
565 : bool validateLDRDSTRD(MCInst &Inst, const OperandVector &Operands,
566 : bool Load, bool ARMMode, bool Writeback);
567 :
568 : public:
569 : enum ARMMatchResultTy {
570 : Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY,
571 : Match_RequiresNotITBlock,
572 : Match_RequiresV6,
573 : Match_RequiresThumb2,
574 : Match_RequiresV8,
575 : Match_RequiresFlagSetting,
576 : #define GET_OPERAND_DIAGNOSTIC_TYPES
577 : #include "ARMGenAsmMatcher.inc"
578 :
579 : };
580 :
581 1317 : ARMAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser,
582 : const MCInstrInfo &MII, const MCTargetOptions &Options)
583 1317 : : MCTargetAsmParser(Options, STI, MII), UC(Parser) {
584 1317 : MCAsmParserExtension::Initialize(Parser);
585 :
586 : // Cache the MCRegisterInfo.
587 1317 : MRI = getContext().getRegisterInfo();
588 :
589 : // Initialize the set of available features.
590 1317 : setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
591 :
592 : // Add build attributes based on the selected target.
593 1317 : if (AddBuildAttributes)
594 39 : getTargetStreamer().emitTargetAttributes(STI);
595 :
596 : // Not in an ITBlock to start with.
597 1317 : ITState.CurPosition = ~0U;
598 :
599 1317 : NextSymbolIsThumb = false;
600 1317 : }
601 :
602 : // Implementation of the MCTargetAsmParser interface:
603 : bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
604 : bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
605 : SMLoc NameLoc, OperandVector &Operands) override;
606 : bool ParseDirective(AsmToken DirectiveID) override;
607 :
608 : unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
609 : unsigned Kind) override;
610 : unsigned checkTargetMatchPredicate(MCInst &Inst) override;
611 :
612 : bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
613 : OperandVector &Operands, MCStreamer &Out,
614 : uint64_t &ErrorInfo,
615 : bool MatchingInlineAsm) override;
616 : unsigned MatchInstruction(OperandVector &Operands, MCInst &Inst,
617 : SmallVectorImpl<NearMissInfo> &NearMisses,
618 : bool MatchingInlineAsm, bool &EmitInITBlock,
619 : MCStreamer &Out);
620 :
621 11422 : struct NearMissMessage {
622 : SMLoc Loc;
623 : SmallString<128> Message;
624 : };
625 :
626 : const char *getCustomOperandDiag(ARMMatchResultTy MatchError);
627 :
628 : void FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn,
629 : SmallVectorImpl<NearMissMessage> &NearMissesOut,
630 : SMLoc IDLoc, OperandVector &Operands);
631 : void ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses, SMLoc IDLoc,
632 : OperandVector &Operands);
633 :
634 : void doBeforeLabelEmit(MCSymbol *Symbol) override;
635 :
636 : void onLabelParsed(MCSymbol *Symbol) override;
637 : };
638 :
639 : /// ARMOperand - Instances of this class represent a parsed ARM machine
640 : /// operand.
641 906 : class ARMOperand : public MCParsedAsmOperand {
642 : enum KindTy {
643 : k_CondCode,
644 : k_CCOut,
645 : k_ITCondMask,
646 : k_CoprocNum,
647 : k_CoprocReg,
648 : k_CoprocOption,
649 : k_Immediate,
650 : k_MemBarrierOpt,
651 : k_InstSyncBarrierOpt,
652 : k_TraceSyncBarrierOpt,
653 : k_Memory,
654 : k_PostIndexRegister,
655 : k_MSRMask,
656 : k_BankedReg,
657 : k_ProcIFlags,
658 : k_VectorIndex,
659 : k_Register,
660 : k_RegisterList,
661 : k_DPRRegisterList,
662 : k_SPRRegisterList,
663 : k_VectorList,
664 : k_VectorListAllLanes,
665 : k_VectorListIndexed,
666 : k_ShiftedRegister,
667 : k_ShiftedImmediate,
668 : k_ShifterImmediate,
669 : k_RotateImmediate,
670 : k_ModifiedImmediate,
671 : k_ConstantPoolImmediate,
672 : k_BitfieldDescriptor,
673 : k_Token,
674 : } Kind;
675 :
676 : SMLoc StartLoc, EndLoc, AlignmentLoc;
677 : SmallVector<unsigned, 8> Registers;
678 :
679 : struct CCOp {
680 : ARMCC::CondCodes Val;
681 : };
682 :
683 : struct CopOp {
684 : unsigned Val;
685 : };
686 :
687 : struct CoprocOptionOp {
688 : unsigned Val;
689 : };
690 :
691 : struct ITMaskOp {
692 : unsigned Mask:4;
693 : };
694 :
695 : struct MBOptOp {
696 : ARM_MB::MemBOpt Val;
697 : };
698 :
699 : struct ISBOptOp {
700 : ARM_ISB::InstSyncBOpt Val;
701 : };
702 :
703 : struct TSBOptOp {
704 : ARM_TSB::TraceSyncBOpt Val;
705 : };
706 :
707 : struct IFlagsOp {
708 : ARM_PROC::IFlags Val;
709 : };
710 :
711 : struct MMaskOp {
712 : unsigned Val;
713 : };
714 :
715 : struct BankedRegOp {
716 : unsigned Val;
717 : };
718 :
719 : struct TokOp {
720 : const char *Data;
721 : unsigned Length;
722 : };
723 :
724 : struct RegOp {
725 : unsigned RegNum;
726 : };
727 :
728 : // A vector register list is a sequential list of 1 to 4 registers.
729 : struct VectorListOp {
730 : unsigned RegNum;
731 : unsigned Count;
732 : unsigned LaneIndex;
733 : bool isDoubleSpaced;
734 : };
735 :
736 : struct VectorIndexOp {
737 : unsigned Val;
738 : };
739 :
740 : struct ImmOp {
741 : const MCExpr *Val;
742 : };
743 :
744 : /// Combined record for all forms of ARM address expressions.
745 : struct MemoryOp {
746 : unsigned BaseRegNum;
747 : // Offset is in OffsetReg or OffsetImm. If both are zero, no offset
748 : // was specified.
749 : const MCConstantExpr *OffsetImm; // Offset immediate value
750 : unsigned OffsetRegNum; // Offset register num, when OffsetImm == NULL
751 : ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg
752 : unsigned ShiftImm; // shift for OffsetReg.
753 : unsigned Alignment; // 0 = no alignment specified
754 : // n = alignment in bytes (2, 4, 8, 16, or 32)
755 : unsigned isNegative : 1; // Negated OffsetReg? (~'U' bit)
756 : };
757 :
758 : struct PostIdxRegOp {
759 : unsigned RegNum;
760 : bool isAdd;
761 : ARM_AM::ShiftOpc ShiftTy;
762 : unsigned ShiftImm;
763 : };
764 :
765 : struct ShifterImmOp {
766 : bool isASR;
767 : unsigned Imm;
768 : };
769 :
770 : struct RegShiftedRegOp {
771 : ARM_AM::ShiftOpc ShiftTy;
772 : unsigned SrcReg;
773 : unsigned ShiftReg;
774 : unsigned ShiftImm;
775 : };
776 :
777 : struct RegShiftedImmOp {
778 : ARM_AM::ShiftOpc ShiftTy;
779 : unsigned SrcReg;
780 : unsigned ShiftImm;
781 : };
782 :
783 : struct RotImmOp {
784 : unsigned Imm;
785 : };
786 :
787 : struct ModImmOp {
788 : unsigned Bits;
789 : unsigned Rot;
790 : };
791 :
792 : struct BitfieldOp {
793 : unsigned LSB;
794 : unsigned Width;
795 : };
796 :
797 : union {
798 : struct CCOp CC;
799 : struct CopOp Cop;
800 : struct CoprocOptionOp CoprocOption;
801 : struct MBOptOp MBOpt;
802 : struct ISBOptOp ISBOpt;
803 : struct TSBOptOp TSBOpt;
804 : struct ITMaskOp ITMask;
805 : struct IFlagsOp IFlags;
806 : struct MMaskOp MMask;
807 : struct BankedRegOp BankedReg;
808 : struct TokOp Tok;
809 : struct RegOp Reg;
810 : struct VectorListOp VectorList;
811 : struct VectorIndexOp VectorIndex;
812 : struct ImmOp Imm;
813 : struct MemoryOp Memory;
814 : struct PostIdxRegOp PostIdxReg;
815 : struct ShifterImmOp ShifterImm;
816 : struct RegShiftedRegOp RegShiftedReg;
817 : struct RegShiftedImmOp RegShiftedImm;
818 : struct RotImmOp RotImm;
819 : struct ModImmOp ModImm;
820 : struct BitfieldOp Bitfield;
821 : };
822 :
823 : public:
824 0 : ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
825 :
826 : /// getStartLoc - Get the location of the first token of this operand.
827 179 : SMLoc getStartLoc() const override { return StartLoc; }
828 :
829 : /// getEndLoc - Get the location of the last token of this operand.
830 109 : SMLoc getEndLoc() const override { return EndLoc; }
831 :
832 : /// getLocRange - Get the range between the first and last token of this
833 : /// operand.
834 : SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
835 :
836 : /// getAlignmentLoc - Get the location of the Alignment token of this operand.
837 : SMLoc getAlignmentLoc() const {
838 : assert(Kind == k_Memory && "Invalid access!");
839 : return AlignmentLoc;
840 : }
841 :
842 0 : ARMCC::CondCodes getCondCode() const {
843 : assert(Kind == k_CondCode && "Invalid access!");
844 0 : return CC.Val;
845 : }
846 :
847 0 : unsigned getCoproc() const {
848 : assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!");
849 0 : return Cop.Val;
850 : }
851 :
852 0 : StringRef getToken() const {
853 : assert(Kind == k_Token && "Invalid access!");
854 259861 : return StringRef(Tok.Data, Tok.Length);
855 : }
856 :
857 0 : unsigned getReg() const override {
858 : assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!");
859 266847 : return Reg.RegNum;
860 : }
861 :
862 : const SmallVectorImpl<unsigned> &getRegList() const {
863 : assert((Kind == k_RegisterList || Kind == k_DPRRegisterList ||
864 : Kind == k_SPRRegisterList) && "Invalid access!");
865 56 : return Registers;
866 : }
867 :
868 0 : const MCExpr *getImm() const {
869 : assert(isImm() && "Invalid access!");
870 0 : return Imm.Val;
871 : }
872 :
873 0 : const MCExpr *getConstantPoolImm() const {
874 : assert(isConstantPoolImm() && "Invalid access!");
875 0 : return Imm.Val;
876 : }
877 :
878 0 : unsigned getVectorIndex() const {
879 : assert(Kind == k_VectorIndex && "Invalid access!");
880 0 : return VectorIndex.Val;
881 : }
882 :
883 0 : ARM_MB::MemBOpt getMemBarrierOpt() const {
884 : assert(Kind == k_MemBarrierOpt && "Invalid access!");
885 0 : return MBOpt.Val;
886 : }
887 :
888 0 : ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const {
889 : assert(Kind == k_InstSyncBarrierOpt && "Invalid access!");
890 0 : return ISBOpt.Val;
891 : }
892 :
893 0 : ARM_TSB::TraceSyncBOpt getTraceSyncBarrierOpt() const {
894 : assert(Kind == k_TraceSyncBarrierOpt && "Invalid access!");
895 0 : return TSBOpt.Val;
896 : }
897 :
898 0 : ARM_PROC::IFlags getProcIFlags() const {
899 : assert(Kind == k_ProcIFlags && "Invalid access!");
900 0 : return IFlags.Val;
901 : }
902 :
903 0 : unsigned getMSRMask() const {
904 : assert(Kind == k_MSRMask && "Invalid access!");
905 0 : return MMask.Val;
906 : }
907 :
908 0 : unsigned getBankedReg() const {
909 : assert(Kind == k_BankedReg && "Invalid access!");
910 0 : return BankedReg.Val;
911 : }
912 :
913 0 : bool isCoprocNum() const { return Kind == k_CoprocNum; }
914 0 : bool isCoprocReg() const { return Kind == k_CoprocReg; }
915 0 : bool isCoprocOption() const { return Kind == k_CoprocOption; }
916 0 : bool isCondCode() const { return Kind == k_CondCode; }
917 0 : bool isCCOut() const { return Kind == k_CCOut; }
918 0 : bool isITMask() const { return Kind == k_ITCondMask; }
919 0 : bool isITCondCode() const { return Kind == k_CondCode; }
920 486 : bool isImm() const override {
921 32034 : return Kind == k_Immediate;
922 : }
923 :
924 : bool isARMBranchTarget() const {
925 1029 : if (!isImm()) return false;
926 :
927 632 : if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()))
928 158 : return CE->getValue() % 4 == 0;
929 : return true;
930 : }
931 :
932 :
933 : bool isThumbBranchTarget() const {
934 445 : if (!isImm()) return false;
935 :
936 262 : if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()))
937 40 : return CE->getValue() % 2 == 0;
938 : return true;
939 : }
940 :
941 : // checks whether this operand is an unsigned offset which fits is a field
942 : // of specified width and scaled by a specific number of bits
943 : template<unsigned width, unsigned scale>
944 : bool isUnsignedOffset() const {
945 105 : if (!isImm()) return false;
946 196 : if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
947 : if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
948 40 : int64_t Val = CE->getValue();
949 : int64_t Align = 1LL << scale;
950 : int64_t Max = Align * ((1LL << width) - 1);
951 40 : return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max);
952 : }
953 : return false;
954 : }
955 :
956 : // checks whether this operand is an signed offset which fits is a field
957 : // of specified width and scaled by a specific number of bits
958 : template<unsigned width, unsigned scale>
959 : bool isSignedOffset() const {
960 629 : if (!isImm()) return false;
961 1258 : if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
962 : if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
963 333 : int64_t Val = CE->getValue();
964 : int64_t Align = 1LL << scale;
965 : int64_t Max = Align * ((1LL << (width-1)) - 1);
966 : int64_t Min = -Align * (1LL << (width-1));
967 333 : return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max);
968 : }
969 : return false;
970 : }
971 :
972 : // checks whether this operand is a memory operand computed as an offset
973 : // applied to PC. the offset may have 8 bits of magnitude and is represented
974 : // with two bits of shift. textually it may be either [pc, #imm], #imm or
975 : // relocable expression...
976 655 : bool isThumbMemPC() const {
977 : int64_t Val = 0;
978 655 : if (isImm()) {
979 96 : if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
980 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val);
981 : if (!CE) return false;
982 6 : Val = CE->getValue();
983 : }
984 607 : else if (isMem()) {
985 166 : if(!Memory.OffsetImm || Memory.OffsetRegNum) return false;
986 86 : if(Memory.BaseRegNum != ARM::PC) return false;
987 42 : Val = Memory.OffsetImm->getValue();
988 : }
989 : else return false;
990 48 : return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020);
991 : }
992 :
993 279 : bool isFPImm() const {
994 279 : if (!isImm()) return false;
995 187 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
996 : if (!CE) return false;
997 187 : int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
998 187 : return Val != -1;
999 : }
1000 :
1001 : template<int64_t N, int64_t M>
1002 : bool isImmediate() const {
1003 11265 : if (!isImm()) return false;
1004 5413 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1005 : if (!CE) return false;
1006 5371 : int64_t Value = CE->getValue();
1007 5091 : return Value >= N && Value <= M;
1008 : }
1009 :
1010 : template<int64_t N, int64_t M>
1011 : bool isImmediateS4() const {
1012 352 : if (!isImm()) return false;
1013 174 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1014 : if (!CE) return false;
1015 174 : int64_t Value = CE->getValue();
1016 174 : return ((Value & 3) == 0) && Value >= N && Value <= M;
1017 : }
1018 :
1019 : bool isFBits16() const {
1020 : return isImmediate<0, 17>();
1021 : }
1022 : bool isFBits32() const {
1023 : return isImmediate<1, 33>();
1024 : }
1025 : bool isImm8s4() const {
1026 : return isImmediateS4<-1020, 1020>();
1027 : }
1028 : bool isImm0_1020s4() const {
1029 : return isImmediateS4<0, 1020>();
1030 : }
1031 : bool isImm0_508s4() const {
1032 : return isImmediateS4<0, 508>();
1033 : }
1034 : bool isImm0_508s4Neg() const {
1035 198 : if (!isImm()) return false;
1036 40 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1037 : if (!CE) return false;
1038 40 : int64_t Value = -CE->getValue();
1039 : // explicitly exclude zero. we want that to use the normal 0_508 version.
1040 40 : return ((Value & 3) == 0) && Value > 0 && Value <= 508;
1041 : }
1042 :
1043 : bool isImm0_4095Neg() const {
1044 225 : if (!isImm()) return false;
1045 23 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1046 : if (!CE) return false;
1047 : // isImm0_4095Neg is used with 32-bit immediates only.
1048 : // 32-bit immediates are zero extended to 64-bit when parsed,
1049 : // thus simple -CE->getValue() results in a big negative number,
1050 : // not a small positive number as intended
1051 23 : if ((CE->getValue() >> 32) > 0) return false;
1052 23 : uint32_t Value = -static_cast<uint32_t>(CE->getValue());
1053 23 : return Value > 0 && Value < 4096;
1054 : }
1055 :
1056 : bool isImm0_7() const {
1057 : return isImmediate<0, 7>();
1058 : }
1059 :
1060 : bool isImm1_16() const {
1061 : return isImmediate<1, 16>();
1062 : }
1063 :
1064 : bool isImm1_32() const {
1065 : return isImmediate<1, 32>();
1066 : }
1067 :
1068 : bool isImm8_255() const {
1069 : return isImmediate<8, 255>();
1070 : }
1071 :
1072 : bool isImm256_65535Expr() const {
1073 : if (!isImm()) return false;
1074 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1075 : // If it's not a constant expression, it'll generate a fixup and be
1076 : // handled later.
1077 : if (!CE) return true;
1078 : int64_t Value = CE->getValue();
1079 : return Value >= 256 && Value < 65536;
1080 : }
1081 :
1082 : bool isImm0_65535Expr() const {
1083 601 : if (!isImm()) return false;
1084 466 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1085 : // If it's not a constant expression, it'll generate a fixup and be
1086 : // handled later.
1087 : if (!CE) return true;
1088 145 : int64_t Value = CE->getValue();
1089 136 : return Value >= 0 && Value < 65536;
1090 : }
1091 :
1092 : bool isImm24bit() const {
1093 : return isImmediate<0, 0xffffff + 1>();
1094 : }
1095 :
1096 : bool isImmThumbSR() const {
1097 : return isImmediate<1, 33>();
1098 : }
1099 :
1100 : bool isPKHLSLImm() const {
1101 : return isImmediate<0, 32>();
1102 : }
1103 :
1104 : bool isPKHASRImm() const {
1105 : return isImmediate<0, 33>();
1106 : }
1107 :
1108 33 : bool isAdrLabel() const {
1109 : // If we have an immediate that's not a constant, treat it as a label
1110 : // reference needing a fixup.
1111 33 : if (isImm() && !isa<MCConstantExpr>(getImm()))
1112 : return true;
1113 :
1114 : // If it is a constant, it must fit into a modified immediate encoding.
1115 21 : if (!isImm()) return false;
1116 14 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1117 : if (!CE) return false;
1118 14 : int64_t Value = CE->getValue();
1119 14 : return (ARM_AM::getSOImmVal(Value) != -1 ||
1120 4 : ARM_AM::getSOImmVal(-Value) != -1);
1121 : }
1122 :
1123 6602 : bool isT2SOImm() const {
1124 : // If we have an immediate that's not a constant, treat it as an expression
1125 : // needing a fixup.
1126 6602 : if (isImm() && !isa<MCConstantExpr>(getImm())) {
1127 : // We want to avoid matching :upper16: and :lower16: as we want these
1128 : // expressions to match in isImm0_65535Expr()
1129 : const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(getImm());
1130 8 : return (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 &&
1131 : ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16));
1132 : }
1133 6560 : if (!isImm()) return false;
1134 1344 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1135 : if (!CE) return false;
1136 1344 : int64_t Value = CE->getValue();
1137 1344 : return ARM_AM::getT2SOImmVal(Value) != -1;
1138 : }
1139 :
1140 2120 : bool isT2SOImmNot() const {
1141 2120 : if (!isImm()) return false;
1142 249 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1143 : if (!CE) return false;
1144 238 : int64_t Value = CE->getValue();
1145 238 : return ARM_AM::getT2SOImmVal(Value) == -1 &&
1146 107 : ARM_AM::getT2SOImmVal(~Value) != -1;
1147 : }
1148 :
1149 4802 : bool isT2SOImmNeg() const {
1150 4802 : if (!isImm()) return false;
1151 553 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1152 : if (!CE) return false;
1153 528 : int64_t Value = CE->getValue();
1154 : // Only use this when not representable as a plain so_imm.
1155 528 : return ARM_AM::getT2SOImmVal(Value) == -1 &&
1156 83 : ARM_AM::getT2SOImmVal(-Value) != -1;
1157 : }
1158 :
1159 : bool isSetEndImm() const {
1160 : if (!isImm()) return false;
1161 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1162 : if (!CE) return false;
1163 : int64_t Value = CE->getValue();
1164 : return Value == 1 || Value == 0;
1165 : }
1166 :
1167 471426 : bool isReg() const override { return Kind == k_Register; }
1168 0 : bool isRegList() const { return Kind == k_RegisterList; }
1169 0 : bool isDPRRegList() const { return Kind == k_DPRRegisterList; }
1170 0 : bool isSPRRegList() const { return Kind == k_SPRRegisterList; }
1171 1176357 : bool isToken() const override { return Kind == k_Token; }
1172 0 : bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; }
1173 0 : bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; }
1174 0 : bool isTraceSyncBarrierOpt() const { return Kind == k_TraceSyncBarrierOpt; }
1175 114256 : bool isMem() const override {
1176 114256 : if (Kind != k_Memory)
1177 : return false;
1178 219302 : if (Memory.BaseRegNum &&
1179 109662 : !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.BaseRegNum))
1180 : return false;
1181 111352 : if (Memory.OffsetRegNum &&
1182 1782 : !ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Memory.OffsetRegNum))
1183 70 : return false;
1184 : return true;
1185 : }
1186 0 : bool isShifterImm() const { return Kind == k_ShifterImmediate; }
1187 4524 : bool isRegShiftedReg() const {
1188 247 : return Kind == k_ShiftedRegister &&
1189 247 : ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
1190 4770 : RegShiftedReg.SrcReg) &&
1191 : ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
1192 247 : RegShiftedReg.ShiftReg);
1193 : }
1194 0 : bool isRegShiftedImm() const {
1195 11787 : return Kind == k_ShiftedImmediate &&
1196 1069 : ARMMCRegisterClasses[ARM::GPRRegClassID].contains(
1197 1069 : RegShiftedImm.SrcReg);
1198 : }
1199 0 : bool isRotImm() const { return Kind == k_RotateImmediate; }
1200 0 : bool isModImm() const { return Kind == k_ModifiedImmediate; }
1201 :
1202 1552 : bool isModImmNot() const {
1203 1552 : if (!isImm()) return false;
1204 77 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1205 : if (!CE) return false;
1206 77 : int64_t Value = CE->getValue();
1207 77 : return ARM_AM::getSOImmVal(~Value) != -1;
1208 : }
1209 :
1210 1847 : bool isModImmNeg() const {
1211 1847 : if (!isImm()) return false;
1212 57 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1213 : if (!CE) return false;
1214 52 : int64_t Value = CE->getValue();
1215 52 : return ARM_AM::getSOImmVal(Value) == -1 &&
1216 39 : ARM_AM::getSOImmVal(-Value) != -1;
1217 : }
1218 :
1219 : bool isThumbModImmNeg1_7() const {
1220 802 : if (!isImm()) return false;
1221 83 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1222 : if (!CE) return false;
1223 71 : int32_t Value = -(int32_t)CE->getValue();
1224 71 : return 0 < Value && Value < 8;
1225 : }
1226 :
1227 : bool isThumbModImmNeg8_255() const {
1228 1504 : if (!isImm()) return false;
1229 53 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1230 : if (!CE) return false;
1231 53 : int32_t Value = -(int32_t)CE->getValue();
1232 53 : return 7 < Value && Value < 256;
1233 : }
1234 :
1235 0 : bool isConstantPoolImm() const { return Kind == k_ConstantPoolImmediate; }
1236 0 : bool isBitfield() const { return Kind == k_BitfieldDescriptor; }
1237 0 : bool isPostIdxRegShifted() const {
1238 141 : return Kind == k_PostIndexRegister &&
1239 76 : ARMMCRegisterClasses[ARM::GPRRegClassID].contains(PostIdxReg.RegNum);
1240 : }
1241 108 : bool isPostIdxReg() const {
1242 143 : return isPostIdxRegShifted() && PostIdxReg.ShiftTy == ARM_AM::no_shift;
1243 : }
1244 101136 : bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const {
1245 101136 : if (!isMem())
1246 : return false;
1247 : // No offset of any kind.
1248 101005 : return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
1249 100784 : (alignOK || Memory.Alignment == Alignment);
1250 : }
1251 506 : bool isMemPCRelImm12() const {
1252 506 : if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1253 : return false;
1254 : // Base register must be PC.
1255 221 : if (Memory.BaseRegNum != ARM::PC)
1256 : return false;
1257 : // Immediate offset in range [-4095, 4095].
1258 69 : if (!Memory.OffsetImm) return true;
1259 69 : int64_t Val = Memory.OffsetImm->getValue();
1260 69 : return (Val > -4096 && Val < 4096) ||
1261 : (Val == std::numeric_limits<int32_t>::min());
1262 : }
1263 :
1264 : bool isAlignedMemory() const {
1265 0 : return isMemNoOffset(true);
1266 : }
1267 :
1268 : bool isAlignedMemoryNone() const {
1269 4099 : return isMemNoOffset(false, 0);
1270 : }
1271 :
1272 : bool isDupAlignedMemoryNone() const {
1273 3476 : return isMemNoOffset(false, 0);
1274 : }
1275 :
1276 1262 : bool isAlignedMemory16() const {
1277 1262 : if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
1278 : return true;
1279 1026 : return isMemNoOffset(false, 0);
1280 : }
1281 :
1282 1686 : bool isDupAlignedMemory16() const {
1283 1686 : if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
1284 : return true;
1285 1410 : return isMemNoOffset(false, 0);
1286 : }
1287 :
1288 1994 : bool isAlignedMemory32() const {
1289 1994 : if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
1290 : return true;
1291 1640 : return isMemNoOffset(false, 0);
1292 : }
1293 :
1294 2558 : bool isDupAlignedMemory32() const {
1295 2558 : if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
1296 : return true;
1297 2143 : return isMemNoOffset(false, 0);
1298 : }
1299 :
1300 12694 : bool isAlignedMemory64() const {
1301 12694 : if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1302 : return true;
1303 11032 : return isMemNoOffset(false, 0);
1304 : }
1305 :
1306 1743 : bool isDupAlignedMemory64() const {
1307 1743 : if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1308 : return true;
1309 1506 : return isMemNoOffset(false, 0);
1310 : }
1311 :
1312 8472 : bool isAlignedMemory64or128() const {
1313 8472 : if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1314 : return true;
1315 7217 : if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1316 : return true;
1317 5985 : return isMemNoOffset(false, 0);
1318 : }
1319 :
1320 793 : bool isDupAlignedMemory64or128() const {
1321 793 : if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1322 : return true;
1323 696 : if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1324 : return true;
1325 588 : return isMemNoOffset(false, 0);
1326 : }
1327 :
1328 8721 : bool isAlignedMemory64or128or256() const {
1329 8721 : if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
1330 : return true;
1331 7457 : if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
1332 : return true;
1333 6239 : if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32.
1334 : return true;
1335 4757 : return isMemNoOffset(false, 0);
1336 : }
1337 :
1338 : bool isAddrMode2() const {
1339 : if (!isMem() || Memory.Alignment != 0) return false;
1340 : // Check for register offset.
1341 : if (Memory.OffsetRegNum) return true;
1342 : // Immediate offset in range [-4095, 4095].
1343 : if (!Memory.OffsetImm) return true;
1344 : int64_t Val = Memory.OffsetImm->getValue();
1345 : return Val > -4096 && Val < 4096;
1346 : }
1347 :
1348 : bool isAM2OffsetImm() const {
1349 106 : if (!isImm()) return false;
1350 : // Immediate offset in range [-4095, 4095].
1351 43 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1352 : if (!CE) return false;
1353 43 : int64_t Val = CE->getValue();
1354 43 : return (Val == std::numeric_limits<int32_t>::min()) ||
1355 41 : (Val > -4096 && Val < 4096);
1356 : }
1357 :
1358 711 : bool isAddrMode3() const {
1359 : // If we have an immediate that's not a constant, treat it as a label
1360 : // reference needing a fixup. If it is a constant, it's something else
1361 : // and we reject it.
1362 711 : if (isImm() && !isa<MCConstantExpr>(getImm()))
1363 : return true;
1364 709 : if (!isMem() || Memory.Alignment != 0) return false;
1365 : // No shifts are legal for AM3.
1366 527 : if (Memory.ShiftType != ARM_AM::no_shift) return false;
1367 : // Check for register offset.
1368 527 : if (Memory.OffsetRegNum) return true;
1369 : // Immediate offset in range [-255, 255].
1370 467 : if (!Memory.OffsetImm) return true;
1371 206 : int64_t Val = Memory.OffsetImm->getValue();
1372 : // The #-0 offset is encoded as std::numeric_limits<int32_t>::min(), and we
1373 : // have to check for this too.
1374 206 : return (Val > -256 && Val < 256) ||
1375 : Val == std::numeric_limits<int32_t>::min();
1376 : }
1377 :
1378 83 : bool isAM3Offset() const {
1379 83 : if (isPostIdxReg())
1380 : return true;
1381 60 : if (!isImm())
1382 : return false;
1383 : // Immediate offset in range [-255, 255].
1384 56 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1385 : if (!CE) return false;
1386 56 : int64_t Val = CE->getValue();
1387 : // Special case, #-0 is std::numeric_limits<int32_t>::min().
1388 56 : return (Val > -256 && Val < 256) ||
1389 : Val == std::numeric_limits<int32_t>::min();
1390 : }
1391 :
1392 2250 : bool isAddrMode5() const {
1393 : // If we have an immediate that's not a constant, treat it as a label
1394 : // reference needing a fixup. If it is a constant, it's something else
1395 : // and we reject it.
1396 2250 : if (isImm() && !isa<MCConstantExpr>(getImm()))
1397 : return true;
1398 2249 : if (!isMem() || Memory.Alignment != 0) return false;
1399 : // Check for register offset.
1400 2141 : if (Memory.OffsetRegNum) return false;
1401 : // Immediate offset in range [-1020, 1020] and a multiple of 4.
1402 2141 : if (!Memory.OffsetImm) return true;
1403 890 : int64_t Val = Memory.OffsetImm->getValue();
1404 890 : return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) ||
1405 : Val == std::numeric_limits<int32_t>::min();
1406 : }
1407 :
1408 43 : bool isAddrMode5FP16() const {
1409 : // If we have an immediate that's not a constant, treat it as a label
1410 : // reference needing a fixup. If it is a constant, it's something else
1411 : // and we reject it.
1412 43 : if (isImm() && !isa<MCConstantExpr>(getImm()))
1413 : return true;
1414 43 : if (!isMem() || Memory.Alignment != 0) return false;
1415 : // Check for register offset.
1416 43 : if (Memory.OffsetRegNum) return false;
1417 : // Immediate offset in range [-510, 510] and a multiple of 2.
1418 43 : if (!Memory.OffsetImm) return true;
1419 38 : int64_t Val = Memory.OffsetImm->getValue();
1420 38 : return (Val >= -510 && Val <= 510 && ((Val & 1) == 0)) ||
1421 : Val == std::numeric_limits<int32_t>::min();
1422 : }
1423 :
1424 7 : bool isMemTBB() const {
1425 7 : if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1426 14 : Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
1427 0 : return false;
1428 : return true;
1429 : }
1430 :
1431 7 : bool isMemTBH() const {
1432 7 : if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1433 14 : Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 ||
1434 : Memory.Alignment != 0 )
1435 0 : return false;
1436 : return true;
1437 : }
1438 :
1439 : bool isMemRegOffset() const {
1440 773 : if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0)
1441 : return false;
1442 : return true;
1443 : }
1444 :
1445 1023 : bool isT2MemRegOffset() const {
1446 668 : if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1447 1317 : Memory.Alignment != 0 || Memory.BaseRegNum == ARM::PC)
1448 : return false;
1449 : // Only lsl #{0, 1, 2, 3} allowed.
1450 284 : if (Memory.ShiftType == ARM_AM::no_shift)
1451 : return true;
1452 84 : if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3)
1453 3 : return false;
1454 : return true;
1455 : }
1456 :
1457 1195 : bool isMemThumbRR() const {
1458 : // Thumb reg+reg addressing is simple. Just two registers, a base and
1459 : // an offset. No shifts, negations or any other complicating factors.
1460 659 : if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
1461 1383 : Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
1462 : return false;
1463 104 : return isARMLowRegister(Memory.BaseRegNum) &&
1464 : (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum));
1465 : }
1466 :
1467 575 : bool isMemThumbRIs4() const {
1468 289 : if (!isMem() || Memory.OffsetRegNum != 0 ||
1469 791 : !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1470 : return false;
1471 : // Immediate offset, multiple of 4 in range [0, 124].
1472 125 : if (!Memory.OffsetImm) return true;
1473 75 : int64_t Val = Memory.OffsetImm->getValue();
1474 75 : return Val >= 0 && Val <= 124 && (Val % 4) == 0;
1475 : }
1476 :
1477 237 : bool isMemThumbRIs2() const {
1478 157 : if (!isMem() || Memory.OffsetRegNum != 0 ||
1479 350 : !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1480 : return false;
1481 : // Immediate offset, multiple of 4 in range [0, 62].
1482 91 : if (!Memory.OffsetImm) return true;
1483 57 : int64_t Val = Memory.OffsetImm->getValue();
1484 57 : return Val >= 0 && Val <= 62 && (Val % 2) == 0;
1485 : }
1486 :
1487 243 : bool isMemThumbRIs1() const {
1488 165 : if (!isMem() || Memory.OffsetRegNum != 0 ||
1489 361 : !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1490 : return false;
1491 : // Immediate offset in range [0, 31].
1492 96 : if (!Memory.OffsetImm) return true;
1493 56 : int64_t Val = Memory.OffsetImm->getValue();
1494 56 : return Val >= 0 && Val <= 31;
1495 : }
1496 :
1497 534 : bool isMemThumbSPI() const {
1498 248 : if (!isMem() || Memory.OffsetRegNum != 0 ||
1499 718 : Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0)
1500 : return false;
1501 : // Immediate offset, multiple of 4 in range [0, 1020].
1502 50 : if (!Memory.OffsetImm) return true;
1503 29 : int64_t Val = Memory.OffsetImm->getValue();
1504 29 : return Val >= 0 && Val <= 1020 && (Val % 4) == 0;
1505 : }
1506 :
1507 421 : bool isMemImm8s4Offset() const {
1508 : // If we have an immediate that's not a constant, treat it as a label
1509 : // reference needing a fixup. If it is a constant, it's something else
1510 : // and we reject it.
1511 421 : if (isImm() && !isa<MCConstantExpr>(getImm()))
1512 : return true;
1513 419 : if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1514 : return false;
1515 : // Immediate offset a multiple of 4 in range [-1020, 1020].
1516 399 : if (!Memory.OffsetImm) return true;
1517 174 : int64_t Val = Memory.OffsetImm->getValue();
1518 : // Special case, #-0 is std::numeric_limits<int32_t>::min().
1519 174 : return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) ||
1520 : Val == std::numeric_limits<int32_t>::min();
1521 : }
1522 :
1523 44 : bool isMemImm0_1020s4Offset() const {
1524 44 : if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1525 : return false;
1526 : // Immediate offset a multiple of 4 in range [0, 1020].
1527 44 : if (!Memory.OffsetImm) return true;
1528 14 : int64_t Val = Memory.OffsetImm->getValue();
1529 14 : return Val >= 0 && Val <= 1020 && (Val & 3) == 0;
1530 : }
1531 :
1532 356 : bool isMemImm8Offset() const {
1533 356 : if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1534 : return false;
1535 : // Base reg of PC isn't allowed for these encodings.
1536 289 : if (Memory.BaseRegNum == ARM::PC) return false;
1537 : // Immediate offset in range [-255, 255].
1538 279 : if (!Memory.OffsetImm) return true;
1539 116 : int64_t Val = Memory.OffsetImm->getValue();
1540 116 : return (Val == std::numeric_limits<int32_t>::min()) ||
1541 112 : (Val > -256 && Val < 256);
1542 : }
1543 :
1544 74 : bool isMemPosImm8Offset() const {
1545 74 : if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1546 : return false;
1547 : // Immediate offset in range [0, 255].
1548 74 : if (!Memory.OffsetImm) return true;
1549 30 : int64_t Val = Memory.OffsetImm->getValue();
1550 30 : return Val >= 0 && Val < 256;
1551 : }
1552 :
1553 1078 : bool isMemNegImm8Offset() const {
1554 1078 : if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1555 : return false;
1556 : // Base reg of PC isn't allowed for these encodings.
1557 417 : if (Memory.BaseRegNum == ARM::PC) return false;
1558 : // Immediate offset in range [-255, -1].
1559 357 : if (!Memory.OffsetImm) return false;
1560 207 : int64_t Val = Memory.OffsetImm->getValue();
1561 207 : return (Val == std::numeric_limits<int32_t>::min()) ||
1562 198 : (Val > -256 && Val < 0);
1563 : }
1564 :
1565 1273 : bool isMemUImm12Offset() const {
1566 1273 : if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1567 : return false;
1568 : // Immediate offset in range [0, 4095].
1569 612 : if (!Memory.OffsetImm) return true;
1570 341 : int64_t Val = Memory.OffsetImm->getValue();
1571 341 : return (Val >= 0 && Val < 4096);
1572 : }
1573 :
1574 913 : bool isMemImm12Offset() const {
1575 : // If we have an immediate that's not a constant, treat it as a label
1576 : // reference needing a fixup. If it is a constant, it's something else
1577 : // and we reject it.
1578 :
1579 913 : if (isImm() && !isa<MCConstantExpr>(getImm()))
1580 : return true;
1581 :
1582 899 : if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1583 : return false;
1584 : // Immediate offset in range [-4095, 4095].
1585 351 : if (!Memory.OffsetImm) return true;
1586 190 : int64_t Val = Memory.OffsetImm->getValue();
1587 190 : return (Val > -4096 && Val < 4096) ||
1588 : (Val == std::numeric_limits<int32_t>::min());
1589 : }
1590 :
1591 : bool isConstPoolAsmImm() const {
1592 : // Delay processing of Constant Pool Immediate, this will turn into
1593 : // a constant. Match no other operand
1594 : return (isConstantPoolImm());
1595 : }
1596 :
1597 : bool isPostIdxImm8() const {
1598 19 : if (!isImm()) return false;
1599 16 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1600 : if (!CE) return false;
1601 16 : int64_t Val = CE->getValue();
1602 16 : return (Val > -256 && Val < 256) ||
1603 : (Val == std::numeric_limits<int32_t>::min());
1604 : }
1605 :
1606 : bool isPostIdxImm8s4() const {
1607 352 : if (!isImm()) return false;
1608 352 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1609 : if (!CE) return false;
1610 352 : int64_t Val = CE->getValue();
1611 352 : return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) ||
1612 : (Val == std::numeric_limits<int32_t>::min());
1613 : }
1614 :
1615 0 : bool isMSRMask() const { return Kind == k_MSRMask; }
1616 0 : bool isBankedReg() const { return Kind == k_BankedReg; }
1617 0 : bool isProcIFlags() const { return Kind == k_ProcIFlags; }
1618 :
1619 : // NEON operands.
1620 0 : bool isSingleSpacedVectorList() const {
1621 52089 : return Kind == k_VectorList && !VectorList.isDoubleSpaced;
1622 : }
1623 :
1624 0 : bool isDoubleSpacedVectorList() const {
1625 8316 : return Kind == k_VectorList && VectorList.isDoubleSpaced;
1626 : }
1627 :
1628 : bool isVecListOneD() const {
1629 : if (!isSingleSpacedVectorList()) return false;
1630 5711 : return VectorList.Count == 1;
1631 : }
1632 :
1633 : bool isVecListDPair() const {
1634 : if (!isSingleSpacedVectorList()) return false;
1635 : return (ARMMCRegisterClasses[ARM::DPairRegClassID]
1636 7494 : .contains(VectorList.RegNum));
1637 : }
1638 :
1639 : bool isVecListThreeD() const {
1640 : if (!isSingleSpacedVectorList()) return false;
1641 6518 : return VectorList.Count == 3;
1642 : }
1643 :
1644 : bool isVecListFourD() const {
1645 : if (!isSingleSpacedVectorList()) return false;
1646 7988 : return VectorList.Count == 4;
1647 : }
1648 :
1649 : bool isVecListDPairSpaced() const {
1650 4028 : if (Kind != k_VectorList) return false;
1651 : if (isSingleSpacedVectorList()) return false;
1652 : return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID]
1653 651 : .contains(VectorList.RegNum));
1654 : }
1655 :
1656 : bool isVecListThreeQ() const {
1657 : if (!isDoubleSpacedVectorList()) return false;
1658 990 : return VectorList.Count == 3;
1659 : }
1660 :
1661 : bool isVecListFourQ() const {
1662 : if (!isDoubleSpacedVectorList()) return false;
1663 846 : return VectorList.Count == 4;
1664 : }
1665 :
1666 0 : bool isSingleSpacedVectorAllLanes() const {
1667 15831 : return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced;
1668 : }
1669 :
1670 0 : bool isDoubleSpacedVectorAllLanes() const {
1671 7771 : return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced;
1672 : }
1673 :
1674 : bool isVecListOneDAllLanes() const {
1675 : if (!isSingleSpacedVectorAllLanes()) return false;
1676 858 : return VectorList.Count == 1;
1677 : }
1678 :
1679 : bool isVecListDPairAllLanes() const {
1680 : if (!isSingleSpacedVectorAllLanes()) return false;
1681 : return (ARMMCRegisterClasses[ARM::DPairRegClassID]
1682 1317 : .contains(VectorList.RegNum));
1683 : }
1684 :
1685 : bool isVecListDPairSpacedAllLanes() const {
1686 : if (!isDoubleSpacedVectorAllLanes()) return false;
1687 429 : return VectorList.Count == 2;
1688 : }
1689 :
1690 : bool isVecListThreeDAllLanes() const {
1691 : if (!isSingleSpacedVectorAllLanes()) return false;
1692 495 : return VectorList.Count == 3;
1693 : }
1694 :
1695 : bool isVecListThreeQAllLanes() const {
1696 : if (!isDoubleSpacedVectorAllLanes()) return false;
1697 495 : return VectorList.Count == 3;
1698 : }
1699 :
1700 : bool isVecListFourDAllLanes() const {
1701 : if (!isSingleSpacedVectorAllLanes()) return false;
1702 447 : return VectorList.Count == 4;
1703 : }
1704 :
1705 : bool isVecListFourQAllLanes() const {
1706 : if (!isDoubleSpacedVectorAllLanes()) return false;
1707 447 : return VectorList.Count == 4;
1708 : }
1709 :
1710 0 : bool isSingleSpacedVectorIndexed() const {
1711 18580 : return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced;
1712 : }
1713 :
1714 0 : bool isDoubleSpacedVectorIndexed() const {
1715 8444 : return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced;
1716 : }
1717 :
1718 : bool isVecListOneDByteIndexed() const {
1719 : if (!isSingleSpacedVectorIndexed()) return false;
1720 313 : return VectorList.Count == 1 && VectorList.LaneIndex <= 7;
1721 : }
1722 :
1723 : bool isVecListOneDHWordIndexed() const {
1724 : if (!isSingleSpacedVectorIndexed()) return false;
1725 374 : return VectorList.Count == 1 && VectorList.LaneIndex <= 3;
1726 : }
1727 :
1728 : bool isVecListOneDWordIndexed() const {
1729 : if (!isSingleSpacedVectorIndexed()) return false;
1730 346 : return VectorList.Count == 1 && VectorList.LaneIndex <= 1;
1731 : }
1732 :
1733 : bool isVecListTwoDByteIndexed() const {
1734 : if (!isSingleSpacedVectorIndexed()) return false;
1735 232 : return VectorList.Count == 2 && VectorList.LaneIndex <= 7;
1736 : }
1737 :
1738 : bool isVecListTwoDHWordIndexed() const {
1739 : if (!isSingleSpacedVectorIndexed()) return false;
1740 274 : return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
1741 : }
1742 :
1743 : bool isVecListTwoQWordIndexed() const {
1744 : if (!isDoubleSpacedVectorIndexed()) return false;
1745 150 : return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
1746 : }
1747 :
1748 : bool isVecListTwoQHWordIndexed() const {
1749 : if (!isDoubleSpacedVectorIndexed()) return false;
1750 172 : return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
1751 : }
1752 :
1753 : bool isVecListTwoDWordIndexed() const {
1754 : if (!isSingleSpacedVectorIndexed()) return false;
1755 258 : return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
1756 : }
1757 :
1758 : bool isVecListThreeDByteIndexed() const {
1759 : if (!isSingleSpacedVectorIndexed()) return false;
1760 312 : return VectorList.Count == 3 && VectorList.LaneIndex <= 7;
1761 : }
1762 :
1763 : bool isVecListThreeDHWordIndexed() const {
1764 : if (!isSingleSpacedVectorIndexed()) return false;
1765 356 : return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
1766 : }
1767 :
1768 : bool isVecListThreeQWordIndexed() const {
1769 : if (!isDoubleSpacedVectorIndexed()) return false;
1770 214 : return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
1771 : }
1772 :
1773 : bool isVecListThreeQHWordIndexed() const {
1774 : if (!isDoubleSpacedVectorIndexed()) return false;
1775 236 : return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
1776 : }
1777 :
1778 : bool isVecListThreeDWordIndexed() const {
1779 : if (!isSingleSpacedVectorIndexed()) return false;
1780 334 : return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
1781 : }
1782 :
1783 : bool isVecListFourDByteIndexed() const {
1784 : if (!isSingleSpacedVectorIndexed()) return false;
1785 288 : return VectorList.Count == 4 && VectorList.LaneIndex <= 7;
1786 : }
1787 :
1788 : bool isVecListFourDHWordIndexed() const {
1789 : if (!isSingleSpacedVectorIndexed()) return false;
1790 374 : return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
1791 : }
1792 :
1793 : bool isVecListFourQWordIndexed() const {
1794 : if (!isDoubleSpacedVectorIndexed()) return false;
1795 233 : return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
1796 : }
1797 :
1798 : bool isVecListFourQHWordIndexed() const {
1799 : if (!isDoubleSpacedVectorIndexed()) return false;
1800 270 : return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
1801 : }
1802 :
1803 : bool isVecListFourDWordIndexed() const {
1804 : if (!isSingleSpacedVectorIndexed()) return false;
1805 337 : return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
1806 : }
1807 :
1808 0 : bool isVectorIndex8() const {
1809 66 : if (Kind != k_VectorIndex) return false;
1810 59 : return VectorIndex.Val < 8;
1811 : }
1812 :
1813 0 : bool isVectorIndex16() const {
1814 377 : if (Kind != k_VectorIndex) return false;
1815 292 : return VectorIndex.Val < 4;
1816 : }
1817 :
1818 0 : bool isVectorIndex32() const {
1819 527 : if (Kind != k_VectorIndex) return false;
1820 408 : return VectorIndex.Val < 2;
1821 : }
1822 0 : bool isVectorIndex64() const {
1823 154 : if (Kind != k_VectorIndex) return false;
1824 104 : return VectorIndex.Val < 1;
1825 : }
1826 :
1827 : bool isNEONi8splat() const {
1828 60 : if (!isImm()) return false;
1829 13 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1830 : // Must be a constant.
1831 : if (!CE) return false;
1832 13 : int64_t Value = CE->getValue();
1833 : // i8 value splatted across 8 bytes. The immediate is just the 8 byte
1834 : // value.
1835 13 : return Value >= 0 && Value < 256;
1836 : }
1837 :
1838 272 : bool isNEONi16splat() const {
1839 165 : if (isNEONByteReplicate(2))
1840 : return false; // Leave that for bytes replication and forbid by default.
1841 199 : if (!isImm())
1842 : return false;
1843 93 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1844 : // Must be a constant.
1845 : if (!CE) return false;
1846 93 : unsigned Value = CE->getValue();
1847 : return ARM_AM::isNEONi16splat(Value);
1848 : }
1849 :
1850 50 : bool isNEONi16splatNot() const {
1851 50 : if (!isImm())
1852 : return false;
1853 14 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1854 : // Must be a constant.
1855 : if (!CE) return false;
1856 14 : unsigned Value = CE->getValue();
1857 14 : return ARM_AM::isNEONi16splat(~Value & 0xffff);
1858 : }
1859 :
1860 81 : bool isNEONi32splat() const {
1861 46 : if (isNEONByteReplicate(4))
1862 : return false; // Leave that for bytes replication and forbid by default.
1863 65 : if (!isImm())
1864 : return false;
1865 31 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1866 : // Must be a constant.
1867 : if (!CE) return false;
1868 31 : unsigned Value = CE->getValue();
1869 : return ARM_AM::isNEONi32splat(Value);
1870 : }
1871 :
1872 48 : bool isNEONi32splatNot() const {
1873 48 : if (!isImm())
1874 : return false;
1875 12 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1876 : // Must be a constant.
1877 : if (!CE) return false;
1878 12 : unsigned Value = CE->getValue();
1879 12 : return ARM_AM::isNEONi32splat(~Value);
1880 : }
1881 :
1882 : static bool isValidNEONi32vmovImm(int64_t Value) {
1883 : // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
1884 : // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
1885 608 : return ((Value & 0xffffffffffffff00) == 0) ||
1886 282 : ((Value & 0xffffffffffff00ff) == 0) ||
1887 264 : ((Value & 0xffffffffff00ffff) == 0) ||
1888 250 : ((Value & 0xffffffff00ffffff) == 0) ||
1889 236 : ((Value & 0xffffffffffff00ff) == 0xff) ||
1890 : ((Value & 0xffffffffff00ffff) == 0xffff);
1891 : }
1892 :
1893 366 : bool isNEONReplicate(unsigned Width, unsigned NumElems, bool Inv) const {
1894 : assert((Width == 8 || Width == 16 || Width == 32) &&
1895 : "Invalid element width");
1896 : assert(NumElems * Width <= 64 && "Invalid result width");
1897 :
1898 1091 : if (!isImm())
1899 : return false;
1900 961 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1901 : // Must be a constant.
1902 : if (!CE)
1903 : return false;
1904 961 : int64_t Value = CE->getValue();
1905 961 : if (!Value)
1906 : return false; // Don't bother with zero.
1907 206 : if (Inv)
1908 0 : Value = ~Value;
1909 :
1910 206 : uint64_t Mask = (1ull << Width) - 1;
1911 624 : uint64_t Elem = Value & Mask;
1912 206 : if (Width == 16 && (Elem & 0x00ff) != 0 && (Elem & 0xff00) != 0)
1913 : return false;
1914 138 : if (Width == 32 && !isValidNEONi32vmovImm(Elem))
1915 : return false;
1916 :
1917 1362 : for (unsigned i = 1; i < NumElems; ++i) {
1918 1301 : Value >>= Width;
1919 1301 : if ((Value & Mask) != Elem)
1920 : return false;
1921 : }
1922 : return true;
1923 : }
1924 :
1925 : bool isNEONByteReplicate(unsigned NumBytes) const {
1926 : return isNEONReplicate(8, NumBytes, false);
1927 : }
1928 :
1929 0 : static void checkNeonReplicateArgs(unsigned FromW, unsigned ToW) {
1930 : assert((FromW == 8 || FromW == 16 || FromW == 32) &&
1931 : "Invalid source width");
1932 : assert((ToW == 16 || ToW == 32 || ToW == 64) &&
1933 : "Invalid destination width");
1934 : assert(FromW < ToW && "ToW is not less than FromW");
1935 0 : }
1936 :
1937 : template<unsigned FromW, unsigned ToW>
1938 278 : bool isNEONmovReplicate() const {
1939 : checkNeonReplicateArgs(FromW, ToW);
1940 143 : if (ToW == 64 && isNEONi64splat())
1941 : return false;
1942 366 : return isNEONReplicate(FromW, ToW / FromW, false);
1943 : }
1944 100 :
1945 : template<unsigned FromW, unsigned ToW>
1946 48 : bool isNEONinvReplicate() const {
1947 : checkNeonReplicateArgs(FromW, ToW);
1948 87 : return isNEONReplicate(FromW, ToW / FromW, true);
1949 : }
1950 108 :
1951 : bool isNEONi32vmov() const {
1952 56 : if (isNEONByteReplicate(4))
1953 : return false; // Let it to be classified as byte-replicate case.
1954 95 : if (!isImm())
1955 : return false;
1956 70 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1957 : // Must be a constant.
1958 39 : if (!CE)
1959 : return false;
1960 : return isValidNEONi32vmovImm(CE->getValue());
1961 : }
1962 :
1963 : bool isNEONi32vmovNeg() const {
1964 121 : if (!isImm()) return false;
1965 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1966 121 : // Must be a constant.
1967 : if (!CE) return false;
1968 44 : return isValidNEONi32vmovImm(~CE->getValue());
1969 : }
1970 44 :
1971 : bool isNEONi64splat() const {
1972 77 : if (!isImm()) return false;
1973 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1974 77 : // Must be a constant.
1975 : if (!CE) return false;
1976 : uint64_t Value = CE->getValue();
1977 320 : // i64 value with each byte being either 0 or 0xff.
1978 227 : for (unsigned i = 0; i < 8; ++i, Value >>= 8)
1979 : if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false;
1980 298 : return true;
1981 : }
1982 207 :
1983 : template<int64_t Angle, int64_t Remainder>
1984 : bool isComplexRotation() const {
1985 : if (!isImm()) return false;
1986 207 :
1987 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1988 : if (!CE) return false;
1989 140 : uint64_t Value = CE->getValue();
1990 140 :
1991 84 : return (Value % Angle == Remainder && Value <= 270);
1992 : }
1993 :
1994 84 : void addExpr(MCInst &Inst, const MCExpr *Expr) const {
1995 : // Add as immediates when possible. Null MCExpr = 0.
1996 : if (!Expr)
1997 : Inst.addOperand(MCOperand::createImm(0));
1998 338 : else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
1999 172 : Inst.addOperand(MCOperand::createImm(CE->getValue()));
2000 : else
2001 : Inst.addOperand(MCOperand::createExpr(Expr));
2002 172 : }
2003 :
2004 684 : void addARMBranchTargetOperands(MCInst &Inst, unsigned N) const {
2005 634 : assert(N == 1 && "Invalid number of operands!");
2006 : addExpr(Inst, getImm());
2007 : }
2008 :
2009 : void addThumbBranchTargetOperands(MCInst &Inst, unsigned N) const {
2010 : assert(N == 1 && "Invalid number of operands!");
2011 652 : addExpr(Inst, getImm());
2012 : }
2013 460 :
2014 : void addCondCodeOperands(MCInst &Inst, unsigned N) const {
2015 460 : assert(N == 2 && "Invalid number of operands!");
2016 : Inst.addOperand(MCOperand::createImm(unsigned(getCondCode())));
2017 460 : unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR;
2018 : Inst.addOperand(MCOperand::createReg(RegNum));
2019 : }
2020 0 :
2021 : void addCoprocNumOperands(MCInst &Inst, unsigned N) const {
2022 0 : assert(N == 1 && "Invalid number of operands!");
2023 0 : Inst.addOperand(MCOperand::createImm(getCoproc()));
2024 : }
2025 0 :
2026 : void addCoprocRegOperands(MCInst &Inst, unsigned N) const {
2027 0 : assert(N == 1 && "Invalid number of operands!");
2028 0 : Inst.addOperand(MCOperand::createImm(getCoproc()));
2029 : }
2030 0 :
2031 : void addCoprocOptionOperands(MCInst &Inst, unsigned N) const {
2032 563 : assert(N == 1 && "Invalid number of operands!");
2033 0 : Inst.addOperand(MCOperand::createImm(CoprocOption.Val));
2034 : }
2035 0 :
2036 : void addITMaskOperands(MCInst &Inst, unsigned N) const {
2037 253 : assert(N == 1 && "Invalid number of operands!");
2038 0 : Inst.addOperand(MCOperand::createImm(ITMask.Mask));
2039 : }
2040 0 :
2041 : void addITCondCodeOperands(MCInst &Inst, unsigned N) const {
2042 0 : assert(N == 1 && "Invalid number of operands!");
2043 0 : Inst.addOperand(MCOperand::createImm(unsigned(getCondCode())));
2044 0 : }
2045 0 :
2046 : void addCCOutOperands(MCInst &Inst, unsigned N) const {
2047 0 : assert(N == 1 && "Invalid number of operands!");
2048 : Inst.addOperand(MCOperand::createReg(getReg()));
2049 1400 : }
2050 0 :
2051 : void addRegOperands(MCInst &Inst, unsigned N) const {
2052 0 : assert(N == 1 && "Invalid number of operands!");
2053 : Inst.addOperand(MCOperand::createReg(getReg()));
2054 1521 : }
2055 0 :
2056 : void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const {
2057 0 : assert(N == 3 && "Invalid number of operands!");
2058 : assert(isRegShiftedReg() &&
2059 142 : "addRegShiftedRegOperands() on non-RegShiftedReg!");
2060 0 : Inst.addOperand(MCOperand::createReg(RegShiftedReg.SrcReg));
2061 : Inst.addOperand(MCOperand::createReg(RegShiftedReg.ShiftReg));
2062 0 : Inst.addOperand(MCOperand::createImm(
2063 : ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm)));
2064 5514 : }
2065 0 :
2066 : void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const {
2067 0 : assert(N == 2 && "Invalid number of operands!");
2068 : assert(isRegShiftedImm() &&
2069 5514 : "addRegShiftedImmOperands() on non-RegShiftedImm!");
2070 0 : Inst.addOperand(MCOperand::createReg(RegShiftedImm.SrcReg));
2071 : // Shift of #32 is encoded as 0 where permitted
2072 0 : unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm);
2073 : Inst.addOperand(MCOperand::createImm(
2074 5169 : ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm)));
2075 0 : }
2076 :
2077 0 : void addShifterImmOperands(MCInst &Inst, unsigned N) const {
2078 : assert(N == 1 && "Invalid number of operands!");
2079 37697 : Inst.addOperand(MCOperand::createImm((ShifterImm.isASR << 5) |
2080 0 : ShifterImm.Imm));
2081 : }
2082 0 :
2083 : void addRegListOperands(MCInst &Inst, unsigned N) const {
2084 : assert(N == 1 && "Invalid number of operands!");
2085 : const SmallVectorImpl<unsigned> &RegList = getRegList();
2086 0 : for (SmallVectorImpl<unsigned>::const_iterator
2087 0 : I = RegList.begin(), E = RegList.end(); I != E; ++I)
2088 0 : Inst.addOperand(MCOperand::createReg(*I));
2089 0 : }
2090 0 :
2091 : void addDPRRegListOperands(MCInst &Inst, unsigned N) const {
2092 0 : addRegListOperands(Inst, N);
2093 : }
2094 :
2095 : void addSPRRegListOperands(MCInst &Inst, unsigned N) const {
2096 0 : addRegListOperands(Inst, N);
2097 : }
2098 0 :
2099 0 : void addRotImmOperands(MCInst &Inst, unsigned N) const {
2100 0 : assert(N == 1 && "Invalid number of operands!");
2101 0 : // Encoded as val>>3. The printer handles display as 8, 16, 24.
2102 : Inst.addOperand(MCOperand::createImm(RotImm.Imm >> 3));
2103 0 : }
2104 :
2105 44 : void addModImmOperands(MCInst &Inst, unsigned N) const {
2106 44 : assert(N == 1 && "Invalid number of operands!");
2107 0 :
2108 : // Support for fixups (MCFixup)
2109 0 : if (isImm())
2110 : return addImmOperands(Inst, N);
2111 :
2112 0 : Inst.addOperand(MCOperand::createImm(ModImm.Bits | (ModImm.Rot << 7)));
2113 0 : }
2114 0 :
2115 0 : void addModImmNotOperands(MCInst &Inst, unsigned N) const {
2116 : assert(N == 1 && "Invalid number of operands!");
2117 0 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2118 67 : uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue());
2119 0 : Inst.addOperand(MCOperand::createImm(Enc));
2120 : }
2121 0 :
2122 12 : void addModImmNegOperands(MCInst &Inst, unsigned N) const {
2123 0 : assert(N == 1 && "Invalid number of operands!");
2124 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2125 0 : uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue());
2126 : Inst.addOperand(MCOperand::createImm(Enc));
2127 : }
2128 330 :
2129 0 : void addThumbModImmNeg8_255Operands(MCInst &Inst, unsigned N) const {
2130 : assert(N == 1 && "Invalid number of operands!");
2131 0 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2132 : uint32_t Val = -CE->getValue();
2133 : Inst.addOperand(MCOperand::createImm(Val));
2134 : }
2135 0 :
2136 0 : void addThumbModImmNeg1_7Operands(MCInst &Inst, unsigned N) const {
2137 : assert(N == 1 && "Invalid number of operands!");
2138 0 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2139 : uint32_t Val = -CE->getValue();
2140 : Inst.addOperand(MCOperand::createImm(Val));
2141 0 : }
2142 :
2143 0 : void addBitfieldOperands(MCInst &Inst, unsigned N) const {
2144 0 : assert(N == 1 && "Invalid number of operands!");
2145 0 : // Munge the lsb/width into a bitfield mask.
2146 0 : unsigned lsb = Bitfield.LSB;
2147 : unsigned width = Bitfield.Width;
2148 0 : // Make a 32-bit mask w/ the referenced bits clear and all other bits set.
2149 : uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >>
2150 0 : (32 - (lsb + width)));
2151 0 : Inst.addOperand(MCOperand::createImm(Mask));
2152 0 : }
2153 0 :
2154 : void addImmOperands(MCInst &Inst, unsigned N) const {
2155 0 : assert(N == 1 && "Invalid number of operands!");
2156 : addExpr(Inst, getImm());
2157 0 : }
2158 0 :
2159 0 : void addFBits16Operands(MCInst &Inst, unsigned N) const {
2160 0 : assert(N == 1 && "Invalid number of operands!");
2161 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2162 0 : Inst.addOperand(MCOperand::createImm(16 - CE->getValue()));
2163 : }
2164 0 :
2165 0 : void addFBits32Operands(MCInst &Inst, unsigned N) const {
2166 0 : assert(N == 1 && "Invalid number of operands!");
2167 0 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2168 : Inst.addOperand(MCOperand::createImm(32 - CE->getValue()));
2169 0 : }
2170 :
2171 : void addFPImmOperands(MCInst &Inst, unsigned N) const {
2172 0 : assert(N == 1 && "Invalid number of operands!");
2173 0 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2174 : int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
2175 0 : Inst.addOperand(MCOperand::createImm(Val));
2176 0 : }
2177 0 :
2178 0 : void addImm8s4Operands(MCInst &Inst, unsigned N) const {
2179 : assert(N == 1 && "Invalid number of operands!");
2180 0 : // FIXME: We really want to scale the value here, but the LDRD/STRD
2181 : // instruction don't encode operands that way yet.
2182 4500 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2183 0 : Inst.addOperand(MCOperand::createImm(CE->getValue()));
2184 : }
2185 0 :
2186 : void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const {
2187 0 : assert(N == 1 && "Invalid number of operands!");
2188 0 : // The immediate is scaled by four in the encoding and is stored
2189 0 : // in the MCInst as such. Lop off the low two bits here.
2190 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2191 0 : Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
2192 : }
2193 0 :
2194 0 : void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const {
2195 0 : assert(N == 1 && "Invalid number of operands!");
2196 : // The immediate is scaled by four in the encoding and is stored
2197 0 : // in the MCInst as such. Lop off the low two bits here.
2198 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2199 0 : Inst.addOperand(MCOperand::createImm(-(CE->getValue() / 4)));
2200 0 : }
2201 0 :
2202 0 : void addImm0_508s4Operands(MCInst &Inst, unsigned N) const {
2203 : assert(N == 1 && "Invalid number of operands!");
2204 : // The immediate is scaled by four in the encoding and is stored
2205 : // in the MCInst as such. Lop off the low two bits here.
2206 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2207 : Inst.addOperand(MCOperand::createImm(CE->getValue() / 4));
2208 : }
2209 :
2210 : void addImm1_16Operands(MCInst &Inst, unsigned N) const {
2211 : assert(N == 1 && "Invalid number of operands!");
2212 0 : // The constant encodes as the immediate-1, and we store in the instruction
2213 : // the bits as encoded, so subtract off one here.
2214 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2215 : Inst.addOperand(MCOperand::createImm(CE->getValue() - 1));
2216 0 : }
2217 0 :
2218 0 : void addImm1_32Operands(MCInst &Inst, unsigned N) const {
2219 : assert(N == 1 && "Invalid number of operands!");
2220 0 : // The constant encodes as the immediate-1, and we store in the instruction
2221 : // the bits as encoded, so subtract off one here.
2222 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2223 : Inst.addOperand(MCOperand::createImm(CE->getValue() - 1));
2224 0 : }
2225 0 :
2226 0 : void addImmThumbSROperands(MCInst &Inst, unsigned N) const {
2227 : assert(N == 1 && "Invalid number of operands!");
2228 0 : // The constant encodes as the immediate, except for 32, which encodes as
2229 : // zero.
2230 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2231 : unsigned Imm = CE->getValue();
2232 0 : Inst.addOperand(MCOperand::createImm((Imm == 32 ? 0 : Imm)));
2233 0 : }
2234 0 :
2235 : void addPKHASRImmOperands(MCInst &Inst, unsigned N) const {
2236 0 : assert(N == 1 && "Invalid number of operands!");
2237 : // An ASR value of 32 encodes as 0, so that's how we want to add it to
2238 : // the instruction as well.
2239 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2240 0 : int Val = CE->getValue();
2241 0 : Inst.addOperand(MCOperand::createImm(Val == 32 ? 0 : Val));
2242 0 : }
2243 :
2244 0 : void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const {
2245 : assert(N == 1 && "Invalid number of operands!");
2246 : // The operand is actually a t2_so_imm, but we have its bitwise
2247 : // negation in the assembly source, so twiddle it here.
2248 0 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2249 0 : Inst.addOperand(MCOperand::createImm(~(uint32_t)CE->getValue()));
2250 0 : }
2251 :
2252 : void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const {
2253 : assert(N == 1 && "Invalid number of operands!");
2254 : // The operand is actually a t2_so_imm, but we have its
2255 : // negation in the assembly source, so twiddle it here.
2256 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2257 : Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue()));
2258 : }
2259 :
2260 : void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const {
2261 0 : assert(N == 1 && "Invalid number of operands!");
2262 : // The operand is actually an imm0_4095, but we have its
2263 : // negation in the assembly source, so twiddle it here.
2264 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2265 0 : Inst.addOperand(MCOperand::createImm(-(uint32_t)CE->getValue()));
2266 0 : }
2267 0 :
2268 0 : void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const {
2269 : if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) {
2270 0 : Inst.addOperand(MCOperand::createImm(CE->getValue() >> 2));
2271 : return;
2272 : }
2273 :
2274 0 : const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val);
2275 0 : assert(SR && "Unknown value type!");
2276 0 : Inst.addOperand(MCOperand::createExpr(SR));
2277 : }
2278 0 :
2279 : void addThumbMemPCOperands(MCInst &Inst, unsigned N) const {
2280 : assert(N == 1 && "Invalid number of operands!");
2281 : if (isImm()) {
2282 0 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2283 0 : if (CE) {
2284 0 : Inst.addOperand(MCOperand::createImm(CE->getValue()));
2285 : return;
2286 0 : }
2287 :
2288 : const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val);
2289 :
2290 0 : assert(SR && "Unknown value type!");
2291 0 : Inst.addOperand(MCOperand::createExpr(SR));
2292 0 : return;
2293 : }
2294 0 :
2295 0 : assert(isMem() && "Unknown value type!");
2296 0 : assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!");
2297 0 : Inst.addOperand(MCOperand::createImm(Memory.OffsetImm->getValue()));
2298 : }
2299 :
2300 : void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const {
2301 : assert(N == 1 && "Invalid number of operands!");
2302 0 : Inst.addOperand(MCOperand::createImm(unsigned(getMemBarrierOpt())));
2303 : }
2304 :
2305 0 : void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const {
2306 : assert(N == 1 && "Invalid number of operands!");
2307 0 : Inst.addOperand(MCOperand::createImm(unsigned(getInstSyncBarrierOpt())));
2308 0 : }
2309 :
2310 0 : void addTraceSyncBarrierOptOperands(MCInst &Inst, unsigned N) const {
2311 0 : assert(N == 1 && "Invalid number of operands!");
2312 : Inst.addOperand(MCOperand::createImm(unsigned(getTraceSyncBarrierOpt())));
2313 : }
2314 :
2315 : void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const {
2316 : assert(N == 1 && "Invalid number of operands!");
2317 0 : Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2318 0 : }
2319 :
2320 : void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const {
2321 : assert(N == 1 && "Invalid number of operands!");
2322 : int32_t Imm = Memory.OffsetImm->getValue();
2323 0 : Inst.addOperand(MCOperand::createImm(Imm));
2324 : }
2325 :
2326 0 : void addAdrLabelOperands(MCInst &Inst, unsigned N) const {
2327 : assert(N == 1 && "Invalid number of operands!");
2328 256 : assert(isImm() && "Not an immediate!");
2329 0 :
2330 : // If we have an immediate that's not a constant, treat it as a label
2331 0 : // reference needing a fixup.
2332 : if (!isa<MCConstantExpr>(getImm())) {
2333 18 : Inst.addOperand(MCOperand::createExpr(getImm()));
2334 0 : return;
2335 : }
2336 0 :
2337 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2338 2 : int Val = CE->getValue();
2339 0 : Inst.addOperand(MCOperand::createImm(Val));
2340 : }
2341 0 :
2342 : void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const {
2343 1066 : assert(N == 2 && "Invalid number of operands!");
2344 0 : Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2345 : Inst.addOperand(MCOperand::createImm(Memory.Alignment));
2346 0 : }
2347 :
2348 53 : void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const {
2349 53 : addAlignedMemoryOperands(Inst, N);
2350 0 : }
2351 :
2352 0 : void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const {
2353 : addAlignedMemoryOperands(Inst, N);
2354 : }
2355 :
2356 : void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const {
2357 : addAlignedMemoryOperands(Inst, N);
2358 0 : }
2359 0 :
2360 0 : void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const {
2361 : addAlignedMemoryOperands(Inst, N);
2362 : }
2363 :
2364 0 : void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const {
2365 0 : addAlignedMemoryOperands(Inst, N);
2366 : }
2367 :
2368 0 : void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const {
2369 : addAlignedMemoryOperands(Inst, N);
2370 0 : }
2371 0 :
2372 0 : void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const {
2373 : addAlignedMemoryOperands(Inst, N);
2374 0 : }
2375 48 :
2376 0 : void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const {
2377 : addAlignedMemoryOperands(Inst, N);
2378 0 : }
2379 80 :
2380 0 : void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const {
2381 : addAlignedMemoryOperands(Inst, N);
2382 0 : }
2383 38 :
2384 0 : void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const {
2385 : addAlignedMemoryOperands(Inst, N);
2386 0 : }
2387 24 :
2388 0 : void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const {
2389 : addAlignedMemoryOperands(Inst, N);
2390 0 : }
2391 66 :
2392 0 : void addAddrMode2Operands(MCInst &Inst, unsigned N) const {
2393 : assert(N == 3 && "Invalid number of operands!");
2394 0 : int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2395 42 : if (!Memory.OffsetRegNum) {
2396 0 : ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2397 : // Special case for #-0
2398 0 : if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2399 346 : if (Val < 0) Val = -Val;
2400 0 : Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
2401 : } else {
2402 0 : // For register offset, we encode the shift type and negation flag
2403 36 : // here.
2404 0 : Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
2405 : Memory.ShiftImm, Memory.ShiftType);
2406 0 : }
2407 289 : Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2408 0 : Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2409 : Inst.addOperand(MCOperand::createImm(Val));
2410 0 : }
2411 24 :
2412 0 : void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const {
2413 : assert(N == 2 && "Invalid number of operands!");
2414 0 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2415 393 : assert(CE && "non-constant AM2OffsetImm operand!");
2416 0 : int32_t Val = CE->getValue();
2417 : ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2418 : // Special case for #-0
2419 : if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2420 : if (Val < 0) Val = -Val;
2421 : Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
2422 : Inst.addOperand(MCOperand::createReg(0));
2423 : Inst.addOperand(MCOperand::createImm(Val));
2424 : }
2425 :
2426 : void addAddrMode3Operands(MCInst &Inst, unsigned N) const {
2427 : assert(N == 3 && "Invalid number of operands!");
2428 : // If we have an immediate that's not a constant, treat it as a label
2429 : // reference needing a fixup. If it is a constant, it's something else
2430 : // and we reject it.
2431 : if (isImm()) {
2432 : Inst.addOperand(MCOperand::createExpr(getImm()));
2433 : Inst.addOperand(MCOperand::createReg(0));
2434 : Inst.addOperand(MCOperand::createImm(0));
2435 : return;
2436 : }
2437 :
2438 0 : int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2439 : if (!Memory.OffsetRegNum) {
2440 0 : ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2441 : // Special case for #-0
2442 0 : if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2443 0 : if (Val < 0) Val = -Val;
2444 : Val = ARM_AM::getAM3Opc(AddSub, Val);
2445 0 : } else {
2446 0 : // For register offset, we encode the shift type and negation flag
2447 0 : // here.
2448 0 : Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0);
2449 0 : }
2450 0 : Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2451 : Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2452 0 : Inst.addOperand(MCOperand::createImm(Val));
2453 : }
2454 :
2455 : void addAM3OffsetOperands(MCInst &Inst, unsigned N) const {
2456 : assert(N == 2 && "Invalid number of operands!");
2457 0 : if (Kind == k_PostIndexRegister) {
2458 0 : int32_t Val =
2459 0 : ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0);
2460 0 : Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
2461 0 : Inst.addOperand(MCOperand::createImm(Val));
2462 : return;
2463 : }
2464 0 :
2465 0 : // Constant offset.
2466 0 : const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm());
2467 : int32_t Val = CE->getValue();
2468 0 : ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2469 0 : // Special case for #-0
2470 : if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2471 : if (Val < 0) Val = -Val;
2472 : Val = ARM_AM::getAM3Opc(AddSub, Val);
2473 : Inst.addOperand(MCOperand::createReg(0));
2474 0 : Inst.addOperand(MCOperand::createImm(Val));
2475 : }
2476 0 :
2477 0 : void addAddrMode5Operands(MCInst &Inst, unsigned N) const {
2478 0 : assert(N == 2 && "Invalid number of operands!");
2479 : // If we have an immediate that's not a constant, treat it as a label
2480 : // reference needing a fixup. If it is a constant, it's something else
2481 0 : // and we reject it.
2482 : if (isImm()) {
2483 0 : Inst.addOperand(MCOperand::createExpr(getImm()));
2484 : Inst.addOperand(MCOperand::createImm(0));
2485 0 : return;
2486 0 : }
2487 0 :
2488 0 : // The lower two bits are always zero and as such are not encoded.
2489 : int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
2490 : ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2491 : // Special case for #-0
2492 0 : if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2493 0 : if (Val < 0) Val = -Val;
2494 0 : Val = ARM_AM::getAM5Opc(AddSub, Val);
2495 : Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2496 0 : Inst.addOperand(MCOperand::createImm(Val));
2497 0 : }
2498 :
2499 0 : void addAddrMode5FP16Operands(MCInst &Inst, unsigned N) const {
2500 0 : assert(N == 2 && "Invalid number of operands!");
2501 : // If we have an immediate that's not a constant, treat it as a label
2502 : // reference needing a fixup. If it is a constant, it's something else
2503 0 : // and we reject it.
2504 : if (isImm()) {
2505 : Inst.addOperand(MCOperand::createExpr(getImm()));
2506 : Inst.addOperand(MCOperand::createImm(0));
2507 : return;
2508 0 : }
2509 0 :
2510 0 : // The lower bit is always zero and as such is not encoded.
2511 0 : int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 2 : 0;
2512 : ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
2513 : // Special case for #-0
2514 : if (Val == std::numeric_limits<int32_t>::min()) Val = 0;
2515 0 : if (Val < 0) Val = -Val;
2516 0 : Val = ARM_AM::getAM5FP16Opc(AddSub, Val);
2517 : Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2518 0 : Inst.addOperand(MCOperand::createImm(Val));
2519 0 : }
2520 :
2521 0 : void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const {
2522 0 : assert(N == 2 && "Invalid number of operands!");
2523 : // If we have an immediate that's not a constant, treat it as a label
2524 : // reference needing a fixup. If it is a constant, it's something else
2525 0 : // and we reject it.
2526 : if (isImm()) {
2527 : Inst.addOperand(MCOperand::createExpr(getImm()));
2528 : Inst.addOperand(MCOperand::createImm(0));
2529 : return;
2530 0 : }
2531 0 :
2532 0 : int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2533 0 : Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2534 : Inst.addOperand(MCOperand::createImm(Val));
2535 : }
2536 :
2537 0 : void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const {
2538 0 : assert(N == 2 && "Invalid number of operands!");
2539 : // The lower two bits are always zero and as such are not encoded.
2540 0 : int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
2541 0 : Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2542 : Inst.addOperand(MCOperand::createImm(Val));
2543 0 : }
2544 0 :
2545 : void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const {
2546 : assert(N == 2 && "Invalid number of operands!");
2547 0 : int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2548 : Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2549 : Inst.addOperand(MCOperand::createImm(Val));
2550 : }
2551 :
2552 0 : void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const {
2553 0 : addMemImm8OffsetOperands(Inst, N);
2554 0 : }
2555 0 :
2556 : void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const {
2557 : addMemImm8OffsetOperands(Inst, N);
2558 0 : }
2559 0 :
2560 0 : void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const {
2561 : assert(N == 2 && "Invalid number of operands!");
2562 : // If this is an immediate, it's a label reference.
2563 0 : if (isImm()) {
2564 : addExpr(Inst, getImm());
2565 : Inst.addOperand(MCOperand::createImm(0));
2566 0 : return;
2567 0 : }
2568 0 :
2569 0 : // Otherwise, it's a normal memory reg+offset.
2570 : int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2571 0 : Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2572 : Inst.addOperand(MCOperand::createImm(Val));
2573 0 : }
2574 0 :
2575 0 : void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const {
2576 0 : assert(N == 2 && "Invalid number of operands!");
2577 : // If this is an immediate, it's a label reference.
2578 0 : if (isImm()) {
2579 42 : addExpr(Inst, getImm());
2580 0 : Inst.addOperand(MCOperand::createImm(0));
2581 : return;
2582 0 : }
2583 38 :
2584 0 : // Otherwise, it's a normal memory reg+offset.
2585 : int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
2586 0 : Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2587 : Inst.addOperand(MCOperand::createImm(Val));
2588 : }
2589 0 :
2590 0 : void addConstPoolAsmImmOperands(MCInst &Inst, unsigned N) const {
2591 0 : assert(N == 1 && "Invalid number of operands!");
2592 0 : // This is container for the immediate that we will create the constant
2593 : // pool from
2594 : addExpr(Inst, getConstantPoolImm());
2595 : return;
2596 0 : }
2597 0 :
2598 0 : void addMemTBBOperands(MCInst &Inst, unsigned N) const {
2599 : assert(N == 2 && "Invalid number of operands!");
2600 : Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2601 0 : Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2602 : }
2603 :
2604 0 : void addMemTBHOperands(MCInst &Inst, unsigned N) const {
2605 0 : assert(N == 2 && "Invalid number of operands!");
2606 0 : Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2607 0 : Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2608 : }
2609 :
2610 : void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const {
2611 0 : assert(N == 3 && "Invalid number of operands!");
2612 0 : unsigned Val =
2613 0 : ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
2614 : Memory.ShiftImm, Memory.ShiftType);
2615 : Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2616 0 : Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2617 : Inst.addOperand(MCOperand::createImm(Val));
2618 : }
2619 :
2620 549 : void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const {
2621 0 : assert(N == 3 && "Invalid number of operands!");
2622 : Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2623 : Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2624 0 : Inst.addOperand(MCOperand::createImm(Memory.ShiftImm));
2625 : }
2626 0 :
2627 0 : void addMemThumbRROperands(MCInst &Inst, unsigned N) const {
2628 0 : assert(N == 2 && "Invalid number of operands!");
2629 : Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2630 0 : Inst.addOperand(MCOperand::createReg(Memory.OffsetRegNum));
2631 : }
2632 0 :
2633 0 : void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const {
2634 0 : assert(N == 2 && "Invalid number of operands!");
2635 : int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
2636 0 : Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2637 : Inst.addOperand(MCOperand::createImm(Val));
2638 : }
2639 0 :
2640 0 : void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const {
2641 0 : assert(N == 2 && "Invalid number of operands!");
2642 0 : int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0;
2643 0 : Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2644 0 : Inst.addOperand(MCOperand::createImm(Val));
2645 : }
2646 0 :
2647 : void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const {
2648 0 : assert(N == 2 && "Invalid number of operands!");
2649 0 : int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0;
2650 0 : Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2651 0 : Inst.addOperand(MCOperand::createImm(Val));
2652 : }
2653 0 :
2654 : void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const {
2655 0 : assert(N == 2 && "Invalid number of operands!");
2656 0 : int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
2657 0 : Inst.addOperand(MCOperand::createReg(Memory.BaseRegNum));
2658 : Inst.addOperand(MCOperand::createImm(Val));
2659 0 : }
2660 :
2661 0 : void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const {
2662 0 : assert(N == 1 && "Invalid number of operands!");
2663 0 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2664 0 : assert(CE && "non-constant post-idx-imm8 operand!");
2665 : int Imm = CE->getValue();
2666 0 : bool isAdd = Imm >= 0;
2667 : if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0;
2668 0 : Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8;
2669 0 : Inst.addOperand(MCOperand::createImm(Imm));
2670 0 : }
2671 0 :
2672 : void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const {
2673 0 : assert(N == 1 && "Invalid number of operands!");
2674 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2675 0 : assert(CE && "non-constant post-idx-imm8s4 operand!");
2676 0 : int Imm = CE->getValue();
2677 0 : bool isAdd = Imm >= 0;
2678 0 : if (Imm == std::numeric_limits<int32_t>::min()) Imm = 0;
2679 : // Immediate is scaled by 4.
2680 0 : Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8;
2681 : Inst.addOperand(MCOperand::createImm(Imm));
2682 0 : }
2683 0 :
2684 0 : void addPostIdxRegOperands(MCInst &Inst, unsigned N) const {
2685 0 : assert(N == 2 && "Invalid number of operands!");
2686 : Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
2687 0 : Inst.addOperand(MCOperand::createImm(PostIdxReg.isAdd));
2688 : }
2689 0 :
2690 : void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const {
2691 0 : assert(N == 2 && "Invalid number of operands!");
2692 0 : Inst.addOperand(MCOperand::createReg(PostIdxReg.RegNum));
2693 0 : // The sign, shift type, and shift amount are encoded in a single operand
2694 0 : // using the AM2 encoding helpers.
2695 0 : ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub;
2696 0 : unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm,
2697 : PostIdxReg.ShiftTy);
2698 0 : Inst.addOperand(MCOperand::createImm(Imm));
2699 : }
2700 0 :
2701 : void addMSRMaskOperands(MCInst &Inst, unsigned N) const {
2702 0 : assert(N == 1 && "Invalid number of operands!");
2703 0 : Inst.addOperand(MCOperand::createImm(unsigned(getMSRMask())));
2704 0 : }
2705 :
2706 0 : void addBankedRegOperands(MCInst &Inst, unsigned N) const {
2707 0 : assert(N == 1 && "Invalid number of operands!");
2708 0 : Inst.addOperand(MCOperand::createImm(unsigned(getBankedReg())));
2709 : }
2710 0 :
2711 : void addProcIFlagsOperands(MCInst &Inst, unsigned N) const {
2712 0 : assert(N == 1 && "Invalid number of operands!");
2713 0 : Inst.addOperand(MCOperand::createImm(unsigned(getProcIFlags())));
2714 0 : }
2715 :
2716 0 : void addVecListOperands(MCInst &Inst, unsigned N) const {
2717 : assert(N == 1 && "Invalid number of operands!");
2718 0 : Inst.addOperand(MCOperand::createReg(VectorList.RegNum));
2719 : }
2720 :
2721 0 : void addVecListIndexedOperands(MCInst &Inst, unsigned N) const {
2722 0 : assert(N == 2 && "Invalid number of operands!");
2723 0 : Inst.addOperand(MCOperand::createReg(VectorList.RegNum));
2724 0 : Inst.addOperand(MCOperand::createImm(VectorList.LaneIndex));
2725 0 : }
2726 :
2727 0 : void addVectorIndex8Operands(MCInst &Inst, unsigned N) const {
2728 : assert(N == 1 && "Invalid number of operands!");
2729 334 : Inst.addOperand(MCOperand::createImm(getVectorIndex()));
2730 0 : }
2731 :
2732 0 : void addVectorIndex16Operands(MCInst &Inst, unsigned N) const {
2733 : assert(N == 1 && "Invalid number of operands!");
2734 198 : Inst.addOperand(MCOperand::createImm(getVectorIndex()));
2735 0 : }
2736 :
2737 0 : void addVectorIndex32Operands(MCInst &Inst, unsigned N) const {
2738 : assert(N == 1 && "Invalid number of operands!");
2739 71 : Inst.addOperand(MCOperand::createImm(getVectorIndex()));
2740 0 : }
2741 :
2742 0 : void addVectorIndex64Operands(MCInst &Inst, unsigned N) const {
2743 : assert(N == 1 && "Invalid number of operands!");
2744 1075 : Inst.addOperand(MCOperand::createImm(getVectorIndex()));
2745 0 : }
2746 :
2747 0 : void addNEONi8splatOperands(MCInst &Inst, unsigned N) const {
2748 : assert(N == 1 && "Invalid number of operands!");
2749 0 : // The immediate encodes the type of constant as well as the value.
2750 0 : // Mask in that this is an i8 splat.
2751 0 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2752 : Inst.addOperand(MCOperand::createImm(CE->getValue() | 0xe00));
2753 0 : }
2754 :
2755 22 : void addNEONi16splatOperands(MCInst &Inst, unsigned N) const {
2756 0 : assert(N == 1 && "Invalid number of operands!");
2757 : // The immediate encodes the type of constant as well as the value.
2758 0 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2759 : unsigned Value = CE->getValue();
2760 134 : Value = ARM_AM::encodeNEONi16splat(Value);
2761 0 : Inst.addOperand(MCOperand::createImm(Value));
2762 : }
2763 0 :
2764 : void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const {
2765 175 : assert(N == 1 && "Invalid number of operands!");
2766 0 : // The immediate encodes the type of constant as well as the value.
2767 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2768 0 : unsigned Value = CE->getValue();
2769 : Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff);
2770 40 : Inst.addOperand(MCOperand::createImm(Value));
2771 0 : }
2772 :
2773 0 : void addNEONi32splatOperands(MCInst &Inst, unsigned N) const {
2774 : assert(N == 1 && "Invalid number of operands!");
2775 : // The immediate encodes the type of constant as well as the value.
2776 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2777 0 : unsigned Value = CE->getValue();
2778 0 : Value = ARM_AM::encodeNEONi32splat(Value);
2779 0 : Inst.addOperand(MCOperand::createImm(Value));
2780 : }
2781 0 :
2782 : void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const {
2783 : assert(N == 1 && "Invalid number of operands!");
2784 0 : // The immediate encodes the type of constant as well as the value.
2785 0 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2786 : unsigned Value = CE->getValue();
2787 0 : Value = ARM_AM::encodeNEONi32splat(~Value);
2788 0 : Inst.addOperand(MCOperand::createImm(Value));
2789 : }
2790 0 :
2791 : void addNEONi8ReplicateOperands(MCInst &Inst, bool Inv) const {
2792 : // The immediate encodes the type of constant as well as the value.
2793 0 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2794 0 : assert((Inst.getOpcode() == ARM::VMOVv8i8 ||
2795 0 : Inst.getOpcode() == ARM::VMOVv16i8) &&
2796 0 : "All instructions that wants to replicate non-zero byte "
2797 0 : "always must be replaced with VMOVv8i8 or VMOVv16i8.");
2798 : unsigned Value = CE->getValue();
2799 0 : if (Inv)
2800 : Value = ~Value;
2801 : unsigned B = Value & 0xff;
2802 0 : B |= 0xe00; // cmode = 0b1110
2803 0 : Inst.addOperand(MCOperand::createImm(B));
2804 : }
2805 0 :
2806 0 : void addNEONinvi8ReplicateOperands(MCInst &Inst, unsigned N) const {
2807 : assert(N == 1 && "Invalid number of operands!");
2808 0 : addNEONi8ReplicateOperands(Inst, true);
2809 : }
2810 :
2811 0 : static unsigned encodeNeonVMOVImmediate(unsigned Value) {
2812 0 : if (Value >= 256 && Value <= 0xffff)
2813 0 : Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
2814 0 : else if (Value > 0xffff && Value <= 0xffffff)
2815 0 : Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
2816 : else if (Value > 0xffffff)
2817 18 : Value = (Value >> 24) | 0x600;
2818 : return Value;
2819 18 : }
2820 :
2821 : void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const {
2822 : assert(N == 1 && "Invalid number of operands!");
2823 : // The immediate encodes the type of constant as well as the value.
2824 18 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2825 18 : unsigned Value = encodeNeonVMOVImmediate(CE->getValue());
2826 10 : Inst.addOperand(MCOperand::createImm(Value));
2827 18 : }
2828 18 :
2829 18 : void addNEONvmovi8ReplicateOperands(MCInst &Inst, unsigned N) const {
2830 18 : assert(N == 1 && "Invalid number of operands!");
2831 : addNEONi8ReplicateOperands(Inst, false);
2832 0 : }
2833 :
2834 10 : void addNEONvmovi16ReplicateOperands(MCInst &Inst, unsigned N) const {
2835 0 : assert(N == 1 && "Invalid number of operands!");
2836 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2837 46 : assert((Inst.getOpcode() == ARM::VMOVv4i16 ||
2838 46 : Inst.getOpcode() == ARM::VMOVv8i16 ||
2839 18 : Inst.getOpcode() == ARM::VMVNv4i16 ||
2840 34 : Inst.getOpcode() == ARM::VMVNv8i16) &&
2841 22 : "All instructions that want to replicate non-zero half-word "
2842 18 : "always must be replaced with V{MOV,MVN}v{4,8}i16.");
2843 7 : uint64_t Value = CE->getValue();
2844 46 : unsigned Elem = Value & 0xffff;
2845 : if (Elem >= 256)
2846 : Elem = (Elem >> 8) | 0x200;
2847 0 : Inst.addOperand(MCOperand::createImm(Elem));
2848 : }
2849 :
2850 0 : void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const {
2851 0 : assert(N == 1 && "Invalid number of operands!");
2852 0 : // The immediate encodes the type of constant as well as the value.
2853 0 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2854 : unsigned Value = encodeNeonVMOVImmediate(~CE->getValue());
2855 0 : Inst.addOperand(MCOperand::createImm(Value));
2856 : }
2857 8 :
2858 0 : void addNEONvmovi32ReplicateOperands(MCInst &Inst, unsigned N) const {
2859 : assert(N == 1 && "Invalid number of operands!");
2860 0 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2861 : assert((Inst.getOpcode() == ARM::VMOVv2i32 ||
2862 0 : Inst.getOpcode() == ARM::VMOVv4i32 ||
2863 : Inst.getOpcode() == ARM::VMVNv2i32 ||
2864 : Inst.getOpcode() == ARM::VMVNv4i32) &&
2865 : "All instructions that want to replicate non-zero word "
2866 : "always must be replaced with V{MOV,MVN}v{2,4}i32.");
2867 : uint64_t Value = CE->getValue();
2868 : unsigned Elem = encodeNeonVMOVImmediate(Value & 0xffffffff);
2869 0 : Inst.addOperand(MCOperand::createImm(Elem));
2870 0 : }
2871 0 :
2872 0 : void addNEONi64splatOperands(MCInst &Inst, unsigned N) const {
2873 0 : assert(N == 1 && "Invalid number of operands!");
2874 0 : // The immediate encodes the type of constant as well as the value.
2875 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2876 0 : uint64_t Value = CE->getValue();
2877 : unsigned Imm = 0;
2878 : for (unsigned i = 0; i < 8; ++i, Value >>= 8) {
2879 0 : Imm |= (Value & 1) << i;
2880 0 : }
2881 0 : Inst.addOperand(MCOperand::createImm(Imm | 0x1e00));
2882 0 : }
2883 :
2884 0 : void addComplexRotationEvenOperands(MCInst &Inst, unsigned N) const {
2885 : assert(N == 1 && "Invalid number of operands!");
2886 0 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2887 : Inst.addOperand(MCOperand::createImm(CE->getValue() / 90));
2888 : }
2889 :
2890 : void addComplexRotationOddOperands(MCInst &Inst, unsigned N) const {
2891 : assert(N == 1 && "Invalid number of operands!");
2892 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2893 0 : Inst.addOperand(MCOperand::createImm((CE->getValue() - 90) / 180));
2894 0 : }
2895 0 :
2896 0 : void print(raw_ostream &OS) const override;
2897 :
2898 0 : static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) {
2899 : auto Op = make_unique<ARMOperand>(k_ITCondMask);
2900 : Op->ITMask.Mask = Mask;
2901 0 : Op->StartLoc = S;
2902 0 : Op->EndLoc = S;
2903 : return Op;
2904 0 : }
2905 0 :
2906 : static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC,
2907 0 : SMLoc S) {
2908 0 : auto Op = make_unique<ARMOperand>(k_CondCode);
2909 : Op->CC.Val = CC;
2910 0 : Op->StartLoc = S;
2911 : Op->EndLoc = S;
2912 0 : return Op;
2913 0 : }
2914 0 :
2915 : static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) {
2916 0 : auto Op = make_unique<ARMOperand>(k_CoprocNum);
2917 : Op->Cop.Val = CopVal;
2918 0 : Op->StartLoc = S;
2919 0 : Op->EndLoc = S;
2920 0 : return Op;
2921 : }
2922 :
2923 : static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) {
2924 : auto Op = make_unique<ARMOperand>(k_CoprocReg);
2925 2787 : Op->Cop.Val = CopVal;
2926 2787 : Op->StartLoc = S;
2927 2787 : Op->EndLoc = S;
2928 2787 : return Op;
2929 : }
2930 :
2931 : static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S,
2932 : SMLoc E) {
2933 : auto Op = make_unique<ARMOperand>(k_CoprocOption);
2934 23165 : Op->Cop.Val = Val;
2935 23165 : Op->StartLoc = S;
2936 23165 : Op->EndLoc = E;
2937 23165 : return Op;
2938 : }
2939 :
2940 : static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) {
2941 : auto Op = make_unique<ARMOperand>(k_CCOut);
2942 886 : Op->Reg.RegNum = RegNum;
2943 886 : Op->StartLoc = S;
2944 886 : Op->EndLoc = S;
2945 886 : return Op;
2946 : }
2947 :
2948 : static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) {
2949 : auto Op = make_unique<ARMOperand>(k_Token);
2950 1021 : Op->Tok.Data = Str.data();
2951 1021 : Op->Tok.Length = Str.size();
2952 1021 : Op->StartLoc = S;
2953 1021 : Op->EndLoc = S;
2954 : return Op;
2955 : }
2956 :
2957 : static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S,
2958 : SMLoc E) {
2959 78 : auto Op = make_unique<ARMOperand>(k_Register);
2960 78 : Op->Reg.RegNum = RegNum;
2961 78 : Op->StartLoc = S;
2962 78 : Op->EndLoc = E;
2963 : return Op;
2964 : }
2965 :
2966 : static std::unique_ptr<ARMOperand>
2967 4705 : CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg,
2968 4705 : unsigned ShiftReg, unsigned ShiftImm, SMLoc S,
2969 4705 : SMLoc E) {
2970 4705 : auto Op = make_unique<ARMOperand>(k_ShiftedRegister);
2971 : Op->RegShiftedReg.ShiftTy = ShTy;
2972 : Op->RegShiftedReg.SrcReg = SrcReg;
2973 : Op->RegShiftedReg.ShiftReg = ShiftReg;
2974 37949 : Op->RegShiftedReg.ShiftImm = ShiftImm;
2975 37949 : Op->StartLoc = S;
2976 37949 : Op->EndLoc = E;
2977 37949 : return Op;
2978 37949 : }
2979 37949 :
2980 37949 : static std::unique_ptr<ARMOperand>
2981 : CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg,
2982 : unsigned ShiftImm, SMLoc S, SMLoc E) {
2983 : auto Op = make_unique<ARMOperand>(k_ShiftedImmediate);
2984 : Op->RegShiftedImm.ShiftTy = ShTy;
2985 48 : Op->RegShiftedImm.SrcReg = SrcReg;
2986 34715 : Op->RegShiftedImm.ShiftImm = ShiftImm;
2987 34715 : Op->StartLoc = S;
2988 34715 : Op->EndLoc = E;
2989 : return Op;
2990 : }
2991 :
2992 : static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm,
2993 247 : SMLoc S, SMLoc E) {
2994 : auto Op = make_unique<ARMOperand>(k_ShifterImmediate);
2995 : Op->ShifterImm.isASR = isASR;
2996 247 : Op->ShifterImm.Imm = Imm;
2997 247 : Op->StartLoc = S;
2998 247 : Op->EndLoc = E;
2999 247 : return Op;
3000 247 : }
3001 247 :
3002 247 : static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S,
3003 247 : SMLoc E) {
3004 : auto Op = make_unique<ARMOperand>(k_RotateImmediate);
3005 : Op->RotImm.Imm = Imm;
3006 : Op->StartLoc = S;
3007 641 : Op->EndLoc = E;
3008 : return Op;
3009 641 : }
3010 641 :
3011 641 : static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot,
3012 641 : SMLoc S, SMLoc E) {
3013 641 : auto Op = make_unique<ARMOperand>(k_ModifiedImmediate);
3014 641 : Op->ModImm.Bits = Bits;
3015 641 : Op->ModImm.Rot = Rot;
3016 : Op->StartLoc = S;
3017 : Op->EndLoc = E;
3018 : return Op;
3019 : }
3020 32 :
3021 32 : static std::unique_ptr<ARMOperand>
3022 32 : CreateConstantPoolImm(const MCExpr *Val, SMLoc S, SMLoc E) {
3023 32 : auto Op = make_unique<ARMOperand>(k_ConstantPoolImmediate);
3024 32 : Op->Imm.Val = Val;
3025 : Op->StartLoc = S;
3026 : Op->EndLoc = E;
3027 : return Op;
3028 : }
3029 :
3030 218 : static std::unique_ptr<ARMOperand>
3031 218 : CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) {
3032 218 : auto Op = make_unique<ARMOperand>(k_BitfieldDescriptor);
3033 218 : Op->Bitfield.LSB = LSB;
3034 : Op->Bitfield.Width = Width;
3035 : Op->StartLoc = S;
3036 : Op->EndLoc = E;
3037 : return Op;
3038 : }
3039 1089 :
3040 1089 : static std::unique_ptr<ARMOperand>
3041 1089 : CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
3042 1089 : SMLoc StartLoc, SMLoc EndLoc) {
3043 1089 : assert(Regs.size() > 0 && "RegList contains no registers?");
3044 : KindTy Kind = k_RegisterList;
3045 :
3046 : if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second))
3047 : Kind = k_DPRRegisterList;
3048 : else if (ARMMCRegisterClasses[ARM::SPRRegClassID].
3049 388 : contains(Regs.front().second))
3050 388 : Kind = k_SPRRegisterList;
3051 388 :
3052 388 : // Sort based on the register encoding values.
3053 : array_pod_sort(Regs.begin(), Regs.end());
3054 :
3055 : auto Op = make_unique<ARMOperand>(Kind);
3056 : for (SmallVectorImpl<std::pair<unsigned, unsigned>>::const_iterator
3057 : I = Regs.begin(), E = Regs.end(); I != E; ++I)
3058 34 : Op->Registers.push_back(I->second);
3059 34 : Op->StartLoc = StartLoc;
3060 34 : Op->EndLoc = EndLoc;
3061 34 : return Op;
3062 34 : }
3063 :
3064 : static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum,
3065 : unsigned Count,
3066 : bool isDoubleSpaced,
3067 755 : SMLoc S, SMLoc E) {
3068 : auto Op = make_unique<ARMOperand>(k_VectorList);
3069 : Op->VectorList.RegNum = RegNum;
3070 : Op->VectorList.Count = Count;
3071 : Op->VectorList.isDoubleSpaced = isDoubleSpaced;
3072 755 : Op->StartLoc = S;
3073 : Op->EndLoc = E;
3074 673 : return Op;
3075 673 : }
3076 :
3077 : static std::unique_ptr<ARMOperand>
3078 : CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced,
3079 : SMLoc S, SMLoc E) {
3080 : auto Op = make_unique<ARMOperand>(k_VectorListAllLanes);
3081 755 : Op->VectorList.RegNum = RegNum;
3082 2376 : Op->VectorList.Count = Count;
3083 3131 : Op->VectorList.isDoubleSpaced = isDoubleSpaced;
3084 2376 : Op->StartLoc = S;
3085 755 : Op->EndLoc = E;
3086 755 : return Op;
3087 755 : }
3088 :
3089 : static std::unique_ptr<ARMOperand>
3090 1549 : CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index,
3091 : bool isDoubleSpaced, SMLoc S, SMLoc E) {
3092 : auto Op = make_unique<ARMOperand>(k_VectorListIndexed);
3093 : Op->VectorList.RegNum = RegNum;
3094 1549 : Op->VectorList.Count = Count;
3095 1549 : Op->VectorList.LaneIndex = Index;
3096 1549 : Op->VectorList.isDoubleSpaced = isDoubleSpaced;
3097 1549 : Op->StartLoc = S;
3098 1549 : Op->EndLoc = E;
3099 1549 : return Op;
3100 1549 : }
3101 :
3102 : static std::unique_ptr<ARMOperand>
3103 : CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) {
3104 480 : auto Op = make_unique<ARMOperand>(k_VectorIndex);
3105 : Op->VectorIndex.Val = Idx;
3106 480 : Op->StartLoc = S;
3107 480 : Op->EndLoc = E;
3108 480 : return Op;
3109 480 : }
3110 480 :
3111 480 : static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S,
3112 480 : SMLoc E) {
3113 : auto Op = make_unique<ARMOperand>(k_Immediate);
3114 : Op->Imm.Val = Val;
3115 : Op->StartLoc = S;
3116 786 : Op->EndLoc = E;
3117 : return Op;
3118 786 : }
3119 786 :
3120 786 : static std::unique_ptr<ARMOperand>
3121 786 : CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm,
3122 786 : unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType,
3123 786 : unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S,
3124 786 : SMLoc E, SMLoc AlignmentLoc = SMLoc()) {
3125 786 : auto Op = make_unique<ARMOperand>(k_Memory);
3126 : Op->Memory.BaseRegNum = BaseRegNum;
3127 : Op->Memory.OffsetImm = OffsetImm;
3128 : Op->Memory.OffsetRegNum = OffsetRegNum;
3129 0 : Op->Memory.ShiftType = ShiftType;
3130 0 : Op->Memory.ShiftImm = ShiftImm;
3131 449 : Op->Memory.Alignment = Alignment;
3132 449 : Op->Memory.isNegative = isNegative;
3133 449 : Op->StartLoc = S;
3134 0 : Op->EndLoc = E;
3135 : Op->AlignmentLoc = AlignmentLoc;
3136 : return Op;
3137 : }
3138 :
3139 136 : static std::unique_ptr<ARMOperand>
3140 6092 : CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy,
3141 6092 : unsigned ShiftImm, SMLoc S, SMLoc E) {
3142 6092 : auto Op = make_unique<ARMOperand>(k_PostIndexRegister);
3143 : Op->PostIdxReg.RegNum = RegNum;
3144 : Op->PostIdxReg.isAdd = isAdd;
3145 : Op->PostIdxReg.ShiftTy = ShiftTy;
3146 : Op->PostIdxReg.ShiftImm = ShiftImm;
3147 5380 : Op->StartLoc = S;
3148 : Op->EndLoc = E;
3149 : return Op;
3150 : }
3151 5380 :
3152 5380 : static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt,
3153 5380 : SMLoc S) {
3154 5380 : auto Op = make_unique<ARMOperand>(k_MemBarrierOpt);
3155 5380 : Op->MBOpt.Val = Opt;
3156 5380 : Op->StartLoc = S;
3157 5380 : Op->EndLoc = S;
3158 5380 : return Op;
3159 5380 : }
3160 5380 :
3161 5380 : static std::unique_ptr<ARMOperand>
3162 5380 : CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) {
3163 : auto Op = make_unique<ARMOperand>(k_InstSyncBarrierOpt);
3164 : Op->ISBOpt.Val = Opt;
3165 : Op->StartLoc = S;
3166 76 : Op->EndLoc = S;
3167 : return Op;
3168 76 : }
3169 76 :
3170 76 : static std::unique_ptr<ARMOperand>
3171 76 : CreateTraceSyncBarrierOpt(ARM_TSB::TraceSyncBOpt Opt, SMLoc S) {
3172 76 : auto Op = make_unique<ARMOperand>(k_TraceSyncBarrierOpt);
3173 76 : Op->TSBOpt.Val = Opt;
3174 76 : Op->StartLoc = S;
3175 76 : Op->EndLoc = S;
3176 : return Op;
3177 : }
3178 :
3179 : static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags,
3180 256 : SMLoc S) {
3181 256 : auto Op = make_unique<ARMOperand>(k_ProcIFlags);
3182 256 : Op->IFlags.Val = IFlags;
3183 256 : Op->StartLoc = S;
3184 : Op->EndLoc = S;
3185 : return Op;
3186 : }
3187 :
3188 : static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) {
3189 18 : auto Op = make_unique<ARMOperand>(k_MSRMask);
3190 18 : Op->MMask.Val = MMask;
3191 18 : Op->StartLoc = S;
3192 18 : Op->EndLoc = S;
3193 : return Op;
3194 : }
3195 :
3196 : static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) {
3197 : auto Op = make_unique<ARMOperand>(k_BankedReg);
3198 2 : Op->BankedReg.Val = Reg;
3199 2 : Op->StartLoc = S;
3200 2 : Op->EndLoc = S;
3201 2 : return Op;
3202 : }
3203 : };
3204 :
3205 : } // end anonymous namespace.
3206 :
3207 44 : void ARMOperand::print(raw_ostream &OS) const {
3208 44 : switch (Kind) {
3209 44 : case k_CondCode:
3210 44 : OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
3211 : break;
3212 : case k_CCOut:
3213 : OS << "<ccout " << getReg() << ">";
3214 : break;
3215 219 : case k_ITCondMask: {
3216 219 : static const char *const MaskStr[] = {
3217 219 : "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)",
3218 219 : "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)"
3219 : };
3220 : assert((ITMask.Mask & 0xf) == ITMask.Mask);
3221 : OS << "<it-mask " << MaskStr[ITMask.Mask] << ">";
3222 : break;
3223 132 : }
3224 132 : case k_CoprocNum:
3225 132 : OS << "<coprocessor number: " << getCoproc() << ">";
3226 132 : break;
3227 : case k_CoprocReg:
3228 : OS << "<coprocessor register: " << getCoproc() << ">";
3229 : break;
3230 : case k_CoprocOption:
3231 : OS << "<coprocessor option: " << CoprocOption.Val << ">";
3232 : break;
3233 0 : case k_MSRMask:
3234 0 : OS << "<mask: " << getMSRMask() << ">";
3235 0 : break;
3236 0 : case k_BankedReg:
3237 0 : OS << "<banked reg: " << getBankedReg() << ">";
3238 0 : break;
3239 0 : case k_Immediate:
3240 0 : OS << *getImm();
3241 0 : break;
3242 : case k_MemBarrierOpt:
3243 : OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">";
3244 : break;
3245 : case k_InstSyncBarrierOpt:
3246 : OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">";
3247 0 : break;
3248 0 : case k_TraceSyncBarrierOpt:
3249 : OS << "<ARM_TSB::" << TraceSyncBOptToString(getTraceSyncBarrierOpt()) << ">";
3250 0 : break;
3251 0 : case k_Memory:
3252 0 : OS << "<memory "
3253 0 : << " base:" << Memory.BaseRegNum;
3254 0 : OS << ">";
3255 0 : break;
3256 0 : case k_PostIndexRegister:
3257 0 : OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-")
3258 0 : << PostIdxReg.RegNum;
3259 0 : if (PostIdxReg.ShiftTy != ARM_AM::no_shift)
3260 0 : OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " "
3261 0 : << PostIdxReg.ShiftImm;
3262 0 : OS << ">";
3263 0 : break;
3264 0 : case k_ProcIFlags: {
3265 0 : OS << "<ARM_PROC::";
3266 0 : unsigned IFlags = getProcIFlags();
3267 : for (int i=2; i >= 0; --i)
3268 0 : if (IFlags & (1 << i))
3269 0 : OS << ARM_PROC::IFlagsToString(1 << i);
3270 0 : OS << ">";
3271 0 : break;
3272 0 : }
3273 0 : case k_Register:
3274 0 : OS << "<register " << getReg() << ">";
3275 0 : break;
3276 0 : case k_ShifterImmediate:
3277 0 : OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl")
3278 0 : << " #" << ShifterImm.Imm << ">";
3279 0 : break;
3280 0 : case k_ShiftedRegister:
3281 0 : OS << "<so_reg_reg "
3282 0 : << RegShiftedReg.SrcReg << " "
3283 0 : << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy)
3284 0 : << " " << RegShiftedReg.ShiftReg << ">";
3285 0 : break;
3286 0 : case k_ShiftedImmediate:
3287 0 : OS << "<so_reg_imm "
3288 0 : << RegShiftedImm.SrcReg << " "
3289 0 : << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy)
3290 0 : << " #" << RegShiftedImm.ShiftImm << ">";
3291 0 : break;
3292 0 : case k_RotateImmediate:
3293 0 : OS << "<ror " << " #" << (RotImm.Imm * 8) << ">";
3294 0 : break;
3295 0 : case k_ModifiedImmediate:
3296 0 : OS << "<mod_imm #" << ModImm.Bits << ", #"
3297 0 : << ModImm.Rot << ")>";
3298 : break;
3299 0 : case k_ConstantPoolImmediate:
3300 0 : OS << "<constant_pool_imm #" << *getConstantPoolImm();
3301 0 : break;
3302 0 : case k_BitfieldDescriptor:
3303 0 : OS << "<bitfield " << "lsb: " << Bitfield.LSB
3304 0 : << ", width: " << Bitfield.Width << ">";
3305 0 : break;
3306 0 : case k_RegisterList:
3307 0 : case k_DPRRegisterList:
3308 0 : case k_SPRRegisterList: {
3309 0 : OS << "<register_list ";
3310 0 :
3311 0 : const SmallVectorImpl<unsigned> &RegList = getRegList();
3312 0 : for (SmallVectorImpl<unsigned>::const_iterator
3313 0 : I = RegList.begin(), E = RegList.end(); I != E; ) {
3314 0 : OS << *I;
3315 0 : if (++I < E) OS << ", ";
3316 0 : }
3317 0 :
3318 0 : OS << ">";
3319 0 : break;
3320 0 : }
3321 0 : case k_VectorList:
3322 0 : OS << "<vector_list " << VectorList.Count << " * "
3323 0 : << VectorList.RegNum << ">";
3324 0 : break;
3325 0 : case k_VectorListAllLanes:
3326 0 : OS << "<vector_list(all lanes) " << VectorList.Count << " * "
3327 : << VectorList.RegNum << ">";
3328 0 : break;
3329 0 : case k_VectorListIndexed:
3330 0 : OS << "<vector_list(lane " << VectorList.LaneIndex << ") "
3331 0 : << VectorList.Count << " * " << VectorList.RegNum << ">";
3332 0 : break;
3333 : case k_Token:
3334 : OS << "'" << getToken() << "'";
3335 0 : break;
3336 : case k_VectorIndex:
3337 : OS << "<vectorindex " << getVectorIndex() << ">";
3338 : break;
3339 0 : }
3340 0 : }
3341 0 :
3342 : /// @name Auto-generated Match Functions
3343 : /// {
3344 0 :
3345 0 : static unsigned MatchRegisterName(StringRef Name);
3346 :
3347 0 : /// }
3348 0 :
3349 0 : bool ARMAsmParser::ParseRegister(unsigned &RegNo,
3350 0 : SMLoc &StartLoc, SMLoc &EndLoc) {
3351 0 : const AsmToken &Tok = getParser().getTok();
3352 0 : StartLoc = Tok.getLoc();
3353 0 : EndLoc = Tok.getEndLoc();
3354 0 : RegNo = tryParseRegister();
3355 0 :
3356 0 : return (RegNo == (unsigned)-1);
3357 0 : }
3358 0 :
3359 0 : /// Try to parse a register name. The token must be an Identifier when called,
3360 0 : /// and if it is a register name the token is eaten and the register number is
3361 0 : /// returned. Otherwise return -1.
3362 0 : int ARMAsmParser::tryParseRegister() {
3363 0 : MCAsmParser &Parser = getParser();
3364 0 : const AsmToken &Tok = Parser.getTok();
3365 : if (Tok.isNot(AsmToken::Identifier)) return -1;
3366 0 :
3367 : std::string lowerCase = Tok.getString().lower();
3368 : unsigned RegNum = MatchRegisterName(lowerCase);
3369 : if (!RegNum) {
3370 : RegNum = StringSwitch<unsigned>(lowerCase)
3371 : .Case("r13", ARM::SP)
3372 : .Case("r14", ARM::LR)
3373 : .Case("r15", ARM::PC)
3374 : .Case("ip", ARM::R12)
3375 45 : // Additional register name aliases for 'gas' compatibility.
3376 : .Case("a1", ARM::R0)
3377 45 : .Case("a2", ARM::R1)
3378 45 : .Case("a3", ARM::R2)
3379 45 : .Case("a4", ARM::R3)
3380 45 : .Case("v1", ARM::R4)
3381 : .Case("v2", ARM::R5)
3382 45 : .Case("v3", ARM::R6)
3383 : .Case("v4", ARM::R7)
3384 : .Case("v5", ARM::R8)
3385 : .Case("v6", ARM::R9)
3386 : .Case("v7", ARM::R10)
3387 : .Case("v8", ARM::R11)
3388 52093 : .Case("sb", ARM::R9)
3389 52093 : .Case("sl", ARM::R10)
3390 52093 : .Case("fp", ARM::R11)
3391 52093 : .Default(0);
3392 : }
3393 52044 : if (!RegNum) {
3394 52044 : // Check for aliases registered via .req. Canonicalize to lower case.
3395 52044 : // That's more consistent since register names are case insensitive, and
3396 1345 : // it's how the original entry was passed in from MC/MCParser/AsmParser.
3397 : StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase);
3398 : // If no match, return failure.
3399 : if (Entry == RegisterReqs.end())
3400 : return -1;
3401 : Parser.Lex(); // Eat identifier token.
3402 : return Entry->getValue();
3403 : }
3404 :
3405 : // Some FPUs only have 16 D registers, so D16-D31 are invalid
3406 : if (hasD16() && RegNum >= ARM::D16 && RegNum <= ARM::D31)
3407 : return -1;
3408 :
3409 : Parser.Lex(); // Eat identifier token.
3410 :
3411 : return RegNum;
3412 : }
3413 :
3414 : // Try to parse a shifter (e.g., "lsl <amt>"). On success, return 0.
3415 : // If a recoverable error occurs, return 1. If an irrecoverable error
3416 : // occurs, return -1. An irrecoverable error is one where tokens have been
3417 : // consumed in the process of trying to parse the shifter (i.e., when it is
3418 : // indeed a shifter operand, but malformed).
3419 50841 : int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) {
3420 : MCAsmParser &Parser = getParser();
3421 : SMLoc S = Parser.getTok().getLoc();
3422 : const AsmToken &Tok = Parser.getTok();
3423 2406 : if (Tok.isNot(AsmToken::Identifier))
3424 : return -1;
3425 2406 :
3426 : std::string lowerCase = Tok.getString().lower();
3427 5 : ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase)
3428 5 : .Case("asl", ARM_AM::lsl)
3429 : .Case("lsl", ARM_AM::lsl)
3430 : .Case("lsr", ARM_AM::lsr)
3431 : .Case("asr", ARM_AM::asr)
3432 50841 : .Case("ror", ARM_AM::ror)
3433 : .Case("rrx", ARM_AM::rrx)
3434 : .Default(ARM_AM::no_shift);
3435 50818 :
3436 : if (ShiftTy == ARM_AM::no_shift)
3437 50818 : return 1;
3438 :
3439 : Parser.Lex(); // Eat the operator.
3440 :
3441 : // The source register for the shift has already been added to the
3442 : // operand list, so we need to pop it off and combine it into the shifted
3443 : // register operand instead.
3444 : std::unique_ptr<ARMOperand> PrevOp(
3445 1224 : (ARMOperand *)Operands.pop_back_val().release());
3446 1224 : if (!PrevOp->isReg())
3447 1224 : return Error(PrevOp->getStartLoc(), "shift must be of a register");
3448 1224 : int SrcReg = PrevOp->getReg();
3449 1224 :
3450 : SMLoc EndLoc;
3451 : int64_t Imm = 0;
3452 1221 : int ShiftReg = 0;
3453 315 : if (ShiftTy == ARM_AM::rrx) {
3454 : // RRX Doesn't have an explicit shift amount. The encoder expects
3455 : // the shift register to be the same as the source register. Seems odd,
3456 : // but OK.
3457 : ShiftReg = SrcReg;
3458 : } else {
3459 : // Figure out if this is shifted by a constant or a register (for non-RRX).
3460 : if (Parser.getTok().is(AsmToken::Hash) ||
3461 : Parser.getTok().is(AsmToken::Dollar)) {
3462 906 : Parser.Lex(); // Eat hash.
3463 315 : SMLoc ImmLoc = Parser.getTok().getLoc();
3464 : const MCExpr *ShiftExpr = nullptr;
3465 906 : if (getParser().parseExpression(ShiftExpr, EndLoc)) {
3466 : Error(ImmLoc, "invalid immediate shift value");
3467 : return -1;
3468 : }
3469 : // The expression must be evaluatable as an immediate.
3470 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr);
3471 1812 : if (!CE) {
3472 906 : Error(ImmLoc, "invalid immediate shift value");
3473 0 : return -1;
3474 906 : }
3475 : // Range check the immediate.
3476 906 : // lsl, ror: 0 <= imm <= 31
3477 : // lsr, asr: 0 <= imm <= 32
3478 : Imm = CE->getValue();
3479 906 : if (Imm < 0 ||
3480 : ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) ||
3481 : ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) {
3482 : Error(ImmLoc, "immediate shift value out of range");
3483 : return -1;
3484 : }
3485 : // shift by zero is a nop. Always send it through as lsl.
3486 856 : // ('as' compatibility)
3487 247 : if (Imm == 0)
3488 609 : ShiftTy = ARM_AM::lsl;
3489 609 : } else if (Parser.getTok().is(AsmToken::Identifier)) {
3490 609 : SMLoc L = Parser.getTok().getLoc();
3491 609 : EndLoc = Parser.getTok().getEndLoc();
3492 0 : ShiftReg = tryParseRegister();
3493 18 : if (ShiftReg == -1) {
3494 : Error(L, "expected immediate or register in shift operand");
3495 : return -1;
3496 609 : }
3497 : } else {
3498 2 : Error(Parser.getTok().getLoc(),
3499 2 : "expected immediate or register in shift operand");
3500 : return -1;
3501 : }
3502 : }
3503 :
3504 607 : if (ShiftReg && ShiftTy != ARM_AM::rrx)
3505 607 : Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg,
3506 599 : ShiftReg, Imm,
3507 595 : S, EndLoc));
3508 16 : else
3509 16 : Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm,
3510 : S, EndLoc));
3511 :
3512 : return 0;
3513 591 : }
3514 :
3515 247 : /// Try to parse a register name. The token must be an Identifier when called.
3516 247 : /// If it's a register, an AsmOperand is created. Another AsmOperand is created
3517 247 : /// if there is a "writeback". 'true' if it's not a register.
3518 247 : ///
3519 247 : /// TODO this is likely to change to allow different register types and or to
3520 0 : /// parse for a specific register type.
3521 0 : bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) {
3522 : MCAsmParser &Parser = getParser();
3523 : SMLoc RegStartLoc = Parser.getTok().getLoc();
3524 0 : SMLoc RegEndLoc = Parser.getTok().getEndLoc();
3525 : int RegNo = tryParseRegister();
3526 0 : if (RegNo == -1)
3527 : return true;
3528 :
3529 : Operands.push_back(ARMOperand::CreateReg(RegNo, RegStartLoc, RegEndLoc));
3530 888 :
3531 494 : const AsmToken &ExclaimTok = Parser.getTok();
3532 : if (ExclaimTok.is(AsmToken::Exclaim)) {
3533 : Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(),
3534 : ExclaimTok.getLoc()));
3535 1282 : Parser.Lex(); // Eat exclaim token
3536 : return false;
3537 : }
3538 :
3539 : // Also check for an index operand. This is only legal for vector registers,
3540 : // but that'll get caught OK in operand matching, so we don't need to
3541 : // explicitly filter everything else out here.
3542 : if (Parser.getTok().is(AsmToken::LBrac)) {
3543 : SMLoc SIdx = Parser.getTok().getLoc();
3544 : Parser.Lex(); // Eat left bracket token.
3545 :
3546 : const MCExpr *ImmVal;
3547 35888 : if (getParser().parseExpression(ImmVal))
3548 35888 : return true;
3549 35888 : const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
3550 35888 : if (!MCE)
3551 35888 : return TokError("immediate value expected for vector index");
3552 35888 :
3553 : if (Parser.getTok().isNot(AsmToken::RBrac))
3554 : return Error(Parser.getTok().getLoc(), "']' expected");
3555 69334 :
3556 : SMLoc E = Parser.getTok().getEndLoc();
3557 34667 : Parser.Lex(); // Eat right bracket token.
3558 34667 :
3559 638 : Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(),
3560 : SIdx, E,
3561 319 : getContext()));
3562 319 : }
3563 :
3564 : return false;
3565 : }
3566 :
3567 : /// MatchCoprocessorOperandName - Try to parse an coprocessor related
3568 34348 : /// instruction with a symbolic operand name.
3569 452 : /// We accept "crN" syntax for GAS compatibility.
3570 452 : /// <operand-name> ::= <prefix><number>
3571 : /// If CoprocOp is 'c', then:
3572 : /// <prefix> ::= c | cr
3573 452 : /// If CoprocOp is 'p', then :
3574 3 : /// <prefix> ::= p
3575 452 : /// <number> ::= integer in range [0, 15]
3576 : static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) {
3577 3 : // Use the same layout as the tablegen'erated register name matcher. Ugly,
3578 : // but efficient.
3579 449 : if (Name.size() < 2 || Name[0] != CoprocOp)
3580 0 : return -1;
3581 : Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front();
3582 449 :
3583 449 : switch (Name.size()) {
3584 : default: return -1;
3585 898 : case 1:
3586 : switch (Name[0]) {
3587 : default: return -1;
3588 : case '0': return 0;
3589 : case '1': return 1;
3590 : case '2': return 2;
3591 : case '3': return 3;
3592 : case '4': return 4;
3593 : case '5': return 5;
3594 : case '6': return 6;
3595 : case '7': return 7;
3596 : case '8': return 8;
3597 : case '9': return 9;
3598 : }
3599 : case 2:
3600 : if (Name[0] != '1')
3601 : return -1;
3602 1913 : switch (Name[1]) {
3603 : default: return -1;
3604 : // CP10 and CP11 are VFP/NEON and so vector instructions should be used.
3605 1913 : // However, old cores (v5/v6) did use them in that way.
3606 : case '0': return 10;
3607 3826 : case '1': return 11;
3608 : case '2': return 12;
3609 1913 : case '3': return 13;
3610 : case '4': return 14;
3611 1679 : case '5': return 15;
3612 3358 : }
3613 : }
3614 : }
3615 :
3616 : /// parseITCondCode - Try to parse a condition code for an IT instruction.
3617 : OperandMatchResultTy
3618 : ARMAsmParser::parseITCondCode(OperandVector &Operands) {
3619 : MCAsmParser &Parser = getParser();
3620 : SMLoc S = Parser.getTok().getLoc();
3621 : const AsmToken &Tok = Parser.getTok();
3622 : if (!Tok.is(AsmToken::Identifier))
3623 : return MatchOperand_NoMatch;
3624 : unsigned CC = ARMCondCodeFromString(Tok.getString());
3625 234 : if (CC == ~0U)
3626 468 : return MatchOperand_NoMatch;
3627 : Parser.Lex(); // Eat the token.
3628 234 :
3629 : Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S));
3630 :
3631 : return MatchOperand_Success;
3632 : }
3633 :
3634 : /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The
3635 : /// token must be an Identifier when called, and if it is a coprocessor
3636 : /// number, the token is eaten and the operand is added to the operand list.
3637 : OperandMatchResultTy
3638 : ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) {
3639 : MCAsmParser &Parser = getParser();
3640 : SMLoc S = Parser.getTok().getLoc();
3641 : const AsmToken &Tok = Parser.getTok();
3642 : if (Tok.isNot(AsmToken::Identifier))
3643 : return MatchOperand_NoMatch;
3644 2784 :
3645 2784 : int Num = MatchCoprocessorOperandName(Tok.getString(), 'p');
3646 2784 : if (Num == -1)
3647 2784 : return MatchOperand_NoMatch;
3648 2784 : // ARMv7 and v8 don't allow cp10/cp11 due to VFP/NEON specific instructions
3649 : if ((hasV7Ops() || hasV8Ops()) && (Num == 10 || Num == 11))
3650 2784 : return MatchOperand_NoMatch;
3651 2784 :
3652 : Parser.Lex(); // Eat identifier token.
3653 2784 : Operands.push_back(ARMOperand::CreateCoprocNum(Num, S));
3654 : return MatchOperand_Success;
3655 5568 : }
3656 :
3657 2784 : /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The
3658 : /// token must be an Identifier when called, and if it is a coprocessor
3659 : /// number, the token is eaten and the operand is added to the operand list.
3660 : OperandMatchResultTy
3661 : ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) {
3662 : MCAsmParser &Parser = getParser();
3663 : SMLoc S = Parser.getTok().getLoc();
3664 892 : const AsmToken &Tok = Parser.getTok();
3665 892 : if (Tok.isNot(AsmToken::Identifier))
3666 892 : return MatchOperand_NoMatch;
3667 892 :
3668 892 : int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c');
3669 : if (Reg == -1)
3670 : return MatchOperand_NoMatch;
3671 892 :
3672 892 : Parser.Lex(); // Eat identifier token.
3673 : Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S));
3674 : return MatchOperand_Success;
3675 903 : }
3676 :
3677 : /// parseCoprocOptionOperand - Try to parse an coprocessor option operand.
3678 886 : /// coproc_option : '{' imm0_255 '}'
3679 1772 : OperandMatchResultTy
3680 886 : ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) {
3681 : MCAsmParser &Parser = getParser();
3682 : SMLoc S = Parser.getTok().getLoc();
3683 :
3684 : // If this isn't a '{', this isn't a coprocessor immediate operand.
3685 : if (Parser.getTok().isNot(AsmToken::LCurly))
3686 : return MatchOperand_NoMatch;
3687 1021 : Parser.Lex(); // Eat the '{'
3688 1021 :
3689 1021 : const MCExpr *Expr;
3690 1021 : SMLoc Loc = Parser.getTok().getLoc();
3691 1021 : if (getParser().parseExpression(Expr)) {
3692 : Error(Loc, "illegal expression");
3693 : return MatchOperand_ParseFail;
3694 1021 : }
3695 1021 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
3696 : if (!CE || CE->getValue() < 0 || CE->getValue() > 255) {
3697 : Error(Loc, "coprocessor option must be an immediate in range [0, 255]");
3698 1021 : return MatchOperand_ParseFail;
3699 2042 : }
3700 1021 : int Val = CE->getValue();
3701 :
3702 : // Check for and consume the closing '}'
3703 : if (Parser.getTok().isNot(AsmToken::RCurly))
3704 : return MatchOperand_ParseFail;
3705 : SMLoc E = Parser.getTok().getEndLoc();
3706 288 : Parser.Lex(); // Eat the '}'
3707 288 :
3708 288 : Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E));
3709 : return MatchOperand_Success;
3710 : }
3711 288 :
3712 : // For register list parsing, we need to map from raw GPR register numbering
3713 80 : // to the enumeration values. The enumeration values aren't sorted by
3714 : // register number due to our using "sp", "lr" and "pc" as canonical names.
3715 : static unsigned getNextRegister(unsigned Reg) {
3716 80 : // If this is a GPR, we need to do it manually, otherwise we can rely
3717 80 : // on the sort ordering of the enumeration since the other reg-classes
3718 0 : // are sane.
3719 0 : if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
3720 : return Reg + 1;
3721 80 : switch(Reg) {
3722 80 : default: llvm_unreachable("Invalid GPR number!");
3723 2 : case ARM::R0: return ARM::R1; case ARM::R1: return ARM::R2;
3724 2 : case ARM::R2: return ARM::R3; case ARM::R3: return ARM::R4;
3725 : case ARM::R4: return ARM::R5; case ARM::R5: return ARM::R6;
3726 : case ARM::R6: return ARM::R7; case ARM::R7: return ARM::R8;
3727 : case ARM::R8: return ARM::R9; case ARM::R9: return ARM::R10;
3728 : case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12;
3729 78 : case ARM::R12: return ARM::SP; case ARM::SP: return ARM::LR;
3730 : case ARM::LR: return ARM::PC; case ARM::PC: return ARM::R0;
3731 78 : }
3732 78 : }
3733 :
3734 156 : /// Parse a register list.
3735 78 : bool ARMAsmParser::parseRegisterList(OperandVector &Operands) {
3736 : MCAsmParser &Parser = getParser();
3737 : if (Parser.getTok().isNot(AsmToken::LCurly))
3738 : return TokError("Token is not a Left Curly Brace");
3739 : SMLoc S = Parser.getTok().getLoc();
3740 : Parser.Lex(); // Eat '{' token.
3741 451 : SMLoc RegLoc = Parser.getTok().getLoc();
3742 :
3743 : // Check the first register in the list to see what register class
3744 : // this is a list of.
3745 451 : int Reg = tryParseRegister();
3746 240 : if (Reg == -1)
3747 211 : return Error(RegLoc, "register expected");
3748 0 :
3749 9 : // The reglist instructions have at most 16 registers, so reserve
3750 66 : // space for that many.
3751 102 : int EReg = 0;
3752 10 : SmallVector<std::pair<unsigned, unsigned>, 16> Registers;
3753 10 :
3754 5 : // Allow Q regs and just interpret them as the two D sub-registers.
3755 0 : if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3756 0 : Reg = getDRegFromQReg(Reg);
3757 : EReg = MRI->getEncodingValue(Reg);
3758 : Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3759 : ++Reg;
3760 : }
3761 764 : const MCRegisterClass *RC;
3762 764 : if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
3763 764 : RC = &ARMMCRegisterClasses[ARM::GPRRegClassID];
3764 0 : else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg))
3765 764 : RC = &ARMMCRegisterClasses[ARM::DPRRegClassID];
3766 764 : else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg))
3767 764 : RC = &ARMMCRegisterClasses[ARM::SPRRegClassID];
3768 : else
3769 : return Error(RegLoc, "invalid register in register list");
3770 :
3771 764 : // Store the register.
3772 764 : EReg = MRI->getEncodingValue(Reg);
3773 3 : Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3774 :
3775 : // This starts immediately after the first register token in the list,
3776 : // so we can see either a comma or a minus (range separator) as a legal
3777 : // next token.
3778 : while (Parser.getTok().is(AsmToken::Comma) ||
3779 : Parser.getTok().is(AsmToken::Minus)) {
3780 : if (Parser.getTok().is(AsmToken::Minus)) {
3781 761 : Parser.Lex(); // Eat the minus.
3782 1 : SMLoc AfterMinusLoc = Parser.getTok().getLoc();
3783 1 : int EndReg = tryParseRegister();
3784 1 : if (EndReg == -1)
3785 1 : return Error(AfterMinusLoc, "register expected");
3786 : // Allow Q regs and just interpret them as the two D sub-registers.
3787 : if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
3788 761 : EndReg = getDRegFromQReg(EndReg) + 1;
3789 : // If the register is the same as the start reg, there's nothing
3790 112 : // more to do.
3791 : if (Reg == EndReg)
3792 30 : continue;
3793 : // The register must be in the same register class as the first.
3794 : if (!RC->contains(EndReg))
3795 0 : return Error(AfterMinusLoc, "invalid register in register list");
3796 : // Ranges must go from low to high.
3797 : if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg))
3798 761 : return Error(AfterMinusLoc, "bad range in register list");
3799 761 :
3800 : // Add all the registers in the range to the register list.
3801 : while (Reg != EndReg) {
3802 : Reg = getNextRegister(Reg);
3803 : EReg = MRI->getEncodingValue(Reg);
3804 2019 : Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3805 844 : }
3806 1264 : continue;
3807 89 : }
3808 89 : Parser.Lex(); // Eat the comma.
3809 89 : RegLoc = Parser.getTok().getLoc();
3810 89 : int OldReg = Reg;
3811 0 : const AsmToken RegTok = Parser.getTok();
3812 : Reg = tryParseRegister();
3813 89 : if (Reg == -1)
3814 1 : return Error(RegLoc, "register expected");
3815 : // Allow Q regs and just interpret them as the two D sub-registers.
3816 : bool isQReg = false;
3817 89 : if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3818 89 : Reg = getDRegFromQReg(Reg);
3819 : isQReg = true;
3820 89 : }
3821 0 : // The register must be in the same register class as the first.
3822 : if (!RC->contains(Reg))
3823 178 : return Error(RegLoc, "invalid register in register list");
3824 0 : // List must be monotonically increasing.
3825 : if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) {
3826 : if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
3827 540 : Warning(RegLoc, "register list not in ascending order");
3828 451 : else
3829 451 : return Error(RegLoc, "register list not in ascending order");
3830 451 : }
3831 : if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) {
3832 89 : Warning(RegLoc, "duplicated register (" + RegTok.getString() +
3833 : ") in register list");
3834 1175 : continue;
3835 1175 : }
3836 : // VFP register lists must also be contiguous.
3837 1175 : if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] &&
3838 1175 : Reg != OldReg + 1)
3839 1175 : return Error(RegLoc, "non-contiguous register range");
3840 0 : EReg = MRI->getEncodingValue(Reg);
3841 : Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3842 : if (isQReg) {
3843 1175 : EReg = MRI->getEncodingValue(++Reg);
3844 0 : Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
3845 : }
3846 : }
3847 :
3848 1175 : if (Parser.getTok().isNot(AsmToken::RCurly))
3849 4 : return Error(Parser.getTok().getLoc(), "'}' expected");
3850 : SMLoc E = Parser.getTok().getEndLoc();
3851 3513 : Parser.Lex(); // Eat '}' token.
3852 3 :
3853 3 : // Push the register list operand.
3854 : Operands.push_back(ARMOperand::CreateRegList(Registers, S, E));
3855 0 :
3856 : // The ARM system instruction variants for LDM/STM have a '^' token here.
3857 2342 : if (Parser.getTok().is(AsmToken::Caret)) {
3858 0 : Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc()));
3859 0 : Parser.Lex(); // Eat '^' token.
3860 : }
3861 :
3862 : return false;
3863 1171 : }
3864 221 :
3865 2 : // Helper function to parse the lane index for vector lists.
3866 : OperandMatchResultTy ARMAsmParser::
3867 1169 : parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) {
3868 1169 : MCAsmParser &Parser = getParser();
3869 0 : Index = 0; // Always return a defined index value.
3870 0 : if (Parser.getTok().is(AsmToken::LBrac)) {
3871 : Parser.Lex(); // Eat the '['.
3872 : if (Parser.getTok().is(AsmToken::RBrac)) {
3873 : // "Dn[]" is the 'all lanes' syntax.
3874 755 : LaneKind = AllLanes;
3875 0 : EndLoc = Parser.getTok().getEndLoc();
3876 755 : Parser.Lex(); // Eat the ']'.
3877 755 : return MatchOperand_Success;
3878 : }
3879 :
3880 1510 : // There's an optional '#' token here. Normally there wouldn't be, but
3881 : // inline assemble puts one in, and it's friendly to accept that.
3882 : if (Parser.getTok().is(AsmToken::Hash))
3883 755 : Parser.Lex(); // Eat '#' or '$'.
3884 16 :
3885 8 : const MCExpr *LaneIndex;
3886 : SMLoc Loc = Parser.getTok().getLoc();
3887 : if (getParser().parseExpression(LaneIndex)) {
3888 : Error(Loc, "illegal expression");
3889 : return MatchOperand_ParseFail;
3890 : }
3891 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex);
3892 7854 : if (!CE) {
3893 : Error(Loc, "lane index must be empty or an integer");
3894 7854 : return MatchOperand_ParseFail;
3895 7854 : }
3896 7854 : if (Parser.getTok().isNot(AsmToken::RBrac)) {
3897 3434 : Error(Parser.getTok().getLoc(), "']' expected");
3898 3434 : return MatchOperand_ParseFail;
3899 : }
3900 1281 : EndLoc = Parser.getTok().getEndLoc();
3901 1281 : Parser.Lex(); // Eat the ']'.
3902 1281 : int64_t Val = CE->getValue();
3903 1281 :
3904 : // FIXME: Make this range check context sensitive for .8, .16, .32.
3905 : if (Val < 0 || Val > 7) {
3906 : Error(Parser.getTok().getLoc(), "lane index out of range");
3907 : return MatchOperand_ParseFail;
3908 2153 : }
3909 0 : Index = Val;
3910 : LaneKind = IndexedLane;
3911 : return MatchOperand_Success;
3912 2153 : }
3913 2153 : LaneKind = NoLanes;
3914 0 : return MatchOperand_Success;
3915 0 : }
3916 :
3917 2153 : // parse a vector register list
3918 : OperandMatchResultTy
3919 0 : ARMAsmParser::parseVectorList(OperandVector &Operands) {
3920 0 : MCAsmParser &Parser = getParser();
3921 : VectorLaneTy LaneKind;
3922 2153 : unsigned LaneIndex;
3923 0 : SMLoc S = Parser.getTok().getLoc();
3924 0 : // As an extension (to match gas), support a plain D register or Q register
3925 : // (without encosing curly braces) as a single or double entry list,
3926 2153 : // respectively.
3927 2153 : if (Parser.getTok().is(AsmToken::Identifier)) {
3928 2153 : SMLoc E = Parser.getTok().getEndLoc();
3929 : int Reg = tryParseRegister();
3930 : if (Reg == -1)
3931 2153 : return MatchOperand_NoMatch;
3932 0 : if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
3933 0 : OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
3934 : if (Res != MatchOperand_Success)
3935 2153 : return Res;
3936 2153 : switch (LaneKind) {
3937 2153 : case NoLanes:
3938 : Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E));
3939 4420 : break;
3940 4420 : case AllLanes:
3941 : Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false,
3942 : S, E));
3943 : break;
3944 : case IndexedLane:
3945 2815 : Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1,
3946 2815 : LaneIndex,
3947 : false, S, E));
3948 : break;
3949 2815 : }
3950 : return MatchOperand_Success;
3951 : }
3952 : if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3953 2815 : Reg = getDRegFromQReg(Reg);
3954 4 : OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
3955 4 : if (Res != MatchOperand_Success)
3956 4 : return Res;
3957 : switch (LaneKind) {
3958 4 : case NoLanes:
3959 4 : Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
3960 4 : &ARMMCRegisterClasses[ARM::DPairRegClassID]);
3961 : Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E));
3962 4 : break;
3963 0 : case AllLanes:
3964 0 : Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
3965 0 : &ARMMCRegisterClasses[ARM::DPairRegClassID]);
3966 0 : Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false,
3967 0 : S, E));
3968 : break;
3969 0 : case IndexedLane:
3970 4 : Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2,
3971 8 : LaneIndex,
3972 : false, S, E));
3973 : break;
3974 4 : }
3975 : return MatchOperand_Success;
3976 4 : }
3977 : Error(S, "vector register expected");
3978 0 : return MatchOperand_ParseFail;
3979 0 : }
3980 0 :
3981 0 : if (Parser.getTok().isNot(AsmToken::LCurly))
3982 : return MatchOperand_NoMatch;
3983 0 :
3984 0 : Parser.Lex(); // Eat '{' token.
3985 0 : SMLoc RegLoc = Parser.getTok().getLoc();
3986 :
3987 0 : int Reg = tryParseRegister();
3988 0 : if (Reg == -1) {
3989 0 : Error(RegLoc, "register expected");
3990 0 : return MatchOperand_ParseFail;
3991 : }
3992 0 : unsigned Count = 1;
3993 : int Spacing = 0;
3994 0 : unsigned FirstReg = Reg;
3995 0 : // The list is of D registers, but we also allow Q regs and just interpret
3996 0 : // them as the two D sub-registers.
3997 : if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3998 : FirstReg = Reg = getDRegFromQReg(Reg);
3999 0 : Spacing = 1; // double-spacing requires explicit D registers, otherwise
4000 : // it's ambiguous with four-register single spaced.
4001 0 : ++Reg;
4002 : ++Count;
4003 0 : }
4004 0 :
4005 : SMLoc E;
4006 : if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success)
4007 2811 : return MatchOperand_ParseFail;
4008 :
4009 : while (Parser.getTok().is(AsmToken::Comma) ||
4010 2811 : Parser.getTok().is(AsmToken::Minus)) {
4011 2811 : if (Parser.getTok().is(AsmToken::Minus)) {
4012 : if (!Spacing)
4013 2811 : Spacing = 1; // Register range implies a single spaced list.
4014 2811 : else if (Spacing == 2) {
4015 0 : Error(Parser.getTok().getLoc(),
4016 0 : "sequential registers in double spaced list");
4017 : return MatchOperand_ParseFail;
4018 : }
4019 : Parser.Lex(); // Eat the minus.
4020 2811 : SMLoc AfterMinusLoc = Parser.getTok().getLoc();
4021 : int EndReg = tryParseRegister();
4022 : if (EndReg == -1) {
4023 2811 : Error(AfterMinusLoc, "register expected");
4024 17 : return MatchOperand_ParseFail;
4025 : }
4026 : // Allow Q regs and just interpret them as the two D sub-registers.
4027 17 : if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
4028 : EndReg = getDRegFromQReg(EndReg) + 1;
4029 : // If the register is the same as the start reg, there's nothing
4030 : // more to do.
4031 2811 : if (Reg == EndReg)
4032 2811 : continue;
4033 : // The register must be in the same register class as the first.
4034 : if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) {
4035 7850 : Error(AfterMinusLoc, "invalid register in register list");
4036 2815 : return MatchOperand_ParseFail;
4037 5039 : }
4038 4 : // Ranges must go from low to high.
4039 : if (Reg > EndReg) {
4040 0 : Error(AfterMinusLoc, "bad range in register list");
4041 0 : return MatchOperand_ParseFail;
4042 : }
4043 0 : // Parse the lane specifier if present.
4044 : VectorLaneTy NextLaneKind;
4045 4 : unsigned NextLaneIndex;
4046 4 : if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
4047 4 : MatchOperand_Success)
4048 4 : return MatchOperand_ParseFail;
4049 0 : if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
4050 0 : Error(AfterMinusLoc, "mismatched lane index in register list");
4051 : return MatchOperand_ParseFail;
4052 : }
4053 4 :
4054 0 : // Add all the registers in the range to the register list.
4055 : Count += EndReg - Reg;
4056 : Reg = EndReg;
4057 4 : continue;
4058 4 : }
4059 : Parser.Lex(); // Eat the comma.
4060 4 : RegLoc = Parser.getTok().getLoc();
4061 0 : int OldReg = Reg;
4062 0 : Reg = tryParseRegister();
4063 : if (Reg == -1) {
4064 : Error(RegLoc, "register expected");
4065 4 : return MatchOperand_ParseFail;
4066 0 : }
4067 0 : // vector register lists must be contiguous.
4068 : // It's OK to use the enumeration values directly here rather, as the
4069 : // VFP register classes have the enum sorted properly.
4070 : //
4071 : // The list is of D registers, but we also allow Q regs and just interpret
4072 4 : // them as the two D sub-registers.
4073 : if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
4074 : if (!Spacing)
4075 4 : Spacing = 1; // Register range implies a single spaced list.
4076 0 : else if (Spacing == 2) {
4077 0 : Error(RegLoc,
4078 : "invalid register in double-spaced list (must be 'D' register')");
4079 : return MatchOperand_ParseFail;
4080 : }
4081 4 : Reg = getDRegFromQReg(Reg);
4082 : if (Reg != OldReg + 1) {
4083 4 : Error(RegLoc, "non-contiguous register range");
4084 : return MatchOperand_ParseFail;
4085 5035 : }
4086 5035 : ++Reg;
4087 : Count += 2;
4088 5035 : // Parse the lane specifier if present.
4089 5035 : VectorLaneTy NextLaneKind;
4090 0 : unsigned NextLaneIndex;
4091 0 : SMLoc LaneLoc = Parser.getTok().getLoc();
4092 : if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
4093 : MatchOperand_Success)
4094 : return MatchOperand_ParseFail;
4095 : if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
4096 : Error(LaneLoc, "mismatched lane index in register list");
4097 : return MatchOperand_ParseFail;
4098 : }
4099 5035 : continue;
4100 5 : }
4101 : // Normal D register.
4102 5 : // Figure out the register spacing (single or double) of the list if
4103 0 : // we don't know it already.
4104 : if (!Spacing)
4105 0 : Spacing = 1 + (Reg == OldReg + 2);
4106 :
4107 5 : // Just check that it's contiguous and keep going.
4108 5 : if (Reg != OldReg + Spacing) {
4109 0 : Error(RegLoc, "non-contiguous register range");
4110 0 : return MatchOperand_ParseFail;
4111 : }
4112 5 : ++Count;
4113 5 : // Parse the lane specifier if present.
4114 : VectorLaneTy NextLaneKind;
4115 : unsigned NextLaneIndex;
4116 : SMLoc EndLoc = Parser.getTok().getLoc();
4117 5 : if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success)
4118 5 : return MatchOperand_ParseFail;
4119 : if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
4120 : Error(EndLoc, "mismatched lane index in register list");
4121 5 : return MatchOperand_ParseFail;
4122 0 : }
4123 0 : }
4124 :
4125 5 : if (Parser.getTok().isNot(AsmToken::RCurly)) {
4126 : Error(Parser.getTok().getLoc(), "'}' expected");
4127 : return MatchOperand_ParseFail;
4128 : }
4129 : E = Parser.getTok().getEndLoc();
4130 5030 : Parser.Lex(); // Eat '}' token.
4131 2420 :
4132 : switch (LaneKind) {
4133 : case NoLanes:
4134 5030 : // Two-register operands have been converted to the
4135 0 : // composite register classes.
4136 0 : if (Count == 2) {
4137 : const MCRegisterClass *RC = (Spacing == 1) ?
4138 5030 : &ARMMCRegisterClasses[ARM::DPairRegClassID] :
4139 : &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
4140 : FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
4141 : }
4142 5030 : Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count,
4143 5030 : (Spacing == 2), S, E));
4144 : break;
4145 5030 : case AllLanes:
4146 0 : // Two-register operands have been converted to the
4147 0 : // composite register classes.
4148 : if (Count == 2) {
4149 : const MCRegisterClass *RC = (Spacing == 1) ?
4150 : &ARMMCRegisterClasses[ARM::DPairRegClassID] :
4151 2811 : &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
4152 0 : FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
4153 0 : }
4154 : Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count,
4155 2811 : (Spacing == 2),
4156 2811 : S, E));
4157 : break;
4158 2811 : case IndexedLane:
4159 1549 : Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count,
4160 : LaneIndex,
4161 : (Spacing == 2),
4162 1549 : S, E));
4163 388 : break;
4164 : }
4165 : return MatchOperand_Success;
4166 388 : }
4167 :
4168 3098 : /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options.
4169 : OperandMatchResultTy
4170 1549 : ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) {
4171 480 : MCAsmParser &Parser = getParser();
4172 : SMLoc S = Parser.getTok().getLoc();
4173 : const AsmToken &Tok = Parser.getTok();
4174 480 : unsigned Opt;
4175 171 :
4176 : if (Tok.is(AsmToken::Identifier)) {
4177 : StringRef OptStr = Tok.getString();
4178 171 :
4179 : Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower())
4180 960 : .Case("sy", ARM_MB::SY)
4181 : .Case("st", ARM_MB::ST)
4182 : .Case("ld", ARM_MB::LD)
4183 480 : .Case("sh", ARM_MB::ISH)
4184 782 : .Case("ish", ARM_MB::ISH)
4185 1564 : .Case("shst", ARM_MB::ISHST)
4186 : .Case("ishst", ARM_MB::ISHST)
4187 : .Case("ishld", ARM_MB::ISHLD)
4188 : .Case("nsh", ARM_MB::NSH)
4189 782 : .Case("un", ARM_MB::NSH)
4190 : .Case("nshst", ARM_MB::NSHST)
4191 : .Case("nshld", ARM_MB::NSHLD)
4192 : .Case("unst", ARM_MB::NSHST)
4193 : .Case("osh", ARM_MB::OSH)
4194 : .Case("oshst", ARM_MB::OSHST)
4195 : .Case("oshld", ARM_MB::OSHLD)
4196 280 : .Default(~0U);
4197 280 :
4198 280 : // ishld, oshld, nshld and ld are only available from ARMv8.
4199 280 : if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD ||
4200 : Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD))
4201 : Opt = ~0U;
4202 280 :
4203 140 : if (Opt == ~0U)
4204 : return MatchOperand_NoMatch;
4205 280 :
4206 : Parser.Lex(); // Eat identifier token.
4207 : } else if (Tok.is(AsmToken::Hash) ||
4208 : Tok.is(AsmToken::Dollar) ||
4209 : Tok.is(AsmToken::Integer)) {
4210 : if (Parser.getTok().isNot(AsmToken::Integer))
4211 : Parser.Lex(); // Eat '#' or '$'.
4212 : SMLoc Loc = Parser.getTok().getLoc();
4213 :
4214 : const MCExpr *MemBarrierID;
4215 : if (getParser().parseExpression(MemBarrierID)) {
4216 : Error(Loc, "illegal expression");
4217 : return MatchOperand_ParseFail;
4218 : }
4219 :
4220 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID);
4221 : if (!CE) {
4222 : Error(Loc, "constant expression expected");
4223 : return MatchOperand_ParseFail;
4224 : }
4225 140 :
4226 116 : int Val = CE->getValue();
4227 : if (Val & ~0xf) {
4228 : Error(Loc, "immediate value out of range");
4229 124 : return MatchOperand_ParseFail;
4230 20 : }
4231 :
4232 120 : Opt = ARM_MB::RESERVED_0 + Val;
4233 4 : } else
4234 144 : return MatchOperand_ParseFail;
4235 :
4236 140 : Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S));
4237 136 : return MatchOperand_Success;
4238 140 : }
4239 :
4240 : OperandMatchResultTy
4241 140 : ARMAsmParser::parseTraceSyncBarrierOptOperand(OperandVector &Operands) {
4242 0 : MCAsmParser &Parser = getParser();
4243 4 : SMLoc S = Parser.getTok().getLoc();
4244 : const AsmToken &Tok = Parser.getTok();
4245 :
4246 140 : if (Tok.isNot(AsmToken::Identifier))
4247 : return MatchOperand_NoMatch;
4248 0 :
4249 0 : if (!Tok.getString().equals_lower("csync"))
4250 : return MatchOperand_NoMatch;
4251 :
4252 140 : Parser.Lex(); // Eat identifier token.
4253 140 :
4254 4 : Operands.push_back(ARMOperand::CreateTraceSyncBarrierOpt(ARM_TSB::CSYNC, S));
4255 4 : return MatchOperand_Success;
4256 : }
4257 :
4258 136 : /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options.
4259 : OperandMatchResultTy
4260 : ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) {
4261 : MCAsmParser &Parser = getParser();
4262 512 : SMLoc S = Parser.getTok().getLoc();
4263 256 : const AsmToken &Tok = Parser.getTok();
4264 : unsigned Opt;
4265 :
4266 : if (Tok.is(AsmToken::Identifier)) {
4267 8 : StringRef OptStr = Tok.getString();
4268 8 :
4269 8 : if (OptStr.equals_lower("sy"))
4270 8 : Opt = ARM_ISB::SY;
4271 : else
4272 8 : return MatchOperand_NoMatch;
4273 :
4274 : Parser.Lex(); // Eat identifier token.
4275 4 : } else if (Tok.is(AsmToken::Hash) ||
4276 2 : Tok.is(AsmToken::Dollar) ||
4277 : Tok.is(AsmToken::Integer)) {
4278 2 : if (Parser.getTok().isNot(AsmToken::Integer))
4279 : Parser.Lex(); // Eat '#' or '$'.
4280 4 : SMLoc Loc = Parser.getTok().getLoc();
4281 2 :
4282 : const MCExpr *ISBarrierID;
4283 : if (getParser().parseExpression(ISBarrierID)) {
4284 : Error(Loc, "illegal expression");
4285 : return MatchOperand_ParseFail;
4286 30 : }
4287 30 :
4288 30 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID);
4289 30 : if (!CE) {
4290 : Error(Loc, "constant expression expected");
4291 : return MatchOperand_ParseFail;
4292 30 : }
4293 11 :
4294 : int Val = CE->getValue();
4295 2 : if (Val & ~0xf) {
4296 : Error(Loc, "immediate value out of range");
4297 : return MatchOperand_ParseFail;
4298 2 : }
4299 :
4300 9 : Opt = ARM_ISB::RESERVED_0 + Val;
4301 0 : } else
4302 19 : return MatchOperand_ParseFail;
4303 :
4304 19 : Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt(
4305 19 : (ARM_ISB::InstSyncBOpt)Opt, S));
4306 19 : return MatchOperand_Success;
4307 : }
4308 :
4309 19 :
4310 0 : /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction.
4311 10 : OperandMatchResultTy
4312 : ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) {
4313 : MCAsmParser &Parser = getParser();
4314 19 : SMLoc S = Parser.getTok().getLoc();
4315 : const AsmToken &Tok = Parser.getTok();
4316 0 : if (!Tok.is(AsmToken::Identifier))
4317 0 : return MatchOperand_NoMatch;
4318 : StringRef IFlagsStr = Tok.getString();
4319 :
4320 19 : // An iflags string of "none" is interpreted to mean that none of the AIF
4321 19 : // bits are set. Not a terribly useful instruction, but a valid encoding.
4322 10 : unsigned IFlags = 0;
4323 10 : if (IFlagsStr != "none") {
4324 : for (int i = 0, e = IFlagsStr.size(); i != e; ++i) {
4325 : unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1).lower())
4326 9 : .Case("a", ARM_PROC::A)
4327 : .Case("i", ARM_PROC::I)
4328 : .Case("f", ARM_PROC::F)
4329 : .Default(~0U);
4330 36 :
4331 : // If some specific iflag is already set, it means that some letter is
4332 18 : // present more than once, this is not acceptable.
4333 : if (Flag == ~0U || (IFlags & Flag))
4334 : return MatchOperand_NoMatch;
4335 :
4336 : IFlags |= Flag;
4337 : }
4338 69 : }
4339 69 :
4340 69 : Parser.Lex(); // Eat identifier token.
4341 69 : Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S));
4342 69 : return MatchOperand_Success;
4343 : }
4344 44 :
4345 : /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction.
4346 : OperandMatchResultTy
4347 : ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) {
4348 : MCAsmParser &Parser = getParser();
4349 : SMLoc S = Parser.getTok().getLoc();
4350 94 : const AsmToken &Tok = Parser.getTok();
4351 159 :
4352 : if (Tok.is(AsmToken::Integer)) {
4353 : int64_t Val = Tok.getIntVal();
4354 : if (Val > 255 || Val < 0) {
4355 : return MatchOperand_NoMatch;
4356 : }
4357 : unsigned SYSmvalue = Val & 0xFF;
4358 : Parser.Lex();
4359 53 : Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S));
4360 : return MatchOperand_Success;
4361 : }
4362 53 :
4363 : if (!Tok.is(AsmToken::Identifier))
4364 : return MatchOperand_NoMatch;
4365 : StringRef Mask = Tok.getString();
4366 44 :
4367 88 : if (isMClass()) {
4368 44 : auto TheReg = ARMSysReg::lookupMClassSysRegByName(Mask.lower());
4369 : if (!TheReg || !TheReg->hasRequiredFeatures(getSTI().getFeatureBits()))
4370 : return MatchOperand_NoMatch;
4371 :
4372 : unsigned SYSmvalue = TheReg->Encoding & 0xFFF;
4373 249 :
4374 249 : Parser.Lex(); // Eat identifier token.
4375 249 : Operands.push_back(ARMOperand::CreateMSRMask(SYSmvalue, S));
4376 249 : return MatchOperand_Success;
4377 : }
4378 249 :
4379 : // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf"
4380 6 : size_t Start = 0, Next = Mask.find('_');
4381 : StringRef Flags = "";
4382 : std::string SpecReg = Mask.slice(Start, Next).lower();
4383 6 : if (Next != StringRef::npos)
4384 6 : Flags = Mask.slice(Next+1, Mask.size());
4385 12 :
4386 6 : // FlagsVal contains the complete mask:
4387 : // 3-0: Mask
4388 : // 4: Special Reg (cpsr, apsr => 0; spsr => 1)
4389 243 : unsigned FlagsVal = 0;
4390 :
4391 239 : if (SpecReg == "apsr") {
4392 : FlagsVal = StringSwitch<unsigned>(Flags)
4393 239 : .Case("nzcvq", 0x8) // same as CPSR_f
4394 115 : .Case("g", 0x4) // same as CPSR_s
4395 230 : .Case("nzcvqg", 0xc) // same as CPSR_fs
4396 10 : .Default(~0U);
4397 :
4398 105 : if (FlagsVal == ~0U) {
4399 : if (!Flags.empty())
4400 105 : return MatchOperand_NoMatch;
4401 210 : else
4402 105 : FlagsVal = 8; // No flag
4403 : }
4404 : } else if (SpecReg == "cpsr" || SpecReg == "spsr") {
4405 : // cpsr_all is an alias for cpsr_fc, as is plain cpsr.
4406 : if (Flags == "all" || Flags == "")
4407 : Flags = "fc";
4408 124 : for (int i = 0, e = Flags.size(); i != e; ++i) {
4409 124 : unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1))
4410 216 : .Case("c", 1)
4411 : .Case("x", 2)
4412 : .Case("s", 4)
4413 : .Case("f", 8)
4414 : .Default(~0U);
4415 :
4416 : // If some specific flag is already set, it means that some letter is
4417 124 : // present more than once, this is not acceptable.
4418 13 : if (Flag == ~0U || (FlagsVal & Flag))
4419 : return MatchOperand_NoMatch;
4420 : FlagsVal |= Flag;
4421 : }
4422 : } else // No match for special register.
4423 : return MatchOperand_NoMatch;
4424 34 :
4425 13 : // Special register without flags is NOT equivalent to "fc" flags.
4426 : // NOTE: This is a divergence from gas' behavior. Uncommenting the following
4427 : // two lines would enable gas compatibility at the expense of breaking
4428 : // round-tripping.
4429 : //
4430 104 : // if (!FlagsVal)
4431 : // FlagsVal = 0x9;
4432 :
4433 8 : // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1)
4434 235 : if (SpecReg == "spsr")
4435 345 : FlagsVal |= 16;
4436 :
4437 : Parser.Lex(); // Eat identifier token.
4438 : Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
4439 : return MatchOperand_Success;
4440 : }
4441 :
4442 : /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for
4443 : /// use in the MRS/MSR instructions added to support virtualization.
4444 168 : OperandMatchResultTy
4445 6 : ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) {
4446 165 : MCAsmParser &Parser = getParser();
4447 : SMLoc S = Parser.getTok().getLoc();
4448 : const AsmToken &Tok = Parser.getTok();
4449 : if (!Tok.is(AsmToken::Identifier))
4450 : return MatchOperand_NoMatch;
4451 : StringRef RegName = Tok.getString();
4452 :
4453 : auto TheReg = ARMBankedReg::lookupBankedRegByName(RegName.lower());
4454 : if (!TheReg)
4455 : return MatchOperand_NoMatch;
4456 : unsigned Encoding = TheReg->Encoding;
4457 :
4458 : Parser.Lex(); // Eat identifier token.
4459 : Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S));
4460 108 : return MatchOperand_Success;
4461 20 : }
4462 :
4463 108 : OperandMatchResultTy
4464 216 : ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low,
4465 108 : int High) {
4466 : MCAsmParser &Parser = getParser();
4467 : const AsmToken &Tok = Parser.getTok();
4468 : if (Tok.isNot(AsmToken::Identifier)) {
4469 : Error(Parser.getTok().getLoc(), Op + " operand expected.");
4470 : return MatchOperand_ParseFail;
4471 136 : }
4472 136 : StringRef ShiftName = Tok.getString();
4473 136 : std::string LowerOp = Op.lower();
4474 136 : std::string UpperOp = Op.upper();
4475 136 : if (ShiftName != LowerOp && ShiftName != UpperOp) {
4476 : Error(Parser.getTok().getLoc(), Op + " operand expected.");
4477 135 : return MatchOperand_ParseFail;
4478 : }
4479 135 : Parser.Lex(); // Eat shift type token.
4480 135 :
4481 : // There must be a '#' and a shift amount.
4482 132 : if (Parser.getTok().isNot(AsmToken::Hash) &&
4483 : Parser.getTok().isNot(AsmToken::Dollar)) {
4484 132 : Error(Parser.getTok().getLoc(), "'#' expected");
4485 264 : return MatchOperand_ParseFail;
4486 132 : }
4487 : Parser.Lex(); // Eat hash token.
4488 :
4489 : const MCExpr *ShiftAmount;
4490 36 : SMLoc Loc = Parser.getTok().getLoc();
4491 : SMLoc EndLoc;
4492 36 : if (getParser().parseExpression(ShiftAmount, EndLoc)) {
4493 36 : Error(Loc, "illegal expression");
4494 36 : return MatchOperand_ParseFail;
4495 0 : }
4496 0 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
4497 : if (!CE) {
4498 : Error(Loc, "constant expression expected");
4499 36 : return MatchOperand_ParseFail;
4500 36 : }
4501 : int Val = CE->getValue();
4502 4 : if (Val < Low || Val > High) {
4503 4 : Error(Loc, "immediate value out of range");
4504 : return MatchOperand_ParseFail;
4505 32 : }
4506 :
4507 : Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc));
4508 32 :
4509 0 : return MatchOperand_Success;
4510 0 : }
4511 0 :
4512 : OperandMatchResultTy
4513 32 : ARMAsmParser::parseSetEndImm(OperandVector &Operands) {
4514 : MCAsmParser &Parser = getParser();
4515 : const AsmToken &Tok = Parser.getTok();
4516 32 : SMLoc S = Tok.getLoc();
4517 32 : if (Tok.isNot(AsmToken::Identifier)) {
4518 32 : Error(S, "'be' or 'le' operand expected");
4519 0 : return MatchOperand_ParseFail;
4520 0 : }
4521 : int Val = StringSwitch<int>(Tok.getString().lower())
4522 32 : .Case("be", 1)
4523 : .Case("le", 0)
4524 0 : .Default(-1);
4525 0 : Parser.Lex(); // Eat the token.
4526 :
4527 32 : if (Val == -1) {
4528 32 : Error(S, "'be' or 'le' operand expected");
4529 8 : return MatchOperand_ParseFail;
4530 8 : }
4531 : Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::create(Val,
4532 : getContext()),
4533 48 : S, Tok.getEndLoc()));
4534 : return MatchOperand_Success;
4535 24 : }
4536 :
4537 : /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT
4538 : /// instructions. Legal values are:
4539 26 : /// lsl #n 'n' in [0,31]
4540 26 : /// asr #n 'n' in [1,32]
4541 26 : /// n == 32 encoded as n == 0.
4542 26 : OperandMatchResultTy
4543 26 : ARMAsmParser::parseShifterImm(OperandVector &Operands) {
4544 2 : MCAsmParser &Parser = getParser();
4545 2 : const AsmToken &Tok = Parser.getTok();
4546 : SMLoc S = Tok.getLoc();
4547 48 : if (Tok.isNot(AsmToken::Identifier)) {
4548 : Error(S, "shift operator 'asr' or 'lsl' expected");
4549 : return MatchOperand_ParseFail;
4550 : }
4551 24 : StringRef ShiftName = Tok.getString();
4552 : bool isASR;
4553 24 : if (ShiftName == "lsl" || ShiftName == "LSL")
4554 2 : isASR = false;
4555 2 : else if (ShiftName == "asr" || ShiftName == "ASR")
4556 : isASR = true;
4557 88 : else {
4558 : Error(S, "shift operator 'asr' or 'lsl' expected");
4559 : return MatchOperand_ParseFail;
4560 22 : }
4561 : Parser.Lex(); // Eat the operator.
4562 :
4563 : // A '#' and a shift amount.
4564 : if (Parser.getTok().isNot(AsmToken::Hash) &&
4565 : Parser.getTok().isNot(AsmToken::Dollar)) {
4566 : Error(Parser.getTok().getLoc(), "'#' expected");
4567 : return MatchOperand_ParseFail;
4568 : }
4569 50 : Parser.Lex(); // Eat hash token.
4570 50 : SMLoc ExLoc = Parser.getTok().getLoc();
4571 50 :
4572 50 : const MCExpr *ShiftAmount;
4573 50 : SMLoc EndLoc;
4574 0 : if (getParser().parseExpression(ShiftAmount, EndLoc)) {
4575 0 : Error(ExLoc, "malformed shift expression");
4576 : return MatchOperand_ParseFail;
4577 : }
4578 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
4579 : if (!CE) {
4580 : Error(ExLoc, "shift amount must be an immediate");
4581 : return MatchOperand_ParseFail;
4582 : }
4583 :
4584 2 : int64_t Val = CE->getValue();
4585 2 : if (isASR) {
4586 : // Shift amount must be in [1,32]
4587 48 : if (Val < 1 || Val > 32) {
4588 : Error(ExLoc, "'asr' shift amount must be in range [1,32]");
4589 : return MatchOperand_ParseFail;
4590 48 : }
4591 2 : // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode.
4592 2 : if (isThumb() && Val == 32) {
4593 2 : Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode");
4594 : return MatchOperand_ParseFail;
4595 46 : }
4596 46 : if (Val == 32) Val = 0;
4597 : } else {
4598 : // Shift amount must be in [1,32]
4599 46 : if (Val < 0 || Val > 31) {
4600 46 : Error(ExLoc, "'lsr' shift amount must be in range [0,31]");
4601 0 : return MatchOperand_ParseFail;
4602 0 : }
4603 : }
4604 46 :
4605 : Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc));
4606 2 :
4607 2 : return MatchOperand_Success;
4608 : }
4609 :
4610 44 : /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family
4611 44 : /// of instructions. Legal values are:
4612 : /// ror #n 'n' in {0, 8, 16, 24}
4613 20 : OperandMatchResultTy
4614 4 : ARMAsmParser::parseRotImm(OperandVector &Operands) {
4615 4 : MCAsmParser &Parser = getParser();
4616 : const AsmToken &Tok = Parser.getTok();
4617 : SMLoc S = Tok.getLoc();
4618 16 : if (Tok.isNot(AsmToken::Identifier))
4619 4 : return MatchOperand_NoMatch;
4620 4 : StringRef ShiftName = Tok.getString();
4621 : if (ShiftName != "ror" && ShiftName != "ROR")
4622 12 : return MatchOperand_NoMatch;
4623 : Parser.Lex(); // Eat the operator.
4624 :
4625 24 : // A '#' and a rotate amount.
4626 4 : if (Parser.getTok().isNot(AsmToken::Hash) &&
4627 4 : Parser.getTok().isNot(AsmToken::Dollar)) {
4628 : Error(Parser.getTok().getLoc(), "'#' expected");
4629 : return MatchOperand_ParseFail;
4630 : }
4631 64 : Parser.Lex(); // Eat hash token.
4632 : SMLoc ExLoc = Parser.getTok().getLoc();
4633 32 :
4634 : const MCExpr *ShiftAmount;
4635 : SMLoc EndLoc;
4636 : if (getParser().parseExpression(ShiftAmount, EndLoc)) {
4637 : Error(ExLoc, "malformed rotate expression");
4638 : return MatchOperand_ParseFail;
4639 : }
4640 244 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
4641 244 : if (!CE) {
4642 244 : Error(ExLoc, "rotate amount must be an immediate");
4643 244 : return MatchOperand_ParseFail;
4644 244 : }
4645 :
4646 : int64_t Val = CE->getValue();
4647 : // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension)
4648 : // normally, zero is represented in asm by omitting the rotate operand
4649 228 : // entirely.
4650 : if (Val != 8 && Val != 16 && Val != 24 && Val != 0) {
4651 : Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24");
4652 228 : return MatchOperand_ParseFail;
4653 2 : }
4654 2 :
4655 2 : Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc));
4656 :
4657 226 : return MatchOperand_Success;
4658 226 : }
4659 :
4660 : OperandMatchResultTy
4661 226 : ARMAsmParser::parseModImm(OperandVector &Operands) {
4662 226 : MCAsmParser &Parser = getParser();
4663 2 : MCAsmLexer &Lexer = getLexer();
4664 2 : int64_t Imm1, Imm2;
4665 :
4666 224 : SMLoc S = Parser.getTok().getLoc();
4667 :
4668 2 : // 1) A mod_imm operand can appear in the place of a register name:
4669 2 : // add r0, #mod_imm
4670 : // add r0, r0, #mod_imm
4671 : // to correctly handle the latter, we bail out as soon as we see an
4672 222 : // identifier.
4673 : //
4674 : // 2) Similarly, we do not want to parse into complex operands:
4675 : // mov r0, #mod_imm
4676 222 : // mov r0, :lower16:(_foo)
4677 4 : if (Parser.getTok().is(AsmToken::Identifier) ||
4678 4 : Parser.getTok().is(AsmToken::Colon))
4679 : return MatchOperand_NoMatch;
4680 :
4681 436 : // Hash (dollar) is optional as per the ARMARM
4682 : if (Parser.getTok().is(AsmToken::Hash) ||
4683 218 : Parser.getTok().is(AsmToken::Dollar)) {
4684 : // Avoid parsing into complex operands (#:)
4685 : if (Lexer.peekTok().is(AsmToken::Colon))
4686 : return MatchOperand_NoMatch;
4687 3539 :
4688 3539 : // Eat the hash (dollar)
4689 : Parser.Lex();
4690 : }
4691 :
4692 3539 : SMLoc Sx1, Ex1;
4693 : Sx1 = Parser.getTok().getLoc();
4694 : const MCExpr *Imm1Exp;
4695 : if (getParser().parseExpression(Imm1Exp, Ex1)) {
4696 : Error(Sx1, "malformed expression");
4697 : return MatchOperand_ParseFail;
4698 : }
4699 :
4700 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp);
4701 :
4702 : if (CE) {
4703 3539 : // Immediate must fit within 32-bits
4704 1260 : Imm1 = CE->getValue();
4705 2283 : int Enc = ARM_AM::getSOImmVal(Imm1);
4706 : if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) {
4707 : // We have a match!
4708 1256 : Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF),
4709 312 : (Enc & 0xF00) >> 7,
4710 : Sx1, Ex1));
4711 1908 : return MatchOperand_Success;
4712 : }
4713 :
4714 : // We have parsed an immediate which is not for us, fallback to a plain
4715 1058 : // immediate. This can happen for instruction aliases. For an example,
4716 : // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform
4717 : // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite
4718 1254 : // instruction with a mod_imm operand. The alias is defined such that the
4719 1254 : // parser method is shared, that's why we have to do this here.
4720 : if (Parser.getTok().is(AsmToken::EndOfStatement)) {
4721 1254 : Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1));
4722 2 : return MatchOperand_Success;
4723 2 : }
4724 : } else {
4725 : // Operands like #(l1 - l2) can only be evaluated at a later stage (via an
4726 1252 : // MCFixup). Fallback to a plain immediate.
4727 : Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1));
4728 : return MatchOperand_Success;
4729 : }
4730 1241 :
4731 1241 : // From this point onward, we expect the input to be a (#bits, #rot) pair
4732 1241 : if (Parser.getTok().isNot(AsmToken::Comma)) {
4733 : Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]");
4734 1574 : return MatchOperand_ParseFail;
4735 787 : }
4736 :
4737 787 : if (Imm1 & ~0xFF) {
4738 : Error(Sx1, "immediate operand must a number in the range [0, 255]");
4739 : return MatchOperand_ParseFail;
4740 : }
4741 :
4742 : // Eat the comma
4743 : Parser.Lex();
4744 :
4745 : // Repeat for #rot
4746 454 : SMLoc Sx2, Ex2;
4747 144 : Sx2 = Parser.getTok().getLoc();
4748 72 :
4749 : // Eat the optional hash (dollar)
4750 : if (Parser.getTok().is(AsmToken::Hash) ||
4751 : Parser.getTok().is(AsmToken::Dollar))
4752 : Parser.Lex();
4753 22 :
4754 11 : const MCExpr *Imm2Exp;
4755 : if (getParser().parseExpression(Imm2Exp, Ex2)) {
4756 : Error(Sx2, "malformed expression");
4757 : return MatchOperand_ParseFail;
4758 382 : }
4759 0 :
4760 0 : CE = dyn_cast<MCConstantExpr>(Imm2Exp);
4761 :
4762 : if (CE) {
4763 382 : Imm2 = CE->getValue();
4764 40 : if (!(Imm2 & ~0x1E)) {
4765 40 : // We have a match!
4766 : Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2));
4767 : return MatchOperand_Success;
4768 : }
4769 342 : Error(Sx2, "immediate operand must an even number in the range [0, 30]");
4770 : return MatchOperand_ParseFail;
4771 : } else {
4772 342 : Error(Sx2, "constant expression expected");
4773 342 : return MatchOperand_ParseFail;
4774 : }
4775 : }
4776 342 :
4777 174 : OperandMatchResultTy
4778 226 : ARMAsmParser::parseBitfield(OperandVector &Operands) {
4779 : MCAsmParser &Parser = getParser();
4780 : SMLoc S = Parser.getTok().getLoc();
4781 342 : // The bitfield descriptor is really two operands, the LSB and the width.
4782 0 : if (Parser.getTok().isNot(AsmToken::Hash) &&
4783 0 : Parser.getTok().isNot(AsmToken::Dollar)) {
4784 : Error(Parser.getTok().getLoc(), "'#' expected");
4785 : return MatchOperand_ParseFail;
4786 342 : }
4787 : Parser.Lex(); // Eat hash token.
4788 :
4789 342 : const MCExpr *LSBExpr;
4790 342 : SMLoc E = Parser.getTok().getLoc();
4791 : if (getParser().parseExpression(LSBExpr)) {
4792 604 : Error(E, "malformed immediate expression");
4793 302 : return MatchOperand_ParseFail;
4794 : }
4795 40 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr);
4796 40 : if (!CE) {
4797 : Error(E, "'lsb' operand must be an immediate");
4798 0 : return MatchOperand_ParseFail;
4799 0 : }
4800 :
4801 : int64_t LSB = CE->getValue();
4802 : // The LSB must be in the range [0,31]
4803 : if (LSB < 0 || LSB > 31) {
4804 34 : Error(E, "'lsb' operand must be in the range [0,31]");
4805 34 : return MatchOperand_ParseFail;
4806 34 : }
4807 : E = Parser.getTok().getLoc();
4808 34 :
4809 0 : // Expect another immediate operand.
4810 0 : if (Parser.getTok().isNot(AsmToken::Comma)) {
4811 0 : Error(Parser.getTok().getLoc(), "too few operands");
4812 : return MatchOperand_ParseFail;
4813 34 : }
4814 : Parser.Lex(); // Eat hash token.
4815 : if (Parser.getTok().isNot(AsmToken::Hash) &&
4816 34 : Parser.getTok().isNot(AsmToken::Dollar)) {
4817 34 : Error(Parser.getTok().getLoc(), "'#' expected");
4818 0 : return MatchOperand_ParseFail;
4819 0 : }
4820 : Parser.Lex(); // Eat hash token.
4821 34 :
4822 : const MCExpr *WidthExpr;
4823 0 : SMLoc EndLoc;
4824 0 : if (getParser().parseExpression(WidthExpr, EndLoc)) {
4825 : Error(E, "malformed immediate expression");
4826 : return MatchOperand_ParseFail;
4827 34 : }
4828 : CE = dyn_cast<MCConstantExpr>(WidthExpr);
4829 34 : if (!CE) {
4830 0 : Error(E, "'width' operand must be an immediate");
4831 0 : return MatchOperand_ParseFail;
4832 : }
4833 34 :
4834 : int64_t Width = CE->getValue();
4835 : // The LSB must be in the range [1,32-lsb]
4836 34 : if (Width < 1 || Width > 32 - LSB) {
4837 0 : Error(E, "'width' operand must be in the range [1,32-lsb]");
4838 0 : return MatchOperand_ParseFail;
4839 : }
4840 34 :
4841 34 : Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc));
4842 0 :
4843 0 : return MatchOperand_Success;
4844 0 : }
4845 :
4846 34 : OperandMatchResultTy
4847 : ARMAsmParser::parsePostIdxReg(OperandVector &Operands) {
4848 : // Check for a post-index addressing register operand. Specifically:
4849 34 : // postidx_reg := '+' register {, shift}
4850 34 : // | '-' register {, shift}
4851 0 : // | register {, shift}
4852 0 :
4853 : // This method must return MatchOperand_NoMatch without consuming any tokens
4854 34 : // in the case where there is no match, as other alternatives take other
4855 : // parse methods.
4856 0 : MCAsmParser &Parser = getParser();
4857 0 : AsmToken Tok = Parser.getTok();
4858 : SMLoc S = Tok.getLoc();
4859 : bool haveEaten = false;
4860 34 : bool isAdd = true;
4861 : if (Tok.is(AsmToken::Plus)) {
4862 34 : Parser.Lex(); // Eat the '+' token.
4863 0 : haveEaten = true;
4864 0 : } else if (Tok.is(AsmToken::Minus)) {
4865 : Parser.Lex(); // Eat the '-' token.
4866 : isAdd = false;
4867 68 : haveEaten = true;
4868 : }
4869 34 :
4870 : SMLoc E = Parser.getTok().getEndLoc();
4871 : int Reg = tryParseRegister();
4872 : if (Reg == -1) {
4873 99 : if (!haveEaten)
4874 : return MatchOperand_NoMatch;
4875 : Error(Parser.getTok().getLoc(), "register expected");
4876 : return MatchOperand_ParseFail;
4877 : }
4878 :
4879 : ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift;
4880 : unsigned ShiftImm = 0;
4881 : if (Parser.getTok().is(AsmToken::Comma)) {
4882 99 : Parser.Lex(); // Eat the ','.
4883 99 : if (parseMemRegOffsetShift(ShiftTy, ShiftImm))
4884 99 : return MatchOperand_ParseFail;
4885 :
4886 : // FIXME: Only approximates end...may include intervening whitespace.
4887 99 : E = Parser.getTok().getLoc();
4888 0 : }
4889 :
4890 99 : Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy,
4891 10 : ShiftImm, S, E));
4892 :
4893 : return MatchOperand_Success;
4894 : }
4895 :
4896 99 : OperandMatchResultTy
4897 99 : ARMAsmParser::parseAM3Offset(OperandVector &Operands) {
4898 99 : // Check for a post-index addressing register operand. Specifically:
4899 43 : // am3offset := '+' register
4900 : // | '-' register
4901 0 : // | register
4902 0 : // | # imm
4903 : // | # + imm
4904 : // | # - imm
4905 56 :
4906 56 : // This method must return MatchOperand_NoMatch without consuming any tokens
4907 56 : // in the case where there is no match, as other alternatives take other
4908 17 : // parse methods.
4909 17 : MCAsmParser &Parser = getParser();
4910 : AsmToken Tok = Parser.getTok();
4911 : SMLoc S = Tok.getLoc();
4912 :
4913 13 : // Do immediates first, as we always parse those if we have a '#'.
4914 : if (Parser.getTok().is(AsmToken::Hash) ||
4915 : Parser.getTok().is(AsmToken::Dollar)) {
4916 104 : Parser.Lex(); // Eat '#' or '$'.
4917 : // Explicitly look for a '-', as we need to encode negative zero
4918 : // differently.
4919 52 : bool isNegative = Parser.getTok().is(AsmToken::Minus);
4920 : const MCExpr *Offset;
4921 : SMLoc E;
4922 : if (getParser().parseExpression(Offset, E))
4923 53 : return MatchOperand_ParseFail;
4924 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
4925 : if (!CE) {
4926 : Error(S, "constant expression expected");
4927 : return MatchOperand_ParseFail;
4928 : }
4929 : // Negative zero is encoded as the flag value
4930 : // std::numeric_limits<int32_t>::min().
4931 : int32_t Val = CE->getValue();
4932 : if (isNegative && Val == 0)
4933 : Val = std::numeric_limits<int32_t>::min();
4934 :
4935 53 : Operands.push_back(
4936 53 : ARMOperand::CreateImm(MCConstantExpr::create(Val, getContext()), S, E));
4937 53 :
4938 : return MatchOperand_Success;
4939 : }
4940 53 :
4941 24 : bool haveEaten = false;
4942 29 : bool isAdd = true;
4943 : if (Tok.is(AsmToken::Plus)) {
4944 : Parser.Lex(); // Eat the '+' token.
4945 29 : haveEaten = true;
4946 : } else if (Tok.is(AsmToken::Minus)) {
4947 29 : Parser.Lex(); // Eat the '-' token.
4948 29 : isAdd = false;
4949 : haveEaten = true;
4950 29 : }
4951 :
4952 0 : Tok = Parser.getTok();
4953 0 : int Reg = tryParseRegister();
4954 : if (Reg == -1) {
4955 : if (!haveEaten)
4956 : return MatchOperand_NoMatch;
4957 29 : Error(Tok.getLoc(), "register expected");
4958 29 : return MatchOperand_ParseFail;
4959 : }
4960 :
4961 58 : Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift,
4962 58 : 0, S, Tok.getEndLoc()));
4963 :
4964 29 : return MatchOperand_Success;
4965 : }
4966 :
4967 : /// Convert parsed operands to MCInst. Needed here because this instruction
4968 : /// only has two register operands, but multiplication is commutative so
4969 24 : /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN".
4970 0 : void ARMAsmParser::cvtThumbMultiply(MCInst &Inst,
4971 : const OperandVector &Operands) {
4972 24 : ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1);
4973 6 : ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1);
4974 : // If we have a three-operand form, make sure to set Rn to be the operand
4975 : // that isn't the same as Rd.
4976 : unsigned RegOp = 4;
4977 : if (Operands.size() == 6 &&
4978 24 : ((ARMOperand &)*Operands[4]).getReg() ==
4979 24 : ((ARMOperand &)*Operands[3]).getReg())
4980 24 : RegOp = 5;
4981 0 : ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1);
4982 : Inst.addOperand(Inst.getOperand(0));
4983 0 : ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2);
4984 0 : }
4985 :
4986 : void ARMAsmParser::cvtThumbBranches(MCInst &Inst,
4987 48 : const OperandVector &Operands) {
4988 : int CondOp = -1, ImmOp = -1;
4989 : switch(Inst.getOpcode()) {
4990 24 : case ARM::tB:
4991 : case ARM::tBcc: CondOp = 1; ImmOp = 2; break;
4992 :
4993 : case ARM::t2B:
4994 : case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break;
4995 :
4996 0 : default: llvm_unreachable("Unexpected instruction in cvtThumbBranches");
4997 : }
4998 0 : // first decide whether or not the branch should be conditional
4999 0 : // by looking at it's location relative to an IT block
5000 : if(inITBlock()) {
5001 : // inside an IT block we cannot have any conditional branches. any
5002 : // such instructions needs to be converted to unconditional form
5003 0 : switch(Inst.getOpcode()) {
5004 : case ARM::tBcc: Inst.setOpcode(ARM::tB); break;
5005 : case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break;
5006 : }
5007 0 : } else {
5008 : // outside IT blocks we can only have unconditional branches with AL
5009 0 : // condition code or conditional branches with non-AL condition code
5010 0 : unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode();
5011 : switch(Inst.getOpcode()) {
5012 383 : case ARM::tB:
5013 : case ARM::tBcc:
5014 : Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc);
5015 383 : break;
5016 : case ARM::t2B:
5017 : case ARM::t2Bcc:
5018 : Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc);
5019 128 : break;
5020 128 : }
5021 : }
5022 0 :
5023 : // now decide on encoding size based on branch target range
5024 : switch(Inst.getOpcode()) {
5025 : // classify tB as either t2B or t1B based on range of immediate operand
5026 383 : case ARM::tB: {
5027 : ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]);
5028 : if (!op.isSignedOffset<11, 1>() && isThumb() && hasV8MBaseline())
5029 38 : Inst.setOpcode(ARM::t2B);
5030 : break;
5031 : }
5032 : // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand
5033 : case ARM::tBcc: {
5034 : ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]);
5035 : if (!op.isSignedOffset<8, 1>() && isThumb() && hasV8MBaseline())
5036 345 : Inst.setOpcode(ARM::t2Bcc);
5037 345 : break;
5038 236 : }
5039 : }
5040 236 : ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1);
5041 : ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2);
5042 109 : }
5043 :
5044 109 : /// Parse an ARM memory expression, return false if successful else return true
5045 : /// or an error. The first token must be a '[' when called.
5046 : bool ARMAsmParser::parseMemory(OperandVector &Operands) {
5047 : MCAsmParser &Parser = getParser();
5048 : SMLoc S, E;
5049 : if (Parser.getTok().isNot(AsmToken::LBrac))
5050 383 : return TokError("Token is not a Left Bracket");
5051 : S = Parser.getTok().getLoc();
5052 130 : Parser.Lex(); // Eat left bracket token.
5053 130 :
5054 139 : const AsmToken &BaseRegTok = Parser.getTok();
5055 : int BaseRegNum = tryParseRegister();
5056 : if (BaseRegNum == -1)
5057 : return Error(BaseRegTok.getLoc(), "register expected");
5058 :
5059 125 : // The next token must either be a comma, a colon or a closing bracket.
5060 125 : const AsmToken &Tok = Parser.getTok();
5061 125 : if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) &&
5062 : !Tok.is(AsmToken::RBrac))
5063 : return Error(Tok.getLoc(), "malformed memory operand");
5064 :
5065 : if (Tok.is(AsmToken::RBrac)) {
5066 383 : E = Tok.getEndLoc();
5067 383 : Parser.Lex(); // Eat right bracket token.
5068 383 :
5069 : Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0,
5070 : ARM_AM::no_shift, 0, 0, false,
5071 : S, E));
5072 5398 :
5073 5398 : // If there's a pre-indexing writeback marker, '!', just add it as a token
5074 : // operand. It's rather odd, but syntactically valid.
5075 5398 : if (Parser.getTok().is(AsmToken::Exclaim)) {
5076 0 : Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5077 5398 : Parser.Lex(); // Eat the '!'.
5078 5398 : }
5079 :
5080 5398 : return false;
5081 5398 : }
5082 5398 :
5083 0 : assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) &&
5084 : "Lost colon or comma in memory operand?!");
5085 : if (Tok.is(AsmToken::Comma)) {
5086 5398 : Parser.Lex(); // Eat the comma.
5087 5398 : }
5088 :
5089 0 : // If we have a ':', it's an alignment specifier.
5090 : if (Parser.getTok().is(AsmToken::Colon)) {
5091 5398 : Parser.Lex(); // Eat the ':'.
5092 1826 : E = Parser.getTok().getLoc();
5093 1826 : SMLoc AlignmentLoc = Tok.getLoc();
5094 :
5095 3652 : const MCExpr *Expr;
5096 : if (getParser().parseExpression(Expr))
5097 1826 : return true;
5098 :
5099 : // The expression has to be a constant. Memory references with relocations
5100 : // don't come through here, as they use the <label> forms of the relevant
5101 1826 : // instructions.
5102 440 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
5103 220 : if (!CE)
5104 : return Error (E, "constant expression expected");
5105 :
5106 1826 : unsigned Align = 0;
5107 : switch (CE->getValue()) {
5108 : default:
5109 : return Error(E,
5110 : "alignment specifier must be 16, 32, 64, 128, or 256 bits");
5111 3572 : case 16: Align = 2; break;
5112 1446 : case 32: Align = 4; break;
5113 : case 64: Align = 8; break;
5114 : case 128: Align = 16; break;
5115 : case 256: Align = 32; break;
5116 3572 : }
5117 2130 :
5118 2130 : // Now we should have the closing ']'
5119 2130 : if (Parser.getTok().isNot(AsmToken::RBrac))
5120 : return Error(Parser.getTok().getLoc(), "']' expected");
5121 : E = Parser.getTok().getEndLoc();
5122 2130 : Parser.Lex(); // Eat right bracket token.
5123 :
5124 : // Don't worry about range checking the value here. That's handled by
5125 : // the is*() predicates.
5126 : Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0,
5127 : ARM_AM::no_shift, 0, Align,
5128 2130 : false, S, E, AlignmentLoc));
5129 :
5130 0 : // If there's a pre-indexing writeback marker, '!', just add it as a token
5131 : // operand.
5132 : if (Parser.getTok().is(AsmToken::Exclaim)) {
5133 2130 : Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5134 : Parser.Lex(); // Eat the '!'.
5135 0 : }
5136 :
5137 : return false;
5138 410 : }
5139 473 :
5140 429 : // If we have a '#', it's an immediate offset, else assume it's a register
5141 417 : // offset. Be friendly and also accept a plain integer (without a leading
5142 : // hash) for gas compatibility.
5143 : if (Parser.getTok().is(AsmToken::Hash) ||
5144 : Parser.getTok().is(AsmToken::Dollar) ||
5145 2130 : Parser.getTok().is(AsmToken::Integer)) {
5146 0 : if (Parser.getTok().isNot(AsmToken::Integer))
5147 2130 : Parser.Lex(); // Eat '#' or '$'.
5148 2130 : E = Parser.getTok().getLoc();
5149 :
5150 : bool isNegative = getParser().getTok().is(AsmToken::Minus);
5151 : const MCExpr *Offset;
5152 4260 : if (getParser().parseExpression(Offset))
5153 : return true;
5154 :
5155 : // The expression has to be a constant. Memory references with relocations
5156 : // don't come through here, as they use the <label> forms of the relevant
5157 : // instructions.
5158 2130 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
5159 1416 : if (!CE)
5160 708 : return Error (E, "constant expression expected");
5161 :
5162 : // If the constant was #-0, represent it as
5163 2130 : // std::numeric_limits<int32_t>::min().
5164 : int32_t Val = CE->getValue();
5165 : if (isNegative && Val == 0)
5166 : CE = MCConstantExpr::create(std::numeric_limits<int32_t>::min(),
5167 : getContext());
5168 :
5169 1442 : // Now we should have the closing ']'
5170 1442 : if (Parser.getTok().isNot(AsmToken::RBrac))
5171 420 : return Error(Parser.getTok().getLoc(), "']' expected");
5172 1022 : E = Parser.getTok().getEndLoc();
5173 1022 : Parser.Lex(); // Eat right bracket token.
5174 1022 :
5175 : // Don't worry about range checking the value here. That's handled by
5176 1022 : // the is*() predicates.
5177 : Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0,
5178 1022 : ARM_AM::no_shift, 0, 0,
5179 : false, S, E));
5180 :
5181 : // If there's a pre-indexing writeback marker, '!', just add it as a token
5182 : // operand.
5183 : if (Parser.getTok().is(AsmToken::Exclaim)) {
5184 1022 : Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5185 : Parser.Lex(); // Eat the '!'.
5186 0 : }
5187 :
5188 : return false;
5189 : }
5190 1022 :
5191 1022 : // The register offset is optionally preceded by a '+' or '-'
5192 194 : bool isNegative = false;
5193 : if (Parser.getTok().is(AsmToken::Minus)) {
5194 : isNegative = true;
5195 : Parser.Lex(); // Eat the '-'.
5196 1022 : } else if (Parser.getTok().is(AsmToken::Plus)) {
5197 0 : // Nothing to do.
5198 1022 : Parser.Lex(); // Eat the '+'.
5199 1022 : }
5200 :
5201 : E = Parser.getTok().getLoc();
5202 : int OffsetRegNum = tryParseRegister();
5203 2044 : if (OffsetRegNum == -1)
5204 : return Error(E, "register expected");
5205 1022 :
5206 : // If there's a shift operator, handle it.
5207 : ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift;
5208 : unsigned ShiftImm = 0;
5209 1022 : if (Parser.getTok().is(AsmToken::Comma)) {
5210 636 : Parser.Lex(); // Eat the ','.
5211 318 : if (parseMemRegOffsetShift(ShiftType, ShiftImm))
5212 : return true;
5213 : }
5214 1022 :
5215 : // Now we should have the closing ']'
5216 : if (Parser.getTok().isNot(AsmToken::RBrac))
5217 : return Error(Parser.getTok().getLoc(), "']' expected");
5218 : E = Parser.getTok().getEndLoc();
5219 420 : Parser.Lex(); // Eat right bracket token.
5220 :
5221 19 : Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum,
5222 401 : ShiftType, ShiftImm, 0, isNegative,
5223 : S, E));
5224 1 :
5225 : // If there's a pre-indexing writeback marker, '!', just add it as a token
5226 : // operand.
5227 420 : if (Parser.getTok().is(AsmToken::Exclaim)) {
5228 420 : Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
5229 420 : Parser.Lex(); // Eat the '!'.
5230 0 : }
5231 :
5232 : return false;
5233 420 : }
5234 420 :
5235 420 : /// parseMemRegOffsetShift - one of these two:
5236 136 : /// ( lsl | lsr | asr | ror ) , # shift_amount
5237 136 : /// rrx
5238 : /// return true if it parses a shift otherwise it returns false.
5239 : bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St,
5240 : unsigned &Amount) {
5241 : MCAsmParser &Parser = getParser();
5242 404 : SMLoc Loc = Parser.getTok().getLoc();
5243 4 : const AsmToken &Tok = Parser.getTok();
5244 402 : if (Tok.isNot(AsmToken::Identifier))
5245 402 : return Error(Loc, "illegal shift operator");
5246 : StringRef ShiftName = Tok.getString();
5247 804 : if (ShiftName == "lsl" || ShiftName == "LSL" ||
5248 : ShiftName == "asl" || ShiftName == "ASL")
5249 402 : St = ARM_AM::lsl;
5250 : else if (ShiftName == "lsr" || ShiftName == "LSR")
5251 : St = ARM_AM::lsr;
5252 : else if (ShiftName == "asr" || ShiftName == "ASR")
5253 402 : St = ARM_AM::asr;
5254 80 : else if (ShiftName == "ror" || ShiftName == "ROR")
5255 40 : St = ARM_AM::ror;
5256 : else if (ShiftName == "rrx" || ShiftName == "RRX")
5257 : St = ARM_AM::rrx;
5258 : else
5259 : return Error(Loc, "illegal shift operator");
5260 : Parser.Lex(); // Eat shift type token.
5261 :
5262 : // rrx stands alone.
5263 : Amount = 0;
5264 : if (St != ARM_AM::rrx) {
5265 153 : Loc = Parser.getTok().getLoc();
5266 : // A '#' and a shift amount.
5267 153 : const AsmToken &HashTok = Parser.getTok();
5268 153 : if (HashTok.isNot(AsmToken::Hash) &&
5269 153 : HashTok.isNot(AsmToken::Dollar))
5270 153 : return Error(HashTok.getLoc(), "'#' expected");
5271 0 : Parser.Lex(); // Eat hash token.
5272 :
5273 : const MCExpr *Expr;
5274 : if (getParser().parseExpression(Expr))
5275 106 : return true;
5276 : // Range check the immediate.
5277 17 : // lsl, ror: 0 <= imm <= 31
5278 : // lsr, asr: 0 <= imm <= 32
5279 14 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
5280 : if (!CE)
5281 8 : return Error(Loc, "shift amount must be an immediate");
5282 : int64_t Imm = CE->getValue();
5283 6 : if (Imm < 0 ||
5284 : ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) ||
5285 2 : ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32))
5286 151 : return Error(Loc, "immediate shift value out of range");
5287 : // If <ShiftTy> #0, turn it into a no_shift.
5288 : if (Imm == 0)
5289 151 : St = ARM_AM::lsl;
5290 151 : // For consistency, treat lsr #32 and asr #32 as having immediate value 0.
5291 145 : if (Imm == 32)
5292 : Imm = 0;
5293 145 : Amount = Imm;
5294 145 : }
5295 :
5296 0 : return false;
5297 145 : }
5298 :
5299 : /// parseFPImm - A floating point immediate expression operand.
5300 145 : OperandMatchResultTy
5301 : ARMAsmParser::parseFPImm(OperandVector &Operands) {
5302 : MCAsmParser &Parser = getParser();
5303 : // Anything that can accept a floating point constant as an operand
5304 : // needs to go through here, as the regular parseExpression is
5305 145 : // integer only.
5306 : //
5307 2 : // This routine still creates a generic Immediate operand, containing
5308 143 : // a bitcast of the 64-bit floating point value. The various operands
5309 143 : // that accept floats can check whether the value is valid for them
5310 135 : // via the standard is*() predicates.
5311 131 :
5312 16 : SMLoc S = Parser.getTok().getLoc();
5313 :
5314 127 : if (Parser.getTok().isNot(AsmToken::Hash) &&
5315 25 : Parser.getTok().isNot(AsmToken::Dollar))
5316 : return MatchOperand_NoMatch;
5317 127 :
5318 : // Disambiguate the VMOV forms that can accept an FP immediate.
5319 127 : // vmov.f32 <sreg>, #imm
5320 : // vmov.f64 <dreg>, #imm
5321 : // vmov.f32 <dreg>, #imm @ vector f32x2
5322 : // vmov.f32 <qreg>, #imm @ vector f32x4
5323 : //
5324 : // There are also the NEON VMOV instructions which expect an
5325 : // integer constant. Make sure we don't try to parse an FPImm
5326 : // for these:
5327 566 : // vmov.i{8|16|32|64} <dreg|qreg>, #imm
5328 566 : ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]);
5329 : bool isVmovf = TyOp.isToken() &&
5330 : (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64" ||
5331 : TyOp.getToken() == ".f16");
5332 : ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]);
5333 : bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" ||
5334 : Mnemonic.getToken() == "fconsts");
5335 : if (!(isVmovf || isFconst))
5336 : return MatchOperand_NoMatch;
5337 :
5338 566 : Parser.Lex(); // Eat '#' or '$'.
5339 :
5340 566 : // Handle negation, as that still comes through as a separate token.
5341 245 : bool isNegative = false;
5342 : if (Parser.getTok().is(AsmToken::Minus)) {
5343 : isNegative = true;
5344 : Parser.Lex();
5345 : }
5346 : const AsmToken &Tok = Parser.getTok();
5347 : SMLoc Loc = Tok.getLoc();
5348 : if (Tok.is(AsmToken::Real) && isVmovf) {
5349 : APFloat RealVal(APFloat::IEEEsingle(), Tok.getString());
5350 : uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
5351 : // If we had a '-' in front, toggle the sign bit.
5352 : IntVal ^= (uint64_t)isNegative << 31;
5353 : Parser.Lex(); // Eat the token.
5354 : Operands.push_back(ARMOperand::CreateImm(
5355 321 : MCConstantExpr::create(IntVal, getContext()),
5356 311 : S, Parser.getTok().getLoc()));
5357 : return MatchOperand_Success;
5358 : }
5359 321 : // Also handle plain integers. Instructions which allow floating point
5360 : // immediates also allow a raw encoded 8-bit value.
5361 321 : if (Tok.is(AsmToken::Integer) && isFconst) {
5362 : int64_t Val = Tok.getIntVal();
5363 : Parser.Lex(); // Eat the token.
5364 45 : if (Val > 255 || Val < 0) {
5365 : Error(Loc, "encoded floating point value out of range");
5366 : return MatchOperand_ParseFail;
5367 : }
5368 45 : float RealVal = ARM_AM::getFPImmFloat(Val);
5369 : Val = APFloat(RealVal).bitcastToAPInt().getZExtValue();
5370 10 :
5371 : Operands.push_back(ARMOperand::CreateImm(
5372 45 : MCConstantExpr::create(Val, getContext()), S,
5373 45 : Parser.getTok().getLoc()));
5374 45 : return MatchOperand_Success;
5375 33 : }
5376 33 :
5377 : Error(Loc, "invalid floating point immediate");
5378 33 : return MatchOperand_ParseFail;
5379 33 : }
5380 99 :
5381 33 : /// Parse a arm instruction operand. For now this parses the operand regardless
5382 33 : /// of the mnemonic.
5383 : bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) {
5384 : MCAsmParser &Parser = getParser();
5385 : SMLoc S, E;
5386 :
5387 12 : // Check if the current operand has a custom associated parser, if so, try to
5388 : // custom parse the operand, or fallback to the general approach.
5389 8 : OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
5390 8 : if (ResTy == MatchOperand_Success)
5391 0 : return false;
5392 0 : // If there wasn't a custom match, try the generic matcher below. Otherwise,
5393 : // there was a match, but an error occurred, in which case, just return that
5394 8 : // the operand parsing failed.
5395 16 : if (ResTy == MatchOperand_ParseFail)
5396 : return true;
5397 24 :
5398 8 : switch (getLexer().getKind()) {
5399 8 : default:
5400 8 : Error(Parser.getTok().getLoc(), "unexpected token in operand");
5401 : return true;
5402 : case AsmToken::Identifier: {
5403 4 : // If we've seen a branch mnemonic, the next operand must be a label. This
5404 4 : // is true even if the label is a register name. So "br r1" means branch to
5405 : // label "r1".
5406 : bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl";
5407 : if (!ExpectLabel) {
5408 : if (!tryParseRegisterWithWriteBack(Operands))
5409 57970 : return false;
5410 57970 : int Res = tryParseShiftRegister(Operands);
5411 : if (Res == 0) // success
5412 : return false;
5413 : else if (Res == -1) // irrecoverable error
5414 : return true;
5415 57970 : // If this is VMRS, check for the apsr_nzcv operand.
5416 57970 : if (Mnemonic == "vmrs" &&
5417 : Parser.getTok().getString().equals_lower("apsr_nzcv")) {
5418 : S = Parser.getTok().getLoc();
5419 : Parser.Lex();
5420 : Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S));
5421 48067 : return false;
5422 : }
5423 : }
5424 47917 :
5425 : // Fall though for the Identifier case that is not a register or a
5426 2 : // special name.
5427 2 : LLVM_FALLTHROUGH;
5428 : }
5429 : case AsmToken::LParen: // parenthesized expressions like (_strcmp-4)
5430 : case AsmToken::Integer: // things like 1f and 2b as a branch targets
5431 : case AsmToken::String: // quoted label names.
5432 : case AsmToken::Dot: { // . as a branch target
5433 : // This was not a register so parse other operands that start with an
5434 35888 : // identifier (like labels) as expressions and create them as immediates.
5435 : const MCExpr *IdVal;
5436 1224 : S = Parser.getTok().getLoc();
5437 1224 : if (getParser().parseExpression(IdVal))
5438 : return true;
5439 336 : E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
5440 : Operands.push_back(ARMOperand::CreateImm(IdVal, S, E));
5441 : return false;
5442 : }
5443 315 : case AsmToken::LBrac:
5444 0 : return parseMemory(Operands);
5445 0 : case AsmToken::LCurly:
5446 0 : return parseRegisterList(Operands);
5447 0 : case AsmToken::Dollar:
5448 : case AsmToken::Hash:
5449 : // #42 -> immediate.
5450 : S = Parser.getTok().getLoc();
5451 : Parser.Lex();
5452 :
5453 : if (Parser.getTok().isNot(AsmToken::Colon)) {
5454 : bool isNegative = Parser.getTok().is(AsmToken::Minus);
5455 : const MCExpr *ImmVal;
5456 : if (getParser().parseExpression(ImmVal))
5457 : return true;
5458 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal);
5459 : if (CE) {
5460 : int32_t Val = CE->getValue();
5461 : if (isNegative && Val == 0)
5462 863 : ImmVal = MCConstantExpr::create(std::numeric_limits<int32_t>::min(),
5463 863 : getContext());
5464 : }
5465 860 : E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
5466 1720 : Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E));
5467 860 :
5468 : // There can be a trailing '!' on operands that we want as a separate
5469 5398 : // '!' Token operand. Handle that here. For example, the compatibility
5470 5398 : // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'.
5471 704 : if (Parser.getTok().is(AsmToken::Exclaim)) {
5472 704 : Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(),
5473 4818 : Parser.getTok().getLoc()));
5474 : Parser.Lex(); // Eat exclaim token
5475 : }
5476 4818 : return false;
5477 4818 : }
5478 : // w/ a ':' after the '#', it's just like a plain ':'.
5479 4818 : LLVM_FALLTHROUGH;
5480 4795 :
5481 : case AsmToken::Colon: {
5482 4795 : S = Parser.getTok().getLoc();
5483 : // ":lower16:" and ":upper16:" expression prefixes
5484 4795 : // FIXME: Check it's an expression prefix,
5485 : // e.g. (FOO - :lower16:BAR) isn't legal.
5486 4791 : ARMMCExpr::VariantKind RefKind;
5487 4791 : if (parsePrefix(RefKind))
5488 93 : return true;
5489 :
5490 : const MCExpr *SubExprVal;
5491 4795 : if (getParser().parseExpression(SubExprVal))
5492 9590 : return true;
5493 :
5494 : const MCExpr *ExprVal = ARMMCExpr::create(RefKind, SubExprVal,
5495 : getContext());
5496 : E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
5497 4795 : Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E));
5498 56 : return false;
5499 28 : }
5500 28 : case AsmToken::Equal: {
5501 : S = Parser.getTok().getLoc();
5502 4795 : if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val)
5503 23 : return Error(S, "unexpected token in operand");
5504 : Parser.Lex(); // Eat '='
5505 : const MCExpr *SubExprVal;
5506 : if (getParser().parseExpression(SubExprVal))
5507 : return true;
5508 194 : E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
5509 :
5510 : // execute-only: we assume that assembly programmers know what they are
5511 : // doing and allow literal pool creation here
5512 : Operands.push_back(ARMOperand::CreateConstantPoolImm(SubExprVal, S, E));
5513 194 : return false;
5514 : }
5515 : }
5516 : }
5517 194 :
5518 : // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
5519 : // :lower16: and :upper16:.
5520 194 : bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) {
5521 194 : MCAsmParser &Parser = getParser();
5522 194 : RefKind = ARMMCExpr::VK_ARM_None;
5523 388 :
5524 194 : // consume an optional '#' (GNU compatibility)
5525 : if (getLexer().is(AsmToken::Hash))
5526 388 : Parser.Lex();
5527 388 :
5528 : // :lower16: and :upper16: modifiers
5529 0 : assert(getLexer().is(AsmToken::Colon) && "expected a :");
5530 388 : Parser.Lex(); // Eat ':'
5531 :
5532 388 : if (getLexer().isNot(AsmToken::Identifier)) {
5533 : Error(Parser.getTok().getLoc(), "expected prefix identifier in operand");
5534 388 : return true;
5535 : }
5536 :
5537 : enum {
5538 776 : COFF = (1 << MCObjectFileInfo::IsCOFF),
5539 388 : ELF = (1 << MCObjectFileInfo::IsELF),
5540 : MACHO = (1 << MCObjectFileInfo::IsMachO),
5541 : WASM = (1 << MCObjectFileInfo::IsWasm),
5542 : };
5543 : static const struct PrefixEntry {
5544 : const char *Spelling;
5545 : ARMMCExpr::VariantKind VariantKind;
5546 194 : uint8_t SupportedFormats;
5547 194 : } PrefixEntries[] = {
5548 194 : { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO },
5549 : { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO },
5550 : };
5551 194 :
5552 0 : StringRef IDVal = Parser.getTok().getIdentifier();
5553 :
5554 : const auto &Prefix =
5555 : std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries),
5556 194 : [&IDVal](const PrefixEntry &PE) {
5557 : return PE.Spelling == IDVal;
5558 194 : });
5559 0 : if (Prefix == std::end(PrefixEntries)) {
5560 0 : Error(Parser.getTok().getLoc(), "unexpected prefix in operand");
5561 : return true;
5562 : }
5563 :
5564 : uint8_t CurrentFormat;
5565 : switch (getContext().getObjectFileInfo()->getObjectFileType()) {
5566 : case MCObjectFileInfo::IsMachO:
5567 : CurrentFormat = MACHO;
5568 : break;
5569 : case MCObjectFileInfo::IsELF:
5570 : CurrentFormat = ELF;
5571 : break;
5572 : case MCObjectFileInfo::IsCOFF:
5573 : CurrentFormat = COFF;
5574 : break;
5575 : case MCObjectFileInfo::IsWasm:
5576 : CurrentFormat = WASM;
5577 : break;
5578 388 : }
5579 :
5580 : if (~Prefix->SupportedFormats & CurrentFormat) {
5581 : Error(Parser.getTok().getLoc(),
5582 : "cannot represent relocation in the current file format");
5583 : return true;
5584 : }
5585 194 :
5586 0 : RefKind = Prefix->VariantKind;
5587 0 : Parser.Lex();
5588 :
5589 : if (getLexer().isNot(AsmToken::Colon)) {
5590 : Error(Parser.getTok().getLoc(), "unexpected token after prefix");
5591 194 : return true;
5592 : }
5593 : Parser.Lex(); // Eat the last ':'
5594 :
5595 : return false;
5596 : }
5597 :
5598 : /// Given a mnemonic, split out possible predication code and carry
5599 : /// setting letters to form a canonical mnemonic and flags.
5600 : //
5601 : // FIXME: Would be nice to autogen this.
5602 : // FIXME: This is a bit of a maze of special cases.
5603 : StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic,
5604 : unsigned &PredicationCode,
5605 : bool &CarrySetting,
5606 194 : unsigned &ProcessorIMod,
5607 0 : StringRef &ITMask) {
5608 : PredicationCode = ARMCC::AL;
5609 0 : CarrySetting = false;
5610 : ProcessorIMod = 0;
5611 :
5612 194 : // Ignore some mnemonics we know aren't predicated forms.
5613 194 : //
5614 : // FIXME: Would be nice to autogen this.
5615 194 : if ((Mnemonic == "movs" && isThumb()) ||
5616 0 : Mnemonic == "teq" || Mnemonic == "vceq" || Mnemonic == "svc" ||
5617 0 : Mnemonic == "mls" || Mnemonic == "smmls" || Mnemonic == "vcls" ||
5618 : Mnemonic == "vmls" || Mnemonic == "vnmls" || Mnemonic == "vacge" ||
5619 194 : Mnemonic == "vcge" || Mnemonic == "vclt" || Mnemonic == "vacgt" ||
5620 : Mnemonic == "vaclt" || Mnemonic == "vacle" || Mnemonic == "hlt" ||
5621 194 : Mnemonic == "vcgt" || Mnemonic == "vcle" || Mnemonic == "smlal" ||
5622 : Mnemonic == "umaal" || Mnemonic == "umlal" || Mnemonic == "vabal" ||
5623 : Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" ||
5624 : Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" ||
5625 : Mnemonic == "vcvta" || Mnemonic == "vcvtn" || Mnemonic == "vcvtp" ||
5626 : Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" ||
5627 : Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" ||
5628 : Mnemonic.startswith("vsel") || Mnemonic == "vins" || Mnemonic == "vmovx" ||
5629 25833 : Mnemonic == "bxns" || Mnemonic == "blxns" ||
5630 : Mnemonic == "vudot" || Mnemonic == "vsdot" ||
5631 : Mnemonic == "vcmla" || Mnemonic == "vcadd" ||
5632 : Mnemonic == "vfmal" || Mnemonic == "vfmsl")
5633 : return Mnemonic;
5634 25833 :
5635 25833 : // First, split out any predication code. Ignore mnemonics we know aren't
5636 25833 : // predicated but do have a carry-set and so weren't caught above.
5637 : if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" &&
5638 : Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" &&
5639 : Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" &&
5640 : Mnemonic != "sbcs" && Mnemonic != "rscs") {
5641 141 : unsigned CC = ARMCondCodeFromString(Mnemonic.substr(Mnemonic.size()-2));
5642 : if (CC != ~0U) {
5643 : Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2);
5644 : PredicationCode = CC;
5645 : }
5646 : }
5647 :
5648 : // Next, determine if we have a carry setting bit. We explicitly ignore all
5649 : // the instructions we know end in 's'.
5650 : if (Mnemonic.endswith("s") &&
5651 : !(Mnemonic == "cps" || Mnemonic == "mls" ||
5652 : Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" ||
5653 : Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" ||
5654 : Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" ||
5655 : Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" ||
5656 : Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" ||
5657 : Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" ||
5658 : Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" ||
5659 2296 : Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" ||
5660 : Mnemonic == "bxns" || Mnemonic == "blxns" ||
5661 : (Mnemonic == "movs" && isThumb()))) {
5662 : Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1);
5663 : CarrySetting = true;
5664 : }
5665 :
5666 : // The "cps" instruction can have a interrupt mode operand which is glued into
5667 46666 : // the mnemonic. Check if this is the case, split it and parse the imod op
5668 23333 : if (Mnemonic.startswith("cps")) {
5669 3919 : // Split out any imod code.
5670 3919 : unsigned IMod =
5671 : StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2))
5672 : .Case("ie", ARM_PROC::IE)
5673 : .Case("id", ARM_PROC::ID)
5674 : .Default(~0U);
5675 : if (IMod != ~0U) {
5676 : Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2);
5677 : ProcessorIMod = IMod;
5678 : }
5679 : }
5680 :
5681 : // The "it" instruction has the condition mask on the end of the mnemonic.
5682 : if (Mnemonic.startswith("it")) {
5683 : ITMask = Mnemonic.slice(2, Mnemonic.size());
5684 : Mnemonic = Mnemonic.slice(0, 2);
5685 : }
5686 :
5687 54 : return Mnemonic;
5688 1526 : }
5689 1526 :
5690 : /// Given a canonical mnemonic, determine if the instruction ever allows
5691 : /// inclusion of carry set or predication code operands.
5692 : //
5693 : // FIXME: It would be nice to autogen this.
5694 : void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst,
5695 : bool &CanAcceptCarrySet,
5696 : bool &CanAcceptPredicationCode) {
5697 130 : CanAcceptCarrySet =
5698 : Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
5699 : Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" ||
5700 : Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" ||
5701 44 : Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" ||
5702 44 : Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" ||
5703 44 : Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" ||
5704 : Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" ||
5705 : (!isThumb() &&
5706 : (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" ||
5707 : Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull"));
5708 :
5709 2791 : if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" ||
5710 2791 : Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" ||
5711 : Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" ||
5712 : Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") ||
5713 23537 : Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" ||
5714 : Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" ||
5715 : Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" ||
5716 : Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" ||
5717 : Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" ||
5718 : Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") ||
5719 : (FullInst.startswith("vmull") && FullInst.endswith(".p64")) ||
5720 25825 : Mnemonic == "vmovx" || Mnemonic == "vins" ||
5721 : Mnemonic == "vudot" || Mnemonic == "vsdot" ||
5722 : Mnemonic == "vcmla" || Mnemonic == "vcadd" ||
5723 25825 : Mnemonic == "vfmal" || Mnemonic == "vfmsl" ||
5724 : Mnemonic == "sb" || Mnemonic == "ssbb" ||
5725 : Mnemonic == "pssbb") {
5726 : // These mnemonics are never predicable
5727 : CanAcceptPredicationCode = false;
5728 : } else if (!isThumb()) {
5729 : // Some instructions are only predicable in Thumb mode
5730 21405 : CanAcceptPredicationCode =
5731 : Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" &&
5732 : Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" &&
5733 : Mnemonic != "dmb" && Mnemonic != "dfb" && Mnemonic != "dsb" &&
5734 : Mnemonic != "isb" && Mnemonic != "pld" && Mnemonic != "pli" &&
5735 : Mnemonic != "pldw" && Mnemonic != "ldc2" && Mnemonic != "ldc2l" &&
5736 : Mnemonic != "stc2" && Mnemonic != "stc2l" &&
5737 : Mnemonic != "tsb" &&
5738 : !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs");
5739 : } else if (isThumbOne()) {
5740 : if (hasV6MOps())
5741 : CanAcceptPredicationCode = Mnemonic != "movs";
5742 : else
5743 : CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs";
5744 : } else
5745 : CanAcceptPredicationCode = true;
5746 : }
5747 :
5748 : // Some Thumb instructions have two operand forms that are not
5749 : // available as three operand, convert to two operand form if possible.
5750 : //
5751 : // FIXME: We would really like to be able to tablegen'erate this.
5752 : void ARMAsmParser::tryConvertingToTwoOperandForm(StringRef Mnemonic,
5753 4954 : bool CarrySetting,
5754 20871 : OperandVector &Operands) {
5755 : if (Operands.size() != 6)
5756 8023 : return;
5757 :
5758 : const auto &Op3 = static_cast<ARMOperand &>(*Operands[3]);
5759 : auto &Op4 = static_cast<ARMOperand &>(*Operands[4]);
5760 : if (!Op3.isReg() || !Op4.isReg())
5761 : return;
5762 :
5763 : auto Op3Reg = Op3.getReg();
5764 : auto Op4Reg = Op4.getReg();
5765 12848 :
5766 990 : // For most Thumb2 cases we just generate the 3 operand form and reduce
5767 348 : // it in processInstruction(), but the 3 operand form of ADD (t2ADDrr)
5768 : // won't accept SP or PC so we do the transformation here taking care
5769 642 : // with immediate range in the 'add sp, sp #imm' case.
5770 : auto &Op5 = static_cast<ARMOperand &>(*Operands[5]);
5771 11858 : if (isThumbTwo()) {
5772 25825 : if (Mnemonic != "add")
5773 : return;
5774 : bool TryTransform = Op3Reg == ARM::PC || Op4Reg == ARM::PC ||
5775 : (Op5.isReg() && Op5.getReg() == ARM::PC);
5776 : if (!TryTransform) {
5777 : TryTransform = (Op3Reg == ARM::SP || Op4Reg == ARM::SP ||
5778 25522 : (Op5.isReg() && Op5.getReg() == ARM::SP)) &&
5779 : !(Op3Reg == ARM::SP && Op4Reg == ARM::SP &&
5780 : Op5.isImm() && !Op5.isImm0_508s4());
5781 25522 : }
5782 : if (!TryTransform)
5783 : return;
5784 : } else if (!isThumbOne())
5785 : return;
5786 8215 :
5787 : if (!(Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" ||
5788 : Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
5789 : Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" ||
5790 : Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic"))
5791 : return;
5792 :
5793 : // If first 2 operands of a 3 operand instruction are the same
5794 : // then transform to 2 operand version of the same instruction
5795 : // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1'
5796 : bool Transform = Op3Reg == Op4Reg;
5797 5269 :
5798 : // For communtative operations, we might be able to transform if we swap
5799 : // Op4 and Op5. The 'ADD Rdm, SP, Rdm' form is already handled specially
5800 357 : // as tADDrsp.
5801 81 : const ARMOperand *LastOp = &Op5;
5802 : bool Swap = false;
5803 289 : if (!Transform && Op5.isReg() && Op3Reg == Op5.getReg() &&
5804 412 : ((Mnemonic == "add" && Op4Reg != ARM::SP) ||
5805 61 : Mnemonic == "and" || Mnemonic == "eor" ||
5806 : Mnemonic == "adc" || Mnemonic == "orr")) {
5807 : Swap = true;
5808 357 : LastOp = &Op4;
5809 : Transform = true;
5810 2737 : }
5811 :
5812 : // If both registers are the same then remove one of them from
5813 : // the operand list, with certain exceptions.
5814 : if (Transform) {
5815 : // Don't transform 'adds Rd, Rd, Rm' or 'sub{s} Rd, Rd, Rm' because the
5816 : // 2 operand forms don't exist.
5817 : if (((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub") &&
5818 : LastOp->isReg())
5819 : Transform = false;
5820 :
5821 : // Don't transform 'add/sub{s} Rd, Rd, #imm' if the immediate fits into
5822 345 : // 3-bits because the ARMARM says not to.
5823 : if ((Mnemonic == "add" || Mnemonic == "sub") && LastOp->isImm0_7())
5824 : Transform = false;
5825 : }
5826 :
5827 : if (Transform) {
5828 : if (Swap)
5829 345 : std::swap(Op4, Op5);
5830 15 : Operands.erase(Operands.begin() + 3);
5831 : }
5832 : }
5833 :
5834 : bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic,
5835 : OperandVector &Operands) {
5836 : // FIXME: This is all horribly hacky. We really need a better way to deal
5837 : // with optional operands like this in the matcher table.
5838 :
5839 : // The 'mov' mnemonic is special. One variant has a cc_out operand, while
5840 345 : // another does not. Specifically, the MOVW instruction does not. So we
5841 : // special case it here and remove the defaulted (non-setting) cc_out
5842 : // operand if that's the instruction we're trying to match.
5843 246 : //
5844 : // We do this as post-processing of the explicit operands rather than just
5845 : // conditionally adding the cc_out in the first place because we need
5846 : // to check the type of the parsed immediate operand.
5847 : if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() &&
5848 : !static_cast<ARMOperand &>(*Operands[4]).isModImm() &&
5849 224 : static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() &&
5850 : static_cast<ARMOperand &>(*Operands[1]).getReg() == 0)
5851 : return true;
5852 :
5853 138 : // Register-register 'add' for thumb does not have a cc_out operand
5854 52 : // when there are only two register operands.
5855 8 : if (isThumb() && Mnemonic == "add" && Operands.size() == 5 &&
5856 52 : static_cast<ARMOperand &>(*Operands[3]).isReg() &&
5857 : static_cast<ARMOperand &>(*Operands[4]).isReg() &&
5858 : static_cast<ARMOperand &>(*Operands[1]).getReg() == 0)
5859 : return true;
5860 24012 : // Register-register 'add' for thumb does not have a cc_out operand
5861 : // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do
5862 : // have to check the immediate range here since Thumb2 has a variant
5863 : // that can handle a different range and has a cc_out operand.
5864 : if (((isThumb() && Mnemonic == "add") ||
5865 : (isThumbTwo() && Mnemonic == "sub")) &&
5866 : Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() &&
5867 : static_cast<ARMOperand &>(*Operands[4]).isReg() &&
5868 : static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP &&
5869 : static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
5870 : ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) ||
5871 : static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4()))
5872 : return true;
5873 578 : // For Thumb2, add/sub immediate does not have a cc_out operand for the
5874 203 : // imm0_4095 variant. That's the least-preferred variant when
5875 11 : // selecting via the generic "add" mnemonic, so to know that we
5876 : // should remove the cc_out operand, we have to explicitly check that
5877 : // it's not one of the other variants. Ugh.
5878 : if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") &&
5879 : Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() &&
5880 : static_cast<ARMOperand &>(*Operands[4]).isReg() &&
5881 390 : static_cast<ARMOperand &>(*Operands[5]).isImm()) {
5882 157 : // Nest conditions rather than one big 'if' statement for readability.
5883 24078 : //
5884 : // If both registers are low, we're in an IT block, and the immediate is
5885 : // in range, we should use encoding T1 instead, which has a cc_out.
5886 : if (inITBlock() &&
5887 : isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) &&
5888 : isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) &&
5889 : static_cast<ARMOperand &>(*Operands[5]).isImm0_7())
5890 23611 : return false;
5891 23611 : // Check against T3. If the second register is the PC, this is an
5892 439 : // alternate form of ADR, which uses encoding T4, so check for that too.
5893 228 : if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC &&
5894 72 : static_cast<ARMOperand &>(*Operands[5]).isT2SOImm())
5895 23924 : return false;
5896 58 :
5897 : // Otherwise, we use encoding T4, which does not have a cc_out
5898 : // operand.
5899 : return true;
5900 : }
5901 :
5902 : // The thumb2 multiply instruction doesn't have a CCOut register, so
5903 : // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to
5904 23876 : // use the 16-bit encoding or not.
5905 375 : if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 &&
5906 24051 : static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
5907 : static_cast<ARMOperand &>(*Operands[3]).isReg() &&
5908 : static_cast<ARMOperand &>(*Operands[4]).isReg() &&
5909 : static_cast<ARMOperand &>(*Operands[5]).isReg() &&
5910 : // If the registers aren't low regs, the destination reg isn't the
5911 : // same as one of the source regs, or the cc_out operand is zero
5912 113 : // outside of an IT block, we have to use the 32-bit encoding, so
5913 : // remove the cc_out operand.
5914 169 : (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) ||
5915 : !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) ||
5916 : !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) ||
5917 : !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() !=
5918 : static_cast<ARMOperand &>(*Operands[5]).getReg() &&
5919 62 : static_cast<ARMOperand &>(*Operands[3]).getReg() !=
5920 62 : static_cast<ARMOperand &>(*Operands[4]).getReg())))
5921 40 : return true;
5922 :
5923 : // Also check the 'mul' syntax variant that doesn't specify an explicit
5924 : // destination register.
5925 : if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 &&
5926 : static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
5927 : static_cast<ARMOperand &>(*Operands[3]).isReg() &&
5928 : static_cast<ARMOperand &>(*Operands[4]).isReg() &&
5929 : // If the registers aren't low regs or the cc_out operand is zero
5930 : // outside of an IT block, we have to use the 32-bit encoding, so
5931 23775 : // remove the cc_out operand.
5932 10 : (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) ||
5933 10 : !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) ||
5934 10 : !inITBlock()))
5935 23763 : return true;
5936 :
5937 : // Register-register 'add/sub' for thumb does not have a cc_out operand
5938 : // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also
5939 : // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't
5940 : // right, this will result in better diagnostics (which operand is off)
5941 : // anyway.
5942 8 : if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") &&
5943 8 : (Operands.size() == 5 || Operands.size() == 6) &&
5944 3 : static_cast<ARMOperand &>(*Operands[3]).isReg() &&
5945 : static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP &&
5946 : static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
5947 : (static_cast<ARMOperand &>(*Operands[4]).isImm() ||
5948 : (Operands.size() == 6 &&
5949 : static_cast<ARMOperand &>(*Operands[5]).isImm())))
5950 : return true;
5951 23757 :
5952 2 : return false;
5953 2 : }
5954 23754 :
5955 : bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic,
5956 : OperandVector &Operands) {
5957 : // VRINT{Z, X} have a predicate operand in VFP, but not in NEON
5958 : unsigned RegIdx = 3;
5959 2 : if ((Mnemonic == "vrintz" || Mnemonic == "vrintx") &&
5960 2 : (static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32" ||
5961 : static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f16")) {
5962 : if (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
5963 : (static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32" ||
5964 : static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f16"))
5965 : RegIdx = 4;
5966 :
5967 : if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() &&
5968 281 : (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(
5969 281 : static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) ||
5970 166 : ARMMCRegisterClasses[ARM::QPRRegClassID].contains(
5971 45 : static_cast<ARMOperand &>(*Operands[RegIdx]).getReg())))
5972 23797 : return true;
5973 5 : }
5974 3 : return false;
5975 : }
5976 41 :
5977 : static bool isDataTypeToken(StringRef Tok) {
5978 : return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" ||
5979 : Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" ||
5980 : Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" ||
5981 0 : Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" ||
5982 : Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" ||
5983 : Tok == ".f" || Tok == ".d";
5984 : }
5985 :
5986 0 : // FIXME: This bit should probably be handled via an explicit match class
5987 : // in the .td files that matches the suffix instead of having it be
5988 0 : // a literal string token the way it is now.
5989 0 : static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) {
5990 : return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm");
5991 : }
5992 :
5993 0 : static void applyMnemonicAliases(StringRef &Mnemonic, uint64_t Features,
5994 0 : unsigned VariantID);
5995 0 :
5996 0 : // The GNU assembler has aliases of ldrd and strd with the second register
5997 : // omitted. We don't have a way to do that in tablegen, so fix it up here.
5998 0 : //
5999 : // We have to be careful to not emit an invalid Rt2 here, because the rest of
6000 : // the assmebly parser could then generate confusing diagnostics refering to
6001 : // it. If we do find anything that prevents us from doing the transformation we
6002 : // bail out, and let the assembly parser report an error on the instruction as
6003 10515 : // it is written.
6004 : void ARMAsmParser::fixupGNULDRDAlias(StringRef Mnemonic,
6005 : OperandVector &Operands) {
6006 : if (Mnemonic != "ldrd" && Mnemonic != "strd")
6007 : return;
6008 : if (Operands.size() < 4)
6009 10515 : return;
6010 :
6011 : ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]);
6012 : ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]);
6013 :
6014 : if (!Op2.isReg())
6015 0 : return;
6016 0 : if (!Op3.isMem())
6017 : return;
6018 :
6019 : const MCRegisterClass &GPR = MRI->getRegClass(ARM::GPRRegClassID);
6020 : if (!GPR.contains(Op2.getReg()))
6021 : return;
6022 :
6023 : unsigned RtEncoding = MRI->getEncodingValue(Op2.getReg());
6024 : if (!isThumb() && (RtEncoding & 1)) {
6025 : // In ARM mode, the registers must be from an aligned pair, this
6026 : // restriction does not apply in Thumb mode.
6027 : return;
6028 : }
6029 : if (Op2.getReg() == ARM::PC)
6030 25518 : return;
6031 : unsigned PairedReg = GPR.getRegister(RtEncoding + 1);
6032 : if (!PairedReg || PairedReg == ARM::PC ||
6033 : (PairedReg == ARM::SP && !hasV8Ops()))
6034 277 : return;
6035 :
6036 : Operands.insert(
6037 : Operands.begin() + 3,
6038 : ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc()));
6039 : }
6040 269 :
6041 : /// Parse an arm instruction mnemonic followed by its operands.
6042 269 : bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
6043 : SMLoc NameLoc, OperandVector &Operands) {
6044 : MCAsmParser &Parser = getParser();
6045 40 :
6046 40 : // Apply mnemonic aliases before doing anything else, as the destination
6047 : // mnemonic may include suffices and we want to handle them normally.
6048 : // The generic tblgen'erated code does this later, at the start of
6049 72 : // MatchInstructionImpl(), but that's too late for aliases that include
6050 36 : // any sort of suffix.
6051 : uint64_t AvailableFeatures = getAvailableFeatures();
6052 : unsigned AssemblerDialect = getParser().getAssemblerDialect();
6053 : applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect);
6054 :
6055 34 : // First check for the ARM-specific .req directive.
6056 : if (Parser.getTok().is(AsmToken::Identifier) &&
6057 34 : Parser.getTok().getIdentifier() == ".req") {
6058 34 : parseDirectiveReq(Name, NameLoc);
6059 12 : // We always return 'error' for this, as we're done with this
6060 8 : // statement and don't need to match the 'instruction."
6061 : return true;
6062 26 : }
6063 :
6064 26 : // Create the leading tokens for the mnemonic, split by '.' characters.
6065 : size_t Start = 0, Next = Name.find('.');
6066 : StringRef Mnemonic = Name.slice(Start, Next);
6067 :
6068 25840 : // Split out the predication code and carry setting flag from the mnemonic.
6069 : unsigned PredicationCode;
6070 25840 : unsigned ProcessorIMod;
6071 : bool CarrySetting;
6072 : StringRef ITMask;
6073 : Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting,
6074 : ProcessorIMod, ITMask);
6075 :
6076 : // In Thumb1, only the branch (B) instruction can be predicated.
6077 25840 : if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") {
6078 25840 : return Error(NameLoc, "conditional execution not supported in Thumb1");
6079 25840 : }
6080 :
6081 : Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc));
6082 25840 :
6083 21428 : // Handle the IT instruction ITMask. Convert it to a bitmask. This
6084 7 : // is the mask as it will be for the IT encoding if the conditional
6085 : // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case
6086 : // where the conditional bit0 is zero, the instruction post-processing
6087 7 : // will adjust the mask accordingly.
6088 : if (Mnemonic == "it") {
6089 : SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2);
6090 : if (ITMask.size() > 3) {
6091 : return Error(Loc, "too many conditions on IT instruction");
6092 25833 : }
6093 : unsigned Mask = 8;
6094 : for (unsigned i = ITMask.size(); i != 0; --i) {
6095 : char pos = ITMask[i - 1];
6096 : if (pos != 't' && pos != 'e') {
6097 : return Error(Loc, "illegal IT block condition mask '" + ITMask + "'");
6098 25833 : }
6099 : Mask >>= 1;
6100 25833 : if (ITMask[i - 1] == 't')
6101 : Mask |= 8;
6102 : }
6103 25833 : Operands.push_back(ARMOperand::CreateITMask(Mask, Loc));
6104 4 : }
6105 :
6106 : // FIXME: This is all a pretty gross hack. We should automatically handle
6107 51658 : // optional operands like this via tblgen.
6108 :
6109 : // Next, add the CCOut and ConditionCode operands, if needed.
6110 : //
6111 : // For mnemonics which can ever incorporate a carry setting bit or predication
6112 : // code, our matching model involves us always generating CCOut and
6113 : // ConditionCode operands to match the mnemonic "as written" and then we let
6114 : // the matcher deal with finding the right instruction or generating an
6115 2791 : // appropriate error.
6116 2791 : bool CanAcceptCarrySet, CanAcceptPredicationCode;
6117 2 : getMnemonicAcceptInfo(Mnemonic, Name, CanAcceptCarrySet, CanAcceptPredicationCode);
6118 :
6119 : // If we had a carry-set on an instruction that can't do that, issue an
6120 3094 : // error.
6121 307 : if (!CanAcceptCarrySet && CarrySetting) {
6122 307 : return Error(NameLoc, "instruction '" + Mnemonic +
6123 2 : "' can not set flags, but 's' suffix specified");
6124 : }
6125 305 : // If we had a predication code on an instruction that can't do that, issue an
6126 305 : // error.
6127 152 : if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) {
6128 : return Error(NameLoc, "instruction '" + Mnemonic +
6129 5574 : "' is not predicable, but condition code specified");
6130 : }
6131 :
6132 : // Add the carry setting operand, if necessary.
6133 : if (CanAcceptCarrySet) {
6134 : SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size());
6135 : Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0,
6136 : Loc));
6137 : }
6138 :
6139 : // Add the predication code operand, if necessary.
6140 : if (CanAcceptPredicationCode) {
6141 : SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
6142 : CarrySetting);
6143 25825 : Operands.push_back(ARMOperand::CreateCondCode(
6144 : ARMCC::CondCodes(PredicationCode), Loc));
6145 : }
6146 :
6147 25825 : // Add the processor imod operand, if necessary.
6148 4 : if (ProcessorIMod) {
6149 4 : Operands.push_back(ARMOperand::CreateImm(
6150 : MCConstantExpr::create(ProcessorIMod, getContext()),
6151 : NameLoc, NameLoc));
6152 : } else if (Mnemonic == "cps" && isMClass()) {
6153 25821 : return Error(NameLoc, "instruction 'cps' requires effect for M-class");
6154 84 : }
6155 84 :
6156 : // Add the remaining tokens in the mnemonic.
6157 : while (Next != StringRef::npos) {
6158 : Start = Next;
6159 25737 : Next = Name.find('.', Start + 1);
6160 4705 : StringRef ExtraToken = Name.slice(Start, Next);
6161 14115 :
6162 : // Some NEON instructions have an optional datatype suffix that is
6163 : // completely ignored. Check for that.
6164 : if (isDataTypeToken(ExtraToken) &&
6165 : doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken))
6166 25737 : continue;
6167 20381 :
6168 20381 : // For for ARM mode generate an error if the .n qualifier is used.
6169 40762 : if (ExtraToken == ".n" && !isThumb()) {
6170 : SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
6171 : return Error(Loc, "instruction with .n (narrow) qualifier not allowed in "
6172 : "arm mode");
6173 : }
6174 25737 :
6175 88 : // The .n qualifier is always discarded as that is what the tables
6176 44 : // and matcher expect. In ARM mode the .w qualifier has no effect,
6177 : // so discard it to avoid errors that can be caused by the matcher.
6178 14 : if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) {
6179 1 : SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
6180 : Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc));
6181 : }
6182 : }
6183 36248 :
6184 : // Read the remaining operands.
6185 21030 : if (getLexer().isNot(AsmToken::EndOfStatement)) {
6186 10515 : // Read the first operand.
6187 : if (parseOperand(Operands, Mnemonic)) {
6188 : return true;
6189 : }
6190 10515 :
6191 7965 : while (parseOptionalToken(AsmToken::Comma)) {
6192 : // Parse and remember the operand.
6193 : if (parseOperand(Operands, Mnemonic)) {
6194 : return true;
6195 30 : }
6196 3 : }
6197 3 : }
6198 :
6199 : if (parseToken(AsmToken::EndOfStatement, "unexpected token in argument list"))
6200 : return true;
6201 :
6202 : tryConvertingToTwoOperandForm(Mnemonic, CarrySetting, Operands);
6203 :
6204 10485 : // Some instructions, mostly Thumb, have forms for the same mnemonic that
6205 10475 : // do and don't have a cc_out optional-def operand. With some spot-checks
6206 20950 : // of the operand list, we can figure out which variant we're trying to
6207 : // parse and adjust accordingly before actually matching. We shouldn't ever
6208 : // try to remove a cc_out operand that was explicitly set on the
6209 : // mnemonic, of course (CarrySetting == true). Reason number #317 the
6210 : // table driven matcher doesn't fit well with the ARM instruction set.
6211 25733 : if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands))
6212 : Operands.erase(Operands.begin() + 1);
6213 25217 :
6214 : // Some instructions have the same mnemonic, but don't always
6215 : // have a predicate. Distinguish them here and delete the
6216 : // predicate if needed.
6217 57767 : if (PredicationCode == ARMCC::AL &&
6218 : shouldOmitPredicateOperand(Mnemonic, Operands))
6219 32753 : Operands.erase(Operands.begin() + 1);
6220 :
6221 : // ARM mode 'blx' need special handling, as the register operand version
6222 : // is predicable, but the label operand version is not. So, we can't rely
6223 : // on the Mnemonic based checking to correctly figure out when to put
6224 : // a k_CondCode operand in the list. If we're trying to match the label
6225 25530 : // version, remove the k_CondCode operand here.
6226 : if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 &&
6227 : static_cast<ARMOperand &>(*Operands[2]).isImm())
6228 25522 : Operands.erase(Operands.begin() + 1);
6229 :
6230 : // Adjust operands of ldrexd/strexd to MCK_GPRPair.
6231 : // ldrexd/strexd require even/odd GPR pair. To enforce this constraint,
6232 : // a single GPRPair reg operand is used in the .td file to replace the two
6233 : // GPRs. However, when parsing from asm, the two GRPs cannot be automatically
6234 : // expressed as a GPRPair, so we have to manually merge them.
6235 : // FIXME: We would really like to be able to tablegen'erate this.
6236 : if (!isThumb() && Operands.size() > 4 &&
6237 25522 : (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" ||
6238 210 : Mnemonic == "stlexd")) {
6239 : bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd");
6240 : unsigned Idx = isLoad ? 2 : 3;
6241 : ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]);
6242 : ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]);
6243 25522 :
6244 21699 : const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID);
6245 37 : // Adjust only if Op1 and Op2 are GPRs.
6246 : if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) &&
6247 : MRC.contains(Op2.getReg())) {
6248 : unsigned Reg1 = Op1.getReg();
6249 : unsigned Reg2 = Op2.getReg();
6250 : unsigned Rt = MRI->getEncodingValue(Reg1);
6251 : unsigned Rt2 = MRI->getEncodingValue(Reg2);
6252 25550 :
6253 : // Rt2 must be Rt + 1 and Rt must be even.
6254 22 : if (Rt + 1 != Rt2 || (Rt & 1)) {
6255 : return Error(Op2.getStartLoc(),
6256 : isLoad ? "destination operands must be sequential"
6257 : : "source operands must be sequential");
6258 : }
6259 : unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0,
6260 : &(MRI->getRegClass(ARM::GPRPairRegClassID)));
6261 : Operands[Idx] =
6262 25522 : ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc());
6263 : Operands.erase(Operands.begin() + Idx + 1);
6264 : }
6265 : }
6266 :
6267 26 : // GNU Assembler extension (compatibility).
6268 26 : fixupGNULDRDAlias(Mnemonic, Operands);
6269 :
6270 26 : // FIXME: As said above, this is all a pretty gross hack. This instruction
6271 : // does not fit with other "subs" and tblgen.
6272 52 : // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction
6273 : // so the Mnemonic is the original name "subs" and delete the predicate
6274 : // operand so it will match the table entry.
6275 : if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 &&
6276 52 : static_cast<ARMOperand &>(*Operands[3]).isReg() &&
6277 26 : static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC &&
6278 : static_cast<ARMOperand &>(*Operands[4]).isReg() &&
6279 : static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR &&
6280 26 : static_cast<ARMOperand &>(*Operands[5]).isImm()) {
6281 8 : Operands.front() = ARMOperand::CreateToken(Name, NameLoc);
6282 : Operands.erase(Operands.begin() + 1);
6283 : }
6284 : return false;
6285 22 : }
6286 :
6287 : // Validate context-sensitive operand constraints.
6288 22 :
6289 22 : // return 'true' if register list contains non-low GPR registers,
6290 : // 'false' otherwise. If Reg is in the register list or is HiReg, set
6291 : // 'containsReg' to true.
6292 : static bool checkLowRegisterList(const MCInst &Inst, unsigned OpNo,
6293 : unsigned Reg, unsigned HiReg,
6294 25518 : bool &containsReg) {
6295 : containsReg = false;
6296 : for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
6297 : unsigned OpReg = Inst.getOperand(i).getReg();
6298 : if (OpReg == Reg)
6299 : containsReg = true;
6300 : // Anything other than a low register isn't legal here.
6301 25719 : if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg))
6302 58 : return true;
6303 4 : }
6304 4 : return false;
6305 25522 : }
6306 :
6307 8 : // Check if the specified regisgter is in the register list of the inst,
6308 4 : // starting at the indicated operand number.
6309 : static bool listContainsReg(const MCInst &Inst, unsigned OpNo, unsigned Reg) {
6310 : for (unsigned i = OpNo, e = Inst.getNumOperands(); i < e; ++i) {
6311 : unsigned OpReg = Inst.getOperand(i).getReg();
6312 : if (OpReg == Reg)
6313 : return true;
6314 : }
6315 : return false;
6316 : }
6317 :
6318 : // Return true if instruction has the interesting property of being
6319 : // allowed in IT blocks, but not being predicable.
6320 : static bool instIsBreakpoint(const MCInst &Inst) {
6321 : return Inst.getOpcode() == ARM::tBKPT ||
6322 911 : Inst.getOpcode() == ARM::BKPT ||
6323 333 : Inst.getOpcode() == ARM::tHLT ||
6324 424 : Inst.getOpcode() == ARM::HLT;
6325 : }
6326 :
6327 113 : bool ARMAsmParser::validatetLDMRegList(const MCInst &Inst,
6328 : const OperandVector &Operands,
6329 : unsigned ListNo, bool IsARPop) {
6330 : const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]);
6331 : bool HasWritebackToken = Op.isToken() && Op.getToken() == "!";
6332 :
6333 : bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP);
6334 : bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR);
6335 : bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC);
6336 3030 :
6337 2328 : if (!IsARPop && ListContainsSP)
6338 2328 : return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
6339 : "SP may not be in the register list");
6340 : else if (ListContainsPC && ListContainsLR)
6341 : return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
6342 : "PC and LR may not be in the register list simultaneously");
6343 : return false;
6344 : }
6345 :
6346 : bool ARMAsmParser::validatetSTMRegList(const MCInst &Inst,
6347 3160 : const OperandVector &Operands,
6348 3160 : unsigned ListNo) {
6349 6321 : const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]);
6350 : bool HasWritebackToken = Op.isToken() && Op.getToken() == "!";
6351 :
6352 : bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP);
6353 146 : bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC);
6354 :
6355 : if (ListContainsSP && ListContainsPC)
6356 146 : return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
6357 146 : "SP and PC may not be in the register list");
6358 : else if (ListContainsSP)
6359 : return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
6360 : "SP may not be in the register list");
6361 : else if (ListContainsPC)
6362 : return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
6363 146 : "PC may not be in the register list");
6364 69 : return false;
6365 : }
6366 123 :
6367 27 : bool ARMAsmParser::validateLDRDSTRD(MCInst &Inst,
6368 : const OperandVector &Operands,
6369 : bool Load, bool ARMMode, bool Writeback) {
6370 : unsigned RtIndex = Load || !Writeback ? 0 : 1;
6371 : unsigned Rt = MRI->getEncodingValue(Inst.getOperand(RtIndex).getReg());
6372 128 : unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(RtIndex + 1).getReg());
6373 :
6374 : if (ARMMode) {
6375 128 : // Rt can't be R14.
6376 128 : if (Rt == 14)
6377 : return Error(Operands[3]->getStartLoc(),
6378 : "Rt can't be R14");
6379 :
6380 : // Rt must be even-numbered.
6381 128 : if ((Rt & 1) == 1)
6382 27 : return Error(Operands[3]->getStartLoc(),
6383 : "Rt must be even-numbered");
6384 119 :
6385 51 : // Rt2 must be Rt + 1.
6386 : if (Rt2 != Rt + 1) {
6387 102 : if (Load)
6388 27 : return Error(Operands[3]->getStartLoc(),
6389 : "destination operands must be sequential");
6390 : else
6391 : return Error(Operands[3]->getStartLoc(),
6392 : "source operands must be sequential");
6393 199 : }
6394 :
6395 : // FIXME: Diagnose m == 15
6396 199 : // FIXME: Diagnose ldrd with m == t || m == t2.
6397 398 : }
6398 398 :
6399 : if (!ARMMode && Load) {
6400 199 : if (Rt2 == Rt)
6401 : return Error(Operands[3]->getStartLoc(),
6402 88 : "destination operands can't be identical");
6403 22 : }
6404 :
6405 : if (Writeback) {
6406 : unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg());
6407 77 :
6408 22 : if (Rn == Rt || Rn == Rt2) {
6409 : if (Load)
6410 : return Error(Operands[3]->getStartLoc(),
6411 : "base register needs to be different from destination "
6412 66 : "registers");
6413 19 : else
6414 26 : return Error(Operands[3]->getStartLoc(),
6415 : "source register and base register can't be identical");
6416 : }
6417 12 :
6418 : // FIXME: Diagnose ldrd/strd with writeback and n == 15.
6419 : // (Except the immediate form of ldrd?)
6420 : }
6421 :
6422 : return false;
6423 : }
6424 :
6425 158 :
6426 29 : // FIXME: We would really like to be able to tablegen'erate this.
6427 8 : bool ARMAsmParser::validateInstruction(MCInst &Inst,
6428 : const OperandVector &Operands) {
6429 : const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
6430 : SMLoc Loc = Operands[0]->getStartLoc();
6431 154 :
6432 128 : // Check the IT block state first.
6433 : // NOTE: BKPT and HLT instructions have the interesting property of being
6434 128 : // allowed in IT blocks, but not being predicable. They just always execute.
6435 16 : if (inITBlock() && !instIsBreakpoint(Inst)) {
6436 16 : // The instruction must be predicable.
6437 : if (!MCID.isPredicable())
6438 : return Error(Loc, "instructions in IT block must be predicable");
6439 : ARMCC::CondCodes Cond = ARMCC::CondCodes(
6440 16 : Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm());
6441 : if (Cond != currentITCond()) {
6442 : // Find the condition code Operand to get its SMLoc information.
6443 : SMLoc CondLoc;
6444 : for (unsigned I = 1; I < Operands.size(); ++I)
6445 : if (static_cast<ARMOperand &>(*Operands[I]).isCondCode())
6446 : CondLoc = Operands[I]->getStartLoc();
6447 : return Error(CondLoc, "incorrect condition in IT block; got '" +
6448 : StringRef(ARMCondCodeToString(Cond)) +
6449 : "', but expected '" +
6450 : ARMCondCodeToString(currentITCond()) + "'");
6451 : }
6452 : // Check for non-'al' condition codes outside of the IT block.
6453 21193 : } else if (isThumbTwo() && MCID.isPredicable() &&
6454 : Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
6455 21193 : ARMCC::AL && Inst.getOpcode() != ARM::tBcc &&
6456 21193 : Inst.getOpcode() != ARM::t2Bcc) {
6457 : return Error(Loc, "predicated instructions must be in IT block");
6458 : } else if (!isThumb() && !useImplicitITARM() && MCID.isPredicable() &&
6459 : Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
6460 : ARMCC::AL) {
6461 21193 : return Warning(Loc, "predicated instructions should be in IT block");
6462 : }
6463 6318 :
6464 10 : // PC-setting instructions in an IT block, but not the last instruction of
6465 : // the block, are UNPREDICTABLE.
6466 6298 : if (inExplicitITBlock() && !lastInITBlock() && isITBlockTerminator(Inst)) {
6467 3149 : return Error(Loc, "instruction must be outside of IT block or the last instruction in an IT block");
6468 : }
6469 :
6470 136 : const unsigned Opcode = Inst.getOpcode();
6471 112 : switch (Opcode) {
6472 24 : case ARM::t2IT: {
6473 48 : // Encoding is unpredictable if it ever results in a notional 'NV'
6474 24 : // predicate. Since we don't parse 'NV' directly this means an 'AL'
6475 48 : // predicate with an "else" mask bit.
6476 48 : unsigned Cond = Inst.getOperand(0).getImm();
6477 : unsigned Mask = Inst.getOperand(1).getImm();
6478 :
6479 37412 : // Mask hasn't been modified to the IT instruction encoding yet so
6480 13126 : // conditions only allowing a 't' are a block of 1s starting at bit 3
6481 18198 : // followed by all 0s. Easiest way is to just list the 4 possibilities.
6482 : if (Cond == ARMCC::AL && Mask != 8 && Mask != 12 && Mask != 14 &&
6483 5 : Mask != 15)
6484 18049 : return Error(Loc, "unpredictable IT predicate sequence");
6485 4 : break;
6486 : }
6487 2 : case ARM::LDRD:
6488 : if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true,
6489 : /*Writeback*/false))
6490 : return true;
6491 : break;
6492 3014 : case ARM::LDRD_PRE:
6493 28 : case ARM::LDRD_POST:
6494 : if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/true,
6495 : /*Writeback*/true))
6496 21124 : return true;
6497 21124 : break;
6498 : case ARM::t2LDRDi8:
6499 : if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false,
6500 : /*Writeback*/false))
6501 : return true;
6502 2720 : break;
6503 2720 : case ARM::t2LDRD_PRE:
6504 : case ARM::t2LDRD_POST:
6505 : if (validateLDRDSTRD(Inst, Operands, /*Load*/true, /*ARMMode*/false,
6506 : /*Writeback*/true))
6507 : return true;
6508 2720 : break;
6509 : case ARM::t2BXJ: {
6510 5 : const unsigned RmReg = Inst.getOperand(0).getReg();
6511 : // Rm = SP is no longer unpredictable in v8-A
6512 : if (RmReg == ARM::SP && !hasV8Ops())
6513 21 : return Error(Operands[2]->getStartLoc(),
6514 21 : "r13 (SP) is an unpredictable operand to BXJ");
6515 : return false;
6516 13 : }
6517 : case ARM::STRD:
6518 36 : if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true,
6519 : /*Writeback*/false))
6520 36 : return true;
6521 : break;
6522 26 : case ARM::STRD_PRE:
6523 : case ARM::STRD_POST:
6524 13 : if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/true,
6525 13 : /*Writeback*/true))
6526 : return true;
6527 2 : break;
6528 : case ARM::t2STRD_PRE:
6529 16 : case ARM::t2STRD_POST:
6530 : if (validateLDRDSTRD(Inst, Operands, /*Load*/false, /*ARMMode*/false,
6531 16 : /*Writeback*/true))
6532 : return true;
6533 2 : break;
6534 : case ARM::STR_PRE_IMM:
6535 : case ARM::STR_PRE_REG:
6536 13 : case ARM::t2STR_PRE:
6537 : case ARM::STR_POST_IMM:
6538 17 : case ARM::STR_POST_REG:
6539 6 : case ARM::t2STR_POST:
6540 : case ARM::STRH_PRE:
6541 : case ARM::t2STRH_PRE:
6542 : case ARM::STRH_POST:
6543 11 : case ARM::t2STRH_POST:
6544 11 : case ARM::STRB_PRE_IMM:
6545 : case ARM::STRB_PRE_REG:
6546 4 : case ARM::t2STRB_PRE:
6547 : case ARM::STRB_POST_IMM:
6548 20 : case ARM::STRB_POST_REG:
6549 : case ARM::t2STRB_POST: {
6550 20 : // Rt must be different from Rn.
6551 : const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg());
6552 10 : const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg());
6553 :
6554 82 : if (Rt == Rn)
6555 : return Error(Operands[3]->getStartLoc(),
6556 82 : "source register and base register can't be identical");
6557 : return false;
6558 4 : }
6559 : case ARM::LDR_PRE_IMM:
6560 106 : case ARM::LDR_PRE_REG:
6561 : case ARM::t2LDR_PRE:
6562 : case ARM::LDR_POST_IMM:
6563 : case ARM::LDR_POST_REG:
6564 : case ARM::t2LDR_POST:
6565 : case ARM::LDRH_PRE:
6566 : case ARM::t2LDRH_PRE:
6567 : case ARM::LDRH_POST:
6568 : case ARM::t2LDRH_POST:
6569 : case ARM::LDRSH_PRE:
6570 : case ARM::t2LDRSH_PRE:
6571 : case ARM::LDRSH_POST:
6572 : case ARM::t2LDRSH_POST:
6573 : case ARM::LDRB_PRE_IMM:
6574 : case ARM::LDRB_PRE_REG:
6575 : case ARM::t2LDRB_PRE:
6576 : case ARM::LDRB_POST_IMM:
6577 212 : case ARM::LDRB_POST_REG:
6578 106 : case ARM::t2LDRB_POST:
6579 : case ARM::LDRSB_PRE:
6580 106 : case ARM::t2LDRSB_PRE:
6581 72 : case ARM::LDRSB_POST:
6582 : case ARM::t2LDRSB_POST: {
6583 : // Rt must be different from Rn.
6584 : const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
6585 141 : const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg());
6586 :
6587 : if (Rt == Rn)
6588 : return Error(Operands[3]->getStartLoc(),
6589 : "destination register and base register can't be identical");
6590 : return false;
6591 : }
6592 : case ARM::SBFX:
6593 : case ARM::t2SBFX:
6594 : case ARM::UBFX:
6595 : case ARM::t2UBFX: {
6596 : // Width must be in range [1, 32-lsb].
6597 : unsigned LSB = Inst.getOperand(2).getImm();
6598 : unsigned Widthm1 = Inst.getOperand(3).getImm();
6599 : if (Widthm1 >= 32 - LSB)
6600 : return Error(Operands[5]->getStartLoc(),
6601 : "bitfield width must be in range [1,32-lsb]");
6602 : return false;
6603 : }
6604 : // Notionally handles ARM::tLDMIA_UPD too.
6605 : case ARM::tLDMIA: {
6606 : // If we're parsing Thumb2, the .w variant is available and handles
6607 : // most cases that are normally illegal for a Thumb1 LDM instruction.
6608 : // We'll make the transformation in processInstruction() if necessary.
6609 : //
6610 282 : // Thumb LDM instructions are writeback iff the base register is not
6611 141 : // in the register list.
6612 : unsigned Rn = Inst.getOperand(0).getReg();
6613 141 : bool HasWritebackToken =
6614 80 : (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
6615 : static_cast<ARMOperand &>(*Operands[3]).getToken() == "!");
6616 : bool ListContainsBase;
6617 : if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo())
6618 : return Error(Operands[3 + HasWritebackToken]->getStartLoc(),
6619 : "registers must be in range r0-r7");
6620 : // If we should have writeback, then there should be a '!' token.
6621 : if (!ListContainsBase && !HasWritebackToken && !isThumbTwo())
6622 : return Error(Operands[2]->getStartLoc(),
6623 80 : "writeback operator '!' expected");
6624 80 : // If we should not have writeback, there must not be a '!'. This is
6625 80 : // true even for the 32-bit wide encodings.
6626 16 : if (ListContainsBase && HasWritebackToken)
6627 : return Error(Operands[3]->getStartLoc(),
6628 : "writeback operator '!' not allowed when base register "
6629 : "in register list");
6630 :
6631 : if (validatetLDMRegList(Inst, Operands, 3))
6632 : return true;
6633 : break;
6634 : }
6635 : case ARM::LDMIA_UPD:
6636 : case ARM::LDMDB_UPD:
6637 : case ARM::LDMIB_UPD:
6638 75 : case ARM::LDMDA_UPD:
6639 : // ARM variants loading and updating the same register are only officially
6640 75 : // UNPREDICTABLE on v7 upwards. Goodness knows what they did before.
6641 43 : if (!hasV7Ops())
6642 : break;
6643 52 : if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
6644 42 : return Error(Operands.back()->getStartLoc(),
6645 : "writeback register not allowed in register list");
6646 : break;
6647 61 : case ARM::t2LDMIA:
6648 4 : case ARM::t2LDMDB:
6649 : if (validatetLDMRegList(Inst, Operands, 3))
6650 : return true;
6651 : break;
6652 59 : case ARM::t2STMIA:
6653 12 : case ARM::t2STMDB:
6654 : if (validatetSTMRegList(Inst, Operands, 3))
6655 : return true;
6656 : break;
6657 53 : case ARM::t2LDMIA_UPD:
6658 16 : case ARM::t2LDMDB_UPD:
6659 : case ARM::t2STMIA_UPD:
6660 : case ARM::t2STMDB_UPD:
6661 : if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
6662 : return Error(Operands.back()->getStartLoc(),
6663 : "writeback register not allowed in register list");
6664 :
6665 : if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) {
6666 : if (validatetLDMRegList(Inst, Operands, 3))
6667 105 : return true;
6668 : } else {
6669 166 : if (validatetSTMRegList(Inst, Operands, 3))
6670 20 : return true;
6671 : }
6672 : break;
6673 20 :
6674 : case ARM::sysLDMIA_UPD:
6675 20 : case ARM::sysLDMDA_UPD:
6676 2 : case ARM::sysLDMDB_UPD:
6677 : case ARM::sysLDMIB_UPD:
6678 30 : if (!listContainsReg(Inst, 3, ARM::PC))
6679 : return Error(Operands[4]->getStartLoc(),
6680 30 : "writeback register only allowed on system LDM "
6681 2 : "if PC in register-list");
6682 : break;
6683 : case ARM::sysSTMIA_UPD:
6684 : case ARM::sysSTMDA_UPD:
6685 : case ARM::sysSTMDB_UPD:
6686 : case ARM::sysSTMIB_UPD:
6687 118 : return Error(Operands[2]->getStartLoc(),
6688 8 : "system STM cannot have writeback register");
6689 : case ARM::tMUL:
6690 : // The second source operand must be the same register as the destination
6691 55 : // operand.
6692 29 : //
6693 8 : // In this case, we must directly check the parsed operands because the
6694 : // cvtThumbMultiply() function is written in such a way that it guarantees
6695 26 : // this first statement is always true for the new Inst. Essentially, the
6696 11 : // destination is unconditionally copied into the second source operand
6697 : // without checking to see if it matches what we actually parsed.
6698 : if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() !=
6699 : ((ARMOperand &)*Operands[5]).getReg()) &&
6700 : (((ARMOperand &)*Operands[3]).getReg() !=
6701 : ((ARMOperand &)*Operands[4]).getReg())) {
6702 : return Error(Operands[3]->getStartLoc(),
6703 : "destination register must match source register");
6704 4 : }
6705 4 : break;
6706 :
6707 : // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2,
6708 : // so only issue a diagnostic for thumb1. The instructions will be
6709 : // switched to the t2 encodings in processInstruction() if necessary.
6710 : case ARM::tPOP: {
6711 : bool ListContainsBase;
6712 : if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) &&
6713 4 : !isThumbTwo())
6714 : return Error(Operands[2]->getStartLoc(),
6715 16 : "registers must be in range r0-r7 or pc");
6716 : if (validatetLDMRegList(Inst, Operands, 2, !isMClass()))
6717 : return true;
6718 : break;
6719 : }
6720 : case ARM::tPUSH: {
6721 : bool ListContainsBase;
6722 : if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) &&
6723 : !isThumbTwo())
6724 26 : return Error(Operands[2]->getStartLoc(),
6725 23 : "registers must be in range r0-r7 or lr");
6726 : if (validatetSTMRegList(Inst, Operands, 2))
6727 : return true;
6728 8 : break;
6729 : }
6730 : case ARM::tSTMIA_UPD: {
6731 : bool ListContainsBase, InvalidLowList;
6732 : InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(),
6733 : 0, ListContainsBase);
6734 : if (InvalidLowList && !isThumbTwo())
6735 : return Error(Operands[4]->getStartLoc(),
6736 : "registers must be in range r0-r7");
6737 :
6738 70 : // This would be converted to a 32-bit stm, but that's not valid if the
6739 24 : // writeback register is in the list.
6740 4 : if (InvalidLowList && ListContainsBase)
6741 : return Error(Operands[4]->getStartLoc(),
6742 44 : "writeback operator '!' not allowed when base register "
6743 6 : "in register list");
6744 :
6745 : if (validatetSTMRegList(Inst, Operands, 4))
6746 : return true;
6747 : break;
6748 59 : }
6749 16 : case ARM::tADDrSP:
6750 4 : // If the non-SP source operand and the destination operand are not the
6751 : // same, we need thumb2 (for the wide encoding), or we have an error.
6752 41 : if (!isThumbTwo() &&
6753 9 : Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
6754 : return Error(Operands[4]->getStartLoc(),
6755 : "source register must be the same as destination");
6756 : }
6757 : break;
6758 41 :
6759 : // Final range checking for Thumb unconditional branch instructions.
6760 33 : case ARM::tB:
6761 16 : if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>())
6762 : return Error(Operands[2]->getStartLoc(), "branch target out of range");
6763 : break;
6764 : case ARM::t2B: {
6765 : int op = (Operands[2]->isImm()) ? 2 : 3;
6766 33 : if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>())
6767 4 : return Error(Operands[op]->getStartLoc(), "branch target out of range");
6768 : break;
6769 : }
6770 : // Final range checking for Thumb conditional branch instructions.
6771 31 : case ARM::tBcc:
6772 13 : if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>())
6773 : return Error(Operands[2]->getStartLoc(), "branch target out of range");
6774 : break;
6775 18 : case ARM::t2Bcc: {
6776 : int Op = (Operands[2]->isImm()) ? 2 : 3;
6777 : if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>())
6778 18 : return Error(Operands[Op]->getStartLoc(), "branch target out of range");
6779 4 : break;
6780 4 : }
6781 : case ARM::tCBZ:
6782 : case ARM::tCBNZ: {
6783 : if (!static_cast<ARMOperand &>(*Operands[2]).isUnsignedOffset<6, 1>())
6784 : return Error(Operands[2]->getStartLoc(), "branch target out of range");
6785 : break;
6786 100 : }
6787 46 : case ARM::MOVi16:
6788 12 : case ARM::MOVTi16:
6789 : case ARM::t2MOVi16:
6790 102 : case ARM::t2MOVTi16:
6791 102 : {
6792 166 : // We want to avoid misleadingly allowing something like "mov r0, <symbol>"
6793 18 : // especially when we turn it into a movw and the expression <symbol> does
6794 : // not have a :lower16: or :upper16 as part of the expression. We don't
6795 : // want the behavior of silently truncating, which can be unexpected and
6796 : // lead to bugs that are difficult to find since this is an easy mistake
6797 98 : // to make.
6798 36 : int i = (Operands[3]->isImm()) ? 3 : 4;
6799 12 : ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]);
6800 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm());
6801 74 : if (CE) break;
6802 74 : const MCExpr *E = dyn_cast<MCExpr>(Op.getImm());
6803 123 : if (!E) break;
6804 18 : const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E);
6805 : if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 &&
6806 : ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16))
6807 44 : return Error(
6808 : Op.getStartLoc(),
6809 14 : "immediate expression for mov requires :lower16: or :upper16");
6810 8 : break;
6811 : }
6812 : case ARM::HINT:
6813 310 : case ARM::t2HINT: {
6814 : unsigned Imm8 = Inst.getOperand(0).getImm();
6815 : unsigned Pred = Inst.getOperand(1).getImm();
6816 : // ESB is not predicable (pred must be AL). Without the RAS extension, this
6817 : // behaves as any other unallocated hint.
6818 : if (Imm8 == 0x10 && Pred != ARMCC::AL && hasRAS())
6819 : return Error(Operands[1]->getStartLoc(), "instruction 'esb' is not "
6820 : "predicable, but condition "
6821 : "code specified");
6822 : if (Imm8 == 0x14 && Pred != ARMCC::AL)
6823 : return Error(Operands[1]->getStartLoc(), "instruction 'csdb' is not "
6824 310 : "predicable, but condition "
6825 310 : "code specified");
6826 310 : break;
6827 : }
6828 : case ARM::DSB:
6829 : case ARM::t2DSB: {
6830 :
6831 191 : if (Inst.getNumOperands() < 2)
6832 : break;
6833 10 :
6834 : unsigned Option = Inst.getOperand(0).getImm();
6835 : unsigned Pred = Inst.getOperand(1).getImm();
6836 :
6837 : // SSBB and PSSBB (DSB #0|#4) are not predicable (pred must be AL).
6838 : if (Option == 0 && Pred != ARMCC::AL)
6839 : return Error(Operands[1]->getStartLoc(),
6840 135 : "instruction 'ssbb' is not predicable, but condition code "
6841 135 : "specified");
6842 : if (Option == 4 && Pred != ARMCC::AL)
6843 : return Error(Operands[1]->getStartLoc(),
6844 137 : "instruction 'pssbb' is not predicable, but condition code "
6845 0 : "specified");
6846 : break;
6847 : }
6848 135 : case ARM::VMOVRRS: {
6849 8 : // Source registers must be sequential.
6850 : const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(2).getReg());
6851 : const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(3).getReg());
6852 : if (Sm1 != Sm + 1)
6853 : return Error(Operands[5]->getStartLoc(),
6854 : "source operands must be sequential");
6855 : break;
6856 : }
6857 148 : case ARM::VMOVSRR: {
6858 : // Destination registers must be sequential.
6859 : const unsigned Sm = MRI->getEncodingValue(Inst.getOperand(0).getReg());
6860 73 : const unsigned Sm1 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
6861 73 : if (Sm1 != Sm + 1)
6862 : return Error(Operands[3]->getStartLoc(),
6863 : "destination operands must be sequential");
6864 73 : break;
6865 2 : }
6866 : case ARM::VLDMDIA:
6867 : case ARM::VSTMDIA: {
6868 72 : ARMOperand &Op = static_cast<ARMOperand&>(*Operands[3]);
6869 2 : auto &RegList = Op.getRegList();
6870 : if (RegList.size() < 1 || RegList.size() > 16)
6871 : return Error(Operands[3]->getStartLoc(),
6872 : "list of registers must be at least 1 and at most 16");
6873 : break;
6874 3 : }
6875 : }
6876 6 :
6877 3 : return false;
6878 3 : }
6879 2 :
6880 : static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) {
6881 : switch(Opc) {
6882 : default: llvm_unreachable("unexpected opcode!");
6883 4 : // VST1LN
6884 : case ARM::VST1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD;
6885 8 : case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
6886 4 : case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
6887 4 : case ARM::VST1LNdWB_register_Asm_8: Spacing = 1; return ARM::VST1LNd8_UPD;
6888 2 : case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
6889 : case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
6890 : case ARM::VST1LNdAsm_8: Spacing = 1; return ARM::VST1LNd8;
6891 : case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16;
6892 15 : case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32;
6893 :
6894 : // VST2LN
6895 : case ARM::VST2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD;
6896 30 : case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
6897 4 : case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
6898 : case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
6899 : case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
6900 :
6901 : case ARM::VST2LNdWB_register_Asm_8: Spacing = 1; return ARM::VST2LNd8_UPD;
6902 : case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
6903 : case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
6904 : case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
6905 : case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
6906 322 :
6907 322 : case ARM::VST2LNdAsm_8: Spacing = 1; return ARM::VST2LNd8;
6908 0 : case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16;
6909 : case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32;
6910 1 : case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16;
6911 2 : case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32;
6912 3 :
6913 1 : // VST3LN
6914 2 : case ARM::VST3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD;
6915 3 : case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
6916 1 : case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
6917 2 : case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD;
6918 3 : case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
6919 : case ARM::VST3LNdWB_register_Asm_8: Spacing = 1; return ARM::VST3LNd8_UPD;
6920 : case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
6921 3 : case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
6922 0 : case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD;
6923 2 : case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
6924 1 : case ARM::VST3LNdAsm_8: Spacing = 1; return ARM::VST3LNd8;
6925 3 : case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16;
6926 : case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32;
6927 3 : case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16;
6928 0 : case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32;
6929 2 :
6930 1 : // VST3
6931 3 : case ARM::VST3dWB_fixed_Asm_8: Spacing = 1; return ARM::VST3d8_UPD;
6932 : case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
6933 5 : case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
6934 2 : case ARM::VST3qWB_fixed_Asm_8: Spacing = 2; return ARM::VST3q8_UPD;
6935 4 : case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
6936 3 : case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
6937 5 : case ARM::VST3dWB_register_Asm_8: Spacing = 1; return ARM::VST3d8_UPD;
6938 : case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
6939 : case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
6940 2 : case ARM::VST3qWB_register_Asm_8: Spacing = 2; return ARM::VST3q8_UPD;
6941 2 : case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
6942 2 : case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
6943 2 : case ARM::VST3dAsm_8: Spacing = 1; return ARM::VST3d8;
6944 2 : case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16;
6945 2 : case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32;
6946 2 : case ARM::VST3qAsm_8: Spacing = 2; return ARM::VST3q8;
6947 2 : case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16;
6948 2 : case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32;
6949 2 :
6950 3 : // VST4LN
6951 3 : case ARM::VST4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD;
6952 3 : case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
6953 3 : case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
6954 3 : case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD;
6955 : case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
6956 : case ARM::VST4LNdWB_register_Asm_8: Spacing = 1; return ARM::VST4LNd8_UPD;
6957 3 : case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
6958 3 : case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
6959 3 : case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD;
6960 5 : case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
6961 5 : case ARM::VST4LNdAsm_8: Spacing = 1; return ARM::VST4LNd8;
6962 5 : case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16;
6963 3 : case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32;
6964 3 : case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16;
6965 3 : case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32;
6966 3 :
6967 3 : // VST4
6968 3 : case ARM::VST4dWB_fixed_Asm_8: Spacing = 1; return ARM::VST4d8_UPD;
6969 4 : case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
6970 4 : case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
6971 4 : case ARM::VST4qWB_fixed_Asm_8: Spacing = 2; return ARM::VST4q8_UPD;
6972 3 : case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
6973 3 : case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
6974 3 : case ARM::VST4dWB_register_Asm_8: Spacing = 1; return ARM::VST4d8_UPD;
6975 : case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
6976 : case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
6977 3 : case ARM::VST4qWB_register_Asm_8: Spacing = 2; return ARM::VST4q8_UPD;
6978 3 : case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
6979 7 : case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
6980 3 : case ARM::VST4dAsm_8: Spacing = 1; return ARM::VST4d8;
6981 7 : case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16;
6982 3 : case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32;
6983 3 : case ARM::VST4qAsm_8: Spacing = 2; return ARM::VST4q8;
6984 7 : case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16;
6985 3 : case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32;
6986 7 : }
6987 4 : }
6988 4 :
6989 5 : static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) {
6990 4 : switch(Opc) {
6991 8 : default: llvm_unreachable("unexpected opcode!");
6992 : // VLD1LN
6993 : case ARM::VLD1LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD;
6994 5 : case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
6995 5 : case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
6996 5 : case ARM::VLD1LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD1LNd8_UPD;
6997 7 : case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
6998 7 : case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
6999 7 : case ARM::VLD1LNdAsm_8: Spacing = 1; return ARM::VLD1LNd8;
7000 5 : case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16;
7001 5 : case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32;
7002 5 :
7003 5 : // VLD2LN
7004 5 : case ARM::VLD2LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD;
7005 5 : case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
7006 6 : case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
7007 6 : case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD;
7008 5 : case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
7009 5 : case ARM::VLD2LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD2LNd8_UPD;
7010 5 : case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
7011 5 : case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
7012 : case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD;
7013 : case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
7014 : case ARM::VLD2LNdAsm_8: Spacing = 1; return ARM::VLD2LNd8;
7015 424 : case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16;
7016 424 : case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32;
7017 0 : case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16;
7018 : case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32;
7019 2 :
7020 3 : // VLD3DUP
7021 4 : case ARM::VLD3DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD;
7022 2 : case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
7023 3 : case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
7024 4 : case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD;
7025 3 : case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
7026 4 : case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
7027 6 : case ARM::VLD3DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD3DUPd8_UPD;
7028 : case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
7029 : case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
7030 3 : case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD;
7031 2 : case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
7032 2 : case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
7033 2 : case ARM::VLD3DUPdAsm_8: Spacing = 1; return ARM::VLD3DUPd8;
7034 3 : case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16;
7035 3 : case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32;
7036 2 : case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8;
7037 2 : case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16;
7038 2 : case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32;
7039 2 :
7040 5 : // VLD3LN
7041 4 : case ARM::VLD3LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD;
7042 4 : case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
7043 4 : case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
7044 4 : case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD;
7045 : case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
7046 : case ARM::VLD3LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD3LNd8_UPD;
7047 2 : case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
7048 2 : case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
7049 2 : case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD;
7050 2 : case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
7051 2 : case ARM::VLD3LNdAsm_8: Spacing = 1; return ARM::VLD3LNd8;
7052 2 : case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16;
7053 2 : case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32;
7054 2 : case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16;
7055 2 : case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32;
7056 2 :
7057 2 : // VLD3
7058 2 : case ARM::VLD3dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD;
7059 2 : case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
7060 2 : case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
7061 2 : case ARM::VLD3qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD;
7062 2 : case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
7063 2 : case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
7064 2 : case ARM::VLD3dWB_register_Asm_8: Spacing = 1; return ARM::VLD3d8_UPD;
7065 : case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
7066 : case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
7067 2 : case ARM::VLD3qWB_register_Asm_8: Spacing = 2; return ARM::VLD3q8_UPD;
7068 2 : case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
7069 2 : case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
7070 2 : case ARM::VLD3dAsm_8: Spacing = 1; return ARM::VLD3d8;
7071 2 : case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16;
7072 2 : case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32;
7073 2 : case ARM::VLD3qAsm_8: Spacing = 2; return ARM::VLD3q8;
7074 2 : case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16;
7075 2 : case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32;
7076 2 :
7077 3 : // VLD4LN
7078 3 : case ARM::VLD4LNdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD;
7079 3 : case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
7080 3 : case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
7081 3 : case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
7082 : case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
7083 : case ARM::VLD4LNdWB_register_Asm_8: Spacing = 1; return ARM::VLD4LNd8_UPD;
7084 3 : case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
7085 3 : case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
7086 3 : case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
7087 5 : case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
7088 5 : case ARM::VLD4LNdAsm_8: Spacing = 1; return ARM::VLD4LNd8;
7089 5 : case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16;
7090 3 : case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32;
7091 3 : case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16;
7092 3 : case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32;
7093 3 :
7094 3 : // VLD4DUP
7095 3 : case ARM::VLD4DUPdWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD;
7096 4 : case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
7097 4 : case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
7098 4 : case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD;
7099 3 : case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD;
7100 3 : case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
7101 3 : case ARM::VLD4DUPdWB_register_Asm_8: Spacing = 1; return ARM::VLD4DUPd8_UPD;
7102 : case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
7103 : case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
7104 3 : case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD;
7105 3 : case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD;
7106 4 : case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
7107 3 : case ARM::VLD4DUPdAsm_8: Spacing = 1; return ARM::VLD4DUPd8;
7108 4 : case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16;
7109 3 : case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32;
7110 3 : case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8;
7111 4 : case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16;
7112 3 : case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32;
7113 4 :
7114 4 : // VLD4
7115 4 : case ARM::VLD4dWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD;
7116 5 : case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
7117 4 : case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
7118 5 : case ARM::VLD4qWB_fixed_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD;
7119 : case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
7120 : case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
7121 3 : case ARM::VLD4dWB_register_Asm_8: Spacing = 1; return ARM::VLD4d8_UPD;
7122 3 : case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
7123 4 : case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
7124 3 : case ARM::VLD4qWB_register_Asm_8: Spacing = 2; return ARM::VLD4q8_UPD;
7125 3 : case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
7126 4 : case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
7127 3 : case ARM::VLD4dAsm_8: Spacing = 1; return ARM::VLD4d8;
7128 3 : case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16;
7129 4 : case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32;
7130 3 : case ARM::VLD4qAsm_8: Spacing = 2; return ARM::VLD4q8;
7131 3 : case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16;
7132 4 : case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32;
7133 3 : }
7134 3 : }
7135 4 :
7136 3 : bool ARMAsmParser::processInstruction(MCInst &Inst,
7137 3 : const OperandVector &Operands,
7138 4 : MCStreamer &Out) {
7139 : // Check if we have the wide qualifier, because if it's present we
7140 : // must avoid selecting a 16-bit thumb instruction.
7141 5 : bool HasWideQualifier = false;
7142 5 : for (auto &Op : Operands) {
7143 5 : ARMOperand &ARMOp = static_cast<ARMOperand&>(*Op);
7144 7 : if (ARMOp.isToken() && ARMOp.getToken() == ".w") {
7145 7 : HasWideQualifier = true;
7146 7 : break;
7147 5 : }
7148 5 : }
7149 5 :
7150 5 : switch (Inst.getOpcode()) {
7151 5 : // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction.
7152 5 : case ARM::LDRT_POST:
7153 6 : case ARM::LDRBT_POST: {
7154 6 : const unsigned Opcode =
7155 6 : (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM
7156 5 : : ARM::LDRBT_POST_IMM;
7157 5 : MCInst TmpInst;
7158 5 : TmpInst.setOpcode(Opcode);
7159 : TmpInst.addOperand(Inst.getOperand(0));
7160 : TmpInst.addOperand(Inst.getOperand(1));
7161 : TmpInst.addOperand(Inst.getOperand(1));
7162 22359 : TmpInst.addOperand(MCOperand::createReg(0));
7163 : TmpInst.addOperand(MCOperand::createImm(0));
7164 : TmpInst.addOperand(Inst.getOperand(2));
7165 : TmpInst.addOperand(Inst.getOperand(3));
7166 : Inst = TmpInst;
7167 : return true;
7168 123535 : }
7169 : // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction.
7170 102361 : case ARM::STRT_POST:
7171 : case ARM::STRBT_POST: {
7172 : const unsigned Opcode =
7173 : (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM
7174 : : ARM::STRBT_POST_IMM;
7175 : MCInst TmpInst;
7176 22359 : TmpInst.setOpcode(Opcode);
7177 : TmpInst.addOperand(Inst.getOperand(1));
7178 2 : TmpInst.addOperand(Inst.getOperand(0));
7179 : TmpInst.addOperand(Inst.getOperand(1));
7180 : TmpInst.addOperand(MCOperand::createReg(0));
7181 2 : TmpInst.addOperand(MCOperand::createImm(0));
7182 : TmpInst.addOperand(Inst.getOperand(2));
7183 : TmpInst.addOperand(Inst.getOperand(3));
7184 : Inst = TmpInst;
7185 : return true;
7186 : }
7187 : // Alias for alternate form of 'ADR Rd, #imm' instruction.
7188 2 : case ARM::ADDri: {
7189 2 : if (Inst.getOperand(1).getReg() != ARM::PC ||
7190 : Inst.getOperand(5).getReg() != 0 ||
7191 : !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm()))
7192 : return false;
7193 : MCInst TmpInst;
7194 : TmpInst.setOpcode(ARM::ADR);
7195 : TmpInst.addOperand(Inst.getOperand(0));
7196 4 : if (Inst.getOperand(2).isImm()) {
7197 : // Immediate (mod_imm) will be in its encoded form, we must unencode it
7198 : // before passing it to the ADR instruction.
7199 4 : unsigned Enc = Inst.getOperand(2).getImm();
7200 : TmpInst.addOperand(MCOperand::createImm(
7201 : ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7)));
7202 : } else {
7203 : // Turn PC-relative expression into absolute expression.
7204 : // Reading PC provides the start of the current instruction + 8 and
7205 : // the transform to adr is biased by that.
7206 4 : MCSymbol *Dot = getContext().createTempSymbol();
7207 4 : Out.EmitLabel(Dot);
7208 : const MCExpr *OpExpr = Inst.getOperand(2).getExpr();
7209 : const MCExpr *InstPC = MCSymbolRefExpr::create(Dot,
7210 : MCSymbolRefExpr::VK_None,
7211 : getContext());
7212 : const MCExpr *Const8 = MCConstantExpr::create(8, getContext());
7213 : const MCExpr *ReadPC = MCBinaryExpr::createAdd(InstPC, Const8,
7214 : getContext());
7215 370 : const MCExpr *FixupAddr = MCBinaryExpr::createAdd(ReadPC, OpExpr,
7216 363 : getContext());
7217 5 : TmpInst.addOperand(MCOperand::createExpr(FixupAddr));
7218 : }
7219 : TmpInst.addOperand(Inst.getOperand(3));
7220 : TmpInst.addOperand(Inst.getOperand(4));
7221 : Inst = TmpInst;
7222 5 : return true;
7223 : }
7224 : // Aliases for alternate PC+imm syntax of LDR instructions.
7225 3 : case ARM::t2LDRpcrel:
7226 3 : // Select the narrow version if the immediate will fit.
7227 6 : if (Inst.getOperand(1).getImm() > 0 &&
7228 : Inst.getOperand(1).getImm() <= 0xff &&
7229 : !HasWideQualifier)
7230 : Inst.setOpcode(ARM::tLDRpci);
7231 : else
7232 2 : Inst.setOpcode(ARM::t2LDRpci);
7233 2 : return true;
7234 2 : case ARM::t2LDRBpcrel:
7235 2 : Inst.setOpcode(ARM::t2LDRBpci);
7236 : return true;
7237 2 : case ARM::t2LDRHpcrel:
7238 2 : Inst.setOpcode(ARM::t2LDRHpci);
7239 : return true;
7240 : case ARM::t2LDRSBpcrel:
7241 : Inst.setOpcode(ARM::t2LDRSBpci);
7242 : return true;
7243 2 : case ARM::t2LDRSHpcrel:
7244 : Inst.setOpcode(ARM::t2LDRSHpci);
7245 : return true;
7246 : case ARM::LDRConstPool:
7247 : case ARM::tLDRConstPool:
7248 : case ARM::t2LDRConstPool: {
7249 : // Pseudo instruction ldr rt, =immediate is converted to a
7250 : // MOV rt, immediate if immediate is known and representable
7251 : // otherwise we create a constant pool entry that we load from.
7252 : MCInst TmpInst;
7253 0 : if (Inst.getOpcode() == ARM::LDRConstPool)
7254 18 : TmpInst.setOpcode(ARM::LDRi12);
7255 : else if (Inst.getOpcode() == ARM::tLDRConstPool)
7256 : TmpInst.setOpcode(ARM::tLDRpci);
7257 : else if (Inst.getOpcode() == ARM::t2LDRConstPool)
7258 : TmpInst.setOpcode(ARM::t2LDRpci);
7259 : const ARMOperand &PoolOperand =
7260 : (HasWideQualifier ?
7261 : static_cast<ARMOperand &>(*Operands[4]) :
7262 7 : static_cast<ARMOperand &>(*Operands[3]));
7263 : const MCExpr *SubExprVal = PoolOperand.getConstantPoolImm();
7264 : // If SubExprVal is a constant we may be able to use a MOV
7265 7 : if (isa<MCConstantExpr>(SubExprVal) &&
7266 : Inst.getOperand(0).getReg() != ARM::PC &&
7267 : Inst.getOperand(0).getReg() != ARM::SP) {
7268 7 : int64_t Value =
7269 : (int64_t) (cast<MCConstantExpr>(SubExprVal))->getValue();
7270 : bool UseMov = true;
7271 7 : bool MovHasS = true;
7272 : if (Inst.getOpcode() == ARM::LDRConstPool) {
7273 : // ARM Constant
7274 : if (ARM_AM::getSOImmVal(Value) != -1) {
7275 : Value = ARM_AM::getSOImmVal(Value);
7276 : TmpInst.setOpcode(ARM::MOVi);
7277 : }
7278 : else if (ARM_AM::getSOImmVal(~Value) != -1) {
7279 378 : Value = ARM_AM::getSOImmVal(~Value);
7280 : TmpInst.setOpcode(ARM::MVNi);
7281 221 : }
7282 : else if (hasV6T2Ops() &&
7283 10 : Value >=0 && Value < 65536) {
7284 : TmpInst.setOpcode(ARM::MOVi16);
7285 : MovHasS = false;
7286 : }
7287 : else
7288 378 : UseMov = false;
7289 378 : }
7290 : else {
7291 298 : // Thumb/Thumb2 Constant
7292 378 : if (hasThumb2() &&
7293 : ARM_AM::getT2SOImmVal(Value) != -1)
7294 : TmpInst.setOpcode(ARM::t2MOVi);
7295 290 : else if (hasThumb2() &&
7296 : ARM_AM::getT2SOImmVal(~Value) != -1) {
7297 : TmpInst.setOpcode(ARM::t2MVNi);
7298 290 : Value = ~Value;
7299 : }
7300 121 : else if (hasV8MBaseline() &&
7301 34 : Value >=0 && Value < 65536) {
7302 : TmpInst.setOpcode(ARM::t2MOVi16);
7303 : MovHasS = false;
7304 87 : }
7305 8 : else
7306 : UseMov = false;
7307 : }
7308 : if (UseMov) {
7309 79 : TmpInst.addOperand(Inst.getOperand(0)); // Rt
7310 : TmpInst.addOperand(MCOperand::createImm(Value)); // Immediate
7311 : TmpInst.addOperand(Inst.getOperand(2)); // CondCode
7312 : TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7313 : if (MovHasS)
7314 : TmpInst.addOperand(MCOperand::createReg(0)); // S
7315 : Inst = TmpInst;
7316 : return true;
7317 : }
7318 169 : }
7319 72 : // No opportunity to use MOV/MVN create constant pool
7320 : const MCExpr *CPLoc =
7321 147 : getTargetStreamer().addConstantPoolEntry(SubExprVal,
7322 50 : PoolOperand.getStartLoc());
7323 : TmpInst.addOperand(Inst.getOperand(0)); // Rt
7324 2 : TmpInst.addOperand(MCOperand::createExpr(CPLoc)); // offset to constpool
7325 : if (TmpInst.getOpcode() == ARM::LDRi12)
7326 : TmpInst.addOperand(MCOperand::createImm(0)); // unused offset
7327 145 : TmpInst.addOperand(Inst.getOperand(2)); // CondCode
7328 : TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7329 : Inst = TmpInst;
7330 : return true;
7331 : }
7332 : // Handle NEON VST complex aliases.
7333 : case ARM::VST1LNdWB_register_Asm_8:
7334 290 : case ARM::VST1LNdWB_register_Asm_16:
7335 : case ARM::VST1LNdWB_register_Asm_32: {
7336 86 : MCInst TmpInst;
7337 : // Shuffle the operands around so the lane index operand is in the
7338 : // right place.
7339 86 : unsigned Spacing;
7340 66 : TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7341 : TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7342 86 : TmpInst.addOperand(Inst.getOperand(2)); // Rn
7343 : TmpInst.addOperand(Inst.getOperand(3)); // alignment
7344 : TmpInst.addOperand(Inst.getOperand(4)); // Rm
7345 : TmpInst.addOperand(Inst.getOperand(0)); // Vd
7346 : TmpInst.addOperand(Inst.getOperand(1)); // lane
7347 292 : TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7348 : TmpInst.addOperand(Inst.getOperand(6));
7349 : Inst = TmpInst;
7350 292 : return true;
7351 292 : }
7352 111 :
7353 : case ARM::VST2LNdWB_register_Asm_8:
7354 : case ARM::VST2LNdWB_register_Asm_16:
7355 : case ARM::VST2LNdWB_register_Asm_32:
7356 292 : case ARM::VST2LNqWB_register_Asm_16:
7357 : case ARM::VST2LNqWB_register_Asm_32: {
7358 : MCInst TmpInst;
7359 : // Shuffle the operands around so the lane index operand is in the
7360 : // right place.
7361 : unsigned Spacing;
7362 : TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7363 : TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7364 : TmpInst.addOperand(Inst.getOperand(2)); // Rn
7365 : TmpInst.addOperand(Inst.getOperand(3)); // alignment
7366 6 : TmpInst.addOperand(Inst.getOperand(4)); // Rm
7367 : TmpInst.addOperand(Inst.getOperand(0)); // Vd
7368 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7369 : Spacing));
7370 : TmpInst.addOperand(Inst.getOperand(1)); // lane
7371 : TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7372 : TmpInst.addOperand(Inst.getOperand(6));
7373 : Inst = TmpInst;
7374 : return true;
7375 : }
7376 :
7377 : case ARM::VST3LNdWB_register_Asm_8:
7378 : case ARM::VST3LNdWB_register_Asm_16:
7379 : case ARM::VST3LNdWB_register_Asm_32:
7380 : case ARM::VST3LNqWB_register_Asm_16:
7381 : case ARM::VST3LNqWB_register_Asm_32: {
7382 : MCInst TmpInst;
7383 : // Shuffle the operands around so the lane index operand is in the
7384 : // right place.
7385 : unsigned Spacing;
7386 : TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7387 : TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7388 9 : TmpInst.addOperand(Inst.getOperand(2)); // Rn
7389 : TmpInst.addOperand(Inst.getOperand(3)); // alignment
7390 : TmpInst.addOperand(Inst.getOperand(4)); // Rm
7391 : TmpInst.addOperand(Inst.getOperand(0)); // Vd
7392 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7393 : Spacing));
7394 9 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7395 18 : Spacing * 2));
7396 : TmpInst.addOperand(Inst.getOperand(1)); // lane
7397 : TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7398 : TmpInst.addOperand(Inst.getOperand(6));
7399 : Inst = TmpInst;
7400 : return true;
7401 : }
7402 :
7403 : case ARM::VST4LNdWB_register_Asm_8:
7404 : case ARM::VST4LNdWB_register_Asm_16:
7405 : case ARM::VST4LNdWB_register_Asm_32:
7406 : case ARM::VST4LNqWB_register_Asm_16:
7407 : case ARM::VST4LNqWB_register_Asm_32: {
7408 : MCInst TmpInst;
7409 : // Shuffle the operands around so the lane index operand is in the
7410 : // right place.
7411 : unsigned Spacing;
7412 10 : TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7413 : TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7414 : TmpInst.addOperand(Inst.getOperand(2)); // Rn
7415 : TmpInst.addOperand(Inst.getOperand(3)); // alignment
7416 : TmpInst.addOperand(Inst.getOperand(4)); // Rm
7417 : TmpInst.addOperand(Inst.getOperand(0)); // Vd
7418 10 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7419 20 : Spacing));
7420 10 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7421 20 : Spacing * 2));
7422 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7423 : Spacing * 3));
7424 : TmpInst.addOperand(Inst.getOperand(1)); // lane
7425 : TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7426 : TmpInst.addOperand(Inst.getOperand(6));
7427 : Inst = TmpInst;
7428 : return true;
7429 : }
7430 :
7431 : case ARM::VST1LNdWB_fixed_Asm_8:
7432 : case ARM::VST1LNdWB_fixed_Asm_16:
7433 : case ARM::VST1LNdWB_fixed_Asm_32: {
7434 : MCInst TmpInst;
7435 : // Shuffle the operands around so the lane index operand is in the
7436 : // right place.
7437 : unsigned Spacing;
7438 23 : TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7439 : TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7440 : TmpInst.addOperand(Inst.getOperand(2)); // Rn
7441 : TmpInst.addOperand(Inst.getOperand(3)); // alignment
7442 : TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7443 : TmpInst.addOperand(Inst.getOperand(0)); // Vd
7444 23 : TmpInst.addOperand(Inst.getOperand(1)); // lane
7445 46 : TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7446 23 : TmpInst.addOperand(Inst.getOperand(5));
7447 46 : Inst = TmpInst;
7448 23 : return true;
7449 46 : }
7450 :
7451 : case ARM::VST2LNdWB_fixed_Asm_8:
7452 : case ARM::VST2LNdWB_fixed_Asm_16:
7453 : case ARM::VST2LNdWB_fixed_Asm_32:
7454 : case ARM::VST2LNqWB_fixed_Asm_16:
7455 : case ARM::VST2LNqWB_fixed_Asm_32: {
7456 : MCInst TmpInst;
7457 : // Shuffle the operands around so the lane index operand is in the
7458 : // right place.
7459 : unsigned Spacing;
7460 : TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7461 : TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7462 : TmpInst.addOperand(Inst.getOperand(2)); // Rn
7463 : TmpInst.addOperand(Inst.getOperand(3)); // alignment
7464 6 : TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7465 : TmpInst.addOperand(Inst.getOperand(0)); // Vd
7466 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7467 : Spacing));
7468 6 : TmpInst.addOperand(Inst.getOperand(1)); // lane
7469 : TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7470 : TmpInst.addOperand(Inst.getOperand(5));
7471 : Inst = TmpInst;
7472 : return true;
7473 : }
7474 :
7475 : case ARM::VST3LNdWB_fixed_Asm_8:
7476 : case ARM::VST3LNdWB_fixed_Asm_16:
7477 : case ARM::VST3LNdWB_fixed_Asm_32:
7478 : case ARM::VST3LNqWB_fixed_Asm_16:
7479 : case ARM::VST3LNqWB_fixed_Asm_32: {
7480 : MCInst TmpInst;
7481 : // Shuffle the operands around so the lane index operand is in the
7482 : // right place.
7483 : unsigned Spacing;
7484 : TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7485 : TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7486 9 : TmpInst.addOperand(Inst.getOperand(2)); // Rn
7487 : TmpInst.addOperand(Inst.getOperand(3)); // alignment
7488 : TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7489 : TmpInst.addOperand(Inst.getOperand(0)); // Vd
7490 9 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7491 : Spacing));
7492 9 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7493 18 : Spacing * 2));
7494 : TmpInst.addOperand(Inst.getOperand(1)); // lane
7495 : TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7496 : TmpInst.addOperand(Inst.getOperand(5));
7497 : Inst = TmpInst;
7498 : return true;
7499 : }
7500 :
7501 : case ARM::VST4LNdWB_fixed_Asm_8:
7502 : case ARM::VST4LNdWB_fixed_Asm_16:
7503 : case ARM::VST4LNdWB_fixed_Asm_32:
7504 : case ARM::VST4LNqWB_fixed_Asm_16:
7505 : case ARM::VST4LNqWB_fixed_Asm_32: {
7506 : MCInst TmpInst;
7507 : // Shuffle the operands around so the lane index operand is in the
7508 : // right place.
7509 : unsigned Spacing;
7510 10 : TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7511 : TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7512 : TmpInst.addOperand(Inst.getOperand(2)); // Rn
7513 : TmpInst.addOperand(Inst.getOperand(3)); // alignment
7514 10 : TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7515 : TmpInst.addOperand(Inst.getOperand(0)); // Vd
7516 10 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7517 20 : Spacing));
7518 10 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7519 20 : Spacing * 2));
7520 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7521 : Spacing * 3));
7522 : TmpInst.addOperand(Inst.getOperand(1)); // lane
7523 : TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7524 : TmpInst.addOperand(Inst.getOperand(5));
7525 : Inst = TmpInst;
7526 : return true;
7527 : }
7528 :
7529 : case ARM::VST1LNdAsm_8:
7530 : case ARM::VST1LNdAsm_16:
7531 : case ARM::VST1LNdAsm_32: {
7532 : MCInst TmpInst;
7533 : // Shuffle the operands around so the lane index operand is in the
7534 : // right place.
7535 : unsigned Spacing;
7536 23 : TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7537 : TmpInst.addOperand(Inst.getOperand(2)); // Rn
7538 : TmpInst.addOperand(Inst.getOperand(3)); // alignment
7539 : TmpInst.addOperand(Inst.getOperand(0)); // Vd
7540 23 : TmpInst.addOperand(Inst.getOperand(1)); // lane
7541 : TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7542 23 : TmpInst.addOperand(Inst.getOperand(5));
7543 46 : Inst = TmpInst;
7544 23 : return true;
7545 46 : }
7546 23 :
7547 46 : case ARM::VST2LNdAsm_8:
7548 : case ARM::VST2LNdAsm_16:
7549 : case ARM::VST2LNdAsm_32:
7550 : case ARM::VST2LNqAsm_16:
7551 : case ARM::VST2LNqAsm_32: {
7552 : MCInst TmpInst;
7553 : // Shuffle the operands around so the lane index operand is in the
7554 : // right place.
7555 : unsigned Spacing;
7556 : TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7557 : TmpInst.addOperand(Inst.getOperand(2)); // Rn
7558 : TmpInst.addOperand(Inst.getOperand(3)); // alignment
7559 : TmpInst.addOperand(Inst.getOperand(0)); // Vd
7560 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7561 : Spacing));
7562 6 : TmpInst.addOperand(Inst.getOperand(1)); // lane
7563 : TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7564 : TmpInst.addOperand(Inst.getOperand(5));
7565 : Inst = TmpInst;
7566 : return true;
7567 : }
7568 :
7569 : case ARM::VST3LNdAsm_8:
7570 : case ARM::VST3LNdAsm_16:
7571 : case ARM::VST3LNdAsm_32:
7572 : case ARM::VST3LNqAsm_16:
7573 : case ARM::VST3LNqAsm_32: {
7574 : MCInst TmpInst;
7575 : // Shuffle the operands around so the lane index operand is in the
7576 : // right place.
7577 : unsigned Spacing;
7578 : TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7579 : TmpInst.addOperand(Inst.getOperand(2)); // Rn
7580 : TmpInst.addOperand(Inst.getOperand(3)); // alignment
7581 : TmpInst.addOperand(Inst.getOperand(0)); // Vd
7582 19 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7583 : Spacing));
7584 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7585 : Spacing * 2));
7586 19 : TmpInst.addOperand(Inst.getOperand(1)); // lane
7587 38 : TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7588 : TmpInst.addOperand(Inst.getOperand(5));
7589 : Inst = TmpInst;
7590 : return true;
7591 : }
7592 :
7593 : case ARM::VST4LNdAsm_8:
7594 : case ARM::VST4LNdAsm_16:
7595 : case ARM::VST4LNdAsm_32:
7596 : case ARM::VST4LNqAsm_16:
7597 : case ARM::VST4LNqAsm_32: {
7598 : MCInst TmpInst;
7599 : // Shuffle the operands around so the lane index operand is in the
7600 : // right place.
7601 : unsigned Spacing;
7602 : TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
7603 : TmpInst.addOperand(Inst.getOperand(2)); // Rn
7604 15 : TmpInst.addOperand(Inst.getOperand(3)); // alignment
7605 : TmpInst.addOperand(Inst.getOperand(0)); // Vd
7606 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7607 : Spacing));
7608 15 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7609 30 : Spacing * 2));
7610 15 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7611 30 : Spacing * 3));
7612 : TmpInst.addOperand(Inst.getOperand(1)); // lane
7613 : TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7614 : TmpInst.addOperand(Inst.getOperand(5));
7615 : Inst = TmpInst;
7616 : return true;
7617 : }
7618 :
7619 : // Handle NEON VLD complex aliases.
7620 : case ARM::VLD1LNdWB_register_Asm_8:
7621 : case ARM::VLD1LNdWB_register_Asm_16:
7622 : case ARM::VLD1LNdWB_register_Asm_32: {
7623 : MCInst TmpInst;
7624 : // Shuffle the operands around so the lane index operand is in the
7625 : // right place.
7626 : unsigned Spacing;
7627 : TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7628 25 : TmpInst.addOperand(Inst.getOperand(0)); // Vd
7629 : TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7630 : TmpInst.addOperand(Inst.getOperand(2)); // Rn
7631 : TmpInst.addOperand(Inst.getOperand(3)); // alignment
7632 25 : TmpInst.addOperand(Inst.getOperand(4)); // Rm
7633 50 : TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7634 25 : TmpInst.addOperand(Inst.getOperand(1)); // lane
7635 50 : TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7636 25 : TmpInst.addOperand(Inst.getOperand(6));
7637 50 : Inst = TmpInst;
7638 : return true;
7639 : }
7640 :
7641 : case ARM::VLD2LNdWB_register_Asm_8:
7642 : case ARM::VLD2LNdWB_register_Asm_16:
7643 : case ARM::VLD2LNdWB_register_Asm_32:
7644 : case ARM::VLD2LNqWB_register_Asm_16:
7645 : case ARM::VLD2LNqWB_register_Asm_32: {
7646 : MCInst TmpInst;
7647 : // Shuffle the operands around so the lane index operand is in the
7648 : // right place.
7649 : unsigned Spacing;
7650 : TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7651 : TmpInst.addOperand(Inst.getOperand(0)); // Vd
7652 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7653 9 : Spacing));
7654 : TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7655 : TmpInst.addOperand(Inst.getOperand(2)); // Rn
7656 : TmpInst.addOperand(Inst.getOperand(3)); // alignment
7657 : TmpInst.addOperand(Inst.getOperand(4)); // Rm
7658 : TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7659 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7660 : Spacing));
7661 : TmpInst.addOperand(Inst.getOperand(1)); // lane
7662 : TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7663 : TmpInst.addOperand(Inst.getOperand(6));
7664 : Inst = TmpInst;
7665 : return true;
7666 : }
7667 :
7668 : case ARM::VLD3LNdWB_register_Asm_8:
7669 : case ARM::VLD3LNdWB_register_Asm_16:
7670 : case ARM::VLD3LNdWB_register_Asm_32:
7671 : case ARM::VLD3LNqWB_register_Asm_16:
7672 : case ARM::VLD3LNqWB_register_Asm_32: {
7673 : MCInst TmpInst;
7674 : // Shuffle the operands around so the lane index operand is in the
7675 : // right place.
7676 11 : unsigned Spacing;
7677 : TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7678 11 : TmpInst.addOperand(Inst.getOperand(0)); // Vd
7679 22 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7680 : Spacing));
7681 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7682 : Spacing * 2));
7683 : TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7684 : TmpInst.addOperand(Inst.getOperand(2)); // Rn
7685 11 : TmpInst.addOperand(Inst.getOperand(3)); // alignment
7686 22 : TmpInst.addOperand(Inst.getOperand(4)); // Rm
7687 : TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7688 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7689 : Spacing));
7690 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7691 : Spacing * 2));
7692 : TmpInst.addOperand(Inst.getOperand(1)); // lane
7693 : TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7694 : TmpInst.addOperand(Inst.getOperand(6));
7695 : Inst = TmpInst;
7696 : return true;
7697 : }
7698 :
7699 : case ARM::VLD4LNdWB_register_Asm_8:
7700 : case ARM::VLD4LNdWB_register_Asm_16:
7701 : case ARM::VLD4LNdWB_register_Asm_32:
7702 : case ARM::VLD4LNqWB_register_Asm_16:
7703 10 : case ARM::VLD4LNqWB_register_Asm_32: {
7704 : MCInst TmpInst;
7705 10 : // Shuffle the operands around so the lane index operand is in the
7706 20 : // right place.
7707 10 : unsigned Spacing;
7708 20 : TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7709 : TmpInst.addOperand(Inst.getOperand(0)); // Vd
7710 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7711 : Spacing));
7712 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7713 : Spacing * 2));
7714 10 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7715 20 : Spacing * 3));
7716 10 : TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7717 20 : TmpInst.addOperand(Inst.getOperand(2)); // Rn
7718 : TmpInst.addOperand(Inst.getOperand(3)); // alignment
7719 : TmpInst.addOperand(Inst.getOperand(4)); // Rm
7720 : TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7721 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7722 : Spacing));
7723 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7724 : Spacing * 2));
7725 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7726 : Spacing * 3));
7727 : TmpInst.addOperand(Inst.getOperand(1)); // lane
7728 : TmpInst.addOperand(Inst.getOperand(5)); // CondCode
7729 : TmpInst.addOperand(Inst.getOperand(6));
7730 : Inst = TmpInst;
7731 : return true;
7732 : }
7733 :
7734 17 : case ARM::VLD1LNdWB_fixed_Asm_8:
7735 : case ARM::VLD1LNdWB_fixed_Asm_16:
7736 17 : case ARM::VLD1LNdWB_fixed_Asm_32: {
7737 34 : MCInst TmpInst;
7738 17 : // Shuffle the operands around so the lane index operand is in the
7739 34 : // right place.
7740 17 : unsigned Spacing;
7741 34 : TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7742 : TmpInst.addOperand(Inst.getOperand(0)); // Vd
7743 : TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7744 : TmpInst.addOperand(Inst.getOperand(2)); // Rn
7745 : TmpInst.addOperand(Inst.getOperand(3)); // alignment
7746 : TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7747 17 : TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7748 34 : TmpInst.addOperand(Inst.getOperand(1)); // lane
7749 17 : TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7750 34 : TmpInst.addOperand(Inst.getOperand(5));
7751 17 : Inst = TmpInst;
7752 34 : return true;
7753 : }
7754 :
7755 : case ARM::VLD2LNdWB_fixed_Asm_8:
7756 : case ARM::VLD2LNdWB_fixed_Asm_16:
7757 : case ARM::VLD2LNdWB_fixed_Asm_32:
7758 : case ARM::VLD2LNqWB_fixed_Asm_16:
7759 : case ARM::VLD2LNqWB_fixed_Asm_32: {
7760 : MCInst TmpInst;
7761 : // Shuffle the operands around so the lane index operand is in the
7762 : // right place.
7763 : unsigned Spacing;
7764 : TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7765 : TmpInst.addOperand(Inst.getOperand(0)); // Vd
7766 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7767 9 : Spacing));
7768 : TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7769 : TmpInst.addOperand(Inst.getOperand(2)); // Rn
7770 : TmpInst.addOperand(Inst.getOperand(3)); // alignment
7771 : TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7772 9 : TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7773 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7774 : Spacing));
7775 : TmpInst.addOperand(Inst.getOperand(1)); // lane
7776 : TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7777 : TmpInst.addOperand(Inst.getOperand(5));
7778 : Inst = TmpInst;
7779 : return true;
7780 : }
7781 :
7782 : case ARM::VLD3LNdWB_fixed_Asm_8:
7783 : case ARM::VLD3LNdWB_fixed_Asm_16:
7784 : case ARM::VLD3LNdWB_fixed_Asm_32:
7785 : case ARM::VLD3LNqWB_fixed_Asm_16:
7786 : case ARM::VLD3LNqWB_fixed_Asm_32: {
7787 : MCInst TmpInst;
7788 : // Shuffle the operands around so the lane index operand is in the
7789 : // right place.
7790 12 : unsigned Spacing;
7791 : TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7792 12 : TmpInst.addOperand(Inst.getOperand(0)); // Vd
7793 24 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7794 : Spacing));
7795 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7796 : Spacing * 2));
7797 12 : TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7798 : TmpInst.addOperand(Inst.getOperand(2)); // Rn
7799 12 : TmpInst.addOperand(Inst.getOperand(3)); // alignment
7800 24 : TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7801 : TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7802 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7803 : Spacing));
7804 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7805 : Spacing * 2));
7806 : TmpInst.addOperand(Inst.getOperand(1)); // lane
7807 : TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7808 : TmpInst.addOperand(Inst.getOperand(5));
7809 : Inst = TmpInst;
7810 : return true;
7811 : }
7812 :
7813 : case ARM::VLD4LNdWB_fixed_Asm_8:
7814 : case ARM::VLD4LNdWB_fixed_Asm_16:
7815 : case ARM::VLD4LNdWB_fixed_Asm_32:
7816 : case ARM::VLD4LNqWB_fixed_Asm_16:
7817 10 : case ARM::VLD4LNqWB_fixed_Asm_32: {
7818 : MCInst TmpInst;
7819 10 : // Shuffle the operands around so the lane index operand is in the
7820 20 : // right place.
7821 10 : unsigned Spacing;
7822 20 : TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7823 : TmpInst.addOperand(Inst.getOperand(0)); // Vd
7824 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7825 : Spacing));
7826 10 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7827 : Spacing * 2));
7828 10 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7829 20 : Spacing * 3));
7830 10 : TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
7831 20 : TmpInst.addOperand(Inst.getOperand(2)); // Rn
7832 : TmpInst.addOperand(Inst.getOperand(3)); // alignment
7833 : TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7834 : TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7835 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7836 : Spacing));
7837 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7838 : Spacing * 2));
7839 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7840 : Spacing * 3));
7841 : TmpInst.addOperand(Inst.getOperand(1)); // lane
7842 : TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7843 : TmpInst.addOperand(Inst.getOperand(5));
7844 : Inst = TmpInst;
7845 : return true;
7846 : }
7847 :
7848 17 : case ARM::VLD1LNdAsm_8:
7849 : case ARM::VLD1LNdAsm_16:
7850 17 : case ARM::VLD1LNdAsm_32: {
7851 34 : MCInst TmpInst;
7852 17 : // Shuffle the operands around so the lane index operand is in the
7853 34 : // right place.
7854 17 : unsigned Spacing;
7855 34 : TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7856 : TmpInst.addOperand(Inst.getOperand(0)); // Vd
7857 : TmpInst.addOperand(Inst.getOperand(2)); // Rn
7858 : TmpInst.addOperand(Inst.getOperand(3)); // alignment
7859 17 : TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7860 : TmpInst.addOperand(Inst.getOperand(1)); // lane
7861 17 : TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7862 34 : TmpInst.addOperand(Inst.getOperand(5));
7863 17 : Inst = TmpInst;
7864 34 : return true;
7865 17 : }
7866 34 :
7867 : case ARM::VLD2LNdAsm_8:
7868 : case ARM::VLD2LNdAsm_16:
7869 : case ARM::VLD2LNdAsm_32:
7870 : case ARM::VLD2LNqAsm_16:
7871 : case ARM::VLD2LNqAsm_32: {
7872 : MCInst TmpInst;
7873 : // Shuffle the operands around so the lane index operand is in the
7874 : // right place.
7875 : unsigned Spacing;
7876 : TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7877 : TmpInst.addOperand(Inst.getOperand(0)); // Vd
7878 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7879 : Spacing));
7880 : TmpInst.addOperand(Inst.getOperand(2)); // Rn
7881 13 : TmpInst.addOperand(Inst.getOperand(3)); // alignment
7882 : TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7883 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7884 : Spacing));
7885 : TmpInst.addOperand(Inst.getOperand(1)); // lane
7886 : TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7887 : TmpInst.addOperand(Inst.getOperand(5));
7888 : Inst = TmpInst;
7889 : return true;
7890 : }
7891 :
7892 : case ARM::VLD3LNdAsm_8:
7893 : case ARM::VLD3LNdAsm_16:
7894 : case ARM::VLD3LNdAsm_32:
7895 : case ARM::VLD3LNqAsm_16:
7896 : case ARM::VLD3LNqAsm_32: {
7897 : MCInst TmpInst;
7898 : // Shuffle the operands around so the lane index operand is in the
7899 : // right place.
7900 : unsigned Spacing;
7901 : TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7902 21 : TmpInst.addOperand(Inst.getOperand(0)); // Vd
7903 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7904 21 : Spacing));
7905 42 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7906 : Spacing * 2));
7907 : TmpInst.addOperand(Inst.getOperand(2)); // Rn
7908 : TmpInst.addOperand(Inst.getOperand(3)); // alignment
7909 21 : TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7910 42 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7911 : Spacing));
7912 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7913 : Spacing * 2));
7914 : TmpInst.addOperand(Inst.getOperand(1)); // lane
7915 : TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7916 : TmpInst.addOperand(Inst.getOperand(5));
7917 : Inst = TmpInst;
7918 : return true;
7919 : }
7920 :
7921 : case ARM::VLD4LNdAsm_8:
7922 : case ARM::VLD4LNdAsm_16:
7923 : case ARM::VLD4LNdAsm_32:
7924 : case ARM::VLD4LNqAsm_16:
7925 : case ARM::VLD4LNqAsm_32: {
7926 : MCInst TmpInst;
7927 15 : // Shuffle the operands around so the lane index operand is in the
7928 : // right place.
7929 15 : unsigned Spacing;
7930 30 : TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7931 15 : TmpInst.addOperand(Inst.getOperand(0)); // Vd
7932 30 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7933 : Spacing));
7934 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7935 : Spacing * 2));
7936 15 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7937 30 : Spacing * 3));
7938 15 : TmpInst.addOperand(Inst.getOperand(2)); // Rn
7939 30 : TmpInst.addOperand(Inst.getOperand(3)); // alignment
7940 : TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
7941 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7942 : Spacing));
7943 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7944 : Spacing * 2));
7945 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7946 : Spacing * 3));
7947 : TmpInst.addOperand(Inst.getOperand(1)); // lane
7948 : TmpInst.addOperand(Inst.getOperand(4)); // CondCode
7949 : TmpInst.addOperand(Inst.getOperand(5));
7950 : Inst = TmpInst;
7951 : return true;
7952 : }
7953 :
7954 : // VLD3DUP single 3-element structure to all lanes instructions.
7955 : case ARM::VLD3DUPdAsm_8:
7956 22 : case ARM::VLD3DUPdAsm_16:
7957 : case ARM::VLD3DUPdAsm_32:
7958 22 : case ARM::VLD3DUPqAsm_8:
7959 44 : case ARM::VLD3DUPqAsm_16:
7960 22 : case ARM::VLD3DUPqAsm_32: {
7961 44 : MCInst TmpInst;
7962 22 : unsigned Spacing;
7963 44 : TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7964 : TmpInst.addOperand(Inst.getOperand(0)); // Vd
7965 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7966 : Spacing));
7967 22 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7968 44 : Spacing * 2));
7969 22 : TmpInst.addOperand(Inst.getOperand(1)); // Rn
7970 44 : TmpInst.addOperand(Inst.getOperand(2)); // alignment
7971 22 : TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7972 44 : TmpInst.addOperand(Inst.getOperand(4));
7973 : Inst = TmpInst;
7974 : return true;
7975 : }
7976 :
7977 : case ARM::VLD3DUPdWB_fixed_Asm_8:
7978 : case ARM::VLD3DUPdWB_fixed_Asm_16:
7979 : case ARM::VLD3DUPdWB_fixed_Asm_32:
7980 : case ARM::VLD3DUPqWB_fixed_Asm_8:
7981 : case ARM::VLD3DUPqWB_fixed_Asm_16:
7982 : case ARM::VLD3DUPqWB_fixed_Asm_32: {
7983 : MCInst TmpInst;
7984 : unsigned Spacing;
7985 : TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
7986 : TmpInst.addOperand(Inst.getOperand(0)); // Vd
7987 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7988 : Spacing));
7989 12 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
7990 : Spacing * 2));
7991 12 : TmpInst.addOperand(Inst.getOperand(1)); // Rn
7992 24 : TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
7993 12 : TmpInst.addOperand(Inst.getOperand(2)); // alignment
7994 24 : TmpInst.addOperand(MCOperand::createReg(0)); // Rm
7995 : TmpInst.addOperand(Inst.getOperand(3)); // CondCode
7996 : TmpInst.addOperand(Inst.getOperand(4));
7997 : Inst = TmpInst;
7998 : return true;
7999 : }
8000 :
8001 : case ARM::VLD3DUPdWB_register_Asm_8:
8002 : case ARM::VLD3DUPdWB_register_Asm_16:
8003 : case ARM::VLD3DUPdWB_register_Asm_32:
8004 : case ARM::VLD3DUPqWB_register_Asm_8:
8005 : case ARM::VLD3DUPqWB_register_Asm_16:
8006 : case ARM::VLD3DUPqWB_register_Asm_32: {
8007 : MCInst TmpInst;
8008 : unsigned Spacing;
8009 : TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8010 : TmpInst.addOperand(Inst.getOperand(0)); // Vd
8011 12 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8012 : Spacing));
8013 12 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8014 24 : Spacing * 2));
8015 12 : TmpInst.addOperand(Inst.getOperand(1)); // Rn
8016 24 : TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8017 : TmpInst.addOperand(Inst.getOperand(2)); // alignment
8018 : TmpInst.addOperand(Inst.getOperand(3)); // Rm
8019 : TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8020 12 : TmpInst.addOperand(Inst.getOperand(5));
8021 : Inst = TmpInst;
8022 : return true;
8023 : }
8024 :
8025 : // VLD3 multiple 3-element structure instructions.
8026 : case ARM::VLD3dAsm_8:
8027 : case ARM::VLD3dAsm_16:
8028 : case ARM::VLD3dAsm_32:
8029 : case ARM::VLD3qAsm_8:
8030 : case ARM::VLD3qAsm_16:
8031 : case ARM::VLD3qAsm_32: {
8032 : MCInst TmpInst;
8033 : unsigned Spacing;
8034 : TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8035 12 : TmpInst.addOperand(Inst.getOperand(0)); // Vd
8036 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8037 12 : Spacing));
8038 24 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8039 12 : Spacing * 2));
8040 24 : TmpInst.addOperand(Inst.getOperand(1)); // Rn
8041 : TmpInst.addOperand(Inst.getOperand(2)); // alignment
8042 : TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8043 : TmpInst.addOperand(Inst.getOperand(4));
8044 : Inst = TmpInst;
8045 : return true;
8046 : }
8047 :
8048 : case ARM::VLD3dWB_fixed_Asm_8:
8049 : case ARM::VLD3dWB_fixed_Asm_16:
8050 : case ARM::VLD3dWB_fixed_Asm_32:
8051 : case ARM::VLD3qWB_fixed_Asm_8:
8052 : case ARM::VLD3qWB_fixed_Asm_16:
8053 : case ARM::VLD3qWB_fixed_Asm_32: {
8054 : MCInst TmpInst;
8055 : unsigned Spacing;
8056 : TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8057 : TmpInst.addOperand(Inst.getOperand(0)); // Vd
8058 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8059 : Spacing));
8060 21 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8061 : Spacing * 2));
8062 21 : TmpInst.addOperand(Inst.getOperand(1)); // Rn
8063 42 : TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8064 21 : TmpInst.addOperand(Inst.getOperand(2)); // alignment
8065 42 : TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8066 : TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8067 : TmpInst.addOperand(Inst.getOperand(4));
8068 : Inst = TmpInst;
8069 : return true;
8070 : }
8071 :
8072 : case ARM::VLD3dWB_register_Asm_8:
8073 : case ARM::VLD3dWB_register_Asm_16:
8074 : case ARM::VLD3dWB_register_Asm_32:
8075 : case ARM::VLD3qWB_register_Asm_8:
8076 : case ARM::VLD3qWB_register_Asm_16:
8077 : case ARM::VLD3qWB_register_Asm_32: {
8078 : MCInst TmpInst;
8079 : unsigned Spacing;
8080 : TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8081 : TmpInst.addOperand(Inst.getOperand(0)); // Vd
8082 24 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8083 : Spacing));
8084 24 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8085 48 : Spacing * 2));
8086 24 : TmpInst.addOperand(Inst.getOperand(1)); // Rn
8087 48 : TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8088 : TmpInst.addOperand(Inst.getOperand(2)); // alignment
8089 : TmpInst.addOperand(Inst.getOperand(3)); // Rm
8090 : TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8091 24 : TmpInst.addOperand(Inst.getOperand(5));
8092 : Inst = TmpInst;
8093 : return true;
8094 : }
8095 :
8096 : // VLD4DUP single 3-element structure to all lanes instructions.
8097 : case ARM::VLD4DUPdAsm_8:
8098 : case ARM::VLD4DUPdAsm_16:
8099 : case ARM::VLD4DUPdAsm_32:
8100 : case ARM::VLD4DUPqAsm_8:
8101 : case ARM::VLD4DUPqAsm_16:
8102 : case ARM::VLD4DUPqAsm_32: {
8103 : MCInst TmpInst;
8104 : unsigned Spacing;
8105 : TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8106 18 : TmpInst.addOperand(Inst.getOperand(0)); // Vd
8107 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8108 18 : Spacing));
8109 36 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8110 18 : Spacing * 2));
8111 36 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8112 : Spacing * 3));
8113 : TmpInst.addOperand(Inst.getOperand(1)); // Rn
8114 : TmpInst.addOperand(Inst.getOperand(2)); // alignment
8115 : TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8116 : TmpInst.addOperand(Inst.getOperand(4));
8117 : Inst = TmpInst;
8118 : return true;
8119 : }
8120 :
8121 : case ARM::VLD4DUPdWB_fixed_Asm_8:
8122 : case ARM::VLD4DUPdWB_fixed_Asm_16:
8123 : case ARM::VLD4DUPdWB_fixed_Asm_32:
8124 : case ARM::VLD4DUPqWB_fixed_Asm_8:
8125 : case ARM::VLD4DUPqWB_fixed_Asm_16:
8126 : case ARM::VLD4DUPqWB_fixed_Asm_32: {
8127 : MCInst TmpInst;
8128 : unsigned Spacing;
8129 : TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8130 : TmpInst.addOperand(Inst.getOperand(0)); // Vd
8131 20 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8132 : Spacing));
8133 20 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8134 40 : Spacing * 2));
8135 20 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8136 40 : Spacing * 3));
8137 20 : TmpInst.addOperand(Inst.getOperand(1)); // Rn
8138 40 : TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8139 : TmpInst.addOperand(Inst.getOperand(2)); // alignment
8140 : TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8141 : TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8142 : TmpInst.addOperand(Inst.getOperand(4));
8143 : Inst = TmpInst;
8144 : return true;
8145 : }
8146 :
8147 : case ARM::VLD4DUPdWB_register_Asm_8:
8148 : case ARM::VLD4DUPdWB_register_Asm_16:
8149 : case ARM::VLD4DUPdWB_register_Asm_32:
8150 : case ARM::VLD4DUPqWB_register_Asm_8:
8151 : case ARM::VLD4DUPqWB_register_Asm_16:
8152 : case ARM::VLD4DUPqWB_register_Asm_32: {
8153 : MCInst TmpInst;
8154 : unsigned Spacing;
8155 20 : TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8156 : TmpInst.addOperand(Inst.getOperand(0)); // Vd
8157 20 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8158 40 : Spacing));
8159 20 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8160 40 : Spacing * 2));
8161 20 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8162 40 : Spacing * 3));
8163 : TmpInst.addOperand(Inst.getOperand(1)); // Rn
8164 : TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8165 : TmpInst.addOperand(Inst.getOperand(2)); // alignment
8166 20 : TmpInst.addOperand(Inst.getOperand(3)); // Rm
8167 : TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8168 : TmpInst.addOperand(Inst.getOperand(5));
8169 : Inst = TmpInst;
8170 : return true;
8171 : }
8172 :
8173 : // VLD4 multiple 4-element structure instructions.
8174 : case ARM::VLD4dAsm_8:
8175 : case ARM::VLD4dAsm_16:
8176 : case ARM::VLD4dAsm_32:
8177 : case ARM::VLD4qAsm_8:
8178 : case ARM::VLD4qAsm_16:
8179 : case ARM::VLD4qAsm_32: {
8180 : MCInst TmpInst;
8181 20 : unsigned Spacing;
8182 : TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8183 20 : TmpInst.addOperand(Inst.getOperand(0)); // Vd
8184 40 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8185 20 : Spacing));
8186 40 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8187 20 : Spacing * 2));
8188 40 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8189 : Spacing * 3));
8190 : TmpInst.addOperand(Inst.getOperand(1)); // Rn
8191 : TmpInst.addOperand(Inst.getOperand(2)); // alignment
8192 : TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8193 : TmpInst.addOperand(Inst.getOperand(4));
8194 : Inst = TmpInst;
8195 : return true;
8196 : }
8197 :
8198 : case ARM::VLD4dWB_fixed_Asm_8:
8199 : case ARM::VLD4dWB_fixed_Asm_16:
8200 : case ARM::VLD4dWB_fixed_Asm_32:
8201 : case ARM::VLD4qWB_fixed_Asm_8:
8202 : case ARM::VLD4qWB_fixed_Asm_16:
8203 : case ARM::VLD4qWB_fixed_Asm_32: {
8204 : MCInst TmpInst;
8205 : unsigned Spacing;
8206 : TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8207 : TmpInst.addOperand(Inst.getOperand(0)); // Vd
8208 33 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8209 : Spacing));
8210 33 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8211 66 : Spacing * 2));
8212 33 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8213 66 : Spacing * 3));
8214 33 : TmpInst.addOperand(Inst.getOperand(1)); // Rn
8215 66 : TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8216 : TmpInst.addOperand(Inst.getOperand(2)); // alignment
8217 : TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8218 : TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8219 : TmpInst.addOperand(Inst.getOperand(4));
8220 : Inst = TmpInst;
8221 : return true;
8222 : }
8223 :
8224 : case ARM::VLD4dWB_register_Asm_8:
8225 : case ARM::VLD4dWB_register_Asm_16:
8226 : case ARM::VLD4dWB_register_Asm_32:
8227 : case ARM::VLD4qWB_register_Asm_8:
8228 : case ARM::VLD4qWB_register_Asm_16:
8229 : case ARM::VLD4qWB_register_Asm_32: {
8230 : MCInst TmpInst;
8231 : unsigned Spacing;
8232 36 : TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
8233 : TmpInst.addOperand(Inst.getOperand(0)); // Vd
8234 36 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8235 72 : Spacing));
8236 36 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8237 72 : Spacing * 2));
8238 36 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8239 72 : Spacing * 3));
8240 : TmpInst.addOperand(Inst.getOperand(1)); // Rn
8241 : TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8242 : TmpInst.addOperand(Inst.getOperand(2)); // alignment
8243 36 : TmpInst.addOperand(Inst.getOperand(3)); // Rm
8244 : TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8245 : TmpInst.addOperand(Inst.getOperand(5));
8246 : Inst = TmpInst;
8247 : return true;
8248 : }
8249 :
8250 : // VST3 multiple 3-element structure instructions.
8251 : case ARM::VST3dAsm_8:
8252 : case ARM::VST3dAsm_16:
8253 : case ARM::VST3dAsm_32:
8254 : case ARM::VST3qAsm_8:
8255 : case ARM::VST3qAsm_16:
8256 : case ARM::VST3qAsm_32: {
8257 : MCInst TmpInst;
8258 30 : unsigned Spacing;
8259 : TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8260 30 : TmpInst.addOperand(Inst.getOperand(1)); // Rn
8261 60 : TmpInst.addOperand(Inst.getOperand(2)); // alignment
8262 30 : TmpInst.addOperand(Inst.getOperand(0)); // Vd
8263 60 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8264 30 : Spacing));
8265 60 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8266 : Spacing * 2));
8267 : TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8268 : TmpInst.addOperand(Inst.getOperand(4));
8269 : Inst = TmpInst;
8270 : return true;
8271 : }
8272 :
8273 : case ARM::VST3dWB_fixed_Asm_8:
8274 : case ARM::VST3dWB_fixed_Asm_16:
8275 : case ARM::VST3dWB_fixed_Asm_32:
8276 : case ARM::VST3qWB_fixed_Asm_8:
8277 : case ARM::VST3qWB_fixed_Asm_16:
8278 : case ARM::VST3qWB_fixed_Asm_32: {
8279 : MCInst TmpInst;
8280 : unsigned Spacing;
8281 : TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8282 : TmpInst.addOperand(Inst.getOperand(1)); // Rn
8283 : TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8284 : TmpInst.addOperand(Inst.getOperand(2)); // alignment
8285 21 : TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8286 : TmpInst.addOperand(Inst.getOperand(0)); // Vd
8287 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8288 : Spacing));
8289 21 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8290 42 : Spacing * 2));
8291 21 : TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8292 42 : TmpInst.addOperand(Inst.getOperand(4));
8293 : Inst = TmpInst;
8294 : return true;
8295 : }
8296 :
8297 : case ARM::VST3dWB_register_Asm_8:
8298 : case ARM::VST3dWB_register_Asm_16:
8299 : case ARM::VST3dWB_register_Asm_32:
8300 : case ARM::VST3qWB_register_Asm_8:
8301 : case ARM::VST3qWB_register_Asm_16:
8302 : case ARM::VST3qWB_register_Asm_32: {
8303 : MCInst TmpInst;
8304 : unsigned Spacing;
8305 : TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8306 : TmpInst.addOperand(Inst.getOperand(1)); // Rn
8307 24 : TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8308 : TmpInst.addOperand(Inst.getOperand(2)); // alignment
8309 : TmpInst.addOperand(Inst.getOperand(3)); // Rm
8310 : TmpInst.addOperand(Inst.getOperand(0)); // Vd
8311 24 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8312 : Spacing));
8313 24 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8314 48 : Spacing * 2));
8315 24 : TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8316 48 : TmpInst.addOperand(Inst.getOperand(5));
8317 : Inst = TmpInst;
8318 : return true;
8319 : }
8320 :
8321 : // VST4 multiple 3-element structure instructions.
8322 : case ARM::VST4dAsm_8:
8323 : case ARM::VST4dAsm_16:
8324 : case ARM::VST4dAsm_32:
8325 : case ARM::VST4qAsm_8:
8326 : case ARM::VST4qAsm_16:
8327 : case ARM::VST4qAsm_32: {
8328 : MCInst TmpInst;
8329 : unsigned Spacing;
8330 : TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8331 18 : TmpInst.addOperand(Inst.getOperand(1)); // Rn
8332 : TmpInst.addOperand(Inst.getOperand(2)); // alignment
8333 : TmpInst.addOperand(Inst.getOperand(0)); // Vd
8334 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8335 : Spacing));
8336 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8337 18 : Spacing * 2));
8338 36 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8339 18 : Spacing * 3));
8340 36 : TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8341 : TmpInst.addOperand(Inst.getOperand(4));
8342 : Inst = TmpInst;
8343 : return true;
8344 : }
8345 :
8346 : case ARM::VST4dWB_fixed_Asm_8:
8347 : case ARM::VST4dWB_fixed_Asm_16:
8348 : case ARM::VST4dWB_fixed_Asm_32:
8349 : case ARM::VST4qWB_fixed_Asm_8:
8350 : case ARM::VST4qWB_fixed_Asm_16:
8351 : case ARM::VST4qWB_fixed_Asm_32: {
8352 : MCInst TmpInst;
8353 : unsigned Spacing;
8354 : TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8355 : TmpInst.addOperand(Inst.getOperand(1)); // Rn
8356 32 : TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8357 : TmpInst.addOperand(Inst.getOperand(2)); // alignment
8358 : TmpInst.addOperand(MCOperand::createReg(0)); // Rm
8359 : TmpInst.addOperand(Inst.getOperand(0)); // Vd
8360 32 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8361 64 : Spacing));
8362 32 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8363 64 : Spacing * 2));
8364 32 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8365 64 : Spacing * 3));
8366 : TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8367 : TmpInst.addOperand(Inst.getOperand(4));
8368 : Inst = TmpInst;
8369 : return true;
8370 : }
8371 :
8372 : case ARM::VST4dWB_register_Asm_8:
8373 : case ARM::VST4dWB_register_Asm_16:
8374 : case ARM::VST4dWB_register_Asm_32:
8375 : case ARM::VST4qWB_register_Asm_8:
8376 : case ARM::VST4qWB_register_Asm_16:
8377 : case ARM::VST4qWB_register_Asm_32: {
8378 : MCInst TmpInst;
8379 : unsigned Spacing;
8380 36 : TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
8381 : TmpInst.addOperand(Inst.getOperand(1)); // Rn
8382 : TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
8383 : TmpInst.addOperand(Inst.getOperand(2)); // alignment
8384 36 : TmpInst.addOperand(Inst.getOperand(3)); // Rm
8385 : TmpInst.addOperand(Inst.getOperand(0)); // Vd
8386 36 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8387 72 : Spacing));
8388 36 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8389 72 : Spacing * 2));
8390 36 : TmpInst.addOperand(MCOperand::createReg(Inst.getOperand(0).getReg() +
8391 72 : Spacing * 3));
8392 : TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8393 : TmpInst.addOperand(Inst.getOperand(5));
8394 : Inst = TmpInst;
8395 : return true;
8396 : }
8397 :
8398 : // Handle encoding choice for the shift-immediate instructions.
8399 : case ARM::t2LSLri:
8400 : case ARM::t2LSRri:
8401 : case ARM::t2ASRri:
8402 : if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
8403 : isARMLowRegister(Inst.getOperand(1).getReg()) &&
8404 : Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
8405 : !HasWideQualifier) {
8406 30 : unsigned NewOpc;
8407 : switch (Inst.getOpcode()) {
8408 : default: llvm_unreachable("unexpected opcode");
8409 : case ARM::t2LSLri: NewOpc = ARM::tLSLri; break;
8410 : case ARM::t2LSRri: NewOpc = ARM::tLSRri; break;
8411 : case ARM::t2ASRri: NewOpc = ARM::tASRri; break;
8412 30 : }
8413 60 : // The Thumb1 operands aren't in the same order. Awesome, eh?
8414 30 : MCInst TmpInst;
8415 60 : TmpInst.setOpcode(NewOpc);
8416 30 : TmpInst.addOperand(Inst.getOperand(0));
8417 60 : TmpInst.addOperand(Inst.getOperand(5));
8418 : TmpInst.addOperand(Inst.getOperand(1));
8419 : TmpInst.addOperand(Inst.getOperand(2));
8420 : TmpInst.addOperand(Inst.getOperand(3));
8421 : TmpInst.addOperand(Inst.getOperand(4));
8422 : Inst = TmpInst;
8423 : return true;
8424 : }
8425 : return false;
8426 :
8427 : // Handle the Thumb2 mode MOV complex aliases.
8428 73 : case ARM::t2MOVsr:
8429 100 : case ARM::t2MOVSsr: {
8430 60 : // Which instruction to expand to depends on the CCOut operand and
8431 : // whether we're in an IT block if the register operands are low
8432 : // registers.
8433 : bool isNarrow = false;
8434 0 : if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
8435 : isARMLowRegister(Inst.getOperand(1).getReg()) &&
8436 0 : isARMLowRegister(Inst.getOperand(2).getReg()) &&
8437 0 : Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
8438 : inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr) &&
8439 : !HasWideQualifier)
8440 : isNarrow = true;
8441 : MCInst TmpInst;
8442 : unsigned newOpc;
8443 : switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) {
8444 : default: llvm_unreachable("unexpected opcode!");
8445 : case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break;
8446 : case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break;
8447 : case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break;
8448 : case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR : ARM::t2RORrr; break;
8449 : }
8450 : TmpInst.setOpcode(newOpc);
8451 : TmpInst.addOperand(Inst.getOperand(0)); // Rd
8452 : if (isNarrow)
8453 : TmpInst.addOperand(MCOperand::createReg(
8454 30 : Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
8455 : TmpInst.addOperand(Inst.getOperand(1)); // Rn
8456 : TmpInst.addOperand(Inst.getOperand(2)); // Rm
8457 : TmpInst.addOperand(Inst.getOperand(4)); // CondCode
8458 : TmpInst.addOperand(Inst.getOperand(5));
8459 : if (!isNarrow)
8460 30 : TmpInst.addOperand(MCOperand::createReg(
8461 30 : Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
8462 30 : Inst = TmpInst;
8463 26 : return true;
8464 26 : }
8465 : case ARM::t2MOVsi:
8466 : case ARM::t2MOVSsi: {
8467 : // Which instruction to expand to depends on the CCOut operand and
8468 : // whether we're in an IT block if the register operands are low
8469 30 : // registers.
8470 0 : bool isNarrow = false;
8471 6 : if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
8472 8 : isARMLowRegister(Inst.getOperand(1).getReg()) &&
8473 8 : inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi) &&
8474 8 : !HasWideQualifier)
8475 : isNarrow = true;
8476 : MCInst TmpInst;
8477 : unsigned newOpc;
8478 30 : unsigned Shift = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
8479 16 : unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm());
8480 24 : bool isMov = false;
8481 : // MOV rd, rm, LSL #0 is actually a MOV instruction
8482 : if (Shift == ARM_AM::lsl && Amount == 0) {
8483 : isMov = true;
8484 : // The 16-bit encoding of MOV rd, rm, LSL #N is explicitly encoding T2 of
8485 30 : // MOV (register) in the ARMv8-A and ARMv8-M manuals, and immediate 0 is
8486 14 : // unpredictable in an IT block so the 32-bit encoding T3 has to be used
8487 16 : // instead.
8488 : if (inITBlock()) {
8489 : isNarrow = false;
8490 : }
8491 30 : newOpc = isNarrow ? ARM::tMOVSr : ARM::t2MOVr;
8492 : } else {
8493 : switch(Shift) {
8494 : default: llvm_unreachable("unexpected opcode!");
8495 : case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break;
8496 : case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break;
8497 30 : case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break;
8498 27 : case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break;
8499 26 : case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break;
8500 : }
8501 : }
8502 : if (Amount == 32) Amount = 0;
8503 : TmpInst.setOpcode(newOpc);
8504 30 : TmpInst.addOperand(Inst.getOperand(0)); // Rd
8505 : if (isNarrow && !isMov)
8506 : TmpInst.addOperand(MCOperand::createReg(
8507 : Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
8508 30 : TmpInst.addOperand(Inst.getOperand(1)); // Rn
8509 : if (newOpc != ARM::t2RRX && !isMov)
8510 : TmpInst.addOperand(MCOperand::createImm(Amount));
8511 : TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8512 : TmpInst.addOperand(Inst.getOperand(4));
8513 : if (!isNarrow)
8514 12 : TmpInst.addOperand(MCOperand::createReg(
8515 : Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
8516 : Inst = TmpInst;
8517 4 : return true;
8518 : }
8519 : // Handle the ARM mode MOV complex aliases.
8520 0 : case ARM::ASRr:
8521 4 : case ARM::LSRr:
8522 4 : case ARM::LSLr:
8523 4 : case ARM::RORr: {
8524 : ARM_AM::ShiftOpc ShiftTy;
8525 2 : switch(Inst.getOpcode()) {
8526 : default: llvm_unreachable("unexpected opcode!");
8527 : case ARM::ASRr: ShiftTy = ARM_AM::asr; break;
8528 30 : case ARM::LSRr: ShiftTy = ARM_AM::lsr; break;
8529 : case ARM::LSLr: ShiftTy = ARM_AM::lsl; break;
8530 : case ARM::RORr: ShiftTy = ARM_AM::ror; break;
8531 30 : }
8532 2 : unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0);
8533 2 : MCInst TmpInst;
8534 : TmpInst.setOpcode(ARM::MOVsr);
8535 30 : TmpInst.addOperand(Inst.getOperand(0)); // Rd
8536 16 : TmpInst.addOperand(Inst.getOperand(1)); // Rn
8537 : TmpInst.addOperand(Inst.getOperand(2)); // Rm
8538 : TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
8539 30 : TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8540 28 : TmpInst.addOperand(Inst.getOperand(4));
8541 43 : TmpInst.addOperand(Inst.getOperand(5)); // cc_out
8542 : Inst = TmpInst;
8543 : return true;
8544 : }
8545 : case ARM::ASRi:
8546 0 : case ARM::LSRi:
8547 : case ARM::LSLi:
8548 : case ARM::RORi: {
8549 : ARM_AM::ShiftOpc ShiftTy;
8550 : switch(Inst.getOpcode()) {
8551 : default: llvm_unreachable("unexpected opcode!");
8552 0 : case ARM::ASRi: ShiftTy = ARM_AM::asr; break;
8553 : case ARM::LSRi: ShiftTy = ARM_AM::lsr; break;
8554 0 : case ARM::LSLi: ShiftTy = ARM_AM::lsl; break;
8555 0 : case ARM::RORi: ShiftTy = ARM_AM::ror; break;
8556 0 : }
8557 : // A shift by zero is a plain MOVr, not a MOVsi.
8558 : unsigned Amt = Inst.getOperand(2).getImm();
8559 : unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi;
8560 : // A shift by 32 should be encoded as 0 when permitted
8561 : if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr))
8562 : Amt = 0;
8563 : unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt);
8564 0 : MCInst TmpInst;
8565 : TmpInst.setOpcode(Opc);
8566 : TmpInst.addOperand(Inst.getOperand(0)); // Rd
8567 : TmpInst.addOperand(Inst.getOperand(1)); // Rn
8568 : if (Opc == ARM::MOVsi)
8569 : TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
8570 : TmpInst.addOperand(Inst.getOperand(3)); // CondCode
8571 57 : TmpInst.addOperand(Inst.getOperand(4));
8572 : TmpInst.addOperand(Inst.getOperand(5)); // cc_out
8573 : Inst = TmpInst;
8574 : return true;
8575 : }
8576 : case ARM::RRXi: {
8577 0 : unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0);
8578 : MCInst TmpInst;
8579 10 : TmpInst.setOpcode(ARM::MOVsi);
8580 26 : TmpInst.addOperand(Inst.getOperand(0)); // Rd
8581 11 : TmpInst.addOperand(Inst.getOperand(1)); // Rn
8582 : TmpInst.addOperand(MCOperand::createImm(Shifter)); // Shift value and ty
8583 : TmpInst.addOperand(Inst.getOperand(2)); // CondCode
8584 57 : TmpInst.addOperand(Inst.getOperand(3));
8585 57 : TmpInst.addOperand(Inst.getOperand(4)); // cc_out
8586 : Inst = TmpInst;
8587 57 : return true;
8588 : }
8589 : case ARM::t2LDMIA_UPD: {
8590 : // If this is a load of a single register, then we should use
8591 : // a post-indexed LDR instruction instead, per the ARM ARM.
8592 : if (Inst.getNumOperands() != 5)
8593 : return false;
8594 57 : MCInst TmpInst;
8595 25 : TmpInst.setOpcode(ARM::t2LDR_POST);
8596 : TmpInst.addOperand(Inst.getOperand(4)); // Rt
8597 : TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
8598 : TmpInst.addOperand(Inst.getOperand(1)); // Rn
8599 : TmpInst.addOperand(MCOperand::createImm(4));
8600 : TmpInst.addOperand(Inst.getOperand(2)); // CondCode
8601 : TmpInst.addOperand(Inst.getOperand(3));
8602 : Inst = TmpInst;
8603 : return true;
8604 : }
8605 : case ARM::t2STMDB_UPD: {
8606 : // If this is a store of a single register, then we should use
8607 : // a pre-indexed STR instruction instead, per the ARM ARM.
8608 16 : if (Inst.getNumOperands() != 5)
8609 : return false;
8610 : MCInst TmpInst;
8611 : TmpInst.setOpcode(ARM::t2STR_PRE);
8612 : TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
8613 : TmpInst.addOperand(Inst.getOperand(4)); // Rt
8614 : TmpInst.addOperand(Inst.getOperand(1)); // Rn
8615 : TmpInst.addOperand(MCOperand::createImm(-4));
8616 : TmpInst.addOperand(Inst.getOperand(2)); // CondCode
8617 : TmpInst.addOperand(Inst.getOperand(3));
8618 45 : Inst = TmpInst;
8619 : return true;
8620 : }
8621 : case ARM::LDMIA_UPD:
8622 : // If this is a load of a single register via a 'pop', then we should use
8623 : // a post-indexed LDR instruction instead, per the ARM ARM.
8624 : if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" &&
8625 9 : Inst.getNumOperands() == 5) {
8626 : MCInst TmpInst;
8627 : TmpInst.setOpcode(ARM::LDR_POST_IMM);
8628 : TmpInst.addOperand(Inst.getOperand(4)); // Rt
8629 : TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
8630 : TmpInst.addOperand(Inst.getOperand(1)); // Rn
8631 : TmpInst.addOperand(MCOperand::createReg(0)); // am2offset
8632 : TmpInst.addOperand(MCOperand::createImm(4));
8633 : TmpInst.addOperand(Inst.getOperand(2)); // CondCode
8634 14 : TmpInst.addOperand(Inst.getOperand(3));
8635 : Inst = TmpInst;
8636 : return true;
8637 : }
8638 : break;
8639 : case ARM::STMDB_UPD:
8640 : // If this is a store of a single register via a 'push', then we should use
8641 4 : // a pre-indexed STR instruction instead, per the ARM ARM.
8642 : if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" &&
8643 : Inst.getNumOperands() == 5) {
8644 : MCInst TmpInst;
8645 : TmpInst.setOpcode(ARM::STR_PRE_IMM);
8646 : TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
8647 : TmpInst.addOperand(Inst.getOperand(4)); // Rt
8648 : TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12
8649 : TmpInst.addOperand(MCOperand::createImm(-4));
8650 119 : TmpInst.addOperand(Inst.getOperand(2)); // CondCode
8651 : TmpInst.addOperand(Inst.getOperand(3));
8652 : Inst = TmpInst;
8653 : }
8654 : break;
8655 : case ARM::t2ADDri12:
8656 : // If the immediate fits for encoding T3 (t2ADDri) and the generic "add"
8657 12 : // mnemonic was used (not "addw"), encoding T3 is preferred.
8658 12 : if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" ||
8659 : ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
8660 : break;
8661 : Inst.setOpcode(ARM::t2ADDri);
8662 : Inst.addOperand(MCOperand::createReg(0)); // cc_out
8663 : break;
8664 : case ARM::t2SUBri12:
8665 : // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub"
8666 : // mnemonic was used (not "subw"), encoding T3 is preferred.
8667 : if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" ||
8668 131 : ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
8669 : break;
8670 : Inst.setOpcode(ARM::t2SUBri);
8671 : Inst.addOperand(MCOperand::createReg(0)); // cc_out
8672 : break;
8673 : case ARM::tADDi8:
8674 : // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
8675 15 : // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
8676 : // to encoding T2 if <Rd> is specified and encoding T2 is preferred
8677 : // to encoding T1 if <Rd> is omitted."
8678 : if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
8679 : Inst.setOpcode(ARM::tADDi3);
8680 : return true;
8681 : }
8682 : break;
8683 : case ARM::tSUBi8:
8684 58 : // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
8685 16 : // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
8686 : // to encoding T2 if <Rd> is specified and encoding T2 is preferred
8687 : // to encoding T1 if <Rd> is omitted."
8688 8 : if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
8689 8 : Inst.setOpcode(ARM::tSUBi3);
8690 : return true;
8691 : }
8692 : break;
8693 57 : case ARM::t2ADDri:
8694 6 : case ARM::t2SUBri: {
8695 : // If the destination and first source operand are the same, and
8696 : // the flags are compatible with the current IT status, use encoding T2
8697 0 : // instead of T3. For compatibility with the system 'as'. Make sure the
8698 0 : // wide encoding wasn't explicit.
8699 : if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
8700 : !isARMLowRegister(Inst.getOperand(0).getReg()) ||
8701 : (Inst.getOperand(2).isImm() &&
8702 : (unsigned)Inst.getOperand(2).getImm() > 255) ||
8703 : Inst.getOperand(5).getReg() != (inITBlock() ? 0 : ARM::CPSR) ||
8704 62 : HasWideQualifier)
8705 : break;
8706 0 : MCInst TmpInst;
8707 : TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ?
8708 : ARM::tADDi8 : ARM::tSUBi8);
8709 : TmpInst.addOperand(Inst.getOperand(0));
8710 : TmpInst.addOperand(Inst.getOperand(5));
8711 : TmpInst.addOperand(Inst.getOperand(0));
8712 : TmpInst.addOperand(Inst.getOperand(2));
8713 : TmpInst.addOperand(Inst.getOperand(3));
8714 16 : TmpInst.addOperand(Inst.getOperand(4));
8715 : Inst = TmpInst;
8716 0 : return true;
8717 : }
8718 : case ARM::t2ADDrr: {
8719 : // If the destination and first source operand are the same, and
8720 : // there's no setting of the flags, use encoding T2 instead of T3.
8721 : // Note that this is only for ADD, not SUB. This mirrors the system
8722 : // 'as' behaviour. Also take advantage of ADD being commutative.
8723 : // Make sure the wide encoding wasn't explicit.
8724 : bool Swap = false;
8725 195 : auto DestReg = Inst.getOperand(0).getReg();
8726 40 : bool Transform = DestReg == Inst.getOperand(1).getReg();
8727 40 : if (!Transform && DestReg == Inst.getOperand(2).getReg()) {
8728 72 : Transform = true;
8729 245 : Swap = true;
8730 : }
8731 : if (!Transform ||
8732 : Inst.getOperand(5).getReg() != 0 ||
8733 8 : HasWideQualifier)
8734 : break;
8735 : MCInst TmpInst;
8736 : TmpInst.setOpcode(ARM::tADDhirr);
8737 : TmpInst.addOperand(Inst.getOperand(0));
8738 : TmpInst.addOperand(Inst.getOperand(0));
8739 : TmpInst.addOperand(Inst.getOperand(Swap ? 1 : 2));
8740 : TmpInst.addOperand(Inst.getOperand(3));
8741 : TmpInst.addOperand(Inst.getOperand(4));
8742 : Inst = TmpInst;
8743 : return true;
8744 72 : }
8745 : case ARM::tADDrSP:
8746 : // If the non-SP source operand and the destination operand are not the
8747 : // same, we need to use the 32-bit encoding if it's available.
8748 : if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
8749 : Inst.setOpcode(ARM::t2ADDrr);
8750 : Inst.addOperand(MCOperand::createReg(0)); // cc_out
8751 72 : return true;
8752 72 : }
8753 72 : break;
8754 : case ARM::tB:
8755 : // A Thumb conditional branch outside of an IT block is a tBcc.
8756 : if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) {
8757 53 : Inst.setOpcode(ARM::tBcc);
8758 72 : return true;
8759 : }
8760 : break;
8761 : case ARM::t2B:
8762 : // A Thumb2 conditional branch outside of an IT block is a t2Bcc.
8763 : if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){
8764 : Inst.setOpcode(ARM::t2Bcc);
8765 12 : return true;
8766 : }
8767 : break;
8768 : case ARM::t2Bcc:
8769 : // If the conditional is AL or we're in an IT block, we really want t2B.
8770 : if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) {
8771 : Inst.setOpcode(ARM::t2B);
8772 : return true;
8773 : }
8774 16 : break;
8775 : case ARM::tBcc:
8776 6 : // If the conditional is AL, we really want tB.
8777 6 : if (Inst.getOperand(1).getImm() == ARMCC::AL) {
8778 : Inst.setOpcode(ARM::tB);
8779 : return true;
8780 : }
8781 : break;
8782 94 : case ARM::tLDMIA: {
8783 : // If the register list contains any high registers, or if the writeback
8784 0 : // doesn't match what tLDMIA can do, we need to use the 32-bit encoding
8785 : // instead if we're in Thumb2. Otherwise, this should have generated
8786 : // an error in validateInstruction().
8787 : unsigned Rn = Inst.getOperand(0).getReg();
8788 : bool hasWritebackToken =
8789 93 : (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
8790 : static_cast<ARMOperand &>(*Operands[3]).getToken() == "!");
8791 0 : bool listContainsBase;
8792 : if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) ||
8793 : (!listContainsBase && !hasWritebackToken) ||
8794 : (listContainsBase && hasWritebackToken)) {
8795 : // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
8796 65 : assert(isThumbTwo());
8797 : Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA);
8798 0 : // If we're switching to the updating version, we need to insert
8799 : // the writeback tied operand.
8800 : if (hasWritebackToken)
8801 : Inst.insert(Inst.begin(),
8802 : MCOperand::createReg(Inst.getOperand(0).getReg()));
8803 92 : return true;
8804 : }
8805 0 : break;
8806 : }
8807 : case ARM::tSTMIA_UPD: {
8808 : // If the register list contains any high registers, we need to use
8809 : // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
8810 : // should have generated an error in validateInstruction().
8811 : unsigned Rn = Inst.getOperand(0).getReg();
8812 : bool listContainsBase;
8813 37 : if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) {
8814 : // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
8815 37 : assert(isThumbTwo());
8816 19 : Inst.setOpcode(ARM::t2STMIA_UPD);
8817 : return true;
8818 17 : }
8819 17 : break;
8820 6 : }
8821 : case ARM::tPOP: {
8822 : bool listContainsBase;
8823 27 : // If the register list contains any high registers, we need to use
8824 : // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
8825 : // should have generated an error in validateInstruction().
8826 27 : if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase))
8827 : return false;
8828 30 : assert(isThumbTwo());
8829 : Inst.setOpcode(ARM::t2LDMIA_UPD);
8830 : // Add the base register and writeback operands.
8831 : Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
8832 : Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
8833 : return true;
8834 : }
8835 : case ARM::tPUSH: {
8836 : bool listContainsBase;
8837 : if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase))
8838 : return false;
8839 : assert(isThumbTwo());
8840 : Inst.setOpcode(ARM::t2STMDB_UPD);
8841 : // Add the base register and writeback operands.
8842 : Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
8843 : Inst.insert(Inst.begin(), MCOperand::createReg(ARM::SP));
8844 : return true;
8845 : }
8846 : case ARM::t2MOVi:
8847 : // If we can use the 16-bit encoding and the user didn't explicitly
8848 : // request the 32-bit variant, transform it here.
8849 : if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
8850 : (Inst.getOperand(1).isImm() &&
8851 : (unsigned)Inst.getOperand(1).getImm() <= 255) &&
8852 38 : Inst.getOperand(4).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
8853 : !HasWideQualifier) {
8854 : // The operands aren't in the same order for tMOVi8...
8855 : MCInst TmpInst;
8856 : TmpInst.setOpcode(ARM::tMOVi8);
8857 16 : TmpInst.addOperand(Inst.getOperand(0));
8858 16 : TmpInst.addOperand(Inst.getOperand(4));
8859 16 : TmpInst.addOperand(Inst.getOperand(1));
8860 : TmpInst.addOperand(Inst.getOperand(2));
8861 : TmpInst.addOperand(Inst.getOperand(3));
8862 : Inst = TmpInst;
8863 32 : return true;
8864 : }
8865 : break;
8866 :
8867 : case ARM::t2MOVr:
8868 5 : // If we can use the 16-bit encoding and the user didn't explicitly
8869 5 : // request the 32-bit variant, transform it here.
8870 5 : if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
8871 : isARMLowRegister(Inst.getOperand(1).getReg()) &&
8872 : Inst.getOperand(2).getImm() == ARMCC::AL &&
8873 : Inst.getOperand(4).getReg() == ARM::CPSR &&
8874 : !HasWideQualifier) {
8875 114 : // The operands aren't the same for tMOV[S]r... (no cc_out)
8876 111 : MCInst TmpInst;
8877 198 : TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr);
8878 119 : TmpInst.addOperand(Inst.getOperand(0));
8879 : TmpInst.addOperand(Inst.getOperand(1));
8880 : TmpInst.addOperand(Inst.getOperand(2));
8881 : TmpInst.addOperand(Inst.getOperand(3));
8882 : Inst = TmpInst;
8883 : return true;
8884 : }
8885 : break;
8886 :
8887 : case ARM::t2SXTH:
8888 : case ARM::t2SXTB:
8889 : case ARM::t2UXTH:
8890 : case ARM::t2UXTB:
8891 : // If we can use the 16-bit encoding and the user didn't explicitly
8892 : // request the 32-bit variant, transform it here.
8893 : if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
8894 : isARMLowRegister(Inst.getOperand(1).getReg()) &&
8895 : Inst.getOperand(2).getImm() == 0 &&
8896 52 : !HasWideQualifier) {
8897 37 : unsigned NewOpc;
8898 29 : switch (Inst.getOpcode()) {
8899 11 : default: llvm_unreachable("Illegal opcode!");
8900 : case ARM::t2SXTH: NewOpc = ARM::tSXTH; break;
8901 : case ARM::t2SXTB: NewOpc = ARM::tSXTB; break;
8902 : case ARM::t2UXTH: NewOpc = ARM::tUXTH; break;
8903 9 : case ARM::t2UXTB: NewOpc = ARM::tUXTB; break;
8904 : }
8905 : // The operands aren't the same for thumb1 (no rotate operand).
8906 : MCInst TmpInst;
8907 : TmpInst.setOpcode(NewOpc);
8908 : TmpInst.addOperand(Inst.getOperand(0));
8909 : TmpInst.addOperand(Inst.getOperand(1));
8910 : TmpInst.addOperand(Inst.getOperand(3));
8911 : TmpInst.addOperand(Inst.getOperand(4));
8912 : Inst = TmpInst;
8913 : return true;
8914 : }
8915 : break;
8916 :
8917 : case ARM::MOVsi: {
8918 : ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
8919 66 : // rrx shifts and asr/lsr of #32 is encoded as 0
8920 52 : if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr)
8921 24 : return false;
8922 : if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) {
8923 : // Shifting by zero is accepted as a vanilla 'MOVr'
8924 : MCInst TmpInst;
8925 0 : TmpInst.setOpcode(ARM::MOVr);
8926 : TmpInst.addOperand(Inst.getOperand(0));
8927 4 : TmpInst.addOperand(Inst.getOperand(1));
8928 2 : TmpInst.addOperand(Inst.getOperand(3));
8929 2 : TmpInst.addOperand(Inst.getOperand(4));
8930 : TmpInst.addOperand(Inst.getOperand(5));
8931 : Inst = TmpInst;
8932 : return true;
8933 : }
8934 : return false;
8935 : }
8936 : case ARM::ANDrsi:
8937 : case ARM::ORRrsi:
8938 : case ARM::EORrsi:
8939 : case ARM::BICrsi:
8940 : case ARM::SUBrsi:
8941 : case ARM::ADDrsi: {
8942 : unsigned newOpc;
8943 : ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm());
8944 65 : if (SOpc == ARM_AM::rrx) return false;
8945 : switch (Inst.getOpcode()) {
8946 65 : default: llvm_unreachable("unexpected opcode!");
8947 : case ARM::ANDrsi: newOpc = ARM::ANDrr; break;
8948 35 : case ARM::ORRrsi: newOpc = ARM::ORRrr; break;
8949 : case ARM::EORrsi: newOpc = ARM::EORrr; break;
8950 : case ARM::BICrsi: newOpc = ARM::BICrr; break;
8951 : case ARM::SUBrsi: newOpc = ARM::SUBrr; break;
8952 : case ARM::ADDrsi: newOpc = ARM::ADDrr; break;
8953 : }
8954 : // If the shift is by zero, use the non-shifted instruction definition.
8955 : // The exception is for right shifts, where 0 == 32
8956 : if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 &&
8957 : !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) {
8958 : MCInst TmpInst;
8959 : TmpInst.setOpcode(newOpc);
8960 : TmpInst.addOperand(Inst.getOperand(0));
8961 : TmpInst.addOperand(Inst.getOperand(1));
8962 : TmpInst.addOperand(Inst.getOperand(2));
8963 : TmpInst.addOperand(Inst.getOperand(4));
8964 : TmpInst.addOperand(Inst.getOperand(5));
8965 : TmpInst.addOperand(Inst.getOperand(6));
8966 : Inst = TmpInst;
8967 : return true;
8968 : }
8969 179 : return false;
8970 179 : }
8971 : case ARM::ITasm:
8972 0 : case ARM::t2IT: {
8973 : MCOperand &MO = Inst.getOperand(1);
8974 27 : unsigned Mask = MO.getImm();
8975 25 : ARMCC::CondCodes Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm());
8976 27 :
8977 25 : // Set up the IT block state according to the IT instruction we just
8978 26 : // matched.
8979 : assert(!inITBlock() && "nested IT blocks?!");
8980 : startExplicitITBlock(Cond, Mask);
8981 : MO.setImm(getITMaskEncoding());
8982 155 : break;
8983 30 : }
8984 : case ARM::t2LSLrr:
8985 : case ARM::t2LSRrr:
8986 : case ARM::t2ASRrr:
8987 : case ARM::t2SBCrr:
8988 : case ARM::t2RORrr:
8989 : case ARM::t2BICrr:
8990 : // Assemblers should use the narrow encodings of these instructions when permissible.
8991 : if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
8992 : isARMLowRegister(Inst.getOperand(2).getReg())) &&
8993 : Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
8994 : Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
8995 : !HasWideQualifier) {
8996 : unsigned NewOpc;
8997 : switch (Inst.getOpcode()) {
8998 : default: llvm_unreachable("unexpected opcode");
8999 : case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break;
9000 2769 : case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break;
9001 2769 : case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break;
9002 : case ARM::t2SBCrr: NewOpc = ARM::tSBC; break;
9003 : case ARM::t2RORrr: NewOpc = ARM::tROR; break;
9004 : case ARM::t2BICrr: NewOpc = ARM::tBIC; break;
9005 : }
9006 : MCInst TmpInst;
9007 2769 : TmpInst.setOpcode(NewOpc);
9008 : TmpInst.addOperand(Inst.getOperand(0));
9009 : TmpInst.addOperand(Inst.getOperand(5));
9010 : TmpInst.addOperand(Inst.getOperand(1));
9011 : TmpInst.addOperand(Inst.getOperand(2));
9012 : TmpInst.addOperand(Inst.getOperand(3));
9013 : TmpInst.addOperand(Inst.getOperand(4));
9014 : Inst = TmpInst;
9015 : return true;
9016 : }
9017 251 : return false;
9018 200 :
9019 229 : case ARM::t2ANDrr:
9020 120 : case ARM::t2EORrr:
9021 : case ARM::t2ADCrr:
9022 : case ARM::t2ORRrr:
9023 : // Assemblers should use the narrow encodings of these instructions when permissible.
9024 0 : // These instructions are special in that they are commutable, so shorter encodings
9025 : // are available more often.
9026 5 : if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
9027 5 : isARMLowRegister(Inst.getOperand(2).getReg())) &&
9028 5 : (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() ||
9029 5 : Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) &&
9030 5 : Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
9031 : !HasWideQualifier) {
9032 : unsigned NewOpc;
9033 : switch (Inst.getOpcode()) {
9034 : default: llvm_unreachable("unexpected opcode");
9035 : case ARM::t2ADCrr: NewOpc = ARM::tADC; break;
9036 : case ARM::t2ANDrr: NewOpc = ARM::tAND; break;
9037 : case ARM::t2EORrr: NewOpc = ARM::tEOR; break;
9038 : case ARM::t2ORRrr: NewOpc = ARM::tORR; break;
9039 : }
9040 : MCInst TmpInst;
9041 : TmpInst.setOpcode(NewOpc);
9042 : TmpInst.addOperand(Inst.getOperand(0));
9043 : TmpInst.addOperand(Inst.getOperand(5));
9044 : if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) {
9045 : TmpInst.addOperand(Inst.getOperand(1));
9046 : TmpInst.addOperand(Inst.getOperand(2));
9047 : } else {
9048 : TmpInst.addOperand(Inst.getOperand(2));
9049 : TmpInst.addOperand(Inst.getOperand(1));
9050 : }
9051 : TmpInst.addOperand(Inst.getOperand(3));
9052 238 : TmpInst.addOperand(Inst.getOperand(4));
9053 170 : Inst = TmpInst;
9054 151 : return true;
9055 131 : }
9056 219 : return false;
9057 : }
9058 : return false;
9059 : }
9060 0 :
9061 : unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
9062 10 : // 16-bit thumb arithmetic instructions either require or preclude the 'S'
9063 10 : // suffix depending on whether they're in an IT block or not.
9064 10 : unsigned Opc = Inst.getOpcode();
9065 : const MCInstrDesc &MCID = MII.get(Opc);
9066 : if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
9067 : assert(MCID.hasOptionalDef() &&
9068 : "optionally flag setting instruction missing optional def operand");
9069 : assert(MCID.NumOperands == Inst.getNumOperands() &&
9070 40 : "operand count mismatch!");
9071 : // Find the optional-def operand (cc_out).
9072 : unsigned OpNo;
9073 : for (OpNo = 0;
9074 : !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands;
9075 : ++OpNo)
9076 : ;
9077 : // If we're parsing Thumb1, reject it completely.
9078 : if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR)
9079 : return Match_RequiresFlagSetting;
9080 : // If we're parsing Thumb2, which form is legal depends on whether we're
9081 : // in an IT block.
9082 : if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR &&
9083 : !inITBlock())
9084 : return Match_RequiresITBlock;
9085 : if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR &&
9086 : inITBlock())
9087 31027 : return Match_RequiresNotITBlock;
9088 : // LSL with zero immediate is not allowed in an IT block
9089 : if (Opc == ARM::tLSLri && Inst.getOperand(3).getImm() == 0 && inITBlock())
9090 31027 : return Match_RequiresNotITBlock;
9091 31027 : } else if (isThumbOne()) {
9092 31027 : // Some high-register supporting Thumb1 encodings only allow both registers
9093 : // to be from r0-r7 when in Thumb2.
9094 : if (Opc == ARM::tADDhirr && !hasV6MOps() &&
9095 : isARMLowRegister(Inst.getOperand(1).getReg()) &&
9096 : isARMLowRegister(Inst.getOperand(2).getReg()))
9097 : return Match_RequiresThumb2;
9098 : // Others only require ARMv6 or later.
9099 952 : else if (Opc == ARM::tMOVr && !hasV6Ops() &&
9100 1904 : isARMLowRegister(Inst.getOperand(0).getReg()) &&
9101 : isARMLowRegister(Inst.getOperand(1).getReg()))
9102 : return Match_RequiresV6;
9103 : }
9104 952 :
9105 : // Before ARMv8 the rules for when SP is allowed in t2MOVr are more complex
9106 : // than the loop below can handle, so it uses the GPRnopc register class and
9107 : // we do SP handling here.
9108 950 : if (Opc == ARM::t2MOVr && !hasV8Ops())
9109 239 : {
9110 : // SP as both source and destination is not allowed
9111 864 : if (Inst.getOperand(0).getReg() == ARM::SP &&
9112 273 : Inst.getOperand(1).getReg() == ARM::SP)
9113 : return Match_RequiresV8;
9114 : // When flags-setting SP as either source or destination is not allowed
9115 842 : if (Inst.getOperand(4).getReg() == ARM::CPSR &&
9116 : (Inst.getOperand(0).getReg() == ARM::SP ||
9117 30075 : Inst.getOperand(1).getReg() == ARM::SP))
9118 : return Match_RequiresV8;
9119 : }
9120 10 :
9121 927 : // Use of SP for VMRS/VMSR is only allowed in ARM mode with the exception of
9122 3 : // ARMv8-A.
9123 : if ((Inst.getOpcode() == ARM::VMRS || Inst.getOpcode() == ARM::VMSR) &&
9124 : Inst.getOperand(0).getReg() == ARM::SP && (isThumb() && !hasV8Ops()))
9125 39 : return Match_InvalidOperand;
9126 956 :
9127 2 : for (unsigned I = 0; I < MCID.NumOperands; ++I)
9128 : if (MCID.OpInfo[I].RegClass == ARM::rGPRRegClassID) {
9129 : // rGPRRegClass excludes PC, and also excluded SP before ARMv8
9130 : if ((Inst.getOperand(I).getReg() == ARM::SP) && !hasV8Ops())
9131 : return Match_RequiresV8;
9132 : else if (Inst.getOperand(I).getReg() == ARM::PC)
9133 : return Match_InvalidOperand;
9134 30972 : }
9135 :
9136 : return Match_Success;
9137 45 : }
9138 14 :
9139 : namespace llvm {
9140 :
9141 38 : template <> inline bool IsCPSRDead<MCInst>(const MCInst *Instr) {
9142 17 : return true; // In an assembly source, no need to second-guess
9143 17 : }
9144 :
9145 : } // end namespace llvm
9146 :
9147 : // Returns true if Inst is unpredictable if it is in and IT block, but is not
9148 : // the last instruction in the block.
9149 30876 : bool ARMAsmParser::isITBlockTerminator(MCInst &Inst) const {
9150 30940 : const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
9151 :
9152 : // All branch & call instructions terminate IT blocks with the exception of
9153 162883 : // SVC.
9154 132013 : if (MCID.isTerminator() || (MCID.isCall() && Inst.getOpcode() != ARM::tSVC) ||
9155 : MCID.isReturn() || MCID.isBranch() || MCID.isIndirectBranch())
9156 12097 : return true;
9157 :
9158 12076 : // Any arithmetic instruction which writes to the PC also terminates the IT
9159 : // block.
9160 : for (unsigned OpIdx = 0; OpIdx < MCID.getNumDefs(); ++OpIdx) {
9161 : MCOperand &Op = Inst.getOperand(OpIdx);
9162 : if (Op.isReg() && Op.getReg() == ARM::PC)
9163 : return true;
9164 : }
9165 :
9166 : if (MCID.hasImplicitDefOfPhysReg(ARM::PC, MRI))
9167 0 : return true;
9168 0 :
9169 : // Instructions with variable operand lists, which write to the variable
9170 : // operands. We only care about Thumb instructions here, as ARM instructions
9171 : // obviously can't be in an IT block.
9172 : switch (Inst.getOpcode()) {
9173 : case ARM::tLDMIA:
9174 : case ARM::t2LDMIA:
9175 0 : case ARM::t2LDMIA_UPD:
9176 0 : case ARM::t2LDMDB:
9177 : case ARM::t2LDMDB_UPD:
9178 : if (listContainsReg(Inst, 3, ARM::PC))
9179 : return true;
9180 0 : break;
9181 0 : case ARM::tPOP:
9182 0 : if (listContainsReg(Inst, 2, ARM::PC))
9183 : return true;
9184 : break;
9185 : }
9186 0 :
9187 : return false;
9188 0 : }
9189 0 :
9190 : unsigned ARMAsmParser::MatchInstruction(OperandVector &Operands, MCInst &Inst,
9191 : SmallVectorImpl<NearMissInfo> &NearMisses,
9192 0 : bool MatchingInlineAsm,
9193 0 : bool &EmitInITBlock,
9194 : MCStreamer &Out) {
9195 : // If we can't use an implicit IT block here, just match as normal.
9196 : if (inExplicitITBlock() || !isThumbTwo() || !useImplicitITThumb())
9197 : return MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm);
9198 0 :
9199 : // Try to match the instruction in an extension of the current IT block (if
9200 : // there is one).
9201 : if (inImplicitITBlock()) {
9202 : extendImplicitITBlock(ITState.Cond);
9203 : if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) ==
9204 0 : Match_Success) {
9205 0 : // The match succeded, but we still have to check that the instruction is
9206 : // valid in this implicit IT block.
9207 : const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
9208 0 : if (MCID.isPredicable()) {
9209 0 : ARMCC::CondCodes InstCond =
9210 : (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
9211 : .getImm();
9212 : ARMCC::CondCodes ITCond = currentITCond();
9213 : if (InstCond == ITCond) {
9214 : EmitInITBlock = true;
9215 : return Match_Success;
9216 25518 : } else if (InstCond == ARMCC::getOppositeCondition(ITCond)) {
9217 : invertCurrentITCondition();
9218 : EmitInITBlock = true;
9219 : return Match_Success;
9220 : }
9221 : }
9222 22451 : }
9223 25382 : rewindImplicitITPosition();
9224 : }
9225 :
9226 : // Finish the current IT block, and try to match outside any IT block.
9227 : flushPendingInstructions(Out);
9228 : unsigned PlainMatchResult =
9229 29 : MatchInstructionImpl(Operands, Inst, &NearMisses, MatchingInlineAsm);
9230 : if (PlainMatchResult == Match_Success) {
9231 : const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
9232 : if (MCID.isPredicable()) {
9233 29 : ARMCC::CondCodes InstCond =
9234 58 : (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
9235 : .getImm();
9236 25 : // Some forms of the branch instruction have their own condition code
9237 25 : // fields, so can be conditionally executed without an IT block.
9238 : if (Inst.getOpcode() == ARM::tBcc || Inst.getOpcode() == ARM::t2Bcc) {
9239 25 : EmitInITBlock = false;
9240 15 : return Match_Success;
9241 15 : }
9242 10 : if (InstCond == ARMCC::AL) {
9243 : EmitInITBlock = false;
9244 5 : return Match_Success;
9245 5 : }
9246 : } else {
9247 : EmitInITBlock = false;
9248 : return Match_Success;
9249 : }
9250 : }
9251 :
9252 : // Try to match in a new IT block. The matcher doesn't check the actual
9253 116 : // condition, so we create an IT block with a dummy condition, and fix it up
9254 : // once we know the actual condition.
9255 116 : startImplicitITBlock();
9256 116 : if (MatchInstructionImpl(Operands, Inst, nullptr, MatchingInlineAsm) ==
9257 116 : Match_Success) {
9258 232 : const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
9259 : if (MCID.isPredicable()) {
9260 103 : ITState.Cond =
9261 103 : (ARMCC::CondCodes)Inst.getOperand(MCID.findFirstPredOperandIdx())
9262 : .getImm();
9263 : EmitInITBlock = true;
9264 103 : return Match_Success;
9265 4 : }
9266 4 : }
9267 : discardImplicitITBlock();
9268 99 :
9269 5 : // If none of these succeed, return the error we got when trying to match
9270 5 : // outside any IT blocks.
9271 : EmitInITBlock = false;
9272 : return PlainMatchResult;
9273 13 : }
9274 13 :
9275 : static std::string ARMMnemonicSpellCheck(StringRef S, uint64_t FBS,
9276 : unsigned VariantID = 0);
9277 :
9278 : static const char *getSubtargetFeatureName(uint64_t Val);
9279 : bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
9280 : OperandVector &Operands,
9281 : MCStreamer &Out, uint64_t &ErrorInfo,
9282 94 : bool MatchingInlineAsm) {
9283 : MCInst Inst;
9284 94 : unsigned MatchResult;
9285 188 : bool PendConditionalInstruction = false;
9286 94 :
9287 94 : SmallVector<NearMissInfo, 4> NearMisses;
9288 94 : MatchResult = MatchInstruction(Operands, Inst, NearMisses, MatchingInlineAsm,
9289 94 : PendConditionalInstruction, Out);
9290 94 :
9291 : switch (MatchResult) {
9292 : case Match_Success:
9293 : // Context sensitive operand constraints aren't handled by the matcher,
9294 : // so check them here.
9295 : if (validateInstruction(Inst, Operands)) {
9296 : // Still progress the IT block, otherwise one wrong condition causes
9297 0 : // nasty cascading errors.
9298 0 : forwardITPosition();
9299 : return true;
9300 : }
9301 :
9302 : { // processInstruction() updates inITBlock state, we need to save it away
9303 : bool wasInITBlock = inITBlock();
9304 :
9305 25518 : // Some instructions need post-processing to, for example, tweak which
9306 : // encoding is selected. Loop on it while changes happen so the
9307 : // individual transformations can chain off each other. E.g.,
9308 : // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8)
9309 : while (processInstruction(Inst, Operands, Out))
9310 : ;
9311 25518 :
9312 : // Only after the instruction is fully processed, we can validate it
9313 : if (wasInITBlock && hasV8Ops() && isThumb() &&
9314 25518 : !isV8EligibleForIT(&Inst)) {
9315 : Warning(IDLoc, "deprecated instruction in IT block");
9316 : }
9317 25518 : }
9318 21193 :
9319 : // Only move forward at the very end so that everything in validate
9320 : // and process gets a consistent answer about whether we're in an IT
9321 21193 : // block.
9322 : forwardITPosition();
9323 :
9324 : // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and
9325 401 : // doesn't actually encode.
9326 : if (Inst.getOpcode() == ARM::ITasm)
9327 : return false;
9328 :
9329 20792 : Inst.setLoc(IDLoc);
9330 : if (PendConditionalInstruction) {
9331 : PendingConditionalInsts.push_back(Inst);
9332 : if (isITBlockFull() || isITBlockTerminator(Inst))
9333 : flushPendingInstructions(Out);
9334 : } else {
9335 22359 : Out.EmitInstruction(Inst, getSTI());
9336 : }
9337 : return false;
9338 : case Match_NearMisses:
9339 26098 : ReportNearMisses(NearMisses, IDLoc, Operands);
9340 2206 : return true;
9341 2147 : case Match_MnemonicFail: {
9342 : uint64_t FBS = ComputeAvailableFeatures(getSTI().getFeatureBits());
9343 : std::string Suggestion = ARMMnemonicSpellCheck(
9344 : ((ARMOperand &)*Operands[0]).getToken(), FBS);
9345 : return Error(IDLoc, "invalid instruction" + Suggestion,
9346 : ((ARMOperand &)*Operands[0]).getLocRange());
9347 : }
9348 : }
9349 :
9350 : llvm_unreachable("Implement any new match types added!");
9351 : }
9352 20792 :
9353 : /// parseDirective parses the arm specific directives
9354 : bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
9355 : const MCObjectFileInfo::Environment Format =
9356 20738 : getContext().getObjectFileInfo()->getObjectFileType();
9357 114 : bool IsMachO = Format == MCObjectFileInfo::IsMachO;
9358 110 : bool IsCOFF = Format == MCObjectFileInfo::IsCOFF;
9359 34 :
9360 : StringRef IDVal = DirectiveID.getIdentifier();
9361 20624 : if (IDVal == ".word")
9362 : parseLiteralValues(4, DirectiveID.getLoc());
9363 : else if (IDVal == ".short" || IDVal == ".hword")
9364 4299 : parseLiteralValues(2, DirectiveID.getLoc());
9365 4299 : else if (IDVal == ".thumb")
9366 4299 : parseDirectiveThumb(DirectiveID.getLoc());
9367 26 : else if (IDVal == ".arm")
9368 26 : parseDirectiveARM(DirectiveID.getLoc());
9369 : else if (IDVal == ".thumb_func")
9370 26 : parseDirectiveThumbFunc(DirectiveID.getLoc());
9371 78 : else if (IDVal == ".code")
9372 : parseDirectiveCode(DirectiveID.getLoc());
9373 : else if (IDVal == ".syntax")
9374 : parseDirectiveSyntax(DirectiveID.getLoc());
9375 : else if (IDVal == ".unreq")
9376 0 : parseDirectiveUnreq(DirectiveID.getLoc());
9377 : else if (IDVal == ".fnend")
9378 : parseDirectiveFnEnd(DirectiveID.getLoc());
9379 : else if (IDVal == ".cantunwind")
9380 10356 : parseDirectiveCantUnwind(DirectiveID.getLoc());
9381 : else if (IDVal == ".personality")
9382 10356 : parseDirectivePersonality(DirectiveID.getLoc());
9383 : else if (IDVal == ".handlerdata")
9384 : parseDirectiveHandlerData(DirectiveID.getLoc());
9385 : else if (IDVal == ".setfp")
9386 : parseDirectiveSetFP(DirectiveID.getLoc());
9387 : else if (IDVal == ".pad")
9388 2264 : parseDirectivePad(DirectiveID.getLoc());
9389 : else if (IDVal == ".save")
9390 47 : parseDirectiveRegSave(DirectiveID.getLoc(), false);
9391 : else if (IDVal == ".vsave")
9392 421 : parseDirectiveRegSave(DirectiveID.getLoc(), true);
9393 : else if (IDVal == ".ltorg" || IDVal == ".pool")
9394 115 : parseDirectiveLtorg(DirectiveID.getLoc());
9395 : else if (IDVal == ".even")
9396 132 : parseDirectiveEven(DirectiveID.getLoc());
9397 : else if (IDVal == ".personalityindex")
9398 130 : parseDirectivePersonalityIndex(DirectiveID.getLoc());
9399 : else if (IDVal == ".unwind_raw")
9400 371 : parseDirectiveUnwindRaw(DirectiveID.getLoc());
9401 : else if (IDVal == ".movsp")
9402 7 : parseDirectiveMovSP(DirectiveID.getLoc());
9403 : else if (IDVal == ".arch_extension")
9404 228 : parseDirectiveArchExtension(DirectiveID.getLoc());
9405 : else if (IDVal == ".align")
9406 58 : return parseDirectiveAlign(DirectiveID.getLoc()); // Use Generic on failure.
9407 : else if (IDVal == ".thumb_set")
9408 80 : parseDirectiveThumbSet(DirectiveID.getLoc());
9409 : else if (IDVal == ".inst")
9410 79 : parseDirectiveInst(DirectiveID.getLoc());
9411 : else if (IDVal == ".inst.n")
9412 42 : parseDirectiveInst(DirectiveID.getLoc(), 'n');
9413 : else if (IDVal == ".inst.w")
9414 30 : parseDirectiveInst(DirectiveID.getLoc(), 'w');
9415 : else if (!IsMachO && !IsCOFF) {
9416 47 : if (IDVal == ".arch")
9417 : parseDirectiveArch(DirectiveID.getLoc());
9418 17 : else if (IDVal == ".cpu")
9419 : parseDirectiveCPU(DirectiveID.getLoc());
9420 48 : else if (IDVal == ".eabi_attribute")
9421 : parseDirectiveEabiAttr(DirectiveID.getLoc());
9422 8 : else if (IDVal == ".fpu")
9423 : parseDirectiveFPU(DirectiveID.getLoc());
9424 19 : else if (IDVal == ".fnstart")
9425 : parseDirectiveFnStart(DirectiveID.getLoc());
9426 64 : else if (IDVal == ".object_arch")
9427 : parseDirectiveObjectArch(DirectiveID.getLoc());
9428 13 : else if (IDVal == ".tlsdescseq")
9429 : parseDirectiveTLSDescSeq(DirectiveID.getLoc());
9430 80 : else
9431 : return true;
9432 194 : } else
9433 : return true;
9434 30 : return false;
9435 : }
9436 13 :
9437 : /// parseLiteralValues
9438 14 : /// ::= .hword expression [, expression]*
9439 : /// ::= .short expression [, expression]*
9440 17 : /// ::= .word expression [, expression]*
9441 5788 : bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) {
9442 : auto parseOne = [&]() -> bool {
9443 96 : const MCExpr *Value;
9444 : if (getParser().parseExpression(Value))
9445 22 : return true;
9446 : getParser().getStreamer().EmitValue(Value, Size, L);
9447 724 : return false;
9448 : };
9449 58 : return (parseMany(parseOne));
9450 : }
9451 233 :
9452 : /// parseDirectiveThumb
9453 10 : /// ::= .thumb
9454 : bool ARMAsmParser::parseDirectiveThumb(SMLoc L) {
9455 13 : if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") ||
9456 : check(!hasThumb(), L, "target does not support Thumb mode"))
9457 : return true;
9458 :
9459 : if (!isThumb())
9460 : SwitchMode();
9461 :
9462 : getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
9463 : return false;
9464 : }
9465 :
9466 : /// parseDirectiveARM
9467 : /// ::= .arm
9468 : bool ARMAsmParser::parseDirectiveARM(SMLoc L) {
9469 : if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive") ||
9470 : check(!hasARM(), L, "target does not support ARM mode"))
9471 : return true;
9472 :
9473 : if (isThumb())
9474 2311 : SwitchMode();
9475 2311 : getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
9476 : return false;
9477 : }
9478 :
9479 : void ARMAsmParser::doBeforeLabelEmit(MCSymbol *Symbol) {
9480 421 : // We need to flush the current implicit IT block on a label, because it is
9481 421 : // not legal to branch into an IT block.
9482 419 : flushPendingInstructions(getStreamer());
9483 3 : }
9484 :
9485 418 : void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) {
9486 126 : if (NextSymbolIsThumb) {
9487 : getParser().getStreamer().EmitThumbFunc(Symbol);
9488 418 : NextSymbolIsThumb = false;
9489 418 : }
9490 : }
9491 :
9492 : /// parseDirectiveThumbFunc
9493 : /// ::= .thumbfunc symbol_name
9494 115 : bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) {
9495 115 : MCAsmParser &Parser = getParser();
9496 113 : const auto Format = getContext().getObjectFileInfo()->getObjectFileType();
9497 10 : bool IsMachO = Format == MCObjectFileInfo::IsMachO;
9498 :
9499 105 : // Darwin asm has (optionally) function name after .thumb_func direction
9500 70 : // ELF doesn't
9501 105 :
9502 105 : if (IsMachO) {
9503 : if (Parser.getTok().is(AsmToken::Identifier) ||
9504 : Parser.getTok().is(AsmToken::String)) {
9505 1920 : MCSymbol *Func = getParser().getContext().getOrCreateSymbol(
9506 : Parser.getTok().getIdentifier());
9507 : getParser().getStreamer().EmitThumbFunc(Func);
9508 1920 : Parser.Lex();
9509 1920 : if (parseToken(AsmToken::EndOfStatement,
9510 : "unexpected token in '.thumb_func' directive"))
9511 1920 : return true;
9512 1920 : return false;
9513 84 : }
9514 84 : }
9515 :
9516 1920 : if (parseToken(AsmToken::EndOfStatement,
9517 : "unexpected token in '.thumb_func' directive"))
9518 : return true;
9519 :
9520 0 : NextSymbolIsThumb = true;
9521 0 : return false;
9522 0 : }
9523 :
9524 : /// parseDirectiveSyntax
9525 : /// ::= .syntax unified | divided
9526 : bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) {
9527 : MCAsmParser &Parser = getParser();
9528 0 : const AsmToken &Tok = Parser.getTok();
9529 0 : if (Tok.isNot(AsmToken::Identifier)) {
9530 0 : Error(L, "unexpected token in .syntax directive");
9531 0 : return false;
9532 0 : }
9533 0 :
9534 0 : StringRef Mode = Tok.getString();
9535 0 : Parser.Lex();
9536 : if (check(Mode == "divided" || Mode == "DIVIDED", L,
9537 0 : "'.syntax divided' arm assembly not supported") ||
9538 0 : check(Mode != "unified" && Mode != "UNIFIED", L,
9539 : "unrecognized syntax mode in .syntax directive") ||
9540 : parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
9541 : return true;
9542 0 :
9543 : // TODO tell the MC streamer the mode
9544 0 : // getParser().getStreamer().Emit???();
9545 : return false;
9546 0 : }
9547 0 :
9548 : /// parseDirectiveCode
9549 : /// ::= .code 16 | 32
9550 : bool ARMAsmParser::parseDirectiveCode(SMLoc L) {
9551 : MCAsmParser &Parser = getParser();
9552 371 : const AsmToken &Tok = Parser.getTok();
9553 371 : if (Tok.isNot(AsmToken::Integer))
9554 371 : return Error(L, "unexpected token in .code directive");
9555 371 : int64_t Val = Parser.getTok().getIntVal();
9556 0 : if (Val != 16 && Val != 32) {
9557 0 : Error(L, "invalid operand to .code directive");
9558 : return false;
9559 : }
9560 : Parser.Lex();
9561 371 :
9562 371 : if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
9563 371 : return true;
9564 371 :
9565 742 : if (Val == 16) {
9566 369 : if (!hasThumb())
9567 2 : return Error(L, "target does not support Thumb mode");
9568 :
9569 : if (!isThumb())
9570 : SwitchMode();
9571 : getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
9572 : } else {
9573 : if (!hasARM())
9574 : return Error(L, "target does not support ARM mode");
9575 :
9576 130 : if (isThumb())
9577 130 : SwitchMode();
9578 130 : getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
9579 130 : }
9580 0 :
9581 130 : return false;
9582 130 : }
9583 0 :
9584 0 : /// parseDirectiveReq
9585 : /// ::= name .req registername
9586 130 : bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) {
9587 : MCAsmParser &Parser = getParser();
9588 130 : Parser.Lex(); // Eat the '.req' token.
9589 : unsigned Reg;
9590 : SMLoc SRegLoc, ERegLoc;
9591 128 : if (check(ParseRegister(Reg, SRegLoc, ERegLoc), SRegLoc,
9592 85 : "register name expected") ||
9593 1 : parseToken(AsmToken::EndOfStatement,
9594 : "unexpected input in .req directive."))
9595 84 : return true;
9596 31 :
9597 84 : if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg)
9598 : return Error(SRegLoc,
9599 43 : "redefinition of '" + Name + "' does not match original.");
9600 5 :
9601 : return false;
9602 38 : }
9603 23 :
9604 38 : /// parseDirectiveUneq
9605 : /// ::= .unreq registername
9606 : bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) {
9607 : MCAsmParser &Parser = getParser();
9608 : if (Parser.getTok().isNot(AsmToken::Identifier))
9609 : return Error(L, "unexpected input in .unreq directive.");
9610 : RegisterReqs.erase(Parser.getTok().getIdentifier().lower());
9611 : Parser.Lex(); // Eat the identifier.
9612 0 : if (parseToken(AsmToken::EndOfStatement,
9613 0 : "unexpected input in '.unreq' directive"))
9614 0 : return true;
9615 : return false;
9616 0 : }
9617 0 :
9618 0 : // After changing arch/CPU, try to put the ARM/Thumb mode back to what it was
9619 0 : // before, if supported by the new target, or emit mapping symbols for the mode
9620 : // switch.
9621 0 : void ARMAsmParser::FixModeAfterArchChange(bool WasThumb, SMLoc Loc) {
9622 : if (WasThumb != isThumb()) {
9623 0 : if (WasThumb && hasThumb()) {
9624 0 : // Stay in Thumb mode
9625 0 : SwitchMode();
9626 : } else if (!WasThumb && hasARM()) {
9627 : // Stay in ARM mode
9628 : SwitchMode();
9629 : } else {
9630 : // Mode switch forced, because the new arch doesn't support the old mode.
9631 : getParser().getStreamer().EmitAssemblerFlag(isThumb() ? MCAF_Code16
9632 7 : : MCAF_Code32);
9633 7 : // Warn about the implcit mode switch. GAS does not switch modes here,
9634 7 : // but instead stays in the old mode, reporting an error on any following
9635 0 : // instructions as the mode does not exist on the target.
9636 14 : Warning(Loc, Twine("new target does not support ") +
9637 7 : (WasThumb ? "thumb" : "arm") + " mode, switching to " +
9638 7 : (!WasThumb ? "thumb" : "arm") + " mode");
9639 : }
9640 2 : }
9641 : }
9642 :
9643 : /// parseDirectiveArch
9644 : /// ::= .arch token
9645 : bool ARMAsmParser::parseDirectiveArch(SMLoc L) {
9646 : StringRef Arch = getParser().parseStringToEndOfStatement().trim();
9647 115 : ARM::ArchKind ID = ARM::parseArch(Arch);
9648 115 :
9649 27 : if (ID == ARM::ArchKind::INVALID)
9650 : return Error(L, "Unknown arch name");
9651 7 :
9652 26 : bool WasThumb = isThumb();
9653 : Triple T;
9654 0 : MCSubtargetInfo &STI = copySTI();
9655 : STI.setDefaultFeatures("", ("+" + ARM::getArchName(ID)).str());
9656 : setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
9657 26 : FixModeAfterArchChange(WasThumb, L);
9658 13 :
9659 : getTargetStreamer().emitArch(ID);
9660 : return false;
9661 : }
9662 26 :
9663 13 : /// parseDirectiveEabiAttr
9664 26 : /// ::= .eabi_attribute int, int [, "str"]
9665 : /// ::= .eabi_attribute Tag_name, int [, "str"]
9666 : bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) {
9667 115 : MCAsmParser &Parser = getParser();
9668 : int64_t Tag;
9669 : SMLoc TagLoc;
9670 : TagLoc = Parser.getTok().getLoc();
9671 96 : if (Parser.getTok().is(AsmToken::Identifier)) {
9672 96 : StringRef Name = Parser.getTok().getIdentifier();
9673 96 : Tag = ARMBuildAttrs::AttrTypeFromString(Name);
9674 : if (Tag == -1) {
9675 96 : Error(TagLoc, "attribute name not recognised: " + Name);
9676 1 : return false;
9677 : }
9678 : Parser.Lex();
9679 : } else {
9680 95 : const MCExpr *AttrExpr;
9681 95 :
9682 95 : TagLoc = Parser.getTok().getLoc();
9683 95 : if (Parser.parseExpression(AttrExpr))
9684 : return true;
9685 95 :
9686 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr);
9687 : if (check(!CE, TagLoc, "expected numeric constant"))
9688 : return true;
9689 :
9690 : Tag = CE->getValue();
9691 : }
9692 0 :
9693 0 : if (Parser.parseToken(AsmToken::Comma, "comma expected"))
9694 : return true;
9695 :
9696 0 : StringRef StringValue = "";
9697 0 : bool IsStringValue = false;
9698 0 :
9699 0 : int64_t IntegerValue = 0;
9700 0 : bool IsIntegerValue = false;
9701 0 :
9702 0 : if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name)
9703 : IsStringValue = true;
9704 0 : else if (Tag == ARMBuildAttrs::compatibility) {
9705 : IsStringValue = true;
9706 : IsIntegerValue = true;
9707 : } else if (Tag < 32 || Tag % 2 == 0)
9708 0 : IsIntegerValue = true;
9709 0 : else if (Tag % 2 == 1)
9710 0 : IsStringValue = true;
9711 : else
9712 0 : llvm_unreachable("invalid tag type");
9713 0 :
9714 0 : if (IsIntegerValue) {
9715 : const MCExpr *ValueExpr;
9716 0 : SMLoc ValueExprLoc = Parser.getTok().getLoc();
9717 : if (Parser.parseExpression(ValueExpr))
9718 : return true;
9719 0 :
9720 0 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr);
9721 : if (!CE)
9722 : return Error(ValueExprLoc, "expected numeric constant");
9723 : IntegerValue = CE->getValue();
9724 : }
9725 :
9726 : if (Tag == ARMBuildAttrs::compatibility) {
9727 : if (Parser.parseToken(AsmToken::Comma, "comma expected"))
9728 0 : return true;
9729 : }
9730 0 :
9731 : if (IsStringValue) {
9732 : if (Parser.getTok().isNot(AsmToken::String))
9733 0 : return Error(Parser.getTok().getLoc(), "bad string constant");
9734 :
9735 0 : StringValue = Parser.getTok().getStringContents();
9736 : Parser.Lex();
9737 : }
9738 0 :
9739 : if (Parser.parseToken(AsmToken::EndOfStatement,
9740 : "unexpected token in '.eabi_attribute' directive"))
9741 : return true;
9742 0 :
9743 0 : if (IsIntegerValue && IsStringValue) {
9744 0 : assert(Tag == ARMBuildAttrs::compatibility);
9745 : getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue);
9746 0 : } else if (IsIntegerValue)
9747 : getTargetStreamer().emitAttribute(Tag, IntegerValue);
9748 0 : else if (IsStringValue)
9749 0 : getTargetStreamer().emitTextAttribute(Tag, StringValue);
9750 : return false;
9751 : }
9752 0 :
9753 0 : /// parseDirectiveCPU
9754 0 : /// ::= .cpu str
9755 : bool ARMAsmParser::parseDirectiveCPU(SMLoc L) {
9756 : StringRef CPU = getParser().parseStringToEndOfStatement().trim();
9757 0 : getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU);
9758 0 :
9759 0 : // FIXME: This is using table-gen data, but should be moved to
9760 : // ARMTargetParser once that is table-gen'd.
9761 0 : if (!getSTI().isCPUStringValid(CPU))
9762 0 : return Error(L, "Unknown CPU name");
9763 :
9764 : bool WasThumb = isThumb();
9765 0 : MCSubtargetInfo &STI = copySTI();
9766 : STI.setDefaultFeatures(CPU, "");
9767 0 : setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
9768 : FixModeAfterArchChange(WasThumb, L);
9769 0 :
9770 : return false;
9771 0 : }
9772 0 :
9773 0 : /// parseDirectiveFPU
9774 0 : /// ::= .fpu str
9775 0 : bool ARMAsmParser::parseDirectiveFPU(SMLoc L) {
9776 : SMLoc FPUNameLoc = getTok().getLoc();
9777 : StringRef FPU = getParser().parseStringToEndOfStatement().trim();
9778 :
9779 : unsigned ID = ARM::parseFPU(FPU);
9780 : std::vector<StringRef> Features;
9781 22 : if (!ARM::getFPUFeatures(ID, Features))
9782 44 : return Error(FPUNameLoc, "Unknown FPU name");
9783 22 :
9784 : MCSubtargetInfo &STI = copySTI();
9785 : for (auto Feature : Features)
9786 : STI.ApplyFeatureFlag(Feature);
9787 22 : setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
9788 2 :
9789 : getTargetStreamer().emitFPU(ID);
9790 : return false;
9791 20 : }
9792 20 :
9793 20 : /// parseDirectiveFnStart
9794 20 : /// ::= .fnstart
9795 : bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) {
9796 20 : if (parseToken(AsmToken::EndOfStatement,
9797 : "unexpected token in '.fnstart' directive"))
9798 : return true;
9799 :
9800 : if (UC.hasFnStart()) {
9801 0 : Error(L, ".fnstart starts before the end of previous one");
9802 0 : UC.emitFnStartLocNotes();
9803 0 : return true;
9804 : }
9805 0 :
9806 : // Reset the unwind directives parser state
9807 0 : UC.reset();
9808 0 :
9809 : getTargetStreamer().emitFnStart();
9810 0 :
9811 0 : UC.recordFnStart(L);
9812 0 : return false;
9813 0 : }
9814 :
9815 0 : /// parseDirectiveFnEnd
9816 0 : /// ::= .fnend
9817 : bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) {
9818 : if (parseToken(AsmToken::EndOfStatement,
9819 : "unexpected token in '.fnend' directive"))
9820 : return true;
9821 233 : // Check the ordering of unwind directives
9822 233 : if (!UC.hasFnStart())
9823 : return Error(L, ".fnstart must precede .fnend directive");
9824 :
9825 : // Reset the unwind directives parser state
9826 231 : getTargetStreamer().emitFnEnd();
9827 1 :
9828 1 : UC.reset();
9829 1 : return false;
9830 : }
9831 :
9832 : /// parseDirectiveCantUnwind
9833 230 : /// ::= .cantunwind
9834 : bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) {
9835 230 : if (parseToken(AsmToken::EndOfStatement,
9836 : "unexpected token in '.cantunwind' directive"))
9837 230 : return true;
9838 230 :
9839 : UC.recordCantUnwind(L);
9840 : // Check the ordering of unwind directives
9841 : if (check(!UC.hasFnStart(), L, ".fnstart must precede .cantunwind directive"))
9842 : return true;
9843 228 :
9844 228 : if (UC.hasHandlerData()) {
9845 : Error(L, ".cantunwind can't be used with .handlerdata directive");
9846 : UC.emitHandlerDataLocNotes();
9847 : return true;
9848 226 : }
9849 1 : if (UC.hasPersonality()) {
9850 : Error(L, ".cantunwind can't be used with .personality directive");
9851 : UC.emitPersonalityLocNotes();
9852 225 : return true;
9853 : }
9854 225 :
9855 225 : getTargetStreamer().emitCantUnwind();
9856 : return false;
9857 : }
9858 :
9859 : /// parseDirectivePersonality
9860 58 : /// ::= .personality name
9861 58 : bool ARMAsmParser::parseDirectivePersonality(SMLoc L) {
9862 : MCAsmParser &Parser = getParser();
9863 : bool HasExistingPersonality = UC.hasPersonality();
9864 :
9865 56 : // Parse the name of the personality routine
9866 : if (Parser.getTok().isNot(AsmToken::Identifier))
9867 56 : return Error(L, "unexpected input in .personality directive.");
9868 : StringRef Name(Parser.getTok().getIdentifier());
9869 : Parser.Lex();
9870 55 :
9871 1 : if (parseToken(AsmToken::EndOfStatement,
9872 1 : "unexpected token in '.personality' directive"))
9873 1 : return true;
9874 :
9875 : UC.recordPersonality(L);
9876 2 :
9877 2 : // Check the ordering of unwind directives
9878 2 : if (!UC.hasFnStart())
9879 : return Error(L, ".fnstart must precede .personality directive");
9880 : if (UC.cantUnwind()) {
9881 52 : Error(L, ".personality can't be used with .cantunwind directive");
9882 52 : UC.emitCantUnwindLocNotes();
9883 : return true;
9884 : }
9885 : if (UC.hasHandlerData()) {
9886 : Error(L, ".personality must precede .handlerdata directive");
9887 80 : UC.emitHandlerDataLocNotes();
9888 80 : return true;
9889 : }
9890 : if (HasExistingPersonality) {
9891 : Error(L, "multiple personality directives");
9892 80 : UC.emitPersonalityLocNotes();
9893 0 : return true;
9894 80 : }
9895 80 :
9896 : MCSymbol *PR = getParser().getContext().getOrCreateSymbol(Name);
9897 80 : getTargetStreamer().emitPersonality(PR);
9898 : return false;
9899 : }
9900 :
9901 78 : /// parseDirectiveHandlerData
9902 : /// ::= .handlerdata
9903 : bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) {
9904 78 : if (parseToken(AsmToken::EndOfStatement,
9905 1 : "unexpected token in '.handlerdata' directive"))
9906 77 : return true;
9907 1 :
9908 1 : UC.recordHandlerData(L);
9909 1 : // Check the ordering of unwind directives
9910 : if (!UC.hasFnStart())
9911 76 : return Error(L, ".fnstart must precede .personality directive");
9912 1 : if (UC.cantUnwind()) {
9913 1 : Error(L, ".handlerdata can't be used with .cantunwind directive");
9914 1 : UC.emitCantUnwindLocNotes();
9915 : return true;
9916 75 : }
9917 2 :
9918 2 : getTargetStreamer().emitHandlerData();
9919 2 : return false;
9920 : }
9921 :
9922 73 : /// parseDirectiveSetFP
9923 73 : /// ::= .setfp fpreg, spreg [, offset]
9924 73 : bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) {
9925 : MCAsmParser &Parser = getParser();
9926 : // Check the ordering of unwind directives
9927 : if (check(!UC.hasFnStart(), L, ".fnstart must precede .setfp directive") ||
9928 : check(UC.hasHandlerData(), L,
9929 79 : ".setfp must precede .handlerdata directive"))
9930 79 : return true;
9931 :
9932 : // Parse fpreg
9933 : SMLoc FPRegLoc = Parser.getTok().getLoc();
9934 77 : int FPReg = tryParseRegister();
9935 :
9936 77 : if (check(FPReg == -1, FPRegLoc, "frame pointer register expected") ||
9937 0 : Parser.parseToken(AsmToken::Comma, "comma expected"))
9938 77 : return true;
9939 1 :
9940 1 : // Parse spreg
9941 1 : SMLoc SPRegLoc = Parser.getTok().getLoc();
9942 : int SPReg = tryParseRegister();
9943 : if (check(SPReg == -1, SPRegLoc, "stack pointer register expected") ||
9944 76 : check(SPReg != ARM::SP && SPReg != UC.getFPReg(), SPRegLoc,
9945 76 : "register should be either $sp or the latest fp register"))
9946 : return true;
9947 :
9948 : // Update the frame pointer register
9949 : UC.saveFPReg(FPReg);
9950 42 :
9951 42 : // Parse offset
9952 : int64_t Offset = 0;
9953 42 : if (Parser.parseOptionalToken(AsmToken::Comma)) {
9954 41 : if (Parser.getTok().isNot(AsmToken::Hash) &&
9955 : Parser.getTok().isNot(AsmToken::Dollar))
9956 2 : return Error(Parser.getTok().getLoc(), "'#' expected");
9957 : Parser.Lex(); // skip hash token.
9958 :
9959 40 : const MCExpr *OffsetExpr;
9960 40 : SMLoc ExLoc = Parser.getTok().getLoc();
9961 : SMLoc EndLoc;
9962 79 : if (getParser().parseExpression(OffsetExpr, EndLoc))
9963 39 : return Error(ExLoc, "malformed setfp offset");
9964 1 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
9965 : if (check(!CE, ExLoc, "setfp offset must be an immediate"))
9966 : return true;
9967 39 : Offset = CE->getValue();
9968 39 : }
9969 39 :
9970 39 : if (Parser.parseToken(AsmToken::EndOfStatement))
9971 : return true;
9972 2 :
9973 : getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg),
9974 : static_cast<unsigned>(SPReg), Offset);
9975 : return false;
9976 : }
9977 :
9978 : /// parseDirective
9979 37 : /// ::= .pad offset
9980 32 : bool ARMAsmParser::parseDirectivePad(SMLoc L) {
9981 0 : MCAsmParser &Parser = getParser();
9982 0 : // Check the ordering of unwind directives
9983 32 : if (!UC.hasFnStart())
9984 : return Error(L, ".fnstart must precede .pad directive");
9985 : if (UC.hasHandlerData())
9986 32 : return Error(L, ".pad must precede .handlerdata directive");
9987 32 :
9988 32 : // Parse the offset
9989 0 : if (Parser.getTok().isNot(AsmToken::Hash) &&
9990 32 : Parser.getTok().isNot(AsmToken::Dollar))
9991 32 : return Error(Parser.getTok().getLoc(), "'#' expected");
9992 : Parser.Lex(); // skip hash token.
9993 32 :
9994 : const MCExpr *OffsetExpr;
9995 : SMLoc ExLoc = Parser.getTok().getLoc();
9996 37 : SMLoc EndLoc;
9997 : if (getParser().parseExpression(OffsetExpr, EndLoc))
9998 : return Error(ExLoc, "malformed pad offset");
9999 35 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
10000 35 : if (!CE)
10001 35 : return Error(ExLoc, "pad offset must be an immediate");
10002 :
10003 : if (parseToken(AsmToken::EndOfStatement,
10004 : "unexpected token in '.pad' directive"))
10005 : return true;
10006 30 :
10007 30 : getTargetStreamer().emitPad(CE->getValue());
10008 : return false;
10009 30 : }
10010 1 :
10011 29 : /// parseDirectiveRegSave
10012 1 : /// ::= .save { registers }
10013 : /// ::= .vsave { registers }
10014 : bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) {
10015 28 : // Check the ordering of unwind directives
10016 0 : if (!UC.hasFnStart())
10017 0 : return Error(L, ".fnstart must precede .save or .vsave directives");
10018 28 : if (UC.hasHandlerData())
10019 : return Error(L, ".save or .vsave must precede .handlerdata directive");
10020 :
10021 28 : // RAII object to make sure parsed operands are deleted.
10022 28 : SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands;
10023 28 :
10024 0 : // Parse the register list
10025 28 : if (parseRegisterList(Operands) ||
10026 : parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
10027 0 : return true;
10028 : ARMOperand &Op = (ARMOperand &)*Operands[0];
10029 28 : if (!IsVector && !Op.isRegList())
10030 : return Error(L, ".save expects GPR registers");
10031 : if (IsVector && !Op.isDPRRegList())
10032 : return Error(L, ".vsave expects DPR registers");
10033 26 :
10034 26 : getTargetStreamer().emitRegSave(Op.getRegList(), IsVector);
10035 : return false;
10036 : }
10037 :
10038 : /// parseDirectiveInst
10039 : /// ::= .inst opcode [, ...]
10040 64 : /// ::= .inst.n opcode [, ...]
10041 : /// ::= .inst.w opcode [, ...]
10042 64 : bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) {
10043 2 : int Width = 4;
10044 62 :
10045 2 : if (isThumb()) {
10046 : switch (Suffix) {
10047 : case 'n':
10048 60 : Width = 2;
10049 : break;
10050 : case 'w':
10051 120 : break;
10052 56 : default:
10053 4 : Width = 0;
10054 : break;
10055 56 : }
10056 0 : } else {
10057 56 : if (Suffix)
10058 0 : return Error(Loc, "width suffixes are invalid in ARM mode");
10059 : }
10060 56 :
10061 56 : auto parseOne = [&]() -> bool {
10062 : const MCExpr *Expr;
10063 : if (getParser().parseExpression(Expr))
10064 : return true;
10065 : const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr);
10066 : if (!Value) {
10067 : return Error(Loc, "expected constant expression");
10068 44 : }
10069 44 :
10070 : char CurSuffix = Suffix;
10071 44 : switch (Width) {
10072 32 : case 2:
10073 13 : if (Value->getValue() > 0xffff)
10074 13 : return Error(Loc, "inst.n operand is too big, use inst.w instead");
10075 13 : break;
10076 : case 4:
10077 : if (Value->getValue() > 0xffffffff)
10078 3 : return Error(Loc, StringRef(Suffix ? "inst.w" : "inst") +
10079 3 : " operand is too big");
10080 3 : break;
10081 : case 0:
10082 : // Thumb mode, no width indicated. Guess from the opcode, if possible.
10083 12 : if (Value->getValue() < 0xe800)
10084 2 : CurSuffix = 'n';
10085 : else if (Value->getValue() >= 0xe8000000)
10086 : CurSuffix = 'w';
10087 : else
10088 : return Error(Loc, "cannot determine Thumb instruction size, "
10089 : "use inst.n/inst.w instead");
10090 : break;
10091 : default:
10092 : llvm_unreachable("only supported widths are 2 and 4");
10093 : }
10094 :
10095 : getTargetStreamer().emitInst(Value->getValue(), CurSuffix);
10096 : return false;
10097 : };
10098 :
10099 : if (parseOptionalToken(AsmToken::EndOfStatement))
10100 : return Error(Loc, "expected expression following directive");
10101 : if (parseMany(parseOne))
10102 : return true;
10103 : return false;
10104 : }
10105 :
10106 : /// parseDirectiveLtorg
10107 : /// ::= .ltorg | .pool
10108 : bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) {
10109 : if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
10110 : return true;
10111 : getTargetStreamer().emitCurrentConstantPool();
10112 : return false;
10113 : }
10114 :
10115 : bool ARMAsmParser::parseDirectiveEven(SMLoc L) {
10116 : const MCSection *Section = getStreamer().getCurrentSectionOnly();
10117 :
10118 : if (parseToken(AsmToken::EndOfStatement, "unexpected token in directive"))
10119 : return true;
10120 :
10121 : if (!Section) {
10122 : getStreamer().InitSections(false);
10123 42 : Section = getStreamer().getCurrentSectionOnly();
10124 : }
10125 42 :
10126 0 : assert(Section && "must have section to emit alignment");
10127 42 : if (Section->UseCodeAlign())
10128 11 : getStreamer().EmitCodeAlignment(2);
10129 : else
10130 : getStreamer().EmitValueToAlignment(2);
10131 :
10132 : return false;
10133 : }
10134 0 :
10135 0 : /// parseDirectivePersonalityIndex
10136 0 : /// ::= .personalityindex index
10137 0 : bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) {
10138 0 : MCAsmParser &Parser = getParser();
10139 : bool HasExistingPersonality = UC.hasPersonality();
10140 :
10141 0 : const MCExpr *IndexExpression;
10142 : SMLoc IndexLoc = Parser.getTok().getLoc();
10143 : if (Parser.parseExpression(IndexExpression) ||
10144 0 : parseToken(AsmToken::EndOfStatement,
10145 0 : "unexpected token in '.personalityindex' directive")) {
10146 : return true;
10147 0 : }
10148 0 :
10149 : UC.recordPersonalityIndex(L);
10150 :
10151 : if (!UC.hasFnStart()) {
10152 : return Error(L, ".fnstart must precede .personalityindex directive");
10153 0 : }
10154 0 : if (UC.cantUnwind()) {
10155 : Error(L, ".personalityindex cannot be used with .cantunwind");
10156 0 : UC.emitCantUnwindLocNotes();
10157 : return true;
10158 : }
10159 : if (UC.hasHandlerData()) {
10160 : Error(L, ".personalityindex must precede .handlerdata directive");
10161 : UC.emitHandlerDataLocNotes();
10162 : return true;
10163 19 : }
10164 19 : if (HasExistingPersonality) {
10165 : Error(L, "multiple personality directives");
10166 : UC.emitPersonalityLocNotes();
10167 : return true;
10168 19 : }
10169 37 :
10170 16 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression);
10171 : if (!CE)
10172 3 : return Error(IndexLoc, "index must be a constant number");
10173 : if (CE->getValue() < 0 || CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX)
10174 : return Error(IndexLoc,
10175 16 : "personality routine index should be in range [0-3]");
10176 :
10177 16 : getTargetStreamer().emitPersonalityIndex(CE->getValue());
10178 1 : return false;
10179 : }
10180 15 :
10181 1 : /// parseDirectiveUnwindRaw
10182 1 : /// ::= .unwind_raw offset, opcode [, opcode...]
10183 1 : bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) {
10184 : MCAsmParser &Parser = getParser();
10185 14 : int64_t StackOffset;
10186 1 : const MCExpr *OffsetExpr;
10187 1 : SMLoc OffsetLoc = getLexer().getLoc();
10188 1 :
10189 : if (!UC.hasFnStart())
10190 13 : return Error(L, ".fnstart must precede .unwind_raw directives");
10191 2 : if (getParser().parseExpression(OffsetExpr))
10192 2 : return Error(OffsetLoc, "expected expression");
10193 2 :
10194 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
10195 : if (!CE)
10196 11 : return Error(OffsetLoc, "offset must be a constant");
10197 :
10198 1 : StackOffset = CE->getValue();
10199 10 :
10200 1 : if (Parser.parseToken(AsmToken::Comma, "expected comma"))
10201 : return true;
10202 :
10203 9 : SmallVector<uint8_t, 16> Opcodes;
10204 9 :
10205 : auto parseOne = [&]() -> bool {
10206 : const MCExpr *OE;
10207 : SMLoc OpcodeLoc = getLexer().getLoc();
10208 : if (check(getLexer().is(AsmToken::EndOfStatement) ||
10209 64 : Parser.parseExpression(OE),
10210 64 : OpcodeLoc, "expected opcode expression"))
10211 : return true;
10212 : const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE);
10213 64 : if (!OC)
10214 : return Error(OpcodeLoc, "opcode value must be a constant");
10215 64 : const int64_t Opcode = OC->getValue();
10216 1 : if (Opcode & ~0xff)
10217 63 : return Error(OpcodeLoc, "invalid opcode");
10218 1 : Opcodes.push_back(uint8_t(Opcode));
10219 : return false;
10220 62 : };
10221 :
10222 1 : // Must have at least 1 element
10223 : SMLoc OpcodeLoc = getLexer().getLoc();
10224 61 : if (parseOptionalToken(AsmToken::EndOfStatement))
10225 : return Error(OpcodeLoc, "expected opcode expression");
10226 61 : if (parseMany(parseOne))
10227 : return true;
10228 :
10229 : getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes);
10230 : return false;
10231 : }
10232 :
10233 : /// parseDirectiveTLSDescSeq
10234 : /// ::= .tlsdescseq tls-variable
10235 : bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) {
10236 : MCAsmParser &Parser = getParser();
10237 :
10238 : if (getLexer().isNot(AsmToken::Identifier))
10239 : return TokError("expected variable after '.tlsdescseq' directive");
10240 :
10241 : const MCSymbolRefExpr *SRE =
10242 : MCSymbolRefExpr::create(Parser.getTok().getIdentifier(),
10243 : MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext());
10244 : Lex();
10245 :
10246 60 : if (parseToken(AsmToken::EndOfStatement,
10247 : "unexpected token in '.tlsdescseq' directive"))
10248 : return true;
10249 60 :
10250 60 : getTargetStreamer().AnnotateTLSDescriptorSequence(SRE);
10251 1 : return false;
10252 59 : }
10253 :
10254 : /// parseDirectiveMovSP
10255 55 : /// ::= .movsp reg [, #offset]
10256 55 : bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) {
10257 : MCAsmParser &Parser = getParser();
10258 : if (!UC.hasFnStart())
10259 : return Error(L, ".fnstart must precede .movsp directives");
10260 : if (UC.getFPReg() != ARM::SP)
10261 0 : return Error(L, "unexpected .movsp directive");
10262 0 :
10263 : SMLoc SPRegLoc = Parser.getTok().getLoc();
10264 0 : int SPReg = tryParseRegister();
10265 0 : if (SPReg == -1)
10266 : return Error(SPRegLoc, "register expected");
10267 : if (SPReg == ARM::SP || SPReg == ARM::PC)
10268 0 : return Error(SPRegLoc, "sp and pc are not permitted in .movsp directive");
10269 :
10270 : int64_t Offset = 0;
10271 : if (Parser.parseOptionalToken(AsmToken::Comma)) {
10272 0 : if (Parser.parseToken(AsmToken::Hash, "expected #constant"))
10273 : return true;
10274 0 :
10275 : const MCExpr *OffsetExpr;
10276 0 : SMLoc OffsetLoc = Parser.getTok().getLoc();
10277 0 :
10278 : if (Parser.parseExpression(OffsetExpr))
10279 : return Error(OffsetLoc, "malformed offset expression");
10280 :
10281 : const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
10282 13 : if (!CE)
10283 13 : return Error(OffsetLoc, "offset must be an immediate constant");
10284 13 :
10285 1 : Offset = CE->getValue();
10286 12 : }
10287 1 :
10288 : if (parseToken(AsmToken::EndOfStatement,
10289 11 : "unexpected token in '.movsp' directive"))
10290 11 : return true;
10291 11 :
10292 1 : getTargetStreamer().emitMovSP(SPReg, Offset);
10293 10 : UC.saveFPReg(SPReg);
10294 2 :
10295 : return false;
10296 : }
10297 8 :
10298 2 : /// parseDirectiveObjectArch
10299 2 : /// ::= .object_arch name
10300 : bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) {
10301 : MCAsmParser &Parser = getParser();
10302 1 : if (getLexer().isNot(AsmToken::Identifier))
10303 : return Error(getLexer().getLoc(), "unexpected token");
10304 1 :
10305 0 : StringRef Arch = Parser.getTok().getString();
10306 : SMLoc ArchLoc = Parser.getTok().getLoc();
10307 1 : Lex();
10308 :
10309 1 : ARM::ArchKind ID = ARM::parseArch(Arch);
10310 :
10311 0 : if (ID == ARM::ArchKind::INVALID)
10312 : return Error(ArchLoc, "unknown architecture '" + Arch + "'");
10313 : if (parseToken(AsmToken::EndOfStatement))
10314 6 : return true;
10315 :
10316 : getTargetStreamer().emitObjectArch(ID);
10317 : return false;
10318 4 : }
10319 :
10320 : /// parseDirectiveAlign
10321 4 : /// ::= .align
10322 : bool ARMAsmParser::parseDirectiveAlign(SMLoc L) {
10323 : // NOTE: if this is not the end of the statement, fall back to the target
10324 : // agnostic handling for this directive which will correctly handle this.
10325 : if (parseOptionalToken(AsmToken::EndOfStatement)) {
10326 0 : // '.align' is target specifically handled to mean 2**2 byte alignment.
10327 0 : const MCSection *Section = getStreamer().getCurrentSectionOnly();
10328 0 : assert(Section && "must have section to emit alignment");
10329 0 : if (Section->UseCodeAlign())
10330 : getStreamer().EmitCodeAlignment(4, 0);
10331 0 : else
10332 0 : getStreamer().EmitValueToAlignment(4, 0, 1, 0);
10333 : return false;
10334 : }
10335 0 : return true;
10336 : }
10337 0 :
10338 0 : /// parseDirectiveThumbSet
10339 0 : /// ::= .thumb_set name, value
10340 0 : bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) {
10341 : MCAsmParser &Parser = getParser();
10342 0 :
10343 0 : StringRef Name;
10344 : if (check(Parser.parseIdentifier(Name),
10345 : "expected identifier after '.thumb_set'") ||
10346 : parseToken(AsmToken::Comma, "expected comma after name '" + Name + "'"))
10347 : return true;
10348 0 :
10349 : MCSymbol *Sym;
10350 : const MCExpr *Value;
10351 0 : if (MCParserUtils::parseAssignmentExpression(Name, /* allow_redef */ true,
10352 : Parser, Sym, Value))
10353 : return true;
10354 :
10355 0 : getTargetStreamer().emitThumbSet(Sym, Value);
10356 0 : return false;
10357 : }
10358 0 :
10359 0 : /// Force static initialization.
10360 : extern "C" void LLVMInitializeARMAsmParser() {
10361 : RegisterMCAsmParser<ARMAsmParser> X(getTheARMLETarget());
10362 : RegisterMCAsmParser<ARMAsmParser> Y(getTheARMBETarget());
10363 : RegisterMCAsmParser<ARMAsmParser> A(getTheThumbLETarget());
10364 : RegisterMCAsmParser<ARMAsmParser> B(getTheThumbBETarget());
10365 : }
10366 0 :
10367 0 : #define GET_REGISTER_MATCHER
10368 : #define GET_SUBTARGET_FEATURE_NAME
10369 0 : #define GET_MATCHER_IMPLEMENTATION
10370 0 : #define GET_MNEMONIC_SPELL_CHECKER
10371 0 : #include "ARMGenAsmMatcher.inc"
10372 0 :
10373 0 : // Some diagnostics need to vary with subtarget features, so they are handled
10374 : // here. For example, the DPR class has either 16 or 32 registers, depending
10375 : // on the FPU available.
10376 : const char *
10377 0 : ARMAsmParser::getCustomOperandDiag(ARMMatchResultTy MatchError) {
10378 : switch (MatchError) {
10379 0 : // rGPR contains sp starting with ARMv8.
10380 : case Match_rGPR:
10381 0 : return hasV8Ops() ? "operand must be a register in range [r0, r14]"
10382 0 : : "operand must be a register in range [r0, r12] or r14";
10383 : // DPR contains 16 registers for some FPUs, and 32 for others.
10384 : case Match_DPR:
10385 : return hasD16() ? "operand must be a register in range [d0, d15]"
10386 75416 : : "operand must be a register in range [d0, d31]";
10387 75416 : case Match_DPR_RegList:
10388 75416 : return hasD16() ? "operand must be a list of registers in range [d0, d15]"
10389 75416 : : "operand must be a list of registers in range [d0, d31]";
10390 75416 :
10391 75416 : // For all other diags, use the static string from tablegen.
10392 : default:
10393 : return getMatchKindDiag(MatchError);
10394 : }
10395 : }
10396 :
10397 : // Process the list of near-misses, throwing away ones we don't want to report
10398 : // to the user, and converting the rest to a source location and string that
10399 : // should be reported.
10400 : void
10401 : ARMAsmParser::FilterNearMisses(SmallVectorImpl<NearMissInfo> &NearMissesIn,
10402 : SmallVectorImpl<NearMissMessage> &NearMissesOut,
10403 4935 : SMLoc IDLoc, OperandVector &Operands) {
10404 4935 : // TODO: If operand didn't match, sub in a dummy one and run target
10405 : // predicate, so that we can avoid reporting near-misses that are invalid?
10406 : // TODO: Many operand types dont have SuperClasses set, so we report
10407 78 : // redundant ones.
10408 : // TODO: Some operands are superclasses of registers (e.g.
10409 : // MCK_RegShiftedImm), we don't have any way to represent that currently.
10410 : // TODO: This is not all ARM-specific, can some of it be factored out?
10411 :
10412 20 : // Record some information about near-misses that we have already seen, so
10413 : // that we can avoid reporting redundant ones. For example, if there are
10414 : // variants of an instruction that take 8- and 16-bit immediates, we want
10415 16 : // to only report the widest one.
10416 : std::multimap<unsigned, unsigned> OperandMissesSeen;
10417 : SmallSet<uint64_t, 4> FeatureMissesSeen;
10418 4821 : bool ReportedTooFewOperands = false;
10419 4821 :
10420 : // Process the near-misses in reverse order, so that we see more general ones
10421 : // first, and so can avoid emitting more specific ones.
10422 : for (NearMissInfo &I : reverse(NearMissesIn)) {
10423 : switch (I.getKind()) {
10424 : case NearMissInfo::NearMissOperand: {
10425 : SMLoc OperandLoc =
10426 : ((ARMOperand &)*Operands[I.getOperandIndex()]).getStartLoc();
10427 4299 : const char *OperandDiag =
10428 : getCustomOperandDiag((ARMMatchResultTy)I.getOperandError());
10429 :
10430 : // If we have already emitted a message for a superclass, don't also report
10431 : // the sub-class. We consider all operand classes that we don't have a
10432 : // specialised diagnostic for to be equal for the propose of this check,
10433 : // so that we don't report the generic error multiple times on the same
10434 : // operand.
10435 : unsigned DupCheckMatchClass = OperandDiag ? I.getOperandClass() : ~0U;
10436 : auto PrevReports = OperandMissesSeen.equal_range(I.getOperandIndex());
10437 : if (std::any_of(PrevReports.first, PrevReports.second,
10438 : [DupCheckMatchClass](
10439 : const std::pair<unsigned, unsigned> Pair) {
10440 : if (DupCheckMatchClass == ~0U || Pair.second == ~0U)
10441 : return Pair.second == DupCheckMatchClass;
10442 : else
10443 4299 : return isSubclass((MatchClassKind)DupCheckMatchClass,
10444 : (MatchClassKind)Pair.second);
10445 : }))
10446 : break;
10447 : OperandMissesSeen.insert(
10448 11951 : std::make_pair(I.getOperandIndex(), DupCheckMatchClass));
10449 7652 :
10450 4935 : NearMissMessage Message;
10451 : Message.Loc = OperandLoc;
10452 4935 : if (OperandDiag) {
10453 : Message.Message = OperandDiag;
10454 4935 : } else if (I.getOperandClass() == InvalidMatchClass) {
10455 : Message.Message = "too many operands for instruction";
10456 : } else {
10457 : Message.Message = "invalid operand for instruction";
10458 : LLVM_DEBUG(
10459 : dbgs() << "Missing diagnostic string for operand class "
10460 : << getMatchClassName((MatchClassKind)I.getOperandClass())
10461 4935 : << I.getOperandClass() << ", error " << I.getOperandError()
10462 4935 : << ", opcode " << MII.getName(I.getOpcode()) << "\n");
10463 4935 : }
10464 : NearMissesOut.emplace_back(Message);
10465 : break;
10466 0 : }
10467 0 : case NearMissInfo::NearMissFeature: {
10468 : uint64_t MissingFeatures = I.getFeatures();
10469 0 : // Don't report the same set of features twice.
10470 : if (FeatureMissesSeen.count(MissingFeatures))
10471 : break;
10472 : FeatureMissesSeen.insert(MissingFeatures);
10473 :
10474 3403 : // Special case: don't report a feature set which includes arm-mode for
10475 : // targets that don't have ARM mode.
10476 : if ((MissingFeatures & Feature_IsARM) && !hasARM())
10477 3403 : break;
10478 3403 : // Don't report any near-misses that both require switching instruction
10479 : // set, and adding other subtarget features.
10480 1487 : if (isThumb() && (MissingFeatures & Feature_IsARM) &&
10481 : (MissingFeatures & ~Feature_IsARM))
10482 : break;
10483 : if (!isThumb() && (MissingFeatures & Feature_IsThumb) &&
10484 : (MissingFeatures & ~Feature_IsThumb))
10485 : break;
10486 : if (!isThumb() && (MissingFeatures & Feature_IsThumb2) &&
10487 : (MissingFeatures & ~(Feature_IsThumb2 | Feature_IsThumb)))
10488 : break;
10489 : if (isMClass() && (MissingFeatures & Feature_HasNEON))
10490 3403 : break;
10491 :
10492 : NearMissMessage Message;
10493 2407 : Message.Loc = IDLoc;
10494 2407 : raw_svector_ostream OS(Message.Message);
10495 :
10496 2407 : OS << "instruction requires:";
10497 : uint64_t Mask = 1;
10498 2392 : for (unsigned MaskPos = 0; MaskPos < (sizeof(MissingFeatures) * 8 - 1);
10499 : ++MaskPos) {
10500 : if (MissingFeatures & Mask) {
10501 : OS << " " << getSubtargetFeatureName(MissingFeatures & Mask);
10502 2610 : }
10503 : Mask <<= 1;
10504 : }
10505 : NearMissesOut.emplace_back(Message);
10506 2355 :
10507 181 : break;
10508 : }
10509 2270 : case NearMissInfo::NearMissPredicate: {
10510 35 : NearMissMessage Message;
10511 : Message.Loc = IDLoc;
10512 2240 : switch (I.getPredicateError()) {
10513 50 : case Match_RequiresNotITBlock:
10514 : Message.Message = "flag setting instruction only valid outside IT block";
10515 2196 : break;
10516 : case Match_RequiresITBlock:
10517 : Message.Message = "instruction only valid inside IT block";
10518 : break;
10519 2194 : case Match_RequiresV6:
10520 : Message.Message = "instruction variant requires ARMv6 or later";
10521 : break;
10522 2194 : case Match_RequiresThumb2:
10523 : Message.Message = "instruction variant requires Thumb2";
10524 140416 : break;
10525 : case Match_RequiresV8:
10526 138222 : Message.Message = "instruction variant requires ARMv8 or later";
10527 2332 : break;
10528 : case Match_RequiresFlagSetting:
10529 138222 : Message.Message = "no flag-preserving variant of this instruction available";
10530 : break;
10531 2194 : case Match_InvalidOperand:
10532 : Message.Message = "invalid operand for instruction";
10533 : break;
10534 : default:
10535 : llvm_unreachable("Unhandled target predicate error");
10536 : break;
10537 33 : }
10538 33 : NearMissesOut.emplace_back(Message);
10539 : break;
10540 : }
10541 0 : case NearMissInfo::NearMissTooFewOperands: {
10542 : if (!ReportedTooFewOperands) {
10543 : SMLoc EndLoc = ((ARMOperand &)*Operands.back()).getEndLoc();
10544 0 : NearMissesOut.emplace_back(NearMissMessage{
10545 : EndLoc, StringRef("too few operands for instruction")});
10546 : ReportedTooFewOperands = true;
10547 1 : }
10548 : break;
10549 : }
10550 2 : case NearMissInfo::NoNearMiss:
10551 : // This should never leave the matcher.
10552 : llvm_unreachable("not a near-miss");
10553 14 : break;
10554 : }
10555 : }
10556 2 : }
10557 :
10558 : void ARMAsmParser::ReportNearMisses(SmallVectorImpl<NearMissInfo> &NearMisses,
10559 14 : SMLoc IDLoc, OperandVector &Operands) {
10560 0 : SmallVector<NearMissMessage, 4> Messages;
10561 0 : FilterNearMisses(NearMisses, Messages, IDLoc, Operands);
10562 :
10563 : if (Messages.size() == 0) {
10564 33 : // No near-misses were found, so the best we can do is "invalid
10565 : // instruction".
10566 : Error(IDLoc, "invalid instruction");
10567 277 : } else if (Messages.size() == 1) {
10568 277 : // One near miss was found, report it as the sole error.
10569 : Error(Messages[0].Loc, Messages[0].Message);
10570 122 : } else {
10571 : // More than one near miss, so report a generic "invalid instruction"
10572 : // error, followed by notes for each of the near-misses.
10573 : Error(IDLoc, "invalid instruction, any one of the following would fix this:");
10574 : for (auto &M : Messages) {
10575 : Note(M.Loc, M.Message);
10576 : }
10577 : }
10578 : }
10579 :
10580 : // FIXME: This structure should be moved inside ARMTargetParser
10581 : // when we start to table-generate them, and we can use the ARM
10582 4299 : // flags below, that were generated by table-gen.
10583 : static const struct {
10584 4299 : const unsigned Kind;
10585 : const uint64_t ArchCheck;
10586 4299 : const FeatureBitset Features;
10587 4299 : } Extensions[] = {
10588 : { ARM::AEK_CRC, Feature_HasV8, {ARM::FeatureCRC} },
10589 8598 : { ARM::AEK_CRYPTO, Feature_HasV8,
10590 : {ARM::FeatureCrypto, ARM::FeatureNEON, ARM::FeatureFPARMv8} },
10591 : { ARM::AEK_FP, Feature_HasV8, {ARM::FeatureFPARMv8} },
10592 198 : { (ARM::AEK_HWDIVTHUMB | ARM::AEK_HWDIVARM), Feature_HasV7 | Feature_IsNotMClass,
10593 4101 : {ARM::FeatureHWDivThumb, ARM::FeatureHWDivARM} },
10594 : { ARM::AEK_MP, Feature_HasV7 | Feature_IsNotMClass, {ARM::FeatureMP} },
10595 2720 : { ARM::AEK_SIMD, Feature_HasV8, {ARM::FeatureNEON, ARM::FeatureFPARMv8} },
10596 : { ARM::AEK_SEC, Feature_HasV6K, {ARM::FeatureTrustZone} },
10597 : // FIXME: Only available in A-class, isel not predicated
10598 : { ARM::AEK_VIRT, Feature_HasV7, {ARM::FeatureVirtualization} },
10599 1381 : { ARM::AEK_FP16, Feature_HasV8_2a, {ARM::FeatureFPARMv8, ARM::FeatureFullFP16} },
10600 4352 : { ARM::AEK_RAS, Feature_HasV8, {ARM::FeatureRAS} },
10601 2971 : // FIXME: Unsupported extensions.
10602 : { ARM::AEK_OS, Feature_None, {} },
10603 : { ARM::AEK_IWMMXT, Feature_None, {} },
10604 4299 : { ARM::AEK_IWMMXT2, Feature_None, {} },
10605 : { ARM::AEK_MAVERICK, Feature_None, {} },
10606 : { ARM::AEK_XSCALE, Feature_None, {} },
10607 : };
10608 :
10609 : /// parseDirectiveArchExtension
10610 : /// ::= .arch_extension [no]feature
10611 : bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) {
10612 : MCAsmParser &Parser = getParser();
10613 :
10614 : if (getLexer().isNot(AsmToken::Identifier))
10615 : return Error(getLexer().getLoc(), "expected architecture extension name");
10616 :
10617 : StringRef Name = Parser.getTok().getString();
10618 : SMLoc ExtLoc = Parser.getTok().getLoc();
10619 : Lex();
10620 :
10621 : if (parseToken(AsmToken::EndOfStatement,
10622 : "unexpected token in '.arch_extension' directive"))
10623 : return true;
10624 :
10625 : bool EnableFeature = true;
10626 : if (Name.startswith_lower("no")) {
10627 : EnableFeature = false;
10628 : Name = Name.substr(2);
10629 : }
10630 : unsigned FeatureKind = ARM::parseArchExt(Name);
10631 : if (FeatureKind == ARM::AEK_INVALID)
10632 : return Error(ExtLoc, "unknown architectural extension: " + Name);
10633 :
10634 : for (const auto &Extension : Extensions) {
10635 : if (Extension.Kind != FeatureKind)
10636 : continue;
10637 0 :
10638 0 : if (Extension.Features.none())
10639 : return Error(ExtLoc, "unsupported architectural extension: " + Name);
10640 0 :
10641 0 : if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck)
10642 : return Error(ExtLoc, "architectural extension '" + Name +
10643 0 : "' is not "
10644 0 : "allowed for the current base architecture");
10645 :
10646 : MCSubtargetInfo &STI = copySTI();
10647 0 : FeatureBitset ToggleFeatures = EnableFeature
10648 : ? (~STI.getFeatureBits() & Extension.Features)
10649 0 : : ( STI.getFeatureBits() & Extension.Features);
10650 :
10651 : uint64_t Features =
10652 0 : ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures));
10653 : setAvailableFeatures(Features);
10654 0 : return false;
10655 : }
10656 0 :
10657 0 : return Error(ExtLoc, "unknown architectural extension: " + Name);
10658 0 : }
10659 :
10660 0 : // Define this matcher function after the auto-generated include so we
10661 0 : // have the match class enum definitions.
10662 0 : unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
10663 : unsigned Kind) {
10664 0 : ARMOperand &Op = static_cast<ARMOperand &>(AsmOp);
10665 0 : // If the kind is a token for a literal immediate, check if our asm
10666 : // operand matches. This is for InstAliases which have a fixed-value
10667 0 : // immediate in the syntax.
10668 0 : switch (Kind) {
10669 : default: break;
10670 0 : case MCK__35_0:
10671 : if (Op.isImm())
10672 0 : if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()))
10673 : if (CE->getValue() == 0)
10674 0 : return Match_Success;
10675 : break;
10676 : case MCK_ModImm:
10677 : if (Op.isImm()) {
10678 0 : const MCExpr *SOExpr = Op.getImm();
10679 : int64_t Value;
10680 0 : if (!SOExpr->evaluateAsAbsolute(Value))
10681 : return Match_Success;
10682 : assert((Value >= std::numeric_limits<int32_t>::min() &&
10683 0 : Value <= std::numeric_limits<uint32_t>::max()) &&
10684 : "expression value must be representable in 32 bits");
10685 : }
10686 : break;
10687 : case MCK_rGPR:
10688 556772 : if (hasV8Ops() && Op.isReg() && Op.getReg() == ARM::SP)
10689 : return Match_Success;
10690 : return Match_rGPR;
10691 : case MCK_GPRPair:
10692 : if (Op.isReg() &&
10693 : MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg()))
10694 556772 : return Match_Success;
10695 : break;
10696 2341 : }
10697 2341 : return Match_InvalidOperand;
10698 576 : }
|