Line data Source code
1 : //===-- ARMAddressingModes.h - ARM Addressing Modes -------------*- C++ -*-===//
2 : //
3 : // The LLVM Compiler Infrastructure
4 : //
5 : // This file is distributed under the University of Illinois Open Source
6 : // License. See LICENSE.TXT for details.
7 : //
8 : //===----------------------------------------------------------------------===//
9 : //
10 : // This file contains the ARM addressing mode implementation stuff.
11 : //
12 : //===----------------------------------------------------------------------===//
13 :
14 : #ifndef LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMADDRESSINGMODES_H
15 : #define LLVM_LIB_TARGET_ARM_MCTARGETDESC_ARMADDRESSINGMODES_H
16 :
17 : #include "llvm/ADT/APFloat.h"
18 : #include "llvm/ADT/APInt.h"
19 : #include "llvm/ADT/bit.h"
20 : #include "llvm/Support/ErrorHandling.h"
21 : #include "llvm/Support/MathExtras.h"
22 : #include <cassert>
23 :
24 : namespace llvm {
25 :
26 : /// ARM_AM - ARM Addressing Mode Stuff
27 : namespace ARM_AM {
28 : enum ShiftOpc {
29 : no_shift = 0,
30 : asr,
31 : lsl,
32 : lsr,
33 : ror,
34 : rrx
35 : };
36 :
37 : enum AddrOpc {
38 : sub = 0,
39 : add
40 : };
41 :
42 1716 : inline const char *getAddrOpcStr(AddrOpc Op) { return Op == sub ? "-" : ""; }
43 :
44 : inline const char *getShiftOpcStr(ShiftOpc Op) {
45 2458 : switch (Op) {
46 0 : default: llvm_unreachable("Unknown shift opc!");
47 : case ARM_AM::asr: return "asr";
48 1032 : case ARM_AM::lsl: return "lsl";
49 680 : case ARM_AM::lsr: return "lsr";
50 261 : case ARM_AM::ror: return "ror";
51 101 : case ARM_AM::rrx: return "rrx";
52 : }
53 : }
54 :
55 : inline unsigned getShiftOpcEncoding(ShiftOpc Op) {
56 : switch (Op) {
57 : default: llvm_unreachable("Unknown shift opc!");
58 : case ARM_AM::asr: return 2;
59 : case ARM_AM::lsl: return 0;
60 : case ARM_AM::lsr: return 1;
61 : case ARM_AM::ror: return 3;
62 : }
63 : }
64 :
65 : enum AMSubMode {
66 : bad_am_submode = 0,
67 : ia,
68 : ib,
69 : da,
70 : db
71 : };
72 :
73 : inline const char *getAMSubModeStr(AMSubMode Mode) {
74 0 : switch (Mode) {
75 0 : default: llvm_unreachable("Unknown addressing sub-mode!");
76 : case ARM_AM::ia: return "ia";
77 0 : case ARM_AM::ib: return "ib";
78 0 : case ARM_AM::da: return "da";
79 0 : case ARM_AM::db: return "db";
80 : }
81 : }
82 :
83 : /// rotr32 - Rotate a 32-bit unsigned value right by a specified # bits.
84 : ///
85 : inline unsigned rotr32(unsigned Val, unsigned Amt) {
86 : assert(Amt < 32 && "Invalid rotate amount");
87 64252 : return (Val >> Amt) | (Val << ((32-Amt)&31));
88 : }
89 :
90 : /// rotl32 - Rotate a 32-bit unsigned value left by a specified # bits.
91 : ///
92 : inline unsigned rotl32(unsigned Val, unsigned Amt) {
93 : assert(Amt < 32 && "Invalid rotate amount");
94 5778 : return (Val << Amt) | (Val >> ((32-Amt)&31));
95 : }
96 :
97 : //===--------------------------------------------------------------------===//
98 : // Addressing Mode #1: shift_operand with registers
99 : //===--------------------------------------------------------------------===//
100 : //
101 : // This 'addressing mode' is used for arithmetic instructions. It can
102 : // represent things like:
103 : // reg
104 : // reg [asr|lsl|lsr|ror|rrx] reg
105 : // reg [asr|lsl|lsr|ror|rrx] imm
106 : //
107 : // This is stored three operands [rega, regb, opc]. The first is the base
108 : // reg, the second is the shift amount (or reg0 if not present or imm). The
109 : // third operand encodes the shift opcode and the imm if a reg isn't present.
110 : //
111 : inline unsigned getSORegOpc(ShiftOpc ShOp, unsigned Imm) {
112 1172 : return ShOp | (Imm << 3);
113 : }
114 780 : inline unsigned getSORegOffset(unsigned Op) { return Op >> 3; }
115 2745 : inline ShiftOpc getSORegShOp(unsigned Op) { return (ShiftOpc)(Op & 7); }
116 :
117 : /// getSOImmValImm - Given an encoded imm field for the reg/imm form, return
118 : /// the 8-bit imm value.
119 : inline unsigned getSOImmValImm(unsigned Imm) { return Imm & 0xFF; }
120 : /// getSOImmValRot - Given an encoded imm field for the reg/imm form, return
121 : /// the rotate amount.
122 : inline unsigned getSOImmValRot(unsigned Imm) { return (Imm >> 8) * 2; }
123 :
124 : /// getSOImmValRotate - Try to handle Imm with an immediate shifter operand,
125 : /// computing the rotate amount to use. If this immediate value cannot be
126 : /// handled with a single shifter-op, determine a good rotate amount that will
127 : /// take a maximal chunk of bits out of the immediate.
128 22200 : inline unsigned getSOImmValRotate(unsigned Imm) {
129 : // 8-bit (or less) immediates are trivially shifter_operands with a rotate
130 : // of zero.
131 22200 : if ((Imm & ~255U) == 0) return 0;
132 :
133 : // Use CTZ to compute the rotate amount.
134 19398 : unsigned TZ = countTrailingZeros(Imm);
135 :
136 : // Rotate amount must be even. Something like 0x200 must be rotated 8 bits,
137 : // not 9.
138 19398 : unsigned RotAmt = TZ & ~1;
139 :
140 : // If we can handle this spread, return it.
141 19398 : if ((rotr32(Imm, RotAmt) & ~255U) == 0)
142 6633 : return (32-RotAmt)&31; // HW rotates right, not left.
143 :
144 : // For values like 0xF000000F, we should ignore the low 6 bits, then
145 : // retry the hunt.
146 12765 : if (Imm & 63U) {
147 10462 : unsigned TZ2 = countTrailingZeros(Imm & ~63U);
148 10462 : unsigned RotAmt2 = TZ2 & ~1;
149 10462 : if ((rotr32(Imm, RotAmt2) & ~255U) == 0)
150 259 : return (32-RotAmt2)&31; // HW rotates right, not left.
151 : }
152 :
153 : // Otherwise, we have no way to cover this span of bits with a single
154 : // shifter_op immediate. Return a chunk of bits that will be useful to
155 : // handle.
156 12506 : return (32-RotAmt)&31; // HW rotates right, not left.
157 : }
158 :
159 : /// getSOImmVal - Given a 32-bit immediate, if it is something that can fit
160 : /// into an shifter_operand immediate operand, return the 12-bit encoding for
161 : /// it. If not, return -1.
162 59209 : inline int getSOImmVal(unsigned Arg) {
163 : // 8-bit (or less) immediates are trivially shifter_operands with a rotate
164 : // of zero.
165 59209 : if ((Arg & ~255U) == 0) return Arg;
166 :
167 16681 : unsigned RotAmt = getSOImmValRotate(Arg);
168 :
169 : // If this cannot be handled with a single shifter_op, bail out.
170 16681 : if (rotr32(~255U, RotAmt) & Arg)
171 : return -1;
172 :
173 : // Encode this correctly.
174 5778 : return rotl32(Arg, RotAmt) | ((RotAmt>>1) << 8);
175 : }
176 :
177 : /// isSOImmTwoPartVal - Return true if the specified value can be obtained by
178 : /// or'ing together two SOImmVal's.
179 1589 : inline bool isSOImmTwoPartVal(unsigned V) {
180 : // If this can be handled with a single shifter_op, bail out.
181 3178 : V = rotr32(~255U, getSOImmValRotate(V)) & V;
182 1589 : if (V == 0)
183 : return false;
184 :
185 : // If this can be handled with two shifter_op's, accept.
186 1456 : V = rotr32(~255U, getSOImmValRotate(V)) & V;
187 728 : return V == 0;
188 : }
189 :
190 : /// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal,
191 : /// return the first chunk of it.
192 : inline unsigned getSOImmTwoPartFirst(unsigned V) {
193 12 : return rotr32(255U, getSOImmValRotate(V)) & V;
194 : }
195 :
196 : /// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal,
197 : /// return the second chunk of it.
198 : inline unsigned getSOImmTwoPartSecond(unsigned V) {
199 : // Mask out the first hunk.
200 6 : V = rotr32(~255U, getSOImmValRotate(V)) & V;
201 :
202 : // Take what's left.
203 : assert(V == (rotr32(255U, getSOImmValRotate(V)) & V));
204 : return V;
205 : }
206 :
207 : /// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed
208 : /// by a left shift. Returns the shift amount to use.
209 : inline unsigned getThumbImmValShift(unsigned Imm) {
210 : // 8-bit (or less) immediates are trivially immediate operand with a shift
211 : // of zero.
212 824 : if ((Imm & ~255U) == 0) return 0;
213 :
214 : // Use CTZ to compute the shift amount.
215 824 : return countTrailingZeros(Imm);
216 : }
217 :
218 : /// isThumbImmShiftedVal - Return true if the specified value can be obtained
219 : /// by left shifting a 8-bit immediate.
220 : inline bool isThumbImmShiftedVal(unsigned V) {
221 : // If this can be handled with
222 156 : V = (~255U << getThumbImmValShift(V)) & V;
223 434 : return V == 0;
224 : }
225 :
226 : /// getThumbImm16ValShift - Try to handle Imm with a 16-bit immediate followed
227 : /// by a left shift. Returns the shift amount to use.
228 : inline unsigned getThumbImm16ValShift(unsigned Imm) {
229 : // 16-bit (or less) immediates are trivially immediate operand with a shift
230 : // of zero.
231 : if ((Imm & ~65535U) == 0) return 0;
232 :
233 : // Use CTZ to compute the shift amount.
234 : return countTrailingZeros(Imm);
235 : }
236 :
237 : /// isThumbImm16ShiftedVal - Return true if the specified value can be
238 : /// obtained by left shifting a 16-bit immediate.
239 : inline bool isThumbImm16ShiftedVal(unsigned V) {
240 : // If this can be handled with
241 : V = (~65535U << getThumbImm16ValShift(V)) & V;
242 : return V == 0;
243 : }
244 :
245 : /// getThumbImmNonShiftedVal - If V is a value that satisfies
246 : /// isThumbImmShiftedVal, return the non-shiftd value.
247 : inline unsigned getThumbImmNonShiftedVal(unsigned V) {
248 117 : return V >> getThumbImmValShift(V);
249 : }
250 :
251 :
252 : /// getT2SOImmValSplat - Return the 12-bit encoded representation
253 : /// if the specified value can be obtained by splatting the low 8 bits
254 : /// into every other byte or every byte of a 32-bit value. i.e.,
255 : /// 00000000 00000000 00000000 abcdefgh control = 0
256 : /// 00000000 abcdefgh 00000000 abcdefgh control = 1
257 : /// abcdefgh 00000000 abcdefgh 00000000 control = 2
258 : /// abcdefgh abcdefgh abcdefgh abcdefgh control = 3
259 : /// Return -1 if none of the above apply.
260 : /// See ARM Reference Manual A6.3.2.
261 25889 : inline int getT2SOImmValSplatVal(unsigned V) {
262 : unsigned u, Vs, Imm;
263 : // control = 0
264 25889 : if ((V & 0xffffff00) == 0)
265 13725 : return V;
266 :
267 : // If the value is zeroes in the first byte, just shift those off
268 12164 : Vs = ((V & 0xff) == 0) ? V >> 8 : V;
269 : // Any passing value only has 8 bits of payload, splatted across the word
270 12164 : Imm = Vs & 0xff;
271 : // Likewise, any passing values have the payload splatted into the 3rd byte
272 12164 : u = Imm | (Imm << 16);
273 :
274 : // control = 1 or 2
275 12164 : if (Vs == u)
276 536 : return (((Vs == V) ? 1 : 2) << 8) | Imm;
277 :
278 : // control = 3
279 11775 : if (Vs == (u | (u << 8)))
280 1013 : return (3 << 8) | Imm;
281 :
282 : return -1;
283 : }
284 :
285 : /// getT2SOImmValRotateVal - Return the 12-bit encoded representation if the
286 : /// specified value is a rotated 8-bit value. Return -1 if no rotation
287 : /// encoding is possible.
288 : /// See ARM Reference Manual A6.3.2.
289 : inline int getT2SOImmValRotateVal(unsigned V) {
290 10137 : unsigned RotAmt = countLeadingZeros(V);
291 10137 : if (RotAmt >= 24)
292 : return -1;
293 :
294 : // If 'Arg' can be handled with a single shifter_op return the value.
295 10137 : if ((rotr32(0xff000000U, RotAmt) & V) == V)
296 8696 : return (rotr32(V, 24 - RotAmt) & 0x7f) | ((RotAmt + 8) << 7);
297 :
298 : return -1;
299 : }
300 :
301 : /// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit
302 : /// into a Thumb-2 shifter_operand immediate operand, return the 12-bit
303 : /// encoding for it. If not, return -1.
304 : /// See ARM Reference Manual A6.3.2.
305 25116 : inline int getT2SOImmVal(unsigned Arg) {
306 : // If 'Arg' is an 8-bit splat, then get the encoded value.
307 25116 : int Splat = getT2SOImmValSplatVal(Arg);
308 25116 : if (Splat != -1)
309 : return Splat;
310 :
311 : // If 'Arg' can be handled with a single shifter_op return the value.
312 : int Rot = getT2SOImmValRotateVal(Arg);
313 : if (Rot != -1)
314 4348 : return Rot;
315 :
316 : return -1;
317 : }
318 :
319 : inline unsigned getT2SOImmValRotate(unsigned V) {
320 29 : if ((V & ~255U) == 0) return 0;
321 : // Use CTZ to compute the rotate amount.
322 40 : unsigned RotAmt = countTrailingZeros(V);
323 40 : return (32 - RotAmt) & 31;
324 : }
325 :
326 29 : inline bool isT2SOImmTwoPartVal(unsigned Imm) {
327 : unsigned V = Imm;
328 : // Passing values can be any combination of splat values and shifter
329 : // values. If this can be handled with a single shifter or splat, bail
330 : // out. Those should be handled directly, not with a two-part val.
331 29 : if (getT2SOImmValSplatVal(V) != -1)
332 : return false;
333 29 : V = rotr32 (~255U, getT2SOImmValRotate(V)) & V;
334 29 : if (V == 0)
335 : return false;
336 :
337 : // If this can be handled as an immediate, accept.
338 29 : if (getT2SOImmVal(V) != -1) return true;
339 :
340 : // Likewise, try masking out a splat value first.
341 : V = Imm;
342 22 : if (getT2SOImmValSplatVal(V & 0xff00ff00U) != -1)
343 7 : V &= ~0xff00ff00U;
344 15 : else if (getT2SOImmValSplatVal(V & 0x00ff00ffU) != -1)
345 : V &= ~0x00ff00ffU;
346 : // If what's left can be handled as an immediate, accept.
347 22 : if (getT2SOImmVal(V) != -1) return true;
348 :
349 : // Otherwise, do not accept.
350 : return false;
351 : }
352 :
353 11 : inline unsigned getT2SOImmTwoPartFirst(unsigned Imm) {
354 : assert (isT2SOImmTwoPartVal(Imm) &&
355 : "Immedate cannot be encoded as two part immediate!");
356 : // Try a shifter operand as one part
357 11 : unsigned V = rotr32 (~255, getT2SOImmValRotate(Imm)) & Imm;
358 : // If the rest is encodable as an immediate, then return it.
359 11 : if (getT2SOImmVal(V) != -1) return V;
360 :
361 : // Try masking out a splat value first.
362 4 : if (getT2SOImmValSplatVal(Imm & 0xff00ff00U) != -1)
363 : return Imm & 0xff00ff00U;
364 :
365 : // The other splat is all that's left as an option.
366 : assert (getT2SOImmValSplatVal(Imm & 0x00ff00ffU) != -1);
367 1 : return Imm & 0x00ff00ffU;
368 : }
369 :
370 : inline unsigned getT2SOImmTwoPartSecond(unsigned Imm) {
371 : // Mask out the first hunk
372 11 : Imm ^= getT2SOImmTwoPartFirst(Imm);
373 : // Return what's left
374 : assert (getT2SOImmVal(Imm) != -1 &&
375 : "Unable to encode second part of T2 two part SO immediate");
376 : return Imm;
377 : }
378 :
379 :
380 : //===--------------------------------------------------------------------===//
381 : // Addressing Mode #2
382 : //===--------------------------------------------------------------------===//
383 : //
384 : // This is used for most simple load/store instructions.
385 : //
386 : // addrmode2 := reg +/- reg shop imm
387 : // addrmode2 := reg +/- imm12
388 : //
389 : // The first operand is always a Reg. The second operand is a reg if in
390 : // reg/reg form, otherwise it's reg#0. The third field encodes the operation
391 : // in bit 12, the immediate in bits 0-11, and the shift op in 13-15. The
392 : // fourth operand 16-17 encodes the index mode.
393 : //
394 : // If this addressing mode is a frame index (before prolog/epilog insertion
395 : // and code rewriting), this operand will have the form: FI#, reg0, <offs>
396 : // with no shift amount for the frame offset.
397 : //
398 : inline unsigned getAM2Opc(AddrOpc Opc, unsigned Imm12, ShiftOpc SO,
399 : unsigned IdxMode = 0) {
400 : assert(Imm12 < (1 << 12) && "Imm too large!");
401 166 : bool isSub = Opc == sub;
402 166 : return Imm12 | ((int)isSub << 12) | (SO << 13) | (IdxMode << 16) ;
403 : }
404 : inline unsigned getAM2Offset(unsigned AM2Opc) {
405 1857 : return AM2Opc & ((1 << 12)-1);
406 : }
407 : inline AddrOpc getAM2Op(unsigned AM2Opc) {
408 2338 : return ((AM2Opc >> 12) & 1) ? sub : add;
409 : }
410 : inline ShiftOpc getAM2ShiftOpc(unsigned AM2Opc) {
411 579 : return (ShiftOpc)((AM2Opc >> 13) & 7);
412 : }
413 : inline unsigned getAM2IdxMode(unsigned AM2Opc) { return (AM2Opc >> 16); }
414 :
415 : //===--------------------------------------------------------------------===//
416 : // Addressing Mode #3
417 : //===--------------------------------------------------------------------===//
418 : //
419 : // This is used for sign-extending loads, and load/store-pair instructions.
420 : //
421 : // addrmode3 := reg +/- reg
422 : // addrmode3 := reg +/- imm8
423 : //
424 : // The first operand is always a Reg. The second operand is a reg if in
425 : // reg/reg form, otherwise it's reg#0. The third field encodes the operation
426 : // in bit 8, the immediate in bits 0-7. The fourth operand 9-10 encodes the
427 : // index mode.
428 :
429 : /// getAM3Opc - This function encodes the addrmode3 opc field.
430 : inline unsigned getAM3Opc(AddrOpc Opc, unsigned char Offset,
431 : unsigned IdxMode = 0) {
432 99 : bool isSub = Opc == sub;
433 99 : return ((int)isSub << 8) | Offset | (IdxMode << 9);
434 : }
435 968 : inline unsigned char getAM3Offset(unsigned AM3Opc) { return AM3Opc & 0xFF; }
436 : inline AddrOpc getAM3Op(unsigned AM3Opc) {
437 1458 : return ((AM3Opc >> 8) & 1) ? sub : add;
438 : }
439 : inline unsigned getAM3IdxMode(unsigned AM3Opc) { return (AM3Opc >> 9); }
440 :
441 : //===--------------------------------------------------------------------===//
442 : // Addressing Mode #4
443 : //===--------------------------------------------------------------------===//
444 : //
445 : // This is used for load / store multiple instructions.
446 : //
447 : // addrmode4 := reg, <mode>
448 : //
449 : // The four modes are:
450 : // IA - Increment after
451 : // IB - Increment before
452 : // DA - Decrement after
453 : // DB - Decrement before
454 : // For VFP instructions, only the IA and DB modes are valid.
455 :
456 : inline AMSubMode getAM4SubMode(unsigned Mode) {
457 0 : return (AMSubMode)(Mode & 0x7);
458 : }
459 :
460 : inline unsigned getAM4ModeImm(AMSubMode SubMode) { return (int)SubMode; }
461 :
462 : //===--------------------------------------------------------------------===//
463 : // Addressing Mode #5
464 : //===--------------------------------------------------------------------===//
465 : //
466 : // This is used for coprocessor instructions, such as FP load/stores.
467 : //
468 : // addrmode5 := reg +/- imm8*4
469 : //
470 : // The first operand is always a Reg. The second operand encodes the
471 : // operation (add or subtract) in bit 8 and the immediate in bits 0-7.
472 :
473 : /// getAM5Opc - This function encodes the addrmode5 opc field.
474 : inline unsigned getAM5Opc(AddrOpc Opc, unsigned char Offset) {
475 264 : bool isSub = Opc == sub;
476 264 : return ((int)isSub << 8) | Offset;
477 : }
478 13077 : inline unsigned char getAM5Offset(unsigned AM5Opc) { return AM5Opc & 0xFF; }
479 : inline AddrOpc getAM5Op(unsigned AM5Opc) {
480 13974 : return ((AM5Opc >> 8) & 1) ? sub : add;
481 : }
482 :
483 : //===--------------------------------------------------------------------===//
484 : // Addressing Mode #5 FP16
485 : //===--------------------------------------------------------------------===//
486 : //
487 : // This is used for coprocessor instructions, such as 16-bit FP load/stores.
488 : //
489 : // addrmode5fp16 := reg +/- imm8*2
490 : //
491 : // The first operand is always a Reg. The second operand encodes the
492 : // operation (add or subtract) in bit 8 and the immediate in bits 0-7.
493 :
494 : /// getAM5FP16Opc - This function encodes the addrmode5fp16 opc field.
495 : inline unsigned getAM5FP16Opc(AddrOpc Opc, unsigned char Offset) {
496 0 : bool isSub = Opc == sub;
497 0 : return ((int)isSub << 8) | Offset;
498 : }
499 : inline unsigned char getAM5FP16Offset(unsigned AM5Opc) {
500 278 : return AM5Opc & 0xFF;
501 : }
502 : inline AddrOpc getAM5FP16Op(unsigned AM5Opc) {
503 354 : return ((AM5Opc >> 8) & 1) ? sub : add;
504 : }
505 :
506 : //===--------------------------------------------------------------------===//
507 : // Addressing Mode #6
508 : //===--------------------------------------------------------------------===//
509 : //
510 : // This is used for NEON load / store instructions.
511 : //
512 : // addrmode6 := reg with optional alignment
513 : //
514 : // This is stored in two operands [regaddr, align]. The first is the
515 : // address register. The second operand is the value of the alignment
516 : // specifier in bytes or zero if no explicit alignment.
517 : // Valid alignments depend on the specific instruction.
518 :
519 : //===--------------------------------------------------------------------===//
520 : // NEON Modified Immediates
521 : //===--------------------------------------------------------------------===//
522 : //
523 : // Several NEON instructions (e.g., VMOV) take a "modified immediate"
524 : // vector operand, where a small immediate encoded in the instruction
525 : // specifies a full NEON vector value. These modified immediates are
526 : // represented here as encoded integers. The low 8 bits hold the immediate
527 : // value; bit 12 holds the "Op" field of the instruction, and bits 11-8 hold
528 : // the "Cmode" field of the instruction. The interfaces below treat the
529 : // Op and Cmode values as a single 5-bit value.
530 :
531 : inline unsigned createNEONModImm(unsigned OpCmode, unsigned Val) {
532 245 : return (OpCmode << 8) | Val;
533 : }
534 : inline unsigned getNEONModImmOpCmode(unsigned ModImm) {
535 834 : return (ModImm >> 8) & 0x1f;
536 : }
537 834 : inline unsigned getNEONModImmVal(unsigned ModImm) { return ModImm & 0xff; }
538 :
539 : /// decodeNEONModImm - Decode a NEON modified immediate value into the
540 : /// element value and the element size in bits. (If the element size is
541 : /// smaller than the vector, it is splatted into all the elements.)
542 834 : inline uint64_t decodeNEONModImm(unsigned ModImm, unsigned &EltBits) {
543 : unsigned OpCmode = getNEONModImmOpCmode(ModImm);
544 : unsigned Imm8 = getNEONModImmVal(ModImm);
545 : uint64_t Val = 0;
546 :
547 834 : if (OpCmode == 0xe) {
548 : // 8-bit vector elements
549 157 : Val = Imm8;
550 157 : EltBits = 8;
551 677 : } else if ((OpCmode & 0xc) == 0x8) {
552 : // 16-bit vector elements
553 69 : unsigned ByteNum = (OpCmode & 0x6) >> 1;
554 69 : Val = Imm8 << (8 * ByteNum);
555 69 : EltBits = 16;
556 608 : } else if ((OpCmode & 0x8) == 0) {
557 : // 32-bit vector elements, zero with one byte set
558 527 : unsigned ByteNum = (OpCmode & 0x6) >> 1;
559 527 : Val = Imm8 << (8 * ByteNum);
560 527 : EltBits = 32;
561 81 : } else if ((OpCmode & 0xe) == 0xc) {
562 : // 32-bit vector elements, one byte with low bits set
563 52 : unsigned ByteNum = 1 + (OpCmode & 0x1);
564 52 : Val = (Imm8 << (8 * ByteNum)) | (0xffff >> (8 * (2 - ByteNum)));
565 52 : EltBits = 32;
566 29 : } else if (OpCmode == 0x1e) {
567 : // 64-bit vector elements
568 261 : for (unsigned ByteNum = 0; ByteNum < 8; ++ByteNum) {
569 232 : if ((ModImm >> ByteNum) & 1)
570 153 : Val |= (uint64_t)0xff << (8 * ByteNum);
571 : }
572 29 : EltBits = 64;
573 : } else {
574 0 : llvm_unreachable("Unsupported NEON immediate");
575 : }
576 834 : return Val;
577 : }
578 :
579 : // Generic validation for single-byte immediate (0X00, 00X0, etc).
580 : inline bool isNEONBytesplat(unsigned Value, unsigned Size) {
581 : assert(Size >= 1 && Size <= 4 && "Invalid size");
582 : unsigned count = 0;
583 441 : for (unsigned i = 0; i < Size; ++i) {
584 322 : if (Value & 0xff) count++;
585 322 : Value >>= 8;
586 : }
587 : return count == 1;
588 : }
589 :
590 : /// Checks if Value is a correct immediate for instructions like VBIC/VORR.
591 : inline bool isNEONi16splat(unsigned Value) {
592 93 : if (Value > 0xffff)
593 : return false;
594 : // i16 value with set bits only in one byte X0 or 0X.
595 159 : return Value == 0 || isNEONBytesplat(Value, 2);
596 : }
597 :
598 : // Encode NEON 16 bits Splat immediate for instructions like VBIC/VORR
599 : inline unsigned encodeNEONi16splat(unsigned Value) {
600 : assert(isNEONi16splat(Value) && "Invalid NEON splat value");
601 0 : if (Value >= 0x100)
602 0 : Value = (Value >> 8) | 0xa00;
603 : else
604 0 : Value |= 0x800;
605 : return Value;
606 : }
607 :
608 : /// Checks if Value is a correct immediate for instructions like VBIC/VORR.
609 : inline bool isNEONi32splat(unsigned Value) {
610 : // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X.
611 85 : return Value == 0 || isNEONBytesplat(Value, 4);
612 : }
613 :
614 : /// Encode NEON 32 bits Splat immediate for instructions like VBIC/VORR.
615 : inline unsigned encodeNEONi32splat(unsigned Value) {
616 : assert(isNEONi32splat(Value) && "Invalid NEON splat value");
617 0 : if (Value >= 0x100 && Value <= 0xff00)
618 0 : Value = (Value >> 8) | 0x200;
619 0 : else if (Value > 0xffff && Value <= 0xff0000)
620 0 : Value = (Value >> 16) | 0x400;
621 0 : else if (Value > 0xffffff)
622 0 : Value = (Value >> 24) | 0x600;
623 : return Value;
624 : }
625 :
626 : //===--------------------------------------------------------------------===//
627 : // Floating-point Immediates
628 : //
629 449 : inline float getFPImmFloat(unsigned Imm) {
630 : // We expect an 8-bit binary encoding of a floating-point number here.
631 :
632 449 : uint8_t Sign = (Imm >> 7) & 0x1;
633 449 : uint8_t Exp = (Imm >> 4) & 0x7;
634 449 : uint8_t Mantissa = Imm & 0xf;
635 :
636 : // 8-bit FP IEEE Float Encoding
637 : // abcd efgh aBbbbbbc defgh000 00000000 00000000
638 : //
639 : // where B = NOT(b);
640 : uint32_t I = 0;
641 449 : I |= Sign << 31;
642 449 : I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
643 449 : I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
644 449 : I |= (Exp & 0x3) << 23;
645 449 : I |= Mantissa << 19;
646 449 : return bit_cast<float>(I);
647 : }
648 :
649 : /// getFP16Imm - Return an 8-bit floating-point version of the 16-bit
650 : /// floating-point value. If the value cannot be represented as an 8-bit
651 : /// floating-point value, then return -1.
652 826 : inline int getFP16Imm(const APInt &Imm) {
653 826 : uint32_t Sign = Imm.lshr(15).getZExtValue() & 1;
654 1652 : int32_t Exp = (Imm.lshr(10).getSExtValue() & 0x1f) - 15; // -14 to 15
655 826 : int64_t Mantissa = Imm.getZExtValue() & 0x3ff; // 10 bits
656 :
657 : // We can handle 4 bits of mantissa.
658 : // mantissa = (16+UInt(e:f:g:h))/16.
659 826 : if (Mantissa & 0x3f)
660 : return -1;
661 644 : Mantissa >>= 6;
662 :
663 : // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
664 644 : if (Exp < -3 || Exp > 4)
665 : return -1;
666 544 : Exp = ((Exp+3) & 0x7) ^ 4;
667 :
668 544 : return ((int)Sign << 7) | (Exp << 4) | Mantissa;
669 : }
670 :
671 826 : inline int getFP16Imm(const APFloat &FPImm) {
672 826 : return getFP16Imm(FPImm.bitcastToAPInt());
673 : }
674 :
675 : /// getFP32Imm - Return an 8-bit floating-point version of the 32-bit
676 : /// floating-point value. If the value cannot be represented as an 8-bit
677 : /// floating-point value, then return -1.
678 2594 : inline int getFP32Imm(const APInt &Imm) {
679 2594 : uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
680 5188 : int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127; // -126 to 127
681 2594 : int64_t Mantissa = Imm.getZExtValue() & 0x7fffff; // 23 bits
682 :
683 : // We can handle 4 bits of mantissa.
684 : // mantissa = (16+UInt(e:f:g:h))/16.
685 2594 : if (Mantissa & 0x7ffff)
686 : return -1;
687 1730 : Mantissa >>= 19;
688 : if ((Mantissa & 0xf) != Mantissa)
689 : return -1;
690 :
691 : // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
692 1730 : if (Exp < -3 || Exp > 4)
693 : return -1;
694 1108 : Exp = ((Exp+3) & 0x7) ^ 4;
695 :
696 1108 : return ((int)Sign << 7) | (Exp << 4) | Mantissa;
697 : }
698 :
699 2353 : inline int getFP32Imm(const APFloat &FPImm) {
700 2353 : return getFP32Imm(FPImm.bitcastToAPInt());
701 : }
702 :
703 : /// getFP64Imm - Return an 8-bit floating-point version of the 64-bit
704 : /// floating-point value. If the value cannot be represented as an 8-bit
705 : /// floating-point value, then return -1.
706 573 : inline int getFP64Imm(const APInt &Imm) {
707 1146 : uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
708 1146 : int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023
709 : uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL;
710 :
711 : // We can handle 4 bits of mantissa.
712 : // mantissa = (16+UInt(e:f:g:h))/16.
713 573 : if (Mantissa & 0xffffffffffffULL)
714 : return -1;
715 248 : Mantissa >>= 48;
716 : if ((Mantissa & 0xf) != Mantissa)
717 : return -1;
718 :
719 : // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
720 248 : if (Exp < -3 || Exp > 4)
721 : return -1;
722 213 : Exp = ((Exp+3) & 0x7) ^ 4;
723 :
724 213 : return ((int)Sign << 7) | (Exp << 4) | Mantissa;
725 : }
726 :
727 573 : inline int getFP64Imm(const APFloat &FPImm) {
728 573 : return getFP64Imm(FPImm.bitcastToAPInt());
729 : }
730 :
731 : } // end namespace ARM_AM
732 : } // end namespace llvm
733 :
734 : #endif
735 :
|