Line data Source code
1 : //===-- ARMAsmBackend.cpp - ARM Assembler Backend -------------------------===//
2 : //
3 : // The LLVM Compiler Infrastructure
4 : //
5 : // This file is distributed under the University of Illinois Open Source
6 : // License. See LICENSE.TXT for details.
7 : //
8 : //===----------------------------------------------------------------------===//
9 :
10 : #include "MCTargetDesc/ARMAsmBackend.h"
11 : #include "MCTargetDesc/ARMAddressingModes.h"
12 : #include "MCTargetDesc/ARMAsmBackendDarwin.h"
13 : #include "MCTargetDesc/ARMAsmBackendELF.h"
14 : #include "MCTargetDesc/ARMAsmBackendWinCOFF.h"
15 : #include "MCTargetDesc/ARMFixupKinds.h"
16 : #include "MCTargetDesc/ARMMCTargetDesc.h"
17 : #include "llvm/ADT/StringSwitch.h"
18 : #include "llvm/BinaryFormat/ELF.h"
19 : #include "llvm/BinaryFormat/MachO.h"
20 : #include "llvm/MC/MCAsmBackend.h"
21 : #include "llvm/MC/MCAssembler.h"
22 : #include "llvm/MC/MCContext.h"
23 : #include "llvm/MC/MCDirectives.h"
24 : #include "llvm/MC/MCELFObjectWriter.h"
25 : #include "llvm/MC/MCExpr.h"
26 : #include "llvm/MC/MCFixupKindInfo.h"
27 : #include "llvm/MC/MCObjectWriter.h"
28 : #include "llvm/MC/MCRegisterInfo.h"
29 : #include "llvm/MC/MCSectionELF.h"
30 : #include "llvm/MC/MCSectionMachO.h"
31 : #include "llvm/MC/MCSubtargetInfo.h"
32 : #include "llvm/MC/MCValue.h"
33 : #include "llvm/Support/Debug.h"
34 : #include "llvm/Support/EndianStream.h"
35 : #include "llvm/Support/ErrorHandling.h"
36 : #include "llvm/Support/Format.h"
37 : #include "llvm/Support/TargetParser.h"
38 : #include "llvm/Support/raw_ostream.h"
39 : using namespace llvm;
40 :
41 : namespace {
42 : class ARMELFObjectWriter : public MCELFObjectTargetWriter {
43 : public:
44 : ARMELFObjectWriter(uint8_t OSABI)
45 : : MCELFObjectTargetWriter(/*Is64Bit*/ false, OSABI, ELF::EM_ARM,
46 : /*HasRelocationAddend*/ false) {}
47 : };
48 : } // end anonymous namespace
49 :
50 15261 : const MCFixupKindInfo &ARMAsmBackend::getFixupKindInfo(MCFixupKind Kind) const {
51 : const static MCFixupKindInfo InfosLE[ARM::NumTargetFixupKinds] = {
52 : // This table *must* be in the order that the fixup_* kinds are defined in
53 : // ARMFixupKinds.h.
54 : //
55 : // Name Offset (bits) Size (bits) Flags
56 : {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
57 : {"fixup_t2_ldst_pcrel_12", 0, 32,
58 : MCFixupKindInfo::FKF_IsPCRel |
59 : MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
60 : {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
61 : {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
62 : {"fixup_t2_pcrel_10", 0, 32,
63 : MCFixupKindInfo::FKF_IsPCRel |
64 : MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
65 : {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
66 : {"fixup_t2_pcrel_9", 0, 32,
67 : MCFixupKindInfo::FKF_IsPCRel |
68 : MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
69 : {"fixup_thumb_adr_pcrel_10", 0, 8,
70 : MCFixupKindInfo::FKF_IsPCRel |
71 : MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
72 : {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
73 : {"fixup_t2_adr_pcrel_12", 0, 32,
74 : MCFixupKindInfo::FKF_IsPCRel |
75 : MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
76 : {"fixup_arm_condbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
77 : {"fixup_arm_uncondbranch", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
78 : {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
79 : {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
80 : {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
81 : {"fixup_arm_uncondbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
82 : {"fixup_arm_condbl", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
83 : {"fixup_arm_blx", 0, 24, MCFixupKindInfo::FKF_IsPCRel},
84 : {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
85 : {"fixup_arm_thumb_blx", 0, 32,
86 : MCFixupKindInfo::FKF_IsPCRel |
87 : MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
88 : {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
89 : {"fixup_arm_thumb_cp", 0, 8,
90 : MCFixupKindInfo::FKF_IsPCRel |
91 : MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
92 : {"fixup_arm_thumb_bcc", 0, 8, MCFixupKindInfo::FKF_IsPCRel},
93 : // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
94 : // - 19.
95 : {"fixup_arm_movt_hi16", 0, 20, 0},
96 : {"fixup_arm_movw_lo16", 0, 20, 0},
97 : {"fixup_t2_movt_hi16", 0, 20, 0},
98 : {"fixup_t2_movw_lo16", 0, 20, 0},
99 : {"fixup_arm_mod_imm", 0, 12, 0},
100 : {"fixup_t2_so_imm", 0, 26, 0},
101 : };
102 : const static MCFixupKindInfo InfosBE[ARM::NumTargetFixupKinds] = {
103 : // This table *must* be in the order that the fixup_* kinds are defined in
104 : // ARMFixupKinds.h.
105 : //
106 : // Name Offset (bits) Size (bits) Flags
107 : {"fixup_arm_ldst_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
108 : {"fixup_t2_ldst_pcrel_12", 0, 32,
109 : MCFixupKindInfo::FKF_IsPCRel |
110 : MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
111 : {"fixup_arm_pcrel_10_unscaled", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
112 : {"fixup_arm_pcrel_10", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
113 : {"fixup_t2_pcrel_10", 0, 32,
114 : MCFixupKindInfo::FKF_IsPCRel |
115 : MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
116 : {"fixup_arm_pcrel_9", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
117 : {"fixup_t2_pcrel_9", 0, 32,
118 : MCFixupKindInfo::FKF_IsPCRel |
119 : MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
120 : {"fixup_thumb_adr_pcrel_10", 8, 8,
121 : MCFixupKindInfo::FKF_IsPCRel |
122 : MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
123 : {"fixup_arm_adr_pcrel_12", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
124 : {"fixup_t2_adr_pcrel_12", 0, 32,
125 : MCFixupKindInfo::FKF_IsPCRel |
126 : MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
127 : {"fixup_arm_condbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
128 : {"fixup_arm_uncondbranch", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
129 : {"fixup_t2_condbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
130 : {"fixup_t2_uncondbranch", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
131 : {"fixup_arm_thumb_br", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
132 : {"fixup_arm_uncondbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
133 : {"fixup_arm_condbl", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
134 : {"fixup_arm_blx", 8, 24, MCFixupKindInfo::FKF_IsPCRel},
135 : {"fixup_arm_thumb_bl", 0, 32, MCFixupKindInfo::FKF_IsPCRel},
136 : {"fixup_arm_thumb_blx", 0, 32,
137 : MCFixupKindInfo::FKF_IsPCRel |
138 : MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
139 : {"fixup_arm_thumb_cb", 0, 16, MCFixupKindInfo::FKF_IsPCRel},
140 : {"fixup_arm_thumb_cp", 8, 8,
141 : MCFixupKindInfo::FKF_IsPCRel |
142 : MCFixupKindInfo::FKF_IsAlignedDownTo32Bits},
143 : {"fixup_arm_thumb_bcc", 8, 8, MCFixupKindInfo::FKF_IsPCRel},
144 : // movw / movt: 16-bits immediate but scattered into two chunks 0 - 12, 16
145 : // - 19.
146 : {"fixup_arm_movt_hi16", 12, 20, 0},
147 : {"fixup_arm_movw_lo16", 12, 20, 0},
148 : {"fixup_t2_movt_hi16", 12, 20, 0},
149 : {"fixup_t2_movw_lo16", 12, 20, 0},
150 : {"fixup_arm_mod_imm", 20, 12, 0},
151 : {"fixup_t2_so_imm", 26, 6, 0},
152 : };
153 :
154 15261 : if (Kind < FirstTargetFixupKind)
155 6575 : return MCAsmBackend::getFixupKindInfo(Kind);
156 :
157 : assert(unsigned(Kind - FirstTargetFixupKind) < getNumFixupKinds() &&
158 : "Invalid kind!");
159 8686 : return (Endian == support::little ? InfosLE
160 8686 : : InfosBE)[Kind - FirstTargetFixupKind];
161 : }
162 :
163 1173 : void ARMAsmBackend::handleAssemblerFlag(MCAssemblerFlag Flag) {
164 1173 : switch (Flag) {
165 : default:
166 : break;
167 : case MCAF_Code16:
168 : setIsThumb(true);
169 : break;
170 : case MCAF_Code32:
171 : setIsThumb(false);
172 : break;
173 : }
174 1173 : }
175 :
176 24153 : unsigned ARMAsmBackend::getRelaxedOpcode(unsigned Op,
177 : const MCSubtargetInfo &STI) const {
178 : bool HasThumb2 = STI.getFeatureBits()[ARM::FeatureThumb2];
179 : bool HasV8MBaselineOps = STI.getFeatureBits()[ARM::HasV8MBaselineOps];
180 :
181 24153 : switch (Op) {
182 : default:
183 : return Op;
184 333 : case ARM::tBcc:
185 333 : return HasThumb2 ? (unsigned)ARM::t2Bcc : Op;
186 140 : case ARM::tLDRpci:
187 140 : return HasThumb2 ? (unsigned)ARM::t2LDRpci : Op;
188 17 : case ARM::tADR:
189 17 : return HasThumb2 ? (unsigned)ARM::t2ADR : Op;
190 215 : case ARM::tB:
191 215 : return HasV8MBaselineOps ? (unsigned)ARM::t2B : Op;
192 25 : case ARM::tCBZ:
193 25 : return ARM::tHINT;
194 26 : case ARM::tCBNZ:
195 26 : return ARM::tHINT;
196 : }
197 : }
198 :
199 24073 : bool ARMAsmBackend::mayNeedRelaxation(const MCInst &Inst,
200 : const MCSubtargetInfo &STI) const {
201 24073 : if (getRelaxedOpcode(Inst.getOpcode(), STI) != Inst.getOpcode())
202 498 : return true;
203 : return false;
204 : }
205 :
206 371 : const char *ARMAsmBackend::reasonForFixupRelaxation(const MCFixup &Fixup,
207 : uint64_t Value) const {
208 371 : switch ((unsigned)Fixup.getKind()) {
209 85 : case ARM::fixup_arm_thumb_br: {
210 : // Relaxing tB to t2B. tB has a signed 12-bit displacement with the
211 : // low bit being an implied zero. There's an implied +4 offset for the
212 : // branch, so we adjust the other way here to determine what's
213 : // encodable.
214 : //
215 : // Relax if the value is too big for a (signed) i8.
216 : int64_t Offset = int64_t(Value) - 4;
217 85 : if (Offset > 2046 || Offset < -2048)
218 4 : return "out of range pc-relative fixup value";
219 : break;
220 : }
221 142 : case ARM::fixup_arm_thumb_bcc: {
222 : // Relaxing tBcc to t2Bcc. tBcc has a signed 9-bit displacement with the
223 : // low bit being an implied zero. There's an implied +4 offset for the
224 : // branch, so we adjust the other way here to determine what's
225 : // encodable.
226 : //
227 : // Relax if the value is too big for a (signed) i8.
228 : int64_t Offset = int64_t(Value) - 4;
229 142 : if (Offset > 254 || Offset < -256)
230 3 : return "out of range pc-relative fixup value";
231 : break;
232 : }
233 117 : case ARM::fixup_thumb_adr_pcrel_10:
234 : case ARM::fixup_arm_thumb_cp: {
235 : // If the immediate is negative, greater than 1020, or not a multiple
236 : // of four, the wide version of the instruction must be used.
237 117 : int64_t Offset = int64_t(Value) - 4;
238 117 : if (Offset & 3)
239 : return "misaligned pc-relative fixup value";
240 107 : else if (Offset > 1020 || Offset < 0)
241 6 : return "out of range pc-relative fixup value";
242 : break;
243 : }
244 27 : case ARM::fixup_arm_thumb_cb: {
245 : // If we have a Thumb CBZ or CBNZ instruction and its target is the next
246 : // instruction it is actually out of range for the instruction.
247 : // It will be changed to a NOP.
248 27 : int64_t Offset = (Value & ~1);
249 27 : if (Offset == 2)
250 2 : return "will be converted to nop";
251 : break;
252 : }
253 0 : default:
254 0 : llvm_unreachable("Unexpected fixup kind in reasonForFixupRelaxation()!");
255 : }
256 : return nullptr;
257 : }
258 :
259 195 : bool ARMAsmBackend::fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
260 : const MCRelaxableFragment *DF,
261 : const MCAsmLayout &Layout) const {
262 195 : return reasonForFixupRelaxation(Fixup, Value);
263 : }
264 :
265 80 : void ARMAsmBackend::relaxInstruction(const MCInst &Inst,
266 : const MCSubtargetInfo &STI,
267 : MCInst &Res) const {
268 80 : unsigned RelaxedOp = getRelaxedOpcode(Inst.getOpcode(), STI);
269 :
270 : // Sanity check w/ diagnostic if we get here w/ a bogus instruction.
271 80 : if (RelaxedOp == Inst.getOpcode()) {
272 : SmallString<256> Tmp;
273 : raw_svector_ostream OS(Tmp);
274 0 : Inst.dump_pretty(OS);
275 0 : OS << "\n";
276 0 : report_fatal_error("unexpected instruction to relax: " + OS.str());
277 : }
278 :
279 : // If we are changing Thumb CBZ or CBNZ instruction to a NOP, aka tHINT, we
280 : // have to change the operands too.
281 80 : if ((Inst.getOpcode() == ARM::tCBZ || Inst.getOpcode() == ARM::tCBNZ) &&
282 : RelaxedOp == ARM::tHINT) {
283 : Res.setOpcode(RelaxedOp);
284 2 : Res.addOperand(MCOperand::createImm(0));
285 2 : Res.addOperand(MCOperand::createImm(14));
286 2 : Res.addOperand(MCOperand::createReg(0));
287 2 : return;
288 : }
289 :
290 : // The rest of instructions we're relaxing have the same operands.
291 : // We just need to update to the proper opcode.
292 : Res = Inst;
293 : Res.setOpcode(RelaxedOp);
294 : }
295 :
296 2460 : bool ARMAsmBackend::writeNopData(raw_ostream &OS, uint64_t Count) const {
297 : const uint16_t Thumb1_16bitNopEncoding = 0x46c0; // using MOV r8,r8
298 : const uint16_t Thumb2_16bitNopEncoding = 0xbf00; // NOP
299 : const uint32_t ARMv4_NopEncoding = 0xe1a00000; // using MOV r0,r0
300 : const uint32_t ARMv6T2_NopEncoding = 0xe320f000; // NOP
301 2460 : if (isThumb()) {
302 : const uint16_t nopEncoding =
303 2574 : hasNOP() ? Thumb2_16bitNopEncoding : Thumb1_16bitNopEncoding;
304 1287 : uint64_t NumNops = Count / 2;
305 1330 : for (uint64_t i = 0; i != NumNops; ++i)
306 86 : support::endian::write(OS, nopEncoding, Endian);
307 1287 : if (Count & 1)
308 : OS << '\0';
309 1287 : return true;
310 : }
311 : // ARM mode
312 : const uint32_t nopEncoding =
313 2346 : hasNOP() ? ARMv6T2_NopEncoding : ARMv4_NopEncoding;
314 1173 : uint64_t NumNops = Count / 4;
315 1192 : for (uint64_t i = 0; i != NumNops; ++i)
316 38 : support::endian::write(OS, nopEncoding, Endian);
317 : // FIXME: should this function return false when unable to write exactly
318 : // 'Count' bytes with NOP encodings?
319 1173 : switch (Count % 4) {
320 : default:
321 : break; // No leftover bytes to write
322 : case 1:
323 : OS << '\0';
324 : break;
325 5 : case 2:
326 5 : OS.write("\0\0", 2);
327 5 : break;
328 0 : case 3:
329 0 : OS.write("\0\0\xa0", 3);
330 0 : break;
331 : }
332 :
333 : return true;
334 : }
335 :
336 : static uint32_t swapHalfWords(uint32_t Value, bool IsLittleEndian) {
337 384 : if (IsLittleEndian) {
338 : // Note that the halfwords are stored high first and low second in thumb;
339 : // so we need to swap the fixup value here to map properly.
340 : uint32_t Swapped = (Value & 0xFFFF0000) >> 16;
341 371 : Swapped |= (Value & 0x0000FFFF) << 16;
342 : return Swapped;
343 : } else
344 : return Value;
345 : }
346 :
347 : static uint32_t joinHalfWords(uint32_t FirstHalf, uint32_t SecondHalf,
348 : bool IsLittleEndian) {
349 : uint32_t Value;
350 :
351 971 : if (IsLittleEndian) {
352 968 : Value = (SecondHalf & 0xFFFF) << 16;
353 968 : Value |= (FirstHalf & 0xFFFF);
354 : } else {
355 : Value = (SecondHalf & 0xFFFF);
356 3 : Value |= (FirstHalf & 0xFFFF) << 16;
357 : }
358 :
359 : return Value;
360 : }
361 :
362 5278 : unsigned ARMAsmBackend::adjustFixupValue(const MCAssembler &Asm,
363 : const MCFixup &Fixup,
364 : const MCValue &Target, uint64_t Value,
365 : bool IsResolved, MCContext &Ctx,
366 : const MCSubtargetInfo* STI) const {
367 5278 : unsigned Kind = Fixup.getKind();
368 :
369 : // MachO tries to make .o files that look vaguely pre-linked, so for MOVW/MOVT
370 : // and .word relocations they put the Thumb bit into the addend if possible.
371 : // Other relocation types don't want this bit though (branches couldn't encode
372 : // it if it *was* present, and no other relocations exist) and it can
373 : // interfere with checking valid expressions.
374 5278 : if (const MCSymbolRefExpr *A = Target.getSymA()) {
375 1754 : if (A->hasSubsectionsViaSymbols() && Asm.isThumbFunc(&A->getSymbol()) &&
376 4815 : A->getSymbol().isExternal() &&
377 14 : (Kind == FK_Data_4 || Kind == ARM::fixup_arm_movw_lo16 ||
378 12 : Kind == ARM::fixup_arm_movt_hi16 || Kind == ARM::fixup_t2_movw_lo16 ||
379 : Kind == ARM::fixup_t2_movt_hi16))
380 4 : Value |= 1;
381 : }
382 :
383 5278 : switch (Kind) {
384 : default:
385 0 : Ctx.reportError(Fixup.getLoc(), "bad relocation fixup type");
386 0 : return 0;
387 2340 : case FK_Data_1:
388 : case FK_Data_2:
389 : case FK_Data_4:
390 2340 : return Value;
391 3 : case FK_SecRel_2:
392 3 : return Value;
393 11 : case FK_SecRel_4:
394 11 : return Value;
395 36 : case ARM::fixup_arm_movt_hi16:
396 : assert(STI != nullptr);
397 36 : if (IsResolved || !STI->getTargetTriple().isOSBinFormatELF())
398 9 : Value >>= 16;
399 : LLVM_FALLTHROUGH;
400 : case ARM::fixup_arm_movw_lo16: {
401 74 : unsigned Hi4 = (Value & 0xF000) >> 12;
402 74 : unsigned Lo12 = Value & 0x0FFF;
403 : // inst{19-16} = Hi4;
404 : // inst{11-0} = Lo12;
405 74 : Value = (Hi4 << 16) | (Lo12);
406 74 : return Value;
407 : }
408 66 : case ARM::fixup_t2_movt_hi16:
409 : assert(STI != nullptr);
410 66 : if (IsResolved || !STI->getTargetTriple().isOSBinFormatELF())
411 46 : Value >>= 16;
412 : LLVM_FALLTHROUGH;
413 : case ARM::fixup_t2_movw_lo16: {
414 131 : unsigned Hi4 = (Value & 0xF000) >> 12;
415 131 : unsigned i = (Value & 0x800) >> 11;
416 131 : unsigned Mid3 = (Value & 0x700) >> 8;
417 131 : unsigned Lo8 = Value & 0x0FF;
418 : // inst{19-16} = Hi4;
419 : // inst{26} = i;
420 : // inst{14-12} = Mid3;
421 : // inst{7-0} = Lo8;
422 131 : Value = (Hi4 << 16) | (i << 26) | (Mid3 << 12) | (Lo8);
423 131 : return swapHalfWords(Value, Endian == support::little);
424 : }
425 30 : case ARM::fixup_arm_ldst_pcrel_12:
426 : // ARM PC-relative values are offset by 8.
427 30 : Value -= 4;
428 : LLVM_FALLTHROUGH;
429 43 : case ARM::fixup_t2_ldst_pcrel_12: {
430 : // Offset by 4, adjusted by two due to the half-word ordering of thumb.
431 43 : Value -= 4;
432 : bool isAdd = true;
433 43 : if ((int64_t)Value < 0) {
434 9 : Value = -Value;
435 : isAdd = false;
436 : }
437 43 : if (Value >= 4096) {
438 2 : Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
439 2 : return 0;
440 : }
441 41 : Value |= isAdd << 23;
442 :
443 : // Same addressing mode as fixup_arm_pcrel_10,
444 : // but with 16-bit halfwords swapped.
445 41 : if (Kind == ARM::fixup_t2_ldst_pcrel_12)
446 13 : return swapHalfWords(Value, Endian == support::little);
447 :
448 28 : return Value;
449 : }
450 7 : case ARM::fixup_arm_adr_pcrel_12: {
451 : // ARM PC-relative values are offset by 8.
452 7 : Value -= 8;
453 : unsigned opc = 4; // bits {24-21}. Default to add: 0b0100
454 7 : if ((int64_t)Value < 0) {
455 1 : Value = -Value;
456 : opc = 2; // 0b0010
457 : }
458 7 : if (ARM_AM::getSOImmVal(Value) == -1) {
459 0 : Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
460 0 : return 0;
461 : }
462 : // Encode the immediate and shift the opcode into place.
463 7 : return ARM_AM::getSOImmVal(Value) | (opc << 21);
464 : }
465 :
466 2 : case ARM::fixup_t2_adr_pcrel_12: {
467 2 : Value -= 4;
468 : unsigned opc = 0;
469 2 : if ((int64_t)Value < 0) {
470 1 : Value = -Value;
471 : opc = 5;
472 : }
473 :
474 2 : uint32_t out = (opc << 21);
475 2 : out |= (Value & 0x800) << 15;
476 2 : out |= (Value & 0x700) << 4;
477 2 : out |= (Value & 0x0FF);
478 :
479 2 : return swapHalfWords(out, Endian == support::little);
480 : }
481 :
482 1024 : case ARM::fixup_arm_condbranch:
483 : case ARM::fixup_arm_uncondbranch:
484 : case ARM::fixup_arm_uncondbl:
485 : case ARM::fixup_arm_condbl:
486 : case ARM::fixup_arm_blx:
487 : // These values don't encode the low two bits since they're always zero.
488 : // Offset by 8 just as above.
489 : if (const MCSymbolRefExpr *SRE =
490 1024 : dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
491 1015 : if (SRE->getKind() == MCSymbolRefExpr::VK_TLSCALL)
492 : return 0;
493 1024 : return 0xffffff & ((Value - 8) >> 2);
494 83 : case ARM::fixup_t2_uncondbranch: {
495 83 : Value = Value - 4;
496 83 : if (!isInt<25>(Value)) {
497 2 : Ctx.reportError(Fixup.getLoc(), "Relocation out of range");
498 2 : return 0;
499 : }
500 :
501 81 : Value >>= 1; // Low bit is not encoded.
502 :
503 : uint32_t out = 0;
504 81 : bool I = Value & 0x800000;
505 81 : bool J1 = Value & 0x400000;
506 81 : bool J2 = Value & 0x200000;
507 : J1 ^= I;
508 : J2 ^= I;
509 :
510 81 : out |= I << 26; // S bit
511 81 : out |= !J1 << 13; // J1 bit
512 81 : out |= !J2 << 11; // J2 bit
513 81 : out |= (Value & 0x1FF800) << 5; // imm6 field
514 81 : out |= (Value & 0x0007FF); // imm11 field
515 :
516 81 : return swapHalfWords(out, Endian == support::little);
517 : }
518 72 : case ARM::fixup_t2_condbranch: {
519 72 : Value = Value - 4;
520 72 : if (!isInt<21>(Value)) {
521 2 : Ctx.reportError(Fixup.getLoc(), "Relocation out of range");
522 2 : return 0;
523 : }
524 :
525 70 : Value >>= 1; // Low bit is not encoded.
526 :
527 : uint64_t out = 0;
528 70 : out |= (Value & 0x80000) << 7; // S bit
529 70 : out |= (Value & 0x40000) >> 7; // J2 bit
530 70 : out |= (Value & 0x20000) >> 4; // J1 bit
531 70 : out |= (Value & 0x1F800) << 5; // imm6 field
532 70 : out |= (Value & 0x007FF); // imm11 field
533 :
534 70 : return swapHalfWords(out, Endian == support::little);
535 : }
536 966 : case ARM::fixup_arm_thumb_bl: {
537 1932 : if (!isInt<25>(Value - 4) ||
538 187 : (!STI->getFeatureBits()[ARM::FeatureThumb2] &&
539 125 : !STI->getFeatureBits()[ARM::HasV8MBaselineOps] &&
540 114 : !STI->getFeatureBits()[ARM::HasV6MOps] &&
541 : !isInt<23>(Value - 4))) {
542 14 : Ctx.reportError(Fixup.getLoc(), "Relocation out of range");
543 14 : return 0;
544 : }
545 :
546 : // The value doesn't encode the low bit (always zero) and is offset by
547 : // four. The 32-bit immediate value is encoded as
548 : // imm32 = SignExtend(S:I1:I2:imm10:imm11:0)
549 : // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
550 : // The value is encoded into disjoint bit positions in the destination
551 : // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
552 : // J = either J1 or J2 bit
553 : //
554 : // BL: xxxxxSIIIIIIIIII xxJxJIIIIIIIIIII
555 : //
556 : // Note that the halfwords are stored high first, low second; so we need
557 : // to transpose the fixup value here to map properly.
558 952 : uint32_t offset = (Value - 4) >> 1;
559 952 : uint32_t signBit = (offset & 0x800000) >> 23;
560 952 : uint32_t I1Bit = (offset & 0x400000) >> 22;
561 952 : uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
562 952 : uint32_t I2Bit = (offset & 0x200000) >> 21;
563 952 : uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
564 952 : uint32_t imm10Bits = (offset & 0x1FF800) >> 11;
565 952 : uint32_t imm11Bits = (offset & 0x000007FF);
566 :
567 952 : uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10Bits);
568 1904 : uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
569 952 : (uint16_t)imm11Bits);
570 952 : return joinHalfWords(FirstHalf, SecondHalf, Endian == support::little);
571 : }
572 21 : case ARM::fixup_arm_thumb_blx: {
573 : // The value doesn't encode the low two bits (always zero) and is offset by
574 : // four (see fixup_arm_thumb_cp). The 32-bit immediate value is encoded as
575 : // imm32 = SignExtend(S:I1:I2:imm10H:imm10L:00)
576 : // where I1 = NOT(J1 ^ S) and I2 = NOT(J2 ^ S).
577 : // The value is encoded into disjoint bit positions in the destination
578 : // opcode. x = unchanged, I = immediate value bit, S = sign extension bit,
579 : // J = either J1 or J2 bit, 0 = zero.
580 : //
581 : // BLX: xxxxxSIIIIIIIIII xxJxJIIIIIIIIII0
582 : //
583 : // Note that the halfwords are stored high first, low second; so we need
584 : // to transpose the fixup value here to map properly.
585 21 : if (Value % 4 != 0) {
586 2 : Ctx.reportError(Fixup.getLoc(), "misaligned ARM call destination");
587 2 : return 0;
588 : }
589 :
590 19 : uint32_t offset = (Value - 4) >> 2;
591 : if (const MCSymbolRefExpr *SRE =
592 19 : dyn_cast<MCSymbolRefExpr>(Fixup.getValue()))
593 17 : if (SRE->getKind() == MCSymbolRefExpr::VK_TLSCALL)
594 : offset = 0;
595 19 : uint32_t signBit = (offset & 0x400000) >> 22;
596 19 : uint32_t I1Bit = (offset & 0x200000) >> 21;
597 19 : uint32_t J1Bit = (I1Bit ^ 0x1) ^ signBit;
598 19 : uint32_t I2Bit = (offset & 0x100000) >> 20;
599 19 : uint32_t J2Bit = (I2Bit ^ 0x1) ^ signBit;
600 19 : uint32_t imm10HBits = (offset & 0xFFC00) >> 10;
601 19 : uint32_t imm10LBits = (offset & 0x3FF);
602 :
603 19 : uint32_t FirstHalf = (((uint16_t)signBit << 10) | (uint16_t)imm10HBits);
604 38 : uint32_t SecondHalf = (((uint16_t)J1Bit << 13) | ((uint16_t)J2Bit << 11) |
605 19 : ((uint16_t)imm10LBits) << 1);
606 19 : return joinHalfWords(FirstHalf, SecondHalf, Endian == support::little);
607 : }
608 : case ARM::fixup_thumb_adr_pcrel_10:
609 : case ARM::fixup_arm_thumb_cp:
610 : // On CPUs supporting Thumb2, this will be relaxed to an ldr.w, otherwise we
611 : // could have an error on our hands.
612 : assert(STI != nullptr);
613 99 : if (!STI->getFeatureBits()[ARM::FeatureThumb2] && IsResolved) {
614 85 : const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
615 85 : if (FixupDiagnostic) {
616 9 : Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
617 9 : return 0;
618 : }
619 : }
620 : // Offset by 4, and don't encode the low two bits.
621 90 : return ((Value - 4) >> 2) & 0xff;
622 20 : case ARM::fixup_arm_thumb_cb: {
623 : // CB instructions can only branch to offsets in [4, 126] in multiples of 2
624 : // so ensure that the raw value LSB is zero and it lies in [2, 130].
625 : // An offset of 2 will be relaxed to a NOP.
626 20 : if ((int64_t)Value < 2 || Value > 0x82 || Value & 1) {
627 12 : Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
628 12 : return 0;
629 : }
630 : // Offset by 4 and don't encode the lower bit, which is always 0.
631 : // FIXME: diagnose if no Thumb2
632 8 : uint32_t Binary = (Value - 4) >> 1;
633 8 : return ((Binary & 0x20) << 4) | ((Binary & 0x1f) << 3);
634 : }
635 : case ARM::fixup_arm_thumb_br:
636 : // Offset by 4 and don't encode the lower bit, which is always 0.
637 : assert(STI != nullptr);
638 84 : if (!STI->getFeatureBits()[ARM::FeatureThumb2] &&
639 : !STI->getFeatureBits()[ARM::HasV8MBaselineOps]) {
640 7 : const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
641 7 : if (FixupDiagnostic) {
642 3 : Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
643 3 : return 0;
644 : }
645 : }
646 81 : return ((Value - 4) >> 1) & 0x7ff;
647 : case ARM::fixup_arm_thumb_bcc:
648 : // Offset by 4 and don't encode the lower bit, which is always 0.
649 : assert(STI != nullptr);
650 129 : if (!STI->getFeatureBits()[ARM::FeatureThumb2]) {
651 84 : const char *FixupDiagnostic = reasonForFixupRelaxation(Fixup, Value);
652 84 : if (FixupDiagnostic) {
653 2 : Ctx.reportError(Fixup.getLoc(), FixupDiagnostic);
654 2 : return 0;
655 : }
656 : }
657 127 : return ((Value - 4) >> 1) & 0xff;
658 1 : case ARM::fixup_arm_pcrel_10_unscaled: {
659 1 : Value = Value - 8; // ARM fixups offset by an additional word and don't
660 : // need to adjust for the half-word ordering.
661 : bool isAdd = true;
662 1 : if ((int64_t)Value < 0) {
663 0 : Value = -Value;
664 : isAdd = false;
665 : }
666 : // The value has the low 4 bits encoded in [3:0] and the high 4 in [11:8].
667 1 : if (Value >= 256) {
668 0 : Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
669 0 : return 0;
670 : }
671 1 : Value = (Value & 0xf) | ((Value & 0xf0) << 4);
672 1 : return Value | (isAdd << 23);
673 : }
674 73 : case ARM::fixup_arm_pcrel_10:
675 73 : Value = Value - 4; // ARM fixups offset by an additional word and don't
676 : // need to adjust for the half-word ordering.
677 : LLVM_FALLTHROUGH;
678 148 : case ARM::fixup_t2_pcrel_10: {
679 : // Offset by 4, adjusted by two due to the half-word ordering of thumb.
680 148 : Value = Value - 4;
681 : bool isAdd = true;
682 148 : if ((int64_t)Value < 0) {
683 82 : Value = -Value;
684 : isAdd = false;
685 : }
686 : // These values don't encode the low two bits since they're always zero.
687 148 : Value >>= 2;
688 148 : if (Value >= 256) {
689 0 : Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
690 0 : return 0;
691 : }
692 148 : Value |= isAdd << 23;
693 :
694 : // Same addressing mode as fixup_arm_pcrel_10, but with 16-bit halfwords
695 : // swapped.
696 148 : if (Kind == ARM::fixup_t2_pcrel_10)
697 75 : return swapHalfWords(Value, Endian == support::little);
698 :
699 73 : return Value;
700 : }
701 0 : case ARM::fixup_arm_pcrel_9:
702 0 : Value = Value - 4; // ARM fixups offset by an additional word and don't
703 : // need to adjust for the half-word ordering.
704 : LLVM_FALLTHROUGH;
705 0 : case ARM::fixup_t2_pcrel_9: {
706 : // Offset by 4, adjusted by two due to the half-word ordering of thumb.
707 0 : Value = Value - 4;
708 : bool isAdd = true;
709 0 : if ((int64_t)Value < 0) {
710 0 : Value = -Value;
711 : isAdd = false;
712 : }
713 : // These values don't encode the low bit since it's always zero.
714 0 : if (Value & 1) {
715 0 : Ctx.reportError(Fixup.getLoc(), "invalid value for this fixup");
716 0 : return 0;
717 : }
718 0 : Value >>= 1;
719 0 : if (Value >= 256) {
720 0 : Ctx.reportError(Fixup.getLoc(), "out of range pc-relative fixup value");
721 0 : return 0;
722 : }
723 0 : Value |= isAdd << 23;
724 :
725 : // Same addressing mode as fixup_arm_pcrel_9, but with 16-bit halfwords
726 : // swapped.
727 0 : if (Kind == ARM::fixup_t2_pcrel_9)
728 0 : return swapHalfWords(Value, Endian == support::little);
729 :
730 0 : return Value;
731 : }
732 7 : case ARM::fixup_arm_mod_imm:
733 7 : Value = ARM_AM::getSOImmVal(Value);
734 7 : if (Value >> 12) {
735 1 : Ctx.reportError(Fixup.getLoc(), "out of range immediate fixup value");
736 1 : return 0;
737 : }
738 6 : return Value;
739 13 : case ARM::fixup_t2_so_imm: {
740 13 : Value = ARM_AM::getT2SOImmVal(Value);
741 13 : if ((int64_t)Value < 0) {
742 1 : Ctx.reportError(Fixup.getLoc(), "out of range immediate fixup value");
743 1 : return 0;
744 : }
745 : // Value will contain a 12-bit value broken up into a 4-bit shift in bits
746 : // 11:8 and the 8-bit immediate in 0:7. The instruction has the immediate
747 : // in 0:7. The 4-bit shift is split up into i:imm3 where i is placed at bit
748 : // 10 of the upper half-word and imm3 is placed at 14:12 of the lower
749 : // half-word.
750 : uint64_t EncValue = 0;
751 12 : EncValue |= (Value & 0x800) << 15;
752 12 : EncValue |= (Value & 0x700) << 4;
753 12 : EncValue |= (Value & 0xff);
754 12 : return swapHalfWords(EncValue, Endian == support::little);
755 : }
756 : }
757 : }
758 :
759 1546 : bool ARMAsmBackend::shouldForceRelocation(const MCAssembler &Asm,
760 : const MCFixup &Fixup,
761 : const MCValue &Target) {
762 1546 : const MCSymbolRefExpr *A = Target.getSymA();
763 1546 : const MCSymbol *Sym = A ? &A->getSymbol() : nullptr;
764 1546 : const unsigned FixupKind = Fixup.getKind() ;
765 1546 : if ((unsigned)Fixup.getKind() == ARM::fixup_arm_thumb_bl) {
766 : assert(Sym && "How did we resolve this?");
767 :
768 : // If the symbol is external the linker will handle it.
769 : // FIXME: Should we handle it as an optimization?
770 :
771 : // If the symbol is out of range, produce a relocation and hope the
772 : // linker can handle it. GNU AS produces an error in this case.
773 77 : if (Sym->isExternal())
774 : return true;
775 : }
776 : // Create relocations for unconditional branches to function symbols with
777 : // different execution mode in ELF binaries.
778 1517 : if (Sym && Sym->isELF()) {
779 517 : unsigned Type = cast<MCSymbolELF>(Sym)->getType();
780 517 : if ((Type == ELF::STT_FUNC || Type == ELF::STT_GNU_IFUNC)) {
781 30 : if (Asm.isThumbFunc(Sym) && (FixupKind == ARM::fixup_arm_uncondbranch))
782 : return true;
783 29 : if (!Asm.isThumbFunc(Sym) && (FixupKind == ARM::fixup_arm_thumb_br ||
784 19 : FixupKind == ARM::fixup_arm_thumb_bl ||
785 16 : FixupKind == ARM::fixup_t2_condbranch ||
786 : FixupKind == ARM::fixup_t2_uncondbranch))
787 : return true;
788 : }
789 : }
790 : // We must always generate a relocation for BL/BLX instructions if we have
791 : // a symbol to reference, as the linker relies on knowing the destination
792 : // symbol's thumb-ness to get interworking right.
793 1506 : if (A && (FixupKind == ARM::fixup_arm_thumb_blx ||
794 1027 : FixupKind == ARM::fixup_arm_blx ||
795 1017 : FixupKind == ARM::fixup_arm_uncondbl ||
796 : FixupKind == ARM::fixup_arm_condbl))
797 25 : return true;
798 : return false;
799 : }
800 :
801 : /// getFixupKindNumBytes - The number of bytes the fixup may change.
802 5278 : static unsigned getFixupKindNumBytes(unsigned Kind) {
803 5278 : switch (Kind) {
804 0 : default:
805 0 : llvm_unreachable("Unknown fixup kind!");
806 :
807 : case FK_Data_1:
808 : case ARM::fixup_arm_thumb_bcc:
809 : case ARM::fixup_arm_thumb_cp:
810 : case ARM::fixup_thumb_adr_pcrel_10:
811 : return 1;
812 :
813 183 : case FK_Data_2:
814 : case ARM::fixup_arm_thumb_br:
815 : case ARM::fixup_arm_thumb_cb:
816 : case ARM::fixup_arm_mod_imm:
817 183 : return 2;
818 :
819 1135 : case ARM::fixup_arm_pcrel_10_unscaled:
820 : case ARM::fixup_arm_ldst_pcrel_12:
821 : case ARM::fixup_arm_pcrel_10:
822 : case ARM::fixup_arm_pcrel_9:
823 : case ARM::fixup_arm_adr_pcrel_12:
824 : case ARM::fixup_arm_uncondbl:
825 : case ARM::fixup_arm_condbl:
826 : case ARM::fixup_arm_blx:
827 : case ARM::fixup_arm_condbranch:
828 : case ARM::fixup_arm_uncondbranch:
829 1135 : return 3;
830 :
831 3709 : case FK_Data_4:
832 : case ARM::fixup_t2_ldst_pcrel_12:
833 : case ARM::fixup_t2_condbranch:
834 : case ARM::fixup_t2_uncondbranch:
835 : case ARM::fixup_t2_pcrel_10:
836 : case ARM::fixup_t2_pcrel_9:
837 : case ARM::fixup_t2_adr_pcrel_12:
838 : case ARM::fixup_arm_thumb_bl:
839 : case ARM::fixup_arm_thumb_blx:
840 : case ARM::fixup_arm_movt_hi16:
841 : case ARM::fixup_arm_movw_lo16:
842 : case ARM::fixup_t2_movt_hi16:
843 : case ARM::fixup_t2_movw_lo16:
844 : case ARM::fixup_t2_so_imm:
845 3709 : return 4;
846 :
847 3 : case FK_SecRel_2:
848 3 : return 2;
849 11 : case FK_SecRel_4:
850 11 : return 4;
851 : }
852 : }
853 :
854 : /// getFixupKindContainerSizeBytes - The number of bytes of the
855 : /// container involved in big endian.
856 47 : static unsigned getFixupKindContainerSizeBytes(unsigned Kind) {
857 47 : switch (Kind) {
858 0 : default:
859 0 : llvm_unreachable("Unknown fixup kind!");
860 :
861 : case FK_Data_1:
862 : return 1;
863 1 : case FK_Data_2:
864 1 : return 2;
865 10 : case FK_Data_4:
866 10 : return 4;
867 :
868 3 : case ARM::fixup_arm_thumb_bcc:
869 : case ARM::fixup_arm_thumb_cp:
870 : case ARM::fixup_thumb_adr_pcrel_10:
871 : case ARM::fixup_arm_thumb_br:
872 : case ARM::fixup_arm_thumb_cb:
873 : // Instruction size is 2 bytes.
874 3 : return 2;
875 :
876 32 : case ARM::fixup_arm_pcrel_10_unscaled:
877 : case ARM::fixup_arm_ldst_pcrel_12:
878 : case ARM::fixup_arm_pcrel_10:
879 : case ARM::fixup_arm_adr_pcrel_12:
880 : case ARM::fixup_arm_uncondbl:
881 : case ARM::fixup_arm_condbl:
882 : case ARM::fixup_arm_blx:
883 : case ARM::fixup_arm_condbranch:
884 : case ARM::fixup_arm_uncondbranch:
885 : case ARM::fixup_t2_ldst_pcrel_12:
886 : case ARM::fixup_t2_condbranch:
887 : case ARM::fixup_t2_uncondbranch:
888 : case ARM::fixup_t2_pcrel_10:
889 : case ARM::fixup_t2_adr_pcrel_12:
890 : case ARM::fixup_arm_thumb_bl:
891 : case ARM::fixup_arm_thumb_blx:
892 : case ARM::fixup_arm_movt_hi16:
893 : case ARM::fixup_arm_movw_lo16:
894 : case ARM::fixup_t2_movt_hi16:
895 : case ARM::fixup_t2_movw_lo16:
896 : case ARM::fixup_arm_mod_imm:
897 : case ARM::fixup_t2_so_imm:
898 : // Instruction size is 4 bytes.
899 32 : return 4;
900 : }
901 : }
902 :
903 5278 : void ARMAsmBackend::applyFixup(const MCAssembler &Asm, const MCFixup &Fixup,
904 : const MCValue &Target,
905 : MutableArrayRef<char> Data, uint64_t Value,
906 : bool IsResolved,
907 : const MCSubtargetInfo* STI) const {
908 5278 : unsigned NumBytes = getFixupKindNumBytes(Fixup.getKind());
909 5278 : MCContext &Ctx = Asm.getContext();
910 5278 : Value = adjustFixupValue(Asm, Fixup, Target, Value, IsResolved, Ctx, STI);
911 5278 : if (!Value)
912 : return; // Doesn't change encoding.
913 :
914 3829 : unsigned Offset = Fixup.getOffset();
915 : assert(Offset + NumBytes <= Data.size() && "Invalid fixup offset!");
916 :
917 : // Used to point to big endian bytes.
918 : unsigned FullSizeBytes;
919 3829 : if (Endian == support::big) {
920 47 : FullSizeBytes = getFixupKindContainerSizeBytes(Fixup.getKind());
921 : assert((Offset + FullSizeBytes) <= Data.size() && "Invalid fixup size!");
922 : assert(NumBytes <= FullSizeBytes && "Invalid fixup size!");
923 : }
924 :
925 : // For each byte of the fragment that the fixup touches, mask in the bits from
926 : // the fixup value. The Value has been "split up" into the appropriate
927 : // bitfields above.
928 17036 : for (unsigned i = 0; i != NumBytes; ++i) {
929 13207 : unsigned Idx = Endian == support::little ? i : (FullSizeBytes - 1 - i);
930 26414 : Data[Offset + Idx] |= uint8_t((Value >> (i * 8)) & 0xff);
931 : }
932 : }
933 :
934 : namespace CU {
935 :
936 : /// Compact unwind encoding values.
937 : enum CompactUnwindEncodings {
938 : UNWIND_ARM_MODE_MASK = 0x0F000000,
939 : UNWIND_ARM_MODE_FRAME = 0x01000000,
940 : UNWIND_ARM_MODE_FRAME_D = 0x02000000,
941 : UNWIND_ARM_MODE_DWARF = 0x04000000,
942 :
943 : UNWIND_ARM_FRAME_STACK_ADJUST_MASK = 0x00C00000,
944 :
945 : UNWIND_ARM_FRAME_FIRST_PUSH_R4 = 0x00000001,
946 : UNWIND_ARM_FRAME_FIRST_PUSH_R5 = 0x00000002,
947 : UNWIND_ARM_FRAME_FIRST_PUSH_R6 = 0x00000004,
948 :
949 : UNWIND_ARM_FRAME_SECOND_PUSH_R8 = 0x00000008,
950 : UNWIND_ARM_FRAME_SECOND_PUSH_R9 = 0x00000010,
951 : UNWIND_ARM_FRAME_SECOND_PUSH_R10 = 0x00000020,
952 : UNWIND_ARM_FRAME_SECOND_PUSH_R11 = 0x00000040,
953 : UNWIND_ARM_FRAME_SECOND_PUSH_R12 = 0x00000080,
954 :
955 : UNWIND_ARM_FRAME_D_REG_COUNT_MASK = 0x00000F00,
956 :
957 : UNWIND_ARM_DWARF_SECTION_OFFSET = 0x00FFFFFF
958 : };
959 :
960 : } // end CU namespace
961 :
962 : /// Generate compact unwind encoding for the function based on the CFI
963 : /// instructions. If the CFI instructions describe a frame that cannot be
964 : /// encoded in compact unwind, the method returns UNWIND_ARM_MODE_DWARF which
965 : /// tells the runtime to fallback and unwind using dwarf.
966 18 : uint32_t ARMAsmBackendDarwin::generateCompactUnwindEncoding(
967 : ArrayRef<MCCFIInstruction> Instrs) const {
968 : DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "generateCU()\n");
969 : // Only armv7k uses CFI based unwinding.
970 18 : if (Subtype != MachO::CPU_SUBTYPE_ARM_V7K)
971 : return 0;
972 : // No .cfi directives means no frame.
973 9 : if (Instrs.empty())
974 : return 0;
975 : // Start off assuming CFA is at SP+0.
976 : int CFARegister = ARM::SP;
977 : int CFARegisterOffset = 0;
978 : // Mark savable registers as initially unsaved
979 : DenseMap<unsigned, int> RegOffsets;
980 : int FloatRegCount = 0;
981 : // Process each .cfi directive and build up compact unwind info.
982 42 : for (size_t i = 0, e = Instrs.size(); i != e; ++i) {
983 : int Reg;
984 35 : const MCCFIInstruction &Inst = Instrs[i];
985 35 : switch (Inst.getOperation()) {
986 7 : case MCCFIInstruction::OpDefCfa: // DW_CFA_def_cfa
987 7 : CFARegisterOffset = -Inst.getOffset();
988 7 : CFARegister = MRI.getLLVMRegNum(Inst.getRegister(), true);
989 7 : break;
990 0 : case MCCFIInstruction::OpDefCfaOffset: // DW_CFA_def_cfa_offset
991 0 : CFARegisterOffset = -Inst.getOffset();
992 0 : break;
993 0 : case MCCFIInstruction::OpDefCfaRegister: // DW_CFA_def_cfa_register
994 0 : CFARegister = MRI.getLLVMRegNum(Inst.getRegister(), true);
995 0 : break;
996 28 : case MCCFIInstruction::OpOffset: // DW_CFA_offset
997 28 : Reg = MRI.getLLVMRegNum(Inst.getRegister(), true);
998 28 : if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
999 23 : RegOffsets[Reg] = Inst.getOffset();
1000 5 : else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
1001 5 : RegOffsets[Reg] = Inst.getOffset();
1002 5 : ++FloatRegCount;
1003 : } else {
1004 : DEBUG_WITH_TYPE("compact-unwind",
1005 : llvm::dbgs() << ".cfi_offset on unknown register="
1006 : << Inst.getRegister() << "\n");
1007 : return CU::UNWIND_ARM_MODE_DWARF;
1008 : }
1009 : break;
1010 : case MCCFIInstruction::OpRelOffset: // DW_CFA_advance_loc
1011 : // Ignore
1012 : break;
1013 : default:
1014 : // Directive not convertable to compact unwind, bail out.
1015 : DEBUG_WITH_TYPE("compact-unwind",
1016 : llvm::dbgs()
1017 : << "CFI directive not compatiable with comact "
1018 : "unwind encoding, opcode=" << Inst.getOperation()
1019 : << "\n");
1020 : return CU::UNWIND_ARM_MODE_DWARF;
1021 : break;
1022 : }
1023 : }
1024 :
1025 : // If no frame set up, return no unwind info.
1026 7 : if ((CFARegister == ARM::SP) && (CFARegisterOffset == 0))
1027 : return 0;
1028 :
1029 : // Verify standard frame (lr/r7) was used.
1030 7 : if (CFARegister != ARM::R7) {
1031 : DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs() << "frame register is "
1032 : << CFARegister
1033 : << " instead of r7\n");
1034 : return CU::UNWIND_ARM_MODE_DWARF;
1035 : }
1036 7 : int StackAdjust = CFARegisterOffset - 8;
1037 14 : if (RegOffsets.lookup(ARM::LR) != (-4 - StackAdjust)) {
1038 : DEBUG_WITH_TYPE("compact-unwind",
1039 : llvm::dbgs()
1040 : << "LR not saved as standard frame, StackAdjust="
1041 : << StackAdjust
1042 : << ", CFARegisterOffset=" << CFARegisterOffset
1043 : << ", lr save at offset=" << RegOffsets[14] << "\n");
1044 : return CU::UNWIND_ARM_MODE_DWARF;
1045 : }
1046 14 : if (RegOffsets.lookup(ARM::R7) != (-8 - StackAdjust)) {
1047 : DEBUG_WITH_TYPE("compact-unwind",
1048 : llvm::dbgs() << "r7 not saved as standard frame\n");
1049 : return CU::UNWIND_ARM_MODE_DWARF;
1050 : }
1051 : uint32_t CompactUnwindEncoding = CU::UNWIND_ARM_MODE_FRAME;
1052 :
1053 : // If var-args are used, there may be a stack adjust required.
1054 7 : switch (StackAdjust) {
1055 : case 0:
1056 : break;
1057 0 : case 4:
1058 : CompactUnwindEncoding |= 0x00400000;
1059 0 : break;
1060 0 : case 8:
1061 : CompactUnwindEncoding |= 0x00800000;
1062 0 : break;
1063 1 : case 12:
1064 : CompactUnwindEncoding |= 0x00C00000;
1065 1 : break;
1066 : default:
1067 : DEBUG_WITH_TYPE("compact-unwind", llvm::dbgs()
1068 : << ".cfi_def_cfa stack adjust ("
1069 : << StackAdjust << ") out of range\n");
1070 : return CU::UNWIND_ARM_MODE_DWARF;
1071 : }
1072 :
1073 : // If r6 is saved, it must be right below r7.
1074 : static struct {
1075 : unsigned Reg;
1076 : unsigned Encoding;
1077 : } GPRCSRegs[] = {{ARM::R6, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R6},
1078 : {ARM::R5, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R5},
1079 : {ARM::R4, CU::UNWIND_ARM_FRAME_FIRST_PUSH_R4},
1080 : {ARM::R12, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R12},
1081 : {ARM::R11, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R11},
1082 : {ARM::R10, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R10},
1083 : {ARM::R9, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R9},
1084 : {ARM::R8, CU::UNWIND_ARM_FRAME_SECOND_PUSH_R8}};
1085 :
1086 : int CurOffset = -8 - StackAdjust;
1087 48 : for (auto CSReg : GPRCSRegs) {
1088 43 : auto Offset = RegOffsets.find(CSReg.Reg);
1089 43 : if (Offset == RegOffsets.end())
1090 34 : continue;
1091 :
1092 9 : int RegOffset = Offset->second;
1093 9 : if (RegOffset != CurOffset - 4) {
1094 : DEBUG_WITH_TYPE("compact-unwind",
1095 : llvm::dbgs() << MRI.getName(CSReg.Reg) << " saved at "
1096 : << RegOffset << " but only supported at "
1097 : << CurOffset << "\n");
1098 1 : return CU::UNWIND_ARM_MODE_DWARF;
1099 : }
1100 8 : CompactUnwindEncoding |= CSReg.Encoding;
1101 : CurOffset -= 4;
1102 : }
1103 :
1104 : // If no floats saved, we are done.
1105 5 : if (FloatRegCount == 0)
1106 : return CompactUnwindEncoding;
1107 :
1108 : // Switch mode to include D register saving.
1109 2 : CompactUnwindEncoding &= ~CU::UNWIND_ARM_MODE_MASK;
1110 2 : CompactUnwindEncoding |= CU::UNWIND_ARM_MODE_FRAME_D;
1111 :
1112 : // FIXME: supporting more than 4 saved D-registers compactly would be trivial,
1113 : // but needs coordination with the linker and libunwind.
1114 2 : if (FloatRegCount > 4) {
1115 : DEBUG_WITH_TYPE("compact-unwind",
1116 : llvm::dbgs() << "unsupported number of D registers saved ("
1117 : << FloatRegCount << ")\n");
1118 : return CU::UNWIND_ARM_MODE_DWARF;
1119 : }
1120 :
1121 : // Floating point registers must either be saved sequentially, or we defer to
1122 : // DWARF. No gaps allowed here so check that each saved d-register is
1123 : // precisely where it should be.
1124 : static unsigned FPRCSRegs[] = { ARM::D8, ARM::D10, ARM::D12, ARM::D14 };
1125 7 : for (int Idx = FloatRegCount - 1; Idx >= 0; --Idx) {
1126 5 : auto Offset = RegOffsets.find(FPRCSRegs[Idx]);
1127 5 : if (Offset == RegOffsets.end()) {
1128 : DEBUG_WITH_TYPE("compact-unwind",
1129 : llvm::dbgs() << FloatRegCount << " D-regs saved, but "
1130 : << MRI.getName(FPRCSRegs[Idx])
1131 : << " not saved\n");
1132 0 : return CU::UNWIND_ARM_MODE_DWARF;
1133 5 : } else if (Offset->second != CurOffset - 8) {
1134 : DEBUG_WITH_TYPE("compact-unwind",
1135 : llvm::dbgs() << FloatRegCount << " D-regs saved, but "
1136 : << MRI.getName(FPRCSRegs[Idx])
1137 : << " saved at " << Offset->second
1138 : << ", expected at " << CurOffset - 8
1139 : << "\n");
1140 : return CU::UNWIND_ARM_MODE_DWARF;
1141 : }
1142 : CurOffset -= 8;
1143 : }
1144 :
1145 2 : return CompactUnwindEncoding | ((FloatRegCount - 1) << 8);
1146 : }
1147 :
1148 : static MachO::CPUSubTypeARM getMachOSubTypeFromArch(StringRef Arch) {
1149 0 : ARM::ArchKind AK = ARM::parseArch(Arch);
1150 0 : switch (AK) {
1151 : default:
1152 : return MachO::CPU_SUBTYPE_ARM_V7;
1153 : case ARM::ArchKind::ARMV4T:
1154 : return MachO::CPU_SUBTYPE_ARM_V4T;
1155 : case ARM::ArchKind::ARMV5T:
1156 : case ARM::ArchKind::ARMV5TE:
1157 : case ARM::ArchKind::ARMV5TEJ:
1158 : return MachO::CPU_SUBTYPE_ARM_V5;
1159 : case ARM::ArchKind::ARMV6:
1160 : case ARM::ArchKind::ARMV6K:
1161 : return MachO::CPU_SUBTYPE_ARM_V6;
1162 : case ARM::ArchKind::ARMV7A:
1163 : return MachO::CPU_SUBTYPE_ARM_V7;
1164 : case ARM::ArchKind::ARMV7S:
1165 : return MachO::CPU_SUBTYPE_ARM_V7S;
1166 : case ARM::ArchKind::ARMV7K:
1167 : return MachO::CPU_SUBTYPE_ARM_V7K;
1168 : case ARM::ArchKind::ARMV6M:
1169 : return MachO::CPU_SUBTYPE_ARM_V6M;
1170 : case ARM::ArchKind::ARMV7M:
1171 : return MachO::CPU_SUBTYPE_ARM_V7M;
1172 : case ARM::ArchKind::ARMV7EM:
1173 : return MachO::CPU_SUBTYPE_ARM_V7EM;
1174 : }
1175 : }
1176 :
1177 0 : static MCAsmBackend *createARMAsmBackend(const Target &T,
1178 : const MCSubtargetInfo &STI,
1179 : const MCRegisterInfo &MRI,
1180 : const MCTargetOptions &Options,
1181 : support::endianness Endian) {
1182 : const Triple &TheTriple = STI.getTargetTriple();
1183 0 : switch (TheTriple.getObjectFormat()) {
1184 0 : default:
1185 0 : llvm_unreachable("unsupported object format");
1186 0 : case Triple::MachO: {
1187 0 : MachO::CPUSubTypeARM CS = getMachOSubTypeFromArch(TheTriple.getArchName());
1188 0 : return new ARMAsmBackendDarwin(T, STI, MRI, CS);
1189 : }
1190 0 : case Triple::COFF:
1191 : assert(TheTriple.isOSWindows() && "non-Windows ARM COFF is not supported");
1192 0 : return new ARMAsmBackendWinCOFF(T, STI);
1193 0 : case Triple::ELF:
1194 : assert(TheTriple.isOSBinFormatELF() && "using ELF for non-ELF target");
1195 0 : uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
1196 0 : return new ARMAsmBackendELF(T, STI, OSABI, Endian);
1197 : }
1198 : }
1199 :
1200 3976 : MCAsmBackend *llvm::createARMLEAsmBackend(const Target &T,
1201 : const MCSubtargetInfo &STI,
1202 : const MCRegisterInfo &MRI,
1203 : const MCTargetOptions &Options) {
1204 3976 : return createARMAsmBackend(T, STI, MRI, Options, support::little);
1205 : }
1206 :
1207 63 : MCAsmBackend *llvm::createARMBEAsmBackend(const Target &T,
1208 : const MCSubtargetInfo &STI,
1209 : const MCRegisterInfo &MRI,
1210 : const MCTargetOptions &Options) {
1211 63 : return createARMAsmBackend(T, STI, MRI, Options, support::big);
1212 : }
|