Bug Summary

File:llvm/lib/Target/AArch64/MCTargetDesc/AArch64AddressingModes.h
Warning:line 302, column 22
The result of the left shift is undefined because the right operand is negative

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name AArch64InstPrinter.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/lib/Target/AArch64/MCTargetDesc -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/lib/Target/AArch64/MCTargetDesc -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/lib/Target/AArch64/MCTargetDesc -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/lib/Target/AArch64 -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/lib/Target/AArch64 -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/include -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/include -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/lib/Target/AArch64/MCTargetDesc/.. -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/lib/Target/AArch64/MCTargetDesc/.. -D NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/lib/Target/AArch64/MCTargetDesc -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e=. -ferror-limit 19 -fvisibility hidden -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-09-04-040900-46481-1 -x c++ /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/lib/Target/AArch64/MCTargetDesc/AArch64InstPrinter.cpp

/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/lib/Target/AArch64/MCTargetDesc/AArch64InstPrinter.cpp

1//==-- AArch64InstPrinter.cpp - Convert AArch64 MCInst to assembly syntax --==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This class prints an AArch64 MCInst to a .s file.
10//
11//===----------------------------------------------------------------------===//
12
13#include "AArch64InstPrinter.h"
14#include "MCTargetDesc/AArch64AddressingModes.h"
15#include "Utils/AArch64BaseInfo.h"
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/StringExtras.h"
18#include "llvm/ADT/StringRef.h"
19#include "llvm/MC/MCAsmInfo.h"
20#include "llvm/MC/MCExpr.h"
21#include "llvm/MC/MCInst.h"
22#include "llvm/MC/MCRegisterInfo.h"
23#include "llvm/MC/MCSubtargetInfo.h"
24#include "llvm/Support/Casting.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/Format.h"
27#include "llvm/Support/MathExtras.h"
28#include "llvm/Support/raw_ostream.h"
29#include <cassert>
30#include <cstdint>
31#include <string>
32
33using namespace llvm;
34
35#define DEBUG_TYPE"asm-printer" "asm-printer"
36
37#define GET_INSTRUCTION_NAME
38#define PRINT_ALIAS_INSTR
39#include "AArch64GenAsmWriter.inc"
40#define GET_INSTRUCTION_NAME
41#define PRINT_ALIAS_INSTR
42#include "AArch64GenAsmWriter1.inc"
43
44AArch64InstPrinter::AArch64InstPrinter(const MCAsmInfo &MAI,
45 const MCInstrInfo &MII,
46 const MCRegisterInfo &MRI)
47 : MCInstPrinter(MAI, MII, MRI) {}
48
49AArch64AppleInstPrinter::AArch64AppleInstPrinter(const MCAsmInfo &MAI,
50 const MCInstrInfo &MII,
51 const MCRegisterInfo &MRI)
52 : AArch64InstPrinter(MAI, MII, MRI) {}
53
54bool AArch64InstPrinter::applyTargetSpecificCLOption(StringRef Opt) {
55 if (Opt == "no-aliases") {
56 PrintAliases = false;
57 return true;
58 }
59 return false;
60}
61
62void AArch64InstPrinter::printRegName(raw_ostream &OS, unsigned RegNo) const {
63 // This is for .cfi directives.
64 OS << getRegisterName(RegNo);
65}
66
67void AArch64InstPrinter::printInst(const MCInst *MI, uint64_t Address,
68 StringRef Annot, const MCSubtargetInfo &STI,
69 raw_ostream &O) {
70 // Check for special encodings and print the canonical alias instead.
71
72 unsigned Opcode = MI->getOpcode();
73
74 if (Opcode == AArch64::SYSxt)
1
Assuming 'Opcode' is not equal to SYSxt
75 if (printSysAlias(MI, STI, O)) {
76 printAnnotation(O, Annot);
77 return;
78 }
79
80 // SBFM/UBFM should print to a nicer aliased form if possible.
81 if (Opcode == AArch64::SBFMXri || Opcode == AArch64::SBFMWri ||
2
Assuming 'Opcode' is not equal to SBFMXri
3
Assuming 'Opcode' is not equal to SBFMWri
82 Opcode == AArch64::UBFMXri || Opcode == AArch64::UBFMWri) {
4
Assuming 'Opcode' is not equal to UBFMXri
5
Assuming 'Opcode' is not equal to UBFMWri
83 const MCOperand &Op0 = MI->getOperand(0);
84 const MCOperand &Op1 = MI->getOperand(1);
85 const MCOperand &Op2 = MI->getOperand(2);
86 const MCOperand &Op3 = MI->getOperand(3);
87
88 bool IsSigned = (Opcode == AArch64::SBFMXri || Opcode == AArch64::SBFMWri);
89 bool Is64Bit = (Opcode == AArch64::SBFMXri || Opcode == AArch64::UBFMXri);
90 if (Op2.isImm() && Op2.getImm() == 0 && Op3.isImm()) {
91 const char *AsmMnemonic = nullptr;
92
93 switch (Op3.getImm()) {
94 default:
95 break;
96 case 7:
97 if (IsSigned)
98 AsmMnemonic = "sxtb";
99 else if (!Is64Bit)
100 AsmMnemonic = "uxtb";
101 break;
102 case 15:
103 if (IsSigned)
104 AsmMnemonic = "sxth";
105 else if (!Is64Bit)
106 AsmMnemonic = "uxth";
107 break;
108 case 31:
109 // *xtw is only valid for signed 64-bit operations.
110 if (Is64Bit && IsSigned)
111 AsmMnemonic = "sxtw";
112 break;
113 }
114
115 if (AsmMnemonic) {
116 O << '\t' << AsmMnemonic << '\t' << getRegisterName(Op0.getReg())
117 << ", " << getRegisterName(getWRegFromXReg(Op1.getReg()));
118 printAnnotation(O, Annot);
119 return;
120 }
121 }
122
123 // All immediate shifts are aliases, implemented using the Bitfield
124 // instruction. In all cases the immediate shift amount shift must be in
125 // the range 0 to (reg.size -1).
126 if (Op2.isImm() && Op3.isImm()) {
127 const char *AsmMnemonic = nullptr;
128 int shift = 0;
129 int64_t immr = Op2.getImm();
130 int64_t imms = Op3.getImm();
131 if (Opcode == AArch64::UBFMWri && imms != 0x1F && ((imms + 1) == immr)) {
132 AsmMnemonic = "lsl";
133 shift = 31 - imms;
134 } else if (Opcode == AArch64::UBFMXri && imms != 0x3f &&
135 ((imms + 1 == immr))) {
136 AsmMnemonic = "lsl";
137 shift = 63 - imms;
138 } else if (Opcode == AArch64::UBFMWri && imms == 0x1f) {
139 AsmMnemonic = "lsr";
140 shift = immr;
141 } else if (Opcode == AArch64::UBFMXri && imms == 0x3f) {
142 AsmMnemonic = "lsr";
143 shift = immr;
144 } else if (Opcode == AArch64::SBFMWri && imms == 0x1f) {
145 AsmMnemonic = "asr";
146 shift = immr;
147 } else if (Opcode == AArch64::SBFMXri && imms == 0x3f) {
148 AsmMnemonic = "asr";
149 shift = immr;
150 }
151 if (AsmMnemonic) {
152 O << '\t' << AsmMnemonic << '\t' << getRegisterName(Op0.getReg())
153 << ", " << getRegisterName(Op1.getReg()) << ", #" << shift;
154 printAnnotation(O, Annot);
155 return;
156 }
157 }
158
159 // SBFIZ/UBFIZ aliases
160 if (Op2.getImm() > Op3.getImm()) {
161 O << '\t' << (IsSigned ? "sbfiz" : "ubfiz") << '\t'
162 << getRegisterName(Op0.getReg()) << ", " << getRegisterName(Op1.getReg())
163 << ", #" << (Is64Bit ? 64 : 32) - Op2.getImm() << ", #" << Op3.getImm() + 1;
164 printAnnotation(O, Annot);
165 return;
166 }
167
168 // Otherwise SBFX/UBFX is the preferred form
169 O << '\t' << (IsSigned ? "sbfx" : "ubfx") << '\t'
170 << getRegisterName(Op0.getReg()) << ", " << getRegisterName(Op1.getReg())
171 << ", #" << Op2.getImm() << ", #" << Op3.getImm() - Op2.getImm() + 1;
172 printAnnotation(O, Annot);
173 return;
174 }
175
176 if (Opcode == AArch64::BFMXri || Opcode == AArch64::BFMWri) {
6
Assuming 'Opcode' is not equal to BFMXri
7
Assuming 'Opcode' is not equal to BFMWri
177 const MCOperand &Op0 = MI->getOperand(0); // Op1 == Op0
178 const MCOperand &Op2 = MI->getOperand(2);
179 int ImmR = MI->getOperand(3).getImm();
180 int ImmS = MI->getOperand(4).getImm();
181
182 if ((Op2.getReg() == AArch64::WZR || Op2.getReg() == AArch64::XZR) &&
183 (ImmR == 0 || ImmS < ImmR) &&
184 STI.getFeatureBits()[AArch64::HasV8_2aOps]) {
185 // BFC takes precedence over its entire range, sligtly differently to BFI.
186 int BitWidth = Opcode == AArch64::BFMXri ? 64 : 32;
187 int LSB = (BitWidth - ImmR) % BitWidth;
188 int Width = ImmS + 1;
189
190 O << "\tbfc\t" << getRegisterName(Op0.getReg())
191 << ", #" << LSB << ", #" << Width;
192 printAnnotation(O, Annot);
193 return;
194 } else if (ImmS < ImmR) {
195 // BFI alias
196 int BitWidth = Opcode == AArch64::BFMXri ? 64 : 32;
197 int LSB = (BitWidth - ImmR) % BitWidth;
198 int Width = ImmS + 1;
199
200 O << "\tbfi\t" << getRegisterName(Op0.getReg()) << ", "
201 << getRegisterName(Op2.getReg()) << ", #" << LSB << ", #" << Width;
202 printAnnotation(O, Annot);
203 return;
204 }
205
206 int LSB = ImmR;
207 int Width = ImmS - ImmR + 1;
208 // Otherwise BFXIL the preferred form
209 O << "\tbfxil\t"
210 << getRegisterName(Op0.getReg()) << ", " << getRegisterName(Op2.getReg())
211 << ", #" << LSB << ", #" << Width;
212 printAnnotation(O, Annot);
213 return;
214 }
215
216 // Symbolic operands for MOVZ, MOVN and MOVK already imply a shift
217 // (e.g. :gottprel_g1: is always going to be "lsl #16") so it should not be
218 // printed.
219 if ((Opcode == AArch64::MOVZXi || Opcode == AArch64::MOVZWi ||
8
Assuming 'Opcode' is not equal to MOVZXi
9
Assuming 'Opcode' is not equal to MOVZWi
220 Opcode == AArch64::MOVNXi || Opcode == AArch64::MOVNWi) &&
10
Assuming 'Opcode' is not equal to MOVNXi
11
Assuming 'Opcode' is not equal to MOVNWi
221 MI->getOperand(1).isExpr()) {
222 if (Opcode == AArch64::MOVZXi || Opcode == AArch64::MOVZWi)
223 O << "\tmovz\t";
224 else
225 O << "\tmovn\t";
226
227 O << getRegisterName(MI->getOperand(0).getReg()) << ", #";
228 MI->getOperand(1).getExpr()->print(O, &MAI);
229 return;
230 }
231
232 if ((Opcode == AArch64::MOVKXi || Opcode == AArch64::MOVKWi) &&
12
Assuming 'Opcode' is not equal to MOVKXi
13
Assuming 'Opcode' is not equal to MOVKWi
233 MI->getOperand(2).isExpr()) {
234 O << "\tmovk\t" << getRegisterName(MI->getOperand(0).getReg()) << ", #";
235 MI->getOperand(2).getExpr()->print(O, &MAI);
236 return;
237 }
238
239 // MOVZ, MOVN and "ORR wzr, #imm" instructions are aliases for MOV, but their
240 // domains overlap so they need to be prioritized. The chain is "MOVZ lsl #0 >
241 // MOVZ lsl #N > MOVN lsl #0 > MOVN lsl #N > ORR". The highest instruction
242 // that can represent the move is the MOV alias, and the rest get printed
243 // normally.
244 if ((Opcode
13.1
'Opcode' is not equal to MOVZXi
13.1
'Opcode' is not equal to MOVZXi
== AArch64::MOVZXi || Opcode
13.2
'Opcode' is not equal to MOVZWi
13.2
'Opcode' is not equal to MOVZWi
== AArch64::MOVZWi) &&
245 MI->getOperand(1).isImm() && MI->getOperand(2).isImm()) {
246 int RegWidth = Opcode == AArch64::MOVZXi ? 64 : 32;
247 int Shift = MI->getOperand(2).getImm();
248 uint64_t Value = (uint64_t)MI->getOperand(1).getImm() << Shift;
249
250 if (AArch64_AM::isMOVZMovAlias(Value, Shift,
251 Opcode == AArch64::MOVZXi ? 64 : 32)) {
252 O << "\tmov\t" << getRegisterName(MI->getOperand(0).getReg()) << ", #"
253 << formatImm(SignExtend64(Value, RegWidth));
254 return;
255 }
256 }
257
258 if ((Opcode
13.3
'Opcode' is not equal to MOVNXi
13.3
'Opcode' is not equal to MOVNXi
== AArch64::MOVNXi || Opcode
13.4
'Opcode' is not equal to MOVNWi
13.4
'Opcode' is not equal to MOVNWi
== AArch64::MOVNWi) &&
259 MI->getOperand(1).isImm() && MI->getOperand(2).isImm()) {
260 int RegWidth = Opcode == AArch64::MOVNXi ? 64 : 32;
261 int Shift = MI->getOperand(2).getImm();
262 uint64_t Value = ~((uint64_t)MI->getOperand(1).getImm() << Shift);
263 if (RegWidth == 32)
264 Value = Value & 0xffffffff;
265
266 if (AArch64_AM::isMOVNMovAlias(Value, Shift, RegWidth)) {
267 O << "\tmov\t" << getRegisterName(MI->getOperand(0).getReg()) << ", #"
268 << formatImm(SignExtend64(Value, RegWidth));
269 return;
270 }
271 }
272
273 if ((Opcode == AArch64::ORRXri || Opcode == AArch64::ORRWri) &&
14
Assuming 'Opcode' is equal to ORRXri
274 (MI->getOperand(1).getReg() == AArch64::XZR ||
15
Assuming the condition is true
275 MI->getOperand(1).getReg() == AArch64::WZR) &&
276 MI->getOperand(2).isImm()) {
277 int RegWidth = Opcode
16.1
'Opcode' is equal to ORRXri
16.1
'Opcode' is equal to ORRXri
== AArch64::ORRXri ? 64 : 32;
16
Taking true branch
17
'?' condition is true
278 uint64_t Value = AArch64_AM::decodeLogicalImmediate(
18
Calling 'decodeLogicalImmediate'
279 MI->getOperand(2).getImm(), RegWidth);
280 if (!AArch64_AM::isAnyMOVWMovAlias(Value, RegWidth)) {
281 O << "\tmov\t" << getRegisterName(MI->getOperand(0).getReg()) << ", #"
282 << formatImm(SignExtend64(Value, RegWidth));
283 return;
284 }
285 }
286
287 if (Opcode == AArch64::CompilerBarrier) {
288 O << '\t' << MAI.getCommentString() << " COMPILER BARRIER";
289 printAnnotation(O, Annot);
290 return;
291 }
292
293 if (Opcode == AArch64::SPACE) {
294 O << '\t' << MAI.getCommentString() << " SPACE "
295 << MI->getOperand(1).getImm();
296 printAnnotation(O, Annot);
297 return;
298 }
299
300 // Instruction TSB is specified as a one operand instruction, but 'csync' is
301 // not encoded, so for printing it is treated as a special case here:
302 if (Opcode == AArch64::TSB) {
303 O << "\ttsb\tcsync";
304 return;
305 }
306
307 if (!PrintAliases || !printAliasInstr(MI, Address, STI, O))
308 printInstruction(MI, Address, STI, O);
309
310 printAnnotation(O, Annot);
311
312 if (atomicBarrierDroppedOnZero(Opcode) &&
313 (MI->getOperand(0).getReg() == AArch64::XZR ||
314 MI->getOperand(0).getReg() == AArch64::WZR)) {
315 printAnnotation(O, "acquire semantics dropped since destination is zero");
316 }
317}
318
319static bool isTblTbxInstruction(unsigned Opcode, StringRef &Layout,
320 bool &IsTbx) {
321 switch (Opcode) {
322 case AArch64::TBXv8i8One:
323 case AArch64::TBXv8i8Two:
324 case AArch64::TBXv8i8Three:
325 case AArch64::TBXv8i8Four:
326 IsTbx = true;
327 Layout = ".8b";
328 return true;
329 case AArch64::TBLv8i8One:
330 case AArch64::TBLv8i8Two:
331 case AArch64::TBLv8i8Three:
332 case AArch64::TBLv8i8Four:
333 IsTbx = false;
334 Layout = ".8b";
335 return true;
336 case AArch64::TBXv16i8One:
337 case AArch64::TBXv16i8Two:
338 case AArch64::TBXv16i8Three:
339 case AArch64::TBXv16i8Four:
340 IsTbx = true;
341 Layout = ".16b";
342 return true;
343 case AArch64::TBLv16i8One:
344 case AArch64::TBLv16i8Two:
345 case AArch64::TBLv16i8Three:
346 case AArch64::TBLv16i8Four:
347 IsTbx = false;
348 Layout = ".16b";
349 return true;
350 default:
351 return false;
352 }
353}
354
355struct LdStNInstrDesc {
356 unsigned Opcode;
357 const char *Mnemonic;
358 const char *Layout;
359 int ListOperand;
360 bool HasLane;
361 int NaturalOffset;
362};
363
364static const LdStNInstrDesc LdStNInstInfo[] = {
365 { AArch64::LD1i8, "ld1", ".b", 1, true, 0 },
366 { AArch64::LD1i16, "ld1", ".h", 1, true, 0 },
367 { AArch64::LD1i32, "ld1", ".s", 1, true, 0 },
368 { AArch64::LD1i64, "ld1", ".d", 1, true, 0 },
369 { AArch64::LD1i8_POST, "ld1", ".b", 2, true, 1 },
370 { AArch64::LD1i16_POST, "ld1", ".h", 2, true, 2 },
371 { AArch64::LD1i32_POST, "ld1", ".s", 2, true, 4 },
372 { AArch64::LD1i64_POST, "ld1", ".d", 2, true, 8 },
373 { AArch64::LD1Rv16b, "ld1r", ".16b", 0, false, 0 },
374 { AArch64::LD1Rv8h, "ld1r", ".8h", 0, false, 0 },
375 { AArch64::LD1Rv4s, "ld1r", ".4s", 0, false, 0 },
376 { AArch64::LD1Rv2d, "ld1r", ".2d", 0, false, 0 },
377 { AArch64::LD1Rv8b, "ld1r", ".8b", 0, false, 0 },
378 { AArch64::LD1Rv4h, "ld1r", ".4h", 0, false, 0 },
379 { AArch64::LD1Rv2s, "ld1r", ".2s", 0, false, 0 },
380 { AArch64::LD1Rv1d, "ld1r", ".1d", 0, false, 0 },
381 { AArch64::LD1Rv16b_POST, "ld1r", ".16b", 1, false, 1 },
382 { AArch64::LD1Rv8h_POST, "ld1r", ".8h", 1, false, 2 },
383 { AArch64::LD1Rv4s_POST, "ld1r", ".4s", 1, false, 4 },
384 { AArch64::LD1Rv2d_POST, "ld1r", ".2d", 1, false, 8 },
385 { AArch64::LD1Rv8b_POST, "ld1r", ".8b", 1, false, 1 },
386 { AArch64::LD1Rv4h_POST, "ld1r", ".4h", 1, false, 2 },
387 { AArch64::LD1Rv2s_POST, "ld1r", ".2s", 1, false, 4 },
388 { AArch64::LD1Rv1d_POST, "ld1r", ".1d", 1, false, 8 },
389 { AArch64::LD1Onev16b, "ld1", ".16b", 0, false, 0 },
390 { AArch64::LD1Onev8h, "ld1", ".8h", 0, false, 0 },
391 { AArch64::LD1Onev4s, "ld1", ".4s", 0, false, 0 },
392 { AArch64::LD1Onev2d, "ld1", ".2d", 0, false, 0 },
393 { AArch64::LD1Onev8b, "ld1", ".8b", 0, false, 0 },
394 { AArch64::LD1Onev4h, "ld1", ".4h", 0, false, 0 },
395 { AArch64::LD1Onev2s, "ld1", ".2s", 0, false, 0 },
396 { AArch64::LD1Onev1d, "ld1", ".1d", 0, false, 0 },
397 { AArch64::LD1Onev16b_POST, "ld1", ".16b", 1, false, 16 },
398 { AArch64::LD1Onev8h_POST, "ld1", ".8h", 1, false, 16 },
399 { AArch64::LD1Onev4s_POST, "ld1", ".4s", 1, false, 16 },
400 { AArch64::LD1Onev2d_POST, "ld1", ".2d", 1, false, 16 },
401 { AArch64::LD1Onev8b_POST, "ld1", ".8b", 1, false, 8 },
402 { AArch64::LD1Onev4h_POST, "ld1", ".4h", 1, false, 8 },
403 { AArch64::LD1Onev2s_POST, "ld1", ".2s", 1, false, 8 },
404 { AArch64::LD1Onev1d_POST, "ld1", ".1d", 1, false, 8 },
405 { AArch64::LD1Twov16b, "ld1", ".16b", 0, false, 0 },
406 { AArch64::LD1Twov8h, "ld1", ".8h", 0, false, 0 },
407 { AArch64::LD1Twov4s, "ld1", ".4s", 0, false, 0 },
408 { AArch64::LD1Twov2d, "ld1", ".2d", 0, false, 0 },
409 { AArch64::LD1Twov8b, "ld1", ".8b", 0, false, 0 },
410 { AArch64::LD1Twov4h, "ld1", ".4h", 0, false, 0 },
411 { AArch64::LD1Twov2s, "ld1", ".2s", 0, false, 0 },
412 { AArch64::LD1Twov1d, "ld1", ".1d", 0, false, 0 },
413 { AArch64::LD1Twov16b_POST, "ld1", ".16b", 1, false, 32 },
414 { AArch64::LD1Twov8h_POST, "ld1", ".8h", 1, false, 32 },
415 { AArch64::LD1Twov4s_POST, "ld1", ".4s", 1, false, 32 },
416 { AArch64::LD1Twov2d_POST, "ld1", ".2d", 1, false, 32 },
417 { AArch64::LD1Twov8b_POST, "ld1", ".8b", 1, false, 16 },
418 { AArch64::LD1Twov4h_POST, "ld1", ".4h", 1, false, 16 },
419 { AArch64::LD1Twov2s_POST, "ld1", ".2s", 1, false, 16 },
420 { AArch64::LD1Twov1d_POST, "ld1", ".1d", 1, false, 16 },
421 { AArch64::LD1Threev16b, "ld1", ".16b", 0, false, 0 },
422 { AArch64::LD1Threev8h, "ld1", ".8h", 0, false, 0 },
423 { AArch64::LD1Threev4s, "ld1", ".4s", 0, false, 0 },
424 { AArch64::LD1Threev2d, "ld1", ".2d", 0, false, 0 },
425 { AArch64::LD1Threev8b, "ld1", ".8b", 0, false, 0 },
426 { AArch64::LD1Threev4h, "ld1", ".4h", 0, false, 0 },
427 { AArch64::LD1Threev2s, "ld1", ".2s", 0, false, 0 },
428 { AArch64::LD1Threev1d, "ld1", ".1d", 0, false, 0 },
429 { AArch64::LD1Threev16b_POST, "ld1", ".16b", 1, false, 48 },
430 { AArch64::LD1Threev8h_POST, "ld1", ".8h", 1, false, 48 },
431 { AArch64::LD1Threev4s_POST, "ld1", ".4s", 1, false, 48 },
432 { AArch64::LD1Threev2d_POST, "ld1", ".2d", 1, false, 48 },
433 { AArch64::LD1Threev8b_POST, "ld1", ".8b", 1, false, 24 },
434 { AArch64::LD1Threev4h_POST, "ld1", ".4h", 1, false, 24 },
435 { AArch64::LD1Threev2s_POST, "ld1", ".2s", 1, false, 24 },
436 { AArch64::LD1Threev1d_POST, "ld1", ".1d", 1, false, 24 },
437 { AArch64::LD1Fourv16b, "ld1", ".16b", 0, false, 0 },
438 { AArch64::LD1Fourv8h, "ld1", ".8h", 0, false, 0 },
439 { AArch64::LD1Fourv4s, "ld1", ".4s", 0, false, 0 },
440 { AArch64::LD1Fourv2d, "ld1", ".2d", 0, false, 0 },
441 { AArch64::LD1Fourv8b, "ld1", ".8b", 0, false, 0 },
442 { AArch64::LD1Fourv4h, "ld1", ".4h", 0, false, 0 },
443 { AArch64::LD1Fourv2s, "ld1", ".2s", 0, false, 0 },
444 { AArch64::LD1Fourv1d, "ld1", ".1d", 0, false, 0 },
445 { AArch64::LD1Fourv16b_POST, "ld1", ".16b", 1, false, 64 },
446 { AArch64::LD1Fourv8h_POST, "ld1", ".8h", 1, false, 64 },
447 { AArch64::LD1Fourv4s_POST, "ld1", ".4s", 1, false, 64 },
448 { AArch64::LD1Fourv2d_POST, "ld1", ".2d", 1, false, 64 },
449 { AArch64::LD1Fourv8b_POST, "ld1", ".8b", 1, false, 32 },
450 { AArch64::LD1Fourv4h_POST, "ld1", ".4h", 1, false, 32 },
451 { AArch64::LD1Fourv2s_POST, "ld1", ".2s", 1, false, 32 },
452 { AArch64::LD1Fourv1d_POST, "ld1", ".1d", 1, false, 32 },
453 { AArch64::LD2i8, "ld2", ".b", 1, true, 0 },
454 { AArch64::LD2i16, "ld2", ".h", 1, true, 0 },
455 { AArch64::LD2i32, "ld2", ".s", 1, true, 0 },
456 { AArch64::LD2i64, "ld2", ".d", 1, true, 0 },
457 { AArch64::LD2i8_POST, "ld2", ".b", 2, true, 2 },
458 { AArch64::LD2i16_POST, "ld2", ".h", 2, true, 4 },
459 { AArch64::LD2i32_POST, "ld2", ".s", 2, true, 8 },
460 { AArch64::LD2i64_POST, "ld2", ".d", 2, true, 16 },
461 { AArch64::LD2Rv16b, "ld2r", ".16b", 0, false, 0 },
462 { AArch64::LD2Rv8h, "ld2r", ".8h", 0, false, 0 },
463 { AArch64::LD2Rv4s, "ld2r", ".4s", 0, false, 0 },
464 { AArch64::LD2Rv2d, "ld2r", ".2d", 0, false, 0 },
465 { AArch64::LD2Rv8b, "ld2r", ".8b", 0, false, 0 },
466 { AArch64::LD2Rv4h, "ld2r", ".4h", 0, false, 0 },
467 { AArch64::LD2Rv2s, "ld2r", ".2s", 0, false, 0 },
468 { AArch64::LD2Rv1d, "ld2r", ".1d", 0, false, 0 },
469 { AArch64::LD2Rv16b_POST, "ld2r", ".16b", 1, false, 2 },
470 { AArch64::LD2Rv8h_POST, "ld2r", ".8h", 1, false, 4 },
471 { AArch64::LD2Rv4s_POST, "ld2r", ".4s", 1, false, 8 },
472 { AArch64::LD2Rv2d_POST, "ld2r", ".2d", 1, false, 16 },
473 { AArch64::LD2Rv8b_POST, "ld2r", ".8b", 1, false, 2 },
474 { AArch64::LD2Rv4h_POST, "ld2r", ".4h", 1, false, 4 },
475 { AArch64::LD2Rv2s_POST, "ld2r", ".2s", 1, false, 8 },
476 { AArch64::LD2Rv1d_POST, "ld2r", ".1d", 1, false, 16 },
477 { AArch64::LD2Twov16b, "ld2", ".16b", 0, false, 0 },
478 { AArch64::LD2Twov8h, "ld2", ".8h", 0, false, 0 },
479 { AArch64::LD2Twov4s, "ld2", ".4s", 0, false, 0 },
480 { AArch64::LD2Twov2d, "ld2", ".2d", 0, false, 0 },
481 { AArch64::LD2Twov8b, "ld2", ".8b", 0, false, 0 },
482 { AArch64::LD2Twov4h, "ld2", ".4h", 0, false, 0 },
483 { AArch64::LD2Twov2s, "ld2", ".2s", 0, false, 0 },
484 { AArch64::LD2Twov16b_POST, "ld2", ".16b", 1, false, 32 },
485 { AArch64::LD2Twov8h_POST, "ld2", ".8h", 1, false, 32 },
486 { AArch64::LD2Twov4s_POST, "ld2", ".4s", 1, false, 32 },
487 { AArch64::LD2Twov2d_POST, "ld2", ".2d", 1, false, 32 },
488 { AArch64::LD2Twov8b_POST, "ld2", ".8b", 1, false, 16 },
489 { AArch64::LD2Twov4h_POST, "ld2", ".4h", 1, false, 16 },
490 { AArch64::LD2Twov2s_POST, "ld2", ".2s", 1, false, 16 },
491 { AArch64::LD3i8, "ld3", ".b", 1, true, 0 },
492 { AArch64::LD3i16, "ld3", ".h", 1, true, 0 },
493 { AArch64::LD3i32, "ld3", ".s", 1, true, 0 },
494 { AArch64::LD3i64, "ld3", ".d", 1, true, 0 },
495 { AArch64::LD3i8_POST, "ld3", ".b", 2, true, 3 },
496 { AArch64::LD3i16_POST, "ld3", ".h", 2, true, 6 },
497 { AArch64::LD3i32_POST, "ld3", ".s", 2, true, 12 },
498 { AArch64::LD3i64_POST, "ld3", ".d", 2, true, 24 },
499 { AArch64::LD3Rv16b, "ld3r", ".16b", 0, false, 0 },
500 { AArch64::LD3Rv8h, "ld3r", ".8h", 0, false, 0 },
501 { AArch64::LD3Rv4s, "ld3r", ".4s", 0, false, 0 },
502 { AArch64::LD3Rv2d, "ld3r", ".2d", 0, false, 0 },
503 { AArch64::LD3Rv8b, "ld3r", ".8b", 0, false, 0 },
504 { AArch64::LD3Rv4h, "ld3r", ".4h", 0, false, 0 },
505 { AArch64::LD3Rv2s, "ld3r", ".2s", 0, false, 0 },
506 { AArch64::LD3Rv1d, "ld3r", ".1d", 0, false, 0 },
507 { AArch64::LD3Rv16b_POST, "ld3r", ".16b", 1, false, 3 },
508 { AArch64::LD3Rv8h_POST, "ld3r", ".8h", 1, false, 6 },
509 { AArch64::LD3Rv4s_POST, "ld3r", ".4s", 1, false, 12 },
510 { AArch64::LD3Rv2d_POST, "ld3r", ".2d", 1, false, 24 },
511 { AArch64::LD3Rv8b_POST, "ld3r", ".8b", 1, false, 3 },
512 { AArch64::LD3Rv4h_POST, "ld3r", ".4h", 1, false, 6 },
513 { AArch64::LD3Rv2s_POST, "ld3r", ".2s", 1, false, 12 },
514 { AArch64::LD3Rv1d_POST, "ld3r", ".1d", 1, false, 24 },
515 { AArch64::LD3Threev16b, "ld3", ".16b", 0, false, 0 },
516 { AArch64::LD3Threev8h, "ld3", ".8h", 0, false, 0 },
517 { AArch64::LD3Threev4s, "ld3", ".4s", 0, false, 0 },
518 { AArch64::LD3Threev2d, "ld3", ".2d", 0, false, 0 },
519 { AArch64::LD3Threev8b, "ld3", ".8b", 0, false, 0 },
520 { AArch64::LD3Threev4h, "ld3", ".4h", 0, false, 0 },
521 { AArch64::LD3Threev2s, "ld3", ".2s", 0, false, 0 },
522 { AArch64::LD3Threev16b_POST, "ld3", ".16b", 1, false, 48 },
523 { AArch64::LD3Threev8h_POST, "ld3", ".8h", 1, false, 48 },
524 { AArch64::LD3Threev4s_POST, "ld3", ".4s", 1, false, 48 },
525 { AArch64::LD3Threev2d_POST, "ld3", ".2d", 1, false, 48 },
526 { AArch64::LD3Threev8b_POST, "ld3", ".8b", 1, false, 24 },
527 { AArch64::LD3Threev4h_POST, "ld3", ".4h", 1, false, 24 },
528 { AArch64::LD3Threev2s_POST, "ld3", ".2s", 1, false, 24 },
529 { AArch64::LD4i8, "ld4", ".b", 1, true, 0 },
530 { AArch64::LD4i16, "ld4", ".h", 1, true, 0 },
531 { AArch64::LD4i32, "ld4", ".s", 1, true, 0 },
532 { AArch64::LD4i64, "ld4", ".d", 1, true, 0 },
533 { AArch64::LD4i8_POST, "ld4", ".b", 2, true, 4 },
534 { AArch64::LD4i16_POST, "ld4", ".h", 2, true, 8 },
535 { AArch64::LD4i32_POST, "ld4", ".s", 2, true, 16 },
536 { AArch64::LD4i64_POST, "ld4", ".d", 2, true, 32 },
537 { AArch64::LD4Rv16b, "ld4r", ".16b", 0, false, 0 },
538 { AArch64::LD4Rv8h, "ld4r", ".8h", 0, false, 0 },
539 { AArch64::LD4Rv4s, "ld4r", ".4s", 0, false, 0 },
540 { AArch64::LD4Rv2d, "ld4r", ".2d", 0, false, 0 },
541 { AArch64::LD4Rv8b, "ld4r", ".8b", 0, false, 0 },
542 { AArch64::LD4Rv4h, "ld4r", ".4h", 0, false, 0 },
543 { AArch64::LD4Rv2s, "ld4r", ".2s", 0, false, 0 },
544 { AArch64::LD4Rv1d, "ld4r", ".1d", 0, false, 0 },
545 { AArch64::LD4Rv16b_POST, "ld4r", ".16b", 1, false, 4 },
546 { AArch64::LD4Rv8h_POST, "ld4r", ".8h", 1, false, 8 },
547 { AArch64::LD4Rv4s_POST, "ld4r", ".4s", 1, false, 16 },
548 { AArch64::LD4Rv2d_POST, "ld4r", ".2d", 1, false, 32 },
549 { AArch64::LD4Rv8b_POST, "ld4r", ".8b", 1, false, 4 },
550 { AArch64::LD4Rv4h_POST, "ld4r", ".4h", 1, false, 8 },
551 { AArch64::LD4Rv2s_POST, "ld4r", ".2s", 1, false, 16 },
552 { AArch64::LD4Rv1d_POST, "ld4r", ".1d", 1, false, 32 },
553 { AArch64::LD4Fourv16b, "ld4", ".16b", 0, false, 0 },
554 { AArch64::LD4Fourv8h, "ld4", ".8h", 0, false, 0 },
555 { AArch64::LD4Fourv4s, "ld4", ".4s", 0, false, 0 },
556 { AArch64::LD4Fourv2d, "ld4", ".2d", 0, false, 0 },
557 { AArch64::LD4Fourv8b, "ld4", ".8b", 0, false, 0 },
558 { AArch64::LD4Fourv4h, "ld4", ".4h", 0, false, 0 },
559 { AArch64::LD4Fourv2s, "ld4", ".2s", 0, false, 0 },
560 { AArch64::LD4Fourv16b_POST, "ld4", ".16b", 1, false, 64 },
561 { AArch64::LD4Fourv8h_POST, "ld4", ".8h", 1, false, 64 },
562 { AArch64::LD4Fourv4s_POST, "ld4", ".4s", 1, false, 64 },
563 { AArch64::LD4Fourv2d_POST, "ld4", ".2d", 1, false, 64 },
564 { AArch64::LD4Fourv8b_POST, "ld4", ".8b", 1, false, 32 },
565 { AArch64::LD4Fourv4h_POST, "ld4", ".4h", 1, false, 32 },
566 { AArch64::LD4Fourv2s_POST, "ld4", ".2s", 1, false, 32 },
567 { AArch64::ST1i8, "st1", ".b", 0, true, 0 },
568 { AArch64::ST1i16, "st1", ".h", 0, true, 0 },
569 { AArch64::ST1i32, "st1", ".s", 0, true, 0 },
570 { AArch64::ST1i64, "st1", ".d", 0, true, 0 },
571 { AArch64::ST1i8_POST, "st1", ".b", 1, true, 1 },
572 { AArch64::ST1i16_POST, "st1", ".h", 1, true, 2 },
573 { AArch64::ST1i32_POST, "st1", ".s", 1, true, 4 },
574 { AArch64::ST1i64_POST, "st1", ".d", 1, true, 8 },
575 { AArch64::ST1Onev16b, "st1", ".16b", 0, false, 0 },
576 { AArch64::ST1Onev8h, "st1", ".8h", 0, false, 0 },
577 { AArch64::ST1Onev4s, "st1", ".4s", 0, false, 0 },
578 { AArch64::ST1Onev2d, "st1", ".2d", 0, false, 0 },
579 { AArch64::ST1Onev8b, "st1", ".8b", 0, false, 0 },
580 { AArch64::ST1Onev4h, "st1", ".4h", 0, false, 0 },
581 { AArch64::ST1Onev2s, "st1", ".2s", 0, false, 0 },
582 { AArch64::ST1Onev1d, "st1", ".1d", 0, false, 0 },
583 { AArch64::ST1Onev16b_POST, "st1", ".16b", 1, false, 16 },
584 { AArch64::ST1Onev8h_POST, "st1", ".8h", 1, false, 16 },
585 { AArch64::ST1Onev4s_POST, "st1", ".4s", 1, false, 16 },
586 { AArch64::ST1Onev2d_POST, "st1", ".2d", 1, false, 16 },
587 { AArch64::ST1Onev8b_POST, "st1", ".8b", 1, false, 8 },
588 { AArch64::ST1Onev4h_POST, "st1", ".4h", 1, false, 8 },
589 { AArch64::ST1Onev2s_POST, "st1", ".2s", 1, false, 8 },
590 { AArch64::ST1Onev1d_POST, "st1", ".1d", 1, false, 8 },
591 { AArch64::ST1Twov16b, "st1", ".16b", 0, false, 0 },
592 { AArch64::ST1Twov8h, "st1", ".8h", 0, false, 0 },
593 { AArch64::ST1Twov4s, "st1", ".4s", 0, false, 0 },
594 { AArch64::ST1Twov2d, "st1", ".2d", 0, false, 0 },
595 { AArch64::ST1Twov8b, "st1", ".8b", 0, false, 0 },
596 { AArch64::ST1Twov4h, "st1", ".4h", 0, false, 0 },
597 { AArch64::ST1Twov2s, "st1", ".2s", 0, false, 0 },
598 { AArch64::ST1Twov1d, "st1", ".1d", 0, false, 0 },
599 { AArch64::ST1Twov16b_POST, "st1", ".16b", 1, false, 32 },
600 { AArch64::ST1Twov8h_POST, "st1", ".8h", 1, false, 32 },
601 { AArch64::ST1Twov4s_POST, "st1", ".4s", 1, false, 32 },
602 { AArch64::ST1Twov2d_POST, "st1", ".2d", 1, false, 32 },
603 { AArch64::ST1Twov8b_POST, "st1", ".8b", 1, false, 16 },
604 { AArch64::ST1Twov4h_POST, "st1", ".4h", 1, false, 16 },
605 { AArch64::ST1Twov2s_POST, "st1", ".2s", 1, false, 16 },
606 { AArch64::ST1Twov1d_POST, "st1", ".1d", 1, false, 16 },
607 { AArch64::ST1Threev16b, "st1", ".16b", 0, false, 0 },
608 { AArch64::ST1Threev8h, "st1", ".8h", 0, false, 0 },
609 { AArch64::ST1Threev4s, "st1", ".4s", 0, false, 0 },
610 { AArch64::ST1Threev2d, "st1", ".2d", 0, false, 0 },
611 { AArch64::ST1Threev8b, "st1", ".8b", 0, false, 0 },
612 { AArch64::ST1Threev4h, "st1", ".4h", 0, false, 0 },
613 { AArch64::ST1Threev2s, "st1", ".2s", 0, false, 0 },
614 { AArch64::ST1Threev1d, "st1", ".1d", 0, false, 0 },
615 { AArch64::ST1Threev16b_POST, "st1", ".16b", 1, false, 48 },
616 { AArch64::ST1Threev8h_POST, "st1", ".8h", 1, false, 48 },
617 { AArch64::ST1Threev4s_POST, "st1", ".4s", 1, false, 48 },
618 { AArch64::ST1Threev2d_POST, "st1", ".2d", 1, false, 48 },
619 { AArch64::ST1Threev8b_POST, "st1", ".8b", 1, false, 24 },
620 { AArch64::ST1Threev4h_POST, "st1", ".4h", 1, false, 24 },
621 { AArch64::ST1Threev2s_POST, "st1", ".2s", 1, false, 24 },
622 { AArch64::ST1Threev1d_POST, "st1", ".1d", 1, false, 24 },
623 { AArch64::ST1Fourv16b, "st1", ".16b", 0, false, 0 },
624 { AArch64::ST1Fourv8h, "st1", ".8h", 0, false, 0 },
625 { AArch64::ST1Fourv4s, "st1", ".4s", 0, false, 0 },
626 { AArch64::ST1Fourv2d, "st1", ".2d", 0, false, 0 },
627 { AArch64::ST1Fourv8b, "st1", ".8b", 0, false, 0 },
628 { AArch64::ST1Fourv4h, "st1", ".4h", 0, false, 0 },
629 { AArch64::ST1Fourv2s, "st1", ".2s", 0, false, 0 },
630 { AArch64::ST1Fourv1d, "st1", ".1d", 0, false, 0 },
631 { AArch64::ST1Fourv16b_POST, "st1", ".16b", 1, false, 64 },
632 { AArch64::ST1Fourv8h_POST, "st1", ".8h", 1, false, 64 },
633 { AArch64::ST1Fourv4s_POST, "st1", ".4s", 1, false, 64 },
634 { AArch64::ST1Fourv2d_POST, "st1", ".2d", 1, false, 64 },
635 { AArch64::ST1Fourv8b_POST, "st1", ".8b", 1, false, 32 },
636 { AArch64::ST1Fourv4h_POST, "st1", ".4h", 1, false, 32 },
637 { AArch64::ST1Fourv2s_POST, "st1", ".2s", 1, false, 32 },
638 { AArch64::ST1Fourv1d_POST, "st1", ".1d", 1, false, 32 },
639 { AArch64::ST2i8, "st2", ".b", 0, true, 0 },
640 { AArch64::ST2i16, "st2", ".h", 0, true, 0 },
641 { AArch64::ST2i32, "st2", ".s", 0, true, 0 },
642 { AArch64::ST2i64, "st2", ".d", 0, true, 0 },
643 { AArch64::ST2i8_POST, "st2", ".b", 1, true, 2 },
644 { AArch64::ST2i16_POST, "st2", ".h", 1, true, 4 },
645 { AArch64::ST2i32_POST, "st2", ".s", 1, true, 8 },
646 { AArch64::ST2i64_POST, "st2", ".d", 1, true, 16 },
647 { AArch64::ST2Twov16b, "st2", ".16b", 0, false, 0 },
648 { AArch64::ST2Twov8h, "st2", ".8h", 0, false, 0 },
649 { AArch64::ST2Twov4s, "st2", ".4s", 0, false, 0 },
650 { AArch64::ST2Twov2d, "st2", ".2d", 0, false, 0 },
651 { AArch64::ST2Twov8b, "st2", ".8b", 0, false, 0 },
652 { AArch64::ST2Twov4h, "st2", ".4h", 0, false, 0 },
653 { AArch64::ST2Twov2s, "st2", ".2s", 0, false, 0 },
654 { AArch64::ST2Twov16b_POST, "st2", ".16b", 1, false, 32 },
655 { AArch64::ST2Twov8h_POST, "st2", ".8h", 1, false, 32 },
656 { AArch64::ST2Twov4s_POST, "st2", ".4s", 1, false, 32 },
657 { AArch64::ST2Twov2d_POST, "st2", ".2d", 1, false, 32 },
658 { AArch64::ST2Twov8b_POST, "st2", ".8b", 1, false, 16 },
659 { AArch64::ST2Twov4h_POST, "st2", ".4h", 1, false, 16 },
660 { AArch64::ST2Twov2s_POST, "st2", ".2s", 1, false, 16 },
661 { AArch64::ST3i8, "st3", ".b", 0, true, 0 },
662 { AArch64::ST3i16, "st3", ".h", 0, true, 0 },
663 { AArch64::ST3i32, "st3", ".s", 0, true, 0 },
664 { AArch64::ST3i64, "st3", ".d", 0, true, 0 },
665 { AArch64::ST3i8_POST, "st3", ".b", 1, true, 3 },
666 { AArch64::ST3i16_POST, "st3", ".h", 1, true, 6 },
667 { AArch64::ST3i32_POST, "st3", ".s", 1, true, 12 },
668 { AArch64::ST3i64_POST, "st3", ".d", 1, true, 24 },
669 { AArch64::ST3Threev16b, "st3", ".16b", 0, false, 0 },
670 { AArch64::ST3Threev8h, "st3", ".8h", 0, false, 0 },
671 { AArch64::ST3Threev4s, "st3", ".4s", 0, false, 0 },
672 { AArch64::ST3Threev2d, "st3", ".2d", 0, false, 0 },
673 { AArch64::ST3Threev8b, "st3", ".8b", 0, false, 0 },
674 { AArch64::ST3Threev4h, "st3", ".4h", 0, false, 0 },
675 { AArch64::ST3Threev2s, "st3", ".2s", 0, false, 0 },
676 { AArch64::ST3Threev16b_POST, "st3", ".16b", 1, false, 48 },
677 { AArch64::ST3Threev8h_POST, "st3", ".8h", 1, false, 48 },
678 { AArch64::ST3Threev4s_POST, "st3", ".4s", 1, false, 48 },
679 { AArch64::ST3Threev2d_POST, "st3", ".2d", 1, false, 48 },
680 { AArch64::ST3Threev8b_POST, "st3", ".8b", 1, false, 24 },
681 { AArch64::ST3Threev4h_POST, "st3", ".4h", 1, false, 24 },
682 { AArch64::ST3Threev2s_POST, "st3", ".2s", 1, false, 24 },
683 { AArch64::ST4i8, "st4", ".b", 0, true, 0 },
684 { AArch64::ST4i16, "st4", ".h", 0, true, 0 },
685 { AArch64::ST4i32, "st4", ".s", 0, true, 0 },
686 { AArch64::ST4i64, "st4", ".d", 0, true, 0 },
687 { AArch64::ST4i8_POST, "st4", ".b", 1, true, 4 },
688 { AArch64::ST4i16_POST, "st4", ".h", 1, true, 8 },
689 { AArch64::ST4i32_POST, "st4", ".s", 1, true, 16 },
690 { AArch64::ST4i64_POST, "st4", ".d", 1, true, 32 },
691 { AArch64::ST4Fourv16b, "st4", ".16b", 0, false, 0 },
692 { AArch64::ST4Fourv8h, "st4", ".8h", 0, false, 0 },
693 { AArch64::ST4Fourv4s, "st4", ".4s", 0, false, 0 },
694 { AArch64::ST4Fourv2d, "st4", ".2d", 0, false, 0 },
695 { AArch64::ST4Fourv8b, "st4", ".8b", 0, false, 0 },
696 { AArch64::ST4Fourv4h, "st4", ".4h", 0, false, 0 },
697 { AArch64::ST4Fourv2s, "st4", ".2s", 0, false, 0 },
698 { AArch64::ST4Fourv16b_POST, "st4", ".16b", 1, false, 64 },
699 { AArch64::ST4Fourv8h_POST, "st4", ".8h", 1, false, 64 },
700 { AArch64::ST4Fourv4s_POST, "st4", ".4s", 1, false, 64 },
701 { AArch64::ST4Fourv2d_POST, "st4", ".2d", 1, false, 64 },
702 { AArch64::ST4Fourv8b_POST, "st4", ".8b", 1, false, 32 },
703 { AArch64::ST4Fourv4h_POST, "st4", ".4h", 1, false, 32 },
704 { AArch64::ST4Fourv2s_POST, "st4", ".2s", 1, false, 32 },
705};
706
707static const LdStNInstrDesc *getLdStNInstrDesc(unsigned Opcode) {
708 unsigned Idx;
709 for (Idx = 0; Idx != array_lengthof(LdStNInstInfo); ++Idx)
710 if (LdStNInstInfo[Idx].Opcode == Opcode)
711 return &LdStNInstInfo[Idx];
712
713 return nullptr;
714}
715
716void AArch64AppleInstPrinter::printInst(const MCInst *MI, uint64_t Address,
717 StringRef Annot,
718 const MCSubtargetInfo &STI,
719 raw_ostream &O) {
720 unsigned Opcode = MI->getOpcode();
721 StringRef Layout;
722
723 bool IsTbx;
724 if (isTblTbxInstruction(MI->getOpcode(), Layout, IsTbx)) {
725 O << "\t" << (IsTbx ? "tbx" : "tbl") << Layout << '\t'
726 << getRegisterName(MI->getOperand(0).getReg(), AArch64::vreg) << ", ";
727
728 unsigned ListOpNum = IsTbx ? 2 : 1;
729 printVectorList(MI, ListOpNum, STI, O, "");
730
731 O << ", "
732 << getRegisterName(MI->getOperand(ListOpNum + 1).getReg(), AArch64::vreg);
733 printAnnotation(O, Annot);
734 return;
735 }
736
737 if (const LdStNInstrDesc *LdStDesc = getLdStNInstrDesc(Opcode)) {
738 O << "\t" << LdStDesc->Mnemonic << LdStDesc->Layout << '\t';
739
740 // Now onto the operands: first a vector list with possible lane
741 // specifier. E.g. { v0 }[2]
742 int OpNum = LdStDesc->ListOperand;
743 printVectorList(MI, OpNum++, STI, O, "");
744
745 if (LdStDesc->HasLane)
746 O << '[' << MI->getOperand(OpNum++).getImm() << ']';
747
748 // Next the address: [xN]
749 unsigned AddrReg = MI->getOperand(OpNum++).getReg();
750 O << ", [" << getRegisterName(AddrReg) << ']';
751
752 // Finally, there might be a post-indexed offset.
753 if (LdStDesc->NaturalOffset != 0) {
754 unsigned Reg = MI->getOperand(OpNum++).getReg();
755 if (Reg != AArch64::XZR)
756 O << ", " << getRegisterName(Reg);
757 else {
758 assert(LdStDesc->NaturalOffset && "no offset on post-inc instruction?")(static_cast<void> (0));
759 O << ", #" << LdStDesc->NaturalOffset;
760 }
761 }
762
763 printAnnotation(O, Annot);
764 return;
765 }
766
767 AArch64InstPrinter::printInst(MI, Address, Annot, STI, O);
768}
769
770bool AArch64InstPrinter::printSysAlias(const MCInst *MI,
771 const MCSubtargetInfo &STI,
772 raw_ostream &O) {
773#ifndef NDEBUG1
774 unsigned Opcode = MI->getOpcode();
775 assert(Opcode == AArch64::SYSxt && "Invalid opcode for SYS alias!")(static_cast<void> (0));
776#endif
777
778 const MCOperand &Op1 = MI->getOperand(0);
779 const MCOperand &Cn = MI->getOperand(1);
780 const MCOperand &Cm = MI->getOperand(2);
781 const MCOperand &Op2 = MI->getOperand(3);
782
783 unsigned Op1Val = Op1.getImm();
784 unsigned CnVal = Cn.getImm();
785 unsigned CmVal = Cm.getImm();
786 unsigned Op2Val = Op2.getImm();
787
788 uint16_t Encoding = Op2Val;
789 Encoding |= CmVal << 3;
790 Encoding |= CnVal << 7;
791 Encoding |= Op1Val << 11;
792
793 bool NeedsReg;
794 std::string Ins;
795 std::string Name;
796
797 if (CnVal == 7) {
798 switch (CmVal) {
799 default: return false;
800 // Maybe IC, maybe Prediction Restriction
801 case 1:
802 switch (Op1Val) {
803 default: return false;
804 case 0: goto Search_IC;
805 case 3: goto Search_PRCTX;
806 }
807 // Prediction Restriction aliases
808 case 3: {
809 Search_PRCTX:
810 const AArch64PRCTX::PRCTX *PRCTX = AArch64PRCTX::lookupPRCTXByEncoding(Encoding >> 3);
811 if (!PRCTX || !PRCTX->haveFeatures(STI.getFeatureBits()))
812 return false;
813
814 NeedsReg = PRCTX->NeedsReg;
815 switch (Op2Val) {
816 default: return false;
817 case 4: Ins = "cfp\t"; break;
818 case 5: Ins = "dvp\t"; break;
819 case 7: Ins = "cpp\t"; break;
820 }
821 Name = std::string(PRCTX->Name);
822 }
823 break;
824 // IC aliases
825 case 5: {
826 Search_IC:
827 const AArch64IC::IC *IC = AArch64IC::lookupICByEncoding(Encoding);
828 if (!IC || !IC->haveFeatures(STI.getFeatureBits()))
829 return false;
830
831 NeedsReg = IC->NeedsReg;
832 Ins = "ic\t";
833 Name = std::string(IC->Name);
834 }
835 break;
836 // DC aliases
837 case 4: case 6: case 10: case 11: case 12: case 13: case 14:
838 {
839 const AArch64DC::DC *DC = AArch64DC::lookupDCByEncoding(Encoding);
840 if (!DC || !DC->haveFeatures(STI.getFeatureBits()))
841 return false;
842
843 NeedsReg = true;
844 Ins = "dc\t";
845 Name = std::string(DC->Name);
846 }
847 break;
848 // AT aliases
849 case 8: case 9: {
850 const AArch64AT::AT *AT = AArch64AT::lookupATByEncoding(Encoding);
851 if (!AT || !AT->haveFeatures(STI.getFeatureBits()))
852 return false;
853
854 NeedsReg = true;
855 Ins = "at\t";
856 Name = std::string(AT->Name);
857 }
858 break;
859 }
860 } else if (CnVal == 8 || CnVal == 9) {
861 // TLBI aliases
862 const AArch64TLBI::TLBI *TLBI = AArch64TLBI::lookupTLBIByEncoding(Encoding);
863 if (!TLBI || !TLBI->haveFeatures(STI.getFeatureBits()))
864 return false;
865
866 NeedsReg = TLBI->NeedsReg;
867 Ins = "tlbi\t";
868 Name = std::string(TLBI->Name);
869 }
870 else
871 return false;
872
873 std::string Str = Ins + Name;
874 std::transform(Str.begin(), Str.end(), Str.begin(), ::tolower);
875
876 O << '\t' << Str;
877 if (NeedsReg)
878 O << ", " << getRegisterName(MI->getOperand(4).getReg());
879
880 return true;
881}
882
883template <int EltSize>
884void AArch64InstPrinter::printMatrix(const MCInst *MI, unsigned OpNum,
885 const MCSubtargetInfo &STI,
886 raw_ostream &O) {
887 const MCOperand &RegOp = MI->getOperand(OpNum);
888 assert(RegOp.isReg() && "Unexpected operand type!")(static_cast<void> (0));
889
890 O << getRegisterName(RegOp.getReg());
891 switch (EltSize) {
892 case 0:
893 break;
894 case 8:
895 O << ".b";
896 break;
897 case 16:
898 O << ".h";
899 break;
900 case 32:
901 O << ".s";
902 break;
903 case 64:
904 O << ".d";
905 break;
906 case 128:
907 O << ".q";
908 break;
909 default:
910 llvm_unreachable("Unsupported element size")__builtin_unreachable();
911 }
912}
913
914template <bool IsVertical>
915void AArch64InstPrinter::printMatrixTileVector(const MCInst *MI, unsigned OpNum,
916 const MCSubtargetInfo &STI,
917 raw_ostream &O) {
918 const MCOperand &RegOp = MI->getOperand(OpNum);
919 assert(RegOp.isReg() && "Unexpected operand type!")(static_cast<void> (0));
920 StringRef RegName = getRegisterName(RegOp.getReg());
921
922 // Insert the horizontal/vertical flag before the suffix.
923 StringRef Base, Suffix;
924 std::tie(Base, Suffix) = RegName.split('.');
925 O << Base << (IsVertical ? "v" : "h") << '.' << Suffix;
926}
927
928void AArch64InstPrinter::printMatrixTile(const MCInst *MI, unsigned OpNum,
929 const MCSubtargetInfo &STI,
930 raw_ostream &O) {
931 const MCOperand &RegOp = MI->getOperand(OpNum);
932 assert(RegOp.isReg() && "Unexpected operand type!")(static_cast<void> (0));
933 O << getRegisterName(RegOp.getReg());
934}
935
936void AArch64InstPrinter::printSVCROp(const MCInst *MI, unsigned OpNum,
937 const MCSubtargetInfo &STI,
938 raw_ostream &O) {
939 const MCOperand &MO = MI->getOperand(OpNum);
940 assert(MO.isImm() && "Unexpected operand type!")(static_cast<void> (0));
941 unsigned svcrop = MO.getImm();
942 const auto *SVCR = AArch64SVCR::lookupSVCRByEncoding(svcrop);
943 assert(SVCR && "Unexpected SVCR operand!")(static_cast<void> (0));
944 O << SVCR->Name;
945}
946
947void AArch64InstPrinter::printOperand(const MCInst *MI, unsigned OpNo,
948 const MCSubtargetInfo &STI,
949 raw_ostream &O) {
950 const MCOperand &Op = MI->getOperand(OpNo);
951 if (Op.isReg()) {
952 unsigned Reg = Op.getReg();
953 O << getRegisterName(Reg);
954 } else if (Op.isImm()) {
955 printImm(MI, OpNo, STI, O);
956 } else {
957 assert(Op.isExpr() && "unknown operand kind in printOperand")(static_cast<void> (0));
958 Op.getExpr()->print(O, &MAI);
959 }
960}
961
962void AArch64InstPrinter::printImm(const MCInst *MI, unsigned OpNo,
963 const MCSubtargetInfo &STI,
964 raw_ostream &O) {
965 const MCOperand &Op = MI->getOperand(OpNo);
966 O << "#" << formatImm(Op.getImm());
967}
968
969void AArch64InstPrinter::printImmHex(const MCInst *MI, unsigned OpNo,
970 const MCSubtargetInfo &STI,
971 raw_ostream &O) {
972 const MCOperand &Op = MI->getOperand(OpNo);
973 O << format("#%#llx", Op.getImm());
974}
975
976template<int Size>
977void AArch64InstPrinter::printSImm(const MCInst *MI, unsigned OpNo,
978 const MCSubtargetInfo &STI,
979 raw_ostream &O) {
980 const MCOperand &Op = MI->getOperand(OpNo);
981 if (Size == 8)
982 O << "#" << formatImm((signed char)Op.getImm());
983 else if (Size == 16)
984 O << "#" << formatImm((signed short)Op.getImm());
985 else
986 O << "#" << formatImm(Op.getImm());
987}
988
989void AArch64InstPrinter::printPostIncOperand(const MCInst *MI, unsigned OpNo,
990 unsigned Imm, raw_ostream &O) {
991 const MCOperand &Op = MI->getOperand(OpNo);
992 if (Op.isReg()) {
993 unsigned Reg = Op.getReg();
994 if (Reg == AArch64::XZR)
995 O << "#" << Imm;
996 else
997 O << getRegisterName(Reg);
998 } else
999 llvm_unreachable("unknown operand kind in printPostIncOperand64")__builtin_unreachable();
1000}
1001
1002void AArch64InstPrinter::printVRegOperand(const MCInst *MI, unsigned OpNo,
1003 const MCSubtargetInfo &STI,
1004 raw_ostream &O) {
1005 const MCOperand &Op = MI->getOperand(OpNo);
1006 assert(Op.isReg() && "Non-register vreg operand!")(static_cast<void> (0));
1007 unsigned Reg = Op.getReg();
1008 O << getRegisterName(Reg, AArch64::vreg);
1009}
1010
1011void AArch64InstPrinter::printSysCROperand(const MCInst *MI, unsigned OpNo,
1012 const MCSubtargetInfo &STI,
1013 raw_ostream &O) {
1014 const MCOperand &Op = MI->getOperand(OpNo);
1015 assert(Op.isImm() && "System instruction C[nm] operands must be immediates!")(static_cast<void> (0));
1016 O << "c" << Op.getImm();
1017}
1018
1019void AArch64InstPrinter::printAddSubImm(const MCInst *MI, unsigned OpNum,
1020 const MCSubtargetInfo &STI,
1021 raw_ostream &O) {
1022 const MCOperand &MO = MI->getOperand(OpNum);
1023 if (MO.isImm()) {
1024 unsigned Val = (MO.getImm() & 0xfff);
1025 assert(Val == MO.getImm() && "Add/sub immediate out of range!")(static_cast<void> (0));
1026 unsigned Shift =
1027 AArch64_AM::getShiftValue(MI->getOperand(OpNum + 1).getImm());
1028 O << '#' << formatImm(Val);
1029 if (Shift != 0) {
1030 printShifter(MI, OpNum + 1, STI, O);
1031 if (CommentStream)
1032 *CommentStream << '=' << formatImm(Val << Shift) << '\n';
1033 }
1034 } else {
1035 assert(MO.isExpr() && "Unexpected operand type!")(static_cast<void> (0));
1036 MO.getExpr()->print(O, &MAI);
1037 printShifter(MI, OpNum + 1, STI, O);
1038 }
1039}
1040
1041template <typename T>
1042void AArch64InstPrinter::printLogicalImm(const MCInst *MI, unsigned OpNum,
1043 const MCSubtargetInfo &STI,
1044 raw_ostream &O) {
1045 uint64_t Val = MI->getOperand(OpNum).getImm();
1046 O << "#0x";
1047 O.write_hex(AArch64_AM::decodeLogicalImmediate(Val, 8 * sizeof(T)));
1048}
1049
1050void AArch64InstPrinter::printShifter(const MCInst *MI, unsigned OpNum,
1051 const MCSubtargetInfo &STI,
1052 raw_ostream &O) {
1053 unsigned Val = MI->getOperand(OpNum).getImm();
1054 // LSL #0 should not be printed.
1055 if (AArch64_AM::getShiftType(Val) == AArch64_AM::LSL &&
1056 AArch64_AM::getShiftValue(Val) == 0)
1057 return;
1058 O << ", " << AArch64_AM::getShiftExtendName(AArch64_AM::getShiftType(Val))
1059 << " #" << AArch64_AM::getShiftValue(Val);
1060}
1061
1062void AArch64InstPrinter::printShiftedRegister(const MCInst *MI, unsigned OpNum,
1063 const MCSubtargetInfo &STI,
1064 raw_ostream &O) {
1065 O << getRegisterName(MI->getOperand(OpNum).getReg());
1066 printShifter(MI, OpNum + 1, STI, O);
1067}
1068
1069void AArch64InstPrinter::printExtendedRegister(const MCInst *MI, unsigned OpNum,
1070 const MCSubtargetInfo &STI,
1071 raw_ostream &O) {
1072 O << getRegisterName(MI->getOperand(OpNum).getReg());
1073 printArithExtend(MI, OpNum + 1, STI, O);
1074}
1075
1076void AArch64InstPrinter::printArithExtend(const MCInst *MI, unsigned OpNum,
1077 const MCSubtargetInfo &STI,
1078 raw_ostream &O) {
1079 unsigned Val = MI->getOperand(OpNum).getImm();
1080 AArch64_AM::ShiftExtendType ExtType = AArch64_AM::getArithExtendType(Val);
1081 unsigned ShiftVal = AArch64_AM::getArithShiftValue(Val);
1082
1083 // If the destination or first source register operand is [W]SP, print
1084 // UXTW/UXTX as LSL, and if the shift amount is also zero, print nothing at
1085 // all.
1086 if (ExtType == AArch64_AM::UXTW || ExtType == AArch64_AM::UXTX) {
1087 unsigned Dest = MI->getOperand(0).getReg();
1088 unsigned Src1 = MI->getOperand(1).getReg();
1089 if ( ((Dest == AArch64::SP || Src1 == AArch64::SP) &&
1090 ExtType == AArch64_AM::UXTX) ||
1091 ((Dest == AArch64::WSP || Src1 == AArch64::WSP) &&
1092 ExtType == AArch64_AM::UXTW) ) {
1093 if (ShiftVal != 0)
1094 O << ", lsl #" << ShiftVal;
1095 return;
1096 }
1097 }
1098 O << ", " << AArch64_AM::getShiftExtendName(ExtType);
1099 if (ShiftVal != 0)
1100 O << " #" << ShiftVal;
1101}
1102
1103static void printMemExtendImpl(bool SignExtend, bool DoShift,
1104 unsigned Width, char SrcRegKind,
1105 raw_ostream &O) {
1106 // sxtw, sxtx, uxtw or lsl (== uxtx)
1107 bool IsLSL = !SignExtend && SrcRegKind == 'x';
1108 if (IsLSL)
1109 O << "lsl";
1110 else
1111 O << (SignExtend ? 's' : 'u') << "xt" << SrcRegKind;
1112
1113 if (DoShift || IsLSL)
1114 O << " #" << Log2_32(Width / 8);
1115}
1116
1117void AArch64InstPrinter::printMemExtend(const MCInst *MI, unsigned OpNum,
1118 raw_ostream &O, char SrcRegKind,
1119 unsigned Width) {
1120 bool SignExtend = MI->getOperand(OpNum).getImm();
1121 bool DoShift = MI->getOperand(OpNum + 1).getImm();
1122 printMemExtendImpl(SignExtend, DoShift, Width, SrcRegKind, O);
1123}
1124
1125template <bool SignExtend, int ExtWidth, char SrcRegKind, char Suffix>
1126void AArch64InstPrinter::printRegWithShiftExtend(const MCInst *MI,
1127 unsigned OpNum,
1128 const MCSubtargetInfo &STI,
1129 raw_ostream &O) {
1130 printOperand(MI, OpNum, STI, O);
1131 if (Suffix == 's' || Suffix == 'd')
1132 O << '.' << Suffix;
1133 else
1134 assert(Suffix == 0 && "Unsupported suffix size")(static_cast<void> (0));
1135
1136 bool DoShift = ExtWidth != 8;
1137 if (SignExtend || DoShift || SrcRegKind == 'w') {
1138 O << ", ";
1139 printMemExtendImpl(SignExtend, DoShift, ExtWidth, SrcRegKind, O);
1140 }
1141}
1142
1143void AArch64InstPrinter::printCondCode(const MCInst *MI, unsigned OpNum,
1144 const MCSubtargetInfo &STI,
1145 raw_ostream &O) {
1146 AArch64CC::CondCode CC = (AArch64CC::CondCode)MI->getOperand(OpNum).getImm();
1147 O << AArch64CC::getCondCodeName(CC);
1148}
1149
1150void AArch64InstPrinter::printInverseCondCode(const MCInst *MI, unsigned OpNum,
1151 const MCSubtargetInfo &STI,
1152 raw_ostream &O) {
1153 AArch64CC::CondCode CC = (AArch64CC::CondCode)MI->getOperand(OpNum).getImm();
1154 O << AArch64CC::getCondCodeName(AArch64CC::getInvertedCondCode(CC));
1155}
1156
1157void AArch64InstPrinter::printAMNoIndex(const MCInst *MI, unsigned OpNum,
1158 const MCSubtargetInfo &STI,
1159 raw_ostream &O) {
1160 O << '[' << getRegisterName(MI->getOperand(OpNum).getReg()) << ']';
1161}
1162
1163template<int Scale>
1164void AArch64InstPrinter::printImmScale(const MCInst *MI, unsigned OpNum,
1165 const MCSubtargetInfo &STI,
1166 raw_ostream &O) {
1167 O << '#' << formatImm(Scale * MI->getOperand(OpNum).getImm());
1168}
1169
1170void AArch64InstPrinter::printUImm12Offset(const MCInst *MI, unsigned OpNum,
1171 unsigned Scale, raw_ostream &O) {
1172 const MCOperand MO = MI->getOperand(OpNum);
1173 if (MO.isImm()) {
1174 O << "#" << formatImm(MO.getImm() * Scale);
1175 } else {
1176 assert(MO.isExpr() && "Unexpected operand type!")(static_cast<void> (0));
1177 MO.getExpr()->print(O, &MAI);
1178 }
1179}
1180
1181void AArch64InstPrinter::printAMIndexedWB(const MCInst *MI, unsigned OpNum,
1182 unsigned Scale, raw_ostream &O) {
1183 const MCOperand MO1 = MI->getOperand(OpNum + 1);
1184 O << '[' << getRegisterName(MI->getOperand(OpNum).getReg());
1185 if (MO1.isImm()) {
1186 O << ", #" << formatImm(MO1.getImm() * Scale);
1187 } else {
1188 assert(MO1.isExpr() && "Unexpected operand type!")(static_cast<void> (0));
1189 O << ", ";
1190 MO1.getExpr()->print(O, &MAI);
1191 }
1192 O << ']';
1193}
1194
1195template <bool IsSVEPrefetch>
1196void AArch64InstPrinter::printPrefetchOp(const MCInst *MI, unsigned OpNum,
1197 const MCSubtargetInfo &STI,
1198 raw_ostream &O) {
1199 unsigned prfop = MI->getOperand(OpNum).getImm();
1200 if (IsSVEPrefetch) {
1201 if (auto PRFM = AArch64SVEPRFM::lookupSVEPRFMByEncoding(prfop)) {
1202 O << PRFM->Name;
1203 return;
1204 }
1205 } else if (auto PRFM = AArch64PRFM::lookupPRFMByEncoding(prfop)) {
1206 O << PRFM->Name;
1207 return;
1208 }
1209
1210 O << '#' << formatImm(prfop);
1211}
1212
1213void AArch64InstPrinter::printPSBHintOp(const MCInst *MI, unsigned OpNum,
1214 const MCSubtargetInfo &STI,
1215 raw_ostream &O) {
1216 unsigned psbhintop = MI->getOperand(OpNum).getImm();
1217 auto PSB = AArch64PSBHint::lookupPSBByEncoding(psbhintop);
1218 if (PSB)
1219 O << PSB->Name;
1220 else
1221 O << '#' << formatImm(psbhintop);
1222}
1223
1224void AArch64InstPrinter::printBTIHintOp(const MCInst *MI, unsigned OpNum,
1225 const MCSubtargetInfo &STI,
1226 raw_ostream &O) {
1227 unsigned btihintop = MI->getOperand(OpNum).getImm() ^ 32;
1228 auto BTI = AArch64BTIHint::lookupBTIByEncoding(btihintop);
1229 if (BTI)
1230 O << BTI->Name;
1231 else
1232 O << '#' << formatImm(btihintop);
1233}
1234
1235void AArch64InstPrinter::printFPImmOperand(const MCInst *MI, unsigned OpNum,
1236 const MCSubtargetInfo &STI,
1237 raw_ostream &O) {
1238 const MCOperand &MO = MI->getOperand(OpNum);
1239 float FPImm = MO.isDFPImm() ? bit_cast<double>(MO.getDFPImm())
1240 : AArch64_AM::getFPImmFloat(MO.getImm());
1241
1242 // 8 decimal places are enough to perfectly represent permitted floats.
1243 O << format("#%.8f", FPImm);
1244}
1245
1246static unsigned getNextVectorRegister(unsigned Reg, unsigned Stride = 1) {
1247 while (Stride--) {
1248 switch (Reg) {
1249 default:
1250 llvm_unreachable("Vector register expected!")__builtin_unreachable();
1251 case AArch64::Q0: Reg = AArch64::Q1; break;
1252 case AArch64::Q1: Reg = AArch64::Q2; break;
1253 case AArch64::Q2: Reg = AArch64::Q3; break;
1254 case AArch64::Q3: Reg = AArch64::Q4; break;
1255 case AArch64::Q4: Reg = AArch64::Q5; break;
1256 case AArch64::Q5: Reg = AArch64::Q6; break;
1257 case AArch64::Q6: Reg = AArch64::Q7; break;
1258 case AArch64::Q7: Reg = AArch64::Q8; break;
1259 case AArch64::Q8: Reg = AArch64::Q9; break;
1260 case AArch64::Q9: Reg = AArch64::Q10; break;
1261 case AArch64::Q10: Reg = AArch64::Q11; break;
1262 case AArch64::Q11: Reg = AArch64::Q12; break;
1263 case AArch64::Q12: Reg = AArch64::Q13; break;
1264 case AArch64::Q13: Reg = AArch64::Q14; break;
1265 case AArch64::Q14: Reg = AArch64::Q15; break;
1266 case AArch64::Q15: Reg = AArch64::Q16; break;
1267 case AArch64::Q16: Reg = AArch64::Q17; break;
1268 case AArch64::Q17: Reg = AArch64::Q18; break;
1269 case AArch64::Q18: Reg = AArch64::Q19; break;
1270 case AArch64::Q19: Reg = AArch64::Q20; break;
1271 case AArch64::Q20: Reg = AArch64::Q21; break;
1272 case AArch64::Q21: Reg = AArch64::Q22; break;
1273 case AArch64::Q22: Reg = AArch64::Q23; break;
1274 case AArch64::Q23: Reg = AArch64::Q24; break;
1275 case AArch64::Q24: Reg = AArch64::Q25; break;
1276 case AArch64::Q25: Reg = AArch64::Q26; break;
1277 case AArch64::Q26: Reg = AArch64::Q27; break;
1278 case AArch64::Q27: Reg = AArch64::Q28; break;
1279 case AArch64::Q28: Reg = AArch64::Q29; break;
1280 case AArch64::Q29: Reg = AArch64::Q30; break;
1281 case AArch64::Q30: Reg = AArch64::Q31; break;
1282 // Vector lists can wrap around.
1283 case AArch64::Q31:
1284 Reg = AArch64::Q0;
1285 break;
1286 case AArch64::Z0: Reg = AArch64::Z1; break;
1287 case AArch64::Z1: Reg = AArch64::Z2; break;
1288 case AArch64::Z2: Reg = AArch64::Z3; break;
1289 case AArch64::Z3: Reg = AArch64::Z4; break;
1290 case AArch64::Z4: Reg = AArch64::Z5; break;
1291 case AArch64::Z5: Reg = AArch64::Z6; break;
1292 case AArch64::Z6: Reg = AArch64::Z7; break;
1293 case AArch64::Z7: Reg = AArch64::Z8; break;
1294 case AArch64::Z8: Reg = AArch64::Z9; break;
1295 case AArch64::Z9: Reg = AArch64::Z10; break;
1296 case AArch64::Z10: Reg = AArch64::Z11; break;
1297 case AArch64::Z11: Reg = AArch64::Z12; break;
1298 case AArch64::Z12: Reg = AArch64::Z13; break;
1299 case AArch64::Z13: Reg = AArch64::Z14; break;
1300 case AArch64::Z14: Reg = AArch64::Z15; break;
1301 case AArch64::Z15: Reg = AArch64::Z16; break;
1302 case AArch64::Z16: Reg = AArch64::Z17; break;
1303 case AArch64::Z17: Reg = AArch64::Z18; break;
1304 case AArch64::Z18: Reg = AArch64::Z19; break;
1305 case AArch64::Z19: Reg = AArch64::Z20; break;
1306 case AArch64::Z20: Reg = AArch64::Z21; break;
1307 case AArch64::Z21: Reg = AArch64::Z22; break;
1308 case AArch64::Z22: Reg = AArch64::Z23; break;
1309 case AArch64::Z23: Reg = AArch64::Z24; break;
1310 case AArch64::Z24: Reg = AArch64::Z25; break;
1311 case AArch64::Z25: Reg = AArch64::Z26; break;
1312 case AArch64::Z26: Reg = AArch64::Z27; break;
1313 case AArch64::Z27: Reg = AArch64::Z28; break;
1314 case AArch64::Z28: Reg = AArch64::Z29; break;
1315 case AArch64::Z29: Reg = AArch64::Z30; break;
1316 case AArch64::Z30: Reg = AArch64::Z31; break;
1317 // Vector lists can wrap around.
1318 case AArch64::Z31:
1319 Reg = AArch64::Z0;
1320 break;
1321 }
1322 }
1323 return Reg;
1324}
1325
1326template<unsigned size>
1327void AArch64InstPrinter::printGPRSeqPairsClassOperand(const MCInst *MI,
1328 unsigned OpNum,
1329 const MCSubtargetInfo &STI,
1330 raw_ostream &O) {
1331 static_assert(size == 64 || size == 32,
1332 "Template parameter must be either 32 or 64");
1333 unsigned Reg = MI->getOperand(OpNum).getReg();
1334
1335 unsigned Sube = (size == 32) ? AArch64::sube32 : AArch64::sube64;
1336 unsigned Subo = (size == 32) ? AArch64::subo32 : AArch64::subo64;
1337
1338 unsigned Even = MRI.getSubReg(Reg, Sube);
1339 unsigned Odd = MRI.getSubReg(Reg, Subo);
1340 O << getRegisterName(Even) << ", " << getRegisterName(Odd);
1341}
1342
1343static const unsigned MatrixZADRegisterTable[] = {
1344 AArch64::ZAD0, AArch64::ZAD1, AArch64::ZAD2, AArch64::ZAD3,
1345 AArch64::ZAD4, AArch64::ZAD5, AArch64::ZAD6, AArch64::ZAD7
1346};
1347
1348void AArch64InstPrinter::printMatrixTileList(const MCInst *MI, unsigned OpNum,
1349 const MCSubtargetInfo &STI,
1350 raw_ostream &O) {
1351 unsigned MaxRegs = 8;
1352 unsigned RegMask = MI->getOperand(OpNum).getImm();
1353
1354 unsigned NumRegs = 0;
1355 for (unsigned I = 0; I < MaxRegs; ++I)
1356 if ((RegMask & (1 << I)) != 0)
1357 ++NumRegs;
1358
1359 O << "{";
1360 unsigned Printed = 0;
1361 for (unsigned I = 0; I < MaxRegs; ++I) {
1362 unsigned Reg = RegMask & (1 << I);
1363 if (Reg == 0)
1364 continue;
1365 O << getRegisterName(MatrixZADRegisterTable[I]);
1366 if (Printed + 1 != NumRegs)
1367 O << ", ";
1368 ++Printed;
1369 }
1370 O << "}";
1371}
1372
1373void AArch64InstPrinter::printVectorList(const MCInst *MI, unsigned OpNum,
1374 const MCSubtargetInfo &STI,
1375 raw_ostream &O,
1376 StringRef LayoutSuffix) {
1377 unsigned Reg = MI->getOperand(OpNum).getReg();
1378
1379 O << "{ ";
1380
1381 // Work out how many registers there are in the list (if there is an actual
1382 // list).
1383 unsigned NumRegs = 1;
1384 if (MRI.getRegClass(AArch64::DDRegClassID).contains(Reg) ||
1385 MRI.getRegClass(AArch64::ZPR2RegClassID).contains(Reg) ||
1386 MRI.getRegClass(AArch64::QQRegClassID).contains(Reg))
1387 NumRegs = 2;
1388 else if (MRI.getRegClass(AArch64::DDDRegClassID).contains(Reg) ||
1389 MRI.getRegClass(AArch64::ZPR3RegClassID).contains(Reg) ||
1390 MRI.getRegClass(AArch64::QQQRegClassID).contains(Reg))
1391 NumRegs = 3;
1392 else if (MRI.getRegClass(AArch64::DDDDRegClassID).contains(Reg) ||
1393 MRI.getRegClass(AArch64::ZPR4RegClassID).contains(Reg) ||
1394 MRI.getRegClass(AArch64::QQQQRegClassID).contains(Reg))
1395 NumRegs = 4;
1396
1397 // Now forget about the list and find out what the first register is.
1398 if (unsigned FirstReg = MRI.getSubReg(Reg, AArch64::dsub0))
1399 Reg = FirstReg;
1400 else if (unsigned FirstReg = MRI.getSubReg(Reg, AArch64::qsub0))
1401 Reg = FirstReg;
1402 else if (unsigned FirstReg = MRI.getSubReg(Reg, AArch64::zsub0))
1403 Reg = FirstReg;
1404
1405 // If it's a D-reg, we need to promote it to the equivalent Q-reg before
1406 // printing (otherwise getRegisterName fails).
1407 if (MRI.getRegClass(AArch64::FPR64RegClassID).contains(Reg)) {
1408 const MCRegisterClass &FPR128RC =
1409 MRI.getRegClass(AArch64::FPR128RegClassID);
1410 Reg = MRI.getMatchingSuperReg(Reg, AArch64::dsub, &FPR128RC);
1411 }
1412
1413 for (unsigned i = 0; i < NumRegs; ++i, Reg = getNextVectorRegister(Reg)) {
1414 if (MRI.getRegClass(AArch64::ZPRRegClassID).contains(Reg))
1415 O << getRegisterName(Reg) << LayoutSuffix;
1416 else
1417 O << getRegisterName(Reg, AArch64::vreg) << LayoutSuffix;
1418
1419 if (i + 1 != NumRegs)
1420 O << ", ";
1421 }
1422
1423 O << " }";
1424}
1425
1426void
1427AArch64InstPrinter::printImplicitlyTypedVectorList(const MCInst *MI,
1428 unsigned OpNum,
1429 const MCSubtargetInfo &STI,
1430 raw_ostream &O) {
1431 printVectorList(MI, OpNum, STI, O, "");
1432}
1433
1434template <unsigned NumLanes, char LaneKind>
1435void AArch64InstPrinter::printTypedVectorList(const MCInst *MI, unsigned OpNum,
1436 const MCSubtargetInfo &STI,
1437 raw_ostream &O) {
1438 std::string Suffix(".");
1439 if (NumLanes)
1440 Suffix += itostr(NumLanes) + LaneKind;
1441 else
1442 Suffix += LaneKind;
1443
1444 printVectorList(MI, OpNum, STI, O, Suffix);
1445}
1446
1447void AArch64InstPrinter::printVectorIndex(const MCInst *MI, unsigned OpNum,
1448 const MCSubtargetInfo &STI,
1449 raw_ostream &O) {
1450 O << "[" << MI->getOperand(OpNum).getImm() << "]";
1451}
1452
1453void AArch64InstPrinter::printAlignedLabel(const MCInst *MI, uint64_t Address,
1454 unsigned OpNum,
1455 const MCSubtargetInfo &STI,
1456 raw_ostream &O) {
1457 const MCOperand &Op = MI->getOperand(OpNum);
1458
1459 // If the label has already been resolved to an immediate offset (say, when
1460 // we're running the disassembler), just print the immediate.
1461 if (Op.isImm()) {
1462 int64_t Offset = Op.getImm() * 4;
1463 if (PrintBranchImmAsAddress)
1464 O << formatHex(Address + Offset);
1465 else
1466 O << "#" << formatImm(Offset);
1467 return;
1468 }
1469
1470 // If the branch target is simply an address then print it in hex.
1471 const MCConstantExpr *BranchTarget =
1472 dyn_cast<MCConstantExpr>(MI->getOperand(OpNum).getExpr());
1473 int64_t TargetAddress;
1474 if (BranchTarget && BranchTarget->evaluateAsAbsolute(TargetAddress)) {
1475 O << formatHex(TargetAddress);
1476 } else {
1477 // Otherwise, just print the expression.
1478 MI->getOperand(OpNum).getExpr()->print(O, &MAI);
1479 }
1480}
1481
1482void AArch64InstPrinter::printAdrpLabel(const MCInst *MI, uint64_t Address,
1483 unsigned OpNum,
1484 const MCSubtargetInfo &STI,
1485 raw_ostream &O) {
1486 const MCOperand &Op = MI->getOperand(OpNum);
1487
1488 // If the label has already been resolved to an immediate offset (say, when
1489 // we're running the disassembler), just print the immediate.
1490 if (Op.isImm()) {
1491 const int64_t Offset = Op.getImm() * 4096;
1492 if (PrintBranchImmAsAddress)
1493 O << formatHex((Address & -4096) + Offset);
1494 else
1495 O << "#" << Offset;
1496 return;
1497 }
1498
1499 // Otherwise, just print the expression.
1500 MI->getOperand(OpNum).getExpr()->print(O, &MAI);
1501}
1502
1503void AArch64InstPrinter::printBarrierOption(const MCInst *MI, unsigned OpNo,
1504 const MCSubtargetInfo &STI,
1505 raw_ostream &O) {
1506 unsigned Val = MI->getOperand(OpNo).getImm();
1507 unsigned Opcode = MI->getOpcode();
1508
1509 StringRef Name;
1510 if (Opcode == AArch64::ISB) {
1511 auto ISB = AArch64ISB::lookupISBByEncoding(Val);
1512 Name = ISB ? ISB->Name : "";
1513 } else if (Opcode == AArch64::TSB) {
1514 auto TSB = AArch64TSB::lookupTSBByEncoding(Val);
1515 Name = TSB ? TSB->Name : "";
1516 } else {
1517 auto DB = AArch64DB::lookupDBByEncoding(Val);
1518 Name = DB ? DB->Name : "";
1519 }
1520 if (!Name.empty())
1521 O << Name;
1522 else
1523 O << "#" << Val;
1524}
1525
1526void AArch64InstPrinter::printBarriernXSOption(const MCInst *MI, unsigned OpNo,
1527 const MCSubtargetInfo &STI,
1528 raw_ostream &O) {
1529 unsigned Val = MI->getOperand(OpNo).getImm();
1530 assert(MI->getOpcode() == AArch64::DSBnXS)(static_cast<void> (0));
1531
1532 StringRef Name;
1533 auto DB = AArch64DBnXS::lookupDBnXSByEncoding(Val);
1534 Name = DB ? DB->Name : "";
1535
1536 if (!Name.empty())
1537 O << Name;
1538 else
1539 O << "#" << Val;
1540}
1541
1542void AArch64InstPrinter::printMRSSystemRegister(const MCInst *MI, unsigned OpNo,
1543 const MCSubtargetInfo &STI,
1544 raw_ostream &O) {
1545 unsigned Val = MI->getOperand(OpNo).getImm();
1546
1547 // Horrible hack for the one register that has identical encodings but
1548 // different names in MSR and MRS. Because of this, one of MRS and MSR is
1549 // going to get the wrong entry
1550 if (Val == AArch64SysReg::DBGDTRRX_EL0) {
1551 O << "DBGDTRRX_EL0";
1552 return;
1553 }
1554
1555 // Horrible hack for two different registers having the same encoding.
1556 if (Val == AArch64SysReg::TRCEXTINSELR) {
1557 O << "TRCEXTINSELR";
1558 return;
1559 }
1560
1561 const AArch64SysReg::SysReg *Reg = AArch64SysReg::lookupSysRegByEncoding(Val);
1562 if (Reg && Reg->Readable && Reg->haveFeatures(STI.getFeatureBits()))
1563 O << Reg->Name;
1564 else
1565 O << AArch64SysReg::genericRegisterString(Val);
1566}
1567
1568void AArch64InstPrinter::printMSRSystemRegister(const MCInst *MI, unsigned OpNo,
1569 const MCSubtargetInfo &STI,
1570 raw_ostream &O) {
1571 unsigned Val = MI->getOperand(OpNo).getImm();
1572
1573 // Horrible hack for the one register that has identical encodings but
1574 // different names in MSR and MRS. Because of this, one of MRS and MSR is
1575 // going to get the wrong entry
1576 if (Val == AArch64SysReg::DBGDTRTX_EL0) {
1577 O << "DBGDTRTX_EL0";
1578 return;
1579 }
1580
1581 // Horrible hack for two different registers having the same encoding.
1582 if (Val == AArch64SysReg::TRCEXTINSELR) {
1583 O << "TRCEXTINSELR";
1584 return;
1585 }
1586
1587 const AArch64SysReg::SysReg *Reg = AArch64SysReg::lookupSysRegByEncoding(Val);
1588 if (Reg && Reg->Writeable && Reg->haveFeatures(STI.getFeatureBits()))
1589 O << Reg->Name;
1590 else
1591 O << AArch64SysReg::genericRegisterString(Val);
1592}
1593
1594void AArch64InstPrinter::printSystemPStateField(const MCInst *MI, unsigned OpNo,
1595 const MCSubtargetInfo &STI,
1596 raw_ostream &O) {
1597 unsigned Val = MI->getOperand(OpNo).getImm();
1598
1599 auto PState = AArch64PState::lookupPStateByEncoding(Val);
1600 if (PState && PState->haveFeatures(STI.getFeatureBits()))
1601 O << PState->Name;
1602 else
1603 O << "#" << formatImm(Val);
1604}
1605
1606void AArch64InstPrinter::printSIMDType10Operand(const MCInst *MI, unsigned OpNo,
1607 const MCSubtargetInfo &STI,
1608 raw_ostream &O) {
1609 unsigned RawVal = MI->getOperand(OpNo).getImm();
1610 uint64_t Val = AArch64_AM::decodeAdvSIMDModImmType10(RawVal);
1611 O << format("#%#016llx", Val);
1612}
1613
1614template<int64_t Angle, int64_t Remainder>
1615void AArch64InstPrinter::printComplexRotationOp(const MCInst *MI, unsigned OpNo,
1616 const MCSubtargetInfo &STI,
1617 raw_ostream &O) {
1618 unsigned Val = MI->getOperand(OpNo).getImm();
1619 O << "#" << (Val * Angle) + Remainder;
1620}
1621
1622void AArch64InstPrinter::printSVEPattern(const MCInst *MI, unsigned OpNum,
1623 const MCSubtargetInfo &STI,
1624 raw_ostream &O) {
1625 unsigned Val = MI->getOperand(OpNum).getImm();
1626 if (auto Pat = AArch64SVEPredPattern::lookupSVEPREDPATByEncoding(Val))
1627 O << Pat->Name;
1628 else
1629 O << '#' << formatImm(Val);
1630}
1631
1632template <char suffix>
1633void AArch64InstPrinter::printSVERegOp(const MCInst *MI, unsigned OpNum,
1634 const MCSubtargetInfo &STI,
1635 raw_ostream &O) {
1636 switch (suffix) {
1637 case 0:
1638 case 'b':
1639 case 'h':
1640 case 's':
1641 case 'd':
1642 case 'q':
1643 break;
1644 default: llvm_unreachable("Invalid kind specifier.")__builtin_unreachable();
1645 }
1646
1647 unsigned Reg = MI->getOperand(OpNum).getReg();
1648 O << getRegisterName(Reg);
1649 if (suffix != 0)
1650 O << '.' << suffix;
1651}
1652
1653template <typename T>
1654void AArch64InstPrinter::printImmSVE(T Value, raw_ostream &O) {
1655 std::make_unsigned_t<T> HexValue = Value;
1656
1657 if (getPrintImmHex())
1658 O << '#' << formatHex((uint64_t)HexValue);
1659 else
1660 O << '#' << formatDec(Value);
1661
1662 if (CommentStream) {
1663 // Do the opposite to that used for instruction operands.
1664 if (getPrintImmHex())
1665 *CommentStream << '=' << formatDec(HexValue) << '\n';
1666 else
1667 *CommentStream << '=' << formatHex((uint64_t)Value) << '\n';
1668 }
1669}
1670
1671template <typename T>
1672void AArch64InstPrinter::printImm8OptLsl(const MCInst *MI, unsigned OpNum,
1673 const MCSubtargetInfo &STI,
1674 raw_ostream &O) {
1675 unsigned UnscaledVal = MI->getOperand(OpNum).getImm();
1676 unsigned Shift = MI->getOperand(OpNum + 1).getImm();
1677 assert(AArch64_AM::getShiftType(Shift) == AArch64_AM::LSL &&(static_cast<void> (0))
1678 "Unexepected shift type!")(static_cast<void> (0));
1679
1680 // #0 lsl #8 is never pretty printed
1681 if ((UnscaledVal == 0) && (AArch64_AM::getShiftValue(Shift) != 0)) {
1682 O << '#' << formatImm(UnscaledVal);
1683 printShifter(MI, OpNum + 1, STI, O);
1684 return;
1685 }
1686
1687 T Val;
1688 if (std::is_signed<T>())
1689 Val = (int8_t)UnscaledVal * (1 << AArch64_AM::getShiftValue(Shift));
1690 else
1691 Val = (uint8_t)UnscaledVal * (1 << AArch64_AM::getShiftValue(Shift));
1692
1693 printImmSVE(Val, O);
1694}
1695
1696template <typename T>
1697void AArch64InstPrinter::printSVELogicalImm(const MCInst *MI, unsigned OpNum,
1698 const MCSubtargetInfo &STI,
1699 raw_ostream &O) {
1700 typedef std::make_signed_t<T> SignedT;
1701 typedef std::make_unsigned_t<T> UnsignedT;
1702
1703 uint64_t Val = MI->getOperand(OpNum).getImm();
1704 UnsignedT PrintVal = AArch64_AM::decodeLogicalImmediate(Val, 64);
1705
1706 // Prefer the default format for 16bit values, hex otherwise.
1707 if ((int16_t)PrintVal == (SignedT)PrintVal)
1708 printImmSVE((T)PrintVal, O);
1709 else if ((uint16_t)PrintVal == PrintVal)
1710 printImmSVE(PrintVal, O);
1711 else
1712 O << '#' << formatHex((uint64_t)PrintVal);
1713}
1714
1715template <int Width>
1716void AArch64InstPrinter::printZPRasFPR(const MCInst *MI, unsigned OpNum,
1717 const MCSubtargetInfo &STI,
1718 raw_ostream &O) {
1719 unsigned Base;
1720 switch (Width) {
1721 case 8: Base = AArch64::B0; break;
1722 case 16: Base = AArch64::H0; break;
1723 case 32: Base = AArch64::S0; break;
1724 case 64: Base = AArch64::D0; break;
1725 case 128: Base = AArch64::Q0; break;
1726 default:
1727 llvm_unreachable("Unsupported width")__builtin_unreachable();
1728 }
1729 unsigned Reg = MI->getOperand(OpNum).getReg();
1730 O << getRegisterName(Reg - AArch64::Z0 + Base);
1731}
1732
1733template <unsigned ImmIs0, unsigned ImmIs1>
1734void AArch64InstPrinter::printExactFPImm(const MCInst *MI, unsigned OpNum,
1735 const MCSubtargetInfo &STI,
1736 raw_ostream &O) {
1737 auto *Imm0Desc = AArch64ExactFPImm::lookupExactFPImmByEnum(ImmIs0);
1738 auto *Imm1Desc = AArch64ExactFPImm::lookupExactFPImmByEnum(ImmIs1);
1739 unsigned Val = MI->getOperand(OpNum).getImm();
1740 O << "#" << (Val ? Imm1Desc->Repr : Imm0Desc->Repr);
1741}
1742
1743void AArch64InstPrinter::printGPR64as32(const MCInst *MI, unsigned OpNum,
1744 const MCSubtargetInfo &STI,
1745 raw_ostream &O) {
1746 unsigned Reg = MI->getOperand(OpNum).getReg();
1747 O << getRegisterName(getWRegFromXReg(Reg));
1748}
1749
1750void AArch64InstPrinter::printGPR64x8(const MCInst *MI, unsigned OpNum,
1751 const MCSubtargetInfo &STI,
1752 raw_ostream &O) {
1753 unsigned Reg = MI->getOperand(OpNum).getReg();
1754 O << getRegisterName(MRI.getSubReg(Reg, AArch64::x8sub_0));
1755}

/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/lib/Target/AArch64/MCTargetDesc/AArch64AddressingModes.h

1//===- AArch64AddressingModes.h - AArch64 Addressing Modes ------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the AArch64 addressing mode implementation stuff.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64ADDRESSINGMODES_H
14#define LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64ADDRESSINGMODES_H
15
16#include "llvm/ADT/APFloat.h"
17#include "llvm/ADT/APInt.h"
18#include "llvm/ADT/bit.h"
19#include "llvm/Support/ErrorHandling.h"
20#include "llvm/Support/MathExtras.h"
21#include <cassert>
22
23namespace llvm {
24
25/// AArch64_AM - AArch64 Addressing Mode Stuff
26namespace AArch64_AM {
27
28//===----------------------------------------------------------------------===//
29// Shifts
30//
31
32enum ShiftExtendType {
33 InvalidShiftExtend = -1,
34 LSL = 0,
35 LSR,
36 ASR,
37 ROR,
38 MSL,
39
40 UXTB,
41 UXTH,
42 UXTW,
43 UXTX,
44
45 SXTB,
46 SXTH,
47 SXTW,
48 SXTX,
49};
50
51/// getShiftName - Get the string encoding for the shift type.
52static inline const char *getShiftExtendName(AArch64_AM::ShiftExtendType ST) {
53 switch (ST) {
54 default: llvm_unreachable("unhandled shift type!")__builtin_unreachable();
55 case AArch64_AM::LSL: return "lsl";
56 case AArch64_AM::LSR: return "lsr";
57 case AArch64_AM::ASR: return "asr";
58 case AArch64_AM::ROR: return "ror";
59 case AArch64_AM::MSL: return "msl";
60 case AArch64_AM::UXTB: return "uxtb";
61 case AArch64_AM::UXTH: return "uxth";
62 case AArch64_AM::UXTW: return "uxtw";
63 case AArch64_AM::UXTX: return "uxtx";
64 case AArch64_AM::SXTB: return "sxtb";
65 case AArch64_AM::SXTH: return "sxth";
66 case AArch64_AM::SXTW: return "sxtw";
67 case AArch64_AM::SXTX: return "sxtx";
68 }
69 return nullptr;
70}
71
72/// getShiftType - Extract the shift type.
73static inline AArch64_AM::ShiftExtendType getShiftType(unsigned Imm) {
74 switch ((Imm >> 6) & 0x7) {
75 default: return AArch64_AM::InvalidShiftExtend;
76 case 0: return AArch64_AM::LSL;
77 case 1: return AArch64_AM::LSR;
78 case 2: return AArch64_AM::ASR;
79 case 3: return AArch64_AM::ROR;
80 case 4: return AArch64_AM::MSL;
81 }
82}
83
84/// getShiftValue - Extract the shift value.
85static inline unsigned getShiftValue(unsigned Imm) {
86 return Imm & 0x3f;
87}
88
89/// getShifterImm - Encode the shift type and amount:
90/// imm: 6-bit shift amount
91/// shifter: 000 ==> lsl
92/// 001 ==> lsr
93/// 010 ==> asr
94/// 011 ==> ror
95/// 100 ==> msl
96/// {8-6} = shifter
97/// {5-0} = imm
98static inline unsigned getShifterImm(AArch64_AM::ShiftExtendType ST,
99 unsigned Imm) {
100 assert((Imm & 0x3f) == Imm && "Illegal shifted immedate value!")(static_cast<void> (0));
101 unsigned STEnc = 0;
102 switch (ST) {
103 default: llvm_unreachable("Invalid shift requested")__builtin_unreachable();
104 case AArch64_AM::LSL: STEnc = 0; break;
105 case AArch64_AM::LSR: STEnc = 1; break;
106 case AArch64_AM::ASR: STEnc = 2; break;
107 case AArch64_AM::ROR: STEnc = 3; break;
108 case AArch64_AM::MSL: STEnc = 4; break;
109 }
110 return (STEnc << 6) | (Imm & 0x3f);
111}
112
113//===----------------------------------------------------------------------===//
114// Extends
115//
116
117/// getArithShiftValue - get the arithmetic shift value.
118static inline unsigned getArithShiftValue(unsigned Imm) {
119 return Imm & 0x7;
120}
121
122/// getExtendType - Extract the extend type for operands of arithmetic ops.
123static inline AArch64_AM::ShiftExtendType getExtendType(unsigned Imm) {
124 assert((Imm & 0x7) == Imm && "invalid immediate!")(static_cast<void> (0));
125 switch (Imm) {
126 default: llvm_unreachable("Compiler bug!")__builtin_unreachable();
127 case 0: return AArch64_AM::UXTB;
128 case 1: return AArch64_AM::UXTH;
129 case 2: return AArch64_AM::UXTW;
130 case 3: return AArch64_AM::UXTX;
131 case 4: return AArch64_AM::SXTB;
132 case 5: return AArch64_AM::SXTH;
133 case 6: return AArch64_AM::SXTW;
134 case 7: return AArch64_AM::SXTX;
135 }
136}
137
138static inline AArch64_AM::ShiftExtendType getArithExtendType(unsigned Imm) {
139 return getExtendType((Imm >> 3) & 0x7);
140}
141
142/// Mapping from extend bits to required operation:
143/// shifter: 000 ==> uxtb
144/// 001 ==> uxth
145/// 010 ==> uxtw
146/// 011 ==> uxtx
147/// 100 ==> sxtb
148/// 101 ==> sxth
149/// 110 ==> sxtw
150/// 111 ==> sxtx
151inline unsigned getExtendEncoding(AArch64_AM::ShiftExtendType ET) {
152 switch (ET) {
153 default: llvm_unreachable("Invalid extend type requested")__builtin_unreachable();
154 case AArch64_AM::UXTB: return 0; break;
155 case AArch64_AM::UXTH: return 1; break;
156 case AArch64_AM::UXTW: return 2; break;
157 case AArch64_AM::UXTX: return 3; break;
158 case AArch64_AM::SXTB: return 4; break;
159 case AArch64_AM::SXTH: return 5; break;
160 case AArch64_AM::SXTW: return 6; break;
161 case AArch64_AM::SXTX: return 7; break;
162 }
163}
164
165/// getArithExtendImm - Encode the extend type and shift amount for an
166/// arithmetic instruction:
167/// imm: 3-bit extend amount
168/// {5-3} = shifter
169/// {2-0} = imm3
170static inline unsigned getArithExtendImm(AArch64_AM::ShiftExtendType ET,
171 unsigned Imm) {
172 assert((Imm & 0x7) == Imm && "Illegal shifted immedate value!")(static_cast<void> (0));
173 return (getExtendEncoding(ET) << 3) | (Imm & 0x7);
174}
175
176/// getMemDoShift - Extract the "do shift" flag value for load/store
177/// instructions.
178static inline bool getMemDoShift(unsigned Imm) {
179 return (Imm & 0x1) != 0;
180}
181
182/// getExtendType - Extract the extend type for the offset operand of
183/// loads/stores.
184static inline AArch64_AM::ShiftExtendType getMemExtendType(unsigned Imm) {
185 return getExtendType((Imm >> 1) & 0x7);
186}
187
188/// getExtendImm - Encode the extend type and amount for a load/store inst:
189/// doshift: should the offset be scaled by the access size
190/// shifter: 000 ==> uxtb
191/// 001 ==> uxth
192/// 010 ==> uxtw
193/// 011 ==> uxtx
194/// 100 ==> sxtb
195/// 101 ==> sxth
196/// 110 ==> sxtw
197/// 111 ==> sxtx
198/// {3-1} = shifter
199/// {0} = doshift
200static inline unsigned getMemExtendImm(AArch64_AM::ShiftExtendType ET,
201 bool DoShift) {
202 return (getExtendEncoding(ET) << 1) | unsigned(DoShift);
203}
204
205static inline uint64_t ror(uint64_t elt, unsigned size) {
206 return ((elt & 1) << (size-1)) | (elt >> 1);
207}
208
209/// processLogicalImmediate - Determine if an immediate value can be encoded
210/// as the immediate operand of a logical instruction for the given register
211/// size. If so, return true with "encoding" set to the encoded value in
212/// the form N:immr:imms.
213static inline bool processLogicalImmediate(uint64_t Imm, unsigned RegSize,
214 uint64_t &Encoding) {
215 if (Imm == 0ULL || Imm == ~0ULL ||
216 (RegSize != 64 &&
217 (Imm >> RegSize != 0 || Imm == (~0ULL >> (64 - RegSize)))))
218 return false;
219
220 // First, determine the element size.
221 unsigned Size = RegSize;
222
223 do {
224 Size /= 2;
225 uint64_t Mask = (1ULL << Size) - 1;
226
227 if ((Imm & Mask) != ((Imm >> Size) & Mask)) {
228 Size *= 2;
229 break;
230 }
231 } while (Size > 2);
232
233 // Second, determine the rotation to make the element be: 0^m 1^n.
234 uint32_t CTO, I;
235 uint64_t Mask = ((uint64_t)-1LL) >> (64 - Size);
236 Imm &= Mask;
237
238 if (isShiftedMask_64(Imm)) {
239 I = countTrailingZeros(Imm);
240 assert(I < 64 && "undefined behavior")(static_cast<void> (0));
241 CTO = countTrailingOnes(Imm >> I);
242 } else {
243 Imm |= ~Mask;
244 if (!isShiftedMask_64(~Imm))
245 return false;
246
247 unsigned CLO = countLeadingOnes(Imm);
248 I = 64 - CLO;
249 CTO = CLO + countTrailingOnes(Imm) - (64 - Size);
250 }
251
252 // Encode in Immr the number of RORs it would take to get *from* 0^m 1^n
253 // to our target value, where I is the number of RORs to go the opposite
254 // direction.
255 assert(Size > I && "I should be smaller than element size")(static_cast<void> (0));
256 unsigned Immr = (Size - I) & (Size - 1);
257
258 // If size has a 1 in the n'th bit, create a value that has zeroes in
259 // bits [0, n] and ones above that.
260 uint64_t NImms = ~(Size-1) << 1;
261
262 // Or the CTO value into the low bits, which must be below the Nth bit
263 // bit mentioned above.
264 NImms |= (CTO-1);
265
266 // Extract the seventh bit and toggle it to create the N field.
267 unsigned N = ((NImms >> 6) & 1) ^ 1;
268
269 Encoding = (N << 12) | (Immr << 6) | (NImms & 0x3f);
270 return true;
271}
272
273/// isLogicalImmediate - Return true if the immediate is valid for a logical
274/// immediate instruction of the given register size. Return false otherwise.
275static inline bool isLogicalImmediate(uint64_t imm, unsigned regSize) {
276 uint64_t encoding;
277 return processLogicalImmediate(imm, regSize, encoding);
278}
279
280/// encodeLogicalImmediate - Return the encoded immediate value for a logical
281/// immediate instruction of the given register size.
282static inline uint64_t encodeLogicalImmediate(uint64_t imm, unsigned regSize) {
283 uint64_t encoding = 0;
284 bool res = processLogicalImmediate(imm, regSize, encoding);
285 assert(res && "invalid logical immediate")(static_cast<void> (0));
286 (void)res;
287 return encoding;
288}
289
290/// decodeLogicalImmediate - Decode a logical immediate value in the form
291/// "N:immr:imms" (where the immr and imms fields are each 6 bits) into the
292/// integer value it represents with regSize bits.
293static inline uint64_t decodeLogicalImmediate(uint64_t val, unsigned regSize) {
294 // Extract the N, imms, and immr fields.
295 unsigned N = (val >> 12) & 1;
296 unsigned immr = (val >> 6) & 0x3f;
297 unsigned imms = val & 0x3f;
298
299 assert((regSize == 64 || N == 0) && "undefined logical immediate encoding")(static_cast<void> (0));
300 int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f));
19
'len' initialized to -1
301 assert(len >= 0 && "undefined logical immediate encoding")(static_cast<void> (0));
302 unsigned size = (1 << len);
20
The result of the left shift is undefined because the right operand is negative
303 unsigned R = immr & (size - 1);
304 unsigned S = imms & (size - 1);
305 assert(S != size - 1 && "undefined logical immediate encoding")(static_cast<void> (0));
306 uint64_t pattern = (1ULL << (S + 1)) - 1;
307 for (unsigned i = 0; i < R; ++i)
308 pattern = ror(pattern, size);
309
310 // Replicate the pattern to fill the regSize.
311 while (size != regSize) {
312 pattern |= (pattern << size);
313 size *= 2;
314 }
315 return pattern;
316}
317
318/// isValidDecodeLogicalImmediate - Check to see if the logical immediate value
319/// in the form "N:immr:imms" (where the immr and imms fields are each 6 bits)
320/// is a valid encoding for an integer value with regSize bits.
321static inline bool isValidDecodeLogicalImmediate(uint64_t val,
322 unsigned regSize) {
323 // Extract the N and imms fields needed for checking.
324 unsigned N = (val >> 12) & 1;
325 unsigned imms = val & 0x3f;
326
327 if (regSize == 32 && N != 0) // undefined logical immediate encoding
328 return false;
329 int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f));
330 if (len < 0) // undefined logical immediate encoding
331 return false;
332 unsigned size = (1 << len);
333 unsigned S = imms & (size - 1);
334 if (S == size - 1) // undefined logical immediate encoding
335 return false;
336
337 return true;
338}
339
340//===----------------------------------------------------------------------===//
341// Floating-point Immediates
342//
343static inline float getFPImmFloat(unsigned Imm) {
344 // We expect an 8-bit binary encoding of a floating-point number here.
345
346 uint8_t Sign = (Imm >> 7) & 0x1;
347 uint8_t Exp = (Imm >> 4) & 0x7;
348 uint8_t Mantissa = Imm & 0xf;
349
350 // 8-bit FP IEEE Float Encoding
351 // abcd efgh aBbbbbbc defgh000 00000000 00000000
352 //
353 // where B = NOT(b);
354
355 uint32_t I = 0;
356 I |= Sign << 31;
357 I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
358 I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
359 I |= (Exp & 0x3) << 23;
360 I |= Mantissa << 19;
361 return bit_cast<float>(I);
362}
363
364/// getFP16Imm - Return an 8-bit floating-point version of the 16-bit
365/// floating-point value. If the value cannot be represented as an 8-bit
366/// floating-point value, then return -1.
367static inline int getFP16Imm(const APInt &Imm) {
368 uint32_t Sign = Imm.lshr(15).getZExtValue() & 1;
369 int32_t Exp = (Imm.lshr(10).getSExtValue() & 0x1f) - 15; // -14 to 15
370 int32_t Mantissa = Imm.getZExtValue() & 0x3ff; // 10 bits
371
372 // We can handle 4 bits of mantissa.
373 // mantissa = (16+UInt(e:f:g:h))/16.
374 if (Mantissa & 0x3f)
375 return -1;
376 Mantissa >>= 6;
377
378 // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
379 if (Exp < -3 || Exp > 4)
380 return -1;
381 Exp = ((Exp+3) & 0x7) ^ 4;
382
383 return ((int)Sign << 7) | (Exp << 4) | Mantissa;
384}
385
386static inline int getFP16Imm(const APFloat &FPImm) {
387 return getFP16Imm(FPImm.bitcastToAPInt());
388}
389
390/// getFP32Imm - Return an 8-bit floating-point version of the 32-bit
391/// floating-point value. If the value cannot be represented as an 8-bit
392/// floating-point value, then return -1.
393static inline int getFP32Imm(const APInt &Imm) {
394 uint32_t Sign = Imm.lshr(31).getZExtValue() & 1;
395 int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127; // -126 to 127
396 int64_t Mantissa = Imm.getZExtValue() & 0x7fffff; // 23 bits
397
398 // We can handle 4 bits of mantissa.
399 // mantissa = (16+UInt(e:f:g:h))/16.
400 if (Mantissa & 0x7ffff)
401 return -1;
402 Mantissa >>= 19;
403 if ((Mantissa & 0xf) != Mantissa)
404 return -1;
405
406 // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
407 if (Exp < -3 || Exp > 4)
408 return -1;
409 Exp = ((Exp+3) & 0x7) ^ 4;
410
411 return ((int)Sign << 7) | (Exp << 4) | Mantissa;
412}
413
414static inline int getFP32Imm(const APFloat &FPImm) {
415 return getFP32Imm(FPImm.bitcastToAPInt());
416}
417
418/// getFP64Imm - Return an 8-bit floating-point version of the 64-bit
419/// floating-point value. If the value cannot be represented as an 8-bit
420/// floating-point value, then return -1.
421static inline int getFP64Imm(const APInt &Imm) {
422 uint64_t Sign = Imm.lshr(63).getZExtValue() & 1;
423 int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023
424 uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL;
425
426 // We can handle 4 bits of mantissa.
427 // mantissa = (16+UInt(e:f:g:h))/16.
428 if (Mantissa & 0xffffffffffffULL)
429 return -1;
430 Mantissa >>= 48;
431 if ((Mantissa & 0xf) != Mantissa)
432 return -1;
433
434 // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3
435 if (Exp < -3 || Exp > 4)
436 return -1;
437 Exp = ((Exp+3) & 0x7) ^ 4;
438
439 return ((int)Sign << 7) | (Exp << 4) | Mantissa;
440}
441
442static inline int getFP64Imm(const APFloat &FPImm) {
443 return getFP64Imm(FPImm.bitcastToAPInt());
444}
445
446//===--------------------------------------------------------------------===//
447// AdvSIMD Modified Immediates
448//===--------------------------------------------------------------------===//
449
450// 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh
451static inline bool isAdvSIMDModImmType1(uint64_t Imm) {
452 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
453 ((Imm & 0xffffff00ffffff00ULL) == 0);
454}
455
456static inline uint8_t encodeAdvSIMDModImmType1(uint64_t Imm) {
457 return (Imm & 0xffULL);
458}
459
460static inline uint64_t decodeAdvSIMDModImmType1(uint8_t Imm) {
461 uint64_t EncVal = Imm;
462 return (EncVal << 32) | EncVal;
463}
464
465// 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00
466static inline bool isAdvSIMDModImmType2(uint64_t Imm) {
467 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
468 ((Imm & 0xffff00ffffff00ffULL) == 0);
469}
470
471static inline uint8_t encodeAdvSIMDModImmType2(uint64_t Imm) {
472 return (Imm & 0xff00ULL) >> 8;
473}
474
475static inline uint64_t decodeAdvSIMDModImmType2(uint8_t Imm) {
476 uint64_t EncVal = Imm;
477 return (EncVal << 40) | (EncVal << 8);
478}
479
480// 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00
481static inline bool isAdvSIMDModImmType3(uint64_t Imm) {
482 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
483 ((Imm & 0xff00ffffff00ffffULL) == 0);
484}
485
486static inline uint8_t encodeAdvSIMDModImmType3(uint64_t Imm) {
487 return (Imm & 0xff0000ULL) >> 16;
488}
489
490static inline uint64_t decodeAdvSIMDModImmType3(uint8_t Imm) {
491 uint64_t EncVal = Imm;
492 return (EncVal << 48) | (EncVal << 16);
493}
494
495// abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00
496static inline bool isAdvSIMDModImmType4(uint64_t Imm) {
497 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
498 ((Imm & 0x00ffffff00ffffffULL) == 0);
499}
500
501static inline uint8_t encodeAdvSIMDModImmType4(uint64_t Imm) {
502 return (Imm & 0xff000000ULL) >> 24;
503}
504
505static inline uint64_t decodeAdvSIMDModImmType4(uint8_t Imm) {
506 uint64_t EncVal = Imm;
507 return (EncVal << 56) | (EncVal << 24);
508}
509
510// 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh
511static inline bool isAdvSIMDModImmType5(uint64_t Imm) {
512 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
513 (((Imm & 0x00ff0000ULL) >> 16) == (Imm & 0x000000ffULL)) &&
514 ((Imm & 0xff00ff00ff00ff00ULL) == 0);
515}
516
517static inline uint8_t encodeAdvSIMDModImmType5(uint64_t Imm) {
518 return (Imm & 0xffULL);
519}
520
521static inline uint64_t decodeAdvSIMDModImmType5(uint8_t Imm) {
522 uint64_t EncVal = Imm;
523 return (EncVal << 48) | (EncVal << 32) | (EncVal << 16) | EncVal;
524}
525
526// abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00
527static inline bool isAdvSIMDModImmType6(uint64_t Imm) {
528 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
529 (((Imm & 0xff000000ULL) >> 16) == (Imm & 0x0000ff00ULL)) &&
530 ((Imm & 0x00ff00ff00ff00ffULL) == 0);
531}
532
533static inline uint8_t encodeAdvSIMDModImmType6(uint64_t Imm) {
534 return (Imm & 0xff00ULL) >> 8;
535}
536
537static inline uint64_t decodeAdvSIMDModImmType6(uint8_t Imm) {
538 uint64_t EncVal = Imm;
539 return (EncVal << 56) | (EncVal << 40) | (EncVal << 24) | (EncVal << 8);
540}
541
542// 0x00 0x00 abcdefgh 0xFF 0x00 0x00 abcdefgh 0xFF
543static inline bool isAdvSIMDModImmType7(uint64_t Imm) {
544 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
545 ((Imm & 0xffff00ffffff00ffULL) == 0x000000ff000000ffULL);
546}
547
548static inline uint8_t encodeAdvSIMDModImmType7(uint64_t Imm) {
549 return (Imm & 0xff00ULL) >> 8;
550}
551
552static inline uint64_t decodeAdvSIMDModImmType7(uint8_t Imm) {
553 uint64_t EncVal = Imm;
554 return (EncVal << 40) | (EncVal << 8) | 0x000000ff000000ffULL;
555}
556
557// 0x00 abcdefgh 0xFF 0xFF 0x00 abcdefgh 0xFF 0xFF
558static inline bool isAdvSIMDModImmType8(uint64_t Imm) {
559 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
560 ((Imm & 0xff00ffffff00ffffULL) == 0x0000ffff0000ffffULL);
561}
562
563static inline uint64_t decodeAdvSIMDModImmType8(uint8_t Imm) {
564 uint64_t EncVal = Imm;
565 return (EncVal << 48) | (EncVal << 16) | 0x0000ffff0000ffffULL;
566}
567
568static inline uint8_t encodeAdvSIMDModImmType8(uint64_t Imm) {
569 return (Imm & 0x00ff0000ULL) >> 16;
570}
571
572// abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh
573static inline bool isAdvSIMDModImmType9(uint64_t Imm) {
574 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
575 ((Imm >> 48) == (Imm & 0x0000ffffULL)) &&
576 ((Imm >> 56) == (Imm & 0x000000ffULL));
577}
578
579static inline uint8_t encodeAdvSIMDModImmType9(uint64_t Imm) {
580 return (Imm & 0xffULL);
581}
582
583static inline uint64_t decodeAdvSIMDModImmType9(uint8_t Imm) {
584 uint64_t EncVal = Imm;
585 EncVal |= (EncVal << 8);
586 EncVal |= (EncVal << 16);
587 EncVal |= (EncVal << 32);
588 return EncVal;
589}
590
591// aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff gggggggg hhhhhhhh
592// cmode: 1110, op: 1
593static inline bool isAdvSIMDModImmType10(uint64_t Imm) {
594 uint64_t ByteA = Imm & 0xff00000000000000ULL;
595 uint64_t ByteB = Imm & 0x00ff000000000000ULL;
596 uint64_t ByteC = Imm & 0x0000ff0000000000ULL;
597 uint64_t ByteD = Imm & 0x000000ff00000000ULL;
598 uint64_t ByteE = Imm & 0x00000000ff000000ULL;
599 uint64_t ByteF = Imm & 0x0000000000ff0000ULL;
600 uint64_t ByteG = Imm & 0x000000000000ff00ULL;
601 uint64_t ByteH = Imm & 0x00000000000000ffULL;
602
603 return (ByteA == 0ULL || ByteA == 0xff00000000000000ULL) &&
604 (ByteB == 0ULL || ByteB == 0x00ff000000000000ULL) &&
605 (ByteC == 0ULL || ByteC == 0x0000ff0000000000ULL) &&
606 (ByteD == 0ULL || ByteD == 0x000000ff00000000ULL) &&
607 (ByteE == 0ULL || ByteE == 0x00000000ff000000ULL) &&
608 (ByteF == 0ULL || ByteF == 0x0000000000ff0000ULL) &&
609 (ByteG == 0ULL || ByteG == 0x000000000000ff00ULL) &&
610 (ByteH == 0ULL || ByteH == 0x00000000000000ffULL);
611}
612
613static inline uint8_t encodeAdvSIMDModImmType10(uint64_t Imm) {
614 uint8_t BitA = (Imm & 0xff00000000000000ULL) != 0;
615 uint8_t BitB = (Imm & 0x00ff000000000000ULL) != 0;
616 uint8_t BitC = (Imm & 0x0000ff0000000000ULL) != 0;
617 uint8_t BitD = (Imm & 0x000000ff00000000ULL) != 0;
618 uint8_t BitE = (Imm & 0x00000000ff000000ULL) != 0;
619 uint8_t BitF = (Imm & 0x0000000000ff0000ULL) != 0;
620 uint8_t BitG = (Imm & 0x000000000000ff00ULL) != 0;
621 uint8_t BitH = (Imm & 0x00000000000000ffULL) != 0;
622
623 uint8_t EncVal = BitA;
624 EncVal <<= 1;
625 EncVal |= BitB;
626 EncVal <<= 1;
627 EncVal |= BitC;
628 EncVal <<= 1;
629 EncVal |= BitD;
630 EncVal <<= 1;
631 EncVal |= BitE;
632 EncVal <<= 1;
633 EncVal |= BitF;
634 EncVal <<= 1;
635 EncVal |= BitG;
636 EncVal <<= 1;
637 EncVal |= BitH;
638 return EncVal;
639}
640
641static inline uint64_t decodeAdvSIMDModImmType10(uint8_t Imm) {
642 uint64_t EncVal = 0;
643 if (Imm & 0x80) EncVal |= 0xff00000000000000ULL;
644 if (Imm & 0x40) EncVal |= 0x00ff000000000000ULL;
645 if (Imm & 0x20) EncVal |= 0x0000ff0000000000ULL;
646 if (Imm & 0x10) EncVal |= 0x000000ff00000000ULL;
647 if (Imm & 0x08) EncVal |= 0x00000000ff000000ULL;
648 if (Imm & 0x04) EncVal |= 0x0000000000ff0000ULL;
649 if (Imm & 0x02) EncVal |= 0x000000000000ff00ULL;
650 if (Imm & 0x01) EncVal |= 0x00000000000000ffULL;
651 return EncVal;
652}
653
654// aBbbbbbc defgh000 0x00 0x00 aBbbbbbc defgh000 0x00 0x00
655static inline bool isAdvSIMDModImmType11(uint64_t Imm) {
656 uint64_t BString = (Imm & 0x7E000000ULL) >> 25;
657 return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
658 (BString == 0x1f || BString == 0x20) &&
659 ((Imm & 0x0007ffff0007ffffULL) == 0);
660}
661
662static inline uint8_t encodeAdvSIMDModImmType11(uint64_t Imm) {
663 uint8_t BitA = (Imm & 0x80000000ULL) != 0;
664 uint8_t BitB = (Imm & 0x20000000ULL) != 0;
665 uint8_t BitC = (Imm & 0x01000000ULL) != 0;
666 uint8_t BitD = (Imm & 0x00800000ULL) != 0;
667 uint8_t BitE = (Imm & 0x00400000ULL) != 0;
668 uint8_t BitF = (Imm & 0x00200000ULL) != 0;
669 uint8_t BitG = (Imm & 0x00100000ULL) != 0;
670 uint8_t BitH = (Imm & 0x00080000ULL) != 0;
671
672 uint8_t EncVal = BitA;
673 EncVal <<= 1;
674 EncVal |= BitB;
675 EncVal <<= 1;
676 EncVal |= BitC;
677 EncVal <<= 1;
678 EncVal |= BitD;
679 EncVal <<= 1;
680 EncVal |= BitE;
681 EncVal <<= 1;
682 EncVal |= BitF;
683 EncVal <<= 1;
684 EncVal |= BitG;
685 EncVal <<= 1;
686 EncVal |= BitH;
687 return EncVal;
688}
689
690static inline uint64_t decodeAdvSIMDModImmType11(uint8_t Imm) {
691 uint64_t EncVal = 0;
692 if (Imm & 0x80) EncVal |= 0x80000000ULL;
693 if (Imm & 0x40) EncVal |= 0x3e000000ULL;
694 else EncVal |= 0x40000000ULL;
695 if (Imm & 0x20) EncVal |= 0x01000000ULL;
696 if (Imm & 0x10) EncVal |= 0x00800000ULL;
697 if (Imm & 0x08) EncVal |= 0x00400000ULL;
698 if (Imm & 0x04) EncVal |= 0x00200000ULL;
699 if (Imm & 0x02) EncVal |= 0x00100000ULL;
700 if (Imm & 0x01) EncVal |= 0x00080000ULL;
701 return (EncVal << 32) | EncVal;
702}
703
704// aBbbbbbb bbcdefgh 0x00 0x00 0x00 0x00 0x00 0x00
705static inline bool isAdvSIMDModImmType12(uint64_t Imm) {
706 uint64_t BString = (Imm & 0x7fc0000000000000ULL) >> 54;
707 return ((BString == 0xff || BString == 0x100) &&
708 ((Imm & 0x0000ffffffffffffULL) == 0));
709}
710
711static inline uint8_t encodeAdvSIMDModImmType12(uint64_t Imm) {
712 uint8_t BitA = (Imm & 0x8000000000000000ULL) != 0;
713 uint8_t BitB = (Imm & 0x0040000000000000ULL) != 0;
714 uint8_t BitC = (Imm & 0x0020000000000000ULL) != 0;
715 uint8_t BitD = (Imm & 0x0010000000000000ULL) != 0;
716 uint8_t BitE = (Imm & 0x0008000000000000ULL) != 0;
717 uint8_t BitF = (Imm & 0x0004000000000000ULL) != 0;
718 uint8_t BitG = (Imm & 0x0002000000000000ULL) != 0;
719 uint8_t BitH = (Imm & 0x0001000000000000ULL) != 0;
720
721 uint8_t EncVal = BitA;
722 EncVal <<= 1;
723 EncVal |= BitB;
724 EncVal <<= 1;
725 EncVal |= BitC;
726 EncVal <<= 1;
727 EncVal |= BitD;
728 EncVal <<= 1;
729 EncVal |= BitE;
730 EncVal <<= 1;
731 EncVal |= BitF;
732 EncVal <<= 1;
733 EncVal |= BitG;
734 EncVal <<= 1;
735 EncVal |= BitH;
736 return EncVal;
737}
738
739static inline uint64_t decodeAdvSIMDModImmType12(uint8_t Imm) {
740 uint64_t EncVal = 0;
741 if (Imm & 0x80) EncVal |= 0x8000000000000000ULL;
742 if (Imm & 0x40) EncVal |= 0x3fc0000000000000ULL;
743 else EncVal |= 0x4000000000000000ULL;
744 if (Imm & 0x20) EncVal |= 0x0020000000000000ULL;
745 if (Imm & 0x10) EncVal |= 0x0010000000000000ULL;
746 if (Imm & 0x08) EncVal |= 0x0008000000000000ULL;
747 if (Imm & 0x04) EncVal |= 0x0004000000000000ULL;
748 if (Imm & 0x02) EncVal |= 0x0002000000000000ULL;
749 if (Imm & 0x01) EncVal |= 0x0001000000000000ULL;
750 return (EncVal << 32) | EncVal;
751}
752
753/// Returns true if Imm is the concatenation of a repeating pattern of type T.
754template <typename T>
755static inline bool isSVEMaskOfIdenticalElements(int64_t Imm) {
756 auto Parts = bit_cast<std::array<T, sizeof(int64_t) / sizeof(T)>>(Imm);
757 return all_of(Parts, [&](T Elem) { return Elem == Parts[0]; });
758}
759
760/// Returns true if Imm is valid for CPY/DUP.
761template <typename T>
762static inline bool isSVECpyImm(int64_t Imm) {
763 // Imm is interpreted as a signed value, which means top bits must be all ones
764 // (sign bits if the immediate value is negative and passed in a larger
765 // container), or all zeroes.
766 int64_t Mask = ~int64_t(std::numeric_limits<std::make_unsigned_t<T>>::max());
767 if ((Imm & Mask) != 0 && (Imm & Mask) != Mask)
768 return false;
769
770 // Imm is a signed 8-bit value.
771 // Top bits must be zeroes or sign bits.
772 if (Imm & 0xff)
773 return int8_t(Imm) == T(Imm);
774
775 // Imm is a signed 16-bit value and multiple of 256.
776 // Top bits must be zeroes or sign bits.
777 if (Imm & 0xff00)
778 return int16_t(Imm) == T(Imm);
779
780 return Imm == 0;
781}
782
783/// Returns true if Imm is valid for ADD/SUB.
784template <typename T>
785static inline bool isSVEAddSubImm(int64_t Imm) {
786 bool IsInt8t = std::is_same<int8_t, std::make_signed_t<T>>::value ||
787 std::is_same<int8_t, T>::value;
788 return uint8_t(Imm) == Imm || (!IsInt8t && uint16_t(Imm & ~0xff) == Imm);
789}
790
791/// Return true if Imm is valid for DUPM and has no single CPY/DUP equivalent.
792static inline bool isSVEMoveMaskPreferredLogicalImmediate(int64_t Imm) {
793 if (isSVECpyImm<int64_t>(Imm))
794 return false;
795
796 auto S = bit_cast<std::array<int32_t, 2>>(Imm);
797 auto H = bit_cast<std::array<int16_t, 4>>(Imm);
798 auto B = bit_cast<std::array<int8_t, 8>>(Imm);
799
800 if (isSVEMaskOfIdenticalElements<int32_t>(Imm) && isSVECpyImm<int32_t>(S[0]))
801 return false;
802 if (isSVEMaskOfIdenticalElements<int16_t>(Imm) && isSVECpyImm<int16_t>(H[0]))
803 return false;
804 if (isSVEMaskOfIdenticalElements<int8_t>(Imm) && isSVECpyImm<int8_t>(B[0]))
805 return false;
806 return isLogicalImmediate(Imm, 64);
807}
808
809inline static bool isAnyMOVZMovAlias(uint64_t Value, int RegWidth) {
810 for (int Shift = 0; Shift <= RegWidth - 16; Shift += 16)
811 if ((Value & ~(0xffffULL << Shift)) == 0)
812 return true;
813
814 return false;
815}
816
817inline static bool isMOVZMovAlias(uint64_t Value, int Shift, int RegWidth) {
818 if (RegWidth == 32)
819 Value &= 0xffffffffULL;
820
821 // "lsl #0" takes precedence: in practice this only affects "#0, lsl #0".
822 if (Value == 0 && Shift != 0)
823 return false;
824
825 return (Value & ~(0xffffULL << Shift)) == 0;
826}
827
828inline static bool isMOVNMovAlias(uint64_t Value, int Shift, int RegWidth) {
829 // MOVZ takes precedence over MOVN.
830 if (isAnyMOVZMovAlias(Value, RegWidth))
831 return false;
832
833 Value = ~Value;
834 if (RegWidth == 32)
835 Value &= 0xffffffffULL;
836
837 return isMOVZMovAlias(Value, Shift, RegWidth);
838}
839
840inline static bool isAnyMOVWMovAlias(uint64_t Value, int RegWidth) {
841 if (isAnyMOVZMovAlias(Value, RegWidth))
842 return true;
843
844 // It's not a MOVZ, but it might be a MOVN.
845 Value = ~Value;
846 if (RegWidth == 32)
847 Value &= 0xffffffffULL;
848
849 return isAnyMOVZMovAlias(Value, RegWidth);
850}
851
852} // end namespace AArch64_AM
853
854} // end namespace llvm
855
856#endif