| File: | build/source/llvm/lib/Target/AArch64/AArch64ISelLowering.cpp |
| Warning: | line 13850, column 22 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //===-- AArch64ISelLowering.cpp - AArch64 DAG Lowering Implementation ----===// | ||||
| 2 | // | ||||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | ||||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||||
| 6 | // | ||||
| 7 | //===----------------------------------------------------------------------===// | ||||
| 8 | // | ||||
| 9 | // This file implements the AArch64TargetLowering class. | ||||
| 10 | // | ||||
| 11 | //===----------------------------------------------------------------------===// | ||||
| 12 | |||||
| 13 | #include "AArch64ISelLowering.h" | ||||
| 14 | #include "AArch64CallingConvention.h" | ||||
| 15 | #include "AArch64ExpandImm.h" | ||||
| 16 | #include "AArch64MachineFunctionInfo.h" | ||||
| 17 | #include "AArch64PerfectShuffle.h" | ||||
| 18 | #include "AArch64RegisterInfo.h" | ||||
| 19 | #include "AArch64Subtarget.h" | ||||
| 20 | #include "MCTargetDesc/AArch64AddressingModes.h" | ||||
| 21 | #include "Utils/AArch64BaseInfo.h" | ||||
| 22 | #include "llvm/ADT/APFloat.h" | ||||
| 23 | #include "llvm/ADT/APInt.h" | ||||
| 24 | #include "llvm/ADT/ArrayRef.h" | ||||
| 25 | #include "llvm/ADT/STLExtras.h" | ||||
| 26 | #include "llvm/ADT/SmallSet.h" | ||||
| 27 | #include "llvm/ADT/SmallVector.h" | ||||
| 28 | #include "llvm/ADT/Statistic.h" | ||||
| 29 | #include "llvm/ADT/StringRef.h" | ||||
| 30 | #include "llvm/ADT/Triple.h" | ||||
| 31 | #include "llvm/ADT/Twine.h" | ||||
| 32 | #include "llvm/Analysis/LoopInfo.h" | ||||
| 33 | #include "llvm/Analysis/MemoryLocation.h" | ||||
| 34 | #include "llvm/Analysis/ObjCARCUtil.h" | ||||
| 35 | #include "llvm/Analysis/TargetTransformInfo.h" | ||||
| 36 | #include "llvm/Analysis/VectorUtils.h" | ||||
| 37 | #include "llvm/CodeGen/Analysis.h" | ||||
| 38 | #include "llvm/CodeGen/CallingConvLower.h" | ||||
| 39 | #include "llvm/CodeGen/ISDOpcodes.h" | ||||
| 40 | #include "llvm/CodeGen/MachineBasicBlock.h" | ||||
| 41 | #include "llvm/CodeGen/MachineFrameInfo.h" | ||||
| 42 | #include "llvm/CodeGen/MachineFunction.h" | ||||
| 43 | #include "llvm/CodeGen/MachineInstr.h" | ||||
| 44 | #include "llvm/CodeGen/MachineInstrBuilder.h" | ||||
| 45 | #include "llvm/CodeGen/MachineMemOperand.h" | ||||
| 46 | #include "llvm/CodeGen/MachineRegisterInfo.h" | ||||
| 47 | #include "llvm/CodeGen/RuntimeLibcalls.h" | ||||
| 48 | #include "llvm/CodeGen/SelectionDAG.h" | ||||
| 49 | #include "llvm/CodeGen/SelectionDAGNodes.h" | ||||
| 50 | #include "llvm/CodeGen/TargetCallingConv.h" | ||||
| 51 | #include "llvm/CodeGen/TargetInstrInfo.h" | ||||
| 52 | #include "llvm/CodeGen/ValueTypes.h" | ||||
| 53 | #include "llvm/IR/Attributes.h" | ||||
| 54 | #include "llvm/IR/Constants.h" | ||||
| 55 | #include "llvm/IR/DataLayout.h" | ||||
| 56 | #include "llvm/IR/DebugLoc.h" | ||||
| 57 | #include "llvm/IR/DerivedTypes.h" | ||||
| 58 | #include "llvm/IR/Function.h" | ||||
| 59 | #include "llvm/IR/GetElementPtrTypeIterator.h" | ||||
| 60 | #include "llvm/IR/GlobalValue.h" | ||||
| 61 | #include "llvm/IR/IRBuilder.h" | ||||
| 62 | #include "llvm/IR/Instruction.h" | ||||
| 63 | #include "llvm/IR/Instructions.h" | ||||
| 64 | #include "llvm/IR/IntrinsicInst.h" | ||||
| 65 | #include "llvm/IR/Intrinsics.h" | ||||
| 66 | #include "llvm/IR/IntrinsicsAArch64.h" | ||||
| 67 | #include "llvm/IR/Module.h" | ||||
| 68 | #include "llvm/IR/OperandTraits.h" | ||||
| 69 | #include "llvm/IR/PatternMatch.h" | ||||
| 70 | #include "llvm/IR/Type.h" | ||||
| 71 | #include "llvm/IR/Use.h" | ||||
| 72 | #include "llvm/IR/Value.h" | ||||
| 73 | #include "llvm/MC/MCRegisterInfo.h" | ||||
| 74 | #include "llvm/Support/Casting.h" | ||||
| 75 | #include "llvm/Support/CodeGen.h" | ||||
| 76 | #include "llvm/Support/CommandLine.h" | ||||
| 77 | #include "llvm/Support/Compiler.h" | ||||
| 78 | #include "llvm/Support/Debug.h" | ||||
| 79 | #include "llvm/Support/ErrorHandling.h" | ||||
| 80 | #include "llvm/Support/InstructionCost.h" | ||||
| 81 | #include "llvm/Support/KnownBits.h" | ||||
| 82 | #include "llvm/Support/MachineValueType.h" | ||||
| 83 | #include "llvm/Support/MathExtras.h" | ||||
| 84 | #include "llvm/Support/raw_ostream.h" | ||||
| 85 | #include "llvm/Target/TargetMachine.h" | ||||
| 86 | #include "llvm/Target/TargetOptions.h" | ||||
| 87 | #include <algorithm> | ||||
| 88 | #include <bitset> | ||||
| 89 | #include <cassert> | ||||
| 90 | #include <cctype> | ||||
| 91 | #include <cstdint> | ||||
| 92 | #include <cstdlib> | ||||
| 93 | #include <iterator> | ||||
| 94 | #include <limits> | ||||
| 95 | #include <optional> | ||||
| 96 | #include <tuple> | ||||
| 97 | #include <utility> | ||||
| 98 | #include <vector> | ||||
| 99 | |||||
| 100 | using namespace llvm; | ||||
| 101 | using namespace llvm::PatternMatch; | ||||
| 102 | |||||
| 103 | #define DEBUG_TYPE"aarch64-lower" "aarch64-lower" | ||||
| 104 | |||||
| 105 | STATISTIC(NumTailCalls, "Number of tail calls")static llvm::Statistic NumTailCalls = {"aarch64-lower", "NumTailCalls" , "Number of tail calls"}; | ||||
| 106 | STATISTIC(NumShiftInserts, "Number of vector shift inserts")static llvm::Statistic NumShiftInserts = {"aarch64-lower", "NumShiftInserts" , "Number of vector shift inserts"}; | ||||
| 107 | STATISTIC(NumOptimizedImms, "Number of times immediates were optimized")static llvm::Statistic NumOptimizedImms = {"aarch64-lower", "NumOptimizedImms" , "Number of times immediates were optimized"}; | ||||
| 108 | |||||
| 109 | // FIXME: The necessary dtprel relocations don't seem to be supported | ||||
| 110 | // well in the GNU bfd and gold linkers at the moment. Therefore, by | ||||
| 111 | // default, for now, fall back to GeneralDynamic code generation. | ||||
| 112 | cl::opt<bool> EnableAArch64ELFLocalDynamicTLSGeneration( | ||||
| 113 | "aarch64-elf-ldtls-generation", cl::Hidden, | ||||
| 114 | cl::desc("Allow AArch64 Local Dynamic TLS code generation"), | ||||
| 115 | cl::init(false)); | ||||
| 116 | |||||
| 117 | static cl::opt<bool> | ||||
| 118 | EnableOptimizeLogicalImm("aarch64-enable-logical-imm", cl::Hidden, | ||||
| 119 | cl::desc("Enable AArch64 logical imm instruction " | ||||
| 120 | "optimization"), | ||||
| 121 | cl::init(true)); | ||||
| 122 | |||||
| 123 | // Temporary option added for the purpose of testing functionality added | ||||
| 124 | // to DAGCombiner.cpp in D92230. It is expected that this can be removed | ||||
| 125 | // in future when both implementations will be based off MGATHER rather | ||||
| 126 | // than the GLD1 nodes added for the SVE gather load intrinsics. | ||||
| 127 | static cl::opt<bool> | ||||
| 128 | EnableCombineMGatherIntrinsics("aarch64-enable-mgather-combine", cl::Hidden, | ||||
| 129 | cl::desc("Combine extends of AArch64 masked " | ||||
| 130 | "gather intrinsics"), | ||||
| 131 | cl::init(true)); | ||||
| 132 | |||||
| 133 | // All of the XOR, OR and CMP use ALU ports, and data dependency will become the | ||||
| 134 | // bottleneck after this transform on high end CPU. So this max leaf node | ||||
| 135 | // limitation is guard cmp+ccmp will be profitable. | ||||
| 136 | static cl::opt<unsigned> MaxXors("aarch64-max-xors", cl::init(16), cl::Hidden, | ||||
| 137 | cl::desc("Maximum of xors")); | ||||
| 138 | |||||
| 139 | /// Value type used for condition codes. | ||||
| 140 | static const MVT MVT_CC = MVT::i32; | ||||
| 141 | |||||
| 142 | static inline EVT getPackedSVEVectorVT(EVT VT) { | ||||
| 143 | switch (VT.getSimpleVT().SimpleTy) { | ||||
| 144 | default: | ||||
| 145 | llvm_unreachable("unexpected element type for vector")::llvm::llvm_unreachable_internal("unexpected element type for vector" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 145); | ||||
| 146 | case MVT::i8: | ||||
| 147 | return MVT::nxv16i8; | ||||
| 148 | case MVT::i16: | ||||
| 149 | return MVT::nxv8i16; | ||||
| 150 | case MVT::i32: | ||||
| 151 | return MVT::nxv4i32; | ||||
| 152 | case MVT::i64: | ||||
| 153 | return MVT::nxv2i64; | ||||
| 154 | case MVT::f16: | ||||
| 155 | return MVT::nxv8f16; | ||||
| 156 | case MVT::f32: | ||||
| 157 | return MVT::nxv4f32; | ||||
| 158 | case MVT::f64: | ||||
| 159 | return MVT::nxv2f64; | ||||
| 160 | case MVT::bf16: | ||||
| 161 | return MVT::nxv8bf16; | ||||
| 162 | } | ||||
| 163 | } | ||||
| 164 | |||||
| 165 | // NOTE: Currently there's only a need to return integer vector types. If this | ||||
| 166 | // changes then just add an extra "type" parameter. | ||||
| 167 | static inline EVT getPackedSVEVectorVT(ElementCount EC) { | ||||
| 168 | switch (EC.getKnownMinValue()) { | ||||
| 169 | default: | ||||
| 170 | llvm_unreachable("unexpected element count for vector")::llvm::llvm_unreachable_internal("unexpected element count for vector" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 170); | ||||
| 171 | case 16: | ||||
| 172 | return MVT::nxv16i8; | ||||
| 173 | case 8: | ||||
| 174 | return MVT::nxv8i16; | ||||
| 175 | case 4: | ||||
| 176 | return MVT::nxv4i32; | ||||
| 177 | case 2: | ||||
| 178 | return MVT::nxv2i64; | ||||
| 179 | } | ||||
| 180 | } | ||||
| 181 | |||||
| 182 | static inline EVT getPromotedVTForPredicate(EVT VT) { | ||||
| 183 | assert(VT.isScalableVector() && (VT.getVectorElementType() == MVT::i1) &&(static_cast <bool> (VT.isScalableVector() && ( VT.getVectorElementType() == MVT::i1) && "Expected scalable predicate vector type!" ) ? void (0) : __assert_fail ("VT.isScalableVector() && (VT.getVectorElementType() == MVT::i1) && \"Expected scalable predicate vector type!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 184, __extension__ __PRETTY_FUNCTION__)) | ||||
| 184 | "Expected scalable predicate vector type!")(static_cast <bool> (VT.isScalableVector() && ( VT.getVectorElementType() == MVT::i1) && "Expected scalable predicate vector type!" ) ? void (0) : __assert_fail ("VT.isScalableVector() && (VT.getVectorElementType() == MVT::i1) && \"Expected scalable predicate vector type!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 184, __extension__ __PRETTY_FUNCTION__)); | ||||
| 185 | switch (VT.getVectorMinNumElements()) { | ||||
| 186 | default: | ||||
| 187 | llvm_unreachable("unexpected element count for vector")::llvm::llvm_unreachable_internal("unexpected element count for vector" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 187); | ||||
| 188 | case 2: | ||||
| 189 | return MVT::nxv2i64; | ||||
| 190 | case 4: | ||||
| 191 | return MVT::nxv4i32; | ||||
| 192 | case 8: | ||||
| 193 | return MVT::nxv8i16; | ||||
| 194 | case 16: | ||||
| 195 | return MVT::nxv16i8; | ||||
| 196 | } | ||||
| 197 | } | ||||
| 198 | |||||
| 199 | /// Returns true if VT's elements occupy the lowest bit positions of its | ||||
| 200 | /// associated register class without any intervening space. | ||||
| 201 | /// | ||||
| 202 | /// For example, nxv2f16, nxv4f16 and nxv8f16 are legal types that belong to the | ||||
| 203 | /// same register class, but only nxv8f16 can be treated as a packed vector. | ||||
| 204 | static inline bool isPackedVectorType(EVT VT, SelectionDAG &DAG) { | ||||
| 205 | assert(VT.isVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&(static_cast <bool> (VT.isVector() && DAG.getTargetLoweringInfo ().isTypeLegal(VT) && "Expected legal vector type!") ? void (0) : __assert_fail ("VT.isVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT) && \"Expected legal vector type!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 206, __extension__ __PRETTY_FUNCTION__)) | ||||
| 206 | "Expected legal vector type!")(static_cast <bool> (VT.isVector() && DAG.getTargetLoweringInfo ().isTypeLegal(VT) && "Expected legal vector type!") ? void (0) : __assert_fail ("VT.isVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT) && \"Expected legal vector type!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 206, __extension__ __PRETTY_FUNCTION__)); | ||||
| 207 | return VT.isFixedLengthVector() || | ||||
| 208 | VT.getSizeInBits().getKnownMinSize() == AArch64::SVEBitsPerBlock; | ||||
| 209 | } | ||||
| 210 | |||||
| 211 | // Returns true for ####_MERGE_PASSTHRU opcodes, whose operands have a leading | ||||
| 212 | // predicate and end with a passthru value matching the result type. | ||||
| 213 | static bool isMergePassthruOpcode(unsigned Opc) { | ||||
| 214 | switch (Opc) { | ||||
| 215 | default: | ||||
| 216 | return false; | ||||
| 217 | case AArch64ISD::BITREVERSE_MERGE_PASSTHRU: | ||||
| 218 | case AArch64ISD::BSWAP_MERGE_PASSTHRU: | ||||
| 219 | case AArch64ISD::REVH_MERGE_PASSTHRU: | ||||
| 220 | case AArch64ISD::REVW_MERGE_PASSTHRU: | ||||
| 221 | case AArch64ISD::REVD_MERGE_PASSTHRU: | ||||
| 222 | case AArch64ISD::CTLZ_MERGE_PASSTHRU: | ||||
| 223 | case AArch64ISD::CTPOP_MERGE_PASSTHRU: | ||||
| 224 | case AArch64ISD::DUP_MERGE_PASSTHRU: | ||||
| 225 | case AArch64ISD::ABS_MERGE_PASSTHRU: | ||||
| 226 | case AArch64ISD::NEG_MERGE_PASSTHRU: | ||||
| 227 | case AArch64ISD::FNEG_MERGE_PASSTHRU: | ||||
| 228 | case AArch64ISD::SIGN_EXTEND_INREG_MERGE_PASSTHRU: | ||||
| 229 | case AArch64ISD::ZERO_EXTEND_INREG_MERGE_PASSTHRU: | ||||
| 230 | case AArch64ISD::FCEIL_MERGE_PASSTHRU: | ||||
| 231 | case AArch64ISD::FFLOOR_MERGE_PASSTHRU: | ||||
| 232 | case AArch64ISD::FNEARBYINT_MERGE_PASSTHRU: | ||||
| 233 | case AArch64ISD::FRINT_MERGE_PASSTHRU: | ||||
| 234 | case AArch64ISD::FROUND_MERGE_PASSTHRU: | ||||
| 235 | case AArch64ISD::FROUNDEVEN_MERGE_PASSTHRU: | ||||
| 236 | case AArch64ISD::FTRUNC_MERGE_PASSTHRU: | ||||
| 237 | case AArch64ISD::FP_ROUND_MERGE_PASSTHRU: | ||||
| 238 | case AArch64ISD::FP_EXTEND_MERGE_PASSTHRU: | ||||
| 239 | case AArch64ISD::SINT_TO_FP_MERGE_PASSTHRU: | ||||
| 240 | case AArch64ISD::UINT_TO_FP_MERGE_PASSTHRU: | ||||
| 241 | case AArch64ISD::FCVTZU_MERGE_PASSTHRU: | ||||
| 242 | case AArch64ISD::FCVTZS_MERGE_PASSTHRU: | ||||
| 243 | case AArch64ISD::FSQRT_MERGE_PASSTHRU: | ||||
| 244 | case AArch64ISD::FRECPX_MERGE_PASSTHRU: | ||||
| 245 | case AArch64ISD::FABS_MERGE_PASSTHRU: | ||||
| 246 | return true; | ||||
| 247 | } | ||||
| 248 | } | ||||
| 249 | |||||
| 250 | // Returns true if inactive lanes are known to be zeroed by construction. | ||||
| 251 | static bool isZeroingInactiveLanes(SDValue Op) { | ||||
| 252 | switch (Op.getOpcode()) { | ||||
| 253 | default: | ||||
| 254 | // We guarantee i1 splat_vectors to zero the other lanes by | ||||
| 255 | // implementing it with ptrue and possibly a punpklo for nxv1i1. | ||||
| 256 | if (ISD::isConstantSplatVectorAllOnes(Op.getNode())) | ||||
| 257 | return true; | ||||
| 258 | return false; | ||||
| 259 | case AArch64ISD::PTRUE: | ||||
| 260 | case AArch64ISD::SETCC_MERGE_ZERO: | ||||
| 261 | return true; | ||||
| 262 | case ISD::INTRINSIC_WO_CHAIN: | ||||
| 263 | switch (Op.getConstantOperandVal(0)) { | ||||
| 264 | default: | ||||
| 265 | return false; | ||||
| 266 | case Intrinsic::aarch64_sve_ptrue: | ||||
| 267 | case Intrinsic::aarch64_sve_pnext: | ||||
| 268 | case Intrinsic::aarch64_sve_cmpeq: | ||||
| 269 | case Intrinsic::aarch64_sve_cmpne: | ||||
| 270 | case Intrinsic::aarch64_sve_cmpge: | ||||
| 271 | case Intrinsic::aarch64_sve_cmpgt: | ||||
| 272 | case Intrinsic::aarch64_sve_cmphs: | ||||
| 273 | case Intrinsic::aarch64_sve_cmphi: | ||||
| 274 | case Intrinsic::aarch64_sve_cmpeq_wide: | ||||
| 275 | case Intrinsic::aarch64_sve_cmpne_wide: | ||||
| 276 | case Intrinsic::aarch64_sve_cmpge_wide: | ||||
| 277 | case Intrinsic::aarch64_sve_cmpgt_wide: | ||||
| 278 | case Intrinsic::aarch64_sve_cmplt_wide: | ||||
| 279 | case Intrinsic::aarch64_sve_cmple_wide: | ||||
| 280 | case Intrinsic::aarch64_sve_cmphs_wide: | ||||
| 281 | case Intrinsic::aarch64_sve_cmphi_wide: | ||||
| 282 | case Intrinsic::aarch64_sve_cmplo_wide: | ||||
| 283 | case Intrinsic::aarch64_sve_cmpls_wide: | ||||
| 284 | case Intrinsic::aarch64_sve_fcmpeq: | ||||
| 285 | case Intrinsic::aarch64_sve_fcmpne: | ||||
| 286 | case Intrinsic::aarch64_sve_fcmpge: | ||||
| 287 | case Intrinsic::aarch64_sve_fcmpgt: | ||||
| 288 | case Intrinsic::aarch64_sve_fcmpuo: | ||||
| 289 | return true; | ||||
| 290 | } | ||||
| 291 | } | ||||
| 292 | } | ||||
| 293 | |||||
| 294 | AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM, | ||||
| 295 | const AArch64Subtarget &STI) | ||||
| 296 | : TargetLowering(TM), Subtarget(&STI) { | ||||
| 297 | // AArch64 doesn't have comparisons which set GPRs or setcc instructions, so | ||||
| 298 | // we have to make something up. Arbitrarily, choose ZeroOrOne. | ||||
| 299 | setBooleanContents(ZeroOrOneBooleanContent); | ||||
| 300 | // When comparing vectors the result sets the different elements in the | ||||
| 301 | // vector to all-one or all-zero. | ||||
| 302 | setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); | ||||
| 303 | |||||
| 304 | // Set up the register classes. | ||||
| 305 | addRegisterClass(MVT::i32, &AArch64::GPR32allRegClass); | ||||
| 306 | addRegisterClass(MVT::i64, &AArch64::GPR64allRegClass); | ||||
| 307 | |||||
| 308 | if (Subtarget->hasLS64()) { | ||||
| 309 | addRegisterClass(MVT::i64x8, &AArch64::GPR64x8ClassRegClass); | ||||
| 310 | setOperationAction(ISD::LOAD, MVT::i64x8, Custom); | ||||
| 311 | setOperationAction(ISD::STORE, MVT::i64x8, Custom); | ||||
| 312 | } | ||||
| 313 | |||||
| 314 | if (Subtarget->hasFPARMv8()) { | ||||
| 315 | addRegisterClass(MVT::f16, &AArch64::FPR16RegClass); | ||||
| 316 | addRegisterClass(MVT::bf16, &AArch64::FPR16RegClass); | ||||
| 317 | addRegisterClass(MVT::f32, &AArch64::FPR32RegClass); | ||||
| 318 | addRegisterClass(MVT::f64, &AArch64::FPR64RegClass); | ||||
| 319 | addRegisterClass(MVT::f128, &AArch64::FPR128RegClass); | ||||
| 320 | } | ||||
| 321 | |||||
| 322 | if (Subtarget->hasNEON()) { | ||||
| 323 | addRegisterClass(MVT::v16i8, &AArch64::FPR8RegClass); | ||||
| 324 | addRegisterClass(MVT::v8i16, &AArch64::FPR16RegClass); | ||||
| 325 | // Someone set us up the NEON. | ||||
| 326 | addDRTypeForNEON(MVT::v2f32); | ||||
| 327 | addDRTypeForNEON(MVT::v8i8); | ||||
| 328 | addDRTypeForNEON(MVT::v4i16); | ||||
| 329 | addDRTypeForNEON(MVT::v2i32); | ||||
| 330 | addDRTypeForNEON(MVT::v1i64); | ||||
| 331 | addDRTypeForNEON(MVT::v1f64); | ||||
| 332 | addDRTypeForNEON(MVT::v4f16); | ||||
| 333 | if (Subtarget->hasBF16()) | ||||
| 334 | addDRTypeForNEON(MVT::v4bf16); | ||||
| 335 | |||||
| 336 | addQRTypeForNEON(MVT::v4f32); | ||||
| 337 | addQRTypeForNEON(MVT::v2f64); | ||||
| 338 | addQRTypeForNEON(MVT::v16i8); | ||||
| 339 | addQRTypeForNEON(MVT::v8i16); | ||||
| 340 | addQRTypeForNEON(MVT::v4i32); | ||||
| 341 | addQRTypeForNEON(MVT::v2i64); | ||||
| 342 | addQRTypeForNEON(MVT::v8f16); | ||||
| 343 | if (Subtarget->hasBF16()) | ||||
| 344 | addQRTypeForNEON(MVT::v8bf16); | ||||
| 345 | } | ||||
| 346 | |||||
| 347 | if (Subtarget->hasSVEorSME()) { | ||||
| 348 | // Add legal sve predicate types | ||||
| 349 | addRegisterClass(MVT::nxv1i1, &AArch64::PPRRegClass); | ||||
| 350 | addRegisterClass(MVT::nxv2i1, &AArch64::PPRRegClass); | ||||
| 351 | addRegisterClass(MVT::nxv4i1, &AArch64::PPRRegClass); | ||||
| 352 | addRegisterClass(MVT::nxv8i1, &AArch64::PPRRegClass); | ||||
| 353 | addRegisterClass(MVT::nxv16i1, &AArch64::PPRRegClass); | ||||
| 354 | |||||
| 355 | // Add legal sve data types | ||||
| 356 | addRegisterClass(MVT::nxv16i8, &AArch64::ZPRRegClass); | ||||
| 357 | addRegisterClass(MVT::nxv8i16, &AArch64::ZPRRegClass); | ||||
| 358 | addRegisterClass(MVT::nxv4i32, &AArch64::ZPRRegClass); | ||||
| 359 | addRegisterClass(MVT::nxv2i64, &AArch64::ZPRRegClass); | ||||
| 360 | |||||
| 361 | addRegisterClass(MVT::nxv2f16, &AArch64::ZPRRegClass); | ||||
| 362 | addRegisterClass(MVT::nxv4f16, &AArch64::ZPRRegClass); | ||||
| 363 | addRegisterClass(MVT::nxv8f16, &AArch64::ZPRRegClass); | ||||
| 364 | addRegisterClass(MVT::nxv2f32, &AArch64::ZPRRegClass); | ||||
| 365 | addRegisterClass(MVT::nxv4f32, &AArch64::ZPRRegClass); | ||||
| 366 | addRegisterClass(MVT::nxv2f64, &AArch64::ZPRRegClass); | ||||
| 367 | |||||
| 368 | if (Subtarget->hasBF16()) { | ||||
| 369 | addRegisterClass(MVT::nxv2bf16, &AArch64::ZPRRegClass); | ||||
| 370 | addRegisterClass(MVT::nxv4bf16, &AArch64::ZPRRegClass); | ||||
| 371 | addRegisterClass(MVT::nxv8bf16, &AArch64::ZPRRegClass); | ||||
| 372 | } | ||||
| 373 | |||||
| 374 | if (Subtarget->useSVEForFixedLengthVectors()) { | ||||
| 375 | for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) | ||||
| 376 | if (useSVEForFixedLengthVectorVT(VT)) | ||||
| 377 | addRegisterClass(VT, &AArch64::ZPRRegClass); | ||||
| 378 | |||||
| 379 | for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) | ||||
| 380 | if (useSVEForFixedLengthVectorVT(VT)) | ||||
| 381 | addRegisterClass(VT, &AArch64::ZPRRegClass); | ||||
| 382 | } | ||||
| 383 | } | ||||
| 384 | |||||
| 385 | // Compute derived properties from the register classes | ||||
| 386 | computeRegisterProperties(Subtarget->getRegisterInfo()); | ||||
| 387 | |||||
| 388 | // Provide all sorts of operation actions | ||||
| 389 | setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); | ||||
| 390 | setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); | ||||
| 391 | setOperationAction(ISD::SETCC, MVT::i32, Custom); | ||||
| 392 | setOperationAction(ISD::SETCC, MVT::i64, Custom); | ||||
| 393 | setOperationAction(ISD::SETCC, MVT::f16, Custom); | ||||
| 394 | setOperationAction(ISD::SETCC, MVT::f32, Custom); | ||||
| 395 | setOperationAction(ISD::SETCC, MVT::f64, Custom); | ||||
| 396 | setOperationAction(ISD::STRICT_FSETCC, MVT::f16, Custom); | ||||
| 397 | setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Custom); | ||||
| 398 | setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Custom); | ||||
| 399 | setOperationAction(ISD::STRICT_FSETCCS, MVT::f16, Custom); | ||||
| 400 | setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Custom); | ||||
| 401 | setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Custom); | ||||
| 402 | setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); | ||||
| 403 | setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); | ||||
| 404 | setOperationAction(ISD::BRCOND, MVT::Other, Custom); | ||||
| 405 | setOperationAction(ISD::BR_CC, MVT::i32, Custom); | ||||
| 406 | setOperationAction(ISD::BR_CC, MVT::i64, Custom); | ||||
| 407 | setOperationAction(ISD::BR_CC, MVT::f16, Custom); | ||||
| 408 | setOperationAction(ISD::BR_CC, MVT::f32, Custom); | ||||
| 409 | setOperationAction(ISD::BR_CC, MVT::f64, Custom); | ||||
| 410 | setOperationAction(ISD::SELECT, MVT::i32, Custom); | ||||
| 411 | setOperationAction(ISD::SELECT, MVT::i64, Custom); | ||||
| 412 | setOperationAction(ISD::SELECT, MVT::f16, Custom); | ||||
| 413 | setOperationAction(ISD::SELECT, MVT::bf16, Custom); | ||||
| 414 | setOperationAction(ISD::SELECT, MVT::f32, Custom); | ||||
| 415 | setOperationAction(ISD::SELECT, MVT::f64, Custom); | ||||
| 416 | setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); | ||||
| 417 | setOperationAction(ISD::SELECT_CC, MVT::i64, Custom); | ||||
| 418 | setOperationAction(ISD::SELECT_CC, MVT::f16, Custom); | ||||
| 419 | setOperationAction(ISD::SELECT_CC, MVT::bf16, Expand); | ||||
| 420 | setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); | ||||
| 421 | setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); | ||||
| 422 | setOperationAction(ISD::BR_JT, MVT::Other, Custom); | ||||
| 423 | setOperationAction(ISD::JumpTable, MVT::i64, Custom); | ||||
| 424 | setOperationAction(ISD::SETCCCARRY, MVT::i64, Custom); | ||||
| 425 | |||||
| 426 | setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); | ||||
| 427 | setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); | ||||
| 428 | setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); | ||||
| 429 | |||||
| 430 | setOperationAction(ISD::FREM, MVT::f32, Expand); | ||||
| 431 | setOperationAction(ISD::FREM, MVT::f64, Expand); | ||||
| 432 | setOperationAction(ISD::FREM, MVT::f80, Expand); | ||||
| 433 | |||||
| 434 | setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); | ||||
| 435 | |||||
| 436 | // Custom lowering hooks are needed for XOR | ||||
| 437 | // to fold it into CSINC/CSINV. | ||||
| 438 | setOperationAction(ISD::XOR, MVT::i32, Custom); | ||||
| 439 | setOperationAction(ISD::XOR, MVT::i64, Custom); | ||||
| 440 | |||||
| 441 | // Virtually no operation on f128 is legal, but LLVM can't expand them when | ||||
| 442 | // there's a valid register class, so we need custom operations in most cases. | ||||
| 443 | setOperationAction(ISD::FABS, MVT::f128, Expand); | ||||
| 444 | setOperationAction(ISD::FADD, MVT::f128, LibCall); | ||||
| 445 | setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); | ||||
| 446 | setOperationAction(ISD::FCOS, MVT::f128, Expand); | ||||
| 447 | setOperationAction(ISD::FDIV, MVT::f128, LibCall); | ||||
| 448 | setOperationAction(ISD::FMA, MVT::f128, Expand); | ||||
| 449 | setOperationAction(ISD::FMUL, MVT::f128, LibCall); | ||||
| 450 | setOperationAction(ISD::FNEG, MVT::f128, Expand); | ||||
| 451 | setOperationAction(ISD::FPOW, MVT::f128, Expand); | ||||
| 452 | setOperationAction(ISD::FREM, MVT::f128, Expand); | ||||
| 453 | setOperationAction(ISD::FRINT, MVT::f128, Expand); | ||||
| 454 | setOperationAction(ISD::FSIN, MVT::f128, Expand); | ||||
| 455 | setOperationAction(ISD::FSINCOS, MVT::f128, Expand); | ||||
| 456 | setOperationAction(ISD::FSQRT, MVT::f128, Expand); | ||||
| 457 | setOperationAction(ISD::FSUB, MVT::f128, LibCall); | ||||
| 458 | setOperationAction(ISD::FTRUNC, MVT::f128, Expand); | ||||
| 459 | setOperationAction(ISD::SETCC, MVT::f128, Custom); | ||||
| 460 | setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Custom); | ||||
| 461 | setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Custom); | ||||
| 462 | setOperationAction(ISD::BR_CC, MVT::f128, Custom); | ||||
| 463 | setOperationAction(ISD::SELECT, MVT::f128, Custom); | ||||
| 464 | setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); | ||||
| 465 | setOperationAction(ISD::FP_EXTEND, MVT::f128, Custom); | ||||
| 466 | // FIXME: f128 FMINIMUM and FMAXIMUM (including STRICT versions) currently | ||||
| 467 | // aren't handled. | ||||
| 468 | |||||
| 469 | // Lowering for many of the conversions is actually specified by the non-f128 | ||||
| 470 | // type. The LowerXXX function will be trivial when f128 isn't involved. | ||||
| 471 | setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); | ||||
| 472 | setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); | ||||
| 473 | setOperationAction(ISD::FP_TO_SINT, MVT::i128, Custom); | ||||
| 474 | setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); | ||||
| 475 | setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); | ||||
| 476 | setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i128, Custom); | ||||
| 477 | setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); | ||||
| 478 | setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); | ||||
| 479 | setOperationAction(ISD::FP_TO_UINT, MVT::i128, Custom); | ||||
| 480 | setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); | ||||
| 481 | setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom); | ||||
| 482 | setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i128, Custom); | ||||
| 483 | setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); | ||||
| 484 | setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); | ||||
| 485 | setOperationAction(ISD::SINT_TO_FP, MVT::i128, Custom); | ||||
| 486 | setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); | ||||
| 487 | setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); | ||||
| 488 | setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i128, Custom); | ||||
| 489 | setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); | ||||
| 490 | setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); | ||||
| 491 | setOperationAction(ISD::UINT_TO_FP, MVT::i128, Custom); | ||||
| 492 | setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom); | ||||
| 493 | setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom); | ||||
| 494 | setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i128, Custom); | ||||
| 495 | setOperationAction(ISD::FP_ROUND, MVT::f16, Custom); | ||||
| 496 | setOperationAction(ISD::FP_ROUND, MVT::f32, Custom); | ||||
| 497 | setOperationAction(ISD::FP_ROUND, MVT::f64, Custom); | ||||
| 498 | setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Custom); | ||||
| 499 | setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Custom); | ||||
| 500 | setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Custom); | ||||
| 501 | |||||
| 502 | setOperationAction(ISD::FP_TO_UINT_SAT, MVT::i32, Custom); | ||||
| 503 | setOperationAction(ISD::FP_TO_UINT_SAT, MVT::i64, Custom); | ||||
| 504 | setOperationAction(ISD::FP_TO_SINT_SAT, MVT::i32, Custom); | ||||
| 505 | setOperationAction(ISD::FP_TO_SINT_SAT, MVT::i64, Custom); | ||||
| 506 | |||||
| 507 | // Variable arguments. | ||||
| 508 | setOperationAction(ISD::VASTART, MVT::Other, Custom); | ||||
| 509 | setOperationAction(ISD::VAARG, MVT::Other, Custom); | ||||
| 510 | setOperationAction(ISD::VACOPY, MVT::Other, Custom); | ||||
| 511 | setOperationAction(ISD::VAEND, MVT::Other, Expand); | ||||
| 512 | |||||
| 513 | // Variable-sized objects. | ||||
| 514 | setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); | ||||
| 515 | setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); | ||||
| 516 | |||||
| 517 | if (Subtarget->isTargetWindows()) | ||||
| 518 | setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom); | ||||
| 519 | else | ||||
| 520 | setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand); | ||||
| 521 | |||||
| 522 | // Constant pool entries | ||||
| 523 | setOperationAction(ISD::ConstantPool, MVT::i64, Custom); | ||||
| 524 | |||||
| 525 | // BlockAddress | ||||
| 526 | setOperationAction(ISD::BlockAddress, MVT::i64, Custom); | ||||
| 527 | |||||
| 528 | // AArch64 lacks both left-rotate and popcount instructions. | ||||
| 529 | setOperationAction(ISD::ROTL, MVT::i32, Expand); | ||||
| 530 | setOperationAction(ISD::ROTL, MVT::i64, Expand); | ||||
| 531 | for (MVT VT : MVT::fixedlen_vector_valuetypes()) { | ||||
| 532 | setOperationAction(ISD::ROTL, VT, Expand); | ||||
| 533 | setOperationAction(ISD::ROTR, VT, Expand); | ||||
| 534 | } | ||||
| 535 | |||||
| 536 | // AArch64 doesn't have i32 MULH{S|U}. | ||||
| 537 | setOperationAction(ISD::MULHU, MVT::i32, Expand); | ||||
| 538 | setOperationAction(ISD::MULHS, MVT::i32, Expand); | ||||
| 539 | |||||
| 540 | // AArch64 doesn't have {U|S}MUL_LOHI. | ||||
| 541 | setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); | ||||
| 542 | setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); | ||||
| 543 | |||||
| 544 | if (Subtarget->hasCSSC()) { | ||||
| 545 | setOperationAction(ISD::CTPOP, MVT::i32, Legal); | ||||
| 546 | setOperationAction(ISD::CTPOP, MVT::i64, Legal); | ||||
| 547 | setOperationAction(ISD::CTPOP, MVT::i128, Expand); | ||||
| 548 | |||||
| 549 | setOperationAction(ISD::PARITY, MVT::i128, Expand); | ||||
| 550 | |||||
| 551 | setOperationAction(ISD::CTTZ, MVT::i32, Legal); | ||||
| 552 | setOperationAction(ISD::CTTZ, MVT::i64, Legal); | ||||
| 553 | setOperationAction(ISD::CTTZ, MVT::i128, Expand); | ||||
| 554 | |||||
| 555 | setOperationAction(ISD::ABS, MVT::i32, Legal); | ||||
| 556 | setOperationAction(ISD::ABS, MVT::i64, Legal); | ||||
| 557 | |||||
| 558 | setOperationAction(ISD::SMAX, MVT::i32, Legal); | ||||
| 559 | setOperationAction(ISD::SMAX, MVT::i64, Legal); | ||||
| 560 | setOperationAction(ISD::UMAX, MVT::i32, Legal); | ||||
| 561 | setOperationAction(ISD::UMAX, MVT::i64, Legal); | ||||
| 562 | |||||
| 563 | setOperationAction(ISD::SMIN, MVT::i32, Legal); | ||||
| 564 | setOperationAction(ISD::SMIN, MVT::i64, Legal); | ||||
| 565 | setOperationAction(ISD::UMIN, MVT::i32, Legal); | ||||
| 566 | setOperationAction(ISD::UMIN, MVT::i64, Legal); | ||||
| 567 | } else { | ||||
| 568 | setOperationAction(ISD::CTPOP, MVT::i32, Custom); | ||||
| 569 | setOperationAction(ISD::CTPOP, MVT::i64, Custom); | ||||
| 570 | setOperationAction(ISD::CTPOP, MVT::i128, Custom); | ||||
| 571 | |||||
| 572 | setOperationAction(ISD::PARITY, MVT::i64, Custom); | ||||
| 573 | setOperationAction(ISD::PARITY, MVT::i128, Custom); | ||||
| 574 | |||||
| 575 | setOperationAction(ISD::ABS, MVT::i32, Custom); | ||||
| 576 | setOperationAction(ISD::ABS, MVT::i64, Custom); | ||||
| 577 | } | ||||
| 578 | |||||
| 579 | setOperationAction(ISD::SDIVREM, MVT::i32, Expand); | ||||
| 580 | setOperationAction(ISD::SDIVREM, MVT::i64, Expand); | ||||
| 581 | for (MVT VT : MVT::fixedlen_vector_valuetypes()) { | ||||
| 582 | setOperationAction(ISD::SDIVREM, VT, Expand); | ||||
| 583 | setOperationAction(ISD::UDIVREM, VT, Expand); | ||||
| 584 | } | ||||
| 585 | setOperationAction(ISD::SREM, MVT::i32, Expand); | ||||
| 586 | setOperationAction(ISD::SREM, MVT::i64, Expand); | ||||
| 587 | setOperationAction(ISD::UDIVREM, MVT::i32, Expand); | ||||
| 588 | setOperationAction(ISD::UDIVREM, MVT::i64, Expand); | ||||
| 589 | setOperationAction(ISD::UREM, MVT::i32, Expand); | ||||
| 590 | setOperationAction(ISD::UREM, MVT::i64, Expand); | ||||
| 591 | |||||
| 592 | // Custom lower Add/Sub/Mul with overflow. | ||||
| 593 | setOperationAction(ISD::SADDO, MVT::i32, Custom); | ||||
| 594 | setOperationAction(ISD::SADDO, MVT::i64, Custom); | ||||
| 595 | setOperationAction(ISD::UADDO, MVT::i32, Custom); | ||||
| 596 | setOperationAction(ISD::UADDO, MVT::i64, Custom); | ||||
| 597 | setOperationAction(ISD::SSUBO, MVT::i32, Custom); | ||||
| 598 | setOperationAction(ISD::SSUBO, MVT::i64, Custom); | ||||
| 599 | setOperationAction(ISD::USUBO, MVT::i32, Custom); | ||||
| 600 | setOperationAction(ISD::USUBO, MVT::i64, Custom); | ||||
| 601 | setOperationAction(ISD::SMULO, MVT::i32, Custom); | ||||
| 602 | setOperationAction(ISD::SMULO, MVT::i64, Custom); | ||||
| 603 | setOperationAction(ISD::UMULO, MVT::i32, Custom); | ||||
| 604 | setOperationAction(ISD::UMULO, MVT::i64, Custom); | ||||
| 605 | |||||
| 606 | setOperationAction(ISD::ADDCARRY, MVT::i32, Custom); | ||||
| 607 | setOperationAction(ISD::ADDCARRY, MVT::i64, Custom); | ||||
| 608 | setOperationAction(ISD::SUBCARRY, MVT::i32, Custom); | ||||
| 609 | setOperationAction(ISD::SUBCARRY, MVT::i64, Custom); | ||||
| 610 | setOperationAction(ISD::SADDO_CARRY, MVT::i32, Custom); | ||||
| 611 | setOperationAction(ISD::SADDO_CARRY, MVT::i64, Custom); | ||||
| 612 | setOperationAction(ISD::SSUBO_CARRY, MVT::i32, Custom); | ||||
| 613 | setOperationAction(ISD::SSUBO_CARRY, MVT::i64, Custom); | ||||
| 614 | |||||
| 615 | setOperationAction(ISD::FSIN, MVT::f32, Expand); | ||||
| 616 | setOperationAction(ISD::FSIN, MVT::f64, Expand); | ||||
| 617 | setOperationAction(ISD::FCOS, MVT::f32, Expand); | ||||
| 618 | setOperationAction(ISD::FCOS, MVT::f64, Expand); | ||||
| 619 | setOperationAction(ISD::FPOW, MVT::f32, Expand); | ||||
| 620 | setOperationAction(ISD::FPOW, MVT::f64, Expand); | ||||
| 621 | setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); | ||||
| 622 | setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); | ||||
| 623 | if (Subtarget->hasFullFP16()) | ||||
| 624 | setOperationAction(ISD::FCOPYSIGN, MVT::f16, Custom); | ||||
| 625 | else | ||||
| 626 | setOperationAction(ISD::FCOPYSIGN, MVT::f16, Promote); | ||||
| 627 | |||||
| 628 | for (auto Op : {ISD::FREM, ISD::FPOW, ISD::FPOWI, | ||||
| 629 | ISD::FCOS, ISD::FSIN, ISD::FSINCOS, | ||||
| 630 | ISD::FEXP, ISD::FEXP2, ISD::FLOG, | ||||
| 631 | ISD::FLOG2, ISD::FLOG10, ISD::STRICT_FREM, | ||||
| 632 | ISD::STRICT_FPOW, ISD::STRICT_FPOWI, ISD::STRICT_FCOS, | ||||
| 633 | ISD::STRICT_FSIN, ISD::STRICT_FEXP, ISD::STRICT_FEXP2, | ||||
| 634 | ISD::STRICT_FLOG, ISD::STRICT_FLOG2, ISD::STRICT_FLOG10}) { | ||||
| 635 | setOperationAction(Op, MVT::f16, Promote); | ||||
| 636 | setOperationAction(Op, MVT::v4f16, Expand); | ||||
| 637 | setOperationAction(Op, MVT::v8f16, Expand); | ||||
| 638 | } | ||||
| 639 | |||||
| 640 | if (!Subtarget->hasFullFP16()) { | ||||
| 641 | for (auto Op : | ||||
| 642 | {ISD::SETCC, ISD::SELECT_CC, | ||||
| 643 | ISD::BR_CC, ISD::FADD, ISD::FSUB, | ||||
| 644 | ISD::FMUL, ISD::FDIV, ISD::FMA, | ||||
| 645 | ISD::FNEG, ISD::FABS, ISD::FCEIL, | ||||
| 646 | ISD::FSQRT, ISD::FFLOOR, ISD::FNEARBYINT, | ||||
| 647 | ISD::FRINT, ISD::FROUND, ISD::FROUNDEVEN, | ||||
| 648 | ISD::FTRUNC, ISD::FMINNUM, ISD::FMAXNUM, | ||||
| 649 | ISD::FMINIMUM, ISD::FMAXIMUM, ISD::STRICT_FADD, | ||||
| 650 | ISD::STRICT_FSUB, ISD::STRICT_FMUL, ISD::STRICT_FDIV, | ||||
| 651 | ISD::STRICT_FMA, ISD::STRICT_FCEIL, ISD::STRICT_FFLOOR, | ||||
| 652 | ISD::STRICT_FSQRT, ISD::STRICT_FRINT, ISD::STRICT_FNEARBYINT, | ||||
| 653 | ISD::STRICT_FROUND, ISD::STRICT_FTRUNC, ISD::STRICT_FROUNDEVEN, | ||||
| 654 | ISD::STRICT_FMINNUM, ISD::STRICT_FMAXNUM, ISD::STRICT_FMINIMUM, | ||||
| 655 | ISD::STRICT_FMAXIMUM}) | ||||
| 656 | setOperationAction(Op, MVT::f16, Promote); | ||||
| 657 | |||||
| 658 | // Round-to-integer need custom lowering for fp16, as Promote doesn't work | ||||
| 659 | // because the result type is integer. | ||||
| 660 | for (auto Op : {ISD::STRICT_LROUND, ISD::STRICT_LLROUND, ISD::STRICT_LRINT, | ||||
| 661 | ISD::STRICT_LLRINT}) | ||||
| 662 | setOperationAction(Op, MVT::f16, Custom); | ||||
| 663 | |||||
| 664 | // promote v4f16 to v4f32 when that is known to be safe. | ||||
| 665 | setOperationPromotedToType(ISD::FADD, MVT::v4f16, MVT::v4f32); | ||||
| 666 | setOperationPromotedToType(ISD::FSUB, MVT::v4f16, MVT::v4f32); | ||||
| 667 | setOperationPromotedToType(ISD::FMUL, MVT::v4f16, MVT::v4f32); | ||||
| 668 | setOperationPromotedToType(ISD::FDIV, MVT::v4f16, MVT::v4f32); | ||||
| 669 | |||||
| 670 | setOperationAction(ISD::FABS, MVT::v4f16, Expand); | ||||
| 671 | setOperationAction(ISD::FNEG, MVT::v4f16, Expand); | ||||
| 672 | setOperationAction(ISD::FROUND, MVT::v4f16, Expand); | ||||
| 673 | setOperationAction(ISD::FROUNDEVEN, MVT::v4f16, Expand); | ||||
| 674 | setOperationAction(ISD::FMA, MVT::v4f16, Expand); | ||||
| 675 | setOperationAction(ISD::SETCC, MVT::v4f16, Expand); | ||||
| 676 | setOperationAction(ISD::BR_CC, MVT::v4f16, Expand); | ||||
| 677 | setOperationAction(ISD::SELECT, MVT::v4f16, Expand); | ||||
| 678 | setOperationAction(ISD::SELECT_CC, MVT::v4f16, Expand); | ||||
| 679 | setOperationAction(ISD::FTRUNC, MVT::v4f16, Expand); | ||||
| 680 | setOperationAction(ISD::FCOPYSIGN, MVT::v4f16, Expand); | ||||
| 681 | setOperationAction(ISD::FFLOOR, MVT::v4f16, Expand); | ||||
| 682 | setOperationAction(ISD::FCEIL, MVT::v4f16, Expand); | ||||
| 683 | setOperationAction(ISD::FRINT, MVT::v4f16, Expand); | ||||
| 684 | setOperationAction(ISD::FNEARBYINT, MVT::v4f16, Expand); | ||||
| 685 | setOperationAction(ISD::FSQRT, MVT::v4f16, Expand); | ||||
| 686 | |||||
| 687 | setOperationAction(ISD::FABS, MVT::v8f16, Expand); | ||||
| 688 | setOperationAction(ISD::FADD, MVT::v8f16, Expand); | ||||
| 689 | setOperationAction(ISD::FCEIL, MVT::v8f16, Expand); | ||||
| 690 | setOperationAction(ISD::FCOPYSIGN, MVT::v8f16, Expand); | ||||
| 691 | setOperationAction(ISD::FDIV, MVT::v8f16, Expand); | ||||
| 692 | setOperationAction(ISD::FFLOOR, MVT::v8f16, Expand); | ||||
| 693 | setOperationAction(ISD::FMA, MVT::v8f16, Expand); | ||||
| 694 | setOperationAction(ISD::FMUL, MVT::v8f16, Expand); | ||||
| 695 | setOperationAction(ISD::FNEARBYINT, MVT::v8f16, Expand); | ||||
| 696 | setOperationAction(ISD::FNEG, MVT::v8f16, Expand); | ||||
| 697 | setOperationAction(ISD::FROUND, MVT::v8f16, Expand); | ||||
| 698 | setOperationAction(ISD::FROUNDEVEN, MVT::v8f16, Expand); | ||||
| 699 | setOperationAction(ISD::FRINT, MVT::v8f16, Expand); | ||||
| 700 | setOperationAction(ISD::FSQRT, MVT::v8f16, Expand); | ||||
| 701 | setOperationAction(ISD::FSUB, MVT::v8f16, Expand); | ||||
| 702 | setOperationAction(ISD::FTRUNC, MVT::v8f16, Expand); | ||||
| 703 | setOperationAction(ISD::SETCC, MVT::v8f16, Expand); | ||||
| 704 | setOperationAction(ISD::BR_CC, MVT::v8f16, Expand); | ||||
| 705 | setOperationAction(ISD::SELECT, MVT::v8f16, Expand); | ||||
| 706 | setOperationAction(ISD::SELECT_CC, MVT::v8f16, Expand); | ||||
| 707 | setOperationAction(ISD::FP_EXTEND, MVT::v8f16, Expand); | ||||
| 708 | } | ||||
| 709 | |||||
| 710 | // AArch64 has implementations of a lot of rounding-like FP operations. | ||||
| 711 | for (auto Op : | ||||
| 712 | {ISD::FFLOOR, ISD::FNEARBYINT, ISD::FCEIL, | ||||
| 713 | ISD::FRINT, ISD::FTRUNC, ISD::FROUND, | ||||
| 714 | ISD::FROUNDEVEN, ISD::FMINNUM, ISD::FMAXNUM, | ||||
| 715 | ISD::FMINIMUM, ISD::FMAXIMUM, ISD::LROUND, | ||||
| 716 | ISD::LLROUND, ISD::LRINT, ISD::LLRINT, | ||||
| 717 | ISD::STRICT_FFLOOR, ISD::STRICT_FCEIL, ISD::STRICT_FNEARBYINT, | ||||
| 718 | ISD::STRICT_FRINT, ISD::STRICT_FTRUNC, ISD::STRICT_FROUNDEVEN, | ||||
| 719 | ISD::STRICT_FROUND, ISD::STRICT_FMINNUM, ISD::STRICT_FMAXNUM, | ||||
| 720 | ISD::STRICT_FMINIMUM, ISD::STRICT_FMAXIMUM, ISD::STRICT_LROUND, | ||||
| 721 | ISD::STRICT_LLROUND, ISD::STRICT_LRINT, ISD::STRICT_LLRINT}) { | ||||
| 722 | for (MVT Ty : {MVT::f32, MVT::f64}) | ||||
| 723 | setOperationAction(Op, Ty, Legal); | ||||
| 724 | if (Subtarget->hasFullFP16()) | ||||
| 725 | setOperationAction(Op, MVT::f16, Legal); | ||||
| 726 | } | ||||
| 727 | |||||
| 728 | // Basic strict FP operations are legal | ||||
| 729 | for (auto Op : {ISD::STRICT_FADD, ISD::STRICT_FSUB, ISD::STRICT_FMUL, | ||||
| 730 | ISD::STRICT_FDIV, ISD::STRICT_FMA, ISD::STRICT_FSQRT}) { | ||||
| 731 | for (MVT Ty : {MVT::f32, MVT::f64}) | ||||
| 732 | setOperationAction(Op, Ty, Legal); | ||||
| 733 | if (Subtarget->hasFullFP16()) | ||||
| 734 | setOperationAction(Op, MVT::f16, Legal); | ||||
| 735 | } | ||||
| 736 | |||||
| 737 | // Strict conversion to a larger type is legal | ||||
| 738 | for (auto VT : {MVT::f32, MVT::f64}) | ||||
| 739 | setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal); | ||||
| 740 | |||||
| 741 | setOperationAction(ISD::PREFETCH, MVT::Other, Custom); | ||||
| 742 | |||||
| 743 | setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); | ||||
| 744 | setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom); | ||||
| 745 | |||||
| 746 | setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom); | ||||
| 747 | setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); | ||||
| 748 | setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom); | ||||
| 749 | setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); | ||||
| 750 | setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom); | ||||
| 751 | |||||
| 752 | // Generate outline atomics library calls only if LSE was not specified for | ||||
| 753 | // subtarget | ||||
| 754 | if (Subtarget->outlineAtomics() && !Subtarget->hasLSE()) { | ||||
| 755 | setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, LibCall); | ||||
| 756 | setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, LibCall); | ||||
| 757 | setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, LibCall); | ||||
| 758 | setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, LibCall); | ||||
| 759 | setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, LibCall); | ||||
| 760 | setOperationAction(ISD::ATOMIC_SWAP, MVT::i8, LibCall); | ||||
| 761 | setOperationAction(ISD::ATOMIC_SWAP, MVT::i16, LibCall); | ||||
| 762 | setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, LibCall); | ||||
| 763 | setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, LibCall); | ||||
| 764 | setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i8, LibCall); | ||||
| 765 | setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i16, LibCall); | ||||
| 766 | setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, LibCall); | ||||
| 767 | setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, LibCall); | ||||
| 768 | setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i8, LibCall); | ||||
| 769 | setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i16, LibCall); | ||||
| 770 | setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, LibCall); | ||||
| 771 | setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, LibCall); | ||||
| 772 | setOperationAction(ISD::ATOMIC_LOAD_CLR, MVT::i8, LibCall); | ||||
| 773 | setOperationAction(ISD::ATOMIC_LOAD_CLR, MVT::i16, LibCall); | ||||
| 774 | setOperationAction(ISD::ATOMIC_LOAD_CLR, MVT::i32, LibCall); | ||||
| 775 | setOperationAction(ISD::ATOMIC_LOAD_CLR, MVT::i64, LibCall); | ||||
| 776 | setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i8, LibCall); | ||||
| 777 | setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i16, LibCall); | ||||
| 778 | setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, LibCall); | ||||
| 779 | setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, LibCall); | ||||
| 780 | #define LCALLNAMES(A, B, N) \ | ||||
| 781 | setLibcallName(A##N##_RELAX, #B #N "_relax"); \ | ||||
| 782 | setLibcallName(A##N##_ACQ, #B #N "_acq"); \ | ||||
| 783 | setLibcallName(A##N##_REL, #B #N "_rel"); \ | ||||
| 784 | setLibcallName(A##N##_ACQ_REL, #B #N "_acq_rel"); | ||||
| 785 | #define LCALLNAME4(A, B) \ | ||||
| 786 | LCALLNAMES(A, B, 1) \ | ||||
| 787 | LCALLNAMES(A, B, 2) LCALLNAMES(A, B, 4) LCALLNAMES(A, B, 8) | ||||
| 788 | #define LCALLNAME5(A, B) \ | ||||
| 789 | LCALLNAMES(A, B, 1) \ | ||||
| 790 | LCALLNAMES(A, B, 2) \ | ||||
| 791 | LCALLNAMES(A, B, 4) LCALLNAMES(A, B, 8) LCALLNAMES(A, B, 16) | ||||
| 792 | LCALLNAME5(RTLIB::OUTLINE_ATOMIC_CAS, __aarch64_cas) | ||||
| 793 | LCALLNAME4(RTLIB::OUTLINE_ATOMIC_SWP, __aarch64_swp) | ||||
| 794 | LCALLNAME4(RTLIB::OUTLINE_ATOMIC_LDADD, __aarch64_ldadd) | ||||
| 795 | LCALLNAME4(RTLIB::OUTLINE_ATOMIC_LDSET, __aarch64_ldset) | ||||
| 796 | LCALLNAME4(RTLIB::OUTLINE_ATOMIC_LDCLR, __aarch64_ldclr) | ||||
| 797 | LCALLNAME4(RTLIB::OUTLINE_ATOMIC_LDEOR, __aarch64_ldeor) | ||||
| 798 | #undef LCALLNAMES | ||||
| 799 | #undef LCALLNAME4 | ||||
| 800 | #undef LCALLNAME5 | ||||
| 801 | } | ||||
| 802 | |||||
| 803 | // 128-bit loads and stores can be done without expanding | ||||
| 804 | setOperationAction(ISD::LOAD, MVT::i128, Custom); | ||||
| 805 | setOperationAction(ISD::STORE, MVT::i128, Custom); | ||||
| 806 | |||||
| 807 | // Aligned 128-bit loads and stores are single-copy atomic according to the | ||||
| 808 | // v8.4a spec. | ||||
| 809 | if (Subtarget->hasLSE2()) { | ||||
| 810 | setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); | ||||
| 811 | setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); | ||||
| 812 | } | ||||
| 813 | |||||
| 814 | // 256 bit non-temporal stores can be lowered to STNP. Do this as part of the | ||||
| 815 | // custom lowering, as there are no un-paired non-temporal stores and | ||||
| 816 | // legalization will break up 256 bit inputs. | ||||
| 817 | setOperationAction(ISD::STORE, MVT::v32i8, Custom); | ||||
| 818 | setOperationAction(ISD::STORE, MVT::v16i16, Custom); | ||||
| 819 | setOperationAction(ISD::STORE, MVT::v16f16, Custom); | ||||
| 820 | setOperationAction(ISD::STORE, MVT::v8i32, Custom); | ||||
| 821 | setOperationAction(ISD::STORE, MVT::v8f32, Custom); | ||||
| 822 | setOperationAction(ISD::STORE, MVT::v4f64, Custom); | ||||
| 823 | setOperationAction(ISD::STORE, MVT::v4i64, Custom); | ||||
| 824 | |||||
| 825 | // 256 bit non-temporal loads can be lowered to LDNP. This is done using | ||||
| 826 | // custom lowering, as there are no un-paired non-temporal loads legalization | ||||
| 827 | // will break up 256 bit inputs. | ||||
| 828 | setOperationAction(ISD::LOAD, MVT::v32i8, Custom); | ||||
| 829 | setOperationAction(ISD::LOAD, MVT::v16i16, Custom); | ||||
| 830 | setOperationAction(ISD::LOAD, MVT::v16f16, Custom); | ||||
| 831 | setOperationAction(ISD::LOAD, MVT::v8i32, Custom); | ||||
| 832 | setOperationAction(ISD::LOAD, MVT::v8f32, Custom); | ||||
| 833 | setOperationAction(ISD::LOAD, MVT::v4f64, Custom); | ||||
| 834 | setOperationAction(ISD::LOAD, MVT::v4i64, Custom); | ||||
| 835 | |||||
| 836 | // Lower READCYCLECOUNTER using an mrs from PMCCNTR_EL0. | ||||
| 837 | // This requires the Performance Monitors extension. | ||||
| 838 | if (Subtarget->hasPerfMon()) | ||||
| 839 | setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal); | ||||
| 840 | |||||
| 841 | if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr && | ||||
| 842 | getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) { | ||||
| 843 | // Issue __sincos_stret if available. | ||||
| 844 | setOperationAction(ISD::FSINCOS, MVT::f64, Custom); | ||||
| 845 | setOperationAction(ISD::FSINCOS, MVT::f32, Custom); | ||||
| 846 | } else { | ||||
| 847 | setOperationAction(ISD::FSINCOS, MVT::f64, Expand); | ||||
| 848 | setOperationAction(ISD::FSINCOS, MVT::f32, Expand); | ||||
| 849 | } | ||||
| 850 | |||||
| 851 | if (Subtarget->getTargetTriple().isOSMSVCRT()) { | ||||
| 852 | // MSVCRT doesn't have powi; fall back to pow | ||||
| 853 | setLibcallName(RTLIB::POWI_F32, nullptr); | ||||
| 854 | setLibcallName(RTLIB::POWI_F64, nullptr); | ||||
| 855 | } | ||||
| 856 | |||||
| 857 | // Make floating-point constants legal for the large code model, so they don't | ||||
| 858 | // become loads from the constant pool. | ||||
| 859 | if (Subtarget->isTargetMachO() && TM.getCodeModel() == CodeModel::Large) { | ||||
| 860 | setOperationAction(ISD::ConstantFP, MVT::f32, Legal); | ||||
| 861 | setOperationAction(ISD::ConstantFP, MVT::f64, Legal); | ||||
| 862 | } | ||||
| 863 | |||||
| 864 | // AArch64 does not have floating-point extending loads, i1 sign-extending | ||||
| 865 | // load, floating-point truncating stores, or v2i32->v2i16 truncating store. | ||||
| 866 | for (MVT VT : MVT::fp_valuetypes()) { | ||||
| 867 | setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand); | ||||
| 868 | setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); | ||||
| 869 | setLoadExtAction(ISD::EXTLOAD, VT, MVT::f64, Expand); | ||||
| 870 | setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); | ||||
| 871 | } | ||||
| 872 | for (MVT VT : MVT::integer_valuetypes()) | ||||
| 873 | setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Expand); | ||||
| 874 | |||||
| 875 | setTruncStoreAction(MVT::f32, MVT::f16, Expand); | ||||
| 876 | setTruncStoreAction(MVT::f64, MVT::f32, Expand); | ||||
| 877 | setTruncStoreAction(MVT::f64, MVT::f16, Expand); | ||||
| 878 | setTruncStoreAction(MVT::f128, MVT::f80, Expand); | ||||
| 879 | setTruncStoreAction(MVT::f128, MVT::f64, Expand); | ||||
| 880 | setTruncStoreAction(MVT::f128, MVT::f32, Expand); | ||||
| 881 | setTruncStoreAction(MVT::f128, MVT::f16, Expand); | ||||
| 882 | |||||
| 883 | setOperationAction(ISD::BITCAST, MVT::i16, Custom); | ||||
| 884 | setOperationAction(ISD::BITCAST, MVT::f16, Custom); | ||||
| 885 | setOperationAction(ISD::BITCAST, MVT::bf16, Custom); | ||||
| 886 | |||||
| 887 | // Indexed loads and stores are supported. | ||||
| 888 | for (unsigned im = (unsigned)ISD::PRE_INC; | ||||
| 889 | im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { | ||||
| 890 | setIndexedLoadAction(im, MVT::i8, Legal); | ||||
| 891 | setIndexedLoadAction(im, MVT::i16, Legal); | ||||
| 892 | setIndexedLoadAction(im, MVT::i32, Legal); | ||||
| 893 | setIndexedLoadAction(im, MVT::i64, Legal); | ||||
| 894 | setIndexedLoadAction(im, MVT::f64, Legal); | ||||
| 895 | setIndexedLoadAction(im, MVT::f32, Legal); | ||||
| 896 | setIndexedLoadAction(im, MVT::f16, Legal); | ||||
| 897 | setIndexedLoadAction(im, MVT::bf16, Legal); | ||||
| 898 | setIndexedStoreAction(im, MVT::i8, Legal); | ||||
| 899 | setIndexedStoreAction(im, MVT::i16, Legal); | ||||
| 900 | setIndexedStoreAction(im, MVT::i32, Legal); | ||||
| 901 | setIndexedStoreAction(im, MVT::i64, Legal); | ||||
| 902 | setIndexedStoreAction(im, MVT::f64, Legal); | ||||
| 903 | setIndexedStoreAction(im, MVT::f32, Legal); | ||||
| 904 | setIndexedStoreAction(im, MVT::f16, Legal); | ||||
| 905 | setIndexedStoreAction(im, MVT::bf16, Legal); | ||||
| 906 | } | ||||
| 907 | |||||
| 908 | // Trap. | ||||
| 909 | setOperationAction(ISD::TRAP, MVT::Other, Legal); | ||||
| 910 | setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal); | ||||
| 911 | setOperationAction(ISD::UBSANTRAP, MVT::Other, Legal); | ||||
| 912 | |||||
| 913 | // We combine OR nodes for bitfield operations. | ||||
| 914 | setTargetDAGCombine(ISD::OR); | ||||
| 915 | // Try to create BICs for vector ANDs. | ||||
| 916 | setTargetDAGCombine(ISD::AND); | ||||
| 917 | |||||
| 918 | // Vector add and sub nodes may conceal a high-half opportunity. | ||||
| 919 | // Also, try to fold ADD into CSINC/CSINV.. | ||||
| 920 | setTargetDAGCombine({ISD::ADD, ISD::ABS, ISD::SUB, ISD::XOR, ISD::SINT_TO_FP, | ||||
| 921 | ISD::UINT_TO_FP}); | ||||
| 922 | |||||
| 923 | setTargetDAGCombine({ISD::FP_TO_SINT, ISD::FP_TO_UINT, ISD::FP_TO_SINT_SAT, | ||||
| 924 | ISD::FP_TO_UINT_SAT, ISD::FDIV}); | ||||
| 925 | |||||
| 926 | // Try and combine setcc with csel | ||||
| 927 | setTargetDAGCombine(ISD::SETCC); | ||||
| 928 | |||||
| 929 | setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); | ||||
| 930 | |||||
| 931 | setTargetDAGCombine({ISD::ANY_EXTEND, ISD::ZERO_EXTEND, ISD::SIGN_EXTEND, | ||||
| 932 | ISD::VECTOR_SPLICE, ISD::SIGN_EXTEND_INREG, | ||||
| 933 | ISD::CONCAT_VECTORS, ISD::EXTRACT_SUBVECTOR, | ||||
| 934 | ISD::INSERT_SUBVECTOR, ISD::STORE, ISD::BUILD_VECTOR}); | ||||
| 935 | setTargetDAGCombine(ISD::LOAD); | ||||
| 936 | |||||
| 937 | setTargetDAGCombine(ISD::MSTORE); | ||||
| 938 | |||||
| 939 | setTargetDAGCombine(ISD::MUL); | ||||
| 940 | |||||
| 941 | setTargetDAGCombine({ISD::SELECT, ISD::VSELECT}); | ||||
| 942 | |||||
| 943 | setTargetDAGCombine({ISD::INTRINSIC_VOID, ISD::INTRINSIC_W_CHAIN, | ||||
| 944 | ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT, | ||||
| 945 | ISD::VECREDUCE_ADD, ISD::STEP_VECTOR}); | ||||
| 946 | |||||
| 947 | setTargetDAGCombine({ISD::MGATHER, ISD::MSCATTER}); | ||||
| 948 | |||||
| 949 | setTargetDAGCombine(ISD::FP_EXTEND); | ||||
| 950 | |||||
| 951 | setTargetDAGCombine(ISD::GlobalAddress); | ||||
| 952 | |||||
| 953 | setTargetDAGCombine(ISD::CTLZ); | ||||
| 954 | |||||
| 955 | // In case of strict alignment, avoid an excessive number of byte wide stores. | ||||
| 956 | MaxStoresPerMemsetOptSize = 8; | ||||
| 957 | MaxStoresPerMemset = | ||||
| 958 | Subtarget->requiresStrictAlign() ? MaxStoresPerMemsetOptSize : 32; | ||||
| 959 | |||||
| 960 | MaxGluedStoresPerMemcpy = 4; | ||||
| 961 | MaxStoresPerMemcpyOptSize = 4; | ||||
| 962 | MaxStoresPerMemcpy = | ||||
| 963 | Subtarget->requiresStrictAlign() ? MaxStoresPerMemcpyOptSize : 16; | ||||
| 964 | |||||
| 965 | MaxStoresPerMemmoveOptSize = 4; | ||||
| 966 | MaxStoresPerMemmove = 4; | ||||
| 967 | |||||
| 968 | MaxLoadsPerMemcmpOptSize = 4; | ||||
| 969 | MaxLoadsPerMemcmp = | ||||
| 970 | Subtarget->requiresStrictAlign() ? MaxLoadsPerMemcmpOptSize : 8; | ||||
| 971 | |||||
| 972 | setStackPointerRegisterToSaveRestore(AArch64::SP); | ||||
| 973 | |||||
| 974 | setSchedulingPreference(Sched::Hybrid); | ||||
| 975 | |||||
| 976 | EnableExtLdPromotion = true; | ||||
| 977 | |||||
| 978 | // Set required alignment. | ||||
| 979 | setMinFunctionAlignment(Align(4)); | ||||
| 980 | // Set preferred alignments. | ||||
| 981 | setPrefLoopAlignment(Align(1ULL << STI.getPrefLoopLogAlignment())); | ||||
| 982 | setMaxBytesForAlignment(STI.getMaxBytesForLoopAlignment()); | ||||
| 983 | setPrefFunctionAlignment(Align(1ULL << STI.getPrefFunctionLogAlignment())); | ||||
| 984 | |||||
| 985 | // Only change the limit for entries in a jump table if specified by | ||||
| 986 | // the sub target, but not at the command line. | ||||
| 987 | unsigned MaxJT = STI.getMaximumJumpTableSize(); | ||||
| 988 | if (MaxJT && getMaximumJumpTableSize() == UINT_MAX(2147483647 *2U +1U)) | ||||
| 989 | setMaximumJumpTableSize(MaxJT); | ||||
| 990 | |||||
| 991 | setHasExtractBitsInsn(true); | ||||
| 992 | |||||
| 993 | setMaxDivRemBitWidthSupported(128); | ||||
| 994 | |||||
| 995 | setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); | ||||
| 996 | |||||
| 997 | if (Subtarget->hasNEON()) { | ||||
| 998 | // FIXME: v1f64 shouldn't be legal if we can avoid it, because it leads to | ||||
| 999 | // silliness like this: | ||||
| 1000 | for (auto Op : | ||||
| 1001 | {ISD::SELECT, ISD::SELECT_CC, ISD::SETCC, | ||||
| 1002 | ISD::BR_CC, ISD::FADD, ISD::FSUB, | ||||
| 1003 | ISD::FMUL, ISD::FDIV, ISD::FMA, | ||||
| 1004 | ISD::FNEG, ISD::FABS, ISD::FCEIL, | ||||
| 1005 | ISD::FSQRT, ISD::FFLOOR, ISD::FNEARBYINT, | ||||
| 1006 | ISD::FRINT, ISD::FROUND, ISD::FROUNDEVEN, | ||||
| 1007 | ISD::FTRUNC, ISD::FMINNUM, ISD::FMAXNUM, | ||||
| 1008 | ISD::FMINIMUM, ISD::FMAXIMUM, ISD::STRICT_FADD, | ||||
| 1009 | ISD::STRICT_FSUB, ISD::STRICT_FMUL, ISD::STRICT_FDIV, | ||||
| 1010 | ISD::STRICT_FMA, ISD::STRICT_FCEIL, ISD::STRICT_FFLOOR, | ||||
| 1011 | ISD::STRICT_FSQRT, ISD::STRICT_FRINT, ISD::STRICT_FNEARBYINT, | ||||
| 1012 | ISD::STRICT_FROUND, ISD::STRICT_FTRUNC, ISD::STRICT_FROUNDEVEN, | ||||
| 1013 | ISD::STRICT_FMINNUM, ISD::STRICT_FMAXNUM, ISD::STRICT_FMINIMUM, | ||||
| 1014 | ISD::STRICT_FMAXIMUM}) | ||||
| 1015 | setOperationAction(Op, MVT::v1f64, Expand); | ||||
| 1016 | |||||
| 1017 | for (auto Op : | ||||
| 1018 | {ISD::FP_TO_SINT, ISD::FP_TO_UINT, ISD::SINT_TO_FP, ISD::UINT_TO_FP, | ||||
| 1019 | ISD::FP_ROUND, ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT, ISD::MUL, | ||||
| 1020 | ISD::STRICT_FP_TO_SINT, ISD::STRICT_FP_TO_UINT, | ||||
| 1021 | ISD::STRICT_SINT_TO_FP, ISD::STRICT_UINT_TO_FP, ISD::STRICT_FP_ROUND}) | ||||
| 1022 | setOperationAction(Op, MVT::v1i64, Expand); | ||||
| 1023 | |||||
| 1024 | // AArch64 doesn't have a direct vector ->f32 conversion instructions for | ||||
| 1025 | // elements smaller than i32, so promote the input to i32 first. | ||||
| 1026 | setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v4i8, MVT::v4i32); | ||||
| 1027 | setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v4i8, MVT::v4i32); | ||||
| 1028 | |||||
| 1029 | // Similarly, there is no direct i32 -> f64 vector conversion instruction. | ||||
| 1030 | // Or, direct i32 -> f16 vector conversion. Set it so custom, so the | ||||
| 1031 | // conversion happens in two steps: v4i32 -> v4f32 -> v4f16 | ||||
| 1032 | for (auto Op : {ISD::SINT_TO_FP, ISD::UINT_TO_FP, ISD::STRICT_SINT_TO_FP, | ||||
| 1033 | ISD::STRICT_UINT_TO_FP}) | ||||
| 1034 | for (auto VT : {MVT::v2i32, MVT::v2i64, MVT::v4i32}) | ||||
| 1035 | setOperationAction(Op, VT, Custom); | ||||
| 1036 | |||||
| 1037 | if (Subtarget->hasFullFP16()) { | ||||
| 1038 | setOperationAction(ISD::ConstantFP, MVT::f16, Legal); | ||||
| 1039 | |||||
| 1040 | setOperationAction(ISD::SINT_TO_FP, MVT::v8i8, Custom); | ||||
| 1041 | setOperationAction(ISD::UINT_TO_FP, MVT::v8i8, Custom); | ||||
| 1042 | setOperationAction(ISD::SINT_TO_FP, MVT::v16i8, Custom); | ||||
| 1043 | setOperationAction(ISD::UINT_TO_FP, MVT::v16i8, Custom); | ||||
| 1044 | setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); | ||||
| 1045 | setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); | ||||
| 1046 | setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Custom); | ||||
| 1047 | setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom); | ||||
| 1048 | } else { | ||||
| 1049 | // when AArch64 doesn't have fullfp16 support, promote the input | ||||
| 1050 | // to i32 first. | ||||
| 1051 | setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v8i8, MVT::v8i32); | ||||
| 1052 | setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v8i8, MVT::v8i32); | ||||
| 1053 | setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v16i8, MVT::v16i32); | ||||
| 1054 | setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v16i8, MVT::v16i32); | ||||
| 1055 | setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v4i16, MVT::v4i32); | ||||
| 1056 | setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v4i16, MVT::v4i32); | ||||
| 1057 | setOperationPromotedToType(ISD::SINT_TO_FP, MVT::v8i16, MVT::v8i32); | ||||
| 1058 | setOperationPromotedToType(ISD::UINT_TO_FP, MVT::v8i16, MVT::v8i32); | ||||
| 1059 | } | ||||
| 1060 | |||||
| 1061 | setOperationAction(ISD::CTLZ, MVT::v1i64, Expand); | ||||
| 1062 | setOperationAction(ISD::CTLZ, MVT::v2i64, Expand); | ||||
| 1063 | setOperationAction(ISD::BITREVERSE, MVT::v8i8, Legal); | ||||
| 1064 | setOperationAction(ISD::BITREVERSE, MVT::v16i8, Legal); | ||||
| 1065 | setOperationAction(ISD::BITREVERSE, MVT::v2i32, Custom); | ||||
| 1066 | setOperationAction(ISD::BITREVERSE, MVT::v4i32, Custom); | ||||
| 1067 | setOperationAction(ISD::BITREVERSE, MVT::v1i64, Custom); | ||||
| 1068 | setOperationAction(ISD::BITREVERSE, MVT::v2i64, Custom); | ||||
| 1069 | for (auto VT : {MVT::v1i64, MVT::v2i64}) { | ||||
| 1070 | setOperationAction(ISD::UMAX, VT, Custom); | ||||
| 1071 | setOperationAction(ISD::SMAX, VT, Custom); | ||||
| 1072 | setOperationAction(ISD::UMIN, VT, Custom); | ||||
| 1073 | setOperationAction(ISD::SMIN, VT, Custom); | ||||
| 1074 | } | ||||
| 1075 | |||||
| 1076 | // AArch64 doesn't have MUL.2d: | ||||
| 1077 | setOperationAction(ISD::MUL, MVT::v2i64, Expand); | ||||
| 1078 | // Custom handling for some quad-vector types to detect MULL. | ||||
| 1079 | setOperationAction(ISD::MUL, MVT::v8i16, Custom); | ||||
| 1080 | setOperationAction(ISD::MUL, MVT::v4i32, Custom); | ||||
| 1081 | setOperationAction(ISD::MUL, MVT::v2i64, Custom); | ||||
| 1082 | |||||
| 1083 | // Saturates | ||||
| 1084 | for (MVT VT : { MVT::v8i8, MVT::v4i16, MVT::v2i32, | ||||
| 1085 | MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64 }) { | ||||
| 1086 | setOperationAction(ISD::SADDSAT, VT, Legal); | ||||
| 1087 | setOperationAction(ISD::UADDSAT, VT, Legal); | ||||
| 1088 | setOperationAction(ISD::SSUBSAT, VT, Legal); | ||||
| 1089 | setOperationAction(ISD::USUBSAT, VT, Legal); | ||||
| 1090 | } | ||||
| 1091 | |||||
| 1092 | for (MVT VT : {MVT::v8i8, MVT::v4i16, MVT::v2i32, MVT::v16i8, MVT::v8i16, | ||||
| 1093 | MVT::v4i32}) { | ||||
| 1094 | setOperationAction(ISD::AVGFLOORS, VT, Legal); | ||||
| 1095 | setOperationAction(ISD::AVGFLOORU, VT, Legal); | ||||
| 1096 | setOperationAction(ISD::AVGCEILS, VT, Legal); | ||||
| 1097 | setOperationAction(ISD::AVGCEILU, VT, Legal); | ||||
| 1098 | setOperationAction(ISD::ABDS, VT, Legal); | ||||
| 1099 | setOperationAction(ISD::ABDU, VT, Legal); | ||||
| 1100 | } | ||||
| 1101 | |||||
| 1102 | // Vector reductions | ||||
| 1103 | for (MVT VT : { MVT::v4f16, MVT::v2f32, | ||||
| 1104 | MVT::v8f16, MVT::v4f32, MVT::v2f64 }) { | ||||
| 1105 | if (VT.getVectorElementType() != MVT::f16 || Subtarget->hasFullFP16()) { | ||||
| 1106 | setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); | ||||
| 1107 | setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); | ||||
| 1108 | |||||
| 1109 | setOperationAction(ISD::VECREDUCE_FADD, VT, Legal); | ||||
| 1110 | } | ||||
| 1111 | } | ||||
| 1112 | for (MVT VT : { MVT::v8i8, MVT::v4i16, MVT::v2i32, | ||||
| 1113 | MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { | ||||
| 1114 | setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); | ||||
| 1115 | setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); | ||||
| 1116 | setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); | ||||
| 1117 | setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); | ||||
| 1118 | setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); | ||||
| 1119 | } | ||||
| 1120 | setOperationAction(ISD::VECREDUCE_ADD, MVT::v2i64, Custom); | ||||
| 1121 | |||||
| 1122 | setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Legal); | ||||
| 1123 | setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand); | ||||
| 1124 | // Likewise, narrowing and extending vector loads/stores aren't handled | ||||
| 1125 | // directly. | ||||
| 1126 | for (MVT VT : MVT::fixedlen_vector_valuetypes()) { | ||||
| 1127 | setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); | ||||
| 1128 | |||||
| 1129 | if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32) { | ||||
| 1130 | setOperationAction(ISD::MULHS, VT, Legal); | ||||
| 1131 | setOperationAction(ISD::MULHU, VT, Legal); | ||||
| 1132 | } else { | ||||
| 1133 | setOperationAction(ISD::MULHS, VT, Expand); | ||||
| 1134 | setOperationAction(ISD::MULHU, VT, Expand); | ||||
| 1135 | } | ||||
| 1136 | setOperationAction(ISD::SMUL_LOHI, VT, Expand); | ||||
| 1137 | setOperationAction(ISD::UMUL_LOHI, VT, Expand); | ||||
| 1138 | |||||
| 1139 | setOperationAction(ISD::BSWAP, VT, Expand); | ||||
| 1140 | setOperationAction(ISD::CTTZ, VT, Expand); | ||||
| 1141 | |||||
| 1142 | for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { | ||||
| 1143 | setTruncStoreAction(VT, InnerVT, Expand); | ||||
| 1144 | setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); | ||||
| 1145 | setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); | ||||
| 1146 | setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); | ||||
| 1147 | } | ||||
| 1148 | } | ||||
| 1149 | |||||
| 1150 | // AArch64 has implementations of a lot of rounding-like FP operations. | ||||
| 1151 | for (auto Op : | ||||
| 1152 | {ISD::FFLOOR, ISD::FNEARBYINT, ISD::FCEIL, ISD::FRINT, ISD::FTRUNC, | ||||
| 1153 | ISD::FROUND, ISD::FROUNDEVEN, ISD::STRICT_FFLOOR, | ||||
| 1154 | ISD::STRICT_FNEARBYINT, ISD::STRICT_FCEIL, ISD::STRICT_FRINT, | ||||
| 1155 | ISD::STRICT_FTRUNC, ISD::STRICT_FROUND, ISD::STRICT_FROUNDEVEN}) { | ||||
| 1156 | for (MVT Ty : {MVT::v2f32, MVT::v4f32, MVT::v2f64}) | ||||
| 1157 | setOperationAction(Op, Ty, Legal); | ||||
| 1158 | if (Subtarget->hasFullFP16()) | ||||
| 1159 | for (MVT Ty : {MVT::v4f16, MVT::v8f16}) | ||||
| 1160 | setOperationAction(Op, Ty, Legal); | ||||
| 1161 | } | ||||
| 1162 | |||||
| 1163 | setTruncStoreAction(MVT::v4i16, MVT::v4i8, Custom); | ||||
| 1164 | |||||
| 1165 | setLoadExtAction(ISD::EXTLOAD, MVT::v4i16, MVT::v4i8, Custom); | ||||
| 1166 | setLoadExtAction(ISD::SEXTLOAD, MVT::v4i16, MVT::v4i8, Custom); | ||||
| 1167 | setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i16, MVT::v4i8, Custom); | ||||
| 1168 | setLoadExtAction(ISD::EXTLOAD, MVT::v4i32, MVT::v4i8, Custom); | ||||
| 1169 | setLoadExtAction(ISD::SEXTLOAD, MVT::v4i32, MVT::v4i8, Custom); | ||||
| 1170 | setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i32, MVT::v4i8, Custom); | ||||
| 1171 | |||||
| 1172 | // ADDP custom lowering | ||||
| 1173 | for (MVT VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64 }) | ||||
| 1174 | setOperationAction(ISD::ADD, VT, Custom); | ||||
| 1175 | // FADDP custom lowering | ||||
| 1176 | for (MVT VT : { MVT::v16f16, MVT::v8f32, MVT::v4f64 }) | ||||
| 1177 | setOperationAction(ISD::FADD, VT, Custom); | ||||
| 1178 | } | ||||
| 1179 | |||||
| 1180 | if (Subtarget->hasSME()) { | ||||
| 1181 | setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); | ||||
| 1182 | } | ||||
| 1183 | |||||
| 1184 | // FIXME: Move lowering for more nodes here if those are common between | ||||
| 1185 | // SVE and SME. | ||||
| 1186 | if (Subtarget->hasSVEorSME()) { | ||||
| 1187 | for (auto VT : | ||||
| 1188 | {MVT::nxv16i1, MVT::nxv8i1, MVT::nxv4i1, MVT::nxv2i1, MVT::nxv1i1}) { | ||||
| 1189 | setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); | ||||
| 1190 | setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); | ||||
| 1191 | } | ||||
| 1192 | } | ||||
| 1193 | |||||
| 1194 | if (Subtarget->hasSME()) | ||||
| 1195 | setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); | ||||
| 1196 | |||||
| 1197 | if (Subtarget->hasSVE()) { | ||||
| 1198 | for (auto VT : {MVT::nxv16i8, MVT::nxv8i16, MVT::nxv4i32, MVT::nxv2i64}) { | ||||
| 1199 | setOperationAction(ISD::BITREVERSE, VT, Custom); | ||||
| 1200 | setOperationAction(ISD::BSWAP, VT, Custom); | ||||
| 1201 | setOperationAction(ISD::CTLZ, VT, Custom); | ||||
| 1202 | setOperationAction(ISD::CTPOP, VT, Custom); | ||||
| 1203 | setOperationAction(ISD::CTTZ, VT, Custom); | ||||
| 1204 | setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); | ||||
| 1205 | setOperationAction(ISD::UINT_TO_FP, VT, Custom); | ||||
| 1206 | setOperationAction(ISD::SINT_TO_FP, VT, Custom); | ||||
| 1207 | setOperationAction(ISD::FP_TO_UINT, VT, Custom); | ||||
| 1208 | setOperationAction(ISD::FP_TO_SINT, VT, Custom); | ||||
| 1209 | setOperationAction(ISD::MGATHER, VT, Custom); | ||||
| 1210 | setOperationAction(ISD::MSCATTER, VT, Custom); | ||||
| 1211 | setOperationAction(ISD::MLOAD, VT, Custom); | ||||
| 1212 | setOperationAction(ISD::MUL, VT, Custom); | ||||
| 1213 | setOperationAction(ISD::MULHS, VT, Custom); | ||||
| 1214 | setOperationAction(ISD::MULHU, VT, Custom); | ||||
| 1215 | setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); | ||||
| 1216 | setOperationAction(ISD::VECTOR_SPLICE, VT, Custom); | ||||
| 1217 | setOperationAction(ISD::SELECT, VT, Custom); | ||||
| 1218 | setOperationAction(ISD::SETCC, VT, Custom); | ||||
| 1219 | setOperationAction(ISD::SDIV, VT, Custom); | ||||
| 1220 | setOperationAction(ISD::UDIV, VT, Custom); | ||||
| 1221 | setOperationAction(ISD::SMIN, VT, Custom); | ||||
| 1222 | setOperationAction(ISD::UMIN, VT, Custom); | ||||
| 1223 | setOperationAction(ISD::SMAX, VT, Custom); | ||||
| 1224 | setOperationAction(ISD::UMAX, VT, Custom); | ||||
| 1225 | setOperationAction(ISD::SHL, VT, Custom); | ||||
| 1226 | setOperationAction(ISD::SRL, VT, Custom); | ||||
| 1227 | setOperationAction(ISD::SRA, VT, Custom); | ||||
| 1228 | setOperationAction(ISD::ABS, VT, Custom); | ||||
| 1229 | setOperationAction(ISD::ABDS, VT, Custom); | ||||
| 1230 | setOperationAction(ISD::ABDU, VT, Custom); | ||||
| 1231 | setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); | ||||
| 1232 | setOperationAction(ISD::VECREDUCE_AND, VT, Custom); | ||||
| 1233 | setOperationAction(ISD::VECREDUCE_OR, VT, Custom); | ||||
| 1234 | setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); | ||||
| 1235 | setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); | ||||
| 1236 | setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); | ||||
| 1237 | setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); | ||||
| 1238 | setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); | ||||
| 1239 | |||||
| 1240 | setOperationAction(ISD::UMUL_LOHI, VT, Expand); | ||||
| 1241 | setOperationAction(ISD::SMUL_LOHI, VT, Expand); | ||||
| 1242 | setOperationAction(ISD::SELECT_CC, VT, Expand); | ||||
| 1243 | setOperationAction(ISD::ROTL, VT, Expand); | ||||
| 1244 | setOperationAction(ISD::ROTR, VT, Expand); | ||||
| 1245 | |||||
| 1246 | setOperationAction(ISD::SADDSAT, VT, Legal); | ||||
| 1247 | setOperationAction(ISD::UADDSAT, VT, Legal); | ||||
| 1248 | setOperationAction(ISD::SSUBSAT, VT, Legal); | ||||
| 1249 | setOperationAction(ISD::USUBSAT, VT, Legal); | ||||
| 1250 | setOperationAction(ISD::UREM, VT, Expand); | ||||
| 1251 | setOperationAction(ISD::SREM, VT, Expand); | ||||
| 1252 | setOperationAction(ISD::SDIVREM, VT, Expand); | ||||
| 1253 | setOperationAction(ISD::UDIVREM, VT, Expand); | ||||
| 1254 | } | ||||
| 1255 | |||||
| 1256 | // Illegal unpacked integer vector types. | ||||
| 1257 | for (auto VT : {MVT::nxv8i8, MVT::nxv4i16, MVT::nxv2i32}) { | ||||
| 1258 | setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); | ||||
| 1259 | setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); | ||||
| 1260 | } | ||||
| 1261 | |||||
| 1262 | // Legalize unpacked bitcasts to REINTERPRET_CAST. | ||||
| 1263 | for (auto VT : {MVT::nxv2i16, MVT::nxv4i16, MVT::nxv2i32, MVT::nxv2bf16, | ||||
| 1264 | MVT::nxv4bf16, MVT::nxv2f16, MVT::nxv4f16, MVT::nxv2f32}) | ||||
| 1265 | setOperationAction(ISD::BITCAST, VT, Custom); | ||||
| 1266 | |||||
| 1267 | for (auto VT : | ||||
| 1268 | { MVT::nxv2i8, MVT::nxv2i16, MVT::nxv2i32, MVT::nxv2i64, MVT::nxv4i8, | ||||
| 1269 | MVT::nxv4i16, MVT::nxv4i32, MVT::nxv8i8, MVT::nxv8i16 }) | ||||
| 1270 | setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Legal); | ||||
| 1271 | |||||
| 1272 | for (auto VT : | ||||
| 1273 | {MVT::nxv16i1, MVT::nxv8i1, MVT::nxv4i1, MVT::nxv2i1, MVT::nxv1i1}) { | ||||
| 1274 | setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); | ||||
| 1275 | setOperationAction(ISD::SELECT, VT, Custom); | ||||
| 1276 | setOperationAction(ISD::SETCC, VT, Custom); | ||||
| 1277 | setOperationAction(ISD::TRUNCATE, VT, Custom); | ||||
| 1278 | setOperationAction(ISD::VECREDUCE_AND, VT, Custom); | ||||
| 1279 | setOperationAction(ISD::VECREDUCE_OR, VT, Custom); | ||||
| 1280 | setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); | ||||
| 1281 | |||||
| 1282 | setOperationAction(ISD::SELECT_CC, VT, Expand); | ||||
| 1283 | setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); | ||||
| 1284 | setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); | ||||
| 1285 | |||||
| 1286 | // There are no legal MVT::nxv16f## based types. | ||||
| 1287 | if (VT != MVT::nxv16i1) { | ||||
| 1288 | setOperationAction(ISD::SINT_TO_FP, VT, Custom); | ||||
| 1289 | setOperationAction(ISD::UINT_TO_FP, VT, Custom); | ||||
| 1290 | } | ||||
| 1291 | } | ||||
| 1292 | |||||
| 1293 | // NEON doesn't support masked loads/stores/gathers/scatters, but SVE does | ||||
| 1294 | for (auto VT : {MVT::v4f16, MVT::v8f16, MVT::v2f32, MVT::v4f32, MVT::v1f64, | ||||
| 1295 | MVT::v2f64, MVT::v8i8, MVT::v16i8, MVT::v4i16, MVT::v8i16, | ||||
| 1296 | MVT::v2i32, MVT::v4i32, MVT::v1i64, MVT::v2i64}) { | ||||
| 1297 | setOperationAction(ISD::MLOAD, VT, Custom); | ||||
| 1298 | setOperationAction(ISD::MSTORE, VT, Custom); | ||||
| 1299 | setOperationAction(ISD::MGATHER, VT, Custom); | ||||
| 1300 | setOperationAction(ISD::MSCATTER, VT, Custom); | ||||
| 1301 | } | ||||
| 1302 | |||||
| 1303 | // Firstly, exclude all scalable vector extending loads/truncating stores, | ||||
| 1304 | // include both integer and floating scalable vector. | ||||
| 1305 | for (MVT VT : MVT::scalable_vector_valuetypes()) { | ||||
| 1306 | for (MVT InnerVT : MVT::scalable_vector_valuetypes()) { | ||||
| 1307 | setTruncStoreAction(VT, InnerVT, Expand); | ||||
| 1308 | setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); | ||||
| 1309 | setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); | ||||
| 1310 | setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); | ||||
| 1311 | } | ||||
| 1312 | } | ||||
| 1313 | |||||
| 1314 | // Then, selectively enable those which we directly support. | ||||
| 1315 | setTruncStoreAction(MVT::nxv2i64, MVT::nxv2i8, Legal); | ||||
| 1316 | setTruncStoreAction(MVT::nxv2i64, MVT::nxv2i16, Legal); | ||||
| 1317 | setTruncStoreAction(MVT::nxv2i64, MVT::nxv2i32, Legal); | ||||
| 1318 | setTruncStoreAction(MVT::nxv4i32, MVT::nxv4i8, Legal); | ||||
| 1319 | setTruncStoreAction(MVT::nxv4i32, MVT::nxv4i16, Legal); | ||||
| 1320 | setTruncStoreAction(MVT::nxv8i16, MVT::nxv8i8, Legal); | ||||
| 1321 | for (auto Op : {ISD::ZEXTLOAD, ISD::SEXTLOAD, ISD::EXTLOAD}) { | ||||
| 1322 | setLoadExtAction(Op, MVT::nxv2i64, MVT::nxv2i8, Legal); | ||||
| 1323 | setLoadExtAction(Op, MVT::nxv2i64, MVT::nxv2i16, Legal); | ||||
| 1324 | setLoadExtAction(Op, MVT::nxv2i64, MVT::nxv2i32, Legal); | ||||
| 1325 | setLoadExtAction(Op, MVT::nxv4i32, MVT::nxv4i8, Legal); | ||||
| 1326 | setLoadExtAction(Op, MVT::nxv4i32, MVT::nxv4i16, Legal); | ||||
| 1327 | setLoadExtAction(Op, MVT::nxv8i16, MVT::nxv8i8, Legal); | ||||
| 1328 | } | ||||
| 1329 | |||||
| 1330 | // SVE supports truncating stores of 64 and 128-bit vectors | ||||
| 1331 | setTruncStoreAction(MVT::v2i64, MVT::v2i8, Custom); | ||||
| 1332 | setTruncStoreAction(MVT::v2i64, MVT::v2i16, Custom); | ||||
| 1333 | setTruncStoreAction(MVT::v2i64, MVT::v2i32, Custom); | ||||
| 1334 | setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom); | ||||
| 1335 | setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom); | ||||
| 1336 | |||||
| 1337 | for (auto VT : {MVT::nxv2f16, MVT::nxv4f16, MVT::nxv8f16, MVT::nxv2f32, | ||||
| 1338 | MVT::nxv4f32, MVT::nxv2f64}) { | ||||
| 1339 | setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); | ||||
| 1340 | setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); | ||||
| 1341 | setOperationAction(ISD::MGATHER, VT, Custom); | ||||
| 1342 | setOperationAction(ISD::MSCATTER, VT, Custom); | ||||
| 1343 | setOperationAction(ISD::MLOAD, VT, Custom); | ||||
| 1344 | setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); | ||||
| 1345 | setOperationAction(ISD::SELECT, VT, Custom); | ||||
| 1346 | setOperationAction(ISD::FADD, VT, Custom); | ||||
| 1347 | setOperationAction(ISD::FCOPYSIGN, VT, Custom); | ||||
| 1348 | setOperationAction(ISD::FDIV, VT, Custom); | ||||
| 1349 | setOperationAction(ISD::FMA, VT, Custom); | ||||
| 1350 | setOperationAction(ISD::FMAXIMUM, VT, Custom); | ||||
| 1351 | setOperationAction(ISD::FMAXNUM, VT, Custom); | ||||
| 1352 | setOperationAction(ISD::FMINIMUM, VT, Custom); | ||||
| 1353 | setOperationAction(ISD::FMINNUM, VT, Custom); | ||||
| 1354 | setOperationAction(ISD::FMUL, VT, Custom); | ||||
| 1355 | setOperationAction(ISD::FNEG, VT, Custom); | ||||
| 1356 | setOperationAction(ISD::FSUB, VT, Custom); | ||||
| 1357 | setOperationAction(ISD::FCEIL, VT, Custom); | ||||
| 1358 | setOperationAction(ISD::FFLOOR, VT, Custom); | ||||
| 1359 | setOperationAction(ISD::FNEARBYINT, VT, Custom); | ||||
| 1360 | setOperationAction(ISD::FRINT, VT, Custom); | ||||
| 1361 | setOperationAction(ISD::FROUND, VT, Custom); | ||||
| 1362 | setOperationAction(ISD::FROUNDEVEN, VT, Custom); | ||||
| 1363 | setOperationAction(ISD::FTRUNC, VT, Custom); | ||||
| 1364 | setOperationAction(ISD::FSQRT, VT, Custom); | ||||
| 1365 | setOperationAction(ISD::FABS, VT, Custom); | ||||
| 1366 | setOperationAction(ISD::FP_EXTEND, VT, Custom); | ||||
| 1367 | setOperationAction(ISD::FP_ROUND, VT, Custom); | ||||
| 1368 | setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); | ||||
| 1369 | setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); | ||||
| 1370 | setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); | ||||
| 1371 | setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); | ||||
| 1372 | setOperationAction(ISD::VECTOR_SPLICE, VT, Custom); | ||||
| 1373 | |||||
| 1374 | setOperationAction(ISD::SELECT_CC, VT, Expand); | ||||
| 1375 | setOperationAction(ISD::FREM, VT, Expand); | ||||
| 1376 | setOperationAction(ISD::FPOW, VT, Expand); | ||||
| 1377 | setOperationAction(ISD::FPOWI, VT, Expand); | ||||
| 1378 | setOperationAction(ISD::FCOS, VT, Expand); | ||||
| 1379 | setOperationAction(ISD::FSIN, VT, Expand); | ||||
| 1380 | setOperationAction(ISD::FSINCOS, VT, Expand); | ||||
| 1381 | setOperationAction(ISD::FEXP, VT, Expand); | ||||
| 1382 | setOperationAction(ISD::FEXP2, VT, Expand); | ||||
| 1383 | setOperationAction(ISD::FLOG, VT, Expand); | ||||
| 1384 | setOperationAction(ISD::FLOG2, VT, Expand); | ||||
| 1385 | setOperationAction(ISD::FLOG10, VT, Expand); | ||||
| 1386 | |||||
| 1387 | setCondCodeAction(ISD::SETO, VT, Expand); | ||||
| 1388 | setCondCodeAction(ISD::SETOLT, VT, Expand); | ||||
| 1389 | setCondCodeAction(ISD::SETLT, VT, Expand); | ||||
| 1390 | setCondCodeAction(ISD::SETOLE, VT, Expand); | ||||
| 1391 | setCondCodeAction(ISD::SETLE, VT, Expand); | ||||
| 1392 | setCondCodeAction(ISD::SETULT, VT, Expand); | ||||
| 1393 | setCondCodeAction(ISD::SETULE, VT, Expand); | ||||
| 1394 | setCondCodeAction(ISD::SETUGE, VT, Expand); | ||||
| 1395 | setCondCodeAction(ISD::SETUGT, VT, Expand); | ||||
| 1396 | setCondCodeAction(ISD::SETUEQ, VT, Expand); | ||||
| 1397 | setCondCodeAction(ISD::SETONE, VT, Expand); | ||||
| 1398 | } | ||||
| 1399 | |||||
| 1400 | for (auto VT : {MVT::nxv2bf16, MVT::nxv4bf16, MVT::nxv8bf16}) { | ||||
| 1401 | setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); | ||||
| 1402 | setOperationAction(ISD::MGATHER, VT, Custom); | ||||
| 1403 | setOperationAction(ISD::MSCATTER, VT, Custom); | ||||
| 1404 | setOperationAction(ISD::MLOAD, VT, Custom); | ||||
| 1405 | setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom); | ||||
| 1406 | setOperationAction(ISD::SPLAT_VECTOR, VT, Legal); | ||||
| 1407 | } | ||||
| 1408 | |||||
| 1409 | setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i8, Custom); | ||||
| 1410 | setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom); | ||||
| 1411 | |||||
| 1412 | // NEON doesn't support integer divides, but SVE does | ||||
| 1413 | for (auto VT : {MVT::v8i8, MVT::v16i8, MVT::v4i16, MVT::v8i16, MVT::v2i32, | ||||
| 1414 | MVT::v4i32, MVT::v1i64, MVT::v2i64}) { | ||||
| 1415 | setOperationAction(ISD::SDIV, VT, Custom); | ||||
| 1416 | setOperationAction(ISD::UDIV, VT, Custom); | ||||
| 1417 | } | ||||
| 1418 | |||||
| 1419 | // NEON doesn't support 64-bit vector integer muls, but SVE does. | ||||
| 1420 | setOperationAction(ISD::MUL, MVT::v1i64, Custom); | ||||
| 1421 | setOperationAction(ISD::MUL, MVT::v2i64, Custom); | ||||
| 1422 | |||||
| 1423 | // NEON doesn't support across-vector reductions, but SVE does. | ||||
| 1424 | for (auto VT : {MVT::v4f16, MVT::v8f16, MVT::v2f32, MVT::v4f32, MVT::v2f64}) | ||||
| 1425 | setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); | ||||
| 1426 | |||||
| 1427 | if (Subtarget->forceStreamingCompatibleSVE()) { | ||||
| 1428 | setTruncStoreAction(MVT::v2f32, MVT::v2f16, Custom); | ||||
| 1429 | setTruncStoreAction(MVT::v4f32, MVT::v4f16, Custom); | ||||
| 1430 | setTruncStoreAction(MVT::v8f32, MVT::v8f16, Custom); | ||||
| 1431 | setTruncStoreAction(MVT::v1f64, MVT::v1f16, Custom); | ||||
| 1432 | setTruncStoreAction(MVT::v2f64, MVT::v2f16, Custom); | ||||
| 1433 | setTruncStoreAction(MVT::v4f64, MVT::v4f16, Custom); | ||||
| 1434 | setTruncStoreAction(MVT::v1f64, MVT::v1f32, Custom); | ||||
| 1435 | setTruncStoreAction(MVT::v2f64, MVT::v2f32, Custom); | ||||
| 1436 | setTruncStoreAction(MVT::v4f64, MVT::v4f32, Custom); | ||||
| 1437 | for (MVT VT : {MVT::v8i8, MVT::v16i8, MVT::v4i16, MVT::v8i16, MVT::v2i32, | ||||
| 1438 | MVT::v4i32, MVT::v1i64, MVT::v2i64}) | ||||
| 1439 | addTypeForStreamingSVE(VT); | ||||
| 1440 | |||||
| 1441 | for (MVT VT : | ||||
| 1442 | {MVT::v4f16, MVT::v8f16, MVT::v2f32, MVT::v4f32, MVT::v2f64}) | ||||
| 1443 | addTypeForStreamingSVE(VT); | ||||
| 1444 | } | ||||
| 1445 | |||||
| 1446 | // NOTE: Currently this has to happen after computeRegisterProperties rather | ||||
| 1447 | // than the preferred option of combining it with the addRegisterClass call. | ||||
| 1448 | if (Subtarget->useSVEForFixedLengthVectors()) { | ||||
| 1449 | for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) | ||||
| 1450 | if (useSVEForFixedLengthVectorVT(VT)) | ||||
| 1451 | addTypeForFixedLengthSVE(VT); | ||||
| 1452 | for (MVT VT : MVT::fp_fixedlen_vector_valuetypes()) | ||||
| 1453 | if (useSVEForFixedLengthVectorVT(VT)) | ||||
| 1454 | addTypeForFixedLengthSVE(VT); | ||||
| 1455 | |||||
| 1456 | // 64bit results can mean a bigger than NEON input. | ||||
| 1457 | for (auto VT : {MVT::v8i8, MVT::v4i16}) | ||||
| 1458 | setOperationAction(ISD::TRUNCATE, VT, Custom); | ||||
| 1459 | setOperationAction(ISD::FP_ROUND, MVT::v4f16, Custom); | ||||
| 1460 | |||||
| 1461 | // 128bit results imply a bigger than NEON input. | ||||
| 1462 | for (auto VT : {MVT::v16i8, MVT::v8i16, MVT::v4i32}) | ||||
| 1463 | setOperationAction(ISD::TRUNCATE, VT, Custom); | ||||
| 1464 | for (auto VT : {MVT::v8f16, MVT::v4f32}) | ||||
| 1465 | setOperationAction(ISD::FP_ROUND, VT, Custom); | ||||
| 1466 | |||||
| 1467 | // These operations are not supported on NEON but SVE can do them. | ||||
| 1468 | setOperationAction(ISD::BITREVERSE, MVT::v1i64, Custom); | ||||
| 1469 | setOperationAction(ISD::CTLZ, MVT::v1i64, Custom); | ||||
| 1470 | setOperationAction(ISD::CTLZ, MVT::v2i64, Custom); | ||||
| 1471 | setOperationAction(ISD::CTTZ, MVT::v1i64, Custom); | ||||
| 1472 | setOperationAction(ISD::MULHS, MVT::v1i64, Custom); | ||||
| 1473 | setOperationAction(ISD::MULHS, MVT::v2i64, Custom); | ||||
| 1474 | setOperationAction(ISD::MULHU, MVT::v1i64, Custom); | ||||
| 1475 | setOperationAction(ISD::MULHU, MVT::v2i64, Custom); | ||||
| 1476 | setOperationAction(ISD::SMAX, MVT::v1i64, Custom); | ||||
| 1477 | setOperationAction(ISD::SMAX, MVT::v2i64, Custom); | ||||
| 1478 | setOperationAction(ISD::SMIN, MVT::v1i64, Custom); | ||||
| 1479 | setOperationAction(ISD::SMIN, MVT::v2i64, Custom); | ||||
| 1480 | setOperationAction(ISD::UMAX, MVT::v1i64, Custom); | ||||
| 1481 | setOperationAction(ISD::UMAX, MVT::v2i64, Custom); | ||||
| 1482 | setOperationAction(ISD::UMIN, MVT::v1i64, Custom); | ||||
| 1483 | setOperationAction(ISD::UMIN, MVT::v2i64, Custom); | ||||
| 1484 | setOperationAction(ISD::VECREDUCE_SMAX, MVT::v2i64, Custom); | ||||
| 1485 | setOperationAction(ISD::VECREDUCE_SMIN, MVT::v2i64, Custom); | ||||
| 1486 | setOperationAction(ISD::VECREDUCE_UMAX, MVT::v2i64, Custom); | ||||
| 1487 | setOperationAction(ISD::VECREDUCE_UMIN, MVT::v2i64, Custom); | ||||
| 1488 | |||||
| 1489 | // Int operations with no NEON support. | ||||
| 1490 | for (auto VT : {MVT::v8i8, MVT::v16i8, MVT::v4i16, MVT::v8i16, | ||||
| 1491 | MVT::v2i32, MVT::v4i32, MVT::v2i64}) { | ||||
| 1492 | setOperationAction(ISD::BITREVERSE, VT, Custom); | ||||
| 1493 | setOperationAction(ISD::CTTZ, VT, Custom); | ||||
| 1494 | setOperationAction(ISD::VECREDUCE_AND, VT, Custom); | ||||
| 1495 | setOperationAction(ISD::VECREDUCE_OR, VT, Custom); | ||||
| 1496 | setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); | ||||
| 1497 | } | ||||
| 1498 | |||||
| 1499 | |||||
| 1500 | // Use SVE for vectors with more than 2 elements. | ||||
| 1501 | for (auto VT : {MVT::v4f16, MVT::v8f16, MVT::v4f32}) | ||||
| 1502 | setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); | ||||
| 1503 | } | ||||
| 1504 | |||||
| 1505 | setOperationPromotedToType(ISD::VECTOR_SPLICE, MVT::nxv2i1, MVT::nxv2i64); | ||||
| 1506 | setOperationPromotedToType(ISD::VECTOR_SPLICE, MVT::nxv4i1, MVT::nxv4i32); | ||||
| 1507 | setOperationPromotedToType(ISD::VECTOR_SPLICE, MVT::nxv8i1, MVT::nxv8i16); | ||||
| 1508 | setOperationPromotedToType(ISD::VECTOR_SPLICE, MVT::nxv16i1, MVT::nxv16i8); | ||||
| 1509 | |||||
| 1510 | setOperationAction(ISD::VSCALE, MVT::i32, Custom); | ||||
| 1511 | } | ||||
| 1512 | |||||
| 1513 | if (Subtarget->hasMOPS() && Subtarget->hasMTE()) { | ||||
| 1514 | // Only required for llvm.aarch64.mops.memset.tag | ||||
| 1515 | setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom); | ||||
| 1516 | } | ||||
| 1517 | |||||
| 1518 | PredictableSelectIsExpensive = Subtarget->predictableSelectIsExpensive(); | ||||
| 1519 | |||||
| 1520 | IsStrictFPEnabled = true; | ||||
| 1521 | } | ||||
| 1522 | |||||
| 1523 | void AArch64TargetLowering::addTypeForNEON(MVT VT) { | ||||
| 1524 | assert(VT.isVector() && "VT should be a vector type")(static_cast <bool> (VT.isVector() && "VT should be a vector type" ) ? void (0) : __assert_fail ("VT.isVector() && \"VT should be a vector type\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 1524, __extension__ __PRETTY_FUNCTION__)); | ||||
| 1525 | |||||
| 1526 | if (VT.isFloatingPoint()) { | ||||
| 1527 | MVT PromoteTo = EVT(VT).changeVectorElementTypeToInteger().getSimpleVT(); | ||||
| 1528 | setOperationPromotedToType(ISD::LOAD, VT, PromoteTo); | ||||
| 1529 | setOperationPromotedToType(ISD::STORE, VT, PromoteTo); | ||||
| 1530 | } | ||||
| 1531 | |||||
| 1532 | // Mark vector float intrinsics as expand. | ||||
| 1533 | if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64) { | ||||
| 1534 | setOperationAction(ISD::FSIN, VT, Expand); | ||||
| 1535 | setOperationAction(ISD::FCOS, VT, Expand); | ||||
| 1536 | setOperationAction(ISD::FPOW, VT, Expand); | ||||
| 1537 | setOperationAction(ISD::FLOG, VT, Expand); | ||||
| 1538 | setOperationAction(ISD::FLOG2, VT, Expand); | ||||
| 1539 | setOperationAction(ISD::FLOG10, VT, Expand); | ||||
| 1540 | setOperationAction(ISD::FEXP, VT, Expand); | ||||
| 1541 | setOperationAction(ISD::FEXP2, VT, Expand); | ||||
| 1542 | } | ||||
| 1543 | |||||
| 1544 | // But we do support custom-lowering for FCOPYSIGN. | ||||
| 1545 | if (VT == MVT::v2f32 || VT == MVT::v4f32 || VT == MVT::v2f64 || | ||||
| 1546 | ((VT == MVT::v4f16 || VT == MVT::v8f16) && Subtarget->hasFullFP16())) | ||||
| 1547 | setOperationAction(ISD::FCOPYSIGN, VT, Custom); | ||||
| 1548 | |||||
| 1549 | setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); | ||||
| 1550 | setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); | ||||
| 1551 | setOperationAction(ISD::BUILD_VECTOR, VT, Custom); | ||||
| 1552 | setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); | ||||
| 1553 | setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); | ||||
| 1554 | setOperationAction(ISD::SRA, VT, Custom); | ||||
| 1555 | setOperationAction(ISD::SRL, VT, Custom); | ||||
| 1556 | setOperationAction(ISD::SHL, VT, Custom); | ||||
| 1557 | setOperationAction(ISD::OR, VT, Custom); | ||||
| 1558 | setOperationAction(ISD::SETCC, VT, Custom); | ||||
| 1559 | setOperationAction(ISD::CONCAT_VECTORS, VT, Legal); | ||||
| 1560 | |||||
| 1561 | setOperationAction(ISD::SELECT, VT, Expand); | ||||
| 1562 | setOperationAction(ISD::SELECT_CC, VT, Expand); | ||||
| 1563 | setOperationAction(ISD::VSELECT, VT, Expand); | ||||
| 1564 | for (MVT InnerVT : MVT::all_valuetypes()) | ||||
| 1565 | setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand); | ||||
| 1566 | |||||
| 1567 | // CNT supports only B element sizes, then use UADDLP to widen. | ||||
| 1568 | if (VT != MVT::v8i8 && VT != MVT::v16i8) | ||||
| 1569 | setOperationAction(ISD::CTPOP, VT, Custom); | ||||
| 1570 | |||||
| 1571 | setOperationAction(ISD::UDIV, VT, Expand); | ||||
| 1572 | setOperationAction(ISD::SDIV, VT, Expand); | ||||
| 1573 | setOperationAction(ISD::UREM, VT, Expand); | ||||
| 1574 | setOperationAction(ISD::SREM, VT, Expand); | ||||
| 1575 | setOperationAction(ISD::FREM, VT, Expand); | ||||
| 1576 | |||||
| 1577 | for (unsigned Opcode : | ||||
| 1578 | {ISD::FP_TO_SINT, ISD::FP_TO_UINT, ISD::FP_TO_SINT_SAT, | ||||
| 1579 | ISD::FP_TO_UINT_SAT, ISD::STRICT_FP_TO_SINT, ISD::STRICT_FP_TO_UINT}) | ||||
| 1580 | setOperationAction(Opcode, VT, Custom); | ||||
| 1581 | |||||
| 1582 | if (!VT.isFloatingPoint()) | ||||
| 1583 | setOperationAction(ISD::ABS, VT, Legal); | ||||
| 1584 | |||||
| 1585 | // [SU][MIN|MAX] are available for all NEON types apart from i64. | ||||
| 1586 | if (!VT.isFloatingPoint() && VT != MVT::v2i64 && VT != MVT::v1i64) | ||||
| 1587 | for (unsigned Opcode : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) | ||||
| 1588 | setOperationAction(Opcode, VT, Legal); | ||||
| 1589 | |||||
| 1590 | // F[MIN|MAX][NUM|NAN] and simple strict operations are available for all FP | ||||
| 1591 | // NEON types. | ||||
| 1592 | if (VT.isFloatingPoint() && | ||||
| 1593 | VT.getVectorElementType() != MVT::bf16 && | ||||
| 1594 | (VT.getVectorElementType() != MVT::f16 || Subtarget->hasFullFP16())) | ||||
| 1595 | for (unsigned Opcode : | ||||
| 1596 | {ISD::FMINIMUM, ISD::FMAXIMUM, ISD::FMINNUM, ISD::FMAXNUM, | ||||
| 1597 | ISD::STRICT_FMINIMUM, ISD::STRICT_FMAXIMUM, ISD::STRICT_FMINNUM, | ||||
| 1598 | ISD::STRICT_FMAXNUM, ISD::STRICT_FADD, ISD::STRICT_FSUB, | ||||
| 1599 | ISD::STRICT_FMUL, ISD::STRICT_FDIV, ISD::STRICT_FMA, | ||||
| 1600 | ISD::STRICT_FSQRT}) | ||||
| 1601 | setOperationAction(Opcode, VT, Legal); | ||||
| 1602 | |||||
| 1603 | // Strict fp extend and trunc are legal | ||||
| 1604 | if (VT.isFloatingPoint() && VT.getScalarSizeInBits() != 16) | ||||
| 1605 | setOperationAction(ISD::STRICT_FP_EXTEND, VT, Legal); | ||||
| 1606 | if (VT.isFloatingPoint() && VT.getScalarSizeInBits() != 64) | ||||
| 1607 | setOperationAction(ISD::STRICT_FP_ROUND, VT, Legal); | ||||
| 1608 | |||||
| 1609 | // FIXME: We could potentially make use of the vector comparison instructions | ||||
| 1610 | // for STRICT_FSETCC and STRICT_FSETCSS, but there's a number of | ||||
| 1611 | // complications: | ||||
| 1612 | // * FCMPEQ/NE are quiet comparisons, the rest are signalling comparisons, | ||||
| 1613 | // so we would need to expand when the condition code doesn't match the | ||||
| 1614 | // kind of comparison. | ||||
| 1615 | // * Some kinds of comparison require more than one FCMXY instruction so | ||||
| 1616 | // would need to be expanded instead. | ||||
| 1617 | // * The lowering of the non-strict versions involves target-specific ISD | ||||
| 1618 | // nodes so we would likely need to add strict versions of all of them and | ||||
| 1619 | // handle them appropriately. | ||||
| 1620 | setOperationAction(ISD::STRICT_FSETCC, VT, Expand); | ||||
| 1621 | setOperationAction(ISD::STRICT_FSETCCS, VT, Expand); | ||||
| 1622 | |||||
| 1623 | if (Subtarget->isLittleEndian()) { | ||||
| 1624 | for (unsigned im = (unsigned)ISD::PRE_INC; | ||||
| 1625 | im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { | ||||
| 1626 | setIndexedLoadAction(im, VT, Legal); | ||||
| 1627 | setIndexedStoreAction(im, VT, Legal); | ||||
| 1628 | } | ||||
| 1629 | } | ||||
| 1630 | |||||
| 1631 | if (Subtarget->hasD128()) { | ||||
| 1632 | setOperationAction(ISD::READ_REGISTER, MVT::i128, Custom); | ||||
| 1633 | setOperationAction(ISD::WRITE_REGISTER, MVT::i128, Custom); | ||||
| 1634 | } | ||||
| 1635 | } | ||||
| 1636 | |||||
| 1637 | bool AArch64TargetLowering::shouldExpandGetActiveLaneMask(EVT ResVT, | ||||
| 1638 | EVT OpVT) const { | ||||
| 1639 | // Only SVE has a 1:1 mapping from intrinsic -> instruction (whilelo). | ||||
| 1640 | if (!Subtarget->hasSVE()) | ||||
| 1641 | return true; | ||||
| 1642 | |||||
| 1643 | // We can only support legal predicate result types. We can use the SVE | ||||
| 1644 | // whilelo instruction for generating fixed-width predicates too. | ||||
| 1645 | if (ResVT != MVT::nxv2i1 && ResVT != MVT::nxv4i1 && ResVT != MVT::nxv8i1 && | ||||
| 1646 | ResVT != MVT::nxv16i1 && ResVT != MVT::v2i1 && ResVT != MVT::v4i1 && | ||||
| 1647 | ResVT != MVT::v8i1 && ResVT != MVT::v16i1) | ||||
| 1648 | return true; | ||||
| 1649 | |||||
| 1650 | // The whilelo instruction only works with i32 or i64 scalar inputs. | ||||
| 1651 | if (OpVT != MVT::i32 && OpVT != MVT::i64) | ||||
| 1652 | return true; | ||||
| 1653 | |||||
| 1654 | return false; | ||||
| 1655 | } | ||||
| 1656 | |||||
| 1657 | void AArch64TargetLowering::addTypeForStreamingSVE(MVT VT) { | ||||
| 1658 | setOperationAction(ISD::ANY_EXTEND, VT, Custom); | ||||
| 1659 | setOperationAction(ISD::ZERO_EXTEND, VT, Custom); | ||||
| 1660 | setOperationAction(ISD::SIGN_EXTEND, VT, Custom); | ||||
| 1661 | setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); | ||||
| 1662 | setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); | ||||
| 1663 | setOperationAction(ISD::AND, VT, Custom); | ||||
| 1664 | setOperationAction(ISD::ADD, VT, Custom); | ||||
| 1665 | setOperationAction(ISD::SUB, VT, Custom); | ||||
| 1666 | setOperationAction(ISD::MUL, VT, Custom); | ||||
| 1667 | setOperationAction(ISD::MULHS, VT, Custom); | ||||
| 1668 | setOperationAction(ISD::MULHU, VT, Custom); | ||||
| 1669 | setOperationAction(ISD::ABS, VT, Custom); | ||||
| 1670 | setOperationAction(ISD::XOR, VT, Custom); | ||||
| 1671 | setOperationAction(ISD::TRUNCATE, VT, Custom); | ||||
| 1672 | setOperationAction(ISD::FMUL, VT, Custom); | ||||
| 1673 | setOperationAction(ISD::FADD, VT, Custom); | ||||
| 1674 | setOperationAction(ISD::FDIV, VT, Custom); | ||||
| 1675 | setOperationAction(ISD::FMA, VT, Custom); | ||||
| 1676 | setOperationAction(ISD::FNEG, VT, Custom); | ||||
| 1677 | setOperationAction(ISD::FSQRT, VT, Custom); | ||||
| 1678 | setOperationAction(ISD::FSUB, VT, Custom); | ||||
| 1679 | setOperationAction(ISD::FABS, VT, Custom); | ||||
| 1680 | setOperationAction(ISD::SMIN, VT, Custom); | ||||
| 1681 | setOperationAction(ISD::SMAX, VT, Custom); | ||||
| 1682 | setOperationAction(ISD::UMIN, VT, Custom); | ||||
| 1683 | setOperationAction(ISD::UMAX, VT, Custom); | ||||
| 1684 | setOperationAction(ISD::FMAXNUM, VT, Custom); | ||||
| 1685 | setOperationAction(ISD::FMINNUM, VT, Custom); | ||||
| 1686 | setOperationAction(ISD::FMAXIMUM, VT, Custom); | ||||
| 1687 | setOperationAction(ISD::FMINIMUM, VT, Custom); | ||||
| 1688 | setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); | ||||
| 1689 | setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); | ||||
| 1690 | setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); | ||||
| 1691 | setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); | ||||
| 1692 | setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); | ||||
| 1693 | setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); | ||||
| 1694 | setOperationAction(ISD::FP_ROUND, VT, Custom); | ||||
| 1695 | setOperationAction(ISD::FCEIL, VT, Custom); | ||||
| 1696 | setOperationAction(ISD::FFLOOR, VT, Custom); | ||||
| 1697 | setOperationAction(ISD::FNEARBYINT, VT, Custom); | ||||
| 1698 | setOperationAction(ISD::FRINT, VT, Custom); | ||||
| 1699 | setOperationAction(ISD::FROUND, VT, Custom); | ||||
| 1700 | setOperationAction(ISD::FROUNDEVEN, VT, Custom); | ||||
| 1701 | setOperationAction(ISD::FTRUNC, VT, Custom); | ||||
| 1702 | setOperationAction(ISD::CTLZ, VT, Custom); | ||||
| 1703 | setOperationAction(ISD::CTPOP, VT, Custom); | ||||
| 1704 | if (VT.isFloatingPoint()) { | ||||
| 1705 | setCondCodeAction(ISD::SETO, VT, Expand); | ||||
| 1706 | setCondCodeAction(ISD::SETOLT, VT, Expand); | ||||
| 1707 | setCondCodeAction(ISD::SETOLE, VT, Expand); | ||||
| 1708 | setCondCodeAction(ISD::SETULT, VT, Expand); | ||||
| 1709 | setCondCodeAction(ISD::SETULE, VT, Expand); | ||||
| 1710 | setCondCodeAction(ISD::SETUGE, VT, Expand); | ||||
| 1711 | setCondCodeAction(ISD::SETUGT, VT, Expand); | ||||
| 1712 | setCondCodeAction(ISD::SETUEQ, VT, Expand); | ||||
| 1713 | setCondCodeAction(ISD::SETONE, VT, Expand); | ||||
| 1714 | } | ||||
| 1715 | } | ||||
| 1716 | |||||
| 1717 | void AArch64TargetLowering::addTypeForFixedLengthSVE(MVT VT) { | ||||
| 1718 | assert(VT.isFixedLengthVector() && "Expected fixed length vector type!")(static_cast <bool> (VT.isFixedLengthVector() && "Expected fixed length vector type!") ? void (0) : __assert_fail ("VT.isFixedLengthVector() && \"Expected fixed length vector type!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 1718, __extension__ __PRETTY_FUNCTION__)); | ||||
| 1719 | |||||
| 1720 | // By default everything must be expanded. | ||||
| 1721 | for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) | ||||
| 1722 | setOperationAction(Op, VT, Expand); | ||||
| 1723 | |||||
| 1724 | // We use EXTRACT_SUBVECTOR to "cast" a scalable vector to a fixed length one. | ||||
| 1725 | setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom); | ||||
| 1726 | |||||
| 1727 | if (VT.isFloatingPoint()) { | ||||
| 1728 | setCondCodeAction(ISD::SETO, VT, Expand); | ||||
| 1729 | setCondCodeAction(ISD::SETOLT, VT, Expand); | ||||
| 1730 | setCondCodeAction(ISD::SETOLE, VT, Expand); | ||||
| 1731 | setCondCodeAction(ISD::SETULT, VT, Expand); | ||||
| 1732 | setCondCodeAction(ISD::SETULE, VT, Expand); | ||||
| 1733 | setCondCodeAction(ISD::SETUGE, VT, Expand); | ||||
| 1734 | setCondCodeAction(ISD::SETUGT, VT, Expand); | ||||
| 1735 | setCondCodeAction(ISD::SETUEQ, VT, Expand); | ||||
| 1736 | setCondCodeAction(ISD::SETONE, VT, Expand); | ||||
| 1737 | } | ||||
| 1738 | |||||
| 1739 | // Mark integer truncating stores/extending loads as having custom lowering | ||||
| 1740 | if (VT.isInteger()) { | ||||
| 1741 | MVT InnerVT = VT.changeVectorElementType(MVT::i8); | ||||
| 1742 | while (InnerVT != VT) { | ||||
| 1743 | setTruncStoreAction(VT, InnerVT, Custom); | ||||
| 1744 | setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Custom); | ||||
| 1745 | setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Custom); | ||||
| 1746 | InnerVT = InnerVT.changeVectorElementType( | ||||
| 1747 | MVT::getIntegerVT(2 * InnerVT.getScalarSizeInBits())); | ||||
| 1748 | } | ||||
| 1749 | } | ||||
| 1750 | |||||
| 1751 | // Mark floating-point truncating stores/extending loads as having custom | ||||
| 1752 | // lowering | ||||
| 1753 | if (VT.isFloatingPoint()) { | ||||
| 1754 | MVT InnerVT = VT.changeVectorElementType(MVT::f16); | ||||
| 1755 | while (InnerVT != VT) { | ||||
| 1756 | setTruncStoreAction(VT, InnerVT, Custom); | ||||
| 1757 | setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Custom); | ||||
| 1758 | InnerVT = InnerVT.changeVectorElementType( | ||||
| 1759 | MVT::getFloatingPointVT(2 * InnerVT.getScalarSizeInBits())); | ||||
| 1760 | } | ||||
| 1761 | } | ||||
| 1762 | |||||
| 1763 | // Lower fixed length vector operations to scalable equivalents. | ||||
| 1764 | setOperationAction(ISD::ABS, VT, Custom); | ||||
| 1765 | setOperationAction(ISD::ADD, VT, Custom); | ||||
| 1766 | setOperationAction(ISD::AND, VT, Custom); | ||||
| 1767 | setOperationAction(ISD::ANY_EXTEND, VT, Custom); | ||||
| 1768 | setOperationAction(ISD::BITCAST, VT, Custom); | ||||
| 1769 | setOperationAction(ISD::BITREVERSE, VT, Custom); | ||||
| 1770 | setOperationAction(ISD::BUILD_VECTOR, VT, Custom); | ||||
| 1771 | setOperationAction(ISD::BSWAP, VT, Custom); | ||||
| 1772 | setOperationAction(ISD::CONCAT_VECTORS, VT, Custom); | ||||
| 1773 | setOperationAction(ISD::CTLZ, VT, Custom); | ||||
| 1774 | setOperationAction(ISD::CTPOP, VT, Custom); | ||||
| 1775 | setOperationAction(ISD::CTTZ, VT, Custom); | ||||
| 1776 | setOperationAction(ISD::FABS, VT, Custom); | ||||
| 1777 | setOperationAction(ISD::FADD, VT, Custom); | ||||
| 1778 | setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); | ||||
| 1779 | setOperationAction(ISD::FCEIL, VT, Custom); | ||||
| 1780 | setOperationAction(ISD::FCOPYSIGN, VT, Custom); | ||||
| 1781 | setOperationAction(ISD::FDIV, VT, Custom); | ||||
| 1782 | setOperationAction(ISD::FFLOOR, VT, Custom); | ||||
| 1783 | setOperationAction(ISD::FMA, VT, Custom); | ||||
| 1784 | setOperationAction(ISD::FMAXIMUM, VT, Custom); | ||||
| 1785 | setOperationAction(ISD::FMAXNUM, VT, Custom); | ||||
| 1786 | setOperationAction(ISD::FMINIMUM, VT, Custom); | ||||
| 1787 | setOperationAction(ISD::FMINNUM, VT, Custom); | ||||
| 1788 | setOperationAction(ISD::FMUL, VT, Custom); | ||||
| 1789 | setOperationAction(ISD::FNEARBYINT, VT, Custom); | ||||
| 1790 | setOperationAction(ISD::FNEG, VT, Custom); | ||||
| 1791 | setOperationAction(ISD::FP_EXTEND, VT, Custom); | ||||
| 1792 | setOperationAction(ISD::FP_ROUND, VT, Custom); | ||||
| 1793 | setOperationAction(ISD::FP_TO_SINT, VT, Custom); | ||||
| 1794 | setOperationAction(ISD::FP_TO_UINT, VT, Custom); | ||||
| 1795 | setOperationAction(ISD::FRINT, VT, Custom); | ||||
| 1796 | setOperationAction(ISD::FROUND, VT, Custom); | ||||
| 1797 | setOperationAction(ISD::FROUNDEVEN, VT, Custom); | ||||
| 1798 | setOperationAction(ISD::FSQRT, VT, Custom); | ||||
| 1799 | setOperationAction(ISD::FSUB, VT, Custom); | ||||
| 1800 | setOperationAction(ISD::FTRUNC, VT, Custom); | ||||
| 1801 | setOperationAction(ISD::LOAD, VT, Custom); | ||||
| 1802 | setOperationAction(ISD::MGATHER, VT, Custom); | ||||
| 1803 | setOperationAction(ISD::MLOAD, VT, Custom); | ||||
| 1804 | setOperationAction(ISD::MSCATTER, VT, Custom); | ||||
| 1805 | setOperationAction(ISD::MSTORE, VT, Custom); | ||||
| 1806 | setOperationAction(ISD::MUL, VT, Custom); | ||||
| 1807 | setOperationAction(ISD::MULHS, VT, Custom); | ||||
| 1808 | setOperationAction(ISD::MULHU, VT, Custom); | ||||
| 1809 | setOperationAction(ISD::OR, VT, Custom); | ||||
| 1810 | setOperationAction(ISD::SDIV, VT, Custom); | ||||
| 1811 | setOperationAction(ISD::SELECT, VT, Custom); | ||||
| 1812 | setOperationAction(ISD::SETCC, VT, Custom); | ||||
| 1813 | setOperationAction(ISD::SHL, VT, Custom); | ||||
| 1814 | setOperationAction(ISD::SIGN_EXTEND, VT, Custom); | ||||
| 1815 | setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Custom); | ||||
| 1816 | setOperationAction(ISD::SINT_TO_FP, VT, Custom); | ||||
| 1817 | setOperationAction(ISD::SMAX, VT, Custom); | ||||
| 1818 | setOperationAction(ISD::SMIN, VT, Custom); | ||||
| 1819 | setOperationAction(ISD::SPLAT_VECTOR, VT, Custom); | ||||
| 1820 | setOperationAction(ISD::VECTOR_SPLICE, VT, Custom); | ||||
| 1821 | setOperationAction(ISD::SRA, VT, Custom); | ||||
| 1822 | setOperationAction(ISD::SRL, VT, Custom); | ||||
| 1823 | setOperationAction(ISD::STORE, VT, Custom); | ||||
| 1824 | setOperationAction(ISD::SUB, VT, Custom); | ||||
| 1825 | setOperationAction(ISD::TRUNCATE, VT, Custom); | ||||
| 1826 | setOperationAction(ISD::UDIV, VT, Custom); | ||||
| 1827 | setOperationAction(ISD::UINT_TO_FP, VT, Custom); | ||||
| 1828 | setOperationAction(ISD::UMAX, VT, Custom); | ||||
| 1829 | setOperationAction(ISD::UMIN, VT, Custom); | ||||
| 1830 | setOperationAction(ISD::VECREDUCE_ADD, VT, Custom); | ||||
| 1831 | setOperationAction(ISD::VECREDUCE_AND, VT, Custom); | ||||
| 1832 | setOperationAction(ISD::VECREDUCE_FADD, VT, Custom); | ||||
| 1833 | setOperationAction(ISD::VECREDUCE_SEQ_FADD, VT, Custom); | ||||
| 1834 | setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom); | ||||
| 1835 | setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom); | ||||
| 1836 | setOperationAction(ISD::VECREDUCE_OR, VT, Custom); | ||||
| 1837 | setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); | ||||
| 1838 | setOperationAction(ISD::VECREDUCE_SMAX, VT, Custom); | ||||
| 1839 | setOperationAction(ISD::VECREDUCE_SMIN, VT, Custom); | ||||
| 1840 | setOperationAction(ISD::VECREDUCE_UMAX, VT, Custom); | ||||
| 1841 | setOperationAction(ISD::VECREDUCE_UMIN, VT, Custom); | ||||
| 1842 | setOperationAction(ISD::VECREDUCE_XOR, VT, Custom); | ||||
| 1843 | setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); | ||||
| 1844 | setOperationAction(ISD::VSELECT, VT, Custom); | ||||
| 1845 | setOperationAction(ISD::XOR, VT, Custom); | ||||
| 1846 | setOperationAction(ISD::ZERO_EXTEND, VT, Custom); | ||||
| 1847 | } | ||||
| 1848 | |||||
| 1849 | void AArch64TargetLowering::addDRTypeForNEON(MVT VT) { | ||||
| 1850 | addRegisterClass(VT, &AArch64::FPR64RegClass); | ||||
| 1851 | addTypeForNEON(VT); | ||||
| 1852 | } | ||||
| 1853 | |||||
| 1854 | void AArch64TargetLowering::addQRTypeForNEON(MVT VT) { | ||||
| 1855 | addRegisterClass(VT, &AArch64::FPR128RegClass); | ||||
| 1856 | addTypeForNEON(VT); | ||||
| 1857 | } | ||||
| 1858 | |||||
| 1859 | EVT AArch64TargetLowering::getSetCCResultType(const DataLayout &, | ||||
| 1860 | LLVMContext &C, EVT VT) const { | ||||
| 1861 | if (!VT.isVector()) | ||||
| 1862 | return MVT::i32; | ||||
| 1863 | if (VT.isScalableVector()) | ||||
| 1864 | return EVT::getVectorVT(C, MVT::i1, VT.getVectorElementCount()); | ||||
| 1865 | return VT.changeVectorElementTypeToInteger(); | ||||
| 1866 | } | ||||
| 1867 | |||||
| 1868 | // isIntImmediate - This method tests to see if the node is a constant | ||||
| 1869 | // operand. If so Imm will receive the value. | ||||
| 1870 | static bool isIntImmediate(const SDNode *N, uint64_t &Imm) { | ||||
| 1871 | if (const ConstantSDNode *C = dyn_cast<const ConstantSDNode>(N)) { | ||||
| 1872 | Imm = C->getZExtValue(); | ||||
| 1873 | return true; | ||||
| 1874 | } | ||||
| 1875 | return false; | ||||
| 1876 | } | ||||
| 1877 | |||||
| 1878 | // isOpcWithIntImmediate - This method tests to see if the node is a specific | ||||
| 1879 | // opcode and that it has a immediate integer right operand. | ||||
| 1880 | // If so Imm will receive the value. | ||||
| 1881 | static bool isOpcWithIntImmediate(const SDNode *N, unsigned Opc, | ||||
| 1882 | uint64_t &Imm) { | ||||
| 1883 | return N->getOpcode() == Opc && | ||||
| 1884 | isIntImmediate(N->getOperand(1).getNode(), Imm); | ||||
| 1885 | } | ||||
| 1886 | |||||
| 1887 | static bool optimizeLogicalImm(SDValue Op, unsigned Size, uint64_t Imm, | ||||
| 1888 | const APInt &Demanded, | ||||
| 1889 | TargetLowering::TargetLoweringOpt &TLO, | ||||
| 1890 | unsigned NewOpc) { | ||||
| 1891 | uint64_t OldImm = Imm, NewImm, Enc; | ||||
| 1892 | uint64_t Mask = ((uint64_t)(-1LL) >> (64 - Size)), OrigMask = Mask; | ||||
| 1893 | |||||
| 1894 | // Return if the immediate is already all zeros, all ones, a bimm32 or a | ||||
| 1895 | // bimm64. | ||||
| 1896 | if (Imm == 0 || Imm == Mask || | ||||
| 1897 | AArch64_AM::isLogicalImmediate(Imm & Mask, Size)) | ||||
| 1898 | return false; | ||||
| 1899 | |||||
| 1900 | unsigned EltSize = Size; | ||||
| 1901 | uint64_t DemandedBits = Demanded.getZExtValue(); | ||||
| 1902 | |||||
| 1903 | // Clear bits that are not demanded. | ||||
| 1904 | Imm &= DemandedBits; | ||||
| 1905 | |||||
| 1906 | while (true) { | ||||
| 1907 | // The goal here is to set the non-demanded bits in a way that minimizes | ||||
| 1908 | // the number of switching between 0 and 1. In order to achieve this goal, | ||||
| 1909 | // we set the non-demanded bits to the value of the preceding demanded bits. | ||||
| 1910 | // For example, if we have an immediate 0bx10xx0x1 ('x' indicates a | ||||
| 1911 | // non-demanded bit), we copy bit0 (1) to the least significant 'x', | ||||
| 1912 | // bit2 (0) to 'xx', and bit6 (1) to the most significant 'x'. | ||||
| 1913 | // The final result is 0b11000011. | ||||
| 1914 | uint64_t NonDemandedBits = ~DemandedBits; | ||||
| 1915 | uint64_t InvertedImm = ~Imm & DemandedBits; | ||||
| 1916 | uint64_t RotatedImm = | ||||
| 1917 | ((InvertedImm << 1) | (InvertedImm >> (EltSize - 1) & 1)) & | ||||
| 1918 | NonDemandedBits; | ||||
| 1919 | uint64_t Sum = RotatedImm + NonDemandedBits; | ||||
| 1920 | bool Carry = NonDemandedBits & ~Sum & (1ULL << (EltSize - 1)); | ||||
| 1921 | uint64_t Ones = (Sum + Carry) & NonDemandedBits; | ||||
| 1922 | NewImm = (Imm | Ones) & Mask; | ||||
| 1923 | |||||
| 1924 | // If NewImm or its bitwise NOT is a shifted mask, it is a bitmask immediate | ||||
| 1925 | // or all-ones or all-zeros, in which case we can stop searching. Otherwise, | ||||
| 1926 | // we halve the element size and continue the search. | ||||
| 1927 | if (isShiftedMask_64(NewImm) || isShiftedMask_64(~(NewImm | ~Mask))) | ||||
| 1928 | break; | ||||
| 1929 | |||||
| 1930 | // We cannot shrink the element size any further if it is 2-bits. | ||||
| 1931 | if (EltSize == 2) | ||||
| 1932 | return false; | ||||
| 1933 | |||||
| 1934 | EltSize /= 2; | ||||
| 1935 | Mask >>= EltSize; | ||||
| 1936 | uint64_t Hi = Imm >> EltSize, DemandedBitsHi = DemandedBits >> EltSize; | ||||
| 1937 | |||||
| 1938 | // Return if there is mismatch in any of the demanded bits of Imm and Hi. | ||||
| 1939 | if (((Imm ^ Hi) & (DemandedBits & DemandedBitsHi) & Mask) != 0) | ||||
| 1940 | return false; | ||||
| 1941 | |||||
| 1942 | // Merge the upper and lower halves of Imm and DemandedBits. | ||||
| 1943 | Imm |= Hi; | ||||
| 1944 | DemandedBits |= DemandedBitsHi; | ||||
| 1945 | } | ||||
| 1946 | |||||
| 1947 | ++NumOptimizedImms; | ||||
| 1948 | |||||
| 1949 | // Replicate the element across the register width. | ||||
| 1950 | while (EltSize < Size) { | ||||
| 1951 | NewImm |= NewImm << EltSize; | ||||
| 1952 | EltSize *= 2; | ||||
| 1953 | } | ||||
| 1954 | |||||
| 1955 | (void)OldImm; | ||||
| 1956 | assert(((OldImm ^ NewImm) & Demanded.getZExtValue()) == 0 &&(static_cast <bool> (((OldImm ^ NewImm) & Demanded. getZExtValue()) == 0 && "demanded bits should never be altered" ) ? void (0) : __assert_fail ("((OldImm ^ NewImm) & Demanded.getZExtValue()) == 0 && \"demanded bits should never be altered\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 1957, __extension__ __PRETTY_FUNCTION__)) | ||||
| 1957 | "demanded bits should never be altered")(static_cast <bool> (((OldImm ^ NewImm) & Demanded. getZExtValue()) == 0 && "demanded bits should never be altered" ) ? void (0) : __assert_fail ("((OldImm ^ NewImm) & Demanded.getZExtValue()) == 0 && \"demanded bits should never be altered\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 1957, __extension__ __PRETTY_FUNCTION__)); | ||||
| 1958 | assert(OldImm != NewImm && "the new imm shouldn't be equal to the old imm")(static_cast <bool> (OldImm != NewImm && "the new imm shouldn't be equal to the old imm" ) ? void (0) : __assert_fail ("OldImm != NewImm && \"the new imm shouldn't be equal to the old imm\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 1958, __extension__ __PRETTY_FUNCTION__)); | ||||
| 1959 | |||||
| 1960 | // Create the new constant immediate node. | ||||
| 1961 | EVT VT = Op.getValueType(); | ||||
| 1962 | SDLoc DL(Op); | ||||
| 1963 | SDValue New; | ||||
| 1964 | |||||
| 1965 | // If the new constant immediate is all-zeros or all-ones, let the target | ||||
| 1966 | // independent DAG combine optimize this node. | ||||
| 1967 | if (NewImm == 0 || NewImm == OrigMask) { | ||||
| 1968 | New = TLO.DAG.getNode(Op.getOpcode(), DL, VT, Op.getOperand(0), | ||||
| 1969 | TLO.DAG.getConstant(NewImm, DL, VT)); | ||||
| 1970 | // Otherwise, create a machine node so that target independent DAG combine | ||||
| 1971 | // doesn't undo this optimization. | ||||
| 1972 | } else { | ||||
| 1973 | Enc = AArch64_AM::encodeLogicalImmediate(NewImm, Size); | ||||
| 1974 | SDValue EncConst = TLO.DAG.getTargetConstant(Enc, DL, VT); | ||||
| 1975 | New = SDValue( | ||||
| 1976 | TLO.DAG.getMachineNode(NewOpc, DL, VT, Op.getOperand(0), EncConst), 0); | ||||
| 1977 | } | ||||
| 1978 | |||||
| 1979 | return TLO.CombineTo(Op, New); | ||||
| 1980 | } | ||||
| 1981 | |||||
| 1982 | bool AArch64TargetLowering::targetShrinkDemandedConstant( | ||||
| 1983 | SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, | ||||
| 1984 | TargetLoweringOpt &TLO) const { | ||||
| 1985 | // Delay this optimization to as late as possible. | ||||
| 1986 | if (!TLO.LegalOps) | ||||
| 1987 | return false; | ||||
| 1988 | |||||
| 1989 | if (!EnableOptimizeLogicalImm) | ||||
| 1990 | return false; | ||||
| 1991 | |||||
| 1992 | EVT VT = Op.getValueType(); | ||||
| 1993 | if (VT.isVector()) | ||||
| 1994 | return false; | ||||
| 1995 | |||||
| 1996 | unsigned Size = VT.getSizeInBits(); | ||||
| 1997 | assert((Size == 32 || Size == 64) &&(static_cast <bool> ((Size == 32 || Size == 64) && "i32 or i64 is expected after legalization.") ? void (0) : __assert_fail ("(Size == 32 || Size == 64) && \"i32 or i64 is expected after legalization.\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 1998, __extension__ __PRETTY_FUNCTION__)) | ||||
| 1998 | "i32 or i64 is expected after legalization.")(static_cast <bool> ((Size == 32 || Size == 64) && "i32 or i64 is expected after legalization.") ? void (0) : __assert_fail ("(Size == 32 || Size == 64) && \"i32 or i64 is expected after legalization.\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 1998, __extension__ __PRETTY_FUNCTION__)); | ||||
| 1999 | |||||
| 2000 | // Exit early if we demand all bits. | ||||
| 2001 | if (DemandedBits.countPopulation() == Size) | ||||
| 2002 | return false; | ||||
| 2003 | |||||
| 2004 | unsigned NewOpc; | ||||
| 2005 | switch (Op.getOpcode()) { | ||||
| 2006 | default: | ||||
| 2007 | return false; | ||||
| 2008 | case ISD::AND: | ||||
| 2009 | NewOpc = Size == 32 ? AArch64::ANDWri : AArch64::ANDXri; | ||||
| 2010 | break; | ||||
| 2011 | case ISD::OR: | ||||
| 2012 | NewOpc = Size == 32 ? AArch64::ORRWri : AArch64::ORRXri; | ||||
| 2013 | break; | ||||
| 2014 | case ISD::XOR: | ||||
| 2015 | NewOpc = Size == 32 ? AArch64::EORWri : AArch64::EORXri; | ||||
| 2016 | break; | ||||
| 2017 | } | ||||
| 2018 | ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); | ||||
| 2019 | if (!C) | ||||
| 2020 | return false; | ||||
| 2021 | uint64_t Imm = C->getZExtValue(); | ||||
| 2022 | return optimizeLogicalImm(Op, Size, Imm, DemandedBits, TLO, NewOpc); | ||||
| 2023 | } | ||||
| 2024 | |||||
| 2025 | /// computeKnownBitsForTargetNode - Determine which of the bits specified in | ||||
| 2026 | /// Mask are known to be either zero or one and return them Known. | ||||
| 2027 | void AArch64TargetLowering::computeKnownBitsForTargetNode( | ||||
| 2028 | const SDValue Op, KnownBits &Known, const APInt &DemandedElts, | ||||
| 2029 | const SelectionDAG &DAG, unsigned Depth) const { | ||||
| 2030 | switch (Op.getOpcode()) { | ||||
| 2031 | default: | ||||
| 2032 | break; | ||||
| 2033 | case AArch64ISD::DUP: { | ||||
| 2034 | SDValue SrcOp = Op.getOperand(0); | ||||
| 2035 | Known = DAG.computeKnownBits(SrcOp, Depth + 1); | ||||
| 2036 | if (SrcOp.getValueSizeInBits() != Op.getScalarValueSizeInBits()) { | ||||
| 2037 | assert(SrcOp.getValueSizeInBits() > Op.getScalarValueSizeInBits() &&(static_cast <bool> (SrcOp.getValueSizeInBits() > Op .getScalarValueSizeInBits() && "Expected DUP implicit truncation" ) ? void (0) : __assert_fail ("SrcOp.getValueSizeInBits() > Op.getScalarValueSizeInBits() && \"Expected DUP implicit truncation\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 2038, __extension__ __PRETTY_FUNCTION__)) | ||||
| 2038 | "Expected DUP implicit truncation")(static_cast <bool> (SrcOp.getValueSizeInBits() > Op .getScalarValueSizeInBits() && "Expected DUP implicit truncation" ) ? void (0) : __assert_fail ("SrcOp.getValueSizeInBits() > Op.getScalarValueSizeInBits() && \"Expected DUP implicit truncation\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 2038, __extension__ __PRETTY_FUNCTION__)); | ||||
| 2039 | Known = Known.trunc(Op.getScalarValueSizeInBits()); | ||||
| 2040 | } | ||||
| 2041 | break; | ||||
| 2042 | } | ||||
| 2043 | case AArch64ISD::CSEL: { | ||||
| 2044 | KnownBits Known2; | ||||
| 2045 | Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1); | ||||
| 2046 | Known2 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1); | ||||
| 2047 | Known = KnownBits::commonBits(Known, Known2); | ||||
| 2048 | break; | ||||
| 2049 | } | ||||
| 2050 | case AArch64ISD::BICi: { | ||||
| 2051 | // Compute the bit cleared value. | ||||
| 2052 | uint64_t Mask = | ||||
| 2053 | ~(Op->getConstantOperandVal(1) << Op->getConstantOperandVal(2)); | ||||
| 2054 | Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1); | ||||
| 2055 | Known &= KnownBits::makeConstant(APInt(Known.getBitWidth(), Mask)); | ||||
| 2056 | break; | ||||
| 2057 | } | ||||
| 2058 | case AArch64ISD::VLSHR: { | ||||
| 2059 | KnownBits Known2; | ||||
| 2060 | Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1); | ||||
| 2061 | Known2 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1); | ||||
| 2062 | Known = KnownBits::lshr(Known, Known2); | ||||
| 2063 | break; | ||||
| 2064 | } | ||||
| 2065 | case AArch64ISD::VASHR: { | ||||
| 2066 | KnownBits Known2; | ||||
| 2067 | Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1); | ||||
| 2068 | Known2 = DAG.computeKnownBits(Op->getOperand(1), Depth + 1); | ||||
| 2069 | Known = KnownBits::ashr(Known, Known2); | ||||
| 2070 | break; | ||||
| 2071 | } | ||||
| 2072 | case AArch64ISD::MOVI: { | ||||
| 2073 | ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(0)); | ||||
| 2074 | Known = | ||||
| 2075 | KnownBits::makeConstant(APInt(Known.getBitWidth(), CN->getZExtValue())); | ||||
| 2076 | break; | ||||
| 2077 | } | ||||
| 2078 | case AArch64ISD::LOADgot: | ||||
| 2079 | case AArch64ISD::ADDlow: { | ||||
| 2080 | if (!Subtarget->isTargetILP32()) | ||||
| 2081 | break; | ||||
| 2082 | // In ILP32 mode all valid pointers are in the low 4GB of the address-space. | ||||
| 2083 | Known.Zero = APInt::getHighBitsSet(64, 32); | ||||
| 2084 | break; | ||||
| 2085 | } | ||||
| 2086 | case AArch64ISD::ASSERT_ZEXT_BOOL: { | ||||
| 2087 | Known = DAG.computeKnownBits(Op->getOperand(0), Depth + 1); | ||||
| 2088 | Known.Zero |= APInt(Known.getBitWidth(), 0xFE); | ||||
| 2089 | break; | ||||
| 2090 | } | ||||
| 2091 | case ISD::INTRINSIC_W_CHAIN: { | ||||
| 2092 | ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1)); | ||||
| 2093 | Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue()); | ||||
| 2094 | switch (IntID) { | ||||
| 2095 | default: return; | ||||
| 2096 | case Intrinsic::aarch64_ldaxr: | ||||
| 2097 | case Intrinsic::aarch64_ldxr: { | ||||
| 2098 | unsigned BitWidth = Known.getBitWidth(); | ||||
| 2099 | EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT(); | ||||
| 2100 | unsigned MemBits = VT.getScalarSizeInBits(); | ||||
| 2101 | Known.Zero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits); | ||||
| 2102 | return; | ||||
| 2103 | } | ||||
| 2104 | } | ||||
| 2105 | break; | ||||
| 2106 | } | ||||
| 2107 | case ISD::INTRINSIC_WO_CHAIN: | ||||
| 2108 | case ISD::INTRINSIC_VOID: { | ||||
| 2109 | unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | ||||
| 2110 | switch (IntNo) { | ||||
| 2111 | default: | ||||
| 2112 | break; | ||||
| 2113 | case Intrinsic::aarch64_neon_umaxv: | ||||
| 2114 | case Intrinsic::aarch64_neon_uminv: { | ||||
| 2115 | // Figure out the datatype of the vector operand. The UMINV instruction | ||||
| 2116 | // will zero extend the result, so we can mark as known zero all the | ||||
| 2117 | // bits larger than the element datatype. 32-bit or larget doesn't need | ||||
| 2118 | // this as those are legal types and will be handled by isel directly. | ||||
| 2119 | MVT VT = Op.getOperand(1).getValueType().getSimpleVT(); | ||||
| 2120 | unsigned BitWidth = Known.getBitWidth(); | ||||
| 2121 | if (VT == MVT::v8i8 || VT == MVT::v16i8) { | ||||
| 2122 | assert(BitWidth >= 8 && "Unexpected width!")(static_cast <bool> (BitWidth >= 8 && "Unexpected width!" ) ? void (0) : __assert_fail ("BitWidth >= 8 && \"Unexpected width!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 2122, __extension__ __PRETTY_FUNCTION__)); | ||||
| 2123 | APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 8); | ||||
| 2124 | Known.Zero |= Mask; | ||||
| 2125 | } else if (VT == MVT::v4i16 || VT == MVT::v8i16) { | ||||
| 2126 | assert(BitWidth >= 16 && "Unexpected width!")(static_cast <bool> (BitWidth >= 16 && "Unexpected width!" ) ? void (0) : __assert_fail ("BitWidth >= 16 && \"Unexpected width!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 2126, __extension__ __PRETTY_FUNCTION__)); | ||||
| 2127 | APInt Mask = APInt::getHighBitsSet(BitWidth, BitWidth - 16); | ||||
| 2128 | Known.Zero |= Mask; | ||||
| 2129 | } | ||||
| 2130 | break; | ||||
| 2131 | } break; | ||||
| 2132 | } | ||||
| 2133 | } | ||||
| 2134 | } | ||||
| 2135 | } | ||||
| 2136 | |||||
| 2137 | MVT AArch64TargetLowering::getScalarShiftAmountTy(const DataLayout &DL, | ||||
| 2138 | EVT) const { | ||||
| 2139 | return MVT::i64; | ||||
| 2140 | } | ||||
| 2141 | |||||
| 2142 | bool AArch64TargetLowering::allowsMisalignedMemoryAccesses( | ||||
| 2143 | EVT VT, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, | ||||
| 2144 | unsigned *Fast) const { | ||||
| 2145 | if (Subtarget->requiresStrictAlign()) | ||||
| 2146 | return false; | ||||
| 2147 | |||||
| 2148 | if (Fast) { | ||||
| 2149 | // Some CPUs are fine with unaligned stores except for 128-bit ones. | ||||
| 2150 | *Fast = !Subtarget->isMisaligned128StoreSlow() || VT.getStoreSize() != 16 || | ||||
| 2151 | // See comments in performSTORECombine() for more details about | ||||
| 2152 | // these conditions. | ||||
| 2153 | |||||
| 2154 | // Code that uses clang vector extensions can mark that it | ||||
| 2155 | // wants unaligned accesses to be treated as fast by | ||||
| 2156 | // underspecifying alignment to be 1 or 2. | ||||
| 2157 | Alignment <= 2 || | ||||
| 2158 | |||||
| 2159 | // Disregard v2i64. Memcpy lowering produces those and splitting | ||||
| 2160 | // them regresses performance on micro-benchmarks and olden/bh. | ||||
| 2161 | VT == MVT::v2i64; | ||||
| 2162 | } | ||||
| 2163 | return true; | ||||
| 2164 | } | ||||
| 2165 | |||||
| 2166 | // Same as above but handling LLTs instead. | ||||
| 2167 | bool AArch64TargetLowering::allowsMisalignedMemoryAccesses( | ||||
| 2168 | LLT Ty, unsigned AddrSpace, Align Alignment, MachineMemOperand::Flags Flags, | ||||
| 2169 | unsigned *Fast) const { | ||||
| 2170 | if (Subtarget->requiresStrictAlign()) | ||||
| 2171 | return false; | ||||
| 2172 | |||||
| 2173 | if (Fast) { | ||||
| 2174 | // Some CPUs are fine with unaligned stores except for 128-bit ones. | ||||
| 2175 | *Fast = !Subtarget->isMisaligned128StoreSlow() || | ||||
| 2176 | Ty.getSizeInBytes() != 16 || | ||||
| 2177 | // See comments in performSTORECombine() for more details about | ||||
| 2178 | // these conditions. | ||||
| 2179 | |||||
| 2180 | // Code that uses clang vector extensions can mark that it | ||||
| 2181 | // wants unaligned accesses to be treated as fast by | ||||
| 2182 | // underspecifying alignment to be 1 or 2. | ||||
| 2183 | Alignment <= 2 || | ||||
| 2184 | |||||
| 2185 | // Disregard v2i64. Memcpy lowering produces those and splitting | ||||
| 2186 | // them regresses performance on micro-benchmarks and olden/bh. | ||||
| 2187 | Ty == LLT::fixed_vector(2, 64); | ||||
| 2188 | } | ||||
| 2189 | return true; | ||||
| 2190 | } | ||||
| 2191 | |||||
| 2192 | FastISel * | ||||
| 2193 | AArch64TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo, | ||||
| 2194 | const TargetLibraryInfo *libInfo) const { | ||||
| 2195 | return AArch64::createFastISel(funcInfo, libInfo); | ||||
| 2196 | } | ||||
| 2197 | |||||
| 2198 | const char *AArch64TargetLowering::getTargetNodeName(unsigned Opcode) const { | ||||
| 2199 | #define MAKE_CASE(V) \ | ||||
| 2200 | case V: \ | ||||
| 2201 | return #V; | ||||
| 2202 | switch ((AArch64ISD::NodeType)Opcode) { | ||||
| 2203 | case AArch64ISD::FIRST_NUMBER: | ||||
| 2204 | break; | ||||
| 2205 | MAKE_CASE(AArch64ISD::OBSCURE_COPY) | ||||
| 2206 | MAKE_CASE(AArch64ISD::SMSTART) | ||||
| 2207 | MAKE_CASE(AArch64ISD::SMSTOP) | ||||
| 2208 | MAKE_CASE(AArch64ISD::RESTORE_ZA) | ||||
| 2209 | MAKE_CASE(AArch64ISD::CALL) | ||||
| 2210 | MAKE_CASE(AArch64ISD::ADRP) | ||||
| 2211 | MAKE_CASE(AArch64ISD::ADR) | ||||
| 2212 | MAKE_CASE(AArch64ISD::ADDlow) | ||||
| 2213 | MAKE_CASE(AArch64ISD::LOADgot) | ||||
| 2214 | MAKE_CASE(AArch64ISD::RET_FLAG) | ||||
| 2215 | MAKE_CASE(AArch64ISD::BRCOND) | ||||
| 2216 | MAKE_CASE(AArch64ISD::CSEL) | ||||
| 2217 | MAKE_CASE(AArch64ISD::CSINV) | ||||
| 2218 | MAKE_CASE(AArch64ISD::CSNEG) | ||||
| 2219 | MAKE_CASE(AArch64ISD::CSINC) | ||||
| 2220 | MAKE_CASE(AArch64ISD::THREAD_POINTER) | ||||
| 2221 | MAKE_CASE(AArch64ISD::TLSDESC_CALLSEQ) | ||||
| 2222 | MAKE_CASE(AArch64ISD::ABDS_PRED) | ||||
| 2223 | MAKE_CASE(AArch64ISD::ABDU_PRED) | ||||
| 2224 | MAKE_CASE(AArch64ISD::MUL_PRED) | ||||
| 2225 | MAKE_CASE(AArch64ISD::MULHS_PRED) | ||||
| 2226 | MAKE_CASE(AArch64ISD::MULHU_PRED) | ||||
| 2227 | MAKE_CASE(AArch64ISD::SDIV_PRED) | ||||
| 2228 | MAKE_CASE(AArch64ISD::SHL_PRED) | ||||
| 2229 | MAKE_CASE(AArch64ISD::SMAX_PRED) | ||||
| 2230 | MAKE_CASE(AArch64ISD::SMIN_PRED) | ||||
| 2231 | MAKE_CASE(AArch64ISD::SRA_PRED) | ||||
| 2232 | MAKE_CASE(AArch64ISD::SRL_PRED) | ||||
| 2233 | MAKE_CASE(AArch64ISD::UDIV_PRED) | ||||
| 2234 | MAKE_CASE(AArch64ISD::UMAX_PRED) | ||||
| 2235 | MAKE_CASE(AArch64ISD::UMIN_PRED) | ||||
| 2236 | MAKE_CASE(AArch64ISD::SRAD_MERGE_OP1) | ||||
| 2237 | MAKE_CASE(AArch64ISD::FNEG_MERGE_PASSTHRU) | ||||
| 2238 | MAKE_CASE(AArch64ISD::SIGN_EXTEND_INREG_MERGE_PASSTHRU) | ||||
| 2239 | MAKE_CASE(AArch64ISD::ZERO_EXTEND_INREG_MERGE_PASSTHRU) | ||||
| 2240 | MAKE_CASE(AArch64ISD::FCEIL_MERGE_PASSTHRU) | ||||
| 2241 | MAKE_CASE(AArch64ISD::FFLOOR_MERGE_PASSTHRU) | ||||
| 2242 | MAKE_CASE(AArch64ISD::FNEARBYINT_MERGE_PASSTHRU) | ||||
| 2243 | MAKE_CASE(AArch64ISD::FRINT_MERGE_PASSTHRU) | ||||
| 2244 | MAKE_CASE(AArch64ISD::FROUND_MERGE_PASSTHRU) | ||||
| 2245 | MAKE_CASE(AArch64ISD::FROUNDEVEN_MERGE_PASSTHRU) | ||||
| 2246 | MAKE_CASE(AArch64ISD::FTRUNC_MERGE_PASSTHRU) | ||||
| 2247 | MAKE_CASE(AArch64ISD::FP_ROUND_MERGE_PASSTHRU) | ||||
| 2248 | MAKE_CASE(AArch64ISD::FP_EXTEND_MERGE_PASSTHRU) | ||||
| 2249 | MAKE_CASE(AArch64ISD::SINT_TO_FP_MERGE_PASSTHRU) | ||||
| 2250 | MAKE_CASE(AArch64ISD::UINT_TO_FP_MERGE_PASSTHRU) | ||||
| 2251 | MAKE_CASE(AArch64ISD::FCVTZU_MERGE_PASSTHRU) | ||||
| 2252 | MAKE_CASE(AArch64ISD::FCVTZS_MERGE_PASSTHRU) | ||||
| 2253 | MAKE_CASE(AArch64ISD::FSQRT_MERGE_PASSTHRU) | ||||
| 2254 | MAKE_CASE(AArch64ISD::FRECPX_MERGE_PASSTHRU) | ||||
| 2255 | MAKE_CASE(AArch64ISD::FABS_MERGE_PASSTHRU) | ||||
| 2256 | MAKE_CASE(AArch64ISD::ABS_MERGE_PASSTHRU) | ||||
| 2257 | MAKE_CASE(AArch64ISD::NEG_MERGE_PASSTHRU) | ||||
| 2258 | MAKE_CASE(AArch64ISD::SETCC_MERGE_ZERO) | ||||
| 2259 | MAKE_CASE(AArch64ISD::ADC) | ||||
| 2260 | MAKE_CASE(AArch64ISD::SBC) | ||||
| 2261 | MAKE_CASE(AArch64ISD::ADDS) | ||||
| 2262 | MAKE_CASE(AArch64ISD::SUBS) | ||||
| 2263 | MAKE_CASE(AArch64ISD::ADCS) | ||||
| 2264 | MAKE_CASE(AArch64ISD::SBCS) | ||||
| 2265 | MAKE_CASE(AArch64ISD::ANDS) | ||||
| 2266 | MAKE_CASE(AArch64ISD::CCMP) | ||||
| 2267 | MAKE_CASE(AArch64ISD::CCMN) | ||||
| 2268 | MAKE_CASE(AArch64ISD::FCCMP) | ||||
| 2269 | MAKE_CASE(AArch64ISD::FCMP) | ||||
| 2270 | MAKE_CASE(AArch64ISD::STRICT_FCMP) | ||||
| 2271 | MAKE_CASE(AArch64ISD::STRICT_FCMPE) | ||||
| 2272 | MAKE_CASE(AArch64ISD::DUP) | ||||
| 2273 | MAKE_CASE(AArch64ISD::DUPLANE8) | ||||
| 2274 | MAKE_CASE(AArch64ISD::DUPLANE16) | ||||
| 2275 | MAKE_CASE(AArch64ISD::DUPLANE32) | ||||
| 2276 | MAKE_CASE(AArch64ISD::DUPLANE64) | ||||
| 2277 | MAKE_CASE(AArch64ISD::DUPLANE128) | ||||
| 2278 | MAKE_CASE(AArch64ISD::MOVI) | ||||
| 2279 | MAKE_CASE(AArch64ISD::MOVIshift) | ||||
| 2280 | MAKE_CASE(AArch64ISD::MOVIedit) | ||||
| 2281 | MAKE_CASE(AArch64ISD::MOVImsl) | ||||
| 2282 | MAKE_CASE(AArch64ISD::FMOV) | ||||
| 2283 | MAKE_CASE(AArch64ISD::MVNIshift) | ||||
| 2284 | MAKE_CASE(AArch64ISD::MVNImsl) | ||||
| 2285 | MAKE_CASE(AArch64ISD::BICi) | ||||
| 2286 | MAKE_CASE(AArch64ISD::ORRi) | ||||
| 2287 | MAKE_CASE(AArch64ISD::BSP) | ||||
| 2288 | MAKE_CASE(AArch64ISD::EXTR) | ||||
| 2289 | MAKE_CASE(AArch64ISD::ZIP1) | ||||
| 2290 | MAKE_CASE(AArch64ISD::ZIP2) | ||||
| 2291 | MAKE_CASE(AArch64ISD::UZP1) | ||||
| 2292 | MAKE_CASE(AArch64ISD::UZP2) | ||||
| 2293 | MAKE_CASE(AArch64ISD::TRN1) | ||||
| 2294 | MAKE_CASE(AArch64ISD::TRN2) | ||||
| 2295 | MAKE_CASE(AArch64ISD::REV16) | ||||
| 2296 | MAKE_CASE(AArch64ISD::REV32) | ||||
| 2297 | MAKE_CASE(AArch64ISD::REV64) | ||||
| 2298 | MAKE_CASE(AArch64ISD::EXT) | ||||
| 2299 | MAKE_CASE(AArch64ISD::SPLICE) | ||||
| 2300 | MAKE_CASE(AArch64ISD::VSHL) | ||||
| 2301 | MAKE_CASE(AArch64ISD::VLSHR) | ||||
| 2302 | MAKE_CASE(AArch64ISD::VASHR) | ||||
| 2303 | MAKE_CASE(AArch64ISD::VSLI) | ||||
| 2304 | MAKE_CASE(AArch64ISD::VSRI) | ||||
| 2305 | MAKE_CASE(AArch64ISD::CMEQ) | ||||
| 2306 | MAKE_CASE(AArch64ISD::CMGE) | ||||
| 2307 | MAKE_CASE(AArch64ISD::CMGT) | ||||
| 2308 | MAKE_CASE(AArch64ISD::CMHI) | ||||
| 2309 | MAKE_CASE(AArch64ISD::CMHS) | ||||
| 2310 | MAKE_CASE(AArch64ISD::FCMEQ) | ||||
| 2311 | MAKE_CASE(AArch64ISD::FCMGE) | ||||
| 2312 | MAKE_CASE(AArch64ISD::FCMGT) | ||||
| 2313 | MAKE_CASE(AArch64ISD::CMEQz) | ||||
| 2314 | MAKE_CASE(AArch64ISD::CMGEz) | ||||
| 2315 | MAKE_CASE(AArch64ISD::CMGTz) | ||||
| 2316 | MAKE_CASE(AArch64ISD::CMLEz) | ||||
| 2317 | MAKE_CASE(AArch64ISD::CMLTz) | ||||
| 2318 | MAKE_CASE(AArch64ISD::FCMEQz) | ||||
| 2319 | MAKE_CASE(AArch64ISD::FCMGEz) | ||||
| 2320 | MAKE_CASE(AArch64ISD::FCMGTz) | ||||
| 2321 | MAKE_CASE(AArch64ISD::FCMLEz) | ||||
| 2322 | MAKE_CASE(AArch64ISD::FCMLTz) | ||||
| 2323 | MAKE_CASE(AArch64ISD::SADDV) | ||||
| 2324 | MAKE_CASE(AArch64ISD::UADDV) | ||||
| 2325 | MAKE_CASE(AArch64ISD::SDOT) | ||||
| 2326 | MAKE_CASE(AArch64ISD::UDOT) | ||||
| 2327 | MAKE_CASE(AArch64ISD::SMINV) | ||||
| 2328 | MAKE_CASE(AArch64ISD::UMINV) | ||||
| 2329 | MAKE_CASE(AArch64ISD::SMAXV) | ||||
| 2330 | MAKE_CASE(AArch64ISD::UMAXV) | ||||
| 2331 | MAKE_CASE(AArch64ISD::SADDV_PRED) | ||||
| 2332 | MAKE_CASE(AArch64ISD::UADDV_PRED) | ||||
| 2333 | MAKE_CASE(AArch64ISD::SMAXV_PRED) | ||||
| 2334 | MAKE_CASE(AArch64ISD::UMAXV_PRED) | ||||
| 2335 | MAKE_CASE(AArch64ISD::SMINV_PRED) | ||||
| 2336 | MAKE_CASE(AArch64ISD::UMINV_PRED) | ||||
| 2337 | MAKE_CASE(AArch64ISD::ORV_PRED) | ||||
| 2338 | MAKE_CASE(AArch64ISD::EORV_PRED) | ||||
| 2339 | MAKE_CASE(AArch64ISD::ANDV_PRED) | ||||
| 2340 | MAKE_CASE(AArch64ISD::CLASTA_N) | ||||
| 2341 | MAKE_CASE(AArch64ISD::CLASTB_N) | ||||
| 2342 | MAKE_CASE(AArch64ISD::LASTA) | ||||
| 2343 | MAKE_CASE(AArch64ISD::LASTB) | ||||
| 2344 | MAKE_CASE(AArch64ISD::REINTERPRET_CAST) | ||||
| 2345 | MAKE_CASE(AArch64ISD::LS64_BUILD) | ||||
| 2346 | MAKE_CASE(AArch64ISD::LS64_EXTRACT) | ||||
| 2347 | MAKE_CASE(AArch64ISD::TBL) | ||||
| 2348 | MAKE_CASE(AArch64ISD::FADD_PRED) | ||||
| 2349 | MAKE_CASE(AArch64ISD::FADDA_PRED) | ||||
| 2350 | MAKE_CASE(AArch64ISD::FADDV_PRED) | ||||
| 2351 | MAKE_CASE(AArch64ISD::FDIV_PRED) | ||||
| 2352 | MAKE_CASE(AArch64ISD::FMA_PRED) | ||||
| 2353 | MAKE_CASE(AArch64ISD::FMAX_PRED) | ||||
| 2354 | MAKE_CASE(AArch64ISD::FMAXV_PRED) | ||||
| 2355 | MAKE_CASE(AArch64ISD::FMAXNM_PRED) | ||||
| 2356 | MAKE_CASE(AArch64ISD::FMAXNMV_PRED) | ||||
| 2357 | MAKE_CASE(AArch64ISD::FMIN_PRED) | ||||
| 2358 | MAKE_CASE(AArch64ISD::FMINV_PRED) | ||||
| 2359 | MAKE_CASE(AArch64ISD::FMINNM_PRED) | ||||
| 2360 | MAKE_CASE(AArch64ISD::FMINNMV_PRED) | ||||
| 2361 | MAKE_CASE(AArch64ISD::FMUL_PRED) | ||||
| 2362 | MAKE_CASE(AArch64ISD::FSUB_PRED) | ||||
| 2363 | MAKE_CASE(AArch64ISD::RDSVL) | ||||
| 2364 | MAKE_CASE(AArch64ISD::BIC) | ||||
| 2365 | MAKE_CASE(AArch64ISD::BIT) | ||||
| 2366 | MAKE_CASE(AArch64ISD::CBZ) | ||||
| 2367 | MAKE_CASE(AArch64ISD::CBNZ) | ||||
| 2368 | MAKE_CASE(AArch64ISD::TBZ) | ||||
| 2369 | MAKE_CASE(AArch64ISD::TBNZ) | ||||
| 2370 | MAKE_CASE(AArch64ISD::TC_RETURN) | ||||
| 2371 | MAKE_CASE(AArch64ISD::PREFETCH) | ||||
| 2372 | MAKE_CASE(AArch64ISD::SITOF) | ||||
| 2373 | MAKE_CASE(AArch64ISD::UITOF) | ||||
| 2374 | MAKE_CASE(AArch64ISD::NVCAST) | ||||
| 2375 | MAKE_CASE(AArch64ISD::MRS) | ||||
| 2376 | MAKE_CASE(AArch64ISD::SQSHL_I) | ||||
| 2377 | MAKE_CASE(AArch64ISD::UQSHL_I) | ||||
| 2378 | MAKE_CASE(AArch64ISD::SRSHR_I) | ||||
| 2379 | MAKE_CASE(AArch64ISD::URSHR_I) | ||||
| 2380 | MAKE_CASE(AArch64ISD::SQSHLU_I) | ||||
| 2381 | MAKE_CASE(AArch64ISD::WrapperLarge) | ||||
| 2382 | MAKE_CASE(AArch64ISD::LD2post) | ||||
| 2383 | MAKE_CASE(AArch64ISD::LD3post) | ||||
| 2384 | MAKE_CASE(AArch64ISD::LD4post) | ||||
| 2385 | MAKE_CASE(AArch64ISD::ST2post) | ||||
| 2386 | MAKE_CASE(AArch64ISD::ST3post) | ||||
| 2387 | MAKE_CASE(AArch64ISD::ST4post) | ||||
| 2388 | MAKE_CASE(AArch64ISD::LD1x2post) | ||||
| 2389 | MAKE_CASE(AArch64ISD::LD1x3post) | ||||
| 2390 | MAKE_CASE(AArch64ISD::LD1x4post) | ||||
| 2391 | MAKE_CASE(AArch64ISD::ST1x2post) | ||||
| 2392 | MAKE_CASE(AArch64ISD::ST1x3post) | ||||
| 2393 | MAKE_CASE(AArch64ISD::ST1x4post) | ||||
| 2394 | MAKE_CASE(AArch64ISD::LD1DUPpost) | ||||
| 2395 | MAKE_CASE(AArch64ISD::LD2DUPpost) | ||||
| 2396 | MAKE_CASE(AArch64ISD::LD3DUPpost) | ||||
| 2397 | MAKE_CASE(AArch64ISD::LD4DUPpost) | ||||
| 2398 | MAKE_CASE(AArch64ISD::LD1LANEpost) | ||||
| 2399 | MAKE_CASE(AArch64ISD::LD2LANEpost) | ||||
| 2400 | MAKE_CASE(AArch64ISD::LD3LANEpost) | ||||
| 2401 | MAKE_CASE(AArch64ISD::LD4LANEpost) | ||||
| 2402 | MAKE_CASE(AArch64ISD::ST2LANEpost) | ||||
| 2403 | MAKE_CASE(AArch64ISD::ST3LANEpost) | ||||
| 2404 | MAKE_CASE(AArch64ISD::ST4LANEpost) | ||||
| 2405 | MAKE_CASE(AArch64ISD::SMULL) | ||||
| 2406 | MAKE_CASE(AArch64ISD::UMULL) | ||||
| 2407 | MAKE_CASE(AArch64ISD::PMULL) | ||||
| 2408 | MAKE_CASE(AArch64ISD::FRECPE) | ||||
| 2409 | MAKE_CASE(AArch64ISD::FRECPS) | ||||
| 2410 | MAKE_CASE(AArch64ISD::FRSQRTE) | ||||
| 2411 | MAKE_CASE(AArch64ISD::FRSQRTS) | ||||
| 2412 | MAKE_CASE(AArch64ISD::STG) | ||||
| 2413 | MAKE_CASE(AArch64ISD::STZG) | ||||
| 2414 | MAKE_CASE(AArch64ISD::ST2G) | ||||
| 2415 | MAKE_CASE(AArch64ISD::STZ2G) | ||||
| 2416 | MAKE_CASE(AArch64ISD::SUNPKHI) | ||||
| 2417 | MAKE_CASE(AArch64ISD::SUNPKLO) | ||||
| 2418 | MAKE_CASE(AArch64ISD::UUNPKHI) | ||||
| 2419 | MAKE_CASE(AArch64ISD::UUNPKLO) | ||||
| 2420 | MAKE_CASE(AArch64ISD::INSR) | ||||
| 2421 | MAKE_CASE(AArch64ISD::PTEST) | ||||
| 2422 | MAKE_CASE(AArch64ISD::PTEST_ANY) | ||||
| 2423 | MAKE_CASE(AArch64ISD::PTRUE) | ||||
| 2424 | MAKE_CASE(AArch64ISD::LD1_MERGE_ZERO) | ||||
| 2425 | MAKE_CASE(AArch64ISD::LD1S_MERGE_ZERO) | ||||
| 2426 | MAKE_CASE(AArch64ISD::LDNF1_MERGE_ZERO) | ||||
| 2427 | MAKE_CASE(AArch64ISD::LDNF1S_MERGE_ZERO) | ||||
| 2428 | MAKE_CASE(AArch64ISD::LDFF1_MERGE_ZERO) | ||||
| 2429 | MAKE_CASE(AArch64ISD::LDFF1S_MERGE_ZERO) | ||||
| 2430 | MAKE_CASE(AArch64ISD::LD1RQ_MERGE_ZERO) | ||||
| 2431 | MAKE_CASE(AArch64ISD::LD1RO_MERGE_ZERO) | ||||
| 2432 | MAKE_CASE(AArch64ISD::SVE_LD2_MERGE_ZERO) | ||||
| 2433 | MAKE_CASE(AArch64ISD::SVE_LD3_MERGE_ZERO) | ||||
| 2434 | MAKE_CASE(AArch64ISD::SVE_LD4_MERGE_ZERO) | ||||
| 2435 | MAKE_CASE(AArch64ISD::GLD1_MERGE_ZERO) | ||||
| 2436 | MAKE_CASE(AArch64ISD::GLD1_SCALED_MERGE_ZERO) | ||||
| 2437 | MAKE_CASE(AArch64ISD::GLD1_SXTW_MERGE_ZERO) | ||||
| 2438 | MAKE_CASE(AArch64ISD::GLD1_UXTW_MERGE_ZERO) | ||||
| 2439 | MAKE_CASE(AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO) | ||||
| 2440 | MAKE_CASE(AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO) | ||||
| 2441 | MAKE_CASE(AArch64ISD::GLD1_IMM_MERGE_ZERO) | ||||
| 2442 | MAKE_CASE(AArch64ISD::GLD1S_MERGE_ZERO) | ||||
| 2443 | MAKE_CASE(AArch64ISD::GLD1S_SCALED_MERGE_ZERO) | ||||
| 2444 | MAKE_CASE(AArch64ISD::GLD1S_SXTW_MERGE_ZERO) | ||||
| 2445 | MAKE_CASE(AArch64ISD::GLD1S_UXTW_MERGE_ZERO) | ||||
| 2446 | MAKE_CASE(AArch64ISD::GLD1S_SXTW_SCALED_MERGE_ZERO) | ||||
| 2447 | MAKE_CASE(AArch64ISD::GLD1S_UXTW_SCALED_MERGE_ZERO) | ||||
| 2448 | MAKE_CASE(AArch64ISD::GLD1S_IMM_MERGE_ZERO) | ||||
| 2449 | MAKE_CASE(AArch64ISD::GLDFF1_MERGE_ZERO) | ||||
| 2450 | MAKE_CASE(AArch64ISD::GLDFF1_SCALED_MERGE_ZERO) | ||||
| 2451 | MAKE_CASE(AArch64ISD::GLDFF1_SXTW_MERGE_ZERO) | ||||
| 2452 | MAKE_CASE(AArch64ISD::GLDFF1_UXTW_MERGE_ZERO) | ||||
| 2453 | MAKE_CASE(AArch64ISD::GLDFF1_SXTW_SCALED_MERGE_ZERO) | ||||
| 2454 | MAKE_CASE(AArch64ISD::GLDFF1_UXTW_SCALED_MERGE_ZERO) | ||||
| 2455 | MAKE_CASE(AArch64ISD::GLDFF1_IMM_MERGE_ZERO) | ||||
| 2456 | MAKE_CASE(AArch64ISD::GLDFF1S_MERGE_ZERO) | ||||
| 2457 | MAKE_CASE(AArch64ISD::GLDFF1S_SCALED_MERGE_ZERO) | ||||
| 2458 | MAKE_CASE(AArch64ISD::GLDFF1S_SXTW_MERGE_ZERO) | ||||
| 2459 | MAKE_CASE(AArch64ISD::GLDFF1S_UXTW_MERGE_ZERO) | ||||
| 2460 | MAKE_CASE(AArch64ISD::GLDFF1S_SXTW_SCALED_MERGE_ZERO) | ||||
| 2461 | MAKE_CASE(AArch64ISD::GLDFF1S_UXTW_SCALED_MERGE_ZERO) | ||||
| 2462 | MAKE_CASE(AArch64ISD::GLDFF1S_IMM_MERGE_ZERO) | ||||
| 2463 | MAKE_CASE(AArch64ISD::GLDNT1_MERGE_ZERO) | ||||
| 2464 | MAKE_CASE(AArch64ISD::GLDNT1_INDEX_MERGE_ZERO) | ||||
| 2465 | MAKE_CASE(AArch64ISD::GLDNT1S_MERGE_ZERO) | ||||
| 2466 | MAKE_CASE(AArch64ISD::ST1_PRED) | ||||
| 2467 | MAKE_CASE(AArch64ISD::SST1_PRED) | ||||
| 2468 | MAKE_CASE(AArch64ISD::SST1_SCALED_PRED) | ||||
| 2469 | MAKE_CASE(AArch64ISD::SST1_SXTW_PRED) | ||||
| 2470 | MAKE_CASE(AArch64ISD::SST1_UXTW_PRED) | ||||
| 2471 | MAKE_CASE(AArch64ISD::SST1_SXTW_SCALED_PRED) | ||||
| 2472 | MAKE_CASE(AArch64ISD::SST1_UXTW_SCALED_PRED) | ||||
| 2473 | MAKE_CASE(AArch64ISD::SST1_IMM_PRED) | ||||
| 2474 | MAKE_CASE(AArch64ISD::SSTNT1_PRED) | ||||
| 2475 | MAKE_CASE(AArch64ISD::SSTNT1_INDEX_PRED) | ||||
| 2476 | MAKE_CASE(AArch64ISD::LDP) | ||||
| 2477 | MAKE_CASE(AArch64ISD::LDNP) | ||||
| 2478 | MAKE_CASE(AArch64ISD::STP) | ||||
| 2479 | MAKE_CASE(AArch64ISD::STNP) | ||||
| 2480 | MAKE_CASE(AArch64ISD::BITREVERSE_MERGE_PASSTHRU) | ||||
| 2481 | MAKE_CASE(AArch64ISD::BSWAP_MERGE_PASSTHRU) | ||||
| 2482 | MAKE_CASE(AArch64ISD::REVH_MERGE_PASSTHRU) | ||||
| 2483 | MAKE_CASE(AArch64ISD::REVW_MERGE_PASSTHRU) | ||||
| 2484 | MAKE_CASE(AArch64ISD::REVD_MERGE_PASSTHRU) | ||||
| 2485 | MAKE_CASE(AArch64ISD::CTLZ_MERGE_PASSTHRU) | ||||
| 2486 | MAKE_CASE(AArch64ISD::CTPOP_MERGE_PASSTHRU) | ||||
| 2487 | MAKE_CASE(AArch64ISD::DUP_MERGE_PASSTHRU) | ||||
| 2488 | MAKE_CASE(AArch64ISD::INDEX_VECTOR) | ||||
| 2489 | MAKE_CASE(AArch64ISD::ADDP) | ||||
| 2490 | MAKE_CASE(AArch64ISD::SADDLP) | ||||
| 2491 | MAKE_CASE(AArch64ISD::UADDLP) | ||||
| 2492 | MAKE_CASE(AArch64ISD::CALL_RVMARKER) | ||||
| 2493 | MAKE_CASE(AArch64ISD::ASSERT_ZEXT_BOOL) | ||||
| 2494 | MAKE_CASE(AArch64ISD::MOPS_MEMSET) | ||||
| 2495 | MAKE_CASE(AArch64ISD::MOPS_MEMSET_TAGGING) | ||||
| 2496 | MAKE_CASE(AArch64ISD::MOPS_MEMCOPY) | ||||
| 2497 | MAKE_CASE(AArch64ISD::MOPS_MEMMOVE) | ||||
| 2498 | MAKE_CASE(AArch64ISD::CALL_BTI) | ||||
| 2499 | MAKE_CASE(AArch64ISD::MRRS) | ||||
| 2500 | MAKE_CASE(AArch64ISD::MSRR) | ||||
| 2501 | } | ||||
| 2502 | #undef MAKE_CASE | ||||
| 2503 | return nullptr; | ||||
| 2504 | } | ||||
| 2505 | |||||
| 2506 | MachineBasicBlock * | ||||
| 2507 | AArch64TargetLowering::EmitF128CSEL(MachineInstr &MI, | ||||
| 2508 | MachineBasicBlock *MBB) const { | ||||
| 2509 | // We materialise the F128CSEL pseudo-instruction as some control flow and a | ||||
| 2510 | // phi node: | ||||
| 2511 | |||||
| 2512 | // OrigBB: | ||||
| 2513 | // [... previous instrs leading to comparison ...] | ||||
| 2514 | // b.ne TrueBB | ||||
| 2515 | // b EndBB | ||||
| 2516 | // TrueBB: | ||||
| 2517 | // ; Fallthrough | ||||
| 2518 | // EndBB: | ||||
| 2519 | // Dest = PHI [IfTrue, TrueBB], [IfFalse, OrigBB] | ||||
| 2520 | |||||
| 2521 | MachineFunction *MF = MBB->getParent(); | ||||
| 2522 | const TargetInstrInfo *TII = Subtarget->getInstrInfo(); | ||||
| 2523 | const BasicBlock *LLVM_BB = MBB->getBasicBlock(); | ||||
| 2524 | DebugLoc DL = MI.getDebugLoc(); | ||||
| 2525 | MachineFunction::iterator It = ++MBB->getIterator(); | ||||
| 2526 | |||||
| 2527 | Register DestReg = MI.getOperand(0).getReg(); | ||||
| 2528 | Register IfTrueReg = MI.getOperand(1).getReg(); | ||||
| 2529 | Register IfFalseReg = MI.getOperand(2).getReg(); | ||||
| 2530 | unsigned CondCode = MI.getOperand(3).getImm(); | ||||
| 2531 | bool NZCVKilled = MI.getOperand(4).isKill(); | ||||
| 2532 | |||||
| 2533 | MachineBasicBlock *TrueBB = MF->CreateMachineBasicBlock(LLVM_BB); | ||||
| 2534 | MachineBasicBlock *EndBB = MF->CreateMachineBasicBlock(LLVM_BB); | ||||
| 2535 | MF->insert(It, TrueBB); | ||||
| 2536 | MF->insert(It, EndBB); | ||||
| 2537 | |||||
| 2538 | // Transfer rest of current basic-block to EndBB | ||||
| 2539 | EndBB->splice(EndBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)), | ||||
| 2540 | MBB->end()); | ||||
| 2541 | EndBB->transferSuccessorsAndUpdatePHIs(MBB); | ||||
| 2542 | |||||
| 2543 | BuildMI(MBB, DL, TII->get(AArch64::Bcc)).addImm(CondCode).addMBB(TrueBB); | ||||
| 2544 | BuildMI(MBB, DL, TII->get(AArch64::B)).addMBB(EndBB); | ||||
| 2545 | MBB->addSuccessor(TrueBB); | ||||
| 2546 | MBB->addSuccessor(EndBB); | ||||
| 2547 | |||||
| 2548 | // TrueBB falls through to the end. | ||||
| 2549 | TrueBB->addSuccessor(EndBB); | ||||
| 2550 | |||||
| 2551 | if (!NZCVKilled) { | ||||
| 2552 | TrueBB->addLiveIn(AArch64::NZCV); | ||||
| 2553 | EndBB->addLiveIn(AArch64::NZCV); | ||||
| 2554 | } | ||||
| 2555 | |||||
| 2556 | BuildMI(*EndBB, EndBB->begin(), DL, TII->get(AArch64::PHI), DestReg) | ||||
| 2557 | .addReg(IfTrueReg) | ||||
| 2558 | .addMBB(TrueBB) | ||||
| 2559 | .addReg(IfFalseReg) | ||||
| 2560 | .addMBB(MBB); | ||||
| 2561 | |||||
| 2562 | MI.eraseFromParent(); | ||||
| 2563 | return EndBB; | ||||
| 2564 | } | ||||
| 2565 | |||||
| 2566 | MachineBasicBlock *AArch64TargetLowering::EmitLoweredCatchRet( | ||||
| 2567 | MachineInstr &MI, MachineBasicBlock *BB) const { | ||||
| 2568 | assert(!isAsynchronousEHPersonality(classifyEHPersonality((static_cast <bool> (!isAsynchronousEHPersonality(classifyEHPersonality ( BB->getParent()->getFunction().getPersonalityFn())) && "SEH does not use catchret!") ? void (0) : __assert_fail ("!isAsynchronousEHPersonality(classifyEHPersonality( BB->getParent()->getFunction().getPersonalityFn())) && \"SEH does not use catchret!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 2570, __extension__ __PRETTY_FUNCTION__)) | ||||
| 2569 | BB->getParent()->getFunction().getPersonalityFn())) &&(static_cast <bool> (!isAsynchronousEHPersonality(classifyEHPersonality ( BB->getParent()->getFunction().getPersonalityFn())) && "SEH does not use catchret!") ? void (0) : __assert_fail ("!isAsynchronousEHPersonality(classifyEHPersonality( BB->getParent()->getFunction().getPersonalityFn())) && \"SEH does not use catchret!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 2570, __extension__ __PRETTY_FUNCTION__)) | ||||
| 2570 | "SEH does not use catchret!")(static_cast <bool> (!isAsynchronousEHPersonality(classifyEHPersonality ( BB->getParent()->getFunction().getPersonalityFn())) && "SEH does not use catchret!") ? void (0) : __assert_fail ("!isAsynchronousEHPersonality(classifyEHPersonality( BB->getParent()->getFunction().getPersonalityFn())) && \"SEH does not use catchret!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 2570, __extension__ __PRETTY_FUNCTION__)); | ||||
| 2571 | return BB; | ||||
| 2572 | } | ||||
| 2573 | |||||
| 2574 | MachineBasicBlock * | ||||
| 2575 | AArch64TargetLowering::EmitTileLoad(unsigned Opc, unsigned BaseReg, | ||||
| 2576 | MachineInstr &MI, | ||||
| 2577 | MachineBasicBlock *BB) const { | ||||
| 2578 | const TargetInstrInfo *TII = Subtarget->getInstrInfo(); | ||||
| 2579 | MachineInstrBuilder MIB = BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(Opc)); | ||||
| 2580 | |||||
| 2581 | MIB.addReg(BaseReg + MI.getOperand(0).getImm(), RegState::Define); | ||||
| 2582 | MIB.add(MI.getOperand(1)); // slice index register | ||||
| 2583 | MIB.add(MI.getOperand(2)); // slice index offset | ||||
| 2584 | MIB.add(MI.getOperand(3)); // pg | ||||
| 2585 | MIB.add(MI.getOperand(4)); // base | ||||
| 2586 | MIB.add(MI.getOperand(5)); // offset | ||||
| 2587 | |||||
| 2588 | MI.eraseFromParent(); // The pseudo is gone now. | ||||
| 2589 | return BB; | ||||
| 2590 | } | ||||
| 2591 | |||||
| 2592 | MachineBasicBlock * | ||||
| 2593 | AArch64TargetLowering::EmitFill(MachineInstr &MI, MachineBasicBlock *BB) const { | ||||
| 2594 | const TargetInstrInfo *TII = Subtarget->getInstrInfo(); | ||||
| 2595 | MachineInstrBuilder MIB = | ||||
| 2596 | BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(AArch64::LDR_ZA)); | ||||
| 2597 | |||||
| 2598 | MIB.addReg(AArch64::ZA, RegState::Define); | ||||
| 2599 | MIB.add(MI.getOperand(0)); // Vector select register | ||||
| 2600 | MIB.add(MI.getOperand(1)); // Vector select offset | ||||
| 2601 | MIB.add(MI.getOperand(2)); // Base | ||||
| 2602 | MIB.add(MI.getOperand(1)); // Offset, same as vector select offset | ||||
| 2603 | |||||
| 2604 | MI.eraseFromParent(); // The pseudo is gone now. | ||||
| 2605 | return BB; | ||||
| 2606 | } | ||||
| 2607 | |||||
| 2608 | MachineBasicBlock * | ||||
| 2609 | AArch64TargetLowering::EmitMopa(unsigned Opc, unsigned BaseReg, | ||||
| 2610 | MachineInstr &MI, MachineBasicBlock *BB) const { | ||||
| 2611 | const TargetInstrInfo *TII = Subtarget->getInstrInfo(); | ||||
| 2612 | MachineInstrBuilder MIB = BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(Opc)); | ||||
| 2613 | |||||
| 2614 | MIB.addReg(BaseReg + MI.getOperand(0).getImm(), RegState::Define); | ||||
| 2615 | MIB.addReg(BaseReg + MI.getOperand(0).getImm()); | ||||
| 2616 | MIB.add(MI.getOperand(1)); // pn | ||||
| 2617 | MIB.add(MI.getOperand(2)); // pm | ||||
| 2618 | MIB.add(MI.getOperand(3)); // zn | ||||
| 2619 | MIB.add(MI.getOperand(4)); // zm | ||||
| 2620 | |||||
| 2621 | MI.eraseFromParent(); // The pseudo is gone now. | ||||
| 2622 | return BB; | ||||
| 2623 | } | ||||
| 2624 | |||||
| 2625 | MachineBasicBlock * | ||||
| 2626 | AArch64TargetLowering::EmitInsertVectorToTile(unsigned Opc, unsigned BaseReg, | ||||
| 2627 | MachineInstr &MI, | ||||
| 2628 | MachineBasicBlock *BB) const { | ||||
| 2629 | const TargetInstrInfo *TII = Subtarget->getInstrInfo(); | ||||
| 2630 | MachineInstrBuilder MIB = BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(Opc)); | ||||
| 2631 | |||||
| 2632 | MIB.addReg(BaseReg + MI.getOperand(0).getImm(), RegState::Define); | ||||
| 2633 | MIB.addReg(BaseReg + MI.getOperand(0).getImm()); | ||||
| 2634 | MIB.add(MI.getOperand(1)); // Slice index register | ||||
| 2635 | MIB.add(MI.getOperand(2)); // Slice index offset | ||||
| 2636 | MIB.add(MI.getOperand(3)); // pg | ||||
| 2637 | MIB.add(MI.getOperand(4)); // zn | ||||
| 2638 | |||||
| 2639 | MI.eraseFromParent(); // The pseudo is gone now. | ||||
| 2640 | return BB; | ||||
| 2641 | } | ||||
| 2642 | |||||
| 2643 | MachineBasicBlock * | ||||
| 2644 | AArch64TargetLowering::EmitZero(MachineInstr &MI, MachineBasicBlock *BB) const { | ||||
| 2645 | const TargetInstrInfo *TII = Subtarget->getInstrInfo(); | ||||
| 2646 | MachineInstrBuilder MIB = | ||||
| 2647 | BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(AArch64::ZERO_M)); | ||||
| 2648 | MIB.add(MI.getOperand(0)); // Mask | ||||
| 2649 | |||||
| 2650 | unsigned Mask = MI.getOperand(0).getImm(); | ||||
| 2651 | for (unsigned I = 0; I < 8; I++) { | ||||
| 2652 | if (Mask & (1 << I)) | ||||
| 2653 | MIB.addDef(AArch64::ZAD0 + I, RegState::ImplicitDefine); | ||||
| 2654 | } | ||||
| 2655 | |||||
| 2656 | MI.eraseFromParent(); // The pseudo is gone now. | ||||
| 2657 | return BB; | ||||
| 2658 | } | ||||
| 2659 | |||||
| 2660 | MachineBasicBlock * | ||||
| 2661 | AArch64TargetLowering::EmitAddVectorToTile(unsigned Opc, unsigned BaseReg, | ||||
| 2662 | MachineInstr &MI, | ||||
| 2663 | MachineBasicBlock *BB) const { | ||||
| 2664 | const TargetInstrInfo *TII = Subtarget->getInstrInfo(); | ||||
| 2665 | MachineInstrBuilder MIB = BuildMI(*BB, MI, MI.getDebugLoc(), TII->get(Opc)); | ||||
| 2666 | |||||
| 2667 | MIB.addReg(BaseReg + MI.getOperand(0).getImm(), RegState::Define); | ||||
| 2668 | MIB.addReg(BaseReg + MI.getOperand(0).getImm()); | ||||
| 2669 | MIB.add(MI.getOperand(1)); // pn | ||||
| 2670 | MIB.add(MI.getOperand(2)); // pm | ||||
| 2671 | MIB.add(MI.getOperand(3)); // zn | ||||
| 2672 | |||||
| 2673 | MI.eraseFromParent(); // The pseudo is gone now. | ||||
| 2674 | return BB; | ||||
| 2675 | } | ||||
| 2676 | |||||
| 2677 | MachineBasicBlock *AArch64TargetLowering::EmitInstrWithCustomInserter( | ||||
| 2678 | MachineInstr &MI, MachineBasicBlock *BB) const { | ||||
| 2679 | switch (MI.getOpcode()) { | ||||
| 2680 | default: | ||||
| 2681 | #ifndef NDEBUG | ||||
| 2682 | MI.dump(); | ||||
| 2683 | #endif | ||||
| 2684 | llvm_unreachable("Unexpected instruction for custom inserter!")::llvm::llvm_unreachable_internal("Unexpected instruction for custom inserter!" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 2684); | ||||
| 2685 | |||||
| 2686 | case AArch64::F128CSEL: | ||||
| 2687 | return EmitF128CSEL(MI, BB); | ||||
| 2688 | case TargetOpcode::STATEPOINT: | ||||
| 2689 | // STATEPOINT is a pseudo instruction which has no implicit defs/uses | ||||
| 2690 | // while bl call instruction (where statepoint will be lowered at the end) | ||||
| 2691 | // has implicit def. This def is early-clobber as it will be set at | ||||
| 2692 | // the moment of the call and earlier than any use is read. | ||||
| 2693 | // Add this implicit dead def here as a workaround. | ||||
| 2694 | MI.addOperand(*MI.getMF(), | ||||
| 2695 | MachineOperand::CreateReg( | ||||
| 2696 | AArch64::LR, /*isDef*/ true, | ||||
| 2697 | /*isImp*/ true, /*isKill*/ false, /*isDead*/ true, | ||||
| 2698 | /*isUndef*/ false, /*isEarlyClobber*/ true)); | ||||
| 2699 | [[fallthrough]]; | ||||
| 2700 | case TargetOpcode::STACKMAP: | ||||
| 2701 | case TargetOpcode::PATCHPOINT: | ||||
| 2702 | return emitPatchPoint(MI, BB); | ||||
| 2703 | |||||
| 2704 | case AArch64::CATCHRET: | ||||
| 2705 | return EmitLoweredCatchRet(MI, BB); | ||||
| 2706 | case AArch64::LD1_MXIPXX_H_PSEUDO_B: | ||||
| 2707 | return EmitTileLoad(AArch64::LD1_MXIPXX_H_B, AArch64::ZAB0, MI, BB); | ||||
| 2708 | case AArch64::LD1_MXIPXX_H_PSEUDO_H: | ||||
| 2709 | return EmitTileLoad(AArch64::LD1_MXIPXX_H_H, AArch64::ZAH0, MI, BB); | ||||
| 2710 | case AArch64::LD1_MXIPXX_H_PSEUDO_S: | ||||
| 2711 | return EmitTileLoad(AArch64::LD1_MXIPXX_H_S, AArch64::ZAS0, MI, BB); | ||||
| 2712 | case AArch64::LD1_MXIPXX_H_PSEUDO_D: | ||||
| 2713 | return EmitTileLoad(AArch64::LD1_MXIPXX_H_D, AArch64::ZAD0, MI, BB); | ||||
| 2714 | case AArch64::LD1_MXIPXX_H_PSEUDO_Q: | ||||
| 2715 | return EmitTileLoad(AArch64::LD1_MXIPXX_H_Q, AArch64::ZAQ0, MI, BB); | ||||
| 2716 | case AArch64::LD1_MXIPXX_V_PSEUDO_B: | ||||
| 2717 | return EmitTileLoad(AArch64::LD1_MXIPXX_V_B, AArch64::ZAB0, MI, BB); | ||||
| 2718 | case AArch64::LD1_MXIPXX_V_PSEUDO_H: | ||||
| 2719 | return EmitTileLoad(AArch64::LD1_MXIPXX_V_H, AArch64::ZAH0, MI, BB); | ||||
| 2720 | case AArch64::LD1_MXIPXX_V_PSEUDO_S: | ||||
| 2721 | return EmitTileLoad(AArch64::LD1_MXIPXX_V_S, AArch64::ZAS0, MI, BB); | ||||
| 2722 | case AArch64::LD1_MXIPXX_V_PSEUDO_D: | ||||
| 2723 | return EmitTileLoad(AArch64::LD1_MXIPXX_V_D, AArch64::ZAD0, MI, BB); | ||||
| 2724 | case AArch64::LD1_MXIPXX_V_PSEUDO_Q: | ||||
| 2725 | return EmitTileLoad(AArch64::LD1_MXIPXX_V_Q, AArch64::ZAQ0, MI, BB); | ||||
| 2726 | case AArch64::LDR_ZA_PSEUDO: | ||||
| 2727 | return EmitFill(MI, BB); | ||||
| 2728 | case AArch64::BFMOPA_MPPZZ_PSEUDO: | ||||
| 2729 | return EmitMopa(AArch64::BFMOPA_MPPZZ, AArch64::ZAS0, MI, BB); | ||||
| 2730 | case AArch64::BFMOPS_MPPZZ_PSEUDO: | ||||
| 2731 | return EmitMopa(AArch64::BFMOPS_MPPZZ, AArch64::ZAS0, MI, BB); | ||||
| 2732 | case AArch64::FMOPAL_MPPZZ_PSEUDO: | ||||
| 2733 | return EmitMopa(AArch64::FMOPAL_MPPZZ, AArch64::ZAS0, MI, BB); | ||||
| 2734 | case AArch64::FMOPSL_MPPZZ_PSEUDO: | ||||
| 2735 | return EmitMopa(AArch64::FMOPSL_MPPZZ, AArch64::ZAS0, MI, BB); | ||||
| 2736 | case AArch64::FMOPA_MPPZZ_S_PSEUDO: | ||||
| 2737 | return EmitMopa(AArch64::FMOPA_MPPZZ_S, AArch64::ZAS0, MI, BB); | ||||
| 2738 | case AArch64::FMOPS_MPPZZ_S_PSEUDO: | ||||
| 2739 | return EmitMopa(AArch64::FMOPS_MPPZZ_S, AArch64::ZAS0, MI, BB); | ||||
| 2740 | case AArch64::FMOPA_MPPZZ_D_PSEUDO: | ||||
| 2741 | return EmitMopa(AArch64::FMOPA_MPPZZ_D, AArch64::ZAD0, MI, BB); | ||||
| 2742 | case AArch64::FMOPS_MPPZZ_D_PSEUDO: | ||||
| 2743 | return EmitMopa(AArch64::FMOPS_MPPZZ_D, AArch64::ZAD0, MI, BB); | ||||
| 2744 | case AArch64::SMOPA_MPPZZ_S_PSEUDO: | ||||
| 2745 | return EmitMopa(AArch64::SMOPA_MPPZZ_S, AArch64::ZAS0, MI, BB); | ||||
| 2746 | case AArch64::SMOPS_MPPZZ_S_PSEUDO: | ||||
| 2747 | return EmitMopa(AArch64::SMOPS_MPPZZ_S, AArch64::ZAS0, MI, BB); | ||||
| 2748 | case AArch64::UMOPA_MPPZZ_S_PSEUDO: | ||||
| 2749 | return EmitMopa(AArch64::UMOPA_MPPZZ_S, AArch64::ZAS0, MI, BB); | ||||
| 2750 | case AArch64::UMOPS_MPPZZ_S_PSEUDO: | ||||
| 2751 | return EmitMopa(AArch64::UMOPS_MPPZZ_S, AArch64::ZAS0, MI, BB); | ||||
| 2752 | case AArch64::SUMOPA_MPPZZ_S_PSEUDO: | ||||
| 2753 | return EmitMopa(AArch64::SUMOPA_MPPZZ_S, AArch64::ZAS0, MI, BB); | ||||
| 2754 | case AArch64::SUMOPS_MPPZZ_S_PSEUDO: | ||||
| 2755 | return EmitMopa(AArch64::SUMOPS_MPPZZ_S, AArch64::ZAS0, MI, BB); | ||||
| 2756 | case AArch64::USMOPA_MPPZZ_S_PSEUDO: | ||||
| 2757 | return EmitMopa(AArch64::USMOPA_MPPZZ_S, AArch64::ZAS0, MI, BB); | ||||
| 2758 | case AArch64::USMOPS_MPPZZ_S_PSEUDO: | ||||
| 2759 | return EmitMopa(AArch64::USMOPS_MPPZZ_S, AArch64::ZAS0, MI, BB); | ||||
| 2760 | case AArch64::SMOPA_MPPZZ_D_PSEUDO: | ||||
| 2761 | return EmitMopa(AArch64::SMOPA_MPPZZ_D, AArch64::ZAD0, MI, BB); | ||||
| 2762 | case AArch64::SMOPS_MPPZZ_D_PSEUDO: | ||||
| 2763 | return EmitMopa(AArch64::SMOPS_MPPZZ_D, AArch64::ZAD0, MI, BB); | ||||
| 2764 | case AArch64::UMOPA_MPPZZ_D_PSEUDO: | ||||
| 2765 | return EmitMopa(AArch64::UMOPA_MPPZZ_D, AArch64::ZAD0, MI, BB); | ||||
| 2766 | case AArch64::UMOPS_MPPZZ_D_PSEUDO: | ||||
| 2767 | return EmitMopa(AArch64::UMOPS_MPPZZ_D, AArch64::ZAD0, MI, BB); | ||||
| 2768 | case AArch64::SUMOPA_MPPZZ_D_PSEUDO: | ||||
| 2769 | return EmitMopa(AArch64::SUMOPA_MPPZZ_D, AArch64::ZAD0, MI, BB); | ||||
| 2770 | case AArch64::SUMOPS_MPPZZ_D_PSEUDO: | ||||
| 2771 | return EmitMopa(AArch64::SUMOPS_MPPZZ_D, AArch64::ZAD0, MI, BB); | ||||
| 2772 | case AArch64::USMOPA_MPPZZ_D_PSEUDO: | ||||
| 2773 | return EmitMopa(AArch64::USMOPA_MPPZZ_D, AArch64::ZAD0, MI, BB); | ||||
| 2774 | case AArch64::USMOPS_MPPZZ_D_PSEUDO: | ||||
| 2775 | return EmitMopa(AArch64::USMOPS_MPPZZ_D, AArch64::ZAD0, MI, BB); | ||||
| 2776 | case AArch64::INSERT_MXIPZ_H_PSEUDO_B: | ||||
| 2777 | return EmitInsertVectorToTile(AArch64::INSERT_MXIPZ_H_B, AArch64::ZAB0, MI, | ||||
| 2778 | BB); | ||||
| 2779 | case AArch64::INSERT_MXIPZ_H_PSEUDO_H: | ||||
| 2780 | return EmitInsertVectorToTile(AArch64::INSERT_MXIPZ_H_H, AArch64::ZAH0, MI, | ||||
| 2781 | BB); | ||||
| 2782 | case AArch64::INSERT_MXIPZ_H_PSEUDO_S: | ||||
| 2783 | return EmitInsertVectorToTile(AArch64::INSERT_MXIPZ_H_S, AArch64::ZAS0, MI, | ||||
| 2784 | BB); | ||||
| 2785 | case AArch64::INSERT_MXIPZ_H_PSEUDO_D: | ||||
| 2786 | return EmitInsertVectorToTile(AArch64::INSERT_MXIPZ_H_D, AArch64::ZAD0, MI, | ||||
| 2787 | BB); | ||||
| 2788 | case AArch64::INSERT_MXIPZ_H_PSEUDO_Q: | ||||
| 2789 | return EmitInsertVectorToTile(AArch64::INSERT_MXIPZ_H_Q, AArch64::ZAQ0, MI, | ||||
| 2790 | BB); | ||||
| 2791 | case AArch64::INSERT_MXIPZ_V_PSEUDO_B: | ||||
| 2792 | return EmitInsertVectorToTile(AArch64::INSERT_MXIPZ_V_B, AArch64::ZAB0, MI, | ||||
| 2793 | BB); | ||||
| 2794 | case AArch64::INSERT_MXIPZ_V_PSEUDO_H: | ||||
| 2795 | return EmitInsertVectorToTile(AArch64::INSERT_MXIPZ_V_H, AArch64::ZAH0, MI, | ||||
| 2796 | BB); | ||||
| 2797 | case AArch64::INSERT_MXIPZ_V_PSEUDO_S: | ||||
| 2798 | return EmitInsertVectorToTile(AArch64::INSERT_MXIPZ_V_S, AArch64::ZAS0, MI, | ||||
| 2799 | BB); | ||||
| 2800 | case AArch64::INSERT_MXIPZ_V_PSEUDO_D: | ||||
| 2801 | return EmitInsertVectorToTile(AArch64::INSERT_MXIPZ_V_D, AArch64::ZAD0, MI, | ||||
| 2802 | BB); | ||||
| 2803 | case AArch64::INSERT_MXIPZ_V_PSEUDO_Q: | ||||
| 2804 | return EmitInsertVectorToTile(AArch64::INSERT_MXIPZ_V_Q, AArch64::ZAQ0, MI, | ||||
| 2805 | BB); | ||||
| 2806 | case AArch64::ZERO_M_PSEUDO: | ||||
| 2807 | return EmitZero(MI, BB); | ||||
| 2808 | case AArch64::ADDHA_MPPZ_PSEUDO_S: | ||||
| 2809 | return EmitAddVectorToTile(AArch64::ADDHA_MPPZ_S, AArch64::ZAS0, MI, BB); | ||||
| 2810 | case AArch64::ADDVA_MPPZ_PSEUDO_S: | ||||
| 2811 | return EmitAddVectorToTile(AArch64::ADDVA_MPPZ_S, AArch64::ZAS0, MI, BB); | ||||
| 2812 | case AArch64::ADDHA_MPPZ_PSEUDO_D: | ||||
| 2813 | return EmitAddVectorToTile(AArch64::ADDHA_MPPZ_D, AArch64::ZAD0, MI, BB); | ||||
| 2814 | case AArch64::ADDVA_MPPZ_PSEUDO_D: | ||||
| 2815 | return EmitAddVectorToTile(AArch64::ADDVA_MPPZ_D, AArch64::ZAD0, MI, BB); | ||||
| 2816 | } | ||||
| 2817 | } | ||||
| 2818 | |||||
| 2819 | //===----------------------------------------------------------------------===// | ||||
| 2820 | // AArch64 Lowering private implementation. | ||||
| 2821 | //===----------------------------------------------------------------------===// | ||||
| 2822 | |||||
| 2823 | //===----------------------------------------------------------------------===// | ||||
| 2824 | // Lowering Code | ||||
| 2825 | //===----------------------------------------------------------------------===// | ||||
| 2826 | |||||
| 2827 | // Forward declarations of SVE fixed length lowering helpers | ||||
| 2828 | static EVT getContainerForFixedLengthVector(SelectionDAG &DAG, EVT VT); | ||||
| 2829 | static SDValue convertToScalableVector(SelectionDAG &DAG, EVT VT, SDValue V); | ||||
| 2830 | static SDValue convertFromScalableVector(SelectionDAG &DAG, EVT VT, SDValue V); | ||||
| 2831 | static SDValue convertFixedMaskToScalableVector(SDValue Mask, | ||||
| 2832 | SelectionDAG &DAG); | ||||
| 2833 | static SDValue getPredicateForScalableVector(SelectionDAG &DAG, SDLoc &DL, | ||||
| 2834 | EVT VT); | ||||
| 2835 | |||||
| 2836 | /// isZerosVector - Check whether SDNode N is a zero-filled vector. | ||||
| 2837 | static bool isZerosVector(const SDNode *N) { | ||||
| 2838 | // Look through a bit convert. | ||||
| 2839 | while (N->getOpcode() == ISD::BITCAST) | ||||
| 2840 | N = N->getOperand(0).getNode(); | ||||
| 2841 | |||||
| 2842 | if (ISD::isConstantSplatVectorAllZeros(N)) | ||||
| 2843 | return true; | ||||
| 2844 | |||||
| 2845 | if (N->getOpcode() != AArch64ISD::DUP) | ||||
| 2846 | return false; | ||||
| 2847 | |||||
| 2848 | auto Opnd0 = N->getOperand(0); | ||||
| 2849 | return isNullConstant(Opnd0) || isNullFPConstant(Opnd0); | ||||
| 2850 | } | ||||
| 2851 | |||||
| 2852 | /// changeIntCCToAArch64CC - Convert a DAG integer condition code to an AArch64 | ||||
| 2853 | /// CC | ||||
| 2854 | static AArch64CC::CondCode changeIntCCToAArch64CC(ISD::CondCode CC) { | ||||
| 2855 | switch (CC) { | ||||
| 2856 | default: | ||||
| 2857 | llvm_unreachable("Unknown condition code!")::llvm::llvm_unreachable_internal("Unknown condition code!", "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp" , 2857); | ||||
| 2858 | case ISD::SETNE: | ||||
| 2859 | return AArch64CC::NE; | ||||
| 2860 | case ISD::SETEQ: | ||||
| 2861 | return AArch64CC::EQ; | ||||
| 2862 | case ISD::SETGT: | ||||
| 2863 | return AArch64CC::GT; | ||||
| 2864 | case ISD::SETGE: | ||||
| 2865 | return AArch64CC::GE; | ||||
| 2866 | case ISD::SETLT: | ||||
| 2867 | return AArch64CC::LT; | ||||
| 2868 | case ISD::SETLE: | ||||
| 2869 | return AArch64CC::LE; | ||||
| 2870 | case ISD::SETUGT: | ||||
| 2871 | return AArch64CC::HI; | ||||
| 2872 | case ISD::SETUGE: | ||||
| 2873 | return AArch64CC::HS; | ||||
| 2874 | case ISD::SETULT: | ||||
| 2875 | return AArch64CC::LO; | ||||
| 2876 | case ISD::SETULE: | ||||
| 2877 | return AArch64CC::LS; | ||||
| 2878 | } | ||||
| 2879 | } | ||||
| 2880 | |||||
| 2881 | /// changeFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 CC. | ||||
| 2882 | static void changeFPCCToAArch64CC(ISD::CondCode CC, | ||||
| 2883 | AArch64CC::CondCode &CondCode, | ||||
| 2884 | AArch64CC::CondCode &CondCode2) { | ||||
| 2885 | CondCode2 = AArch64CC::AL; | ||||
| 2886 | switch (CC) { | ||||
| 2887 | default: | ||||
| 2888 | llvm_unreachable("Unknown FP condition!")::llvm::llvm_unreachable_internal("Unknown FP condition!", "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp" , 2888); | ||||
| 2889 | case ISD::SETEQ: | ||||
| 2890 | case ISD::SETOEQ: | ||||
| 2891 | CondCode = AArch64CC::EQ; | ||||
| 2892 | break; | ||||
| 2893 | case ISD::SETGT: | ||||
| 2894 | case ISD::SETOGT: | ||||
| 2895 | CondCode = AArch64CC::GT; | ||||
| 2896 | break; | ||||
| 2897 | case ISD::SETGE: | ||||
| 2898 | case ISD::SETOGE: | ||||
| 2899 | CondCode = AArch64CC::GE; | ||||
| 2900 | break; | ||||
| 2901 | case ISD::SETOLT: | ||||
| 2902 | CondCode = AArch64CC::MI; | ||||
| 2903 | break; | ||||
| 2904 | case ISD::SETOLE: | ||||
| 2905 | CondCode = AArch64CC::LS; | ||||
| 2906 | break; | ||||
| 2907 | case ISD::SETONE: | ||||
| 2908 | CondCode = AArch64CC::MI; | ||||
| 2909 | CondCode2 = AArch64CC::GT; | ||||
| 2910 | break; | ||||
| 2911 | case ISD::SETO: | ||||
| 2912 | CondCode = AArch64CC::VC; | ||||
| 2913 | break; | ||||
| 2914 | case ISD::SETUO: | ||||
| 2915 | CondCode = AArch64CC::VS; | ||||
| 2916 | break; | ||||
| 2917 | case ISD::SETUEQ: | ||||
| 2918 | CondCode = AArch64CC::EQ; | ||||
| 2919 | CondCode2 = AArch64CC::VS; | ||||
| 2920 | break; | ||||
| 2921 | case ISD::SETUGT: | ||||
| 2922 | CondCode = AArch64CC::HI; | ||||
| 2923 | break; | ||||
| 2924 | case ISD::SETUGE: | ||||
| 2925 | CondCode = AArch64CC::PL; | ||||
| 2926 | break; | ||||
| 2927 | case ISD::SETLT: | ||||
| 2928 | case ISD::SETULT: | ||||
| 2929 | CondCode = AArch64CC::LT; | ||||
| 2930 | break; | ||||
| 2931 | case ISD::SETLE: | ||||
| 2932 | case ISD::SETULE: | ||||
| 2933 | CondCode = AArch64CC::LE; | ||||
| 2934 | break; | ||||
| 2935 | case ISD::SETNE: | ||||
| 2936 | case ISD::SETUNE: | ||||
| 2937 | CondCode = AArch64CC::NE; | ||||
| 2938 | break; | ||||
| 2939 | } | ||||
| 2940 | } | ||||
| 2941 | |||||
| 2942 | /// Convert a DAG fp condition code to an AArch64 CC. | ||||
| 2943 | /// This differs from changeFPCCToAArch64CC in that it returns cond codes that | ||||
| 2944 | /// should be AND'ed instead of OR'ed. | ||||
| 2945 | static void changeFPCCToANDAArch64CC(ISD::CondCode CC, | ||||
| 2946 | AArch64CC::CondCode &CondCode, | ||||
| 2947 | AArch64CC::CondCode &CondCode2) { | ||||
| 2948 | CondCode2 = AArch64CC::AL; | ||||
| 2949 | switch (CC) { | ||||
| 2950 | default: | ||||
| 2951 | changeFPCCToAArch64CC(CC, CondCode, CondCode2); | ||||
| 2952 | assert(CondCode2 == AArch64CC::AL)(static_cast <bool> (CondCode2 == AArch64CC::AL) ? void (0) : __assert_fail ("CondCode2 == AArch64CC::AL", "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp" , 2952, __extension__ __PRETTY_FUNCTION__)); | ||||
| 2953 | break; | ||||
| 2954 | case ISD::SETONE: | ||||
| 2955 | // (a one b) | ||||
| 2956 | // == ((a olt b) || (a ogt b)) | ||||
| 2957 | // == ((a ord b) && (a une b)) | ||||
| 2958 | CondCode = AArch64CC::VC; | ||||
| 2959 | CondCode2 = AArch64CC::NE; | ||||
| 2960 | break; | ||||
| 2961 | case ISD::SETUEQ: | ||||
| 2962 | // (a ueq b) | ||||
| 2963 | // == ((a uno b) || (a oeq b)) | ||||
| 2964 | // == ((a ule b) && (a uge b)) | ||||
| 2965 | CondCode = AArch64CC::PL; | ||||
| 2966 | CondCode2 = AArch64CC::LE; | ||||
| 2967 | break; | ||||
| 2968 | } | ||||
| 2969 | } | ||||
| 2970 | |||||
| 2971 | /// changeVectorFPCCToAArch64CC - Convert a DAG fp condition code to an AArch64 | ||||
| 2972 | /// CC usable with the vector instructions. Fewer operations are available | ||||
| 2973 | /// without a real NZCV register, so we have to use less efficient combinations | ||||
| 2974 | /// to get the same effect. | ||||
| 2975 | static void changeVectorFPCCToAArch64CC(ISD::CondCode CC, | ||||
| 2976 | AArch64CC::CondCode &CondCode, | ||||
| 2977 | AArch64CC::CondCode &CondCode2, | ||||
| 2978 | bool &Invert) { | ||||
| 2979 | Invert = false; | ||||
| 2980 | switch (CC) { | ||||
| 2981 | default: | ||||
| 2982 | // Mostly the scalar mappings work fine. | ||||
| 2983 | changeFPCCToAArch64CC(CC, CondCode, CondCode2); | ||||
| 2984 | break; | ||||
| 2985 | case ISD::SETUO: | ||||
| 2986 | Invert = true; | ||||
| 2987 | [[fallthrough]]; | ||||
| 2988 | case ISD::SETO: | ||||
| 2989 | CondCode = AArch64CC::MI; | ||||
| 2990 | CondCode2 = AArch64CC::GE; | ||||
| 2991 | break; | ||||
| 2992 | case ISD::SETUEQ: | ||||
| 2993 | case ISD::SETULT: | ||||
| 2994 | case ISD::SETULE: | ||||
| 2995 | case ISD::SETUGT: | ||||
| 2996 | case ISD::SETUGE: | ||||
| 2997 | // All of the compare-mask comparisons are ordered, but we can switch | ||||
| 2998 | // between the two by a double inversion. E.g. ULE == !OGT. | ||||
| 2999 | Invert = true; | ||||
| 3000 | changeFPCCToAArch64CC(getSetCCInverse(CC, /* FP inverse */ MVT::f32), | ||||
| 3001 | CondCode, CondCode2); | ||||
| 3002 | break; | ||||
| 3003 | } | ||||
| 3004 | } | ||||
| 3005 | |||||
| 3006 | static bool isLegalArithImmed(uint64_t C) { | ||||
| 3007 | // Matches AArch64DAGToDAGISel::SelectArithImmed(). | ||||
| 3008 | bool IsLegal = (C >> 12 == 0) || ((C & 0xFFFULL) == 0 && C >> 24 == 0); | ||||
| 3009 | LLVM_DEBUG(dbgs() << "Is imm " << Cdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "Is imm " << C << " legal: " << (IsLegal ? "yes\n" : "no\n"); } } while ( false) | ||||
| 3010 | << " legal: " << (IsLegal ? "yes\n" : "no\n"))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "Is imm " << C << " legal: " << (IsLegal ? "yes\n" : "no\n"); } } while ( false); | ||||
| 3011 | return IsLegal; | ||||
| 3012 | } | ||||
| 3013 | |||||
| 3014 | // Can a (CMP op1, (sub 0, op2) be turned into a CMN instruction on | ||||
| 3015 | // the grounds that "op1 - (-op2) == op1 + op2" ? Not always, the C and V flags | ||||
| 3016 | // can be set differently by this operation. It comes down to whether | ||||
| 3017 | // "SInt(~op2)+1 == SInt(~op2+1)" (and the same for UInt). If they are then | ||||
| 3018 | // everything is fine. If not then the optimization is wrong. Thus general | ||||
| 3019 | // comparisons are only valid if op2 != 0. | ||||
| 3020 | // | ||||
| 3021 | // So, finally, the only LLVM-native comparisons that don't mention C and V | ||||
| 3022 | // are SETEQ and SETNE. They're the only ones we can safely use CMN for in | ||||
| 3023 | // the absence of information about op2. | ||||
| 3024 | static bool isCMN(SDValue Op, ISD::CondCode CC) { | ||||
| 3025 | return Op.getOpcode() == ISD::SUB && isNullConstant(Op.getOperand(0)) && | ||||
| 3026 | (CC == ISD::SETEQ || CC == ISD::SETNE); | ||||
| 3027 | } | ||||
| 3028 | |||||
| 3029 | static SDValue emitStrictFPComparison(SDValue LHS, SDValue RHS, const SDLoc &dl, | ||||
| 3030 | SelectionDAG &DAG, SDValue Chain, | ||||
| 3031 | bool IsSignaling) { | ||||
| 3032 | EVT VT = LHS.getValueType(); | ||||
| 3033 | assert(VT != MVT::f128)(static_cast <bool> (VT != MVT::f128) ? void (0) : __assert_fail ("VT != MVT::f128", "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp" , 3033, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3034 | |||||
| 3035 | const bool FullFP16 = DAG.getSubtarget<AArch64Subtarget>().hasFullFP16(); | ||||
| 3036 | |||||
| 3037 | if (VT == MVT::f16 && !FullFP16) { | ||||
| 3038 | LHS = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {MVT::f32, MVT::Other}, | ||||
| 3039 | {Chain, LHS}); | ||||
| 3040 | RHS = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {MVT::f32, MVT::Other}, | ||||
| 3041 | {LHS.getValue(1), RHS}); | ||||
| 3042 | Chain = RHS.getValue(1); | ||||
| 3043 | VT = MVT::f32; | ||||
| 3044 | } | ||||
| 3045 | unsigned Opcode = | ||||
| 3046 | IsSignaling ? AArch64ISD::STRICT_FCMPE : AArch64ISD::STRICT_FCMP; | ||||
| 3047 | return DAG.getNode(Opcode, dl, {VT, MVT::Other}, {Chain, LHS, RHS}); | ||||
| 3048 | } | ||||
| 3049 | |||||
| 3050 | static SDValue emitComparison(SDValue LHS, SDValue RHS, ISD::CondCode CC, | ||||
| 3051 | const SDLoc &dl, SelectionDAG &DAG) { | ||||
| 3052 | EVT VT = LHS.getValueType(); | ||||
| 3053 | const bool FullFP16 = DAG.getSubtarget<AArch64Subtarget>().hasFullFP16(); | ||||
| 3054 | |||||
| 3055 | if (VT.isFloatingPoint()) { | ||||
| 3056 | assert(VT != MVT::f128)(static_cast <bool> (VT != MVT::f128) ? void (0) : __assert_fail ("VT != MVT::f128", "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp" , 3056, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3057 | if (VT == MVT::f16 && !FullFP16) { | ||||
| 3058 | LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS); | ||||
| 3059 | RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS); | ||||
| 3060 | VT = MVT::f32; | ||||
| 3061 | } | ||||
| 3062 | return DAG.getNode(AArch64ISD::FCMP, dl, VT, LHS, RHS); | ||||
| 3063 | } | ||||
| 3064 | |||||
| 3065 | // The CMP instruction is just an alias for SUBS, and representing it as | ||||
| 3066 | // SUBS means that it's possible to get CSE with subtract operations. | ||||
| 3067 | // A later phase can perform the optimization of setting the destination | ||||
| 3068 | // register to WZR/XZR if it ends up being unused. | ||||
| 3069 | unsigned Opcode = AArch64ISD::SUBS; | ||||
| 3070 | |||||
| 3071 | if (isCMN(RHS, CC)) { | ||||
| 3072 | // Can we combine a (CMP op1, (sub 0, op2) into a CMN instruction ? | ||||
| 3073 | Opcode = AArch64ISD::ADDS; | ||||
| 3074 | RHS = RHS.getOperand(1); | ||||
| 3075 | } else if (isCMN(LHS, CC)) { | ||||
| 3076 | // As we are looking for EQ/NE compares, the operands can be commuted ; can | ||||
| 3077 | // we combine a (CMP (sub 0, op1), op2) into a CMN instruction ? | ||||
| 3078 | Opcode = AArch64ISD::ADDS; | ||||
| 3079 | LHS = LHS.getOperand(1); | ||||
| 3080 | } else if (isNullConstant(RHS) && !isUnsignedIntSetCC(CC)) { | ||||
| 3081 | if (LHS.getOpcode() == ISD::AND) { | ||||
| 3082 | // Similarly, (CMP (and X, Y), 0) can be implemented with a TST | ||||
| 3083 | // (a.k.a. ANDS) except that the flags are only guaranteed to work for one | ||||
| 3084 | // of the signed comparisons. | ||||
| 3085 | const SDValue ANDSNode = DAG.getNode(AArch64ISD::ANDS, dl, | ||||
| 3086 | DAG.getVTList(VT, MVT_CC), | ||||
| 3087 | LHS.getOperand(0), | ||||
| 3088 | LHS.getOperand(1)); | ||||
| 3089 | // Replace all users of (and X, Y) with newly generated (ands X, Y) | ||||
| 3090 | DAG.ReplaceAllUsesWith(LHS, ANDSNode); | ||||
| 3091 | return ANDSNode.getValue(1); | ||||
| 3092 | } else if (LHS.getOpcode() == AArch64ISD::ANDS) { | ||||
| 3093 | // Use result of ANDS | ||||
| 3094 | return LHS.getValue(1); | ||||
| 3095 | } | ||||
| 3096 | } | ||||
| 3097 | |||||
| 3098 | return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT_CC), LHS, RHS) | ||||
| 3099 | .getValue(1); | ||||
| 3100 | } | ||||
| 3101 | |||||
| 3102 | /// \defgroup AArch64CCMP CMP;CCMP matching | ||||
| 3103 | /// | ||||
| 3104 | /// These functions deal with the formation of CMP;CCMP;... sequences. | ||||
| 3105 | /// The CCMP/CCMN/FCCMP/FCCMPE instructions allow the conditional execution of | ||||
| 3106 | /// a comparison. They set the NZCV flags to a predefined value if their | ||||
| 3107 | /// predicate is false. This allows to express arbitrary conjunctions, for | ||||
| 3108 | /// example "cmp 0 (and (setCA (cmp A)) (setCB (cmp B)))" | ||||
| 3109 | /// expressed as: | ||||
| 3110 | /// cmp A | ||||
| 3111 | /// ccmp B, inv(CB), CA | ||||
| 3112 | /// check for CB flags | ||||
| 3113 | /// | ||||
| 3114 | /// This naturally lets us implement chains of AND operations with SETCC | ||||
| 3115 | /// operands. And we can even implement some other situations by transforming | ||||
| 3116 | /// them: | ||||
| 3117 | /// - We can implement (NEG SETCC) i.e. negating a single comparison by | ||||
| 3118 | /// negating the flags used in a CCMP/FCCMP operations. | ||||
| 3119 | /// - We can negate the result of a whole chain of CMP/CCMP/FCCMP operations | ||||
| 3120 | /// by negating the flags we test for afterwards. i.e. | ||||
| 3121 | /// NEG (CMP CCMP CCCMP ...) can be implemented. | ||||
| 3122 | /// - Note that we can only ever negate all previously processed results. | ||||
| 3123 | /// What we can not implement by flipping the flags to test is a negation | ||||
| 3124 | /// of two sub-trees (because the negation affects all sub-trees emitted so | ||||
| 3125 | /// far, so the 2nd sub-tree we emit would also affect the first). | ||||
| 3126 | /// With those tools we can implement some OR operations: | ||||
| 3127 | /// - (OR (SETCC A) (SETCC B)) can be implemented via: | ||||
| 3128 | /// NEG (AND (NEG (SETCC A)) (NEG (SETCC B))) | ||||
| 3129 | /// - After transforming OR to NEG/AND combinations we may be able to use NEG | ||||
| 3130 | /// elimination rules from earlier to implement the whole thing as a | ||||
| 3131 | /// CCMP/FCCMP chain. | ||||
| 3132 | /// | ||||
| 3133 | /// As complete example: | ||||
| 3134 | /// or (or (setCA (cmp A)) (setCB (cmp B))) | ||||
| 3135 | /// (and (setCC (cmp C)) (setCD (cmp D)))" | ||||
| 3136 | /// can be reassociated to: | ||||
| 3137 | /// or (and (setCC (cmp C)) setCD (cmp D)) | ||||
| 3138 | // (or (setCA (cmp A)) (setCB (cmp B))) | ||||
| 3139 | /// can be transformed to: | ||||
| 3140 | /// not (and (not (and (setCC (cmp C)) (setCD (cmp D)))) | ||||
| 3141 | /// (and (not (setCA (cmp A)) (not (setCB (cmp B))))))" | ||||
| 3142 | /// which can be implemented as: | ||||
| 3143 | /// cmp C | ||||
| 3144 | /// ccmp D, inv(CD), CC | ||||
| 3145 | /// ccmp A, CA, inv(CD) | ||||
| 3146 | /// ccmp B, CB, inv(CA) | ||||
| 3147 | /// check for CB flags | ||||
| 3148 | /// | ||||
| 3149 | /// A counterexample is "or (and A B) (and C D)" which translates to | ||||
| 3150 | /// not (and (not (and (not A) (not B))) (not (and (not C) (not D)))), we | ||||
| 3151 | /// can only implement 1 of the inner (not) operations, but not both! | ||||
| 3152 | /// @{ | ||||
| 3153 | |||||
| 3154 | /// Create a conditional comparison; Use CCMP, CCMN or FCCMP as appropriate. | ||||
| 3155 | static SDValue emitConditionalComparison(SDValue LHS, SDValue RHS, | ||||
| 3156 | ISD::CondCode CC, SDValue CCOp, | ||||
| 3157 | AArch64CC::CondCode Predicate, | ||||
| 3158 | AArch64CC::CondCode OutCC, | ||||
| 3159 | const SDLoc &DL, SelectionDAG &DAG) { | ||||
| 3160 | unsigned Opcode = 0; | ||||
| 3161 | const bool FullFP16 = DAG.getSubtarget<AArch64Subtarget>().hasFullFP16(); | ||||
| 3162 | |||||
| 3163 | if (LHS.getValueType().isFloatingPoint()) { | ||||
| 3164 | assert(LHS.getValueType() != MVT::f128)(static_cast <bool> (LHS.getValueType() != MVT::f128) ? void (0) : __assert_fail ("LHS.getValueType() != MVT::f128", "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 3164, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3165 | if (LHS.getValueType() == MVT::f16 && !FullFP16) { | ||||
| 3166 | LHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, LHS); | ||||
| 3167 | RHS = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, RHS); | ||||
| 3168 | } | ||||
| 3169 | Opcode = AArch64ISD::FCCMP; | ||||
| 3170 | } else if (RHS.getOpcode() == ISD::SUB) { | ||||
| 3171 | SDValue SubOp0 = RHS.getOperand(0); | ||||
| 3172 | if (isNullConstant(SubOp0) && (CC == ISD::SETEQ || CC == ISD::SETNE)) { | ||||
| 3173 | // See emitComparison() on why we can only do this for SETEQ and SETNE. | ||||
| 3174 | Opcode = AArch64ISD::CCMN; | ||||
| 3175 | RHS = RHS.getOperand(1); | ||||
| 3176 | } | ||||
| 3177 | } | ||||
| 3178 | if (Opcode == 0) | ||||
| 3179 | Opcode = AArch64ISD::CCMP; | ||||
| 3180 | |||||
| 3181 | SDValue Condition = DAG.getConstant(Predicate, DL, MVT_CC); | ||||
| 3182 | AArch64CC::CondCode InvOutCC = AArch64CC::getInvertedCondCode(OutCC); | ||||
| 3183 | unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(InvOutCC); | ||||
| 3184 | SDValue NZCVOp = DAG.getConstant(NZCV, DL, MVT::i32); | ||||
| 3185 | return DAG.getNode(Opcode, DL, MVT_CC, LHS, RHS, NZCVOp, Condition, CCOp); | ||||
| 3186 | } | ||||
| 3187 | |||||
| 3188 | /// Returns true if @p Val is a tree of AND/OR/SETCC operations that can be | ||||
| 3189 | /// expressed as a conjunction. See \ref AArch64CCMP. | ||||
| 3190 | /// \param CanNegate Set to true if we can negate the whole sub-tree just by | ||||
| 3191 | /// changing the conditions on the SETCC tests. | ||||
| 3192 | /// (this means we can call emitConjunctionRec() with | ||||
| 3193 | /// Negate==true on this sub-tree) | ||||
| 3194 | /// \param MustBeFirst Set to true if this subtree needs to be negated and we | ||||
| 3195 | /// cannot do the negation naturally. We are required to | ||||
| 3196 | /// emit the subtree first in this case. | ||||
| 3197 | /// \param WillNegate Is true if are called when the result of this | ||||
| 3198 | /// subexpression must be negated. This happens when the | ||||
| 3199 | /// outer expression is an OR. We can use this fact to know | ||||
| 3200 | /// that we have a double negation (or (or ...) ...) that | ||||
| 3201 | /// can be implemented for free. | ||||
| 3202 | static bool canEmitConjunction(const SDValue Val, bool &CanNegate, | ||||
| 3203 | bool &MustBeFirst, bool WillNegate, | ||||
| 3204 | unsigned Depth = 0) { | ||||
| 3205 | if (!Val.hasOneUse()) | ||||
| 3206 | return false; | ||||
| 3207 | unsigned Opcode = Val->getOpcode(); | ||||
| 3208 | if (Opcode == ISD::SETCC) { | ||||
| 3209 | if (Val->getOperand(0).getValueType() == MVT::f128) | ||||
| 3210 | return false; | ||||
| 3211 | CanNegate = true; | ||||
| 3212 | MustBeFirst = false; | ||||
| 3213 | return true; | ||||
| 3214 | } | ||||
| 3215 | // Protect against exponential runtime and stack overflow. | ||||
| 3216 | if (Depth > 6) | ||||
| 3217 | return false; | ||||
| 3218 | if (Opcode == ISD::AND || Opcode == ISD::OR) { | ||||
| 3219 | bool IsOR = Opcode == ISD::OR; | ||||
| 3220 | SDValue O0 = Val->getOperand(0); | ||||
| 3221 | SDValue O1 = Val->getOperand(1); | ||||
| 3222 | bool CanNegateL; | ||||
| 3223 | bool MustBeFirstL; | ||||
| 3224 | if (!canEmitConjunction(O0, CanNegateL, MustBeFirstL, IsOR, Depth+1)) | ||||
| 3225 | return false; | ||||
| 3226 | bool CanNegateR; | ||||
| 3227 | bool MustBeFirstR; | ||||
| 3228 | if (!canEmitConjunction(O1, CanNegateR, MustBeFirstR, IsOR, Depth+1)) | ||||
| 3229 | return false; | ||||
| 3230 | |||||
| 3231 | if (MustBeFirstL && MustBeFirstR) | ||||
| 3232 | return false; | ||||
| 3233 | |||||
| 3234 | if (IsOR) { | ||||
| 3235 | // For an OR expression we need to be able to naturally negate at least | ||||
| 3236 | // one side or we cannot do the transformation at all. | ||||
| 3237 | if (!CanNegateL && !CanNegateR) | ||||
| 3238 | return false; | ||||
| 3239 | // If we the result of the OR will be negated and we can naturally negate | ||||
| 3240 | // the leafs, then this sub-tree as a whole negates naturally. | ||||
| 3241 | CanNegate = WillNegate && CanNegateL && CanNegateR; | ||||
| 3242 | // If we cannot naturally negate the whole sub-tree, then this must be | ||||
| 3243 | // emitted first. | ||||
| 3244 | MustBeFirst = !CanNegate; | ||||
| 3245 | } else { | ||||
| 3246 | assert(Opcode == ISD::AND && "Must be OR or AND")(static_cast <bool> (Opcode == ISD::AND && "Must be OR or AND" ) ? void (0) : __assert_fail ("Opcode == ISD::AND && \"Must be OR or AND\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 3246, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3247 | // We cannot naturally negate an AND operation. | ||||
| 3248 | CanNegate = false; | ||||
| 3249 | MustBeFirst = MustBeFirstL || MustBeFirstR; | ||||
| 3250 | } | ||||
| 3251 | return true; | ||||
| 3252 | } | ||||
| 3253 | return false; | ||||
| 3254 | } | ||||
| 3255 | |||||
| 3256 | /// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain | ||||
| 3257 | /// of CCMP/CFCMP ops. See @ref AArch64CCMP. | ||||
| 3258 | /// Tries to transform the given i1 producing node @p Val to a series compare | ||||
| 3259 | /// and conditional compare operations. @returns an NZCV flags producing node | ||||
| 3260 | /// and sets @p OutCC to the flags that should be tested or returns SDValue() if | ||||
| 3261 | /// transformation was not possible. | ||||
| 3262 | /// \p Negate is true if we want this sub-tree being negated just by changing | ||||
| 3263 | /// SETCC conditions. | ||||
| 3264 | static SDValue emitConjunctionRec(SelectionDAG &DAG, SDValue Val, | ||||
| 3265 | AArch64CC::CondCode &OutCC, bool Negate, SDValue CCOp, | ||||
| 3266 | AArch64CC::CondCode Predicate) { | ||||
| 3267 | // We're at a tree leaf, produce a conditional comparison operation. | ||||
| 3268 | unsigned Opcode = Val->getOpcode(); | ||||
| 3269 | if (Opcode == ISD::SETCC) { | ||||
| 3270 | SDValue LHS = Val->getOperand(0); | ||||
| 3271 | SDValue RHS = Val->getOperand(1); | ||||
| 3272 | ISD::CondCode CC = cast<CondCodeSDNode>(Val->getOperand(2))->get(); | ||||
| 3273 | bool isInteger = LHS.getValueType().isInteger(); | ||||
| 3274 | if (Negate) | ||||
| 3275 | CC = getSetCCInverse(CC, LHS.getValueType()); | ||||
| 3276 | SDLoc DL(Val); | ||||
| 3277 | // Determine OutCC and handle FP special case. | ||||
| 3278 | if (isInteger) { | ||||
| 3279 | OutCC = changeIntCCToAArch64CC(CC); | ||||
| 3280 | } else { | ||||
| 3281 | assert(LHS.getValueType().isFloatingPoint())(static_cast <bool> (LHS.getValueType().isFloatingPoint ()) ? void (0) : __assert_fail ("LHS.getValueType().isFloatingPoint()" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 3281, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3282 | AArch64CC::CondCode ExtraCC; | ||||
| 3283 | changeFPCCToANDAArch64CC(CC, OutCC, ExtraCC); | ||||
| 3284 | // Some floating point conditions can't be tested with a single condition | ||||
| 3285 | // code. Construct an additional comparison in this case. | ||||
| 3286 | if (ExtraCC != AArch64CC::AL) { | ||||
| 3287 | SDValue ExtraCmp; | ||||
| 3288 | if (!CCOp.getNode()) | ||||
| 3289 | ExtraCmp = emitComparison(LHS, RHS, CC, DL, DAG); | ||||
| 3290 | else | ||||
| 3291 | ExtraCmp = emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate, | ||||
| 3292 | ExtraCC, DL, DAG); | ||||
| 3293 | CCOp = ExtraCmp; | ||||
| 3294 | Predicate = ExtraCC; | ||||
| 3295 | } | ||||
| 3296 | } | ||||
| 3297 | |||||
| 3298 | // Produce a normal comparison if we are first in the chain | ||||
| 3299 | if (!CCOp) | ||||
| 3300 | return emitComparison(LHS, RHS, CC, DL, DAG); | ||||
| 3301 | // Otherwise produce a ccmp. | ||||
| 3302 | return emitConditionalComparison(LHS, RHS, CC, CCOp, Predicate, OutCC, DL, | ||||
| 3303 | DAG); | ||||
| 3304 | } | ||||
| 3305 | assert(Val->hasOneUse() && "Valid conjunction/disjunction tree")(static_cast <bool> (Val->hasOneUse() && "Valid conjunction/disjunction tree" ) ? void (0) : __assert_fail ("Val->hasOneUse() && \"Valid conjunction/disjunction tree\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 3305, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3306 | |||||
| 3307 | bool IsOR = Opcode == ISD::OR; | ||||
| 3308 | |||||
| 3309 | SDValue LHS = Val->getOperand(0); | ||||
| 3310 | bool CanNegateL; | ||||
| 3311 | bool MustBeFirstL; | ||||
| 3312 | bool ValidL = canEmitConjunction(LHS, CanNegateL, MustBeFirstL, IsOR); | ||||
| 3313 | assert(ValidL && "Valid conjunction/disjunction tree")(static_cast <bool> (ValidL && "Valid conjunction/disjunction tree" ) ? void (0) : __assert_fail ("ValidL && \"Valid conjunction/disjunction tree\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 3313, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3314 | (void)ValidL; | ||||
| 3315 | |||||
| 3316 | SDValue RHS = Val->getOperand(1); | ||||
| 3317 | bool CanNegateR; | ||||
| 3318 | bool MustBeFirstR; | ||||
| 3319 | bool ValidR = canEmitConjunction(RHS, CanNegateR, MustBeFirstR, IsOR); | ||||
| 3320 | assert(ValidR && "Valid conjunction/disjunction tree")(static_cast <bool> (ValidR && "Valid conjunction/disjunction tree" ) ? void (0) : __assert_fail ("ValidR && \"Valid conjunction/disjunction tree\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 3320, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3321 | (void)ValidR; | ||||
| 3322 | |||||
| 3323 | // Swap sub-tree that must come first to the right side. | ||||
| 3324 | if (MustBeFirstL) { | ||||
| 3325 | assert(!MustBeFirstR && "Valid conjunction/disjunction tree")(static_cast <bool> (!MustBeFirstR && "Valid conjunction/disjunction tree" ) ? void (0) : __assert_fail ("!MustBeFirstR && \"Valid conjunction/disjunction tree\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 3325, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3326 | std::swap(LHS, RHS); | ||||
| 3327 | std::swap(CanNegateL, CanNegateR); | ||||
| 3328 | std::swap(MustBeFirstL, MustBeFirstR); | ||||
| 3329 | } | ||||
| 3330 | |||||
| 3331 | bool NegateR; | ||||
| 3332 | bool NegateAfterR; | ||||
| 3333 | bool NegateL; | ||||
| 3334 | bool NegateAfterAll; | ||||
| 3335 | if (Opcode == ISD::OR) { | ||||
| 3336 | // Swap the sub-tree that we can negate naturally to the left. | ||||
| 3337 | if (!CanNegateL) { | ||||
| 3338 | assert(CanNegateR && "at least one side must be negatable")(static_cast <bool> (CanNegateR && "at least one side must be negatable" ) ? void (0) : __assert_fail ("CanNegateR && \"at least one side must be negatable\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 3338, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3339 | assert(!MustBeFirstR && "invalid conjunction/disjunction tree")(static_cast <bool> (!MustBeFirstR && "invalid conjunction/disjunction tree" ) ? void (0) : __assert_fail ("!MustBeFirstR && \"invalid conjunction/disjunction tree\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 3339, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3340 | assert(!Negate)(static_cast <bool> (!Negate) ? void (0) : __assert_fail ("!Negate", "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp" , 3340, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3341 | std::swap(LHS, RHS); | ||||
| 3342 | NegateR = false; | ||||
| 3343 | NegateAfterR = true; | ||||
| 3344 | } else { | ||||
| 3345 | // Negate the left sub-tree if possible, otherwise negate the result. | ||||
| 3346 | NegateR = CanNegateR; | ||||
| 3347 | NegateAfterR = !CanNegateR; | ||||
| 3348 | } | ||||
| 3349 | NegateL = true; | ||||
| 3350 | NegateAfterAll = !Negate; | ||||
| 3351 | } else { | ||||
| 3352 | assert(Opcode == ISD::AND && "Valid conjunction/disjunction tree")(static_cast <bool> (Opcode == ISD::AND && "Valid conjunction/disjunction tree" ) ? void (0) : __assert_fail ("Opcode == ISD::AND && \"Valid conjunction/disjunction tree\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 3352, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3353 | assert(!Negate && "Valid conjunction/disjunction tree")(static_cast <bool> (!Negate && "Valid conjunction/disjunction tree" ) ? void (0) : __assert_fail ("!Negate && \"Valid conjunction/disjunction tree\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 3353, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3354 | |||||
| 3355 | NegateL = false; | ||||
| 3356 | NegateR = false; | ||||
| 3357 | NegateAfterR = false; | ||||
| 3358 | NegateAfterAll = false; | ||||
| 3359 | } | ||||
| 3360 | |||||
| 3361 | // Emit sub-trees. | ||||
| 3362 | AArch64CC::CondCode RHSCC; | ||||
| 3363 | SDValue CmpR = emitConjunctionRec(DAG, RHS, RHSCC, NegateR, CCOp, Predicate); | ||||
| 3364 | if (NegateAfterR) | ||||
| 3365 | RHSCC = AArch64CC::getInvertedCondCode(RHSCC); | ||||
| 3366 | SDValue CmpL = emitConjunctionRec(DAG, LHS, OutCC, NegateL, CmpR, RHSCC); | ||||
| 3367 | if (NegateAfterAll) | ||||
| 3368 | OutCC = AArch64CC::getInvertedCondCode(OutCC); | ||||
| 3369 | return CmpL; | ||||
| 3370 | } | ||||
| 3371 | |||||
| 3372 | /// Emit expression as a conjunction (a series of CCMP/CFCMP ops). | ||||
| 3373 | /// In some cases this is even possible with OR operations in the expression. | ||||
| 3374 | /// See \ref AArch64CCMP. | ||||
| 3375 | /// \see emitConjunctionRec(). | ||||
| 3376 | static SDValue emitConjunction(SelectionDAG &DAG, SDValue Val, | ||||
| 3377 | AArch64CC::CondCode &OutCC) { | ||||
| 3378 | bool DummyCanNegate; | ||||
| 3379 | bool DummyMustBeFirst; | ||||
| 3380 | if (!canEmitConjunction(Val, DummyCanNegate, DummyMustBeFirst, false)) | ||||
| 3381 | return SDValue(); | ||||
| 3382 | |||||
| 3383 | return emitConjunctionRec(DAG, Val, OutCC, false, SDValue(), AArch64CC::AL); | ||||
| 3384 | } | ||||
| 3385 | |||||
| 3386 | /// @} | ||||
| 3387 | |||||
| 3388 | /// Returns how profitable it is to fold a comparison's operand's shift and/or | ||||
| 3389 | /// extension operations. | ||||
| 3390 | static unsigned getCmpOperandFoldingProfit(SDValue Op) { | ||||
| 3391 | auto isSupportedExtend = [&](SDValue V) { | ||||
| 3392 | if (V.getOpcode() == ISD::SIGN_EXTEND_INREG) | ||||
| 3393 | return true; | ||||
| 3394 | |||||
| 3395 | if (V.getOpcode() == ISD::AND) | ||||
| 3396 | if (ConstantSDNode *MaskCst = dyn_cast<ConstantSDNode>(V.getOperand(1))) { | ||||
| 3397 | uint64_t Mask = MaskCst->getZExtValue(); | ||||
| 3398 | return (Mask == 0xFF || Mask == 0xFFFF || Mask == 0xFFFFFFFF); | ||||
| 3399 | } | ||||
| 3400 | |||||
| 3401 | return false; | ||||
| 3402 | }; | ||||
| 3403 | |||||
| 3404 | if (!Op.hasOneUse()) | ||||
| 3405 | return 0; | ||||
| 3406 | |||||
| 3407 | if (isSupportedExtend(Op)) | ||||
| 3408 | return 1; | ||||
| 3409 | |||||
| 3410 | unsigned Opc = Op.getOpcode(); | ||||
| 3411 | if (Opc == ISD::SHL || Opc == ISD::SRL || Opc == ISD::SRA) | ||||
| 3412 | if (ConstantSDNode *ShiftCst = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { | ||||
| 3413 | uint64_t Shift = ShiftCst->getZExtValue(); | ||||
| 3414 | if (isSupportedExtend(Op.getOperand(0))) | ||||
| 3415 | return (Shift <= 4) ? 2 : 1; | ||||
| 3416 | EVT VT = Op.getValueType(); | ||||
| 3417 | if ((VT == MVT::i32 && Shift <= 31) || (VT == MVT::i64 && Shift <= 63)) | ||||
| 3418 | return 1; | ||||
| 3419 | } | ||||
| 3420 | |||||
| 3421 | return 0; | ||||
| 3422 | } | ||||
| 3423 | |||||
| 3424 | static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC, | ||||
| 3425 | SDValue &AArch64cc, SelectionDAG &DAG, | ||||
| 3426 | const SDLoc &dl) { | ||||
| 3427 | if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) { | ||||
| 3428 | EVT VT = RHS.getValueType(); | ||||
| 3429 | uint64_t C = RHSC->getZExtValue(); | ||||
| 3430 | if (!isLegalArithImmed(C)) { | ||||
| 3431 | // Constant does not fit, try adjusting it by one? | ||||
| 3432 | switch (CC) { | ||||
| 3433 | default: | ||||
| 3434 | break; | ||||
| 3435 | case ISD::SETLT: | ||||
| 3436 | case ISD::SETGE: | ||||
| 3437 | if ((VT == MVT::i32 && C != 0x80000000 && | ||||
| 3438 | isLegalArithImmed((uint32_t)(C - 1))) || | ||||
| 3439 | (VT == MVT::i64 && C != 0x80000000ULL && | ||||
| 3440 | isLegalArithImmed(C - 1ULL))) { | ||||
| 3441 | CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT; | ||||
| 3442 | C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1; | ||||
| 3443 | RHS = DAG.getConstant(C, dl, VT); | ||||
| 3444 | } | ||||
| 3445 | break; | ||||
| 3446 | case ISD::SETULT: | ||||
| 3447 | case ISD::SETUGE: | ||||
| 3448 | if ((VT == MVT::i32 && C != 0 && | ||||
| 3449 | isLegalArithImmed((uint32_t)(C - 1))) || | ||||
| 3450 | (VT == MVT::i64 && C != 0ULL && isLegalArithImmed(C - 1ULL))) { | ||||
| 3451 | CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT; | ||||
| 3452 | C = (VT == MVT::i32) ? (uint32_t)(C - 1) : C - 1; | ||||
| 3453 | RHS = DAG.getConstant(C, dl, VT); | ||||
| 3454 | } | ||||
| 3455 | break; | ||||
| 3456 | case ISD::SETLE: | ||||
| 3457 | case ISD::SETGT: | ||||
| 3458 | if ((VT == MVT::i32 && C != INT32_MAX(2147483647) && | ||||
| 3459 | isLegalArithImmed((uint32_t)(C + 1))) || | ||||
| 3460 | (VT == MVT::i64 && C != INT64_MAX(9223372036854775807L) && | ||||
| 3461 | isLegalArithImmed(C + 1ULL))) { | ||||
| 3462 | CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE; | ||||
| 3463 | C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1; | ||||
| 3464 | RHS = DAG.getConstant(C, dl, VT); | ||||
| 3465 | } | ||||
| 3466 | break; | ||||
| 3467 | case ISD::SETULE: | ||||
| 3468 | case ISD::SETUGT: | ||||
| 3469 | if ((VT == MVT::i32 && C != UINT32_MAX(4294967295U) && | ||||
| 3470 | isLegalArithImmed((uint32_t)(C + 1))) || | ||||
| 3471 | (VT == MVT::i64 && C != UINT64_MAX(18446744073709551615UL) && | ||||
| 3472 | isLegalArithImmed(C + 1ULL))) { | ||||
| 3473 | CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; | ||||
| 3474 | C = (VT == MVT::i32) ? (uint32_t)(C + 1) : C + 1; | ||||
| 3475 | RHS = DAG.getConstant(C, dl, VT); | ||||
| 3476 | } | ||||
| 3477 | break; | ||||
| 3478 | } | ||||
| 3479 | } | ||||
| 3480 | } | ||||
| 3481 | |||||
| 3482 | // Comparisons are canonicalized so that the RHS operand is simpler than the | ||||
| 3483 | // LHS one, the extreme case being when RHS is an immediate. However, AArch64 | ||||
| 3484 | // can fold some shift+extend operations on the RHS operand, so swap the | ||||
| 3485 | // operands if that can be done. | ||||
| 3486 | // | ||||
| 3487 | // For example: | ||||
| 3488 | // lsl w13, w11, #1 | ||||
| 3489 | // cmp w13, w12 | ||||
| 3490 | // can be turned into: | ||||
| 3491 | // cmp w12, w11, lsl #1 | ||||
| 3492 | if (!isa<ConstantSDNode>(RHS) || | ||||
| 3493 | !isLegalArithImmed(cast<ConstantSDNode>(RHS)->getZExtValue())) { | ||||
| 3494 | SDValue TheLHS = isCMN(LHS, CC) ? LHS.getOperand(1) : LHS; | ||||
| 3495 | |||||
| 3496 | if (getCmpOperandFoldingProfit(TheLHS) > getCmpOperandFoldingProfit(RHS)) { | ||||
| 3497 | std::swap(LHS, RHS); | ||||
| 3498 | CC = ISD::getSetCCSwappedOperands(CC); | ||||
| 3499 | } | ||||
| 3500 | } | ||||
| 3501 | |||||
| 3502 | SDValue Cmp; | ||||
| 3503 | AArch64CC::CondCode AArch64CC; | ||||
| 3504 | if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa<ConstantSDNode>(RHS)) { | ||||
| 3505 | const ConstantSDNode *RHSC = cast<ConstantSDNode>(RHS); | ||||
| 3506 | |||||
| 3507 | // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095. | ||||
| 3508 | // For the i8 operand, the largest immediate is 255, so this can be easily | ||||
| 3509 | // encoded in the compare instruction. For the i16 operand, however, the | ||||
| 3510 | // largest immediate cannot be encoded in the compare. | ||||
| 3511 | // Therefore, use a sign extending load and cmn to avoid materializing the | ||||
| 3512 | // -1 constant. For example, | ||||
| 3513 | // movz w1, #65535 | ||||
| 3514 | // ldrh w0, [x0, #0] | ||||
| 3515 | // cmp w0, w1 | ||||
| 3516 | // > | ||||
| 3517 | // ldrsh w0, [x0, #0] | ||||
| 3518 | // cmn w0, #1 | ||||
| 3519 | // Fundamental, we're relying on the property that (zext LHS) == (zext RHS) | ||||
| 3520 | // if and only if (sext LHS) == (sext RHS). The checks are in place to | ||||
| 3521 | // ensure both the LHS and RHS are truly zero extended and to make sure the | ||||
| 3522 | // transformation is profitable. | ||||
| 3523 | if ((RHSC->getZExtValue() >> 16 == 0) && isa<LoadSDNode>(LHS) && | ||||
| 3524 | cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD && | ||||
| 3525 | cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 && | ||||
| 3526 | LHS.getNode()->hasNUsesOfValue(1, 0)) { | ||||
| 3527 | int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue(); | ||||
| 3528 | if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) { | ||||
| 3529 | SDValue SExt = | ||||
| 3530 | DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS, | ||||
| 3531 | DAG.getValueType(MVT::i16)); | ||||
| 3532 | Cmp = emitComparison(SExt, DAG.getConstant(ValueofRHS, dl, | ||||
| 3533 | RHS.getValueType()), | ||||
| 3534 | CC, dl, DAG); | ||||
| 3535 | AArch64CC = changeIntCCToAArch64CC(CC); | ||||
| 3536 | } | ||||
| 3537 | } | ||||
| 3538 | |||||
| 3539 | if (!Cmp && (RHSC->isZero() || RHSC->isOne())) { | ||||
| 3540 | if ((Cmp = emitConjunction(DAG, LHS, AArch64CC))) { | ||||
| 3541 | if ((CC == ISD::SETNE) ^ RHSC->isZero()) | ||||
| 3542 | AArch64CC = AArch64CC::getInvertedCondCode(AArch64CC); | ||||
| 3543 | } | ||||
| 3544 | } | ||||
| 3545 | } | ||||
| 3546 | |||||
| 3547 | if (!Cmp) { | ||||
| 3548 | Cmp = emitComparison(LHS, RHS, CC, dl, DAG); | ||||
| 3549 | AArch64CC = changeIntCCToAArch64CC(CC); | ||||
| 3550 | } | ||||
| 3551 | AArch64cc = DAG.getConstant(AArch64CC, dl, MVT_CC); | ||||
| 3552 | return Cmp; | ||||
| 3553 | } | ||||
| 3554 | |||||
| 3555 | static std::pair<SDValue, SDValue> | ||||
| 3556 | getAArch64XALUOOp(AArch64CC::CondCode &CC, SDValue Op, SelectionDAG &DAG) { | ||||
| 3557 | assert((Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) &&(static_cast <bool> ((Op.getValueType() == MVT::i32 || Op .getValueType() == MVT::i64) && "Unsupported value type" ) ? void (0) : __assert_fail ("(Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) && \"Unsupported value type\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 3558, __extension__ __PRETTY_FUNCTION__)) | ||||
| 3558 | "Unsupported value type")(static_cast <bool> ((Op.getValueType() == MVT::i32 || Op .getValueType() == MVT::i64) && "Unsupported value type" ) ? void (0) : __assert_fail ("(Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::i64) && \"Unsupported value type\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 3558, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3559 | SDValue Value, Overflow; | ||||
| 3560 | SDLoc DL(Op); | ||||
| 3561 | SDValue LHS = Op.getOperand(0); | ||||
| 3562 | SDValue RHS = Op.getOperand(1); | ||||
| 3563 | unsigned Opc = 0; | ||||
| 3564 | switch (Op.getOpcode()) { | ||||
| 3565 | default: | ||||
| 3566 | llvm_unreachable("Unknown overflow instruction!")::llvm::llvm_unreachable_internal("Unknown overflow instruction!" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 3566); | ||||
| 3567 | case ISD::SADDO: | ||||
| 3568 | Opc = AArch64ISD::ADDS; | ||||
| 3569 | CC = AArch64CC::VS; | ||||
| 3570 | break; | ||||
| 3571 | case ISD::UADDO: | ||||
| 3572 | Opc = AArch64ISD::ADDS; | ||||
| 3573 | CC = AArch64CC::HS; | ||||
| 3574 | break; | ||||
| 3575 | case ISD::SSUBO: | ||||
| 3576 | Opc = AArch64ISD::SUBS; | ||||
| 3577 | CC = AArch64CC::VS; | ||||
| 3578 | break; | ||||
| 3579 | case ISD::USUBO: | ||||
| 3580 | Opc = AArch64ISD::SUBS; | ||||
| 3581 | CC = AArch64CC::LO; | ||||
| 3582 | break; | ||||
| 3583 | // Multiply needs a little bit extra work. | ||||
| 3584 | case ISD::SMULO: | ||||
| 3585 | case ISD::UMULO: { | ||||
| 3586 | CC = AArch64CC::NE; | ||||
| 3587 | bool IsSigned = Op.getOpcode() == ISD::SMULO; | ||||
| 3588 | if (Op.getValueType() == MVT::i32) { | ||||
| 3589 | // Extend to 64-bits, then perform a 64-bit multiply. | ||||
| 3590 | unsigned ExtendOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; | ||||
| 3591 | LHS = DAG.getNode(ExtendOpc, DL, MVT::i64, LHS); | ||||
| 3592 | RHS = DAG.getNode(ExtendOpc, DL, MVT::i64, RHS); | ||||
| 3593 | SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS); | ||||
| 3594 | Value = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); | ||||
| 3595 | |||||
| 3596 | // Check that the result fits into a 32-bit integer. | ||||
| 3597 | SDVTList VTs = DAG.getVTList(MVT::i64, MVT_CC); | ||||
| 3598 | if (IsSigned) { | ||||
| 3599 | // cmp xreg, wreg, sxtw | ||||
| 3600 | SDValue SExtMul = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Value); | ||||
| 3601 | Overflow = | ||||
| 3602 | DAG.getNode(AArch64ISD::SUBS, DL, VTs, Mul, SExtMul).getValue(1); | ||||
| 3603 | } else { | ||||
| 3604 | // tst xreg, #0xffffffff00000000 | ||||
| 3605 | SDValue UpperBits = DAG.getConstant(0xFFFFFFFF00000000, DL, MVT::i64); | ||||
| 3606 | Overflow = | ||||
| 3607 | DAG.getNode(AArch64ISD::ANDS, DL, VTs, Mul, UpperBits).getValue(1); | ||||
| 3608 | } | ||||
| 3609 | break; | ||||
| 3610 | } | ||||
| 3611 | assert(Op.getValueType() == MVT::i64 && "Expected an i64 value type")(static_cast <bool> (Op.getValueType() == MVT::i64 && "Expected an i64 value type") ? void (0) : __assert_fail ("Op.getValueType() == MVT::i64 && \"Expected an i64 value type\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 3611, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3612 | // For the 64 bit multiply | ||||
| 3613 | Value = DAG.getNode(ISD::MUL, DL, MVT::i64, LHS, RHS); | ||||
| 3614 | if (IsSigned) { | ||||
| 3615 | SDValue UpperBits = DAG.getNode(ISD::MULHS, DL, MVT::i64, LHS, RHS); | ||||
| 3616 | SDValue LowerBits = DAG.getNode(ISD::SRA, DL, MVT::i64, Value, | ||||
| 3617 | DAG.getConstant(63, DL, MVT::i64)); | ||||
| 3618 | // It is important that LowerBits is last, otherwise the arithmetic | ||||
| 3619 | // shift will not be folded into the compare (SUBS). | ||||
| 3620 | SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32); | ||||
| 3621 | Overflow = DAG.getNode(AArch64ISD::SUBS, DL, VTs, UpperBits, LowerBits) | ||||
| 3622 | .getValue(1); | ||||
| 3623 | } else { | ||||
| 3624 | SDValue UpperBits = DAG.getNode(ISD::MULHU, DL, MVT::i64, LHS, RHS); | ||||
| 3625 | SDVTList VTs = DAG.getVTList(MVT::i64, MVT::i32); | ||||
| 3626 | Overflow = | ||||
| 3627 | DAG.getNode(AArch64ISD::SUBS, DL, VTs, | ||||
| 3628 | DAG.getConstant(0, DL, MVT::i64), | ||||
| 3629 | UpperBits).getValue(1); | ||||
| 3630 | } | ||||
| 3631 | break; | ||||
| 3632 | } | ||||
| 3633 | } // switch (...) | ||||
| 3634 | |||||
| 3635 | if (Opc) { | ||||
| 3636 | SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::i32); | ||||
| 3637 | |||||
| 3638 | // Emit the AArch64 operation with overflow check. | ||||
| 3639 | Value = DAG.getNode(Opc, DL, VTs, LHS, RHS); | ||||
| 3640 | Overflow = Value.getValue(1); | ||||
| 3641 | } | ||||
| 3642 | return std::make_pair(Value, Overflow); | ||||
| 3643 | } | ||||
| 3644 | |||||
| 3645 | SDValue AArch64TargetLowering::LowerXOR(SDValue Op, SelectionDAG &DAG) const { | ||||
| 3646 | if (useSVEForFixedLengthVectorVT(Op.getValueType(), | ||||
| 3647 | Subtarget->forceStreamingCompatibleSVE())) | ||||
| 3648 | return LowerToScalableOp(Op, DAG); | ||||
| 3649 | |||||
| 3650 | SDValue Sel = Op.getOperand(0); | ||||
| 3651 | SDValue Other = Op.getOperand(1); | ||||
| 3652 | SDLoc dl(Sel); | ||||
| 3653 | |||||
| 3654 | // If the operand is an overflow checking operation, invert the condition | ||||
| 3655 | // code and kill the Not operation. I.e., transform: | ||||
| 3656 | // (xor (overflow_op_bool, 1)) | ||||
| 3657 | // --> | ||||
| 3658 | // (csel 1, 0, invert(cc), overflow_op_bool) | ||||
| 3659 | // ... which later gets transformed to just a cset instruction with an | ||||
| 3660 | // inverted condition code, rather than a cset + eor sequence. | ||||
| 3661 | if (isOneConstant(Other) && ISD::isOverflowIntrOpRes(Sel)) { | ||||
| 3662 | // Only lower legal XALUO ops. | ||||
| 3663 | if (!DAG.getTargetLoweringInfo().isTypeLegal(Sel->getValueType(0))) | ||||
| 3664 | return SDValue(); | ||||
| 3665 | |||||
| 3666 | SDValue TVal = DAG.getConstant(1, dl, MVT::i32); | ||||
| 3667 | SDValue FVal = DAG.getConstant(0, dl, MVT::i32); | ||||
| 3668 | AArch64CC::CondCode CC; | ||||
| 3669 | SDValue Value, Overflow; | ||||
| 3670 | std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Sel.getValue(0), DAG); | ||||
| 3671 | SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32); | ||||
| 3672 | return DAG.getNode(AArch64ISD::CSEL, dl, Op.getValueType(), TVal, FVal, | ||||
| 3673 | CCVal, Overflow); | ||||
| 3674 | } | ||||
| 3675 | // If neither operand is a SELECT_CC, give up. | ||||
| 3676 | if (Sel.getOpcode() != ISD::SELECT_CC) | ||||
| 3677 | std::swap(Sel, Other); | ||||
| 3678 | if (Sel.getOpcode() != ISD::SELECT_CC) | ||||
| 3679 | return Op; | ||||
| 3680 | |||||
| 3681 | // The folding we want to perform is: | ||||
| 3682 | // (xor x, (select_cc a, b, cc, 0, -1) ) | ||||
| 3683 | // --> | ||||
| 3684 | // (csel x, (xor x, -1), cc ...) | ||||
| 3685 | // | ||||
| 3686 | // The latter will get matched to a CSINV instruction. | ||||
| 3687 | |||||
| 3688 | ISD::CondCode CC = cast<CondCodeSDNode>(Sel.getOperand(4))->get(); | ||||
| 3689 | SDValue LHS = Sel.getOperand(0); | ||||
| 3690 | SDValue RHS = Sel.getOperand(1); | ||||
| 3691 | SDValue TVal = Sel.getOperand(2); | ||||
| 3692 | SDValue FVal = Sel.getOperand(3); | ||||
| 3693 | |||||
| 3694 | // FIXME: This could be generalized to non-integer comparisons. | ||||
| 3695 | if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64) | ||||
| 3696 | return Op; | ||||
| 3697 | |||||
| 3698 | ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal); | ||||
| 3699 | ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal); | ||||
| 3700 | |||||
| 3701 | // The values aren't constants, this isn't the pattern we're looking for. | ||||
| 3702 | if (!CFVal || !CTVal) | ||||
| 3703 | return Op; | ||||
| 3704 | |||||
| 3705 | // We can commute the SELECT_CC by inverting the condition. This | ||||
| 3706 | // might be needed to make this fit into a CSINV pattern. | ||||
| 3707 | if (CTVal->isAllOnes() && CFVal->isZero()) { | ||||
| 3708 | std::swap(TVal, FVal); | ||||
| 3709 | std::swap(CTVal, CFVal); | ||||
| 3710 | CC = ISD::getSetCCInverse(CC, LHS.getValueType()); | ||||
| 3711 | } | ||||
| 3712 | |||||
| 3713 | // If the constants line up, perform the transform! | ||||
| 3714 | if (CTVal->isZero() && CFVal->isAllOnes()) { | ||||
| 3715 | SDValue CCVal; | ||||
| 3716 | SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl); | ||||
| 3717 | |||||
| 3718 | FVal = Other; | ||||
| 3719 | TVal = DAG.getNode(ISD::XOR, dl, Other.getValueType(), Other, | ||||
| 3720 | DAG.getConstant(-1ULL, dl, Other.getValueType())); | ||||
| 3721 | |||||
| 3722 | return DAG.getNode(AArch64ISD::CSEL, dl, Sel.getValueType(), FVal, TVal, | ||||
| 3723 | CCVal, Cmp); | ||||
| 3724 | } | ||||
| 3725 | |||||
| 3726 | return Op; | ||||
| 3727 | } | ||||
| 3728 | |||||
| 3729 | // If Invert is false, sets 'C' bit of NZCV to 0 if value is 0, else sets 'C' | ||||
| 3730 | // bit to 1. If Invert is true, sets 'C' bit of NZCV to 1 if value is 0, else | ||||
| 3731 | // sets 'C' bit to 0. | ||||
| 3732 | static SDValue valueToCarryFlag(SDValue Value, SelectionDAG &DAG, bool Invert) { | ||||
| 3733 | SDLoc DL(Value); | ||||
| 3734 | EVT VT = Value.getValueType(); | ||||
| 3735 | SDValue Op0 = Invert ? DAG.getConstant(0, DL, VT) : Value; | ||||
| 3736 | SDValue Op1 = Invert ? Value : DAG.getConstant(1, DL, VT); | ||||
| 3737 | SDValue Cmp = | ||||
| 3738 | DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::Glue), Op0, Op1); | ||||
| 3739 | return Cmp.getValue(1); | ||||
| 3740 | } | ||||
| 3741 | |||||
| 3742 | // If Invert is false, value is 1 if 'C' bit of NZCV is 1, else 0. | ||||
| 3743 | // If Invert is true, value is 0 if 'C' bit of NZCV is 1, else 1. | ||||
| 3744 | static SDValue carryFlagToValue(SDValue Flag, EVT VT, SelectionDAG &DAG, | ||||
| 3745 | bool Invert) { | ||||
| 3746 | assert(Flag.getResNo() == 1)(static_cast <bool> (Flag.getResNo() == 1) ? void (0) : __assert_fail ("Flag.getResNo() == 1", "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp" , 3746, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3747 | SDLoc DL(Flag); | ||||
| 3748 | SDValue Zero = DAG.getConstant(0, DL, VT); | ||||
| 3749 | SDValue One = DAG.getConstant(1, DL, VT); | ||||
| 3750 | unsigned Cond = Invert ? AArch64CC::LO : AArch64CC::HS; | ||||
| 3751 | SDValue CC = DAG.getConstant(Cond, DL, MVT::i32); | ||||
| 3752 | return DAG.getNode(AArch64ISD::CSEL, DL, VT, One, Zero, CC, Flag); | ||||
| 3753 | } | ||||
| 3754 | |||||
| 3755 | // Value is 1 if 'V' bit of NZCV is 1, else 0 | ||||
| 3756 | static SDValue overflowFlagToValue(SDValue Flag, EVT VT, SelectionDAG &DAG) { | ||||
| 3757 | assert(Flag.getResNo() == 1)(static_cast <bool> (Flag.getResNo() == 1) ? void (0) : __assert_fail ("Flag.getResNo() == 1", "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp" , 3757, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3758 | SDLoc DL(Flag); | ||||
| 3759 | SDValue Zero = DAG.getConstant(0, DL, VT); | ||||
| 3760 | SDValue One = DAG.getConstant(1, DL, VT); | ||||
| 3761 | SDValue CC = DAG.getConstant(AArch64CC::VS, DL, MVT::i32); | ||||
| 3762 | return DAG.getNode(AArch64ISD::CSEL, DL, VT, One, Zero, CC, Flag); | ||||
| 3763 | } | ||||
| 3764 | |||||
| 3765 | // This lowering is inefficient, but it will get cleaned up by | ||||
| 3766 | // `foldOverflowCheck` | ||||
| 3767 | static SDValue lowerADDSUBCARRY(SDValue Op, SelectionDAG &DAG, unsigned Opcode, | ||||
| 3768 | bool IsSigned) { | ||||
| 3769 | EVT VT0 = Op.getValue(0).getValueType(); | ||||
| 3770 | EVT VT1 = Op.getValue(1).getValueType(); | ||||
| 3771 | |||||
| 3772 | if (VT0 != MVT::i32 && VT0 != MVT::i64) | ||||
| 3773 | return SDValue(); | ||||
| 3774 | |||||
| 3775 | bool InvertCarry = Opcode == AArch64ISD::SBCS; | ||||
| 3776 | SDValue OpLHS = Op.getOperand(0); | ||||
| 3777 | SDValue OpRHS = Op.getOperand(1); | ||||
| 3778 | SDValue OpCarryIn = valueToCarryFlag(Op.getOperand(2), DAG, InvertCarry); | ||||
| 3779 | |||||
| 3780 | SDLoc DL(Op); | ||||
| 3781 | SDVTList VTs = DAG.getVTList(VT0, VT1); | ||||
| 3782 | |||||
| 3783 | SDValue Sum = DAG.getNode(Opcode, DL, DAG.getVTList(VT0, MVT::Glue), OpLHS, | ||||
| 3784 | OpRHS, OpCarryIn); | ||||
| 3785 | |||||
| 3786 | SDValue OutFlag = | ||||
| 3787 | IsSigned ? overflowFlagToValue(Sum.getValue(1), VT1, DAG) | ||||
| 3788 | : carryFlagToValue(Sum.getValue(1), VT1, DAG, InvertCarry); | ||||
| 3789 | |||||
| 3790 | return DAG.getNode(ISD::MERGE_VALUES, DL, VTs, Sum, OutFlag); | ||||
| 3791 | } | ||||
| 3792 | |||||
| 3793 | static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) { | ||||
| 3794 | // Let legalize expand this if it isn't a legal type yet. | ||||
| 3795 | if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType())) | ||||
| 3796 | return SDValue(); | ||||
| 3797 | |||||
| 3798 | SDLoc dl(Op); | ||||
| 3799 | AArch64CC::CondCode CC; | ||||
| 3800 | // The actual operation that sets the overflow or carry flag. | ||||
| 3801 | SDValue Value, Overflow; | ||||
| 3802 | std::tie(Value, Overflow) = getAArch64XALUOOp(CC, Op, DAG); | ||||
| 3803 | |||||
| 3804 | // We use 0 and 1 as false and true values. | ||||
| 3805 | SDValue TVal = DAG.getConstant(1, dl, MVT::i32); | ||||
| 3806 | SDValue FVal = DAG.getConstant(0, dl, MVT::i32); | ||||
| 3807 | |||||
| 3808 | // We use an inverted condition, because the conditional select is inverted | ||||
| 3809 | // too. This will allow it to be selected to a single instruction: | ||||
| 3810 | // CSINC Wd, WZR, WZR, invert(cond). | ||||
| 3811 | SDValue CCVal = DAG.getConstant(getInvertedCondCode(CC), dl, MVT::i32); | ||||
| 3812 | Overflow = DAG.getNode(AArch64ISD::CSEL, dl, MVT::i32, FVal, TVal, | ||||
| 3813 | CCVal, Overflow); | ||||
| 3814 | |||||
| 3815 | SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); | ||||
| 3816 | return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow); | ||||
| 3817 | } | ||||
| 3818 | |||||
| 3819 | // Prefetch operands are: | ||||
| 3820 | // 1: Address to prefetch | ||||
| 3821 | // 2: bool isWrite | ||||
| 3822 | // 3: int locality (0 = no locality ... 3 = extreme locality) | ||||
| 3823 | // 4: bool isDataCache | ||||
| 3824 | static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) { | ||||
| 3825 | SDLoc DL(Op); | ||||
| 3826 | unsigned IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); | ||||
| 3827 | unsigned Locality = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue(); | ||||
| 3828 | unsigned IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); | ||||
| 3829 | |||||
| 3830 | bool IsStream = !Locality; | ||||
| 3831 | // When the locality number is set | ||||
| 3832 | if (Locality) { | ||||
| 3833 | // The front-end should have filtered out the out-of-range values | ||||
| 3834 | assert(Locality <= 3 && "Prefetch locality out-of-range")(static_cast <bool> (Locality <= 3 && "Prefetch locality out-of-range" ) ? void (0) : __assert_fail ("Locality <= 3 && \"Prefetch locality out-of-range\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 3834, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3835 | // The locality degree is the opposite of the cache speed. | ||||
| 3836 | // Put the number the other way around. | ||||
| 3837 | // The encoding starts at 0 for level 1 | ||||
| 3838 | Locality = 3 - Locality; | ||||
| 3839 | } | ||||
| 3840 | |||||
| 3841 | // built the mask value encoding the expected behavior. | ||||
| 3842 | unsigned PrfOp = (IsWrite << 4) | // Load/Store bit | ||||
| 3843 | (!IsData << 3) | // IsDataCache bit | ||||
| 3844 | (Locality << 1) | // Cache level bits | ||||
| 3845 | (unsigned)IsStream; // Stream bit | ||||
| 3846 | return DAG.getNode(AArch64ISD::PREFETCH, DL, MVT::Other, Op.getOperand(0), | ||||
| 3847 | DAG.getTargetConstant(PrfOp, DL, MVT::i32), | ||||
| 3848 | Op.getOperand(1)); | ||||
| 3849 | } | ||||
| 3850 | |||||
| 3851 | SDValue AArch64TargetLowering::LowerFP_EXTEND(SDValue Op, | ||||
| 3852 | SelectionDAG &DAG) const { | ||||
| 3853 | EVT VT = Op.getValueType(); | ||||
| 3854 | if (VT.isScalableVector()) | ||||
| 3855 | return LowerToPredicatedOp(Op, DAG, AArch64ISD::FP_EXTEND_MERGE_PASSTHRU); | ||||
| 3856 | |||||
| 3857 | if (useSVEForFixedLengthVectorVT(VT)) | ||||
| 3858 | return LowerFixedLengthFPExtendToSVE(Op, DAG); | ||||
| 3859 | |||||
| 3860 | assert(Op.getValueType() == MVT::f128 && "Unexpected lowering")(static_cast <bool> (Op.getValueType() == MVT::f128 && "Unexpected lowering") ? void (0) : __assert_fail ("Op.getValueType() == MVT::f128 && \"Unexpected lowering\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 3860, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3861 | return SDValue(); | ||||
| 3862 | } | ||||
| 3863 | |||||
| 3864 | SDValue AArch64TargetLowering::LowerFP_ROUND(SDValue Op, | ||||
| 3865 | SelectionDAG &DAG) const { | ||||
| 3866 | if (Op.getValueType().isScalableVector()) | ||||
| 3867 | return LowerToPredicatedOp(Op, DAG, AArch64ISD::FP_ROUND_MERGE_PASSTHRU); | ||||
| 3868 | |||||
| 3869 | bool IsStrict = Op->isStrictFPOpcode(); | ||||
| 3870 | SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0); | ||||
| 3871 | EVT SrcVT = SrcVal.getValueType(); | ||||
| 3872 | |||||
| 3873 | if (useSVEForFixedLengthVectorVT(SrcVT, | ||||
| 3874 | Subtarget->forceStreamingCompatibleSVE())) | ||||
| 3875 | return LowerFixedLengthFPRoundToSVE(Op, DAG); | ||||
| 3876 | |||||
| 3877 | if (SrcVT != MVT::f128) { | ||||
| 3878 | // Expand cases where the input is a vector bigger than NEON. | ||||
| 3879 | if (useSVEForFixedLengthVectorVT(SrcVT)) | ||||
| 3880 | return SDValue(); | ||||
| 3881 | |||||
| 3882 | // It's legal except when f128 is involved | ||||
| 3883 | return Op; | ||||
| 3884 | } | ||||
| 3885 | |||||
| 3886 | return SDValue(); | ||||
| 3887 | } | ||||
| 3888 | |||||
| 3889 | SDValue AArch64TargetLowering::LowerVectorFP_TO_INT(SDValue Op, | ||||
| 3890 | SelectionDAG &DAG) const { | ||||
| 3891 | // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp. | ||||
| 3892 | // Any additional optimization in this function should be recorded | ||||
| 3893 | // in the cost tables. | ||||
| 3894 | bool IsStrict = Op->isStrictFPOpcode(); | ||||
| 3895 | EVT InVT = Op.getOperand(IsStrict ? 1 : 0).getValueType(); | ||||
| 3896 | EVT VT = Op.getValueType(); | ||||
| 3897 | |||||
| 3898 | if (VT.isScalableVector()) { | ||||
| 3899 | unsigned Opcode = Op.getOpcode() == ISD::FP_TO_UINT | ||||
| 3900 | ? AArch64ISD::FCVTZU_MERGE_PASSTHRU | ||||
| 3901 | : AArch64ISD::FCVTZS_MERGE_PASSTHRU; | ||||
| 3902 | return LowerToPredicatedOp(Op, DAG, Opcode); | ||||
| 3903 | } | ||||
| 3904 | |||||
| 3905 | if (useSVEForFixedLengthVectorVT(VT, | ||||
| 3906 | Subtarget->forceStreamingCompatibleSVE()) || | ||||
| 3907 | useSVEForFixedLengthVectorVT(InVT, | ||||
| 3908 | Subtarget->forceStreamingCompatibleSVE())) | ||||
| 3909 | return LowerFixedLengthFPToIntToSVE(Op, DAG); | ||||
| 3910 | |||||
| 3911 | unsigned NumElts = InVT.getVectorNumElements(); | ||||
| 3912 | |||||
| 3913 | // f16 conversions are promoted to f32 when full fp16 is not supported. | ||||
| 3914 | if (InVT.getVectorElementType() == MVT::f16 && | ||||
| 3915 | !Subtarget->hasFullFP16()) { | ||||
| 3916 | MVT NewVT = MVT::getVectorVT(MVT::f32, NumElts); | ||||
| 3917 | SDLoc dl(Op); | ||||
| 3918 | if (IsStrict) { | ||||
| 3919 | SDValue Ext = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {NewVT, MVT::Other}, | ||||
| 3920 | {Op.getOperand(0), Op.getOperand(1)}); | ||||
| 3921 | return DAG.getNode(Op.getOpcode(), dl, {VT, MVT::Other}, | ||||
| 3922 | {Ext.getValue(1), Ext.getValue(0)}); | ||||
| 3923 | } | ||||
| 3924 | return DAG.getNode( | ||||
| 3925 | Op.getOpcode(), dl, Op.getValueType(), | ||||
| 3926 | DAG.getNode(ISD::FP_EXTEND, dl, NewVT, Op.getOperand(0))); | ||||
| 3927 | } | ||||
| 3928 | |||||
| 3929 | uint64_t VTSize = VT.getFixedSizeInBits(); | ||||
| 3930 | uint64_t InVTSize = InVT.getFixedSizeInBits(); | ||||
| 3931 | if (VTSize < InVTSize) { | ||||
| 3932 | SDLoc dl(Op); | ||||
| 3933 | if (IsStrict) { | ||||
| 3934 | InVT = InVT.changeVectorElementTypeToInteger(); | ||||
| 3935 | SDValue Cv = DAG.getNode(Op.getOpcode(), dl, {InVT, MVT::Other}, | ||||
| 3936 | {Op.getOperand(0), Op.getOperand(1)}); | ||||
| 3937 | SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, VT, Cv); | ||||
| 3938 | return DAG.getMergeValues({Trunc, Cv.getValue(1)}, dl); | ||||
| 3939 | } | ||||
| 3940 | SDValue Cv = | ||||
| 3941 | DAG.getNode(Op.getOpcode(), dl, InVT.changeVectorElementTypeToInteger(), | ||||
| 3942 | Op.getOperand(0)); | ||||
| 3943 | return DAG.getNode(ISD::TRUNCATE, dl, VT, Cv); | ||||
| 3944 | } | ||||
| 3945 | |||||
| 3946 | if (VTSize > InVTSize) { | ||||
| 3947 | SDLoc dl(Op); | ||||
| 3948 | MVT ExtVT = | ||||
| 3949 | MVT::getVectorVT(MVT::getFloatingPointVT(VT.getScalarSizeInBits()), | ||||
| 3950 | VT.getVectorNumElements()); | ||||
| 3951 | if (IsStrict) { | ||||
| 3952 | SDValue Ext = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {ExtVT, MVT::Other}, | ||||
| 3953 | {Op.getOperand(0), Op.getOperand(1)}); | ||||
| 3954 | return DAG.getNode(Op.getOpcode(), dl, {VT, MVT::Other}, | ||||
| 3955 | {Ext.getValue(1), Ext.getValue(0)}); | ||||
| 3956 | } | ||||
| 3957 | SDValue Ext = DAG.getNode(ISD::FP_EXTEND, dl, ExtVT, Op.getOperand(0)); | ||||
| 3958 | return DAG.getNode(Op.getOpcode(), dl, VT, Ext); | ||||
| 3959 | } | ||||
| 3960 | |||||
| 3961 | // Use a scalar operation for conversions between single-element vectors of | ||||
| 3962 | // the same size. | ||||
| 3963 | if (NumElts == 1) { | ||||
| 3964 | SDLoc dl(Op); | ||||
| 3965 | SDValue Extract = DAG.getNode( | ||||
| 3966 | ISD::EXTRACT_VECTOR_ELT, dl, InVT.getScalarType(), | ||||
| 3967 | Op.getOperand(IsStrict ? 1 : 0), DAG.getConstant(0, dl, MVT::i64)); | ||||
| 3968 | EVT ScalarVT = VT.getScalarType(); | ||||
| 3969 | if (IsStrict) | ||||
| 3970 | return DAG.getNode(Op.getOpcode(), dl, {ScalarVT, MVT::Other}, | ||||
| 3971 | {Op.getOperand(0), Extract}); | ||||
| 3972 | return DAG.getNode(Op.getOpcode(), dl, ScalarVT, Extract); | ||||
| 3973 | } | ||||
| 3974 | |||||
| 3975 | // Type changing conversions are illegal. | ||||
| 3976 | return Op; | ||||
| 3977 | } | ||||
| 3978 | |||||
| 3979 | SDValue AArch64TargetLowering::LowerFP_TO_INT(SDValue Op, | ||||
| 3980 | SelectionDAG &DAG) const { | ||||
| 3981 | bool IsStrict = Op->isStrictFPOpcode(); | ||||
| 3982 | SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0); | ||||
| 3983 | |||||
| 3984 | if (SrcVal.getValueType().isVector()) | ||||
| 3985 | return LowerVectorFP_TO_INT(Op, DAG); | ||||
| 3986 | |||||
| 3987 | // f16 conversions are promoted to f32 when full fp16 is not supported. | ||||
| 3988 | if (SrcVal.getValueType() == MVT::f16 && !Subtarget->hasFullFP16()) { | ||||
| 3989 | SDLoc dl(Op); | ||||
| 3990 | if (IsStrict) { | ||||
| 3991 | SDValue Ext = | ||||
| 3992 | DAG.getNode(ISD::STRICT_FP_EXTEND, dl, {MVT::f32, MVT::Other}, | ||||
| 3993 | {Op.getOperand(0), SrcVal}); | ||||
| 3994 | return DAG.getNode(Op.getOpcode(), dl, {Op.getValueType(), MVT::Other}, | ||||
| 3995 | {Ext.getValue(1), Ext.getValue(0)}); | ||||
| 3996 | } | ||||
| 3997 | return DAG.getNode( | ||||
| 3998 | Op.getOpcode(), dl, Op.getValueType(), | ||||
| 3999 | DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, SrcVal)); | ||||
| 4000 | } | ||||
| 4001 | |||||
| 4002 | if (SrcVal.getValueType() != MVT::f128) { | ||||
| 4003 | // It's legal except when f128 is involved | ||||
| 4004 | return Op; | ||||
| 4005 | } | ||||
| 4006 | |||||
| 4007 | return SDValue(); | ||||
| 4008 | } | ||||
| 4009 | |||||
| 4010 | SDValue | ||||
| 4011 | AArch64TargetLowering::LowerVectorFP_TO_INT_SAT(SDValue Op, | ||||
| 4012 | SelectionDAG &DAG) const { | ||||
| 4013 | // AArch64 FP-to-int conversions saturate to the destination element size, so | ||||
| 4014 | // we can lower common saturating conversions to simple instructions. | ||||
| 4015 | SDValue SrcVal = Op.getOperand(0); | ||||
| 4016 | EVT SrcVT = SrcVal.getValueType(); | ||||
| 4017 | EVT DstVT = Op.getValueType(); | ||||
| 4018 | EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); | ||||
| 4019 | |||||
| 4020 | uint64_t SrcElementWidth = SrcVT.getScalarSizeInBits(); | ||||
| 4021 | uint64_t DstElementWidth = DstVT.getScalarSizeInBits(); | ||||
| 4022 | uint64_t SatWidth = SatVT.getScalarSizeInBits(); | ||||
| 4023 | assert(SatWidth <= DstElementWidth &&(static_cast <bool> (SatWidth <= DstElementWidth && "Saturation width cannot exceed result width") ? void (0) : __assert_fail ("SatWidth <= DstElementWidth && \"Saturation width cannot exceed result width\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 4024, __extension__ __PRETTY_FUNCTION__)) | ||||
| 4024 | "Saturation width cannot exceed result width")(static_cast <bool> (SatWidth <= DstElementWidth && "Saturation width cannot exceed result width") ? void (0) : __assert_fail ("SatWidth <= DstElementWidth && \"Saturation width cannot exceed result width\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 4024, __extension__ __PRETTY_FUNCTION__)); | ||||
| 4025 | |||||
| 4026 | // TODO: Consider lowering to SVE operations, as in LowerVectorFP_TO_INT. | ||||
| 4027 | // Currently, the `llvm.fpto[su]i.sat.*` intrinsics don't accept scalable | ||||
| 4028 | // types, so this is hard to reach. | ||||
| 4029 | if (DstVT.isScalableVector()) | ||||
| 4030 | return SDValue(); | ||||
| 4031 | |||||
| 4032 | EVT SrcElementVT = SrcVT.getVectorElementType(); | ||||
| 4033 | |||||
| 4034 | // In the absence of FP16 support, promote f16 to f32 and saturate the result. | ||||
| 4035 | if (SrcElementVT == MVT::f16 && | ||||
| 4036 | (!Subtarget->hasFullFP16() || DstElementWidth > 16)) { | ||||
| 4037 | MVT F32VT = MVT::getVectorVT(MVT::f32, SrcVT.getVectorNumElements()); | ||||
| 4038 | SrcVal = DAG.getNode(ISD::FP_EXTEND, SDLoc(Op), F32VT, SrcVal); | ||||
| 4039 | SrcVT = F32VT; | ||||
| 4040 | SrcElementVT = MVT::f32; | ||||
| 4041 | SrcElementWidth = 32; | ||||
| 4042 | } else if (SrcElementVT != MVT::f64 && SrcElementVT != MVT::f32 && | ||||
| 4043 | SrcElementVT != MVT::f16) | ||||
| 4044 | return SDValue(); | ||||
| 4045 | |||||
| 4046 | SDLoc DL(Op); | ||||
| 4047 | // Cases that we can emit directly. | ||||
| 4048 | if (SrcElementWidth == DstElementWidth && SrcElementWidth == SatWidth) | ||||
| 4049 | return DAG.getNode(Op.getOpcode(), DL, DstVT, SrcVal, | ||||
| 4050 | DAG.getValueType(DstVT.getScalarType())); | ||||
| 4051 | |||||
| 4052 | // Otherwise we emit a cvt that saturates to a higher BW, and saturate the | ||||
| 4053 | // result. This is only valid if the legal cvt is larger than the saturate | ||||
| 4054 | // width. For double, as we don't have MIN/MAX, it can be simpler to scalarize | ||||
| 4055 | // (at least until sqxtn is selected). | ||||
| 4056 | if (SrcElementWidth < SatWidth || SrcElementVT == MVT::f64) | ||||
| 4057 | return SDValue(); | ||||
| 4058 | |||||
| 4059 | EVT IntVT = SrcVT.changeVectorElementTypeToInteger(); | ||||
| 4060 | SDValue NativeCvt = DAG.getNode(Op.getOpcode(), DL, IntVT, SrcVal, | ||||
| 4061 | DAG.getValueType(IntVT.getScalarType())); | ||||
| 4062 | SDValue Sat; | ||||
| 4063 | if (Op.getOpcode() == ISD::FP_TO_SINT_SAT) { | ||||
| 4064 | SDValue MinC = DAG.getConstant( | ||||
| 4065 | APInt::getSignedMaxValue(SatWidth).sext(SrcElementWidth), DL, IntVT); | ||||
| 4066 | SDValue Min = DAG.getNode(ISD::SMIN, DL, IntVT, NativeCvt, MinC); | ||||
| 4067 | SDValue MaxC = DAG.getConstant( | ||||
| 4068 | APInt::getSignedMinValue(SatWidth).sext(SrcElementWidth), DL, IntVT); | ||||
| 4069 | Sat = DAG.getNode(ISD::SMAX, DL, IntVT, Min, MaxC); | ||||
| 4070 | } else { | ||||
| 4071 | SDValue MinC = DAG.getConstant( | ||||
| 4072 | APInt::getAllOnesValue(SatWidth).zext(SrcElementWidth), DL, IntVT); | ||||
| 4073 | Sat = DAG.getNode(ISD::UMIN, DL, IntVT, NativeCvt, MinC); | ||||
| 4074 | } | ||||
| 4075 | |||||
| 4076 | return DAG.getNode(ISD::TRUNCATE, DL, DstVT, Sat); | ||||
| 4077 | } | ||||
| 4078 | |||||
| 4079 | SDValue AArch64TargetLowering::LowerFP_TO_INT_SAT(SDValue Op, | ||||
| 4080 | SelectionDAG &DAG) const { | ||||
| 4081 | // AArch64 FP-to-int conversions saturate to the destination register size, so | ||||
| 4082 | // we can lower common saturating conversions to simple instructions. | ||||
| 4083 | SDValue SrcVal = Op.getOperand(0); | ||||
| 4084 | EVT SrcVT = SrcVal.getValueType(); | ||||
| 4085 | |||||
| 4086 | if (SrcVT.isVector()) | ||||
| 4087 | return LowerVectorFP_TO_INT_SAT(Op, DAG); | ||||
| 4088 | |||||
| 4089 | EVT DstVT = Op.getValueType(); | ||||
| 4090 | EVT SatVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); | ||||
| 4091 | uint64_t SatWidth = SatVT.getScalarSizeInBits(); | ||||
| 4092 | uint64_t DstWidth = DstVT.getScalarSizeInBits(); | ||||
| 4093 | assert(SatWidth <= DstWidth && "Saturation width cannot exceed result width")(static_cast <bool> (SatWidth <= DstWidth && "Saturation width cannot exceed result width") ? void (0) : __assert_fail ("SatWidth <= DstWidth && \"Saturation width cannot exceed result width\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 4093, __extension__ __PRETTY_FUNCTION__)); | ||||
| 4094 | |||||
| 4095 | // In the absence of FP16 support, promote f16 to f32 and saturate the result. | ||||
| 4096 | if (SrcVT == MVT::f16 && !Subtarget->hasFullFP16()) { | ||||
| 4097 | SrcVal = DAG.getNode(ISD::FP_EXTEND, SDLoc(Op), MVT::f32, SrcVal); | ||||
| 4098 | SrcVT = MVT::f32; | ||||
| 4099 | } else if (SrcVT != MVT::f64 && SrcVT != MVT::f32 && SrcVT != MVT::f16) | ||||
| 4100 | return SDValue(); | ||||
| 4101 | |||||
| 4102 | SDLoc DL(Op); | ||||
| 4103 | // Cases that we can emit directly. | ||||
| 4104 | if ((SrcVT == MVT::f64 || SrcVT == MVT::f32 || | ||||
| 4105 | (SrcVT == MVT::f16 && Subtarget->hasFullFP16())) && | ||||
| 4106 | DstVT == SatVT && (DstVT == MVT::i64 || DstVT == MVT::i32)) | ||||
| 4107 | return DAG.getNode(Op.getOpcode(), DL, DstVT, SrcVal, | ||||
| 4108 | DAG.getValueType(DstVT)); | ||||
| 4109 | |||||
| 4110 | // Otherwise we emit a cvt that saturates to a higher BW, and saturate the | ||||
| 4111 | // result. This is only valid if the legal cvt is larger than the saturate | ||||
| 4112 | // width. | ||||
| 4113 | if (DstWidth < SatWidth) | ||||
| 4114 | return SDValue(); | ||||
| 4115 | |||||
| 4116 | SDValue NativeCvt = | ||||
| 4117 | DAG.getNode(Op.getOpcode(), DL, DstVT, SrcVal, DAG.getValueType(DstVT)); | ||||
| 4118 | SDValue Sat; | ||||
| 4119 | if (Op.getOpcode() == ISD::FP_TO_SINT_SAT) { | ||||
| 4120 | SDValue MinC = DAG.getConstant( | ||||
| 4121 | APInt::getSignedMaxValue(SatWidth).sext(DstWidth), DL, DstVT); | ||||
| 4122 | SDValue Min = DAG.getNode(ISD::SMIN, DL, DstVT, NativeCvt, MinC); | ||||
| 4123 | SDValue MaxC = DAG.getConstant( | ||||
| 4124 | APInt::getSignedMinValue(SatWidth).sext(DstWidth), DL, DstVT); | ||||
| 4125 | Sat = DAG.getNode(ISD::SMAX, DL, DstVT, Min, MaxC); | ||||
| 4126 | } else { | ||||
| 4127 | SDValue MinC = DAG.getConstant( | ||||
| 4128 | APInt::getAllOnesValue(SatWidth).zext(DstWidth), DL, DstVT); | ||||
| 4129 | Sat = DAG.getNode(ISD::UMIN, DL, DstVT, NativeCvt, MinC); | ||||
| 4130 | } | ||||
| 4131 | |||||
| 4132 | return DAG.getNode(ISD::TRUNCATE, DL, DstVT, Sat); | ||||
| 4133 | } | ||||
| 4134 | |||||
| 4135 | SDValue AArch64TargetLowering::LowerVectorINT_TO_FP(SDValue Op, | ||||
| 4136 | SelectionDAG &DAG) const { | ||||
| 4137 | // Warning: We maintain cost tables in AArch64TargetTransformInfo.cpp. | ||||
| 4138 | // Any additional optimization in this function should be recorded | ||||
| 4139 | // in the cost tables. | ||||
| 4140 | bool IsStrict = Op->isStrictFPOpcode(); | ||||
| 4141 | EVT VT = Op.getValueType(); | ||||
| 4142 | SDLoc dl(Op); | ||||
| 4143 | SDValue In = Op.getOperand(IsStrict ? 1 : 0); | ||||
| 4144 | EVT InVT = In.getValueType(); | ||||
| 4145 | unsigned Opc = Op.getOpcode(); | ||||
| 4146 | bool IsSigned = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP; | ||||
| 4147 | |||||
| 4148 | if (VT.isScalableVector()) { | ||||
| 4149 | if (InVT.getVectorElementType() == MVT::i1) { | ||||
| 4150 | // We can't directly extend an SVE predicate; extend it first. | ||||
| 4151 | unsigned CastOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; | ||||
| 4152 | EVT CastVT = getPromotedVTForPredicate(InVT); | ||||
| 4153 | In = DAG.getNode(CastOpc, dl, CastVT, In); | ||||
| 4154 | return DAG.getNode(Opc, dl, VT, In); | ||||
| 4155 | } | ||||
| 4156 | |||||
| 4157 | unsigned Opcode = IsSigned ? AArch64ISD::SINT_TO_FP_MERGE_PASSTHRU | ||||
| 4158 | : AArch64ISD::UINT_TO_FP_MERGE_PASSTHRU; | ||||
| 4159 | return LowerToPredicatedOp(Op, DAG, Opcode); | ||||
| 4160 | } | ||||
| 4161 | |||||
| 4162 | if (useSVEForFixedLengthVectorVT(VT, | ||||
| 4163 | Subtarget->forceStreamingCompatibleSVE()) || | ||||
| 4164 | useSVEForFixedLengthVectorVT(InVT, | ||||
| 4165 | Subtarget->forceStreamingCompatibleSVE())) | ||||
| 4166 | return LowerFixedLengthIntToFPToSVE(Op, DAG); | ||||
| 4167 | |||||
| 4168 | uint64_t VTSize = VT.getFixedSizeInBits(); | ||||
| 4169 | uint64_t InVTSize = InVT.getFixedSizeInBits(); | ||||
| 4170 | if (VTSize < InVTSize) { | ||||
| 4171 | MVT CastVT = | ||||
| 4172 | MVT::getVectorVT(MVT::getFloatingPointVT(InVT.getScalarSizeInBits()), | ||||
| 4173 | InVT.getVectorNumElements()); | ||||
| 4174 | if (IsStrict) { | ||||
| 4175 | In = DAG.getNode(Opc, dl, {CastVT, MVT::Other}, | ||||
| 4176 | {Op.getOperand(0), In}); | ||||
| 4177 | return DAG.getNode( | ||||
| 4178 | ISD::STRICT_FP_ROUND, dl, {VT, MVT::Other}, | ||||
| 4179 | {In.getValue(1), In.getValue(0), DAG.getIntPtrConstant(0, dl)}); | ||||
| 4180 | } | ||||
| 4181 | In = DAG.getNode(Opc, dl, CastVT, In); | ||||
| 4182 | return DAG.getNode(ISD::FP_ROUND, dl, VT, In, | ||||
| 4183 | DAG.getIntPtrConstant(0, dl, /*isTarget=*/true)); | ||||
| 4184 | } | ||||
| 4185 | |||||
| 4186 | if (VTSize > InVTSize) { | ||||
| 4187 | unsigned CastOpc = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; | ||||
| 4188 | EVT CastVT = VT.changeVectorElementTypeToInteger(); | ||||
| 4189 | In = DAG.getNode(CastOpc, dl, CastVT, In); | ||||
| 4190 | if (IsStrict) | ||||
| 4191 | return DAG.getNode(Opc, dl, {VT, MVT::Other}, {Op.getOperand(0), In}); | ||||
| 4192 | return DAG.getNode(Opc, dl, VT, In); | ||||
| 4193 | } | ||||
| 4194 | |||||
| 4195 | // Use a scalar operation for conversions between single-element vectors of | ||||
| 4196 | // the same size. | ||||
| 4197 | if (VT.getVectorNumElements() == 1) { | ||||
| 4198 | SDValue Extract = DAG.getNode( | ||||
| 4199 | ISD::EXTRACT_VECTOR_ELT, dl, InVT.getScalarType(), | ||||
| 4200 | In, DAG.getConstant(0, dl, MVT::i64)); | ||||
| 4201 | EVT ScalarVT = VT.getScalarType(); | ||||
| 4202 | if (IsStrict) | ||||
| 4203 | return DAG.getNode(Op.getOpcode(), dl, {ScalarVT, MVT::Other}, | ||||
| 4204 | {Op.getOperand(0), Extract}); | ||||
| 4205 | return DAG.getNode(Op.getOpcode(), dl, ScalarVT, Extract); | ||||
| 4206 | } | ||||
| 4207 | |||||
| 4208 | return Op; | ||||
| 4209 | } | ||||
| 4210 | |||||
| 4211 | SDValue AArch64TargetLowering::LowerINT_TO_FP(SDValue Op, | ||||
| 4212 | SelectionDAG &DAG) const { | ||||
| 4213 | if (Op.getValueType().isVector()) | ||||
| 4214 | return LowerVectorINT_TO_FP(Op, DAG); | ||||
| 4215 | |||||
| 4216 | bool IsStrict = Op->isStrictFPOpcode(); | ||||
| 4217 | SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0); | ||||
| 4218 | |||||
| 4219 | // f16 conversions are promoted to f32 when full fp16 is not supported. | ||||
| 4220 | if (Op.getValueType() == MVT::f16 && !Subtarget->hasFullFP16()) { | ||||
| 4221 | SDLoc dl(Op); | ||||
| 4222 | if (IsStrict) { | ||||
| 4223 | SDValue Val = DAG.getNode(Op.getOpcode(), dl, {MVT::f32, MVT::Other}, | ||||
| 4224 | {Op.getOperand(0), SrcVal}); | ||||
| 4225 | return DAG.getNode( | ||||
| 4226 | ISD::STRICT_FP_ROUND, dl, {MVT::f16, MVT::Other}, | ||||
| 4227 | {Val.getValue(1), Val.getValue(0), DAG.getIntPtrConstant(0, dl)}); | ||||
| 4228 | } | ||||
| 4229 | return DAG.getNode( | ||||
| 4230 | ISD::FP_ROUND, dl, MVT::f16, | ||||
| 4231 | DAG.getNode(Op.getOpcode(), dl, MVT::f32, SrcVal), | ||||
| 4232 | DAG.getIntPtrConstant(0, dl)); | ||||
| 4233 | } | ||||
| 4234 | |||||
| 4235 | // i128 conversions are libcalls. | ||||
| 4236 | if (SrcVal.getValueType() == MVT::i128) | ||||
| 4237 | return SDValue(); | ||||
| 4238 | |||||
| 4239 | // Other conversions are legal, unless it's to the completely software-based | ||||
| 4240 | // fp128. | ||||
| 4241 | if (Op.getValueType() != MVT::f128) | ||||
| 4242 | return Op; | ||||
| 4243 | return SDValue(); | ||||
| 4244 | } | ||||
| 4245 | |||||
| 4246 | SDValue AArch64TargetLowering::LowerFSINCOS(SDValue Op, | ||||
| 4247 | SelectionDAG &DAG) const { | ||||
| 4248 | // For iOS, we want to call an alternative entry point: __sincos_stret, | ||||
| 4249 | // which returns the values in two S / D registers. | ||||
| 4250 | SDLoc dl(Op); | ||||
| 4251 | SDValue Arg = Op.getOperand(0); | ||||
| 4252 | EVT ArgVT = Arg.getValueType(); | ||||
| 4253 | Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); | ||||
| 4254 | |||||
| 4255 | ArgListTy Args; | ||||
| 4256 | ArgListEntry Entry; | ||||
| 4257 | |||||
| 4258 | Entry.Node = Arg; | ||||
| 4259 | Entry.Ty = ArgTy; | ||||
| 4260 | Entry.IsSExt = false; | ||||
| 4261 | Entry.IsZExt = false; | ||||
| 4262 | Args.push_back(Entry); | ||||
| 4263 | |||||
| 4264 | RTLIB::Libcall LC = ArgVT == MVT::f64 ? RTLIB::SINCOS_STRET_F64 | ||||
| 4265 | : RTLIB::SINCOS_STRET_F32; | ||||
| 4266 | const char *LibcallName = getLibcallName(LC); | ||||
| 4267 | SDValue Callee = | ||||
| 4268 | DAG.getExternalSymbol(LibcallName, getPointerTy(DAG.getDataLayout())); | ||||
| 4269 | |||||
| 4270 | StructType *RetTy = StructType::get(ArgTy, ArgTy); | ||||
| 4271 | TargetLowering::CallLoweringInfo CLI(DAG); | ||||
| 4272 | CLI.setDebugLoc(dl) | ||||
| 4273 | .setChain(DAG.getEntryNode()) | ||||
| 4274 | .setLibCallee(CallingConv::Fast, RetTy, Callee, std::move(Args)); | ||||
| 4275 | |||||
| 4276 | std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); | ||||
| 4277 | return CallResult.first; | ||||
| 4278 | } | ||||
| 4279 | |||||
| 4280 | static MVT getSVEContainerType(EVT ContentTy); | ||||
| 4281 | |||||
| 4282 | SDValue AArch64TargetLowering::LowerBITCAST(SDValue Op, | ||||
| 4283 | SelectionDAG &DAG) const { | ||||
| 4284 | EVT OpVT = Op.getValueType(); | ||||
| 4285 | EVT ArgVT = Op.getOperand(0).getValueType(); | ||||
| 4286 | |||||
| 4287 | if (useSVEForFixedLengthVectorVT(OpVT)) | ||||
| 4288 | return LowerFixedLengthBitcastToSVE(Op, DAG); | ||||
| 4289 | |||||
| 4290 | if (OpVT.isScalableVector()) { | ||||
| 4291 | // Bitcasting between unpacked vector types of different element counts is | ||||
| 4292 | // not a NOP because the live elements are laid out differently. | ||||
| 4293 | // 01234567 | ||||
| 4294 | // e.g. nxv2i32 = XX??XX?? | ||||
| 4295 | // nxv4f16 = X?X?X?X? | ||||
| 4296 | if (OpVT.getVectorElementCount() != ArgVT.getVectorElementCount()) | ||||
| 4297 | return SDValue(); | ||||
| 4298 | |||||
| 4299 | if (isTypeLegal(OpVT) && !isTypeLegal(ArgVT)) { | ||||
| 4300 | assert(OpVT.isFloatingPoint() && !ArgVT.isFloatingPoint() &&(static_cast <bool> (OpVT.isFloatingPoint() && ! ArgVT.isFloatingPoint() && "Expected int->fp bitcast!" ) ? void (0) : __assert_fail ("OpVT.isFloatingPoint() && !ArgVT.isFloatingPoint() && \"Expected int->fp bitcast!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 4301, __extension__ __PRETTY_FUNCTION__)) | ||||
| 4301 | "Expected int->fp bitcast!")(static_cast <bool> (OpVT.isFloatingPoint() && ! ArgVT.isFloatingPoint() && "Expected int->fp bitcast!" ) ? void (0) : __assert_fail ("OpVT.isFloatingPoint() && !ArgVT.isFloatingPoint() && \"Expected int->fp bitcast!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 4301, __extension__ __PRETTY_FUNCTION__)); | ||||
| 4302 | SDValue ExtResult = | ||||
| 4303 | DAG.getNode(ISD::ANY_EXTEND, SDLoc(Op), getSVEContainerType(ArgVT), | ||||
| 4304 | Op.getOperand(0)); | ||||
| 4305 | return getSVESafeBitCast(OpVT, ExtResult, DAG); | ||||
| 4306 | } | ||||
| 4307 | return getSVESafeBitCast(OpVT, Op.getOperand(0), DAG); | ||||
| 4308 | } | ||||
| 4309 | |||||
| 4310 | if (OpVT != MVT::f16 && OpVT != MVT::bf16) | ||||
| 4311 | return SDValue(); | ||||
| 4312 | |||||
| 4313 | // Bitcasts between f16 and bf16 are legal. | ||||
| 4314 | if (ArgVT == MVT::f16 || ArgVT == MVT::bf16) | ||||
| 4315 | return Op; | ||||
| 4316 | |||||
| 4317 | assert(ArgVT == MVT::i16)(static_cast <bool> (ArgVT == MVT::i16) ? void (0) : __assert_fail ("ArgVT == MVT::i16", "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp" , 4317, __extension__ __PRETTY_FUNCTION__)); | ||||
| 4318 | SDLoc DL(Op); | ||||
| 4319 | |||||
| 4320 | Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op.getOperand(0)); | ||||
| 4321 | Op = DAG.getNode(ISD::BITCAST, DL, MVT::f32, Op); | ||||
| 4322 | return SDValue( | ||||
| 4323 | DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, OpVT, Op, | ||||
| 4324 | DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)), | ||||
| 4325 | 0); | ||||
| 4326 | } | ||||
| 4327 | |||||
| 4328 | static EVT getExtensionTo64Bits(const EVT &OrigVT) { | ||||
| 4329 | if (OrigVT.getSizeInBits() >= 64) | ||||
| 4330 | return OrigVT; | ||||
| 4331 | |||||
| 4332 | assert(OrigVT.isSimple() && "Expecting a simple value type")(static_cast <bool> (OrigVT.isSimple() && "Expecting a simple value type" ) ? void (0) : __assert_fail ("OrigVT.isSimple() && \"Expecting a simple value type\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 4332, __extension__ __PRETTY_FUNCTION__)); | ||||
| 4333 | |||||
| 4334 | MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy; | ||||
| 4335 | switch (OrigSimpleTy) { | ||||
| 4336 | default: llvm_unreachable("Unexpected Vector Type")::llvm::llvm_unreachable_internal("Unexpected Vector Type", "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp" , 4336); | ||||
| 4337 | case MVT::v2i8: | ||||
| 4338 | case MVT::v2i16: | ||||
| 4339 | return MVT::v2i32; | ||||
| 4340 | case MVT::v4i8: | ||||
| 4341 | return MVT::v4i16; | ||||
| 4342 | } | ||||
| 4343 | } | ||||
| 4344 | |||||
| 4345 | static SDValue addRequiredExtensionForVectorMULL(SDValue N, SelectionDAG &DAG, | ||||
| 4346 | const EVT &OrigTy, | ||||
| 4347 | const EVT &ExtTy, | ||||
| 4348 | unsigned ExtOpcode) { | ||||
| 4349 | // The vector originally had a size of OrigTy. It was then extended to ExtTy. | ||||
| 4350 | // We expect the ExtTy to be 128-bits total. If the OrigTy is less than | ||||
| 4351 | // 64-bits we need to insert a new extension so that it will be 64-bits. | ||||
| 4352 | assert(ExtTy.is128BitVector() && "Unexpected extension size")(static_cast <bool> (ExtTy.is128BitVector() && "Unexpected extension size" ) ? void (0) : __assert_fail ("ExtTy.is128BitVector() && \"Unexpected extension size\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 4352, __extension__ __PRETTY_FUNCTION__)); | ||||
| 4353 | if (OrigTy.getSizeInBits() >= 64) | ||||
| 4354 | return N; | ||||
| 4355 | |||||
| 4356 | // Must extend size to at least 64 bits to be used as an operand for VMULL. | ||||
| 4357 | EVT NewVT = getExtensionTo64Bits(OrigTy); | ||||
| 4358 | |||||
| 4359 | return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N); | ||||
| 4360 | } | ||||
| 4361 | |||||
| 4362 | // Returns lane if Op extracts from a two-element vector and lane is constant | ||||
| 4363 | // (i.e., extractelt(<2 x Ty> %v, ConstantLane)), and None otherwise. | ||||
| 4364 | static std::optional<uint64_t> | ||||
| 4365 | getConstantLaneNumOfExtractHalfOperand(SDValue &Op) { | ||||
| 4366 | SDNode *OpNode = Op.getNode(); | ||||
| 4367 | if (OpNode->getOpcode() != ISD::EXTRACT_VECTOR_ELT) | ||||
| 4368 | return std::nullopt; | ||||
| 4369 | |||||
| 4370 | EVT VT = OpNode->getOperand(0).getValueType(); | ||||
| 4371 | ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpNode->getOperand(1)); | ||||
| 4372 | if (!VT.isFixedLengthVector() || VT.getVectorNumElements() != 2 || !C) | ||||
| 4373 | return std::nullopt; | ||||
| 4374 | |||||
| 4375 | return C->getZExtValue(); | ||||
| 4376 | } | ||||
| 4377 | |||||
| 4378 | static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG, | ||||
| 4379 | bool isSigned) { | ||||
| 4380 | EVT VT = N->getValueType(0); | ||||
| 4381 | |||||
| 4382 | if (N->getOpcode() != ISD::BUILD_VECTOR) | ||||
| 4383 | return false; | ||||
| 4384 | |||||
| 4385 | for (const SDValue &Elt : N->op_values()) { | ||||
| 4386 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) { | ||||
| 4387 | unsigned EltSize = VT.getScalarSizeInBits(); | ||||
| 4388 | unsigned HalfSize = EltSize / 2; | ||||
| 4389 | if (isSigned) { | ||||
| 4390 | if (!isIntN(HalfSize, C->getSExtValue())) | ||||
| 4391 | return false; | ||||
| 4392 | } else { | ||||
| 4393 | if (!isUIntN(HalfSize, C->getZExtValue())) | ||||
| 4394 | return false; | ||||
| 4395 | } | ||||
| 4396 | continue; | ||||
| 4397 | } | ||||
| 4398 | return false; | ||||
| 4399 | } | ||||
| 4400 | |||||
| 4401 | return true; | ||||
| 4402 | } | ||||
| 4403 | |||||
| 4404 | static SDValue skipExtensionForVectorMULL(SDNode *N, SelectionDAG &DAG) { | ||||
| 4405 | if (N->getOpcode() == ISD::SIGN_EXTEND || | ||||
| 4406 | N->getOpcode() == ISD::ZERO_EXTEND || N->getOpcode() == ISD::ANY_EXTEND) | ||||
| 4407 | return addRequiredExtensionForVectorMULL(N->getOperand(0), DAG, | ||||
| 4408 | N->getOperand(0)->getValueType(0), | ||||
| 4409 | N->getValueType(0), | ||||
| 4410 | N->getOpcode()); | ||||
| 4411 | |||||
| 4412 | assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR")(static_cast <bool> (N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR") ? void (0) : __assert_fail ("N->getOpcode() == ISD::BUILD_VECTOR && \"expected BUILD_VECTOR\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 4412, __extension__ __PRETTY_FUNCTION__)); | ||||
| 4413 | EVT VT = N->getValueType(0); | ||||
| 4414 | SDLoc dl(N); | ||||
| 4415 | unsigned EltSize = VT.getScalarSizeInBits() / 2; | ||||
| 4416 | unsigned NumElts = VT.getVectorNumElements(); | ||||
| 4417 | MVT TruncVT = MVT::getIntegerVT(EltSize); | ||||
| 4418 | SmallVector<SDValue, 8> Ops; | ||||
| 4419 | for (unsigned i = 0; i != NumElts; ++i) { | ||||
| 4420 | ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i)); | ||||
| 4421 | const APInt &CInt = C->getAPIntValue(); | ||||
| 4422 | // Element types smaller than 32 bits are not legal, so use i32 elements. | ||||
| 4423 | // The values are implicitly truncated so sext vs. zext doesn't matter. | ||||
| 4424 | Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32)); | ||||
| 4425 | } | ||||
| 4426 | return DAG.getBuildVector(MVT::getVectorVT(TruncVT, NumElts), dl, Ops); | ||||
| 4427 | } | ||||
| 4428 | |||||
| 4429 | static bool isSignExtended(SDNode *N, SelectionDAG &DAG) { | ||||
| 4430 | return N->getOpcode() == ISD::SIGN_EXTEND || | ||||
| 4431 | N->getOpcode() == ISD::ANY_EXTEND || | ||||
| 4432 | isExtendedBUILD_VECTOR(N, DAG, true); | ||||
| 4433 | } | ||||
| 4434 | |||||
| 4435 | static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) { | ||||
| 4436 | return N->getOpcode() == ISD::ZERO_EXTEND || | ||||
| 4437 | N->getOpcode() == ISD::ANY_EXTEND || | ||||
| 4438 | isExtendedBUILD_VECTOR(N, DAG, false); | ||||
| 4439 | } | ||||
| 4440 | |||||
| 4441 | static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) { | ||||
| 4442 | unsigned Opcode = N->getOpcode(); | ||||
| 4443 | if (Opcode == ISD::ADD || Opcode == ISD::SUB) { | ||||
| 4444 | SDNode *N0 = N->getOperand(0).getNode(); | ||||
| 4445 | SDNode *N1 = N->getOperand(1).getNode(); | ||||
| 4446 | return N0->hasOneUse() && N1->hasOneUse() && | ||||
| 4447 | isSignExtended(N0, DAG) && isSignExtended(N1, DAG); | ||||
| 4448 | } | ||||
| 4449 | return false; | ||||
| 4450 | } | ||||
| 4451 | |||||
| 4452 | static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) { | ||||
| 4453 | unsigned Opcode = N->getOpcode(); | ||||
| 4454 | if (Opcode == ISD::ADD || Opcode == ISD::SUB) { | ||||
| 4455 | SDNode *N0 = N->getOperand(0).getNode(); | ||||
| 4456 | SDNode *N1 = N->getOperand(1).getNode(); | ||||
| 4457 | return N0->hasOneUse() && N1->hasOneUse() && | ||||
| 4458 | isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG); | ||||
| 4459 | } | ||||
| 4460 | return false; | ||||
| 4461 | } | ||||
| 4462 | |||||
| 4463 | SDValue AArch64TargetLowering::LowerFLT_ROUNDS_(SDValue Op, | ||||
| 4464 | SelectionDAG &DAG) const { | ||||
| 4465 | // The rounding mode is in bits 23:22 of the FPSCR. | ||||
| 4466 | // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0 | ||||
| 4467 | // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3) | ||||
| 4468 | // so that the shift + and get folded into a bitfield extract. | ||||
| 4469 | SDLoc dl(Op); | ||||
| 4470 | |||||
| 4471 | SDValue Chain = Op.getOperand(0); | ||||
| 4472 | SDValue FPCR_64 = DAG.getNode( | ||||
| 4473 | ISD::INTRINSIC_W_CHAIN, dl, {MVT::i64, MVT::Other}, | ||||
| 4474 | {Chain, DAG.getConstant(Intrinsic::aarch64_get_fpcr, dl, MVT::i64)}); | ||||
| 4475 | Chain = FPCR_64.getValue(1); | ||||
| 4476 | SDValue FPCR_32 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, FPCR_64); | ||||
| 4477 | SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPCR_32, | ||||
| 4478 | DAG.getConstant(1U << 22, dl, MVT::i32)); | ||||
| 4479 | SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds, | ||||
| 4480 | DAG.getConstant(22, dl, MVT::i32)); | ||||
| 4481 | SDValue AND = DAG.getNode(ISD::AND, dl, MVT::i32, RMODE, | ||||
| 4482 | DAG.getConstant(3, dl, MVT::i32)); | ||||
| 4483 | return DAG.getMergeValues({AND, Chain}, dl); | ||||
| 4484 | } | ||||
| 4485 | |||||
| 4486 | SDValue AArch64TargetLowering::LowerSET_ROUNDING(SDValue Op, | ||||
| 4487 | SelectionDAG &DAG) const { | ||||
| 4488 | SDLoc DL(Op); | ||||
| 4489 | SDValue Chain = Op->getOperand(0); | ||||
| 4490 | SDValue RMValue = Op->getOperand(1); | ||||
| 4491 | |||||
| 4492 | // The rounding mode is in bits 23:22 of the FPCR. | ||||
| 4493 | // The llvm.set.rounding argument value to the rounding mode in FPCR mapping | ||||
| 4494 | // is 0->3, 1->0, 2->1, 3->2. The formula we use to implement this is | ||||
| 4495 | // ((arg - 1) & 3) << 22). | ||||
| 4496 | // | ||||
| 4497 | // The argument of llvm.set.rounding must be within the segment [0, 3], so | ||||
| 4498 | // NearestTiesToAway (4) is not handled here. It is responsibility of the code | ||||
| 4499 | // generated llvm.set.rounding to ensure this condition. | ||||
| 4500 | |||||
| 4501 | // Calculate new value of FPCR[23:22]. | ||||
| 4502 | RMValue = DAG.getNode(ISD::SUB, DL, MVT::i32, RMValue, | ||||
| 4503 | DAG.getConstant(1, DL, MVT::i32)); | ||||
| 4504 | RMValue = DAG.getNode(ISD::AND, DL, MVT::i32, RMValue, | ||||
| 4505 | DAG.getConstant(0x3, DL, MVT::i32)); | ||||
| 4506 | RMValue = | ||||
| 4507 | DAG.getNode(ISD::SHL, DL, MVT::i32, RMValue, | ||||
| 4508 | DAG.getConstant(AArch64::RoundingBitsPos, DL, MVT::i32)); | ||||
| 4509 | RMValue = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, RMValue); | ||||
| 4510 | |||||
| 4511 | // Get current value of FPCR. | ||||
| 4512 | SDValue Ops[] = { | ||||
| 4513 | Chain, DAG.getTargetConstant(Intrinsic::aarch64_get_fpcr, DL, MVT::i64)}; | ||||
| 4514 | SDValue FPCR = | ||||
| 4515 | DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, {MVT::i64, MVT::Other}, Ops); | ||||
| 4516 | Chain = FPCR.getValue(1); | ||||
| 4517 | FPCR = FPCR.getValue(0); | ||||
| 4518 | |||||
| 4519 | // Put new rounding mode into FPSCR[23:22]. | ||||
| 4520 | const int RMMask = ~(AArch64::Rounding::rmMask << AArch64::RoundingBitsPos); | ||||
| 4521 | FPCR = DAG.getNode(ISD::AND, DL, MVT::i64, FPCR, | ||||
| 4522 | DAG.getConstant(RMMask, DL, MVT::i64)); | ||||
| 4523 | FPCR = DAG.getNode(ISD::OR, DL, MVT::i64, FPCR, RMValue); | ||||
| 4524 | SDValue Ops2[] = { | ||||
| 4525 | Chain, DAG.getTargetConstant(Intrinsic::aarch64_set_fpcr, DL, MVT::i64), | ||||
| 4526 | FPCR}; | ||||
| 4527 | return DAG.getNode(ISD::INTRINSIC_VOID, DL, MVT::Other, Ops2); | ||||
| 4528 | } | ||||
| 4529 | |||||
| 4530 | static unsigned selectUmullSmull(SDNode *&N0, SDNode *&N1, SelectionDAG &DAG, | ||||
| 4531 | bool &IsMLA) { | ||||
| 4532 | bool IsN0SExt = isSignExtended(N0, DAG); | ||||
| 4533 | bool IsN1SExt = isSignExtended(N1, DAG); | ||||
| 4534 | if (IsN0SExt && IsN1SExt) | ||||
| 4535 | return AArch64ISD::SMULL; | ||||
| 4536 | |||||
| 4537 | bool IsN0ZExt = isZeroExtended(N0, DAG); | ||||
| 4538 | bool IsN1ZExt = isZeroExtended(N1, DAG); | ||||
| 4539 | |||||
| 4540 | if (IsN0ZExt && IsN1ZExt) | ||||
| 4541 | return AArch64ISD::UMULL; | ||||
| 4542 | |||||
| 4543 | if (!IsN1SExt && !IsN1ZExt) | ||||
| 4544 | return 0; | ||||
| 4545 | // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these | ||||
| 4546 | // into (s/zext A * s/zext C) + (s/zext B * s/zext C) | ||||
| 4547 | if (IsN1SExt && isAddSubSExt(N0, DAG)) { | ||||
| 4548 | IsMLA = true; | ||||
| 4549 | return AArch64ISD::SMULL; | ||||
| 4550 | } | ||||
| 4551 | if (IsN1ZExt && isAddSubZExt(N0, DAG)) { | ||||
| 4552 | IsMLA = true; | ||||
| 4553 | return AArch64ISD::UMULL; | ||||
| 4554 | } | ||||
| 4555 | if (IsN0ZExt && isAddSubZExt(N1, DAG)) { | ||||
| 4556 | std::swap(N0, N1); | ||||
| 4557 | IsMLA = true; | ||||
| 4558 | return AArch64ISD::UMULL; | ||||
| 4559 | } | ||||
| 4560 | return 0; | ||||
| 4561 | } | ||||
| 4562 | |||||
| 4563 | SDValue AArch64TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { | ||||
| 4564 | EVT VT = Op.getValueType(); | ||||
| 4565 | |||||
| 4566 | // If SVE is available then i64 vector multiplications can also be made legal. | ||||
| 4567 | bool OverrideNEON = VT == MVT::v2i64 || VT == MVT::v1i64 || | ||||
| 4568 | Subtarget->forceStreamingCompatibleSVE(); | ||||
| 4569 | |||||
| 4570 | if (VT.isScalableVector() || useSVEForFixedLengthVectorVT(VT, OverrideNEON)) | ||||
| 4571 | return LowerToPredicatedOp(Op, DAG, AArch64ISD::MUL_PRED); | ||||
| 4572 | |||||
| 4573 | // Multiplications are only custom-lowered for 128-bit vectors so that | ||||
| 4574 | // VMULL can be detected. Otherwise v2i64 multiplications are not legal. | ||||
| 4575 | assert(VT.is128BitVector() && VT.isInteger() &&(static_cast <bool> (VT.is128BitVector() && VT. isInteger() && "unexpected type for custom-lowering ISD::MUL" ) ? void (0) : __assert_fail ("VT.is128BitVector() && VT.isInteger() && \"unexpected type for custom-lowering ISD::MUL\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 4576, __extension__ __PRETTY_FUNCTION__)) | ||||
| 4576 | "unexpected type for custom-lowering ISD::MUL")(static_cast <bool> (VT.is128BitVector() && VT. isInteger() && "unexpected type for custom-lowering ISD::MUL" ) ? void (0) : __assert_fail ("VT.is128BitVector() && VT.isInteger() && \"unexpected type for custom-lowering ISD::MUL\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 4576, __extension__ __PRETTY_FUNCTION__)); | ||||
| 4577 | SDNode *N0 = Op.getOperand(0).getNode(); | ||||
| 4578 | SDNode *N1 = Op.getOperand(1).getNode(); | ||||
| 4579 | bool isMLA = false; | ||||
| 4580 | unsigned NewOpc = selectUmullSmull(N0, N1, DAG, isMLA); | ||||
| 4581 | |||||
| 4582 | if (!NewOpc) { | ||||
| 4583 | if (VT == MVT::v2i64) | ||||
| 4584 | // Fall through to expand this. It is not legal. | ||||
| 4585 | return SDValue(); | ||||
| 4586 | else | ||||
| 4587 | // Other vector multiplications are legal. | ||||
| 4588 | return Op; | ||||
| 4589 | } | ||||
| 4590 | |||||
| 4591 | // Legalize to a S/UMULL instruction | ||||
| 4592 | SDLoc DL(Op); | ||||
| 4593 | SDValue Op0; | ||||
| 4594 | SDValue Op1 = skipExtensionForVectorMULL(N1, DAG); | ||||
| 4595 | if (!isMLA) { | ||||
| 4596 | Op0 = skipExtensionForVectorMULL(N0, DAG); | ||||
| 4597 | assert(Op0.getValueType().is64BitVector() &&(static_cast <bool> (Op0.getValueType().is64BitVector() && Op1.getValueType().is64BitVector() && "unexpected types for extended operands to VMULL" ) ? void (0) : __assert_fail ("Op0.getValueType().is64BitVector() && Op1.getValueType().is64BitVector() && \"unexpected types for extended operands to VMULL\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 4599, __extension__ __PRETTY_FUNCTION__)) | ||||
| 4598 | Op1.getValueType().is64BitVector() &&(static_cast <bool> (Op0.getValueType().is64BitVector() && Op1.getValueType().is64BitVector() && "unexpected types for extended operands to VMULL" ) ? void (0) : __assert_fail ("Op0.getValueType().is64BitVector() && Op1.getValueType().is64BitVector() && \"unexpected types for extended operands to VMULL\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 4599, __extension__ __PRETTY_FUNCTION__)) | ||||
| 4599 | "unexpected types for extended operands to VMULL")(static_cast <bool> (Op0.getValueType().is64BitVector() && Op1.getValueType().is64BitVector() && "unexpected types for extended operands to VMULL" ) ? void (0) : __assert_fail ("Op0.getValueType().is64BitVector() && Op1.getValueType().is64BitVector() && \"unexpected types for extended operands to VMULL\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 4599, __extension__ __PRETTY_FUNCTION__)); | ||||
| 4600 | return DAG.getNode(NewOpc, DL, VT, Op0, Op1); | ||||
| 4601 | } | ||||
| 4602 | // Optimizing (zext A + zext B) * C, to (S/UMULL A, C) + (S/UMULL B, C) during | ||||
| 4603 | // isel lowering to take advantage of no-stall back to back s/umul + s/umla. | ||||
| 4604 | // This is true for CPUs with accumulate forwarding such as Cortex-A53/A57 | ||||
| 4605 | SDValue N00 = skipExtensionForVectorMULL(N0->getOperand(0).getNode(), DAG); | ||||
| 4606 | SDValue N01 = skipExtensionForVectorMULL(N0->getOperand(1).getNode(), DAG); | ||||
| 4607 | EVT Op1VT = Op1.getValueType(); | ||||
| 4608 | return DAG.getNode(N0->getOpcode(), DL, VT, | ||||
| 4609 | DAG.getNode(NewOpc, DL, VT, | ||||
| 4610 | DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1), | ||||
| 4611 | DAG.getNode(NewOpc, DL, VT, | ||||
| 4612 | DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1)); | ||||
| 4613 | } | ||||
| 4614 | |||||
| 4615 | static inline SDValue getPTrue(SelectionDAG &DAG, SDLoc DL, EVT VT, | ||||
| 4616 | int Pattern) { | ||||
| 4617 | if (VT == MVT::nxv1i1 && Pattern == AArch64SVEPredPattern::all) | ||||
| 4618 | return DAG.getConstant(1, DL, MVT::nxv1i1); | ||||
| 4619 | return DAG.getNode(AArch64ISD::PTRUE, DL, VT, | ||||
| 4620 | DAG.getTargetConstant(Pattern, DL, MVT::i32)); | ||||
| 4621 | } | ||||
| 4622 | |||||
| 4623 | // Returns a safe bitcast between two scalable vector predicates, where | ||||
| 4624 | // any newly created lanes from a widening bitcast are defined as zero. | ||||
| 4625 | static SDValue getSVEPredicateBitCast(EVT VT, SDValue Op, SelectionDAG &DAG) { | ||||
| 4626 | SDLoc DL(Op); | ||||
| 4627 | EVT InVT = Op.getValueType(); | ||||
| 4628 | |||||
| 4629 | assert(InVT.getVectorElementType() == MVT::i1 &&(static_cast <bool> (InVT.getVectorElementType() == MVT ::i1 && VT.getVectorElementType() == MVT::i1 && "Expected a predicate-to-predicate bitcast") ? void (0) : __assert_fail ("InVT.getVectorElementType() == MVT::i1 && VT.getVectorElementType() == MVT::i1 && \"Expected a predicate-to-predicate bitcast\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 4631, __extension__ __PRETTY_FUNCTION__)) | ||||
| 4630 | VT.getVectorElementType() == MVT::i1 &&(static_cast <bool> (InVT.getVectorElementType() == MVT ::i1 && VT.getVectorElementType() == MVT::i1 && "Expected a predicate-to-predicate bitcast") ? void (0) : __assert_fail ("InVT.getVectorElementType() == MVT::i1 && VT.getVectorElementType() == MVT::i1 && \"Expected a predicate-to-predicate bitcast\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 4631, __extension__ __PRETTY_FUNCTION__)) | ||||
| 4631 | "Expected a predicate-to-predicate bitcast")(static_cast <bool> (InVT.getVectorElementType() == MVT ::i1 && VT.getVectorElementType() == MVT::i1 && "Expected a predicate-to-predicate bitcast") ? void (0) : __assert_fail ("InVT.getVectorElementType() == MVT::i1 && VT.getVectorElementType() == MVT::i1 && \"Expected a predicate-to-predicate bitcast\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 4631, __extension__ __PRETTY_FUNCTION__)); | ||||
| 4632 | assert(VT.isScalableVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&(static_cast <bool> (VT.isScalableVector() && DAG .getTargetLoweringInfo().isTypeLegal(VT) && InVT.isScalableVector () && DAG.getTargetLoweringInfo().isTypeLegal(InVT) && "Only expect to cast between legal scalable predicate types!" ) ? void (0) : __assert_fail ("VT.isScalableVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT) && InVT.isScalableVector() && DAG.getTargetLoweringInfo().isTypeLegal(InVT) && \"Only expect to cast between legal scalable predicate types!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 4635, __extension__ __PRETTY_FUNCTION__)) | ||||
| 4633 | InVT.isScalableVector() &&(static_cast <bool> (VT.isScalableVector() && DAG .getTargetLoweringInfo().isTypeLegal(VT) && InVT.isScalableVector () && DAG.getTargetLoweringInfo().isTypeLegal(InVT) && "Only expect to cast between legal scalable predicate types!" ) ? void (0) : __assert_fail ("VT.isScalableVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT) && InVT.isScalableVector() && DAG.getTargetLoweringInfo().isTypeLegal(InVT) && \"Only expect to cast between legal scalable predicate types!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 4635, __extension__ __PRETTY_FUNCTION__)) | ||||
| 4634 | DAG.getTargetLoweringInfo().isTypeLegal(InVT) &&(static_cast <bool> (VT.isScalableVector() && DAG .getTargetLoweringInfo().isTypeLegal(VT) && InVT.isScalableVector () && DAG.getTargetLoweringInfo().isTypeLegal(InVT) && "Only expect to cast between legal scalable predicate types!" ) ? void (0) : __assert_fail ("VT.isScalableVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT) && InVT.isScalableVector() && DAG.getTargetLoweringInfo().isTypeLegal(InVT) && \"Only expect to cast between legal scalable predicate types!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 4635, __extension__ __PRETTY_FUNCTION__)) | ||||
| 4635 | "Only expect to cast between legal scalable predicate types!")(static_cast <bool> (VT.isScalableVector() && DAG .getTargetLoweringInfo().isTypeLegal(VT) && InVT.isScalableVector () && DAG.getTargetLoweringInfo().isTypeLegal(InVT) && "Only expect to cast between legal scalable predicate types!" ) ? void (0) : __assert_fail ("VT.isScalableVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT) && InVT.isScalableVector() && DAG.getTargetLoweringInfo().isTypeLegal(InVT) && \"Only expect to cast between legal scalable predicate types!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 4635, __extension__ __PRETTY_FUNCTION__)); | ||||
| 4636 | |||||
| 4637 | // Return the operand if the cast isn't changing type, | ||||
| 4638 | // e.g. <n x 16 x i1> -> <n x 16 x i1> | ||||
| 4639 | if (InVT == VT) | ||||
| 4640 | return Op; | ||||
| 4641 | |||||
| 4642 | SDValue Reinterpret = DAG.getNode(AArch64ISD::REINTERPRET_CAST, DL, VT, Op); | ||||
| 4643 | |||||
| 4644 | // We only have to zero the lanes if new lanes are being defined, e.g. when | ||||
| 4645 | // casting from <vscale x 2 x i1> to <vscale x 16 x i1>. If this is not the | ||||
| 4646 | // case (e.g. when casting from <vscale x 16 x i1> -> <vscale x 2 x i1>) then | ||||
| 4647 | // we can return here. | ||||
| 4648 | if (InVT.bitsGT(VT)) | ||||
| 4649 | return Reinterpret; | ||||
| 4650 | |||||
| 4651 | // Check if the other lanes are already known to be zeroed by | ||||
| 4652 | // construction. | ||||
| 4653 | if (isZeroingInactiveLanes(Op)) | ||||
| 4654 | return Reinterpret; | ||||
| 4655 | |||||
| 4656 | // Zero the newly introduced lanes. | ||||
| 4657 | SDValue Mask = DAG.getConstant(1, DL, InVT); | ||||
| 4658 | Mask = DAG.getNode(AArch64ISD::REINTERPRET_CAST, DL, VT, Mask); | ||||
| 4659 | return DAG.getNode(ISD::AND, DL, VT, Reinterpret, Mask); | ||||
| 4660 | } | ||||
| 4661 | |||||
| 4662 | SDValue AArch64TargetLowering::getPStateSM(SelectionDAG &DAG, SDValue Chain, | ||||
| 4663 | SMEAttrs Attrs, SDLoc DL, | ||||
| 4664 | EVT VT) const { | ||||
| 4665 | if (Attrs.hasStreamingInterfaceOrBody()) | ||||
| 4666 | return DAG.getConstant(1, DL, VT); | ||||
| 4667 | |||||
| 4668 | if (Attrs.hasNonStreamingInterfaceAndBody()) | ||||
| 4669 | return DAG.getConstant(0, DL, VT); | ||||
| 4670 | |||||
| 4671 | assert(Attrs.hasStreamingCompatibleInterface() && "Unexpected interface")(static_cast <bool> (Attrs.hasStreamingCompatibleInterface () && "Unexpected interface") ? void (0) : __assert_fail ("Attrs.hasStreamingCompatibleInterface() && \"Unexpected interface\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 4671, __extension__ __PRETTY_FUNCTION__)); | ||||
| 4672 | |||||
| 4673 | SDValue Callee = DAG.getExternalSymbol("__arm_sme_state", | ||||
| 4674 | getPointerTy(DAG.getDataLayout())); | ||||
| 4675 | Type *Int64Ty = Type::getInt64Ty(*DAG.getContext()); | ||||
| 4676 | Type *RetTy = StructType::get(Int64Ty, Int64Ty); | ||||
| 4677 | TargetLowering::CallLoweringInfo CLI(DAG); | ||||
| 4678 | ArgListTy Args; | ||||
| 4679 | CLI.setDebugLoc(DL).setChain(Chain).setLibCallee( | ||||
| 4680 | CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2, | ||||
| 4681 | RetTy, Callee, std::move(Args)); | ||||
| 4682 | std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); | ||||
| 4683 | SDValue Mask = DAG.getConstant(/*PSTATE.SM*/ 1, DL, MVT::i64); | ||||
| 4684 | return DAG.getNode(ISD::AND, DL, MVT::i64, CallResult.first.getOperand(0), | ||||
| 4685 | Mask); | ||||
| 4686 | } | ||||
| 4687 | |||||
| 4688 | static std::optional<SMEAttrs> getCalleeAttrsFromExternalFunction(SDValue V) { | ||||
| 4689 | if (auto *ES = dyn_cast<ExternalSymbolSDNode>(V)) { | ||||
| 4690 | StringRef S(ES->getSymbol()); | ||||
| 4691 | if (S == "__arm_sme_state" || S == "__arm_tpidr2_save") | ||||
| 4692 | return SMEAttrs(SMEAttrs::SM_Compatible | SMEAttrs::ZA_Preserved); | ||||
| 4693 | if (S == "__arm_tpidr2_restore") | ||||
| 4694 | return SMEAttrs(SMEAttrs::SM_Compatible | SMEAttrs::ZA_Shared); | ||||
| 4695 | } | ||||
| 4696 | return std::nullopt; | ||||
| 4697 | } | ||||
| 4698 | |||||
| 4699 | SDValue AArch64TargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op, | ||||
| 4700 | SelectionDAG &DAG) const { | ||||
| 4701 | unsigned IntNo = Op.getConstantOperandVal(1); | ||||
| 4702 | SDLoc DL(Op); | ||||
| 4703 | switch (IntNo) { | ||||
| 4704 | default: | ||||
| 4705 | return SDValue(); // Don't custom lower most intrinsics. | ||||
| 4706 | case Intrinsic::aarch64_mops_memset_tag: { | ||||
| 4707 | auto Node = cast<MemIntrinsicSDNode>(Op.getNode()); | ||||
| 4708 | SDValue Chain = Node->getChain(); | ||||
| 4709 | SDValue Dst = Op.getOperand(2); | ||||
| 4710 | SDValue Val = Op.getOperand(3); | ||||
| 4711 | Val = DAG.getAnyExtOrTrunc(Val, DL, MVT::i64); | ||||
| 4712 | SDValue Size = Op.getOperand(4); | ||||
| 4713 | auto Alignment = Node->getMemOperand()->getAlign(); | ||||
| 4714 | bool IsVol = Node->isVolatile(); | ||||
| 4715 | auto DstPtrInfo = Node->getPointerInfo(); | ||||
| 4716 | |||||
| 4717 | const auto &SDI = | ||||
| 4718 | static_cast<const AArch64SelectionDAGInfo &>(DAG.getSelectionDAGInfo()); | ||||
| 4719 | SDValue MS = | ||||
| 4720 | SDI.EmitMOPS(AArch64ISD::MOPS_MEMSET_TAGGING, DAG, DL, Chain, Dst, Val, | ||||
| 4721 | Size, Alignment, IsVol, DstPtrInfo, MachinePointerInfo{}); | ||||
| 4722 | |||||
| 4723 | // MOPS_MEMSET_TAGGING has 3 results (DstWb, SizeWb, Chain) whereas the | ||||
| 4724 | // intrinsic has 2. So hide SizeWb using MERGE_VALUES. Otherwise | ||||
| 4725 | // LowerOperationWrapper will complain that the number of results has | ||||
| 4726 | // changed. | ||||
| 4727 | return DAG.getMergeValues({MS.getValue(0), MS.getValue(2)}, DL); | ||||
| 4728 | } | ||||
| 4729 | case Intrinsic::aarch64_sme_za_enable: | ||||
| 4730 | return DAG.getNode( | ||||
| 4731 | AArch64ISD::SMSTART, DL, MVT::Other, | ||||
| 4732 | Op->getOperand(0), // Chain | ||||
| 4733 | DAG.getTargetConstant((int32_t)(AArch64SVCR::SVCRZA), DL, MVT::i32), | ||||
| 4734 | DAG.getConstant(0, DL, MVT::i64), DAG.getConstant(1, DL, MVT::i64)); | ||||
| 4735 | case Intrinsic::aarch64_sme_za_disable: | ||||
| 4736 | return DAG.getNode( | ||||
| 4737 | AArch64ISD::SMSTOP, DL, MVT::Other, | ||||
| 4738 | Op->getOperand(0), // Chain | ||||
| 4739 | DAG.getTargetConstant((int32_t)(AArch64SVCR::SVCRZA), DL, MVT::i32), | ||||
| 4740 | DAG.getConstant(0, DL, MVT::i64), DAG.getConstant(1, DL, MVT::i64)); | ||||
| 4741 | } | ||||
| 4742 | } | ||||
| 4743 | |||||
| 4744 | SDValue AArch64TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, | ||||
| 4745 | SelectionDAG &DAG) const { | ||||
| 4746 | unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | ||||
| 4747 | SDLoc dl(Op); | ||||
| 4748 | switch (IntNo) { | ||||
| 4749 | default: return SDValue(); // Don't custom lower most intrinsics. | ||||
| 4750 | case Intrinsic::thread_pointer: { | ||||
| 4751 | EVT PtrVT = getPointerTy(DAG.getDataLayout()); | ||||
| 4752 | return DAG.getNode(AArch64ISD::THREAD_POINTER, dl, PtrVT); | ||||
| 4753 | } | ||||
| 4754 | case Intrinsic::aarch64_neon_abs: { | ||||
| 4755 | EVT Ty = Op.getValueType(); | ||||
| 4756 | if (Ty == MVT::i64) { | ||||
| 4757 | SDValue Result = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, | ||||
| 4758 | Op.getOperand(1)); | ||||
| 4759 | Result = DAG.getNode(ISD::ABS, dl, MVT::v1i64, Result); | ||||
| 4760 | return DAG.getNode(ISD::BITCAST, dl, MVT::i64, Result); | ||||
| 4761 | } else if (Ty.isVector() && Ty.isInteger() && isTypeLegal(Ty)) { | ||||
| 4762 | return DAG.getNode(ISD::ABS, dl, Ty, Op.getOperand(1)); | ||||
| 4763 | } else { | ||||
| 4764 | report_fatal_error("Unexpected type for AArch64 NEON intrinic"); | ||||
| 4765 | } | ||||
| 4766 | } | ||||
| 4767 | case Intrinsic::aarch64_neon_pmull64: { | ||||
| 4768 | SDValue LHS = Op.getOperand(1); | ||||
| 4769 | SDValue RHS = Op.getOperand(2); | ||||
| 4770 | |||||
| 4771 | std::optional<uint64_t> LHSLane = | ||||
| 4772 | getConstantLaneNumOfExtractHalfOperand(LHS); | ||||
| 4773 | std::optional<uint64_t> RHSLane = | ||||
| 4774 | getConstantLaneNumOfExtractHalfOperand(RHS); | ||||
| 4775 | |||||
| 4776 | assert((!LHSLane || *LHSLane < 2) && "Expect lane to be None or 0 or 1")(static_cast <bool> ((!LHSLane || *LHSLane < 2) && "Expect lane to be None or 0 or 1") ? void (0) : __assert_fail ("(!LHSLane || *LHSLane < 2) && \"Expect lane to be None or 0 or 1\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 4776, __extension__ __PRETTY_FUNCTION__)); | ||||
| 4777 | assert((!RHSLane || *RHSLane < 2) && "Expect lane to be None or 0 or 1")(static_cast <bool> ((!RHSLane || *RHSLane < 2) && "Expect lane to be None or 0 or 1") ? void (0) : __assert_fail ("(!RHSLane || *RHSLane < 2) && \"Expect lane to be None or 0 or 1\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 4777, __extension__ __PRETTY_FUNCTION__)); | ||||
| 4778 | |||||
| 4779 | // 'aarch64_neon_pmull64' takes i64 parameters; while pmull/pmull2 | ||||
| 4780 | // instructions execute on SIMD registers. So canonicalize i64 to v1i64, | ||||
| 4781 | // which ISel recognizes better. For example, generate a ldr into d* | ||||
| 4782 | // registers as opposed to a GPR load followed by a fmov. | ||||
| 4783 | auto TryVectorizeOperand = [](SDValue N, std::optional<uint64_t> NLane, | ||||
| 4784 | std::optional<uint64_t> OtherLane, | ||||
| 4785 | const SDLoc &dl, | ||||
| 4786 | SelectionDAG &DAG) -> SDValue { | ||||
| 4787 | // If the operand is an higher half itself, rewrite it to | ||||
| 4788 | // extract_high_v2i64; this way aarch64_neon_pmull64 could | ||||
| 4789 | // re-use the dag-combiner function with aarch64_neon_{pmull,smull,umull}. | ||||
| 4790 | if (NLane && *NLane == 1) | ||||
| 4791 | return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v1i64, | ||||
| 4792 | N.getOperand(0), DAG.getConstant(1, dl, MVT::i64)); | ||||
| 4793 | |||||
| 4794 | // Operand N is not a higher half but the other operand is. | ||||
| 4795 | if (OtherLane && *OtherLane == 1) { | ||||
| 4796 | // If this operand is a lower half, rewrite it to | ||||
| 4797 | // extract_high_v2i64(duplane(<2 x Ty>, 0)). This saves a roundtrip to | ||||
| 4798 | // align lanes of two operands. A roundtrip sequence (to move from lane | ||||
| 4799 | // 1 to lane 0) is like this: | ||||
| 4800 | // mov x8, v0.d[1] | ||||
| 4801 | // fmov d0, x8 | ||||
| 4802 | if (NLane && *NLane == 0) | ||||
| 4803 | return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v1i64, | ||||
| 4804 | DAG.getNode(AArch64ISD::DUPLANE64, dl, MVT::v2i64, | ||||
| 4805 | N.getOperand(0), | ||||
| 4806 | DAG.getConstant(0, dl, MVT::i64)), | ||||
| 4807 | DAG.getConstant(1, dl, MVT::i64)); | ||||
| 4808 | |||||
| 4809 | // Otherwise just dup from main to all lanes. | ||||
| 4810 | return DAG.getNode(AArch64ISD::DUP, dl, MVT::v1i64, N); | ||||
| 4811 | } | ||||
| 4812 | |||||
| 4813 | // Neither operand is an extract of higher half, so codegen may just use | ||||
| 4814 | // the non-high version of PMULL instruction. Use v1i64 to represent i64. | ||||
| 4815 | assert(N.getValueType() == MVT::i64 &&(static_cast <bool> (N.getValueType() == MVT::i64 && "Intrinsic aarch64_neon_pmull64 requires i64 parameters") ? void (0) : __assert_fail ("N.getValueType() == MVT::i64 && \"Intrinsic aarch64_neon_pmull64 requires i64 parameters\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 4816, __extension__ __PRETTY_FUNCTION__)) | ||||
| 4816 | "Intrinsic aarch64_neon_pmull64 requires i64 parameters")(static_cast <bool> (N.getValueType() == MVT::i64 && "Intrinsic aarch64_neon_pmull64 requires i64 parameters") ? void (0) : __assert_fail ("N.getValueType() == MVT::i64 && \"Intrinsic aarch64_neon_pmull64 requires i64 parameters\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 4816, __extension__ __PRETTY_FUNCTION__)); | ||||
| 4817 | return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, N); | ||||
| 4818 | }; | ||||
| 4819 | |||||
| 4820 | LHS = TryVectorizeOperand(LHS, LHSLane, RHSLane, dl, DAG); | ||||
| 4821 | RHS = TryVectorizeOperand(RHS, RHSLane, LHSLane, dl, DAG); | ||||
| 4822 | |||||
| 4823 | return DAG.getNode(AArch64ISD::PMULL, dl, Op.getValueType(), LHS, RHS); | ||||
| 4824 | } | ||||
| 4825 | case Intrinsic::aarch64_neon_smax: | ||||
| 4826 | return DAG.getNode(ISD::SMAX, dl, Op.getValueType(), | ||||
| 4827 | Op.getOperand(1), Op.getOperand(2)); | ||||
| 4828 | case Intrinsic::aarch64_neon_umax: | ||||
| 4829 | return DAG.getNode(ISD::UMAX, dl, Op.getValueType(), | ||||
| 4830 | Op.getOperand(1), Op.getOperand(2)); | ||||
| 4831 | case Intrinsic::aarch64_neon_smin: | ||||
| 4832 | return DAG.getNode(ISD::SMIN, dl, Op.getValueType(), | ||||
| 4833 | Op.getOperand(1), Op.getOperand(2)); | ||||
| 4834 | case Intrinsic::aarch64_neon_umin: | ||||
| 4835 | return DAG.getNode(ISD::UMIN, dl, Op.getValueType(), | ||||
| 4836 | Op.getOperand(1), Op.getOperand(2)); | ||||
| 4837 | case Intrinsic::aarch64_neon_scalar_sqxtn: | ||||
| 4838 | case Intrinsic::aarch64_neon_scalar_sqxtun: | ||||
| 4839 | case Intrinsic::aarch64_neon_scalar_uqxtn: { | ||||
| 4840 | assert(Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::f32)(static_cast <bool> (Op.getValueType() == MVT::i32 || Op .getValueType() == MVT::f32) ? void (0) : __assert_fail ("Op.getValueType() == MVT::i32 || Op.getValueType() == MVT::f32" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 4840, __extension__ __PRETTY_FUNCTION__)); | ||||
| 4841 | if (Op.getValueType() == MVT::i32) | ||||
| 4842 | return DAG.getNode(ISD::BITCAST, dl, MVT::i32, | ||||
| 4843 | DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::f32, | ||||
| 4844 | Op.getOperand(0), | ||||
| 4845 | DAG.getNode(ISD::BITCAST, dl, MVT::f64, | ||||
| 4846 | Op.getOperand(1)))); | ||||
| 4847 | return SDValue(); | ||||
| 4848 | } | ||||
| 4849 | case Intrinsic::aarch64_sve_whilelo: { | ||||
| 4850 | if (isa<ConstantSDNode>(Op.getOperand(1)) && | ||||
| 4851 | isa<ConstantSDNode>(Op.getOperand(2))) { | ||||
| 4852 | unsigned MinSVEVectorSize = | ||||
| 4853 | std::max(Subtarget->getMinSVEVectorSizeInBits(), 128u); | ||||
| 4854 | unsigned ElementSize = 128 / Op.getValueType().getVectorMinNumElements(); | ||||
| 4855 | unsigned NumActiveElems = | ||||
| 4856 | Op.getConstantOperandVal(2) - Op.getConstantOperandVal(1); | ||||
| 4857 | std::optional<unsigned> PredPattern = | ||||
| 4858 | getSVEPredPatternFromNumElements(NumActiveElems); | ||||
| 4859 | if ((PredPattern != std::nullopt) && | ||||
| 4860 | NumActiveElems <= (MinSVEVectorSize / ElementSize)) | ||||
| 4861 | return getPTrue(DAG, dl, Op.getValueType(), *PredPattern); | ||||
| 4862 | } | ||||
| 4863 | return SDValue(); | ||||
| 4864 | } | ||||
| 4865 | case Intrinsic::aarch64_sve_sunpkhi: | ||||
| 4866 | return DAG.getNode(AArch64ISD::SUNPKHI, dl, Op.getValueType(), | ||||
| 4867 | Op.getOperand(1)); | ||||
| 4868 | case Intrinsic::aarch64_sve_sunpklo: | ||||
| 4869 | return DAG.getNode(AArch64ISD::SUNPKLO, dl, Op.getValueType(), | ||||
| 4870 | Op.getOperand(1)); | ||||
| 4871 | case Intrinsic::aarch64_sve_uunpkhi: | ||||
| 4872 | return DAG.getNode(AArch64ISD::UUNPKHI, dl, Op.getValueType(), | ||||
| 4873 | Op.getOperand(1)); | ||||
| 4874 | case Intrinsic::aarch64_sve_uunpklo: | ||||
| 4875 | return DAG.getNode(AArch64ISD::UUNPKLO, dl, Op.getValueType(), | ||||
| 4876 | Op.getOperand(1)); | ||||
| 4877 | case Intrinsic::aarch64_sve_clasta_n: | ||||
| 4878 | return DAG.getNode(AArch64ISD::CLASTA_N, dl, Op.getValueType(), | ||||
| 4879 | Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); | ||||
| 4880 | case Intrinsic::aarch64_sve_clastb_n: | ||||
| 4881 | return DAG.getNode(AArch64ISD::CLASTB_N, dl, Op.getValueType(), | ||||
| 4882 | Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); | ||||
| 4883 | case Intrinsic::aarch64_sve_lasta: | ||||
| 4884 | return DAG.getNode(AArch64ISD::LASTA, dl, Op.getValueType(), | ||||
| 4885 | Op.getOperand(1), Op.getOperand(2)); | ||||
| 4886 | case Intrinsic::aarch64_sve_lastb: | ||||
| 4887 | return DAG.getNode(AArch64ISD::LASTB, dl, Op.getValueType(), | ||||
| 4888 | Op.getOperand(1), Op.getOperand(2)); | ||||
| 4889 | case Intrinsic::aarch64_sve_rev: | ||||
| 4890 | return DAG.getNode(ISD::VECTOR_REVERSE, dl, Op.getValueType(), | ||||
| 4891 | Op.getOperand(1)); | ||||
| 4892 | case Intrinsic::aarch64_sve_tbl: | ||||
| 4893 | return DAG.getNode(AArch64ISD::TBL, dl, Op.getValueType(), | ||||
| 4894 | Op.getOperand(1), Op.getOperand(2)); | ||||
| 4895 | case Intrinsic::aarch64_sve_trn1: | ||||
| 4896 | return DAG.getNode(AArch64ISD::TRN1, dl, Op.getValueType(), | ||||
| 4897 | Op.getOperand(1), Op.getOperand(2)); | ||||
| 4898 | case Intrinsic::aarch64_sve_trn2: | ||||
| 4899 | return DAG.getNode(AArch64ISD::TRN2, dl, Op.getValueType(), | ||||
| 4900 | Op.getOperand(1), Op.getOperand(2)); | ||||
| 4901 | case Intrinsic::aarch64_sve_uzp1: | ||||
| 4902 | return DAG.getNode(AArch64ISD::UZP1, dl, Op.getValueType(), | ||||
| 4903 | Op.getOperand(1), Op.getOperand(2)); | ||||
| 4904 | case Intrinsic::aarch64_sve_uzp2: | ||||
| 4905 | return DAG.getNode(AArch64ISD::UZP2, dl, Op.getValueType(), | ||||
| 4906 | Op.getOperand(1), Op.getOperand(2)); | ||||
| 4907 | case Intrinsic::aarch64_sve_zip1: | ||||
| 4908 | return DAG.getNode(AArch64ISD::ZIP1, dl, Op.getValueType(), | ||||
| 4909 | Op.getOperand(1), Op.getOperand(2)); | ||||
| 4910 | case Intrinsic::aarch64_sve_zip2: | ||||
| 4911 | return DAG.getNode(AArch64ISD::ZIP2, dl, Op.getValueType(), | ||||
| 4912 | Op.getOperand(1), Op.getOperand(2)); | ||||
| 4913 | case Intrinsic::aarch64_sve_splice: | ||||
| 4914 | return DAG.getNode(AArch64ISD::SPLICE, dl, Op.getValueType(), | ||||
| 4915 | Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); | ||||
| 4916 | case Intrinsic::aarch64_sve_ptrue: | ||||
| 4917 | return getPTrue(DAG, dl, Op.getValueType(), | ||||
| 4918 | cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()); | ||||
| 4919 | case Intrinsic::aarch64_sve_clz: | ||||
| 4920 | return DAG.getNode(AArch64ISD::CTLZ_MERGE_PASSTHRU, dl, Op.getValueType(), | ||||
| 4921 | Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); | ||||
| 4922 | case Intrinsic::aarch64_sme_cntsb: | ||||
| 4923 | return DAG.getNode(AArch64ISD::RDSVL, dl, Op.getValueType(), | ||||
| 4924 | DAG.getConstant(1, dl, MVT::i32)); | ||||
| 4925 | case Intrinsic::aarch64_sme_cntsh: { | ||||
| 4926 | SDValue One = DAG.getConstant(1, dl, MVT::i32); | ||||
| 4927 | SDValue Bytes = DAG.getNode(AArch64ISD::RDSVL, dl, Op.getValueType(), One); | ||||
| 4928 | return DAG.getNode(ISD::SRL, dl, Op.getValueType(), Bytes, One); | ||||
| 4929 | } | ||||
| 4930 | case Intrinsic::aarch64_sme_cntsw: { | ||||
| 4931 | SDValue Bytes = DAG.getNode(AArch64ISD::RDSVL, dl, Op.getValueType(), | ||||
| 4932 | DAG.getConstant(1, dl, MVT::i32)); | ||||
| 4933 | return DAG.getNode(ISD::SRL, dl, Op.getValueType(), Bytes, | ||||
| 4934 | DAG.getConstant(2, dl, MVT::i32)); | ||||
| 4935 | } | ||||
| 4936 | case Intrinsic::aarch64_sme_cntsd: { | ||||
| 4937 | SDValue Bytes = DAG.getNode(AArch64ISD::RDSVL, dl, Op.getValueType(), | ||||
| 4938 | DAG.getConstant(1, dl, MVT::i32)); | ||||
| 4939 | return DAG.getNode(ISD::SRL, dl, Op.getValueType(), Bytes, | ||||
| 4940 | DAG.getConstant(3, dl, MVT::i32)); | ||||
| 4941 | } | ||||
| 4942 | case Intrinsic::aarch64_sve_cnt: { | ||||
| 4943 | SDValue Data = Op.getOperand(3); | ||||
| 4944 | // CTPOP only supports integer operands. | ||||
| 4945 | if (Data.getValueType().isFloatingPoint()) | ||||
| 4946 | Data = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Data); | ||||
| 4947 | return DAG.getNode(AArch64ISD::CTPOP_MERGE_PASSTHRU, dl, Op.getValueType(), | ||||
| 4948 | Op.getOperand(2), Data, Op.getOperand(1)); | ||||
| 4949 | } | ||||
| 4950 | case Intrinsic::aarch64_sve_dupq_lane: | ||||
| 4951 | return LowerDUPQLane(Op, DAG); | ||||
| 4952 | case Intrinsic::aarch64_sve_convert_from_svbool: | ||||
| 4953 | return getSVEPredicateBitCast(Op.getValueType(), Op.getOperand(1), DAG); | ||||
| 4954 | case Intrinsic::aarch64_sve_convert_to_svbool: | ||||
| 4955 | return getSVEPredicateBitCast(MVT::nxv16i1, Op.getOperand(1), DAG); | ||||
| 4956 | case Intrinsic::aarch64_sve_fneg: | ||||
| 4957 | return DAG.getNode(AArch64ISD::FNEG_MERGE_PASSTHRU, dl, Op.getValueType(), | ||||
| 4958 | Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); | ||||
| 4959 | case Intrinsic::aarch64_sve_frintp: | ||||
| 4960 | return DAG.getNode(AArch64ISD::FCEIL_MERGE_PASSTHRU, dl, Op.getValueType(), | ||||
| 4961 | Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); | ||||
| 4962 | case Intrinsic::aarch64_sve_frintm: | ||||
| 4963 | return DAG.getNode(AArch64ISD::FFLOOR_MERGE_PASSTHRU, dl, Op.getValueType(), | ||||
| 4964 | Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); | ||||
| 4965 | case Intrinsic::aarch64_sve_frinti: | ||||
| 4966 | return DAG.getNode(AArch64ISD::FNEARBYINT_MERGE_PASSTHRU, dl, Op.getValueType(), | ||||
| 4967 | Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); | ||||
| 4968 | case Intrinsic::aarch64_sve_frintx: | ||||
| 4969 | return DAG.getNode(AArch64ISD::FRINT_MERGE_PASSTHRU, dl, Op.getValueType(), | ||||
| 4970 | Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); | ||||
| 4971 | case Intrinsic::aarch64_sve_frinta: | ||||
| 4972 | return DAG.getNode(AArch64ISD::FROUND_MERGE_PASSTHRU, dl, Op.getValueType(), | ||||
| 4973 | Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); | ||||
| 4974 | case Intrinsic::aarch64_sve_frintn: | ||||
| 4975 | return DAG.getNode(AArch64ISD::FROUNDEVEN_MERGE_PASSTHRU, dl, Op.getValueType(), | ||||
| 4976 | Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); | ||||
| 4977 | case Intrinsic::aarch64_sve_frintz: | ||||
| 4978 | return DAG.getNode(AArch64ISD::FTRUNC_MERGE_PASSTHRU, dl, Op.getValueType(), | ||||
| 4979 | Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); | ||||
| 4980 | case Intrinsic::aarch64_sve_ucvtf: | ||||
| 4981 | return DAG.getNode(AArch64ISD::UINT_TO_FP_MERGE_PASSTHRU, dl, | ||||
| 4982 | Op.getValueType(), Op.getOperand(2), Op.getOperand(3), | ||||
| 4983 | Op.getOperand(1)); | ||||
| 4984 | case Intrinsic::aarch64_sve_scvtf: | ||||
| 4985 | return DAG.getNode(AArch64ISD::SINT_TO_FP_MERGE_PASSTHRU, dl, | ||||
| 4986 | Op.getValueType(), Op.getOperand(2), Op.getOperand(3), | ||||
| 4987 | Op.getOperand(1)); | ||||
| 4988 | case Intrinsic::aarch64_sve_fcvtzu: | ||||
| 4989 | return DAG.getNode(AArch64ISD::FCVTZU_MERGE_PASSTHRU, dl, | ||||
| 4990 | Op.getValueType(), Op.getOperand(2), Op.getOperand(3), | ||||
| 4991 | Op.getOperand(1)); | ||||
| 4992 | case Intrinsic::aarch64_sve_fcvtzs: | ||||
| 4993 | return DAG.getNode(AArch64ISD::FCVTZS_MERGE_PASSTHRU, dl, | ||||
| 4994 | Op.getValueType(), Op.getOperand(2), Op.getOperand(3), | ||||
| 4995 | Op.getOperand(1)); | ||||
| 4996 | case Intrinsic::aarch64_sve_fsqrt: | ||||
| 4997 | return DAG.getNode(AArch64ISD::FSQRT_MERGE_PASSTHRU, dl, Op.getValueType(), | ||||
| 4998 | Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); | ||||
| 4999 | case Intrinsic::aarch64_sve_frecpx: | ||||
| 5000 | return DAG.getNode(AArch64ISD::FRECPX_MERGE_PASSTHRU, dl, Op.getValueType(), | ||||
| 5001 | Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); | ||||
| 5002 | case Intrinsic::aarch64_sve_frecpe_x: | ||||
| 5003 | return DAG.getNode(AArch64ISD::FRECPE, dl, Op.getValueType(), | ||||
| 5004 | Op.getOperand(1)); | ||||
| 5005 | case Intrinsic::aarch64_sve_frecps_x: | ||||
| 5006 | return DAG.getNode(AArch64ISD::FRECPS, dl, Op.getValueType(), | ||||
| 5007 | Op.getOperand(1), Op.getOperand(2)); | ||||
| 5008 | case Intrinsic::aarch64_sve_frsqrte_x: | ||||
| 5009 | return DAG.getNode(AArch64ISD::FRSQRTE, dl, Op.getValueType(), | ||||
| 5010 | Op.getOperand(1)); | ||||
| 5011 | case Intrinsic::aarch64_sve_frsqrts_x: | ||||
| 5012 | return DAG.getNode(AArch64ISD::FRSQRTS, dl, Op.getValueType(), | ||||
| 5013 | Op.getOperand(1), Op.getOperand(2)); | ||||
| 5014 | case Intrinsic::aarch64_sve_fabs: | ||||
| 5015 | return DAG.getNode(AArch64ISD::FABS_MERGE_PASSTHRU, dl, Op.getValueType(), | ||||
| 5016 | Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); | ||||
| 5017 | case Intrinsic::aarch64_sve_abs: | ||||
| 5018 | return DAG.getNode(AArch64ISD::ABS_MERGE_PASSTHRU, dl, Op.getValueType(), | ||||
| 5019 | Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); | ||||
| 5020 | case Intrinsic::aarch64_sve_neg: | ||||
| 5021 | return DAG.getNode(AArch64ISD::NEG_MERGE_PASSTHRU, dl, Op.getValueType(), | ||||
| 5022 | Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); | ||||
| 5023 | case Intrinsic::aarch64_sve_insr: { | ||||
| 5024 | SDValue Scalar = Op.getOperand(2); | ||||
| 5025 | EVT ScalarTy = Scalar.getValueType(); | ||||
| 5026 | if ((ScalarTy == MVT::i8) || (ScalarTy == MVT::i16)) | ||||
| 5027 | Scalar = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Scalar); | ||||
| 5028 | |||||
| 5029 | return DAG.getNode(AArch64ISD::INSR, dl, Op.getValueType(), | ||||
| 5030 | Op.getOperand(1), Scalar); | ||||
| 5031 | } | ||||
| 5032 | case Intrinsic::aarch64_sve_rbit: | ||||
| 5033 | return DAG.getNode(AArch64ISD::BITREVERSE_MERGE_PASSTHRU, dl, | ||||
| 5034 | Op.getValueType(), Op.getOperand(2), Op.getOperand(3), | ||||
| 5035 | Op.getOperand(1)); | ||||
| 5036 | case Intrinsic::aarch64_sve_revb: | ||||
| 5037 | return DAG.getNode(AArch64ISD::BSWAP_MERGE_PASSTHRU, dl, Op.getValueType(), | ||||
| 5038 | Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); | ||||
| 5039 | case Intrinsic::aarch64_sve_revh: | ||||
| 5040 | return DAG.getNode(AArch64ISD::REVH_MERGE_PASSTHRU, dl, Op.getValueType(), | ||||
| 5041 | Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); | ||||
| 5042 | case Intrinsic::aarch64_sve_revw: | ||||
| 5043 | return DAG.getNode(AArch64ISD::REVW_MERGE_PASSTHRU, dl, Op.getValueType(), | ||||
| 5044 | Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); | ||||
| 5045 | case Intrinsic::aarch64_sve_revd: | ||||
| 5046 | return DAG.getNode(AArch64ISD::REVD_MERGE_PASSTHRU, dl, Op.getValueType(), | ||||
| 5047 | Op.getOperand(2), Op.getOperand(3), Op.getOperand(1)); | ||||
| 5048 | case Intrinsic::aarch64_sve_sxtb: | ||||
| 5049 | return DAG.getNode( | ||||
| 5050 | AArch64ISD::SIGN_EXTEND_INREG_MERGE_PASSTHRU, dl, Op.getValueType(), | ||||
| 5051 | Op.getOperand(2), Op.getOperand(3), | ||||
| 5052 | DAG.getValueType(Op.getValueType().changeVectorElementType(MVT::i8)), | ||||
| 5053 | Op.getOperand(1)); | ||||
| 5054 | case Intrinsic::aarch64_sve_sxth: | ||||
| 5055 | return DAG.getNode( | ||||
| 5056 | AArch64ISD::SIGN_EXTEND_INREG_MERGE_PASSTHRU, dl, Op.getValueType(), | ||||
| 5057 | Op.getOperand(2), Op.getOperand(3), | ||||
| 5058 | DAG.getValueType(Op.getValueType().changeVectorElementType(MVT::i16)), | ||||
| 5059 | Op.getOperand(1)); | ||||
| 5060 | case Intrinsic::aarch64_sve_sxtw: | ||||
| 5061 | return DAG.getNode( | ||||
| 5062 | AArch64ISD::SIGN_EXTEND_INREG_MERGE_PASSTHRU, dl, Op.getValueType(), | ||||
| 5063 | Op.getOperand(2), Op.getOperand(3), | ||||
| 5064 | DAG.getValueType(Op.getValueType().changeVectorElementType(MVT::i32)), | ||||
| 5065 | Op.getOperand(1)); | ||||
| 5066 | case Intrinsic::aarch64_sve_uxtb: | ||||
| 5067 | return DAG.getNode( | ||||
| 5068 | AArch64ISD::ZERO_EXTEND_INREG_MERGE_PASSTHRU, dl, Op.getValueType(), | ||||
| 5069 | Op.getOperand(2), Op.getOperand(3), | ||||
| 5070 | DAG.getValueType(Op.getValueType().changeVectorElementType(MVT::i8)), | ||||
| 5071 | Op.getOperand(1)); | ||||
| 5072 | case Intrinsic::aarch64_sve_uxth: | ||||
| 5073 | return DAG.getNode( | ||||
| 5074 | AArch64ISD::ZERO_EXTEND_INREG_MERGE_PASSTHRU, dl, Op.getValueType(), | ||||
| 5075 | Op.getOperand(2), Op.getOperand(3), | ||||
| 5076 | DAG.getValueType(Op.getValueType().changeVectorElementType(MVT::i16)), | ||||
| 5077 | Op.getOperand(1)); | ||||
| 5078 | case Intrinsic::aarch64_sve_uxtw: | ||||
| 5079 | return DAG.getNode( | ||||
| 5080 | AArch64ISD::ZERO_EXTEND_INREG_MERGE_PASSTHRU, dl, Op.getValueType(), | ||||
| 5081 | Op.getOperand(2), Op.getOperand(3), | ||||
| 5082 | DAG.getValueType(Op.getValueType().changeVectorElementType(MVT::i32)), | ||||
| 5083 | Op.getOperand(1)); | ||||
| 5084 | case Intrinsic::localaddress: { | ||||
| 5085 | const auto &MF = DAG.getMachineFunction(); | ||||
| 5086 | const auto *RegInfo = Subtarget->getRegisterInfo(); | ||||
| 5087 | unsigned Reg = RegInfo->getLocalAddressRegister(MF); | ||||
| 5088 | return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, | ||||
| 5089 | Op.getSimpleValueType()); | ||||
| 5090 | } | ||||
| 5091 | |||||
| 5092 | case Intrinsic::eh_recoverfp: { | ||||
| 5093 | // FIXME: This needs to be implemented to correctly handle highly aligned | ||||
| 5094 | // stack objects. For now we simply return the incoming FP. Refer D53541 | ||||
| 5095 | // for more details. | ||||
| 5096 | SDValue FnOp = Op.getOperand(1); | ||||
| 5097 | SDValue IncomingFPOp = Op.getOperand(2); | ||||
| 5098 | GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(FnOp); | ||||
| 5099 | auto *Fn = dyn_cast_or_null<Function>(GSD ? GSD->getGlobal() : nullptr); | ||||
| 5100 | if (!Fn) | ||||
| 5101 | report_fatal_error( | ||||
| 5102 | "llvm.eh.recoverfp must take a function as the first argument"); | ||||
| 5103 | return IncomingFPOp; | ||||
| 5104 | } | ||||
| 5105 | |||||
| 5106 | case Intrinsic::aarch64_neon_vsri: | ||||
| 5107 | case Intrinsic::aarch64_neon_vsli: { | ||||
| 5108 | EVT Ty = Op.getValueType(); | ||||
| 5109 | |||||
| 5110 | if (!Ty.isVector()) | ||||
| 5111 | report_fatal_error("Unexpected type for aarch64_neon_vsli"); | ||||
| 5112 | |||||
| 5113 | assert(Op.getConstantOperandVal(3) <= Ty.getScalarSizeInBits())(static_cast <bool> (Op.getConstantOperandVal(3) <= Ty .getScalarSizeInBits()) ? void (0) : __assert_fail ("Op.getConstantOperandVal(3) <= Ty.getScalarSizeInBits()" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 5113, __extension__ __PRETTY_FUNCTION__)); | ||||
| 5114 | |||||
| 5115 | bool IsShiftRight = IntNo == Intrinsic::aarch64_neon_vsri; | ||||
| 5116 | unsigned Opcode = IsShiftRight ? AArch64ISD::VSRI : AArch64ISD::VSLI; | ||||
| 5117 | return DAG.getNode(Opcode, dl, Ty, Op.getOperand(1), Op.getOperand(2), | ||||
| 5118 | Op.getOperand(3)); | ||||
| 5119 | } | ||||
| 5120 | |||||
| 5121 | case Intrinsic::aarch64_neon_srhadd: | ||||
| 5122 | case Intrinsic::aarch64_neon_urhadd: | ||||
| 5123 | case Intrinsic::aarch64_neon_shadd: | ||||
| 5124 | case Intrinsic::aarch64_neon_uhadd: { | ||||
| 5125 | bool IsSignedAdd = (IntNo == Intrinsic::aarch64_neon_srhadd || | ||||
| 5126 | IntNo == Intrinsic::aarch64_neon_shadd); | ||||
| 5127 | bool IsRoundingAdd = (IntNo == Intrinsic::aarch64_neon_srhadd || | ||||
| 5128 | IntNo == Intrinsic::aarch64_neon_urhadd); | ||||
| 5129 | unsigned Opcode = IsSignedAdd | ||||
| 5130 | ? (IsRoundingAdd ? ISD::AVGCEILS : ISD::AVGFLOORS) | ||||
| 5131 | : (IsRoundingAdd ? ISD::AVGCEILU : ISD::AVGFLOORU); | ||||
| 5132 | return DAG.getNode(Opcode, dl, Op.getValueType(), Op.getOperand(1), | ||||
| 5133 | Op.getOperand(2)); | ||||
| 5134 | } | ||||
| 5135 | case Intrinsic::aarch64_neon_sabd: | ||||
| 5136 | case Intrinsic::aarch64_neon_uabd: { | ||||
| 5137 | unsigned Opcode = IntNo == Intrinsic::aarch64_neon_uabd ? ISD::ABDU | ||||
| 5138 | : ISD::ABDS; | ||||
| 5139 | return DAG.getNode(Opcode, dl, Op.getValueType(), Op.getOperand(1), | ||||
| 5140 | Op.getOperand(2)); | ||||
| 5141 | } | ||||
| 5142 | case Intrinsic::aarch64_neon_saddlp: | ||||
| 5143 | case Intrinsic::aarch64_neon_uaddlp: { | ||||
| 5144 | unsigned Opcode = IntNo == Intrinsic::aarch64_neon_uaddlp | ||||
| 5145 | ? AArch64ISD::UADDLP | ||||
| 5146 | : AArch64ISD::SADDLP; | ||||
| 5147 | return DAG.getNode(Opcode, dl, Op.getValueType(), Op.getOperand(1)); | ||||
| 5148 | } | ||||
| 5149 | case Intrinsic::aarch64_neon_sdot: | ||||
| 5150 | case Intrinsic::aarch64_neon_udot: | ||||
| 5151 | case Intrinsic::aarch64_sve_sdot: | ||||
| 5152 | case Intrinsic::aarch64_sve_udot: { | ||||
| 5153 | unsigned Opcode = (IntNo == Intrinsic::aarch64_neon_udot || | ||||
| 5154 | IntNo == Intrinsic::aarch64_sve_udot) | ||||
| 5155 | ? AArch64ISD::UDOT | ||||
| 5156 | : AArch64ISD::SDOT; | ||||
| 5157 | return DAG.getNode(Opcode, dl, Op.getValueType(), Op.getOperand(1), | ||||
| 5158 | Op.getOperand(2), Op.getOperand(3)); | ||||
| 5159 | } | ||||
| 5160 | case Intrinsic::get_active_lane_mask: { | ||||
| 5161 | SDValue ID = | ||||
| 5162 | DAG.getTargetConstant(Intrinsic::aarch64_sve_whilelo, dl, MVT::i64); | ||||
| 5163 | return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, Op.getValueType(), ID, | ||||
| 5164 | Op.getOperand(1), Op.getOperand(2)); | ||||
| 5165 | } | ||||
| 5166 | } | ||||
| 5167 | } | ||||
| 5168 | |||||
| 5169 | bool AArch64TargetLowering::shouldExtendGSIndex(EVT VT, EVT &EltTy) const { | ||||
| 5170 | if (VT.getVectorElementType() == MVT::i8 || | ||||
| 5171 | VT.getVectorElementType() == MVT::i16) { | ||||
| 5172 | EltTy = MVT::i32; | ||||
| 5173 | return true; | ||||
| 5174 | } | ||||
| 5175 | return false; | ||||
| 5176 | } | ||||
| 5177 | |||||
| 5178 | bool AArch64TargetLowering::shouldRemoveExtendFromGSIndex(EVT IndexVT, | ||||
| 5179 | EVT DataVT) const { | ||||
| 5180 | // SVE only supports implicit extension of 32-bit indices. | ||||
| 5181 | if (!Subtarget->hasSVE() || IndexVT.getVectorElementType() != MVT::i32) | ||||
| 5182 | return false; | ||||
| 5183 | |||||
| 5184 | // Indices cannot be smaller than the main data type. | ||||
| 5185 | if (IndexVT.getScalarSizeInBits() < DataVT.getScalarSizeInBits()) | ||||
| 5186 | return false; | ||||
| 5187 | |||||
| 5188 | // Scalable vectors with "vscale * 2" or fewer elements sit within a 64-bit | ||||
| 5189 | // element container type, which would violate the previous clause. | ||||
| 5190 | return DataVT.isFixedLengthVector() || DataVT.getVectorMinNumElements() > 2; | ||||
| 5191 | } | ||||
| 5192 | |||||
| 5193 | bool AArch64TargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { | ||||
| 5194 | return ExtVal.getValueType().isScalableVector() || | ||||
| 5195 | useSVEForFixedLengthVectorVT( | ||||
| 5196 | ExtVal.getValueType(), | ||||
| 5197 | /*OverrideNEON=*/Subtarget->useSVEForFixedLengthVectors()); | ||||
| 5198 | } | ||||
| 5199 | |||||
| 5200 | unsigned getGatherVecOpcode(bool IsScaled, bool IsSigned, bool NeedsExtend) { | ||||
| 5201 | std::map<std::tuple<bool, bool, bool>, unsigned> AddrModes = { | ||||
| 5202 | {std::make_tuple(/*Scaled*/ false, /*Signed*/ false, /*Extend*/ false), | ||||
| 5203 | AArch64ISD::GLD1_MERGE_ZERO}, | ||||
| 5204 | {std::make_tuple(/*Scaled*/ false, /*Signed*/ false, /*Extend*/ true), | ||||
| 5205 | AArch64ISD::GLD1_UXTW_MERGE_ZERO}, | ||||
| 5206 | {std::make_tuple(/*Scaled*/ false, /*Signed*/ true, /*Extend*/ false), | ||||
| 5207 | AArch64ISD::GLD1_MERGE_ZERO}, | ||||
| 5208 | {std::make_tuple(/*Scaled*/ false, /*Signed*/ true, /*Extend*/ true), | ||||
| 5209 | AArch64ISD::GLD1_SXTW_MERGE_ZERO}, | ||||
| 5210 | {std::make_tuple(/*Scaled*/ true, /*Signed*/ false, /*Extend*/ false), | ||||
| 5211 | AArch64ISD::GLD1_SCALED_MERGE_ZERO}, | ||||
| 5212 | {std::make_tuple(/*Scaled*/ true, /*Signed*/ false, /*Extend*/ true), | ||||
| 5213 | AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO}, | ||||
| 5214 | {std::make_tuple(/*Scaled*/ true, /*Signed*/ true, /*Extend*/ false), | ||||
| 5215 | AArch64ISD::GLD1_SCALED_MERGE_ZERO}, | ||||
| 5216 | {std::make_tuple(/*Scaled*/ true, /*Signed*/ true, /*Extend*/ true), | ||||
| 5217 | AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO}, | ||||
| 5218 | }; | ||||
| 5219 | auto Key = std::make_tuple(IsScaled, IsSigned, NeedsExtend); | ||||
| 5220 | return AddrModes.find(Key)->second; | ||||
| 5221 | } | ||||
| 5222 | |||||
| 5223 | unsigned getSignExtendedGatherOpcode(unsigned Opcode) { | ||||
| 5224 | switch (Opcode) { | ||||
| 5225 | default: | ||||
| 5226 | llvm_unreachable("unimplemented opcode")::llvm::llvm_unreachable_internal("unimplemented opcode", "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp" , 5226); | ||||
| 5227 | return Opcode; | ||||
| 5228 | case AArch64ISD::GLD1_MERGE_ZERO: | ||||
| 5229 | return AArch64ISD::GLD1S_MERGE_ZERO; | ||||
| 5230 | case AArch64ISD::GLD1_IMM_MERGE_ZERO: | ||||
| 5231 | return AArch64ISD::GLD1S_IMM_MERGE_ZERO; | ||||
| 5232 | case AArch64ISD::GLD1_UXTW_MERGE_ZERO: | ||||
| 5233 | return AArch64ISD::GLD1S_UXTW_MERGE_ZERO; | ||||
| 5234 | case AArch64ISD::GLD1_SXTW_MERGE_ZERO: | ||||
| 5235 | return AArch64ISD::GLD1S_SXTW_MERGE_ZERO; | ||||
| 5236 | case AArch64ISD::GLD1_SCALED_MERGE_ZERO: | ||||
| 5237 | return AArch64ISD::GLD1S_SCALED_MERGE_ZERO; | ||||
| 5238 | case AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO: | ||||
| 5239 | return AArch64ISD::GLD1S_UXTW_SCALED_MERGE_ZERO; | ||||
| 5240 | case AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO: | ||||
| 5241 | return AArch64ISD::GLD1S_SXTW_SCALED_MERGE_ZERO; | ||||
| 5242 | } | ||||
| 5243 | } | ||||
| 5244 | |||||
| 5245 | SDValue AArch64TargetLowering::LowerMGATHER(SDValue Op, | ||||
| 5246 | SelectionDAG &DAG) const { | ||||
| 5247 | MaskedGatherSDNode *MGT = cast<MaskedGatherSDNode>(Op); | ||||
| 5248 | |||||
| 5249 | SDLoc DL(Op); | ||||
| 5250 | SDValue Chain = MGT->getChain(); | ||||
| 5251 | SDValue PassThru = MGT->getPassThru(); | ||||
| 5252 | SDValue Mask = MGT->getMask(); | ||||
| 5253 | SDValue BasePtr = MGT->getBasePtr(); | ||||
| 5254 | SDValue Index = MGT->getIndex(); | ||||
| 5255 | SDValue Scale = MGT->getScale(); | ||||
| 5256 | EVT VT = Op.getValueType(); | ||||
| 5257 | EVT MemVT = MGT->getMemoryVT(); | ||||
| 5258 | ISD::LoadExtType ExtType = MGT->getExtensionType(); | ||||
| 5259 | ISD::MemIndexType IndexType = MGT->getIndexType(); | ||||
| 5260 | |||||
| 5261 | // SVE supports zero (and so undef) passthrough values only, everything else | ||||
| 5262 | // must be handled manually by an explicit select on the load's output. | ||||
| 5263 | if (!PassThru->isUndef() && !isZerosVector(PassThru.getNode())) { | ||||
| 5264 | SDValue Ops[] = {Chain, DAG.getUNDEF(VT), Mask, BasePtr, Index, Scale}; | ||||
| 5265 | SDValue Load = | ||||
| 5266 | DAG.getMaskedGather(MGT->getVTList(), MemVT, DL, Ops, | ||||
| 5267 | MGT->getMemOperand(), IndexType, ExtType); | ||||
| 5268 | SDValue Select = DAG.getSelect(DL, VT, Mask, Load, PassThru); | ||||
| 5269 | return DAG.getMergeValues({Select, Load.getValue(1)}, DL); | ||||
| 5270 | } | ||||
| 5271 | |||||
| 5272 | bool IsScaled = MGT->isIndexScaled(); | ||||
| 5273 | bool IsSigned = MGT->isIndexSigned(); | ||||
| 5274 | |||||
| 5275 | // SVE supports an index scaled by sizeof(MemVT.elt) only, everything else | ||||
| 5276 | // must be calculated before hand. | ||||
| 5277 | uint64_t ScaleVal = cast<ConstantSDNode>(Scale)->getZExtValue(); | ||||
| 5278 | if (IsScaled && ScaleVal != MemVT.getScalarStoreSize()) { | ||||
| 5279 | assert(isPowerOf2_64(ScaleVal) && "Expecting power-of-two types")(static_cast <bool> (isPowerOf2_64(ScaleVal) && "Expecting power-of-two types") ? void (0) : __assert_fail ( "isPowerOf2_64(ScaleVal) && \"Expecting power-of-two types\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 5279, __extension__ __PRETTY_FUNCTION__)); | ||||
| 5280 | EVT IndexVT = Index.getValueType(); | ||||
| 5281 | Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, | ||||
| 5282 | DAG.getConstant(Log2_32(ScaleVal), DL, IndexVT)); | ||||
| 5283 | Scale = DAG.getTargetConstant(1, DL, Scale.getValueType()); | ||||
| 5284 | |||||
| 5285 | SDValue Ops[] = {Chain, PassThru, Mask, BasePtr, Index, Scale}; | ||||
| 5286 | return DAG.getMaskedGather(MGT->getVTList(), MemVT, DL, Ops, | ||||
| 5287 | MGT->getMemOperand(), IndexType, ExtType); | ||||
| 5288 | } | ||||
| 5289 | |||||
| 5290 | // Lower fixed length gather to a scalable equivalent. | ||||
| 5291 | if (VT.isFixedLengthVector()) { | ||||
| 5292 | assert(Subtarget->useSVEForFixedLengthVectors() &&(static_cast <bool> (Subtarget->useSVEForFixedLengthVectors () && "Cannot lower when not using SVE for fixed vectors!" ) ? void (0) : __assert_fail ("Subtarget->useSVEForFixedLengthVectors() && \"Cannot lower when not using SVE for fixed vectors!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 5293, __extension__ __PRETTY_FUNCTION__)) | ||||
| 5293 | "Cannot lower when not using SVE for fixed vectors!")(static_cast <bool> (Subtarget->useSVEForFixedLengthVectors () && "Cannot lower when not using SVE for fixed vectors!" ) ? void (0) : __assert_fail ("Subtarget->useSVEForFixedLengthVectors() && \"Cannot lower when not using SVE for fixed vectors!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 5293, __extension__ __PRETTY_FUNCTION__)); | ||||
| 5294 | |||||
| 5295 | // NOTE: Handle floating-point as if integer then bitcast the result. | ||||
| 5296 | EVT DataVT = VT.changeVectorElementTypeToInteger(); | ||||
| 5297 | MemVT = MemVT.changeVectorElementTypeToInteger(); | ||||
| 5298 | |||||
| 5299 | // Find the smallest integer fixed length vector we can use for the gather. | ||||
| 5300 | EVT PromotedVT = VT.changeVectorElementType(MVT::i32); | ||||
| 5301 | if (DataVT.getVectorElementType() == MVT::i64 || | ||||
| 5302 | Index.getValueType().getVectorElementType() == MVT::i64 || | ||||
| 5303 | Mask.getValueType().getVectorElementType() == MVT::i64) | ||||
| 5304 | PromotedVT = VT.changeVectorElementType(MVT::i64); | ||||
| 5305 | |||||
| 5306 | // Promote vector operands except for passthrough, which we know is either | ||||
| 5307 | // undef or zero, and thus best constructed directly. | ||||
| 5308 | unsigned ExtOpcode = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; | ||||
| 5309 | Index = DAG.getNode(ExtOpcode, DL, PromotedVT, Index); | ||||
| 5310 | Mask = DAG.getNode(ISD::SIGN_EXTEND, DL, PromotedVT, Mask); | ||||
| 5311 | |||||
| 5312 | // A promoted result type forces the need for an extending load. | ||||
| 5313 | if (PromotedVT != DataVT && ExtType == ISD::NON_EXTLOAD) | ||||
| 5314 | ExtType = ISD::EXTLOAD; | ||||
| 5315 | |||||
| 5316 | EVT ContainerVT = getContainerForFixedLengthVector(DAG, PromotedVT); | ||||
| 5317 | |||||
| 5318 | // Convert fixed length vector operands to scalable. | ||||
| 5319 | MemVT = ContainerVT.changeVectorElementType(MemVT.getVectorElementType()); | ||||
| 5320 | Index = convertToScalableVector(DAG, ContainerVT, Index); | ||||
| 5321 | Mask = convertFixedMaskToScalableVector(Mask, DAG); | ||||
| 5322 | PassThru = PassThru->isUndef() ? DAG.getUNDEF(ContainerVT) | ||||
| 5323 | : DAG.getConstant(0, DL, ContainerVT); | ||||
| 5324 | |||||
| 5325 | // Emit equivalent scalable vector gather. | ||||
| 5326 | SDValue Ops[] = {Chain, PassThru, Mask, BasePtr, Index, Scale}; | ||||
| 5327 | SDValue Load = | ||||
| 5328 | DAG.getMaskedGather(DAG.getVTList(ContainerVT, MVT::Other), MemVT, DL, | ||||
| 5329 | Ops, MGT->getMemOperand(), IndexType, ExtType); | ||||
| 5330 | |||||
| 5331 | // Extract fixed length data then convert to the required result type. | ||||
| 5332 | SDValue Result = convertFromScalableVector(DAG, PromotedVT, Load); | ||||
| 5333 | Result = DAG.getNode(ISD::TRUNCATE, DL, DataVT, Result); | ||||
| 5334 | if (VT.isFloatingPoint()) | ||||
| 5335 | Result = DAG.getNode(ISD::BITCAST, DL, VT, Result); | ||||
| 5336 | |||||
| 5337 | return DAG.getMergeValues({Result, Load.getValue(1)}, DL); | ||||
| 5338 | } | ||||
| 5339 | |||||
| 5340 | // Everything else is legal. | ||||
| 5341 | return Op; | ||||
| 5342 | } | ||||
| 5343 | |||||
| 5344 | SDValue AArch64TargetLowering::LowerMSCATTER(SDValue Op, | ||||
| 5345 | SelectionDAG &DAG) const { | ||||
| 5346 | MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(Op); | ||||
| 5347 | |||||
| 5348 | SDLoc DL(Op); | ||||
| 5349 | SDValue Chain = MSC->getChain(); | ||||
| 5350 | SDValue StoreVal = MSC->getValue(); | ||||
| 5351 | SDValue Mask = MSC->getMask(); | ||||
| 5352 | SDValue BasePtr = MSC->getBasePtr(); | ||||
| 5353 | SDValue Index = MSC->getIndex(); | ||||
| 5354 | SDValue Scale = MSC->getScale(); | ||||
| 5355 | EVT VT = StoreVal.getValueType(); | ||||
| 5356 | EVT MemVT = MSC->getMemoryVT(); | ||||
| 5357 | ISD::MemIndexType IndexType = MSC->getIndexType(); | ||||
| 5358 | bool Truncating = MSC->isTruncatingStore(); | ||||
| 5359 | |||||
| 5360 | bool IsScaled = MSC->isIndexScaled(); | ||||
| 5361 | bool IsSigned = MSC->isIndexSigned(); | ||||
| 5362 | |||||
| 5363 | // SVE supports an index scaled by sizeof(MemVT.elt) only, everything else | ||||
| 5364 | // must be calculated before hand. | ||||
| 5365 | uint64_t ScaleVal = cast<ConstantSDNode>(Scale)->getZExtValue(); | ||||
| 5366 | if (IsScaled && ScaleVal != MemVT.getScalarStoreSize()) { | ||||
| 5367 | assert(isPowerOf2_64(ScaleVal) && "Expecting power-of-two types")(static_cast <bool> (isPowerOf2_64(ScaleVal) && "Expecting power-of-two types") ? void (0) : __assert_fail ( "isPowerOf2_64(ScaleVal) && \"Expecting power-of-two types\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 5367, __extension__ __PRETTY_FUNCTION__)); | ||||
| 5368 | EVT IndexVT = Index.getValueType(); | ||||
| 5369 | Index = DAG.getNode(ISD::SHL, DL, IndexVT, Index, | ||||
| 5370 | DAG.getConstant(Log2_32(ScaleVal), DL, IndexVT)); | ||||
| 5371 | Scale = DAG.getTargetConstant(1, DL, Scale.getValueType()); | ||||
| 5372 | |||||
| 5373 | SDValue Ops[] = {Chain, StoreVal, Mask, BasePtr, Index, Scale}; | ||||
| 5374 | return DAG.getMaskedScatter(MSC->getVTList(), MemVT, DL, Ops, | ||||
| 5375 | MSC->getMemOperand(), IndexType, Truncating); | ||||
| 5376 | } | ||||
| 5377 | |||||
| 5378 | // Lower fixed length scatter to a scalable equivalent. | ||||
| 5379 | if (VT.isFixedLengthVector()) { | ||||
| 5380 | assert(Subtarget->useSVEForFixedLengthVectors() &&(static_cast <bool> (Subtarget->useSVEForFixedLengthVectors () && "Cannot lower when not using SVE for fixed vectors!" ) ? void (0) : __assert_fail ("Subtarget->useSVEForFixedLengthVectors() && \"Cannot lower when not using SVE for fixed vectors!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 5381, __extension__ __PRETTY_FUNCTION__)) | ||||
| 5381 | "Cannot lower when not using SVE for fixed vectors!")(static_cast <bool> (Subtarget->useSVEForFixedLengthVectors () && "Cannot lower when not using SVE for fixed vectors!" ) ? void (0) : __assert_fail ("Subtarget->useSVEForFixedLengthVectors() && \"Cannot lower when not using SVE for fixed vectors!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 5381, __extension__ __PRETTY_FUNCTION__)); | ||||
| 5382 | |||||
| 5383 | // Once bitcast we treat floating-point scatters as if integer. | ||||
| 5384 | if (VT.isFloatingPoint()) { | ||||
| 5385 | VT = VT.changeVectorElementTypeToInteger(); | ||||
| 5386 | MemVT = MemVT.changeVectorElementTypeToInteger(); | ||||
| 5387 | StoreVal = DAG.getNode(ISD::BITCAST, DL, VT, StoreVal); | ||||
| 5388 | } | ||||
| 5389 | |||||
| 5390 | // Find the smallest integer fixed length vector we can use for the scatter. | ||||
| 5391 | EVT PromotedVT = VT.changeVectorElementType(MVT::i32); | ||||
| 5392 | if (VT.getVectorElementType() == MVT::i64 || | ||||
| 5393 | Index.getValueType().getVectorElementType() == MVT::i64 || | ||||
| 5394 | Mask.getValueType().getVectorElementType() == MVT::i64) | ||||
| 5395 | PromotedVT = VT.changeVectorElementType(MVT::i64); | ||||
| 5396 | |||||
| 5397 | // Promote vector operands. | ||||
| 5398 | unsigned ExtOpcode = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; | ||||
| 5399 | Index = DAG.getNode(ExtOpcode, DL, PromotedVT, Index); | ||||
| 5400 | Mask = DAG.getNode(ISD::SIGN_EXTEND, DL, PromotedVT, Mask); | ||||
| 5401 | StoreVal = DAG.getNode(ISD::ANY_EXTEND, DL, PromotedVT, StoreVal); | ||||
| 5402 | |||||
| 5403 | // A promoted value type forces the need for a truncating store. | ||||
| 5404 | if (PromotedVT != VT) | ||||
| 5405 | Truncating = true; | ||||
| 5406 | |||||
| 5407 | EVT ContainerVT = getContainerForFixedLengthVector(DAG, PromotedVT); | ||||
| 5408 | |||||
| 5409 | // Convert fixed length vector operands to scalable. | ||||
| 5410 | MemVT = ContainerVT.changeVectorElementType(MemVT.getVectorElementType()); | ||||
| 5411 | Index = convertToScalableVector(DAG, ContainerVT, Index); | ||||
| 5412 | Mask = convertFixedMaskToScalableVector(Mask, DAG); | ||||
| 5413 | StoreVal = convertToScalableVector(DAG, ContainerVT, StoreVal); | ||||
| 5414 | |||||
| 5415 | // Emit equivalent scalable vector scatter. | ||||
| 5416 | SDValue Ops[] = {Chain, StoreVal, Mask, BasePtr, Index, Scale}; | ||||
| 5417 | return DAG.getMaskedScatter(MSC->getVTList(), MemVT, DL, Ops, | ||||
| 5418 | MSC->getMemOperand(), IndexType, Truncating); | ||||
| 5419 | } | ||||
| 5420 | |||||
| 5421 | // Everything else is legal. | ||||
| 5422 | return Op; | ||||
| 5423 | } | ||||
| 5424 | |||||
| 5425 | SDValue AArch64TargetLowering::LowerMLOAD(SDValue Op, SelectionDAG &DAG) const { | ||||
| 5426 | SDLoc DL(Op); | ||||
| 5427 | MaskedLoadSDNode *LoadNode = cast<MaskedLoadSDNode>(Op); | ||||
| 5428 | assert(LoadNode && "Expected custom lowering of a masked load node")(static_cast <bool> (LoadNode && "Expected custom lowering of a masked load node" ) ? void (0) : __assert_fail ("LoadNode && \"Expected custom lowering of a masked load node\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 5428, __extension__ __PRETTY_FUNCTION__)); | ||||
| 5429 | EVT VT = Op->getValueType(0); | ||||
| 5430 | |||||
| 5431 | if (useSVEForFixedLengthVectorVT( | ||||
| 5432 | VT, | ||||
| 5433 | /*OverrideNEON=*/Subtarget->useSVEForFixedLengthVectors())) | ||||
| 5434 | return LowerFixedLengthVectorMLoadToSVE(Op, DAG); | ||||
| 5435 | |||||
| 5436 | SDValue PassThru = LoadNode->getPassThru(); | ||||
| 5437 | SDValue Mask = LoadNode->getMask(); | ||||
| 5438 | |||||
| 5439 | if (PassThru->isUndef() || isZerosVector(PassThru.getNode())) | ||||
| 5440 | return Op; | ||||
| 5441 | |||||
| 5442 | SDValue Load = DAG.getMaskedLoad( | ||||
| 5443 | VT, DL, LoadNode->getChain(), LoadNode->getBasePtr(), | ||||
| 5444 | LoadNode->getOffset(), Mask, DAG.getUNDEF(VT), LoadNode->getMemoryVT(), | ||||
| 5445 | LoadNode->getMemOperand(), LoadNode->getAddressingMode(), | ||||
| 5446 | LoadNode->getExtensionType()); | ||||
| 5447 | |||||
| 5448 | SDValue Result = DAG.getSelect(DL, VT, Mask, Load, PassThru); | ||||
| 5449 | |||||
| 5450 | return DAG.getMergeValues({Result, Load.getValue(1)}, DL); | ||||
| 5451 | } | ||||
| 5452 | |||||
| 5453 | // Custom lower trunc store for v4i8 vectors, since it is promoted to v4i16. | ||||
| 5454 | static SDValue LowerTruncateVectorStore(SDLoc DL, StoreSDNode *ST, | ||||
| 5455 | EVT VT, EVT MemVT, | ||||
| 5456 | SelectionDAG &DAG) { | ||||
| 5457 | assert(VT.isVector() && "VT should be a vector type")(static_cast <bool> (VT.isVector() && "VT should be a vector type" ) ? void (0) : __assert_fail ("VT.isVector() && \"VT should be a vector type\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 5457, __extension__ __PRETTY_FUNCTION__)); | ||||
| 5458 | assert(MemVT == MVT::v4i8 && VT == MVT::v4i16)(static_cast <bool> (MemVT == MVT::v4i8 && VT == MVT::v4i16) ? void (0) : __assert_fail ("MemVT == MVT::v4i8 && VT == MVT::v4i16" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 5458, __extension__ __PRETTY_FUNCTION__)); | ||||
| 5459 | |||||
| 5460 | SDValue Value = ST->getValue(); | ||||
| 5461 | |||||
| 5462 | // It first extend the promoted v4i16 to v8i16, truncate to v8i8, and extract | ||||
| 5463 | // the word lane which represent the v4i8 subvector. It optimizes the store | ||||
| 5464 | // to: | ||||
| 5465 | // | ||||
| 5466 | // xtn v0.8b, v0.8h | ||||
| 5467 | // str s0, [x0] | ||||
| 5468 | |||||
| 5469 | SDValue Undef = DAG.getUNDEF(MVT::i16); | ||||
| 5470 | SDValue UndefVec = DAG.getBuildVector(MVT::v4i16, DL, | ||||
| 5471 | {Undef, Undef, Undef, Undef}); | ||||
| 5472 | |||||
| 5473 | SDValue TruncExt = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i16, | ||||
| 5474 | Value, UndefVec); | ||||
| 5475 | SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::v8i8, TruncExt); | ||||
| 5476 | |||||
| 5477 | Trunc = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Trunc); | ||||
| 5478 | SDValue ExtractTrunc = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, | ||||
| 5479 | Trunc, DAG.getConstant(0, DL, MVT::i64)); | ||||
| 5480 | |||||
| 5481 | return DAG.getStore(ST->getChain(), DL, ExtractTrunc, | ||||
| 5482 | ST->getBasePtr(), ST->getMemOperand()); | ||||
| 5483 | } | ||||
| 5484 | |||||
| 5485 | // Custom lowering for any store, vector or scalar and/or default or with | ||||
| 5486 | // a truncate operations. Currently only custom lower truncate operation | ||||
| 5487 | // from vector v4i16 to v4i8 or volatile stores of i128. | ||||
| 5488 | SDValue AArch64TargetLowering::LowerSTORE(SDValue Op, | ||||
| 5489 | SelectionDAG &DAG) const { | ||||
| 5490 | SDLoc Dl(Op); | ||||
| 5491 | StoreSDNode *StoreNode = cast<StoreSDNode>(Op); | ||||
| 5492 | assert (StoreNode && "Can only custom lower store nodes")(static_cast <bool> (StoreNode && "Can only custom lower store nodes" ) ? void (0) : __assert_fail ("StoreNode && \"Can only custom lower store nodes\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 5492, __extension__ __PRETTY_FUNCTION__)); | ||||
| 5493 | |||||
| 5494 | SDValue Value = StoreNode->getValue(); | ||||
| 5495 | |||||
| 5496 | EVT VT = Value.getValueType(); | ||||
| 5497 | EVT MemVT = StoreNode->getMemoryVT(); | ||||
| 5498 | |||||
| 5499 | if (VT.isVector()) { | ||||
| 5500 | if (useSVEForFixedLengthVectorVT( | ||||
| 5501 | VT, | ||||
| 5502 | /*OverrideNEON=*/Subtarget->useSVEForFixedLengthVectors())) | ||||
| 5503 | return LowerFixedLengthVectorStoreToSVE(Op, DAG); | ||||
| 5504 | |||||
| 5505 | unsigned AS = StoreNode->getAddressSpace(); | ||||
| 5506 | Align Alignment = StoreNode->getAlign(); | ||||
| 5507 | if (Alignment < MemVT.getStoreSize() && | ||||
| 5508 | !allowsMisalignedMemoryAccesses(MemVT, AS, Alignment, | ||||
| 5509 | StoreNode->getMemOperand()->getFlags(), | ||||
| 5510 | nullptr)) { | ||||
| 5511 | return scalarizeVectorStore(StoreNode, DAG); | ||||
| 5512 | } | ||||
| 5513 | |||||
| 5514 | if (StoreNode->isTruncatingStore() && VT == MVT::v4i16 && | ||||
| 5515 | MemVT == MVT::v4i8) { | ||||
| 5516 | return LowerTruncateVectorStore(Dl, StoreNode, VT, MemVT, DAG); | ||||
| 5517 | } | ||||
| 5518 | // 256 bit non-temporal stores can be lowered to STNP. Do this as part of | ||||
| 5519 | // the custom lowering, as there are no un-paired non-temporal stores and | ||||
| 5520 | // legalization will break up 256 bit inputs. | ||||
| 5521 | ElementCount EC = MemVT.getVectorElementCount(); | ||||
| 5522 | if (StoreNode->isNonTemporal() && MemVT.getSizeInBits() == 256u && | ||||
| 5523 | EC.isKnownEven() && | ||||
| 5524 | ((MemVT.getScalarSizeInBits() == 8u || | ||||
| 5525 | MemVT.getScalarSizeInBits() == 16u || | ||||
| 5526 | MemVT.getScalarSizeInBits() == 32u || | ||||
| 5527 | MemVT.getScalarSizeInBits() == 64u))) { | ||||
| 5528 | SDValue Lo = | ||||
| 5529 | DAG.getNode(ISD::EXTRACT_SUBVECTOR, Dl, | ||||
| 5530 | MemVT.getHalfNumVectorElementsVT(*DAG.getContext()), | ||||
| 5531 | StoreNode->getValue(), DAG.getConstant(0, Dl, MVT::i64)); | ||||
| 5532 | SDValue Hi = | ||||
| 5533 | DAG.getNode(ISD::EXTRACT_SUBVECTOR, Dl, | ||||
| 5534 | MemVT.getHalfNumVectorElementsVT(*DAG.getContext()), | ||||
| 5535 | StoreNode->getValue(), | ||||
| 5536 | DAG.getConstant(EC.getKnownMinValue() / 2, Dl, MVT::i64)); | ||||
| 5537 | SDValue Result = DAG.getMemIntrinsicNode( | ||||
| 5538 | AArch64ISD::STNP, Dl, DAG.getVTList(MVT::Other), | ||||
| 5539 | {StoreNode->getChain(), Lo, Hi, StoreNode->getBasePtr()}, | ||||
| 5540 | StoreNode->getMemoryVT(), StoreNode->getMemOperand()); | ||||
| 5541 | return Result; | ||||
| 5542 | } | ||||
| 5543 | } else if (MemVT == MVT::i128 && StoreNode->isVolatile()) { | ||||
| 5544 | return LowerStore128(Op, DAG); | ||||
| 5545 | } else if (MemVT == MVT::i64x8) { | ||||
| 5546 | SDValue Value = StoreNode->getValue(); | ||||
| 5547 | assert(Value->getValueType(0) == MVT::i64x8)(static_cast <bool> (Value->getValueType(0) == MVT:: i64x8) ? void (0) : __assert_fail ("Value->getValueType(0) == MVT::i64x8" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 5547, __extension__ __PRETTY_FUNCTION__)); | ||||
| 5548 | SDValue Chain = StoreNode->getChain(); | ||||
| 5549 | SDValue Base = StoreNode->getBasePtr(); | ||||
| 5550 | EVT PtrVT = Base.getValueType(); | ||||
| 5551 | for (unsigned i = 0; i < 8; i++) { | ||||
| 5552 | SDValue Part = DAG.getNode(AArch64ISD::LS64_EXTRACT, Dl, MVT::i64, | ||||
| 5553 | Value, DAG.getConstant(i, Dl, MVT::i32)); | ||||
| 5554 | SDValue Ptr = DAG.getNode(ISD::ADD, Dl, PtrVT, Base, | ||||
| 5555 | DAG.getConstant(i * 8, Dl, PtrVT)); | ||||
| 5556 | Chain = DAG.getStore(Chain, Dl, Part, Ptr, StoreNode->getPointerInfo(), | ||||
| 5557 | StoreNode->getOriginalAlign()); | ||||
| 5558 | } | ||||
| 5559 | return Chain; | ||||
| 5560 | } | ||||
| 5561 | |||||
| 5562 | return SDValue(); | ||||
| 5563 | } | ||||
| 5564 | |||||
| 5565 | /// Lower atomic or volatile 128-bit stores to a single STP instruction. | ||||
| 5566 | SDValue AArch64TargetLowering::LowerStore128(SDValue Op, | ||||
| 5567 | SelectionDAG &DAG) const { | ||||
| 5568 | MemSDNode *StoreNode = cast<MemSDNode>(Op); | ||||
| 5569 | assert(StoreNode->getMemoryVT() == MVT::i128)(static_cast <bool> (StoreNode->getMemoryVT() == MVT ::i128) ? void (0) : __assert_fail ("StoreNode->getMemoryVT() == MVT::i128" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 5569, __extension__ __PRETTY_FUNCTION__)); | ||||
| 5570 | assert(StoreNode->isVolatile() || StoreNode->isAtomic())(static_cast <bool> (StoreNode->isVolatile() || StoreNode ->isAtomic()) ? void (0) : __assert_fail ("StoreNode->isVolatile() || StoreNode->isAtomic()" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 5570, __extension__ __PRETTY_FUNCTION__)); | ||||
| 5571 | assert(!StoreNode->isAtomic() ||(static_cast <bool> (!StoreNode->isAtomic() || StoreNode ->getMergedOrdering() == AtomicOrdering::Unordered || StoreNode ->getMergedOrdering() == AtomicOrdering::Monotonic) ? void (0) : __assert_fail ("!StoreNode->isAtomic() || StoreNode->getMergedOrdering() == AtomicOrdering::Unordered || StoreNode->getMergedOrdering() == AtomicOrdering::Monotonic" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 5573, __extension__ __PRETTY_FUNCTION__)) | ||||
| 5572 | StoreNode->getMergedOrdering() == AtomicOrdering::Unordered ||(static_cast <bool> (!StoreNode->isAtomic() || StoreNode ->getMergedOrdering() == AtomicOrdering::Unordered || StoreNode ->getMergedOrdering() == AtomicOrdering::Monotonic) ? void (0) : __assert_fail ("!StoreNode->isAtomic() || StoreNode->getMergedOrdering() == AtomicOrdering::Unordered || StoreNode->getMergedOrdering() == AtomicOrdering::Monotonic" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 5573, __extension__ __PRETTY_FUNCTION__)) | ||||
| 5573 | StoreNode->getMergedOrdering() == AtomicOrdering::Monotonic)(static_cast <bool> (!StoreNode->isAtomic() || StoreNode ->getMergedOrdering() == AtomicOrdering::Unordered || StoreNode ->getMergedOrdering() == AtomicOrdering::Monotonic) ? void (0) : __assert_fail ("!StoreNode->isAtomic() || StoreNode->getMergedOrdering() == AtomicOrdering::Unordered || StoreNode->getMergedOrdering() == AtomicOrdering::Monotonic" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 5573, __extension__ __PRETTY_FUNCTION__)); | ||||
| 5574 | |||||
| 5575 | SDValue Value = StoreNode->getOpcode() == ISD::STORE | ||||
| 5576 | ? StoreNode->getOperand(1) | ||||
| 5577 | : StoreNode->getOperand(2); | ||||
| 5578 | SDLoc DL(Op); | ||||
| 5579 | SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, Value, | ||||
| 5580 | DAG.getConstant(0, DL, MVT::i64)); | ||||
| 5581 | SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, Value, | ||||
| 5582 | DAG.getConstant(1, DL, MVT::i64)); | ||||
| 5583 | SDValue Result = DAG.getMemIntrinsicNode( | ||||
| 5584 | AArch64ISD::STP, DL, DAG.getVTList(MVT::Other), | ||||
| 5585 | {StoreNode->getChain(), Lo, Hi, StoreNode->getBasePtr()}, | ||||
| 5586 | StoreNode->getMemoryVT(), StoreNode->getMemOperand()); | ||||
| 5587 | return Result; | ||||
| 5588 | } | ||||
| 5589 | |||||
| 5590 | SDValue AArch64TargetLowering::LowerLOAD(SDValue Op, | ||||
| 5591 | SelectionDAG &DAG) const { | ||||
| 5592 | SDLoc DL(Op); | ||||
| 5593 | LoadSDNode *LoadNode = cast<LoadSDNode>(Op); | ||||
| 5594 | assert(LoadNode && "Expected custom lowering of a load node")(static_cast <bool> (LoadNode && "Expected custom lowering of a load node" ) ? void (0) : __assert_fail ("LoadNode && \"Expected custom lowering of a load node\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 5594, __extension__ __PRETTY_FUNCTION__)); | ||||
| 5595 | |||||
| 5596 | if (LoadNode->getMemoryVT() == MVT::i64x8) { | ||||
| 5597 | SmallVector<SDValue, 8> Ops; | ||||
| 5598 | SDValue Base = LoadNode->getBasePtr(); | ||||
| 5599 | SDValue Chain = LoadNode->getChain(); | ||||
| 5600 | EVT PtrVT = Base.getValueType(); | ||||
| 5601 | for (unsigned i = 0; i < 8; i++) { | ||||
| 5602 | SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, Base, | ||||
| 5603 | DAG.getConstant(i * 8, DL, PtrVT)); | ||||
| 5604 | SDValue Part = DAG.getLoad(MVT::i64, DL, Chain, Ptr, | ||||
| 5605 | LoadNode->getPointerInfo(), | ||||
| 5606 | LoadNode->getOriginalAlign()); | ||||
| 5607 | Ops.push_back(Part); | ||||
| 5608 | Chain = SDValue(Part.getNode(), 1); | ||||
| 5609 | } | ||||
| 5610 | SDValue Loaded = DAG.getNode(AArch64ISD::LS64_BUILD, DL, MVT::i64x8, Ops); | ||||
| 5611 | return DAG.getMergeValues({Loaded, Chain}, DL); | ||||
| 5612 | } | ||||
| 5613 | |||||
| 5614 | // Custom lowering for extending v4i8 vector loads. | ||||
| 5615 | EVT VT = Op->getValueType(0); | ||||
| 5616 | assert((VT == MVT::v4i16 || VT == MVT::v4i32) && "Expected v4i16 or v4i32")(static_cast <bool> ((VT == MVT::v4i16 || VT == MVT::v4i32 ) && "Expected v4i16 or v4i32") ? void (0) : __assert_fail ("(VT == MVT::v4i16 || VT == MVT::v4i32) && \"Expected v4i16 or v4i32\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 5616, __extension__ __PRETTY_FUNCTION__)); | ||||
| 5617 | |||||
| 5618 | if (LoadNode->getMemoryVT() != MVT::v4i8) | ||||
| 5619 | return SDValue(); | ||||
| 5620 | |||||
| 5621 | unsigned ExtType; | ||||
| 5622 | if (LoadNode->getExtensionType() == ISD::SEXTLOAD) | ||||
| 5623 | ExtType = ISD::SIGN_EXTEND; | ||||
| 5624 | else if (LoadNode->getExtensionType() == ISD::ZEXTLOAD || | ||||
| 5625 | LoadNode->getExtensionType() == ISD::EXTLOAD) | ||||
| 5626 | ExtType = ISD::ZERO_EXTEND; | ||||
| 5627 | else | ||||
| 5628 | return SDValue(); | ||||
| 5629 | |||||
| 5630 | SDValue Load = DAG.getLoad(MVT::f32, DL, LoadNode->getChain(), | ||||
| 5631 | LoadNode->getBasePtr(), MachinePointerInfo()); | ||||
| 5632 | SDValue Chain = Load.getValue(1); | ||||
| 5633 | SDValue Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f32, Load); | ||||
| 5634 | SDValue BC = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Vec); | ||||
| 5635 | SDValue Ext = DAG.getNode(ExtType, DL, MVT::v8i16, BC); | ||||
| 5636 | Ext = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, Ext, | ||||
| 5637 | DAG.getConstant(0, DL, MVT::i64)); | ||||
| 5638 | if (VT == MVT::v4i32) | ||||
| 5639 | Ext = DAG.getNode(ExtType, DL, MVT::v4i32, Ext); | ||||
| 5640 | return DAG.getMergeValues({Ext, Chain}, DL); | ||||
| 5641 | } | ||||
| 5642 | |||||
| 5643 | // Generate SUBS and CSEL for integer abs. | ||||
| 5644 | SDValue AArch64TargetLowering::LowerABS(SDValue Op, SelectionDAG &DAG) const { | ||||
| 5645 | MVT VT = Op.getSimpleValueType(); | ||||
| 5646 | |||||
| 5647 | if (VT.isVector()) | ||||
| 5648 | return LowerToPredicatedOp(Op, DAG, AArch64ISD::ABS_MERGE_PASSTHRU); | ||||
| 5649 | |||||
| 5650 | SDLoc DL(Op); | ||||
| 5651 | SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), | ||||
| 5652 | Op.getOperand(0)); | ||||
| 5653 | // Generate SUBS & CSEL. | ||||
| 5654 | SDValue Cmp = | ||||
| 5655 | DAG.getNode(AArch64ISD::SUBS, DL, DAG.getVTList(VT, MVT::i32), | ||||
| 5656 | Op.getOperand(0), DAG.getConstant(0, DL, VT)); | ||||
| 5657 | return DAG.getNode(AArch64ISD::CSEL, DL, VT, Op.getOperand(0), Neg, | ||||
| 5658 | DAG.getConstant(AArch64CC::PL, DL, MVT::i32), | ||||
| 5659 | Cmp.getValue(1)); | ||||
| 5660 | } | ||||
| 5661 | |||||
| 5662 | static SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) { | ||||
| 5663 | SDValue Chain = Op.getOperand(0); | ||||
| 5664 | SDValue Cond = Op.getOperand(1); | ||||
| 5665 | SDValue Dest = Op.getOperand(2); | ||||
| 5666 | |||||
| 5667 | AArch64CC::CondCode CC; | ||||
| 5668 | if (SDValue Cmp = emitConjunction(DAG, Cond, CC)) { | ||||
| 5669 | SDLoc dl(Op); | ||||
| 5670 | SDValue CCVal = DAG.getConstant(CC, dl, MVT::i32); | ||||
| 5671 | return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal, | ||||
| 5672 | Cmp); | ||||
| 5673 | } | ||||
| 5674 | |||||
| 5675 | return SDValue(); | ||||
| 5676 | } | ||||
| 5677 | |||||
| 5678 | SDValue AArch64TargetLowering::LowerOperation(SDValue Op, | ||||
| 5679 | SelectionDAG &DAG) const { | ||||
| 5680 | LLVM_DEBUG(dbgs() << "Custom lowering: ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "Custom lowering: "; } } while (false); | ||||
| 5681 | LLVM_DEBUG(Op.dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { Op.dump(); } } while (false); | ||||
| 5682 | |||||
| 5683 | switch (Op.getOpcode()) { | ||||
| 5684 | default: | ||||
| 5685 | llvm_unreachable("unimplemented operand")::llvm::llvm_unreachable_internal("unimplemented operand", "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp" , 5685); | ||||
| 5686 | return SDValue(); | ||||
| 5687 | case ISD::BITCAST: | ||||
| 5688 | return LowerBITCAST(Op, DAG); | ||||
| 5689 | case ISD::GlobalAddress: | ||||
| 5690 | return LowerGlobalAddress(Op, DAG); | ||||
| 5691 | case ISD::GlobalTLSAddress: | ||||
| 5692 | return LowerGlobalTLSAddress(Op, DAG); | ||||
| 5693 | case ISD::SETCC: | ||||
| 5694 | case ISD::STRICT_FSETCC: | ||||
| 5695 | case ISD::STRICT_FSETCCS: | ||||
| 5696 | return LowerSETCC(Op, DAG); | ||||
| 5697 | case ISD::SETCCCARRY: | ||||
| 5698 | return LowerSETCCCARRY(Op, DAG); | ||||
| 5699 | case ISD::BRCOND: | ||||
| 5700 | return LowerBRCOND(Op, DAG); | ||||
| 5701 | case ISD::BR_CC: | ||||
| 5702 | return LowerBR_CC(Op, DAG); | ||||
| 5703 | case ISD::SELECT: | ||||
| 5704 | return LowerSELECT(Op, DAG); | ||||
| 5705 | case ISD::SELECT_CC: | ||||
| 5706 | return LowerSELECT_CC(Op, DAG); | ||||
| 5707 | case ISD::JumpTable: | ||||
| 5708 | return LowerJumpTable(Op, DAG); | ||||
| 5709 | case ISD::BR_JT: | ||||
| 5710 | return LowerBR_JT(Op, DAG); | ||||
| 5711 | case ISD::ConstantPool: | ||||
| 5712 | return LowerConstantPool(Op, DAG); | ||||
| 5713 | case ISD::BlockAddress: | ||||
| 5714 | return LowerBlockAddress(Op, DAG); | ||||
| 5715 | case ISD::VASTART: | ||||
| 5716 | return LowerVASTART(Op, DAG); | ||||
| 5717 | case ISD::VACOPY: | ||||
| 5718 | return LowerVACOPY(Op, DAG); | ||||
| 5719 | case ISD::VAARG: | ||||
| 5720 | return LowerVAARG(Op, DAG); | ||||
| 5721 | case ISD::ADDCARRY: | ||||
| 5722 | return lowerADDSUBCARRY(Op, DAG, AArch64ISD::ADCS, false /*unsigned*/); | ||||
| 5723 | case ISD::SUBCARRY: | ||||
| 5724 | return lowerADDSUBCARRY(Op, DAG, AArch64ISD::SBCS, false /*unsigned*/); | ||||
| 5725 | case ISD::SADDO_CARRY: | ||||
| 5726 | return lowerADDSUBCARRY(Op, DAG, AArch64ISD::ADCS, true /*signed*/); | ||||
| 5727 | case ISD::SSUBO_CARRY: | ||||
| 5728 | return lowerADDSUBCARRY(Op, DAG, AArch64ISD::SBCS, true /*signed*/); | ||||
| 5729 | case ISD::SADDO: | ||||
| 5730 | case ISD::UADDO: | ||||
| 5731 | case ISD::SSUBO: | ||||
| 5732 | case ISD::USUBO: | ||||
| 5733 | case ISD::SMULO: | ||||
| 5734 | case ISD::UMULO: | ||||
| 5735 | return LowerXALUO(Op, DAG); | ||||
| 5736 | case ISD::FADD: | ||||
| 5737 | return LowerToPredicatedOp(Op, DAG, AArch64ISD::FADD_PRED); | ||||
| 5738 | case ISD::FSUB: | ||||
| 5739 | return LowerToPredicatedOp(Op, DAG, AArch64ISD::FSUB_PRED); | ||||
| 5740 | case ISD::FMUL: | ||||
| 5741 | return LowerToPredicatedOp(Op, DAG, AArch64ISD::FMUL_PRED); | ||||
| 5742 | case ISD::FMA: | ||||
| 5743 | return LowerToPredicatedOp(Op, DAG, AArch64ISD::FMA_PRED); | ||||
| 5744 | case ISD::FDIV: | ||||
| 5745 | return LowerToPredicatedOp(Op, DAG, AArch64ISD::FDIV_PRED); | ||||
| 5746 | case ISD::FNEG: | ||||
| 5747 | return LowerToPredicatedOp(Op, DAG, AArch64ISD::FNEG_MERGE_PASSTHRU); | ||||
| 5748 | case ISD::FCEIL: | ||||
| 5749 | return LowerToPredicatedOp(Op, DAG, AArch64ISD::FCEIL_MERGE_PASSTHRU); | ||||
| 5750 | case ISD::FFLOOR: | ||||
| 5751 | return LowerToPredicatedOp(Op, DAG, AArch64ISD::FFLOOR_MERGE_PASSTHRU); | ||||
| 5752 | case ISD::FNEARBYINT: | ||||
| 5753 | return LowerToPredicatedOp(Op, DAG, AArch64ISD::FNEARBYINT_MERGE_PASSTHRU); | ||||
| 5754 | case ISD::FRINT: | ||||
| 5755 | return LowerToPredicatedOp(Op, DAG, AArch64ISD::FRINT_MERGE_PASSTHRU); | ||||
| 5756 | case ISD::FROUND: | ||||
| 5757 | return LowerToPredicatedOp(Op, DAG, AArch64ISD::FROUND_MERGE_PASSTHRU); | ||||
| 5758 | case ISD::FROUNDEVEN: | ||||
| 5759 | return LowerToPredicatedOp(Op, DAG, AArch64ISD::FROUNDEVEN_MERGE_PASSTHRU); | ||||
| 5760 | case ISD::FTRUNC: | ||||
| 5761 | return LowerToPredicatedOp(Op, DAG, AArch64ISD::FTRUNC_MERGE_PASSTHRU); | ||||
| 5762 | case ISD::FSQRT: | ||||
| 5763 | return LowerToPredicatedOp(Op, DAG, AArch64ISD::FSQRT_MERGE_PASSTHRU); | ||||
| 5764 | case ISD::FABS: | ||||
| 5765 | return LowerToPredicatedOp(Op, DAG, AArch64ISD::FABS_MERGE_PASSTHRU); | ||||
| 5766 | case ISD::FP_ROUND: | ||||
| 5767 | case ISD::STRICT_FP_ROUND: | ||||
| 5768 | return LowerFP_ROUND(Op, DAG); | ||||
| 5769 | case ISD::FP_EXTEND: | ||||
| 5770 | return LowerFP_EXTEND(Op, DAG); | ||||
| 5771 | case ISD::FRAMEADDR: | ||||
| 5772 | return LowerFRAMEADDR(Op, DAG); | ||||
| 5773 | case ISD::SPONENTRY: | ||||
| 5774 | return LowerSPONENTRY(Op, DAG); | ||||
| 5775 | case ISD::RETURNADDR: | ||||
| 5776 | return LowerRETURNADDR(Op, DAG); | ||||
| 5777 | case ISD::ADDROFRETURNADDR: | ||||
| 5778 | return LowerADDROFRETURNADDR(Op, DAG); | ||||
| 5779 | case ISD::CONCAT_VECTORS: | ||||
| 5780 | return LowerCONCAT_VECTORS(Op, DAG); | ||||
| 5781 | case ISD::INSERT_VECTOR_ELT: | ||||
| 5782 | return LowerINSERT_VECTOR_ELT(Op, DAG); | ||||
| 5783 | case ISD::EXTRACT_VECTOR_ELT: | ||||
| 5784 | return LowerEXTRACT_VECTOR_ELT(Op, DAG); | ||||
| 5785 | case ISD::BUILD_VECTOR: | ||||
| 5786 | return LowerBUILD_VECTOR(Op, DAG); | ||||
| 5787 | case ISD::VECTOR_SHUFFLE: | ||||
| 5788 | return LowerVECTOR_SHUFFLE(Op, DAG); | ||||
| 5789 | case ISD::SPLAT_VECTOR: | ||||
| 5790 | return LowerSPLAT_VECTOR(Op, DAG); | ||||
| 5791 | case ISD::EXTRACT_SUBVECTOR: | ||||
| 5792 | return LowerEXTRACT_SUBVECTOR(Op, DAG); | ||||
| 5793 | case ISD::INSERT_SUBVECTOR: | ||||
| 5794 | return LowerINSERT_SUBVECTOR(Op, DAG); | ||||
| 5795 | case ISD::SDIV: | ||||
| 5796 | case ISD::UDIV: | ||||
| 5797 | return LowerDIV(Op, DAG); | ||||
| 5798 | case ISD::SMIN: | ||||
| 5799 | case ISD::UMIN: | ||||
| 5800 | case ISD::SMAX: | ||||
| 5801 | case ISD::UMAX: | ||||
| 5802 | return LowerMinMax(Op, DAG); | ||||
| 5803 | case ISD::SRA: | ||||
| 5804 | case ISD::SRL: | ||||
| 5805 | case ISD::SHL: | ||||
| 5806 | return LowerVectorSRA_SRL_SHL(Op, DAG); | ||||
| 5807 | case ISD::SHL_PARTS: | ||||
| 5808 | case ISD::SRL_PARTS: | ||||
| 5809 | case ISD::SRA_PARTS: | ||||
| 5810 | return LowerShiftParts(Op, DAG); | ||||
| 5811 | case ISD::CTPOP: | ||||
| 5812 | case ISD::PARITY: | ||||
| 5813 | return LowerCTPOP_PARITY(Op, DAG); | ||||
| 5814 | case ISD::FCOPYSIGN: | ||||
| 5815 | return LowerFCOPYSIGN(Op, DAG); | ||||
| 5816 | case ISD::OR: | ||||
| 5817 | return LowerVectorOR(Op, DAG); | ||||
| 5818 | case ISD::XOR: | ||||
| 5819 | return LowerXOR(Op, DAG); | ||||
| 5820 | case ISD::PREFETCH: | ||||
| 5821 | return LowerPREFETCH(Op, DAG); | ||||
| 5822 | case ISD::SINT_TO_FP: | ||||
| 5823 | case ISD::UINT_TO_FP: | ||||
| 5824 | case ISD::STRICT_SINT_TO_FP: | ||||
| 5825 | case ISD::STRICT_UINT_TO_FP: | ||||
| 5826 | return LowerINT_TO_FP(Op, DAG); | ||||
| 5827 | case ISD::FP_TO_SINT: | ||||
| 5828 | case ISD::FP_TO_UINT: | ||||
| 5829 | case ISD::STRICT_FP_TO_SINT: | ||||
| 5830 | case ISD::STRICT_FP_TO_UINT: | ||||
| 5831 | return LowerFP_TO_INT(Op, DAG); | ||||
| 5832 | case ISD::FP_TO_SINT_SAT: | ||||
| 5833 | case ISD::FP_TO_UINT_SAT: | ||||
| 5834 | return LowerFP_TO_INT_SAT(Op, DAG); | ||||
| 5835 | case ISD::FSINCOS: | ||||
| 5836 | return LowerFSINCOS(Op, DAG); | ||||
| 5837 | case ISD::FLT_ROUNDS_: | ||||
| 5838 | return LowerFLT_ROUNDS_(Op, DAG); | ||||
| 5839 | case ISD::SET_ROUNDING: | ||||
| 5840 | return LowerSET_ROUNDING(Op, DAG); | ||||
| 5841 | case ISD::MUL: | ||||
| 5842 | return LowerMUL(Op, DAG); | ||||
| 5843 | case ISD::MULHS: | ||||
| 5844 | return LowerToPredicatedOp(Op, DAG, AArch64ISD::MULHS_PRED); | ||||
| 5845 | case ISD::MULHU: | ||||
| 5846 | return LowerToPredicatedOp(Op, DAG, AArch64ISD::MULHU_PRED); | ||||
| 5847 | case ISD::INTRINSIC_VOID: | ||||
| 5848 | case ISD::INTRINSIC_W_CHAIN: | ||||
| 5849 | return LowerINTRINSIC_W_CHAIN(Op, DAG); | ||||
| 5850 | case ISD::INTRINSIC_WO_CHAIN: | ||||
| 5851 | return LowerINTRINSIC_WO_CHAIN(Op, DAG); | ||||
| 5852 | case ISD::ATOMIC_STORE: | ||||
| 5853 | if (cast<MemSDNode>(Op)->getMemoryVT() == MVT::i128) { | ||||
| 5854 | assert(Subtarget->hasLSE2())(static_cast <bool> (Subtarget->hasLSE2()) ? void (0 ) : __assert_fail ("Subtarget->hasLSE2()", "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp" , 5854, __extension__ __PRETTY_FUNCTION__)); | ||||
| 5855 | return LowerStore128(Op, DAG); | ||||
| 5856 | } | ||||
| 5857 | return SDValue(); | ||||
| 5858 | case ISD::STORE: | ||||
| 5859 | return LowerSTORE(Op, DAG); | ||||
| 5860 | case ISD::MSTORE: | ||||
| 5861 | return LowerFixedLengthVectorMStoreToSVE(Op, DAG); | ||||
| 5862 | case ISD::MGATHER: | ||||
| 5863 | return LowerMGATHER(Op, DAG); | ||||
| 5864 | case ISD::MSCATTER: | ||||
| 5865 | return LowerMSCATTER(Op, DAG); | ||||
| 5866 | case ISD::VECREDUCE_SEQ_FADD: | ||||
| 5867 | return LowerVECREDUCE_SEQ_FADD(Op, DAG); | ||||
| 5868 | case ISD::VECREDUCE_ADD: | ||||
| 5869 | case ISD::VECREDUCE_AND: | ||||
| 5870 | case ISD::VECREDUCE_OR: | ||||
| 5871 | case ISD::VECREDUCE_XOR: | ||||
| 5872 | case ISD::VECREDUCE_SMAX: | ||||
| 5873 | case ISD::VECREDUCE_SMIN: | ||||
| 5874 | case ISD::VECREDUCE_UMAX: | ||||
| 5875 | case ISD::VECREDUCE_UMIN: | ||||
| 5876 | case ISD::VECREDUCE_FADD: | ||||
| 5877 | case ISD::VECREDUCE_FMAX: | ||||
| 5878 | case ISD::VECREDUCE_FMIN: | ||||
| 5879 | return LowerVECREDUCE(Op, DAG); | ||||
| 5880 | case ISD::ATOMIC_LOAD_SUB: | ||||
| 5881 | return LowerATOMIC_LOAD_SUB(Op, DAG); | ||||
| 5882 | case ISD::ATOMIC_LOAD_AND: | ||||
| 5883 | return LowerATOMIC_LOAD_AND(Op, DAG); | ||||
| 5884 | case ISD::DYNAMIC_STACKALLOC: | ||||
| 5885 | return LowerDYNAMIC_STACKALLOC(Op, DAG); | ||||
| 5886 | case ISD::VSCALE: | ||||
| 5887 | return LowerVSCALE(Op, DAG); | ||||
| 5888 | case ISD::ANY_EXTEND: | ||||
| 5889 | case ISD::SIGN_EXTEND: | ||||
| 5890 | case ISD::ZERO_EXTEND: | ||||
| 5891 | return LowerFixedLengthVectorIntExtendToSVE(Op, DAG); | ||||
| 5892 | case ISD::SIGN_EXTEND_INREG: { | ||||
| 5893 | // Only custom lower when ExtraVT has a legal byte based element type. | ||||
| 5894 | EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); | ||||
| 5895 | EVT ExtraEltVT = ExtraVT.getVectorElementType(); | ||||
| 5896 | if ((ExtraEltVT != MVT::i8) && (ExtraEltVT != MVT::i16) && | ||||
| 5897 | (ExtraEltVT != MVT::i32) && (ExtraEltVT != MVT::i64)) | ||||
| 5898 | return SDValue(); | ||||
| 5899 | |||||
| 5900 | return LowerToPredicatedOp(Op, DAG, | ||||
| 5901 | AArch64ISD::SIGN_EXTEND_INREG_MERGE_PASSTHRU); | ||||
| 5902 | } | ||||
| 5903 | case ISD::TRUNCATE: | ||||
| 5904 | return LowerTRUNCATE(Op, DAG); | ||||
| 5905 | case ISD::MLOAD: | ||||
| 5906 | return LowerMLOAD(Op, DAG); | ||||
| 5907 | case ISD::LOAD: | ||||
| 5908 | if (useSVEForFixedLengthVectorVT(Op.getValueType())) | ||||
| 5909 | return LowerFixedLengthVectorLoadToSVE(Op, DAG); | ||||
| 5910 | return LowerLOAD(Op, DAG); | ||||
| 5911 | case ISD::ADD: | ||||
| 5912 | case ISD::AND: | ||||
| 5913 | case ISD::SUB: | ||||
| 5914 | return LowerToScalableOp(Op, DAG); | ||||
| 5915 | case ISD::FMAXIMUM: | ||||
| 5916 | return LowerToPredicatedOp(Op, DAG, AArch64ISD::FMAX_PRED); | ||||
| 5917 | case ISD::FMAXNUM: | ||||
| 5918 | return LowerToPredicatedOp(Op, DAG, AArch64ISD::FMAXNM_PRED); | ||||
| 5919 | case ISD::FMINIMUM: | ||||
| 5920 | return LowerToPredicatedOp(Op, DAG, AArch64ISD::FMIN_PRED); | ||||
| 5921 | case ISD::FMINNUM: | ||||
| 5922 | return LowerToPredicatedOp(Op, DAG, AArch64ISD::FMINNM_PRED); | ||||
| 5923 | case ISD::VSELECT: | ||||
| 5924 | return LowerFixedLengthVectorSelectToSVE(Op, DAG); | ||||
| 5925 | case ISD::ABS: | ||||
| 5926 | return LowerABS(Op, DAG); | ||||
| 5927 | case ISD::ABDS: | ||||
| 5928 | return LowerToPredicatedOp(Op, DAG, AArch64ISD::ABDS_PRED); | ||||
| 5929 | case ISD::ABDU: | ||||
| 5930 | return LowerToPredicatedOp(Op, DAG, AArch64ISD::ABDU_PRED); | ||||
| 5931 | case ISD::BITREVERSE: | ||||
| 5932 | return LowerBitreverse(Op, DAG); | ||||
| 5933 | case ISD::BSWAP: | ||||
| 5934 | return LowerToPredicatedOp(Op, DAG, AArch64ISD::BSWAP_MERGE_PASSTHRU); | ||||
| 5935 | case ISD::CTLZ: | ||||
| 5936 | return LowerToPredicatedOp(Op, DAG, AArch64ISD::CTLZ_MERGE_PASSTHRU); | ||||
| 5937 | case ISD::CTTZ: | ||||
| 5938 | return LowerCTTZ(Op, DAG); | ||||
| 5939 | case ISD::VECTOR_SPLICE: | ||||
| 5940 | return LowerVECTOR_SPLICE(Op, DAG); | ||||
| 5941 | case ISD::STRICT_LROUND: | ||||
| 5942 | case ISD::STRICT_LLROUND: | ||||
| 5943 | case ISD::STRICT_LRINT: | ||||
| 5944 | case ISD::STRICT_LLRINT: { | ||||
| 5945 | assert(Op.getOperand(1).getValueType() == MVT::f16 &&(static_cast <bool> (Op.getOperand(1).getValueType() == MVT::f16 && "Expected custom lowering of rounding operations only for f16" ) ? void (0) : __assert_fail ("Op.getOperand(1).getValueType() == MVT::f16 && \"Expected custom lowering of rounding operations only for f16\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 5946, __extension__ __PRETTY_FUNCTION__)) | ||||
| 5946 | "Expected custom lowering of rounding operations only for f16")(static_cast <bool> (Op.getOperand(1).getValueType() == MVT::f16 && "Expected custom lowering of rounding operations only for f16" ) ? void (0) : __assert_fail ("Op.getOperand(1).getValueType() == MVT::f16 && \"Expected custom lowering of rounding operations only for f16\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 5946, __extension__ __PRETTY_FUNCTION__)); | ||||
| 5947 | SDLoc DL(Op); | ||||
| 5948 | SDValue Ext = DAG.getNode(ISD::STRICT_FP_EXTEND, DL, {MVT::f32, MVT::Other}, | ||||
| 5949 | {Op.getOperand(0), Op.getOperand(1)}); | ||||
| 5950 | return DAG.getNode(Op.getOpcode(), DL, {Op.getValueType(), MVT::Other}, | ||||
| 5951 | {Ext.getValue(1), Ext.getValue(0)}); | ||||
| 5952 | } | ||||
| 5953 | case ISD::WRITE_REGISTER: { | ||||
| 5954 | assert(Op.getOperand(2).getValueType() == MVT::i128 &&(static_cast <bool> (Op.getOperand(2).getValueType() == MVT::i128 && "WRITE_REGISTER custom lowering is only for 128-bit sysregs" ) ? void (0) : __assert_fail ("Op.getOperand(2).getValueType() == MVT::i128 && \"WRITE_REGISTER custom lowering is only for 128-bit sysregs\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 5955, __extension__ __PRETTY_FUNCTION__)) | ||||
| 5955 | "WRITE_REGISTER custom lowering is only for 128-bit sysregs")(static_cast <bool> (Op.getOperand(2).getValueType() == MVT::i128 && "WRITE_REGISTER custom lowering is only for 128-bit sysregs" ) ? void (0) : __assert_fail ("Op.getOperand(2).getValueType() == MVT::i128 && \"WRITE_REGISTER custom lowering is only for 128-bit sysregs\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 5955, __extension__ __PRETTY_FUNCTION__)); | ||||
| 5956 | SDLoc DL(Op); | ||||
| 5957 | |||||
| 5958 | SDValue Chain = Op.getOperand(0); | ||||
| 5959 | SDValue SysRegName = Op.getOperand(1); | ||||
| 5960 | SDValue Pair = Op.getOperand(2); | ||||
| 5961 | |||||
| 5962 | SDValue PairLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, Pair, | ||||
| 5963 | DAG.getConstant(0, DL, MVT::i32)); | ||||
| 5964 | SDValue PairHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i64, Pair, | ||||
| 5965 | DAG.getConstant(1, DL, MVT::i32)); | ||||
| 5966 | |||||
| 5967 | // chain = MSRR(chain, sysregname, lo, hi) | ||||
| 5968 | SDValue Result = DAG.getNode(AArch64ISD::MSRR, DL, MVT::Other, Chain, | ||||
| 5969 | SysRegName, PairLo, PairHi); | ||||
| 5970 | |||||
| 5971 | return Result; | ||||
| 5972 | } | ||||
| 5973 | } | ||||
| 5974 | } | ||||
| 5975 | |||||
| 5976 | bool AArch64TargetLowering::mergeStoresAfterLegalization(EVT VT) const { | ||||
| 5977 | return !Subtarget->useSVEForFixedLengthVectors(); | ||||
| 5978 | } | ||||
| 5979 | |||||
| 5980 | bool AArch64TargetLowering::useSVEForFixedLengthVectorVT( | ||||
| 5981 | EVT VT, bool OverrideNEON) const { | ||||
| 5982 | if (!VT.isFixedLengthVector() || !VT.isSimple()) | ||||
| 5983 | return false; | ||||
| 5984 | |||||
| 5985 | // Don't use SVE for vectors we cannot scalarize if required. | ||||
| 5986 | switch (VT.getVectorElementType().getSimpleVT().SimpleTy) { | ||||
| 5987 | // Fixed length predicates should be promoted to i8. | ||||
| 5988 | // NOTE: This is consistent with how NEON (and thus 64/128bit vectors) work. | ||||
| 5989 | case MVT::i1: | ||||
| 5990 | default: | ||||
| 5991 | return false; | ||||
| 5992 | case MVT::i8: | ||||
| 5993 | case MVT::i16: | ||||
| 5994 | case MVT::i32: | ||||
| 5995 | case MVT::i64: | ||||
| 5996 | case MVT::f16: | ||||
| 5997 | case MVT::f32: | ||||
| 5998 | case MVT::f64: | ||||
| 5999 | break; | ||||
| 6000 | } | ||||
| 6001 | |||||
| 6002 | // All SVE implementations support NEON sized vectors. | ||||
| 6003 | if (OverrideNEON && (VT.is128BitVector() || VT.is64BitVector())) | ||||
| 6004 | return Subtarget->hasSVE(); | ||||
| 6005 | |||||
| 6006 | // Ensure NEON MVTs only belong to a single register class. | ||||
| 6007 | if (VT.getFixedSizeInBits() <= 128) | ||||
| 6008 | return false; | ||||
| 6009 | |||||
| 6010 | // Ensure wider than NEON code generation is enabled. | ||||
| 6011 | if (!Subtarget->useSVEForFixedLengthVectors()) | ||||
| 6012 | return false; | ||||
| 6013 | |||||
| 6014 | // Don't use SVE for types that don't fit. | ||||
| 6015 | if (VT.getFixedSizeInBits() > Subtarget->getMinSVEVectorSizeInBits()) | ||||
| 6016 | return false; | ||||
| 6017 | |||||
| 6018 | // TODO: Perhaps an artificial restriction, but worth having whilst getting | ||||
| 6019 | // the base fixed length SVE support in place. | ||||
| 6020 | if (!VT.isPow2VectorType()) | ||||
| 6021 | return false; | ||||
| 6022 | |||||
| 6023 | return true; | ||||
| 6024 | } | ||||
| 6025 | |||||
| 6026 | //===----------------------------------------------------------------------===// | ||||
| 6027 | // Calling Convention Implementation | ||||
| 6028 | //===----------------------------------------------------------------------===// | ||||
| 6029 | |||||
| 6030 | static unsigned getIntrinsicID(const SDNode *N) { | ||||
| 6031 | unsigned Opcode = N->getOpcode(); | ||||
| 6032 | switch (Opcode) { | ||||
| 6033 | default: | ||||
| 6034 | return Intrinsic::not_intrinsic; | ||||
| 6035 | case ISD::INTRINSIC_WO_CHAIN: { | ||||
| 6036 | unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); | ||||
| 6037 | if (IID < Intrinsic::num_intrinsics) | ||||
| 6038 | return IID; | ||||
| 6039 | return Intrinsic::not_intrinsic; | ||||
| 6040 | } | ||||
| 6041 | } | ||||
| 6042 | } | ||||
| 6043 | |||||
| 6044 | bool AArch64TargetLowering::isReassocProfitable(SelectionDAG &DAG, SDValue N0, | ||||
| 6045 | SDValue N1) const { | ||||
| 6046 | if (!N0.hasOneUse()) | ||||
| 6047 | return false; | ||||
| 6048 | |||||
| 6049 | unsigned IID = getIntrinsicID(N1.getNode()); | ||||
| 6050 | // Avoid reassociating expressions that can be lowered to smlal/umlal. | ||||
| 6051 | if (IID == Intrinsic::aarch64_neon_umull || | ||||
| 6052 | N1.getOpcode() == AArch64ISD::UMULL || | ||||
| 6053 | IID == Intrinsic::aarch64_neon_smull || | ||||
| 6054 | N1.getOpcode() == AArch64ISD::SMULL) | ||||
| 6055 | return N0.getOpcode() != ISD::ADD; | ||||
| 6056 | |||||
| 6057 | return true; | ||||
| 6058 | } | ||||
| 6059 | |||||
| 6060 | /// Selects the correct CCAssignFn for a given CallingConvention value. | ||||
| 6061 | CCAssignFn *AArch64TargetLowering::CCAssignFnForCall(CallingConv::ID CC, | ||||
| 6062 | bool IsVarArg) const { | ||||
| 6063 | switch (CC) { | ||||
| 6064 | default: | ||||
| 6065 | report_fatal_error("Unsupported calling convention."); | ||||
| 6066 | case CallingConv::WebKit_JS: | ||||
| 6067 | return CC_AArch64_WebKit_JS; | ||||
| 6068 | case CallingConv::GHC: | ||||
| 6069 | return CC_AArch64_GHC; | ||||
| 6070 | case CallingConv::C: | ||||
| 6071 | case CallingConv::Fast: | ||||
| 6072 | case CallingConv::PreserveMost: | ||||
| 6073 | case CallingConv::CXX_FAST_TLS: | ||||
| 6074 | case CallingConv::Swift: | ||||
| 6075 | case CallingConv::SwiftTail: | ||||
| 6076 | case CallingConv::Tail: | ||||
| 6077 | if (Subtarget->isTargetWindows() && IsVarArg) { | ||||
| 6078 | if (Subtarget->isWindowsArm64EC()) | ||||
| 6079 | return CC_AArch64_Arm64EC_VarArg; | ||||
| 6080 | return CC_AArch64_Win64_VarArg; | ||||
| 6081 | } | ||||
| 6082 | if (!Subtarget->isTargetDarwin()) | ||||
| 6083 | return CC_AArch64_AAPCS; | ||||
| 6084 | if (!IsVarArg) | ||||
| 6085 | return CC_AArch64_DarwinPCS; | ||||
| 6086 | return Subtarget->isTargetILP32() ? CC_AArch64_DarwinPCS_ILP32_VarArg | ||||
| 6087 | : CC_AArch64_DarwinPCS_VarArg; | ||||
| 6088 | case CallingConv::Win64: | ||||
| 6089 | if (IsVarArg) { | ||||
| 6090 | if (Subtarget->isWindowsArm64EC()) | ||||
| 6091 | return CC_AArch64_Arm64EC_VarArg; | ||||
| 6092 | return CC_AArch64_Win64_VarArg; | ||||
| 6093 | } | ||||
| 6094 | return CC_AArch64_AAPCS; | ||||
| 6095 | case CallingConv::CFGuard_Check: | ||||
| 6096 | return CC_AArch64_Win64_CFGuard_Check; | ||||
| 6097 | case CallingConv::AArch64_VectorCall: | ||||
| 6098 | case CallingConv::AArch64_SVE_VectorCall: | ||||
| 6099 | case CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X0: | ||||
| 6100 | case CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X2: | ||||
| 6101 | return CC_AArch64_AAPCS; | ||||
| 6102 | } | ||||
| 6103 | } | ||||
| 6104 | |||||
| 6105 | CCAssignFn * | ||||
| 6106 | AArch64TargetLowering::CCAssignFnForReturn(CallingConv::ID CC) const { | ||||
| 6107 | return CC == CallingConv::WebKit_JS ? RetCC_AArch64_WebKit_JS | ||||
| 6108 | : RetCC_AArch64_AAPCS; | ||||
| 6109 | } | ||||
| 6110 | |||||
| 6111 | |||||
| 6112 | unsigned | ||||
| 6113 | AArch64TargetLowering::allocateLazySaveBuffer(SDValue &Chain, const SDLoc &DL, | ||||
| 6114 | SelectionDAG &DAG) const { | ||||
| 6115 | MachineFunction &MF = DAG.getMachineFunction(); | ||||
| 6116 | MachineFrameInfo &MFI = MF.getFrameInfo(); | ||||
| 6117 | |||||
| 6118 | // Allocate a lazy-save buffer object of size SVL.B * SVL.B (worst-case) | ||||
| 6119 | SDValue N = DAG.getNode(AArch64ISD::RDSVL, DL, MVT::i64, | ||||
| 6120 | DAG.getConstant(1, DL, MVT::i32)); | ||||
| 6121 | SDValue NN = DAG.getNode(ISD::MUL, DL, MVT::i64, N, N); | ||||
| 6122 | SDValue Ops[] = {Chain, NN, DAG.getConstant(1, DL, MVT::i64)}; | ||||
| 6123 | SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other); | ||||
| 6124 | SDValue Buffer = DAG.getNode(ISD::DYNAMIC_STACKALLOC, DL, VTs, Ops); | ||||
| 6125 | Chain = Buffer.getValue(1); | ||||
| 6126 | MFI.CreateVariableSizedObject(Align(1), nullptr); | ||||
| 6127 | |||||
| 6128 | // Allocate an additional TPIDR2 object on the stack (16 bytes) | ||||
| 6129 | unsigned TPIDR2Obj = MFI.CreateStackObject(16, Align(16), false); | ||||
| 6130 | |||||
| 6131 | // Store the buffer pointer to the TPIDR2 stack object. | ||||
| 6132 | MachinePointerInfo MPI = MachinePointerInfo::getStack(MF, TPIDR2Obj); | ||||
| 6133 | SDValue Ptr = DAG.getFrameIndex( | ||||
| 6134 | TPIDR2Obj, | ||||
| 6135 | DAG.getTargetLoweringInfo().getFrameIndexTy(DAG.getDataLayout())); | ||||
| 6136 | Chain = DAG.getStore(Chain, DL, Buffer, Ptr, MPI); | ||||
| 6137 | |||||
| 6138 | return TPIDR2Obj; | ||||
| 6139 | } | ||||
| 6140 | |||||
| 6141 | SDValue AArch64TargetLowering::LowerFormalArguments( | ||||
| 6142 | SDValue Chain, CallingConv::ID CallConv, bool isVarArg, | ||||
| 6143 | const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL, | ||||
| 6144 | SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { | ||||
| 6145 | MachineFunction &MF = DAG.getMachineFunction(); | ||||
| 6146 | const Function &F = MF.getFunction(); | ||||
| 6147 | MachineFrameInfo &MFI = MF.getFrameInfo(); | ||||
| 6148 | bool IsWin64 = Subtarget->isCallingConvWin64(F.getCallingConv()); | ||||
| 6149 | AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); | ||||
| 6150 | |||||
| 6151 | SmallVector<ISD::OutputArg, 4> Outs; | ||||
| 6152 | GetReturnInfo(CallConv, F.getReturnType(), F.getAttributes(), Outs, | ||||
| 6153 | DAG.getTargetLoweringInfo(), MF.getDataLayout()); | ||||
| 6154 | if (any_of(Outs, [](ISD::OutputArg &Out){ return Out.VT.isScalableVector(); })) | ||||
| 6155 | FuncInfo->setIsSVECC(true); | ||||
| 6156 | |||||
| 6157 | // Assign locations to all of the incoming arguments. | ||||
| 6158 | SmallVector<CCValAssign, 16> ArgLocs; | ||||
| 6159 | DenseMap<unsigned, SDValue> CopiedRegs; | ||||
| 6160 | CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); | ||||
| 6161 | |||||
| 6162 | // At this point, Ins[].VT may already be promoted to i32. To correctly | ||||
| 6163 | // handle passing i8 as i8 instead of i32 on stack, we pass in both i32 and | ||||
| 6164 | // i8 to CC_AArch64_AAPCS with i32 being ValVT and i8 being LocVT. | ||||
| 6165 | // Since AnalyzeFormalArguments uses Ins[].VT for both ValVT and LocVT, here | ||||
| 6166 | // we use a special version of AnalyzeFormalArguments to pass in ValVT and | ||||
| 6167 | // LocVT. | ||||
| 6168 | unsigned NumArgs = Ins.size(); | ||||
| 6169 | Function::const_arg_iterator CurOrigArg = F.arg_begin(); | ||||
| 6170 | unsigned CurArgIdx = 0; | ||||
| 6171 | for (unsigned i = 0; i != NumArgs; ++i) { | ||||
| 6172 | MVT ValVT = Ins[i].VT; | ||||
| 6173 | if (Ins[i].isOrigArg()) { | ||||
| 6174 | std::advance(CurOrigArg, Ins[i].getOrigArgIndex() - CurArgIdx); | ||||
| 6175 | CurArgIdx = Ins[i].getOrigArgIndex(); | ||||
| 6176 | |||||
| 6177 | // Get type of the original argument. | ||||
| 6178 | EVT ActualVT = getValueType(DAG.getDataLayout(), CurOrigArg->getType(), | ||||
| 6179 | /*AllowUnknown*/ true); | ||||
| 6180 | MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : MVT::Other; | ||||
| 6181 | // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16. | ||||
| 6182 | if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8) | ||||
| 6183 | ValVT = MVT::i8; | ||||
| 6184 | else if (ActualMVT == MVT::i16) | ||||
| 6185 | ValVT = MVT::i16; | ||||
| 6186 | } | ||||
| 6187 | bool UseVarArgCC = false; | ||||
| 6188 | if (IsWin64) | ||||
| 6189 | UseVarArgCC = isVarArg; | ||||
| 6190 | CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, UseVarArgCC); | ||||
| 6191 | bool Res = | ||||
| 6192 | AssignFn(i, ValVT, ValVT, CCValAssign::Full, Ins[i].Flags, CCInfo); | ||||
| 6193 | assert(!Res && "Call operand has unhandled type")(static_cast <bool> (!Res && "Call operand has unhandled type" ) ? void (0) : __assert_fail ("!Res && \"Call operand has unhandled type\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 6193, __extension__ __PRETTY_FUNCTION__)); | ||||
| 6194 | (void)Res; | ||||
| 6195 | } | ||||
| 6196 | |||||
| 6197 | SMEAttrs Attrs(MF.getFunction()); | ||||
| 6198 | bool IsLocallyStreaming = | ||||
| 6199 | !Attrs.hasStreamingInterface() && Attrs.hasStreamingBody(); | ||||
| 6200 | assert(Chain.getOpcode() == ISD::EntryToken && "Unexpected Chain value")(static_cast <bool> (Chain.getOpcode() == ISD::EntryToken && "Unexpected Chain value") ? void (0) : __assert_fail ("Chain.getOpcode() == ISD::EntryToken && \"Unexpected Chain value\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 6200, __extension__ __PRETTY_FUNCTION__)); | ||||
| 6201 | SDValue Glue = Chain.getValue(1); | ||||
| 6202 | |||||
| 6203 | SmallVector<SDValue, 16> ArgValues; | ||||
| 6204 | unsigned ExtraArgLocs = 0; | ||||
| 6205 | for (unsigned i = 0, e = Ins.size(); i != e; ++i) { | ||||
| 6206 | CCValAssign &VA = ArgLocs[i - ExtraArgLocs]; | ||||
| 6207 | |||||
| 6208 | if (Ins[i].Flags.isByVal()) { | ||||
| 6209 | // Byval is used for HFAs in the PCS, but the system should work in a | ||||
| 6210 | // non-compliant manner for larger structs. | ||||
| 6211 | EVT PtrVT = getPointerTy(DAG.getDataLayout()); | ||||
| 6212 | int Size = Ins[i].Flags.getByValSize(); | ||||
| 6213 | unsigned NumRegs = (Size + 7) / 8; | ||||
| 6214 | |||||
| 6215 | // FIXME: This works on big-endian for composite byvals, which are the common | ||||
| 6216 | // case. It should also work for fundamental types too. | ||||
| 6217 | unsigned FrameIdx = | ||||
| 6218 | MFI.CreateFixedObject(8 * NumRegs, VA.getLocMemOffset(), false); | ||||
| 6219 | SDValue FrameIdxN = DAG.getFrameIndex(FrameIdx, PtrVT); | ||||
| 6220 | InVals.push_back(FrameIdxN); | ||||
| 6221 | |||||
| 6222 | continue; | ||||
| 6223 | } | ||||
| 6224 | |||||
| 6225 | if (Ins[i].Flags.isSwiftAsync()) | ||||
| 6226 | MF.getInfo<AArch64FunctionInfo>()->setHasSwiftAsyncContext(true); | ||||
| 6227 | |||||
| 6228 | SDValue ArgValue; | ||||
| 6229 | if (VA.isRegLoc()) { | ||||
| 6230 | // Arguments stored in registers. | ||||
| 6231 | EVT RegVT = VA.getLocVT(); | ||||
| 6232 | const TargetRegisterClass *RC; | ||||
| 6233 | |||||
| 6234 | if (RegVT == MVT::i32) | ||||
| 6235 | RC = &AArch64::GPR32RegClass; | ||||
| 6236 | else if (RegVT == MVT::i64) | ||||
| 6237 | RC = &AArch64::GPR64RegClass; | ||||
| 6238 | else if (RegVT == MVT::f16 || RegVT == MVT::bf16) | ||||
| 6239 | RC = &AArch64::FPR16RegClass; | ||||
| 6240 | else if (RegVT == MVT::f32) | ||||
| 6241 | RC = &AArch64::FPR32RegClass; | ||||
| 6242 | else if (RegVT == MVT::f64 || RegVT.is64BitVector()) | ||||
| 6243 | RC = &AArch64::FPR64RegClass; | ||||
| 6244 | else if (RegVT == MVT::f128 || RegVT.is128BitVector()) | ||||
| 6245 | RC = &AArch64::FPR128RegClass; | ||||
| 6246 | else if (RegVT.isScalableVector() && | ||||
| 6247 | RegVT.getVectorElementType() == MVT::i1) { | ||||
| 6248 | FuncInfo->setIsSVECC(true); | ||||
| 6249 | RC = &AArch64::PPRRegClass; | ||||
| 6250 | } else if (RegVT.isScalableVector()) { | ||||
| 6251 | FuncInfo->setIsSVECC(true); | ||||
| 6252 | RC = &AArch64::ZPRRegClass; | ||||
| 6253 | } else | ||||
| 6254 | llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering")::llvm::llvm_unreachable_internal("RegVT not supported by FORMAL_ARGUMENTS Lowering" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 6254); | ||||
| 6255 | |||||
| 6256 | // Transform the arguments in physical registers into virtual ones. | ||||
| 6257 | Register Reg = MF.addLiveIn(VA.getLocReg(), RC); | ||||
| 6258 | |||||
| 6259 | if (IsLocallyStreaming) { | ||||
| 6260 | // LocallyStreamingFunctions must insert the SMSTART in the correct | ||||
| 6261 | // position, so we use Glue to ensure no instructions can be scheduled | ||||
| 6262 | // between the chain of: | ||||
| 6263 | // t0: ch,glue = EntryNode | ||||
| 6264 | // t1: res,ch,glue = CopyFromReg | ||||
| 6265 | // ... | ||||
| 6266 | // tn: res,ch,glue = CopyFromReg t(n-1), .. | ||||
| 6267 | // t(n+1): ch, glue = SMSTART t0:0, ...., tn:2 | ||||
| 6268 | // ^^^^^^ | ||||
| 6269 | // This will be the new Chain/Root node. | ||||
| 6270 | ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT, Glue); | ||||
| 6271 | Glue = ArgValue.getValue(2); | ||||
| 6272 | } else | ||||
| 6273 | ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, RegVT); | ||||
| 6274 | |||||
| 6275 | // If this is an 8, 16 or 32-bit value, it is really passed promoted | ||||
| 6276 | // to 64 bits. Insert an assert[sz]ext to capture this, then | ||||
| 6277 | // truncate to the right size. | ||||
| 6278 | switch (VA.getLocInfo()) { | ||||
| 6279 | default: | ||||
| 6280 | llvm_unreachable("Unknown loc info!")::llvm::llvm_unreachable_internal("Unknown loc info!", "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp" , 6280); | ||||
| 6281 | case CCValAssign::Full: | ||||
| 6282 | break; | ||||
| 6283 | case CCValAssign::Indirect: | ||||
| 6284 | assert((VA.getValVT().isScalableVector() ||(static_cast <bool> ((VA.getValVT().isScalableVector() || Subtarget->isWindowsArm64EC()) && "Indirect arguments should be scalable on most subtargets" ) ? void (0) : __assert_fail ("(VA.getValVT().isScalableVector() || Subtarget->isWindowsArm64EC()) && \"Indirect arguments should be scalable on most subtargets\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 6286, __extension__ __PRETTY_FUNCTION__)) | ||||
| 6285 | Subtarget->isWindowsArm64EC()) &&(static_cast <bool> ((VA.getValVT().isScalableVector() || Subtarget->isWindowsArm64EC()) && "Indirect arguments should be scalable on most subtargets" ) ? void (0) : __assert_fail ("(VA.getValVT().isScalableVector() || Subtarget->isWindowsArm64EC()) && \"Indirect arguments should be scalable on most subtargets\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 6286, __extension__ __PRETTY_FUNCTION__)) | ||||
| 6286 | "Indirect arguments should be scalable on most subtargets")(static_cast <bool> ((VA.getValVT().isScalableVector() || Subtarget->isWindowsArm64EC()) && "Indirect arguments should be scalable on most subtargets" ) ? void (0) : __assert_fail ("(VA.getValVT().isScalableVector() || Subtarget->isWindowsArm64EC()) && \"Indirect arguments should be scalable on most subtargets\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 6286, __extension__ __PRETTY_FUNCTION__)); | ||||
| 6287 | break; | ||||
| 6288 | case CCValAssign::BCvt: | ||||
| 6289 | ArgValue = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), ArgValue); | ||||
| 6290 | break; | ||||
| 6291 | case CCValAssign::AExt: | ||||
| 6292 | case CCValAssign::SExt: | ||||
| 6293 | case CCValAssign::ZExt: | ||||
| 6294 | break; | ||||
| 6295 | case CCValAssign::AExtUpper: | ||||
| 6296 | ArgValue = DAG.getNode(ISD::SRL, DL, RegVT, ArgValue, | ||||
| 6297 | DAG.getConstant(32, DL, RegVT)); | ||||
| 6298 | ArgValue = DAG.getZExtOrTrunc(ArgValue, DL, VA.getValVT()); | ||||
| 6299 | break; | ||||
| 6300 | } | ||||
| 6301 | } else { // VA.isRegLoc() | ||||
| 6302 | assert(VA.isMemLoc() && "CCValAssign is neither reg nor mem")(static_cast <bool> (VA.isMemLoc() && "CCValAssign is neither reg nor mem" ) ? void (0) : __assert_fail ("VA.isMemLoc() && \"CCValAssign is neither reg nor mem\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 6302, __extension__ __PRETTY_FUNCTION__)); | ||||
| 6303 | unsigned ArgOffset = VA.getLocMemOffset(); | ||||
| 6304 | unsigned ArgSize = (VA.getLocInfo() == CCValAssign::Indirect | ||||
| 6305 | ? VA.getLocVT().getSizeInBits() | ||||
| 6306 | : VA.getValVT().getSizeInBits()) / 8; | ||||
| 6307 | |||||
| 6308 | uint32_t BEAlign = 0; | ||||
| 6309 | if (!Subtarget->isLittleEndian() && ArgSize < 8 && | ||||
| 6310 | !Ins[i].Flags.isInConsecutiveRegs()) | ||||
| 6311 | BEAlign = 8 - ArgSize; | ||||
| 6312 | |||||
| 6313 | SDValue FIN; | ||||
| 6314 | MachinePointerInfo PtrInfo; | ||||
| 6315 | if (isVarArg && Subtarget->isWindowsArm64EC()) { | ||||
| 6316 | // In the ARM64EC varargs convention, fixed arguments on the stack are | ||||
| 6317 | // accessed relative to x4, not sp. | ||||
| 6318 | unsigned ObjOffset = ArgOffset + BEAlign; | ||||
| 6319 | Register VReg = MF.addLiveIn(AArch64::X4, &AArch64::GPR64RegClass); | ||||
| 6320 | SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64); | ||||
| 6321 | FIN = DAG.getNode(ISD::ADD, DL, MVT::i64, Val, | ||||
| 6322 | DAG.getConstant(ObjOffset, DL, MVT::i64)); | ||||
| 6323 | PtrInfo = MachinePointerInfo::getUnknownStack(MF); | ||||
| 6324 | } else { | ||||
| 6325 | int FI = MFI.CreateFixedObject(ArgSize, ArgOffset + BEAlign, true); | ||||
| 6326 | |||||
| 6327 | // Create load nodes to retrieve arguments from the stack. | ||||
| 6328 | FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); | ||||
| 6329 | PtrInfo = MachinePointerInfo::getFixedStack(MF, FI); | ||||
| 6330 | } | ||||
| 6331 | |||||
| 6332 | // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT) | ||||
| 6333 | ISD::LoadExtType ExtType = ISD::NON_EXTLOAD; | ||||
| 6334 | MVT MemVT = VA.getValVT(); | ||||
| 6335 | |||||
| 6336 | switch (VA.getLocInfo()) { | ||||
| 6337 | default: | ||||
| 6338 | break; | ||||
| 6339 | case CCValAssign::Trunc: | ||||
| 6340 | case CCValAssign::BCvt: | ||||
| 6341 | MemVT = VA.getLocVT(); | ||||
| 6342 | break; | ||||
| 6343 | case CCValAssign::Indirect: | ||||
| 6344 | assert((VA.getValVT().isScalableVector() ||(static_cast <bool> ((VA.getValVT().isScalableVector() || Subtarget->isWindowsArm64EC()) && "Indirect arguments should be scalable on most subtargets" ) ? void (0) : __assert_fail ("(VA.getValVT().isScalableVector() || Subtarget->isWindowsArm64EC()) && \"Indirect arguments should be scalable on most subtargets\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 6346, __extension__ __PRETTY_FUNCTION__)) | ||||
| 6345 | Subtarget->isWindowsArm64EC()) &&(static_cast <bool> ((VA.getValVT().isScalableVector() || Subtarget->isWindowsArm64EC()) && "Indirect arguments should be scalable on most subtargets" ) ? void (0) : __assert_fail ("(VA.getValVT().isScalableVector() || Subtarget->isWindowsArm64EC()) && \"Indirect arguments should be scalable on most subtargets\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 6346, __extension__ __PRETTY_FUNCTION__)) | ||||
| 6346 | "Indirect arguments should be scalable on most subtargets")(static_cast <bool> ((VA.getValVT().isScalableVector() || Subtarget->isWindowsArm64EC()) && "Indirect arguments should be scalable on most subtargets" ) ? void (0) : __assert_fail ("(VA.getValVT().isScalableVector() || Subtarget->isWindowsArm64EC()) && \"Indirect arguments should be scalable on most subtargets\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 6346, __extension__ __PRETTY_FUNCTION__)); | ||||
| 6347 | MemVT = VA.getLocVT(); | ||||
| 6348 | break; | ||||
| 6349 | case CCValAssign::SExt: | ||||
| 6350 | ExtType = ISD::SEXTLOAD; | ||||
| 6351 | break; | ||||
| 6352 | case CCValAssign::ZExt: | ||||
| 6353 | ExtType = ISD::ZEXTLOAD; | ||||
| 6354 | break; | ||||
| 6355 | case CCValAssign::AExt: | ||||
| 6356 | ExtType = ISD::EXTLOAD; | ||||
| 6357 | break; | ||||
| 6358 | } | ||||
| 6359 | |||||
| 6360 | ArgValue = DAG.getExtLoad(ExtType, DL, VA.getLocVT(), Chain, FIN, PtrInfo, | ||||
| 6361 | MemVT); | ||||
| 6362 | } | ||||
| 6363 | |||||
| 6364 | if (VA.getLocInfo() == CCValAssign::Indirect) { | ||||
| 6365 | assert((static_cast <bool> ((VA.getValVT().isScalableVector() || Subtarget->isWindowsArm64EC()) && "Indirect arguments should be scalable on most subtargets" ) ? void (0) : __assert_fail ("(VA.getValVT().isScalableVector() || Subtarget->isWindowsArm64EC()) && \"Indirect arguments should be scalable on most subtargets\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 6367, __extension__ __PRETTY_FUNCTION__)) | ||||
| 6366 | (VA.getValVT().isScalableVector() || Subtarget->isWindowsArm64EC()) &&(static_cast <bool> ((VA.getValVT().isScalableVector() || Subtarget->isWindowsArm64EC()) && "Indirect arguments should be scalable on most subtargets" ) ? void (0) : __assert_fail ("(VA.getValVT().isScalableVector() || Subtarget->isWindowsArm64EC()) && \"Indirect arguments should be scalable on most subtargets\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 6367, __extension__ __PRETTY_FUNCTION__)) | ||||
| 6367 | "Indirect arguments should be scalable on most subtargets")(static_cast <bool> ((VA.getValVT().isScalableVector() || Subtarget->isWindowsArm64EC()) && "Indirect arguments should be scalable on most subtargets" ) ? void (0) : __assert_fail ("(VA.getValVT().isScalableVector() || Subtarget->isWindowsArm64EC()) && \"Indirect arguments should be scalable on most subtargets\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 6367, __extension__ __PRETTY_FUNCTION__)); | ||||
| 6368 | |||||
| 6369 | uint64_t PartSize = VA.getValVT().getStoreSize().getKnownMinSize(); | ||||
| 6370 | unsigned NumParts = 1; | ||||
| 6371 | if (Ins[i].Flags.isInConsecutiveRegs()) { | ||||
| 6372 | assert(!Ins[i].Flags.isInConsecutiveRegsLast())(static_cast <bool> (!Ins[i].Flags.isInConsecutiveRegsLast ()) ? void (0) : __assert_fail ("!Ins[i].Flags.isInConsecutiveRegsLast()" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 6372, __extension__ __PRETTY_FUNCTION__)); | ||||
| 6373 | while (!Ins[i + NumParts - 1].Flags.isInConsecutiveRegsLast()) | ||||
| 6374 | ++NumParts; | ||||
| 6375 | } | ||||
| 6376 | |||||
| 6377 | MVT PartLoad = VA.getValVT(); | ||||
| 6378 | SDValue Ptr = ArgValue; | ||||
| 6379 | |||||
| 6380 | // Ensure we generate all loads for each tuple part, whilst updating the | ||||
| 6381 | // pointer after each load correctly using vscale. | ||||
| 6382 | while (NumParts > 0) { | ||||
| 6383 | ArgValue = DAG.getLoad(PartLoad, DL, Chain, Ptr, MachinePointerInfo()); | ||||
| 6384 | InVals.push_back(ArgValue); | ||||
| 6385 | NumParts--; | ||||
| 6386 | if (NumParts > 0) { | ||||
| 6387 | SDValue BytesIncrement; | ||||
| 6388 | if (PartLoad.isScalableVector()) { | ||||
| 6389 | BytesIncrement = DAG.getVScale( | ||||
| 6390 | DL, Ptr.getValueType(), | ||||
| 6391 | APInt(Ptr.getValueSizeInBits().getFixedSize(), PartSize)); | ||||
| 6392 | } else { | ||||
| 6393 | BytesIncrement = DAG.getConstant( | ||||
| 6394 | APInt(Ptr.getValueSizeInBits().getFixedSize(), PartSize), DL, | ||||
| 6395 | Ptr.getValueType()); | ||||
| 6396 | } | ||||
| 6397 | SDNodeFlags Flags; | ||||
| 6398 | Flags.setNoUnsignedWrap(true); | ||||
| 6399 | Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, | ||||
| 6400 | BytesIncrement, Flags); | ||||
| 6401 | ExtraArgLocs++; | ||||
| 6402 | i++; | ||||
| 6403 | } | ||||
| 6404 | } | ||||
| 6405 | } else { | ||||
| 6406 | if (Subtarget->isTargetILP32() && Ins[i].Flags.isPointer()) | ||||
| 6407 | ArgValue = DAG.getNode(ISD::AssertZext, DL, ArgValue.getValueType(), | ||||
| 6408 | ArgValue, DAG.getValueType(MVT::i32)); | ||||
| 6409 | |||||
| 6410 | // i1 arguments are zero-extended to i8 by the caller. Emit a | ||||
| 6411 | // hint to reflect this. | ||||
| 6412 | if (Ins[i].isOrigArg()) { | ||||
| 6413 | Argument *OrigArg = F.getArg(Ins[i].getOrigArgIndex()); | ||||
| 6414 | if (OrigArg->getType()->isIntegerTy(1)) { | ||||
| 6415 | if (!Ins[i].Flags.isZExt()) { | ||||
| 6416 | ArgValue = DAG.getNode(AArch64ISD::ASSERT_ZEXT_BOOL, DL, | ||||
| 6417 | ArgValue.getValueType(), ArgValue); | ||||
| 6418 | } | ||||
| 6419 | } | ||||
| 6420 | } | ||||
| 6421 | |||||
| 6422 | InVals.push_back(ArgValue); | ||||
| 6423 | } | ||||
| 6424 | } | ||||
| 6425 | assert((ArgLocs.size() + ExtraArgLocs) == Ins.size())(static_cast <bool> ((ArgLocs.size() + ExtraArgLocs) == Ins.size()) ? void (0) : __assert_fail ("(ArgLocs.size() + ExtraArgLocs) == Ins.size()" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 6425, __extension__ __PRETTY_FUNCTION__)); | ||||
| 6426 | |||||
| 6427 | // Insert the SMSTART if this is a locally streaming function and | ||||
| 6428 | // make sure it is Glued to the last CopyFromReg value. | ||||
| 6429 | if (IsLocallyStreaming) { | ||||
| 6430 | const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); | ||||
| 6431 | Chain = DAG.getNode( | ||||
| 6432 | AArch64ISD::SMSTART, DL, DAG.getVTList(MVT::Other, MVT::Glue), | ||||
| 6433 | {DAG.getRoot(), | ||||
| 6434 | DAG.getTargetConstant((int32_t)AArch64SVCR::SVCRSM, DL, MVT::i32), | ||||
| 6435 | DAG.getConstant(0, DL, MVT::i64), DAG.getConstant(1, DL, MVT::i64), | ||||
| 6436 | DAG.getRegisterMask(TRI->getSMStartStopCallPreservedMask()), Glue}); | ||||
| 6437 | // Ensure that the SMSTART happens after the CopyWithChain such that its | ||||
| 6438 | // chain result is used. | ||||
| 6439 | for (unsigned I=0; I<InVals.size(); ++I) { | ||||
| 6440 | Register Reg = MF.getRegInfo().createVirtualRegister( | ||||
| 6441 | getRegClassFor(InVals[I].getValueType().getSimpleVT())); | ||||
| 6442 | Chain = DAG.getCopyToReg(Chain, DL, Reg, InVals[I]); | ||||
| 6443 | InVals[I] = DAG.getCopyFromReg(Chain, DL, Reg, | ||||
| 6444 | InVals[I].getValueType()); | ||||
| 6445 | } | ||||
| 6446 | } | ||||
| 6447 | |||||
| 6448 | // varargs | ||||
| 6449 | if (isVarArg) { | ||||
| 6450 | if (!Subtarget->isTargetDarwin() || IsWin64) { | ||||
| 6451 | // The AAPCS variadic function ABI is identical to the non-variadic | ||||
| 6452 | // one. As a result there may be more arguments in registers and we should | ||||
| 6453 | // save them for future reference. | ||||
| 6454 | // Win64 variadic functions also pass arguments in registers, but all float | ||||
| 6455 | // arguments are passed in integer registers. | ||||
| 6456 | saveVarArgRegisters(CCInfo, DAG, DL, Chain); | ||||
| 6457 | } | ||||
| 6458 | |||||
| 6459 | // This will point to the next argument passed via stack. | ||||
| 6460 | unsigned StackOffset = CCInfo.getNextStackOffset(); | ||||
| 6461 | // We currently pass all varargs at 8-byte alignment, or 4 for ILP32 | ||||
| 6462 | StackOffset = alignTo(StackOffset, Subtarget->isTargetILP32() ? 4 : 8); | ||||
| 6463 | FuncInfo->setVarArgsStackOffset(StackOffset); | ||||
| 6464 | FuncInfo->setVarArgsStackIndex(MFI.CreateFixedObject(4, StackOffset, true)); | ||||
| 6465 | |||||
| 6466 | if (MFI.hasMustTailInVarArgFunc()) { | ||||
| 6467 | SmallVector<MVT, 2> RegParmTypes; | ||||
| 6468 | RegParmTypes.push_back(MVT::i64); | ||||
| 6469 | RegParmTypes.push_back(MVT::f128); | ||||
| 6470 | // Compute the set of forwarded registers. The rest are scratch. | ||||
| 6471 | SmallVectorImpl<ForwardedRegister> &Forwards = | ||||
| 6472 | FuncInfo->getForwardedMustTailRegParms(); | ||||
| 6473 | CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes, | ||||
| 6474 | CC_AArch64_AAPCS); | ||||
| 6475 | |||||
| 6476 | // Conservatively forward X8, since it might be used for aggregate return. | ||||
| 6477 | if (!CCInfo.isAllocated(AArch64::X8)) { | ||||
| 6478 | Register X8VReg = MF.addLiveIn(AArch64::X8, &AArch64::GPR64RegClass); | ||||
| 6479 | Forwards.push_back(ForwardedRegister(X8VReg, AArch64::X8, MVT::i64)); | ||||
| 6480 | } | ||||
| 6481 | } | ||||
| 6482 | } | ||||
| 6483 | |||||
| 6484 | // On Windows, InReg pointers must be returned, so record the pointer in a | ||||
| 6485 | // virtual register at the start of the function so it can be returned in the | ||||
| 6486 | // epilogue. | ||||
| 6487 | if (IsWin64) { | ||||
| 6488 | for (unsigned I = 0, E = Ins.size(); I != E; ++I) { | ||||
| 6489 | if (Ins[I].Flags.isInReg() && Ins[I].Flags.isSRet()) { | ||||
| 6490 | assert(!FuncInfo->getSRetReturnReg())(static_cast <bool> (!FuncInfo->getSRetReturnReg()) ? void (0) : __assert_fail ("!FuncInfo->getSRetReturnReg()" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 6490, __extension__ __PRETTY_FUNCTION__)); | ||||
| 6491 | |||||
| 6492 | MVT PtrTy = getPointerTy(DAG.getDataLayout()); | ||||
| 6493 | Register Reg = | ||||
| 6494 | MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy)); | ||||
| 6495 | FuncInfo->setSRetReturnReg(Reg); | ||||
| 6496 | |||||
| 6497 | SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), DL, Reg, InVals[I]); | ||||
| 6498 | Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Copy, Chain); | ||||
| 6499 | break; | ||||
| 6500 | } | ||||
| 6501 | } | ||||
| 6502 | } | ||||
| 6503 | |||||
| 6504 | unsigned StackArgSize = CCInfo.getNextStackOffset(); | ||||
| 6505 | bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; | ||||
| 6506 | if (DoesCalleeRestoreStack(CallConv, TailCallOpt)) { | ||||
| 6507 | // This is a non-standard ABI so by fiat I say we're allowed to make full | ||||
| 6508 | // use of the stack area to be popped, which must be aligned to 16 bytes in | ||||
| 6509 | // any case: | ||||
| 6510 | StackArgSize = alignTo(StackArgSize, 16); | ||||
| 6511 | |||||
| 6512 | // If we're expected to restore the stack (e.g. fastcc) then we'll be adding | ||||
| 6513 | // a multiple of 16. | ||||
| 6514 | FuncInfo->setArgumentStackToRestore(StackArgSize); | ||||
| 6515 | |||||
| 6516 | // This realignment carries over to the available bytes below. Our own | ||||
| 6517 | // callers will guarantee the space is free by giving an aligned value to | ||||
| 6518 | // CALLSEQ_START. | ||||
| 6519 | } | ||||
| 6520 | // Even if we're not expected to free up the space, it's useful to know how | ||||
| 6521 | // much is there while considering tail calls (because we can reuse it). | ||||
| 6522 | FuncInfo->setBytesInStackArgArea(StackArgSize); | ||||
| 6523 | |||||
| 6524 | if (Subtarget->hasCustomCallingConv()) | ||||
| 6525 | Subtarget->getRegisterInfo()->UpdateCustomCalleeSavedRegs(MF); | ||||
| 6526 | |||||
| 6527 | // Conservatively assume the function requires the lazy-save mechanism. | ||||
| 6528 | if (SMEAttrs(MF.getFunction()).hasZAState()) { | ||||
| 6529 | unsigned TPIDR2Obj = allocateLazySaveBuffer(Chain, DL, DAG); | ||||
| 6530 | FuncInfo->setLazySaveTPIDR2Obj(TPIDR2Obj); | ||||
| 6531 | } | ||||
| 6532 | |||||
| 6533 | return Chain; | ||||
| 6534 | } | ||||
| 6535 | |||||
| 6536 | void AArch64TargetLowering::saveVarArgRegisters(CCState &CCInfo, | ||||
| 6537 | SelectionDAG &DAG, | ||||
| 6538 | const SDLoc &DL, | ||||
| 6539 | SDValue &Chain) const { | ||||
| 6540 | MachineFunction &MF = DAG.getMachineFunction(); | ||||
| 6541 | MachineFrameInfo &MFI = MF.getFrameInfo(); | ||||
| 6542 | AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); | ||||
| 6543 | auto PtrVT = getPointerTy(DAG.getDataLayout()); | ||||
| 6544 | bool IsWin64 = Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv()); | ||||
| 6545 | |||||
| 6546 | SmallVector<SDValue, 8> MemOps; | ||||
| 6547 | |||||
| 6548 | static const MCPhysReg GPRArgRegs[] = { AArch64::X0, AArch64::X1, AArch64::X2, | ||||
| 6549 | AArch64::X3, AArch64::X4, AArch64::X5, | ||||
| 6550 | AArch64::X6, AArch64::X7 }; | ||||
| 6551 | unsigned NumGPRArgRegs = std::size(GPRArgRegs); | ||||
| 6552 | if (Subtarget->isWindowsArm64EC()) { | ||||
| 6553 | // In the ARM64EC ABI, only x0-x3 are used to pass arguments to varargs | ||||
| 6554 | // functions. | ||||
| 6555 | NumGPRArgRegs = 4; | ||||
| 6556 | } | ||||
| 6557 | unsigned FirstVariadicGPR = CCInfo.getFirstUnallocated(GPRArgRegs); | ||||
| 6558 | |||||
| 6559 | unsigned GPRSaveSize = 8 * (NumGPRArgRegs - FirstVariadicGPR); | ||||
| 6560 | int GPRIdx = 0; | ||||
| 6561 | if (GPRSaveSize != 0) { | ||||
| 6562 | if (IsWin64) { | ||||
| 6563 | GPRIdx = MFI.CreateFixedObject(GPRSaveSize, -(int)GPRSaveSize, false); | ||||
| 6564 | if (GPRSaveSize & 15) | ||||
| 6565 | // The extra size here, if triggered, will always be 8. | ||||
| 6566 | MFI.CreateFixedObject(16 - (GPRSaveSize & 15), -(int)alignTo(GPRSaveSize, 16), false); | ||||
| 6567 | } else | ||||
| 6568 | GPRIdx = MFI.CreateStackObject(GPRSaveSize, Align(8), false); | ||||
| 6569 | |||||
| 6570 | SDValue FIN; | ||||
| 6571 | if (Subtarget->isWindowsArm64EC()) { | ||||
| 6572 | // With the Arm64EC ABI, we reserve the save area as usual, but we | ||||
| 6573 | // compute its address relative to x4. For a normal AArch64->AArch64 | ||||
| 6574 | // call, x4 == sp on entry, but calls from an entry thunk can pass in a | ||||
| 6575 | // different address. | ||||
| 6576 | Register VReg = MF.addLiveIn(AArch64::X4, &AArch64::GPR64RegClass); | ||||
| 6577 | SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64); | ||||
| 6578 | FIN = DAG.getNode(ISD::SUB, DL, MVT::i64, Val, | ||||
| 6579 | DAG.getConstant(GPRSaveSize, DL, MVT::i64)); | ||||
| 6580 | } else { | ||||
| 6581 | FIN = DAG.getFrameIndex(GPRIdx, PtrVT); | ||||
| 6582 | } | ||||
| 6583 | |||||
| 6584 | for (unsigned i = FirstVariadicGPR; i < NumGPRArgRegs; ++i) { | ||||
| 6585 | Register VReg = MF.addLiveIn(GPRArgRegs[i], &AArch64::GPR64RegClass); | ||||
| 6586 | SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::i64); | ||||
| 6587 | SDValue Store = | ||||
| 6588 | DAG.getStore(Val.getValue(1), DL, Val, FIN, | ||||
| 6589 | IsWin64 ? MachinePointerInfo::getFixedStack( | ||||
| 6590 | MF, GPRIdx, (i - FirstVariadicGPR) * 8) | ||||
| 6591 | : MachinePointerInfo::getStack(MF, i * 8)); | ||||
| 6592 | MemOps.push_back(Store); | ||||
| 6593 | FIN = | ||||
| 6594 | DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getConstant(8, DL, PtrVT)); | ||||
| 6595 | } | ||||
| 6596 | } | ||||
| 6597 | FuncInfo->setVarArgsGPRIndex(GPRIdx); | ||||
| 6598 | FuncInfo->setVarArgsGPRSize(GPRSaveSize); | ||||
| 6599 | |||||
| 6600 | if (Subtarget->hasFPARMv8() && !IsWin64) { | ||||
| 6601 | static const MCPhysReg FPRArgRegs[] = { | ||||
| 6602 | AArch64::Q0, AArch64::Q1, AArch64::Q2, AArch64::Q3, | ||||
| 6603 | AArch64::Q4, AArch64::Q5, AArch64::Q6, AArch64::Q7}; | ||||
| 6604 | static const unsigned NumFPRArgRegs = std::size(FPRArgRegs); | ||||
| 6605 | unsigned FirstVariadicFPR = CCInfo.getFirstUnallocated(FPRArgRegs); | ||||
| 6606 | |||||
| 6607 | unsigned FPRSaveSize = 16 * (NumFPRArgRegs - FirstVariadicFPR); | ||||
| 6608 | int FPRIdx = 0; | ||||
| 6609 | if (FPRSaveSize != 0) { | ||||
| 6610 | FPRIdx = MFI.CreateStackObject(FPRSaveSize, Align(16), false); | ||||
| 6611 | |||||
| 6612 | SDValue FIN = DAG.getFrameIndex(FPRIdx, PtrVT); | ||||
| 6613 | |||||
| 6614 | for (unsigned i = FirstVariadicFPR; i < NumFPRArgRegs; ++i) { | ||||
| 6615 | Register VReg = MF.addLiveIn(FPRArgRegs[i], &AArch64::FPR128RegClass); | ||||
| 6616 | SDValue Val = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f128); | ||||
| 6617 | |||||
| 6618 | SDValue Store = DAG.getStore(Val.getValue(1), DL, Val, FIN, | ||||
| 6619 | MachinePointerInfo::getStack(MF, i * 16)); | ||||
| 6620 | MemOps.push_back(Store); | ||||
| 6621 | FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, | ||||
| 6622 | DAG.getConstant(16, DL, PtrVT)); | ||||
| 6623 | } | ||||
| 6624 | } | ||||
| 6625 | FuncInfo->setVarArgsFPRIndex(FPRIdx); | ||||
| 6626 | FuncInfo->setVarArgsFPRSize(FPRSaveSize); | ||||
| 6627 | } | ||||
| 6628 | |||||
| 6629 | if (!MemOps.empty()) { | ||||
| 6630 | Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); | ||||
| 6631 | } | ||||
| 6632 | } | ||||
| 6633 | |||||
| 6634 | /// LowerCallResult - Lower the result values of a call into the | ||||
| 6635 | /// appropriate copies out of appropriate physical registers. | ||||
| 6636 | SDValue AArch64TargetLowering::LowerCallResult( | ||||
| 6637 | SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, | ||||
| 6638 | const SmallVectorImpl<CCValAssign> &RVLocs, const SDLoc &DL, | ||||
| 6639 | SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn, | ||||
| 6640 | SDValue ThisVal) const { | ||||
| 6641 | DenseMap<unsigned, SDValue> CopiedRegs; | ||||
| 6642 | // Copy all of the result registers out of their specified physreg. | ||||
| 6643 | for (unsigned i = 0; i != RVLocs.size(); ++i) { | ||||
| 6644 | CCValAssign VA = RVLocs[i]; | ||||
| 6645 | |||||
| 6646 | // Pass 'this' value directly from the argument to return value, to avoid | ||||
| 6647 | // reg unit interference | ||||
| 6648 | if (i == 0 && isThisReturn) { | ||||
| 6649 | assert(!VA.needsCustom() && VA.getLocVT() == MVT::i64 &&(static_cast <bool> (!VA.needsCustom() && VA.getLocVT () == MVT::i64 && "unexpected return calling convention register assignment" ) ? void (0) : __assert_fail ("!VA.needsCustom() && VA.getLocVT() == MVT::i64 && \"unexpected return calling convention register assignment\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 6650, __extension__ __PRETTY_FUNCTION__)) | ||||
| 6650 | "unexpected return calling convention register assignment")(static_cast <bool> (!VA.needsCustom() && VA.getLocVT () == MVT::i64 && "unexpected return calling convention register assignment" ) ? void (0) : __assert_fail ("!VA.needsCustom() && VA.getLocVT() == MVT::i64 && \"unexpected return calling convention register assignment\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 6650, __extension__ __PRETTY_FUNCTION__)); | ||||
| 6651 | InVals.push_back(ThisVal); | ||||
| 6652 | continue; | ||||
| 6653 | } | ||||
| 6654 | |||||
| 6655 | // Avoid copying a physreg twice since RegAllocFast is incompetent and only | ||||
| 6656 | // allows one use of a physreg per block. | ||||
| 6657 | SDValue Val = CopiedRegs.lookup(VA.getLocReg()); | ||||
| 6658 | if (!Val) { | ||||
| 6659 | Val = | ||||
| 6660 | DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag); | ||||
| 6661 | Chain = Val.getValue(1); | ||||
| 6662 | InFlag = Val.getValue(2); | ||||
| 6663 | CopiedRegs[VA.getLocReg()] = Val; | ||||
| 6664 | } | ||||
| 6665 | |||||
| 6666 | switch (VA.getLocInfo()) { | ||||
| 6667 | default: | ||||
| 6668 | llvm_unreachable("Unknown loc info!")::llvm::llvm_unreachable_internal("Unknown loc info!", "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp" , 6668); | ||||
| 6669 | case CCValAssign::Full: | ||||
| 6670 | break; | ||||
| 6671 | case CCValAssign::BCvt: | ||||
| 6672 | Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val); | ||||
| 6673 | break; | ||||
| 6674 | case CCValAssign::AExtUpper: | ||||
| 6675 | Val = DAG.getNode(ISD::SRL, DL, VA.getLocVT(), Val, | ||||
| 6676 | DAG.getConstant(32, DL, VA.getLocVT())); | ||||
| 6677 | [[fallthrough]]; | ||||
| 6678 | case CCValAssign::AExt: | ||||
| 6679 | [[fallthrough]]; | ||||
| 6680 | case CCValAssign::ZExt: | ||||
| 6681 | Val = DAG.getZExtOrTrunc(Val, DL, VA.getValVT()); | ||||
| 6682 | break; | ||||
| 6683 | } | ||||
| 6684 | |||||
| 6685 | InVals.push_back(Val); | ||||
| 6686 | } | ||||
| 6687 | |||||
| 6688 | return Chain; | ||||
| 6689 | } | ||||
| 6690 | |||||
| 6691 | /// Return true if the calling convention is one that we can guarantee TCO for. | ||||
| 6692 | static bool canGuaranteeTCO(CallingConv::ID CC, bool GuaranteeTailCalls) { | ||||
| 6693 | return (CC == CallingConv::Fast && GuaranteeTailCalls) || | ||||
| 6694 | CC == CallingConv::Tail || CC == CallingConv::SwiftTail; | ||||
| 6695 | } | ||||
| 6696 | |||||
| 6697 | /// Return true if we might ever do TCO for calls with this calling convention. | ||||
| 6698 | static bool mayTailCallThisCC(CallingConv::ID CC) { | ||||
| 6699 | switch (CC) { | ||||
| 6700 | case CallingConv::C: | ||||
| 6701 | case CallingConv::AArch64_SVE_VectorCall: | ||||
| 6702 | case CallingConv::PreserveMost: | ||||
| 6703 | case CallingConv::Swift: | ||||
| 6704 | case CallingConv::SwiftTail: | ||||
| 6705 | case CallingConv::Tail: | ||||
| 6706 | case CallingConv::Fast: | ||||
| 6707 | return true; | ||||
| 6708 | default: | ||||
| 6709 | return false; | ||||
| 6710 | } | ||||
| 6711 | } | ||||
| 6712 | |||||
| 6713 | static void analyzeCallOperands(const AArch64TargetLowering &TLI, | ||||
| 6714 | const AArch64Subtarget *Subtarget, | ||||
| 6715 | const TargetLowering::CallLoweringInfo &CLI, | ||||
| 6716 | CCState &CCInfo) { | ||||
| 6717 | const SelectionDAG &DAG = CLI.DAG; | ||||
| 6718 | CallingConv::ID CalleeCC = CLI.CallConv; | ||||
| 6719 | bool IsVarArg = CLI.IsVarArg; | ||||
| 6720 | const SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; | ||||
| 6721 | bool IsCalleeWin64 = Subtarget->isCallingConvWin64(CalleeCC); | ||||
| 6722 | |||||
| 6723 | unsigned NumArgs = Outs.size(); | ||||
| 6724 | for (unsigned i = 0; i != NumArgs; ++i) { | ||||
| 6725 | MVT ArgVT = Outs[i].VT; | ||||
| 6726 | ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; | ||||
| 6727 | |||||
| 6728 | bool UseVarArgCC = false; | ||||
| 6729 | if (IsVarArg) { | ||||
| 6730 | // On Windows, the fixed arguments in a vararg call are passed in GPRs | ||||
| 6731 | // too, so use the vararg CC to force them to integer registers. | ||||
| 6732 | if (IsCalleeWin64) { | ||||
| 6733 | UseVarArgCC = true; | ||||
| 6734 | } else { | ||||
| 6735 | UseVarArgCC = !Outs[i].IsFixed; | ||||
| 6736 | } | ||||
| 6737 | } else { | ||||
| 6738 | // Get type of the original argument. | ||||
| 6739 | EVT ActualVT = | ||||
| 6740 | TLI.getValueType(DAG.getDataLayout(), CLI.Args[Outs[i].OrigArgIndex].Ty, | ||||
| 6741 | /*AllowUnknown*/ true); | ||||
| 6742 | MVT ActualMVT = ActualVT.isSimple() ? ActualVT.getSimpleVT() : ArgVT; | ||||
| 6743 | // If ActualMVT is i1/i8/i16, we should set LocVT to i8/i8/i16. | ||||
| 6744 | if (ActualMVT == MVT::i1 || ActualMVT == MVT::i8) | ||||
| 6745 | ArgVT = MVT::i8; | ||||
| 6746 | else if (ActualMVT == MVT::i16) | ||||
| 6747 | ArgVT = MVT::i16; | ||||
| 6748 | } | ||||
| 6749 | |||||
| 6750 | CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CalleeCC, UseVarArgCC); | ||||
| 6751 | bool Res = AssignFn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo); | ||||
| 6752 | assert(!Res && "Call operand has unhandled type")(static_cast <bool> (!Res && "Call operand has unhandled type" ) ? void (0) : __assert_fail ("!Res && \"Call operand has unhandled type\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 6752, __extension__ __PRETTY_FUNCTION__)); | ||||
| 6753 | (void)Res; | ||||
| 6754 | } | ||||
| 6755 | } | ||||
| 6756 | |||||
| 6757 | bool AArch64TargetLowering::isEligibleForTailCallOptimization( | ||||
| 6758 | const CallLoweringInfo &CLI) const { | ||||
| 6759 | CallingConv::ID CalleeCC = CLI.CallConv; | ||||
| 6760 | if (!mayTailCallThisCC(CalleeCC)) | ||||
| 6761 | return false; | ||||
| 6762 | |||||
| 6763 | SDValue Callee = CLI.Callee; | ||||
| 6764 | bool IsVarArg = CLI.IsVarArg; | ||||
| 6765 | const SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; | ||||
| 6766 | const SmallVector<SDValue, 32> &OutVals = CLI.OutVals; | ||||
| 6767 | const SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; | ||||
| 6768 | const SelectionDAG &DAG = CLI.DAG; | ||||
| 6769 | MachineFunction &MF = DAG.getMachineFunction(); | ||||
| 6770 | const Function &CallerF = MF.getFunction(); | ||||
| 6771 | CallingConv::ID CallerCC = CallerF.getCallingConv(); | ||||
| 6772 | |||||
| 6773 | // SME Streaming functions are not eligible for TCO as they may require | ||||
| 6774 | // the streaming mode or ZA to be restored after returning from the call. | ||||
| 6775 | SMEAttrs CallerAttrs(MF.getFunction()); | ||||
| 6776 | auto CalleeAttrs = CLI.CB ? SMEAttrs(*CLI.CB) : SMEAttrs(SMEAttrs::Normal); | ||||
| 6777 | if (CallerAttrs.requiresSMChange(CalleeAttrs) || | ||||
| 6778 | CallerAttrs.requiresLazySave(CalleeAttrs)) | ||||
| 6779 | return false; | ||||
| 6780 | |||||
| 6781 | // Functions using the C or Fast calling convention that have an SVE signature | ||||
| 6782 | // preserve more registers and should assume the SVE_VectorCall CC. | ||||
| 6783 | // The check for matching callee-saved regs will determine whether it is | ||||
| 6784 | // eligible for TCO. | ||||
| 6785 | if ((CallerCC == CallingConv::C || CallerCC == CallingConv::Fast) && | ||||
| 6786 | MF.getInfo<AArch64FunctionInfo>()->isSVECC()) | ||||
| 6787 | CallerCC = CallingConv::AArch64_SVE_VectorCall; | ||||
| 6788 | |||||
| 6789 | bool CCMatch = CallerCC == CalleeCC; | ||||
| 6790 | |||||
| 6791 | // When using the Windows calling convention on a non-windows OS, we want | ||||
| 6792 | // to back up and restore X18 in such functions; we can't do a tail call | ||||
| 6793 | // from those functions. | ||||
| 6794 | if (CallerCC == CallingConv::Win64 && !Subtarget->isTargetWindows() && | ||||
| 6795 | CalleeCC != CallingConv::Win64) | ||||
| 6796 | return false; | ||||
| 6797 | |||||
| 6798 | // Byval parameters hand the function a pointer directly into the stack area | ||||
| 6799 | // we want to reuse during a tail call. Working around this *is* possible (see | ||||
| 6800 | // X86) but less efficient and uglier in LowerCall. | ||||
| 6801 | for (Function::const_arg_iterator i = CallerF.arg_begin(), | ||||
| 6802 | e = CallerF.arg_end(); | ||||
| 6803 | i != e; ++i) { | ||||
| 6804 | if (i->hasByValAttr()) | ||||
| 6805 | return false; | ||||
| 6806 | |||||
| 6807 | // On Windows, "inreg" attributes signify non-aggregate indirect returns. | ||||
| 6808 | // In this case, it is necessary to save/restore X0 in the callee. Tail | ||||
| 6809 | // call opt interferes with this. So we disable tail call opt when the | ||||
| 6810 | // caller has an argument with "inreg" attribute. | ||||
| 6811 | |||||
| 6812 | // FIXME: Check whether the callee also has an "inreg" argument. | ||||
| 6813 | if (i->hasInRegAttr()) | ||||
| 6814 | return false; | ||||
| 6815 | } | ||||
| 6816 | |||||
| 6817 | if (canGuaranteeTCO(CalleeCC, getTargetMachine().Options.GuaranteedTailCallOpt)) | ||||
| 6818 | return CCMatch; | ||||
| 6819 | |||||
| 6820 | // Externally-defined functions with weak linkage should not be | ||||
| 6821 | // tail-called on AArch64 when the OS does not support dynamic | ||||
| 6822 | // pre-emption of symbols, as the AAELF spec requires normal calls | ||||
| 6823 | // to undefined weak functions to be replaced with a NOP or jump to the | ||||
| 6824 | // next instruction. The behaviour of branch instructions in this | ||||
| 6825 | // situation (as used for tail calls) is implementation-defined, so we | ||||
| 6826 | // cannot rely on the linker replacing the tail call with a return. | ||||
| 6827 | if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { | ||||
| 6828 | const GlobalValue *GV = G->getGlobal(); | ||||
| 6829 | const Triple &TT = getTargetMachine().getTargetTriple(); | ||||
| 6830 | if (GV->hasExternalWeakLinkage() && | ||||
| 6831 | (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO())) | ||||
| 6832 | return false; | ||||
| 6833 | } | ||||
| 6834 | |||||
| 6835 | // Now we search for cases where we can use a tail call without changing the | ||||
| 6836 | // ABI. Sibcall is used in some places (particularly gcc) to refer to this | ||||
| 6837 | // concept. | ||||
| 6838 | |||||
| 6839 | // I want anyone implementing a new calling convention to think long and hard | ||||
| 6840 | // about this assert. | ||||
| 6841 | assert((!IsVarArg || CalleeCC == CallingConv::C) &&(static_cast <bool> ((!IsVarArg || CalleeCC == CallingConv ::C) && "Unexpected variadic calling convention") ? void (0) : __assert_fail ("(!IsVarArg || CalleeCC == CallingConv::C) && \"Unexpected variadic calling convention\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 6842, __extension__ __PRETTY_FUNCTION__)) | ||||
| 6842 | "Unexpected variadic calling convention")(static_cast <bool> ((!IsVarArg || CalleeCC == CallingConv ::C) && "Unexpected variadic calling convention") ? void (0) : __assert_fail ("(!IsVarArg || CalleeCC == CallingConv::C) && \"Unexpected variadic calling convention\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 6842, __extension__ __PRETTY_FUNCTION__)); | ||||
| 6843 | |||||
| 6844 | LLVMContext &C = *DAG.getContext(); | ||||
| 6845 | // Check that the call results are passed in the same way. | ||||
| 6846 | if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins, | ||||
| 6847 | CCAssignFnForCall(CalleeCC, IsVarArg), | ||||
| 6848 | CCAssignFnForCall(CallerCC, IsVarArg))) | ||||
| 6849 | return false; | ||||
| 6850 | // The callee has to preserve all registers the caller needs to preserve. | ||||
| 6851 | const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); | ||||
| 6852 | const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC); | ||||
| 6853 | if (!CCMatch) { | ||||
| 6854 | const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC); | ||||
| 6855 | if (Subtarget->hasCustomCallingConv()) { | ||||
| 6856 | TRI->UpdateCustomCallPreservedMask(MF, &CallerPreserved); | ||||
| 6857 | TRI->UpdateCustomCallPreservedMask(MF, &CalleePreserved); | ||||
| 6858 | } | ||||
| 6859 | if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved)) | ||||
| 6860 | return false; | ||||
| 6861 | } | ||||
| 6862 | |||||
| 6863 | // Nothing more to check if the callee is taking no arguments | ||||
| 6864 | if (Outs.empty()) | ||||
| 6865 | return true; | ||||
| 6866 | |||||
| 6867 | SmallVector<CCValAssign, 16> ArgLocs; | ||||
| 6868 | CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, C); | ||||
| 6869 | |||||
| 6870 | analyzeCallOperands(*this, Subtarget, CLI, CCInfo); | ||||
| 6871 | |||||
| 6872 | if (IsVarArg && !(CLI.CB && CLI.CB->isMustTailCall())) { | ||||
| 6873 | // When we are musttail, additional checks have been done and we can safely ignore this check | ||||
| 6874 | // At least two cases here: if caller is fastcc then we can't have any | ||||
| 6875 | // memory arguments (we'd be expected to clean up the stack afterwards). If | ||||
| 6876 | // caller is C then we could potentially use its argument area. | ||||
| 6877 | |||||
| 6878 | // FIXME: for now we take the most conservative of these in both cases: | ||||
| 6879 | // disallow all variadic memory operands. | ||||
| 6880 | for (const CCValAssign &ArgLoc : ArgLocs) | ||||
| 6881 | if (!ArgLoc.isRegLoc()) | ||||
| 6882 | return false; | ||||
| 6883 | } | ||||
| 6884 | |||||
| 6885 | const AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); | ||||
| 6886 | |||||
| 6887 | // If any of the arguments is passed indirectly, it must be SVE, so the | ||||
| 6888 | // 'getBytesInStackArgArea' is not sufficient to determine whether we need to | ||||
| 6889 | // allocate space on the stack. That is why we determine this explicitly here | ||||
| 6890 | // the call cannot be a tailcall. | ||||
| 6891 | if (llvm::any_of(ArgLocs, [&](CCValAssign &A) { | ||||
| 6892 | assert((A.getLocInfo() != CCValAssign::Indirect ||(static_cast <bool> ((A.getLocInfo() != CCValAssign::Indirect || A.getValVT().isScalableVector() || Subtarget->isWindowsArm64EC ()) && "Expected value to be scalable") ? void (0) : __assert_fail ("(A.getLocInfo() != CCValAssign::Indirect || A.getValVT().isScalableVector() || Subtarget->isWindowsArm64EC()) && \"Expected value to be scalable\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 6895, __extension__ __PRETTY_FUNCTION__)) | ||||
| 6893 | A.getValVT().isScalableVector() ||(static_cast <bool> ((A.getLocInfo() != CCValAssign::Indirect || A.getValVT().isScalableVector() || Subtarget->isWindowsArm64EC ()) && "Expected value to be scalable") ? void (0) : __assert_fail ("(A.getLocInfo() != CCValAssign::Indirect || A.getValVT().isScalableVector() || Subtarget->isWindowsArm64EC()) && \"Expected value to be scalable\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 6895, __extension__ __PRETTY_FUNCTION__)) | ||||
| 6894 | Subtarget->isWindowsArm64EC()) &&(static_cast <bool> ((A.getLocInfo() != CCValAssign::Indirect || A.getValVT().isScalableVector() || Subtarget->isWindowsArm64EC ()) && "Expected value to be scalable") ? void (0) : __assert_fail ("(A.getLocInfo() != CCValAssign::Indirect || A.getValVT().isScalableVector() || Subtarget->isWindowsArm64EC()) && \"Expected value to be scalable\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 6895, __extension__ __PRETTY_FUNCTION__)) | ||||
| 6895 | "Expected value to be scalable")(static_cast <bool> ((A.getLocInfo() != CCValAssign::Indirect || A.getValVT().isScalableVector() || Subtarget->isWindowsArm64EC ()) && "Expected value to be scalable") ? void (0) : __assert_fail ("(A.getLocInfo() != CCValAssign::Indirect || A.getValVT().isScalableVector() || Subtarget->isWindowsArm64EC()) && \"Expected value to be scalable\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 6895, __extension__ __PRETTY_FUNCTION__)); | ||||
| 6896 | return A.getLocInfo() == CCValAssign::Indirect; | ||||
| 6897 | })) | ||||
| 6898 | return false; | ||||
| 6899 | |||||
| 6900 | // If the stack arguments for this call do not fit into our own save area then | ||||
| 6901 | // the call cannot be made tail. | ||||
| 6902 | if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) | ||||
| 6903 | return false; | ||||
| 6904 | |||||
| 6905 | const MachineRegisterInfo &MRI = MF.getRegInfo(); | ||||
| 6906 | if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals)) | ||||
| 6907 | return false; | ||||
| 6908 | |||||
| 6909 | return true; | ||||
| 6910 | } | ||||
| 6911 | |||||
| 6912 | SDValue AArch64TargetLowering::addTokenForArgument(SDValue Chain, | ||||
| 6913 | SelectionDAG &DAG, | ||||
| 6914 | MachineFrameInfo &MFI, | ||||
| 6915 | int ClobberedFI) const { | ||||
| 6916 | SmallVector<SDValue, 8> ArgChains; | ||||
| 6917 | int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); | ||||
| 6918 | int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; | ||||
| 6919 | |||||
| 6920 | // Include the original chain at the beginning of the list. When this is | ||||
| 6921 | // used by target LowerCall hooks, this helps legalize find the | ||||
| 6922 | // CALLSEQ_BEGIN node. | ||||
| 6923 | ArgChains.push_back(Chain); | ||||
| 6924 | |||||
| 6925 | // Add a chain value for each stack argument corresponding | ||||
| 6926 | for (SDNode *U : DAG.getEntryNode().getNode()->uses()) | ||||
| 6927 | if (LoadSDNode *L = dyn_cast<LoadSDNode>(U)) | ||||
| 6928 | if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) | ||||
| 6929 | if (FI->getIndex() < 0) { | ||||
| 6930 | int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); | ||||
| 6931 | int64_t InLastByte = InFirstByte; | ||||
| 6932 | InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; | ||||
| 6933 | |||||
| 6934 | if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || | ||||
| 6935 | (FirstByte <= InFirstByte && InFirstByte <= LastByte)) | ||||
| 6936 | ArgChains.push_back(SDValue(L, 1)); | ||||
| 6937 | } | ||||
| 6938 | |||||
| 6939 | // Build a tokenfactor for all the chains. | ||||
| 6940 | return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); | ||||
| 6941 | } | ||||
| 6942 | |||||
| 6943 | bool AArch64TargetLowering::DoesCalleeRestoreStack(CallingConv::ID CallCC, | ||||
| 6944 | bool TailCallOpt) const { | ||||
| 6945 | return (CallCC == CallingConv::Fast && TailCallOpt) || | ||||
| 6946 | CallCC == CallingConv::Tail || CallCC == CallingConv::SwiftTail; | ||||
| 6947 | } | ||||
| 6948 | |||||
| 6949 | // Check if the value is zero-extended from i1 to i8 | ||||
| 6950 | static bool checkZExtBool(SDValue Arg, const SelectionDAG &DAG) { | ||||
| 6951 | unsigned SizeInBits = Arg.getValueType().getSizeInBits(); | ||||
| 6952 | if (SizeInBits < 8) | ||||
| 6953 | return false; | ||||
| 6954 | |||||
| 6955 | APInt RequredZero(SizeInBits, 0xFE); | ||||
| 6956 | KnownBits Bits = DAG.computeKnownBits(Arg, 4); | ||||
| 6957 | bool ZExtBool = (Bits.Zero & RequredZero) == RequredZero; | ||||
| 6958 | return ZExtBool; | ||||
| 6959 | } | ||||
| 6960 | |||||
| 6961 | SDValue AArch64TargetLowering::changeStreamingMode( | ||||
| 6962 | SelectionDAG &DAG, SDLoc DL, bool Enable, | ||||
| 6963 | SDValue Chain, SDValue InFlag, SDValue PStateSM, bool Entry) const { | ||||
| 6964 | const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); | ||||
| 6965 | SDValue RegMask = DAG.getRegisterMask(TRI->getSMStartStopCallPreservedMask()); | ||||
| 6966 | SDValue MSROp = | ||||
| 6967 | DAG.getTargetConstant((int32_t)AArch64SVCR::SVCRSM, DL, MVT::i32); | ||||
| 6968 | |||||
| 6969 | SDValue ExpectedSMVal = | ||||
| 6970 | DAG.getTargetConstant(Entry ? Enable : !Enable, DL, MVT::i64); | ||||
| 6971 | SmallVector<SDValue> Ops = {Chain, MSROp, PStateSM, ExpectedSMVal, RegMask}; | ||||
| 6972 | |||||
| 6973 | if (InFlag) | ||||
| 6974 | Ops.push_back(InFlag); | ||||
| 6975 | |||||
| 6976 | unsigned Opcode = Enable ? AArch64ISD::SMSTART : AArch64ISD::SMSTOP; | ||||
| 6977 | return DAG.getNode(Opcode, DL, DAG.getVTList(MVT::Other, MVT::Glue), Ops); | ||||
| 6978 | } | ||||
| 6979 | |||||
| 6980 | /// LowerCall - Lower a call to a callseq_start + CALL + callseq_end chain, | ||||
| 6981 | /// and add input and output parameter nodes. | ||||
| 6982 | SDValue | ||||
| 6983 | AArch64TargetLowering::LowerCall(CallLoweringInfo &CLI, | ||||
| 6984 | SmallVectorImpl<SDValue> &InVals) const { | ||||
| 6985 | SelectionDAG &DAG = CLI.DAG; | ||||
| 6986 | SDLoc &DL = CLI.DL; | ||||
| 6987 | SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; | ||||
| 6988 | SmallVector<SDValue, 32> &OutVals = CLI.OutVals; | ||||
| 6989 | SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; | ||||
| 6990 | SDValue Chain = CLI.Chain; | ||||
| 6991 | SDValue Callee = CLI.Callee; | ||||
| 6992 | bool &IsTailCall = CLI.IsTailCall; | ||||
| 6993 | CallingConv::ID &CallConv = CLI.CallConv; | ||||
| 6994 | bool IsVarArg = CLI.IsVarArg; | ||||
| 6995 | |||||
| 6996 | MachineFunction &MF = DAG.getMachineFunction(); | ||||
| 6997 | MachineFunction::CallSiteInfo CSInfo; | ||||
| 6998 | bool IsThisReturn = false; | ||||
| 6999 | |||||
| 7000 | AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); | ||||
| 7001 | bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt; | ||||
| 7002 | bool IsCFICall = CLI.CB && CLI.CB->isIndirectCall() && CLI.CFIType; | ||||
| 7003 | bool IsSibCall = false; | ||||
| 7004 | bool GuardWithBTI = false; | ||||
| 7005 | |||||
| 7006 | if (CLI.CB && CLI.CB->getAttributes().hasFnAttr(Attribute::ReturnsTwice) && | ||||
| 7007 | !Subtarget->noBTIAtReturnTwice()) { | ||||
| 7008 | GuardWithBTI = FuncInfo->branchTargetEnforcement(); | ||||
| 7009 | } | ||||
| 7010 | |||||
| 7011 | // Analyze operands of the call, assigning locations to each operand. | ||||
| 7012 | SmallVector<CCValAssign, 16> ArgLocs; | ||||
| 7013 | CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); | ||||
| 7014 | |||||
| 7015 | if (IsVarArg) { | ||||
| 7016 | unsigned NumArgs = Outs.size(); | ||||
| 7017 | |||||
| 7018 | for (unsigned i = 0; i != NumArgs; ++i) { | ||||
| 7019 | if (!Outs[i].IsFixed && Outs[i].VT.isScalableVector()) | ||||
| 7020 | report_fatal_error("Passing SVE types to variadic functions is " | ||||
| 7021 | "currently not supported"); | ||||
| 7022 | } | ||||
| 7023 | } | ||||
| 7024 | |||||
| 7025 | analyzeCallOperands(*this, Subtarget, CLI, CCInfo); | ||||
| 7026 | |||||
| 7027 | CCAssignFn *RetCC = CCAssignFnForReturn(CallConv); | ||||
| 7028 | // Assign locations to each value returned by this call. | ||||
| 7029 | SmallVector<CCValAssign, 16> RVLocs; | ||||
| 7030 | CCState RetCCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs, | ||||
| 7031 | *DAG.getContext()); | ||||
| 7032 | RetCCInfo.AnalyzeCallResult(Ins, RetCC); | ||||
| 7033 | |||||
| 7034 | // Check callee args/returns for SVE registers and set calling convention | ||||
| 7035 | // accordingly. | ||||
| 7036 | if (CallConv == CallingConv::C || CallConv == CallingConv::Fast) { | ||||
| 7037 | auto HasSVERegLoc = [](CCValAssign &Loc) { | ||||
| 7038 | if (!Loc.isRegLoc()) | ||||
| 7039 | return false; | ||||
| 7040 | return AArch64::ZPRRegClass.contains(Loc.getLocReg()) || | ||||
| 7041 | AArch64::PPRRegClass.contains(Loc.getLocReg()); | ||||
| 7042 | }; | ||||
| 7043 | if (any_of(RVLocs, HasSVERegLoc) || any_of(ArgLocs, HasSVERegLoc)) | ||||
| 7044 | CallConv = CallingConv::AArch64_SVE_VectorCall; | ||||
| 7045 | } | ||||
| 7046 | |||||
| 7047 | if (IsTailCall) { | ||||
| 7048 | // Check if it's really possible to do a tail call. | ||||
| 7049 | IsTailCall = isEligibleForTailCallOptimization(CLI); | ||||
| 7050 | |||||
| 7051 | // A sibling call is one where we're under the usual C ABI and not planning | ||||
| 7052 | // to change that but can still do a tail call: | ||||
| 7053 | if (!TailCallOpt && IsTailCall && CallConv != CallingConv::Tail && | ||||
| 7054 | CallConv != CallingConv::SwiftTail) | ||||
| 7055 | IsSibCall = true; | ||||
| 7056 | |||||
| 7057 | if (IsTailCall) | ||||
| 7058 | ++NumTailCalls; | ||||
| 7059 | } | ||||
| 7060 | |||||
| 7061 | if (!IsTailCall && CLI.CB && CLI.CB->isMustTailCall()) | ||||
| 7062 | report_fatal_error("failed to perform tail call elimination on a call " | ||||
| 7063 | "site marked musttail"); | ||||
| 7064 | |||||
| 7065 | // Get a count of how many bytes are to be pushed on the stack. | ||||
| 7066 | unsigned NumBytes = CCInfo.getNextStackOffset(); | ||||
| 7067 | |||||
| 7068 | if (IsSibCall) { | ||||
| 7069 | // Since we're not changing the ABI to make this a tail call, the memory | ||||
| 7070 | // operands are already available in the caller's incoming argument space. | ||||
| 7071 | NumBytes = 0; | ||||
| 7072 | } | ||||
| 7073 | |||||
| 7074 | // FPDiff is the byte offset of the call's argument area from the callee's. | ||||
| 7075 | // Stores to callee stack arguments will be placed in FixedStackSlots offset | ||||
| 7076 | // by this amount for a tail call. In a sibling call it must be 0 because the | ||||
| 7077 | // caller will deallocate the entire stack and the callee still expects its | ||||
| 7078 | // arguments to begin at SP+0. Completely unused for non-tail calls. | ||||
| 7079 | int FPDiff = 0; | ||||
| 7080 | |||||
| 7081 | if (IsTailCall && !IsSibCall) { | ||||
| 7082 | unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea(); | ||||
| 7083 | |||||
| 7084 | // Since callee will pop argument stack as a tail call, we must keep the | ||||
| 7085 | // popped size 16-byte aligned. | ||||
| 7086 | NumBytes = alignTo(NumBytes, 16); | ||||
| 7087 | |||||
| 7088 | // FPDiff will be negative if this tail call requires more space than we | ||||
| 7089 | // would automatically have in our incoming argument space. Positive if we | ||||
| 7090 | // can actually shrink the stack. | ||||
| 7091 | FPDiff = NumReusableBytes - NumBytes; | ||||
| 7092 | |||||
| 7093 | // Update the required reserved area if this is the tail call requiring the | ||||
| 7094 | // most argument stack space. | ||||
| 7095 | if (FPDiff < 0 && FuncInfo->getTailCallReservedStack() < (unsigned)-FPDiff) | ||||
| 7096 | FuncInfo->setTailCallReservedStack(-FPDiff); | ||||
| 7097 | |||||
| 7098 | // The stack pointer must be 16-byte aligned at all times it's used for a | ||||
| 7099 | // memory operation, which in practice means at *all* times and in | ||||
| 7100 | // particular across call boundaries. Therefore our own arguments started at | ||||
| 7101 | // a 16-byte aligned SP and the delta applied for the tail call should | ||||
| 7102 | // satisfy the same constraint. | ||||
| 7103 | assert(FPDiff % 16 == 0 && "unaligned stack on tail call")(static_cast <bool> (FPDiff % 16 == 0 && "unaligned stack on tail call" ) ? void (0) : __assert_fail ("FPDiff % 16 == 0 && \"unaligned stack on tail call\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 7103, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7104 | } | ||||
| 7105 | |||||
| 7106 | // Determine whether we need any streaming mode changes. | ||||
| 7107 | SMEAttrs CalleeAttrs, CallerAttrs(MF.getFunction()); | ||||
| 7108 | if (CLI.CB) | ||||
| 7109 | CalleeAttrs = SMEAttrs(*CLI.CB); | ||||
| 7110 | else if (std::optional<SMEAttrs> Attrs = | ||||
| 7111 | getCalleeAttrsFromExternalFunction(CLI.Callee)) | ||||
| 7112 | CalleeAttrs = *Attrs; | ||||
| 7113 | |||||
| 7114 | bool RequiresLazySave = CallerAttrs.requiresLazySave(CalleeAttrs); | ||||
| 7115 | |||||
| 7116 | MachineFrameInfo &MFI = MF.getFrameInfo(); | ||||
| 7117 | if (RequiresLazySave) { | ||||
| 7118 | // Set up a lazy save mechanism by storing the runtime live slices | ||||
| 7119 | // (worst-case N*N) to the TPIDR2 stack object. | ||||
| 7120 | SDValue N = DAG.getNode(AArch64ISD::RDSVL, DL, MVT::i64, | ||||
| 7121 | DAG.getConstant(1, DL, MVT::i32)); | ||||
| 7122 | SDValue NN = DAG.getNode(ISD::MUL, DL, MVT::i64, N, N); | ||||
| 7123 | unsigned TPIDR2Obj = FuncInfo->getLazySaveTPIDR2Obj(); | ||||
| 7124 | |||||
| 7125 | MachinePointerInfo MPI = MachinePointerInfo::getStack(MF, TPIDR2Obj); | ||||
| 7126 | SDValue TPIDR2ObjAddr = DAG.getFrameIndex(TPIDR2Obj, | ||||
| 7127 | DAG.getTargetLoweringInfo().getFrameIndexTy(DAG.getDataLayout())); | ||||
| 7128 | SDValue BufferPtrAddr = | ||||
| 7129 | DAG.getNode(ISD::ADD, DL, TPIDR2ObjAddr.getValueType(), TPIDR2ObjAddr, | ||||
| 7130 | DAG.getConstant(8, DL, TPIDR2ObjAddr.getValueType())); | ||||
| 7131 | Chain = DAG.getTruncStore(Chain, DL, NN, BufferPtrAddr, MPI, MVT::i16); | ||||
| 7132 | Chain = DAG.getNode( | ||||
| 7133 | ISD::INTRINSIC_VOID, DL, MVT::Other, Chain, | ||||
| 7134 | DAG.getConstant(Intrinsic::aarch64_sme_set_tpidr2, DL, MVT::i32), | ||||
| 7135 | TPIDR2ObjAddr); | ||||
| 7136 | } | ||||
| 7137 | |||||
| 7138 | SDValue PStateSM; | ||||
| 7139 | std::optional<bool> RequiresSMChange = | ||||
| 7140 | CallerAttrs.requiresSMChange(CalleeAttrs); | ||||
| 7141 | if (RequiresSMChange) | ||||
| 7142 | PStateSM = getPStateSM(DAG, Chain, CallerAttrs, DL, MVT::i64); | ||||
| 7143 | |||||
| 7144 | // Adjust the stack pointer for the new arguments... | ||||
| 7145 | // These operations are automatically eliminated by the prolog/epilog pass | ||||
| 7146 | if (!IsSibCall) | ||||
| 7147 | Chain = DAG.getCALLSEQ_START(Chain, IsTailCall ? 0 : NumBytes, 0, DL); | ||||
| 7148 | |||||
| 7149 | SDValue StackPtr = DAG.getCopyFromReg(Chain, DL, AArch64::SP, | ||||
| 7150 | getPointerTy(DAG.getDataLayout())); | ||||
| 7151 | |||||
| 7152 | SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; | ||||
| 7153 | SmallSet<unsigned, 8> RegsUsed; | ||||
| 7154 | SmallVector<SDValue, 8> MemOpChains; | ||||
| 7155 | auto PtrVT = getPointerTy(DAG.getDataLayout()); | ||||
| 7156 | |||||
| 7157 | if (IsVarArg && CLI.CB && CLI.CB->isMustTailCall()) { | ||||
| 7158 | const auto &Forwards = FuncInfo->getForwardedMustTailRegParms(); | ||||
| 7159 | for (const auto &F : Forwards) { | ||||
| 7160 | SDValue Val = DAG.getCopyFromReg(Chain, DL, F.VReg, F.VT); | ||||
| 7161 | RegsToPass.emplace_back(F.PReg, Val); | ||||
| 7162 | } | ||||
| 7163 | } | ||||
| 7164 | |||||
| 7165 | // Walk the register/memloc assignments, inserting copies/loads. | ||||
| 7166 | unsigned ExtraArgLocs = 0; | ||||
| 7167 | for (unsigned i = 0, e = Outs.size(); i != e; ++i) { | ||||
| 7168 | CCValAssign &VA = ArgLocs[i - ExtraArgLocs]; | ||||
| 7169 | SDValue Arg = OutVals[i]; | ||||
| 7170 | ISD::ArgFlagsTy Flags = Outs[i].Flags; | ||||
| 7171 | |||||
| 7172 | // Promote the value if needed. | ||||
| 7173 | switch (VA.getLocInfo()) { | ||||
| 7174 | default: | ||||
| 7175 | llvm_unreachable("Unknown loc info!")::llvm::llvm_unreachable_internal("Unknown loc info!", "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp" , 7175); | ||||
| 7176 | case CCValAssign::Full: | ||||
| 7177 | break; | ||||
| 7178 | case CCValAssign::SExt: | ||||
| 7179 | Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg); | ||||
| 7180 | break; | ||||
| 7181 | case CCValAssign::ZExt: | ||||
| 7182 | Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); | ||||
| 7183 | break; | ||||
| 7184 | case CCValAssign::AExt: | ||||
| 7185 | if (Outs[i].ArgVT == MVT::i1) { | ||||
| 7186 | // AAPCS requires i1 to be zero-extended to 8-bits by the caller. | ||||
| 7187 | // | ||||
| 7188 | // Check if we actually have to do this, because the value may | ||||
| 7189 | // already be zero-extended. | ||||
| 7190 | // | ||||
| 7191 | // We cannot just emit a (zext i8 (trunc (assert-zext i8))) | ||||
| 7192 | // and rely on DAGCombiner to fold this, because the following | ||||
| 7193 | // (anyext i32) is combined with (zext i8) in DAG.getNode: | ||||
| 7194 | // | ||||
| 7195 | // (ext (zext x)) -> (zext x) | ||||
| 7196 | // | ||||
| 7197 | // This will give us (zext i32), which we cannot remove, so | ||||
| 7198 | // try to check this beforehand. | ||||
| 7199 | if (!checkZExtBool(Arg, DAG)) { | ||||
| 7200 | Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg); | ||||
| 7201 | Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i8, Arg); | ||||
| 7202 | } | ||||
| 7203 | } | ||||
| 7204 | Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); | ||||
| 7205 | break; | ||||
| 7206 | case CCValAssign::AExtUpper: | ||||
| 7207 | assert(VA.getValVT() == MVT::i32 && "only expect 32 -> 64 upper bits")(static_cast <bool> (VA.getValVT() == MVT::i32 && "only expect 32 -> 64 upper bits") ? void (0) : __assert_fail ("VA.getValVT() == MVT::i32 && \"only expect 32 -> 64 upper bits\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 7207, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7208 | Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg); | ||||
| 7209 | Arg = DAG.getNode(ISD::SHL, DL, VA.getLocVT(), Arg, | ||||
| 7210 | DAG.getConstant(32, DL, VA.getLocVT())); | ||||
| 7211 | break; | ||||
| 7212 | case CCValAssign::BCvt: | ||||
| 7213 | Arg = DAG.getBitcast(VA.getLocVT(), Arg); | ||||
| 7214 | break; | ||||
| 7215 | case CCValAssign::Trunc: | ||||
| 7216 | Arg = DAG.getZExtOrTrunc(Arg, DL, VA.getLocVT()); | ||||
| 7217 | break; | ||||
| 7218 | case CCValAssign::FPExt: | ||||
| 7219 | Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg); | ||||
| 7220 | break; | ||||
| 7221 | case CCValAssign::Indirect: | ||||
| 7222 | bool isScalable = VA.getValVT().isScalableVector(); | ||||
| 7223 | assert((isScalable || Subtarget->isWindowsArm64EC()) &&(static_cast <bool> ((isScalable || Subtarget->isWindowsArm64EC ()) && "Indirect arguments should be scalable on most subtargets" ) ? void (0) : __assert_fail ("(isScalable || Subtarget->isWindowsArm64EC()) && \"Indirect arguments should be scalable on most subtargets\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 7224, __extension__ __PRETTY_FUNCTION__)) | ||||
| 7224 | "Indirect arguments should be scalable on most subtargets")(static_cast <bool> ((isScalable || Subtarget->isWindowsArm64EC ()) && "Indirect arguments should be scalable on most subtargets" ) ? void (0) : __assert_fail ("(isScalable || Subtarget->isWindowsArm64EC()) && \"Indirect arguments should be scalable on most subtargets\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 7224, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7225 | |||||
| 7226 | uint64_t StoreSize = VA.getValVT().getStoreSize().getKnownMinSize(); | ||||
| 7227 | uint64_t PartSize = StoreSize; | ||||
| 7228 | unsigned NumParts = 1; | ||||
| 7229 | if (Outs[i].Flags.isInConsecutiveRegs()) { | ||||
| 7230 | assert(!Outs[i].Flags.isInConsecutiveRegsLast())(static_cast <bool> (!Outs[i].Flags.isInConsecutiveRegsLast ()) ? void (0) : __assert_fail ("!Outs[i].Flags.isInConsecutiveRegsLast()" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 7230, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7231 | while (!Outs[i + NumParts - 1].Flags.isInConsecutiveRegsLast()) | ||||
| 7232 | ++NumParts; | ||||
| 7233 | StoreSize *= NumParts; | ||||
| 7234 | } | ||||
| 7235 | |||||
| 7236 | Type *Ty = EVT(VA.getValVT()).getTypeForEVT(*DAG.getContext()); | ||||
| 7237 | Align Alignment = DAG.getDataLayout().getPrefTypeAlign(Ty); | ||||
| 7238 | int FI = MFI.CreateStackObject(StoreSize, Alignment, false); | ||||
| 7239 | if (isScalable) | ||||
| 7240 | MFI.setStackID(FI, TargetStackID::ScalableVector); | ||||
| 7241 | |||||
| 7242 | MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(MF, FI); | ||||
| 7243 | SDValue Ptr = DAG.getFrameIndex( | ||||
| 7244 | FI, DAG.getTargetLoweringInfo().getFrameIndexTy(DAG.getDataLayout())); | ||||
| 7245 | SDValue SpillSlot = Ptr; | ||||
| 7246 | |||||
| 7247 | // Ensure we generate all stores for each tuple part, whilst updating the | ||||
| 7248 | // pointer after each store correctly using vscale. | ||||
| 7249 | while (NumParts) { | ||||
| 7250 | Chain = DAG.getStore(Chain, DL, OutVals[i], Ptr, MPI); | ||||
| 7251 | NumParts--; | ||||
| 7252 | if (NumParts > 0) { | ||||
| 7253 | SDValue BytesIncrement; | ||||
| 7254 | if (isScalable) { | ||||
| 7255 | BytesIncrement = DAG.getVScale( | ||||
| 7256 | DL, Ptr.getValueType(), | ||||
| 7257 | APInt(Ptr.getValueSizeInBits().getFixedSize(), PartSize)); | ||||
| 7258 | } else { | ||||
| 7259 | BytesIncrement = DAG.getConstant( | ||||
| 7260 | APInt(Ptr.getValueSizeInBits().getFixedSize(), PartSize), DL, | ||||
| 7261 | Ptr.getValueType()); | ||||
| 7262 | } | ||||
| 7263 | SDNodeFlags Flags; | ||||
| 7264 | Flags.setNoUnsignedWrap(true); | ||||
| 7265 | |||||
| 7266 | MPI = MachinePointerInfo(MPI.getAddrSpace()); | ||||
| 7267 | Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr, | ||||
| 7268 | BytesIncrement, Flags); | ||||
| 7269 | ExtraArgLocs++; | ||||
| 7270 | i++; | ||||
| 7271 | } | ||||
| 7272 | } | ||||
| 7273 | |||||
| 7274 | Arg = SpillSlot; | ||||
| 7275 | break; | ||||
| 7276 | } | ||||
| 7277 | |||||
| 7278 | if (VA.isRegLoc()) { | ||||
| 7279 | if (i == 0 && Flags.isReturned() && !Flags.isSwiftSelf() && | ||||
| 7280 | Outs[0].VT == MVT::i64) { | ||||
| 7281 | assert(VA.getLocVT() == MVT::i64 &&(static_cast <bool> (VA.getLocVT() == MVT::i64 && "unexpected calling convention register assignment") ? void ( 0) : __assert_fail ("VA.getLocVT() == MVT::i64 && \"unexpected calling convention register assignment\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 7282, __extension__ __PRETTY_FUNCTION__)) | ||||
| 7282 | "unexpected calling convention register assignment")(static_cast <bool> (VA.getLocVT() == MVT::i64 && "unexpected calling convention register assignment") ? void ( 0) : __assert_fail ("VA.getLocVT() == MVT::i64 && \"unexpected calling convention register assignment\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 7282, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7283 | assert(!Ins.empty() && Ins[0].VT == MVT::i64 &&(static_cast <bool> (!Ins.empty() && Ins[0].VT == MVT::i64 && "unexpected use of 'returned'") ? void ( 0) : __assert_fail ("!Ins.empty() && Ins[0].VT == MVT::i64 && \"unexpected use of 'returned'\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 7284, __extension__ __PRETTY_FUNCTION__)) | ||||
| 7284 | "unexpected use of 'returned'")(static_cast <bool> (!Ins.empty() && Ins[0].VT == MVT::i64 && "unexpected use of 'returned'") ? void ( 0) : __assert_fail ("!Ins.empty() && Ins[0].VT == MVT::i64 && \"unexpected use of 'returned'\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 7284, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7285 | IsThisReturn = true; | ||||
| 7286 | } | ||||
| 7287 | if (RegsUsed.count(VA.getLocReg())) { | ||||
| 7288 | // If this register has already been used then we're trying to pack | ||||
| 7289 | // parts of an [N x i32] into an X-register. The extension type will | ||||
| 7290 | // take care of putting the two halves in the right place but we have to | ||||
| 7291 | // combine them. | ||||
| 7292 | SDValue &Bits = | ||||
| 7293 | llvm::find_if(RegsToPass, | ||||
| 7294 | [=](const std::pair<unsigned, SDValue> &Elt) { | ||||
| 7295 | return Elt.first == VA.getLocReg(); | ||||
| 7296 | }) | ||||
| 7297 | ->second; | ||||
| 7298 | Bits = DAG.getNode(ISD::OR, DL, Bits.getValueType(), Bits, Arg); | ||||
| 7299 | // Call site info is used for function's parameter entry value | ||||
| 7300 | // tracking. For now we track only simple cases when parameter | ||||
| 7301 | // is transferred through whole register. | ||||
| 7302 | llvm::erase_if(CSInfo, [&VA](MachineFunction::ArgRegPair ArgReg) { | ||||
| 7303 | return ArgReg.Reg == VA.getLocReg(); | ||||
| 7304 | }); | ||||
| 7305 | } else { | ||||
| 7306 | // Add an extra level of indirection for streaming mode changes by | ||||
| 7307 | // using a pseudo copy node that cannot be rematerialised between a | ||||
| 7308 | // smstart/smstop and the call by the simple register coalescer. | ||||
| 7309 | if (RequiresSMChange && isa<FrameIndexSDNode>(Arg)) | ||||
| 7310 | Arg = DAG.getNode(AArch64ISD::OBSCURE_COPY, DL, MVT::i64, Arg); | ||||
| 7311 | RegsToPass.emplace_back(VA.getLocReg(), Arg); | ||||
| 7312 | RegsUsed.insert(VA.getLocReg()); | ||||
| 7313 | const TargetOptions &Options = DAG.getTarget().Options; | ||||
| 7314 | if (Options.EmitCallSiteInfo) | ||||
| 7315 | CSInfo.emplace_back(VA.getLocReg(), i); | ||||
| 7316 | } | ||||
| 7317 | } else { | ||||
| 7318 | assert(VA.isMemLoc())(static_cast <bool> (VA.isMemLoc()) ? void (0) : __assert_fail ("VA.isMemLoc()", "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp" , 7318, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7319 | |||||
| 7320 | SDValue DstAddr; | ||||
| 7321 | MachinePointerInfo DstInfo; | ||||
| 7322 | |||||
| 7323 | // FIXME: This works on big-endian for composite byvals, which are the | ||||
| 7324 | // common case. It should also work for fundamental types too. | ||||
| 7325 | uint32_t BEAlign = 0; | ||||
| 7326 | unsigned OpSize; | ||||
| 7327 | if (VA.getLocInfo() == CCValAssign::Indirect || | ||||
| 7328 | VA.getLocInfo() == CCValAssign::Trunc) | ||||
| 7329 | OpSize = VA.getLocVT().getFixedSizeInBits(); | ||||
| 7330 | else | ||||
| 7331 | OpSize = Flags.isByVal() ? Flags.getByValSize() * 8 | ||||
| 7332 | : VA.getValVT().getSizeInBits(); | ||||
| 7333 | OpSize = (OpSize + 7) / 8; | ||||
| 7334 | if (!Subtarget->isLittleEndian() && !Flags.isByVal() && | ||||
| 7335 | !Flags.isInConsecutiveRegs()) { | ||||
| 7336 | if (OpSize < 8) | ||||
| 7337 | BEAlign = 8 - OpSize; | ||||
| 7338 | } | ||||
| 7339 | unsigned LocMemOffset = VA.getLocMemOffset(); | ||||
| 7340 | int32_t Offset = LocMemOffset + BEAlign; | ||||
| 7341 | SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL); | ||||
| 7342 | PtrOff = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff); | ||||
| 7343 | |||||
| 7344 | if (IsTailCall) { | ||||
| 7345 | Offset = Offset + FPDiff; | ||||
| 7346 | int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); | ||||
| 7347 | |||||
| 7348 | DstAddr = DAG.getFrameIndex(FI, PtrVT); | ||||
| 7349 | DstInfo = MachinePointerInfo::getFixedStack(MF, FI); | ||||
| 7350 | |||||
| 7351 | // Make sure any stack arguments overlapping with where we're storing | ||||
| 7352 | // are loaded before this eventual operation. Otherwise they'll be | ||||
| 7353 | // clobbered. | ||||
| 7354 | Chain = addTokenForArgument(Chain, DAG, MF.getFrameInfo(), FI); | ||||
| 7355 | } else { | ||||
| 7356 | SDValue PtrOff = DAG.getIntPtrConstant(Offset, DL); | ||||
| 7357 | |||||
| 7358 | DstAddr = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, PtrOff); | ||||
| 7359 | DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset); | ||||
| 7360 | } | ||||
| 7361 | |||||
| 7362 | if (Outs[i].Flags.isByVal()) { | ||||
| 7363 | SDValue SizeNode = | ||||
| 7364 | DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i64); | ||||
| 7365 | SDValue Cpy = DAG.getMemcpy( | ||||
| 7366 | Chain, DL, DstAddr, Arg, SizeNode, | ||||
| 7367 | Outs[i].Flags.getNonZeroByValAlign(), | ||||
| 7368 | /*isVol = */ false, /*AlwaysInline = */ false, | ||||
| 7369 | /*isTailCall = */ false, DstInfo, MachinePointerInfo()); | ||||
| 7370 | |||||
| 7371 | MemOpChains.push_back(Cpy); | ||||
| 7372 | } else { | ||||
| 7373 | // Since we pass i1/i8/i16 as i1/i8/i16 on stack and Arg is already | ||||
| 7374 | // promoted to a legal register type i32, we should truncate Arg back to | ||||
| 7375 | // i1/i8/i16. | ||||
| 7376 | if (VA.getValVT() == MVT::i1 || VA.getValVT() == MVT::i8 || | ||||
| 7377 | VA.getValVT() == MVT::i16) | ||||
| 7378 | Arg = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Arg); | ||||
| 7379 | |||||
| 7380 | SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo); | ||||
| 7381 | MemOpChains.push_back(Store); | ||||
| 7382 | } | ||||
| 7383 | } | ||||
| 7384 | } | ||||
| 7385 | |||||
| 7386 | if (IsVarArg && Subtarget->isWindowsArm64EC()) { | ||||
| 7387 | // For vararg calls, the Arm64EC ABI requires values in x4 and x5 | ||||
| 7388 | // describing the argument list. x4 contains the address of the | ||||
| 7389 | // first stack parameter. x5 contains the size in bytes of all parameters | ||||
| 7390 | // passed on the stack. | ||||
| 7391 | RegsToPass.emplace_back(AArch64::X4, StackPtr); | ||||
| 7392 | RegsToPass.emplace_back(AArch64::X5, | ||||
| 7393 | DAG.getConstant(NumBytes, DL, MVT::i64)); | ||||
| 7394 | } | ||||
| 7395 | |||||
| 7396 | if (!MemOpChains.empty()) | ||||
| 7397 | Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); | ||||
| 7398 | |||||
| 7399 | SDValue InFlag; | ||||
| 7400 | if (RequiresSMChange) { | ||||
| 7401 | SDValue NewChain = changeStreamingMode(DAG, DL, *RequiresSMChange, Chain, | ||||
| 7402 | InFlag, PStateSM, true); | ||||
| 7403 | Chain = NewChain.getValue(0); | ||||
| 7404 | InFlag = NewChain.getValue(1); | ||||
| 7405 | } | ||||
| 7406 | |||||
| 7407 | // Build a sequence of copy-to-reg nodes chained together with token chain | ||||
| 7408 | // and flag operands which copy the outgoing args into the appropriate regs. | ||||
| 7409 | for (auto &RegToPass : RegsToPass) { | ||||
| 7410 | Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first, | ||||
| 7411 | RegToPass.second, InFlag); | ||||
| 7412 | InFlag = Chain.getValue(1); | ||||
| 7413 | } | ||||
| 7414 | |||||
| 7415 | // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every | ||||
| 7416 | // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol | ||||
| 7417 | // node so that legalize doesn't hack it. | ||||
| 7418 | if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { | ||||
| 7419 | auto GV = G->getGlobal(); | ||||
| 7420 | unsigned OpFlags = | ||||
| 7421 | Subtarget->classifyGlobalFunctionReference(GV, getTargetMachine()); | ||||
| 7422 | if (OpFlags & AArch64II::MO_GOT) { | ||||
| 7423 | Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, OpFlags); | ||||
| 7424 | Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee); | ||||
| 7425 | } else { | ||||
| 7426 | const GlobalValue *GV = G->getGlobal(); | ||||
| 7427 | Callee = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, 0); | ||||
| 7428 | } | ||||
| 7429 | } else if (auto *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { | ||||
| 7430 | if (getTargetMachine().getCodeModel() == CodeModel::Large && | ||||
| 7431 | Subtarget->isTargetMachO()) { | ||||
| 7432 | const char *Sym = S->getSymbol(); | ||||
| 7433 | Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, AArch64II::MO_GOT); | ||||
| 7434 | Callee = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, Callee); | ||||
| 7435 | } else { | ||||
| 7436 | const char *Sym = S->getSymbol(); | ||||
| 7437 | Callee = DAG.getTargetExternalSymbol(Sym, PtrVT, 0); | ||||
| 7438 | } | ||||
| 7439 | } | ||||
| 7440 | |||||
| 7441 | // We don't usually want to end the call-sequence here because we would tidy | ||||
| 7442 | // the frame up *after* the call, however in the ABI-changing tail-call case | ||||
| 7443 | // we've carefully laid out the parameters so that when sp is reset they'll be | ||||
| 7444 | // in the correct location. | ||||
| 7445 | if (IsTailCall && !IsSibCall) { | ||||
| 7446 | Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InFlag, DL); | ||||
| 7447 | InFlag = Chain.getValue(1); | ||||
| 7448 | } | ||||
| 7449 | |||||
| 7450 | std::vector<SDValue> Ops; | ||||
| 7451 | Ops.push_back(Chain); | ||||
| 7452 | Ops.push_back(Callee); | ||||
| 7453 | |||||
| 7454 | if (IsTailCall) { | ||||
| 7455 | // Each tail call may have to adjust the stack by a different amount, so | ||||
| 7456 | // this information must travel along with the operation for eventual | ||||
| 7457 | // consumption by emitEpilogue. | ||||
| 7458 | Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32)); | ||||
| 7459 | } | ||||
| 7460 | |||||
| 7461 | // Add argument registers to the end of the list so that they are known live | ||||
| 7462 | // into the call. | ||||
| 7463 | for (auto &RegToPass : RegsToPass) | ||||
| 7464 | Ops.push_back(DAG.getRegister(RegToPass.first, | ||||
| 7465 | RegToPass.second.getValueType())); | ||||
| 7466 | |||||
| 7467 | // Add a register mask operand representing the call-preserved registers. | ||||
| 7468 | const uint32_t *Mask; | ||||
| 7469 | const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); | ||||
| 7470 | if (IsThisReturn) { | ||||
| 7471 | // For 'this' returns, use the X0-preserving mask if applicable | ||||
| 7472 | Mask = TRI->getThisReturnPreservedMask(MF, CallConv); | ||||
| 7473 | if (!Mask) { | ||||
| 7474 | IsThisReturn = false; | ||||
| 7475 | Mask = TRI->getCallPreservedMask(MF, CallConv); | ||||
| 7476 | } | ||||
| 7477 | } else | ||||
| 7478 | Mask = TRI->getCallPreservedMask(MF, CallConv); | ||||
| 7479 | |||||
| 7480 | if (Subtarget->hasCustomCallingConv()) | ||||
| 7481 | TRI->UpdateCustomCallPreservedMask(MF, &Mask); | ||||
| 7482 | |||||
| 7483 | if (TRI->isAnyArgRegReserved(MF)) | ||||
| 7484 | TRI->emitReservedArgRegCallError(MF); | ||||
| 7485 | |||||
| 7486 | assert(Mask && "Missing call preserved mask for calling convention")(static_cast <bool> (Mask && "Missing call preserved mask for calling convention" ) ? void (0) : __assert_fail ("Mask && \"Missing call preserved mask for calling convention\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 7486, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7487 | Ops.push_back(DAG.getRegisterMask(Mask)); | ||||
| 7488 | |||||
| 7489 | if (InFlag.getNode()) | ||||
| 7490 | Ops.push_back(InFlag); | ||||
| 7491 | |||||
| 7492 | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); | ||||
| 7493 | |||||
| 7494 | // If we're doing a tall call, use a TC_RETURN here rather than an | ||||
| 7495 | // actual call instruction. | ||||
| 7496 | if (IsTailCall) { | ||||
| 7497 | MF.getFrameInfo().setHasTailCall(); | ||||
| 7498 | SDValue Ret = DAG.getNode(AArch64ISD::TC_RETURN, DL, NodeTys, Ops); | ||||
| 7499 | |||||
| 7500 | if (IsCFICall) | ||||
| 7501 | Ret.getNode()->setCFIType(CLI.CFIType->getZExtValue()); | ||||
| 7502 | |||||
| 7503 | DAG.addCallSiteInfo(Ret.getNode(), std::move(CSInfo)); | ||||
| 7504 | return Ret; | ||||
| 7505 | } | ||||
| 7506 | |||||
| 7507 | unsigned CallOpc = AArch64ISD::CALL; | ||||
| 7508 | // Calls with operand bundle "clang.arc.attachedcall" are special. They should | ||||
| 7509 | // be expanded to the call, directly followed by a special marker sequence and | ||||
| 7510 | // a call to an ObjC library function. Use CALL_RVMARKER to do that. | ||||
| 7511 | if (CLI.CB && objcarc::hasAttachedCallOpBundle(CLI.CB)) { | ||||
| 7512 | assert(!IsTailCall &&(static_cast <bool> (!IsTailCall && "tail calls cannot be marked with clang.arc.attachedcall" ) ? void (0) : __assert_fail ("!IsTailCall && \"tail calls cannot be marked with clang.arc.attachedcall\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 7513, __extension__ __PRETTY_FUNCTION__)) | ||||
| 7513 | "tail calls cannot be marked with clang.arc.attachedcall")(static_cast <bool> (!IsTailCall && "tail calls cannot be marked with clang.arc.attachedcall" ) ? void (0) : __assert_fail ("!IsTailCall && \"tail calls cannot be marked with clang.arc.attachedcall\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 7513, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7514 | CallOpc = AArch64ISD::CALL_RVMARKER; | ||||
| 7515 | |||||
| 7516 | // Add a target global address for the retainRV/claimRV runtime function | ||||
| 7517 | // just before the call target. | ||||
| 7518 | Function *ARCFn = *objcarc::getAttachedARCFunction(CLI.CB); | ||||
| 7519 | auto GA = DAG.getTargetGlobalAddress(ARCFn, DL, PtrVT); | ||||
| 7520 | Ops.insert(Ops.begin() + 1, GA); | ||||
| 7521 | } else if (GuardWithBTI) | ||||
| 7522 | CallOpc = AArch64ISD::CALL_BTI; | ||||
| 7523 | |||||
| 7524 | // Returns a chain and a flag for retval copy to use. | ||||
| 7525 | Chain = DAG.getNode(CallOpc, DL, NodeTys, Ops); | ||||
| 7526 | |||||
| 7527 | if (IsCFICall) | ||||
| 7528 | Chain.getNode()->setCFIType(CLI.CFIType->getZExtValue()); | ||||
| 7529 | |||||
| 7530 | DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge); | ||||
| 7531 | InFlag = Chain.getValue(1); | ||||
| 7532 | DAG.addCallSiteInfo(Chain.getNode(), std::move(CSInfo)); | ||||
| 7533 | |||||
| 7534 | uint64_t CalleePopBytes = | ||||
| 7535 | DoesCalleeRestoreStack(CallConv, TailCallOpt) ? alignTo(NumBytes, 16) : 0; | ||||
| 7536 | |||||
| 7537 | Chain = DAG.getCALLSEQ_END(Chain, NumBytes, CalleePopBytes, InFlag, DL); | ||||
| 7538 | InFlag = Chain.getValue(1); | ||||
| 7539 | |||||
| 7540 | // Handle result values, copying them out of physregs into vregs that we | ||||
| 7541 | // return. | ||||
| 7542 | SDValue Result = LowerCallResult(Chain, InFlag, CallConv, IsVarArg, RVLocs, | ||||
| 7543 | DL, DAG, InVals, IsThisReturn, | ||||
| 7544 | IsThisReturn ? OutVals[0] : SDValue()); | ||||
| 7545 | |||||
| 7546 | if (!Ins.empty()) | ||||
| 7547 | InFlag = Result.getValue(Result->getNumValues() - 1); | ||||
| 7548 | |||||
| 7549 | if (RequiresSMChange) { | ||||
| 7550 | assert(PStateSM && "Expected a PStateSM to be set")(static_cast <bool> (PStateSM && "Expected a PStateSM to be set" ) ? void (0) : __assert_fail ("PStateSM && \"Expected a PStateSM to be set\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 7550, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7551 | Result = changeStreamingMode(DAG, DL, !*RequiresSMChange, Result, InFlag, | ||||
| 7552 | PStateSM, false); | ||||
| 7553 | } | ||||
| 7554 | |||||
| 7555 | if (RequiresLazySave) { | ||||
| 7556 | // Unconditionally resume ZA. | ||||
| 7557 | Result = DAG.getNode( | ||||
| 7558 | AArch64ISD::SMSTART, DL, MVT::Other, Result, | ||||
| 7559 | DAG.getTargetConstant((int32_t)(AArch64SVCR::SVCRZA), DL, MVT::i32), | ||||
| 7560 | DAG.getConstant(0, DL, MVT::i64), DAG.getConstant(1, DL, MVT::i64)); | ||||
| 7561 | |||||
| 7562 | // Conditionally restore the lazy save using a pseudo node. | ||||
| 7563 | unsigned FI = FuncInfo->getLazySaveTPIDR2Obj(); | ||||
| 7564 | SDValue RegMask = DAG.getRegisterMask( | ||||
| 7565 | TRI->SMEABISupportRoutinesCallPreservedMaskFromX0()); | ||||
| 7566 | SDValue RestoreRoutine = DAG.getTargetExternalSymbol( | ||||
| 7567 | "__arm_tpidr2_restore", getPointerTy(DAG.getDataLayout())); | ||||
| 7568 | SDValue TPIDR2_EL0 = DAG.getNode( | ||||
| 7569 | ISD::INTRINSIC_W_CHAIN, DL, MVT::i64, Result, | ||||
| 7570 | DAG.getConstant(Intrinsic::aarch64_sme_get_tpidr2, DL, MVT::i32)); | ||||
| 7571 | |||||
| 7572 | // Copy the address of the TPIDR2 block into X0 before 'calling' the | ||||
| 7573 | // RESTORE_ZA pseudo. | ||||
| 7574 | SDValue Glue; | ||||
| 7575 | SDValue TPIDR2Block = DAG.getFrameIndex( | ||||
| 7576 | FI, DAG.getTargetLoweringInfo().getFrameIndexTy(DAG.getDataLayout())); | ||||
| 7577 | Result = DAG.getCopyToReg(Result, DL, AArch64::X0, TPIDR2Block, Glue); | ||||
| 7578 | Result = DAG.getNode(AArch64ISD::RESTORE_ZA, DL, MVT::Other, | ||||
| 7579 | {Result, TPIDR2_EL0, | ||||
| 7580 | DAG.getRegister(AArch64::X0, MVT::i64), | ||||
| 7581 | RestoreRoutine, | ||||
| 7582 | RegMask, | ||||
| 7583 | Result.getValue(1)}); | ||||
| 7584 | |||||
| 7585 | // Finally reset the TPIDR2_EL0 register to 0. | ||||
| 7586 | Result = DAG.getNode( | ||||
| 7587 | ISD::INTRINSIC_VOID, DL, MVT::Other, Result, | ||||
| 7588 | DAG.getConstant(Intrinsic::aarch64_sme_set_tpidr2, DL, MVT::i32), | ||||
| 7589 | DAG.getConstant(0, DL, MVT::i64)); | ||||
| 7590 | } | ||||
| 7591 | |||||
| 7592 | if (RequiresSMChange || RequiresLazySave) { | ||||
| 7593 | for (unsigned I = 0; I < InVals.size(); ++I) { | ||||
| 7594 | // The smstart/smstop is chained as part of the call, but when the | ||||
| 7595 | // resulting chain is discarded (which happens when the call is not part | ||||
| 7596 | // of a chain, e.g. a call to @llvm.cos()), we need to ensure the | ||||
| 7597 | // smstart/smstop is chained to the result value. We can do that by doing | ||||
| 7598 | // a vreg -> vreg copy. | ||||
| 7599 | Register Reg = MF.getRegInfo().createVirtualRegister( | ||||
| 7600 | getRegClassFor(InVals[I].getValueType().getSimpleVT())); | ||||
| 7601 | SDValue X = DAG.getCopyToReg(Result, DL, Reg, InVals[I]); | ||||
| 7602 | InVals[I] = DAG.getCopyFromReg(X, DL, Reg, | ||||
| 7603 | InVals[I].getValueType()); | ||||
| 7604 | } | ||||
| 7605 | } | ||||
| 7606 | |||||
| 7607 | return Result; | ||||
| 7608 | } | ||||
| 7609 | |||||
| 7610 | bool AArch64TargetLowering::CanLowerReturn( | ||||
| 7611 | CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, | ||||
| 7612 | const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const { | ||||
| 7613 | CCAssignFn *RetCC = CCAssignFnForReturn(CallConv); | ||||
| 7614 | SmallVector<CCValAssign, 16> RVLocs; | ||||
| 7615 | CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); | ||||
| 7616 | return CCInfo.CheckReturn(Outs, RetCC); | ||||
| 7617 | } | ||||
| 7618 | |||||
| 7619 | SDValue | ||||
| 7620 | AArch64TargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, | ||||
| 7621 | bool isVarArg, | ||||
| 7622 | const SmallVectorImpl<ISD::OutputArg> &Outs, | ||||
| 7623 | const SmallVectorImpl<SDValue> &OutVals, | ||||
| 7624 | const SDLoc &DL, SelectionDAG &DAG) const { | ||||
| 7625 | auto &MF = DAG.getMachineFunction(); | ||||
| 7626 | auto *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); | ||||
| 7627 | |||||
| 7628 | CCAssignFn *RetCC = CCAssignFnForReturn(CallConv); | ||||
| 7629 | SmallVector<CCValAssign, 16> RVLocs; | ||||
| 7630 | CCState CCInfo(CallConv, isVarArg, MF, RVLocs, *DAG.getContext()); | ||||
| 7631 | CCInfo.AnalyzeReturn(Outs, RetCC); | ||||
| 7632 | |||||
| 7633 | // Copy the result values into the output registers. | ||||
| 7634 | SDValue Flag; | ||||
| 7635 | SmallVector<std::pair<unsigned, SDValue>, 4> RetVals; | ||||
| 7636 | SmallSet<unsigned, 4> RegsUsed; | ||||
| 7637 | for (unsigned i = 0, realRVLocIdx = 0; i != RVLocs.size(); | ||||
| 7638 | ++i, ++realRVLocIdx) { | ||||
| 7639 | CCValAssign &VA = RVLocs[i]; | ||||
| 7640 | assert(VA.isRegLoc() && "Can only return in registers!")(static_cast <bool> (VA.isRegLoc() && "Can only return in registers!" ) ? void (0) : __assert_fail ("VA.isRegLoc() && \"Can only return in registers!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 7640, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7641 | SDValue Arg = OutVals[realRVLocIdx]; | ||||
| 7642 | |||||
| 7643 | switch (VA.getLocInfo()) { | ||||
| 7644 | default: | ||||
| 7645 | llvm_unreachable("Unknown loc info!")::llvm::llvm_unreachable_internal("Unknown loc info!", "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp" , 7645); | ||||
| 7646 | case CCValAssign::Full: | ||||
| 7647 | if (Outs[i].ArgVT == MVT::i1) { | ||||
| 7648 | // AAPCS requires i1 to be zero-extended to i8 by the producer of the | ||||
| 7649 | // value. This is strictly redundant on Darwin (which uses "zeroext | ||||
| 7650 | // i1"), but will be optimised out before ISel. | ||||
| 7651 | Arg = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Arg); | ||||
| 7652 | Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg); | ||||
| 7653 | } | ||||
| 7654 | break; | ||||
| 7655 | case CCValAssign::BCvt: | ||||
| 7656 | Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg); | ||||
| 7657 | break; | ||||
| 7658 | case CCValAssign::AExt: | ||||
| 7659 | case CCValAssign::ZExt: | ||||
| 7660 | Arg = DAG.getZExtOrTrunc(Arg, DL, VA.getLocVT()); | ||||
| 7661 | break; | ||||
| 7662 | case CCValAssign::AExtUpper: | ||||
| 7663 | assert(VA.getValVT() == MVT::i32 && "only expect 32 -> 64 upper bits")(static_cast <bool> (VA.getValVT() == MVT::i32 && "only expect 32 -> 64 upper bits") ? void (0) : __assert_fail ("VA.getValVT() == MVT::i32 && \"only expect 32 -> 64 upper bits\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 7663, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7664 | Arg = DAG.getZExtOrTrunc(Arg, DL, VA.getLocVT()); | ||||
| 7665 | Arg = DAG.getNode(ISD::SHL, DL, VA.getLocVT(), Arg, | ||||
| 7666 | DAG.getConstant(32, DL, VA.getLocVT())); | ||||
| 7667 | break; | ||||
| 7668 | } | ||||
| 7669 | |||||
| 7670 | if (RegsUsed.count(VA.getLocReg())) { | ||||
| 7671 | SDValue &Bits = | ||||
| 7672 | llvm::find_if(RetVals, [=](const std::pair<unsigned, SDValue> &Elt) { | ||||
| 7673 | return Elt.first == VA.getLocReg(); | ||||
| 7674 | })->second; | ||||
| 7675 | Bits = DAG.getNode(ISD::OR, DL, Bits.getValueType(), Bits, Arg); | ||||
| 7676 | } else { | ||||
| 7677 | RetVals.emplace_back(VA.getLocReg(), Arg); | ||||
| 7678 | RegsUsed.insert(VA.getLocReg()); | ||||
| 7679 | } | ||||
| 7680 | } | ||||
| 7681 | |||||
| 7682 | const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); | ||||
| 7683 | |||||
| 7684 | // Emit SMSTOP before returning from a locally streaming function | ||||
| 7685 | SMEAttrs FuncAttrs(MF.getFunction()); | ||||
| 7686 | if (FuncAttrs.hasStreamingBody() && !FuncAttrs.hasStreamingInterface()) { | ||||
| 7687 | Chain = DAG.getNode( | ||||
| 7688 | AArch64ISD::SMSTOP, DL, DAG.getVTList(MVT::Other, MVT::Glue), Chain, | ||||
| 7689 | DAG.getTargetConstant((int32_t)AArch64SVCR::SVCRSM, DL, MVT::i32), | ||||
| 7690 | DAG.getConstant(1, DL, MVT::i64), DAG.getConstant(0, DL, MVT::i64), | ||||
| 7691 | DAG.getRegisterMask(TRI->getSMStartStopCallPreservedMask())); | ||||
| 7692 | Flag = Chain.getValue(1); | ||||
| 7693 | } | ||||
| 7694 | |||||
| 7695 | SmallVector<SDValue, 4> RetOps(1, Chain); | ||||
| 7696 | for (auto &RetVal : RetVals) { | ||||
| 7697 | Chain = DAG.getCopyToReg(Chain, DL, RetVal.first, RetVal.second, Flag); | ||||
| 7698 | Flag = Chain.getValue(1); | ||||
| 7699 | RetOps.push_back( | ||||
| 7700 | DAG.getRegister(RetVal.first, RetVal.second.getValueType())); | ||||
| 7701 | } | ||||
| 7702 | |||||
| 7703 | // Windows AArch64 ABIs require that for returning structs by value we copy | ||||
| 7704 | // the sret argument into X0 for the return. | ||||
| 7705 | // We saved the argument into a virtual register in the entry block, | ||||
| 7706 | // so now we copy the value out and into X0. | ||||
| 7707 | if (unsigned SRetReg = FuncInfo->getSRetReturnReg()) { | ||||
| 7708 | SDValue Val = DAG.getCopyFromReg(RetOps[0], DL, SRetReg, | ||||
| 7709 | getPointerTy(MF.getDataLayout())); | ||||
| 7710 | |||||
| 7711 | unsigned RetValReg = AArch64::X0; | ||||
| 7712 | Chain = DAG.getCopyToReg(Chain, DL, RetValReg, Val, Flag); | ||||
| 7713 | Flag = Chain.getValue(1); | ||||
| 7714 | |||||
| 7715 | RetOps.push_back( | ||||
| 7716 | DAG.getRegister(RetValReg, getPointerTy(DAG.getDataLayout()))); | ||||
| 7717 | } | ||||
| 7718 | |||||
| 7719 | const MCPhysReg *I = TRI->getCalleeSavedRegsViaCopy(&MF); | ||||
| 7720 | if (I) { | ||||
| 7721 | for (; *I; ++I) { | ||||
| 7722 | if (AArch64::GPR64RegClass.contains(*I)) | ||||
| 7723 | RetOps.push_back(DAG.getRegister(*I, MVT::i64)); | ||||
| 7724 | else if (AArch64::FPR64RegClass.contains(*I)) | ||||
| 7725 | RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64))); | ||||
| 7726 | else | ||||
| 7727 | llvm_unreachable("Unexpected register class in CSRsViaCopy!")::llvm::llvm_unreachable_internal("Unexpected register class in CSRsViaCopy!" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 7727); | ||||
| 7728 | } | ||||
| 7729 | } | ||||
| 7730 | |||||
| 7731 | RetOps[0] = Chain; // Update chain. | ||||
| 7732 | |||||
| 7733 | // Add the flag if we have it. | ||||
| 7734 | if (Flag.getNode()) | ||||
| 7735 | RetOps.push_back(Flag); | ||||
| 7736 | |||||
| 7737 | return DAG.getNode(AArch64ISD::RET_FLAG, DL, MVT::Other, RetOps); | ||||
| 7738 | } | ||||
| 7739 | |||||
| 7740 | //===----------------------------------------------------------------------===// | ||||
| 7741 | // Other Lowering Code | ||||
| 7742 | //===----------------------------------------------------------------------===// | ||||
| 7743 | |||||
| 7744 | SDValue AArch64TargetLowering::getTargetNode(GlobalAddressSDNode *N, EVT Ty, | ||||
| 7745 | SelectionDAG &DAG, | ||||
| 7746 | unsigned Flag) const { | ||||
| 7747 | return DAG.getTargetGlobalAddress(N->getGlobal(), SDLoc(N), Ty, | ||||
| 7748 | N->getOffset(), Flag); | ||||
| 7749 | } | ||||
| 7750 | |||||
| 7751 | SDValue AArch64TargetLowering::getTargetNode(JumpTableSDNode *N, EVT Ty, | ||||
| 7752 | SelectionDAG &DAG, | ||||
| 7753 | unsigned Flag) const { | ||||
| 7754 | return DAG.getTargetJumpTable(N->getIndex(), Ty, Flag); | ||||
| 7755 | } | ||||
| 7756 | |||||
| 7757 | SDValue AArch64TargetLowering::getTargetNode(ConstantPoolSDNode *N, EVT Ty, | ||||
| 7758 | SelectionDAG &DAG, | ||||
| 7759 | unsigned Flag) const { | ||||
| 7760 | return DAG.getTargetConstantPool(N->getConstVal(), Ty, N->getAlign(), | ||||
| 7761 | N->getOffset(), Flag); | ||||
| 7762 | } | ||||
| 7763 | |||||
| 7764 | SDValue AArch64TargetLowering::getTargetNode(BlockAddressSDNode* N, EVT Ty, | ||||
| 7765 | SelectionDAG &DAG, | ||||
| 7766 | unsigned Flag) const { | ||||
| 7767 | return DAG.getTargetBlockAddress(N->getBlockAddress(), Ty, 0, Flag); | ||||
| 7768 | } | ||||
| 7769 | |||||
| 7770 | // (loadGOT sym) | ||||
| 7771 | template <class NodeTy> | ||||
| 7772 | SDValue AArch64TargetLowering::getGOT(NodeTy *N, SelectionDAG &DAG, | ||||
| 7773 | unsigned Flags) const { | ||||
| 7774 | LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getGOT\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "AArch64TargetLowering::getGOT\n" ; } } while (false); | ||||
| 7775 | SDLoc DL(N); | ||||
| 7776 | EVT Ty = getPointerTy(DAG.getDataLayout()); | ||||
| 7777 | SDValue GotAddr = getTargetNode(N, Ty, DAG, AArch64II::MO_GOT | Flags); | ||||
| 7778 | // FIXME: Once remat is capable of dealing with instructions with register | ||||
| 7779 | // operands, expand this into two nodes instead of using a wrapper node. | ||||
| 7780 | return DAG.getNode(AArch64ISD::LOADgot, DL, Ty, GotAddr); | ||||
| 7781 | } | ||||
| 7782 | |||||
| 7783 | // (wrapper %highest(sym), %higher(sym), %hi(sym), %lo(sym)) | ||||
| 7784 | template <class NodeTy> | ||||
| 7785 | SDValue AArch64TargetLowering::getAddrLarge(NodeTy *N, SelectionDAG &DAG, | ||||
| 7786 | unsigned Flags) const { | ||||
| 7787 | LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddrLarge\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "AArch64TargetLowering::getAddrLarge\n" ; } } while (false); | ||||
| 7788 | SDLoc DL(N); | ||||
| 7789 | EVT Ty = getPointerTy(DAG.getDataLayout()); | ||||
| 7790 | const unsigned char MO_NC = AArch64II::MO_NC; | ||||
| 7791 | return DAG.getNode( | ||||
| 7792 | AArch64ISD::WrapperLarge, DL, Ty, | ||||
| 7793 | getTargetNode(N, Ty, DAG, AArch64II::MO_G3 | Flags), | ||||
| 7794 | getTargetNode(N, Ty, DAG, AArch64II::MO_G2 | MO_NC | Flags), | ||||
| 7795 | getTargetNode(N, Ty, DAG, AArch64II::MO_G1 | MO_NC | Flags), | ||||
| 7796 | getTargetNode(N, Ty, DAG, AArch64II::MO_G0 | MO_NC | Flags)); | ||||
| 7797 | } | ||||
| 7798 | |||||
| 7799 | // (addlow (adrp %hi(sym)) %lo(sym)) | ||||
| 7800 | template <class NodeTy> | ||||
| 7801 | SDValue AArch64TargetLowering::getAddr(NodeTy *N, SelectionDAG &DAG, | ||||
| 7802 | unsigned Flags) const { | ||||
| 7803 | LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddr\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "AArch64TargetLowering::getAddr\n" ; } } while (false); | ||||
| 7804 | SDLoc DL(N); | ||||
| 7805 | EVT Ty = getPointerTy(DAG.getDataLayout()); | ||||
| 7806 | SDValue Hi = getTargetNode(N, Ty, DAG, AArch64II::MO_PAGE | Flags); | ||||
| 7807 | SDValue Lo = getTargetNode(N, Ty, DAG, | ||||
| 7808 | AArch64II::MO_PAGEOFF | AArch64II::MO_NC | Flags); | ||||
| 7809 | SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, Ty, Hi); | ||||
| 7810 | return DAG.getNode(AArch64ISD::ADDlow, DL, Ty, ADRP, Lo); | ||||
| 7811 | } | ||||
| 7812 | |||||
| 7813 | // (adr sym) | ||||
| 7814 | template <class NodeTy> | ||||
| 7815 | SDValue AArch64TargetLowering::getAddrTiny(NodeTy *N, SelectionDAG &DAG, | ||||
| 7816 | unsigned Flags) const { | ||||
| 7817 | LLVM_DEBUG(dbgs() << "AArch64TargetLowering::getAddrTiny\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "AArch64TargetLowering::getAddrTiny\n" ; } } while (false); | ||||
| 7818 | SDLoc DL(N); | ||||
| 7819 | EVT Ty = getPointerTy(DAG.getDataLayout()); | ||||
| 7820 | SDValue Sym = getTargetNode(N, Ty, DAG, Flags); | ||||
| 7821 | return DAG.getNode(AArch64ISD::ADR, DL, Ty, Sym); | ||||
| 7822 | } | ||||
| 7823 | |||||
| 7824 | SDValue AArch64TargetLowering::LowerGlobalAddress(SDValue Op, | ||||
| 7825 | SelectionDAG &DAG) const { | ||||
| 7826 | GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op); | ||||
| 7827 | const GlobalValue *GV = GN->getGlobal(); | ||||
| 7828 | unsigned OpFlags = Subtarget->ClassifyGlobalReference(GV, getTargetMachine()); | ||||
| 7829 | |||||
| 7830 | if (OpFlags != AArch64II::MO_NO_FLAG) | ||||
| 7831 | assert(cast<GlobalAddressSDNode>(Op)->getOffset() == 0 &&(static_cast <bool> (cast<GlobalAddressSDNode>(Op )->getOffset() == 0 && "unexpected offset in global node" ) ? void (0) : __assert_fail ("cast<GlobalAddressSDNode>(Op)->getOffset() == 0 && \"unexpected offset in global node\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 7832, __extension__ __PRETTY_FUNCTION__)) | ||||
| 7832 | "unexpected offset in global node")(static_cast <bool> (cast<GlobalAddressSDNode>(Op )->getOffset() == 0 && "unexpected offset in global node" ) ? void (0) : __assert_fail ("cast<GlobalAddressSDNode>(Op)->getOffset() == 0 && \"unexpected offset in global node\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 7832, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7833 | |||||
| 7834 | // This also catches the large code model case for Darwin, and tiny code | ||||
| 7835 | // model with got relocations. | ||||
| 7836 | if ((OpFlags & AArch64II::MO_GOT) != 0) { | ||||
| 7837 | return getGOT(GN, DAG, OpFlags); | ||||
| 7838 | } | ||||
| 7839 | |||||
| 7840 | SDValue Result; | ||||
| 7841 | if (getTargetMachine().getCodeModel() == CodeModel::Large) { | ||||
| 7842 | Result = getAddrLarge(GN, DAG, OpFlags); | ||||
| 7843 | } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) { | ||||
| 7844 | Result = getAddrTiny(GN, DAG, OpFlags); | ||||
| 7845 | } else { | ||||
| 7846 | Result = getAddr(GN, DAG, OpFlags); | ||||
| 7847 | } | ||||
| 7848 | EVT PtrVT = getPointerTy(DAG.getDataLayout()); | ||||
| 7849 | SDLoc DL(GN); | ||||
| 7850 | if (OpFlags & (AArch64II::MO_DLLIMPORT | AArch64II::MO_DLLIMPORTAUX | | ||||
| 7851 | AArch64II::MO_COFFSTUB)) | ||||
| 7852 | Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, | ||||
| 7853 | MachinePointerInfo::getGOT(DAG.getMachineFunction())); | ||||
| 7854 | return Result; | ||||
| 7855 | } | ||||
| 7856 | |||||
| 7857 | /// Convert a TLS address reference into the correct sequence of loads | ||||
| 7858 | /// and calls to compute the variable's address (for Darwin, currently) and | ||||
| 7859 | /// return an SDValue containing the final node. | ||||
| 7860 | |||||
| 7861 | /// Darwin only has one TLS scheme which must be capable of dealing with the | ||||
| 7862 | /// fully general situation, in the worst case. This means: | ||||
| 7863 | /// + "extern __thread" declaration. | ||||
| 7864 | /// + Defined in a possibly unknown dynamic library. | ||||
| 7865 | /// | ||||
| 7866 | /// The general system is that each __thread variable has a [3 x i64] descriptor | ||||
| 7867 | /// which contains information used by the runtime to calculate the address. The | ||||
| 7868 | /// only part of this the compiler needs to know about is the first xword, which | ||||
| 7869 | /// contains a function pointer that must be called with the address of the | ||||
| 7870 | /// entire descriptor in "x0". | ||||
| 7871 | /// | ||||
| 7872 | /// Since this descriptor may be in a different unit, in general even the | ||||
| 7873 | /// descriptor must be accessed via an indirect load. The "ideal" code sequence | ||||
| 7874 | /// is: | ||||
| 7875 | /// adrp x0, _var@TLVPPAGE | ||||
| 7876 | /// ldr x0, [x0, _var@TLVPPAGEOFF] ; x0 now contains address of descriptor | ||||
| 7877 | /// ldr x1, [x0] ; x1 contains 1st entry of descriptor, | ||||
| 7878 | /// ; the function pointer | ||||
| 7879 | /// blr x1 ; Uses descriptor address in x0 | ||||
| 7880 | /// ; Address of _var is now in x0. | ||||
| 7881 | /// | ||||
| 7882 | /// If the address of _var's descriptor *is* known to the linker, then it can | ||||
| 7883 | /// change the first "ldr" instruction to an appropriate "add x0, x0, #imm" for | ||||
| 7884 | /// a slight efficiency gain. | ||||
| 7885 | SDValue | ||||
| 7886 | AArch64TargetLowering::LowerDarwinGlobalTLSAddress(SDValue Op, | ||||
| 7887 | SelectionDAG &DAG) const { | ||||
| 7888 | assert(Subtarget->isTargetDarwin() &&(static_cast <bool> (Subtarget->isTargetDarwin() && "This function expects a Darwin target") ? void (0) : __assert_fail ("Subtarget->isTargetDarwin() && \"This function expects a Darwin target\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 7889, __extension__ __PRETTY_FUNCTION__)) | ||||
| 7889 | "This function expects a Darwin target")(static_cast <bool> (Subtarget->isTargetDarwin() && "This function expects a Darwin target") ? void (0) : __assert_fail ("Subtarget->isTargetDarwin() && \"This function expects a Darwin target\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 7889, __extension__ __PRETTY_FUNCTION__)); | ||||
| 7890 | |||||
| 7891 | SDLoc DL(Op); | ||||
| 7892 | MVT PtrVT = getPointerTy(DAG.getDataLayout()); | ||||
| 7893 | MVT PtrMemVT = getPointerMemTy(DAG.getDataLayout()); | ||||
| 7894 | const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); | ||||
| 7895 | |||||
| 7896 | SDValue TLVPAddr = | ||||
| 7897 | DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS); | ||||
| 7898 | SDValue DescAddr = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TLVPAddr); | ||||
| 7899 | |||||
| 7900 | // The first entry in the descriptor is a function pointer that we must call | ||||
| 7901 | // to obtain the address of the variable. | ||||
| 7902 | SDValue Chain = DAG.getEntryNode(); | ||||
| 7903 | SDValue FuncTLVGet = DAG.getLoad( | ||||
| 7904 | PtrMemVT, DL, Chain, DescAddr, | ||||
| 7905 | MachinePointerInfo::getGOT(DAG.getMachineFunction()), | ||||
| 7906 | Align(PtrMemVT.getSizeInBits() / 8), | ||||
| 7907 | MachineMemOperand::MOInvariant | MachineMemOperand::MODereferenceable); | ||||
| 7908 | Chain = FuncTLVGet.getValue(1); | ||||
| 7909 | |||||
| 7910 | // Extend loaded pointer if necessary (i.e. if ILP32) to DAG pointer. | ||||
| 7911 | FuncTLVGet = DAG.getZExtOrTrunc(FuncTLVGet, DL, PtrVT); | ||||
| 7912 | |||||
| 7913 | MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); | ||||
| 7914 | MFI.setAdjustsStack(true); | ||||
| 7915 | |||||
| 7916 | // TLS calls preserve all registers except those that absolutely must be | ||||
| 7917 | // trashed: X0 (it takes an argument), LR (it's a call) and NZCV (let's not be | ||||
| 7918 | // silly). | ||||
| 7919 | const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); | ||||
| 7920 | const uint32_t *Mask = TRI->getTLSCallPreservedMask(); | ||||
| 7921 | if (Subtarget->hasCustomCallingConv()) | ||||
| 7922 | TRI->UpdateCustomCallPreservedMask(DAG.getMachineFunction(), &Mask); | ||||
| 7923 | |||||
| 7924 | // Finally, we can make the call. This is just a degenerate version of a | ||||
| 7925 | // normal AArch64 call node: x0 takes the address of the descriptor, and | ||||
| 7926 | // returns the address of the variable in this thread. | ||||
| 7927 | Chain = DAG.getCopyToReg(Chain, DL, AArch64::X0, DescAddr, SDValue()); | ||||
| 7928 | Chain = | ||||
| 7929 | DAG.getNode(AArch64ISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue), | ||||
| 7930 | Chain, FuncTLVGet, DAG.getRegister(AArch64::X0, MVT::i64), | ||||
| 7931 | DAG.getRegisterMask(Mask), Chain.getValue(1)); | ||||
| 7932 | return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Chain.getValue(1)); | ||||
| 7933 | } | ||||
| 7934 | |||||
| 7935 | /// Convert a thread-local variable reference into a sequence of instructions to | ||||
| 7936 | /// compute the variable's address for the local exec TLS model of ELF targets. | ||||
| 7937 | /// The sequence depends on the maximum TLS area size. | ||||
| 7938 | SDValue AArch64TargetLowering::LowerELFTLSLocalExec(const GlobalValue *GV, | ||||
| 7939 | SDValue ThreadBase, | ||||
| 7940 | const SDLoc &DL, | ||||
| 7941 | SelectionDAG &DAG) const { | ||||
| 7942 | EVT PtrVT = getPointerTy(DAG.getDataLayout()); | ||||
| 7943 | SDValue TPOff, Addr; | ||||
| 7944 | |||||
| 7945 | switch (DAG.getTarget().Options.TLSSize) { | ||||
| 7946 | default: | ||||
| 7947 | llvm_unreachable("Unexpected TLS size")::llvm::llvm_unreachable_internal("Unexpected TLS size", "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp" , 7947); | ||||
| 7948 | |||||
| 7949 | case 12: { | ||||
| 7950 | // mrs x0, TPIDR_EL0 | ||||
| 7951 | // add x0, x0, :tprel_lo12:a | ||||
| 7952 | SDValue Var = DAG.getTargetGlobalAddress( | ||||
| 7953 | GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_PAGEOFF); | ||||
| 7954 | return SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase, | ||||
| 7955 | Var, | ||||
| 7956 | DAG.getTargetConstant(0, DL, MVT::i32)), | ||||
| 7957 | 0); | ||||
| 7958 | } | ||||
| 7959 | |||||
| 7960 | case 24: { | ||||
| 7961 | // mrs x0, TPIDR_EL0 | ||||
| 7962 | // add x0, x0, :tprel_hi12:a | ||||
| 7963 | // add x0, x0, :tprel_lo12_nc:a | ||||
| 7964 | SDValue HiVar = DAG.getTargetGlobalAddress( | ||||
| 7965 | GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12); | ||||
| 7966 | SDValue LoVar = DAG.getTargetGlobalAddress( | ||||
| 7967 | GV, DL, PtrVT, 0, | ||||
| 7968 | AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); | ||||
| 7969 | Addr = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, ThreadBase, | ||||
| 7970 | HiVar, | ||||
| 7971 | DAG.getTargetConstant(0, DL, MVT::i32)), | ||||
| 7972 | 0); | ||||
| 7973 | return SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, Addr, | ||||
| 7974 | LoVar, | ||||
| 7975 | DAG.getTargetConstant(0, DL, MVT::i32)), | ||||
| 7976 | 0); | ||||
| 7977 | } | ||||
| 7978 | |||||
| 7979 | case 32: { | ||||
| 7980 | // mrs x1, TPIDR_EL0 | ||||
| 7981 | // movz x0, #:tprel_g1:a | ||||
| 7982 | // movk x0, #:tprel_g0_nc:a | ||||
| 7983 | // add x0, x1, x0 | ||||
| 7984 | SDValue HiVar = DAG.getTargetGlobalAddress( | ||||
| 7985 | GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G1); | ||||
| 7986 | SDValue LoVar = DAG.getTargetGlobalAddress( | ||||
| 7987 | GV, DL, PtrVT, 0, | ||||
| 7988 | AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC); | ||||
| 7989 | TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar, | ||||
| 7990 | DAG.getTargetConstant(16, DL, MVT::i32)), | ||||
| 7991 | 0); | ||||
| 7992 | TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, LoVar, | ||||
| 7993 | DAG.getTargetConstant(0, DL, MVT::i32)), | ||||
| 7994 | 0); | ||||
| 7995 | return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff); | ||||
| 7996 | } | ||||
| 7997 | |||||
| 7998 | case 48: { | ||||
| 7999 | // mrs x1, TPIDR_EL0 | ||||
| 8000 | // movz x0, #:tprel_g2:a | ||||
| 8001 | // movk x0, #:tprel_g1_nc:a | ||||
| 8002 | // movk x0, #:tprel_g0_nc:a | ||||
| 8003 | // add x0, x1, x0 | ||||
| 8004 | SDValue HiVar = DAG.getTargetGlobalAddress( | ||||
| 8005 | GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_G2); | ||||
| 8006 | SDValue MiVar = DAG.getTargetGlobalAddress( | ||||
| 8007 | GV, DL, PtrVT, 0, | ||||
| 8008 | AArch64II::MO_TLS | AArch64II::MO_G1 | AArch64II::MO_NC); | ||||
| 8009 | SDValue LoVar = DAG.getTargetGlobalAddress( | ||||
| 8010 | GV, DL, PtrVT, 0, | ||||
| 8011 | AArch64II::MO_TLS | AArch64II::MO_G0 | AArch64II::MO_NC); | ||||
| 8012 | TPOff = SDValue(DAG.getMachineNode(AArch64::MOVZXi, DL, PtrVT, HiVar, | ||||
| 8013 | DAG.getTargetConstant(32, DL, MVT::i32)), | ||||
| 8014 | 0); | ||||
| 8015 | TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, MiVar, | ||||
| 8016 | DAG.getTargetConstant(16, DL, MVT::i32)), | ||||
| 8017 | 0); | ||||
| 8018 | TPOff = SDValue(DAG.getMachineNode(AArch64::MOVKXi, DL, PtrVT, TPOff, LoVar, | ||||
| 8019 | DAG.getTargetConstant(0, DL, MVT::i32)), | ||||
| 8020 | 0); | ||||
| 8021 | return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff); | ||||
| 8022 | } | ||||
| 8023 | } | ||||
| 8024 | } | ||||
| 8025 | |||||
| 8026 | /// When accessing thread-local variables under either the general-dynamic or | ||||
| 8027 | /// local-dynamic system, we make a "TLS-descriptor" call. The variable will | ||||
| 8028 | /// have a descriptor, accessible via a PC-relative ADRP, and whose first entry | ||||
| 8029 | /// is a function pointer to carry out the resolution. | ||||
| 8030 | /// | ||||
| 8031 | /// The sequence is: | ||||
| 8032 | /// adrp x0, :tlsdesc:var | ||||
| 8033 | /// ldr x1, [x0, #:tlsdesc_lo12:var] | ||||
| 8034 | /// add x0, x0, #:tlsdesc_lo12:var | ||||
| 8035 | /// .tlsdesccall var | ||||
| 8036 | /// blr x1 | ||||
| 8037 | /// (TPIDR_EL0 offset now in x0) | ||||
| 8038 | /// | ||||
| 8039 | /// The above sequence must be produced unscheduled, to enable the linker to | ||||
| 8040 | /// optimize/relax this sequence. | ||||
| 8041 | /// Therefore, a pseudo-instruction (TLSDESC_CALLSEQ) is used to represent the | ||||
| 8042 | /// above sequence, and expanded really late in the compilation flow, to ensure | ||||
| 8043 | /// the sequence is produced as per above. | ||||
| 8044 | SDValue AArch64TargetLowering::LowerELFTLSDescCallSeq(SDValue SymAddr, | ||||
| 8045 | const SDLoc &DL, | ||||
| 8046 | SelectionDAG &DAG) const { | ||||
| 8047 | EVT PtrVT = getPointerTy(DAG.getDataLayout()); | ||||
| 8048 | |||||
| 8049 | SDValue Chain = DAG.getEntryNode(); | ||||
| 8050 | SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); | ||||
| 8051 | |||||
| 8052 | Chain = | ||||
| 8053 | DAG.getNode(AArch64ISD::TLSDESC_CALLSEQ, DL, NodeTys, {Chain, SymAddr}); | ||||
| 8054 | SDValue Glue = Chain.getValue(1); | ||||
| 8055 | |||||
| 8056 | return DAG.getCopyFromReg(Chain, DL, AArch64::X0, PtrVT, Glue); | ||||
| 8057 | } | ||||
| 8058 | |||||
| 8059 | SDValue | ||||
| 8060 | AArch64TargetLowering::LowerELFGlobalTLSAddress(SDValue Op, | ||||
| 8061 | SelectionDAG &DAG) const { | ||||
| 8062 | assert(Subtarget->isTargetELF() && "This function expects an ELF target")(static_cast <bool> (Subtarget->isTargetELF() && "This function expects an ELF target") ? void (0) : __assert_fail ("Subtarget->isTargetELF() && \"This function expects an ELF target\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 8062, __extension__ __PRETTY_FUNCTION__)); | ||||
| 8063 | |||||
| 8064 | const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); | ||||
| 8065 | |||||
| 8066 | TLSModel::Model Model = getTargetMachine().getTLSModel(GA->getGlobal()); | ||||
| 8067 | |||||
| 8068 | if (!EnableAArch64ELFLocalDynamicTLSGeneration) { | ||||
| 8069 | if (Model == TLSModel::LocalDynamic) | ||||
| 8070 | Model = TLSModel::GeneralDynamic; | ||||
| 8071 | } | ||||
| 8072 | |||||
| 8073 | if (getTargetMachine().getCodeModel() == CodeModel::Large && | ||||
| 8074 | Model != TLSModel::LocalExec) | ||||
| 8075 | report_fatal_error("ELF TLS only supported in small memory model or " | ||||
| 8076 | "in local exec TLS model"); | ||||
| 8077 | // Different choices can be made for the maximum size of the TLS area for a | ||||
| 8078 | // module. For the small address model, the default TLS size is 16MiB and the | ||||
| 8079 | // maximum TLS size is 4GiB. | ||||
| 8080 | // FIXME: add tiny and large code model support for TLS access models other | ||||
| 8081 | // than local exec. We currently generate the same code as small for tiny, | ||||
| 8082 | // which may be larger than needed. | ||||
| 8083 | |||||
| 8084 | SDValue TPOff; | ||||
| 8085 | EVT PtrVT = getPointerTy(DAG.getDataLayout()); | ||||
| 8086 | SDLoc DL(Op); | ||||
| 8087 | const GlobalValue *GV = GA->getGlobal(); | ||||
| 8088 | |||||
| 8089 | SDValue ThreadBase = DAG.getNode(AArch64ISD::THREAD_POINTER, DL, PtrVT); | ||||
| 8090 | |||||
| 8091 | if (Model == TLSModel::LocalExec) { | ||||
| 8092 | return LowerELFTLSLocalExec(GV, ThreadBase, DL, DAG); | ||||
| 8093 | } else if (Model == TLSModel::InitialExec) { | ||||
| 8094 | TPOff = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS); | ||||
| 8095 | TPOff = DAG.getNode(AArch64ISD::LOADgot, DL, PtrVT, TPOff); | ||||
| 8096 | } else if (Model == TLSModel::LocalDynamic) { | ||||
| 8097 | // Local-dynamic accesses proceed in two phases. A general-dynamic TLS | ||||
| 8098 | // descriptor call against the special symbol _TLS_MODULE_BASE_ to calculate | ||||
| 8099 | // the beginning of the module's TLS region, followed by a DTPREL offset | ||||
| 8100 | // calculation. | ||||
| 8101 | |||||
| 8102 | // These accesses will need deduplicating if there's more than one. | ||||
| 8103 | AArch64FunctionInfo *MFI = | ||||
| 8104 | DAG.getMachineFunction().getInfo<AArch64FunctionInfo>(); | ||||
| 8105 | MFI->incNumLocalDynamicTLSAccesses(); | ||||
| 8106 | |||||
| 8107 | // The call needs a relocation too for linker relaxation. It doesn't make | ||||
| 8108 | // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of | ||||
| 8109 | // the address. | ||||
| 8110 | SDValue SymAddr = DAG.getTargetExternalSymbol("_TLS_MODULE_BASE_", PtrVT, | ||||
| 8111 | AArch64II::MO_TLS); | ||||
| 8112 | |||||
| 8113 | // Now we can calculate the offset from TPIDR_EL0 to this module's | ||||
| 8114 | // thread-local area. | ||||
| 8115 | TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG); | ||||
| 8116 | |||||
| 8117 | // Now use :dtprel_whatever: operations to calculate this variable's offset | ||||
| 8118 | // in its thread-storage area. | ||||
| 8119 | SDValue HiVar = DAG.getTargetGlobalAddress( | ||||
| 8120 | GV, DL, MVT::i64, 0, AArch64II::MO_TLS | AArch64II::MO_HI12); | ||||
| 8121 | SDValue LoVar = DAG.getTargetGlobalAddress( | ||||
| 8122 | GV, DL, MVT::i64, 0, | ||||
| 8123 | AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); | ||||
| 8124 | |||||
| 8125 | TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, HiVar, | ||||
| 8126 | DAG.getTargetConstant(0, DL, MVT::i32)), | ||||
| 8127 | 0); | ||||
| 8128 | TPOff = SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TPOff, LoVar, | ||||
| 8129 | DAG.getTargetConstant(0, DL, MVT::i32)), | ||||
| 8130 | 0); | ||||
| 8131 | } else if (Model == TLSModel::GeneralDynamic) { | ||||
| 8132 | // The call needs a relocation too for linker relaxation. It doesn't make | ||||
| 8133 | // sense to call it MO_PAGE or MO_PAGEOFF though so we need another copy of | ||||
| 8134 | // the address. | ||||
| 8135 | SDValue SymAddr = | ||||
| 8136 | DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, AArch64II::MO_TLS); | ||||
| 8137 | |||||
| 8138 | // Finally we can make a call to calculate the offset from tpidr_el0. | ||||
| 8139 | TPOff = LowerELFTLSDescCallSeq(SymAddr, DL, DAG); | ||||
| 8140 | } else | ||||
| 8141 | llvm_unreachable("Unsupported ELF TLS access model")::llvm::llvm_unreachable_internal("Unsupported ELF TLS access model" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 8141); | ||||
| 8142 | |||||
| 8143 | return DAG.getNode(ISD::ADD, DL, PtrVT, ThreadBase, TPOff); | ||||
| 8144 | } | ||||
| 8145 | |||||
| 8146 | SDValue | ||||
| 8147 | AArch64TargetLowering::LowerWindowsGlobalTLSAddress(SDValue Op, | ||||
| 8148 | SelectionDAG &DAG) const { | ||||
| 8149 | assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering")(static_cast <bool> (Subtarget->isTargetWindows() && "Windows specific TLS lowering") ? void (0) : __assert_fail ( "Subtarget->isTargetWindows() && \"Windows specific TLS lowering\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 8149, __extension__ __PRETTY_FUNCTION__)); | ||||
| 8150 | |||||
| 8151 | SDValue Chain = DAG.getEntryNode(); | ||||
| 8152 | EVT PtrVT = getPointerTy(DAG.getDataLayout()); | ||||
| 8153 | SDLoc DL(Op); | ||||
| 8154 | |||||
| 8155 | SDValue TEB = DAG.getRegister(AArch64::X18, MVT::i64); | ||||
| 8156 | |||||
| 8157 | // Load the ThreadLocalStoragePointer from the TEB | ||||
| 8158 | // A pointer to the TLS array is located at offset 0x58 from the TEB. | ||||
| 8159 | SDValue TLSArray = | ||||
| 8160 | DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x58, DL)); | ||||
| 8161 | TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo()); | ||||
| 8162 | Chain = TLSArray.getValue(1); | ||||
| 8163 | |||||
| 8164 | // Load the TLS index from the C runtime; | ||||
| 8165 | // This does the same as getAddr(), but without having a GlobalAddressSDNode. | ||||
| 8166 | // This also does the same as LOADgot, but using a generic i32 load, | ||||
| 8167 | // while LOADgot only loads i64. | ||||
| 8168 | SDValue TLSIndexHi = | ||||
| 8169 | DAG.getTargetExternalSymbol("_tls_index", PtrVT, AArch64II::MO_PAGE); | ||||
| 8170 | SDValue TLSIndexLo = DAG.getTargetExternalSymbol( | ||||
| 8171 | "_tls_index", PtrVT, AArch64II::MO_PAGEOFF | AArch64II::MO_NC); | ||||
| 8172 | SDValue ADRP = DAG.getNode(AArch64ISD::ADRP, DL, PtrVT, TLSIndexHi); | ||||
| 8173 | SDValue TLSIndex = | ||||
| 8174 | DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, ADRP, TLSIndexLo); | ||||
| 8175 | TLSIndex = DAG.getLoad(MVT::i32, DL, Chain, TLSIndex, MachinePointerInfo()); | ||||
| 8176 | Chain = TLSIndex.getValue(1); | ||||
| 8177 | |||||
| 8178 | // The pointer to the thread's TLS data area is at the TLS Index scaled by 8 | ||||
| 8179 | // offset into the TLSArray. | ||||
| 8180 | TLSIndex = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TLSIndex); | ||||
| 8181 | SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex, | ||||
| 8182 | DAG.getConstant(3, DL, PtrVT)); | ||||
| 8183 | SDValue TLS = DAG.getLoad(PtrVT, DL, Chain, | ||||
| 8184 | DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot), | ||||
| 8185 | MachinePointerInfo()); | ||||
| 8186 | Chain = TLS.getValue(1); | ||||
| 8187 | |||||
| 8188 | const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); | ||||
| 8189 | const GlobalValue *GV = GA->getGlobal(); | ||||
| 8190 | SDValue TGAHi = DAG.getTargetGlobalAddress( | ||||
| 8191 | GV, DL, PtrVT, 0, AArch64II::MO_TLS | AArch64II::MO_HI12); | ||||
| 8192 | SDValue TGALo = DAG.getTargetGlobalAddress( | ||||
| 8193 | GV, DL, PtrVT, 0, | ||||
| 8194 | AArch64II::MO_TLS | AArch64II::MO_PAGEOFF | AArch64II::MO_NC); | ||||
| 8195 | |||||
| 8196 | // Add the offset from the start of the .tls section (section base). | ||||
| 8197 | SDValue Addr = | ||||
| 8198 | SDValue(DAG.getMachineNode(AArch64::ADDXri, DL, PtrVT, TLS, TGAHi, | ||||
| 8199 | DAG.getTargetConstant(0, DL, MVT::i32)), | ||||
| 8200 | 0); | ||||
| 8201 | Addr = DAG.getNode(AArch64ISD::ADDlow, DL, PtrVT, Addr, TGALo); | ||||
| 8202 | return Addr; | ||||
| 8203 | } | ||||
| 8204 | |||||
| 8205 | SDValue AArch64TargetLowering::LowerGlobalTLSAddress(SDValue Op, | ||||
| 8206 | SelectionDAG &DAG) const { | ||||
| 8207 | const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); | ||||
| 8208 | if (DAG.getTarget().useEmulatedTLS()) | ||||
| 8209 | return LowerToTLSEmulatedModel(GA, DAG); | ||||
| 8210 | |||||
| 8211 | if (Subtarget->isTargetDarwin()) | ||||
| 8212 | return LowerDarwinGlobalTLSAddress(Op, DAG); | ||||
| 8213 | if (Subtarget->isTargetELF()) | ||||
| 8214 | return LowerELFGlobalTLSAddress(Op, DAG); | ||||
| 8215 | if (Subtarget->isTargetWindows()) | ||||
| 8216 | return LowerWindowsGlobalTLSAddress(Op, DAG); | ||||
| 8217 | |||||
| 8218 | llvm_unreachable("Unexpected platform trying to use TLS")::llvm::llvm_unreachable_internal("Unexpected platform trying to use TLS" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 8218); | ||||
| 8219 | } | ||||
| 8220 | |||||
| 8221 | // Looks through \param Val to determine the bit that can be used to | ||||
| 8222 | // check the sign of the value. It returns the unextended value and | ||||
| 8223 | // the sign bit position. | ||||
| 8224 | std::pair<SDValue, uint64_t> lookThroughSignExtension(SDValue Val) { | ||||
| 8225 | if (Val.getOpcode() == ISD::SIGN_EXTEND_INREG) | ||||
| 8226 | return {Val.getOperand(0), | ||||
| 8227 | cast<VTSDNode>(Val.getOperand(1))->getVT().getFixedSizeInBits() - | ||||
| 8228 | 1}; | ||||
| 8229 | |||||
| 8230 | if (Val.getOpcode() == ISD::SIGN_EXTEND) | ||||
| 8231 | return {Val.getOperand(0), | ||||
| 8232 | Val.getOperand(0)->getValueType(0).getFixedSizeInBits() - 1}; | ||||
| 8233 | |||||
| 8234 | return {Val, Val.getValueSizeInBits() - 1}; | ||||
| 8235 | } | ||||
| 8236 | |||||
| 8237 | SDValue AArch64TargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { | ||||
| 8238 | SDValue Chain = Op.getOperand(0); | ||||
| 8239 | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); | ||||
| 8240 | SDValue LHS = Op.getOperand(2); | ||||
| 8241 | SDValue RHS = Op.getOperand(3); | ||||
| 8242 | SDValue Dest = Op.getOperand(4); | ||||
| 8243 | SDLoc dl(Op); | ||||
| 8244 | |||||
| 8245 | MachineFunction &MF = DAG.getMachineFunction(); | ||||
| 8246 | // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z instructions | ||||
| 8247 | // will not be produced, as they are conditional branch instructions that do | ||||
| 8248 | // not set flags. | ||||
| 8249 | bool ProduceNonFlagSettingCondBr = | ||||
| 8250 | !MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening); | ||||
| 8251 | |||||
| 8252 | // Handle f128 first, since lowering it will result in comparing the return | ||||
| 8253 | // value of a libcall against zero, which is just what the rest of LowerBR_CC | ||||
| 8254 | // is expecting to deal with. | ||||
| 8255 | if (LHS.getValueType() == MVT::f128) { | ||||
| 8256 | softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl, LHS, RHS); | ||||
| 8257 | |||||
| 8258 | // If softenSetCCOperands returned a scalar, we need to compare the result | ||||
| 8259 | // against zero to select between true and false values. | ||||
| 8260 | if (!RHS.getNode()) { | ||||
| 8261 | RHS = DAG.getConstant(0, dl, LHS.getValueType()); | ||||
| 8262 | CC = ISD::SETNE; | ||||
| 8263 | } | ||||
| 8264 | } | ||||
| 8265 | |||||
| 8266 | // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch | ||||
| 8267 | // instruction. | ||||
| 8268 | if (ISD::isOverflowIntrOpRes(LHS) && isOneConstant(RHS) && | ||||
| 8269 | (CC == ISD::SETEQ || CC == ISD::SETNE)) { | ||||
| 8270 | // Only lower legal XALUO ops. | ||||
| 8271 | if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0))) | ||||
| 8272 | return SDValue(); | ||||
| 8273 | |||||
| 8274 | // The actual operation with overflow check. | ||||
| 8275 | AArch64CC::CondCode OFCC; | ||||
| 8276 | SDValue Value, Overflow; | ||||
| 8277 | std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, LHS.getValue(0), DAG); | ||||
| 8278 | |||||
| 8279 | if (CC == ISD::SETNE) | ||||
| 8280 | OFCC = getInvertedCondCode(OFCC); | ||||
| 8281 | SDValue CCVal = DAG.getConstant(OFCC, dl, MVT::i32); | ||||
| 8282 | |||||
| 8283 | return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal, | ||||
| 8284 | Overflow); | ||||
| 8285 | } | ||||
| 8286 | |||||
| 8287 | if (LHS.getValueType().isInteger()) { | ||||
| 8288 | assert((LHS.getValueType() == RHS.getValueType()) &&(static_cast <bool> ((LHS.getValueType() == RHS.getValueType ()) && (LHS.getValueType() == MVT::i32 || LHS.getValueType () == MVT::i64)) ? void (0) : __assert_fail ("(LHS.getValueType() == RHS.getValueType()) && (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64)" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 8289, __extension__ __PRETTY_FUNCTION__)) | ||||
| 8289 | (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64))(static_cast <bool> ((LHS.getValueType() == RHS.getValueType ()) && (LHS.getValueType() == MVT::i32 || LHS.getValueType () == MVT::i64)) ? void (0) : __assert_fail ("(LHS.getValueType() == RHS.getValueType()) && (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64)" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 8289, __extension__ __PRETTY_FUNCTION__)); | ||||
| 8290 | |||||
| 8291 | // If the RHS of the comparison is zero, we can potentially fold this | ||||
| 8292 | // to a specialized branch. | ||||
| 8293 | const ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS); | ||||
| 8294 | if (RHSC && RHSC->getZExtValue() == 0 && ProduceNonFlagSettingCondBr) { | ||||
| 8295 | if (CC == ISD::SETEQ) { | ||||
| 8296 | // See if we can use a TBZ to fold in an AND as well. | ||||
| 8297 | // TBZ has a smaller branch displacement than CBZ. If the offset is | ||||
| 8298 | // out of bounds, a late MI-layer pass rewrites branches. | ||||
| 8299 | // 403.gcc is an example that hits this case. | ||||
| 8300 | if (LHS.getOpcode() == ISD::AND && | ||||
| 8301 | isa<ConstantSDNode>(LHS.getOperand(1)) && | ||||
| 8302 | isPowerOf2_64(LHS.getConstantOperandVal(1))) { | ||||
| 8303 | SDValue Test = LHS.getOperand(0); | ||||
| 8304 | uint64_t Mask = LHS.getConstantOperandVal(1); | ||||
| 8305 | return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, Test, | ||||
| 8306 | DAG.getConstant(Log2_64(Mask), dl, MVT::i64), | ||||
| 8307 | Dest); | ||||
| 8308 | } | ||||
| 8309 | |||||
| 8310 | return DAG.getNode(AArch64ISD::CBZ, dl, MVT::Other, Chain, LHS, Dest); | ||||
| 8311 | } else if (CC == ISD::SETNE) { | ||||
| 8312 | // See if we can use a TBZ to fold in an AND as well. | ||||
| 8313 | // TBZ has a smaller branch displacement than CBZ. If the offset is | ||||
| 8314 | // out of bounds, a late MI-layer pass rewrites branches. | ||||
| 8315 | // 403.gcc is an example that hits this case. | ||||
| 8316 | if (LHS.getOpcode() == ISD::AND && | ||||
| 8317 | isa<ConstantSDNode>(LHS.getOperand(1)) && | ||||
| 8318 | isPowerOf2_64(LHS.getConstantOperandVal(1))) { | ||||
| 8319 | SDValue Test = LHS.getOperand(0); | ||||
| 8320 | uint64_t Mask = LHS.getConstantOperandVal(1); | ||||
| 8321 | return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, Test, | ||||
| 8322 | DAG.getConstant(Log2_64(Mask), dl, MVT::i64), | ||||
| 8323 | Dest); | ||||
| 8324 | } | ||||
| 8325 | |||||
| 8326 | return DAG.getNode(AArch64ISD::CBNZ, dl, MVT::Other, Chain, LHS, Dest); | ||||
| 8327 | } else if (CC == ISD::SETLT && LHS.getOpcode() != ISD::AND) { | ||||
| 8328 | // Don't combine AND since emitComparison converts the AND to an ANDS | ||||
| 8329 | // (a.k.a. TST) and the test in the test bit and branch instruction | ||||
| 8330 | // becomes redundant. This would also increase register pressure. | ||||
| 8331 | uint64_t SignBitPos; | ||||
| 8332 | std::tie(LHS, SignBitPos) = lookThroughSignExtension(LHS); | ||||
| 8333 | return DAG.getNode(AArch64ISD::TBNZ, dl, MVT::Other, Chain, LHS, | ||||
| 8334 | DAG.getConstant(SignBitPos, dl, MVT::i64), Dest); | ||||
| 8335 | } | ||||
| 8336 | } | ||||
| 8337 | if (RHSC && RHSC->getSExtValue() == -1 && CC == ISD::SETGT && | ||||
| 8338 | LHS.getOpcode() != ISD::AND && ProduceNonFlagSettingCondBr) { | ||||
| 8339 | // Don't combine AND since emitComparison converts the AND to an ANDS | ||||
| 8340 | // (a.k.a. TST) and the test in the test bit and branch instruction | ||||
| 8341 | // becomes redundant. This would also increase register pressure. | ||||
| 8342 | uint64_t SignBitPos; | ||||
| 8343 | std::tie(LHS, SignBitPos) = lookThroughSignExtension(LHS); | ||||
| 8344 | return DAG.getNode(AArch64ISD::TBZ, dl, MVT::Other, Chain, LHS, | ||||
| 8345 | DAG.getConstant(SignBitPos, dl, MVT::i64), Dest); | ||||
| 8346 | } | ||||
| 8347 | |||||
| 8348 | SDValue CCVal; | ||||
| 8349 | SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl); | ||||
| 8350 | return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CCVal, | ||||
| 8351 | Cmp); | ||||
| 8352 | } | ||||
| 8353 | |||||
| 8354 | assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::bf16 ||(static_cast <bool> (LHS.getValueType() == MVT::f16 || LHS .getValueType() == MVT::bf16 || LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) ? void (0) : __assert_fail ("LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::bf16 || LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 8355, __extension__ __PRETTY_FUNCTION__)) | ||||
| 8355 | LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64)(static_cast <bool> (LHS.getValueType() == MVT::f16 || LHS .getValueType() == MVT::bf16 || LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) ? void (0) : __assert_fail ("LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::bf16 || LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 8355, __extension__ __PRETTY_FUNCTION__)); | ||||
| 8356 | |||||
| 8357 | // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally | ||||
| 8358 | // clean. Some of them require two branches to implement. | ||||
| 8359 | SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG); | ||||
| 8360 | AArch64CC::CondCode CC1, CC2; | ||||
| 8361 | changeFPCCToAArch64CC(CC, CC1, CC2); | ||||
| 8362 | SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32); | ||||
| 8363 | SDValue BR1 = | ||||
| 8364 | DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, Chain, Dest, CC1Val, Cmp); | ||||
| 8365 | if (CC2 != AArch64CC::AL) { | ||||
| 8366 | SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32); | ||||
| 8367 | return DAG.getNode(AArch64ISD::BRCOND, dl, MVT::Other, BR1, Dest, CC2Val, | ||||
| 8368 | Cmp); | ||||
| 8369 | } | ||||
| 8370 | |||||
| 8371 | return BR1; | ||||
| 8372 | } | ||||
| 8373 | |||||
| 8374 | SDValue AArch64TargetLowering::LowerFCOPYSIGN(SDValue Op, | ||||
| 8375 | SelectionDAG &DAG) const { | ||||
| 8376 | if (!Subtarget->hasNEON()) | ||||
| 8377 | return SDValue(); | ||||
| 8378 | |||||
| 8379 | EVT VT = Op.getValueType(); | ||||
| 8380 | EVT IntVT = VT.changeTypeToInteger(); | ||||
| 8381 | SDLoc DL(Op); | ||||
| 8382 | |||||
| 8383 | SDValue In1 = Op.getOperand(0); | ||||
| 8384 | SDValue In2 = Op.getOperand(1); | ||||
| 8385 | EVT SrcVT = In2.getValueType(); | ||||
| 8386 | |||||
| 8387 | if (!SrcVT.bitsEq(VT)) | ||||
| 8388 | In2 = DAG.getFPExtendOrRound(In2, DL, VT); | ||||
| 8389 | |||||
| 8390 | if (VT.isScalableVector()) | ||||
| 8391 | IntVT = | ||||
| 8392 | getPackedSVEVectorVT(VT.getVectorElementType().changeTypeToInteger()); | ||||
| 8393 | |||||
| 8394 | if (VT.isFixedLengthVector() && | ||||
| 8395 | useSVEForFixedLengthVectorVT(VT, Subtarget->forceStreamingCompatibleSVE())) { | ||||
| 8396 | EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT); | ||||
| 8397 | |||||
| 8398 | In1 = convertToScalableVector(DAG, ContainerVT, In1); | ||||
| 8399 | In2 = convertToScalableVector(DAG, ContainerVT, In2); | ||||
| 8400 | |||||
| 8401 | SDValue Res = DAG.getNode(ISD::FCOPYSIGN, DL, ContainerVT, In1, In2); | ||||
| 8402 | return convertFromScalableVector(DAG, VT, Res); | ||||
| 8403 | } | ||||
| 8404 | |||||
| 8405 | auto BitCast = [this](EVT VT, SDValue Op, SelectionDAG &DAG) { | ||||
| 8406 | if (VT.isScalableVector()) | ||||
| 8407 | return getSVESafeBitCast(VT, Op, DAG); | ||||
| 8408 | |||||
| 8409 | return DAG.getBitcast(VT, Op); | ||||
| 8410 | }; | ||||
| 8411 | |||||
| 8412 | SDValue VecVal1, VecVal2; | ||||
| 8413 | EVT VecVT; | ||||
| 8414 | auto SetVecVal = [&](int Idx = -1) { | ||||
| 8415 | if (!VT.isVector()) { | ||||
| 8416 | VecVal1 = | ||||
| 8417 | DAG.getTargetInsertSubreg(Idx, DL, VecVT, DAG.getUNDEF(VecVT), In1); | ||||
| 8418 | VecVal2 = | ||||
| 8419 | DAG.getTargetInsertSubreg(Idx, DL, VecVT, DAG.getUNDEF(VecVT), In2); | ||||
| 8420 | } else { | ||||
| 8421 | VecVal1 = BitCast(VecVT, In1, DAG); | ||||
| 8422 | VecVal2 = BitCast(VecVT, In2, DAG); | ||||
| 8423 | } | ||||
| 8424 | }; | ||||
| 8425 | if (VT.isVector()) { | ||||
| 8426 | VecVT = IntVT; | ||||
| 8427 | SetVecVal(); | ||||
| 8428 | } else if (VT == MVT::f64) { | ||||
| 8429 | VecVT = MVT::v2i64; | ||||
| 8430 | SetVecVal(AArch64::dsub); | ||||
| 8431 | } else if (VT == MVT::f32) { | ||||
| 8432 | VecVT = MVT::v4i32; | ||||
| 8433 | SetVecVal(AArch64::ssub); | ||||
| 8434 | } else if (VT == MVT::f16) { | ||||
| 8435 | VecVT = MVT::v8i16; | ||||
| 8436 | SetVecVal(AArch64::hsub); | ||||
| 8437 | } else { | ||||
| 8438 | llvm_unreachable("Invalid type for copysign!")::llvm::llvm_unreachable_internal("Invalid type for copysign!" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 8438); | ||||
| 8439 | } | ||||
| 8440 | |||||
| 8441 | unsigned BitWidth = In1.getScalarValueSizeInBits(); | ||||
| 8442 | SDValue SignMaskV = DAG.getConstant(~APInt::getSignMask(BitWidth), DL, VecVT); | ||||
| 8443 | |||||
| 8444 | // We want to materialize a mask with every bit but the high bit set, but the | ||||
| 8445 | // AdvSIMD immediate moves cannot materialize that in a single instruction for | ||||
| 8446 | // 64-bit elements. Instead, materialize all bits set and then negate that. | ||||
| 8447 | if (VT == MVT::f64 || VT == MVT::v2f64) { | ||||
| 8448 | SignMaskV = DAG.getConstant(APInt::getAllOnes(BitWidth), DL, VecVT); | ||||
| 8449 | SignMaskV = DAG.getNode(ISD::BITCAST, DL, MVT::v2f64, SignMaskV); | ||||
| 8450 | SignMaskV = DAG.getNode(ISD::FNEG, DL, MVT::v2f64, SignMaskV); | ||||
| 8451 | SignMaskV = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, SignMaskV); | ||||
| 8452 | } | ||||
| 8453 | |||||
| 8454 | SDValue BSP = | ||||
| 8455 | DAG.getNode(AArch64ISD::BSP, DL, VecVT, SignMaskV, VecVal1, VecVal2); | ||||
| 8456 | if (VT == MVT::f16) | ||||
| 8457 | return DAG.getTargetExtractSubreg(AArch64::hsub, DL, VT, BSP); | ||||
| 8458 | if (VT == MVT::f32) | ||||
| 8459 | return DAG.getTargetExtractSubreg(AArch64::ssub, DL, VT, BSP); | ||||
| 8460 | if (VT == MVT::f64) | ||||
| 8461 | return DAG.getTargetExtractSubreg(AArch64::dsub, DL, VT, BSP); | ||||
| 8462 | |||||
| 8463 | return BitCast(VT, BSP, DAG); | ||||
| 8464 | } | ||||
| 8465 | |||||
| 8466 | SDValue AArch64TargetLowering::LowerCTPOP_PARITY(SDValue Op, | ||||
| 8467 | SelectionDAG &DAG) const { | ||||
| 8468 | if (DAG.getMachineFunction().getFunction().hasFnAttribute( | ||||
| 8469 | Attribute::NoImplicitFloat)) | ||||
| 8470 | return SDValue(); | ||||
| 8471 | |||||
| 8472 | if (!Subtarget->hasNEON()) | ||||
| 8473 | return SDValue(); | ||||
| 8474 | |||||
| 8475 | bool IsParity = Op.getOpcode() == ISD::PARITY; | ||||
| 8476 | SDValue Val = Op.getOperand(0); | ||||
| 8477 | SDLoc DL(Op); | ||||
| 8478 | EVT VT = Op.getValueType(); | ||||
| 8479 | |||||
| 8480 | // for i32, general parity function using EORs is more efficient compared to | ||||
| 8481 | // using floating point | ||||
| 8482 | if (VT == MVT::i32 && IsParity) | ||||
| 8483 | return SDValue(); | ||||
| 8484 | |||||
| 8485 | // If there is no CNT instruction available, GPR popcount can | ||||
| 8486 | // be more efficiently lowered to the following sequence that uses | ||||
| 8487 | // AdvSIMD registers/instructions as long as the copies to/from | ||||
| 8488 | // the AdvSIMD registers are cheap. | ||||
| 8489 | // FMOV D0, X0 // copy 64-bit int to vector, high bits zero'd | ||||
| 8490 | // CNT V0.8B, V0.8B // 8xbyte pop-counts | ||||
| 8491 | // ADDV B0, V0.8B // sum 8xbyte pop-counts | ||||
| 8492 | // UMOV X0, V0.B[0] // copy byte result back to integer reg | ||||
| 8493 | if (VT == MVT::i32 || VT == MVT::i64) { | ||||
| 8494 | if (VT == MVT::i32) | ||||
| 8495 | Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val); | ||||
| 8496 | Val = DAG.getNode(ISD::BITCAST, DL, MVT::v8i8, Val); | ||||
| 8497 | |||||
| 8498 | SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v8i8, Val); | ||||
| 8499 | SDValue UaddLV = DAG.getNode( | ||||
| 8500 | ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32, | ||||
| 8501 | DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, DL, MVT::i32), CtPop); | ||||
| 8502 | |||||
| 8503 | if (IsParity) | ||||
| 8504 | UaddLV = DAG.getNode(ISD::AND, DL, MVT::i32, UaddLV, | ||||
| 8505 | DAG.getConstant(1, DL, MVT::i32)); | ||||
| 8506 | |||||
| 8507 | if (VT == MVT::i64) | ||||
| 8508 | UaddLV = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, UaddLV); | ||||
| 8509 | return UaddLV; | ||||
| 8510 | } else if (VT == MVT::i128) { | ||||
| 8511 | Val = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Val); | ||||
| 8512 | |||||
| 8513 | SDValue CtPop = DAG.getNode(ISD::CTPOP, DL, MVT::v16i8, Val); | ||||
| 8514 | SDValue UaddLV = DAG.getNode( | ||||
| 8515 | ISD::INTRINSIC_WO_CHAIN, DL, MVT::i32, | ||||
| 8516 | DAG.getConstant(Intrinsic::aarch64_neon_uaddlv, DL, MVT::i32), CtPop); | ||||
| 8517 | |||||
| 8518 | if (IsParity) | ||||
| 8519 | UaddLV = DAG.getNode(ISD::AND, DL, MVT::i32, UaddLV, | ||||
| 8520 | DAG.getConstant(1, DL, MVT::i32)); | ||||
| 8521 | |||||
| 8522 | return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i128, UaddLV); | ||||
| 8523 | } | ||||
| 8524 | |||||
| 8525 | assert(!IsParity && "ISD::PARITY of vector types not supported")(static_cast <bool> (!IsParity && "ISD::PARITY of vector types not supported" ) ? void (0) : __assert_fail ("!IsParity && \"ISD::PARITY of vector types not supported\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 8525, __extension__ __PRETTY_FUNCTION__)); | ||||
| 8526 | |||||
| 8527 | if (VT.isScalableVector() || | ||||
| 8528 | useSVEForFixedLengthVectorVT(VT, | ||||
| 8529 | Subtarget->forceStreamingCompatibleSVE())) | ||||
| 8530 | return LowerToPredicatedOp(Op, DAG, AArch64ISD::CTPOP_MERGE_PASSTHRU); | ||||
| 8531 | |||||
| 8532 | assert((VT == MVT::v1i64 || VT == MVT::v2i64 || VT == MVT::v2i32 ||(static_cast <bool> ((VT == MVT::v1i64 || VT == MVT::v2i64 || VT == MVT::v2i32 || VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) && "Unexpected type for custom ctpop lowering" ) ? void (0) : __assert_fail ("(VT == MVT::v1i64 || VT == MVT::v2i64 || VT == MVT::v2i32 || VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) && \"Unexpected type for custom ctpop lowering\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 8534, __extension__ __PRETTY_FUNCTION__)) | ||||
| 8533 | VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) &&(static_cast <bool> ((VT == MVT::v1i64 || VT == MVT::v2i64 || VT == MVT::v2i32 || VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) && "Unexpected type for custom ctpop lowering" ) ? void (0) : __assert_fail ("(VT == MVT::v1i64 || VT == MVT::v2i64 || VT == MVT::v2i32 || VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) && \"Unexpected type for custom ctpop lowering\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 8534, __extension__ __PRETTY_FUNCTION__)) | ||||
| 8534 | "Unexpected type for custom ctpop lowering")(static_cast <bool> ((VT == MVT::v1i64 || VT == MVT::v2i64 || VT == MVT::v2i32 || VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) && "Unexpected type for custom ctpop lowering" ) ? void (0) : __assert_fail ("(VT == MVT::v1i64 || VT == MVT::v2i64 || VT == MVT::v2i32 || VT == MVT::v4i32 || VT == MVT::v4i16 || VT == MVT::v8i16) && \"Unexpected type for custom ctpop lowering\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 8534, __extension__ __PRETTY_FUNCTION__)); | ||||
| 8535 | |||||
| 8536 | EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8; | ||||
| 8537 | Val = DAG.getBitcast(VT8Bit, Val); | ||||
| 8538 | Val = DAG.getNode(ISD::CTPOP, DL, VT8Bit, Val); | ||||
| 8539 | |||||
| 8540 | // Widen v8i8/v16i8 CTPOP result to VT by repeatedly widening pairwise adds. | ||||
| 8541 | unsigned EltSize = 8; | ||||
| 8542 | unsigned NumElts = VT.is64BitVector() ? 8 : 16; | ||||
| 8543 | while (EltSize != VT.getScalarSizeInBits()) { | ||||
| 8544 | EltSize *= 2; | ||||
| 8545 | NumElts /= 2; | ||||
| 8546 | MVT WidenVT = MVT::getVectorVT(MVT::getIntegerVT(EltSize), NumElts); | ||||
| 8547 | Val = DAG.getNode( | ||||
| 8548 | ISD::INTRINSIC_WO_CHAIN, DL, WidenVT, | ||||
| 8549 | DAG.getConstant(Intrinsic::aarch64_neon_uaddlp, DL, MVT::i32), Val); | ||||
| 8550 | } | ||||
| 8551 | |||||
| 8552 | return Val; | ||||
| 8553 | } | ||||
| 8554 | |||||
| 8555 | SDValue AArch64TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const { | ||||
| 8556 | EVT VT = Op.getValueType(); | ||||
| 8557 | assert(VT.isScalableVector() ||(static_cast <bool> (VT.isScalableVector() || useSVEForFixedLengthVectorVT ( VT, Subtarget->useSVEForFixedLengthVectors())) ? void (0 ) : __assert_fail ("VT.isScalableVector() || useSVEForFixedLengthVectorVT( VT, Subtarget->useSVEForFixedLengthVectors())" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 8559, __extension__ __PRETTY_FUNCTION__)) | ||||
| 8558 | useSVEForFixedLengthVectorVT((static_cast <bool> (VT.isScalableVector() || useSVEForFixedLengthVectorVT ( VT, Subtarget->useSVEForFixedLengthVectors())) ? void (0 ) : __assert_fail ("VT.isScalableVector() || useSVEForFixedLengthVectorVT( VT, Subtarget->useSVEForFixedLengthVectors())" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 8559, __extension__ __PRETTY_FUNCTION__)) | ||||
| 8559 | VT, /*OverrideNEON=*/Subtarget->useSVEForFixedLengthVectors()))(static_cast <bool> (VT.isScalableVector() || useSVEForFixedLengthVectorVT ( VT, Subtarget->useSVEForFixedLengthVectors())) ? void (0 ) : __assert_fail ("VT.isScalableVector() || useSVEForFixedLengthVectorVT( VT, Subtarget->useSVEForFixedLengthVectors())" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 8559, __extension__ __PRETTY_FUNCTION__)); | ||||
| 8560 | |||||
| 8561 | SDLoc DL(Op); | ||||
| 8562 | SDValue RBIT = DAG.getNode(ISD::BITREVERSE, DL, VT, Op.getOperand(0)); | ||||
| 8563 | return DAG.getNode(ISD::CTLZ, DL, VT, RBIT); | ||||
| 8564 | } | ||||
| 8565 | |||||
| 8566 | SDValue AArch64TargetLowering::LowerMinMax(SDValue Op, | ||||
| 8567 | SelectionDAG &DAG) const { | ||||
| 8568 | |||||
| 8569 | EVT VT = Op.getValueType(); | ||||
| 8570 | SDLoc DL(Op); | ||||
| 8571 | unsigned Opcode = Op.getOpcode(); | ||||
| 8572 | ISD::CondCode CC; | ||||
| 8573 | switch (Opcode) { | ||||
| 8574 | default: | ||||
| 8575 | llvm_unreachable("Wrong instruction")::llvm::llvm_unreachable_internal("Wrong instruction", "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp" , 8575); | ||||
| 8576 | case ISD::SMAX: | ||||
| 8577 | CC = ISD::SETGT; | ||||
| 8578 | break; | ||||
| 8579 | case ISD::SMIN: | ||||
| 8580 | CC = ISD::SETLT; | ||||
| 8581 | break; | ||||
| 8582 | case ISD::UMAX: | ||||
| 8583 | CC = ISD::SETUGT; | ||||
| 8584 | break; | ||||
| 8585 | case ISD::UMIN: | ||||
| 8586 | CC = ISD::SETULT; | ||||
| 8587 | break; | ||||
| 8588 | } | ||||
| 8589 | |||||
| 8590 | if (VT.isScalableVector() || | ||||
| 8591 | useSVEForFixedLengthVectorVT( | ||||
| 8592 | VT, /*OverrideNEON=*/Subtarget->useSVEForFixedLengthVectors())) { | ||||
| 8593 | switch (Opcode) { | ||||
| 8594 | default: | ||||
| 8595 | llvm_unreachable("Wrong instruction")::llvm::llvm_unreachable_internal("Wrong instruction", "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp" , 8595); | ||||
| 8596 | case ISD::SMAX: | ||||
| 8597 | return LowerToPredicatedOp(Op, DAG, AArch64ISD::SMAX_PRED); | ||||
| 8598 | case ISD::SMIN: | ||||
| 8599 | return LowerToPredicatedOp(Op, DAG, AArch64ISD::SMIN_PRED); | ||||
| 8600 | case ISD::UMAX: | ||||
| 8601 | return LowerToPredicatedOp(Op, DAG, AArch64ISD::UMAX_PRED); | ||||
| 8602 | case ISD::UMIN: | ||||
| 8603 | return LowerToPredicatedOp(Op, DAG, AArch64ISD::UMIN_PRED); | ||||
| 8604 | } | ||||
| 8605 | } | ||||
| 8606 | |||||
| 8607 | SDValue Op0 = Op.getOperand(0); | ||||
| 8608 | SDValue Op1 = Op.getOperand(1); | ||||
| 8609 | SDValue Cond = DAG.getSetCC(DL, VT, Op0, Op1, CC); | ||||
| 8610 | return DAG.getSelect(DL, VT, Cond, Op0, Op1); | ||||
| 8611 | } | ||||
| 8612 | |||||
| 8613 | SDValue AArch64TargetLowering::LowerBitreverse(SDValue Op, | ||||
| 8614 | SelectionDAG &DAG) const { | ||||
| 8615 | EVT VT = Op.getValueType(); | ||||
| 8616 | |||||
| 8617 | if (VT.isScalableVector() || | ||||
| 8618 | useSVEForFixedLengthVectorVT( | ||||
| 8619 | VT, /*OverrideNEON=*/Subtarget->useSVEForFixedLengthVectors())) | ||||
| 8620 | return LowerToPredicatedOp(Op, DAG, AArch64ISD::BITREVERSE_MERGE_PASSTHRU); | ||||
| 8621 | |||||
| 8622 | SDLoc DL(Op); | ||||
| 8623 | SDValue REVB; | ||||
| 8624 | MVT VST; | ||||
| 8625 | |||||
| 8626 | switch (VT.getSimpleVT().SimpleTy) { | ||||
| 8627 | default: | ||||
| 8628 | llvm_unreachable("Invalid type for bitreverse!")::llvm::llvm_unreachable_internal("Invalid type for bitreverse!" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 8628); | ||||
| 8629 | |||||
| 8630 | case MVT::v2i32: { | ||||
| 8631 | VST = MVT::v8i8; | ||||
| 8632 | REVB = DAG.getNode(AArch64ISD::REV32, DL, VST, Op.getOperand(0)); | ||||
| 8633 | |||||
| 8634 | break; | ||||
| 8635 | } | ||||
| 8636 | |||||
| 8637 | case MVT::v4i32: { | ||||
| 8638 | VST = MVT::v16i8; | ||||
| 8639 | REVB = DAG.getNode(AArch64ISD::REV32, DL, VST, Op.getOperand(0)); | ||||
| 8640 | |||||
| 8641 | break; | ||||
| 8642 | } | ||||
| 8643 | |||||
| 8644 | case MVT::v1i64: { | ||||
| 8645 | VST = MVT::v8i8; | ||||
| 8646 | REVB = DAG.getNode(AArch64ISD::REV64, DL, VST, Op.getOperand(0)); | ||||
| 8647 | |||||
| 8648 | break; | ||||
| 8649 | } | ||||
| 8650 | |||||
| 8651 | case MVT::v2i64: { | ||||
| 8652 | VST = MVT::v16i8; | ||||
| 8653 | REVB = DAG.getNode(AArch64ISD::REV64, DL, VST, Op.getOperand(0)); | ||||
| 8654 | |||||
| 8655 | break; | ||||
| 8656 | } | ||||
| 8657 | } | ||||
| 8658 | |||||
| 8659 | return DAG.getNode(AArch64ISD::NVCAST, DL, VT, | ||||
| 8660 | DAG.getNode(ISD::BITREVERSE, DL, VST, REVB)); | ||||
| 8661 | } | ||||
| 8662 | |||||
| 8663 | // Check whether the continuous comparison sequence. | ||||
| 8664 | static bool | ||||
| 8665 | isOrXorChain(SDValue N, unsigned &Num, | ||||
| 8666 | SmallVector<std::pair<SDValue, SDValue>, 16> &WorkList) { | ||||
| 8667 | if (Num == MaxXors) | ||||
| 8668 | return false; | ||||
| 8669 | |||||
| 8670 | // Skip the one-use zext | ||||
| 8671 | if (N->getOpcode() == ISD::ZERO_EXTEND && N->hasOneUse()) | ||||
| 8672 | N = N->getOperand(0); | ||||
| 8673 | |||||
| 8674 | // The leaf node must be XOR | ||||
| 8675 | if (N->getOpcode() == ISD::XOR) { | ||||
| 8676 | WorkList.push_back(std::make_pair(N->getOperand(0), N->getOperand(1))); | ||||
| 8677 | Num++; | ||||
| 8678 | return true; | ||||
| 8679 | } | ||||
| 8680 | |||||
| 8681 | // All the non-leaf nodes must be OR. | ||||
| 8682 | if (N->getOpcode() != ISD::OR || !N->hasOneUse()) | ||||
| 8683 | return false; | ||||
| 8684 | |||||
| 8685 | if (isOrXorChain(N->getOperand(0), Num, WorkList) && | ||||
| 8686 | isOrXorChain(N->getOperand(1), Num, WorkList)) | ||||
| 8687 | return true; | ||||
| 8688 | return false; | ||||
| 8689 | } | ||||
| 8690 | |||||
| 8691 | // Transform chains of ORs and XORs, which usually outlined by memcmp/bmp. | ||||
| 8692 | static SDValue performOrXorChainCombine(SDNode *N, SelectionDAG &DAG) { | ||||
| 8693 | SDValue LHS = N->getOperand(0); | ||||
| 8694 | SDValue RHS = N->getOperand(1); | ||||
| 8695 | SDLoc DL(N); | ||||
| 8696 | EVT VT = N->getValueType(0); | ||||
| 8697 | SmallVector<std::pair<SDValue, SDValue>, 16> WorkList; | ||||
| 8698 | |||||
| 8699 | // Only handle integer compares. | ||||
| 8700 | if (N->getOpcode() != ISD::SETCC) | ||||
| 8701 | return SDValue(); | ||||
| 8702 | |||||
| 8703 | ISD::CondCode Cond = cast<CondCodeSDNode>(N->getOperand(2))->get(); | ||||
| 8704 | // Try to express conjunction "cmp 0 (or (xor A0 A1) (xor B0 B1))" as: | ||||
| 8705 | // sub A0, A1; ccmp B0, B1, 0, eq; cmp inv(Cond) flag | ||||
| 8706 | unsigned NumXors = 0; | ||||
| 8707 | if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && isNullConstant(RHS) && | ||||
| 8708 | LHS->getOpcode() == ISD::OR && LHS->hasOneUse() && | ||||
| 8709 | isOrXorChain(LHS, NumXors, WorkList)) { | ||||
| 8710 | SDValue XOR0, XOR1; | ||||
| 8711 | std::tie(XOR0, XOR1) = WorkList[0]; | ||||
| 8712 | unsigned LogicOp = (Cond == ISD::SETEQ) ? ISD::AND : ISD::OR; | ||||
| 8713 | SDValue Cmp = DAG.getSetCC(DL, VT, XOR0, XOR1, Cond); | ||||
| 8714 | for (unsigned I = 1; I < WorkList.size(); I++) { | ||||
| 8715 | std::tie(XOR0, XOR1) = WorkList[I]; | ||||
| 8716 | SDValue CmpChain = DAG.getSetCC(DL, VT, XOR0, XOR1, Cond); | ||||
| 8717 | Cmp = DAG.getNode(LogicOp, DL, VT, Cmp, CmpChain); | ||||
| 8718 | } | ||||
| 8719 | |||||
| 8720 | // Exit early by inverting the condition, which help reduce indentations. | ||||
| 8721 | return Cmp; | ||||
| 8722 | } | ||||
| 8723 | |||||
| 8724 | return SDValue(); | ||||
| 8725 | } | ||||
| 8726 | |||||
| 8727 | SDValue AArch64TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { | ||||
| 8728 | |||||
| 8729 | if (Op.getValueType().isVector()) | ||||
| 8730 | return LowerVSETCC(Op, DAG); | ||||
| 8731 | |||||
| 8732 | bool IsStrict = Op->isStrictFPOpcode(); | ||||
| 8733 | bool IsSignaling = Op.getOpcode() == ISD::STRICT_FSETCCS; | ||||
| 8734 | unsigned OpNo = IsStrict ? 1 : 0; | ||||
| 8735 | SDValue Chain; | ||||
| 8736 | if (IsStrict) | ||||
| 8737 | Chain = Op.getOperand(0); | ||||
| 8738 | SDValue LHS = Op.getOperand(OpNo + 0); | ||||
| 8739 | SDValue RHS = Op.getOperand(OpNo + 1); | ||||
| 8740 | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(OpNo + 2))->get(); | ||||
| 8741 | SDLoc dl(Op); | ||||
| 8742 | |||||
| 8743 | // We chose ZeroOrOneBooleanContents, so use zero and one. | ||||
| 8744 | EVT VT = Op.getValueType(); | ||||
| 8745 | SDValue TVal = DAG.getConstant(1, dl, VT); | ||||
| 8746 | SDValue FVal = DAG.getConstant(0, dl, VT); | ||||
| 8747 | |||||
| 8748 | // Handle f128 first, since one possible outcome is a normal integer | ||||
| 8749 | // comparison which gets picked up by the next if statement. | ||||
| 8750 | if (LHS.getValueType() == MVT::f128) { | ||||
| 8751 | softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl, LHS, RHS, Chain, | ||||
| 8752 | IsSignaling); | ||||
| 8753 | |||||
| 8754 | // If softenSetCCOperands returned a scalar, use it. | ||||
| 8755 | if (!RHS.getNode()) { | ||||
| 8756 | assert(LHS.getValueType() == Op.getValueType() &&(static_cast <bool> (LHS.getValueType() == Op.getValueType () && "Unexpected setcc expansion!") ? void (0) : __assert_fail ("LHS.getValueType() == Op.getValueType() && \"Unexpected setcc expansion!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 8757, __extension__ __PRETTY_FUNCTION__)) | ||||
| 8757 | "Unexpected setcc expansion!")(static_cast <bool> (LHS.getValueType() == Op.getValueType () && "Unexpected setcc expansion!") ? void (0) : __assert_fail ("LHS.getValueType() == Op.getValueType() && \"Unexpected setcc expansion!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 8757, __extension__ __PRETTY_FUNCTION__)); | ||||
| 8758 | return IsStrict ? DAG.getMergeValues({LHS, Chain}, dl) : LHS; | ||||
| 8759 | } | ||||
| 8760 | } | ||||
| 8761 | |||||
| 8762 | if (LHS.getValueType().isInteger()) { | ||||
| 8763 | SDValue CCVal; | ||||
| 8764 | SDValue Cmp = getAArch64Cmp( | ||||
| 8765 | LHS, RHS, ISD::getSetCCInverse(CC, LHS.getValueType()), CCVal, DAG, dl); | ||||
| 8766 | |||||
| 8767 | // Note that we inverted the condition above, so we reverse the order of | ||||
| 8768 | // the true and false operands here. This will allow the setcc to be | ||||
| 8769 | // matched to a single CSINC instruction. | ||||
| 8770 | SDValue Res = DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CCVal, Cmp); | ||||
| 8771 | return IsStrict ? DAG.getMergeValues({Res, Chain}, dl) : Res; | ||||
| 8772 | } | ||||
| 8773 | |||||
| 8774 | // Now we know we're dealing with FP values. | ||||
| 8775 | assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 ||(static_cast <bool> (LHS.getValueType() == MVT::f16 || LHS .getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64 ) ? void (0) : __assert_fail ("LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 8776, __extension__ __PRETTY_FUNCTION__)) | ||||
| 8776 | LHS.getValueType() == MVT::f64)(static_cast <bool> (LHS.getValueType() == MVT::f16 || LHS .getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64 ) ? void (0) : __assert_fail ("LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 8776, __extension__ __PRETTY_FUNCTION__)); | ||||
| 8777 | |||||
| 8778 | // If that fails, we'll need to perform an FCMP + CSEL sequence. Go ahead | ||||
| 8779 | // and do the comparison. | ||||
| 8780 | SDValue Cmp; | ||||
| 8781 | if (IsStrict) | ||||
| 8782 | Cmp = emitStrictFPComparison(LHS, RHS, dl, DAG, Chain, IsSignaling); | ||||
| 8783 | else | ||||
| 8784 | Cmp = emitComparison(LHS, RHS, CC, dl, DAG); | ||||
| 8785 | |||||
| 8786 | AArch64CC::CondCode CC1, CC2; | ||||
| 8787 | changeFPCCToAArch64CC(CC, CC1, CC2); | ||||
| 8788 | SDValue Res; | ||||
| 8789 | if (CC2 == AArch64CC::AL) { | ||||
| 8790 | changeFPCCToAArch64CC(ISD::getSetCCInverse(CC, LHS.getValueType()), CC1, | ||||
| 8791 | CC2); | ||||
| 8792 | SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32); | ||||
| 8793 | |||||
| 8794 | // Note that we inverted the condition above, so we reverse the order of | ||||
| 8795 | // the true and false operands here. This will allow the setcc to be | ||||
| 8796 | // matched to a single CSINC instruction. | ||||
| 8797 | Res = DAG.getNode(AArch64ISD::CSEL, dl, VT, FVal, TVal, CC1Val, Cmp); | ||||
| 8798 | } else { | ||||
| 8799 | // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't | ||||
| 8800 | // totally clean. Some of them require two CSELs to implement. As is in | ||||
| 8801 | // this case, we emit the first CSEL and then emit a second using the output | ||||
| 8802 | // of the first as the RHS. We're effectively OR'ing the two CC's together. | ||||
| 8803 | |||||
| 8804 | // FIXME: It would be nice if we could match the two CSELs to two CSINCs. | ||||
| 8805 | SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32); | ||||
| 8806 | SDValue CS1 = | ||||
| 8807 | DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp); | ||||
| 8808 | |||||
| 8809 | SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32); | ||||
| 8810 | Res = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp); | ||||
| 8811 | } | ||||
| 8812 | return IsStrict ? DAG.getMergeValues({Res, Cmp.getValue(1)}, dl) : Res; | ||||
| 8813 | } | ||||
| 8814 | |||||
| 8815 | SDValue AArch64TargetLowering::LowerSETCCCARRY(SDValue Op, | ||||
| 8816 | SelectionDAG &DAG) const { | ||||
| 8817 | |||||
| 8818 | SDValue LHS = Op.getOperand(0); | ||||
| 8819 | SDValue RHS = Op.getOperand(1); | ||||
| 8820 | EVT VT = LHS.getValueType(); | ||||
| 8821 | if (VT != MVT::i32 && VT != MVT::i64) | ||||
| 8822 | return SDValue(); | ||||
| 8823 | |||||
| 8824 | SDLoc DL(Op); | ||||
| 8825 | SDValue Carry = Op.getOperand(2); | ||||
| 8826 | // SBCS uses a carry not a borrow so the carry flag should be inverted first. | ||||
| 8827 | SDValue InvCarry = valueToCarryFlag(Carry, DAG, true); | ||||
| 8828 | SDValue Cmp = DAG.getNode(AArch64ISD::SBCS, DL, DAG.getVTList(VT, MVT::Glue), | ||||
| 8829 | LHS, RHS, InvCarry); | ||||
| 8830 | |||||
| 8831 | EVT OpVT = Op.getValueType(); | ||||
| 8832 | SDValue TVal = DAG.getConstant(1, DL, OpVT); | ||||
| 8833 | SDValue FVal = DAG.getConstant(0, DL, OpVT); | ||||
| 8834 | |||||
| 8835 | ISD::CondCode Cond = cast<CondCodeSDNode>(Op.getOperand(3))->get(); | ||||
| 8836 | ISD::CondCode CondInv = ISD::getSetCCInverse(Cond, VT); | ||||
| 8837 | SDValue CCVal = | ||||
| 8838 | DAG.getConstant(changeIntCCToAArch64CC(CondInv), DL, MVT::i32); | ||||
| 8839 | // Inputs are swapped because the condition is inverted. This will allow | ||||
| 8840 | // matching with a single CSINC instruction. | ||||
| 8841 | return DAG.getNode(AArch64ISD::CSEL, DL, OpVT, FVal, TVal, CCVal, | ||||
| 8842 | Cmp.getValue(1)); | ||||
| 8843 | } | ||||
| 8844 | |||||
| 8845 | SDValue AArch64TargetLowering::LowerSELECT_CC(ISD::CondCode CC, SDValue LHS, | ||||
| 8846 | SDValue RHS, SDValue TVal, | ||||
| 8847 | SDValue FVal, const SDLoc &dl, | ||||
| 8848 | SelectionDAG &DAG) const { | ||||
| 8849 | // Handle f128 first, because it will result in a comparison of some RTLIB | ||||
| 8850 | // call result against zero. | ||||
| 8851 | if (LHS.getValueType() == MVT::f128) { | ||||
| 8852 | softenSetCCOperands(DAG, MVT::f128, LHS, RHS, CC, dl, LHS, RHS); | ||||
| 8853 | |||||
| 8854 | // If softenSetCCOperands returned a scalar, we need to compare the result | ||||
| 8855 | // against zero to select between true and false values. | ||||
| 8856 | if (!RHS.getNode()) { | ||||
| 8857 | RHS = DAG.getConstant(0, dl, LHS.getValueType()); | ||||
| 8858 | CC = ISD::SETNE; | ||||
| 8859 | } | ||||
| 8860 | } | ||||
| 8861 | |||||
| 8862 | // Also handle f16, for which we need to do a f32 comparison. | ||||
| 8863 | if (LHS.getValueType() == MVT::f16 && !Subtarget->hasFullFP16()) { | ||||
| 8864 | LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, LHS); | ||||
| 8865 | RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, RHS); | ||||
| 8866 | } | ||||
| 8867 | |||||
| 8868 | // Next, handle integers. | ||||
| 8869 | if (LHS.getValueType().isInteger()) { | ||||
| 8870 | assert((LHS.getValueType() == RHS.getValueType()) &&(static_cast <bool> ((LHS.getValueType() == RHS.getValueType ()) && (LHS.getValueType() == MVT::i32 || LHS.getValueType () == MVT::i64)) ? void (0) : __assert_fail ("(LHS.getValueType() == RHS.getValueType()) && (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64)" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 8871, __extension__ __PRETTY_FUNCTION__)) | ||||
| 8871 | (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64))(static_cast <bool> ((LHS.getValueType() == RHS.getValueType ()) && (LHS.getValueType() == MVT::i32 || LHS.getValueType () == MVT::i64)) ? void (0) : __assert_fail ("(LHS.getValueType() == RHS.getValueType()) && (LHS.getValueType() == MVT::i32 || LHS.getValueType() == MVT::i64)" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 8871, __extension__ __PRETTY_FUNCTION__)); | ||||
| 8872 | |||||
| 8873 | ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FVal); | ||||
| 8874 | ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TVal); | ||||
| 8875 | ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS); | ||||
| 8876 | // Check for sign pattern (SELECT_CC setgt, iN lhs, -1, 1, -1) and transform | ||||
| 8877 | // into (OR (ASR lhs, N-1), 1), which requires less instructions for the | ||||
| 8878 | // supported types. | ||||
| 8879 | if (CC == ISD::SETGT && RHSC && RHSC->isAllOnes() && CTVal && CFVal && | ||||
| 8880 | CTVal->isOne() && CFVal->isAllOnes() && | ||||
| 8881 | LHS.getValueType() == TVal.getValueType()) { | ||||
| 8882 | EVT VT = LHS.getValueType(); | ||||
| 8883 | SDValue Shift = | ||||
| 8884 | DAG.getNode(ISD::SRA, dl, VT, LHS, | ||||
| 8885 | DAG.getConstant(VT.getSizeInBits() - 1, dl, VT)); | ||||
| 8886 | return DAG.getNode(ISD::OR, dl, VT, Shift, DAG.getConstant(1, dl, VT)); | ||||
| 8887 | } | ||||
| 8888 | |||||
| 8889 | unsigned Opcode = AArch64ISD::CSEL; | ||||
| 8890 | |||||
| 8891 | // If both the TVal and the FVal are constants, see if we can swap them in | ||||
| 8892 | // order to for a CSINV or CSINC out of them. | ||||
| 8893 | if (CTVal && CFVal && CTVal->isAllOnes() && CFVal->isZero()) { | ||||
| 8894 | std::swap(TVal, FVal); | ||||
| 8895 | std::swap(CTVal, CFVal); | ||||
| 8896 | CC = ISD::getSetCCInverse(CC, LHS.getValueType()); | ||||
| 8897 | } else if (CTVal && CFVal && CTVal->isOne() && CFVal->isZero()) { | ||||
| 8898 | std::swap(TVal, FVal); | ||||
| 8899 | std::swap(CTVal, CFVal); | ||||
| 8900 | CC = ISD::getSetCCInverse(CC, LHS.getValueType()); | ||||
| 8901 | } else if (TVal.getOpcode() == ISD::XOR) { | ||||
| 8902 | // If TVal is a NOT we want to swap TVal and FVal so that we can match | ||||
| 8903 | // with a CSINV rather than a CSEL. | ||||
| 8904 | if (isAllOnesConstant(TVal.getOperand(1))) { | ||||
| 8905 | std::swap(TVal, FVal); | ||||
| 8906 | std::swap(CTVal, CFVal); | ||||
| 8907 | CC = ISD::getSetCCInverse(CC, LHS.getValueType()); | ||||
| 8908 | } | ||||
| 8909 | } else if (TVal.getOpcode() == ISD::SUB) { | ||||
| 8910 | // If TVal is a negation (SUB from 0) we want to swap TVal and FVal so | ||||
| 8911 | // that we can match with a CSNEG rather than a CSEL. | ||||
| 8912 | if (isNullConstant(TVal.getOperand(0))) { | ||||
| 8913 | std::swap(TVal, FVal); | ||||
| 8914 | std::swap(CTVal, CFVal); | ||||
| 8915 | CC = ISD::getSetCCInverse(CC, LHS.getValueType()); | ||||
| 8916 | } | ||||
| 8917 | } else if (CTVal && CFVal) { | ||||
| 8918 | const int64_t TrueVal = CTVal->getSExtValue(); | ||||
| 8919 | const int64_t FalseVal = CFVal->getSExtValue(); | ||||
| 8920 | bool Swap = false; | ||||
| 8921 | |||||
| 8922 | // If both TVal and FVal are constants, see if FVal is the | ||||
| 8923 | // inverse/negation/increment of TVal and generate a CSINV/CSNEG/CSINC | ||||
| 8924 | // instead of a CSEL in that case. | ||||
| 8925 | if (TrueVal == ~FalseVal) { | ||||
| 8926 | Opcode = AArch64ISD::CSINV; | ||||
| 8927 | } else if (FalseVal > std::numeric_limits<int64_t>::min() && | ||||
| 8928 | TrueVal == -FalseVal) { | ||||
| 8929 | Opcode = AArch64ISD::CSNEG; | ||||
| 8930 | } else if (TVal.getValueType() == MVT::i32) { | ||||
| 8931 | // If our operands are only 32-bit wide, make sure we use 32-bit | ||||
| 8932 | // arithmetic for the check whether we can use CSINC. This ensures that | ||||
| 8933 | // the addition in the check will wrap around properly in case there is | ||||
| 8934 | // an overflow (which would not be the case if we do the check with | ||||
| 8935 | // 64-bit arithmetic). | ||||
| 8936 | const uint32_t TrueVal32 = CTVal->getZExtValue(); | ||||
| 8937 | const uint32_t FalseVal32 = CFVal->getZExtValue(); | ||||
| 8938 | |||||
| 8939 | if ((TrueVal32 == FalseVal32 + 1) || (TrueVal32 + 1 == FalseVal32)) { | ||||
| 8940 | Opcode = AArch64ISD::CSINC; | ||||
| 8941 | |||||
| 8942 | if (TrueVal32 > FalseVal32) { | ||||
| 8943 | Swap = true; | ||||
| 8944 | } | ||||
| 8945 | } | ||||
| 8946 | } else { | ||||
| 8947 | // 64-bit check whether we can use CSINC. | ||||
| 8948 | const uint64_t TrueVal64 = TrueVal; | ||||
| 8949 | const uint64_t FalseVal64 = FalseVal; | ||||
| 8950 | |||||
| 8951 | if ((TrueVal64 == FalseVal64 + 1) || (TrueVal64 + 1 == FalseVal64)) { | ||||
| 8952 | Opcode = AArch64ISD::CSINC; | ||||
| 8953 | |||||
| 8954 | if (TrueVal > FalseVal) { | ||||
| 8955 | Swap = true; | ||||
| 8956 | } | ||||
| 8957 | } | ||||
| 8958 | } | ||||
| 8959 | |||||
| 8960 | // Swap TVal and FVal if necessary. | ||||
| 8961 | if (Swap) { | ||||
| 8962 | std::swap(TVal, FVal); | ||||
| 8963 | std::swap(CTVal, CFVal); | ||||
| 8964 | CC = ISD::getSetCCInverse(CC, LHS.getValueType()); | ||||
| 8965 | } | ||||
| 8966 | |||||
| 8967 | if (Opcode != AArch64ISD::CSEL) { | ||||
| 8968 | // Drop FVal since we can get its value by simply inverting/negating | ||||
| 8969 | // TVal. | ||||
| 8970 | FVal = TVal; | ||||
| 8971 | } | ||||
| 8972 | } | ||||
| 8973 | |||||
| 8974 | // Avoid materializing a constant when possible by reusing a known value in | ||||
| 8975 | // a register. However, don't perform this optimization if the known value | ||||
| 8976 | // is one, zero or negative one in the case of a CSEL. We can always | ||||
| 8977 | // materialize these values using CSINC, CSEL and CSINV with wzr/xzr as the | ||||
| 8978 | // FVal, respectively. | ||||
| 8979 | ConstantSDNode *RHSVal = dyn_cast<ConstantSDNode>(RHS); | ||||
| 8980 | if (Opcode == AArch64ISD::CSEL && RHSVal && !RHSVal->isOne() && | ||||
| 8981 | !RHSVal->isZero() && !RHSVal->isAllOnes()) { | ||||
| 8982 | AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC); | ||||
| 8983 | // Transform "a == C ? C : x" to "a == C ? a : x" and "a != C ? x : C" to | ||||
| 8984 | // "a != C ? x : a" to avoid materializing C. | ||||
| 8985 | if (CTVal && CTVal == RHSVal && AArch64CC == AArch64CC::EQ) | ||||
| 8986 | TVal = LHS; | ||||
| 8987 | else if (CFVal && CFVal == RHSVal && AArch64CC == AArch64CC::NE) | ||||
| 8988 | FVal = LHS; | ||||
| 8989 | } else if (Opcode == AArch64ISD::CSNEG && RHSVal && RHSVal->isOne()) { | ||||
| 8990 | assert (CTVal && CFVal && "Expected constant operands for CSNEG.")(static_cast <bool> (CTVal && CFVal && "Expected constant operands for CSNEG." ) ? void (0) : __assert_fail ("CTVal && CFVal && \"Expected constant operands for CSNEG.\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 8990, __extension__ __PRETTY_FUNCTION__)); | ||||
| 8991 | // Use a CSINV to transform "a == C ? 1 : -1" to "a == C ? a : -1" to | ||||
| 8992 | // avoid materializing C. | ||||
| 8993 | AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC); | ||||
| 8994 | if (CTVal == RHSVal && AArch64CC == AArch64CC::EQ) { | ||||
| 8995 | Opcode = AArch64ISD::CSINV; | ||||
| 8996 | TVal = LHS; | ||||
| 8997 | FVal = DAG.getConstant(0, dl, FVal.getValueType()); | ||||
| 8998 | } | ||||
| 8999 | } | ||||
| 9000 | |||||
| 9001 | SDValue CCVal; | ||||
| 9002 | SDValue Cmp = getAArch64Cmp(LHS, RHS, CC, CCVal, DAG, dl); | ||||
| 9003 | EVT VT = TVal.getValueType(); | ||||
| 9004 | return DAG.getNode(Opcode, dl, VT, TVal, FVal, CCVal, Cmp); | ||||
| 9005 | } | ||||
| 9006 | |||||
| 9007 | // Now we know we're dealing with FP values. | ||||
| 9008 | assert(LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 ||(static_cast <bool> (LHS.getValueType() == MVT::f16 || LHS .getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64 ) ? void (0) : __assert_fail ("LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 9009, __extension__ __PRETTY_FUNCTION__)) | ||||
| 9009 | LHS.getValueType() == MVT::f64)(static_cast <bool> (LHS.getValueType() == MVT::f16 || LHS .getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64 ) ? void (0) : __assert_fail ("LHS.getValueType() == MVT::f16 || LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 9009, __extension__ __PRETTY_FUNCTION__)); | ||||
| 9010 | assert(LHS.getValueType() == RHS.getValueType())(static_cast <bool> (LHS.getValueType() == RHS.getValueType ()) ? void (0) : __assert_fail ("LHS.getValueType() == RHS.getValueType()" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 9010, __extension__ __PRETTY_FUNCTION__)); | ||||
| 9011 | EVT VT = TVal.getValueType(); | ||||
| 9012 | SDValue Cmp = emitComparison(LHS, RHS, CC, dl, DAG); | ||||
| 9013 | |||||
| 9014 | // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally | ||||
| 9015 | // clean. Some of them require two CSELs to implement. | ||||
| 9016 | AArch64CC::CondCode CC1, CC2; | ||||
| 9017 | changeFPCCToAArch64CC(CC, CC1, CC2); | ||||
| 9018 | |||||
| 9019 | if (DAG.getTarget().Options.UnsafeFPMath) { | ||||
| 9020 | // Transform "a == 0.0 ? 0.0 : x" to "a == 0.0 ? a : x" and | ||||
| 9021 | // "a != 0.0 ? x : 0.0" to "a != 0.0 ? x : a" to avoid materializing 0.0. | ||||
| 9022 | ConstantFPSDNode *RHSVal = dyn_cast<ConstantFPSDNode>(RHS); | ||||
| 9023 | if (RHSVal && RHSVal->isZero()) { | ||||
| 9024 | ConstantFPSDNode *CFVal = dyn_cast<ConstantFPSDNode>(FVal); | ||||
| 9025 | ConstantFPSDNode *CTVal = dyn_cast<ConstantFPSDNode>(TVal); | ||||
| 9026 | |||||
| 9027 | if ((CC == ISD::SETEQ || CC == ISD::SETOEQ || CC == ISD::SETUEQ) && | ||||
| 9028 | CTVal && CTVal->isZero() && TVal.getValueType() == LHS.getValueType()) | ||||
| 9029 | TVal = LHS; | ||||
| 9030 | else if ((CC == ISD::SETNE || CC == ISD::SETONE || CC == ISD::SETUNE) && | ||||
| 9031 | CFVal && CFVal->isZero() && | ||||
| 9032 | FVal.getValueType() == LHS.getValueType()) | ||||
| 9033 | FVal = LHS; | ||||
| 9034 | } | ||||
| 9035 | } | ||||
| 9036 | |||||
| 9037 | // Emit first, and possibly only, CSEL. | ||||
| 9038 | SDValue CC1Val = DAG.getConstant(CC1, dl, MVT::i32); | ||||
| 9039 | SDValue CS1 = DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, FVal, CC1Val, Cmp); | ||||
| 9040 | |||||
| 9041 | // If we need a second CSEL, emit it, using the output of the first as the | ||||
| 9042 | // RHS. We're effectively OR'ing the two CC's together. | ||||
| 9043 | if (CC2 != AArch64CC::AL) { | ||||
| 9044 | SDValue CC2Val = DAG.getConstant(CC2, dl, MVT::i32); | ||||
| 9045 | return DAG.getNode(AArch64ISD::CSEL, dl, VT, TVal, CS1, CC2Val, Cmp); | ||||
| 9046 | } | ||||
| 9047 | |||||
| 9048 | // Otherwise, return the output of the first CSEL. | ||||
| 9049 | return CS1; | ||||
| 9050 | } | ||||
| 9051 | |||||
| 9052 | SDValue AArch64TargetLowering::LowerVECTOR_SPLICE(SDValue Op, | ||||
| 9053 | SelectionDAG &DAG) const { | ||||
| 9054 | EVT Ty = Op.getValueType(); | ||||
| 9055 | auto Idx = Op.getConstantOperandAPInt(2); | ||||
| 9056 | int64_t IdxVal = Idx.getSExtValue(); | ||||
| 9057 | assert(Ty.isScalableVector() &&(static_cast <bool> (Ty.isScalableVector() && "Only expect scalable vectors for custom lowering of VECTOR_SPLICE" ) ? void (0) : __assert_fail ("Ty.isScalableVector() && \"Only expect scalable vectors for custom lowering of VECTOR_SPLICE\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 9058, __extension__ __PRETTY_FUNCTION__)) | ||||
| 9058 | "Only expect scalable vectors for custom lowering of VECTOR_SPLICE")(static_cast <bool> (Ty.isScalableVector() && "Only expect scalable vectors for custom lowering of VECTOR_SPLICE" ) ? void (0) : __assert_fail ("Ty.isScalableVector() && \"Only expect scalable vectors for custom lowering of VECTOR_SPLICE\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 9058, __extension__ __PRETTY_FUNCTION__)); | ||||
| 9059 | |||||
| 9060 | // We can use the splice instruction for certain index values where we are | ||||
| 9061 | // able to efficiently generate the correct predicate. The index will be | ||||
| 9062 | // inverted and used directly as the input to the ptrue instruction, i.e. | ||||
| 9063 | // -1 -> vl1, -2 -> vl2, etc. The predicate will then be reversed to get the | ||||
| 9064 | // splice predicate. However, we can only do this if we can guarantee that | ||||
| 9065 | // there are enough elements in the vector, hence we check the index <= min | ||||
| 9066 | // number of elements. | ||||
| 9067 | std::optional<unsigned> PredPattern; | ||||
| 9068 | if (Ty.isScalableVector() && IdxVal < 0 && | ||||
| 9069 | (PredPattern = getSVEPredPatternFromNumElements(std::abs(IdxVal))) != | ||||
| 9070 | std::nullopt) { | ||||
| 9071 | SDLoc DL(Op); | ||||
| 9072 | |||||
| 9073 | // Create a predicate where all but the last -IdxVal elements are false. | ||||
| 9074 | EVT PredVT = Ty.changeVectorElementType(MVT::i1); | ||||
| 9075 | SDValue Pred = getPTrue(DAG, DL, PredVT, *PredPattern); | ||||
| 9076 | Pred = DAG.getNode(ISD::VECTOR_REVERSE, DL, PredVT, Pred); | ||||
| 9077 | |||||
| 9078 | // Now splice the two inputs together using the predicate. | ||||
| 9079 | return DAG.getNode(AArch64ISD::SPLICE, DL, Ty, Pred, Op.getOperand(0), | ||||
| 9080 | Op.getOperand(1)); | ||||
| 9081 | } | ||||
| 9082 | |||||
| 9083 | // This will select to an EXT instruction, which has a maximum immediate | ||||
| 9084 | // value of 255, hence 2048-bits is the maximum value we can lower. | ||||
| 9085 | if (IdxVal >= 0 && | ||||
| 9086 | IdxVal < int64_t(2048 / Ty.getVectorElementType().getSizeInBits())) | ||||
| 9087 | return Op; | ||||
| 9088 | |||||
| 9089 | return SDValue(); | ||||
| 9090 | } | ||||
| 9091 | |||||
| 9092 | SDValue AArch64TargetLowering::LowerSELECT_CC(SDValue Op, | ||||
| 9093 | SelectionDAG &DAG) const { | ||||
| 9094 | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); | ||||
| 9095 | SDValue LHS = Op.getOperand(0); | ||||
| 9096 | SDValue RHS = Op.getOperand(1); | ||||
| 9097 | SDValue TVal = Op.getOperand(2); | ||||
| 9098 | SDValue FVal = Op.getOperand(3); | ||||
| 9099 | SDLoc DL(Op); | ||||
| 9100 | return LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG); | ||||
| 9101 | } | ||||
| 9102 | |||||
| 9103 | SDValue AArch64TargetLowering::LowerSELECT(SDValue Op, | ||||
| 9104 | SelectionDAG &DAG) const { | ||||
| 9105 | SDValue CCVal = Op->getOperand(0); | ||||
| 9106 | SDValue TVal = Op->getOperand(1); | ||||
| 9107 | SDValue FVal = Op->getOperand(2); | ||||
| 9108 | SDLoc DL(Op); | ||||
| 9109 | |||||
| 9110 | EVT Ty = Op.getValueType(); | ||||
| 9111 | if (Ty.isScalableVector()) { | ||||
| 9112 | SDValue TruncCC = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, CCVal); | ||||
| 9113 | MVT PredVT = MVT::getVectorVT(MVT::i1, Ty.getVectorElementCount()); | ||||
| 9114 | SDValue SplatPred = DAG.getNode(ISD::SPLAT_VECTOR, DL, PredVT, TruncCC); | ||||
| 9115 | return DAG.getNode(ISD::VSELECT, DL, Ty, SplatPred, TVal, FVal); | ||||
| 9116 | } | ||||
| 9117 | |||||
| 9118 | if (useSVEForFixedLengthVectorVT(Ty)) { | ||||
| 9119 | // FIXME: Ideally this would be the same as above using i1 types, however | ||||
| 9120 | // for the moment we can't deal with fixed i1 vector types properly, so | ||||
| 9121 | // instead extend the predicate to a result type sized integer vector. | ||||
| 9122 | MVT SplatValVT = MVT::getIntegerVT(Ty.getScalarSizeInBits()); | ||||
| 9123 | MVT PredVT = MVT::getVectorVT(SplatValVT, Ty.getVectorElementCount()); | ||||
| 9124 | SDValue SplatVal = DAG.getSExtOrTrunc(CCVal, DL, SplatValVT); | ||||
| 9125 | SDValue SplatPred = DAG.getNode(ISD::SPLAT_VECTOR, DL, PredVT, SplatVal); | ||||
| 9126 | return DAG.getNode(ISD::VSELECT, DL, Ty, SplatPred, TVal, FVal); | ||||
| 9127 | } | ||||
| 9128 | |||||
| 9129 | // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a select | ||||
| 9130 | // instruction. | ||||
| 9131 | if (ISD::isOverflowIntrOpRes(CCVal)) { | ||||
| 9132 | // Only lower legal XALUO ops. | ||||
| 9133 | if (!DAG.getTargetLoweringInfo().isTypeLegal(CCVal->getValueType(0))) | ||||
| 9134 | return SDValue(); | ||||
| 9135 | |||||
| 9136 | AArch64CC::CondCode OFCC; | ||||
| 9137 | SDValue Value, Overflow; | ||||
| 9138 | std::tie(Value, Overflow) = getAArch64XALUOOp(OFCC, CCVal.getValue(0), DAG); | ||||
| 9139 | SDValue CCVal = DAG.getConstant(OFCC, DL, MVT::i32); | ||||
| 9140 | |||||
| 9141 | return DAG.getNode(AArch64ISD::CSEL, DL, Op.getValueType(), TVal, FVal, | ||||
| 9142 | CCVal, Overflow); | ||||
| 9143 | } | ||||
| 9144 | |||||
| 9145 | // Lower it the same way as we would lower a SELECT_CC node. | ||||
| 9146 | ISD::CondCode CC; | ||||
| 9147 | SDValue LHS, RHS; | ||||
| 9148 | if (CCVal.getOpcode() == ISD::SETCC) { | ||||
| 9149 | LHS = CCVal.getOperand(0); | ||||
| 9150 | RHS = CCVal.getOperand(1); | ||||
| 9151 | CC = cast<CondCodeSDNode>(CCVal.getOperand(2))->get(); | ||||
| 9152 | } else { | ||||
| 9153 | LHS = CCVal; | ||||
| 9154 | RHS = DAG.getConstant(0, DL, CCVal.getValueType()); | ||||
| 9155 | CC = ISD::SETNE; | ||||
| 9156 | } | ||||
| 9157 | |||||
| 9158 | // If we are lowering a f16 and we do not have fullf16, convert to a f32 in | ||||
| 9159 | // order to use FCSELSrrr | ||||
| 9160 | if ((Ty == MVT::f16 || Ty == MVT::bf16) && !Subtarget->hasFullFP16()) { | ||||
| 9161 | TVal = SDValue( | ||||
| 9162 | DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32, | ||||
| 9163 | DAG.getUNDEF(MVT::f32), TVal, | ||||
| 9164 | DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)), | ||||
| 9165 | 0); | ||||
| 9166 | FVal = SDValue( | ||||
| 9167 | DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32, | ||||
| 9168 | DAG.getUNDEF(MVT::f32), FVal, | ||||
| 9169 | DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)), | ||||
| 9170 | 0); | ||||
| 9171 | } | ||||
| 9172 | |||||
| 9173 | SDValue Res = LowerSELECT_CC(CC, LHS, RHS, TVal, FVal, DL, DAG); | ||||
| 9174 | |||||
| 9175 | if ((Ty == MVT::f16 || Ty == MVT::bf16) && !Subtarget->hasFullFP16()) { | ||||
| 9176 | Res = SDValue( | ||||
| 9177 | DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, Ty, Res, | ||||
| 9178 | DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)), | ||||
| 9179 | 0); | ||||
| 9180 | } | ||||
| 9181 | |||||
| 9182 | return Res; | ||||
| 9183 | } | ||||
| 9184 | |||||
| 9185 | SDValue AArch64TargetLowering::LowerJumpTable(SDValue Op, | ||||
| 9186 | SelectionDAG &DAG) const { | ||||
| 9187 | // Jump table entries as PC relative offsets. No additional tweaking | ||||
| 9188 | // is necessary here. Just get the address of the jump table. | ||||
| 9189 | JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); | ||||
| 9190 | |||||
| 9191 | if (getTargetMachine().getCodeModel() == CodeModel::Large && | ||||
| 9192 | !Subtarget->isTargetMachO()) { | ||||
| 9193 | return getAddrLarge(JT, DAG); | ||||
| 9194 | } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) { | ||||
| 9195 | return getAddrTiny(JT, DAG); | ||||
| 9196 | } | ||||
| 9197 | return getAddr(JT, DAG); | ||||
| 9198 | } | ||||
| 9199 | |||||
| 9200 | SDValue AArch64TargetLowering::LowerBR_JT(SDValue Op, | ||||
| 9201 | SelectionDAG &DAG) const { | ||||
| 9202 | // Jump table entries as PC relative offsets. No additional tweaking | ||||
| 9203 | // is necessary here. Just get the address of the jump table. | ||||
| 9204 | SDLoc DL(Op); | ||||
| 9205 | SDValue JT = Op.getOperand(1); | ||||
| 9206 | SDValue Entry = Op.getOperand(2); | ||||
| 9207 | int JTI = cast<JumpTableSDNode>(JT.getNode())->getIndex(); | ||||
| 9208 | |||||
| 9209 | auto *AFI = DAG.getMachineFunction().getInfo<AArch64FunctionInfo>(); | ||||
| 9210 | AFI->setJumpTableEntryInfo(JTI, 4, nullptr); | ||||
| 9211 | |||||
| 9212 | SDNode *Dest = | ||||
| 9213 | DAG.getMachineNode(AArch64::JumpTableDest32, DL, MVT::i64, MVT::i64, JT, | ||||
| 9214 | Entry, DAG.getTargetJumpTable(JTI, MVT::i32)); | ||||
| 9215 | return DAG.getNode(ISD::BRIND, DL, MVT::Other, Op.getOperand(0), | ||||
| 9216 | SDValue(Dest, 0)); | ||||
| 9217 | } | ||||
| 9218 | |||||
| 9219 | SDValue AArch64TargetLowering::LowerConstantPool(SDValue Op, | ||||
| 9220 | SelectionDAG &DAG) const { | ||||
| 9221 | ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); | ||||
| 9222 | |||||
| 9223 | if (getTargetMachine().getCodeModel() == CodeModel::Large) { | ||||
| 9224 | // Use the GOT for the large code model on iOS. | ||||
| 9225 | if (Subtarget->isTargetMachO()) { | ||||
| 9226 | return getGOT(CP, DAG); | ||||
| 9227 | } | ||||
| 9228 | return getAddrLarge(CP, DAG); | ||||
| 9229 | } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) { | ||||
| 9230 | return getAddrTiny(CP, DAG); | ||||
| 9231 | } else { | ||||
| 9232 | return getAddr(CP, DAG); | ||||
| 9233 | } | ||||
| 9234 | } | ||||
| 9235 | |||||
| 9236 | SDValue AArch64TargetLowering::LowerBlockAddress(SDValue Op, | ||||
| 9237 | SelectionDAG &DAG) const { | ||||
| 9238 | BlockAddressSDNode *BA = cast<BlockAddressSDNode>(Op); | ||||
| 9239 | if (getTargetMachine().getCodeModel() == CodeModel::Large && | ||||
| 9240 | !Subtarget->isTargetMachO()) { | ||||
| 9241 | return getAddrLarge(BA, DAG); | ||||
| 9242 | } else if (getTargetMachine().getCodeModel() == CodeModel::Tiny) { | ||||
| 9243 | return getAddrTiny(BA, DAG); | ||||
| 9244 | } | ||||
| 9245 | return getAddr(BA, DAG); | ||||
| 9246 | } | ||||
| 9247 | |||||
| 9248 | SDValue AArch64TargetLowering::LowerDarwin_VASTART(SDValue Op, | ||||
| 9249 | SelectionDAG &DAG) const { | ||||
| 9250 | AArch64FunctionInfo *FuncInfo = | ||||
| 9251 | DAG.getMachineFunction().getInfo<AArch64FunctionInfo>(); | ||||
| 9252 | |||||
| 9253 | SDLoc DL(Op); | ||||
| 9254 | SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), | ||||
| 9255 | getPointerTy(DAG.getDataLayout())); | ||||
| 9256 | FR = DAG.getZExtOrTrunc(FR, DL, getPointerMemTy(DAG.getDataLayout())); | ||||
| 9257 | const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); | ||||
| 9258 | return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1), | ||||
| 9259 | MachinePointerInfo(SV)); | ||||
| 9260 | } | ||||
| 9261 | |||||
| 9262 | SDValue AArch64TargetLowering::LowerWin64_VASTART(SDValue Op, | ||||
| 9263 | SelectionDAG &DAG) const { | ||||
| 9264 | MachineFunction &MF = DAG.getMachineFunction(); | ||||
| 9265 | AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); | ||||
| 9266 | |||||
| 9267 | SDLoc DL(Op); | ||||
| 9268 | SDValue FR; | ||||
| 9269 | if (Subtarget->isWindowsArm64EC()) { | ||||
| 9270 | // With the Arm64EC ABI, we compute the address of the varargs save area | ||||
| 9271 | // relative to x4. For a normal AArch64->AArch64 call, x4 == sp on entry, | ||||
| 9272 | // but calls from an entry thunk can pass in a different address. | ||||
| 9273 | Register VReg = MF.addLiveIn(AArch64::X4, &AArch64::GPR64RegClass); | ||||
| 9274 | SDValue Val = DAG.getCopyFromReg(DAG.getEntryNode(), DL, VReg, MVT::i64); | ||||
| 9275 | uint64_t StackOffset; | ||||
| 9276 | if (FuncInfo->getVarArgsGPRSize() > 0) | ||||
| 9277 | StackOffset = -(uint64_t)FuncInfo->getVarArgsGPRSize(); | ||||
| 9278 | else | ||||
| 9279 | StackOffset = FuncInfo->getVarArgsStackOffset(); | ||||
| 9280 | FR = DAG.getNode(ISD::ADD, DL, MVT::i64, Val, | ||||
| 9281 | DAG.getConstant(StackOffset, DL, MVT::i64)); | ||||
| 9282 | } else { | ||||
| 9283 | FR = DAG.getFrameIndex(FuncInfo->getVarArgsGPRSize() > 0 | ||||
| 9284 | ? FuncInfo->getVarArgsGPRIndex() | ||||
| 9285 | : FuncInfo->getVarArgsStackIndex(), | ||||
| 9286 | getPointerTy(DAG.getDataLayout())); | ||||
| 9287 | } | ||||
| 9288 | const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); | ||||
| 9289 | return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1), | ||||
| 9290 | MachinePointerInfo(SV)); | ||||
| 9291 | } | ||||
| 9292 | |||||
| 9293 | SDValue AArch64TargetLowering::LowerAAPCS_VASTART(SDValue Op, | ||||
| 9294 | SelectionDAG &DAG) const { | ||||
| 9295 | // The layout of the va_list struct is specified in the AArch64 Procedure Call | ||||
| 9296 | // Standard, section B.3. | ||||
| 9297 | MachineFunction &MF = DAG.getMachineFunction(); | ||||
| 9298 | AArch64FunctionInfo *FuncInfo = MF.getInfo<AArch64FunctionInfo>(); | ||||
| 9299 | unsigned PtrSize = Subtarget->isTargetILP32() ? 4 : 8; | ||||
| 9300 | auto PtrMemVT = getPointerMemTy(DAG.getDataLayout()); | ||||
| 9301 | auto PtrVT = getPointerTy(DAG.getDataLayout()); | ||||
| 9302 | SDLoc DL(Op); | ||||
| 9303 | |||||
| 9304 | SDValue Chain = Op.getOperand(0); | ||||
| 9305 | SDValue VAList = Op.getOperand(1); | ||||
| 9306 | const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); | ||||
| 9307 | SmallVector<SDValue, 4> MemOps; | ||||
| 9308 | |||||
| 9309 | // void *__stack at offset 0 | ||||
| 9310 | unsigned Offset = 0; | ||||
| 9311 | SDValue Stack = DAG.getFrameIndex(FuncInfo->getVarArgsStackIndex(), PtrVT); | ||||
| 9312 | Stack = DAG.getZExtOrTrunc(Stack, DL, PtrMemVT); | ||||
| 9313 | MemOps.push_back(DAG.getStore(Chain, DL, Stack, VAList, | ||||
| 9314 | MachinePointerInfo(SV), Align(PtrSize))); | ||||
| 9315 | |||||
| 9316 | // void *__gr_top at offset 8 (4 on ILP32) | ||||
| 9317 | Offset += PtrSize; | ||||
| 9318 | int GPRSize = FuncInfo->getVarArgsGPRSize(); | ||||
| 9319 | if (GPRSize > 0) { | ||||
| 9320 | SDValue GRTop, GRTopAddr; | ||||
| 9321 | |||||
| 9322 | GRTopAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, | ||||
| 9323 | DAG.getConstant(Offset, DL, PtrVT)); | ||||
| 9324 | |||||
| 9325 | GRTop = DAG.getFrameIndex(FuncInfo->getVarArgsGPRIndex(), PtrVT); | ||||
| 9326 | GRTop = DAG.getNode(ISD::ADD, DL, PtrVT, GRTop, | ||||
| 9327 | DAG.getConstant(GPRSize, DL, PtrVT)); | ||||
| 9328 | GRTop = DAG.getZExtOrTrunc(GRTop, DL, PtrMemVT); | ||||
| 9329 | |||||
| 9330 | MemOps.push_back(DAG.getStore(Chain, DL, GRTop, GRTopAddr, | ||||
| 9331 | MachinePointerInfo(SV, Offset), | ||||
| 9332 | Align(PtrSize))); | ||||
| 9333 | } | ||||
| 9334 | |||||
| 9335 | // void *__vr_top at offset 16 (8 on ILP32) | ||||
| 9336 | Offset += PtrSize; | ||||
| 9337 | int FPRSize = FuncInfo->getVarArgsFPRSize(); | ||||
| 9338 | if (FPRSize > 0) { | ||||
| 9339 | SDValue VRTop, VRTopAddr; | ||||
| 9340 | VRTopAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, | ||||
| 9341 | DAG.getConstant(Offset, DL, PtrVT)); | ||||
| 9342 | |||||
| 9343 | VRTop = DAG.getFrameIndex(FuncInfo->getVarArgsFPRIndex(), PtrVT); | ||||
| 9344 | VRTop = DAG.getNode(ISD::ADD, DL, PtrVT, VRTop, | ||||
| 9345 | DAG.getConstant(FPRSize, DL, PtrVT)); | ||||
| 9346 | VRTop = DAG.getZExtOrTrunc(VRTop, DL, PtrMemVT); | ||||
| 9347 | |||||
| 9348 | MemOps.push_back(DAG.getStore(Chain, DL, VRTop, VRTopAddr, | ||||
| 9349 | MachinePointerInfo(SV, Offset), | ||||
| 9350 | Align(PtrSize))); | ||||
| 9351 | } | ||||
| 9352 | |||||
| 9353 | // int __gr_offs at offset 24 (12 on ILP32) | ||||
| 9354 | Offset += PtrSize; | ||||
| 9355 | SDValue GROffsAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, | ||||
| 9356 | DAG.getConstant(Offset, DL, PtrVT)); | ||||
| 9357 | MemOps.push_back( | ||||
| 9358 | DAG.getStore(Chain, DL, DAG.getConstant(-GPRSize, DL, MVT::i32), | ||||
| 9359 | GROffsAddr, MachinePointerInfo(SV, Offset), Align(4))); | ||||
| 9360 | |||||
| 9361 | // int __vr_offs at offset 28 (16 on ILP32) | ||||
| 9362 | Offset += 4; | ||||
| 9363 | SDValue VROffsAddr = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, | ||||
| 9364 | DAG.getConstant(Offset, DL, PtrVT)); | ||||
| 9365 | MemOps.push_back( | ||||
| 9366 | DAG.getStore(Chain, DL, DAG.getConstant(-FPRSize, DL, MVT::i32), | ||||
| 9367 | VROffsAddr, MachinePointerInfo(SV, Offset), Align(4))); | ||||
| 9368 | |||||
| 9369 | return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); | ||||
| 9370 | } | ||||
| 9371 | |||||
| 9372 | SDValue AArch64TargetLowering::LowerVASTART(SDValue Op, | ||||
| 9373 | SelectionDAG &DAG) const { | ||||
| 9374 | MachineFunction &MF = DAG.getMachineFunction(); | ||||
| 9375 | |||||
| 9376 | if (Subtarget->isCallingConvWin64(MF.getFunction().getCallingConv())) | ||||
| 9377 | return LowerWin64_VASTART(Op, DAG); | ||||
| 9378 | else if (Subtarget->isTargetDarwin()) | ||||
| 9379 | return LowerDarwin_VASTART(Op, DAG); | ||||
| 9380 | else | ||||
| 9381 | return LowerAAPCS_VASTART(Op, DAG); | ||||
| 9382 | } | ||||
| 9383 | |||||
| 9384 | SDValue AArch64TargetLowering::LowerVACOPY(SDValue Op, | ||||
| 9385 | SelectionDAG &DAG) const { | ||||
| 9386 | // AAPCS has three pointers and two ints (= 32 bytes), Darwin has single | ||||
| 9387 | // pointer. | ||||
| 9388 | SDLoc DL(Op); | ||||
| 9389 | unsigned PtrSize = Subtarget->isTargetILP32() ? 4 : 8; | ||||
| 9390 | unsigned VaListSize = | ||||
| 9391 | (Subtarget->isTargetDarwin() || Subtarget->isTargetWindows()) | ||||
| 9392 | ? PtrSize | ||||
| 9393 | : Subtarget->isTargetILP32() ? 20 : 32; | ||||
| 9394 | const Value *DestSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); | ||||
| 9395 | const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); | ||||
| 9396 | |||||
| 9397 | return DAG.getMemcpy(Op.getOperand(0), DL, Op.getOperand(1), Op.getOperand(2), | ||||
| 9398 | DAG.getConstant(VaListSize, DL, MVT::i32), | ||||
| 9399 | Align(PtrSize), false, false, false, | ||||
| 9400 | MachinePointerInfo(DestSV), MachinePointerInfo(SrcSV)); | ||||
| 9401 | } | ||||
| 9402 | |||||
| 9403 | SDValue AArch64TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { | ||||
| 9404 | assert(Subtarget->isTargetDarwin() &&(static_cast <bool> (Subtarget->isTargetDarwin() && "automatic va_arg instruction only works on Darwin") ? void ( 0) : __assert_fail ("Subtarget->isTargetDarwin() && \"automatic va_arg instruction only works on Darwin\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 9405, __extension__ __PRETTY_FUNCTION__)) | ||||
| 9405 | "automatic va_arg instruction only works on Darwin")(static_cast <bool> (Subtarget->isTargetDarwin() && "automatic va_arg instruction only works on Darwin") ? void ( 0) : __assert_fail ("Subtarget->isTargetDarwin() && \"automatic va_arg instruction only works on Darwin\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 9405, __extension__ __PRETTY_FUNCTION__)); | ||||
| 9406 | |||||
| 9407 | const Value *V = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); | ||||
| 9408 | EVT VT = Op.getValueType(); | ||||
| 9409 | SDLoc DL(Op); | ||||
| 9410 | SDValue Chain = Op.getOperand(0); | ||||
| 9411 | SDValue Addr = Op.getOperand(1); | ||||
| 9412 | MaybeAlign Align(Op.getConstantOperandVal(3)); | ||||
| 9413 | unsigned MinSlotSize = Subtarget->isTargetILP32() ? 4 : 8; | ||||
| 9414 | auto PtrVT = getPointerTy(DAG.getDataLayout()); | ||||
| 9415 | auto PtrMemVT = getPointerMemTy(DAG.getDataLayout()); | ||||
| 9416 | SDValue VAList = | ||||
| 9417 | DAG.getLoad(PtrMemVT, DL, Chain, Addr, MachinePointerInfo(V)); | ||||
| 9418 | Chain = VAList.getValue(1); | ||||
| 9419 | VAList = DAG.getZExtOrTrunc(VAList, DL, PtrVT); | ||||
| 9420 | |||||
| 9421 | if (VT.isScalableVector()) | ||||
| 9422 | report_fatal_error("Passing SVE types to variadic functions is " | ||||
| 9423 | "currently not supported"); | ||||
| 9424 | |||||
| 9425 | if (Align && *Align > MinSlotSize) { | ||||
| 9426 | VAList = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, | ||||
| 9427 | DAG.getConstant(Align->value() - 1, DL, PtrVT)); | ||||
| 9428 | VAList = DAG.getNode(ISD::AND, DL, PtrVT, VAList, | ||||
| 9429 | DAG.getConstant(-(int64_t)Align->value(), DL, PtrVT)); | ||||
| 9430 | } | ||||
| 9431 | |||||
| 9432 | Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); | ||||
| 9433 | unsigned ArgSize = DAG.getDataLayout().getTypeAllocSize(ArgTy); | ||||
| 9434 | |||||
| 9435 | // Scalar integer and FP values smaller than 64 bits are implicitly extended | ||||
| 9436 | // up to 64 bits. At the very least, we have to increase the striding of the | ||||
| 9437 | // vaargs list to match this, and for FP values we need to introduce | ||||
| 9438 | // FP_ROUND nodes as well. | ||||
| 9439 | if (VT.isInteger() && !VT.isVector()) | ||||
| 9440 | ArgSize = std::max(ArgSize, MinSlotSize); | ||||
| 9441 | bool NeedFPTrunc = false; | ||||
| 9442 | if (VT.isFloatingPoint() && !VT.isVector() && VT != MVT::f64) { | ||||
| 9443 | ArgSize = 8; | ||||
| 9444 | NeedFPTrunc = true; | ||||
| 9445 | } | ||||
| 9446 | |||||
| 9447 | // Increment the pointer, VAList, to the next vaarg | ||||
| 9448 | SDValue VANext = DAG.getNode(ISD::ADD, DL, PtrVT, VAList, | ||||
| 9449 | DAG.getConstant(ArgSize, DL, PtrVT)); | ||||
| 9450 | VANext = DAG.getZExtOrTrunc(VANext, DL, PtrMemVT); | ||||
| 9451 | |||||
| 9452 | // Store the incremented VAList to the legalized pointer | ||||
| 9453 | SDValue APStore = | ||||
| 9454 | DAG.getStore(Chain, DL, VANext, Addr, MachinePointerInfo(V)); | ||||
| 9455 | |||||
| 9456 | // Load the actual argument out of the pointer VAList | ||||
| 9457 | if (NeedFPTrunc) { | ||||
| 9458 | // Load the value as an f64. | ||||
| 9459 | SDValue WideFP = | ||||
| 9460 | DAG.getLoad(MVT::f64, DL, APStore, VAList, MachinePointerInfo()); | ||||
| 9461 | // Round the value down to an f32. | ||||
| 9462 | SDValue NarrowFP = | ||||
| 9463 | DAG.getNode(ISD::FP_ROUND, DL, VT, WideFP.getValue(0), | ||||
| 9464 | DAG.getIntPtrConstant(1, DL, /*isTarget=*/true)); | ||||
| 9465 | SDValue Ops[] = { NarrowFP, WideFP.getValue(1) }; | ||||
| 9466 | // Merge the rounded value with the chain output of the load. | ||||
| 9467 | return DAG.getMergeValues(Ops, DL); | ||||
| 9468 | } | ||||
| 9469 | |||||
| 9470 | return DAG.getLoad(VT, DL, APStore, VAList, MachinePointerInfo()); | ||||
| 9471 | } | ||||
| 9472 | |||||
| 9473 | SDValue AArch64TargetLowering::LowerFRAMEADDR(SDValue Op, | ||||
| 9474 | SelectionDAG &DAG) const { | ||||
| 9475 | MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); | ||||
| 9476 | MFI.setFrameAddressIsTaken(true); | ||||
| 9477 | |||||
| 9478 | EVT VT = Op.getValueType(); | ||||
| 9479 | SDLoc DL(Op); | ||||
| 9480 | unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | ||||
| 9481 | SDValue FrameAddr = | ||||
| 9482 | DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, MVT::i64); | ||||
| 9483 | while (Depth--) | ||||
| 9484 | FrameAddr = DAG.getLoad(VT, DL, DAG.getEntryNode(), FrameAddr, | ||||
| 9485 | MachinePointerInfo()); | ||||
| 9486 | |||||
| 9487 | if (Subtarget->isTargetILP32()) | ||||
| 9488 | FrameAddr = DAG.getNode(ISD::AssertZext, DL, MVT::i64, FrameAddr, | ||||
| 9489 | DAG.getValueType(VT)); | ||||
| 9490 | |||||
| 9491 | return FrameAddr; | ||||
| 9492 | } | ||||
| 9493 | |||||
| 9494 | SDValue AArch64TargetLowering::LowerSPONENTRY(SDValue Op, | ||||
| 9495 | SelectionDAG &DAG) const { | ||||
| 9496 | MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); | ||||
| 9497 | |||||
| 9498 | EVT VT = getPointerTy(DAG.getDataLayout()); | ||||
| 9499 | SDLoc DL(Op); | ||||
| 9500 | int FI = MFI.CreateFixedObject(4, 0, false); | ||||
| 9501 | return DAG.getFrameIndex(FI, VT); | ||||
| 9502 | } | ||||
| 9503 | |||||
| 9504 | #define GET_REGISTER_MATCHER | ||||
| 9505 | #include "AArch64GenAsmMatcher.inc" | ||||
| 9506 | |||||
| 9507 | // FIXME? Maybe this could be a TableGen attribute on some registers and | ||||
| 9508 | // this table could be generated automatically from RegInfo. | ||||
| 9509 | Register AArch64TargetLowering:: | ||||
| 9510 | getRegisterByName(const char* RegName, LLT VT, const MachineFunction &MF) const { | ||||
| 9511 | Register Reg = MatchRegisterName(RegName); | ||||
| 9512 | if (AArch64::X1 <= Reg && Reg <= AArch64::X28) { | ||||
| 9513 | const MCRegisterInfo *MRI = Subtarget->getRegisterInfo(); | ||||
| 9514 | unsigned DwarfRegNum = MRI->getDwarfRegNum(Reg, false); | ||||
| 9515 | if (!Subtarget->isXRegisterReserved(DwarfRegNum)) | ||||
| 9516 | Reg = 0; | ||||
| 9517 | } | ||||
| 9518 | if (Reg) | ||||
| 9519 | return Reg; | ||||
| 9520 | report_fatal_error(Twine("Invalid register name \"" | ||||
| 9521 | + StringRef(RegName) + "\".")); | ||||
| 9522 | } | ||||
| 9523 | |||||
| 9524 | SDValue AArch64TargetLowering::LowerADDROFRETURNADDR(SDValue Op, | ||||
| 9525 | SelectionDAG &DAG) const { | ||||
| 9526 | DAG.getMachineFunction().getFrameInfo().setFrameAddressIsTaken(true); | ||||
| 9527 | |||||
| 9528 | EVT VT = Op.getValueType(); | ||||
| 9529 | SDLoc DL(Op); | ||||
| 9530 | |||||
| 9531 | SDValue FrameAddr = | ||||
| 9532 | DAG.getCopyFromReg(DAG.getEntryNode(), DL, AArch64::FP, VT); | ||||
| 9533 | SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout())); | ||||
| 9534 | |||||
| 9535 | return DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset); | ||||
| 9536 | } | ||||
| 9537 | |||||
| 9538 | SDValue AArch64TargetLowering::LowerRETURNADDR(SDValue Op, | ||||
| 9539 | SelectionDAG &DAG) const { | ||||
| 9540 | MachineFunction &MF = DAG.getMachineFunction(); | ||||
| 9541 | MachineFrameInfo &MFI = MF.getFrameInfo(); | ||||
| 9542 | MFI.setReturnAddressIsTaken(true); | ||||
| 9543 | |||||
| 9544 | EVT VT = Op.getValueType(); | ||||
| 9545 | SDLoc DL(Op); | ||||
| 9546 | unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | ||||
| 9547 | SDValue ReturnAddress; | ||||
| 9548 | if (Depth) { | ||||
| 9549 | SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); | ||||
| 9550 | SDValue Offset = DAG.getConstant(8, DL, getPointerTy(DAG.getDataLayout())); | ||||
| 9551 | ReturnAddress = DAG.getLoad( | ||||
| 9552 | VT, DL, DAG.getEntryNode(), | ||||
| 9553 | DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset), MachinePointerInfo()); | ||||
| 9554 | } else { | ||||
| 9555 | // Return LR, which contains the return address. Mark it an implicit | ||||
| 9556 | // live-in. | ||||
| 9557 | Register Reg = MF.addLiveIn(AArch64::LR, &AArch64::GPR64RegClass); | ||||
| 9558 | ReturnAddress = DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT); | ||||
| 9559 | } | ||||
| 9560 | |||||
| 9561 | // The XPACLRI instruction assembles to a hint-space instruction before | ||||
| 9562 | // Armv8.3-A therefore this instruction can be safely used for any pre | ||||
| 9563 | // Armv8.3-A architectures. On Armv8.3-A and onwards XPACI is available so use | ||||
| 9564 | // that instead. | ||||
| 9565 | SDNode *St; | ||||
| 9566 | if (Subtarget->hasPAuth()) { | ||||
| 9567 | St = DAG.getMachineNode(AArch64::XPACI, DL, VT, ReturnAddress); | ||||
| 9568 | } else { | ||||
| 9569 | // XPACLRI operates on LR therefore we must move the operand accordingly. | ||||
| 9570 | SDValue Chain = | ||||
| 9571 | DAG.getCopyToReg(DAG.getEntryNode(), DL, AArch64::LR, ReturnAddress); | ||||
| 9572 | St = DAG.getMachineNode(AArch64::XPACLRI, DL, VT, Chain); | ||||
| 9573 | } | ||||
| 9574 | return SDValue(St, 0); | ||||
| 9575 | } | ||||
| 9576 | |||||
| 9577 | /// LowerShiftParts - Lower SHL_PARTS/SRA_PARTS/SRL_PARTS, which returns two | ||||
| 9578 | /// i32 values and take a 2 x i32 value to shift plus a shift amount. | ||||
| 9579 | SDValue AArch64TargetLowering::LowerShiftParts(SDValue Op, | ||||
| 9580 | SelectionDAG &DAG) const { | ||||
| 9581 | SDValue Lo, Hi; | ||||
| 9582 | expandShiftParts(Op.getNode(), Lo, Hi, DAG); | ||||
| 9583 | return DAG.getMergeValues({Lo, Hi}, SDLoc(Op)); | ||||
| 9584 | } | ||||
| 9585 | |||||
| 9586 | bool AArch64TargetLowering::isOffsetFoldingLegal( | ||||
| 9587 | const GlobalAddressSDNode *GA) const { | ||||
| 9588 | // Offsets are folded in the DAG combine rather than here so that we can | ||||
| 9589 | // intelligently choose an offset based on the uses. | ||||
| 9590 | return false; | ||||
| 9591 | } | ||||
| 9592 | |||||
| 9593 | bool AArch64TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, | ||||
| 9594 | bool OptForSize) const { | ||||
| 9595 | bool IsLegal = false; | ||||
| 9596 | // We can materialize #0.0 as fmov $Rd, XZR for 64-bit, 32-bit cases, and | ||||
| 9597 | // 16-bit case when target has full fp16 support. | ||||
| 9598 | // FIXME: We should be able to handle f128 as well with a clever lowering. | ||||
| 9599 | const APInt ImmInt = Imm.bitcastToAPInt(); | ||||
| 9600 | if (VT == MVT::f64) | ||||
| 9601 | IsLegal = AArch64_AM::getFP64Imm(ImmInt) != -1 || Imm.isPosZero(); | ||||
| 9602 | else if (VT == MVT::f32) | ||||
| 9603 | IsLegal = AArch64_AM::getFP32Imm(ImmInt) != -1 || Imm.isPosZero(); | ||||
| 9604 | else if (VT == MVT::f16 && Subtarget->hasFullFP16()) | ||||
| 9605 | IsLegal = AArch64_AM::getFP16Imm(ImmInt) != -1 || Imm.isPosZero(); | ||||
| 9606 | // TODO: fmov h0, w0 is also legal, however on't have an isel pattern to | ||||
| 9607 | // generate that fmov. | ||||
| 9608 | |||||
| 9609 | // If we can not materialize in immediate field for fmov, check if the | ||||
| 9610 | // value can be encoded as the immediate operand of a logical instruction. | ||||
| 9611 | // The immediate value will be created with either MOVZ, MOVN, or ORR. | ||||
| 9612 | if (!IsLegal && (VT == MVT::f64 || VT == MVT::f32)) { | ||||
| 9613 | // The cost is actually exactly the same for mov+fmov vs. adrp+ldr; | ||||
| 9614 | // however the mov+fmov sequence is always better because of the reduced | ||||
| 9615 | // cache pressure. The timings are still the same if you consider | ||||
| 9616 | // movw+movk+fmov vs. adrp+ldr (it's one instruction longer, but the | ||||
| 9617 | // movw+movk is fused). So we limit up to 2 instrdduction at most. | ||||
| 9618 | SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn; | ||||
| 9619 | AArch64_IMM::expandMOVImm(ImmInt.getZExtValue(), VT.getSizeInBits(), | ||||
| 9620 | Insn); | ||||
| 9621 | unsigned Limit = (OptForSize ? 1 : (Subtarget->hasFuseLiterals() ? 5 : 2)); | ||||
| 9622 | IsLegal = Insn.size() <= Limit; | ||||
| 9623 | } | ||||
| 9624 | |||||
| 9625 | LLVM_DEBUG(dbgs() << (IsLegal ? "Legal " : "Illegal ") << VT.getEVTString()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << (IsLegal ? "Legal " : "Illegal " ) << VT.getEVTString() << " imm value: "; Imm.dump ();; } } while (false) | ||||
| 9626 | << " imm value: "; Imm.dump();)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << (IsLegal ? "Legal " : "Illegal " ) << VT.getEVTString() << " imm value: "; Imm.dump ();; } } while (false); | ||||
| 9627 | return IsLegal; | ||||
| 9628 | } | ||||
| 9629 | |||||
| 9630 | //===----------------------------------------------------------------------===// | ||||
| 9631 | // AArch64 Optimization Hooks | ||||
| 9632 | //===----------------------------------------------------------------------===// | ||||
| 9633 | |||||
| 9634 | static SDValue getEstimate(const AArch64Subtarget *ST, unsigned Opcode, | ||||
| 9635 | SDValue Operand, SelectionDAG &DAG, | ||||
| 9636 | int &ExtraSteps) { | ||||
| 9637 | EVT VT = Operand.getValueType(); | ||||
| 9638 | if ((ST->hasNEON() && | ||||
| 9639 | (VT == MVT::f64 || VT == MVT::v1f64 || VT == MVT::v2f64 || | ||||
| 9640 | VT == MVT::f32 || VT == MVT::v1f32 || VT == MVT::v2f32 || | ||||
| 9641 | VT == MVT::v4f32)) || | ||||
| 9642 | (ST->hasSVE() && | ||||
| 9643 | (VT == MVT::nxv8f16 || VT == MVT::nxv4f32 || VT == MVT::nxv2f64))) { | ||||
| 9644 | if (ExtraSteps == TargetLoweringBase::ReciprocalEstimate::Unspecified) | ||||
| 9645 | // For the reciprocal estimates, convergence is quadratic, so the number | ||||
| 9646 | // of digits is doubled after each iteration. In ARMv8, the accuracy of | ||||
| 9647 | // the initial estimate is 2^-8. Thus the number of extra steps to refine | ||||
| 9648 | // the result for float (23 mantissa bits) is 2 and for double (52 | ||||
| 9649 | // mantissa bits) is 3. | ||||
| 9650 | ExtraSteps = VT.getScalarType() == MVT::f64 ? 3 : 2; | ||||
| 9651 | |||||
| 9652 | return DAG.getNode(Opcode, SDLoc(Operand), VT, Operand); | ||||
| 9653 | } | ||||
| 9654 | |||||
| 9655 | return SDValue(); | ||||
| 9656 | } | ||||
| 9657 | |||||
| 9658 | SDValue | ||||
| 9659 | AArch64TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, | ||||
| 9660 | const DenormalMode &Mode) const { | ||||
| 9661 | SDLoc DL(Op); | ||||
| 9662 | EVT VT = Op.getValueType(); | ||||
| 9663 | EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); | ||||
| 9664 | SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); | ||||
| 9665 | return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); | ||||
| 9666 | } | ||||
| 9667 | |||||
| 9668 | SDValue | ||||
| 9669 | AArch64TargetLowering::getSqrtResultForDenormInput(SDValue Op, | ||||
| 9670 | SelectionDAG &DAG) const { | ||||
| 9671 | return Op; | ||||
| 9672 | } | ||||
| 9673 | |||||
| 9674 | SDValue AArch64TargetLowering::getSqrtEstimate(SDValue Operand, | ||||
| 9675 | SelectionDAG &DAG, int Enabled, | ||||
| 9676 | int &ExtraSteps, | ||||
| 9677 | bool &UseOneConst, | ||||
| 9678 | bool Reciprocal) const { | ||||
| 9679 | if (Enabled == ReciprocalEstimate::Enabled || | ||||
| 9680 | (Enabled == ReciprocalEstimate::Unspecified && Subtarget->useRSqrt())) | ||||
| 9681 | if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRSQRTE, Operand, | ||||
| 9682 | DAG, ExtraSteps)) { | ||||
| 9683 | SDLoc DL(Operand); | ||||
| 9684 | EVT VT = Operand.getValueType(); | ||||
| 9685 | |||||
| 9686 | SDNodeFlags Flags; | ||||
| 9687 | Flags.setAllowReassociation(true); | ||||
| 9688 | |||||
| 9689 | // Newton reciprocal square root iteration: E * 0.5 * (3 - X * E^2) | ||||
| 9690 | // AArch64 reciprocal square root iteration instruction: 0.5 * (3 - M * N) | ||||
| 9691 | for (int i = ExtraSteps; i > 0; --i) { | ||||
| 9692 | SDValue Step = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Estimate, | ||||
| 9693 | Flags); | ||||
| 9694 | Step = DAG.getNode(AArch64ISD::FRSQRTS, DL, VT, Operand, Step, Flags); | ||||
| 9695 | Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, Flags); | ||||
| 9696 | } | ||||
| 9697 | if (!Reciprocal) | ||||
| 9698 | Estimate = DAG.getNode(ISD::FMUL, DL, VT, Operand, Estimate, Flags); | ||||
| 9699 | |||||
| 9700 | ExtraSteps = 0; | ||||
| 9701 | return Estimate; | ||||
| 9702 | } | ||||
| 9703 | |||||
| 9704 | return SDValue(); | ||||
| 9705 | } | ||||
| 9706 | |||||
| 9707 | SDValue AArch64TargetLowering::getRecipEstimate(SDValue Operand, | ||||
| 9708 | SelectionDAG &DAG, int Enabled, | ||||
| 9709 | int &ExtraSteps) const { | ||||
| 9710 | if (Enabled == ReciprocalEstimate::Enabled) | ||||
| 9711 | if (SDValue Estimate = getEstimate(Subtarget, AArch64ISD::FRECPE, Operand, | ||||
| 9712 | DAG, ExtraSteps)) { | ||||
| 9713 | SDLoc DL(Operand); | ||||
| 9714 | EVT VT = Operand.getValueType(); | ||||
| 9715 | |||||
| 9716 | SDNodeFlags Flags; | ||||
| 9717 | Flags.setAllowReassociation(true); | ||||
| 9718 | |||||
| 9719 | // Newton reciprocal iteration: E * (2 - X * E) | ||||
| 9720 | // AArch64 reciprocal iteration instruction: (2 - M * N) | ||||
| 9721 | for (int i = ExtraSteps; i > 0; --i) { | ||||
| 9722 | SDValue Step = DAG.getNode(AArch64ISD::FRECPS, DL, VT, Operand, | ||||
| 9723 | Estimate, Flags); | ||||
| 9724 | Estimate = DAG.getNode(ISD::FMUL, DL, VT, Estimate, Step, Flags); | ||||
| 9725 | } | ||||
| 9726 | |||||
| 9727 | ExtraSteps = 0; | ||||
| 9728 | return Estimate; | ||||
| 9729 | } | ||||
| 9730 | |||||
| 9731 | return SDValue(); | ||||
| 9732 | } | ||||
| 9733 | |||||
| 9734 | //===----------------------------------------------------------------------===// | ||||
| 9735 | // AArch64 Inline Assembly Support | ||||
| 9736 | //===----------------------------------------------------------------------===// | ||||
| 9737 | |||||
| 9738 | // Table of Constraints | ||||
| 9739 | // TODO: This is the current set of constraints supported by ARM for the | ||||
| 9740 | // compiler, not all of them may make sense. | ||||
| 9741 | // | ||||
| 9742 | // r - A general register | ||||
| 9743 | // w - An FP/SIMD register of some size in the range v0-v31 | ||||
| 9744 | // x - An FP/SIMD register of some size in the range v0-v15 | ||||
| 9745 | // I - Constant that can be used with an ADD instruction | ||||
| 9746 | // J - Constant that can be used with a SUB instruction | ||||
| 9747 | // K - Constant that can be used with a 32-bit logical instruction | ||||
| 9748 | // L - Constant that can be used with a 64-bit logical instruction | ||||
| 9749 | // M - Constant that can be used as a 32-bit MOV immediate | ||||
| 9750 | // N - Constant that can be used as a 64-bit MOV immediate | ||||
| 9751 | // Q - A memory reference with base register and no offset | ||||
| 9752 | // S - A symbolic address | ||||
| 9753 | // Y - Floating point constant zero | ||||
| 9754 | // Z - Integer constant zero | ||||
| 9755 | // | ||||
| 9756 | // Note that general register operands will be output using their 64-bit x | ||||
| 9757 | // register name, whatever the size of the variable, unless the asm operand | ||||
| 9758 | // is prefixed by the %w modifier. Floating-point and SIMD register operands | ||||
| 9759 | // will be output with the v prefix unless prefixed by the %b, %h, %s, %d or | ||||
| 9760 | // %q modifier. | ||||
| 9761 | const char *AArch64TargetLowering::LowerXConstraint(EVT ConstraintVT) const { | ||||
| 9762 | // At this point, we have to lower this constraint to something else, so we | ||||
| 9763 | // lower it to an "r" or "w". However, by doing this we will force the result | ||||
| 9764 | // to be in register, while the X constraint is much more permissive. | ||||
| 9765 | // | ||||
| 9766 | // Although we are correct (we are free to emit anything, without | ||||
| 9767 | // constraints), we might break use cases that would expect us to be more | ||||
| 9768 | // efficient and emit something else. | ||||
| 9769 | if (!Subtarget->hasFPARMv8()) | ||||
| 9770 | return "r"; | ||||
| 9771 | |||||
| 9772 | if (ConstraintVT.isFloatingPoint()) | ||||
| 9773 | return "w"; | ||||
| 9774 | |||||
| 9775 | if (ConstraintVT.isVector() && | ||||
| 9776 | (ConstraintVT.getSizeInBits() == 64 || | ||||
| 9777 | ConstraintVT.getSizeInBits() == 128)) | ||||
| 9778 | return "w"; | ||||
| 9779 | |||||
| 9780 | return "r"; | ||||
| 9781 | } | ||||
| 9782 | |||||
| 9783 | enum PredicateConstraint { | ||||
| 9784 | Upl, | ||||
| 9785 | Upa, | ||||
| 9786 | Invalid | ||||
| 9787 | }; | ||||
| 9788 | |||||
| 9789 | static PredicateConstraint parsePredicateConstraint(StringRef Constraint) { | ||||
| 9790 | PredicateConstraint P = PredicateConstraint::Invalid; | ||||
| 9791 | if (Constraint == "Upa") | ||||
| 9792 | P = PredicateConstraint::Upa; | ||||
| 9793 | if (Constraint == "Upl") | ||||
| 9794 | P = PredicateConstraint::Upl; | ||||
| 9795 | return P; | ||||
| 9796 | } | ||||
| 9797 | |||||
| 9798 | /// getConstraintType - Given a constraint letter, return the type of | ||||
| 9799 | /// constraint it is for this target. | ||||
| 9800 | AArch64TargetLowering::ConstraintType | ||||
| 9801 | AArch64TargetLowering::getConstraintType(StringRef Constraint) const { | ||||
| 9802 | if (Constraint.size() == 1) { | ||||
| 9803 | switch (Constraint[0]) { | ||||
| 9804 | default: | ||||
| 9805 | break; | ||||
| 9806 | case 'x': | ||||
| 9807 | case 'w': | ||||
| 9808 | case 'y': | ||||
| 9809 | return C_RegisterClass; | ||||
| 9810 | // An address with a single base register. Due to the way we | ||||
| 9811 | // currently handle addresses it is the same as 'r'. | ||||
| 9812 | case 'Q': | ||||
| 9813 | return C_Memory; | ||||
| 9814 | case 'I': | ||||
| 9815 | case 'J': | ||||
| 9816 | case 'K': | ||||
| 9817 | case 'L': | ||||
| 9818 | case 'M': | ||||
| 9819 | case 'N': | ||||
| 9820 | case 'Y': | ||||
| 9821 | case 'Z': | ||||
| 9822 | return C_Immediate; | ||||
| 9823 | case 'z': | ||||
| 9824 | case 'S': // A symbolic address | ||||
| 9825 | return C_Other; | ||||
| 9826 | } | ||||
| 9827 | } else if (parsePredicateConstraint(Constraint) != | ||||
| 9828 | PredicateConstraint::Invalid) | ||||
| 9829 | return C_RegisterClass; | ||||
| 9830 | return TargetLowering::getConstraintType(Constraint); | ||||
| 9831 | } | ||||
| 9832 | |||||
| 9833 | /// Examine constraint type and operand type and determine a weight value. | ||||
| 9834 | /// This object must already have been set up with the operand type | ||||
| 9835 | /// and the current alternative constraint selected. | ||||
| 9836 | TargetLowering::ConstraintWeight | ||||
| 9837 | AArch64TargetLowering::getSingleConstraintMatchWeight( | ||||
| 9838 | AsmOperandInfo &info, const char *constraint) const { | ||||
| 9839 | ConstraintWeight weight = CW_Invalid; | ||||
| 9840 | Value *CallOperandVal = info.CallOperandVal; | ||||
| 9841 | // If we don't have a value, we can't do a match, | ||||
| 9842 | // but allow it at the lowest weight. | ||||
| 9843 | if (!CallOperandVal) | ||||
| 9844 | return CW_Default; | ||||
| 9845 | Type *type = CallOperandVal->getType(); | ||||
| 9846 | // Look at the constraint type. | ||||
| 9847 | switch (*constraint) { | ||||
| 9848 | default: | ||||
| 9849 | weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); | ||||
| 9850 | break; | ||||
| 9851 | case 'x': | ||||
| 9852 | case 'w': | ||||
| 9853 | case 'y': | ||||
| 9854 | if (type->isFloatingPointTy() || type->isVectorTy()) | ||||
| 9855 | weight = CW_Register; | ||||
| 9856 | break; | ||||
| 9857 | case 'z': | ||||
| 9858 | weight = CW_Constant; | ||||
| 9859 | break; | ||||
| 9860 | case 'U': | ||||
| 9861 | if (parsePredicateConstraint(constraint) != PredicateConstraint::Invalid) | ||||
| 9862 | weight = CW_Register; | ||||
| 9863 | break; | ||||
| 9864 | } | ||||
| 9865 | return weight; | ||||
| 9866 | } | ||||
| 9867 | |||||
| 9868 | std::pair<unsigned, const TargetRegisterClass *> | ||||
| 9869 | AArch64TargetLowering::getRegForInlineAsmConstraint( | ||||
| 9870 | const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { | ||||
| 9871 | if (Constraint.size() == 1) { | ||||
| 9872 | switch (Constraint[0]) { | ||||
| 9873 | case 'r': | ||||
| 9874 | if (VT.isScalableVector()) | ||||
| 9875 | return std::make_pair(0U, nullptr); | ||||
| 9876 | if (Subtarget->hasLS64() && VT.getSizeInBits() == 512) | ||||
| 9877 | return std::make_pair(0U, &AArch64::GPR64x8ClassRegClass); | ||||
| 9878 | if (VT.getFixedSizeInBits() == 64) | ||||
| 9879 | return std::make_pair(0U, &AArch64::GPR64commonRegClass); | ||||
| 9880 | return std::make_pair(0U, &AArch64::GPR32commonRegClass); | ||||
| 9881 | case 'w': { | ||||
| 9882 | if (!Subtarget->hasFPARMv8()) | ||||
| 9883 | break; | ||||
| 9884 | if (VT.isScalableVector()) { | ||||
| 9885 | if (VT.getVectorElementType() != MVT::i1) | ||||
| 9886 | return std::make_pair(0U, &AArch64::ZPRRegClass); | ||||
| 9887 | return std::make_pair(0U, nullptr); | ||||
| 9888 | } | ||||
| 9889 | uint64_t VTSize = VT.getFixedSizeInBits(); | ||||
| 9890 | if (VTSize == 16) | ||||
| 9891 | return std::make_pair(0U, &AArch64::FPR16RegClass); | ||||
| 9892 | if (VTSize == 32) | ||||
| 9893 | return std::make_pair(0U, &AArch64::FPR32RegClass); | ||||
| 9894 | if (VTSize == 64) | ||||
| 9895 | return std::make_pair(0U, &AArch64::FPR64RegClass); | ||||
| 9896 | if (VTSize == 128) | ||||
| 9897 | return std::make_pair(0U, &AArch64::FPR128RegClass); | ||||
| 9898 | break; | ||||
| 9899 | } | ||||
| 9900 | // The instructions that this constraint is designed for can | ||||
| 9901 | // only take 128-bit registers so just use that regclass. | ||||
| 9902 | case 'x': | ||||
| 9903 | if (!Subtarget->hasFPARMv8()) | ||||
| 9904 | break; | ||||
| 9905 | if (VT.isScalableVector()) | ||||
| 9906 | return std::make_pair(0U, &AArch64::ZPR_4bRegClass); | ||||
| 9907 | if (VT.getSizeInBits() == 128) | ||||
| 9908 | return std::make_pair(0U, &AArch64::FPR128_loRegClass); | ||||
| 9909 | break; | ||||
| 9910 | case 'y': | ||||
| 9911 | if (!Subtarget->hasFPARMv8()) | ||||
| 9912 | break; | ||||
| 9913 | if (VT.isScalableVector()) | ||||
| 9914 | return std::make_pair(0U, &AArch64::ZPR_3bRegClass); | ||||
| 9915 | break; | ||||
| 9916 | } | ||||
| 9917 | } else { | ||||
| 9918 | PredicateConstraint PC = parsePredicateConstraint(Constraint); | ||||
| 9919 | if (PC != PredicateConstraint::Invalid) { | ||||
| 9920 | if (!VT.isScalableVector() || VT.getVectorElementType() != MVT::i1) | ||||
| 9921 | return std::make_pair(0U, nullptr); | ||||
| 9922 | bool restricted = (PC == PredicateConstraint::Upl); | ||||
| 9923 | return restricted ? std::make_pair(0U, &AArch64::PPR_3bRegClass) | ||||
| 9924 | : std::make_pair(0U, &AArch64::PPRRegClass); | ||||
| 9925 | } | ||||
| 9926 | } | ||||
| 9927 | if (StringRef("{cc}").equals_insensitive(Constraint)) | ||||
| 9928 | return std::make_pair(unsigned(AArch64::NZCV), &AArch64::CCRRegClass); | ||||
| 9929 | |||||
| 9930 | // Use the default implementation in TargetLowering to convert the register | ||||
| 9931 | // constraint into a member of a register class. | ||||
| 9932 | std::pair<unsigned, const TargetRegisterClass *> Res; | ||||
| 9933 | Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); | ||||
| 9934 | |||||
| 9935 | // Not found as a standard register? | ||||
| 9936 | if (!Res.second) { | ||||
| 9937 | unsigned Size = Constraint.size(); | ||||
| 9938 | if ((Size == 4 || Size == 5) && Constraint[0] == '{' && | ||||
| 9939 | tolower(Constraint[1]) == 'v' && Constraint[Size - 1] == '}') { | ||||
| 9940 | int RegNo; | ||||
| 9941 | bool Failed = Constraint.slice(2, Size - 1).getAsInteger(10, RegNo); | ||||
| 9942 | if (!Failed && RegNo >= 0 && RegNo <= 31) { | ||||
| 9943 | // v0 - v31 are aliases of q0 - q31 or d0 - d31 depending on size. | ||||
| 9944 | // By default we'll emit v0-v31 for this unless there's a modifier where | ||||
| 9945 | // we'll emit the correct register as well. | ||||
| 9946 | if (VT != MVT::Other && VT.getSizeInBits() == 64) { | ||||
| 9947 | Res.first = AArch64::FPR64RegClass.getRegister(RegNo); | ||||
| 9948 | Res.second = &AArch64::FPR64RegClass; | ||||
| 9949 | } else { | ||||
| 9950 | Res.first = AArch64::FPR128RegClass.getRegister(RegNo); | ||||
| 9951 | Res.second = &AArch64::FPR128RegClass; | ||||
| 9952 | } | ||||
| 9953 | } | ||||
| 9954 | } | ||||
| 9955 | } | ||||
| 9956 | |||||
| 9957 | if (Res.second && !Subtarget->hasFPARMv8() && | ||||
| 9958 | !AArch64::GPR32allRegClass.hasSubClassEq(Res.second) && | ||||
| 9959 | !AArch64::GPR64allRegClass.hasSubClassEq(Res.second)) | ||||
| 9960 | return std::make_pair(0U, nullptr); | ||||
| 9961 | |||||
| 9962 | return Res; | ||||
| 9963 | } | ||||
| 9964 | |||||
| 9965 | EVT AArch64TargetLowering::getAsmOperandValueType(const DataLayout &DL, | ||||
| 9966 | llvm::Type *Ty, | ||||
| 9967 | bool AllowUnknown) const { | ||||
| 9968 | if (Subtarget->hasLS64() && Ty->isIntegerTy(512)) | ||||
| 9969 | return EVT(MVT::i64x8); | ||||
| 9970 | |||||
| 9971 | return TargetLowering::getAsmOperandValueType(DL, Ty, AllowUnknown); | ||||
| 9972 | } | ||||
| 9973 | |||||
| 9974 | /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops | ||||
| 9975 | /// vector. If it is invalid, don't add anything to Ops. | ||||
| 9976 | void AArch64TargetLowering::LowerAsmOperandForConstraint( | ||||
| 9977 | SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops, | ||||
| 9978 | SelectionDAG &DAG) const { | ||||
| 9979 | SDValue Result; | ||||
| 9980 | |||||
| 9981 | // Currently only support length 1 constraints. | ||||
| 9982 | if (Constraint.length() != 1) | ||||
| 9983 | return; | ||||
| 9984 | |||||
| 9985 | char ConstraintLetter = Constraint[0]; | ||||
| 9986 | switch (ConstraintLetter) { | ||||
| 9987 | default: | ||||
| 9988 | break; | ||||
| 9989 | |||||
| 9990 | // This set of constraints deal with valid constants for various instructions. | ||||
| 9991 | // Validate and return a target constant for them if we can. | ||||
| 9992 | case 'z': { | ||||
| 9993 | // 'z' maps to xzr or wzr so it needs an input of 0. | ||||
| 9994 | if (!isNullConstant(Op)) | ||||
| 9995 | return; | ||||
| 9996 | |||||
| 9997 | if (Op.getValueType() == MVT::i64) | ||||
| 9998 | Result = DAG.getRegister(AArch64::XZR, MVT::i64); | ||||
| 9999 | else | ||||
| 10000 | Result = DAG.getRegister(AArch64::WZR, MVT::i32); | ||||
| 10001 | break; | ||||
| 10002 | } | ||||
| 10003 | case 'S': { | ||||
| 10004 | // An absolute symbolic address or label reference. | ||||
| 10005 | if (const GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op)) { | ||||
| 10006 | Result = DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), | ||||
| 10007 | GA->getValueType(0)); | ||||
| 10008 | } else if (const BlockAddressSDNode *BA = | ||||
| 10009 | dyn_cast<BlockAddressSDNode>(Op)) { | ||||
| 10010 | Result = | ||||
| 10011 | DAG.getTargetBlockAddress(BA->getBlockAddress(), BA->getValueType(0)); | ||||
| 10012 | } else | ||||
| 10013 | return; | ||||
| 10014 | break; | ||||
| 10015 | } | ||||
| 10016 | |||||
| 10017 | case 'I': | ||||
| 10018 | case 'J': | ||||
| 10019 | case 'K': | ||||
| 10020 | case 'L': | ||||
| 10021 | case 'M': | ||||
| 10022 | case 'N': | ||||
| 10023 | ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); | ||||
| 10024 | if (!C) | ||||
| 10025 | return; | ||||
| 10026 | |||||
| 10027 | // Grab the value and do some validation. | ||||
| 10028 | uint64_t CVal = C->getZExtValue(); | ||||
| 10029 | switch (ConstraintLetter) { | ||||
| 10030 | // The I constraint applies only to simple ADD or SUB immediate operands: | ||||
| 10031 | // i.e. 0 to 4095 with optional shift by 12 | ||||
| 10032 | // The J constraint applies only to ADD or SUB immediates that would be | ||||
| 10033 | // valid when negated, i.e. if [an add pattern] were to be output as a SUB | ||||
| 10034 | // instruction [or vice versa], in other words -1 to -4095 with optional | ||||
| 10035 | // left shift by 12. | ||||
| 10036 | case 'I': | ||||
| 10037 | if (isUInt<12>(CVal) || isShiftedUInt<12, 12>(CVal)) | ||||
| 10038 | break; | ||||
| 10039 | return; | ||||
| 10040 | case 'J': { | ||||
| 10041 | uint64_t NVal = -C->getSExtValue(); | ||||
| 10042 | if (isUInt<12>(NVal) || isShiftedUInt<12, 12>(NVal)) { | ||||
| 10043 | CVal = C->getSExtValue(); | ||||
| 10044 | break; | ||||
| 10045 | } | ||||
| 10046 | return; | ||||
| 10047 | } | ||||
| 10048 | // The K and L constraints apply *only* to logical immediates, including | ||||
| 10049 | // what used to be the MOVI alias for ORR (though the MOVI alias has now | ||||
| 10050 | // been removed and MOV should be used). So these constraints have to | ||||
| 10051 | // distinguish between bit patterns that are valid 32-bit or 64-bit | ||||
| 10052 | // "bitmask immediates": for example 0xaaaaaaaa is a valid bimm32 (K), but | ||||
| 10053 | // not a valid bimm64 (L) where 0xaaaaaaaaaaaaaaaa would be valid, and vice | ||||
| 10054 | // versa. | ||||
| 10055 | case 'K': | ||||
| 10056 | if (AArch64_AM::isLogicalImmediate(CVal, 32)) | ||||
| 10057 | break; | ||||
| 10058 | return; | ||||
| 10059 | case 'L': | ||||
| 10060 | if (AArch64_AM::isLogicalImmediate(CVal, 64)) | ||||
| 10061 | break; | ||||
| 10062 | return; | ||||
| 10063 | // The M and N constraints are a superset of K and L respectively, for use | ||||
| 10064 | // with the MOV (immediate) alias. As well as the logical immediates they | ||||
| 10065 | // also match 32 or 64-bit immediates that can be loaded either using a | ||||
| 10066 | // *single* MOVZ or MOVN , such as 32-bit 0x12340000, 0x00001234, 0xffffedca | ||||
| 10067 | // (M) or 64-bit 0x1234000000000000 (N) etc. | ||||
| 10068 | // As a note some of this code is liberally stolen from the asm parser. | ||||
| 10069 | case 'M': { | ||||
| 10070 | if (!isUInt<32>(CVal)) | ||||
| 10071 | return; | ||||
| 10072 | if (AArch64_AM::isLogicalImmediate(CVal, 32)) | ||||
| 10073 | break; | ||||
| 10074 | if ((CVal & 0xFFFF) == CVal) | ||||
| 10075 | break; | ||||
| 10076 | if ((CVal & 0xFFFF0000ULL) == CVal) | ||||
| 10077 | break; | ||||
| 10078 | uint64_t NCVal = ~(uint32_t)CVal; | ||||
| 10079 | if ((NCVal & 0xFFFFULL) == NCVal) | ||||
| 10080 | break; | ||||
| 10081 | if ((NCVal & 0xFFFF0000ULL) == NCVal) | ||||
| 10082 | break; | ||||
| 10083 | return; | ||||
| 10084 | } | ||||
| 10085 | case 'N': { | ||||
| 10086 | if (AArch64_AM::isLogicalImmediate(CVal, 64)) | ||||
| 10087 | break; | ||||
| 10088 | if ((CVal & 0xFFFFULL) == CVal) | ||||
| 10089 | break; | ||||
| 10090 | if ((CVal & 0xFFFF0000ULL) == CVal) | ||||
| 10091 | break; | ||||
| 10092 | if ((CVal & 0xFFFF00000000ULL) == CVal) | ||||
| 10093 | break; | ||||
| 10094 | if ((CVal & 0xFFFF000000000000ULL) == CVal) | ||||
| 10095 | break; | ||||
| 10096 | uint64_t NCVal = ~CVal; | ||||
| 10097 | if ((NCVal & 0xFFFFULL) == NCVal) | ||||
| 10098 | break; | ||||
| 10099 | if ((NCVal & 0xFFFF0000ULL) == NCVal) | ||||
| 10100 | break; | ||||
| 10101 | if ((NCVal & 0xFFFF00000000ULL) == NCVal) | ||||
| 10102 | break; | ||||
| 10103 | if ((NCVal & 0xFFFF000000000000ULL) == NCVal) | ||||
| 10104 | break; | ||||
| 10105 | return; | ||||
| 10106 | } | ||||
| 10107 | default: | ||||
| 10108 | return; | ||||
| 10109 | } | ||||
| 10110 | |||||
| 10111 | // All assembler immediates are 64-bit integers. | ||||
| 10112 | Result = DAG.getTargetConstant(CVal, SDLoc(Op), MVT::i64); | ||||
| 10113 | break; | ||||
| 10114 | } | ||||
| 10115 | |||||
| 10116 | if (Result.getNode()) { | ||||
| 10117 | Ops.push_back(Result); | ||||
| 10118 | return; | ||||
| 10119 | } | ||||
| 10120 | |||||
| 10121 | return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); | ||||
| 10122 | } | ||||
| 10123 | |||||
| 10124 | //===----------------------------------------------------------------------===// | ||||
| 10125 | // AArch64 Advanced SIMD Support | ||||
| 10126 | //===----------------------------------------------------------------------===// | ||||
| 10127 | |||||
| 10128 | /// WidenVector - Given a value in the V64 register class, produce the | ||||
| 10129 | /// equivalent value in the V128 register class. | ||||
| 10130 | static SDValue WidenVector(SDValue V64Reg, SelectionDAG &DAG) { | ||||
| 10131 | EVT VT = V64Reg.getValueType(); | ||||
| 10132 | unsigned NarrowSize = VT.getVectorNumElements(); | ||||
| 10133 | MVT EltTy = VT.getVectorElementType().getSimpleVT(); | ||||
| 10134 | MVT WideTy = MVT::getVectorVT(EltTy, 2 * NarrowSize); | ||||
| 10135 | SDLoc DL(V64Reg); | ||||
| 10136 | |||||
| 10137 | return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, WideTy, DAG.getUNDEF(WideTy), | ||||
| 10138 | V64Reg, DAG.getConstant(0, DL, MVT::i64)); | ||||
| 10139 | } | ||||
| 10140 | |||||
| 10141 | /// getExtFactor - Determine the adjustment factor for the position when | ||||
| 10142 | /// generating an "extract from vector registers" instruction. | ||||
| 10143 | static unsigned getExtFactor(SDValue &V) { | ||||
| 10144 | EVT EltType = V.getValueType().getVectorElementType(); | ||||
| 10145 | return EltType.getSizeInBits() / 8; | ||||
| 10146 | } | ||||
| 10147 | |||||
| 10148 | /// NarrowVector - Given a value in the V128 register class, produce the | ||||
| 10149 | /// equivalent value in the V64 register class. | ||||
| 10150 | static SDValue NarrowVector(SDValue V128Reg, SelectionDAG &DAG) { | ||||
| 10151 | EVT VT = V128Reg.getValueType(); | ||||
| 10152 | unsigned WideSize = VT.getVectorNumElements(); | ||||
| 10153 | MVT EltTy = VT.getVectorElementType().getSimpleVT(); | ||||
| 10154 | MVT NarrowTy = MVT::getVectorVT(EltTy, WideSize / 2); | ||||
| 10155 | SDLoc DL(V128Reg); | ||||
| 10156 | |||||
| 10157 | return DAG.getTargetExtractSubreg(AArch64::dsub, DL, NarrowTy, V128Reg); | ||||
| 10158 | } | ||||
| 10159 | |||||
| 10160 | // Gather data to see if the operation can be modelled as a | ||||
| 10161 | // shuffle in combination with VEXTs. | ||||
| 10162 | SDValue AArch64TargetLowering::ReconstructShuffle(SDValue Op, | ||||
| 10163 | SelectionDAG &DAG) const { | ||||
| 10164 | assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!")(static_cast <bool> (Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!") ? void (0) : __assert_fail ("Op.getOpcode() == ISD::BUILD_VECTOR && \"Unknown opcode!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 10164, __extension__ __PRETTY_FUNCTION__)); | ||||
| 10165 | LLVM_DEBUG(dbgs() << "AArch64TargetLowering::ReconstructShuffle\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "AArch64TargetLowering::ReconstructShuffle\n" ; } } while (false); | ||||
| 10166 | SDLoc dl(Op); | ||||
| 10167 | EVT VT = Op.getValueType(); | ||||
| 10168 | assert(!VT.isScalableVector() &&(static_cast <bool> (!VT.isScalableVector() && "Scalable vectors cannot be used with ISD::BUILD_VECTOR" ) ? void (0) : __assert_fail ("!VT.isScalableVector() && \"Scalable vectors cannot be used with ISD::BUILD_VECTOR\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 10169, __extension__ __PRETTY_FUNCTION__)) | ||||
| 10169 | "Scalable vectors cannot be used with ISD::BUILD_VECTOR")(static_cast <bool> (!VT.isScalableVector() && "Scalable vectors cannot be used with ISD::BUILD_VECTOR" ) ? void (0) : __assert_fail ("!VT.isScalableVector() && \"Scalable vectors cannot be used with ISD::BUILD_VECTOR\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 10169, __extension__ __PRETTY_FUNCTION__)); | ||||
| 10170 | unsigned NumElts = VT.getVectorNumElements(); | ||||
| 10171 | |||||
| 10172 | struct ShuffleSourceInfo { | ||||
| 10173 | SDValue Vec; | ||||
| 10174 | unsigned MinElt; | ||||
| 10175 | unsigned MaxElt; | ||||
| 10176 | |||||
| 10177 | // We may insert some combination of BITCASTs and VEXT nodes to force Vec to | ||||
| 10178 | // be compatible with the shuffle we intend to construct. As a result | ||||
| 10179 | // ShuffleVec will be some sliding window into the original Vec. | ||||
| 10180 | SDValue ShuffleVec; | ||||
| 10181 | |||||
| 10182 | // Code should guarantee that element i in Vec starts at element "WindowBase | ||||
| 10183 | // + i * WindowScale in ShuffleVec". | ||||
| 10184 | int WindowBase; | ||||
| 10185 | int WindowScale; | ||||
| 10186 | |||||
| 10187 | ShuffleSourceInfo(SDValue Vec) | ||||
| 10188 | : Vec(Vec), MinElt(std::numeric_limits<unsigned>::max()), MaxElt(0), | ||||
| 10189 | ShuffleVec(Vec), WindowBase(0), WindowScale(1) {} | ||||
| 10190 | |||||
| 10191 | bool operator ==(SDValue OtherVec) { return Vec == OtherVec; } | ||||
| 10192 | }; | ||||
| 10193 | |||||
| 10194 | // First gather all vectors used as an immediate source for this BUILD_VECTOR | ||||
| 10195 | // node. | ||||
| 10196 | SmallVector<ShuffleSourceInfo, 2> Sources; | ||||
| 10197 | for (unsigned i = 0; i < NumElts; ++i) { | ||||
| 10198 | SDValue V = Op.getOperand(i); | ||||
| 10199 | if (V.isUndef()) | ||||
| 10200 | continue; | ||||
| 10201 | else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT || | ||||
| 10202 | !isa<ConstantSDNode>(V.getOperand(1)) || | ||||
| 10203 | V.getOperand(0).getValueType().isScalableVector()) { | ||||
| 10204 | LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "Reshuffle failed: " "a shuffle can only come from building a vector from " "various elements of other fixed-width vectors, provided " "their indices are constant\n" ; } } while (false) | ||||
| 10205 | dbgs() << "Reshuffle failed: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "Reshuffle failed: " "a shuffle can only come from building a vector from " "various elements of other fixed-width vectors, provided " "their indices are constant\n" ; } } while (false) | ||||
| 10206 | "a shuffle can only come from building a vector from "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "Reshuffle failed: " "a shuffle can only come from building a vector from " "various elements of other fixed-width vectors, provided " "their indices are constant\n" ; } } while (false) | ||||
| 10207 | "various elements of other fixed-width vectors, provided "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "Reshuffle failed: " "a shuffle can only come from building a vector from " "various elements of other fixed-width vectors, provided " "their indices are constant\n" ; } } while (false) | ||||
| 10208 | "their indices are constant\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "Reshuffle failed: " "a shuffle can only come from building a vector from " "various elements of other fixed-width vectors, provided " "their indices are constant\n" ; } } while (false); | ||||
| 10209 | return SDValue(); | ||||
| 10210 | } | ||||
| 10211 | |||||
| 10212 | // Add this element source to the list if it's not already there. | ||||
| 10213 | SDValue SourceVec = V.getOperand(0); | ||||
| 10214 | auto Source = find(Sources, SourceVec); | ||||
| 10215 | if (Source == Sources.end()) | ||||
| 10216 | Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec)); | ||||
| 10217 | |||||
| 10218 | // Update the minimum and maximum lane number seen. | ||||
| 10219 | unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue(); | ||||
| 10220 | Source->MinElt = std::min(Source->MinElt, EltNo); | ||||
| 10221 | Source->MaxElt = std::max(Source->MaxElt, EltNo); | ||||
| 10222 | } | ||||
| 10223 | |||||
| 10224 | // If we have 3 or 4 sources, try to generate a TBL, which will at least be | ||||
| 10225 | // better than moving to/from gpr registers for larger vectors. | ||||
| 10226 | if ((Sources.size() == 3 || Sources.size() == 4) && NumElts > 4) { | ||||
| 10227 | // Construct a mask for the tbl. We may need to adjust the index for types | ||||
| 10228 | // larger than i8. | ||||
| 10229 | SmallVector<unsigned, 16> Mask; | ||||
| 10230 | unsigned OutputFactor = VT.getScalarSizeInBits() / 8; | ||||
| 10231 | for (unsigned I = 0; I < NumElts; ++I) { | ||||
| 10232 | SDValue V = Op.getOperand(I); | ||||
| 10233 | if (V.isUndef()) { | ||||
| 10234 | for (unsigned OF = 0; OF < OutputFactor; OF++) | ||||
| 10235 | Mask.push_back(-1); | ||||
| 10236 | continue; | ||||
| 10237 | } | ||||
| 10238 | // Set the Mask lanes adjusted for the size of the input and output | ||||
| 10239 | // lanes. The Mask is always i8, so it will set OutputFactor lanes per | ||||
| 10240 | // output element, adjusted in their positions per input and output types. | ||||
| 10241 | unsigned Lane = V.getConstantOperandVal(1); | ||||
| 10242 | for (unsigned S = 0; S < Sources.size(); S++) { | ||||
| 10243 | if (V.getOperand(0) == Sources[S].Vec) { | ||||
| 10244 | unsigned InputSize = Sources[S].Vec.getScalarValueSizeInBits(); | ||||
| 10245 | unsigned InputBase = 16 * S + Lane * InputSize / 8; | ||||
| 10246 | for (unsigned OF = 0; OF < OutputFactor; OF++) | ||||
| 10247 | Mask.push_back(InputBase + OF); | ||||
| 10248 | break; | ||||
| 10249 | } | ||||
| 10250 | } | ||||
| 10251 | } | ||||
| 10252 | |||||
| 10253 | // Construct the tbl3/tbl4 out of an intrinsic, the sources converted to | ||||
| 10254 | // v16i8, and the TBLMask | ||||
| 10255 | SmallVector<SDValue, 16> TBLOperands; | ||||
| 10256 | TBLOperands.push_back(DAG.getConstant(Sources.size() == 3 | ||||
| 10257 | ? Intrinsic::aarch64_neon_tbl3 | ||||
| 10258 | : Intrinsic::aarch64_neon_tbl4, | ||||
| 10259 | dl, MVT::i32)); | ||||
| 10260 | for (unsigned i = 0; i < Sources.size(); i++) { | ||||
| 10261 | SDValue Src = Sources[i].Vec; | ||||
| 10262 | EVT SrcVT = Src.getValueType(); | ||||
| 10263 | Src = DAG.getBitcast(SrcVT.is64BitVector() ? MVT::v8i8 : MVT::v16i8, Src); | ||||
| 10264 | assert((SrcVT.is64BitVector() || SrcVT.is128BitVector()) &&(static_cast <bool> ((SrcVT.is64BitVector() || SrcVT.is128BitVector ()) && "Expected a legally typed vector") ? void (0) : __assert_fail ("(SrcVT.is64BitVector() || SrcVT.is128BitVector()) && \"Expected a legally typed vector\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 10265, __extension__ __PRETTY_FUNCTION__)) | ||||
| 10265 | "Expected a legally typed vector")(static_cast <bool> ((SrcVT.is64BitVector() || SrcVT.is128BitVector ()) && "Expected a legally typed vector") ? void (0) : __assert_fail ("(SrcVT.is64BitVector() || SrcVT.is128BitVector()) && \"Expected a legally typed vector\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 10265, __extension__ __PRETTY_FUNCTION__)); | ||||
| 10266 | if (SrcVT.is64BitVector()) | ||||
| 10267 | Src = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v16i8, Src, | ||||
| 10268 | DAG.getUNDEF(MVT::v8i8)); | ||||
| 10269 | TBLOperands.push_back(Src); | ||||
| 10270 | } | ||||
| 10271 | |||||
| 10272 | SmallVector<SDValue, 16> TBLMask; | ||||
| 10273 | for (unsigned i = 0; i < Mask.size(); i++) | ||||
| 10274 | TBLMask.push_back(DAG.getConstant(Mask[i], dl, MVT::i32)); | ||||
| 10275 | assert((Mask.size() == 8 || Mask.size() == 16) &&(static_cast <bool> ((Mask.size() == 8 || Mask.size() == 16) && "Expected a v8i8 or v16i8 Mask") ? void (0) : __assert_fail ("(Mask.size() == 8 || Mask.size() == 16) && \"Expected a v8i8 or v16i8 Mask\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 10276, __extension__ __PRETTY_FUNCTION__)) | ||||
| 10276 | "Expected a v8i8 or v16i8 Mask")(static_cast <bool> ((Mask.size() == 8 || Mask.size() == 16) && "Expected a v8i8 or v16i8 Mask") ? void (0) : __assert_fail ("(Mask.size() == 8 || Mask.size() == 16) && \"Expected a v8i8 or v16i8 Mask\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 10276, __extension__ __PRETTY_FUNCTION__)); | ||||
| 10277 | TBLOperands.push_back( | ||||
| 10278 | DAG.getBuildVector(Mask.size() == 8 ? MVT::v8i8 : MVT::v16i8, dl, TBLMask)); | ||||
| 10279 | |||||
| 10280 | SDValue Shuffle = | ||||
| 10281 | DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, | ||||
| 10282 | Mask.size() == 8 ? MVT::v8i8 : MVT::v16i8, TBLOperands); | ||||
| 10283 | return DAG.getBitcast(VT, Shuffle); | ||||
| 10284 | } | ||||
| 10285 | |||||
| 10286 | if (Sources.size() > 2) { | ||||
| 10287 | LLVM_DEBUG(dbgs() << "Reshuffle failed: currently only do something "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "Reshuffle failed: currently only do something " << "sensible when at most two source vectors are " << "involved\n"; } } while (false) | ||||
| 10288 | << "sensible when at most two source vectors are "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "Reshuffle failed: currently only do something " << "sensible when at most two source vectors are " << "involved\n"; } } while (false) | ||||
| 10289 | << "involved\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "Reshuffle failed: currently only do something " << "sensible when at most two source vectors are " << "involved\n"; } } while (false); | ||||
| 10290 | return SDValue(); | ||||
| 10291 | } | ||||
| 10292 | |||||
| 10293 | // Find out the smallest element size among result and two sources, and use | ||||
| 10294 | // it as element size to build the shuffle_vector. | ||||
| 10295 | EVT SmallestEltTy = VT.getVectorElementType(); | ||||
| 10296 | for (auto &Source : Sources) { | ||||
| 10297 | EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType(); | ||||
| 10298 | if (SrcEltTy.bitsLT(SmallestEltTy)) { | ||||
| 10299 | SmallestEltTy = SrcEltTy; | ||||
| 10300 | } | ||||
| 10301 | } | ||||
| 10302 | unsigned ResMultiplier = | ||||
| 10303 | VT.getScalarSizeInBits() / SmallestEltTy.getFixedSizeInBits(); | ||||
| 10304 | uint64_t VTSize = VT.getFixedSizeInBits(); | ||||
| 10305 | NumElts = VTSize / SmallestEltTy.getFixedSizeInBits(); | ||||
| 10306 | EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts); | ||||
| 10307 | |||||
| 10308 | // If the source vector is too wide or too narrow, we may nevertheless be able | ||||
| 10309 | // to construct a compatible shuffle either by concatenating it with UNDEF or | ||||
| 10310 | // extracting a suitable range of elements. | ||||
| 10311 | for (auto &Src : Sources) { | ||||
| 10312 | EVT SrcVT = Src.ShuffleVec.getValueType(); | ||||
| 10313 | |||||
| 10314 | TypeSize SrcVTSize = SrcVT.getSizeInBits(); | ||||
| 10315 | if (SrcVTSize == TypeSize::Fixed(VTSize)) | ||||
| 10316 | continue; | ||||
| 10317 | |||||
| 10318 | // This stage of the search produces a source with the same element type as | ||||
| 10319 | // the original, but with a total width matching the BUILD_VECTOR output. | ||||
| 10320 | EVT EltVT = SrcVT.getVectorElementType(); | ||||
| 10321 | unsigned NumSrcElts = VTSize / EltVT.getFixedSizeInBits(); | ||||
| 10322 | EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts); | ||||
| 10323 | |||||
| 10324 | if (SrcVTSize.getFixedValue() < VTSize) { | ||||
| 10325 | assert(2 * SrcVTSize == VTSize)(static_cast <bool> (2 * SrcVTSize == VTSize) ? void (0 ) : __assert_fail ("2 * SrcVTSize == VTSize", "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp" , 10325, __extension__ __PRETTY_FUNCTION__)); | ||||
| 10326 | // We can pad out the smaller vector for free, so if it's part of a | ||||
| 10327 | // shuffle... | ||||
| 10328 | Src.ShuffleVec = | ||||
| 10329 | DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec, | ||||
| 10330 | DAG.getUNDEF(Src.ShuffleVec.getValueType())); | ||||
| 10331 | continue; | ||||
| 10332 | } | ||||
| 10333 | |||||
| 10334 | if (SrcVTSize.getFixedValue() != 2 * VTSize) { | ||||
| 10335 | LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "Reshuffle failed: result vector too small to extract\n" ; } } while (false) | ||||
| 10336 | dbgs() << "Reshuffle failed: result vector too small to extract\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "Reshuffle failed: result vector too small to extract\n" ; } } while (false); | ||||
| 10337 | return SDValue(); | ||||
| 10338 | } | ||||
| 10339 | |||||
| 10340 | if (Src.MaxElt - Src.MinElt >= NumSrcElts) { | ||||
| 10341 | LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "Reshuffle failed: span too large for a VEXT to cope\n" ; } } while (false) | ||||
| 10342 | dbgs() << "Reshuffle failed: span too large for a VEXT to cope\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "Reshuffle failed: span too large for a VEXT to cope\n" ; } } while (false); | ||||
| 10343 | return SDValue(); | ||||
| 10344 | } | ||||
| 10345 | |||||
| 10346 | if (Src.MinElt >= NumSrcElts) { | ||||
| 10347 | // The extraction can just take the second half | ||||
| 10348 | Src.ShuffleVec = | ||||
| 10349 | DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, | ||||
| 10350 | DAG.getConstant(NumSrcElts, dl, MVT::i64)); | ||||
| 10351 | Src.WindowBase = -NumSrcElts; | ||||
| 10352 | } else if (Src.MaxElt < NumSrcElts) { | ||||
| 10353 | // The extraction can just take the first half | ||||
| 10354 | Src.ShuffleVec = | ||||
| 10355 | DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, | ||||
| 10356 | DAG.getConstant(0, dl, MVT::i64)); | ||||
| 10357 | } else { | ||||
| 10358 | // An actual VEXT is needed | ||||
| 10359 | SDValue VEXTSrc1 = | ||||
| 10360 | DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, | ||||
| 10361 | DAG.getConstant(0, dl, MVT::i64)); | ||||
| 10362 | SDValue VEXTSrc2 = | ||||
| 10363 | DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, | ||||
| 10364 | DAG.getConstant(NumSrcElts, dl, MVT::i64)); | ||||
| 10365 | unsigned Imm = Src.MinElt * getExtFactor(VEXTSrc1); | ||||
| 10366 | |||||
| 10367 | if (!SrcVT.is64BitVector()) { | ||||
| 10368 | LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "Reshuffle failed: don't know how to lower AArch64ISD::EXT " "for SVE vectors."; } } while (false) | ||||
| 10369 | dbgs() << "Reshuffle failed: don't know how to lower AArch64ISD::EXT "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "Reshuffle failed: don't know how to lower AArch64ISD::EXT " "for SVE vectors."; } } while (false) | ||||
| 10370 | "for SVE vectors.")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "Reshuffle failed: don't know how to lower AArch64ISD::EXT " "for SVE vectors."; } } while (false); | ||||
| 10371 | return SDValue(); | ||||
| 10372 | } | ||||
| 10373 | |||||
| 10374 | Src.ShuffleVec = DAG.getNode(AArch64ISD::EXT, dl, DestVT, VEXTSrc1, | ||||
| 10375 | VEXTSrc2, | ||||
| 10376 | DAG.getConstant(Imm, dl, MVT::i32)); | ||||
| 10377 | Src.WindowBase = -Src.MinElt; | ||||
| 10378 | } | ||||
| 10379 | } | ||||
| 10380 | |||||
| 10381 | // Another possible incompatibility occurs from the vector element types. We | ||||
| 10382 | // can fix this by bitcasting the source vectors to the same type we intend | ||||
| 10383 | // for the shuffle. | ||||
| 10384 | for (auto &Src : Sources) { | ||||
| 10385 | EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType(); | ||||
| 10386 | if (SrcEltTy == SmallestEltTy) | ||||
| 10387 | continue; | ||||
| 10388 | assert(ShuffleVT.getVectorElementType() == SmallestEltTy)(static_cast <bool> (ShuffleVT.getVectorElementType() == SmallestEltTy) ? void (0) : __assert_fail ("ShuffleVT.getVectorElementType() == SmallestEltTy" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 10388, __extension__ __PRETTY_FUNCTION__)); | ||||
| 10389 | Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec); | ||||
| 10390 | Src.WindowScale = | ||||
| 10391 | SrcEltTy.getFixedSizeInBits() / SmallestEltTy.getFixedSizeInBits(); | ||||
| 10392 | Src.WindowBase *= Src.WindowScale; | ||||
| 10393 | } | ||||
| 10394 | |||||
| 10395 | // Final check before we try to actually produce a shuffle. | ||||
| 10396 | LLVM_DEBUG(for (auto Srcdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { for (auto Src : Sources) (static_cast < bool> (Src.ShuffleVec.getValueType() == ShuffleVT) ? void ( 0) : __assert_fail ("Src.ShuffleVec.getValueType() == ShuffleVT" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 10398, __extension__ __PRETTY_FUNCTION__));; } } while (false) | ||||
| 10397 | : Sources)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { for (auto Src : Sources) (static_cast < bool> (Src.ShuffleVec.getValueType() == ShuffleVT) ? void ( 0) : __assert_fail ("Src.ShuffleVec.getValueType() == ShuffleVT" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 10398, __extension__ __PRETTY_FUNCTION__));; } } while (false) | ||||
| 10398 | assert(Src.ShuffleVec.getValueType() == ShuffleVT);)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { for (auto Src : Sources) (static_cast < bool> (Src.ShuffleVec.getValueType() == ShuffleVT) ? void ( 0) : __assert_fail ("Src.ShuffleVec.getValueType() == ShuffleVT" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 10398, __extension__ __PRETTY_FUNCTION__));; } } while (false); | ||||
| 10399 | |||||
| 10400 | // The stars all align, our next step is to produce the mask for the shuffle. | ||||
| 10401 | SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1); | ||||
| 10402 | int BitsPerShuffleLane = ShuffleVT.getScalarSizeInBits(); | ||||
| 10403 | for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { | ||||
| 10404 | SDValue Entry = Op.getOperand(i); | ||||
| 10405 | if (Entry.isUndef()) | ||||
| 10406 | continue; | ||||
| 10407 | |||||
| 10408 | auto Src = find(Sources, Entry.getOperand(0)); | ||||
| 10409 | int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue(); | ||||
| 10410 | |||||
| 10411 | // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit | ||||
| 10412 | // trunc. So only std::min(SrcBits, DestBits) actually get defined in this | ||||
| 10413 | // segment. | ||||
| 10414 | EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType(); | ||||
| 10415 | int BitsDefined = std::min(OrigEltTy.getScalarSizeInBits(), | ||||
| 10416 | VT.getScalarSizeInBits()); | ||||
| 10417 | int LanesDefined = BitsDefined / BitsPerShuffleLane; | ||||
| 10418 | |||||
| 10419 | // This source is expected to fill ResMultiplier lanes of the final shuffle, | ||||
| 10420 | // starting at the appropriate offset. | ||||
| 10421 | int *LaneMask = &Mask[i * ResMultiplier]; | ||||
| 10422 | |||||
| 10423 | int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase; | ||||
| 10424 | ExtractBase += NumElts * (Src - Sources.begin()); | ||||
| 10425 | for (int j = 0; j < LanesDefined; ++j) | ||||
| 10426 | LaneMask[j] = ExtractBase + j; | ||||
| 10427 | } | ||||
| 10428 | |||||
| 10429 | // Final check before we try to produce nonsense... | ||||
| 10430 | if (!isShuffleMaskLegal(Mask, ShuffleVT)) { | ||||
| 10431 | LLVM_DEBUG(dbgs() << "Reshuffle failed: illegal shuffle mask\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "Reshuffle failed: illegal shuffle mask\n" ; } } while (false); | ||||
| 10432 | return SDValue(); | ||||
| 10433 | } | ||||
| 10434 | |||||
| 10435 | SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) }; | ||||
| 10436 | for (unsigned i = 0; i < Sources.size(); ++i) | ||||
| 10437 | ShuffleOps[i] = Sources[i].ShuffleVec; | ||||
| 10438 | |||||
| 10439 | SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0], | ||||
| 10440 | ShuffleOps[1], Mask); | ||||
| 10441 | SDValue V = DAG.getNode(ISD::BITCAST, dl, VT, Shuffle); | ||||
| 10442 | |||||
| 10443 | LLVM_DEBUG(dbgs() << "Reshuffle, creating node: "; Shuffle.dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "Reshuffle, creating node: " ; Shuffle.dump(); dbgs() << "Reshuffle, creating node: " ; V.dump();; } } while (false) | ||||
| 10444 | dbgs() << "Reshuffle, creating node: "; V.dump();)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "Reshuffle, creating node: " ; Shuffle.dump(); dbgs() << "Reshuffle, creating node: " ; V.dump();; } } while (false); | ||||
| 10445 | |||||
| 10446 | return V; | ||||
| 10447 | } | ||||
| 10448 | |||||
| 10449 | // check if an EXT instruction can handle the shuffle mask when the | ||||
| 10450 | // vector sources of the shuffle are the same. | ||||
| 10451 | static bool isSingletonEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) { | ||||
| 10452 | unsigned NumElts = VT.getVectorNumElements(); | ||||
| 10453 | |||||
| 10454 | // Assume that the first shuffle index is not UNDEF. Fail if it is. | ||||
| 10455 | if (M[0] < 0) | ||||
| 10456 | return false; | ||||
| 10457 | |||||
| 10458 | Imm = M[0]; | ||||
| 10459 | |||||
| 10460 | // If this is a VEXT shuffle, the immediate value is the index of the first | ||||
| 10461 | // element. The other shuffle indices must be the successive elements after | ||||
| 10462 | // the first one. | ||||
| 10463 | unsigned ExpectedElt = Imm; | ||||
| 10464 | for (unsigned i = 1; i < NumElts; ++i) { | ||||
| 10465 | // Increment the expected index. If it wraps around, just follow it | ||||
| 10466 | // back to index zero and keep going. | ||||
| 10467 | ++ExpectedElt; | ||||
| 10468 | if (ExpectedElt == NumElts) | ||||
| 10469 | ExpectedElt = 0; | ||||
| 10470 | |||||
| 10471 | if (M[i] < 0) | ||||
| 10472 | continue; // ignore UNDEF indices | ||||
| 10473 | if (ExpectedElt != static_cast<unsigned>(M[i])) | ||||
| 10474 | return false; | ||||
| 10475 | } | ||||
| 10476 | |||||
| 10477 | return true; | ||||
| 10478 | } | ||||
| 10479 | |||||
| 10480 | // Detect patterns of a0,a1,a2,a3,b0,b1,b2,b3,c0,c1,c2,c3,d0,d1,d2,d3 from | ||||
| 10481 | // v4i32s. This is really a truncate, which we can construct out of (legal) | ||||
| 10482 | // concats and truncate nodes. | ||||
| 10483 | static SDValue ReconstructTruncateFromBuildVector(SDValue V, SelectionDAG &DAG) { | ||||
| 10484 | if (V.getValueType() != MVT::v16i8) | ||||
| 10485 | return SDValue(); | ||||
| 10486 | assert(V.getNumOperands() == 16 && "Expected 16 operands on the BUILDVECTOR")(static_cast <bool> (V.getNumOperands() == 16 && "Expected 16 operands on the BUILDVECTOR") ? void (0) : __assert_fail ("V.getNumOperands() == 16 && \"Expected 16 operands on the BUILDVECTOR\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 10486, __extension__ __PRETTY_FUNCTION__)); | ||||
| 10487 | |||||
| 10488 | for (unsigned X = 0; X < 4; X++) { | ||||
| 10489 | // Check the first item in each group is an extract from lane 0 of a v4i32 | ||||
| 10490 | // or v4i16. | ||||
| 10491 | SDValue BaseExt = V.getOperand(X * 4); | ||||
| 10492 | if (BaseExt.getOpcode() != ISD::EXTRACT_VECTOR_ELT || | ||||
| 10493 | (BaseExt.getOperand(0).getValueType() != MVT::v4i16 && | ||||
| 10494 | BaseExt.getOperand(0).getValueType() != MVT::v4i32) || | ||||
| 10495 | !isa<ConstantSDNode>(BaseExt.getOperand(1)) || | ||||
| 10496 | BaseExt.getConstantOperandVal(1) != 0) | ||||
| 10497 | return SDValue(); | ||||
| 10498 | SDValue Base = BaseExt.getOperand(0); | ||||
| 10499 | // And check the other items are extracts from the same vector. | ||||
| 10500 | for (unsigned Y = 1; Y < 4; Y++) { | ||||
| 10501 | SDValue Ext = V.getOperand(X * 4 + Y); | ||||
| 10502 | if (Ext.getOpcode() != ISD::EXTRACT_VECTOR_ELT || | ||||
| 10503 | Ext.getOperand(0) != Base || | ||||
| 10504 | !isa<ConstantSDNode>(Ext.getOperand(1)) || | ||||
| 10505 | Ext.getConstantOperandVal(1) != Y) | ||||
| 10506 | return SDValue(); | ||||
| 10507 | } | ||||
| 10508 | } | ||||
| 10509 | |||||
| 10510 | // Turn the buildvector into a series of truncates and concates, which will | ||||
| 10511 | // become uzip1's. Any v4i32s we found get truncated to v4i16, which are | ||||
| 10512 | // concat together to produce 2 v8i16. These are both truncated and concat | ||||
| 10513 | // together. | ||||
| 10514 | SDLoc DL(V); | ||||
| 10515 | SDValue Trunc[4] = { | ||||
| 10516 | V.getOperand(0).getOperand(0), V.getOperand(4).getOperand(0), | ||||
| 10517 | V.getOperand(8).getOperand(0), V.getOperand(12).getOperand(0)}; | ||||
| 10518 | for (SDValue &V : Trunc) | ||||
| 10519 | if (V.getValueType() == MVT::v4i32) | ||||
| 10520 | V = DAG.getNode(ISD::TRUNCATE, DL, MVT::v4i16, V); | ||||
| 10521 | SDValue Concat0 = | ||||
| 10522 | DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i16, Trunc[0], Trunc[1]); | ||||
| 10523 | SDValue Concat1 = | ||||
| 10524 | DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v8i16, Trunc[2], Trunc[3]); | ||||
| 10525 | SDValue Trunc0 = DAG.getNode(ISD::TRUNCATE, DL, MVT::v8i8, Concat0); | ||||
| 10526 | SDValue Trunc1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::v8i8, Concat1); | ||||
| 10527 | return DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, Trunc0, Trunc1); | ||||
| 10528 | } | ||||
| 10529 | |||||
| 10530 | /// Check if a vector shuffle corresponds to a DUP instructions with a larger | ||||
| 10531 | /// element width than the vector lane type. If that is the case the function | ||||
| 10532 | /// returns true and writes the value of the DUP instruction lane operand into | ||||
| 10533 | /// DupLaneOp | ||||
| 10534 | static bool isWideDUPMask(ArrayRef<int> M, EVT VT, unsigned BlockSize, | ||||
| 10535 | unsigned &DupLaneOp) { | ||||
| 10536 | assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&(static_cast <bool> ((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) && "Only possible block sizes for wide DUP are: 16, 32, 64" ) ? void (0) : __assert_fail ("(BlockSize == 16 || BlockSize == 32 || BlockSize == 64) && \"Only possible block sizes for wide DUP are: 16, 32, 64\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 10537, __extension__ __PRETTY_FUNCTION__)) | ||||
| 10537 | "Only possible block sizes for wide DUP are: 16, 32, 64")(static_cast <bool> ((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) && "Only possible block sizes for wide DUP are: 16, 32, 64" ) ? void (0) : __assert_fail ("(BlockSize == 16 || BlockSize == 32 || BlockSize == 64) && \"Only possible block sizes for wide DUP are: 16, 32, 64\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 10537, __extension__ __PRETTY_FUNCTION__)); | ||||
| 10538 | |||||
| 10539 | if (BlockSize <= VT.getScalarSizeInBits()) | ||||
| 10540 | return false; | ||||
| 10541 | if (BlockSize % VT.getScalarSizeInBits() != 0) | ||||
| 10542 | return false; | ||||
| 10543 | if (VT.getSizeInBits() % BlockSize != 0) | ||||
| 10544 | return false; | ||||
| 10545 | |||||
| 10546 | size_t SingleVecNumElements = VT.getVectorNumElements(); | ||||
| 10547 | size_t NumEltsPerBlock = BlockSize / VT.getScalarSizeInBits(); | ||||
| 10548 | size_t NumBlocks = VT.getSizeInBits() / BlockSize; | ||||
| 10549 | |||||
| 10550 | // We are looking for masks like | ||||
| 10551 | // [0, 1, 0, 1] or [2, 3, 2, 3] or [4, 5, 6, 7, 4, 5, 6, 7] where any element | ||||
| 10552 | // might be replaced by 'undefined'. BlockIndices will eventually contain | ||||
| 10553 | // lane indices of the duplicated block (i.e. [0, 1], [2, 3] and [4, 5, 6, 7] | ||||
| 10554 | // for the above examples) | ||||
| 10555 | SmallVector<int, 8> BlockElts(NumEltsPerBlock, -1); | ||||
| 10556 | for (size_t BlockIndex = 0; BlockIndex < NumBlocks; BlockIndex++) | ||||
| 10557 | for (size_t I = 0; I < NumEltsPerBlock; I++) { | ||||
| 10558 | int Elt = M[BlockIndex * NumEltsPerBlock + I]; | ||||
| 10559 | if (Elt < 0) | ||||
| 10560 | continue; | ||||
| 10561 | // For now we don't support shuffles that use the second operand | ||||
| 10562 | if ((unsigned)Elt >= SingleVecNumElements) | ||||
| 10563 | return false; | ||||
| 10564 | if (BlockElts[I] < 0) | ||||
| 10565 | BlockElts[I] = Elt; | ||||
| 10566 | else if (BlockElts[I] != Elt) | ||||
| 10567 | return false; | ||||
| 10568 | } | ||||
| 10569 | |||||
| 10570 | // We found a candidate block (possibly with some undefs). It must be a | ||||
| 10571 | // sequence of consecutive integers starting with a value divisible by | ||||
| 10572 | // NumEltsPerBlock with some values possibly replaced by undef-s. | ||||
| 10573 | |||||
| 10574 | // Find first non-undef element | ||||
| 10575 | auto FirstRealEltIter = find_if(BlockElts, [](int Elt) { return Elt >= 0; }); | ||||
| 10576 | assert(FirstRealEltIter != BlockElts.end() &&(static_cast <bool> (FirstRealEltIter != BlockElts.end( ) && "Shuffle with all-undefs must have been caught by previous cases, " "e.g. isSplat()") ? void (0) : __assert_fail ("FirstRealEltIter != BlockElts.end() && \"Shuffle with all-undefs must have been caught by previous cases, \" \"e.g. isSplat()\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 10578, __extension__ __PRETTY_FUNCTION__)) | ||||
| 10577 | "Shuffle with all-undefs must have been caught by previous cases, "(static_cast <bool> (FirstRealEltIter != BlockElts.end( ) && "Shuffle with all-undefs must have been caught by previous cases, " "e.g. isSplat()") ? void (0) : __assert_fail ("FirstRealEltIter != BlockElts.end() && \"Shuffle with all-undefs must have been caught by previous cases, \" \"e.g. isSplat()\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 10578, __extension__ __PRETTY_FUNCTION__)) | ||||
| 10578 | "e.g. isSplat()")(static_cast <bool> (FirstRealEltIter != BlockElts.end( ) && "Shuffle with all-undefs must have been caught by previous cases, " "e.g. isSplat()") ? void (0) : __assert_fail ("FirstRealEltIter != BlockElts.end() && \"Shuffle with all-undefs must have been caught by previous cases, \" \"e.g. isSplat()\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 10578, __extension__ __PRETTY_FUNCTION__)); | ||||
| 10579 | if (FirstRealEltIter == BlockElts.end()) { | ||||
| 10580 | DupLaneOp = 0; | ||||
| 10581 | return true; | ||||
| 10582 | } | ||||
| 10583 | |||||
| 10584 | // Index of FirstRealElt in BlockElts | ||||
| 10585 | size_t FirstRealIndex = FirstRealEltIter - BlockElts.begin(); | ||||
| 10586 | |||||
| 10587 | if ((unsigned)*FirstRealEltIter < FirstRealIndex) | ||||
| 10588 | return false; | ||||
| 10589 | // BlockElts[0] must have the following value if it isn't undef: | ||||
| 10590 | size_t Elt0 = *FirstRealEltIter - FirstRealIndex; | ||||
| 10591 | |||||
| 10592 | // Check the first element | ||||
| 10593 | if (Elt0 % NumEltsPerBlock != 0) | ||||
| 10594 | return false; | ||||
| 10595 | // Check that the sequence indeed consists of consecutive integers (modulo | ||||
| 10596 | // undefs) | ||||
| 10597 | for (size_t I = 0; I < NumEltsPerBlock; I++) | ||||
| 10598 | if (BlockElts[I] >= 0 && (unsigned)BlockElts[I] != Elt0 + I) | ||||
| 10599 | return false; | ||||
| 10600 | |||||
| 10601 | DupLaneOp = Elt0 / NumEltsPerBlock; | ||||
| 10602 | return true; | ||||
| 10603 | } | ||||
| 10604 | |||||
| 10605 | // check if an EXT instruction can handle the shuffle mask when the | ||||
| 10606 | // vector sources of the shuffle are different. | ||||
| 10607 | static bool isEXTMask(ArrayRef<int> M, EVT VT, bool &ReverseEXT, | ||||
| 10608 | unsigned &Imm) { | ||||
| 10609 | // Look for the first non-undef element. | ||||
| 10610 | const int *FirstRealElt = find_if(M, [](int Elt) { return Elt >= 0; }); | ||||
| 10611 | |||||
| 10612 | // Benefit form APInt to handle overflow when calculating expected element. | ||||
| 10613 | unsigned NumElts = VT.getVectorNumElements(); | ||||
| 10614 | unsigned MaskBits = APInt(32, NumElts * 2).logBase2(); | ||||
| 10615 | APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1); | ||||
| 10616 | // The following shuffle indices must be the successive elements after the | ||||
| 10617 | // first real element. | ||||
| 10618 | bool FoundWrongElt = std::any_of(FirstRealElt + 1, M.end(), [&](int Elt) { | ||||
| 10619 | return Elt != ExpectedElt++ && Elt != -1; | ||||
| 10620 | }); | ||||
| 10621 | if (FoundWrongElt) | ||||
| 10622 | return false; | ||||
| 10623 | |||||
| 10624 | // The index of an EXT is the first element if it is not UNDEF. | ||||
| 10625 | // Watch out for the beginning UNDEFs. The EXT index should be the expected | ||||
| 10626 | // value of the first element. E.g. | ||||
| 10627 | // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>. | ||||
| 10628 | // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>. | ||||
| 10629 | // ExpectedElt is the last mask index plus 1. | ||||
| 10630 | Imm = ExpectedElt.getZExtValue(); | ||||
| 10631 | |||||
| 10632 | // There are two difference cases requiring to reverse input vectors. | ||||
| 10633 | // For example, for vector <4 x i32> we have the following cases, | ||||
| 10634 | // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>) | ||||
| 10635 | // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>) | ||||
| 10636 | // For both cases, we finally use mask <5, 6, 7, 0>, which requires | ||||
| 10637 | // to reverse two input vectors. | ||||
| 10638 | if (Imm < NumElts) | ||||
| 10639 | ReverseEXT = true; | ||||
| 10640 | else | ||||
| 10641 | Imm -= NumElts; | ||||
| 10642 | |||||
| 10643 | return true; | ||||
| 10644 | } | ||||
| 10645 | |||||
| 10646 | /// isREVMask - Check if a vector shuffle corresponds to a REV | ||||
| 10647 | /// instruction with the specified blocksize. (The order of the elements | ||||
| 10648 | /// within each block of the vector is reversed.) | ||||
| 10649 | static bool isREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) { | ||||
| 10650 | assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64 ||(static_cast <bool> ((BlockSize == 16 || BlockSize == 32 || BlockSize == 64 || BlockSize == 128) && "Only possible block sizes for REV are: 16, 32, 64, 128" ) ? void (0) : __assert_fail ("(BlockSize == 16 || BlockSize == 32 || BlockSize == 64 || BlockSize == 128) && \"Only possible block sizes for REV are: 16, 32, 64, 128\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 10652, __extension__ __PRETTY_FUNCTION__)) | ||||
| 10651 | BlockSize == 128) &&(static_cast <bool> ((BlockSize == 16 || BlockSize == 32 || BlockSize == 64 || BlockSize == 128) && "Only possible block sizes for REV are: 16, 32, 64, 128" ) ? void (0) : __assert_fail ("(BlockSize == 16 || BlockSize == 32 || BlockSize == 64 || BlockSize == 128) && \"Only possible block sizes for REV are: 16, 32, 64, 128\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 10652, __extension__ __PRETTY_FUNCTION__)) | ||||
| 10652 | "Only possible block sizes for REV are: 16, 32, 64, 128")(static_cast <bool> ((BlockSize == 16 || BlockSize == 32 || BlockSize == 64 || BlockSize == 128) && "Only possible block sizes for REV are: 16, 32, 64, 128" ) ? void (0) : __assert_fail ("(BlockSize == 16 || BlockSize == 32 || BlockSize == 64 || BlockSize == 128) && \"Only possible block sizes for REV are: 16, 32, 64, 128\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 10652, __extension__ __PRETTY_FUNCTION__)); | ||||
| 10653 | |||||
| 10654 | unsigned EltSz = VT.getScalarSizeInBits(); | ||||
| 10655 | unsigned NumElts = VT.getVectorNumElements(); | ||||
| 10656 | unsigned BlockElts = M[0] + 1; | ||||
| 10657 | // If the first shuffle index is UNDEF, be optimistic. | ||||
| 10658 | if (M[0] < 0) | ||||
| 10659 | BlockElts = BlockSize / EltSz; | ||||
| 10660 | |||||
| 10661 | if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz) | ||||
| 10662 | return false; | ||||
| 10663 | |||||
| 10664 | for (unsigned i = 0; i < NumElts; ++i) { | ||||
| 10665 | if (M[i] < 0) | ||||
| 10666 | continue; // ignore UNDEF indices | ||||
| 10667 | if ((unsigned)M[i] != (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts)) | ||||
| 10668 | return false; | ||||
| 10669 | } | ||||
| 10670 | |||||
| 10671 | return true; | ||||
| 10672 | } | ||||
| 10673 | |||||
| 10674 | static bool isZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { | ||||
| 10675 | unsigned NumElts = VT.getVectorNumElements(); | ||||
| 10676 | if (NumElts % 2 != 0) | ||||
| 10677 | return false; | ||||
| 10678 | WhichResult = (M[0] == 0 ? 0 : 1); | ||||
| 10679 | unsigned Idx = WhichResult * NumElts / 2; | ||||
| 10680 | for (unsigned i = 0; i != NumElts; i += 2) { | ||||
| 10681 | if ((M[i] >= 0 && (unsigned)M[i] != Idx) || | ||||
| 10682 | (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx + NumElts)) | ||||
| 10683 | return false; | ||||
| 10684 | Idx += 1; | ||||
| 10685 | } | ||||
| 10686 | |||||
| 10687 | return true; | ||||
| 10688 | } | ||||
| 10689 | |||||
| 10690 | static bool isUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { | ||||
| 10691 | unsigned NumElts = VT.getVectorNumElements(); | ||||
| 10692 | WhichResult = (M[0] == 0 ? 0 : 1); | ||||
| 10693 | for (unsigned i = 0; i != NumElts; ++i) { | ||||
| 10694 | if (M[i] < 0) | ||||
| 10695 | continue; // ignore UNDEF indices | ||||
| 10696 | if ((unsigned)M[i] != 2 * i + WhichResult) | ||||
| 10697 | return false; | ||||
| 10698 | } | ||||
| 10699 | |||||
| 10700 | return true; | ||||
| 10701 | } | ||||
| 10702 | |||||
| 10703 | static bool isTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { | ||||
| 10704 | unsigned NumElts = VT.getVectorNumElements(); | ||||
| 10705 | if (NumElts % 2 != 0) | ||||
| 10706 | return false; | ||||
| 10707 | WhichResult = (M[0] == 0 ? 0 : 1); | ||||
| 10708 | for (unsigned i = 0; i < NumElts; i += 2) { | ||||
| 10709 | if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) || | ||||
| 10710 | (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + NumElts + WhichResult)) | ||||
| 10711 | return false; | ||||
| 10712 | } | ||||
| 10713 | return true; | ||||
| 10714 | } | ||||
| 10715 | |||||
| 10716 | /// isZIP_v_undef_Mask - Special case of isZIPMask for canonical form of | ||||
| 10717 | /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". | ||||
| 10718 | /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>. | ||||
| 10719 | static bool isZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { | ||||
| 10720 | unsigned NumElts = VT.getVectorNumElements(); | ||||
| 10721 | if (NumElts % 2 != 0) | ||||
| 10722 | return false; | ||||
| 10723 | WhichResult = (M[0] == 0 ? 0 : 1); | ||||
| 10724 | unsigned Idx = WhichResult * NumElts / 2; | ||||
| 10725 | for (unsigned i = 0; i != NumElts; i += 2) { | ||||
| 10726 | if ((M[i] >= 0 && (unsigned)M[i] != Idx) || | ||||
| 10727 | (M[i + 1] >= 0 && (unsigned)M[i + 1] != Idx)) | ||||
| 10728 | return false; | ||||
| 10729 | Idx += 1; | ||||
| 10730 | } | ||||
| 10731 | |||||
| 10732 | return true; | ||||
| 10733 | } | ||||
| 10734 | |||||
| 10735 | /// isUZP_v_undef_Mask - Special case of isUZPMask for canonical form of | ||||
| 10736 | /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". | ||||
| 10737 | /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>, | ||||
| 10738 | static bool isUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { | ||||
| 10739 | unsigned Half = VT.getVectorNumElements() / 2; | ||||
| 10740 | WhichResult = (M[0] == 0 ? 0 : 1); | ||||
| 10741 | for (unsigned j = 0; j != 2; ++j) { | ||||
| 10742 | unsigned Idx = WhichResult; | ||||
| 10743 | for (unsigned i = 0; i != Half; ++i) { | ||||
| 10744 | int MIdx = M[i + j * Half]; | ||||
| 10745 | if (MIdx >= 0 && (unsigned)MIdx != Idx) | ||||
| 10746 | return false; | ||||
| 10747 | Idx += 2; | ||||
| 10748 | } | ||||
| 10749 | } | ||||
| 10750 | |||||
| 10751 | return true; | ||||
| 10752 | } | ||||
| 10753 | |||||
| 10754 | /// isTRN_v_undef_Mask - Special case of isTRNMask for canonical form of | ||||
| 10755 | /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". | ||||
| 10756 | /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>. | ||||
| 10757 | static bool isTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { | ||||
| 10758 | unsigned NumElts = VT.getVectorNumElements(); | ||||
| 10759 | if (NumElts % 2 != 0) | ||||
| 10760 | return false; | ||||
| 10761 | WhichResult = (M[0] == 0 ? 0 : 1); | ||||
| 10762 | for (unsigned i = 0; i < NumElts; i += 2) { | ||||
| 10763 | if ((M[i] >= 0 && (unsigned)M[i] != i + WhichResult) || | ||||
| 10764 | (M[i + 1] >= 0 && (unsigned)M[i + 1] != i + WhichResult)) | ||||
| 10765 | return false; | ||||
| 10766 | } | ||||
| 10767 | return true; | ||||
| 10768 | } | ||||
| 10769 | |||||
| 10770 | static bool isINSMask(ArrayRef<int> M, int NumInputElements, | ||||
| 10771 | bool &DstIsLeft, int &Anomaly) { | ||||
| 10772 | if (M.size() != static_cast<size_t>(NumInputElements)) | ||||
| 10773 | return false; | ||||
| 10774 | |||||
| 10775 | int NumLHSMatch = 0, NumRHSMatch = 0; | ||||
| 10776 | int LastLHSMismatch = -1, LastRHSMismatch = -1; | ||||
| 10777 | |||||
| 10778 | for (int i = 0; i < NumInputElements; ++i) { | ||||
| 10779 | if (M[i] == -1) { | ||||
| 10780 | ++NumLHSMatch; | ||||
| 10781 | ++NumRHSMatch; | ||||
| 10782 | continue; | ||||
| 10783 | } | ||||
| 10784 | |||||
| 10785 | if (M[i] == i) | ||||
| 10786 | ++NumLHSMatch; | ||||
| 10787 | else | ||||
| 10788 | LastLHSMismatch = i; | ||||
| 10789 | |||||
| 10790 | if (M[i] == i + NumInputElements) | ||||
| 10791 | ++NumRHSMatch; | ||||
| 10792 | else | ||||
| 10793 | LastRHSMismatch = i; | ||||
| 10794 | } | ||||
| 10795 | |||||
| 10796 | if (NumLHSMatch == NumInputElements - 1) { | ||||
| 10797 | DstIsLeft = true; | ||||
| 10798 | Anomaly = LastLHSMismatch; | ||||
| 10799 | return true; | ||||
| 10800 | } else if (NumRHSMatch == NumInputElements - 1) { | ||||
| 10801 | DstIsLeft = false; | ||||
| 10802 | Anomaly = LastRHSMismatch; | ||||
| 10803 | return true; | ||||
| 10804 | } | ||||
| 10805 | |||||
| 10806 | return false; | ||||
| 10807 | } | ||||
| 10808 | |||||
| 10809 | static bool isConcatMask(ArrayRef<int> Mask, EVT VT, bool SplitLHS) { | ||||
| 10810 | if (VT.getSizeInBits() != 128) | ||||
| 10811 | return false; | ||||
| 10812 | |||||
| 10813 | unsigned NumElts = VT.getVectorNumElements(); | ||||
| 10814 | |||||
| 10815 | for (int I = 0, E = NumElts / 2; I != E; I++) { | ||||
| 10816 | if (Mask[I] != I) | ||||
| 10817 | return false; | ||||
| 10818 | } | ||||
| 10819 | |||||
| 10820 | int Offset = NumElts / 2; | ||||
| 10821 | for (int I = NumElts / 2, E = NumElts; I != E; I++) { | ||||
| 10822 | if (Mask[I] != I + SplitLHS * Offset) | ||||
| 10823 | return false; | ||||
| 10824 | } | ||||
| 10825 | |||||
| 10826 | return true; | ||||
| 10827 | } | ||||
| 10828 | |||||
| 10829 | static SDValue tryFormConcatFromShuffle(SDValue Op, SelectionDAG &DAG) { | ||||
| 10830 | SDLoc DL(Op); | ||||
| 10831 | EVT VT = Op.getValueType(); | ||||
| 10832 | SDValue V0 = Op.getOperand(0); | ||||
| 10833 | SDValue V1 = Op.getOperand(1); | ||||
| 10834 | ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask(); | ||||
| 10835 | |||||
| 10836 | if (VT.getVectorElementType() != V0.getValueType().getVectorElementType() || | ||||
| 10837 | VT.getVectorElementType() != V1.getValueType().getVectorElementType()) | ||||
| 10838 | return SDValue(); | ||||
| 10839 | |||||
| 10840 | bool SplitV0 = V0.getValueSizeInBits() == 128; | ||||
| 10841 | |||||
| 10842 | if (!isConcatMask(Mask, VT, SplitV0)) | ||||
| 10843 | return SDValue(); | ||||
| 10844 | |||||
| 10845 | EVT CastVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); | ||||
| 10846 | if (SplitV0) { | ||||
| 10847 | V0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V0, | ||||
| 10848 | DAG.getConstant(0, DL, MVT::i64)); | ||||
| 10849 | } | ||||
| 10850 | if (V1.getValueSizeInBits() == 128) { | ||||
| 10851 | V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, CastVT, V1, | ||||
| 10852 | DAG.getConstant(0, DL, MVT::i64)); | ||||
| 10853 | } | ||||
| 10854 | return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, V0, V1); | ||||
| 10855 | } | ||||
| 10856 | |||||
| 10857 | /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit | ||||
| 10858 | /// the specified operations to build the shuffle. ID is the perfect-shuffle | ||||
| 10859 | //ID, V1 and V2 are the original shuffle inputs. PFEntry is the Perfect shuffle | ||||
| 10860 | //table entry and LHS/RHS are the immediate inputs for this stage of the | ||||
| 10861 | //shuffle. | ||||
| 10862 | static SDValue GeneratePerfectShuffle(unsigned ID, SDValue V1, | ||||
| 10863 | SDValue V2, unsigned PFEntry, SDValue LHS, | ||||
| 10864 | SDValue RHS, SelectionDAG &DAG, | ||||
| 10865 | const SDLoc &dl) { | ||||
| 10866 | unsigned OpNum = (PFEntry >> 26) & 0x0F; | ||||
| 10867 | unsigned LHSID = (PFEntry >> 13) & ((1 << 13) - 1); | ||||
| 10868 | unsigned RHSID = (PFEntry >> 0) & ((1 << 13) - 1); | ||||
| 10869 | |||||
| 10870 | enum { | ||||
| 10871 | OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> | ||||
| 10872 | OP_VREV, | ||||
| 10873 | OP_VDUP0, | ||||
| 10874 | OP_VDUP1, | ||||
| 10875 | OP_VDUP2, | ||||
| 10876 | OP_VDUP3, | ||||
| 10877 | OP_VEXT1, | ||||
| 10878 | OP_VEXT2, | ||||
| 10879 | OP_VEXT3, | ||||
| 10880 | OP_VUZPL, // VUZP, left result | ||||
| 10881 | OP_VUZPR, // VUZP, right result | ||||
| 10882 | OP_VZIPL, // VZIP, left result | ||||
| 10883 | OP_VZIPR, // VZIP, right result | ||||
| 10884 | OP_VTRNL, // VTRN, left result | ||||
| 10885 | OP_VTRNR, // VTRN, right result | ||||
| 10886 | OP_MOVLANE // Move lane. RHSID is the lane to move into | ||||
| 10887 | }; | ||||
| 10888 | |||||
| 10889 | if (OpNum == OP_COPY) { | ||||
| 10890 | if (LHSID == (1 * 9 + 2) * 9 + 3) | ||||
| 10891 | return LHS; | ||||
| 10892 | assert(LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!")(static_cast <bool> (LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && "Illegal OP_COPY!") ? void (0) : __assert_fail ("LHSID == ((4 * 9 + 5) * 9 + 6) * 9 + 7 && \"Illegal OP_COPY!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 10892, __extension__ __PRETTY_FUNCTION__)); | ||||
| 10893 | return RHS; | ||||
| 10894 | } | ||||
| 10895 | |||||
| 10896 | if (OpNum == OP_MOVLANE) { | ||||
| 10897 | // Decompose a PerfectShuffle ID to get the Mask for lane Elt | ||||
| 10898 | auto getPFIDLane = [](unsigned ID, int Elt) -> int { | ||||
| 10899 | assert(Elt < 4 && "Expected Perfect Lanes to be less than 4")(static_cast <bool> (Elt < 4 && "Expected Perfect Lanes to be less than 4" ) ? void (0) : __assert_fail ("Elt < 4 && \"Expected Perfect Lanes to be less than 4\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 10899, __extension__ __PRETTY_FUNCTION__)); | ||||
| 10900 | Elt = 3 - Elt; | ||||
| 10901 | while (Elt > 0) { | ||||
| 10902 | ID /= 9; | ||||
| 10903 | Elt--; | ||||
| 10904 | } | ||||
| 10905 | return (ID % 9 == 8) ? -1 : ID % 9; | ||||
| 10906 | }; | ||||
| 10907 | |||||
| 10908 | // For OP_MOVLANE shuffles, the RHSID represents the lane to move into. We | ||||
| 10909 | // get the lane to move from from the PFID, which is always from the | ||||
| 10910 | // original vectors (V1 or V2). | ||||
| 10911 | SDValue OpLHS = GeneratePerfectShuffle( | ||||
| 10912 | LHSID, V1, V2, PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); | ||||
| 10913 | EVT VT = OpLHS.getValueType(); | ||||
| 10914 | assert(RHSID < 8 && "Expected a lane index for RHSID!")(static_cast <bool> (RHSID < 8 && "Expected a lane index for RHSID!" ) ? void (0) : __assert_fail ("RHSID < 8 && \"Expected a lane index for RHSID!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 10914, __extension__ __PRETTY_FUNCTION__)); | ||||
| 10915 | unsigned ExtLane = 0; | ||||
| 10916 | SDValue Input; | ||||
| 10917 | |||||
| 10918 | // OP_MOVLANE are either D movs (if bit 0x4 is set) or S movs. D movs | ||||
| 10919 | // convert into a higher type. | ||||
| 10920 | if (RHSID & 0x4) { | ||||
| 10921 | int MaskElt = getPFIDLane(ID, (RHSID & 0x01) << 1) >> 1; | ||||
| 10922 | if (MaskElt == -1) | ||||
| 10923 | MaskElt = (getPFIDLane(ID, ((RHSID & 0x01) << 1) + 1) - 1) >> 1; | ||||
| 10924 | assert(MaskElt >= 0 && "Didn't expect an undef movlane index!")(static_cast <bool> (MaskElt >= 0 && "Didn't expect an undef movlane index!" ) ? void (0) : __assert_fail ("MaskElt >= 0 && \"Didn't expect an undef movlane index!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 10924, __extension__ __PRETTY_FUNCTION__)); | ||||
| 10925 | ExtLane = MaskElt < 2 ? MaskElt : (MaskElt - 2); | ||||
| 10926 | Input = MaskElt < 2 ? V1 : V2; | ||||
| 10927 | if (VT.getScalarSizeInBits() == 16) { | ||||
| 10928 | Input = DAG.getBitcast(MVT::v2f32, Input); | ||||
| 10929 | OpLHS = DAG.getBitcast(MVT::v2f32, OpLHS); | ||||
| 10930 | } else { | ||||
| 10931 | assert(VT.getScalarSizeInBits() == 32 &&(static_cast <bool> (VT.getScalarSizeInBits() == 32 && "Expected 16 or 32 bit shuffle elemements") ? void (0) : __assert_fail ("VT.getScalarSizeInBits() == 32 && \"Expected 16 or 32 bit shuffle elemements\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 10932, __extension__ __PRETTY_FUNCTION__)) | ||||
| 10932 | "Expected 16 or 32 bit shuffle elemements")(static_cast <bool> (VT.getScalarSizeInBits() == 32 && "Expected 16 or 32 bit shuffle elemements") ? void (0) : __assert_fail ("VT.getScalarSizeInBits() == 32 && \"Expected 16 or 32 bit shuffle elemements\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 10932, __extension__ __PRETTY_FUNCTION__)); | ||||
| 10933 | Input = DAG.getBitcast(MVT::v2f64, Input); | ||||
| 10934 | OpLHS = DAG.getBitcast(MVT::v2f64, OpLHS); | ||||
| 10935 | } | ||||
| 10936 | } else { | ||||
| 10937 | int MaskElt = getPFIDLane(ID, RHSID); | ||||
| 10938 | assert(MaskElt >= 0 && "Didn't expect an undef movlane index!")(static_cast <bool> (MaskElt >= 0 && "Didn't expect an undef movlane index!" ) ? void (0) : __assert_fail ("MaskElt >= 0 && \"Didn't expect an undef movlane index!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 10938, __extension__ __PRETTY_FUNCTION__)); | ||||
| 10939 | ExtLane = MaskElt < 4 ? MaskElt : (MaskElt - 4); | ||||
| 10940 | Input = MaskElt < 4 ? V1 : V2; | ||||
| 10941 | // Be careful about creating illegal types. Use f16 instead of i16. | ||||
| 10942 | if (VT == MVT::v4i16) { | ||||
| 10943 | Input = DAG.getBitcast(MVT::v4f16, Input); | ||||
| 10944 | OpLHS = DAG.getBitcast(MVT::v4f16, OpLHS); | ||||
| 10945 | } | ||||
| 10946 | } | ||||
| 10947 | SDValue Ext = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, | ||||
| 10948 | Input.getValueType().getVectorElementType(), | ||||
| 10949 | Input, DAG.getVectorIdxConstant(ExtLane, dl)); | ||||
| 10950 | SDValue Ins = | ||||
| 10951 | DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, Input.getValueType(), OpLHS, | ||||
| 10952 | Ext, DAG.getVectorIdxConstant(RHSID & 0x3, dl)); | ||||
| 10953 | return DAG.getBitcast(VT, Ins); | ||||
| 10954 | } | ||||
| 10955 | |||||
| 10956 | SDValue OpLHS, OpRHS; | ||||
| 10957 | OpLHS = GeneratePerfectShuffle(LHSID, V1, V2, PerfectShuffleTable[LHSID], LHS, | ||||
| 10958 | RHS, DAG, dl); | ||||
| 10959 | OpRHS = GeneratePerfectShuffle(RHSID, V1, V2, PerfectShuffleTable[RHSID], LHS, | ||||
| 10960 | RHS, DAG, dl); | ||||
| 10961 | EVT VT = OpLHS.getValueType(); | ||||
| 10962 | |||||
| 10963 | switch (OpNum) { | ||||
| 10964 | default: | ||||
| 10965 | llvm_unreachable("Unknown shuffle opcode!")::llvm::llvm_unreachable_internal("Unknown shuffle opcode!", "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp" , 10965); | ||||
| 10966 | case OP_VREV: | ||||
| 10967 | // VREV divides the vector in half and swaps within the half. | ||||
| 10968 | if (VT.getVectorElementType() == MVT::i32 || | ||||
| 10969 | VT.getVectorElementType() == MVT::f32) | ||||
| 10970 | return DAG.getNode(AArch64ISD::REV64, dl, VT, OpLHS); | ||||
| 10971 | // vrev <4 x i16> -> REV32 | ||||
| 10972 | if (VT.getVectorElementType() == MVT::i16 || | ||||
| 10973 | VT.getVectorElementType() == MVT::f16 || | ||||
| 10974 | VT.getVectorElementType() == MVT::bf16) | ||||
| 10975 | return DAG.getNode(AArch64ISD::REV32, dl, VT, OpLHS); | ||||
| 10976 | // vrev <4 x i8> -> REV16 | ||||
| 10977 | assert(VT.getVectorElementType() == MVT::i8)(static_cast <bool> (VT.getVectorElementType() == MVT:: i8) ? void (0) : __assert_fail ("VT.getVectorElementType() == MVT::i8" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 10977, __extension__ __PRETTY_FUNCTION__)); | ||||
| 10978 | return DAG.getNode(AArch64ISD::REV16, dl, VT, OpLHS); | ||||
| 10979 | case OP_VDUP0: | ||||
| 10980 | case OP_VDUP1: | ||||
| 10981 | case OP_VDUP2: | ||||
| 10982 | case OP_VDUP3: { | ||||
| 10983 | EVT EltTy = VT.getVectorElementType(); | ||||
| 10984 | unsigned Opcode; | ||||
| 10985 | if (EltTy == MVT::i8) | ||||
| 10986 | Opcode = AArch64ISD::DUPLANE8; | ||||
| 10987 | else if (EltTy == MVT::i16 || EltTy == MVT::f16 || EltTy == MVT::bf16) | ||||
| 10988 | Opcode = AArch64ISD::DUPLANE16; | ||||
| 10989 | else if (EltTy == MVT::i32 || EltTy == MVT::f32) | ||||
| 10990 | Opcode = AArch64ISD::DUPLANE32; | ||||
| 10991 | else if (EltTy == MVT::i64 || EltTy == MVT::f64) | ||||
| 10992 | Opcode = AArch64ISD::DUPLANE64; | ||||
| 10993 | else | ||||
| 10994 | llvm_unreachable("Invalid vector element type?")::llvm::llvm_unreachable_internal("Invalid vector element type?" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 10994); | ||||
| 10995 | |||||
| 10996 | if (VT.getSizeInBits() == 64) | ||||
| 10997 | OpLHS = WidenVector(OpLHS, DAG); | ||||
| 10998 | SDValue Lane = DAG.getConstant(OpNum - OP_VDUP0, dl, MVT::i64); | ||||
| 10999 | return DAG.getNode(Opcode, dl, VT, OpLHS, Lane); | ||||
| 11000 | } | ||||
| 11001 | case OP_VEXT1: | ||||
| 11002 | case OP_VEXT2: | ||||
| 11003 | case OP_VEXT3: { | ||||
| 11004 | unsigned Imm = (OpNum - OP_VEXT1 + 1) * getExtFactor(OpLHS); | ||||
| 11005 | return DAG.getNode(AArch64ISD::EXT, dl, VT, OpLHS, OpRHS, | ||||
| 11006 | DAG.getConstant(Imm, dl, MVT::i32)); | ||||
| 11007 | } | ||||
| 11008 | case OP_VUZPL: | ||||
| 11009 | return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), OpLHS, | ||||
| 11010 | OpRHS); | ||||
| 11011 | case OP_VUZPR: | ||||
| 11012 | return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), OpLHS, | ||||
| 11013 | OpRHS); | ||||
| 11014 | case OP_VZIPL: | ||||
| 11015 | return DAG.getNode(AArch64ISD::ZIP1, dl, DAG.getVTList(VT, VT), OpLHS, | ||||
| 11016 | OpRHS); | ||||
| 11017 | case OP_VZIPR: | ||||
| 11018 | return DAG.getNode(AArch64ISD::ZIP2, dl, DAG.getVTList(VT, VT), OpLHS, | ||||
| 11019 | OpRHS); | ||||
| 11020 | case OP_VTRNL: | ||||
| 11021 | return DAG.getNode(AArch64ISD::TRN1, dl, DAG.getVTList(VT, VT), OpLHS, | ||||
| 11022 | OpRHS); | ||||
| 11023 | case OP_VTRNR: | ||||
| 11024 | return DAG.getNode(AArch64ISD::TRN2, dl, DAG.getVTList(VT, VT), OpLHS, | ||||
| 11025 | OpRHS); | ||||
| 11026 | } | ||||
| 11027 | } | ||||
| 11028 | |||||
| 11029 | static SDValue GenerateTBL(SDValue Op, ArrayRef<int> ShuffleMask, | ||||
| 11030 | SelectionDAG &DAG) { | ||||
| 11031 | // Check to see if we can use the TBL instruction. | ||||
| 11032 | SDValue V1 = Op.getOperand(0); | ||||
| 11033 | SDValue V2 = Op.getOperand(1); | ||||
| 11034 | SDLoc DL(Op); | ||||
| 11035 | |||||
| 11036 | EVT EltVT = Op.getValueType().getVectorElementType(); | ||||
| 11037 | unsigned BytesPerElt = EltVT.getSizeInBits() / 8; | ||||
| 11038 | |||||
| 11039 | bool Swap = false; | ||||
| 11040 | if (V1.isUndef() || isZerosVector(V1.getNode())) { | ||||
| 11041 | std::swap(V1, V2); | ||||
| 11042 | Swap = true; | ||||
| 11043 | } | ||||
| 11044 | |||||
| 11045 | // If the V2 source is undef or zero then we can use a tbl1, as tbl1 will fill | ||||
| 11046 | // out of range values with 0s. We do need to make sure that any out-of-range | ||||
| 11047 | // values are really out-of-range for a v16i8 vector. | ||||
| 11048 | bool IsUndefOrZero = V2.isUndef() || isZerosVector(V2.getNode()); | ||||
| 11049 | MVT IndexVT = MVT::v8i8; | ||||
| 11050 | unsigned IndexLen = 8; | ||||
| 11051 | if (Op.getValueSizeInBits() == 128) { | ||||
| 11052 | IndexVT = MVT::v16i8; | ||||
| 11053 | IndexLen = 16; | ||||
| 11054 | } | ||||
| 11055 | |||||
| 11056 | SmallVector<SDValue, 8> TBLMask; | ||||
| 11057 | for (int Val : ShuffleMask) { | ||||
| 11058 | for (unsigned Byte = 0; Byte < BytesPerElt; ++Byte) { | ||||
| 11059 | unsigned Offset = Byte + Val * BytesPerElt; | ||||
| 11060 | if (Swap) | ||||
| 11061 | Offset = Offset < IndexLen ? Offset + IndexLen : Offset - IndexLen; | ||||
| 11062 | if (IsUndefOrZero && Offset >= IndexLen) | ||||
| 11063 | Offset = 255; | ||||
| 11064 | TBLMask.push_back(DAG.getConstant(Offset, DL, MVT::i32)); | ||||
| 11065 | } | ||||
| 11066 | } | ||||
| 11067 | |||||
| 11068 | SDValue V1Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V1); | ||||
| 11069 | SDValue V2Cst = DAG.getNode(ISD::BITCAST, DL, IndexVT, V2); | ||||
| 11070 | |||||
| 11071 | SDValue Shuffle; | ||||
| 11072 | if (IsUndefOrZero) { | ||||
| 11073 | if (IndexLen == 8) | ||||
| 11074 | V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V1Cst); | ||||
| 11075 | Shuffle = DAG.getNode( | ||||
| 11076 | ISD::INTRINSIC_WO_CHAIN, DL, IndexVT, | ||||
| 11077 | DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst, | ||||
| 11078 | DAG.getBuildVector(IndexVT, DL, | ||||
| 11079 | makeArrayRef(TBLMask.data(), IndexLen))); | ||||
| 11080 | } else { | ||||
| 11081 | if (IndexLen == 8) { | ||||
| 11082 | V1Cst = DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v16i8, V1Cst, V2Cst); | ||||
| 11083 | Shuffle = DAG.getNode( | ||||
| 11084 | ISD::INTRINSIC_WO_CHAIN, DL, IndexVT, | ||||
| 11085 | DAG.getConstant(Intrinsic::aarch64_neon_tbl1, DL, MVT::i32), V1Cst, | ||||
| 11086 | DAG.getBuildVector(IndexVT, DL, | ||||
| 11087 | makeArrayRef(TBLMask.data(), IndexLen))); | ||||
| 11088 | } else { | ||||
| 11089 | // FIXME: We cannot, for the moment, emit a TBL2 instruction because we | ||||
| 11090 | // cannot currently represent the register constraints on the input | ||||
| 11091 | // table registers. | ||||
| 11092 | // Shuffle = DAG.getNode(AArch64ISD::TBL2, DL, IndexVT, V1Cst, V2Cst, | ||||
| 11093 | // DAG.getBuildVector(IndexVT, DL, &TBLMask[0], | ||||
| 11094 | // IndexLen)); | ||||
| 11095 | Shuffle = DAG.getNode( | ||||
| 11096 | ISD::INTRINSIC_WO_CHAIN, DL, IndexVT, | ||||
| 11097 | DAG.getConstant(Intrinsic::aarch64_neon_tbl2, DL, MVT::i32), V1Cst, | ||||
| 11098 | V2Cst, DAG.getBuildVector(IndexVT, DL, | ||||
| 11099 | makeArrayRef(TBLMask.data(), IndexLen))); | ||||
| 11100 | } | ||||
| 11101 | } | ||||
| 11102 | return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Shuffle); | ||||
| 11103 | } | ||||
| 11104 | |||||
| 11105 | static unsigned getDUPLANEOp(EVT EltType) { | ||||
| 11106 | if (EltType == MVT::i8) | ||||
| 11107 | return AArch64ISD::DUPLANE8; | ||||
| 11108 | if (EltType == MVT::i16 || EltType == MVT::f16 || EltType == MVT::bf16) | ||||
| 11109 | return AArch64ISD::DUPLANE16; | ||||
| 11110 | if (EltType == MVT::i32 || EltType == MVT::f32) | ||||
| 11111 | return AArch64ISD::DUPLANE32; | ||||
| 11112 | if (EltType == MVT::i64 || EltType == MVT::f64) | ||||
| 11113 | return AArch64ISD::DUPLANE64; | ||||
| 11114 | |||||
| 11115 | llvm_unreachable("Invalid vector element type?")::llvm::llvm_unreachable_internal("Invalid vector element type?" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 11115); | ||||
| 11116 | } | ||||
| 11117 | |||||
| 11118 | static SDValue constructDup(SDValue V, int Lane, SDLoc dl, EVT VT, | ||||
| 11119 | unsigned Opcode, SelectionDAG &DAG) { | ||||
| 11120 | // Try to eliminate a bitcasted extract subvector before a DUPLANE. | ||||
| 11121 | auto getScaledOffsetDup = [](SDValue BitCast, int &LaneC, MVT &CastVT) { | ||||
| 11122 | // Match: dup (bitcast (extract_subv X, C)), LaneC | ||||
| 11123 | if (BitCast.getOpcode() != ISD::BITCAST || | ||||
| 11124 | BitCast.getOperand(0).getOpcode() != ISD::EXTRACT_SUBVECTOR) | ||||
| 11125 | return false; | ||||
| 11126 | |||||
| 11127 | // The extract index must align in the destination type. That may not | ||||
| 11128 | // happen if the bitcast is from narrow to wide type. | ||||
| 11129 | SDValue Extract = BitCast.getOperand(0); | ||||
| 11130 | unsigned ExtIdx = Extract.getConstantOperandVal(1); | ||||
| 11131 | unsigned SrcEltBitWidth = Extract.getScalarValueSizeInBits(); | ||||
| 11132 | unsigned ExtIdxInBits = ExtIdx * SrcEltBitWidth; | ||||
| 11133 | unsigned CastedEltBitWidth = BitCast.getScalarValueSizeInBits(); | ||||
| 11134 | if (ExtIdxInBits % CastedEltBitWidth != 0) | ||||
| 11135 | return false; | ||||
| 11136 | |||||
| 11137 | // Can't handle cases where vector size is not 128-bit | ||||
| 11138 | if (!Extract.getOperand(0).getValueType().is128BitVector()) | ||||
| 11139 | return false; | ||||
| 11140 | |||||
| 11141 | // Update the lane value by offsetting with the scaled extract index. | ||||
| 11142 | LaneC += ExtIdxInBits / CastedEltBitWidth; | ||||
| 11143 | |||||
| 11144 | // Determine the casted vector type of the wide vector input. | ||||
| 11145 | // dup (bitcast (extract_subv X, C)), LaneC --> dup (bitcast X), LaneC' | ||||
| 11146 | // Examples: | ||||
| 11147 | // dup (bitcast (extract_subv v2f64 X, 1) to v2f32), 1 --> dup v4f32 X, 3 | ||||
| 11148 | // dup (bitcast (extract_subv v16i8 X, 8) to v4i16), 1 --> dup v8i16 X, 5 | ||||
| 11149 | unsigned SrcVecNumElts = | ||||
| 11150 | Extract.getOperand(0).getValueSizeInBits() / CastedEltBitWidth; | ||||
| 11151 | CastVT = MVT::getVectorVT(BitCast.getSimpleValueType().getScalarType(), | ||||
| 11152 | SrcVecNumElts); | ||||
| 11153 | return true; | ||||
| 11154 | }; | ||||
| 11155 | MVT CastVT; | ||||
| 11156 | if (getScaledOffsetDup(V, Lane, CastVT)) { | ||||
| 11157 | V = DAG.getBitcast(CastVT, V.getOperand(0).getOperand(0)); | ||||
| 11158 | } else if (V.getOpcode() == ISD::EXTRACT_SUBVECTOR && | ||||
| 11159 | V.getOperand(0).getValueType().is128BitVector()) { | ||||
| 11160 | // The lane is incremented by the index of the extract. | ||||
| 11161 | // Example: dup v2f32 (extract v4f32 X, 2), 1 --> dup v4f32 X, 3 | ||||
| 11162 | Lane += V.getConstantOperandVal(1); | ||||
| 11163 | V = V.getOperand(0); | ||||
| 11164 | } else if (V.getOpcode() == ISD::CONCAT_VECTORS) { | ||||
| 11165 | // The lane is decremented if we are splatting from the 2nd operand. | ||||
| 11166 | // Example: dup v4i32 (concat v2i32 X, v2i32 Y), 3 --> dup v4i32 Y, 1 | ||||
| 11167 | unsigned Idx = Lane >= (int)VT.getVectorNumElements() / 2; | ||||
| 11168 | Lane -= Idx * VT.getVectorNumElements() / 2; | ||||
| 11169 | V = WidenVector(V.getOperand(Idx), DAG); | ||||
| 11170 | } else if (VT.getSizeInBits() == 64) { | ||||
| 11171 | // Widen the operand to 128-bit register with undef. | ||||
| 11172 | V = WidenVector(V, DAG); | ||||
| 11173 | } | ||||
| 11174 | return DAG.getNode(Opcode, dl, VT, V, DAG.getConstant(Lane, dl, MVT::i64)); | ||||
| 11175 | } | ||||
| 11176 | |||||
| 11177 | // Return true if we can get a new shuffle mask by checking the parameter mask | ||||
| 11178 | // array to test whether every two adjacent mask values are continuous and | ||||
| 11179 | // starting from an even number. | ||||
| 11180 | static bool isWideTypeMask(ArrayRef<int> M, EVT VT, | ||||
| 11181 | SmallVectorImpl<int> &NewMask) { | ||||
| 11182 | unsigned NumElts = VT.getVectorNumElements(); | ||||
| 11183 | if (NumElts % 2 != 0) | ||||
| 11184 | return false; | ||||
| 11185 | |||||
| 11186 | NewMask.clear(); | ||||
| 11187 | for (unsigned i = 0; i < NumElts; i += 2) { | ||||
| 11188 | int M0 = M[i]; | ||||
| 11189 | int M1 = M[i + 1]; | ||||
| 11190 | |||||
| 11191 | // If both elements are undef, new mask is undef too. | ||||
| 11192 | if (M0 == -1 && M1 == -1) { | ||||
| 11193 | NewMask.push_back(-1); | ||||
| 11194 | continue; | ||||
| 11195 | } | ||||
| 11196 | |||||
| 11197 | if (M0 == -1 && M1 != -1 && (M1 % 2) == 1) { | ||||
| 11198 | NewMask.push_back(M1 / 2); | ||||
| 11199 | continue; | ||||
| 11200 | } | ||||
| 11201 | |||||
| 11202 | if (M0 != -1 && (M0 % 2) == 0 && ((M0 + 1) == M1 || M1 == -1)) { | ||||
| 11203 | NewMask.push_back(M0 / 2); | ||||
| 11204 | continue; | ||||
| 11205 | } | ||||
| 11206 | |||||
| 11207 | NewMask.clear(); | ||||
| 11208 | return false; | ||||
| 11209 | } | ||||
| 11210 | |||||
| 11211 | assert(NewMask.size() == NumElts / 2 && "Incorrect size for mask!")(static_cast <bool> (NewMask.size() == NumElts / 2 && "Incorrect size for mask!") ? void (0) : __assert_fail ("NewMask.size() == NumElts / 2 && \"Incorrect size for mask!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 11211, __extension__ __PRETTY_FUNCTION__)); | ||||
| 11212 | return true; | ||||
| 11213 | } | ||||
| 11214 | |||||
| 11215 | // Try to widen element type to get a new mask value for a better permutation | ||||
| 11216 | // sequence, so that we can use NEON shuffle instructions, such as zip1/2, | ||||
| 11217 | // UZP1/2, TRN1/2, REV, INS, etc. | ||||
| 11218 | // For example: | ||||
| 11219 | // shufflevector <4 x i32> %a, <4 x i32> %b, | ||||
| 11220 | // <4 x i32> <i32 6, i32 7, i32 2, i32 3> | ||||
| 11221 | // is equivalent to: | ||||
| 11222 | // shufflevector <2 x i64> %a, <2 x i64> %b, <2 x i32> <i32 3, i32 1> | ||||
| 11223 | // Finally, we can get: | ||||
| 11224 | // mov v0.d[0], v1.d[1] | ||||
| 11225 | static SDValue tryWidenMaskForShuffle(SDValue Op, SelectionDAG &DAG) { | ||||
| 11226 | SDLoc DL(Op); | ||||
| 11227 | EVT VT = Op.getValueType(); | ||||
| 11228 | EVT ScalarVT = VT.getVectorElementType(); | ||||
| 11229 | unsigned ElementSize = ScalarVT.getFixedSizeInBits(); | ||||
| 11230 | SDValue V0 = Op.getOperand(0); | ||||
| 11231 | SDValue V1 = Op.getOperand(1); | ||||
| 11232 | ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op)->getMask(); | ||||
| 11233 | |||||
| 11234 | // If combining adjacent elements, like two i16's -> i32, two i32's -> i64 ... | ||||
| 11235 | // We need to make sure the wider element type is legal. Thus, ElementSize | ||||
| 11236 | // should be not larger than 32 bits, and i1 type should also be excluded. | ||||
| 11237 | if (ElementSize > 32 || ElementSize == 1) | ||||
| 11238 | return SDValue(); | ||||
| 11239 | |||||
| 11240 | SmallVector<int, 8> NewMask; | ||||
| 11241 | if (isWideTypeMask(Mask, VT, NewMask)) { | ||||
| 11242 | MVT NewEltVT = VT.isFloatingPoint() | ||||
| 11243 | ? MVT::getFloatingPointVT(ElementSize * 2) | ||||
| 11244 | : MVT::getIntegerVT(ElementSize * 2); | ||||
| 11245 | MVT NewVT = MVT::getVectorVT(NewEltVT, VT.getVectorNumElements() / 2); | ||||
| 11246 | if (DAG.getTargetLoweringInfo().isTypeLegal(NewVT)) { | ||||
| 11247 | V0 = DAG.getBitcast(NewVT, V0); | ||||
| 11248 | V1 = DAG.getBitcast(NewVT, V1); | ||||
| 11249 | return DAG.getBitcast(VT, | ||||
| 11250 | DAG.getVectorShuffle(NewVT, DL, V0, V1, NewMask)); | ||||
| 11251 | } | ||||
| 11252 | } | ||||
| 11253 | |||||
| 11254 | return SDValue(); | ||||
| 11255 | } | ||||
| 11256 | |||||
| 11257 | // Try to fold shuffle (tbl2, tbl2) into a single tbl4. | ||||
| 11258 | static SDValue tryToConvertShuffleOfTbl2ToTbl4(SDValue Op, | ||||
| 11259 | ArrayRef<int> ShuffleMask, | ||||
| 11260 | SelectionDAG &DAG) { | ||||
| 11261 | SDValue Tbl1 = Op->getOperand(0); | ||||
| 11262 | SDValue Tbl2 = Op->getOperand(1); | ||||
| 11263 | SDLoc dl(Op); | ||||
| 11264 | SDValue Tbl2ID = | ||||
| 11265 | DAG.getTargetConstant(Intrinsic::aarch64_neon_tbl2, dl, MVT::i64); | ||||
| 11266 | |||||
| 11267 | EVT VT = Op.getValueType(); | ||||
| 11268 | if (Tbl1->getOpcode() != ISD::INTRINSIC_WO_CHAIN || | ||||
| 11269 | Tbl1->getOperand(0) != Tbl2ID || | ||||
| 11270 | Tbl2->getOpcode() != ISD::INTRINSIC_WO_CHAIN || | ||||
| 11271 | Tbl2->getOperand(0) != Tbl2ID) | ||||
| 11272 | return SDValue(); | ||||
| 11273 | |||||
| 11274 | if (Tbl1->getValueType(0) != MVT::v16i8 || | ||||
| 11275 | Tbl2->getValueType(0) != MVT::v16i8) | ||||
| 11276 | return SDValue(); | ||||
| 11277 | |||||
| 11278 | SDValue Mask1 = Tbl1->getOperand(3); | ||||
| 11279 | SDValue Mask2 = Tbl2->getOperand(3); | ||||
| 11280 | SmallVector<SDValue, 16> TBLMaskParts(16, SDValue()); | ||||
| 11281 | for (unsigned I = 0; I < 16; I++) { | ||||
| 11282 | if (ShuffleMask[I] < 16) | ||||
| 11283 | TBLMaskParts[I] = Mask1->getOperand(ShuffleMask[I]); | ||||
| 11284 | else { | ||||
| 11285 | auto *C = | ||||
| 11286 | dyn_cast<ConstantSDNode>(Mask2->getOperand(ShuffleMask[I] - 16)); | ||||
| 11287 | if (!C) | ||||
| 11288 | return SDValue(); | ||||
| 11289 | TBLMaskParts[I] = DAG.getConstant(C->getSExtValue() + 32, dl, MVT::i32); | ||||
| 11290 | } | ||||
| 11291 | } | ||||
| 11292 | |||||
| 11293 | SDValue TBLMask = DAG.getBuildVector(VT, dl, TBLMaskParts); | ||||
| 11294 | SDValue ID = | ||||
| 11295 | DAG.getTargetConstant(Intrinsic::aarch64_neon_tbl4, dl, MVT::i64); | ||||
| 11296 | |||||
| 11297 | return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v16i8, | ||||
| 11298 | {ID, Tbl1->getOperand(1), Tbl1->getOperand(2), | ||||
| 11299 | Tbl2->getOperand(1), Tbl2->getOperand(2), TBLMask}); | ||||
| 11300 | } | ||||
| 11301 | |||||
| 11302 | SDValue AArch64TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, | ||||
| 11303 | SelectionDAG &DAG) const { | ||||
| 11304 | SDLoc dl(Op); | ||||
| 11305 | EVT VT = Op.getValueType(); | ||||
| 11306 | |||||
| 11307 | ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); | ||||
| 11308 | |||||
| 11309 | if (useSVEForFixedLengthVectorVT(VT, | ||||
| 11310 | Subtarget->forceStreamingCompatibleSVE())) | ||||
| 11311 | return LowerFixedLengthVECTOR_SHUFFLEToSVE(Op, DAG); | ||||
| 11312 | |||||
| 11313 | // Convert shuffles that are directly supported on NEON to target-specific | ||||
| 11314 | // DAG nodes, instead of keeping them as shuffles and matching them again | ||||
| 11315 | // during code selection. This is more efficient and avoids the possibility | ||||
| 11316 | // of inconsistencies between legalization and selection. | ||||
| 11317 | ArrayRef<int> ShuffleMask = SVN->getMask(); | ||||
| 11318 | |||||
| 11319 | SDValue V1 = Op.getOperand(0); | ||||
| 11320 | SDValue V2 = Op.getOperand(1); | ||||
| 11321 | |||||
| 11322 | assert(V1.getValueType() == VT && "Unexpected VECTOR_SHUFFLE type!")(static_cast <bool> (V1.getValueType() == VT && "Unexpected VECTOR_SHUFFLE type!") ? void (0) : __assert_fail ("V1.getValueType() == VT && \"Unexpected VECTOR_SHUFFLE type!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 11322, __extension__ __PRETTY_FUNCTION__)); | ||||
| 11323 | assert(ShuffleMask.size() == VT.getVectorNumElements() &&(static_cast <bool> (ShuffleMask.size() == VT.getVectorNumElements () && "Unexpected VECTOR_SHUFFLE mask size!") ? void ( 0) : __assert_fail ("ShuffleMask.size() == VT.getVectorNumElements() && \"Unexpected VECTOR_SHUFFLE mask size!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 11324, __extension__ __PRETTY_FUNCTION__)) | ||||
| 11324 | "Unexpected VECTOR_SHUFFLE mask size!")(static_cast <bool> (ShuffleMask.size() == VT.getVectorNumElements () && "Unexpected VECTOR_SHUFFLE mask size!") ? void ( 0) : __assert_fail ("ShuffleMask.size() == VT.getVectorNumElements() && \"Unexpected VECTOR_SHUFFLE mask size!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 11324, __extension__ __PRETTY_FUNCTION__)); | ||||
| 11325 | |||||
| 11326 | if (SDValue Res = tryToConvertShuffleOfTbl2ToTbl4(Op, ShuffleMask, DAG)) | ||||
| 11327 | return Res; | ||||
| 11328 | |||||
| 11329 | if (SVN->isSplat()) { | ||||
| 11330 | int Lane = SVN->getSplatIndex(); | ||||
| 11331 | // If this is undef splat, generate it via "just" vdup, if possible. | ||||
| 11332 | if (Lane == -1) | ||||
| 11333 | Lane = 0; | ||||
| 11334 | |||||
| 11335 | if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) | ||||
| 11336 | return DAG.getNode(AArch64ISD::DUP, dl, V1.getValueType(), | ||||
| 11337 | V1.getOperand(0)); | ||||
| 11338 | // Test if V1 is a BUILD_VECTOR and the lane being referenced is a non- | ||||
| 11339 | // constant. If so, we can just reference the lane's definition directly. | ||||
| 11340 | if (V1.getOpcode() == ISD::BUILD_VECTOR && | ||||
| 11341 | !isa<ConstantSDNode>(V1.getOperand(Lane))) | ||||
| 11342 | return DAG.getNode(AArch64ISD::DUP, dl, VT, V1.getOperand(Lane)); | ||||
| 11343 | |||||
| 11344 | // Otherwise, duplicate from the lane of the input vector. | ||||
| 11345 | unsigned Opcode = getDUPLANEOp(V1.getValueType().getVectorElementType()); | ||||
| 11346 | return constructDup(V1, Lane, dl, VT, Opcode, DAG); | ||||
| 11347 | } | ||||
| 11348 | |||||
| 11349 | // Check if the mask matches a DUP for a wider element | ||||
| 11350 | for (unsigned LaneSize : {64U, 32U, 16U}) { | ||||
| 11351 | unsigned Lane = 0; | ||||
| 11352 | if (isWideDUPMask(ShuffleMask, VT, LaneSize, Lane)) { | ||||
| 11353 | unsigned Opcode = LaneSize == 64 ? AArch64ISD::DUPLANE64 | ||||
| 11354 | : LaneSize == 32 ? AArch64ISD::DUPLANE32 | ||||
| 11355 | : AArch64ISD::DUPLANE16; | ||||
| 11356 | // Cast V1 to an integer vector with required lane size | ||||
| 11357 | MVT NewEltTy = MVT::getIntegerVT(LaneSize); | ||||
| 11358 | unsigned NewEltCount = VT.getSizeInBits() / LaneSize; | ||||
| 11359 | MVT NewVecTy = MVT::getVectorVT(NewEltTy, NewEltCount); | ||||
| 11360 | V1 = DAG.getBitcast(NewVecTy, V1); | ||||
| 11361 | // Constuct the DUP instruction | ||||
| 11362 | V1 = constructDup(V1, Lane, dl, NewVecTy, Opcode, DAG); | ||||
| 11363 | // Cast back to the original type | ||||
| 11364 | return DAG.getBitcast(VT, V1); | ||||
| 11365 | } | ||||
| 11366 | } | ||||
| 11367 | |||||
| 11368 | if (isREVMask(ShuffleMask, VT, 64)) | ||||
| 11369 | return DAG.getNode(AArch64ISD::REV64, dl, V1.getValueType(), V1, V2); | ||||
| 11370 | if (isREVMask(ShuffleMask, VT, 32)) | ||||
| 11371 | return DAG.getNode(AArch64ISD::REV32, dl, V1.getValueType(), V1, V2); | ||||
| 11372 | if (isREVMask(ShuffleMask, VT, 16)) | ||||
| 11373 | return DAG.getNode(AArch64ISD::REV16, dl, V1.getValueType(), V1, V2); | ||||
| 11374 | |||||
| 11375 | if (((VT.getVectorNumElements() == 8 && VT.getScalarSizeInBits() == 16) || | ||||
| 11376 | (VT.getVectorNumElements() == 16 && VT.getScalarSizeInBits() == 8)) && | ||||
| 11377 | ShuffleVectorInst::isReverseMask(ShuffleMask)) { | ||||
| 11378 | SDValue Rev = DAG.getNode(AArch64ISD::REV64, dl, VT, V1); | ||||
| 11379 | return DAG.getNode(AArch64ISD::EXT, dl, VT, Rev, Rev, | ||||
| 11380 | DAG.getConstant(8, dl, MVT::i32)); | ||||
| 11381 | } | ||||
| 11382 | |||||
| 11383 | bool ReverseEXT = false; | ||||
| 11384 | unsigned Imm; | ||||
| 11385 | if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm)) { | ||||
| 11386 | if (ReverseEXT) | ||||
| 11387 | std::swap(V1, V2); | ||||
| 11388 | Imm *= getExtFactor(V1); | ||||
| 11389 | return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V2, | ||||
| 11390 | DAG.getConstant(Imm, dl, MVT::i32)); | ||||
| 11391 | } else if (V2->isUndef() && isSingletonEXTMask(ShuffleMask, VT, Imm)) { | ||||
| 11392 | Imm *= getExtFactor(V1); | ||||
| 11393 | return DAG.getNode(AArch64ISD::EXT, dl, V1.getValueType(), V1, V1, | ||||
| 11394 | DAG.getConstant(Imm, dl, MVT::i32)); | ||||
| 11395 | } | ||||
| 11396 | |||||
| 11397 | unsigned WhichResult; | ||||
| 11398 | if (isZIPMask(ShuffleMask, VT, WhichResult)) { | ||||
| 11399 | unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2; | ||||
| 11400 | return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2); | ||||
| 11401 | } | ||||
| 11402 | if (isUZPMask(ShuffleMask, VT, WhichResult)) { | ||||
| 11403 | unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2; | ||||
| 11404 | return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2); | ||||
| 11405 | } | ||||
| 11406 | if (isTRNMask(ShuffleMask, VT, WhichResult)) { | ||||
| 11407 | unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2; | ||||
| 11408 | return DAG.getNode(Opc, dl, V1.getValueType(), V1, V2); | ||||
| 11409 | } | ||||
| 11410 | |||||
| 11411 | if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) { | ||||
| 11412 | unsigned Opc = (WhichResult == 0) ? AArch64ISD::ZIP1 : AArch64ISD::ZIP2; | ||||
| 11413 | return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1); | ||||
| 11414 | } | ||||
| 11415 | if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) { | ||||
| 11416 | unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2; | ||||
| 11417 | return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1); | ||||
| 11418 | } | ||||
| 11419 | if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) { | ||||
| 11420 | unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2; | ||||
| 11421 | return DAG.getNode(Opc, dl, V1.getValueType(), V1, V1); | ||||
| 11422 | } | ||||
| 11423 | |||||
| 11424 | if (SDValue Concat = tryFormConcatFromShuffle(Op, DAG)) | ||||
| 11425 | return Concat; | ||||
| 11426 | |||||
| 11427 | bool DstIsLeft; | ||||
| 11428 | int Anomaly; | ||||
| 11429 | int NumInputElements = V1.getValueType().getVectorNumElements(); | ||||
| 11430 | if (isINSMask(ShuffleMask, NumInputElements, DstIsLeft, Anomaly)) { | ||||
| 11431 | SDValue DstVec = DstIsLeft ? V1 : V2; | ||||
| 11432 | SDValue DstLaneV = DAG.getConstant(Anomaly, dl, MVT::i64); | ||||
| 11433 | |||||
| 11434 | SDValue SrcVec = V1; | ||||
| 11435 | int SrcLane = ShuffleMask[Anomaly]; | ||||
| 11436 | if (SrcLane >= NumInputElements) { | ||||
| 11437 | SrcVec = V2; | ||||
| 11438 | SrcLane -= VT.getVectorNumElements(); | ||||
| 11439 | } | ||||
| 11440 | SDValue SrcLaneV = DAG.getConstant(SrcLane, dl, MVT::i64); | ||||
| 11441 | |||||
| 11442 | EVT ScalarVT = VT.getVectorElementType(); | ||||
| 11443 | |||||
| 11444 | if (ScalarVT.getFixedSizeInBits() < 32 && ScalarVT.isInteger()) | ||||
| 11445 | ScalarVT = MVT::i32; | ||||
| 11446 | |||||
| 11447 | return DAG.getNode( | ||||
| 11448 | ISD::INSERT_VECTOR_ELT, dl, VT, DstVec, | ||||
| 11449 | DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ScalarVT, SrcVec, SrcLaneV), | ||||
| 11450 | DstLaneV); | ||||
| 11451 | } | ||||
| 11452 | |||||
| 11453 | if (SDValue NewSD = tryWidenMaskForShuffle(Op, DAG)) | ||||
| 11454 | return NewSD; | ||||
| 11455 | |||||
| 11456 | // If the shuffle is not directly supported and it has 4 elements, use | ||||
| 11457 | // the PerfectShuffle-generated table to synthesize it from other shuffles. | ||||
| 11458 | unsigned NumElts = VT.getVectorNumElements(); | ||||
| 11459 | if (NumElts == 4) { | ||||
| 11460 | unsigned PFIndexes[4]; | ||||
| 11461 | for (unsigned i = 0; i != 4; ++i) { | ||||
| 11462 | if (ShuffleMask[i] < 0) | ||||
| 11463 | PFIndexes[i] = 8; | ||||
| 11464 | else | ||||
| 11465 | PFIndexes[i] = ShuffleMask[i]; | ||||
| 11466 | } | ||||
| 11467 | |||||
| 11468 | // Compute the index in the perfect shuffle table. | ||||
| 11469 | unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 + | ||||
| 11470 | PFIndexes[2] * 9 + PFIndexes[3]; | ||||
| 11471 | unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; | ||||
| 11472 | return GeneratePerfectShuffle(PFTableIndex, V1, V2, PFEntry, V1, V2, DAG, | ||||
| 11473 | dl); | ||||
| 11474 | } | ||||
| 11475 | |||||
| 11476 | return GenerateTBL(Op, ShuffleMask, DAG); | ||||
| 11477 | } | ||||
| 11478 | |||||
| 11479 | SDValue AArch64TargetLowering::LowerSPLAT_VECTOR(SDValue Op, | ||||
| 11480 | SelectionDAG &DAG) const { | ||||
| 11481 | EVT VT = Op.getValueType(); | ||||
| 11482 | |||||
| 11483 | if (useSVEForFixedLengthVectorVT(VT, | ||||
| 11484 | Subtarget->forceStreamingCompatibleSVE())) | ||||
| 11485 | return LowerToScalableOp(Op, DAG); | ||||
| 11486 | |||||
| 11487 | assert(VT.isScalableVector() && VT.getVectorElementType() == MVT::i1 &&(static_cast <bool> (VT.isScalableVector() && VT .getVectorElementType() == MVT::i1 && "Unexpected vector type!" ) ? void (0) : __assert_fail ("VT.isScalableVector() && VT.getVectorElementType() == MVT::i1 && \"Unexpected vector type!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 11488, __extension__ __PRETTY_FUNCTION__)) | ||||
| 11488 | "Unexpected vector type!")(static_cast <bool> (VT.isScalableVector() && VT .getVectorElementType() == MVT::i1 && "Unexpected vector type!" ) ? void (0) : __assert_fail ("VT.isScalableVector() && VT.getVectorElementType() == MVT::i1 && \"Unexpected vector type!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 11488, __extension__ __PRETTY_FUNCTION__)); | ||||
| 11489 | |||||
| 11490 | // We can handle the constant cases during isel. | ||||
| 11491 | if (isa<ConstantSDNode>(Op.getOperand(0))) | ||||
| 11492 | return Op; | ||||
| 11493 | |||||
| 11494 | // There isn't a natural way to handle the general i1 case, so we use some | ||||
| 11495 | // trickery with whilelo. | ||||
| 11496 | SDLoc DL(Op); | ||||
| 11497 | SDValue SplatVal = DAG.getAnyExtOrTrunc(Op.getOperand(0), DL, MVT::i64); | ||||
| 11498 | SplatVal = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i64, SplatVal, | ||||
| 11499 | DAG.getValueType(MVT::i1)); | ||||
| 11500 | SDValue ID = | ||||
| 11501 | DAG.getTargetConstant(Intrinsic::aarch64_sve_whilelo, DL, MVT::i64); | ||||
| 11502 | SDValue Zero = DAG.getConstant(0, DL, MVT::i64); | ||||
| 11503 | if (VT == MVT::nxv1i1) | ||||
| 11504 | return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::nxv1i1, | ||||
| 11505 | DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, MVT::nxv2i1, ID, | ||||
| 11506 | Zero, SplatVal), | ||||
| 11507 | Zero); | ||||
| 11508 | return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, ID, Zero, SplatVal); | ||||
| 11509 | } | ||||
| 11510 | |||||
| 11511 | SDValue AArch64TargetLowering::LowerDUPQLane(SDValue Op, | ||||
| 11512 | SelectionDAG &DAG) const { | ||||
| 11513 | SDLoc DL(Op); | ||||
| 11514 | |||||
| 11515 | EVT VT = Op.getValueType(); | ||||
| 11516 | if (!isTypeLegal(VT) || !VT.isScalableVector()) | ||||
| 11517 | return SDValue(); | ||||
| 11518 | |||||
| 11519 | // Current lowering only supports the SVE-ACLE types. | ||||
| 11520 | if (VT.getSizeInBits().getKnownMinSize() != AArch64::SVEBitsPerBlock) | ||||
| 11521 | return SDValue(); | ||||
| 11522 | |||||
| 11523 | // The DUPQ operation is indepedent of element type so normalise to i64s. | ||||
| 11524 | SDValue Idx128 = Op.getOperand(2); | ||||
| 11525 | |||||
| 11526 | // DUPQ can be used when idx is in range. | ||||
| 11527 | auto *CIdx = dyn_cast<ConstantSDNode>(Idx128); | ||||
| 11528 | if (CIdx && (CIdx->getZExtValue() <= 3)) { | ||||
| 11529 | SDValue CI = DAG.getTargetConstant(CIdx->getZExtValue(), DL, MVT::i64); | ||||
| 11530 | return DAG.getNode(AArch64ISD::DUPLANE128, DL, VT, Op.getOperand(1), CI); | ||||
| 11531 | } | ||||
| 11532 | |||||
| 11533 | SDValue V = DAG.getNode(ISD::BITCAST, DL, MVT::nxv2i64, Op.getOperand(1)); | ||||
| 11534 | |||||
| 11535 | // The ACLE says this must produce the same result as: | ||||
| 11536 | // svtbl(data, svadd_x(svptrue_b64(), | ||||
| 11537 | // svand_x(svptrue_b64(), svindex_u64(0, 1), 1), | ||||
| 11538 | // index * 2)) | ||||
| 11539 | SDValue One = DAG.getConstant(1, DL, MVT::i64); | ||||
| 11540 | SDValue SplatOne = DAG.getNode(ISD::SPLAT_VECTOR, DL, MVT::nxv2i64, One); | ||||
| 11541 | |||||
| 11542 | // create the vector 0,1,0,1,... | ||||
| 11543 | SDValue SV = DAG.getStepVector(DL, MVT::nxv2i64); | ||||
| 11544 | SV = DAG.getNode(ISD::AND, DL, MVT::nxv2i64, SV, SplatOne); | ||||
| 11545 | |||||
| 11546 | // create the vector idx64,idx64+1,idx64,idx64+1,... | ||||
| 11547 | SDValue Idx64 = DAG.getNode(ISD::ADD, DL, MVT::i64, Idx128, Idx128); | ||||
| 11548 | SDValue SplatIdx64 = DAG.getNode(ISD::SPLAT_VECTOR, DL, MVT::nxv2i64, Idx64); | ||||
| 11549 | SDValue ShuffleMask = DAG.getNode(ISD::ADD, DL, MVT::nxv2i64, SV, SplatIdx64); | ||||
| 11550 | |||||
| 11551 | // create the vector Val[idx64],Val[idx64+1],Val[idx64],Val[idx64+1],... | ||||
| 11552 | SDValue TBL = DAG.getNode(AArch64ISD::TBL, DL, MVT::nxv2i64, V, ShuffleMask); | ||||
| 11553 | return DAG.getNode(ISD::BITCAST, DL, VT, TBL); | ||||
| 11554 | } | ||||
| 11555 | |||||
| 11556 | |||||
| 11557 | static bool resolveBuildVector(BuildVectorSDNode *BVN, APInt &CnstBits, | ||||
| 11558 | APInt &UndefBits) { | ||||
| 11559 | EVT VT = BVN->getValueType(0); | ||||
| 11560 | APInt SplatBits, SplatUndef; | ||||
| 11561 | unsigned SplatBitSize; | ||||
| 11562 | bool HasAnyUndefs; | ||||
| 11563 | if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { | ||||
| 11564 | unsigned NumSplats = VT.getSizeInBits() / SplatBitSize; | ||||
| 11565 | |||||
| 11566 | for (unsigned i = 0; i < NumSplats; ++i) { | ||||
| 11567 | CnstBits <<= SplatBitSize; | ||||
| 11568 | UndefBits <<= SplatBitSize; | ||||
| 11569 | CnstBits |= SplatBits.zextOrTrunc(VT.getSizeInBits()); | ||||
| 11570 | UndefBits |= (SplatBits ^ SplatUndef).zextOrTrunc(VT.getSizeInBits()); | ||||
| 11571 | } | ||||
| 11572 | |||||
| 11573 | return true; | ||||
| 11574 | } | ||||
| 11575 | |||||
| 11576 | return false; | ||||
| 11577 | } | ||||
| 11578 | |||||
| 11579 | // Try 64-bit splatted SIMD immediate. | ||||
| 11580 | static SDValue tryAdvSIMDModImm64(unsigned NewOp, SDValue Op, SelectionDAG &DAG, | ||||
| 11581 | const APInt &Bits) { | ||||
| 11582 | if (Bits.getHiBits(64) == Bits.getLoBits(64)) { | ||||
| 11583 | uint64_t Value = Bits.zextOrTrunc(64).getZExtValue(); | ||||
| 11584 | EVT VT = Op.getValueType(); | ||||
| 11585 | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v2i64 : MVT::f64; | ||||
| 11586 | |||||
| 11587 | if (AArch64_AM::isAdvSIMDModImmType10(Value)) { | ||||
| 11588 | Value = AArch64_AM::encodeAdvSIMDModImmType10(Value); | ||||
| 11589 | |||||
| 11590 | SDLoc dl(Op); | ||||
| 11591 | SDValue Mov = DAG.getNode(NewOp, dl, MovTy, | ||||
| 11592 | DAG.getConstant(Value, dl, MVT::i32)); | ||||
| 11593 | return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); | ||||
| 11594 | } | ||||
| 11595 | } | ||||
| 11596 | |||||
| 11597 | return SDValue(); | ||||
| 11598 | } | ||||
| 11599 | |||||
| 11600 | // Try 32-bit splatted SIMD immediate. | ||||
| 11601 | static SDValue tryAdvSIMDModImm32(unsigned NewOp, SDValue Op, SelectionDAG &DAG, | ||||
| 11602 | const APInt &Bits, | ||||
| 11603 | const SDValue *LHS = nullptr) { | ||||
| 11604 | EVT VT = Op.getValueType(); | ||||
| 11605 | if (VT.isFixedLengthVector() && | ||||
| 11606 | DAG.getSubtarget<AArch64Subtarget>().forceStreamingCompatibleSVE()) | ||||
| 11607 | return SDValue(); | ||||
| 11608 | |||||
| 11609 | if (Bits.getHiBits(64) == Bits.getLoBits(64)) { | ||||
| 11610 | uint64_t Value = Bits.zextOrTrunc(64).getZExtValue(); | ||||
| 11611 | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; | ||||
| 11612 | bool isAdvSIMDModImm = false; | ||||
| 11613 | uint64_t Shift; | ||||
| 11614 | |||||
| 11615 | if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType1(Value))) { | ||||
| 11616 | Value = AArch64_AM::encodeAdvSIMDModImmType1(Value); | ||||
| 11617 | Shift = 0; | ||||
| 11618 | } | ||||
| 11619 | else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType2(Value))) { | ||||
| 11620 | Value = AArch64_AM::encodeAdvSIMDModImmType2(Value); | ||||
| 11621 | Shift = 8; | ||||
| 11622 | } | ||||
| 11623 | else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType3(Value))) { | ||||
| 11624 | Value = AArch64_AM::encodeAdvSIMDModImmType3(Value); | ||||
| 11625 | Shift = 16; | ||||
| 11626 | } | ||||
| 11627 | else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType4(Value))) { | ||||
| 11628 | Value = AArch64_AM::encodeAdvSIMDModImmType4(Value); | ||||
| 11629 | Shift = 24; | ||||
| 11630 | } | ||||
| 11631 | |||||
| 11632 | if (isAdvSIMDModImm) { | ||||
| 11633 | SDLoc dl(Op); | ||||
| 11634 | SDValue Mov; | ||||
| 11635 | |||||
| 11636 | if (LHS) | ||||
| 11637 | Mov = DAG.getNode(NewOp, dl, MovTy, *LHS, | ||||
| 11638 | DAG.getConstant(Value, dl, MVT::i32), | ||||
| 11639 | DAG.getConstant(Shift, dl, MVT::i32)); | ||||
| 11640 | else | ||||
| 11641 | Mov = DAG.getNode(NewOp, dl, MovTy, | ||||
| 11642 | DAG.getConstant(Value, dl, MVT::i32), | ||||
| 11643 | DAG.getConstant(Shift, dl, MVT::i32)); | ||||
| 11644 | |||||
| 11645 | return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); | ||||
| 11646 | } | ||||
| 11647 | } | ||||
| 11648 | |||||
| 11649 | return SDValue(); | ||||
| 11650 | } | ||||
| 11651 | |||||
| 11652 | // Try 16-bit splatted SIMD immediate. | ||||
| 11653 | static SDValue tryAdvSIMDModImm16(unsigned NewOp, SDValue Op, SelectionDAG &DAG, | ||||
| 11654 | const APInt &Bits, | ||||
| 11655 | const SDValue *LHS = nullptr) { | ||||
| 11656 | EVT VT = Op.getValueType(); | ||||
| 11657 | if (VT.isFixedLengthVector() && | ||||
| 11658 | DAG.getSubtarget<AArch64Subtarget>().forceStreamingCompatibleSVE()) | ||||
| 11659 | return SDValue(); | ||||
| 11660 | |||||
| 11661 | if (Bits.getHiBits(64) == Bits.getLoBits(64)) { | ||||
| 11662 | uint64_t Value = Bits.zextOrTrunc(64).getZExtValue(); | ||||
| 11663 | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v8i16 : MVT::v4i16; | ||||
| 11664 | bool isAdvSIMDModImm = false; | ||||
| 11665 | uint64_t Shift; | ||||
| 11666 | |||||
| 11667 | if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType5(Value))) { | ||||
| 11668 | Value = AArch64_AM::encodeAdvSIMDModImmType5(Value); | ||||
| 11669 | Shift = 0; | ||||
| 11670 | } | ||||
| 11671 | else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType6(Value))) { | ||||
| 11672 | Value = AArch64_AM::encodeAdvSIMDModImmType6(Value); | ||||
| 11673 | Shift = 8; | ||||
| 11674 | } | ||||
| 11675 | |||||
| 11676 | if (isAdvSIMDModImm) { | ||||
| 11677 | SDLoc dl(Op); | ||||
| 11678 | SDValue Mov; | ||||
| 11679 | |||||
| 11680 | if (LHS) | ||||
| 11681 | Mov = DAG.getNode(NewOp, dl, MovTy, *LHS, | ||||
| 11682 | DAG.getConstant(Value, dl, MVT::i32), | ||||
| 11683 | DAG.getConstant(Shift, dl, MVT::i32)); | ||||
| 11684 | else | ||||
| 11685 | Mov = DAG.getNode(NewOp, dl, MovTy, | ||||
| 11686 | DAG.getConstant(Value, dl, MVT::i32), | ||||
| 11687 | DAG.getConstant(Shift, dl, MVT::i32)); | ||||
| 11688 | |||||
| 11689 | return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); | ||||
| 11690 | } | ||||
| 11691 | } | ||||
| 11692 | |||||
| 11693 | return SDValue(); | ||||
| 11694 | } | ||||
| 11695 | |||||
| 11696 | // Try 32-bit splatted SIMD immediate with shifted ones. | ||||
| 11697 | static SDValue tryAdvSIMDModImm321s(unsigned NewOp, SDValue Op, | ||||
| 11698 | SelectionDAG &DAG, const APInt &Bits) { | ||||
| 11699 | if (Bits.getHiBits(64) == Bits.getLoBits(64)) { | ||||
| 11700 | uint64_t Value = Bits.zextOrTrunc(64).getZExtValue(); | ||||
| 11701 | EVT VT = Op.getValueType(); | ||||
| 11702 | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v4i32 : MVT::v2i32; | ||||
| 11703 | bool isAdvSIMDModImm = false; | ||||
| 11704 | uint64_t Shift; | ||||
| 11705 | |||||
| 11706 | if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType7(Value))) { | ||||
| 11707 | Value = AArch64_AM::encodeAdvSIMDModImmType7(Value); | ||||
| 11708 | Shift = 264; | ||||
| 11709 | } | ||||
| 11710 | else if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType8(Value))) { | ||||
| 11711 | Value = AArch64_AM::encodeAdvSIMDModImmType8(Value); | ||||
| 11712 | Shift = 272; | ||||
| 11713 | } | ||||
| 11714 | |||||
| 11715 | if (isAdvSIMDModImm) { | ||||
| 11716 | SDLoc dl(Op); | ||||
| 11717 | SDValue Mov = DAG.getNode(NewOp, dl, MovTy, | ||||
| 11718 | DAG.getConstant(Value, dl, MVT::i32), | ||||
| 11719 | DAG.getConstant(Shift, dl, MVT::i32)); | ||||
| 11720 | return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); | ||||
| 11721 | } | ||||
| 11722 | } | ||||
| 11723 | |||||
| 11724 | return SDValue(); | ||||
| 11725 | } | ||||
| 11726 | |||||
| 11727 | // Try 8-bit splatted SIMD immediate. | ||||
| 11728 | static SDValue tryAdvSIMDModImm8(unsigned NewOp, SDValue Op, SelectionDAG &DAG, | ||||
| 11729 | const APInt &Bits) { | ||||
| 11730 | if (Bits.getHiBits(64) == Bits.getLoBits(64)) { | ||||
| 11731 | uint64_t Value = Bits.zextOrTrunc(64).getZExtValue(); | ||||
| 11732 | EVT VT = Op.getValueType(); | ||||
| 11733 | MVT MovTy = (VT.getSizeInBits() == 128) ? MVT::v16i8 : MVT::v8i8; | ||||
| 11734 | |||||
| 11735 | if (AArch64_AM::isAdvSIMDModImmType9(Value)) { | ||||
| 11736 | Value = AArch64_AM::encodeAdvSIMDModImmType9(Value); | ||||
| 11737 | |||||
| 11738 | SDLoc dl(Op); | ||||
| 11739 | SDValue Mov = DAG.getNode(NewOp, dl, MovTy, | ||||
| 11740 | DAG.getConstant(Value, dl, MVT::i32)); | ||||
| 11741 | return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); | ||||
| 11742 | } | ||||
| 11743 | } | ||||
| 11744 | |||||
| 11745 | return SDValue(); | ||||
| 11746 | } | ||||
| 11747 | |||||
| 11748 | // Try FP splatted SIMD immediate. | ||||
| 11749 | static SDValue tryAdvSIMDModImmFP(unsigned NewOp, SDValue Op, SelectionDAG &DAG, | ||||
| 11750 | const APInt &Bits) { | ||||
| 11751 | if (Bits.getHiBits(64) == Bits.getLoBits(64)) { | ||||
| 11752 | uint64_t Value = Bits.zextOrTrunc(64).getZExtValue(); | ||||
| 11753 | EVT VT = Op.getValueType(); | ||||
| 11754 | bool isWide = (VT.getSizeInBits() == 128); | ||||
| 11755 | MVT MovTy; | ||||
| 11756 | bool isAdvSIMDModImm = false; | ||||
| 11757 | |||||
| 11758 | if ((isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType11(Value))) { | ||||
| 11759 | Value = AArch64_AM::encodeAdvSIMDModImmType11(Value); | ||||
| 11760 | MovTy = isWide ? MVT::v4f32 : MVT::v2f32; | ||||
| 11761 | } | ||||
| 11762 | else if (isWide && | ||||
| 11763 | (isAdvSIMDModImm = AArch64_AM::isAdvSIMDModImmType12(Value))) { | ||||
| 11764 | Value = AArch64_AM::encodeAdvSIMDModImmType12(Value); | ||||
| 11765 | MovTy = MVT::v2f64; | ||||
| 11766 | } | ||||
| 11767 | |||||
| 11768 | if (isAdvSIMDModImm) { | ||||
| 11769 | SDLoc dl(Op); | ||||
| 11770 | SDValue Mov = DAG.getNode(NewOp, dl, MovTy, | ||||
| 11771 | DAG.getConstant(Value, dl, MVT::i32)); | ||||
| 11772 | return DAG.getNode(AArch64ISD::NVCAST, dl, VT, Mov); | ||||
| 11773 | } | ||||
| 11774 | } | ||||
| 11775 | |||||
| 11776 | return SDValue(); | ||||
| 11777 | } | ||||
| 11778 | |||||
| 11779 | // Specialized code to quickly find if PotentialBVec is a BuildVector that | ||||
| 11780 | // consists of only the same constant int value, returned in reference arg | ||||
| 11781 | // ConstVal | ||||
| 11782 | static bool isAllConstantBuildVector(const SDValue &PotentialBVec, | ||||
| 11783 | uint64_t &ConstVal) { | ||||
| 11784 | BuildVectorSDNode *Bvec = dyn_cast<BuildVectorSDNode>(PotentialBVec); | ||||
| 11785 | if (!Bvec) | ||||
| 11786 | return false; | ||||
| 11787 | ConstantSDNode *FirstElt = dyn_cast<ConstantSDNode>(Bvec->getOperand(0)); | ||||
| 11788 | if (!FirstElt) | ||||
| 11789 | return false; | ||||
| 11790 | EVT VT = Bvec->getValueType(0); | ||||
| 11791 | unsigned NumElts = VT.getVectorNumElements(); | ||||
| 11792 | for (unsigned i = 1; i < NumElts; ++i) | ||||
| 11793 | if (dyn_cast<ConstantSDNode>(Bvec->getOperand(i)) != FirstElt) | ||||
| 11794 | return false; | ||||
| 11795 | ConstVal = FirstElt->getZExtValue(); | ||||
| 11796 | return true; | ||||
| 11797 | } | ||||
| 11798 | |||||
| 11799 | // Attempt to form a vector S[LR]I from (or (and X, BvecC1), (lsl Y, C2)), | ||||
| 11800 | // to (SLI X, Y, C2), where X and Y have matching vector types, BvecC1 is a | ||||
| 11801 | // BUILD_VECTORs with constant element C1, C2 is a constant, and: | ||||
| 11802 | // - for the SLI case: C1 == ~(Ones(ElemSizeInBits) << C2) | ||||
| 11803 | // - for the SRI case: C1 == ~(Ones(ElemSizeInBits) >> C2) | ||||
| 11804 | // The (or (lsl Y, C2), (and X, BvecC1)) case is also handled. | ||||
| 11805 | static SDValue tryLowerToSLI(SDNode *N, SelectionDAG &DAG) { | ||||
| 11806 | EVT VT = N->getValueType(0); | ||||
| 11807 | |||||
| 11808 | if (!VT.isVector()) | ||||
| 11809 | return SDValue(); | ||||
| 11810 | |||||
| 11811 | SDLoc DL(N); | ||||
| 11812 | |||||
| 11813 | SDValue And; | ||||
| 11814 | SDValue Shift; | ||||
| 11815 | |||||
| 11816 | SDValue FirstOp = N->getOperand(0); | ||||
| 11817 | unsigned FirstOpc = FirstOp.getOpcode(); | ||||
| 11818 | SDValue SecondOp = N->getOperand(1); | ||||
| 11819 | unsigned SecondOpc = SecondOp.getOpcode(); | ||||
| 11820 | |||||
| 11821 | // Is one of the operands an AND or a BICi? The AND may have been optimised to | ||||
| 11822 | // a BICi in order to use an immediate instead of a register. | ||||
| 11823 | // Is the other operand an shl or lshr? This will have been turned into: | ||||
| 11824 | // AArch64ISD::VSHL vector, #shift or AArch64ISD::VLSHR vector, #shift. | ||||
| 11825 | if ((FirstOpc == ISD::AND || FirstOpc == AArch64ISD::BICi) && | ||||
| 11826 | (SecondOpc == AArch64ISD::VSHL || SecondOpc == AArch64ISD::VLSHR)) { | ||||
| 11827 | And = FirstOp; | ||||
| 11828 | Shift = SecondOp; | ||||
| 11829 | |||||
| 11830 | } else if ((SecondOpc == ISD::AND || SecondOpc == AArch64ISD::BICi) && | ||||
| 11831 | (FirstOpc == AArch64ISD::VSHL || FirstOpc == AArch64ISD::VLSHR)) { | ||||
| 11832 | And = SecondOp; | ||||
| 11833 | Shift = FirstOp; | ||||
| 11834 | } else | ||||
| 11835 | return SDValue(); | ||||
| 11836 | |||||
| 11837 | bool IsAnd = And.getOpcode() == ISD::AND; | ||||
| 11838 | bool IsShiftRight = Shift.getOpcode() == AArch64ISD::VLSHR; | ||||
| 11839 | |||||
| 11840 | // Is the shift amount constant? | ||||
| 11841 | ConstantSDNode *C2node = dyn_cast<ConstantSDNode>(Shift.getOperand(1)); | ||||
| 11842 | if (!C2node) | ||||
| 11843 | return SDValue(); | ||||
| 11844 | |||||
| 11845 | uint64_t C1; | ||||
| 11846 | if (IsAnd) { | ||||
| 11847 | // Is the and mask vector all constant? | ||||
| 11848 | if (!isAllConstantBuildVector(And.getOperand(1), C1)) | ||||
| 11849 | return SDValue(); | ||||
| 11850 | } else { | ||||
| 11851 | // Reconstruct the corresponding AND immediate from the two BICi immediates. | ||||
| 11852 | ConstantSDNode *C1nodeImm = dyn_cast<ConstantSDNode>(And.getOperand(1)); | ||||
| 11853 | ConstantSDNode *C1nodeShift = dyn_cast<ConstantSDNode>(And.getOperand(2)); | ||||
| 11854 | assert(C1nodeImm && C1nodeShift)(static_cast <bool> (C1nodeImm && C1nodeShift) ? void (0) : __assert_fail ("C1nodeImm && C1nodeShift" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 11854, __extension__ __PRETTY_FUNCTION__)); | ||||
| 11855 | C1 = ~(C1nodeImm->getZExtValue() << C1nodeShift->getZExtValue()); | ||||
| 11856 | } | ||||
| 11857 | |||||
| 11858 | // Is C1 == ~(Ones(ElemSizeInBits) << C2) or | ||||
| 11859 | // C1 == ~(Ones(ElemSizeInBits) >> C2), taking into account | ||||
| 11860 | // how much one can shift elements of a particular size? | ||||
| 11861 | uint64_t C2 = C2node->getZExtValue(); | ||||
| 11862 | unsigned ElemSizeInBits = VT.getScalarSizeInBits(); | ||||
| 11863 | if (C2 > ElemSizeInBits) | ||||
| 11864 | return SDValue(); | ||||
| 11865 | |||||
| 11866 | APInt C1AsAPInt(ElemSizeInBits, C1); | ||||
| 11867 | APInt RequiredC1 = IsShiftRight ? APInt::getHighBitsSet(ElemSizeInBits, C2) | ||||
| 11868 | : APInt::getLowBitsSet(ElemSizeInBits, C2); | ||||
| 11869 | if (C1AsAPInt != RequiredC1) | ||||
| 11870 | return SDValue(); | ||||
| 11871 | |||||
| 11872 | SDValue X = And.getOperand(0); | ||||
| 11873 | SDValue Y = Shift.getOperand(0); | ||||
| 11874 | |||||
| 11875 | unsigned Inst = IsShiftRight ? AArch64ISD::VSRI : AArch64ISD::VSLI; | ||||
| 11876 | SDValue ResultSLI = DAG.getNode(Inst, DL, VT, X, Y, Shift.getOperand(1)); | ||||
| 11877 | |||||
| 11878 | LLVM_DEBUG(dbgs() << "aarch64-lower: transformed: \n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "aarch64-lower: transformed: \n" ; } } while (false); | ||||
| 11879 | LLVM_DEBUG(N->dump(&DAG))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { N->dump(&DAG); } } while (false); | ||||
| 11880 | LLVM_DEBUG(dbgs() << "into: \n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "into: \n"; } } while (false ); | ||||
| 11881 | LLVM_DEBUG(ResultSLI->dump(&DAG))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { ResultSLI->dump(&DAG); } } while ( false); | ||||
| 11882 | |||||
| 11883 | ++NumShiftInserts; | ||||
| 11884 | return ResultSLI; | ||||
| 11885 | } | ||||
| 11886 | |||||
| 11887 | SDValue AArch64TargetLowering::LowerVectorOR(SDValue Op, | ||||
| 11888 | SelectionDAG &DAG) const { | ||||
| 11889 | if (useSVEForFixedLengthVectorVT(Op.getValueType(), | ||||
| 11890 | Subtarget->forceStreamingCompatibleSVE())) | ||||
| 11891 | return LowerToScalableOp(Op, DAG); | ||||
| 11892 | |||||
| 11893 | // Attempt to form a vector S[LR]I from (or (and X, C1), (lsl Y, C2)) | ||||
| 11894 | if (SDValue Res = tryLowerToSLI(Op.getNode(), DAG)) | ||||
| 11895 | return Res; | ||||
| 11896 | |||||
| 11897 | EVT VT = Op.getValueType(); | ||||
| 11898 | |||||
| 11899 | SDValue LHS = Op.getOperand(0); | ||||
| 11900 | BuildVectorSDNode *BVN = | ||||
| 11901 | dyn_cast<BuildVectorSDNode>(Op.getOperand(1).getNode()); | ||||
| 11902 | if (!BVN) { | ||||
| 11903 | // OR commutes, so try swapping the operands. | ||||
| 11904 | LHS = Op.getOperand(1); | ||||
| 11905 | BVN = dyn_cast<BuildVectorSDNode>(Op.getOperand(0).getNode()); | ||||
| 11906 | } | ||||
| 11907 | if (!BVN) | ||||
| 11908 | return Op; | ||||
| 11909 | |||||
| 11910 | APInt DefBits(VT.getSizeInBits(), 0); | ||||
| 11911 | APInt UndefBits(VT.getSizeInBits(), 0); | ||||
| 11912 | if (resolveBuildVector(BVN, DefBits, UndefBits)) { | ||||
| 11913 | SDValue NewOp; | ||||
| 11914 | |||||
| 11915 | if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::ORRi, Op, DAG, | ||||
| 11916 | DefBits, &LHS)) || | ||||
| 11917 | (NewOp = tryAdvSIMDModImm16(AArch64ISD::ORRi, Op, DAG, | ||||
| 11918 | DefBits, &LHS))) | ||||
| 11919 | return NewOp; | ||||
| 11920 | |||||
| 11921 | if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::ORRi, Op, DAG, | ||||
| 11922 | UndefBits, &LHS)) || | ||||
| 11923 | (NewOp = tryAdvSIMDModImm16(AArch64ISD::ORRi, Op, DAG, | ||||
| 11924 | UndefBits, &LHS))) | ||||
| 11925 | return NewOp; | ||||
| 11926 | } | ||||
| 11927 | |||||
| 11928 | // We can always fall back to a non-immediate OR. | ||||
| 11929 | return Op; | ||||
| 11930 | } | ||||
| 11931 | |||||
| 11932 | // Normalize the operands of BUILD_VECTOR. The value of constant operands will | ||||
| 11933 | // be truncated to fit element width. | ||||
| 11934 | static SDValue NormalizeBuildVector(SDValue Op, | ||||
| 11935 | SelectionDAG &DAG) { | ||||
| 11936 | assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!")(static_cast <bool> (Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!") ? void (0) : __assert_fail ("Op.getOpcode() == ISD::BUILD_VECTOR && \"Unknown opcode!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 11936, __extension__ __PRETTY_FUNCTION__)); | ||||
| 11937 | SDLoc dl(Op); | ||||
| 11938 | EVT VT = Op.getValueType(); | ||||
| 11939 | EVT EltTy= VT.getVectorElementType(); | ||||
| 11940 | |||||
| 11941 | if (EltTy.isFloatingPoint() || EltTy.getSizeInBits() > 16) | ||||
| 11942 | return Op; | ||||
| 11943 | |||||
| 11944 | SmallVector<SDValue, 16> Ops; | ||||
| 11945 | for (SDValue Lane : Op->ops()) { | ||||
| 11946 | // For integer vectors, type legalization would have promoted the | ||||
| 11947 | // operands already. Otherwise, if Op is a floating-point splat | ||||
| 11948 | // (with operands cast to integers), then the only possibilities | ||||
| 11949 | // are constants and UNDEFs. | ||||
| 11950 | if (auto *CstLane = dyn_cast<ConstantSDNode>(Lane)) { | ||||
| 11951 | APInt LowBits(EltTy.getSizeInBits(), | ||||
| 11952 | CstLane->getZExtValue()); | ||||
| 11953 | Lane = DAG.getConstant(LowBits.getZExtValue(), dl, MVT::i32); | ||||
| 11954 | } else if (Lane.getNode()->isUndef()) { | ||||
| 11955 | Lane = DAG.getUNDEF(MVT::i32); | ||||
| 11956 | } else { | ||||
| 11957 | assert(Lane.getValueType() == MVT::i32 &&(static_cast <bool> (Lane.getValueType() == MVT::i32 && "Unexpected BUILD_VECTOR operand type") ? void (0) : __assert_fail ("Lane.getValueType() == MVT::i32 && \"Unexpected BUILD_VECTOR operand type\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 11958, __extension__ __PRETTY_FUNCTION__)) | ||||
| 11958 | "Unexpected BUILD_VECTOR operand type")(static_cast <bool> (Lane.getValueType() == MVT::i32 && "Unexpected BUILD_VECTOR operand type") ? void (0) : __assert_fail ("Lane.getValueType() == MVT::i32 && \"Unexpected BUILD_VECTOR operand type\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 11958, __extension__ __PRETTY_FUNCTION__)); | ||||
| 11959 | } | ||||
| 11960 | Ops.push_back(Lane); | ||||
| 11961 | } | ||||
| 11962 | return DAG.getBuildVector(VT, dl, Ops); | ||||
| 11963 | } | ||||
| 11964 | |||||
| 11965 | static SDValue ConstantBuildVector(SDValue Op, SelectionDAG &DAG) { | ||||
| 11966 | EVT VT = Op.getValueType(); | ||||
| 11967 | |||||
| 11968 | APInt DefBits(VT.getSizeInBits(), 0); | ||||
| 11969 | APInt UndefBits(VT.getSizeInBits(), 0); | ||||
| 11970 | BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode()); | ||||
| 11971 | if (resolveBuildVector(BVN, DefBits, UndefBits)) { | ||||
| 11972 | SDValue NewOp; | ||||
| 11973 | if ((NewOp = tryAdvSIMDModImm64(AArch64ISD::MOVIedit, Op, DAG, DefBits)) || | ||||
| 11974 | (NewOp = tryAdvSIMDModImm32(AArch64ISD::MOVIshift, Op, DAG, DefBits)) || | ||||
| 11975 | (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MOVImsl, Op, DAG, DefBits)) || | ||||
| 11976 | (NewOp = tryAdvSIMDModImm16(AArch64ISD::MOVIshift, Op, DAG, DefBits)) || | ||||
| 11977 | (NewOp = tryAdvSIMDModImm8(AArch64ISD::MOVI, Op, DAG, DefBits)) || | ||||
| 11978 | (NewOp = tryAdvSIMDModImmFP(AArch64ISD::FMOV, Op, DAG, DefBits))) | ||||
| 11979 | return NewOp; | ||||
| 11980 | |||||
| 11981 | DefBits = ~DefBits; | ||||
| 11982 | if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::MVNIshift, Op, DAG, DefBits)) || | ||||
| 11983 | (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MVNImsl, Op, DAG, DefBits)) || | ||||
| 11984 | (NewOp = tryAdvSIMDModImm16(AArch64ISD::MVNIshift, Op, DAG, DefBits))) | ||||
| 11985 | return NewOp; | ||||
| 11986 | |||||
| 11987 | DefBits = UndefBits; | ||||
| 11988 | if ((NewOp = tryAdvSIMDModImm64(AArch64ISD::MOVIedit, Op, DAG, DefBits)) || | ||||
| 11989 | (NewOp = tryAdvSIMDModImm32(AArch64ISD::MOVIshift, Op, DAG, DefBits)) || | ||||
| 11990 | (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MOVImsl, Op, DAG, DefBits)) || | ||||
| 11991 | (NewOp = tryAdvSIMDModImm16(AArch64ISD::MOVIshift, Op, DAG, DefBits)) || | ||||
| 11992 | (NewOp = tryAdvSIMDModImm8(AArch64ISD::MOVI, Op, DAG, DefBits)) || | ||||
| 11993 | (NewOp = tryAdvSIMDModImmFP(AArch64ISD::FMOV, Op, DAG, DefBits))) | ||||
| 11994 | return NewOp; | ||||
| 11995 | |||||
| 11996 | DefBits = ~UndefBits; | ||||
| 11997 | if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::MVNIshift, Op, DAG, DefBits)) || | ||||
| 11998 | (NewOp = tryAdvSIMDModImm321s(AArch64ISD::MVNImsl, Op, DAG, DefBits)) || | ||||
| 11999 | (NewOp = tryAdvSIMDModImm16(AArch64ISD::MVNIshift, Op, DAG, DefBits))) | ||||
| 12000 | return NewOp; | ||||
| 12001 | } | ||||
| 12002 | |||||
| 12003 | return SDValue(); | ||||
| 12004 | } | ||||
| 12005 | |||||
| 12006 | SDValue AArch64TargetLowering::LowerBUILD_VECTOR(SDValue Op, | ||||
| 12007 | SelectionDAG &DAG) const { | ||||
| 12008 | EVT VT = Op.getValueType(); | ||||
| 12009 | |||||
| 12010 | if (useSVEForFixedLengthVectorVT(VT, | ||||
| 12011 | Subtarget->forceStreamingCompatibleSVE())) { | ||||
| 12012 | if (auto SeqInfo = cast<BuildVectorSDNode>(Op)->isConstantSequence()) { | ||||
| 12013 | SDLoc DL(Op); | ||||
| 12014 | EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT); | ||||
| 12015 | SDValue Start = DAG.getConstant(SeqInfo->first, DL, ContainerVT); | ||||
| 12016 | SDValue Steps = DAG.getStepVector(DL, ContainerVT, SeqInfo->second); | ||||
| 12017 | SDValue Seq = DAG.getNode(ISD::ADD, DL, ContainerVT, Start, Steps); | ||||
| 12018 | return convertFromScalableVector(DAG, Op.getValueType(), Seq); | ||||
| 12019 | } | ||||
| 12020 | |||||
| 12021 | // Revert to common legalisation for all other variants. | ||||
| 12022 | return SDValue(); | ||||
| 12023 | } | ||||
| 12024 | |||||
| 12025 | // Try to build a simple constant vector. | ||||
| 12026 | Op = NormalizeBuildVector(Op, DAG); | ||||
| 12027 | // Thought this might return a non-BUILD_VECTOR (e.g. CONCAT_VECTORS), if so, | ||||
| 12028 | // abort. | ||||
| 12029 | if (Op.getOpcode() != ISD::BUILD_VECTOR) | ||||
| 12030 | return SDValue(); | ||||
| 12031 | |||||
| 12032 | if (VT.isInteger()) { | ||||
| 12033 | // Certain vector constants, used to express things like logical NOT and | ||||
| 12034 | // arithmetic NEG, are passed through unmodified. This allows special | ||||
| 12035 | // patterns for these operations to match, which will lower these constants | ||||
| 12036 | // to whatever is proven necessary. | ||||
| 12037 | BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode()); | ||||
| 12038 | if (BVN->isConstant()) | ||||
| 12039 | if (ConstantSDNode *Const = BVN->getConstantSplatNode()) { | ||||
| 12040 | unsigned BitSize = VT.getVectorElementType().getSizeInBits(); | ||||
| 12041 | APInt Val(BitSize, | ||||
| 12042 | Const->getAPIntValue().zextOrTrunc(BitSize).getZExtValue()); | ||||
| 12043 | if (Val.isZero() || Val.isAllOnes()) | ||||
| 12044 | return Op; | ||||
| 12045 | } | ||||
| 12046 | } | ||||
| 12047 | |||||
| 12048 | if (SDValue V = ConstantBuildVector(Op, DAG)) | ||||
| 12049 | return V; | ||||
| 12050 | |||||
| 12051 | // Scan through the operands to find some interesting properties we can | ||||
| 12052 | // exploit: | ||||
| 12053 | // 1) If only one value is used, we can use a DUP, or | ||||
| 12054 | // 2) if only the low element is not undef, we can just insert that, or | ||||
| 12055 | // 3) if only one constant value is used (w/ some non-constant lanes), | ||||
| 12056 | // we can splat the constant value into the whole vector then fill | ||||
| 12057 | // in the non-constant lanes. | ||||
| 12058 | // 4) FIXME: If different constant values are used, but we can intelligently | ||||
| 12059 | // select the values we'll be overwriting for the non-constant | ||||
| 12060 | // lanes such that we can directly materialize the vector | ||||
| 12061 | // some other way (MOVI, e.g.), we can be sneaky. | ||||
| 12062 | // 5) if all operands are EXTRACT_VECTOR_ELT, check for VUZP. | ||||
| 12063 | SDLoc dl(Op); | ||||
| 12064 | unsigned NumElts = VT.getVectorNumElements(); | ||||
| 12065 | bool isOnlyLowElement = true; | ||||
| 12066 | bool usesOnlyOneValue = true; | ||||
| 12067 | bool usesOnlyOneConstantValue = true; | ||||
| 12068 | bool isConstant = true; | ||||
| 12069 | bool AllLanesExtractElt = true; | ||||
| 12070 | unsigned NumConstantLanes = 0; | ||||
| 12071 | unsigned NumDifferentLanes = 0; | ||||
| 12072 | unsigned NumUndefLanes = 0; | ||||
| 12073 | SDValue Value; | ||||
| 12074 | SDValue ConstantValue; | ||||
| 12075 | for (unsigned i = 0; i < NumElts; ++i) { | ||||
| 12076 | SDValue V = Op.getOperand(i); | ||||
| 12077 | if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) | ||||
| 12078 | AllLanesExtractElt = false; | ||||
| 12079 | if (V.isUndef()) { | ||||
| 12080 | ++NumUndefLanes; | ||||
| 12081 | continue; | ||||
| 12082 | } | ||||
| 12083 | if (i > 0) | ||||
| 12084 | isOnlyLowElement = false; | ||||
| 12085 | if (!isIntOrFPConstant(V)) | ||||
| 12086 | isConstant = false; | ||||
| 12087 | |||||
| 12088 | if (isIntOrFPConstant(V)) { | ||||
| 12089 | ++NumConstantLanes; | ||||
| 12090 | if (!ConstantValue.getNode()) | ||||
| 12091 | ConstantValue = V; | ||||
| 12092 | else if (ConstantValue != V) | ||||
| 12093 | usesOnlyOneConstantValue = false; | ||||
| 12094 | } | ||||
| 12095 | |||||
| 12096 | if (!Value.getNode()) | ||||
| 12097 | Value = V; | ||||
| 12098 | else if (V != Value) { | ||||
| 12099 | usesOnlyOneValue = false; | ||||
| 12100 | ++NumDifferentLanes; | ||||
| 12101 | } | ||||
| 12102 | } | ||||
| 12103 | |||||
| 12104 | if (!Value.getNode()) { | ||||
| 12105 | LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "LowerBUILD_VECTOR: value undefined, creating undef node\n" ; } } while (false) | ||||
| 12106 | dbgs() << "LowerBUILD_VECTOR: value undefined, creating undef node\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "LowerBUILD_VECTOR: value undefined, creating undef node\n" ; } } while (false); | ||||
| 12107 | return DAG.getUNDEF(VT); | ||||
| 12108 | } | ||||
| 12109 | |||||
| 12110 | // Convert BUILD_VECTOR where all elements but the lowest are undef into | ||||
| 12111 | // SCALAR_TO_VECTOR, except for when we have a single-element constant vector | ||||
| 12112 | // as SimplifyDemandedBits will just turn that back into BUILD_VECTOR. | ||||
| 12113 | if (isOnlyLowElement && !(NumElts == 1 && isIntOrFPConstant(Value))) { | ||||
| 12114 | LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: only low element used, creating 1 "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "LowerBUILD_VECTOR: only low element used, creating 1 " "SCALAR_TO_VECTOR node\n"; } } while (false) | ||||
| 12115 | "SCALAR_TO_VECTOR node\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "LowerBUILD_VECTOR: only low element used, creating 1 " "SCALAR_TO_VECTOR node\n"; } } while (false); | ||||
| 12116 | return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value); | ||||
| 12117 | } | ||||
| 12118 | |||||
| 12119 | if (AllLanesExtractElt) { | ||||
| 12120 | SDNode *Vector = nullptr; | ||||
| 12121 | bool Even = false; | ||||
| 12122 | bool Odd = false; | ||||
| 12123 | // Check whether the extract elements match the Even pattern <0,2,4,...> or | ||||
| 12124 | // the Odd pattern <1,3,5,...>. | ||||
| 12125 | for (unsigned i = 0; i < NumElts; ++i) { | ||||
| 12126 | SDValue V = Op.getOperand(i); | ||||
| 12127 | const SDNode *N = V.getNode(); | ||||
| 12128 | if (!isa<ConstantSDNode>(N->getOperand(1))) | ||||
| 12129 | break; | ||||
| 12130 | SDValue N0 = N->getOperand(0); | ||||
| 12131 | |||||
| 12132 | // All elements are extracted from the same vector. | ||||
| 12133 | if (!Vector) { | ||||
| 12134 | Vector = N0.getNode(); | ||||
| 12135 | // Check that the type of EXTRACT_VECTOR_ELT matches the type of | ||||
| 12136 | // BUILD_VECTOR. | ||||
| 12137 | if (VT.getVectorElementType() != | ||||
| 12138 | N0.getValueType().getVectorElementType()) | ||||
| 12139 | break; | ||||
| 12140 | } else if (Vector != N0.getNode()) { | ||||
| 12141 | Odd = false; | ||||
| 12142 | Even = false; | ||||
| 12143 | break; | ||||
| 12144 | } | ||||
| 12145 | |||||
| 12146 | // Extracted values are either at Even indices <0,2,4,...> or at Odd | ||||
| 12147 | // indices <1,3,5,...>. | ||||
| 12148 | uint64_t Val = N->getConstantOperandVal(1); | ||||
| 12149 | if (Val == 2 * i) { | ||||
| 12150 | Even = true; | ||||
| 12151 | continue; | ||||
| 12152 | } | ||||
| 12153 | if (Val - 1 == 2 * i) { | ||||
| 12154 | Odd = true; | ||||
| 12155 | continue; | ||||
| 12156 | } | ||||
| 12157 | |||||
| 12158 | // Something does not match: abort. | ||||
| 12159 | Odd = false; | ||||
| 12160 | Even = false; | ||||
| 12161 | break; | ||||
| 12162 | } | ||||
| 12163 | if (Even || Odd) { | ||||
| 12164 | SDValue LHS = | ||||
| 12165 | DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SDValue(Vector, 0), | ||||
| 12166 | DAG.getConstant(0, dl, MVT::i64)); | ||||
| 12167 | SDValue RHS = | ||||
| 12168 | DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, SDValue(Vector, 0), | ||||
| 12169 | DAG.getConstant(NumElts, dl, MVT::i64)); | ||||
| 12170 | |||||
| 12171 | if (Even && !Odd) | ||||
| 12172 | return DAG.getNode(AArch64ISD::UZP1, dl, DAG.getVTList(VT, VT), LHS, | ||||
| 12173 | RHS); | ||||
| 12174 | if (Odd && !Even) | ||||
| 12175 | return DAG.getNode(AArch64ISD::UZP2, dl, DAG.getVTList(VT, VT), LHS, | ||||
| 12176 | RHS); | ||||
| 12177 | } | ||||
| 12178 | } | ||||
| 12179 | |||||
| 12180 | // Use DUP for non-constant splats. For f32 constant splats, reduce to | ||||
| 12181 | // i32 and try again. | ||||
| 12182 | if (usesOnlyOneValue) { | ||||
| 12183 | if (!isConstant) { | ||||
| 12184 | if (Value.getOpcode() != ISD::EXTRACT_VECTOR_ELT || | ||||
| 12185 | Value.getValueType() != VT) { | ||||
| 12186 | LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "LowerBUILD_VECTOR: use DUP for non-constant splats\n" ; } } while (false) | ||||
| 12187 | dbgs() << "LowerBUILD_VECTOR: use DUP for non-constant splats\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "LowerBUILD_VECTOR: use DUP for non-constant splats\n" ; } } while (false); | ||||
| 12188 | return DAG.getNode(AArch64ISD::DUP, dl, VT, Value); | ||||
| 12189 | } | ||||
| 12190 | |||||
| 12191 | // This is actually a DUPLANExx operation, which keeps everything vectory. | ||||
| 12192 | |||||
| 12193 | SDValue Lane = Value.getOperand(1); | ||||
| 12194 | Value = Value.getOperand(0); | ||||
| 12195 | if (Value.getValueSizeInBits() == 64) { | ||||
| 12196 | LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "LowerBUILD_VECTOR: DUPLANE works on 128-bit vectors, " "widening it\n"; } } while (false) | ||||
| 12197 | dbgs() << "LowerBUILD_VECTOR: DUPLANE works on 128-bit vectors, "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "LowerBUILD_VECTOR: DUPLANE works on 128-bit vectors, " "widening it\n"; } } while (false) | ||||
| 12198 | "widening it\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "LowerBUILD_VECTOR: DUPLANE works on 128-bit vectors, " "widening it\n"; } } while (false); | ||||
| 12199 | Value = WidenVector(Value, DAG); | ||||
| 12200 | } | ||||
| 12201 | |||||
| 12202 | unsigned Opcode = getDUPLANEOp(VT.getVectorElementType()); | ||||
| 12203 | return DAG.getNode(Opcode, dl, VT, Value, Lane); | ||||
| 12204 | } | ||||
| 12205 | |||||
| 12206 | if (VT.getVectorElementType().isFloatingPoint()) { | ||||
| 12207 | SmallVector<SDValue, 8> Ops; | ||||
| 12208 | EVT EltTy = VT.getVectorElementType(); | ||||
| 12209 | assert ((EltTy == MVT::f16 || EltTy == MVT::bf16 || EltTy == MVT::f32 ||(static_cast <bool> ((EltTy == MVT::f16 || EltTy == MVT ::bf16 || EltTy == MVT::f32 || EltTy == MVT::f64) && "Unsupported floating-point vector type" ) ? void (0) : __assert_fail ("(EltTy == MVT::f16 || EltTy == MVT::bf16 || EltTy == MVT::f32 || EltTy == MVT::f64) && \"Unsupported floating-point vector type\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 12210, __extension__ __PRETTY_FUNCTION__)) | ||||
| 12210 | EltTy == MVT::f64) && "Unsupported floating-point vector type")(static_cast <bool> ((EltTy == MVT::f16 || EltTy == MVT ::bf16 || EltTy == MVT::f32 || EltTy == MVT::f64) && "Unsupported floating-point vector type" ) ? void (0) : __assert_fail ("(EltTy == MVT::f16 || EltTy == MVT::bf16 || EltTy == MVT::f32 || EltTy == MVT::f64) && \"Unsupported floating-point vector type\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 12210, __extension__ __PRETTY_FUNCTION__)); | ||||
| 12211 | LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "LowerBUILD_VECTOR: float constant splats, creating int " "BITCASTS, and try again\n"; } } while (false) | ||||
| 12212 | dbgs() << "LowerBUILD_VECTOR: float constant splats, creating int "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "LowerBUILD_VECTOR: float constant splats, creating int " "BITCASTS, and try again\n"; } } while (false) | ||||
| 12213 | "BITCASTS, and try again\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "LowerBUILD_VECTOR: float constant splats, creating int " "BITCASTS, and try again\n"; } } while (false); | ||||
| 12214 | MVT NewType = MVT::getIntegerVT(EltTy.getSizeInBits()); | ||||
| 12215 | for (unsigned i = 0; i < NumElts; ++i) | ||||
| 12216 | Ops.push_back(DAG.getNode(ISD::BITCAST, dl, NewType, Op.getOperand(i))); | ||||
| 12217 | EVT VecVT = EVT::getVectorVT(*DAG.getContext(), NewType, NumElts); | ||||
| 12218 | SDValue Val = DAG.getBuildVector(VecVT, dl, Ops); | ||||
| 12219 | LLVM_DEBUG(dbgs() << "LowerBUILD_VECTOR: trying to lower new vector: ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "LowerBUILD_VECTOR: trying to lower new vector: " ; Val.dump();; } } while (false) | ||||
| 12220 | Val.dump();)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "LowerBUILD_VECTOR: trying to lower new vector: " ; Val.dump();; } } while (false); | ||||
| 12221 | Val = LowerBUILD_VECTOR(Val, DAG); | ||||
| 12222 | if (Val.getNode()) | ||||
| 12223 | return DAG.getNode(ISD::BITCAST, dl, VT, Val); | ||||
| 12224 | } | ||||
| 12225 | } | ||||
| 12226 | |||||
| 12227 | // If we need to insert a small number of different non-constant elements and | ||||
| 12228 | // the vector width is sufficiently large, prefer using DUP with the common | ||||
| 12229 | // value and INSERT_VECTOR_ELT for the different lanes. If DUP is preferred, | ||||
| 12230 | // skip the constant lane handling below. | ||||
| 12231 | bool PreferDUPAndInsert = | ||||
| 12232 | !isConstant && NumDifferentLanes >= 1 && | ||||
| 12233 | NumDifferentLanes < ((NumElts - NumUndefLanes) / 2) && | ||||
| 12234 | NumDifferentLanes >= NumConstantLanes; | ||||
| 12235 | |||||
| 12236 | // If there was only one constant value used and for more than one lane, | ||||
| 12237 | // start by splatting that value, then replace the non-constant lanes. This | ||||
| 12238 | // is better than the default, which will perform a separate initialization | ||||
| 12239 | // for each lane. | ||||
| 12240 | if (!PreferDUPAndInsert && NumConstantLanes > 0 && usesOnlyOneConstantValue) { | ||||
| 12241 | // Firstly, try to materialize the splat constant. | ||||
| 12242 | SDValue Vec = DAG.getSplatBuildVector(VT, dl, ConstantValue), | ||||
| 12243 | Val = ConstantBuildVector(Vec, DAG); | ||||
| 12244 | if (!Val) { | ||||
| 12245 | // Otherwise, materialize the constant and splat it. | ||||
| 12246 | Val = DAG.getNode(AArch64ISD::DUP, dl, VT, ConstantValue); | ||||
| 12247 | DAG.ReplaceAllUsesWith(Vec.getNode(), &Val); | ||||
| 12248 | } | ||||
| 12249 | |||||
| 12250 | // Now insert the non-constant lanes. | ||||
| 12251 | for (unsigned i = 0; i < NumElts; ++i) { | ||||
| 12252 | SDValue V = Op.getOperand(i); | ||||
| 12253 | SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64); | ||||
| 12254 | if (!isIntOrFPConstant(V)) | ||||
| 12255 | // Note that type legalization likely mucked about with the VT of the | ||||
| 12256 | // source operand, so we may have to convert it here before inserting. | ||||
| 12257 | Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, V, LaneIdx); | ||||
| 12258 | } | ||||
| 12259 | return Val; | ||||
| 12260 | } | ||||
| 12261 | |||||
| 12262 | // This will generate a load from the constant pool. | ||||
| 12263 | if (isConstant) { | ||||
| 12264 | LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "LowerBUILD_VECTOR: all elements are constant, use default " "expansion\n"; } } while (false) | ||||
| 12265 | dbgs() << "LowerBUILD_VECTOR: all elements are constant, use default "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "LowerBUILD_VECTOR: all elements are constant, use default " "expansion\n"; } } while (false) | ||||
| 12266 | "expansion\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "LowerBUILD_VECTOR: all elements are constant, use default " "expansion\n"; } } while (false); | ||||
| 12267 | return SDValue(); | ||||
| 12268 | } | ||||
| 12269 | |||||
| 12270 | // Detect patterns of a0,a1,a2,a3,b0,b1,b2,b3,c0,c1,c2,c3,d0,d1,d2,d3 from | ||||
| 12271 | // v4i32s. This is really a truncate, which we can construct out of (legal) | ||||
| 12272 | // concats and truncate nodes. | ||||
| 12273 | if (SDValue M = ReconstructTruncateFromBuildVector(Op, DAG)) | ||||
| 12274 | return M; | ||||
| 12275 | |||||
| 12276 | // Empirical tests suggest this is rarely worth it for vectors of length <= 2. | ||||
| 12277 | if (NumElts >= 4) { | ||||
| 12278 | if (SDValue shuffle = ReconstructShuffle(Op, DAG)) | ||||
| 12279 | return shuffle; | ||||
| 12280 | } | ||||
| 12281 | |||||
| 12282 | if (PreferDUPAndInsert) { | ||||
| 12283 | // First, build a constant vector with the common element. | ||||
| 12284 | SmallVector<SDValue, 8> Ops(NumElts, Value); | ||||
| 12285 | SDValue NewVector = LowerBUILD_VECTOR(DAG.getBuildVector(VT, dl, Ops), DAG); | ||||
| 12286 | // Next, insert the elements that do not match the common value. | ||||
| 12287 | for (unsigned I = 0; I < NumElts; ++I) | ||||
| 12288 | if (Op.getOperand(I) != Value) | ||||
| 12289 | NewVector = | ||||
| 12290 | DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, NewVector, | ||||
| 12291 | Op.getOperand(I), DAG.getConstant(I, dl, MVT::i64)); | ||||
| 12292 | |||||
| 12293 | return NewVector; | ||||
| 12294 | } | ||||
| 12295 | |||||
| 12296 | // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we | ||||
| 12297 | // know the default expansion would otherwise fall back on something even | ||||
| 12298 | // worse. For a vector with one or two non-undef values, that's | ||||
| 12299 | // scalar_to_vector for the elements followed by a shuffle (provided the | ||||
| 12300 | // shuffle is valid for the target) and materialization element by element | ||||
| 12301 | // on the stack followed by a load for everything else. | ||||
| 12302 | if (!isConstant && !usesOnlyOneValue) { | ||||
| 12303 | LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "LowerBUILD_VECTOR: alternatives failed, creating sequence " "of INSERT_VECTOR_ELT\n"; } } while (false) | ||||
| 12304 | dbgs() << "LowerBUILD_VECTOR: alternatives failed, creating sequence "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "LowerBUILD_VECTOR: alternatives failed, creating sequence " "of INSERT_VECTOR_ELT\n"; } } while (false) | ||||
| 12305 | "of INSERT_VECTOR_ELT\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "LowerBUILD_VECTOR: alternatives failed, creating sequence " "of INSERT_VECTOR_ELT\n"; } } while (false); | ||||
| 12306 | |||||
| 12307 | SDValue Vec = DAG.getUNDEF(VT); | ||||
| 12308 | SDValue Op0 = Op.getOperand(0); | ||||
| 12309 | unsigned i = 0; | ||||
| 12310 | |||||
| 12311 | // Use SCALAR_TO_VECTOR for lane zero to | ||||
| 12312 | // a) Avoid a RMW dependency on the full vector register, and | ||||
| 12313 | // b) Allow the register coalescer to fold away the copy if the | ||||
| 12314 | // value is already in an S or D register, and we're forced to emit an | ||||
| 12315 | // INSERT_SUBREG that we can't fold anywhere. | ||||
| 12316 | // | ||||
| 12317 | // We also allow types like i8 and i16 which are illegal scalar but legal | ||||
| 12318 | // vector element types. After type-legalization the inserted value is | ||||
| 12319 | // extended (i32) and it is safe to cast them to the vector type by ignoring | ||||
| 12320 | // the upper bits of the lowest lane (e.g. v8i8, v4i16). | ||||
| 12321 | if (!Op0.isUndef()) { | ||||
| 12322 | LLVM_DEBUG(dbgs() << "Creating node for op0, it is not undefined:\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "Creating node for op0, it is not undefined:\n" ; } } while (false); | ||||
| 12323 | Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op0); | ||||
| 12324 | ++i; | ||||
| 12325 | } | ||||
| 12326 | LLVM_DEBUG(if (i < NumElts) dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { if (i < NumElts) dbgs() << "Creating nodes for the other vector elements:\n" ;; } } while (false) | ||||
| 12327 | << "Creating nodes for the other vector elements:\n";)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { if (i < NumElts) dbgs() << "Creating nodes for the other vector elements:\n" ;; } } while (false); | ||||
| 12328 | for (; i < NumElts; ++i) { | ||||
| 12329 | SDValue V = Op.getOperand(i); | ||||
| 12330 | if (V.isUndef()) | ||||
| 12331 | continue; | ||||
| 12332 | SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i64); | ||||
| 12333 | Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx); | ||||
| 12334 | } | ||||
| 12335 | return Vec; | ||||
| 12336 | } | ||||
| 12337 | |||||
| 12338 | LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "LowerBUILD_VECTOR: use default expansion, failed to find " "better alternative\n"; } } while (false) | ||||
| 12339 | dbgs() << "LowerBUILD_VECTOR: use default expansion, failed to find "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "LowerBUILD_VECTOR: use default expansion, failed to find " "better alternative\n"; } } while (false) | ||||
| 12340 | "better alternative\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "LowerBUILD_VECTOR: use default expansion, failed to find " "better alternative\n"; } } while (false); | ||||
| 12341 | return SDValue(); | ||||
| 12342 | } | ||||
| 12343 | |||||
| 12344 | SDValue AArch64TargetLowering::LowerCONCAT_VECTORS(SDValue Op, | ||||
| 12345 | SelectionDAG &DAG) const { | ||||
| 12346 | if (useSVEForFixedLengthVectorVT(Op.getValueType(), | ||||
| 12347 | Subtarget->forceStreamingCompatibleSVE())) | ||||
| 12348 | return LowerFixedLengthConcatVectorsToSVE(Op, DAG); | ||||
| 12349 | |||||
| 12350 | assert(Op.getValueType().isScalableVector() &&(static_cast <bool> (Op.getValueType().isScalableVector () && isTypeLegal(Op.getValueType()) && "Expected legal scalable vector type!" ) ? void (0) : __assert_fail ("Op.getValueType().isScalableVector() && isTypeLegal(Op.getValueType()) && \"Expected legal scalable vector type!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 12352, __extension__ __PRETTY_FUNCTION__)) | ||||
| 12351 | isTypeLegal(Op.getValueType()) &&(static_cast <bool> (Op.getValueType().isScalableVector () && isTypeLegal(Op.getValueType()) && "Expected legal scalable vector type!" ) ? void (0) : __assert_fail ("Op.getValueType().isScalableVector() && isTypeLegal(Op.getValueType()) && \"Expected legal scalable vector type!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 12352, __extension__ __PRETTY_FUNCTION__)) | ||||
| 12352 | "Expected legal scalable vector type!")(static_cast <bool> (Op.getValueType().isScalableVector () && isTypeLegal(Op.getValueType()) && "Expected legal scalable vector type!" ) ? void (0) : __assert_fail ("Op.getValueType().isScalableVector() && isTypeLegal(Op.getValueType()) && \"Expected legal scalable vector type!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 12352, __extension__ __PRETTY_FUNCTION__)); | ||||
| 12353 | |||||
| 12354 | if (isTypeLegal(Op.getOperand(0).getValueType())) { | ||||
| 12355 | unsigned NumOperands = Op->getNumOperands(); | ||||
| 12356 | assert(NumOperands > 1 && isPowerOf2_32(NumOperands) &&(static_cast <bool> (NumOperands > 1 && isPowerOf2_32 (NumOperands) && "Unexpected number of operands in CONCAT_VECTORS" ) ? void (0) : __assert_fail ("NumOperands > 1 && isPowerOf2_32(NumOperands) && \"Unexpected number of operands in CONCAT_VECTORS\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 12357, __extension__ __PRETTY_FUNCTION__)) | ||||
| 12357 | "Unexpected number of operands in CONCAT_VECTORS")(static_cast <bool> (NumOperands > 1 && isPowerOf2_32 (NumOperands) && "Unexpected number of operands in CONCAT_VECTORS" ) ? void (0) : __assert_fail ("NumOperands > 1 && isPowerOf2_32(NumOperands) && \"Unexpected number of operands in CONCAT_VECTORS\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 12357, __extension__ __PRETTY_FUNCTION__)); | ||||
| 12358 | |||||
| 12359 | if (NumOperands == 2) | ||||
| 12360 | return Op; | ||||
| 12361 | |||||
| 12362 | // Concat each pair of subvectors and pack into the lower half of the array. | ||||
| 12363 | SmallVector<SDValue> ConcatOps(Op->op_begin(), Op->op_end()); | ||||
| 12364 | while (ConcatOps.size() > 1) { | ||||
| 12365 | for (unsigned I = 0, E = ConcatOps.size(); I != E; I += 2) { | ||||
| 12366 | SDValue V1 = ConcatOps[I]; | ||||
| 12367 | SDValue V2 = ConcatOps[I + 1]; | ||||
| 12368 | EVT SubVT = V1.getValueType(); | ||||
| 12369 | EVT PairVT = SubVT.getDoubleNumVectorElementsVT(*DAG.getContext()); | ||||
| 12370 | ConcatOps[I / 2] = | ||||
| 12371 | DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), PairVT, V1, V2); | ||||
| 12372 | } | ||||
| 12373 | ConcatOps.resize(ConcatOps.size() / 2); | ||||
| 12374 | } | ||||
| 12375 | return ConcatOps[0]; | ||||
| 12376 | } | ||||
| 12377 | |||||
| 12378 | return SDValue(); | ||||
| 12379 | } | ||||
| 12380 | |||||
| 12381 | SDValue AArch64TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, | ||||
| 12382 | SelectionDAG &DAG) const { | ||||
| 12383 | assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!")(static_cast <bool> (Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Unknown opcode!") ? void (0) : __assert_fail ("Op.getOpcode() == ISD::INSERT_VECTOR_ELT && \"Unknown opcode!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 12383, __extension__ __PRETTY_FUNCTION__)); | ||||
| 12384 | |||||
| 12385 | if (useSVEForFixedLengthVectorVT(Op.getValueType(), | ||||
| 12386 | Subtarget->forceStreamingCompatibleSVE())) | ||||
| 12387 | return LowerFixedLengthInsertVectorElt(Op, DAG); | ||||
| 12388 | |||||
| 12389 | // Check for non-constant or out of range lane. | ||||
| 12390 | EVT VT = Op.getOperand(0).getValueType(); | ||||
| 12391 | |||||
| 12392 | if (VT.getScalarType() == MVT::i1) { | ||||
| 12393 | EVT VectorVT = getPromotedVTForPredicate(VT); | ||||
| 12394 | SDLoc DL(Op); | ||||
| 12395 | SDValue ExtendedVector = | ||||
| 12396 | DAG.getAnyExtOrTrunc(Op.getOperand(0), DL, VectorVT); | ||||
| 12397 | SDValue ExtendedValue = | ||||
| 12398 | DAG.getAnyExtOrTrunc(Op.getOperand(1), DL, | ||||
| 12399 | VectorVT.getScalarType().getSizeInBits() < 32 | ||||
| 12400 | ? MVT::i32 | ||||
| 12401 | : VectorVT.getScalarType()); | ||||
| 12402 | ExtendedVector = | ||||
| 12403 | DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VectorVT, ExtendedVector, | ||||
| 12404 | ExtendedValue, Op.getOperand(2)); | ||||
| 12405 | return DAG.getAnyExtOrTrunc(ExtendedVector, DL, VT); | ||||
| 12406 | } | ||||
| 12407 | |||||
| 12408 | ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(2)); | ||||
| 12409 | if (!CI || CI->getZExtValue() >= VT.getVectorNumElements()) | ||||
| 12410 | return SDValue(); | ||||
| 12411 | |||||
| 12412 | // Insertion/extraction are legal for V128 types. | ||||
| 12413 | if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || | ||||
| 12414 | VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 || | ||||
| 12415 | VT == MVT::v8f16 || VT == MVT::v8bf16) | ||||
| 12416 | return Op; | ||||
| 12417 | |||||
| 12418 | if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 && | ||||
| 12419 | VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16 && | ||||
| 12420 | VT != MVT::v4bf16) | ||||
| 12421 | return SDValue(); | ||||
| 12422 | |||||
| 12423 | // For V64 types, we perform insertion by expanding the value | ||||
| 12424 | // to a V128 type and perform the insertion on that. | ||||
| 12425 | SDLoc DL(Op); | ||||
| 12426 | SDValue WideVec = WidenVector(Op.getOperand(0), DAG); | ||||
| 12427 | EVT WideTy = WideVec.getValueType(); | ||||
| 12428 | |||||
| 12429 | SDValue Node = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, WideTy, WideVec, | ||||
| 12430 | Op.getOperand(1), Op.getOperand(2)); | ||||
| 12431 | // Re-narrow the resultant vector. | ||||
| 12432 | return NarrowVector(Node, DAG); | ||||
| 12433 | } | ||||
| 12434 | |||||
| 12435 | SDValue | ||||
| 12436 | AArch64TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, | ||||
| 12437 | SelectionDAG &DAG) const { | ||||
| 12438 | assert(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!")(static_cast <bool> (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && "Unknown opcode!") ? void (0) : __assert_fail ("Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && \"Unknown opcode!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 12438, __extension__ __PRETTY_FUNCTION__)); | ||||
| 12439 | EVT VT = Op.getOperand(0).getValueType(); | ||||
| 12440 | |||||
| 12441 | if (VT.getScalarType() == MVT::i1) { | ||||
| 12442 | // We can't directly extract from an SVE predicate; extend it first. | ||||
| 12443 | // (This isn't the only possible lowering, but it's straightforward.) | ||||
| 12444 | EVT VectorVT = getPromotedVTForPredicate(VT); | ||||
| 12445 | SDLoc DL(Op); | ||||
| 12446 | SDValue Extend = | ||||
| 12447 | DAG.getNode(ISD::ANY_EXTEND, DL, VectorVT, Op.getOperand(0)); | ||||
| 12448 | MVT ExtractTy = VectorVT == MVT::nxv2i64 ? MVT::i64 : MVT::i32; | ||||
| 12449 | SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtractTy, | ||||
| 12450 | Extend, Op.getOperand(1)); | ||||
| 12451 | return DAG.getAnyExtOrTrunc(Extract, DL, Op.getValueType()); | ||||
| 12452 | } | ||||
| 12453 | |||||
| 12454 | if (useSVEForFixedLengthVectorVT(VT, | ||||
| 12455 | Subtarget->forceStreamingCompatibleSVE())) | ||||
| 12456 | return LowerFixedLengthExtractVectorElt(Op, DAG); | ||||
| 12457 | |||||
| 12458 | // Check for non-constant or out of range lane. | ||||
| 12459 | ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Op.getOperand(1)); | ||||
| 12460 | if (!CI || CI->getZExtValue() >= VT.getVectorNumElements()) | ||||
| 12461 | return SDValue(); | ||||
| 12462 | |||||
| 12463 | // Insertion/extraction are legal for V128 types. | ||||
| 12464 | if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || | ||||
| 12465 | VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64 || | ||||
| 12466 | VT == MVT::v8f16 || VT == MVT::v8bf16) | ||||
| 12467 | return Op; | ||||
| 12468 | |||||
| 12469 | if (VT != MVT::v8i8 && VT != MVT::v4i16 && VT != MVT::v2i32 && | ||||
| 12470 | VT != MVT::v1i64 && VT != MVT::v2f32 && VT != MVT::v4f16 && | ||||
| 12471 | VT != MVT::v4bf16) | ||||
| 12472 | return SDValue(); | ||||
| 12473 | |||||
| 12474 | // For V64 types, we perform extraction by expanding the value | ||||
| 12475 | // to a V128 type and perform the extraction on that. | ||||
| 12476 | SDLoc DL(Op); | ||||
| 12477 | SDValue WideVec = WidenVector(Op.getOperand(0), DAG); | ||||
| 12478 | EVT WideTy = WideVec.getValueType(); | ||||
| 12479 | |||||
| 12480 | EVT ExtrTy = WideTy.getVectorElementType(); | ||||
| 12481 | if (ExtrTy == MVT::i16 || ExtrTy == MVT::i8) | ||||
| 12482 | ExtrTy = MVT::i32; | ||||
| 12483 | |||||
| 12484 | // For extractions, we just return the result directly. | ||||
| 12485 | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ExtrTy, WideVec, | ||||
| 12486 | Op.getOperand(1)); | ||||
| 12487 | } | ||||
| 12488 | |||||
| 12489 | SDValue AArch64TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, | ||||
| 12490 | SelectionDAG &DAG) const { | ||||
| 12491 | assert(Op.getValueType().isFixedLengthVector() &&(static_cast <bool> (Op.getValueType().isFixedLengthVector () && "Only cases that extract a fixed length vector are supported!" ) ? void (0) : __assert_fail ("Op.getValueType().isFixedLengthVector() && \"Only cases that extract a fixed length vector are supported!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 12492, __extension__ __PRETTY_FUNCTION__)) | ||||
| 12492 | "Only cases that extract a fixed length vector are supported!")(static_cast <bool> (Op.getValueType().isFixedLengthVector () && "Only cases that extract a fixed length vector are supported!" ) ? void (0) : __assert_fail ("Op.getValueType().isFixedLengthVector() && \"Only cases that extract a fixed length vector are supported!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 12492, __extension__ __PRETTY_FUNCTION__)); | ||||
| 12493 | |||||
| 12494 | EVT InVT = Op.getOperand(0).getValueType(); | ||||
| 12495 | unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); | ||||
| 12496 | unsigned Size = Op.getValueSizeInBits(); | ||||
| 12497 | |||||
| 12498 | // If we don't have legal types yet, do nothing | ||||
| 12499 | if (!DAG.getTargetLoweringInfo().isTypeLegal(InVT)) | ||||
| 12500 | return SDValue(); | ||||
| 12501 | |||||
| 12502 | if (InVT.isScalableVector()) { | ||||
| 12503 | // This will be matched by custom code during ISelDAGToDAG. | ||||
| 12504 | if (Idx == 0 && isPackedVectorType(InVT, DAG)) | ||||
| 12505 | return Op; | ||||
| 12506 | |||||
| 12507 | return SDValue(); | ||||
| 12508 | } | ||||
| 12509 | |||||
| 12510 | // This will get lowered to an appropriate EXTRACT_SUBREG in ISel. | ||||
| 12511 | if (Idx == 0 && InVT.getSizeInBits() <= 128) | ||||
| 12512 | return Op; | ||||
| 12513 | |||||
| 12514 | // If this is extracting the upper 64-bits of a 128-bit vector, we match | ||||
| 12515 | // that directly. | ||||
| 12516 | if (Size == 64 && Idx * InVT.getScalarSizeInBits() == 64 && | ||||
| 12517 | InVT.getSizeInBits() == 128 && !Subtarget->forceStreamingCompatibleSVE()) | ||||
| 12518 | return Op; | ||||
| 12519 | |||||
| 12520 | if (useSVEForFixedLengthVectorVT(InVT, | ||||
| 12521 | Subtarget->forceStreamingCompatibleSVE())) { | ||||
| 12522 | SDLoc DL(Op); | ||||
| 12523 | |||||
| 12524 | EVT ContainerVT = getContainerForFixedLengthVector(DAG, InVT); | ||||
| 12525 | SDValue NewInVec = | ||||
| 12526 | convertToScalableVector(DAG, ContainerVT, Op.getOperand(0)); | ||||
| 12527 | |||||
| 12528 | SDValue Splice = DAG.getNode(ISD::VECTOR_SPLICE, DL, ContainerVT, NewInVec, | ||||
| 12529 | NewInVec, DAG.getConstant(Idx, DL, MVT::i64)); | ||||
| 12530 | return convertFromScalableVector(DAG, Op.getValueType(), Splice); | ||||
| 12531 | } | ||||
| 12532 | |||||
| 12533 | return SDValue(); | ||||
| 12534 | } | ||||
| 12535 | |||||
| 12536 | SDValue AArch64TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, | ||||
| 12537 | SelectionDAG &DAG) const { | ||||
| 12538 | assert(Op.getValueType().isScalableVector() &&(static_cast <bool> (Op.getValueType().isScalableVector () && "Only expect to lower inserts into scalable vectors!" ) ? void (0) : __assert_fail ("Op.getValueType().isScalableVector() && \"Only expect to lower inserts into scalable vectors!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 12539, __extension__ __PRETTY_FUNCTION__)) | ||||
| 12539 | "Only expect to lower inserts into scalable vectors!")(static_cast <bool> (Op.getValueType().isScalableVector () && "Only expect to lower inserts into scalable vectors!" ) ? void (0) : __assert_fail ("Op.getValueType().isScalableVector() && \"Only expect to lower inserts into scalable vectors!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 12539, __extension__ __PRETTY_FUNCTION__)); | ||||
| 12540 | |||||
| 12541 | EVT InVT = Op.getOperand(1).getValueType(); | ||||
| 12542 | unsigned Idx = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); | ||||
| 12543 | |||||
| 12544 | SDValue Vec0 = Op.getOperand(0); | ||||
| 12545 | SDValue Vec1 = Op.getOperand(1); | ||||
| 12546 | SDLoc DL(Op); | ||||
| 12547 | EVT VT = Op.getValueType(); | ||||
| 12548 | |||||
| 12549 | if (InVT.isScalableVector()) { | ||||
| 12550 | if (!isTypeLegal(VT)) | ||||
| 12551 | return SDValue(); | ||||
| 12552 | |||||
| 12553 | // Break down insert_subvector into simpler parts. | ||||
| 12554 | if (VT.getVectorElementType() == MVT::i1) { | ||||
| 12555 | unsigned NumElts = VT.getVectorMinNumElements(); | ||||
| 12556 | EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); | ||||
| 12557 | |||||
| 12558 | SDValue Lo, Hi; | ||||
| 12559 | Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, Vec0, | ||||
| 12560 | DAG.getVectorIdxConstant(0, DL)); | ||||
| 12561 | Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, Vec0, | ||||
| 12562 | DAG.getVectorIdxConstant(NumElts / 2, DL)); | ||||
| 12563 | if (Idx < (NumElts / 2)) { | ||||
| 12564 | SDValue NewLo = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, HalfVT, Lo, Vec1, | ||||
| 12565 | DAG.getVectorIdxConstant(Idx, DL)); | ||||
| 12566 | return DAG.getNode(AArch64ISD::UZP1, DL, VT, NewLo, Hi); | ||||
| 12567 | } else { | ||||
| 12568 | SDValue NewHi = | ||||
| 12569 | DAG.getNode(ISD::INSERT_SUBVECTOR, DL, HalfVT, Hi, Vec1, | ||||
| 12570 | DAG.getVectorIdxConstant(Idx - (NumElts / 2), DL)); | ||||
| 12571 | return DAG.getNode(AArch64ISD::UZP1, DL, VT, Lo, NewHi); | ||||
| 12572 | } | ||||
| 12573 | } | ||||
| 12574 | |||||
| 12575 | // Ensure the subvector is half the size of the main vector. | ||||
| 12576 | if (VT.getVectorElementCount() != (InVT.getVectorElementCount() * 2)) | ||||
| 12577 | return SDValue(); | ||||
| 12578 | |||||
| 12579 | // Here narrow and wide refers to the vector element types. After "casting" | ||||
| 12580 | // both vectors must have the same bit length and so because the subvector | ||||
| 12581 | // has fewer elements, those elements need to be bigger. | ||||
| 12582 | EVT NarrowVT = getPackedSVEVectorVT(VT.getVectorElementCount()); | ||||
| 12583 | EVT WideVT = getPackedSVEVectorVT(InVT.getVectorElementCount()); | ||||
| 12584 | |||||
| 12585 | // NOP cast operands to the largest legal vector of the same element count. | ||||
| 12586 | if (VT.isFloatingPoint()) { | ||||
| 12587 | Vec0 = getSVESafeBitCast(NarrowVT, Vec0, DAG); | ||||
| 12588 | Vec1 = getSVESafeBitCast(WideVT, Vec1, DAG); | ||||
| 12589 | } else { | ||||
| 12590 | // Legal integer vectors are already their largest so Vec0 is fine as is. | ||||
| 12591 | Vec1 = DAG.getNode(ISD::ANY_EXTEND, DL, WideVT, Vec1); | ||||
| 12592 | } | ||||
| 12593 | |||||
| 12594 | // To replace the top/bottom half of vector V with vector SubV we widen the | ||||
| 12595 | // preserved half of V, concatenate this to SubV (the order depending on the | ||||
| 12596 | // half being replaced) and then narrow the result. | ||||
| 12597 | SDValue Narrow; | ||||
| 12598 | if (Idx == 0) { | ||||
| 12599 | SDValue HiVec0 = DAG.getNode(AArch64ISD::UUNPKHI, DL, WideVT, Vec0); | ||||
| 12600 | Narrow = DAG.getNode(AArch64ISD::UZP1, DL, NarrowVT, Vec1, HiVec0); | ||||
| 12601 | } else { | ||||
| 12602 | assert(Idx == InVT.getVectorMinNumElements() &&(static_cast <bool> (Idx == InVT.getVectorMinNumElements () && "Invalid subvector index!") ? void (0) : __assert_fail ("Idx == InVT.getVectorMinNumElements() && \"Invalid subvector index!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 12603, __extension__ __PRETTY_FUNCTION__)) | ||||
| 12603 | "Invalid subvector index!")(static_cast <bool> (Idx == InVT.getVectorMinNumElements () && "Invalid subvector index!") ? void (0) : __assert_fail ("Idx == InVT.getVectorMinNumElements() && \"Invalid subvector index!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 12603, __extension__ __PRETTY_FUNCTION__)); | ||||
| 12604 | SDValue LoVec0 = DAG.getNode(AArch64ISD::UUNPKLO, DL, WideVT, Vec0); | ||||
| 12605 | Narrow = DAG.getNode(AArch64ISD::UZP1, DL, NarrowVT, LoVec0, Vec1); | ||||
| 12606 | } | ||||
| 12607 | |||||
| 12608 | return getSVESafeBitCast(VT, Narrow, DAG); | ||||
| 12609 | } | ||||
| 12610 | |||||
| 12611 | if (Idx == 0 && isPackedVectorType(VT, DAG)) { | ||||
| 12612 | // This will be matched by custom code during ISelDAGToDAG. | ||||
| 12613 | if (Vec0.isUndef()) | ||||
| 12614 | return Op; | ||||
| 12615 | |||||
| 12616 | std::optional<unsigned> PredPattern = | ||||
| 12617 | getSVEPredPatternFromNumElements(InVT.getVectorNumElements()); | ||||
| 12618 | auto PredTy = VT.changeVectorElementType(MVT::i1); | ||||
| 12619 | SDValue PTrue = getPTrue(DAG, DL, PredTy, *PredPattern); | ||||
| 12620 | SDValue ScalableVec1 = convertToScalableVector(DAG, VT, Vec1); | ||||
| 12621 | return DAG.getNode(ISD::VSELECT, DL, VT, PTrue, ScalableVec1, Vec0); | ||||
| 12622 | } | ||||
| 12623 | |||||
| 12624 | return SDValue(); | ||||
| 12625 | } | ||||
| 12626 | |||||
| 12627 | static bool isPow2Splat(SDValue Op, uint64_t &SplatVal, bool &Negated) { | ||||
| 12628 | if (Op.getOpcode() != AArch64ISD::DUP && | ||||
| 12629 | Op.getOpcode() != ISD::SPLAT_VECTOR && | ||||
| 12630 | Op.getOpcode() != ISD::BUILD_VECTOR) | ||||
| 12631 | return false; | ||||
| 12632 | |||||
| 12633 | if (Op.getOpcode() == ISD::BUILD_VECTOR && | ||||
| 12634 | !isAllConstantBuildVector(Op, SplatVal)) | ||||
| 12635 | return false; | ||||
| 12636 | |||||
| 12637 | if (Op.getOpcode() != ISD::BUILD_VECTOR && | ||||
| 12638 | !isa<ConstantSDNode>(Op->getOperand(0))) | ||||
| 12639 | return false; | ||||
| 12640 | |||||
| 12641 | SplatVal = Op->getConstantOperandVal(0); | ||||
| 12642 | if (Op.getValueType().getVectorElementType() != MVT::i64) | ||||
| 12643 | SplatVal = (int32_t)SplatVal; | ||||
| 12644 | |||||
| 12645 | Negated = false; | ||||
| 12646 | if (isPowerOf2_64(SplatVal)) | ||||
| 12647 | return true; | ||||
| 12648 | |||||
| 12649 | Negated = true; | ||||
| 12650 | if (isPowerOf2_64(-SplatVal)) { | ||||
| 12651 | SplatVal = -SplatVal; | ||||
| 12652 | return true; | ||||
| 12653 | } | ||||
| 12654 | |||||
| 12655 | return false; | ||||
| 12656 | } | ||||
| 12657 | |||||
| 12658 | SDValue AArch64TargetLowering::LowerDIV(SDValue Op, SelectionDAG &DAG) const { | ||||
| 12659 | EVT VT = Op.getValueType(); | ||||
| 12660 | SDLoc dl(Op); | ||||
| 12661 | |||||
| 12662 | if (useSVEForFixedLengthVectorVT(VT, /*OverrideNEON=*/true)) | ||||
| 12663 | return LowerFixedLengthVectorIntDivideToSVE(Op, DAG); | ||||
| 12664 | |||||
| 12665 | assert(VT.isScalableVector() && "Expected a scalable vector.")(static_cast <bool> (VT.isScalableVector() && "Expected a scalable vector." ) ? void (0) : __assert_fail ("VT.isScalableVector() && \"Expected a scalable vector.\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 12665, __extension__ __PRETTY_FUNCTION__)); | ||||
| 12666 | |||||
| 12667 | bool Signed = Op.getOpcode() == ISD::SDIV; | ||||
| 12668 | unsigned PredOpcode = Signed ? AArch64ISD::SDIV_PRED : AArch64ISD::UDIV_PRED; | ||||
| 12669 | |||||
| 12670 | bool Negated; | ||||
| 12671 | uint64_t SplatVal; | ||||
| 12672 | if (Signed && isPow2Splat(Op.getOperand(1), SplatVal, Negated)) { | ||||
| 12673 | SDValue Pg = getPredicateForScalableVector(DAG, dl, VT); | ||||
| 12674 | SDValue Res = | ||||
| 12675 | DAG.getNode(AArch64ISD::SRAD_MERGE_OP1, dl, VT, Pg, Op->getOperand(0), | ||||
| 12676 | DAG.getTargetConstant(Log2_64(SplatVal), dl, MVT::i32)); | ||||
| 12677 | if (Negated) | ||||
| 12678 | Res = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), Res); | ||||
| 12679 | |||||
| 12680 | return Res; | ||||
| 12681 | } | ||||
| 12682 | |||||
| 12683 | if (VT == MVT::nxv4i32 || VT == MVT::nxv2i64) | ||||
| 12684 | return LowerToPredicatedOp(Op, DAG, PredOpcode); | ||||
| 12685 | |||||
| 12686 | // SVE doesn't have i8 and i16 DIV operations; widen them to 32-bit | ||||
| 12687 | // operations, and truncate the result. | ||||
| 12688 | EVT WidenedVT; | ||||
| 12689 | if (VT == MVT::nxv16i8) | ||||
| 12690 | WidenedVT = MVT::nxv8i16; | ||||
| 12691 | else if (VT == MVT::nxv8i16) | ||||
| 12692 | WidenedVT = MVT::nxv4i32; | ||||
| 12693 | else | ||||
| 12694 | llvm_unreachable("Unexpected Custom DIV operation")::llvm::llvm_unreachable_internal("Unexpected Custom DIV operation" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 12694); | ||||
| 12695 | |||||
| 12696 | unsigned UnpkLo = Signed ? AArch64ISD::SUNPKLO : AArch64ISD::UUNPKLO; | ||||
| 12697 | unsigned UnpkHi = Signed ? AArch64ISD::SUNPKHI : AArch64ISD::UUNPKHI; | ||||
| 12698 | SDValue Op0Lo = DAG.getNode(UnpkLo, dl, WidenedVT, Op.getOperand(0)); | ||||
| 12699 | SDValue Op1Lo = DAG.getNode(UnpkLo, dl, WidenedVT, Op.getOperand(1)); | ||||
| 12700 | SDValue Op0Hi = DAG.getNode(UnpkHi, dl, WidenedVT, Op.getOperand(0)); | ||||
| 12701 | SDValue Op1Hi = DAG.getNode(UnpkHi, dl, WidenedVT, Op.getOperand(1)); | ||||
| 12702 | SDValue ResultLo = DAG.getNode(Op.getOpcode(), dl, WidenedVT, Op0Lo, Op1Lo); | ||||
| 12703 | SDValue ResultHi = DAG.getNode(Op.getOpcode(), dl, WidenedVT, Op0Hi, Op1Hi); | ||||
| 12704 | return DAG.getNode(AArch64ISD::UZP1, dl, VT, ResultLo, ResultHi); | ||||
| 12705 | } | ||||
| 12706 | |||||
| 12707 | bool AArch64TargetLowering::isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const { | ||||
| 12708 | // Currently no fixed length shuffles that require SVE are legal. | ||||
| 12709 | if (useSVEForFixedLengthVectorVT(VT, | ||||
| 12710 | Subtarget->forceStreamingCompatibleSVE())) | ||||
| 12711 | return false; | ||||
| 12712 | |||||
| 12713 | if (VT.getVectorNumElements() == 4 && | ||||
| 12714 | (VT.is128BitVector() || VT.is64BitVector())) { | ||||
| 12715 | unsigned Cost = getPerfectShuffleCost(M); | ||||
| 12716 | if (Cost <= 1) | ||||
| 12717 | return true; | ||||
| 12718 | } | ||||
| 12719 | |||||
| 12720 | bool DummyBool; | ||||
| 12721 | int DummyInt; | ||||
| 12722 | unsigned DummyUnsigned; | ||||
| 12723 | |||||
| 12724 | return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || isREVMask(M, VT, 64) || | ||||
| 12725 | isREVMask(M, VT, 32) || isREVMask(M, VT, 16) || | ||||
| 12726 | isEXTMask(M, VT, DummyBool, DummyUnsigned) || | ||||
| 12727 | // isTBLMask(M, VT) || // FIXME: Port TBL support from ARM. | ||||
| 12728 | isTRNMask(M, VT, DummyUnsigned) || isUZPMask(M, VT, DummyUnsigned) || | ||||
| 12729 | isZIPMask(M, VT, DummyUnsigned) || | ||||
| 12730 | isTRN_v_undef_Mask(M, VT, DummyUnsigned) || | ||||
| 12731 | isUZP_v_undef_Mask(M, VT, DummyUnsigned) || | ||||
| 12732 | isZIP_v_undef_Mask(M, VT, DummyUnsigned) || | ||||
| 12733 | isINSMask(M, VT.getVectorNumElements(), DummyBool, DummyInt) || | ||||
| 12734 | isConcatMask(M, VT, VT.getSizeInBits() == 128)); | ||||
| 12735 | } | ||||
| 12736 | |||||
| 12737 | bool AArch64TargetLowering::isVectorClearMaskLegal(ArrayRef<int> M, | ||||
| 12738 | EVT VT) const { | ||||
| 12739 | // Just delegate to the generic legality, clear masks aren't special. | ||||
| 12740 | return isShuffleMaskLegal(M, VT); | ||||
| 12741 | } | ||||
| 12742 | |||||
| 12743 | /// getVShiftImm - Check if this is a valid build_vector for the immediate | ||||
| 12744 | /// operand of a vector shift operation, where all the elements of the | ||||
| 12745 | /// build_vector must have the same constant integer value. | ||||
| 12746 | static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) { | ||||
| 12747 | // Ignore bit_converts. | ||||
| 12748 | while (Op.getOpcode() == ISD::BITCAST) | ||||
| 12749 | Op = Op.getOperand(0); | ||||
| 12750 | BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); | ||||
| 12751 | APInt SplatBits, SplatUndef; | ||||
| 12752 | unsigned SplatBitSize; | ||||
| 12753 | bool HasAnyUndefs; | ||||
| 12754 | if (!BVN || !BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, | ||||
| 12755 | HasAnyUndefs, ElementBits) || | ||||
| 12756 | SplatBitSize > ElementBits) | ||||
| 12757 | return false; | ||||
| 12758 | Cnt = SplatBits.getSExtValue(); | ||||
| 12759 | return true; | ||||
| 12760 | } | ||||
| 12761 | |||||
| 12762 | /// isVShiftLImm - Check if this is a valid build_vector for the immediate | ||||
| 12763 | /// operand of a vector shift left operation. That value must be in the range: | ||||
| 12764 | /// 0 <= Value < ElementBits for a left shift; or | ||||
| 12765 | /// 0 <= Value <= ElementBits for a long left shift. | ||||
| 12766 | static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) { | ||||
| 12767 | assert(VT.isVector() && "vector shift count is not a vector type")(static_cast <bool> (VT.isVector() && "vector shift count is not a vector type" ) ? void (0) : __assert_fail ("VT.isVector() && \"vector shift count is not a vector type\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 12767, __extension__ __PRETTY_FUNCTION__)); | ||||
| 12768 | int64_t ElementBits = VT.getScalarSizeInBits(); | ||||
| 12769 | if (!getVShiftImm(Op, ElementBits, Cnt)) | ||||
| 12770 | return false; | ||||
| 12771 | return (Cnt >= 0 && (isLong ? Cnt - 1 : Cnt) < ElementBits); | ||||
| 12772 | } | ||||
| 12773 | |||||
| 12774 | /// isVShiftRImm - Check if this is a valid build_vector for the immediate | ||||
| 12775 | /// operand of a vector shift right operation. The value must be in the range: | ||||
| 12776 | /// 1 <= Value <= ElementBits for a right shift; or | ||||
| 12777 | static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, int64_t &Cnt) { | ||||
| 12778 | assert(VT.isVector() && "vector shift count is not a vector type")(static_cast <bool> (VT.isVector() && "vector shift count is not a vector type" ) ? void (0) : __assert_fail ("VT.isVector() && \"vector shift count is not a vector type\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 12778, __extension__ __PRETTY_FUNCTION__)); | ||||
| 12779 | int64_t ElementBits = VT.getScalarSizeInBits(); | ||||
| 12780 | if (!getVShiftImm(Op, ElementBits, Cnt)) | ||||
| 12781 | return false; | ||||
| 12782 | return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits / 2 : ElementBits)); | ||||
| 12783 | } | ||||
| 12784 | |||||
| 12785 | SDValue AArch64TargetLowering::LowerTRUNCATE(SDValue Op, | ||||
| 12786 | SelectionDAG &DAG) const { | ||||
| 12787 | EVT VT = Op.getValueType(); | ||||
| 12788 | |||||
| 12789 | if (VT.getScalarType() == MVT::i1) { | ||||
| 12790 | // Lower i1 truncate to `(x & 1) != 0`. | ||||
| 12791 | SDLoc dl(Op); | ||||
| 12792 | EVT OpVT = Op.getOperand(0).getValueType(); | ||||
| 12793 | SDValue Zero = DAG.getConstant(0, dl, OpVT); | ||||
| 12794 | SDValue One = DAG.getConstant(1, dl, OpVT); | ||||
| 12795 | SDValue And = DAG.getNode(ISD::AND, dl, OpVT, Op.getOperand(0), One); | ||||
| 12796 | return DAG.getSetCC(dl, VT, And, Zero, ISD::SETNE); | ||||
| 12797 | } | ||||
| 12798 | |||||
| 12799 | if (!VT.isVector() || VT.isScalableVector()) | ||||
| 12800 | return SDValue(); | ||||
| 12801 | |||||
| 12802 | if (useSVEForFixedLengthVectorVT(Op.getOperand(0).getValueType(), | ||||
| 12803 | Subtarget->forceStreamingCompatibleSVE())) | ||||
| 12804 | return LowerFixedLengthVectorTruncateToSVE(Op, DAG); | ||||
| 12805 | |||||
| 12806 | return SDValue(); | ||||
| 12807 | } | ||||
| 12808 | |||||
| 12809 | SDValue AArch64TargetLowering::LowerVectorSRA_SRL_SHL(SDValue Op, | ||||
| 12810 | SelectionDAG &DAG) const { | ||||
| 12811 | EVT VT = Op.getValueType(); | ||||
| 12812 | SDLoc DL(Op); | ||||
| 12813 | int64_t Cnt; | ||||
| 12814 | |||||
| 12815 | if (!Op.getOperand(1).getValueType().isVector()) | ||||
| 12816 | return Op; | ||||
| 12817 | unsigned EltSize = VT.getScalarSizeInBits(); | ||||
| 12818 | |||||
| 12819 | switch (Op.getOpcode()) { | ||||
| 12820 | case ISD::SHL: | ||||
| 12821 | if (VT.isScalableVector() || | ||||
| 12822 | useSVEForFixedLengthVectorVT(VT, | ||||
| 12823 | Subtarget->forceStreamingCompatibleSVE())) | ||||
| 12824 | return LowerToPredicatedOp(Op, DAG, AArch64ISD::SHL_PRED); | ||||
| 12825 | |||||
| 12826 | if (isVShiftLImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize) | ||||
| 12827 | return DAG.getNode(AArch64ISD::VSHL, DL, VT, Op.getOperand(0), | ||||
| 12828 | DAG.getConstant(Cnt, DL, MVT::i32)); | ||||
| 12829 | return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, | ||||
| 12830 | DAG.getConstant(Intrinsic::aarch64_neon_ushl, DL, | ||||
| 12831 | MVT::i32), | ||||
| 12832 | Op.getOperand(0), Op.getOperand(1)); | ||||
| 12833 | case ISD::SRA: | ||||
| 12834 | case ISD::SRL: | ||||
| 12835 | if (VT.isScalableVector() || | ||||
| 12836 | useSVEForFixedLengthVectorVT( | ||||
| 12837 | VT, Subtarget->forceStreamingCompatibleSVE())) { | ||||
| 12838 | unsigned Opc = Op.getOpcode() == ISD::SRA ? AArch64ISD::SRA_PRED | ||||
| 12839 | : AArch64ISD::SRL_PRED; | ||||
| 12840 | return LowerToPredicatedOp(Op, DAG, Opc); | ||||
| 12841 | } | ||||
| 12842 | |||||
| 12843 | // Right shift immediate | ||||
| 12844 | if (isVShiftRImm(Op.getOperand(1), VT, false, Cnt) && Cnt < EltSize) { | ||||
| 12845 | unsigned Opc = | ||||
| 12846 | (Op.getOpcode() == ISD::SRA) ? AArch64ISD::VASHR : AArch64ISD::VLSHR; | ||||
| 12847 | return DAG.getNode(Opc, DL, VT, Op.getOperand(0), | ||||
| 12848 | DAG.getConstant(Cnt, DL, MVT::i32)); | ||||
| 12849 | } | ||||
| 12850 | |||||
| 12851 | // Right shift register. Note, there is not a shift right register | ||||
| 12852 | // instruction, but the shift left register instruction takes a signed | ||||
| 12853 | // value, where negative numbers specify a right shift. | ||||
| 12854 | unsigned Opc = (Op.getOpcode() == ISD::SRA) ? Intrinsic::aarch64_neon_sshl | ||||
| 12855 | : Intrinsic::aarch64_neon_ushl; | ||||
| 12856 | // negate the shift amount | ||||
| 12857 | SDValue NegShift = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), | ||||
| 12858 | Op.getOperand(1)); | ||||
| 12859 | SDValue NegShiftLeft = | ||||
| 12860 | DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, | ||||
| 12861 | DAG.getConstant(Opc, DL, MVT::i32), Op.getOperand(0), | ||||
| 12862 | NegShift); | ||||
| 12863 | return NegShiftLeft; | ||||
| 12864 | } | ||||
| 12865 | |||||
| 12866 | llvm_unreachable("unexpected shift opcode")::llvm::llvm_unreachable_internal("unexpected shift opcode", "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp" , 12866); | ||||
| 12867 | } | ||||
| 12868 | |||||
| 12869 | static SDValue EmitVectorComparison(SDValue LHS, SDValue RHS, | ||||
| 12870 | AArch64CC::CondCode CC, bool NoNans, EVT VT, | ||||
| 12871 | const SDLoc &dl, SelectionDAG &DAG) { | ||||
| 12872 | EVT SrcVT = LHS.getValueType(); | ||||
| 12873 | assert(VT.getSizeInBits() == SrcVT.getSizeInBits() &&(static_cast <bool> (VT.getSizeInBits() == SrcVT.getSizeInBits () && "function only supposed to emit natural comparisons" ) ? void (0) : __assert_fail ("VT.getSizeInBits() == SrcVT.getSizeInBits() && \"function only supposed to emit natural comparisons\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 12874, __extension__ __PRETTY_FUNCTION__)) | ||||
| 12874 | "function only supposed to emit natural comparisons")(static_cast <bool> (VT.getSizeInBits() == SrcVT.getSizeInBits () && "function only supposed to emit natural comparisons" ) ? void (0) : __assert_fail ("VT.getSizeInBits() == SrcVT.getSizeInBits() && \"function only supposed to emit natural comparisons\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 12874, __extension__ __PRETTY_FUNCTION__)); | ||||
| 12875 | |||||
| 12876 | BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode()); | ||||
| 12877 | APInt CnstBits(VT.getSizeInBits(), 0); | ||||
| 12878 | APInt UndefBits(VT.getSizeInBits(), 0); | ||||
| 12879 | bool IsCnst = BVN && resolveBuildVector(BVN, CnstBits, UndefBits); | ||||
| 12880 | bool IsZero = IsCnst && (CnstBits == 0); | ||||
| 12881 | |||||
| 12882 | if (SrcVT.getVectorElementType().isFloatingPoint()) { | ||||
| 12883 | switch (CC) { | ||||
| 12884 | default: | ||||
| 12885 | return SDValue(); | ||||
| 12886 | case AArch64CC::NE: { | ||||
| 12887 | SDValue Fcmeq; | ||||
| 12888 | if (IsZero) | ||||
| 12889 | Fcmeq = DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS); | ||||
| 12890 | else | ||||
| 12891 | Fcmeq = DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS); | ||||
| 12892 | return DAG.getNOT(dl, Fcmeq, VT); | ||||
| 12893 | } | ||||
| 12894 | case AArch64CC::EQ: | ||||
| 12895 | if (IsZero) | ||||
| 12896 | return DAG.getNode(AArch64ISD::FCMEQz, dl, VT, LHS); | ||||
| 12897 | return DAG.getNode(AArch64ISD::FCMEQ, dl, VT, LHS, RHS); | ||||
| 12898 | case AArch64CC::GE: | ||||
| 12899 | if (IsZero) | ||||
| 12900 | return DAG.getNode(AArch64ISD::FCMGEz, dl, VT, LHS); | ||||
| 12901 | return DAG.getNode(AArch64ISD::FCMGE, dl, VT, LHS, RHS); | ||||
| 12902 | case AArch64CC::GT: | ||||
| 12903 | if (IsZero) | ||||
| 12904 | return DAG.getNode(AArch64ISD::FCMGTz, dl, VT, LHS); | ||||
| 12905 | return DAG.getNode(AArch64ISD::FCMGT, dl, VT, LHS, RHS); | ||||
| 12906 | case AArch64CC::LE: | ||||
| 12907 | if (!NoNans) | ||||
| 12908 | return SDValue(); | ||||
| 12909 | // If we ignore NaNs then we can use to the LS implementation. | ||||
| 12910 | [[fallthrough]]; | ||||
| 12911 | case AArch64CC::LS: | ||||
| 12912 | if (IsZero) | ||||
| 12913 | return DAG.getNode(AArch64ISD::FCMLEz, dl, VT, LHS); | ||||
| 12914 | return DAG.getNode(AArch64ISD::FCMGE, dl, VT, RHS, LHS); | ||||
| 12915 | case AArch64CC::LT: | ||||
| 12916 | if (!NoNans) | ||||
| 12917 | return SDValue(); | ||||
| 12918 | // If we ignore NaNs then we can use to the MI implementation. | ||||
| 12919 | [[fallthrough]]; | ||||
| 12920 | case AArch64CC::MI: | ||||
| 12921 | if (IsZero) | ||||
| 12922 | return DAG.getNode(AArch64ISD::FCMLTz, dl, VT, LHS); | ||||
| 12923 | return DAG.getNode(AArch64ISD::FCMGT, dl, VT, RHS, LHS); | ||||
| 12924 | } | ||||
| 12925 | } | ||||
| 12926 | |||||
| 12927 | switch (CC) { | ||||
| 12928 | default: | ||||
| 12929 | return SDValue(); | ||||
| 12930 | case AArch64CC::NE: { | ||||
| 12931 | SDValue Cmeq; | ||||
| 12932 | if (IsZero) | ||||
| 12933 | Cmeq = DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS); | ||||
| 12934 | else | ||||
| 12935 | Cmeq = DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS); | ||||
| 12936 | return DAG.getNOT(dl, Cmeq, VT); | ||||
| 12937 | } | ||||
| 12938 | case AArch64CC::EQ: | ||||
| 12939 | if (IsZero) | ||||
| 12940 | return DAG.getNode(AArch64ISD::CMEQz, dl, VT, LHS); | ||||
| 12941 | return DAG.getNode(AArch64ISD::CMEQ, dl, VT, LHS, RHS); | ||||
| 12942 | case AArch64CC::GE: | ||||
| 12943 | if (IsZero) | ||||
| 12944 | return DAG.getNode(AArch64ISD::CMGEz, dl, VT, LHS); | ||||
| 12945 | return DAG.getNode(AArch64ISD::CMGE, dl, VT, LHS, RHS); | ||||
| 12946 | case AArch64CC::GT: | ||||
| 12947 | if (IsZero) | ||||
| 12948 | return DAG.getNode(AArch64ISD::CMGTz, dl, VT, LHS); | ||||
| 12949 | return DAG.getNode(AArch64ISD::CMGT, dl, VT, LHS, RHS); | ||||
| 12950 | case AArch64CC::LE: | ||||
| 12951 | if (IsZero) | ||||
| 12952 | return DAG.getNode(AArch64ISD::CMLEz, dl, VT, LHS); | ||||
| 12953 | return DAG.getNode(AArch64ISD::CMGE, dl, VT, RHS, LHS); | ||||
| 12954 | case AArch64CC::LS: | ||||
| 12955 | return DAG.getNode(AArch64ISD::CMHS, dl, VT, RHS, LHS); | ||||
| 12956 | case AArch64CC::LO: | ||||
| 12957 | return DAG.getNode(AArch64ISD::CMHI, dl, VT, RHS, LHS); | ||||
| 12958 | case AArch64CC::LT: | ||||
| 12959 | if (IsZero) | ||||
| 12960 | return DAG.getNode(AArch64ISD::CMLTz, dl, VT, LHS); | ||||
| 12961 | return DAG.getNode(AArch64ISD::CMGT, dl, VT, RHS, LHS); | ||||
| 12962 | case AArch64CC::HI: | ||||
| 12963 | return DAG.getNode(AArch64ISD::CMHI, dl, VT, LHS, RHS); | ||||
| 12964 | case AArch64CC::HS: | ||||
| 12965 | return DAG.getNode(AArch64ISD::CMHS, dl, VT, LHS, RHS); | ||||
| 12966 | } | ||||
| 12967 | } | ||||
| 12968 | |||||
| 12969 | SDValue AArch64TargetLowering::LowerVSETCC(SDValue Op, | ||||
| 12970 | SelectionDAG &DAG) const { | ||||
| 12971 | if (Op.getValueType().isScalableVector()) | ||||
| 12972 | return LowerToPredicatedOp(Op, DAG, AArch64ISD::SETCC_MERGE_ZERO); | ||||
| 12973 | |||||
| 12974 | if (useSVEForFixedLengthVectorVT(Op.getOperand(0).getValueType(), | ||||
| 12975 | Subtarget->forceStreamingCompatibleSVE())) | ||||
| 12976 | return LowerFixedLengthVectorSetccToSVE(Op, DAG); | ||||
| 12977 | |||||
| 12978 | ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); | ||||
| 12979 | SDValue LHS = Op.getOperand(0); | ||||
| 12980 | SDValue RHS = Op.getOperand(1); | ||||
| 12981 | EVT CmpVT = LHS.getValueType().changeVectorElementTypeToInteger(); | ||||
| 12982 | SDLoc dl(Op); | ||||
| 12983 | |||||
| 12984 | if (LHS.getValueType().getVectorElementType().isInteger()) { | ||||
| 12985 | assert(LHS.getValueType() == RHS.getValueType())(static_cast <bool> (LHS.getValueType() == RHS.getValueType ()) ? void (0) : __assert_fail ("LHS.getValueType() == RHS.getValueType()" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 12985, __extension__ __PRETTY_FUNCTION__)); | ||||
| 12986 | AArch64CC::CondCode AArch64CC = changeIntCCToAArch64CC(CC); | ||||
| 12987 | SDValue Cmp = | ||||
| 12988 | EmitVectorComparison(LHS, RHS, AArch64CC, false, CmpVT, dl, DAG); | ||||
| 12989 | return DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType()); | ||||
| 12990 | } | ||||
| 12991 | |||||
| 12992 | const bool FullFP16 = DAG.getSubtarget<AArch64Subtarget>().hasFullFP16(); | ||||
| 12993 | |||||
| 12994 | // Make v4f16 (only) fcmp operations utilise vector instructions | ||||
| 12995 | // v8f16 support will be a litle more complicated | ||||
| 12996 | if (!FullFP16 && LHS.getValueType().getVectorElementType() == MVT::f16) { | ||||
| 12997 | if (LHS.getValueType().getVectorNumElements() == 4) { | ||||
| 12998 | LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v4f32, LHS); | ||||
| 12999 | RHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::v4f32, RHS); | ||||
| 13000 | SDValue NewSetcc = DAG.getSetCC(dl, MVT::v4i16, LHS, RHS, CC); | ||||
| 13001 | DAG.ReplaceAllUsesWith(Op, NewSetcc); | ||||
| 13002 | CmpVT = MVT::v4i32; | ||||
| 13003 | } else | ||||
| 13004 | return SDValue(); | ||||
| 13005 | } | ||||
| 13006 | |||||
| 13007 | assert((!FullFP16 && LHS.getValueType().getVectorElementType() != MVT::f16) ||(static_cast <bool> ((!FullFP16 && LHS.getValueType ().getVectorElementType() != MVT::f16) || LHS.getValueType(). getVectorElementType() != MVT::f128) ? void (0) : __assert_fail ("(!FullFP16 && LHS.getValueType().getVectorElementType() != MVT::f16) || LHS.getValueType().getVectorElementType() != MVT::f128" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 13008, __extension__ __PRETTY_FUNCTION__)) | ||||
| 13008 | LHS.getValueType().getVectorElementType() != MVT::f128)(static_cast <bool> ((!FullFP16 && LHS.getValueType ().getVectorElementType() != MVT::f16) || LHS.getValueType(). getVectorElementType() != MVT::f128) ? void (0) : __assert_fail ("(!FullFP16 && LHS.getValueType().getVectorElementType() != MVT::f16) || LHS.getValueType().getVectorElementType() != MVT::f128" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 13008, __extension__ __PRETTY_FUNCTION__)); | ||||
| 13009 | |||||
| 13010 | // Unfortunately, the mapping of LLVM FP CC's onto AArch64 CC's isn't totally | ||||
| 13011 | // clean. Some of them require two branches to implement. | ||||
| 13012 | AArch64CC::CondCode CC1, CC2; | ||||
| 13013 | bool ShouldInvert; | ||||
| 13014 | changeVectorFPCCToAArch64CC(CC, CC1, CC2, ShouldInvert); | ||||
| 13015 | |||||
| 13016 | bool NoNaNs = getTargetMachine().Options.NoNaNsFPMath || Op->getFlags().hasNoNaNs(); | ||||
| 13017 | SDValue Cmp = | ||||
| 13018 | EmitVectorComparison(LHS, RHS, CC1, NoNaNs, CmpVT, dl, DAG); | ||||
| 13019 | if (!Cmp.getNode()) | ||||
| 13020 | return SDValue(); | ||||
| 13021 | |||||
| 13022 | if (CC2 != AArch64CC::AL) { | ||||
| 13023 | SDValue Cmp2 = | ||||
| 13024 | EmitVectorComparison(LHS, RHS, CC2, NoNaNs, CmpVT, dl, DAG); | ||||
| 13025 | if (!Cmp2.getNode()) | ||||
| 13026 | return SDValue(); | ||||
| 13027 | |||||
| 13028 | Cmp = DAG.getNode(ISD::OR, dl, CmpVT, Cmp, Cmp2); | ||||
| 13029 | } | ||||
| 13030 | |||||
| 13031 | Cmp = DAG.getSExtOrTrunc(Cmp, dl, Op.getValueType()); | ||||
| 13032 | |||||
| 13033 | if (ShouldInvert) | ||||
| 13034 | Cmp = DAG.getNOT(dl, Cmp, Cmp.getValueType()); | ||||
| 13035 | |||||
| 13036 | return Cmp; | ||||
| 13037 | } | ||||
| 13038 | |||||
| 13039 | static SDValue getReductionSDNode(unsigned Op, SDLoc DL, SDValue ScalarOp, | ||||
| 13040 | SelectionDAG &DAG) { | ||||
| 13041 | SDValue VecOp = ScalarOp.getOperand(0); | ||||
| 13042 | auto Rdx = DAG.getNode(Op, DL, VecOp.getSimpleValueType(), VecOp); | ||||
| 13043 | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarOp.getValueType(), Rdx, | ||||
| 13044 | DAG.getConstant(0, DL, MVT::i64)); | ||||
| 13045 | } | ||||
| 13046 | |||||
| 13047 | SDValue AArch64TargetLowering::LowerVECREDUCE(SDValue Op, | ||||
| 13048 | SelectionDAG &DAG) const { | ||||
| 13049 | SDValue Src = Op.getOperand(0); | ||||
| 13050 | |||||
| 13051 | // Try to lower fixed length reductions to SVE. | ||||
| 13052 | EVT SrcVT = Src.getValueType(); | ||||
| 13053 | bool OverrideNEON = Subtarget->forceStreamingCompatibleSVE() || | ||||
| 13054 | Op.getOpcode() == ISD::VECREDUCE_AND || | ||||
| 13055 | Op.getOpcode() == ISD::VECREDUCE_OR || | ||||
| 13056 | Op.getOpcode() == ISD::VECREDUCE_XOR || | ||||
| 13057 | Op.getOpcode() == ISD::VECREDUCE_FADD || | ||||
| 13058 | (Op.getOpcode() != ISD::VECREDUCE_ADD && | ||||
| 13059 | SrcVT.getVectorElementType() == MVT::i64); | ||||
| 13060 | if (SrcVT.isScalableVector() || | ||||
| 13061 | useSVEForFixedLengthVectorVT( | ||||
| 13062 | SrcVT, OverrideNEON && Subtarget->useSVEForFixedLengthVectors())) { | ||||
| 13063 | |||||
| 13064 | if (SrcVT.getVectorElementType() == MVT::i1) | ||||
| 13065 | return LowerPredReductionToSVE(Op, DAG); | ||||
| 13066 | |||||
| 13067 | switch (Op.getOpcode()) { | ||||
| 13068 | case ISD::VECREDUCE_ADD: | ||||
| 13069 | return LowerReductionToSVE(AArch64ISD::UADDV_PRED, Op, DAG); | ||||
| 13070 | case ISD::VECREDUCE_AND: | ||||
| 13071 | return LowerReductionToSVE(AArch64ISD::ANDV_PRED, Op, DAG); | ||||
| 13072 | case ISD::VECREDUCE_OR: | ||||
| 13073 | return LowerReductionToSVE(AArch64ISD::ORV_PRED, Op, DAG); | ||||
| 13074 | case ISD::VECREDUCE_SMAX: | ||||
| 13075 | return LowerReductionToSVE(AArch64ISD::SMAXV_PRED, Op, DAG); | ||||
| 13076 | case ISD::VECREDUCE_SMIN: | ||||
| 13077 | return LowerReductionToSVE(AArch64ISD::SMINV_PRED, Op, DAG); | ||||
| 13078 | case ISD::VECREDUCE_UMAX: | ||||
| 13079 | return LowerReductionToSVE(AArch64ISD::UMAXV_PRED, Op, DAG); | ||||
| 13080 | case ISD::VECREDUCE_UMIN: | ||||
| 13081 | return LowerReductionToSVE(AArch64ISD::UMINV_PRED, Op, DAG); | ||||
| 13082 | case ISD::VECREDUCE_XOR: | ||||
| 13083 | return LowerReductionToSVE(AArch64ISD::EORV_PRED, Op, DAG); | ||||
| 13084 | case ISD::VECREDUCE_FADD: | ||||
| 13085 | return LowerReductionToSVE(AArch64ISD::FADDV_PRED, Op, DAG); | ||||
| 13086 | case ISD::VECREDUCE_FMAX: | ||||
| 13087 | return LowerReductionToSVE(AArch64ISD::FMAXNMV_PRED, Op, DAG); | ||||
| 13088 | case ISD::VECREDUCE_FMIN: | ||||
| 13089 | return LowerReductionToSVE(AArch64ISD::FMINNMV_PRED, Op, DAG); | ||||
| 13090 | default: | ||||
| 13091 | llvm_unreachable("Unhandled fixed length reduction")::llvm::llvm_unreachable_internal("Unhandled fixed length reduction" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 13091); | ||||
| 13092 | } | ||||
| 13093 | } | ||||
| 13094 | |||||
| 13095 | // Lower NEON reductions. | ||||
| 13096 | SDLoc dl(Op); | ||||
| 13097 | switch (Op.getOpcode()) { | ||||
| 13098 | case ISD::VECREDUCE_ADD: | ||||
| 13099 | return getReductionSDNode(AArch64ISD::UADDV, dl, Op, DAG); | ||||
| 13100 | case ISD::VECREDUCE_SMAX: | ||||
| 13101 | return getReductionSDNode(AArch64ISD::SMAXV, dl, Op, DAG); | ||||
| 13102 | case ISD::VECREDUCE_SMIN: | ||||
| 13103 | return getReductionSDNode(AArch64ISD::SMINV, dl, Op, DAG); | ||||
| 13104 | case ISD::VECREDUCE_UMAX: | ||||
| 13105 | return getReductionSDNode(AArch64ISD::UMAXV, dl, Op, DAG); | ||||
| 13106 | case ISD::VECREDUCE_UMIN: | ||||
| 13107 | return getReductionSDNode(AArch64ISD::UMINV, dl, Op, DAG); | ||||
| 13108 | case ISD::VECREDUCE_FMAX: { | ||||
| 13109 | return DAG.getNode( | ||||
| 13110 | ISD::INTRINSIC_WO_CHAIN, dl, Op.getValueType(), | ||||
| 13111 | DAG.getConstant(Intrinsic::aarch64_neon_fmaxnmv, dl, MVT::i32), | ||||
| 13112 | Src); | ||||
| 13113 | } | ||||
| 13114 | case ISD::VECREDUCE_FMIN: { | ||||
| 13115 | return DAG.getNode( | ||||
| 13116 | ISD::INTRINSIC_WO_CHAIN, dl, Op.getValueType(), | ||||
| 13117 | DAG.getConstant(Intrinsic::aarch64_neon_fminnmv, dl, MVT::i32), | ||||
| 13118 | Src); | ||||
| 13119 | } | ||||
| 13120 | default: | ||||
| 13121 | llvm_unreachable("Unhandled reduction")::llvm::llvm_unreachable_internal("Unhandled reduction", "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp" , 13121); | ||||
| 13122 | } | ||||
| 13123 | } | ||||
| 13124 | |||||
| 13125 | SDValue AArch64TargetLowering::LowerATOMIC_LOAD_SUB(SDValue Op, | ||||
| 13126 | SelectionDAG &DAG) const { | ||||
| 13127 | auto &Subtarget = DAG.getSubtarget<AArch64Subtarget>(); | ||||
| 13128 | if (!Subtarget.hasLSE() && !Subtarget.outlineAtomics()) | ||||
| 13129 | return SDValue(); | ||||
| 13130 | |||||
| 13131 | // LSE has an atomic load-add instruction, but not a load-sub. | ||||
| 13132 | SDLoc dl(Op); | ||||
| 13133 | MVT VT = Op.getSimpleValueType(); | ||||
| 13134 | SDValue RHS = Op.getOperand(2); | ||||
| 13135 | AtomicSDNode *AN = cast<AtomicSDNode>(Op.getNode()); | ||||
| 13136 | RHS = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), RHS); | ||||
| 13137 | return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl, AN->getMemoryVT(), | ||||
| 13138 | Op.getOperand(0), Op.getOperand(1), RHS, | ||||
| 13139 | AN->getMemOperand()); | ||||
| 13140 | } | ||||
| 13141 | |||||
| 13142 | SDValue AArch64TargetLowering::LowerATOMIC_LOAD_AND(SDValue Op, | ||||
| 13143 | SelectionDAG &DAG) const { | ||||
| 13144 | auto &Subtarget = DAG.getSubtarget<AArch64Subtarget>(); | ||||
| 13145 | if (!Subtarget.hasLSE() && !Subtarget.outlineAtomics()) | ||||
| 13146 | return SDValue(); | ||||
| 13147 | |||||
| 13148 | // LSE has an atomic load-clear instruction, but not a load-and. | ||||
| 13149 | SDLoc dl(Op); | ||||
| 13150 | MVT VT = Op.getSimpleValueType(); | ||||
| 13151 | SDValue RHS = Op.getOperand(2); | ||||
| 13152 | AtomicSDNode *AN = cast<AtomicSDNode>(Op.getNode()); | ||||
| 13153 | RHS = DAG.getNode(ISD::XOR, dl, VT, DAG.getConstant(-1ULL, dl, VT), RHS); | ||||
| 13154 | return DAG.getAtomic(ISD::ATOMIC_LOAD_CLR, dl, AN->getMemoryVT(), | ||||
| 13155 | Op.getOperand(0), Op.getOperand(1), RHS, | ||||
| 13156 | AN->getMemOperand()); | ||||
| 13157 | } | ||||
| 13158 | |||||
| 13159 | SDValue AArch64TargetLowering::LowerWindowsDYNAMIC_STACKALLOC( | ||||
| 13160 | SDValue Op, SDValue Chain, SDValue &Size, SelectionDAG &DAG) const { | ||||
| 13161 | SDLoc dl(Op); | ||||
| 13162 | EVT PtrVT = getPointerTy(DAG.getDataLayout()); | ||||
| 13163 | SDValue Callee = DAG.getTargetExternalSymbol(Subtarget->getChkStkName(), | ||||
| 13164 | PtrVT, 0); | ||||
| 13165 | |||||
| 13166 | const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); | ||||
| 13167 | const uint32_t *Mask = TRI->getWindowsStackProbePreservedMask(); | ||||
| 13168 | if (Subtarget->hasCustomCallingConv()) | ||||
| 13169 | TRI->UpdateCustomCallPreservedMask(DAG.getMachineFunction(), &Mask); | ||||
| 13170 | |||||
| 13171 | Size = DAG.getNode(ISD::SRL, dl, MVT::i64, Size, | ||||
| 13172 | DAG.getConstant(4, dl, MVT::i64)); | ||||
| 13173 | Chain = DAG.getCopyToReg(Chain, dl, AArch64::X15, Size, SDValue()); | ||||
| 13174 | Chain = | ||||
| 13175 | DAG.getNode(AArch64ISD::CALL, dl, DAG.getVTList(MVT::Other, MVT::Glue), | ||||
| 13176 | Chain, Callee, DAG.getRegister(AArch64::X15, MVT::i64), | ||||
| 13177 | DAG.getRegisterMask(Mask), Chain.getValue(1)); | ||||
| 13178 | // To match the actual intent better, we should read the output from X15 here | ||||
| 13179 | // again (instead of potentially spilling it to the stack), but rereading Size | ||||
| 13180 | // from X15 here doesn't work at -O0, since it thinks that X15 is undefined | ||||
| 13181 | // here. | ||||
| 13182 | |||||
| 13183 | Size = DAG.getNode(ISD::SHL, dl, MVT::i64, Size, | ||||
| 13184 | DAG.getConstant(4, dl, MVT::i64)); | ||||
| 13185 | return Chain; | ||||
| 13186 | } | ||||
| 13187 | |||||
| 13188 | SDValue | ||||
| 13189 | AArch64TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, | ||||
| 13190 | SelectionDAG &DAG) const { | ||||
| 13191 | assert(Subtarget->isTargetWindows() &&(static_cast <bool> (Subtarget->isTargetWindows() && "Only Windows alloca probing supported") ? void (0) : __assert_fail ("Subtarget->isTargetWindows() && \"Only Windows alloca probing supported\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 13192, __extension__ __PRETTY_FUNCTION__)) | ||||
| 13192 | "Only Windows alloca probing supported")(static_cast <bool> (Subtarget->isTargetWindows() && "Only Windows alloca probing supported") ? void (0) : __assert_fail ("Subtarget->isTargetWindows() && \"Only Windows alloca probing supported\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 13192, __extension__ __PRETTY_FUNCTION__)); | ||||
| 13193 | SDLoc dl(Op); | ||||
| 13194 | // Get the inputs. | ||||
| 13195 | SDNode *Node = Op.getNode(); | ||||
| 13196 | SDValue Chain = Op.getOperand(0); | ||||
| 13197 | SDValue Size = Op.getOperand(1); | ||||
| 13198 | MaybeAlign Align = | ||||
| 13199 | cast<ConstantSDNode>(Op.getOperand(2))->getMaybeAlignValue(); | ||||
| 13200 | EVT VT = Node->getValueType(0); | ||||
| 13201 | |||||
| 13202 | if (DAG.getMachineFunction().getFunction().hasFnAttribute( | ||||
| 13203 | "no-stack-arg-probe")) { | ||||
| 13204 | SDValue SP = DAG.getCopyFromReg(Chain, dl, AArch64::SP, MVT::i64); | ||||
| 13205 | Chain = SP.getValue(1); | ||||
| 13206 | SP = DAG.getNode(ISD::SUB, dl, MVT::i64, SP, Size); | ||||
| 13207 | if (Align) | ||||
| 13208 | SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0), | ||||
| 13209 | DAG.getConstant(-(uint64_t)Align->value(), dl, VT)); | ||||
| 13210 | Chain = DAG.getCopyToReg(Chain, dl, AArch64::SP, SP); | ||||
| 13211 | SDValue Ops[2] = {SP, Chain}; | ||||
| 13212 | return DAG.getMergeValues(Ops, dl); | ||||
| 13213 | } | ||||
| 13214 | |||||
| 13215 | Chain = DAG.getCALLSEQ_START(Chain, 0, 0, dl); | ||||
| 13216 | |||||
| 13217 | Chain = LowerWindowsDYNAMIC_STACKALLOC(Op, Chain, Size, DAG); | ||||
| 13218 | |||||
| 13219 | SDValue SP = DAG.getCopyFromReg(Chain, dl, AArch64::SP, MVT::i64); | ||||
| 13220 | Chain = SP.getValue(1); | ||||
| 13221 | SP = DAG.getNode(ISD::SUB, dl, MVT::i64, SP, Size); | ||||
| 13222 | if (Align) | ||||
| 13223 | SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0), | ||||
| 13224 | DAG.getConstant(-(uint64_t)Align->value(), dl, VT)); | ||||
| 13225 | Chain = DAG.getCopyToReg(Chain, dl, AArch64::SP, SP); | ||||
| 13226 | |||||
| 13227 | Chain = DAG.getCALLSEQ_END(Chain, 0, 0, SDValue(), dl); | ||||
| 13228 | |||||
| 13229 | SDValue Ops[2] = {SP, Chain}; | ||||
| 13230 | return DAG.getMergeValues(Ops, dl); | ||||
| 13231 | } | ||||
| 13232 | |||||
| 13233 | SDValue AArch64TargetLowering::LowerVSCALE(SDValue Op, | ||||
| 13234 | SelectionDAG &DAG) const { | ||||
| 13235 | EVT VT = Op.getValueType(); | ||||
| 13236 | assert(VT != MVT::i64 && "Expected illegal VSCALE node")(static_cast <bool> (VT != MVT::i64 && "Expected illegal VSCALE node" ) ? void (0) : __assert_fail ("VT != MVT::i64 && \"Expected illegal VSCALE node\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 13236, __extension__ __PRETTY_FUNCTION__)); | ||||
| 13237 | |||||
| 13238 | SDLoc DL(Op); | ||||
| 13239 | APInt MulImm = cast<ConstantSDNode>(Op.getOperand(0))->getAPIntValue(); | ||||
| 13240 | return DAG.getZExtOrTrunc(DAG.getVScale(DL, MVT::i64, MulImm.sext(64)), DL, | ||||
| 13241 | VT); | ||||
| 13242 | } | ||||
| 13243 | |||||
| 13244 | /// Set the IntrinsicInfo for the `aarch64_sve_st<N>` intrinsics. | ||||
| 13245 | template <unsigned NumVecs> | ||||
| 13246 | static bool | ||||
| 13247 | setInfoSVEStN(const AArch64TargetLowering &TLI, const DataLayout &DL, | ||||
| 13248 | AArch64TargetLowering::IntrinsicInfo &Info, const CallInst &CI) { | ||||
| 13249 | Info.opc = ISD::INTRINSIC_VOID; | ||||
| 13250 | // Retrieve EC from first vector argument. | ||||
| 13251 | const EVT VT = TLI.getMemValueType(DL, CI.getArgOperand(0)->getType()); | ||||
| 13252 | ElementCount EC = VT.getVectorElementCount(); | ||||
| 13253 | #ifndef NDEBUG | ||||
| 13254 | // Check the assumption that all input vectors are the same type. | ||||
| 13255 | for (unsigned I = 0; I < NumVecs; ++I) | ||||
| 13256 | assert(VT == TLI.getMemValueType(DL, CI.getArgOperand(I)->getType()) &&(static_cast <bool> (VT == TLI.getMemValueType(DL, CI.getArgOperand (I)->getType()) && "Invalid type.") ? void (0) : __assert_fail ("VT == TLI.getMemValueType(DL, CI.getArgOperand(I)->getType()) && \"Invalid type.\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 13257, __extension__ __PRETTY_FUNCTION__)) | ||||
| 13257 | "Invalid type.")(static_cast <bool> (VT == TLI.getMemValueType(DL, CI.getArgOperand (I)->getType()) && "Invalid type.") ? void (0) : __assert_fail ("VT == TLI.getMemValueType(DL, CI.getArgOperand(I)->getType()) && \"Invalid type.\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 13257, __extension__ __PRETTY_FUNCTION__)); | ||||
| 13258 | #endif | ||||
| 13259 | // memVT is `NumVecs * VT`. | ||||
| 13260 | Info.memVT = EVT::getVectorVT(CI.getType()->getContext(), VT.getScalarType(), | ||||
| 13261 | EC * NumVecs); | ||||
| 13262 | Info.ptrVal = CI.getArgOperand(CI.arg_size() - 1); | ||||
| 13263 | Info.offset = 0; | ||||
| 13264 | Info.align.reset(); | ||||
| 13265 | Info.flags = MachineMemOperand::MOStore; | ||||
| 13266 | return true; | ||||
| 13267 | } | ||||
| 13268 | |||||
| 13269 | /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as | ||||
| 13270 | /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment | ||||
| 13271 | /// specified in the intrinsic calls. | ||||
| 13272 | bool AArch64TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, | ||||
| 13273 | const CallInst &I, | ||||
| 13274 | MachineFunction &MF, | ||||
| 13275 | unsigned Intrinsic) const { | ||||
| 13276 | auto &DL = I.getModule()->getDataLayout(); | ||||
| 13277 | switch (Intrinsic) { | ||||
| 13278 | case Intrinsic::aarch64_sve_st2: | ||||
| 13279 | return setInfoSVEStN<2>(*this, DL, Info, I); | ||||
| 13280 | case Intrinsic::aarch64_sve_st3: | ||||
| 13281 | return setInfoSVEStN<3>(*this, DL, Info, I); | ||||
| 13282 | case Intrinsic::aarch64_sve_st4: | ||||
| 13283 | return setInfoSVEStN<4>(*this, DL, Info, I); | ||||
| 13284 | case Intrinsic::aarch64_neon_ld2: | ||||
| 13285 | case Intrinsic::aarch64_neon_ld3: | ||||
| 13286 | case Intrinsic::aarch64_neon_ld4: | ||||
| 13287 | case Intrinsic::aarch64_neon_ld1x2: | ||||
| 13288 | case Intrinsic::aarch64_neon_ld1x3: | ||||
| 13289 | case Intrinsic::aarch64_neon_ld1x4: | ||||
| 13290 | case Intrinsic::aarch64_neon_ld2lane: | ||||
| 13291 | case Intrinsic::aarch64_neon_ld3lane: | ||||
| 13292 | case Intrinsic::aarch64_neon_ld4lane: | ||||
| 13293 | case Intrinsic::aarch64_neon_ld2r: | ||||
| 13294 | case Intrinsic::aarch64_neon_ld3r: | ||||
| 13295 | case Intrinsic::aarch64_neon_ld4r: { | ||||
| 13296 | Info.opc = ISD::INTRINSIC_W_CHAIN; | ||||
| 13297 | // Conservatively set memVT to the entire set of vectors loaded. | ||||
| 13298 | uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64; | ||||
| 13299 | Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); | ||||
| 13300 | Info.ptrVal = I.getArgOperand(I.arg_size() - 1); | ||||
| 13301 | Info.offset = 0; | ||||
| 13302 | Info.align.reset(); | ||||
| 13303 | // volatile loads with NEON intrinsics not supported | ||||
| 13304 | Info.flags = MachineMemOperand::MOLoad; | ||||
| 13305 | return true; | ||||
| 13306 | } | ||||
| 13307 | case Intrinsic::aarch64_neon_st2: | ||||
| 13308 | case Intrinsic::aarch64_neon_st3: | ||||
| 13309 | case Intrinsic::aarch64_neon_st4: | ||||
| 13310 | case Intrinsic::aarch64_neon_st1x2: | ||||
| 13311 | case Intrinsic::aarch64_neon_st1x3: | ||||
| 13312 | case Intrinsic::aarch64_neon_st1x4: | ||||
| 13313 | case Intrinsic::aarch64_neon_st2lane: | ||||
| 13314 | case Intrinsic::aarch64_neon_st3lane: | ||||
| 13315 | case Intrinsic::aarch64_neon_st4lane: { | ||||
| 13316 | Info.opc = ISD::INTRINSIC_VOID; | ||||
| 13317 | // Conservatively set memVT to the entire set of vectors stored. | ||||
| 13318 | unsigned NumElts = 0; | ||||
| 13319 | for (const Value *Arg : I.args()) { | ||||
| 13320 | Type *ArgTy = Arg->getType(); | ||||
| 13321 | if (!ArgTy->isVectorTy()) | ||||
| 13322 | break; | ||||
| 13323 | NumElts += DL.getTypeSizeInBits(ArgTy) / 64; | ||||
| 13324 | } | ||||
| 13325 | Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); | ||||
| 13326 | Info.ptrVal = I.getArgOperand(I.arg_size() - 1); | ||||
| 13327 | Info.offset = 0; | ||||
| 13328 | Info.align.reset(); | ||||
| 13329 | // volatile stores with NEON intrinsics not supported | ||||
| 13330 | Info.flags = MachineMemOperand::MOStore; | ||||
| 13331 | return true; | ||||
| 13332 | } | ||||
| 13333 | case Intrinsic::aarch64_ldaxr: | ||||
| 13334 | case Intrinsic::aarch64_ldxr: { | ||||
| 13335 | Type *ValTy = I.getParamElementType(0); | ||||
| 13336 | Info.opc = ISD::INTRINSIC_W_CHAIN; | ||||
| 13337 | Info.memVT = MVT::getVT(ValTy); | ||||
| 13338 | Info.ptrVal = I.getArgOperand(0); | ||||
| 13339 | Info.offset = 0; | ||||
| 13340 | Info.align = DL.getABITypeAlign(ValTy); | ||||
| 13341 | Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; | ||||
| 13342 | return true; | ||||
| 13343 | } | ||||
| 13344 | case Intrinsic::aarch64_stlxr: | ||||
| 13345 | case Intrinsic::aarch64_stxr: { | ||||
| 13346 | Type *ValTy = I.getParamElementType(1); | ||||
| 13347 | Info.opc = ISD::INTRINSIC_W_CHAIN; | ||||
| 13348 | Info.memVT = MVT::getVT(ValTy); | ||||
| 13349 | Info.ptrVal = I.getArgOperand(1); | ||||
| 13350 | Info.offset = 0; | ||||
| 13351 | Info.align = DL.getABITypeAlign(ValTy); | ||||
| 13352 | Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; | ||||
| 13353 | return true; | ||||
| 13354 | } | ||||
| 13355 | case Intrinsic::aarch64_ldaxp: | ||||
| 13356 | case Intrinsic::aarch64_ldxp: | ||||
| 13357 | Info.opc = ISD::INTRINSIC_W_CHAIN; | ||||
| 13358 | Info.memVT = MVT::i128; | ||||
| 13359 | Info.ptrVal = I.getArgOperand(0); | ||||
| 13360 | Info.offset = 0; | ||||
| 13361 | Info.align = Align(16); | ||||
| 13362 | Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; | ||||
| 13363 | return true; | ||||
| 13364 | case Intrinsic::aarch64_stlxp: | ||||
| 13365 | case Intrinsic::aarch64_stxp: | ||||
| 13366 | Info.opc = ISD::INTRINSIC_W_CHAIN; | ||||
| 13367 | Info.memVT = MVT::i128; | ||||
| 13368 | Info.ptrVal = I.getArgOperand(2); | ||||
| 13369 | Info.offset = 0; | ||||
| 13370 | Info.align = Align(16); | ||||
| 13371 | Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; | ||||
| 13372 | return true; | ||||
| 13373 | case Intrinsic::aarch64_sve_ldnt1: { | ||||
| 13374 | Type *ElTy = cast<VectorType>(I.getType())->getElementType(); | ||||
| 13375 | Info.opc = ISD::INTRINSIC_W_CHAIN; | ||||
| 13376 | Info.memVT = MVT::getVT(I.getType()); | ||||
| 13377 | Info.ptrVal = I.getArgOperand(1); | ||||
| 13378 | Info.offset = 0; | ||||
| 13379 | Info.align = DL.getABITypeAlign(ElTy); | ||||
| 13380 | Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MONonTemporal; | ||||
| 13381 | return true; | ||||
| 13382 | } | ||||
| 13383 | case Intrinsic::aarch64_sve_stnt1: { | ||||
| 13384 | Type *ElTy = | ||||
| 13385 | cast<VectorType>(I.getArgOperand(0)->getType())->getElementType(); | ||||
| 13386 | Info.opc = ISD::INTRINSIC_W_CHAIN; | ||||
| 13387 | Info.memVT = MVT::getVT(I.getOperand(0)->getType()); | ||||
| 13388 | Info.ptrVal = I.getArgOperand(2); | ||||
| 13389 | Info.offset = 0; | ||||
| 13390 | Info.align = DL.getABITypeAlign(ElTy); | ||||
| 13391 | Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MONonTemporal; | ||||
| 13392 | return true; | ||||
| 13393 | } | ||||
| 13394 | case Intrinsic::aarch64_mops_memset_tag: { | ||||
| 13395 | Value *Dst = I.getArgOperand(0); | ||||
| 13396 | Value *Val = I.getArgOperand(1); | ||||
| 13397 | Info.opc = ISD::INTRINSIC_W_CHAIN; | ||||
| 13398 | Info.memVT = MVT::getVT(Val->getType()); | ||||
| 13399 | Info.ptrVal = Dst; | ||||
| 13400 | Info.offset = 0; | ||||
| 13401 | Info.align = I.getParamAlign(0).valueOrOne(); | ||||
| 13402 | Info.flags = MachineMemOperand::MOStore; | ||||
| 13403 | // The size of the memory being operated on is unknown at this point | ||||
| 13404 | Info.size = MemoryLocation::UnknownSize; | ||||
| 13405 | return true; | ||||
| 13406 | } | ||||
| 13407 | default: | ||||
| 13408 | break; | ||||
| 13409 | } | ||||
| 13410 | |||||
| 13411 | return false; | ||||
| 13412 | } | ||||
| 13413 | |||||
| 13414 | bool AArch64TargetLowering::shouldReduceLoadWidth(SDNode *Load, | ||||
| 13415 | ISD::LoadExtType ExtTy, | ||||
| 13416 | EVT NewVT) const { | ||||
| 13417 | // TODO: This may be worth removing. Check regression tests for diffs. | ||||
| 13418 | if (!TargetLoweringBase::shouldReduceLoadWidth(Load, ExtTy, NewVT)) | ||||
| 13419 | return false; | ||||
| 13420 | |||||
| 13421 | // If we're reducing the load width in order to avoid having to use an extra | ||||
| 13422 | // instruction to do extension then it's probably a good idea. | ||||
| 13423 | if (ExtTy != ISD::NON_EXTLOAD) | ||||
| 13424 | return true; | ||||
| 13425 | // Don't reduce load width if it would prevent us from combining a shift into | ||||
| 13426 | // the offset. | ||||
| 13427 | MemSDNode *Mem = dyn_cast<MemSDNode>(Load); | ||||
| 13428 | assert(Mem)(static_cast <bool> (Mem) ? void (0) : __assert_fail ("Mem" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 13428, __extension__ __PRETTY_FUNCTION__)); | ||||
| 13429 | const SDValue &Base = Mem->getBasePtr(); | ||||
| 13430 | if (Base.getOpcode() == ISD::ADD && | ||||
| 13431 | Base.getOperand(1).getOpcode() == ISD::SHL && | ||||
| 13432 | Base.getOperand(1).hasOneUse() && | ||||
| 13433 | Base.getOperand(1).getOperand(1).getOpcode() == ISD::Constant) { | ||||
| 13434 | // It's unknown whether a scalable vector has a power-of-2 bitwidth. | ||||
| 13435 | if (Mem->getMemoryVT().isScalableVector()) | ||||
| 13436 | return false; | ||||
| 13437 | // The shift can be combined if it matches the size of the value being | ||||
| 13438 | // loaded (and so reducing the width would make it not match). | ||||
| 13439 | uint64_t ShiftAmount = Base.getOperand(1).getConstantOperandVal(1); | ||||
| 13440 | uint64_t LoadBytes = Mem->getMemoryVT().getSizeInBits()/8; | ||||
| 13441 | if (ShiftAmount == Log2_32(LoadBytes)) | ||||
| 13442 | return false; | ||||
| 13443 | } | ||||
| 13444 | // We have no reason to disallow reducing the load width, so allow it. | ||||
| 13445 | return true; | ||||
| 13446 | } | ||||
| 13447 | |||||
| 13448 | // Truncations from 64-bit GPR to 32-bit GPR is free. | ||||
| 13449 | bool AArch64TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { | ||||
| 13450 | if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) | ||||
| 13451 | return false; | ||||
| 13452 | uint64_t NumBits1 = Ty1->getPrimitiveSizeInBits().getFixedSize(); | ||||
| 13453 | uint64_t NumBits2 = Ty2->getPrimitiveSizeInBits().getFixedSize(); | ||||
| 13454 | return NumBits1 > NumBits2; | ||||
| 13455 | } | ||||
| 13456 | bool AArch64TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { | ||||
| 13457 | if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger()) | ||||
| 13458 | return false; | ||||
| 13459 | uint64_t NumBits1 = VT1.getFixedSizeInBits(); | ||||
| 13460 | uint64_t NumBits2 = VT2.getFixedSizeInBits(); | ||||
| 13461 | return NumBits1 > NumBits2; | ||||
| 13462 | } | ||||
| 13463 | |||||
| 13464 | /// Check if it is profitable to hoist instruction in then/else to if. | ||||
| 13465 | /// Not profitable if I and it's user can form a FMA instruction | ||||
| 13466 | /// because we prefer FMSUB/FMADD. | ||||
| 13467 | bool AArch64TargetLowering::isProfitableToHoist(Instruction *I) const { | ||||
| 13468 | if (I->getOpcode() != Instruction::FMul) | ||||
| 13469 | return true; | ||||
| 13470 | |||||
| 13471 | if (!I->hasOneUse()) | ||||
| 13472 | return true; | ||||
| 13473 | |||||
| 13474 | Instruction *User = I->user_back(); | ||||
| 13475 | |||||
| 13476 | if (!(User->getOpcode() == Instruction::FSub || | ||||
| 13477 | User->getOpcode() == Instruction::FAdd)) | ||||
| 13478 | return true; | ||||
| 13479 | |||||
| 13480 | const TargetOptions &Options = getTargetMachine().Options; | ||||
| 13481 | const Function *F = I->getFunction(); | ||||
| 13482 | const DataLayout &DL = F->getParent()->getDataLayout(); | ||||
| 13483 | Type *Ty = User->getOperand(0)->getType(); | ||||
| 13484 | |||||
| 13485 | return !(isFMAFasterThanFMulAndFAdd(*F, Ty) && | ||||
| 13486 | isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && | ||||
| 13487 | (Options.AllowFPOpFusion == FPOpFusion::Fast || | ||||
| 13488 | Options.UnsafeFPMath)); | ||||
| 13489 | } | ||||
| 13490 | |||||
| 13491 | // All 32-bit GPR operations implicitly zero the high-half of the corresponding | ||||
| 13492 | // 64-bit GPR. | ||||
| 13493 | bool AArch64TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const { | ||||
| 13494 | if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) | ||||
| 13495 | return false; | ||||
| 13496 | unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); | ||||
| 13497 | unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); | ||||
| 13498 | return NumBits1 == 32 && NumBits2 == 64; | ||||
| 13499 | } | ||||
| 13500 | bool AArch64TargetLowering::isZExtFree(EVT VT1, EVT VT2) const { | ||||
| 13501 | if (VT1.isVector() || VT2.isVector() || !VT1.isInteger() || !VT2.isInteger()) | ||||
| 13502 | return false; | ||||
| 13503 | unsigned NumBits1 = VT1.getSizeInBits(); | ||||
| 13504 | unsigned NumBits2 = VT2.getSizeInBits(); | ||||
| 13505 | return NumBits1 == 32 && NumBits2 == 64; | ||||
| 13506 | } | ||||
| 13507 | |||||
| 13508 | bool AArch64TargetLowering::isZExtFree(SDValue Val, EVT VT2) const { | ||||
| 13509 | EVT VT1 = Val.getValueType(); | ||||
| 13510 | if (isZExtFree(VT1, VT2)) { | ||||
| 13511 | return true; | ||||
| 13512 | } | ||||
| 13513 | |||||
| 13514 | if (Val.getOpcode() != ISD::LOAD) | ||||
| 13515 | return false; | ||||
| 13516 | |||||
| 13517 | // 8-, 16-, and 32-bit integer loads all implicitly zero-extend. | ||||
| 13518 | return (VT1.isSimple() && !VT1.isVector() && VT1.isInteger() && | ||||
| 13519 | VT2.isSimple() && !VT2.isVector() && VT2.isInteger() && | ||||
| 13520 | VT1.getSizeInBits() <= 32); | ||||
| 13521 | } | ||||
| 13522 | |||||
| 13523 | bool AArch64TargetLowering::isExtFreeImpl(const Instruction *Ext) const { | ||||
| 13524 | if (isa<FPExtInst>(Ext)) | ||||
| 13525 | return false; | ||||
| 13526 | |||||
| 13527 | // Vector types are not free. | ||||
| 13528 | if (Ext->getType()->isVectorTy()) | ||||
| 13529 | return false; | ||||
| 13530 | |||||
| 13531 | for (const Use &U : Ext->uses()) { | ||||
| 13532 | // The extension is free if we can fold it with a left shift in an | ||||
| 13533 | // addressing mode or an arithmetic operation: add, sub, and cmp. | ||||
| 13534 | |||||
| 13535 | // Is there a shift? | ||||
| 13536 | const Instruction *Instr = cast<Instruction>(U.getUser()); | ||||
| 13537 | |||||
| 13538 | // Is this a constant shift? | ||||
| 13539 | switch (Instr->getOpcode()) { | ||||
| 13540 | case Instruction::Shl: | ||||
| 13541 | if (!isa<ConstantInt>(Instr->getOperand(1))) | ||||
| 13542 | return false; | ||||
| 13543 | break; | ||||
| 13544 | case Instruction::GetElementPtr: { | ||||
| 13545 | gep_type_iterator GTI = gep_type_begin(Instr); | ||||
| 13546 | auto &DL = Ext->getModule()->getDataLayout(); | ||||
| 13547 | std::advance(GTI, U.getOperandNo()-1); | ||||
| 13548 | Type *IdxTy = GTI.getIndexedType(); | ||||
| 13549 | // This extension will end up with a shift because of the scaling factor. | ||||
| 13550 | // 8-bit sized types have a scaling factor of 1, thus a shift amount of 0. | ||||
| 13551 | // Get the shift amount based on the scaling factor: | ||||
| 13552 | // log2(sizeof(IdxTy)) - log2(8). | ||||
| 13553 | uint64_t ShiftAmt = | ||||
| 13554 | countTrailingZeros(DL.getTypeStoreSizeInBits(IdxTy).getFixedSize()) - 3; | ||||
| 13555 | // Is the constant foldable in the shift of the addressing mode? | ||||
| 13556 | // I.e., shift amount is between 1 and 4 inclusive. | ||||
| 13557 | if (ShiftAmt == 0 || ShiftAmt > 4) | ||||
| 13558 | return false; | ||||
| 13559 | break; | ||||
| 13560 | } | ||||
| 13561 | case Instruction::Trunc: | ||||
| 13562 | // Check if this is a noop. | ||||
| 13563 | // trunc(sext ty1 to ty2) to ty1. | ||||
| 13564 | if (Instr->getType() == Ext->getOperand(0)->getType()) | ||||
| 13565 | continue; | ||||
| 13566 | [[fallthrough]]; | ||||
| 13567 | default: | ||||
| 13568 | return false; | ||||
| 13569 | } | ||||
| 13570 | |||||
| 13571 | // At this point we can use the bfm family, so this extension is free | ||||
| 13572 | // for that use. | ||||
| 13573 | } | ||||
| 13574 | return true; | ||||
| 13575 | } | ||||
| 13576 | |||||
| 13577 | static bool isSplatShuffle(Value *V) { | ||||
| 13578 | if (auto *Shuf = dyn_cast<ShuffleVectorInst>(V)) | ||||
| 13579 | return all_equal(Shuf->getShuffleMask()); | ||||
| 13580 | return false; | ||||
| 13581 | } | ||||
| 13582 | |||||
| 13583 | /// Check if both Op1 and Op2 are shufflevector extracts of either the lower | ||||
| 13584 | /// or upper half of the vector elements. | ||||
| 13585 | static bool areExtractShuffleVectors(Value *Op1, Value *Op2, | ||||
| 13586 | bool AllowSplat = false) { | ||||
| 13587 | auto areTypesHalfed = [](Value *FullV, Value *HalfV) { | ||||
| 13588 | auto *FullTy = FullV->getType(); | ||||
| 13589 | auto *HalfTy = HalfV->getType(); | ||||
| 13590 | return FullTy->getPrimitiveSizeInBits().getFixedSize() == | ||||
| 13591 | 2 * HalfTy->getPrimitiveSizeInBits().getFixedSize(); | ||||
| 13592 | }; | ||||
| 13593 | |||||
| 13594 | auto extractHalf = [](Value *FullV, Value *HalfV) { | ||||
| 13595 | auto *FullVT = cast<FixedVectorType>(FullV->getType()); | ||||
| 13596 | auto *HalfVT = cast<FixedVectorType>(HalfV->getType()); | ||||
| 13597 | return FullVT->getNumElements() == 2 * HalfVT->getNumElements(); | ||||
| 13598 | }; | ||||
| 13599 | |||||
| 13600 | ArrayRef<int> M1, M2; | ||||
| 13601 | Value *S1Op1 = nullptr, *S2Op1 = nullptr; | ||||
| 13602 | if (!match(Op1, m_Shuffle(m_Value(S1Op1), m_Undef(), m_Mask(M1))) || | ||||
| 13603 | !match(Op2, m_Shuffle(m_Value(S2Op1), m_Undef(), m_Mask(M2)))) | ||||
| 13604 | return false; | ||||
| 13605 | |||||
| 13606 | // If we allow splats, set S1Op1/S2Op1 to nullptr for the relavant arg so that | ||||
| 13607 | // it is not checked as an extract below. | ||||
| 13608 | if (AllowSplat && isSplatShuffle(Op1)) | ||||
| 13609 | S1Op1 = nullptr; | ||||
| 13610 | if (AllowSplat && isSplatShuffle(Op2)) | ||||
| 13611 | S2Op1 = nullptr; | ||||
| 13612 | |||||
| 13613 | // Check that the operands are half as wide as the result and we extract | ||||
| 13614 | // half of the elements of the input vectors. | ||||
| 13615 | if ((S1Op1 && (!areTypesHalfed(S1Op1, Op1) || !extractHalf(S1Op1, Op1))) || | ||||
| 13616 | (S2Op1 && (!areTypesHalfed(S2Op1, Op2) || !extractHalf(S2Op1, Op2)))) | ||||
| 13617 | return false; | ||||
| 13618 | |||||
| 13619 | // Check the mask extracts either the lower or upper half of vector | ||||
| 13620 | // elements. | ||||
| 13621 | int M1Start = 0; | ||||
| 13622 | int M2Start = 0; | ||||
| 13623 | int NumElements = cast<FixedVectorType>(Op1->getType())->getNumElements() * 2; | ||||
| 13624 | if ((S1Op1 && | ||||
| 13625 | !ShuffleVectorInst::isExtractSubvectorMask(M1, NumElements, M1Start)) || | ||||
| 13626 | (S2Op1 && | ||||
| 13627 | !ShuffleVectorInst::isExtractSubvectorMask(M2, NumElements, M2Start))) | ||||
| 13628 | return false; | ||||
| 13629 | |||||
| 13630 | if ((M1Start != 0 && M1Start != (NumElements / 2)) || | ||||
| 13631 | (M2Start != 0 && M2Start != (NumElements / 2))) | ||||
| 13632 | return false; | ||||
| 13633 | if (S1Op1 && S2Op1 && M1Start != M2Start) | ||||
| 13634 | return false; | ||||
| 13635 | |||||
| 13636 | return true; | ||||
| 13637 | } | ||||
| 13638 | |||||
| 13639 | /// Check if Ext1 and Ext2 are extends of the same type, doubling the bitwidth | ||||
| 13640 | /// of the vector elements. | ||||
| 13641 | static bool areExtractExts(Value *Ext1, Value *Ext2) { | ||||
| 13642 | auto areExtDoubled = [](Instruction *Ext) { | ||||
| 13643 | return Ext->getType()->getScalarSizeInBits() == | ||||
| 13644 | 2 * Ext->getOperand(0)->getType()->getScalarSizeInBits(); | ||||
| 13645 | }; | ||||
| 13646 | |||||
| 13647 | if (!match(Ext1, m_ZExtOrSExt(m_Value())) || | ||||
| 13648 | !match(Ext2, m_ZExtOrSExt(m_Value())) || | ||||
| 13649 | !areExtDoubled(cast<Instruction>(Ext1)) || | ||||
| 13650 | !areExtDoubled(cast<Instruction>(Ext2))) | ||||
| 13651 | return false; | ||||
| 13652 | |||||
| 13653 | return true; | ||||
| 13654 | } | ||||
| 13655 | |||||
| 13656 | /// Check if Op could be used with vmull_high_p64 intrinsic. | ||||
| 13657 | static bool isOperandOfVmullHighP64(Value *Op) { | ||||
| 13658 | Value *VectorOperand = nullptr; | ||||
| 13659 | ConstantInt *ElementIndex = nullptr; | ||||
| 13660 | return match(Op, m_ExtractElt(m_Value(VectorOperand), | ||||
| 13661 | m_ConstantInt(ElementIndex))) && | ||||
| 13662 | ElementIndex->getValue() == 1 && | ||||
| 13663 | isa<FixedVectorType>(VectorOperand->getType()) && | ||||
| 13664 | cast<FixedVectorType>(VectorOperand->getType())->getNumElements() == 2; | ||||
| 13665 | } | ||||
| 13666 | |||||
| 13667 | /// Check if Op1 and Op2 could be used with vmull_high_p64 intrinsic. | ||||
| 13668 | static bool areOperandsOfVmullHighP64(Value *Op1, Value *Op2) { | ||||
| 13669 | return isOperandOfVmullHighP64(Op1) && isOperandOfVmullHighP64(Op2); | ||||
| 13670 | } | ||||
| 13671 | |||||
| 13672 | /// Check if sinking \p I's operands to I's basic block is profitable, because | ||||
| 13673 | /// the operands can be folded into a target instruction, e.g. | ||||
| 13674 | /// shufflevectors extracts and/or sext/zext can be folded into (u,s)subl(2). | ||||
| 13675 | bool AArch64TargetLowering::shouldSinkOperands( | ||||
| 13676 | Instruction *I, SmallVectorImpl<Use *> &Ops) const { | ||||
| 13677 | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { | ||||
| 13678 | switch (II->getIntrinsicID()) { | ||||
| 13679 | case Intrinsic::aarch64_neon_smull: | ||||
| 13680 | case Intrinsic::aarch64_neon_umull: | ||||
| 13681 | if (areExtractShuffleVectors(II->getOperand(0), II->getOperand(1), | ||||
| 13682 | /*AllowSplat=*/true)) { | ||||
| 13683 | Ops.push_back(&II->getOperandUse(0)); | ||||
| 13684 | Ops.push_back(&II->getOperandUse(1)); | ||||
| 13685 | return true; | ||||
| 13686 | } | ||||
| 13687 | [[fallthrough]]; | ||||
| 13688 | |||||
| 13689 | case Intrinsic::fma: | ||||
| 13690 | if (isa<VectorType>(I->getType()) && | ||||
| 13691 | cast<VectorType>(I->getType())->getElementType()->isHalfTy() && | ||||
| 13692 | !Subtarget->hasFullFP16()) | ||||
| 13693 | return false; | ||||
| 13694 | [[fallthrough]]; | ||||
| 13695 | case Intrinsic::aarch64_neon_sqdmull: | ||||
| 13696 | case Intrinsic::aarch64_neon_sqdmulh: | ||||
| 13697 | case Intrinsic::aarch64_neon_sqrdmulh: | ||||
| 13698 | // Sink splats for index lane variants | ||||
| 13699 | if (isSplatShuffle(II->getOperand(0))) | ||||
| 13700 | Ops.push_back(&II->getOperandUse(0)); | ||||
| 13701 | if (isSplatShuffle(II->getOperand(1))) | ||||
| 13702 | Ops.push_back(&II->getOperandUse(1)); | ||||
| 13703 | return !Ops.empty(); | ||||
| 13704 | case Intrinsic::aarch64_sve_ptest_first: | ||||
| 13705 | case Intrinsic::aarch64_sve_ptest_last: | ||||
| 13706 | if (auto *IIOp = dyn_cast<IntrinsicInst>(II->getOperand(0))) | ||||
| 13707 | if (IIOp->getIntrinsicID() == Intrinsic::aarch64_sve_ptrue) | ||||
| 13708 | Ops.push_back(&II->getOperandUse(0)); | ||||
| 13709 | return !Ops.empty(); | ||||
| 13710 | case Intrinsic::aarch64_sme_write_horiz: | ||||
| 13711 | case Intrinsic::aarch64_sme_write_vert: | ||||
| 13712 | case Intrinsic::aarch64_sme_writeq_horiz: | ||||
| 13713 | case Intrinsic::aarch64_sme_writeq_vert: { | ||||
| 13714 | auto *Idx = dyn_cast<Instruction>(II->getOperand(1)); | ||||
| 13715 | if (!Idx || Idx->getOpcode() != Instruction::Add) | ||||
| 13716 | return false; | ||||
| 13717 | Ops.push_back(&II->getOperandUse(1)); | ||||
| 13718 | return true; | ||||
| 13719 | } | ||||
| 13720 | case Intrinsic::aarch64_sme_read_horiz: | ||||
| 13721 | case Intrinsic::aarch64_sme_read_vert: | ||||
| 13722 | case Intrinsic::aarch64_sme_readq_horiz: | ||||
| 13723 | case Intrinsic::aarch64_sme_readq_vert: | ||||
| 13724 | case Intrinsic::aarch64_sme_ld1b_vert: | ||||
| 13725 | case Intrinsic::aarch64_sme_ld1h_vert: | ||||
| 13726 | case Intrinsic::aarch64_sme_ld1w_vert: | ||||
| 13727 | case Intrinsic::aarch64_sme_ld1d_vert: | ||||
| 13728 | case Intrinsic::aarch64_sme_ld1q_vert: | ||||
| 13729 | case Intrinsic::aarch64_sme_st1b_vert: | ||||
| 13730 | case Intrinsic::aarch64_sme_st1h_vert: | ||||
| 13731 | case Intrinsic::aarch64_sme_st1w_vert: | ||||
| 13732 | case Intrinsic::aarch64_sme_st1d_vert: | ||||
| 13733 | case Intrinsic::aarch64_sme_st1q_vert: | ||||
| 13734 | case Intrinsic::aarch64_sme_ld1b_horiz: | ||||
| 13735 | case Intrinsic::aarch64_sme_ld1h_horiz: | ||||
| 13736 | case Intrinsic::aarch64_sme_ld1w_horiz: | ||||
| 13737 | case Intrinsic::aarch64_sme_ld1d_horiz: | ||||
| 13738 | case Intrinsic::aarch64_sme_ld1q_horiz: | ||||
| 13739 | case Intrinsic::aarch64_sme_st1b_horiz: | ||||
| 13740 | case Intrinsic::aarch64_sme_st1h_horiz: | ||||
| 13741 | case Intrinsic::aarch64_sme_st1w_horiz: | ||||
| 13742 | case Intrinsic::aarch64_sme_st1d_horiz: | ||||
| 13743 | case Intrinsic::aarch64_sme_st1q_horiz: { | ||||
| 13744 | auto *Idx = dyn_cast<Instruction>(II->getOperand(3)); | ||||
| 13745 | if (!Idx || Idx->getOpcode() != Instruction::Add) | ||||
| 13746 | return false; | ||||
| 13747 | Ops.push_back(&II->getOperandUse(3)); | ||||
| 13748 | return true; | ||||
| 13749 | } | ||||
| 13750 | case Intrinsic::aarch64_neon_pmull: | ||||
| 13751 | if (!areExtractShuffleVectors(II->getOperand(0), II->getOperand(1))) | ||||
| 13752 | return false; | ||||
| 13753 | Ops.push_back(&II->getOperandUse(0)); | ||||
| 13754 | Ops.push_back(&II->getOperandUse(1)); | ||||
| 13755 | return true; | ||||
| 13756 | case Intrinsic::aarch64_neon_pmull64: | ||||
| 13757 | if (!areOperandsOfVmullHighP64(II->getArgOperand(0), | ||||
| 13758 | II->getArgOperand(1))) | ||||
| 13759 | return false; | ||||
| 13760 | Ops.push_back(&II->getArgOperandUse(0)); | ||||
| 13761 | Ops.push_back(&II->getArgOperandUse(1)); | ||||
| 13762 | return true; | ||||
| 13763 | default: | ||||
| 13764 | return false; | ||||
| 13765 | } | ||||
| 13766 | } | ||||
| 13767 | |||||
| 13768 | if (!I->getType()->isVectorTy()) | ||||
| 13769 | return false; | ||||
| 13770 | |||||
| 13771 | switch (I->getOpcode()) { | ||||
| 13772 | case Instruction::Sub: | ||||
| 13773 | case Instruction::Add: { | ||||
| 13774 | if (!areExtractExts(I->getOperand(0), I->getOperand(1))) | ||||
| 13775 | return false; | ||||
| 13776 | |||||
| 13777 | // If the exts' operands extract either the lower or upper elements, we | ||||
| 13778 | // can sink them too. | ||||
| 13779 | auto Ext1 = cast<Instruction>(I->getOperand(0)); | ||||
| 13780 | auto Ext2 = cast<Instruction>(I->getOperand(1)); | ||||
| 13781 | if (areExtractShuffleVectors(Ext1->getOperand(0), Ext2->getOperand(0))) { | ||||
| 13782 | Ops.push_back(&Ext1->getOperandUse(0)); | ||||
| 13783 | Ops.push_back(&Ext2->getOperandUse(0)); | ||||
| 13784 | } | ||||
| 13785 | |||||
| 13786 | Ops.push_back(&I->getOperandUse(0)); | ||||
| 13787 | Ops.push_back(&I->getOperandUse(1)); | ||||
| 13788 | |||||
| 13789 | return true; | ||||
| 13790 | } | ||||
| 13791 | case Instruction::Mul: { | ||||
| 13792 | bool IsProfitable = false; | ||||
| 13793 | for (auto &Op : I->operands()) { | ||||
| 13794 | // Make sure we are not already sinking this operand | ||||
| 13795 | if (any_of(Ops, [&](Use *U) { return U->get() == Op; })) | ||||
| 13796 | continue; | ||||
| 13797 | |||||
| 13798 | ShuffleVectorInst *Shuffle = dyn_cast<ShuffleVectorInst>(Op); | ||||
| 13799 | |||||
| 13800 | // If the Shuffle is a splat and the operand is a zext/sext, sinking the | ||||
| 13801 | // operand and the s/zext can help create indexed s/umull. This is | ||||
| 13802 | // especially useful to prevent i64 mul being scalarized. | ||||
| 13803 | if (Shuffle && isSplatShuffle(Shuffle) && | ||||
| 13804 | match(Shuffle->getOperand(0), m_ZExtOrSExt(m_Value()))) { | ||||
| 13805 | Ops.push_back(&Shuffle->getOperandUse(0)); | ||||
| 13806 | Ops.push_back(&Op); | ||||
| 13807 | IsProfitable = true; | ||||
| 13808 | continue; | ||||
| 13809 | } | ||||
| 13810 | |||||
| 13811 | if (!Shuffle || !Shuffle->isZeroEltSplat()) | ||||
| 13812 | continue; | ||||
| 13813 | |||||
| 13814 | Value *ShuffleOperand = Shuffle->getOperand(0); | ||||
| 13815 | InsertElementInst *Insert = dyn_cast<InsertElementInst>(ShuffleOperand); | ||||
| 13816 | if (!Insert) | ||||
| 13817 | continue; | ||||
| 13818 | |||||
| 13819 | Instruction *OperandInstr = dyn_cast<Instruction>(Insert->getOperand(1)); | ||||
| 13820 | if (!OperandInstr) | ||||
| 13821 | continue; | ||||
| 13822 | |||||
| 13823 | ConstantInt *ElementConstant = | ||||
| 13824 | dyn_cast<ConstantInt>(Insert->getOperand(2)); | ||||
| 13825 | // Check that the insertelement is inserting into element 0 | ||||
| 13826 | if (!ElementConstant || ElementConstant->getZExtValue() != 0) | ||||
| 13827 | continue; | ||||
| 13828 | |||||
| 13829 | unsigned Opcode = OperandInstr->getOpcode(); | ||||
| 13830 | if (Opcode != Instruction::SExt && Opcode != Instruction::ZExt) | ||||
| 13831 | continue; | ||||
| 13832 | |||||
| 13833 | Ops.push_back(&Shuffle->getOperandUse(0)); | ||||
| 13834 | Ops.push_back(&Op); | ||||
| 13835 | IsProfitable = true; | ||||
| 13836 | } | ||||
| 13837 | |||||
| 13838 | return IsProfitable; | ||||
| 13839 | } | ||||
| 13840 | default: | ||||
| 13841 | return false; | ||||
| 13842 | } | ||||
| 13843 | return false; | ||||
| 13844 | } | ||||
| 13845 | |||||
| 13846 | static void createTblShuffleForZExt(ZExtInst *ZExt, bool IsLittleEndian) { | ||||
| 13847 | Value *Op = ZExt->getOperand(0); | ||||
| 13848 | auto *SrcTy = dyn_cast<FixedVectorType>(Op->getType()); | ||||
| 13849 | auto *DstTy = dyn_cast<FixedVectorType>(ZExt->getType()); | ||||
| 13850 | unsigned NumElts = SrcTy->getNumElements(); | ||||
| |||||
| 13851 | IRBuilder<> Builder(ZExt); | ||||
| 13852 | SmallVector<int> Mask(4 * NumElts, NumElts); | ||||
| 13853 | // Create a mask that selects <0,0,0,Op[i]> for each lane of vector of i32 to | ||||
| 13854 | // replace the original ZExt. This can later be lowered to a set of tbl | ||||
| 13855 | // instructions. | ||||
| 13856 | for (unsigned i = 0; i < NumElts; i++) { | ||||
| 13857 | if (IsLittleEndian) | ||||
| 13858 | Mask[i * 4] = i; | ||||
| 13859 | else | ||||
| 13860 | Mask[i * 4 + 3] = i; | ||||
| 13861 | } | ||||
| 13862 | |||||
| 13863 | auto *FirstEltZero = Builder.CreateInsertElement( | ||||
| 13864 | PoisonValue::get(SrcTy), Builder.getInt8(0), uint64_t(0)); | ||||
| 13865 | Value *Result = Builder.CreateShuffleVector(Op, FirstEltZero, Mask); | ||||
| 13866 | Result = Builder.CreateBitCast(Result, DstTy); | ||||
| 13867 | ZExt->replaceAllUsesWith(Result); | ||||
| 13868 | ZExt->eraseFromParent(); | ||||
| 13869 | } | ||||
| 13870 | |||||
| 13871 | static void createTblForTrunc(TruncInst *TI, bool IsLittleEndian) { | ||||
| 13872 | IRBuilder<> Builder(TI); | ||||
| 13873 | SmallVector<Value *> Parts; | ||||
| 13874 | Type *VecTy = FixedVectorType::get(Builder.getInt8Ty(), 16); | ||||
| 13875 | Parts.push_back(Builder.CreateBitCast( | ||||
| 13876 | Builder.CreateShuffleVector(TI->getOperand(0), {0, 1, 2, 3}), VecTy)); | ||||
| 13877 | Parts.push_back(Builder.CreateBitCast( | ||||
| 13878 | Builder.CreateShuffleVector(TI->getOperand(0), {4, 5, 6, 7}), VecTy)); | ||||
| 13879 | |||||
| 13880 | Intrinsic::ID TblID = Intrinsic::aarch64_neon_tbl2; | ||||
| 13881 | unsigned NumElements = cast<FixedVectorType>(TI->getType())->getNumElements(); | ||||
| 13882 | if (NumElements == 16) { | ||||
| 13883 | Parts.push_back(Builder.CreateBitCast( | ||||
| 13884 | Builder.CreateShuffleVector(TI->getOperand(0), {8, 9, 10, 11}), VecTy)); | ||||
| 13885 | Parts.push_back(Builder.CreateBitCast( | ||||
| 13886 | Builder.CreateShuffleVector(TI->getOperand(0), {12, 13, 14, 15}), | ||||
| 13887 | VecTy)); | ||||
| 13888 | TblID = Intrinsic::aarch64_neon_tbl4; | ||||
| 13889 | } | ||||
| 13890 | SmallVector<Constant *, 16> MaskConst; | ||||
| 13891 | for (unsigned Idx = 0; Idx < NumElements * 4; Idx += 4) | ||||
| 13892 | MaskConst.push_back( | ||||
| 13893 | ConstantInt::get(Builder.getInt8Ty(), IsLittleEndian ? Idx : Idx + 3)); | ||||
| 13894 | |||||
| 13895 | for (unsigned Idx = NumElements * 4; Idx < 64; Idx += 4) | ||||
| 13896 | MaskConst.push_back(ConstantInt::get(Builder.getInt8Ty(), 255)); | ||||
| 13897 | |||||
| 13898 | Parts.push_back(ConstantVector::get(MaskConst)); | ||||
| 13899 | auto *F = | ||||
| 13900 | Intrinsic::getDeclaration(TI->getModule(), TblID, Parts[0]->getType()); | ||||
| 13901 | Value *Res = Builder.CreateCall(F, Parts); | ||||
| 13902 | |||||
| 13903 | if (NumElements == 8) | ||||
| 13904 | Res = Builder.CreateShuffleVector(Res, {0, 1, 2, 3, 4, 5, 6, 7}); | ||||
| 13905 | TI->replaceAllUsesWith(Res); | ||||
| 13906 | TI->eraseFromParent(); | ||||
| 13907 | } | ||||
| 13908 | |||||
| 13909 | bool AArch64TargetLowering::optimizeExtendOrTruncateConversion(Instruction *I, | ||||
| 13910 | Loop *L) const { | ||||
| 13911 | // Try to optimize conversions using tbl. This requires materializing constant | ||||
| 13912 | // index vectors, which can increase code size and add loads. Skip the | ||||
| 13913 | // transform unless the conversion is in a loop block guaranteed to execute | ||||
| 13914 | // and we are not optimizing for size. | ||||
| 13915 | Function *F = I->getParent()->getParent(); | ||||
| 13916 | if (!L || L->getHeader() != I->getParent() || F->hasMinSize() || | ||||
| |||||
| 13917 | F->hasOptSize()) | ||||
| 13918 | return false; | ||||
| 13919 | |||||
| 13920 | auto *SrcTy = dyn_cast<FixedVectorType>(I->getOperand(0)->getType()); | ||||
| 13921 | auto *DstTy = dyn_cast<FixedVectorType>(I->getType()); | ||||
| 13922 | if (!SrcTy
| ||||
| 13923 | return false; | ||||
| 13924 | |||||
| 13925 | // Convert 'zext <(8|16) x i8> %x to <(8|16) x i32>' to a shuffle that can be | ||||
| 13926 | // lowered to either 2 or 4 tbl instructions to insert the original i8 | ||||
| 13927 | // elements into i32 lanes. | ||||
| 13928 | auto *ZExt = dyn_cast<ZExtInst>(I); | ||||
| 13929 | if (ZExt
| ||||
| 13930 | SrcTy->getElementType()->isIntegerTy(8) && | ||||
| 13931 | DstTy->getElementType()->isIntegerTy(32)) { | ||||
| 13932 | createTblShuffleForZExt(ZExt, Subtarget->isLittleEndian()); | ||||
| 13933 | return true; | ||||
| 13934 | } | ||||
| 13935 | |||||
| 13936 | auto *UIToFP = dyn_cast<UIToFPInst>(I); | ||||
| 13937 | if (UIToFP && | ||||
| 13938 | (SrcTy->getNumElements() == 8 || SrcTy->getNumElements() == 16) && | ||||
| 13939 | SrcTy->getElementType()->isIntegerTy(8) && | ||||
| 13940 | DstTy->getElementType()->isFloatTy()) { | ||||
| 13941 | IRBuilder<> Builder(I); | ||||
| 13942 | auto *ZExt = cast<ZExtInst>( | ||||
| 13943 | Builder.CreateZExt(I->getOperand(0), VectorType::getInteger(DstTy))); | ||||
| 13944 | auto *UI = Builder.CreateUIToFP(ZExt, DstTy); | ||||
| 13945 | I->replaceAllUsesWith(UI); | ||||
| 13946 | I->eraseFromParent(); | ||||
| 13947 | createTblShuffleForZExt(ZExt, Subtarget->isLittleEndian()); | ||||
| 13948 | return true; | ||||
| 13949 | } | ||||
| 13950 | |||||
| 13951 | // Convert 'fptoui <(8|16) x float> to <(8|16) x i8>' to a wide fptoui | ||||
| 13952 | // followed by a truncate lowered to using tbl.4. | ||||
| 13953 | auto *FPToUI = dyn_cast<FPToUIInst>(I); | ||||
| 13954 | if (FPToUI && | ||||
| 13955 | (SrcTy->getNumElements() == 8 || SrcTy->getNumElements() == 16) && | ||||
| 13956 | SrcTy->getElementType()->isFloatTy() && | ||||
| 13957 | DstTy->getElementType()->isIntegerTy(8)) { | ||||
| 13958 | IRBuilder<> Builder(I); | ||||
| 13959 | auto *WideConv = Builder.CreateFPToUI(FPToUI->getOperand(0), | ||||
| 13960 | VectorType::getInteger(SrcTy)); | ||||
| 13961 | auto *TruncI = Builder.CreateTrunc(WideConv, DstTy); | ||||
| 13962 | I->replaceAllUsesWith(TruncI); | ||||
| 13963 | I->eraseFromParent(); | ||||
| 13964 | createTblForTrunc(cast<TruncInst>(TruncI), Subtarget->isLittleEndian()); | ||||
| 13965 | return true; | ||||
| 13966 | } | ||||
| 13967 | |||||
| 13968 | // Convert 'trunc <(8|16) x i32> %x to <(8|16) x i8>' to a single tbl.4 | ||||
| 13969 | // instruction selecting the lowest 8 bits per lane of the input interpreted | ||||
| 13970 | // as 2 or 4 <4 x i32> vectors. | ||||
| 13971 | auto *TI = dyn_cast<TruncInst>(I); | ||||
| 13972 | if (TI && (SrcTy->getNumElements() == 8 || SrcTy->getNumElements() == 16) && | ||||
| 13973 | SrcTy->getElementType()->isIntegerTy(32) && | ||||
| 13974 | DstTy->getElementType()->isIntegerTy(8)) { | ||||
| 13975 | createTblForTrunc(TI, Subtarget->isLittleEndian()); | ||||
| 13976 | return true; | ||||
| 13977 | } | ||||
| 13978 | |||||
| 13979 | return false; | ||||
| 13980 | } | ||||
| 13981 | |||||
| 13982 | bool AArch64TargetLowering::hasPairedLoad(EVT LoadedType, | ||||
| 13983 | Align &RequiredAligment) const { | ||||
| 13984 | if (!LoadedType.isSimple() || | ||||
| 13985 | (!LoadedType.isInteger() && !LoadedType.isFloatingPoint())) | ||||
| 13986 | return false; | ||||
| 13987 | // Cyclone supports unaligned accesses. | ||||
| 13988 | RequiredAligment = Align(1); | ||||
| 13989 | unsigned NumBits = LoadedType.getSizeInBits(); | ||||
| 13990 | return NumBits == 32 || NumBits == 64; | ||||
| 13991 | } | ||||
| 13992 | |||||
| 13993 | /// A helper function for determining the number of interleaved accesses we | ||||
| 13994 | /// will generate when lowering accesses of the given type. | ||||
| 13995 | unsigned AArch64TargetLowering::getNumInterleavedAccesses( | ||||
| 13996 | VectorType *VecTy, const DataLayout &DL, bool UseScalable) const { | ||||
| 13997 | unsigned VecSize = 128; | ||||
| 13998 | if (UseScalable) | ||||
| 13999 | VecSize = std::max(Subtarget->getMinSVEVectorSizeInBits(), 128u); | ||||
| 14000 | return std::max<unsigned>(1, (DL.getTypeSizeInBits(VecTy) + 127) / VecSize); | ||||
| 14001 | } | ||||
| 14002 | |||||
| 14003 | MachineMemOperand::Flags | ||||
| 14004 | AArch64TargetLowering::getTargetMMOFlags(const Instruction &I) const { | ||||
| 14005 | if (Subtarget->getProcFamily() == AArch64Subtarget::Falkor && | ||||
| 14006 | I.getMetadata(FALKOR_STRIDED_ACCESS_MD"falkor.strided.access") != nullptr) | ||||
| 14007 | return MOStridedAccess; | ||||
| 14008 | return MachineMemOperand::MONone; | ||||
| 14009 | } | ||||
| 14010 | |||||
| 14011 | bool AArch64TargetLowering::isLegalInterleavedAccessType( | ||||
| 14012 | VectorType *VecTy, const DataLayout &DL, bool &UseScalable) const { | ||||
| 14013 | |||||
| 14014 | unsigned VecSize = DL.getTypeSizeInBits(VecTy); | ||||
| 14015 | unsigned ElSize = DL.getTypeSizeInBits(VecTy->getElementType()); | ||||
| 14016 | unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); | ||||
| 14017 | |||||
| 14018 | UseScalable = false; | ||||
| 14019 | |||||
| 14020 | // Ensure that the predicate for this number of elements is available. | ||||
| 14021 | if (Subtarget->hasSVE() && !getSVEPredPatternFromNumElements(NumElements)) | ||||
| 14022 | return false; | ||||
| 14023 | |||||
| 14024 | // Ensure the number of vector elements is greater than 1. | ||||
| 14025 | if (NumElements < 2) | ||||
| 14026 | return false; | ||||
| 14027 | |||||
| 14028 | // Ensure the element type is legal. | ||||
| 14029 | if (ElSize != 8 && ElSize != 16 && ElSize != 32 && ElSize != 64) | ||||
| 14030 | return false; | ||||
| 14031 | |||||
| 14032 | if (Subtarget->forceStreamingCompatibleSVE() || | ||||
| 14033 | (Subtarget->useSVEForFixedLengthVectors() && | ||||
| 14034 | (VecSize % Subtarget->getMinSVEVectorSizeInBits() == 0 || | ||||
| 14035 | (VecSize < Subtarget->getMinSVEVectorSizeInBits() && | ||||
| 14036 | isPowerOf2_32(NumElements) && VecSize > 128)))) { | ||||
| 14037 | UseScalable = true; | ||||
| 14038 | return true; | ||||
| 14039 | } | ||||
| 14040 | |||||
| 14041 | // Ensure the total vector size is 64 or a multiple of 128. Types larger than | ||||
| 14042 | // 128 will be split into multiple interleaved accesses. | ||||
| 14043 | return VecSize == 64 || VecSize % 128 == 0; | ||||
| 14044 | } | ||||
| 14045 | |||||
| 14046 | static ScalableVectorType *getSVEContainerIRType(FixedVectorType *VTy) { | ||||
| 14047 | if (VTy->getElementType() == Type::getDoubleTy(VTy->getContext())) | ||||
| 14048 | return ScalableVectorType::get(VTy->getElementType(), 2); | ||||
| 14049 | |||||
| 14050 | if (VTy->getElementType() == Type::getFloatTy(VTy->getContext())) | ||||
| 14051 | return ScalableVectorType::get(VTy->getElementType(), 4); | ||||
| 14052 | |||||
| 14053 | if (VTy->getElementType() == Type::getBFloatTy(VTy->getContext())) | ||||
| 14054 | return ScalableVectorType::get(VTy->getElementType(), 8); | ||||
| 14055 | |||||
| 14056 | if (VTy->getElementType() == Type::getHalfTy(VTy->getContext())) | ||||
| 14057 | return ScalableVectorType::get(VTy->getElementType(), 8); | ||||
| 14058 | |||||
| 14059 | if (VTy->getElementType() == Type::getInt64Ty(VTy->getContext())) | ||||
| 14060 | return ScalableVectorType::get(VTy->getElementType(), 2); | ||||
| 14061 | |||||
| 14062 | if (VTy->getElementType() == Type::getInt32Ty(VTy->getContext())) | ||||
| 14063 | return ScalableVectorType::get(VTy->getElementType(), 4); | ||||
| 14064 | |||||
| 14065 | if (VTy->getElementType() == Type::getInt16Ty(VTy->getContext())) | ||||
| 14066 | return ScalableVectorType::get(VTy->getElementType(), 8); | ||||
| 14067 | |||||
| 14068 | if (VTy->getElementType() == Type::getInt8Ty(VTy->getContext())) | ||||
| 14069 | return ScalableVectorType::get(VTy->getElementType(), 16); | ||||
| 14070 | |||||
| 14071 | llvm_unreachable("Cannot handle input vector type")::llvm::llvm_unreachable_internal("Cannot handle input vector type" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 14071); | ||||
| 14072 | } | ||||
| 14073 | |||||
| 14074 | /// Lower an interleaved load into a ldN intrinsic. | ||||
| 14075 | /// | ||||
| 14076 | /// E.g. Lower an interleaved load (Factor = 2): | ||||
| 14077 | /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr | ||||
| 14078 | /// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements | ||||
| 14079 | /// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements | ||||
| 14080 | /// | ||||
| 14081 | /// Into: | ||||
| 14082 | /// %ld2 = { <4 x i32>, <4 x i32> } call llvm.aarch64.neon.ld2(%ptr) | ||||
| 14083 | /// %vec0 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 0 | ||||
| 14084 | /// %vec1 = extractelement { <4 x i32>, <4 x i32> } %ld2, i32 1 | ||||
| 14085 | bool AArch64TargetLowering::lowerInterleavedLoad( | ||||
| 14086 | LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles, | ||||
| 14087 | ArrayRef<unsigned> Indices, unsigned Factor) const { | ||||
| 14088 | assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&(static_cast <bool> (Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && "Invalid interleave factor" ) ? void (0) : __assert_fail ("Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && \"Invalid interleave factor\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 14089, __extension__ __PRETTY_FUNCTION__)) | ||||
| 14089 | "Invalid interleave factor")(static_cast <bool> (Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && "Invalid interleave factor" ) ? void (0) : __assert_fail ("Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && \"Invalid interleave factor\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 14089, __extension__ __PRETTY_FUNCTION__)); | ||||
| 14090 | assert(!Shuffles.empty() && "Empty shufflevector input")(static_cast <bool> (!Shuffles.empty() && "Empty shufflevector input" ) ? void (0) : __assert_fail ("!Shuffles.empty() && \"Empty shufflevector input\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 14090, __extension__ __PRETTY_FUNCTION__)); | ||||
| 14091 | assert(Shuffles.size() == Indices.size() &&(static_cast <bool> (Shuffles.size() == Indices.size() && "Unmatched number of shufflevectors and indices") ? void (0) : __assert_fail ("Shuffles.size() == Indices.size() && \"Unmatched number of shufflevectors and indices\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 14092, __extension__ __PRETTY_FUNCTION__)) | ||||
| 14092 | "Unmatched number of shufflevectors and indices")(static_cast <bool> (Shuffles.size() == Indices.size() && "Unmatched number of shufflevectors and indices") ? void (0) : __assert_fail ("Shuffles.size() == Indices.size() && \"Unmatched number of shufflevectors and indices\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 14092, __extension__ __PRETTY_FUNCTION__)); | ||||
| 14093 | |||||
| 14094 | const DataLayout &DL = LI->getModule()->getDataLayout(); | ||||
| 14095 | |||||
| 14096 | VectorType *VTy = Shuffles[0]->getType(); | ||||
| 14097 | |||||
| 14098 | // Skip if we do not have NEON and skip illegal vector types. We can | ||||
| 14099 | // "legalize" wide vector types into multiple interleaved accesses as long as | ||||
| 14100 | // the vector types are divisible by 128. | ||||
| 14101 | bool UseScalable; | ||||
| 14102 | if (!Subtarget->hasNEON() || | ||||
| 14103 | !isLegalInterleavedAccessType(VTy, DL, UseScalable)) | ||||
| 14104 | return false; | ||||
| 14105 | |||||
| 14106 | unsigned NumLoads = getNumInterleavedAccesses(VTy, DL, UseScalable); | ||||
| 14107 | |||||
| 14108 | auto *FVTy = cast<FixedVectorType>(VTy); | ||||
| 14109 | |||||
| 14110 | // A pointer vector can not be the return type of the ldN intrinsics. Need to | ||||
| 14111 | // load integer vectors first and then convert to pointer vectors. | ||||
| 14112 | Type *EltTy = FVTy->getElementType(); | ||||
| 14113 | if (EltTy->isPointerTy()) | ||||
| 14114 | FVTy = | ||||
| 14115 | FixedVectorType::get(DL.getIntPtrType(EltTy), FVTy->getNumElements()); | ||||
| 14116 | |||||
| 14117 | // If we're going to generate more than one load, reset the sub-vector type | ||||
| 14118 | // to something legal. | ||||
| 14119 | FVTy = FixedVectorType::get(FVTy->getElementType(), | ||||
| 14120 | FVTy->getNumElements() / NumLoads); | ||||
| 14121 | |||||
| 14122 | auto *LDVTy = | ||||
| 14123 | UseScalable ? cast<VectorType>(getSVEContainerIRType(FVTy)) : FVTy; | ||||
| 14124 | |||||
| 14125 | IRBuilder<> Builder(LI); | ||||
| 14126 | |||||
| 14127 | // The base address of the load. | ||||
| 14128 | Value *BaseAddr = LI->getPointerOperand(); | ||||
| 14129 | |||||
| 14130 | if (NumLoads > 1) { | ||||
| 14131 | // We will compute the pointer operand of each load from the original base | ||||
| 14132 | // address using GEPs. Cast the base address to a pointer to the scalar | ||||
| 14133 | // element type. | ||||
| 14134 | BaseAddr = Builder.CreateBitCast( | ||||
| 14135 | BaseAddr, | ||||
| 14136 | LDVTy->getElementType()->getPointerTo(LI->getPointerAddressSpace())); | ||||
| 14137 | } | ||||
| 14138 | |||||
| 14139 | Type *PtrTy = | ||||
| 14140 | UseScalable | ||||
| 14141 | ? LDVTy->getElementType()->getPointerTo(LI->getPointerAddressSpace()) | ||||
| 14142 | : LDVTy->getPointerTo(LI->getPointerAddressSpace()); | ||||
| 14143 | Type *PredTy = VectorType::get(Type::getInt1Ty(LDVTy->getContext()), | ||||
| 14144 | LDVTy->getElementCount()); | ||||
| 14145 | |||||
| 14146 | static const Intrinsic::ID SVELoadIntrs[3] = { | ||||
| 14147 | Intrinsic::aarch64_sve_ld2_sret, Intrinsic::aarch64_sve_ld3_sret, | ||||
| 14148 | Intrinsic::aarch64_sve_ld4_sret}; | ||||
| 14149 | static const Intrinsic::ID NEONLoadIntrs[3] = {Intrinsic::aarch64_neon_ld2, | ||||
| 14150 | Intrinsic::aarch64_neon_ld3, | ||||
| 14151 | Intrinsic::aarch64_neon_ld4}; | ||||
| 14152 | Function *LdNFunc; | ||||
| 14153 | if (UseScalable) | ||||
| 14154 | LdNFunc = Intrinsic::getDeclaration(LI->getModule(), | ||||
| 14155 | SVELoadIntrs[Factor - 2], {LDVTy}); | ||||
| 14156 | else | ||||
| 14157 | LdNFunc = Intrinsic::getDeclaration( | ||||
| 14158 | LI->getModule(), NEONLoadIntrs[Factor - 2], {LDVTy, PtrTy}); | ||||
| 14159 | |||||
| 14160 | // Holds sub-vectors extracted from the load intrinsic return values. The | ||||
| 14161 | // sub-vectors are associated with the shufflevector instructions they will | ||||
| 14162 | // replace. | ||||
| 14163 | DenseMap<ShuffleVectorInst *, SmallVector<Value *, 4>> SubVecs; | ||||
| 14164 | |||||
| 14165 | Value *PTrue = nullptr; | ||||
| 14166 | if (UseScalable) { | ||||
| 14167 | std::optional<unsigned> PgPattern = | ||||
| 14168 | getSVEPredPatternFromNumElements(FVTy->getNumElements()); | ||||
| 14169 | if (Subtarget->getMinSVEVectorSizeInBits() == | ||||
| 14170 | Subtarget->getMaxSVEVectorSizeInBits() && | ||||
| 14171 | Subtarget->getMinSVEVectorSizeInBits() == DL.getTypeSizeInBits(FVTy)) | ||||
| 14172 | PgPattern = AArch64SVEPredPattern::all; | ||||
| 14173 | |||||
| 14174 | auto *PTruePat = | ||||
| 14175 | ConstantInt::get(Type::getInt32Ty(LDVTy->getContext()), *PgPattern); | ||||
| 14176 | PTrue = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue, {PredTy}, | ||||
| 14177 | {PTruePat}); | ||||
| 14178 | } | ||||
| 14179 | |||||
| 14180 | for (unsigned LoadCount = 0; LoadCount < NumLoads; ++LoadCount) { | ||||
| 14181 | |||||
| 14182 | // If we're generating more than one load, compute the base address of | ||||
| 14183 | // subsequent loads as an offset from the previous. | ||||
| 14184 | if (LoadCount > 0) | ||||
| 14185 | BaseAddr = Builder.CreateConstGEP1_32(LDVTy->getElementType(), BaseAddr, | ||||
| 14186 | FVTy->getNumElements() * Factor); | ||||
| 14187 | |||||
| 14188 | CallInst *LdN; | ||||
| 14189 | if (UseScalable) | ||||
| 14190 | LdN = Builder.CreateCall( | ||||
| 14191 | LdNFunc, {PTrue, Builder.CreateBitCast(BaseAddr, PtrTy)}, "ldN"); | ||||
| 14192 | else | ||||
| 14193 | LdN = Builder.CreateCall(LdNFunc, Builder.CreateBitCast(BaseAddr, PtrTy), | ||||
| 14194 | "ldN"); | ||||
| 14195 | |||||
| 14196 | // Extract and store the sub-vectors returned by the load intrinsic. | ||||
| 14197 | for (unsigned i = 0; i < Shuffles.size(); i++) { | ||||
| 14198 | ShuffleVectorInst *SVI = Shuffles[i]; | ||||
| 14199 | unsigned Index = Indices[i]; | ||||
| 14200 | |||||
| 14201 | Value *SubVec = Builder.CreateExtractValue(LdN, Index); | ||||
| 14202 | |||||
| 14203 | if (UseScalable) | ||||
| 14204 | SubVec = Builder.CreateExtractVector( | ||||
| 14205 | FVTy, SubVec, | ||||
| 14206 | ConstantInt::get(Type::getInt64Ty(VTy->getContext()), 0)); | ||||
| 14207 | |||||
| 14208 | // Convert the integer vector to pointer vector if the element is pointer. | ||||
| 14209 | if (EltTy->isPointerTy()) | ||||
| 14210 | SubVec = Builder.CreateIntToPtr( | ||||
| 14211 | SubVec, FixedVectorType::get(SVI->getType()->getElementType(), | ||||
| 14212 | FVTy->getNumElements())); | ||||
| 14213 | |||||
| 14214 | SubVecs[SVI].push_back(SubVec); | ||||
| 14215 | } | ||||
| 14216 | } | ||||
| 14217 | |||||
| 14218 | // Replace uses of the shufflevector instructions with the sub-vectors | ||||
| 14219 | // returned by the load intrinsic. If a shufflevector instruction is | ||||
| 14220 | // associated with more than one sub-vector, those sub-vectors will be | ||||
| 14221 | // concatenated into a single wide vector. | ||||
| 14222 | for (ShuffleVectorInst *SVI : Shuffles) { | ||||
| 14223 | auto &SubVec = SubVecs[SVI]; | ||||
| 14224 | auto *WideVec = | ||||
| 14225 | SubVec.size() > 1 ? concatenateVectors(Builder, SubVec) : SubVec[0]; | ||||
| 14226 | SVI->replaceAllUsesWith(WideVec); | ||||
| 14227 | } | ||||
| 14228 | |||||
| 14229 | return true; | ||||
| 14230 | } | ||||
| 14231 | |||||
| 14232 | /// Lower an interleaved store into a stN intrinsic. | ||||
| 14233 | /// | ||||
| 14234 | /// E.g. Lower an interleaved store (Factor = 3): | ||||
| 14235 | /// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1, | ||||
| 14236 | /// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> | ||||
| 14237 | /// store <12 x i32> %i.vec, <12 x i32>* %ptr | ||||
| 14238 | /// | ||||
| 14239 | /// Into: | ||||
| 14240 | /// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3> | ||||
| 14241 | /// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7> | ||||
| 14242 | /// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11> | ||||
| 14243 | /// call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr) | ||||
| 14244 | /// | ||||
| 14245 | /// Note that the new shufflevectors will be removed and we'll only generate one | ||||
| 14246 | /// st3 instruction in CodeGen. | ||||
| 14247 | /// | ||||
| 14248 | /// Example for a more general valid mask (Factor 3). Lower: | ||||
| 14249 | /// %i.vec = shuffle <32 x i32> %v0, <32 x i32> %v1, | ||||
| 14250 | /// <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19> | ||||
| 14251 | /// store <12 x i32> %i.vec, <12 x i32>* %ptr | ||||
| 14252 | /// | ||||
| 14253 | /// Into: | ||||
| 14254 | /// %sub.v0 = shuffle <32 x i32> %v0, <32 x i32> v1, <4, 5, 6, 7> | ||||
| 14255 | /// %sub.v1 = shuffle <32 x i32> %v0, <32 x i32> v1, <32, 33, 34, 35> | ||||
| 14256 | /// %sub.v2 = shuffle <32 x i32> %v0, <32 x i32> v1, <16, 17, 18, 19> | ||||
| 14257 | /// call void llvm.aarch64.neon.st3(%sub.v0, %sub.v1, %sub.v2, %ptr) | ||||
| 14258 | bool AArch64TargetLowering::lowerInterleavedStore(StoreInst *SI, | ||||
| 14259 | ShuffleVectorInst *SVI, | ||||
| 14260 | unsigned Factor) const { | ||||
| 14261 | // Skip if streaming compatible SVE is enabled, because it generates invalid | ||||
| 14262 | // code in streaming mode when SVE length is not specified. | ||||
| 14263 | if (Subtarget->forceStreamingCompatibleSVE()) | ||||
| 14264 | return false; | ||||
| 14265 | |||||
| 14266 | assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&(static_cast <bool> (Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && "Invalid interleave factor" ) ? void (0) : __assert_fail ("Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && \"Invalid interleave factor\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 14267, __extension__ __PRETTY_FUNCTION__)) | ||||
| 14267 | "Invalid interleave factor")(static_cast <bool> (Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && "Invalid interleave factor" ) ? void (0) : __assert_fail ("Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && \"Invalid interleave factor\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 14267, __extension__ __PRETTY_FUNCTION__)); | ||||
| 14268 | |||||
| 14269 | auto *VecTy = cast<FixedVectorType>(SVI->getType()); | ||||
| 14270 | assert(VecTy->getNumElements() % Factor == 0 && "Invalid interleaved store")(static_cast <bool> (VecTy->getNumElements() % Factor == 0 && "Invalid interleaved store") ? void (0) : __assert_fail ("VecTy->getNumElements() % Factor == 0 && \"Invalid interleaved store\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 14270, __extension__ __PRETTY_FUNCTION__)); | ||||
| 14271 | |||||
| 14272 | unsigned LaneLen = VecTy->getNumElements() / Factor; | ||||
| 14273 | Type *EltTy = VecTy->getElementType(); | ||||
| 14274 | auto *SubVecTy = FixedVectorType::get(EltTy, LaneLen); | ||||
| 14275 | |||||
| 14276 | const DataLayout &DL = SI->getModule()->getDataLayout(); | ||||
| 14277 | bool UseScalable; | ||||
| 14278 | |||||
| 14279 | // Skip if we do not have NEON and skip illegal vector types. We can | ||||
| 14280 | // "legalize" wide vector types into multiple interleaved accesses as long as | ||||
| 14281 | // the vector types are divisible by 128. | ||||
| 14282 | if (!Subtarget->hasNEON() || | ||||
| 14283 | !isLegalInterleavedAccessType(SubVecTy, DL, UseScalable)) | ||||
| 14284 | return false; | ||||
| 14285 | |||||
| 14286 | unsigned NumStores = getNumInterleavedAccesses(SubVecTy, DL, UseScalable); | ||||
| 14287 | |||||
| 14288 | Value *Op0 = SVI->getOperand(0); | ||||
| 14289 | Value *Op1 = SVI->getOperand(1); | ||||
| 14290 | IRBuilder<> Builder(SI); | ||||
| 14291 | |||||
| 14292 | // StN intrinsics don't support pointer vectors as arguments. Convert pointer | ||||
| 14293 | // vectors to integer vectors. | ||||
| 14294 | if (EltTy->isPointerTy()) { | ||||
| 14295 | Type *IntTy = DL.getIntPtrType(EltTy); | ||||
| 14296 | unsigned NumOpElts = | ||||
| 14297 | cast<FixedVectorType>(Op0->getType())->getNumElements(); | ||||
| 14298 | |||||
| 14299 | // Convert to the corresponding integer vector. | ||||
| 14300 | auto *IntVecTy = FixedVectorType::get(IntTy, NumOpElts); | ||||
| 14301 | Op0 = Builder.CreatePtrToInt(Op0, IntVecTy); | ||||
| 14302 | Op1 = Builder.CreatePtrToInt(Op1, IntVecTy); | ||||
| 14303 | |||||
| 14304 | SubVecTy = FixedVectorType::get(IntTy, LaneLen); | ||||
| 14305 | } | ||||
| 14306 | |||||
| 14307 | // If we're going to generate more than one store, reset the lane length | ||||
| 14308 | // and sub-vector type to something legal. | ||||
| 14309 | LaneLen /= NumStores; | ||||
| 14310 | SubVecTy = FixedVectorType::get(SubVecTy->getElementType(), LaneLen); | ||||
| 14311 | |||||
| 14312 | auto *STVTy = UseScalable ? cast<VectorType>(getSVEContainerIRType(SubVecTy)) | ||||
| 14313 | : SubVecTy; | ||||
| 14314 | |||||
| 14315 | // The base address of the store. | ||||
| 14316 | Value *BaseAddr = SI->getPointerOperand(); | ||||
| 14317 | |||||
| 14318 | if (NumStores > 1) { | ||||
| 14319 | // We will compute the pointer operand of each store from the original base | ||||
| 14320 | // address using GEPs. Cast the base address to a pointer to the scalar | ||||
| 14321 | // element type. | ||||
| 14322 | BaseAddr = Builder.CreateBitCast( | ||||
| 14323 | BaseAddr, | ||||
| 14324 | SubVecTy->getElementType()->getPointerTo(SI->getPointerAddressSpace())); | ||||
| 14325 | } | ||||
| 14326 | |||||
| 14327 | auto Mask = SVI->getShuffleMask(); | ||||
| 14328 | |||||
| 14329 | // Sanity check if all the indices are NOT in range. | ||||
| 14330 | // If mask is `undef` or `poison`, `Mask` may be a vector of -1s. | ||||
| 14331 | // If all of them are `undef`, OOB read will happen later. | ||||
| 14332 | if (llvm::all_of(Mask, [](int Idx) { return Idx == UndefMaskElem; })) { | ||||
| 14333 | return false; | ||||
| 14334 | } | ||||
| 14335 | |||||
| 14336 | Type *PtrTy = | ||||
| 14337 | UseScalable | ||||
| 14338 | ? STVTy->getElementType()->getPointerTo(SI->getPointerAddressSpace()) | ||||
| 14339 | : STVTy->getPointerTo(SI->getPointerAddressSpace()); | ||||
| 14340 | Type *PredTy = VectorType::get(Type::getInt1Ty(STVTy->getContext()), | ||||
| 14341 | STVTy->getElementCount()); | ||||
| 14342 | |||||
| 14343 | static const Intrinsic::ID SVEStoreIntrs[3] = {Intrinsic::aarch64_sve_st2, | ||||
| 14344 | Intrinsic::aarch64_sve_st3, | ||||
| 14345 | Intrinsic::aarch64_sve_st4}; | ||||
| 14346 | static const Intrinsic::ID NEONStoreIntrs[3] = {Intrinsic::aarch64_neon_st2, | ||||
| 14347 | Intrinsic::aarch64_neon_st3, | ||||
| 14348 | Intrinsic::aarch64_neon_st4}; | ||||
| 14349 | Function *StNFunc; | ||||
| 14350 | if (UseScalable) | ||||
| 14351 | StNFunc = Intrinsic::getDeclaration(SI->getModule(), | ||||
| 14352 | SVEStoreIntrs[Factor - 2], {STVTy}); | ||||
| 14353 | else | ||||
| 14354 | StNFunc = Intrinsic::getDeclaration( | ||||
| 14355 | SI->getModule(), NEONStoreIntrs[Factor - 2], {STVTy, PtrTy}); | ||||
| 14356 | |||||
| 14357 | Value *PTrue = nullptr; | ||||
| 14358 | if (UseScalable) { | ||||
| 14359 | std::optional<unsigned> PgPattern = | ||||
| 14360 | getSVEPredPatternFromNumElements(SubVecTy->getNumElements()); | ||||
| 14361 | if (Subtarget->getMinSVEVectorSizeInBits() == | ||||
| 14362 | Subtarget->getMaxSVEVectorSizeInBits() && | ||||
| 14363 | Subtarget->getMinSVEVectorSizeInBits() == | ||||
| 14364 | DL.getTypeSizeInBits(SubVecTy)) | ||||
| 14365 | PgPattern = AArch64SVEPredPattern::all; | ||||
| 14366 | |||||
| 14367 | auto *PTruePat = | ||||
| 14368 | ConstantInt::get(Type::getInt32Ty(STVTy->getContext()), *PgPattern); | ||||
| 14369 | PTrue = Builder.CreateIntrinsic(Intrinsic::aarch64_sve_ptrue, {PredTy}, | ||||
| 14370 | {PTruePat}); | ||||
| 14371 | } | ||||
| 14372 | |||||
| 14373 | for (unsigned StoreCount = 0; StoreCount < NumStores; ++StoreCount) { | ||||
| 14374 | |||||
| 14375 | SmallVector<Value *, 5> Ops; | ||||
| 14376 | |||||
| 14377 | // Split the shufflevector operands into sub vectors for the new stN call. | ||||
| 14378 | for (unsigned i = 0; i < Factor; i++) { | ||||
| 14379 | Value *Shuffle; | ||||
| 14380 | unsigned IdxI = StoreCount * LaneLen * Factor + i; | ||||
| 14381 | if (Mask[IdxI] >= 0) { | ||||
| 14382 | Shuffle = Builder.CreateShuffleVector( | ||||
| 14383 | Op0, Op1, createSequentialMask(Mask[IdxI], LaneLen, 0)); | ||||
| 14384 | } else { | ||||
| 14385 | unsigned StartMask = 0; | ||||
| 14386 | for (unsigned j = 1; j < LaneLen; j++) { | ||||
| 14387 | unsigned IdxJ = StoreCount * LaneLen * Factor + j * Factor + i; | ||||
| 14388 | if (Mask[IdxJ] >= 0) { | ||||
| 14389 | StartMask = Mask[IdxJ] - j; | ||||
| 14390 | break; | ||||
| 14391 | } | ||||
| 14392 | } | ||||
| 14393 | // Note: Filling undef gaps with random elements is ok, since | ||||
| 14394 | // those elements were being written anyway (with undefs). | ||||
| 14395 | // In the case of all undefs we're defaulting to using elems from 0 | ||||
| 14396 | // Note: StartMask cannot be negative, it's checked in | ||||
| 14397 | // isReInterleaveMask | ||||
| 14398 | Shuffle = Builder.CreateShuffleVector( | ||||
| 14399 | Op0, Op1, createSequentialMask(StartMask, LaneLen, 0)); | ||||
| 14400 | } | ||||
| 14401 | |||||
| 14402 | if (UseScalable) | ||||
| 14403 | Shuffle = Builder.CreateInsertVector( | ||||
| 14404 | STVTy, UndefValue::get(STVTy), Shuffle, | ||||
| 14405 | ConstantInt::get(Type::getInt64Ty(STVTy->getContext()), 0)); | ||||
| 14406 | |||||
| 14407 | Ops.push_back(Shuffle); | ||||
| 14408 | } | ||||
| 14409 | |||||
| 14410 | if (UseScalable) | ||||
| 14411 | Ops.push_back(PTrue); | ||||
| 14412 | |||||
| 14413 | // If we generating more than one store, we compute the base address of | ||||
| 14414 | // subsequent stores as an offset from the previous. | ||||
| 14415 | if (StoreCount > 0) | ||||
| 14416 | BaseAddr = Builder.CreateConstGEP1_32(SubVecTy->getElementType(), | ||||
| 14417 | BaseAddr, LaneLen * Factor); | ||||
| 14418 | |||||
| 14419 | Ops.push_back(Builder.CreateBitCast(BaseAddr, PtrTy)); | ||||
| 14420 | Builder.CreateCall(StNFunc, Ops); | ||||
| 14421 | } | ||||
| 14422 | return true; | ||||
| 14423 | } | ||||
| 14424 | |||||
| 14425 | EVT AArch64TargetLowering::getOptimalMemOpType( | ||||
| 14426 | const MemOp &Op, const AttributeList &FuncAttributes) const { | ||||
| 14427 | bool CanImplicitFloat = !FuncAttributes.hasFnAttr(Attribute::NoImplicitFloat); | ||||
| 14428 | bool CanUseNEON = Subtarget->hasNEON() && CanImplicitFloat; | ||||
| 14429 | bool CanUseFP = Subtarget->hasFPARMv8() && CanImplicitFloat; | ||||
| 14430 | // Only use AdvSIMD to implement memset of 32-byte and above. It would have | ||||
| 14431 | // taken one instruction to materialize the v2i64 zero and one store (with | ||||
| 14432 | // restrictive addressing mode). Just do i64 stores. | ||||
| 14433 | bool IsSmallMemset = Op.isMemset() && Op.size() < 32; | ||||
| 14434 | auto AlignmentIsAcceptable = [&](EVT VT, Align AlignCheck) { | ||||
| 14435 | if (Op.isAligned(AlignCheck)) | ||||
| 14436 | return true; | ||||
| 14437 | unsigned Fast; | ||||
| 14438 | return allowsMisalignedMemoryAccesses(VT, 0, Align(1), | ||||
| 14439 | MachineMemOperand::MONone, &Fast) && | ||||
| 14440 | Fast; | ||||
| 14441 | }; | ||||
| 14442 | |||||
| 14443 | if (CanUseNEON && Op.isMemset() && !IsSmallMemset && | ||||
| 14444 | AlignmentIsAcceptable(MVT::v16i8, Align(16))) | ||||
| 14445 | return MVT::v16i8; | ||||
| 14446 | if (CanUseFP && !IsSmallMemset && AlignmentIsAcceptable(MVT::f128, Align(16))) | ||||
| 14447 | return MVT::f128; | ||||
| 14448 | if (Op.size() >= 8 && AlignmentIsAcceptable(MVT::i64, Align(8))) | ||||
| 14449 | return MVT::i64; | ||||
| 14450 | if (Op.size() >= 4 && AlignmentIsAcceptable(MVT::i32, Align(4))) | ||||
| 14451 | return MVT::i32; | ||||
| 14452 | return MVT::Other; | ||||
| 14453 | } | ||||
| 14454 | |||||
| 14455 | LLT AArch64TargetLowering::getOptimalMemOpLLT( | ||||
| 14456 | const MemOp &Op, const AttributeList &FuncAttributes) const { | ||||
| 14457 | bool CanImplicitFloat = !FuncAttributes.hasFnAttr(Attribute::NoImplicitFloat); | ||||
| 14458 | bool CanUseNEON = Subtarget->hasNEON() && CanImplicitFloat; | ||||
| 14459 | bool CanUseFP = Subtarget->hasFPARMv8() && CanImplicitFloat; | ||||
| 14460 | // Only use AdvSIMD to implement memset of 32-byte and above. It would have | ||||
| 14461 | // taken one instruction to materialize the v2i64 zero and one store (with | ||||
| 14462 | // restrictive addressing mode). Just do i64 stores. | ||||
| 14463 | bool IsSmallMemset = Op.isMemset() && Op.size() < 32; | ||||
| 14464 | auto AlignmentIsAcceptable = [&](EVT VT, Align AlignCheck) { | ||||
| 14465 | if (Op.isAligned(AlignCheck)) | ||||
| 14466 | return true; | ||||
| 14467 | unsigned Fast; | ||||
| 14468 | return allowsMisalignedMemoryAccesses(VT, 0, Align(1), | ||||
| 14469 | MachineMemOperand::MONone, &Fast) && | ||||
| 14470 | Fast; | ||||
| 14471 | }; | ||||
| 14472 | |||||
| 14473 | if (CanUseNEON && Op.isMemset() && !IsSmallMemset && | ||||
| 14474 | AlignmentIsAcceptable(MVT::v2i64, Align(16))) | ||||
| 14475 | return LLT::fixed_vector(2, 64); | ||||
| 14476 | if (CanUseFP && !IsSmallMemset && AlignmentIsAcceptable(MVT::f128, Align(16))) | ||||
| 14477 | return LLT::scalar(128); | ||||
| 14478 | if (Op.size() >= 8 && AlignmentIsAcceptable(MVT::i64, Align(8))) | ||||
| 14479 | return LLT::scalar(64); | ||||
| 14480 | if (Op.size() >= 4 && AlignmentIsAcceptable(MVT::i32, Align(4))) | ||||
| 14481 | return LLT::scalar(32); | ||||
| 14482 | return LLT(); | ||||
| 14483 | } | ||||
| 14484 | |||||
| 14485 | // 12-bit optionally shifted immediates are legal for adds. | ||||
| 14486 | bool AArch64TargetLowering::isLegalAddImmediate(int64_t Immed) const { | ||||
| 14487 | if (Immed == std::numeric_limits<int64_t>::min()) { | ||||
| 14488 | LLVM_DEBUG(dbgs() << "Illegal add imm " << Immeddo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "Illegal add imm " << Immed << ": avoid UB for INT64_MIN\n"; } } while (false ) | ||||
| 14489 | << ": avoid UB for INT64_MIN\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "Illegal add imm " << Immed << ": avoid UB for INT64_MIN\n"; } } while (false ); | ||||
| 14490 | return false; | ||||
| 14491 | } | ||||
| 14492 | // Same encoding for add/sub, just flip the sign. | ||||
| 14493 | Immed = std::abs(Immed); | ||||
| 14494 | bool IsLegal = ((Immed >> 12) == 0 || | ||||
| 14495 | ((Immed & 0xfff) == 0 && Immed >> 24 == 0)); | ||||
| 14496 | LLVM_DEBUG(dbgs() << "Is " << Immeddo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "Is " << Immed << " legal add imm: " << (IsLegal ? "yes" : "no") << "\n"; } } while (false) | ||||
| 14497 | << " legal add imm: " << (IsLegal ? "yes" : "no") << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "Is " << Immed << " legal add imm: " << (IsLegal ? "yes" : "no") << "\n"; } } while (false); | ||||
| 14498 | return IsLegal; | ||||
| 14499 | } | ||||
| 14500 | |||||
| 14501 | // Return false to prevent folding | ||||
| 14502 | // (mul (add x, c1), c2) -> (add (mul x, c2), c2*c1) in DAGCombine, | ||||
| 14503 | // if the folding leads to worse code. | ||||
| 14504 | bool AArch64TargetLowering::isMulAddWithConstProfitable( | ||||
| 14505 | SDValue AddNode, SDValue ConstNode) const { | ||||
| 14506 | // Let the DAGCombiner decide for vector types and large types. | ||||
| 14507 | const EVT VT = AddNode.getValueType(); | ||||
| 14508 | if (VT.isVector() || VT.getScalarSizeInBits() > 64) | ||||
| 14509 | return true; | ||||
| 14510 | |||||
| 14511 | // It is worse if c1 is legal add immediate, while c1*c2 is not | ||||
| 14512 | // and has to be composed by at least two instructions. | ||||
| 14513 | const ConstantSDNode *C1Node = cast<ConstantSDNode>(AddNode.getOperand(1)); | ||||
| 14514 | const ConstantSDNode *C2Node = cast<ConstantSDNode>(ConstNode); | ||||
| 14515 | const int64_t C1 = C1Node->getSExtValue(); | ||||
| 14516 | const APInt C1C2 = C1Node->getAPIntValue() * C2Node->getAPIntValue(); | ||||
| 14517 | if (!isLegalAddImmediate(C1) || isLegalAddImmediate(C1C2.getSExtValue())) | ||||
| 14518 | return true; | ||||
| 14519 | SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn; | ||||
| 14520 | AArch64_IMM::expandMOVImm(C1C2.getZExtValue(), VT.getSizeInBits(), Insn); | ||||
| 14521 | if (Insn.size() > 1) | ||||
| 14522 | return false; | ||||
| 14523 | |||||
| 14524 | // Default to true and let the DAGCombiner decide. | ||||
| 14525 | return true; | ||||
| 14526 | } | ||||
| 14527 | |||||
| 14528 | // Integer comparisons are implemented with ADDS/SUBS, so the range of valid | ||||
| 14529 | // immediates is the same as for an add or a sub. | ||||
| 14530 | bool AArch64TargetLowering::isLegalICmpImmediate(int64_t Immed) const { | ||||
| 14531 | return isLegalAddImmediate(Immed); | ||||
| 14532 | } | ||||
| 14533 | |||||
| 14534 | /// isLegalAddressingMode - Return true if the addressing mode represented | ||||
| 14535 | /// by AM is legal for this target, for a load/store of the specified type. | ||||
| 14536 | bool AArch64TargetLowering::isLegalAddressingMode(const DataLayout &DL, | ||||
| 14537 | const AddrMode &AM, Type *Ty, | ||||
| 14538 | unsigned AS, Instruction *I) const { | ||||
| 14539 | // AArch64 has five basic addressing modes: | ||||
| 14540 | // reg | ||||
| 14541 | // reg + 9-bit signed offset | ||||
| 14542 | // reg + SIZE_IN_BYTES * 12-bit unsigned offset | ||||
| 14543 | // reg1 + reg2 | ||||
| 14544 | // reg + SIZE_IN_BYTES * reg | ||||
| 14545 | |||||
| 14546 | // No global is ever allowed as a base. | ||||
| 14547 | if (AM.BaseGV) | ||||
| 14548 | return false; | ||||
| 14549 | |||||
| 14550 | // No reg+reg+imm addressing. | ||||
| 14551 | if (AM.HasBaseReg && AM.BaseOffs && AM.Scale) | ||||
| 14552 | return false; | ||||
| 14553 | |||||
| 14554 | // FIXME: Update this method to support scalable addressing modes. | ||||
| 14555 | if (isa<ScalableVectorType>(Ty)) { | ||||
| 14556 | uint64_t VecElemNumBytes = | ||||
| 14557 | DL.getTypeSizeInBits(cast<VectorType>(Ty)->getElementType()) / 8; | ||||
| 14558 | return AM.HasBaseReg && !AM.BaseOffs && | ||||
| 14559 | (AM.Scale == 0 || (uint64_t)AM.Scale == VecElemNumBytes); | ||||
| 14560 | } | ||||
| 14561 | |||||
| 14562 | // check reg + imm case: | ||||
| 14563 | // i.e., reg + 0, reg + imm9, reg + SIZE_IN_BYTES * uimm12 | ||||
| 14564 | uint64_t NumBytes = 0; | ||||
| 14565 | if (Ty->isSized()) { | ||||
| 14566 | uint64_t NumBits = DL.getTypeSizeInBits(Ty); | ||||
| 14567 | NumBytes = NumBits / 8; | ||||
| 14568 | if (!isPowerOf2_64(NumBits)) | ||||
| 14569 | NumBytes = 0; | ||||
| 14570 | } | ||||
| 14571 | |||||
| 14572 | if (!AM.Scale) { | ||||
| 14573 | int64_t Offset = AM.BaseOffs; | ||||
| 14574 | |||||
| 14575 | // 9-bit signed offset | ||||
| 14576 | if (isInt<9>(Offset)) | ||||
| 14577 | return true; | ||||
| 14578 | |||||
| 14579 | // 12-bit unsigned offset | ||||
| 14580 | unsigned shift = Log2_64(NumBytes); | ||||
| 14581 | if (NumBytes && Offset > 0 && (Offset / NumBytes) <= (1LL << 12) - 1 && | ||||
| 14582 | // Must be a multiple of NumBytes (NumBytes is a power of 2) | ||||
| 14583 | (Offset >> shift) << shift == Offset) | ||||
| 14584 | return true; | ||||
| 14585 | return false; | ||||
| 14586 | } | ||||
| 14587 | |||||
| 14588 | // Check reg1 + SIZE_IN_BYTES * reg2 and reg1 + reg2 | ||||
| 14589 | |||||
| 14590 | return AM.Scale == 1 || (AM.Scale > 0 && (uint64_t)AM.Scale == NumBytes); | ||||
| 14591 | } | ||||
| 14592 | |||||
| 14593 | bool AArch64TargetLowering::shouldConsiderGEPOffsetSplit() const { | ||||
| 14594 | // Consider splitting large offset of struct or array. | ||||
| 14595 | return true; | ||||
| 14596 | } | ||||
| 14597 | |||||
| 14598 | bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd( | ||||
| 14599 | const MachineFunction &MF, EVT VT) const { | ||||
| 14600 | VT = VT.getScalarType(); | ||||
| 14601 | |||||
| 14602 | if (!VT.isSimple()) | ||||
| 14603 | return false; | ||||
| 14604 | |||||
| 14605 | switch (VT.getSimpleVT().SimpleTy) { | ||||
| 14606 | case MVT::f16: | ||||
| 14607 | return Subtarget->hasFullFP16(); | ||||
| 14608 | case MVT::f32: | ||||
| 14609 | case MVT::f64: | ||||
| 14610 | return true; | ||||
| 14611 | default: | ||||
| 14612 | break; | ||||
| 14613 | } | ||||
| 14614 | |||||
| 14615 | return false; | ||||
| 14616 | } | ||||
| 14617 | |||||
| 14618 | bool AArch64TargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, | ||||
| 14619 | Type *Ty) const { | ||||
| 14620 | switch (Ty->getScalarType()->getTypeID()) { | ||||
| 14621 | case Type::FloatTyID: | ||||
| 14622 | case Type::DoubleTyID: | ||||
| 14623 | return true; | ||||
| 14624 | default: | ||||
| 14625 | return false; | ||||
| 14626 | } | ||||
| 14627 | } | ||||
| 14628 | |||||
| 14629 | bool AArch64TargetLowering::generateFMAsInMachineCombiner( | ||||
| 14630 | EVT VT, CodeGenOpt::Level OptLevel) const { | ||||
| 14631 | return (OptLevel >= CodeGenOpt::Aggressive) && !VT.isScalableVector() && | ||||
| 14632 | !useSVEForFixedLengthVectorVT(VT); | ||||
| 14633 | } | ||||
| 14634 | |||||
| 14635 | const MCPhysReg * | ||||
| 14636 | AArch64TargetLowering::getScratchRegisters(CallingConv::ID) const { | ||||
| 14637 | // LR is a callee-save register, but we must treat it as clobbered by any call | ||||
| 14638 | // site. Hence we include LR in the scratch registers, which are in turn added | ||||
| 14639 | // as implicit-defs for stackmaps and patchpoints. | ||||
| 14640 | static const MCPhysReg ScratchRegs[] = { | ||||
| 14641 | AArch64::X16, AArch64::X17, AArch64::LR, 0 | ||||
| 14642 | }; | ||||
| 14643 | return ScratchRegs; | ||||
| 14644 | } | ||||
| 14645 | |||||
| 14646 | bool | ||||
| 14647 | AArch64TargetLowering::isDesirableToCommuteWithShift(const SDNode *N, | ||||
| 14648 | CombineLevel Level) const { | ||||
| 14649 | assert((N->getOpcode() == ISD::SHL || N->getOpcode() == ISD::SRA ||(static_cast <bool> ((N->getOpcode() == ISD::SHL || N ->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL ) && "Expected shift op") ? void (0) : __assert_fail ( "(N->getOpcode() == ISD::SHL || N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) && \"Expected shift op\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 14651, __extension__ __PRETTY_FUNCTION__)) | ||||
| 14650 | N->getOpcode() == ISD::SRL) &&(static_cast <bool> ((N->getOpcode() == ISD::SHL || N ->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL ) && "Expected shift op") ? void (0) : __assert_fail ( "(N->getOpcode() == ISD::SHL || N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) && \"Expected shift op\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 14651, __extension__ __PRETTY_FUNCTION__)) | ||||
| 14651 | "Expected shift op")(static_cast <bool> ((N->getOpcode() == ISD::SHL || N ->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL ) && "Expected shift op") ? void (0) : __assert_fail ( "(N->getOpcode() == ISD::SHL || N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) && \"Expected shift op\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 14651, __extension__ __PRETTY_FUNCTION__)); | ||||
| 14652 | |||||
| 14653 | SDValue ShiftLHS = N->getOperand(0); | ||||
| 14654 | EVT VT = N->getValueType(0); | ||||
| 14655 | |||||
| 14656 | // If ShiftLHS is unsigned bit extraction: ((x >> C) & mask), then do not | ||||
| 14657 | // combine it with shift 'N' to let it be lowered to UBFX except: | ||||
| 14658 | // ((x >> C) & mask) << C. | ||||
| 14659 | if (ShiftLHS.getOpcode() == ISD::AND && (VT == MVT::i32 || VT == MVT::i64) && | ||||
| 14660 | isa<ConstantSDNode>(ShiftLHS.getOperand(1))) { | ||||
| 14661 | uint64_t TruncMask = ShiftLHS.getConstantOperandVal(1); | ||||
| 14662 | if (isMask_64(TruncMask)) { | ||||
| 14663 | SDValue AndLHS = ShiftLHS.getOperand(0); | ||||
| 14664 | if (AndLHS.getOpcode() == ISD::SRL) { | ||||
| 14665 | if (auto *SRLC = dyn_cast<ConstantSDNode>(AndLHS.getOperand(1))) { | ||||
| 14666 | if (N->getOpcode() == ISD::SHL) | ||||
| 14667 | if (auto *SHLC = dyn_cast<ConstantSDNode>(N->getOperand(1))) | ||||
| 14668 | return SRLC->getZExtValue() == SHLC->getZExtValue(); | ||||
| 14669 | return false; | ||||
| 14670 | } | ||||
| 14671 | } | ||||
| 14672 | } | ||||
| 14673 | } | ||||
| 14674 | return true; | ||||
| 14675 | } | ||||
| 14676 | |||||
| 14677 | bool AArch64TargetLowering::isDesirableToCommuteXorWithShift( | ||||
| 14678 | const SDNode *N) const { | ||||
| 14679 | assert(N->getOpcode() == ISD::XOR &&(static_cast <bool> (N->getOpcode() == ISD::XOR && (N->getOperand(0).getOpcode() == ISD::SHL || N->getOperand (0).getOpcode() == ISD::SRL) && "Expected XOR(SHIFT) pattern" ) ? void (0) : __assert_fail ("N->getOpcode() == ISD::XOR && (N->getOperand(0).getOpcode() == ISD::SHL || N->getOperand(0).getOpcode() == ISD::SRL) && \"Expected XOR(SHIFT) pattern\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 14682, __extension__ __PRETTY_FUNCTION__)) | ||||
| 14680 | (N->getOperand(0).getOpcode() == ISD::SHL ||(static_cast <bool> (N->getOpcode() == ISD::XOR && (N->getOperand(0).getOpcode() == ISD::SHL || N->getOperand (0).getOpcode() == ISD::SRL) && "Expected XOR(SHIFT) pattern" ) ? void (0) : __assert_fail ("N->getOpcode() == ISD::XOR && (N->getOperand(0).getOpcode() == ISD::SHL || N->getOperand(0).getOpcode() == ISD::SRL) && \"Expected XOR(SHIFT) pattern\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 14682, __extension__ __PRETTY_FUNCTION__)) | ||||
| 14681 | N->getOperand(0).getOpcode() == ISD::SRL) &&(static_cast <bool> (N->getOpcode() == ISD::XOR && (N->getOperand(0).getOpcode() == ISD::SHL || N->getOperand (0).getOpcode() == ISD::SRL) && "Expected XOR(SHIFT) pattern" ) ? void (0) : __assert_fail ("N->getOpcode() == ISD::XOR && (N->getOperand(0).getOpcode() == ISD::SHL || N->getOperand(0).getOpcode() == ISD::SRL) && \"Expected XOR(SHIFT) pattern\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 14682, __extension__ __PRETTY_FUNCTION__)) | ||||
| 14682 | "Expected XOR(SHIFT) pattern")(static_cast <bool> (N->getOpcode() == ISD::XOR && (N->getOperand(0).getOpcode() == ISD::SHL || N->getOperand (0).getOpcode() == ISD::SRL) && "Expected XOR(SHIFT) pattern" ) ? void (0) : __assert_fail ("N->getOpcode() == ISD::XOR && (N->getOperand(0).getOpcode() == ISD::SHL || N->getOperand(0).getOpcode() == ISD::SRL) && \"Expected XOR(SHIFT) pattern\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 14682, __extension__ __PRETTY_FUNCTION__)); | ||||
| 14683 | |||||
| 14684 | // Only commute if the entire NOT mask is a hidden shifted mask. | ||||
| 14685 | auto *XorC = dyn_cast<ConstantSDNode>(N->getOperand(1)); | ||||
| 14686 | auto *ShiftC = dyn_cast<ConstantSDNode>(N->getOperand(0).getOperand(1)); | ||||
| 14687 | if (XorC && ShiftC) { | ||||
| 14688 | unsigned MaskIdx, MaskLen; | ||||
| 14689 | if (XorC->getAPIntValue().isShiftedMask(MaskIdx, MaskLen)) { | ||||
| 14690 | unsigned ShiftAmt = ShiftC->getZExtValue(); | ||||
| 14691 | unsigned BitWidth = N->getValueType(0).getScalarSizeInBits(); | ||||
| 14692 | if (N->getOperand(0).getOpcode() == ISD::SHL) | ||||
| 14693 | return MaskIdx == ShiftAmt && MaskLen == (BitWidth - ShiftAmt); | ||||
| 14694 | return MaskIdx == 0 && MaskLen == (BitWidth - ShiftAmt); | ||||
| 14695 | } | ||||
| 14696 | } | ||||
| 14697 | |||||
| 14698 | return false; | ||||
| 14699 | } | ||||
| 14700 | |||||
| 14701 | bool AArch64TargetLowering::shouldFoldConstantShiftPairToMask( | ||||
| 14702 | const SDNode *N, CombineLevel Level) const { | ||||
| 14703 | assert(((N->getOpcode() == ISD::SHL &&(static_cast <bool> (((N->getOpcode() == ISD::SHL && N->getOperand(0).getOpcode() == ISD::SRL) || (N->getOpcode () == ISD::SRL && N->getOperand(0).getOpcode() == ISD ::SHL)) && "Expected shift-shift mask") ? void (0) : __assert_fail ("((N->getOpcode() == ISD::SHL && N->getOperand(0).getOpcode() == ISD::SRL) || (N->getOpcode() == ISD::SRL && N->getOperand(0).getOpcode() == ISD::SHL)) && \"Expected shift-shift mask\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 14707, __extension__ __PRETTY_FUNCTION__)) | ||||
| 14704 | N->getOperand(0).getOpcode() == ISD::SRL) ||(static_cast <bool> (((N->getOpcode() == ISD::SHL && N->getOperand(0).getOpcode() == ISD::SRL) || (N->getOpcode () == ISD::SRL && N->getOperand(0).getOpcode() == ISD ::SHL)) && "Expected shift-shift mask") ? void (0) : __assert_fail ("((N->getOpcode() == ISD::SHL && N->getOperand(0).getOpcode() == ISD::SRL) || (N->getOpcode() == ISD::SRL && N->getOperand(0).getOpcode() == ISD::SHL)) && \"Expected shift-shift mask\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 14707, __extension__ __PRETTY_FUNCTION__)) | ||||
| 14705 | (N->getOpcode() == ISD::SRL &&(static_cast <bool> (((N->getOpcode() == ISD::SHL && N->getOperand(0).getOpcode() == ISD::SRL) || (N->getOpcode () == ISD::SRL && N->getOperand(0).getOpcode() == ISD ::SHL)) && "Expected shift-shift mask") ? void (0) : __assert_fail ("((N->getOpcode() == ISD::SHL && N->getOperand(0).getOpcode() == ISD::SRL) || (N->getOpcode() == ISD::SRL && N->getOperand(0).getOpcode() == ISD::SHL)) && \"Expected shift-shift mask\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 14707, __extension__ __PRETTY_FUNCTION__)) | ||||
| 14706 | N->getOperand(0).getOpcode() == ISD::SHL)) &&(static_cast <bool> (((N->getOpcode() == ISD::SHL && N->getOperand(0).getOpcode() == ISD::SRL) || (N->getOpcode () == ISD::SRL && N->getOperand(0).getOpcode() == ISD ::SHL)) && "Expected shift-shift mask") ? void (0) : __assert_fail ("((N->getOpcode() == ISD::SHL && N->getOperand(0).getOpcode() == ISD::SRL) || (N->getOpcode() == ISD::SRL && N->getOperand(0).getOpcode() == ISD::SHL)) && \"Expected shift-shift mask\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 14707, __extension__ __PRETTY_FUNCTION__)) | ||||
| 14707 | "Expected shift-shift mask")(static_cast <bool> (((N->getOpcode() == ISD::SHL && N->getOperand(0).getOpcode() == ISD::SRL) || (N->getOpcode () == ISD::SRL && N->getOperand(0).getOpcode() == ISD ::SHL)) && "Expected shift-shift mask") ? void (0) : __assert_fail ("((N->getOpcode() == ISD::SHL && N->getOperand(0).getOpcode() == ISD::SRL) || (N->getOpcode() == ISD::SRL && N->getOperand(0).getOpcode() == ISD::SHL)) && \"Expected shift-shift mask\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 14707, __extension__ __PRETTY_FUNCTION__)); | ||||
| 14708 | // Don't allow multiuse shift folding with the same shift amount. | ||||
| 14709 | if (!N->getOperand(0)->hasOneUse()) | ||||
| 14710 | return false; | ||||
| 14711 | |||||
| 14712 | // Only fold srl(shl(x,c1),c2) iff C1 >= C2 to prevent loss of UBFX patterns. | ||||
| 14713 | EVT VT = N->getValueType(0); | ||||
| 14714 | if (N->getOpcode() == ISD::SRL && (VT == MVT::i32 || VT == MVT::i64)) { | ||||
| 14715 | auto *C1 = dyn_cast<ConstantSDNode>(N->getOperand(0).getOperand(1)); | ||||
| 14716 | auto *C2 = dyn_cast<ConstantSDNode>(N->getOperand(1)); | ||||
| 14717 | return (!C1 || !C2 || C1->getZExtValue() >= C2->getZExtValue()); | ||||
| 14718 | } | ||||
| 14719 | |||||
| 14720 | return true; | ||||
| 14721 | } | ||||
| 14722 | |||||
| 14723 | bool AArch64TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, | ||||
| 14724 | Type *Ty) const { | ||||
| 14725 | assert(Ty->isIntegerTy())(static_cast <bool> (Ty->isIntegerTy()) ? void (0) : __assert_fail ("Ty->isIntegerTy()", "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp" , 14725, __extension__ __PRETTY_FUNCTION__)); | ||||
| 14726 | |||||
| 14727 | unsigned BitSize = Ty->getPrimitiveSizeInBits(); | ||||
| 14728 | if (BitSize == 0) | ||||
| 14729 | return false; | ||||
| 14730 | |||||
| 14731 | int64_t Val = Imm.getSExtValue(); | ||||
| 14732 | if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, BitSize)) | ||||
| 14733 | return true; | ||||
| 14734 | |||||
| 14735 | if ((int64_t)Val < 0) | ||||
| 14736 | Val = ~Val; | ||||
| 14737 | if (BitSize == 32) | ||||
| 14738 | Val &= (1LL << 32) - 1; | ||||
| 14739 | |||||
| 14740 | unsigned LZ = countLeadingZeros((uint64_t)Val); | ||||
| 14741 | unsigned Shift = (63 - LZ) / 16; | ||||
| 14742 | // MOVZ is free so return true for one or fewer MOVK. | ||||
| 14743 | return Shift < 3; | ||||
| 14744 | } | ||||
| 14745 | |||||
| 14746 | bool AArch64TargetLowering::isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, | ||||
| 14747 | unsigned Index) const { | ||||
| 14748 | if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT)) | ||||
| 14749 | return false; | ||||
| 14750 | |||||
| 14751 | return (Index == 0 || Index == ResVT.getVectorMinNumElements()); | ||||
| 14752 | } | ||||
| 14753 | |||||
| 14754 | /// Turn vector tests of the signbit in the form of: | ||||
| 14755 | /// xor (sra X, elt_size(X)-1), -1 | ||||
| 14756 | /// into: | ||||
| 14757 | /// cmge X, X, #0 | ||||
| 14758 | static SDValue foldVectorXorShiftIntoCmp(SDNode *N, SelectionDAG &DAG, | ||||
| 14759 | const AArch64Subtarget *Subtarget) { | ||||
| 14760 | EVT VT = N->getValueType(0); | ||||
| 14761 | if (!Subtarget->hasNEON() || !VT.isVector()) | ||||
| 14762 | return SDValue(); | ||||
| 14763 | |||||
| 14764 | // There must be a shift right algebraic before the xor, and the xor must be a | ||||
| 14765 | // 'not' operation. | ||||
| 14766 | SDValue Shift = N->getOperand(0); | ||||
| 14767 | SDValue Ones = N->getOperand(1); | ||||
| 14768 | if (Shift.getOpcode() != AArch64ISD::VASHR || !Shift.hasOneUse() || | ||||
| 14769 | !ISD::isBuildVectorAllOnes(Ones.getNode())) | ||||
| 14770 | return SDValue(); | ||||
| 14771 | |||||
| 14772 | // The shift should be smearing the sign bit across each vector element. | ||||
| 14773 | auto *ShiftAmt = dyn_cast<ConstantSDNode>(Shift.getOperand(1)); | ||||
| 14774 | EVT ShiftEltTy = Shift.getValueType().getVectorElementType(); | ||||
| 14775 | if (!ShiftAmt || ShiftAmt->getZExtValue() != ShiftEltTy.getSizeInBits() - 1) | ||||
| 14776 | return SDValue(); | ||||
| 14777 | |||||
| 14778 | return DAG.getNode(AArch64ISD::CMGEz, SDLoc(N), VT, Shift.getOperand(0)); | ||||
| 14779 | } | ||||
| 14780 | |||||
| 14781 | // Given a vecreduce_add node, detect the below pattern and convert it to the | ||||
| 14782 | // node sequence with UABDL, [S|U]ADB and UADDLP. | ||||
| 14783 | // | ||||
| 14784 | // i32 vecreduce_add( | ||||
| 14785 | // v16i32 abs( | ||||
| 14786 | // v16i32 sub( | ||||
| 14787 | // v16i32 [sign|zero]_extend(v16i8 a), v16i32 [sign|zero]_extend(v16i8 b)))) | ||||
| 14788 | // =================> | ||||
| 14789 | // i32 vecreduce_add( | ||||
| 14790 | // v4i32 UADDLP( | ||||
| 14791 | // v8i16 add( | ||||
| 14792 | // v8i16 zext( | ||||
| 14793 | // v8i8 [S|U]ABD low8:v16i8 a, low8:v16i8 b | ||||
| 14794 | // v8i16 zext( | ||||
| 14795 | // v8i8 [S|U]ABD high8:v16i8 a, high8:v16i8 b | ||||
| 14796 | static SDValue performVecReduceAddCombineWithUADDLP(SDNode *N, | ||||
| 14797 | SelectionDAG &DAG) { | ||||
| 14798 | // Assumed i32 vecreduce_add | ||||
| 14799 | if (N->getValueType(0) != MVT::i32) | ||||
| 14800 | return SDValue(); | ||||
| 14801 | |||||
| 14802 | SDValue VecReduceOp0 = N->getOperand(0); | ||||
| 14803 | unsigned Opcode = VecReduceOp0.getOpcode(); | ||||
| 14804 | // Assumed v16i32 abs | ||||
| 14805 | if (Opcode != ISD::ABS || VecReduceOp0->getValueType(0) != MVT::v16i32) | ||||
| 14806 | return SDValue(); | ||||
| 14807 | |||||
| 14808 | SDValue ABS = VecReduceOp0; | ||||
| 14809 | // Assumed v16i32 sub | ||||
| 14810 | if (ABS->getOperand(0)->getOpcode() != ISD::SUB || | ||||
| 14811 | ABS->getOperand(0)->getValueType(0) != MVT::v16i32) | ||||
| 14812 | return SDValue(); | ||||
| 14813 | |||||
| 14814 | SDValue SUB = ABS->getOperand(0); | ||||
| 14815 | unsigned Opcode0 = SUB->getOperand(0).getOpcode(); | ||||
| 14816 | unsigned Opcode1 = SUB->getOperand(1).getOpcode(); | ||||
| 14817 | // Assumed v16i32 type | ||||
| 14818 | if (SUB->getOperand(0)->getValueType(0) != MVT::v16i32 || | ||||
| 14819 | SUB->getOperand(1)->getValueType(0) != MVT::v16i32) | ||||
| 14820 | return SDValue(); | ||||
| 14821 | |||||
| 14822 | // Assumed zext or sext | ||||
| 14823 | bool IsZExt = false; | ||||
| 14824 | if (Opcode0 == ISD::ZERO_EXTEND && Opcode1 == ISD::ZERO_EXTEND) { | ||||
| 14825 | IsZExt = true; | ||||
| 14826 | } else if (Opcode0 == ISD::SIGN_EXTEND && Opcode1 == ISD::SIGN_EXTEND) { | ||||
| 14827 | IsZExt = false; | ||||
| 14828 | } else | ||||
| 14829 | return SDValue(); | ||||
| 14830 | |||||
| 14831 | SDValue EXT0 = SUB->getOperand(0); | ||||
| 14832 | SDValue EXT1 = SUB->getOperand(1); | ||||
| 14833 | // Assumed zext's operand has v16i8 type | ||||
| 14834 | if (EXT0->getOperand(0)->getValueType(0) != MVT::v16i8 || | ||||
| 14835 | EXT1->getOperand(0)->getValueType(0) != MVT::v16i8) | ||||
| 14836 | return SDValue(); | ||||
| 14837 | |||||
| 14838 | // Pattern is dectected. Let's convert it to sequence of nodes. | ||||
| 14839 | SDLoc DL(N); | ||||
| 14840 | |||||
| 14841 | // First, create the node pattern of UABD/SABD. | ||||
| 14842 | SDValue UABDHigh8Op0 = | ||||
| 14843 | DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8, EXT0->getOperand(0), | ||||
| 14844 | DAG.getConstant(8, DL, MVT::i64)); | ||||
| 14845 | SDValue UABDHigh8Op1 = | ||||
| 14846 | DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8, EXT1->getOperand(0), | ||||
| 14847 | DAG.getConstant(8, DL, MVT::i64)); | ||||
| 14848 | SDValue UABDHigh8 = DAG.getNode(IsZExt ? ISD::ABDU : ISD::ABDS, DL, MVT::v8i8, | ||||
| 14849 | UABDHigh8Op0, UABDHigh8Op1); | ||||
| 14850 | SDValue UABDL = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, UABDHigh8); | ||||
| 14851 | |||||
| 14852 | // Second, create the node pattern of UABAL. | ||||
| 14853 | SDValue UABDLo8Op0 = | ||||
| 14854 | DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8, EXT0->getOperand(0), | ||||
| 14855 | DAG.getConstant(0, DL, MVT::i64)); | ||||
| 14856 | SDValue UABDLo8Op1 = | ||||
| 14857 | DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8, EXT1->getOperand(0), | ||||
| 14858 | DAG.getConstant(0, DL, MVT::i64)); | ||||
| 14859 | SDValue UABDLo8 = DAG.getNode(IsZExt ? ISD::ABDU : ISD::ABDS, DL, MVT::v8i8, | ||||
| 14860 | UABDLo8Op0, UABDLo8Op1); | ||||
| 14861 | SDValue ZExtUABD = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, UABDLo8); | ||||
| 14862 | SDValue UABAL = DAG.getNode(ISD::ADD, DL, MVT::v8i16, UABDL, ZExtUABD); | ||||
| 14863 | |||||
| 14864 | // Third, create the node of UADDLP. | ||||
| 14865 | SDValue UADDLP = DAG.getNode(AArch64ISD::UADDLP, DL, MVT::v4i32, UABAL); | ||||
| 14866 | |||||
| 14867 | // Fourth, create the node of VECREDUCE_ADD. | ||||
| 14868 | return DAG.getNode(ISD::VECREDUCE_ADD, DL, MVT::i32, UADDLP); | ||||
| 14869 | } | ||||
| 14870 | |||||
| 14871 | // Turn a v8i8/v16i8 extended vecreduce into a udot/sdot and vecreduce | ||||
| 14872 | // vecreduce.add(ext(A)) to vecreduce.add(DOT(zero, A, one)) | ||||
| 14873 | // vecreduce.add(mul(ext(A), ext(B))) to vecreduce.add(DOT(zero, A, B)) | ||||
| 14874 | static SDValue performVecReduceAddCombine(SDNode *N, SelectionDAG &DAG, | ||||
| 14875 | const AArch64Subtarget *ST) { | ||||
| 14876 | if (!ST->hasDotProd()) | ||||
| 14877 | return performVecReduceAddCombineWithUADDLP(N, DAG); | ||||
| 14878 | |||||
| 14879 | SDValue Op0 = N->getOperand(0); | ||||
| 14880 | if (N->getValueType(0) != MVT::i32 || | ||||
| 14881 | Op0.getValueType().getVectorElementType() != MVT::i32) | ||||
| 14882 | return SDValue(); | ||||
| 14883 | |||||
| 14884 | unsigned ExtOpcode = Op0.getOpcode(); | ||||
| 14885 | SDValue A = Op0; | ||||
| 14886 | SDValue B; | ||||
| 14887 | if (ExtOpcode == ISD::MUL) { | ||||
| 14888 | A = Op0.getOperand(0); | ||||
| 14889 | B = Op0.getOperand(1); | ||||
| 14890 | if (A.getOpcode() != B.getOpcode() || | ||||
| 14891 | A.getOperand(0).getValueType() != B.getOperand(0).getValueType()) | ||||
| 14892 | return SDValue(); | ||||
| 14893 | ExtOpcode = A.getOpcode(); | ||||
| 14894 | } | ||||
| 14895 | if (ExtOpcode != ISD::ZERO_EXTEND && ExtOpcode != ISD::SIGN_EXTEND) | ||||
| 14896 | return SDValue(); | ||||
| 14897 | |||||
| 14898 | EVT Op0VT = A.getOperand(0).getValueType(); | ||||
| 14899 | if (Op0VT != MVT::v8i8 && Op0VT != MVT::v16i8) | ||||
| 14900 | return SDValue(); | ||||
| 14901 | |||||
| 14902 | SDLoc DL(Op0); | ||||
| 14903 | // For non-mla reductions B can be set to 1. For MLA we take the operand of | ||||
| 14904 | // the extend B. | ||||
| 14905 | if (!B) | ||||
| 14906 | B = DAG.getConstant(1, DL, Op0VT); | ||||
| 14907 | else | ||||
| 14908 | B = B.getOperand(0); | ||||
| 14909 | |||||
| 14910 | SDValue Zeros = | ||||
| 14911 | DAG.getConstant(0, DL, Op0VT == MVT::v8i8 ? MVT::v2i32 : MVT::v4i32); | ||||
| 14912 | auto DotOpcode = | ||||
| 14913 | (ExtOpcode == ISD::ZERO_EXTEND) ? AArch64ISD::UDOT : AArch64ISD::SDOT; | ||||
| 14914 | SDValue Dot = DAG.getNode(DotOpcode, DL, Zeros.getValueType(), Zeros, | ||||
| 14915 | A.getOperand(0), B); | ||||
| 14916 | return DAG.getNode(ISD::VECREDUCE_ADD, DL, N->getValueType(0), Dot); | ||||
| 14917 | } | ||||
| 14918 | |||||
| 14919 | // Given an (integer) vecreduce, we know the order of the inputs does not | ||||
| 14920 | // matter. We can convert UADDV(add(zext(extract_lo(x)), zext(extract_hi(x)))) | ||||
| 14921 | // into UADDV(UADDLP(x)). This can also happen through an extra add, where we | ||||
| 14922 | // transform UADDV(add(y, add(zext(extract_lo(x)), zext(extract_hi(x))))). | ||||
| 14923 | static SDValue performUADDVCombine(SDNode *N, SelectionDAG &DAG) { | ||||
| 14924 | auto DetectAddExtract = [&](SDValue A) { | ||||
| 14925 | // Look for add(zext(extract_lo(x)), zext(extract_hi(x))), returning | ||||
| 14926 | // UADDLP(x) if found. | ||||
| 14927 | if (A.getOpcode() != ISD::ADD) | ||||
| 14928 | return SDValue(); | ||||
| 14929 | EVT VT = A.getValueType(); | ||||
| 14930 | SDValue Op0 = A.getOperand(0); | ||||
| 14931 | SDValue Op1 = A.getOperand(1); | ||||
| 14932 | if (Op0.getOpcode() != Op0.getOpcode() || | ||||
| 14933 | (Op0.getOpcode() != ISD::ZERO_EXTEND && | ||||
| 14934 | Op0.getOpcode() != ISD::SIGN_EXTEND)) | ||||
| 14935 | return SDValue(); | ||||
| 14936 | SDValue Ext0 = Op0.getOperand(0); | ||||
| 14937 | SDValue Ext1 = Op1.getOperand(0); | ||||
| 14938 | if (Ext0.getOpcode() != ISD::EXTRACT_SUBVECTOR || | ||||
| 14939 | Ext1.getOpcode() != ISD::EXTRACT_SUBVECTOR || | ||||
| 14940 | Ext0.getOperand(0) != Ext1.getOperand(0)) | ||||
| 14941 | return SDValue(); | ||||
| 14942 | // Check that the type is twice the add types, and the extract are from | ||||
| 14943 | // upper/lower parts of the same source. | ||||
| 14944 | if (Ext0.getOperand(0).getValueType().getVectorNumElements() != | ||||
| 14945 | VT.getVectorNumElements() * 2) | ||||
| 14946 | return SDValue(); | ||||
| 14947 | if ((Ext0.getConstantOperandVal(1) != 0 && | ||||
| 14948 | Ext1.getConstantOperandVal(1) != VT.getVectorNumElements()) && | ||||
| 14949 | (Ext1.getConstantOperandVal(1) != 0 && | ||||
| 14950 | Ext0.getConstantOperandVal(1) != VT.getVectorNumElements())) | ||||
| 14951 | return SDValue(); | ||||
| 14952 | unsigned Opcode = Op0.getOpcode() == ISD::ZERO_EXTEND ? AArch64ISD::UADDLP | ||||
| 14953 | : AArch64ISD::SADDLP; | ||||
| 14954 | return DAG.getNode(Opcode, SDLoc(A), VT, Ext0.getOperand(0)); | ||||
| 14955 | }; | ||||
| 14956 | |||||
| 14957 | SDValue A = N->getOperand(0); | ||||
| 14958 | if (SDValue R = DetectAddExtract(A)) | ||||
| 14959 | return DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0), R); | ||||
| 14960 | if (A.getOpcode() == ISD::ADD) { | ||||
| 14961 | if (SDValue R = DetectAddExtract(A.getOperand(0))) | ||||
| 14962 | return DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0), | ||||
| 14963 | DAG.getNode(ISD::ADD, SDLoc(A), A.getValueType(), R, | ||||
| 14964 | A.getOperand(1))); | ||||
| 14965 | if (SDValue R = DetectAddExtract(A.getOperand(1))) | ||||
| 14966 | return DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0), | ||||
| 14967 | DAG.getNode(ISD::ADD, SDLoc(A), A.getValueType(), R, | ||||
| 14968 | A.getOperand(0))); | ||||
| 14969 | } | ||||
| 14970 | return SDValue(); | ||||
| 14971 | } | ||||
| 14972 | |||||
| 14973 | |||||
| 14974 | static SDValue performXorCombine(SDNode *N, SelectionDAG &DAG, | ||||
| 14975 | TargetLowering::DAGCombinerInfo &DCI, | ||||
| 14976 | const AArch64Subtarget *Subtarget) { | ||||
| 14977 | if (DCI.isBeforeLegalizeOps()) | ||||
| 14978 | return SDValue(); | ||||
| 14979 | |||||
| 14980 | return foldVectorXorShiftIntoCmp(N, DAG, Subtarget); | ||||
| 14981 | } | ||||
| 14982 | |||||
| 14983 | SDValue | ||||
| 14984 | AArch64TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, | ||||
| 14985 | SelectionDAG &DAG, | ||||
| 14986 | SmallVectorImpl<SDNode *> &Created) const { | ||||
| 14987 | AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); | ||||
| 14988 | if (isIntDivCheap(N->getValueType(0), Attr)) | ||||
| 14989 | return SDValue(N,0); // Lower SDIV as SDIV | ||||
| 14990 | |||||
| 14991 | EVT VT = N->getValueType(0); | ||||
| 14992 | |||||
| 14993 | // For scalable and fixed types, mark them as cheap so we can handle it much | ||||
| 14994 | // later. This allows us to handle larger than legal types. | ||||
| 14995 | if (VT.isScalableVector() || Subtarget->useSVEForFixedLengthVectors()) | ||||
| 14996 | return SDValue(N, 0); | ||||
| 14997 | |||||
| 14998 | // fold (sdiv X, pow2) | ||||
| 14999 | if ((VT != MVT::i32 && VT != MVT::i64) || | ||||
| 15000 | !(Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2())) | ||||
| 15001 | return SDValue(); | ||||
| 15002 | |||||
| 15003 | SDLoc DL(N); | ||||
| 15004 | SDValue N0 = N->getOperand(0); | ||||
| 15005 | unsigned Lg2 = Divisor.countTrailingZeros(); | ||||
| 15006 | SDValue Zero = DAG.getConstant(0, DL, VT); | ||||
| 15007 | SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT); | ||||
| 15008 | |||||
| 15009 | // Add (N0 < 0) ? Pow2 - 1 : 0; | ||||
| 15010 | SDValue CCVal; | ||||
| 15011 | SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETLT, CCVal, DAG, DL); | ||||
| 15012 | SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Pow2MinusOne); | ||||
| 15013 | SDValue CSel = DAG.getNode(AArch64ISD::CSEL, DL, VT, Add, N0, CCVal, Cmp); | ||||
| 15014 | |||||
| 15015 | Created.push_back(Cmp.getNode()); | ||||
| 15016 | Created.push_back(Add.getNode()); | ||||
| 15017 | Created.push_back(CSel.getNode()); | ||||
| 15018 | |||||
| 15019 | // Divide by pow2. | ||||
| 15020 | SDValue SRA = | ||||
| 15021 | DAG.getNode(ISD::SRA, DL, VT, CSel, DAG.getConstant(Lg2, DL, MVT::i64)); | ||||
| 15022 | |||||
| 15023 | // If we're dividing by a positive value, we're done. Otherwise, we must | ||||
| 15024 | // negate the result. | ||||
| 15025 | if (Divisor.isNonNegative()) | ||||
| 15026 | return SRA; | ||||
| 15027 | |||||
| 15028 | Created.push_back(SRA.getNode()); | ||||
| 15029 | return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), SRA); | ||||
| 15030 | } | ||||
| 15031 | |||||
| 15032 | SDValue | ||||
| 15033 | AArch64TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor, | ||||
| 15034 | SelectionDAG &DAG, | ||||
| 15035 | SmallVectorImpl<SDNode *> &Created) const { | ||||
| 15036 | AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); | ||||
| 15037 | if (isIntDivCheap(N->getValueType(0), Attr)) | ||||
| 15038 | return SDValue(N, 0); // Lower SREM as SREM | ||||
| 15039 | |||||
| 15040 | EVT VT = N->getValueType(0); | ||||
| 15041 | |||||
| 15042 | // For scalable and fixed types, mark them as cheap so we can handle it much | ||||
| 15043 | // later. This allows us to handle larger than legal types. | ||||
| 15044 | if (VT.isScalableVector() || Subtarget->useSVEForFixedLengthVectors()) | ||||
| 15045 | return SDValue(N, 0); | ||||
| 15046 | |||||
| 15047 | // fold (srem X, pow2) | ||||
| 15048 | if ((VT != MVT::i32 && VT != MVT::i64) || | ||||
| 15049 | !(Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2())) | ||||
| 15050 | return SDValue(); | ||||
| 15051 | |||||
| 15052 | unsigned Lg2 = Divisor.countTrailingZeros(); | ||||
| 15053 | if (Lg2 == 0) | ||||
| 15054 | return SDValue(); | ||||
| 15055 | |||||
| 15056 | SDLoc DL(N); | ||||
| 15057 | SDValue N0 = N->getOperand(0); | ||||
| 15058 | SDValue Pow2MinusOne = DAG.getConstant((1ULL << Lg2) - 1, DL, VT); | ||||
| 15059 | SDValue Zero = DAG.getConstant(0, DL, VT); | ||||
| 15060 | SDValue CCVal, CSNeg; | ||||
| 15061 | if (Lg2 == 1) { | ||||
| 15062 | SDValue Cmp = getAArch64Cmp(N0, Zero, ISD::SETGE, CCVal, DAG, DL); | ||||
| 15063 | SDValue And = DAG.getNode(ISD::AND, DL, VT, N0, Pow2MinusOne); | ||||
| 15064 | CSNeg = DAG.getNode(AArch64ISD::CSNEG, DL, VT, And, And, CCVal, Cmp); | ||||
| 15065 | |||||
| 15066 | Created.push_back(Cmp.getNode()); | ||||
| 15067 | Created.push_back(And.getNode()); | ||||
| 15068 | } else { | ||||
| 15069 | SDValue CCVal = DAG.getConstant(AArch64CC::MI, DL, MVT_CC); | ||||
| 15070 | SDVTList VTs = DAG.getVTList(VT, MVT::i32); | ||||
| 15071 | |||||
| 15072 | SDValue Negs = DAG.getNode(AArch64ISD::SUBS, DL, VTs, Zero, N0); | ||||
| 15073 | SDValue AndPos = DAG.getNode(ISD::AND, DL, VT, N0, Pow2MinusOne); | ||||
| 15074 | SDValue AndNeg = DAG.getNode(ISD::AND, DL, VT, Negs, Pow2MinusOne); | ||||
| 15075 | CSNeg = DAG.getNode(AArch64ISD::CSNEG, DL, VT, AndPos, AndNeg, CCVal, | ||||
| 15076 | Negs.getValue(1)); | ||||
| 15077 | |||||
| 15078 | Created.push_back(Negs.getNode()); | ||||
| 15079 | Created.push_back(AndPos.getNode()); | ||||
| 15080 | Created.push_back(AndNeg.getNode()); | ||||
| 15081 | } | ||||
| 15082 | |||||
| 15083 | return CSNeg; | ||||
| 15084 | } | ||||
| 15085 | |||||
| 15086 | static std::optional<unsigned> IsSVECntIntrinsic(SDValue S) { | ||||
| 15087 | switch(getIntrinsicID(S.getNode())) { | ||||
| 15088 | default: | ||||
| 15089 | break; | ||||
| 15090 | case Intrinsic::aarch64_sve_cntb: | ||||
| 15091 | return 8; | ||||
| 15092 | case Intrinsic::aarch64_sve_cnth: | ||||
| 15093 | return 16; | ||||
| 15094 | case Intrinsic::aarch64_sve_cntw: | ||||
| 15095 | return 32; | ||||
| 15096 | case Intrinsic::aarch64_sve_cntd: | ||||
| 15097 | return 64; | ||||
| 15098 | } | ||||
| 15099 | return {}; | ||||
| 15100 | } | ||||
| 15101 | |||||
| 15102 | /// Calculates what the pre-extend type is, based on the extension | ||||
| 15103 | /// operation node provided by \p Extend. | ||||
| 15104 | /// | ||||
| 15105 | /// In the case that \p Extend is a SIGN_EXTEND or a ZERO_EXTEND, the | ||||
| 15106 | /// pre-extend type is pulled directly from the operand, while other extend | ||||
| 15107 | /// operations need a bit more inspection to get this information. | ||||
| 15108 | /// | ||||
| 15109 | /// \param Extend The SDNode from the DAG that represents the extend operation | ||||
| 15110 | /// | ||||
| 15111 | /// \returns The type representing the \p Extend source type, or \p MVT::Other | ||||
| 15112 | /// if no valid type can be determined | ||||
| 15113 | static EVT calculatePreExtendType(SDValue Extend) { | ||||
| 15114 | switch (Extend.getOpcode()) { | ||||
| 15115 | case ISD::SIGN_EXTEND: | ||||
| 15116 | case ISD::ZERO_EXTEND: | ||||
| 15117 | return Extend.getOperand(0).getValueType(); | ||||
| 15118 | case ISD::AssertSext: | ||||
| 15119 | case ISD::AssertZext: | ||||
| 15120 | case ISD::SIGN_EXTEND_INREG: { | ||||
| 15121 | VTSDNode *TypeNode = dyn_cast<VTSDNode>(Extend.getOperand(1)); | ||||
| 15122 | if (!TypeNode) | ||||
| 15123 | return MVT::Other; | ||||
| 15124 | return TypeNode->getVT(); | ||||
| 15125 | } | ||||
| 15126 | case ISD::AND: { | ||||
| 15127 | ConstantSDNode *Constant = | ||||
| 15128 | dyn_cast<ConstantSDNode>(Extend.getOperand(1).getNode()); | ||||
| 15129 | if (!Constant) | ||||
| 15130 | return MVT::Other; | ||||
| 15131 | |||||
| 15132 | uint32_t Mask = Constant->getZExtValue(); | ||||
| 15133 | |||||
| 15134 | if (Mask == UCHAR_MAX(127*2 +1)) | ||||
| 15135 | return MVT::i8; | ||||
| 15136 | else if (Mask == USHRT_MAX(32767 *2 +1)) | ||||
| 15137 | return MVT::i16; | ||||
| 15138 | else if (Mask == UINT_MAX(2147483647 *2U +1U)) | ||||
| 15139 | return MVT::i32; | ||||
| 15140 | |||||
| 15141 | return MVT::Other; | ||||
| 15142 | } | ||||
| 15143 | default: | ||||
| 15144 | return MVT::Other; | ||||
| 15145 | } | ||||
| 15146 | } | ||||
| 15147 | |||||
| 15148 | /// Combines a buildvector(sext/zext) or shuffle(sext/zext, undef) node pattern | ||||
| 15149 | /// into sext/zext(buildvector) or sext/zext(shuffle) making use of the vector | ||||
| 15150 | /// SExt/ZExt rather than the scalar SExt/ZExt | ||||
| 15151 | static SDValue performBuildShuffleExtendCombine(SDValue BV, SelectionDAG &DAG) { | ||||
| 15152 | EVT VT = BV.getValueType(); | ||||
| 15153 | if (BV.getOpcode() != ISD::BUILD_VECTOR && | ||||
| 15154 | BV.getOpcode() != ISD::VECTOR_SHUFFLE) | ||||
| 15155 | return SDValue(); | ||||
| 15156 | |||||
| 15157 | // Use the first item in the buildvector/shuffle to get the size of the | ||||
| 15158 | // extend, and make sure it looks valid. | ||||
| 15159 | SDValue Extend = BV->getOperand(0); | ||||
| 15160 | unsigned ExtendOpcode = Extend.getOpcode(); | ||||
| 15161 | bool IsSExt = ExtendOpcode == ISD::SIGN_EXTEND || | ||||
| 15162 | ExtendOpcode == ISD::SIGN_EXTEND_INREG || | ||||
| 15163 | ExtendOpcode == ISD::AssertSext; | ||||
| 15164 | if (!IsSExt && ExtendOpcode != ISD::ZERO_EXTEND && | ||||
| 15165 | ExtendOpcode != ISD::AssertZext && ExtendOpcode != ISD::AND) | ||||
| 15166 | return SDValue(); | ||||
| 15167 | // Shuffle inputs are vector, limit to SIGN_EXTEND and ZERO_EXTEND to ensure | ||||
| 15168 | // calculatePreExtendType will work without issue. | ||||
| 15169 | if (BV.getOpcode() == ISD::VECTOR_SHUFFLE && | ||||
| 15170 | ExtendOpcode != ISD::SIGN_EXTEND && ExtendOpcode != ISD::ZERO_EXTEND) | ||||
| 15171 | return SDValue(); | ||||
| 15172 | |||||
| 15173 | // Restrict valid pre-extend data type | ||||
| 15174 | EVT PreExtendType = calculatePreExtendType(Extend); | ||||
| 15175 | if (PreExtendType == MVT::Other || | ||||
| 15176 | PreExtendType.getScalarSizeInBits() != VT.getScalarSizeInBits() / 2) | ||||
| 15177 | return SDValue(); | ||||
| 15178 | |||||
| 15179 | // Make sure all other operands are equally extended | ||||
| 15180 | for (SDValue Op : drop_begin(BV->ops())) { | ||||
| 15181 | if (Op.isUndef()) | ||||
| 15182 | continue; | ||||
| 15183 | unsigned Opc = Op.getOpcode(); | ||||
| 15184 | bool OpcIsSExt = Opc == ISD::SIGN_EXTEND || Opc == ISD::SIGN_EXTEND_INREG || | ||||
| 15185 | Opc == ISD::AssertSext; | ||||
| 15186 | if (OpcIsSExt != IsSExt || calculatePreExtendType(Op) != PreExtendType) | ||||
| 15187 | return SDValue(); | ||||
| 15188 | } | ||||
| 15189 | |||||
| 15190 | SDValue NBV; | ||||
| 15191 | SDLoc DL(BV); | ||||
| 15192 | if (BV.getOpcode() == ISD::BUILD_VECTOR) { | ||||
| 15193 | EVT PreExtendVT = VT.changeVectorElementType(PreExtendType); | ||||
| 15194 | EVT PreExtendLegalType = | ||||
| 15195 | PreExtendType.getScalarSizeInBits() < 32 ? MVT::i32 : PreExtendType; | ||||
| 15196 | SmallVector<SDValue, 8> NewOps; | ||||
| 15197 | for (SDValue Op : BV->ops()) | ||||
| 15198 | NewOps.push_back(Op.isUndef() ? DAG.getUNDEF(PreExtendLegalType) | ||||
| 15199 | : DAG.getAnyExtOrTrunc(Op.getOperand(0), DL, | ||||
| 15200 | PreExtendLegalType)); | ||||
| 15201 | NBV = DAG.getNode(ISD::BUILD_VECTOR, DL, PreExtendVT, NewOps); | ||||
| 15202 | } else { // BV.getOpcode() == ISD::VECTOR_SHUFFLE | ||||
| 15203 | EVT PreExtendVT = VT.changeVectorElementType(PreExtendType.getScalarType()); | ||||
| 15204 | NBV = DAG.getVectorShuffle(PreExtendVT, DL, BV.getOperand(0).getOperand(0), | ||||
| 15205 | BV.getOperand(1).isUndef() | ||||
| 15206 | ? DAG.getUNDEF(PreExtendVT) | ||||
| 15207 | : BV.getOperand(1).getOperand(0), | ||||
| 15208 | cast<ShuffleVectorSDNode>(BV)->getMask()); | ||||
| 15209 | } | ||||
| 15210 | return DAG.getNode(IsSExt ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, VT, NBV); | ||||
| 15211 | } | ||||
| 15212 | |||||
| 15213 | /// Combines a mul(dup(sext/zext)) node pattern into mul(sext/zext(dup)) | ||||
| 15214 | /// making use of the vector SExt/ZExt rather than the scalar SExt/ZExt | ||||
| 15215 | static SDValue performMulVectorExtendCombine(SDNode *Mul, SelectionDAG &DAG) { | ||||
| 15216 | // If the value type isn't a vector, none of the operands are going to be dups | ||||
| 15217 | EVT VT = Mul->getValueType(0); | ||||
| 15218 | if (VT != MVT::v8i16 && VT != MVT::v4i32 && VT != MVT::v2i64) | ||||
| 15219 | return SDValue(); | ||||
| 15220 | |||||
| 15221 | SDValue Op0 = performBuildShuffleExtendCombine(Mul->getOperand(0), DAG); | ||||
| 15222 | SDValue Op1 = performBuildShuffleExtendCombine(Mul->getOperand(1), DAG); | ||||
| 15223 | |||||
| 15224 | // Neither operands have been changed, don't make any further changes | ||||
| 15225 | if (!Op0 && !Op1) | ||||
| 15226 | return SDValue(); | ||||
| 15227 | |||||
| 15228 | SDLoc DL(Mul); | ||||
| 15229 | return DAG.getNode(Mul->getOpcode(), DL, VT, Op0 ? Op0 : Mul->getOperand(0), | ||||
| 15230 | Op1 ? Op1 : Mul->getOperand(1)); | ||||
| 15231 | } | ||||
| 15232 | |||||
| 15233 | // Combine v4i32 Mul(And(Srl(X, 15), 0x10001), 0xffff) -> v8i16 CMLTz | ||||
| 15234 | // Same for other types with equivalent constants. | ||||
| 15235 | static SDValue performMulVectorCmpZeroCombine(SDNode *N, SelectionDAG &DAG) { | ||||
| 15236 | EVT VT = N->getValueType(0); | ||||
| 15237 | if (VT != MVT::v2i64 && VT != MVT::v1i64 && VT != MVT::v2i32 && | ||||
| 15238 | VT != MVT::v4i32 && VT != MVT::v4i16 && VT != MVT::v8i16) | ||||
| 15239 | return SDValue(); | ||||
| 15240 | if (N->getOperand(0).getOpcode() != ISD::AND || | ||||
| 15241 | N->getOperand(0).getOperand(0).getOpcode() != ISD::SRL) | ||||
| 15242 | return SDValue(); | ||||
| 15243 | |||||
| 15244 | SDValue And = N->getOperand(0); | ||||
| 15245 | SDValue Srl = And.getOperand(0); | ||||
| 15246 | |||||
| 15247 | APInt V1, V2, V3; | ||||
| 15248 | if (!ISD::isConstantSplatVector(N->getOperand(1).getNode(), V1) || | ||||
| 15249 | !ISD::isConstantSplatVector(And.getOperand(1).getNode(), V2) || | ||||
| 15250 | !ISD::isConstantSplatVector(Srl.getOperand(1).getNode(), V3)) | ||||
| 15251 | return SDValue(); | ||||
| 15252 | |||||
| 15253 | unsigned HalfSize = VT.getScalarSizeInBits() / 2; | ||||
| 15254 | if (!V1.isMask(HalfSize) || V2 != (1ULL | 1ULL << HalfSize) || | ||||
| 15255 | V3 != (HalfSize - 1)) | ||||
| 15256 | return SDValue(); | ||||
| 15257 | |||||
| 15258 | EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), | ||||
| 15259 | EVT::getIntegerVT(*DAG.getContext(), HalfSize), | ||||
| 15260 | VT.getVectorElementCount() * 2); | ||||
| 15261 | |||||
| 15262 | SDLoc DL(N); | ||||
| 15263 | SDValue In = DAG.getNode(AArch64ISD::NVCAST, DL, HalfVT, Srl.getOperand(0)); | ||||
| 15264 | SDValue CM = DAG.getNode(AArch64ISD::CMLTz, DL, HalfVT, In); | ||||
| 15265 | return DAG.getNode(AArch64ISD::NVCAST, DL, VT, CM); | ||||
| 15266 | } | ||||
| 15267 | |||||
| 15268 | static SDValue performMulCombine(SDNode *N, SelectionDAG &DAG, | ||||
| 15269 | TargetLowering::DAGCombinerInfo &DCI, | ||||
| 15270 | const AArch64Subtarget *Subtarget) { | ||||
| 15271 | |||||
| 15272 | if (SDValue Ext = performMulVectorExtendCombine(N, DAG)) | ||||
| 15273 | return Ext; | ||||
| 15274 | if (SDValue Ext = performMulVectorCmpZeroCombine(N, DAG)) | ||||
| 15275 | return Ext; | ||||
| 15276 | |||||
| 15277 | if (DCI.isBeforeLegalizeOps()) | ||||
| 15278 | return SDValue(); | ||||
| 15279 | |||||
| 15280 | // Canonicalize X*(Y+1) -> X*Y+X and (X+1)*Y -> X*Y+Y, | ||||
| 15281 | // and in MachineCombiner pass, add+mul will be combined into madd. | ||||
| 15282 | // Similarly, X*(1-Y) -> X - X*Y and (1-Y)*X -> X - Y*X. | ||||
| 15283 | SDLoc DL(N); | ||||
| 15284 | EVT VT = N->getValueType(0); | ||||
| 15285 | SDValue N0 = N->getOperand(0); | ||||
| 15286 | SDValue N1 = N->getOperand(1); | ||||
| 15287 | SDValue MulOper; | ||||
| 15288 | unsigned AddSubOpc; | ||||
| 15289 | |||||
| 15290 | auto IsAddSubWith1 = [&](SDValue V) -> bool { | ||||
| 15291 | AddSubOpc = V->getOpcode(); | ||||
| 15292 | if ((AddSubOpc == ISD::ADD || AddSubOpc == ISD::SUB) && V->hasOneUse()) { | ||||
| 15293 | SDValue Opnd = V->getOperand(1); | ||||
| 15294 | MulOper = V->getOperand(0); | ||||
| 15295 | if (AddSubOpc == ISD::SUB) | ||||
| 15296 | std::swap(Opnd, MulOper); | ||||
| 15297 | if (auto C = dyn_cast<ConstantSDNode>(Opnd)) | ||||
| 15298 | return C->isOne(); | ||||
| 15299 | } | ||||
| 15300 | return false; | ||||
| 15301 | }; | ||||
| 15302 | |||||
| 15303 | if (IsAddSubWith1(N0)) { | ||||
| 15304 | SDValue MulVal = DAG.getNode(ISD::MUL, DL, VT, N1, MulOper); | ||||
| 15305 | return DAG.getNode(AddSubOpc, DL, VT, N1, MulVal); | ||||
| 15306 | } | ||||
| 15307 | |||||
| 15308 | if (IsAddSubWith1(N1)) { | ||||
| 15309 | SDValue MulVal = DAG.getNode(ISD::MUL, DL, VT, N0, MulOper); | ||||
| 15310 | return DAG.getNode(AddSubOpc, DL, VT, N0, MulVal); | ||||
| 15311 | } | ||||
| 15312 | |||||
| 15313 | // The below optimizations require a constant RHS. | ||||
| 15314 | if (!isa<ConstantSDNode>(N1)) | ||||
| 15315 | return SDValue(); | ||||
| 15316 | |||||
| 15317 | ConstantSDNode *C = cast<ConstantSDNode>(N1); | ||||
| 15318 | const APInt &ConstValue = C->getAPIntValue(); | ||||
| 15319 | |||||
| 15320 | // Allow the scaling to be folded into the `cnt` instruction by preventing | ||||
| 15321 | // the scaling to be obscured here. This makes it easier to pattern match. | ||||
| 15322 | if (IsSVECntIntrinsic(N0) || | ||||
| 15323 | (N0->getOpcode() == ISD::TRUNCATE && | ||||
| 15324 | (IsSVECntIntrinsic(N0->getOperand(0))))) | ||||
| 15325 | if (ConstValue.sge(1) && ConstValue.sle(16)) | ||||
| 15326 | return SDValue(); | ||||
| 15327 | |||||
| 15328 | // Multiplication of a power of two plus/minus one can be done more | ||||
| 15329 | // cheaply as as shift+add/sub. For now, this is true unilaterally. If | ||||
| 15330 | // future CPUs have a cheaper MADD instruction, this may need to be | ||||
| 15331 | // gated on a subtarget feature. For Cyclone, 32-bit MADD is 4 cycles and | ||||
| 15332 | // 64-bit is 5 cycles, so this is always a win. | ||||
| 15333 | // More aggressively, some multiplications N0 * C can be lowered to | ||||
| 15334 | // shift+add+shift if the constant C = A * B where A = 2^N + 1 and B = 2^M, | ||||
| 15335 | // e.g. 6=3*2=(2+1)*2, 45=(1+4)*(1+8) | ||||
| 15336 | // TODO: lower more cases. | ||||
| 15337 | |||||
| 15338 | // TrailingZeroes is used to test if the mul can be lowered to | ||||
| 15339 | // shift+add+shift. | ||||
| 15340 | unsigned TrailingZeroes = ConstValue.countTrailingZeros(); | ||||
| 15341 | if (TrailingZeroes) { | ||||
| 15342 | // Conservatively do not lower to shift+add+shift if the mul might be | ||||
| 15343 | // folded into smul or umul. | ||||
| 15344 | if (N0->hasOneUse() && (isSignExtended(N0.getNode(), DAG) || | ||||
| 15345 | isZeroExtended(N0.getNode(), DAG))) | ||||
| 15346 | return SDValue(); | ||||
| 15347 | // Conservatively do not lower to shift+add+shift if the mul might be | ||||
| 15348 | // folded into madd or msub. | ||||
| 15349 | if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ADD || | ||||
| 15350 | N->use_begin()->getOpcode() == ISD::SUB)) | ||||
| 15351 | return SDValue(); | ||||
| 15352 | } | ||||
| 15353 | // Use ShiftedConstValue instead of ConstValue to support both shift+add/sub | ||||
| 15354 | // and shift+add+shift. | ||||
| 15355 | APInt ShiftedConstValue = ConstValue.ashr(TrailingZeroes); | ||||
| 15356 | unsigned ShiftAmt; | ||||
| 15357 | |||||
| 15358 | auto Shl = [&](SDValue N0, unsigned N1) { | ||||
| 15359 | SDValue RHS = DAG.getConstant(N1, DL, MVT::i64); | ||||
| 15360 | return DAG.getNode(ISD::SHL, DL, VT, N0, RHS); | ||||
| 15361 | }; | ||||
| 15362 | auto Add = [&](SDValue N0, SDValue N1) { | ||||
| 15363 | return DAG.getNode(ISD::ADD, DL, VT, N0, N1); | ||||
| 15364 | }; | ||||
| 15365 | auto Sub = [&](SDValue N0, SDValue N1) { | ||||
| 15366 | return DAG.getNode(ISD::SUB, DL, VT, N0, N1); | ||||
| 15367 | }; | ||||
| 15368 | auto Negate = [&](SDValue N) { | ||||
| 15369 | SDValue Zero = DAG.getConstant(0, DL, VT); | ||||
| 15370 | return DAG.getNode(ISD::SUB, DL, VT, Zero, N); | ||||
| 15371 | }; | ||||
| 15372 | |||||
| 15373 | // Can the const C be decomposed into (1+2^M1)*(1+2^N1), eg: | ||||
| 15374 | // C = 45 is equal to (1+4)*(1+8), we don't decompose it into (1+2)*(16-1) as | ||||
| 15375 | // the (2^N - 1) can't be execused via a single instruction. | ||||
| 15376 | auto isPowPlusPlusConst = [](APInt C, APInt &M, APInt &N) { | ||||
| 15377 | unsigned BitWidth = C.getBitWidth(); | ||||
| 15378 | for (unsigned i = 1; i < BitWidth / 2; i++) { | ||||
| 15379 | APInt Rem; | ||||
| 15380 | APInt X(BitWidth, (1 << i) + 1); | ||||
| 15381 | APInt::sdivrem(C, X, N, Rem); | ||||
| 15382 | APInt NVMinus1 = N - 1; | ||||
| 15383 | if (Rem == 0 && NVMinus1.isPowerOf2()) { | ||||
| 15384 | M = X; | ||||
| 15385 | return true; | ||||
| 15386 | } | ||||
| 15387 | } | ||||
| 15388 | return false; | ||||
| 15389 | }; | ||||
| 15390 | |||||
| 15391 | if (ConstValue.isNonNegative()) { | ||||
| 15392 | // (mul x, (2^N + 1) * 2^M) => (shl (add (shl x, N), x), M) | ||||
| 15393 | // (mul x, 2^N - 1) => (sub (shl x, N), x) | ||||
| 15394 | // (mul x, (2^(N-M) - 1) * 2^M) => (sub (shl x, N), (shl x, M)) | ||||
| 15395 | // (mul x, (2^M + 1) * (2^N + 1)) | ||||
| 15396 | // => MV = (add (shl x, M), x); (add (shl MV, N), MV) | ||||
| 15397 | APInt SCVMinus1 = ShiftedConstValue - 1; | ||||
| 15398 | APInt SCVPlus1 = ShiftedConstValue + 1; | ||||
| 15399 | APInt CVPlus1 = ConstValue + 1; | ||||
| 15400 | APInt CVM, CVN; | ||||
| 15401 | if (SCVMinus1.isPowerOf2()) { | ||||
| 15402 | ShiftAmt = SCVMinus1.logBase2(); | ||||
| 15403 | return Shl(Add(Shl(N0, ShiftAmt), N0), TrailingZeroes); | ||||
| 15404 | } else if (CVPlus1.isPowerOf2()) { | ||||
| 15405 | ShiftAmt = CVPlus1.logBase2(); | ||||
| 15406 | return Sub(Shl(N0, ShiftAmt), N0); | ||||
| 15407 | } else if (SCVPlus1.isPowerOf2()) { | ||||
| 15408 | ShiftAmt = SCVPlus1.logBase2() + TrailingZeroes; | ||||
| 15409 | return Sub(Shl(N0, ShiftAmt), Shl(N0, TrailingZeroes)); | ||||
| 15410 | } else if (Subtarget->hasLSLFast() && | ||||
| 15411 | isPowPlusPlusConst(ConstValue, CVM, CVN)) { | ||||
| 15412 | APInt CVMMinus1 = CVM - 1; | ||||
| 15413 | APInt CVNMinus1 = CVN - 1; | ||||
| 15414 | unsigned ShiftM1 = CVMMinus1.logBase2(); | ||||
| 15415 | unsigned ShiftN1 = CVNMinus1.logBase2(); | ||||
| 15416 | // LSLFast implicate that Shifts <= 3 places are fast | ||||
| 15417 | if (ShiftM1 <= 3 && ShiftN1 <= 3) { | ||||
| 15418 | SDValue MVal = Add(Shl(N0, ShiftM1), N0); | ||||
| 15419 | return Add(Shl(MVal, ShiftN1), MVal); | ||||
| 15420 | } | ||||
| 15421 | } | ||||
| 15422 | } else { | ||||
| 15423 | // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) | ||||
| 15424 | // (mul x, -(2^N + 1)) => - (add (shl x, N), x) | ||||
| 15425 | // (mul x, -(2^(N-M) - 1) * 2^M) => (sub (shl x, M), (shl x, N)) | ||||
| 15426 | APInt SCVPlus1 = -ShiftedConstValue + 1; | ||||
| 15427 | APInt CVNegPlus1 = -ConstValue + 1; | ||||
| 15428 | APInt CVNegMinus1 = -ConstValue - 1; | ||||
| 15429 | if (CVNegPlus1.isPowerOf2()) { | ||||
| 15430 | ShiftAmt = CVNegPlus1.logBase2(); | ||||
| 15431 | return Sub(N0, Shl(N0, ShiftAmt)); | ||||
| 15432 | } else if (CVNegMinus1.isPowerOf2()) { | ||||
| 15433 | ShiftAmt = CVNegMinus1.logBase2(); | ||||
| 15434 | return Negate(Add(Shl(N0, ShiftAmt), N0)); | ||||
| 15435 | } else if (SCVPlus1.isPowerOf2()) { | ||||
| 15436 | ShiftAmt = SCVPlus1.logBase2() + TrailingZeroes; | ||||
| 15437 | return Sub(Shl(N0, TrailingZeroes), Shl(N0, ShiftAmt)); | ||||
| 15438 | } | ||||
| 15439 | } | ||||
| 15440 | |||||
| 15441 | return SDValue(); | ||||
| 15442 | } | ||||
| 15443 | |||||
| 15444 | static SDValue performVectorCompareAndMaskUnaryOpCombine(SDNode *N, | ||||
| 15445 | SelectionDAG &DAG) { | ||||
| 15446 | // Take advantage of vector comparisons producing 0 or -1 in each lane to | ||||
| 15447 | // optimize away operation when it's from a constant. | ||||
| 15448 | // | ||||
| 15449 | // The general transformation is: | ||||
| 15450 | // UNARYOP(AND(VECTOR_CMP(x,y), constant)) --> | ||||
| 15451 | // AND(VECTOR_CMP(x,y), constant2) | ||||
| 15452 | // constant2 = UNARYOP(constant) | ||||
| 15453 | |||||
| 15454 | // Early exit if this isn't a vector operation, the operand of the | ||||
| 15455 | // unary operation isn't a bitwise AND, or if the sizes of the operations | ||||
| 15456 | // aren't the same. | ||||
| 15457 | EVT VT = N->getValueType(0); | ||||
| 15458 | if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND || | ||||
| 15459 | N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC || | ||||
| 15460 | VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits()) | ||||
| 15461 | return SDValue(); | ||||
| 15462 | |||||
| 15463 | // Now check that the other operand of the AND is a constant. We could | ||||
| 15464 | // make the transformation for non-constant splats as well, but it's unclear | ||||
| 15465 | // that would be a benefit as it would not eliminate any operations, just | ||||
| 15466 | // perform one more step in scalar code before moving to the vector unit. | ||||
| 15467 | if (BuildVectorSDNode *BV = | ||||
| 15468 | dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) { | ||||
| 15469 | // Bail out if the vector isn't a constant. | ||||
| 15470 | if (!BV->isConstant()) | ||||
| 15471 | return SDValue(); | ||||
| 15472 | |||||
| 15473 | // Everything checks out. Build up the new and improved node. | ||||
| 15474 | SDLoc DL(N); | ||||
| 15475 | EVT IntVT = BV->getValueType(0); | ||||
| 15476 | // Create a new constant of the appropriate type for the transformed | ||||
| 15477 | // DAG. | ||||
| 15478 | SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0)); | ||||
| 15479 | // The AND node needs bitcasts to/from an integer vector type around it. | ||||
| 15480 | SDValue MaskConst = DAG.getNode(ISD::BITCAST, DL, IntVT, SourceConst); | ||||
| 15481 | SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT, | ||||
| 15482 | N->getOperand(0)->getOperand(0), MaskConst); | ||||
| 15483 | SDValue Res = DAG.getNode(ISD::BITCAST, DL, VT, NewAnd); | ||||
| 15484 | return Res; | ||||
| 15485 | } | ||||
| 15486 | |||||
| 15487 | return SDValue(); | ||||
| 15488 | } | ||||
| 15489 | |||||
| 15490 | static SDValue performIntToFpCombine(SDNode *N, SelectionDAG &DAG, | ||||
| 15491 | const AArch64Subtarget *Subtarget) { | ||||
| 15492 | // First try to optimize away the conversion when it's conditionally from | ||||
| 15493 | // a constant. Vectors only. | ||||
| 15494 | if (SDValue Res = performVectorCompareAndMaskUnaryOpCombine(N, DAG)) | ||||
| 15495 | return Res; | ||||
| 15496 | |||||
| 15497 | EVT VT = N->getValueType(0); | ||||
| 15498 | if (VT != MVT::f32 && VT != MVT::f64) | ||||
| 15499 | return SDValue(); | ||||
| 15500 | |||||
| 15501 | // Only optimize when the source and destination types have the same width. | ||||
| 15502 | if (VT.getSizeInBits() != N->getOperand(0).getValueSizeInBits()) | ||||
| 15503 | return SDValue(); | ||||
| 15504 | |||||
| 15505 | // If the result of an integer load is only used by an integer-to-float | ||||
| 15506 | // conversion, use a fp load instead and a AdvSIMD scalar {S|U}CVTF instead. | ||||
| 15507 | // This eliminates an "integer-to-vector-move" UOP and improves throughput. | ||||
| 15508 | SDValue N0 = N->getOperand(0); | ||||
| 15509 | if (Subtarget->hasNEON() && ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() && | ||||
| 15510 | // Do not change the width of a volatile load. | ||||
| 15511 | !cast<LoadSDNode>(N0)->isVolatile()) { | ||||
| 15512 | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | ||||
| 15513 | SDValue Load = DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(), | ||||
| 15514 | LN0->getPointerInfo(), LN0->getAlign(), | ||||
| 15515 | LN0->getMemOperand()->getFlags()); | ||||
| 15516 | |||||
| 15517 | // Make sure successors of the original load stay after it by updating them | ||||
| 15518 | // to use the new Chain. | ||||
| 15519 | DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), Load.getValue(1)); | ||||
| 15520 | |||||
| 15521 | unsigned Opcode = | ||||
| 15522 | (N->getOpcode() == ISD::SINT_TO_FP) ? AArch64ISD::SITOF : AArch64ISD::UITOF; | ||||
| 15523 | return DAG.getNode(Opcode, SDLoc(N), VT, Load); | ||||
| 15524 | } | ||||
| 15525 | |||||
| 15526 | return SDValue(); | ||||
| 15527 | } | ||||
| 15528 | |||||
| 15529 | /// Fold a floating-point multiply by power of two into floating-point to | ||||
| 15530 | /// fixed-point conversion. | ||||
| 15531 | static SDValue performFpToIntCombine(SDNode *N, SelectionDAG &DAG, | ||||
| 15532 | TargetLowering::DAGCombinerInfo &DCI, | ||||
| 15533 | const AArch64Subtarget *Subtarget) { | ||||
| 15534 | if (!Subtarget->hasNEON() || Subtarget->forceStreamingCompatibleSVE()) | ||||
| 15535 | return SDValue(); | ||||
| 15536 | |||||
| 15537 | if (!N->getValueType(0).isSimple()) | ||||
| 15538 | return SDValue(); | ||||
| 15539 | |||||
| 15540 | SDValue Op = N->getOperand(0); | ||||
| 15541 | if (!Op.getValueType().isSimple() || Op.getOpcode() != ISD::FMUL) | ||||
| 15542 | return SDValue(); | ||||
| 15543 | |||||
| 15544 | if (!Op.getValueType().is64BitVector() && !Op.getValueType().is128BitVector()) | ||||
| 15545 | return SDValue(); | ||||
| 15546 | |||||
| 15547 | SDValue ConstVec = Op->getOperand(1); | ||||
| 15548 | if (!isa<BuildVectorSDNode>(ConstVec)) | ||||
| 15549 | return SDValue(); | ||||
| 15550 | |||||
| 15551 | MVT FloatTy = Op.getSimpleValueType().getVectorElementType(); | ||||
| 15552 | uint32_t FloatBits = FloatTy.getSizeInBits(); | ||||
| 15553 | if (FloatBits != 32 && FloatBits != 64 && | ||||
| 15554 | (FloatBits != 16 || !Subtarget->hasFullFP16())) | ||||
| 15555 | return SDValue(); | ||||
| 15556 | |||||
| 15557 | MVT IntTy = N->getSimpleValueType(0).getVectorElementType(); | ||||
| 15558 | uint32_t IntBits = IntTy.getSizeInBits(); | ||||
| 15559 | if (IntBits != 16 && IntBits != 32 && IntBits != 64) | ||||
| 15560 | return SDValue(); | ||||
| 15561 | |||||
| 15562 | // Avoid conversions where iN is larger than the float (e.g., float -> i64). | ||||
| 15563 | if (IntBits > FloatBits) | ||||
| 15564 | return SDValue(); | ||||
| 15565 | |||||
| 15566 | BitVector UndefElements; | ||||
| 15567 | BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec); | ||||
| 15568 | int32_t Bits = IntBits == 64 ? 64 : 32; | ||||
| 15569 | int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, Bits + 1); | ||||
| 15570 | if (C == -1 || C == 0 || C > Bits) | ||||
| 15571 | return SDValue(); | ||||
| 15572 | |||||
| 15573 | EVT ResTy = Op.getValueType().changeVectorElementTypeToInteger(); | ||||
| 15574 | if (!DAG.getTargetLoweringInfo().isTypeLegal(ResTy)) | ||||
| 15575 | return SDValue(); | ||||
| 15576 | |||||
| 15577 | if (N->getOpcode() == ISD::FP_TO_SINT_SAT || | ||||
| 15578 | N->getOpcode() == ISD::FP_TO_UINT_SAT) { | ||||
| 15579 | EVT SatVT = cast<VTSDNode>(N->getOperand(1))->getVT(); | ||||
| 15580 | if (SatVT.getScalarSizeInBits() != IntBits || IntBits != FloatBits) | ||||
| 15581 | return SDValue(); | ||||
| 15582 | } | ||||
| 15583 | |||||
| 15584 | SDLoc DL(N); | ||||
| 15585 | bool IsSigned = (N->getOpcode() == ISD::FP_TO_SINT || | ||||
| 15586 | N->getOpcode() == ISD::FP_TO_SINT_SAT); | ||||
| 15587 | unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfp2fxs | ||||
| 15588 | : Intrinsic::aarch64_neon_vcvtfp2fxu; | ||||
| 15589 | SDValue FixConv = | ||||
| 15590 | DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, ResTy, | ||||
| 15591 | DAG.getConstant(IntrinsicOpcode, DL, MVT::i32), | ||||
| 15592 | Op->getOperand(0), DAG.getConstant(C, DL, MVT::i32)); | ||||
| 15593 | // We can handle smaller integers by generating an extra trunc. | ||||
| 15594 | if (IntBits < FloatBits) | ||||
| 15595 | FixConv = DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), FixConv); | ||||
| 15596 | |||||
| 15597 | return FixConv; | ||||
| 15598 | } | ||||
| 15599 | |||||
| 15600 | /// Fold a floating-point divide by power of two into fixed-point to | ||||
| 15601 | /// floating-point conversion. | ||||
| 15602 | static SDValue performFDivCombine(SDNode *N, SelectionDAG &DAG, | ||||
| 15603 | TargetLowering::DAGCombinerInfo &DCI, | ||||
| 15604 | const AArch64Subtarget *Subtarget) { | ||||
| 15605 | if (!Subtarget->hasNEON()) | ||||
| 15606 | return SDValue(); | ||||
| 15607 | |||||
| 15608 | SDValue Op = N->getOperand(0); | ||||
| 15609 | unsigned Opc = Op->getOpcode(); | ||||
| 15610 | if (!Op.getValueType().isVector() || !Op.getValueType().isSimple() || | ||||
| 15611 | !Op.getOperand(0).getValueType().isSimple() || | ||||
| 15612 | (Opc != ISD::SINT_TO_FP && Opc != ISD::UINT_TO_FP)) | ||||
| 15613 | return SDValue(); | ||||
| 15614 | |||||
| 15615 | SDValue ConstVec = N->getOperand(1); | ||||
| 15616 | if (!isa<BuildVectorSDNode>(ConstVec)) | ||||
| 15617 | return SDValue(); | ||||
| 15618 | |||||
| 15619 | MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType(); | ||||
| 15620 | int32_t IntBits = IntTy.getSizeInBits(); | ||||
| 15621 | if (IntBits != 16 && IntBits != 32 && IntBits != 64) | ||||
| 15622 | return SDValue(); | ||||
| 15623 | |||||
| 15624 | MVT FloatTy = N->getSimpleValueType(0).getVectorElementType(); | ||||
| 15625 | int32_t FloatBits = FloatTy.getSizeInBits(); | ||||
| 15626 | if (FloatBits != 32 && FloatBits != 64) | ||||
| 15627 | return SDValue(); | ||||
| 15628 | |||||
| 15629 | // Avoid conversions where iN is larger than the float (e.g., i64 -> float). | ||||
| 15630 | if (IntBits > FloatBits) | ||||
| 15631 | return SDValue(); | ||||
| 15632 | |||||
| 15633 | BitVector UndefElements; | ||||
| 15634 | BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec); | ||||
| 15635 | int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, FloatBits + 1); | ||||
| 15636 | if (C == -1 || C == 0 || C > FloatBits) | ||||
| 15637 | return SDValue(); | ||||
| 15638 | |||||
| 15639 | MVT ResTy; | ||||
| 15640 | unsigned NumLanes = Op.getValueType().getVectorNumElements(); | ||||
| 15641 | switch (NumLanes) { | ||||
| 15642 | default: | ||||
| 15643 | return SDValue(); | ||||
| 15644 | case 2: | ||||
| 15645 | ResTy = FloatBits == 32 ? MVT::v2i32 : MVT::v2i64; | ||||
| 15646 | break; | ||||
| 15647 | case 4: | ||||
| 15648 | ResTy = FloatBits == 32 ? MVT::v4i32 : MVT::v4i64; | ||||
| 15649 | break; | ||||
| 15650 | } | ||||
| 15651 | |||||
| 15652 | if (ResTy == MVT::v4i64 && DCI.isBeforeLegalizeOps()) | ||||
| 15653 | return SDValue(); | ||||
| 15654 | |||||
| 15655 | SDLoc DL(N); | ||||
| 15656 | SDValue ConvInput = Op.getOperand(0); | ||||
| 15657 | bool IsSigned = Opc == ISD::SINT_TO_FP; | ||||
| 15658 | if (IntBits < FloatBits) | ||||
| 15659 | ConvInput = DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, | ||||
| 15660 | ResTy, ConvInput); | ||||
| 15661 | |||||
| 15662 | unsigned IntrinsicOpcode = IsSigned ? Intrinsic::aarch64_neon_vcvtfxs2fp | ||||
| 15663 | : Intrinsic::aarch64_neon_vcvtfxu2fp; | ||||
| 15664 | return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, Op.getValueType(), | ||||
| 15665 | DAG.getConstant(IntrinsicOpcode, DL, MVT::i32), ConvInput, | ||||
| 15666 | DAG.getConstant(C, DL, MVT::i32)); | ||||
| 15667 | } | ||||
| 15668 | |||||
| 15669 | /// An EXTR instruction is made up of two shifts, ORed together. This helper | ||||
| 15670 | /// searches for and classifies those shifts. | ||||
| 15671 | static bool findEXTRHalf(SDValue N, SDValue &Src, uint32_t &ShiftAmount, | ||||
| 15672 | bool &FromHi) { | ||||
| 15673 | if (N.getOpcode() == ISD::SHL) | ||||
| 15674 | FromHi = false; | ||||
| 15675 | else if (N.getOpcode() == ISD::SRL) | ||||
| 15676 | FromHi = true; | ||||
| 15677 | else | ||||
| 15678 | return false; | ||||
| 15679 | |||||
| 15680 | if (!isa<ConstantSDNode>(N.getOperand(1))) | ||||
| 15681 | return false; | ||||
| 15682 | |||||
| 15683 | ShiftAmount = N->getConstantOperandVal(1); | ||||
| 15684 | Src = N->getOperand(0); | ||||
| 15685 | return true; | ||||
| 15686 | } | ||||
| 15687 | |||||
| 15688 | /// EXTR instruction extracts a contiguous chunk of bits from two existing | ||||
| 15689 | /// registers viewed as a high/low pair. This function looks for the pattern: | ||||
| 15690 | /// <tt>(or (shl VAL1, \#N), (srl VAL2, \#RegWidth-N))</tt> and replaces it | ||||
| 15691 | /// with an EXTR. Can't quite be done in TableGen because the two immediates | ||||
| 15692 | /// aren't independent. | ||||
| 15693 | static SDValue tryCombineToEXTR(SDNode *N, | ||||
| 15694 | TargetLowering::DAGCombinerInfo &DCI) { | ||||
| 15695 | SelectionDAG &DAG = DCI.DAG; | ||||
| 15696 | SDLoc DL(N); | ||||
| 15697 | EVT VT = N->getValueType(0); | ||||
| 15698 | |||||
| 15699 | assert(N->getOpcode() == ISD::OR && "Unexpected root")(static_cast <bool> (N->getOpcode() == ISD::OR && "Unexpected root") ? void (0) : __assert_fail ("N->getOpcode() == ISD::OR && \"Unexpected root\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 15699, __extension__ __PRETTY_FUNCTION__)); | ||||
| 15700 | |||||
| 15701 | if (VT != MVT::i32 && VT != MVT::i64) | ||||
| 15702 | return SDValue(); | ||||
| 15703 | |||||
| 15704 | SDValue LHS; | ||||
| 15705 | uint32_t ShiftLHS = 0; | ||||
| 15706 | bool LHSFromHi = false; | ||||
| 15707 | if (!findEXTRHalf(N->getOperand(0), LHS, ShiftLHS, LHSFromHi)) | ||||
| 15708 | return SDValue(); | ||||
| 15709 | |||||
| 15710 | SDValue RHS; | ||||
| 15711 | uint32_t ShiftRHS = 0; | ||||
| 15712 | bool RHSFromHi = false; | ||||
| 15713 | if (!findEXTRHalf(N->getOperand(1), RHS, ShiftRHS, RHSFromHi)) | ||||
| 15714 | return SDValue(); | ||||
| 15715 | |||||
| 15716 | // If they're both trying to come from the high part of the register, they're | ||||
| 15717 | // not really an EXTR. | ||||
| 15718 | if (LHSFromHi == RHSFromHi) | ||||
| 15719 | return SDValue(); | ||||
| 15720 | |||||
| 15721 | if (ShiftLHS + ShiftRHS != VT.getSizeInBits()) | ||||
| 15722 | return SDValue(); | ||||
| 15723 | |||||
| 15724 | if (LHSFromHi) { | ||||
| 15725 | std::swap(LHS, RHS); | ||||
| 15726 | std::swap(ShiftLHS, ShiftRHS); | ||||
| 15727 | } | ||||
| 15728 | |||||
| 15729 | return DAG.getNode(AArch64ISD::EXTR, DL, VT, LHS, RHS, | ||||
| 15730 | DAG.getConstant(ShiftRHS, DL, MVT::i64)); | ||||
| 15731 | } | ||||
| 15732 | |||||
| 15733 | static SDValue tryCombineToBSL(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, | ||||
| 15734 | const AArch64TargetLowering &TLI) { | ||||
| 15735 | EVT VT = N->getValueType(0); | ||||
| 15736 | SelectionDAG &DAG = DCI.DAG; | ||||
| 15737 | SDLoc DL(N); | ||||
| 15738 | |||||
| 15739 | if (!VT.isVector()) | ||||
| 15740 | return SDValue(); | ||||
| 15741 | |||||
| 15742 | // The combining code currently only works for NEON vectors. In particular, | ||||
| 15743 | // it does not work for SVE when dealing with vectors wider than 128 bits. | ||||
| 15744 | // It also doesn't work for streaming mode because it causes generating | ||||
| 15745 | // bsl instructions that are invalid in streaming mode. | ||||
| 15746 | if (TLI.useSVEForFixedLengthVectorVT( | ||||
| 15747 | VT, | ||||
| 15748 | DAG.getSubtarget<AArch64Subtarget>().forceStreamingCompatibleSVE())) | ||||
| 15749 | return SDValue(); | ||||
| 15750 | |||||
| 15751 | SDValue N0 = N->getOperand(0); | ||||
| 15752 | if (N0.getOpcode() != ISD::AND) | ||||
| 15753 | return SDValue(); | ||||
| 15754 | |||||
| 15755 | SDValue N1 = N->getOperand(1); | ||||
| 15756 | if (N1.getOpcode() != ISD::AND) | ||||
| 15757 | return SDValue(); | ||||
| 15758 | |||||
| 15759 | // InstCombine does (not (neg a)) => (add a -1). | ||||
| 15760 | // Try: (or (and (neg a) b) (and (add a -1) c)) => (bsl (neg a) b c) | ||||
| 15761 | // Loop over all combinations of AND operands. | ||||
| 15762 | for (int i = 1; i >= 0; --i) { | ||||
| 15763 | for (int j = 1; j >= 0; --j) { | ||||
| 15764 | SDValue O0 = N0->getOperand(i); | ||||
| 15765 | SDValue O1 = N1->getOperand(j); | ||||
| 15766 | SDValue Sub, Add, SubSibling, AddSibling; | ||||
| 15767 | |||||
| 15768 | // Find a SUB and an ADD operand, one from each AND. | ||||
| 15769 | if (O0.getOpcode() == ISD::SUB && O1.getOpcode() == ISD::ADD) { | ||||
| 15770 | Sub = O0; | ||||
| 15771 | Add = O1; | ||||
| 15772 | SubSibling = N0->getOperand(1 - i); | ||||
| 15773 | AddSibling = N1->getOperand(1 - j); | ||||
| 15774 | } else if (O0.getOpcode() == ISD::ADD && O1.getOpcode() == ISD::SUB) { | ||||
| 15775 | Add = O0; | ||||
| 15776 | Sub = O1; | ||||
| 15777 | AddSibling = N0->getOperand(1 - i); | ||||
| 15778 | SubSibling = N1->getOperand(1 - j); | ||||
| 15779 | } else | ||||
| 15780 | continue; | ||||
| 15781 | |||||
| 15782 | if (!ISD::isBuildVectorAllZeros(Sub.getOperand(0).getNode())) | ||||
| 15783 | continue; | ||||
| 15784 | |||||
| 15785 | // Constant ones is always righthand operand of the Add. | ||||
| 15786 | if (!ISD::isBuildVectorAllOnes(Add.getOperand(1).getNode())) | ||||
| 15787 | continue; | ||||
| 15788 | |||||
| 15789 | if (Sub.getOperand(1) != Add.getOperand(0)) | ||||
| 15790 | continue; | ||||
| 15791 | |||||
| 15792 | return DAG.getNode(AArch64ISD::BSP, DL, VT, Sub, SubSibling, AddSibling); | ||||
| 15793 | } | ||||
| 15794 | } | ||||
| 15795 | |||||
| 15796 | // (or (and a b) (and (not a) c)) => (bsl a b c) | ||||
| 15797 | // We only have to look for constant vectors here since the general, variable | ||||
| 15798 | // case can be handled in TableGen. | ||||
| 15799 | unsigned Bits = VT.getScalarSizeInBits(); | ||||
| 15800 | uint64_t BitMask = Bits == 64 ? -1ULL : ((1ULL << Bits) - 1); | ||||
| 15801 | for (int i = 1; i >= 0; --i) | ||||
| 15802 | for (int j = 1; j >= 0; --j) { | ||||
| 15803 | BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(i)); | ||||
| 15804 | BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(j)); | ||||
| 15805 | if (!BVN0 || !BVN1) | ||||
| 15806 | continue; | ||||
| 15807 | |||||
| 15808 | bool FoundMatch = true; | ||||
| 15809 | for (unsigned k = 0; k < VT.getVectorNumElements(); ++k) { | ||||
| 15810 | ConstantSDNode *CN0 = dyn_cast<ConstantSDNode>(BVN0->getOperand(k)); | ||||
| 15811 | ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(BVN1->getOperand(k)); | ||||
| 15812 | if (!CN0 || !CN1 || | ||||
| 15813 | CN0->getZExtValue() != (BitMask & ~CN1->getZExtValue())) { | ||||
| 15814 | FoundMatch = false; | ||||
| 15815 | break; | ||||
| 15816 | } | ||||
| 15817 | } | ||||
| 15818 | |||||
| 15819 | if (FoundMatch) | ||||
| 15820 | return DAG.getNode(AArch64ISD::BSP, DL, VT, SDValue(BVN0, 0), | ||||
| 15821 | N0->getOperand(1 - i), N1->getOperand(1 - j)); | ||||
| 15822 | } | ||||
| 15823 | |||||
| 15824 | return SDValue(); | ||||
| 15825 | } | ||||
| 15826 | |||||
| 15827 | // Given a tree of and/or(csel(0, 1, cc0), csel(0, 1, cc1)), we may be able to | ||||
| 15828 | // convert to csel(ccmp(.., cc0)), depending on cc1: | ||||
| 15829 | |||||
| 15830 | // (AND (CSET cc0 cmp0) (CSET cc1 (CMP x1 y1))) | ||||
| 15831 | // => | ||||
| 15832 | // (CSET cc1 (CCMP x1 y1 !cc1 cc0 cmp0)) | ||||
| 15833 | // | ||||
| 15834 | // (OR (CSET cc0 cmp0) (CSET cc1 (CMP x1 y1))) | ||||
| 15835 | // => | ||||
| 15836 | // (CSET cc1 (CCMP x1 y1 cc1 !cc0 cmp0)) | ||||
| 15837 | static SDValue performANDORCSELCombine(SDNode *N, SelectionDAG &DAG) { | ||||
| 15838 | EVT VT = N->getValueType(0); | ||||
| 15839 | SDValue CSel0 = N->getOperand(0); | ||||
| 15840 | SDValue CSel1 = N->getOperand(1); | ||||
| 15841 | |||||
| 15842 | if (CSel0.getOpcode() != AArch64ISD::CSEL || | ||||
| 15843 | CSel1.getOpcode() != AArch64ISD::CSEL) | ||||
| 15844 | return SDValue(); | ||||
| 15845 | |||||
| 15846 | if (!CSel0->hasOneUse() || !CSel1->hasOneUse()) | ||||
| 15847 | return SDValue(); | ||||
| 15848 | |||||
| 15849 | if (!isNullConstant(CSel0.getOperand(0)) || | ||||
| 15850 | !isOneConstant(CSel0.getOperand(1)) || | ||||
| 15851 | !isNullConstant(CSel1.getOperand(0)) || | ||||
| 15852 | !isOneConstant(CSel1.getOperand(1))) | ||||
| 15853 | return SDValue(); | ||||
| 15854 | |||||
| 15855 | SDValue Cmp0 = CSel0.getOperand(3); | ||||
| 15856 | SDValue Cmp1 = CSel1.getOperand(3); | ||||
| 15857 | AArch64CC::CondCode CC0 = (AArch64CC::CondCode)CSel0.getConstantOperandVal(2); | ||||
| 15858 | AArch64CC::CondCode CC1 = (AArch64CC::CondCode)CSel1.getConstantOperandVal(2); | ||||
| 15859 | if (!Cmp0->hasOneUse() || !Cmp1->hasOneUse()) | ||||
| 15860 | return SDValue(); | ||||
| 15861 | if (Cmp1.getOpcode() != AArch64ISD::SUBS && | ||||
| 15862 | Cmp0.getOpcode() == AArch64ISD::SUBS) { | ||||
| 15863 | std::swap(Cmp0, Cmp1); | ||||
| 15864 | std::swap(CC0, CC1); | ||||
| 15865 | } | ||||
| 15866 | |||||
| 15867 | if (Cmp1.getOpcode() != AArch64ISD::SUBS) | ||||
| 15868 | return SDValue(); | ||||
| 15869 | |||||
| 15870 | SDLoc DL(N); | ||||
| 15871 | SDValue CCmp, Condition; | ||||
| 15872 | unsigned NZCV; | ||||
| 15873 | |||||
| 15874 | if (N->getOpcode() == ISD::AND) { | ||||
| 15875 | AArch64CC::CondCode InvCC0 = AArch64CC::getInvertedCondCode(CC0); | ||||
| 15876 | Condition = DAG.getConstant(InvCC0, DL, MVT_CC); | ||||
| 15877 | NZCV = AArch64CC::getNZCVToSatisfyCondCode(CC1); | ||||
| 15878 | } else { | ||||
| 15879 | AArch64CC::CondCode InvCC1 = AArch64CC::getInvertedCondCode(CC1); | ||||
| 15880 | Condition = DAG.getConstant(CC0, DL, MVT_CC); | ||||
| 15881 | NZCV = AArch64CC::getNZCVToSatisfyCondCode(InvCC1); | ||||
| 15882 | } | ||||
| 15883 | |||||
| 15884 | SDValue NZCVOp = DAG.getConstant(NZCV, DL, MVT::i32); | ||||
| 15885 | |||||
| 15886 | auto *Op1 = dyn_cast<ConstantSDNode>(Cmp1.getOperand(1)); | ||||
| 15887 | if (Op1 && Op1->getAPIntValue().isNegative() && | ||||
| 15888 | Op1->getAPIntValue().sgt(-32)) { | ||||
| 15889 | // CCMP accept the constant int the range [0, 31] | ||||
| 15890 | // if the Op1 is a constant in the range [-31, -1], we | ||||
| 15891 | // can select to CCMN to avoid the extra mov | ||||
| 15892 | SDValue AbsOp1 = | ||||
| 15893 | DAG.getConstant(Op1->getAPIntValue().abs(), DL, Op1->getValueType(0)); | ||||
| 15894 | CCmp = DAG.getNode(AArch64ISD::CCMN, DL, MVT_CC, Cmp1.getOperand(0), AbsOp1, | ||||
| 15895 | NZCVOp, Condition, Cmp0); | ||||
| 15896 | } else { | ||||
| 15897 | CCmp = DAG.getNode(AArch64ISD::CCMP, DL, MVT_CC, Cmp1.getOperand(0), | ||||
| 15898 | Cmp1.getOperand(1), NZCVOp, Condition, Cmp0); | ||||
| 15899 | } | ||||
| 15900 | return DAG.getNode(AArch64ISD::CSEL, DL, VT, CSel0.getOperand(0), | ||||
| 15901 | CSel0.getOperand(1), DAG.getConstant(CC1, DL, MVT::i32), | ||||
| 15902 | CCmp); | ||||
| 15903 | } | ||||
| 15904 | |||||
| 15905 | static SDValue performORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, | ||||
| 15906 | const AArch64Subtarget *Subtarget, | ||||
| 15907 | const AArch64TargetLowering &TLI) { | ||||
| 15908 | SelectionDAG &DAG = DCI.DAG; | ||||
| 15909 | EVT VT = N->getValueType(0); | ||||
| 15910 | |||||
| 15911 | if (SDValue R = performANDORCSELCombine(N, DAG)) | ||||
| 15912 | return R; | ||||
| 15913 | |||||
| 15914 | if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) | ||||
| 15915 | return SDValue(); | ||||
| 15916 | |||||
| 15917 | // Attempt to form an EXTR from (or (shl VAL1, #N), (srl VAL2, #RegWidth-N)) | ||||
| 15918 | if (SDValue Res = tryCombineToEXTR(N, DCI)) | ||||
| 15919 | return Res; | ||||
| 15920 | |||||
| 15921 | if (SDValue Res = tryCombineToBSL(N, DCI, TLI)) | ||||
| 15922 | return Res; | ||||
| 15923 | |||||
| 15924 | return SDValue(); | ||||
| 15925 | } | ||||
| 15926 | |||||
| 15927 | static bool isConstantSplatVectorMaskForType(SDNode *N, EVT MemVT) { | ||||
| 15928 | if (!MemVT.getVectorElementType().isSimple()) | ||||
| 15929 | return false; | ||||
| 15930 | |||||
| 15931 | uint64_t MaskForTy = 0ull; | ||||
| 15932 | switch (MemVT.getVectorElementType().getSimpleVT().SimpleTy) { | ||||
| 15933 | case MVT::i8: | ||||
| 15934 | MaskForTy = 0xffull; | ||||
| 15935 | break; | ||||
| 15936 | case MVT::i16: | ||||
| 15937 | MaskForTy = 0xffffull; | ||||
| 15938 | break; | ||||
| 15939 | case MVT::i32: | ||||
| 15940 | MaskForTy = 0xffffffffull; | ||||
| 15941 | break; | ||||
| 15942 | default: | ||||
| 15943 | return false; | ||||
| 15944 | break; | ||||
| 15945 | } | ||||
| 15946 | |||||
| 15947 | if (N->getOpcode() == AArch64ISD::DUP || N->getOpcode() == ISD::SPLAT_VECTOR) | ||||
| 15948 | if (auto *Op0 = dyn_cast<ConstantSDNode>(N->getOperand(0))) | ||||
| 15949 | return Op0->getAPIntValue().getLimitedValue() == MaskForTy; | ||||
| 15950 | |||||
| 15951 | return false; | ||||
| 15952 | } | ||||
| 15953 | |||||
| 15954 | static SDValue performSVEAndCombine(SDNode *N, | ||||
| 15955 | TargetLowering::DAGCombinerInfo &DCI) { | ||||
| 15956 | if (DCI.isBeforeLegalizeOps()) | ||||
| 15957 | return SDValue(); | ||||
| 15958 | |||||
| 15959 | SelectionDAG &DAG = DCI.DAG; | ||||
| 15960 | SDValue Src = N->getOperand(0); | ||||
| 15961 | unsigned Opc = Src->getOpcode(); | ||||
| 15962 | |||||
| 15963 | // Zero/any extend of an unsigned unpack | ||||
| 15964 | if (Opc == AArch64ISD::UUNPKHI || Opc == AArch64ISD::UUNPKLO) { | ||||
| 15965 | SDValue UnpkOp = Src->getOperand(0); | ||||
| 15966 | SDValue Dup = N->getOperand(1); | ||||
| 15967 | |||||
| 15968 | if (Dup.getOpcode() != ISD::SPLAT_VECTOR) | ||||
| 15969 | return SDValue(); | ||||
| 15970 | |||||
| 15971 | SDLoc DL(N); | ||||
| 15972 | ConstantSDNode *C = dyn_cast<ConstantSDNode>(Dup->getOperand(0)); | ||||
| 15973 | if (!C) | ||||
| 15974 | return SDValue(); | ||||
| 15975 | |||||
| 15976 | uint64_t ExtVal = C->getZExtValue(); | ||||
| 15977 | |||||
| 15978 | // If the mask is fully covered by the unpack, we don't need to push | ||||
| 15979 | // a new AND onto the operand | ||||
| 15980 | EVT EltTy = UnpkOp->getValueType(0).getVectorElementType(); | ||||
| 15981 | if ((ExtVal == 0xFF && EltTy == MVT::i8) || | ||||
| 15982 | (ExtVal == 0xFFFF && EltTy == MVT::i16) || | ||||
| 15983 | (ExtVal == 0xFFFFFFFF && EltTy == MVT::i32)) | ||||
| 15984 | return Src; | ||||
| 15985 | |||||
| 15986 | // Truncate to prevent a DUP with an over wide constant | ||||
| 15987 | APInt Mask = C->getAPIntValue().trunc(EltTy.getSizeInBits()); | ||||
| 15988 | |||||
| 15989 | // Otherwise, make sure we propagate the AND to the operand | ||||
| 15990 | // of the unpack | ||||
| 15991 | Dup = DAG.getNode(ISD::SPLAT_VECTOR, DL, UnpkOp->getValueType(0), | ||||
| 15992 | DAG.getConstant(Mask.zextOrTrunc(32), DL, MVT::i32)); | ||||
| 15993 | |||||
| 15994 | SDValue And = DAG.getNode(ISD::AND, DL, | ||||
| 15995 | UnpkOp->getValueType(0), UnpkOp, Dup); | ||||
| 15996 | |||||
| 15997 | return DAG.getNode(Opc, DL, N->getValueType(0), And); | ||||
| 15998 | } | ||||
| 15999 | |||||
| 16000 | if (!EnableCombineMGatherIntrinsics) | ||||
| 16001 | return SDValue(); | ||||
| 16002 | |||||
| 16003 | SDValue Mask = N->getOperand(1); | ||||
| 16004 | |||||
| 16005 | if (!Src.hasOneUse()) | ||||
| 16006 | return SDValue(); | ||||
| 16007 | |||||
| 16008 | EVT MemVT; | ||||
| 16009 | |||||
| 16010 | // SVE load instructions perform an implicit zero-extend, which makes them | ||||
| 16011 | // perfect candidates for combining. | ||||
| 16012 | switch (Opc) { | ||||
| 16013 | case AArch64ISD::LD1_MERGE_ZERO: | ||||
| 16014 | case AArch64ISD::LDNF1_MERGE_ZERO: | ||||
| 16015 | case AArch64ISD::LDFF1_MERGE_ZERO: | ||||
| 16016 | MemVT = cast<VTSDNode>(Src->getOperand(3))->getVT(); | ||||
| 16017 | break; | ||||
| 16018 | case AArch64ISD::GLD1_MERGE_ZERO: | ||||
| 16019 | case AArch64ISD::GLD1_SCALED_MERGE_ZERO: | ||||
| 16020 | case AArch64ISD::GLD1_SXTW_MERGE_ZERO: | ||||
| 16021 | case AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO: | ||||
| 16022 | case AArch64ISD::GLD1_UXTW_MERGE_ZERO: | ||||
| 16023 | case AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO: | ||||
| 16024 | case AArch64ISD::GLD1_IMM_MERGE_ZERO: | ||||
| 16025 | case AArch64ISD::GLDFF1_MERGE_ZERO: | ||||
| 16026 | case AArch64ISD::GLDFF1_SCALED_MERGE_ZERO: | ||||
| 16027 | case AArch64ISD::GLDFF1_SXTW_MERGE_ZERO: | ||||
| 16028 | case AArch64ISD::GLDFF1_SXTW_SCALED_MERGE_ZERO: | ||||
| 16029 | case AArch64ISD::GLDFF1_UXTW_MERGE_ZERO: | ||||
| 16030 | case AArch64ISD::GLDFF1_UXTW_SCALED_MERGE_ZERO: | ||||
| 16031 | case AArch64ISD::GLDFF1_IMM_MERGE_ZERO: | ||||
| 16032 | case AArch64ISD::GLDNT1_MERGE_ZERO: | ||||
| 16033 | MemVT = cast<VTSDNode>(Src->getOperand(4))->getVT(); | ||||
| 16034 | break; | ||||
| 16035 | default: | ||||
| 16036 | return SDValue(); | ||||
| 16037 | } | ||||
| 16038 | |||||
| 16039 | if (isConstantSplatVectorMaskForType(Mask.getNode(), MemVT)) | ||||
| 16040 | return Src; | ||||
| 16041 | |||||
| 16042 | return SDValue(); | ||||
| 16043 | } | ||||
| 16044 | |||||
| 16045 | static SDValue performANDCombine(SDNode *N, | ||||
| 16046 | TargetLowering::DAGCombinerInfo &DCI) { | ||||
| 16047 | SelectionDAG &DAG = DCI.DAG; | ||||
| 16048 | SDValue LHS = N->getOperand(0); | ||||
| 16049 | SDValue RHS = N->getOperand(1); | ||||
| 16050 | EVT VT = N->getValueType(0); | ||||
| 16051 | |||||
| 16052 | if (SDValue R = performANDORCSELCombine(N, DAG)) | ||||
| 16053 | return R; | ||||
| 16054 | |||||
| 16055 | if (!DAG.getTargetLoweringInfo().isTypeLegal(VT)) | ||||
| 16056 | return SDValue(); | ||||
| 16057 | |||||
| 16058 | if (VT.isScalableVector()) | ||||
| 16059 | return performSVEAndCombine(N, DCI); | ||||
| 16060 | |||||
| 16061 | // The combining code below works only for NEON vectors. In particular, it | ||||
| 16062 | // does not work for SVE when dealing with vectors wider than 128 bits. | ||||
| 16063 | if (!VT.is64BitVector() && !VT.is128BitVector()) | ||||
| 16064 | return SDValue(); | ||||
| 16065 | |||||
| 16066 | BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode()); | ||||
| 16067 | if (!BVN) | ||||
| 16068 | return SDValue(); | ||||
| 16069 | |||||
| 16070 | // AND does not accept an immediate, so check if we can use a BIC immediate | ||||
| 16071 | // instruction instead. We do this here instead of using a (and x, (mvni imm)) | ||||
| 16072 | // pattern in isel, because some immediates may be lowered to the preferred | ||||
| 16073 | // (and x, (movi imm)) form, even though an mvni representation also exists. | ||||
| 16074 | APInt DefBits(VT.getSizeInBits(), 0); | ||||
| 16075 | APInt UndefBits(VT.getSizeInBits(), 0); | ||||
| 16076 | if (resolveBuildVector(BVN, DefBits, UndefBits)) { | ||||
| 16077 | SDValue NewOp; | ||||
| 16078 | |||||
| 16079 | DefBits = ~DefBits; | ||||
| 16080 | if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::BICi, SDValue(N, 0), DAG, | ||||
| 16081 | DefBits, &LHS)) || | ||||
| 16082 | (NewOp = tryAdvSIMDModImm16(AArch64ISD::BICi, SDValue(N, 0), DAG, | ||||
| 16083 | DefBits, &LHS))) | ||||
| 16084 | return NewOp; | ||||
| 16085 | |||||
| 16086 | UndefBits = ~UndefBits; | ||||
| 16087 | if ((NewOp = tryAdvSIMDModImm32(AArch64ISD::BICi, SDValue(N, 0), DAG, | ||||
| 16088 | UndefBits, &LHS)) || | ||||
| 16089 | (NewOp = tryAdvSIMDModImm16(AArch64ISD::BICi, SDValue(N, 0), DAG, | ||||
| 16090 | UndefBits, &LHS))) | ||||
| 16091 | return NewOp; | ||||
| 16092 | } | ||||
| 16093 | |||||
| 16094 | return SDValue(); | ||||
| 16095 | } | ||||
| 16096 | |||||
| 16097 | static bool hasPairwiseAdd(unsigned Opcode, EVT VT, bool FullFP16) { | ||||
| 16098 | switch (Opcode) { | ||||
| 16099 | case ISD::STRICT_FADD: | ||||
| 16100 | case ISD::FADD: | ||||
| 16101 | return (FullFP16 && VT == MVT::f16) || VT == MVT::f32 || VT == MVT::f64; | ||||
| 16102 | case ISD::ADD: | ||||
| 16103 | return VT == MVT::i64; | ||||
| 16104 | default: | ||||
| 16105 | return false; | ||||
| 16106 | } | ||||
| 16107 | } | ||||
| 16108 | |||||
| 16109 | static SDValue getPTest(SelectionDAG &DAG, EVT VT, SDValue Pg, SDValue Op, | ||||
| 16110 | AArch64CC::CondCode Cond); | ||||
| 16111 | |||||
| 16112 | static bool isPredicateCCSettingOp(SDValue N) { | ||||
| 16113 | if ((N.getOpcode() == ISD::SETCC) || | ||||
| 16114 | (N.getOpcode() == ISD::INTRINSIC_WO_CHAIN && | ||||
| 16115 | (N.getConstantOperandVal(0) == Intrinsic::aarch64_sve_whilege || | ||||
| 16116 | N.getConstantOperandVal(0) == Intrinsic::aarch64_sve_whilegt || | ||||
| 16117 | N.getConstantOperandVal(0) == Intrinsic::aarch64_sve_whilehi || | ||||
| 16118 | N.getConstantOperandVal(0) == Intrinsic::aarch64_sve_whilehs || | ||||
| 16119 | N.getConstantOperandVal(0) == Intrinsic::aarch64_sve_whilele || | ||||
| 16120 | N.getConstantOperandVal(0) == Intrinsic::aarch64_sve_whilelo || | ||||
| 16121 | N.getConstantOperandVal(0) == Intrinsic::aarch64_sve_whilels || | ||||
| 16122 | N.getConstantOperandVal(0) == Intrinsic::aarch64_sve_whilelt || | ||||
| 16123 | // get_active_lane_mask is lowered to a whilelo instruction. | ||||
| 16124 | N.getConstantOperandVal(0) == Intrinsic::get_active_lane_mask))) | ||||
| 16125 | return true; | ||||
| 16126 | |||||
| 16127 | return false; | ||||
| 16128 | } | ||||
| 16129 | |||||
| 16130 | // Materialize : i1 = extract_vector_elt t37, Constant:i64<0> | ||||
| 16131 | // ... into: "ptrue p, all" + PTEST | ||||
| 16132 | static SDValue | ||||
| 16133 | performFirstTrueTestVectorCombine(SDNode *N, | ||||
| 16134 | TargetLowering::DAGCombinerInfo &DCI, | ||||
| 16135 | const AArch64Subtarget *Subtarget) { | ||||
| 16136 | assert(N->getOpcode() == ISD::EXTRACT_VECTOR_ELT)(static_cast <bool> (N->getOpcode() == ISD::EXTRACT_VECTOR_ELT ) ? void (0) : __assert_fail ("N->getOpcode() == ISD::EXTRACT_VECTOR_ELT" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 16136, __extension__ __PRETTY_FUNCTION__)); | ||||
| 16137 | // Make sure PTEST can be legalised with illegal types. | ||||
| 16138 | if (!Subtarget->hasSVE() || DCI.isBeforeLegalize()) | ||||
| 16139 | return SDValue(); | ||||
| 16140 | |||||
| 16141 | SDValue N0 = N->getOperand(0); | ||||
| 16142 | EVT VT = N0.getValueType(); | ||||
| 16143 | |||||
| 16144 | if (!VT.isScalableVector() || VT.getVectorElementType() != MVT::i1 || | ||||
| 16145 | !isNullConstant(N->getOperand(1))) | ||||
| 16146 | return SDValue(); | ||||
| 16147 | |||||
| 16148 | // Restricted the DAG combine to only cases where we're extracting from a | ||||
| 16149 | // flag-setting operation. | ||||
| 16150 | if (!isPredicateCCSettingOp(N0)) | ||||
| 16151 | return SDValue(); | ||||
| 16152 | |||||
| 16153 | // Extracts of lane 0 for SVE can be expressed as PTEST(Op, FIRST) ? 1 : 0 | ||||
| 16154 | SelectionDAG &DAG = DCI.DAG; | ||||
| 16155 | SDValue Pg = getPTrue(DAG, SDLoc(N), VT, AArch64SVEPredPattern::all); | ||||
| 16156 | return getPTest(DAG, N->getValueType(0), Pg, N0, AArch64CC::FIRST_ACTIVE); | ||||
| 16157 | } | ||||
| 16158 | |||||
| 16159 | // Materialize : Idx = (add (mul vscale, NumEls), -1) | ||||
| 16160 | // i1 = extract_vector_elt t37, Constant:i64<Idx> | ||||
| 16161 | // ... into: "ptrue p, all" + PTEST | ||||
| 16162 | static SDValue | ||||
| 16163 | performLastTrueTestVectorCombine(SDNode *N, | ||||
| 16164 | TargetLowering::DAGCombinerInfo &DCI, | ||||
| 16165 | const AArch64Subtarget *Subtarget) { | ||||
| 16166 | assert(N->getOpcode() == ISD::EXTRACT_VECTOR_ELT)(static_cast <bool> (N->getOpcode() == ISD::EXTRACT_VECTOR_ELT ) ? void (0) : __assert_fail ("N->getOpcode() == ISD::EXTRACT_VECTOR_ELT" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 16166, __extension__ __PRETTY_FUNCTION__)); | ||||
| 16167 | // Make sure PTEST is legal types. | ||||
| 16168 | if (!Subtarget->hasSVE() || DCI.isBeforeLegalize()) | ||||
| 16169 | return SDValue(); | ||||
| 16170 | |||||
| 16171 | SDValue N0 = N->getOperand(0); | ||||
| 16172 | EVT OpVT = N0.getValueType(); | ||||
| 16173 | |||||
| 16174 | if (!OpVT.isScalableVector() || OpVT.getVectorElementType() != MVT::i1) | ||||
| 16175 | return SDValue(); | ||||
| 16176 | |||||
| 16177 | // Idx == (add (mul vscale, NumEls), -1) | ||||
| 16178 | SDValue Idx = N->getOperand(1); | ||||
| 16179 | if (Idx.getOpcode() != ISD::ADD || !isAllOnesConstant(Idx.getOperand(1))) | ||||
| 16180 | return SDValue(); | ||||
| 16181 | |||||
| 16182 | SDValue VS = Idx.getOperand(0); | ||||
| 16183 | if (VS.getOpcode() != ISD::VSCALE) | ||||
| 16184 | return SDValue(); | ||||
| 16185 | |||||
| 16186 | unsigned NumEls = OpVT.getVectorElementCount().getKnownMinValue(); | ||||
| 16187 | if (VS.getConstantOperandVal(0) != NumEls) | ||||
| 16188 | return SDValue(); | ||||
| 16189 | |||||
| 16190 | // Extracts of lane EC-1 for SVE can be expressed as PTEST(Op, LAST) ? 1 : 0 | ||||
| 16191 | SelectionDAG &DAG = DCI.DAG; | ||||
| 16192 | SDValue Pg = getPTrue(DAG, SDLoc(N), OpVT, AArch64SVEPredPattern::all); | ||||
| 16193 | return getPTest(DAG, N->getValueType(0), Pg, N0, AArch64CC::LAST_ACTIVE); | ||||
| 16194 | } | ||||
| 16195 | |||||
| 16196 | static SDValue | ||||
| 16197 | performExtractVectorEltCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, | ||||
| 16198 | const AArch64Subtarget *Subtarget) { | ||||
| 16199 | assert(N->getOpcode() == ISD::EXTRACT_VECTOR_ELT)(static_cast <bool> (N->getOpcode() == ISD::EXTRACT_VECTOR_ELT ) ? void (0) : __assert_fail ("N->getOpcode() == ISD::EXTRACT_VECTOR_ELT" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 16199, __extension__ __PRETTY_FUNCTION__)); | ||||
| 16200 | if (SDValue Res = performFirstTrueTestVectorCombine(N, DCI, Subtarget)) | ||||
| 16201 | return Res; | ||||
| 16202 | if (SDValue Res = performLastTrueTestVectorCombine(N, DCI, Subtarget)) | ||||
| 16203 | return Res; | ||||
| 16204 | |||||
| 16205 | SelectionDAG &DAG = DCI.DAG; | ||||
| 16206 | SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); | ||||
| 16207 | ConstantSDNode *ConstantN1 = dyn_cast<ConstantSDNode>(N1); | ||||
| 16208 | |||||
| 16209 | EVT VT = N->getValueType(0); | ||||
| 16210 | const bool FullFP16 = DAG.getSubtarget<AArch64Subtarget>().hasFullFP16(); | ||||
| 16211 | bool IsStrict = N0->isStrictFPOpcode(); | ||||
| 16212 | |||||
| 16213 | // extract(dup x) -> x | ||||
| 16214 | if (N0.getOpcode() == AArch64ISD::DUP) | ||||
| 16215 | return DAG.getZExtOrTrunc(N0.getOperand(0), SDLoc(N), VT); | ||||
| 16216 | |||||
| 16217 | // Rewrite for pairwise fadd pattern | ||||
| 16218 | // (f32 (extract_vector_elt | ||||
| 16219 | // (fadd (vXf32 Other) | ||||
| 16220 | // (vector_shuffle (vXf32 Other) undef <1,X,...> )) 0)) | ||||
| 16221 | // -> | ||||
| 16222 | // (f32 (fadd (extract_vector_elt (vXf32 Other) 0) | ||||
| 16223 | // (extract_vector_elt (vXf32 Other) 1)) | ||||
| 16224 | // For strict_fadd we need to make sure the old strict_fadd can be deleted, so | ||||
| 16225 | // we can only do this when it's used only by the extract_vector_elt. | ||||
| 16226 | if (ConstantN1 && ConstantN1->getZExtValue() == 0 && | ||||
| 16227 | hasPairwiseAdd(N0->getOpcode(), VT, FullFP16) && | ||||
| 16228 | (!IsStrict || N0.hasOneUse())) { | ||||
| 16229 | SDLoc DL(N0); | ||||
| 16230 | SDValue N00 = N0->getOperand(IsStrict ? 1 : 0); | ||||
| 16231 | SDValue N01 = N0->getOperand(IsStrict ? 2 : 1); | ||||
| 16232 | |||||
| 16233 | ShuffleVectorSDNode *Shuffle = dyn_cast<ShuffleVectorSDNode>(N01); | ||||
| 16234 | SDValue Other = N00; | ||||
| 16235 | |||||
| 16236 | // And handle the commutative case. | ||||
| 16237 | if (!Shuffle) { | ||||
| 16238 | Shuffle = dyn_cast<ShuffleVectorSDNode>(N00); | ||||
| 16239 | Other = N01; | ||||
| 16240 | } | ||||
| 16241 | |||||
| 16242 | if (Shuffle && Shuffle->getMaskElt(0) == 1 && | ||||
| 16243 | Other == Shuffle->getOperand(0)) { | ||||
| 16244 | SDValue Extract1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Other, | ||||
| 16245 | DAG.getConstant(0, DL, MVT::i64)); | ||||
| 16246 | SDValue Extract2 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Other, | ||||
| 16247 | DAG.getConstant(1, DL, MVT::i64)); | ||||
| 16248 | if (!IsStrict) | ||||
| 16249 | return DAG.getNode(N0->getOpcode(), DL, VT, Extract1, Extract2); | ||||
| 16250 | |||||
| 16251 | // For strict_fadd we need uses of the final extract_vector to be replaced | ||||
| 16252 | // with the strict_fadd, but we also need uses of the chain output of the | ||||
| 16253 | // original strict_fadd to use the chain output of the new strict_fadd as | ||||
| 16254 | // otherwise it may not be deleted. | ||||
| 16255 | SDValue Ret = DAG.getNode(N0->getOpcode(), DL, | ||||
| 16256 | {VT, MVT::Other}, | ||||
| 16257 | {N0->getOperand(0), Extract1, Extract2}); | ||||
| 16258 | DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Ret); | ||||
| 16259 | DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Ret.getValue(1)); | ||||
| 16260 | return SDValue(N, 0); | ||||
| 16261 | } | ||||
| 16262 | } | ||||
| 16263 | |||||
| 16264 | return SDValue(); | ||||
| 16265 | } | ||||
| 16266 | |||||
| 16267 | static SDValue performConcatVectorsCombine(SDNode *N, | ||||
| 16268 | TargetLowering::DAGCombinerInfo &DCI, | ||||
| 16269 | SelectionDAG &DAG) { | ||||
| 16270 | SDLoc dl(N); | ||||
| 16271 | EVT VT = N->getValueType(0); | ||||
| 16272 | SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); | ||||
| 16273 | unsigned N0Opc = N0->getOpcode(), N1Opc = N1->getOpcode(); | ||||
| 16274 | |||||
| 16275 | if (VT.isScalableVector()) | ||||
| 16276 | return SDValue(); | ||||
| 16277 | |||||
| 16278 | // Optimize concat_vectors of truncated vectors, where the intermediate | ||||
| 16279 | // type is illegal, to avoid said illegality, e.g., | ||||
| 16280 | // (v4i16 (concat_vectors (v2i16 (truncate (v2i64))), | ||||
| 16281 | // (v2i16 (truncate (v2i64))))) | ||||
| 16282 | // -> | ||||
| 16283 | // (v4i16 (truncate (vector_shuffle (v4i32 (bitcast (v2i64))), | ||||
| 16284 | // (v4i32 (bitcast (v2i64))), | ||||
| 16285 | // <0, 2, 4, 6>))) | ||||
| 16286 | // This isn't really target-specific, but ISD::TRUNCATE legality isn't keyed | ||||
| 16287 | // on both input and result type, so we might generate worse code. | ||||
| 16288 | // On AArch64 we know it's fine for v2i64->v4i16 and v4i32->v8i8. | ||||
| 16289 | if (N->getNumOperands() == 2 && N0Opc == ISD::TRUNCATE && | ||||
| 16290 | N1Opc == ISD::TRUNCATE) { | ||||
| 16291 | SDValue N00 = N0->getOperand(0); | ||||
| 16292 | SDValue N10 = N1->getOperand(0); | ||||
| 16293 | EVT N00VT = N00.getValueType(); | ||||
| 16294 | |||||
| 16295 | if (N00VT == N10.getValueType() && | ||||
| 16296 | (N00VT == MVT::v2i64 || N00VT == MVT::v4i32) && | ||||
| 16297 | N00VT.getScalarSizeInBits() == 4 * VT.getScalarSizeInBits()) { | ||||
| 16298 | MVT MidVT = (N00VT == MVT::v2i64 ? MVT::v4i32 : MVT::v8i16); | ||||
| 16299 | SmallVector<int, 8> Mask(MidVT.getVectorNumElements()); | ||||
| 16300 | for (size_t i = 0; i < Mask.size(); ++i) | ||||
| 16301 | Mask[i] = i * 2; | ||||
| 16302 | return DAG.getNode(ISD::TRUNCATE, dl, VT, | ||||
| 16303 | DAG.getVectorShuffle( | ||||
| 16304 | MidVT, dl, | ||||
| 16305 | DAG.getNode(ISD::BITCAST, dl, MidVT, N00), | ||||
| 16306 | DAG.getNode(ISD::BITCAST, dl, MidVT, N10), Mask)); | ||||
| 16307 | } | ||||
| 16308 | } | ||||
| 16309 | |||||
| 16310 | if (N->getOperand(0).getValueType() == MVT::v4i8) { | ||||
| 16311 | // If we have a concat of v4i8 loads, convert them to a buildvector of f32 | ||||
| 16312 | // loads to prevent having to go through the v4i8 load legalization that | ||||
| 16313 | // needs to extend each element into a larger type. | ||||
| 16314 | if (N->getNumOperands() % 2 == 0 && all_of(N->op_values(), [](SDValue V) { | ||||
| 16315 | if (V.getValueType() != MVT::v4i8) | ||||
| 16316 | return false; | ||||
| 16317 | if (V.isUndef()) | ||||
| 16318 | return true; | ||||
| 16319 | LoadSDNode *LD = dyn_cast<LoadSDNode>(V); | ||||
| 16320 | return LD && V.hasOneUse() && LD->isSimple() && !LD->isIndexed() && | ||||
| 16321 | LD->getExtensionType() == ISD::NON_EXTLOAD; | ||||
| 16322 | })) { | ||||
| 16323 | EVT NVT = | ||||
| 16324 | EVT::getVectorVT(*DAG.getContext(), MVT::f32, N->getNumOperands()); | ||||
| 16325 | SmallVector<SDValue> Ops; | ||||
| 16326 | |||||
| 16327 | for (unsigned i = 0; i < N->getNumOperands(); i++) { | ||||
| 16328 | SDValue V = N->getOperand(i); | ||||
| 16329 | if (V.isUndef()) | ||||
| 16330 | Ops.push_back(DAG.getUNDEF(MVT::f32)); | ||||
| 16331 | else { | ||||
| 16332 | LoadSDNode *LD = cast<LoadSDNode>(V); | ||||
| 16333 | SDValue NewLoad = | ||||
| 16334 | DAG.getLoad(MVT::f32, dl, LD->getChain(), LD->getBasePtr(), | ||||
| 16335 | LD->getMemOperand()); | ||||
| 16336 | DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLoad.getValue(1)); | ||||
| 16337 | Ops.push_back(NewLoad); | ||||
| 16338 | } | ||||
| 16339 | } | ||||
| 16340 | return DAG.getBitcast(N->getValueType(0), | ||||
| 16341 | DAG.getBuildVector(NVT, dl, Ops)); | ||||
| 16342 | } | ||||
| 16343 | } | ||||
| 16344 | |||||
| 16345 | // Canonicalise concat_vectors to replace concatenations of truncated nots | ||||
| 16346 | // with nots of concatenated truncates. This in some cases allows for multiple | ||||
| 16347 | // redundant negations to be eliminated. | ||||
| 16348 | // (concat_vectors (v4i16 (truncate (not (v4i32)))), | ||||
| 16349 | // (v4i16 (truncate (not (v4i32))))) | ||||
| 16350 | // -> | ||||
| 16351 | // (not (concat_vectors (v4i16 (truncate (v4i32))), | ||||
| 16352 | // (v4i16 (truncate (v4i32))))) | ||||
| 16353 | if (N->getNumOperands() == 2 && N0Opc == ISD::TRUNCATE && | ||||
| 16354 | N1Opc == ISD::TRUNCATE && N->isOnlyUserOf(N0.getNode()) && | ||||
| 16355 | N->isOnlyUserOf(N1.getNode())) { | ||||
| 16356 | auto isBitwiseVectorNegate = [](SDValue V) { | ||||
| 16357 | return V->getOpcode() == ISD::XOR && | ||||
| 16358 | ISD::isConstantSplatVectorAllOnes(V.getOperand(1).getNode()); | ||||
| 16359 | }; | ||||
| 16360 | SDValue N00 = N0->getOperand(0); | ||||
| 16361 | SDValue N10 = N1->getOperand(0); | ||||
| 16362 | if (isBitwiseVectorNegate(N00) && N0->isOnlyUserOf(N00.getNode()) && | ||||
| 16363 | isBitwiseVectorNegate(N10) && N1->isOnlyUserOf(N10.getNode())) { | ||||
| 16364 | return DAG.getNOT( | ||||
| 16365 | dl, | ||||
| 16366 | DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, | ||||
| 16367 | DAG.getNode(ISD::TRUNCATE, dl, N0.getValueType(), | ||||
| 16368 | N00->getOperand(0)), | ||||
| 16369 | DAG.getNode(ISD::TRUNCATE, dl, N1.getValueType(), | ||||
| 16370 | N10->getOperand(0))), | ||||
| 16371 | VT); | ||||
| 16372 | } | ||||
| 16373 | } | ||||
| 16374 | |||||
| 16375 | // Wait till after everything is legalized to try this. That way we have | ||||
| 16376 | // legal vector types and such. | ||||
| 16377 | if (DCI.isBeforeLegalizeOps()) | ||||
| 16378 | return SDValue(); | ||||
| 16379 | |||||
| 16380 | // Optimise concat_vectors of two [us]avgceils or [us]avgfloors that use | ||||
| 16381 | // extracted subvectors from the same original vectors. Combine these into a | ||||
| 16382 | // single avg that operates on the two original vectors. | ||||
| 16383 | // avgceil is the target independant name for rhadd, avgfloor is a hadd. | ||||
| 16384 | // Example: | ||||
| 16385 | // (concat_vectors (v8i8 (avgceils (extract_subvector (v16i8 OpA, <0>), | ||||
| 16386 | // extract_subvector (v16i8 OpB, <0>))), | ||||
| 16387 | // (v8i8 (avgceils (extract_subvector (v16i8 OpA, <8>), | ||||
| 16388 | // extract_subvector (v16i8 OpB, <8>))))) | ||||
| 16389 | // -> | ||||
| 16390 | // (v16i8(avgceils(v16i8 OpA, v16i8 OpB))) | ||||
| 16391 | if (N->getNumOperands() == 2 && N0Opc == N1Opc && | ||||
| 16392 | (N0Opc == ISD::AVGCEILU || N0Opc == ISD::AVGCEILS || | ||||
| 16393 | N0Opc == ISD::AVGFLOORU || N0Opc == ISD::AVGFLOORS)) { | ||||
| 16394 | SDValue N00 = N0->getOperand(0); | ||||
| 16395 | SDValue N01 = N0->getOperand(1); | ||||
| 16396 | SDValue N10 = N1->getOperand(0); | ||||
| 16397 | SDValue N11 = N1->getOperand(1); | ||||
| 16398 | |||||
| 16399 | EVT N00VT = N00.getValueType(); | ||||
| 16400 | EVT N10VT = N10.getValueType(); | ||||
| 16401 | |||||
| 16402 | if (N00->getOpcode() == ISD::EXTRACT_SUBVECTOR && | ||||
| 16403 | N01->getOpcode() == ISD::EXTRACT_SUBVECTOR && | ||||
| 16404 | N10->getOpcode() == ISD::EXTRACT_SUBVECTOR && | ||||
| 16405 | N11->getOpcode() == ISD::EXTRACT_SUBVECTOR && N00VT == N10VT) { | ||||
| 16406 | SDValue N00Source = N00->getOperand(0); | ||||
| 16407 | SDValue N01Source = N01->getOperand(0); | ||||
| 16408 | SDValue N10Source = N10->getOperand(0); | ||||
| 16409 | SDValue N11Source = N11->getOperand(0); | ||||
| 16410 | |||||
| 16411 | if (N00Source == N10Source && N01Source == N11Source && | ||||
| 16412 | N00Source.getValueType() == VT && N01Source.getValueType() == VT) { | ||||
| 16413 | assert(N0.getValueType() == N1.getValueType())(static_cast <bool> (N0.getValueType() == N1.getValueType ()) ? void (0) : __assert_fail ("N0.getValueType() == N1.getValueType()" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 16413, __extension__ __PRETTY_FUNCTION__)); | ||||
| 16414 | |||||
| 16415 | uint64_t N00Index = N00.getConstantOperandVal(1); | ||||
| 16416 | uint64_t N01Index = N01.getConstantOperandVal(1); | ||||
| 16417 | uint64_t N10Index = N10.getConstantOperandVal(1); | ||||
| 16418 | uint64_t N11Index = N11.getConstantOperandVal(1); | ||||
| 16419 | |||||
| 16420 | if (N00Index == N01Index && N10Index == N11Index && N00Index == 0 && | ||||
| 16421 | N10Index == N00VT.getVectorNumElements()) | ||||
| 16422 | return DAG.getNode(N0Opc, dl, VT, N00Source, N01Source); | ||||
| 16423 | } | ||||
| 16424 | } | ||||
| 16425 | } | ||||
| 16426 | |||||
| 16427 | // If we see a (concat_vectors (v1x64 A), (v1x64 A)) it's really a vector | ||||
| 16428 | // splat. The indexed instructions are going to be expecting a DUPLANE64, so | ||||
| 16429 | // canonicalise to that. | ||||
| 16430 | if (N->getNumOperands() == 2 && N0 == N1 && VT.getVectorNumElements() == 2) { | ||||
| 16431 | assert(VT.getScalarSizeInBits() == 64)(static_cast <bool> (VT.getScalarSizeInBits() == 64) ? void (0) : __assert_fail ("VT.getScalarSizeInBits() == 64", "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp" , 16431, __extension__ __PRETTY_FUNCTION__)); | ||||
| 16432 | return DAG.getNode(AArch64ISD::DUPLANE64, dl, VT, WidenVector(N0, DAG), | ||||
| 16433 | DAG.getConstant(0, dl, MVT::i64)); | ||||
| 16434 | } | ||||
| 16435 | |||||
| 16436 | // Canonicalise concat_vectors so that the right-hand vector has as few | ||||
| 16437 | // bit-casts as possible before its real operation. The primary matching | ||||
| 16438 | // destination for these operations will be the narrowing "2" instructions, | ||||
| 16439 | // which depend on the operation being performed on this right-hand vector. | ||||
| 16440 | // For example, | ||||
| 16441 | // (concat_vectors LHS, (v1i64 (bitconvert (v4i16 RHS)))) | ||||
| 16442 | // becomes | ||||
| 16443 | // (bitconvert (concat_vectors (v4i16 (bitconvert LHS)), RHS)) | ||||
| 16444 | |||||
| 16445 | if (N->getNumOperands() != 2 || N1Opc != ISD::BITCAST) | ||||
| 16446 | return SDValue(); | ||||
| 16447 | SDValue RHS = N1->getOperand(0); | ||||
| 16448 | MVT RHSTy = RHS.getValueType().getSimpleVT(); | ||||
| 16449 | // If the RHS is not a vector, this is not the pattern we're looking for. | ||||
| 16450 | if (!RHSTy.isVector()) | ||||
| 16451 | return SDValue(); | ||||
| 16452 | |||||
| 16453 | LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n" ; } } while (false) | ||||
| 16454 | dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "aarch64-lower: concat_vectors bitcast simplification\n" ; } } while (false); | ||||
| 16455 | |||||
| 16456 | MVT ConcatTy = MVT::getVectorVT(RHSTy.getVectorElementType(), | ||||
| 16457 | RHSTy.getVectorNumElements() * 2); | ||||
| 16458 | return DAG.getNode(ISD::BITCAST, dl, VT, | ||||
| 16459 | DAG.getNode(ISD::CONCAT_VECTORS, dl, ConcatTy, | ||||
| 16460 | DAG.getNode(ISD::BITCAST, dl, RHSTy, N0), | ||||
| 16461 | RHS)); | ||||
| 16462 | } | ||||
| 16463 | |||||
| 16464 | static SDValue | ||||
| 16465 | performExtractSubvectorCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, | ||||
| 16466 | SelectionDAG &DAG) { | ||||
| 16467 | if (DCI.isBeforeLegalizeOps()) | ||||
| 16468 | return SDValue(); | ||||
| 16469 | |||||
| 16470 | EVT VT = N->getValueType(0); | ||||
| 16471 | if (!VT.isScalableVector() || VT.getVectorElementType() != MVT::i1) | ||||
| 16472 | return SDValue(); | ||||
| 16473 | |||||
| 16474 | SDValue V = N->getOperand(0); | ||||
| 16475 | |||||
| 16476 | // NOTE: This combine exists in DAGCombiner, but that version's legality check | ||||
| 16477 | // blocks this combine because the non-const case requires custom lowering. | ||||
| 16478 | // | ||||
| 16479 | // ty1 extract_vector(ty2 splat(const))) -> ty1 splat(const) | ||||
| 16480 | if (V.getOpcode() == ISD::SPLAT_VECTOR) | ||||
| 16481 | if (isa<ConstantSDNode>(V.getOperand(0))) | ||||
| 16482 | return DAG.getNode(ISD::SPLAT_VECTOR, SDLoc(N), VT, V.getOperand(0)); | ||||
| 16483 | |||||
| 16484 | return SDValue(); | ||||
| 16485 | } | ||||
| 16486 | |||||
| 16487 | static SDValue | ||||
| 16488 | performInsertSubvectorCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, | ||||
| 16489 | SelectionDAG &DAG) { | ||||
| 16490 | SDLoc DL(N); | ||||
| 16491 | SDValue Vec = N->getOperand(0); | ||||
| 16492 | SDValue SubVec = N->getOperand(1); | ||||
| 16493 | uint64_t IdxVal = N->getConstantOperandVal(2); | ||||
| 16494 | EVT VecVT = Vec.getValueType(); | ||||
| 16495 | EVT SubVT = SubVec.getValueType(); | ||||
| 16496 | |||||
| 16497 | // Only do this for legal fixed vector types. | ||||
| 16498 | if (!VecVT.isFixedLengthVector() || | ||||
| 16499 | !DAG.getTargetLoweringInfo().isTypeLegal(VecVT) || | ||||
| 16500 | !DAG.getTargetLoweringInfo().isTypeLegal(SubVT)) | ||||
| 16501 | return SDValue(); | ||||
| 16502 | |||||
| 16503 | // Ignore widening patterns. | ||||
| 16504 | if (IdxVal == 0 && Vec.isUndef()) | ||||
| 16505 | return SDValue(); | ||||
| 16506 | |||||
| 16507 | // Subvector must be half the width and an "aligned" insertion. | ||||
| 16508 | unsigned NumSubElts = SubVT.getVectorNumElements(); | ||||
| 16509 | if ((SubVT.getSizeInBits() * 2) != VecVT.getSizeInBits() || | ||||
| 16510 | (IdxVal != 0 && IdxVal != NumSubElts)) | ||||
| 16511 | return SDValue(); | ||||
| 16512 | |||||
| 16513 | // Fold insert_subvector -> concat_vectors | ||||
| 16514 | // insert_subvector(Vec,Sub,lo) -> concat_vectors(Sub,extract(Vec,hi)) | ||||
| 16515 | // insert_subvector(Vec,Sub,hi) -> concat_vectors(extract(Vec,lo),Sub) | ||||
| 16516 | SDValue Lo, Hi; | ||||
| 16517 | if (IdxVal == 0) { | ||||
| 16518 | Lo = SubVec; | ||||
| 16519 | Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, Vec, | ||||
| 16520 | DAG.getVectorIdxConstant(NumSubElts, DL)); | ||||
| 16521 | } else { | ||||
| 16522 | Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, Vec, | ||||
| 16523 | DAG.getVectorIdxConstant(0, DL)); | ||||
| 16524 | Hi = SubVec; | ||||
| 16525 | } | ||||
| 16526 | return DAG.getNode(ISD::CONCAT_VECTORS, DL, VecVT, Lo, Hi); | ||||
| 16527 | } | ||||
| 16528 | |||||
| 16529 | static SDValue tryCombineFixedPointConvert(SDNode *N, | ||||
| 16530 | TargetLowering::DAGCombinerInfo &DCI, | ||||
| 16531 | SelectionDAG &DAG) { | ||||
| 16532 | // Wait until after everything is legalized to try this. That way we have | ||||
| 16533 | // legal vector types and such. | ||||
| 16534 | if (DCI.isBeforeLegalizeOps()) | ||||
| 16535 | return SDValue(); | ||||
| 16536 | // Transform a scalar conversion of a value from a lane extract into a | ||||
| 16537 | // lane extract of a vector conversion. E.g., from foo1 to foo2: | ||||
| 16538 | // double foo1(int64x2_t a) { return vcvtd_n_f64_s64(a[1], 9); } | ||||
| 16539 | // double foo2(int64x2_t a) { return vcvtq_n_f64_s64(a, 9)[1]; } | ||||
| 16540 | // | ||||
| 16541 | // The second form interacts better with instruction selection and the | ||||
| 16542 | // register allocator to avoid cross-class register copies that aren't | ||||
| 16543 | // coalescable due to a lane reference. | ||||
| 16544 | |||||
| 16545 | // Check the operand and see if it originates from a lane extract. | ||||
| 16546 | SDValue Op1 = N->getOperand(1); | ||||
| 16547 | if (Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT) | ||||
| 16548 | return SDValue(); | ||||
| 16549 | |||||
| 16550 | // Yep, no additional predication needed. Perform the transform. | ||||
| 16551 | SDValue IID = N->getOperand(0); | ||||
| 16552 | SDValue Shift = N->getOperand(2); | ||||
| 16553 | SDValue Vec = Op1.getOperand(0); | ||||
| 16554 | SDValue Lane = Op1.getOperand(1); | ||||
| 16555 | EVT ResTy = N->getValueType(0); | ||||
| 16556 | EVT VecResTy; | ||||
| 16557 | SDLoc DL(N); | ||||
| 16558 | |||||
| 16559 | // The vector width should be 128 bits by the time we get here, even | ||||
| 16560 | // if it started as 64 bits (the extract_vector handling will have | ||||
| 16561 | // done so). Bail if it is not. | ||||
| 16562 | if (Vec.getValueSizeInBits() != 128) | ||||
| 16563 | return SDValue(); | ||||
| 16564 | |||||
| 16565 | if (Vec.getValueType() == MVT::v4i32) | ||||
| 16566 | VecResTy = MVT::v4f32; | ||||
| 16567 | else if (Vec.getValueType() == MVT::v2i64) | ||||
| 16568 | VecResTy = MVT::v2f64; | ||||
| 16569 | else | ||||
| 16570 | return SDValue(); | ||||
| 16571 | |||||
| 16572 | SDValue Convert = | ||||
| 16573 | DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VecResTy, IID, Vec, Shift); | ||||
| 16574 | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResTy, Convert, Lane); | ||||
| 16575 | } | ||||
| 16576 | |||||
| 16577 | // AArch64 high-vector "long" operations are formed by performing the non-high | ||||
| 16578 | // version on an extract_subvector of each operand which gets the high half: | ||||
| 16579 | // | ||||
| 16580 | // (longop2 LHS, RHS) == (longop (extract_high LHS), (extract_high RHS)) | ||||
| 16581 | // | ||||
| 16582 | // However, there are cases which don't have an extract_high explicitly, but | ||||
| 16583 | // have another operation that can be made compatible with one for free. For | ||||
| 16584 | // example: | ||||
| 16585 | // | ||||
| 16586 | // (dupv64 scalar) --> (extract_high (dup128 scalar)) | ||||
| 16587 | // | ||||
| 16588 | // This routine does the actual conversion of such DUPs, once outer routines | ||||
| 16589 | // have determined that everything else is in order. | ||||
| 16590 | // It also supports immediate DUP-like nodes (MOVI/MVNi), which we can fold | ||||
| 16591 | // similarly here. | ||||
| 16592 | static SDValue tryExtendDUPToExtractHigh(SDValue N, SelectionDAG &DAG) { | ||||
| 16593 | MVT VT = N.getSimpleValueType(); | ||||
| 16594 | if (N.getOpcode() == ISD::EXTRACT_SUBVECTOR && | ||||
| 16595 | N.getConstantOperandVal(1) == 0) | ||||
| 16596 | N = N.getOperand(0); | ||||
| 16597 | |||||
| 16598 | switch (N.getOpcode()) { | ||||
| 16599 | case AArch64ISD::DUP: | ||||
| 16600 | case AArch64ISD::DUPLANE8: | ||||
| 16601 | case AArch64ISD::DUPLANE16: | ||||
| 16602 | case AArch64ISD::DUPLANE32: | ||||
| 16603 | case AArch64ISD::DUPLANE64: | ||||
| 16604 | case AArch64ISD::MOVI: | ||||
| 16605 | case AArch64ISD::MOVIshift: | ||||
| 16606 | case AArch64ISD::MOVIedit: | ||||
| 16607 | case AArch64ISD::MOVImsl: | ||||
| 16608 | case AArch64ISD::MVNIshift: | ||||
| 16609 | case AArch64ISD::MVNImsl: | ||||
| 16610 | break; | ||||
| 16611 | default: | ||||
| 16612 | // FMOV could be supported, but isn't very useful, as it would only occur | ||||
| 16613 | // if you passed a bitcast' floating point immediate to an eligible long | ||||
| 16614 | // integer op (addl, smull, ...). | ||||
| 16615 | return SDValue(); | ||||
| 16616 | } | ||||
| 16617 | |||||
| 16618 | if (!VT.is64BitVector()) | ||||
| 16619 | return SDValue(); | ||||
| 16620 | |||||
| 16621 | SDLoc DL(N); | ||||
| 16622 | unsigned NumElems = VT.getVectorNumElements(); | ||||
| 16623 | if (N.getValueType().is64BitVector()) { | ||||
| 16624 | MVT ElementTy = VT.getVectorElementType(); | ||||
| 16625 | MVT NewVT = MVT::getVectorVT(ElementTy, NumElems * 2); | ||||
| 16626 | N = DAG.getNode(N->getOpcode(), DL, NewVT, N->ops()); | ||||
| 16627 | } | ||||
| 16628 | |||||
| 16629 | return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, N, | ||||
| 16630 | DAG.getConstant(NumElems, DL, MVT::i64)); | ||||
| 16631 | } | ||||
| 16632 | |||||
| 16633 | static bool isEssentiallyExtractHighSubvector(SDValue N) { | ||||
| 16634 | if (N.getOpcode() == ISD::BITCAST) | ||||
| 16635 | N = N.getOperand(0); | ||||
| 16636 | if (N.getOpcode() != ISD::EXTRACT_SUBVECTOR) | ||||
| 16637 | return false; | ||||
| 16638 | if (N.getOperand(0).getValueType().isScalableVector()) | ||||
| 16639 | return false; | ||||
| 16640 | return cast<ConstantSDNode>(N.getOperand(1))->getAPIntValue() == | ||||
| 16641 | N.getOperand(0).getValueType().getVectorNumElements() / 2; | ||||
| 16642 | } | ||||
| 16643 | |||||
| 16644 | /// Helper structure to keep track of ISD::SET_CC operands. | ||||
| 16645 | struct GenericSetCCInfo { | ||||
| 16646 | const SDValue *Opnd0; | ||||
| 16647 | const SDValue *Opnd1; | ||||
| 16648 | ISD::CondCode CC; | ||||
| 16649 | }; | ||||
| 16650 | |||||
| 16651 | /// Helper structure to keep track of a SET_CC lowered into AArch64 code. | ||||
| 16652 | struct AArch64SetCCInfo { | ||||
| 16653 | const SDValue *Cmp; | ||||
| 16654 | AArch64CC::CondCode CC; | ||||
| 16655 | }; | ||||
| 16656 | |||||
| 16657 | /// Helper structure to keep track of SetCC information. | ||||
| 16658 | union SetCCInfo { | ||||
| 16659 | GenericSetCCInfo Generic; | ||||
| 16660 | AArch64SetCCInfo AArch64; | ||||
| 16661 | }; | ||||
| 16662 | |||||
| 16663 | /// Helper structure to be able to read SetCC information. If set to | ||||
| 16664 | /// true, IsAArch64 field, Info is a AArch64SetCCInfo, otherwise Info is a | ||||
| 16665 | /// GenericSetCCInfo. | ||||
| 16666 | struct SetCCInfoAndKind { | ||||
| 16667 | SetCCInfo Info; | ||||
| 16668 | bool IsAArch64; | ||||
| 16669 | }; | ||||
| 16670 | |||||
| 16671 | /// Check whether or not \p Op is a SET_CC operation, either a generic or | ||||
| 16672 | /// an | ||||
| 16673 | /// AArch64 lowered one. | ||||
| 16674 | /// \p SetCCInfo is filled accordingly. | ||||
| 16675 | /// \post SetCCInfo is meanginfull only when this function returns true. | ||||
| 16676 | /// \return True when Op is a kind of SET_CC operation. | ||||
| 16677 | static bool isSetCC(SDValue Op, SetCCInfoAndKind &SetCCInfo) { | ||||
| 16678 | // If this is a setcc, this is straight forward. | ||||
| 16679 | if (Op.getOpcode() == ISD::SETCC) { | ||||
| 16680 | SetCCInfo.Info.Generic.Opnd0 = &Op.getOperand(0); | ||||
| 16681 | SetCCInfo.Info.Generic.Opnd1 = &Op.getOperand(1); | ||||
| 16682 | SetCCInfo.Info.Generic.CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); | ||||
| 16683 | SetCCInfo.IsAArch64 = false; | ||||
| 16684 | return true; | ||||
| 16685 | } | ||||
| 16686 | // Otherwise, check if this is a matching csel instruction. | ||||
| 16687 | // In other words: | ||||
| 16688 | // - csel 1, 0, cc | ||||
| 16689 | // - csel 0, 1, !cc | ||||
| 16690 | if (Op.getOpcode() != AArch64ISD::CSEL) | ||||
| 16691 | return false; | ||||
| 16692 | // Set the information about the operands. | ||||
| 16693 | // TODO: we want the operands of the Cmp not the csel | ||||
| 16694 | SetCCInfo.Info.AArch64.Cmp = &Op.getOperand(3); | ||||
| 16695 | SetCCInfo.IsAArch64 = true; | ||||
| 16696 | SetCCInfo.Info.AArch64.CC = static_cast<AArch64CC::CondCode>( | ||||
| 16697 | cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue()); | ||||
| 16698 | |||||
| 16699 | // Check that the operands matches the constraints: | ||||
| 16700 | // (1) Both operands must be constants. | ||||
| 16701 | // (2) One must be 1 and the other must be 0. | ||||
| 16702 | ConstantSDNode *TValue = dyn_cast<ConstantSDNode>(Op.getOperand(0)); | ||||
| 16703 | ConstantSDNode *FValue = dyn_cast<ConstantSDNode>(Op.getOperand(1)); | ||||
| 16704 | |||||
| 16705 | // Check (1). | ||||
| 16706 | if (!TValue || !FValue) | ||||
| 16707 | return false; | ||||
| 16708 | |||||
| 16709 | // Check (2). | ||||
| 16710 | if (!TValue->isOne()) { | ||||
| 16711 | // Update the comparison when we are interested in !cc. | ||||
| 16712 | std::swap(TValue, FValue); | ||||
| 16713 | SetCCInfo.Info.AArch64.CC = | ||||
| 16714 | AArch64CC::getInvertedCondCode(SetCCInfo.Info.AArch64.CC); | ||||
| 16715 | } | ||||
| 16716 | return TValue->isOne() && FValue->isZero(); | ||||
| 16717 | } | ||||
| 16718 | |||||
| 16719 | // Returns true if Op is setcc or zext of setcc. | ||||
| 16720 | static bool isSetCCOrZExtSetCC(const SDValue& Op, SetCCInfoAndKind &Info) { | ||||
| 16721 | if (isSetCC(Op, Info)) | ||||
| 16722 | return true; | ||||
| 16723 | return ((Op.getOpcode() == ISD::ZERO_EXTEND) && | ||||
| 16724 | isSetCC(Op->getOperand(0), Info)); | ||||
| 16725 | } | ||||
| 16726 | |||||
| 16727 | // The folding we want to perform is: | ||||
| 16728 | // (add x, [zext] (setcc cc ...) ) | ||||
| 16729 | // --> | ||||
| 16730 | // (csel x, (add x, 1), !cc ...) | ||||
| 16731 | // | ||||
| 16732 | // The latter will get matched to a CSINC instruction. | ||||
| 16733 | static SDValue performSetccAddFolding(SDNode *Op, SelectionDAG &DAG) { | ||||
| 16734 | assert(Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!")(static_cast <bool> (Op && Op->getOpcode() == ISD::ADD && "Unexpected operation!") ? void (0) : __assert_fail ("Op && Op->getOpcode() == ISD::ADD && \"Unexpected operation!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 16734, __extension__ __PRETTY_FUNCTION__)); | ||||
| 16735 | SDValue LHS = Op->getOperand(0); | ||||
| 16736 | SDValue RHS = Op->getOperand(1); | ||||
| 16737 | SetCCInfoAndKind InfoAndKind; | ||||
| 16738 | |||||
| 16739 | // If both operands are a SET_CC, then we don't want to perform this | ||||
| 16740 | // folding and create another csel as this results in more instructions | ||||
| 16741 | // (and higher register usage). | ||||
| 16742 | if (isSetCCOrZExtSetCC(LHS, InfoAndKind) && | ||||
| 16743 | isSetCCOrZExtSetCC(RHS, InfoAndKind)) | ||||
| 16744 | return SDValue(); | ||||
| 16745 | |||||
| 16746 | // If neither operand is a SET_CC, give up. | ||||
| 16747 | if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) { | ||||
| 16748 | std::swap(LHS, RHS); | ||||
| 16749 | if (!isSetCCOrZExtSetCC(LHS, InfoAndKind)) | ||||
| 16750 | return SDValue(); | ||||
| 16751 | } | ||||
| 16752 | |||||
| 16753 | // FIXME: This could be generatized to work for FP comparisons. | ||||
| 16754 | EVT CmpVT = InfoAndKind.IsAArch64 | ||||
| 16755 | ? InfoAndKind.Info.AArch64.Cmp->getOperand(0).getValueType() | ||||
| 16756 | : InfoAndKind.Info.Generic.Opnd0->getValueType(); | ||||
| 16757 | if (CmpVT != MVT::i32 && CmpVT != MVT::i64) | ||||
| 16758 | return SDValue(); | ||||
| 16759 | |||||
| 16760 | SDValue CCVal; | ||||
| 16761 | SDValue Cmp; | ||||
| 16762 | SDLoc dl(Op); | ||||
| 16763 | if (InfoAndKind.IsAArch64) { | ||||
| 16764 | CCVal = DAG.getConstant( | ||||
| 16765 | AArch64CC::getInvertedCondCode(InfoAndKind.Info.AArch64.CC), dl, | ||||
| 16766 | MVT::i32); | ||||
| 16767 | Cmp = *InfoAndKind.Info.AArch64.Cmp; | ||||
| 16768 | } else | ||||
| 16769 | Cmp = getAArch64Cmp( | ||||
| 16770 | *InfoAndKind.Info.Generic.Opnd0, *InfoAndKind.Info.Generic.Opnd1, | ||||
| 16771 | ISD::getSetCCInverse(InfoAndKind.Info.Generic.CC, CmpVT), CCVal, DAG, | ||||
| 16772 | dl); | ||||
| 16773 | |||||
| 16774 | EVT VT = Op->getValueType(0); | ||||
| 16775 | LHS = DAG.getNode(ISD::ADD, dl, VT, RHS, DAG.getConstant(1, dl, VT)); | ||||
| 16776 | return DAG.getNode(AArch64ISD::CSEL, dl, VT, RHS, LHS, CCVal, Cmp); | ||||
| 16777 | } | ||||
| 16778 | |||||
| 16779 | // ADD(UADDV a, UADDV b) --> UADDV(ADD a, b) | ||||
| 16780 | static SDValue performAddUADDVCombine(SDNode *N, SelectionDAG &DAG) { | ||||
| 16781 | EVT VT = N->getValueType(0); | ||||
| 16782 | // Only scalar integer and vector types. | ||||
| 16783 | if (N->getOpcode() != ISD::ADD || !VT.isScalarInteger()) | ||||
| 16784 | return SDValue(); | ||||
| 16785 | |||||
| 16786 | SDValue LHS = N->getOperand(0); | ||||
| 16787 | SDValue RHS = N->getOperand(1); | ||||
| 16788 | if (LHS.getOpcode() != ISD::EXTRACT_VECTOR_ELT || | ||||
| 16789 | RHS.getOpcode() != ISD::EXTRACT_VECTOR_ELT || LHS.getValueType() != VT) | ||||
| 16790 | return SDValue(); | ||||
| 16791 | |||||
| 16792 | auto *LHSN1 = dyn_cast<ConstantSDNode>(LHS->getOperand(1)); | ||||
| 16793 | auto *RHSN1 = dyn_cast<ConstantSDNode>(RHS->getOperand(1)); | ||||
| 16794 | if (!LHSN1 || LHSN1 != RHSN1 || !RHSN1->isZero()) | ||||
| 16795 | return SDValue(); | ||||
| 16796 | |||||
| 16797 | SDValue Op1 = LHS->getOperand(0); | ||||
| 16798 | SDValue Op2 = RHS->getOperand(0); | ||||
| 16799 | EVT OpVT1 = Op1.getValueType(); | ||||
| 16800 | EVT OpVT2 = Op2.getValueType(); | ||||
| 16801 | if (Op1.getOpcode() != AArch64ISD::UADDV || OpVT1 != OpVT2 || | ||||
| 16802 | Op2.getOpcode() != AArch64ISD::UADDV || | ||||
| 16803 | OpVT1.getVectorElementType() != VT) | ||||
| 16804 | return SDValue(); | ||||
| 16805 | |||||
| 16806 | SDValue Val1 = Op1.getOperand(0); | ||||
| 16807 | SDValue Val2 = Op2.getOperand(0); | ||||
| 16808 | EVT ValVT = Val1->getValueType(0); | ||||
| 16809 | SDLoc DL(N); | ||||
| 16810 | SDValue AddVal = DAG.getNode(ISD::ADD, DL, ValVT, Val1, Val2); | ||||
| 16811 | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, | ||||
| 16812 | DAG.getNode(AArch64ISD::UADDV, DL, ValVT, AddVal), | ||||
| 16813 | DAG.getConstant(0, DL, MVT::i64)); | ||||
| 16814 | } | ||||
| 16815 | |||||
| 16816 | /// Perform the scalar expression combine in the form of: | ||||
| 16817 | /// CSEL(c, 1, cc) + b => CSINC(b+c, b, cc) | ||||
| 16818 | /// CSNEG(c, -1, cc) + b => CSINC(b+c, b, cc) | ||||
| 16819 | static SDValue performAddCSelIntoCSinc(SDNode *N, SelectionDAG &DAG) { | ||||
| 16820 | EVT VT = N->getValueType(0); | ||||
| 16821 | if (!VT.isScalarInteger() || N->getOpcode() != ISD::ADD) | ||||
| 16822 | return SDValue(); | ||||
| 16823 | |||||
| 16824 | SDValue LHS = N->getOperand(0); | ||||
| 16825 | SDValue RHS = N->getOperand(1); | ||||
| 16826 | |||||
| 16827 | // Handle commutivity. | ||||
| 16828 | if (LHS.getOpcode() != AArch64ISD::CSEL && | ||||
| 16829 | LHS.getOpcode() != AArch64ISD::CSNEG) { | ||||
| 16830 | std::swap(LHS, RHS); | ||||
| 16831 | if (LHS.getOpcode() != AArch64ISD::CSEL && | ||||
| 16832 | LHS.getOpcode() != AArch64ISD::CSNEG) { | ||||
| 16833 | return SDValue(); | ||||
| 16834 | } | ||||
| 16835 | } | ||||
| 16836 | |||||
| 16837 | if (!LHS.hasOneUse()) | ||||
| 16838 | return SDValue(); | ||||
| 16839 | |||||
| 16840 | AArch64CC::CondCode AArch64CC = | ||||
| 16841 | static_cast<AArch64CC::CondCode>(LHS.getConstantOperandVal(2)); | ||||
| 16842 | |||||
| 16843 | // The CSEL should include a const one operand, and the CSNEG should include | ||||
| 16844 | // One or NegOne operand. | ||||
| 16845 | ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(LHS.getOperand(0)); | ||||
| 16846 | ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(LHS.getOperand(1)); | ||||
| 16847 | if (!CTVal || !CFVal) | ||||
| 16848 | return SDValue(); | ||||
| 16849 | |||||
| 16850 | if (!(LHS.getOpcode() == AArch64ISD::CSEL && | ||||
| 16851 | (CTVal->isOne() || CFVal->isOne())) && | ||||
| 16852 | !(LHS.getOpcode() == AArch64ISD::CSNEG && | ||||
| 16853 | (CTVal->isOne() || CFVal->isAllOnes()))) | ||||
| 16854 | return SDValue(); | ||||
| 16855 | |||||
| 16856 | // Switch CSEL(1, c, cc) to CSEL(c, 1, !cc) | ||||
| 16857 | if (LHS.getOpcode() == AArch64ISD::CSEL && CTVal->isOne() && | ||||
| 16858 | !CFVal->isOne()) { | ||||
| 16859 | std::swap(CTVal, CFVal); | ||||
| 16860 | AArch64CC = AArch64CC::getInvertedCondCode(AArch64CC); | ||||
| 16861 | } | ||||
| 16862 | |||||
| 16863 | SDLoc DL(N); | ||||
| 16864 | // Switch CSNEG(1, c, cc) to CSNEG(-c, -1, !cc) | ||||
| 16865 | if (LHS.getOpcode() == AArch64ISD::CSNEG && CTVal->isOne() && | ||||
| 16866 | !CFVal->isAllOnes()) { | ||||
| 16867 | APInt C = -1 * CFVal->getAPIntValue(); | ||||
| 16868 | CTVal = cast<ConstantSDNode>(DAG.getConstant(C, DL, VT)); | ||||
| 16869 | CFVal = cast<ConstantSDNode>(DAG.getAllOnesConstant(DL, VT)); | ||||
| 16870 | AArch64CC = AArch64CC::getInvertedCondCode(AArch64CC); | ||||
| 16871 | } | ||||
| 16872 | |||||
| 16873 | // It might be neutral for larger constants, as the immediate need to be | ||||
| 16874 | // materialized in a register. | ||||
| 16875 | APInt ADDC = CTVal->getAPIntValue(); | ||||
| 16876 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | ||||
| 16877 | if (!TLI.isLegalAddImmediate(ADDC.getSExtValue())) | ||||
| 16878 | return SDValue(); | ||||
| 16879 | |||||
| 16880 | assert(((LHS.getOpcode() == AArch64ISD::CSEL && CFVal->isOne()) ||(static_cast <bool> (((LHS.getOpcode() == AArch64ISD::CSEL && CFVal->isOne()) || (LHS.getOpcode() == AArch64ISD ::CSNEG && CFVal->isAllOnes())) && "Unexpected constant value" ) ? void (0) : __assert_fail ("((LHS.getOpcode() == AArch64ISD::CSEL && CFVal->isOne()) || (LHS.getOpcode() == AArch64ISD::CSNEG && CFVal->isAllOnes())) && \"Unexpected constant value\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 16882, __extension__ __PRETTY_FUNCTION__)) | ||||
| 16881 | (LHS.getOpcode() == AArch64ISD::CSNEG && CFVal->isAllOnes())) &&(static_cast <bool> (((LHS.getOpcode() == AArch64ISD::CSEL && CFVal->isOne()) || (LHS.getOpcode() == AArch64ISD ::CSNEG && CFVal->isAllOnes())) && "Unexpected constant value" ) ? void (0) : __assert_fail ("((LHS.getOpcode() == AArch64ISD::CSEL && CFVal->isOne()) || (LHS.getOpcode() == AArch64ISD::CSNEG && CFVal->isAllOnes())) && \"Unexpected constant value\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 16882, __extension__ __PRETTY_FUNCTION__)) | ||||
| 16882 | "Unexpected constant value")(static_cast <bool> (((LHS.getOpcode() == AArch64ISD::CSEL && CFVal->isOne()) || (LHS.getOpcode() == AArch64ISD ::CSNEG && CFVal->isAllOnes())) && "Unexpected constant value" ) ? void (0) : __assert_fail ("((LHS.getOpcode() == AArch64ISD::CSEL && CFVal->isOne()) || (LHS.getOpcode() == AArch64ISD::CSNEG && CFVal->isAllOnes())) && \"Unexpected constant value\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 16882, __extension__ __PRETTY_FUNCTION__)); | ||||
| 16883 | |||||
| 16884 | SDValue NewNode = DAG.getNode(ISD::ADD, DL, VT, RHS, SDValue(CTVal, 0)); | ||||
| 16885 | SDValue CCVal = DAG.getConstant(AArch64CC, DL, MVT::i32); | ||||
| 16886 | SDValue Cmp = LHS.getOperand(3); | ||||
| 16887 | |||||
| 16888 | return DAG.getNode(AArch64ISD::CSINC, DL, VT, NewNode, RHS, CCVal, Cmp); | ||||
| 16889 | } | ||||
| 16890 | |||||
| 16891 | // ADD(UDOT(zero, x, y), A) --> UDOT(A, x, y) | ||||
| 16892 | static SDValue performAddDotCombine(SDNode *N, SelectionDAG &DAG) { | ||||
| 16893 | EVT VT = N->getValueType(0); | ||||
| 16894 | if (N->getOpcode() != ISD::ADD) | ||||
| 16895 | return SDValue(); | ||||
| 16896 | |||||
| 16897 | SDValue Dot = N->getOperand(0); | ||||
| 16898 | SDValue A = N->getOperand(1); | ||||
| 16899 | // Handle commutivity | ||||
| 16900 | auto isZeroDot = [](SDValue Dot) { | ||||
| 16901 | return (Dot.getOpcode() == AArch64ISD::UDOT || | ||||
| 16902 | Dot.getOpcode() == AArch64ISD::SDOT) && | ||||
| 16903 | isZerosVector(Dot.getOperand(0).getNode()); | ||||
| 16904 | }; | ||||
| 16905 | if (!isZeroDot(Dot)) | ||||
| 16906 | std::swap(Dot, A); | ||||
| 16907 | if (!isZeroDot(Dot)) | ||||
| 16908 | return SDValue(); | ||||
| 16909 | |||||
| 16910 | return DAG.getNode(Dot.getOpcode(), SDLoc(N), VT, A, Dot.getOperand(1), | ||||
| 16911 | Dot.getOperand(2)); | ||||
| 16912 | } | ||||
| 16913 | |||||
| 16914 | static bool isNegatedInteger(SDValue Op) { | ||||
| 16915 | return Op.getOpcode() == ISD::SUB && isNullConstant(Op.getOperand(0)); | ||||
| 16916 | } | ||||
| 16917 | |||||
| 16918 | static SDValue getNegatedInteger(SDValue Op, SelectionDAG &DAG) { | ||||
| 16919 | SDLoc DL(Op); | ||||
| 16920 | EVT VT = Op.getValueType(); | ||||
| 16921 | SDValue Zero = DAG.getConstant(0, DL, VT); | ||||
| 16922 | return DAG.getNode(ISD::SUB, DL, VT, Zero, Op); | ||||
| 16923 | } | ||||
| 16924 | |||||
| 16925 | // Try to fold | ||||
| 16926 | // | ||||
| 16927 | // (neg (csel X, Y)) -> (csel (neg X), (neg Y)) | ||||
| 16928 | // | ||||
| 16929 | // The folding helps csel to be matched with csneg without generating | ||||
| 16930 | // redundant neg instruction, which includes negation of the csel expansion | ||||
| 16931 | // of abs node lowered by lowerABS. | ||||
| 16932 | static SDValue performNegCSelCombine(SDNode *N, SelectionDAG &DAG) { | ||||
| 16933 | if (!isNegatedInteger(SDValue(N, 0))) | ||||
| 16934 | return SDValue(); | ||||
| 16935 | |||||
| 16936 | SDValue CSel = N->getOperand(1); | ||||
| 16937 | if (CSel.getOpcode() != AArch64ISD::CSEL || !CSel->hasOneUse()) | ||||
| 16938 | return SDValue(); | ||||
| 16939 | |||||
| 16940 | SDValue N0 = CSel.getOperand(0); | ||||
| 16941 | SDValue N1 = CSel.getOperand(1); | ||||
| 16942 | |||||
| 16943 | // If both of them is not negations, it's not worth the folding as it | ||||
| 16944 | // introduces two additional negations while reducing one negation. | ||||
| 16945 | if (!isNegatedInteger(N0) && !isNegatedInteger(N1)) | ||||
| 16946 | return SDValue(); | ||||
| 16947 | |||||
| 16948 | SDValue N0N = getNegatedInteger(N0, DAG); | ||||
| 16949 | SDValue N1N = getNegatedInteger(N1, DAG); | ||||
| 16950 | |||||
| 16951 | SDLoc DL(N); | ||||
| 16952 | EVT VT = CSel.getValueType(); | ||||
| 16953 | return DAG.getNode(AArch64ISD::CSEL, DL, VT, N0N, N1N, CSel.getOperand(2), | ||||
| 16954 | CSel.getOperand(3)); | ||||
| 16955 | } | ||||
| 16956 | |||||
| 16957 | // The basic add/sub long vector instructions have variants with "2" on the end | ||||
| 16958 | // which act on the high-half of their inputs. They are normally matched by | ||||
| 16959 | // patterns like: | ||||
| 16960 | // | ||||
| 16961 | // (add (zeroext (extract_high LHS)), | ||||
| 16962 | // (zeroext (extract_high RHS))) | ||||
| 16963 | // -> uaddl2 vD, vN, vM | ||||
| 16964 | // | ||||
| 16965 | // However, if one of the extracts is something like a duplicate, this | ||||
| 16966 | // instruction can still be used profitably. This function puts the DAG into a | ||||
| 16967 | // more appropriate form for those patterns to trigger. | ||||
| 16968 | static SDValue performAddSubLongCombine(SDNode *N, | ||||
| 16969 | TargetLowering::DAGCombinerInfo &DCI, | ||||
| 16970 | SelectionDAG &DAG) { | ||||
| 16971 | if (DCI.isBeforeLegalizeOps()) | ||||
| 16972 | return SDValue(); | ||||
| 16973 | |||||
| 16974 | MVT VT = N->getSimpleValueType(0); | ||||
| 16975 | if (!VT.is128BitVector()) { | ||||
| 16976 | if (N->getOpcode() == ISD::ADD) | ||||
| 16977 | return performSetccAddFolding(N, DAG); | ||||
| 16978 | return SDValue(); | ||||
| 16979 | } | ||||
| 16980 | |||||
| 16981 | // Make sure both branches are extended in the same way. | ||||
| 16982 | SDValue LHS = N->getOperand(0); | ||||
| 16983 | SDValue RHS = N->getOperand(1); | ||||
| 16984 | if ((LHS.getOpcode() != ISD::ZERO_EXTEND && | ||||
| 16985 | LHS.getOpcode() != ISD::SIGN_EXTEND) || | ||||
| 16986 | LHS.getOpcode() != RHS.getOpcode()) | ||||
| 16987 | return SDValue(); | ||||
| 16988 | |||||
| 16989 | unsigned ExtType = LHS.getOpcode(); | ||||
| 16990 | |||||
| 16991 | // It's not worth doing if at least one of the inputs isn't already an | ||||
| 16992 | // extract, but we don't know which it'll be so we have to try both. | ||||
| 16993 | if (isEssentiallyExtractHighSubvector(LHS.getOperand(0))) { | ||||
| 16994 | RHS = tryExtendDUPToExtractHigh(RHS.getOperand(0), DAG); | ||||
| 16995 | if (!RHS.getNode()) | ||||
| 16996 | return SDValue(); | ||||
| 16997 | |||||
| 16998 | RHS = DAG.getNode(ExtType, SDLoc(N), VT, RHS); | ||||
| 16999 | } else if (isEssentiallyExtractHighSubvector(RHS.getOperand(0))) { | ||||
| 17000 | LHS = tryExtendDUPToExtractHigh(LHS.getOperand(0), DAG); | ||||
| 17001 | if (!LHS.getNode()) | ||||
| 17002 | return SDValue(); | ||||
| 17003 | |||||
| 17004 | LHS = DAG.getNode(ExtType, SDLoc(N), VT, LHS); | ||||
| 17005 | } | ||||
| 17006 | |||||
| 17007 | return DAG.getNode(N->getOpcode(), SDLoc(N), VT, LHS, RHS); | ||||
| 17008 | } | ||||
| 17009 | |||||
| 17010 | static bool isCMP(SDValue Op) { | ||||
| 17011 | return Op.getOpcode() == AArch64ISD::SUBS && | ||||
| 17012 | !Op.getNode()->hasAnyUseOfValue(0); | ||||
| 17013 | } | ||||
| 17014 | |||||
| 17015 | // (CSEL 1 0 CC Cond) => CC | ||||
| 17016 | // (CSEL 0 1 CC Cond) => !CC | ||||
| 17017 | static std::optional<AArch64CC::CondCode> getCSETCondCode(SDValue Op) { | ||||
| 17018 | if (Op.getOpcode() != AArch64ISD::CSEL) | ||||
| 17019 | return std::nullopt; | ||||
| 17020 | auto CC = static_cast<AArch64CC::CondCode>(Op.getConstantOperandVal(2)); | ||||
| 17021 | if (CC == AArch64CC::AL || CC == AArch64CC::NV) | ||||
| 17022 | return std::nullopt; | ||||
| 17023 | SDValue OpLHS = Op.getOperand(0); | ||||
| 17024 | SDValue OpRHS = Op.getOperand(1); | ||||
| 17025 | if (isOneConstant(OpLHS) && isNullConstant(OpRHS)) | ||||
| 17026 | return CC; | ||||
| 17027 | if (isNullConstant(OpLHS) && isOneConstant(OpRHS)) | ||||
| 17028 | return getInvertedCondCode(CC); | ||||
| 17029 | |||||
| 17030 | return std::nullopt; | ||||
| 17031 | } | ||||
| 17032 | |||||
| 17033 | // (ADC{S} l r (CMP (CSET HS carry) 1)) => (ADC{S} l r carry) | ||||
| 17034 | // (SBC{S} l r (CMP 0 (CSET LO carry))) => (SBC{S} l r carry) | ||||
| 17035 | static SDValue foldOverflowCheck(SDNode *Op, SelectionDAG &DAG, bool IsAdd) { | ||||
| 17036 | SDValue CmpOp = Op->getOperand(2); | ||||
| 17037 | if (!isCMP(CmpOp)) | ||||
| 17038 | return SDValue(); | ||||
| 17039 | |||||
| 17040 | if (IsAdd) { | ||||
| 17041 | if (!isOneConstant(CmpOp.getOperand(1))) | ||||
| 17042 | return SDValue(); | ||||
| 17043 | } else { | ||||
| 17044 | if (!isNullConstant(CmpOp.getOperand(0))) | ||||
| 17045 | return SDValue(); | ||||
| 17046 | } | ||||
| 17047 | |||||
| 17048 | SDValue CsetOp = CmpOp->getOperand(IsAdd ? 0 : 1); | ||||
| 17049 | auto CC = getCSETCondCode(CsetOp); | ||||
| 17050 | if (CC != (IsAdd ? AArch64CC::HS : AArch64CC::LO)) | ||||
| 17051 | return SDValue(); | ||||
| 17052 | |||||
| 17053 | return DAG.getNode(Op->getOpcode(), SDLoc(Op), Op->getVTList(), | ||||
| 17054 | Op->getOperand(0), Op->getOperand(1), | ||||
| 17055 | CsetOp.getOperand(3)); | ||||
| 17056 | } | ||||
| 17057 | |||||
| 17058 | // (ADC x 0 cond) => (CINC x HS cond) | ||||
| 17059 | static SDValue foldADCToCINC(SDNode *N, SelectionDAG &DAG) { | ||||
| 17060 | SDValue LHS = N->getOperand(0); | ||||
| 17061 | SDValue RHS = N->getOperand(1); | ||||
| 17062 | SDValue Cond = N->getOperand(2); | ||||
| 17063 | |||||
| 17064 | if (!isNullConstant(RHS)) | ||||
| 17065 | return SDValue(); | ||||
| 17066 | |||||
| 17067 | EVT VT = N->getValueType(0); | ||||
| 17068 | SDLoc DL(N); | ||||
| 17069 | |||||
| 17070 | // (CINC x cc cond) <=> (CSINC x x !cc cond) | ||||
| 17071 | SDValue CC = DAG.getConstant(AArch64CC::LO, DL, MVT::i32); | ||||
| 17072 | return DAG.getNode(AArch64ISD::CSINC, DL, VT, LHS, LHS, CC, Cond); | ||||
| 17073 | } | ||||
| 17074 | |||||
| 17075 | // Transform vector add(zext i8 to i32, zext i8 to i32) | ||||
| 17076 | // into sext(add(zext(i8 to i16), zext(i8 to i16)) to i32) | ||||
| 17077 | // This allows extra uses of saddl/uaddl at the lower vector widths, and less | ||||
| 17078 | // extends. | ||||
| 17079 | static SDValue performVectorAddSubExtCombine(SDNode *N, SelectionDAG &DAG) { | ||||
| 17080 | EVT VT = N->getValueType(0); | ||||
| 17081 | if (!VT.isFixedLengthVector() || VT.getSizeInBits() <= 128 || | ||||
| 17082 | (N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && | ||||
| 17083 | N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND) || | ||||
| 17084 | (N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && | ||||
| 17085 | N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND) || | ||||
| 17086 | N->getOperand(0).getOperand(0).getValueType() != | ||||
| 17087 | N->getOperand(1).getOperand(0).getValueType()) | ||||
| 17088 | return SDValue(); | ||||
| 17089 | |||||
| 17090 | SDValue N0 = N->getOperand(0).getOperand(0); | ||||
| 17091 | SDValue N1 = N->getOperand(1).getOperand(0); | ||||
| 17092 | EVT InVT = N0.getValueType(); | ||||
| 17093 | |||||
| 17094 | EVT S1 = InVT.getScalarType(); | ||||
| 17095 | EVT S2 = VT.getScalarType(); | ||||
| 17096 | if ((S2 == MVT::i32 && S1 == MVT::i8) || | ||||
| 17097 | (S2 == MVT::i64 && (S1 == MVT::i8 || S1 == MVT::i16))) { | ||||
| 17098 | SDLoc DL(N); | ||||
| 17099 | EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), | ||||
| 17100 | S2.getHalfSizedIntegerVT(*DAG.getContext()), | ||||
| 17101 | VT.getVectorElementCount()); | ||||
| 17102 | SDValue NewN0 = DAG.getNode(N->getOperand(0).getOpcode(), DL, HalfVT, N0); | ||||
| 17103 | SDValue NewN1 = DAG.getNode(N->getOperand(1).getOpcode(), DL, HalfVT, N1); | ||||
| 17104 | SDValue NewOp = DAG.getNode(N->getOpcode(), DL, HalfVT, NewN0, NewN1); | ||||
| 17105 | return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, NewOp); | ||||
| 17106 | } | ||||
| 17107 | return SDValue(); | ||||
| 17108 | } | ||||
| 17109 | |||||
| 17110 | static SDValue performBuildVectorCombine(SDNode *N, | ||||
| 17111 | TargetLowering::DAGCombinerInfo &DCI, | ||||
| 17112 | SelectionDAG &DAG) { | ||||
| 17113 | SDLoc DL(N); | ||||
| 17114 | EVT VT = N->getValueType(0); | ||||
| 17115 | |||||
| 17116 | // A build vector of two extracted elements is equivalent to an | ||||
| 17117 | // extract subvector where the inner vector is any-extended to the | ||||
| 17118 | // extract_vector_elt VT. | ||||
| 17119 | // (build_vector (extract_elt_iXX_to_i32 vec Idx+0) | ||||
| 17120 | // (extract_elt_iXX_to_i32 vec Idx+1)) | ||||
| 17121 | // => (extract_subvector (anyext_iXX_to_i32 vec) Idx) | ||||
| 17122 | |||||
| 17123 | // For now, only consider the v2i32 case, which arises as a result of | ||||
| 17124 | // legalization. | ||||
| 17125 | if (VT != MVT::v2i32) | ||||
| 17126 | return SDValue(); | ||||
| 17127 | |||||
| 17128 | SDValue Elt0 = N->getOperand(0), Elt1 = N->getOperand(1); | ||||
| 17129 | // Reminder, EXTRACT_VECTOR_ELT has the effect of any-extending to its VT. | ||||
| 17130 | if (Elt0->getOpcode() == ISD::EXTRACT_VECTOR_ELT && | ||||
| 17131 | Elt1->getOpcode() == ISD::EXTRACT_VECTOR_ELT && | ||||
| 17132 | // Constant index. | ||||
| 17133 | isa<ConstantSDNode>(Elt0->getOperand(1)) && | ||||
| 17134 | isa<ConstantSDNode>(Elt1->getOperand(1)) && | ||||
| 17135 | // Both EXTRACT_VECTOR_ELT from same vector... | ||||
| 17136 | Elt0->getOperand(0) == Elt1->getOperand(0) && | ||||
| 17137 | // ... and contiguous. First element's index +1 == second element's index. | ||||
| 17138 | Elt0->getConstantOperandVal(1) + 1 == Elt1->getConstantOperandVal(1) && | ||||
| 17139 | // EXTRACT_SUBVECTOR requires that Idx be a constant multiple of | ||||
| 17140 | // ResultType's known minimum vector length. | ||||
| 17141 | Elt0->getConstantOperandVal(1) % VT.getVectorMinNumElements() == 0) { | ||||
| 17142 | SDValue VecToExtend = Elt0->getOperand(0); | ||||
| 17143 | EVT ExtVT = VecToExtend.getValueType().changeVectorElementType(MVT::i32); | ||||
| 17144 | if (!DAG.getTargetLoweringInfo().isTypeLegal(ExtVT)) | ||||
| 17145 | return SDValue(); | ||||
| 17146 | |||||
| 17147 | SDValue SubvectorIdx = DAG.getVectorIdxConstant(Elt0->getConstantOperandVal(1), DL); | ||||
| 17148 | |||||
| 17149 | SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, DL, ExtVT, VecToExtend); | ||||
| 17150 | return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i32, Ext, | ||||
| 17151 | SubvectorIdx); | ||||
| 17152 | } | ||||
| 17153 | |||||
| 17154 | return SDValue(); | ||||
| 17155 | } | ||||
| 17156 | |||||
| 17157 | // Check an node is an extend or shift operand | ||||
| 17158 | static bool isExtendOrShiftOperand(SDValue N) { | ||||
| 17159 | unsigned Opcode = N.getOpcode(); | ||||
| 17160 | if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_INREG || | ||||
| 17161 | Opcode == ISD::ZERO_EXTEND || Opcode == ISD::ANY_EXTEND) { | ||||
| 17162 | EVT SrcVT; | ||||
| 17163 | if (Opcode == ISD::SIGN_EXTEND_INREG) | ||||
| 17164 | SrcVT = cast<VTSDNode>(N.getOperand(1))->getVT(); | ||||
| 17165 | else | ||||
| 17166 | SrcVT = N.getOperand(0).getValueType(); | ||||
| 17167 | |||||
| 17168 | return SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8; | ||||
| 17169 | } else if (Opcode == ISD::AND) { | ||||
| 17170 | ConstantSDNode *CSD = dyn_cast<ConstantSDNode>(N.getOperand(1)); | ||||
| 17171 | if (!CSD) | ||||
| 17172 | return false; | ||||
| 17173 | uint64_t AndMask = CSD->getZExtValue(); | ||||
| 17174 | return AndMask == 0xff || AndMask == 0xffff || AndMask == 0xffffffff; | ||||
| 17175 | } else if (Opcode == ISD::SHL || Opcode == ISD::SRL || Opcode == ISD::SRA) { | ||||
| 17176 | return isa<ConstantSDNode>(N.getOperand(1)); | ||||
| 17177 | } | ||||
| 17178 | |||||
| 17179 | return false; | ||||
| 17180 | } | ||||
| 17181 | |||||
| 17182 | // (N - Y) + Z --> (Z - Y) + N | ||||
| 17183 | // when N is an extend or shift operand | ||||
| 17184 | static SDValue performAddCombineSubShift(SDNode *N, SDValue SUB, SDValue Z, | ||||
| 17185 | SelectionDAG &DAG) { | ||||
| 17186 | auto IsOneUseExtend = [](SDValue N) { | ||||
| 17187 | return N.hasOneUse() && isExtendOrShiftOperand(N); | ||||
| 17188 | }; | ||||
| 17189 | |||||
| 17190 | // DAGCombiner will revert the combination when Z is constant cause | ||||
| 17191 | // dead loop. So don't enable the combination when Z is constant. | ||||
| 17192 | // If Z is one use shift C, we also can't do the optimization. | ||||
| 17193 | // It will falling to self infinite loop. | ||||
| 17194 | if (isa<ConstantSDNode>(Z) || IsOneUseExtend(Z)) | ||||
| 17195 | return SDValue(); | ||||
| 17196 | |||||
| 17197 | if (SUB.getOpcode() != ISD::SUB || !SUB.hasOneUse()) | ||||
| 17198 | return SDValue(); | ||||
| 17199 | |||||
| 17200 | SDValue Shift = SUB.getOperand(0); | ||||
| 17201 | if (!IsOneUseExtend(Shift)) | ||||
| 17202 | return SDValue(); | ||||
| 17203 | |||||
| 17204 | SDLoc DL(N); | ||||
| 17205 | EVT VT = N->getValueType(0); | ||||
| 17206 | |||||
| 17207 | SDValue Y = SUB.getOperand(1); | ||||
| 17208 | SDValue NewSub = DAG.getNode(ISD::SUB, DL, VT, Z, Y); | ||||
| 17209 | return DAG.getNode(ISD::ADD, DL, VT, NewSub, Shift); | ||||
| 17210 | } | ||||
| 17211 | |||||
| 17212 | static SDValue performAddCombineForShiftedOperands(SDNode *N, | ||||
| 17213 | SelectionDAG &DAG) { | ||||
| 17214 | // NOTE: Swapping LHS and RHS is not done for SUB, since SUB is not | ||||
| 17215 | // commutative. | ||||
| 17216 | if (N->getOpcode() != ISD::ADD) | ||||
| 17217 | return SDValue(); | ||||
| 17218 | |||||
| 17219 | // Bail out when value type is not one of {i32, i64}, since AArch64 ADD with | ||||
| 17220 | // shifted register is only available for i32 and i64. | ||||
| 17221 | EVT VT = N->getValueType(0); | ||||
| 17222 | if (VT != MVT::i32 && VT != MVT::i64) | ||||
| 17223 | return SDValue(); | ||||
| 17224 | |||||
| 17225 | SDLoc DL(N); | ||||
| 17226 | SDValue LHS = N->getOperand(0); | ||||
| 17227 | SDValue RHS = N->getOperand(1); | ||||
| 17228 | |||||
| 17229 | if (SDValue Val = performAddCombineSubShift(N, LHS, RHS, DAG)) | ||||
| 17230 | return Val; | ||||
| 17231 | if (SDValue Val = performAddCombineSubShift(N, RHS, LHS, DAG)) | ||||
| 17232 | return Val; | ||||
| 17233 | |||||
| 17234 | uint64_t LHSImm = 0, RHSImm = 0; | ||||
| 17235 | // If both operand are shifted by imm and shift amount is not greater than 4 | ||||
| 17236 | // for one operand, swap LHS and RHS to put operand with smaller shift amount | ||||
| 17237 | // on RHS. | ||||
| 17238 | // | ||||
| 17239 | // On many AArch64 processors (Cortex A78, Neoverse N1/N2/V1, etc), ADD with | ||||
| 17240 | // LSL shift (shift <= 4) has smaller latency and larger throughput than ADD | ||||
| 17241 | // with LSL (shift > 4). For the rest of processors, this is no-op for | ||||
| 17242 | // performance or correctness. | ||||
| 17243 | if (isOpcWithIntImmediate(LHS.getNode(), ISD::SHL, LHSImm) && | ||||
| 17244 | isOpcWithIntImmediate(RHS.getNode(), ISD::SHL, RHSImm) && LHSImm <= 4 && | ||||
| 17245 | RHSImm > 4 && LHS.hasOneUse()) | ||||
| 17246 | return DAG.getNode(ISD::ADD, DL, VT, RHS, LHS); | ||||
| 17247 | |||||
| 17248 | return SDValue(); | ||||
| 17249 | } | ||||
| 17250 | |||||
| 17251 | static SDValue performAddSubCombine(SDNode *N, | ||||
| 17252 | TargetLowering::DAGCombinerInfo &DCI, | ||||
| 17253 | SelectionDAG &DAG) { | ||||
| 17254 | // Try to change sum of two reductions. | ||||
| 17255 | if (SDValue Val = performAddUADDVCombine(N, DAG)) | ||||
| 17256 | return Val; | ||||
| 17257 | if (SDValue Val = performAddDotCombine(N, DAG)) | ||||
| 17258 | return Val; | ||||
| 17259 | if (SDValue Val = performAddCSelIntoCSinc(N, DAG)) | ||||
| 17260 | return Val; | ||||
| 17261 | if (SDValue Val = performNegCSelCombine(N, DAG)) | ||||
| 17262 | return Val; | ||||
| 17263 | if (SDValue Val = performVectorAddSubExtCombine(N, DAG)) | ||||
| 17264 | return Val; | ||||
| 17265 | if (SDValue Val = performAddCombineForShiftedOperands(N, DAG)) | ||||
| 17266 | return Val; | ||||
| 17267 | |||||
| 17268 | return performAddSubLongCombine(N, DCI, DAG); | ||||
| 17269 | } | ||||
| 17270 | |||||
| 17271 | // Massage DAGs which we can use the high-half "long" operations on into | ||||
| 17272 | // something isel will recognize better. E.g. | ||||
| 17273 | // | ||||
| 17274 | // (aarch64_neon_umull (extract_high vec) (dupv64 scalar)) --> | ||||
| 17275 | // (aarch64_neon_umull (extract_high (v2i64 vec))) | ||||
| 17276 | // (extract_high (v2i64 (dup128 scalar))))) | ||||
| 17277 | // | ||||
| 17278 | static SDValue tryCombineLongOpWithDup(unsigned IID, SDNode *N, | ||||
| 17279 | TargetLowering::DAGCombinerInfo &DCI, | ||||
| 17280 | SelectionDAG &DAG) { | ||||
| 17281 | if (DCI.isBeforeLegalizeOps()) | ||||
| 17282 | return SDValue(); | ||||
| 17283 | |||||
| 17284 | SDValue LHS = N->getOperand((IID == Intrinsic::not_intrinsic) ? 0 : 1); | ||||
| 17285 | SDValue RHS = N->getOperand((IID == Intrinsic::not_intrinsic) ? 1 : 2); | ||||
| 17286 | assert(LHS.getValueType().is64BitVector() &&(static_cast <bool> (LHS.getValueType().is64BitVector() && RHS.getValueType().is64BitVector() && "unexpected shape for long operation" ) ? void (0) : __assert_fail ("LHS.getValueType().is64BitVector() && RHS.getValueType().is64BitVector() && \"unexpected shape for long operation\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 17288, __extension__ __PRETTY_FUNCTION__)) | ||||
| 17287 | RHS.getValueType().is64BitVector() &&(static_cast <bool> (LHS.getValueType().is64BitVector() && RHS.getValueType().is64BitVector() && "unexpected shape for long operation" ) ? void (0) : __assert_fail ("LHS.getValueType().is64BitVector() && RHS.getValueType().is64BitVector() && \"unexpected shape for long operation\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 17288, __extension__ __PRETTY_FUNCTION__)) | ||||
| 17288 | "unexpected shape for long operation")(static_cast <bool> (LHS.getValueType().is64BitVector() && RHS.getValueType().is64BitVector() && "unexpected shape for long operation" ) ? void (0) : __assert_fail ("LHS.getValueType().is64BitVector() && RHS.getValueType().is64BitVector() && \"unexpected shape for long operation\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 17288, __extension__ __PRETTY_FUNCTION__)); | ||||
| 17289 | |||||
| 17290 | // Either node could be a DUP, but it's not worth doing both of them (you'd | ||||
| 17291 | // just as well use the non-high version) so look for a corresponding extract | ||||
| 17292 | // operation on the other "wing". | ||||
| 17293 | if (isEssentiallyExtractHighSubvector(LHS)) { | ||||
| 17294 | RHS = tryExtendDUPToExtractHigh(RHS, DAG); | ||||
| 17295 | if (!RHS.getNode()) | ||||
| 17296 | return SDValue(); | ||||
| 17297 | } else if (isEssentiallyExtractHighSubvector(RHS)) { | ||||
| 17298 | LHS = tryExtendDUPToExtractHigh(LHS, DAG); | ||||
| 17299 | if (!LHS.getNode()) | ||||
| 17300 | return SDValue(); | ||||
| 17301 | } | ||||
| 17302 | |||||
| 17303 | if (IID == Intrinsic::not_intrinsic) | ||||
| 17304 | return DAG.getNode(N->getOpcode(), SDLoc(N), N->getValueType(0), LHS, RHS); | ||||
| 17305 | |||||
| 17306 | return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), N->getValueType(0), | ||||
| 17307 | N->getOperand(0), LHS, RHS); | ||||
| 17308 | } | ||||
| 17309 | |||||
| 17310 | static SDValue tryCombineShiftImm(unsigned IID, SDNode *N, SelectionDAG &DAG) { | ||||
| 17311 | MVT ElemTy = N->getSimpleValueType(0).getScalarType(); | ||||
| 17312 | unsigned ElemBits = ElemTy.getSizeInBits(); | ||||
| 17313 | |||||
| 17314 | int64_t ShiftAmount; | ||||
| 17315 | if (BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(2))) { | ||||
| 17316 | APInt SplatValue, SplatUndef; | ||||
| 17317 | unsigned SplatBitSize; | ||||
| 17318 | bool HasAnyUndefs; | ||||
| 17319 | if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, | ||||
| 17320 | HasAnyUndefs, ElemBits) || | ||||
| 17321 | SplatBitSize != ElemBits) | ||||
| 17322 | return SDValue(); | ||||
| 17323 | |||||
| 17324 | ShiftAmount = SplatValue.getSExtValue(); | ||||
| 17325 | } else if (ConstantSDNode *CVN = dyn_cast<ConstantSDNode>(N->getOperand(2))) { | ||||
| 17326 | ShiftAmount = CVN->getSExtValue(); | ||||
| 17327 | } else | ||||
| 17328 | return SDValue(); | ||||
| 17329 | |||||
| 17330 | unsigned Opcode; | ||||
| 17331 | bool IsRightShift; | ||||
| 17332 | switch (IID) { | ||||
| 17333 | default: | ||||
| 17334 | llvm_unreachable("Unknown shift intrinsic")::llvm::llvm_unreachable_internal("Unknown shift intrinsic", "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp" , 17334); | ||||
| 17335 | case Intrinsic::aarch64_neon_sqshl: | ||||
| 17336 | Opcode = AArch64ISD::SQSHL_I; | ||||
| 17337 | IsRightShift = false; | ||||
| 17338 | break; | ||||
| 17339 | case Intrinsic::aarch64_neon_uqshl: | ||||
| 17340 | Opcode = AArch64ISD::UQSHL_I; | ||||
| 17341 | IsRightShift = false; | ||||
| 17342 | break; | ||||
| 17343 | case Intrinsic::aarch64_neon_srshl: | ||||
| 17344 | Opcode = AArch64ISD::SRSHR_I; | ||||
| 17345 | IsRightShift = true; | ||||
| 17346 | break; | ||||
| 17347 | case Intrinsic::aarch64_neon_urshl: | ||||
| 17348 | Opcode = AArch64ISD::URSHR_I; | ||||
| 17349 | IsRightShift = true; | ||||
| 17350 | break; | ||||
| 17351 | case Intrinsic::aarch64_neon_sqshlu: | ||||
| 17352 | Opcode = AArch64ISD::SQSHLU_I; | ||||
| 17353 | IsRightShift = false; | ||||
| 17354 | break; | ||||
| 17355 | case Intrinsic::aarch64_neon_sshl: | ||||
| 17356 | case Intrinsic::aarch64_neon_ushl: | ||||
| 17357 | // For positive shift amounts we can use SHL, as ushl/sshl perform a regular | ||||
| 17358 | // left shift for positive shift amounts. Below, we only replace the current | ||||
| 17359 | // node with VSHL, if this condition is met. | ||||
| 17360 | Opcode = AArch64ISD::VSHL; | ||||
| 17361 | IsRightShift = false; | ||||
| 17362 | break; | ||||
| 17363 | } | ||||
| 17364 | |||||
| 17365 | if (IsRightShift && ShiftAmount <= -1 && ShiftAmount >= -(int)ElemBits) { | ||||
| 17366 | SDLoc dl(N); | ||||
| 17367 | return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1), | ||||
| 17368 | DAG.getConstant(-ShiftAmount, dl, MVT::i32)); | ||||
| 17369 | } else if (!IsRightShift && ShiftAmount >= 0 && ShiftAmount < ElemBits) { | ||||
| 17370 | SDLoc dl(N); | ||||
| 17371 | return DAG.getNode(Opcode, dl, N->getValueType(0), N->getOperand(1), | ||||
| 17372 | DAG.getConstant(ShiftAmount, dl, MVT::i32)); | ||||
| 17373 | } | ||||
| 17374 | |||||
| 17375 | return SDValue(); | ||||
| 17376 | } | ||||
| 17377 | |||||
| 17378 | // The CRC32[BH] instructions ignore the high bits of their data operand. Since | ||||
| 17379 | // the intrinsics must be legal and take an i32, this means there's almost | ||||
| 17380 | // certainly going to be a zext in the DAG which we can eliminate. | ||||
| 17381 | static SDValue tryCombineCRC32(unsigned Mask, SDNode *N, SelectionDAG &DAG) { | ||||
| 17382 | SDValue AndN = N->getOperand(2); | ||||
| 17383 | if (AndN.getOpcode() != ISD::AND) | ||||
| 17384 | return SDValue(); | ||||
| 17385 | |||||
| 17386 | ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(AndN.getOperand(1)); | ||||
| 17387 | if (!CMask || CMask->getZExtValue() != Mask) | ||||
| 17388 | return SDValue(); | ||||
| 17389 | |||||
| 17390 | return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N), MVT::i32, | ||||
| 17391 | N->getOperand(0), N->getOperand(1), AndN.getOperand(0)); | ||||
| 17392 | } | ||||
| 17393 | |||||
| 17394 | static SDValue combineAcrossLanesIntrinsic(unsigned Opc, SDNode *N, | ||||
| 17395 | SelectionDAG &DAG) { | ||||
| 17396 | SDLoc dl(N); | ||||
| 17397 | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), | ||||
| 17398 | DAG.getNode(Opc, dl, | ||||
| 17399 | N->getOperand(1).getSimpleValueType(), | ||||
| 17400 | N->getOperand(1)), | ||||
| 17401 | DAG.getConstant(0, dl, MVT::i64)); | ||||
| 17402 | } | ||||
| 17403 | |||||
| 17404 | static SDValue LowerSVEIntrinsicIndex(SDNode *N, SelectionDAG &DAG) { | ||||
| 17405 | SDLoc DL(N); | ||||
| 17406 | SDValue Op1 = N->getOperand(1); | ||||
| 17407 | SDValue Op2 = N->getOperand(2); | ||||
| 17408 | EVT ScalarTy = Op2.getValueType(); | ||||
| 17409 | if ((ScalarTy == MVT::i8) || (ScalarTy == MVT::i16)) | ||||
| 17410 | ScalarTy = MVT::i32; | ||||
| 17411 | |||||
| 17412 | // Lower index_vector(base, step) to mul(step step_vector(1)) + splat(base). | ||||
| 17413 | SDValue StepVector = DAG.getStepVector(DL, N->getValueType(0)); | ||||
| 17414 | SDValue Step = DAG.getNode(ISD::SPLAT_VECTOR, DL, N->getValueType(0), Op2); | ||||
| 17415 | SDValue Mul = DAG.getNode(ISD::MUL, DL, N->getValueType(0), StepVector, Step); | ||||
| 17416 | SDValue Base = DAG.getNode(ISD::SPLAT_VECTOR, DL, N->getValueType(0), Op1); | ||||
| 17417 | return DAG.getNode(ISD::ADD, DL, N->getValueType(0), Mul, Base); | ||||
| 17418 | } | ||||
| 17419 | |||||
| 17420 | static SDValue LowerSVEIntrinsicDUP(SDNode *N, SelectionDAG &DAG) { | ||||
| 17421 | SDLoc dl(N); | ||||
| 17422 | SDValue Scalar = N->getOperand(3); | ||||
| 17423 | EVT ScalarTy = Scalar.getValueType(); | ||||
| 17424 | |||||
| 17425 | if ((ScalarTy == MVT::i8) || (ScalarTy == MVT::i16)) | ||||
| 17426 | Scalar = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Scalar); | ||||
| 17427 | |||||
| 17428 | SDValue Passthru = N->getOperand(1); | ||||
| 17429 | SDValue Pred = N->getOperand(2); | ||||
| 17430 | return DAG.getNode(AArch64ISD::DUP_MERGE_PASSTHRU, dl, N->getValueType(0), | ||||
| 17431 | Pred, Scalar, Passthru); | ||||
| 17432 | } | ||||
| 17433 | |||||
| 17434 | static SDValue LowerSVEIntrinsicEXT(SDNode *N, SelectionDAG &DAG) { | ||||
| 17435 | SDLoc dl(N); | ||||
| 17436 | LLVMContext &Ctx = *DAG.getContext(); | ||||
| 17437 | EVT VT = N->getValueType(0); | ||||
| 17438 | |||||
| 17439 | assert(VT.isScalableVector() && "Expected a scalable vector.")(static_cast <bool> (VT.isScalableVector() && "Expected a scalable vector." ) ? void (0) : __assert_fail ("VT.isScalableVector() && \"Expected a scalable vector.\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 17439, __extension__ __PRETTY_FUNCTION__)); | ||||
| 17440 | |||||
| 17441 | // Current lowering only supports the SVE-ACLE types. | ||||
| 17442 | if (VT.getSizeInBits().getKnownMinSize() != AArch64::SVEBitsPerBlock) | ||||
| 17443 | return SDValue(); | ||||
| 17444 | |||||
| 17445 | unsigned ElemSize = VT.getVectorElementType().getSizeInBits() / 8; | ||||
| 17446 | unsigned ByteSize = VT.getSizeInBits().getKnownMinSize() / 8; | ||||
| 17447 | EVT ByteVT = | ||||
| 17448 | EVT::getVectorVT(Ctx, MVT::i8, ElementCount::getScalable(ByteSize)); | ||||
| 17449 | |||||
| 17450 | // Convert everything to the domain of EXT (i.e bytes). | ||||
| 17451 | SDValue Op0 = DAG.getNode(ISD::BITCAST, dl, ByteVT, N->getOperand(1)); | ||||
| 17452 | SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, ByteVT, N->getOperand(2)); | ||||
| 17453 | SDValue Op2 = DAG.getNode(ISD::MUL, dl, MVT::i32, N->getOperand(3), | ||||
| 17454 | DAG.getConstant(ElemSize, dl, MVT::i32)); | ||||
| 17455 | |||||
| 17456 | SDValue EXT = DAG.getNode(AArch64ISD::EXT, dl, ByteVT, Op0, Op1, Op2); | ||||
| 17457 | return DAG.getNode(ISD::BITCAST, dl, VT, EXT); | ||||
| 17458 | } | ||||
| 17459 | |||||
| 17460 | static SDValue tryConvertSVEWideCompare(SDNode *N, ISD::CondCode CC, | ||||
| 17461 | TargetLowering::DAGCombinerInfo &DCI, | ||||
| 17462 | SelectionDAG &DAG) { | ||||
| 17463 | if (DCI.isBeforeLegalize()) | ||||
| 17464 | return SDValue(); | ||||
| 17465 | |||||
| 17466 | SDValue Comparator = N->getOperand(3); | ||||
| 17467 | if (Comparator.getOpcode() == AArch64ISD::DUP || | ||||
| 17468 | Comparator.getOpcode() == ISD::SPLAT_VECTOR) { | ||||
| 17469 | unsigned IID = getIntrinsicID(N); | ||||
| 17470 | EVT VT = N->getValueType(0); | ||||
| 17471 | EVT CmpVT = N->getOperand(2).getValueType(); | ||||
| 17472 | SDValue Pred = N->getOperand(1); | ||||
| 17473 | SDValue Imm; | ||||
| 17474 | SDLoc DL(N); | ||||
| 17475 | |||||
| 17476 | switch (IID) { | ||||
| 17477 | default: | ||||
| 17478 | llvm_unreachable("Called with wrong intrinsic!")::llvm::llvm_unreachable_internal("Called with wrong intrinsic!" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 17478); | ||||
| 17479 | break; | ||||
| 17480 | |||||
| 17481 | // Signed comparisons | ||||
| 17482 | case Intrinsic::aarch64_sve_cmpeq_wide: | ||||
| 17483 | case Intrinsic::aarch64_sve_cmpne_wide: | ||||
| 17484 | case Intrinsic::aarch64_sve_cmpge_wide: | ||||
| 17485 | case Intrinsic::aarch64_sve_cmpgt_wide: | ||||
| 17486 | case Intrinsic::aarch64_sve_cmplt_wide: | ||||
| 17487 | case Intrinsic::aarch64_sve_cmple_wide: { | ||||
| 17488 | if (auto *CN = dyn_cast<ConstantSDNode>(Comparator.getOperand(0))) { | ||||
| 17489 | int64_t ImmVal = CN->getSExtValue(); | ||||
| 17490 | if (ImmVal >= -16 && ImmVal <= 15) | ||||
| 17491 | Imm = DAG.getConstant(ImmVal, DL, MVT::i32); | ||||
| 17492 | else | ||||
| 17493 | return SDValue(); | ||||
| 17494 | } | ||||
| 17495 | break; | ||||
| 17496 | } | ||||
| 17497 | // Unsigned comparisons | ||||
| 17498 | case Intrinsic::aarch64_sve_cmphs_wide: | ||||
| 17499 | case Intrinsic::aarch64_sve_cmphi_wide: | ||||
| 17500 | case Intrinsic::aarch64_sve_cmplo_wide: | ||||
| 17501 | case Intrinsic::aarch64_sve_cmpls_wide: { | ||||
| 17502 | if (auto *CN = dyn_cast<ConstantSDNode>(Comparator.getOperand(0))) { | ||||
| 17503 | uint64_t ImmVal = CN->getZExtValue(); | ||||
| 17504 | if (ImmVal <= 127) | ||||
| 17505 | Imm = DAG.getConstant(ImmVal, DL, MVT::i32); | ||||
| 17506 | else | ||||
| 17507 | return SDValue(); | ||||
| 17508 | } | ||||
| 17509 | break; | ||||
| 17510 | } | ||||
| 17511 | } | ||||
| 17512 | |||||
| 17513 | if (!Imm) | ||||
| 17514 | return SDValue(); | ||||
| 17515 | |||||
| 17516 | SDValue Splat = DAG.getNode(ISD::SPLAT_VECTOR, DL, CmpVT, Imm); | ||||
| 17517 | return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, DL, VT, Pred, | ||||
| 17518 | N->getOperand(2), Splat, DAG.getCondCode(CC)); | ||||
| 17519 | } | ||||
| 17520 | |||||
| 17521 | return SDValue(); | ||||
| 17522 | } | ||||
| 17523 | |||||
| 17524 | static SDValue getPTest(SelectionDAG &DAG, EVT VT, SDValue Pg, SDValue Op, | ||||
| 17525 | AArch64CC::CondCode Cond) { | ||||
| 17526 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | ||||
| 17527 | |||||
| 17528 | SDLoc DL(Op); | ||||
| 17529 | assert(Op.getValueType().isScalableVector() &&(static_cast <bool> (Op.getValueType().isScalableVector () && TLI.isTypeLegal(Op.getValueType()) && "Expected legal scalable vector type!" ) ? void (0) : __assert_fail ("Op.getValueType().isScalableVector() && TLI.isTypeLegal(Op.getValueType()) && \"Expected legal scalable vector type!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 17531, __extension__ __PRETTY_FUNCTION__)) | ||||
| 17530 | TLI.isTypeLegal(Op.getValueType()) &&(static_cast <bool> (Op.getValueType().isScalableVector () && TLI.isTypeLegal(Op.getValueType()) && "Expected legal scalable vector type!" ) ? void (0) : __assert_fail ("Op.getValueType().isScalableVector() && TLI.isTypeLegal(Op.getValueType()) && \"Expected legal scalable vector type!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 17531, __extension__ __PRETTY_FUNCTION__)) | ||||
| 17531 | "Expected legal scalable vector type!")(static_cast <bool> (Op.getValueType().isScalableVector () && TLI.isTypeLegal(Op.getValueType()) && "Expected legal scalable vector type!" ) ? void (0) : __assert_fail ("Op.getValueType().isScalableVector() && TLI.isTypeLegal(Op.getValueType()) && \"Expected legal scalable vector type!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 17531, __extension__ __PRETTY_FUNCTION__)); | ||||
| 17532 | assert(Op.getValueType() == Pg.getValueType() &&(static_cast <bool> (Op.getValueType() == Pg.getValueType () && "Expected same type for PTEST operands") ? void (0) : __assert_fail ("Op.getValueType() == Pg.getValueType() && \"Expected same type for PTEST operands\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 17533, __extension__ __PRETTY_FUNCTION__)) | ||||
| 17533 | "Expected same type for PTEST operands")(static_cast <bool> (Op.getValueType() == Pg.getValueType () && "Expected same type for PTEST operands") ? void (0) : __assert_fail ("Op.getValueType() == Pg.getValueType() && \"Expected same type for PTEST operands\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 17533, __extension__ __PRETTY_FUNCTION__)); | ||||
| 17534 | |||||
| 17535 | // Ensure target specific opcodes are using legal type. | ||||
| 17536 | EVT OutVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT); | ||||
| 17537 | SDValue TVal = DAG.getConstant(1, DL, OutVT); | ||||
| 17538 | SDValue FVal = DAG.getConstant(0, DL, OutVT); | ||||
| 17539 | |||||
| 17540 | // Ensure operands have type nxv16i1. | ||||
| 17541 | if (Op.getValueType() != MVT::nxv16i1) { | ||||
| 17542 | if ((Cond == AArch64CC::ANY_ACTIVE || Cond == AArch64CC::NONE_ACTIVE) && | ||||
| 17543 | isZeroingInactiveLanes(Op)) | ||||
| 17544 | Pg = DAG.getNode(AArch64ISD::REINTERPRET_CAST, DL, MVT::nxv16i1, Pg); | ||||
| 17545 | else | ||||
| 17546 | Pg = getSVEPredicateBitCast(MVT::nxv16i1, Pg, DAG); | ||||
| 17547 | Op = DAG.getNode(AArch64ISD::REINTERPRET_CAST, DL, MVT::nxv16i1, Op); | ||||
| 17548 | } | ||||
| 17549 | |||||
| 17550 | // Set condition code (CC) flags. | ||||
| 17551 | SDValue Test = DAG.getNode( | ||||
| 17552 | Cond == AArch64CC::ANY_ACTIVE ? AArch64ISD::PTEST_ANY : AArch64ISD::PTEST, | ||||
| 17553 | DL, MVT::Other, Pg, Op); | ||||
| 17554 | |||||
| 17555 | // Convert CC to integer based on requested condition. | ||||
| 17556 | // NOTE: Cond is inverted to promote CSEL's removal when it feeds a compare. | ||||
| 17557 | SDValue CC = DAG.getConstant(getInvertedCondCode(Cond), DL, MVT::i32); | ||||
| 17558 | SDValue Res = DAG.getNode(AArch64ISD::CSEL, DL, OutVT, FVal, TVal, CC, Test); | ||||
| 17559 | return DAG.getZExtOrTrunc(Res, DL, VT); | ||||
| 17560 | } | ||||
| 17561 | |||||
| 17562 | static SDValue combineSVEReductionInt(SDNode *N, unsigned Opc, | ||||
| 17563 | SelectionDAG &DAG) { | ||||
| 17564 | SDLoc DL(N); | ||||
| 17565 | |||||
| 17566 | SDValue Pred = N->getOperand(1); | ||||
| 17567 | SDValue VecToReduce = N->getOperand(2); | ||||
| 17568 | |||||
| 17569 | // NOTE: The integer reduction's result type is not always linked to the | ||||
| 17570 | // operand's element type so we construct it from the intrinsic's result type. | ||||
| 17571 | EVT ReduceVT = getPackedSVEVectorVT(N->getValueType(0)); | ||||
| 17572 | SDValue Reduce = DAG.getNode(Opc, DL, ReduceVT, Pred, VecToReduce); | ||||
| 17573 | |||||
| 17574 | // SVE reductions set the whole vector register with the first element | ||||
| 17575 | // containing the reduction result, which we'll now extract. | ||||
| 17576 | SDValue Zero = DAG.getConstant(0, DL, MVT::i64); | ||||
| 17577 | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, N->getValueType(0), Reduce, | ||||
| 17578 | Zero); | ||||
| 17579 | } | ||||
| 17580 | |||||
| 17581 | static SDValue combineSVEReductionFP(SDNode *N, unsigned Opc, | ||||
| 17582 | SelectionDAG &DAG) { | ||||
| 17583 | SDLoc DL(N); | ||||
| 17584 | |||||
| 17585 | SDValue Pred = N->getOperand(1); | ||||
| 17586 | SDValue VecToReduce = N->getOperand(2); | ||||
| 17587 | |||||
| 17588 | EVT ReduceVT = VecToReduce.getValueType(); | ||||
| 17589 | SDValue Reduce = DAG.getNode(Opc, DL, ReduceVT, Pred, VecToReduce); | ||||
| 17590 | |||||
| 17591 | // SVE reductions set the whole vector register with the first element | ||||
| 17592 | // containing the reduction result, which we'll now extract. | ||||
| 17593 | SDValue Zero = DAG.getConstant(0, DL, MVT::i64); | ||||
| 17594 | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, N->getValueType(0), Reduce, | ||||
| 17595 | Zero); | ||||
| 17596 | } | ||||
| 17597 | |||||
| 17598 | static SDValue combineSVEReductionOrderedFP(SDNode *N, unsigned Opc, | ||||
| 17599 | SelectionDAG &DAG) { | ||||
| 17600 | SDLoc DL(N); | ||||
| 17601 | |||||
| 17602 | SDValue Pred = N->getOperand(1); | ||||
| 17603 | SDValue InitVal = N->getOperand(2); | ||||
| 17604 | SDValue VecToReduce = N->getOperand(3); | ||||
| 17605 | EVT ReduceVT = VecToReduce.getValueType(); | ||||
| 17606 | |||||
| 17607 | // Ordered reductions use the first lane of the result vector as the | ||||
| 17608 | // reduction's initial value. | ||||
| 17609 | SDValue Zero = DAG.getConstant(0, DL, MVT::i64); | ||||
| 17610 | InitVal = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ReduceVT, | ||||
| 17611 | DAG.getUNDEF(ReduceVT), InitVal, Zero); | ||||
| 17612 | |||||
| 17613 | SDValue Reduce = DAG.getNode(Opc, DL, ReduceVT, Pred, InitVal, VecToReduce); | ||||
| 17614 | |||||
| 17615 | // SVE reductions set the whole vector register with the first element | ||||
| 17616 | // containing the reduction result, which we'll now extract. | ||||
| 17617 | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, N->getValueType(0), Reduce, | ||||
| 17618 | Zero); | ||||
| 17619 | } | ||||
| 17620 | |||||
| 17621 | static bool isAllInactivePredicate(SDValue N) { | ||||
| 17622 | // Look through cast. | ||||
| 17623 | while (N.getOpcode() == AArch64ISD::REINTERPRET_CAST) | ||||
| 17624 | N = N.getOperand(0); | ||||
| 17625 | |||||
| 17626 | return ISD::isConstantSplatVectorAllZeros(N.getNode()); | ||||
| 17627 | } | ||||
| 17628 | |||||
| 17629 | static bool isAllActivePredicate(SelectionDAG &DAG, SDValue N) { | ||||
| 17630 | unsigned NumElts = N.getValueType().getVectorMinNumElements(); | ||||
| 17631 | |||||
| 17632 | // Look through cast. | ||||
| 17633 | while (N.getOpcode() == AArch64ISD::REINTERPRET_CAST) { | ||||
| 17634 | N = N.getOperand(0); | ||||
| 17635 | // When reinterpreting from a type with fewer elements the "new" elements | ||||
| 17636 | // are not active, so bail if they're likely to be used. | ||||
| 17637 | if (N.getValueType().getVectorMinNumElements() < NumElts) | ||||
| 17638 | return false; | ||||
| 17639 | } | ||||
| 17640 | |||||
| 17641 | if (ISD::isConstantSplatVectorAllOnes(N.getNode())) | ||||
| 17642 | return true; | ||||
| 17643 | |||||
| 17644 | // "ptrue p.<ty>, all" can be considered all active when <ty> is the same size | ||||
| 17645 | // or smaller than the implicit element type represented by N. | ||||
| 17646 | // NOTE: A larger element count implies a smaller element type. | ||||
| 17647 | if (N.getOpcode() == AArch64ISD::PTRUE && | ||||
| 17648 | N.getConstantOperandVal(0) == AArch64SVEPredPattern::all) | ||||
| 17649 | return N.getValueType().getVectorMinNumElements() >= NumElts; | ||||
| 17650 | |||||
| 17651 | // If we're compiling for a specific vector-length, we can check if the | ||||
| 17652 | // pattern's VL equals that of the scalable vector at runtime. | ||||
| 17653 | if (N.getOpcode() == AArch64ISD::PTRUE) { | ||||
| 17654 | const auto &Subtarget = DAG.getSubtarget<AArch64Subtarget>(); | ||||
| 17655 | unsigned MinSVESize = Subtarget.getMinSVEVectorSizeInBits(); | ||||
| 17656 | unsigned MaxSVESize = Subtarget.getMaxSVEVectorSizeInBits(); | ||||
| 17657 | if (MaxSVESize && MinSVESize == MaxSVESize) { | ||||
| 17658 | unsigned VScale = MaxSVESize / AArch64::SVEBitsPerBlock; | ||||
| 17659 | unsigned PatNumElts = | ||||
| 17660 | getNumElementsFromSVEPredPattern(N.getConstantOperandVal(0)); | ||||
| 17661 | return PatNumElts == (NumElts * VScale); | ||||
| 17662 | } | ||||
| 17663 | } | ||||
| 17664 | |||||
| 17665 | return false; | ||||
| 17666 | } | ||||
| 17667 | |||||
| 17668 | // If a merged operation has no inactive lanes we can relax it to a predicated | ||||
| 17669 | // or unpredicated operation, which potentially allows better isel (perhaps | ||||
| 17670 | // using immediate forms) or relaxing register reuse requirements. | ||||
| 17671 | static SDValue convertMergedOpToPredOp(SDNode *N, unsigned Opc, | ||||
| 17672 | SelectionDAG &DAG, bool UnpredOp = false, | ||||
| 17673 | bool SwapOperands = false) { | ||||
| 17674 | assert(N->getOpcode() == ISD::INTRINSIC_WO_CHAIN && "Expected intrinsic!")(static_cast <bool> (N->getOpcode() == ISD::INTRINSIC_WO_CHAIN && "Expected intrinsic!") ? void (0) : __assert_fail ("N->getOpcode() == ISD::INTRINSIC_WO_CHAIN && \"Expected intrinsic!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 17674, __extension__ __PRETTY_FUNCTION__)); | ||||
| 17675 | assert(N->getNumOperands() == 4 && "Expected 3 operand intrinsic!")(static_cast <bool> (N->getNumOperands() == 4 && "Expected 3 operand intrinsic!") ? void (0) : __assert_fail ( "N->getNumOperands() == 4 && \"Expected 3 operand intrinsic!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 17675, __extension__ __PRETTY_FUNCTION__)); | ||||
| 17676 | SDValue Pg = N->getOperand(1); | ||||
| 17677 | SDValue Op1 = N->getOperand(SwapOperands ? 3 : 2); | ||||
| 17678 | SDValue Op2 = N->getOperand(SwapOperands ? 2 : 3); | ||||
| 17679 | |||||
| 17680 | // ISD way to specify an all active predicate. | ||||
| 17681 | if (isAllActivePredicate(DAG, Pg)) { | ||||
| 17682 | if (UnpredOp) | ||||
| 17683 | return DAG.getNode(Opc, SDLoc(N), N->getValueType(0), Op1, Op2); | ||||
| 17684 | |||||
| 17685 | return DAG.getNode(Opc, SDLoc(N), N->getValueType(0), Pg, Op1, Op2); | ||||
| 17686 | } | ||||
| 17687 | |||||
| 17688 | // FUTURE: SplatVector(true) | ||||
| 17689 | return SDValue(); | ||||
| 17690 | } | ||||
| 17691 | |||||
| 17692 | static SDValue performIntrinsicCombine(SDNode *N, | ||||
| 17693 | TargetLowering::DAGCombinerInfo &DCI, | ||||
| 17694 | const AArch64Subtarget *Subtarget) { | ||||
| 17695 | SelectionDAG &DAG = DCI.DAG; | ||||
| 17696 | unsigned IID = getIntrinsicID(N); | ||||
| 17697 | switch (IID) { | ||||
| 17698 | default: | ||||
| 17699 | break; | ||||
| 17700 | case Intrinsic::get_active_lane_mask: { | ||||
| 17701 | SDValue Res = SDValue(); | ||||
| 17702 | EVT VT = N->getValueType(0); | ||||
| 17703 | if (VT.isFixedLengthVector()) { | ||||
| 17704 | // We can use the SVE whilelo instruction to lower this intrinsic by | ||||
| 17705 | // creating the appropriate sequence of scalable vector operations and | ||||
| 17706 | // then extracting a fixed-width subvector from the scalable vector. | ||||
| 17707 | |||||
| 17708 | SDLoc DL(N); | ||||
| 17709 | SDValue ID = | ||||
| 17710 | DAG.getTargetConstant(Intrinsic::aarch64_sve_whilelo, DL, MVT::i64); | ||||
| 17711 | |||||
| 17712 | EVT WhileVT = EVT::getVectorVT( | ||||
| 17713 | *DAG.getContext(), MVT::i1, | ||||
| 17714 | ElementCount::getScalable(VT.getVectorNumElements())); | ||||
| 17715 | |||||
| 17716 | // Get promoted scalable vector VT, i.e. promote nxv4i1 -> nxv4i32. | ||||
| 17717 | EVT PromVT = getPromotedVTForPredicate(WhileVT); | ||||
| 17718 | |||||
| 17719 | // Get the fixed-width equivalent of PromVT for extraction. | ||||
| 17720 | EVT ExtVT = | ||||
| 17721 | EVT::getVectorVT(*DAG.getContext(), PromVT.getVectorElementType(), | ||||
| 17722 | VT.getVectorElementCount()); | ||||
| 17723 | |||||
| 17724 | Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, WhileVT, ID, | ||||
| 17725 | N->getOperand(1), N->getOperand(2)); | ||||
| 17726 | Res = DAG.getNode(ISD::SIGN_EXTEND, DL, PromVT, Res); | ||||
| 17727 | Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtVT, Res, | ||||
| 17728 | DAG.getConstant(0, DL, MVT::i64)); | ||||
| 17729 | Res = DAG.getNode(ISD::TRUNCATE, DL, VT, Res); | ||||
| 17730 | } | ||||
| 17731 | return Res; | ||||
| 17732 | } | ||||
| 17733 | case Intrinsic::aarch64_neon_vcvtfxs2fp: | ||||
| 17734 | case Intrinsic::aarch64_neon_vcvtfxu2fp: | ||||
| 17735 | return tryCombineFixedPointConvert(N, DCI, DAG); | ||||
| 17736 | case Intrinsic::aarch64_neon_saddv: | ||||
| 17737 | return combineAcrossLanesIntrinsic(AArch64ISD::SADDV, N, DAG); | ||||
| 17738 | case Intrinsic::aarch64_neon_uaddv: | ||||
| 17739 | return combineAcrossLanesIntrinsic(AArch64ISD::UADDV, N, DAG); | ||||
| 17740 | case Intrinsic::aarch64_neon_sminv: | ||||
| 17741 | return combineAcrossLanesIntrinsic(AArch64ISD::SMINV, N, DAG); | ||||
| 17742 | case Intrinsic::aarch64_neon_uminv: | ||||
| 17743 | return combineAcrossLanesIntrinsic(AArch64ISD::UMINV, N, DAG); | ||||
| 17744 | case Intrinsic::aarch64_neon_smaxv: | ||||
| 17745 | return combineAcrossLanesIntrinsic(AArch64ISD::SMAXV, N, DAG); | ||||
| 17746 | case Intrinsic::aarch64_neon_umaxv: | ||||
| 17747 | return combineAcrossLanesIntrinsic(AArch64ISD::UMAXV, N, DAG); | ||||
| 17748 | case Intrinsic::aarch64_neon_fmax: | ||||
| 17749 | return DAG.getNode(ISD::FMAXIMUM, SDLoc(N), N->getValueType(0), | ||||
| 17750 | N->getOperand(1), N->getOperand(2)); | ||||
| 17751 | case Intrinsic::aarch64_neon_fmin: | ||||
| 17752 | return DAG.getNode(ISD::FMINIMUM, SDLoc(N), N->getValueType(0), | ||||
| 17753 | N->getOperand(1), N->getOperand(2)); | ||||
| 17754 | case Intrinsic::aarch64_neon_fmaxnm: | ||||
| 17755 | return DAG.getNode(ISD::FMAXNUM, SDLoc(N), N->getValueType(0), | ||||
| 17756 | N->getOperand(1), N->getOperand(2)); | ||||
| 17757 | case Intrinsic::aarch64_neon_fminnm: | ||||
| 17758 | return DAG.getNode(ISD::FMINNUM, SDLoc(N), N->getValueType(0), | ||||
| 17759 | N->getOperand(1), N->getOperand(2)); | ||||
| 17760 | case Intrinsic::aarch64_neon_smull: | ||||
| 17761 | return DAG.getNode(AArch64ISD::SMULL, SDLoc(N), N->getValueType(0), | ||||
| 17762 | N->getOperand(1), N->getOperand(2)); | ||||
| 17763 | case Intrinsic::aarch64_neon_umull: | ||||
| 17764 | return DAG.getNode(AArch64ISD::UMULL, SDLoc(N), N->getValueType(0), | ||||
| 17765 | N->getOperand(1), N->getOperand(2)); | ||||
| 17766 | case Intrinsic::aarch64_neon_pmull: | ||||
| 17767 | return DAG.getNode(AArch64ISD::PMULL, SDLoc(N), N->getValueType(0), | ||||
| 17768 | N->getOperand(1), N->getOperand(2)); | ||||
| 17769 | case Intrinsic::aarch64_neon_sqdmull: | ||||
| 17770 | return tryCombineLongOpWithDup(IID, N, DCI, DAG); | ||||
| 17771 | case Intrinsic::aarch64_neon_sqshl: | ||||
| 17772 | case Intrinsic::aarch64_neon_uqshl: | ||||
| 17773 | case Intrinsic::aarch64_neon_sqshlu: | ||||
| 17774 | case Intrinsic::aarch64_neon_srshl: | ||||
| 17775 | case Intrinsic::aarch64_neon_urshl: | ||||
| 17776 | case Intrinsic::aarch64_neon_sshl: | ||||
| 17777 | case Intrinsic::aarch64_neon_ushl: | ||||
| 17778 | return tryCombineShiftImm(IID, N, DAG); | ||||
| 17779 | case Intrinsic::aarch64_crc32b: | ||||
| 17780 | case Intrinsic::aarch64_crc32cb: | ||||
| 17781 | return tryCombineCRC32(0xff, N, DAG); | ||||
| 17782 | case Intrinsic::aarch64_crc32h: | ||||
| 17783 | case Intrinsic::aarch64_crc32ch: | ||||
| 17784 | return tryCombineCRC32(0xffff, N, DAG); | ||||
| 17785 | case Intrinsic::aarch64_sve_saddv: | ||||
| 17786 | // There is no i64 version of SADDV because the sign is irrelevant. | ||||
| 17787 | if (N->getOperand(2)->getValueType(0).getVectorElementType() == MVT::i64) | ||||
| 17788 | return combineSVEReductionInt(N, AArch64ISD::UADDV_PRED, DAG); | ||||
| 17789 | else | ||||
| 17790 | return combineSVEReductionInt(N, AArch64ISD::SADDV_PRED, DAG); | ||||
| 17791 | case Intrinsic::aarch64_sve_uaddv: | ||||
| 17792 | return combineSVEReductionInt(N, AArch64ISD::UADDV_PRED, DAG); | ||||
| 17793 | case Intrinsic::aarch64_sve_smaxv: | ||||
| 17794 | return combineSVEReductionInt(N, AArch64ISD::SMAXV_PRED, DAG); | ||||
| 17795 | case Intrinsic::aarch64_sve_umaxv: | ||||
| 17796 | return combineSVEReductionInt(N, AArch64ISD::UMAXV_PRED, DAG); | ||||
| 17797 | case Intrinsic::aarch64_sve_sminv: | ||||
| 17798 | return combineSVEReductionInt(N, AArch64ISD::SMINV_PRED, DAG); | ||||
| 17799 | case Intrinsic::aarch64_sve_uminv: | ||||
| 17800 | return combineSVEReductionInt(N, AArch64ISD::UMINV_PRED, DAG); | ||||
| 17801 | case Intrinsic::aarch64_sve_orv: | ||||
| 17802 | return combineSVEReductionInt(N, AArch64ISD::ORV_PRED, DAG); | ||||
| 17803 | case Intrinsic::aarch64_sve_eorv: | ||||
| 17804 | return combineSVEReductionInt(N, AArch64ISD::EORV_PRED, DAG); | ||||
| 17805 | case Intrinsic::aarch64_sve_andv: | ||||
| 17806 | return combineSVEReductionInt(N, AArch64ISD::ANDV_PRED, DAG); | ||||
| 17807 | case Intrinsic::aarch64_sve_index: | ||||
| 17808 | return LowerSVEIntrinsicIndex(N, DAG); | ||||
| 17809 | case Intrinsic::aarch64_sve_dup: | ||||
| 17810 | return LowerSVEIntrinsicDUP(N, DAG); | ||||
| 17811 | case Intrinsic::aarch64_sve_dup_x: | ||||
| 17812 | return DAG.getNode(ISD::SPLAT_VECTOR, SDLoc(N), N->getValueType(0), | ||||
| 17813 | N->getOperand(1)); | ||||
| 17814 | case Intrinsic::aarch64_sve_ext: | ||||
| 17815 | return LowerSVEIntrinsicEXT(N, DAG); | ||||
| 17816 | case Intrinsic::aarch64_sve_mul: | ||||
| 17817 | return convertMergedOpToPredOp(N, AArch64ISD::MUL_PRED, DAG); | ||||
| 17818 | case Intrinsic::aarch64_sve_smulh: | ||||
| 17819 | return convertMergedOpToPredOp(N, AArch64ISD::MULHS_PRED, DAG); | ||||
| 17820 | case Intrinsic::aarch64_sve_umulh: | ||||
| 17821 | return convertMergedOpToPredOp(N, AArch64ISD::MULHU_PRED, DAG); | ||||
| 17822 | case Intrinsic::aarch64_sve_smin: | ||||
| 17823 | return convertMergedOpToPredOp(N, AArch64ISD::SMIN_PRED, DAG); | ||||
| 17824 | case Intrinsic::aarch64_sve_umin: | ||||
| 17825 | return convertMergedOpToPredOp(N, AArch64ISD::UMIN_PRED, DAG); | ||||
| 17826 | case Intrinsic::aarch64_sve_smax: | ||||
| 17827 | return convertMergedOpToPredOp(N, AArch64ISD::SMAX_PRED, DAG); | ||||
| 17828 | case Intrinsic::aarch64_sve_umax: | ||||
| 17829 | return convertMergedOpToPredOp(N, AArch64ISD::UMAX_PRED, DAG); | ||||
| 17830 | case Intrinsic::aarch64_sve_lsl: | ||||
| 17831 | return convertMergedOpToPredOp(N, AArch64ISD::SHL_PRED, DAG); | ||||
| 17832 | case Intrinsic::aarch64_sve_lsr: | ||||
| 17833 | return convertMergedOpToPredOp(N, AArch64ISD::SRL_PRED, DAG); | ||||
| 17834 | case Intrinsic::aarch64_sve_asr: | ||||
| 17835 | return convertMergedOpToPredOp(N, AArch64ISD::SRA_PRED, DAG); | ||||
| 17836 | case Intrinsic::aarch64_sve_fadd: | ||||
| 17837 | return convertMergedOpToPredOp(N, AArch64ISD::FADD_PRED, DAG); | ||||
| 17838 | case Intrinsic::aarch64_sve_fsub: | ||||
| 17839 | return convertMergedOpToPredOp(N, AArch64ISD::FSUB_PRED, DAG); | ||||
| 17840 | case Intrinsic::aarch64_sve_fmul: | ||||
| 17841 | return convertMergedOpToPredOp(N, AArch64ISD::FMUL_PRED, DAG); | ||||
| 17842 | case Intrinsic::aarch64_sve_add: | ||||
| 17843 | return convertMergedOpToPredOp(N, ISD::ADD, DAG, true); | ||||
| 17844 | case Intrinsic::aarch64_sve_sub: | ||||
| 17845 | return convertMergedOpToPredOp(N, ISD::SUB, DAG, true); | ||||
| 17846 | case Intrinsic::aarch64_sve_subr: | ||||
| 17847 | return convertMergedOpToPredOp(N, ISD::SUB, DAG, true, true); | ||||
| 17848 | case Intrinsic::aarch64_sve_and: | ||||
| 17849 | return convertMergedOpToPredOp(N, ISD::AND, DAG, true); | ||||
| 17850 | case Intrinsic::aarch64_sve_bic: | ||||
| 17851 | return convertMergedOpToPredOp(N, AArch64ISD::BIC, DAG, true); | ||||
| 17852 | case Intrinsic::aarch64_sve_eor: | ||||
| 17853 | return convertMergedOpToPredOp(N, ISD::XOR, DAG, true); | ||||
| 17854 | case Intrinsic::aarch64_sve_orr: | ||||
| 17855 | return convertMergedOpToPredOp(N, ISD::OR, DAG, true); | ||||
| 17856 | case Intrinsic::aarch64_sve_sabd: | ||||
| 17857 | return convertMergedOpToPredOp(N, ISD::ABDS, DAG, true); | ||||
| 17858 | case Intrinsic::aarch64_sve_uabd: | ||||
| 17859 | return convertMergedOpToPredOp(N, ISD::ABDU, DAG, true); | ||||
| 17860 | case Intrinsic::aarch64_sve_sqadd: | ||||
| 17861 | return convertMergedOpToPredOp(N, ISD::SADDSAT, DAG, true); | ||||
| 17862 | case Intrinsic::aarch64_sve_sqsub: | ||||
| 17863 | return convertMergedOpToPredOp(N, ISD::SSUBSAT, DAG, true); | ||||
| 17864 | case Intrinsic::aarch64_sve_uqadd: | ||||
| 17865 | return convertMergedOpToPredOp(N, ISD::UADDSAT, DAG, true); | ||||
| 17866 | case Intrinsic::aarch64_sve_uqsub: | ||||
| 17867 | return convertMergedOpToPredOp(N, ISD::USUBSAT, DAG, true); | ||||
| 17868 | case Intrinsic::aarch64_sve_sqadd_x: | ||||
| 17869 | return DAG.getNode(ISD::SADDSAT, SDLoc(N), N->getValueType(0), | ||||
| 17870 | N->getOperand(1), N->getOperand(2)); | ||||
| 17871 | case Intrinsic::aarch64_sve_sqsub_x: | ||||
| 17872 | return DAG.getNode(ISD::SSUBSAT, SDLoc(N), N->getValueType(0), | ||||
| 17873 | N->getOperand(1), N->getOperand(2)); | ||||
| 17874 | case Intrinsic::aarch64_sve_uqadd_x: | ||||
| 17875 | return DAG.getNode(ISD::UADDSAT, SDLoc(N), N->getValueType(0), | ||||
| 17876 | N->getOperand(1), N->getOperand(2)); | ||||
| 17877 | case Intrinsic::aarch64_sve_uqsub_x: | ||||
| 17878 | return DAG.getNode(ISD::USUBSAT, SDLoc(N), N->getValueType(0), | ||||
| 17879 | N->getOperand(1), N->getOperand(2)); | ||||
| 17880 | case Intrinsic::aarch64_sve_asrd: | ||||
| 17881 | return DAG.getNode(AArch64ISD::SRAD_MERGE_OP1, SDLoc(N), N->getValueType(0), | ||||
| 17882 | N->getOperand(1), N->getOperand(2), N->getOperand(3)); | ||||
| 17883 | case Intrinsic::aarch64_sve_cmphs: | ||||
| 17884 | if (!N->getOperand(2).getValueType().isFloatingPoint()) | ||||
| 17885 | return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, SDLoc(N), | ||||
| 17886 | N->getValueType(0), N->getOperand(1), N->getOperand(2), | ||||
| 17887 | N->getOperand(3), DAG.getCondCode(ISD::SETUGE)); | ||||
| 17888 | break; | ||||
| 17889 | case Intrinsic::aarch64_sve_cmphi: | ||||
| 17890 | if (!N->getOperand(2).getValueType().isFloatingPoint()) | ||||
| 17891 | return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, SDLoc(N), | ||||
| 17892 | N->getValueType(0), N->getOperand(1), N->getOperand(2), | ||||
| 17893 | N->getOperand(3), DAG.getCondCode(ISD::SETUGT)); | ||||
| 17894 | break; | ||||
| 17895 | case Intrinsic::aarch64_sve_fcmpge: | ||||
| 17896 | case Intrinsic::aarch64_sve_cmpge: | ||||
| 17897 | return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, SDLoc(N), | ||||
| 17898 | N->getValueType(0), N->getOperand(1), N->getOperand(2), | ||||
| 17899 | N->getOperand(3), DAG.getCondCode(ISD::SETGE)); | ||||
| 17900 | break; | ||||
| 17901 | case Intrinsic::aarch64_sve_fcmpgt: | ||||
| 17902 | case Intrinsic::aarch64_sve_cmpgt: | ||||
| 17903 | return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, SDLoc(N), | ||||
| 17904 | N->getValueType(0), N->getOperand(1), N->getOperand(2), | ||||
| 17905 | N->getOperand(3), DAG.getCondCode(ISD::SETGT)); | ||||
| 17906 | break; | ||||
| 17907 | case Intrinsic::aarch64_sve_fcmpeq: | ||||
| 17908 | case Intrinsic::aarch64_sve_cmpeq: | ||||
| 17909 | return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, SDLoc(N), | ||||
| 17910 | N->getValueType(0), N->getOperand(1), N->getOperand(2), | ||||
| 17911 | N->getOperand(3), DAG.getCondCode(ISD::SETEQ)); | ||||
| 17912 | break; | ||||
| 17913 | case Intrinsic::aarch64_sve_fcmpne: | ||||
| 17914 | case Intrinsic::aarch64_sve_cmpne: | ||||
| 17915 | return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, SDLoc(N), | ||||
| 17916 | N->getValueType(0), N->getOperand(1), N->getOperand(2), | ||||
| 17917 | N->getOperand(3), DAG.getCondCode(ISD::SETNE)); | ||||
| 17918 | break; | ||||
| 17919 | case Intrinsic::aarch64_sve_fcmpuo: | ||||
| 17920 | return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, SDLoc(N), | ||||
| 17921 | N->getValueType(0), N->getOperand(1), N->getOperand(2), | ||||
| 17922 | N->getOperand(3), DAG.getCondCode(ISD::SETUO)); | ||||
| 17923 | break; | ||||
| 17924 | case Intrinsic::aarch64_sve_fadda: | ||||
| 17925 | return combineSVEReductionOrderedFP(N, AArch64ISD::FADDA_PRED, DAG); | ||||
| 17926 | case Intrinsic::aarch64_sve_faddv: | ||||
| 17927 | return combineSVEReductionFP(N, AArch64ISD::FADDV_PRED, DAG); | ||||
| 17928 | case Intrinsic::aarch64_sve_fmaxnmv: | ||||
| 17929 | return combineSVEReductionFP(N, AArch64ISD::FMAXNMV_PRED, DAG); | ||||
| 17930 | case Intrinsic::aarch64_sve_fmaxv: | ||||
| 17931 | return combineSVEReductionFP(N, AArch64ISD::FMAXV_PRED, DAG); | ||||
| 17932 | case Intrinsic::aarch64_sve_fminnmv: | ||||
| 17933 | return combineSVEReductionFP(N, AArch64ISD::FMINNMV_PRED, DAG); | ||||
| 17934 | case Intrinsic::aarch64_sve_fminv: | ||||
| 17935 | return combineSVEReductionFP(N, AArch64ISD::FMINV_PRED, DAG); | ||||
| 17936 | case Intrinsic::aarch64_sve_sel: | ||||
| 17937 | return DAG.getNode(ISD::VSELECT, SDLoc(N), N->getValueType(0), | ||||
| 17938 | N->getOperand(1), N->getOperand(2), N->getOperand(3)); | ||||
| 17939 | case Intrinsic::aarch64_sve_cmpeq_wide: | ||||
| 17940 | return tryConvertSVEWideCompare(N, ISD::SETEQ, DCI, DAG); | ||||
| 17941 | case Intrinsic::aarch64_sve_cmpne_wide: | ||||
| 17942 | return tryConvertSVEWideCompare(N, ISD::SETNE, DCI, DAG); | ||||
| 17943 | case Intrinsic::aarch64_sve_cmpge_wide: | ||||
| 17944 | return tryConvertSVEWideCompare(N, ISD::SETGE, DCI, DAG); | ||||
| 17945 | case Intrinsic::aarch64_sve_cmpgt_wide: | ||||
| 17946 | return tryConvertSVEWideCompare(N, ISD::SETGT, DCI, DAG); | ||||
| 17947 | case Intrinsic::aarch64_sve_cmplt_wide: | ||||
| 17948 | return tryConvertSVEWideCompare(N, ISD::SETLT, DCI, DAG); | ||||
| 17949 | case Intrinsic::aarch64_sve_cmple_wide: | ||||
| 17950 | return tryConvertSVEWideCompare(N, ISD::SETLE, DCI, DAG); | ||||
| 17951 | case Intrinsic::aarch64_sve_cmphs_wide: | ||||
| 17952 | return tryConvertSVEWideCompare(N, ISD::SETUGE, DCI, DAG); | ||||
| 17953 | case Intrinsic::aarch64_sve_cmphi_wide: | ||||
| 17954 | return tryConvertSVEWideCompare(N, ISD::SETUGT, DCI, DAG); | ||||
| 17955 | case Intrinsic::aarch64_sve_cmplo_wide: | ||||
| 17956 | return tryConvertSVEWideCompare(N, ISD::SETULT, DCI, DAG); | ||||
| 17957 | case Intrinsic::aarch64_sve_cmpls_wide: | ||||
| 17958 | return tryConvertSVEWideCompare(N, ISD::SETULE, DCI, DAG); | ||||
| 17959 | case Intrinsic::aarch64_sve_ptest_any: | ||||
| 17960 | return getPTest(DAG, N->getValueType(0), N->getOperand(1), N->getOperand(2), | ||||
| 17961 | AArch64CC::ANY_ACTIVE); | ||||
| 17962 | case Intrinsic::aarch64_sve_ptest_first: | ||||
| 17963 | return getPTest(DAG, N->getValueType(0), N->getOperand(1), N->getOperand(2), | ||||
| 17964 | AArch64CC::FIRST_ACTIVE); | ||||
| 17965 | case Intrinsic::aarch64_sve_ptest_last: | ||||
| 17966 | return getPTest(DAG, N->getValueType(0), N->getOperand(1), N->getOperand(2), | ||||
| 17967 | AArch64CC::LAST_ACTIVE); | ||||
| 17968 | } | ||||
| 17969 | return SDValue(); | ||||
| 17970 | } | ||||
| 17971 | |||||
| 17972 | static bool isCheapToExtend(const SDValue &N) { | ||||
| 17973 | unsigned OC = N->getOpcode(); | ||||
| 17974 | return OC == ISD::LOAD || OC == ISD::MLOAD || | ||||
| 17975 | ISD::isConstantSplatVectorAllZeros(N.getNode()); | ||||
| 17976 | } | ||||
| 17977 | |||||
| 17978 | static SDValue | ||||
| 17979 | performSignExtendSetCCCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, | ||||
| 17980 | SelectionDAG &DAG) { | ||||
| 17981 | // If we have (sext (setcc A B)) and A and B are cheap to extend, | ||||
| 17982 | // we can move the sext into the arguments and have the same result. For | ||||
| 17983 | // example, if A and B are both loads, we can make those extending loads and | ||||
| 17984 | // avoid an extra instruction. This pattern appears often in VLS code | ||||
| 17985 | // generation where the inputs to the setcc have a different size to the | ||||
| 17986 | // instruction that wants to use the result of the setcc. | ||||
| 17987 | assert(N->getOpcode() == ISD::SIGN_EXTEND &&(static_cast <bool> (N->getOpcode() == ISD::SIGN_EXTEND && N->getOperand(0)->getOpcode() == ISD::SETCC ) ? void (0) : __assert_fail ("N->getOpcode() == ISD::SIGN_EXTEND && N->getOperand(0)->getOpcode() == ISD::SETCC" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 17988, __extension__ __PRETTY_FUNCTION__)) | ||||
| 17988 | N->getOperand(0)->getOpcode() == ISD::SETCC)(static_cast <bool> (N->getOpcode() == ISD::SIGN_EXTEND && N->getOperand(0)->getOpcode() == ISD::SETCC ) ? void (0) : __assert_fail ("N->getOpcode() == ISD::SIGN_EXTEND && N->getOperand(0)->getOpcode() == ISD::SETCC" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 17988, __extension__ __PRETTY_FUNCTION__)); | ||||
| 17989 | const SDValue SetCC = N->getOperand(0); | ||||
| 17990 | |||||
| 17991 | const SDValue CCOp0 = SetCC.getOperand(0); | ||||
| 17992 | const SDValue CCOp1 = SetCC.getOperand(1); | ||||
| 17993 | if (!CCOp0->getValueType(0).isInteger() || | ||||
| 17994 | !CCOp1->getValueType(0).isInteger()) | ||||
| 17995 | return SDValue(); | ||||
| 17996 | |||||
| 17997 | ISD::CondCode Code = | ||||
| 17998 | cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get(); | ||||
| 17999 | |||||
| 18000 | ISD::NodeType ExtType = | ||||
| 18001 | isSignedIntSetCC(Code) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; | ||||
| 18002 | |||||
| 18003 | if (isCheapToExtend(SetCC.getOperand(0)) && | ||||
| 18004 | isCheapToExtend(SetCC.getOperand(1))) { | ||||
| 18005 | const SDValue Ext1 = | ||||
| 18006 | DAG.getNode(ExtType, SDLoc(N), N->getValueType(0), CCOp0); | ||||
| 18007 | const SDValue Ext2 = | ||||
| 18008 | DAG.getNode(ExtType, SDLoc(N), N->getValueType(0), CCOp1); | ||||
| 18009 | |||||
| 18010 | return DAG.getSetCC( | ||||
| 18011 | SDLoc(SetCC), N->getValueType(0), Ext1, Ext2, | ||||
| 18012 | cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get()); | ||||
| 18013 | } | ||||
| 18014 | |||||
| 18015 | return SDValue(); | ||||
| 18016 | } | ||||
| 18017 | |||||
| 18018 | static SDValue performExtendCombine(SDNode *N, | ||||
| 18019 | TargetLowering::DAGCombinerInfo &DCI, | ||||
| 18020 | SelectionDAG &DAG) { | ||||
| 18021 | // If we see something like (zext (sabd (extract_high ...), (DUP ...))) then | ||||
| 18022 | // we can convert that DUP into another extract_high (of a bigger DUP), which | ||||
| 18023 | // helps the backend to decide that an sabdl2 would be useful, saving a real | ||||
| 18024 | // extract_high operation. | ||||
| 18025 | if (!DCI.isBeforeLegalizeOps() && N->getOpcode() == ISD::ZERO_EXTEND && | ||||
| 18026 | (N->getOperand(0).getOpcode() == ISD::ABDU || | ||||
| 18027 | N->getOperand(0).getOpcode() == ISD::ABDS)) { | ||||
| 18028 | SDNode *ABDNode = N->getOperand(0).getNode(); | ||||
| 18029 | SDValue NewABD = | ||||
| 18030 | tryCombineLongOpWithDup(Intrinsic::not_intrinsic, ABDNode, DCI, DAG); | ||||
| 18031 | if (!NewABD.getNode()) | ||||
| 18032 | return SDValue(); | ||||
| 18033 | |||||
| 18034 | return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0), NewABD); | ||||
| 18035 | } | ||||
| 18036 | |||||
| 18037 | if (N->getValueType(0).isFixedLengthVector() && | ||||
| 18038 | N->getOpcode() == ISD::SIGN_EXTEND && | ||||
| 18039 | N->getOperand(0)->getOpcode() == ISD::SETCC) | ||||
| 18040 | return performSignExtendSetCCCombine(N, DCI, DAG); | ||||
| 18041 | |||||
| 18042 | return SDValue(); | ||||
| 18043 | } | ||||
| 18044 | |||||
| 18045 | static SDValue splitStoreSplat(SelectionDAG &DAG, StoreSDNode &St, | ||||
| 18046 | SDValue SplatVal, unsigned NumVecElts) { | ||||
| 18047 | assert(!St.isTruncatingStore() && "cannot split truncating vector store")(static_cast <bool> (!St.isTruncatingStore() && "cannot split truncating vector store") ? void (0) : __assert_fail ("!St.isTruncatingStore() && \"cannot split truncating vector store\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 18047, __extension__ __PRETTY_FUNCTION__)); | ||||
| 18048 | Align OrigAlignment = St.getAlign(); | ||||
| 18049 | unsigned EltOffset = SplatVal.getValueType().getSizeInBits() / 8; | ||||
| 18050 | |||||
| 18051 | // Create scalar stores. This is at least as good as the code sequence for a | ||||
| 18052 | // split unaligned store which is a dup.s, ext.b, and two stores. | ||||
| 18053 | // Most of the time the three stores should be replaced by store pair | ||||
| 18054 | // instructions (stp). | ||||
| 18055 | SDLoc DL(&St); | ||||
| 18056 | SDValue BasePtr = St.getBasePtr(); | ||||
| 18057 | uint64_t BaseOffset = 0; | ||||
| 18058 | |||||
| 18059 | const MachinePointerInfo &PtrInfo = St.getPointerInfo(); | ||||
| 18060 | SDValue NewST1 = | ||||
| 18061 | DAG.getStore(St.getChain(), DL, SplatVal, BasePtr, PtrInfo, | ||||
| 18062 | OrigAlignment, St.getMemOperand()->getFlags()); | ||||
| 18063 | |||||
| 18064 | // As this in ISel, we will not merge this add which may degrade results. | ||||
| 18065 | if (BasePtr->getOpcode() == ISD::ADD && | ||||
| 18066 | isa<ConstantSDNode>(BasePtr->getOperand(1))) { | ||||
| 18067 | BaseOffset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue(); | ||||
| 18068 | BasePtr = BasePtr->getOperand(0); | ||||
| 18069 | } | ||||
| 18070 | |||||
| 18071 | unsigned Offset = EltOffset; | ||||
| 18072 | while (--NumVecElts) { | ||||
| 18073 | Align Alignment = commonAlignment(OrigAlignment, Offset); | ||||
| 18074 | SDValue OffsetPtr = | ||||
| 18075 | DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr, | ||||
| 18076 | DAG.getConstant(BaseOffset + Offset, DL, MVT::i64)); | ||||
| 18077 | NewST1 = DAG.getStore(NewST1.getValue(0), DL, SplatVal, OffsetPtr, | ||||
| 18078 | PtrInfo.getWithOffset(Offset), Alignment, | ||||
| 18079 | St.getMemOperand()->getFlags()); | ||||
| 18080 | Offset += EltOffset; | ||||
| 18081 | } | ||||
| 18082 | return NewST1; | ||||
| 18083 | } | ||||
| 18084 | |||||
| 18085 | // Returns an SVE type that ContentTy can be trivially sign or zero extended | ||||
| 18086 | // into. | ||||
| 18087 | static MVT getSVEContainerType(EVT ContentTy) { | ||||
| 18088 | assert(ContentTy.isSimple() && "No SVE containers for extended types")(static_cast <bool> (ContentTy.isSimple() && "No SVE containers for extended types" ) ? void (0) : __assert_fail ("ContentTy.isSimple() && \"No SVE containers for extended types\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 18088, __extension__ __PRETTY_FUNCTION__)); | ||||
| 18089 | |||||
| 18090 | switch (ContentTy.getSimpleVT().SimpleTy) { | ||||
| 18091 | default: | ||||
| 18092 | llvm_unreachable("No known SVE container for this MVT type")::llvm::llvm_unreachable_internal("No known SVE container for this MVT type" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 18092); | ||||
| 18093 | case MVT::nxv2i8: | ||||
| 18094 | case MVT::nxv2i16: | ||||
| 18095 | case MVT::nxv2i32: | ||||
| 18096 | case MVT::nxv2i64: | ||||
| 18097 | case MVT::nxv2f32: | ||||
| 18098 | case MVT::nxv2f64: | ||||
| 18099 | return MVT::nxv2i64; | ||||
| 18100 | case MVT::nxv4i8: | ||||
| 18101 | case MVT::nxv4i16: | ||||
| 18102 | case MVT::nxv4i32: | ||||
| 18103 | case MVT::nxv4f32: | ||||
| 18104 | return MVT::nxv4i32; | ||||
| 18105 | case MVT::nxv8i8: | ||||
| 18106 | case MVT::nxv8i16: | ||||
| 18107 | case MVT::nxv8f16: | ||||
| 18108 | case MVT::nxv8bf16: | ||||
| 18109 | return MVT::nxv8i16; | ||||
| 18110 | case MVT::nxv16i8: | ||||
| 18111 | return MVT::nxv16i8; | ||||
| 18112 | } | ||||
| 18113 | } | ||||
| 18114 | |||||
| 18115 | static SDValue performLD1Combine(SDNode *N, SelectionDAG &DAG, unsigned Opc) { | ||||
| 18116 | SDLoc DL(N); | ||||
| 18117 | EVT VT = N->getValueType(0); | ||||
| 18118 | |||||
| 18119 | if (VT.getSizeInBits().getKnownMinSize() > AArch64::SVEBitsPerBlock) | ||||
| 18120 | return SDValue(); | ||||
| 18121 | |||||
| 18122 | EVT ContainerVT = VT; | ||||
| 18123 | if (ContainerVT.isInteger()) | ||||
| 18124 | ContainerVT = getSVEContainerType(ContainerVT); | ||||
| 18125 | |||||
| 18126 | SDVTList VTs = DAG.getVTList(ContainerVT, MVT::Other); | ||||
| 18127 | SDValue Ops[] = { N->getOperand(0), // Chain | ||||
| 18128 | N->getOperand(2), // Pg | ||||
| 18129 | N->getOperand(3), // Base | ||||
| 18130 | DAG.getValueType(VT) }; | ||||
| 18131 | |||||
| 18132 | SDValue Load = DAG.getNode(Opc, DL, VTs, Ops); | ||||
| 18133 | SDValue LoadChain = SDValue(Load.getNode(), 1); | ||||
| 18134 | |||||
| 18135 | if (ContainerVT.isInteger() && (VT != ContainerVT)) | ||||
| 18136 | Load = DAG.getNode(ISD::TRUNCATE, DL, VT, Load.getValue(0)); | ||||
| 18137 | |||||
| 18138 | return DAG.getMergeValues({ Load, LoadChain }, DL); | ||||
| 18139 | } | ||||
| 18140 | |||||
| 18141 | static SDValue performLDNT1Combine(SDNode *N, SelectionDAG &DAG) { | ||||
| 18142 | SDLoc DL(N); | ||||
| 18143 | EVT VT = N->getValueType(0); | ||||
| 18144 | EVT PtrTy = N->getOperand(3).getValueType(); | ||||
| 18145 | |||||
| 18146 | EVT LoadVT = VT; | ||||
| 18147 | if (VT.isFloatingPoint()) | ||||
| 18148 | LoadVT = VT.changeTypeToInteger(); | ||||
| 18149 | |||||
| 18150 | auto *MINode = cast<MemIntrinsicSDNode>(N); | ||||
| 18151 | SDValue PassThru = DAG.getConstant(0, DL, LoadVT); | ||||
| 18152 | SDValue L = DAG.getMaskedLoad(LoadVT, DL, MINode->getChain(), | ||||
| 18153 | MINode->getOperand(3), DAG.getUNDEF(PtrTy), | ||||
| 18154 | MINode->getOperand(2), PassThru, | ||||
| 18155 | MINode->getMemoryVT(), MINode->getMemOperand(), | ||||
| 18156 | ISD::UNINDEXED, ISD::NON_EXTLOAD, false); | ||||
| 18157 | |||||
| 18158 | if (VT.isFloatingPoint()) { | ||||
| 18159 | SDValue Ops[] = { DAG.getNode(ISD::BITCAST, DL, VT, L), L.getValue(1) }; | ||||
| 18160 | return DAG.getMergeValues(Ops, DL); | ||||
| 18161 | } | ||||
| 18162 | |||||
| 18163 | return L; | ||||
| 18164 | } | ||||
| 18165 | |||||
| 18166 | template <unsigned Opcode> | ||||
| 18167 | static SDValue performLD1ReplicateCombine(SDNode *N, SelectionDAG &DAG) { | ||||
| 18168 | static_assert(Opcode == AArch64ISD::LD1RQ_MERGE_ZERO || | ||||
| 18169 | Opcode == AArch64ISD::LD1RO_MERGE_ZERO, | ||||
| 18170 | "Unsupported opcode."); | ||||
| 18171 | SDLoc DL(N); | ||||
| 18172 | EVT VT = N->getValueType(0); | ||||
| 18173 | |||||
| 18174 | EVT LoadVT = VT; | ||||
| 18175 | if (VT.isFloatingPoint()) | ||||
| 18176 | LoadVT = VT.changeTypeToInteger(); | ||||
| 18177 | |||||
| 18178 | SDValue Ops[] = {N->getOperand(0), N->getOperand(2), N->getOperand(3)}; | ||||
| 18179 | SDValue Load = DAG.getNode(Opcode, DL, {LoadVT, MVT::Other}, Ops); | ||||
| 18180 | SDValue LoadChain = SDValue(Load.getNode(), 1); | ||||
| 18181 | |||||
| 18182 | if (VT.isFloatingPoint()) | ||||
| 18183 | Load = DAG.getNode(ISD::BITCAST, DL, VT, Load.getValue(0)); | ||||
| 18184 | |||||
| 18185 | return DAG.getMergeValues({Load, LoadChain}, DL); | ||||
| 18186 | } | ||||
| 18187 | |||||
| 18188 | static SDValue performST1Combine(SDNode *N, SelectionDAG &DAG) { | ||||
| 18189 | SDLoc DL(N); | ||||
| 18190 | SDValue Data = N->getOperand(2); | ||||
| 18191 | EVT DataVT = Data.getValueType(); | ||||
| 18192 | EVT HwSrcVt = getSVEContainerType(DataVT); | ||||
| 18193 | SDValue InputVT = DAG.getValueType(DataVT); | ||||
| 18194 | |||||
| 18195 | if (DataVT.isFloatingPoint()) | ||||
| 18196 | InputVT = DAG.getValueType(HwSrcVt); | ||||
| 18197 | |||||
| 18198 | SDValue SrcNew; | ||||
| 18199 | if (Data.getValueType().isFloatingPoint()) | ||||
| 18200 | SrcNew = DAG.getNode(ISD::BITCAST, DL, HwSrcVt, Data); | ||||
| 18201 | else | ||||
| 18202 | SrcNew = DAG.getNode(ISD::ANY_EXTEND, DL, HwSrcVt, Data); | ||||
| 18203 | |||||
| 18204 | SDValue Ops[] = { N->getOperand(0), // Chain | ||||
| 18205 | SrcNew, | ||||
| 18206 | N->getOperand(4), // Base | ||||
| 18207 | N->getOperand(3), // Pg | ||||
| 18208 | InputVT | ||||
| 18209 | }; | ||||
| 18210 | |||||
| 18211 | return DAG.getNode(AArch64ISD::ST1_PRED, DL, N->getValueType(0), Ops); | ||||
| 18212 | } | ||||
| 18213 | |||||
| 18214 | static SDValue performSTNT1Combine(SDNode *N, SelectionDAG &DAG) { | ||||
| 18215 | SDLoc DL(N); | ||||
| 18216 | |||||
| 18217 | SDValue Data = N->getOperand(2); | ||||
| 18218 | EVT DataVT = Data.getValueType(); | ||||
| 18219 | EVT PtrTy = N->getOperand(4).getValueType(); | ||||
| 18220 | |||||
| 18221 | if (DataVT.isFloatingPoint()) | ||||
| 18222 | Data = DAG.getNode(ISD::BITCAST, DL, DataVT.changeTypeToInteger(), Data); | ||||
| 18223 | |||||
| 18224 | auto *MINode = cast<MemIntrinsicSDNode>(N); | ||||
| 18225 | return DAG.getMaskedStore(MINode->getChain(), DL, Data, MINode->getOperand(4), | ||||
| 18226 | DAG.getUNDEF(PtrTy), MINode->getOperand(3), | ||||
| 18227 | MINode->getMemoryVT(), MINode->getMemOperand(), | ||||
| 18228 | ISD::UNINDEXED, false, false); | ||||
| 18229 | } | ||||
| 18230 | |||||
| 18231 | /// Replace a splat of zeros to a vector store by scalar stores of WZR/XZR. The | ||||
| 18232 | /// load store optimizer pass will merge them to store pair stores. This should | ||||
| 18233 | /// be better than a movi to create the vector zero followed by a vector store | ||||
| 18234 | /// if the zero constant is not re-used, since one instructions and one register | ||||
| 18235 | /// live range will be removed. | ||||
| 18236 | /// | ||||
| 18237 | /// For example, the final generated code should be: | ||||
| 18238 | /// | ||||
| 18239 | /// stp xzr, xzr, [x0] | ||||
| 18240 | /// | ||||
| 18241 | /// instead of: | ||||
| 18242 | /// | ||||
| 18243 | /// movi v0.2d, #0 | ||||
| 18244 | /// str q0, [x0] | ||||
| 18245 | /// | ||||
| 18246 | static SDValue replaceZeroVectorStore(SelectionDAG &DAG, StoreSDNode &St) { | ||||
| 18247 | SDValue StVal = St.getValue(); | ||||
| 18248 | EVT VT = StVal.getValueType(); | ||||
| 18249 | |||||
| 18250 | // Avoid scalarizing zero splat stores for scalable vectors. | ||||
| 18251 | if (VT.isScalableVector()) | ||||
| 18252 | return SDValue(); | ||||
| 18253 | |||||
| 18254 | // It is beneficial to scalarize a zero splat store for 2 or 3 i64 elements or | ||||
| 18255 | // 2, 3 or 4 i32 elements. | ||||
| 18256 | int NumVecElts = VT.getVectorNumElements(); | ||||
| 18257 | if (!(((NumVecElts == 2 || NumVecElts == 3) && | ||||
| 18258 | VT.getVectorElementType().getSizeInBits() == 64) || | ||||
| 18259 | ((NumVecElts == 2 || NumVecElts == 3 || NumVecElts == 4) && | ||||
| 18260 | VT.getVectorElementType().getSizeInBits() == 32))) | ||||
| 18261 | return SDValue(); | ||||
| 18262 | |||||
| 18263 | if (StVal.getOpcode() != ISD::BUILD_VECTOR) | ||||
| 18264 | return SDValue(); | ||||
| 18265 | |||||
| 18266 | // If the zero constant has more than one use then the vector store could be | ||||
| 18267 | // better since the constant mov will be amortized and stp q instructions | ||||
| 18268 | // should be able to be formed. | ||||
| 18269 | if (!StVal.hasOneUse()) | ||||
| 18270 | return SDValue(); | ||||
| 18271 | |||||
| 18272 | // If the store is truncating then it's going down to i16 or smaller, which | ||||
| 18273 | // means it can be implemented in a single store anyway. | ||||
| 18274 | if (St.isTruncatingStore()) | ||||
| 18275 | return SDValue(); | ||||
| 18276 | |||||
| 18277 | // If the immediate offset of the address operand is too large for the stp | ||||
| 18278 | // instruction, then bail out. | ||||
| 18279 | if (DAG.isBaseWithConstantOffset(St.getBasePtr())) { | ||||
| 18280 | int64_t Offset = St.getBasePtr()->getConstantOperandVal(1); | ||||
| 18281 | if (Offset < -512 || Offset > 504) | ||||
| 18282 | return SDValue(); | ||||
| 18283 | } | ||||
| 18284 | |||||
| 18285 | for (int I = 0; I < NumVecElts; ++I) { | ||||
| 18286 | SDValue EltVal = StVal.getOperand(I); | ||||
| 18287 | if (!isNullConstant(EltVal) && !isNullFPConstant(EltVal)) | ||||
| 18288 | return SDValue(); | ||||
| 18289 | } | ||||
| 18290 | |||||
| 18291 | // Use a CopyFromReg WZR/XZR here to prevent | ||||
| 18292 | // DAGCombiner::MergeConsecutiveStores from undoing this transformation. | ||||
| 18293 | SDLoc DL(&St); | ||||
| 18294 | unsigned ZeroReg; | ||||
| 18295 | EVT ZeroVT; | ||||
| 18296 | if (VT.getVectorElementType().getSizeInBits() == 32) { | ||||
| 18297 | ZeroReg = AArch64::WZR; | ||||
| 18298 | ZeroVT = MVT::i32; | ||||
| 18299 | } else { | ||||
| 18300 | ZeroReg = AArch64::XZR; | ||||
| 18301 | ZeroVT = MVT::i64; | ||||
| 18302 | } | ||||
| 18303 | SDValue SplatVal = | ||||
| 18304 | DAG.getCopyFromReg(DAG.getEntryNode(), DL, ZeroReg, ZeroVT); | ||||
| 18305 | return splitStoreSplat(DAG, St, SplatVal, NumVecElts); | ||||
| 18306 | } | ||||
| 18307 | |||||
| 18308 | /// Replace a splat of a scalar to a vector store by scalar stores of the scalar | ||||
| 18309 | /// value. The load store optimizer pass will merge them to store pair stores. | ||||
| 18310 | /// This has better performance than a splat of the scalar followed by a split | ||||
| 18311 | /// vector store. Even if the stores are not merged it is four stores vs a dup, | ||||
| 18312 | /// followed by an ext.b and two stores. | ||||
| 18313 | static SDValue replaceSplatVectorStore(SelectionDAG &DAG, StoreSDNode &St) { | ||||
| 18314 | SDValue StVal = St.getValue(); | ||||
| 18315 | EVT VT = StVal.getValueType(); | ||||
| 18316 | |||||
| 18317 | // Don't replace floating point stores, they possibly won't be transformed to | ||||
| 18318 | // stp because of the store pair suppress pass. | ||||
| 18319 | if (VT.isFloatingPoint()) | ||||
| 18320 | return SDValue(); | ||||
| 18321 | |||||
| 18322 | // We can express a splat as store pair(s) for 2 or 4 elements. | ||||
| 18323 | unsigned NumVecElts = VT.getVectorNumElements(); | ||||
| 18324 | if (NumVecElts != 4 && NumVecElts != 2) | ||||
| 18325 | return SDValue(); | ||||
| 18326 | |||||
| 18327 | // If the store is truncating then it's going down to i16 or smaller, which | ||||
| 18328 | // means it can be implemented in a single store anyway. | ||||
| 18329 | if (St.isTruncatingStore()) | ||||
| 18330 | return SDValue(); | ||||
| 18331 | |||||
| 18332 | // Check that this is a splat. | ||||
| 18333 | // Make sure that each of the relevant vector element locations are inserted | ||||
| 18334 | // to, i.e. 0 and 1 for v2i64 and 0, 1, 2, 3 for v4i32. | ||||
| 18335 | std::bitset<4> IndexNotInserted((1 << NumVecElts) - 1); | ||||
| 18336 | SDValue SplatVal; | ||||
| 18337 | for (unsigned I = 0; I < NumVecElts; ++I) { | ||||
| 18338 | // Check for insert vector elements. | ||||
| 18339 | if (StVal.getOpcode() != ISD::INSERT_VECTOR_ELT) | ||||
| 18340 | return SDValue(); | ||||
| 18341 | |||||
| 18342 | // Check that same value is inserted at each vector element. | ||||
| 18343 | if (I == 0) | ||||
| 18344 | SplatVal = StVal.getOperand(1); | ||||
| 18345 | else if (StVal.getOperand(1) != SplatVal) | ||||
| 18346 | return SDValue(); | ||||
| 18347 | |||||
| 18348 | // Check insert element index. | ||||
| 18349 | ConstantSDNode *CIndex = dyn_cast<ConstantSDNode>(StVal.getOperand(2)); | ||||
| 18350 | if (!CIndex) | ||||
| 18351 | return SDValue(); | ||||
| 18352 | uint64_t IndexVal = CIndex->getZExtValue(); | ||||
| 18353 | if (IndexVal >= NumVecElts) | ||||
| 18354 | return SDValue(); | ||||
| 18355 | IndexNotInserted.reset(IndexVal); | ||||
| 18356 | |||||
| 18357 | StVal = StVal.getOperand(0); | ||||
| 18358 | } | ||||
| 18359 | // Check that all vector element locations were inserted to. | ||||
| 18360 | if (IndexNotInserted.any()) | ||||
| 18361 | return SDValue(); | ||||
| 18362 | |||||
| 18363 | return splitStoreSplat(DAG, St, SplatVal, NumVecElts); | ||||
| 18364 | } | ||||
| 18365 | |||||
| 18366 | static SDValue splitStores(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, | ||||
| 18367 | SelectionDAG &DAG, | ||||
| 18368 | const AArch64Subtarget *Subtarget) { | ||||
| 18369 | |||||
| 18370 | StoreSDNode *S = cast<StoreSDNode>(N); | ||||
| 18371 | if (S->isVolatile() || S->isIndexed()) | ||||
| 18372 | return SDValue(); | ||||
| 18373 | |||||
| 18374 | SDValue StVal = S->getValue(); | ||||
| 18375 | EVT VT = StVal.getValueType(); | ||||
| 18376 | |||||
| 18377 | if (!VT.isFixedLengthVector()) | ||||
| 18378 | return SDValue(); | ||||
| 18379 | |||||
| 18380 | // If we get a splat of zeros, convert this vector store to a store of | ||||
| 18381 | // scalars. They will be merged into store pairs of xzr thereby removing one | ||||
| 18382 | // instruction and one register. | ||||
| 18383 | if (SDValue ReplacedZeroSplat = replaceZeroVectorStore(DAG, *S)) | ||||
| 18384 | return ReplacedZeroSplat; | ||||
| 18385 | |||||
| 18386 | // FIXME: The logic for deciding if an unaligned store should be split should | ||||
| 18387 | // be included in TLI.allowsMisalignedMemoryAccesses(), and there should be | ||||
| 18388 | // a call to that function here. | ||||
| 18389 | |||||
| 18390 | if (!Subtarget->isMisaligned128StoreSlow()) | ||||
| 18391 | return SDValue(); | ||||
| 18392 | |||||
| 18393 | // Don't split at -Oz. | ||||
| 18394 | if (DAG.getMachineFunction().getFunction().hasMinSize()) | ||||
| 18395 | return SDValue(); | ||||
| 18396 | |||||
| 18397 | // Don't split v2i64 vectors. Memcpy lowering produces those and splitting | ||||
| 18398 | // those up regresses performance on micro-benchmarks and olden/bh. | ||||
| 18399 | if (VT.getVectorNumElements() < 2 || VT == MVT::v2i64) | ||||
| 18400 | return SDValue(); | ||||
| 18401 | |||||
| 18402 | // Split unaligned 16B stores. They are terrible for performance. | ||||
| 18403 | // Don't split stores with alignment of 1 or 2. Code that uses clang vector | ||||
| 18404 | // extensions can use this to mark that it does not want splitting to happen | ||||
| 18405 | // (by underspecifying alignment to be 1 or 2). Furthermore, the chance of | ||||
| 18406 | // eliminating alignment hazards is only 1 in 8 for alignment of 2. | ||||
| 18407 | if (VT.getSizeInBits() != 128 || S->getAlign() >= Align(16) || | ||||
| 18408 | S->getAlign() <= Align(2)) | ||||
| 18409 | return SDValue(); | ||||
| 18410 | |||||
| 18411 | // If we get a splat of a scalar convert this vector store to a store of | ||||
| 18412 | // scalars. They will be merged into store pairs thereby removing two | ||||
| 18413 | // instructions. | ||||
| 18414 | if (SDValue ReplacedSplat = replaceSplatVectorStore(DAG, *S)) | ||||
| 18415 | return ReplacedSplat; | ||||
| 18416 | |||||
| 18417 | SDLoc DL(S); | ||||
| 18418 | |||||
| 18419 | // Split VT into two. | ||||
| 18420 | EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); | ||||
| 18421 | unsigned NumElts = HalfVT.getVectorNumElements(); | ||||
| 18422 | SDValue SubVector0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal, | ||||
| 18423 | DAG.getConstant(0, DL, MVT::i64)); | ||||
| 18424 | SDValue SubVector1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, StVal, | ||||
| 18425 | DAG.getConstant(NumElts, DL, MVT::i64)); | ||||
| 18426 | SDValue BasePtr = S->getBasePtr(); | ||||
| 18427 | SDValue NewST1 = | ||||
| 18428 | DAG.getStore(S->getChain(), DL, SubVector0, BasePtr, S->getPointerInfo(), | ||||
| 18429 | S->getAlign(), S->getMemOperand()->getFlags()); | ||||
| 18430 | SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr, | ||||
| 18431 | DAG.getConstant(8, DL, MVT::i64)); | ||||
| 18432 | return DAG.getStore(NewST1.getValue(0), DL, SubVector1, OffsetPtr, | ||||
| 18433 | S->getPointerInfo(), S->getAlign(), | ||||
| 18434 | S->getMemOperand()->getFlags()); | ||||
| 18435 | } | ||||
| 18436 | |||||
| 18437 | static SDValue performSpliceCombine(SDNode *N, SelectionDAG &DAG) { | ||||
| 18438 | assert(N->getOpcode() == AArch64ISD::SPLICE && "Unexepected Opcode!")(static_cast <bool> (N->getOpcode() == AArch64ISD::SPLICE && "Unexepected Opcode!") ? void (0) : __assert_fail ("N->getOpcode() == AArch64ISD::SPLICE && \"Unexepected Opcode!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 18438, __extension__ __PRETTY_FUNCTION__)); | ||||
| 18439 | |||||
| 18440 | // splice(pg, op1, undef) -> op1 | ||||
| 18441 | if (N->getOperand(2).isUndef()) | ||||
| 18442 | return N->getOperand(1); | ||||
| 18443 | |||||
| 18444 | return SDValue(); | ||||
| 18445 | } | ||||
| 18446 | |||||
| 18447 | static SDValue performUnpackCombine(SDNode *N, SelectionDAG &DAG, | ||||
| 18448 | const AArch64Subtarget *Subtarget) { | ||||
| 18449 | assert((N->getOpcode() == AArch64ISD::UUNPKHI ||(static_cast <bool> ((N->getOpcode() == AArch64ISD:: UUNPKHI || N->getOpcode() == AArch64ISD::UUNPKLO) && "Unexpected Opcode!") ? void (0) : __assert_fail ("(N->getOpcode() == AArch64ISD::UUNPKHI || N->getOpcode() == AArch64ISD::UUNPKLO) && \"Unexpected Opcode!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 18451, __extension__ __PRETTY_FUNCTION__)) | ||||
| 18450 | N->getOpcode() == AArch64ISD::UUNPKLO) &&(static_cast <bool> ((N->getOpcode() == AArch64ISD:: UUNPKHI || N->getOpcode() == AArch64ISD::UUNPKLO) && "Unexpected Opcode!") ? void (0) : __assert_fail ("(N->getOpcode() == AArch64ISD::UUNPKHI || N->getOpcode() == AArch64ISD::UUNPKLO) && \"Unexpected Opcode!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 18451, __extension__ __PRETTY_FUNCTION__)) | ||||
| 18451 | "Unexpected Opcode!")(static_cast <bool> ((N->getOpcode() == AArch64ISD:: UUNPKHI || N->getOpcode() == AArch64ISD::UUNPKLO) && "Unexpected Opcode!") ? void (0) : __assert_fail ("(N->getOpcode() == AArch64ISD::UUNPKHI || N->getOpcode() == AArch64ISD::UUNPKLO) && \"Unexpected Opcode!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 18451, __extension__ __PRETTY_FUNCTION__)); | ||||
| 18452 | |||||
| 18453 | // uunpklo/hi undef -> undef | ||||
| 18454 | if (N->getOperand(0).isUndef()) | ||||
| 18455 | return DAG.getUNDEF(N->getValueType(0)); | ||||
| 18456 | |||||
| 18457 | // If this is a masked load followed by an UUNPKLO, fold this into a masked | ||||
| 18458 | // extending load. We can do this even if this is already a masked | ||||
| 18459 | // {z,}extload. | ||||
| 18460 | if (N->getOperand(0).getOpcode() == ISD::MLOAD && | ||||
| 18461 | N->getOpcode() == AArch64ISD::UUNPKLO) { | ||||
| 18462 | MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N->getOperand(0)); | ||||
| 18463 | SDValue Mask = MLD->getMask(); | ||||
| 18464 | SDLoc DL(N); | ||||
| 18465 | |||||
| 18466 | if (MLD->isUnindexed() && MLD->getExtensionType() != ISD::SEXTLOAD && | ||||
| 18467 | SDValue(MLD, 0).hasOneUse() && Mask->getOpcode() == AArch64ISD::PTRUE && | ||||
| 18468 | (MLD->getPassThru()->isUndef() || | ||||
| 18469 | isZerosVector(MLD->getPassThru().getNode()))) { | ||||
| 18470 | unsigned MinSVESize = Subtarget->getMinSVEVectorSizeInBits(); | ||||
| 18471 | unsigned PgPattern = Mask->getConstantOperandVal(0); | ||||
| 18472 | EVT VT = N->getValueType(0); | ||||
| 18473 | |||||
| 18474 | // Ensure we can double the size of the predicate pattern | ||||
| 18475 | unsigned NumElts = getNumElementsFromSVEPredPattern(PgPattern); | ||||
| 18476 | if (NumElts && | ||||
| 18477 | NumElts * VT.getVectorElementType().getSizeInBits() <= MinSVESize) { | ||||
| 18478 | Mask = | ||||
| 18479 | getPTrue(DAG, DL, VT.changeVectorElementType(MVT::i1), PgPattern); | ||||
| 18480 | SDValue PassThru = DAG.getConstant(0, DL, VT); | ||||
| 18481 | SDValue NewLoad = DAG.getMaskedLoad( | ||||
| 18482 | VT, DL, MLD->getChain(), MLD->getBasePtr(), MLD->getOffset(), Mask, | ||||
| 18483 | PassThru, MLD->getMemoryVT(), MLD->getMemOperand(), | ||||
| 18484 | MLD->getAddressingMode(), ISD::ZEXTLOAD); | ||||
| 18485 | |||||
| 18486 | DAG.ReplaceAllUsesOfValueWith(SDValue(MLD, 1), NewLoad.getValue(1)); | ||||
| 18487 | |||||
| 18488 | return NewLoad; | ||||
| 18489 | } | ||||
| 18490 | } | ||||
| 18491 | } | ||||
| 18492 | |||||
| 18493 | return SDValue(); | ||||
| 18494 | } | ||||
| 18495 | |||||
| 18496 | static SDValue performUzpCombine(SDNode *N, SelectionDAG &DAG) { | ||||
| 18497 | SDLoc DL(N); | ||||
| 18498 | SDValue Op0 = N->getOperand(0); | ||||
| 18499 | SDValue Op1 = N->getOperand(1); | ||||
| 18500 | EVT ResVT = N->getValueType(0); | ||||
| 18501 | |||||
| 18502 | // uzp1(x, undef) -> concat(truncate(x), undef) | ||||
| 18503 | if (Op1.getOpcode() == ISD::UNDEF) { | ||||
| 18504 | EVT BCVT = MVT::Other, HalfVT = MVT::Other; | ||||
| 18505 | switch (ResVT.getSimpleVT().SimpleTy) { | ||||
| 18506 | default: | ||||
| 18507 | break; | ||||
| 18508 | case MVT::v16i8: | ||||
| 18509 | BCVT = MVT::v8i16; | ||||
| 18510 | HalfVT = MVT::v8i8; | ||||
| 18511 | break; | ||||
| 18512 | case MVT::v8i16: | ||||
| 18513 | BCVT = MVT::v4i32; | ||||
| 18514 | HalfVT = MVT::v4i16; | ||||
| 18515 | break; | ||||
| 18516 | case MVT::v4i32: | ||||
| 18517 | BCVT = MVT::v2i64; | ||||
| 18518 | HalfVT = MVT::v2i32; | ||||
| 18519 | break; | ||||
| 18520 | } | ||||
| 18521 | if (BCVT != MVT::Other) { | ||||
| 18522 | SDValue BC = DAG.getBitcast(BCVT, Op0); | ||||
| 18523 | SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, HalfVT, BC); | ||||
| 18524 | return DAG.getNode(ISD::CONCAT_VECTORS, DL, ResVT, Trunc, | ||||
| 18525 | DAG.getUNDEF(HalfVT)); | ||||
| 18526 | } | ||||
| 18527 | } | ||||
| 18528 | |||||
| 18529 | // uzp1(unpklo(uzp1(x, y)), z) => uzp1(x, z) | ||||
| 18530 | if (Op0.getOpcode() == AArch64ISD::UUNPKLO) { | ||||
| 18531 | if (Op0.getOperand(0).getOpcode() == AArch64ISD::UZP1) { | ||||
| 18532 | SDValue X = Op0.getOperand(0).getOperand(0); | ||||
| 18533 | return DAG.getNode(AArch64ISD::UZP1, DL, ResVT, X, Op1); | ||||
| 18534 | } | ||||
| 18535 | } | ||||
| 18536 | |||||
| 18537 | // uzp1(x, unpkhi(uzp1(y, z))) => uzp1(x, z) | ||||
| 18538 | if (Op1.getOpcode() == AArch64ISD::UUNPKHI) { | ||||
| 18539 | if (Op1.getOperand(0).getOpcode() == AArch64ISD::UZP1) { | ||||
| 18540 | SDValue Z = Op1.getOperand(0).getOperand(1); | ||||
| 18541 | return DAG.getNode(AArch64ISD::UZP1, DL, ResVT, Op0, Z); | ||||
| 18542 | } | ||||
| 18543 | } | ||||
| 18544 | |||||
| 18545 | // uzp1(xtn x, xtn y) -> xtn(uzp1 (x, y)) | ||||
| 18546 | // Only implemented on little-endian subtargets. | ||||
| 18547 | bool IsLittleEndian = DAG.getDataLayout().isLittleEndian(); | ||||
| 18548 | |||||
| 18549 | // This optimization only works on little endian. | ||||
| 18550 | if (!IsLittleEndian) | ||||
| 18551 | return SDValue(); | ||||
| 18552 | |||||
| 18553 | if (ResVT != MVT::v2i32 && ResVT != MVT::v4i16 && ResVT != MVT::v8i8) | ||||
| 18554 | return SDValue(); | ||||
| 18555 | |||||
| 18556 | auto getSourceOp = [](SDValue Operand) -> SDValue { | ||||
| 18557 | const unsigned Opcode = Operand.getOpcode(); | ||||
| 18558 | if (Opcode == ISD::TRUNCATE) | ||||
| 18559 | return Operand->getOperand(0); | ||||
| 18560 | if (Opcode == ISD::BITCAST && | ||||
| 18561 | Operand->getOperand(0).getOpcode() == ISD::TRUNCATE) | ||||
| 18562 | return Operand->getOperand(0)->getOperand(0); | ||||
| 18563 | return SDValue(); | ||||
| 18564 | }; | ||||
| 18565 | |||||
| 18566 | SDValue SourceOp0 = getSourceOp(Op0); | ||||
| 18567 | SDValue SourceOp1 = getSourceOp(Op1); | ||||
| 18568 | |||||
| 18569 | if (!SourceOp0 || !SourceOp1) | ||||
| 18570 | return SDValue(); | ||||
| 18571 | |||||
| 18572 | if (SourceOp0.getValueType() != SourceOp1.getValueType() || | ||||
| 18573 | !SourceOp0.getValueType().isSimple()) | ||||
| 18574 | return SDValue(); | ||||
| 18575 | |||||
| 18576 | EVT ResultTy; | ||||
| 18577 | |||||
| 18578 | switch (SourceOp0.getSimpleValueType().SimpleTy) { | ||||
| 18579 | case MVT::v2i64: | ||||
| 18580 | ResultTy = MVT::v4i32; | ||||
| 18581 | break; | ||||
| 18582 | case MVT::v4i32: | ||||
| 18583 | ResultTy = MVT::v8i16; | ||||
| 18584 | break; | ||||
| 18585 | case MVT::v8i16: | ||||
| 18586 | ResultTy = MVT::v16i8; | ||||
| 18587 | break; | ||||
| 18588 | default: | ||||
| 18589 | return SDValue(); | ||||
| 18590 | } | ||||
| 18591 | |||||
| 18592 | SDValue UzpOp0 = DAG.getNode(ISD::BITCAST, DL, ResultTy, SourceOp0); | ||||
| 18593 | SDValue UzpOp1 = DAG.getNode(ISD::BITCAST, DL, ResultTy, SourceOp1); | ||||
| 18594 | SDValue UzpResult = | ||||
| 18595 | DAG.getNode(AArch64ISD::UZP1, DL, UzpOp0.getValueType(), UzpOp0, UzpOp1); | ||||
| 18596 | |||||
| 18597 | EVT BitcastResultTy; | ||||
| 18598 | |||||
| 18599 | switch (ResVT.getSimpleVT().SimpleTy) { | ||||
| 18600 | case MVT::v2i32: | ||||
| 18601 | BitcastResultTy = MVT::v2i64; | ||||
| 18602 | break; | ||||
| 18603 | case MVT::v4i16: | ||||
| 18604 | BitcastResultTy = MVT::v4i32; | ||||
| 18605 | break; | ||||
| 18606 | case MVT::v8i8: | ||||
| 18607 | BitcastResultTy = MVT::v8i16; | ||||
| 18608 | break; | ||||
| 18609 | default: | ||||
| 18610 | llvm_unreachable("Should be one of {v2i32, v4i16, v8i8}")::llvm::llvm_unreachable_internal("Should be one of {v2i32, v4i16, v8i8}" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 18610); | ||||
| 18611 | } | ||||
| 18612 | |||||
| 18613 | return DAG.getNode(ISD::TRUNCATE, DL, ResVT, | ||||
| 18614 | DAG.getNode(ISD::BITCAST, DL, BitcastResultTy, UzpResult)); | ||||
| 18615 | } | ||||
| 18616 | |||||
| 18617 | static SDValue performGLD1Combine(SDNode *N, SelectionDAG &DAG) { | ||||
| 18618 | unsigned Opc = N->getOpcode(); | ||||
| 18619 | |||||
| 18620 | assert(((Opc >= AArch64ISD::GLD1_MERGE_ZERO && // unsigned gather loads(static_cast <bool> (((Opc >= AArch64ISD::GLD1_MERGE_ZERO && Opc <= AArch64ISD::GLD1_IMM_MERGE_ZERO) || (Opc >= AArch64ISD::GLD1S_MERGE_ZERO && Opc <= AArch64ISD ::GLD1S_IMM_MERGE_ZERO)) && "Invalid opcode.") ? void (0) : __assert_fail ("((Opc >= AArch64ISD::GLD1_MERGE_ZERO && Opc <= AArch64ISD::GLD1_IMM_MERGE_ZERO) || (Opc >= AArch64ISD::GLD1S_MERGE_ZERO && Opc <= AArch64ISD::GLD1S_IMM_MERGE_ZERO)) && \"Invalid opcode.\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 18624, __extension__ __PRETTY_FUNCTION__)) | ||||
| 18621 | Opc <= AArch64ISD::GLD1_IMM_MERGE_ZERO) ||(static_cast <bool> (((Opc >= AArch64ISD::GLD1_MERGE_ZERO && Opc <= AArch64ISD::GLD1_IMM_MERGE_ZERO) || (Opc >= AArch64ISD::GLD1S_MERGE_ZERO && Opc <= AArch64ISD ::GLD1S_IMM_MERGE_ZERO)) && "Invalid opcode.") ? void (0) : __assert_fail ("((Opc >= AArch64ISD::GLD1_MERGE_ZERO && Opc <= AArch64ISD::GLD1_IMM_MERGE_ZERO) || (Opc >= AArch64ISD::GLD1S_MERGE_ZERO && Opc <= AArch64ISD::GLD1S_IMM_MERGE_ZERO)) && \"Invalid opcode.\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 18624, __extension__ __PRETTY_FUNCTION__)) | ||||
| 18622 | (Opc >= AArch64ISD::GLD1S_MERGE_ZERO && // signed gather loads(static_cast <bool> (((Opc >= AArch64ISD::GLD1_MERGE_ZERO && Opc <= AArch64ISD::GLD1_IMM_MERGE_ZERO) || (Opc >= AArch64ISD::GLD1S_MERGE_ZERO && Opc <= AArch64ISD ::GLD1S_IMM_MERGE_ZERO)) && "Invalid opcode.") ? void (0) : __assert_fail ("((Opc >= AArch64ISD::GLD1_MERGE_ZERO && Opc <= AArch64ISD::GLD1_IMM_MERGE_ZERO) || (Opc >= AArch64ISD::GLD1S_MERGE_ZERO && Opc <= AArch64ISD::GLD1S_IMM_MERGE_ZERO)) && \"Invalid opcode.\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 18624, __extension__ __PRETTY_FUNCTION__)) | ||||
| 18623 | Opc <= AArch64ISD::GLD1S_IMM_MERGE_ZERO)) &&(static_cast <bool> (((Opc >= AArch64ISD::GLD1_MERGE_ZERO && Opc <= AArch64ISD::GLD1_IMM_MERGE_ZERO) || (Opc >= AArch64ISD::GLD1S_MERGE_ZERO && Opc <= AArch64ISD ::GLD1S_IMM_MERGE_ZERO)) && "Invalid opcode.") ? void (0) : __assert_fail ("((Opc >= AArch64ISD::GLD1_MERGE_ZERO && Opc <= AArch64ISD::GLD1_IMM_MERGE_ZERO) || (Opc >= AArch64ISD::GLD1S_MERGE_ZERO && Opc <= AArch64ISD::GLD1S_IMM_MERGE_ZERO)) && \"Invalid opcode.\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 18624, __extension__ __PRETTY_FUNCTION__)) | ||||
| 18624 | "Invalid opcode.")(static_cast <bool> (((Opc >= AArch64ISD::GLD1_MERGE_ZERO && Opc <= AArch64ISD::GLD1_IMM_MERGE_ZERO) || (Opc >= AArch64ISD::GLD1S_MERGE_ZERO && Opc <= AArch64ISD ::GLD1S_IMM_MERGE_ZERO)) && "Invalid opcode.") ? void (0) : __assert_fail ("((Opc >= AArch64ISD::GLD1_MERGE_ZERO && Opc <= AArch64ISD::GLD1_IMM_MERGE_ZERO) || (Opc >= AArch64ISD::GLD1S_MERGE_ZERO && Opc <= AArch64ISD::GLD1S_IMM_MERGE_ZERO)) && \"Invalid opcode.\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 18624, __extension__ __PRETTY_FUNCTION__)); | ||||
| 18625 | |||||
| 18626 | const bool Scaled = Opc == AArch64ISD::GLD1_SCALED_MERGE_ZERO || | ||||
| 18627 | Opc == AArch64ISD::GLD1S_SCALED_MERGE_ZERO; | ||||
| 18628 | const bool Signed = Opc == AArch64ISD::GLD1S_MERGE_ZERO || | ||||
| 18629 | Opc == AArch64ISD::GLD1S_SCALED_MERGE_ZERO; | ||||
| 18630 | const bool Extended = Opc == AArch64ISD::GLD1_SXTW_MERGE_ZERO || | ||||
| 18631 | Opc == AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO || | ||||
| 18632 | Opc == AArch64ISD::GLD1_UXTW_MERGE_ZERO || | ||||
| 18633 | Opc == AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO; | ||||
| 18634 | |||||
| 18635 | SDLoc DL(N); | ||||
| 18636 | SDValue Chain = N->getOperand(0); | ||||
| 18637 | SDValue Pg = N->getOperand(1); | ||||
| 18638 | SDValue Base = N->getOperand(2); | ||||
| 18639 | SDValue Offset = N->getOperand(3); | ||||
| 18640 | SDValue Ty = N->getOperand(4); | ||||
| 18641 | |||||
| 18642 | EVT ResVT = N->getValueType(0); | ||||
| 18643 | |||||
| 18644 | const auto OffsetOpc = Offset.getOpcode(); | ||||
| 18645 | const bool OffsetIsZExt = | ||||
| 18646 | OffsetOpc == AArch64ISD::ZERO_EXTEND_INREG_MERGE_PASSTHRU; | ||||
| 18647 | const bool OffsetIsSExt = | ||||
| 18648 | OffsetOpc == AArch64ISD::SIGN_EXTEND_INREG_MERGE_PASSTHRU; | ||||
| 18649 | |||||
| 18650 | // Fold sign/zero extensions of vector offsets into GLD1 nodes where possible. | ||||
| 18651 | if (!Extended && (OffsetIsSExt || OffsetIsZExt)) { | ||||
| 18652 | SDValue ExtPg = Offset.getOperand(0); | ||||
| 18653 | VTSDNode *ExtFrom = cast<VTSDNode>(Offset.getOperand(2).getNode()); | ||||
| 18654 | EVT ExtFromEVT = ExtFrom->getVT().getVectorElementType(); | ||||
| 18655 | |||||
| 18656 | // If the predicate for the sign- or zero-extended offset is the | ||||
| 18657 | // same as the predicate used for this load and the sign-/zero-extension | ||||
| 18658 | // was from a 32-bits... | ||||
| 18659 | if (ExtPg == Pg && ExtFromEVT == MVT::i32) { | ||||
| 18660 | SDValue UnextendedOffset = Offset.getOperand(1); | ||||
| 18661 | |||||
| 18662 | unsigned NewOpc = getGatherVecOpcode(Scaled, OffsetIsSExt, true); | ||||
| 18663 | if (Signed) | ||||
| 18664 | NewOpc = getSignExtendedGatherOpcode(NewOpc); | ||||
| 18665 | |||||
| 18666 | return DAG.getNode(NewOpc, DL, {ResVT, MVT::Other}, | ||||
| 18667 | {Chain, Pg, Base, UnextendedOffset, Ty}); | ||||
| 18668 | } | ||||
| 18669 | } | ||||
| 18670 | |||||
| 18671 | return SDValue(); | ||||
| 18672 | } | ||||
| 18673 | |||||
| 18674 | /// Optimize a vector shift instruction and its operand if shifted out | ||||
| 18675 | /// bits are not used. | ||||
| 18676 | static SDValue performVectorShiftCombine(SDNode *N, | ||||
| 18677 | const AArch64TargetLowering &TLI, | ||||
| 18678 | TargetLowering::DAGCombinerInfo &DCI) { | ||||
| 18679 | assert(N->getOpcode() == AArch64ISD::VASHR ||(static_cast <bool> (N->getOpcode() == AArch64ISD::VASHR || N->getOpcode() == AArch64ISD::VLSHR) ? void (0) : __assert_fail ("N->getOpcode() == AArch64ISD::VASHR || N->getOpcode() == AArch64ISD::VLSHR" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 18680, __extension__ __PRETTY_FUNCTION__)) | ||||
| 18680 | N->getOpcode() == AArch64ISD::VLSHR)(static_cast <bool> (N->getOpcode() == AArch64ISD::VASHR || N->getOpcode() == AArch64ISD::VLSHR) ? void (0) : __assert_fail ("N->getOpcode() == AArch64ISD::VASHR || N->getOpcode() == AArch64ISD::VLSHR" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 18680, __extension__ __PRETTY_FUNCTION__)); | ||||
| 18681 | |||||
| 18682 | SDValue Op = N->getOperand(0); | ||||
| 18683 | unsigned OpScalarSize = Op.getScalarValueSizeInBits(); | ||||
| 18684 | |||||
| 18685 | unsigned ShiftImm = N->getConstantOperandVal(1); | ||||
| 18686 | assert(OpScalarSize > ShiftImm && "Invalid shift imm")(static_cast <bool> (OpScalarSize > ShiftImm && "Invalid shift imm") ? void (0) : __assert_fail ("OpScalarSize > ShiftImm && \"Invalid shift imm\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 18686, __extension__ __PRETTY_FUNCTION__)); | ||||
| 18687 | |||||
| 18688 | APInt ShiftedOutBits = APInt::getLowBitsSet(OpScalarSize, ShiftImm); | ||||
| 18689 | APInt DemandedMask = ~ShiftedOutBits; | ||||
| 18690 | |||||
| 18691 | if (TLI.SimplifyDemandedBits(Op, DemandedMask, DCI)) | ||||
| 18692 | return SDValue(N, 0); | ||||
| 18693 | |||||
| 18694 | return SDValue(); | ||||
| 18695 | } | ||||
| 18696 | |||||
| 18697 | static SDValue performSunpkloCombine(SDNode *N, SelectionDAG &DAG) { | ||||
| 18698 | // sunpklo(sext(pred)) -> sext(extract_low_half(pred)) | ||||
| 18699 | // This transform works in partnership with performSetCCPunpkCombine to | ||||
| 18700 | // remove unnecessary transfer of predicates into standard registers and back | ||||
| 18701 | if (N->getOperand(0).getOpcode() == ISD::SIGN_EXTEND && | ||||
| 18702 | N->getOperand(0)->getOperand(0)->getValueType(0).getScalarType() == | ||||
| 18703 | MVT::i1) { | ||||
| 18704 | SDValue CC = N->getOperand(0)->getOperand(0); | ||||
| 18705 | auto VT = CC->getValueType(0).getHalfNumVectorElementsVT(*DAG.getContext()); | ||||
| 18706 | SDValue Unpk = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), VT, CC, | ||||
| 18707 | DAG.getVectorIdxConstant(0, SDLoc(N))); | ||||
| 18708 | return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), N->getValueType(0), Unpk); | ||||
| 18709 | } | ||||
| 18710 | |||||
| 18711 | return SDValue(); | ||||
| 18712 | } | ||||
| 18713 | |||||
| 18714 | /// Target-specific DAG combine function for post-increment LD1 (lane) and | ||||
| 18715 | /// post-increment LD1R. | ||||
| 18716 | static SDValue performPostLD1Combine(SDNode *N, | ||||
| 18717 | TargetLowering::DAGCombinerInfo &DCI, | ||||
| 18718 | bool IsLaneOp) { | ||||
| 18719 | if (DCI.isBeforeLegalizeOps()) | ||||
| 18720 | return SDValue(); | ||||
| 18721 | |||||
| 18722 | SelectionDAG &DAG = DCI.DAG; | ||||
| 18723 | EVT VT = N->getValueType(0); | ||||
| 18724 | |||||
| 18725 | if (!VT.is128BitVector() && !VT.is64BitVector()) | ||||
| 18726 | return SDValue(); | ||||
| 18727 | |||||
| 18728 | unsigned LoadIdx = IsLaneOp ? 1 : 0; | ||||
| 18729 | SDNode *LD = N->getOperand(LoadIdx).getNode(); | ||||
| 18730 | // If it is not LOAD, can not do such combine. | ||||
| 18731 | if (LD->getOpcode() != ISD::LOAD) | ||||
| 18732 | return SDValue(); | ||||
| 18733 | |||||
| 18734 | // The vector lane must be a constant in the LD1LANE opcode. | ||||
| 18735 | SDValue Lane; | ||||
| 18736 | if (IsLaneOp) { | ||||
| 18737 | Lane = N->getOperand(2); | ||||
| 18738 | auto *LaneC = dyn_cast<ConstantSDNode>(Lane); | ||||
| 18739 | if (!LaneC || LaneC->getZExtValue() >= VT.getVectorNumElements()) | ||||
| 18740 | return SDValue(); | ||||
| 18741 | } | ||||
| 18742 | |||||
| 18743 | LoadSDNode *LoadSDN = cast<LoadSDNode>(LD); | ||||
| 18744 | EVT MemVT = LoadSDN->getMemoryVT(); | ||||
| 18745 | // Check if memory operand is the same type as the vector element. | ||||
| 18746 | if (MemVT != VT.getVectorElementType()) | ||||
| 18747 | return SDValue(); | ||||
| 18748 | |||||
| 18749 | // Check if there are other uses. If so, do not combine as it will introduce | ||||
| 18750 | // an extra load. | ||||
| 18751 | for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE; | ||||
| 18752 | ++UI) { | ||||
| 18753 | if (UI.getUse().getResNo() == 1) // Ignore uses of the chain result. | ||||
| 18754 | continue; | ||||
| 18755 | if (*UI != N) | ||||
| 18756 | return SDValue(); | ||||
| 18757 | } | ||||
| 18758 | |||||
| 18759 | SDValue Addr = LD->getOperand(1); | ||||
| 18760 | SDValue Vector = N->getOperand(0); | ||||
| 18761 | // Search for a use of the address operand that is an increment. | ||||
| 18762 | for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), UE = | ||||
| 18763 | Addr.getNode()->use_end(); UI != UE; ++UI) { | ||||
| 18764 | SDNode *User = *UI; | ||||
| 18765 | if (User->getOpcode() != ISD::ADD | ||||
| 18766 | || UI.getUse().getResNo() != Addr.getResNo()) | ||||
| 18767 | continue; | ||||
| 18768 | |||||
| 18769 | // If the increment is a constant, it must match the memory ref size. | ||||
| 18770 | SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0); | ||||
| 18771 | if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) { | ||||
| 18772 | uint32_t IncVal = CInc->getZExtValue(); | ||||
| 18773 | unsigned NumBytes = VT.getScalarSizeInBits() / 8; | ||||
| 18774 | if (IncVal != NumBytes) | ||||
| 18775 | continue; | ||||
| 18776 | Inc = DAG.getRegister(AArch64::XZR, MVT::i64); | ||||
| 18777 | } | ||||
| 18778 | |||||
| 18779 | // To avoid cycle construction make sure that neither the load nor the add | ||||
| 18780 | // are predecessors to each other or the Vector. | ||||
| 18781 | SmallPtrSet<const SDNode *, 32> Visited; | ||||
| 18782 | SmallVector<const SDNode *, 16> Worklist; | ||||
| 18783 | Visited.insert(Addr.getNode()); | ||||
| 18784 | Worklist.push_back(User); | ||||
| 18785 | Worklist.push_back(LD); | ||||
| 18786 | Worklist.push_back(Vector.getNode()); | ||||
| 18787 | if (SDNode::hasPredecessorHelper(LD, Visited, Worklist) || | ||||
| 18788 | SDNode::hasPredecessorHelper(User, Visited, Worklist)) | ||||
| 18789 | continue; | ||||
| 18790 | |||||
| 18791 | SmallVector<SDValue, 8> Ops; | ||||
| 18792 | Ops.push_back(LD->getOperand(0)); // Chain | ||||
| 18793 | if (IsLaneOp) { | ||||
| 18794 | Ops.push_back(Vector); // The vector to be inserted | ||||
| 18795 | Ops.push_back(Lane); // The lane to be inserted in the vector | ||||
| 18796 | } | ||||
| 18797 | Ops.push_back(Addr); | ||||
| 18798 | Ops.push_back(Inc); | ||||
| 18799 | |||||
| 18800 | EVT Tys[3] = { VT, MVT::i64, MVT::Other }; | ||||
| 18801 | SDVTList SDTys = DAG.getVTList(Tys); | ||||
| 18802 | unsigned NewOp = IsLaneOp ? AArch64ISD::LD1LANEpost : AArch64ISD::LD1DUPpost; | ||||
| 18803 | SDValue UpdN = DAG.getMemIntrinsicNode(NewOp, SDLoc(N), SDTys, Ops, | ||||
| 18804 | MemVT, | ||||
| 18805 | LoadSDN->getMemOperand()); | ||||
| 18806 | |||||
| 18807 | // Update the uses. | ||||
| 18808 | SDValue NewResults[] = { | ||||
| 18809 | SDValue(LD, 0), // The result of load | ||||
| 18810 | SDValue(UpdN.getNode(), 2) // Chain | ||||
| 18811 | }; | ||||
| 18812 | DCI.CombineTo(LD, NewResults); | ||||
| 18813 | DCI.CombineTo(N, SDValue(UpdN.getNode(), 0)); // Dup/Inserted Result | ||||
| 18814 | DCI.CombineTo(User, SDValue(UpdN.getNode(), 1)); // Write back register | ||||
| 18815 | |||||
| 18816 | break; | ||||
| 18817 | } | ||||
| 18818 | return SDValue(); | ||||
| 18819 | } | ||||
| 18820 | |||||
| 18821 | /// Simplify ``Addr`` given that the top byte of it is ignored by HW during | ||||
| 18822 | /// address translation. | ||||
| 18823 | static bool performTBISimplification(SDValue Addr, | ||||
| 18824 | TargetLowering::DAGCombinerInfo &DCI, | ||||
| 18825 | SelectionDAG &DAG) { | ||||
| 18826 | APInt DemandedMask = APInt::getLowBitsSet(64, 56); | ||||
| 18827 | KnownBits Known; | ||||
| 18828 | TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), | ||||
| 18829 | !DCI.isBeforeLegalizeOps()); | ||||
| 18830 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | ||||
| 18831 | if (TLI.SimplifyDemandedBits(Addr, DemandedMask, Known, TLO)) { | ||||
| 18832 | DCI.CommitTargetLoweringOpt(TLO); | ||||
| 18833 | return true; | ||||
| 18834 | } | ||||
| 18835 | return false; | ||||
| 18836 | } | ||||
| 18837 | |||||
| 18838 | static SDValue foldTruncStoreOfExt(SelectionDAG &DAG, SDNode *N) { | ||||
| 18839 | assert((N->getOpcode() == ISD::STORE || N->getOpcode() == ISD::MSTORE) &&(static_cast <bool> ((N->getOpcode() == ISD::STORE || N->getOpcode() == ISD::MSTORE) && "Expected STORE dag node in input!" ) ? void (0) : __assert_fail ("(N->getOpcode() == ISD::STORE || N->getOpcode() == ISD::MSTORE) && \"Expected STORE dag node in input!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 18840, __extension__ __PRETTY_FUNCTION__)) | ||||
| 18840 | "Expected STORE dag node in input!")(static_cast <bool> ((N->getOpcode() == ISD::STORE || N->getOpcode() == ISD::MSTORE) && "Expected STORE dag node in input!" ) ? void (0) : __assert_fail ("(N->getOpcode() == ISD::STORE || N->getOpcode() == ISD::MSTORE) && \"Expected STORE dag node in input!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 18840, __extension__ __PRETTY_FUNCTION__)); | ||||
| 18841 | |||||
| 18842 | if (auto Store = dyn_cast<StoreSDNode>(N)) { | ||||
| 18843 | if (!Store->isTruncatingStore() || Store->isIndexed()) | ||||
| 18844 | return SDValue(); | ||||
| 18845 | SDValue Ext = Store->getValue(); | ||||
| 18846 | auto ExtOpCode = Ext.getOpcode(); | ||||
| 18847 | if (ExtOpCode != ISD::ZERO_EXTEND && ExtOpCode != ISD::SIGN_EXTEND && | ||||
| 18848 | ExtOpCode != ISD::ANY_EXTEND) | ||||
| 18849 | return SDValue(); | ||||
| 18850 | SDValue Orig = Ext->getOperand(0); | ||||
| 18851 | if (Store->getMemoryVT() != Orig.getValueType()) | ||||
| 18852 | return SDValue(); | ||||
| 18853 | return DAG.getStore(Store->getChain(), SDLoc(Store), Orig, | ||||
| 18854 | Store->getBasePtr(), Store->getMemOperand()); | ||||
| 18855 | } | ||||
| 18856 | |||||
| 18857 | return SDValue(); | ||||
| 18858 | } | ||||
| 18859 | |||||
| 18860 | // Perform TBI simplification if supported by the target and try to break up | ||||
| 18861 | // nontemporal loads larger than 256-bits loads for odd types so LDNPQ 256-bit | ||||
| 18862 | // load instructions can be selected. | ||||
| 18863 | static SDValue performLOADCombine(SDNode *N, | ||||
| 18864 | TargetLowering::DAGCombinerInfo &DCI, | ||||
| 18865 | SelectionDAG &DAG, | ||||
| 18866 | const AArch64Subtarget *Subtarget) { | ||||
| 18867 | if (Subtarget->supportsAddressTopByteIgnored()) | ||||
| 18868 | performTBISimplification(N->getOperand(1), DCI, DAG); | ||||
| 18869 | |||||
| 18870 | LoadSDNode *LD = cast<LoadSDNode>(N); | ||||
| 18871 | EVT MemVT = LD->getMemoryVT(); | ||||
| 18872 | if (LD->isVolatile() || !LD->isNonTemporal() || !Subtarget->isLittleEndian()) | ||||
| 18873 | return SDValue(N, 0); | ||||
| 18874 | |||||
| 18875 | if (MemVT.isScalableVector() || MemVT.getSizeInBits() <= 256 || | ||||
| 18876 | MemVT.getSizeInBits() % 256 == 0 || | ||||
| 18877 | 256 % MemVT.getScalarSizeInBits() != 0) | ||||
| 18878 | return SDValue(N, 0); | ||||
| 18879 | |||||
| 18880 | SDLoc DL(LD); | ||||
| 18881 | SDValue Chain = LD->getChain(); | ||||
| 18882 | SDValue BasePtr = LD->getBasePtr(); | ||||
| 18883 | SDNodeFlags Flags = LD->getFlags(); | ||||
| 18884 | SmallVector<SDValue, 4> LoadOps; | ||||
| 18885 | SmallVector<SDValue, 4> LoadOpsChain; | ||||
| 18886 | // Replace any non temporal load over 256-bit with a series of 256 bit loads | ||||
| 18887 | // and a scalar/vector load less than 256. This way we can utilize 256-bit | ||||
| 18888 | // loads and reduce the amount of load instructions generated. | ||||
| 18889 | MVT NewVT = | ||||
| 18890 | MVT::getVectorVT(MemVT.getVectorElementType().getSimpleVT(), | ||||
| 18891 | 256 / MemVT.getVectorElementType().getSizeInBits()); | ||||
| 18892 | unsigned Num256Loads = MemVT.getSizeInBits() / 256; | ||||
| 18893 | // Create all 256-bit loads starting from offset 0 and up to Num256Loads-1*32. | ||||
| 18894 | for (unsigned I = 0; I < Num256Loads; I++) { | ||||
| 18895 | unsigned PtrOffset = I * 32; | ||||
| 18896 | SDValue NewPtr = DAG.getMemBasePlusOffset( | ||||
| 18897 | BasePtr, TypeSize::Fixed(PtrOffset), DL, Flags); | ||||
| 18898 | Align NewAlign = commonAlignment(LD->getAlign(), PtrOffset); | ||||
| 18899 | SDValue NewLoad = DAG.getLoad( | ||||
| 18900 | NewVT, DL, Chain, NewPtr, LD->getPointerInfo().getWithOffset(PtrOffset), | ||||
| 18901 | NewAlign, LD->getMemOperand()->getFlags(), LD->getAAInfo()); | ||||
| 18902 | LoadOps.push_back(NewLoad); | ||||
| 18903 | LoadOpsChain.push_back(SDValue(cast<SDNode>(NewLoad), 1)); | ||||
| 18904 | } | ||||
| 18905 | |||||
| 18906 | // Process remaining bits of the load operation. | ||||
| 18907 | // This is done by creating an UNDEF vector to match the size of the | ||||
| 18908 | // 256-bit loads and inserting the remaining load to it. We extract the | ||||
| 18909 | // original load type at the end using EXTRACT_SUBVECTOR instruction. | ||||
| 18910 | unsigned BitsRemaining = MemVT.getSizeInBits() % 256; | ||||
| 18911 | unsigned PtrOffset = (MemVT.getSizeInBits() - BitsRemaining) / 8; | ||||
| 18912 | MVT RemainingVT = MVT::getVectorVT( | ||||
| 18913 | MemVT.getVectorElementType().getSimpleVT(), | ||||
| 18914 | BitsRemaining / MemVT.getVectorElementType().getSizeInBits()); | ||||
| 18915 | SDValue NewPtr = | ||||
| 18916 | DAG.getMemBasePlusOffset(BasePtr, TypeSize::Fixed(PtrOffset), DL, Flags); | ||||
| 18917 | Align NewAlign = commonAlignment(LD->getAlign(), PtrOffset); | ||||
| 18918 | SDValue RemainingLoad = | ||||
| 18919 | DAG.getLoad(RemainingVT, DL, Chain, NewPtr, | ||||
| 18920 | LD->getPointerInfo().getWithOffset(PtrOffset), NewAlign, | ||||
| 18921 | LD->getMemOperand()->getFlags(), LD->getAAInfo()); | ||||
| 18922 | SDValue UndefVector = DAG.getUNDEF(NewVT); | ||||
| 18923 | SDValue InsertIdx = DAG.getVectorIdxConstant(0, DL); | ||||
| 18924 | SDValue ExtendedReminingLoad = | ||||
| 18925 | DAG.getNode(ISD::INSERT_SUBVECTOR, DL, NewVT, | ||||
| 18926 | {UndefVector, RemainingLoad, InsertIdx}); | ||||
| 18927 | LoadOps.push_back(ExtendedReminingLoad); | ||||
| 18928 | LoadOpsChain.push_back(SDValue(cast<SDNode>(RemainingLoad), 1)); | ||||
| 18929 | EVT ConcatVT = | ||||
| 18930 | EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), | ||||
| 18931 | LoadOps.size() * NewVT.getVectorNumElements()); | ||||
| 18932 | SDValue ConcatVectors = | ||||
| 18933 | DAG.getNode(ISD::CONCAT_VECTORS, DL, ConcatVT, LoadOps); | ||||
| 18934 | // Extract the original vector type size. | ||||
| 18935 | SDValue ExtractSubVector = | ||||
| 18936 | DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MemVT, | ||||
| 18937 | {ConcatVectors, DAG.getVectorIdxConstant(0, DL)}); | ||||
| 18938 | SDValue TokenFactor = | ||||
| 18939 | DAG.getNode(ISD::TokenFactor, DL, MVT::Other, LoadOpsChain); | ||||
| 18940 | return DAG.getMergeValues({ExtractSubVector, TokenFactor}, DL); | ||||
| 18941 | } | ||||
| 18942 | |||||
| 18943 | static SDValue performSTORECombine(SDNode *N, | ||||
| 18944 | TargetLowering::DAGCombinerInfo &DCI, | ||||
| 18945 | SelectionDAG &DAG, | ||||
| 18946 | const AArch64Subtarget *Subtarget) { | ||||
| 18947 | StoreSDNode *ST = cast<StoreSDNode>(N); | ||||
| 18948 | SDValue Chain = ST->getChain(); | ||||
| 18949 | SDValue Value = ST->getValue(); | ||||
| 18950 | SDValue Ptr = ST->getBasePtr(); | ||||
| 18951 | |||||
| 18952 | // If this is an FP_ROUND followed by a store, fold this into a truncating | ||||
| 18953 | // store. We can do this even if this is already a truncstore. | ||||
| 18954 | // We purposefully don't care about legality of the nodes here as we know | ||||
| 18955 | // they can be split down into something legal. | ||||
| 18956 | if (DCI.isBeforeLegalizeOps() && Value.getOpcode() == ISD::FP_ROUND && | ||||
| 18957 | Value.getNode()->hasOneUse() && ST->isUnindexed() && | ||||
| 18958 | Subtarget->useSVEForFixedLengthVectors() && | ||||
| 18959 | Value.getValueType().isFixedLengthVector() && | ||||
| 18960 | Value.getValueType().getFixedSizeInBits() >= | ||||
| 18961 | Subtarget->getMinSVEVectorSizeInBits()) | ||||
| 18962 | return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0), Ptr, | ||||
| 18963 | ST->getMemoryVT(), ST->getMemOperand()); | ||||
| 18964 | |||||
| 18965 | if (SDValue Split = splitStores(N, DCI, DAG, Subtarget)) | ||||
| 18966 | return Split; | ||||
| 18967 | |||||
| 18968 | if (Subtarget->supportsAddressTopByteIgnored() && | ||||
| 18969 | performTBISimplification(N->getOperand(2), DCI, DAG)) | ||||
| 18970 | return SDValue(N, 0); | ||||
| 18971 | |||||
| 18972 | if (SDValue Store = foldTruncStoreOfExt(DAG, N)) | ||||
| 18973 | return Store; | ||||
| 18974 | |||||
| 18975 | return SDValue(); | ||||
| 18976 | } | ||||
| 18977 | |||||
| 18978 | static SDValue performMSTORECombine(SDNode *N, | ||||
| 18979 | TargetLowering::DAGCombinerInfo &DCI, | ||||
| 18980 | SelectionDAG &DAG, | ||||
| 18981 | const AArch64Subtarget *Subtarget) { | ||||
| 18982 | MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N); | ||||
| 18983 | SDValue Value = MST->getValue(); | ||||
| 18984 | SDValue Mask = MST->getMask(); | ||||
| 18985 | SDLoc DL(N); | ||||
| 18986 | |||||
| 18987 | // If this is a UZP1 followed by a masked store, fold this into a masked | ||||
| 18988 | // truncating store. We can do this even if this is already a masked | ||||
| 18989 | // truncstore. | ||||
| 18990 | if (Value.getOpcode() == AArch64ISD::UZP1 && Value->hasOneUse() && | ||||
| 18991 | MST->isUnindexed() && Mask->getOpcode() == AArch64ISD::PTRUE && | ||||
| 18992 | Value.getValueType().isInteger()) { | ||||
| 18993 | Value = Value.getOperand(0); | ||||
| 18994 | if (Value.getOpcode() == ISD::BITCAST) { | ||||
| 18995 | EVT HalfVT = | ||||
| 18996 | Value.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); | ||||
| 18997 | EVT InVT = Value.getOperand(0).getValueType(); | ||||
| 18998 | |||||
| 18999 | if (HalfVT.widenIntegerVectorElementType(*DAG.getContext()) == InVT) { | ||||
| 19000 | unsigned MinSVESize = Subtarget->getMinSVEVectorSizeInBits(); | ||||
| 19001 | unsigned PgPattern = Mask->getConstantOperandVal(0); | ||||
| 19002 | |||||
| 19003 | // Ensure we can double the size of the predicate pattern | ||||
| 19004 | unsigned NumElts = getNumElementsFromSVEPredPattern(PgPattern); | ||||
| 19005 | if (NumElts && NumElts * InVT.getVectorElementType().getSizeInBits() <= | ||||
| 19006 | MinSVESize) { | ||||
| 19007 | Mask = getPTrue(DAG, DL, InVT.changeVectorElementType(MVT::i1), | ||||
| 19008 | PgPattern); | ||||
| 19009 | return DAG.getMaskedStore(MST->getChain(), DL, Value.getOperand(0), | ||||
| 19010 | MST->getBasePtr(), MST->getOffset(), Mask, | ||||
| 19011 | MST->getMemoryVT(), MST->getMemOperand(), | ||||
| 19012 | MST->getAddressingMode(), | ||||
| 19013 | /*IsTruncating=*/true); | ||||
| 19014 | } | ||||
| 19015 | } | ||||
| 19016 | } | ||||
| 19017 | } | ||||
| 19018 | |||||
| 19019 | return SDValue(); | ||||
| 19020 | } | ||||
| 19021 | |||||
| 19022 | /// \return true if part of the index was folded into the Base. | ||||
| 19023 | static bool foldIndexIntoBase(SDValue &BasePtr, SDValue &Index, SDValue Scale, | ||||
| 19024 | SDLoc DL, SelectionDAG &DAG) { | ||||
| 19025 | // This function assumes a vector of i64 indices. | ||||
| 19026 | EVT IndexVT = Index.getValueType(); | ||||
| 19027 | if (!IndexVT.isVector() || IndexVT.getVectorElementType() != MVT::i64) | ||||
| 19028 | return false; | ||||
| 19029 | |||||
| 19030 | // Simplify: | ||||
| 19031 | // BasePtr = Ptr | ||||
| 19032 | // Index = X + splat(Offset) | ||||
| 19033 | // -> | ||||
| 19034 | // BasePtr = Ptr + Offset * scale. | ||||
| 19035 | // Index = X | ||||
| 19036 | if (Index.getOpcode() == ISD::ADD) { | ||||
| 19037 | if (auto Offset = DAG.getSplatValue(Index.getOperand(1))) { | ||||
| 19038 | Offset = DAG.getNode(ISD::MUL, DL, MVT::i64, Offset, Scale); | ||||
| 19039 | BasePtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr, Offset); | ||||
| 19040 | Index = Index.getOperand(0); | ||||
| 19041 | return true; | ||||
| 19042 | } | ||||
| 19043 | } | ||||
| 19044 | |||||
| 19045 | // Simplify: | ||||
| 19046 | // BasePtr = Ptr | ||||
| 19047 | // Index = (X + splat(Offset)) << splat(Shift) | ||||
| 19048 | // -> | ||||
| 19049 | // BasePtr = Ptr + (Offset << Shift) * scale) | ||||
| 19050 | // Index = X << splat(shift) | ||||
| 19051 | if (Index.getOpcode() == ISD::SHL && | ||||
| 19052 | Index.getOperand(0).getOpcode() == ISD::ADD) { | ||||
| 19053 | SDValue Add = Index.getOperand(0); | ||||
| 19054 | SDValue ShiftOp = Index.getOperand(1); | ||||
| 19055 | SDValue OffsetOp = Add.getOperand(1); | ||||
| 19056 | if (auto Shift = DAG.getSplatValue(ShiftOp)) | ||||
| 19057 | if (auto Offset = DAG.getSplatValue(OffsetOp)) { | ||||
| 19058 | Offset = DAG.getNode(ISD::SHL, DL, MVT::i64, Offset, Shift); | ||||
| 19059 | Offset = DAG.getNode(ISD::MUL, DL, MVT::i64, Offset, Scale); | ||||
| 19060 | BasePtr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr, Offset); | ||||
| 19061 | Index = DAG.getNode(ISD::SHL, DL, Index.getValueType(), | ||||
| 19062 | Add.getOperand(0), ShiftOp); | ||||
| 19063 | return true; | ||||
| 19064 | } | ||||
| 19065 | } | ||||
| 19066 | |||||
| 19067 | return false; | ||||
| 19068 | } | ||||
| 19069 | |||||
| 19070 | // Analyse the specified address returning true if a more optimal addressing | ||||
| 19071 | // mode is available. When returning true all parameters are updated to reflect | ||||
| 19072 | // their recommended values. | ||||
| 19073 | static bool findMoreOptimalIndexType(const MaskedGatherScatterSDNode *N, | ||||
| 19074 | SDValue &BasePtr, SDValue &Index, | ||||
| 19075 | SelectionDAG &DAG) { | ||||
| 19076 | // Try to iteratively fold parts of the index into the base pointer to | ||||
| 19077 | // simplify the index as much as possible. | ||||
| 19078 | bool Changed = false; | ||||
| 19079 | while (foldIndexIntoBase(BasePtr, Index, N->getScale(), SDLoc(N), DAG)) | ||||
| 19080 | Changed = true; | ||||
| 19081 | |||||
| 19082 | // Only consider element types that are pointer sized as smaller types can | ||||
| 19083 | // be easily promoted. | ||||
| 19084 | EVT IndexVT = Index.getValueType(); | ||||
| 19085 | if (IndexVT.getVectorElementType() != MVT::i64 || IndexVT == MVT::nxv2i64) | ||||
| 19086 | return Changed; | ||||
| 19087 | |||||
| 19088 | // Can indices be trivially shrunk? | ||||
| 19089 | EVT DataVT = N->getOperand(1).getValueType(); | ||||
| 19090 | // Don't attempt to shrink the index for fixed vectors of 64 bit data since it | ||||
| 19091 | // will later be re-extended to 64 bits in legalization | ||||
| 19092 | if (DataVT.isFixedLengthVector() && DataVT.getScalarSizeInBits() == 64) | ||||
| 19093 | return Changed; | ||||
| 19094 | if (ISD::isVectorShrinkable(Index.getNode(), 32, N->isIndexSigned())) { | ||||
| 19095 | EVT NewIndexVT = IndexVT.changeVectorElementType(MVT::i32); | ||||
| 19096 | Index = DAG.getNode(ISD::TRUNCATE, SDLoc(N), NewIndexVT, Index); | ||||
| 19097 | return true; | ||||
| 19098 | } | ||||
| 19099 | |||||
| 19100 | // Match: | ||||
| 19101 | // Index = step(const) | ||||
| 19102 | int64_t Stride = 0; | ||||
| 19103 | if (Index.getOpcode() == ISD::STEP_VECTOR) { | ||||
| 19104 | Stride = cast<ConstantSDNode>(Index.getOperand(0))->getSExtValue(); | ||||
| 19105 | } | ||||
| 19106 | // Match: | ||||
| 19107 | // Index = step(const) << shift(const) | ||||
| 19108 | else if (Index.getOpcode() == ISD::SHL && | ||||
| 19109 | Index.getOperand(0).getOpcode() == ISD::STEP_VECTOR) { | ||||
| 19110 | SDValue RHS = Index.getOperand(1); | ||||
| 19111 | if (auto *Shift = | ||||
| 19112 | dyn_cast_or_null<ConstantSDNode>(DAG.getSplatValue(RHS))) { | ||||
| 19113 | int64_t Step = (int64_t)Index.getOperand(0).getConstantOperandVal(1); | ||||
| 19114 | Stride = Step << Shift->getZExtValue(); | ||||
| 19115 | } | ||||
| 19116 | } | ||||
| 19117 | |||||
| 19118 | // Return early because no supported pattern is found. | ||||
| 19119 | if (Stride == 0) | ||||
| 19120 | return Changed; | ||||
| 19121 | |||||
| 19122 | if (Stride < std::numeric_limits<int32_t>::min() || | ||||
| 19123 | Stride > std::numeric_limits<int32_t>::max()) | ||||
| 19124 | return Changed; | ||||
| 19125 | |||||
| 19126 | const auto &Subtarget = DAG.getSubtarget<AArch64Subtarget>(); | ||||
| 19127 | unsigned MaxVScale = | ||||
| 19128 | Subtarget.getMaxSVEVectorSizeInBits() / AArch64::SVEBitsPerBlock; | ||||
| 19129 | int64_t LastElementOffset = | ||||
| 19130 | IndexVT.getVectorMinNumElements() * Stride * MaxVScale; | ||||
| 19131 | |||||
| 19132 | if (LastElementOffset < std::numeric_limits<int32_t>::min() || | ||||
| 19133 | LastElementOffset > std::numeric_limits<int32_t>::max()) | ||||
| 19134 | return Changed; | ||||
| 19135 | |||||
| 19136 | EVT NewIndexVT = IndexVT.changeVectorElementType(MVT::i32); | ||||
| 19137 | // Stride does not scale explicitly by 'Scale', because it happens in | ||||
| 19138 | // the gather/scatter addressing mode. | ||||
| 19139 | Index = DAG.getStepVector(SDLoc(N), NewIndexVT, APInt(32, Stride)); | ||||
| 19140 | return true; | ||||
| 19141 | } | ||||
| 19142 | |||||
| 19143 | static SDValue performMaskedGatherScatterCombine( | ||||
| 19144 | SDNode *N, TargetLowering::DAGCombinerInfo &DCI, SelectionDAG &DAG) { | ||||
| 19145 | MaskedGatherScatterSDNode *MGS = cast<MaskedGatherScatterSDNode>(N); | ||||
| 19146 | assert(MGS && "Can only combine gather load or scatter store nodes")(static_cast <bool> (MGS && "Can only combine gather load or scatter store nodes" ) ? void (0) : __assert_fail ("MGS && \"Can only combine gather load or scatter store nodes\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 19146, __extension__ __PRETTY_FUNCTION__)); | ||||
| 19147 | |||||
| 19148 | if (!DCI.isBeforeLegalize()) | ||||
| 19149 | return SDValue(); | ||||
| 19150 | |||||
| 19151 | SDLoc DL(MGS); | ||||
| 19152 | SDValue Chain = MGS->getChain(); | ||||
| 19153 | SDValue Scale = MGS->getScale(); | ||||
| 19154 | SDValue Index = MGS->getIndex(); | ||||
| 19155 | SDValue Mask = MGS->getMask(); | ||||
| 19156 | SDValue BasePtr = MGS->getBasePtr(); | ||||
| 19157 | ISD::MemIndexType IndexType = MGS->getIndexType(); | ||||
| 19158 | |||||
| 19159 | if (!findMoreOptimalIndexType(MGS, BasePtr, Index, DAG)) | ||||
| 19160 | return SDValue(); | ||||
| 19161 | |||||
| 19162 | // Here we catch such cases early and change MGATHER's IndexType to allow | ||||
| 19163 | // the use of an Index that's more legalisation friendly. | ||||
| 19164 | if (auto *MGT = dyn_cast<MaskedGatherSDNode>(MGS)) { | ||||
| 19165 | SDValue PassThru = MGT->getPassThru(); | ||||
| 19166 | SDValue Ops[] = {Chain, PassThru, Mask, BasePtr, Index, Scale}; | ||||
| 19167 | return DAG.getMaskedGather( | ||||
| 19168 | DAG.getVTList(N->getValueType(0), MVT::Other), MGT->getMemoryVT(), DL, | ||||
| 19169 | Ops, MGT->getMemOperand(), IndexType, MGT->getExtensionType()); | ||||
| 19170 | } | ||||
| 19171 | auto *MSC = cast<MaskedScatterSDNode>(MGS); | ||||
| 19172 | SDValue Data = MSC->getValue(); | ||||
| 19173 | SDValue Ops[] = {Chain, Data, Mask, BasePtr, Index, Scale}; | ||||
| 19174 | return DAG.getMaskedScatter(DAG.getVTList(MVT::Other), MSC->getMemoryVT(), DL, | ||||
| 19175 | Ops, MSC->getMemOperand(), IndexType, | ||||
| 19176 | MSC->isTruncatingStore()); | ||||
| 19177 | } | ||||
| 19178 | |||||
| 19179 | /// Target-specific DAG combine function for NEON load/store intrinsics | ||||
| 19180 | /// to merge base address updates. | ||||
| 19181 | static SDValue performNEONPostLDSTCombine(SDNode *N, | ||||
| 19182 | TargetLowering::DAGCombinerInfo &DCI, | ||||
| 19183 | SelectionDAG &DAG) { | ||||
| 19184 | if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) | ||||
| 19185 | return SDValue(); | ||||
| 19186 | |||||
| 19187 | unsigned AddrOpIdx = N->getNumOperands() - 1; | ||||
| 19188 | SDValue Addr = N->getOperand(AddrOpIdx); | ||||
| 19189 | |||||
| 19190 | // Search for a use of the address operand that is an increment. | ||||
| 19191 | for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), | ||||
| 19192 | UE = Addr.getNode()->use_end(); UI != UE; ++UI) { | ||||
| 19193 | SDNode *User = *UI; | ||||
| 19194 | if (User->getOpcode() != ISD::ADD || | ||||
| 19195 | UI.getUse().getResNo() != Addr.getResNo()) | ||||
| 19196 | continue; | ||||
| 19197 | |||||
| 19198 | // Check that the add is independent of the load/store. Otherwise, folding | ||||
| 19199 | // it would create a cycle. | ||||
| 19200 | SmallPtrSet<const SDNode *, 32> Visited; | ||||
| 19201 | SmallVector<const SDNode *, 16> Worklist; | ||||
| 19202 | Visited.insert(Addr.getNode()); | ||||
| 19203 | Worklist.push_back(N); | ||||
| 19204 | Worklist.push_back(User); | ||||
| 19205 | if (SDNode::hasPredecessorHelper(N, Visited, Worklist) || | ||||
| 19206 | SDNode::hasPredecessorHelper(User, Visited, Worklist)) | ||||
| 19207 | continue; | ||||
| 19208 | |||||
| 19209 | // Find the new opcode for the updating load/store. | ||||
| 19210 | bool IsStore = false; | ||||
| 19211 | bool IsLaneOp = false; | ||||
| 19212 | bool IsDupOp = false; | ||||
| 19213 | unsigned NewOpc = 0; | ||||
| 19214 | unsigned NumVecs = 0; | ||||
| 19215 | unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); | ||||
| 19216 | switch (IntNo) { | ||||
| 19217 | default: llvm_unreachable("unexpected intrinsic for Neon base update")::llvm::llvm_unreachable_internal("unexpected intrinsic for Neon base update" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 19217); | ||||
| 19218 | case Intrinsic::aarch64_neon_ld2: NewOpc = AArch64ISD::LD2post; | ||||
| 19219 | NumVecs = 2; break; | ||||
| 19220 | case Intrinsic::aarch64_neon_ld3: NewOpc = AArch64ISD::LD3post; | ||||
| 19221 | NumVecs = 3; break; | ||||
| 19222 | case Intrinsic::aarch64_neon_ld4: NewOpc = AArch64ISD::LD4post; | ||||
| 19223 | NumVecs = 4; break; | ||||
| 19224 | case Intrinsic::aarch64_neon_st2: NewOpc = AArch64ISD::ST2post; | ||||
| 19225 | NumVecs = 2; IsStore = true; break; | ||||
| 19226 | case Intrinsic::aarch64_neon_st3: NewOpc = AArch64ISD::ST3post; | ||||
| 19227 | NumVecs = 3; IsStore = true; break; | ||||
| 19228 | case Intrinsic::aarch64_neon_st4: NewOpc = AArch64ISD::ST4post; | ||||
| 19229 | NumVecs = 4; IsStore = true; break; | ||||
| 19230 | case Intrinsic::aarch64_neon_ld1x2: NewOpc = AArch64ISD::LD1x2post; | ||||
| 19231 | NumVecs = 2; break; | ||||
| 19232 | case Intrinsic::aarch64_neon_ld1x3: NewOpc = AArch64ISD::LD1x3post; | ||||
| 19233 | NumVecs = 3; break; | ||||
| 19234 | case Intrinsic::aarch64_neon_ld1x4: NewOpc = AArch64ISD::LD1x4post; | ||||
| 19235 | NumVecs = 4; break; | ||||
| 19236 | case Intrinsic::aarch64_neon_st1x2: NewOpc = AArch64ISD::ST1x2post; | ||||
| 19237 | NumVecs = 2; IsStore = true; break; | ||||
| 19238 | case Intrinsic::aarch64_neon_st1x3: NewOpc = AArch64ISD::ST1x3post; | ||||
| 19239 | NumVecs = 3; IsStore = true; break; | ||||
| 19240 | case Intrinsic::aarch64_neon_st1x4: NewOpc = AArch64ISD::ST1x4post; | ||||
| 19241 | NumVecs = 4; IsStore = true; break; | ||||
| 19242 | case Intrinsic::aarch64_neon_ld2r: NewOpc = AArch64ISD::LD2DUPpost; | ||||
| 19243 | NumVecs = 2; IsDupOp = true; break; | ||||
| 19244 | case Intrinsic::aarch64_neon_ld3r: NewOpc = AArch64ISD::LD3DUPpost; | ||||
| 19245 | NumVecs = 3; IsDupOp = true; break; | ||||
| 19246 | case Intrinsic::aarch64_neon_ld4r: NewOpc = AArch64ISD::LD4DUPpost; | ||||
| 19247 | NumVecs = 4; IsDupOp = true; break; | ||||
| 19248 | case Intrinsic::aarch64_neon_ld2lane: NewOpc = AArch64ISD::LD2LANEpost; | ||||
| 19249 | NumVecs = 2; IsLaneOp = true; break; | ||||
| 19250 | case Intrinsic::aarch64_neon_ld3lane: NewOpc = AArch64ISD::LD3LANEpost; | ||||
| 19251 | NumVecs = 3; IsLaneOp = true; break; | ||||
| 19252 | case Intrinsic::aarch64_neon_ld4lane: NewOpc = AArch64ISD::LD4LANEpost; | ||||
| 19253 | NumVecs = 4; IsLaneOp = true; break; | ||||
| 19254 | case Intrinsic::aarch64_neon_st2lane: NewOpc = AArch64ISD::ST2LANEpost; | ||||
| 19255 | NumVecs = 2; IsStore = true; IsLaneOp = true; break; | ||||
| 19256 | case Intrinsic::aarch64_neon_st3lane: NewOpc = AArch64ISD::ST3LANEpost; | ||||
| 19257 | NumVecs = 3; IsStore = true; IsLaneOp = true; break; | ||||
| 19258 | case Intrinsic::aarch64_neon_st4lane: NewOpc = AArch64ISD::ST4LANEpost; | ||||
| 19259 | NumVecs = 4; IsStore = true; IsLaneOp = true; break; | ||||
| 19260 | } | ||||
| 19261 | |||||
| 19262 | EVT VecTy; | ||||
| 19263 | if (IsStore) | ||||
| 19264 | VecTy = N->getOperand(2).getValueType(); | ||||
| 19265 | else | ||||
| 19266 | VecTy = N->getValueType(0); | ||||
| 19267 | |||||
| 19268 | // If the increment is a constant, it must match the memory ref size. | ||||
| 19269 | SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0); | ||||
| 19270 | if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) { | ||||
| 19271 | uint32_t IncVal = CInc->getZExtValue(); | ||||
| 19272 | unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8; | ||||
| 19273 | if (IsLaneOp || IsDupOp) | ||||
| 19274 | NumBytes /= VecTy.getVectorNumElements(); | ||||
| 19275 | if (IncVal != NumBytes) | ||||
| 19276 | continue; | ||||
| 19277 | Inc = DAG.getRegister(AArch64::XZR, MVT::i64); | ||||
| 19278 | } | ||||
| 19279 | SmallVector<SDValue, 8> Ops; | ||||
| 19280 | Ops.push_back(N->getOperand(0)); // Incoming chain | ||||
| 19281 | // Load lane and store have vector list as input. | ||||
| 19282 | if (IsLaneOp || IsStore) | ||||
| 19283 | for (unsigned i = 2; i < AddrOpIdx; ++i) | ||||
| 19284 | Ops.push_back(N->getOperand(i)); | ||||
| 19285 | Ops.push_back(Addr); // Base register | ||||
| 19286 | Ops.push_back(Inc); | ||||
| 19287 | |||||
| 19288 | // Return Types. | ||||
| 19289 | EVT Tys[6]; | ||||
| 19290 | unsigned NumResultVecs = (IsStore ? 0 : NumVecs); | ||||
| 19291 | unsigned n; | ||||
| 19292 | for (n = 0; n < NumResultVecs; ++n) | ||||
| 19293 | Tys[n] = VecTy; | ||||
| 19294 | Tys[n++] = MVT::i64; // Type of write back register | ||||
| 19295 | Tys[n] = MVT::Other; // Type of the chain | ||||
| 19296 | SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs + 2)); | ||||
| 19297 | |||||
| 19298 | MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N); | ||||
| 19299 | SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys, Ops, | ||||
| 19300 | MemInt->getMemoryVT(), | ||||
| 19301 | MemInt->getMemOperand()); | ||||
| 19302 | |||||
| 19303 | // Update the uses. | ||||
| 19304 | std::vector<SDValue> NewResults; | ||||
| 19305 | for (unsigned i = 0; i < NumResultVecs; ++i) { | ||||
| 19306 | NewResults.push_back(SDValue(UpdN.getNode(), i)); | ||||
| 19307 | } | ||||
| 19308 | NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs + 1)); | ||||
| 19309 | DCI.CombineTo(N, NewResults); | ||||
| 19310 | DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs)); | ||||
| 19311 | |||||
| 19312 | break; | ||||
| 19313 | } | ||||
| 19314 | return SDValue(); | ||||
| 19315 | } | ||||
| 19316 | |||||
| 19317 | // Checks to see if the value is the prescribed width and returns information | ||||
| 19318 | // about its extension mode. | ||||
| 19319 | static | ||||
| 19320 | bool checkValueWidth(SDValue V, unsigned width, ISD::LoadExtType &ExtType) { | ||||
| 19321 | ExtType = ISD::NON_EXTLOAD; | ||||
| 19322 | switch(V.getNode()->getOpcode()) { | ||||
| 19323 | default: | ||||
| 19324 | return false; | ||||
| 19325 | case ISD::LOAD: { | ||||
| 19326 | LoadSDNode *LoadNode = cast<LoadSDNode>(V.getNode()); | ||||
| 19327 | if ((LoadNode->getMemoryVT() == MVT::i8 && width == 8) | ||||
| 19328 | || (LoadNode->getMemoryVT() == MVT::i16 && width == 16)) { | ||||
| 19329 | ExtType = LoadNode->getExtensionType(); | ||||
| 19330 | return true; | ||||
| 19331 | } | ||||
| 19332 | return false; | ||||
| 19333 | } | ||||
| 19334 | case ISD::AssertSext: { | ||||
| 19335 | VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1)); | ||||
| 19336 | if ((TypeNode->getVT() == MVT::i8 && width == 8) | ||||
| 19337 | || (TypeNode->getVT() == MVT::i16 && width == 16)) { | ||||
| 19338 | ExtType = ISD::SEXTLOAD; | ||||
| 19339 | return true; | ||||
| 19340 | } | ||||
| 19341 | return false; | ||||
| 19342 | } | ||||
| 19343 | case ISD::AssertZext: { | ||||
| 19344 | VTSDNode *TypeNode = cast<VTSDNode>(V.getNode()->getOperand(1)); | ||||
| 19345 | if ((TypeNode->getVT() == MVT::i8 && width == 8) | ||||
| 19346 | || (TypeNode->getVT() == MVT::i16 && width == 16)) { | ||||
| 19347 | ExtType = ISD::ZEXTLOAD; | ||||
| 19348 | return true; | ||||
| 19349 | } | ||||
| 19350 | return false; | ||||
| 19351 | } | ||||
| 19352 | case ISD::Constant: | ||||
| 19353 | case ISD::TargetConstant: { | ||||
| 19354 | return std::abs(cast<ConstantSDNode>(V.getNode())->getSExtValue()) < | ||||
| 19355 | 1LL << (width - 1); | ||||
| 19356 | } | ||||
| 19357 | } | ||||
| 19358 | |||||
| 19359 | return true; | ||||
| 19360 | } | ||||
| 19361 | |||||
| 19362 | // This function does a whole lot of voodoo to determine if the tests are | ||||
| 19363 | // equivalent without and with a mask. Essentially what happens is that given a | ||||
| 19364 | // DAG resembling: | ||||
| 19365 | // | ||||
| 19366 | // +-------------+ +-------------+ +-------------+ +-------------+ | ||||
| 19367 | // | Input | | AddConstant | | CompConstant| | CC | | ||||
| 19368 | // +-------------+ +-------------+ +-------------+ +-------------+ | ||||
| 19369 | // | | | | | ||||
| 19370 | // V V | +----------+ | ||||
| 19371 | // +-------------+ +----+ | | | ||||
| 19372 | // | ADD | |0xff| | | | ||||
| 19373 | // +-------------+ +----+ | | | ||||
| 19374 | // | | | | | ||||
| 19375 | // V V | | | ||||
| 19376 | // +-------------+ | | | ||||
| 19377 | // | AND | | | | ||||
| 19378 | // +-------------+ | | | ||||
| 19379 | // | | | | ||||
| 19380 | // +-----+ | | | ||||
| 19381 | // | | | | ||||
| 19382 | // V V V | ||||
| 19383 | // +-------------+ | ||||
| 19384 | // | CMP | | ||||
| 19385 | // +-------------+ | ||||
| 19386 | // | ||||
| 19387 | // The AND node may be safely removed for some combinations of inputs. In | ||||
| 19388 | // particular we need to take into account the extension type of the Input, | ||||
| 19389 | // the exact values of AddConstant, CompConstant, and CC, along with the nominal | ||||
| 19390 | // width of the input (this can work for any width inputs, the above graph is | ||||
| 19391 | // specific to 8 bits. | ||||
| 19392 | // | ||||
| 19393 | // The specific equations were worked out by generating output tables for each | ||||
| 19394 | // AArch64CC value in terms of and AddConstant (w1), CompConstant(w2). The | ||||
| 19395 | // problem was simplified by working with 4 bit inputs, which means we only | ||||
| 19396 | // needed to reason about 24 distinct bit patterns: 8 patterns unique to zero | ||||
| 19397 | // extension (8,15), 8 patterns unique to sign extensions (-8,-1), and 8 | ||||
| 19398 | // patterns present in both extensions (0,7). For every distinct set of | ||||
| 19399 | // AddConstant and CompConstants bit patterns we can consider the masked and | ||||
| 19400 | // unmasked versions to be equivalent if the result of this function is true for | ||||
| 19401 | // all 16 distinct bit patterns of for the current extension type of Input (w0). | ||||
| 19402 | // | ||||
| 19403 | // sub w8, w0, w1 | ||||
| 19404 | // and w10, w8, #0x0f | ||||
| 19405 | // cmp w8, w2 | ||||
| 19406 | // cset w9, AArch64CC | ||||
| 19407 | // cmp w10, w2 | ||||
| 19408 | // cset w11, AArch64CC | ||||
| 19409 | // cmp w9, w11 | ||||
| 19410 | // cset w0, eq | ||||
| 19411 | // ret | ||||
| 19412 | // | ||||
| 19413 | // Since the above function shows when the outputs are equivalent it defines | ||||
| 19414 | // when it is safe to remove the AND. Unfortunately it only runs on AArch64 and | ||||
| 19415 | // would be expensive to run during compiles. The equations below were written | ||||
| 19416 | // in a test harness that confirmed they gave equivalent outputs to the above | ||||
| 19417 | // for all inputs function, so they can be used determine if the removal is | ||||
| 19418 | // legal instead. | ||||
| 19419 | // | ||||
| 19420 | // isEquivalentMaskless() is the code for testing if the AND can be removed | ||||
| 19421 | // factored out of the DAG recognition as the DAG can take several forms. | ||||
| 19422 | |||||
| 19423 | static bool isEquivalentMaskless(unsigned CC, unsigned width, | ||||
| 19424 | ISD::LoadExtType ExtType, int AddConstant, | ||||
| 19425 | int CompConstant) { | ||||
| 19426 | // By being careful about our equations and only writing the in term | ||||
| 19427 | // symbolic values and well known constants (0, 1, -1, MaxUInt) we can | ||||
| 19428 | // make them generally applicable to all bit widths. | ||||
| 19429 | int MaxUInt = (1 << width); | ||||
| 19430 | |||||
| 19431 | // For the purposes of these comparisons sign extending the type is | ||||
| 19432 | // equivalent to zero extending the add and displacing it by half the integer | ||||
| 19433 | // width. Provided we are careful and make sure our equations are valid over | ||||
| 19434 | // the whole range we can just adjust the input and avoid writing equations | ||||
| 19435 | // for sign extended inputs. | ||||
| 19436 | if (ExtType == ISD::SEXTLOAD) | ||||
| 19437 | AddConstant -= (1 << (width-1)); | ||||
| 19438 | |||||
| 19439 | switch(CC) { | ||||
| 19440 | case AArch64CC::LE: | ||||
| 19441 | case AArch64CC::GT: | ||||
| 19442 | if ((AddConstant == 0) || | ||||
| 19443 | (CompConstant == MaxUInt - 1 && AddConstant < 0) || | ||||
| 19444 | (AddConstant >= 0 && CompConstant < 0) || | ||||
| 19445 | (AddConstant <= 0 && CompConstant <= 0 && CompConstant < AddConstant)) | ||||
| 19446 | return true; | ||||
| 19447 | break; | ||||
| 19448 | case AArch64CC::LT: | ||||
| 19449 | case AArch64CC::GE: | ||||
| 19450 | if ((AddConstant == 0) || | ||||
| 19451 | (AddConstant >= 0 && CompConstant <= 0) || | ||||
| 19452 | (AddConstant <= 0 && CompConstant <= 0 && CompConstant <= AddConstant)) | ||||
| 19453 | return true; | ||||
| 19454 | break; | ||||
| 19455 | case AArch64CC::HI: | ||||
| 19456 | case AArch64CC::LS: | ||||
| 19457 | if ((AddConstant >= 0 && CompConstant < 0) || | ||||
| 19458 | (AddConstant <= 0 && CompConstant >= -1 && | ||||
| 19459 | CompConstant < AddConstant + MaxUInt)) | ||||
| 19460 | return true; | ||||
| 19461 | break; | ||||
| 19462 | case AArch64CC::PL: | ||||
| 19463 | case AArch64CC::MI: | ||||
| 19464 | if ((AddConstant == 0) || | ||||
| 19465 | (AddConstant > 0 && CompConstant <= 0) || | ||||
| 19466 | (AddConstant < 0 && CompConstant <= AddConstant)) | ||||
| 19467 | return true; | ||||
| 19468 | break; | ||||
| 19469 | case AArch64CC::LO: | ||||
| 19470 | case AArch64CC::HS: | ||||
| 19471 | if ((AddConstant >= 0 && CompConstant <= 0) || | ||||
| 19472 | (AddConstant <= 0 && CompConstant >= 0 && | ||||
| 19473 | CompConstant <= AddConstant + MaxUInt)) | ||||
| 19474 | return true; | ||||
| 19475 | break; | ||||
| 19476 | case AArch64CC::EQ: | ||||
| 19477 | case AArch64CC::NE: | ||||
| 19478 | if ((AddConstant > 0 && CompConstant < 0) || | ||||
| 19479 | (AddConstant < 0 && CompConstant >= 0 && | ||||
| 19480 | CompConstant < AddConstant + MaxUInt) || | ||||
| 19481 | (AddConstant >= 0 && CompConstant >= 0 && | ||||
| 19482 | CompConstant >= AddConstant) || | ||||
| 19483 | (AddConstant <= 0 && CompConstant < 0 && CompConstant < AddConstant)) | ||||
| 19484 | return true; | ||||
| 19485 | break; | ||||
| 19486 | case AArch64CC::VS: | ||||
| 19487 | case AArch64CC::VC: | ||||
| 19488 | case AArch64CC::AL: | ||||
| 19489 | case AArch64CC::NV: | ||||
| 19490 | return true; | ||||
| 19491 | case AArch64CC::Invalid: | ||||
| 19492 | break; | ||||
| 19493 | } | ||||
| 19494 | |||||
| 19495 | return false; | ||||
| 19496 | } | ||||
| 19497 | |||||
| 19498 | static | ||||
| 19499 | SDValue performCONDCombine(SDNode *N, | ||||
| 19500 | TargetLowering::DAGCombinerInfo &DCI, | ||||
| 19501 | SelectionDAG &DAG, unsigned CCIndex, | ||||
| 19502 | unsigned CmpIndex) { | ||||
| 19503 | unsigned CC = cast<ConstantSDNode>(N->getOperand(CCIndex))->getSExtValue(); | ||||
| 19504 | SDNode *SubsNode = N->getOperand(CmpIndex).getNode(); | ||||
| 19505 | unsigned CondOpcode = SubsNode->getOpcode(); | ||||
| 19506 | |||||
| 19507 | if (CondOpcode != AArch64ISD::SUBS || SubsNode->hasAnyUseOfValue(0)) | ||||
| 19508 | return SDValue(); | ||||
| 19509 | |||||
| 19510 | // There is a SUBS feeding this condition. Is it fed by a mask we can | ||||
| 19511 | // use? | ||||
| 19512 | |||||
| 19513 | SDNode *AndNode = SubsNode->getOperand(0).getNode(); | ||||
| 19514 | unsigned MaskBits = 0; | ||||
| 19515 | |||||
| 19516 | if (AndNode->getOpcode() != ISD::AND) | ||||
| 19517 | return SDValue(); | ||||
| 19518 | |||||
| 19519 | if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(AndNode->getOperand(1))) { | ||||
| 19520 | uint32_t CNV = CN->getZExtValue(); | ||||
| 19521 | if (CNV == 255) | ||||
| 19522 | MaskBits = 8; | ||||
| 19523 | else if (CNV == 65535) | ||||
| 19524 | MaskBits = 16; | ||||
| 19525 | } | ||||
| 19526 | |||||
| 19527 | if (!MaskBits) | ||||
| 19528 | return SDValue(); | ||||
| 19529 | |||||
| 19530 | SDValue AddValue = AndNode->getOperand(0); | ||||
| 19531 | |||||
| 19532 | if (AddValue.getOpcode() != ISD::ADD) | ||||
| 19533 | return SDValue(); | ||||
| 19534 | |||||
| 19535 | // The basic dag structure is correct, grab the inputs and validate them. | ||||
| 19536 | |||||
| 19537 | SDValue AddInputValue1 = AddValue.getNode()->getOperand(0); | ||||
| 19538 | SDValue AddInputValue2 = AddValue.getNode()->getOperand(1); | ||||
| 19539 | SDValue SubsInputValue = SubsNode->getOperand(1); | ||||
| 19540 | |||||
| 19541 | // The mask is present and the provenance of all the values is a smaller type, | ||||
| 19542 | // lets see if the mask is superfluous. | ||||
| 19543 | |||||
| 19544 | if (!isa<ConstantSDNode>(AddInputValue2.getNode()) || | ||||
| 19545 | !isa<ConstantSDNode>(SubsInputValue.getNode())) | ||||
| 19546 | return SDValue(); | ||||
| 19547 | |||||
| 19548 | ISD::LoadExtType ExtType; | ||||
| 19549 | |||||
| 19550 | if (!checkValueWidth(SubsInputValue, MaskBits, ExtType) || | ||||
| 19551 | !checkValueWidth(AddInputValue2, MaskBits, ExtType) || | ||||
| 19552 | !checkValueWidth(AddInputValue1, MaskBits, ExtType) ) | ||||
| 19553 | return SDValue(); | ||||
| 19554 | |||||
| 19555 | if(!isEquivalentMaskless(CC, MaskBits, ExtType, | ||||
| 19556 | cast<ConstantSDNode>(AddInputValue2.getNode())->getSExtValue(), | ||||
| 19557 | cast<ConstantSDNode>(SubsInputValue.getNode())->getSExtValue())) | ||||
| 19558 | return SDValue(); | ||||
| 19559 | |||||
| 19560 | // The AND is not necessary, remove it. | ||||
| 19561 | |||||
| 19562 | SDVTList VTs = DAG.getVTList(SubsNode->getValueType(0), | ||||
| 19563 | SubsNode->getValueType(1)); | ||||
| 19564 | SDValue Ops[] = { AddValue, SubsNode->getOperand(1) }; | ||||
| 19565 | |||||
| 19566 | SDValue NewValue = DAG.getNode(CondOpcode, SDLoc(SubsNode), VTs, Ops); | ||||
| 19567 | DAG.ReplaceAllUsesWith(SubsNode, NewValue.getNode()); | ||||
| 19568 | |||||
| 19569 | return SDValue(N, 0); | ||||
| 19570 | } | ||||
| 19571 | |||||
| 19572 | // Optimize compare with zero and branch. | ||||
| 19573 | static SDValue performBRCONDCombine(SDNode *N, | ||||
| 19574 | TargetLowering::DAGCombinerInfo &DCI, | ||||
| 19575 | SelectionDAG &DAG) { | ||||
| 19576 | MachineFunction &MF = DAG.getMachineFunction(); | ||||
| 19577 | // Speculation tracking/SLH assumes that optimized TB(N)Z/CB(N)Z instructions | ||||
| 19578 | // will not be produced, as they are conditional branch instructions that do | ||||
| 19579 | // not set flags. | ||||
| 19580 | if (MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening)) | ||||
| 19581 | return SDValue(); | ||||
| 19582 | |||||
| 19583 | if (SDValue NV = performCONDCombine(N, DCI, DAG, 2, 3)) | ||||
| 19584 | N = NV.getNode(); | ||||
| 19585 | SDValue Chain = N->getOperand(0); | ||||
| 19586 | SDValue Dest = N->getOperand(1); | ||||
| 19587 | SDValue CCVal = N->getOperand(2); | ||||
| 19588 | SDValue Cmp = N->getOperand(3); | ||||
| 19589 | |||||
| 19590 | assert(isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!")(static_cast <bool> (isa<ConstantSDNode>(CCVal) && "Expected a ConstantSDNode here!") ? void (0) : __assert_fail ("isa<ConstantSDNode>(CCVal) && \"Expected a ConstantSDNode here!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 19590, __extension__ __PRETTY_FUNCTION__)); | ||||
| 19591 | unsigned CC = cast<ConstantSDNode>(CCVal)->getZExtValue(); | ||||
| 19592 | if (CC != AArch64CC::EQ && CC != AArch64CC::NE) | ||||
| 19593 | return SDValue(); | ||||
| 19594 | |||||
| 19595 | unsigned CmpOpc = Cmp.getOpcode(); | ||||
| 19596 | if (CmpOpc != AArch64ISD::ADDS && CmpOpc != AArch64ISD::SUBS) | ||||
| 19597 | return SDValue(); | ||||
| 19598 | |||||
| 19599 | // Only attempt folding if there is only one use of the flag and no use of the | ||||
| 19600 | // value. | ||||
| 19601 | if (!Cmp->hasNUsesOfValue(0, 0) || !Cmp->hasNUsesOfValue(1, 1)) | ||||
| 19602 | return SDValue(); | ||||
| 19603 | |||||
| 19604 | SDValue LHS = Cmp.getOperand(0); | ||||
| 19605 | SDValue RHS = Cmp.getOperand(1); | ||||
| 19606 | |||||
| 19607 | assert(LHS.getValueType() == RHS.getValueType() &&(static_cast <bool> (LHS.getValueType() == RHS.getValueType () && "Expected the value type to be the same for both operands!" ) ? void (0) : __assert_fail ("LHS.getValueType() == RHS.getValueType() && \"Expected the value type to be the same for both operands!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 19608, __extension__ __PRETTY_FUNCTION__)) | ||||
| 19608 | "Expected the value type to be the same for both operands!")(static_cast <bool> (LHS.getValueType() == RHS.getValueType () && "Expected the value type to be the same for both operands!" ) ? void (0) : __assert_fail ("LHS.getValueType() == RHS.getValueType() && \"Expected the value type to be the same for both operands!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 19608, __extension__ __PRETTY_FUNCTION__)); | ||||
| 19609 | if (LHS.getValueType() != MVT::i32 && LHS.getValueType() != MVT::i64) | ||||
| 19610 | return SDValue(); | ||||
| 19611 | |||||
| 19612 | if (isNullConstant(LHS)) | ||||
| 19613 | std::swap(LHS, RHS); | ||||
| 19614 | |||||
| 19615 | if (!isNullConstant(RHS)) | ||||
| 19616 | return SDValue(); | ||||
| 19617 | |||||
| 19618 | if (LHS.getOpcode() == ISD::SHL || LHS.getOpcode() == ISD::SRA || | ||||
| 19619 | LHS.getOpcode() == ISD::SRL) | ||||
| 19620 | return SDValue(); | ||||
| 19621 | |||||
| 19622 | // Fold the compare into the branch instruction. | ||||
| 19623 | SDValue BR; | ||||
| 19624 | if (CC == AArch64CC::EQ) | ||||
| 19625 | BR = DAG.getNode(AArch64ISD::CBZ, SDLoc(N), MVT::Other, Chain, LHS, Dest); | ||||
| 19626 | else | ||||
| 19627 | BR = DAG.getNode(AArch64ISD::CBNZ, SDLoc(N), MVT::Other, Chain, LHS, Dest); | ||||
| 19628 | |||||
| 19629 | // Do not add new nodes to DAG combiner worklist. | ||||
| 19630 | DCI.CombineTo(N, BR, false); | ||||
| 19631 | |||||
| 19632 | return SDValue(); | ||||
| 19633 | } | ||||
| 19634 | |||||
| 19635 | static SDValue foldCSELofCTTZ(SDNode *N, SelectionDAG &DAG) { | ||||
| 19636 | unsigned CC = N->getConstantOperandVal(2); | ||||
| 19637 | SDValue SUBS = N->getOperand(3); | ||||
| 19638 | SDValue Zero, CTTZ; | ||||
| 19639 | |||||
| 19640 | if (CC == AArch64CC::EQ && SUBS.getOpcode() == AArch64ISD::SUBS) { | ||||
| 19641 | Zero = N->getOperand(0); | ||||
| 19642 | CTTZ = N->getOperand(1); | ||||
| 19643 | } else if (CC == AArch64CC::NE && SUBS.getOpcode() == AArch64ISD::SUBS) { | ||||
| 19644 | Zero = N->getOperand(1); | ||||
| 19645 | CTTZ = N->getOperand(0); | ||||
| 19646 | } else | ||||
| 19647 | return SDValue(); | ||||
| 19648 | |||||
| 19649 | if ((CTTZ.getOpcode() != ISD::CTTZ && CTTZ.getOpcode() != ISD::TRUNCATE) || | ||||
| 19650 | (CTTZ.getOpcode() == ISD::TRUNCATE && | ||||
| 19651 | CTTZ.getOperand(0).getOpcode() != ISD::CTTZ)) | ||||
| 19652 | return SDValue(); | ||||
| 19653 | |||||
| 19654 | assert((CTTZ.getValueType() == MVT::i32 || CTTZ.getValueType() == MVT::i64) &&(static_cast <bool> ((CTTZ.getValueType() == MVT::i32 || CTTZ.getValueType() == MVT::i64) && "Illegal type in CTTZ folding" ) ? void (0) : __assert_fail ("(CTTZ.getValueType() == MVT::i32 || CTTZ.getValueType() == MVT::i64) && \"Illegal type in CTTZ folding\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 19655, __extension__ __PRETTY_FUNCTION__)) | ||||
| 19655 | "Illegal type in CTTZ folding")(static_cast <bool> ((CTTZ.getValueType() == MVT::i32 || CTTZ.getValueType() == MVT::i64) && "Illegal type in CTTZ folding" ) ? void (0) : __assert_fail ("(CTTZ.getValueType() == MVT::i32 || CTTZ.getValueType() == MVT::i64) && \"Illegal type in CTTZ folding\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 19655, __extension__ __PRETTY_FUNCTION__)); | ||||
| 19656 | |||||
| 19657 | if (!isNullConstant(Zero) || !isNullConstant(SUBS.getOperand(1))) | ||||
| 19658 | return SDValue(); | ||||
| 19659 | |||||
| 19660 | SDValue X = CTTZ.getOpcode() == ISD::TRUNCATE | ||||
| 19661 | ? CTTZ.getOperand(0).getOperand(0) | ||||
| 19662 | : CTTZ.getOperand(0); | ||||
| 19663 | |||||
| 19664 | if (X != SUBS.getOperand(0)) | ||||
| 19665 | return SDValue(); | ||||
| 19666 | |||||
| 19667 | unsigned BitWidth = CTTZ.getOpcode() == ISD::TRUNCATE | ||||
| 19668 | ? CTTZ.getOperand(0).getValueSizeInBits() | ||||
| 19669 | : CTTZ.getValueSizeInBits(); | ||||
| 19670 | SDValue BitWidthMinusOne = | ||||
| 19671 | DAG.getConstant(BitWidth - 1, SDLoc(N), CTTZ.getValueType()); | ||||
| 19672 | return DAG.getNode(ISD::AND, SDLoc(N), CTTZ.getValueType(), CTTZ, | ||||
| 19673 | BitWidthMinusOne); | ||||
| 19674 | } | ||||
| 19675 | |||||
| 19676 | // (CSEL l r EQ (CMP (CSEL x y cc2 cond) x)) => (CSEL l r cc2 cond) | ||||
| 19677 | // (CSEL l r EQ (CMP (CSEL x y cc2 cond) y)) => (CSEL l r !cc2 cond) | ||||
| 19678 | // Where x and y are constants | ||||
| 19679 | |||||
| 19680 | // (CSEL l r NE (CMP (CSEL x y cc2 cond) x)) => (CSEL l r !cc2 cond) | ||||
| 19681 | // (CSEL l r NE (CMP (CSEL x y cc2 cond) y)) => (CSEL l r cc2 cond) | ||||
| 19682 | // Where x and y are constants | ||||
| 19683 | static SDValue foldCSELOfCSEL(SDNode *Op, SelectionDAG &DAG) { | ||||
| 19684 | SDValue L = Op->getOperand(0); | ||||
| 19685 | SDValue R = Op->getOperand(1); | ||||
| 19686 | AArch64CC::CondCode OpCC = | ||||
| 19687 | static_cast<AArch64CC::CondCode>(Op->getConstantOperandVal(2)); | ||||
| 19688 | |||||
| 19689 | SDValue OpCmp = Op->getOperand(3); | ||||
| 19690 | if (!isCMP(OpCmp)) | ||||
| 19691 | return SDValue(); | ||||
| 19692 | |||||
| 19693 | SDValue CmpLHS = OpCmp.getOperand(0); | ||||
| 19694 | SDValue CmpRHS = OpCmp.getOperand(1); | ||||
| 19695 | |||||
| 19696 | if (CmpRHS.getOpcode() == AArch64ISD::CSEL) | ||||
| 19697 | std::swap(CmpLHS, CmpRHS); | ||||
| 19698 | else if (CmpLHS.getOpcode() != AArch64ISD::CSEL) | ||||
| 19699 | return SDValue(); | ||||
| 19700 | |||||
| 19701 | SDValue X = CmpLHS->getOperand(0); | ||||
| 19702 | SDValue Y = CmpLHS->getOperand(1); | ||||
| 19703 | if (!isa<ConstantSDNode>(X) || !isa<ConstantSDNode>(Y)) { | ||||
| 19704 | return SDValue(); | ||||
| 19705 | } | ||||
| 19706 | |||||
| 19707 | AArch64CC::CondCode CC = | ||||
| 19708 | static_cast<AArch64CC::CondCode>(CmpLHS->getConstantOperandVal(2)); | ||||
| 19709 | SDValue Cond = CmpLHS->getOperand(3); | ||||
| 19710 | |||||
| 19711 | if (CmpRHS == Y) | ||||
| 19712 | CC = AArch64CC::getInvertedCondCode(CC); | ||||
| 19713 | else if (CmpRHS != X) | ||||
| 19714 | return SDValue(); | ||||
| 19715 | |||||
| 19716 | if (OpCC == AArch64CC::NE) | ||||
| 19717 | CC = AArch64CC::getInvertedCondCode(CC); | ||||
| 19718 | else if (OpCC != AArch64CC::EQ) | ||||
| 19719 | return SDValue(); | ||||
| 19720 | |||||
| 19721 | SDLoc DL(Op); | ||||
| 19722 | EVT VT = Op->getValueType(0); | ||||
| 19723 | |||||
| 19724 | SDValue CCValue = DAG.getConstant(CC, DL, MVT::i32); | ||||
| 19725 | return DAG.getNode(AArch64ISD::CSEL, DL, VT, L, R, CCValue, Cond); | ||||
| 19726 | } | ||||
| 19727 | |||||
| 19728 | // Optimize CSEL instructions | ||||
| 19729 | static SDValue performCSELCombine(SDNode *N, | ||||
| 19730 | TargetLowering::DAGCombinerInfo &DCI, | ||||
| 19731 | SelectionDAG &DAG) { | ||||
| 19732 | // CSEL x, x, cc -> x | ||||
| 19733 | if (N->getOperand(0) == N->getOperand(1)) | ||||
| 19734 | return N->getOperand(0); | ||||
| 19735 | |||||
| 19736 | if (SDValue R = foldCSELOfCSEL(N, DAG)) | ||||
| 19737 | return R; | ||||
| 19738 | |||||
| 19739 | // CSEL 0, cttz(X), eq(X, 0) -> AND cttz bitwidth-1 | ||||
| 19740 | // CSEL cttz(X), 0, ne(X, 0) -> AND cttz bitwidth-1 | ||||
| 19741 | if (SDValue Folded = foldCSELofCTTZ(N, DAG)) | ||||
| 19742 | return Folded; | ||||
| 19743 | |||||
| 19744 | return performCONDCombine(N, DCI, DAG, 2, 3); | ||||
| 19745 | } | ||||
| 19746 | |||||
| 19747 | // Try to re-use an already extended operand of a vector SetCC feeding a | ||||
| 19748 | // extended select. Doing so avoids requiring another full extension of the | ||||
| 19749 | // SET_CC result when lowering the select. | ||||
| 19750 | static SDValue tryToWidenSetCCOperands(SDNode *Op, SelectionDAG &DAG) { | ||||
| 19751 | EVT Op0MVT = Op->getOperand(0).getValueType(); | ||||
| 19752 | if (!Op0MVT.isVector() || Op->use_empty()) | ||||
| 19753 | return SDValue(); | ||||
| 19754 | |||||
| 19755 | // Make sure that all uses of Op are VSELECTs with result matching types where | ||||
| 19756 | // the result type has a larger element type than the SetCC operand. | ||||
| 19757 | SDNode *FirstUse = *Op->use_begin(); | ||||
| 19758 | if (FirstUse->getOpcode() != ISD::VSELECT) | ||||
| 19759 | return SDValue(); | ||||
| 19760 | EVT UseMVT = FirstUse->getValueType(0); | ||||
| 19761 | if (UseMVT.getScalarSizeInBits() <= Op0MVT.getScalarSizeInBits()) | ||||
| 19762 | return SDValue(); | ||||
| 19763 | if (any_of(Op->uses(), [&UseMVT](const SDNode *N) { | ||||
| 19764 | return N->getOpcode() != ISD::VSELECT || N->getValueType(0) != UseMVT; | ||||
| 19765 | })) | ||||
| 19766 | return SDValue(); | ||||
| 19767 | |||||
| 19768 | APInt V; | ||||
| 19769 | if (!ISD::isConstantSplatVector(Op->getOperand(1).getNode(), V)) | ||||
| 19770 | return SDValue(); | ||||
| 19771 | |||||
| 19772 | SDLoc DL(Op); | ||||
| 19773 | SDValue Op0ExtV; | ||||
| 19774 | SDValue Op1ExtV; | ||||
| 19775 | ISD::CondCode CC = cast<CondCodeSDNode>(Op->getOperand(2))->get(); | ||||
| 19776 | // Check if the first operand of the SET_CC is already extended. If it is, | ||||
| 19777 | // split the SET_CC and re-use the extended version of the operand. | ||||
| 19778 | SDNode *Op0SExt = DAG.getNodeIfExists(ISD::SIGN_EXTEND, DAG.getVTList(UseMVT), | ||||
| 19779 | Op->getOperand(0)); | ||||
| 19780 | SDNode *Op0ZExt = DAG.getNodeIfExists(ISD::ZERO_EXTEND, DAG.getVTList(UseMVT), | ||||
| 19781 | Op->getOperand(0)); | ||||
| 19782 | if (Op0SExt && (isSignedIntSetCC(CC) || isIntEqualitySetCC(CC))) { | ||||
| 19783 | Op0ExtV = SDValue(Op0SExt, 0); | ||||
| 19784 | Op1ExtV = DAG.getNode(ISD::SIGN_EXTEND, DL, UseMVT, Op->getOperand(1)); | ||||
| 19785 | } else if (Op0ZExt && (isUnsignedIntSetCC(CC) || isIntEqualitySetCC(CC))) { | ||||
| 19786 | Op0ExtV = SDValue(Op0ZExt, 0); | ||||
| 19787 | Op1ExtV = DAG.getNode(ISD::ZERO_EXTEND, DL, UseMVT, Op->getOperand(1)); | ||||
| 19788 | } else | ||||
| 19789 | return SDValue(); | ||||
| 19790 | |||||
| 19791 | return DAG.getNode(ISD::SETCC, DL, UseMVT.changeVectorElementType(MVT::i1), | ||||
| 19792 | Op0ExtV, Op1ExtV, Op->getOperand(2)); | ||||
| 19793 | } | ||||
| 19794 | |||||
| 19795 | static SDValue performSETCCCombine(SDNode *N, | ||||
| 19796 | TargetLowering::DAGCombinerInfo &DCI, | ||||
| 19797 | SelectionDAG &DAG) { | ||||
| 19798 | assert(N->getOpcode() == ISD::SETCC && "Unexpected opcode!")(static_cast <bool> (N->getOpcode() == ISD::SETCC && "Unexpected opcode!") ? void (0) : __assert_fail ("N->getOpcode() == ISD::SETCC && \"Unexpected opcode!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 19798, __extension__ __PRETTY_FUNCTION__)); | ||||
| 19799 | SDValue LHS = N->getOperand(0); | ||||
| 19800 | SDValue RHS = N->getOperand(1); | ||||
| 19801 | ISD::CondCode Cond = cast<CondCodeSDNode>(N->getOperand(2))->get(); | ||||
| 19802 | SDLoc DL(N); | ||||
| 19803 | EVT VT = N->getValueType(0); | ||||
| 19804 | |||||
| 19805 | if (SDValue V = tryToWidenSetCCOperands(N, DAG)) | ||||
| 19806 | return V; | ||||
| 19807 | |||||
| 19808 | // setcc (csel 0, 1, cond, X), 1, ne ==> csel 0, 1, !cond, X | ||||
| 19809 | if (Cond == ISD::SETNE && isOneConstant(RHS) && | ||||
| 19810 | LHS->getOpcode() == AArch64ISD::CSEL && | ||||
| 19811 | isNullConstant(LHS->getOperand(0)) && isOneConstant(LHS->getOperand(1)) && | ||||
| 19812 | LHS->hasOneUse()) { | ||||
| 19813 | // Invert CSEL's condition. | ||||
| 19814 | auto *OpCC = cast<ConstantSDNode>(LHS.getOperand(2)); | ||||
| 19815 | auto OldCond = static_cast<AArch64CC::CondCode>(OpCC->getZExtValue()); | ||||
| 19816 | auto NewCond = getInvertedCondCode(OldCond); | ||||
| 19817 | |||||
| 19818 | // csel 0, 1, !cond, X | ||||
| 19819 | SDValue CSEL = | ||||
| 19820 | DAG.getNode(AArch64ISD::CSEL, DL, LHS.getValueType(), LHS.getOperand(0), | ||||
| 19821 | LHS.getOperand(1), DAG.getConstant(NewCond, DL, MVT::i32), | ||||
| 19822 | LHS.getOperand(3)); | ||||
| 19823 | return DAG.getZExtOrTrunc(CSEL, DL, VT); | ||||
| 19824 | } | ||||
| 19825 | |||||
| 19826 | // setcc (srl x, imm), 0, ne ==> setcc (and x, (-1 << imm)), 0, ne | ||||
| 19827 | if (Cond == ISD::SETNE && isNullConstant(RHS) && | ||||
| 19828 | LHS->getOpcode() == ISD::SRL && isa<ConstantSDNode>(LHS->getOperand(1)) && | ||||
| 19829 | LHS->hasOneUse()) { | ||||
| 19830 | EVT TstVT = LHS->getValueType(0); | ||||
| 19831 | if (TstVT.isScalarInteger() && TstVT.getFixedSizeInBits() <= 64) { | ||||
| 19832 | // this pattern will get better opt in emitComparison | ||||
| 19833 | uint64_t TstImm = -1ULL << LHS->getConstantOperandVal(1); | ||||
| 19834 | SDValue TST = DAG.getNode(ISD::AND, DL, TstVT, LHS->getOperand(0), | ||||
| 19835 | DAG.getConstant(TstImm, DL, TstVT)); | ||||
| 19836 | return DAG.getNode(ISD::SETCC, DL, VT, TST, RHS, N->getOperand(2)); | ||||
| 19837 | } | ||||
| 19838 | } | ||||
| 19839 | |||||
| 19840 | // setcc (iN (bitcast (vNi1 X))), 0, (eq|ne) | ||||
| 19841 | // ==> setcc (iN (zext (i1 (vecreduce_or (vNi1 X))))), 0, (eq|ne) | ||||
| 19842 | if (DCI.isBeforeLegalize() && VT.isScalarInteger() && | ||||
| 19843 | (Cond == ISD::SETEQ || Cond == ISD::SETNE) && isNullConstant(RHS) && | ||||
| 19844 | LHS->getOpcode() == ISD::BITCAST) { | ||||
| 19845 | EVT ToVT = LHS->getValueType(0); | ||||
| 19846 | EVT FromVT = LHS->getOperand(0).getValueType(); | ||||
| 19847 | if (FromVT.isFixedLengthVector() && | ||||
| 19848 | FromVT.getVectorElementType() == MVT::i1) { | ||||
| 19849 | LHS = DAG.getNode(ISD::VECREDUCE_OR, DL, MVT::i1, LHS->getOperand(0)); | ||||
| 19850 | LHS = DAG.getNode(ISD::ZERO_EXTEND, DL, ToVT, LHS); | ||||
| 19851 | return DAG.getSetCC(DL, VT, LHS, RHS, Cond); | ||||
| 19852 | } | ||||
| 19853 | } | ||||
| 19854 | |||||
| 19855 | // Try to perform the memcmp when the result is tested for [in]equality with 0 | ||||
| 19856 | if (SDValue V = performOrXorChainCombine(N, DAG)) | ||||
| 19857 | return V; | ||||
| 19858 | |||||
| 19859 | return SDValue(); | ||||
| 19860 | } | ||||
| 19861 | |||||
| 19862 | // Replace a flag-setting operator (eg ANDS) with the generic version | ||||
| 19863 | // (eg AND) if the flag is unused. | ||||
| 19864 | static SDValue performFlagSettingCombine(SDNode *N, | ||||
| 19865 | TargetLowering::DAGCombinerInfo &DCI, | ||||
| 19866 | unsigned GenericOpcode) { | ||||
| 19867 | SDLoc DL(N); | ||||
| 19868 | SDValue LHS = N->getOperand(0); | ||||
| 19869 | SDValue RHS = N->getOperand(1); | ||||
| 19870 | EVT VT = N->getValueType(0); | ||||
| 19871 | |||||
| 19872 | // If the flag result isn't used, convert back to a generic opcode. | ||||
| 19873 | if (!N->hasAnyUseOfValue(1)) { | ||||
| 19874 | SDValue Res = DCI.DAG.getNode(GenericOpcode, DL, VT, N->ops()); | ||||
| 19875 | return DCI.DAG.getMergeValues({Res, DCI.DAG.getConstant(0, DL, MVT::i32)}, | ||||
| 19876 | DL); | ||||
| 19877 | } | ||||
| 19878 | |||||
| 19879 | // Combine identical generic nodes into this node, re-using the result. | ||||
| 19880 | if (SDNode *Generic = DCI.DAG.getNodeIfExists( | ||||
| 19881 | GenericOpcode, DCI.DAG.getVTList(VT), {LHS, RHS})) | ||||
| 19882 | DCI.CombineTo(Generic, SDValue(N, 0)); | ||||
| 19883 | |||||
| 19884 | return SDValue(); | ||||
| 19885 | } | ||||
| 19886 | |||||
| 19887 | static SDValue performSetCCPunpkCombine(SDNode *N, SelectionDAG &DAG) { | ||||
| 19888 | // setcc_merge_zero pred | ||||
| 19889 | // (sign_extend (extract_subvector (setcc_merge_zero ... pred ...))), 0, ne | ||||
| 19890 | // => extract_subvector (inner setcc_merge_zero) | ||||
| 19891 | SDValue Pred = N->getOperand(0); | ||||
| 19892 | SDValue LHS = N->getOperand(1); | ||||
| 19893 | SDValue RHS = N->getOperand(2); | ||||
| 19894 | ISD::CondCode Cond = cast<CondCodeSDNode>(N->getOperand(3))->get(); | ||||
| 19895 | |||||
| 19896 | if (Cond != ISD::SETNE || !isZerosVector(RHS.getNode()) || | ||||
| 19897 | LHS->getOpcode() != ISD::SIGN_EXTEND) | ||||
| 19898 | return SDValue(); | ||||
| 19899 | |||||
| 19900 | SDValue Extract = LHS->getOperand(0); | ||||
| 19901 | if (Extract->getOpcode() != ISD::EXTRACT_SUBVECTOR || | ||||
| 19902 | Extract->getValueType(0) != N->getValueType(0) || | ||||
| 19903 | Extract->getConstantOperandVal(1) != 0) | ||||
| 19904 | return SDValue(); | ||||
| 19905 | |||||
| 19906 | SDValue InnerSetCC = Extract->getOperand(0); | ||||
| 19907 | if (InnerSetCC->getOpcode() != AArch64ISD::SETCC_MERGE_ZERO) | ||||
| 19908 | return SDValue(); | ||||
| 19909 | |||||
| 19910 | // By this point we've effectively got | ||||
| 19911 | // zero_inactive_lanes_and_trunc_i1(sext_i1(A)). If we can prove A's inactive | ||||
| 19912 | // lanes are already zero then the trunc(sext()) sequence is redundant and we | ||||
| 19913 | // can operate on A directly. | ||||
| 19914 | SDValue InnerPred = InnerSetCC.getOperand(0); | ||||
| 19915 | if (Pred.getOpcode() == AArch64ISD::PTRUE && | ||||
| 19916 | InnerPred.getOpcode() == AArch64ISD::PTRUE && | ||||
| 19917 | Pred.getConstantOperandVal(0) == InnerPred.getConstantOperandVal(0) && | ||||
| 19918 | Pred->getConstantOperandVal(0) >= AArch64SVEPredPattern::vl1 && | ||||
| 19919 | Pred->getConstantOperandVal(0) <= AArch64SVEPredPattern::vl256) | ||||
| 19920 | return Extract; | ||||
| 19921 | |||||
| 19922 | return SDValue(); | ||||
| 19923 | } | ||||
| 19924 | |||||
| 19925 | static SDValue | ||||
| 19926 | performSetccMergeZeroCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { | ||||
| 19927 | assert(N->getOpcode() == AArch64ISD::SETCC_MERGE_ZERO &&(static_cast <bool> (N->getOpcode() == AArch64ISD::SETCC_MERGE_ZERO && "Unexpected opcode!") ? void (0) : __assert_fail ( "N->getOpcode() == AArch64ISD::SETCC_MERGE_ZERO && \"Unexpected opcode!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 19928, __extension__ __PRETTY_FUNCTION__)) | ||||
| 19928 | "Unexpected opcode!")(static_cast <bool> (N->getOpcode() == AArch64ISD::SETCC_MERGE_ZERO && "Unexpected opcode!") ? void (0) : __assert_fail ( "N->getOpcode() == AArch64ISD::SETCC_MERGE_ZERO && \"Unexpected opcode!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 19928, __extension__ __PRETTY_FUNCTION__)); | ||||
| 19929 | |||||
| 19930 | SelectionDAG &DAG = DCI.DAG; | ||||
| 19931 | SDValue Pred = N->getOperand(0); | ||||
| 19932 | SDValue LHS = N->getOperand(1); | ||||
| 19933 | SDValue RHS = N->getOperand(2); | ||||
| 19934 | ISD::CondCode Cond = cast<CondCodeSDNode>(N->getOperand(3))->get(); | ||||
| 19935 | |||||
| 19936 | if (SDValue V = performSetCCPunpkCombine(N, DAG)) | ||||
| 19937 | return V; | ||||
| 19938 | |||||
| 19939 | if (Cond == ISD::SETNE && isZerosVector(RHS.getNode()) && | ||||
| 19940 | LHS->getOpcode() == ISD::SIGN_EXTEND && | ||||
| 19941 | LHS->getOperand(0)->getValueType(0) == N->getValueType(0)) { | ||||
| 19942 | // setcc_merge_zero( | ||||
| 19943 | // pred, extend(setcc_merge_zero(pred, ...)), != splat(0)) | ||||
| 19944 | // => setcc_merge_zero(pred, ...) | ||||
| 19945 | if (LHS->getOperand(0)->getOpcode() == AArch64ISD::SETCC_MERGE_ZERO && | ||||
| 19946 | LHS->getOperand(0)->getOperand(0) == Pred) | ||||
| 19947 | return LHS->getOperand(0); | ||||
| 19948 | |||||
| 19949 | // setcc_merge_zero( | ||||
| 19950 | // all_active, extend(nxvNi1 ...), != splat(0)) | ||||
| 19951 | // -> nxvNi1 ... | ||||
| 19952 | if (isAllActivePredicate(DAG, Pred)) | ||||
| 19953 | return LHS->getOperand(0); | ||||
| 19954 | |||||
| 19955 | // setcc_merge_zero( | ||||
| 19956 | // pred, extend(nxvNi1 ...), != splat(0)) | ||||
| 19957 | // -> nxvNi1 and(pred, ...) | ||||
| 19958 | if (DCI.isAfterLegalizeDAG()) | ||||
| 19959 | // Do this after legalization to allow more folds on setcc_merge_zero | ||||
| 19960 | // to be recognized. | ||||
| 19961 | return DAG.getNode(ISD::AND, SDLoc(N), N->getValueType(0), | ||||
| 19962 | LHS->getOperand(0), Pred); | ||||
| 19963 | } | ||||
| 19964 | |||||
| 19965 | return SDValue(); | ||||
| 19966 | } | ||||
| 19967 | |||||
| 19968 | // Optimize some simple tbz/tbnz cases. Returns the new operand and bit to test | ||||
| 19969 | // as well as whether the test should be inverted. This code is required to | ||||
| 19970 | // catch these cases (as opposed to standard dag combines) because | ||||
| 19971 | // AArch64ISD::TBZ is matched during legalization. | ||||
| 19972 | static SDValue getTestBitOperand(SDValue Op, unsigned &Bit, bool &Invert, | ||||
| 19973 | SelectionDAG &DAG) { | ||||
| 19974 | |||||
| 19975 | if (!Op->hasOneUse()) | ||||
| 19976 | return Op; | ||||
| 19977 | |||||
| 19978 | // We don't handle undef/constant-fold cases below, as they should have | ||||
| 19979 | // already been taken care of (e.g. and of 0, test of undefined shifted bits, | ||||
| 19980 | // etc.) | ||||
| 19981 | |||||
| 19982 | // (tbz (trunc x), b) -> (tbz x, b) | ||||
| 19983 | // This case is just here to enable more of the below cases to be caught. | ||||
| 19984 | if (Op->getOpcode() == ISD::TRUNCATE && | ||||
| 19985 | Bit < Op->getValueType(0).getSizeInBits()) { | ||||
| 19986 | return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); | ||||
| 19987 | } | ||||
| 19988 | |||||
| 19989 | // (tbz (any_ext x), b) -> (tbz x, b) if we don't use the extended bits. | ||||
| 19990 | if (Op->getOpcode() == ISD::ANY_EXTEND && | ||||
| 19991 | Bit < Op->getOperand(0).getValueSizeInBits()) { | ||||
| 19992 | return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); | ||||
| 19993 | } | ||||
| 19994 | |||||
| 19995 | if (Op->getNumOperands() != 2) | ||||
| 19996 | return Op; | ||||
| 19997 | |||||
| 19998 | auto *C = dyn_cast<ConstantSDNode>(Op->getOperand(1)); | ||||
| 19999 | if (!C) | ||||
| 20000 | return Op; | ||||
| 20001 | |||||
| 20002 | switch (Op->getOpcode()) { | ||||
| 20003 | default: | ||||
| 20004 | return Op; | ||||
| 20005 | |||||
| 20006 | // (tbz (and x, m), b) -> (tbz x, b) | ||||
| 20007 | case ISD::AND: | ||||
| 20008 | if ((C->getZExtValue() >> Bit) & 1) | ||||
| 20009 | return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); | ||||
| 20010 | return Op; | ||||
| 20011 | |||||
| 20012 | // (tbz (shl x, c), b) -> (tbz x, b-c) | ||||
| 20013 | case ISD::SHL: | ||||
| 20014 | if (C->getZExtValue() <= Bit && | ||||
| 20015 | (Bit - C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) { | ||||
| 20016 | Bit = Bit - C->getZExtValue(); | ||||
| 20017 | return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); | ||||
| 20018 | } | ||||
| 20019 | return Op; | ||||
| 20020 | |||||
| 20021 | // (tbz (sra x, c), b) -> (tbz x, b+c) or (tbz x, msb) if b+c is > # bits in x | ||||
| 20022 | case ISD::SRA: | ||||
| 20023 | Bit = Bit + C->getZExtValue(); | ||||
| 20024 | if (Bit >= Op->getValueType(0).getSizeInBits()) | ||||
| 20025 | Bit = Op->getValueType(0).getSizeInBits() - 1; | ||||
| 20026 | return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); | ||||
| 20027 | |||||
| 20028 | // (tbz (srl x, c), b) -> (tbz x, b+c) | ||||
| 20029 | case ISD::SRL: | ||||
| 20030 | if ((Bit + C->getZExtValue()) < Op->getValueType(0).getSizeInBits()) { | ||||
| 20031 | Bit = Bit + C->getZExtValue(); | ||||
| 20032 | return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); | ||||
| 20033 | } | ||||
| 20034 | return Op; | ||||
| 20035 | |||||
| 20036 | // (tbz (xor x, -1), b) -> (tbnz x, b) | ||||
| 20037 | case ISD::XOR: | ||||
| 20038 | if ((C->getZExtValue() >> Bit) & 1) | ||||
| 20039 | Invert = !Invert; | ||||
| 20040 | return getTestBitOperand(Op->getOperand(0), Bit, Invert, DAG); | ||||
| 20041 | } | ||||
| 20042 | } | ||||
| 20043 | |||||
| 20044 | // Optimize test single bit zero/non-zero and branch. | ||||
| 20045 | static SDValue performTBZCombine(SDNode *N, | ||||
| 20046 | TargetLowering::DAGCombinerInfo &DCI, | ||||
| 20047 | SelectionDAG &DAG) { | ||||
| 20048 | unsigned Bit = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue(); | ||||
| 20049 | bool Invert = false; | ||||
| 20050 | SDValue TestSrc = N->getOperand(1); | ||||
| 20051 | SDValue NewTestSrc = getTestBitOperand(TestSrc, Bit, Invert, DAG); | ||||
| 20052 | |||||
| 20053 | if (TestSrc == NewTestSrc) | ||||
| 20054 | return SDValue(); | ||||
| 20055 | |||||
| 20056 | unsigned NewOpc = N->getOpcode(); | ||||
| 20057 | if (Invert) { | ||||
| 20058 | if (NewOpc == AArch64ISD::TBZ) | ||||
| 20059 | NewOpc = AArch64ISD::TBNZ; | ||||
| 20060 | else { | ||||
| 20061 | assert(NewOpc == AArch64ISD::TBNZ)(static_cast <bool> (NewOpc == AArch64ISD::TBNZ) ? void (0) : __assert_fail ("NewOpc == AArch64ISD::TBNZ", "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp" , 20061, __extension__ __PRETTY_FUNCTION__)); | ||||
| 20062 | NewOpc = AArch64ISD::TBZ; | ||||
| 20063 | } | ||||
| 20064 | } | ||||
| 20065 | |||||
| 20066 | SDLoc DL(N); | ||||
| 20067 | return DAG.getNode(NewOpc, DL, MVT::Other, N->getOperand(0), NewTestSrc, | ||||
| 20068 | DAG.getConstant(Bit, DL, MVT::i64), N->getOperand(3)); | ||||
| 20069 | } | ||||
| 20070 | |||||
| 20071 | // Swap vselect operands where it may allow a predicated operation to achieve | ||||
| 20072 | // the `sel`. | ||||
| 20073 | // | ||||
| 20074 | // (vselect (setcc ( condcode) (_) (_)) (a) (op (a) (b))) | ||||
| 20075 | // => (vselect (setcc (!condcode) (_) (_)) (op (a) (b)) (a)) | ||||
| 20076 | static SDValue trySwapVSelectOperands(SDNode *N, SelectionDAG &DAG) { | ||||
| 20077 | auto SelectA = N->getOperand(1); | ||||
| 20078 | auto SelectB = N->getOperand(2); | ||||
| 20079 | auto NTy = N->getValueType(0); | ||||
| 20080 | |||||
| 20081 | if (!NTy.isScalableVector()) | ||||
| 20082 | return SDValue(); | ||||
| 20083 | SDValue SetCC = N->getOperand(0); | ||||
| 20084 | if (SetCC.getOpcode() != ISD::SETCC || !SetCC.hasOneUse()) | ||||
| 20085 | return SDValue(); | ||||
| 20086 | |||||
| 20087 | switch (SelectB.getOpcode()) { | ||||
| 20088 | default: | ||||
| 20089 | return SDValue(); | ||||
| 20090 | case ISD::FMUL: | ||||
| 20091 | case ISD::FSUB: | ||||
| 20092 | case ISD::FADD: | ||||
| 20093 | break; | ||||
| 20094 | } | ||||
| 20095 | if (SelectA != SelectB.getOperand(0)) | ||||
| 20096 | return SDValue(); | ||||
| 20097 | |||||
| 20098 | ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get(); | ||||
| 20099 | ISD::CondCode InverseCC = | ||||
| 20100 | ISD::getSetCCInverse(CC, SetCC.getOperand(0).getValueType()); | ||||
| 20101 | auto InverseSetCC = | ||||
| 20102 | DAG.getSetCC(SDLoc(SetCC), SetCC.getValueType(), SetCC.getOperand(0), | ||||
| 20103 | SetCC.getOperand(1), InverseCC); | ||||
| 20104 | |||||
| 20105 | return DAG.getNode(ISD::VSELECT, SDLoc(N), NTy, | ||||
| 20106 | {InverseSetCC, SelectB, SelectA}); | ||||
| 20107 | } | ||||
| 20108 | |||||
| 20109 | // vselect (v1i1 setcc) -> | ||||
| 20110 | // vselect (v1iXX setcc) (XX is the size of the compared operand type) | ||||
| 20111 | // FIXME: Currently the type legalizer can't handle VSELECT having v1i1 as | ||||
| 20112 | // condition. If it can legalize "VSELECT v1i1" correctly, no need to combine | ||||
| 20113 | // such VSELECT. | ||||
| 20114 | static SDValue performVSelectCombine(SDNode *N, SelectionDAG &DAG) { | ||||
| 20115 | if (auto SwapResult = trySwapVSelectOperands(N, DAG)) | ||||
| 20116 | return SwapResult; | ||||
| 20117 | |||||
| 20118 | SDValue N0 = N->getOperand(0); | ||||
| 20119 | EVT CCVT = N0.getValueType(); | ||||
| 20120 | |||||
| 20121 | if (isAllActivePredicate(DAG, N0)) | ||||
| 20122 | return N->getOperand(1); | ||||
| 20123 | |||||
| 20124 | if (isAllInactivePredicate(N0)) | ||||
| 20125 | return N->getOperand(2); | ||||
| 20126 | |||||
| 20127 | // Check for sign pattern (VSELECT setgt, iN lhs, -1, 1, -1) and transform | ||||
| 20128 | // into (OR (ASR lhs, N-1), 1), which requires less instructions for the | ||||
| 20129 | // supported types. | ||||
| 20130 | SDValue SetCC = N->getOperand(0); | ||||
| 20131 | if (SetCC.getOpcode() == ISD::SETCC && | ||||
| 20132 | SetCC.getOperand(2) == DAG.getCondCode(ISD::SETGT)) { | ||||
| 20133 | SDValue CmpLHS = SetCC.getOperand(0); | ||||
| 20134 | EVT VT = CmpLHS.getValueType(); | ||||
| 20135 | SDNode *CmpRHS = SetCC.getOperand(1).getNode(); | ||||
| 20136 | SDNode *SplatLHS = N->getOperand(1).getNode(); | ||||
| 20137 | SDNode *SplatRHS = N->getOperand(2).getNode(); | ||||
| 20138 | APInt SplatLHSVal; | ||||
| 20139 | if (CmpLHS.getValueType() == N->getOperand(1).getValueType() && | ||||
| 20140 | VT.isSimple() && | ||||
| 20141 | is_contained( | ||||
| 20142 | makeArrayRef({MVT::v8i8, MVT::v16i8, MVT::v4i16, MVT::v8i16, | ||||
| 20143 | MVT::v2i32, MVT::v4i32, MVT::v2i64}), | ||||
| 20144 | VT.getSimpleVT().SimpleTy) && | ||||
| 20145 | ISD::isConstantSplatVector(SplatLHS, SplatLHSVal) && | ||||
| 20146 | SplatLHSVal.isOne() && ISD::isConstantSplatVectorAllOnes(CmpRHS) && | ||||
| 20147 | ISD::isConstantSplatVectorAllOnes(SplatRHS)) { | ||||
| 20148 | unsigned NumElts = VT.getVectorNumElements(); | ||||
| 20149 | SmallVector<SDValue, 8> Ops( | ||||
| 20150 | NumElts, DAG.getConstant(VT.getScalarSizeInBits() - 1, SDLoc(N), | ||||
| 20151 | VT.getScalarType())); | ||||
| 20152 | SDValue Val = DAG.getBuildVector(VT, SDLoc(N), Ops); | ||||
| 20153 | |||||
| 20154 | auto Shift = DAG.getNode(ISD::SRA, SDLoc(N), VT, CmpLHS, Val); | ||||
| 20155 | auto Or = DAG.getNode(ISD::OR, SDLoc(N), VT, Shift, N->getOperand(1)); | ||||
| 20156 | return Or; | ||||
| 20157 | } | ||||
| 20158 | } | ||||
| 20159 | |||||
| 20160 | if (N0.getOpcode() != ISD::SETCC || | ||||
| 20161 | CCVT.getVectorElementCount() != ElementCount::getFixed(1) || | ||||
| 20162 | CCVT.getVectorElementType() != MVT::i1) | ||||
| 20163 | return SDValue(); | ||||
| 20164 | |||||
| 20165 | EVT ResVT = N->getValueType(0); | ||||
| 20166 | EVT CmpVT = N0.getOperand(0).getValueType(); | ||||
| 20167 | // Only combine when the result type is of the same size as the compared | ||||
| 20168 | // operands. | ||||
| 20169 | if (ResVT.getSizeInBits() != CmpVT.getSizeInBits()) | ||||
| 20170 | return SDValue(); | ||||
| 20171 | |||||
| 20172 | SDValue IfTrue = N->getOperand(1); | ||||
| 20173 | SDValue IfFalse = N->getOperand(2); | ||||
| 20174 | SetCC = DAG.getSetCC(SDLoc(N), CmpVT.changeVectorElementTypeToInteger(), | ||||
| 20175 | N0.getOperand(0), N0.getOperand(1), | ||||
| 20176 | cast<CondCodeSDNode>(N0.getOperand(2))->get()); | ||||
| 20177 | return DAG.getNode(ISD::VSELECT, SDLoc(N), ResVT, SetCC, | ||||
| 20178 | IfTrue, IfFalse); | ||||
| 20179 | } | ||||
| 20180 | |||||
| 20181 | /// A vector select: "(select vL, vR, (setcc LHS, RHS))" is best performed with | ||||
| 20182 | /// the compare-mask instructions rather than going via NZCV, even if LHS and | ||||
| 20183 | /// RHS are really scalar. This replaces any scalar setcc in the above pattern | ||||
| 20184 | /// with a vector one followed by a DUP shuffle on the result. | ||||
| 20185 | static SDValue performSelectCombine(SDNode *N, | ||||
| 20186 | TargetLowering::DAGCombinerInfo &DCI) { | ||||
| 20187 | SelectionDAG &DAG = DCI.DAG; | ||||
| 20188 | SDValue N0 = N->getOperand(0); | ||||
| 20189 | EVT ResVT = N->getValueType(0); | ||||
| 20190 | |||||
| 20191 | if (N0.getOpcode() != ISD::SETCC) | ||||
| 20192 | return SDValue(); | ||||
| 20193 | |||||
| 20194 | if (ResVT.isScalableVector()) | ||||
| 20195 | return SDValue(); | ||||
| 20196 | |||||
| 20197 | // Make sure the SETCC result is either i1 (initial DAG), or i32, the lowered | ||||
| 20198 | // scalar SetCCResultType. We also don't expect vectors, because we assume | ||||
| 20199 | // that selects fed by vector SETCCs are canonicalized to VSELECT. | ||||
| 20200 | assert((N0.getValueType() == MVT::i1 || N0.getValueType() == MVT::i32) &&(static_cast <bool> ((N0.getValueType() == MVT::i1 || N0 .getValueType() == MVT::i32) && "Scalar-SETCC feeding SELECT has unexpected result type!" ) ? void (0) : __assert_fail ("(N0.getValueType() == MVT::i1 || N0.getValueType() == MVT::i32) && \"Scalar-SETCC feeding SELECT has unexpected result type!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 20201, __extension__ __PRETTY_FUNCTION__)) | ||||
| 20201 | "Scalar-SETCC feeding SELECT has unexpected result type!")(static_cast <bool> ((N0.getValueType() == MVT::i1 || N0 .getValueType() == MVT::i32) && "Scalar-SETCC feeding SELECT has unexpected result type!" ) ? void (0) : __assert_fail ("(N0.getValueType() == MVT::i1 || N0.getValueType() == MVT::i32) && \"Scalar-SETCC feeding SELECT has unexpected result type!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 20201, __extension__ __PRETTY_FUNCTION__)); | ||||
| 20202 | |||||
| 20203 | // If NumMaskElts == 0, the comparison is larger than select result. The | ||||
| 20204 | // largest real NEON comparison is 64-bits per lane, which means the result is | ||||
| 20205 | // at most 32-bits and an illegal vector. Just bail out for now. | ||||
| 20206 | EVT SrcVT = N0.getOperand(0).getValueType(); | ||||
| 20207 | |||||
| 20208 | // Don't try to do this optimization when the setcc itself has i1 operands. | ||||
| 20209 | // There are no legal vectors of i1, so this would be pointless. | ||||
| 20210 | if (SrcVT == MVT::i1) | ||||
| 20211 | return SDValue(); | ||||
| 20212 | |||||
| 20213 | int NumMaskElts = ResVT.getSizeInBits() / SrcVT.getSizeInBits(); | ||||
| 20214 | if (!ResVT.isVector() || NumMaskElts == 0) | ||||
| 20215 | return SDValue(); | ||||
| 20216 | |||||
| 20217 | SrcVT = EVT::getVectorVT(*DAG.getContext(), SrcVT, NumMaskElts); | ||||
| 20218 | EVT CCVT = SrcVT.changeVectorElementTypeToInteger(); | ||||
| 20219 | |||||
| 20220 | // Also bail out if the vector CCVT isn't the same size as ResVT. | ||||
| 20221 | // This can happen if the SETCC operand size doesn't divide the ResVT size | ||||
| 20222 | // (e.g., f64 vs v3f32). | ||||
| 20223 | if (CCVT.getSizeInBits() != ResVT.getSizeInBits()) | ||||
| 20224 | return SDValue(); | ||||
| 20225 | |||||
| 20226 | // Make sure we didn't create illegal types, if we're not supposed to. | ||||
| 20227 | assert(DCI.isBeforeLegalize() ||(static_cast <bool> (DCI.isBeforeLegalize() || DAG.getTargetLoweringInfo ().isTypeLegal(SrcVT)) ? void (0) : __assert_fail ("DCI.isBeforeLegalize() || DAG.getTargetLoweringInfo().isTypeLegal(SrcVT)" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 20228, __extension__ __PRETTY_FUNCTION__)) | ||||
| 20228 | DAG.getTargetLoweringInfo().isTypeLegal(SrcVT))(static_cast <bool> (DCI.isBeforeLegalize() || DAG.getTargetLoweringInfo ().isTypeLegal(SrcVT)) ? void (0) : __assert_fail ("DCI.isBeforeLegalize() || DAG.getTargetLoweringInfo().isTypeLegal(SrcVT)" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 20228, __extension__ __PRETTY_FUNCTION__)); | ||||
| 20229 | |||||
| 20230 | // First perform a vector comparison, where lane 0 is the one we're interested | ||||
| 20231 | // in. | ||||
| 20232 | SDLoc DL(N0); | ||||
| 20233 | SDValue LHS = | ||||
| 20234 | DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(0)); | ||||
| 20235 | SDValue RHS = | ||||
| 20236 | DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, SrcVT, N0.getOperand(1)); | ||||
| 20237 | SDValue SetCC = DAG.getNode(ISD::SETCC, DL, CCVT, LHS, RHS, N0.getOperand(2)); | ||||
| 20238 | |||||
| 20239 | // Now duplicate the comparison mask we want across all other lanes. | ||||
| 20240 | SmallVector<int, 8> DUPMask(CCVT.getVectorNumElements(), 0); | ||||
| 20241 | SDValue Mask = DAG.getVectorShuffle(CCVT, DL, SetCC, SetCC, DUPMask); | ||||
| 20242 | Mask = DAG.getNode(ISD::BITCAST, DL, | ||||
| 20243 | ResVT.changeVectorElementTypeToInteger(), Mask); | ||||
| 20244 | |||||
| 20245 | return DAG.getSelect(DL, ResVT, Mask, N->getOperand(1), N->getOperand(2)); | ||||
| 20246 | } | ||||
| 20247 | |||||
| 20248 | static SDValue performDUPCombine(SDNode *N, | ||||
| 20249 | TargetLowering::DAGCombinerInfo &DCI) { | ||||
| 20250 | EVT VT = N->getValueType(0); | ||||
| 20251 | // If "v2i32 DUP(x)" and "v4i32 DUP(x)" both exist, use an extract from the | ||||
| 20252 | // 128bit vector version. | ||||
| 20253 | if (VT.is64BitVector() && DCI.isAfterLegalizeDAG()) { | ||||
| 20254 | EVT LVT = VT.getDoubleNumVectorElementsVT(*DCI.DAG.getContext()); | ||||
| 20255 | if (SDNode *LN = DCI.DAG.getNodeIfExists( | ||||
| 20256 | N->getOpcode(), DCI.DAG.getVTList(LVT), {N->getOperand(0)})) { | ||||
| 20257 | SDLoc DL(N); | ||||
| 20258 | return DCI.DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, SDValue(LN, 0), | ||||
| 20259 | DCI.DAG.getConstant(0, DL, MVT::i64)); | ||||
| 20260 | } | ||||
| 20261 | } | ||||
| 20262 | |||||
| 20263 | return performPostLD1Combine(N, DCI, false); | ||||
| 20264 | } | ||||
| 20265 | |||||
| 20266 | /// Get rid of unnecessary NVCASTs (that don't change the type). | ||||
| 20267 | static SDValue performNVCASTCombine(SDNode *N) { | ||||
| 20268 | if (N->getValueType(0) == N->getOperand(0).getValueType()) | ||||
| 20269 | return N->getOperand(0); | ||||
| 20270 | |||||
| 20271 | return SDValue(); | ||||
| 20272 | } | ||||
| 20273 | |||||
| 20274 | // If all users of the globaladdr are of the form (globaladdr + constant), find | ||||
| 20275 | // the smallest constant, fold it into the globaladdr's offset and rewrite the | ||||
| 20276 | // globaladdr as (globaladdr + constant) - constant. | ||||
| 20277 | static SDValue performGlobalAddressCombine(SDNode *N, SelectionDAG &DAG, | ||||
| 20278 | const AArch64Subtarget *Subtarget, | ||||
| 20279 | const TargetMachine &TM) { | ||||
| 20280 | auto *GN = cast<GlobalAddressSDNode>(N); | ||||
| 20281 | if (Subtarget->ClassifyGlobalReference(GN->getGlobal(), TM) != | ||||
| 20282 | AArch64II::MO_NO_FLAG) | ||||
| 20283 | return SDValue(); | ||||
| 20284 | |||||
| 20285 | uint64_t MinOffset = -1ull; | ||||
| 20286 | for (SDNode *N : GN->uses()) { | ||||
| 20287 | if (N->getOpcode() != ISD::ADD) | ||||
| 20288 | return SDValue(); | ||||
| 20289 | auto *C = dyn_cast<ConstantSDNode>(N->getOperand(0)); | ||||
| 20290 | if (!C) | ||||
| 20291 | C = dyn_cast<ConstantSDNode>(N->getOperand(1)); | ||||
| 20292 | if (!C) | ||||
| 20293 | return SDValue(); | ||||
| 20294 | MinOffset = std::min(MinOffset, C->getZExtValue()); | ||||
| 20295 | } | ||||
| 20296 | uint64_t Offset = MinOffset + GN->getOffset(); | ||||
| 20297 | |||||
| 20298 | // Require that the new offset is larger than the existing one. Otherwise, we | ||||
| 20299 | // can end up oscillating between two possible DAGs, for example, | ||||
| 20300 | // (add (add globaladdr + 10, -1), 1) and (add globaladdr + 9, 1). | ||||
| 20301 | if (Offset <= uint64_t(GN->getOffset())) | ||||
| 20302 | return SDValue(); | ||||
| 20303 | |||||
| 20304 | // Check whether folding this offset is legal. It must not go out of bounds of | ||||
| 20305 | // the referenced object to avoid violating the code model, and must be | ||||
| 20306 | // smaller than 2^20 because this is the largest offset expressible in all | ||||
| 20307 | // object formats. (The IMAGE_REL_ARM64_PAGEBASE_REL21 relocation in COFF | ||||
| 20308 | // stores an immediate signed 21 bit offset.) | ||||
| 20309 | // | ||||
| 20310 | // This check also prevents us from folding negative offsets, which will end | ||||
| 20311 | // up being treated in the same way as large positive ones. They could also | ||||
| 20312 | // cause code model violations, and aren't really common enough to matter. | ||||
| 20313 | if (Offset >= (1 << 20)) | ||||
| 20314 | return SDValue(); | ||||
| 20315 | |||||
| 20316 | const GlobalValue *GV = GN->getGlobal(); | ||||
| 20317 | Type *T = GV->getValueType(); | ||||
| 20318 | if (!T->isSized() || | ||||
| 20319 | Offset > GV->getParent()->getDataLayout().getTypeAllocSize(T)) | ||||
| 20320 | return SDValue(); | ||||
| 20321 | |||||
| 20322 | SDLoc DL(GN); | ||||
| 20323 | SDValue Result = DAG.getGlobalAddress(GV, DL, MVT::i64, Offset); | ||||
| 20324 | return DAG.getNode(ISD::SUB, DL, MVT::i64, Result, | ||||
| 20325 | DAG.getConstant(MinOffset, DL, MVT::i64)); | ||||
| 20326 | } | ||||
| 20327 | |||||
| 20328 | static SDValue performCTLZCombine(SDNode *N, SelectionDAG &DAG, | ||||
| 20329 | const AArch64Subtarget *Subtarget) { | ||||
| 20330 | SDValue BR = N->getOperand(0); | ||||
| 20331 | if (!Subtarget->hasCSSC() || BR.getOpcode() != ISD::BITREVERSE || | ||||
| 20332 | !BR.getValueType().isScalarInteger()) | ||||
| 20333 | return SDValue(); | ||||
| 20334 | |||||
| 20335 | SDLoc DL(N); | ||||
| 20336 | return DAG.getNode(ISD::CTTZ, DL, BR.getValueType(), BR.getOperand(0)); | ||||
| 20337 | } | ||||
| 20338 | |||||
| 20339 | // Turns the vector of indices into a vector of byte offstes by scaling Offset | ||||
| 20340 | // by (BitWidth / 8). | ||||
| 20341 | static SDValue getScaledOffsetForBitWidth(SelectionDAG &DAG, SDValue Offset, | ||||
| 20342 | SDLoc DL, unsigned BitWidth) { | ||||
| 20343 | assert(Offset.getValueType().isScalableVector() &&(static_cast <bool> (Offset.getValueType().isScalableVector () && "This method is only for scalable vectors of offsets" ) ? void (0) : __assert_fail ("Offset.getValueType().isScalableVector() && \"This method is only for scalable vectors of offsets\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 20344, __extension__ __PRETTY_FUNCTION__)) | ||||
| 20344 | "This method is only for scalable vectors of offsets")(static_cast <bool> (Offset.getValueType().isScalableVector () && "This method is only for scalable vectors of offsets" ) ? void (0) : __assert_fail ("Offset.getValueType().isScalableVector() && \"This method is only for scalable vectors of offsets\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 20344, __extension__ __PRETTY_FUNCTION__)); | ||||
| 20345 | |||||
| 20346 | SDValue Shift = DAG.getConstant(Log2_32(BitWidth / 8), DL, MVT::i64); | ||||
| 20347 | SDValue SplatShift = DAG.getNode(ISD::SPLAT_VECTOR, DL, MVT::nxv2i64, Shift); | ||||
| 20348 | |||||
| 20349 | return DAG.getNode(ISD::SHL, DL, MVT::nxv2i64, Offset, SplatShift); | ||||
| 20350 | } | ||||
| 20351 | |||||
| 20352 | /// Check if the value of \p OffsetInBytes can be used as an immediate for | ||||
| 20353 | /// the gather load/prefetch and scatter store instructions with vector base and | ||||
| 20354 | /// immediate offset addressing mode: | ||||
| 20355 | /// | ||||
| 20356 | /// [<Zn>.[S|D]{, #<imm>}] | ||||
| 20357 | /// | ||||
| 20358 | /// where <imm> = sizeof(<T>) * k, for k = 0, 1, ..., 31. | ||||
| 20359 | inline static bool isValidImmForSVEVecImmAddrMode(unsigned OffsetInBytes, | ||||
| 20360 | unsigned ScalarSizeInBytes) { | ||||
| 20361 | // The immediate is not a multiple of the scalar size. | ||||
| 20362 | if (OffsetInBytes % ScalarSizeInBytes) | ||||
| 20363 | return false; | ||||
| 20364 | |||||
| 20365 | // The immediate is out of range. | ||||
| 20366 | if (OffsetInBytes / ScalarSizeInBytes > 31) | ||||
| 20367 | return false; | ||||
| 20368 | |||||
| 20369 | return true; | ||||
| 20370 | } | ||||
| 20371 | |||||
| 20372 | /// Check if the value of \p Offset represents a valid immediate for the SVE | ||||
| 20373 | /// gather load/prefetch and scatter store instructiona with vector base and | ||||
| 20374 | /// immediate offset addressing mode: | ||||
| 20375 | /// | ||||
| 20376 | /// [<Zn>.[S|D]{, #<imm>}] | ||||
| 20377 | /// | ||||
| 20378 | /// where <imm> = sizeof(<T>) * k, for k = 0, 1, ..., 31. | ||||
| 20379 | static bool isValidImmForSVEVecImmAddrMode(SDValue Offset, | ||||
| 20380 | unsigned ScalarSizeInBytes) { | ||||
| 20381 | ConstantSDNode *OffsetConst = dyn_cast<ConstantSDNode>(Offset.getNode()); | ||||
| 20382 | return OffsetConst && isValidImmForSVEVecImmAddrMode( | ||||
| 20383 | OffsetConst->getZExtValue(), ScalarSizeInBytes); | ||||
| 20384 | } | ||||
| 20385 | |||||
| 20386 | static SDValue performScatterStoreCombine(SDNode *N, SelectionDAG &DAG, | ||||
| 20387 | unsigned Opcode, | ||||
| 20388 | bool OnlyPackedOffsets = true) { | ||||
| 20389 | const SDValue Src = N->getOperand(2); | ||||
| 20390 | const EVT SrcVT = Src->getValueType(0); | ||||
| 20391 | assert(SrcVT.isScalableVector() &&(static_cast <bool> (SrcVT.isScalableVector() && "Scatter stores are only possible for SVE vectors") ? void ( 0) : __assert_fail ("SrcVT.isScalableVector() && \"Scatter stores are only possible for SVE vectors\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 20392, __extension__ __PRETTY_FUNCTION__)) | ||||
| 20392 | "Scatter stores are only possible for SVE vectors")(static_cast <bool> (SrcVT.isScalableVector() && "Scatter stores are only possible for SVE vectors") ? void ( 0) : __assert_fail ("SrcVT.isScalableVector() && \"Scatter stores are only possible for SVE vectors\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 20392, __extension__ __PRETTY_FUNCTION__)); | ||||
| 20393 | |||||
| 20394 | SDLoc DL(N); | ||||
| 20395 | MVT SrcElVT = SrcVT.getVectorElementType().getSimpleVT(); | ||||
| 20396 | |||||
| 20397 | // Make sure that source data will fit into an SVE register | ||||
| 20398 | if (SrcVT.getSizeInBits().getKnownMinSize() > AArch64::SVEBitsPerBlock) | ||||
| 20399 | return SDValue(); | ||||
| 20400 | |||||
| 20401 | // For FPs, ACLE only supports _packed_ single and double precision types. | ||||
| 20402 | if (SrcElVT.isFloatingPoint()) | ||||
| 20403 | if ((SrcVT != MVT::nxv4f32) && (SrcVT != MVT::nxv2f64)) | ||||
| 20404 | return SDValue(); | ||||
| 20405 | |||||
| 20406 | // Depending on the addressing mode, this is either a pointer or a vector of | ||||
| 20407 | // pointers (that fits into one register) | ||||
| 20408 | SDValue Base = N->getOperand(4); | ||||
| 20409 | // Depending on the addressing mode, this is either a single offset or a | ||||
| 20410 | // vector of offsets (that fits into one register) | ||||
| 20411 | SDValue Offset = N->getOperand(5); | ||||
| 20412 | |||||
| 20413 | // For "scalar + vector of indices", just scale the indices. This only | ||||
| 20414 | // applies to non-temporal scatters because there's no instruction that takes | ||||
| 20415 | // indicies. | ||||
| 20416 | if (Opcode == AArch64ISD::SSTNT1_INDEX_PRED) { | ||||
| 20417 | Offset = | ||||
| 20418 | getScaledOffsetForBitWidth(DAG, Offset, DL, SrcElVT.getSizeInBits()); | ||||
| 20419 | Opcode = AArch64ISD::SSTNT1_PRED; | ||||
| 20420 | } | ||||
| 20421 | |||||
| 20422 | // In the case of non-temporal gather loads there's only one SVE instruction | ||||
| 20423 | // per data-size: "scalar + vector", i.e. | ||||
| 20424 | // * stnt1{b|h|w|d} { z0.s }, p0/z, [z0.s, x0] | ||||
| 20425 | // Since we do have intrinsics that allow the arguments to be in a different | ||||
| 20426 | // order, we may need to swap them to match the spec. | ||||
| 20427 | if (Opcode == AArch64ISD::SSTNT1_PRED && Offset.getValueType().isVector()) | ||||
| 20428 | std::swap(Base, Offset); | ||||
| 20429 | |||||
| 20430 | // SST1_IMM requires that the offset is an immediate that is: | ||||
| 20431 | // * a multiple of #SizeInBytes, | ||||
| 20432 | // * in the range [0, 31 x #SizeInBytes], | ||||
| 20433 | // where #SizeInBytes is the size in bytes of the stored items. For | ||||
| 20434 | // immediates outside that range and non-immediate scalar offsets use SST1 or | ||||
| 20435 | // SST1_UXTW instead. | ||||
| 20436 | if (Opcode == AArch64ISD::SST1_IMM_PRED) { | ||||
| 20437 | if (!isValidImmForSVEVecImmAddrMode(Offset, | ||||
| 20438 | SrcVT.getScalarSizeInBits() / 8)) { | ||||
| 20439 | if (MVT::nxv4i32 == Base.getValueType().getSimpleVT().SimpleTy) | ||||
| 20440 | Opcode = AArch64ISD::SST1_UXTW_PRED; | ||||
| 20441 | else | ||||
| 20442 | Opcode = AArch64ISD::SST1_PRED; | ||||
| 20443 | |||||
| 20444 | std::swap(Base, Offset); | ||||
| 20445 | } | ||||
| 20446 | } | ||||
| 20447 | |||||
| 20448 | auto &TLI = DAG.getTargetLoweringInfo(); | ||||
| 20449 | if (!TLI.isTypeLegal(Base.getValueType())) | ||||
| 20450 | return SDValue(); | ||||
| 20451 | |||||
| 20452 | // Some scatter store variants allow unpacked offsets, but only as nxv2i32 | ||||
| 20453 | // vectors. These are implicitly sign (sxtw) or zero (zxtw) extend to | ||||
| 20454 | // nxv2i64. Legalize accordingly. | ||||
| 20455 | if (!OnlyPackedOffsets && | ||||
| 20456 | Offset.getValueType().getSimpleVT().SimpleTy == MVT::nxv2i32) | ||||
| 20457 | Offset = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::nxv2i64, Offset).getValue(0); | ||||
| 20458 | |||||
| 20459 | if (!TLI.isTypeLegal(Offset.getValueType())) | ||||
| 20460 | return SDValue(); | ||||
| 20461 | |||||
| 20462 | // Source value type that is representable in hardware | ||||
| 20463 | EVT HwSrcVt = getSVEContainerType(SrcVT); | ||||
| 20464 | |||||
| 20465 | // Keep the original type of the input data to store - this is needed to be | ||||
| 20466 | // able to select the correct instruction, e.g. ST1B, ST1H, ST1W and ST1D. For | ||||
| 20467 | // FP values we want the integer equivalent, so just use HwSrcVt. | ||||
| 20468 | SDValue InputVT = DAG.getValueType(SrcVT); | ||||
| 20469 | if (SrcVT.isFloatingPoint()) | ||||
| 20470 | InputVT = DAG.getValueType(HwSrcVt); | ||||
| 20471 | |||||
| 20472 | SDVTList VTs = DAG.getVTList(MVT::Other); | ||||
| 20473 | SDValue SrcNew; | ||||
| 20474 | |||||
| 20475 | if (Src.getValueType().isFloatingPoint()) | ||||
| 20476 | SrcNew = DAG.getNode(ISD::BITCAST, DL, HwSrcVt, Src); | ||||
| 20477 | else | ||||
| 20478 | SrcNew = DAG.getNode(ISD::ANY_EXTEND, DL, HwSrcVt, Src); | ||||
| 20479 | |||||
| 20480 | SDValue Ops[] = {N->getOperand(0), // Chain | ||||
| 20481 | SrcNew, | ||||
| 20482 | N->getOperand(3), // Pg | ||||
| 20483 | Base, | ||||
| 20484 | Offset, | ||||
| 20485 | InputVT}; | ||||
| 20486 | |||||
| 20487 | return DAG.getNode(Opcode, DL, VTs, Ops); | ||||
| 20488 | } | ||||
| 20489 | |||||
| 20490 | static SDValue performGatherLoadCombine(SDNode *N, SelectionDAG &DAG, | ||||
| 20491 | unsigned Opcode, | ||||
| 20492 | bool OnlyPackedOffsets = true) { | ||||
| 20493 | const EVT RetVT = N->getValueType(0); | ||||
| 20494 | assert(RetVT.isScalableVector() &&(static_cast <bool> (RetVT.isScalableVector() && "Gather loads are only possible for SVE vectors") ? void (0) : __assert_fail ("RetVT.isScalableVector() && \"Gather loads are only possible for SVE vectors\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 20495, __extension__ __PRETTY_FUNCTION__)) | ||||
| 20495 | "Gather loads are only possible for SVE vectors")(static_cast <bool> (RetVT.isScalableVector() && "Gather loads are only possible for SVE vectors") ? void (0) : __assert_fail ("RetVT.isScalableVector() && \"Gather loads are only possible for SVE vectors\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 20495, __extension__ __PRETTY_FUNCTION__)); | ||||
| 20496 | |||||
| 20497 | SDLoc DL(N); | ||||
| 20498 | |||||
| 20499 | // Make sure that the loaded data will fit into an SVE register | ||||
| 20500 | if (RetVT.getSizeInBits().getKnownMinSize() > AArch64::SVEBitsPerBlock) | ||||
| 20501 | return SDValue(); | ||||
| 20502 | |||||
| 20503 | // Depending on the addressing mode, this is either a pointer or a vector of | ||||
| 20504 | // pointers (that fits into one register) | ||||
| 20505 | SDValue Base = N->getOperand(3); | ||||
| 20506 | // Depending on the addressing mode, this is either a single offset or a | ||||
| 20507 | // vector of offsets (that fits into one register) | ||||
| 20508 | SDValue Offset = N->getOperand(4); | ||||
| 20509 | |||||
| 20510 | // For "scalar + vector of indices", just scale the indices. This only | ||||
| 20511 | // applies to non-temporal gathers because there's no instruction that takes | ||||
| 20512 | // indicies. | ||||
| 20513 | if (Opcode == AArch64ISD::GLDNT1_INDEX_MERGE_ZERO) { | ||||
| 20514 | Offset = getScaledOffsetForBitWidth(DAG, Offset, DL, | ||||
| 20515 | RetVT.getScalarSizeInBits()); | ||||
| 20516 | Opcode = AArch64ISD::GLDNT1_MERGE_ZERO; | ||||
| 20517 | } | ||||
| 20518 | |||||
| 20519 | // In the case of non-temporal gather loads there's only one SVE instruction | ||||
| 20520 | // per data-size: "scalar + vector", i.e. | ||||
| 20521 | // * ldnt1{b|h|w|d} { z0.s }, p0/z, [z0.s, x0] | ||||
| 20522 | // Since we do have intrinsics that allow the arguments to be in a different | ||||
| 20523 | // order, we may need to swap them to match the spec. | ||||
| 20524 | if (Opcode == AArch64ISD::GLDNT1_MERGE_ZERO && | ||||
| 20525 | Offset.getValueType().isVector()) | ||||
| 20526 | std::swap(Base, Offset); | ||||
| 20527 | |||||
| 20528 | // GLD{FF}1_IMM requires that the offset is an immediate that is: | ||||
| 20529 | // * a multiple of #SizeInBytes, | ||||
| 20530 | // * in the range [0, 31 x #SizeInBytes], | ||||
| 20531 | // where #SizeInBytes is the size in bytes of the loaded items. For | ||||
| 20532 | // immediates outside that range and non-immediate scalar offsets use | ||||
| 20533 | // GLD1_MERGE_ZERO or GLD1_UXTW_MERGE_ZERO instead. | ||||
| 20534 | if (Opcode == AArch64ISD::GLD1_IMM_MERGE_ZERO || | ||||
| 20535 | Opcode == AArch64ISD::GLDFF1_IMM_MERGE_ZERO) { | ||||
| 20536 | if (!isValidImmForSVEVecImmAddrMode(Offset, | ||||
| 20537 | RetVT.getScalarSizeInBits() / 8)) { | ||||
| 20538 | if (MVT::nxv4i32 == Base.getValueType().getSimpleVT().SimpleTy) | ||||
| 20539 | Opcode = (Opcode == AArch64ISD::GLD1_IMM_MERGE_ZERO) | ||||
| 20540 | ? AArch64ISD::GLD1_UXTW_MERGE_ZERO | ||||
| 20541 | : AArch64ISD::GLDFF1_UXTW_MERGE_ZERO; | ||||
| 20542 | else | ||||
| 20543 | Opcode = (Opcode == AArch64ISD::GLD1_IMM_MERGE_ZERO) | ||||
| 20544 | ? AArch64ISD::GLD1_MERGE_ZERO | ||||
| 20545 | : AArch64ISD::GLDFF1_MERGE_ZERO; | ||||
| 20546 | |||||
| 20547 | std::swap(Base, Offset); | ||||
| 20548 | } | ||||
| 20549 | } | ||||
| 20550 | |||||
| 20551 | auto &TLI = DAG.getTargetLoweringInfo(); | ||||
| 20552 | if (!TLI.isTypeLegal(Base.getValueType())) | ||||
| 20553 | return SDValue(); | ||||
| 20554 | |||||
| 20555 | // Some gather load variants allow unpacked offsets, but only as nxv2i32 | ||||
| 20556 | // vectors. These are implicitly sign (sxtw) or zero (zxtw) extend to | ||||
| 20557 | // nxv2i64. Legalize accordingly. | ||||
| 20558 | if (!OnlyPackedOffsets && | ||||
| 20559 | Offset.getValueType().getSimpleVT().SimpleTy == MVT::nxv2i32) | ||||
| 20560 | Offset = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::nxv2i64, Offset).getValue(0); | ||||
| 20561 | |||||
| 20562 | // Return value type that is representable in hardware | ||||
| 20563 | EVT HwRetVt = getSVEContainerType(RetVT); | ||||
| 20564 | |||||
| 20565 | // Keep the original output value type around - this is needed to be able to | ||||
| 20566 | // select the correct instruction, e.g. LD1B, LD1H, LD1W and LD1D. For FP | ||||
| 20567 | // values we want the integer equivalent, so just use HwRetVT. | ||||
| 20568 | SDValue OutVT = DAG.getValueType(RetVT); | ||||
| 20569 | if (RetVT.isFloatingPoint()) | ||||
| 20570 | OutVT = DAG.getValueType(HwRetVt); | ||||
| 20571 | |||||
| 20572 | SDVTList VTs = DAG.getVTList(HwRetVt, MVT::Other); | ||||
| 20573 | SDValue Ops[] = {N->getOperand(0), // Chain | ||||
| 20574 | N->getOperand(2), // Pg | ||||
| 20575 | Base, Offset, OutVT}; | ||||
| 20576 | |||||
| 20577 | SDValue Load = DAG.getNode(Opcode, DL, VTs, Ops); | ||||
| 20578 | SDValue LoadChain = SDValue(Load.getNode(), 1); | ||||
| 20579 | |||||
| 20580 | if (RetVT.isInteger() && (RetVT != HwRetVt)) | ||||
| 20581 | Load = DAG.getNode(ISD::TRUNCATE, DL, RetVT, Load.getValue(0)); | ||||
| 20582 | |||||
| 20583 | // If the original return value was FP, bitcast accordingly. Doing it here | ||||
| 20584 | // means that we can avoid adding TableGen patterns for FPs. | ||||
| 20585 | if (RetVT.isFloatingPoint()) | ||||
| 20586 | Load = DAG.getNode(ISD::BITCAST, DL, RetVT, Load.getValue(0)); | ||||
| 20587 | |||||
| 20588 | return DAG.getMergeValues({Load, LoadChain}, DL); | ||||
| 20589 | } | ||||
| 20590 | |||||
| 20591 | static SDValue | ||||
| 20592 | performSignExtendInRegCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI, | ||||
| 20593 | SelectionDAG &DAG) { | ||||
| 20594 | SDLoc DL(N); | ||||
| 20595 | SDValue Src = N->getOperand(0); | ||||
| 20596 | unsigned Opc = Src->getOpcode(); | ||||
| 20597 | |||||
| 20598 | // Sign extend of an unsigned unpack -> signed unpack | ||||
| 20599 | if (Opc == AArch64ISD::UUNPKHI || Opc == AArch64ISD::UUNPKLO) { | ||||
| 20600 | |||||
| 20601 | unsigned SOpc = Opc == AArch64ISD::UUNPKHI ? AArch64ISD::SUNPKHI | ||||
| 20602 | : AArch64ISD::SUNPKLO; | ||||
| 20603 | |||||
| 20604 | // Push the sign extend to the operand of the unpack | ||||
| 20605 | // This is necessary where, for example, the operand of the unpack | ||||
| 20606 | // is another unpack: | ||||
| 20607 | // 4i32 sign_extend_inreg (4i32 uunpklo(8i16 uunpklo (16i8 opnd)), from 4i8) | ||||
| 20608 | // -> | ||||
| 20609 | // 4i32 sunpklo (8i16 sign_extend_inreg(8i16 uunpklo (16i8 opnd), from 8i8) | ||||
| 20610 | // -> | ||||
| 20611 | // 4i32 sunpklo(8i16 sunpklo(16i8 opnd)) | ||||
| 20612 | SDValue ExtOp = Src->getOperand(0); | ||||
| 20613 | auto VT = cast<VTSDNode>(N->getOperand(1))->getVT(); | ||||
| 20614 | EVT EltTy = VT.getVectorElementType(); | ||||
| 20615 | (void)EltTy; | ||||
| 20616 | |||||
| 20617 | assert((EltTy == MVT::i8 || EltTy == MVT::i16 || EltTy == MVT::i32) &&(static_cast <bool> ((EltTy == MVT::i8 || EltTy == MVT:: i16 || EltTy == MVT::i32) && "Sign extending from an invalid type" ) ? void (0) : __assert_fail ("(EltTy == MVT::i8 || EltTy == MVT::i16 || EltTy == MVT::i32) && \"Sign extending from an invalid type\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 20618, __extension__ __PRETTY_FUNCTION__)) | ||||
| 20618 | "Sign extending from an invalid type")(static_cast <bool> ((EltTy == MVT::i8 || EltTy == MVT:: i16 || EltTy == MVT::i32) && "Sign extending from an invalid type" ) ? void (0) : __assert_fail ("(EltTy == MVT::i8 || EltTy == MVT::i16 || EltTy == MVT::i32) && \"Sign extending from an invalid type\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 20618, __extension__ __PRETTY_FUNCTION__)); | ||||
| 20619 | |||||
| 20620 | EVT ExtVT = VT.getDoubleNumVectorElementsVT(*DAG.getContext()); | ||||
| 20621 | |||||
| 20622 | SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ExtOp.getValueType(), | ||||
| 20623 | ExtOp, DAG.getValueType(ExtVT)); | ||||
| 20624 | |||||
| 20625 | return DAG.getNode(SOpc, DL, N->getValueType(0), Ext); | ||||
| 20626 | } | ||||
| 20627 | |||||
| 20628 | if (DCI.isBeforeLegalizeOps()) | ||||
| 20629 | return SDValue(); | ||||
| 20630 | |||||
| 20631 | if (!EnableCombineMGatherIntrinsics) | ||||
| 20632 | return SDValue(); | ||||
| 20633 | |||||
| 20634 | // SVE load nodes (e.g. AArch64ISD::GLD1) are straightforward candidates | ||||
| 20635 | // for DAG Combine with SIGN_EXTEND_INREG. Bail out for all other nodes. | ||||
| 20636 | unsigned NewOpc; | ||||
| 20637 | unsigned MemVTOpNum = 4; | ||||
| 20638 | switch (Opc) { | ||||
| 20639 | case AArch64ISD::LD1_MERGE_ZERO: | ||||
| 20640 | NewOpc = AArch64ISD::LD1S_MERGE_ZERO; | ||||
| 20641 | MemVTOpNum = 3; | ||||
| 20642 | break; | ||||
| 20643 | case AArch64ISD::LDNF1_MERGE_ZERO: | ||||
| 20644 | NewOpc = AArch64ISD::LDNF1S_MERGE_ZERO; | ||||
| 20645 | MemVTOpNum = 3; | ||||
| 20646 | break; | ||||
| 20647 | case AArch64ISD::LDFF1_MERGE_ZERO: | ||||
| 20648 | NewOpc = AArch64ISD::LDFF1S_MERGE_ZERO; | ||||
| 20649 | MemVTOpNum = 3; | ||||
| 20650 | break; | ||||
| 20651 | case AArch64ISD::GLD1_MERGE_ZERO: | ||||
| 20652 | NewOpc = AArch64ISD::GLD1S_MERGE_ZERO; | ||||
| 20653 | break; | ||||
| 20654 | case AArch64ISD::GLD1_SCALED_MERGE_ZERO: | ||||
| 20655 | NewOpc = AArch64ISD::GLD1S_SCALED_MERGE_ZERO; | ||||
| 20656 | break; | ||||
| 20657 | case AArch64ISD::GLD1_SXTW_MERGE_ZERO: | ||||
| 20658 | NewOpc = AArch64ISD::GLD1S_SXTW_MERGE_ZERO; | ||||
| 20659 | break; | ||||
| 20660 | case AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO: | ||||
| 20661 | NewOpc = AArch64ISD::GLD1S_SXTW_SCALED_MERGE_ZERO; | ||||
| 20662 | break; | ||||
| 20663 | case AArch64ISD::GLD1_UXTW_MERGE_ZERO: | ||||
| 20664 | NewOpc = AArch64ISD::GLD1S_UXTW_MERGE_ZERO; | ||||
| 20665 | break; | ||||
| 20666 | case AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO: | ||||
| 20667 | NewOpc = AArch64ISD::GLD1S_UXTW_SCALED_MERGE_ZERO; | ||||
| 20668 | break; | ||||
| 20669 | case AArch64ISD::GLD1_IMM_MERGE_ZERO: | ||||
| 20670 | NewOpc = AArch64ISD::GLD1S_IMM_MERGE_ZERO; | ||||
| 20671 | break; | ||||
| 20672 | case AArch64ISD::GLDFF1_MERGE_ZERO: | ||||
| 20673 | NewOpc = AArch64ISD::GLDFF1S_MERGE_ZERO; | ||||
| 20674 | break; | ||||
| 20675 | case AArch64ISD::GLDFF1_SCALED_MERGE_ZERO: | ||||
| 20676 | NewOpc = AArch64ISD::GLDFF1S_SCALED_MERGE_ZERO; | ||||
| 20677 | break; | ||||
| 20678 | case AArch64ISD::GLDFF1_SXTW_MERGE_ZERO: | ||||
| 20679 | NewOpc = AArch64ISD::GLDFF1S_SXTW_MERGE_ZERO; | ||||
| 20680 | break; | ||||
| 20681 | case AArch64ISD::GLDFF1_SXTW_SCALED_MERGE_ZERO: | ||||
| 20682 | NewOpc = AArch64ISD::GLDFF1S_SXTW_SCALED_MERGE_ZERO; | ||||
| 20683 | break; | ||||
| 20684 | case AArch64ISD::GLDFF1_UXTW_MERGE_ZERO: | ||||
| 20685 | NewOpc = AArch64ISD::GLDFF1S_UXTW_MERGE_ZERO; | ||||
| 20686 | break; | ||||
| 20687 | case AArch64ISD::GLDFF1_UXTW_SCALED_MERGE_ZERO: | ||||
| 20688 | NewOpc = AArch64ISD::GLDFF1S_UXTW_SCALED_MERGE_ZERO; | ||||
| 20689 | break; | ||||
| 20690 | case AArch64ISD::GLDFF1_IMM_MERGE_ZERO: | ||||
| 20691 | NewOpc = AArch64ISD::GLDFF1S_IMM_MERGE_ZERO; | ||||
| 20692 | break; | ||||
| 20693 | case AArch64ISD::GLDNT1_MERGE_ZERO: | ||||
| 20694 | NewOpc = AArch64ISD::GLDNT1S_MERGE_ZERO; | ||||
| 20695 | break; | ||||
| 20696 | default: | ||||
| 20697 | return SDValue(); | ||||
| 20698 | } | ||||
| 20699 | |||||
| 20700 | EVT SignExtSrcVT = cast<VTSDNode>(N->getOperand(1))->getVT(); | ||||
| 20701 | EVT SrcMemVT = cast<VTSDNode>(Src->getOperand(MemVTOpNum))->getVT(); | ||||
| 20702 | |||||
| 20703 | if ((SignExtSrcVT != SrcMemVT) || !Src.hasOneUse()) | ||||
| 20704 | return SDValue(); | ||||
| 20705 | |||||
| 20706 | EVT DstVT = N->getValueType(0); | ||||
| 20707 | SDVTList VTs = DAG.getVTList(DstVT, MVT::Other); | ||||
| 20708 | |||||
| 20709 | SmallVector<SDValue, 5> Ops; | ||||
| 20710 | for (unsigned I = 0; I < Src->getNumOperands(); ++I) | ||||
| 20711 | Ops.push_back(Src->getOperand(I)); | ||||
| 20712 | |||||
| 20713 | SDValue ExtLoad = DAG.getNode(NewOpc, SDLoc(N), VTs, Ops); | ||||
| 20714 | DCI.CombineTo(N, ExtLoad); | ||||
| 20715 | DCI.CombineTo(Src.getNode(), ExtLoad, ExtLoad.getValue(1)); | ||||
| 20716 | |||||
| 20717 | // Return N so it doesn't get rechecked | ||||
| 20718 | return SDValue(N, 0); | ||||
| 20719 | } | ||||
| 20720 | |||||
| 20721 | /// Legalize the gather prefetch (scalar + vector addressing mode) when the | ||||
| 20722 | /// offset vector is an unpacked 32-bit scalable vector. The other cases (Offset | ||||
| 20723 | /// != nxv2i32) do not need legalization. | ||||
| 20724 | static SDValue legalizeSVEGatherPrefetchOffsVec(SDNode *N, SelectionDAG &DAG) { | ||||
| 20725 | const unsigned OffsetPos = 4; | ||||
| 20726 | SDValue Offset = N->getOperand(OffsetPos); | ||||
| 20727 | |||||
| 20728 | // Not an unpacked vector, bail out. | ||||
| 20729 | if (Offset.getValueType().getSimpleVT().SimpleTy != MVT::nxv2i32) | ||||
| 20730 | return SDValue(); | ||||
| 20731 | |||||
| 20732 | // Extend the unpacked offset vector to 64-bit lanes. | ||||
| 20733 | SDLoc DL(N); | ||||
| 20734 | Offset = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::nxv2i64, Offset); | ||||
| 20735 | SmallVector<SDValue, 5> Ops(N->op_begin(), N->op_end()); | ||||
| 20736 | // Replace the offset operand with the 64-bit one. | ||||
| 20737 | Ops[OffsetPos] = Offset; | ||||
| 20738 | |||||
| 20739 | return DAG.getNode(N->getOpcode(), DL, DAG.getVTList(MVT::Other), Ops); | ||||
| 20740 | } | ||||
| 20741 | |||||
| 20742 | /// Combines a node carrying the intrinsic | ||||
| 20743 | /// `aarch64_sve_prf<T>_gather_scalar_offset` into a node that uses | ||||
| 20744 | /// `aarch64_sve_prfb_gather_uxtw_index` when the scalar offset passed to | ||||
| 20745 | /// `aarch64_sve_prf<T>_gather_scalar_offset` is not a valid immediate for the | ||||
| 20746 | /// sve gather prefetch instruction with vector plus immediate addressing mode. | ||||
| 20747 | static SDValue combineSVEPrefetchVecBaseImmOff(SDNode *N, SelectionDAG &DAG, | ||||
| 20748 | unsigned ScalarSizeInBytes) { | ||||
| 20749 | const unsigned ImmPos = 4, OffsetPos = 3; | ||||
| 20750 | // No need to combine the node if the immediate is valid... | ||||
| 20751 | if (isValidImmForSVEVecImmAddrMode(N->getOperand(ImmPos), ScalarSizeInBytes)) | ||||
| 20752 | return SDValue(); | ||||
| 20753 | |||||
| 20754 | // ...otherwise swap the offset base with the offset... | ||||
| 20755 | SmallVector<SDValue, 5> Ops(N->op_begin(), N->op_end()); | ||||
| 20756 | std::swap(Ops[ImmPos], Ops[OffsetPos]); | ||||
| 20757 | // ...and remap the intrinsic `aarch64_sve_prf<T>_gather_scalar_offset` to | ||||
| 20758 | // `aarch64_sve_prfb_gather_uxtw_index`. | ||||
| 20759 | SDLoc DL(N); | ||||
| 20760 | Ops[1] = DAG.getConstant(Intrinsic::aarch64_sve_prfb_gather_uxtw_index, DL, | ||||
| 20761 | MVT::i64); | ||||
| 20762 | |||||
| 20763 | return DAG.getNode(N->getOpcode(), DL, DAG.getVTList(MVT::Other), Ops); | ||||
| 20764 | } | ||||
| 20765 | |||||
| 20766 | // Return true if the vector operation can guarantee only the first lane of its | ||||
| 20767 | // result contains data, with all bits in other lanes set to zero. | ||||
| 20768 | static bool isLanes1toNKnownZero(SDValue Op) { | ||||
| 20769 | switch (Op.getOpcode()) { | ||||
| 20770 | default: | ||||
| 20771 | return false; | ||||
| 20772 | case AArch64ISD::ANDV_PRED: | ||||
| 20773 | case AArch64ISD::EORV_PRED: | ||||
| 20774 | case AArch64ISD::FADDA_PRED: | ||||
| 20775 | case AArch64ISD::FADDV_PRED: | ||||
| 20776 | case AArch64ISD::FMAXNMV_PRED: | ||||
| 20777 | case AArch64ISD::FMAXV_PRED: | ||||
| 20778 | case AArch64ISD::FMINNMV_PRED: | ||||
| 20779 | case AArch64ISD::FMINV_PRED: | ||||
| 20780 | case AArch64ISD::ORV_PRED: | ||||
| 20781 | case AArch64ISD::SADDV_PRED: | ||||
| 20782 | case AArch64ISD::SMAXV_PRED: | ||||
| 20783 | case AArch64ISD::SMINV_PRED: | ||||
| 20784 | case AArch64ISD::UADDV_PRED: | ||||
| 20785 | case AArch64ISD::UMAXV_PRED: | ||||
| 20786 | case AArch64ISD::UMINV_PRED: | ||||
| 20787 | return true; | ||||
| 20788 | } | ||||
| 20789 | } | ||||
| 20790 | |||||
| 20791 | static SDValue removeRedundantInsertVectorElt(SDNode *N) { | ||||
| 20792 | assert(N->getOpcode() == ISD::INSERT_VECTOR_ELT && "Unexpected node!")(static_cast <bool> (N->getOpcode() == ISD::INSERT_VECTOR_ELT && "Unexpected node!") ? void (0) : __assert_fail ("N->getOpcode() == ISD::INSERT_VECTOR_ELT && \"Unexpected node!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 20792, __extension__ __PRETTY_FUNCTION__)); | ||||
| 20793 | SDValue InsertVec = N->getOperand(0); | ||||
| 20794 | SDValue InsertElt = N->getOperand(1); | ||||
| 20795 | SDValue InsertIdx = N->getOperand(2); | ||||
| 20796 | |||||
| 20797 | // We only care about inserts into the first element... | ||||
| 20798 | if (!isNullConstant(InsertIdx)) | ||||
| 20799 | return SDValue(); | ||||
| 20800 | // ...of a zero'd vector... | ||||
| 20801 | if (!ISD::isConstantSplatVectorAllZeros(InsertVec.getNode())) | ||||
| 20802 | return SDValue(); | ||||
| 20803 | // ...where the inserted data was previously extracted... | ||||
| 20804 | if (InsertElt.getOpcode() != ISD::EXTRACT_VECTOR_ELT) | ||||
| 20805 | return SDValue(); | ||||
| 20806 | |||||
| 20807 | SDValue ExtractVec = InsertElt.getOperand(0); | ||||
| 20808 | SDValue ExtractIdx = InsertElt.getOperand(1); | ||||
| 20809 | |||||
| 20810 | // ...from the first element of a vector. | ||||
| 20811 | if (!isNullConstant(ExtractIdx)) | ||||
| 20812 | return SDValue(); | ||||
| 20813 | |||||
| 20814 | // If we get here we are effectively trying to zero lanes 1-N of a vector. | ||||
| 20815 | |||||
| 20816 | // Ensure there's no type conversion going on. | ||||
| 20817 | if (N->getValueType(0) != ExtractVec.getValueType()) | ||||
| 20818 | return SDValue(); | ||||
| 20819 | |||||
| 20820 | if (!isLanes1toNKnownZero(ExtractVec)) | ||||
| 20821 | return SDValue(); | ||||
| 20822 | |||||
| 20823 | // The explicit zeroing is redundant. | ||||
| 20824 | return ExtractVec; | ||||
| 20825 | } | ||||
| 20826 | |||||
| 20827 | static SDValue | ||||
| 20828 | performInsertVectorEltCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { | ||||
| 20829 | if (SDValue Res = removeRedundantInsertVectorElt(N)) | ||||
| 20830 | return Res; | ||||
| 20831 | |||||
| 20832 | return performPostLD1Combine(N, DCI, true); | ||||
| 20833 | } | ||||
| 20834 | |||||
| 20835 | static SDValue performSVESpliceCombine(SDNode *N, SelectionDAG &DAG) { | ||||
| 20836 | EVT Ty = N->getValueType(0); | ||||
| 20837 | if (Ty.isInteger()) | ||||
| 20838 | return SDValue(); | ||||
| 20839 | |||||
| 20840 | EVT IntTy = Ty.changeVectorElementTypeToInteger(); | ||||
| 20841 | EVT ExtIntTy = getPackedSVEVectorVT(IntTy.getVectorElementCount()); | ||||
| 20842 | if (ExtIntTy.getVectorElementType().getScalarSizeInBits() < | ||||
| 20843 | IntTy.getVectorElementType().getScalarSizeInBits()) | ||||
| 20844 | return SDValue(); | ||||
| 20845 | |||||
| 20846 | SDLoc DL(N); | ||||
| 20847 | SDValue LHS = DAG.getAnyExtOrTrunc(DAG.getBitcast(IntTy, N->getOperand(0)), | ||||
| 20848 | DL, ExtIntTy); | ||||
| 20849 | SDValue RHS = DAG.getAnyExtOrTrunc(DAG.getBitcast(IntTy, N->getOperand(1)), | ||||
| 20850 | DL, ExtIntTy); | ||||
| 20851 | SDValue Idx = N->getOperand(2); | ||||
| 20852 | SDValue Splice = DAG.getNode(ISD::VECTOR_SPLICE, DL, ExtIntTy, LHS, RHS, Idx); | ||||
| 20853 | SDValue Trunc = DAG.getAnyExtOrTrunc(Splice, DL, IntTy); | ||||
| 20854 | return DAG.getBitcast(Ty, Trunc); | ||||
| 20855 | } | ||||
| 20856 | |||||
| 20857 | static SDValue performFPExtendCombine(SDNode *N, SelectionDAG &DAG, | ||||
| 20858 | TargetLowering::DAGCombinerInfo &DCI, | ||||
| 20859 | const AArch64Subtarget *Subtarget) { | ||||
| 20860 | SDValue N0 = N->getOperand(0); | ||||
| 20861 | EVT VT = N->getValueType(0); | ||||
| 20862 | |||||
| 20863 | // If this is fp_round(fpextend), don't fold it, allow ourselves to be folded. | ||||
| 20864 | if (N->hasOneUse() && N->use_begin()->getOpcode() == ISD::FP_ROUND) | ||||
| 20865 | return SDValue(); | ||||
| 20866 | |||||
| 20867 | // fold (fpext (load x)) -> (fpext (fptrunc (extload x))) | ||||
| 20868 | // We purposefully don't care about legality of the nodes here as we know | ||||
| 20869 | // they can be split down into something legal. | ||||
| 20870 | if (DCI.isBeforeLegalizeOps() && ISD::isNormalLoad(N0.getNode()) && | ||||
| 20871 | N0.hasOneUse() && Subtarget->useSVEForFixedLengthVectors() && | ||||
| 20872 | VT.isFixedLengthVector() && | ||||
| 20873 | VT.getFixedSizeInBits() >= Subtarget->getMinSVEVectorSizeInBits()) { | ||||
| 20874 | LoadSDNode *LN0 = cast<LoadSDNode>(N0); | ||||
| 20875 | SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT, | ||||
| 20876 | LN0->getChain(), LN0->getBasePtr(), | ||||
| 20877 | N0.getValueType(), LN0->getMemOperand()); | ||||
| 20878 | DCI.CombineTo(N, ExtLoad); | ||||
| 20879 | DCI.CombineTo( | ||||
| 20880 | N0.getNode(), | ||||
| 20881 | DAG.getNode(ISD::FP_ROUND, SDLoc(N0), N0.getValueType(), ExtLoad, | ||||
| 20882 | DAG.getIntPtrConstant(1, SDLoc(N0), /*isTarget=*/true)), | ||||
| 20883 | ExtLoad.getValue(1)); | ||||
| 20884 | return SDValue(N, 0); // Return N so it doesn't get rechecked! | ||||
| 20885 | } | ||||
| 20886 | |||||
| 20887 | return SDValue(); | ||||
| 20888 | } | ||||
| 20889 | |||||
| 20890 | static SDValue performBSPExpandForSVE(SDNode *N, SelectionDAG &DAG, | ||||
| 20891 | const AArch64Subtarget *Subtarget) { | ||||
| 20892 | EVT VT = N->getValueType(0); | ||||
| 20893 | |||||
| 20894 | // Don't expand for NEON, SVE2 or SME | ||||
| 20895 | if (!VT.isScalableVector() || Subtarget->hasSVE2() || Subtarget->hasSME()) | ||||
| 20896 | return SDValue(); | ||||
| 20897 | |||||
| 20898 | SDLoc DL(N); | ||||
| 20899 | |||||
| 20900 | SDValue Mask = N->getOperand(0); | ||||
| 20901 | SDValue In1 = N->getOperand(1); | ||||
| 20902 | SDValue In2 = N->getOperand(2); | ||||
| 20903 | |||||
| 20904 | SDValue InvMask = DAG.getNOT(DL, Mask, VT); | ||||
| 20905 | SDValue Sel = DAG.getNode(ISD::AND, DL, VT, Mask, In1); | ||||
| 20906 | SDValue SelInv = DAG.getNode(ISD::AND, DL, VT, InvMask, In2); | ||||
| 20907 | return DAG.getNode(ISD::OR, DL, VT, Sel, SelInv); | ||||
| 20908 | } | ||||
| 20909 | |||||
| 20910 | static SDValue performDupLane128Combine(SDNode *N, SelectionDAG &DAG) { | ||||
| 20911 | EVT VT = N->getValueType(0); | ||||
| 20912 | |||||
| 20913 | SDValue Insert = N->getOperand(0); | ||||
| 20914 | if (Insert.getOpcode() != ISD::INSERT_SUBVECTOR) | ||||
| 20915 | return SDValue(); | ||||
| 20916 | |||||
| 20917 | if (!Insert.getOperand(0).isUndef()) | ||||
| 20918 | return SDValue(); | ||||
| 20919 | |||||
| 20920 | uint64_t IdxInsert = Insert.getConstantOperandVal(2); | ||||
| 20921 | uint64_t IdxDupLane = N->getConstantOperandVal(1); | ||||
| 20922 | if (IdxInsert != 0 || IdxDupLane != 0) | ||||
| 20923 | return SDValue(); | ||||
| 20924 | |||||
| 20925 | SDValue Bitcast = Insert.getOperand(1); | ||||
| 20926 | if (Bitcast.getOpcode() != ISD::BITCAST) | ||||
| 20927 | return SDValue(); | ||||
| 20928 | |||||
| 20929 | SDValue Subvec = Bitcast.getOperand(0); | ||||
| 20930 | EVT SubvecVT = Subvec.getValueType(); | ||||
| 20931 | if (!SubvecVT.is128BitVector()) | ||||
| 20932 | return SDValue(); | ||||
| 20933 | EVT NewSubvecVT = | ||||
| 20934 | getPackedSVEVectorVT(Subvec.getValueType().getVectorElementType()); | ||||
| 20935 | |||||
| 20936 | SDLoc DL(N); | ||||
| 20937 | SDValue NewInsert = | ||||
| 20938 | DAG.getNode(ISD::INSERT_SUBVECTOR, DL, NewSubvecVT, | ||||
| 20939 | DAG.getUNDEF(NewSubvecVT), Subvec, Insert->getOperand(2)); | ||||
| 20940 | SDValue NewDuplane128 = DAG.getNode(AArch64ISD::DUPLANE128, DL, NewSubvecVT, | ||||
| 20941 | NewInsert, N->getOperand(1)); | ||||
| 20942 | return DAG.getNode(ISD::BITCAST, DL, VT, NewDuplane128); | ||||
| 20943 | } | ||||
| 20944 | |||||
| 20945 | SDValue AArch64TargetLowering::PerformDAGCombine(SDNode *N, | ||||
| 20946 | DAGCombinerInfo &DCI) const { | ||||
| 20947 | SelectionDAG &DAG = DCI.DAG; | ||||
| 20948 | switch (N->getOpcode()) { | ||||
| 20949 | default: | ||||
| 20950 | LLVM_DEBUG(dbgs() << "Custom combining: skipping\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("aarch64-lower")) { dbgs() << "Custom combining: skipping\n" ; } } while (false); | ||||
| 20951 | break; | ||||
| 20952 | case ISD::ADD: | ||||
| 20953 | case ISD::SUB: | ||||
| 20954 | return performAddSubCombine(N, DCI, DAG); | ||||
| 20955 | case ISD::BUILD_VECTOR: | ||||
| 20956 | return performBuildVectorCombine(N, DCI, DAG); | ||||
| 20957 | case AArch64ISD::ANDS: | ||||
| 20958 | return performFlagSettingCombine(N, DCI, ISD::AND); | ||||
| 20959 | case AArch64ISD::ADC: | ||||
| 20960 | if (auto R = foldOverflowCheck(N, DAG, /* IsAdd */ true)) | ||||
| 20961 | return R; | ||||
| 20962 | return foldADCToCINC(N, DAG); | ||||
| 20963 | case AArch64ISD::SBC: | ||||
| 20964 | return foldOverflowCheck(N, DAG, /* IsAdd */ false); | ||||
| 20965 | case AArch64ISD::ADCS: | ||||
| 20966 | if (auto R = foldOverflowCheck(N, DAG, /* IsAdd */ true)) | ||||
| 20967 | return R; | ||||
| 20968 | return performFlagSettingCombine(N, DCI, AArch64ISD::ADC); | ||||
| 20969 | case AArch64ISD::SBCS: | ||||
| 20970 | if (auto R = foldOverflowCheck(N, DAG, /* IsAdd */ false)) | ||||
| 20971 | return R; | ||||
| 20972 | return performFlagSettingCombine(N, DCI, AArch64ISD::SBC); | ||||
| 20973 | case ISD::XOR: | ||||
| 20974 | return performXorCombine(N, DAG, DCI, Subtarget); | ||||
| 20975 | case ISD::MUL: | ||||
| 20976 | return performMulCombine(N, DAG, DCI, Subtarget); | ||||
| 20977 | case ISD::SINT_TO_FP: | ||||
| 20978 | case ISD::UINT_TO_FP: | ||||
| 20979 | return performIntToFpCombine(N, DAG, Subtarget); | ||||
| 20980 | case ISD::FP_TO_SINT: | ||||
| 20981 | case ISD::FP_TO_UINT: | ||||
| 20982 | case ISD::FP_TO_SINT_SAT: | ||||
| 20983 | case ISD::FP_TO_UINT_SAT: | ||||
| 20984 | return performFpToIntCombine(N, DAG, DCI, Subtarget); | ||||
| 20985 | case ISD::FDIV: | ||||
| 20986 | return performFDivCombine(N, DAG, DCI, Subtarget); | ||||
| 20987 | case ISD::OR: | ||||
| 20988 | return performORCombine(N, DCI, Subtarget, *this); | ||||
| 20989 | case ISD::AND: | ||||
| 20990 | return performANDCombine(N, DCI); | ||||
| 20991 | case ISD::INTRINSIC_WO_CHAIN: | ||||
| 20992 | return performIntrinsicCombine(N, DCI, Subtarget); | ||||
| 20993 | case ISD::ANY_EXTEND: | ||||
| 20994 | case ISD::ZERO_EXTEND: | ||||
| 20995 | case ISD::SIGN_EXTEND: | ||||
| 20996 | return performExtendCombine(N, DCI, DAG); | ||||
| 20997 | case ISD::SIGN_EXTEND_INREG: | ||||
| 20998 | return performSignExtendInRegCombine(N, DCI, DAG); | ||||
| 20999 | case ISD::CONCAT_VECTORS: | ||||
| 21000 | return performConcatVectorsCombine(N, DCI, DAG); | ||||
| 21001 | case ISD::EXTRACT_SUBVECTOR: | ||||
| 21002 | return performExtractSubvectorCombine(N, DCI, DAG); | ||||
| 21003 | case ISD::INSERT_SUBVECTOR: | ||||
| 21004 | return performInsertSubvectorCombine(N, DCI, DAG); | ||||
| 21005 | case ISD::SELECT: | ||||
| 21006 | return performSelectCombine(N, DCI); | ||||
| 21007 | case ISD::VSELECT: | ||||
| 21008 | return performVSelectCombine(N, DCI.DAG); | ||||
| 21009 | case ISD::SETCC: | ||||
| 21010 | return performSETCCCombine(N, DCI, DAG); | ||||
| 21011 | case ISD::LOAD: | ||||
| 21012 | return performLOADCombine(N, DCI, DAG, Subtarget); | ||||
| 21013 | case ISD::STORE: | ||||
| 21014 | return performSTORECombine(N, DCI, DAG, Subtarget); | ||||
| 21015 | case ISD::MSTORE: | ||||
| 21016 | return performMSTORECombine(N, DCI, DAG, Subtarget); | ||||
| 21017 | case ISD::MGATHER: | ||||
| 21018 | case ISD::MSCATTER: | ||||
| 21019 | return performMaskedGatherScatterCombine(N, DCI, DAG); | ||||
| 21020 | case ISD::VECTOR_SPLICE: | ||||
| 21021 | return performSVESpliceCombine(N, DAG); | ||||
| 21022 | case ISD::FP_EXTEND: | ||||
| 21023 | return performFPExtendCombine(N, DAG, DCI, Subtarget); | ||||
| 21024 | case AArch64ISD::BRCOND: | ||||
| 21025 | return performBRCONDCombine(N, DCI, DAG); | ||||
| 21026 | case AArch64ISD::TBNZ: | ||||
| 21027 | case AArch64ISD::TBZ: | ||||
| 21028 | return performTBZCombine(N, DCI, DAG); | ||||
| 21029 | case AArch64ISD::CSEL: | ||||
| 21030 | return performCSELCombine(N, DCI, DAG); | ||||
| 21031 | case AArch64ISD::DUP: | ||||
| 21032 | return performDUPCombine(N, DCI); | ||||
| 21033 | case AArch64ISD::DUPLANE128: | ||||
| 21034 | return performDupLane128Combine(N, DAG); | ||||
| 21035 | case AArch64ISD::NVCAST: | ||||
| 21036 | return performNVCASTCombine(N); | ||||
| 21037 | case AArch64ISD::SPLICE: | ||||
| 21038 | return performSpliceCombine(N, DAG); | ||||
| 21039 | case AArch64ISD::UUNPKLO: | ||||
| 21040 | case AArch64ISD::UUNPKHI: | ||||
| 21041 | return performUnpackCombine(N, DAG, Subtarget); | ||||
| 21042 | case AArch64ISD::UZP1: | ||||
| 21043 | return performUzpCombine(N, DAG); | ||||
| 21044 | case AArch64ISD::SETCC_MERGE_ZERO: | ||||
| 21045 | return performSetccMergeZeroCombine(N, DCI); | ||||
| 21046 | case AArch64ISD::GLD1_MERGE_ZERO: | ||||
| 21047 | case AArch64ISD::GLD1_SCALED_MERGE_ZERO: | ||||
| 21048 | case AArch64ISD::GLD1_UXTW_MERGE_ZERO: | ||||
| 21049 | case AArch64ISD::GLD1_SXTW_MERGE_ZERO: | ||||
| 21050 | case AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO: | ||||
| 21051 | case AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO: | ||||
| 21052 | case AArch64ISD::GLD1_IMM_MERGE_ZERO: | ||||
| 21053 | case AArch64ISD::GLD1S_MERGE_ZERO: | ||||
| 21054 | case AArch64ISD::GLD1S_SCALED_MERGE_ZERO: | ||||
| 21055 | case AArch64ISD::GLD1S_UXTW_MERGE_ZERO: | ||||
| 21056 | case AArch64ISD::GLD1S_SXTW_MERGE_ZERO: | ||||
| 21057 | case AArch64ISD::GLD1S_UXTW_SCALED_MERGE_ZERO: | ||||
| 21058 | case AArch64ISD::GLD1S_SXTW_SCALED_MERGE_ZERO: | ||||
| 21059 | case AArch64ISD::GLD1S_IMM_MERGE_ZERO: | ||||
| 21060 | return performGLD1Combine(N, DAG); | ||||
| 21061 | case AArch64ISD::VASHR: | ||||
| 21062 | case AArch64ISD::VLSHR: | ||||
| 21063 | return performVectorShiftCombine(N, *this, DCI); | ||||
| 21064 | case AArch64ISD::SUNPKLO: | ||||
| 21065 | return performSunpkloCombine(N, DAG); | ||||
| 21066 | case AArch64ISD::BSP: | ||||
| 21067 | return performBSPExpandForSVE(N, DAG, Subtarget); | ||||
| 21068 | case ISD::INSERT_VECTOR_ELT: | ||||
| 21069 | return performInsertVectorEltCombine(N, DCI); | ||||
| 21070 | case ISD::EXTRACT_VECTOR_ELT: | ||||
| 21071 | return performExtractVectorEltCombine(N, DCI, Subtarget); | ||||
| 21072 | case ISD::VECREDUCE_ADD: | ||||
| 21073 | return performVecReduceAddCombine(N, DCI.DAG, Subtarget); | ||||
| 21074 | case AArch64ISD::UADDV: | ||||
| 21075 | return performUADDVCombine(N, DAG); | ||||
| 21076 | case AArch64ISD::SMULL: | ||||
| 21077 | case AArch64ISD::UMULL: | ||||
| 21078 | case AArch64ISD::PMULL: | ||||
| 21079 | return tryCombineLongOpWithDup(Intrinsic::not_intrinsic, N, DCI, DAG); | ||||
| 21080 | case ISD::INTRINSIC_VOID: | ||||
| 21081 | case ISD::INTRINSIC_W_CHAIN: | ||||
| 21082 | switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { | ||||
| 21083 | case Intrinsic::aarch64_sve_prfb_gather_scalar_offset: | ||||
| 21084 | return combineSVEPrefetchVecBaseImmOff(N, DAG, 1 /*=ScalarSizeInBytes*/); | ||||
| 21085 | case Intrinsic::aarch64_sve_prfh_gather_scalar_offset: | ||||
| 21086 | return combineSVEPrefetchVecBaseImmOff(N, DAG, 2 /*=ScalarSizeInBytes*/); | ||||
| 21087 | case Intrinsic::aarch64_sve_prfw_gather_scalar_offset: | ||||
| 21088 | return combineSVEPrefetchVecBaseImmOff(N, DAG, 4 /*=ScalarSizeInBytes*/); | ||||
| 21089 | case Intrinsic::aarch64_sve_prfd_gather_scalar_offset: | ||||
| 21090 | return combineSVEPrefetchVecBaseImmOff(N, DAG, 8 /*=ScalarSizeInBytes*/); | ||||
| 21091 | case Intrinsic::aarch64_sve_prfb_gather_uxtw_index: | ||||
| 21092 | case Intrinsic::aarch64_sve_prfb_gather_sxtw_index: | ||||
| 21093 | case Intrinsic::aarch64_sve_prfh_gather_uxtw_index: | ||||
| 21094 | case Intrinsic::aarch64_sve_prfh_gather_sxtw_index: | ||||
| 21095 | case Intrinsic::aarch64_sve_prfw_gather_uxtw_index: | ||||
| 21096 | case Intrinsic::aarch64_sve_prfw_gather_sxtw_index: | ||||
| 21097 | case Intrinsic::aarch64_sve_prfd_gather_uxtw_index: | ||||
| 21098 | case Intrinsic::aarch64_sve_prfd_gather_sxtw_index: | ||||
| 21099 | return legalizeSVEGatherPrefetchOffsVec(N, DAG); | ||||
| 21100 | case Intrinsic::aarch64_neon_ld2: | ||||
| 21101 | case Intrinsic::aarch64_neon_ld3: | ||||
| 21102 | case Intrinsic::aarch64_neon_ld4: | ||||
| 21103 | case Intrinsic::aarch64_neon_ld1x2: | ||||
| 21104 | case Intrinsic::aarch64_neon_ld1x3: | ||||
| 21105 | case Intrinsic::aarch64_neon_ld1x4: | ||||
| 21106 | case Intrinsic::aarch64_neon_ld2lane: | ||||
| 21107 | case Intrinsic::aarch64_neon_ld3lane: | ||||
| 21108 | case Intrinsic::aarch64_neon_ld4lane: | ||||
| 21109 | case Intrinsic::aarch64_neon_ld2r: | ||||
| 21110 | case Intrinsic::aarch64_neon_ld3r: | ||||
| 21111 | case Intrinsic::aarch64_neon_ld4r: | ||||
| 21112 | case Intrinsic::aarch64_neon_st2: | ||||
| 21113 | case Intrinsic::aarch64_neon_st3: | ||||
| 21114 | case Intrinsic::aarch64_neon_st4: | ||||
| 21115 | case Intrinsic::aarch64_neon_st1x2: | ||||
| 21116 | case Intrinsic::aarch64_neon_st1x3: | ||||
| 21117 | case Intrinsic::aarch64_neon_st1x4: | ||||
| 21118 | case Intrinsic::aarch64_neon_st2lane: | ||||
| 21119 | case Intrinsic::aarch64_neon_st3lane: | ||||
| 21120 | case Intrinsic::aarch64_neon_st4lane: | ||||
| 21121 | return performNEONPostLDSTCombine(N, DCI, DAG); | ||||
| 21122 | case Intrinsic::aarch64_sve_ldnt1: | ||||
| 21123 | return performLDNT1Combine(N, DAG); | ||||
| 21124 | case Intrinsic::aarch64_sve_ld1rq: | ||||
| 21125 | return performLD1ReplicateCombine<AArch64ISD::LD1RQ_MERGE_ZERO>(N, DAG); | ||||
| 21126 | case Intrinsic::aarch64_sve_ld1ro: | ||||
| 21127 | return performLD1ReplicateCombine<AArch64ISD::LD1RO_MERGE_ZERO>(N, DAG); | ||||
| 21128 | case Intrinsic::aarch64_sve_ldnt1_gather_scalar_offset: | ||||
| 21129 | return performGatherLoadCombine(N, DAG, AArch64ISD::GLDNT1_MERGE_ZERO); | ||||
| 21130 | case Intrinsic::aarch64_sve_ldnt1_gather: | ||||
| 21131 | return performGatherLoadCombine(N, DAG, AArch64ISD::GLDNT1_MERGE_ZERO); | ||||
| 21132 | case Intrinsic::aarch64_sve_ldnt1_gather_index: | ||||
| 21133 | return performGatherLoadCombine(N, DAG, | ||||
| 21134 | AArch64ISD::GLDNT1_INDEX_MERGE_ZERO); | ||||
| 21135 | case Intrinsic::aarch64_sve_ldnt1_gather_uxtw: | ||||
| 21136 | return performGatherLoadCombine(N, DAG, AArch64ISD::GLDNT1_MERGE_ZERO); | ||||
| 21137 | case Intrinsic::aarch64_sve_ld1: | ||||
| 21138 | return performLD1Combine(N, DAG, AArch64ISD::LD1_MERGE_ZERO); | ||||
| 21139 | case Intrinsic::aarch64_sve_ldnf1: | ||||
| 21140 | return performLD1Combine(N, DAG, AArch64ISD::LDNF1_MERGE_ZERO); | ||||
| 21141 | case Intrinsic::aarch64_sve_ldff1: | ||||
| 21142 | return performLD1Combine(N, DAG, AArch64ISD::LDFF1_MERGE_ZERO); | ||||
| 21143 | case Intrinsic::aarch64_sve_st1: | ||||
| 21144 | return performST1Combine(N, DAG); | ||||
| 21145 | case Intrinsic::aarch64_sve_stnt1: | ||||
| 21146 | return performSTNT1Combine(N, DAG); | ||||
| 21147 | case Intrinsic::aarch64_sve_stnt1_scatter_scalar_offset: | ||||
| 21148 | return performScatterStoreCombine(N, DAG, AArch64ISD::SSTNT1_PRED); | ||||
| 21149 | case Intrinsic::aarch64_sve_stnt1_scatter_uxtw: | ||||
| 21150 | return performScatterStoreCombine(N, DAG, AArch64ISD::SSTNT1_PRED); | ||||
| 21151 | case Intrinsic::aarch64_sve_stnt1_scatter: | ||||
| 21152 | return performScatterStoreCombine(N, DAG, AArch64ISD::SSTNT1_PRED); | ||||
| 21153 | case Intrinsic::aarch64_sve_stnt1_scatter_index: | ||||
| 21154 | return performScatterStoreCombine(N, DAG, AArch64ISD::SSTNT1_INDEX_PRED); | ||||
| 21155 | case Intrinsic::aarch64_sve_ld1_gather: | ||||
| 21156 | return performGatherLoadCombine(N, DAG, AArch64ISD::GLD1_MERGE_ZERO); | ||||
| 21157 | case Intrinsic::aarch64_sve_ld1_gather_index: | ||||
| 21158 | return performGatherLoadCombine(N, DAG, | ||||
| 21159 | AArch64ISD::GLD1_SCALED_MERGE_ZERO); | ||||
| 21160 | case Intrinsic::aarch64_sve_ld1_gather_sxtw: | ||||
| 21161 | return performGatherLoadCombine(N, DAG, AArch64ISD::GLD1_SXTW_MERGE_ZERO, | ||||
| 21162 | /*OnlyPackedOffsets=*/false); | ||||
| 21163 | case Intrinsic::aarch64_sve_ld1_gather_uxtw: | ||||
| 21164 | return performGatherLoadCombine(N, DAG, AArch64ISD::GLD1_UXTW_MERGE_ZERO, | ||||
| 21165 | /*OnlyPackedOffsets=*/false); | ||||
| 21166 | case Intrinsic::aarch64_sve_ld1_gather_sxtw_index: | ||||
| 21167 | return performGatherLoadCombine(N, DAG, | ||||
| 21168 | AArch64ISD::GLD1_SXTW_SCALED_MERGE_ZERO, | ||||
| 21169 | /*OnlyPackedOffsets=*/false); | ||||
| 21170 | case Intrinsic::aarch64_sve_ld1_gather_uxtw_index: | ||||
| 21171 | return performGatherLoadCombine(N, DAG, | ||||
| 21172 | AArch64ISD::GLD1_UXTW_SCALED_MERGE_ZERO, | ||||
| 21173 | /*OnlyPackedOffsets=*/false); | ||||
| 21174 | case Intrinsic::aarch64_sve_ld1_gather_scalar_offset: | ||||
| 21175 | return performGatherLoadCombine(N, DAG, AArch64ISD::GLD1_IMM_MERGE_ZERO); | ||||
| 21176 | case Intrinsic::aarch64_sve_ldff1_gather: | ||||
| 21177 | return performGatherLoadCombine(N, DAG, AArch64ISD::GLDFF1_MERGE_ZERO); | ||||
| 21178 | case Intrinsic::aarch64_sve_ldff1_gather_index: | ||||
| 21179 | return performGatherLoadCombine(N, DAG, | ||||
| 21180 | AArch64ISD::GLDFF1_SCALED_MERGE_ZERO); | ||||
| 21181 | case Intrinsic::aarch64_sve_ldff1_gather_sxtw: | ||||
| 21182 | return performGatherLoadCombine(N, DAG, | ||||
| 21183 | AArch64ISD::GLDFF1_SXTW_MERGE_ZERO, | ||||
| 21184 | /*OnlyPackedOffsets=*/false); | ||||
| 21185 | case Intrinsic::aarch64_sve_ldff1_gather_uxtw: | ||||
| 21186 | return performGatherLoadCombine(N, DAG, | ||||
| 21187 | AArch64ISD::GLDFF1_UXTW_MERGE_ZERO, | ||||
| 21188 | /*OnlyPackedOffsets=*/false); | ||||
| 21189 | case Intrinsic::aarch64_sve_ldff1_gather_sxtw_index: | ||||
| 21190 | return performGatherLoadCombine(N, DAG, | ||||
| 21191 | AArch64ISD::GLDFF1_SXTW_SCALED_MERGE_ZERO, | ||||
| 21192 | /*OnlyPackedOffsets=*/false); | ||||
| 21193 | case Intrinsic::aarch64_sve_ldff1_gather_uxtw_index: | ||||
| 21194 | return performGatherLoadCombine(N, DAG, | ||||
| 21195 | AArch64ISD::GLDFF1_UXTW_SCALED_MERGE_ZERO, | ||||
| 21196 | /*OnlyPackedOffsets=*/false); | ||||
| 21197 | case Intrinsic::aarch64_sve_ldff1_gather_scalar_offset: | ||||
| 21198 | return performGatherLoadCombine(N, DAG, | ||||
| 21199 | AArch64ISD::GLDFF1_IMM_MERGE_ZERO); | ||||
| 21200 | case Intrinsic::aarch64_sve_st1_scatter: | ||||
| 21201 | return performScatterStoreCombine(N, DAG, AArch64ISD::SST1_PRED); | ||||
| 21202 | case Intrinsic::aarch64_sve_st1_scatter_index: | ||||
| 21203 | return performScatterStoreCombine(N, DAG, AArch64ISD::SST1_SCALED_PRED); | ||||
| 21204 | case Intrinsic::aarch64_sve_st1_scatter_sxtw: | ||||
| 21205 | return performScatterStoreCombine(N, DAG, AArch64ISD::SST1_SXTW_PRED, | ||||
| 21206 | /*OnlyPackedOffsets=*/false); | ||||
| 21207 | case Intrinsic::aarch64_sve_st1_scatter_uxtw: | ||||
| 21208 | return performScatterStoreCombine(N, DAG, AArch64ISD::SST1_UXTW_PRED, | ||||
| 21209 | /*OnlyPackedOffsets=*/false); | ||||
| 21210 | case Intrinsic::aarch64_sve_st1_scatter_sxtw_index: | ||||
| 21211 | return performScatterStoreCombine(N, DAG, | ||||
| 21212 | AArch64ISD::SST1_SXTW_SCALED_PRED, | ||||
| 21213 | /*OnlyPackedOffsets=*/false); | ||||
| 21214 | case Intrinsic::aarch64_sve_st1_scatter_uxtw_index: | ||||
| 21215 | return performScatterStoreCombine(N, DAG, | ||||
| 21216 | AArch64ISD::SST1_UXTW_SCALED_PRED, | ||||
| 21217 | /*OnlyPackedOffsets=*/false); | ||||
| 21218 | case Intrinsic::aarch64_sve_st1_scatter_scalar_offset: | ||||
| 21219 | return performScatterStoreCombine(N, DAG, AArch64ISD::SST1_IMM_PRED); | ||||
| 21220 | case Intrinsic::aarch64_rndr: | ||||
| 21221 | case Intrinsic::aarch64_rndrrs: { | ||||
| 21222 | unsigned IntrinsicID = | ||||
| 21223 | cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); | ||||
| 21224 | auto Register = | ||||
| 21225 | (IntrinsicID == Intrinsic::aarch64_rndr ? AArch64SysReg::RNDR | ||||
| 21226 | : AArch64SysReg::RNDRRS); | ||||
| 21227 | SDLoc DL(N); | ||||
| 21228 | SDValue A = DAG.getNode( | ||||
| 21229 | AArch64ISD::MRS, DL, DAG.getVTList(MVT::i64, MVT::Glue, MVT::Other), | ||||
| 21230 | N->getOperand(0), DAG.getConstant(Register, DL, MVT::i64)); | ||||
| 21231 | SDValue B = DAG.getNode( | ||||
| 21232 | AArch64ISD::CSINC, DL, MVT::i32, DAG.getConstant(0, DL, MVT::i32), | ||||
| 21233 | DAG.getConstant(0, DL, MVT::i32), | ||||
| 21234 | DAG.getConstant(AArch64CC::NE, DL, MVT::i32), A.getValue(1)); | ||||
| 21235 | return DAG.getMergeValues( | ||||
| 21236 | {A, DAG.getZExtOrTrunc(B, DL, MVT::i1), A.getValue(2)}, DL); | ||||
| 21237 | } | ||||
| 21238 | default: | ||||
| 21239 | break; | ||||
| 21240 | } | ||||
| 21241 | break; | ||||
| 21242 | case ISD::GlobalAddress: | ||||
| 21243 | return performGlobalAddressCombine(N, DAG, Subtarget, getTargetMachine()); | ||||
| 21244 | case ISD::CTLZ: | ||||
| 21245 | return performCTLZCombine(N, DAG, Subtarget); | ||||
| 21246 | } | ||||
| 21247 | return SDValue(); | ||||
| 21248 | } | ||||
| 21249 | |||||
| 21250 | // Check if the return value is used as only a return value, as otherwise | ||||
| 21251 | // we can't perform a tail-call. In particular, we need to check for | ||||
| 21252 | // target ISD nodes that are returns and any other "odd" constructs | ||||
| 21253 | // that the generic analysis code won't necessarily catch. | ||||
| 21254 | bool AArch64TargetLowering::isUsedByReturnOnly(SDNode *N, | ||||
| 21255 | SDValue &Chain) const { | ||||
| 21256 | if (N->getNumValues() != 1) | ||||
| 21257 | return false; | ||||
| 21258 | if (!N->hasNUsesOfValue(1, 0)) | ||||
| 21259 | return false; | ||||
| 21260 | |||||
| 21261 | SDValue TCChain = Chain; | ||||
| 21262 | SDNode *Copy = *N->use_begin(); | ||||
| 21263 | if (Copy->getOpcode() == ISD::CopyToReg) { | ||||
| 21264 | // If the copy has a glue operand, we conservatively assume it isn't safe to | ||||
| 21265 | // perform a tail call. | ||||
| 21266 | if (Copy->getOperand(Copy->getNumOperands() - 1).getValueType() == | ||||
| 21267 | MVT::Glue) | ||||
| 21268 | return false; | ||||
| 21269 | TCChain = Copy->getOperand(0); | ||||
| 21270 | } else if (Copy->getOpcode() != ISD::FP_EXTEND) | ||||
| 21271 | return false; | ||||
| 21272 | |||||
| 21273 | bool HasRet = false; | ||||
| 21274 | for (SDNode *Node : Copy->uses()) { | ||||
| 21275 | if (Node->getOpcode() != AArch64ISD::RET_FLAG) | ||||
| 21276 | return false; | ||||
| 21277 | HasRet = true; | ||||
| 21278 | } | ||||
| 21279 | |||||
| 21280 | if (!HasRet) | ||||
| 21281 | return false; | ||||
| 21282 | |||||
| 21283 | Chain = TCChain; | ||||
| 21284 | return true; | ||||
| 21285 | } | ||||
| 21286 | |||||
| 21287 | // Return whether the an instruction can potentially be optimized to a tail | ||||
| 21288 | // call. This will cause the optimizers to attempt to move, or duplicate, | ||||
| 21289 | // return instructions to help enable tail call optimizations for this | ||||
| 21290 | // instruction. | ||||
| 21291 | bool AArch64TargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { | ||||
| 21292 | return CI->isTailCall(); | ||||
| 21293 | } | ||||
| 21294 | |||||
| 21295 | bool AArch64TargetLowering::getIndexedAddressParts(SDNode *Op, SDValue &Base, | ||||
| 21296 | SDValue &Offset, | ||||
| 21297 | ISD::MemIndexedMode &AM, | ||||
| 21298 | bool &IsInc, | ||||
| 21299 | SelectionDAG &DAG) const { | ||||
| 21300 | if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) | ||||
| 21301 | return false; | ||||
| 21302 | |||||
| 21303 | Base = Op->getOperand(0); | ||||
| 21304 | // All of the indexed addressing mode instructions take a signed | ||||
| 21305 | // 9 bit immediate offset. | ||||
| 21306 | if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) { | ||||
| 21307 | int64_t RHSC = RHS->getSExtValue(); | ||||
| 21308 | if (Op->getOpcode() == ISD::SUB) | ||||
| 21309 | RHSC = -(uint64_t)RHSC; | ||||
| 21310 | if (!isInt<9>(RHSC)) | ||||
| 21311 | return false; | ||||
| 21312 | IsInc = (Op->getOpcode() == ISD::ADD); | ||||
| 21313 | Offset = Op->getOperand(1); | ||||
| 21314 | return true; | ||||
| 21315 | } | ||||
| 21316 | return false; | ||||
| 21317 | } | ||||
| 21318 | |||||
| 21319 | bool AArch64TargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, | ||||
| 21320 | SDValue &Offset, | ||||
| 21321 | ISD::MemIndexedMode &AM, | ||||
| 21322 | SelectionDAG &DAG) const { | ||||
| 21323 | EVT VT; | ||||
| 21324 | SDValue Ptr; | ||||
| 21325 | if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { | ||||
| 21326 | VT = LD->getMemoryVT(); | ||||
| 21327 | Ptr = LD->getBasePtr(); | ||||
| 21328 | } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { | ||||
| 21329 | VT = ST->getMemoryVT(); | ||||
| 21330 | Ptr = ST->getBasePtr(); | ||||
| 21331 | } else | ||||
| 21332 | return false; | ||||
| 21333 | |||||
| 21334 | bool IsInc; | ||||
| 21335 | if (!getIndexedAddressParts(Ptr.getNode(), Base, Offset, AM, IsInc, DAG)) | ||||
| 21336 | return false; | ||||
| 21337 | AM = IsInc ? ISD::PRE_INC : ISD::PRE_DEC; | ||||
| 21338 | return true; | ||||
| 21339 | } | ||||
| 21340 | |||||
| 21341 | bool AArch64TargetLowering::getPostIndexedAddressParts( | ||||
| 21342 | SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset, | ||||
| 21343 | ISD::MemIndexedMode &AM, SelectionDAG &DAG) const { | ||||
| 21344 | EVT VT; | ||||
| 21345 | SDValue Ptr; | ||||
| 21346 | if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { | ||||
| 21347 | VT = LD->getMemoryVT(); | ||||
| 21348 | Ptr = LD->getBasePtr(); | ||||
| 21349 | } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { | ||||
| 21350 | VT = ST->getMemoryVT(); | ||||
| 21351 | Ptr = ST->getBasePtr(); | ||||
| 21352 | } else | ||||
| 21353 | return false; | ||||
| 21354 | |||||
| 21355 | bool IsInc; | ||||
| 21356 | if (!getIndexedAddressParts(Op, Base, Offset, AM, IsInc, DAG)) | ||||
| 21357 | return false; | ||||
| 21358 | // Post-indexing updates the base, so it's not a valid transform | ||||
| 21359 | // if that's not the same as the load's pointer. | ||||
| 21360 | if (Ptr != Base) | ||||
| 21361 | return false; | ||||
| 21362 | AM = IsInc ? ISD::POST_INC : ISD::POST_DEC; | ||||
| 21363 | return true; | ||||
| 21364 | } | ||||
| 21365 | |||||
| 21366 | void AArch64TargetLowering::ReplaceBITCASTResults( | ||||
| 21367 | SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { | ||||
| 21368 | SDLoc DL(N); | ||||
| 21369 | SDValue Op = N->getOperand(0); | ||||
| 21370 | EVT VT = N->getValueType(0); | ||||
| 21371 | EVT SrcVT = Op.getValueType(); | ||||
| 21372 | |||||
| 21373 | if (VT.isScalableVector() && !isTypeLegal(VT) && isTypeLegal(SrcVT)) { | ||||
| 21374 | assert(!VT.isFloatingPoint() && SrcVT.isFloatingPoint() &&(static_cast <bool> (!VT.isFloatingPoint() && SrcVT .isFloatingPoint() && "Expected fp->int bitcast!") ? void (0) : __assert_fail ("!VT.isFloatingPoint() && SrcVT.isFloatingPoint() && \"Expected fp->int bitcast!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 21375, __extension__ __PRETTY_FUNCTION__)) | ||||
| 21375 | "Expected fp->int bitcast!")(static_cast <bool> (!VT.isFloatingPoint() && SrcVT .isFloatingPoint() && "Expected fp->int bitcast!") ? void (0) : __assert_fail ("!VT.isFloatingPoint() && SrcVT.isFloatingPoint() && \"Expected fp->int bitcast!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 21375, __extension__ __PRETTY_FUNCTION__)); | ||||
| 21376 | |||||
| 21377 | // Bitcasting between unpacked vector types of different element counts is | ||||
| 21378 | // not a NOP because the live elements are laid out differently. | ||||
| 21379 | // 01234567 | ||||
| 21380 | // e.g. nxv2i32 = XX??XX?? | ||||
| 21381 | // nxv4f16 = X?X?X?X? | ||||
| 21382 | if (VT.getVectorElementCount() != SrcVT.getVectorElementCount()) | ||||
| 21383 | return; | ||||
| 21384 | |||||
| 21385 | SDValue CastResult = getSVESafeBitCast(getSVEContainerType(VT), Op, DAG); | ||||
| 21386 | Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, CastResult)); | ||||
| 21387 | return; | ||||
| 21388 | } | ||||
| 21389 | |||||
| 21390 | if (VT != MVT::i16 || (SrcVT != MVT::f16 && SrcVT != MVT::bf16)) | ||||
| 21391 | return; | ||||
| 21392 | |||||
| 21393 | Op = SDValue( | ||||
| 21394 | DAG.getMachineNode(TargetOpcode::INSERT_SUBREG, DL, MVT::f32, | ||||
| 21395 | DAG.getUNDEF(MVT::i32), Op, | ||||
| 21396 | DAG.getTargetConstant(AArch64::hsub, DL, MVT::i32)), | ||||
| 21397 | 0); | ||||
| 21398 | Op = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op); | ||||
| 21399 | Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Op)); | ||||
| 21400 | } | ||||
| 21401 | |||||
| 21402 | static void ReplaceAddWithADDP(SDNode *N, SmallVectorImpl<SDValue> &Results, | ||||
| 21403 | SelectionDAG &DAG, | ||||
| 21404 | const AArch64Subtarget *Subtarget) { | ||||
| 21405 | EVT VT = N->getValueType(0); | ||||
| 21406 | if (!VT.is256BitVector() || | ||||
| 21407 | (VT.getScalarType().isFloatingPoint() && | ||||
| 21408 | !N->getFlags().hasAllowReassociation()) || | ||||
| 21409 | (VT.getScalarType() == MVT::f16 && !Subtarget->hasFullFP16())) | ||||
| 21410 | return; | ||||
| 21411 | |||||
| 21412 | SDValue X = N->getOperand(0); | ||||
| 21413 | auto *Shuf = dyn_cast<ShuffleVectorSDNode>(N->getOperand(1)); | ||||
| 21414 | if (!Shuf) { | ||||
| 21415 | Shuf = dyn_cast<ShuffleVectorSDNode>(N->getOperand(0)); | ||||
| 21416 | X = N->getOperand(1); | ||||
| 21417 | if (!Shuf) | ||||
| 21418 | return; | ||||
| 21419 | } | ||||
| 21420 | |||||
| 21421 | if (Shuf->getOperand(0) != X || !Shuf->getOperand(1)->isUndef()) | ||||
| 21422 | return; | ||||
| 21423 | |||||
| 21424 | // Check the mask is 1,0,3,2,5,4,... | ||||
| 21425 | ArrayRef<int> Mask = Shuf->getMask(); | ||||
| 21426 | for (int I = 0, E = Mask.size(); I < E; I++) | ||||
| 21427 | if (Mask[I] != (I % 2 == 0 ? I + 1 : I - 1)) | ||||
| 21428 | return; | ||||
| 21429 | |||||
| 21430 | SDLoc DL(N); | ||||
| 21431 | auto LoHi = DAG.SplitVector(X, DL); | ||||
| 21432 | assert(LoHi.first.getValueType() == LoHi.second.getValueType())(static_cast <bool> (LoHi.first.getValueType() == LoHi. second.getValueType()) ? void (0) : __assert_fail ("LoHi.first.getValueType() == LoHi.second.getValueType()" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 21432, __extension__ __PRETTY_FUNCTION__)); | ||||
| 21433 | SDValue Addp = DAG.getNode(AArch64ISD::ADDP, N, LoHi.first.getValueType(), | ||||
| 21434 | LoHi.first, LoHi.second); | ||||
| 21435 | |||||
| 21436 | // Shuffle the elements back into order. | ||||
| 21437 | SmallVector<int> NMask; | ||||
| 21438 | for (unsigned I = 0, E = VT.getVectorNumElements() / 2; I < E; I++) { | ||||
| 21439 | NMask.push_back(I); | ||||
| 21440 | NMask.push_back(I); | ||||
| 21441 | } | ||||
| 21442 | Results.push_back( | ||||
| 21443 | DAG.getVectorShuffle(VT, DL, | ||||
| 21444 | DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Addp, | ||||
| 21445 | DAG.getUNDEF(LoHi.first.getValueType())), | ||||
| 21446 | DAG.getUNDEF(VT), NMask)); | ||||
| 21447 | } | ||||
| 21448 | |||||
| 21449 | static void ReplaceReductionResults(SDNode *N, | ||||
| 21450 | SmallVectorImpl<SDValue> &Results, | ||||
| 21451 | SelectionDAG &DAG, unsigned InterOp, | ||||
| 21452 | unsigned AcrossOp) { | ||||
| 21453 | EVT LoVT, HiVT; | ||||
| 21454 | SDValue Lo, Hi; | ||||
| 21455 | SDLoc dl(N); | ||||
| 21456 | std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(N->getValueType(0)); | ||||
| 21457 | std::tie(Lo, Hi) = DAG.SplitVectorOperand(N, 0); | ||||
| 21458 | SDValue InterVal = DAG.getNode(InterOp, dl, LoVT, Lo, Hi); | ||||
| 21459 | SDValue SplitVal = DAG.getNode(AcrossOp, dl, LoVT, InterVal); | ||||
| 21460 | Results.push_back(SplitVal); | ||||
| 21461 | } | ||||
| 21462 | |||||
| 21463 | static std::pair<SDValue, SDValue> splitInt128(SDValue N, SelectionDAG &DAG) { | ||||
| 21464 | SDLoc DL(N); | ||||
| 21465 | SDValue Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, N); | ||||
| 21466 | SDValue Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, | ||||
| 21467 | DAG.getNode(ISD::SRL, DL, MVT::i128, N, | ||||
| 21468 | DAG.getConstant(64, DL, MVT::i64))); | ||||
| 21469 | return std::make_pair(Lo, Hi); | ||||
| 21470 | } | ||||
| 21471 | |||||
| 21472 | void AArch64TargetLowering::ReplaceExtractSubVectorResults( | ||||
| 21473 | SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { | ||||
| 21474 | SDValue In = N->getOperand(0); | ||||
| 21475 | EVT InVT = In.getValueType(); | ||||
| 21476 | |||||
| 21477 | // Common code will handle these just fine. | ||||
| 21478 | if (!InVT.isScalableVector() || !InVT.isInteger()) | ||||
| 21479 | return; | ||||
| 21480 | |||||
| 21481 | SDLoc DL(N); | ||||
| 21482 | EVT VT = N->getValueType(0); | ||||
| 21483 | |||||
| 21484 | // The following checks bail if this is not a halving operation. | ||||
| 21485 | |||||
| 21486 | ElementCount ResEC = VT.getVectorElementCount(); | ||||
| 21487 | |||||
| 21488 | if (InVT.getVectorElementCount() != (ResEC * 2)) | ||||
| 21489 | return; | ||||
| 21490 | |||||
| 21491 | auto *CIndex = dyn_cast<ConstantSDNode>(N->getOperand(1)); | ||||
| 21492 | if (!CIndex) | ||||
| 21493 | return; | ||||
| 21494 | |||||
| 21495 | unsigned Index = CIndex->getZExtValue(); | ||||
| 21496 | if ((Index != 0) && (Index != ResEC.getKnownMinValue())) | ||||
| 21497 | return; | ||||
| 21498 | |||||
| 21499 | unsigned Opcode = (Index == 0) ? AArch64ISD::UUNPKLO : AArch64ISD::UUNPKHI; | ||||
| 21500 | EVT ExtendedHalfVT = VT.widenIntegerVectorElementType(*DAG.getContext()); | ||||
| 21501 | |||||
| 21502 | SDValue Half = DAG.getNode(Opcode, DL, ExtendedHalfVT, N->getOperand(0)); | ||||
| 21503 | Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, Half)); | ||||
| 21504 | } | ||||
| 21505 | |||||
| 21506 | // Create an even/odd pair of X registers holding integer value V. | ||||
| 21507 | static SDValue createGPRPairNode(SelectionDAG &DAG, SDValue V) { | ||||
| 21508 | SDLoc dl(V.getNode()); | ||||
| 21509 | SDValue VLo = DAG.getAnyExtOrTrunc(V, dl, MVT::i64); | ||||
| 21510 | SDValue VHi = DAG.getAnyExtOrTrunc( | ||||
| 21511 | DAG.getNode(ISD::SRL, dl, MVT::i128, V, DAG.getConstant(64, dl, MVT::i64)), | ||||
| 21512 | dl, MVT::i64); | ||||
| 21513 | if (DAG.getDataLayout().isBigEndian()) | ||||
| 21514 | std::swap (VLo, VHi); | ||||
| 21515 | SDValue RegClass = | ||||
| 21516 | DAG.getTargetConstant(AArch64::XSeqPairsClassRegClassID, dl, MVT::i32); | ||||
| 21517 | SDValue SubReg0 = DAG.getTargetConstant(AArch64::sube64, dl, MVT::i32); | ||||
| 21518 | SDValue SubReg1 = DAG.getTargetConstant(AArch64::subo64, dl, MVT::i32); | ||||
| 21519 | const SDValue Ops[] = { RegClass, VLo, SubReg0, VHi, SubReg1 }; | ||||
| 21520 | return SDValue( | ||||
| 21521 | DAG.getMachineNode(TargetOpcode::REG_SEQUENCE, dl, MVT::Untyped, Ops), 0); | ||||
| 21522 | } | ||||
| 21523 | |||||
| 21524 | static void ReplaceCMP_SWAP_128Results(SDNode *N, | ||||
| 21525 | SmallVectorImpl<SDValue> &Results, | ||||
| 21526 | SelectionDAG &DAG, | ||||
| 21527 | const AArch64Subtarget *Subtarget) { | ||||
| 21528 | assert(N->getValueType(0) == MVT::i128 &&(static_cast <bool> (N->getValueType(0) == MVT::i128 && "AtomicCmpSwap on types less than 128 should be legal" ) ? void (0) : __assert_fail ("N->getValueType(0) == MVT::i128 && \"AtomicCmpSwap on types less than 128 should be legal\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 21529, __extension__ __PRETTY_FUNCTION__)) | ||||
| 21529 | "AtomicCmpSwap on types less than 128 should be legal")(static_cast <bool> (N->getValueType(0) == MVT::i128 && "AtomicCmpSwap on types less than 128 should be legal" ) ? void (0) : __assert_fail ("N->getValueType(0) == MVT::i128 && \"AtomicCmpSwap on types less than 128 should be legal\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 21529, __extension__ __PRETTY_FUNCTION__)); | ||||
| 21530 | |||||
| 21531 | MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand(); | ||||
| 21532 | if (Subtarget->hasLSE() || Subtarget->outlineAtomics()) { | ||||
| 21533 | // LSE has a 128-bit compare and swap (CASP), but i128 is not a legal type, | ||||
| 21534 | // so lower it here, wrapped in REG_SEQUENCE and EXTRACT_SUBREG. | ||||
| 21535 | SDValue Ops[] = { | ||||
| 21536 | createGPRPairNode(DAG, N->getOperand(2)), // Compare value | ||||
| 21537 | createGPRPairNode(DAG, N->getOperand(3)), // Store value | ||||
| 21538 | N->getOperand(1), // Ptr | ||||
| 21539 | N->getOperand(0), // Chain in | ||||
| 21540 | }; | ||||
| 21541 | |||||
| 21542 | unsigned Opcode; | ||||
| 21543 | switch (MemOp->getMergedOrdering()) { | ||||
| 21544 | case AtomicOrdering::Monotonic: | ||||
| 21545 | Opcode = AArch64::CASPX; | ||||
| 21546 | break; | ||||
| 21547 | case AtomicOrdering::Acquire: | ||||
| 21548 | Opcode = AArch64::CASPAX; | ||||
| 21549 | break; | ||||
| 21550 | case AtomicOrdering::Release: | ||||
| 21551 | Opcode = AArch64::CASPLX; | ||||
| 21552 | break; | ||||
| 21553 | case AtomicOrdering::AcquireRelease: | ||||
| 21554 | case AtomicOrdering::SequentiallyConsistent: | ||||
| 21555 | Opcode = AArch64::CASPALX; | ||||
| 21556 | break; | ||||
| 21557 | default: | ||||
| 21558 | llvm_unreachable("Unexpected ordering!")::llvm::llvm_unreachable_internal("Unexpected ordering!", "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp" , 21558); | ||||
| 21559 | } | ||||
| 21560 | |||||
| 21561 | MachineSDNode *CmpSwap = DAG.getMachineNode( | ||||
| 21562 | Opcode, SDLoc(N), DAG.getVTList(MVT::Untyped, MVT::Other), Ops); | ||||
| 21563 | DAG.setNodeMemRefs(CmpSwap, {MemOp}); | ||||
| 21564 | |||||
| 21565 | unsigned SubReg1 = AArch64::sube64, SubReg2 = AArch64::subo64; | ||||
| 21566 | if (DAG.getDataLayout().isBigEndian()) | ||||
| 21567 | std::swap(SubReg1, SubReg2); | ||||
| 21568 | SDValue Lo = DAG.getTargetExtractSubreg(SubReg1, SDLoc(N), MVT::i64, | ||||
| 21569 | SDValue(CmpSwap, 0)); | ||||
| 21570 | SDValue Hi = DAG.getTargetExtractSubreg(SubReg2, SDLoc(N), MVT::i64, | ||||
| 21571 | SDValue(CmpSwap, 0)); | ||||
| 21572 | Results.push_back( | ||||
| 21573 | DAG.getNode(ISD::BUILD_PAIR, SDLoc(N), MVT::i128, Lo, Hi)); | ||||
| 21574 | Results.push_back(SDValue(CmpSwap, 1)); // Chain out | ||||
| 21575 | return; | ||||
| 21576 | } | ||||
| 21577 | |||||
| 21578 | unsigned Opcode; | ||||
| 21579 | switch (MemOp->getMergedOrdering()) { | ||||
| 21580 | case AtomicOrdering::Monotonic: | ||||
| 21581 | Opcode = AArch64::CMP_SWAP_128_MONOTONIC; | ||||
| 21582 | break; | ||||
| 21583 | case AtomicOrdering::Acquire: | ||||
| 21584 | Opcode = AArch64::CMP_SWAP_128_ACQUIRE; | ||||
| 21585 | break; | ||||
| 21586 | case AtomicOrdering::Release: | ||||
| 21587 | Opcode = AArch64::CMP_SWAP_128_RELEASE; | ||||
| 21588 | break; | ||||
| 21589 | case AtomicOrdering::AcquireRelease: | ||||
| 21590 | case AtomicOrdering::SequentiallyConsistent: | ||||
| 21591 | Opcode = AArch64::CMP_SWAP_128; | ||||
| 21592 | break; | ||||
| 21593 | default: | ||||
| 21594 | llvm_unreachable("Unexpected ordering!")::llvm::llvm_unreachable_internal("Unexpected ordering!", "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp" , 21594); | ||||
| 21595 | } | ||||
| 21596 | |||||
| 21597 | auto Desired = splitInt128(N->getOperand(2), DAG); | ||||
| 21598 | auto New = splitInt128(N->getOperand(3), DAG); | ||||
| 21599 | SDValue Ops[] = {N->getOperand(1), Desired.first, Desired.second, | ||||
| 21600 | New.first, New.second, N->getOperand(0)}; | ||||
| 21601 | SDNode *CmpSwap = DAG.getMachineNode( | ||||
| 21602 | Opcode, SDLoc(N), DAG.getVTList(MVT::i64, MVT::i64, MVT::i32, MVT::Other), | ||||
| 21603 | Ops); | ||||
| 21604 | DAG.setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp}); | ||||
| 21605 | |||||
| 21606 | Results.push_back(DAG.getNode(ISD::BUILD_PAIR, SDLoc(N), MVT::i128, | ||||
| 21607 | SDValue(CmpSwap, 0), SDValue(CmpSwap, 1))); | ||||
| 21608 | Results.push_back(SDValue(CmpSwap, 3)); | ||||
| 21609 | } | ||||
| 21610 | |||||
| 21611 | void AArch64TargetLowering::ReplaceNodeResults( | ||||
| 21612 | SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const { | ||||
| 21613 | switch (N->getOpcode()) { | ||||
| 21614 | default: | ||||
| 21615 | llvm_unreachable("Don't know how to custom expand this")::llvm::llvm_unreachable_internal("Don't know how to custom expand this" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 21615); | ||||
| 21616 | case ISD::BITCAST: | ||||
| 21617 | ReplaceBITCASTResults(N, Results, DAG); | ||||
| 21618 | return; | ||||
| 21619 | case ISD::VECREDUCE_ADD: | ||||
| 21620 | case ISD::VECREDUCE_SMAX: | ||||
| 21621 | case ISD::VECREDUCE_SMIN: | ||||
| 21622 | case ISD::VECREDUCE_UMAX: | ||||
| 21623 | case ISD::VECREDUCE_UMIN: | ||||
| 21624 | Results.push_back(LowerVECREDUCE(SDValue(N, 0), DAG)); | ||||
| 21625 | return; | ||||
| 21626 | case ISD::ADD: | ||||
| 21627 | case ISD::FADD: | ||||
| 21628 | ReplaceAddWithADDP(N, Results, DAG, Subtarget); | ||||
| 21629 | return; | ||||
| 21630 | |||||
| 21631 | case ISD::CTPOP: | ||||
| 21632 | case ISD::PARITY: | ||||
| 21633 | if (SDValue Result = LowerCTPOP_PARITY(SDValue(N, 0), DAG)) | ||||
| 21634 | Results.push_back(Result); | ||||
| 21635 | return; | ||||
| 21636 | case AArch64ISD::SADDV: | ||||
| 21637 | ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::SADDV); | ||||
| 21638 | return; | ||||
| 21639 | case AArch64ISD::UADDV: | ||||
| 21640 | ReplaceReductionResults(N, Results, DAG, ISD::ADD, AArch64ISD::UADDV); | ||||
| 21641 | return; | ||||
| 21642 | case AArch64ISD::SMINV: | ||||
| 21643 | ReplaceReductionResults(N, Results, DAG, ISD::SMIN, AArch64ISD::SMINV); | ||||
| 21644 | return; | ||||
| 21645 | case AArch64ISD::UMINV: | ||||
| 21646 | ReplaceReductionResults(N, Results, DAG, ISD::UMIN, AArch64ISD::UMINV); | ||||
| 21647 | return; | ||||
| 21648 | case AArch64ISD::SMAXV: | ||||
| 21649 | ReplaceReductionResults(N, Results, DAG, ISD::SMAX, AArch64ISD::SMAXV); | ||||
| 21650 | return; | ||||
| 21651 | case AArch64ISD::UMAXV: | ||||
| 21652 | ReplaceReductionResults(N, Results, DAG, ISD::UMAX, AArch64ISD::UMAXV); | ||||
| 21653 | return; | ||||
| 21654 | case ISD::FP_TO_UINT: | ||||
| 21655 | case ISD::FP_TO_SINT: | ||||
| 21656 | case ISD::STRICT_FP_TO_SINT: | ||||
| 21657 | case ISD::STRICT_FP_TO_UINT: | ||||
| 21658 | assert(N->getValueType(0) == MVT::i128 && "unexpected illegal conversion")(static_cast <bool> (N->getValueType(0) == MVT::i128 && "unexpected illegal conversion") ? void (0) : __assert_fail ("N->getValueType(0) == MVT::i128 && \"unexpected illegal conversion\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 21658, __extension__ __PRETTY_FUNCTION__)); | ||||
| 21659 | // Let normal code take care of it by not adding anything to Results. | ||||
| 21660 | return; | ||||
| 21661 | case ISD::ATOMIC_CMP_SWAP: | ||||
| 21662 | ReplaceCMP_SWAP_128Results(N, Results, DAG, Subtarget); | ||||
| 21663 | return; | ||||
| 21664 | case ISD::ATOMIC_LOAD: | ||||
| 21665 | case ISD::LOAD: { | ||||
| 21666 | MemSDNode *LoadNode = cast<MemSDNode>(N); | ||||
| 21667 | EVT MemVT = LoadNode->getMemoryVT(); | ||||
| 21668 | // Handle lowering 256 bit non temporal loads into LDNP for little-endian | ||||
| 21669 | // targets. | ||||
| 21670 | if (LoadNode->isNonTemporal() && Subtarget->isLittleEndian() && | ||||
| 21671 | MemVT.getSizeInBits() == 256u && | ||||
| 21672 | (MemVT.getScalarSizeInBits() == 8u || | ||||
| 21673 | MemVT.getScalarSizeInBits() == 16u || | ||||
| 21674 | MemVT.getScalarSizeInBits() == 32u || | ||||
| 21675 | MemVT.getScalarSizeInBits() == 64u)) { | ||||
| 21676 | |||||
| 21677 | SDValue Result = DAG.getMemIntrinsicNode( | ||||
| 21678 | AArch64ISD::LDNP, SDLoc(N), | ||||
| 21679 | DAG.getVTList({MemVT.getHalfNumVectorElementsVT(*DAG.getContext()), | ||||
| 21680 | MemVT.getHalfNumVectorElementsVT(*DAG.getContext()), | ||||
| 21681 | MVT::Other}), | ||||
| 21682 | {LoadNode->getChain(), LoadNode->getBasePtr()}, | ||||
| 21683 | LoadNode->getMemoryVT(), LoadNode->getMemOperand()); | ||||
| 21684 | |||||
| 21685 | SDValue Pair = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), MemVT, | ||||
| 21686 | Result.getValue(0), Result.getValue(1)); | ||||
| 21687 | Results.append({Pair, Result.getValue(2) /* Chain */}); | ||||
| 21688 | return; | ||||
| 21689 | } | ||||
| 21690 | |||||
| 21691 | if ((!LoadNode->isVolatile() && !LoadNode->isAtomic()) || | ||||
| 21692 | LoadNode->getMemoryVT() != MVT::i128) { | ||||
| 21693 | // Non-volatile or atomic loads are optimized later in AArch64's load/store | ||||
| 21694 | // optimizer. | ||||
| 21695 | return; | ||||
| 21696 | } | ||||
| 21697 | |||||
| 21698 | if (SDValue(N, 0).getValueType() == MVT::i128) { | ||||
| 21699 | SDValue Result = DAG.getMemIntrinsicNode( | ||||
| 21700 | AArch64ISD::LDP, SDLoc(N), | ||||
| 21701 | DAG.getVTList({MVT::i64, MVT::i64, MVT::Other}), | ||||
| 21702 | {LoadNode->getChain(), LoadNode->getBasePtr()}, | ||||
| 21703 | LoadNode->getMemoryVT(), LoadNode->getMemOperand()); | ||||
| 21704 | |||||
| 21705 | SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, SDLoc(N), MVT::i128, | ||||
| 21706 | Result.getValue(0), Result.getValue(1)); | ||||
| 21707 | Results.append({Pair, Result.getValue(2) /* Chain */}); | ||||
| 21708 | } | ||||
| 21709 | return; | ||||
| 21710 | } | ||||
| 21711 | case ISD::EXTRACT_SUBVECTOR: | ||||
| 21712 | ReplaceExtractSubVectorResults(N, Results, DAG); | ||||
| 21713 | return; | ||||
| 21714 | case ISD::INSERT_SUBVECTOR: | ||||
| 21715 | case ISD::CONCAT_VECTORS: | ||||
| 21716 | // Custom lowering has been requested for INSERT_SUBVECTOR and | ||||
| 21717 | // CONCAT_VECTORS -- but delegate to common code for result type | ||||
| 21718 | // legalisation | ||||
| 21719 | return; | ||||
| 21720 | case ISD::INTRINSIC_WO_CHAIN: { | ||||
| 21721 | EVT VT = N->getValueType(0); | ||||
| 21722 | assert((VT == MVT::i8 || VT == MVT::i16) &&(static_cast <bool> ((VT == MVT::i8 || VT == MVT::i16) && "custom lowering for unexpected type") ? void (0) : __assert_fail ("(VT == MVT::i8 || VT == MVT::i16) && \"custom lowering for unexpected type\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 21723, __extension__ __PRETTY_FUNCTION__)) | ||||
| 21723 | "custom lowering for unexpected type")(static_cast <bool> ((VT == MVT::i8 || VT == MVT::i16) && "custom lowering for unexpected type") ? void (0) : __assert_fail ("(VT == MVT::i8 || VT == MVT::i16) && \"custom lowering for unexpected type\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 21723, __extension__ __PRETTY_FUNCTION__)); | ||||
| 21724 | |||||
| 21725 | ConstantSDNode *CN = cast<ConstantSDNode>(N->getOperand(0)); | ||||
| 21726 | Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue()); | ||||
| 21727 | switch (IntID) { | ||||
| 21728 | default: | ||||
| 21729 | return; | ||||
| 21730 | case Intrinsic::aarch64_sve_clasta_n: { | ||||
| 21731 | SDLoc DL(N); | ||||
| 21732 | auto Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, N->getOperand(2)); | ||||
| 21733 | auto V = DAG.getNode(AArch64ISD::CLASTA_N, DL, MVT::i32, | ||||
| 21734 | N->getOperand(1), Op2, N->getOperand(3)); | ||||
| 21735 | Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V)); | ||||
| 21736 | return; | ||||
| 21737 | } | ||||
| 21738 | case Intrinsic::aarch64_sve_clastb_n: { | ||||
| 21739 | SDLoc DL(N); | ||||
| 21740 | auto Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, N->getOperand(2)); | ||||
| 21741 | auto V = DAG.getNode(AArch64ISD::CLASTB_N, DL, MVT::i32, | ||||
| 21742 | N->getOperand(1), Op2, N->getOperand(3)); | ||||
| 21743 | Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V)); | ||||
| 21744 | return; | ||||
| 21745 | } | ||||
| 21746 | case Intrinsic::aarch64_sve_lasta: { | ||||
| 21747 | SDLoc DL(N); | ||||
| 21748 | auto V = DAG.getNode(AArch64ISD::LASTA, DL, MVT::i32, | ||||
| 21749 | N->getOperand(1), N->getOperand(2)); | ||||
| 21750 | Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V)); | ||||
| 21751 | return; | ||||
| 21752 | } | ||||
| 21753 | case Intrinsic::aarch64_sve_lastb: { | ||||
| 21754 | SDLoc DL(N); | ||||
| 21755 | auto V = DAG.getNode(AArch64ISD::LASTB, DL, MVT::i32, | ||||
| 21756 | N->getOperand(1), N->getOperand(2)); | ||||
| 21757 | Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, VT, V)); | ||||
| 21758 | return; | ||||
| 21759 | } | ||||
| 21760 | } | ||||
| 21761 | } | ||||
| 21762 | case ISD::READ_REGISTER: { | ||||
| 21763 | SDLoc DL(N); | ||||
| 21764 | assert(N->getValueType(0) == MVT::i128 &&(static_cast <bool> (N->getValueType(0) == MVT::i128 && "READ_REGISTER custom lowering is only for 128-bit sysregs" ) ? void (0) : __assert_fail ("N->getValueType(0) == MVT::i128 && \"READ_REGISTER custom lowering is only for 128-bit sysregs\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 21765, __extension__ __PRETTY_FUNCTION__)) | ||||
| 21765 | "READ_REGISTER custom lowering is only for 128-bit sysregs")(static_cast <bool> (N->getValueType(0) == MVT::i128 && "READ_REGISTER custom lowering is only for 128-bit sysregs" ) ? void (0) : __assert_fail ("N->getValueType(0) == MVT::i128 && \"READ_REGISTER custom lowering is only for 128-bit sysregs\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 21765, __extension__ __PRETTY_FUNCTION__)); | ||||
| 21766 | SDValue Chain = N->getOperand(0); | ||||
| 21767 | SDValue SysRegName = N->getOperand(1); | ||||
| 21768 | |||||
| 21769 | SDValue Result = DAG.getNode( | ||||
| 21770 | AArch64ISD::MRRS, DL, DAG.getVTList({MVT::i64, MVT::i64, MVT::Other}), | ||||
| 21771 | Chain, SysRegName); | ||||
| 21772 | |||||
| 21773 | // Sysregs are not endian. Result.getValue(0) always contains the lower half | ||||
| 21774 | // of the 128-bit System Register value. | ||||
| 21775 | SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i128, | ||||
| 21776 | Result.getValue(0), Result.getValue(1)); | ||||
| 21777 | Results.push_back(Pair); | ||||
| 21778 | Results.push_back(Result.getValue(2)); // Chain | ||||
| 21779 | return; | ||||
| 21780 | } | ||||
| 21781 | } | ||||
| 21782 | } | ||||
| 21783 | |||||
| 21784 | bool AArch64TargetLowering::useLoadStackGuardNode() const { | ||||
| 21785 | if (Subtarget->isTargetAndroid() || Subtarget->isTargetFuchsia()) | ||||
| 21786 | return TargetLowering::useLoadStackGuardNode(); | ||||
| 21787 | return true; | ||||
| 21788 | } | ||||
| 21789 | |||||
| 21790 | unsigned AArch64TargetLowering::combineRepeatedFPDivisors() const { | ||||
| 21791 | // Combine multiple FDIVs with the same divisor into multiple FMULs by the | ||||
| 21792 | // reciprocal if there are three or more FDIVs. | ||||
| 21793 | return 3; | ||||
| 21794 | } | ||||
| 21795 | |||||
| 21796 | TargetLoweringBase::LegalizeTypeAction | ||||
| 21797 | AArch64TargetLowering::getPreferredVectorAction(MVT VT) const { | ||||
| 21798 | // During type legalization, we prefer to widen v1i8, v1i16, v1i32 to v8i8, | ||||
| 21799 | // v4i16, v2i32 instead of to promote. | ||||
| 21800 | if (VT == MVT::v1i8 || VT == MVT::v1i16 || VT == MVT::v1i32 || | ||||
| 21801 | VT == MVT::v1f32) | ||||
| 21802 | return TypeWidenVector; | ||||
| 21803 | |||||
| 21804 | return TargetLoweringBase::getPreferredVectorAction(VT); | ||||
| 21805 | } | ||||
| 21806 | |||||
| 21807 | // In v8.4a, ldp and stp instructions are guaranteed to be single-copy atomic | ||||
| 21808 | // provided the address is 16-byte aligned. | ||||
| 21809 | bool AArch64TargetLowering::isOpSuitableForLDPSTP(const Instruction *I) const { | ||||
| 21810 | if (!Subtarget->hasLSE2()) | ||||
| 21811 | return false; | ||||
| 21812 | |||||
| 21813 | if (auto LI = dyn_cast<LoadInst>(I)) | ||||
| 21814 | return LI->getType()->getPrimitiveSizeInBits() == 128 && | ||||
| 21815 | LI->getAlign() >= Align(16); | ||||
| 21816 | |||||
| 21817 | if (auto SI = dyn_cast<StoreInst>(I)) | ||||
| 21818 | return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() == 128 && | ||||
| 21819 | SI->getAlign() >= Align(16); | ||||
| 21820 | |||||
| 21821 | return false; | ||||
| 21822 | } | ||||
| 21823 | |||||
| 21824 | bool AArch64TargetLowering::shouldInsertFencesForAtomic( | ||||
| 21825 | const Instruction *I) const { | ||||
| 21826 | return isOpSuitableForLDPSTP(I); | ||||
| 21827 | } | ||||
| 21828 | |||||
| 21829 | // Loads and stores less than 128-bits are already atomic; ones above that | ||||
| 21830 | // are doomed anyway, so defer to the default libcall and blame the OS when | ||||
| 21831 | // things go wrong. | ||||
| 21832 | TargetLoweringBase::AtomicExpansionKind | ||||
| 21833 | AArch64TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const { | ||||
| 21834 | unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits(); | ||||
| 21835 | if (Size != 128 || isOpSuitableForLDPSTP(SI)) | ||||
| 21836 | return AtomicExpansionKind::None; | ||||
| 21837 | return AtomicExpansionKind::Expand; | ||||
| 21838 | } | ||||
| 21839 | |||||
| 21840 | // Loads and stores less than 128-bits are already atomic; ones above that | ||||
| 21841 | // are doomed anyway, so defer to the default libcall and blame the OS when | ||||
| 21842 | // things go wrong. | ||||
| 21843 | TargetLowering::AtomicExpansionKind | ||||
| 21844 | AArch64TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const { | ||||
| 21845 | unsigned Size = LI->getType()->getPrimitiveSizeInBits(); | ||||
| 21846 | |||||
| 21847 | if (Size != 128 || isOpSuitableForLDPSTP(LI)) | ||||
| 21848 | return AtomicExpansionKind::None; | ||||
| 21849 | |||||
| 21850 | // At -O0, fast-regalloc cannot cope with the live vregs necessary to | ||||
| 21851 | // implement atomicrmw without spilling. If the target address is also on the | ||||
| 21852 | // stack and close enough to the spill slot, this can lead to a situation | ||||
| 21853 | // where the monitor always gets cleared and the atomic operation can never | ||||
| 21854 | // succeed. So at -O0 lower this operation to a CAS loop. | ||||
| 21855 | if (getTargetMachine().getOptLevel() == CodeGenOpt::None) | ||||
| 21856 | return AtomicExpansionKind::CmpXChg; | ||||
| 21857 | |||||
| 21858 | return AtomicExpansionKind::LLSC; | ||||
| 21859 | } | ||||
| 21860 | |||||
| 21861 | // For the real atomic operations, we have ldxr/stxr up to 128 bits, | ||||
| 21862 | TargetLowering::AtomicExpansionKind | ||||
| 21863 | AArch64TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { | ||||
| 21864 | if (AI->isFloatingPointOperation()) | ||||
| 21865 | return AtomicExpansionKind::CmpXChg; | ||||
| 21866 | |||||
| 21867 | unsigned Size = AI->getType()->getPrimitiveSizeInBits(); | ||||
| 21868 | if (Size > 128) return AtomicExpansionKind::None; | ||||
| 21869 | |||||
| 21870 | // Nand is not supported in LSE. | ||||
| 21871 | // Leave 128 bits to LLSC or CmpXChg. | ||||
| 21872 | if (AI->getOperation() != AtomicRMWInst::Nand && Size < 128) { | ||||
| 21873 | if (Subtarget->hasLSE()) | ||||
| 21874 | return AtomicExpansionKind::None; | ||||
| 21875 | if (Subtarget->outlineAtomics()) { | ||||
| 21876 | // [U]Min/[U]Max RWM atomics are used in __sync_fetch_ libcalls so far. | ||||
| 21877 | // Don't outline them unless | ||||
| 21878 | // (1) high level <atomic> support approved: | ||||
| 21879 | // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0493r1.pdf | ||||
| 21880 | // (2) low level libgcc and compiler-rt support implemented by: | ||||
| 21881 | // min/max outline atomics helpers | ||||
| 21882 | if (AI->getOperation() != AtomicRMWInst::Min && | ||||
| 21883 | AI->getOperation() != AtomicRMWInst::Max && | ||||
| 21884 | AI->getOperation() != AtomicRMWInst::UMin && | ||||
| 21885 | AI->getOperation() != AtomicRMWInst::UMax) { | ||||
| 21886 | return AtomicExpansionKind::None; | ||||
| 21887 | } | ||||
| 21888 | } | ||||
| 21889 | } | ||||
| 21890 | |||||
| 21891 | // At -O0, fast-regalloc cannot cope with the live vregs necessary to | ||||
| 21892 | // implement atomicrmw without spilling. If the target address is also on the | ||||
| 21893 | // stack and close enough to the spill slot, this can lead to a situation | ||||
| 21894 | // where the monitor always gets cleared and the atomic operation can never | ||||
| 21895 | // succeed. So at -O0 lower this operation to a CAS loop. | ||||
| 21896 | if (getTargetMachine().getOptLevel() == CodeGenOpt::None) | ||||
| 21897 | return AtomicExpansionKind::CmpXChg; | ||||
| 21898 | |||||
| 21899 | return AtomicExpansionKind::LLSC; | ||||
| 21900 | } | ||||
| 21901 | |||||
| 21902 | TargetLowering::AtomicExpansionKind | ||||
| 21903 | AArch64TargetLowering::shouldExpandAtomicCmpXchgInIR( | ||||
| 21904 | AtomicCmpXchgInst *AI) const { | ||||
| 21905 | // If subtarget has LSE, leave cmpxchg intact for codegen. | ||||
| 21906 | if (Subtarget->hasLSE() || Subtarget->outlineAtomics()) | ||||
| 21907 | return AtomicExpansionKind::None; | ||||
| 21908 | // At -O0, fast-regalloc cannot cope with the live vregs necessary to | ||||
| 21909 | // implement cmpxchg without spilling. If the address being exchanged is also | ||||
| 21910 | // on the stack and close enough to the spill slot, this can lead to a | ||||
| 21911 | // situation where the monitor always gets cleared and the atomic operation | ||||
| 21912 | // can never succeed. So at -O0 we need a late-expanded pseudo-inst instead. | ||||
| 21913 | if (getTargetMachine().getOptLevel() == CodeGenOpt::None) | ||||
| 21914 | return AtomicExpansionKind::None; | ||||
| 21915 | |||||
| 21916 | // 128-bit atomic cmpxchg is weird; AtomicExpand doesn't know how to expand | ||||
| 21917 | // it. | ||||
| 21918 | unsigned Size = AI->getCompareOperand()->getType()->getPrimitiveSizeInBits(); | ||||
| 21919 | if (Size > 64) | ||||
| 21920 | return AtomicExpansionKind::None; | ||||
| 21921 | |||||
| 21922 | return AtomicExpansionKind::LLSC; | ||||
| 21923 | } | ||||
| 21924 | |||||
| 21925 | Value *AArch64TargetLowering::emitLoadLinked(IRBuilderBase &Builder, | ||||
| 21926 | Type *ValueTy, Value *Addr, | ||||
| 21927 | AtomicOrdering Ord) const { | ||||
| 21928 | Module *M = Builder.GetInsertBlock()->getParent()->getParent(); | ||||
| 21929 | bool IsAcquire = isAcquireOrStronger(Ord); | ||||
| 21930 | |||||
| 21931 | // Since i128 isn't legal and intrinsics don't get type-lowered, the ldrexd | ||||
| 21932 | // intrinsic must return {i64, i64} and we have to recombine them into a | ||||
| 21933 | // single i128 here. | ||||
| 21934 | if (ValueTy->getPrimitiveSizeInBits() == 128) { | ||||
| 21935 | Intrinsic::ID Int = | ||||
| 21936 | IsAcquire ? Intrinsic::aarch64_ldaxp : Intrinsic::aarch64_ldxp; | ||||
| 21937 | Function *Ldxr = Intrinsic::getDeclaration(M, Int); | ||||
| 21938 | |||||
| 21939 | Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext())); | ||||
| 21940 | Value *LoHi = Builder.CreateCall(Ldxr, Addr, "lohi"); | ||||
| 21941 | |||||
| 21942 | Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); | ||||
| 21943 | Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); | ||||
| 21944 | Lo = Builder.CreateZExt(Lo, ValueTy, "lo64"); | ||||
| 21945 | Hi = Builder.CreateZExt(Hi, ValueTy, "hi64"); | ||||
| 21946 | return Builder.CreateOr( | ||||
| 21947 | Lo, Builder.CreateShl(Hi, ConstantInt::get(ValueTy, 64)), "val64"); | ||||
| 21948 | } | ||||
| 21949 | |||||
| 21950 | Type *Tys[] = { Addr->getType() }; | ||||
| 21951 | Intrinsic::ID Int = | ||||
| 21952 | IsAcquire ? Intrinsic::aarch64_ldaxr : Intrinsic::aarch64_ldxr; | ||||
| 21953 | Function *Ldxr = Intrinsic::getDeclaration(M, Int, Tys); | ||||
| 21954 | |||||
| 21955 | const DataLayout &DL = M->getDataLayout(); | ||||
| 21956 | IntegerType *IntEltTy = Builder.getIntNTy(DL.getTypeSizeInBits(ValueTy)); | ||||
| 21957 | CallInst *CI = Builder.CreateCall(Ldxr, Addr); | ||||
| 21958 | CI->addParamAttr( | ||||
| 21959 | 0, Attribute::get(Builder.getContext(), Attribute::ElementType, ValueTy)); | ||||
| 21960 | Value *Trunc = Builder.CreateTrunc(CI, IntEltTy); | ||||
| 21961 | |||||
| 21962 | return Builder.CreateBitCast(Trunc, ValueTy); | ||||
| 21963 | } | ||||
| 21964 | |||||
| 21965 | void AArch64TargetLowering::emitAtomicCmpXchgNoStoreLLBalance( | ||||
| 21966 | IRBuilderBase &Builder) const { | ||||
| 21967 | Module *M = Builder.GetInsertBlock()->getParent()->getParent(); | ||||
| 21968 | Builder.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::aarch64_clrex)); | ||||
| 21969 | } | ||||
| 21970 | |||||
| 21971 | Value *AArch64TargetLowering::emitStoreConditional(IRBuilderBase &Builder, | ||||
| 21972 | Value *Val, Value *Addr, | ||||
| 21973 | AtomicOrdering Ord) const { | ||||
| 21974 | Module *M = Builder.GetInsertBlock()->getParent()->getParent(); | ||||
| 21975 | bool IsRelease = isReleaseOrStronger(Ord); | ||||
| 21976 | |||||
| 21977 | // Since the intrinsics must have legal type, the i128 intrinsics take two | ||||
| 21978 | // parameters: "i64, i64". We must marshal Val into the appropriate form | ||||
| 21979 | // before the call. | ||||
| 21980 | if (Val->getType()->getPrimitiveSizeInBits() == 128) { | ||||
| 21981 | Intrinsic::ID Int = | ||||
| 21982 | IsRelease ? Intrinsic::aarch64_stlxp : Intrinsic::aarch64_stxp; | ||||
| 21983 | Function *Stxr = Intrinsic::getDeclaration(M, Int); | ||||
| 21984 | Type *Int64Ty = Type::getInt64Ty(M->getContext()); | ||||
| 21985 | |||||
| 21986 | Value *Lo = Builder.CreateTrunc(Val, Int64Ty, "lo"); | ||||
| 21987 | Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 64), Int64Ty, "hi"); | ||||
| 21988 | Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext())); | ||||
| 21989 | return Builder.CreateCall(Stxr, {Lo, Hi, Addr}); | ||||
| 21990 | } | ||||
| 21991 | |||||
| 21992 | Intrinsic::ID Int = | ||||
| 21993 | IsRelease ? Intrinsic::aarch64_stlxr : Intrinsic::aarch64_stxr; | ||||
| 21994 | Type *Tys[] = { Addr->getType() }; | ||||
| 21995 | Function *Stxr = Intrinsic::getDeclaration(M, Int, Tys); | ||||
| 21996 | |||||
| 21997 | const DataLayout &DL = M->getDataLayout(); | ||||
| 21998 | IntegerType *IntValTy = Builder.getIntNTy(DL.getTypeSizeInBits(Val->getType())); | ||||
| 21999 | Val = Builder.CreateBitCast(Val, IntValTy); | ||||
| 22000 | |||||
| 22001 | CallInst *CI = Builder.CreateCall( | ||||
| 22002 | Stxr, {Builder.CreateZExtOrBitCast( | ||||
| 22003 | Val, Stxr->getFunctionType()->getParamType(0)), | ||||
| 22004 | Addr}); | ||||
| 22005 | CI->addParamAttr(1, Attribute::get(Builder.getContext(), | ||||
| 22006 | Attribute::ElementType, Val->getType())); | ||||
| 22007 | return CI; | ||||
| 22008 | } | ||||
| 22009 | |||||
| 22010 | bool AArch64TargetLowering::functionArgumentNeedsConsecutiveRegisters( | ||||
| 22011 | Type *Ty, CallingConv::ID CallConv, bool isVarArg, | ||||
| 22012 | const DataLayout &DL) const { | ||||
| 22013 | if (!Ty->isArrayTy()) { | ||||
| 22014 | const TypeSize &TySize = Ty->getPrimitiveSizeInBits(); | ||||
| 22015 | return TySize.isScalable() && TySize.getKnownMinSize() > 128; | ||||
| 22016 | } | ||||
| 22017 | |||||
| 22018 | // All non aggregate members of the type must have the same type | ||||
| 22019 | SmallVector<EVT> ValueVTs; | ||||
| 22020 | ComputeValueVTs(*this, DL, Ty, ValueVTs); | ||||
| 22021 | return all_equal(ValueVTs); | ||||
| 22022 | } | ||||
| 22023 | |||||
| 22024 | bool AArch64TargetLowering::shouldNormalizeToSelectSequence(LLVMContext &, | ||||
| 22025 | EVT) const { | ||||
| 22026 | return false; | ||||
| 22027 | } | ||||
| 22028 | |||||
| 22029 | static Value *UseTlsOffset(IRBuilderBase &IRB, unsigned Offset) { | ||||
| 22030 | Module *M = IRB.GetInsertBlock()->getParent()->getParent(); | ||||
| 22031 | Function *ThreadPointerFunc = | ||||
| 22032 | Intrinsic::getDeclaration(M, Intrinsic::thread_pointer); | ||||
| 22033 | return IRB.CreatePointerCast( | ||||
| 22034 | IRB.CreateConstGEP1_32(IRB.getInt8Ty(), IRB.CreateCall(ThreadPointerFunc), | ||||
| 22035 | Offset), | ||||
| 22036 | IRB.getInt8PtrTy()->getPointerTo(0)); | ||||
| 22037 | } | ||||
| 22038 | |||||
| 22039 | Value *AArch64TargetLowering::getIRStackGuard(IRBuilderBase &IRB) const { | ||||
| 22040 | // Android provides a fixed TLS slot for the stack cookie. See the definition | ||||
| 22041 | // of TLS_SLOT_STACK_GUARD in | ||||
| 22042 | // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h | ||||
| 22043 | if (Subtarget->isTargetAndroid()) | ||||
| 22044 | return UseTlsOffset(IRB, 0x28); | ||||
| 22045 | |||||
| 22046 | // Fuchsia is similar. | ||||
| 22047 | // <zircon/tls.h> defines ZX_TLS_STACK_GUARD_OFFSET with this value. | ||||
| 22048 | if (Subtarget->isTargetFuchsia()) | ||||
| 22049 | return UseTlsOffset(IRB, -0x10); | ||||
| 22050 | |||||
| 22051 | return TargetLowering::getIRStackGuard(IRB); | ||||
| 22052 | } | ||||
| 22053 | |||||
| 22054 | void AArch64TargetLowering::insertSSPDeclarations(Module &M) const { | ||||
| 22055 | // MSVC CRT provides functionalities for stack protection. | ||||
| 22056 | if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment()) { | ||||
| 22057 | // MSVC CRT has a global variable holding security cookie. | ||||
| 22058 | M.getOrInsertGlobal("__security_cookie", | ||||
| 22059 | Type::getInt8PtrTy(M.getContext())); | ||||
| 22060 | |||||
| 22061 | // MSVC CRT has a function to validate security cookie. | ||||
| 22062 | FunctionCallee SecurityCheckCookie = M.getOrInsertFunction( | ||||
| 22063 | Subtarget->getSecurityCheckCookieName(), | ||||
| 22064 | Type::getVoidTy(M.getContext()), Type::getInt8PtrTy(M.getContext())); | ||||
| 22065 | if (Function *F = dyn_cast<Function>(SecurityCheckCookie.getCallee())) { | ||||
| 22066 | F->setCallingConv(CallingConv::Win64); | ||||
| 22067 | F->addParamAttr(0, Attribute::AttrKind::InReg); | ||||
| 22068 | } | ||||
| 22069 | return; | ||||
| 22070 | } | ||||
| 22071 | TargetLowering::insertSSPDeclarations(M); | ||||
| 22072 | } | ||||
| 22073 | |||||
| 22074 | Value *AArch64TargetLowering::getSDagStackGuard(const Module &M) const { | ||||
| 22075 | // MSVC CRT has a global variable holding security cookie. | ||||
| 22076 | if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment()) | ||||
| 22077 | return M.getGlobalVariable("__security_cookie"); | ||||
| 22078 | return TargetLowering::getSDagStackGuard(M); | ||||
| 22079 | } | ||||
| 22080 | |||||
| 22081 | Function *AArch64TargetLowering::getSSPStackGuardCheck(const Module &M) const { | ||||
| 22082 | // MSVC CRT has a function to validate security cookie. | ||||
| 22083 | if (Subtarget->getTargetTriple().isWindowsMSVCEnvironment()) | ||||
| 22084 | return M.getFunction(Subtarget->getSecurityCheckCookieName()); | ||||
| 22085 | return TargetLowering::getSSPStackGuardCheck(M); | ||||
| 22086 | } | ||||
| 22087 | |||||
| 22088 | Value * | ||||
| 22089 | AArch64TargetLowering::getSafeStackPointerLocation(IRBuilderBase &IRB) const { | ||||
| 22090 | // Android provides a fixed TLS slot for the SafeStack pointer. See the | ||||
| 22091 | // definition of TLS_SLOT_SAFESTACK in | ||||
| 22092 | // https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h | ||||
| 22093 | if (Subtarget->isTargetAndroid()) | ||||
| 22094 | return UseTlsOffset(IRB, 0x48); | ||||
| 22095 | |||||
| 22096 | // Fuchsia is similar. | ||||
| 22097 | // <zircon/tls.h> defines ZX_TLS_UNSAFE_SP_OFFSET with this value. | ||||
| 22098 | if (Subtarget->isTargetFuchsia()) | ||||
| 22099 | return UseTlsOffset(IRB, -0x8); | ||||
| 22100 | |||||
| 22101 | return TargetLowering::getSafeStackPointerLocation(IRB); | ||||
| 22102 | } | ||||
| 22103 | |||||
| 22104 | bool AArch64TargetLowering::isMaskAndCmp0FoldingBeneficial( | ||||
| 22105 | const Instruction &AndI) const { | ||||
| 22106 | // Only sink 'and' mask to cmp use block if it is masking a single bit, since | ||||
| 22107 | // this is likely to be fold the and/cmp/br into a single tbz instruction. It | ||||
| 22108 | // may be beneficial to sink in other cases, but we would have to check that | ||||
| 22109 | // the cmp would not get folded into the br to form a cbz for these to be | ||||
| 22110 | // beneficial. | ||||
| 22111 | ConstantInt* Mask = dyn_cast<ConstantInt>(AndI.getOperand(1)); | ||||
| 22112 | if (!Mask) | ||||
| 22113 | return false; | ||||
| 22114 | return Mask->getValue().isPowerOf2(); | ||||
| 22115 | } | ||||
| 22116 | |||||
| 22117 | bool AArch64TargetLowering:: | ||||
| 22118 | shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( | ||||
| 22119 | SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y, | ||||
| 22120 | unsigned OldShiftOpcode, unsigned NewShiftOpcode, | ||||
| 22121 | SelectionDAG &DAG) const { | ||||
| 22122 | // Does baseline recommend not to perform the fold by default? | ||||
| 22123 | if (!TargetLowering::shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( | ||||
| 22124 | X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG)) | ||||
| 22125 | return false; | ||||
| 22126 | // Else, if this is a vector shift, prefer 'shl'. | ||||
| 22127 | return X.getValueType().isScalarInteger() || NewShiftOpcode == ISD::SHL; | ||||
| 22128 | } | ||||
| 22129 | |||||
| 22130 | bool AArch64TargetLowering::shouldExpandShift(SelectionDAG &DAG, | ||||
| 22131 | SDNode *N) const { | ||||
| 22132 | if (DAG.getMachineFunction().getFunction().hasMinSize() && | ||||
| 22133 | !Subtarget->isTargetWindows() && !Subtarget->isTargetDarwin()) | ||||
| 22134 | return false; | ||||
| 22135 | return true; | ||||
| 22136 | } | ||||
| 22137 | |||||
| 22138 | void AArch64TargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const { | ||||
| 22139 | // Update IsSplitCSR in AArch64unctionInfo. | ||||
| 22140 | AArch64FunctionInfo *AFI = Entry->getParent()->getInfo<AArch64FunctionInfo>(); | ||||
| 22141 | AFI->setIsSplitCSR(true); | ||||
| 22142 | } | ||||
| 22143 | |||||
| 22144 | void AArch64TargetLowering::insertCopiesSplitCSR( | ||||
| 22145 | MachineBasicBlock *Entry, | ||||
| 22146 | const SmallVectorImpl<MachineBasicBlock *> &Exits) const { | ||||
| 22147 | const AArch64RegisterInfo *TRI = Subtarget->getRegisterInfo(); | ||||
| 22148 | const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent()); | ||||
| 22149 | if (!IStart) | ||||
| 22150 | return; | ||||
| 22151 | |||||
| 22152 | const TargetInstrInfo *TII = Subtarget->getInstrInfo(); | ||||
| 22153 | MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo(); | ||||
| 22154 | MachineBasicBlock::iterator MBBI = Entry->begin(); | ||||
| 22155 | for (const MCPhysReg *I = IStart; *I; ++I) { | ||||
| 22156 | const TargetRegisterClass *RC = nullptr; | ||||
| 22157 | if (AArch64::GPR64RegClass.contains(*I)) | ||||
| 22158 | RC = &AArch64::GPR64RegClass; | ||||
| 22159 | else if (AArch64::FPR64RegClass.contains(*I)) | ||||
| 22160 | RC = &AArch64::FPR64RegClass; | ||||
| 22161 | else | ||||
| 22162 | llvm_unreachable("Unexpected register class in CSRsViaCopy!")::llvm::llvm_unreachable_internal("Unexpected register class in CSRsViaCopy!" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22162); | ||||
| 22163 | |||||
| 22164 | Register NewVR = MRI->createVirtualRegister(RC); | ||||
| 22165 | // Create copy from CSR to a virtual register. | ||||
| 22166 | // FIXME: this currently does not emit CFI pseudo-instructions, it works | ||||
| 22167 | // fine for CXX_FAST_TLS since the C++-style TLS access functions should be | ||||
| 22168 | // nounwind. If we want to generalize this later, we may need to emit | ||||
| 22169 | // CFI pseudo-instructions. | ||||
| 22170 | assert(Entry->getParent()->getFunction().hasFnAttribute((static_cast <bool> (Entry->getParent()->getFunction ().hasFnAttribute( Attribute::NoUnwind) && "Function should be nounwind in insertCopiesSplitCSR!" ) ? void (0) : __assert_fail ("Entry->getParent()->getFunction().hasFnAttribute( Attribute::NoUnwind) && \"Function should be nounwind in insertCopiesSplitCSR!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22172, __extension__ __PRETTY_FUNCTION__)) | ||||
| 22171 | Attribute::NoUnwind) &&(static_cast <bool> (Entry->getParent()->getFunction ().hasFnAttribute( Attribute::NoUnwind) && "Function should be nounwind in insertCopiesSplitCSR!" ) ? void (0) : __assert_fail ("Entry->getParent()->getFunction().hasFnAttribute( Attribute::NoUnwind) && \"Function should be nounwind in insertCopiesSplitCSR!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22172, __extension__ __PRETTY_FUNCTION__)) | ||||
| 22172 | "Function should be nounwind in insertCopiesSplitCSR!")(static_cast <bool> (Entry->getParent()->getFunction ().hasFnAttribute( Attribute::NoUnwind) && "Function should be nounwind in insertCopiesSplitCSR!" ) ? void (0) : __assert_fail ("Entry->getParent()->getFunction().hasFnAttribute( Attribute::NoUnwind) && \"Function should be nounwind in insertCopiesSplitCSR!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22172, __extension__ __PRETTY_FUNCTION__)); | ||||
| 22173 | Entry->addLiveIn(*I); | ||||
| 22174 | BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR) | ||||
| 22175 | .addReg(*I); | ||||
| 22176 | |||||
| 22177 | // Insert the copy-back instructions right before the terminator. | ||||
| 22178 | for (auto *Exit : Exits) | ||||
| 22179 | BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(), | ||||
| 22180 | TII->get(TargetOpcode::COPY), *I) | ||||
| 22181 | .addReg(NewVR); | ||||
| 22182 | } | ||||
| 22183 | } | ||||
| 22184 | |||||
| 22185 | bool AArch64TargetLowering::isIntDivCheap(EVT VT, AttributeList Attr) const { | ||||
| 22186 | // Integer division on AArch64 is expensive. However, when aggressively | ||||
| 22187 | // optimizing for code size, we prefer to use a div instruction, as it is | ||||
| 22188 | // usually smaller than the alternative sequence. | ||||
| 22189 | // The exception to this is vector division. Since AArch64 doesn't have vector | ||||
| 22190 | // integer division, leaving the division as-is is a loss even in terms of | ||||
| 22191 | // size, because it will have to be scalarized, while the alternative code | ||||
| 22192 | // sequence can be performed in vector form. | ||||
| 22193 | bool OptSize = Attr.hasFnAttr(Attribute::MinSize); | ||||
| 22194 | return OptSize && !VT.isVector(); | ||||
| 22195 | } | ||||
| 22196 | |||||
| 22197 | bool AArch64TargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { | ||||
| 22198 | // We want inc-of-add for scalars and sub-of-not for vectors. | ||||
| 22199 | return VT.isScalarInteger(); | ||||
| 22200 | } | ||||
| 22201 | |||||
| 22202 | bool AArch64TargetLowering::shouldConvertFpToSat(unsigned Op, EVT FPVT, | ||||
| 22203 | EVT VT) const { | ||||
| 22204 | // v8f16 without fp16 need to be extended to v8f32, which is more difficult to | ||||
| 22205 | // legalize. | ||||
| 22206 | if (FPVT == MVT::v8f16 && !Subtarget->hasFullFP16()) | ||||
| 22207 | return false; | ||||
| 22208 | return TargetLowering::shouldConvertFpToSat(Op, FPVT, VT); | ||||
| 22209 | } | ||||
| 22210 | |||||
| 22211 | bool AArch64TargetLowering::enableAggressiveFMAFusion(EVT VT) const { | ||||
| 22212 | return Subtarget->hasAggressiveFMA() && VT.isFloatingPoint(); | ||||
| 22213 | } | ||||
| 22214 | |||||
| 22215 | unsigned | ||||
| 22216 | AArch64TargetLowering::getVaListSizeInBits(const DataLayout &DL) const { | ||||
| 22217 | if (Subtarget->isTargetDarwin() || Subtarget->isTargetWindows()) | ||||
| 22218 | return getPointerTy(DL).getSizeInBits(); | ||||
| 22219 | |||||
| 22220 | return 3 * getPointerTy(DL).getSizeInBits() + 2 * 32; | ||||
| 22221 | } | ||||
| 22222 | |||||
| 22223 | void AArch64TargetLowering::finalizeLowering(MachineFunction &MF) const { | ||||
| 22224 | MachineFrameInfo &MFI = MF.getFrameInfo(); | ||||
| 22225 | // If we have any vulnerable SVE stack objects then the stack protector | ||||
| 22226 | // needs to be placed at the top of the SVE stack area, as the SVE locals | ||||
| 22227 | // are placed above the other locals, so we allocate it as if it were a | ||||
| 22228 | // scalable vector. | ||||
| 22229 | // FIXME: It may be worthwhile having a specific interface for this rather | ||||
| 22230 | // than doing it here in finalizeLowering. | ||||
| 22231 | if (MFI.hasStackProtectorIndex()) { | ||||
| 22232 | for (unsigned int i = 0, e = MFI.getObjectIndexEnd(); i != e; ++i) { | ||||
| 22233 | if (MFI.getStackID(i) == TargetStackID::ScalableVector && | ||||
| 22234 | MFI.getObjectSSPLayout(i) != MachineFrameInfo::SSPLK_None) { | ||||
| 22235 | MFI.setStackID(MFI.getStackProtectorIndex(), | ||||
| 22236 | TargetStackID::ScalableVector); | ||||
| 22237 | MFI.setObjectAlignment(MFI.getStackProtectorIndex(), Align(16)); | ||||
| 22238 | break; | ||||
| 22239 | } | ||||
| 22240 | } | ||||
| 22241 | } | ||||
| 22242 | MFI.computeMaxCallFrameSize(MF); | ||||
| 22243 | TargetLoweringBase::finalizeLowering(MF); | ||||
| 22244 | } | ||||
| 22245 | |||||
| 22246 | // Unlike X86, we let frame lowering assign offsets to all catch objects. | ||||
| 22247 | bool AArch64TargetLowering::needsFixedCatchObjects() const { | ||||
| 22248 | return false; | ||||
| 22249 | } | ||||
| 22250 | |||||
| 22251 | bool AArch64TargetLowering::shouldLocalize( | ||||
| 22252 | const MachineInstr &MI, const TargetTransformInfo *TTI) const { | ||||
| 22253 | auto &MF = *MI.getMF(); | ||||
| 22254 | auto &MRI = MF.getRegInfo(); | ||||
| 22255 | auto maxUses = [](unsigned RematCost) { | ||||
| 22256 | // A cost of 1 means remats are basically free. | ||||
| 22257 | if (RematCost == 1) | ||||
| 22258 | return std::numeric_limits<unsigned>::max(); | ||||
| 22259 | if (RematCost == 2) | ||||
| 22260 | return 2U; | ||||
| 22261 | |||||
| 22262 | // Remat is too expensive, only sink if there's one user. | ||||
| 22263 | if (RematCost > 2) | ||||
| 22264 | return 1U; | ||||
| 22265 | llvm_unreachable("Unexpected remat cost")::llvm::llvm_unreachable_internal("Unexpected remat cost", "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp" , 22265); | ||||
| 22266 | }; | ||||
| 22267 | |||||
| 22268 | switch (MI.getOpcode()) { | ||||
| 22269 | case TargetOpcode::G_GLOBAL_VALUE: { | ||||
| 22270 | // On Darwin, TLS global vars get selected into function calls, which | ||||
| 22271 | // we don't want localized, as they can get moved into the middle of a | ||||
| 22272 | // another call sequence. | ||||
| 22273 | const GlobalValue &GV = *MI.getOperand(1).getGlobal(); | ||||
| 22274 | if (GV.isThreadLocal() && Subtarget->isTargetMachO()) | ||||
| 22275 | return false; | ||||
| 22276 | break; | ||||
| 22277 | } | ||||
| 22278 | case TargetOpcode::G_CONSTANT: { | ||||
| 22279 | auto *CI = MI.getOperand(1).getCImm(); | ||||
| 22280 | APInt Imm = CI->getValue(); | ||||
| 22281 | InstructionCost Cost = TTI->getIntImmCost( | ||||
| 22282 | Imm, CI->getType(), TargetTransformInfo::TCK_CodeSize); | ||||
| 22283 | assert(Cost.isValid() && "Expected a valid imm cost")(static_cast <bool> (Cost.isValid() && "Expected a valid imm cost" ) ? void (0) : __assert_fail ("Cost.isValid() && \"Expected a valid imm cost\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22283, __extension__ __PRETTY_FUNCTION__)); | ||||
| 22284 | |||||
| 22285 | unsigned RematCost = *Cost.getValue(); | ||||
| 22286 | Register Reg = MI.getOperand(0).getReg(); | ||||
| 22287 | unsigned MaxUses = maxUses(RematCost); | ||||
| 22288 | // Don't pass UINT_MAX sentinal value to hasAtMostUserInstrs(). | ||||
| 22289 | if (MaxUses == std::numeric_limits<unsigned>::max()) | ||||
| 22290 | --MaxUses; | ||||
| 22291 | return MRI.hasAtMostUserInstrs(Reg, MaxUses); | ||||
| 22292 | } | ||||
| 22293 | // If we legalized G_GLOBAL_VALUE into ADRP + G_ADD_LOW, mark both as being | ||||
| 22294 | // localizable. | ||||
| 22295 | case AArch64::ADRP: | ||||
| 22296 | case AArch64::G_ADD_LOW: | ||||
| 22297 | return true; | ||||
| 22298 | default: | ||||
| 22299 | break; | ||||
| 22300 | } | ||||
| 22301 | return TargetLoweringBase::shouldLocalize(MI, TTI); | ||||
| 22302 | } | ||||
| 22303 | |||||
| 22304 | bool AArch64TargetLowering::fallBackToDAGISel(const Instruction &Inst) const { | ||||
| 22305 | if (isa<ScalableVectorType>(Inst.getType())) | ||||
| 22306 | return true; | ||||
| 22307 | |||||
| 22308 | for (unsigned i = 0; i < Inst.getNumOperands(); ++i) | ||||
| 22309 | if (isa<ScalableVectorType>(Inst.getOperand(i)->getType())) | ||||
| 22310 | return true; | ||||
| 22311 | |||||
| 22312 | if (const AllocaInst *AI = dyn_cast<AllocaInst>(&Inst)) { | ||||
| 22313 | if (isa<ScalableVectorType>(AI->getAllocatedType())) | ||||
| 22314 | return true; | ||||
| 22315 | } | ||||
| 22316 | |||||
| 22317 | // Checks to allow the use of SME instructions | ||||
| 22318 | if (auto *Base = dyn_cast<CallBase>(&Inst)) { | ||||
| 22319 | auto CallerAttrs = SMEAttrs(*Inst.getFunction()); | ||||
| 22320 | auto CalleeAttrs = SMEAttrs(*Base); | ||||
| 22321 | if (CallerAttrs.requiresSMChange(CalleeAttrs, | ||||
| 22322 | /*BodyOverridesInterface=*/false) || | ||||
| 22323 | CallerAttrs.requiresLazySave(CalleeAttrs)) | ||||
| 22324 | return true; | ||||
| 22325 | } | ||||
| 22326 | return false; | ||||
| 22327 | } | ||||
| 22328 | |||||
| 22329 | // Return the largest legal scalable vector type that matches VT's element type. | ||||
| 22330 | static EVT getContainerForFixedLengthVector(SelectionDAG &DAG, EVT VT) { | ||||
| 22331 | assert(VT.isFixedLengthVector() &&(static_cast <bool> (VT.isFixedLengthVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT) && "Expected legal fixed length vector!" ) ? void (0) : __assert_fail ("VT.isFixedLengthVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT) && \"Expected legal fixed length vector!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22333, __extension__ __PRETTY_FUNCTION__)) | ||||
| 22332 | DAG.getTargetLoweringInfo().isTypeLegal(VT) &&(static_cast <bool> (VT.isFixedLengthVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT) && "Expected legal fixed length vector!" ) ? void (0) : __assert_fail ("VT.isFixedLengthVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT) && \"Expected legal fixed length vector!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22333, __extension__ __PRETTY_FUNCTION__)) | ||||
| 22333 | "Expected legal fixed length vector!")(static_cast <bool> (VT.isFixedLengthVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT) && "Expected legal fixed length vector!" ) ? void (0) : __assert_fail ("VT.isFixedLengthVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT) && \"Expected legal fixed length vector!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22333, __extension__ __PRETTY_FUNCTION__)); | ||||
| 22334 | switch (VT.getVectorElementType().getSimpleVT().SimpleTy) { | ||||
| 22335 | default: | ||||
| 22336 | llvm_unreachable("unexpected element type for SVE container")::llvm::llvm_unreachable_internal("unexpected element type for SVE container" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22336); | ||||
| 22337 | case MVT::i8: | ||||
| 22338 | return EVT(MVT::nxv16i8); | ||||
| 22339 | case MVT::i16: | ||||
| 22340 | return EVT(MVT::nxv8i16); | ||||
| 22341 | case MVT::i32: | ||||
| 22342 | return EVT(MVT::nxv4i32); | ||||
| 22343 | case MVT::i64: | ||||
| 22344 | return EVT(MVT::nxv2i64); | ||||
| 22345 | case MVT::f16: | ||||
| 22346 | return EVT(MVT::nxv8f16); | ||||
| 22347 | case MVT::f32: | ||||
| 22348 | return EVT(MVT::nxv4f32); | ||||
| 22349 | case MVT::f64: | ||||
| 22350 | return EVT(MVT::nxv2f64); | ||||
| 22351 | } | ||||
| 22352 | } | ||||
| 22353 | |||||
| 22354 | // Return a PTRUE with active lanes corresponding to the extent of VT. | ||||
| 22355 | static SDValue getPredicateForFixedLengthVector(SelectionDAG &DAG, SDLoc &DL, | ||||
| 22356 | EVT VT) { | ||||
| 22357 | assert(VT.isFixedLengthVector() &&(static_cast <bool> (VT.isFixedLengthVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT) && "Expected legal fixed length vector!" ) ? void (0) : __assert_fail ("VT.isFixedLengthVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT) && \"Expected legal fixed length vector!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22359, __extension__ __PRETTY_FUNCTION__)) | ||||
| 22358 | DAG.getTargetLoweringInfo().isTypeLegal(VT) &&(static_cast <bool> (VT.isFixedLengthVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT) && "Expected legal fixed length vector!" ) ? void (0) : __assert_fail ("VT.isFixedLengthVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT) && \"Expected legal fixed length vector!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22359, __extension__ __PRETTY_FUNCTION__)) | ||||
| 22359 | "Expected legal fixed length vector!")(static_cast <bool> (VT.isFixedLengthVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT) && "Expected legal fixed length vector!" ) ? void (0) : __assert_fail ("VT.isFixedLengthVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT) && \"Expected legal fixed length vector!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22359, __extension__ __PRETTY_FUNCTION__)); | ||||
| 22360 | |||||
| 22361 | std::optional<unsigned> PgPattern = | ||||
| 22362 | getSVEPredPatternFromNumElements(VT.getVectorNumElements()); | ||||
| 22363 | assert(PgPattern && "Unexpected element count for SVE predicate")(static_cast <bool> (PgPattern && "Unexpected element count for SVE predicate" ) ? void (0) : __assert_fail ("PgPattern && \"Unexpected element count for SVE predicate\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22363, __extension__ __PRETTY_FUNCTION__)); | ||||
| 22364 | |||||
| 22365 | // For vectors that are exactly getMaxSVEVectorSizeInBits big, we can use | ||||
| 22366 | // AArch64SVEPredPattern::all, which can enable the use of unpredicated | ||||
| 22367 | // variants of instructions when available. | ||||
| 22368 | const auto &Subtarget = DAG.getSubtarget<AArch64Subtarget>(); | ||||
| 22369 | unsigned MinSVESize = Subtarget.getMinSVEVectorSizeInBits(); | ||||
| 22370 | unsigned MaxSVESize = Subtarget.getMaxSVEVectorSizeInBits(); | ||||
| 22371 | if (MaxSVESize && MinSVESize == MaxSVESize && | ||||
| 22372 | MaxSVESize == VT.getSizeInBits()) | ||||
| 22373 | PgPattern = AArch64SVEPredPattern::all; | ||||
| 22374 | |||||
| 22375 | MVT MaskVT; | ||||
| 22376 | switch (VT.getVectorElementType().getSimpleVT().SimpleTy) { | ||||
| 22377 | default: | ||||
| 22378 | llvm_unreachable("unexpected element type for SVE predicate")::llvm::llvm_unreachable_internal("unexpected element type for SVE predicate" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22378); | ||||
| 22379 | case MVT::i8: | ||||
| 22380 | MaskVT = MVT::nxv16i1; | ||||
| 22381 | break; | ||||
| 22382 | case MVT::i16: | ||||
| 22383 | case MVT::f16: | ||||
| 22384 | MaskVT = MVT::nxv8i1; | ||||
| 22385 | break; | ||||
| 22386 | case MVT::i32: | ||||
| 22387 | case MVT::f32: | ||||
| 22388 | MaskVT = MVT::nxv4i1; | ||||
| 22389 | break; | ||||
| 22390 | case MVT::i64: | ||||
| 22391 | case MVT::f64: | ||||
| 22392 | MaskVT = MVT::nxv2i1; | ||||
| 22393 | break; | ||||
| 22394 | } | ||||
| 22395 | |||||
| 22396 | return getPTrue(DAG, DL, MaskVT, *PgPattern); | ||||
| 22397 | } | ||||
| 22398 | |||||
| 22399 | static SDValue getPredicateForScalableVector(SelectionDAG &DAG, SDLoc &DL, | ||||
| 22400 | EVT VT) { | ||||
| 22401 | assert(VT.isScalableVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&(static_cast <bool> (VT.isScalableVector() && DAG .getTargetLoweringInfo().isTypeLegal(VT) && "Expected legal scalable vector!" ) ? void (0) : __assert_fail ("VT.isScalableVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT) && \"Expected legal scalable vector!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22402, __extension__ __PRETTY_FUNCTION__)) | ||||
| 22402 | "Expected legal scalable vector!")(static_cast <bool> (VT.isScalableVector() && DAG .getTargetLoweringInfo().isTypeLegal(VT) && "Expected legal scalable vector!" ) ? void (0) : __assert_fail ("VT.isScalableVector() && DAG.getTargetLoweringInfo().isTypeLegal(VT) && \"Expected legal scalable vector!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22402, __extension__ __PRETTY_FUNCTION__)); | ||||
| 22403 | auto PredTy = VT.changeVectorElementType(MVT::i1); | ||||
| 22404 | return getPTrue(DAG, DL, PredTy, AArch64SVEPredPattern::all); | ||||
| 22405 | } | ||||
| 22406 | |||||
| 22407 | static SDValue getPredicateForVector(SelectionDAG &DAG, SDLoc &DL, EVT VT) { | ||||
| 22408 | if (VT.isFixedLengthVector()) | ||||
| 22409 | return getPredicateForFixedLengthVector(DAG, DL, VT); | ||||
| 22410 | |||||
| 22411 | return getPredicateForScalableVector(DAG, DL, VT); | ||||
| 22412 | } | ||||
| 22413 | |||||
| 22414 | // Grow V to consume an entire SVE register. | ||||
| 22415 | static SDValue convertToScalableVector(SelectionDAG &DAG, EVT VT, SDValue V) { | ||||
| 22416 | assert(VT.isScalableVector() &&(static_cast <bool> (VT.isScalableVector() && "Expected to convert into a scalable vector!" ) ? void (0) : __assert_fail ("VT.isScalableVector() && \"Expected to convert into a scalable vector!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22417, __extension__ __PRETTY_FUNCTION__)) | ||||
| 22417 | "Expected to convert into a scalable vector!")(static_cast <bool> (VT.isScalableVector() && "Expected to convert into a scalable vector!" ) ? void (0) : __assert_fail ("VT.isScalableVector() && \"Expected to convert into a scalable vector!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22417, __extension__ __PRETTY_FUNCTION__)); | ||||
| 22418 | assert(V.getValueType().isFixedLengthVector() &&(static_cast <bool> (V.getValueType().isFixedLengthVector () && "Expected a fixed length vector operand!") ? void (0) : __assert_fail ("V.getValueType().isFixedLengthVector() && \"Expected a fixed length vector operand!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22419, __extension__ __PRETTY_FUNCTION__)) | ||||
| 22419 | "Expected a fixed length vector operand!")(static_cast <bool> (V.getValueType().isFixedLengthVector () && "Expected a fixed length vector operand!") ? void (0) : __assert_fail ("V.getValueType().isFixedLengthVector() && \"Expected a fixed length vector operand!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22419, __extension__ __PRETTY_FUNCTION__)); | ||||
| 22420 | SDLoc DL(V); | ||||
| 22421 | SDValue Zero = DAG.getConstant(0, DL, MVT::i64); | ||||
| 22422 | return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V, Zero); | ||||
| 22423 | } | ||||
| 22424 | |||||
| 22425 | // Shrink V so it's just big enough to maintain a VT's worth of data. | ||||
| 22426 | static SDValue convertFromScalableVector(SelectionDAG &DAG, EVT VT, SDValue V) { | ||||
| 22427 | assert(VT.isFixedLengthVector() &&(static_cast <bool> (VT.isFixedLengthVector() && "Expected to convert into a fixed length vector!") ? void (0 ) : __assert_fail ("VT.isFixedLengthVector() && \"Expected to convert into a fixed length vector!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22428, __extension__ __PRETTY_FUNCTION__)) | ||||
| 22428 | "Expected to convert into a fixed length vector!")(static_cast <bool> (VT.isFixedLengthVector() && "Expected to convert into a fixed length vector!") ? void (0 ) : __assert_fail ("VT.isFixedLengthVector() && \"Expected to convert into a fixed length vector!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22428, __extension__ __PRETTY_FUNCTION__)); | ||||
| 22429 | assert(V.getValueType().isScalableVector() &&(static_cast <bool> (V.getValueType().isScalableVector( ) && "Expected a scalable vector operand!") ? void (0 ) : __assert_fail ("V.getValueType().isScalableVector() && \"Expected a scalable vector operand!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22430, __extension__ __PRETTY_FUNCTION__)) | ||||
| 22430 | "Expected a scalable vector operand!")(static_cast <bool> (V.getValueType().isScalableVector( ) && "Expected a scalable vector operand!") ? void (0 ) : __assert_fail ("V.getValueType().isScalableVector() && \"Expected a scalable vector operand!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22430, __extension__ __PRETTY_FUNCTION__)); | ||||
| 22431 | SDLoc DL(V); | ||||
| 22432 | SDValue Zero = DAG.getConstant(0, DL, MVT::i64); | ||||
| 22433 | return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V, Zero); | ||||
| 22434 | } | ||||
| 22435 | |||||
| 22436 | // Convert all fixed length vector loads larger than NEON to masked_loads. | ||||
| 22437 | SDValue AArch64TargetLowering::LowerFixedLengthVectorLoadToSVE( | ||||
| 22438 | SDValue Op, SelectionDAG &DAG) const { | ||||
| 22439 | auto Load = cast<LoadSDNode>(Op); | ||||
| 22440 | |||||
| 22441 | SDLoc DL(Op); | ||||
| 22442 | EVT VT = Op.getValueType(); | ||||
| 22443 | EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT); | ||||
| 22444 | EVT LoadVT = ContainerVT; | ||||
| 22445 | EVT MemVT = Load->getMemoryVT(); | ||||
| 22446 | |||||
| 22447 | auto Pg = getPredicateForFixedLengthVector(DAG, DL, VT); | ||||
| 22448 | |||||
| 22449 | if (VT.isFloatingPoint()) { | ||||
| 22450 | LoadVT = ContainerVT.changeTypeToInteger(); | ||||
| 22451 | MemVT = MemVT.changeTypeToInteger(); | ||||
| 22452 | } | ||||
| 22453 | |||||
| 22454 | SDValue NewLoad = DAG.getMaskedLoad( | ||||
| 22455 | LoadVT, DL, Load->getChain(), Load->getBasePtr(), Load->getOffset(), Pg, | ||||
| 22456 | DAG.getUNDEF(LoadVT), MemVT, Load->getMemOperand(), | ||||
| 22457 | Load->getAddressingMode(), Load->getExtensionType()); | ||||
| 22458 | |||||
| 22459 | SDValue Result = NewLoad; | ||||
| 22460 | if (VT.isFloatingPoint() && Load->getExtensionType() == ISD::EXTLOAD) { | ||||
| 22461 | EVT ExtendVT = ContainerVT.changeVectorElementType( | ||||
| 22462 | Load->getMemoryVT().getVectorElementType()); | ||||
| 22463 | |||||
| 22464 | Result = getSVESafeBitCast(ExtendVT, Result, DAG); | ||||
| 22465 | Result = DAG.getNode(AArch64ISD::FP_EXTEND_MERGE_PASSTHRU, DL, ContainerVT, | ||||
| 22466 | Pg, Result, DAG.getUNDEF(ContainerVT)); | ||||
| 22467 | } else if (VT.isFloatingPoint()) { | ||||
| 22468 | Result = DAG.getNode(ISD::BITCAST, DL, ContainerVT, Result); | ||||
| 22469 | } | ||||
| 22470 | |||||
| 22471 | Result = convertFromScalableVector(DAG, VT, Result); | ||||
| 22472 | SDValue MergedValues[2] = {Result, NewLoad.getValue(1)}; | ||||
| 22473 | return DAG.getMergeValues(MergedValues, DL); | ||||
| 22474 | } | ||||
| 22475 | |||||
| 22476 | static SDValue convertFixedMaskToScalableVector(SDValue Mask, | ||||
| 22477 | SelectionDAG &DAG) { | ||||
| 22478 | SDLoc DL(Mask); | ||||
| 22479 | EVT InVT = Mask.getValueType(); | ||||
| 22480 | EVT ContainerVT = getContainerForFixedLengthVector(DAG, InVT); | ||||
| 22481 | |||||
| 22482 | auto Pg = getPredicateForFixedLengthVector(DAG, DL, InVT); | ||||
| 22483 | |||||
| 22484 | if (ISD::isBuildVectorAllOnes(Mask.getNode())) | ||||
| 22485 | return Pg; | ||||
| 22486 | |||||
| 22487 | auto Op1 = convertToScalableVector(DAG, ContainerVT, Mask); | ||||
| 22488 | auto Op2 = DAG.getConstant(0, DL, ContainerVT); | ||||
| 22489 | |||||
| 22490 | return DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, DL, Pg.getValueType(), | ||||
| 22491 | {Pg, Op1, Op2, DAG.getCondCode(ISD::SETNE)}); | ||||
| 22492 | } | ||||
| 22493 | |||||
| 22494 | // Convert all fixed length vector loads larger than NEON to masked_loads. | ||||
| 22495 | SDValue AArch64TargetLowering::LowerFixedLengthVectorMLoadToSVE( | ||||
| 22496 | SDValue Op, SelectionDAG &DAG) const { | ||||
| 22497 | auto Load = cast<MaskedLoadSDNode>(Op); | ||||
| 22498 | |||||
| 22499 | SDLoc DL(Op); | ||||
| 22500 | EVT VT = Op.getValueType(); | ||||
| 22501 | EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT); | ||||
| 22502 | |||||
| 22503 | SDValue Mask = convertFixedMaskToScalableVector(Load->getMask(), DAG); | ||||
| 22504 | |||||
| 22505 | SDValue PassThru; | ||||
| 22506 | bool IsPassThruZeroOrUndef = false; | ||||
| 22507 | |||||
| 22508 | if (Load->getPassThru()->isUndef()) { | ||||
| 22509 | PassThru = DAG.getUNDEF(ContainerVT); | ||||
| 22510 | IsPassThruZeroOrUndef = true; | ||||
| 22511 | } else { | ||||
| 22512 | if (ContainerVT.isInteger()) | ||||
| 22513 | PassThru = DAG.getConstant(0, DL, ContainerVT); | ||||
| 22514 | else | ||||
| 22515 | PassThru = DAG.getConstantFP(0, DL, ContainerVT); | ||||
| 22516 | if (isZerosVector(Load->getPassThru().getNode())) | ||||
| 22517 | IsPassThruZeroOrUndef = true; | ||||
| 22518 | } | ||||
| 22519 | |||||
| 22520 | SDValue NewLoad = DAG.getMaskedLoad( | ||||
| 22521 | ContainerVT, DL, Load->getChain(), Load->getBasePtr(), Load->getOffset(), | ||||
| 22522 | Mask, PassThru, Load->getMemoryVT(), Load->getMemOperand(), | ||||
| 22523 | Load->getAddressingMode(), Load->getExtensionType()); | ||||
| 22524 | |||||
| 22525 | SDValue Result = NewLoad; | ||||
| 22526 | if (!IsPassThruZeroOrUndef) { | ||||
| 22527 | SDValue OldPassThru = | ||||
| 22528 | convertToScalableVector(DAG, ContainerVT, Load->getPassThru()); | ||||
| 22529 | Result = DAG.getSelect(DL, ContainerVT, Mask, Result, OldPassThru); | ||||
| 22530 | } | ||||
| 22531 | |||||
| 22532 | Result = convertFromScalableVector(DAG, VT, Result); | ||||
| 22533 | SDValue MergedValues[2] = {Result, NewLoad.getValue(1)}; | ||||
| 22534 | return DAG.getMergeValues(MergedValues, DL); | ||||
| 22535 | } | ||||
| 22536 | |||||
| 22537 | // Convert all fixed length vector stores larger than NEON to masked_stores. | ||||
| 22538 | SDValue AArch64TargetLowering::LowerFixedLengthVectorStoreToSVE( | ||||
| 22539 | SDValue Op, SelectionDAG &DAG) const { | ||||
| 22540 | auto Store = cast<StoreSDNode>(Op); | ||||
| 22541 | |||||
| 22542 | SDLoc DL(Op); | ||||
| 22543 | EVT VT = Store->getValue().getValueType(); | ||||
| 22544 | EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT); | ||||
| 22545 | EVT MemVT = Store->getMemoryVT(); | ||||
| 22546 | |||||
| 22547 | auto Pg = getPredicateForFixedLengthVector(DAG, DL, VT); | ||||
| 22548 | auto NewValue = convertToScalableVector(DAG, ContainerVT, Store->getValue()); | ||||
| 22549 | |||||
| 22550 | if (VT.isFloatingPoint() && Store->isTruncatingStore()) { | ||||
| 22551 | EVT TruncVT = ContainerVT.changeVectorElementType( | ||||
| 22552 | Store->getMemoryVT().getVectorElementType()); | ||||
| 22553 | MemVT = MemVT.changeTypeToInteger(); | ||||
| 22554 | NewValue = DAG.getNode(AArch64ISD::FP_ROUND_MERGE_PASSTHRU, DL, TruncVT, Pg, | ||||
| 22555 | NewValue, DAG.getTargetConstant(0, DL, MVT::i64), | ||||
| 22556 | DAG.getUNDEF(TruncVT)); | ||||
| 22557 | NewValue = | ||||
| 22558 | getSVESafeBitCast(ContainerVT.changeTypeToInteger(), NewValue, DAG); | ||||
| 22559 | } else if (VT.isFloatingPoint()) { | ||||
| 22560 | MemVT = MemVT.changeTypeToInteger(); | ||||
| 22561 | NewValue = | ||||
| 22562 | getSVESafeBitCast(ContainerVT.changeTypeToInteger(), NewValue, DAG); | ||||
| 22563 | } | ||||
| 22564 | |||||
| 22565 | return DAG.getMaskedStore(Store->getChain(), DL, NewValue, | ||||
| 22566 | Store->getBasePtr(), Store->getOffset(), Pg, MemVT, | ||||
| 22567 | Store->getMemOperand(), Store->getAddressingMode(), | ||||
| 22568 | Store->isTruncatingStore()); | ||||
| 22569 | } | ||||
| 22570 | |||||
| 22571 | SDValue AArch64TargetLowering::LowerFixedLengthVectorMStoreToSVE( | ||||
| 22572 | SDValue Op, SelectionDAG &DAG) const { | ||||
| 22573 | auto *Store = cast<MaskedStoreSDNode>(Op); | ||||
| 22574 | |||||
| 22575 | SDLoc DL(Op); | ||||
| 22576 | EVT VT = Store->getValue().getValueType(); | ||||
| 22577 | EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT); | ||||
| 22578 | |||||
| 22579 | auto NewValue = convertToScalableVector(DAG, ContainerVT, Store->getValue()); | ||||
| 22580 | SDValue Mask = convertFixedMaskToScalableVector(Store->getMask(), DAG); | ||||
| 22581 | |||||
| 22582 | return DAG.getMaskedStore( | ||||
| 22583 | Store->getChain(), DL, NewValue, Store->getBasePtr(), Store->getOffset(), | ||||
| 22584 | Mask, Store->getMemoryVT(), Store->getMemOperand(), | ||||
| 22585 | Store->getAddressingMode(), Store->isTruncatingStore()); | ||||
| 22586 | } | ||||
| 22587 | |||||
| 22588 | SDValue AArch64TargetLowering::LowerFixedLengthVectorIntDivideToSVE( | ||||
| 22589 | SDValue Op, SelectionDAG &DAG) const { | ||||
| 22590 | SDLoc dl(Op); | ||||
| 22591 | EVT VT = Op.getValueType(); | ||||
| 22592 | EVT EltVT = VT.getVectorElementType(); | ||||
| 22593 | |||||
| 22594 | bool Signed = Op.getOpcode() == ISD::SDIV; | ||||
| 22595 | unsigned PredOpcode = Signed ? AArch64ISD::SDIV_PRED : AArch64ISD::UDIV_PRED; | ||||
| 22596 | |||||
| 22597 | bool Negated; | ||||
| 22598 | uint64_t SplatVal; | ||||
| 22599 | if (Signed && isPow2Splat(Op.getOperand(1), SplatVal, Negated)) { | ||||
| 22600 | EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT); | ||||
| 22601 | SDValue Op1 = convertToScalableVector(DAG, ContainerVT, Op.getOperand(0)); | ||||
| 22602 | SDValue Op2 = DAG.getTargetConstant(Log2_64(SplatVal), dl, MVT::i32); | ||||
| 22603 | |||||
| 22604 | SDValue Pg = getPredicateForFixedLengthVector(DAG, dl, VT); | ||||
| 22605 | SDValue Res = DAG.getNode(AArch64ISD::SRAD_MERGE_OP1, dl, ContainerVT, Pg, Op1, Op2); | ||||
| 22606 | if (Negated) | ||||
| 22607 | Res = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), Res); | ||||
| 22608 | |||||
| 22609 | return convertFromScalableVector(DAG, VT, Res); | ||||
| 22610 | } | ||||
| 22611 | |||||
| 22612 | // Scalable vector i32/i64 DIV is supported. | ||||
| 22613 | if (EltVT == MVT::i32 || EltVT == MVT::i64) | ||||
| 22614 | return LowerToPredicatedOp(Op, DAG, PredOpcode); | ||||
| 22615 | |||||
| 22616 | // Scalable vector i8/i16 DIV is not supported. Promote it to i32. | ||||
| 22617 | EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT); | ||||
| 22618 | EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); | ||||
| 22619 | EVT FixedWidenedVT = HalfVT.widenIntegerVectorElementType(*DAG.getContext()); | ||||
| 22620 | EVT ScalableWidenedVT = getContainerForFixedLengthVector(DAG, FixedWidenedVT); | ||||
| 22621 | |||||
| 22622 | // If this is not a full vector, extend, div, and truncate it. | ||||
| 22623 | EVT WidenedVT = VT.widenIntegerVectorElementType(*DAG.getContext()); | ||||
| 22624 | if (DAG.getTargetLoweringInfo().isTypeLegal(WidenedVT)) { | ||||
| 22625 | unsigned ExtendOpcode = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; | ||||
| 22626 | SDValue Op0 = DAG.getNode(ExtendOpcode, dl, WidenedVT, Op.getOperand(0)); | ||||
| 22627 | SDValue Op1 = DAG.getNode(ExtendOpcode, dl, WidenedVT, Op.getOperand(1)); | ||||
| 22628 | SDValue Div = DAG.getNode(Op.getOpcode(), dl, WidenedVT, Op0, Op1); | ||||
| 22629 | return DAG.getNode(ISD::TRUNCATE, dl, VT, Div); | ||||
| 22630 | } | ||||
| 22631 | |||||
| 22632 | // Convert the operands to scalable vectors. | ||||
| 22633 | SDValue Op0 = convertToScalableVector(DAG, ContainerVT, Op.getOperand(0)); | ||||
| 22634 | SDValue Op1 = convertToScalableVector(DAG, ContainerVT, Op.getOperand(1)); | ||||
| 22635 | |||||
| 22636 | // Extend the scalable operands. | ||||
| 22637 | unsigned UnpkLo = Signed ? AArch64ISD::SUNPKLO : AArch64ISD::UUNPKLO; | ||||
| 22638 | unsigned UnpkHi = Signed ? AArch64ISD::SUNPKHI : AArch64ISD::UUNPKHI; | ||||
| 22639 | SDValue Op0Lo = DAG.getNode(UnpkLo, dl, ScalableWidenedVT, Op0); | ||||
| 22640 | SDValue Op1Lo = DAG.getNode(UnpkLo, dl, ScalableWidenedVT, Op1); | ||||
| 22641 | SDValue Op0Hi = DAG.getNode(UnpkHi, dl, ScalableWidenedVT, Op0); | ||||
| 22642 | SDValue Op1Hi = DAG.getNode(UnpkHi, dl, ScalableWidenedVT, Op1); | ||||
| 22643 | |||||
| 22644 | // Convert back to fixed vectors so the DIV can be further lowered. | ||||
| 22645 | Op0Lo = convertFromScalableVector(DAG, FixedWidenedVT, Op0Lo); | ||||
| 22646 | Op1Lo = convertFromScalableVector(DAG, FixedWidenedVT, Op1Lo); | ||||
| 22647 | Op0Hi = convertFromScalableVector(DAG, FixedWidenedVT, Op0Hi); | ||||
| 22648 | Op1Hi = convertFromScalableVector(DAG, FixedWidenedVT, Op1Hi); | ||||
| 22649 | SDValue ResultLo = DAG.getNode(Op.getOpcode(), dl, FixedWidenedVT, | ||||
| 22650 | Op0Lo, Op1Lo); | ||||
| 22651 | SDValue ResultHi = DAG.getNode(Op.getOpcode(), dl, FixedWidenedVT, | ||||
| 22652 | Op0Hi, Op1Hi); | ||||
| 22653 | |||||
| 22654 | // Convert again to scalable vectors to truncate. | ||||
| 22655 | ResultLo = convertToScalableVector(DAG, ScalableWidenedVT, ResultLo); | ||||
| 22656 | ResultHi = convertToScalableVector(DAG, ScalableWidenedVT, ResultHi); | ||||
| 22657 | SDValue ScalableResult = DAG.getNode(AArch64ISD::UZP1, dl, ContainerVT, | ||||
| 22658 | ResultLo, ResultHi); | ||||
| 22659 | |||||
| 22660 | return convertFromScalableVector(DAG, VT, ScalableResult); | ||||
| 22661 | } | ||||
| 22662 | |||||
| 22663 | SDValue AArch64TargetLowering::LowerFixedLengthVectorIntExtendToSVE( | ||||
| 22664 | SDValue Op, SelectionDAG &DAG) const { | ||||
| 22665 | EVT VT = Op.getValueType(); | ||||
| 22666 | assert(VT.isFixedLengthVector() && "Expected fixed length vector type!")(static_cast <bool> (VT.isFixedLengthVector() && "Expected fixed length vector type!") ? void (0) : __assert_fail ("VT.isFixedLengthVector() && \"Expected fixed length vector type!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22666, __extension__ __PRETTY_FUNCTION__)); | ||||
| 22667 | |||||
| 22668 | SDLoc DL(Op); | ||||
| 22669 | SDValue Val = Op.getOperand(0); | ||||
| 22670 | EVT ContainerVT = getContainerForFixedLengthVector(DAG, Val.getValueType()); | ||||
| 22671 | Val = convertToScalableVector(DAG, ContainerVT, Val); | ||||
| 22672 | |||||
| 22673 | bool Signed = Op.getOpcode() == ISD::SIGN_EXTEND; | ||||
| 22674 | unsigned ExtendOpc = Signed ? AArch64ISD::SUNPKLO : AArch64ISD::UUNPKLO; | ||||
| 22675 | |||||
| 22676 | // Repeatedly unpack Val until the result is of the desired element type. | ||||
| 22677 | switch (ContainerVT.getSimpleVT().SimpleTy) { | ||||
| 22678 | default: | ||||
| 22679 | llvm_unreachable("unimplemented container type")::llvm::llvm_unreachable_internal("unimplemented container type" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22679); | ||||
| 22680 | case MVT::nxv16i8: | ||||
| 22681 | Val = DAG.getNode(ExtendOpc, DL, MVT::nxv8i16, Val); | ||||
| 22682 | if (VT.getVectorElementType() == MVT::i16) | ||||
| 22683 | break; | ||||
| 22684 | [[fallthrough]]; | ||||
| 22685 | case MVT::nxv8i16: | ||||
| 22686 | Val = DAG.getNode(ExtendOpc, DL, MVT::nxv4i32, Val); | ||||
| 22687 | if (VT.getVectorElementType() == MVT::i32) | ||||
| 22688 | break; | ||||
| 22689 | [[fallthrough]]; | ||||
| 22690 | case MVT::nxv4i32: | ||||
| 22691 | Val = DAG.getNode(ExtendOpc, DL, MVT::nxv2i64, Val); | ||||
| 22692 | assert(VT.getVectorElementType() == MVT::i64 && "Unexpected element type!")(static_cast <bool> (VT.getVectorElementType() == MVT:: i64 && "Unexpected element type!") ? void (0) : __assert_fail ("VT.getVectorElementType() == MVT::i64 && \"Unexpected element type!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22692, __extension__ __PRETTY_FUNCTION__)); | ||||
| 22693 | break; | ||||
| 22694 | } | ||||
| 22695 | |||||
| 22696 | return convertFromScalableVector(DAG, VT, Val); | ||||
| 22697 | } | ||||
| 22698 | |||||
| 22699 | SDValue AArch64TargetLowering::LowerFixedLengthVectorTruncateToSVE( | ||||
| 22700 | SDValue Op, SelectionDAG &DAG) const { | ||||
| 22701 | EVT VT = Op.getValueType(); | ||||
| 22702 | assert(VT.isFixedLengthVector() && "Expected fixed length vector type!")(static_cast <bool> (VT.isFixedLengthVector() && "Expected fixed length vector type!") ? void (0) : __assert_fail ("VT.isFixedLengthVector() && \"Expected fixed length vector type!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22702, __extension__ __PRETTY_FUNCTION__)); | ||||
| 22703 | |||||
| 22704 | SDLoc DL(Op); | ||||
| 22705 | SDValue Val = Op.getOperand(0); | ||||
| 22706 | EVT ContainerVT = getContainerForFixedLengthVector(DAG, Val.getValueType()); | ||||
| 22707 | Val = convertToScalableVector(DAG, ContainerVT, Val); | ||||
| 22708 | |||||
| 22709 | // Repeatedly truncate Val until the result is of the desired element type. | ||||
| 22710 | switch (ContainerVT.getSimpleVT().SimpleTy) { | ||||
| 22711 | default: | ||||
| 22712 | llvm_unreachable("unimplemented container type")::llvm::llvm_unreachable_internal("unimplemented container type" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22712); | ||||
| 22713 | case MVT::nxv2i64: | ||||
| 22714 | Val = DAG.getNode(ISD::BITCAST, DL, MVT::nxv4i32, Val); | ||||
| 22715 | Val = DAG.getNode(AArch64ISD::UZP1, DL, MVT::nxv4i32, Val, Val); | ||||
| 22716 | if (VT.getVectorElementType() == MVT::i32) | ||||
| 22717 | break; | ||||
| 22718 | [[fallthrough]]; | ||||
| 22719 | case MVT::nxv4i32: | ||||
| 22720 | Val = DAG.getNode(ISD::BITCAST, DL, MVT::nxv8i16, Val); | ||||
| 22721 | Val = DAG.getNode(AArch64ISD::UZP1, DL, MVT::nxv8i16, Val, Val); | ||||
| 22722 | if (VT.getVectorElementType() == MVT::i16) | ||||
| 22723 | break; | ||||
| 22724 | [[fallthrough]]; | ||||
| 22725 | case MVT::nxv8i16: | ||||
| 22726 | Val = DAG.getNode(ISD::BITCAST, DL, MVT::nxv16i8, Val); | ||||
| 22727 | Val = DAG.getNode(AArch64ISD::UZP1, DL, MVT::nxv16i8, Val, Val); | ||||
| 22728 | assert(VT.getVectorElementType() == MVT::i8 && "Unexpected element type!")(static_cast <bool> (VT.getVectorElementType() == MVT:: i8 && "Unexpected element type!") ? void (0) : __assert_fail ("VT.getVectorElementType() == MVT::i8 && \"Unexpected element type!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22728, __extension__ __PRETTY_FUNCTION__)); | ||||
| 22729 | break; | ||||
| 22730 | } | ||||
| 22731 | |||||
| 22732 | return convertFromScalableVector(DAG, VT, Val); | ||||
| 22733 | } | ||||
| 22734 | |||||
| 22735 | SDValue AArch64TargetLowering::LowerFixedLengthExtractVectorElt( | ||||
| 22736 | SDValue Op, SelectionDAG &DAG) const { | ||||
| 22737 | EVT VT = Op.getValueType(); | ||||
| 22738 | EVT InVT = Op.getOperand(0).getValueType(); | ||||
| 22739 | assert(InVT.isFixedLengthVector() && "Expected fixed length vector type!")(static_cast <bool> (InVT.isFixedLengthVector() && "Expected fixed length vector type!") ? void (0) : __assert_fail ("InVT.isFixedLengthVector() && \"Expected fixed length vector type!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22739, __extension__ __PRETTY_FUNCTION__)); | ||||
| 22740 | |||||
| 22741 | SDLoc DL(Op); | ||||
| 22742 | EVT ContainerVT = getContainerForFixedLengthVector(DAG, InVT); | ||||
| 22743 | SDValue Op0 = convertToScalableVector(DAG, ContainerVT, Op->getOperand(0)); | ||||
| 22744 | |||||
| 22745 | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op0, Op.getOperand(1)); | ||||
| 22746 | } | ||||
| 22747 | |||||
| 22748 | SDValue AArch64TargetLowering::LowerFixedLengthInsertVectorElt( | ||||
| 22749 | SDValue Op, SelectionDAG &DAG) const { | ||||
| 22750 | EVT VT = Op.getValueType(); | ||||
| 22751 | assert(VT.isFixedLengthVector() && "Expected fixed length vector type!")(static_cast <bool> (VT.isFixedLengthVector() && "Expected fixed length vector type!") ? void (0) : __assert_fail ("VT.isFixedLengthVector() && \"Expected fixed length vector type!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22751, __extension__ __PRETTY_FUNCTION__)); | ||||
| 22752 | |||||
| 22753 | SDLoc DL(Op); | ||||
| 22754 | EVT InVT = Op.getOperand(0).getValueType(); | ||||
| 22755 | EVT ContainerVT = getContainerForFixedLengthVector(DAG, InVT); | ||||
| 22756 | SDValue Op0 = convertToScalableVector(DAG, ContainerVT, Op->getOperand(0)); | ||||
| 22757 | |||||
| 22758 | auto ScalableRes = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ContainerVT, Op0, | ||||
| 22759 | Op.getOperand(1), Op.getOperand(2)); | ||||
| 22760 | |||||
| 22761 | return convertFromScalableVector(DAG, VT, ScalableRes); | ||||
| 22762 | } | ||||
| 22763 | |||||
| 22764 | // Convert vector operation 'Op' to an equivalent predicated operation whereby | ||||
| 22765 | // the original operation's type is used to construct a suitable predicate. | ||||
| 22766 | // NOTE: The results for inactive lanes are undefined. | ||||
| 22767 | SDValue AArch64TargetLowering::LowerToPredicatedOp(SDValue Op, | ||||
| 22768 | SelectionDAG &DAG, | ||||
| 22769 | unsigned NewOp) const { | ||||
| 22770 | EVT VT = Op.getValueType(); | ||||
| 22771 | SDLoc DL(Op); | ||||
| 22772 | auto Pg = getPredicateForVector(DAG, DL, VT); | ||||
| 22773 | |||||
| 22774 | if (VT.isFixedLengthVector()) { | ||||
| 22775 | assert(isTypeLegal(VT) && "Expected only legal fixed-width types")(static_cast <bool> (isTypeLegal(VT) && "Expected only legal fixed-width types" ) ? void (0) : __assert_fail ("isTypeLegal(VT) && \"Expected only legal fixed-width types\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22775, __extension__ __PRETTY_FUNCTION__)); | ||||
| 22776 | EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT); | ||||
| 22777 | |||||
| 22778 | // Create list of operands by converting existing ones to scalable types. | ||||
| 22779 | SmallVector<SDValue, 4> Operands = {Pg}; | ||||
| 22780 | for (const SDValue &V : Op->op_values()) { | ||||
| 22781 | if (isa<CondCodeSDNode>(V)) { | ||||
| 22782 | Operands.push_back(V); | ||||
| 22783 | continue; | ||||
| 22784 | } | ||||
| 22785 | |||||
| 22786 | if (const VTSDNode *VTNode = dyn_cast<VTSDNode>(V)) { | ||||
| 22787 | EVT VTArg = VTNode->getVT().getVectorElementType(); | ||||
| 22788 | EVT NewVTArg = ContainerVT.changeVectorElementType(VTArg); | ||||
| 22789 | Operands.push_back(DAG.getValueType(NewVTArg)); | ||||
| 22790 | continue; | ||||
| 22791 | } | ||||
| 22792 | |||||
| 22793 | assert(isTypeLegal(V.getValueType()) &&(static_cast <bool> (isTypeLegal(V.getValueType()) && "Expected only legal fixed-width types") ? void (0) : __assert_fail ("isTypeLegal(V.getValueType()) && \"Expected only legal fixed-width types\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22794, __extension__ __PRETTY_FUNCTION__)) | ||||
| 22794 | "Expected only legal fixed-width types")(static_cast <bool> (isTypeLegal(V.getValueType()) && "Expected only legal fixed-width types") ? void (0) : __assert_fail ("isTypeLegal(V.getValueType()) && \"Expected only legal fixed-width types\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22794, __extension__ __PRETTY_FUNCTION__)); | ||||
| 22795 | Operands.push_back(convertToScalableVector(DAG, ContainerVT, V)); | ||||
| 22796 | } | ||||
| 22797 | |||||
| 22798 | if (isMergePassthruOpcode(NewOp)) | ||||
| 22799 | Operands.push_back(DAG.getUNDEF(ContainerVT)); | ||||
| 22800 | |||||
| 22801 | auto ScalableRes = DAG.getNode(NewOp, DL, ContainerVT, Operands); | ||||
| 22802 | return convertFromScalableVector(DAG, VT, ScalableRes); | ||||
| 22803 | } | ||||
| 22804 | |||||
| 22805 | assert(VT.isScalableVector() && "Only expect to lower scalable vector op!")(static_cast <bool> (VT.isScalableVector() && "Only expect to lower scalable vector op!" ) ? void (0) : __assert_fail ("VT.isScalableVector() && \"Only expect to lower scalable vector op!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22805, __extension__ __PRETTY_FUNCTION__)); | ||||
| 22806 | |||||
| 22807 | SmallVector<SDValue, 4> Operands = {Pg}; | ||||
| 22808 | for (const SDValue &V : Op->op_values()) { | ||||
| 22809 | assert((!V.getValueType().isVector() ||(static_cast <bool> ((!V.getValueType().isVector() || V .getValueType().isScalableVector()) && "Only scalable vectors are supported!" ) ? void (0) : __assert_fail ("(!V.getValueType().isVector() || V.getValueType().isScalableVector()) && \"Only scalable vectors are supported!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22811, __extension__ __PRETTY_FUNCTION__)) | ||||
| 22810 | V.getValueType().isScalableVector()) &&(static_cast <bool> ((!V.getValueType().isVector() || V .getValueType().isScalableVector()) && "Only scalable vectors are supported!" ) ? void (0) : __assert_fail ("(!V.getValueType().isVector() || V.getValueType().isScalableVector()) && \"Only scalable vectors are supported!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22811, __extension__ __PRETTY_FUNCTION__)) | ||||
| 22811 | "Only scalable vectors are supported!")(static_cast <bool> ((!V.getValueType().isVector() || V .getValueType().isScalableVector()) && "Only scalable vectors are supported!" ) ? void (0) : __assert_fail ("(!V.getValueType().isVector() || V.getValueType().isScalableVector()) && \"Only scalable vectors are supported!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22811, __extension__ __PRETTY_FUNCTION__)); | ||||
| 22812 | Operands.push_back(V); | ||||
| 22813 | } | ||||
| 22814 | |||||
| 22815 | if (isMergePassthruOpcode(NewOp)) | ||||
| 22816 | Operands.push_back(DAG.getUNDEF(VT)); | ||||
| 22817 | |||||
| 22818 | return DAG.getNode(NewOp, DL, VT, Operands, Op->getFlags()); | ||||
| 22819 | } | ||||
| 22820 | |||||
| 22821 | // If a fixed length vector operation has no side effects when applied to | ||||
| 22822 | // undefined elements, we can safely use scalable vectors to perform the same | ||||
| 22823 | // operation without needing to worry about predication. | ||||
| 22824 | SDValue AArch64TargetLowering::LowerToScalableOp(SDValue Op, | ||||
| 22825 | SelectionDAG &DAG) const { | ||||
| 22826 | EVT VT = Op.getValueType(); | ||||
| 22827 | assert(VT.isFixedLengthVector() && isTypeLegal(VT) &&(static_cast <bool> (VT.isFixedLengthVector() && isTypeLegal(VT) && "Only expected to lower fixed length vector operation!" ) ? void (0) : __assert_fail ("VT.isFixedLengthVector() && isTypeLegal(VT) && \"Only expected to lower fixed length vector operation!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22828, __extension__ __PRETTY_FUNCTION__)) | ||||
| 22828 | "Only expected to lower fixed length vector operation!")(static_cast <bool> (VT.isFixedLengthVector() && isTypeLegal(VT) && "Only expected to lower fixed length vector operation!" ) ? void (0) : __assert_fail ("VT.isFixedLengthVector() && isTypeLegal(VT) && \"Only expected to lower fixed length vector operation!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22828, __extension__ __PRETTY_FUNCTION__)); | ||||
| 22829 | EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT); | ||||
| 22830 | |||||
| 22831 | // Create list of operands by converting existing ones to scalable types. | ||||
| 22832 | SmallVector<SDValue, 4> Ops; | ||||
| 22833 | for (const SDValue &V : Op->op_values()) { | ||||
| 22834 | assert(!isa<VTSDNode>(V) && "Unexpected VTSDNode node!")(static_cast <bool> (!isa<VTSDNode>(V) && "Unexpected VTSDNode node!") ? void (0) : __assert_fail ("!isa<VTSDNode>(V) && \"Unexpected VTSDNode node!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22834, __extension__ __PRETTY_FUNCTION__)); | ||||
| 22835 | |||||
| 22836 | // Pass through non-vector operands. | ||||
| 22837 | if (!V.getValueType().isVector()) { | ||||
| 22838 | Ops.push_back(V); | ||||
| 22839 | continue; | ||||
| 22840 | } | ||||
| 22841 | |||||
| 22842 | // "cast" fixed length vector to a scalable vector. | ||||
| 22843 | assert(V.getValueType().isFixedLengthVector() &&(static_cast <bool> (V.getValueType().isFixedLengthVector () && isTypeLegal(V.getValueType()) && "Only fixed length vectors are supported!" ) ? void (0) : __assert_fail ("V.getValueType().isFixedLengthVector() && isTypeLegal(V.getValueType()) && \"Only fixed length vectors are supported!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22845, __extension__ __PRETTY_FUNCTION__)) | ||||
| 22844 | isTypeLegal(V.getValueType()) &&(static_cast <bool> (V.getValueType().isFixedLengthVector () && isTypeLegal(V.getValueType()) && "Only fixed length vectors are supported!" ) ? void (0) : __assert_fail ("V.getValueType().isFixedLengthVector() && isTypeLegal(V.getValueType()) && \"Only fixed length vectors are supported!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22845, __extension__ __PRETTY_FUNCTION__)) | ||||
| 22845 | "Only fixed length vectors are supported!")(static_cast <bool> (V.getValueType().isFixedLengthVector () && isTypeLegal(V.getValueType()) && "Only fixed length vectors are supported!" ) ? void (0) : __assert_fail ("V.getValueType().isFixedLengthVector() && isTypeLegal(V.getValueType()) && \"Only fixed length vectors are supported!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22845, __extension__ __PRETTY_FUNCTION__)); | ||||
| 22846 | Ops.push_back(convertToScalableVector(DAG, ContainerVT, V)); | ||||
| 22847 | } | ||||
| 22848 | |||||
| 22849 | auto ScalableRes = DAG.getNode(Op.getOpcode(), SDLoc(Op), ContainerVT, Ops); | ||||
| 22850 | return convertFromScalableVector(DAG, VT, ScalableRes); | ||||
| 22851 | } | ||||
| 22852 | |||||
| 22853 | SDValue AArch64TargetLowering::LowerVECREDUCE_SEQ_FADD(SDValue ScalarOp, | ||||
| 22854 | SelectionDAG &DAG) const { | ||||
| 22855 | SDLoc DL(ScalarOp); | ||||
| 22856 | SDValue AccOp = ScalarOp.getOperand(0); | ||||
| 22857 | SDValue VecOp = ScalarOp.getOperand(1); | ||||
| 22858 | EVT SrcVT = VecOp.getValueType(); | ||||
| 22859 | EVT ResVT = SrcVT.getVectorElementType(); | ||||
| 22860 | |||||
| 22861 | EVT ContainerVT = SrcVT; | ||||
| 22862 | if (SrcVT.isFixedLengthVector()) { | ||||
| 22863 | ContainerVT = getContainerForFixedLengthVector(DAG, SrcVT); | ||||
| 22864 | VecOp = convertToScalableVector(DAG, ContainerVT, VecOp); | ||||
| 22865 | } | ||||
| 22866 | |||||
| 22867 | SDValue Pg = getPredicateForVector(DAG, DL, SrcVT); | ||||
| 22868 | SDValue Zero = DAG.getConstant(0, DL, MVT::i64); | ||||
| 22869 | |||||
| 22870 | // Convert operands to Scalable. | ||||
| 22871 | AccOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, ContainerVT, | ||||
| 22872 | DAG.getUNDEF(ContainerVT), AccOp, Zero); | ||||
| 22873 | |||||
| 22874 | // Perform reduction. | ||||
| 22875 | SDValue Rdx = DAG.getNode(AArch64ISD::FADDA_PRED, DL, ContainerVT, | ||||
| 22876 | Pg, AccOp, VecOp); | ||||
| 22877 | |||||
| 22878 | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Rdx, Zero); | ||||
| 22879 | } | ||||
| 22880 | |||||
| 22881 | SDValue AArch64TargetLowering::LowerPredReductionToSVE(SDValue ReduceOp, | ||||
| 22882 | SelectionDAG &DAG) const { | ||||
| 22883 | SDLoc DL(ReduceOp); | ||||
| 22884 | SDValue Op = ReduceOp.getOperand(0); | ||||
| 22885 | EVT OpVT = Op.getValueType(); | ||||
| 22886 | EVT VT = ReduceOp.getValueType(); | ||||
| 22887 | |||||
| 22888 | if (!OpVT.isScalableVector() || OpVT.getVectorElementType() != MVT::i1) | ||||
| 22889 | return SDValue(); | ||||
| 22890 | |||||
| 22891 | SDValue Pg = getPredicateForVector(DAG, DL, OpVT); | ||||
| 22892 | |||||
| 22893 | switch (ReduceOp.getOpcode()) { | ||||
| 22894 | default: | ||||
| 22895 | return SDValue(); | ||||
| 22896 | case ISD::VECREDUCE_OR: | ||||
| 22897 | if (isAllActivePredicate(DAG, Pg) && OpVT == MVT::nxv16i1) | ||||
| 22898 | // The predicate can be 'Op' because | ||||
| 22899 | // vecreduce_or(Op & <all true>) <=> vecreduce_or(Op). | ||||
| 22900 | return getPTest(DAG, VT, Op, Op, AArch64CC::ANY_ACTIVE); | ||||
| 22901 | else | ||||
| 22902 | return getPTest(DAG, VT, Pg, Op, AArch64CC::ANY_ACTIVE); | ||||
| 22903 | case ISD::VECREDUCE_AND: { | ||||
| 22904 | Op = DAG.getNode(ISD::XOR, DL, OpVT, Op, Pg); | ||||
| 22905 | return getPTest(DAG, VT, Pg, Op, AArch64CC::NONE_ACTIVE); | ||||
| 22906 | } | ||||
| 22907 | case ISD::VECREDUCE_XOR: { | ||||
| 22908 | SDValue ID = | ||||
| 22909 | DAG.getTargetConstant(Intrinsic::aarch64_sve_cntp, DL, MVT::i64); | ||||
| 22910 | if (OpVT == MVT::nxv1i1) { | ||||
| 22911 | // Emulate a CNTP on .Q using .D and a different governing predicate. | ||||
| 22912 | Pg = DAG.getNode(AArch64ISD::REINTERPRET_CAST, DL, MVT::nxv2i1, Pg); | ||||
| 22913 | Op = DAG.getNode(AArch64ISD::REINTERPRET_CAST, DL, MVT::nxv2i1, Op); | ||||
| 22914 | } | ||||
| 22915 | SDValue Cntp = | ||||
| 22916 | DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, MVT::i64, ID, Pg, Op); | ||||
| 22917 | return DAG.getAnyExtOrTrunc(Cntp, DL, VT); | ||||
| 22918 | } | ||||
| 22919 | } | ||||
| 22920 | |||||
| 22921 | return SDValue(); | ||||
| 22922 | } | ||||
| 22923 | |||||
| 22924 | SDValue AArch64TargetLowering::LowerReductionToSVE(unsigned Opcode, | ||||
| 22925 | SDValue ScalarOp, | ||||
| 22926 | SelectionDAG &DAG) const { | ||||
| 22927 | SDLoc DL(ScalarOp); | ||||
| 22928 | SDValue VecOp = ScalarOp.getOperand(0); | ||||
| 22929 | EVT SrcVT = VecOp.getValueType(); | ||||
| 22930 | |||||
| 22931 | if (useSVEForFixedLengthVectorVT( | ||||
| 22932 | SrcVT, | ||||
| 22933 | /*OverrideNEON=*/Subtarget->useSVEForFixedLengthVectors())) { | ||||
| 22934 | EVT ContainerVT = getContainerForFixedLengthVector(DAG, SrcVT); | ||||
| 22935 | VecOp = convertToScalableVector(DAG, ContainerVT, VecOp); | ||||
| 22936 | } | ||||
| 22937 | |||||
| 22938 | // UADDV always returns an i64 result. | ||||
| 22939 | EVT ResVT = (Opcode == AArch64ISD::UADDV_PRED) ? MVT::i64 : | ||||
| 22940 | SrcVT.getVectorElementType(); | ||||
| 22941 | EVT RdxVT = SrcVT; | ||||
| 22942 | if (SrcVT.isFixedLengthVector() || Opcode == AArch64ISD::UADDV_PRED) | ||||
| 22943 | RdxVT = getPackedSVEVectorVT(ResVT); | ||||
| 22944 | |||||
| 22945 | SDValue Pg = getPredicateForVector(DAG, DL, SrcVT); | ||||
| 22946 | SDValue Rdx = DAG.getNode(Opcode, DL, RdxVT, Pg, VecOp); | ||||
| 22947 | SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, | ||||
| 22948 | Rdx, DAG.getConstant(0, DL, MVT::i64)); | ||||
| 22949 | |||||
| 22950 | // The VEC_REDUCE nodes expect an element size result. | ||||
| 22951 | if (ResVT != ScalarOp.getValueType()) | ||||
| 22952 | Res = DAG.getAnyExtOrTrunc(Res, DL, ScalarOp.getValueType()); | ||||
| 22953 | |||||
| 22954 | return Res; | ||||
| 22955 | } | ||||
| 22956 | |||||
| 22957 | SDValue | ||||
| 22958 | AArch64TargetLowering::LowerFixedLengthVectorSelectToSVE(SDValue Op, | ||||
| 22959 | SelectionDAG &DAG) const { | ||||
| 22960 | EVT VT = Op.getValueType(); | ||||
| 22961 | SDLoc DL(Op); | ||||
| 22962 | |||||
| 22963 | EVT InVT = Op.getOperand(1).getValueType(); | ||||
| 22964 | EVT ContainerVT = getContainerForFixedLengthVector(DAG, InVT); | ||||
| 22965 | SDValue Op1 = convertToScalableVector(DAG, ContainerVT, Op->getOperand(1)); | ||||
| 22966 | SDValue Op2 = convertToScalableVector(DAG, ContainerVT, Op->getOperand(2)); | ||||
| 22967 | |||||
| 22968 | // Convert the mask to a predicated (NOTE: We don't need to worry about | ||||
| 22969 | // inactive lanes since VSELECT is safe when given undefined elements). | ||||
| 22970 | EVT MaskVT = Op.getOperand(0).getValueType(); | ||||
| 22971 | EVT MaskContainerVT = getContainerForFixedLengthVector(DAG, MaskVT); | ||||
| 22972 | auto Mask = convertToScalableVector(DAG, MaskContainerVT, Op.getOperand(0)); | ||||
| 22973 | Mask = DAG.getNode(ISD::TRUNCATE, DL, | ||||
| 22974 | MaskContainerVT.changeVectorElementType(MVT::i1), Mask); | ||||
| 22975 | |||||
| 22976 | auto ScalableRes = DAG.getNode(ISD::VSELECT, DL, ContainerVT, | ||||
| 22977 | Mask, Op1, Op2); | ||||
| 22978 | |||||
| 22979 | return convertFromScalableVector(DAG, VT, ScalableRes); | ||||
| 22980 | } | ||||
| 22981 | |||||
| 22982 | SDValue AArch64TargetLowering::LowerFixedLengthVectorSetccToSVE( | ||||
| 22983 | SDValue Op, SelectionDAG &DAG) const { | ||||
| 22984 | SDLoc DL(Op); | ||||
| 22985 | EVT InVT = Op.getOperand(0).getValueType(); | ||||
| 22986 | EVT ContainerVT = getContainerForFixedLengthVector(DAG, InVT); | ||||
| 22987 | |||||
| 22988 | assert(InVT.isFixedLengthVector() && isTypeLegal(InVT) &&(static_cast <bool> (InVT.isFixedLengthVector() && isTypeLegal(InVT) && "Only expected to lower fixed length vector operation!" ) ? void (0) : __assert_fail ("InVT.isFixedLengthVector() && isTypeLegal(InVT) && \"Only expected to lower fixed length vector operation!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22989, __extension__ __PRETTY_FUNCTION__)) | ||||
| 22989 | "Only expected to lower fixed length vector operation!")(static_cast <bool> (InVT.isFixedLengthVector() && isTypeLegal(InVT) && "Only expected to lower fixed length vector operation!" ) ? void (0) : __assert_fail ("InVT.isFixedLengthVector() && isTypeLegal(InVT) && \"Only expected to lower fixed length vector operation!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22989, __extension__ __PRETTY_FUNCTION__)); | ||||
| 22990 | assert(Op.getValueType() == InVT.changeTypeToInteger() &&(static_cast <bool> (Op.getValueType() == InVT.changeTypeToInteger () && "Expected integer result of the same bit length as the inputs!" ) ? void (0) : __assert_fail ("Op.getValueType() == InVT.changeTypeToInteger() && \"Expected integer result of the same bit length as the inputs!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22991, __extension__ __PRETTY_FUNCTION__)) | ||||
| 22991 | "Expected integer result of the same bit length as the inputs!")(static_cast <bool> (Op.getValueType() == InVT.changeTypeToInteger () && "Expected integer result of the same bit length as the inputs!" ) ? void (0) : __assert_fail ("Op.getValueType() == InVT.changeTypeToInteger() && \"Expected integer result of the same bit length as the inputs!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 22991, __extension__ __PRETTY_FUNCTION__)); | ||||
| 22992 | |||||
| 22993 | auto Op1 = convertToScalableVector(DAG, ContainerVT, Op.getOperand(0)); | ||||
| 22994 | auto Op2 = convertToScalableVector(DAG, ContainerVT, Op.getOperand(1)); | ||||
| 22995 | auto Pg = getPredicateForFixedLengthVector(DAG, DL, InVT); | ||||
| 22996 | |||||
| 22997 | EVT CmpVT = Pg.getValueType(); | ||||
| 22998 | auto Cmp = DAG.getNode(AArch64ISD::SETCC_MERGE_ZERO, DL, CmpVT, | ||||
| 22999 | {Pg, Op1, Op2, Op.getOperand(2)}); | ||||
| 23000 | |||||
| 23001 | EVT PromoteVT = ContainerVT.changeTypeToInteger(); | ||||
| 23002 | auto Promote = DAG.getBoolExtOrTrunc(Cmp, DL, PromoteVT, InVT); | ||||
| 23003 | return convertFromScalableVector(DAG, Op.getValueType(), Promote); | ||||
| 23004 | } | ||||
| 23005 | |||||
| 23006 | SDValue | ||||
| 23007 | AArch64TargetLowering::LowerFixedLengthBitcastToSVE(SDValue Op, | ||||
| 23008 | SelectionDAG &DAG) const { | ||||
| 23009 | SDLoc DL(Op); | ||||
| 23010 | auto SrcOp = Op.getOperand(0); | ||||
| 23011 | EVT VT = Op.getValueType(); | ||||
| 23012 | EVT ContainerDstVT = getContainerForFixedLengthVector(DAG, VT); | ||||
| 23013 | EVT ContainerSrcVT = | ||||
| 23014 | getContainerForFixedLengthVector(DAG, SrcOp.getValueType()); | ||||
| 23015 | |||||
| 23016 | SrcOp = convertToScalableVector(DAG, ContainerSrcVT, SrcOp); | ||||
| 23017 | Op = DAG.getNode(ISD::BITCAST, DL, ContainerDstVT, SrcOp); | ||||
| 23018 | return convertFromScalableVector(DAG, VT, Op); | ||||
| 23019 | } | ||||
| 23020 | |||||
| 23021 | SDValue AArch64TargetLowering::LowerFixedLengthConcatVectorsToSVE( | ||||
| 23022 | SDValue Op, SelectionDAG &DAG) const { | ||||
| 23023 | SDLoc DL(Op); | ||||
| 23024 | unsigned NumOperands = Op->getNumOperands(); | ||||
| 23025 | |||||
| 23026 | assert(NumOperands > 1 && isPowerOf2_32(NumOperands) &&(static_cast <bool> (NumOperands > 1 && isPowerOf2_32 (NumOperands) && "Unexpected number of operands in CONCAT_VECTORS" ) ? void (0) : __assert_fail ("NumOperands > 1 && isPowerOf2_32(NumOperands) && \"Unexpected number of operands in CONCAT_VECTORS\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 23027, __extension__ __PRETTY_FUNCTION__)) | ||||
| 23027 | "Unexpected number of operands in CONCAT_VECTORS")(static_cast <bool> (NumOperands > 1 && isPowerOf2_32 (NumOperands) && "Unexpected number of operands in CONCAT_VECTORS" ) ? void (0) : __assert_fail ("NumOperands > 1 && isPowerOf2_32(NumOperands) && \"Unexpected number of operands in CONCAT_VECTORS\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 23027, __extension__ __PRETTY_FUNCTION__)); | ||||
| 23028 | |||||
| 23029 | auto SrcOp1 = Op.getOperand(0); | ||||
| 23030 | auto SrcOp2 = Op.getOperand(1); | ||||
| 23031 | EVT VT = Op.getValueType(); | ||||
| 23032 | EVT SrcVT = SrcOp1.getValueType(); | ||||
| 23033 | |||||
| 23034 | if (NumOperands > 2) { | ||||
| 23035 | SmallVector<SDValue, 4> Ops; | ||||
| 23036 | EVT PairVT = SrcVT.getDoubleNumVectorElementsVT(*DAG.getContext()); | ||||
| 23037 | for (unsigned I = 0; I < NumOperands; I += 2) | ||||
| 23038 | Ops.push_back(DAG.getNode(ISD::CONCAT_VECTORS, DL, PairVT, | ||||
| 23039 | Op->getOperand(I), Op->getOperand(I + 1))); | ||||
| 23040 | |||||
| 23041 | return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Ops); | ||||
| 23042 | } | ||||
| 23043 | |||||
| 23044 | EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT); | ||||
| 23045 | |||||
| 23046 | SDValue Pg = getPredicateForFixedLengthVector(DAG, DL, SrcVT); | ||||
| 23047 | SrcOp1 = convertToScalableVector(DAG, ContainerVT, SrcOp1); | ||||
| 23048 | SrcOp2 = convertToScalableVector(DAG, ContainerVT, SrcOp2); | ||||
| 23049 | |||||
| 23050 | Op = DAG.getNode(AArch64ISD::SPLICE, DL, ContainerVT, Pg, SrcOp1, SrcOp2); | ||||
| 23051 | |||||
| 23052 | return convertFromScalableVector(DAG, VT, Op); | ||||
| 23053 | } | ||||
| 23054 | |||||
| 23055 | SDValue | ||||
| 23056 | AArch64TargetLowering::LowerFixedLengthFPExtendToSVE(SDValue Op, | ||||
| 23057 | SelectionDAG &DAG) const { | ||||
| 23058 | EVT VT = Op.getValueType(); | ||||
| 23059 | assert(VT.isFixedLengthVector() && "Expected fixed length vector type!")(static_cast <bool> (VT.isFixedLengthVector() && "Expected fixed length vector type!") ? void (0) : __assert_fail ("VT.isFixedLengthVector() && \"Expected fixed length vector type!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 23059, __extension__ __PRETTY_FUNCTION__)); | ||||
| 23060 | |||||
| 23061 | SDLoc DL(Op); | ||||
| 23062 | SDValue Val = Op.getOperand(0); | ||||
| 23063 | SDValue Pg = getPredicateForVector(DAG, DL, VT); | ||||
| 23064 | EVT SrcVT = Val.getValueType(); | ||||
| 23065 | EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT); | ||||
| 23066 | EVT ExtendVT = ContainerVT.changeVectorElementType( | ||||
| 23067 | SrcVT.getVectorElementType()); | ||||
| 23068 | |||||
| 23069 | Val = DAG.getNode(ISD::BITCAST, DL, SrcVT.changeTypeToInteger(), Val); | ||||
| 23070 | Val = DAG.getNode(ISD::ANY_EXTEND, DL, VT.changeTypeToInteger(), Val); | ||||
| 23071 | |||||
| 23072 | Val = convertToScalableVector(DAG, ContainerVT.changeTypeToInteger(), Val); | ||||
| 23073 | Val = getSVESafeBitCast(ExtendVT, Val, DAG); | ||||
| 23074 | Val = DAG.getNode(AArch64ISD::FP_EXTEND_MERGE_PASSTHRU, DL, ContainerVT, | ||||
| 23075 | Pg, Val, DAG.getUNDEF(ContainerVT)); | ||||
| 23076 | |||||
| 23077 | return convertFromScalableVector(DAG, VT, Val); | ||||
| 23078 | } | ||||
| 23079 | |||||
| 23080 | SDValue | ||||
| 23081 | AArch64TargetLowering::LowerFixedLengthFPRoundToSVE(SDValue Op, | ||||
| 23082 | SelectionDAG &DAG) const { | ||||
| 23083 | EVT VT = Op.getValueType(); | ||||
| 23084 | assert(VT.isFixedLengthVector() && "Expected fixed length vector type!")(static_cast <bool> (VT.isFixedLengthVector() && "Expected fixed length vector type!") ? void (0) : __assert_fail ("VT.isFixedLengthVector() && \"Expected fixed length vector type!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 23084, __extension__ __PRETTY_FUNCTION__)); | ||||
| 23085 | |||||
| 23086 | SDLoc DL(Op); | ||||
| 23087 | SDValue Val = Op.getOperand(0); | ||||
| 23088 | EVT SrcVT = Val.getValueType(); | ||||
| 23089 | EVT ContainerSrcVT = getContainerForFixedLengthVector(DAG, SrcVT); | ||||
| 23090 | EVT RoundVT = ContainerSrcVT.changeVectorElementType( | ||||
| 23091 | VT.getVectorElementType()); | ||||
| 23092 | SDValue Pg = getPredicateForVector(DAG, DL, RoundVT); | ||||
| 23093 | |||||
| 23094 | Val = convertToScalableVector(DAG, ContainerSrcVT, Val); | ||||
| 23095 | Val = DAG.getNode(AArch64ISD::FP_ROUND_MERGE_PASSTHRU, DL, RoundVT, Pg, Val, | ||||
| 23096 | Op.getOperand(1), DAG.getUNDEF(RoundVT)); | ||||
| 23097 | Val = getSVESafeBitCast(ContainerSrcVT.changeTypeToInteger(), Val, DAG); | ||||
| 23098 | Val = convertFromScalableVector(DAG, SrcVT.changeTypeToInteger(), Val); | ||||
| 23099 | |||||
| 23100 | Val = DAG.getNode(ISD::TRUNCATE, DL, VT.changeTypeToInteger(), Val); | ||||
| 23101 | return DAG.getNode(ISD::BITCAST, DL, VT, Val); | ||||
| 23102 | } | ||||
| 23103 | |||||
| 23104 | SDValue | ||||
| 23105 | AArch64TargetLowering::LowerFixedLengthIntToFPToSVE(SDValue Op, | ||||
| 23106 | SelectionDAG &DAG) const { | ||||
| 23107 | EVT VT = Op.getValueType(); | ||||
| 23108 | assert(VT.isFixedLengthVector() && "Expected fixed length vector type!")(static_cast <bool> (VT.isFixedLengthVector() && "Expected fixed length vector type!") ? void (0) : __assert_fail ("VT.isFixedLengthVector() && \"Expected fixed length vector type!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 23108, __extension__ __PRETTY_FUNCTION__)); | ||||
| 23109 | |||||
| 23110 | bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP; | ||||
| 23111 | unsigned Opcode = IsSigned ? AArch64ISD::SINT_TO_FP_MERGE_PASSTHRU | ||||
| 23112 | : AArch64ISD::UINT_TO_FP_MERGE_PASSTHRU; | ||||
| 23113 | |||||
| 23114 | SDLoc DL(Op); | ||||
| 23115 | SDValue Val = Op.getOperand(0); | ||||
| 23116 | EVT SrcVT = Val.getValueType(); | ||||
| 23117 | EVT ContainerDstVT = getContainerForFixedLengthVector(DAG, VT); | ||||
| 23118 | EVT ContainerSrcVT = getContainerForFixedLengthVector(DAG, SrcVT); | ||||
| 23119 | |||||
| 23120 | if (VT.bitsGE(SrcVT)) { | ||||
| 23121 | SDValue Pg = getPredicateForFixedLengthVector(DAG, DL, VT); | ||||
| 23122 | |||||
| 23123 | Val = DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, | ||||
| 23124 | VT.changeTypeToInteger(), Val); | ||||
| 23125 | |||||
| 23126 | Val = convertToScalableVector(DAG, ContainerSrcVT, Val); | ||||
| 23127 | Val = getSVESafeBitCast(ContainerDstVT.changeTypeToInteger(), Val, DAG); | ||||
| 23128 | // Safe to use a larger than specified operand since we just unpacked the | ||||
| 23129 | // data, hence the upper bits are zero. | ||||
| 23130 | Val = DAG.getNode(Opcode, DL, ContainerDstVT, Pg, Val, | ||||
| 23131 | DAG.getUNDEF(ContainerDstVT)); | ||||
| 23132 | return convertFromScalableVector(DAG, VT, Val); | ||||
| 23133 | } else { | ||||
| 23134 | EVT CvtVT = ContainerSrcVT.changeVectorElementType( | ||||
| 23135 | ContainerDstVT.getVectorElementType()); | ||||
| 23136 | SDValue Pg = getPredicateForFixedLengthVector(DAG, DL, SrcVT); | ||||
| 23137 | |||||
| 23138 | Val = convertToScalableVector(DAG, ContainerSrcVT, Val); | ||||
| 23139 | Val = DAG.getNode(Opcode, DL, CvtVT, Pg, Val, DAG.getUNDEF(CvtVT)); | ||||
| 23140 | Val = getSVESafeBitCast(ContainerSrcVT, Val, DAG); | ||||
| 23141 | Val = convertFromScalableVector(DAG, SrcVT, Val); | ||||
| 23142 | |||||
| 23143 | Val = DAG.getNode(ISD::TRUNCATE, DL, VT.changeTypeToInteger(), Val); | ||||
| 23144 | return DAG.getNode(ISD::BITCAST, DL, VT, Val); | ||||
| 23145 | } | ||||
| 23146 | } | ||||
| 23147 | |||||
| 23148 | SDValue | ||||
| 23149 | AArch64TargetLowering::LowerFixedLengthFPToIntToSVE(SDValue Op, | ||||
| 23150 | SelectionDAG &DAG) const { | ||||
| 23151 | EVT VT = Op.getValueType(); | ||||
| 23152 | assert(VT.isFixedLengthVector() && "Expected fixed length vector type!")(static_cast <bool> (VT.isFixedLengthVector() && "Expected fixed length vector type!") ? void (0) : __assert_fail ("VT.isFixedLengthVector() && \"Expected fixed length vector type!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 23152, __extension__ __PRETTY_FUNCTION__)); | ||||
| 23153 | |||||
| 23154 | bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT; | ||||
| 23155 | unsigned Opcode = IsSigned ? AArch64ISD::FCVTZS_MERGE_PASSTHRU | ||||
| 23156 | : AArch64ISD::FCVTZU_MERGE_PASSTHRU; | ||||
| 23157 | |||||
| 23158 | SDLoc DL(Op); | ||||
| 23159 | SDValue Val = Op.getOperand(0); | ||||
| 23160 | EVT SrcVT = Val.getValueType(); | ||||
| 23161 | EVT ContainerDstVT = getContainerForFixedLengthVector(DAG, VT); | ||||
| 23162 | EVT ContainerSrcVT = getContainerForFixedLengthVector(DAG, SrcVT); | ||||
| 23163 | |||||
| 23164 | if (VT.bitsGT(SrcVT)) { | ||||
| 23165 | EVT CvtVT = ContainerDstVT.changeVectorElementType( | ||||
| 23166 | ContainerSrcVT.getVectorElementType()); | ||||
| 23167 | SDValue Pg = getPredicateForFixedLengthVector(DAG, DL, VT); | ||||
| 23168 | |||||
| 23169 | Val = DAG.getNode(ISD::BITCAST, DL, SrcVT.changeTypeToInteger(), Val); | ||||
| 23170 | Val = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Val); | ||||
| 23171 | |||||
| 23172 | Val = convertToScalableVector(DAG, ContainerSrcVT, Val); | ||||
| 23173 | Val = getSVESafeBitCast(CvtVT, Val, DAG); | ||||
| 23174 | Val = DAG.getNode(Opcode, DL, ContainerDstVT, Pg, Val, | ||||
| 23175 | DAG.getUNDEF(ContainerDstVT)); | ||||
| 23176 | return convertFromScalableVector(DAG, VT, Val); | ||||
| 23177 | } else { | ||||
| 23178 | EVT CvtVT = ContainerSrcVT.changeTypeToInteger(); | ||||
| 23179 | SDValue Pg = getPredicateForFixedLengthVector(DAG, DL, SrcVT); | ||||
| 23180 | |||||
| 23181 | // Safe to use a larger than specified result since an fp_to_int where the | ||||
| 23182 | // result doesn't fit into the destination is undefined. | ||||
| 23183 | Val = convertToScalableVector(DAG, ContainerSrcVT, Val); | ||||
| 23184 | Val = DAG.getNode(Opcode, DL, CvtVT, Pg, Val, DAG.getUNDEF(CvtVT)); | ||||
| 23185 | Val = convertFromScalableVector(DAG, SrcVT.changeTypeToInteger(), Val); | ||||
| 23186 | |||||
| 23187 | return DAG.getNode(ISD::TRUNCATE, DL, VT, Val); | ||||
| 23188 | } | ||||
| 23189 | } | ||||
| 23190 | |||||
| 23191 | SDValue AArch64TargetLowering::LowerFixedLengthVECTOR_SHUFFLEToSVE( | ||||
| 23192 | SDValue Op, SelectionDAG &DAG) const { | ||||
| 23193 | EVT VT = Op.getValueType(); | ||||
| 23194 | assert(VT.isFixedLengthVector() && "Expected fixed length vector type!")(static_cast <bool> (VT.isFixedLengthVector() && "Expected fixed length vector type!") ? void (0) : __assert_fail ("VT.isFixedLengthVector() && \"Expected fixed length vector type!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 23194, __extension__ __PRETTY_FUNCTION__)); | ||||
| 23195 | |||||
| 23196 | auto *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); | ||||
| 23197 | auto ShuffleMask = SVN->getMask(); | ||||
| 23198 | |||||
| 23199 | SDLoc DL(Op); | ||||
| 23200 | SDValue Op1 = Op.getOperand(0); | ||||
| 23201 | SDValue Op2 = Op.getOperand(1); | ||||
| 23202 | |||||
| 23203 | EVT ContainerVT = getContainerForFixedLengthVector(DAG, VT); | ||||
| 23204 | Op1 = convertToScalableVector(DAG, ContainerVT, Op1); | ||||
| 23205 | Op2 = convertToScalableVector(DAG, ContainerVT, Op2); | ||||
| 23206 | |||||
| 23207 | auto MinLegalExtractEltScalarTy = [](EVT ScalarTy) -> EVT { | ||||
| 23208 | if (ScalarTy == MVT::i8 || ScalarTy == MVT::i16) | ||||
| 23209 | return MVT::i32; | ||||
| 23210 | return ScalarTy; | ||||
| 23211 | }; | ||||
| 23212 | |||||
| 23213 | if (SVN->isSplat()) { | ||||
| 23214 | unsigned Lane = std::max(0, SVN->getSplatIndex()); | ||||
| 23215 | EVT ScalarTy = MinLegalExtractEltScalarTy(VT.getVectorElementType()); | ||||
| 23216 | SDValue SplatEl = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarTy, Op1, | ||||
| 23217 | DAG.getConstant(Lane, DL, MVT::i64)); | ||||
| 23218 | Op = DAG.getNode(ISD::SPLAT_VECTOR, DL, ContainerVT, SplatEl); | ||||
| 23219 | return convertFromScalableVector(DAG, VT, Op); | ||||
| 23220 | } | ||||
| 23221 | |||||
| 23222 | bool ReverseEXT = false; | ||||
| 23223 | unsigned Imm; | ||||
| 23224 | if (isEXTMask(ShuffleMask, VT, ReverseEXT, Imm) && | ||||
| 23225 | Imm == VT.getVectorNumElements() - 1) { | ||||
| 23226 | if (ReverseEXT) | ||||
| 23227 | std::swap(Op1, Op2); | ||||
| 23228 | EVT ScalarTy = MinLegalExtractEltScalarTy(VT.getVectorElementType()); | ||||
| 23229 | SDValue Scalar = DAG.getNode( | ||||
| 23230 | ISD::EXTRACT_VECTOR_ELT, DL, ScalarTy, Op1, | ||||
| 23231 | DAG.getConstant(VT.getVectorNumElements() - 1, DL, MVT::i64)); | ||||
| 23232 | Op = DAG.getNode(AArch64ISD::INSR, DL, ContainerVT, Op2, Scalar); | ||||
| 23233 | return convertFromScalableVector(DAG, VT, Op); | ||||
| 23234 | } | ||||
| 23235 | |||||
| 23236 | for (unsigned LaneSize : {64U, 32U, 16U}) { | ||||
| 23237 | if (isREVMask(ShuffleMask, VT, LaneSize)) { | ||||
| 23238 | EVT NewVT = | ||||
| 23239 | getPackedSVEVectorVT(EVT::getIntegerVT(*DAG.getContext(), LaneSize)); | ||||
| 23240 | unsigned RevOp; | ||||
| 23241 | unsigned EltSz = VT.getScalarSizeInBits(); | ||||
| 23242 | if (EltSz == 8) | ||||
| 23243 | RevOp = AArch64ISD::BSWAP_MERGE_PASSTHRU; | ||||
| 23244 | else if (EltSz == 16) | ||||
| 23245 | RevOp = AArch64ISD::REVH_MERGE_PASSTHRU; | ||||
| 23246 | else | ||||
| 23247 | RevOp = AArch64ISD::REVW_MERGE_PASSTHRU; | ||||
| 23248 | |||||
| 23249 | Op = DAG.getNode(ISD::BITCAST, DL, NewVT, Op1); | ||||
| 23250 | Op = LowerToPredicatedOp(Op, DAG, RevOp); | ||||
| 23251 | Op = DAG.getNode(ISD::BITCAST, DL, ContainerVT, Op); | ||||
| 23252 | return convertFromScalableVector(DAG, VT, Op); | ||||
| 23253 | } | ||||
| 23254 | } | ||||
| 23255 | |||||
| 23256 | if (Subtarget->hasSVE2p1() && VT.getScalarSizeInBits() == 64 && | ||||
| 23257 | isREVMask(ShuffleMask, VT, 128)) { | ||||
| 23258 | if (!VT.isFloatingPoint()) | ||||
| 23259 | return LowerToPredicatedOp(Op, DAG, AArch64ISD::REVD_MERGE_PASSTHRU); | ||||
| 23260 | |||||
| 23261 | EVT NewVT = getPackedSVEVectorVT(EVT::getIntegerVT(*DAG.getContext(), 64)); | ||||
| 23262 | Op = DAG.getNode(ISD::BITCAST, DL, NewVT, Op1); | ||||
| 23263 | Op = LowerToPredicatedOp(Op, DAG, AArch64ISD::REVD_MERGE_PASSTHRU); | ||||
| 23264 | Op = DAG.getNode(ISD::BITCAST, DL, ContainerVT, Op); | ||||
| 23265 | return convertFromScalableVector(DAG, VT, Op); | ||||
| 23266 | } | ||||
| 23267 | |||||
| 23268 | unsigned WhichResult; | ||||
| 23269 | if (isZIPMask(ShuffleMask, VT, WhichResult) && WhichResult == 0) | ||||
| 23270 | return convertFromScalableVector( | ||||
| 23271 | DAG, VT, DAG.getNode(AArch64ISD::ZIP1, DL, ContainerVT, Op1, Op2)); | ||||
| 23272 | |||||
| 23273 | if (isTRNMask(ShuffleMask, VT, WhichResult)) { | ||||
| 23274 | unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2; | ||||
| 23275 | return convertFromScalableVector( | ||||
| 23276 | DAG, VT, DAG.getNode(Opc, DL, ContainerVT, Op1, Op2)); | ||||
| 23277 | } | ||||
| 23278 | |||||
| 23279 | if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult) && WhichResult == 0) | ||||
| 23280 | return convertFromScalableVector( | ||||
| 23281 | DAG, VT, DAG.getNode(AArch64ISD::ZIP1, DL, ContainerVT, Op1, Op1)); | ||||
| 23282 | |||||
| 23283 | if (isTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) { | ||||
| 23284 | unsigned Opc = (WhichResult == 0) ? AArch64ISD::TRN1 : AArch64ISD::TRN2; | ||||
| 23285 | return convertFromScalableVector( | ||||
| 23286 | DAG, VT, DAG.getNode(Opc, DL, ContainerVT, Op1, Op1)); | ||||
| 23287 | } | ||||
| 23288 | |||||
| 23289 | // Functions like isZIPMask return true when a ISD::VECTOR_SHUFFLE's mask | ||||
| 23290 | // represents the same logical operation as performed by a ZIP instruction. In | ||||
| 23291 | // isolation these functions do not mean the ISD::VECTOR_SHUFFLE is exactly | ||||
| 23292 | // equivalent to an AArch64 instruction. There's the extra component of | ||||
| 23293 | // ISD::VECTOR_SHUFFLE's value type to consider. Prior to SVE these functions | ||||
| 23294 | // only operated on 64/128bit vector types that have a direct mapping to a | ||||
| 23295 | // target register and so an exact mapping is implied. | ||||
| 23296 | // However, when using SVE for fixed length vectors, most legal vector types | ||||
| 23297 | // are actually sub-vectors of a larger SVE register. When mapping | ||||
| 23298 | // ISD::VECTOR_SHUFFLE to an SVE instruction care must be taken to consider | ||||
| 23299 | // how the mask's indices translate. Specifically, when the mapping requires | ||||
| 23300 | // an exact meaning for a specific vector index (e.g. Index X is the last | ||||
| 23301 | // vector element in the register) then such mappings are often only safe when | ||||
| 23302 | // the exact SVE register size is know. The main exception to this is when | ||||
| 23303 | // indices are logically relative to the first element of either | ||||
| 23304 | // ISD::VECTOR_SHUFFLE operand because these relative indices don't change | ||||
| 23305 | // when converting from fixed-length to scalable vector types (i.e. the start | ||||
| 23306 | // of a fixed length vector is always the start of a scalable vector). | ||||
| 23307 | unsigned MinSVESize = Subtarget->getMinSVEVectorSizeInBits(); | ||||
| 23308 | unsigned MaxSVESize = Subtarget->getMaxSVEVectorSizeInBits(); | ||||
| 23309 | if (MinSVESize == MaxSVESize && MaxSVESize == VT.getSizeInBits()) { | ||||
| 23310 | if (ShuffleVectorInst::isReverseMask(ShuffleMask) && Op2.isUndef()) { | ||||
| 23311 | Op = DAG.getNode(ISD::VECTOR_REVERSE, DL, ContainerVT, Op1); | ||||
| 23312 | return convertFromScalableVector(DAG, VT, Op); | ||||
| 23313 | } | ||||
| 23314 | |||||
| 23315 | if (isZIPMask(ShuffleMask, VT, WhichResult) && WhichResult != 0) | ||||
| 23316 | return convertFromScalableVector( | ||||
| 23317 | DAG, VT, DAG.getNode(AArch64ISD::ZIP2, DL, ContainerVT, Op1, Op2)); | ||||
| 23318 | |||||
| 23319 | if (isUZPMask(ShuffleMask, VT, WhichResult)) { | ||||
| 23320 | unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2; | ||||
| 23321 | return convertFromScalableVector( | ||||
| 23322 | DAG, VT, DAG.getNode(Opc, DL, ContainerVT, Op1, Op2)); | ||||
| 23323 | } | ||||
| 23324 | |||||
| 23325 | if (isZIP_v_undef_Mask(ShuffleMask, VT, WhichResult) && WhichResult != 0) | ||||
| 23326 | return convertFromScalableVector( | ||||
| 23327 | DAG, VT, DAG.getNode(AArch64ISD::ZIP2, DL, ContainerVT, Op1, Op1)); | ||||
| 23328 | |||||
| 23329 | if (isUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) { | ||||
| 23330 | unsigned Opc = (WhichResult == 0) ? AArch64ISD::UZP1 : AArch64ISD::UZP2; | ||||
| 23331 | return convertFromScalableVector( | ||||
| 23332 | DAG, VT, DAG.getNode(Opc, DL, ContainerVT, Op1, Op1)); | ||||
| 23333 | } | ||||
| 23334 | } | ||||
| 23335 | |||||
| 23336 | return SDValue(); | ||||
| 23337 | } | ||||
| 23338 | |||||
| 23339 | SDValue AArch64TargetLowering::getSVESafeBitCast(EVT VT, SDValue Op, | ||||
| 23340 | SelectionDAG &DAG) const { | ||||
| 23341 | SDLoc DL(Op); | ||||
| 23342 | EVT InVT = Op.getValueType(); | ||||
| 23343 | |||||
| 23344 | assert(VT.isScalableVector() && isTypeLegal(VT) &&(static_cast <bool> (VT.isScalableVector() && isTypeLegal (VT) && InVT.isScalableVector() && isTypeLegal (InVT) && "Only expect to cast between legal scalable vector types!" ) ? void (0) : __assert_fail ("VT.isScalableVector() && isTypeLegal(VT) && InVT.isScalableVector() && isTypeLegal(InVT) && \"Only expect to cast between legal scalable vector types!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 23346, __extension__ __PRETTY_FUNCTION__)) | ||||
| 23345 | InVT.isScalableVector() && isTypeLegal(InVT) &&(static_cast <bool> (VT.isScalableVector() && isTypeLegal (VT) && InVT.isScalableVector() && isTypeLegal (InVT) && "Only expect to cast between legal scalable vector types!" ) ? void (0) : __assert_fail ("VT.isScalableVector() && isTypeLegal(VT) && InVT.isScalableVector() && isTypeLegal(InVT) && \"Only expect to cast between legal scalable vector types!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 23346, __extension__ __PRETTY_FUNCTION__)) | ||||
| 23346 | "Only expect to cast between legal scalable vector types!")(static_cast <bool> (VT.isScalableVector() && isTypeLegal (VT) && InVT.isScalableVector() && isTypeLegal (InVT) && "Only expect to cast between legal scalable vector types!" ) ? void (0) : __assert_fail ("VT.isScalableVector() && isTypeLegal(VT) && InVT.isScalableVector() && isTypeLegal(InVT) && \"Only expect to cast between legal scalable vector types!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 23346, __extension__ __PRETTY_FUNCTION__)); | ||||
| 23347 | assert(VT.getVectorElementType() != MVT::i1 &&(static_cast <bool> (VT.getVectorElementType() != MVT:: i1 && InVT.getVectorElementType() != MVT::i1 && "For predicate bitcasts, use getSVEPredicateBitCast") ? void (0) : __assert_fail ("VT.getVectorElementType() != MVT::i1 && InVT.getVectorElementType() != MVT::i1 && \"For predicate bitcasts, use getSVEPredicateBitCast\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 23349, __extension__ __PRETTY_FUNCTION__)) | ||||
| 23348 | InVT.getVectorElementType() != MVT::i1 &&(static_cast <bool> (VT.getVectorElementType() != MVT:: i1 && InVT.getVectorElementType() != MVT::i1 && "For predicate bitcasts, use getSVEPredicateBitCast") ? void (0) : __assert_fail ("VT.getVectorElementType() != MVT::i1 && InVT.getVectorElementType() != MVT::i1 && \"For predicate bitcasts, use getSVEPredicateBitCast\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 23349, __extension__ __PRETTY_FUNCTION__)) | ||||
| 23349 | "For predicate bitcasts, use getSVEPredicateBitCast")(static_cast <bool> (VT.getVectorElementType() != MVT:: i1 && InVT.getVectorElementType() != MVT::i1 && "For predicate bitcasts, use getSVEPredicateBitCast") ? void (0) : __assert_fail ("VT.getVectorElementType() != MVT::i1 && InVT.getVectorElementType() != MVT::i1 && \"For predicate bitcasts, use getSVEPredicateBitCast\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 23349, __extension__ __PRETTY_FUNCTION__)); | ||||
| 23350 | |||||
| 23351 | if (InVT == VT) | ||||
| 23352 | return Op; | ||||
| 23353 | |||||
| 23354 | EVT PackedVT = getPackedSVEVectorVT(VT.getVectorElementType()); | ||||
| 23355 | EVT PackedInVT = getPackedSVEVectorVT(InVT.getVectorElementType()); | ||||
| 23356 | |||||
| 23357 | // Safe bitcasting between unpacked vector types of different element counts | ||||
| 23358 | // is currently unsupported because the following is missing the necessary | ||||
| 23359 | // work to ensure the result's elements live where they're supposed to within | ||||
| 23360 | // an SVE register. | ||||
| 23361 | // 01234567 | ||||
| 23362 | // e.g. nxv2i32 = XX??XX?? | ||||
| 23363 | // nxv4f16 = X?X?X?X? | ||||
| 23364 | assert((VT.getVectorElementCount() == InVT.getVectorElementCount() ||(static_cast <bool> ((VT.getVectorElementCount() == InVT .getVectorElementCount() || VT == PackedVT || InVT == PackedInVT ) && "Unexpected bitcast!") ? void (0) : __assert_fail ("(VT.getVectorElementCount() == InVT.getVectorElementCount() || VT == PackedVT || InVT == PackedInVT) && \"Unexpected bitcast!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 23366, __extension__ __PRETTY_FUNCTION__)) | ||||
| 23365 | VT == PackedVT || InVT == PackedInVT) &&(static_cast <bool> ((VT.getVectorElementCount() == InVT .getVectorElementCount() || VT == PackedVT || InVT == PackedInVT ) && "Unexpected bitcast!") ? void (0) : __assert_fail ("(VT.getVectorElementCount() == InVT.getVectorElementCount() || VT == PackedVT || InVT == PackedInVT) && \"Unexpected bitcast!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 23366, __extension__ __PRETTY_FUNCTION__)) | ||||
| 23366 | "Unexpected bitcast!")(static_cast <bool> ((VT.getVectorElementCount() == InVT .getVectorElementCount() || VT == PackedVT || InVT == PackedInVT ) && "Unexpected bitcast!") ? void (0) : __assert_fail ("(VT.getVectorElementCount() == InVT.getVectorElementCount() || VT == PackedVT || InVT == PackedInVT) && \"Unexpected bitcast!\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 23366, __extension__ __PRETTY_FUNCTION__)); | ||||
| 23367 | |||||
| 23368 | // Pack input if required. | ||||
| 23369 | if (InVT != PackedInVT) | ||||
| 23370 | Op = DAG.getNode(AArch64ISD::REINTERPRET_CAST, DL, PackedInVT, Op); | ||||
| 23371 | |||||
| 23372 | Op = DAG.getNode(ISD::BITCAST, DL, PackedVT, Op); | ||||
| 23373 | |||||
| 23374 | // Unpack result if required. | ||||
| 23375 | if (VT != PackedVT) | ||||
| 23376 | Op = DAG.getNode(AArch64ISD::REINTERPRET_CAST, DL, VT, Op); | ||||
| 23377 | |||||
| 23378 | return Op; | ||||
| 23379 | } | ||||
| 23380 | |||||
| 23381 | bool AArch64TargetLowering::isAllActivePredicate(SelectionDAG &DAG, | ||||
| 23382 | SDValue N) const { | ||||
| 23383 | return ::isAllActivePredicate(DAG, N); | ||||
| 23384 | } | ||||
| 23385 | |||||
| 23386 | EVT AArch64TargetLowering::getPromotedVTForPredicate(EVT VT) const { | ||||
| 23387 | return ::getPromotedVTForPredicate(VT); | ||||
| 23388 | } | ||||
| 23389 | |||||
| 23390 | bool AArch64TargetLowering::SimplifyDemandedBitsForTargetNode( | ||||
| 23391 | SDValue Op, const APInt &OriginalDemandedBits, | ||||
| 23392 | const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, | ||||
| 23393 | unsigned Depth) const { | ||||
| 23394 | |||||
| 23395 | unsigned Opc = Op.getOpcode(); | ||||
| 23396 | switch (Opc) { | ||||
| 23397 | case AArch64ISD::VSHL: { | ||||
| 23398 | // Match (VSHL (VLSHR Val X) X) | ||||
| 23399 | SDValue ShiftL = Op; | ||||
| 23400 | SDValue ShiftR = Op->getOperand(0); | ||||
| 23401 | if (ShiftR->getOpcode() != AArch64ISD::VLSHR) | ||||
| 23402 | return false; | ||||
| 23403 | |||||
| 23404 | if (!ShiftL.hasOneUse() || !ShiftR.hasOneUse()) | ||||
| 23405 | return false; | ||||
| 23406 | |||||
| 23407 | unsigned ShiftLBits = ShiftL->getConstantOperandVal(1); | ||||
| 23408 | unsigned ShiftRBits = ShiftR->getConstantOperandVal(1); | ||||
| 23409 | |||||
| 23410 | // Other cases can be handled as well, but this is not | ||||
| 23411 | // implemented. | ||||
| 23412 | if (ShiftRBits != ShiftLBits) | ||||
| 23413 | return false; | ||||
| 23414 | |||||
| 23415 | unsigned ScalarSize = Op.getScalarValueSizeInBits(); | ||||
| 23416 | assert(ScalarSize > ShiftLBits && "Invalid shift imm")(static_cast <bool> (ScalarSize > ShiftLBits && "Invalid shift imm") ? void (0) : __assert_fail ("ScalarSize > ShiftLBits && \"Invalid shift imm\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 23416, __extension__ __PRETTY_FUNCTION__)); | ||||
| 23417 | |||||
| 23418 | APInt ZeroBits = APInt::getLowBitsSet(ScalarSize, ShiftLBits); | ||||
| 23419 | APInt UnusedBits = ~OriginalDemandedBits; | ||||
| 23420 | |||||
| 23421 | if ((ZeroBits & UnusedBits) != ZeroBits) | ||||
| 23422 | return false; | ||||
| 23423 | |||||
| 23424 | // All bits that are zeroed by (VSHL (VLSHR Val X) X) are not | ||||
| 23425 | // used - simplify to just Val. | ||||
| 23426 | return TLO.CombineTo(Op, ShiftR->getOperand(0)); | ||||
| 23427 | } | ||||
| 23428 | case ISD::INTRINSIC_WO_CHAIN: { | ||||
| 23429 | if (auto ElementSize = IsSVECntIntrinsic(Op)) { | ||||
| 23430 | unsigned MaxSVEVectorSizeInBits = Subtarget->getMaxSVEVectorSizeInBits(); | ||||
| 23431 | if (!MaxSVEVectorSizeInBits) | ||||
| 23432 | MaxSVEVectorSizeInBits = AArch64::SVEMaxBitsPerVector; | ||||
| 23433 | unsigned MaxElements = MaxSVEVectorSizeInBits / *ElementSize; | ||||
| 23434 | // The SVE count intrinsics don't support the multiplier immediate so we | ||||
| 23435 | // don't have to account for that here. The value returned may be slightly | ||||
| 23436 | // over the true required bits, as this is based on the "ALL" pattern. The | ||||
| 23437 | // other patterns are also exposed by these intrinsics, but they all | ||||
| 23438 | // return a value that's strictly less than "ALL". | ||||
| 23439 | unsigned RequiredBits = Log2_32(MaxElements) + 1; | ||||
| 23440 | unsigned BitWidth = Known.Zero.getBitWidth(); | ||||
| 23441 | if (RequiredBits < BitWidth) | ||||
| 23442 | Known.Zero.setHighBits(BitWidth - RequiredBits); | ||||
| 23443 | return false; | ||||
| 23444 | } | ||||
| 23445 | } | ||||
| 23446 | } | ||||
| 23447 | |||||
| 23448 | return TargetLowering::SimplifyDemandedBitsForTargetNode( | ||||
| 23449 | Op, OriginalDemandedBits, OriginalDemandedElts, Known, TLO, Depth); | ||||
| 23450 | } | ||||
| 23451 | |||||
| 23452 | bool AArch64TargetLowering::isTargetCanonicalConstantNode(SDValue Op) const { | ||||
| 23453 | return Op.getOpcode() == AArch64ISD::DUP || | ||||
| 23454 | Op.getOpcode() == AArch64ISD::MOVI || | ||||
| 23455 | (Op.getOpcode() == ISD::EXTRACT_SUBVECTOR && | ||||
| 23456 | Op.getOperand(0).getOpcode() == AArch64ISD::DUP) || | ||||
| 23457 | TargetLowering::isTargetCanonicalConstantNode(Op); | ||||
| 23458 | } | ||||
| 23459 | |||||
| 23460 | bool AArch64TargetLowering::isConstantUnsignedBitfieldExtractLegal( | ||||
| 23461 | unsigned Opc, LLT Ty1, LLT Ty2) const { | ||||
| 23462 | return Ty1 == Ty2 && (Ty1 == LLT::scalar(32) || Ty1 == LLT::scalar(64)); | ||||
| 23463 | } | ||||
| 23464 | |||||
| 23465 | bool AArch64TargetLowering::isComplexDeinterleavingSupported() const { | ||||
| 23466 | return Subtarget->hasComplxNum(); | ||||
| 23467 | } | ||||
| 23468 | |||||
| 23469 | bool AArch64TargetLowering::isComplexDeinterleavingOperationSupported( | ||||
| 23470 | ComplexDeinterleavingOperation Operation, Type *Ty) const { | ||||
| 23471 | auto *VTy = dyn_cast<FixedVectorType>(Ty); | ||||
| 23472 | if (!VTy) | ||||
| 23473 | return false; | ||||
| 23474 | |||||
| 23475 | auto *ScalarTy = VTy->getScalarType(); | ||||
| 23476 | unsigned NumElements = VTy->getNumElements(); | ||||
| 23477 | |||||
| 23478 | unsigned VTyWidth = VTy->getScalarSizeInBits() * NumElements; | ||||
| 23479 | if ((VTyWidth < 128 && VTyWidth != 64) || !llvm::isPowerOf2_32(VTyWidth)) | ||||
| 23480 | return false; | ||||
| 23481 | |||||
| 23482 | return (ScalarTy->isHalfTy() && Subtarget->hasFullFP16()) || | ||||
| 23483 | ScalarTy->isFloatTy() || ScalarTy->isDoubleTy(); | ||||
| 23484 | } | ||||
| 23485 | |||||
| 23486 | Value *AArch64TargetLowering::createComplexDeinterleavingIR( | ||||
| 23487 | Instruction *I, ComplexDeinterleavingOperation OperationType, | ||||
| 23488 | ComplexDeinterleavingRotation Rotation, Value *InputA, Value *InputB, | ||||
| 23489 | Value *Accumulator) const { | ||||
| 23490 | FixedVectorType *Ty = cast<FixedVectorType>(InputA->getType()); | ||||
| 23491 | |||||
| 23492 | IRBuilder<> B(I); | ||||
| 23493 | |||||
| 23494 | unsigned TyWidth = Ty->getScalarSizeInBits() * Ty->getNumElements(); | ||||
| 23495 | |||||
| 23496 | assert(((TyWidth >= 128 && llvm::isPowerOf2_32(TyWidth)) || TyWidth == 64) &&(static_cast <bool> (((TyWidth >= 128 && llvm ::isPowerOf2_32(TyWidth)) || TyWidth == 64) && "Vector type must be either 64 or a power of 2 that is at least 128" ) ? void (0) : __assert_fail ("((TyWidth >= 128 && llvm::isPowerOf2_32(TyWidth)) || TyWidth == 64) && \"Vector type must be either 64 or a power of 2 that is at least 128\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 23497, __extension__ __PRETTY_FUNCTION__)) | ||||
| 23497 | "Vector type must be either 64 or a power of 2 that is at least 128")(static_cast <bool> (((TyWidth >= 128 && llvm ::isPowerOf2_32(TyWidth)) || TyWidth == 64) && "Vector type must be either 64 or a power of 2 that is at least 128" ) ? void (0) : __assert_fail ("((TyWidth >= 128 && llvm::isPowerOf2_32(TyWidth)) || TyWidth == 64) && \"Vector type must be either 64 or a power of 2 that is at least 128\"" , "llvm/lib/Target/AArch64/AArch64ISelLowering.cpp", 23497, __extension__ __PRETTY_FUNCTION__)); | ||||
| 23498 | |||||
| 23499 | if (TyWidth > 128) { | ||||
| 23500 | int Stride = Ty->getNumElements() / 2; | ||||
| 23501 | auto SplitSeq = llvm::seq<int>(0, Ty->getNumElements()); | ||||
| 23502 | auto SplitSeqVec = llvm::to_vector(SplitSeq); | ||||
| 23503 | ArrayRef<int> LowerSplitMask(&SplitSeqVec[0], Stride); | ||||
| 23504 | ArrayRef<int> UpperSplitMask(&SplitSeqVec[Stride], Stride); | ||||
| 23505 | |||||
| 23506 | auto *LowerSplitA = B.CreateShuffleVector(InputA, LowerSplitMask); | ||||
| 23507 | auto *LowerSplitB = B.CreateShuffleVector(InputB, LowerSplitMask); | ||||
| 23508 | auto *UpperSplitA = B.CreateShuffleVector(InputA, UpperSplitMask); | ||||
| 23509 | auto *UpperSplitB = B.CreateShuffleVector(InputB, UpperSplitMask); | ||||
| 23510 | Value *LowerSplitAcc = nullptr; | ||||
| 23511 | Value *UpperSplitAcc = nullptr; | ||||
| 23512 | |||||
| 23513 | if (Accumulator) { | ||||
| 23514 | LowerSplitAcc = B.CreateShuffleVector(Accumulator, LowerSplitMask); | ||||
| 23515 | UpperSplitAcc = B.CreateShuffleVector(Accumulator, UpperSplitMask); | ||||
| 23516 | } | ||||
| 23517 | |||||
| 23518 | auto *LowerSplitInt = createComplexDeinterleavingIR( | ||||
| 23519 | I, OperationType, Rotation, LowerSplitA, LowerSplitB, LowerSplitAcc); | ||||
| 23520 | auto *UpperSplitInt = createComplexDeinterleavingIR( | ||||
| 23521 | I, OperationType, Rotation, UpperSplitA, UpperSplitB, UpperSplitAcc); | ||||
| 23522 | |||||
| 23523 | ArrayRef<int> JoinMask(&SplitSeqVec[0], Ty->getNumElements()); | ||||
| 23524 | return B.CreateShuffleVector(LowerSplitInt, UpperSplitInt, JoinMask); | ||||
| 23525 | } | ||||
| 23526 | |||||
| 23527 | if (OperationType == ComplexDeinterleavingOperation::CMulPartial) { | ||||
| 23528 | Intrinsic::ID IdMap[4] = {Intrinsic::aarch64_neon_vcmla_rot0, | ||||
| 23529 | Intrinsic::aarch64_neon_vcmla_rot90, | ||||
| 23530 | Intrinsic::aarch64_neon_vcmla_rot180, | ||||
| 23531 | Intrinsic::aarch64_neon_vcmla_rot270}; | ||||
| 23532 | |||||
| 23533 | if (Accumulator == nullptr) | ||||
| 23534 | Accumulator = ConstantFP::get(Ty, 0); | ||||
| 23535 | |||||
| 23536 | return B.CreateIntrinsic(IdMap[(int)Rotation], Ty, | ||||
| 23537 | {Accumulator, InputB, InputA}); | ||||
| 23538 | } | ||||
| 23539 | |||||
| 23540 | if (OperationType == ComplexDeinterleavingOperation::CAdd) { | ||||
| 23541 | Intrinsic::ID IntId = Intrinsic::not_intrinsic; | ||||
| 23542 | if (Rotation == ComplexDeinterleavingRotation::Rotation_90) | ||||
| 23543 | IntId = Intrinsic::aarch64_neon_vcadd_rot90; | ||||
| 23544 | else if (Rotation == ComplexDeinterleavingRotation::Rotation_270) | ||||
| 23545 | IntId = Intrinsic::aarch64_neon_vcadd_rot270; | ||||
| 23546 | |||||
| 23547 | if (IntId == Intrinsic::not_intrinsic) | ||||
| 23548 | return nullptr; | ||||
| 23549 | |||||
| 23550 | return B.CreateIntrinsic(IntId, Ty, {InputA, InputB}); | ||||
| 23551 | } | ||||
| 23552 | |||||
| 23553 | return nullptr; | ||||
| 23554 | } |