Bug Summary

File:build/source/llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp
Warning:line 385, column 25
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name AMDGPUCallLowering.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm/tools/clang/stage2-bins -resource-dir /usr/lib/llvm-17/lib/clang/17 -D _DEBUG -D _GLIBCXX_ASSERTIONS -D _GNU_SOURCE -D _LIBCPP_ENABLE_ASSERTIONS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I lib/Target/AMDGPU -I /build/source/llvm/lib/Target/AMDGPU -I include -I /build/source/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-17/lib/clang/17/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fcoverage-prefix-map=/build/source/= -source-date-epoch 1683717183 -O2 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility=hidden -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2023-05-10-133810-16478-1 -x c++ /build/source/llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp
1//===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file implements the lowering of LLVM calls to machine code calls for
11/// GlobalISel.
12///
13//===----------------------------------------------------------------------===//
14
15#include "AMDGPUCallLowering.h"
16#include "AMDGPU.h"
17#include "AMDGPULegalizerInfo.h"
18#include "AMDGPUTargetMachine.h"
19#include "SIMachineFunctionInfo.h"
20#include "SIRegisterInfo.h"
21#include "llvm/CodeGen/Analysis.h"
22#include "llvm/CodeGen/FunctionLoweringInfo.h"
23#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/IR/IntrinsicsAMDGPU.h"
26
27#define DEBUG_TYPE"amdgpu-call-lowering" "amdgpu-call-lowering"
28
29using namespace llvm;
30
31namespace {
32
33/// Wrapper around extendRegister to ensure we extend to a full 32-bit register.
34static Register extendRegisterMin32(CallLowering::ValueHandler &Handler,
35 Register ValVReg, CCValAssign &VA) {
36 if (VA.getLocVT().getSizeInBits() < 32) {
37 // 16-bit types are reported as legal for 32-bit registers. We need to
38 // extend and do a 32-bit copy to avoid the verifier complaining about it.
39 return Handler.MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0);
40 }
41
42 return Handler.extendRegister(ValVReg, VA);
43}
44
45struct AMDGPUOutgoingValueHandler : public CallLowering::OutgoingValueHandler {
46 AMDGPUOutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
47 MachineInstrBuilder MIB)
48 : OutgoingValueHandler(B, MRI), MIB(MIB) {}
49
50 MachineInstrBuilder MIB;
51
52 Register getStackAddress(uint64_t Size, int64_t Offset,
53 MachinePointerInfo &MPO,
54 ISD::ArgFlagsTy Flags) override {
55 llvm_unreachable("not implemented")::llvm::llvm_unreachable_internal("not implemented", "llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp"
, 55)
;
56 }
57
58 void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy,
59 MachinePointerInfo &MPO, CCValAssign &VA) override {
60 llvm_unreachable("not implemented")::llvm::llvm_unreachable_internal("not implemented", "llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp"
, 60)
;
61 }
62
63 void assignValueToReg(Register ValVReg, Register PhysReg,
64 CCValAssign VA) override {
65 Register ExtReg = extendRegisterMin32(*this, ValVReg, VA);
66
67 // If this is a scalar return, insert a readfirstlane just in case the value
68 // ends up in a VGPR.
69 // FIXME: Assert this is a shader return.
70 const SIRegisterInfo *TRI
71 = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());
72 if (TRI->isSGPRReg(MRI, PhysReg)) {
73 LLT Ty = MRI.getType(ExtReg);
74 LLT S32 = LLT::scalar(32);
75 if (Ty != S32) {
76 // FIXME: We should probably support readfirstlane intrinsics with all
77 // legal 32-bit types.
78 assert(Ty.getSizeInBits() == 32)(static_cast <bool> (Ty.getSizeInBits() == 32) ? void (
0) : __assert_fail ("Ty.getSizeInBits() == 32", "llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp"
, 78, __extension__ __PRETTY_FUNCTION__))
;
79 if (Ty.isPointer())
80 ExtReg = MIRBuilder.buildPtrToInt(S32, ExtReg).getReg(0);
81 else
82 ExtReg = MIRBuilder.buildBitcast(S32, ExtReg).getReg(0);
83 }
84
85 auto ToSGPR = MIRBuilder.buildIntrinsic(Intrinsic::amdgcn_readfirstlane,
86 {MRI.getType(ExtReg)}, false)
87 .addReg(ExtReg);
88 ExtReg = ToSGPR.getReg(0);
89 }
90
91 MIRBuilder.buildCopy(PhysReg, ExtReg);
92 MIB.addUse(PhysReg, RegState::Implicit);
93 }
94};
95
96struct AMDGPUIncomingArgHandler : public CallLowering::IncomingValueHandler {
97 uint64_t StackUsed = 0;
98
99 AMDGPUIncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI)
100 : IncomingValueHandler(B, MRI) {}
101
102 Register getStackAddress(uint64_t Size, int64_t Offset,
103 MachinePointerInfo &MPO,
104 ISD::ArgFlagsTy Flags) override {
105 auto &MFI = MIRBuilder.getMF().getFrameInfo();
106
107 // Byval is assumed to be writable memory, but other stack passed arguments
108 // are not.
109 const bool IsImmutable = !Flags.isByVal();
110 int FI = MFI.CreateFixedObject(Size, Offset, IsImmutable);
111 MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
112 auto AddrReg = MIRBuilder.buildFrameIndex(
113 LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI);
114 StackUsed = std::max(StackUsed, Size + Offset);
115 return AddrReg.getReg(0);
116 }
117
118 void assignValueToReg(Register ValVReg, Register PhysReg,
119 CCValAssign VA) override {
120 markPhysRegUsed(PhysReg);
121
122 if (VA.getLocVT().getSizeInBits() < 32) {
123 // 16-bit types are reported as legal for 32-bit registers. We need to do
124 // a 32-bit copy, and truncate to avoid the verifier complaining about it.
125 auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg);
126
127 // If we have signext/zeroext, it applies to the whole 32-bit register
128 // before truncation.
129 auto Extended =
130 buildExtensionHint(VA, Copy.getReg(0), LLT(VA.getLocVT()));
131 MIRBuilder.buildTrunc(ValVReg, Extended);
132 return;
133 }
134
135 IncomingValueHandler::assignValueToReg(ValVReg, PhysReg, VA);
136 }
137
138 void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy,
139 MachinePointerInfo &MPO, CCValAssign &VA) override {
140 MachineFunction &MF = MIRBuilder.getMF();
141
142 auto MMO = MF.getMachineMemOperand(
143 MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemTy,
144 inferAlignFromPtrInfo(MF, MPO));
145 MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
146 }
147
148 /// How the physical register gets marked varies between formal
149 /// parameters (it's a basic-block live-in), and a call instruction
150 /// (it's an implicit-def of the BL).
151 virtual void markPhysRegUsed(unsigned PhysReg) = 0;
152};
153
154struct FormalArgHandler : public AMDGPUIncomingArgHandler {
155 FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI)
156 : AMDGPUIncomingArgHandler(B, MRI) {}
157
158 void markPhysRegUsed(unsigned PhysReg) override {
159 MIRBuilder.getMBB().addLiveIn(PhysReg);
160 }
161};
162
163struct CallReturnHandler : public AMDGPUIncomingArgHandler {
164 CallReturnHandler(MachineIRBuilder &MIRBuilder, MachineRegisterInfo &MRI,
165 MachineInstrBuilder MIB)
166 : AMDGPUIncomingArgHandler(MIRBuilder, MRI), MIB(MIB) {}
167
168 void markPhysRegUsed(unsigned PhysReg) override {
169 MIB.addDef(PhysReg, RegState::Implicit);
170 }
171
172 MachineInstrBuilder MIB;
173};
174
175struct AMDGPUOutgoingArgHandler : public AMDGPUOutgoingValueHandler {
176 /// For tail calls, the byte offset of the call's argument area from the
177 /// callee's. Unused elsewhere.
178 int FPDiff;
179
180 // Cache the SP register vreg if we need it more than once in this call site.
181 Register SPReg;
182
183 bool IsTailCall;
184
185 AMDGPUOutgoingArgHandler(MachineIRBuilder &MIRBuilder,
186 MachineRegisterInfo &MRI, MachineInstrBuilder MIB,
187 bool IsTailCall = false, int FPDiff = 0)
188 : AMDGPUOutgoingValueHandler(MIRBuilder, MRI, MIB), FPDiff(FPDiff),
189 IsTailCall(IsTailCall) {}
190
191 Register getStackAddress(uint64_t Size, int64_t Offset,
192 MachinePointerInfo &MPO,
193 ISD::ArgFlagsTy Flags) override {
194 MachineFunction &MF = MIRBuilder.getMF();
195 const LLT PtrTy = LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32);
196 const LLT S32 = LLT::scalar(32);
197
198 if (IsTailCall) {
199 Offset += FPDiff;
200 int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true);
201 auto FIReg = MIRBuilder.buildFrameIndex(PtrTy, FI);
202 MPO = MachinePointerInfo::getFixedStack(MF, FI);
203 return FIReg.getReg(0);
204 }
205
206 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
207
208 if (!SPReg) {
209 const GCNSubtarget &ST = MIRBuilder.getMF().getSubtarget<GCNSubtarget>();
210 if (ST.enableFlatScratch()) {
211 // The stack is accessed unswizzled, so we can use a regular copy.
212 SPReg = MIRBuilder.buildCopy(PtrTy,
213 MFI->getStackPtrOffsetReg()).getReg(0);
214 } else {
215 // The address we produce here, without knowing the use context, is going
216 // to be interpreted as a vector address, so we need to convert to a
217 // swizzled address.
218 SPReg = MIRBuilder.buildInstr(AMDGPU::G_AMDGPU_WAVE_ADDRESS, {PtrTy},
219 {MFI->getStackPtrOffsetReg()}).getReg(0);
220 }
221 }
222
223 auto OffsetReg = MIRBuilder.buildConstant(S32, Offset);
224
225 auto AddrReg = MIRBuilder.buildPtrAdd(PtrTy, SPReg, OffsetReg);
226 MPO = MachinePointerInfo::getStack(MF, Offset);
227 return AddrReg.getReg(0);
228 }
229
230 void assignValueToReg(Register ValVReg, Register PhysReg,
231 CCValAssign VA) override {
232 MIB.addUse(PhysReg, RegState::Implicit);
233 Register ExtReg = extendRegisterMin32(*this, ValVReg, VA);
234 MIRBuilder.buildCopy(PhysReg, ExtReg);
235 }
236
237 void assignValueToAddress(Register ValVReg, Register Addr, LLT MemTy,
238 MachinePointerInfo &MPO, CCValAssign &VA) override {
239 MachineFunction &MF = MIRBuilder.getMF();
240 uint64_t LocMemOffset = VA.getLocMemOffset();
241 const auto &ST = MF.getSubtarget<GCNSubtarget>();
242
243 auto MMO = MF.getMachineMemOperand(
244 MPO, MachineMemOperand::MOStore, MemTy,
245 commonAlignment(ST.getStackAlignment(), LocMemOffset));
246 MIRBuilder.buildStore(ValVReg, Addr, *MMO);
247 }
248
249 void assignValueToAddress(const CallLowering::ArgInfo &Arg,
250 unsigned ValRegIndex, Register Addr, LLT MemTy,
251 MachinePointerInfo &MPO, CCValAssign &VA) override {
252 Register ValVReg = VA.getLocInfo() != CCValAssign::LocInfo::FPExt
253 ? extendRegister(Arg.Regs[ValRegIndex], VA)
254 : Arg.Regs[ValRegIndex];
255 assignValueToAddress(ValVReg, Addr, MemTy, MPO, VA);
256 }
257};
258}
259
260AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI)
261 : CallLowering(&TLI) {
262}
263
264// FIXME: Compatibility shim
265static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) {
266 switch (MIOpc) {
267 case TargetOpcode::G_SEXT:
268 return ISD::SIGN_EXTEND;
269 case TargetOpcode::G_ZEXT:
270 return ISD::ZERO_EXTEND;
271 case TargetOpcode::G_ANYEXT:
272 return ISD::ANY_EXTEND;
273 default:
274 llvm_unreachable("not an extend opcode")::llvm::llvm_unreachable_internal("not an extend opcode", "llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp"
, 274)
;
275 }
276}
277
278bool AMDGPUCallLowering::canLowerReturn(MachineFunction &MF,
279 CallingConv::ID CallConv,
280 SmallVectorImpl<BaseArgInfo> &Outs,
281 bool IsVarArg) const {
282 // For shaders. Vector types should be explicitly handled by CC.
283 if (AMDGPU::isEntryFunctionCC(CallConv))
284 return true;
285
286 SmallVector<CCValAssign, 16> ArgLocs;
287 const SITargetLowering &TLI = *getTLI<SITargetLowering>();
288 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs,
289 MF.getFunction().getContext());
290
291 return checkReturn(CCInfo, Outs, TLI.CCAssignFnForReturn(CallConv, IsVarArg));
292}
293
294/// Lower the return value for the already existing \p Ret. This assumes that
295/// \p B's insertion point is correct.
296bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B,
297 const Value *Val, ArrayRef<Register> VRegs,
298 MachineInstrBuilder &Ret) const {
299 if (!Val)
300 return true;
301
302 auto &MF = B.getMF();
303 const auto &F = MF.getFunction();
304 const DataLayout &DL = MF.getDataLayout();
305 MachineRegisterInfo *MRI = B.getMRI();
306 LLVMContext &Ctx = F.getContext();
307
308 CallingConv::ID CC = F.getCallingConv();
309 const SITargetLowering &TLI = *getTLI<SITargetLowering>();
310
311 SmallVector<EVT, 8> SplitEVTs;
312 ComputeValueVTs(TLI, DL, Val->getType(), SplitEVTs);
313 assert(VRegs.size() == SplitEVTs.size() &&(static_cast <bool> (VRegs.size() == SplitEVTs.size() &&
"For each split Type there should be exactly one VReg.") ? void
(0) : __assert_fail ("VRegs.size() == SplitEVTs.size() && \"For each split Type there should be exactly one VReg.\""
, "llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp", 314, __extension__
__PRETTY_FUNCTION__))
314 "For each split Type there should be exactly one VReg.")(static_cast <bool> (VRegs.size() == SplitEVTs.size() &&
"For each split Type there should be exactly one VReg.") ? void
(0) : __assert_fail ("VRegs.size() == SplitEVTs.size() && \"For each split Type there should be exactly one VReg.\""
, "llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp", 314, __extension__
__PRETTY_FUNCTION__))
;
315
316 SmallVector<ArgInfo, 8> SplitRetInfos;
317
318 for (unsigned i = 0; i < SplitEVTs.size(); ++i) {
319 EVT VT = SplitEVTs[i];
320 Register Reg = VRegs[i];
321 ArgInfo RetInfo(Reg, VT.getTypeForEVT(Ctx), 0);
322 setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F);
323
324 if (VT.isScalarInteger()) {
325 unsigned ExtendOp = TargetOpcode::G_ANYEXT;
326 if (RetInfo.Flags[0].isSExt()) {
327 assert(RetInfo.Regs.size() == 1 && "expect only simple return values")(static_cast <bool> (RetInfo.Regs.size() == 1 &&
"expect only simple return values") ? void (0) : __assert_fail
("RetInfo.Regs.size() == 1 && \"expect only simple return values\""
, "llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp", 327, __extension__
__PRETTY_FUNCTION__))
;
328 ExtendOp = TargetOpcode::G_SEXT;
329 } else if (RetInfo.Flags[0].isZExt()) {
330 assert(RetInfo.Regs.size() == 1 && "expect only simple return values")(static_cast <bool> (RetInfo.Regs.size() == 1 &&
"expect only simple return values") ? void (0) : __assert_fail
("RetInfo.Regs.size() == 1 && \"expect only simple return values\""
, "llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp", 330, __extension__
__PRETTY_FUNCTION__))
;
331 ExtendOp = TargetOpcode::G_ZEXT;
332 }
333
334 EVT ExtVT = TLI.getTypeForExtReturn(Ctx, VT,
335 extOpcodeToISDExtOpcode(ExtendOp));
336 if (ExtVT != VT) {
337 RetInfo.Ty = ExtVT.getTypeForEVT(Ctx);
338 LLT ExtTy = getLLTForType(*RetInfo.Ty, DL);
339 Reg = B.buildInstr(ExtendOp, {ExtTy}, {Reg}).getReg(0);
340 }
341 }
342
343 if (Reg != RetInfo.Regs[0]) {
344 RetInfo.Regs[0] = Reg;
345 // Reset the arg flags after modifying Reg.
346 setArgFlags(RetInfo, AttributeList::ReturnIndex, DL, F);
347 }
348
349 splitToValueTypes(RetInfo, SplitRetInfos, DL, CC);
350 }
351
352 CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg());
353
354 OutgoingValueAssigner Assigner(AssignFn);
355 AMDGPUOutgoingValueHandler RetHandler(B, *MRI, Ret);
356 return determineAndHandleAssignments(RetHandler, Assigner, SplitRetInfos, B,
357 CC, F.isVarArg());
358}
359
360bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B, const Value *Val,
361 ArrayRef<Register> VRegs,
362 FunctionLoweringInfo &FLI) const {
363
364 MachineFunction &MF = B.getMF();
365 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
366 MFI->setIfReturnsVoid(!Val);
1
Assuming 'Val' is null
367
368 assert(!Val == VRegs.empty() && "Return value without a vreg")(static_cast <bool> (!Val == VRegs.empty() && "Return value without a vreg"
) ? void (0) : __assert_fail ("!Val == VRegs.empty() && \"Return value without a vreg\""
, "llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp", 368, __extension__
__PRETTY_FUNCTION__))
;
2
Assuming the condition is true
3
'?' condition is true
369
370 CallingConv::ID CC = B.getMF().getFunction().getCallingConv();
371 const bool IsShader = AMDGPU::isShader(CC);
372 const bool IsWaveEnd =
373 (IsShader && MFI->returnsVoid()) || AMDGPU::isKernel(CC);
4
Assuming 'IsShader' is false
374 if (IsWaveEnd
4.1
'IsWaveEnd' is false
) {
375 B.buildInstr(AMDGPU::S_ENDPGM)
376 .addImm(0);
377 return true;
378 }
379
380 unsigned ReturnOpc =
5
Taking false branch
381 IsShader
5.1
'IsShader' is false
? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::SI_RETURN;
6
'?' condition is false
382 auto Ret = B.buildInstrNoInsert(ReturnOpc);
383
384 if (!FLI.CanLowerReturn)
7
Assuming field 'CanLowerReturn' is false
8
Taking true branch
385 insertSRetStores(B, Val->getType(), VRegs, FLI.DemoteRegister);
9
Called C++ object pointer is null
386 else if (!lowerReturnVal(B, Val, VRegs, Ret))
387 return false;
388
389 // TODO: Handle CalleeSavedRegsViaCopy.
390
391 B.insertInstr(Ret);
392 return true;
393}
394
395void AMDGPUCallLowering::lowerParameterPtr(Register DstReg, MachineIRBuilder &B,
396 uint64_t Offset) const {
397 MachineFunction &MF = B.getMF();
398 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
399 MachineRegisterInfo &MRI = MF.getRegInfo();
400 Register KernArgSegmentPtr =
401 MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
402 Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr);
403
404 auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset);
405
406 B.buildPtrAdd(DstReg, KernArgSegmentVReg, OffsetReg);
407}
408
409void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, ArgInfo &OrigArg,
410 uint64_t Offset,
411 Align Alignment) const {
412 MachineFunction &MF = B.getMF();
413 const Function &F = MF.getFunction();
414 const DataLayout &DL = F.getParent()->getDataLayout();
415 MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
416
417 LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
418
419 SmallVector<ArgInfo, 32> SplitArgs;
420 SmallVector<uint64_t> FieldOffsets;
421 splitToValueTypes(OrigArg, SplitArgs, DL, F.getCallingConv(), &FieldOffsets);
422
423 unsigned Idx = 0;
424 for (ArgInfo &SplitArg : SplitArgs) {
425 Register PtrReg = B.getMRI()->createGenericVirtualRegister(PtrTy);
426 lowerParameterPtr(PtrReg, B, Offset + FieldOffsets[Idx]);
427
428 LLT ArgTy = getLLTForType(*SplitArg.Ty, DL);
429 if (SplitArg.Flags[0].isPointer()) {
430 // Compensate for losing pointeriness in splitValueTypes.
431 LLT PtrTy = LLT::pointer(SplitArg.Flags[0].getPointerAddrSpace(),
432 ArgTy.getScalarSizeInBits());
433 ArgTy = ArgTy.isVector() ? LLT::vector(ArgTy.getElementCount(), PtrTy)
434 : PtrTy;
435 }
436
437 MachineMemOperand *MMO = MF.getMachineMemOperand(
438 PtrInfo,
439 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
440 MachineMemOperand::MOInvariant,
441 ArgTy, commonAlignment(Alignment, FieldOffsets[Idx]));
442
443 assert(SplitArg.Regs.size() == 1)(static_cast <bool> (SplitArg.Regs.size() == 1) ? void (
0) : __assert_fail ("SplitArg.Regs.size() == 1", "llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp"
, 443, __extension__ __PRETTY_FUNCTION__))
;
444
445 B.buildLoad(SplitArg.Regs[0], PtrReg, *MMO);
446 ++Idx;
447 }
448}
449
450// Allocate special inputs passed in user SGPRs.
451static void allocateHSAUserSGPRs(CCState &CCInfo,
452 MachineIRBuilder &B,
453 MachineFunction &MF,
454 const SIRegisterInfo &TRI,
455 SIMachineFunctionInfo &Info) {
456 // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
457 if (Info.hasPrivateSegmentBuffer()) {
458 Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
459 MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
460 CCInfo.AllocateReg(PrivateSegmentBufferReg);
461 }
462
463 if (Info.hasDispatchPtr()) {
464 Register DispatchPtrReg = Info.addDispatchPtr(TRI);
465 MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
466 CCInfo.AllocateReg(DispatchPtrReg);
467 }
468
469 const Module *M = MF.getFunction().getParent();
470 if (Info.hasQueuePtr() &&
471 AMDGPU::getCodeObjectVersion(*M) < AMDGPU::AMDHSA_COV5) {
472 Register QueuePtrReg = Info.addQueuePtr(TRI);
473 MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
474 CCInfo.AllocateReg(QueuePtrReg);
475 }
476
477 if (Info.hasKernargSegmentPtr()) {
478 MachineRegisterInfo &MRI = MF.getRegInfo();
479 Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
480 const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
481 Register VReg = MRI.createGenericVirtualRegister(P4);
482 MRI.addLiveIn(InputPtrReg, VReg);
483 B.getMBB().addLiveIn(InputPtrReg);
484 B.buildCopy(VReg, InputPtrReg);
485 CCInfo.AllocateReg(InputPtrReg);
486 }
487
488 if (Info.hasDispatchID()) {
489 Register DispatchIDReg = Info.addDispatchID(TRI);
490 MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
491 CCInfo.AllocateReg(DispatchIDReg);
492 }
493
494 if (Info.hasFlatScratchInit()) {
495 Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
496 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
497 CCInfo.AllocateReg(FlatScratchInitReg);
498 }
499
500 // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
501 // these from the dispatch pointer.
502}
503
504bool AMDGPUCallLowering::lowerFormalArgumentsKernel(
505 MachineIRBuilder &B, const Function &F,
506 ArrayRef<ArrayRef<Register>> VRegs) const {
507 MachineFunction &MF = B.getMF();
508 const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>();
509 MachineRegisterInfo &MRI = MF.getRegInfo();
510 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
511 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
512 const SITargetLowering &TLI = *getTLI<SITargetLowering>();
513 const DataLayout &DL = F.getParent()->getDataLayout();
514
515 Info->allocateKnownAddressLDSGlobal(F);
516
517 SmallVector<CCValAssign, 16> ArgLocs;
518 CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());
519
520 allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info);
521
522 unsigned i = 0;
523 const Align KernArgBaseAlign(16);
524 const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F);
525 uint64_t ExplicitArgOffset = 0;
526
527 // TODO: Align down to dword alignment and extract bits for extending loads.
528 for (auto &Arg : F.args()) {
529 const bool IsByRef = Arg.hasByRefAttr();
530 Type *ArgTy = IsByRef ? Arg.getParamByRefType() : Arg.getType();
531 unsigned AllocSize = DL.getTypeAllocSize(ArgTy);
532 if (AllocSize == 0)
533 continue;
534
535 MaybeAlign ParamAlign = IsByRef ? Arg.getParamAlign() : std::nullopt;
536 Align ABIAlign = DL.getValueOrABITypeAlignment(ParamAlign, ArgTy);
537
538 uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset;
539 ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize;
540
541 if (Arg.use_empty()) {
542 ++i;
543 continue;
544 }
545
546 Align Alignment = commonAlignment(KernArgBaseAlign, ArgOffset);
547
548 if (IsByRef) {
549 unsigned ByRefAS = cast<PointerType>(Arg.getType())->getAddressSpace();
550
551 assert(VRegs[i].size() == 1 &&(static_cast <bool> (VRegs[i].size() == 1 && "expected only one register for byval pointers"
) ? void (0) : __assert_fail ("VRegs[i].size() == 1 && \"expected only one register for byval pointers\""
, "llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp", 552, __extension__
__PRETTY_FUNCTION__))
552 "expected only one register for byval pointers")(static_cast <bool> (VRegs[i].size() == 1 && "expected only one register for byval pointers"
) ? void (0) : __assert_fail ("VRegs[i].size() == 1 && \"expected only one register for byval pointers\""
, "llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp", 552, __extension__
__PRETTY_FUNCTION__))
;
553 if (ByRefAS == AMDGPUAS::CONSTANT_ADDRESS) {
554 lowerParameterPtr(VRegs[i][0], B, ArgOffset);
555 } else {
556 const LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
557 Register PtrReg = MRI.createGenericVirtualRegister(ConstPtrTy);
558 lowerParameterPtr(PtrReg, B, ArgOffset);
559
560 B.buildAddrSpaceCast(VRegs[i][0], PtrReg);
561 }
562 } else {
563 ArgInfo OrigArg(VRegs[i], Arg, i);
564 const unsigned OrigArgIdx = i + AttributeList::FirstArgIndex;
565 setArgFlags(OrigArg, OrigArgIdx, DL, F);
566 lowerParameter(B, OrigArg, ArgOffset, Alignment);
567 }
568
569 ++i;
570 }
571
572 TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
573 TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false);
574 return true;
575}
576
577bool AMDGPUCallLowering::lowerFormalArguments(
578 MachineIRBuilder &B, const Function &F, ArrayRef<ArrayRef<Register>> VRegs,
579 FunctionLoweringInfo &FLI) const {
580 CallingConv::ID CC = F.getCallingConv();
581
582 // The infrastructure for normal calling convention lowering is essentially
583 // useless for kernels. We want to avoid any kind of legalization or argument
584 // splitting.
585 if (CC == CallingConv::AMDGPU_KERNEL)
586 return lowerFormalArgumentsKernel(B, F, VRegs);
587
588 const bool IsGraphics = AMDGPU::isGraphics(CC);
589 const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC);
590
591 MachineFunction &MF = B.getMF();
592 MachineBasicBlock &MBB = B.getMBB();
593 MachineRegisterInfo &MRI = MF.getRegInfo();
594 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
595 const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>();
596 const SIRegisterInfo *TRI = Subtarget.getRegisterInfo();
597 const DataLayout &DL = F.getParent()->getDataLayout();
598
599 Info->allocateKnownAddressLDSGlobal(F);
600
601 SmallVector<CCValAssign, 16> ArgLocs;
602 CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext());
603
604 if (Info->hasImplicitBufferPtr()) {
605 Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI);
606 MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
607 CCInfo.AllocateReg(ImplicitBufferPtrReg);
608 }
609
610 // FIXME: This probably isn't defined for mesa
611 if (Info->hasFlatScratchInit() && !Subtarget.isAmdPalOS()) {
612 Register FlatScratchInitReg = Info->addFlatScratchInit(*TRI);
613 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
614 CCInfo.AllocateReg(FlatScratchInitReg);
615 }
616
617 SmallVector<ArgInfo, 32> SplitArgs;
618 unsigned Idx = 0;
619 unsigned PSInputNum = 0;
620
621 // Insert the hidden sret parameter if the return value won't fit in the
622 // return registers.
623 if (!FLI.CanLowerReturn)
624 insertSRetIncomingArgument(F, SplitArgs, FLI.DemoteRegister, MRI, DL);
625
626 for (auto &Arg : F.args()) {
627 if (DL.getTypeStoreSize(Arg.getType()) == 0)
628 continue;
629
630 const bool InReg = Arg.hasAttribute(Attribute::InReg);
631
632 // SGPR arguments to functions not implemented.
633 if (!IsGraphics && InReg)
634 return false;
635
636 if (Arg.hasAttribute(Attribute::SwiftSelf) ||
637 Arg.hasAttribute(Attribute::SwiftError) ||
638 Arg.hasAttribute(Attribute::Nest))
639 return false;
640
641 if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) {
642 const bool ArgUsed = !Arg.use_empty();
643 bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum);
644
645 if (!SkipArg) {
646 Info->markPSInputAllocated(PSInputNum);
647 if (ArgUsed)
648 Info->markPSInputEnabled(PSInputNum);
649 }
650
651 ++PSInputNum;
652
653 if (SkipArg) {
654 for (Register R : VRegs[Idx])
655 B.buildUndef(R);
656
657 ++Idx;
658 continue;
659 }
660 }
661
662 ArgInfo OrigArg(VRegs[Idx], Arg, Idx);
663 const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex;
664 setArgFlags(OrigArg, OrigArgIdx, DL, F);
665
666 splitToValueTypes(OrigArg, SplitArgs, DL, CC);
667 ++Idx;
668 }
669
670 // At least one interpolation mode must be enabled or else the GPU will
671 // hang.
672 //
673 // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
674 // set PSInputAddr, the user wants to enable some bits after the compilation
675 // based on run-time states. Since we can't know what the final PSInputEna
676 // will look like, so we shouldn't do anything here and the user should take
677 // responsibility for the correct programming.
678 //
679 // Otherwise, the following restrictions apply:
680 // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
681 // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
682 // enabled too.
683 if (CC == CallingConv::AMDGPU_PS) {
684 if ((Info->getPSInputAddr() & 0x7F) == 0 ||
685 ((Info->getPSInputAddr() & 0xF) == 0 &&
686 Info->isPSInputAllocated(11))) {
687 CCInfo.AllocateReg(AMDGPU::VGPR0);
688 CCInfo.AllocateReg(AMDGPU::VGPR1);
689 Info->markPSInputAllocated(0);
690 Info->markPSInputEnabled(0);
691 }
692
693 if (Subtarget.isAmdPalOS()) {
694 // For isAmdPalOS, the user does not enable some bits after compilation
695 // based on run-time states; the register values being generated here are
696 // the final ones set in hardware. Therefore we need to apply the
697 // workaround to PSInputAddr and PSInputEnable together. (The case where
698 // a bit is set in PSInputAddr but not PSInputEnable is where the frontend
699 // set up an input arg for a particular interpolation mode, but nothing
700 // uses that input arg. Really we should have an earlier pass that removes
701 // such an arg.)
702 unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
703 if ((PsInputBits & 0x7F) == 0 ||
704 ((PsInputBits & 0xF) == 0 &&
705 (PsInputBits >> 11 & 1)))
706 Info->markPSInputEnabled(llvm::countr_zero(Info->getPSInputAddr()));
707 }
708 }
709
710 const SITargetLowering &TLI = *getTLI<SITargetLowering>();
711 CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg());
712
713 if (!MBB.empty())
714 B.setInstr(*MBB.begin());
715
716 if (!IsEntryFunc && !IsGraphics) {
717 // For the fixed ABI, pass workitem IDs in the last argument register.
718 TLI.allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
719 }
720
721 IncomingValueAssigner Assigner(AssignFn);
722 if (!determineAssignments(Assigner, SplitArgs, CCInfo))
723 return false;
724
725 FormalArgHandler Handler(B, MRI);
726 if (!handleAssignments(Handler, SplitArgs, CCInfo, ArgLocs, B))
727 return false;
728
729 uint64_t StackOffset = Assigner.StackOffset;
730
731 // Start adding system SGPRs.
732 if (IsEntryFunc) {
733 TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsGraphics);
734 } else {
735 if (!Subtarget.enableFlatScratch())
736 CCInfo.AllocateReg(Info->getScratchRSrcReg());
737 TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
738 }
739
740 // When we tail call, we need to check if the callee's arguments will fit on
741 // the caller's stack. So, whenever we lower formal arguments, we should keep
742 // track of this information, since we might lower a tail call in this
743 // function later.
744 Info->setBytesInStackArgArea(StackOffset);
745
746 // Move back to the end of the basic block.
747 B.setMBB(MBB);
748
749 return true;
750}
751
752bool AMDGPUCallLowering::passSpecialInputs(MachineIRBuilder &MIRBuilder,
753 CCState &CCInfo,
754 SmallVectorImpl<std::pair<MCRegister, Register>> &ArgRegs,
755 CallLoweringInfo &Info) const {
756 MachineFunction &MF = MIRBuilder.getMF();
757
758 // If there's no call site, this doesn't correspond to a call from the IR and
759 // doesn't need implicit inputs.
760 if (!Info.CB)
761 return true;
762
763 const AMDGPUFunctionArgInfo *CalleeArgInfo
764 = &AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
765
766 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
767 const AMDGPUFunctionArgInfo &CallerArgInfo = MFI->getArgInfo();
768
769
770 // TODO: Unify with private memory register handling. This is complicated by
771 // the fact that at least in kernels, the input argument is not necessarily
772 // in the same location as the input.
773 AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
774 AMDGPUFunctionArgInfo::DISPATCH_PTR,
775 AMDGPUFunctionArgInfo::QUEUE_PTR,
776 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR,
777 AMDGPUFunctionArgInfo::DISPATCH_ID,
778 AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
779 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
780 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,
781 AMDGPUFunctionArgInfo::LDS_KERNEL_ID,
782 };
783
784 static constexpr StringLiteral ImplicitAttrNames[] = {
785 "amdgpu-no-dispatch-ptr",
786 "amdgpu-no-queue-ptr",
787 "amdgpu-no-implicitarg-ptr",
788 "amdgpu-no-dispatch-id",
789 "amdgpu-no-workgroup-id-x",
790 "amdgpu-no-workgroup-id-y",
791 "amdgpu-no-workgroup-id-z",
792 "amdgpu-no-lds-kernel-id",
793 };
794
795 MachineRegisterInfo &MRI = MF.getRegInfo();
796
797 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
798 const AMDGPULegalizerInfo *LI
799 = static_cast<const AMDGPULegalizerInfo*>(ST.getLegalizerInfo());
800
801 unsigned I = 0;
802 for (auto InputID : InputRegs) {
803 const ArgDescriptor *OutgoingArg;
804 const TargetRegisterClass *ArgRC;
805 LLT ArgTy;
806
807 // If the callee does not use the attribute value, skip copying the value.
808 if (Info.CB->hasFnAttr(ImplicitAttrNames[I++]))
809 continue;
810
811 std::tie(OutgoingArg, ArgRC, ArgTy) =
812 CalleeArgInfo->getPreloadedValue(InputID);
813 if (!OutgoingArg)
814 continue;
815
816 const ArgDescriptor *IncomingArg;
817 const TargetRegisterClass *IncomingArgRC;
818 std::tie(IncomingArg, IncomingArgRC, ArgTy) =
819 CallerArgInfo.getPreloadedValue(InputID);
820 assert(IncomingArgRC == ArgRC)(static_cast <bool> (IncomingArgRC == ArgRC) ? void (0)
: __assert_fail ("IncomingArgRC == ArgRC", "llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp"
, 820, __extension__ __PRETTY_FUNCTION__))
;
821
822 Register InputReg = MRI.createGenericVirtualRegister(ArgTy);
823
824 if (IncomingArg) {
825 LI->loadInputValue(InputReg, MIRBuilder, IncomingArg, ArgRC, ArgTy);
826 } else if (InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR) {
827 LI->getImplicitArgPtr(InputReg, MRI, MIRBuilder);
828 } else if (InputID == AMDGPUFunctionArgInfo::LDS_KERNEL_ID) {
829 std::optional<uint32_t> Id =
830 AMDGPUMachineFunction::getLDSKernelIdMetadata(MF.getFunction());
831 if (Id) {
832 MIRBuilder.buildConstant(InputReg, *Id);
833 } else {
834 MIRBuilder.buildUndef(InputReg);
835 }
836 } else {
837 // We may have proven the input wasn't needed, although the ABI is
838 // requiring it. We just need to allocate the register appropriately.
839 MIRBuilder.buildUndef(InputReg);
840 }
841
842 if (OutgoingArg->isRegister()) {
843 ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
844 if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
845 report_fatal_error("failed to allocate implicit input argument");
846 } else {
847 LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("amdgpu-call-lowering")) { dbgs() << "Unhandled stack passed implicit input argument\n"
; } } while (false)
;
848 return false;
849 }
850 }
851
852 // Pack workitem IDs into a single register or pass it as is if already
853 // packed.
854 const ArgDescriptor *OutgoingArg;
855 const TargetRegisterClass *ArgRC;
856 LLT ArgTy;
857
858 std::tie(OutgoingArg, ArgRC, ArgTy) =
859 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
860 if (!OutgoingArg)
861 std::tie(OutgoingArg, ArgRC, ArgTy) =
862 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
863 if (!OutgoingArg)
864 std::tie(OutgoingArg, ArgRC, ArgTy) =
865 CalleeArgInfo->getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
866 if (!OutgoingArg)
867 return false;
868
869 auto WorkitemIDX =
870 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
871 auto WorkitemIDY =
872 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
873 auto WorkitemIDZ =
874 CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
875
876 const ArgDescriptor *IncomingArgX = std::get<0>(WorkitemIDX);
877 const ArgDescriptor *IncomingArgY = std::get<0>(WorkitemIDY);
878 const ArgDescriptor *IncomingArgZ = std::get<0>(WorkitemIDZ);
879 const LLT S32 = LLT::scalar(32);
880
881 const bool NeedWorkItemIDX = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-x");
882 const bool NeedWorkItemIDY = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-y");
883 const bool NeedWorkItemIDZ = !Info.CB->hasFnAttr("amdgpu-no-workitem-id-z");
884
885 // If incoming ids are not packed we need to pack them.
886 // FIXME: Should consider known workgroup size to eliminate known 0 cases.
887 Register InputReg;
888 if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo->WorkItemIDX &&
889 NeedWorkItemIDX) {
890 if (ST.getMaxWorkitemID(MF.getFunction(), 0) != 0) {
891 InputReg = MRI.createGenericVirtualRegister(S32);
892 LI->loadInputValue(InputReg, MIRBuilder, IncomingArgX,
893 std::get<1>(WorkitemIDX), std::get<2>(WorkitemIDX));
894 } else {
895 InputReg = MIRBuilder.buildConstant(S32, 0).getReg(0);
896 }
897 }
898
899 if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo->WorkItemIDY &&
900 NeedWorkItemIDY && ST.getMaxWorkitemID(MF.getFunction(), 1) != 0) {
901 Register Y = MRI.createGenericVirtualRegister(S32);
902 LI->loadInputValue(Y, MIRBuilder, IncomingArgY, std::get<1>(WorkitemIDY),
903 std::get<2>(WorkitemIDY));
904
905 Y = MIRBuilder.buildShl(S32, Y, MIRBuilder.buildConstant(S32, 10)).getReg(0);
906 InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Y).getReg(0) : Y;
907 }
908
909 if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo->WorkItemIDZ &&
910 NeedWorkItemIDZ && ST.getMaxWorkitemID(MF.getFunction(), 2) != 0) {
911 Register Z = MRI.createGenericVirtualRegister(S32);
912 LI->loadInputValue(Z, MIRBuilder, IncomingArgZ, std::get<1>(WorkitemIDZ),
913 std::get<2>(WorkitemIDZ));
914
915 Z = MIRBuilder.buildShl(S32, Z, MIRBuilder.buildConstant(S32, 20)).getReg(0);
916 InputReg = InputReg ? MIRBuilder.buildOr(S32, InputReg, Z).getReg(0) : Z;
917 }
918
919 if (!InputReg &&
920 (NeedWorkItemIDX || NeedWorkItemIDY || NeedWorkItemIDZ)) {
921 InputReg = MRI.createGenericVirtualRegister(S32);
922 if (!IncomingArgX && !IncomingArgY && !IncomingArgZ) {
923 // We're in a situation where the outgoing function requires the workitem
924 // ID, but the calling function does not have it (e.g a graphics function
925 // calling a C calling convention function). This is illegal, but we need
926 // to produce something.
927 MIRBuilder.buildUndef(InputReg);
928 } else {
929 // Workitem ids are already packed, any of present incoming arguments will
930 // carry all required fields.
931 ArgDescriptor IncomingArg = ArgDescriptor::createArg(
932 IncomingArgX ? *IncomingArgX :
933 IncomingArgY ? *IncomingArgY : *IncomingArgZ, ~0u);
934 LI->loadInputValue(InputReg, MIRBuilder, &IncomingArg,
935 &AMDGPU::VGPR_32RegClass, S32);
936 }
937 }
938
939 if (OutgoingArg->isRegister()) {
940 if (InputReg)
941 ArgRegs.emplace_back(OutgoingArg->getRegister(), InputReg);
942
943 if (!CCInfo.AllocateReg(OutgoingArg->getRegister()))
944 report_fatal_error("failed to allocate implicit input argument");
945 } else {
946 LLVM_DEBUG(dbgs() << "Unhandled stack passed implicit input argument\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("amdgpu-call-lowering")) { dbgs() << "Unhandled stack passed implicit input argument\n"
; } } while (false)
;
947 return false;
948 }
949
950 return true;
951}
952
953/// Returns a pair containing the fixed CCAssignFn and the vararg CCAssignFn for
954/// CC.
955static std::pair<CCAssignFn *, CCAssignFn *>
956getAssignFnsForCC(CallingConv::ID CC, const SITargetLowering &TLI) {
957 return {TLI.CCAssignFnForCall(CC, false), TLI.CCAssignFnForCall(CC, true)};
958}
959
960static unsigned getCallOpcode(const MachineFunction &CallerF, bool IsIndirect,
961 bool IsTailCall, CallingConv::ID CC) {
962 assert(!(IsIndirect && IsTailCall) && "Indirect calls can't be tail calls, "(static_cast <bool> (!(IsIndirect && IsTailCall
) && "Indirect calls can't be tail calls, " "because the address can be divergent"
) ? void (0) : __assert_fail ("!(IsIndirect && IsTailCall) && \"Indirect calls can't be tail calls, \" \"because the address can be divergent\""
, "llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp", 963, __extension__
__PRETTY_FUNCTION__))
963 "because the address can be divergent")(static_cast <bool> (!(IsIndirect && IsTailCall
) && "Indirect calls can't be tail calls, " "because the address can be divergent"
) ? void (0) : __assert_fail ("!(IsIndirect && IsTailCall) && \"Indirect calls can't be tail calls, \" \"because the address can be divergent\""
, "llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp", 963, __extension__
__PRETTY_FUNCTION__))
;
964 if (!IsTailCall)
965 return AMDGPU::G_SI_CALL;
966
967 return CC == CallingConv::AMDGPU_Gfx ? AMDGPU::SI_TCRETURN_GFX :
968 AMDGPU::SI_TCRETURN;
969}
970
971// Add operands to call instruction to track the callee.
972static bool addCallTargetOperands(MachineInstrBuilder &CallInst,
973 MachineIRBuilder &MIRBuilder,
974 AMDGPUCallLowering::CallLoweringInfo &Info) {
975 if (Info.Callee.isReg()) {
976 CallInst.addReg(Info.Callee.getReg());
977 CallInst.addImm(0);
978 } else if (Info.Callee.isGlobal() && Info.Callee.getOffset() == 0) {
979 // The call lowering lightly assumed we can directly encode a call target in
980 // the instruction, which is not the case. Materialize the address here.
981 const GlobalValue *GV = Info.Callee.getGlobal();
982 auto Ptr = MIRBuilder.buildGlobalValue(
983 LLT::pointer(GV->getAddressSpace(), 64), GV);
984 CallInst.addReg(Ptr.getReg(0));
985 CallInst.add(Info.Callee);
986 } else
987 return false;
988
989 return true;
990}
991
992bool AMDGPUCallLowering::doCallerAndCalleePassArgsTheSameWay(
993 CallLoweringInfo &Info, MachineFunction &MF,
994 SmallVectorImpl<ArgInfo> &InArgs) const {
995 const Function &CallerF = MF.getFunction();
996 CallingConv::ID CalleeCC = Info.CallConv;
997 CallingConv::ID CallerCC = CallerF.getCallingConv();
998
999 // If the calling conventions match, then everything must be the same.
1000 if (CalleeCC == CallerCC)
1001 return true;
1002
1003 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1004
1005 // Make sure that the caller and callee preserve all of the same registers.
1006 auto TRI = ST.getRegisterInfo();
1007
1008 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
1009 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
1010 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
1011 return false;
1012
1013 // Check if the caller and callee will handle arguments in the same way.
1014 const SITargetLowering &TLI = *getTLI<SITargetLowering>();
1015 CCAssignFn *CalleeAssignFnFixed;
1016 CCAssignFn *CalleeAssignFnVarArg;
1017 std::tie(CalleeAssignFnFixed, CalleeAssignFnVarArg) =
1018 getAssignFnsForCC(CalleeCC, TLI);
1019
1020 CCAssignFn *CallerAssignFnFixed;
1021 CCAssignFn *CallerAssignFnVarArg;
1022 std::tie(CallerAssignFnFixed, CallerAssignFnVarArg) =
1023 getAssignFnsForCC(CallerCC, TLI);
1024
1025 // FIXME: We are not accounting for potential differences in implicitly passed
1026 // inputs, but only the fixed ABI is supported now anyway.
1027 IncomingValueAssigner CalleeAssigner(CalleeAssignFnFixed,
1028 CalleeAssignFnVarArg);
1029 IncomingValueAssigner CallerAssigner(CallerAssignFnFixed,
1030 CallerAssignFnVarArg);
1031 return resultsCompatible(Info, MF, InArgs, CalleeAssigner, CallerAssigner);
1032}
1033
1034bool AMDGPUCallLowering::areCalleeOutgoingArgsTailCallable(
1035 CallLoweringInfo &Info, MachineFunction &MF,
1036 SmallVectorImpl<ArgInfo> &OutArgs) const {
1037 // If there are no outgoing arguments, then we are done.
1038 if (OutArgs.empty())
1039 return true;
1040
1041 const Function &CallerF = MF.getFunction();
1042 CallingConv::ID CalleeCC = Info.CallConv;
1043 CallingConv::ID CallerCC = CallerF.getCallingConv();
1044 const SITargetLowering &TLI = *getTLI<SITargetLowering>();
1045
1046 CCAssignFn *AssignFnFixed;
1047 CCAssignFn *AssignFnVarArg;
1048 std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);
1049
1050 // We have outgoing arguments. Make sure that we can tail call with them.
1051 SmallVector<CCValAssign, 16> OutLocs;
1052 CCState OutInfo(CalleeCC, false, MF, OutLocs, CallerF.getContext());
1053 OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg);
1054
1055 if (!determineAssignments(Assigner, OutArgs, OutInfo)) {
1056 LLVM_DEBUG(dbgs() << "... Could not analyze call operands.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("amdgpu-call-lowering")) { dbgs() << "... Could not analyze call operands.\n"
; } } while (false)
;
1057 return false;
1058 }
1059
1060 // Make sure that they can fit on the caller's stack.
1061 const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
1062 if (OutInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea()) {
1063 LLVM_DEBUG(dbgs() << "... Cannot fit call operands on caller's stack.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("amdgpu-call-lowering")) { dbgs() << "... Cannot fit call operands on caller's stack.\n"
; } } while (false)
;
1064 return false;
1065 }
1066
1067 // Verify that the parameters in callee-saved registers match.
1068 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1069 const SIRegisterInfo *TRI = ST.getRegisterInfo();
1070 const uint32_t *CallerPreservedMask = TRI->getCallPreservedMask(MF, CallerCC);
1071 MachineRegisterInfo &MRI = MF.getRegInfo();
1072 return parametersInCSRMatch(MRI, CallerPreservedMask, OutLocs, OutArgs);
1073}
1074
1075/// Return true if the calling convention is one that we can guarantee TCO for.
1076static bool canGuaranteeTCO(CallingConv::ID CC) {
1077 return CC == CallingConv::Fast;
1078}
1079
1080/// Return true if we might ever do TCO for calls with this calling convention.
1081static bool mayTailCallThisCC(CallingConv::ID CC) {
1082 switch (CC) {
1083 case CallingConv::C:
1084 case CallingConv::AMDGPU_Gfx:
1085 return true;
1086 default:
1087 return canGuaranteeTCO(CC);
1088 }
1089}
1090
1091bool AMDGPUCallLowering::isEligibleForTailCallOptimization(
1092 MachineIRBuilder &B, CallLoweringInfo &Info,
1093 SmallVectorImpl<ArgInfo> &InArgs, SmallVectorImpl<ArgInfo> &OutArgs) const {
1094 // Must pass all target-independent checks in order to tail call optimize.
1095 if (!Info.IsTailCall)
1096 return false;
1097
1098 // Indirect calls can't be tail calls, because the address can be divergent.
1099 // TODO Check divergence info if the call really is divergent.
1100 if (Info.Callee.isReg())
1101 return false;
1102
1103 MachineFunction &MF = B.getMF();
1104 const Function &CallerF = MF.getFunction();
1105 CallingConv::ID CalleeCC = Info.CallConv;
1106 CallingConv::ID CallerCC = CallerF.getCallingConv();
1107
1108 const SIRegisterInfo *TRI = MF.getSubtarget<GCNSubtarget>().getRegisterInfo();
1109 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
1110 // Kernels aren't callable, and don't have a live in return address so it
1111 // doesn't make sense to do a tail call with entry functions.
1112 if (!CallerPreserved)
1113 return false;
1114
1115 if (!mayTailCallThisCC(CalleeCC)) {
1116 LLVM_DEBUG(dbgs() << "... Calling convention cannot be tail called.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("amdgpu-call-lowering")) { dbgs() << "... Calling convention cannot be tail called.\n"
; } } while (false)
;
1117 return false;
1118 }
1119
1120 if (any_of(CallerF.args(), [](const Argument &A) {
1121 return A.hasByValAttr() || A.hasSwiftErrorAttr();
1122 })) {
1123 LLVM_DEBUG(dbgs() << "... Cannot tail call from callers with byval "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("amdgpu-call-lowering")) { dbgs() << "... Cannot tail call from callers with byval "
"or swifterror arguments\n"; } } while (false)
1124 "or swifterror arguments\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("amdgpu-call-lowering")) { dbgs() << "... Cannot tail call from callers with byval "
"or swifterror arguments\n"; } } while (false)
;
1125 return false;
1126 }
1127
1128 // If we have -tailcallopt, then we're done.
1129 if (MF.getTarget().Options.GuaranteedTailCallOpt)
1130 return canGuaranteeTCO(CalleeCC) && CalleeCC == CallerF.getCallingConv();
1131
1132 // Verify that the incoming and outgoing arguments from the callee are
1133 // safe to tail call.
1134 if (!doCallerAndCalleePassArgsTheSameWay(Info, MF, InArgs)) {
1135 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("amdgpu-call-lowering")) { dbgs() << "... Caller and callee have incompatible calling conventions.\n"
; } } while (false)
1136 dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("amdgpu-call-lowering")) { dbgs() << "... Caller and callee have incompatible calling conventions.\n"
; } } while (false)
1137 << "... Caller and callee have incompatible calling conventions.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("amdgpu-call-lowering")) { dbgs() << "... Caller and callee have incompatible calling conventions.\n"
; } } while (false)
;
1138 return false;
1139 }
1140
1141 if (!areCalleeOutgoingArgsTailCallable(Info, MF, OutArgs))
1142 return false;
1143
1144 LLVM_DEBUG(dbgs() << "... Call is eligible for tail call optimization.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("amdgpu-call-lowering")) { dbgs() << "... Call is eligible for tail call optimization.\n"
; } } while (false)
;
1145 return true;
1146}
1147
1148// Insert outgoing implicit arguments for a call, by inserting copies to the
1149// implicit argument registers and adding the necessary implicit uses to the
1150// call instruction.
1151void AMDGPUCallLowering::handleImplicitCallArguments(
1152 MachineIRBuilder &MIRBuilder, MachineInstrBuilder &CallInst,
1153 const GCNSubtarget &ST, const SIMachineFunctionInfo &FuncInfo,
1154 ArrayRef<std::pair<MCRegister, Register>> ImplicitArgRegs) const {
1155 if (!ST.enableFlatScratch()) {
1156 // Insert copies for the SRD. In the HSA case, this should be an identity
1157 // copy.
1158 auto ScratchRSrcReg = MIRBuilder.buildCopy(LLT::fixed_vector(4, 32),
1159 FuncInfo.getScratchRSrcReg());
1160 MIRBuilder.buildCopy(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
1161 CallInst.addReg(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, RegState::Implicit);
1162 }
1163
1164 for (std::pair<MCRegister, Register> ArgReg : ImplicitArgRegs) {
1165 MIRBuilder.buildCopy((Register)ArgReg.first, ArgReg.second);
1166 CallInst.addReg(ArgReg.first, RegState::Implicit);
1167 }
1168}
1169
1170bool AMDGPUCallLowering::lowerTailCall(
1171 MachineIRBuilder &MIRBuilder, CallLoweringInfo &Info,
1172 SmallVectorImpl<ArgInfo> &OutArgs) const {
1173 MachineFunction &MF = MIRBuilder.getMF();
1174 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1175 SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
1176 const Function &F = MF.getFunction();
1177 MachineRegisterInfo &MRI = MF.getRegInfo();
1178 const SITargetLowering &TLI = *getTLI<SITargetLowering>();
1179
1180 // True when we're tail calling, but without -tailcallopt.
1181 bool IsSibCall = !MF.getTarget().Options.GuaranteedTailCallOpt;
1182
1183 // Find out which ABI gets to decide where things go.
1184 CallingConv::ID CalleeCC = Info.CallConv;
1185 CCAssignFn *AssignFnFixed;
1186 CCAssignFn *AssignFnVarArg;
1187 std::tie(AssignFnFixed, AssignFnVarArg) = getAssignFnsForCC(CalleeCC, TLI);
1188
1189 MachineInstrBuilder CallSeqStart;
1190 if (!IsSibCall)
1191 CallSeqStart = MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP);
1192
1193 unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), true, CalleeCC);
1194 auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
1195 if (!addCallTargetOperands(MIB, MIRBuilder, Info))
1196 return false;
1197
1198 // Byte offset for the tail call. When we are sibcalling, this will always
1199 // be 0.
1200 MIB.addImm(0);
1201
1202 // Tell the call which registers are clobbered.
1203 const SIRegisterInfo *TRI = ST.getRegisterInfo();
1204 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CalleeCC);
1205 MIB.addRegMask(Mask);
1206
1207 // FPDiff is the byte offset of the call's argument area from the callee's.
1208 // Stores to callee stack arguments will be placed in FixedStackSlots offset
1209 // by this amount for a tail call. In a sibling call it must be 0 because the
1210 // caller will deallocate the entire stack and the callee still expects its
1211 // arguments to begin at SP+0.
1212 int FPDiff = 0;
1213
1214 // This will be 0 for sibcalls, potentially nonzero for tail calls produced
1215 // by -tailcallopt. For sibcalls, the memory operands for the call are
1216 // already available in the caller's incoming argument space.
1217 unsigned NumBytes = 0;
1218 if (!IsSibCall) {
1219 // We aren't sibcalling, so we need to compute FPDiff. We need to do this
1220 // before handling assignments, because FPDiff must be known for memory
1221 // arguments.
1222 unsigned NumReusableBytes = FuncInfo->getBytesInStackArgArea();
1223 SmallVector<CCValAssign, 16> OutLocs;
1224 CCState OutInfo(CalleeCC, false, MF, OutLocs, F.getContext());
1225
1226 // FIXME: Not accounting for callee implicit inputs
1227 OutgoingValueAssigner CalleeAssigner(AssignFnFixed, AssignFnVarArg);
1228 if (!determineAssignments(CalleeAssigner, OutArgs, OutInfo))
1229 return false;
1230
1231 // The callee will pop the argument stack as a tail call. Thus, we must
1232 // keep it 16-byte aligned.
1233 NumBytes = alignTo(OutInfo.getNextStackOffset(), ST.getStackAlignment());
1234
1235 // FPDiff will be negative if this tail call requires more space than we
1236 // would automatically have in our incoming argument space. Positive if we
1237 // actually shrink the stack.
1238 FPDiff = NumReusableBytes - NumBytes;
1239
1240 // The stack pointer must be 16-byte aligned at all times it's used for a
1241 // memory operation, which in practice means at *all* times and in
1242 // particular across call boundaries. Therefore our own arguments started at
1243 // a 16-byte aligned SP and the delta applied for the tail call should
1244 // satisfy the same constraint.
1245 assert(isAligned(ST.getStackAlignment(), FPDiff) &&(static_cast <bool> (isAligned(ST.getStackAlignment(), FPDiff
) && "unaligned stack on tail call") ? void (0) : __assert_fail
("isAligned(ST.getStackAlignment(), FPDiff) && \"unaligned stack on tail call\""
, "llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp", 1246, __extension__
__PRETTY_FUNCTION__))
1246 "unaligned stack on tail call")(static_cast <bool> (isAligned(ST.getStackAlignment(), FPDiff
) && "unaligned stack on tail call") ? void (0) : __assert_fail
("isAligned(ST.getStackAlignment(), FPDiff) && \"unaligned stack on tail call\""
, "llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp", 1246, __extension__
__PRETTY_FUNCTION__))
;
1247 }
1248
1249 SmallVector<CCValAssign, 16> ArgLocs;
1250 CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext());
1251
1252 // We could pass MIB and directly add the implicit uses to the call
1253 // now. However, as an aesthetic choice, place implicit argument operands
1254 // after the ordinary user argument registers.
1255 SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs;
1256
1257 if (Info.CallConv != CallingConv::AMDGPU_Gfx) {
1258 // With a fixed ABI, allocate fixed registers before user arguments.
1259 if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info))
1260 return false;
1261 }
1262
1263 OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg);
1264
1265 if (!determineAssignments(Assigner, OutArgs, CCInfo))
1266 return false;
1267
1268 // Do the actual argument marshalling.
1269 AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, true, FPDiff);
1270 if (!handleAssignments(Handler, OutArgs, CCInfo, ArgLocs, MIRBuilder))
1271 return false;
1272
1273 handleImplicitCallArguments(MIRBuilder, MIB, ST, *FuncInfo, ImplicitArgRegs);
1274
1275 // If we have -tailcallopt, we need to adjust the stack. We'll do the call
1276 // sequence start and end here.
1277 if (!IsSibCall) {
1278 MIB->getOperand(1).setImm(FPDiff);
1279 CallSeqStart.addImm(NumBytes).addImm(0);
1280 // End the call sequence *before* emitting the call. Normally, we would
1281 // tidy the frame up after the call. However, here, we've laid out the
1282 // parameters so that when SP is reset, they will be in the correct
1283 // location.
1284 MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN).addImm(NumBytes).addImm(0);
1285 }
1286
1287 // Now we can add the actual call instruction to the correct basic block.
1288 MIRBuilder.insertInstr(MIB);
1289
1290 // If Callee is a reg, since it is used by a target specific
1291 // instruction, it must have a register class matching the
1292 // constraint of that instruction.
1293
1294 // FIXME: We should define regbankselectable call instructions to handle
1295 // divergent call targets.
1296 if (MIB->getOperand(0).isReg()) {
1297 MIB->getOperand(0).setReg(constrainOperandRegClass(
1298 MF, *TRI, MRI, *ST.getInstrInfo(), *ST.getRegBankInfo(), *MIB,
1299 MIB->getDesc(), MIB->getOperand(0), 0));
1300 }
1301
1302 MF.getFrameInfo().setHasTailCall();
1303 Info.LoweredTailCall = true;
1304 return true;
1305}
1306
1307bool AMDGPUCallLowering::lowerCall(MachineIRBuilder &MIRBuilder,
1308 CallLoweringInfo &Info) const {
1309 if (Info.IsVarArg) {
1310 LLVM_DEBUG(dbgs() << "Variadic functions not implemented\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("amdgpu-call-lowering")) { dbgs() << "Variadic functions not implemented\n"
; } } while (false)
;
1311 return false;
1312 }
1313
1314 MachineFunction &MF = MIRBuilder.getMF();
1315 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1316 const SIRegisterInfo *TRI = ST.getRegisterInfo();
1317
1318 const Function &F = MF.getFunction();
1319 MachineRegisterInfo &MRI = MF.getRegInfo();
1320 const SITargetLowering &TLI = *getTLI<SITargetLowering>();
1321 const DataLayout &DL = F.getParent()->getDataLayout();
1322
1323 SmallVector<ArgInfo, 8> OutArgs;
1324 for (auto &OrigArg : Info.OrigArgs)
1325 splitToValueTypes(OrigArg, OutArgs, DL, Info.CallConv);
1326
1327 SmallVector<ArgInfo, 8> InArgs;
1328 if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy())
1329 splitToValueTypes(Info.OrigRet, InArgs, DL, Info.CallConv);
1330
1331 // If we can lower as a tail call, do that instead.
1332 bool CanTailCallOpt =
1333 isEligibleForTailCallOptimization(MIRBuilder, Info, InArgs, OutArgs);
1334
1335 // We must emit a tail call if we have musttail.
1336 if (Info.IsMustTailCall && !CanTailCallOpt) {
1337 LLVM_DEBUG(dbgs() << "Failed to lower musttail call as tail call\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("amdgpu-call-lowering")) { dbgs() << "Failed to lower musttail call as tail call\n"
; } } while (false)
;
1338 return false;
1339 }
1340
1341 Info.IsTailCall = CanTailCallOpt;
1342 if (CanTailCallOpt)
1343 return lowerTailCall(MIRBuilder, Info, OutArgs);
1344
1345 // Find out which ABI gets to decide where things go.
1346 CCAssignFn *AssignFnFixed;
1347 CCAssignFn *AssignFnVarArg;
1348 std::tie(AssignFnFixed, AssignFnVarArg) =
1349 getAssignFnsForCC(Info.CallConv, TLI);
1350
1351 MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKUP)
1352 .addImm(0)
1353 .addImm(0);
1354
1355 // Create a temporarily-floating call instruction so we can add the implicit
1356 // uses of arg registers.
1357 unsigned Opc = getCallOpcode(MF, Info.Callee.isReg(), false, Info.CallConv);
1358
1359 auto MIB = MIRBuilder.buildInstrNoInsert(Opc);
1360 MIB.addDef(TRI->getReturnAddressReg(MF));
1361
1362 if (!addCallTargetOperands(MIB, MIRBuilder, Info))
1363 return false;
1364
1365 // Tell the call which registers are clobbered.
1366 const uint32_t *Mask = TRI->getCallPreservedMask(MF, Info.CallConv);
1367 MIB.addRegMask(Mask);
1368
1369 SmallVector<CCValAssign, 16> ArgLocs;
1370 CCState CCInfo(Info.CallConv, Info.IsVarArg, MF, ArgLocs, F.getContext());
1371
1372 // We could pass MIB and directly add the implicit uses to the call
1373 // now. However, as an aesthetic choice, place implicit argument operands
1374 // after the ordinary user argument registers.
1375 SmallVector<std::pair<MCRegister, Register>, 12> ImplicitArgRegs;
1376
1377 if (Info.CallConv != CallingConv::AMDGPU_Gfx) {
1378 // With a fixed ABI, allocate fixed registers before user arguments.
1379 if (!passSpecialInputs(MIRBuilder, CCInfo, ImplicitArgRegs, Info))
1380 return false;
1381 }
1382
1383 // Do the actual argument marshalling.
1384 SmallVector<Register, 8> PhysRegs;
1385
1386 OutgoingValueAssigner Assigner(AssignFnFixed, AssignFnVarArg);
1387 if (!determineAssignments(Assigner, OutArgs, CCInfo))
1388 return false;
1389
1390 AMDGPUOutgoingArgHandler Handler(MIRBuilder, MRI, MIB, false);
1391 if (!handleAssignments(Handler, OutArgs, CCInfo, ArgLocs, MIRBuilder))
1392 return false;
1393
1394 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1395
1396 handleImplicitCallArguments(MIRBuilder, MIB, ST, *MFI, ImplicitArgRegs);
1397
1398 // Get a count of how many bytes are to be pushed on the stack.
1399 unsigned NumBytes = CCInfo.getNextStackOffset();
1400
1401 // If Callee is a reg, since it is used by a target specific
1402 // instruction, it must have a register class matching the
1403 // constraint of that instruction.
1404
1405 // FIXME: We should define regbankselectable call instructions to handle
1406 // divergent call targets.
1407 if (MIB->getOperand(1).isReg()) {
1408 MIB->getOperand(1).setReg(constrainOperandRegClass(
1409 MF, *TRI, MRI, *ST.getInstrInfo(),
1410 *ST.getRegBankInfo(), *MIB, MIB->getDesc(), MIB->getOperand(1),
1411 1));
1412 }
1413
1414 // Now we can add the actual call instruction to the correct position.
1415 MIRBuilder.insertInstr(MIB);
1416
1417 // Finally we can copy the returned value back into its virtual-register. In
1418 // symmetry with the arguments, the physical register must be an
1419 // implicit-define of the call instruction.
1420 if (Info.CanLowerReturn && !Info.OrigRet.Ty->isVoidTy()) {
1421 CCAssignFn *RetAssignFn = TLI.CCAssignFnForReturn(Info.CallConv,
1422 Info.IsVarArg);
1423 IncomingValueAssigner Assigner(RetAssignFn);
1424 CallReturnHandler Handler(MIRBuilder, MRI, MIB);
1425 if (!determineAndHandleAssignments(Handler, Assigner, InArgs, MIRBuilder,
1426 Info.CallConv, Info.IsVarArg))
1427 return false;
1428 }
1429
1430 uint64_t CalleePopBytes = NumBytes;
1431
1432 MIRBuilder.buildInstr(AMDGPU::ADJCALLSTACKDOWN)
1433 .addImm(0)
1434 .addImm(CalleePopBytes);
1435
1436 if (!Info.CanLowerReturn) {
1437 insertSRetLoads(MIRBuilder, Info.OrigRet.Ty, Info.OrigRet.Regs,
1438 Info.DemoteRegister, Info.DemoteStackIndex);
1439 }
1440
1441 return true;
1442}