| File: | build/source/llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp |
| Warning: | line 4560, column 43 The result of the right shift is undefined due to shifting by '32', which is greater or equal to the width of type 'unsigned int' |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// | |||
| 2 | // | |||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | |||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
| 6 | // | |||
| 7 | //===----------------------------------------------------------------------===// | |||
| 8 | // | |||
| 9 | /// \file | |||
| 10 | /// This is the parent TargetLowering class for hardware code gen | |||
| 11 | /// targets. | |||
| 12 | // | |||
| 13 | //===----------------------------------------------------------------------===// | |||
| 14 | ||||
| 15 | #include "AMDGPUISelLowering.h" | |||
| 16 | #include "AMDGPU.h" | |||
| 17 | #include "AMDGPUInstrInfo.h" | |||
| 18 | #include "AMDGPUMachineFunction.h" | |||
| 19 | #include "SIMachineFunctionInfo.h" | |||
| 20 | #include "llvm/CodeGen/Analysis.h" | |||
| 21 | #include "llvm/CodeGen/MachineFrameInfo.h" | |||
| 22 | #include "llvm/IR/DiagnosticInfo.h" | |||
| 23 | #include "llvm/IR/IntrinsicsAMDGPU.h" | |||
| 24 | #include "llvm/Support/CommandLine.h" | |||
| 25 | #include "llvm/Support/KnownBits.h" | |||
| 26 | #include "llvm/Target/TargetMachine.h" | |||
| 27 | ||||
| 28 | using namespace llvm; | |||
| 29 | ||||
| 30 | #include "AMDGPUGenCallingConv.inc" | |||
| 31 | ||||
| 32 | static cl::opt<bool> AMDGPUBypassSlowDiv( | |||
| 33 | "amdgpu-bypass-slow-div", | |||
| 34 | cl::desc("Skip 64-bit divide for dynamic 32-bit values"), | |||
| 35 | cl::init(true)); | |||
| 36 | ||||
| 37 | // Find a larger type to do a load / store of a vector with. | |||
| 38 | EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { | |||
| 39 | unsigned StoreSize = VT.getStoreSizeInBits(); | |||
| 40 | if (StoreSize <= 32) | |||
| 41 | return EVT::getIntegerVT(Ctx, StoreSize); | |||
| 42 | ||||
| 43 | assert(StoreSize % 32 == 0 && "Store size not a multiple of 32")(static_cast <bool> (StoreSize % 32 == 0 && "Store size not a multiple of 32" ) ? void (0) : __assert_fail ("StoreSize % 32 == 0 && \"Store size not a multiple of 32\"" , "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp", 43, __extension__ __PRETTY_FUNCTION__)); | |||
| 44 | return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); | |||
| 45 | } | |||
| 46 | ||||
| 47 | unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) { | |||
| 48 | return DAG.computeKnownBits(Op).countMaxActiveBits(); | |||
| 49 | } | |||
| 50 | ||||
| 51 | unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { | |||
| 52 | // In order for this to be a signed 24-bit value, bit 23, must | |||
| 53 | // be a sign bit. | |||
| 54 | return DAG.ComputeMaxSignificantBits(Op); | |||
| 55 | } | |||
| 56 | ||||
| 57 | AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, | |||
| 58 | const AMDGPUSubtarget &STI) | |||
| 59 | : TargetLowering(TM), Subtarget(&STI) { | |||
| 60 | // Lower floating point store/load to integer store/load to reduce the number | |||
| 61 | // of patterns in tablegen. | |||
| 62 | setOperationAction(ISD::LOAD, MVT::f32, Promote); | |||
| 63 | AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); | |||
| 64 | ||||
| 65 | setOperationAction(ISD::LOAD, MVT::v2f32, Promote); | |||
| 66 | AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); | |||
| 67 | ||||
| 68 | setOperationAction(ISD::LOAD, MVT::v3f32, Promote); | |||
| 69 | AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32); | |||
| 70 | ||||
| 71 | setOperationAction(ISD::LOAD, MVT::v4f32, Promote); | |||
| 72 | AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); | |||
| 73 | ||||
| 74 | setOperationAction(ISD::LOAD, MVT::v5f32, Promote); | |||
| 75 | AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32); | |||
| 76 | ||||
| 77 | setOperationAction(ISD::LOAD, MVT::v6f32, Promote); | |||
| 78 | AddPromotedToType(ISD::LOAD, MVT::v6f32, MVT::v6i32); | |||
| 79 | ||||
| 80 | setOperationAction(ISD::LOAD, MVT::v7f32, Promote); | |||
| 81 | AddPromotedToType(ISD::LOAD, MVT::v7f32, MVT::v7i32); | |||
| 82 | ||||
| 83 | setOperationAction(ISD::LOAD, MVT::v8f32, Promote); | |||
| 84 | AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); | |||
| 85 | ||||
| 86 | setOperationAction(ISD::LOAD, MVT::v9f32, Promote); | |||
| 87 | AddPromotedToType(ISD::LOAD, MVT::v9f32, MVT::v9i32); | |||
| 88 | ||||
| 89 | setOperationAction(ISD::LOAD, MVT::v10f32, Promote); | |||
| 90 | AddPromotedToType(ISD::LOAD, MVT::v10f32, MVT::v10i32); | |||
| 91 | ||||
| 92 | setOperationAction(ISD::LOAD, MVT::v11f32, Promote); | |||
| 93 | AddPromotedToType(ISD::LOAD, MVT::v11f32, MVT::v11i32); | |||
| 94 | ||||
| 95 | setOperationAction(ISD::LOAD, MVT::v12f32, Promote); | |||
| 96 | AddPromotedToType(ISD::LOAD, MVT::v12f32, MVT::v12i32); | |||
| 97 | ||||
| 98 | setOperationAction(ISD::LOAD, MVT::v16f32, Promote); | |||
| 99 | AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); | |||
| 100 | ||||
| 101 | setOperationAction(ISD::LOAD, MVT::v32f32, Promote); | |||
| 102 | AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32); | |||
| 103 | ||||
| 104 | setOperationAction(ISD::LOAD, MVT::i64, Promote); | |||
| 105 | AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); | |||
| 106 | ||||
| 107 | setOperationAction(ISD::LOAD, MVT::v2i64, Promote); | |||
| 108 | AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); | |||
| 109 | ||||
| 110 | setOperationAction(ISD::LOAD, MVT::f64, Promote); | |||
| 111 | AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); | |||
| 112 | ||||
| 113 | setOperationAction(ISD::LOAD, MVT::v2f64, Promote); | |||
| 114 | AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); | |||
| 115 | ||||
| 116 | setOperationAction(ISD::LOAD, MVT::v3i64, Promote); | |||
| 117 | AddPromotedToType(ISD::LOAD, MVT::v3i64, MVT::v6i32); | |||
| 118 | ||||
| 119 | setOperationAction(ISD::LOAD, MVT::v4i64, Promote); | |||
| 120 | AddPromotedToType(ISD::LOAD, MVT::v4i64, MVT::v8i32); | |||
| 121 | ||||
| 122 | setOperationAction(ISD::LOAD, MVT::v3f64, Promote); | |||
| 123 | AddPromotedToType(ISD::LOAD, MVT::v3f64, MVT::v6i32); | |||
| 124 | ||||
| 125 | setOperationAction(ISD::LOAD, MVT::v4f64, Promote); | |||
| 126 | AddPromotedToType(ISD::LOAD, MVT::v4f64, MVT::v8i32); | |||
| 127 | ||||
| 128 | setOperationAction(ISD::LOAD, MVT::v8i64, Promote); | |||
| 129 | AddPromotedToType(ISD::LOAD, MVT::v8i64, MVT::v16i32); | |||
| 130 | ||||
| 131 | setOperationAction(ISD::LOAD, MVT::v8f64, Promote); | |||
| 132 | AddPromotedToType(ISD::LOAD, MVT::v8f64, MVT::v16i32); | |||
| 133 | ||||
| 134 | setOperationAction(ISD::LOAD, MVT::v16i64, Promote); | |||
| 135 | AddPromotedToType(ISD::LOAD, MVT::v16i64, MVT::v32i32); | |||
| 136 | ||||
| 137 | setOperationAction(ISD::LOAD, MVT::v16f64, Promote); | |||
| 138 | AddPromotedToType(ISD::LOAD, MVT::v16f64, MVT::v32i32); | |||
| 139 | ||||
| 140 | // There are no 64-bit extloads. These should be done as a 32-bit extload and | |||
| 141 | // an extension to 64-bit. | |||
| 142 | for (MVT VT : MVT::integer_valuetypes()) | |||
| 143 | setLoadExtAction({ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}, MVT::i64, VT, | |||
| 144 | Expand); | |||
| 145 | ||||
| 146 | for (MVT VT : MVT::integer_valuetypes()) { | |||
| 147 | if (VT == MVT::i64) | |||
| 148 | continue; | |||
| 149 | ||||
| 150 | for (auto Op : {ISD::SEXTLOAD, ISD::ZEXTLOAD, ISD::EXTLOAD}) { | |||
| 151 | setLoadExtAction(Op, VT, MVT::i1, Promote); | |||
| 152 | setLoadExtAction(Op, VT, MVT::i8, Legal); | |||
| 153 | setLoadExtAction(Op, VT, MVT::i16, Legal); | |||
| 154 | setLoadExtAction(Op, VT, MVT::i32, Expand); | |||
| 155 | } | |||
| 156 | } | |||
| 157 | ||||
| 158 | for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) | |||
| 159 | for (auto MemVT : | |||
| 160 | {MVT::v2i8, MVT::v4i8, MVT::v2i16, MVT::v3i16, MVT::v4i16}) | |||
| 161 | setLoadExtAction({ISD::SEXTLOAD, ISD::ZEXTLOAD, ISD::EXTLOAD}, VT, MemVT, | |||
| 162 | Expand); | |||
| 163 | ||||
| 164 | setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); | |||
| 165 | setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::bf16, Expand); | |||
| 166 | setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); | |||
| 167 | setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand); | |||
| 168 | setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); | |||
| 169 | setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); | |||
| 170 | setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand); | |||
| 171 | setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand); | |||
| 172 | ||||
| 173 | setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); | |||
| 174 | setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); | |||
| 175 | setLoadExtAction(ISD::EXTLOAD, MVT::v3f64, MVT::v3f32, Expand); | |||
| 176 | setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); | |||
| 177 | setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); | |||
| 178 | setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f32, Expand); | |||
| 179 | ||||
| 180 | setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); | |||
| 181 | setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::bf16, Expand); | |||
| 182 | setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); | |||
| 183 | setLoadExtAction(ISD::EXTLOAD, MVT::v3f64, MVT::v3f16, Expand); | |||
| 184 | setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); | |||
| 185 | setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); | |||
| 186 | setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f16, Expand); | |||
| 187 | ||||
| 188 | setOperationAction(ISD::STORE, MVT::f32, Promote); | |||
| 189 | AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); | |||
| 190 | ||||
| 191 | setOperationAction(ISD::STORE, MVT::v2f32, Promote); | |||
| 192 | AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); | |||
| 193 | ||||
| 194 | setOperationAction(ISD::STORE, MVT::v3f32, Promote); | |||
| 195 | AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32); | |||
| 196 | ||||
| 197 | setOperationAction(ISD::STORE, MVT::v4f32, Promote); | |||
| 198 | AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); | |||
| 199 | ||||
| 200 | setOperationAction(ISD::STORE, MVT::v5f32, Promote); | |||
| 201 | AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32); | |||
| 202 | ||||
| 203 | setOperationAction(ISD::STORE, MVT::v6f32, Promote); | |||
| 204 | AddPromotedToType(ISD::STORE, MVT::v6f32, MVT::v6i32); | |||
| 205 | ||||
| 206 | setOperationAction(ISD::STORE, MVT::v7f32, Promote); | |||
| 207 | AddPromotedToType(ISD::STORE, MVT::v7f32, MVT::v7i32); | |||
| 208 | ||||
| 209 | setOperationAction(ISD::STORE, MVT::v8f32, Promote); | |||
| 210 | AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); | |||
| 211 | ||||
| 212 | setOperationAction(ISD::STORE, MVT::v9f32, Promote); | |||
| 213 | AddPromotedToType(ISD::STORE, MVT::v9f32, MVT::v9i32); | |||
| 214 | ||||
| 215 | setOperationAction(ISD::STORE, MVT::v10f32, Promote); | |||
| 216 | AddPromotedToType(ISD::STORE, MVT::v10f32, MVT::v10i32); | |||
| 217 | ||||
| 218 | setOperationAction(ISD::STORE, MVT::v11f32, Promote); | |||
| 219 | AddPromotedToType(ISD::STORE, MVT::v11f32, MVT::v11i32); | |||
| 220 | ||||
| 221 | setOperationAction(ISD::STORE, MVT::v12f32, Promote); | |||
| 222 | AddPromotedToType(ISD::STORE, MVT::v12f32, MVT::v12i32); | |||
| 223 | ||||
| 224 | setOperationAction(ISD::STORE, MVT::v16f32, Promote); | |||
| 225 | AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); | |||
| 226 | ||||
| 227 | setOperationAction(ISD::STORE, MVT::v32f32, Promote); | |||
| 228 | AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32); | |||
| 229 | ||||
| 230 | setOperationAction(ISD::STORE, MVT::i64, Promote); | |||
| 231 | AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); | |||
| 232 | ||||
| 233 | setOperationAction(ISD::STORE, MVT::v2i64, Promote); | |||
| 234 | AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); | |||
| 235 | ||||
| 236 | setOperationAction(ISD::STORE, MVT::f64, Promote); | |||
| 237 | AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); | |||
| 238 | ||||
| 239 | setOperationAction(ISD::STORE, MVT::v2f64, Promote); | |||
| 240 | AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); | |||
| 241 | ||||
| 242 | setOperationAction(ISD::STORE, MVT::v3i64, Promote); | |||
| 243 | AddPromotedToType(ISD::STORE, MVT::v3i64, MVT::v6i32); | |||
| 244 | ||||
| 245 | setOperationAction(ISD::STORE, MVT::v3f64, Promote); | |||
| 246 | AddPromotedToType(ISD::STORE, MVT::v3f64, MVT::v6i32); | |||
| 247 | ||||
| 248 | setOperationAction(ISD::STORE, MVT::v4i64, Promote); | |||
| 249 | AddPromotedToType(ISD::STORE, MVT::v4i64, MVT::v8i32); | |||
| 250 | ||||
| 251 | setOperationAction(ISD::STORE, MVT::v4f64, Promote); | |||
| 252 | AddPromotedToType(ISD::STORE, MVT::v4f64, MVT::v8i32); | |||
| 253 | ||||
| 254 | setOperationAction(ISD::STORE, MVT::v8i64, Promote); | |||
| 255 | AddPromotedToType(ISD::STORE, MVT::v8i64, MVT::v16i32); | |||
| 256 | ||||
| 257 | setOperationAction(ISD::STORE, MVT::v8f64, Promote); | |||
| 258 | AddPromotedToType(ISD::STORE, MVT::v8f64, MVT::v16i32); | |||
| 259 | ||||
| 260 | setOperationAction(ISD::STORE, MVT::v16i64, Promote); | |||
| 261 | AddPromotedToType(ISD::STORE, MVT::v16i64, MVT::v32i32); | |||
| 262 | ||||
| 263 | setOperationAction(ISD::STORE, MVT::v16f64, Promote); | |||
| 264 | AddPromotedToType(ISD::STORE, MVT::v16f64, MVT::v32i32); | |||
| 265 | ||||
| 266 | setTruncStoreAction(MVT::i64, MVT::i1, Expand); | |||
| 267 | setTruncStoreAction(MVT::i64, MVT::i8, Expand); | |||
| 268 | setTruncStoreAction(MVT::i64, MVT::i16, Expand); | |||
| 269 | setTruncStoreAction(MVT::i64, MVT::i32, Expand); | |||
| 270 | ||||
| 271 | setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); | |||
| 272 | setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); | |||
| 273 | setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); | |||
| 274 | setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); | |||
| 275 | ||||
| 276 | setTruncStoreAction(MVT::f32, MVT::bf16, Expand); | |||
| 277 | setTruncStoreAction(MVT::f32, MVT::f16, Expand); | |||
| 278 | setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); | |||
| 279 | setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand); | |||
| 280 | setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); | |||
| 281 | setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); | |||
| 282 | setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand); | |||
| 283 | setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand); | |||
| 284 | ||||
| 285 | setTruncStoreAction(MVT::f64, MVT::bf16, Expand); | |||
| 286 | setTruncStoreAction(MVT::f64, MVT::f16, Expand); | |||
| 287 | setTruncStoreAction(MVT::f64, MVT::f32, Expand); | |||
| 288 | ||||
| 289 | setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); | |||
| 290 | setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); | |||
| 291 | ||||
| 292 | setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand); | |||
| 293 | setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand); | |||
| 294 | setTruncStoreAction(MVT::v3f64, MVT::v3f32, Expand); | |||
| 295 | setTruncStoreAction(MVT::v3f64, MVT::v3f16, Expand); | |||
| 296 | ||||
| 297 | setTruncStoreAction(MVT::v4i64, MVT::v4i32, Expand); | |||
| 298 | setTruncStoreAction(MVT::v4i64, MVT::v4i16, Expand); | |||
| 299 | setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); | |||
| 300 | setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); | |||
| 301 | ||||
| 302 | setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); | |||
| 303 | setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); | |||
| 304 | ||||
| 305 | setTruncStoreAction(MVT::v16f64, MVT::v16f32, Expand); | |||
| 306 | setTruncStoreAction(MVT::v16f64, MVT::v16f16, Expand); | |||
| 307 | setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand); | |||
| 308 | setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand); | |||
| 309 | setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand); | |||
| 310 | setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand); | |||
| 311 | setTruncStoreAction(MVT::v16i64, MVT::v16i1, Expand); | |||
| 312 | ||||
| 313 | setOperationAction(ISD::Constant, {MVT::i32, MVT::i64}, Legal); | |||
| 314 | setOperationAction(ISD::ConstantFP, {MVT::f32, MVT::f64}, Legal); | |||
| 315 | ||||
| 316 | setOperationAction({ISD::BR_JT, ISD::BRIND}, MVT::Other, Expand); | |||
| 317 | ||||
| 318 | // This is totally unsupported, just custom lower to produce an error. | |||
| 319 | setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); | |||
| 320 | ||||
| 321 | // Library functions. These default to Expand, but we have instructions | |||
| 322 | // for them. | |||
| 323 | setOperationAction({ISD::FCEIL, ISD::FEXP2, ISD::FPOW, ISD::FLOG2, ISD::FABS, | |||
| 324 | ISD::FFLOOR, ISD::FRINT, ISD::FTRUNC, ISD::FMINNUM, | |||
| 325 | ISD::FMAXNUM}, | |||
| 326 | MVT::f32, Legal); | |||
| 327 | ||||
| 328 | setOperationAction(ISD::FROUND, {MVT::f32, MVT::f64}, Custom); | |||
| 329 | ||||
| 330 | setOperationAction({ISD::FLOG, ISD::FLOG10, ISD::FEXP}, MVT::f32, Custom); | |||
| 331 | ||||
| 332 | setOperationAction(ISD::FNEARBYINT, {MVT::f16, MVT::f32, MVT::f64}, Custom); | |||
| 333 | ||||
| 334 | setOperationAction(ISD::FROUNDEVEN, {MVT::f16, MVT::f32, MVT::f64}, Custom); | |||
| 335 | ||||
| 336 | setOperationAction(ISD::FREM, {MVT::f16, MVT::f32, MVT::f64}, Custom); | |||
| 337 | ||||
| 338 | if (Subtarget->has16BitInsts()) | |||
| 339 | setOperationAction(ISD::IS_FPCLASS, {MVT::f16, MVT::f32, MVT::f64}, Legal); | |||
| 340 | else | |||
| 341 | setOperationAction(ISD::IS_FPCLASS, {MVT::f32, MVT::f64}, Legal); | |||
| 342 | ||||
| 343 | // FIXME: These IS_FPCLASS vector fp types are marked custom so it reaches | |||
| 344 | // scalarization code. Can be removed when IS_FPCLASS expand isn't called by | |||
| 345 | // default unless marked custom/legal. | |||
| 346 | setOperationAction( | |||
| 347 | ISD::IS_FPCLASS, | |||
| 348 | {MVT::v2f16, MVT::v3f16, MVT::v4f16, MVT::v16f16, MVT::v2f32, MVT::v3f32, | |||
| 349 | MVT::v4f32, MVT::v5f32, MVT::v6f32, MVT::v7f32, MVT::v8f32, MVT::v16f32, | |||
| 350 | MVT::v2f64, MVT::v3f64, MVT::v4f64, MVT::v8f64, MVT::v16f64}, | |||
| 351 | Custom); | |||
| 352 | ||||
| 353 | // Expand to fneg + fadd. | |||
| 354 | setOperationAction(ISD::FSUB, MVT::f64, Expand); | |||
| 355 | ||||
| 356 | setOperationAction(ISD::CONCAT_VECTORS, | |||
| 357 | {MVT::v3i32, MVT::v3f32, MVT::v4i32, MVT::v4f32, | |||
| 358 | MVT::v5i32, MVT::v5f32, MVT::v6i32, MVT::v6f32, | |||
| 359 | MVT::v7i32, MVT::v7f32, MVT::v8i32, MVT::v8f32, | |||
| 360 | MVT::v9i32, MVT::v9f32, MVT::v10i32, MVT::v10f32, | |||
| 361 | MVT::v11i32, MVT::v11f32, MVT::v12i32, MVT::v12f32}, | |||
| 362 | Custom); | |||
| 363 | setOperationAction( | |||
| 364 | ISD::EXTRACT_SUBVECTOR, | |||
| 365 | {MVT::v2f16, MVT::v2i16, MVT::v4f16, MVT::v4i16, MVT::v2f32, | |||
| 366 | MVT::v2i32, MVT::v3f32, MVT::v3i32, MVT::v4f32, MVT::v4i32, | |||
| 367 | MVT::v5f32, MVT::v5i32, MVT::v6f32, MVT::v6i32, MVT::v7f32, | |||
| 368 | MVT::v7i32, MVT::v8f32, MVT::v8i32, MVT::v9f32, MVT::v9i32, | |||
| 369 | MVT::v10i32, MVT::v10f32, MVT::v11i32, MVT::v11f32, MVT::v12i32, | |||
| 370 | MVT::v12f32, MVT::v16f16, MVT::v16i16, MVT::v16f32, MVT::v16i32, | |||
| 371 | MVT::v32f32, MVT::v32i32, MVT::v2f64, MVT::v2i64, MVT::v3f64, | |||
| 372 | MVT::v3i64, MVT::v4f64, MVT::v4i64, MVT::v8f64, MVT::v8i64, | |||
| 373 | MVT::v16f64, MVT::v16i64}, | |||
| 374 | Custom); | |||
| 375 | ||||
| 376 | setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); | |||
| 377 | setOperationAction(ISD::FP_TO_FP16, {MVT::f64, MVT::f32}, Custom); | |||
| 378 | ||||
| 379 | const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; | |||
| 380 | for (MVT VT : ScalarIntVTs) { | |||
| 381 | // These should use [SU]DIVREM, so set them to expand | |||
| 382 | setOperationAction({ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM}, VT, | |||
| 383 | Expand); | |||
| 384 | ||||
| 385 | // GPU does not have divrem function for signed or unsigned. | |||
| 386 | setOperationAction({ISD::SDIVREM, ISD::UDIVREM}, VT, Custom); | |||
| 387 | ||||
| 388 | // GPU does not have [S|U]MUL_LOHI functions as a single instruction. | |||
| 389 | setOperationAction({ISD::SMUL_LOHI, ISD::UMUL_LOHI}, VT, Expand); | |||
| 390 | ||||
| 391 | setOperationAction({ISD::BSWAP, ISD::CTTZ, ISD::CTLZ}, VT, Expand); | |||
| 392 | ||||
| 393 | // AMDGPU uses ADDC/SUBC/ADDE/SUBE | |||
| 394 | setOperationAction({ISD::ADDC, ISD::SUBC, ISD::ADDE, ISD::SUBE}, VT, Legal); | |||
| 395 | } | |||
| 396 | ||||
| 397 | // The hardware supports 32-bit FSHR, but not FSHL. | |||
| 398 | setOperationAction(ISD::FSHR, MVT::i32, Legal); | |||
| 399 | ||||
| 400 | // The hardware supports 32-bit ROTR, but not ROTL. | |||
| 401 | setOperationAction(ISD::ROTL, {MVT::i32, MVT::i64}, Expand); | |||
| 402 | setOperationAction(ISD::ROTR, MVT::i64, Expand); | |||
| 403 | ||||
| 404 | setOperationAction({ISD::MULHU, ISD::MULHS}, MVT::i16, Expand); | |||
| 405 | ||||
| 406 | setOperationAction({ISD::MUL, ISD::MULHU, ISD::MULHS}, MVT::i64, Expand); | |||
| 407 | setOperationAction( | |||
| 408 | {ISD::UINT_TO_FP, ISD::SINT_TO_FP, ISD::FP_TO_SINT, ISD::FP_TO_UINT}, | |||
| 409 | MVT::i64, Custom); | |||
| 410 | setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); | |||
| 411 | ||||
| 412 | setOperationAction({ISD::SMIN, ISD::UMIN, ISD::SMAX, ISD::UMAX}, MVT::i32, | |||
| 413 | Legal); | |||
| 414 | ||||
| 415 | setOperationAction( | |||
| 416 | {ISD::CTTZ, ISD::CTTZ_ZERO_UNDEF, ISD::CTLZ, ISD::CTLZ_ZERO_UNDEF}, | |||
| 417 | MVT::i64, Custom); | |||
| 418 | ||||
| 419 | static const MVT::SimpleValueType VectorIntTypes[] = { | |||
| 420 | MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, MVT::v6i32, MVT::v7i32, | |||
| 421 | MVT::v9i32, MVT::v10i32, MVT::v11i32, MVT::v12i32}; | |||
| 422 | ||||
| 423 | for (MVT VT : VectorIntTypes) { | |||
| 424 | // Expand the following operations for the current type by default. | |||
| 425 | setOperationAction({ISD::ADD, ISD::AND, ISD::FP_TO_SINT, | |||
| 426 | ISD::FP_TO_UINT, ISD::MUL, ISD::MULHU, | |||
| 427 | ISD::MULHS, ISD::OR, ISD::SHL, | |||
| 428 | ISD::SRA, ISD::SRL, ISD::ROTL, | |||
| 429 | ISD::ROTR, ISD::SUB, ISD::SINT_TO_FP, | |||
| 430 | ISD::UINT_TO_FP, ISD::SDIV, ISD::UDIV, | |||
| 431 | ISD::SREM, ISD::UREM, ISD::SMUL_LOHI, | |||
| 432 | ISD::UMUL_LOHI, ISD::SDIVREM, ISD::UDIVREM, | |||
| 433 | ISD::SELECT, ISD::VSELECT, ISD::SELECT_CC, | |||
| 434 | ISD::XOR, ISD::BSWAP, ISD::CTPOP, | |||
| 435 | ISD::CTTZ, ISD::CTLZ, ISD::VECTOR_SHUFFLE, | |||
| 436 | ISD::SETCC}, | |||
| 437 | VT, Expand); | |||
| 438 | } | |||
| 439 | ||||
| 440 | static const MVT::SimpleValueType FloatVectorTypes[] = { | |||
| 441 | MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32, MVT::v6f32, MVT::v7f32, | |||
| 442 | MVT::v9f32, MVT::v10f32, MVT::v11f32, MVT::v12f32}; | |||
| 443 | ||||
| 444 | for (MVT VT : FloatVectorTypes) { | |||
| 445 | setOperationAction( | |||
| 446 | {ISD::FABS, ISD::FMINNUM, ISD::FMAXNUM, ISD::FADD, | |||
| 447 | ISD::FCEIL, ISD::FCOS, ISD::FDIV, ISD::FEXP2, | |||
| 448 | ISD::FEXP, ISD::FLOG2, ISD::FREM, ISD::FLOG, | |||
| 449 | ISD::FLOG10, ISD::FPOW, ISD::FFLOOR, ISD::FTRUNC, | |||
| 450 | ISD::FMUL, ISD::FMA, ISD::FRINT, ISD::FNEARBYINT, | |||
| 451 | ISD::FSQRT, ISD::FSIN, ISD::FSUB, ISD::FNEG, | |||
| 452 | ISD::VSELECT, ISD::SELECT_CC, ISD::FCOPYSIGN, ISD::VECTOR_SHUFFLE, | |||
| 453 | ISD::SETCC, ISD::FCANONICALIZE}, | |||
| 454 | VT, Expand); | |||
| 455 | } | |||
| 456 | ||||
| 457 | // This causes using an unrolled select operation rather than expansion with | |||
| 458 | // bit operations. This is in general better, but the alternative using BFI | |||
| 459 | // instructions may be better if the select sources are SGPRs. | |||
| 460 | setOperationAction(ISD::SELECT, MVT::v2f32, Promote); | |||
| 461 | AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); | |||
| 462 | ||||
| 463 | setOperationAction(ISD::SELECT, MVT::v3f32, Promote); | |||
| 464 | AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32); | |||
| 465 | ||||
| 466 | setOperationAction(ISD::SELECT, MVT::v4f32, Promote); | |||
| 467 | AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); | |||
| 468 | ||||
| 469 | setOperationAction(ISD::SELECT, MVT::v5f32, Promote); | |||
| 470 | AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32); | |||
| 471 | ||||
| 472 | setOperationAction(ISD::SELECT, MVT::v6f32, Promote); | |||
| 473 | AddPromotedToType(ISD::SELECT, MVT::v6f32, MVT::v6i32); | |||
| 474 | ||||
| 475 | setOperationAction(ISD::SELECT, MVT::v7f32, Promote); | |||
| 476 | AddPromotedToType(ISD::SELECT, MVT::v7f32, MVT::v7i32); | |||
| 477 | ||||
| 478 | setOperationAction(ISD::SELECT, MVT::v9f32, Promote); | |||
| 479 | AddPromotedToType(ISD::SELECT, MVT::v9f32, MVT::v9i32); | |||
| 480 | ||||
| 481 | setOperationAction(ISD::SELECT, MVT::v10f32, Promote); | |||
| 482 | AddPromotedToType(ISD::SELECT, MVT::v10f32, MVT::v10i32); | |||
| 483 | ||||
| 484 | setOperationAction(ISD::SELECT, MVT::v11f32, Promote); | |||
| 485 | AddPromotedToType(ISD::SELECT, MVT::v11f32, MVT::v11i32); | |||
| 486 | ||||
| 487 | setOperationAction(ISD::SELECT, MVT::v12f32, Promote); | |||
| 488 | AddPromotedToType(ISD::SELECT, MVT::v12f32, MVT::v12i32); | |||
| 489 | ||||
| 490 | // There are no libcalls of any kind. | |||
| 491 | for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) | |||
| 492 | setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); | |||
| 493 | ||||
| 494 | setSchedulingPreference(Sched::RegPressure); | |||
| 495 | setJumpIsExpensive(true); | |||
| 496 | ||||
| 497 | // FIXME: This is only partially true. If we have to do vector compares, any | |||
| 498 | // SGPR pair can be a condition register. If we have a uniform condition, we | |||
| 499 | // are better off doing SALU operations, where there is only one SCC. For now, | |||
| 500 | // we don't have a way of knowing during instruction selection if a condition | |||
| 501 | // will be uniform and we always use vector compares. Assume we are using | |||
| 502 | // vector compares until that is fixed. | |||
| 503 | setHasMultipleConditionRegisters(true); | |||
| 504 | ||||
| 505 | setMinCmpXchgSizeInBits(32); | |||
| 506 | setSupportsUnalignedAtomics(false); | |||
| 507 | ||||
| 508 | PredictableSelectIsExpensive = false; | |||
| 509 | ||||
| 510 | // We want to find all load dependencies for long chains of stores to enable | |||
| 511 | // merging into very wide vectors. The problem is with vectors with > 4 | |||
| 512 | // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 | |||
| 513 | // vectors are a legal type, even though we have to split the loads | |||
| 514 | // usually. When we can more precisely specify load legality per address | |||
| 515 | // space, we should be able to make FindBetterChain/MergeConsecutiveStores | |||
| 516 | // smarter so that they can figure out what to do in 2 iterations without all | |||
| 517 | // N > 4 stores on the same chain. | |||
| 518 | GatherAllAliasesMaxDepth = 16; | |||
| 519 | ||||
| 520 | // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry | |||
| 521 | // about these during lowering. | |||
| 522 | MaxStoresPerMemcpy = 0xffffffff; | |||
| 523 | MaxStoresPerMemmove = 0xffffffff; | |||
| 524 | MaxStoresPerMemset = 0xffffffff; | |||
| 525 | ||||
| 526 | // The expansion for 64-bit division is enormous. | |||
| 527 | if (AMDGPUBypassSlowDiv) | |||
| 528 | addBypassSlowDiv(64, 32); | |||
| 529 | ||||
| 530 | setTargetDAGCombine({ISD::BITCAST, ISD::SHL, | |||
| 531 | ISD::SRA, ISD::SRL, | |||
| 532 | ISD::TRUNCATE, ISD::MUL, | |||
| 533 | ISD::SMUL_LOHI, ISD::UMUL_LOHI, | |||
| 534 | ISD::MULHU, ISD::MULHS, | |||
| 535 | ISD::SELECT, ISD::SELECT_CC, | |||
| 536 | ISD::STORE, ISD::FADD, | |||
| 537 | ISD::FSUB, ISD::FNEG, | |||
| 538 | ISD::FABS, ISD::AssertZext, | |||
| 539 | ISD::AssertSext, ISD::INTRINSIC_WO_CHAIN}); | |||
| 540 | } | |||
| 541 | ||||
| 542 | bool AMDGPUTargetLowering::mayIgnoreSignedZero(SDValue Op) const { | |||
| 543 | if (getTargetMachine().Options.NoSignedZerosFPMath) | |||
| 544 | return true; | |||
| 545 | ||||
| 546 | const auto Flags = Op.getNode()->getFlags(); | |||
| 547 | if (Flags.hasNoSignedZeros()) | |||
| 548 | return true; | |||
| 549 | ||||
| 550 | return false; | |||
| 551 | } | |||
| 552 | ||||
| 553 | //===----------------------------------------------------------------------===// | |||
| 554 | // Target Information | |||
| 555 | //===----------------------------------------------------------------------===// | |||
| 556 | ||||
| 557 | LLVM_READNONE__attribute__((__const__)) | |||
| 558 | static bool fnegFoldsIntoOpcode(unsigned Opc) { | |||
| 559 | switch (Opc) { | |||
| 560 | case ISD::FADD: | |||
| 561 | case ISD::FSUB: | |||
| 562 | case ISD::FMUL: | |||
| 563 | case ISD::FMA: | |||
| 564 | case ISD::FMAD: | |||
| 565 | case ISD::FMINNUM: | |||
| 566 | case ISD::FMAXNUM: | |||
| 567 | case ISD::FMINNUM_IEEE: | |||
| 568 | case ISD::FMAXNUM_IEEE: | |||
| 569 | case ISD::SELECT: | |||
| 570 | case ISD::FSIN: | |||
| 571 | case ISD::FTRUNC: | |||
| 572 | case ISD::FRINT: | |||
| 573 | case ISD::FNEARBYINT: | |||
| 574 | case ISD::FCANONICALIZE: | |||
| 575 | case AMDGPUISD::RCP: | |||
| 576 | case AMDGPUISD::RCP_LEGACY: | |||
| 577 | case AMDGPUISD::RCP_IFLAG: | |||
| 578 | case AMDGPUISD::SIN_HW: | |||
| 579 | case AMDGPUISD::FMUL_LEGACY: | |||
| 580 | case AMDGPUISD::FMIN_LEGACY: | |||
| 581 | case AMDGPUISD::FMAX_LEGACY: | |||
| 582 | case AMDGPUISD::FMED3: | |||
| 583 | // TODO: handle llvm.amdgcn.fma.legacy | |||
| 584 | return true; | |||
| 585 | case ISD::BITCAST: | |||
| 586 | llvm_unreachable("bitcast is special cased")::llvm::llvm_unreachable_internal("bitcast is special cased", "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp", 586); | |||
| 587 | default: | |||
| 588 | return false; | |||
| 589 | } | |||
| 590 | } | |||
| 591 | ||||
| 592 | static bool fnegFoldsIntoOp(const SDNode *N) { | |||
| 593 | unsigned Opc = N->getOpcode(); | |||
| 594 | if (Opc == ISD::BITCAST) { | |||
| 595 | // TODO: Is there a benefit to checking the conditions performFNegCombine | |||
| 596 | // does? We don't for the other cases. | |||
| 597 | SDValue BCSrc = N->getOperand(0); | |||
| 598 | if (BCSrc.getOpcode() == ISD::BUILD_VECTOR) { | |||
| 599 | return BCSrc.getNumOperands() == 2 && | |||
| 600 | BCSrc.getOperand(1).getValueSizeInBits() == 32; | |||
| 601 | } | |||
| 602 | ||||
| 603 | return BCSrc.getOpcode() == ISD::SELECT && BCSrc.getValueType() == MVT::f32; | |||
| 604 | } | |||
| 605 | ||||
| 606 | return fnegFoldsIntoOpcode(Opc); | |||
| 607 | } | |||
| 608 | ||||
| 609 | /// \p returns true if the operation will definitely need to use a 64-bit | |||
| 610 | /// encoding, and thus will use a VOP3 encoding regardless of the source | |||
| 611 | /// modifiers. | |||
| 612 | LLVM_READONLY__attribute__((__pure__)) | |||
| 613 | static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { | |||
| 614 | return (N->getNumOperands() > 2 && N->getOpcode() != ISD::SELECT) || | |||
| 615 | VT == MVT::f64; | |||
| 616 | } | |||
| 617 | ||||
| 618 | /// Return true if v_cndmask_b32 will support fabs/fneg source modifiers for the | |||
| 619 | /// type for ISD::SELECT. | |||
| 620 | LLVM_READONLY__attribute__((__pure__)) | |||
| 621 | static bool selectSupportsSourceMods(const SDNode *N) { | |||
| 622 | // TODO: Only applies if select will be vector | |||
| 623 | return N->getValueType(0) == MVT::f32; | |||
| 624 | } | |||
| 625 | ||||
| 626 | // Most FP instructions support source modifiers, but this could be refined | |||
| 627 | // slightly. | |||
| 628 | LLVM_READONLY__attribute__((__pure__)) | |||
| 629 | static bool hasSourceMods(const SDNode *N) { | |||
| 630 | if (isa<MemSDNode>(N)) | |||
| 631 | return false; | |||
| 632 | ||||
| 633 | switch (N->getOpcode()) { | |||
| 634 | case ISD::CopyToReg: | |||
| 635 | case ISD::FDIV: | |||
| 636 | case ISD::FREM: | |||
| 637 | case ISD::INLINEASM: | |||
| 638 | case ISD::INLINEASM_BR: | |||
| 639 | case AMDGPUISD::DIV_SCALE: | |||
| 640 | case ISD::INTRINSIC_W_CHAIN: | |||
| 641 | ||||
| 642 | // TODO: Should really be looking at the users of the bitcast. These are | |||
| 643 | // problematic because bitcasts are used to legalize all stores to integer | |||
| 644 | // types. | |||
| 645 | case ISD::BITCAST: | |||
| 646 | return false; | |||
| 647 | case ISD::INTRINSIC_WO_CHAIN: { | |||
| 648 | switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) { | |||
| 649 | case Intrinsic::amdgcn_interp_p1: | |||
| 650 | case Intrinsic::amdgcn_interp_p2: | |||
| 651 | case Intrinsic::amdgcn_interp_mov: | |||
| 652 | case Intrinsic::amdgcn_interp_p1_f16: | |||
| 653 | case Intrinsic::amdgcn_interp_p2_f16: | |||
| 654 | return false; | |||
| 655 | default: | |||
| 656 | return true; | |||
| 657 | } | |||
| 658 | } | |||
| 659 | case ISD::SELECT: | |||
| 660 | return selectSupportsSourceMods(N); | |||
| 661 | default: | |||
| 662 | return true; | |||
| 663 | } | |||
| 664 | } | |||
| 665 | ||||
| 666 | bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, | |||
| 667 | unsigned CostThreshold) { | |||
| 668 | // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus | |||
| 669 | // it is truly free to use a source modifier in all cases. If there are | |||
| 670 | // multiple users but for each one will necessitate using VOP3, there will be | |||
| 671 | // a code size increase. Try to avoid increasing code size unless we know it | |||
| 672 | // will save on the instruction count. | |||
| 673 | unsigned NumMayIncreaseSize = 0; | |||
| 674 | MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); | |||
| 675 | ||||
| 676 | assert(!N->use_empty())(static_cast <bool> (!N->use_empty()) ? void (0) : __assert_fail ("!N->use_empty()", "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp" , 676, __extension__ __PRETTY_FUNCTION__)); | |||
| 677 | ||||
| 678 | // XXX - Should this limit number of uses to check? | |||
| 679 | for (const SDNode *U : N->uses()) { | |||
| 680 | if (!hasSourceMods(U)) | |||
| 681 | return false; | |||
| 682 | ||||
| 683 | if (!opMustUseVOP3Encoding(U, VT)) { | |||
| 684 | if (++NumMayIncreaseSize > CostThreshold) | |||
| 685 | return false; | |||
| 686 | } | |||
| 687 | } | |||
| 688 | ||||
| 689 | return true; | |||
| 690 | } | |||
| 691 | ||||
| 692 | EVT AMDGPUTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT, | |||
| 693 | ISD::NodeType ExtendKind) const { | |||
| 694 | assert(!VT.isVector() && "only scalar expected")(static_cast <bool> (!VT.isVector() && "only scalar expected" ) ? void (0) : __assert_fail ("!VT.isVector() && \"only scalar expected\"" , "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp", 694, __extension__ __PRETTY_FUNCTION__)); | |||
| 695 | ||||
| 696 | // Round to the next multiple of 32-bits. | |||
| 697 | unsigned Size = VT.getSizeInBits(); | |||
| 698 | if (Size <= 32) | |||
| 699 | return MVT::i32; | |||
| 700 | return EVT::getIntegerVT(Context, 32 * ((Size + 31) / 32)); | |||
| 701 | } | |||
| 702 | ||||
| 703 | MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { | |||
| 704 | return MVT::i32; | |||
| 705 | } | |||
| 706 | ||||
| 707 | bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { | |||
| 708 | return true; | |||
| 709 | } | |||
| 710 | ||||
| 711 | // The backend supports 32 and 64 bit floating point immediates. | |||
| 712 | // FIXME: Why are we reporting vectors of FP immediates as legal? | |||
| 713 | bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, | |||
| 714 | bool ForCodeSize) const { | |||
| 715 | EVT ScalarVT = VT.getScalarType(); | |||
| 716 | return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || | |||
| 717 | (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); | |||
| 718 | } | |||
| 719 | ||||
| 720 | // We don't want to shrink f64 / f32 constants. | |||
| 721 | bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { | |||
| 722 | EVT ScalarVT = VT.getScalarType(); | |||
| 723 | return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); | |||
| 724 | } | |||
| 725 | ||||
| 726 | bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, | |||
| 727 | ISD::LoadExtType ExtTy, | |||
| 728 | EVT NewVT) const { | |||
| 729 | // TODO: This may be worth removing. Check regression tests for diffs. | |||
| 730 | if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT)) | |||
| 731 | return false; | |||
| 732 | ||||
| 733 | unsigned NewSize = NewVT.getStoreSizeInBits(); | |||
| 734 | ||||
| 735 | // If we are reducing to a 32-bit load or a smaller multi-dword load, | |||
| 736 | // this is always better. | |||
| 737 | if (NewSize >= 32) | |||
| 738 | return true; | |||
| 739 | ||||
| 740 | EVT OldVT = N->getValueType(0); | |||
| 741 | unsigned OldSize = OldVT.getStoreSizeInBits(); | |||
| 742 | ||||
| 743 | MemSDNode *MN = cast<MemSDNode>(N); | |||
| 744 | unsigned AS = MN->getAddressSpace(); | |||
| 745 | // Do not shrink an aligned scalar load to sub-dword. | |||
| 746 | // Scalar engine cannot do sub-dword loads. | |||
| 747 | if (OldSize >= 32 && NewSize < 32 && MN->getAlign() >= Align(4) && | |||
| 748 | (AS == AMDGPUAS::CONSTANT_ADDRESS || | |||
| 749 | AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || | |||
| 750 | (isa<LoadSDNode>(N) && AS == AMDGPUAS::GLOBAL_ADDRESS && | |||
| 751 | MN->isInvariant())) && | |||
| 752 | AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand())) | |||
| 753 | return false; | |||
| 754 | ||||
| 755 | // Don't produce extloads from sub 32-bit types. SI doesn't have scalar | |||
| 756 | // extloads, so doing one requires using a buffer_load. In cases where we | |||
| 757 | // still couldn't use a scalar load, using the wider load shouldn't really | |||
| 758 | // hurt anything. | |||
| 759 | ||||
| 760 | // If the old size already had to be an extload, there's no harm in continuing | |||
| 761 | // to reduce the width. | |||
| 762 | return (OldSize < 32); | |||
| 763 | } | |||
| 764 | ||||
| 765 | bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy, | |||
| 766 | const SelectionDAG &DAG, | |||
| 767 | const MachineMemOperand &MMO) const { | |||
| 768 | ||||
| 769 | assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits())(static_cast <bool> (LoadTy.getSizeInBits() == CastTy.getSizeInBits ()) ? void (0) : __assert_fail ("LoadTy.getSizeInBits() == CastTy.getSizeInBits()" , "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp", 769, __extension__ __PRETTY_FUNCTION__)); | |||
| 770 | ||||
| 771 | if (LoadTy.getScalarType() == MVT::i32) | |||
| 772 | return false; | |||
| 773 | ||||
| 774 | unsigned LScalarSize = LoadTy.getScalarSizeInBits(); | |||
| 775 | unsigned CastScalarSize = CastTy.getScalarSizeInBits(); | |||
| 776 | ||||
| 777 | if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32)) | |||
| 778 | return false; | |||
| 779 | ||||
| 780 | unsigned Fast = 0; | |||
| 781 | return allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), | |||
| 782 | CastTy, MMO, &Fast) && | |||
| 783 | Fast; | |||
| 784 | } | |||
| 785 | ||||
| 786 | // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also | |||
| 787 | // profitable with the expansion for 64-bit since it's generally good to | |||
| 788 | // speculate things. | |||
| 789 | bool AMDGPUTargetLowering::isCheapToSpeculateCttz(Type *Ty) const { | |||
| 790 | return true; | |||
| 791 | } | |||
| 792 | ||||
| 793 | bool AMDGPUTargetLowering::isCheapToSpeculateCtlz(Type *Ty) const { | |||
| 794 | return true; | |||
| 795 | } | |||
| 796 | ||||
| 797 | bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode *N) const { | |||
| 798 | switch (N->getOpcode()) { | |||
| 799 | case ISD::EntryToken: | |||
| 800 | case ISD::TokenFactor: | |||
| 801 | return true; | |||
| 802 | case ISD::INTRINSIC_WO_CHAIN: { | |||
| 803 | unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); | |||
| 804 | switch (IntrID) { | |||
| 805 | case Intrinsic::amdgcn_readfirstlane: | |||
| 806 | case Intrinsic::amdgcn_readlane: | |||
| 807 | return true; | |||
| 808 | } | |||
| 809 | return false; | |||
| 810 | } | |||
| 811 | case ISD::LOAD: | |||
| 812 | if (cast<LoadSDNode>(N)->getMemOperand()->getAddrSpace() == | |||
| 813 | AMDGPUAS::CONSTANT_ADDRESS_32BIT) | |||
| 814 | return true; | |||
| 815 | return false; | |||
| 816 | case AMDGPUISD::SETCC: // ballot-style instruction | |||
| 817 | return true; | |||
| 818 | } | |||
| 819 | return false; | |||
| 820 | } | |||
| 821 | ||||
| 822 | SDValue AMDGPUTargetLowering::getNegatedExpression( | |||
| 823 | SDValue Op, SelectionDAG &DAG, bool LegalOperations, bool ForCodeSize, | |||
| 824 | NegatibleCost &Cost, unsigned Depth) const { | |||
| 825 | ||||
| 826 | switch (Op.getOpcode()) { | |||
| 827 | case ISD::FMA: | |||
| 828 | case ISD::FMAD: { | |||
| 829 | // Negating a fma is not free if it has users without source mods. | |||
| 830 | if (!allUsesHaveSourceMods(Op.getNode())) | |||
| 831 | return SDValue(); | |||
| 832 | break; | |||
| 833 | } | |||
| 834 | case AMDGPUISD::RCP: { | |||
| 835 | SDValue Src = Op.getOperand(0); | |||
| 836 | EVT VT = Op.getValueType(); | |||
| 837 | SDLoc SL(Op); | |||
| 838 | ||||
| 839 | SDValue NegSrc = getNegatedExpression(Src, DAG, LegalOperations, | |||
| 840 | ForCodeSize, Cost, Depth + 1); | |||
| 841 | if (NegSrc) | |||
| 842 | return DAG.getNode(AMDGPUISD::RCP, SL, VT, NegSrc, Op->getFlags()); | |||
| 843 | return SDValue(); | |||
| 844 | } | |||
| 845 | default: | |||
| 846 | break; | |||
| 847 | } | |||
| 848 | ||||
| 849 | return TargetLowering::getNegatedExpression(Op, DAG, LegalOperations, | |||
| 850 | ForCodeSize, Cost, Depth); | |||
| 851 | } | |||
| 852 | ||||
| 853 | //===---------------------------------------------------------------------===// | |||
| 854 | // Target Properties | |||
| 855 | //===---------------------------------------------------------------------===// | |||
| 856 | ||||
| 857 | bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { | |||
| 858 | assert(VT.isFloatingPoint())(static_cast <bool> (VT.isFloatingPoint()) ? void (0) : __assert_fail ("VT.isFloatingPoint()", "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp" , 858, __extension__ __PRETTY_FUNCTION__)); | |||
| 859 | ||||
| 860 | // Packed operations do not have a fabs modifier. | |||
| 861 | return VT == MVT::f32 || VT == MVT::f64 || | |||
| 862 | (Subtarget->has16BitInsts() && VT == MVT::f16); | |||
| 863 | } | |||
| 864 | ||||
| 865 | bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { | |||
| 866 | assert(VT.isFloatingPoint())(static_cast <bool> (VT.isFloatingPoint()) ? void (0) : __assert_fail ("VT.isFloatingPoint()", "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp" , 866, __extension__ __PRETTY_FUNCTION__)); | |||
| 867 | // Report this based on the end legalized type. | |||
| 868 | VT = VT.getScalarType(); | |||
| 869 | return VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f16; | |||
| 870 | } | |||
| 871 | ||||
| 872 | bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, | |||
| 873 | unsigned NumElem, | |||
| 874 | unsigned AS) const { | |||
| 875 | return true; | |||
| 876 | } | |||
| 877 | ||||
| 878 | bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { | |||
| 879 | // There are few operations which truly have vector input operands. Any vector | |||
| 880 | // operation is going to involve operations on each component, and a | |||
| 881 | // build_vector will be a copy per element, so it always makes sense to use a | |||
| 882 | // build_vector input in place of the extracted element to avoid a copy into a | |||
| 883 | // super register. | |||
| 884 | // | |||
| 885 | // We should probably only do this if all users are extracts only, but this | |||
| 886 | // should be the common case. | |||
| 887 | return true; | |||
| 888 | } | |||
| 889 | ||||
| 890 | bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { | |||
| 891 | // Truncate is just accessing a subregister. | |||
| 892 | ||||
| 893 | unsigned SrcSize = Source.getSizeInBits(); | |||
| 894 | unsigned DestSize = Dest.getSizeInBits(); | |||
| 895 | ||||
| 896 | return DestSize < SrcSize && DestSize % 32 == 0 ; | |||
| 897 | } | |||
| 898 | ||||
| 899 | bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { | |||
| 900 | // Truncate is just accessing a subregister. | |||
| 901 | ||||
| 902 | unsigned SrcSize = Source->getScalarSizeInBits(); | |||
| 903 | unsigned DestSize = Dest->getScalarSizeInBits(); | |||
| 904 | ||||
| 905 | if (DestSize== 16 && Subtarget->has16BitInsts()) | |||
| 906 | return SrcSize >= 32; | |||
| 907 | ||||
| 908 | return DestSize < SrcSize && DestSize % 32 == 0; | |||
| 909 | } | |||
| 910 | ||||
| 911 | bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { | |||
| 912 | unsigned SrcSize = Src->getScalarSizeInBits(); | |||
| 913 | unsigned DestSize = Dest->getScalarSizeInBits(); | |||
| 914 | ||||
| 915 | if (SrcSize == 16 && Subtarget->has16BitInsts()) | |||
| 916 | return DestSize >= 32; | |||
| 917 | ||||
| 918 | return SrcSize == 32 && DestSize == 64; | |||
| 919 | } | |||
| 920 | ||||
| 921 | bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { | |||
| 922 | // Any register load of a 64-bit value really requires 2 32-bit moves. For all | |||
| 923 | // practical purposes, the extra mov 0 to load a 64-bit is free. As used, | |||
| 924 | // this will enable reducing 64-bit operations the 32-bit, which is always | |||
| 925 | // good. | |||
| 926 | ||||
| 927 | if (Src == MVT::i16) | |||
| 928 | return Dest == MVT::i32 ||Dest == MVT::i64 ; | |||
| 929 | ||||
| 930 | return Src == MVT::i32 && Dest == MVT::i64; | |||
| 931 | } | |||
| 932 | ||||
| 933 | bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { | |||
| 934 | // There aren't really 64-bit registers, but pairs of 32-bit ones and only a | |||
| 935 | // limited number of native 64-bit operations. Shrinking an operation to fit | |||
| 936 | // in a single 32-bit register should always be helpful. As currently used, | |||
| 937 | // this is much less general than the name suggests, and is only used in | |||
| 938 | // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is | |||
| 939 | // not profitable, and may actually be harmful. | |||
| 940 | return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; | |||
| 941 | } | |||
| 942 | ||||
| 943 | bool AMDGPUTargetLowering::isDesirableToCommuteWithShift( | |||
| 944 | const SDNode* N, CombineLevel Level) const { | |||
| 945 | assert((N->getOpcode() == ISD::SHL || N->getOpcode() == ISD::SRA ||(static_cast <bool> ((N->getOpcode() == ISD::SHL || N ->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL ) && "Expected shift op") ? void (0) : __assert_fail ( "(N->getOpcode() == ISD::SHL || N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) && \"Expected shift op\"" , "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp", 947, __extension__ __PRETTY_FUNCTION__)) | |||
| 946 | N->getOpcode() == ISD::SRL) &&(static_cast <bool> ((N->getOpcode() == ISD::SHL || N ->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL ) && "Expected shift op") ? void (0) : __assert_fail ( "(N->getOpcode() == ISD::SHL || N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) && \"Expected shift op\"" , "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp", 947, __extension__ __PRETTY_FUNCTION__)) | |||
| 947 | "Expected shift op")(static_cast <bool> ((N->getOpcode() == ISD::SHL || N ->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL ) && "Expected shift op") ? void (0) : __assert_fail ( "(N->getOpcode() == ISD::SHL || N->getOpcode() == ISD::SRA || N->getOpcode() == ISD::SRL) && \"Expected shift op\"" , "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp", 947, __extension__ __PRETTY_FUNCTION__)); | |||
| 948 | // Always commute pre-type legalization and right shifts. | |||
| 949 | // We're looking for shl(or(x,y),z) patterns. | |||
| 950 | if (Level < CombineLevel::AfterLegalizeTypes || | |||
| 951 | N->getOpcode() != ISD::SHL || N->getOperand(0).getOpcode() != ISD::OR) | |||
| 952 | return true; | |||
| 953 | ||||
| 954 | // If only user is a i32 right-shift, then don't destroy a BFE pattern. | |||
| 955 | if (N->getValueType(0) == MVT::i32 && N->use_size() == 1 && | |||
| 956 | (N->use_begin()->getOpcode() == ISD::SRA || | |||
| 957 | N->use_begin()->getOpcode() == ISD::SRL)) | |||
| 958 | return false; | |||
| 959 | ||||
| 960 | // Don't destroy or(shl(load_zext(),c), load_zext()) patterns. | |||
| 961 | auto IsShiftAndLoad = [](SDValue LHS, SDValue RHS) { | |||
| 962 | if (LHS.getOpcode() != ISD::SHL) | |||
| 963 | return false; | |||
| 964 | auto *RHSLd = dyn_cast<LoadSDNode>(RHS); | |||
| 965 | auto *LHS0 = dyn_cast<LoadSDNode>(LHS.getOperand(0)); | |||
| 966 | auto *LHS1 = dyn_cast<ConstantSDNode>(LHS.getOperand(1)); | |||
| 967 | return LHS0 && LHS1 && RHSLd && LHS0->getExtensionType() == ISD::ZEXTLOAD && | |||
| 968 | LHS1->getAPIntValue() == LHS0->getMemoryVT().getScalarSizeInBits() && | |||
| 969 | RHSLd->getExtensionType() == ISD::ZEXTLOAD; | |||
| 970 | }; | |||
| 971 | SDValue LHS = N->getOperand(0).getOperand(0); | |||
| 972 | SDValue RHS = N->getOperand(0).getOperand(1); | |||
| 973 | return !(IsShiftAndLoad(LHS, RHS) || IsShiftAndLoad(RHS, LHS)); | |||
| 974 | } | |||
| 975 | ||||
| 976 | //===---------------------------------------------------------------------===// | |||
| 977 | // TargetLowering Callbacks | |||
| 978 | //===---------------------------------------------------------------------===// | |||
| 979 | ||||
| 980 | CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, | |||
| 981 | bool IsVarArg) { | |||
| 982 | switch (CC) { | |||
| 983 | case CallingConv::AMDGPU_VS: | |||
| 984 | case CallingConv::AMDGPU_GS: | |||
| 985 | case CallingConv::AMDGPU_PS: | |||
| 986 | case CallingConv::AMDGPU_CS: | |||
| 987 | case CallingConv::AMDGPU_HS: | |||
| 988 | case CallingConv::AMDGPU_ES: | |||
| 989 | case CallingConv::AMDGPU_LS: | |||
| 990 | return CC_AMDGPU; | |||
| 991 | case CallingConv::C: | |||
| 992 | case CallingConv::Fast: | |||
| 993 | case CallingConv::Cold: | |||
| 994 | return CC_AMDGPU_Func; | |||
| 995 | case CallingConv::AMDGPU_Gfx: | |||
| 996 | return CC_SI_Gfx; | |||
| 997 | case CallingConv::AMDGPU_KERNEL: | |||
| 998 | case CallingConv::SPIR_KERNEL: | |||
| 999 | default: | |||
| 1000 | report_fatal_error("Unsupported calling convention for call"); | |||
| 1001 | } | |||
| 1002 | } | |||
| 1003 | ||||
| 1004 | CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, | |||
| 1005 | bool IsVarArg) { | |||
| 1006 | switch (CC) { | |||
| 1007 | case CallingConv::AMDGPU_KERNEL: | |||
| 1008 | case CallingConv::SPIR_KERNEL: | |||
| 1009 | llvm_unreachable("kernels should not be handled here")::llvm::llvm_unreachable_internal("kernels should not be handled here" , "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp", 1009); | |||
| 1010 | case CallingConv::AMDGPU_VS: | |||
| 1011 | case CallingConv::AMDGPU_GS: | |||
| 1012 | case CallingConv::AMDGPU_PS: | |||
| 1013 | case CallingConv::AMDGPU_CS: | |||
| 1014 | case CallingConv::AMDGPU_HS: | |||
| 1015 | case CallingConv::AMDGPU_ES: | |||
| 1016 | case CallingConv::AMDGPU_LS: | |||
| 1017 | return RetCC_SI_Shader; | |||
| 1018 | case CallingConv::AMDGPU_Gfx: | |||
| 1019 | return RetCC_SI_Gfx; | |||
| 1020 | case CallingConv::C: | |||
| 1021 | case CallingConv::Fast: | |||
| 1022 | case CallingConv::Cold: | |||
| 1023 | return RetCC_AMDGPU_Func; | |||
| 1024 | default: | |||
| 1025 | report_fatal_error("Unsupported calling convention."); | |||
| 1026 | } | |||
| 1027 | } | |||
| 1028 | ||||
| 1029 | /// The SelectionDAGBuilder will automatically promote function arguments | |||
| 1030 | /// with illegal types. However, this does not work for the AMDGPU targets | |||
| 1031 | /// since the function arguments are stored in memory as these illegal types. | |||
| 1032 | /// In order to handle this properly we need to get the original types sizes | |||
| 1033 | /// from the LLVM IR Function and fixup the ISD:InputArg values before | |||
| 1034 | /// passing them to AnalyzeFormalArguments() | |||
| 1035 | ||||
| 1036 | /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting | |||
| 1037 | /// input values across multiple registers. Each item in the Ins array | |||
| 1038 | /// represents a single value that will be stored in registers. Ins[x].VT is | |||
| 1039 | /// the value type of the value that will be stored in the register, so | |||
| 1040 | /// whatever SDNode we lower the argument to needs to be this type. | |||
| 1041 | /// | |||
| 1042 | /// In order to correctly lower the arguments we need to know the size of each | |||
| 1043 | /// argument. Since Ins[x].VT gives us the size of the register that will | |||
| 1044 | /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type | |||
| 1045 | /// for the original function argument so that we can deduce the correct memory | |||
| 1046 | /// type to use for Ins[x]. In most cases the correct memory type will be | |||
| 1047 | /// Ins[x].ArgVT. However, this will not always be the case. If, for example, | |||
| 1048 | /// we have a kernel argument of type v8i8, this argument will be split into | |||
| 1049 | /// 8 parts and each part will be represented by its own item in the Ins array. | |||
| 1050 | /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of | |||
| 1051 | /// the argument before it was split. From this, we deduce that the memory type | |||
| 1052 | /// for each individual part is i8. We pass the memory type as LocVT to the | |||
| 1053 | /// calling convention analysis function and the register type (Ins[x].VT) as | |||
| 1054 | /// the ValVT. | |||
| 1055 | void AMDGPUTargetLowering::analyzeFormalArgumentsCompute( | |||
| 1056 | CCState &State, | |||
| 1057 | const SmallVectorImpl<ISD::InputArg> &Ins) const { | |||
| 1058 | const MachineFunction &MF = State.getMachineFunction(); | |||
| 1059 | const Function &Fn = MF.getFunction(); | |||
| 1060 | LLVMContext &Ctx = Fn.getParent()->getContext(); | |||
| 1061 | const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF); | |||
| 1062 | const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn); | |||
| 1063 | CallingConv::ID CC = Fn.getCallingConv(); | |||
| 1064 | ||||
| 1065 | Align MaxAlign = Align(1); | |||
| 1066 | uint64_t ExplicitArgOffset = 0; | |||
| 1067 | const DataLayout &DL = Fn.getParent()->getDataLayout(); | |||
| 1068 | ||||
| 1069 | unsigned InIndex = 0; | |||
| 1070 | ||||
| 1071 | for (const Argument &Arg : Fn.args()) { | |||
| 1072 | const bool IsByRef = Arg.hasByRefAttr(); | |||
| 1073 | Type *BaseArgTy = Arg.getType(); | |||
| 1074 | Type *MemArgTy = IsByRef ? Arg.getParamByRefType() : BaseArgTy; | |||
| 1075 | Align Alignment = DL.getValueOrABITypeAlignment( | |||
| 1076 | IsByRef ? Arg.getParamAlign() : std::nullopt, MemArgTy); | |||
| 1077 | MaxAlign = std::max(Alignment, MaxAlign); | |||
| 1078 | uint64_t AllocSize = DL.getTypeAllocSize(MemArgTy); | |||
| 1079 | ||||
| 1080 | uint64_t ArgOffset = alignTo(ExplicitArgOffset, Alignment) + ExplicitOffset; | |||
| 1081 | ExplicitArgOffset = alignTo(ExplicitArgOffset, Alignment) + AllocSize; | |||
| 1082 | ||||
| 1083 | // We're basically throwing away everything passed into us and starting over | |||
| 1084 | // to get accurate in-memory offsets. The "PartOffset" is completely useless | |||
| 1085 | // to us as computed in Ins. | |||
| 1086 | // | |||
| 1087 | // We also need to figure out what type legalization is trying to do to get | |||
| 1088 | // the correct memory offsets. | |||
| 1089 | ||||
| 1090 | SmallVector<EVT, 16> ValueVTs; | |||
| 1091 | SmallVector<uint64_t, 16> Offsets; | |||
| 1092 | ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset); | |||
| 1093 | ||||
| 1094 | for (unsigned Value = 0, NumValues = ValueVTs.size(); | |||
| 1095 | Value != NumValues; ++Value) { | |||
| 1096 | uint64_t BasePartOffset = Offsets[Value]; | |||
| 1097 | ||||
| 1098 | EVT ArgVT = ValueVTs[Value]; | |||
| 1099 | EVT MemVT = ArgVT; | |||
| 1100 | MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT); | |||
| 1101 | unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT); | |||
| 1102 | ||||
| 1103 | if (NumRegs == 1) { | |||
| 1104 | // This argument is not split, so the IR type is the memory type. | |||
| 1105 | if (ArgVT.isExtended()) { | |||
| 1106 | // We have an extended type, like i24, so we should just use the | |||
| 1107 | // register type. | |||
| 1108 | MemVT = RegisterVT; | |||
| 1109 | } else { | |||
| 1110 | MemVT = ArgVT; | |||
| 1111 | } | |||
| 1112 | } else if (ArgVT.isVector() && RegisterVT.isVector() && | |||
| 1113 | ArgVT.getScalarType() == RegisterVT.getScalarType()) { | |||
| 1114 | assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements())(static_cast <bool> (ArgVT.getVectorNumElements() > RegisterVT .getVectorNumElements()) ? void (0) : __assert_fail ("ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements()" , "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp", 1114, __extension__ __PRETTY_FUNCTION__)); | |||
| 1115 | // We have a vector value which has been split into a vector with | |||
| 1116 | // the same scalar type, but fewer elements. This should handle | |||
| 1117 | // all the floating-point vector types. | |||
| 1118 | MemVT = RegisterVT; | |||
| 1119 | } else if (ArgVT.isVector() && | |||
| 1120 | ArgVT.getVectorNumElements() == NumRegs) { | |||
| 1121 | // This arg has been split so that each element is stored in a separate | |||
| 1122 | // register. | |||
| 1123 | MemVT = ArgVT.getScalarType(); | |||
| 1124 | } else if (ArgVT.isExtended()) { | |||
| 1125 | // We have an extended type, like i65. | |||
| 1126 | MemVT = RegisterVT; | |||
| 1127 | } else { | |||
| 1128 | unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs; | |||
| 1129 | assert(ArgVT.getStoreSizeInBits() % NumRegs == 0)(static_cast <bool> (ArgVT.getStoreSizeInBits() % NumRegs == 0) ? void (0) : __assert_fail ("ArgVT.getStoreSizeInBits() % NumRegs == 0" , "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp", 1129, __extension__ __PRETTY_FUNCTION__)); | |||
| 1130 | if (RegisterVT.isInteger()) { | |||
| 1131 | MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); | |||
| 1132 | } else if (RegisterVT.isVector()) { | |||
| 1133 | assert(!RegisterVT.getScalarType().isFloatingPoint())(static_cast <bool> (!RegisterVT.getScalarType().isFloatingPoint ()) ? void (0) : __assert_fail ("!RegisterVT.getScalarType().isFloatingPoint()" , "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp", 1133, __extension__ __PRETTY_FUNCTION__)); | |||
| 1134 | unsigned NumElements = RegisterVT.getVectorNumElements(); | |||
| 1135 | assert(MemoryBits % NumElements == 0)(static_cast <bool> (MemoryBits % NumElements == 0) ? void (0) : __assert_fail ("MemoryBits % NumElements == 0", "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp" , 1135, __extension__ __PRETTY_FUNCTION__)); | |||
| 1136 | // This vector type has been split into another vector type with | |||
| 1137 | // a different elements size. | |||
| 1138 | EVT ScalarVT = EVT::getIntegerVT(State.getContext(), | |||
| 1139 | MemoryBits / NumElements); | |||
| 1140 | MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); | |||
| 1141 | } else { | |||
| 1142 | llvm_unreachable("cannot deduce memory type.")::llvm::llvm_unreachable_internal("cannot deduce memory type." , "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp", 1142); | |||
| 1143 | } | |||
| 1144 | } | |||
| 1145 | ||||
| 1146 | // Convert one element vectors to scalar. | |||
| 1147 | if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) | |||
| 1148 | MemVT = MemVT.getScalarType(); | |||
| 1149 | ||||
| 1150 | // Round up vec3/vec5 argument. | |||
| 1151 | if (MemVT.isVector() && !MemVT.isPow2VectorType()) { | |||
| 1152 | assert(MemVT.getVectorNumElements() == 3 ||(static_cast <bool> (MemVT.getVectorNumElements() == 3 || MemVT.getVectorNumElements() == 5 || (MemVT.getVectorNumElements () >= 9 && MemVT.getVectorNumElements() <= 12)) ? void (0) : __assert_fail ("MemVT.getVectorNumElements() == 3 || MemVT.getVectorNumElements() == 5 || (MemVT.getVectorNumElements() >= 9 && MemVT.getVectorNumElements() <= 12)" , "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp", 1155, __extension__ __PRETTY_FUNCTION__)) | |||
| 1153 | MemVT.getVectorNumElements() == 5 ||(static_cast <bool> (MemVT.getVectorNumElements() == 3 || MemVT.getVectorNumElements() == 5 || (MemVT.getVectorNumElements () >= 9 && MemVT.getVectorNumElements() <= 12)) ? void (0) : __assert_fail ("MemVT.getVectorNumElements() == 3 || MemVT.getVectorNumElements() == 5 || (MemVT.getVectorNumElements() >= 9 && MemVT.getVectorNumElements() <= 12)" , "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp", 1155, __extension__ __PRETTY_FUNCTION__)) | |||
| 1154 | (MemVT.getVectorNumElements() >= 9 &&(static_cast <bool> (MemVT.getVectorNumElements() == 3 || MemVT.getVectorNumElements() == 5 || (MemVT.getVectorNumElements () >= 9 && MemVT.getVectorNumElements() <= 12)) ? void (0) : __assert_fail ("MemVT.getVectorNumElements() == 3 || MemVT.getVectorNumElements() == 5 || (MemVT.getVectorNumElements() >= 9 && MemVT.getVectorNumElements() <= 12)" , "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp", 1155, __extension__ __PRETTY_FUNCTION__)) | |||
| 1155 | MemVT.getVectorNumElements() <= 12))(static_cast <bool> (MemVT.getVectorNumElements() == 3 || MemVT.getVectorNumElements() == 5 || (MemVT.getVectorNumElements () >= 9 && MemVT.getVectorNumElements() <= 12)) ? void (0) : __assert_fail ("MemVT.getVectorNumElements() == 3 || MemVT.getVectorNumElements() == 5 || (MemVT.getVectorNumElements() >= 9 && MemVT.getVectorNumElements() <= 12)" , "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp", 1155, __extension__ __PRETTY_FUNCTION__)); | |||
| 1156 | MemVT = MemVT.getPow2VectorType(State.getContext()); | |||
| 1157 | } else if (!MemVT.isSimple() && !MemVT.isVector()) { | |||
| 1158 | MemVT = MemVT.getRoundIntegerType(State.getContext()); | |||
| 1159 | } | |||
| 1160 | ||||
| 1161 | unsigned PartOffset = 0; | |||
| 1162 | for (unsigned i = 0; i != NumRegs; ++i) { | |||
| 1163 | State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT, | |||
| 1164 | BasePartOffset + PartOffset, | |||
| 1165 | MemVT.getSimpleVT(), | |||
| 1166 | CCValAssign::Full)); | |||
| 1167 | PartOffset += MemVT.getStoreSize(); | |||
| 1168 | } | |||
| 1169 | } | |||
| 1170 | } | |||
| 1171 | } | |||
| 1172 | ||||
| 1173 | SDValue AMDGPUTargetLowering::LowerReturn( | |||
| 1174 | SDValue Chain, CallingConv::ID CallConv, | |||
| 1175 | bool isVarArg, | |||
| 1176 | const SmallVectorImpl<ISD::OutputArg> &Outs, | |||
| 1177 | const SmallVectorImpl<SDValue> &OutVals, | |||
| 1178 | const SDLoc &DL, SelectionDAG &DAG) const { | |||
| 1179 | // FIXME: Fails for r600 tests | |||
| 1180 | //assert(!isVarArg && Outs.empty() && OutVals.empty() && | |||
| 1181 | // "wave terminate should not have return values"); | |||
| 1182 | return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); | |||
| 1183 | } | |||
| 1184 | ||||
| 1185 | //===---------------------------------------------------------------------===// | |||
| 1186 | // Target specific lowering | |||
| 1187 | //===---------------------------------------------------------------------===// | |||
| 1188 | ||||
| 1189 | /// Selects the correct CCAssignFn for a given CallingConvention value. | |||
| 1190 | CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, | |||
| 1191 | bool IsVarArg) { | |||
| 1192 | return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); | |||
| 1193 | } | |||
| 1194 | ||||
| 1195 | CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, | |||
| 1196 | bool IsVarArg) { | |||
| 1197 | return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); | |||
| 1198 | } | |||
| 1199 | ||||
| 1200 | SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, | |||
| 1201 | SelectionDAG &DAG, | |||
| 1202 | MachineFrameInfo &MFI, | |||
| 1203 | int ClobberedFI) const { | |||
| 1204 | SmallVector<SDValue, 8> ArgChains; | |||
| 1205 | int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); | |||
| 1206 | int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; | |||
| 1207 | ||||
| 1208 | // Include the original chain at the beginning of the list. When this is | |||
| 1209 | // used by target LowerCall hooks, this helps legalize find the | |||
| 1210 | // CALLSEQ_BEGIN node. | |||
| 1211 | ArgChains.push_back(Chain); | |||
| 1212 | ||||
| 1213 | // Add a chain value for each stack argument corresponding | |||
| 1214 | for (SDNode *U : DAG.getEntryNode().getNode()->uses()) { | |||
| 1215 | if (LoadSDNode *L = dyn_cast<LoadSDNode>(U)) { | |||
| 1216 | if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) { | |||
| 1217 | if (FI->getIndex() < 0) { | |||
| 1218 | int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); | |||
| 1219 | int64_t InLastByte = InFirstByte; | |||
| 1220 | InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; | |||
| 1221 | ||||
| 1222 | if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || | |||
| 1223 | (FirstByte <= InFirstByte && InFirstByte <= LastByte)) | |||
| 1224 | ArgChains.push_back(SDValue(L, 1)); | |||
| 1225 | } | |||
| 1226 | } | |||
| 1227 | } | |||
| 1228 | } | |||
| 1229 | ||||
| 1230 | // Build a tokenfactor for all the chains. | |||
| 1231 | return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); | |||
| 1232 | } | |||
| 1233 | ||||
| 1234 | SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, | |||
| 1235 | SmallVectorImpl<SDValue> &InVals, | |||
| 1236 | StringRef Reason) const { | |||
| 1237 | SDValue Callee = CLI.Callee; | |||
| 1238 | SelectionDAG &DAG = CLI.DAG; | |||
| 1239 | ||||
| 1240 | const Function &Fn = DAG.getMachineFunction().getFunction(); | |||
| 1241 | ||||
| 1242 | StringRef FuncName("<unknown>"); | |||
| 1243 | ||||
| 1244 | if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) | |||
| 1245 | FuncName = G->getSymbol(); | |||
| 1246 | else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) | |||
| 1247 | FuncName = G->getGlobal()->getName(); | |||
| 1248 | ||||
| 1249 | DiagnosticInfoUnsupported NoCalls( | |||
| 1250 | Fn, Reason + FuncName, CLI.DL.getDebugLoc()); | |||
| 1251 | DAG.getContext()->diagnose(NoCalls); | |||
| 1252 | ||||
| 1253 | if (!CLI.IsTailCall) { | |||
| 1254 | for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) | |||
| 1255 | InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); | |||
| 1256 | } | |||
| 1257 | ||||
| 1258 | return DAG.getEntryNode(); | |||
| 1259 | } | |||
| 1260 | ||||
| 1261 | SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, | |||
| 1262 | SmallVectorImpl<SDValue> &InVals) const { | |||
| 1263 | return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); | |||
| 1264 | } | |||
| 1265 | ||||
| 1266 | SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, | |||
| 1267 | SelectionDAG &DAG) const { | |||
| 1268 | const Function &Fn = DAG.getMachineFunction().getFunction(); | |||
| 1269 | ||||
| 1270 | DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", | |||
| 1271 | SDLoc(Op).getDebugLoc()); | |||
| 1272 | DAG.getContext()->diagnose(NoDynamicAlloca); | |||
| 1273 | auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; | |||
| 1274 | return DAG.getMergeValues(Ops, SDLoc()); | |||
| 1275 | } | |||
| 1276 | ||||
| 1277 | SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, | |||
| 1278 | SelectionDAG &DAG) const { | |||
| 1279 | switch (Op.getOpcode()) { | |||
| 1280 | default: | |||
| 1281 | Op->print(errs(), &DAG); | |||
| 1282 | llvm_unreachable("Custom lowering code for this "::llvm::llvm_unreachable_internal("Custom lowering code for this " "instruction is not implemented yet!", "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp" , 1283) | |||
| 1283 | "instruction is not implemented yet!")::llvm::llvm_unreachable_internal("Custom lowering code for this " "instruction is not implemented yet!", "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp" , 1283); | |||
| 1284 | break; | |||
| 1285 | case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); | |||
| 1286 | case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); | |||
| 1287 | case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); | |||
| 1288 | case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); | |||
| 1289 | case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); | |||
| 1290 | case ISD::FREM: return LowerFREM(Op, DAG); | |||
| 1291 | case ISD::FCEIL: return LowerFCEIL(Op, DAG); | |||
| 1292 | case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); | |||
| 1293 | case ISD::FRINT: return LowerFRINT(Op, DAG); | |||
| 1294 | case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); | |||
| 1295 | case ISD::FROUNDEVEN: | |||
| 1296 | return LowerFROUNDEVEN(Op, DAG); | |||
| 1297 | case ISD::FROUND: return LowerFROUND(Op, DAG); | |||
| 1298 | case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); | |||
| 1299 | case ISD::FLOG: | |||
| 1300 | return LowerFLOG(Op, DAG, numbers::ln2f); | |||
| 1301 | case ISD::FLOG10: | |||
| 1302 | return LowerFLOG(Op, DAG, numbers::ln2f / numbers::ln10f); | |||
| 1303 | case ISD::FEXP: | |||
| 1304 | return lowerFEXP(Op, DAG); | |||
| 1305 | case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); | |||
| 1306 | case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); | |||
| 1307 | case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); | |||
| 1308 | case ISD::FP_TO_SINT: | |||
| 1309 | case ISD::FP_TO_UINT: | |||
| 1310 | return LowerFP_TO_INT(Op, DAG); | |||
| 1311 | case ISD::CTTZ: | |||
| 1312 | case ISD::CTTZ_ZERO_UNDEF: | |||
| 1313 | case ISD::CTLZ: | |||
| 1314 | case ISD::CTLZ_ZERO_UNDEF: | |||
| 1315 | return LowerCTLZ_CTTZ(Op, DAG); | |||
| 1316 | case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); | |||
| 1317 | } | |||
| 1318 | return Op; | |||
| 1319 | } | |||
| 1320 | ||||
| 1321 | void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, | |||
| 1322 | SmallVectorImpl<SDValue> &Results, | |||
| 1323 | SelectionDAG &DAG) const { | |||
| 1324 | switch (N->getOpcode()) { | |||
| 1325 | case ISD::SIGN_EXTEND_INREG: | |||
| 1326 | // Different parts of legalization seem to interpret which type of | |||
| 1327 | // sign_extend_inreg is the one to check for custom lowering. The extended | |||
| 1328 | // from type is what really matters, but some places check for custom | |||
| 1329 | // lowering of the result type. This results in trying to use | |||
| 1330 | // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do | |||
| 1331 | // nothing here and let the illegal result integer be handled normally. | |||
| 1332 | return; | |||
| 1333 | default: | |||
| 1334 | return; | |||
| 1335 | } | |||
| 1336 | } | |||
| 1337 | ||||
| 1338 | SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, | |||
| 1339 | SDValue Op, | |||
| 1340 | SelectionDAG &DAG) const { | |||
| 1341 | ||||
| 1342 | const DataLayout &DL = DAG.getDataLayout(); | |||
| 1343 | GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); | |||
| 1344 | const GlobalValue *GV = G->getGlobal(); | |||
| 1345 | ||||
| 1346 | if (!MFI->isModuleEntryFunction()) { | |||
| 1347 | if (std::optional<uint32_t> Address = | |||
| 1348 | AMDGPUMachineFunction::getLDSAbsoluteAddress(*GV)) { | |||
| 1349 | return DAG.getConstant(*Address, SDLoc(Op), Op.getValueType()); | |||
| 1350 | } | |||
| 1351 | } | |||
| 1352 | ||||
| 1353 | if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || | |||
| 1354 | G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) { | |||
| 1355 | if (!MFI->isModuleEntryFunction() && | |||
| 1356 | !GV->getName().equals("llvm.amdgcn.module.lds")) { | |||
| 1357 | SDLoc DL(Op); | |||
| 1358 | const Function &Fn = DAG.getMachineFunction().getFunction(); | |||
| 1359 | DiagnosticInfoUnsupported BadLDSDecl( | |||
| 1360 | Fn, "local memory global used by non-kernel function", | |||
| 1361 | DL.getDebugLoc(), DS_Warning); | |||
| 1362 | DAG.getContext()->diagnose(BadLDSDecl); | |||
| 1363 | ||||
| 1364 | // We currently don't have a way to correctly allocate LDS objects that | |||
| 1365 | // aren't directly associated with a kernel. We do force inlining of | |||
| 1366 | // functions that use local objects. However, if these dead functions are | |||
| 1367 | // not eliminated, we don't want a compile time error. Just emit a warning | |||
| 1368 | // and a trap, since there should be no callable path here. | |||
| 1369 | SDValue Trap = DAG.getNode(ISD::TRAP, DL, MVT::Other, DAG.getEntryNode()); | |||
| 1370 | SDValue OutputChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, | |||
| 1371 | Trap, DAG.getRoot()); | |||
| 1372 | DAG.setRoot(OutputChain); | |||
| 1373 | return DAG.getUNDEF(Op.getValueType()); | |||
| 1374 | } | |||
| 1375 | ||||
| 1376 | // XXX: What does the value of G->getOffset() mean? | |||
| 1377 | assert(G->getOffset() == 0 &&(static_cast <bool> (G->getOffset() == 0 && "Do not know what to do with an non-zero offset" ) ? void (0) : __assert_fail ("G->getOffset() == 0 && \"Do not know what to do with an non-zero offset\"" , "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp", 1378, __extension__ __PRETTY_FUNCTION__)) | |||
| 1378 | "Do not know what to do with an non-zero offset")(static_cast <bool> (G->getOffset() == 0 && "Do not know what to do with an non-zero offset" ) ? void (0) : __assert_fail ("G->getOffset() == 0 && \"Do not know what to do with an non-zero offset\"" , "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp", 1378, __extension__ __PRETTY_FUNCTION__)); | |||
| 1379 | ||||
| 1380 | // TODO: We could emit code to handle the initialization somewhere. | |||
| 1381 | // We ignore the initializer for now and legalize it to allow selection. | |||
| 1382 | // The initializer will anyway get errored out during assembly emission. | |||
| 1383 | unsigned Offset = MFI->allocateLDSGlobal(DL, *cast<GlobalVariable>(GV)); | |||
| 1384 | return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); | |||
| 1385 | } | |||
| 1386 | return SDValue(); | |||
| 1387 | } | |||
| 1388 | ||||
| 1389 | SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, | |||
| 1390 | SelectionDAG &DAG) const { | |||
| 1391 | SmallVector<SDValue, 8> Args; | |||
| 1392 | SDLoc SL(Op); | |||
| 1393 | ||||
| 1394 | EVT VT = Op.getValueType(); | |||
| 1395 | if (VT.getVectorElementType().getSizeInBits() < 32) { | |||
| 1396 | unsigned OpBitSize = Op.getOperand(0).getValueType().getSizeInBits(); | |||
| 1397 | if (OpBitSize >= 32 && OpBitSize % 32 == 0) { | |||
| 1398 | unsigned NewNumElt = OpBitSize / 32; | |||
| 1399 | EVT NewEltVT = (NewNumElt == 1) ? MVT::i32 | |||
| 1400 | : EVT::getVectorVT(*DAG.getContext(), | |||
| 1401 | MVT::i32, NewNumElt); | |||
| 1402 | for (const SDUse &U : Op->ops()) { | |||
| 1403 | SDValue In = U.get(); | |||
| 1404 | SDValue NewIn = DAG.getNode(ISD::BITCAST, SL, NewEltVT, In); | |||
| 1405 | if (NewNumElt > 1) | |||
| 1406 | DAG.ExtractVectorElements(NewIn, Args); | |||
| 1407 | else | |||
| 1408 | Args.push_back(NewIn); | |||
| 1409 | } | |||
| 1410 | ||||
| 1411 | EVT NewVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, | |||
| 1412 | NewNumElt * Op.getNumOperands()); | |||
| 1413 | SDValue BV = DAG.getBuildVector(NewVT, SL, Args); | |||
| 1414 | return DAG.getNode(ISD::BITCAST, SL, VT, BV); | |||
| 1415 | } | |||
| 1416 | } | |||
| 1417 | ||||
| 1418 | for (const SDUse &U : Op->ops()) | |||
| 1419 | DAG.ExtractVectorElements(U.get(), Args); | |||
| 1420 | ||||
| 1421 | return DAG.getBuildVector(Op.getValueType(), SL, Args); | |||
| 1422 | } | |||
| 1423 | ||||
| 1424 | SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, | |||
| 1425 | SelectionDAG &DAG) const { | |||
| 1426 | SDLoc SL(Op); | |||
| 1427 | SmallVector<SDValue, 8> Args; | |||
| 1428 | unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); | |||
| 1429 | EVT VT = Op.getValueType(); | |||
| 1430 | EVT SrcVT = Op.getOperand(0).getValueType(); | |||
| 1431 | ||||
| 1432 | if (VT.getScalarSizeInBits() == 16 && Start % 2 == 0) { | |||
| 1433 | unsigned NumElt = VT.getVectorNumElements(); | |||
| 1434 | unsigned NumSrcElt = SrcVT.getVectorNumElements(); | |||
| 1435 | assert(NumElt % 2 == 0 && NumSrcElt % 2 == 0 && "expect legal types")(static_cast <bool> (NumElt % 2 == 0 && NumSrcElt % 2 == 0 && "expect legal types") ? void (0) : __assert_fail ("NumElt % 2 == 0 && NumSrcElt % 2 == 0 && \"expect legal types\"" , "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp", 1435, __extension__ __PRETTY_FUNCTION__)); | |||
| 1436 | ||||
| 1437 | // We have some TableGen patterns for when the extracted vector is exactly | |||
| 1438 | // the low or high half of the operand. | |||
| 1439 | if ((NumSrcElt == 2 * NumElt) && (Start == 0 || Start == NumElt)) | |||
| 1440 | return Op; | |||
| 1441 | ||||
| 1442 | // Extract 32-bit registers at a time. | |||
| 1443 | EVT NewSrcVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumSrcElt / 2); | |||
| 1444 | EVT NewVT = NumElt == 2 | |||
| 1445 | ? MVT::i32 | |||
| 1446 | : EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElt / 2); | |||
| 1447 | SDValue Tmp = DAG.getNode(ISD::BITCAST, SL, NewSrcVT, Op.getOperand(0)); | |||
| 1448 | ||||
| 1449 | DAG.ExtractVectorElements(Tmp, Args, Start / 2, NumElt / 2); | |||
| 1450 | if (NumElt == 2) | |||
| 1451 | Tmp = Args[0]; | |||
| 1452 | else | |||
| 1453 | Tmp = DAG.getBuildVector(NewVT, SL, Args); | |||
| 1454 | ||||
| 1455 | return DAG.getNode(ISD::BITCAST, SL, VT, Tmp); | |||
| 1456 | } | |||
| 1457 | ||||
| 1458 | DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, | |||
| 1459 | VT.getVectorNumElements()); | |||
| 1460 | ||||
| 1461 | return DAG.getBuildVector(Op.getValueType(), SL, Args); | |||
| 1462 | } | |||
| 1463 | ||||
| 1464 | // TODO: Handle fabs too | |||
| 1465 | static SDValue peekFNeg(SDValue Val) { | |||
| 1466 | if (Val.getOpcode() == ISD::FNEG) | |||
| 1467 | return Val.getOperand(0); | |||
| 1468 | ||||
| 1469 | return Val; | |||
| 1470 | } | |||
| 1471 | SDValue AMDGPUTargetLowering::combineFMinMaxLegacyImpl( | |||
| 1472 | const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, SDValue True, | |||
| 1473 | SDValue False, SDValue CC, DAGCombinerInfo &DCI) const { | |||
| 1474 | SelectionDAG &DAG = DCI.DAG; | |||
| 1475 | ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); | |||
| 1476 | switch (CCOpcode) { | |||
| 1477 | case ISD::SETOEQ: | |||
| 1478 | case ISD::SETONE: | |||
| 1479 | case ISD::SETUNE: | |||
| 1480 | case ISD::SETNE: | |||
| 1481 | case ISD::SETUEQ: | |||
| 1482 | case ISD::SETEQ: | |||
| 1483 | case ISD::SETFALSE: | |||
| 1484 | case ISD::SETFALSE2: | |||
| 1485 | case ISD::SETTRUE: | |||
| 1486 | case ISD::SETTRUE2: | |||
| 1487 | case ISD::SETUO: | |||
| 1488 | case ISD::SETO: | |||
| 1489 | break; | |||
| 1490 | case ISD::SETULE: | |||
| 1491 | case ISD::SETULT: { | |||
| 1492 | if (LHS == True) | |||
| 1493 | return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); | |||
| 1494 | return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); | |||
| 1495 | } | |||
| 1496 | case ISD::SETOLE: | |||
| 1497 | case ISD::SETOLT: | |||
| 1498 | case ISD::SETLE: | |||
| 1499 | case ISD::SETLT: { | |||
| 1500 | // Ordered. Assume ordered for undefined. | |||
| 1501 | ||||
| 1502 | // Only do this after legalization to avoid interfering with other combines | |||
| 1503 | // which might occur. | |||
| 1504 | if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && | |||
| 1505 | !DCI.isCalledByLegalizer()) | |||
| 1506 | return SDValue(); | |||
| 1507 | ||||
| 1508 | // We need to permute the operands to get the correct NaN behavior. The | |||
| 1509 | // selected operand is the second one based on the failing compare with NaN, | |||
| 1510 | // so permute it based on the compare type the hardware uses. | |||
| 1511 | if (LHS == True) | |||
| 1512 | return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); | |||
| 1513 | return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); | |||
| 1514 | } | |||
| 1515 | case ISD::SETUGE: | |||
| 1516 | case ISD::SETUGT: { | |||
| 1517 | if (LHS == True) | |||
| 1518 | return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); | |||
| 1519 | return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); | |||
| 1520 | } | |||
| 1521 | case ISD::SETGT: | |||
| 1522 | case ISD::SETGE: | |||
| 1523 | case ISD::SETOGE: | |||
| 1524 | case ISD::SETOGT: { | |||
| 1525 | if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && | |||
| 1526 | !DCI.isCalledByLegalizer()) | |||
| 1527 | return SDValue(); | |||
| 1528 | ||||
| 1529 | if (LHS == True) | |||
| 1530 | return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); | |||
| 1531 | return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); | |||
| 1532 | } | |||
| 1533 | case ISD::SETCC_INVALID: | |||
| 1534 | llvm_unreachable("Invalid setcc condcode!")::llvm::llvm_unreachable_internal("Invalid setcc condcode!", "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp" , 1534); | |||
| 1535 | } | |||
| 1536 | return SDValue(); | |||
| 1537 | } | |||
| 1538 | ||||
| 1539 | /// Generate Min/Max node | |||
| 1540 | SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, | |||
| 1541 | SDValue LHS, SDValue RHS, | |||
| 1542 | SDValue True, SDValue False, | |||
| 1543 | SDValue CC, | |||
| 1544 | DAGCombinerInfo &DCI) const { | |||
| 1545 | if ((LHS == True && RHS == False) || (LHS == False && RHS == True)) | |||
| 1546 | return combineFMinMaxLegacyImpl(DL, VT, LHS, RHS, True, False, CC, DCI); | |||
| 1547 | ||||
| 1548 | SelectionDAG &DAG = DCI.DAG; | |||
| 1549 | ||||
| 1550 | // If we can't directly match this, try to see if we can fold an fneg to | |||
| 1551 | // match. | |||
| 1552 | ||||
| 1553 | ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); | |||
| 1554 | ConstantFPSDNode *CFalse = dyn_cast<ConstantFPSDNode>(False); | |||
| 1555 | SDValue NegTrue = peekFNeg(True); | |||
| 1556 | ||||
| 1557 | // Undo the combine foldFreeOpFromSelect does if it helps us match the | |||
| 1558 | // fmin/fmax. | |||
| 1559 | // | |||
| 1560 | // select (fcmp olt (lhs, K)), (fneg lhs), -K | |||
| 1561 | // -> fneg (fmin_legacy lhs, K) | |||
| 1562 | // | |||
| 1563 | // TODO: Use getNegatedExpression | |||
| 1564 | if (LHS == NegTrue && CFalse && CRHS) { | |||
| 1565 | APFloat NegRHS = neg(CRHS->getValueAPF()); | |||
| 1566 | if (NegRHS == CFalse->getValueAPF()) { | |||
| 1567 | SDValue Combined = | |||
| 1568 | combineFMinMaxLegacyImpl(DL, VT, LHS, RHS, NegTrue, False, CC, DCI); | |||
| 1569 | if (Combined) | |||
| 1570 | return DAG.getNode(ISD::FNEG, DL, VT, Combined); | |||
| 1571 | return SDValue(); | |||
| 1572 | } | |||
| 1573 | } | |||
| 1574 | ||||
| 1575 | return SDValue(); | |||
| 1576 | } | |||
| 1577 | ||||
| 1578 | std::pair<SDValue, SDValue> | |||
| 1579 | AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { | |||
| 1580 | SDLoc SL(Op); | |||
| 1581 | ||||
| 1582 | SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); | |||
| 1583 | ||||
| 1584 | const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); | |||
| 1585 | const SDValue One = DAG.getConstant(1, SL, MVT::i32); | |||
| 1586 | ||||
| 1587 | SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); | |||
| 1588 | SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); | |||
| 1589 | ||||
| 1590 | return std::pair(Lo, Hi); | |||
| 1591 | } | |||
| 1592 | ||||
| 1593 | SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { | |||
| 1594 | SDLoc SL(Op); | |||
| 1595 | ||||
| 1596 | SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); | |||
| 1597 | const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); | |||
| 1598 | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); | |||
| 1599 | } | |||
| 1600 | ||||
| 1601 | SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { | |||
| 1602 | SDLoc SL(Op); | |||
| 1603 | ||||
| 1604 | SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); | |||
| 1605 | const SDValue One = DAG.getConstant(1, SL, MVT::i32); | |||
| 1606 | return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); | |||
| 1607 | } | |||
| 1608 | ||||
| 1609 | // Split a vector type into two parts. The first part is a power of two vector. | |||
| 1610 | // The second part is whatever is left over, and is a scalar if it would | |||
| 1611 | // otherwise be a 1-vector. | |||
| 1612 | std::pair<EVT, EVT> | |||
| 1613 | AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const { | |||
| 1614 | EVT LoVT, HiVT; | |||
| 1615 | EVT EltVT = VT.getVectorElementType(); | |||
| 1616 | unsigned NumElts = VT.getVectorNumElements(); | |||
| 1617 | unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2); | |||
| 1618 | LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts); | |||
| 1619 | HiVT = NumElts - LoNumElts == 1 | |||
| 1620 | ? EltVT | |||
| 1621 | : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts); | |||
| 1622 | return std::pair(LoVT, HiVT); | |||
| 1623 | } | |||
| 1624 | ||||
| 1625 | // Split a vector value into two parts of types LoVT and HiVT. HiVT could be | |||
| 1626 | // scalar. | |||
| 1627 | std::pair<SDValue, SDValue> | |||
| 1628 | AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL, | |||
| 1629 | const EVT &LoVT, const EVT &HiVT, | |||
| 1630 | SelectionDAG &DAG) const { | |||
| 1631 | assert(LoVT.getVectorNumElements() +(static_cast <bool> (LoVT.getVectorNumElements() + (HiVT .isVector() ? HiVT.getVectorNumElements() : 1) <= N.getValueType ().getVectorNumElements() && "More vector elements requested than available!" ) ? void (0) : __assert_fail ("LoVT.getVectorNumElements() + (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <= N.getValueType().getVectorNumElements() && \"More vector elements requested than available!\"" , "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp", 1634, __extension__ __PRETTY_FUNCTION__)) | |||
| 1632 | (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <=(static_cast <bool> (LoVT.getVectorNumElements() + (HiVT .isVector() ? HiVT.getVectorNumElements() : 1) <= N.getValueType ().getVectorNumElements() && "More vector elements requested than available!" ) ? void (0) : __assert_fail ("LoVT.getVectorNumElements() + (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <= N.getValueType().getVectorNumElements() && \"More vector elements requested than available!\"" , "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp", 1634, __extension__ __PRETTY_FUNCTION__)) | |||
| 1633 | N.getValueType().getVectorNumElements() &&(static_cast <bool> (LoVT.getVectorNumElements() + (HiVT .isVector() ? HiVT.getVectorNumElements() : 1) <= N.getValueType ().getVectorNumElements() && "More vector elements requested than available!" ) ? void (0) : __assert_fail ("LoVT.getVectorNumElements() + (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <= N.getValueType().getVectorNumElements() && \"More vector elements requested than available!\"" , "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp", 1634, __extension__ __PRETTY_FUNCTION__)) | |||
| 1634 | "More vector elements requested than available!")(static_cast <bool> (LoVT.getVectorNumElements() + (HiVT .isVector() ? HiVT.getVectorNumElements() : 1) <= N.getValueType ().getVectorNumElements() && "More vector elements requested than available!" ) ? void (0) : __assert_fail ("LoVT.getVectorNumElements() + (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <= N.getValueType().getVectorNumElements() && \"More vector elements requested than available!\"" , "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp", 1634, __extension__ __PRETTY_FUNCTION__)); | |||
| 1635 | SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, | |||
| 1636 | DAG.getVectorIdxConstant(0, DL)); | |||
| 1637 | SDValue Hi = DAG.getNode( | |||
| 1638 | HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL, | |||
| 1639 | HiVT, N, DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), DL)); | |||
| 1640 | return std::pair(Lo, Hi); | |||
| 1641 | } | |||
| 1642 | ||||
| 1643 | SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, | |||
| 1644 | SelectionDAG &DAG) const { | |||
| 1645 | LoadSDNode *Load = cast<LoadSDNode>(Op); | |||
| 1646 | EVT VT = Op.getValueType(); | |||
| 1647 | SDLoc SL(Op); | |||
| 1648 | ||||
| 1649 | ||||
| 1650 | // If this is a 2 element vector, we really want to scalarize and not create | |||
| 1651 | // weird 1 element vectors. | |||
| 1652 | if (VT.getVectorNumElements() == 2) { | |||
| 1653 | SDValue Ops[2]; | |||
| 1654 | std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG); | |||
| 1655 | return DAG.getMergeValues(Ops, SL); | |||
| 1656 | } | |||
| 1657 | ||||
| 1658 | SDValue BasePtr = Load->getBasePtr(); | |||
| 1659 | EVT MemVT = Load->getMemoryVT(); | |||
| 1660 | ||||
| 1661 | const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); | |||
| 1662 | ||||
| 1663 | EVT LoVT, HiVT; | |||
| 1664 | EVT LoMemVT, HiMemVT; | |||
| 1665 | SDValue Lo, Hi; | |||
| 1666 | ||||
| 1667 | std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); | |||
| 1668 | std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); | |||
| 1669 | std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG); | |||
| 1670 | ||||
| 1671 | unsigned Size = LoMemVT.getStoreSize(); | |||
| 1672 | Align BaseAlign = Load->getAlign(); | |||
| 1673 | Align HiAlign = commonAlignment(BaseAlign, Size); | |||
| 1674 | ||||
| 1675 | SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, | |||
| 1676 | Load->getChain(), BasePtr, SrcValue, LoMemVT, | |||
| 1677 | BaseAlign, Load->getMemOperand()->getFlags()); | |||
| 1678 | SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Size)); | |||
| 1679 | SDValue HiLoad = | |||
| 1680 | DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), | |||
| 1681 | HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), | |||
| 1682 | HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); | |||
| 1683 | ||||
| 1684 | SDValue Join; | |||
| 1685 | if (LoVT == HiVT) { | |||
| 1686 | // This is the case that the vector is power of two so was evenly split. | |||
| 1687 | Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad); | |||
| 1688 | } else { | |||
| 1689 | Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad, | |||
| 1690 | DAG.getVectorIdxConstant(0, SL)); | |||
| 1691 | Join = DAG.getNode( | |||
| 1692 | HiVT.isVector() ? ISD::INSERT_SUBVECTOR : ISD::INSERT_VECTOR_ELT, SL, | |||
| 1693 | VT, Join, HiLoad, | |||
| 1694 | DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), SL)); | |||
| 1695 | } | |||
| 1696 | ||||
| 1697 | SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other, | |||
| 1698 | LoLoad.getValue(1), HiLoad.getValue(1))}; | |||
| 1699 | ||||
| 1700 | return DAG.getMergeValues(Ops, SL); | |||
| 1701 | } | |||
| 1702 | ||||
| 1703 | SDValue AMDGPUTargetLowering::WidenOrSplitVectorLoad(SDValue Op, | |||
| 1704 | SelectionDAG &DAG) const { | |||
| 1705 | LoadSDNode *Load = cast<LoadSDNode>(Op); | |||
| 1706 | EVT VT = Op.getValueType(); | |||
| 1707 | SDValue BasePtr = Load->getBasePtr(); | |||
| 1708 | EVT MemVT = Load->getMemoryVT(); | |||
| 1709 | SDLoc SL(Op); | |||
| 1710 | const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); | |||
| 1711 | Align BaseAlign = Load->getAlign(); | |||
| 1712 | unsigned NumElements = MemVT.getVectorNumElements(); | |||
| 1713 | ||||
| 1714 | // Widen from vec3 to vec4 when the load is at least 8-byte aligned | |||
| 1715 | // or 16-byte fully dereferenceable. Otherwise, split the vector load. | |||
| 1716 | if (NumElements != 3 || | |||
| 1717 | (BaseAlign < Align(8) && | |||
| 1718 | !SrcValue.isDereferenceable(16, *DAG.getContext(), DAG.getDataLayout()))) | |||
| 1719 | return SplitVectorLoad(Op, DAG); | |||
| 1720 | ||||
| 1721 | assert(NumElements == 3)(static_cast <bool> (NumElements == 3) ? void (0) : __assert_fail ("NumElements == 3", "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp" , 1721, __extension__ __PRETTY_FUNCTION__)); | |||
| 1722 | ||||
| 1723 | EVT WideVT = | |||
| 1724 | EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); | |||
| 1725 | EVT WideMemVT = | |||
| 1726 | EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4); | |||
| 1727 | SDValue WideLoad = DAG.getExtLoad( | |||
| 1728 | Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue, | |||
| 1729 | WideMemVT, BaseAlign, Load->getMemOperand()->getFlags()); | |||
| 1730 | return DAG.getMergeValues( | |||
| 1731 | {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad, | |||
| 1732 | DAG.getVectorIdxConstant(0, SL)), | |||
| 1733 | WideLoad.getValue(1)}, | |||
| 1734 | SL); | |||
| 1735 | } | |||
| 1736 | ||||
| 1737 | SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, | |||
| 1738 | SelectionDAG &DAG) const { | |||
| 1739 | StoreSDNode *Store = cast<StoreSDNode>(Op); | |||
| 1740 | SDValue Val = Store->getValue(); | |||
| 1741 | EVT VT = Val.getValueType(); | |||
| 1742 | ||||
| 1743 | // If this is a 2 element vector, we really want to scalarize and not create | |||
| 1744 | // weird 1 element vectors. | |||
| 1745 | if (VT.getVectorNumElements() == 2) | |||
| 1746 | return scalarizeVectorStore(Store, DAG); | |||
| 1747 | ||||
| 1748 | EVT MemVT = Store->getMemoryVT(); | |||
| 1749 | SDValue Chain = Store->getChain(); | |||
| 1750 | SDValue BasePtr = Store->getBasePtr(); | |||
| 1751 | SDLoc SL(Op); | |||
| 1752 | ||||
| 1753 | EVT LoVT, HiVT; | |||
| 1754 | EVT LoMemVT, HiMemVT; | |||
| 1755 | SDValue Lo, Hi; | |||
| 1756 | ||||
| 1757 | std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); | |||
| 1758 | std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); | |||
| 1759 | std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG); | |||
| 1760 | ||||
| 1761 | SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize()); | |||
| 1762 | ||||
| 1763 | const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); | |||
| 1764 | Align BaseAlign = Store->getAlign(); | |||
| 1765 | unsigned Size = LoMemVT.getStoreSize(); | |||
| 1766 | Align HiAlign = commonAlignment(BaseAlign, Size); | |||
| 1767 | ||||
| 1768 | SDValue LoStore = | |||
| 1769 | DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, | |||
| 1770 | Store->getMemOperand()->getFlags()); | |||
| 1771 | SDValue HiStore = | |||
| 1772 | DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), | |||
| 1773 | HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); | |||
| 1774 | ||||
| 1775 | return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); | |||
| 1776 | } | |||
| 1777 | ||||
| 1778 | // This is a shortcut for integer division because we have fast i32<->f32 | |||
| 1779 | // conversions, and fast f32 reciprocal instructions. The fractional part of a | |||
| 1780 | // float is enough to accurately represent up to a 24-bit signed integer. | |||
| 1781 | SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, | |||
| 1782 | bool Sign) const { | |||
| 1783 | SDLoc DL(Op); | |||
| 1784 | EVT VT = Op.getValueType(); | |||
| 1785 | SDValue LHS = Op.getOperand(0); | |||
| 1786 | SDValue RHS = Op.getOperand(1); | |||
| 1787 | MVT IntVT = MVT::i32; | |||
| 1788 | MVT FltVT = MVT::f32; | |||
| 1789 | ||||
| 1790 | unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); | |||
| 1791 | if (LHSSignBits < 9) | |||
| 1792 | return SDValue(); | |||
| 1793 | ||||
| 1794 | unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); | |||
| 1795 | if (RHSSignBits < 9) | |||
| 1796 | return SDValue(); | |||
| 1797 | ||||
| 1798 | unsigned BitSize = VT.getSizeInBits(); | |||
| 1799 | unsigned SignBits = std::min(LHSSignBits, RHSSignBits); | |||
| 1800 | unsigned DivBits = BitSize - SignBits; | |||
| 1801 | if (Sign) | |||
| 1802 | ++DivBits; | |||
| 1803 | ||||
| 1804 | ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; | |||
| 1805 | ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; | |||
| 1806 | ||||
| 1807 | SDValue jq = DAG.getConstant(1, DL, IntVT); | |||
| 1808 | ||||
| 1809 | if (Sign) { | |||
| 1810 | // char|short jq = ia ^ ib; | |||
| 1811 | jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); | |||
| 1812 | ||||
| 1813 | // jq = jq >> (bitsize - 2) | |||
| 1814 | jq = DAG.getNode(ISD::SRA, DL, VT, jq, | |||
| 1815 | DAG.getConstant(BitSize - 2, DL, VT)); | |||
| 1816 | ||||
| 1817 | // jq = jq | 0x1 | |||
| 1818 | jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); | |||
| 1819 | } | |||
| 1820 | ||||
| 1821 | // int ia = (int)LHS; | |||
| 1822 | SDValue ia = LHS; | |||
| 1823 | ||||
| 1824 | // int ib, (int)RHS; | |||
| 1825 | SDValue ib = RHS; | |||
| 1826 | ||||
| 1827 | // float fa = (float)ia; | |||
| 1828 | SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); | |||
| 1829 | ||||
| 1830 | // float fb = (float)ib; | |||
| 1831 | SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); | |||
| 1832 | ||||
| 1833 | SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, | |||
| 1834 | fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); | |||
| 1835 | ||||
| 1836 | // fq = trunc(fq); | |||
| 1837 | fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); | |||
| 1838 | ||||
| 1839 | // float fqneg = -fq; | |||
| 1840 | SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); | |||
| 1841 | ||||
| 1842 | MachineFunction &MF = DAG.getMachineFunction(); | |||
| 1843 | ||||
| 1844 | bool UseFmadFtz = false; | |||
| 1845 | if (Subtarget->isGCN()) { | |||
| 1846 | const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); | |||
| 1847 | UseFmadFtz = MFI->getMode().allFP32Denormals(); | |||
| 1848 | } | |||
| 1849 | ||||
| 1850 | // float fr = mad(fqneg, fb, fa); | |||
| 1851 | unsigned OpCode = !Subtarget->hasMadMacF32Insts() ? (unsigned)ISD::FMA | |||
| 1852 | : UseFmadFtz ? (unsigned)AMDGPUISD::FMAD_FTZ | |||
| 1853 | : (unsigned)ISD::FMAD; | |||
| 1854 | SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); | |||
| 1855 | ||||
| 1856 | // int iq = (int)fq; | |||
| 1857 | SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); | |||
| 1858 | ||||
| 1859 | // fr = fabs(fr); | |||
| 1860 | fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); | |||
| 1861 | ||||
| 1862 | // fb = fabs(fb); | |||
| 1863 | fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); | |||
| 1864 | ||||
| 1865 | EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); | |||
| 1866 | ||||
| 1867 | // int cv = fr >= fb; | |||
| 1868 | SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); | |||
| 1869 | ||||
| 1870 | // jq = (cv ? jq : 0); | |||
| 1871 | jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); | |||
| 1872 | ||||
| 1873 | // dst = iq + jq; | |||
| 1874 | SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); | |||
| 1875 | ||||
| 1876 | // Rem needs compensation, it's easier to recompute it | |||
| 1877 | SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); | |||
| 1878 | Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); | |||
| 1879 | ||||
| 1880 | // Truncate to number of bits this divide really is. | |||
| 1881 | if (Sign) { | |||
| 1882 | SDValue InRegSize | |||
| 1883 | = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); | |||
| 1884 | Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); | |||
| 1885 | Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); | |||
| 1886 | } else { | |||
| 1887 | SDValue TruncMask = DAG.getConstant((UINT64_C(1)1UL << DivBits) - 1, DL, VT); | |||
| 1888 | Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); | |||
| 1889 | Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); | |||
| 1890 | } | |||
| 1891 | ||||
| 1892 | return DAG.getMergeValues({ Div, Rem }, DL); | |||
| 1893 | } | |||
| 1894 | ||||
| 1895 | void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, | |||
| 1896 | SelectionDAG &DAG, | |||
| 1897 | SmallVectorImpl<SDValue> &Results) const { | |||
| 1898 | SDLoc DL(Op); | |||
| 1899 | EVT VT = Op.getValueType(); | |||
| 1900 | ||||
| 1901 | assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64")(static_cast <bool> (VT == MVT::i64 && "LowerUDIVREM64 expects an i64" ) ? void (0) : __assert_fail ("VT == MVT::i64 && \"LowerUDIVREM64 expects an i64\"" , "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp", 1901, __extension__ __PRETTY_FUNCTION__)); | |||
| 1902 | ||||
| 1903 | EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); | |||
| 1904 | ||||
| 1905 | SDValue One = DAG.getConstant(1, DL, HalfVT); | |||
| 1906 | SDValue Zero = DAG.getConstant(0, DL, HalfVT); | |||
| 1907 | ||||
| 1908 | //HiLo split | |||
| 1909 | SDValue LHS_Lo, LHS_Hi; | |||
| 1910 | SDValue LHS = Op.getOperand(0); | |||
| 1911 | std::tie(LHS_Lo, LHS_Hi) = DAG.SplitScalar(LHS, DL, HalfVT, HalfVT); | |||
| 1912 | ||||
| 1913 | SDValue RHS_Lo, RHS_Hi; | |||
| 1914 | SDValue RHS = Op.getOperand(1); | |||
| 1915 | std::tie(RHS_Lo, RHS_Hi) = DAG.SplitScalar(RHS, DL, HalfVT, HalfVT); | |||
| 1916 | ||||
| 1917 | if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && | |||
| 1918 | DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { | |||
| 1919 | ||||
| 1920 | SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), | |||
| 1921 | LHS_Lo, RHS_Lo); | |||
| 1922 | ||||
| 1923 | SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero}); | |||
| 1924 | SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero}); | |||
| 1925 | ||||
| 1926 | Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); | |||
| 1927 | Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); | |||
| 1928 | return; | |||
| 1929 | } | |||
| 1930 | ||||
| 1931 | if (isTypeLegal(MVT::i64)) { | |||
| 1932 | // The algorithm here is based on ideas from "Software Integer Division", | |||
| 1933 | // Tom Rodeheffer, August 2008. | |||
| 1934 | ||||
| 1935 | MachineFunction &MF = DAG.getMachineFunction(); | |||
| 1936 | const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); | |||
| 1937 | ||||
| 1938 | // Compute denominator reciprocal. | |||
| 1939 | unsigned FMAD = !Subtarget->hasMadMacF32Insts() ? | |||
| 1940 | (unsigned)ISD::FMA : | |||
| 1941 | !MFI->getMode().allFP32Denormals() ? | |||
| 1942 | (unsigned)ISD::FMAD : | |||
| 1943 | (unsigned)AMDGPUISD::FMAD_FTZ; | |||
| 1944 | ||||
| 1945 | SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo); | |||
| 1946 | SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi); | |||
| 1947 | SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi, | |||
| 1948 | DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32), | |||
| 1949 | Cvt_Lo); | |||
| 1950 | SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1); | |||
| 1951 | SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp, | |||
| 1952 | DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32)); | |||
| 1953 | SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1, | |||
| 1954 | DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32)); | |||
| 1955 | SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2); | |||
| 1956 | SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc, | |||
| 1957 | DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32), | |||
| 1958 | Mul1); | |||
| 1959 | SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2); | |||
| 1960 | SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc); | |||
| 1961 | SDValue Rcp64 = DAG.getBitcast(VT, | |||
| 1962 | DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi})); | |||
| 1963 | ||||
| 1964 | SDValue Zero64 = DAG.getConstant(0, DL, VT); | |||
| 1965 | SDValue One64 = DAG.getConstant(1, DL, VT); | |||
| 1966 | SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1); | |||
| 1967 | SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1); | |||
| 1968 | ||||
| 1969 | // First round of UNR (Unsigned integer Newton-Raphson). | |||
| 1970 | SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS); | |||
| 1971 | SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64); | |||
| 1972 | SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1); | |||
| 1973 | SDValue Mulhi1_Lo, Mulhi1_Hi; | |||
| 1974 | std::tie(Mulhi1_Lo, Mulhi1_Hi) = | |||
| 1975 | DAG.SplitScalar(Mulhi1, DL, HalfVT, HalfVT); | |||
| 1976 | SDValue Add1_Lo = DAG.getNode(ISD::UADDO_CARRY, DL, HalfCarryVT, Rcp_Lo, | |||
| 1977 | Mulhi1_Lo, Zero1); | |||
| 1978 | SDValue Add1_Hi = DAG.getNode(ISD::UADDO_CARRY, DL, HalfCarryVT, Rcp_Hi, | |||
| 1979 | Mulhi1_Hi, Add1_Lo.getValue(1)); | |||
| 1980 | SDValue Add1 = DAG.getBitcast(VT, | |||
| 1981 | DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi})); | |||
| 1982 | ||||
| 1983 | // Second round of UNR. | |||
| 1984 | SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1); | |||
| 1985 | SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2); | |||
| 1986 | SDValue Mulhi2_Lo, Mulhi2_Hi; | |||
| 1987 | std::tie(Mulhi2_Lo, Mulhi2_Hi) = | |||
| 1988 | DAG.SplitScalar(Mulhi2, DL, HalfVT, HalfVT); | |||
| 1989 | SDValue Add2_Lo = DAG.getNode(ISD::UADDO_CARRY, DL, HalfCarryVT, Add1_Lo, | |||
| 1990 | Mulhi2_Lo, Zero1); | |||
| 1991 | SDValue Add2_Hi = DAG.getNode(ISD::UADDO_CARRY, DL, HalfCarryVT, Add1_Hi, | |||
| 1992 | Mulhi2_Hi, Add2_Lo.getValue(1)); | |||
| 1993 | SDValue Add2 = DAG.getBitcast(VT, | |||
| 1994 | DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi})); | |||
| 1995 | ||||
| 1996 | SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2); | |||
| 1997 | ||||
| 1998 | SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3); | |||
| 1999 | ||||
| 2000 | SDValue Mul3_Lo, Mul3_Hi; | |||
| 2001 | std::tie(Mul3_Lo, Mul3_Hi) = DAG.SplitScalar(Mul3, DL, HalfVT, HalfVT); | |||
| 2002 | SDValue Sub1_Lo = DAG.getNode(ISD::USUBO_CARRY, DL, HalfCarryVT, LHS_Lo, | |||
| 2003 | Mul3_Lo, Zero1); | |||
| 2004 | SDValue Sub1_Hi = DAG.getNode(ISD::USUBO_CARRY, DL, HalfCarryVT, LHS_Hi, | |||
| 2005 | Mul3_Hi, Sub1_Lo.getValue(1)); | |||
| 2006 | SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi); | |||
| 2007 | SDValue Sub1 = DAG.getBitcast(VT, | |||
| 2008 | DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi})); | |||
| 2009 | ||||
| 2010 | SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT); | |||
| 2011 | SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero, | |||
| 2012 | ISD::SETUGE); | |||
| 2013 | SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero, | |||
| 2014 | ISD::SETUGE); | |||
| 2015 | SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ); | |||
| 2016 | ||||
| 2017 | // TODO: Here and below portions of the code can be enclosed into if/endif. | |||
| 2018 | // Currently control flow is unconditional and we have 4 selects after | |||
| 2019 | // potential endif to substitute PHIs. | |||
| 2020 | ||||
| 2021 | // if C3 != 0 ... | |||
| 2022 | SDValue Sub2_Lo = DAG.getNode(ISD::USUBO_CARRY, DL, HalfCarryVT, Sub1_Lo, | |||
| 2023 | RHS_Lo, Zero1); | |||
| 2024 | SDValue Sub2_Mi = DAG.getNode(ISD::USUBO_CARRY, DL, HalfCarryVT, Sub1_Mi, | |||
| 2025 | RHS_Hi, Sub1_Lo.getValue(1)); | |||
| 2026 | SDValue Sub2_Hi = DAG.getNode(ISD::USUBO_CARRY, DL, HalfCarryVT, Sub2_Mi, | |||
| 2027 | Zero, Sub2_Lo.getValue(1)); | |||
| 2028 | SDValue Sub2 = DAG.getBitcast(VT, | |||
| 2029 | DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi})); | |||
| 2030 | ||||
| 2031 | SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64); | |||
| 2032 | ||||
| 2033 | SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero, | |||
| 2034 | ISD::SETUGE); | |||
| 2035 | SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero, | |||
| 2036 | ISD::SETUGE); | |||
| 2037 | SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ); | |||
| 2038 | ||||
| 2039 | // if (C6 != 0) | |||
| 2040 | SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64); | |||
| 2041 | ||||
| 2042 | SDValue Sub3_Lo = DAG.getNode(ISD::USUBO_CARRY, DL, HalfCarryVT, Sub2_Lo, | |||
| 2043 | RHS_Lo, Zero1); | |||
| 2044 | SDValue Sub3_Mi = DAG.getNode(ISD::USUBO_CARRY, DL, HalfCarryVT, Sub2_Mi, | |||
| 2045 | RHS_Hi, Sub2_Lo.getValue(1)); | |||
| 2046 | SDValue Sub3_Hi = DAG.getNode(ISD::USUBO_CARRY, DL, HalfCarryVT, Sub3_Mi, | |||
| 2047 | Zero, Sub3_Lo.getValue(1)); | |||
| 2048 | SDValue Sub3 = DAG.getBitcast(VT, | |||
| 2049 | DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi})); | |||
| 2050 | ||||
| 2051 | // endif C6 | |||
| 2052 | // endif C3 | |||
| 2053 | ||||
| 2054 | SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE); | |||
| 2055 | SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE); | |||
| 2056 | ||||
| 2057 | SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE); | |||
| 2058 | SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE); | |||
| 2059 | ||||
| 2060 | Results.push_back(Div); | |||
| 2061 | Results.push_back(Rem); | |||
| 2062 | ||||
| 2063 | return; | |||
| 2064 | } | |||
| 2065 | ||||
| 2066 | // r600 expandion. | |||
| 2067 | // Get Speculative values | |||
| 2068 | SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); | |||
| 2069 | SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); | |||
| 2070 | ||||
| 2071 | SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ); | |||
| 2072 | SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero}); | |||
| 2073 | REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); | |||
| 2074 | ||||
| 2075 | SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ); | |||
| 2076 | SDValue DIV_Lo = Zero; | |||
| 2077 | ||||
| 2078 | const unsigned halfBitWidth = HalfVT.getSizeInBits(); | |||
| 2079 | ||||
| 2080 | for (unsigned i = 0; i < halfBitWidth; ++i) { | |||
| 2081 | const unsigned bitPos = halfBitWidth - i - 1; | |||
| 2082 | SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); | |||
| 2083 | // Get value of high bit | |||
| 2084 | SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); | |||
| 2085 | HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One); | |||
| 2086 | HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); | |||
| 2087 | ||||
| 2088 | // Shift | |||
| 2089 | REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); | |||
| 2090 | // Add LHS high bit | |||
| 2091 | REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); | |||
| 2092 | ||||
| 2093 | SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); | |||
| 2094 | SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE); | |||
| 2095 | ||||
| 2096 | DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); | |||
| 2097 | ||||
| 2098 | // Update REM | |||
| 2099 | SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); | |||
| 2100 | REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); | |||
| 2101 | } | |||
| 2102 | ||||
| 2103 | SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); | |||
| 2104 | DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); | |||
| 2105 | Results.push_back(DIV); | |||
| 2106 | Results.push_back(REM); | |||
| 2107 | } | |||
| 2108 | ||||
| 2109 | SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, | |||
| 2110 | SelectionDAG &DAG) const { | |||
| 2111 | SDLoc DL(Op); | |||
| 2112 | EVT VT = Op.getValueType(); | |||
| 2113 | ||||
| 2114 | if (VT == MVT::i64) { | |||
| 2115 | SmallVector<SDValue, 2> Results; | |||
| 2116 | LowerUDIVREM64(Op, DAG, Results); | |||
| 2117 | return DAG.getMergeValues(Results, DL); | |||
| 2118 | } | |||
| 2119 | ||||
| 2120 | if (VT == MVT::i32) { | |||
| 2121 | if (SDValue Res = LowerDIVREM24(Op, DAG, false)) | |||
| 2122 | return Res; | |||
| 2123 | } | |||
| 2124 | ||||
| 2125 | SDValue X = Op.getOperand(0); | |||
| 2126 | SDValue Y = Op.getOperand(1); | |||
| 2127 | ||||
| 2128 | // See AMDGPUCodeGenPrepare::expandDivRem32 for a description of the | |||
| 2129 | // algorithm used here. | |||
| 2130 | ||||
| 2131 | // Initial estimate of inv(y). | |||
| 2132 | SDValue Z = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Y); | |||
| 2133 | ||||
| 2134 | // One round of UNR. | |||
| 2135 | SDValue NegY = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Y); | |||
| 2136 | SDValue NegYZ = DAG.getNode(ISD::MUL, DL, VT, NegY, Z); | |||
| 2137 | Z = DAG.getNode(ISD::ADD, DL, VT, Z, | |||
| 2138 | DAG.getNode(ISD::MULHU, DL, VT, Z, NegYZ)); | |||
| 2139 | ||||
| 2140 | // Quotient/remainder estimate. | |||
| 2141 | SDValue Q = DAG.getNode(ISD::MULHU, DL, VT, X, Z); | |||
| 2142 | SDValue R = | |||
| 2143 | DAG.getNode(ISD::SUB, DL, VT, X, DAG.getNode(ISD::MUL, DL, VT, Q, Y)); | |||
| 2144 | ||||
| 2145 | // First quotient/remainder refinement. | |||
| 2146 | EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); | |||
| 2147 | SDValue One = DAG.getConstant(1, DL, VT); | |||
| 2148 | SDValue Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE); | |||
| 2149 | Q = DAG.getNode(ISD::SELECT, DL, VT, Cond, | |||
| 2150 | DAG.getNode(ISD::ADD, DL, VT, Q, One), Q); | |||
| 2151 | R = DAG.getNode(ISD::SELECT, DL, VT, Cond, | |||
| 2152 | DAG.getNode(ISD::SUB, DL, VT, R, Y), R); | |||
| 2153 | ||||
| 2154 | // Second quotient/remainder refinement. | |||
| 2155 | Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE); | |||
| 2156 | Q = DAG.getNode(ISD::SELECT, DL, VT, Cond, | |||
| 2157 | DAG.getNode(ISD::ADD, DL, VT, Q, One), Q); | |||
| 2158 | R = DAG.getNode(ISD::SELECT, DL, VT, Cond, | |||
| 2159 | DAG.getNode(ISD::SUB, DL, VT, R, Y), R); | |||
| 2160 | ||||
| 2161 | return DAG.getMergeValues({Q, R}, DL); | |||
| 2162 | } | |||
| 2163 | ||||
| 2164 | SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, | |||
| 2165 | SelectionDAG &DAG) const { | |||
| 2166 | SDLoc DL(Op); | |||
| 2167 | EVT VT = Op.getValueType(); | |||
| 2168 | ||||
| 2169 | SDValue LHS = Op.getOperand(0); | |||
| 2170 | SDValue RHS = Op.getOperand(1); | |||
| 2171 | ||||
| 2172 | SDValue Zero = DAG.getConstant(0, DL, VT); | |||
| 2173 | SDValue NegOne = DAG.getConstant(-1, DL, VT); | |||
| 2174 | ||||
| 2175 | if (VT == MVT::i32) { | |||
| 2176 | if (SDValue Res = LowerDIVREM24(Op, DAG, true)) | |||
| 2177 | return Res; | |||
| 2178 | } | |||
| 2179 | ||||
| 2180 | if (VT == MVT::i64 && | |||
| 2181 | DAG.ComputeNumSignBits(LHS) > 32 && | |||
| 2182 | DAG.ComputeNumSignBits(RHS) > 32) { | |||
| 2183 | EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); | |||
| 2184 | ||||
| 2185 | //HiLo split | |||
| 2186 | SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); | |||
| 2187 | SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); | |||
| 2188 | SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), | |||
| 2189 | LHS_Lo, RHS_Lo); | |||
| 2190 | SDValue Res[2] = { | |||
| 2191 | DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), | |||
| 2192 | DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) | |||
| 2193 | }; | |||
| 2194 | return DAG.getMergeValues(Res, DL); | |||
| 2195 | } | |||
| 2196 | ||||
| 2197 | SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); | |||
| 2198 | SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); | |||
| 2199 | SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); | |||
| 2200 | SDValue RSign = LHSign; // Remainder sign is the same as LHS | |||
| 2201 | ||||
| 2202 | LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); | |||
| 2203 | RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); | |||
| 2204 | ||||
| 2205 | LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); | |||
| 2206 | RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); | |||
| 2207 | ||||
| 2208 | SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); | |||
| 2209 | SDValue Rem = Div.getValue(1); | |||
| 2210 | ||||
| 2211 | Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); | |||
| 2212 | Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); | |||
| 2213 | ||||
| 2214 | Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); | |||
| 2215 | Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); | |||
| 2216 | ||||
| 2217 | SDValue Res[2] = { | |||
| 2218 | Div, | |||
| 2219 | Rem | |||
| 2220 | }; | |||
| 2221 | return DAG.getMergeValues(Res, DL); | |||
| 2222 | } | |||
| 2223 | ||||
| 2224 | // (frem x, y) -> (fma (fneg (ftrunc (fdiv x, y))), y, x) | |||
| 2225 | SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { | |||
| 2226 | SDLoc SL(Op); | |||
| 2227 | EVT VT = Op.getValueType(); | |||
| 2228 | auto Flags = Op->getFlags(); | |||
| 2229 | SDValue X = Op.getOperand(0); | |||
| 2230 | SDValue Y = Op.getOperand(1); | |||
| 2231 | ||||
| 2232 | SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y, Flags); | |||
| 2233 | SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, VT, Div, Flags); | |||
| 2234 | SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Trunc, Flags); | |||
| 2235 | // TODO: For f32 use FMAD instead if !hasFastFMA32? | |||
| 2236 | return DAG.getNode(ISD::FMA, SL, VT, Neg, Y, X, Flags); | |||
| 2237 | } | |||
| 2238 | ||||
| 2239 | SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { | |||
| 2240 | SDLoc SL(Op); | |||
| 2241 | SDValue Src = Op.getOperand(0); | |||
| 2242 | ||||
| 2243 | // result = trunc(src) | |||
| 2244 | // if (src > 0.0 && src != result) | |||
| 2245 | // result += 1.0 | |||
| 2246 | ||||
| 2247 | SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); | |||
| 2248 | ||||
| 2249 | const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); | |||
| 2250 | const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); | |||
| 2251 | ||||
| 2252 | EVT SetCCVT = | |||
| 2253 | getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); | |||
| 2254 | ||||
| 2255 | SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); | |||
| 2256 | SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); | |||
| 2257 | SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); | |||
| 2258 | ||||
| 2259 | SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); | |||
| 2260 | // TODO: Should this propagate fast-math-flags? | |||
| 2261 | return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); | |||
| 2262 | } | |||
| 2263 | ||||
| 2264 | static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, | |||
| 2265 | SelectionDAG &DAG) { | |||
| 2266 | const unsigned FractBits = 52; | |||
| 2267 | const unsigned ExpBits = 11; | |||
| 2268 | ||||
| 2269 | SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, | |||
| 2270 | Hi, | |||
| 2271 | DAG.getConstant(FractBits - 32, SL, MVT::i32), | |||
| 2272 | DAG.getConstant(ExpBits, SL, MVT::i32)); | |||
| 2273 | SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, | |||
| 2274 | DAG.getConstant(1023, SL, MVT::i32)); | |||
| 2275 | ||||
| 2276 | return Exp; | |||
| 2277 | } | |||
| 2278 | ||||
| 2279 | SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { | |||
| 2280 | SDLoc SL(Op); | |||
| 2281 | SDValue Src = Op.getOperand(0); | |||
| 2282 | ||||
| 2283 | assert(Op.getValueType() == MVT::f64)(static_cast <bool> (Op.getValueType() == MVT::f64) ? void (0) : __assert_fail ("Op.getValueType() == MVT::f64", "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp" , 2283, __extension__ __PRETTY_FUNCTION__)); | |||
| 2284 | ||||
| 2285 | const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); | |||
| 2286 | ||||
| 2287 | // Extract the upper half, since this is where we will find the sign and | |||
| 2288 | // exponent. | |||
| 2289 | SDValue Hi = getHiHalf64(Src, DAG); | |||
| 2290 | ||||
| 2291 | SDValue Exp = extractF64Exponent(Hi, SL, DAG); | |||
| 2292 | ||||
| 2293 | const unsigned FractBits = 52; | |||
| 2294 | ||||
| 2295 | // Extract the sign bit. | |||
| 2296 | const SDValue SignBitMask = DAG.getConstant(UINT32_C(1)1U << 31, SL, MVT::i32); | |||
| 2297 | SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); | |||
| 2298 | ||||
| 2299 | // Extend back to 64-bits. | |||
| 2300 | SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); | |||
| 2301 | SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); | |||
| 2302 | ||||
| 2303 | SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); | |||
| 2304 | const SDValue FractMask | |||
| 2305 | = DAG.getConstant((UINT64_C(1)1UL << FractBits) - 1, SL, MVT::i64); | |||
| 2306 | ||||
| 2307 | SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); | |||
| 2308 | SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); | |||
| 2309 | SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); | |||
| 2310 | ||||
| 2311 | EVT SetCCVT = | |||
| 2312 | getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); | |||
| 2313 | ||||
| 2314 | const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); | |||
| 2315 | ||||
| 2316 | SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); | |||
| 2317 | SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); | |||
| 2318 | ||||
| 2319 | SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); | |||
| 2320 | SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); | |||
| 2321 | ||||
| 2322 | return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); | |||
| 2323 | } | |||
| 2324 | ||||
| 2325 | SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { | |||
| 2326 | SDLoc SL(Op); | |||
| 2327 | SDValue Src = Op.getOperand(0); | |||
| 2328 | ||||
| 2329 | assert(Op.getValueType() == MVT::f64)(static_cast <bool> (Op.getValueType() == MVT::f64) ? void (0) : __assert_fail ("Op.getValueType() == MVT::f64", "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp" , 2329, __extension__ __PRETTY_FUNCTION__)); | |||
| 2330 | ||||
| 2331 | APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); | |||
| 2332 | SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); | |||
| 2333 | SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); | |||
| 2334 | ||||
| 2335 | // TODO: Should this propagate fast-math-flags? | |||
| 2336 | ||||
| 2337 | SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); | |||
| 2338 | SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); | |||
| 2339 | ||||
| 2340 | SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); | |||
| 2341 | ||||
| 2342 | APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); | |||
| 2343 | SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); | |||
| 2344 | ||||
| 2345 | EVT SetCCVT = | |||
| 2346 | getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); | |||
| 2347 | SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); | |||
| 2348 | ||||
| 2349 | return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); | |||
| 2350 | } | |||
| 2351 | ||||
| 2352 | SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { | |||
| 2353 | // FNEARBYINT and FRINT are the same, except in their handling of FP | |||
| 2354 | // exceptions. Those aren't really meaningful for us, and OpenCL only has | |||
| 2355 | // rint, so just treat them as equivalent. | |||
| 2356 | return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); | |||
| 2357 | } | |||
| 2358 | ||||
| 2359 | SDValue AMDGPUTargetLowering::LowerFROUNDEVEN(SDValue Op, | |||
| 2360 | SelectionDAG &DAG) const { | |||
| 2361 | auto VT = Op.getValueType(); | |||
| 2362 | auto Arg = Op.getOperand(0u); | |||
| 2363 | return DAG.getNode(ISD::FRINT, SDLoc(Op), VT, Arg); | |||
| 2364 | } | |||
| 2365 | ||||
| 2366 | // XXX - May require not supporting f32 denormals? | |||
| 2367 | ||||
| 2368 | // Don't handle v2f16. The extra instructions to scalarize and repack around the | |||
| 2369 | // compare and vselect end up producing worse code than scalarizing the whole | |||
| 2370 | // operation. | |||
| 2371 | SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { | |||
| 2372 | SDLoc SL(Op); | |||
| 2373 | SDValue X = Op.getOperand(0); | |||
| 2374 | EVT VT = Op.getValueType(); | |||
| 2375 | ||||
| 2376 | SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); | |||
| 2377 | ||||
| 2378 | // TODO: Should this propagate fast-math-flags? | |||
| 2379 | ||||
| 2380 | SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); | |||
| 2381 | ||||
| 2382 | SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); | |||
| 2383 | ||||
| 2384 | const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); | |||
| 2385 | const SDValue One = DAG.getConstantFP(1.0, SL, VT); | |||
| 2386 | const SDValue Half = DAG.getConstantFP(0.5, SL, VT); | |||
| 2387 | ||||
| 2388 | SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); | |||
| 2389 | ||||
| 2390 | EVT SetCCVT = | |||
| 2391 | getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); | |||
| 2392 | ||||
| 2393 | SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); | |||
| 2394 | ||||
| 2395 | SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); | |||
| 2396 | ||||
| 2397 | return DAG.getNode(ISD::FADD, SL, VT, T, Sel); | |||
| 2398 | } | |||
| 2399 | ||||
| 2400 | SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { | |||
| 2401 | SDLoc SL(Op); | |||
| 2402 | SDValue Src = Op.getOperand(0); | |||
| 2403 | ||||
| 2404 | // result = trunc(src); | |||
| 2405 | // if (src < 0.0 && src != result) | |||
| 2406 | // result += -1.0. | |||
| 2407 | ||||
| 2408 | SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); | |||
| 2409 | ||||
| 2410 | const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); | |||
| 2411 | const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); | |||
| 2412 | ||||
| 2413 | EVT SetCCVT = | |||
| 2414 | getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); | |||
| 2415 | ||||
| 2416 | SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); | |||
| 2417 | SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); | |||
| 2418 | SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); | |||
| 2419 | ||||
| 2420 | SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); | |||
| 2421 | // TODO: Should this propagate fast-math-flags? | |||
| 2422 | return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); | |||
| 2423 | } | |||
| 2424 | ||||
| 2425 | SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG, | |||
| 2426 | double Log2BaseInverted) const { | |||
| 2427 | EVT VT = Op.getValueType(); | |||
| 2428 | ||||
| 2429 | SDLoc SL(Op); | |||
| 2430 | SDValue Operand = Op.getOperand(0); | |||
| 2431 | SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand); | |||
| 2432 | SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT); | |||
| 2433 | ||||
| 2434 | return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand); | |||
| 2435 | } | |||
| 2436 | ||||
| 2437 | // exp2(M_LOG2E_F * f); | |||
| 2438 | SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const { | |||
| 2439 | EVT VT = Op.getValueType(); | |||
| 2440 | SDLoc SL(Op); | |||
| 2441 | SDValue Src = Op.getOperand(0); | |||
| 2442 | ||||
| 2443 | const SDValue K = DAG.getConstantFP(numbers::log2e, SL, VT); | |||
| 2444 | SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags()); | |||
| 2445 | return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags()); | |||
| 2446 | } | |||
| 2447 | ||||
| 2448 | static bool isCtlzOpc(unsigned Opc) { | |||
| 2449 | return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; | |||
| 2450 | } | |||
| 2451 | ||||
| 2452 | static bool isCttzOpc(unsigned Opc) { | |||
| 2453 | return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF; | |||
| 2454 | } | |||
| 2455 | ||||
| 2456 | SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const { | |||
| 2457 | SDLoc SL(Op); | |||
| 2458 | SDValue Src = Op.getOperand(0); | |||
| 2459 | ||||
| 2460 | assert(isCtlzOpc(Op.getOpcode()) || isCttzOpc(Op.getOpcode()))(static_cast <bool> (isCtlzOpc(Op.getOpcode()) || isCttzOpc (Op.getOpcode())) ? void (0) : __assert_fail ("isCtlzOpc(Op.getOpcode()) || isCttzOpc(Op.getOpcode())" , "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp", 2460, __extension__ __PRETTY_FUNCTION__)); | |||
| 2461 | bool Ctlz = isCtlzOpc(Op.getOpcode()); | |||
| 2462 | unsigned NewOpc = Ctlz ? AMDGPUISD::FFBH_U32 : AMDGPUISD::FFBL_B32; | |||
| 2463 | ||||
| 2464 | bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF || | |||
| 2465 | Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF; | |||
| 2466 | ||||
| 2467 | if (Src.getValueType() == MVT::i32) { | |||
| 2468 | // (ctlz hi:lo) -> (umin (ffbh src), 32) | |||
| 2469 | // (cttz hi:lo) -> (umin (ffbl src), 32) | |||
| 2470 | // (ctlz_zero_undef src) -> (ffbh src) | |||
| 2471 | // (cttz_zero_undef src) -> (ffbl src) | |||
| 2472 | SDValue NewOpr = DAG.getNode(NewOpc, SL, MVT::i32, Src); | |||
| 2473 | if (!ZeroUndef) { | |||
| 2474 | const SDValue Const32 = DAG.getConstant(32, SL, MVT::i32); | |||
| 2475 | NewOpr = DAG.getNode(ISD::UMIN, SL, MVT::i32, NewOpr, Const32); | |||
| 2476 | } | |||
| 2477 | return NewOpr; | |||
| 2478 | } | |||
| 2479 | ||||
| 2480 | SDValue Lo, Hi; | |||
| 2481 | std::tie(Lo, Hi) = split64BitValue(Src, DAG); | |||
| 2482 | ||||
| 2483 | SDValue OprLo = DAG.getNode(NewOpc, SL, MVT::i32, Lo); | |||
| 2484 | SDValue OprHi = DAG.getNode(NewOpc, SL, MVT::i32, Hi); | |||
| 2485 | ||||
| 2486 | // (ctlz hi:lo) -> (umin3 (ffbh hi), (uaddsat (ffbh lo), 32), 64) | |||
| 2487 | // (cttz hi:lo) -> (umin3 (uaddsat (ffbl hi), 32), (ffbl lo), 64) | |||
| 2488 | // (ctlz_zero_undef hi:lo) -> (umin (ffbh hi), (add (ffbh lo), 32)) | |||
| 2489 | // (cttz_zero_undef hi:lo) -> (umin (add (ffbl hi), 32), (ffbl lo)) | |||
| 2490 | ||||
| 2491 | unsigned AddOpc = ZeroUndef ? ISD::ADD : ISD::UADDSAT; | |||
| 2492 | const SDValue Const32 = DAG.getConstant(32, SL, MVT::i32); | |||
| 2493 | if (Ctlz) | |||
| 2494 | OprLo = DAG.getNode(AddOpc, SL, MVT::i32, OprLo, Const32); | |||
| 2495 | else | |||
| 2496 | OprHi = DAG.getNode(AddOpc, SL, MVT::i32, OprHi, Const32); | |||
| 2497 | ||||
| 2498 | SDValue NewOpr; | |||
| 2499 | NewOpr = DAG.getNode(ISD::UMIN, SL, MVT::i32, OprLo, OprHi); | |||
| 2500 | if (!ZeroUndef) { | |||
| 2501 | const SDValue Const64 = DAG.getConstant(64, SL, MVT::i32); | |||
| 2502 | NewOpr = DAG.getNode(ISD::UMIN, SL, MVT::i32, NewOpr, Const64); | |||
| 2503 | } | |||
| 2504 | ||||
| 2505 | return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr); | |||
| 2506 | } | |||
| 2507 | ||||
| 2508 | SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, | |||
| 2509 | bool Signed) const { | |||
| 2510 | // The regular method converting a 64-bit integer to float roughly consists of | |||
| 2511 | // 2 steps: normalization and rounding. In fact, after normalization, the | |||
| 2512 | // conversion from a 64-bit integer to a float is essentially the same as the | |||
| 2513 | // one from a 32-bit integer. The only difference is that it has more | |||
| 2514 | // trailing bits to be rounded. To leverage the native 32-bit conversion, a | |||
| 2515 | // 64-bit integer could be preprocessed and fit into a 32-bit integer then | |||
| 2516 | // converted into the correct float number. The basic steps for the unsigned | |||
| 2517 | // conversion are illustrated in the following pseudo code: | |||
| 2518 | // | |||
| 2519 | // f32 uitofp(i64 u) { | |||
| 2520 | // i32 hi, lo = split(u); | |||
| 2521 | // // Only count the leading zeros in hi as we have native support of the | |||
| 2522 | // // conversion from i32 to f32. If hi is all 0s, the conversion is | |||
| 2523 | // // reduced to a 32-bit one automatically. | |||
| 2524 | // i32 shamt = clz(hi); // Return 32 if hi is all 0s. | |||
| 2525 | // u <<= shamt; | |||
| 2526 | // hi, lo = split(u); | |||
| 2527 | // hi |= (lo != 0) ? 1 : 0; // Adjust rounding bit in hi based on lo. | |||
| 2528 | // // convert it as a 32-bit integer and scale the result back. | |||
| 2529 | // return uitofp(hi) * 2^(32 - shamt); | |||
| 2530 | // } | |||
| 2531 | // | |||
| 2532 | // The signed one follows the same principle but uses 'ffbh_i32' to count its | |||
| 2533 | // sign bits instead. If 'ffbh_i32' is not available, its absolute value is | |||
| 2534 | // converted instead followed by negation based its sign bit. | |||
| 2535 | ||||
| 2536 | SDLoc SL(Op); | |||
| 2537 | SDValue Src = Op.getOperand(0); | |||
| 2538 | ||||
| 2539 | SDValue Lo, Hi; | |||
| 2540 | std::tie(Lo, Hi) = split64BitValue(Src, DAG); | |||
| 2541 | SDValue Sign; | |||
| 2542 | SDValue ShAmt; | |||
| 2543 | if (Signed && Subtarget->isGCN()) { | |||
| 2544 | // We also need to consider the sign bit in Lo if Hi has just sign bits, | |||
| 2545 | // i.e. Hi is 0 or -1. However, that only needs to take the MSB into | |||
| 2546 | // account. That is, the maximal shift is | |||
| 2547 | // - 32 if Lo and Hi have opposite signs; | |||
| 2548 | // - 33 if Lo and Hi have the same sign. | |||
| 2549 | // | |||
| 2550 | // Or, MaxShAmt = 33 + OppositeSign, where | |||
| 2551 | // | |||
| 2552 | // OppositeSign is defined as ((Lo ^ Hi) >> 31), which is | |||
| 2553 | // - -1 if Lo and Hi have opposite signs; and | |||
| 2554 | // - 0 otherwise. | |||
| 2555 | // | |||
| 2556 | // All in all, ShAmt is calculated as | |||
| 2557 | // | |||
| 2558 | // umin(sffbh(Hi), 33 + (Lo^Hi)>>31) - 1. | |||
| 2559 | // | |||
| 2560 | // or | |||
| 2561 | // | |||
| 2562 | // umin(sffbh(Hi) - 1, 32 + (Lo^Hi)>>31). | |||
| 2563 | // | |||
| 2564 | // to reduce the critical path. | |||
| 2565 | SDValue OppositeSign = DAG.getNode( | |||
| 2566 | ISD::SRA, SL, MVT::i32, DAG.getNode(ISD::XOR, SL, MVT::i32, Lo, Hi), | |||
| 2567 | DAG.getConstant(31, SL, MVT::i32)); | |||
| 2568 | SDValue MaxShAmt = | |||
| 2569 | DAG.getNode(ISD::ADD, SL, MVT::i32, DAG.getConstant(32, SL, MVT::i32), | |||
| 2570 | OppositeSign); | |||
| 2571 | // Count the leading sign bits. | |||
| 2572 | ShAmt = DAG.getNode(AMDGPUISD::FFBH_I32, SL, MVT::i32, Hi); | |||
| 2573 | // Different from unsigned conversion, the shift should be one bit less to | |||
| 2574 | // preserve the sign bit. | |||
| 2575 | ShAmt = DAG.getNode(ISD::SUB, SL, MVT::i32, ShAmt, | |||
| 2576 | DAG.getConstant(1, SL, MVT::i32)); | |||
| 2577 | ShAmt = DAG.getNode(ISD::UMIN, SL, MVT::i32, ShAmt, MaxShAmt); | |||
| 2578 | } else { | |||
| 2579 | if (Signed) { | |||
| 2580 | // Without 'ffbh_i32', only leading zeros could be counted. Take the | |||
| 2581 | // absolute value first. | |||
| 2582 | Sign = DAG.getNode(ISD::SRA, SL, MVT::i64, Src, | |||
| 2583 | DAG.getConstant(63, SL, MVT::i64)); | |||
| 2584 | SDValue Abs = | |||
| 2585 | DAG.getNode(ISD::XOR, SL, MVT::i64, | |||
| 2586 | DAG.getNode(ISD::ADD, SL, MVT::i64, Src, Sign), Sign); | |||
| 2587 | std::tie(Lo, Hi) = split64BitValue(Abs, DAG); | |||
| 2588 | } | |||
| 2589 | // Count the leading zeros. | |||
| 2590 | ShAmt = DAG.getNode(ISD::CTLZ, SL, MVT::i32, Hi); | |||
| 2591 | // The shift amount for signed integers is [0, 32]. | |||
| 2592 | } | |||
| 2593 | // Normalize the given 64-bit integer. | |||
| 2594 | SDValue Norm = DAG.getNode(ISD::SHL, SL, MVT::i64, Src, ShAmt); | |||
| 2595 | // Split it again. | |||
| 2596 | std::tie(Lo, Hi) = split64BitValue(Norm, DAG); | |||
| 2597 | // Calculate the adjust bit for rounding. | |||
| 2598 | // (lo != 0) ? 1 : 0 => (lo >= 1) ? 1 : 0 => umin(1, lo) | |||
| 2599 | SDValue Adjust = DAG.getNode(ISD::UMIN, SL, MVT::i32, | |||
| 2600 | DAG.getConstant(1, SL, MVT::i32), Lo); | |||
| 2601 | // Get the 32-bit normalized integer. | |||
| 2602 | Norm = DAG.getNode(ISD::OR, SL, MVT::i32, Hi, Adjust); | |||
| 2603 | // Convert the normalized 32-bit integer into f32. | |||
| 2604 | unsigned Opc = | |||
| 2605 | (Signed && Subtarget->isGCN()) ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; | |||
| 2606 | SDValue FVal = DAG.getNode(Opc, SL, MVT::f32, Norm); | |||
| 2607 | ||||
| 2608 | // Finally, need to scale back the converted floating number as the original | |||
| 2609 | // 64-bit integer is converted as a 32-bit one. | |||
| 2610 | ShAmt = DAG.getNode(ISD::SUB, SL, MVT::i32, DAG.getConstant(32, SL, MVT::i32), | |||
| 2611 | ShAmt); | |||
| 2612 | // On GCN, use LDEXP directly. | |||
| 2613 | if (Subtarget->isGCN()) | |||
| 2614 | return DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f32, FVal, ShAmt); | |||
| 2615 | ||||
| 2616 | // Otherwise, align 'ShAmt' to the exponent part and add it into the exponent | |||
| 2617 | // part directly to emulate the multiplication of 2^ShAmt. That 8-bit | |||
| 2618 | // exponent is enough to avoid overflowing into the sign bit. | |||
| 2619 | SDValue Exp = DAG.getNode(ISD::SHL, SL, MVT::i32, ShAmt, | |||
| 2620 | DAG.getConstant(23, SL, MVT::i32)); | |||
| 2621 | SDValue IVal = | |||
| 2622 | DAG.getNode(ISD::ADD, SL, MVT::i32, | |||
| 2623 | DAG.getNode(ISD::BITCAST, SL, MVT::i32, FVal), Exp); | |||
| 2624 | if (Signed) { | |||
| 2625 | // Set the sign bit. | |||
| 2626 | Sign = DAG.getNode(ISD::SHL, SL, MVT::i32, | |||
| 2627 | DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Sign), | |||
| 2628 | DAG.getConstant(31, SL, MVT::i32)); | |||
| 2629 | IVal = DAG.getNode(ISD::OR, SL, MVT::i32, IVal, Sign); | |||
| 2630 | } | |||
| 2631 | return DAG.getNode(ISD::BITCAST, SL, MVT::f32, IVal); | |||
| 2632 | } | |||
| 2633 | ||||
| 2634 | SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, | |||
| 2635 | bool Signed) const { | |||
| 2636 | SDLoc SL(Op); | |||
| 2637 | SDValue Src = Op.getOperand(0); | |||
| 2638 | ||||
| 2639 | SDValue Lo, Hi; | |||
| 2640 | std::tie(Lo, Hi) = split64BitValue(Src, DAG); | |||
| 2641 | ||||
| 2642 | SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, | |||
| 2643 | SL, MVT::f64, Hi); | |||
| 2644 | ||||
| 2645 | SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); | |||
| 2646 | ||||
| 2647 | SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, | |||
| 2648 | DAG.getConstant(32, SL, MVT::i32)); | |||
| 2649 | // TODO: Should this propagate fast-math-flags? | |||
| 2650 | return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); | |||
| 2651 | } | |||
| 2652 | ||||
| 2653 | SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, | |||
| 2654 | SelectionDAG &DAG) const { | |||
| 2655 | // TODO: Factor out code common with LowerSINT_TO_FP. | |||
| 2656 | EVT DestVT = Op.getValueType(); | |||
| 2657 | SDValue Src = Op.getOperand(0); | |||
| 2658 | EVT SrcVT = Src.getValueType(); | |||
| 2659 | ||||
| 2660 | if (SrcVT == MVT::i16) { | |||
| 2661 | if (DestVT == MVT::f16) | |||
| 2662 | return Op; | |||
| 2663 | SDLoc DL(Op); | |||
| 2664 | ||||
| 2665 | // Promote src to i32 | |||
| 2666 | SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Src); | |||
| 2667 | return DAG.getNode(ISD::UINT_TO_FP, DL, DestVT, Ext); | |||
| 2668 | } | |||
| 2669 | ||||
| 2670 | assert(SrcVT == MVT::i64 && "operation should be legal")(static_cast <bool> (SrcVT == MVT::i64 && "operation should be legal" ) ? void (0) : __assert_fail ("SrcVT == MVT::i64 && \"operation should be legal\"" , "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp", 2670, __extension__ __PRETTY_FUNCTION__)); | |||
| 2671 | ||||
| 2672 | if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { | |||
| 2673 | SDLoc DL(Op); | |||
| 2674 | ||||
| 2675 | SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); | |||
| 2676 | SDValue FPRoundFlag = | |||
| 2677 | DAG.getIntPtrConstant(0, SDLoc(Op), /*isTarget=*/true); | |||
| 2678 | SDValue FPRound = | |||
| 2679 | DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); | |||
| 2680 | ||||
| 2681 | return FPRound; | |||
| 2682 | } | |||
| 2683 | ||||
| 2684 | if (DestVT == MVT::f32) | |||
| 2685 | return LowerINT_TO_FP32(Op, DAG, false); | |||
| 2686 | ||||
| 2687 | assert(DestVT == MVT::f64)(static_cast <bool> (DestVT == MVT::f64) ? void (0) : __assert_fail ("DestVT == MVT::f64", "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp" , 2687, __extension__ __PRETTY_FUNCTION__)); | |||
| 2688 | return LowerINT_TO_FP64(Op, DAG, false); | |||
| 2689 | } | |||
| 2690 | ||||
| 2691 | SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, | |||
| 2692 | SelectionDAG &DAG) const { | |||
| 2693 | EVT DestVT = Op.getValueType(); | |||
| 2694 | ||||
| 2695 | SDValue Src = Op.getOperand(0); | |||
| 2696 | EVT SrcVT = Src.getValueType(); | |||
| 2697 | ||||
| 2698 | if (SrcVT == MVT::i16) { | |||
| 2699 | if (DestVT == MVT::f16) | |||
| 2700 | return Op; | |||
| 2701 | ||||
| 2702 | SDLoc DL(Op); | |||
| 2703 | // Promote src to i32 | |||
| 2704 | SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, Src); | |||
| 2705 | return DAG.getNode(ISD::SINT_TO_FP, DL, DestVT, Ext); | |||
| 2706 | } | |||
| 2707 | ||||
| 2708 | assert(SrcVT == MVT::i64 && "operation should be legal")(static_cast <bool> (SrcVT == MVT::i64 && "operation should be legal" ) ? void (0) : __assert_fail ("SrcVT == MVT::i64 && \"operation should be legal\"" , "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp", 2708, __extension__ __PRETTY_FUNCTION__)); | |||
| 2709 | ||||
| 2710 | // TODO: Factor out code common with LowerUINT_TO_FP. | |||
| 2711 | ||||
| 2712 | if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { | |||
| 2713 | SDLoc DL(Op); | |||
| 2714 | SDValue Src = Op.getOperand(0); | |||
| 2715 | ||||
| 2716 | SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); | |||
| 2717 | SDValue FPRoundFlag = | |||
| 2718 | DAG.getIntPtrConstant(0, SDLoc(Op), /*isTarget=*/true); | |||
| 2719 | SDValue FPRound = | |||
| 2720 | DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); | |||
| 2721 | ||||
| 2722 | return FPRound; | |||
| 2723 | } | |||
| 2724 | ||||
| 2725 | if (DestVT == MVT::f32) | |||
| 2726 | return LowerINT_TO_FP32(Op, DAG, true); | |||
| 2727 | ||||
| 2728 | assert(DestVT == MVT::f64)(static_cast <bool> (DestVT == MVT::f64) ? void (0) : __assert_fail ("DestVT == MVT::f64", "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp" , 2728, __extension__ __PRETTY_FUNCTION__)); | |||
| 2729 | return LowerINT_TO_FP64(Op, DAG, true); | |||
| 2730 | } | |||
| 2731 | ||||
| 2732 | SDValue AMDGPUTargetLowering::LowerFP_TO_INT64(SDValue Op, SelectionDAG &DAG, | |||
| 2733 | bool Signed) const { | |||
| 2734 | SDLoc SL(Op); | |||
| 2735 | ||||
| 2736 | SDValue Src = Op.getOperand(0); | |||
| 2737 | EVT SrcVT = Src.getValueType(); | |||
| 2738 | ||||
| 2739 | assert(SrcVT == MVT::f32 || SrcVT == MVT::f64)(static_cast <bool> (SrcVT == MVT::f32 || SrcVT == MVT:: f64) ? void (0) : __assert_fail ("SrcVT == MVT::f32 || SrcVT == MVT::f64" , "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp", 2739, __extension__ __PRETTY_FUNCTION__)); | |||
| 2740 | ||||
| 2741 | // The basic idea of converting a floating point number into a pair of 32-bit | |||
| 2742 | // integers is illustrated as follows: | |||
| 2743 | // | |||
| 2744 | // tf := trunc(val); | |||
| 2745 | // hif := floor(tf * 2^-32); | |||
| 2746 | // lof := tf - hif * 2^32; // lof is always positive due to floor. | |||
| 2747 | // hi := fptoi(hif); | |||
| 2748 | // lo := fptoi(lof); | |||
| 2749 | // | |||
| 2750 | SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, SrcVT, Src); | |||
| 2751 | SDValue Sign; | |||
| 2752 | if (Signed && SrcVT == MVT::f32) { | |||
| 2753 | // However, a 32-bit floating point number has only 23 bits mantissa and | |||
| 2754 | // it's not enough to hold all the significant bits of `lof` if val is | |||
| 2755 | // negative. To avoid the loss of precision, We need to take the absolute | |||
| 2756 | // value after truncating and flip the result back based on the original | |||
| 2757 | // signedness. | |||
| 2758 | Sign = DAG.getNode(ISD::SRA, SL, MVT::i32, | |||
| 2759 | DAG.getNode(ISD::BITCAST, SL, MVT::i32, Trunc), | |||
| 2760 | DAG.getConstant(31, SL, MVT::i32)); | |||
| 2761 | Trunc = DAG.getNode(ISD::FABS, SL, SrcVT, Trunc); | |||
| 2762 | } | |||
| 2763 | ||||
| 2764 | SDValue K0, K1; | |||
| 2765 | if (SrcVT == MVT::f64) { | |||
| 2766 | K0 = DAG.getConstantFP( | |||
| 2767 | llvm::bit_cast<double>(UINT64_C(/*2^-32*/ 0x3df0000000000000)0x3df0000000000000UL), SL, | |||
| 2768 | SrcVT); | |||
| 2769 | K1 = DAG.getConstantFP( | |||
| 2770 | llvm::bit_cast<double>(UINT64_C(/*-2^32*/ 0xc1f0000000000000)0xc1f0000000000000UL), SL, | |||
| 2771 | SrcVT); | |||
| 2772 | } else { | |||
| 2773 | K0 = DAG.getConstantFP( | |||
| 2774 | llvm::bit_cast<float>(UINT32_C(/*2^-32*/ 0x2f800000)0x2f800000U), SL, SrcVT); | |||
| 2775 | K1 = DAG.getConstantFP( | |||
| 2776 | llvm::bit_cast<float>(UINT32_C(/*-2^32*/ 0xcf800000)0xcf800000U), SL, SrcVT); | |||
| 2777 | } | |||
| 2778 | // TODO: Should this propagate fast-math-flags? | |||
| 2779 | SDValue Mul = DAG.getNode(ISD::FMUL, SL, SrcVT, Trunc, K0); | |||
| 2780 | ||||
| 2781 | SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, SrcVT, Mul); | |||
| 2782 | ||||
| 2783 | SDValue Fma = DAG.getNode(ISD::FMA, SL, SrcVT, FloorMul, K1, Trunc); | |||
| 2784 | ||||
| 2785 | SDValue Hi = DAG.getNode((Signed && SrcVT == MVT::f64) ? ISD::FP_TO_SINT | |||
| 2786 | : ISD::FP_TO_UINT, | |||
| 2787 | SL, MVT::i32, FloorMul); | |||
| 2788 | SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); | |||
| 2789 | ||||
| 2790 | SDValue Result = DAG.getNode(ISD::BITCAST, SL, MVT::i64, | |||
| 2791 | DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi})); | |||
| 2792 | ||||
| 2793 | if (Signed && SrcVT == MVT::f32) { | |||
| 2794 | assert(Sign)(static_cast <bool> (Sign) ? void (0) : __assert_fail ( "Sign", "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp", 2794 , __extension__ __PRETTY_FUNCTION__)); | |||
| 2795 | // Flip the result based on the signedness, which is either all 0s or 1s. | |||
| 2796 | Sign = DAG.getNode(ISD::BITCAST, SL, MVT::i64, | |||
| 2797 | DAG.getBuildVector(MVT::v2i32, SL, {Sign, Sign})); | |||
| 2798 | // r := xor(r, sign) - sign; | |||
| 2799 | Result = | |||
| 2800 | DAG.getNode(ISD::SUB, SL, MVT::i64, | |||
| 2801 | DAG.getNode(ISD::XOR, SL, MVT::i64, Result, Sign), Sign); | |||
| 2802 | } | |||
| 2803 | ||||
| 2804 | return Result; | |||
| 2805 | } | |||
| 2806 | ||||
| 2807 | SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { | |||
| 2808 | SDLoc DL(Op); | |||
| 2809 | SDValue N0 = Op.getOperand(0); | |||
| 2810 | ||||
| 2811 | // Convert to target node to get known bits | |||
| 2812 | if (N0.getValueType() == MVT::f32) | |||
| 2813 | return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); | |||
| 2814 | ||||
| 2815 | if (getTargetMachine().Options.UnsafeFPMath) { | |||
| 2816 | // There is a generic expand for FP_TO_FP16 with unsafe fast math. | |||
| 2817 | return SDValue(); | |||
| 2818 | } | |||
| 2819 | ||||
| 2820 | assert(N0.getSimpleValueType() == MVT::f64)(static_cast <bool> (N0.getSimpleValueType() == MVT::f64 ) ? void (0) : __assert_fail ("N0.getSimpleValueType() == MVT::f64" , "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp", 2820, __extension__ __PRETTY_FUNCTION__)); | |||
| 2821 | ||||
| 2822 | // f64 -> f16 conversion using round-to-nearest-even rounding mode. | |||
| 2823 | const unsigned ExpMask = 0x7ff; | |||
| 2824 | const unsigned ExpBiasf64 = 1023; | |||
| 2825 | const unsigned ExpBiasf16 = 15; | |||
| 2826 | SDValue Zero = DAG.getConstant(0, DL, MVT::i32); | |||
| 2827 | SDValue One = DAG.getConstant(1, DL, MVT::i32); | |||
| 2828 | SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); | |||
| 2829 | SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, | |||
| 2830 | DAG.getConstant(32, DL, MVT::i64)); | |||
| 2831 | UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); | |||
| 2832 | U = DAG.getZExtOrTrunc(U, DL, MVT::i32); | |||
| 2833 | SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, | |||
| 2834 | DAG.getConstant(20, DL, MVT::i64)); | |||
| 2835 | E = DAG.getNode(ISD::AND, DL, MVT::i32, E, | |||
| 2836 | DAG.getConstant(ExpMask, DL, MVT::i32)); | |||
| 2837 | // Subtract the fp64 exponent bias (1023) to get the real exponent and | |||
| 2838 | // add the f16 bias (15) to get the biased exponent for the f16 format. | |||
| 2839 | E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, | |||
| 2840 | DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); | |||
| 2841 | ||||
| 2842 | SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, | |||
| 2843 | DAG.getConstant(8, DL, MVT::i32)); | |||
| 2844 | M = DAG.getNode(ISD::AND, DL, MVT::i32, M, | |||
| 2845 | DAG.getConstant(0xffe, DL, MVT::i32)); | |||
| 2846 | ||||
| 2847 | SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, | |||
| 2848 | DAG.getConstant(0x1ff, DL, MVT::i32)); | |||
| 2849 | MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); | |||
| 2850 | ||||
| 2851 | SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); | |||
| 2852 | M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); | |||
| 2853 | ||||
| 2854 | // (M != 0 ? 0x0200 : 0) | 0x7c00; | |||
| 2855 | SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, | |||
| 2856 | DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), | |||
| 2857 | Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); | |||
| 2858 | ||||
| 2859 | // N = M | (E << 12); | |||
| 2860 | SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, | |||
| 2861 | DAG.getNode(ISD::SHL, DL, MVT::i32, E, | |||
| 2862 | DAG.getConstant(12, DL, MVT::i32))); | |||
| 2863 | ||||
| 2864 | // B = clamp(1-E, 0, 13); | |||
| 2865 | SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, | |||
| 2866 | One, E); | |||
| 2867 | SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); | |||
| 2868 | B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, | |||
| 2869 | DAG.getConstant(13, DL, MVT::i32)); | |||
| 2870 | ||||
| 2871 | SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, | |||
| 2872 | DAG.getConstant(0x1000, DL, MVT::i32)); | |||
| 2873 | ||||
| 2874 | SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); | |||
| 2875 | SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); | |||
| 2876 | SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); | |||
| 2877 | D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); | |||
| 2878 | ||||
| 2879 | SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); | |||
| 2880 | SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, | |||
| 2881 | DAG.getConstant(0x7, DL, MVT::i32)); | |||
| 2882 | V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, | |||
| 2883 | DAG.getConstant(2, DL, MVT::i32)); | |||
| 2884 | SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), | |||
| 2885 | One, Zero, ISD::SETEQ); | |||
| 2886 | SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), | |||
| 2887 | One, Zero, ISD::SETGT); | |||
| 2888 | V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); | |||
| 2889 | V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); | |||
| 2890 | ||||
| 2891 | V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), | |||
| 2892 | DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); | |||
| 2893 | V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), | |||
| 2894 | I, V, ISD::SETEQ); | |||
| 2895 | ||||
| 2896 | // Extract the sign bit. | |||
| 2897 | SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, | |||
| 2898 | DAG.getConstant(16, DL, MVT::i32)); | |||
| 2899 | Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, | |||
| 2900 | DAG.getConstant(0x8000, DL, MVT::i32)); | |||
| 2901 | ||||
| 2902 | V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); | |||
| 2903 | return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); | |||
| 2904 | } | |||
| 2905 | ||||
| 2906 | SDValue AMDGPUTargetLowering::LowerFP_TO_INT(SDValue Op, | |||
| 2907 | SelectionDAG &DAG) const { | |||
| 2908 | SDValue Src = Op.getOperand(0); | |||
| 2909 | unsigned OpOpcode = Op.getOpcode(); | |||
| 2910 | EVT SrcVT = Src.getValueType(); | |||
| 2911 | EVT DestVT = Op.getValueType(); | |||
| 2912 | ||||
| 2913 | // Will be selected natively | |||
| 2914 | if (SrcVT == MVT::f16 && DestVT == MVT::i16) | |||
| 2915 | return Op; | |||
| 2916 | ||||
| 2917 | // Promote i16 to i32 | |||
| 2918 | if (DestVT == MVT::i16 && (SrcVT == MVT::f32 || SrcVT == MVT::f64)) { | |||
| 2919 | SDLoc DL(Op); | |||
| 2920 | ||||
| 2921 | SDValue FpToInt32 = DAG.getNode(OpOpcode, DL, MVT::i32, Src); | |||
| 2922 | return DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToInt32); | |||
| 2923 | } | |||
| 2924 | ||||
| 2925 | if (SrcVT == MVT::f16 || | |||
| 2926 | (SrcVT == MVT::f32 && Src.getOpcode() == ISD::FP16_TO_FP)) { | |||
| 2927 | SDLoc DL(Op); | |||
| 2928 | ||||
| 2929 | SDValue FpToInt32 = DAG.getNode(OpOpcode, DL, MVT::i32, Src); | |||
| 2930 | unsigned Ext = | |||
| 2931 | OpOpcode == ISD::FP_TO_SINT ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; | |||
| 2932 | return DAG.getNode(Ext, DL, MVT::i64, FpToInt32); | |||
| 2933 | } | |||
| 2934 | ||||
| 2935 | if (DestVT == MVT::i64 && (SrcVT == MVT::f32 || SrcVT == MVT::f64)) | |||
| 2936 | return LowerFP_TO_INT64(Op, DAG, OpOpcode == ISD::FP_TO_SINT); | |||
| 2937 | ||||
| 2938 | return SDValue(); | |||
| 2939 | } | |||
| 2940 | ||||
| 2941 | SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, | |||
| 2942 | SelectionDAG &DAG) const { | |||
| 2943 | EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); | |||
| 2944 | MVT VT = Op.getSimpleValueType(); | |||
| 2945 | MVT ScalarVT = VT.getScalarType(); | |||
| 2946 | ||||
| 2947 | assert(VT.isVector())(static_cast <bool> (VT.isVector()) ? void (0) : __assert_fail ("VT.isVector()", "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp" , 2947, __extension__ __PRETTY_FUNCTION__)); | |||
| 2948 | ||||
| 2949 | SDValue Src = Op.getOperand(0); | |||
| 2950 | SDLoc DL(Op); | |||
| 2951 | ||||
| 2952 | // TODO: Don't scalarize on Evergreen? | |||
| 2953 | unsigned NElts = VT.getVectorNumElements(); | |||
| 2954 | SmallVector<SDValue, 8> Args; | |||
| 2955 | DAG.ExtractVectorElements(Src, Args, 0, NElts); | |||
| 2956 | ||||
| 2957 | SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); | |||
| 2958 | for (unsigned I = 0; I < NElts; ++I) | |||
| 2959 | Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); | |||
| 2960 | ||||
| 2961 | return DAG.getBuildVector(VT, DL, Args); | |||
| 2962 | } | |||
| 2963 | ||||
| 2964 | //===----------------------------------------------------------------------===// | |||
| 2965 | // Custom DAG optimizations | |||
| 2966 | //===----------------------------------------------------------------------===// | |||
| 2967 | ||||
| 2968 | static bool isU24(SDValue Op, SelectionDAG &DAG) { | |||
| 2969 | return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24; | |||
| 2970 | } | |||
| 2971 | ||||
| 2972 | static bool isI24(SDValue Op, SelectionDAG &DAG) { | |||
| 2973 | EVT VT = Op.getValueType(); | |||
| 2974 | return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated | |||
| 2975 | // as unsigned 24-bit values. | |||
| 2976 | AMDGPUTargetLowering::numBitsSigned(Op, DAG) <= 24; | |||
| 2977 | } | |||
| 2978 | ||||
| 2979 | static SDValue simplifyMul24(SDNode *Node24, | |||
| 2980 | TargetLowering::DAGCombinerInfo &DCI) { | |||
| 2981 | SelectionDAG &DAG = DCI.DAG; | |||
| 2982 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | |||
| 2983 | bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN; | |||
| 2984 | ||||
| 2985 | SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0); | |||
| 2986 | SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1); | |||
| 2987 | unsigned NewOpcode = Node24->getOpcode(); | |||
| 2988 | if (IsIntrin) { | |||
| 2989 | unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue(); | |||
| 2990 | switch (IID) { | |||
| 2991 | case Intrinsic::amdgcn_mul_i24: | |||
| 2992 | NewOpcode = AMDGPUISD::MUL_I24; | |||
| 2993 | break; | |||
| 2994 | case Intrinsic::amdgcn_mul_u24: | |||
| 2995 | NewOpcode = AMDGPUISD::MUL_U24; | |||
| 2996 | break; | |||
| 2997 | case Intrinsic::amdgcn_mulhi_i24: | |||
| 2998 | NewOpcode = AMDGPUISD::MULHI_I24; | |||
| 2999 | break; | |||
| 3000 | case Intrinsic::amdgcn_mulhi_u24: | |||
| 3001 | NewOpcode = AMDGPUISD::MULHI_U24; | |||
| 3002 | break; | |||
| 3003 | default: | |||
| 3004 | llvm_unreachable("Expected 24-bit mul intrinsic")::llvm::llvm_unreachable_internal("Expected 24-bit mul intrinsic" , "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp", 3004); | |||
| 3005 | } | |||
| 3006 | } | |||
| 3007 | ||||
| 3008 | APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24); | |||
| 3009 | ||||
| 3010 | // First try to simplify using SimplifyMultipleUseDemandedBits which allows | |||
| 3011 | // the operands to have other uses, but will only perform simplifications that | |||
| 3012 | // involve bypassing some nodes for this user. | |||
| 3013 | SDValue DemandedLHS = TLI.SimplifyMultipleUseDemandedBits(LHS, Demanded, DAG); | |||
| 3014 | SDValue DemandedRHS = TLI.SimplifyMultipleUseDemandedBits(RHS, Demanded, DAG); | |||
| 3015 | if (DemandedLHS || DemandedRHS) | |||
| 3016 | return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(), | |||
| 3017 | DemandedLHS ? DemandedLHS : LHS, | |||
| 3018 | DemandedRHS ? DemandedRHS : RHS); | |||
| 3019 | ||||
| 3020 | // Now try SimplifyDemandedBits which can simplify the nodes used by our | |||
| 3021 | // operands if this node is the only user. | |||
| 3022 | if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI)) | |||
| 3023 | return SDValue(Node24, 0); | |||
| 3024 | if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI)) | |||
| 3025 | return SDValue(Node24, 0); | |||
| 3026 | ||||
| 3027 | return SDValue(); | |||
| 3028 | } | |||
| 3029 | ||||
| 3030 | template <typename IntTy> | |||
| 3031 | static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, | |||
| 3032 | uint32_t Width, const SDLoc &DL) { | |||
| 3033 | if (Width + Offset < 32) { | |||
| 3034 | uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); | |||
| 3035 | IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); | |||
| 3036 | return DAG.getConstant(Result, DL, MVT::i32); | |||
| 3037 | } | |||
| 3038 | ||||
| 3039 | return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); | |||
| 3040 | } | |||
| 3041 | ||||
| 3042 | static bool hasVolatileUser(SDNode *Val) { | |||
| 3043 | for (SDNode *U : Val->uses()) { | |||
| 3044 | if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { | |||
| 3045 | if (M->isVolatile()) | |||
| 3046 | return true; | |||
| 3047 | } | |||
| 3048 | } | |||
| 3049 | ||||
| 3050 | return false; | |||
| 3051 | } | |||
| 3052 | ||||
| 3053 | bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { | |||
| 3054 | // i32 vectors are the canonical memory type. | |||
| 3055 | if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) | |||
| 3056 | return false; | |||
| 3057 | ||||
| 3058 | if (!VT.isByteSized()) | |||
| 3059 | return false; | |||
| 3060 | ||||
| 3061 | unsigned Size = VT.getStoreSize(); | |||
| 3062 | ||||
| 3063 | if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) | |||
| 3064 | return false; | |||
| 3065 | ||||
| 3066 | if (Size == 3 || (Size > 4 && (Size % 4 != 0))) | |||
| 3067 | return false; | |||
| 3068 | ||||
| 3069 | return true; | |||
| 3070 | } | |||
| 3071 | ||||
| 3072 | // Replace load of an illegal type with a store of a bitcast to a friendlier | |||
| 3073 | // type. | |||
| 3074 | SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, | |||
| 3075 | DAGCombinerInfo &DCI) const { | |||
| 3076 | if (!DCI.isBeforeLegalize()) | |||
| 3077 | return SDValue(); | |||
| 3078 | ||||
| 3079 | LoadSDNode *LN = cast<LoadSDNode>(N); | |||
| 3080 | if (!LN->isSimple() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) | |||
| 3081 | return SDValue(); | |||
| 3082 | ||||
| 3083 | SDLoc SL(N); | |||
| 3084 | SelectionDAG &DAG = DCI.DAG; | |||
| 3085 | EVT VT = LN->getMemoryVT(); | |||
| 3086 | ||||
| 3087 | unsigned Size = VT.getStoreSize(); | |||
| 3088 | Align Alignment = LN->getAlign(); | |||
| 3089 | if (Alignment < Size && isTypeLegal(VT)) { | |||
| 3090 | unsigned IsFast; | |||
| 3091 | unsigned AS = LN->getAddressSpace(); | |||
| 3092 | ||||
| 3093 | // Expand unaligned loads earlier than legalization. Due to visitation order | |||
| 3094 | // problems during legalization, the emitted instructions to pack and unpack | |||
| 3095 | // the bytes again are not eliminated in the case of an unaligned copy. | |||
| 3096 | if (!allowsMisalignedMemoryAccesses( | |||
| 3097 | VT, AS, Alignment, LN->getMemOperand()->getFlags(), &IsFast)) { | |||
| 3098 | if (VT.isVector()) | |||
| 3099 | return SplitVectorLoad(SDValue(LN, 0), DAG); | |||
| 3100 | ||||
| 3101 | SDValue Ops[2]; | |||
| 3102 | std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); | |||
| 3103 | ||||
| 3104 | return DAG.getMergeValues(Ops, SDLoc(N)); | |||
| 3105 | } | |||
| 3106 | ||||
| 3107 | if (!IsFast) | |||
| 3108 | return SDValue(); | |||
| 3109 | } | |||
| 3110 | ||||
| 3111 | if (!shouldCombineMemoryType(VT)) | |||
| 3112 | return SDValue(); | |||
| 3113 | ||||
| 3114 | EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); | |||
| 3115 | ||||
| 3116 | SDValue NewLoad | |||
| 3117 | = DAG.getLoad(NewVT, SL, LN->getChain(), | |||
| 3118 | LN->getBasePtr(), LN->getMemOperand()); | |||
| 3119 | ||||
| 3120 | SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); | |||
| 3121 | DCI.CombineTo(N, BC, NewLoad.getValue(1)); | |||
| 3122 | return SDValue(N, 0); | |||
| 3123 | } | |||
| 3124 | ||||
| 3125 | // Replace store of an illegal type with a store of a bitcast to a friendlier | |||
| 3126 | // type. | |||
| 3127 | SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, | |||
| 3128 | DAGCombinerInfo &DCI) const { | |||
| 3129 | if (!DCI.isBeforeLegalize()) | |||
| 3130 | return SDValue(); | |||
| 3131 | ||||
| 3132 | StoreSDNode *SN = cast<StoreSDNode>(N); | |||
| 3133 | if (!SN->isSimple() || !ISD::isNormalStore(SN)) | |||
| 3134 | return SDValue(); | |||
| 3135 | ||||
| 3136 | EVT VT = SN->getMemoryVT(); | |||
| 3137 | unsigned Size = VT.getStoreSize(); | |||
| 3138 | ||||
| 3139 | SDLoc SL(N); | |||
| 3140 | SelectionDAG &DAG = DCI.DAG; | |||
| 3141 | Align Alignment = SN->getAlign(); | |||
| 3142 | if (Alignment < Size && isTypeLegal(VT)) { | |||
| 3143 | unsigned IsFast; | |||
| 3144 | unsigned AS = SN->getAddressSpace(); | |||
| 3145 | ||||
| 3146 | // Expand unaligned stores earlier than legalization. Due to visitation | |||
| 3147 | // order problems during legalization, the emitted instructions to pack and | |||
| 3148 | // unpack the bytes again are not eliminated in the case of an unaligned | |||
| 3149 | // copy. | |||
| 3150 | if (!allowsMisalignedMemoryAccesses( | |||
| 3151 | VT, AS, Alignment, SN->getMemOperand()->getFlags(), &IsFast)) { | |||
| 3152 | if (VT.isVector()) | |||
| 3153 | return SplitVectorStore(SDValue(SN, 0), DAG); | |||
| 3154 | ||||
| 3155 | return expandUnalignedStore(SN, DAG); | |||
| 3156 | } | |||
| 3157 | ||||
| 3158 | if (!IsFast) | |||
| 3159 | return SDValue(); | |||
| 3160 | } | |||
| 3161 | ||||
| 3162 | if (!shouldCombineMemoryType(VT)) | |||
| 3163 | return SDValue(); | |||
| 3164 | ||||
| 3165 | EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); | |||
| 3166 | SDValue Val = SN->getValue(); | |||
| 3167 | ||||
| 3168 | //DCI.AddToWorklist(Val.getNode()); | |||
| 3169 | ||||
| 3170 | bool OtherUses = !Val.hasOneUse(); | |||
| 3171 | SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); | |||
| 3172 | if (OtherUses) { | |||
| 3173 | SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); | |||
| 3174 | DAG.ReplaceAllUsesOfValueWith(Val, CastBack); | |||
| 3175 | } | |||
| 3176 | ||||
| 3177 | return DAG.getStore(SN->getChain(), SL, CastVal, | |||
| 3178 | SN->getBasePtr(), SN->getMemOperand()); | |||
| 3179 | } | |||
| 3180 | ||||
| 3181 | // FIXME: This should go in generic DAG combiner with an isTruncateFree check, | |||
| 3182 | // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU | |||
| 3183 | // issues. | |||
| 3184 | SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, | |||
| 3185 | DAGCombinerInfo &DCI) const { | |||
| 3186 | SelectionDAG &DAG = DCI.DAG; | |||
| 3187 | SDValue N0 = N->getOperand(0); | |||
| 3188 | ||||
| 3189 | // (vt2 (assertzext (truncate vt0:x), vt1)) -> | |||
| 3190 | // (vt2 (truncate (assertzext vt0:x, vt1))) | |||
| 3191 | if (N0.getOpcode() == ISD::TRUNCATE) { | |||
| 3192 | SDValue N1 = N->getOperand(1); | |||
| 3193 | EVT ExtVT = cast<VTSDNode>(N1)->getVT(); | |||
| 3194 | SDLoc SL(N); | |||
| 3195 | ||||
| 3196 | SDValue Src = N0.getOperand(0); | |||
| 3197 | EVT SrcVT = Src.getValueType(); | |||
| 3198 | if (SrcVT.bitsGE(ExtVT)) { | |||
| 3199 | SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1); | |||
| 3200 | return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg); | |||
| 3201 | } | |||
| 3202 | } | |||
| 3203 | ||||
| 3204 | return SDValue(); | |||
| 3205 | } | |||
| 3206 | ||||
| 3207 | SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine( | |||
| 3208 | SDNode *N, DAGCombinerInfo &DCI) const { | |||
| 3209 | unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); | |||
| 3210 | switch (IID) { | |||
| 3211 | case Intrinsic::amdgcn_mul_i24: | |||
| 3212 | case Intrinsic::amdgcn_mul_u24: | |||
| 3213 | case Intrinsic::amdgcn_mulhi_i24: | |||
| 3214 | case Intrinsic::amdgcn_mulhi_u24: | |||
| 3215 | return simplifyMul24(N, DCI); | |||
| 3216 | case Intrinsic::amdgcn_fract: | |||
| 3217 | case Intrinsic::amdgcn_rsq: | |||
| 3218 | case Intrinsic::amdgcn_rcp_legacy: | |||
| 3219 | case Intrinsic::amdgcn_rsq_legacy: | |||
| 3220 | case Intrinsic::amdgcn_rsq_clamp: | |||
| 3221 | case Intrinsic::amdgcn_ldexp: { | |||
| 3222 | // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted | |||
| 3223 | SDValue Src = N->getOperand(1); | |||
| 3224 | return Src.isUndef() ? Src : SDValue(); | |||
| 3225 | } | |||
| 3226 | default: | |||
| 3227 | return SDValue(); | |||
| 3228 | } | |||
| 3229 | } | |||
| 3230 | ||||
| 3231 | /// Split the 64-bit value \p LHS into two 32-bit components, and perform the | |||
| 3232 | /// binary operation \p Opc to it with the corresponding constant operands. | |||
| 3233 | SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( | |||
| 3234 | DAGCombinerInfo &DCI, const SDLoc &SL, | |||
| 3235 | unsigned Opc, SDValue LHS, | |||
| 3236 | uint32_t ValLo, uint32_t ValHi) const { | |||
| 3237 | SelectionDAG &DAG = DCI.DAG; | |||
| 3238 | SDValue Lo, Hi; | |||
| 3239 | std::tie(Lo, Hi) = split64BitValue(LHS, DAG); | |||
| 3240 | ||||
| 3241 | SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); | |||
| 3242 | SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); | |||
| 3243 | ||||
| 3244 | SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); | |||
| 3245 | SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); | |||
| 3246 | ||||
| 3247 | // Re-visit the ands. It's possible we eliminated one of them and it could | |||
| 3248 | // simplify the vector. | |||
| 3249 | DCI.AddToWorklist(Lo.getNode()); | |||
| 3250 | DCI.AddToWorklist(Hi.getNode()); | |||
| 3251 | ||||
| 3252 | SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); | |||
| 3253 | return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); | |||
| 3254 | } | |||
| 3255 | ||||
| 3256 | SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, | |||
| 3257 | DAGCombinerInfo &DCI) const { | |||
| 3258 | EVT VT = N->getValueType(0); | |||
| 3259 | ||||
| 3260 | ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); | |||
| 3261 | if (!RHS) | |||
| 3262 | return SDValue(); | |||
| 3263 | ||||
| 3264 | SDValue LHS = N->getOperand(0); | |||
| 3265 | unsigned RHSVal = RHS->getZExtValue(); | |||
| 3266 | if (!RHSVal) | |||
| 3267 | return LHS; | |||
| 3268 | ||||
| 3269 | SDLoc SL(N); | |||
| 3270 | SelectionDAG &DAG = DCI.DAG; | |||
| 3271 | ||||
| 3272 | switch (LHS->getOpcode()) { | |||
| 3273 | default: | |||
| 3274 | break; | |||
| 3275 | case ISD::ZERO_EXTEND: | |||
| 3276 | case ISD::SIGN_EXTEND: | |||
| 3277 | case ISD::ANY_EXTEND: { | |||
| 3278 | SDValue X = LHS->getOperand(0); | |||
| 3279 | ||||
| 3280 | if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && | |||
| 3281 | isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) { | |||
| 3282 | // Prefer build_vector as the canonical form if packed types are legal. | |||
| 3283 | // (shl ([asz]ext i16:x), 16 -> build_vector 0, x | |||
| 3284 | SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL, | |||
| 3285 | { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) }); | |||
| 3286 | return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); | |||
| 3287 | } | |||
| 3288 | ||||
| 3289 | // shl (ext x) => zext (shl x), if shift does not overflow int | |||
| 3290 | if (VT != MVT::i64) | |||
| 3291 | break; | |||
| 3292 | KnownBits Known = DAG.computeKnownBits(X); | |||
| 3293 | unsigned LZ = Known.countMinLeadingZeros(); | |||
| 3294 | if (LZ < RHSVal) | |||
| 3295 | break; | |||
| 3296 | EVT XVT = X.getValueType(); | |||
| 3297 | SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); | |||
| 3298 | return DAG.getZExtOrTrunc(Shl, SL, VT); | |||
| 3299 | } | |||
| 3300 | } | |||
| 3301 | ||||
| 3302 | if (VT != MVT::i64) | |||
| 3303 | return SDValue(); | |||
| 3304 | ||||
| 3305 | // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) | |||
| 3306 | ||||
| 3307 | // On some subtargets, 64-bit shift is a quarter rate instruction. In the | |||
| 3308 | // common case, splitting this into a move and a 32-bit shift is faster and | |||
| 3309 | // the same code size. | |||
| 3310 | if (RHSVal < 32) | |||
| 3311 | return SDValue(); | |||
| 3312 | ||||
| 3313 | SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); | |||
| 3314 | ||||
| 3315 | SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); | |||
| 3316 | SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); | |||
| 3317 | ||||
| 3318 | const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); | |||
| 3319 | ||||
| 3320 | SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); | |||
| 3321 | return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); | |||
| 3322 | } | |||
| 3323 | ||||
| 3324 | SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, | |||
| 3325 | DAGCombinerInfo &DCI) const { | |||
| 3326 | if (N->getValueType(0) != MVT::i64) | |||
| 3327 | return SDValue(); | |||
| 3328 | ||||
| 3329 | const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); | |||
| 3330 | if (!RHS) | |||
| 3331 | return SDValue(); | |||
| 3332 | ||||
| 3333 | SelectionDAG &DAG = DCI.DAG; | |||
| 3334 | SDLoc SL(N); | |||
| 3335 | unsigned RHSVal = RHS->getZExtValue(); | |||
| 3336 | ||||
| 3337 | // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) | |||
| 3338 | if (RHSVal == 32) { | |||
| 3339 | SDValue Hi = getHiHalf64(N->getOperand(0), DAG); | |||
| 3340 | SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, | |||
| 3341 | DAG.getConstant(31, SL, MVT::i32)); | |||
| 3342 | ||||
| 3343 | SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); | |||
| 3344 | return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); | |||
| 3345 | } | |||
| 3346 | ||||
| 3347 | // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) | |||
| 3348 | if (RHSVal == 63) { | |||
| 3349 | SDValue Hi = getHiHalf64(N->getOperand(0), DAG); | |||
| 3350 | SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, | |||
| 3351 | DAG.getConstant(31, SL, MVT::i32)); | |||
| 3352 | SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); | |||
| 3353 | return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); | |||
| 3354 | } | |||
| 3355 | ||||
| 3356 | return SDValue(); | |||
| 3357 | } | |||
| 3358 | ||||
| 3359 | SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, | |||
| 3360 | DAGCombinerInfo &DCI) const { | |||
| 3361 | auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); | |||
| 3362 | if (!RHS) | |||
| 3363 | return SDValue(); | |||
| 3364 | ||||
| 3365 | EVT VT = N->getValueType(0); | |||
| 3366 | SDValue LHS = N->getOperand(0); | |||
| 3367 | unsigned ShiftAmt = RHS->getZExtValue(); | |||
| 3368 | SelectionDAG &DAG = DCI.DAG; | |||
| 3369 | SDLoc SL(N); | |||
| 3370 | ||||
| 3371 | // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1) | |||
| 3372 | // this improves the ability to match BFE patterns in isel. | |||
| 3373 | if (LHS.getOpcode() == ISD::AND) { | |||
| 3374 | if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) { | |||
| 3375 | unsigned MaskIdx, MaskLen; | |||
| 3376 | if (Mask->getAPIntValue().isShiftedMask(MaskIdx, MaskLen) && | |||
| 3377 | MaskIdx == ShiftAmt) { | |||
| 3378 | return DAG.getNode( | |||
| 3379 | ISD::AND, SL, VT, | |||
| 3380 | DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)), | |||
| 3381 | DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1))); | |||
| 3382 | } | |||
| 3383 | } | |||
| 3384 | } | |||
| 3385 | ||||
| 3386 | if (VT != MVT::i64) | |||
| 3387 | return SDValue(); | |||
| 3388 | ||||
| 3389 | if (ShiftAmt < 32) | |||
| 3390 | return SDValue(); | |||
| 3391 | ||||
| 3392 | // srl i64:x, C for C >= 32 | |||
| 3393 | // => | |||
| 3394 | // build_pair (srl hi_32(x), C - 32), 0 | |||
| 3395 | SDValue Zero = DAG.getConstant(0, SL, MVT::i32); | |||
| 3396 | ||||
| 3397 | SDValue Hi = getHiHalf64(LHS, DAG); | |||
| 3398 | ||||
| 3399 | SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); | |||
| 3400 | SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); | |||
| 3401 | ||||
| 3402 | SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); | |||
| 3403 | ||||
| 3404 | return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); | |||
| 3405 | } | |||
| 3406 | ||||
| 3407 | SDValue AMDGPUTargetLowering::performTruncateCombine( | |||
| 3408 | SDNode *N, DAGCombinerInfo &DCI) const { | |||
| 3409 | SDLoc SL(N); | |||
| 3410 | SelectionDAG &DAG = DCI.DAG; | |||
| 3411 | EVT VT = N->getValueType(0); | |||
| 3412 | SDValue Src = N->getOperand(0); | |||
| 3413 | ||||
| 3414 | // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x) | |||
| 3415 | if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) { | |||
| 3416 | SDValue Vec = Src.getOperand(0); | |||
| 3417 | if (Vec.getOpcode() == ISD::BUILD_VECTOR) { | |||
| 3418 | SDValue Elt0 = Vec.getOperand(0); | |||
| 3419 | EVT EltVT = Elt0.getValueType(); | |||
| 3420 | if (VT.getFixedSizeInBits() <= EltVT.getFixedSizeInBits()) { | |||
| 3421 | if (EltVT.isFloatingPoint()) { | |||
| 3422 | Elt0 = DAG.getNode(ISD::BITCAST, SL, | |||
| 3423 | EltVT.changeTypeToInteger(), Elt0); | |||
| 3424 | } | |||
| 3425 | ||||
| 3426 | return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0); | |||
| 3427 | } | |||
| 3428 | } | |||
| 3429 | } | |||
| 3430 | ||||
| 3431 | // Equivalent of above for accessing the high element of a vector as an | |||
| 3432 | // integer operation. | |||
| 3433 | // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y) | |||
| 3434 | if (Src.getOpcode() == ISD::SRL && !VT.isVector()) { | |||
| 3435 | if (auto K = isConstOrConstSplat(Src.getOperand(1))) { | |||
| 3436 | if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) { | |||
| 3437 | SDValue BV = stripBitcast(Src.getOperand(0)); | |||
| 3438 | if (BV.getOpcode() == ISD::BUILD_VECTOR && | |||
| 3439 | BV.getValueType().getVectorNumElements() == 2) { | |||
| 3440 | SDValue SrcElt = BV.getOperand(1); | |||
| 3441 | EVT SrcEltVT = SrcElt.getValueType(); | |||
| 3442 | if (SrcEltVT.isFloatingPoint()) { | |||
| 3443 | SrcElt = DAG.getNode(ISD::BITCAST, SL, | |||
| 3444 | SrcEltVT.changeTypeToInteger(), SrcElt); | |||
| 3445 | } | |||
| 3446 | ||||
| 3447 | return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt); | |||
| 3448 | } | |||
| 3449 | } | |||
| 3450 | } | |||
| 3451 | } | |||
| 3452 | ||||
| 3453 | // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit. | |||
| 3454 | // | |||
| 3455 | // i16 (trunc (srl i64:x, K)), K <= 16 -> | |||
| 3456 | // i16 (trunc (srl (i32 (trunc x), K))) | |||
| 3457 | if (VT.getScalarSizeInBits() < 32) { | |||
| 3458 | EVT SrcVT = Src.getValueType(); | |||
| 3459 | if (SrcVT.getScalarSizeInBits() > 32 && | |||
| 3460 | (Src.getOpcode() == ISD::SRL || | |||
| 3461 | Src.getOpcode() == ISD::SRA || | |||
| 3462 | Src.getOpcode() == ISD::SHL)) { | |||
| 3463 | SDValue Amt = Src.getOperand(1); | |||
| 3464 | KnownBits Known = DAG.computeKnownBits(Amt); | |||
| 3465 | ||||
| 3466 | // - For left shifts, do the transform as long as the shift | |||
| 3467 | // amount is still legal for i32, so when ShiftAmt < 32 (<= 31) | |||
| 3468 | // - For right shift, do it if ShiftAmt <= (32 - Size) to avoid | |||
| 3469 | // losing information stored in the high bits when truncating. | |||
| 3470 | const unsigned MaxCstSize = | |||
| 3471 | (Src.getOpcode() == ISD::SHL) ? 31 : (32 - VT.getScalarSizeInBits()); | |||
| 3472 | if (Known.getMaxValue().ule(MaxCstSize)) { | |||
| 3473 | EVT MidVT = VT.isVector() ? | |||
| 3474 | EVT::getVectorVT(*DAG.getContext(), MVT::i32, | |||
| 3475 | VT.getVectorNumElements()) : MVT::i32; | |||
| 3476 | ||||
| 3477 | EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout()); | |||
| 3478 | SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT, | |||
| 3479 | Src.getOperand(0)); | |||
| 3480 | DCI.AddToWorklist(Trunc.getNode()); | |||
| 3481 | ||||
| 3482 | if (Amt.getValueType() != NewShiftVT) { | |||
| 3483 | Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT); | |||
| 3484 | DCI.AddToWorklist(Amt.getNode()); | |||
| 3485 | } | |||
| 3486 | ||||
| 3487 | SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT, | |||
| 3488 | Trunc, Amt); | |||
| 3489 | return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift); | |||
| 3490 | } | |||
| 3491 | } | |||
| 3492 | } | |||
| 3493 | ||||
| 3494 | return SDValue(); | |||
| 3495 | } | |||
| 3496 | ||||
| 3497 | // We need to specifically handle i64 mul here to avoid unnecessary conversion | |||
| 3498 | // instructions. If we only match on the legalized i64 mul expansion, | |||
| 3499 | // SimplifyDemandedBits will be unable to remove them because there will be | |||
| 3500 | // multiple uses due to the separate mul + mulh[su]. | |||
| 3501 | static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, | |||
| 3502 | SDValue N0, SDValue N1, unsigned Size, bool Signed) { | |||
| 3503 | if (Size <= 32) { | |||
| 3504 | unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; | |||
| 3505 | return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); | |||
| 3506 | } | |||
| 3507 | ||||
| 3508 | unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; | |||
| 3509 | unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; | |||
| 3510 | ||||
| 3511 | SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); | |||
| 3512 | SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); | |||
| 3513 | ||||
| 3514 | return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, MulLo, MulHi); | |||
| 3515 | } | |||
| 3516 | ||||
| 3517 | SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, | |||
| 3518 | DAGCombinerInfo &DCI) const { | |||
| 3519 | EVT VT = N->getValueType(0); | |||
| 3520 | ||||
| 3521 | // Don't generate 24-bit multiplies on values that are in SGPRs, since | |||
| 3522 | // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs | |||
| 3523 | // unnecessarily). isDivergent() is used as an approximation of whether the | |||
| 3524 | // value is in an SGPR. | |||
| 3525 | if (!N->isDivergent()) | |||
| 3526 | return SDValue(); | |||
| 3527 | ||||
| 3528 | unsigned Size = VT.getSizeInBits(); | |||
| 3529 | if (VT.isVector() || Size > 64) | |||
| 3530 | return SDValue(); | |||
| 3531 | ||||
| 3532 | // There are i16 integer mul/mad. | |||
| 3533 | if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) | |||
| 3534 | return SDValue(); | |||
| 3535 | ||||
| 3536 | SelectionDAG &DAG = DCI.DAG; | |||
| 3537 | SDLoc DL(N); | |||
| 3538 | ||||
| 3539 | SDValue N0 = N->getOperand(0); | |||
| 3540 | SDValue N1 = N->getOperand(1); | |||
| 3541 | ||||
| 3542 | // SimplifyDemandedBits has the annoying habit of turning useful zero_extends | |||
| 3543 | // in the source into any_extends if the result of the mul is truncated. Since | |||
| 3544 | // we can assume the high bits are whatever we want, use the underlying value | |||
| 3545 | // to avoid the unknown high bits from interfering. | |||
| 3546 | if (N0.getOpcode() == ISD::ANY_EXTEND) | |||
| 3547 | N0 = N0.getOperand(0); | |||
| 3548 | ||||
| 3549 | if (N1.getOpcode() == ISD::ANY_EXTEND) | |||
| 3550 | N1 = N1.getOperand(0); | |||
| 3551 | ||||
| 3552 | SDValue Mul; | |||
| 3553 | ||||
| 3554 | if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { | |||
| 3555 | N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); | |||
| 3556 | N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); | |||
| 3557 | Mul = getMul24(DAG, DL, N0, N1, Size, false); | |||
| 3558 | } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { | |||
| 3559 | N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); | |||
| 3560 | N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); | |||
| 3561 | Mul = getMul24(DAG, DL, N0, N1, Size, true); | |||
| 3562 | } else { | |||
| 3563 | return SDValue(); | |||
| 3564 | } | |||
| 3565 | ||||
| 3566 | // We need to use sext even for MUL_U24, because MUL_U24 is used | |||
| 3567 | // for signed multiply of 8 and 16-bit types. | |||
| 3568 | return DAG.getSExtOrTrunc(Mul, DL, VT); | |||
| 3569 | } | |||
| 3570 | ||||
| 3571 | SDValue | |||
| 3572 | AMDGPUTargetLowering::performMulLoHiCombine(SDNode *N, | |||
| 3573 | DAGCombinerInfo &DCI) const { | |||
| 3574 | if (N->getValueType(0) != MVT::i32) | |||
| 3575 | return SDValue(); | |||
| 3576 | ||||
| 3577 | SelectionDAG &DAG = DCI.DAG; | |||
| 3578 | SDLoc DL(N); | |||
| 3579 | ||||
| 3580 | SDValue N0 = N->getOperand(0); | |||
| 3581 | SDValue N1 = N->getOperand(1); | |||
| 3582 | ||||
| 3583 | // SimplifyDemandedBits has the annoying habit of turning useful zero_extends | |||
| 3584 | // in the source into any_extends if the result of the mul is truncated. Since | |||
| 3585 | // we can assume the high bits are whatever we want, use the underlying value | |||
| 3586 | // to avoid the unknown high bits from interfering. | |||
| 3587 | if (N0.getOpcode() == ISD::ANY_EXTEND) | |||
| 3588 | N0 = N0.getOperand(0); | |||
| 3589 | if (N1.getOpcode() == ISD::ANY_EXTEND) | |||
| 3590 | N1 = N1.getOperand(0); | |||
| 3591 | ||||
| 3592 | // Try to use two fast 24-bit multiplies (one for each half of the result) | |||
| 3593 | // instead of one slow extending multiply. | |||
| 3594 | unsigned LoOpcode, HiOpcode; | |||
| 3595 | if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { | |||
| 3596 | N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); | |||
| 3597 | N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); | |||
| 3598 | LoOpcode = AMDGPUISD::MUL_U24; | |||
| 3599 | HiOpcode = AMDGPUISD::MULHI_U24; | |||
| 3600 | } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { | |||
| 3601 | N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); | |||
| 3602 | N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); | |||
| 3603 | LoOpcode = AMDGPUISD::MUL_I24; | |||
| 3604 | HiOpcode = AMDGPUISD::MULHI_I24; | |||
| 3605 | } else { | |||
| 3606 | return SDValue(); | |||
| 3607 | } | |||
| 3608 | ||||
| 3609 | SDValue Lo = DAG.getNode(LoOpcode, DL, MVT::i32, N0, N1); | |||
| 3610 | SDValue Hi = DAG.getNode(HiOpcode, DL, MVT::i32, N0, N1); | |||
| 3611 | DCI.CombineTo(N, Lo, Hi); | |||
| 3612 | return SDValue(N, 0); | |||
| 3613 | } | |||
| 3614 | ||||
| 3615 | SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, | |||
| 3616 | DAGCombinerInfo &DCI) const { | |||
| 3617 | EVT VT = N->getValueType(0); | |||
| 3618 | ||||
| 3619 | if (!Subtarget->hasMulI24() || VT.isVector()) | |||
| 3620 | return SDValue(); | |||
| 3621 | ||||
| 3622 | // Don't generate 24-bit multiplies on values that are in SGPRs, since | |||
| 3623 | // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs | |||
| 3624 | // unnecessarily). isDivergent() is used as an approximation of whether the | |||
| 3625 | // value is in an SGPR. | |||
| 3626 | // This doesn't apply if no s_mul_hi is available (since we'll end up with a | |||
| 3627 | // valu op anyway) | |||
| 3628 | if (Subtarget->hasSMulHi() && !N->isDivergent()) | |||
| 3629 | return SDValue(); | |||
| 3630 | ||||
| 3631 | SelectionDAG &DAG = DCI.DAG; | |||
| 3632 | SDLoc DL(N); | |||
| 3633 | ||||
| 3634 | SDValue N0 = N->getOperand(0); | |||
| 3635 | SDValue N1 = N->getOperand(1); | |||
| 3636 | ||||
| 3637 | if (!isI24(N0, DAG) || !isI24(N1, DAG)) | |||
| 3638 | return SDValue(); | |||
| 3639 | ||||
| 3640 | N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); | |||
| 3641 | N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); | |||
| 3642 | ||||
| 3643 | SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); | |||
| 3644 | DCI.AddToWorklist(Mulhi.getNode()); | |||
| 3645 | return DAG.getSExtOrTrunc(Mulhi, DL, VT); | |||
| 3646 | } | |||
| 3647 | ||||
| 3648 | SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, | |||
| 3649 | DAGCombinerInfo &DCI) const { | |||
| 3650 | EVT VT = N->getValueType(0); | |||
| 3651 | ||||
| 3652 | if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) | |||
| 3653 | return SDValue(); | |||
| 3654 | ||||
| 3655 | // Don't generate 24-bit multiplies on values that are in SGPRs, since | |||
| 3656 | // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs | |||
| 3657 | // unnecessarily). isDivergent() is used as an approximation of whether the | |||
| 3658 | // value is in an SGPR. | |||
| 3659 | // This doesn't apply if no s_mul_hi is available (since we'll end up with a | |||
| 3660 | // valu op anyway) | |||
| 3661 | if (Subtarget->hasSMulHi() && !N->isDivergent()) | |||
| 3662 | return SDValue(); | |||
| 3663 | ||||
| 3664 | SelectionDAG &DAG = DCI.DAG; | |||
| 3665 | SDLoc DL(N); | |||
| 3666 | ||||
| 3667 | SDValue N0 = N->getOperand(0); | |||
| 3668 | SDValue N1 = N->getOperand(1); | |||
| 3669 | ||||
| 3670 | if (!isU24(N0, DAG) || !isU24(N1, DAG)) | |||
| 3671 | return SDValue(); | |||
| 3672 | ||||
| 3673 | N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); | |||
| 3674 | N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); | |||
| 3675 | ||||
| 3676 | SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); | |||
| 3677 | DCI.AddToWorklist(Mulhi.getNode()); | |||
| 3678 | return DAG.getZExtOrTrunc(Mulhi, DL, VT); | |||
| 3679 | } | |||
| 3680 | ||||
| 3681 | SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG, | |||
| 3682 | SDValue Op, | |||
| 3683 | const SDLoc &DL, | |||
| 3684 | unsigned Opc) const { | |||
| 3685 | EVT VT = Op.getValueType(); | |||
| 3686 | EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); | |||
| 3687 | if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && | |||
| 3688 | LegalVT != MVT::i16)) | |||
| 3689 | return SDValue(); | |||
| 3690 | ||||
| 3691 | if (VT != MVT::i32) | |||
| 3692 | Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); | |||
| 3693 | ||||
| 3694 | SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op); | |||
| 3695 | if (VT != MVT::i32) | |||
| 3696 | FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX); | |||
| 3697 | ||||
| 3698 | return FFBX; | |||
| 3699 | } | |||
| 3700 | ||||
| 3701 | // The native instructions return -1 on 0 input. Optimize out a select that | |||
| 3702 | // produces -1 on 0. | |||
| 3703 | // | |||
| 3704 | // TODO: If zero is not undef, we could also do this if the output is compared | |||
| 3705 | // against the bitwidth. | |||
| 3706 | // | |||
| 3707 | // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. | |||
| 3708 | SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, | |||
| 3709 | SDValue LHS, SDValue RHS, | |||
| 3710 | DAGCombinerInfo &DCI) const { | |||
| 3711 | ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); | |||
| 3712 | if (!CmpRhs || !CmpRhs->isZero()) | |||
| 3713 | return SDValue(); | |||
| 3714 | ||||
| 3715 | SelectionDAG &DAG = DCI.DAG; | |||
| 3716 | ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); | |||
| 3717 | SDValue CmpLHS = Cond.getOperand(0); | |||
| 3718 | ||||
| 3719 | // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x | |||
| 3720 | // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x | |||
| 3721 | if (CCOpcode == ISD::SETEQ && | |||
| 3722 | (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && | |||
| 3723 | RHS.getOperand(0) == CmpLHS && isAllOnesConstant(LHS)) { | |||
| 3724 | unsigned Opc = | |||
| 3725 | isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32; | |||
| 3726 | return getFFBX_U32(DAG, CmpLHS, SL, Opc); | |||
| 3727 | } | |||
| 3728 | ||||
| 3729 | // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x | |||
| 3730 | // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x | |||
| 3731 | if (CCOpcode == ISD::SETNE && | |||
| 3732 | (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(LHS.getOpcode())) && | |||
| 3733 | LHS.getOperand(0) == CmpLHS && isAllOnesConstant(RHS)) { | |||
| 3734 | unsigned Opc = | |||
| 3735 | isCttzOpc(LHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32; | |||
| 3736 | ||||
| 3737 | return getFFBX_U32(DAG, CmpLHS, SL, Opc); | |||
| 3738 | } | |||
| 3739 | ||||
| 3740 | return SDValue(); | |||
| 3741 | } | |||
| 3742 | ||||
| 3743 | static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, | |||
| 3744 | unsigned Op, | |||
| 3745 | const SDLoc &SL, | |||
| 3746 | SDValue Cond, | |||
| 3747 | SDValue N1, | |||
| 3748 | SDValue N2) { | |||
| 3749 | SelectionDAG &DAG = DCI.DAG; | |||
| 3750 | EVT VT = N1.getValueType(); | |||
| 3751 | ||||
| 3752 | SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, | |||
| 3753 | N1.getOperand(0), N2.getOperand(0)); | |||
| 3754 | DCI.AddToWorklist(NewSelect.getNode()); | |||
| 3755 | return DAG.getNode(Op, SL, VT, NewSelect); | |||
| 3756 | } | |||
| 3757 | ||||
| 3758 | // Pull a free FP operation out of a select so it may fold into uses. | |||
| 3759 | // | |||
| 3760 | // select c, (fneg x), (fneg y) -> fneg (select c, x, y) | |||
| 3761 | // select c, (fneg x), k -> fneg (select c, x, (fneg k)) | |||
| 3762 | // | |||
| 3763 | // select c, (fabs x), (fabs y) -> fabs (select c, x, y) | |||
| 3764 | // select c, (fabs x), +k -> fabs (select c, x, k) | |||
| 3765 | SDValue | |||
| 3766 | AMDGPUTargetLowering::foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, | |||
| 3767 | SDValue N) const { | |||
| 3768 | SelectionDAG &DAG = DCI.DAG; | |||
| 3769 | SDValue Cond = N.getOperand(0); | |||
| 3770 | SDValue LHS = N.getOperand(1); | |||
| 3771 | SDValue RHS = N.getOperand(2); | |||
| 3772 | ||||
| 3773 | EVT VT = N.getValueType(); | |||
| 3774 | if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || | |||
| 3775 | (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { | |||
| 3776 | if (!AMDGPUTargetLowering::allUsesHaveSourceMods(N.getNode())) | |||
| 3777 | return SDValue(); | |||
| 3778 | ||||
| 3779 | return distributeOpThroughSelect(DCI, LHS.getOpcode(), | |||
| 3780 | SDLoc(N), Cond, LHS, RHS); | |||
| 3781 | } | |||
| 3782 | ||||
| 3783 | bool Inv = false; | |||
| 3784 | if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { | |||
| 3785 | std::swap(LHS, RHS); | |||
| 3786 | Inv = true; | |||
| 3787 | } | |||
| 3788 | ||||
| 3789 | // TODO: Support vector constants. | |||
| 3790 | ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); | |||
| 3791 | if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS && | |||
| 3792 | !selectSupportsSourceMods(N.getNode())) { | |||
| 3793 | SDLoc SL(N); | |||
| 3794 | // If one side is an fneg/fabs and the other is a constant, we can push the | |||
| 3795 | // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. | |||
| 3796 | SDValue NewLHS = LHS.getOperand(0); | |||
| 3797 | SDValue NewRHS = RHS; | |||
| 3798 | ||||
| 3799 | // Careful: if the neg can be folded up, don't try to pull it back down. | |||
| 3800 | bool ShouldFoldNeg = true; | |||
| 3801 | ||||
| 3802 | if (NewLHS.hasOneUse()) { | |||
| 3803 | unsigned Opc = NewLHS.getOpcode(); | |||
| 3804 | if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(NewLHS.getNode())) | |||
| 3805 | ShouldFoldNeg = false; | |||
| 3806 | if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) | |||
| 3807 | ShouldFoldNeg = false; | |||
| 3808 | } | |||
| 3809 | ||||
| 3810 | if (ShouldFoldNeg) { | |||
| 3811 | if (LHS.getOpcode() == ISD::FABS && CRHS->isNegative()) | |||
| 3812 | return SDValue(); | |||
| 3813 | ||||
| 3814 | // We're going to be forced to use a source modifier anyway, there's no | |||
| 3815 | // point to pulling the negate out unless we can get a size reduction by | |||
| 3816 | // negating the constant. | |||
| 3817 | // | |||
| 3818 | // TODO: Generalize to use getCheaperNegatedExpression which doesn't know | |||
| 3819 | // about cheaper constants. | |||
| 3820 | if (NewLHS.getOpcode() == ISD::FABS && | |||
| 3821 | getConstantNegateCost(CRHS) != NegatibleCost::Cheaper) | |||
| 3822 | return SDValue(); | |||
| 3823 | ||||
| 3824 | if (!AMDGPUTargetLowering::allUsesHaveSourceMods(N.getNode())) | |||
| 3825 | return SDValue(); | |||
| 3826 | ||||
| 3827 | if (LHS.getOpcode() == ISD::FNEG) | |||
| 3828 | NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); | |||
| 3829 | ||||
| 3830 | if (Inv) | |||
| 3831 | std::swap(NewLHS, NewRHS); | |||
| 3832 | ||||
| 3833 | SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, | |||
| 3834 | Cond, NewLHS, NewRHS); | |||
| 3835 | DCI.AddToWorklist(NewSelect.getNode()); | |||
| 3836 | return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); | |||
| 3837 | } | |||
| 3838 | } | |||
| 3839 | ||||
| 3840 | return SDValue(); | |||
| 3841 | } | |||
| 3842 | ||||
| 3843 | SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, | |||
| 3844 | DAGCombinerInfo &DCI) const { | |||
| 3845 | if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) | |||
| 3846 | return Folded; | |||
| 3847 | ||||
| 3848 | SDValue Cond = N->getOperand(0); | |||
| 3849 | if (Cond.getOpcode() != ISD::SETCC) | |||
| 3850 | return SDValue(); | |||
| 3851 | ||||
| 3852 | EVT VT = N->getValueType(0); | |||
| 3853 | SDValue LHS = Cond.getOperand(0); | |||
| 3854 | SDValue RHS = Cond.getOperand(1); | |||
| 3855 | SDValue CC = Cond.getOperand(2); | |||
| 3856 | ||||
| 3857 | SDValue True = N->getOperand(1); | |||
| 3858 | SDValue False = N->getOperand(2); | |||
| 3859 | ||||
| 3860 | if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. | |||
| 3861 | SelectionDAG &DAG = DCI.DAG; | |||
| 3862 | if (DAG.isConstantValueOfAnyType(True) && | |||
| 3863 | !DAG.isConstantValueOfAnyType(False)) { | |||
| 3864 | // Swap cmp + select pair to move constant to false input. | |||
| 3865 | // This will allow using VOPC cndmasks more often. | |||
| 3866 | // select (setcc x, y), k, x -> select (setccinv x, y), x, k | |||
| 3867 | ||||
| 3868 | SDLoc SL(N); | |||
| 3869 | ISD::CondCode NewCC = | |||
| 3870 | getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), LHS.getValueType()); | |||
| 3871 | ||||
| 3872 | SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); | |||
| 3873 | return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); | |||
| 3874 | } | |||
| 3875 | ||||
| 3876 | if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { | |||
| 3877 | SDValue MinMax | |||
| 3878 | = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); | |||
| 3879 | // Revisit this node so we can catch min3/max3/med3 patterns. | |||
| 3880 | //DCI.AddToWorklist(MinMax.getNode()); | |||
| 3881 | return MinMax; | |||
| 3882 | } | |||
| 3883 | } | |||
| 3884 | ||||
| 3885 | // There's no reason to not do this if the condition has other uses. | |||
| 3886 | return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI); | |||
| 3887 | } | |||
| 3888 | ||||
| 3889 | static bool isInv2Pi(const APFloat &APF) { | |||
| 3890 | static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118)); | |||
| 3891 | static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983)); | |||
| 3892 | static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882)); | |||
| 3893 | ||||
| 3894 | return APF.bitwiseIsEqual(KF16) || | |||
| 3895 | APF.bitwiseIsEqual(KF32) || | |||
| 3896 | APF.bitwiseIsEqual(KF64); | |||
| 3897 | } | |||
| 3898 | ||||
| 3899 | // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an | |||
| 3900 | // additional cost to negate them. | |||
| 3901 | TargetLowering::NegatibleCost | |||
| 3902 | AMDGPUTargetLowering::getConstantNegateCost(const ConstantFPSDNode *C) const { | |||
| 3903 | if (C->isZero()) | |||
| 3904 | return C->isNegative() ? NegatibleCost::Cheaper : NegatibleCost::Expensive; | |||
| 3905 | ||||
| 3906 | if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF())) | |||
| 3907 | return C->isNegative() ? NegatibleCost::Cheaper : NegatibleCost::Expensive; | |||
| 3908 | ||||
| 3909 | return NegatibleCost::Neutral; | |||
| 3910 | } | |||
| 3911 | ||||
| 3912 | bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const { | |||
| 3913 | if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) | |||
| 3914 | return getConstantNegateCost(C) == NegatibleCost::Expensive; | |||
| 3915 | return false; | |||
| 3916 | } | |||
| 3917 | ||||
| 3918 | bool AMDGPUTargetLowering::isConstantCheaperToNegate(SDValue N) const { | |||
| 3919 | if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) | |||
| 3920 | return getConstantNegateCost(C) == NegatibleCost::Cheaper; | |||
| 3921 | return false; | |||
| 3922 | } | |||
| 3923 | ||||
| 3924 | static unsigned inverseMinMax(unsigned Opc) { | |||
| 3925 | switch (Opc) { | |||
| 3926 | case ISD::FMAXNUM: | |||
| 3927 | return ISD::FMINNUM; | |||
| 3928 | case ISD::FMINNUM: | |||
| 3929 | return ISD::FMAXNUM; | |||
| 3930 | case ISD::FMAXNUM_IEEE: | |||
| 3931 | return ISD::FMINNUM_IEEE; | |||
| 3932 | case ISD::FMINNUM_IEEE: | |||
| 3933 | return ISD::FMAXNUM_IEEE; | |||
| 3934 | case AMDGPUISD::FMAX_LEGACY: | |||
| 3935 | return AMDGPUISD::FMIN_LEGACY; | |||
| 3936 | case AMDGPUISD::FMIN_LEGACY: | |||
| 3937 | return AMDGPUISD::FMAX_LEGACY; | |||
| 3938 | default: | |||
| 3939 | llvm_unreachable("invalid min/max opcode")::llvm::llvm_unreachable_internal("invalid min/max opcode", "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp" , 3939); | |||
| 3940 | } | |||
| 3941 | } | |||
| 3942 | ||||
| 3943 | /// \return true if it's profitable to try to push an fneg into its source | |||
| 3944 | /// instruction. | |||
| 3945 | bool AMDGPUTargetLowering::shouldFoldFNegIntoSrc(SDNode *N, SDValue N0) { | |||
| 3946 | // If the input has multiple uses and we can either fold the negate down, or | |||
| 3947 | // the other uses cannot, give up. This both prevents unprofitable | |||
| 3948 | // transformations and infinite loops: we won't repeatedly try to fold around | |||
| 3949 | // a negate that has no 'good' form. | |||
| 3950 | if (N0.hasOneUse()) { | |||
| 3951 | // This may be able to fold into the source, but at a code size cost. Don't | |||
| 3952 | // fold if the fold into the user is free. | |||
| 3953 | if (allUsesHaveSourceMods(N, 0)) | |||
| 3954 | return false; | |||
| 3955 | } else { | |||
| 3956 | if (fnegFoldsIntoOp(N0.getNode()) && | |||
| 3957 | (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) | |||
| 3958 | return false; | |||
| 3959 | } | |||
| 3960 | ||||
| 3961 | return true; | |||
| 3962 | } | |||
| 3963 | ||||
| 3964 | SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, | |||
| 3965 | DAGCombinerInfo &DCI) const { | |||
| 3966 | SelectionDAG &DAG = DCI.DAG; | |||
| 3967 | SDValue N0 = N->getOperand(0); | |||
| 3968 | EVT VT = N->getValueType(0); | |||
| 3969 | ||||
| 3970 | unsigned Opc = N0.getOpcode(); | |||
| 3971 | ||||
| 3972 | if (!shouldFoldFNegIntoSrc(N, N0)) | |||
| 3973 | return SDValue(); | |||
| 3974 | ||||
| 3975 | SDLoc SL(N); | |||
| 3976 | switch (Opc) { | |||
| 3977 | case ISD::FADD: { | |||
| 3978 | if (!mayIgnoreSignedZero(N0)) | |||
| 3979 | return SDValue(); | |||
| 3980 | ||||
| 3981 | // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) | |||
| 3982 | SDValue LHS = N0.getOperand(0); | |||
| 3983 | SDValue RHS = N0.getOperand(1); | |||
| 3984 | ||||
| 3985 | if (LHS.getOpcode() != ISD::FNEG) | |||
| 3986 | LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); | |||
| 3987 | else | |||
| 3988 | LHS = LHS.getOperand(0); | |||
| 3989 | ||||
| 3990 | if (RHS.getOpcode() != ISD::FNEG) | |||
| 3991 | RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); | |||
| 3992 | else | |||
| 3993 | RHS = RHS.getOperand(0); | |||
| 3994 | ||||
| 3995 | SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); | |||
| 3996 | if (Res.getOpcode() != ISD::FADD) | |||
| 3997 | return SDValue(); // Op got folded away. | |||
| 3998 | if (!N0.hasOneUse()) | |||
| 3999 | DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); | |||
| 4000 | return Res; | |||
| 4001 | } | |||
| 4002 | case ISD::FMUL: | |||
| 4003 | case AMDGPUISD::FMUL_LEGACY: { | |||
| 4004 | // (fneg (fmul x, y)) -> (fmul x, (fneg y)) | |||
| 4005 | // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) | |||
| 4006 | SDValue LHS = N0.getOperand(0); | |||
| 4007 | SDValue RHS = N0.getOperand(1); | |||
| 4008 | ||||
| 4009 | if (LHS.getOpcode() == ISD::FNEG) | |||
| 4010 | LHS = LHS.getOperand(0); | |||
| 4011 | else if (RHS.getOpcode() == ISD::FNEG) | |||
| 4012 | RHS = RHS.getOperand(0); | |||
| 4013 | else | |||
| 4014 | RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); | |||
| 4015 | ||||
| 4016 | SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); | |||
| 4017 | if (Res.getOpcode() != Opc) | |||
| 4018 | return SDValue(); // Op got folded away. | |||
| 4019 | if (!N0.hasOneUse()) | |||
| 4020 | DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); | |||
| 4021 | return Res; | |||
| 4022 | } | |||
| 4023 | case ISD::FMA: | |||
| 4024 | case ISD::FMAD: { | |||
| 4025 | // TODO: handle llvm.amdgcn.fma.legacy | |||
| 4026 | if (!mayIgnoreSignedZero(N0)) | |||
| 4027 | return SDValue(); | |||
| 4028 | ||||
| 4029 | // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) | |||
| 4030 | SDValue LHS = N0.getOperand(0); | |||
| 4031 | SDValue MHS = N0.getOperand(1); | |||
| 4032 | SDValue RHS = N0.getOperand(2); | |||
| 4033 | ||||
| 4034 | if (LHS.getOpcode() == ISD::FNEG) | |||
| 4035 | LHS = LHS.getOperand(0); | |||
| 4036 | else if (MHS.getOpcode() == ISD::FNEG) | |||
| 4037 | MHS = MHS.getOperand(0); | |||
| 4038 | else | |||
| 4039 | MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); | |||
| 4040 | ||||
| 4041 | if (RHS.getOpcode() != ISD::FNEG) | |||
| 4042 | RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); | |||
| 4043 | else | |||
| 4044 | RHS = RHS.getOperand(0); | |||
| 4045 | ||||
| 4046 | SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); | |||
| 4047 | if (Res.getOpcode() != Opc) | |||
| 4048 | return SDValue(); // Op got folded away. | |||
| 4049 | if (!N0.hasOneUse()) | |||
| 4050 | DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); | |||
| 4051 | return Res; | |||
| 4052 | } | |||
| 4053 | case ISD::FMAXNUM: | |||
| 4054 | case ISD::FMINNUM: | |||
| 4055 | case ISD::FMAXNUM_IEEE: | |||
| 4056 | case ISD::FMINNUM_IEEE: | |||
| 4057 | case AMDGPUISD::FMAX_LEGACY: | |||
| 4058 | case AMDGPUISD::FMIN_LEGACY: { | |||
| 4059 | // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) | |||
| 4060 | // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) | |||
| 4061 | // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) | |||
| 4062 | // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) | |||
| 4063 | ||||
| 4064 | SDValue LHS = N0.getOperand(0); | |||
| 4065 | SDValue RHS = N0.getOperand(1); | |||
| 4066 | ||||
| 4067 | // 0 doesn't have a negated inline immediate. | |||
| 4068 | // TODO: This constant check should be generalized to other operations. | |||
| 4069 | if (isConstantCostlierToNegate(RHS)) | |||
| 4070 | return SDValue(); | |||
| 4071 | ||||
| 4072 | SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); | |||
| 4073 | SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); | |||
| 4074 | unsigned Opposite = inverseMinMax(Opc); | |||
| 4075 | ||||
| 4076 | SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); | |||
| 4077 | if (Res.getOpcode() != Opposite) | |||
| 4078 | return SDValue(); // Op got folded away. | |||
| 4079 | if (!N0.hasOneUse()) | |||
| 4080 | DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); | |||
| 4081 | return Res; | |||
| 4082 | } | |||
| 4083 | case AMDGPUISD::FMED3: { | |||
| 4084 | SDValue Ops[3]; | |||
| 4085 | for (unsigned I = 0; I < 3; ++I) | |||
| 4086 | Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags()); | |||
| 4087 | ||||
| 4088 | SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags()); | |||
| 4089 | if (Res.getOpcode() != AMDGPUISD::FMED3) | |||
| 4090 | return SDValue(); // Op got folded away. | |||
| 4091 | ||||
| 4092 | if (!N0.hasOneUse()) { | |||
| 4093 | SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Res); | |||
| 4094 | DAG.ReplaceAllUsesWith(N0, Neg); | |||
| 4095 | ||||
| 4096 | for (SDNode *U : Neg->uses()) | |||
| 4097 | DCI.AddToWorklist(U); | |||
| 4098 | } | |||
| 4099 | ||||
| 4100 | return Res; | |||
| 4101 | } | |||
| 4102 | case ISD::FP_EXTEND: | |||
| 4103 | case ISD::FTRUNC: | |||
| 4104 | case ISD::FRINT: | |||
| 4105 | case ISD::FNEARBYINT: // XXX - Should fround be handled? | |||
| 4106 | case ISD::FSIN: | |||
| 4107 | case ISD::FCANONICALIZE: | |||
| 4108 | case AMDGPUISD::RCP: | |||
| 4109 | case AMDGPUISD::RCP_LEGACY: | |||
| 4110 | case AMDGPUISD::RCP_IFLAG: | |||
| 4111 | case AMDGPUISD::SIN_HW: { | |||
| 4112 | SDValue CvtSrc = N0.getOperand(0); | |||
| 4113 | if (CvtSrc.getOpcode() == ISD::FNEG) { | |||
| 4114 | // (fneg (fp_extend (fneg x))) -> (fp_extend x) | |||
| 4115 | // (fneg (rcp (fneg x))) -> (rcp x) | |||
| 4116 | return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); | |||
| 4117 | } | |||
| 4118 | ||||
| 4119 | if (!N0.hasOneUse()) | |||
| 4120 | return SDValue(); | |||
| 4121 | ||||
| 4122 | // (fneg (fp_extend x)) -> (fp_extend (fneg x)) | |||
| 4123 | // (fneg (rcp x)) -> (rcp (fneg x)) | |||
| 4124 | SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); | |||
| 4125 | return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); | |||
| 4126 | } | |||
| 4127 | case ISD::FP_ROUND: { | |||
| 4128 | SDValue CvtSrc = N0.getOperand(0); | |||
| 4129 | ||||
| 4130 | if (CvtSrc.getOpcode() == ISD::FNEG) { | |||
| 4131 | // (fneg (fp_round (fneg x))) -> (fp_round x) | |||
| 4132 | return DAG.getNode(ISD::FP_ROUND, SL, VT, | |||
| 4133 | CvtSrc.getOperand(0), N0.getOperand(1)); | |||
| 4134 | } | |||
| 4135 | ||||
| 4136 | if (!N0.hasOneUse()) | |||
| 4137 | return SDValue(); | |||
| 4138 | ||||
| 4139 | // (fneg (fp_round x)) -> (fp_round (fneg x)) | |||
| 4140 | SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); | |||
| 4141 | return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); | |||
| 4142 | } | |||
| 4143 | case ISD::FP16_TO_FP: { | |||
| 4144 | // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal | |||
| 4145 | // f16, but legalization of f16 fneg ends up pulling it out of the source. | |||
| 4146 | // Put the fneg back as a legal source operation that can be matched later. | |||
| 4147 | SDLoc SL(N); | |||
| 4148 | ||||
| 4149 | SDValue Src = N0.getOperand(0); | |||
| 4150 | EVT SrcVT = Src.getValueType(); | |||
| 4151 | ||||
| 4152 | // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) | |||
| 4153 | SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, | |||
| 4154 | DAG.getConstant(0x8000, SL, SrcVT)); | |||
| 4155 | return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); | |||
| 4156 | } | |||
| 4157 | case ISD::SELECT: { | |||
| 4158 | // fneg (select c, a, b) -> select c, (fneg a), (fneg b) | |||
| 4159 | // TODO: Invert conditions of foldFreeOpFromSelect | |||
| 4160 | return SDValue(); | |||
| 4161 | } | |||
| 4162 | case ISD::BITCAST: { | |||
| 4163 | SDLoc SL(N); | |||
| 4164 | SDValue BCSrc = N0.getOperand(0); | |||
| 4165 | if (BCSrc.getOpcode() == ISD::BUILD_VECTOR) { | |||
| 4166 | SDValue HighBits = BCSrc.getOperand(BCSrc.getNumOperands() - 1); | |||
| 4167 | if (HighBits.getValueType().getSizeInBits() != 32 || | |||
| 4168 | !fnegFoldsIntoOp(HighBits.getNode())) | |||
| 4169 | return SDValue(); | |||
| 4170 | ||||
| 4171 | // f64 fneg only really needs to operate on the high half of of the | |||
| 4172 | // register, so try to force it to an f32 operation to help make use of | |||
| 4173 | // source modifiers. | |||
| 4174 | // | |||
| 4175 | // | |||
| 4176 | // fneg (f64 (bitcast (build_vector x, y))) -> | |||
| 4177 | // f64 (bitcast (build_vector (bitcast i32:x to f32), | |||
| 4178 | // (fneg (bitcast i32:y to f32))) | |||
| 4179 | ||||
| 4180 | SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, MVT::f32, HighBits); | |||
| 4181 | SDValue NegHi = DAG.getNode(ISD::FNEG, SL, MVT::f32, CastHi); | |||
| 4182 | SDValue CastBack = | |||
| 4183 | DAG.getNode(ISD::BITCAST, SL, HighBits.getValueType(), NegHi); | |||
| 4184 | ||||
| 4185 | SmallVector<SDValue, 8> Ops(BCSrc->op_begin(), BCSrc->op_end()); | |||
| 4186 | Ops.back() = CastBack; | |||
| 4187 | DCI.AddToWorklist(NegHi.getNode()); | |||
| 4188 | SDValue Build = | |||
| 4189 | DAG.getNode(ISD::BUILD_VECTOR, SL, BCSrc.getValueType(), Ops); | |||
| 4190 | SDValue Result = DAG.getNode(ISD::BITCAST, SL, VT, Build); | |||
| 4191 | ||||
| 4192 | if (!N0.hasOneUse()) | |||
| 4193 | DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Result)); | |||
| 4194 | return Result; | |||
| 4195 | } | |||
| 4196 | ||||
| 4197 | if (BCSrc.getOpcode() == ISD::SELECT && VT == MVT::f32 && | |||
| 4198 | BCSrc.hasOneUse()) { | |||
| 4199 | // fneg (bitcast (f32 (select cond, i32:lhs, i32:rhs))) -> | |||
| 4200 | // select cond, (bitcast i32:lhs to f32), (bitcast i32:rhs to f32) | |||
| 4201 | ||||
| 4202 | // TODO: Cast back result for multiple uses is beneficial in some cases. | |||
| 4203 | ||||
| 4204 | SDValue LHS = | |||
| 4205 | DAG.getNode(ISD::BITCAST, SL, MVT::f32, BCSrc.getOperand(1)); | |||
| 4206 | SDValue RHS = | |||
| 4207 | DAG.getNode(ISD::BITCAST, SL, MVT::f32, BCSrc.getOperand(2)); | |||
| 4208 | ||||
| 4209 | SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, MVT::f32, LHS); | |||
| 4210 | SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, MVT::f32, RHS); | |||
| 4211 | ||||
| 4212 | return DAG.getNode(ISD::SELECT, SL, MVT::f32, BCSrc.getOperand(0), NegLHS, | |||
| 4213 | NegRHS); | |||
| 4214 | } | |||
| 4215 | ||||
| 4216 | return SDValue(); | |||
| 4217 | } | |||
| 4218 | default: | |||
| 4219 | return SDValue(); | |||
| 4220 | } | |||
| 4221 | } | |||
| 4222 | ||||
| 4223 | SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, | |||
| 4224 | DAGCombinerInfo &DCI) const { | |||
| 4225 | SelectionDAG &DAG = DCI.DAG; | |||
| 4226 | SDValue N0 = N->getOperand(0); | |||
| 4227 | ||||
| 4228 | if (!N0.hasOneUse()) | |||
| 4229 | return SDValue(); | |||
| 4230 | ||||
| 4231 | switch (N0.getOpcode()) { | |||
| 4232 | case ISD::FP16_TO_FP: { | |||
| 4233 | assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal")(static_cast <bool> (!Subtarget->has16BitInsts() && "should only see if f16 is illegal") ? void (0) : __assert_fail ("!Subtarget->has16BitInsts() && \"should only see if f16 is illegal\"" , "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp", 4233, __extension__ __PRETTY_FUNCTION__)); | |||
| 4234 | SDLoc SL(N); | |||
| 4235 | SDValue Src = N0.getOperand(0); | |||
| 4236 | EVT SrcVT = Src.getValueType(); | |||
| 4237 | ||||
| 4238 | // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) | |||
| 4239 | SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, | |||
| 4240 | DAG.getConstant(0x7fff, SL, SrcVT)); | |||
| 4241 | return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); | |||
| 4242 | } | |||
| 4243 | default: | |||
| 4244 | return SDValue(); | |||
| 4245 | } | |||
| 4246 | } | |||
| 4247 | ||||
| 4248 | SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N, | |||
| 4249 | DAGCombinerInfo &DCI) const { | |||
| 4250 | const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); | |||
| 4251 | if (!CFP) | |||
| 4252 | return SDValue(); | |||
| 4253 | ||||
| 4254 | // XXX - Should this flush denormals? | |||
| 4255 | const APFloat &Val = CFP->getValueAPF(); | |||
| 4256 | APFloat One(Val.getSemantics(), "1.0"); | |||
| 4257 | return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); | |||
| 4258 | } | |||
| 4259 | ||||
| 4260 | SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, | |||
| 4261 | DAGCombinerInfo &DCI) const { | |||
| 4262 | SelectionDAG &DAG = DCI.DAG; | |||
| 4263 | SDLoc DL(N); | |||
| 4264 | ||||
| 4265 | switch(N->getOpcode()) { | |||
| 4266 | default: | |||
| 4267 | break; | |||
| 4268 | case ISD::BITCAST: { | |||
| 4269 | EVT DestVT = N->getValueType(0); | |||
| 4270 | ||||
| 4271 | // Push casts through vector builds. This helps avoid emitting a large | |||
| 4272 | // number of copies when materializing floating point vector constants. | |||
| 4273 | // | |||
| 4274 | // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => | |||
| 4275 | // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) | |||
| 4276 | if (DestVT.isVector()) { | |||
| 4277 | SDValue Src = N->getOperand(0); | |||
| 4278 | if (Src.getOpcode() == ISD::BUILD_VECTOR) { | |||
| 4279 | EVT SrcVT = Src.getValueType(); | |||
| 4280 | unsigned NElts = DestVT.getVectorNumElements(); | |||
| 4281 | ||||
| 4282 | if (SrcVT.getVectorNumElements() == NElts) { | |||
| 4283 | EVT DestEltVT = DestVT.getVectorElementType(); | |||
| 4284 | ||||
| 4285 | SmallVector<SDValue, 8> CastedElts; | |||
| 4286 | SDLoc SL(N); | |||
| 4287 | for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { | |||
| 4288 | SDValue Elt = Src.getOperand(I); | |||
| 4289 | CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); | |||
| 4290 | } | |||
| 4291 | ||||
| 4292 | return DAG.getBuildVector(DestVT, SL, CastedElts); | |||
| 4293 | } | |||
| 4294 | } | |||
| 4295 | } | |||
| 4296 | ||||
| 4297 | if (DestVT.getSizeInBits() != 64 || !DestVT.isVector()) | |||
| 4298 | break; | |||
| 4299 | ||||
| 4300 | // Fold bitcasts of constants. | |||
| 4301 | // | |||
| 4302 | // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) | |||
| 4303 | // TODO: Generalize and move to DAGCombiner | |||
| 4304 | SDValue Src = N->getOperand(0); | |||
| 4305 | if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { | |||
| 4306 | SDLoc SL(N); | |||
| 4307 | uint64_t CVal = C->getZExtValue(); | |||
| 4308 | SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, | |||
| 4309 | DAG.getConstant(Lo_32(CVal), SL, MVT::i32), | |||
| 4310 | DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); | |||
| 4311 | return DAG.getNode(ISD::BITCAST, SL, DestVT, BV); | |||
| 4312 | } | |||
| 4313 | ||||
| 4314 | if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { | |||
| 4315 | const APInt &Val = C->getValueAPF().bitcastToAPInt(); | |||
| 4316 | SDLoc SL(N); | |||
| 4317 | uint64_t CVal = Val.getZExtValue(); | |||
| 4318 | SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, | |||
| 4319 | DAG.getConstant(Lo_32(CVal), SL, MVT::i32), | |||
| 4320 | DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); | |||
| 4321 | ||||
| 4322 | return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); | |||
| 4323 | } | |||
| 4324 | ||||
| 4325 | break; | |||
| 4326 | } | |||
| 4327 | case ISD::SHL: { | |||
| 4328 | if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) | |||
| 4329 | break; | |||
| 4330 | ||||
| 4331 | return performShlCombine(N, DCI); | |||
| 4332 | } | |||
| 4333 | case ISD::SRL: { | |||
| 4334 | if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) | |||
| 4335 | break; | |||
| 4336 | ||||
| 4337 | return performSrlCombine(N, DCI); | |||
| 4338 | } | |||
| 4339 | case ISD::SRA: { | |||
| 4340 | if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) | |||
| 4341 | break; | |||
| 4342 | ||||
| 4343 | return performSraCombine(N, DCI); | |||
| 4344 | } | |||
| 4345 | case ISD::TRUNCATE: | |||
| 4346 | return performTruncateCombine(N, DCI); | |||
| 4347 | case ISD::MUL: | |||
| 4348 | return performMulCombine(N, DCI); | |||
| 4349 | case ISD::SMUL_LOHI: | |||
| 4350 | case ISD::UMUL_LOHI: | |||
| 4351 | return performMulLoHiCombine(N, DCI); | |||
| 4352 | case ISD::MULHS: | |||
| 4353 | return performMulhsCombine(N, DCI); | |||
| 4354 | case ISD::MULHU: | |||
| 4355 | return performMulhuCombine(N, DCI); | |||
| 4356 | case AMDGPUISD::MUL_I24: | |||
| 4357 | case AMDGPUISD::MUL_U24: | |||
| 4358 | case AMDGPUISD::MULHI_I24: | |||
| 4359 | case AMDGPUISD::MULHI_U24: | |||
| 4360 | return simplifyMul24(N, DCI); | |||
| 4361 | case ISD::SELECT: | |||
| 4362 | return performSelectCombine(N, DCI); | |||
| 4363 | case ISD::FNEG: | |||
| 4364 | return performFNegCombine(N, DCI); | |||
| 4365 | case ISD::FABS: | |||
| 4366 | return performFAbsCombine(N, DCI); | |||
| 4367 | case AMDGPUISD::BFE_I32: | |||
| 4368 | case AMDGPUISD::BFE_U32: { | |||
| 4369 | assert(!N->getValueType(0).isVector() &&(static_cast <bool> (!N->getValueType(0).isVector() && "Vector handling of BFE not implemented") ? void (0) : __assert_fail ("!N->getValueType(0).isVector() && \"Vector handling of BFE not implemented\"" , "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp", 4370, __extension__ __PRETTY_FUNCTION__)) | |||
| 4370 | "Vector handling of BFE not implemented")(static_cast <bool> (!N->getValueType(0).isVector() && "Vector handling of BFE not implemented") ? void (0) : __assert_fail ("!N->getValueType(0).isVector() && \"Vector handling of BFE not implemented\"" , "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp", 4370, __extension__ __PRETTY_FUNCTION__)); | |||
| 4371 | ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); | |||
| 4372 | if (!Width) | |||
| 4373 | break; | |||
| 4374 | ||||
| 4375 | uint32_t WidthVal = Width->getZExtValue() & 0x1f; | |||
| 4376 | if (WidthVal == 0) | |||
| 4377 | return DAG.getConstant(0, DL, MVT::i32); | |||
| 4378 | ||||
| 4379 | ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); | |||
| 4380 | if (!Offset) | |||
| 4381 | break; | |||
| 4382 | ||||
| 4383 | SDValue BitsFrom = N->getOperand(0); | |||
| 4384 | uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; | |||
| 4385 | ||||
| 4386 | bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; | |||
| 4387 | ||||
| 4388 | if (OffsetVal == 0) { | |||
| 4389 | // This is already sign / zero extended, so try to fold away extra BFEs. | |||
| 4390 | unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); | |||
| 4391 | ||||
| 4392 | unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); | |||
| 4393 | if (OpSignBits >= SignBits) | |||
| 4394 | return BitsFrom; | |||
| 4395 | ||||
| 4396 | EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); | |||
| 4397 | if (Signed) { | |||
| 4398 | // This is a sign_extend_inreg. Replace it to take advantage of existing | |||
| 4399 | // DAG Combines. If not eliminated, we will match back to BFE during | |||
| 4400 | // selection. | |||
| 4401 | ||||
| 4402 | // TODO: The sext_inreg of extended types ends, although we can could | |||
| 4403 | // handle them in a single BFE. | |||
| 4404 | return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, | |||
| 4405 | DAG.getValueType(SmallVT)); | |||
| 4406 | } | |||
| 4407 | ||||
| 4408 | return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); | |||
| 4409 | } | |||
| 4410 | ||||
| 4411 | if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { | |||
| 4412 | if (Signed) { | |||
| 4413 | return constantFoldBFE<int32_t>(DAG, | |||
| 4414 | CVal->getSExtValue(), | |||
| 4415 | OffsetVal, | |||
| 4416 | WidthVal, | |||
| 4417 | DL); | |||
| 4418 | } | |||
| 4419 | ||||
| 4420 | return constantFoldBFE<uint32_t>(DAG, | |||
| 4421 | CVal->getZExtValue(), | |||
| 4422 | OffsetVal, | |||
| 4423 | WidthVal, | |||
| 4424 | DL); | |||
| 4425 | } | |||
| 4426 | ||||
| 4427 | if ((OffsetVal + WidthVal) >= 32 && | |||
| 4428 | !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { | |||
| 4429 | SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); | |||
| 4430 | return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, | |||
| 4431 | BitsFrom, ShiftVal); | |||
| 4432 | } | |||
| 4433 | ||||
| 4434 | if (BitsFrom.hasOneUse()) { | |||
| 4435 | APInt Demanded = APInt::getBitsSet(32, | |||
| 4436 | OffsetVal, | |||
| 4437 | OffsetVal + WidthVal); | |||
| 4438 | ||||
| 4439 | KnownBits Known; | |||
| 4440 | TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), | |||
| 4441 | !DCI.isBeforeLegalizeOps()); | |||
| 4442 | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | |||
| 4443 | if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || | |||
| 4444 | TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { | |||
| 4445 | DCI.CommitTargetLoweringOpt(TLO); | |||
| 4446 | } | |||
| 4447 | } | |||
| 4448 | ||||
| 4449 | break; | |||
| 4450 | } | |||
| 4451 | case ISD::LOAD: | |||
| 4452 | return performLoadCombine(N, DCI); | |||
| 4453 | case ISD::STORE: | |||
| 4454 | return performStoreCombine(N, DCI); | |||
| 4455 | case AMDGPUISD::RCP: | |||
| 4456 | case AMDGPUISD::RCP_IFLAG: | |||
| 4457 | return performRcpCombine(N, DCI); | |||
| 4458 | case ISD::AssertZext: | |||
| 4459 | case ISD::AssertSext: | |||
| 4460 | return performAssertSZExtCombine(N, DCI); | |||
| 4461 | case ISD::INTRINSIC_WO_CHAIN: | |||
| 4462 | return performIntrinsicWOChainCombine(N, DCI); | |||
| 4463 | } | |||
| 4464 | return SDValue(); | |||
| 4465 | } | |||
| 4466 | ||||
| 4467 | //===----------------------------------------------------------------------===// | |||
| 4468 | // Helper functions | |||
| 4469 | //===----------------------------------------------------------------------===// | |||
| 4470 | ||||
| 4471 | SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, | |||
| 4472 | const TargetRegisterClass *RC, | |||
| 4473 | Register Reg, EVT VT, | |||
| 4474 | const SDLoc &SL, | |||
| 4475 | bool RawReg) const { | |||
| 4476 | MachineFunction &MF = DAG.getMachineFunction(); | |||
| 4477 | MachineRegisterInfo &MRI = MF.getRegInfo(); | |||
| 4478 | Register VReg; | |||
| 4479 | ||||
| 4480 | if (!MRI.isLiveIn(Reg)) { | |||
| 4481 | VReg = MRI.createVirtualRegister(RC); | |||
| 4482 | MRI.addLiveIn(Reg, VReg); | |||
| 4483 | } else { | |||
| 4484 | VReg = MRI.getLiveInVirtReg(Reg); | |||
| 4485 | } | |||
| 4486 | ||||
| 4487 | if (RawReg) | |||
| 4488 | return DAG.getRegister(VReg, VT); | |||
| 4489 | ||||
| 4490 | return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT); | |||
| 4491 | } | |||
| 4492 | ||||
| 4493 | // This may be called multiple times, and nothing prevents creating multiple | |||
| 4494 | // objects at the same offset. See if we already defined this object. | |||
| 4495 | static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size, | |||
| 4496 | int64_t Offset) { | |||
| 4497 | for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { | |||
| 4498 | if (MFI.getObjectOffset(I) == Offset) { | |||
| 4499 | assert(MFI.getObjectSize(I) == Size)(static_cast <bool> (MFI.getObjectSize(I) == Size) ? void (0) : __assert_fail ("MFI.getObjectSize(I) == Size", "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp" , 4499, __extension__ __PRETTY_FUNCTION__)); | |||
| 4500 | return I; | |||
| 4501 | } | |||
| 4502 | } | |||
| 4503 | ||||
| 4504 | return MFI.CreateFixedObject(Size, Offset, true); | |||
| 4505 | } | |||
| 4506 | ||||
| 4507 | SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, | |||
| 4508 | EVT VT, | |||
| 4509 | const SDLoc &SL, | |||
| 4510 | int64_t Offset) const { | |||
| 4511 | MachineFunction &MF = DAG.getMachineFunction(); | |||
| 4512 | MachineFrameInfo &MFI = MF.getFrameInfo(); | |||
| 4513 | int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset); | |||
| 4514 | ||||
| 4515 | auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); | |||
| 4516 | SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32); | |||
| 4517 | ||||
| 4518 | return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, Align(4), | |||
| 4519 | MachineMemOperand::MODereferenceable | | |||
| 4520 | MachineMemOperand::MOInvariant); | |||
| 4521 | } | |||
| 4522 | ||||
| 4523 | SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, | |||
| 4524 | const SDLoc &SL, | |||
| 4525 | SDValue Chain, | |||
| 4526 | SDValue ArgVal, | |||
| 4527 | int64_t Offset) const { | |||
| 4528 | MachineFunction &MF = DAG.getMachineFunction(); | |||
| 4529 | MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); | |||
| 4530 | const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); | |||
| 4531 | ||||
| 4532 | SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32); | |||
| 4533 | // Stores to the argument stack area are relative to the stack pointer. | |||
| 4534 | SDValue SP = | |||
| 4535 | DAG.getCopyFromReg(Chain, SL, Info->getStackPtrOffsetReg(), MVT::i32); | |||
| 4536 | Ptr = DAG.getNode(ISD::ADD, SL, MVT::i32, SP, Ptr); | |||
| 4537 | SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, Align(4), | |||
| 4538 | MachineMemOperand::MODereferenceable); | |||
| 4539 | return Store; | |||
| 4540 | } | |||
| 4541 | ||||
| 4542 | SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, | |||
| 4543 | const TargetRegisterClass *RC, | |||
| 4544 | EVT VT, const SDLoc &SL, | |||
| 4545 | const ArgDescriptor &Arg) const { | |||
| 4546 | assert(Arg && "Attempting to load missing argument")(static_cast <bool> (Arg && "Attempting to load missing argument" ) ? void (0) : __assert_fail ("Arg && \"Attempting to load missing argument\"" , "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp", 4546, __extension__ __PRETTY_FUNCTION__)); | |||
| ||||
| 4547 | ||||
| 4548 | SDValue V = Arg.isRegister() ? | |||
| 4549 | CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) : | |||
| 4550 | loadStackInputValue(DAG, VT, SL, Arg.getStackOffset()); | |||
| 4551 | ||||
| 4552 | if (!Arg.isMasked()) | |||
| 4553 | return V; | |||
| 4554 | ||||
| 4555 | unsigned Mask = Arg.getMask(); | |||
| 4556 | unsigned Shift = llvm::countr_zero<unsigned>(Mask); | |||
| 4557 | V = DAG.getNode(ISD::SRL, SL, VT, V, | |||
| 4558 | DAG.getShiftAmountConstant(Shift, VT, SL)); | |||
| 4559 | return DAG.getNode(ISD::AND, SL, VT, V, | |||
| 4560 | DAG.getConstant(Mask >> Shift, SL, VT)); | |||
| ||||
| 4561 | } | |||
| 4562 | ||||
| 4563 | uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( | |||
| 4564 | const MachineFunction &MF, const ImplicitParameter Param) const { | |||
| 4565 | const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); | |||
| 4566 | const AMDGPUSubtarget &ST = | |||
| 4567 | AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction()); | |||
| 4568 | unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction()); | |||
| 4569 | const Align Alignment = ST.getAlignmentForImplicitArgPtr(); | |||
| 4570 | uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) + | |||
| 4571 | ExplicitArgOffset; | |||
| 4572 | switch (Param) { | |||
| 4573 | case FIRST_IMPLICIT: | |||
| 4574 | return ArgOffset; | |||
| 4575 | case PRIVATE_BASE: | |||
| 4576 | return ArgOffset + AMDGPU::ImplicitArg::PRIVATE_BASE_OFFSET; | |||
| 4577 | case SHARED_BASE: | |||
| 4578 | return ArgOffset + AMDGPU::ImplicitArg::SHARED_BASE_OFFSET; | |||
| 4579 | case QUEUE_PTR: | |||
| 4580 | return ArgOffset + AMDGPU::ImplicitArg::QUEUE_PTR_OFFSET; | |||
| 4581 | } | |||
| 4582 | llvm_unreachable("unexpected implicit parameter type")::llvm::llvm_unreachable_internal("unexpected implicit parameter type" , "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp", 4582); | |||
| 4583 | } | |||
| 4584 | ||||
| 4585 | #define NODE_NAME_CASE(node)case AMDGPUISD::node: return "node"; case AMDGPUISD::node: return #node; | |||
| 4586 | ||||
| 4587 | const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { | |||
| 4588 | switch ((AMDGPUISD::NodeType)Opcode) { | |||
| 4589 | case AMDGPUISD::FIRST_NUMBER: break; | |||
| 4590 | // AMDIL DAG nodes | |||
| 4591 | NODE_NAME_CASE(UMUL)case AMDGPUISD::UMUL: return "UMUL";; | |||
| 4592 | NODE_NAME_CASE(BRANCH_COND)case AMDGPUISD::BRANCH_COND: return "BRANCH_COND";; | |||
| 4593 | ||||
| 4594 | // AMDGPU DAG nodes | |||
| 4595 | NODE_NAME_CASE(IF)case AMDGPUISD::IF: return "IF"; | |||
| 4596 | NODE_NAME_CASE(ELSE)case AMDGPUISD::ELSE: return "ELSE"; | |||
| 4597 | NODE_NAME_CASE(LOOP)case AMDGPUISD::LOOP: return "LOOP"; | |||
| 4598 | NODE_NAME_CASE(CALL)case AMDGPUISD::CALL: return "CALL"; | |||
| 4599 | NODE_NAME_CASE(TC_RETURN)case AMDGPUISD::TC_RETURN: return "TC_RETURN"; | |||
| 4600 | NODE_NAME_CASE(TC_RETURN_GFX)case AMDGPUISD::TC_RETURN_GFX: return "TC_RETURN_GFX"; | |||
| 4601 | NODE_NAME_CASE(TRAP)case AMDGPUISD::TRAP: return "TRAP"; | |||
| 4602 | NODE_NAME_CASE(RET_GLUE)case AMDGPUISD::RET_GLUE: return "RET_GLUE"; | |||
| 4603 | NODE_NAME_CASE(RETURN_TO_EPILOG)case AMDGPUISD::RETURN_TO_EPILOG: return "RETURN_TO_EPILOG"; | |||
| 4604 | NODE_NAME_CASE(ENDPGM)case AMDGPUISD::ENDPGM: return "ENDPGM"; | |||
| 4605 | NODE_NAME_CASE(DWORDADDR)case AMDGPUISD::DWORDADDR: return "DWORDADDR"; | |||
| 4606 | NODE_NAME_CASE(FRACT)case AMDGPUISD::FRACT: return "FRACT"; | |||
| 4607 | NODE_NAME_CASE(SETCC)case AMDGPUISD::SETCC: return "SETCC"; | |||
| 4608 | NODE_NAME_CASE(SETREG)case AMDGPUISD::SETREG: return "SETREG"; | |||
| 4609 | NODE_NAME_CASE(DENORM_MODE)case AMDGPUISD::DENORM_MODE: return "DENORM_MODE"; | |||
| 4610 | NODE_NAME_CASE(FMA_W_CHAIN)case AMDGPUISD::FMA_W_CHAIN: return "FMA_W_CHAIN"; | |||
| 4611 | NODE_NAME_CASE(FMUL_W_CHAIN)case AMDGPUISD::FMUL_W_CHAIN: return "FMUL_W_CHAIN"; | |||
| 4612 | NODE_NAME_CASE(CLAMP)case AMDGPUISD::CLAMP: return "CLAMP"; | |||
| 4613 | NODE_NAME_CASE(COS_HW)case AMDGPUISD::COS_HW: return "COS_HW"; | |||
| 4614 | NODE_NAME_CASE(SIN_HW)case AMDGPUISD::SIN_HW: return "SIN_HW"; | |||
| 4615 | NODE_NAME_CASE(FMAX_LEGACY)case AMDGPUISD::FMAX_LEGACY: return "FMAX_LEGACY"; | |||
| 4616 | NODE_NAME_CASE(FMIN_LEGACY)case AMDGPUISD::FMIN_LEGACY: return "FMIN_LEGACY"; | |||
| 4617 | NODE_NAME_CASE(FMAX3)case AMDGPUISD::FMAX3: return "FMAX3"; | |||
| 4618 | NODE_NAME_CASE(SMAX3)case AMDGPUISD::SMAX3: return "SMAX3"; | |||
| 4619 | NODE_NAME_CASE(UMAX3)case AMDGPUISD::UMAX3: return "UMAX3"; | |||
| 4620 | NODE_NAME_CASE(FMIN3)case AMDGPUISD::FMIN3: return "FMIN3"; | |||
| 4621 | NODE_NAME_CASE(SMIN3)case AMDGPUISD::SMIN3: return "SMIN3"; | |||
| 4622 | NODE_NAME_CASE(UMIN3)case AMDGPUISD::UMIN3: return "UMIN3"; | |||
| 4623 | NODE_NAME_CASE(FMED3)case AMDGPUISD::FMED3: return "FMED3"; | |||
| 4624 | NODE_NAME_CASE(SMED3)case AMDGPUISD::SMED3: return "SMED3"; | |||
| 4625 | NODE_NAME_CASE(UMED3)case AMDGPUISD::UMED3: return "UMED3"; | |||
| 4626 | NODE_NAME_CASE(FDOT2)case AMDGPUISD::FDOT2: return "FDOT2"; | |||
| 4627 | NODE_NAME_CASE(URECIP)case AMDGPUISD::URECIP: return "URECIP"; | |||
| 4628 | NODE_NAME_CASE(DIV_SCALE)case AMDGPUISD::DIV_SCALE: return "DIV_SCALE"; | |||
| 4629 | NODE_NAME_CASE(DIV_FMAS)case AMDGPUISD::DIV_FMAS: return "DIV_FMAS"; | |||
| 4630 | NODE_NAME_CASE(DIV_FIXUP)case AMDGPUISD::DIV_FIXUP: return "DIV_FIXUP"; | |||
| 4631 | NODE_NAME_CASE(FMAD_FTZ)case AMDGPUISD::FMAD_FTZ: return "FMAD_FTZ"; | |||
| 4632 | NODE_NAME_CASE(RCP)case AMDGPUISD::RCP: return "RCP"; | |||
| 4633 | NODE_NAME_CASE(RSQ)case AMDGPUISD::RSQ: return "RSQ"; | |||
| 4634 | NODE_NAME_CASE(RCP_LEGACY)case AMDGPUISD::RCP_LEGACY: return "RCP_LEGACY"; | |||
| 4635 | NODE_NAME_CASE(RCP_IFLAG)case AMDGPUISD::RCP_IFLAG: return "RCP_IFLAG"; | |||
| 4636 | NODE_NAME_CASE(FMUL_LEGACY)case AMDGPUISD::FMUL_LEGACY: return "FMUL_LEGACY"; | |||
| 4637 | NODE_NAME_CASE(RSQ_CLAMP)case AMDGPUISD::RSQ_CLAMP: return "RSQ_CLAMP"; | |||
| 4638 | NODE_NAME_CASE(LDEXP)case AMDGPUISD::LDEXP: return "LDEXP"; | |||
| 4639 | NODE_NAME_CASE(FP_CLASS)case AMDGPUISD::FP_CLASS: return "FP_CLASS"; | |||
| 4640 | NODE_NAME_CASE(DOT4)case AMDGPUISD::DOT4: return "DOT4"; | |||
| 4641 | NODE_NAME_CASE(CARRY)case AMDGPUISD::CARRY: return "CARRY"; | |||
| 4642 | NODE_NAME_CASE(BORROW)case AMDGPUISD::BORROW: return "BORROW"; | |||
| 4643 | NODE_NAME_CASE(BFE_U32)case AMDGPUISD::BFE_U32: return "BFE_U32"; | |||
| 4644 | NODE_NAME_CASE(BFE_I32)case AMDGPUISD::BFE_I32: return "BFE_I32"; | |||
| 4645 | NODE_NAME_CASE(BFI)case AMDGPUISD::BFI: return "BFI"; | |||
| 4646 | NODE_NAME_CASE(BFM)case AMDGPUISD::BFM: return "BFM"; | |||
| 4647 | NODE_NAME_CASE(FFBH_U32)case AMDGPUISD::FFBH_U32: return "FFBH_U32"; | |||
| 4648 | NODE_NAME_CASE(FFBH_I32)case AMDGPUISD::FFBH_I32: return "FFBH_I32"; | |||
| 4649 | NODE_NAME_CASE(FFBL_B32)case AMDGPUISD::FFBL_B32: return "FFBL_B32"; | |||
| 4650 | NODE_NAME_CASE(MUL_U24)case AMDGPUISD::MUL_U24: return "MUL_U24"; | |||
| 4651 | NODE_NAME_CASE(MUL_I24)case AMDGPUISD::MUL_I24: return "MUL_I24"; | |||
| 4652 | NODE_NAME_CASE(MULHI_U24)case AMDGPUISD::MULHI_U24: return "MULHI_U24"; | |||
| 4653 | NODE_NAME_CASE(MULHI_I24)case AMDGPUISD::MULHI_I24: return "MULHI_I24"; | |||
| 4654 | NODE_NAME_CASE(MAD_U24)case AMDGPUISD::MAD_U24: return "MAD_U24"; | |||
| 4655 | NODE_NAME_CASE(MAD_I24)case AMDGPUISD::MAD_I24: return "MAD_I24"; | |||
| 4656 | NODE_NAME_CASE(MAD_I64_I32)case AMDGPUISD::MAD_I64_I32: return "MAD_I64_I32"; | |||
| 4657 | NODE_NAME_CASE(MAD_U64_U32)case AMDGPUISD::MAD_U64_U32: return "MAD_U64_U32"; | |||
| 4658 | NODE_NAME_CASE(PERM)case AMDGPUISD::PERM: return "PERM"; | |||
| 4659 | NODE_NAME_CASE(TEXTURE_FETCH)case AMDGPUISD::TEXTURE_FETCH: return "TEXTURE_FETCH"; | |||
| 4660 | NODE_NAME_CASE(R600_EXPORT)case AMDGPUISD::R600_EXPORT: return "R600_EXPORT"; | |||
| 4661 | NODE_NAME_CASE(CONST_ADDRESS)case AMDGPUISD::CONST_ADDRESS: return "CONST_ADDRESS"; | |||
| 4662 | NODE_NAME_CASE(REGISTER_LOAD)case AMDGPUISD::REGISTER_LOAD: return "REGISTER_LOAD"; | |||
| 4663 | NODE_NAME_CASE(REGISTER_STORE)case AMDGPUISD::REGISTER_STORE: return "REGISTER_STORE"; | |||
| 4664 | NODE_NAME_CASE(SAMPLE)case AMDGPUISD::SAMPLE: return "SAMPLE"; | |||
| 4665 | NODE_NAME_CASE(SAMPLEB)case AMDGPUISD::SAMPLEB: return "SAMPLEB"; | |||
| 4666 | NODE_NAME_CASE(SAMPLED)case AMDGPUISD::SAMPLED: return "SAMPLED"; | |||
| 4667 | NODE_NAME_CASE(SAMPLEL)case AMDGPUISD::SAMPLEL: return "SAMPLEL"; | |||
| 4668 | NODE_NAME_CASE(CVT_F32_UBYTE0)case AMDGPUISD::CVT_F32_UBYTE0: return "CVT_F32_UBYTE0"; | |||
| 4669 | NODE_NAME_CASE(CVT_F32_UBYTE1)case AMDGPUISD::CVT_F32_UBYTE1: return "CVT_F32_UBYTE1"; | |||
| 4670 | NODE_NAME_CASE(CVT_F32_UBYTE2)case AMDGPUISD::CVT_F32_UBYTE2: return "CVT_F32_UBYTE2"; | |||
| 4671 | NODE_NAME_CASE(CVT_F32_UBYTE3)case AMDGPUISD::CVT_F32_UBYTE3: return "CVT_F32_UBYTE3"; | |||
| 4672 | NODE_NAME_CASE(CVT_PKRTZ_F16_F32)case AMDGPUISD::CVT_PKRTZ_F16_F32: return "CVT_PKRTZ_F16_F32" ; | |||
| 4673 | NODE_NAME_CASE(CVT_PKNORM_I16_F32)case AMDGPUISD::CVT_PKNORM_I16_F32: return "CVT_PKNORM_I16_F32" ; | |||
| 4674 | NODE_NAME_CASE(CVT_PKNORM_U16_F32)case AMDGPUISD::CVT_PKNORM_U16_F32: return "CVT_PKNORM_U16_F32" ; | |||
| 4675 | NODE_NAME_CASE(CVT_PK_I16_I32)case AMDGPUISD::CVT_PK_I16_I32: return "CVT_PK_I16_I32"; | |||
| 4676 | NODE_NAME_CASE(CVT_PK_U16_U32)case AMDGPUISD::CVT_PK_U16_U32: return "CVT_PK_U16_U32"; | |||
| 4677 | NODE_NAME_CASE(FP_TO_FP16)case AMDGPUISD::FP_TO_FP16: return "FP_TO_FP16"; | |||
| 4678 | NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)case AMDGPUISD::BUILD_VERTICAL_VECTOR: return "BUILD_VERTICAL_VECTOR" ; | |||
| 4679 | NODE_NAME_CASE(CONST_DATA_PTR)case AMDGPUISD::CONST_DATA_PTR: return "CONST_DATA_PTR"; | |||
| 4680 | NODE_NAME_CASE(PC_ADD_REL_OFFSET)case AMDGPUISD::PC_ADD_REL_OFFSET: return "PC_ADD_REL_OFFSET" ; | |||
| 4681 | NODE_NAME_CASE(LDS)case AMDGPUISD::LDS: return "LDS"; | |||
| 4682 | NODE_NAME_CASE(FPTRUNC_ROUND_UPWARD)case AMDGPUISD::FPTRUNC_ROUND_UPWARD: return "FPTRUNC_ROUND_UPWARD" ; | |||
| 4683 | NODE_NAME_CASE(FPTRUNC_ROUND_DOWNWARD)case AMDGPUISD::FPTRUNC_ROUND_DOWNWARD: return "FPTRUNC_ROUND_DOWNWARD" ; | |||
| 4684 | NODE_NAME_CASE(DUMMY_CHAIN)case AMDGPUISD::DUMMY_CHAIN: return "DUMMY_CHAIN"; | |||
| 4685 | case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; | |||
| 4686 | NODE_NAME_CASE(LOAD_D16_HI)case AMDGPUISD::LOAD_D16_HI: return "LOAD_D16_HI"; | |||
| 4687 | NODE_NAME_CASE(LOAD_D16_LO)case AMDGPUISD::LOAD_D16_LO: return "LOAD_D16_LO"; | |||
| 4688 | NODE_NAME_CASE(LOAD_D16_HI_I8)case AMDGPUISD::LOAD_D16_HI_I8: return "LOAD_D16_HI_I8"; | |||
| 4689 | NODE_NAME_CASE(LOAD_D16_HI_U8)case AMDGPUISD::LOAD_D16_HI_U8: return "LOAD_D16_HI_U8"; | |||
| 4690 | NODE_NAME_CASE(LOAD_D16_LO_I8)case AMDGPUISD::LOAD_D16_LO_I8: return "LOAD_D16_LO_I8"; | |||
| 4691 | NODE_NAME_CASE(LOAD_D16_LO_U8)case AMDGPUISD::LOAD_D16_LO_U8: return "LOAD_D16_LO_U8"; | |||
| 4692 | NODE_NAME_CASE(STORE_MSKOR)case AMDGPUISD::STORE_MSKOR: return "STORE_MSKOR"; | |||
| 4693 | NODE_NAME_CASE(LOAD_CONSTANT)case AMDGPUISD::LOAD_CONSTANT: return "LOAD_CONSTANT"; | |||
| 4694 | NODE_NAME_CASE(TBUFFER_STORE_FORMAT)case AMDGPUISD::TBUFFER_STORE_FORMAT: return "TBUFFER_STORE_FORMAT" ; | |||
| 4695 | NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16)case AMDGPUISD::TBUFFER_STORE_FORMAT_D16: return "TBUFFER_STORE_FORMAT_D16" ; | |||
| 4696 | NODE_NAME_CASE(TBUFFER_LOAD_FORMAT)case AMDGPUISD::TBUFFER_LOAD_FORMAT: return "TBUFFER_LOAD_FORMAT" ; | |||
| 4697 | NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16)case AMDGPUISD::TBUFFER_LOAD_FORMAT_D16: return "TBUFFER_LOAD_FORMAT_D16" ; | |||
| 4698 | NODE_NAME_CASE(DS_ORDERED_COUNT)case AMDGPUISD::DS_ORDERED_COUNT: return "DS_ORDERED_COUNT"; | |||
| 4699 | NODE_NAME_CASE(ATOMIC_CMP_SWAP)case AMDGPUISD::ATOMIC_CMP_SWAP: return "ATOMIC_CMP_SWAP"; | |||
| 4700 | NODE_NAME_CASE(ATOMIC_LOAD_FMIN)case AMDGPUISD::ATOMIC_LOAD_FMIN: return "ATOMIC_LOAD_FMIN"; | |||
| 4701 | NODE_NAME_CASE(ATOMIC_LOAD_FMAX)case AMDGPUISD::ATOMIC_LOAD_FMAX: return "ATOMIC_LOAD_FMAX"; | |||
| 4702 | NODE_NAME_CASE(BUFFER_LOAD)case AMDGPUISD::BUFFER_LOAD: return "BUFFER_LOAD"; | |||
| 4703 | NODE_NAME_CASE(BUFFER_LOAD_UBYTE)case AMDGPUISD::BUFFER_LOAD_UBYTE: return "BUFFER_LOAD_UBYTE" ; | |||
| 4704 | NODE_NAME_CASE(BUFFER_LOAD_USHORT)case AMDGPUISD::BUFFER_LOAD_USHORT: return "BUFFER_LOAD_USHORT" ; | |||
| 4705 | NODE_NAME_CASE(BUFFER_LOAD_BYTE)case AMDGPUISD::BUFFER_LOAD_BYTE: return "BUFFER_LOAD_BYTE"; | |||
| 4706 | NODE_NAME_CASE(BUFFER_LOAD_SHORT)case AMDGPUISD::BUFFER_LOAD_SHORT: return "BUFFER_LOAD_SHORT" ; | |||
| 4707 | NODE_NAME_CASE(BUFFER_LOAD_FORMAT)case AMDGPUISD::BUFFER_LOAD_FORMAT: return "BUFFER_LOAD_FORMAT" ; | |||
| 4708 | NODE_NAME_CASE(BUFFER_LOAD_FORMAT_TFE)case AMDGPUISD::BUFFER_LOAD_FORMAT_TFE: return "BUFFER_LOAD_FORMAT_TFE" ; | |||
| 4709 | NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16)case AMDGPUISD::BUFFER_LOAD_FORMAT_D16: return "BUFFER_LOAD_FORMAT_D16" ; | |||
| 4710 | NODE_NAME_CASE(SBUFFER_LOAD)case AMDGPUISD::SBUFFER_LOAD: return "SBUFFER_LOAD"; | |||
| 4711 | NODE_NAME_CASE(BUFFER_STORE)case AMDGPUISD::BUFFER_STORE: return "BUFFER_STORE"; | |||
| 4712 | NODE_NAME_CASE(BUFFER_STORE_BYTE)case AMDGPUISD::BUFFER_STORE_BYTE: return "BUFFER_STORE_BYTE" ; | |||
| 4713 | NODE_NAME_CASE(BUFFER_STORE_SHORT)case AMDGPUISD::BUFFER_STORE_SHORT: return "BUFFER_STORE_SHORT" ; | |||
| 4714 | NODE_NAME_CASE(BUFFER_STORE_FORMAT)case AMDGPUISD::BUFFER_STORE_FORMAT: return "BUFFER_STORE_FORMAT" ; | |||
| 4715 | NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16)case AMDGPUISD::BUFFER_STORE_FORMAT_D16: return "BUFFER_STORE_FORMAT_D16" ; | |||
| 4716 | NODE_NAME_CASE(BUFFER_ATOMIC_SWAP)case AMDGPUISD::BUFFER_ATOMIC_SWAP: return "BUFFER_ATOMIC_SWAP" ; | |||
| 4717 | NODE_NAME_CASE(BUFFER_ATOMIC_ADD)case AMDGPUISD::BUFFER_ATOMIC_ADD: return "BUFFER_ATOMIC_ADD" ; | |||
| 4718 | NODE_NAME_CASE(BUFFER_ATOMIC_SUB)case AMDGPUISD::BUFFER_ATOMIC_SUB: return "BUFFER_ATOMIC_SUB" ; | |||
| 4719 | NODE_NAME_CASE(BUFFER_ATOMIC_SMIN)case AMDGPUISD::BUFFER_ATOMIC_SMIN: return "BUFFER_ATOMIC_SMIN" ; | |||
| 4720 | NODE_NAME_CASE(BUFFER_ATOMIC_UMIN)case AMDGPUISD::BUFFER_ATOMIC_UMIN: return "BUFFER_ATOMIC_UMIN" ; | |||
| 4721 | NODE_NAME_CASE(BUFFER_ATOMIC_SMAX)case AMDGPUISD::BUFFER_ATOMIC_SMAX: return "BUFFER_ATOMIC_SMAX" ; | |||
| 4722 | NODE_NAME_CASE(BUFFER_ATOMIC_UMAX)case AMDGPUISD::BUFFER_ATOMIC_UMAX: return "BUFFER_ATOMIC_UMAX" ; | |||
| 4723 | NODE_NAME_CASE(BUFFER_ATOMIC_AND)case AMDGPUISD::BUFFER_ATOMIC_AND: return "BUFFER_ATOMIC_AND" ; | |||
| 4724 | NODE_NAME_CASE(BUFFER_ATOMIC_OR)case AMDGPUISD::BUFFER_ATOMIC_OR: return "BUFFER_ATOMIC_OR"; | |||
| 4725 | NODE_NAME_CASE(BUFFER_ATOMIC_XOR)case AMDGPUISD::BUFFER_ATOMIC_XOR: return "BUFFER_ATOMIC_XOR" ; | |||
| 4726 | NODE_NAME_CASE(BUFFER_ATOMIC_INC)case AMDGPUISD::BUFFER_ATOMIC_INC: return "BUFFER_ATOMIC_INC" ; | |||
| 4727 | NODE_NAME_CASE(BUFFER_ATOMIC_DEC)case AMDGPUISD::BUFFER_ATOMIC_DEC: return "BUFFER_ATOMIC_DEC" ; | |||
| 4728 | NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP)case AMDGPUISD::BUFFER_ATOMIC_CMPSWAP: return "BUFFER_ATOMIC_CMPSWAP" ; | |||
| 4729 | NODE_NAME_CASE(BUFFER_ATOMIC_CSUB)case AMDGPUISD::BUFFER_ATOMIC_CSUB: return "BUFFER_ATOMIC_CSUB" ; | |||
| 4730 | NODE_NAME_CASE(BUFFER_ATOMIC_FADD)case AMDGPUISD::BUFFER_ATOMIC_FADD: return "BUFFER_ATOMIC_FADD" ; | |||
| 4731 | NODE_NAME_CASE(BUFFER_ATOMIC_FMIN)case AMDGPUISD::BUFFER_ATOMIC_FMIN: return "BUFFER_ATOMIC_FMIN" ; | |||
| 4732 | NODE_NAME_CASE(BUFFER_ATOMIC_FMAX)case AMDGPUISD::BUFFER_ATOMIC_FMAX: return "BUFFER_ATOMIC_FMAX" ; | |||
| 4733 | ||||
| 4734 | case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; | |||
| 4735 | } | |||
| 4736 | return nullptr; | |||
| 4737 | } | |||
| 4738 | ||||
| 4739 | SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, | |||
| 4740 | SelectionDAG &DAG, int Enabled, | |||
| 4741 | int &RefinementSteps, | |||
| 4742 | bool &UseOneConstNR, | |||
| 4743 | bool Reciprocal) const { | |||
| 4744 | EVT VT = Operand.getValueType(); | |||
| 4745 | ||||
| 4746 | if (VT == MVT::f32) { | |||
| 4747 | RefinementSteps = 0; | |||
| 4748 | return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); | |||
| 4749 | } | |||
| 4750 | ||||
| 4751 | // TODO: There is also f64 rsq instruction, but the documentation is less | |||
| 4752 | // clear on its precision. | |||
| 4753 | ||||
| 4754 | return SDValue(); | |||
| 4755 | } | |||
| 4756 | ||||
| 4757 | SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, | |||
| 4758 | SelectionDAG &DAG, int Enabled, | |||
| 4759 | int &RefinementSteps) const { | |||
| 4760 | EVT VT = Operand.getValueType(); | |||
| 4761 | ||||
| 4762 | if (VT == MVT::f32) { | |||
| 4763 | // Reciprocal, < 1 ulp error. | |||
| 4764 | // | |||
| 4765 | // This reciprocal approximation converges to < 0.5 ulp error with one | |||
| 4766 | // newton rhapson performed with two fused multiple adds (FMAs). | |||
| 4767 | ||||
| 4768 | RefinementSteps = 0; | |||
| 4769 | return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); | |||
| 4770 | } | |||
| 4771 | ||||
| 4772 | // TODO: There is also f64 rcp instruction, but the documentation is less | |||
| 4773 | // clear on its precision. | |||
| 4774 | ||||
| 4775 | return SDValue(); | |||
| 4776 | } | |||
| 4777 | ||||
| 4778 | static unsigned workitemIntrinsicDim(unsigned ID) { | |||
| 4779 | switch (ID) { | |||
| 4780 | case Intrinsic::amdgcn_workitem_id_x: | |||
| 4781 | return 0; | |||
| 4782 | case Intrinsic::amdgcn_workitem_id_y: | |||
| 4783 | return 1; | |||
| 4784 | case Intrinsic::amdgcn_workitem_id_z: | |||
| 4785 | return 2; | |||
| 4786 | default: | |||
| 4787 | llvm_unreachable("not a workitem intrinsic")::llvm::llvm_unreachable_internal("not a workitem intrinsic", "llvm/lib/Target/AMDGPU/AMDGPUISelLowering.cpp", 4787); | |||
| 4788 | } | |||
| 4789 | } | |||
| 4790 | ||||
| 4791 | void AMDGPUTargetLowering::computeKnownBitsForTargetNode( | |||
| 4792 | const SDValue Op, KnownBits &Known, | |||
| 4793 | const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { | |||
| 4794 | ||||
| 4795 | Known.resetAll(); // Don't know anything. | |||
| 4796 | ||||
| 4797 | unsigned Opc = Op.getOpcode(); | |||
| 4798 | ||||
| 4799 | switch (Opc) { | |||
| 4800 | default: | |||
| 4801 | break; | |||
| 4802 | case AMDGPUISD::CARRY: | |||
| 4803 | case AMDGPUISD::BORROW: { | |||
| 4804 | Known.Zero = APInt::getHighBitsSet(32, 31); | |||
| 4805 | break; | |||
| 4806 | } | |||
| 4807 | ||||
| 4808 | case AMDGPUISD::BFE_I32: | |||
| 4809 | case AMDGPUISD::BFE_U32: { | |||
| 4810 | ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); | |||
| 4811 | if (!CWidth) | |||
| 4812 | return; | |||
| 4813 | ||||
| 4814 | uint32_t Width = CWidth->getZExtValue() & 0x1f; | |||
| 4815 | ||||
| 4816 | if (Opc == AMDGPUISD::BFE_U32) | |||
| 4817 | Known.Zero = APInt::getHighBitsSet(32, 32 - Width); | |||
| 4818 | ||||
| 4819 | break; | |||
| 4820 | } | |||
| 4821 | case AMDGPUISD::FP_TO_FP16: { | |||
| 4822 | unsigned BitWidth = Known.getBitWidth(); | |||
| 4823 | ||||
| 4824 | // High bits are zero. | |||
| 4825 | Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); | |||
| 4826 | break; | |||
| 4827 | } | |||
| 4828 | case AMDGPUISD::MUL_U24: | |||
| 4829 | case AMDGPUISD::MUL_I24: { | |||
| 4830 | KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); | |||
| 4831 | KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); | |||
| 4832 | unsigned TrailZ = LHSKnown.countMinTrailingZeros() + | |||
| 4833 | RHSKnown.countMinTrailingZeros(); | |||
| 4834 | Known.Zero.setLowBits(std::min(TrailZ, 32u)); | |||
| 4835 | // Skip extra check if all bits are known zeros. | |||
| 4836 | if (TrailZ >= 32) | |||
| 4837 | break; | |||
| 4838 | ||||
| 4839 | // Truncate to 24 bits. | |||
| 4840 | LHSKnown = LHSKnown.trunc(24); | |||
| 4841 | RHSKnown = RHSKnown.trunc(24); | |||
| 4842 | ||||
| 4843 | if (Opc == AMDGPUISD::MUL_I24) { | |||
| 4844 | unsigned LHSValBits = LHSKnown.countMaxSignificantBits(); | |||
| 4845 | unsigned RHSValBits = RHSKnown.countMaxSignificantBits(); | |||
| 4846 | unsigned MaxValBits = LHSValBits + RHSValBits; | |||
| 4847 | if (MaxValBits > 32) | |||
| 4848 | break; | |||
| 4849 | unsigned SignBits = 32 - MaxValBits + 1; | |||
| 4850 | bool LHSNegative = LHSKnown.isNegative(); | |||
| 4851 | bool LHSNonNegative = LHSKnown.isNonNegative(); | |||
| 4852 | bool LHSPositive = LHSKnown.isStrictlyPositive(); | |||
| 4853 | bool RHSNegative = RHSKnown.isNegative(); | |||
| 4854 | bool RHSNonNegative = RHSKnown.isNonNegative(); | |||
| 4855 | bool RHSPositive = RHSKnown.isStrictlyPositive(); | |||
| 4856 | ||||
| 4857 | if ((LHSNonNegative && RHSNonNegative) || (LHSNegative && RHSNegative)) | |||
| 4858 | Known.Zero.setHighBits(SignBits); | |||
| 4859 | else if ((LHSNegative && RHSPositive) || (LHSPositive && RHSNegative)) | |||
| 4860 | Known.One.setHighBits(SignBits); | |||
| 4861 | } else { | |||
| 4862 | unsigned LHSValBits = LHSKnown.countMaxActiveBits(); | |||
| 4863 | unsigned RHSValBits = RHSKnown.countMaxActiveBits(); | |||
| 4864 | unsigned MaxValBits = LHSValBits + RHSValBits; | |||
| 4865 | if (MaxValBits >= 32) | |||
| 4866 | break; | |||
| 4867 | Known.Zero.setBitsFrom(MaxValBits); | |||
| 4868 | } | |||
| 4869 | break; | |||
| 4870 | } | |||
| 4871 | case AMDGPUISD::PERM: { | |||
| 4872 | ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2)); | |||
| 4873 | if (!CMask) | |||
| 4874 | return; | |||
| 4875 | ||||
| 4876 | KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); | |||
| 4877 | KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); | |||
| 4878 | unsigned Sel = CMask->getZExtValue(); | |||
| 4879 | ||||
| 4880 | for (unsigned I = 0; I < 32; I += 8) { | |||
| 4881 | unsigned SelBits = Sel & 0xff; | |||
| 4882 | if (SelBits < 4) { | |||
| 4883 | SelBits *= 8; | |||
| 4884 | Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; | |||
| 4885 | Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; | |||
| 4886 | } else if (SelBits < 7) { | |||
| 4887 | SelBits = (SelBits & 3) * 8; | |||
| 4888 | Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; | |||
| 4889 | Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; | |||
| 4890 | } else if (SelBits == 0x0c) { | |||
| 4891 | Known.Zero |= 0xFFull << I; | |||
| 4892 | } else if (SelBits > 0x0c) { | |||
| 4893 | Known.One |= 0xFFull << I; | |||
| 4894 | } | |||
| 4895 | Sel >>= 8; | |||
| 4896 | } | |||
| 4897 | break; | |||
| 4898 | } | |||
| 4899 | case AMDGPUISD::BUFFER_LOAD_UBYTE: { | |||
| 4900 | Known.Zero.setHighBits(24); | |||
| 4901 | break; | |||
| 4902 | } | |||
| 4903 | case AMDGPUISD::BUFFER_LOAD_USHORT: { | |||
| 4904 | Known.Zero.setHighBits(16); | |||
| 4905 | break; | |||
| 4906 | } | |||
| 4907 | case AMDGPUISD::LDS: { | |||
| 4908 | auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode()); | |||
| 4909 | Align Alignment = GA->getGlobal()->getPointerAlignment(DAG.getDataLayout()); | |||
| 4910 | ||||
| 4911 | Known.Zero.setHighBits(16); | |||
| 4912 | Known.Zero.setLowBits(Log2(Alignment)); | |||
| 4913 | break; | |||
| 4914 | } | |||
| 4915 | case ISD::INTRINSIC_WO_CHAIN: { | |||
| 4916 | unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | |||
| 4917 | switch (IID) { | |||
| 4918 | case Intrinsic::amdgcn_workitem_id_x: | |||
| 4919 | case Intrinsic::amdgcn_workitem_id_y: | |||
| 4920 | case Intrinsic::amdgcn_workitem_id_z: { | |||
| 4921 | unsigned MaxValue = Subtarget->getMaxWorkitemID( | |||
| 4922 | DAG.getMachineFunction().getFunction(), workitemIntrinsicDim(IID)); | |||
| 4923 | Known.Zero.setHighBits(llvm::countl_zero(MaxValue)); | |||
| 4924 | break; | |||
| 4925 | } | |||
| 4926 | default: | |||
| 4927 | break; | |||
| 4928 | } | |||
| 4929 | } | |||
| 4930 | } | |||
| 4931 | } | |||
| 4932 | ||||
| 4933 | unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( | |||
| 4934 | SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, | |||
| 4935 | unsigned Depth) const { | |||
| 4936 | switch (Op.getOpcode()) { | |||
| 4937 | case AMDGPUISD::BFE_I32: { | |||
| 4938 | ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); | |||
| 4939 | if (!Width) | |||
| 4940 | return 1; | |||
| 4941 | ||||
| 4942 | unsigned SignBits = 32 - Width->getZExtValue() + 1; | |||
| 4943 | if (!isNullConstant(Op.getOperand(1))) | |||
| 4944 | return SignBits; | |||
| 4945 | ||||
| 4946 | // TODO: Could probably figure something out with non-0 offsets. | |||
| 4947 | unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); | |||
| 4948 | return std::max(SignBits, Op0SignBits); | |||
| 4949 | } | |||
| 4950 | ||||
| 4951 | case AMDGPUISD::BFE_U32: { | |||
| 4952 | ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); | |||
| 4953 | return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; | |||
| 4954 | } | |||
| 4955 | ||||
| 4956 | case AMDGPUISD::CARRY: | |||
| 4957 | case AMDGPUISD::BORROW: | |||
| 4958 | return 31; | |||
| 4959 | case AMDGPUISD::BUFFER_LOAD_BYTE: | |||
| 4960 | return 25; | |||
| 4961 | case AMDGPUISD::BUFFER_LOAD_SHORT: | |||
| 4962 | return 17; | |||
| 4963 | case AMDGPUISD::BUFFER_LOAD_UBYTE: | |||
| 4964 | return 24; | |||
| 4965 | case AMDGPUISD::BUFFER_LOAD_USHORT: | |||
| 4966 | return 16; | |||
| 4967 | case AMDGPUISD::FP_TO_FP16: | |||
| 4968 | return 16; | |||
| 4969 | default: | |||
| 4970 | return 1; | |||
| 4971 | } | |||
| 4972 | } | |||
| 4973 | ||||
| 4974 | unsigned AMDGPUTargetLowering::computeNumSignBitsForTargetInstr( | |||
| 4975 | GISelKnownBits &Analysis, Register R, | |||
| 4976 | const APInt &DemandedElts, const MachineRegisterInfo &MRI, | |||
| 4977 | unsigned Depth) const { | |||
| 4978 | const MachineInstr *MI = MRI.getVRegDef(R); | |||
| 4979 | if (!MI) | |||
| 4980 | return 1; | |||
| 4981 | ||||
| 4982 | // TODO: Check range metadata on MMO. | |||
| 4983 | switch (MI->getOpcode()) { | |||
| 4984 | case AMDGPU::G_AMDGPU_BUFFER_LOAD_SBYTE: | |||
| 4985 | return 25; | |||
| 4986 | case AMDGPU::G_AMDGPU_BUFFER_LOAD_SSHORT: | |||
| 4987 | return 17; | |||
| 4988 | case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE: | |||
| 4989 | return 24; | |||
| 4990 | case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT: | |||
| 4991 | return 16; | |||
| 4992 | default: | |||
| 4993 | return 1; | |||
| 4994 | } | |||
| 4995 | } | |||
| 4996 | ||||
| 4997 | bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, | |||
| 4998 | const SelectionDAG &DAG, | |||
| 4999 | bool SNaN, | |||
| 5000 | unsigned Depth) const { | |||
| 5001 | unsigned Opcode = Op.getOpcode(); | |||
| 5002 | switch (Opcode) { | |||
| 5003 | case AMDGPUISD::FMIN_LEGACY: | |||
| 5004 | case AMDGPUISD::FMAX_LEGACY: { | |||
| 5005 | if (SNaN) | |||
| 5006 | return true; | |||
| 5007 | ||||
| 5008 | // TODO: Can check no nans on one of the operands for each one, but which | |||
| 5009 | // one? | |||
| 5010 | return false; | |||
| 5011 | } | |||
| 5012 | case AMDGPUISD::FMUL_LEGACY: | |||
| 5013 | case AMDGPUISD::CVT_PKRTZ_F16_F32: { | |||
| 5014 | if (SNaN) | |||
| 5015 | return true; | |||
| 5016 | return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && | |||
| 5017 | DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); | |||
| 5018 | } | |||
| 5019 | case AMDGPUISD::FMED3: | |||
| 5020 | case AMDGPUISD::FMIN3: | |||
| 5021 | case AMDGPUISD::FMAX3: | |||
| 5022 | case AMDGPUISD::FMAD_FTZ: { | |||
| 5023 | if (SNaN) | |||
| 5024 | return true; | |||
| 5025 | return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && | |||
| 5026 | DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && | |||
| 5027 | DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); | |||
| 5028 | } | |||
| 5029 | case AMDGPUISD::CVT_F32_UBYTE0: | |||
| 5030 | case AMDGPUISD::CVT_F32_UBYTE1: | |||
| 5031 | case AMDGPUISD::CVT_F32_UBYTE2: | |||
| 5032 | case AMDGPUISD::CVT_F32_UBYTE3: | |||
| 5033 | return true; | |||
| 5034 | ||||
| 5035 | case AMDGPUISD::RCP: | |||
| 5036 | case AMDGPUISD::RSQ: | |||
| 5037 | case AMDGPUISD::RCP_LEGACY: | |||
| 5038 | case AMDGPUISD::RSQ_CLAMP: { | |||
| 5039 | if (SNaN) | |||
| 5040 | return true; | |||
| 5041 | ||||
| 5042 | // TODO: Need is known positive check. | |||
| 5043 | return false; | |||
| 5044 | } | |||
| 5045 | case AMDGPUISD::LDEXP: | |||
| 5046 | case AMDGPUISD::FRACT: { | |||
| 5047 | if (SNaN) | |||
| 5048 | return true; | |||
| 5049 | return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); | |||
| 5050 | } | |||
| 5051 | case AMDGPUISD::DIV_SCALE: | |||
| 5052 | case AMDGPUISD::DIV_FMAS: | |||
| 5053 | case AMDGPUISD::DIV_FIXUP: | |||
| 5054 | // TODO: Refine on operands. | |||
| 5055 | return SNaN; | |||
| 5056 | case AMDGPUISD::SIN_HW: | |||
| 5057 | case AMDGPUISD::COS_HW: { | |||
| 5058 | // TODO: Need check for infinity | |||
| 5059 | return SNaN; | |||
| 5060 | } | |||
| 5061 | case ISD::INTRINSIC_WO_CHAIN: { | |||
| 5062 | unsigned IntrinsicID | |||
| 5063 | = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | |||
| 5064 | // TODO: Handle more intrinsics | |||
| 5065 | switch (IntrinsicID) { | |||
| 5066 | case Intrinsic::amdgcn_cubeid: | |||
| 5067 | return true; | |||
| 5068 | ||||
| 5069 | case Intrinsic::amdgcn_frexp_mant: { | |||
| 5070 | if (SNaN) | |||
| 5071 | return true; | |||
| 5072 | return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); | |||
| 5073 | } | |||
| 5074 | case Intrinsic::amdgcn_cvt_pkrtz: { | |||
| 5075 | if (SNaN) | |||
| 5076 | return true; | |||
| 5077 | return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && | |||
| 5078 | DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); | |||
| 5079 | } | |||
| 5080 | case Intrinsic::amdgcn_rcp: | |||
| 5081 | case Intrinsic::amdgcn_rsq: | |||
| 5082 | case Intrinsic::amdgcn_rcp_legacy: | |||
| 5083 | case Intrinsic::amdgcn_rsq_legacy: | |||
| 5084 | case Intrinsic::amdgcn_rsq_clamp: { | |||
| 5085 | if (SNaN) | |||
| 5086 | return true; | |||
| 5087 | ||||
| 5088 | // TODO: Need is known positive check. | |||
| 5089 | return false; | |||
| 5090 | } | |||
| 5091 | case Intrinsic::amdgcn_trig_preop: | |||
| 5092 | case Intrinsic::amdgcn_fdot2: | |||
| 5093 | // TODO: Refine on operand | |||
| 5094 | return SNaN; | |||
| 5095 | case Intrinsic::amdgcn_fma_legacy: | |||
| 5096 | if (SNaN) | |||
| 5097 | return true; | |||
| 5098 | return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && | |||
| 5099 | DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1) && | |||
| 5100 | DAG.isKnownNeverNaN(Op.getOperand(3), SNaN, Depth + 1); | |||
| 5101 | default: | |||
| 5102 | return false; | |||
| 5103 | } | |||
| 5104 | } | |||
| 5105 | default: | |||
| 5106 | return false; | |||
| 5107 | } | |||
| 5108 | } | |||
| 5109 | ||||
| 5110 | TargetLowering::AtomicExpansionKind | |||
| 5111 | AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { | |||
| 5112 | switch (RMW->getOperation()) { | |||
| 5113 | case AtomicRMWInst::Nand: | |||
| 5114 | case AtomicRMWInst::FAdd: | |||
| 5115 | case AtomicRMWInst::FSub: | |||
| 5116 | case AtomicRMWInst::FMax: | |||
| 5117 | case AtomicRMWInst::FMin: | |||
| 5118 | return AtomicExpansionKind::CmpXChg; | |||
| 5119 | default: { | |||
| 5120 | if (auto *IntTy = dyn_cast<IntegerType>(RMW->getType())) { | |||
| 5121 | unsigned Size = IntTy->getBitWidth(); | |||
| 5122 | if (Size == 32 || Size == 64) | |||
| 5123 | return AtomicExpansionKind::None; | |||
| 5124 | } | |||
| 5125 | ||||
| 5126 | return AtomicExpansionKind::CmpXChg; | |||
| 5127 | } | |||
| 5128 | } | |||
| 5129 | } | |||
| 5130 | ||||
| 5131 | bool AMDGPUTargetLowering::isConstantUnsignedBitfieldExtractLegal( | |||
| 5132 | unsigned Opc, LLT Ty1, LLT Ty2) const { | |||
| 5133 | return (Ty1 == LLT::scalar(32) || Ty1 == LLT::scalar(64)) && | |||
| 5134 | Ty2 == LLT::scalar(32); | |||
| 5135 | } |
| 1 | //===-- llvm/ADT/bit.h - C++20 <bit> ----------------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// |
| 9 | /// \file |
| 10 | /// This file implements the C++20 <bit> header. |
| 11 | /// |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #ifndef LLVM_ADT_BIT_H |
| 15 | #define LLVM_ADT_BIT_H |
| 16 | |
| 17 | #include "llvm/Support/Compiler.h" |
| 18 | #include <cstdint> |
| 19 | #include <limits> |
| 20 | #include <type_traits> |
| 21 | |
| 22 | #if !__has_builtin(__builtin_bit_cast)1 |
| 23 | #include <cstring> |
| 24 | #endif |
| 25 | |
| 26 | #if defined(_MSC_VER) && !defined(_DEBUG1) |
| 27 | #include <cstdlib> // for _byteswap_{ushort,ulong,uint64} |
| 28 | #endif |
| 29 | |
| 30 | #ifdef _MSC_VER |
| 31 | // Declare these intrinsics manually rather including intrin.h. It's very |
| 32 | // expensive, and bit.h is popular via MathExtras.h. |
| 33 | // #include <intrin.h> |
| 34 | extern "C" { |
| 35 | unsigned char _BitScanForward(unsigned long *_Index, unsigned long _Mask); |
| 36 | unsigned char _BitScanForward64(unsigned long *_Index, unsigned __int64 _Mask); |
| 37 | unsigned char _BitScanReverse(unsigned long *_Index, unsigned long _Mask); |
| 38 | unsigned char _BitScanReverse64(unsigned long *_Index, unsigned __int64 _Mask); |
| 39 | } |
| 40 | #endif |
| 41 | |
| 42 | namespace llvm { |
| 43 | |
| 44 | // This implementation of bit_cast is different from the C++20 one in two ways: |
| 45 | // - It isn't constexpr because that requires compiler support. |
| 46 | // - It requires trivially-constructible To, to avoid UB in the implementation. |
| 47 | template < |
| 48 | typename To, typename From, |
| 49 | typename = std::enable_if_t<sizeof(To) == sizeof(From)>, |
| 50 | typename = std::enable_if_t<std::is_trivially_constructible<To>::value>, |
| 51 | typename = std::enable_if_t<std::is_trivially_copyable<To>::value>, |
| 52 | typename = std::enable_if_t<std::is_trivially_copyable<From>::value>> |
| 53 | [[nodiscard]] inline To bit_cast(const From &from) noexcept { |
| 54 | #if __has_builtin(__builtin_bit_cast)1 |
| 55 | return __builtin_bit_cast(To, from); |
| 56 | #else |
| 57 | To to; |
| 58 | std::memcpy(&to, &from, sizeof(To)); |
| 59 | return to; |
| 60 | #endif |
| 61 | } |
| 62 | |
| 63 | /// Reverses the bytes in the given integer value V. |
| 64 | template <typename T, typename = std::enable_if_t<std::is_integral_v<T>>> |
| 65 | [[nodiscard]] constexpr T byteswap(T V) noexcept { |
| 66 | if constexpr (sizeof(T) == 1) { |
| 67 | return V; |
| 68 | } else if constexpr (sizeof(T) == 2) { |
| 69 | uint16_t UV = V; |
| 70 | #if defined(_MSC_VER) && !defined(_DEBUG1) |
| 71 | // The DLL version of the runtime lacks these functions (bug!?), but in a |
| 72 | // release build they're replaced with BSWAP instructions anyway. |
| 73 | return _byteswap_ushort(UV); |
| 74 | #else |
| 75 | uint16_t Hi = UV << 8; |
| 76 | uint16_t Lo = UV >> 8; |
| 77 | return Hi | Lo; |
| 78 | #endif |
| 79 | } else if constexpr (sizeof(T) == 4) { |
| 80 | uint32_t UV = V; |
| 81 | #if __has_builtin(__builtin_bswap32)1 |
| 82 | return __builtin_bswap32(UV); |
| 83 | #elif defined(_MSC_VER) && !defined(_DEBUG1) |
| 84 | return _byteswap_ulong(UV); |
| 85 | #else |
| 86 | uint32_t Byte0 = UV & 0x000000FF; |
| 87 | uint32_t Byte1 = UV & 0x0000FF00; |
| 88 | uint32_t Byte2 = UV & 0x00FF0000; |
| 89 | uint32_t Byte3 = UV & 0xFF000000; |
| 90 | return (Byte0 << 24) | (Byte1 << 8) | (Byte2 >> 8) | (Byte3 >> 24); |
| 91 | #endif |
| 92 | } else if constexpr (sizeof(T) == 8) { |
| 93 | uint64_t UV = V; |
| 94 | #if __has_builtin(__builtin_bswap64)1 |
| 95 | return __builtin_bswap64(UV); |
| 96 | #elif defined(_MSC_VER) && !defined(_DEBUG1) |
| 97 | return _byteswap_uint64(UV); |
| 98 | #else |
| 99 | uint64_t Hi = llvm::byteswap<uint32_t>(UV); |
| 100 | uint32_t Lo = llvm::byteswap<uint32_t>(UV >> 32); |
| 101 | return (Hi << 32) | Lo; |
| 102 | #endif |
| 103 | } else { |
| 104 | static_assert(!sizeof(T *), "Don't know how to handle the given type."); |
| 105 | return 0; |
| 106 | } |
| 107 | } |
| 108 | |
| 109 | template <typename T, typename = std::enable_if_t<std::is_unsigned_v<T>>> |
| 110 | [[nodiscard]] constexpr inline bool has_single_bit(T Value) noexcept { |
| 111 | return (Value != 0) && ((Value & (Value - 1)) == 0); |
| 112 | } |
| 113 | |
| 114 | namespace detail { |
| 115 | template <typename T, std::size_t SizeOfT> struct TrailingZerosCounter { |
| 116 | static unsigned count(T Val) { |
| 117 | if (!Val) |
| 118 | return std::numeric_limits<T>::digits; |
| 119 | if (Val & 0x1) |
| 120 | return 0; |
| 121 | |
| 122 | // Bisection method. |
| 123 | unsigned ZeroBits = 0; |
| 124 | T Shift = std::numeric_limits<T>::digits >> 1; |
| 125 | T Mask = std::numeric_limits<T>::max() >> Shift; |
| 126 | while (Shift) { |
| 127 | if ((Val & Mask) == 0) { |
| 128 | Val >>= Shift; |
| 129 | ZeroBits |= Shift; |
| 130 | } |
| 131 | Shift >>= 1; |
| 132 | Mask >>= Shift; |
| 133 | } |
| 134 | return ZeroBits; |
| 135 | } |
| 136 | }; |
| 137 | |
| 138 | #if defined(__GNUC__4) || defined(_MSC_VER) |
| 139 | template <typename T> struct TrailingZerosCounter<T, 4> { |
| 140 | static unsigned count(T Val) { |
| 141 | if (Val == 0) |
| 142 | return 32; |
| 143 | |
| 144 | #if __has_builtin(__builtin_ctz)1 || defined(__GNUC__4) |
| 145 | return __builtin_ctz(Val); |
| 146 | #elif defined(_MSC_VER) |
| 147 | unsigned long Index; |
| 148 | _BitScanForward(&Index, Val); |
| 149 | return Index; |
| 150 | #endif |
| 151 | } |
| 152 | }; |
| 153 | |
| 154 | #if !defined(_MSC_VER) || defined(_M_X64) |
| 155 | template <typename T> struct TrailingZerosCounter<T, 8> { |
| 156 | static unsigned count(T Val) { |
| 157 | if (Val == 0) |
| 158 | return 64; |
| 159 | |
| 160 | #if __has_builtin(__builtin_ctzll)1 || defined(__GNUC__4) |
| 161 | return __builtin_ctzll(Val); |
| 162 | #elif defined(_MSC_VER) |
| 163 | unsigned long Index; |
| 164 | _BitScanForward64(&Index, Val); |
| 165 | return Index; |
| 166 | #endif |
| 167 | } |
| 168 | }; |
| 169 | #endif |
| 170 | #endif |
| 171 | } // namespace detail |
| 172 | |
| 173 | /// Count number of 0's from the least significant bit to the most |
| 174 | /// stopping at the first 1. |
| 175 | /// |
| 176 | /// Only unsigned integral types are allowed. |
| 177 | /// |
| 178 | /// Returns std::numeric_limits<T>::digits on an input of 0. |
| 179 | template <typename T> [[nodiscard]] int countr_zero(T Val) { |
| 180 | static_assert(std::is_unsigned_v<T>, |
| 181 | "Only unsigned integral types are allowed."); |
| 182 | return llvm::detail::TrailingZerosCounter<T, sizeof(T)>::count(Val); |
| 183 | } |
| 184 | |
| 185 | namespace detail { |
| 186 | template <typename T, std::size_t SizeOfT> struct LeadingZerosCounter { |
| 187 | static unsigned count(T Val) { |
| 188 | if (!Val) |
| 189 | return std::numeric_limits<T>::digits; |
| 190 | |
| 191 | // Bisection method. |
| 192 | unsigned ZeroBits = 0; |
| 193 | for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) { |
| 194 | T Tmp = Val >> Shift; |
| 195 | if (Tmp) |
| 196 | Val = Tmp; |
| 197 | else |
| 198 | ZeroBits |= Shift; |
| 199 | } |
| 200 | return ZeroBits; |
| 201 | } |
| 202 | }; |
| 203 | |
| 204 | #if defined(__GNUC__4) || defined(_MSC_VER) |
| 205 | template <typename T> struct LeadingZerosCounter<T, 4> { |
| 206 | static unsigned count(T Val) { |
| 207 | if (Val == 0) |
| 208 | return 32; |
| 209 | |
| 210 | #if __has_builtin(__builtin_clz)1 || defined(__GNUC__4) |
| 211 | return __builtin_clz(Val); |
| 212 | #elif defined(_MSC_VER) |
| 213 | unsigned long Index; |
| 214 | _BitScanReverse(&Index, Val); |
| 215 | return Index ^ 31; |
| 216 | #endif |
| 217 | } |
| 218 | }; |
| 219 | |
| 220 | #if !defined(_MSC_VER) || defined(_M_X64) |
| 221 | template <typename T> struct LeadingZerosCounter<T, 8> { |
| 222 | static unsigned count(T Val) { |
| 223 | if (Val == 0) |
| 224 | return 64; |
| 225 | |
| 226 | #if __has_builtin(__builtin_clzll)1 || defined(__GNUC__4) |
| 227 | return __builtin_clzll(Val); |
| 228 | #elif defined(_MSC_VER) |
| 229 | unsigned long Index; |
| 230 | _BitScanReverse64(&Index, Val); |
| 231 | return Index ^ 63; |
| 232 | #endif |
| 233 | } |
| 234 | }; |
| 235 | #endif |
| 236 | #endif |
| 237 | } // namespace detail |
| 238 | |
| 239 | /// Count number of 0's from the most significant bit to the least |
| 240 | /// stopping at the first 1. |
| 241 | /// |
| 242 | /// Only unsigned integral types are allowed. |
| 243 | /// |
| 244 | /// Returns std::numeric_limits<T>::digits on an input of 0. |
| 245 | template <typename T> [[nodiscard]] int countl_zero(T Val) { |
| 246 | static_assert(std::is_unsigned_v<T>, |
| 247 | "Only unsigned integral types are allowed."); |
| 248 | return llvm::detail::LeadingZerosCounter<T, sizeof(T)>::count(Val); |
| 249 | } |
| 250 | |
| 251 | /// Count the number of ones from the most significant bit to the first |
| 252 | /// zero bit. |
| 253 | /// |
| 254 | /// Ex. countl_one(0xFF0FFF00) == 8. |
| 255 | /// Only unsigned integral types are allowed. |
| 256 | /// |
| 257 | /// Returns std::numeric_limits<T>::digits on an input of all ones. |
| 258 | template <typename T> [[nodiscard]] int countl_one(T Value) { |
| 259 | static_assert(std::is_unsigned_v<T>, |
| 260 | "Only unsigned integral types are allowed."); |
| 261 | return llvm::countl_zero<T>(~Value); |
| 262 | } |
| 263 | |
| 264 | /// Count the number of ones from the least significant bit to the first |
| 265 | /// zero bit. |
| 266 | /// |
| 267 | /// Ex. countr_one(0x00FF00FF) == 8. |
| 268 | /// Only unsigned integral types are allowed. |
| 269 | /// |
| 270 | /// Returns std::numeric_limits<T>::digits on an input of all ones. |
| 271 | template <typename T> [[nodiscard]] int countr_one(T Value) { |
| 272 | static_assert(std::is_unsigned_v<T>, |
| 273 | "Only unsigned integral types are allowed."); |
| 274 | return llvm::countr_zero<T>(~Value); |
| 275 | } |
| 276 | |
| 277 | /// Returns the number of bits needed to represent Value if Value is nonzero. |
| 278 | /// Returns 0 otherwise. |
| 279 | /// |
| 280 | /// Ex. bit_width(5) == 3. |
| 281 | template <typename T> [[nodiscard]] int bit_width(T Value) { |
| 282 | static_assert(std::is_unsigned_v<T>, |
| 283 | "Only unsigned integral types are allowed."); |
| 284 | return std::numeric_limits<T>::digits - llvm::countl_zero(Value); |
| 285 | } |
| 286 | |
| 287 | /// Returns the largest integral power of two no greater than Value if Value is |
| 288 | /// nonzero. Returns 0 otherwise. |
| 289 | /// |
| 290 | /// Ex. bit_floor(5) == 4. |
| 291 | template <typename T> [[nodiscard]] T bit_floor(T Value) { |
| 292 | static_assert(std::is_unsigned_v<T>, |
| 293 | "Only unsigned integral types are allowed."); |
| 294 | if (!Value) |
| 295 | return 0; |
| 296 | return T(1) << (llvm::bit_width(Value) - 1); |
| 297 | } |
| 298 | |
| 299 | /// Returns the smallest integral power of two no smaller than Value if Value is |
| 300 | /// nonzero. Returns 1 otherwise. |
| 301 | /// |
| 302 | /// Ex. bit_ceil(5) == 8. |
| 303 | /// |
| 304 | /// The return value is undefined if the input is larger than the largest power |
| 305 | /// of two representable in T. |
| 306 | template <typename T> [[nodiscard]] T bit_ceil(T Value) { |
| 307 | static_assert(std::is_unsigned_v<T>, |
| 308 | "Only unsigned integral types are allowed."); |
| 309 | if (Value < 2) |
| 310 | return 1; |
| 311 | return T(1) << llvm::bit_width<T>(Value - 1u); |
| 312 | } |
| 313 | |
| 314 | namespace detail { |
| 315 | template <typename T, std::size_t SizeOfT> struct PopulationCounter { |
| 316 | static int count(T Value) { |
| 317 | // Generic version, forward to 32 bits. |
| 318 | static_assert(SizeOfT <= 4, "Not implemented!"); |
| 319 | #if defined(__GNUC__4) |
| 320 | return (int)__builtin_popcount(Value); |
| 321 | #else |
| 322 | uint32_t v = Value; |
| 323 | v = v - ((v >> 1) & 0x55555555); |
| 324 | v = (v & 0x33333333) + ((v >> 2) & 0x33333333); |
| 325 | return int(((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24); |
| 326 | #endif |
| 327 | } |
| 328 | }; |
| 329 | |
| 330 | template <typename T> struct PopulationCounter<T, 8> { |
| 331 | static int count(T Value) { |
| 332 | #if defined(__GNUC__4) |
| 333 | return (int)__builtin_popcountll(Value); |
| 334 | #else |
| 335 | uint64_t v = Value; |
| 336 | v = v - ((v >> 1) & 0x5555555555555555ULL); |
| 337 | v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL); |
| 338 | v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL; |
| 339 | return int((uint64_t)(v * 0x0101010101010101ULL) >> 56); |
| 340 | #endif |
| 341 | } |
| 342 | }; |
| 343 | } // namespace detail |
| 344 | |
| 345 | /// Count the number of set bits in a value. |
| 346 | /// Ex. popcount(0xF000F000) = 8 |
| 347 | /// Returns 0 if the word is zero. |
| 348 | template <typename T, typename = std::enable_if_t<std::is_unsigned_v<T>>> |
| 349 | [[nodiscard]] inline int popcount(T Value) noexcept { |
| 350 | return detail::PopulationCounter<T, sizeof(T)>::count(Value); |
| 351 | } |
| 352 | |
| 353 | // Forward-declare rotr so that rotl can use it. |
| 354 | template <typename T, typename = std::enable_if_t<std::is_unsigned_v<T>>> |
| 355 | [[nodiscard]] constexpr T rotr(T V, int R); |
| 356 | |
| 357 | template <typename T, typename = std::enable_if_t<std::is_unsigned_v<T>>> |
| 358 | [[nodiscard]] constexpr T rotl(T V, int R) { |
| 359 | unsigned N = std::numeric_limits<T>::digits; |
| 360 | |
| 361 | R = R % N; |
| 362 | if (!R) |
| 363 | return V; |
| 364 | |
| 365 | if (R < 0) |
| 366 | return llvm::rotr(V, -R); |
| 367 | |
| 368 | return (V << R) | (V >> (N - R)); |
| 369 | } |
| 370 | |
| 371 | template <typename T, typename> [[nodiscard]] constexpr T rotr(T V, int R) { |
| 372 | unsigned N = std::numeric_limits<T>::digits; |
| 373 | |
| 374 | R = R % N; |
| 375 | if (!R) |
| 376 | return V; |
| 377 | |
| 378 | if (R < 0) |
| 379 | return llvm::rotl(V, -R); |
| 380 | |
| 381 | return (V >> R) | (V << (N - R)); |
| 382 | } |
| 383 | |
| 384 | } // namespace llvm |
| 385 | |
| 386 | #endif |