Bug Summary

File:build/source/llvm/lib/Target/AMDGPU/AMDGPULowerModuleLDSPass.cpp
Warning:line 688, column 5
Value stored to 'Changed' is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name AMDGPULowerModuleLDSPass.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm/tools/clang/stage2-bins -resource-dir /usr/lib/llvm-17/lib/clang/17 -D _DEBUG -D _GLIBCXX_ASSERTIONS -D _GNU_SOURCE -D _LIBCPP_ENABLE_ASSERTIONS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I lib/Target/AMDGPU -I /build/source/llvm/lib/Target/AMDGPU -I include -I /build/source/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-17/lib/clang/17/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fcoverage-prefix-map=/build/source/= -source-date-epoch 1679443490 -O2 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility=hidden -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2023-03-22-005342-16304-1 -x c++ /build/source/llvm/lib/Target/AMDGPU/AMDGPULowerModuleLDSPass.cpp
1//===-- AMDGPULowerModuleLDSPass.cpp ------------------------------*- C++ -*-=//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass eliminates local data store, LDS, uses from non-kernel functions.
10// LDS is contiguous memory allocated per kernel execution.
11//
12// Background.
13//
14// The programming model is global variables, or equivalently function local
15// static variables, accessible from kernels or other functions. For uses from
16// kernels this is straightforward - assign an integer to the kernel for the
17// memory required by all the variables combined, allocate them within that.
18// For uses from functions there are performance tradeoffs to choose between.
19//
20// This model means the GPU runtime can specify the amount of memory allocated.
21// If this is more than the kernel assumed, the excess can be made available
22// using a language specific feature, which IR represents as a variable with
23// no initializer. This feature is not yet implemented for non-kernel functions.
24// This lowering could be extended to handle that use case, but would probably
25// require closer integration with promoteAllocaToLDS.
26//
27// Consequences of this GPU feature:
28// - memory is limited and exceeding it halts compilation
29// - a global accessed by one kernel exists independent of other kernels
30// - a global exists independent of simultaneous execution of the same kernel
31// - the address of the global may be different from different kernels as they
32// do not alias, which permits only allocating variables they use
33// - if the address is allowed to differ, functions need help to find it
34//
35// Uses from kernels are implemented here by grouping them in a per-kernel
36// struct instance. This duplicates the variables, accurately modelling their
37// aliasing properties relative to a single global representation. It also
38// permits control over alignment via padding.
39//
40// Uses from functions are more complicated and the primary purpose of this
41// IR pass. Several different lowering are chosen between to meet requirements
42// to avoid allocating any LDS where it is not necessary, as that impacts
43// occupancy and may fail the compilation, while not imposing overhead on a
44// feature whose primary advantage over global memory is performance. The basic
45// design goal is to avoid one kernel imposing overhead on another.
46//
47// Implementation.
48//
49// LDS variables with constant annotation or non-undef initializer are passed
50// through unchanged for simplification or error diagnostics in later passes.
51// Non-undef initializers are not yet implemented for LDS.
52//
53// LDS variables that are always allocated at the same address can be found
54// by lookup at that address. Otherwise runtime information/cost is required.
55//
56// The simplest strategy possible is to group all LDS variables in a single
57// struct and allocate that struct in every kernel such that the original
58// variables are always at the same address. LDS is however a limited resource
59// so this strategy is unusable in practice. It is not implemented here.
60//
61// Strategy | Precise allocation | Zero runtime cost | General purpose |
62// --------+--------------------+-------------------+-----------------+
63// Module | No | Yes | Yes |
64// Table | Yes | No | Yes |
65// Kernel | Yes | Yes | No |
66// Hybrid | Yes | Partial | Yes |
67//
68// Module spends LDS memory to save cycles. Table spends cycles and global
69// memory to save LDS. Kernel is as fast as kernel allocation but only works
70// for variables that are known reachable from a single kernel. Hybrid picks
71// between all three. When forced to choose between LDS and cycles it minimises
72// LDS use.
73
74// The "module" lowering implemented here finds LDS variables which are used by
75// non-kernel functions and creates a new struct with a field for each of those
76// LDS variables. Variables that are only used from kernels are excluded.
77// Kernels that do not use this struct are annoteated with the attribute
78// amdgpu-elide-module-lds which allows the back end to elide the allocation.
79//
80// The "table" lowering implemented here has three components.
81// First kernels are assigned a unique integer identifier which is available in
82// functions it calls through the intrinsic amdgcn_lds_kernel_id. The integer
83// is passed through a specific SGPR, thus works with indirect calls.
84// Second, each kernel allocates LDS variables independent of other kernels and
85// writes the addresses it chose for each variable into an array in consistent
86// order. If the kernel does not allocate a given variable, it writes undef to
87// the corresponding array location. These arrays are written to a constant
88// table in the order matching the kernel unique integer identifier.
89// Third, uses from non-kernel functions are replaced with a table lookup using
90// the intrinsic function to find the address of the variable.
91//
92// "Kernel" lowering is only applicable for variables that are unambiguously
93// reachable from exactly one kernel. For those cases, accesses to the variable
94// can be lowered to ConstantExpr address of a struct instance specific to that
95// one kernel. This is zero cost in space and in compute. It will raise a fatal
96// error on any variable that might be reachable from multiple kernels and is
97// thus most easily used as part of the hybrid lowering strategy.
98//
99// Hybrid lowering is a mixture of the above. It uses the zero cost kernel
100// lowering where it can. It lowers the variable accessed by the greatest
101// number of kernels using the module strategy as that is free for the first
102// variable. Any futher variables that can be lowered with the module strategy
103// without incurring LDS memory overhead are. The remaining ones are lowered
104// via table.
105//
106// Consequences
107// - No heuristics or user controlled magic numbers, hybrid is the right choice
108// - Kernels that don't use functions (or have had them all inlined) are not
109// affected by any lowering for kernels that do.
110// - Kernels that don't make indirect function calls are not affected by those
111// that do.
112// - Variables which are used by lots of kernels, e.g. those injected by a
113// language runtime in most kernels, are expected to have no overhead
114// - Implementations that instantiate templates per-kernel where those templates
115// use LDS are expected to hit the "Kernel" lowering strategy
116// - The runtime properties impose a cost in compiler implementation complexity
117//
118//===----------------------------------------------------------------------===//
119
120#include "AMDGPU.h"
121#include "Utils/AMDGPUBaseInfo.h"
122#include "Utils/AMDGPUMemoryUtils.h"
123#include "llvm/ADT/BitVector.h"
124#include "llvm/ADT/DenseMap.h"
125#include "llvm/ADT/DenseSet.h"
126#include "llvm/ADT/STLExtras.h"
127#include "llvm/ADT/SetOperations.h"
128#include "llvm/ADT/SetVector.h"
129#include "llvm/Analysis/CallGraph.h"
130#include "llvm/IR/Constants.h"
131#include "llvm/IR/DerivedTypes.h"
132#include "llvm/IR/IRBuilder.h"
133#include "llvm/IR/InlineAsm.h"
134#include "llvm/IR/Instructions.h"
135#include "llvm/IR/IntrinsicsAMDGPU.h"
136#include "llvm/IR/MDBuilder.h"
137#include "llvm/IR/ReplaceConstant.h"
138#include "llvm/InitializePasses.h"
139#include "llvm/Pass.h"
140#include "llvm/Support/CommandLine.h"
141#include "llvm/Support/Debug.h"
142#include "llvm/Support/OptimizedStructLayout.h"
143#include "llvm/Transforms/Utils/BasicBlockUtils.h"
144#include "llvm/Transforms/Utils/ModuleUtils.h"
145
146#include <tuple>
147#include <vector>
148
149#include <cstdio>
150
151#define DEBUG_TYPE"amdgpu-lower-module-lds" "amdgpu-lower-module-lds"
152
153using namespace llvm;
154
155namespace {
156
157cl::opt<bool> SuperAlignLDSGlobals(
158 "amdgpu-super-align-lds-globals",
159 cl::desc("Increase alignment of LDS if it is not on align boundary"),
160 cl::init(true), cl::Hidden);
161
162enum class LoweringKind { module, table, kernel, hybrid };
163cl::opt<LoweringKind> LoweringKindLoc(
164 "amdgpu-lower-module-lds-strategy",
165 cl::desc("Specify lowering strategy for function LDS access:"), cl::Hidden,
166 cl::init(LoweringKind::hybrid),
167 cl::values(
168 clEnumValN(LoweringKind::table, "table", "Lower via table lookup")llvm::cl::OptionEnumValue { "table", int(LoweringKind::table)
, "Lower via table lookup" }
,
169 clEnumValN(LoweringKind::module, "module", "Lower via module struct")llvm::cl::OptionEnumValue { "module", int(LoweringKind::module
), "Lower via module struct" }
,
170 clEnumValN(llvm::cl::OptionEnumValue { "kernel", int(LoweringKind::kernel
), "Lower variables reachable from one kernel, otherwise abort"
}
171 LoweringKind::kernel, "kernel",llvm::cl::OptionEnumValue { "kernel", int(LoweringKind::kernel
), "Lower variables reachable from one kernel, otherwise abort"
}
172 "Lower variables reachable from one kernel, otherwise abort")llvm::cl::OptionEnumValue { "kernel", int(LoweringKind::kernel
), "Lower variables reachable from one kernel, otherwise abort"
}
,
173 clEnumValN(LoweringKind::hybrid, "hybrid",llvm::cl::OptionEnumValue { "hybrid", int(LoweringKind::hybrid
), "Lower via mixture of above strategies" }
174 "Lower via mixture of above strategies")llvm::cl::OptionEnumValue { "hybrid", int(LoweringKind::hybrid
), "Lower via mixture of above strategies" }
));
175
176bool isKernelLDS(const Function *F) {
177 // Some weirdness here. AMDGPU::isKernelCC does not call into
178 // AMDGPU::isKernel with the calling conv, it instead calls into
179 // isModuleEntryFunction which returns true for more calling conventions
180 // than AMDGPU::isKernel does. There's a FIXME on AMDGPU::isKernel.
181 // There's also a test that checks that the LDS lowering does not hit on
182 // a graphics shader, denoted amdgpu_ps, so stay with the limited case.
183 // Putting LDS in the name of the function to draw attention to this.
184 return AMDGPU::isKernel(F->getCallingConv());
185}
186
187class AMDGPULowerModuleLDS : public ModulePass {
188
189 static void
190 removeLocalVarsFromUsedLists(Module &M,
191 const DenseSet<GlobalVariable *> &LocalVars) {
192 // The verifier rejects used lists containing an inttoptr of a constant
193 // so remove the variables from these lists before replaceAllUsesWith
194 SmallPtrSet<Constant *, 8> LocalVarsSet;
195 for (GlobalVariable *LocalVar : LocalVars)
196 LocalVarsSet.insert(cast<Constant>(LocalVar->stripPointerCasts()));
197
198 removeFromUsedLists(
199 M, [&LocalVarsSet](Constant *C) { return LocalVarsSet.count(C); });
200
201 for (GlobalVariable *LocalVar : LocalVars)
202 LocalVar->removeDeadConstantUsers();
203 }
204
205 static void markUsedByKernel(IRBuilder<> &Builder, Function *Func,
206 GlobalVariable *SGV) {
207 // The llvm.amdgcn.module.lds instance is implicitly used by all kernels
208 // that might call a function which accesses a field within it. This is
209 // presently approximated to 'all kernels' if there are any such functions
210 // in the module. This implicit use is redefined as an explicit use here so
211 // that later passes, specifically PromoteAlloca, account for the required
212 // memory without any knowledge of this transform.
213
214 // An operand bundle on llvm.donothing works because the call instruction
215 // survives until after the last pass that needs to account for LDS. It is
216 // better than inline asm as the latter survives until the end of codegen. A
217 // totally robust solution would be a function with the same semantics as
218 // llvm.donothing that takes a pointer to the instance and is lowered to a
219 // no-op after LDS is allocated, but that is not presently necessary.
220
221 // This intrinsic is eliminated shortly before instruction selection. It
222 // does not suffice to indicate to ISel that a given global which is not
223 // immediately used by the kernel must still be allocated by it. An
224 // equivalent target specific intrinsic which lasts until immediately after
225 // codegen would suffice for that, but one would still need to ensure that
226 // the variables are allocated in the anticpated order.
227
228 LLVMContext &Ctx = Func->getContext();
229
230 Builder.SetInsertPoint(Func->getEntryBlock().getFirstNonPHI());
231
232 FunctionType *FTy = FunctionType::get(Type::getVoidTy(Ctx), {});
233
234 Function *Decl =
235 Intrinsic::getDeclaration(Func->getParent(), Intrinsic::donothing, {});
236
237 Value *UseInstance[1] = {Builder.CreateInBoundsGEP(
238 SGV->getValueType(), SGV, ConstantInt::get(Type::getInt32Ty(Ctx), 0))};
239
240 Builder.CreateCall(FTy, Decl, {},
241 {OperandBundleDefT<Value *>("ExplicitUse", UseInstance)},
242 "");
243 }
244
245 static bool eliminateConstantExprUsesOfLDSFromAllInstructions(Module &M) {
246 // Constants are uniqued within LLVM. A ConstantExpr referring to a LDS
247 // global may have uses from multiple different functions as a result.
248 // This pass specialises LDS variables with respect to the kernel that
249 // allocates them.
250
251 // This is semantically equivalent to (the unimplemented as slow):
252 // for (auto &F : M.functions())
253 // for (auto &BB : F)
254 // for (auto &I : BB)
255 // for (Use &Op : I.operands())
256 // if (constantExprUsesLDS(Op))
257 // replaceConstantExprInFunction(I, Op);
258
259 SmallVector<Constant *> LDSGlobals;
260 for (auto &GV : M.globals())
261 if (AMDGPU::isLDSVariableToLower(GV))
262 LDSGlobals.push_back(&GV);
263
264 return convertUsersOfConstantsToInstructions(LDSGlobals);
265 }
266
267public:
268 static char ID;
269
270 AMDGPULowerModuleLDS() : ModulePass(ID) {
271 initializeAMDGPULowerModuleLDSPass(*PassRegistry::getPassRegistry());
272 }
273
274 using FunctionVariableMap = DenseMap<Function *, DenseSet<GlobalVariable *>>;
275
276 using VariableFunctionMap = DenseMap<GlobalVariable *, DenseSet<Function *>>;
277
278 static void getUsesOfLDSByFunction(CallGraph const &CG, Module &M,
279 FunctionVariableMap &kernels,
280 FunctionVariableMap &functions) {
281
282 // Get uses from the current function, excluding uses by called functions
283 // Two output variables to avoid walking the globals list twice
284 for (auto &GV : M.globals()) {
285 if (!AMDGPU::isLDSVariableToLower(GV)) {
286 continue;
287 }
288
289 SmallVector<User *, 16> Stack(GV.users());
290 for (User *V : GV.users()) {
291 if (auto *I = dyn_cast<Instruction>(V)) {
292 Function *F = I->getFunction();
293 if (isKernelLDS(F)) {
294 kernels[F].insert(&GV);
295 } else {
296 functions[F].insert(&GV);
297 }
298 }
299 }
300 }
301 }
302
303 struct LDSUsesInfoTy {
304 FunctionVariableMap direct_access;
305 FunctionVariableMap indirect_access;
306 };
307
308 static LDSUsesInfoTy getTransitiveUsesOfLDS(CallGraph const &CG, Module &M) {
309
310 FunctionVariableMap direct_map_kernel;
311 FunctionVariableMap direct_map_function;
312 getUsesOfLDSByFunction(CG, M, direct_map_kernel, direct_map_function);
313
314 // Collect variables that are used by functions whose address has escaped
315 DenseSet<GlobalVariable *> VariablesReachableThroughFunctionPointer;
316 for (Function &F : M.functions()) {
317 if (!isKernelLDS(&F))
318 if (F.hasAddressTaken(nullptr,
319 /* IgnoreCallbackUses */ false,
320 /* IgnoreAssumeLikeCalls */ false,
321 /* IgnoreLLVMUsed */ true,
322 /* IgnoreArcAttachedCall */ false)) {
323 set_union(VariablesReachableThroughFunctionPointer,
324 direct_map_function[&F]);
325 }
326 }
327
328 auto functionMakesUnknownCall = [&](const Function *F) -> bool {
329 assert(!F->isDeclaration())(static_cast <bool> (!F->isDeclaration()) ? void (0)
: __assert_fail ("!F->isDeclaration()", "llvm/lib/Target/AMDGPU/AMDGPULowerModuleLDSPass.cpp"
, 329, __extension__ __PRETTY_FUNCTION__))
;
330 for (CallGraphNode::CallRecord R : *CG[F]) {
331 if (!R.second->getFunction()) {
332 return true;
333 }
334 }
335 return false;
336 };
337
338 // Work out which variables are reachable through function calls
339 FunctionVariableMap transitive_map_function = direct_map_function;
340
341 // If the function makes any unknown call, assume the worst case that it can
342 // access all variables accessed by functions whose address escaped
343 for (Function &F : M.functions()) {
344 if (!F.isDeclaration() && functionMakesUnknownCall(&F)) {
345 if (!isKernelLDS(&F)) {
346 set_union(transitive_map_function[&F],
347 VariablesReachableThroughFunctionPointer);
348 }
349 }
350 }
351
352 // Direct implementation of collecting all variables reachable from each
353 // function
354 for (Function &Func : M.functions()) {
355 if (Func.isDeclaration() || isKernelLDS(&Func))
356 continue;
357
358 DenseSet<Function *> seen; // catches cycles
359 SmallVector<Function *, 4> wip{&Func};
360
361 while (!wip.empty()) {
362 Function *F = wip.pop_back_val();
363
364 // Can accelerate this by referring to transitive map for functions that
365 // have already been computed, with more care than this
366 set_union(transitive_map_function[&Func], direct_map_function[F]);
367
368 for (CallGraphNode::CallRecord R : *CG[F]) {
369 Function *ith = R.second->getFunction();
370 if (ith) {
371 if (!seen.contains(ith)) {
372 seen.insert(ith);
373 wip.push_back(ith);
374 }
375 }
376 }
377 }
378 }
379
380 // direct_map_kernel lists which variables are used by the kernel
381 // find the variables which are used through a function call
382 FunctionVariableMap indirect_map_kernel;
383
384 for (Function &Func : M.functions()) {
385 if (Func.isDeclaration() || !isKernelLDS(&Func))
386 continue;
387
388 for (CallGraphNode::CallRecord R : *CG[&Func]) {
389 Function *ith = R.second->getFunction();
390 if (ith) {
391 set_union(indirect_map_kernel[&Func], transitive_map_function[ith]);
392 } else {
393 set_union(indirect_map_kernel[&Func],
394 VariablesReachableThroughFunctionPointer);
395 }
396 }
397 }
398
399 return {std::move(direct_map_kernel), std::move(indirect_map_kernel)};
400 }
401
402 struct LDSVariableReplacement {
403 GlobalVariable *SGV = nullptr;
404 DenseMap<GlobalVariable *, Constant *> LDSVarsToConstantGEP;
405 };
406
407 // remap from lds global to a constantexpr gep to where it has been moved to
408 // for each kernel
409 // an array with an element for each kernel containing where the corresponding
410 // variable was remapped to
411
412 static Constant *getAddressesOfVariablesInKernel(
413 LLVMContext &Ctx, ArrayRef<GlobalVariable *> Variables,
414 DenseMap<GlobalVariable *, Constant *> &LDSVarsToConstantGEP) {
415 // Create a ConstantArray containing the address of each Variable within the
416 // kernel corresponding to LDSVarsToConstantGEP, or poison if that kernel
417 // does not allocate it
418 // TODO: Drop the ptrtoint conversion
419
420 Type *I32 = Type::getInt32Ty(Ctx);
421
422 ArrayType *KernelOffsetsType = ArrayType::get(I32, Variables.size());
423
424 SmallVector<Constant *> Elements;
425 for (size_t i = 0; i < Variables.size(); i++) {
426 GlobalVariable *GV = Variables[i];
427 if (LDSVarsToConstantGEP.count(GV) != 0) {
428 auto elt = ConstantExpr::getPtrToInt(LDSVarsToConstantGEP[GV], I32);
429 Elements.push_back(elt);
430 } else {
431 Elements.push_back(PoisonValue::get(I32));
432 }
433 }
434 return ConstantArray::get(KernelOffsetsType, Elements);
435 }
436
437 static GlobalVariable *buildLookupTable(
438 Module &M, ArrayRef<GlobalVariable *> Variables,
439 ArrayRef<Function *> kernels,
440 DenseMap<Function *, LDSVariableReplacement> &KernelToReplacement) {
441 if (Variables.empty()) {
442 return nullptr;
443 }
444 LLVMContext &Ctx = M.getContext();
445
446 const size_t NumberVariables = Variables.size();
447 const size_t NumberKernels = kernels.size();
448
449 ArrayType *KernelOffsetsType =
450 ArrayType::get(Type::getInt32Ty(Ctx), NumberVariables);
451
452 ArrayType *AllKernelsOffsetsType =
453 ArrayType::get(KernelOffsetsType, NumberKernels);
454
455 std::vector<Constant *> overallConstantExprElts(NumberKernels);
456 for (size_t i = 0; i < NumberKernels; i++) {
457 LDSVariableReplacement Replacement = KernelToReplacement[kernels[i]];
458 overallConstantExprElts[i] = getAddressesOfVariablesInKernel(
459 Ctx, Variables, Replacement.LDSVarsToConstantGEP);
460 }
461
462 Constant *init =
463 ConstantArray::get(AllKernelsOffsetsType, overallConstantExprElts);
464
465 return new GlobalVariable(
466 M, AllKernelsOffsetsType, true, GlobalValue::InternalLinkage, init,
467 "llvm.amdgcn.lds.offset.table", nullptr, GlobalValue::NotThreadLocal,
468 AMDGPUAS::CONSTANT_ADDRESS);
469 }
470
471 void replaceUsesInInstructionsWithTableLookup(
472 Module &M, ArrayRef<GlobalVariable *> ModuleScopeVariables,
473 GlobalVariable *LookupTable) {
474
475 LLVMContext &Ctx = M.getContext();
476 IRBuilder<> Builder(Ctx);
477 Type *I32 = Type::getInt32Ty(Ctx);
478
479
480 for (size_t Index = 0; Index < ModuleScopeVariables.size(); Index++) {
481 auto *GV = ModuleScopeVariables[Index];
482
483 for (Use &U : make_early_inc_range(GV->uses())) {
484 auto *I = dyn_cast<Instruction>(U.getUser());
485 if (!I)
486 continue;
487
488 Value *tableKernelIndex =
489 getTableLookupKernelIndex(M, I->getFunction());
490
491 // So if the phi uses this value multiple times, what does this look
492 // like?
493 if (auto *Phi = dyn_cast<PHINode>(I)) {
494 BasicBlock *BB = Phi->getIncomingBlock(U);
495 Builder.SetInsertPoint(&(*(BB->getFirstInsertionPt())));
496 } else {
497 Builder.SetInsertPoint(I);
498 }
499
500 Value *GEPIdx[3] = {
501 ConstantInt::get(I32, 0),
502 tableKernelIndex,
503 ConstantInt::get(I32, Index),
504 };
505
506
507 Value *Address = Builder.CreateInBoundsGEP(
508 LookupTable->getValueType(), LookupTable, GEPIdx, GV->getName());
509
510 Value *loaded = Builder.CreateLoad(I32, Address);
511
512 Value *replacement =
513 Builder.CreateIntToPtr(loaded, GV->getType(), GV->getName());
514
515 U.set(replacement);
516 }
517 }
518 }
519
520 static DenseSet<Function *> kernelsThatIndirectlyAccessAnyOfPassedVariables(
521 Module &M, LDSUsesInfoTy &LDSUsesInfo,
522 DenseSet<GlobalVariable *> const &VariableSet) {
523
524 DenseSet<Function *> KernelSet;
525
526 if (VariableSet.empty()) return KernelSet;
527
528 for (Function &Func : M.functions()) {
529 if (Func.isDeclaration() || !isKernelLDS(&Func))
530 continue;
531 for (GlobalVariable *GV : LDSUsesInfo.indirect_access[&Func]) {
532 if (VariableSet.contains(GV)) {
533 KernelSet.insert(&Func);
534 break;
535 }
536 }
537 }
538
539 return KernelSet;
540 }
541
542 static GlobalVariable *
543 chooseBestVariableForModuleStrategy(const DataLayout &DL,
544 VariableFunctionMap &LDSVars) {
545 // Find the global variable with the most indirect uses from kernels
546
547 struct CandidateTy {
548 GlobalVariable *GV = nullptr;
549 size_t UserCount = 0;
550 size_t Size = 0;
551
552 CandidateTy() = default;
553
554 CandidateTy(GlobalVariable *GV, uint64_t UserCount, uint64_t AllocSize)
555 : GV(GV), UserCount(UserCount), Size(AllocSize) {}
556
557 bool operator<(const CandidateTy &Other) const {
558 // Fewer users makes module scope variable less attractive
559 if (UserCount < Other.UserCount) {
560 return true;
561 }
562 if (UserCount > Other.UserCount) {
563 return false;
564 }
565
566 // Bigger makes module scope variable less attractive
567 if (Size < Other.Size) {
568 return false;
569 }
570
571 if (Size > Other.Size) {
572 return true;
573 }
574
575 // Arbitrary but consistent
576 return GV->getName() < Other.GV->getName();
577 }
578 };
579
580 CandidateTy MostUsed;
581
582 for (auto &K : LDSVars) {
583 GlobalVariable *GV = K.first;
584 if (K.second.size() <= 1) {
585 // A variable reachable by only one kernel is best lowered with kernel
586 // strategy
587 continue;
588 }
589 CandidateTy Candidate(GV, K.second.size(),
590 DL.getTypeAllocSize(GV->getValueType()).getFixedValue());
591 if (MostUsed < Candidate)
592 MostUsed = Candidate;
593 }
594
595 return MostUsed.GV;
596 }
597
598 static void recordLDSAbsoluteAddress(Module *M, GlobalVariable *GV,
599 uint32_t Address) {
600 // Write the specified address into metadata where it can be retrieved by
601 // the assembler. Format is a half open range, [Address Address+1)
602 LLVMContext &Ctx = M->getContext();
603 auto *IntTy =
604 M->getDataLayout().getIntPtrType(Ctx, AMDGPUAS::LOCAL_ADDRESS);
605 auto *MinC = ConstantAsMetadata::get(ConstantInt::get(IntTy, Address));
606 auto *MaxC = ConstantAsMetadata::get(ConstantInt::get(IntTy, Address + 1));
607 GV->setMetadata(LLVMContext::MD_absolute_symbol,
608 MDNode::get(Ctx, {MinC, MaxC}));
609 }
610
611 DenseMap<Function *, Value *> tableKernelIndexCache;
612 Value *getTableLookupKernelIndex(Module &M, Function *F) {
613 // Accesses from a function use the amdgcn_lds_kernel_id intrinsic which
614 // lowers to a read from a live in register. Emit it once in the entry
615 // block to spare deduplicating it later.
616 if (tableKernelIndexCache.count(F) == 0) {
617 LLVMContext &Ctx = M.getContext();
618 IRBuilder<> Builder(Ctx);
619 FunctionType *FTy = FunctionType::get(Type::getInt32Ty(Ctx), {});
620 Function *Decl =
621 Intrinsic::getDeclaration(&M, Intrinsic::amdgcn_lds_kernel_id, {});
622
623 BasicBlock::iterator it =
624 F->getEntryBlock().getFirstNonPHIOrDbgOrAlloca();
625 Instruction &i = *it;
626 Builder.SetInsertPoint(&i);
627
628 tableKernelIndexCache[F] = Builder.CreateCall(FTy, Decl, {});
629 }
630
631 return tableKernelIndexCache[F];
632 }
633
634 std::vector<Function *> assignLDSKernelIDToEachKernel(
635 Module *M, DenseSet<Function *> const &KernelsThatAllocateTableLDS) {
636 // Associate kernels in the set with an arbirary but reproducible order and
637 // annotate them with that order in metadata. This metadata is recognised by
638 // the backend and lowered to a SGPR which can be read from using
639 // amdgcn_lds_kernel_id.
640
641 std::vector<Function *> OrderedKernels;
642
643 for (Function &Func : M->functions()) {
644 if (Func.isDeclaration())
645 continue;
646 if (!isKernelLDS(&Func))
647 continue;
648
649 if (KernelsThatAllocateTableLDS.contains(&Func)) {
650 assert(Func.hasName())(static_cast <bool> (Func.hasName()) ? void (0) : __assert_fail
("Func.hasName()", "llvm/lib/Target/AMDGPU/AMDGPULowerModuleLDSPass.cpp"
, 650, __extension__ __PRETTY_FUNCTION__))
; // else fatal error earlier
651 OrderedKernels.push_back(&Func);
652 }
653 }
654
655 // Put them in an arbitrary but reproducible order
656 llvm::sort(OrderedKernels.begin(), OrderedKernels.end(),
657 [](const Function *lhs, const Function *rhs) -> bool {
658 return lhs->getName() < rhs->getName();
659 });
660
661 // Annotate the kernels with their order in this vector
662 LLVMContext &Ctx = M->getContext();
663 IRBuilder<> Builder(Ctx);
664
665 if (OrderedKernels.size() > UINT32_MAX(4294967295U)) {
666 // 32 bit keeps it in one SGPR. > 2**32 kernels won't fit on the GPU
667 report_fatal_error("Unimplemented LDS lowering for > 2**32 kernels");
668 }
669
670 for (size_t i = 0; i < OrderedKernels.size(); i++) {
671 Metadata *AttrMDArgs[1] = {
672 ConstantAsMetadata::get(Builder.getInt32(i)),
673 };
674 OrderedKernels[i]->setMetadata("llvm.amdgcn.lds.kernel.id",
675 MDNode::get(Ctx, AttrMDArgs));
676
677 }
678
679
680 return OrderedKernels;
681 }
682
683 bool runOnModule(Module &M) override {
684 LLVMContext &Ctx = M.getContext();
685 CallGraph CG = CallGraph(M);
686 bool Changed = superAlignLDSGlobals(M);
687
688 Changed |= eliminateConstantExprUsesOfLDSFromAllInstructions(M);
Value stored to 'Changed' is never read
689
690 Changed = true; // todo: narrow this down
691
692 // For each kernel, what variables does it access directly or through
693 // callees
694 LDSUsesInfoTy LDSUsesInfo = getTransitiveUsesOfLDS(CG, M);
695
696 // For each variable accessed through callees, which kernels access it
697 VariableFunctionMap LDSToKernelsThatNeedToAccessItIndirectly;
698 for (auto &K : LDSUsesInfo.indirect_access) {
699 Function *F = K.first;
700 assert(isKernelLDS(F))(static_cast <bool> (isKernelLDS(F)) ? void (0) : __assert_fail
("isKernelLDS(F)", "llvm/lib/Target/AMDGPU/AMDGPULowerModuleLDSPass.cpp"
, 700, __extension__ __PRETTY_FUNCTION__))
;
701 for (GlobalVariable *GV : K.second) {
702 LDSToKernelsThatNeedToAccessItIndirectly[GV].insert(F);
703 }
704 }
705
706 // Partition variables accessed indirectly into the different strategies
707 DenseSet<GlobalVariable *> ModuleScopeVariables;
708 DenseSet<GlobalVariable *> TableLookupVariables;
709 DenseSet<GlobalVariable *> KernelAccessVariables;
710
711 {
712 GlobalVariable *HybridModuleRoot =
713 LoweringKindLoc != LoweringKind::hybrid
714 ? nullptr
715 : chooseBestVariableForModuleStrategy(
716 M.getDataLayout(),
717 LDSToKernelsThatNeedToAccessItIndirectly);
718
719 DenseSet<Function *> const EmptySet;
720 DenseSet<Function *> const &HybridModuleRootKernels =
721 HybridModuleRoot
722 ? LDSToKernelsThatNeedToAccessItIndirectly[HybridModuleRoot]
723 : EmptySet;
724
725 for (auto &K : LDSToKernelsThatNeedToAccessItIndirectly) {
726 // Each iteration of this loop assigns exactly one global variable to
727 // exactly one of the implementation strategies.
728
729 GlobalVariable *GV = K.first;
730 assert(AMDGPU::isLDSVariableToLower(*GV))(static_cast <bool> (AMDGPU::isLDSVariableToLower(*GV))
? void (0) : __assert_fail ("AMDGPU::isLDSVariableToLower(*GV)"
, "llvm/lib/Target/AMDGPU/AMDGPULowerModuleLDSPass.cpp", 730,
__extension__ __PRETTY_FUNCTION__))
;
731 assert(K.second.size() != 0)(static_cast <bool> (K.second.size() != 0) ? void (0) :
__assert_fail ("K.second.size() != 0", "llvm/lib/Target/AMDGPU/AMDGPULowerModuleLDSPass.cpp"
, 731, __extension__ __PRETTY_FUNCTION__))
;
732
733 switch (LoweringKindLoc) {
734 case LoweringKind::module:
735 ModuleScopeVariables.insert(GV);
736 break;
737
738 case LoweringKind::table:
739 TableLookupVariables.insert(GV);
740 break;
741
742 case LoweringKind::kernel:
743 if (K.second.size() == 1) {
744 KernelAccessVariables.insert(GV);
745 } else {
746 report_fatal_error(
747 "cannot lower LDS '" + GV->getName() +
748 "' to kernel access as it is reachable from multiple kernels");
749 }
750 break;
751
752 case LoweringKind::hybrid: {
753 if (GV == HybridModuleRoot) {
754 assert(K.second.size() != 1)(static_cast <bool> (K.second.size() != 1) ? void (0) :
__assert_fail ("K.second.size() != 1", "llvm/lib/Target/AMDGPU/AMDGPULowerModuleLDSPass.cpp"
, 754, __extension__ __PRETTY_FUNCTION__))
;
755 ModuleScopeVariables.insert(GV);
756 } else if (K.second.size() == 1) {
757 KernelAccessVariables.insert(GV);
758 } else if (set_is_subset(K.second, HybridModuleRootKernels)) {
759 ModuleScopeVariables.insert(GV);
760 } else {
761 TableLookupVariables.insert(GV);
762 }
763 break;
764 }
765 }
766 }
767
768 // All LDS variables accessed indirectly have now been partitioned into
769 // the distinct lowering strategies.
770 assert(ModuleScopeVariables.size() + TableLookupVariables.size() +(static_cast <bool> (ModuleScopeVariables.size() + TableLookupVariables
.size() + KernelAccessVariables.size() == LDSToKernelsThatNeedToAccessItIndirectly
.size()) ? void (0) : __assert_fail ("ModuleScopeVariables.size() + TableLookupVariables.size() + KernelAccessVariables.size() == LDSToKernelsThatNeedToAccessItIndirectly.size()"
, "llvm/lib/Target/AMDGPU/AMDGPULowerModuleLDSPass.cpp", 772,
__extension__ __PRETTY_FUNCTION__))
771 KernelAccessVariables.size() ==(static_cast <bool> (ModuleScopeVariables.size() + TableLookupVariables
.size() + KernelAccessVariables.size() == LDSToKernelsThatNeedToAccessItIndirectly
.size()) ? void (0) : __assert_fail ("ModuleScopeVariables.size() + TableLookupVariables.size() + KernelAccessVariables.size() == LDSToKernelsThatNeedToAccessItIndirectly.size()"
, "llvm/lib/Target/AMDGPU/AMDGPULowerModuleLDSPass.cpp", 772,
__extension__ __PRETTY_FUNCTION__))
772 LDSToKernelsThatNeedToAccessItIndirectly.size())(static_cast <bool> (ModuleScopeVariables.size() + TableLookupVariables
.size() + KernelAccessVariables.size() == LDSToKernelsThatNeedToAccessItIndirectly
.size()) ? void (0) : __assert_fail ("ModuleScopeVariables.size() + TableLookupVariables.size() + KernelAccessVariables.size() == LDSToKernelsThatNeedToAccessItIndirectly.size()"
, "llvm/lib/Target/AMDGPU/AMDGPULowerModuleLDSPass.cpp", 772,
__extension__ __PRETTY_FUNCTION__))
;
773 }
774
775 // If the kernel accesses a variable that is going to be stored in the
776 // module instance through a call then that kernel needs to allocate the
777 // module instance
778 DenseSet<Function *> KernelsThatAllocateModuleLDS =
779 kernelsThatIndirectlyAccessAnyOfPassedVariables(M, LDSUsesInfo,
780 ModuleScopeVariables);
781 DenseSet<Function *> KernelsThatAllocateTableLDS =
782 kernelsThatIndirectlyAccessAnyOfPassedVariables(M, LDSUsesInfo,
783 TableLookupVariables);
784
785 GlobalVariable *MaybeModuleScopeStruct = nullptr;
786 if (!ModuleScopeVariables.empty()) {
787 LDSVariableReplacement ModuleScopeReplacement =
788 createLDSVariableReplacement(M, "llvm.amdgcn.module.lds",
789 ModuleScopeVariables);
790 MaybeModuleScopeStruct = ModuleScopeReplacement.SGV;
791 appendToCompilerUsed(M,
792 {static_cast<GlobalValue *>(
793 ConstantExpr::getPointerBitCastOrAddrSpaceCast(
794 cast<Constant>(ModuleScopeReplacement.SGV),
795 Type::getInt8PtrTy(Ctx)))});
796
797 // module.lds will be allocated at zero in any kernel that allocates it
798 recordLDSAbsoluteAddress(&M, ModuleScopeReplacement.SGV, 0);
799
800 // historic
801 removeLocalVarsFromUsedLists(M, ModuleScopeVariables);
802
803 // Replace all uses of module scope variable from non-kernel functions
804 replaceLDSVariablesWithStruct(
805 M, ModuleScopeVariables, ModuleScopeReplacement, [&](Use &U) {
806 Instruction *I = dyn_cast<Instruction>(U.getUser());
807 if (!I) {
808 return false;
809 }
810 Function *F = I->getFunction();
811 return !isKernelLDS(F);
812 });
813
814 // Replace uses of module scope variable from kernel functions that
815 // allocate the module scope variable, otherwise leave them unchanged
816 // Record on each kernel whether the module scope global is used by it
817
818 LLVMContext &Ctx = M.getContext();
819 IRBuilder<> Builder(Ctx);
820
821 for (Function &Func : M.functions()) {
822 if (Func.isDeclaration() || !isKernelLDS(&Func))
823 continue;
824
825 if (KernelsThatAllocateModuleLDS.contains(&Func)) {
826 replaceLDSVariablesWithStruct(
827 M, ModuleScopeVariables, ModuleScopeReplacement, [&](Use &U) {
828 Instruction *I = dyn_cast<Instruction>(U.getUser());
829 if (!I) {
830 return false;
831 }
832 Function *F = I->getFunction();
833 return F == &Func;
834 });
835
836 markUsedByKernel(Builder, &Func, ModuleScopeReplacement.SGV);
837
838 } else {
839 Func.addFnAttr("amdgpu-elide-module-lds");
840 }
841 }
842 }
843
844 // Create a struct for each kernel for the non-module-scope variables
845 DenseMap<Function *, LDSVariableReplacement> KernelToReplacement;
846 for (Function &Func : M.functions()) {
847 if (Func.isDeclaration() || !isKernelLDS(&Func))
848 continue;
849
850 DenseSet<GlobalVariable *> KernelUsedVariables;
851 // Allocating variables that are used directly in this struct to get
852 // alignment aware allocation and predictable frame size.
853 for (auto &v : LDSUsesInfo.direct_access[&Func]) {
854 KernelUsedVariables.insert(v);
855 }
856
857 // Allocating variables that are accessed indirectly so that a lookup of
858 // this struct instance can find them from nested functions.
859 for (auto &v : LDSUsesInfo.indirect_access[&Func]) {
860 KernelUsedVariables.insert(v);
861 }
862
863 // Variables allocated in module lds must all resolve to that struct,
864 // not to the per-kernel instance.
865 if (KernelsThatAllocateModuleLDS.contains(&Func)) {
866 for (GlobalVariable *v : ModuleScopeVariables) {
867 KernelUsedVariables.erase(v);
868 }
869 }
870
871 if (KernelUsedVariables.empty()) {
872 // Either used no LDS, or the LDS it used was all in the module struct
873 continue;
874 }
875
876 // The association between kernel function and LDS struct is done by
877 // symbol name, which only works if the function in question has a
878 // name This is not expected to be a problem in practice as kernels
879 // are called by name making anonymous ones (which are named by the
880 // backend) difficult to use. This does mean that llvm test cases need
881 // to name the kernels.
882 if (!Func.hasName()) {
883 report_fatal_error("Anonymous kernels cannot use LDS variables");
884 }
885
886 std::string VarName =
887 (Twine("llvm.amdgcn.kernel.") + Func.getName() + ".lds").str();
888
889 auto Replacement =
890 createLDSVariableReplacement(M, VarName, KernelUsedVariables);
891
892 // This struct is allocated at a predictable address that can be
893 // calculated now, recorded in metadata then used to lower references to
894 // it during codegen.
895 {
896 // frame layout, starting from 0
897 //{
898 // module.lds
899 // alignment padding
900 // kernel instance
901 //}
902
903 if (!MaybeModuleScopeStruct ||
904 Func.hasFnAttribute("amdgpu-elide-module-lds")) {
905 // There's no module.lds for this kernel so this replacement struct
906 // goes first
907 recordLDSAbsoluteAddress(&M, Replacement.SGV, 0);
908 } else {
909 const DataLayout &DL = M.getDataLayout();
910 TypeSize ModuleSize =
911 DL.getTypeAllocSize(MaybeModuleScopeStruct->getValueType());
912 GlobalVariable *KernelStruct = Replacement.SGV;
913 Align KernelAlign = AMDGPU::getAlign(DL, KernelStruct);
914 recordLDSAbsoluteAddress(&M, Replacement.SGV,
915 alignTo(ModuleSize, KernelAlign));
916 }
917 }
918
919 // remove preserves existing codegen
920 removeLocalVarsFromUsedLists(M, KernelUsedVariables);
921 KernelToReplacement[&Func] = Replacement;
922
923 // Rewrite uses within kernel to the new struct
924 replaceLDSVariablesWithStruct(
925 M, KernelUsedVariables, Replacement, [&Func](Use &U) {
926 Instruction *I = dyn_cast<Instruction>(U.getUser());
927 return I && I->getFunction() == &Func;
928 });
929 }
930
931 // Lower zero cost accesses to the kernel instances just created
932 for (auto &GV : KernelAccessVariables) {
933 auto &funcs = LDSToKernelsThatNeedToAccessItIndirectly[GV];
934 assert(funcs.size() == 1)(static_cast <bool> (funcs.size() == 1) ? void (0) : __assert_fail
("funcs.size() == 1", "llvm/lib/Target/AMDGPU/AMDGPULowerModuleLDSPass.cpp"
, 934, __extension__ __PRETTY_FUNCTION__))
; // Only one kernel can access it
935 LDSVariableReplacement Replacement =
936 KernelToReplacement[*(funcs.begin())];
937
938 DenseSet<GlobalVariable *> Vec;
939 Vec.insert(GV);
940
941 // TODO: Looks like a latent bug, Replacement may not be marked
942 // UsedByKernel here
943 replaceLDSVariablesWithStruct(M, Vec, Replacement, [](Use &U) {
944 return isa<Instruction>(U.getUser());
945 });
946 }
947
948 if (!KernelsThatAllocateTableLDS.empty()) {
949 LLVMContext &Ctx = M.getContext();
950 IRBuilder<> Builder(Ctx);
951
952 // The ith element of this vector is kernel id i
953 std::vector<Function *> OrderedKernels =
954 assignLDSKernelIDToEachKernel(&M, KernelsThatAllocateTableLDS);
955
956 for (size_t i = 0; i < OrderedKernels.size(); i++) {
957 markUsedByKernel(Builder, OrderedKernels[i],
958 KernelToReplacement[OrderedKernels[i]].SGV);
959 }
960
961 // The order must be consistent between lookup table and accesses to
962 // lookup table
963 std::vector<GlobalVariable *> TableLookupVariablesOrdered(
964 TableLookupVariables.begin(), TableLookupVariables.end());
965 llvm::sort(TableLookupVariablesOrdered.begin(),
966 TableLookupVariablesOrdered.end(),
967 [](const GlobalVariable *lhs, const GlobalVariable *rhs) {
968 return lhs->getName() < rhs->getName();
969 });
970
971 GlobalVariable *LookupTable = buildLookupTable(
972 M, TableLookupVariablesOrdered, OrderedKernels, KernelToReplacement);
973 replaceUsesInInstructionsWithTableLookup(M, TableLookupVariablesOrdered,
974 LookupTable);
975 }
976
977 for (auto &GV : make_early_inc_range(M.globals()))
978 if (AMDGPU::isLDSVariableToLower(GV)) {
979 // probably want to remove from used lists
980 GV.removeDeadConstantUsers();
981 if (GV.use_empty())
982 GV.eraseFromParent();
983 }
984
985 return Changed;
986 }
987
988private:
989 // Increase the alignment of LDS globals if necessary to maximise the chance
990 // that we can use aligned LDS instructions to access them.
991 static bool superAlignLDSGlobals(Module &M) {
992 const DataLayout &DL = M.getDataLayout();
993 bool Changed = false;
994 if (!SuperAlignLDSGlobals) {
995 return Changed;
996 }
997
998 for (auto &GV : M.globals()) {
999 if (GV.getType()->getPointerAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) {
1000 // Only changing alignment of LDS variables
1001 continue;
1002 }
1003 if (!GV.hasInitializer()) {
1004 // cuda/hip extern __shared__ variable, leave alignment alone
1005 continue;
1006 }
1007
1008 Align Alignment = AMDGPU::getAlign(DL, &GV);
1009 TypeSize GVSize = DL.getTypeAllocSize(GV.getValueType());
1010
1011 if (GVSize > 8) {
1012 // We might want to use a b96 or b128 load/store
1013 Alignment = std::max(Alignment, Align(16));
1014 } else if (GVSize > 4) {
1015 // We might want to use a b64 load/store
1016 Alignment = std::max(Alignment, Align(8));
1017 } else if (GVSize > 2) {
1018 // We might want to use a b32 load/store
1019 Alignment = std::max(Alignment, Align(4));
1020 } else if (GVSize > 1) {
1021 // We might want to use a b16 load/store
1022 Alignment = std::max(Alignment, Align(2));
1023 }
1024
1025 if (Alignment != AMDGPU::getAlign(DL, &GV)) {
1026 Changed = true;
1027 GV.setAlignment(Alignment);
1028 }
1029 }
1030 return Changed;
1031 }
1032
1033 static LDSVariableReplacement createLDSVariableReplacement(
1034 Module &M, std::string VarName,
1035 DenseSet<GlobalVariable *> const &LDSVarsToTransform) {
1036 // Create a struct instance containing LDSVarsToTransform and map from those
1037 // variables to ConstantExprGEP
1038 // Variables may be introduced to meet alignment requirements. No aliasing
1039 // metadata is useful for these as they have no uses. Erased before return.
1040
1041 LLVMContext &Ctx = M.getContext();
1042 const DataLayout &DL = M.getDataLayout();
1043 assert(!LDSVarsToTransform.empty())(static_cast <bool> (!LDSVarsToTransform.empty()) ? void
(0) : __assert_fail ("!LDSVarsToTransform.empty()", "llvm/lib/Target/AMDGPU/AMDGPULowerModuleLDSPass.cpp"
, 1043, __extension__ __PRETTY_FUNCTION__))
;
1044
1045 SmallVector<OptimizedStructLayoutField, 8> LayoutFields;
1046 LayoutFields.reserve(LDSVarsToTransform.size());
1047 {
1048 // The order of fields in this struct depends on the order of
1049 // varables in the argument which varies when changing how they
1050 // are identified, leading to spurious test breakage.
1051 std::vector<GlobalVariable *> Sorted(LDSVarsToTransform.begin(),
1052 LDSVarsToTransform.end());
1053 llvm::sort(Sorted.begin(), Sorted.end(),
1054 [](const GlobalVariable *lhs, const GlobalVariable *rhs) {
1055 return lhs->getName() < rhs->getName();
1056 });
1057 for (GlobalVariable *GV : Sorted) {
1058 OptimizedStructLayoutField F(GV,
1059 DL.getTypeAllocSize(GV->getValueType()),
1060 AMDGPU::getAlign(DL, GV));
1061 LayoutFields.emplace_back(F);
1062 }
1063 }
1064
1065 performOptimizedStructLayout(LayoutFields);
1066
1067 std::vector<GlobalVariable *> LocalVars;
1068 BitVector IsPaddingField;
1069 LocalVars.reserve(LDSVarsToTransform.size()); // will be at least this large
1070 IsPaddingField.reserve(LDSVarsToTransform.size());
1071 {
1072 uint64_t CurrentOffset = 0;
1073 for (size_t I = 0; I < LayoutFields.size(); I++) {
1074 GlobalVariable *FGV = static_cast<GlobalVariable *>(
1075 const_cast<void *>(LayoutFields[I].Id));
1076 Align DataAlign = LayoutFields[I].Alignment;
1077
1078 uint64_t DataAlignV = DataAlign.value();
1079 if (uint64_t Rem = CurrentOffset % DataAlignV) {
1080 uint64_t Padding = DataAlignV - Rem;
1081
1082 // Append an array of padding bytes to meet alignment requested
1083 // Note (o + (a - (o % a)) ) % a == 0
1084 // (offset + Padding ) % align == 0
1085
1086 Type *ATy = ArrayType::get(Type::getInt8Ty(Ctx), Padding);
1087 LocalVars.push_back(new GlobalVariable(
1088 M, ATy, false, GlobalValue::InternalLinkage, UndefValue::get(ATy),
1089 "", nullptr, GlobalValue::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS,
1090 false));
1091 IsPaddingField.push_back(true);
1092 CurrentOffset += Padding;
1093 }
1094
1095 LocalVars.push_back(FGV);
1096 IsPaddingField.push_back(false);
1097 CurrentOffset += LayoutFields[I].Size;
1098 }
1099 }
1100
1101 std::vector<Type *> LocalVarTypes;
1102 LocalVarTypes.reserve(LocalVars.size());
1103 std::transform(
1104 LocalVars.cbegin(), LocalVars.cend(), std::back_inserter(LocalVarTypes),
1105 [](const GlobalVariable *V) -> Type * { return V->getValueType(); });
1106
1107 StructType *LDSTy = StructType::create(Ctx, LocalVarTypes, VarName + ".t");
1108
1109 Align StructAlign = AMDGPU::getAlign(DL, LocalVars[0]);
1110
1111 GlobalVariable *SGV = new GlobalVariable(
1112 M, LDSTy, false, GlobalValue::InternalLinkage, UndefValue::get(LDSTy),
1113 VarName, nullptr, GlobalValue::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS,
1114 false);
1115 SGV->setAlignment(StructAlign);
1116
1117 DenseMap<GlobalVariable *, Constant *> Map;
1118 Type *I32 = Type::getInt32Ty(Ctx);
1119 for (size_t I = 0; I < LocalVars.size(); I++) {
1120 GlobalVariable *GV = LocalVars[I];
1121 Constant *GEPIdx[] = {ConstantInt::get(I32, 0), ConstantInt::get(I32, I)};
1122 Constant *GEP = ConstantExpr::getGetElementPtr(LDSTy, SGV, GEPIdx, true);
1123 if (IsPaddingField[I]) {
1124 assert(GV->use_empty())(static_cast <bool> (GV->use_empty()) ? void (0) : __assert_fail
("GV->use_empty()", "llvm/lib/Target/AMDGPU/AMDGPULowerModuleLDSPass.cpp"
, 1124, __extension__ __PRETTY_FUNCTION__))
;
1125 GV->eraseFromParent();
1126 } else {
1127 Map[GV] = GEP;
1128 }
1129 }
1130 assert(Map.size() == LDSVarsToTransform.size())(static_cast <bool> (Map.size() == LDSVarsToTransform.size
()) ? void (0) : __assert_fail ("Map.size() == LDSVarsToTransform.size()"
, "llvm/lib/Target/AMDGPU/AMDGPULowerModuleLDSPass.cpp", 1130
, __extension__ __PRETTY_FUNCTION__))
;
1131 return {SGV, std::move(Map)};
1132 }
1133
1134 template <typename PredicateTy>
1135 void replaceLDSVariablesWithStruct(
1136 Module &M, DenseSet<GlobalVariable *> const &LDSVarsToTransformArg,
1137 LDSVariableReplacement Replacement, PredicateTy Predicate) {
1138 LLVMContext &Ctx = M.getContext();
1139 const DataLayout &DL = M.getDataLayout();
1140
1141 // A hack... we need to insert the aliasing info in a predictable order for
1142 // lit tests. Would like to have them in a stable order already, ideally the
1143 // same order they get allocated, which might mean an ordered set container
1144 std::vector<GlobalVariable *> LDSVarsToTransform(
1145 LDSVarsToTransformArg.begin(), LDSVarsToTransformArg.end());
1146 llvm::sort(LDSVarsToTransform.begin(), LDSVarsToTransform.end(),
1147 [](const GlobalVariable *lhs, const GlobalVariable *rhs) {
1148 return lhs->getName() < rhs->getName();
1149 });
1150
1151 // Create alias.scope and their lists. Each field in the new structure
1152 // does not alias with all other fields.
1153 SmallVector<MDNode *> AliasScopes;
1154 SmallVector<Metadata *> NoAliasList;
1155 const size_t NumberVars = LDSVarsToTransform.size();
1156 if (NumberVars > 1) {
1157 MDBuilder MDB(Ctx);
1158 AliasScopes.reserve(NumberVars);
1159 MDNode *Domain = MDB.createAnonymousAliasScopeDomain();
1160 for (size_t I = 0; I < NumberVars; I++) {
1161 MDNode *Scope = MDB.createAnonymousAliasScope(Domain);
1162 AliasScopes.push_back(Scope);
1163 }
1164 NoAliasList.append(&AliasScopes[1], AliasScopes.end());
1165 }
1166
1167 // Replace uses of ith variable with a constantexpr to the corresponding
1168 // field of the instance that will be allocated by AMDGPUMachineFunction
1169 for (size_t I = 0; I < NumberVars; I++) {
1170 GlobalVariable *GV = LDSVarsToTransform[I];
1171 Constant *GEP = Replacement.LDSVarsToConstantGEP[GV];
1172
1173 GV->replaceUsesWithIf(GEP, Predicate);
1174
1175 APInt APOff(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
1176 GEP->stripAndAccumulateInBoundsConstantOffsets(DL, APOff);
1177 uint64_t Offset = APOff.getZExtValue();
1178
1179 Align A =
1180 commonAlignment(Replacement.SGV->getAlign().valueOrOne(), Offset);
1181
1182 if (I)
1183 NoAliasList[I - 1] = AliasScopes[I - 1];
1184 MDNode *NoAlias =
1185 NoAliasList.empty() ? nullptr : MDNode::get(Ctx, NoAliasList);
1186 MDNode *AliasScope =
1187 AliasScopes.empty() ? nullptr : MDNode::get(Ctx, {AliasScopes[I]});
1188
1189 refineUsesAlignmentAndAA(GEP, A, DL, AliasScope, NoAlias);
1190 }
1191 }
1192
1193 void refineUsesAlignmentAndAA(Value *Ptr, Align A, const DataLayout &DL,
1194 MDNode *AliasScope, MDNode *NoAlias,
1195 unsigned MaxDepth = 5) {
1196 if (!MaxDepth || (A == 1 && !AliasScope))
1197 return;
1198
1199 for (User *U : Ptr->users()) {
1200 if (auto *I = dyn_cast<Instruction>(U)) {
1201 if (AliasScope && I->mayReadOrWriteMemory()) {
1202 MDNode *AS = I->getMetadata(LLVMContext::MD_alias_scope);
1203 AS = (AS ? MDNode::getMostGenericAliasScope(AS, AliasScope)
1204 : AliasScope);
1205 I->setMetadata(LLVMContext::MD_alias_scope, AS);
1206
1207 MDNode *NA = I->getMetadata(LLVMContext::MD_noalias);
1208 NA = (NA ? MDNode::intersect(NA, NoAlias) : NoAlias);
1209 I->setMetadata(LLVMContext::MD_noalias, NA);
1210 }
1211 }
1212
1213 if (auto *LI = dyn_cast<LoadInst>(U)) {
1214 LI->setAlignment(std::max(A, LI->getAlign()));
1215 continue;
1216 }
1217 if (auto *SI = dyn_cast<StoreInst>(U)) {
1218 if (SI->getPointerOperand() == Ptr)
1219 SI->setAlignment(std::max(A, SI->getAlign()));
1220 continue;
1221 }
1222 if (auto *AI = dyn_cast<AtomicRMWInst>(U)) {
1223 // None of atomicrmw operations can work on pointers, but let's
1224 // check it anyway in case it will or we will process ConstantExpr.
1225 if (AI->getPointerOperand() == Ptr)
1226 AI->setAlignment(std::max(A, AI->getAlign()));
1227 continue;
1228 }
1229 if (auto *AI = dyn_cast<AtomicCmpXchgInst>(U)) {
1230 if (AI->getPointerOperand() == Ptr)
1231 AI->setAlignment(std::max(A, AI->getAlign()));
1232 continue;
1233 }
1234 if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
1235 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType());
1236 APInt Off(BitWidth, 0);
1237 if (GEP->getPointerOperand() == Ptr) {
1238 Align GA;
1239 if (GEP->accumulateConstantOffset(DL, Off))
1240 GA = commonAlignment(A, Off.getLimitedValue());
1241 refineUsesAlignmentAndAA(GEP, GA, DL, AliasScope, NoAlias,
1242 MaxDepth - 1);
1243 }
1244 continue;
1245 }
1246 if (auto *I = dyn_cast<Instruction>(U)) {
1247 if (I->getOpcode() == Instruction::BitCast ||
1248 I->getOpcode() == Instruction::AddrSpaceCast)
1249 refineUsesAlignmentAndAA(I, A, DL, AliasScope, NoAlias, MaxDepth - 1);
1250 }
1251 }
1252 }
1253};
1254
1255} // namespace
1256char AMDGPULowerModuleLDS::ID = 0;
1257
1258char &llvm::AMDGPULowerModuleLDSID = AMDGPULowerModuleLDS::ID;
1259
1260INITIALIZE_PASS(AMDGPULowerModuleLDS, DEBUG_TYPE,static void *initializeAMDGPULowerModuleLDSPassOnce(PassRegistry
&Registry) { PassInfo *PI = new PassInfo( "Lower uses of LDS variables from non-kernel functions"
, "amdgpu-lower-module-lds", &AMDGPULowerModuleLDS::ID, PassInfo
::NormalCtor_t(callDefaultCtor<AMDGPULowerModuleLDS>), false
, false); Registry.registerPass(*PI, true); return PI; } static
llvm::once_flag InitializeAMDGPULowerModuleLDSPassFlag; void
llvm::initializeAMDGPULowerModuleLDSPass(PassRegistry &Registry
) { llvm::call_once(InitializeAMDGPULowerModuleLDSPassFlag, initializeAMDGPULowerModuleLDSPassOnce
, std::ref(Registry)); }
1261 "Lower uses of LDS variables from non-kernel functions", false,static void *initializeAMDGPULowerModuleLDSPassOnce(PassRegistry
&Registry) { PassInfo *PI = new PassInfo( "Lower uses of LDS variables from non-kernel functions"
, "amdgpu-lower-module-lds", &AMDGPULowerModuleLDS::ID, PassInfo
::NormalCtor_t(callDefaultCtor<AMDGPULowerModuleLDS>), false
, false); Registry.registerPass(*PI, true); return PI; } static
llvm::once_flag InitializeAMDGPULowerModuleLDSPassFlag; void
llvm::initializeAMDGPULowerModuleLDSPass(PassRegistry &Registry
) { llvm::call_once(InitializeAMDGPULowerModuleLDSPassFlag, initializeAMDGPULowerModuleLDSPassOnce
, std::ref(Registry)); }
1262 false)static void *initializeAMDGPULowerModuleLDSPassOnce(PassRegistry
&Registry) { PassInfo *PI = new PassInfo( "Lower uses of LDS variables from non-kernel functions"
, "amdgpu-lower-module-lds", &AMDGPULowerModuleLDS::ID, PassInfo
::NormalCtor_t(callDefaultCtor<AMDGPULowerModuleLDS>), false
, false); Registry.registerPass(*PI, true); return PI; } static
llvm::once_flag InitializeAMDGPULowerModuleLDSPassFlag; void
llvm::initializeAMDGPULowerModuleLDSPass(PassRegistry &Registry
) { llvm::call_once(InitializeAMDGPULowerModuleLDSPassFlag, initializeAMDGPULowerModuleLDSPassOnce
, std::ref(Registry)); }
1263
1264ModulePass *llvm::createAMDGPULowerModuleLDSPass() {
1265 return new AMDGPULowerModuleLDS();
1266}
1267
1268PreservedAnalyses AMDGPULowerModuleLDSPass::run(Module &M,
1269 ModuleAnalysisManager &) {
1270 return AMDGPULowerModuleLDS().runOnModule(M) ? PreservedAnalyses::none()
1271 : PreservedAnalyses::all();
1272}