Bug Summary

File:llvm/lib/Target/AMDGPU/AMDGPUMachineCFGStructurizer.cpp
Warning:line 2276, column 27
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name AMDGPUMachineCFGStructurizer.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/lib/Target/AMDGPU -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/lib/Target/AMDGPU -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/lib/Target/AMDGPU -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/include -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/include -D NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/lib/Target/AMDGPU -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e=. -ferror-limit 19 -fvisibility hidden -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-09-04-040900-46481-1 -x c++ /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/lib/Target/AMDGPU/AMDGPUMachineCFGStructurizer.cpp

/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/lib/Target/AMDGPU/AMDGPUMachineCFGStructurizer.cpp

1//===- AMDGPUMachineCFGStructurizer.cpp - Machine code if conversion pass. ===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the machine instruction level CFG structurizer pass.
10//
11//===----------------------------------------------------------------------===//
12
13#include "AMDGPU.h"
14#include "GCNSubtarget.h"
15#include "llvm/ADT/DenseSet.h"
16#include "llvm/ADT/PostOrderIterator.h"
17#include "llvm/ADT/SetVector.h"
18#include "llvm/ADT/SmallPtrSet.h"
19#include "llvm/CodeGen/MachineBasicBlock.h"
20#include "llvm/CodeGen/MachineInstrBuilder.h"
21#include "llvm/CodeGen/MachineRegionInfo.h"
22#include "llvm/CodeGen/MachineRegisterInfo.h"
23#include "llvm/CodeGen/TargetRegisterInfo.h"
24#include "llvm/InitializePasses.h"
25
26using namespace llvm;
27
28#define DEBUG_TYPE"amdgpucfgstructurizer" "amdgpucfgstructurizer"
29
30namespace {
31
32class PHILinearizeDestIterator;
33
34class PHILinearize {
35 friend class PHILinearizeDestIterator;
36
37public:
38 using PHISourceT = std::pair<unsigned, MachineBasicBlock *>;
39
40private:
41 using PHISourcesT = DenseSet<PHISourceT>;
42 using PHIInfoElementT = struct {
43 unsigned DestReg;
44 DebugLoc DL;
45 PHISourcesT Sources;
46 };
47 using PHIInfoT = SmallPtrSet<PHIInfoElementT *, 2>;
48 PHIInfoT PHIInfo;
49
50 static unsigned phiInfoElementGetDest(PHIInfoElementT *Info);
51 static void phiInfoElementSetDef(PHIInfoElementT *Info, unsigned NewDef);
52 static PHISourcesT &phiInfoElementGetSources(PHIInfoElementT *Info);
53 static void phiInfoElementAddSource(PHIInfoElementT *Info, unsigned SourceReg,
54 MachineBasicBlock *SourceMBB);
55 static void phiInfoElementRemoveSource(PHIInfoElementT *Info,
56 unsigned SourceReg,
57 MachineBasicBlock *SourceMBB);
58 PHIInfoElementT *findPHIInfoElement(unsigned DestReg);
59 PHIInfoElementT *findPHIInfoElementFromSource(unsigned SourceReg,
60 MachineBasicBlock *SourceMBB);
61
62public:
63 bool findSourcesFromMBB(MachineBasicBlock *SourceMBB,
64 SmallVector<unsigned, 4> &Sources);
65 void addDest(unsigned DestReg, const DebugLoc &DL);
66 void replaceDef(unsigned OldDestReg, unsigned NewDestReg);
67 void deleteDef(unsigned DestReg);
68 void addSource(unsigned DestReg, unsigned SourceReg,
69 MachineBasicBlock *SourceMBB);
70 void removeSource(unsigned DestReg, unsigned SourceReg,
71 MachineBasicBlock *SourceMBB = nullptr);
72 bool findDest(unsigned SourceReg, MachineBasicBlock *SourceMBB,
73 unsigned &DestReg);
74 bool isSource(unsigned Reg, MachineBasicBlock *SourceMBB = nullptr);
75 unsigned getNumSources(unsigned DestReg);
76 void dump(MachineRegisterInfo *MRI);
77 void clear();
78
79 using source_iterator = PHISourcesT::iterator;
80 using dest_iterator = PHILinearizeDestIterator;
81
82 dest_iterator dests_begin();
83 dest_iterator dests_end();
84
85 source_iterator sources_begin(unsigned Reg);
86 source_iterator sources_end(unsigned Reg);
87};
88
89class PHILinearizeDestIterator {
90private:
91 PHILinearize::PHIInfoT::iterator Iter;
92
93public:
94 PHILinearizeDestIterator(PHILinearize::PHIInfoT::iterator I) : Iter(I) {}
95
96 unsigned operator*() { return PHILinearize::phiInfoElementGetDest(*Iter); }
97 PHILinearizeDestIterator &operator++() {
98 ++Iter;
99 return *this;
100 }
101 bool operator==(const PHILinearizeDestIterator &I) const {
102 return I.Iter == Iter;
103 }
104 bool operator!=(const PHILinearizeDestIterator &I) const {
105 return I.Iter != Iter;
106 }
107};
108
109} // end anonymous namespace
110
111unsigned PHILinearize::phiInfoElementGetDest(PHIInfoElementT *Info) {
112 return Info->DestReg;
113}
114
115void PHILinearize::phiInfoElementSetDef(PHIInfoElementT *Info,
116 unsigned NewDef) {
117 Info->DestReg = NewDef;
118}
119
120PHILinearize::PHISourcesT &
121PHILinearize::phiInfoElementGetSources(PHIInfoElementT *Info) {
122 return Info->Sources;
123}
124
125void PHILinearize::phiInfoElementAddSource(PHIInfoElementT *Info,
126 unsigned SourceReg,
127 MachineBasicBlock *SourceMBB) {
128 // Assertion ensures we don't use the same SourceMBB for the
129 // sources, because we cannot have different registers with
130 // identical predecessors, but we can have the same register for
131 // multiple predecessors.
132#if !defined(NDEBUG1)
133 for (auto SI : phiInfoElementGetSources(Info)) {
134 assert((SI.second != SourceMBB || SourceReg == SI.first))(static_cast<void> (0));
135 }
136#endif
137
138 phiInfoElementGetSources(Info).insert(PHISourceT(SourceReg, SourceMBB));
139}
140
141void PHILinearize::phiInfoElementRemoveSource(PHIInfoElementT *Info,
142 unsigned SourceReg,
143 MachineBasicBlock *SourceMBB) {
144 auto &Sources = phiInfoElementGetSources(Info);
145 SmallVector<PHISourceT, 4> ElimiatedSources;
146 for (auto SI : Sources) {
147 if (SI.first == SourceReg &&
148 (SI.second == nullptr || SI.second == SourceMBB)) {
149 ElimiatedSources.push_back(PHISourceT(SI.first, SI.second));
150 }
151 }
152
153 for (auto &Source : ElimiatedSources) {
154 Sources.erase(Source);
155 }
156}
157
158PHILinearize::PHIInfoElementT *
159PHILinearize::findPHIInfoElement(unsigned DestReg) {
160 for (auto I : PHIInfo) {
161 if (phiInfoElementGetDest(I) == DestReg) {
162 return I;
163 }
164 }
165 return nullptr;
166}
167
168PHILinearize::PHIInfoElementT *
169PHILinearize::findPHIInfoElementFromSource(unsigned SourceReg,
170 MachineBasicBlock *SourceMBB) {
171 for (auto I : PHIInfo) {
172 for (auto SI : phiInfoElementGetSources(I)) {
173 if (SI.first == SourceReg &&
174 (SI.second == nullptr || SI.second == SourceMBB)) {
175 return I;
176 }
177 }
178 }
179 return nullptr;
180}
181
182bool PHILinearize::findSourcesFromMBB(MachineBasicBlock *SourceMBB,
183 SmallVector<unsigned, 4> &Sources) {
184 bool FoundSource = false;
185 for (auto I : PHIInfo) {
186 for (auto SI : phiInfoElementGetSources(I)) {
187 if (SI.second == SourceMBB) {
188 FoundSource = true;
189 Sources.push_back(SI.first);
190 }
191 }
192 }
193 return FoundSource;
194}
195
196void PHILinearize::addDest(unsigned DestReg, const DebugLoc &DL) {
197 assert(findPHIInfoElement(DestReg) == nullptr && "Dest already exsists")(static_cast<void> (0));
198 PHISourcesT EmptySet;
199 PHIInfoElementT *NewElement = new PHIInfoElementT();
200 NewElement->DestReg = DestReg;
201 NewElement->DL = DL;
202 NewElement->Sources = EmptySet;
203 PHIInfo.insert(NewElement);
204}
205
206void PHILinearize::replaceDef(unsigned OldDestReg, unsigned NewDestReg) {
207 phiInfoElementSetDef(findPHIInfoElement(OldDestReg), NewDestReg);
208}
209
210void PHILinearize::deleteDef(unsigned DestReg) {
211 PHIInfoElementT *InfoElement = findPHIInfoElement(DestReg);
212 PHIInfo.erase(InfoElement);
213 delete InfoElement;
214}
215
216void PHILinearize::addSource(unsigned DestReg, unsigned SourceReg,
217 MachineBasicBlock *SourceMBB) {
218 phiInfoElementAddSource(findPHIInfoElement(DestReg), SourceReg, SourceMBB);
219}
220
221void PHILinearize::removeSource(unsigned DestReg, unsigned SourceReg,
222 MachineBasicBlock *SourceMBB) {
223 phiInfoElementRemoveSource(findPHIInfoElement(DestReg), SourceReg, SourceMBB);
224}
225
226bool PHILinearize::findDest(unsigned SourceReg, MachineBasicBlock *SourceMBB,
227 unsigned &DestReg) {
228 PHIInfoElementT *InfoElement =
229 findPHIInfoElementFromSource(SourceReg, SourceMBB);
230 if (InfoElement != nullptr) {
231 DestReg = phiInfoElementGetDest(InfoElement);
232 return true;
233 }
234 return false;
235}
236
237bool PHILinearize::isSource(unsigned Reg, MachineBasicBlock *SourceMBB) {
238 unsigned DestReg;
239 return findDest(Reg, SourceMBB, DestReg);
240}
241
242unsigned PHILinearize::getNumSources(unsigned DestReg) {
243 return phiInfoElementGetSources(findPHIInfoElement(DestReg)).size();
244}
245
246#if !defined(NDEBUG1) || defined(LLVM_ENABLE_DUMP)
247LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void PHILinearize::dump(MachineRegisterInfo *MRI) {
248 const TargetRegisterInfo *TRI = MRI->getTargetRegisterInfo();
249 dbgs() << "=PHIInfo Start=\n";
250 for (auto PII : this->PHIInfo) {
251 PHIInfoElementT &Element = *PII;
252 dbgs() << "Dest: " << printReg(Element.DestReg, TRI)
253 << " Sources: {";
254 for (auto &SI : Element.Sources) {
255 dbgs() << printReg(SI.first, TRI) << '(' << printMBBReference(*SI.second)
256 << "),";
257 }
258 dbgs() << "}\n";
259 }
260 dbgs() << "=PHIInfo End=\n";
261}
262#endif
263
264void PHILinearize::clear() { PHIInfo = PHIInfoT(); }
265
266PHILinearize::dest_iterator PHILinearize::dests_begin() {
267 return PHILinearizeDestIterator(PHIInfo.begin());
268}
269
270PHILinearize::dest_iterator PHILinearize::dests_end() {
271 return PHILinearizeDestIterator(PHIInfo.end());
272}
273
274PHILinearize::source_iterator PHILinearize::sources_begin(unsigned Reg) {
275 auto InfoElement = findPHIInfoElement(Reg);
276 return phiInfoElementGetSources(InfoElement).begin();
277}
278
279PHILinearize::source_iterator PHILinearize::sources_end(unsigned Reg) {
280 auto InfoElement = findPHIInfoElement(Reg);
281 return phiInfoElementGetSources(InfoElement).end();
282}
283
284static unsigned getPHINumInputs(MachineInstr &PHI) {
285 assert(PHI.isPHI())(static_cast<void> (0));
286 return (PHI.getNumOperands() - 1) / 2;
287}
288
289static MachineBasicBlock *getPHIPred(MachineInstr &PHI, unsigned Index) {
290 assert(PHI.isPHI())(static_cast<void> (0));
291 return PHI.getOperand(Index * 2 + 2).getMBB();
292}
293
294static void setPhiPred(MachineInstr &PHI, unsigned Index,
295 MachineBasicBlock *NewPred) {
296 PHI.getOperand(Index * 2 + 2).setMBB(NewPred);
297}
298
299static unsigned getPHISourceReg(MachineInstr &PHI, unsigned Index) {
300 assert(PHI.isPHI())(static_cast<void> (0));
301 return PHI.getOperand(Index * 2 + 1).getReg();
302}
303
304static unsigned getPHIDestReg(MachineInstr &PHI) {
305 assert(PHI.isPHI())(static_cast<void> (0));
306 return PHI.getOperand(0).getReg();
307}
308
309namespace {
310
311class RegionMRT;
312class MBBMRT;
313
314class LinearizedRegion {
315protected:
316 MachineBasicBlock *Entry;
317 // The exit block is part of the region, and is the last
318 // merge block before exiting the region.
319 MachineBasicBlock *Exit;
320 DenseSet<unsigned> LiveOuts;
321 SmallPtrSet<MachineBasicBlock *, 1> MBBs;
322 bool HasLoop;
323 LinearizedRegion *Parent;
324 RegionMRT *RMRT;
325
326 void storeLiveOutReg(MachineBasicBlock *MBB, Register Reg,
327 MachineInstr *DefInstr, const MachineRegisterInfo *MRI,
328 const TargetRegisterInfo *TRI, PHILinearize &PHIInfo);
329
330 void storeLiveOutRegRegion(RegionMRT *Region, Register Reg,
331 MachineInstr *DefInstr,
332 const MachineRegisterInfo *MRI,
333 const TargetRegisterInfo *TRI,
334 PHILinearize &PHIInfo);
335
336 void storeMBBLiveOuts(MachineBasicBlock *MBB, const MachineRegisterInfo *MRI,
337 const TargetRegisterInfo *TRI, PHILinearize &PHIInfo,
338 RegionMRT *TopRegion);
339
340 void storeLiveOuts(MachineBasicBlock *MBB, const MachineRegisterInfo *MRI,
341 const TargetRegisterInfo *TRI, PHILinearize &PHIInfo);
342
343 void storeLiveOuts(RegionMRT *Region, const MachineRegisterInfo *MRI,
344 const TargetRegisterInfo *TRI, PHILinearize &PHIInfo,
345 RegionMRT *TopRegion = nullptr);
346
347public:
348 LinearizedRegion();
349 LinearizedRegion(MachineBasicBlock *MBB, const MachineRegisterInfo *MRI,
350 const TargetRegisterInfo *TRI, PHILinearize &PHIInfo);
351 ~LinearizedRegion() = default;
352
353 void setRegionMRT(RegionMRT *Region) { RMRT = Region; }
354
355 RegionMRT *getRegionMRT() { return RMRT; }
356
357 void setParent(LinearizedRegion *P) { Parent = P; }
48
Returning without writing to 'P->HasLoop', which participates in a condition later
358
359 LinearizedRegion *getParent() { return Parent; }
360
361 void print(raw_ostream &OS, const TargetRegisterInfo *TRI = nullptr);
362
363 void setBBSelectRegIn(unsigned Reg);
364
365 unsigned getBBSelectRegIn();
366
367 void setBBSelectRegOut(unsigned Reg, bool IsLiveOut);
368
369 unsigned getBBSelectRegOut();
370
371 void setHasLoop(bool Value);
372
373 bool getHasLoop();
374
375 void addLiveOut(unsigned VReg);
376
377 void removeLiveOut(unsigned Reg);
378
379 void replaceLiveOut(unsigned OldReg, unsigned NewReg);
380
381 void replaceRegister(unsigned Register, class Register NewRegister,
382 MachineRegisterInfo *MRI, bool ReplaceInside,
383 bool ReplaceOutside, bool IncludeLoopPHIs);
384
385 void replaceRegisterInsideRegion(unsigned Register, unsigned NewRegister,
386 bool IncludeLoopPHIs,
387 MachineRegisterInfo *MRI);
388
389 void replaceRegisterOutsideRegion(unsigned Register, unsigned NewRegister,
390 bool IncludeLoopPHIs,
391 MachineRegisterInfo *MRI);
392
393 DenseSet<unsigned> *getLiveOuts();
394
395 void setEntry(MachineBasicBlock *NewEntry);
396
397 MachineBasicBlock *getEntry();
398
399 void setExit(MachineBasicBlock *NewExit);
400
401 MachineBasicBlock *getExit();
402
403 void addMBB(MachineBasicBlock *MBB);
404
405 void addMBBs(LinearizedRegion *InnerRegion);
406
407 bool contains(MachineBasicBlock *MBB);
408
409 bool isLiveOut(unsigned Reg);
410
411 bool hasNoDef(unsigned Reg, MachineRegisterInfo *MRI);
412
413 void removeFalseRegisterKills(MachineRegisterInfo *MRI);
414
415 void initLiveOut(RegionMRT *Region, const MachineRegisterInfo *MRI,
416 const TargetRegisterInfo *TRI, PHILinearize &PHIInfo);
417};
418
419class MRT {
420protected:
421 RegionMRT *Parent;
422 unsigned BBSelectRegIn;
423 unsigned BBSelectRegOut;
424
425public:
426 virtual ~MRT() = default;
427
428 unsigned getBBSelectRegIn() { return BBSelectRegIn; }
429
430 unsigned getBBSelectRegOut() { return BBSelectRegOut; }
431
432 void setBBSelectRegIn(unsigned Reg) { BBSelectRegIn = Reg; }
433
434 void setBBSelectRegOut(unsigned Reg) { BBSelectRegOut = Reg; }
435
436 virtual RegionMRT *getRegionMRT() { return nullptr; }
437
438 virtual MBBMRT *getMBBMRT() { return nullptr; }
439
440 bool isRegion() { return getRegionMRT() != nullptr; }
31
Assuming the condition is false
32
Returning zero, which participates in a condition later
67
Assuming the condition is false
68
Returning zero, which participates in a condition later
441
442 bool isMBB() { return getMBBMRT() != nullptr; }
443
444 bool isRoot() { return Parent == nullptr; }
445
446 void setParent(RegionMRT *Region) { Parent = Region; }
447
448 RegionMRT *getParent() { return Parent; }
449
450 static MachineBasicBlock *
451 initializeMRT(MachineFunction &MF, const MachineRegionInfo *RegionInfo,
452 DenseMap<MachineRegion *, RegionMRT *> &RegionMap);
453
454 static RegionMRT *buildMRT(MachineFunction &MF,
455 const MachineRegionInfo *RegionInfo,
456 const SIInstrInfo *TII,
457 MachineRegisterInfo *MRI);
458
459 virtual void dump(const TargetRegisterInfo *TRI, int depth = 0) = 0;
460
461 void dumpDepth(int depth) {
462 for (int i = depth; i > 0; --i) {
463 dbgs() << " ";
464 }
465 }
466};
467
468class MBBMRT : public MRT {
469 MachineBasicBlock *MBB;
470
471public:
472 MBBMRT(MachineBasicBlock *BB) : MBB(BB) {
473 setParent(nullptr);
474 setBBSelectRegOut(0);
475 setBBSelectRegIn(0);
476 }
477
478 MBBMRT *getMBBMRT() override { return this; }
479
480 MachineBasicBlock *getMBB() { return MBB; }
481
482 void dump(const TargetRegisterInfo *TRI, int depth = 0) override {
483 dumpDepth(depth);
484 dbgs() << "MBB: " << getMBB()->getNumber();
485 dbgs() << " In: " << printReg(getBBSelectRegIn(), TRI);
486 dbgs() << ", Out: " << printReg(getBBSelectRegOut(), TRI) << "\n";
487 }
488};
489
490class RegionMRT : public MRT {
491protected:
492 MachineRegion *Region;
493 LinearizedRegion *LRegion = nullptr;
494 MachineBasicBlock *Succ = nullptr;
495 SetVector<MRT *> Children;
496
497public:
498 RegionMRT(MachineRegion *MachineRegion) : Region(MachineRegion) {
499 setParent(nullptr);
500 setBBSelectRegOut(0);
501 setBBSelectRegIn(0);
502 }
503
504 ~RegionMRT() override {
505 if (LRegion) {
506 delete LRegion;
507 }
508
509 for (auto CI : Children) {
510 delete &(*CI);
511 }
512 }
513
514 RegionMRT *getRegionMRT() override { return this; }
515
516 void setLinearizedRegion(LinearizedRegion *LinearizeRegion) {
517 LRegion = LinearizeRegion;
518 }
519
520 LinearizedRegion *getLinearizedRegion() { return LRegion; }
521
522 MachineRegion *getMachineRegion() { return Region; }
523
524 unsigned getInnerOutputRegister() {
525 return (*(Children.begin()))->getBBSelectRegOut();
526 }
527
528 void addChild(MRT *Tree) { Children.insert(Tree); }
529
530 SetVector<MRT *> *getChildren() { return &Children; }
531
532 void dump(const TargetRegisterInfo *TRI, int depth = 0) override {
533 dumpDepth(depth);
534 dbgs() << "Region: " << (void *)Region;
535 dbgs() << " In: " << printReg(getBBSelectRegIn(), TRI);
536 dbgs() << ", Out: " << printReg(getBBSelectRegOut(), TRI) << "\n";
537
538 dumpDepth(depth);
539 if (getSucc())
540 dbgs() << "Succ: " << getSucc()->getNumber() << "\n";
541 else
542 dbgs() << "Succ: none \n";
543 for (auto MRTI : Children) {
544 MRTI->dump(TRI, depth + 1);
545 }
546 }
547
548 MRT *getEntryTree() { return Children.back(); }
549
550 MRT *getExitTree() { return Children.front(); }
551
552 MachineBasicBlock *getEntry() {
553 MRT *Tree = Children.back();
554 return (Tree->isRegion()) ? Tree->getRegionMRT()->getEntry()
555 : Tree->getMBBMRT()->getMBB();
556 }
557
558 MachineBasicBlock *getExit() {
559 MRT *Tree = Children.front();
560 return (Tree->isRegion()) ? Tree->getRegionMRT()->getExit()
561 : Tree->getMBBMRT()->getMBB();
562 }
563
564 void setSucc(MachineBasicBlock *MBB) { Succ = MBB; }
565
566 MachineBasicBlock *getSucc() { return Succ; }
567
568 bool contains(MachineBasicBlock *MBB) {
569 for (auto CI : Children) {
570 if (CI->isMBB()) {
571 if (MBB == CI->getMBBMRT()->getMBB()) {
572 return true;
573 }
574 } else {
575 if (CI->getRegionMRT()->contains(MBB)) {
576 return true;
577 } else if (CI->getRegionMRT()->getLinearizedRegion() != nullptr &&
578 CI->getRegionMRT()->getLinearizedRegion()->contains(MBB)) {
579 return true;
580 }
581 }
582 }
583 return false;
584 }
585
586 void replaceLiveOutReg(unsigned Register, unsigned NewRegister) {
587 LinearizedRegion *LRegion = getLinearizedRegion();
588 LRegion->replaceLiveOut(Register, NewRegister);
589 for (auto &CI : Children) {
590 if (CI->isRegion()) {
591 CI->getRegionMRT()->replaceLiveOutReg(Register, NewRegister);
592 }
593 }
594 }
595};
596
597} // end anonymous namespace
598
599static unsigned createBBSelectReg(const SIInstrInfo *TII,
600 MachineRegisterInfo *MRI) {
601 return MRI->createVirtualRegister(TII->getPreferredSelectRegClass(32));
602}
603
604MachineBasicBlock *
605MRT::initializeMRT(MachineFunction &MF, const MachineRegionInfo *RegionInfo,
606 DenseMap<MachineRegion *, RegionMRT *> &RegionMap) {
607 for (auto &MFI : MF) {
608 MachineBasicBlock *ExitMBB = &MFI;
609 if (ExitMBB->succ_size() == 0) {
610 return ExitMBB;
611 }
612 }
613 llvm_unreachable("CFG has no exit block")__builtin_unreachable();
614 return nullptr;
615}
616
617RegionMRT *MRT::buildMRT(MachineFunction &MF,
618 const MachineRegionInfo *RegionInfo,
619 const SIInstrInfo *TII, MachineRegisterInfo *MRI) {
620 SmallPtrSet<MachineRegion *, 4> PlacedRegions;
621 DenseMap<MachineRegion *, RegionMRT *> RegionMap;
622 MachineRegion *TopLevelRegion = RegionInfo->getTopLevelRegion();
623 RegionMRT *Result = new RegionMRT(TopLevelRegion);
624 RegionMap[TopLevelRegion] = Result;
625
626 // Insert the exit block first, we need it to be the merge node
627 // for the top level region.
628 MachineBasicBlock *Exit = initializeMRT(MF, RegionInfo, RegionMap);
629
630 unsigned BBSelectRegIn = createBBSelectReg(TII, MRI);
631 MBBMRT *ExitMRT = new MBBMRT(Exit);
632 RegionMap[RegionInfo->getRegionFor(Exit)]->addChild(ExitMRT);
633 ExitMRT->setBBSelectRegIn(BBSelectRegIn);
634
635 for (auto MBBI : post_order(&(MF.front()))) {
636 MachineBasicBlock *MBB = &(*MBBI);
637
638 // Skip Exit since we already added it
639 if (MBB == Exit) {
640 continue;
641 }
642
643 LLVM_DEBUG(dbgs() << "Visiting " << printMBBReference(*MBB) << "\n")do { } while (false);
644 MBBMRT *NewMBB = new MBBMRT(MBB);
645 MachineRegion *Region = RegionInfo->getRegionFor(MBB);
646
647 // Ensure we have the MRT region
648 if (RegionMap.count(Region) == 0) {
649 RegionMRT *NewMRTRegion = new RegionMRT(Region);
650 RegionMap[Region] = NewMRTRegion;
651
652 // Ensure all parents are in the RegionMap
653 MachineRegion *Parent = Region->getParent();
654 while (RegionMap.count(Parent) == 0) {
655 RegionMRT *NewMRTParent = new RegionMRT(Parent);
656 NewMRTParent->addChild(NewMRTRegion);
657 NewMRTRegion->setParent(NewMRTParent);
658 RegionMap[Parent] = NewMRTParent;
659 NewMRTRegion = NewMRTParent;
660 Parent = Parent->getParent();
661 }
662 RegionMap[Parent]->addChild(NewMRTRegion);
663 NewMRTRegion->setParent(RegionMap[Parent]);
664 }
665
666 // Add MBB to Region MRT
667 RegionMap[Region]->addChild(NewMBB);
668 NewMBB->setParent(RegionMap[Region]);
669 RegionMap[Region]->setSucc(Region->getExit());
670 }
671 return Result;
672}
673
674void LinearizedRegion::storeLiveOutReg(MachineBasicBlock *MBB, Register Reg,
675 MachineInstr *DefInstr,
676 const MachineRegisterInfo *MRI,
677 const TargetRegisterInfo *TRI,
678 PHILinearize &PHIInfo) {
679 if (Reg.isVirtual()) {
680 LLVM_DEBUG(dbgs() << "Considering Register: " << printReg(Reg, TRI)do { } while (false)
681 << "\n")do { } while (false);
682 // If this is a source register to a PHI we are chaining, it
683 // must be live out.
684 if (PHIInfo.isSource(Reg)) {
685 LLVM_DEBUG(dbgs() << "Add LiveOut (PHI): " << printReg(Reg, TRI) << "\n")do { } while (false);
686 addLiveOut(Reg);
687 } else {
688 // If this is live out of the MBB
689 for (auto &UI : MRI->use_operands(Reg)) {
690 if (UI.getParent()->getParent() != MBB) {
691 LLVM_DEBUG(dbgs() << "Add LiveOut (MBB " << printMBBReference(*MBB)do { } while (false)
692 << "): " << printReg(Reg, TRI) << "\n")do { } while (false);
693 addLiveOut(Reg);
694 } else {
695 // If the use is in the same MBB we have to make sure
696 // it is after the def, otherwise it is live out in a loop
697 MachineInstr *UseInstr = UI.getParent();
698 for (MachineBasicBlock::instr_iterator
699 MII = UseInstr->getIterator(),
700 MIE = UseInstr->getParent()->instr_end();
701 MII != MIE; ++MII) {
702 if ((&(*MII)) == DefInstr) {
703 LLVM_DEBUG(dbgs() << "Add LiveOut (Loop): " << printReg(Reg, TRI)do { } while (false)
704 << "\n")do { } while (false);
705 addLiveOut(Reg);
706 }
707 }
708 }
709 }
710 }
711 }
712}
713
714void LinearizedRegion::storeLiveOutRegRegion(RegionMRT *Region, Register Reg,
715 MachineInstr *DefInstr,
716 const MachineRegisterInfo *MRI,
717 const TargetRegisterInfo *TRI,
718 PHILinearize &PHIInfo) {
719 if (Reg.isVirtual()) {
720 LLVM_DEBUG(dbgs() << "Considering Register: " << printReg(Reg, TRI)do { } while (false)
721 << "\n")do { } while (false);
722 for (auto &UI : MRI->use_operands(Reg)) {
723 if (!Region->contains(UI.getParent()->getParent())) {
724 LLVM_DEBUG(dbgs() << "Add LiveOut (Region " << (void *)Regiondo { } while (false)
725 << "): " << printReg(Reg, TRI) << "\n")do { } while (false);
726 addLiveOut(Reg);
727 }
728 }
729 }
730}
731
732void LinearizedRegion::storeLiveOuts(MachineBasicBlock *MBB,
733 const MachineRegisterInfo *MRI,
734 const TargetRegisterInfo *TRI,
735 PHILinearize &PHIInfo) {
736 LLVM_DEBUG(dbgs() << "-Store Live Outs Begin (" << printMBBReference(*MBB)do { } while (false)
737 << ")-\n")do { } while (false);
738 for (auto &II : *MBB) {
739 for (auto &RI : II.defs()) {
740 storeLiveOutReg(MBB, RI.getReg(), RI.getParent(), MRI, TRI, PHIInfo);
741 }
742 for (auto &IRI : II.implicit_operands()) {
743 if (IRI.isDef()) {
744 storeLiveOutReg(MBB, IRI.getReg(), IRI.getParent(), MRI, TRI, PHIInfo);
745 }
746 }
747 }
748
749 // If we have a successor with a PHI, source coming from this MBB we have to
750 // add the register as live out
751 for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
752 E = MBB->succ_end();
753 SI != E; ++SI) {
754 for (auto &II : *(*SI)) {
755 if (II.isPHI()) {
756 MachineInstr &PHI = II;
757 int numPreds = getPHINumInputs(PHI);
758 for (int i = 0; i < numPreds; ++i) {
759 if (getPHIPred(PHI, i) == MBB) {
760 unsigned PHIReg = getPHISourceReg(PHI, i);
761 LLVM_DEBUG(dbgs()do { } while (false)
762 << "Add LiveOut (PhiSource " << printMBBReference(*MBB)do { } while (false)
763 << " -> " << printMBBReference(*(*SI))do { } while (false)
764 << "): " << printReg(PHIReg, TRI) << "\n")do { } while (false);
765 addLiveOut(PHIReg);
766 }
767 }
768 }
769 }
770 }
771
772 LLVM_DEBUG(dbgs() << "-Store Live Outs Endn-\n")do { } while (false);
773}
774
775void LinearizedRegion::storeMBBLiveOuts(MachineBasicBlock *MBB,
776 const MachineRegisterInfo *MRI,
777 const TargetRegisterInfo *TRI,
778 PHILinearize &PHIInfo,
779 RegionMRT *TopRegion) {
780 for (auto &II : *MBB) {
781 for (auto &RI : II.defs()) {
782 storeLiveOutRegRegion(TopRegion, RI.getReg(), RI.getParent(), MRI, TRI,
783 PHIInfo);
784 }
785 for (auto &IRI : II.implicit_operands()) {
786 if (IRI.isDef()) {
787 storeLiveOutRegRegion(TopRegion, IRI.getReg(), IRI.getParent(), MRI,
788 TRI, PHIInfo);
789 }
790 }
791 }
792}
793
794void LinearizedRegion::storeLiveOuts(RegionMRT *Region,
795 const MachineRegisterInfo *MRI,
796 const TargetRegisterInfo *TRI,
797 PHILinearize &PHIInfo,
798 RegionMRT *CurrentTopRegion) {
799 MachineBasicBlock *Exit = Region->getSucc();
800
801 RegionMRT *TopRegion =
802 CurrentTopRegion == nullptr ? Region : CurrentTopRegion;
803
804 // Check if exit is end of function, if so, no live outs.
805 if (Exit == nullptr)
806 return;
807
808 auto Children = Region->getChildren();
809 for (auto CI : *Children) {
810 if (CI->isMBB()) {
811 auto MBB = CI->getMBBMRT()->getMBB();
812 storeMBBLiveOuts(MBB, MRI, TRI, PHIInfo, TopRegion);
813 } else {
814 LinearizedRegion *SubRegion = CI->getRegionMRT()->getLinearizedRegion();
815 // We should be limited to only store registers that are live out from the
816 // lineaized region
817 for (auto MBBI : SubRegion->MBBs) {
818 storeMBBLiveOuts(MBBI, MRI, TRI, PHIInfo, TopRegion);
819 }
820 }
821 }
822
823 if (CurrentTopRegion == nullptr) {
824 auto Succ = Region->getSucc();
825 for (auto &II : *Succ) {
826 if (II.isPHI()) {
827 MachineInstr &PHI = II;
828 int numPreds = getPHINumInputs(PHI);
829 for (int i = 0; i < numPreds; ++i) {
830 if (Region->contains(getPHIPred(PHI, i))) {
831 unsigned PHIReg = getPHISourceReg(PHI, i);
832 LLVM_DEBUG(dbgs() << "Add Region LiveOut (" << (void *)Regiondo { } while (false)
833 << "): " << printReg(PHIReg, TRI) << "\n")do { } while (false);
834 addLiveOut(PHIReg);
835 }
836 }
837 }
838 }
839 }
840}
841
842#ifndef NDEBUG1
843void LinearizedRegion::print(raw_ostream &OS, const TargetRegisterInfo *TRI) {
844 OS << "Linearized Region {";
845 bool IsFirst = true;
846 for (auto MBB : MBBs) {
847 if (IsFirst) {
848 IsFirst = false;
849 } else {
850 OS << " ,";
851 }
852 OS << MBB->getNumber();
853 }
854 OS << "} (" << Entry->getNumber() << ", "
855 << (Exit == nullptr ? -1 : Exit->getNumber())
856 << "): In:" << printReg(getBBSelectRegIn(), TRI)
857 << " Out:" << printReg(getBBSelectRegOut(), TRI) << " {";
858 for (auto &LI : LiveOuts) {
859 OS << printReg(LI, TRI) << " ";
860 }
861 OS << "} \n";
862}
863#endif
864
865unsigned LinearizedRegion::getBBSelectRegIn() {
866 return getRegionMRT()->getBBSelectRegIn();
867}
868
869unsigned LinearizedRegion::getBBSelectRegOut() {
870 return getRegionMRT()->getBBSelectRegOut();
871}
872
873void LinearizedRegion::setHasLoop(bool Value) { HasLoop = Value; }
874
875bool LinearizedRegion::getHasLoop() { return HasLoop; }
876
877void LinearizedRegion::addLiveOut(unsigned VReg) { LiveOuts.insert(VReg); }
878
879void LinearizedRegion::removeLiveOut(unsigned Reg) {
880 if (isLiveOut(Reg))
881 LiveOuts.erase(Reg);
882}
883
884void LinearizedRegion::replaceLiveOut(unsigned OldReg, unsigned NewReg) {
885 if (isLiveOut(OldReg)) {
886 removeLiveOut(OldReg);
887 addLiveOut(NewReg);
888 }
889}
890
891void LinearizedRegion::replaceRegister(unsigned Register,
892 class Register NewRegister,
893 MachineRegisterInfo *MRI,
894 bool ReplaceInside, bool ReplaceOutside,
895 bool IncludeLoopPHI) {
896 assert(Register != NewRegister && "Cannot replace a reg with itself")(static_cast<void> (0));
897
898 LLVM_DEBUG(do { } while (false)
899 dbgs() << "Pepareing to replace register (region): "do { } while (false)
900 << printReg(Register, MRI->getTargetRegisterInfo()) << " with "do { } while (false)
901 << printReg(NewRegister, MRI->getTargetRegisterInfo()) << "\n")do { } while (false);
902
903 // If we are replacing outside, we also need to update the LiveOuts
904 if (ReplaceOutside &&
905 (isLiveOut(Register) || this->getParent()->isLiveOut(Register))) {
906 LinearizedRegion *Current = this;
907 while (Current != nullptr && Current->getEntry() != nullptr) {
908 LLVM_DEBUG(dbgs() << "Region before register replace\n")do { } while (false);
909 LLVM_DEBUG(Current->print(dbgs(), MRI->getTargetRegisterInfo()))do { } while (false);
910 Current->replaceLiveOut(Register, NewRegister);
911 LLVM_DEBUG(dbgs() << "Region after register replace\n")do { } while (false);
912 LLVM_DEBUG(Current->print(dbgs(), MRI->getTargetRegisterInfo()))do { } while (false);
913 Current = Current->getParent();
914 }
915 }
916
917 for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Register),
918 E = MRI->reg_end();
919 I != E;) {
920 MachineOperand &O = *I;
921 ++I;
922
923 // We don't rewrite defs.
924 if (O.isDef())
925 continue;
926
927 bool IsInside = contains(O.getParent()->getParent());
928 bool IsLoopPHI = IsInside && (O.getParent()->isPHI() &&
929 O.getParent()->getParent() == getEntry());
930 bool ShouldReplace = (IsInside && ReplaceInside) ||
931 (!IsInside && ReplaceOutside) ||
932 (IncludeLoopPHI && IsLoopPHI);
933 if (ShouldReplace) {
934
935 if (NewRegister.isPhysical()) {
936 LLVM_DEBUG(dbgs() << "Trying to substitute physical register: "do { } while (false)
937 << printReg(NewRegister, MRI->getTargetRegisterInfo())do { } while (false)
938 << "\n")do { } while (false);
939 llvm_unreachable("Cannot substitute physical registers")__builtin_unreachable();
940 } else {
941 LLVM_DEBUG(dbgs() << "Replacing register (region): "do { } while (false)
942 << printReg(Register, MRI->getTargetRegisterInfo())do { } while (false)
943 << " with "do { } while (false)
944 << printReg(NewRegister, MRI->getTargetRegisterInfo())do { } while (false)
945 << "\n")do { } while (false);
946 O.setReg(NewRegister);
947 }
948 }
949 }
950}
951
952void LinearizedRegion::replaceRegisterInsideRegion(unsigned Register,
953 unsigned NewRegister,
954 bool IncludeLoopPHIs,
955 MachineRegisterInfo *MRI) {
956 replaceRegister(Register, NewRegister, MRI, true, false, IncludeLoopPHIs);
957}
958
959void LinearizedRegion::replaceRegisterOutsideRegion(unsigned Register,
960 unsigned NewRegister,
961 bool IncludeLoopPHIs,
962 MachineRegisterInfo *MRI) {
963 replaceRegister(Register, NewRegister, MRI, false, true, IncludeLoopPHIs);
964}
965
966DenseSet<unsigned> *LinearizedRegion::getLiveOuts() { return &LiveOuts; }
967
968void LinearizedRegion::setEntry(MachineBasicBlock *NewEntry) {
969 Entry = NewEntry;
970}
971
972MachineBasicBlock *LinearizedRegion::getEntry() { return Entry; }
973
974void LinearizedRegion::setExit(MachineBasicBlock *NewExit) { Exit = NewExit; }
975
976MachineBasicBlock *LinearizedRegion::getExit() { return Exit; }
977
978void LinearizedRegion::addMBB(MachineBasicBlock *MBB) { MBBs.insert(MBB); }
979
980void LinearizedRegion::addMBBs(LinearizedRegion *InnerRegion) {
981 for (auto MBB : InnerRegion->MBBs) {
982 addMBB(MBB);
983 }
984}
985
986bool LinearizedRegion::contains(MachineBasicBlock *MBB) {
987 return MBBs.contains(MBB);
988}
989
990bool LinearizedRegion::isLiveOut(unsigned Reg) {
991 return LiveOuts.contains(Reg);
992}
993
994bool LinearizedRegion::hasNoDef(unsigned Reg, MachineRegisterInfo *MRI) {
995 return MRI->def_begin(Reg) == MRI->def_end();
996}
997
998// After the code has been structurized, what was flagged as kills
999// before are no longer register kills.
1000void LinearizedRegion::removeFalseRegisterKills(MachineRegisterInfo *MRI) {
1001 const TargetRegisterInfo *TRI = MRI->getTargetRegisterInfo();
1002 (void)TRI; // It's used by LLVM_DEBUG.
1003
1004 for (auto MBBI : MBBs) {
1005 MachineBasicBlock *MBB = MBBI;
1006 for (auto &II : *MBB) {
1007 for (auto &RI : II.uses()) {
1008 if (RI.isReg()) {
1009 Register Reg = RI.getReg();
1010 if (Reg.isVirtual()) {
1011 if (hasNoDef(Reg, MRI))
1012 continue;
1013 if (!MRI->hasOneDef(Reg)) {
1014 LLVM_DEBUG(this->getEntry()->getParent()->dump())do { } while (false);
1015 LLVM_DEBUG(dbgs() << printReg(Reg, TRI) << "\n")do { } while (false);
1016 }
1017
1018 if (MRI->def_begin(Reg) == MRI->def_end()) {
1019 LLVM_DEBUG(dbgs() << "Register "do { } while (false)
1020 << printReg(Reg, MRI->getTargetRegisterInfo())do { } while (false)
1021 << " has NO defs\n")do { } while (false);
1022 } else if (!MRI->hasOneDef(Reg)) {
1023 LLVM_DEBUG(dbgs() << "Register "do { } while (false)
1024 << printReg(Reg, MRI->getTargetRegisterInfo())do { } while (false)
1025 << " has multiple defs\n")do { } while (false);
1026 }
1027
1028 assert(MRI->hasOneDef(Reg) && "Register has multiple definitions")(static_cast<void> (0));
1029 MachineOperand *Def = &(*(MRI->def_begin(Reg)));
1030 MachineOperand *UseOperand = &(RI);
1031 bool UseIsOutsideDefMBB = Def->getParent()->getParent() != MBB;
1032 if (UseIsOutsideDefMBB && UseOperand->isKill()) {
1033 LLVM_DEBUG(dbgs() << "Removing kill flag on register: "do { } while (false)
1034 << printReg(Reg, TRI) << "\n")do { } while (false);
1035 UseOperand->setIsKill(false);
1036 }
1037 }
1038 }
1039 }
1040 }
1041 }
1042}
1043
1044void LinearizedRegion::initLiveOut(RegionMRT *Region,
1045 const MachineRegisterInfo *MRI,
1046 const TargetRegisterInfo *TRI,
1047 PHILinearize &PHIInfo) {
1048 storeLiveOuts(Region, MRI, TRI, PHIInfo);
1049}
1050
1051LinearizedRegion::LinearizedRegion(MachineBasicBlock *MBB,
1052 const MachineRegisterInfo *MRI,
1053 const TargetRegisterInfo *TRI,
1054 PHILinearize &PHIInfo) {
1055 setEntry(MBB);
1056 setExit(MBB);
1057 storeLiveOuts(MBB, MRI, TRI, PHIInfo);
1058 MBBs.insert(MBB);
1059 Parent = nullptr;
1060}
1061
1062LinearizedRegion::LinearizedRegion() {
1063 setEntry(nullptr);
1064 setExit(nullptr);
1065 Parent = nullptr;
1066}
1067
1068namespace {
1069
1070class AMDGPUMachineCFGStructurizer : public MachineFunctionPass {
1071private:
1072 const MachineRegionInfo *Regions;
1073 const SIInstrInfo *TII;
1074 const TargetRegisterInfo *TRI;
1075 MachineRegisterInfo *MRI;
1076 unsigned BBSelectRegister;
1077 PHILinearize PHIInfo;
1078 DenseMap<MachineBasicBlock *, MachineBasicBlock *> FallthroughMap;
1079 RegionMRT *RMRT;
1080
1081 void getPHIRegionIndices(RegionMRT *Region, MachineInstr &PHI,
1082 SmallVector<unsigned, 2> &RegionIndices);
1083 void getPHIRegionIndices(LinearizedRegion *Region, MachineInstr &PHI,
1084 SmallVector<unsigned, 2> &RegionIndices);
1085 void getPHINonRegionIndices(LinearizedRegion *Region, MachineInstr &PHI,
1086 SmallVector<unsigned, 2> &PHINonRegionIndices);
1087
1088 void storePHILinearizationInfoDest(
1089 unsigned LDestReg, MachineInstr &PHI,
1090 SmallVector<unsigned, 2> *RegionIndices = nullptr);
1091
1092 unsigned storePHILinearizationInfo(MachineInstr &PHI,
1093 SmallVector<unsigned, 2> *RegionIndices);
1094
1095 void extractKilledPHIs(MachineBasicBlock *MBB);
1096
1097 bool shrinkPHI(MachineInstr &PHI, SmallVector<unsigned, 2> &PHIIndices,
1098 unsigned *ReplaceReg);
1099
1100 bool shrinkPHI(MachineInstr &PHI, unsigned CombinedSourceReg,
1101 MachineBasicBlock *SourceMBB,
1102 SmallVector<unsigned, 2> &PHIIndices, unsigned *ReplaceReg);
1103
1104 void replacePHI(MachineInstr &PHI, unsigned CombinedSourceReg,
1105 MachineBasicBlock *LastMerge,
1106 SmallVector<unsigned, 2> &PHIRegionIndices);
1107 void replaceEntryPHI(MachineInstr &PHI, unsigned CombinedSourceReg,
1108 MachineBasicBlock *IfMBB,
1109 SmallVector<unsigned, 2> &PHIRegionIndices);
1110 void replaceLiveOutRegs(MachineInstr &PHI,
1111 SmallVector<unsigned, 2> &PHIRegionIndices,
1112 unsigned CombinedSourceReg,
1113 LinearizedRegion *LRegion);
1114 void rewriteRegionExitPHI(RegionMRT *Region, MachineBasicBlock *LastMerge,
1115 MachineInstr &PHI, LinearizedRegion *LRegion);
1116
1117 void rewriteRegionExitPHIs(RegionMRT *Region, MachineBasicBlock *LastMerge,
1118 LinearizedRegion *LRegion);
1119 void rewriteRegionEntryPHI(LinearizedRegion *Region, MachineBasicBlock *IfMBB,
1120 MachineInstr &PHI);
1121 void rewriteRegionEntryPHIs(LinearizedRegion *Region,
1122 MachineBasicBlock *IfMBB);
1123
1124 bool regionIsSimpleIf(RegionMRT *Region);
1125
1126 void transformSimpleIfRegion(RegionMRT *Region);
1127
1128 void eliminateDeadBranchOperands(MachineBasicBlock::instr_iterator &II);
1129
1130 void insertUnconditionalBranch(MachineBasicBlock *MBB,
1131 MachineBasicBlock *Dest,
1132 const DebugLoc &DL = DebugLoc());
1133
1134 MachineBasicBlock *createLinearizedExitBlock(RegionMRT *Region);
1135
1136 void insertMergePHI(MachineBasicBlock *IfBB, MachineBasicBlock *CodeBB,
1137 MachineBasicBlock *MergeBB, unsigned DestRegister,
1138 unsigned IfSourceRegister, unsigned CodeSourceRegister,
1139 bool IsUndefIfSource = false);
1140
1141 MachineBasicBlock *createIfBlock(MachineBasicBlock *MergeBB,
1142 MachineBasicBlock *CodeBBStart,
1143 MachineBasicBlock *CodeBBEnd,
1144 MachineBasicBlock *SelectBB, unsigned IfReg,
1145 bool InheritPreds);
1146
1147 void prunePHIInfo(MachineBasicBlock *MBB);
1148 void createEntryPHI(LinearizedRegion *CurrentRegion, unsigned DestReg);
1149
1150 void createEntryPHIs(LinearizedRegion *CurrentRegion);
1151 void resolvePHIInfos(MachineBasicBlock *FunctionEntry);
1152
1153 void replaceRegisterWith(unsigned Register, class Register NewRegister);
1154
1155 MachineBasicBlock *createIfRegion(MachineBasicBlock *MergeBB,
1156 MachineBasicBlock *CodeBB,
1157 LinearizedRegion *LRegion,
1158 unsigned BBSelectRegIn,
1159 unsigned BBSelectRegOut);
1160
1161 MachineBasicBlock *
1162 createIfRegion(MachineBasicBlock *MergeMBB, LinearizedRegion *InnerRegion,
1163 LinearizedRegion *CurrentRegion, MachineBasicBlock *SelectBB,
1164 unsigned BBSelectRegIn, unsigned BBSelectRegOut);
1165 void ensureCondIsNotKilled(SmallVector<MachineOperand, 1> Cond);
1166
1167 void rewriteCodeBBTerminator(MachineBasicBlock *CodeBB,
1168 MachineBasicBlock *MergeBB,
1169 unsigned BBSelectReg);
1170
1171 MachineInstr *getDefInstr(unsigned Reg);
1172 void insertChainedPHI(MachineBasicBlock *IfBB, MachineBasicBlock *CodeBB,
1173 MachineBasicBlock *MergeBB,
1174 LinearizedRegion *InnerRegion, unsigned DestReg,
1175 unsigned SourceReg);
1176 bool containsDef(MachineBasicBlock *MBB, LinearizedRegion *InnerRegion,
1177 unsigned Register);
1178 void rewriteLiveOutRegs(MachineBasicBlock *IfBB, MachineBasicBlock *CodeBB,
1179 MachineBasicBlock *MergeBB,
1180 LinearizedRegion *InnerRegion,
1181 LinearizedRegion *LRegion);
1182
1183 void splitLoopPHI(MachineInstr &PHI, MachineBasicBlock *Entry,
1184 MachineBasicBlock *EntrySucc, LinearizedRegion *LRegion);
1185 void splitLoopPHIs(MachineBasicBlock *Entry, MachineBasicBlock *EntrySucc,
1186 LinearizedRegion *LRegion);
1187
1188 MachineBasicBlock *splitExit(LinearizedRegion *LRegion);
1189
1190 MachineBasicBlock *splitEntry(LinearizedRegion *LRegion);
1191
1192 LinearizedRegion *initLinearizedRegion(RegionMRT *Region);
1193
1194 bool structurizeComplexRegion(RegionMRT *Region);
1195
1196 bool structurizeRegion(RegionMRT *Region);
1197
1198 bool structurizeRegions(RegionMRT *Region, bool isTopRegion);
1199
1200public:
1201 static char ID;
1202
1203 AMDGPUMachineCFGStructurizer() : MachineFunctionPass(ID) {
1204 initializeAMDGPUMachineCFGStructurizerPass(*PassRegistry::getPassRegistry());
1205 }
1206
1207 void getAnalysisUsage(AnalysisUsage &AU) const override {
1208 AU.addRequired<MachineRegionInfoPass>();
1209 MachineFunctionPass::getAnalysisUsage(AU);
1210 }
1211
1212 void initFallthroughMap(MachineFunction &MF);
1213
1214 void createLinearizedRegion(RegionMRT *Region, unsigned SelectOut);
1215
1216 unsigned initializeSelectRegisters(MRT *MRT, unsigned ExistingExitReg,
1217 MachineRegisterInfo *MRI,
1218 const SIInstrInfo *TII);
1219
1220 void setRegionMRT(RegionMRT *RegionTree) { RMRT = RegionTree; }
1221
1222 RegionMRT *getRegionMRT() { return RMRT; }
1223
1224 bool runOnMachineFunction(MachineFunction &MF) override;
1225};
1226
1227} // end anonymous namespace
1228
1229char AMDGPUMachineCFGStructurizer::ID = 0;
1230
1231bool AMDGPUMachineCFGStructurizer::regionIsSimpleIf(RegionMRT *Region) {
1232 MachineBasicBlock *Entry = Region->getEntry();
1233 MachineBasicBlock *Succ = Region->getSucc();
1234 bool FoundBypass = false;
1235 bool FoundIf = false;
1236
1237 if (Entry->succ_size() != 2) {
1238 return false;
1239 }
1240
1241 for (MachineBasicBlock::const_succ_iterator SI = Entry->succ_begin(),
1242 E = Entry->succ_end();
1243 SI != E; ++SI) {
1244 MachineBasicBlock *Current = *SI;
1245
1246 if (Current == Succ) {
1247 FoundBypass = true;
1248 } else if ((Current->succ_size() == 1) &&
1249 *(Current->succ_begin()) == Succ) {
1250 FoundIf = true;
1251 }
1252 }
1253
1254 return FoundIf && FoundBypass;
1255}
1256
1257void AMDGPUMachineCFGStructurizer::transformSimpleIfRegion(RegionMRT *Region) {
1258 MachineBasicBlock *Entry = Region->getEntry();
1259 MachineBasicBlock *Exit = Region->getExit();
1260 TII->convertNonUniformIfRegion(Entry, Exit);
1261}
1262
1263static void fixMBBTerminator(MachineBasicBlock *MBB) {
1264 if (MBB->succ_size() == 1) {
1265 auto *Succ = *(MBB->succ_begin());
1266 for (auto &TI : MBB->terminators()) {
1267 for (auto &UI : TI.uses()) {
1268 if (UI.isMBB() && UI.getMBB() != Succ) {
1269 UI.setMBB(Succ);
1270 }
1271 }
1272 }
1273 }
1274}
1275
1276static void fixRegionTerminator(RegionMRT *Region) {
1277 MachineBasicBlock *InternalSucc = nullptr;
1278 MachineBasicBlock *ExternalSucc = nullptr;
1279 LinearizedRegion *LRegion = Region->getLinearizedRegion();
1280 auto Exit = LRegion->getExit();
1281
1282 SmallPtrSet<MachineBasicBlock *, 2> Successors;
1283 for (MachineBasicBlock::const_succ_iterator SI = Exit->succ_begin(),
1284 SE = Exit->succ_end();
1285 SI != SE; ++SI) {
1286 MachineBasicBlock *Succ = *SI;
1287 if (LRegion->contains(Succ)) {
1288 // Do not allow re-assign
1289 assert(InternalSucc == nullptr)(static_cast<void> (0));
1290 InternalSucc = Succ;
1291 } else {
1292 // Do not allow re-assign
1293 assert(ExternalSucc == nullptr)(static_cast<void> (0));
1294 ExternalSucc = Succ;
1295 }
1296 }
1297
1298 for (auto &TI : Exit->terminators()) {
1299 for (auto &UI : TI.uses()) {
1300 if (UI.isMBB()) {
1301 auto Target = UI.getMBB();
1302 if (Target != InternalSucc && Target != ExternalSucc) {
1303 UI.setMBB(ExternalSucc);
1304 }
1305 }
1306 }
1307 }
1308}
1309
1310// If a region region is just a sequence of regions (and the exit
1311// block in the case of the top level region), we can simply skip
1312// linearizing it, because it is already linear
1313bool regionIsSequence(RegionMRT *Region) {
1314 auto Children = Region->getChildren();
1315 for (auto CI : *Children) {
1316 if (!CI->isRegion()) {
1317 if (CI->getMBBMRT()->getMBB()->succ_size() > 1) {
1318 return false;
1319 }
1320 }
1321 }
1322 return true;
1323}
1324
1325void fixupRegionExits(RegionMRT *Region) {
1326 auto Children = Region->getChildren();
1327 for (auto CI : *Children) {
1328 if (!CI->isRegion()) {
1329 fixMBBTerminator(CI->getMBBMRT()->getMBB());
1330 } else {
1331 fixRegionTerminator(CI->getRegionMRT());
1332 }
1333 }
1334}
1335
1336void AMDGPUMachineCFGStructurizer::getPHIRegionIndices(
1337 RegionMRT *Region, MachineInstr &PHI,
1338 SmallVector<unsigned, 2> &PHIRegionIndices) {
1339 unsigned NumInputs = getPHINumInputs(PHI);
1340 for (unsigned i = 0; i < NumInputs; ++i) {
1341 MachineBasicBlock *Pred = getPHIPred(PHI, i);
1342 if (Region->contains(Pred)) {
1343 PHIRegionIndices.push_back(i);
1344 }
1345 }
1346}
1347
1348void AMDGPUMachineCFGStructurizer::getPHIRegionIndices(
1349 LinearizedRegion *Region, MachineInstr &PHI,
1350 SmallVector<unsigned, 2> &PHIRegionIndices) {
1351 unsigned NumInputs = getPHINumInputs(PHI);
1352 for (unsigned i = 0; i < NumInputs; ++i) {
1353 MachineBasicBlock *Pred = getPHIPred(PHI, i);
1354 if (Region->contains(Pred)) {
1355 PHIRegionIndices.push_back(i);
1356 }
1357 }
1358}
1359
1360void AMDGPUMachineCFGStructurizer::getPHINonRegionIndices(
1361 LinearizedRegion *Region, MachineInstr &PHI,
1362 SmallVector<unsigned, 2> &PHINonRegionIndices) {
1363 unsigned NumInputs = getPHINumInputs(PHI);
1364 for (unsigned i = 0; i < NumInputs; ++i) {
1365 MachineBasicBlock *Pred = getPHIPred(PHI, i);
1366 if (!Region->contains(Pred)) {
1367 PHINonRegionIndices.push_back(i);
1368 }
1369 }
1370}
1371
1372void AMDGPUMachineCFGStructurizer::storePHILinearizationInfoDest(
1373 unsigned LDestReg, MachineInstr &PHI,
1374 SmallVector<unsigned, 2> *RegionIndices) {
1375 if (RegionIndices) {
1376 for (auto i : *RegionIndices) {
1377 PHIInfo.addSource(LDestReg, getPHISourceReg(PHI, i), getPHIPred(PHI, i));
1378 }
1379 } else {
1380 unsigned NumInputs = getPHINumInputs(PHI);
1381 for (unsigned i = 0; i < NumInputs; ++i) {
1382 PHIInfo.addSource(LDestReg, getPHISourceReg(PHI, i), getPHIPred(PHI, i));
1383 }
1384 }
1385}
1386
1387unsigned AMDGPUMachineCFGStructurizer::storePHILinearizationInfo(
1388 MachineInstr &PHI, SmallVector<unsigned, 2> *RegionIndices) {
1389 unsigned DestReg = getPHIDestReg(PHI);
1390 Register LinearizeDestReg =
1391 MRI->createVirtualRegister(MRI->getRegClass(DestReg));
1392 PHIInfo.addDest(LinearizeDestReg, PHI.getDebugLoc());
1393 storePHILinearizationInfoDest(LinearizeDestReg, PHI, RegionIndices);
1394 return LinearizeDestReg;
1395}
1396
1397void AMDGPUMachineCFGStructurizer::extractKilledPHIs(MachineBasicBlock *MBB) {
1398 // We need to create a new chain for the killed phi, but there is no
1399 // need to do the renaming outside or inside the block.
1400 SmallPtrSet<MachineInstr *, 2> PHIs;
1401 for (MachineBasicBlock::instr_iterator I = MBB->instr_begin(),
1402 E = MBB->instr_end();
1403 I != E; ++I) {
1404 MachineInstr &Instr = *I;
1405 if (Instr.isPHI()) {
1406 unsigned PHIDestReg = getPHIDestReg(Instr);
1407 LLVM_DEBUG(dbgs() << "Extractking killed phi:\n")do { } while (false);
1408 LLVM_DEBUG(Instr.dump())do { } while (false);
1409 PHIs.insert(&Instr);
1410 PHIInfo.addDest(PHIDestReg, Instr.getDebugLoc());
1411 storePHILinearizationInfoDest(PHIDestReg, Instr);
1412 }
1413 }
1414
1415 for (auto PI : PHIs) {
1416 PI->eraseFromParent();
1417 }
1418}
1419
1420static bool isPHIRegionIndex(SmallVector<unsigned, 2> PHIRegionIndices,
1421 unsigned Index) {
1422 return llvm::is_contained(PHIRegionIndices, Index);
1423}
1424
1425bool AMDGPUMachineCFGStructurizer::shrinkPHI(MachineInstr &PHI,
1426 SmallVector<unsigned, 2> &PHIIndices,
1427 unsigned *ReplaceReg) {
1428 return shrinkPHI(PHI, 0, nullptr, PHIIndices, ReplaceReg);
1429}
1430
1431bool AMDGPUMachineCFGStructurizer::shrinkPHI(MachineInstr &PHI,
1432 unsigned CombinedSourceReg,
1433 MachineBasicBlock *SourceMBB,
1434 SmallVector<unsigned, 2> &PHIIndices,
1435 unsigned *ReplaceReg) {
1436 LLVM_DEBUG(dbgs() << "Shrink PHI: ")do { } while (false);
1437 LLVM_DEBUG(PHI.dump())do { } while (false);
1438 LLVM_DEBUG(dbgs() << " to " << printReg(getPHIDestReg(PHI), TRI)do { } while (false)
1439 << " = PHI(")do { } while (false);
1440
1441 bool Replaced = false;
1442 unsigned NumInputs = getPHINumInputs(PHI);
1443 int SingleExternalEntryIndex = -1;
1444 for (unsigned i = 0; i < NumInputs; ++i) {
1445 if (!isPHIRegionIndex(PHIIndices, i)) {
1446 if (SingleExternalEntryIndex == -1) {
1447 // Single entry
1448 SingleExternalEntryIndex = i;
1449 } else {
1450 // Multiple entries
1451 SingleExternalEntryIndex = -2;
1452 }
1453 }
1454 }
1455
1456 if (SingleExternalEntryIndex > -1) {
1457 *ReplaceReg = getPHISourceReg(PHI, SingleExternalEntryIndex);
1458 // We should not rewrite the code, we should only pick up the single value
1459 // that represents the shrunk PHI.
1460 Replaced = true;
1461 } else {
1462 MachineBasicBlock *MBB = PHI.getParent();
1463 MachineInstrBuilder MIB =
1464 BuildMI(*MBB, PHI, PHI.getDebugLoc(), TII->get(TargetOpcode::PHI),
1465 getPHIDestReg(PHI));
1466 if (SourceMBB) {
1467 MIB.addReg(CombinedSourceReg);
1468 MIB.addMBB(SourceMBB);
1469 LLVM_DEBUG(dbgs() << printReg(CombinedSourceReg, TRI) << ", "do { } while (false)
1470 << printMBBReference(*SourceMBB))do { } while (false);
1471 }
1472
1473 for (unsigned i = 0; i < NumInputs; ++i) {
1474 if (isPHIRegionIndex(PHIIndices, i)) {
1475 continue;
1476 }
1477 unsigned SourceReg = getPHISourceReg(PHI, i);
1478 MachineBasicBlock *SourcePred = getPHIPred(PHI, i);
1479 MIB.addReg(SourceReg);
1480 MIB.addMBB(SourcePred);
1481 LLVM_DEBUG(dbgs() << printReg(SourceReg, TRI) << ", "do { } while (false)
1482 << printMBBReference(*SourcePred))do { } while (false);
1483 }
1484 LLVM_DEBUG(dbgs() << ")\n")do { } while (false);
1485 }
1486 PHI.eraseFromParent();
1487 return Replaced;
1488}
1489
1490void AMDGPUMachineCFGStructurizer::replacePHI(
1491 MachineInstr &PHI, unsigned CombinedSourceReg, MachineBasicBlock *LastMerge,
1492 SmallVector<unsigned, 2> &PHIRegionIndices) {
1493 LLVM_DEBUG(dbgs() << "Replace PHI: ")do { } while (false);
1494 LLVM_DEBUG(PHI.dump())do { } while (false);
1495 LLVM_DEBUG(dbgs() << " with " << printReg(getPHIDestReg(PHI), TRI)do { } while (false)
1496 << " = PHI(")do { } while (false);
1497
1498 bool HasExternalEdge = false;
1499 unsigned NumInputs = getPHINumInputs(PHI);
1500 for (unsigned i = 0; i < NumInputs; ++i) {
1501 if (!isPHIRegionIndex(PHIRegionIndices, i)) {
1502 HasExternalEdge = true;
1503 }
1504 }
1505
1506 if (HasExternalEdge) {
1507 MachineBasicBlock *MBB = PHI.getParent();
1508 MachineInstrBuilder MIB =
1509 BuildMI(*MBB, PHI, PHI.getDebugLoc(), TII->get(TargetOpcode::PHI),
1510 getPHIDestReg(PHI));
1511 MIB.addReg(CombinedSourceReg);
1512 MIB.addMBB(LastMerge);
1513 LLVM_DEBUG(dbgs() << printReg(CombinedSourceReg, TRI) << ", "do { } while (false)
1514 << printMBBReference(*LastMerge))do { } while (false);
1515 for (unsigned i = 0; i < NumInputs; ++i) {
1516 if (isPHIRegionIndex(PHIRegionIndices, i)) {
1517 continue;
1518 }
1519 unsigned SourceReg = getPHISourceReg(PHI, i);
1520 MachineBasicBlock *SourcePred = getPHIPred(PHI, i);
1521 MIB.addReg(SourceReg);
1522 MIB.addMBB(SourcePred);
1523 LLVM_DEBUG(dbgs() << printReg(SourceReg, TRI) << ", "do { } while (false)
1524 << printMBBReference(*SourcePred))do { } while (false);
1525 }
1526 LLVM_DEBUG(dbgs() << ")\n")do { } while (false);
1527 } else {
1528 replaceRegisterWith(getPHIDestReg(PHI), CombinedSourceReg);
1529 }
1530 PHI.eraseFromParent();
1531}
1532
1533void AMDGPUMachineCFGStructurizer::replaceEntryPHI(
1534 MachineInstr &PHI, unsigned CombinedSourceReg, MachineBasicBlock *IfMBB,
1535 SmallVector<unsigned, 2> &PHIRegionIndices) {
1536 LLVM_DEBUG(dbgs() << "Replace entry PHI: ")do { } while (false);
1537 LLVM_DEBUG(PHI.dump())do { } while (false);
1538 LLVM_DEBUG(dbgs() << " with ")do { } while (false);
1539
1540 unsigned NumInputs = getPHINumInputs(PHI);
1541 unsigned NumNonRegionInputs = NumInputs;
1542 for (unsigned i = 0; i < NumInputs; ++i) {
1543 if (isPHIRegionIndex(PHIRegionIndices, i)) {
1544 NumNonRegionInputs--;
1545 }
1546 }
1547
1548 if (NumNonRegionInputs == 0) {
1549 auto DestReg = getPHIDestReg(PHI);
1550 replaceRegisterWith(DestReg, CombinedSourceReg);
1551 LLVM_DEBUG(dbgs() << " register " << printReg(CombinedSourceReg, TRI)do { } while (false)
1552 << "\n")do { } while (false);
1553 PHI.eraseFromParent();
1554 } else {
1555 LLVM_DEBUG(dbgs() << printReg(getPHIDestReg(PHI), TRI) << " = PHI(")do { } while (false);
1556 MachineBasicBlock *MBB = PHI.getParent();
1557 MachineInstrBuilder MIB =
1558 BuildMI(*MBB, PHI, PHI.getDebugLoc(), TII->get(TargetOpcode::PHI),
1559 getPHIDestReg(PHI));
1560 MIB.addReg(CombinedSourceReg);
1561 MIB.addMBB(IfMBB);
1562 LLVM_DEBUG(dbgs() << printReg(CombinedSourceReg, TRI) << ", "do { } while (false)
1563 << printMBBReference(*IfMBB))do { } while (false);
1564 unsigned NumInputs = getPHINumInputs(PHI);
1565 for (unsigned i = 0; i < NumInputs; ++i) {
1566 if (isPHIRegionIndex(PHIRegionIndices, i)) {
1567 continue;
1568 }
1569 unsigned SourceReg = getPHISourceReg(PHI, i);
1570 MachineBasicBlock *SourcePred = getPHIPred(PHI, i);
1571 MIB.addReg(SourceReg);
1572 MIB.addMBB(SourcePred);
1573 LLVM_DEBUG(dbgs() << printReg(SourceReg, TRI) << ", "do { } while (false)
1574 << printMBBReference(*SourcePred))do { } while (false);
1575 }
1576 LLVM_DEBUG(dbgs() << ")\n")do { } while (false);
1577 PHI.eraseFromParent();
1578 }
1579}
1580
1581void AMDGPUMachineCFGStructurizer::replaceLiveOutRegs(
1582 MachineInstr &PHI, SmallVector<unsigned, 2> &PHIRegionIndices,
1583 unsigned CombinedSourceReg, LinearizedRegion *LRegion) {
1584 bool WasLiveOut = false;
1585 for (auto PII : PHIRegionIndices) {
1586 unsigned Reg = getPHISourceReg(PHI, PII);
1587 if (LRegion->isLiveOut(Reg)) {
1588 bool IsDead = true;
1589
1590 // Check if register is live out of the basic block
1591 MachineBasicBlock *DefMBB = getDefInstr(Reg)->getParent();
1592 for (auto UI = MRI->use_begin(Reg), E = MRI->use_end(); UI != E; ++UI) {
1593 if ((*UI).getParent()->getParent() != DefMBB) {
1594 IsDead = false;
1595 }
1596 }
1597
1598 LLVM_DEBUG(dbgs() << "Register " << printReg(Reg, TRI) << " is "do { } while (false)
1599 << (IsDead ? "dead" : "alive")do { } while (false)
1600 << " after PHI replace\n")do { } while (false);
1601 if (IsDead) {
1602 LRegion->removeLiveOut(Reg);
1603 }
1604 WasLiveOut = true;
1605 }
1606 }
1607
1608 if (WasLiveOut)
1609 LRegion->addLiveOut(CombinedSourceReg);
1610}
1611
1612void AMDGPUMachineCFGStructurizer::rewriteRegionExitPHI(RegionMRT *Region,
1613 MachineBasicBlock *LastMerge,
1614 MachineInstr &PHI,
1615 LinearizedRegion *LRegion) {
1616 SmallVector<unsigned, 2> PHIRegionIndices;
1617 getPHIRegionIndices(Region, PHI, PHIRegionIndices);
1618 unsigned LinearizedSourceReg =
1619 storePHILinearizationInfo(PHI, &PHIRegionIndices);
1620
1621 replacePHI(PHI, LinearizedSourceReg, LastMerge, PHIRegionIndices);
1622 replaceLiveOutRegs(PHI, PHIRegionIndices, LinearizedSourceReg, LRegion);
1623}
1624
1625void AMDGPUMachineCFGStructurizer::rewriteRegionEntryPHI(LinearizedRegion *Region,
1626 MachineBasicBlock *IfMBB,
1627 MachineInstr &PHI) {
1628 SmallVector<unsigned, 2> PHINonRegionIndices;
1629 getPHINonRegionIndices(Region, PHI, PHINonRegionIndices);
1630 unsigned LinearizedSourceReg =
1631 storePHILinearizationInfo(PHI, &PHINonRegionIndices);
1632 replaceEntryPHI(PHI, LinearizedSourceReg, IfMBB, PHINonRegionIndices);
1633}
1634
1635static void collectPHIs(MachineBasicBlock *MBB,
1636 SmallVector<MachineInstr *, 2> &PHIs) {
1637 for (auto &BBI : *MBB) {
1638 if (BBI.isPHI()) {
1639 PHIs.push_back(&BBI);
1640 }
1641 }
1642}
1643
1644void AMDGPUMachineCFGStructurizer::rewriteRegionExitPHIs(RegionMRT *Region,
1645 MachineBasicBlock *LastMerge,
1646 LinearizedRegion *LRegion) {
1647 SmallVector<MachineInstr *, 2> PHIs;
1648 auto Exit = Region->getSucc();
1649 if (Exit == nullptr)
13
Assuming the condition is false
14
Taking false branch
1650 return;
1651
1652 collectPHIs(Exit, PHIs);
1653
1654 for (auto PHII : PHIs) {
15
Assuming '__begin1' is equal to '__end1'
1655 rewriteRegionExitPHI(Region, LastMerge, *PHII, LRegion);
1656 }
1657}
16
Returning without writing to 'LRegion->HasLoop', which participates in a condition later
1658
1659void AMDGPUMachineCFGStructurizer::rewriteRegionEntryPHIs(LinearizedRegion *Region,
1660 MachineBasicBlock *IfMBB) {
1661 SmallVector<MachineInstr *, 2> PHIs;
1662 auto Entry = Region->getEntry();
1663
1664 collectPHIs(Entry, PHIs);
1665
1666 for (auto PHII : PHIs) {
1667 rewriteRegionEntryPHI(Region, IfMBB, *PHII);
1668 }
1669}
1670
1671void AMDGPUMachineCFGStructurizer::insertUnconditionalBranch(MachineBasicBlock *MBB,
1672 MachineBasicBlock *Dest,
1673 const DebugLoc &DL) {
1674 LLVM_DEBUG(dbgs() << "Inserting unconditional branch: " << MBB->getNumber()do { } while (false)
1675 << " -> " << Dest->getNumber() << "\n")do { } while (false);
1676 MachineBasicBlock::instr_iterator Terminator = MBB->getFirstInstrTerminator();
1677 bool HasTerminator = Terminator != MBB->instr_end();
1678 if (HasTerminator) {
1679 TII->ReplaceTailWithBranchTo(Terminator, Dest);
1680 }
1681 if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(Dest)) {
1682 TII->insertUnconditionalBranch(*MBB, Dest, DL);
1683 }
1684}
1685
1686static MachineBasicBlock *getSingleExitNode(MachineFunction &MF) {
1687 MachineBasicBlock *result = nullptr;
1688 for (auto &MFI : MF) {
1689 if (MFI.succ_size() == 0) {
1690 if (result == nullptr) {
1691 result = &MFI;
1692 } else {
1693 return nullptr;
1694 }
1695 }
1696 }
1697
1698 return result;
1699}
1700
1701static bool hasOneExitNode(MachineFunction &MF) {
1702 return getSingleExitNode(MF) != nullptr;
1703}
1704
1705MachineBasicBlock *
1706AMDGPUMachineCFGStructurizer::createLinearizedExitBlock(RegionMRT *Region) {
1707 auto Exit = Region->getSucc();
1708
1709 // If the exit is the end of the function, we just use the existing
1710 MachineFunction *MF = Region->getEntry()->getParent();
1711 if (Exit == nullptr && hasOneExitNode(*MF)) {
1712 return &(*(--(Region->getEntry()->getParent()->end())));
1713 }
1714
1715 MachineBasicBlock *LastMerge = MF->CreateMachineBasicBlock();
1716 if (Exit == nullptr) {
1717 MachineFunction::iterator ExitIter = MF->end();
1718 MF->insert(ExitIter, LastMerge);
1719 } else {
1720 MachineFunction::iterator ExitIter = Exit->getIterator();
1721 MF->insert(ExitIter, LastMerge);
1722 LastMerge->addSuccessor(Exit);
1723 insertUnconditionalBranch(LastMerge, Exit);
1724 LLVM_DEBUG(dbgs() << "Created exit block: " << LastMerge->getNumber()do { } while (false)
1725 << "\n")do { } while (false);
1726 }
1727 return LastMerge;
1728}
1729
1730void AMDGPUMachineCFGStructurizer::insertMergePHI(MachineBasicBlock *IfBB,
1731 MachineBasicBlock *CodeBB,
1732 MachineBasicBlock *MergeBB,
1733 unsigned DestRegister,
1734 unsigned IfSourceRegister,
1735 unsigned CodeSourceRegister,
1736 bool IsUndefIfSource) {
1737 // If this is the function exit block, we don't need a phi.
1738 if (MergeBB->succ_begin() == MergeBB->succ_end()) {
1739 return;
1740 }
1741 LLVM_DEBUG(dbgs() << "Merge PHI (" << printMBBReference(*MergeBB)do { } while (false)
1742 << "): " << printReg(DestRegister, TRI) << " = PHI("do { } while (false)
1743 << printReg(IfSourceRegister, TRI) << ", "do { } while (false)
1744 << printMBBReference(*IfBB)do { } while (false)
1745 << printReg(CodeSourceRegister, TRI) << ", "do { } while (false)
1746 << printMBBReference(*CodeBB) << ")\n")do { } while (false);
1747 const DebugLoc &DL = MergeBB->findDebugLoc(MergeBB->begin());
1748 MachineInstrBuilder MIB = BuildMI(*MergeBB, MergeBB->instr_begin(), DL,
1749 TII->get(TargetOpcode::PHI), DestRegister);
1750 if (IsUndefIfSource && false) {
1751 MIB.addReg(IfSourceRegister, RegState::Undef);
1752 } else {
1753 MIB.addReg(IfSourceRegister);
1754 }
1755 MIB.addMBB(IfBB);
1756 MIB.addReg(CodeSourceRegister);
1757 MIB.addMBB(CodeBB);
1758}
1759
1760static void removeExternalCFGSuccessors(MachineBasicBlock *MBB) {
1761 for (MachineBasicBlock::succ_iterator PI = MBB->succ_begin(),
1762 E = MBB->succ_end();
1763 PI != E; ++PI) {
1764 if ((*PI) != MBB) {
1765 (MBB)->removeSuccessor(*PI);
1766 }
1767 }
1768}
1769
1770static void removeExternalCFGEdges(MachineBasicBlock *StartMBB,
1771 MachineBasicBlock *EndMBB) {
1772
1773 // We have to check against the StartMBB successor becasuse a
1774 // structurized region with a loop will have the entry block split,
1775 // and the backedge will go to the entry successor.
1776 DenseSet<std::pair<MachineBasicBlock *, MachineBasicBlock *>> Succs;
1777 unsigned SuccSize = StartMBB->succ_size();
1778 if (SuccSize > 0) {
1779 MachineBasicBlock *StartMBBSucc = *(StartMBB->succ_begin());
1780 for (MachineBasicBlock::succ_iterator PI = EndMBB->succ_begin(),
1781 E = EndMBB->succ_end();
1782 PI != E; ++PI) {
1783 // Either we have a back-edge to the entry block, or a back-edge to the
1784 // successor of the entry block since the block may be split.
1785 if ((*PI) != StartMBB &&
1786 !((*PI) == StartMBBSucc && StartMBB != EndMBB && SuccSize == 1)) {
1787 Succs.insert(
1788 std::pair<MachineBasicBlock *, MachineBasicBlock *>(EndMBB, *PI));
1789 }
1790 }
1791 }
1792
1793 for (MachineBasicBlock::pred_iterator PI = StartMBB->pred_begin(),
1794 E = StartMBB->pred_end();
1795 PI != E; ++PI) {
1796 if ((*PI) != EndMBB) {
1797 Succs.insert(
1798 std::pair<MachineBasicBlock *, MachineBasicBlock *>(*PI, StartMBB));
1799 }
1800 }
1801
1802 for (auto SI : Succs) {
1803 std::pair<MachineBasicBlock *, MachineBasicBlock *> Edge = SI;
1804 LLVM_DEBUG(dbgs() << "Removing edge: " << printMBBReference(*Edge.first)do { } while (false)
1805 << " -> " << printMBBReference(*Edge.second) << "\n")do { } while (false);
1806 Edge.first->removeSuccessor(Edge.second);
1807 }
1808}
1809
1810MachineBasicBlock *AMDGPUMachineCFGStructurizer::createIfBlock(
1811 MachineBasicBlock *MergeBB, MachineBasicBlock *CodeBBStart,
1812 MachineBasicBlock *CodeBBEnd, MachineBasicBlock *SelectBB, unsigned IfReg,
1813 bool InheritPreds) {
1814 MachineFunction *MF = MergeBB->getParent();
1815 MachineBasicBlock *IfBB = MF->CreateMachineBasicBlock();
1816
1817 if (InheritPreds) {
1818 for (MachineBasicBlock::pred_iterator PI = CodeBBStart->pred_begin(),
1819 E = CodeBBStart->pred_end();
1820 PI != E; ++PI) {
1821 if ((*PI) != CodeBBEnd) {
1822 MachineBasicBlock *Pred = (*PI);
1823 Pred->addSuccessor(IfBB);
1824 }
1825 }
1826 }
1827
1828 removeExternalCFGEdges(CodeBBStart, CodeBBEnd);
1829
1830 auto CodeBBStartI = CodeBBStart->getIterator();
1831 auto CodeBBEndI = CodeBBEnd->getIterator();
1832 auto MergeIter = MergeBB->getIterator();
1833 MF->insert(MergeIter, IfBB);
1834 MF->splice(MergeIter, CodeBBStartI, ++CodeBBEndI);
1835 IfBB->addSuccessor(MergeBB);
1836 IfBB->addSuccessor(CodeBBStart);
1837
1838 LLVM_DEBUG(dbgs() << "Created If block: " << IfBB->getNumber() << "\n")do { } while (false);
1839 // Ensure that the MergeBB is a successor of the CodeEndBB.
1840 if (!CodeBBEnd->isSuccessor(MergeBB))
1841 CodeBBEnd->addSuccessor(MergeBB);
1842
1843 LLVM_DEBUG(dbgs() << "Moved " << printMBBReference(*CodeBBStart)do { } while (false)
1844 << " through " << printMBBReference(*CodeBBEnd) << "\n")do { } while (false);
1845
1846 // If we have a single predecessor we can find a reasonable debug location
1847 MachineBasicBlock *SinglePred =
1848 CodeBBStart->pred_size() == 1 ? *(CodeBBStart->pred_begin()) : nullptr;
1849 const DebugLoc &DL = SinglePred
1850 ? SinglePred->findDebugLoc(SinglePred->getFirstTerminator())
1851 : DebugLoc();
1852
1853 Register Reg =
1854 TII->insertEQ(IfBB, IfBB->begin(), DL, IfReg,
1855 SelectBB->getNumber() /* CodeBBStart->getNumber() */);
1856 if (&(*(IfBB->getParent()->begin())) == IfBB) {
1857 TII->materializeImmediate(*IfBB, IfBB->begin(), DL, IfReg,
1858 CodeBBStart->getNumber());
1859 }
1860 MachineOperand RegOp = MachineOperand::CreateReg(Reg, false, false, true);
1861 ArrayRef<MachineOperand> Cond(RegOp);
1862 TII->insertBranch(*IfBB, MergeBB, CodeBBStart, Cond, DL);
1863
1864 return IfBB;
1865}
1866
1867void AMDGPUMachineCFGStructurizer::ensureCondIsNotKilled(
1868 SmallVector<MachineOperand, 1> Cond) {
1869 if (Cond.size() != 1)
1870 return;
1871 if (!Cond[0].isReg())
1872 return;
1873
1874 Register CondReg = Cond[0].getReg();
1875 for (auto UI = MRI->use_begin(CondReg), E = MRI->use_end(); UI != E; ++UI) {
1876 (*UI).setIsKill(false);
1877 }
1878}
1879
1880void AMDGPUMachineCFGStructurizer::rewriteCodeBBTerminator(MachineBasicBlock *CodeBB,
1881 MachineBasicBlock *MergeBB,
1882 unsigned BBSelectReg) {
1883 MachineBasicBlock *TrueBB = nullptr;
1884 MachineBasicBlock *FalseBB = nullptr;
1885 SmallVector<MachineOperand, 1> Cond;
1886 MachineBasicBlock *FallthroughBB = FallthroughMap[CodeBB];
1887 TII->analyzeBranch(*CodeBB, TrueBB, FalseBB, Cond);
1888
1889 const DebugLoc &DL = CodeBB->findDebugLoc(CodeBB->getFirstTerminator());
1890
1891 if (FalseBB == nullptr && TrueBB == nullptr && FallthroughBB == nullptr) {
1892 // This is an exit block, hence no successors. We will assign the
1893 // bb select register to the entry block.
1894 TII->materializeImmediate(*CodeBB, CodeBB->getFirstTerminator(), DL,
1895 BBSelectReg,
1896 CodeBB->getParent()->begin()->getNumber());
1897 insertUnconditionalBranch(CodeBB, MergeBB, DL);
1898 return;
1899 }
1900
1901 if (FalseBB == nullptr && TrueBB == nullptr) {
1902 TrueBB = FallthroughBB;
1903 } else if (TrueBB != nullptr) {
1904 FalseBB =
1905 (FallthroughBB && (FallthroughBB != TrueBB)) ? FallthroughBB : FalseBB;
1906 }
1907
1908 if ((TrueBB != nullptr && FalseBB == nullptr) || (TrueBB == FalseBB)) {
1909 TII->materializeImmediate(*CodeBB, CodeBB->getFirstTerminator(), DL,
1910 BBSelectReg, TrueBB->getNumber());
1911 } else {
1912 const TargetRegisterClass *RegClass = MRI->getRegClass(BBSelectReg);
1913 Register TrueBBReg = MRI->createVirtualRegister(RegClass);
1914 Register FalseBBReg = MRI->createVirtualRegister(RegClass);
1915 TII->materializeImmediate(*CodeBB, CodeBB->getFirstTerminator(), DL,
1916 TrueBBReg, TrueBB->getNumber());
1917 TII->materializeImmediate(*CodeBB, CodeBB->getFirstTerminator(), DL,
1918 FalseBBReg, FalseBB->getNumber());
1919 ensureCondIsNotKilled(Cond);
1920 TII->insertVectorSelect(*CodeBB, CodeBB->getFirstTerminator(), DL,
1921 BBSelectReg, Cond, TrueBBReg, FalseBBReg);
1922 }
1923
1924 insertUnconditionalBranch(CodeBB, MergeBB, DL);
1925}
1926
1927MachineInstr *AMDGPUMachineCFGStructurizer::getDefInstr(unsigned Reg) {
1928 if (MRI->def_begin(Reg) == MRI->def_end()) {
1929 LLVM_DEBUG(dbgs() << "Register "do { } while (false)
1930 << printReg(Reg, MRI->getTargetRegisterInfo())do { } while (false)
1931 << " has NO defs\n")do { } while (false);
1932 } else if (!MRI->hasOneDef(Reg)) {
1933 LLVM_DEBUG(dbgs() << "Register "do { } while (false)
1934 << printReg(Reg, MRI->getTargetRegisterInfo())do { } while (false)
1935 << " has multiple defs\n")do { } while (false);
1936 LLVM_DEBUG(dbgs() << "DEFS BEGIN:\n")do { } while (false);
1937 for (auto DI = MRI->def_begin(Reg), DE = MRI->def_end(); DI != DE; ++DI) {
1938 LLVM_DEBUG(DI->getParent()->dump())do { } while (false);
1939 }
1940 LLVM_DEBUG(dbgs() << "DEFS END\n")do { } while (false);
1941 }
1942
1943 assert(MRI->hasOneDef(Reg) && "Register has multiple definitions")(static_cast<void> (0));
1944 return (*(MRI->def_begin(Reg))).getParent();
1945}
1946
1947void AMDGPUMachineCFGStructurizer::insertChainedPHI(MachineBasicBlock *IfBB,
1948 MachineBasicBlock *CodeBB,
1949 MachineBasicBlock *MergeBB,
1950 LinearizedRegion *InnerRegion,
1951 unsigned DestReg,
1952 unsigned SourceReg) {
1953 // In this function we know we are part of a chain already, so we need
1954 // to add the registers to the existing chain, and rename the register
1955 // inside the region.
1956 bool IsSingleBB = InnerRegion->getEntry() == InnerRegion->getExit();
1957 MachineInstr *DefInstr = getDefInstr(SourceReg);
1958 if (DefInstr->isPHI() && DefInstr->getParent() == CodeBB && IsSingleBB) {
1959 // Handle the case where the def is a PHI-def inside a basic
1960 // block, then we only need to do renaming. Special care needs to
1961 // be taken if the PHI-def is part of an existing chain, or if a
1962 // new one needs to be created.
1963 InnerRegion->replaceRegisterInsideRegion(SourceReg, DestReg, true, MRI);
1964
1965 // We collect all PHI Information, and if we are at the region entry,
1966 // all PHIs will be removed, and then re-introduced if needed.
1967 storePHILinearizationInfoDest(DestReg, *DefInstr);
1968 // We have picked up all the information we need now and can remove
1969 // the PHI
1970 PHIInfo.removeSource(DestReg, SourceReg, CodeBB);
1971 DefInstr->eraseFromParent();
1972 } else {
1973 // If this is not a phi-def, or it is a phi-def but from a linearized region
1974 if (IsSingleBB && DefInstr->getParent() == InnerRegion->getEntry()) {
1975 // If this is a single BB and the definition is in this block we
1976 // need to replace any uses outside the region.
1977 InnerRegion->replaceRegisterOutsideRegion(SourceReg, DestReg, false, MRI);
1978 }
1979 const TargetRegisterClass *RegClass = MRI->getRegClass(DestReg);
1980 Register NextDestReg = MRI->createVirtualRegister(RegClass);
1981 bool IsLastDef = PHIInfo.getNumSources(DestReg) == 1;
1982 LLVM_DEBUG(dbgs() << "Insert Chained PHI\n")do { } while (false);
1983 insertMergePHI(IfBB, InnerRegion->getExit(), MergeBB, DestReg, NextDestReg,
1984 SourceReg, IsLastDef);
1985
1986 PHIInfo.removeSource(DestReg, SourceReg, CodeBB);
1987 if (IsLastDef) {
1988 const DebugLoc &DL = IfBB->findDebugLoc(IfBB->getFirstTerminator());
1989 TII->materializeImmediate(*IfBB, IfBB->getFirstTerminator(), DL,
1990 NextDestReg, 0);
1991 PHIInfo.deleteDef(DestReg);
1992 } else {
1993 PHIInfo.replaceDef(DestReg, NextDestReg);
1994 }
1995 }
1996}
1997
1998bool AMDGPUMachineCFGStructurizer::containsDef(MachineBasicBlock *MBB,
1999 LinearizedRegion *InnerRegion,
2000 unsigned Register) {
2001 return getDefInstr(Register)->getParent() == MBB ||
2002 InnerRegion->contains(getDefInstr(Register)->getParent());
2003}
2004
2005void AMDGPUMachineCFGStructurizer::rewriteLiveOutRegs(MachineBasicBlock *IfBB,
2006 MachineBasicBlock *CodeBB,
2007 MachineBasicBlock *MergeBB,
2008 LinearizedRegion *InnerRegion,
2009 LinearizedRegion *LRegion) {
2010 DenseSet<unsigned> *LiveOuts = InnerRegion->getLiveOuts();
2011 SmallVector<unsigned, 4> OldLiveOuts;
2012 bool IsSingleBB = InnerRegion->getEntry() == InnerRegion->getExit();
2013 for (auto OLI : *LiveOuts) {
2014 OldLiveOuts.push_back(OLI);
2015 }
2016
2017 for (auto LI : OldLiveOuts) {
2018 LLVM_DEBUG(dbgs() << "LiveOut: " << printReg(LI, TRI))do { } while (false);
2019 if (!containsDef(CodeBB, InnerRegion, LI) ||
2020 (!IsSingleBB && (getDefInstr(LI)->getParent() == LRegion->getExit()))) {
2021 // If the register simly lives through the CodeBB, we don't have
2022 // to rewrite anything since the register is not defined in this
2023 // part of the code.
2024 LLVM_DEBUG(dbgs() << "- through")do { } while (false);
2025 continue;
2026 }
2027 LLVM_DEBUG(dbgs() << "\n")do { } while (false);
2028 unsigned Reg = LI;
2029 if (/*!PHIInfo.isSource(Reg) &&*/ Reg != InnerRegion->getBBSelectRegOut()) {
2030 // If the register is live out, we do want to create a phi,
2031 // unless it is from the Exit block, becasuse in that case there
2032 // is already a PHI, and no need to create a new one.
2033
2034 // If the register is just a live out def and not part of a phi
2035 // chain, we need to create a PHI node to handle the if region,
2036 // and replace all uses outside of the region with the new dest
2037 // register, unless it is the outgoing BB select register. We have
2038 // already creaed phi nodes for these.
2039 const TargetRegisterClass *RegClass = MRI->getRegClass(Reg);
2040 Register PHIDestReg = MRI->createVirtualRegister(RegClass);
2041 Register IfSourceReg = MRI->createVirtualRegister(RegClass);
2042 // Create initializer, this value is never used, but is needed
2043 // to satisfy SSA.
2044 LLVM_DEBUG(dbgs() << "Initializer for reg: " << printReg(Reg) << "\n")do { } while (false);
2045 TII->materializeImmediate(*IfBB, IfBB->getFirstTerminator(), DebugLoc(),
2046 IfSourceReg, 0);
2047
2048 InnerRegion->replaceRegisterOutsideRegion(Reg, PHIDestReg, true, MRI);
2049 LLVM_DEBUG(dbgs() << "Insert Non-Chained Live out PHI\n")do { } while (false);
2050 insertMergePHI(IfBB, InnerRegion->getExit(), MergeBB, PHIDestReg,
2051 IfSourceReg, Reg, true);
2052 }
2053 }
2054
2055 // Handle the chained definitions in PHIInfo, checking if this basic block
2056 // is a source block for a definition.
2057 SmallVector<unsigned, 4> Sources;
2058 if (PHIInfo.findSourcesFromMBB(CodeBB, Sources)) {
2059 LLVM_DEBUG(dbgs() << "Inserting PHI Live Out from "do { } while (false)
2060 << printMBBReference(*CodeBB) << "\n")do { } while (false);
2061 for (auto SI : Sources) {
2062 unsigned DestReg;
2063 PHIInfo.findDest(SI, CodeBB, DestReg);
2064 insertChainedPHI(IfBB, CodeBB, MergeBB, InnerRegion, DestReg, SI);
2065 }
2066 LLVM_DEBUG(dbgs() << "Insertion done.\n")do { } while (false);
2067 }
2068
2069 LLVM_DEBUG(PHIInfo.dump(MRI))do { } while (false);
2070}
2071
2072void AMDGPUMachineCFGStructurizer::prunePHIInfo(MachineBasicBlock *MBB) {
2073 LLVM_DEBUG(dbgs() << "Before PHI Prune\n")do { } while (false);
2074 LLVM_DEBUG(PHIInfo.dump(MRI))do { } while (false);
2075 SmallVector<std::tuple<unsigned, unsigned, MachineBasicBlock *>, 4>
2076 ElimiatedSources;
2077 for (auto DRI = PHIInfo.dests_begin(), DE = PHIInfo.dests_end(); DRI != DE;
2078 ++DRI) {
2079
2080 unsigned DestReg = *DRI;
2081 auto SE = PHIInfo.sources_end(DestReg);
2082
2083 bool MBBContainsPHISource = false;
2084 // Check if there is a PHI source in this MBB
2085 for (auto SRI = PHIInfo.sources_begin(DestReg); SRI != SE; ++SRI) {
2086 unsigned SourceReg = (*SRI).first;
2087 MachineOperand *Def = &(*(MRI->def_begin(SourceReg)));
2088 if (Def->getParent()->getParent() == MBB) {
2089 MBBContainsPHISource = true;
2090 }
2091 }
2092
2093 // If so, all other sources are useless since we know this block
2094 // is always executed when the region is executed.
2095 if (MBBContainsPHISource) {
2096 for (auto SRI = PHIInfo.sources_begin(DestReg); SRI != SE; ++SRI) {
2097 PHILinearize::PHISourceT Source = *SRI;
2098 unsigned SourceReg = Source.first;
2099 MachineBasicBlock *SourceMBB = Source.second;
2100 MachineOperand *Def = &(*(MRI->def_begin(SourceReg)));
2101 if (Def->getParent()->getParent() != MBB) {
2102 ElimiatedSources.push_back(
2103 std::make_tuple(DestReg, SourceReg, SourceMBB));
2104 }
2105 }
2106 }
2107 }
2108
2109 // Remove the PHI sources that are in the given MBB
2110 for (auto &SourceInfo : ElimiatedSources) {
2111 PHIInfo.removeSource(std::get<0>(SourceInfo), std::get<1>(SourceInfo),
2112 std::get<2>(SourceInfo));
2113 }
2114 LLVM_DEBUG(dbgs() << "After PHI Prune\n")do { } while (false);
2115 LLVM_DEBUG(PHIInfo.dump(MRI))do { } while (false);
2116}
2117
2118void AMDGPUMachineCFGStructurizer::createEntryPHI(LinearizedRegion *CurrentRegion,
2119 unsigned DestReg) {
2120 MachineBasicBlock *Entry = CurrentRegion->getEntry();
2121 MachineBasicBlock *Exit = CurrentRegion->getExit();
2122
2123 LLVM_DEBUG(dbgs() << "RegionExit: " << Exit->getNumber() << " Pred: "do { } while (false)
2124 << (*(Entry->pred_begin()))->getNumber() << "\n")do { } while (false);
2125
2126 int NumSources = 0;
2127 auto SE = PHIInfo.sources_end(DestReg);
2128
2129 for (auto SRI = PHIInfo.sources_begin(DestReg); SRI != SE; ++SRI) {
2130 NumSources++;
2131 }
2132
2133 if (NumSources == 1) {
2134 auto SRI = PHIInfo.sources_begin(DestReg);
2135 unsigned SourceReg = (*SRI).first;
2136 replaceRegisterWith(DestReg, SourceReg);
2137 } else {
2138 const DebugLoc &DL = Entry->findDebugLoc(Entry->begin());
2139 MachineInstrBuilder MIB = BuildMI(*Entry, Entry->instr_begin(), DL,
2140 TII->get(TargetOpcode::PHI), DestReg);
2141 LLVM_DEBUG(dbgs() << "Entry PHI " << printReg(DestReg, TRI) << " = PHI(")do { } while (false);
2142
2143 unsigned CurrentBackedgeReg = 0;
2144
2145 for (auto SRI = PHIInfo.sources_begin(DestReg); SRI != SE; ++SRI) {
2146 unsigned SourceReg = (*SRI).first;
2147
2148 if (CurrentRegion->contains((*SRI).second)) {
2149 if (CurrentBackedgeReg == 0) {
2150 CurrentBackedgeReg = SourceReg;
2151 } else {
2152 MachineInstr *PHIDefInstr = getDefInstr(SourceReg);
2153 MachineBasicBlock *PHIDefMBB = PHIDefInstr->getParent();
2154 const TargetRegisterClass *RegClass =
2155 MRI->getRegClass(CurrentBackedgeReg);
2156 Register NewBackedgeReg = MRI->createVirtualRegister(RegClass);
2157 MachineInstrBuilder BackedgePHI =
2158 BuildMI(*PHIDefMBB, PHIDefMBB->instr_begin(), DL,
2159 TII->get(TargetOpcode::PHI), NewBackedgeReg);
2160 BackedgePHI.addReg(CurrentBackedgeReg);
2161 BackedgePHI.addMBB(getPHIPred(*PHIDefInstr, 0));
2162 BackedgePHI.addReg(getPHISourceReg(*PHIDefInstr, 1));
2163 BackedgePHI.addMBB((*SRI).second);
2164 CurrentBackedgeReg = NewBackedgeReg;
2165 LLVM_DEBUG(dbgs()do { } while (false)
2166 << "Inserting backedge PHI: "do { } while (false)
2167 << printReg(NewBackedgeReg, TRI) << " = PHI("do { } while (false)
2168 << printReg(CurrentBackedgeReg, TRI) << ", "do { } while (false)
2169 << printMBBReference(*getPHIPred(*PHIDefInstr, 0)) << ", "do { } while (false)
2170 << printReg(getPHISourceReg(*PHIDefInstr, 1), TRI) << ", "do { } while (false)
2171 << printMBBReference(*(*SRI).second))do { } while (false);
2172 }
2173 } else {
2174 MIB.addReg(SourceReg);
2175 MIB.addMBB((*SRI).second);
2176 LLVM_DEBUG(dbgs() << printReg(SourceReg, TRI) << ", "do { } while (false)
2177 << printMBBReference(*(*SRI).second) << ", ")do { } while (false);
2178 }
2179 }
2180
2181 // Add the final backedge register source to the entry phi
2182 if (CurrentBackedgeReg != 0) {
2183 MIB.addReg(CurrentBackedgeReg);
2184 MIB.addMBB(Exit);
2185 LLVM_DEBUG(dbgs() << printReg(CurrentBackedgeReg, TRI) << ", "do { } while (false)
2186 << printMBBReference(*Exit) << ")\n")do { } while (false);
2187 } else {
2188 LLVM_DEBUG(dbgs() << ")\n")do { } while (false);
2189 }
2190 }
2191}
2192
2193void AMDGPUMachineCFGStructurizer::createEntryPHIs(LinearizedRegion *CurrentRegion) {
2194 LLVM_DEBUG(PHIInfo.dump(MRI))do { } while (false);
2195
2196 for (auto DRI = PHIInfo.dests_begin(), DE = PHIInfo.dests_end(); DRI != DE;
2197 ++DRI) {
2198
2199 unsigned DestReg = *DRI;
2200 createEntryPHI(CurrentRegion, DestReg);
2201 }
2202 PHIInfo.clear();
2203}
2204
2205void AMDGPUMachineCFGStructurizer::replaceRegisterWith(
2206 unsigned Register, class Register NewRegister) {
2207 assert(Register != NewRegister && "Cannot replace a reg with itself")(static_cast<void> (0));
2208
2209 for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Register),
2210 E = MRI->reg_end();
2211 I != E;) {
2212 MachineOperand &O = *I;
2213 ++I;
2214 if (NewRegister.isPhysical()) {
2215 LLVM_DEBUG(dbgs() << "Trying to substitute physical register: "do { } while (false)
2216 << printReg(NewRegister, MRI->getTargetRegisterInfo())do { } while (false)
2217 << "\n")do { } while (false);
2218 llvm_unreachable("Cannot substitute physical registers")__builtin_unreachable();
2219 // We don't handle physical registers, but if we need to
2220 // in the future This is how we do it:
2221 // O.substPhysReg(NewRegister, *TRI);
2222 } else {
2223 LLVM_DEBUG(dbgs() << "Replacing register: "do { } while (false)
2224 << printReg(Register, MRI->getTargetRegisterInfo())do { } while (false)
2225 << " with "do { } while (false)
2226 << printReg(NewRegister, MRI->getTargetRegisterInfo())do { } while (false)
2227 << "\n")do { } while (false);
2228 O.setReg(NewRegister);
2229 }
2230 }
2231 PHIInfo.deleteDef(Register);
2232
2233 getRegionMRT()->replaceLiveOutReg(Register, NewRegister);
2234
2235 LLVM_DEBUG(PHIInfo.dump(MRI))do { } while (false);
2236}
2237
2238void AMDGPUMachineCFGStructurizer::resolvePHIInfos(MachineBasicBlock *FunctionEntry) {
2239 LLVM_DEBUG(dbgs() << "Resolve PHI Infos\n")do { } while (false);
2240 LLVM_DEBUG(PHIInfo.dump(MRI))do { } while (false);
2241 for (auto DRI = PHIInfo.dests_begin(), DE = PHIInfo.dests_end(); DRI != DE;
2242 ++DRI) {
2243 unsigned DestReg = *DRI;
2244 LLVM_DEBUG(dbgs() << "DestReg: " << printReg(DestReg, TRI) << "\n")do { } while (false);
2245 auto SRI = PHIInfo.sources_begin(DestReg);
2246 unsigned SourceReg = (*SRI).first;
2247 LLVM_DEBUG(dbgs() << "DestReg: " << printReg(DestReg, TRI)do { } while (false)
2248 << " SourceReg: " << printReg(SourceReg, TRI) << "\n")do { } while (false);
2249
2250 assert(PHIInfo.sources_end(DestReg) == ++SRI &&(static_cast<void> (0))
2251 "More than one phi source in entry node")(static_cast<void> (0));
2252 replaceRegisterWith(DestReg, SourceReg);
2253 }
2254}
2255
2256static bool isFunctionEntryBlock(MachineBasicBlock *MBB) {
2257 return ((&(*(MBB->getParent()->begin()))) == MBB);
41
Assuming the condition is false
42
Returning zero, which participates in a condition later
78
Assuming the condition is false
79
Returning zero, which participates in a condition later
2258}
2259
2260MachineBasicBlock *AMDGPUMachineCFGStructurizer::createIfRegion(
2261 MachineBasicBlock *MergeBB, MachineBasicBlock *CodeBB,
2262 LinearizedRegion *CurrentRegion, unsigned BBSelectRegIn,
2263 unsigned BBSelectRegOut) {
2264 if (isFunctionEntryBlock(CodeBB) && !CurrentRegion->getHasLoop()) {
40
Calling 'isFunctionEntryBlock'
43
Returning from 'isFunctionEntryBlock'
77
Calling 'isFunctionEntryBlock'
80
Returning from 'isFunctionEntryBlock'
2265 // Handle non-loop function entry block.
2266 // We need to allow loops to the entry block and then
2267 rewriteCodeBBTerminator(CodeBB, MergeBB, BBSelectRegOut);
2268 resolvePHIInfos(CodeBB);
2269 removeExternalCFGSuccessors(CodeBB);
2270 CodeBB->addSuccessor(MergeBB);
2271 CurrentRegion->addMBB(CodeBB);
2272 return nullptr;
2273 }
2274 if (CurrentRegion->getEntry() == CodeBB && !CurrentRegion->getHasLoop()) {
44
Assuming the condition is false
81
Assuming the condition is true
82
Assuming the condition is true
83
Taking true branch
2275 // Handle non-loop region entry block.
2276 MachineFunction *MF = MergeBB->getParent();
84
Called C++ object pointer is null
2277 auto MergeIter = MergeBB->getIterator();
2278 auto CodeBBStartIter = CodeBB->getIterator();
2279 auto CodeBBEndIter = ++(CodeBB->getIterator());
2280 if (CodeBBEndIter != MergeIter) {
2281 MF->splice(MergeIter, CodeBBStartIter, CodeBBEndIter);
2282 }
2283 rewriteCodeBBTerminator(CodeBB, MergeBB, BBSelectRegOut);
2284 prunePHIInfo(CodeBB);
2285 createEntryPHIs(CurrentRegion);
2286 removeExternalCFGSuccessors(CodeBB);
2287 CodeBB->addSuccessor(MergeBB);
2288 CurrentRegion->addMBB(CodeBB);
2289 return nullptr;
2290 } else {
2291 // Handle internal block.
2292 const TargetRegisterClass *RegClass = MRI->getRegClass(BBSelectRegIn);
2293 Register CodeBBSelectReg = MRI->createVirtualRegister(RegClass);
2294 rewriteCodeBBTerminator(CodeBB, MergeBB, CodeBBSelectReg);
2295 bool IsRegionEntryBB = CurrentRegion->getEntry() == CodeBB;
2296 MachineBasicBlock *IfBB = createIfBlock(MergeBB, CodeBB, CodeBB, CodeBB,
45
'IfBB' initialized here
2297 BBSelectRegIn, IsRegionEntryBB);
2298 CurrentRegion->addMBB(IfBB);
2299 // If this is the entry block we need to make the If block the new
2300 // linearized region entry.
2301 if (IsRegionEntryBB
45.1
'IsRegionEntryBB' is false
45.1
'IsRegionEntryBB' is false
) {
46
Taking false branch
2302 CurrentRegion->setEntry(IfBB);
2303
2304 if (CurrentRegion->getHasLoop()) {
2305 MachineBasicBlock *RegionExit = CurrentRegion->getExit();
2306 MachineBasicBlock *ETrueBB = nullptr;
2307 MachineBasicBlock *EFalseBB = nullptr;
2308 SmallVector<MachineOperand, 1> ECond;
2309
2310 const DebugLoc &DL = DebugLoc();
2311 TII->analyzeBranch(*RegionExit, ETrueBB, EFalseBB, ECond);
2312 TII->removeBranch(*RegionExit);
2313
2314 // We need to create a backedge if there is a loop
2315 Register Reg = TII->insertNE(
2316 RegionExit, RegionExit->instr_end(), DL,
2317 CurrentRegion->getRegionMRT()->getInnerOutputRegister(),
2318 CurrentRegion->getRegionMRT()->getEntry()->getNumber());
2319 MachineOperand RegOp =
2320 MachineOperand::CreateReg(Reg, false, false, true);
2321 ArrayRef<MachineOperand> Cond(RegOp);
2322 LLVM_DEBUG(dbgs() << "RegionExitReg: ")do { } while (false);
2323 LLVM_DEBUG(Cond[0].print(dbgs(), TRI))do { } while (false);
2324 LLVM_DEBUG(dbgs() << "\n")do { } while (false);
2325 TII->insertBranch(*RegionExit, CurrentRegion->getEntry(), RegionExit,
2326 Cond, DebugLoc());
2327 RegionExit->addSuccessor(CurrentRegion->getEntry());
2328 }
2329 }
2330 CurrentRegion->addMBB(CodeBB);
2331 LinearizedRegion InnerRegion(CodeBB, MRI, TRI, PHIInfo);
2332
2333 InnerRegion.setParent(CurrentRegion);
47
Calling 'LinearizedRegion::setParent'
49
Returning from 'LinearizedRegion::setParent'
2334 LLVM_DEBUG(dbgs() << "Insert BB Select PHI (BB)\n")do { } while (false);
50
Loop condition is false. Exiting loop
2335 insertMergePHI(IfBB, CodeBB, MergeBB, BBSelectRegOut, BBSelectRegIn,
2336 CodeBBSelectReg);
2337 InnerRegion.addMBB(MergeBB);
2338
2339 LLVM_DEBUG(InnerRegion.print(dbgs(), TRI))do { } while (false);
51
Loop condition is false. Exiting loop
2340 rewriteLiveOutRegs(IfBB, CodeBB, MergeBB, &InnerRegion, CurrentRegion);
2341 extractKilledPHIs(CodeBB);
2342 if (IsRegionEntryBB
51.1
'IsRegionEntryBB' is false
51.1
'IsRegionEntryBB' is false
) {
52
Taking false branch
2343 createEntryPHIs(CurrentRegion);
2344 }
2345 return IfBB;
53
Returning pointer (loaded from 'IfBB')
2346 }
2347}
2348
2349MachineBasicBlock *AMDGPUMachineCFGStructurizer::createIfRegion(
2350 MachineBasicBlock *MergeBB, LinearizedRegion *InnerRegion,
2351 LinearizedRegion *CurrentRegion, MachineBasicBlock *SelectBB,
2352 unsigned BBSelectRegIn, unsigned BBSelectRegOut) {
2353 unsigned CodeBBSelectReg =
2354 InnerRegion->getRegionMRT()->getInnerOutputRegister();
2355 MachineBasicBlock *CodeEntryBB = InnerRegion->getEntry();
2356 MachineBasicBlock *CodeExitBB = InnerRegion->getExit();
2357 MachineBasicBlock *IfBB = createIfBlock(MergeBB, CodeEntryBB, CodeExitBB,
2358 SelectBB, BBSelectRegIn, true);
2359 CurrentRegion->addMBB(IfBB);
2360 bool isEntry = CurrentRegion->getEntry() == InnerRegion->getEntry();
2361 if (isEntry) {
2362
2363 if (CurrentRegion->getHasLoop()) {
2364 MachineBasicBlock *RegionExit = CurrentRegion->getExit();
2365 MachineBasicBlock *ETrueBB = nullptr;
2366 MachineBasicBlock *EFalseBB = nullptr;
2367 SmallVector<MachineOperand, 1> ECond;
2368
2369 const DebugLoc &DL = DebugLoc();
2370 TII->analyzeBranch(*RegionExit, ETrueBB, EFalseBB, ECond);
2371 TII->removeBranch(*RegionExit);
2372
2373 // We need to create a backedge if there is a loop
2374 Register Reg =
2375 TII->insertNE(RegionExit, RegionExit->instr_end(), DL,
2376 CurrentRegion->getRegionMRT()->getInnerOutputRegister(),
2377 CurrentRegion->getRegionMRT()->getEntry()->getNumber());
2378 MachineOperand RegOp = MachineOperand::CreateReg(Reg, false, false, true);
2379 ArrayRef<MachineOperand> Cond(RegOp);
2380 LLVM_DEBUG(dbgs() << "RegionExitReg: ")do { } while (false);
2381 LLVM_DEBUG(Cond[0].print(dbgs(), TRI))do { } while (false);
2382 LLVM_DEBUG(dbgs() << "\n")do { } while (false);
2383 TII->insertBranch(*RegionExit, CurrentRegion->getEntry(), RegionExit,
2384 Cond, DebugLoc());
2385 RegionExit->addSuccessor(IfBB);
2386 }
2387 }
2388 CurrentRegion->addMBBs(InnerRegion);
2389 LLVM_DEBUG(dbgs() << "Insert BB Select PHI (region)\n")do { } while (false);
2390 insertMergePHI(IfBB, CodeExitBB, MergeBB, BBSelectRegOut, BBSelectRegIn,
2391 CodeBBSelectReg);
2392
2393 rewriteLiveOutRegs(IfBB, /* CodeEntryBB */ CodeExitBB, MergeBB, InnerRegion,
2394 CurrentRegion);
2395
2396 rewriteRegionEntryPHIs(InnerRegion, IfBB);
2397
2398 if (isEntry) {
2399 CurrentRegion->setEntry(IfBB);
2400 }
2401
2402 if (isEntry) {
2403 createEntryPHIs(CurrentRegion);
2404 }
2405
2406 return IfBB;
2407}
2408
2409void AMDGPUMachineCFGStructurizer::splitLoopPHI(MachineInstr &PHI,
2410 MachineBasicBlock *Entry,
2411 MachineBasicBlock *EntrySucc,
2412 LinearizedRegion *LRegion) {
2413 SmallVector<unsigned, 2> PHIRegionIndices;
2414 getPHIRegionIndices(LRegion, PHI, PHIRegionIndices);
2415
2416 assert(PHIRegionIndices.size() == 1)(static_cast<void> (0));
2417
2418 unsigned RegionIndex = PHIRegionIndices[0];
2419 unsigned RegionSourceReg = getPHISourceReg(PHI, RegionIndex);
2420 MachineBasicBlock *RegionSourceMBB = getPHIPred(PHI, RegionIndex);
2421 unsigned PHIDest = getPHIDestReg(PHI);
2422 unsigned PHISource = PHIDest;
2423 unsigned ReplaceReg;
2424
2425 if (shrinkPHI(PHI, PHIRegionIndices, &ReplaceReg)) {
2426 PHISource = ReplaceReg;
2427 }
2428
2429 const TargetRegisterClass *RegClass = MRI->getRegClass(PHIDest);
2430 Register NewDestReg = MRI->createVirtualRegister(RegClass);
2431 LRegion->replaceRegisterInsideRegion(PHIDest, NewDestReg, false, MRI);
2432 MachineInstrBuilder MIB =
2433 BuildMI(*EntrySucc, EntrySucc->instr_begin(), PHI.getDebugLoc(),
2434 TII->get(TargetOpcode::PHI), NewDestReg);
2435 LLVM_DEBUG(dbgs() << "Split Entry PHI " << printReg(NewDestReg, TRI)do { } while (false)
2436 << " = PHI(")do { } while (false);
2437 MIB.addReg(PHISource);
2438 MIB.addMBB(Entry);
2439 LLVM_DEBUG(dbgs() << printReg(PHISource, TRI) << ", "do { } while (false)
2440 << printMBBReference(*Entry))do { } while (false);
2441 MIB.addReg(RegionSourceReg);
2442 MIB.addMBB(RegionSourceMBB);
2443 LLVM_DEBUG(dbgs() << " ," << printReg(RegionSourceReg, TRI) << ", "do { } while (false)
2444 << printMBBReference(*RegionSourceMBB) << ")\n")do { } while (false);
2445}
2446
2447void AMDGPUMachineCFGStructurizer::splitLoopPHIs(MachineBasicBlock *Entry,
2448 MachineBasicBlock *EntrySucc,
2449 LinearizedRegion *LRegion) {
2450 SmallVector<MachineInstr *, 2> PHIs;
2451 collectPHIs(Entry, PHIs);
2452
2453 for (auto PHII : PHIs) {
2454 splitLoopPHI(*PHII, Entry, EntrySucc, LRegion);
2455 }
2456}
2457
2458// Split the exit block so that we can insert a end control flow
2459MachineBasicBlock *
2460AMDGPUMachineCFGStructurizer::splitExit(LinearizedRegion *LRegion) {
2461 auto MRTRegion = LRegion->getRegionMRT();
2462 auto Exit = LRegion->getExit();
2463 auto MF = Exit->getParent();
2464 auto Succ = MRTRegion->getSucc();
2465
2466 auto NewExit = MF->CreateMachineBasicBlock();
2467 auto AfterExitIter = Exit->getIterator();
2468 AfterExitIter++;
2469 MF->insert(AfterExitIter, NewExit);
2470 Exit->removeSuccessor(Succ);
2471 Exit->addSuccessor(NewExit);
2472 NewExit->addSuccessor(Succ);
2473 insertUnconditionalBranch(NewExit, Succ);
2474 LRegion->addMBB(NewExit);
2475 LRegion->setExit(NewExit);
2476
2477 LLVM_DEBUG(dbgs() << "Created new exit block: " << NewExit->getNumber()do { } while (false)
2478 << "\n")do { } while (false);
2479
2480 // Replace any PHI Predecessors in the successor with NewExit
2481 for (auto &II : *Succ) {
2482 MachineInstr &Instr = II;
2483
2484 // If we are past the PHI instructions we are done
2485 if (!Instr.isPHI())
2486 break;
2487
2488 int numPreds = getPHINumInputs(Instr);
2489 for (int i = 0; i < numPreds; ++i) {
2490 auto Pred = getPHIPred(Instr, i);
2491 if (Pred == Exit) {
2492 setPhiPred(Instr, i, NewExit);
2493 }
2494 }
2495 }
2496
2497 return NewExit;
2498}
2499
2500static MachineBasicBlock *split(MachineBasicBlock::iterator I) {
2501 // Create the fall-through block.
2502 MachineBasicBlock *MBB = (*I).getParent();
2503 MachineFunction *MF = MBB->getParent();
2504 MachineBasicBlock *SuccMBB = MF->CreateMachineBasicBlock();
2505 auto MBBIter = ++(MBB->getIterator());
2506 MF->insert(MBBIter, SuccMBB);
2507 SuccMBB->transferSuccessorsAndUpdatePHIs(MBB);
2508 MBB->addSuccessor(SuccMBB);
2509
2510 // Splice the code over.
2511 SuccMBB->splice(SuccMBB->end(), MBB, I, MBB->end());
2512
2513 return SuccMBB;
2514}
2515
2516// Split the entry block separating PHI-nodes and the rest of the code
2517// This is needed to insert an initializer for the bb select register
2518// inloop regions.
2519
2520MachineBasicBlock *
2521AMDGPUMachineCFGStructurizer::splitEntry(LinearizedRegion *LRegion) {
2522 MachineBasicBlock *Entry = LRegion->getEntry();
2523 MachineBasicBlock *EntrySucc = split(Entry->getFirstNonPHI());
2524 MachineBasicBlock *Exit = LRegion->getExit();
2525
2526 LLVM_DEBUG(dbgs() << "Split " << printMBBReference(*Entry) << " to "do { } while (false)
2527 << printMBBReference(*Entry) << " -> "do { } while (false)
2528 << printMBBReference(*EntrySucc) << "\n")do { } while (false);
2529 LRegion->addMBB(EntrySucc);
2530
2531 // Make the backedge go to Entry Succ
2532 if (Exit->isSuccessor(Entry)) {
2533 Exit->removeSuccessor(Entry);
2534 }
2535 Exit->addSuccessor(EntrySucc);
2536 MachineInstr &Branch = *(Exit->instr_rbegin());
2537 for (auto &UI : Branch.uses()) {
2538 if (UI.isMBB() && UI.getMBB() == Entry) {
2539 UI.setMBB(EntrySucc);
2540 }
2541 }
2542
2543 splitLoopPHIs(Entry, EntrySucc, LRegion);
2544
2545 return EntrySucc;
2546}
2547
2548LinearizedRegion *
2549AMDGPUMachineCFGStructurizer::initLinearizedRegion(RegionMRT *Region) {
2550 LinearizedRegion *LRegion = Region->getLinearizedRegion();
2551 LRegion->initLiveOut(Region, MRI, TRI, PHIInfo);
2552 LRegion->setEntry(Region->getEntry());
2553 return LRegion;
2554}
2555
2556static void removeOldExitPreds(RegionMRT *Region) {
2557 MachineBasicBlock *Exit = Region->getSucc();
2558 if (Exit == nullptr) {
2559 return;
2560 }
2561 for (MachineBasicBlock::pred_iterator PI = Exit->pred_begin(),
2562 E = Exit->pred_end();
2563 PI != E; ++PI) {
2564 if (Region->contains(*PI)) {
2565 (*PI)->removeSuccessor(Exit);
2566 }
2567 }
2568}
2569
2570static bool mbbHasBackEdge(MachineBasicBlock *MBB,
2571 SmallPtrSet<MachineBasicBlock *, 8> &MBBs) {
2572 for (auto SI = MBB->succ_begin(), SE = MBB->succ_end(); SI != SE; ++SI) {
2573 if (MBBs.contains(*SI)) {
2574 return true;
2575 }
2576 }
2577 return false;
2578}
2579
2580static bool containsNewBackedge(MRT *Tree,
2581 SmallPtrSet<MachineBasicBlock *, 8> &MBBs) {
2582 // Need to traverse this in reverse since it is in post order.
2583 if (Tree == nullptr)
2584 return false;
2585
2586 if (Tree->isMBB()) {
2587 MachineBasicBlock *MBB = Tree->getMBBMRT()->getMBB();
2588 MBBs.insert(MBB);
2589 if (mbbHasBackEdge(MBB, MBBs)) {
2590 return true;
2591 }
2592 } else {
2593 RegionMRT *Region = Tree->getRegionMRT();
2594 SetVector<MRT *> *Children = Region->getChildren();
2595 for (auto CI = Children->rbegin(), CE = Children->rend(); CI != CE; ++CI) {
2596 if (containsNewBackedge(*CI, MBBs))
2597 return true;
2598 }
2599 }
2600 return false;
2601}
2602
2603static bool containsNewBackedge(RegionMRT *Region) {
2604 SmallPtrSet<MachineBasicBlock *, 8> MBBs;
2605 return containsNewBackedge(Region, MBBs);
2606}
2607
2608bool AMDGPUMachineCFGStructurizer::structurizeComplexRegion(RegionMRT *Region) {
2609 auto *LRegion = initLinearizedRegion(Region);
2610 LRegion->setHasLoop(containsNewBackedge(Region));
2611 MachineBasicBlock *LastMerge = createLinearizedExitBlock(Region);
2612 MachineBasicBlock *CurrentMerge = LastMerge;
2613 LRegion->addMBB(LastMerge);
2614 LRegion->setExit(LastMerge);
2615
2616 rewriteRegionExitPHIs(Region, LastMerge, LRegion);
12
Calling 'AMDGPUMachineCFGStructurizer::rewriteRegionExitPHIs'
17
Returning from 'AMDGPUMachineCFGStructurizer::rewriteRegionExitPHIs'
2617 removeOldExitPreds(Region);
2618
2619 LLVM_DEBUG(PHIInfo.dump(MRI))do { } while (false);
18
Loop condition is false. Exiting loop
2620
2621 SetVector<MRT *> *Children = Region->getChildren();
2622 LLVM_DEBUG(dbgs() << "===========If Region Start===============\n")do { } while (false);
19
Loop condition is false. Exiting loop
2623 if (LRegion->getHasLoop()) {
20
Assuming the condition is false
21
Taking false branch
2624 LLVM_DEBUG(dbgs() << "Has Backedge: Yes\n")do { } while (false);
2625 } else {
2626 LLVM_DEBUG(dbgs() << "Has Backedge: No\n")do { } while (false);
22
Loop condition is false. Exiting loop
2627 }
2628
2629 unsigned BBSelectRegIn;
2630 unsigned BBSelectRegOut;
2631 for (auto CI = Children->begin(), CE = Children->end(); CI != CE; ++CI) {
23
Calling 'operator!=<(anonymous namespace)::MRT *const *, std::vector<(anonymous namespace)::MRT *>>'
26
Returning from 'operator!=<(anonymous namespace)::MRT *const *, std::vector<(anonymous namespace)::MRT *>>'
27
Loop condition is true. Entering loop body
59
Calling 'operator!=<(anonymous namespace)::MRT *const *, std::vector<(anonymous namespace)::MRT *>>'
62
Returning from 'operator!=<(anonymous namespace)::MRT *const *, std::vector<(anonymous namespace)::MRT *>>'
63
Loop condition is true. Entering loop body
2632 LLVM_DEBUG(dbgs() << "CurrentRegion: \n")do { } while (false);
28
Loop condition is false. Exiting loop
64
Loop condition is false. Exiting loop
2633 LLVM_DEBUG(LRegion->print(dbgs(), TRI))do { } while (false);
29
Loop condition is false. Exiting loop
65
Loop condition is false. Exiting loop
2634
2635 auto CNI = CI;
2636 ++CNI;
2637
2638 MRT *Child = (*CI);
2639
2640 if (Child->isRegion()) {
30
Calling 'MRT::isRegion'
33
Returning from 'MRT::isRegion'
34
Taking false branch
66
Calling 'MRT::isRegion'
69
Returning from 'MRT::isRegion'
70
Taking false branch
2641
2642 LinearizedRegion *InnerLRegion =
2643 Child->getRegionMRT()->getLinearizedRegion();
2644 // We found the block is the exit of an inner region, we need
2645 // to put it in the current linearized region.
2646
2647 LLVM_DEBUG(dbgs() << "Linearizing region: ")do { } while (false);
2648 LLVM_DEBUG(InnerLRegion->print(dbgs(), TRI))do { } while (false);
2649 LLVM_DEBUG(dbgs() << "\n")do { } while (false);
2650
2651 MachineBasicBlock *InnerEntry = InnerLRegion->getEntry();
2652 if ((&(*(InnerEntry->getParent()->begin()))) == InnerEntry) {
2653 // Entry has already been linearized, no need to do this region.
2654 unsigned OuterSelect = InnerLRegion->getBBSelectRegOut();
2655 unsigned InnerSelectReg =
2656 InnerLRegion->getRegionMRT()->getInnerOutputRegister();
2657 replaceRegisterWith(InnerSelectReg, OuterSelect),
2658 resolvePHIInfos(InnerEntry);
2659 if (!InnerLRegion->getExit()->isSuccessor(CurrentMerge))
2660 InnerLRegion->getExit()->addSuccessor(CurrentMerge);
2661 continue;
2662 }
2663
2664 BBSelectRegOut = Child->getBBSelectRegOut();
2665 BBSelectRegIn = Child->getBBSelectRegIn();
2666
2667 LLVM_DEBUG(dbgs() << "BBSelectRegIn: " << printReg(BBSelectRegIn, TRI)do { } while (false)
2668 << "\n")do { } while (false);
2669 LLVM_DEBUG(dbgs() << "BBSelectRegOut: " << printReg(BBSelectRegOut, TRI)do { } while (false)
2670 << "\n")do { } while (false);
2671
2672 MachineBasicBlock *IfEnd = CurrentMerge;
2673 CurrentMerge = createIfRegion(CurrentMerge, InnerLRegion, LRegion,
2674 Child->getRegionMRT()->getEntry(),
2675 BBSelectRegIn, BBSelectRegOut);
2676 TII->convertNonUniformIfRegion(CurrentMerge, IfEnd);
2677 } else {
2678 MachineBasicBlock *MBB = Child->getMBBMRT()->getMBB();
2679 LLVM_DEBUG(dbgs() << "Linearizing block: " << MBB->getNumber() << "\n")do { } while (false);
35
Loop condition is false. Exiting loop
71
Loop condition is false. Exiting loop
2680
2681 if (MBB == getSingleExitNode(*(MBB->getParent()))) {
36
Taking false branch
72
Taking false branch
2682 // If this is the exit block then we need to skip to the next.
2683 // The "in" register will be transferred to "out" in the next
2684 // iteration.
2685 continue;
2686 }
2687
2688 BBSelectRegOut = Child->getBBSelectRegOut();
2689 BBSelectRegIn = Child->getBBSelectRegIn();
2690
2691 LLVM_DEBUG(dbgs() << "BBSelectRegIn: " << printReg(BBSelectRegIn, TRI)do { } while (false)
37
Loop condition is false. Exiting loop
73
Loop condition is false. Exiting loop
2692 << "\n")do { } while (false);
2693 LLVM_DEBUG(dbgs() << "BBSelectRegOut: " << printReg(BBSelectRegOut, TRI)do { } while (false)
38
Loop condition is false. Exiting loop
74
Loop condition is false. Exiting loop
2694 << "\n")do { } while (false);
2695
2696 MachineBasicBlock *IfEnd = CurrentMerge;
2697 // This is a basic block that is not part of an inner region, we
2698 // need to put it in the current linearized region.
2699 CurrentMerge = createIfRegion(CurrentMerge, MBB, LRegion, BBSelectRegIn,
39
Calling 'AMDGPUMachineCFGStructurizer::createIfRegion'
54
Returning from 'AMDGPUMachineCFGStructurizer::createIfRegion'
55
Value assigned to 'CurrentMerge'
75
Passing null pointer value via 1st parameter 'MergeBB'
76
Calling 'AMDGPUMachineCFGStructurizer::createIfRegion'
2700 BBSelectRegOut);
2701 if (CurrentMerge) {
56
Assuming 'CurrentMerge' is null
57
Taking false branch
2702 TII->convertNonUniformIfRegion(CurrentMerge, IfEnd);
2703 }
2704
2705 LLVM_DEBUG(PHIInfo.dump(MRI))do { } while (false);
58
Loop condition is false. Exiting loop
2706 }
2707 }
2708
2709 LRegion->removeFalseRegisterKills(MRI);
2710
2711 if (LRegion->getHasLoop()) {
2712 MachineBasicBlock *NewSucc = splitEntry(LRegion);
2713 if (isFunctionEntryBlock(LRegion->getEntry())) {
2714 resolvePHIInfos(LRegion->getEntry());
2715 }
2716 const DebugLoc &DL = NewSucc->findDebugLoc(NewSucc->getFirstNonPHI());
2717 unsigned InReg = LRegion->getBBSelectRegIn();
2718 Register InnerSelectReg =
2719 MRI->createVirtualRegister(MRI->getRegClass(InReg));
2720 Register NewInReg = MRI->createVirtualRegister(MRI->getRegClass(InReg));
2721 TII->materializeImmediate(*(LRegion->getEntry()),
2722 LRegion->getEntry()->getFirstTerminator(), DL,
2723 NewInReg, Region->getEntry()->getNumber());
2724 // Need to be careful about updating the registers inside the region.
2725 LRegion->replaceRegisterInsideRegion(InReg, InnerSelectReg, false, MRI);
2726 LLVM_DEBUG(dbgs() << "Loop BBSelect Merge PHI:\n")do { } while (false);
2727 insertMergePHI(LRegion->getEntry(), LRegion->getExit(), NewSucc,
2728 InnerSelectReg, NewInReg,
2729 LRegion->getRegionMRT()->getInnerOutputRegister());
2730 splitExit(LRegion);
2731 TII->convertNonUniformLoopRegion(NewSucc, LastMerge);
2732 }
2733
2734 if (Region->isRoot()) {
2735 TII->insertReturn(*LastMerge);
2736 }
2737
2738 LLVM_DEBUG(Region->getEntry()->getParent()->dump())do { } while (false);
2739 LLVM_DEBUG(LRegion->print(dbgs(), TRI))do { } while (false);
2740 LLVM_DEBUG(PHIInfo.dump(MRI))do { } while (false);
2741
2742 LLVM_DEBUG(dbgs() << "===========If Region End===============\n")do { } while (false);
2743
2744 Region->setLinearizedRegion(LRegion);
2745 return true;
2746}
2747
2748bool AMDGPUMachineCFGStructurizer::structurizeRegion(RegionMRT *Region) {
2749 if (false && regionIsSimpleIf(Region)) {
2750 transformSimpleIfRegion(Region);
2751 return true;
2752 } else if (regionIsSequence(Region)) {
10
Taking false branch
2753 fixupRegionExits(Region);
2754 return false;
2755 } else {
2756 structurizeComplexRegion(Region);
11
Calling 'AMDGPUMachineCFGStructurizer::structurizeComplexRegion'
2757 }
2758 return false;
2759}
2760
2761static int structurize_once = 0;
2762
2763bool AMDGPUMachineCFGStructurizer::structurizeRegions(RegionMRT *Region,
2764 bool isTopRegion) {
2765 bool Changed = false;
2766
2767 auto Children = Region->getChildren();
2768 for (auto CI : *Children) {
2769 if (CI->isRegion()) {
6
Taking true branch
2770 Changed |= structurizeRegions(CI->getRegionMRT(), false);
7
Calling 'AMDGPUMachineCFGStructurizer::structurizeRegions'
2771 }
2772 }
2773
2774 if (structurize_once < 2 || true) {
8
Assuming 'structurize_once' is < 2
2775 Changed |= structurizeRegion(Region);
9
Calling 'AMDGPUMachineCFGStructurizer::structurizeRegion'
2776 structurize_once++;
2777 }
2778 return Changed;
2779}
2780
2781void AMDGPUMachineCFGStructurizer::initFallthroughMap(MachineFunction &MF) {
2782 LLVM_DEBUG(dbgs() << "Fallthrough Map:\n")do { } while (false);
2783 for (auto &MBBI : MF) {
2784 MachineBasicBlock *MBB = MBBI.getFallThrough();
2785 if (MBB != nullptr) {
2786 LLVM_DEBUG(dbgs() << "Fallthrough: " << MBBI.getNumber() << " -> "do { } while (false)
2787 << MBB->getNumber() << "\n")do { } while (false);
2788 }
2789 FallthroughMap[&MBBI] = MBB;
2790 }
2791}
2792
2793void AMDGPUMachineCFGStructurizer::createLinearizedRegion(RegionMRT *Region,
2794 unsigned SelectOut) {
2795 LinearizedRegion *LRegion = new LinearizedRegion();
2796 if (SelectOut) {
2797 LRegion->addLiveOut(SelectOut);
2798 LLVM_DEBUG(dbgs() << "Add LiveOut (BBSelect): " << printReg(SelectOut, TRI)do { } while (false)
2799 << "\n")do { } while (false);
2800 }
2801 LRegion->setRegionMRT(Region);
2802 Region->setLinearizedRegion(LRegion);
2803 LRegion->setParent(Region->getParent()
2804 ? Region->getParent()->getLinearizedRegion()
2805 : nullptr);
2806}
2807
2808unsigned
2809AMDGPUMachineCFGStructurizer::initializeSelectRegisters(MRT *MRT, unsigned SelectOut,
2810 MachineRegisterInfo *MRI,
2811 const SIInstrInfo *TII) {
2812 if (MRT->isRegion()) {
2813 RegionMRT *Region = MRT->getRegionMRT();
2814 Region->setBBSelectRegOut(SelectOut);
2815 unsigned InnerSelectOut = createBBSelectReg(TII, MRI);
2816
2817 // Fixme: Move linearization creation to the original spot
2818 createLinearizedRegion(Region, SelectOut);
2819
2820 for (auto CI = Region->getChildren()->begin(),
2821 CE = Region->getChildren()->end();
2822 CI != CE; ++CI) {
2823 InnerSelectOut =
2824 initializeSelectRegisters((*CI), InnerSelectOut, MRI, TII);
2825 }
2826 MRT->setBBSelectRegIn(InnerSelectOut);
2827 return InnerSelectOut;
2828 } else {
2829 MRT->setBBSelectRegOut(SelectOut);
2830 unsigned NewSelectIn = createBBSelectReg(TII, MRI);
2831 MRT->setBBSelectRegIn(NewSelectIn);
2832 return NewSelectIn;
2833 }
2834}
2835
2836static void checkRegOnlyPHIInputs(MachineFunction &MF) {
2837 for (auto &MBBI : MF) {
2838 for (MachineBasicBlock::instr_iterator I = MBBI.instr_begin(),
2839 E = MBBI.instr_end();
2840 I != E; ++I) {
2841 MachineInstr &Instr = *I;
2842 if (Instr.isPHI()) {
2843 int numPreds = getPHINumInputs(Instr);
2844 for (int i = 0; i < numPreds; ++i) {
2845 assert(Instr.getOperand(i * 2 + 1).isReg() &&(static_cast<void> (0))
2846 "PHI Operand not a register")(static_cast<void> (0));
2847 }
2848 }
2849 }
2850 }
2851}
2852
2853bool AMDGPUMachineCFGStructurizer::runOnMachineFunction(MachineFunction &MF) {
2854 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
2855 const SIInstrInfo *TII = ST.getInstrInfo();
2856 TRI = ST.getRegisterInfo();
2857 MRI = &(MF.getRegInfo());
2858 initFallthroughMap(MF);
2859
2860 checkRegOnlyPHIInputs(MF);
2861 LLVM_DEBUG(dbgs() << "----STRUCTURIZER START----\n")do { } while (false);
1
Loop condition is false. Exiting loop
2862 LLVM_DEBUG(MF.dump())do { } while (false);
2
Loop condition is false. Exiting loop
2863
2864 Regions = &(getAnalysis<MachineRegionInfoPass>().getRegionInfo());
2865 LLVM_DEBUG(Regions->dump())do { } while (false);
3
Loop condition is false. Exiting loop
2866
2867 RegionMRT *RTree = MRT::buildMRT(MF, Regions, TII, MRI);
2868 setRegionMRT(RTree);
2869 initializeSelectRegisters(RTree, 0, MRI, TII);
2870 LLVM_DEBUG(RTree->dump(TRI))do { } while (false);
4
Loop condition is false. Exiting loop
2871 bool result = structurizeRegions(RTree, true);
5
Calling 'AMDGPUMachineCFGStructurizer::structurizeRegions'
2872 delete RTree;
2873 LLVM_DEBUG(dbgs() << "----STRUCTURIZER END----\n")do { } while (false);
2874 initFallthroughMap(MF);
2875 return result;
2876}
2877
2878char AMDGPUMachineCFGStructurizerID = AMDGPUMachineCFGStructurizer::ID;
2879
2880INITIALIZE_PASS_BEGIN(AMDGPUMachineCFGStructurizer, "amdgpu-machine-cfg-structurizer",static void *initializeAMDGPUMachineCFGStructurizerPassOnce(PassRegistry
&Registry) {
2881 "AMDGPU Machine CFG Structurizer", false, false)static void *initializeAMDGPUMachineCFGStructurizerPassOnce(PassRegistry
&Registry) {
2882INITIALIZE_PASS_DEPENDENCY(MachineRegionInfoPass)initializeMachineRegionInfoPassPass(Registry);
2883INITIALIZE_PASS_END(AMDGPUMachineCFGStructurizer, "amdgpu-machine-cfg-structurizer",PassInfo *PI = new PassInfo( "AMDGPU Machine CFG Structurizer"
, "amdgpu-machine-cfg-structurizer", &AMDGPUMachineCFGStructurizer
::ID, PassInfo::NormalCtor_t(callDefaultCtor<AMDGPUMachineCFGStructurizer
>), false, false); Registry.registerPass(*PI, true); return
PI; } static llvm::once_flag InitializeAMDGPUMachineCFGStructurizerPassFlag
; void llvm::initializeAMDGPUMachineCFGStructurizerPass(PassRegistry
&Registry) { llvm::call_once(InitializeAMDGPUMachineCFGStructurizerPassFlag
, initializeAMDGPUMachineCFGStructurizerPassOnce, std::ref(Registry
)); }
2884 "AMDGPU Machine CFG Structurizer", false, false)PassInfo *PI = new PassInfo( "AMDGPU Machine CFG Structurizer"
, "amdgpu-machine-cfg-structurizer", &AMDGPUMachineCFGStructurizer
::ID, PassInfo::NormalCtor_t(callDefaultCtor<AMDGPUMachineCFGStructurizer
>), false, false); Registry.registerPass(*PI, true); return
PI; } static llvm::once_flag InitializeAMDGPUMachineCFGStructurizerPassFlag
; void llvm::initializeAMDGPUMachineCFGStructurizerPass(PassRegistry
&Registry) { llvm::call_once(InitializeAMDGPUMachineCFGStructurizerPassFlag
, initializeAMDGPUMachineCFGStructurizerPassOnce, std::ref(Registry
)); }
2885
2886FunctionPass *llvm::createAMDGPUMachineCFGStructurizerPass() {
2887 return new AMDGPUMachineCFGStructurizer();
2888}

/usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/bits/stl_iterator.h

1// Iterators -*- C++ -*-
2
3// Copyright (C) 2001-2020 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library. This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23// <http://www.gnu.org/licenses/>.
24
25/*
26 *
27 * Copyright (c) 1994
28 * Hewlett-Packard Company
29 *
30 * Permission to use, copy, modify, distribute and sell this software
31 * and its documentation for any purpose is hereby granted without fee,
32 * provided that the above copyright notice appear in all copies and
33 * that both that copyright notice and this permission notice appear
34 * in supporting documentation. Hewlett-Packard Company makes no
35 * representations about the suitability of this software for any
36 * purpose. It is provided "as is" without express or implied warranty.
37 *
38 *
39 * Copyright (c) 1996-1998
40 * Silicon Graphics Computer Systems, Inc.
41 *
42 * Permission to use, copy, modify, distribute and sell this software
43 * and its documentation for any purpose is hereby granted without fee,
44 * provided that the above copyright notice appear in all copies and
45 * that both that copyright notice and this permission notice appear
46 * in supporting documentation. Silicon Graphics makes no
47 * representations about the suitability of this software for any
48 * purpose. It is provided "as is" without express or implied warranty.
49 */
50
51/** @file bits/stl_iterator.h
52 * This is an internal header file, included by other library headers.
53 * Do not attempt to use it directly. @headername{iterator}
54 *
55 * This file implements reverse_iterator, back_insert_iterator,
56 * front_insert_iterator, insert_iterator, __normal_iterator, and their
57 * supporting functions and overloaded operators.
58 */
59
60#ifndef _STL_ITERATOR_H1
61#define _STL_ITERATOR_H1 1
62
63#include <bits/cpp_type_traits.h>
64#include <ext/type_traits.h>
65#include <bits/move.h>
66#include <bits/ptr_traits.h>
67
68#if __cplusplus201402L >= 201103L
69# include <type_traits>
70#endif
71
72#if __cplusplus201402L > 201703L
73# define __cpp_lib_array_constexpr 201811L
74# define __cpp_lib_constexpr_iterator 201811L
75#elif __cplusplus201402L == 201703L
76# define __cpp_lib_array_constexpr 201803L
77#endif
78
79#if __cplusplus201402L > 201703L
80# include <compare>
81# include <new>
82# include <bits/iterator_concepts.h>
83#endif
84
85namespace std _GLIBCXX_VISIBILITY(default)__attribute__ ((__visibility__ ("default")))
86{
87_GLIBCXX_BEGIN_NAMESPACE_VERSION
88
89 /**
90 * @addtogroup iterators
91 * @{
92 */
93
94#if __cplusplus201402L > 201703L && __cpp_lib_concepts
95 namespace __detail
96 {
97 // Weaken iterator_category _Cat to _Limit if it is derived from that,
98 // otherwise use _Otherwise.
99 template<typename _Cat, typename _Limit, typename _Otherwise = _Cat>
100 using __clamp_iter_cat
101 = conditional_t<derived_from<_Cat, _Limit>, _Limit, _Otherwise>;
102 }
103#endif
104
105 // 24.4.1 Reverse iterators
106 /**
107 * Bidirectional and random access iterators have corresponding reverse
108 * %iterator adaptors that iterate through the data structure in the
109 * opposite direction. They have the same signatures as the corresponding
110 * iterators. The fundamental relation between a reverse %iterator and its
111 * corresponding %iterator @c i is established by the identity:
112 * @code
113 * &*(reverse_iterator(i)) == &*(i - 1)
114 * @endcode
115 *
116 * <em>This mapping is dictated by the fact that while there is always a
117 * pointer past the end of an array, there might not be a valid pointer
118 * before the beginning of an array.</em> [24.4.1]/1,2
119 *
120 * Reverse iterators can be tricky and surprising at first. Their
121 * semantics make sense, however, and the trickiness is a side effect of
122 * the requirement that the iterators must be safe.
123 */
124 template<typename _Iterator>
125 class reverse_iterator
126 : public iterator<typename iterator_traits<_Iterator>::iterator_category,
127 typename iterator_traits<_Iterator>::value_type,
128 typename iterator_traits<_Iterator>::difference_type,
129 typename iterator_traits<_Iterator>::pointer,
130 typename iterator_traits<_Iterator>::reference>
131 {
132 protected:
133 _Iterator current;
134
135 typedef iterator_traits<_Iterator> __traits_type;
136
137 public:
138 typedef _Iterator iterator_type;
139 typedef typename __traits_type::difference_type difference_type;
140 typedef typename __traits_type::pointer pointer;
141 typedef typename __traits_type::reference reference;
142
143#if __cplusplus201402L > 201703L && __cpp_lib_concepts
144 using iterator_concept
145 = conditional_t<random_access_iterator<_Iterator>,
146 random_access_iterator_tag,
147 bidirectional_iterator_tag>;
148 using iterator_category
149 = __detail::__clamp_iter_cat<typename __traits_type::iterator_category,
150 random_access_iterator_tag>;
151#endif
152
153 /**
154 * The default constructor value-initializes member @p current.
155 * If it is a pointer, that means it is zero-initialized.
156 */
157 // _GLIBCXX_RESOLVE_LIB_DEFECTS
158 // 235 No specification of default ctor for reverse_iterator
159 // 1012. reverse_iterator default ctor should value initialize
160 _GLIBCXX17_CONSTEXPR
161 reverse_iterator() : current() { }
162
163 /**
164 * This %iterator will move in the opposite direction that @p x does.
165 */
166 explicit _GLIBCXX17_CONSTEXPR
167 reverse_iterator(iterator_type __x) : current(__x) { }
168
169 /**
170 * The copy constructor is normal.
171 */
172 _GLIBCXX17_CONSTEXPR
173 reverse_iterator(const reverse_iterator& __x)
174 : current(__x.current) { }
175
176#if __cplusplus201402L >= 201103L
177 reverse_iterator& operator=(const reverse_iterator&) = default;
178#endif
179
180 /**
181 * A %reverse_iterator across other types can be copied if the
182 * underlying %iterator can be converted to the type of @c current.
183 */
184 template<typename _Iter>
185 _GLIBCXX17_CONSTEXPR
186 reverse_iterator(const reverse_iterator<_Iter>& __x)
187 : current(__x.base()) { }
188
189 /**
190 * @return @c current, the %iterator used for underlying work.
191 */
192 _GLIBCXX17_CONSTEXPR iterator_type
193 base() const
194 { return current; }
195
196 /**
197 * @return A reference to the value at @c --current
198 *
199 * This requires that @c --current is dereferenceable.
200 *
201 * @warning This implementation requires that for an iterator of the
202 * underlying iterator type, @c x, a reference obtained by
203 * @c *x remains valid after @c x has been modified or
204 * destroyed. This is a bug: http://gcc.gnu.org/PR51823
205 */
206 _GLIBCXX17_CONSTEXPR reference
207 operator*() const
208 {
209 _Iterator __tmp = current;
210 return *--__tmp;
211 }
212
213 /**
214 * @return A pointer to the value at @c --current
215 *
216 * This requires that @c --current is dereferenceable.
217 */
218 _GLIBCXX17_CONSTEXPR pointer
219 operator->() const
220#if __cplusplus201402L > 201703L && __cpp_concepts >= 201907L
221 requires is_pointer_v<_Iterator>
222 || requires(const _Iterator __i) { __i.operator->(); }
223#endif
224 {
225 // _GLIBCXX_RESOLVE_LIB_DEFECTS
226 // 1052. operator-> should also support smart pointers
227 _Iterator __tmp = current;
228 --__tmp;
229 return _S_to_pointer(__tmp);
230 }
231
232 /**
233 * @return @c *this
234 *
235 * Decrements the underlying iterator.
236 */
237 _GLIBCXX17_CONSTEXPR reverse_iterator&
238 operator++()
239 {
240 --current;
241 return *this;
242 }
243
244 /**
245 * @return The original value of @c *this
246 *
247 * Decrements the underlying iterator.
248 */
249 _GLIBCXX17_CONSTEXPR reverse_iterator
250 operator++(int)
251 {
252 reverse_iterator __tmp = *this;
253 --current;
254 return __tmp;
255 }
256
257 /**
258 * @return @c *this
259 *
260 * Increments the underlying iterator.
261 */
262 _GLIBCXX17_CONSTEXPR reverse_iterator&
263 operator--()
264 {
265 ++current;
266 return *this;
267 }
268
269 /**
270 * @return A reverse_iterator with the previous value of @c *this
271 *
272 * Increments the underlying iterator.
273 */
274 _GLIBCXX17_CONSTEXPR reverse_iterator
275 operator--(int)
276 {
277 reverse_iterator __tmp = *this;
278 ++current;
279 return __tmp;
280 }
281
282 /**
283 * @return A reverse_iterator that refers to @c current - @a __n
284 *
285 * The underlying iterator must be a Random Access Iterator.
286 */
287 _GLIBCXX17_CONSTEXPR reverse_iterator
288 operator+(difference_type __n) const
289 { return reverse_iterator(current - __n); }
290
291 /**
292 * @return *this
293 *
294 * Moves the underlying iterator backwards @a __n steps.
295 * The underlying iterator must be a Random Access Iterator.
296 */
297 _GLIBCXX17_CONSTEXPR reverse_iterator&
298 operator+=(difference_type __n)
299 {
300 current -= __n;
301 return *this;
302 }
303
304 /**
305 * @return A reverse_iterator that refers to @c current - @a __n
306 *
307 * The underlying iterator must be a Random Access Iterator.
308 */
309 _GLIBCXX17_CONSTEXPR reverse_iterator
310 operator-(difference_type __n) const
311 { return reverse_iterator(current + __n); }
312
313 /**
314 * @return *this
315 *
316 * Moves the underlying iterator forwards @a __n steps.
317 * The underlying iterator must be a Random Access Iterator.
318 */
319 _GLIBCXX17_CONSTEXPR reverse_iterator&
320 operator-=(difference_type __n)
321 {
322 current += __n;
323 return *this;
324 }
325
326 /**
327 * @return The value at @c current - @a __n - 1
328 *
329 * The underlying iterator must be a Random Access Iterator.
330 */
331 _GLIBCXX17_CONSTEXPR reference
332 operator[](difference_type __n) const
333 { return *(*this + __n); }
334
335#if __cplusplus201402L > 201703L && __cpp_lib_concepts
336 friend constexpr iter_rvalue_reference_t<_Iterator>
337 iter_move(const reverse_iterator& __i)
338 noexcept(is_nothrow_copy_constructible_v<_Iterator>
339 && noexcept(ranges::iter_move(--std::declval<_Iterator&>())))
340 {
341 auto __tmp = __i.base();
342 return ranges::iter_move(--__tmp);
343 }
344
345 template<indirectly_swappable<_Iterator> _Iter2>
346 friend constexpr void
347 iter_swap(const reverse_iterator& __x,
348 const reverse_iterator<_Iter2>& __y)
349 noexcept(is_nothrow_copy_constructible_v<_Iterator>
350 && is_nothrow_copy_constructible_v<_Iter2>
351 && noexcept(ranges::iter_swap(--std::declval<_Iterator&>(),
352 --std::declval<_Iter2&>())))
353 {
354 auto __xtmp = __x.base();
355 auto __ytmp = __y.base();
356 ranges::iter_swap(--__xtmp, --__ytmp);
357 }
358#endif
359
360 private:
361 template<typename _Tp>
362 static _GLIBCXX17_CONSTEXPR _Tp*
363 _S_to_pointer(_Tp* __p)
364 { return __p; }
365
366 template<typename _Tp>
367 static _GLIBCXX17_CONSTEXPR pointer
368 _S_to_pointer(_Tp __t)
369 { return __t.operator->(); }
370 };
371
372 //@{
373 /**
374 * @param __x A %reverse_iterator.
375 * @param __y A %reverse_iterator.
376 * @return A simple bool.
377 *
378 * Reverse iterators forward comparisons to their underlying base()
379 * iterators.
380 *
381 */
382#if __cplusplus201402L <= 201703L || ! defined __cpp_lib_concepts
383 template<typename _Iterator>
384 inline _GLIBCXX17_CONSTEXPR bool
385 operator==(const reverse_iterator<_Iterator>& __x,
386 const reverse_iterator<_Iterator>& __y)
387 { return __x.base() == __y.base(); }
388
389 template<typename _Iterator>
390 inline _GLIBCXX17_CONSTEXPR bool
391 operator<(const reverse_iterator<_Iterator>& __x,
392 const reverse_iterator<_Iterator>& __y)
393 { return __y.base() < __x.base(); }
394
395 template<typename _Iterator>
396 inline _GLIBCXX17_CONSTEXPR bool
397 operator!=(const reverse_iterator<_Iterator>& __x,
398 const reverse_iterator<_Iterator>& __y)
399 { return !(__x == __y); }
400
401 template<typename _Iterator>
402 inline _GLIBCXX17_CONSTEXPR bool
403 operator>(const reverse_iterator<_Iterator>& __x,
404 const reverse_iterator<_Iterator>& __y)
405 { return __y < __x; }
406
407 template<typename _Iterator>
408 inline _GLIBCXX17_CONSTEXPR bool
409 operator<=(const reverse_iterator<_Iterator>& __x,
410 const reverse_iterator<_Iterator>& __y)
411 { return !(__y < __x); }
412
413 template<typename _Iterator>
414 inline _GLIBCXX17_CONSTEXPR bool
415 operator>=(const reverse_iterator<_Iterator>& __x,
416 const reverse_iterator<_Iterator>& __y)
417 { return !(__x < __y); }
418
419 // _GLIBCXX_RESOLVE_LIB_DEFECTS
420 // DR 280. Comparison of reverse_iterator to const reverse_iterator.
421 template<typename _IteratorL, typename _IteratorR>
422 inline _GLIBCXX17_CONSTEXPR bool
423 operator==(const reverse_iterator<_IteratorL>& __x,
424 const reverse_iterator<_IteratorR>& __y)
425 { return __x.base() == __y.base(); }
426
427 template<typename _IteratorL, typename _IteratorR>
428 inline _GLIBCXX17_CONSTEXPR bool
429 operator<(const reverse_iterator<_IteratorL>& __x,
430 const reverse_iterator<_IteratorR>& __y)
431 { return __y.base() < __x.base(); }
432
433 template<typename _IteratorL, typename _IteratorR>
434 inline _GLIBCXX17_CONSTEXPR bool
435 operator!=(const reverse_iterator<_IteratorL>& __x,
436 const reverse_iterator<_IteratorR>& __y)
437 { return !(__x == __y); }
438
439 template<typename _IteratorL, typename _IteratorR>
440 inline _GLIBCXX17_CONSTEXPR bool
441 operator>(const reverse_iterator<_IteratorL>& __x,
442 const reverse_iterator<_IteratorR>& __y)
443 { return __y < __x; }
444
445 template<typename _IteratorL, typename _IteratorR>
446 inline _GLIBCXX17_CONSTEXPR bool
447 operator<=(const reverse_iterator<_IteratorL>& __x,
448 const reverse_iterator<_IteratorR>& __y)
449 { return !(__y < __x); }
450
451 template<typename _IteratorL, typename _IteratorR>
452 inline _GLIBCXX17_CONSTEXPR bool
453 operator>=(const reverse_iterator<_IteratorL>& __x,
454 const reverse_iterator<_IteratorR>& __y)
455 { return !(__x < __y); }
456#else // C++20
457 template<typename _IteratorL, typename _IteratorR>
458 constexpr bool
459 operator==(const reverse_iterator<_IteratorL>& __x,
460 const reverse_iterator<_IteratorR>& __y)
461 requires requires { { __x.base() == __y.base() } -> convertible_to<bool>; }
462 { return __x.base() == __y.base(); }
463
464 template<typename _IteratorL, typename _IteratorR>
465 constexpr bool
466 operator!=(const reverse_iterator<_IteratorL>& __x,
467 const reverse_iterator<_IteratorR>& __y)
468 requires requires { { __x.base() != __y.base() } -> convertible_to<bool>; }
469 { return __x.base() != __y.base(); }
470
471 template<typename _IteratorL, typename _IteratorR>
472 constexpr bool
473 operator<(const reverse_iterator<_IteratorL>& __x,
474 const reverse_iterator<_IteratorR>& __y)
475 requires requires { { __x.base() > __y.base() } -> convertible_to<bool>; }
476 { return __x.base() > __y.base(); }
477
478 template<typename _IteratorL, typename _IteratorR>
479 constexpr bool
480 operator>(const reverse_iterator<_IteratorL>& __x,
481 const reverse_iterator<_IteratorR>& __y)
482 requires requires { { __x.base() < __y.base() } -> convertible_to<bool>; }
483 { return __x.base() < __y.base(); }
484
485 template<typename _IteratorL, typename _IteratorR>
486 constexpr bool
487 operator<=(const reverse_iterator<_IteratorL>& __x,
488 const reverse_iterator<_IteratorR>& __y)
489 requires requires { { __x.base() >= __y.base() } -> convertible_to<bool>; }
490 { return __x.base() >= __y.base(); }
491
492 template<typename _IteratorL, typename _IteratorR>
493 constexpr bool
494 operator>=(const reverse_iterator<_IteratorL>& __x,
495 const reverse_iterator<_IteratorR>& __y)
496 requires requires { { __x.base() <= __y.base() } -> convertible_to<bool>; }
497 { return __x.base() <= __y.base(); }
498
499 template<typename _IteratorL,
500 three_way_comparable_with<_IteratorL> _IteratorR>
501 constexpr compare_three_way_result_t<_IteratorL, _IteratorR>
502 operator<=>(const reverse_iterator<_IteratorL>& __x,
503 const reverse_iterator<_IteratorR>& __y)
504 { return __y.base() <=> __x.base(); }
505#endif // C++20
506 //@}
507
508#if __cplusplus201402L < 201103L
509 template<typename _Iterator>
510 inline typename reverse_iterator<_Iterator>::difference_type
511 operator-(const reverse_iterator<_Iterator>& __x,
512 const reverse_iterator<_Iterator>& __y)
513 { return __y.base() - __x.base(); }
514
515 template<typename _IteratorL, typename _IteratorR>
516 inline typename reverse_iterator<_IteratorL>::difference_type
517 operator-(const reverse_iterator<_IteratorL>& __x,
518 const reverse_iterator<_IteratorR>& __y)
519 { return __y.base() - __x.base(); }
520#else
521 // _GLIBCXX_RESOLVE_LIB_DEFECTS
522 // DR 685. reverse_iterator/move_iterator difference has invalid signatures
523 template<typename _IteratorL, typename _IteratorR>
524 inline _GLIBCXX17_CONSTEXPR auto
525 operator-(const reverse_iterator<_IteratorL>& __x,
526 const reverse_iterator<_IteratorR>& __y)
527 -> decltype(__y.base() - __x.base())
528 { return __y.base() - __x.base(); }
529#endif
530
531 template<typename _Iterator>
532 inline _GLIBCXX17_CONSTEXPR reverse_iterator<_Iterator>
533 operator+(typename reverse_iterator<_Iterator>::difference_type __n,
534 const reverse_iterator<_Iterator>& __x)
535 { return reverse_iterator<_Iterator>(__x.base() - __n); }
536
537#if __cplusplus201402L >= 201103L
538 // Same as C++14 make_reverse_iterator but used in C++11 mode too.
539 template<typename _Iterator>
540 inline _GLIBCXX17_CONSTEXPR reverse_iterator<_Iterator>
541 __make_reverse_iterator(_Iterator __i)
542 { return reverse_iterator<_Iterator>(__i); }
543
544# if __cplusplus201402L >= 201402L
545# define __cpp_lib_make_reverse_iterator201402 201402
546
547 // _GLIBCXX_RESOLVE_LIB_DEFECTS
548 // DR 2285. make_reverse_iterator
549 /// Generator function for reverse_iterator.
550 template<typename _Iterator>
551 inline _GLIBCXX17_CONSTEXPR reverse_iterator<_Iterator>
552 make_reverse_iterator(_Iterator __i)
553 { return reverse_iterator<_Iterator>(__i); }
554
555# if __cplusplus201402L > 201703L && defined __cpp_lib_concepts
556 template<typename _Iterator1, typename _Iterator2>
557 requires (!sized_sentinel_for<_Iterator1, _Iterator2>)
558 inline constexpr bool
559 disable_sized_sentinel_for<reverse_iterator<_Iterator1>,
560 reverse_iterator<_Iterator2>> = true;
561# endif // C++20
562# endif // C++14
563
564 template<typename _Iterator>
565 _GLIBCXX20_CONSTEXPR
566 auto
567 __niter_base(reverse_iterator<_Iterator> __it)
568 -> decltype(__make_reverse_iterator(__niter_base(__it.base())))
569 { return __make_reverse_iterator(__niter_base(__it.base())); }
570
571 template<typename _Iterator>
572 struct __is_move_iterator<reverse_iterator<_Iterator> >
573 : __is_move_iterator<_Iterator>
574 { };
575
576 template<typename _Iterator>
577 _GLIBCXX20_CONSTEXPR
578 auto
579 __miter_base(reverse_iterator<_Iterator> __it)
580 -> decltype(__make_reverse_iterator(__miter_base(__it.base())))
581 { return __make_reverse_iterator(__miter_base(__it.base())); }
582#endif // C++11
583
584 // 24.4.2.2.1 back_insert_iterator
585 /**
586 * @brief Turns assignment into insertion.
587 *
588 * These are output iterators, constructed from a container-of-T.
589 * Assigning a T to the iterator appends it to the container using
590 * push_back.
591 *
592 * Tip: Using the back_inserter function to create these iterators can
593 * save typing.
594 */
595 template<typename _Container>
596 class back_insert_iterator
597 : public iterator<output_iterator_tag, void, void, void, void>
598 {
599 protected:
600 _Container* container;
601
602 public:
603 /// A nested typedef for the type of whatever container you used.
604 typedef _Container container_type;
605#if __cplusplus201402L > 201703L
606 using difference_type = ptrdiff_t;
607
608 constexpr back_insert_iterator() noexcept : container(nullptr) { }
609#endif
610
611 /// The only way to create this %iterator is with a container.
612 explicit _GLIBCXX20_CONSTEXPR
613 back_insert_iterator(_Container& __x)
614 : container(std::__addressof(__x)) { }
615
616 /**
617 * @param __value An instance of whatever type
618 * container_type::const_reference is; presumably a
619 * reference-to-const T for container<T>.
620 * @return This %iterator, for chained operations.
621 *
622 * This kind of %iterator doesn't really have a @a position in the
623 * container (you can think of the position as being permanently at
624 * the end, if you like). Assigning a value to the %iterator will
625 * always append the value to the end of the container.
626 */
627#if __cplusplus201402L < 201103L
628 back_insert_iterator&
629 operator=(typename _Container::const_reference __value)
630 {
631 container->push_back(__value);
632 return *this;
633 }
634#else
635 _GLIBCXX20_CONSTEXPR
636 back_insert_iterator&
637 operator=(const typename _Container::value_type& __value)
638 {
639 container->push_back(__value);
640 return *this;
641 }
642
643 _GLIBCXX20_CONSTEXPR
644 back_insert_iterator&
645 operator=(typename _Container::value_type&& __value)
646 {
647 container->push_back(std::move(__value));
648 return *this;
649 }
650#endif
651
652 /// Simply returns *this.
653 _GLIBCXX20_CONSTEXPR
654 back_insert_iterator&
655 operator*()
656 { return *this; }
657
658 /// Simply returns *this. (This %iterator does not @a move.)
659 _GLIBCXX20_CONSTEXPR
660 back_insert_iterator&
661 operator++()
662 { return *this; }
663
664 /// Simply returns *this. (This %iterator does not @a move.)
665 _GLIBCXX20_CONSTEXPR
666 back_insert_iterator
667 operator++(int)
668 { return *this; }
669 };
670
671 /**
672 * @param __x A container of arbitrary type.
673 * @return An instance of back_insert_iterator working on @p __x.
674 *
675 * This wrapper function helps in creating back_insert_iterator instances.
676 * Typing the name of the %iterator requires knowing the precise full
677 * type of the container, which can be tedious and impedes generic
678 * programming. Using this function lets you take advantage of automatic
679 * template parameter deduction, making the compiler match the correct
680 * types for you.
681 */
682 template<typename _Container>
683 _GLIBCXX20_CONSTEXPR
684 inline back_insert_iterator<_Container>
685 back_inserter(_Container& __x)
686 { return back_insert_iterator<_Container>(__x); }
687
688 /**
689 * @brief Turns assignment into insertion.
690 *
691 * These are output iterators, constructed from a container-of-T.
692 * Assigning a T to the iterator prepends it to the container using
693 * push_front.
694 *
695 * Tip: Using the front_inserter function to create these iterators can
696 * save typing.
697 */
698 template<typename _Container>
699 class front_insert_iterator
700 : public iterator<output_iterator_tag, void, void, void, void>
701 {
702 protected:
703 _Container* container;
704
705 public:
706 /// A nested typedef for the type of whatever container you used.
707 typedef _Container container_type;
708#if __cplusplus201402L > 201703L
709 using difference_type = ptrdiff_t;
710
711 constexpr front_insert_iterator() noexcept : container(nullptr) { }
712#endif
713
714 /// The only way to create this %iterator is with a container.
715 explicit _GLIBCXX20_CONSTEXPR
716 front_insert_iterator(_Container& __x)
717 : container(std::__addressof(__x)) { }
718
719 /**
720 * @param __value An instance of whatever type
721 * container_type::const_reference is; presumably a
722 * reference-to-const T for container<T>.
723 * @return This %iterator, for chained operations.
724 *
725 * This kind of %iterator doesn't really have a @a position in the
726 * container (you can think of the position as being permanently at
727 * the front, if you like). Assigning a value to the %iterator will
728 * always prepend the value to the front of the container.
729 */
730#if __cplusplus201402L < 201103L
731 front_insert_iterator&
732 operator=(typename _Container::const_reference __value)
733 {
734 container->push_front(__value);
735 return *this;
736 }
737#else
738 _GLIBCXX20_CONSTEXPR
739 front_insert_iterator&
740 operator=(const typename _Container::value_type& __value)
741 {
742 container->push_front(__value);
743 return *this;
744 }
745
746 _GLIBCXX20_CONSTEXPR
747 front_insert_iterator&
748 operator=(typename _Container::value_type&& __value)
749 {
750 container->push_front(std::move(__value));
751 return *this;
752 }
753#endif
754
755 /// Simply returns *this.
756 _GLIBCXX20_CONSTEXPR
757 front_insert_iterator&
758 operator*()
759 { return *this; }
760
761 /// Simply returns *this. (This %iterator does not @a move.)
762 _GLIBCXX20_CONSTEXPR
763 front_insert_iterator&
764 operator++()
765 { return *this; }
766
767 /// Simply returns *this. (This %iterator does not @a move.)
768 _GLIBCXX20_CONSTEXPR
769 front_insert_iterator
770 operator++(int)
771 { return *this; }
772 };
773
774 /**
775 * @param __x A container of arbitrary type.
776 * @return An instance of front_insert_iterator working on @p x.
777 *
778 * This wrapper function helps in creating front_insert_iterator instances.
779 * Typing the name of the %iterator requires knowing the precise full
780 * type of the container, which can be tedious and impedes generic
781 * programming. Using this function lets you take advantage of automatic
782 * template parameter deduction, making the compiler match the correct
783 * types for you.
784 */
785 template<typename _Container>
786 _GLIBCXX20_CONSTEXPR
787 inline front_insert_iterator<_Container>
788 front_inserter(_Container& __x)
789 { return front_insert_iterator<_Container>(__x); }
790
791 /**
792 * @brief Turns assignment into insertion.
793 *
794 * These are output iterators, constructed from a container-of-T.
795 * Assigning a T to the iterator inserts it in the container at the
796 * %iterator's position, rather than overwriting the value at that
797 * position.
798 *
799 * (Sequences will actually insert a @e copy of the value before the
800 * %iterator's position.)
801 *
802 * Tip: Using the inserter function to create these iterators can
803 * save typing.
804 */
805 template<typename _Container>
806 class insert_iterator
807 : public iterator<output_iterator_tag, void, void, void, void>
808 {
809#if __cplusplus201402L > 201703L && defined __cpp_lib_concepts
810 using _Iter = std::__detail::__range_iter_t<_Container>;
811
812 protected:
813 _Container* container = nullptr;
814 _Iter iter = _Iter();
815#else
816 typedef typename _Container::iterator _Iter;
817
818 protected:
819 _Container* container;
820 _Iter iter;
821#endif
822
823 public:
824 /// A nested typedef for the type of whatever container you used.
825 typedef _Container container_type;
826
827#if __cplusplus201402L > 201703L && defined __cpp_lib_concepts
828 using difference_type = ptrdiff_t;
829
830 insert_iterator() = default;
831#endif
832
833 /**
834 * The only way to create this %iterator is with a container and an
835 * initial position (a normal %iterator into the container).
836 */
837 _GLIBCXX20_CONSTEXPR
838 insert_iterator(_Container& __x, _Iter __i)
839 : container(std::__addressof(__x)), iter(__i) {}
840
841 /**
842 * @param __value An instance of whatever type
843 * container_type::const_reference is; presumably a
844 * reference-to-const T for container<T>.
845 * @return This %iterator, for chained operations.
846 *
847 * This kind of %iterator maintains its own position in the
848 * container. Assigning a value to the %iterator will insert the
849 * value into the container at the place before the %iterator.
850 *
851 * The position is maintained such that subsequent assignments will
852 * insert values immediately after one another. For example,
853 * @code
854 * // vector v contains A and Z
855 *
856 * insert_iterator i (v, ++v.begin());
857 * i = 1;
858 * i = 2;
859 * i = 3;
860 *
861 * // vector v contains A, 1, 2, 3, and Z
862 * @endcode
863 */
864#if __cplusplus201402L < 201103L
865 insert_iterator&
866 operator=(typename _Container::const_reference __value)
867 {
868 iter = container->insert(iter, __value);
869 ++iter;
870 return *this;
871 }
872#else
873 _GLIBCXX20_CONSTEXPR
874 insert_iterator&
875 operator=(const typename _Container::value_type& __value)
876 {
877 iter = container->insert(iter, __value);
878 ++iter;
879 return *this;
880 }
881
882 _GLIBCXX20_CONSTEXPR
883 insert_iterator&
884 operator=(typename _Container::value_type&& __value)
885 {
886 iter = container->insert(iter, std::move(__value));
887 ++iter;
888 return *this;
889 }
890#endif
891
892 /// Simply returns *this.
893 _GLIBCXX20_CONSTEXPR
894 insert_iterator&
895 operator*()
896 { return *this; }
897
898 /// Simply returns *this. (This %iterator does not @a move.)
899 _GLIBCXX20_CONSTEXPR
900 insert_iterator&
901 operator++()
902 { return *this; }
903
904 /// Simply returns *this. (This %iterator does not @a move.)
905 _GLIBCXX20_CONSTEXPR
906 insert_iterator&
907 operator++(int)
908 { return *this; }
909 };
910
911 /**
912 * @param __x A container of arbitrary type.
913 * @param __i An iterator into the container.
914 * @return An instance of insert_iterator working on @p __x.
915 *
916 * This wrapper function helps in creating insert_iterator instances.
917 * Typing the name of the %iterator requires knowing the precise full
918 * type of the container, which can be tedious and impedes generic
919 * programming. Using this function lets you take advantage of automatic
920 * template parameter deduction, making the compiler match the correct
921 * types for you.
922 */
923#if __cplusplus201402L > 201703L && defined __cpp_lib_concepts
924 template<typename _Container>
925 constexpr insert_iterator<_Container>
926 inserter(_Container& __x, std::__detail::__range_iter_t<_Container> __i)
927 { return insert_iterator<_Container>(__x, __i); }
928#else
929 template<typename _Container, typename _Iterator>
930 inline insert_iterator<_Container>
931 inserter(_Container& __x, _Iterator __i)
932 {
933 return insert_iterator<_Container>(__x,
934 typename _Container::iterator(__i));
935 }
936#endif
937
938 // @} group iterators
939
940_GLIBCXX_END_NAMESPACE_VERSION
941} // namespace
942
943namespace __gnu_cxx _GLIBCXX_VISIBILITY(default)__attribute__ ((__visibility__ ("default")))
944{
945_GLIBCXX_BEGIN_NAMESPACE_VERSION
946
947 // This iterator adapter is @a normal in the sense that it does not
948 // change the semantics of any of the operators of its iterator
949 // parameter. Its primary purpose is to convert an iterator that is
950 // not a class, e.g. a pointer, into an iterator that is a class.
951 // The _Container parameter exists solely so that different containers
952 // using this template can instantiate different types, even if the
953 // _Iterator parameter is the same.
954 template<typename _Iterator, typename _Container>
955 class __normal_iterator
956 {
957 protected:
958 _Iterator _M_current;
959
960 typedef std::iterator_traits<_Iterator> __traits_type;
961
962 public:
963 typedef _Iterator iterator_type;
964 typedef typename __traits_type::iterator_category iterator_category;
965 typedef typename __traits_type::value_type value_type;
966 typedef typename __traits_type::difference_type difference_type;
967 typedef typename __traits_type::reference reference;
968 typedef typename __traits_type::pointer pointer;
969
970#if __cplusplus201402L > 201703L && __cpp_lib_concepts
971 using iterator_concept = std::__detail::__iter_concept<_Iterator>;
972#endif
973
974 _GLIBCXX_CONSTEXPRconstexpr __normal_iterator() _GLIBCXX_NOEXCEPTnoexcept
975 : _M_current(_Iterator()) { }
976
977 explicit _GLIBCXX20_CONSTEXPR
978 __normal_iterator(const _Iterator& __i) _GLIBCXX_NOEXCEPTnoexcept
979 : _M_current(__i) { }
980
981 // Allow iterator to const_iterator conversion
982 template<typename _Iter>
983 _GLIBCXX20_CONSTEXPR
984 __normal_iterator(const __normal_iterator<_Iter,
985 typename __enable_if<
986 (std::__are_same<_Iter, typename _Container::pointer>::__value),
987 _Container>::__type>& __i) _GLIBCXX_NOEXCEPTnoexcept
988 : _M_current(__i.base()) { }
989
990 // Forward iterator requirements
991 _GLIBCXX20_CONSTEXPR
992 reference
993 operator*() const _GLIBCXX_NOEXCEPTnoexcept
994 { return *_M_current; }
995
996 _GLIBCXX20_CONSTEXPR
997 pointer
998 operator->() const _GLIBCXX_NOEXCEPTnoexcept
999 { return _M_current; }
1000
1001 _GLIBCXX20_CONSTEXPR
1002 __normal_iterator&
1003 operator++() _GLIBCXX_NOEXCEPTnoexcept
1004 {
1005 ++_M_current;
1006 return *this;
1007 }
1008
1009 _GLIBCXX20_CONSTEXPR
1010 __normal_iterator
1011 operator++(int) _GLIBCXX_NOEXCEPTnoexcept
1012 { return __normal_iterator(_M_current++); }
1013
1014 // Bidirectional iterator requirements
1015 _GLIBCXX20_CONSTEXPR
1016 __normal_iterator&
1017 operator--() _GLIBCXX_NOEXCEPTnoexcept
1018 {
1019 --_M_current;
1020 return *this;
1021 }
1022
1023 _GLIBCXX20_CONSTEXPR
1024 __normal_iterator
1025 operator--(int) _GLIBCXX_NOEXCEPTnoexcept
1026 { return __normal_iterator(_M_current--); }
1027
1028 // Random access iterator requirements
1029 _GLIBCXX20_CONSTEXPR
1030 reference
1031 operator[](difference_type __n) const _GLIBCXX_NOEXCEPTnoexcept
1032 { return _M_current[__n]; }
1033
1034 _GLIBCXX20_CONSTEXPR
1035 __normal_iterator&
1036 operator+=(difference_type __n) _GLIBCXX_NOEXCEPTnoexcept
1037 { _M_current += __n; return *this; }
1038
1039 _GLIBCXX20_CONSTEXPR
1040 __normal_iterator
1041 operator+(difference_type __n) const _GLIBCXX_NOEXCEPTnoexcept
1042 { return __normal_iterator(_M_current + __n); }
1043
1044 _GLIBCXX20_CONSTEXPR
1045 __normal_iterator&
1046 operator-=(difference_type __n) _GLIBCXX_NOEXCEPTnoexcept
1047 { _M_current -= __n; return *this; }
1048
1049 _GLIBCXX20_CONSTEXPR
1050 __normal_iterator
1051 operator-(difference_type __n) const _GLIBCXX_NOEXCEPTnoexcept
1052 { return __normal_iterator(_M_current - __n); }
1053
1054 _GLIBCXX20_CONSTEXPR
1055 const _Iterator&
1056 base() const _GLIBCXX_NOEXCEPTnoexcept
1057 { return _M_current; }
1058 };
1059
1060 // Note: In what follows, the left- and right-hand-side iterators are
1061 // allowed to vary in types (conceptually in cv-qualification) so that
1062 // comparison between cv-qualified and non-cv-qualified iterators be
1063 // valid. However, the greedy and unfriendly operators in std::rel_ops
1064 // will make overload resolution ambiguous (when in scope) if we don't
1065 // provide overloads whose operands are of the same type. Can someone
1066 // remind me what generic programming is about? -- Gaby
1067
1068#if __cpp_lib_three_way_comparison
1069 template<typename _IteratorL, typename _IteratorR, typename _Container>
1070 requires requires (_IteratorL __lhs, _IteratorR __rhs)
1071 { { __lhs == __rhs } -> std::convertible_to<bool>; }
1072 constexpr bool
1073 operator==(const __normal_iterator<_IteratorL, _Container>& __lhs,
1074 const __normal_iterator<_IteratorR, _Container>& __rhs)
1075 noexcept(noexcept(__lhs.base() == __rhs.base()))
1076 { return __lhs.base() == __rhs.base(); }
1077
1078 template<typename _IteratorL, typename _IteratorR, typename _Container>
1079 constexpr std::__detail::__synth3way_t<_IteratorR, _IteratorL>
1080 operator<=>(const __normal_iterator<_IteratorL, _Container>& __lhs,
1081 const __normal_iterator<_IteratorR, _Container>& __rhs)
1082 noexcept(noexcept(std::__detail::__synth3way(__lhs.base(), __rhs.base())))
1083 { return std::__detail::__synth3way(__lhs.base(), __rhs.base()); }
1084#else
1085 // Forward iterator requirements
1086 template<typename _IteratorL, typename _IteratorR, typename _Container>
1087 _GLIBCXX20_CONSTEXPR
1088 inline bool
1089 operator==(const __normal_iterator<_IteratorL, _Container>& __lhs,
1090 const __normal_iterator<_IteratorR, _Container>& __rhs)
1091 _GLIBCXX_NOEXCEPTnoexcept
1092 { return __lhs.base() == __rhs.base(); }
1093
1094 template<typename _Iterator, typename _Container>
1095 _GLIBCXX20_CONSTEXPR
1096 inline bool
1097 operator==(const __normal_iterator<_Iterator, _Container>& __lhs,
1098 const __normal_iterator<_Iterator, _Container>& __rhs)
1099 _GLIBCXX_NOEXCEPTnoexcept
1100 { return __lhs.base() == __rhs.base(); }
1101
1102 template<typename _IteratorL, typename _IteratorR, typename _Container>
1103 _GLIBCXX20_CONSTEXPR
1104 inline bool
1105 operator!=(const __normal_iterator<_IteratorL, _Container>& __lhs,
1106 const __normal_iterator<_IteratorR, _Container>& __rhs)
1107 _GLIBCXX_NOEXCEPTnoexcept
1108 { return __lhs.base() != __rhs.base(); }
1109
1110 template<typename _Iterator, typename _Container>
1111 _GLIBCXX20_CONSTEXPR
1112 inline bool
1113 operator!=(const __normal_iterator<_Iterator, _Container>& __lhs,
1114 const __normal_iterator<_Iterator, _Container>& __rhs)
1115 _GLIBCXX_NOEXCEPTnoexcept
1116 { return __lhs.base() != __rhs.base(); }
24
Assuming the condition is true
25
Returning the value 1, which participates in a condition later
60
Assuming the condition is true
61
Returning the value 1, which participates in a condition later
1117
1118 // Random access iterator requirements
1119 template<typename _IteratorL, typename _IteratorR, typename _Container>
1120 inline bool
1121 operator<(const __normal_iterator<_IteratorL, _Container>& __lhs,
1122 const __normal_iterator<_IteratorR, _Container>& __rhs)
1123 _GLIBCXX_NOEXCEPTnoexcept
1124 { return __lhs.base() < __rhs.base(); }
1125
1126 template<typename _Iterator, typename _Container>
1127 _GLIBCXX20_CONSTEXPR
1128 inline bool
1129 operator<(const __normal_iterator<_Iterator, _Container>& __lhs,
1130 const __normal_iterator<_Iterator, _Container>& __rhs)
1131 _GLIBCXX_NOEXCEPTnoexcept
1132 { return __lhs.base() < __rhs.base(); }
1133
1134 template<typename _IteratorL, typename _IteratorR, typename _Container>
1135 inline bool
1136 operator>(const __normal_iterator<_IteratorL, _Container>& __lhs,
1137 const __normal_iterator<_IteratorR, _Container>& __rhs)
1138 _GLIBCXX_NOEXCEPTnoexcept
1139 { return __lhs.base() > __rhs.base(); }
1140
1141 template<typename _Iterator, typename _Container>
1142 _GLIBCXX20_CONSTEXPR
1143 inline bool
1144 operator>(const __normal_iterator<_Iterator, _Container>& __lhs,
1145 const __normal_iterator<_Iterator, _Container>& __rhs)
1146 _GLIBCXX_NOEXCEPTnoexcept
1147 { return __lhs.base() > __rhs.base(); }
1148
1149 template<typename _IteratorL, typename _IteratorR, typename _Container>
1150 inline bool
1151 operator<=(const __normal_iterator<_IteratorL, _Container>& __lhs,
1152 const __normal_iterator<_IteratorR, _Container>& __rhs)
1153 _GLIBCXX_NOEXCEPTnoexcept
1154 { return __lhs.base() <= __rhs.base(); }
1155
1156 template<typename _Iterator, typename _Container>
1157 _GLIBCXX20_CONSTEXPR
1158 inline bool
1159 operator<=(const __normal_iterator<_Iterator, _Container>& __lhs,
1160 const __normal_iterator<_Iterator, _Container>& __rhs)
1161 _GLIBCXX_NOEXCEPTnoexcept
1162 { return __lhs.base() <= __rhs.base(); }
1163
1164 template<typename _IteratorL, typename _IteratorR, typename _Container>
1165 inline bool
1166 operator>=(const __normal_iterator<_IteratorL, _Container>& __lhs,
1167 const __normal_iterator<_IteratorR, _Container>& __rhs)
1168 _GLIBCXX_NOEXCEPTnoexcept
1169 { return __lhs.base() >= __rhs.base(); }
1170
1171 template<typename _Iterator, typename _Container>
1172 _GLIBCXX20_CONSTEXPR
1173 inline bool
1174 operator>=(const __normal_iterator<_Iterator, _Container>& __lhs,
1175 const __normal_iterator<_Iterator, _Container>& __rhs)
1176 _GLIBCXX_NOEXCEPTnoexcept
1177 { return __lhs.base() >= __rhs.base(); }
1178#endif // three-way comparison
1179
1180 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1181 // According to the resolution of DR179 not only the various comparison
1182 // operators but also operator- must accept mixed iterator/const_iterator
1183 // parameters.
1184 template<typename _IteratorL, typename _IteratorR, typename _Container>
1185#if __cplusplus201402L >= 201103L
1186 // DR 685.
1187 _GLIBCXX20_CONSTEXPR
1188 inline auto
1189 operator-(const __normal_iterator<_IteratorL, _Container>& __lhs,
1190 const __normal_iterator<_IteratorR, _Container>& __rhs) noexcept
1191 -> decltype(__lhs.base() - __rhs.base())
1192#else
1193 inline typename __normal_iterator<_IteratorL, _Container>::difference_type
1194 operator-(const __normal_iterator<_IteratorL, _Container>& __lhs,
1195 const __normal_iterator<_IteratorR, _Container>& __rhs)
1196#endif
1197 { return __lhs.base() - __rhs.base(); }
1198
1199 template<typename _Iterator, typename _Container>
1200 _GLIBCXX20_CONSTEXPR
1201 inline typename __normal_iterator<_Iterator, _Container>::difference_type
1202 operator-(const __normal_iterator<_Iterator, _Container>& __lhs,
1203 const __normal_iterator<_Iterator, _Container>& __rhs)
1204 _GLIBCXX_NOEXCEPTnoexcept
1205 { return __lhs.base() - __rhs.base(); }
1206
1207 template<typename _Iterator, typename _Container>
1208 _GLIBCXX20_CONSTEXPR
1209 inline __normal_iterator<_Iterator, _Container>
1210 operator+(typename __normal_iterator<_Iterator, _Container>::difference_type
1211 __n, const __normal_iterator<_Iterator, _Container>& __i)
1212 _GLIBCXX_NOEXCEPTnoexcept
1213 { return __normal_iterator<_Iterator, _Container>(__i.base() + __n); }
1214
1215_GLIBCXX_END_NAMESPACE_VERSION
1216} // namespace
1217
1218namespace std _GLIBCXX_VISIBILITY(default)__attribute__ ((__visibility__ ("default")))
1219{
1220_GLIBCXX_BEGIN_NAMESPACE_VERSION
1221
1222 template<typename _Iterator, typename _Container>
1223 _GLIBCXX20_CONSTEXPR
1224 _Iterator
1225 __niter_base(__gnu_cxx::__normal_iterator<_Iterator, _Container> __it)
1226 _GLIBCXX_NOEXCEPT_IF(std::is_nothrow_copy_constructible<_Iterator>::value)noexcept(std::is_nothrow_copy_constructible<_Iterator>::
value)
1227 { return __it.base(); }
1228
1229#if __cplusplus201402L >= 201103L
1230 /**
1231 * @addtogroup iterators
1232 * @{
1233 */
1234
1235#if __cplusplus201402L > 201703L && __cpp_lib_concepts
1236 template<semiregular _Sent>
1237 class move_sentinel
1238 {
1239 public:
1240 constexpr
1241 move_sentinel()
1242 noexcept(is_nothrow_default_constructible_v<_Sent>)
1243 : _M_last() { }
1244
1245 constexpr explicit
1246 move_sentinel(_Sent __s)
1247 noexcept(is_nothrow_move_constructible_v<_Sent>)
1248 : _M_last(std::move(__s)) { }
1249
1250 template<typename _S2> requires convertible_to<const _S2&, _Sent>
1251 constexpr
1252 move_sentinel(const move_sentinel<_S2>& __s)
1253 noexcept(is_nothrow_constructible_v<_Sent, const _S2&>)
1254 : _M_last(__s.base())
1255 { }
1256
1257 template<typename _S2> requires assignable_from<_Sent&, const _S2&>
1258 constexpr move_sentinel&
1259 operator=(const move_sentinel<_S2>& __s)
1260 noexcept(is_nothrow_assignable_v<_Sent, const _S2&>)
1261 {
1262 _M_last = __s.base();
1263 return *this;
1264 }
1265
1266 constexpr _Sent
1267 base() const
1268 noexcept(is_nothrow_copy_constructible_v<_Sent>)
1269 { return _M_last; }
1270
1271 private:
1272 _Sent _M_last;
1273 };
1274#endif // C++20
1275
1276 // 24.4.3 Move iterators
1277 /**
1278 * Class template move_iterator is an iterator adapter with the same
1279 * behavior as the underlying iterator except that its dereference
1280 * operator implicitly converts the value returned by the underlying
1281 * iterator's dereference operator to an rvalue reference. Some
1282 * generic algorithms can be called with move iterators to replace
1283 * copying with moving.
1284 */
1285 template<typename _Iterator>
1286 class move_iterator
1287 {
1288 _Iterator _M_current;
1289
1290 using __traits_type = iterator_traits<_Iterator>;
1291#if __cplusplus201402L > 201703L && __cpp_lib_concepts
1292 using __base_cat = typename __traits_type::iterator_category;
1293#else
1294 using __base_ref = typename __traits_type::reference;
1295#endif
1296
1297 public:
1298 using iterator_type = _Iterator;
1299
1300#if __cplusplus201402L > 201703L && __cpp_lib_concepts
1301 using iterator_concept = input_iterator_tag;
1302 using iterator_category
1303 = __detail::__clamp_iter_cat<__base_cat, random_access_iterator_tag>;
1304 using value_type = iter_value_t<_Iterator>;
1305 using difference_type = iter_difference_t<_Iterator>;
1306 using pointer = _Iterator;
1307 using reference = iter_rvalue_reference_t<_Iterator>;
1308#else
1309 typedef typename __traits_type::iterator_category iterator_category;
1310 typedef typename __traits_type::value_type value_type;
1311 typedef typename __traits_type::difference_type difference_type;
1312 // NB: DR 680.
1313 typedef _Iterator pointer;
1314 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1315 // 2106. move_iterator wrapping iterators returning prvalues
1316 typedef typename conditional<is_reference<__base_ref>::value,
1317 typename remove_reference<__base_ref>::type&&,
1318 __base_ref>::type reference;
1319#endif
1320
1321 _GLIBCXX17_CONSTEXPR
1322 move_iterator()
1323 : _M_current() { }
1324
1325 explicit _GLIBCXX17_CONSTEXPR
1326 move_iterator(iterator_type __i)
1327 : _M_current(std::move(__i)) { }
1328
1329 template<typename _Iter>
1330 _GLIBCXX17_CONSTEXPR
1331 move_iterator(const move_iterator<_Iter>& __i)
1332 : _M_current(__i.base()) { }
1333
1334#if __cplusplus201402L <= 201703L
1335 _GLIBCXX17_CONSTEXPR iterator_type
1336 base() const
1337 { return _M_current; }
1338#else
1339 constexpr iterator_type
1340 base() const &
1341#if __cpp_lib_concepts
1342 requires copy_constructible<iterator_type>
1343#endif
1344 { return _M_current; }
1345
1346 constexpr iterator_type
1347 base() &&
1348 { return std::move(_M_current); }
1349#endif
1350
1351 _GLIBCXX17_CONSTEXPR reference
1352 operator*() const
1353#if __cplusplus201402L > 201703L && __cpp_lib_concepts
1354 { return ranges::iter_move(_M_current); }
1355#else
1356 { return static_cast<reference>(*_M_current); }
1357#endif
1358
1359 _GLIBCXX17_CONSTEXPR pointer
1360 operator->() const
1361 { return _M_current; }
1362
1363 _GLIBCXX17_CONSTEXPR move_iterator&
1364 operator++()
1365 {
1366 ++_M_current;
1367 return *this;
1368 }
1369
1370 _GLIBCXX17_CONSTEXPR move_iterator
1371 operator++(int)
1372 {
1373 move_iterator __tmp = *this;
1374 ++_M_current;
1375 return __tmp;
1376 }
1377
1378#if __cpp_lib_concepts
1379 constexpr void
1380 operator++(int) requires (!forward_iterator<_Iterator>)
1381 { ++_M_current; }
1382#endif
1383
1384 _GLIBCXX17_CONSTEXPR move_iterator&
1385 operator--()
1386 {
1387 --_M_current;
1388 return *this;
1389 }
1390
1391 _GLIBCXX17_CONSTEXPR move_iterator
1392 operator--(int)
1393 {
1394 move_iterator __tmp = *this;
1395 --_M_current;
1396 return __tmp;
1397 }
1398
1399 _GLIBCXX17_CONSTEXPR move_iterator
1400 operator+(difference_type __n) const
1401 { return move_iterator(_M_current + __n); }
1402
1403 _GLIBCXX17_CONSTEXPR move_iterator&
1404 operator+=(difference_type __n)
1405 {
1406 _M_current += __n;
1407 return *this;
1408 }
1409
1410 _GLIBCXX17_CONSTEXPR move_iterator
1411 operator-(difference_type __n) const
1412 { return move_iterator(_M_current - __n); }
1413
1414 _GLIBCXX17_CONSTEXPR move_iterator&
1415 operator-=(difference_type __n)
1416 {
1417 _M_current -= __n;
1418 return *this;
1419 }
1420
1421 _GLIBCXX17_CONSTEXPR reference
1422 operator[](difference_type __n) const
1423#if __cplusplus201402L > 201703L && __cpp_lib_concepts
1424 { return ranges::iter_move(_M_current + __n); }
1425#else
1426 { return std::move(_M_current[__n]); }
1427#endif
1428
1429#if __cplusplus201402L > 201703L && __cpp_lib_concepts
1430 template<sentinel_for<_Iterator> _Sent>
1431 friend constexpr bool
1432 operator==(const move_iterator& __x, const move_sentinel<_Sent>& __y)
1433 { return __x.base() == __y.base(); }
1434
1435 template<sized_sentinel_for<_Iterator> _Sent>
1436 friend constexpr iter_difference_t<_Iterator>
1437 operator-(const move_sentinel<_Sent>& __x, const move_iterator& __y)
1438 { return __x.base() - __y.base(); }
1439
1440 template<sized_sentinel_for<_Iterator> _Sent>
1441 friend constexpr iter_difference_t<_Iterator>
1442 operator-(const move_iterator& __x, const move_sentinel<_Sent>& __y)
1443 { return __x.base() - __y.base(); }
1444
1445 friend constexpr iter_rvalue_reference_t<_Iterator>
1446 iter_move(const move_iterator& __i)
1447 noexcept(noexcept(ranges::iter_move(__i._M_current)))
1448 { return ranges::iter_move(__i._M_current); }
1449
1450 template<indirectly_swappable<_Iterator> _Iter2>
1451 friend constexpr void
1452 iter_swap(const move_iterator& __x, const move_iterator<_Iter2>& __y)
1453 noexcept(noexcept(ranges::iter_swap(__x._M_current, __y._M_current)))
1454 { return ranges::iter_swap(__x._M_current, __y._M_current); }
1455#endif // C++20
1456 };
1457
1458 template<typename _IteratorL, typename _IteratorR>
1459 inline _GLIBCXX17_CONSTEXPR bool
1460 operator==(const move_iterator<_IteratorL>& __x,
1461 const move_iterator<_IteratorR>& __y)
1462#if __cplusplus201402L > 201703L && __cpp_lib_concepts
1463 requires requires { { __x.base() == __y.base() } -> convertible_to<bool>; }
1464#endif
1465 { return __x.base() == __y.base(); }
1466
1467#if __cpp_lib_three_way_comparison
1468 template<typename _IteratorL,
1469 three_way_comparable_with<_IteratorL> _IteratorR>
1470 constexpr compare_three_way_result_t<_IteratorL, _IteratorR>
1471 operator<=>(const move_iterator<_IteratorL>& __x,
1472 const move_iterator<_IteratorR>& __y)
1473 { return __x.base() <=> __y.base(); }
1474#else
1475 template<typename _IteratorL, typename _IteratorR>
1476 inline _GLIBCXX17_CONSTEXPR bool
1477 operator!=(const move_iterator<_IteratorL>& __x,
1478 const move_iterator<_IteratorR>& __y)
1479 { return !(__x == __y); }
1480#endif
1481
1482 template<typename _IteratorL, typename _IteratorR>
1483 inline _GLIBCXX17_CONSTEXPR bool
1484 operator<(const move_iterator<_IteratorL>& __x,
1485 const move_iterator<_IteratorR>& __y)
1486#if __cplusplus201402L > 201703L && __cpp_lib_concepts
1487 requires requires { { __x.base() < __y.base() } -> convertible_to<bool>; }
1488#endif
1489 { return __x.base() < __y.base(); }
1490
1491 template<typename _IteratorL, typename _IteratorR>
1492 inline _GLIBCXX17_CONSTEXPR bool
1493 operator<=(const move_iterator<_IteratorL>& __x,
1494 const move_iterator<_IteratorR>& __y)
1495#if __cplusplus201402L > 201703L && __cpp_lib_concepts
1496 requires requires { { __y.base() < __x.base() } -> convertible_to<bool>; }
1497#endif
1498 { return !(__y < __x); }
1499
1500 template<typename _IteratorL, typename _IteratorR>
1501 inline _GLIBCXX17_CONSTEXPR bool
1502 operator>(const move_iterator<_IteratorL>& __x,
1503 const move_iterator<_IteratorR>& __y)
1504#if __cplusplus201402L > 201703L && __cpp_lib_concepts
1505 requires requires { { __y.base() < __x.base() } -> convertible_to<bool>; }
1506#endif
1507 { return __y < __x; }
1508
1509 template<typename _IteratorL, typename _IteratorR>
1510 inline _GLIBCXX17_CONSTEXPR bool
1511 operator>=(const move_iterator<_IteratorL>& __x,
1512 const move_iterator<_IteratorR>& __y)
1513#if __cplusplus201402L > 201703L && __cpp_lib_concepts
1514 requires requires { { __x.base() < __y.base() } -> convertible_to<bool>; }
1515#endif
1516 { return !(__x < __y); }
1517
1518#if ! (__cplusplus201402L > 201703L && __cpp_lib_concepts)
1519 // Note: See __normal_iterator operators note from Gaby to understand
1520 // why we have these extra overloads for some move_iterator operators.
1521
1522 // These extra overloads are not needed in C++20, because the ones above
1523 // are constrained with a requires-clause and so overload resolution will
1524 // prefer them to greedy unconstrained function templates.
1525
1526 template<typename _Iterator>
1527 inline _GLIBCXX17_CONSTEXPR bool
1528 operator==(const move_iterator<_Iterator>& __x,
1529 const move_iterator<_Iterator>& __y)
1530 { return __x.base() == __y.base(); }
1531
1532 template<typename _Iterator>
1533 inline _GLIBCXX17_CONSTEXPR bool
1534 operator!=(const move_iterator<_Iterator>& __x,
1535 const move_iterator<_Iterator>& __y)
1536 { return !(__x == __y); }
1537
1538 template<typename _Iterator>
1539 inline _GLIBCXX17_CONSTEXPR bool
1540 operator<(const move_iterator<_Iterator>& __x,
1541 const move_iterator<_Iterator>& __y)
1542 { return __x.base() < __y.base(); }
1543
1544 template<typename _Iterator>
1545 inline _GLIBCXX17_CONSTEXPR bool
1546 operator<=(const move_iterator<_Iterator>& __x,
1547 const move_iterator<_Iterator>& __y)
1548 { return !(__y < __x); }
1549
1550 template<typename _Iterator>
1551 inline _GLIBCXX17_CONSTEXPR bool
1552 operator>(const move_iterator<_Iterator>& __x,
1553 const move_iterator<_Iterator>& __y)
1554 { return __y < __x; }
1555
1556 template<typename _Iterator>
1557 inline _GLIBCXX17_CONSTEXPR bool
1558 operator>=(const move_iterator<_Iterator>& __x,
1559 const move_iterator<_Iterator>& __y)
1560 { return !(__x < __y); }
1561#endif // ! C++20
1562
1563 // DR 685.
1564 template<typename _IteratorL, typename _IteratorR>
1565 inline _GLIBCXX17_CONSTEXPR auto
1566 operator-(const move_iterator<_IteratorL>& __x,
1567 const move_iterator<_IteratorR>& __y)
1568 -> decltype(__x.base() - __y.base())
1569 { return __x.base() - __y.base(); }
1570
1571 template<typename _Iterator>
1572 inline _GLIBCXX17_CONSTEXPR move_iterator<_Iterator>
1573 operator+(typename move_iterator<_Iterator>::difference_type __n,
1574 const move_iterator<_Iterator>& __x)
1575 { return __x + __n; }
1576
1577 template<typename _Iterator>
1578 inline _GLIBCXX17_CONSTEXPR move_iterator<_Iterator>
1579 make_move_iterator(_Iterator __i)
1580 { return move_iterator<_Iterator>(std::move(__i)); }
1581
1582 template<typename _Iterator, typename _ReturnType
1583 = typename conditional<__move_if_noexcept_cond
1584 <typename iterator_traits<_Iterator>::value_type>::value,
1585 _Iterator, move_iterator<_Iterator>>::type>
1586 inline _GLIBCXX17_CONSTEXPR _ReturnType
1587 __make_move_if_noexcept_iterator(_Iterator __i)
1588 { return _ReturnType(__i); }
1589
1590 // Overload for pointers that matches std::move_if_noexcept more closely,
1591 // returning a constant iterator when we don't want to move.
1592 template<typename _Tp, typename _ReturnType
1593 = typename conditional<__move_if_noexcept_cond<_Tp>::value,
1594 const _Tp*, move_iterator<_Tp*>>::type>
1595 inline _GLIBCXX17_CONSTEXPR _ReturnType
1596 __make_move_if_noexcept_iterator(_Tp* __i)
1597 { return _ReturnType(__i); }
1598
1599#if __cplusplus201402L > 201703L && __cpp_lib_concepts
1600 // [iterators.common] Common iterators
1601
1602 namespace __detail
1603 {
1604 template<typename _It>
1605 concept __common_iter_has_arrow = indirectly_readable<const _It>
1606 && (requires(const _It& __it) { __it.operator->(); }
1607 || is_reference_v<iter_reference_t<_It>>
1608 || constructible_from<iter_value_t<_It>, iter_reference_t<_It>>);
1609
1610 } // namespace __detail
1611
1612 /// An iterator/sentinel adaptor for representing a non-common range.
1613 template<input_or_output_iterator _It, sentinel_for<_It> _Sent>
1614 requires (!same_as<_It, _Sent>) && copyable<_It>
1615 class common_iterator
1616 {
1617 template<typename _Tp, typename _Up>
1618 static constexpr bool
1619 _S_noexcept1()
1620 {
1621 if constexpr (is_trivially_default_constructible_v<_Tp>)
1622 return is_nothrow_assignable_v<_Tp, _Up>;
1623 else
1624 return is_nothrow_constructible_v<_Tp, _Up>;
1625 }
1626
1627 template<typename _It2, typename _Sent2>
1628 static constexpr bool
1629 _S_noexcept()
1630 { return _S_noexcept1<_It, _It2>() && _S_noexcept1<_Sent, _Sent2>(); }
1631
1632 class _Proxy
1633 {
1634 iter_value_t<_It> _M_keep;
1635
1636 _Proxy(iter_reference_t<_It>&& __x)
1637 : _M_keep(std::move(__x)) { }
1638
1639 friend class common_iterator;
1640
1641 public:
1642 const iter_value_t<_It>*
1643 operator->() const
1644 { return std::__addressof(_M_keep); }
1645 };
1646
1647 public:
1648 constexpr
1649 common_iterator()
1650 noexcept(is_nothrow_default_constructible_v<_It>)
1651 : _M_it(), _M_index(0)
1652 { }
1653
1654 constexpr
1655 common_iterator(_It __i)
1656 noexcept(is_nothrow_move_constructible_v<_It>)
1657 : _M_it(std::move(__i)), _M_index(0)
1658 { }
1659
1660 constexpr
1661 common_iterator(_Sent __s)
1662 noexcept(is_nothrow_move_constructible_v<_Sent>)
1663 : _M_sent(std::move(__s)), _M_index(1)
1664 { }
1665
1666 template<typename _It2, typename _Sent2>
1667 requires convertible_to<const _It2&, _It>
1668 && convertible_to<const _Sent2&, _Sent>
1669 constexpr
1670 common_iterator(const common_iterator<_It2, _Sent2>& __x)
1671 noexcept(_S_noexcept<const _It2&, const _Sent2&>())
1672 : _M_valueless(), _M_index(__x._M_index)
1673 {
1674 if (_M_index == 0)
1675 {
1676 if constexpr (is_trivially_default_constructible_v<_It>)
1677 _M_it = std::move(__x._M_it);
1678 else
1679 ::new((void*)std::__addressof(_M_it)) _It(__x._M_it);
1680 }
1681 else if (_M_index == 1)
1682 {
1683 if constexpr (is_trivially_default_constructible_v<_Sent>)
1684 _M_sent = std::move(__x._M_sent);
1685 else
1686 ::new((void*)std::__addressof(_M_sent)) _Sent(__x._M_sent);
1687 }
1688 }
1689
1690 constexpr
1691 common_iterator(const common_iterator& __x)
1692 noexcept(_S_noexcept<const _It&, const _Sent&>())
1693 : _M_valueless(), _M_index(__x._M_index)
1694 {
1695 if (_M_index == 0)
1696 {
1697 if constexpr (is_trivially_default_constructible_v<_It>)
1698 _M_it = std::move(__x._M_it);
1699 else
1700 ::new((void*)std::__addressof(_M_it)) _It(__x._M_it);
1701 }
1702 else if (_M_index == 1)
1703 {
1704 if constexpr (is_trivially_default_constructible_v<_Sent>)
1705 _M_sent = std::move(__x._M_sent);
1706 else
1707 ::new((void*)std::__addressof(_M_sent)) _Sent(__x._M_sent);
1708 }
1709 }
1710
1711 common_iterator&
1712 operator=(const common_iterator& __x)
1713 noexcept(is_nothrow_copy_assignable_v<_It>
1714 && is_nothrow_copy_assignable_v<_Sent>
1715 && is_nothrow_copy_constructible_v<_It>
1716 && is_nothrow_copy_constructible_v<_Sent>)
1717 {
1718 return this->operator=<_It, _Sent>(__x);
1719 }
1720
1721 template<typename _It2, typename _Sent2>
1722 requires convertible_to<const _It2&, _It>
1723 && convertible_to<const _Sent2&, _Sent>
1724 && assignable_from<_It&, const _It2&>
1725 && assignable_from<_Sent&, const _Sent2&>
1726 common_iterator&
1727 operator=(const common_iterator<_It2, _Sent2>& __x)
1728 noexcept(is_nothrow_constructible_v<_It, const _It2&>
1729 && is_nothrow_constructible_v<_Sent, const _Sent2&>
1730 && is_nothrow_assignable_v<_It, const _It2&>
1731 && is_nothrow_assignable_v<_Sent, const _Sent2&>)
1732 {
1733 switch(_M_index << 2 | __x._M_index)
1734 {
1735 case 0b0000:
1736 _M_it = __x._M_it;
1737 break;
1738 case 0b0101:
1739 _M_sent = __x._M_sent;
1740 break;
1741 case 0b0001:
1742 _M_it.~_It();
1743 _M_index = -1;
1744 [[fallthrough]];
1745 case 0b1001:
1746 ::new((void*)std::__addressof(_M_sent)) _Sent(__x._M_sent);
1747 _M_index = 1;
1748 break;
1749 case 0b0100:
1750 _M_sent.~_Sent();
1751 _M_index = -1;
1752 [[fallthrough]];
1753 case 0b1000:
1754 ::new((void*)std::__addressof(_M_it)) _It(__x._M_it);
1755 _M_index = 0;
1756 break;
1757 default:
1758 __glibcxx_assert(__x._M_has_value());
1759 __builtin_unreachable();
1760 }
1761 return *this;
1762 }
1763
1764 ~common_iterator()
1765 {
1766 switch (_M_index)
1767 {
1768 case 0:
1769 _M_it.~_It();
1770 break;
1771 case 1:
1772 _M_sent.~_Sent();
1773 break;
1774 }
1775 }
1776
1777 decltype(auto)
1778 operator*()
1779 {
1780 __glibcxx_assert(_M_index == 0);
1781 return *_M_it;
1782 }
1783
1784 decltype(auto)
1785 operator*() const requires __detail::__dereferenceable<const _It>
1786 {
1787 __glibcxx_assert(_M_index == 0);
1788 return *_M_it;
1789 }
1790
1791 decltype(auto)
1792 operator->() const requires __detail::__common_iter_has_arrow<_It>
1793 {
1794 __glibcxx_assert(_M_index == 0);
1795 if constexpr (is_pointer_v<_It> || requires { _M_it.operator->(); })
1796 return _M_it;
1797 else if constexpr (is_reference_v<iter_reference_t<_It>>)
1798 {
1799 auto&& __tmp = *_M_it;
1800 return std::__addressof(__tmp);
1801 }
1802 else
1803 return _Proxy{*_M_it};
1804 }
1805
1806 common_iterator&
1807 operator++()
1808 {
1809 __glibcxx_assert(_M_index == 0);
1810 ++_M_it;
1811 return *this;
1812 }
1813
1814 decltype(auto)
1815 operator++(int)
1816 {
1817 __glibcxx_assert(_M_index == 0);
1818 if constexpr (forward_iterator<_It>)
1819 {
1820 common_iterator __tmp = *this;
1821 ++*this;
1822 return __tmp;
1823 }
1824 else
1825 return _M_it++;
1826 }
1827
1828 template<typename _It2, sentinel_for<_It> _Sent2>
1829 requires sentinel_for<_Sent, _It2>
1830 friend bool
1831 operator==(const common_iterator& __x,
1832 const common_iterator<_It2, _Sent2>& __y)
1833 {
1834 switch(__x._M_index << 2 | __y._M_index)
1835 {
1836 case 0b0000:
1837 case 0b0101:
1838 return true;
1839 case 0b0001:
1840 return __x._M_it == __y._M_sent;
1841 case 0b0100:
1842 return __x._M_sent == __y._M_it;
1843 default:
1844 __glibcxx_assert(__x._M_has_value());
1845 __glibcxx_assert(__y._M_has_value());
1846 __builtin_unreachable();
1847 }
1848 }
1849
1850 template<typename _It2, sentinel_for<_It> _Sent2>
1851 requires sentinel_for<_Sent, _It2> && equality_comparable_with<_It, _It2>
1852 friend bool
1853 operator==(const common_iterator& __x,
1854 const common_iterator<_It2, _Sent2>& __y)
1855 {
1856 switch(__x._M_index << 2 | __y._M_index)
1857 {
1858 case 0b0101:
1859 return true;
1860 case 0b0000:
1861 return __x._M_it == __y._M_it;
1862 case 0b0001:
1863 return __x._M_it == __y._M_sent;
1864 case 0b0100:
1865 return __x._M_sent == __y._M_it;
1866 default:
1867 __glibcxx_assert(__x._M_has_value());
1868 __glibcxx_assert(__y._M_has_value());
1869 __builtin_unreachable();
1870 }
1871 }
1872
1873 template<sized_sentinel_for<_It> _It2, sized_sentinel_for<_It> _Sent2>
1874 requires sized_sentinel_for<_Sent, _It2>
1875 friend iter_difference_t<_It2>
1876 operator-(const common_iterator& __x,
1877 const common_iterator<_It2, _Sent2>& __y)
1878 {
1879 switch(__x._M_index << 2 | __y._M_index)
1880 {
1881 case 0b0101:
1882 return 0;
1883 case 0b0000:
1884 return __x._M_it - __y._M_it;
1885 case 0b0001:
1886 return __x._M_it - __y._M_sent;
1887 case 0b0100:
1888 return __x._M_sent - __y._M_it;
1889 default:
1890 __glibcxx_assert(__x._M_has_value());
1891 __glibcxx_assert(__y._M_has_value());
1892 __builtin_unreachable();
1893 }
1894 }
1895
1896 friend iter_rvalue_reference_t<_It>
1897 iter_move(const common_iterator& __i)
1898 noexcept(noexcept(ranges::iter_move(std::declval<const _It&>())))
1899 requires input_iterator<_It>
1900 {
1901 __glibcxx_assert(__i._M_index == 0);
1902 return ranges::iter_move(__i._M_it);
1903 }
1904
1905 template<indirectly_swappable<_It> _It2, typename _Sent2>
1906 friend void
1907 iter_swap(const common_iterator& __x,
1908 const common_iterator<_It2, _Sent2>& __y)
1909 noexcept(noexcept(ranges::iter_swap(std::declval<const _It&>(),
1910 std::declval<const _It2&>())))
1911 {
1912 __glibcxx_assert(__x._M_index == 0);
1913 __glibcxx_assert(__y._M_index == 0);
1914 return ranges::iter_swap(__x._M_it, __y._M_it);
1915 }
1916
1917 private:
1918 template<input_or_output_iterator _It2, sentinel_for<_It2> _Sent2>
1919 friend class common_iterator;
1920
1921 bool _M_has_value() const noexcept { return _M_index < 2; }
1922
1923 union
1924 {
1925 _It _M_it;
1926 _Sent _M_sent;
1927 unsigned char _M_valueless;
1928 };
1929 unsigned char _M_index; // 0==_M_it, 1==_M_sent, 2==valueless
1930 };
1931
1932 template<typename _It, typename _Sent>
1933 struct incrementable_traits<common_iterator<_It, _Sent>>
1934 {
1935 using difference_type = iter_difference_t<_It>;
1936 };
1937
1938 template<input_iterator _It, typename _Sent>
1939 struct iterator_traits<common_iterator<_It, _Sent>>
1940 {
1941 private:
1942 template<typename _Iter>
1943 struct __ptr
1944 {
1945 using type = void;
1946 };
1947
1948 template<typename _Iter>
1949 requires __detail::__common_iter_has_arrow<_Iter>
1950 struct __ptr<_Iter>
1951 {
1952 using _CIter = common_iterator<_Iter, _Sent>;
1953 using type = decltype(std::declval<const _CIter&>().operator->());
1954 };
1955
1956 public:
1957 using iterator_concept = conditional_t<forward_iterator<_It>,
1958 forward_iterator_tag, input_iterator_tag>;
1959 using iterator_category = __detail::__clamp_iter_cat<
1960 typename iterator_traits<_It>::iterator_category,
1961 forward_iterator_tag, input_iterator_tag>;
1962 using value_type = iter_value_t<_It>;
1963 using difference_type = iter_difference_t<_It>;
1964 using pointer = typename __ptr<_It>::type;
1965 using reference = iter_reference_t<_It>;
1966 };
1967
1968 // [iterators.counted] Counted iterators
1969
1970 /// An iterator adaptor that keeps track of the distance to the end.
1971 template<input_or_output_iterator _It>
1972 class counted_iterator
1973 {
1974 public:
1975 using iterator_type = _It;
1976
1977 constexpr counted_iterator() = default;
1978
1979 constexpr
1980 counted_iterator(_It __i, iter_difference_t<_It> __n)
1981 : _M_current(std::move(__i)), _M_length(__n)
1982 { __glibcxx_assert(__n >= 0); }
1983
1984 template<typename _It2>
1985 requires convertible_to<const _It2&, _It>
1986 constexpr
1987 counted_iterator(const counted_iterator<_It2>& __x)
1988 : _M_current(__x._M_current), _M_length(__x._M_length)
1989 { }
1990
1991 template<typename _It2>
1992 requires assignable_from<_It&, const _It2&>
1993 constexpr counted_iterator&
1994 operator=(const counted_iterator<_It2>& __x)
1995 {
1996 _M_current = __x._M_current;
1997 _M_length = __x._M_length;
1998 return *this;
1999 }
2000
2001 constexpr _It
2002 base() const &
2003 noexcept(is_nothrow_copy_constructible_v<_It>)
2004 requires copy_constructible<_It>
2005 { return _M_current; }
2006
2007 constexpr _It
2008 base() &&
2009 noexcept(is_nothrow_move_constructible_v<_It>)
2010 { return std::move(_M_current); }
2011
2012 constexpr iter_difference_t<_It>
2013 count() const noexcept { return _M_length; }
2014
2015 constexpr decltype(auto)
2016 operator*()
2017 noexcept(noexcept(*_M_current))
2018 { return *_M_current; }
2019
2020 constexpr decltype(auto)
2021 operator*() const
2022 noexcept(noexcept(*_M_current))
2023 requires __detail::__dereferenceable<const _It>
2024 { return *_M_current; }
2025
2026 constexpr counted_iterator&
2027 operator++()
2028 {
2029 __glibcxx_assert(_M_length > 0);
2030 ++_M_current;
2031 --_M_length;
2032 return *this;
2033 }
2034
2035 decltype(auto)
2036 operator++(int)
2037 {
2038 __glibcxx_assert(_M_length > 0);
2039 --_M_length;
2040 __tryif (true)
2041 {
2042 return _M_current++;
2043 } __catch(...)if (false) {
2044 ++_M_length;
2045 __throw_exception_again;
2046 }
2047
2048 }
2049
2050 constexpr counted_iterator
2051 operator++(int) requires forward_iterator<_It>
2052 {
2053 auto __tmp = *this;
2054 ++*this;
2055 return __tmp;
2056 }
2057
2058 constexpr counted_iterator&
2059 operator--() requires bidirectional_iterator<_It>
2060 {
2061 --_M_current;
2062 ++_M_length;
2063 return *this;
2064 }
2065
2066 constexpr counted_iterator
2067 operator--(int) requires bidirectional_iterator<_It>
2068 {
2069 auto __tmp = *this;
2070 --*this;
2071 return __tmp;
2072 }
2073
2074 constexpr counted_iterator
2075 operator+(iter_difference_t<_It> __n) const
2076 requires random_access_iterator<_It>
2077 { return counted_iterator(_M_current + __n, _M_length - __n); }
2078
2079 friend constexpr counted_iterator
2080 operator+(iter_difference_t<_It> __n, const counted_iterator& __x)
2081 requires random_access_iterator<_It>
2082 { return __x + __n; }
2083
2084 constexpr counted_iterator&
2085 operator+=(iter_difference_t<_It> __n)
2086 requires random_access_iterator<_It>
2087 {
2088 __glibcxx_assert(__n <= _M_length);
2089 _M_current += __n;
2090 _M_length -= __n;
2091 return *this;
2092 }
2093
2094 constexpr counted_iterator
2095 operator-(iter_difference_t<_It> __n) const
2096 requires random_access_iterator<_It>
2097 { return counted_iterator(_M_current - __n, _M_length + __n); }
2098
2099 template<common_with<_It> _It2>
2100 friend constexpr iter_difference_t<_It2>
2101 operator-(const counted_iterator& __x,
2102 const counted_iterator<_It2>& __y)
2103 { return __y._M_length - __x._M_length; }
2104
2105 friend constexpr iter_difference_t<_It>
2106 operator-(const counted_iterator& __x, default_sentinel_t)
2107 { return -__x._M_length; }
2108
2109 friend constexpr iter_difference_t<_It>
2110 operator-(default_sentinel_t, const counted_iterator& __y)
2111 { return __y._M_length; }
2112
2113 constexpr counted_iterator&
2114 operator-=(iter_difference_t<_It> __n)
2115 requires random_access_iterator<_It>
2116 {
2117 __glibcxx_assert(-__n <= _M_length);
2118 _M_current -= __n;
2119 _M_length += __n;
2120 return *this;
2121 }
2122
2123 constexpr decltype(auto)
2124 operator[](iter_difference_t<_It> __n) const
2125 noexcept(noexcept(_M_current[__n]))
2126 requires random_access_iterator<_It>
2127 {
2128 __glibcxx_assert(__n < _M_length);
2129 return _M_current[__n];
2130 }
2131
2132 template<common_with<_It> _It2>
2133 friend constexpr bool
2134 operator==(const counted_iterator& __x,
2135 const counted_iterator<_It2>& __y)
2136 { return __x._M_length == __y._M_length; }
2137
2138 friend constexpr bool
2139 operator==(const counted_iterator& __x, default_sentinel_t)
2140 { return __x._M_length == 0; }
2141
2142 template<common_with<_It> _It2>
2143 friend constexpr strong_ordering
2144 operator<=>(const counted_iterator& __x,
2145 const counted_iterator<_It2>& __y)
2146 { return __y._M_length <=> __x._M_length; }
2147
2148 friend constexpr iter_rvalue_reference_t<_It>
2149 iter_move(const counted_iterator& __i)
2150 noexcept(noexcept(ranges::iter_move(__i._M_current)))
2151 requires input_iterator<_It>
2152 { return ranges::iter_move(__i._M_current); }
2153
2154 template<indirectly_swappable<_It> _It2>
2155 friend constexpr void
2156 iter_swap(const counted_iterator& __x,
2157 const counted_iterator<_It2>& __y)
2158 noexcept(noexcept(ranges::iter_swap(__x._M_current, __y._M_current)))
2159 { ranges::iter_swap(__x._M_current, __y._M_current); }
2160
2161 private:
2162 template<input_or_output_iterator _It2> friend class counted_iterator;
2163
2164 _It _M_current = _It();
2165 iter_difference_t<_It> _M_length = 0;
2166 };
2167
2168 template<typename _It>
2169 struct incrementable_traits<counted_iterator<_It>>
2170 {
2171 using difference_type = iter_difference_t<_It>;
2172 };
2173
2174 template<input_iterator _It>
2175 struct iterator_traits<counted_iterator<_It>> : iterator_traits<_It>
2176 {
2177 using pointer = void;
2178 };
2179#endif // C++20
2180
2181 // @} group iterators
2182
2183 template<typename _Iterator>
2184 auto
2185 __niter_base(move_iterator<_Iterator> __it)
2186 -> decltype(make_move_iterator(__niter_base(__it.base())))
2187 { return make_move_iterator(__niter_base(__it.base())); }
2188
2189 template<typename _Iterator>
2190 struct __is_move_iterator<move_iterator<_Iterator> >
2191 {
2192 enum { __value = 1 };
2193 typedef __true_type __type;
2194 };
2195
2196 template<typename _Iterator>
2197 auto
2198 __miter_base(move_iterator<_Iterator> __it)
2199 -> decltype(__miter_base(__it.base()))
2200 { return __miter_base(__it.base()); }
2201
2202#define _GLIBCXX_MAKE_MOVE_ITERATOR(_Iter)std::make_move_iterator(_Iter) std::make_move_iterator(_Iter)
2203#define _GLIBCXX_MAKE_MOVE_IF_NOEXCEPT_ITERATOR(_Iter)std::__make_move_if_noexcept_iterator(_Iter) \
2204 std::__make_move_if_noexcept_iterator(_Iter)
2205#else
2206#define _GLIBCXX_MAKE_MOVE_ITERATOR(_Iter)std::make_move_iterator(_Iter) (_Iter)
2207#define _GLIBCXX_MAKE_MOVE_IF_NOEXCEPT_ITERATOR(_Iter)std::__make_move_if_noexcept_iterator(_Iter) (_Iter)
2208#endif // C++11
2209
2210#if __cpp_deduction_guides >= 201606
2211 // These helper traits are used for deduction guides
2212 // of associative containers.
2213 template<typename _InputIterator>
2214 using __iter_key_t = remove_const_t<
2215 typename iterator_traits<_InputIterator>::value_type::first_type>;
2216
2217 template<typename _InputIterator>
2218 using __iter_val_t =
2219 typename iterator_traits<_InputIterator>::value_type::second_type;
2220
2221 template<typename _T1, typename _T2>
2222 struct pair;
2223
2224 template<typename _InputIterator>
2225 using __iter_to_alloc_t =
2226 pair<add_const_t<__iter_key_t<_InputIterator>>,
2227 __iter_val_t<_InputIterator>>;
2228#endif // __cpp_deduction_guides
2229
2230_GLIBCXX_END_NAMESPACE_VERSION
2231} // namespace
2232
2233#ifdef _GLIBCXX_DEBUG
2234# include <debug/stl_iterator.h>
2235#endif
2236
2237#endif