Bug Summary

File:llvm/lib/Target/AMDGPU/AMDGPUPrintfRuntimeBinding.cpp
Warning:line 551, column 11
Forming reference to null pointer

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name AMDGPUPrintfRuntimeBinding.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -fmath-errno -fno-rounding-math -masm-verbose -mconstructor-aliases -munwind-tables -target-cpu x86-64 -dwarf-column-info -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-11/lib/clang/11.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/lib/Target/AMDGPU -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Target/AMDGPU -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/include -I /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-11/lib/clang/11.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/build-llvm/lib/Target/AMDGPU -fdebug-prefix-map=/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347=. -ferror-limit 19 -fmessage-length 0 -fvisibility hidden -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-03-09-184146-41876-1 -x c++ /build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Target/AMDGPU/AMDGPUPrintfRuntimeBinding.cpp

/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Target/AMDGPU/AMDGPUPrintfRuntimeBinding.cpp

1//=== AMDGPUPrintfRuntimeBinding.cpp - OpenCL printf implementation -------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8// \file
9//
10// The pass bind printfs to a kernel arg pointer that will be bound to a buffer
11// later by the runtime.
12//
13// This pass traverses the functions in the module and converts
14// each call to printf to a sequence of operations that
15// store the following into the printf buffer:
16// - format string (passed as a module's metadata unique ID)
17// - bitwise copies of printf arguments
18// The backend passes will need to store metadata in the kernel
19//===----------------------------------------------------------------------===//
20
21#include "AMDGPU.h"
22#include "llvm/ADT/SmallString.h"
23#include "llvm/ADT/StringExtras.h"
24#include "llvm/ADT/Triple.h"
25#include "llvm/Analysis/InstructionSimplify.h"
26#include "llvm/Analysis/TargetLibraryInfo.h"
27#include "llvm/CodeGen/Passes.h"
28#include "llvm/IR/Constants.h"
29#include "llvm/IR/DataLayout.h"
30#include "llvm/IR/Dominators.h"
31#include "llvm/IR/GlobalVariable.h"
32#include "llvm/IR/IRBuilder.h"
33#include "llvm/IR/Instructions.h"
34#include "llvm/IR/Module.h"
35#include "llvm/IR/Type.h"
36#include "llvm/InitializePasses.h"
37#include "llvm/Support/CommandLine.h"
38#include "llvm/Support/Debug.h"
39#include "llvm/Support/raw_ostream.h"
40#include "llvm/Transforms/Utils/BasicBlockUtils.h"
41using namespace llvm;
42
43#define DEBUG_TYPE"printfToRuntime" "printfToRuntime"
44#define DWORD_ALIGN4 4
45
46namespace {
47class LLVM_LIBRARY_VISIBILITY__attribute__ ((visibility("hidden"))) AMDGPUPrintfRuntimeBinding final
48 : public ModulePass {
49
50public:
51 static char ID;
52
53 explicit AMDGPUPrintfRuntimeBinding();
54
55private:
56 bool runOnModule(Module &M) override;
57 void getConversionSpecifiers(SmallVectorImpl<char> &OpConvSpecifiers,
58 StringRef fmt, size_t num_ops) const;
59
60 bool shouldPrintAsStr(char Specifier, Type *OpType) const;
61 bool
62 lowerPrintfForGpu(Module &M,
63 function_ref<const TargetLibraryInfo &(Function &)> GetTLI);
64
65 void getAnalysisUsage(AnalysisUsage &AU) const override {
66 AU.addRequired<TargetLibraryInfoWrapperPass>();
67 AU.addRequired<DominatorTreeWrapperPass>();
68 }
69
70 Value *simplify(Instruction *I, const TargetLibraryInfo *TLI) {
71 return SimplifyInstruction(I, {*TD, TLI, DT});
72 }
73
74 const DataLayout *TD;
75 const DominatorTree *DT;
76 SmallVector<CallInst *, 32> Printfs;
77};
78} // namespace
79
80char AMDGPUPrintfRuntimeBinding::ID = 0;
81
82INITIALIZE_PASS_BEGIN(AMDGPUPrintfRuntimeBinding,static void *initializeAMDGPUPrintfRuntimeBindingPassOnce(PassRegistry
&Registry) {
83 "amdgpu-printf-runtime-binding", "AMDGPU Printf lowering",static void *initializeAMDGPUPrintfRuntimeBindingPassOnce(PassRegistry
&Registry) {
84 false, false)static void *initializeAMDGPUPrintfRuntimeBindingPassOnce(PassRegistry
&Registry) {
85INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)initializeTargetLibraryInfoWrapperPassPass(Registry);
86INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)initializeDominatorTreeWrapperPassPass(Registry);
87INITIALIZE_PASS_END(AMDGPUPrintfRuntimeBinding, "amdgpu-printf-runtime-binding",PassInfo *PI = new PassInfo( "AMDGPU Printf lowering", "amdgpu-printf-runtime-binding"
, &AMDGPUPrintfRuntimeBinding::ID, PassInfo::NormalCtor_t
(callDefaultCtor<AMDGPUPrintfRuntimeBinding>), false, false
); Registry.registerPass(*PI, true); return PI; } static llvm
::once_flag InitializeAMDGPUPrintfRuntimeBindingPassFlag; void
llvm::initializeAMDGPUPrintfRuntimeBindingPass(PassRegistry &
Registry) { llvm::call_once(InitializeAMDGPUPrintfRuntimeBindingPassFlag
, initializeAMDGPUPrintfRuntimeBindingPassOnce, std::ref(Registry
)); }
88 "AMDGPU Printf lowering", false, false)PassInfo *PI = new PassInfo( "AMDGPU Printf lowering", "amdgpu-printf-runtime-binding"
, &AMDGPUPrintfRuntimeBinding::ID, PassInfo::NormalCtor_t
(callDefaultCtor<AMDGPUPrintfRuntimeBinding>), false, false
); Registry.registerPass(*PI, true); return PI; } static llvm
::once_flag InitializeAMDGPUPrintfRuntimeBindingPassFlag; void
llvm::initializeAMDGPUPrintfRuntimeBindingPass(PassRegistry &
Registry) { llvm::call_once(InitializeAMDGPUPrintfRuntimeBindingPassFlag
, initializeAMDGPUPrintfRuntimeBindingPassOnce, std::ref(Registry
)); }
89
90char &llvm::AMDGPUPrintfRuntimeBindingID = AMDGPUPrintfRuntimeBinding::ID;
91
92namespace llvm {
93ModulePass *createAMDGPUPrintfRuntimeBinding() {
94 return new AMDGPUPrintfRuntimeBinding();
95}
96} // namespace llvm
97
98AMDGPUPrintfRuntimeBinding::AMDGPUPrintfRuntimeBinding()
99 : ModulePass(ID), TD(nullptr), DT(nullptr) {
100 initializeAMDGPUPrintfRuntimeBindingPass(*PassRegistry::getPassRegistry());
101}
102
103void AMDGPUPrintfRuntimeBinding::getConversionSpecifiers(
104 SmallVectorImpl<char> &OpConvSpecifiers, StringRef Fmt,
105 size_t NumOps) const {
106 // not all format characters are collected.
107 // At this time the format characters of interest
108 // are %p and %s, which use to know if we
109 // are either storing a literal string or a
110 // pointer to the printf buffer.
111 static const char ConvSpecifiers[] = "cdieEfgGaosuxXp";
112 size_t CurFmtSpecifierIdx = 0;
113 size_t PrevFmtSpecifierIdx = 0;
114
115 while ((CurFmtSpecifierIdx = Fmt.find_first_of(
116 ConvSpecifiers, CurFmtSpecifierIdx)) != StringRef::npos) {
117 bool ArgDump = false;
118 StringRef CurFmt = Fmt.substr(PrevFmtSpecifierIdx,
119 CurFmtSpecifierIdx - PrevFmtSpecifierIdx);
120 size_t pTag = CurFmt.find_last_of("%");
121 if (pTag != StringRef::npos) {
122 ArgDump = true;
123 while (pTag && CurFmt[--pTag] == '%') {
124 ArgDump = !ArgDump;
125 }
126 }
127
128 if (ArgDump)
129 OpConvSpecifiers.push_back(Fmt[CurFmtSpecifierIdx]);
130
131 PrevFmtSpecifierIdx = ++CurFmtSpecifierIdx;
132 }
133}
134
135bool AMDGPUPrintfRuntimeBinding::shouldPrintAsStr(char Specifier,
136 Type *OpType) const {
137 if (Specifier != 's')
138 return false;
139 const PointerType *PT = dyn_cast<PointerType>(OpType);
140 if (!PT || PT->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
141 return false;
142 Type *ElemType = PT->getContainedType(0);
143 if (ElemType->getTypeID() != Type::IntegerTyID)
144 return false;
145 IntegerType *ElemIType = cast<IntegerType>(ElemType);
146 return ElemIType->getBitWidth() == 8;
147}
148
149bool AMDGPUPrintfRuntimeBinding::lowerPrintfForGpu(
150 Module &M, function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
151 LLVMContext &Ctx = M.getContext();
152 IRBuilder<> Builder(Ctx);
153 Type *I32Ty = Type::getInt32Ty(Ctx);
154 unsigned UniqID = 0;
155 // NB: This is important for this string size to be divizable by 4
156 const char NonLiteralStr[4] = "???";
157
158 for (auto CI : Printfs) {
1
Assuming '__begin1' is not equal to '__end1'
159 unsigned NumOps = CI->getNumArgOperands();
160
161 SmallString<16> OpConvSpecifiers;
162 Value *Op = CI->getArgOperand(0);
163
164 if (auto LI = dyn_cast<LoadInst>(Op)) {
2
Assuming 'LI' is null
3
Taking false branch
165 Op = LI->getPointerOperand();
166 for (auto Use : Op->users()) {
167 if (auto SI = dyn_cast<StoreInst>(Use)) {
168 Op = SI->getValueOperand();
169 break;
170 }
171 }
172 }
173
174 if (auto I = dyn_cast<Instruction>(Op)) {
4
Assuming 'I' is null
5
Taking false branch
175 Value *Op_simplified = simplify(I, &GetTLI(*I->getFunction()));
176 if (Op_simplified)
177 Op = Op_simplified;
178 }
179
180 ConstantExpr *ConstExpr = dyn_cast<ConstantExpr>(Op);
181
182 if (ConstExpr) {
6
Assuming 'ConstExpr' is non-null
7
Taking true branch
183 GlobalVariable *GVar = dyn_cast<GlobalVariable>(ConstExpr->getOperand(0));
184
185 StringRef Str("unknown");
186 if (GVar && GVar->hasInitializer()) {
8
Assuming 'GVar' is null
187 auto Init = GVar->getInitializer();
188 if (auto CA = dyn_cast<ConstantDataArray>(Init)) {
189 if (CA->isString())
190 Str = CA->getAsCString();
191 } else if (isa<ConstantAggregateZero>(Init)) {
192 Str = "";
193 }
194 //
195 // we need this call to ascertain
196 // that we are printing a string
197 // or a pointer. It takes out the
198 // specifiers and fills up the first
199 // arg
200 getConversionSpecifiers(OpConvSpecifiers, Str, NumOps - 1);
201 }
202 // Add metadata for the string
203 std::string AStreamHolder;
204 raw_string_ostream Sizes(AStreamHolder);
205 int Sum = DWORD_ALIGN4;
206 Sizes << CI->getNumArgOperands() - 1;
207 Sizes << ':';
208 for (unsigned ArgCount = 1; ArgCount < CI->getNumArgOperands() &&
9
Assuming the condition is false
209 ArgCount <= OpConvSpecifiers.size();
210 ArgCount++) {
211 Value *Arg = CI->getArgOperand(ArgCount);
212 Type *ArgType = Arg->getType();
213 unsigned ArgSize = TD->getTypeAllocSizeInBits(ArgType);
214 ArgSize = ArgSize / 8;
215 //
216 // ArgSize by design should be a multiple of DWORD_ALIGN,
217 // expand the arguments that do not follow this rule.
218 //
219 if (ArgSize % DWORD_ALIGN4 != 0) {
220 llvm::Type *ResType = llvm::Type::getInt32Ty(Ctx);
221 VectorType *LLVMVecType = llvm::dyn_cast<llvm::VectorType>(ArgType);
222 int NumElem = LLVMVecType ? LLVMVecType->getNumElements() : 1;
223 if (LLVMVecType && NumElem > 1)
224 ResType = llvm::VectorType::get(ResType, NumElem);
225 Builder.SetInsertPoint(CI);
226 Builder.SetCurrentDebugLocation(CI->getDebugLoc());
227 if (OpConvSpecifiers[ArgCount - 1] == 'x' ||
228 OpConvSpecifiers[ArgCount - 1] == 'X' ||
229 OpConvSpecifiers[ArgCount - 1] == 'u' ||
230 OpConvSpecifiers[ArgCount - 1] == 'o')
231 Arg = Builder.CreateZExt(Arg, ResType);
232 else
233 Arg = Builder.CreateSExt(Arg, ResType);
234 ArgType = Arg->getType();
235 ArgSize = TD->getTypeAllocSizeInBits(ArgType);
236 ArgSize = ArgSize / 8;
237 CI->setOperand(ArgCount, Arg);
238 }
239 if (OpConvSpecifiers[ArgCount - 1] == 'f') {
240 ConstantFP *FpCons = dyn_cast<ConstantFP>(Arg);
241 if (FpCons)
242 ArgSize = 4;
243 else {
244 FPExtInst *FpExt = dyn_cast<FPExtInst>(Arg);
245 if (FpExt && FpExt->getType()->isDoubleTy() &&
246 FpExt->getOperand(0)->getType()->isFloatTy())
247 ArgSize = 4;
248 }
249 }
250 if (shouldPrintAsStr(OpConvSpecifiers[ArgCount - 1], ArgType)) {
251 if (ConstantExpr *ConstExpr = dyn_cast<ConstantExpr>(Arg)) {
252 GlobalVariable *GV =
253 dyn_cast<GlobalVariable>(ConstExpr->getOperand(0));
254 if (GV && GV->hasInitializer()) {
255 Constant *Init = GV->getInitializer();
256 ConstantDataArray *CA = dyn_cast<ConstantDataArray>(Init);
257 if (Init->isZeroValue() || CA->isString()) {
258 size_t SizeStr = Init->isZeroValue()
259 ? 1
260 : (strlen(CA->getAsCString().data()) + 1);
261 size_t Rem = SizeStr % DWORD_ALIGN4;
262 size_t NSizeStr = 0;
263 LLVM_DEBUG(dbgs() << "Printf string original size = " << SizeStrdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("printfToRuntime")) { dbgs() << "Printf string original size = "
<< SizeStr << '\n'; } } while (false)
264 << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("printfToRuntime")) { dbgs() << "Printf string original size = "
<< SizeStr << '\n'; } } while (false)
;
265 if (Rem) {
266 NSizeStr = SizeStr + (DWORD_ALIGN4 - Rem);
267 } else {
268 NSizeStr = SizeStr;
269 }
270 ArgSize = NSizeStr;
271 }
272 } else {
273 ArgSize = sizeof(NonLiteralStr);
274 }
275 } else {
276 ArgSize = sizeof(NonLiteralStr);
277 }
278 }
279 LLVM_DEBUG(dbgs() << "Printf ArgSize (in buffer) = " << ArgSizedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("printfToRuntime")) { dbgs() << "Printf ArgSize (in buffer) = "
<< ArgSize << " for type: " << *ArgType <<
'\n'; } } while (false)
280 << " for type: " << *ArgType << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("printfToRuntime")) { dbgs() << "Printf ArgSize (in buffer) = "
<< ArgSize << " for type: " << *ArgType <<
'\n'; } } while (false)
;
281 Sizes << ArgSize << ':';
282 Sum += ArgSize;
283 }
284 LLVM_DEBUG(dbgs() << "Printf format string in source = " << Str.str()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("printfToRuntime")) { dbgs() << "Printf format string in source = "
<< Str.str() << '\n'; } } while (false)
10
Assuming 'DebugFlag' is false
11
Loop condition is false. Exiting loop
285 << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("printfToRuntime")) { dbgs() << "Printf format string in source = "
<< Str.str() << '\n'; } } while (false)
;
286 for (size_t I = 0; I < Str.size(); ++I) {
12
Assuming the condition is false
13
Loop condition is false. Execution continues on line 320
287 // Rest of the C escape sequences (e.g. \') are handled correctly
288 // by the MDParser
289 switch (Str[I]) {
290 case '\a':
291 Sizes << "\\a";
292 break;
293 case '\b':
294 Sizes << "\\b";
295 break;
296 case '\f':
297 Sizes << "\\f";
298 break;
299 case '\n':
300 Sizes << "\\n";
301 break;
302 case '\r':
303 Sizes << "\\r";
304 break;
305 case '\v':
306 Sizes << "\\v";
307 break;
308 case ':':
309 // ':' cannot be scanned by Flex, as it is defined as a delimiter
310 // Replace it with it's octal representation \72
311 Sizes << "\\72";
312 break;
313 default:
314 Sizes << Str[I];
315 break;
316 }
317 }
318
319 // Insert the printf_alloc call
320 Builder.SetInsertPoint(CI);
321 Builder.SetCurrentDebugLocation(CI->getDebugLoc());
322
323 AttributeList Attr = AttributeList::get(Ctx, AttributeList::FunctionIndex,
324 Attribute::NoUnwind);
325
326 Type *SizetTy = Type::getInt32Ty(Ctx);
327
328 Type *Tys_alloc[1] = {SizetTy};
329 Type *I8Ptr = PointerType::get(Type::getInt8Ty(Ctx), 1);
330 FunctionType *FTy_alloc = FunctionType::get(I8Ptr, Tys_alloc, false);
331 FunctionCallee PrintfAllocFn =
332 M.getOrInsertFunction(StringRef("__printf_alloc"), FTy_alloc, Attr);
333
334 LLVM_DEBUG(dbgs() << "Printf metadata = " << Sizes.str() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("printfToRuntime")) { dbgs() << "Printf metadata = " <<
Sizes.str() << '\n'; } } while (false)
;
14
Assuming 'DebugFlag' is false
15
Loop condition is false. Exiting loop
335 std::string fmtstr = itostr(++UniqID) + ":" + Sizes.str().c_str();
336 MDString *fmtStrArray = MDString::get(Ctx, fmtstr);
337
338 // Instead of creating global variables, the
339 // printf format strings are extracted
340 // and passed as metadata. This avoids
341 // polluting llvm's symbol tables in this module.
342 // Metadata is going to be extracted
343 // by the backend passes and inserted
344 // into the OpenCL binary as appropriate.
345 StringRef amd("llvm.printf.fmts");
346 NamedMDNode *metaD = M.getOrInsertNamedMetadata(amd);
347 MDNode *myMD = MDNode::get(Ctx, fmtStrArray);
348 metaD->addOperand(myMD);
349 Value *sumC = ConstantInt::get(SizetTy, Sum, false);
350 SmallVector<Value *, 1> alloc_args;
351 alloc_args.push_back(sumC);
352 CallInst *pcall =
353 CallInst::Create(PrintfAllocFn, alloc_args, "printf_alloc_fn", CI);
354
355 //
356 // Insert code to split basicblock with a
357 // piece of hammock code.
358 // basicblock splits after buffer overflow check
359 //
360 ConstantPointerNull *zeroIntPtr =
361 ConstantPointerNull::get(PointerType::get(Type::getInt8Ty(Ctx), 1));
362 ICmpInst *cmp =
363 dyn_cast<ICmpInst>(Builder.CreateICmpNE(pcall, zeroIntPtr, ""));
16
Assuming the object is a 'ICmpInst'
364 if (!CI->use_empty()) {
17
Taking false branch
365 Value *result =
366 Builder.CreateSExt(Builder.CreateNot(cmp), I32Ty, "printf_res");
367 CI->replaceAllUsesWith(result);
368 }
369 SplitBlock(CI->getParent(), cmp);
370 Instruction *Brnch =
371 SplitBlockAndInsertIfThen(cmp, cmp->getNextNode(), false);
372
373 Builder.SetInsertPoint(Brnch);
374
375 // store unique printf id in the buffer
376 //
377 SmallVector<Value *, 1> ZeroIdxList;
378 ConstantInt *zeroInt =
379 ConstantInt::get(Ctx, APInt(32, StringRef("0"), 10));
380 ZeroIdxList.push_back(zeroInt);
381
382 GetElementPtrInst *BufferIdx =
383 dyn_cast<GetElementPtrInst>(GetElementPtrInst::Create(
18
Assuming the object is not a 'GetElementPtrInst'
384 nullptr, pcall, ZeroIdxList, "PrintBuffID", Brnch));
385
386 Type *idPointer = PointerType::get(I32Ty, AMDGPUAS::GLOBAL_ADDRESS);
387 Value *id_gep_cast =
388 new BitCastInst(BufferIdx, idPointer, "PrintBuffIdCast", Brnch);
389
390 StoreInst *stbuff =
391 new StoreInst(ConstantInt::get(I32Ty, UniqID), id_gep_cast);
392 stbuff->insertBefore(Brnch); // to Remove unused variable warning
393
394 SmallVector<Value *, 2> FourthIdxList;
395 ConstantInt *fourInt =
396 ConstantInt::get(Ctx, APInt(32, StringRef("4"), 10));
397
398 FourthIdxList.push_back(fourInt); // 1st 4 bytes hold the printf_id
399 // the following GEP is the buffer pointer
400 BufferIdx = cast<GetElementPtrInst>(GetElementPtrInst::Create(
19
The object is a 'GetElementPtrInst'
401 nullptr, pcall, FourthIdxList, "PrintBuffGep", Brnch));
402
403 Type *Int32Ty = Type::getInt32Ty(Ctx);
404 Type *Int64Ty = Type::getInt64Ty(Ctx);
405 for (unsigned ArgCount = 1; ArgCount < CI->getNumArgOperands() &&
20
Assuming the condition is true
22
Loop condition is true. Entering loop body
406 ArgCount <= OpConvSpecifiers.size();
21
Assuming the condition is true
407 ArgCount++) {
408 Value *Arg = CI->getArgOperand(ArgCount);
409 Type *ArgType = Arg->getType();
410 SmallVector<Value *, 32> WhatToStore;
411 if (ArgType->isFPOrFPVectorTy() &&
23
Calling 'Type::isFPOrFPVectorTy'
34
Returning from 'Type::isFPOrFPVectorTy'
412 (ArgType->getTypeID() != Type::VectorTyID)) {
413 Type *IType = (ArgType->isFloatTy()) ? Int32Ty : Int64Ty;
414 if (OpConvSpecifiers[ArgCount - 1] == 'f') {
415 ConstantFP *fpCons = dyn_cast<ConstantFP>(Arg);
416 if (fpCons) {
417 APFloat Val(fpCons->getValueAPF());
418 bool Lost = false;
419 Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
420 &Lost);
421 Arg = ConstantFP::get(Ctx, Val);
422 IType = Int32Ty;
423 } else {
424 FPExtInst *FpExt = dyn_cast<FPExtInst>(Arg);
425 if (FpExt && FpExt->getType()->isDoubleTy() &&
426 FpExt->getOperand(0)->getType()->isFloatTy()) {
427 Arg = FpExt->getOperand(0);
428 IType = Int32Ty;
429 }
430 }
431 }
432 Arg = new BitCastInst(Arg, IType, "PrintArgFP", Brnch);
433 WhatToStore.push_back(Arg);
434 } else if (ArgType->getTypeID() == Type::PointerTyID) {
35
Assuming the condition is false
36
Taking false branch
435 if (shouldPrintAsStr(OpConvSpecifiers[ArgCount - 1], ArgType)) {
436 const char *S = NonLiteralStr;
437 if (ConstantExpr *ConstExpr = dyn_cast<ConstantExpr>(Arg)) {
438 GlobalVariable *GV =
439 dyn_cast<GlobalVariable>(ConstExpr->getOperand(0));
440 if (GV && GV->hasInitializer()) {
441 Constant *Init = GV->getInitializer();
442 ConstantDataArray *CA = dyn_cast<ConstantDataArray>(Init);
443 if (Init->isZeroValue() || CA->isString()) {
444 S = Init->isZeroValue() ? "" : CA->getAsCString().data();
445 }
446 }
447 }
448 size_t SizeStr = strlen(S) + 1;
449 size_t Rem = SizeStr % DWORD_ALIGN4;
450 size_t NSizeStr = 0;
451 if (Rem) {
452 NSizeStr = SizeStr + (DWORD_ALIGN4 - Rem);
453 } else {
454 NSizeStr = SizeStr;
455 }
456 if (S[0]) {
457 char *MyNewStr = new char[NSizeStr]();
458 strcpy(MyNewStr, S);
459 int NumInts = NSizeStr / 4;
460 int CharC = 0;
461 while (NumInts) {
462 int ANum = *(int *)(MyNewStr + CharC);
463 CharC += 4;
464 NumInts--;
465 Value *ANumV = ConstantInt::get(Int32Ty, ANum, false);
466 WhatToStore.push_back(ANumV);
467 }
468 delete[] MyNewStr;
469 } else {
470 // Empty string, give a hint to RT it is no NULL
471 Value *ANumV = ConstantInt::get(Int32Ty, 0xFFFFFF00, false);
472 WhatToStore.push_back(ANumV);
473 }
474 } else {
475 uint64_t Size = TD->getTypeAllocSizeInBits(ArgType);
476 assert((Size == 32 || Size == 64) && "unsupported size")(((Size == 32 || Size == 64) && "unsupported size") ?
static_cast<void> (0) : __assert_fail ("(Size == 32 || Size == 64) && \"unsupported size\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/lib/Target/AMDGPU/AMDGPUPrintfRuntimeBinding.cpp"
, 476, __PRETTY_FUNCTION__))
;
477 Type *DstType = (Size == 32) ? Int32Ty : Int64Ty;
478 Arg = new PtrToIntInst(Arg, DstType, "PrintArgPtr", Brnch);
479 WhatToStore.push_back(Arg);
480 }
481 } else if (ArgType->getTypeID() == Type::VectorTyID) {
37
Taking false branch
482 Type *IType = NULL__null;
483 uint32_t EleCount = cast<VectorType>(ArgType)->getNumElements();
484 uint32_t EleSize = ArgType->getScalarSizeInBits();
485 uint32_t TotalSize = EleCount * EleSize;
486 if (EleCount == 3) {
487 IntegerType *Int32Ty = Type::getInt32Ty(ArgType->getContext());
488 Constant *Indices[4] = {
489 ConstantInt::get(Int32Ty, 0), ConstantInt::get(Int32Ty, 1),
490 ConstantInt::get(Int32Ty, 2), ConstantInt::get(Int32Ty, 2)};
491 Constant *Mask = ConstantVector::get(Indices);
492 ShuffleVectorInst *Shuffle = new ShuffleVectorInst(Arg, Arg, Mask);
493 Shuffle->insertBefore(Brnch);
494 Arg = Shuffle;
495 ArgType = Arg->getType();
496 TotalSize += EleSize;
497 }
498 switch (EleSize) {
499 default:
500 EleCount = TotalSize / 64;
501 IType = dyn_cast<Type>(Type::getInt64Ty(ArgType->getContext()));
502 break;
503 case 8:
504 if (EleCount >= 8) {
505 EleCount = TotalSize / 64;
506 IType = dyn_cast<Type>(Type::getInt64Ty(ArgType->getContext()));
507 } else if (EleCount >= 3) {
508 EleCount = 1;
509 IType = dyn_cast<Type>(Type::getInt32Ty(ArgType->getContext()));
510 } else {
511 EleCount = 1;
512 IType = dyn_cast<Type>(Type::getInt16Ty(ArgType->getContext()));
513 }
514 break;
515 case 16:
516 if (EleCount >= 3) {
517 EleCount = TotalSize / 64;
518 IType = dyn_cast<Type>(Type::getInt64Ty(ArgType->getContext()));
519 } else {
520 EleCount = 1;
521 IType = dyn_cast<Type>(Type::getInt32Ty(ArgType->getContext()));
522 }
523 break;
524 }
525 if (EleCount > 1) {
526 IType = dyn_cast<Type>(VectorType::get(IType, EleCount));
527 }
528 Arg = new BitCastInst(Arg, IType, "PrintArgVect", Brnch);
529 WhatToStore.push_back(Arg);
530 } else {
531 WhatToStore.push_back(Arg);
532 }
533 for (unsigned I = 0, E = WhatToStore.size(); I != E; ++I) {
38
Assuming 'I' is not equal to 'E'
39
Loop condition is true. Entering loop body
534 Value *TheBtCast = WhatToStore[I];
535 unsigned ArgSize =
536 TD->getTypeAllocSizeInBits(TheBtCast->getType()) / 8;
537 SmallVector<Value *, 1> BuffOffset;
538 BuffOffset.push_back(ConstantInt::get(I32Ty, ArgSize));
539
540 Type *ArgPointer = PointerType::get(TheBtCast->getType(), 1);
541 Value *CastedGEP =
542 new BitCastInst(BufferIdx, ArgPointer, "PrintBuffPtrCast", Brnch);
543 StoreInst *StBuff = new StoreInst(TheBtCast, CastedGEP, Brnch);
544 LLVM_DEBUG(dbgs() << "inserting store to printf buffer:\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("printfToRuntime")) { dbgs() << "inserting store to printf buffer:\n"
<< *StBuff << '\n'; } } while (false)
40
Assuming 'DebugFlag' is false
41
Loop condition is false. Exiting loop
545 << *StBuff << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("printfToRuntime")) { dbgs() << "inserting store to printf buffer:\n"
<< *StBuff << '\n'; } } while (false)
;
546 (void)StBuff;
547 if (I + 1 == E && ArgCount + 1 == CI->getNumArgOperands())
42
Assuming the condition is false
548 break;
549 BufferIdx = dyn_cast<GetElementPtrInst>(GetElementPtrInst::Create(
43
Calling 'GetElementPtrInst::Create'
52
Returning from 'GetElementPtrInst::Create'
53
Assuming the object is not a 'GetElementPtrInst'
54
Null pointer value stored to 'BufferIdx'
550 nullptr, BufferIdx, BuffOffset, "PrintBuffNextPtr", Brnch));
551 LLVM_DEBUG(dbgs() << "inserting gep to the printf buffer:\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("printfToRuntime")) { dbgs() << "inserting gep to the printf buffer:\n"
<< *BufferIdx << '\n'; } } while (false)
55
Assuming 'DebugFlag' is true
56
Assuming the condition is true
57
Taking true branch
58
Forming reference to null pointer
552 << *BufferIdx << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("printfToRuntime")) { dbgs() << "inserting gep to the printf buffer:\n"
<< *BufferIdx << '\n'; } } while (false)
;
553 }
554 }
555 }
556 }
557
558 // erase the printf calls
559 for (auto CI : Printfs)
560 CI->eraseFromParent();
561
562 Printfs.clear();
563 return true;
564}
565
566bool AMDGPUPrintfRuntimeBinding::runOnModule(Module &M) {
567 Triple TT(M.getTargetTriple());
568 if (TT.getArch() == Triple::r600)
569 return false;
570
571 auto PrintfFunction = M.getFunction("printf");
572 if (!PrintfFunction)
573 return false;
574
575 for (auto &U : PrintfFunction->uses()) {
576 if (auto *CI = dyn_cast<CallInst>(U.getUser())) {
577 if (CI->isCallee(&U))
578 Printfs.push_back(CI);
579 }
580 }
581
582 if (Printfs.empty())
583 return false;
584
585 if (auto HostcallFunction = M.getFunction("__ockl_hostcall_internal")) {
586 for (auto &U : HostcallFunction->uses()) {
587 if (auto *CI = dyn_cast<CallInst>(U.getUser())) {
588 M.getContext().emitError(
589 CI, "Cannot use both printf and hostcall in the same module");
590 }
591 }
592 }
593
594 TD = &M.getDataLayout();
595 auto DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
596 DT = DTWP ? &DTWP->getDomTree() : nullptr;
597 auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
598 return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
599 };
600
601 return lowerPrintfForGpu(M, GetTLI);
602}

/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Type.h

1//===- llvm/Type.h - Classes for handling data types ------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the declaration of the Type class. For more "Type"
10// stuff, look in DerivedTypes.h.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_IR_TYPE_H
15#define LLVM_IR_TYPE_H
16
17#include "llvm/ADT/APFloat.h"
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/SmallPtrSet.h"
20#include "llvm/Support/CBindingWrapping.h"
21#include "llvm/Support/Casting.h"
22#include "llvm/Support/Compiler.h"
23#include "llvm/Support/ErrorHandling.h"
24#include "llvm/Support/TypeSize.h"
25#include <cassert>
26#include <cstdint>
27#include <iterator>
28
29namespace llvm {
30
31template<class GraphType> struct GraphTraits;
32class IntegerType;
33class LLVMContext;
34class PointerType;
35class raw_ostream;
36class StringRef;
37
38/// The instances of the Type class are immutable: once they are created,
39/// they are never changed. Also note that only one instance of a particular
40/// type is ever created. Thus seeing if two types are equal is a matter of
41/// doing a trivial pointer comparison. To enforce that no two equal instances
42/// are created, Type instances can only be created via static factory methods
43/// in class Type and in derived classes. Once allocated, Types are never
44/// free'd.
45///
46class Type {
47public:
48 //===--------------------------------------------------------------------===//
49 /// Definitions of all of the base types for the Type system. Based on this
50 /// value, you can cast to a class defined in DerivedTypes.h.
51 /// Note: If you add an element to this, you need to add an element to the
52 /// Type::getPrimitiveType function, or else things will break!
53 /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding.
54 ///
55 enum TypeID {
56 // PrimitiveTypes - make sure LastPrimitiveTyID stays up to date.
57 VoidTyID = 0, ///< 0: type with no size
58 HalfTyID, ///< 1: 16-bit floating point type
59 FloatTyID, ///< 2: 32-bit floating point type
60 DoubleTyID, ///< 3: 64-bit floating point type
61 X86_FP80TyID, ///< 4: 80-bit floating point type (X87)
62 FP128TyID, ///< 5: 128-bit floating point type (112-bit mantissa)
63 PPC_FP128TyID, ///< 6: 128-bit floating point type (two 64-bits, PowerPC)
64 LabelTyID, ///< 7: Labels
65 MetadataTyID, ///< 8: Metadata
66 X86_MMXTyID, ///< 9: MMX vectors (64 bits, X86 specific)
67 TokenTyID, ///< 10: Tokens
68
69 // Derived types... see DerivedTypes.h file.
70 // Make sure FirstDerivedTyID stays up to date!
71 IntegerTyID, ///< 11: Arbitrary bit width integers
72 FunctionTyID, ///< 12: Functions
73 StructTyID, ///< 13: Structures
74 ArrayTyID, ///< 14: Arrays
75 PointerTyID, ///< 15: Pointers
76 VectorTyID ///< 16: SIMD 'packed' format, or other vector type
77 };
78
79private:
80 /// This refers to the LLVMContext in which this type was uniqued.
81 LLVMContext &Context;
82
83 TypeID ID : 8; // The current base type of this type.
84 unsigned SubclassData : 24; // Space for subclasses to store data.
85 // Note that this should be synchronized with
86 // MAX_INT_BITS value in IntegerType class.
87
88protected:
89 friend class LLVMContextImpl;
90
91 explicit Type(LLVMContext &C, TypeID tid)
92 : Context(C), ID(tid), SubclassData(0) {}
93 ~Type() = default;
94
95 unsigned getSubclassData() const { return SubclassData; }
96
97 void setSubclassData(unsigned val) {
98 SubclassData = val;
99 // Ensure we don't have any accidental truncation.
100 assert(getSubclassData() == val && "Subclass data too large for field")((getSubclassData() == val && "Subclass data too large for field"
) ? static_cast<void> (0) : __assert_fail ("getSubclassData() == val && \"Subclass data too large for field\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Type.h"
, 100, __PRETTY_FUNCTION__))
;
101 }
102
103 /// Keeps track of how many Type*'s there are in the ContainedTys list.
104 unsigned NumContainedTys = 0;
105
106 /// A pointer to the array of Types contained by this Type. For example, this
107 /// includes the arguments of a function type, the elements of a structure,
108 /// the pointee of a pointer, the element type of an array, etc. This pointer
109 /// may be 0 for types that don't contain other types (Integer, Double,
110 /// Float).
111 Type * const *ContainedTys = nullptr;
112
113 static bool isSequentialType(TypeID TyID) {
114 return TyID == ArrayTyID || TyID == VectorTyID;
115 }
116
117public:
118 /// Print the current type.
119 /// Omit the type details if \p NoDetails == true.
120 /// E.g., let %st = type { i32, i16 }
121 /// When \p NoDetails is true, we only print %st.
122 /// Put differently, \p NoDetails prints the type as if
123 /// inlined with the operands when printing an instruction.
124 void print(raw_ostream &O, bool IsForDebug = false,
125 bool NoDetails = false) const;
126
127 void dump() const;
128
129 /// Return the LLVMContext in which this type was uniqued.
130 LLVMContext &getContext() const { return Context; }
131
132 //===--------------------------------------------------------------------===//
133 // Accessors for working with types.
134 //
135
136 /// Return the type id for the type. This will return one of the TypeID enum
137 /// elements defined above.
138 TypeID getTypeID() const { return ID; }
139
140 /// Return true if this is 'void'.
141 bool isVoidTy() const { return getTypeID() == VoidTyID; }
142
143 /// Return true if this is 'half', a 16-bit IEEE fp type.
144 bool isHalfTy() const { return getTypeID() == HalfTyID; }
145
146 /// Return true if this is 'float', a 32-bit IEEE fp type.
147 bool isFloatTy() const { return getTypeID() == FloatTyID; }
148
149 /// Return true if this is 'double', a 64-bit IEEE fp type.
150 bool isDoubleTy() const { return getTypeID() == DoubleTyID; }
151
152 /// Return true if this is x86 long double.
153 bool isX86_FP80Ty() const { return getTypeID() == X86_FP80TyID; }
154
155 /// Return true if this is 'fp128'.
156 bool isFP128Ty() const { return getTypeID() == FP128TyID; }
157
158 /// Return true if this is powerpc long double.
159 bool isPPC_FP128Ty() const { return getTypeID() == PPC_FP128TyID; }
160
161 /// Return true if this is one of the six floating-point types
162 bool isFloatingPointTy() const {
163 return getTypeID() == HalfTyID || getTypeID() == FloatTyID ||
25
Assuming the condition is false
26
Assuming the condition is false
31
Returning zero, which participates in a condition later
164 getTypeID() == DoubleTyID ||
27
Assuming the condition is false
165 getTypeID() == X86_FP80TyID || getTypeID() == FP128TyID ||
28
Assuming the condition is false
29
Assuming the condition is false
166 getTypeID() == PPC_FP128TyID;
30
Assuming the condition is false
167 }
168
169 const fltSemantics &getFltSemantics() const {
170 switch (getTypeID()) {
171 case HalfTyID: return APFloat::IEEEhalf();
172 case FloatTyID: return APFloat::IEEEsingle();
173 case DoubleTyID: return APFloat::IEEEdouble();
174 case X86_FP80TyID: return APFloat::x87DoubleExtended();
175 case FP128TyID: return APFloat::IEEEquad();
176 case PPC_FP128TyID: return APFloat::PPCDoubleDouble();
177 default: llvm_unreachable("Invalid floating type")::llvm::llvm_unreachable_internal("Invalid floating type", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Type.h"
, 177)
;
178 }
179 }
180
181 /// Return true if this is X86 MMX.
182 bool isX86_MMXTy() const { return getTypeID() == X86_MMXTyID; }
183
184 /// Return true if this is a FP type or a vector of FP.
185 bool isFPOrFPVectorTy() const { return getScalarType()->isFloatingPointTy(); }
24
Calling 'Type::isFloatingPointTy'
32
Returning from 'Type::isFloatingPointTy'
33
Returning zero, which participates in a condition later
186
187 /// Return true if this is 'label'.
188 bool isLabelTy() const { return getTypeID() == LabelTyID; }
189
190 /// Return true if this is 'metadata'.
191 bool isMetadataTy() const { return getTypeID() == MetadataTyID; }
192
193 /// Return true if this is 'token'.
194 bool isTokenTy() const { return getTypeID() == TokenTyID; }
195
196 /// True if this is an instance of IntegerType.
197 bool isIntegerTy() const { return getTypeID() == IntegerTyID; }
198
199 /// Return true if this is an IntegerType of the given width.
200 bool isIntegerTy(unsigned Bitwidth) const;
201
202 /// Return true if this is an integer type or a vector of integer types.
203 bool isIntOrIntVectorTy() const { return getScalarType()->isIntegerTy(); }
204
205 /// Return true if this is an integer type or a vector of integer types of
206 /// the given width.
207 bool isIntOrIntVectorTy(unsigned BitWidth) const {
208 return getScalarType()->isIntegerTy(BitWidth);
209 }
210
211 /// Return true if this is an integer type or a pointer type.
212 bool isIntOrPtrTy() const { return isIntegerTy() || isPointerTy(); }
213
214 /// True if this is an instance of FunctionType.
215 bool isFunctionTy() const { return getTypeID() == FunctionTyID; }
216
217 /// True if this is an instance of StructType.
218 bool isStructTy() const { return getTypeID() == StructTyID; }
219
220 /// True if this is an instance of ArrayType.
221 bool isArrayTy() const { return getTypeID() == ArrayTyID; }
222
223 /// True if this is an instance of PointerType.
224 bool isPointerTy() const { return getTypeID() == PointerTyID; }
225
226 /// Return true if this is a pointer type or a vector of pointer types.
227 bool isPtrOrPtrVectorTy() const { return getScalarType()->isPointerTy(); }
228
229 /// True if this is an instance of VectorType.
230 bool isVectorTy() const { return getTypeID() == VectorTyID; }
231
232 /// Return true if this type could be converted with a lossless BitCast to
233 /// type 'Ty'. For example, i8* to i32*. BitCasts are valid for types of the
234 /// same size only where no re-interpretation of the bits is done.
235 /// Determine if this type could be losslessly bitcast to Ty
236 bool canLosslesslyBitCastTo(Type *Ty) const;
237
238 /// Return true if this type is empty, that is, it has no elements or all of
239 /// its elements are empty.
240 bool isEmptyTy() const;
241
242 /// Return true if the type is "first class", meaning it is a valid type for a
243 /// Value.
244 bool isFirstClassType() const {
245 return getTypeID() != FunctionTyID && getTypeID() != VoidTyID;
246 }
247
248 /// Return true if the type is a valid type for a register in codegen. This
249 /// includes all first-class types except struct and array types.
250 bool isSingleValueType() const {
251 return isFloatingPointTy() || isX86_MMXTy() || isIntegerTy() ||
252 isPointerTy() || isVectorTy();
253 }
254
255 /// Return true if the type is an aggregate type. This means it is valid as
256 /// the first operand of an insertvalue or extractvalue instruction. This
257 /// includes struct and array types, but does not include vector types.
258 bool isAggregateType() const {
259 return getTypeID() == StructTyID || getTypeID() == ArrayTyID;
260 }
261
262 /// Return true if it makes sense to take the size of this type. To get the
263 /// actual size for a particular target, it is reasonable to use the
264 /// DataLayout subsystem to do this.
265 bool isSized(SmallPtrSetImpl<Type*> *Visited = nullptr) const {
266 // If it's a primitive, it is always sized.
267 if (getTypeID() == IntegerTyID || isFloatingPointTy() ||
268 getTypeID() == PointerTyID ||
269 getTypeID() == X86_MMXTyID)
270 return true;
271 // If it is not something that can have a size (e.g. a function or label),
272 // it doesn't have a size.
273 if (getTypeID() != StructTyID && getTypeID() != ArrayTyID &&
274 getTypeID() != VectorTyID)
275 return false;
276 // Otherwise we have to try harder to decide.
277 return isSizedDerivedType(Visited);
278 }
279
280 /// Return the basic size of this type if it is a primitive type. These are
281 /// fixed by LLVM and are not target-dependent.
282 /// This will return zero if the type does not have a size or is not a
283 /// primitive type.
284 ///
285 /// If this is a scalable vector type, the scalable property will be set and
286 /// the runtime size will be a positive integer multiple of the base size.
287 ///
288 /// Note that this may not reflect the size of memory allocated for an
289 /// instance of the type or the number of bytes that are written when an
290 /// instance of the type is stored to memory. The DataLayout class provides
291 /// additional query functions to provide this information.
292 ///
293 TypeSize getPrimitiveSizeInBits() const LLVM_READONLY__attribute__((__pure__));
294
295 /// If this is a vector type, return the getPrimitiveSizeInBits value for the
296 /// element type. Otherwise return the getPrimitiveSizeInBits value for this
297 /// type.
298 unsigned getScalarSizeInBits() const LLVM_READONLY__attribute__((__pure__));
299
300 /// Return the width of the mantissa of this type. This is only valid on
301 /// floating-point types. If the FP type does not have a stable mantissa (e.g.
302 /// ppc long double), this method returns -1.
303 int getFPMantissaWidth() const;
304
305 /// If this is a vector type, return the element type, otherwise return
306 /// 'this'.
307 Type *getScalarType() const {
308 if (isVectorTy())
309 return getVectorElementType();
310 return const_cast<Type*>(this);
311 }
312
313 //===--------------------------------------------------------------------===//
314 // Type Iteration support.
315 //
316 using subtype_iterator = Type * const *;
317
318 subtype_iterator subtype_begin() const { return ContainedTys; }
319 subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];}
320 ArrayRef<Type*> subtypes() const {
321 return makeArrayRef(subtype_begin(), subtype_end());
322 }
323
324 using subtype_reverse_iterator = std::reverse_iterator<subtype_iterator>;
325
326 subtype_reverse_iterator subtype_rbegin() const {
327 return subtype_reverse_iterator(subtype_end());
328 }
329 subtype_reverse_iterator subtype_rend() const {
330 return subtype_reverse_iterator(subtype_begin());
331 }
332
333 /// This method is used to implement the type iterator (defined at the end of
334 /// the file). For derived types, this returns the types 'contained' in the
335 /// derived type.
336 Type *getContainedType(unsigned i) const {
337 assert(i < NumContainedTys && "Index out of range!")((i < NumContainedTys && "Index out of range!") ? static_cast
<void> (0) : __assert_fail ("i < NumContainedTys && \"Index out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Type.h"
, 337, __PRETTY_FUNCTION__))
;
338 return ContainedTys[i];
339 }
340
341 /// Return the number of types in the derived type.
342 unsigned getNumContainedTypes() const { return NumContainedTys; }
343
344 //===--------------------------------------------------------------------===//
345 // Helper methods corresponding to subclass methods. This forces a cast to
346 // the specified subclass and calls its accessor. "getVectorNumElements" (for
347 // example) is shorthand for cast<VectorType>(Ty)->getNumElements(). This is
348 // only intended to cover the core methods that are frequently used, helper
349 // methods should not be added here.
350
351 inline unsigned getIntegerBitWidth() const;
352
353 inline Type *getFunctionParamType(unsigned i) const;
354 inline unsigned getFunctionNumParams() const;
355 inline bool isFunctionVarArg() const;
356
357 inline StringRef getStructName() const;
358 inline unsigned getStructNumElements() const;
359 inline Type *getStructElementType(unsigned N) const;
360
361 inline Type *getSequentialElementType() const {
362 assert(isSequentialType(getTypeID()) && "Not a sequential type!")((isSequentialType(getTypeID()) && "Not a sequential type!"
) ? static_cast<void> (0) : __assert_fail ("isSequentialType(getTypeID()) && \"Not a sequential type!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Type.h"
, 362, __PRETTY_FUNCTION__))
;
363 return ContainedTys[0];
364 }
365
366 inline uint64_t getArrayNumElements() const;
367
368 Type *getArrayElementType() const {
369 assert(getTypeID() == ArrayTyID)((getTypeID() == ArrayTyID) ? static_cast<void> (0) : __assert_fail
("getTypeID() == ArrayTyID", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Type.h"
, 369, __PRETTY_FUNCTION__))
;
370 return ContainedTys[0];
371 }
372
373 inline bool getVectorIsScalable() const;
374 inline unsigned getVectorNumElements() const;
375 inline ElementCount getVectorElementCount() const;
376 Type *getVectorElementType() const {
377 assert(getTypeID() == VectorTyID)((getTypeID() == VectorTyID) ? static_cast<void> (0) : __assert_fail
("getTypeID() == VectorTyID", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Type.h"
, 377, __PRETTY_FUNCTION__))
;
378 return ContainedTys[0];
379 }
380
381 Type *getPointerElementType() const {
382 assert(getTypeID() == PointerTyID)((getTypeID() == PointerTyID) ? static_cast<void> (0) :
__assert_fail ("getTypeID() == PointerTyID", "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Type.h"
, 382, __PRETTY_FUNCTION__))
;
383 return ContainedTys[0];
384 }
385
386 /// Given an integer or vector type, change the lane bitwidth to NewBitwidth,
387 /// whilst keeping the old number of lanes.
388 inline Type *getWithNewBitWidth(unsigned NewBitWidth) const;
389
390 /// Given scalar/vector integer type, returns a type with elements twice as
391 /// wide as in the original type. For vectors, preserves element count.
392 inline Type *getExtendedType() const;
393
394 /// Get the address space of this pointer or pointer vector type.
395 inline unsigned getPointerAddressSpace() const;
396
397 //===--------------------------------------------------------------------===//
398 // Static members exported by the Type class itself. Useful for getting
399 // instances of Type.
400 //
401
402 /// Return a type based on an identifier.
403 static Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber);
404
405 //===--------------------------------------------------------------------===//
406 // These are the builtin types that are always available.
407 //
408 static Type *getVoidTy(LLVMContext &C);
409 static Type *getLabelTy(LLVMContext &C);
410 static Type *getHalfTy(LLVMContext &C);
411 static Type *getFloatTy(LLVMContext &C);
412 static Type *getDoubleTy(LLVMContext &C);
413 static Type *getMetadataTy(LLVMContext &C);
414 static Type *getX86_FP80Ty(LLVMContext &C);
415 static Type *getFP128Ty(LLVMContext &C);
416 static Type *getPPC_FP128Ty(LLVMContext &C);
417 static Type *getX86_MMXTy(LLVMContext &C);
418 static Type *getTokenTy(LLVMContext &C);
419 static IntegerType *getIntNTy(LLVMContext &C, unsigned N);
420 static IntegerType *getInt1Ty(LLVMContext &C);
421 static IntegerType *getInt8Ty(LLVMContext &C);
422 static IntegerType *getInt16Ty(LLVMContext &C);
423 static IntegerType *getInt32Ty(LLVMContext &C);
424 static IntegerType *getInt64Ty(LLVMContext &C);
425 static IntegerType *getInt128Ty(LLVMContext &C);
426 template <typename ScalarTy> static Type *getScalarTy(LLVMContext &C) {
427 int noOfBits = sizeof(ScalarTy) * CHAR_BIT8;
428 if (std::is_integral<ScalarTy>::value) {
429 return (Type*) Type::getIntNTy(C, noOfBits);
430 } else if (std::is_floating_point<ScalarTy>::value) {
431 switch (noOfBits) {
432 case 32:
433 return Type::getFloatTy(C);
434 case 64:
435 return Type::getDoubleTy(C);
436 }
437 }
438 llvm_unreachable("Unsupported type in Type::getScalarTy")::llvm::llvm_unreachable_internal("Unsupported type in Type::getScalarTy"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Type.h"
, 438)
;
439 }
440
441 //===--------------------------------------------------------------------===//
442 // Convenience methods for getting pointer types with one of the above builtin
443 // types as pointee.
444 //
445 static PointerType *getHalfPtrTy(LLVMContext &C, unsigned AS = 0);
446 static PointerType *getFloatPtrTy(LLVMContext &C, unsigned AS = 0);
447 static PointerType *getDoublePtrTy(LLVMContext &C, unsigned AS = 0);
448 static PointerType *getX86_FP80PtrTy(LLVMContext &C, unsigned AS = 0);
449 static PointerType *getFP128PtrTy(LLVMContext &C, unsigned AS = 0);
450 static PointerType *getPPC_FP128PtrTy(LLVMContext &C, unsigned AS = 0);
451 static PointerType *getX86_MMXPtrTy(LLVMContext &C, unsigned AS = 0);
452 static PointerType *getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS = 0);
453 static PointerType *getInt1PtrTy(LLVMContext &C, unsigned AS = 0);
454 static PointerType *getInt8PtrTy(LLVMContext &C, unsigned AS = 0);
455 static PointerType *getInt16PtrTy(LLVMContext &C, unsigned AS = 0);
456 static PointerType *getInt32PtrTy(LLVMContext &C, unsigned AS = 0);
457 static PointerType *getInt64PtrTy(LLVMContext &C, unsigned AS = 0);
458
459 /// Return a pointer to the current type. This is equivalent to
460 /// PointerType::get(Foo, AddrSpace).
461 PointerType *getPointerTo(unsigned AddrSpace = 0) const;
462
463private:
464 /// Derived types like structures and arrays are sized iff all of the members
465 /// of the type are sized as well. Since asking for their size is relatively
466 /// uncommon, move this operation out-of-line.
467 bool isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited = nullptr) const;
468};
469
470// Printing of types.
471inline raw_ostream &operator<<(raw_ostream &OS, const Type &T) {
472 T.print(OS);
473 return OS;
474}
475
476// allow isa<PointerType>(x) to work without DerivedTypes.h included.
477template <> struct isa_impl<PointerType, Type> {
478 static inline bool doit(const Type &Ty) {
479 return Ty.getTypeID() == Type::PointerTyID;
480 }
481};
482
483// Create wrappers for C Binding types (see CBindingWrapping.h).
484DEFINE_ISA_CONVERSION_FUNCTIONS(Type, LLVMTypeRef)inline Type *unwrap(LLVMTypeRef P) { return reinterpret_cast<
Type*>(P); } inline LLVMTypeRef wrap(const Type *P) { return
reinterpret_cast<LLVMTypeRef>(const_cast<Type*>(
P)); } template<typename T> inline T *unwrap(LLVMTypeRef
P) { return cast<T>(unwrap(P)); }
485
486/* Specialized opaque type conversions.
487 */
488inline Type **unwrap(LLVMTypeRef* Tys) {
489 return reinterpret_cast<Type**>(Tys);
490}
491
492inline LLVMTypeRef *wrap(Type **Tys) {
493 return reinterpret_cast<LLVMTypeRef*>(const_cast<Type**>(Tys));
494}
495
496} // end namespace llvm
497
498#endif // LLVM_IR_TYPE_H

/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h

1//===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file exposes the class definitions of all of the subclasses of the
10// Instruction class. This is meant to be an easy way to get access to all
11// instruction subclasses.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_IR_INSTRUCTIONS_H
16#define LLVM_IR_INSTRUCTIONS_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/None.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/SmallVector.h"
22#include "llvm/ADT/StringRef.h"
23#include "llvm/ADT/Twine.h"
24#include "llvm/ADT/iterator.h"
25#include "llvm/ADT/iterator_range.h"
26#include "llvm/IR/Attributes.h"
27#include "llvm/IR/BasicBlock.h"
28#include "llvm/IR/CallingConv.h"
29#include "llvm/IR/Constant.h"
30#include "llvm/IR/DerivedTypes.h"
31#include "llvm/IR/Function.h"
32#include "llvm/IR/InstrTypes.h"
33#include "llvm/IR/Instruction.h"
34#include "llvm/IR/OperandTraits.h"
35#include "llvm/IR/Type.h"
36#include "llvm/IR/Use.h"
37#include "llvm/IR/User.h"
38#include "llvm/IR/Value.h"
39#include "llvm/Support/AtomicOrdering.h"
40#include "llvm/Support/Casting.h"
41#include "llvm/Support/ErrorHandling.h"
42#include <cassert>
43#include <cstddef>
44#include <cstdint>
45#include <iterator>
46
47namespace llvm {
48
49class APInt;
50class ConstantInt;
51class DataLayout;
52class LLVMContext;
53
54//===----------------------------------------------------------------------===//
55// AllocaInst Class
56//===----------------------------------------------------------------------===//
57
58/// an instruction to allocate memory on the stack
59class AllocaInst : public UnaryInstruction {
60 Type *AllocatedType;
61
62protected:
63 // Note: Instruction needs to be a friend here to call cloneImpl.
64 friend class Instruction;
65
66 AllocaInst *cloneImpl() const;
67
68public:
69 explicit AllocaInst(Type *Ty, unsigned AddrSpace,
70 Value *ArraySize = nullptr,
71 const Twine &Name = "",
72 Instruction *InsertBefore = nullptr);
73 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
74 const Twine &Name, BasicBlock *InsertAtEnd);
75
76 AllocaInst(Type *Ty, unsigned AddrSpace,
77 const Twine &Name, Instruction *InsertBefore = nullptr);
78 AllocaInst(Type *Ty, unsigned AddrSpace,
79 const Twine &Name, BasicBlock *InsertAtEnd);
80
81 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, MaybeAlign Align,
82 const Twine &Name = "", Instruction *InsertBefore = nullptr);
83 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, MaybeAlign Align,
84 const Twine &Name, BasicBlock *InsertAtEnd);
85
86 /// Return true if there is an allocation size parameter to the allocation
87 /// instruction that is not 1.
88 bool isArrayAllocation() const;
89
90 /// Get the number of elements allocated. For a simple allocation of a single
91 /// element, this will return a constant 1 value.
92 const Value *getArraySize() const { return getOperand(0); }
93 Value *getArraySize() { return getOperand(0); }
94
95 /// Overload to return most specific pointer type.
96 PointerType *getType() const {
97 return cast<PointerType>(Instruction::getType());
98 }
99
100 /// Get allocation size in bits. Returns None if size can't be determined,
101 /// e.g. in case of a VLA.
102 Optional<uint64_t> getAllocationSizeInBits(const DataLayout &DL) const;
103
104 /// Return the type that is being allocated by the instruction.
105 Type *getAllocatedType() const { return AllocatedType; }
106 /// for use only in special circumstances that need to generically
107 /// transform a whole instruction (eg: IR linking and vectorization).
108 void setAllocatedType(Type *Ty) { AllocatedType = Ty; }
109
110 /// Return the alignment of the memory that is being allocated by the
111 /// instruction.
112 MaybeAlign getAlign() const {
113 return decodeMaybeAlign(getSubclassDataFromInstruction() & 31);
114 }
115 // FIXME: Remove this one transition to Align is over.
116 unsigned getAlignment() const {
117 if (const auto MA = getAlign())
118 return MA->value();
119 return 0;
120 }
121 void setAlignment(MaybeAlign Align);
122
123 /// Return true if this alloca is in the entry block of the function and is a
124 /// constant size. If so, the code generator will fold it into the
125 /// prolog/epilog code, so it is basically free.
126 bool isStaticAlloca() const;
127
128 /// Return true if this alloca is used as an inalloca argument to a call. Such
129 /// allocas are never considered static even if they are in the entry block.
130 bool isUsedWithInAlloca() const {
131 return getSubclassDataFromInstruction() & 32;
132 }
133
134 /// Specify whether this alloca is used to represent the arguments to a call.
135 void setUsedWithInAlloca(bool V) {
136 setInstructionSubclassData((getSubclassDataFromInstruction() & ~32) |
137 (V ? 32 : 0));
138 }
139
140 /// Return true if this alloca is used as a swifterror argument to a call.
141 bool isSwiftError() const {
142 return getSubclassDataFromInstruction() & 64;
143 }
144
145 /// Specify whether this alloca is used to represent a swifterror.
146 void setSwiftError(bool V) {
147 setInstructionSubclassData((getSubclassDataFromInstruction() & ~64) |
148 (V ? 64 : 0));
149 }
150
151 // Methods for support type inquiry through isa, cast, and dyn_cast:
152 static bool classof(const Instruction *I) {
153 return (I->getOpcode() == Instruction::Alloca);
154 }
155 static bool classof(const Value *V) {
156 return isa<Instruction>(V) && classof(cast<Instruction>(V));
157 }
158
159private:
160 // Shadow Instruction::setInstructionSubclassData with a private forwarding
161 // method so that subclasses cannot accidentally use it.
162 void setInstructionSubclassData(unsigned short D) {
163 Instruction::setInstructionSubclassData(D);
164 }
165};
166
167//===----------------------------------------------------------------------===//
168// LoadInst Class
169//===----------------------------------------------------------------------===//
170
171/// An instruction for reading from memory. This uses the SubclassData field in
172/// Value to store whether or not the load is volatile.
173class LoadInst : public UnaryInstruction {
174 void AssertOK();
175
176protected:
177 // Note: Instruction needs to be a friend here to call cloneImpl.
178 friend class Instruction;
179
180 LoadInst *cloneImpl() const;
181
182public:
183 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr = "",
184 Instruction *InsertBefore = nullptr);
185 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd);
186 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
187 Instruction *InsertBefore = nullptr);
188 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
189 BasicBlock *InsertAtEnd);
190 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
191 MaybeAlign Align, Instruction *InsertBefore = nullptr);
192 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
193 MaybeAlign Align, BasicBlock *InsertAtEnd);
194 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
195 MaybeAlign Align, AtomicOrdering Order,
196 SyncScope::ID SSID = SyncScope::System,
197 Instruction *InsertBefore = nullptr);
198 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
199 MaybeAlign Align, AtomicOrdering Order, SyncScope::ID SSID,
200 BasicBlock *InsertAtEnd);
201
202 // Deprecated [opaque pointer types]
203 explicit LoadInst(Value *Ptr, const Twine &NameStr = "",
204 Instruction *InsertBefore = nullptr)
205 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
206 InsertBefore) {}
207 LoadInst(Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd)
208 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
209 InsertAtEnd) {}
210 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
211 Instruction *InsertBefore = nullptr)
212 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
213 isVolatile, InsertBefore) {}
214 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
215 BasicBlock *InsertAtEnd)
216 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
217 isVolatile, InsertAtEnd) {}
218 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, MaybeAlign Align,
219 Instruction *InsertBefore = nullptr)
220 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
221 isVolatile, Align, InsertBefore) {}
222 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, MaybeAlign Align,
223 BasicBlock *InsertAtEnd)
224 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
225 isVolatile, Align, InsertAtEnd) {}
226 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, MaybeAlign Align,
227 AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System,
228 Instruction *InsertBefore = nullptr)
229 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
230 isVolatile, Align, Order, SSID, InsertBefore) {}
231 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, MaybeAlign Align,
232 AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd)
233 : LoadInst(Ptr->getType()->getPointerElementType(), Ptr, NameStr,
234 isVolatile, Align, Order, SSID, InsertAtEnd) {}
235
236 /// Return true if this is a load from a volatile memory location.
237 bool isVolatile() const { return getSubclassDataFromInstruction() & 1; }
238
239 /// Specify whether this is a volatile load or not.
240 void setVolatile(bool V) {
241 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
242 (V ? 1 : 0));
243 }
244
245 /// Return the alignment of the access that is being performed.
246 /// FIXME: Remove this function once transition to Align is over.
247 /// Use getAlign() instead.
248 unsigned getAlignment() const {
249 if (const auto MA = getAlign())
250 return MA->value();
251 return 0;
252 }
253
254 /// Return the alignment of the access that is being performed.
255 MaybeAlign getAlign() const {
256 return decodeMaybeAlign((getSubclassDataFromInstruction() >> 1) & 31);
257 }
258
259 void setAlignment(MaybeAlign Alignment);
260
261 /// Returns the ordering constraint of this load instruction.
262 AtomicOrdering getOrdering() const {
263 return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7);
264 }
265
266 /// Sets the ordering constraint of this load instruction. May not be Release
267 /// or AcquireRelease.
268 void setOrdering(AtomicOrdering Ordering) {
269 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) |
270 ((unsigned)Ordering << 7));
271 }
272
273 /// Returns the synchronization scope ID of this load instruction.
274 SyncScope::ID getSyncScopeID() const {
275 return SSID;
276 }
277
278 /// Sets the synchronization scope ID of this load instruction.
279 void setSyncScopeID(SyncScope::ID SSID) {
280 this->SSID = SSID;
281 }
282
283 /// Sets the ordering constraint and the synchronization scope ID of this load
284 /// instruction.
285 void setAtomic(AtomicOrdering Ordering,
286 SyncScope::ID SSID = SyncScope::System) {
287 setOrdering(Ordering);
288 setSyncScopeID(SSID);
289 }
290
291 bool isSimple() const { return !isAtomic() && !isVolatile(); }
292
293 bool isUnordered() const {
294 return (getOrdering() == AtomicOrdering::NotAtomic ||
295 getOrdering() == AtomicOrdering::Unordered) &&
296 !isVolatile();
297 }
298
299 Value *getPointerOperand() { return getOperand(0); }
300 const Value *getPointerOperand() const { return getOperand(0); }
301 static unsigned getPointerOperandIndex() { return 0U; }
302 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
303
304 /// Returns the address space of the pointer operand.
305 unsigned getPointerAddressSpace() const {
306 return getPointerOperandType()->getPointerAddressSpace();
307 }
308
309 // Methods for support type inquiry through isa, cast, and dyn_cast:
310 static bool classof(const Instruction *I) {
311 return I->getOpcode() == Instruction::Load;
312 }
313 static bool classof(const Value *V) {
314 return isa<Instruction>(V) && classof(cast<Instruction>(V));
315 }
316
317private:
318 // Shadow Instruction::setInstructionSubclassData with a private forwarding
319 // method so that subclasses cannot accidentally use it.
320 void setInstructionSubclassData(unsigned short D) {
321 Instruction::setInstructionSubclassData(D);
322 }
323
324 /// The synchronization scope ID of this load instruction. Not quite enough
325 /// room in SubClassData for everything, so synchronization scope ID gets its
326 /// own field.
327 SyncScope::ID SSID;
328};
329
330//===----------------------------------------------------------------------===//
331// StoreInst Class
332//===----------------------------------------------------------------------===//
333
334/// An instruction for storing to memory.
335class StoreInst : public Instruction {
336 void AssertOK();
337
338protected:
339 // Note: Instruction needs to be a friend here to call cloneImpl.
340 friend class Instruction;
341
342 StoreInst *cloneImpl() const;
343
344public:
345 StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
346 StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
347 StoreInst(Value *Val, Value *Ptr, bool isVolatile = false,
348 Instruction *InsertBefore = nullptr);
349 StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);
350 StoreInst(Value *Val, Value *Ptr, bool isVolatile, MaybeAlign Align,
351 Instruction *InsertBefore = nullptr);
352 StoreInst(Value *Val, Value *Ptr, bool isVolatile, MaybeAlign Align,
353 BasicBlock *InsertAtEnd);
354 StoreInst(Value *Val, Value *Ptr, bool isVolatile, MaybeAlign Align,
355 AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System,
356 Instruction *InsertBefore = nullptr);
357 StoreInst(Value *Val, Value *Ptr, bool isVolatile, MaybeAlign Align,
358 AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd);
359
360 // allocate space for exactly two operands
361 void *operator new(size_t s) {
362 return User::operator new(s, 2);
363 }
364
365 /// Return true if this is a store to a volatile memory location.
366 bool isVolatile() const { return getSubclassDataFromInstruction() & 1; }
367
368 /// Specify whether this is a volatile store or not.
369 void setVolatile(bool V) {
370 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
371 (V ? 1 : 0));
372 }
373
374 /// Transparently provide more efficient getOperand methods.
375 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
376
377 /// Return the alignment of the access that is being performed
378 /// FIXME: Remove this function once transition to Align is over.
379 /// Use getAlign() instead.
380 unsigned getAlignment() const {
381 if (const auto MA = getAlign())
382 return MA->value();
383 return 0;
384 }
385
386 MaybeAlign getAlign() const {
387 return decodeMaybeAlign((getSubclassDataFromInstruction() >> 1) & 31);
388 }
389
390 void setAlignment(MaybeAlign Alignment);
391
392 /// Returns the ordering constraint of this store instruction.
393 AtomicOrdering getOrdering() const {
394 return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7);
395 }
396
397 /// Sets the ordering constraint of this store instruction. May not be
398 /// Acquire or AcquireRelease.
399 void setOrdering(AtomicOrdering Ordering) {
400 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) |
401 ((unsigned)Ordering << 7));
402 }
403
404 /// Returns the synchronization scope ID of this store instruction.
405 SyncScope::ID getSyncScopeID() const {
406 return SSID;
407 }
408
409 /// Sets the synchronization scope ID of this store instruction.
410 void setSyncScopeID(SyncScope::ID SSID) {
411 this->SSID = SSID;
412 }
413
414 /// Sets the ordering constraint and the synchronization scope ID of this
415 /// store instruction.
416 void setAtomic(AtomicOrdering Ordering,
417 SyncScope::ID SSID = SyncScope::System) {
418 setOrdering(Ordering);
419 setSyncScopeID(SSID);
420 }
421
422 bool isSimple() const { return !isAtomic() && !isVolatile(); }
423
424 bool isUnordered() const {
425 return (getOrdering() == AtomicOrdering::NotAtomic ||
426 getOrdering() == AtomicOrdering::Unordered) &&
427 !isVolatile();
428 }
429
430 Value *getValueOperand() { return getOperand(0); }
431 const Value *getValueOperand() const { return getOperand(0); }
432
433 Value *getPointerOperand() { return getOperand(1); }
434 const Value *getPointerOperand() const { return getOperand(1); }
435 static unsigned getPointerOperandIndex() { return 1U; }
436 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
437
438 /// Returns the address space of the pointer operand.
439 unsigned getPointerAddressSpace() const {
440 return getPointerOperandType()->getPointerAddressSpace();
441 }
442
443 // Methods for support type inquiry through isa, cast, and dyn_cast:
444 static bool classof(const Instruction *I) {
445 return I->getOpcode() == Instruction::Store;
446 }
447 static bool classof(const Value *V) {
448 return isa<Instruction>(V) && classof(cast<Instruction>(V));
449 }
450
451private:
452 // Shadow Instruction::setInstructionSubclassData with a private forwarding
453 // method so that subclasses cannot accidentally use it.
454 void setInstructionSubclassData(unsigned short D) {
455 Instruction::setInstructionSubclassData(D);
456 }
457
458 /// The synchronization scope ID of this store instruction. Not quite enough
459 /// room in SubClassData for everything, so synchronization scope ID gets its
460 /// own field.
461 SyncScope::ID SSID;
462};
463
464template <>
465struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> {
466};
467
468DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)StoreInst::op_iterator StoreInst::op_begin() { return OperandTraits
<StoreInst>::op_begin(this); } StoreInst::const_op_iterator
StoreInst::op_begin() const { return OperandTraits<StoreInst
>::op_begin(const_cast<StoreInst*>(this)); } StoreInst
::op_iterator StoreInst::op_end() { return OperandTraits<StoreInst
>::op_end(this); } StoreInst::const_op_iterator StoreInst::
op_end() const { return OperandTraits<StoreInst>::op_end
(const_cast<StoreInst*>(this)); } Value *StoreInst::getOperand
(unsigned i_nocapture) const { ((i_nocapture < OperandTraits
<StoreInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<StoreInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 468, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<StoreInst>::op_begin(const_cast<StoreInst
*>(this))[i_nocapture].get()); } void StoreInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<StoreInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<StoreInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 468, __PRETTY_FUNCTION__)); OperandTraits<StoreInst>::
op_begin(this)[i_nocapture] = Val_nocapture; } unsigned StoreInst
::getNumOperands() const { return OperandTraits<StoreInst>
::operands(this); } template <int Idx_nocapture> Use &
StoreInst::Op() { return this->OpFrom<Idx_nocapture>
(this); } template <int Idx_nocapture> const Use &StoreInst
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
469
470//===----------------------------------------------------------------------===//
471// FenceInst Class
472//===----------------------------------------------------------------------===//
473
474/// An instruction for ordering other memory operations.
475class FenceInst : public Instruction {
476 void Init(AtomicOrdering Ordering, SyncScope::ID SSID);
477
478protected:
479 // Note: Instruction needs to be a friend here to call cloneImpl.
480 friend class Instruction;
481
482 FenceInst *cloneImpl() const;
483
484public:
485 // Ordering may only be Acquire, Release, AcquireRelease, or
486 // SequentiallyConsistent.
487 FenceInst(LLVMContext &C, AtomicOrdering Ordering,
488 SyncScope::ID SSID = SyncScope::System,
489 Instruction *InsertBefore = nullptr);
490 FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID,
491 BasicBlock *InsertAtEnd);
492
493 // allocate space for exactly zero operands
494 void *operator new(size_t s) {
495 return User::operator new(s, 0);
496 }
497
498 /// Returns the ordering constraint of this fence instruction.
499 AtomicOrdering getOrdering() const {
500 return AtomicOrdering(getSubclassDataFromInstruction() >> 1);
501 }
502
503 /// Sets the ordering constraint of this fence instruction. May only be
504 /// Acquire, Release, AcquireRelease, or SequentiallyConsistent.
505 void setOrdering(AtomicOrdering Ordering) {
506 setInstructionSubclassData((getSubclassDataFromInstruction() & 1) |
507 ((unsigned)Ordering << 1));
508 }
509
510 /// Returns the synchronization scope ID of this fence instruction.
511 SyncScope::ID getSyncScopeID() const {
512 return SSID;
513 }
514
515 /// Sets the synchronization scope ID of this fence instruction.
516 void setSyncScopeID(SyncScope::ID SSID) {
517 this->SSID = SSID;
518 }
519
520 // Methods for support type inquiry through isa, cast, and dyn_cast:
521 static bool classof(const Instruction *I) {
522 return I->getOpcode() == Instruction::Fence;
523 }
524 static bool classof(const Value *V) {
525 return isa<Instruction>(V) && classof(cast<Instruction>(V));
526 }
527
528private:
529 // Shadow Instruction::setInstructionSubclassData with a private forwarding
530 // method so that subclasses cannot accidentally use it.
531 void setInstructionSubclassData(unsigned short D) {
532 Instruction::setInstructionSubclassData(D);
533 }
534
535 /// The synchronization scope ID of this fence instruction. Not quite enough
536 /// room in SubClassData for everything, so synchronization scope ID gets its
537 /// own field.
538 SyncScope::ID SSID;
539};
540
541//===----------------------------------------------------------------------===//
542// AtomicCmpXchgInst Class
543//===----------------------------------------------------------------------===//
544
545/// An instruction that atomically checks whether a
546/// specified value is in a memory location, and, if it is, stores a new value
547/// there. The value returned by this instruction is a pair containing the
548/// original value as first element, and an i1 indicating success (true) or
549/// failure (false) as second element.
550///
551class AtomicCmpXchgInst : public Instruction {
552 void Init(Value *Ptr, Value *Cmp, Value *NewVal,
553 AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
554 SyncScope::ID SSID);
555
556protected:
557 // Note: Instruction needs to be a friend here to call cloneImpl.
558 friend class Instruction;
559
560 AtomicCmpXchgInst *cloneImpl() const;
561
562public:
563 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
564 AtomicOrdering SuccessOrdering,
565 AtomicOrdering FailureOrdering,
566 SyncScope::ID SSID, Instruction *InsertBefore = nullptr);
567 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
568 AtomicOrdering SuccessOrdering,
569 AtomicOrdering FailureOrdering,
570 SyncScope::ID SSID, BasicBlock *InsertAtEnd);
571
572 // allocate space for exactly three operands
573 void *operator new(size_t s) {
574 return User::operator new(s, 3);
575 }
576
577 /// Return true if this is a cmpxchg from a volatile memory
578 /// location.
579 ///
580 bool isVolatile() const {
581 return getSubclassDataFromInstruction() & 1;
582 }
583
584 /// Specify whether this is a volatile cmpxchg.
585 ///
586 void setVolatile(bool V) {
587 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
588 (unsigned)V);
589 }
590
591 /// Return true if this cmpxchg may spuriously fail.
592 bool isWeak() const {
593 return getSubclassDataFromInstruction() & 0x100;
594 }
595
596 void setWeak(bool IsWeak) {
597 setInstructionSubclassData((getSubclassDataFromInstruction() & ~0x100) |
598 (IsWeak << 8));
599 }
600
601 /// Transparently provide more efficient getOperand methods.
602 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
603
604 /// Returns the success ordering constraint of this cmpxchg instruction.
605 AtomicOrdering getSuccessOrdering() const {
606 return AtomicOrdering((getSubclassDataFromInstruction() >> 2) & 7);
607 }
608
609 /// Sets the success ordering constraint of this cmpxchg instruction.
610 void setSuccessOrdering(AtomicOrdering Ordering) {
611 assert(Ordering != AtomicOrdering::NotAtomic &&((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 612, __PRETTY_FUNCTION__))
612 "CmpXchg instructions can only be atomic.")((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 612, __PRETTY_FUNCTION__))
;
613 setInstructionSubclassData((getSubclassDataFromInstruction() & ~0x1c) |
614 ((unsigned)Ordering << 2));
615 }
616
617 /// Returns the failure ordering constraint of this cmpxchg instruction.
618 AtomicOrdering getFailureOrdering() const {
619 return AtomicOrdering((getSubclassDataFromInstruction() >> 5) & 7);
620 }
621
622 /// Sets the failure ordering constraint of this cmpxchg instruction.
623 void setFailureOrdering(AtomicOrdering Ordering) {
624 assert(Ordering != AtomicOrdering::NotAtomic &&((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 625, __PRETTY_FUNCTION__))
625 "CmpXchg instructions can only be atomic.")((Ordering != AtomicOrdering::NotAtomic && "CmpXchg instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"CmpXchg instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 625, __PRETTY_FUNCTION__))
;
626 setInstructionSubclassData((getSubclassDataFromInstruction() & ~0xe0) |
627 ((unsigned)Ordering << 5));
628 }
629
630 /// Returns the synchronization scope ID of this cmpxchg instruction.
631 SyncScope::ID getSyncScopeID() const {
632 return SSID;
633 }
634
635 /// Sets the synchronization scope ID of this cmpxchg instruction.
636 void setSyncScopeID(SyncScope::ID SSID) {
637 this->SSID = SSID;
638 }
639
640 Value *getPointerOperand() { return getOperand(0); }
641 const Value *getPointerOperand() const { return getOperand(0); }
642 static unsigned getPointerOperandIndex() { return 0U; }
643
644 Value *getCompareOperand() { return getOperand(1); }
645 const Value *getCompareOperand() const { return getOperand(1); }
646
647 Value *getNewValOperand() { return getOperand(2); }
648 const Value *getNewValOperand() const { return getOperand(2); }
649
650 /// Returns the address space of the pointer operand.
651 unsigned getPointerAddressSpace() const {
652 return getPointerOperand()->getType()->getPointerAddressSpace();
653 }
654
655 /// Returns the strongest permitted ordering on failure, given the
656 /// desired ordering on success.
657 ///
658 /// If the comparison in a cmpxchg operation fails, there is no atomic store
659 /// so release semantics cannot be provided. So this function drops explicit
660 /// Release requests from the AtomicOrdering. A SequentiallyConsistent
661 /// operation would remain SequentiallyConsistent.
662 static AtomicOrdering
663 getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) {
664 switch (SuccessOrdering) {
665 default:
666 llvm_unreachable("invalid cmpxchg success ordering")::llvm::llvm_unreachable_internal("invalid cmpxchg success ordering"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 666)
;
667 case AtomicOrdering::Release:
668 case AtomicOrdering::Monotonic:
669 return AtomicOrdering::Monotonic;
670 case AtomicOrdering::AcquireRelease:
671 case AtomicOrdering::Acquire:
672 return AtomicOrdering::Acquire;
673 case AtomicOrdering::SequentiallyConsistent:
674 return AtomicOrdering::SequentiallyConsistent;
675 }
676 }
677
678 // Methods for support type inquiry through isa, cast, and dyn_cast:
679 static bool classof(const Instruction *I) {
680 return I->getOpcode() == Instruction::AtomicCmpXchg;
681 }
682 static bool classof(const Value *V) {
683 return isa<Instruction>(V) && classof(cast<Instruction>(V));
684 }
685
686private:
687 // Shadow Instruction::setInstructionSubclassData with a private forwarding
688 // method so that subclasses cannot accidentally use it.
689 void setInstructionSubclassData(unsigned short D) {
690 Instruction::setInstructionSubclassData(D);
691 }
692
693 /// The synchronization scope ID of this cmpxchg instruction. Not quite
694 /// enough room in SubClassData for everything, so synchronization scope ID
695 /// gets its own field.
696 SyncScope::ID SSID;
697};
698
699template <>
700struct OperandTraits<AtomicCmpXchgInst> :
701 public FixedNumOperandTraits<AtomicCmpXchgInst, 3> {
702};
703
704DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)AtomicCmpXchgInst::op_iterator AtomicCmpXchgInst::op_begin() {
return OperandTraits<AtomicCmpXchgInst>::op_begin(this
); } AtomicCmpXchgInst::const_op_iterator AtomicCmpXchgInst::
op_begin() const { return OperandTraits<AtomicCmpXchgInst>
::op_begin(const_cast<AtomicCmpXchgInst*>(this)); } AtomicCmpXchgInst
::op_iterator AtomicCmpXchgInst::op_end() { return OperandTraits
<AtomicCmpXchgInst>::op_end(this); } AtomicCmpXchgInst::
const_op_iterator AtomicCmpXchgInst::op_end() const { return OperandTraits
<AtomicCmpXchgInst>::op_end(const_cast<AtomicCmpXchgInst
*>(this)); } Value *AtomicCmpXchgInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<AtomicCmpXchgInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicCmpXchgInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 704, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<AtomicCmpXchgInst>::op_begin(const_cast
<AtomicCmpXchgInst*>(this))[i_nocapture].get()); } void
AtomicCmpXchgInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<AtomicCmpXchgInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicCmpXchgInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 704, __PRETTY_FUNCTION__)); OperandTraits<AtomicCmpXchgInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
AtomicCmpXchgInst::getNumOperands() const { return OperandTraits
<AtomicCmpXchgInst>::operands(this); } template <int
Idx_nocapture> Use &AtomicCmpXchgInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &AtomicCmpXchgInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
705
706//===----------------------------------------------------------------------===//
707// AtomicRMWInst Class
708//===----------------------------------------------------------------------===//
709
710/// an instruction that atomically reads a memory location,
711/// combines it with another value, and then stores the result back. Returns
712/// the old value.
713///
714class AtomicRMWInst : public Instruction {
715protected:
716 // Note: Instruction needs to be a friend here to call cloneImpl.
717 friend class Instruction;
718
719 AtomicRMWInst *cloneImpl() const;
720
721public:
722 /// This enumeration lists the possible modifications atomicrmw can make. In
723 /// the descriptions, 'p' is the pointer to the instruction's memory location,
724 /// 'old' is the initial value of *p, and 'v' is the other value passed to the
725 /// instruction. These instructions always return 'old'.
726 enum BinOp {
727 /// *p = v
728 Xchg,
729 /// *p = old + v
730 Add,
731 /// *p = old - v
732 Sub,
733 /// *p = old & v
734 And,
735 /// *p = ~(old & v)
736 Nand,
737 /// *p = old | v
738 Or,
739 /// *p = old ^ v
740 Xor,
741 /// *p = old >signed v ? old : v
742 Max,
743 /// *p = old <signed v ? old : v
744 Min,
745 /// *p = old >unsigned v ? old : v
746 UMax,
747 /// *p = old <unsigned v ? old : v
748 UMin,
749
750 /// *p = old + v
751 FAdd,
752
753 /// *p = old - v
754 FSub,
755
756 FIRST_BINOP = Xchg,
757 LAST_BINOP = FSub,
758 BAD_BINOP
759 };
760
761 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
762 AtomicOrdering Ordering, SyncScope::ID SSID,
763 Instruction *InsertBefore = nullptr);
764 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
765 AtomicOrdering Ordering, SyncScope::ID SSID,
766 BasicBlock *InsertAtEnd);
767
768 // allocate space for exactly two operands
769 void *operator new(size_t s) {
770 return User::operator new(s, 2);
771 }
772
773 BinOp getOperation() const {
774 return static_cast<BinOp>(getSubclassDataFromInstruction() >> 5);
775 }
776
777 static StringRef getOperationName(BinOp Op);
778
779 static bool isFPOperation(BinOp Op) {
780 switch (Op) {
781 case AtomicRMWInst::FAdd:
782 case AtomicRMWInst::FSub:
783 return true;
784 default:
785 return false;
786 }
787 }
788
789 void setOperation(BinOp Operation) {
790 unsigned short SubclassData = getSubclassDataFromInstruction();
791 setInstructionSubclassData((SubclassData & 31) |
792 (Operation << 5));
793 }
794
795 /// Return true if this is a RMW on a volatile memory location.
796 ///
797 bool isVolatile() const {
798 return getSubclassDataFromInstruction() & 1;
799 }
800
801 /// Specify whether this is a volatile RMW or not.
802 ///
803 void setVolatile(bool V) {
804 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
805 (unsigned)V);
806 }
807
808 /// Transparently provide more efficient getOperand methods.
809 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
810
811 /// Returns the ordering constraint of this rmw instruction.
812 AtomicOrdering getOrdering() const {
813 return AtomicOrdering((getSubclassDataFromInstruction() >> 2) & 7);
814 }
815
816 /// Sets the ordering constraint of this rmw instruction.
817 void setOrdering(AtomicOrdering Ordering) {
818 assert(Ordering != AtomicOrdering::NotAtomic &&((Ordering != AtomicOrdering::NotAtomic && "atomicrmw instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"atomicrmw instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 819, __PRETTY_FUNCTION__))
819 "atomicrmw instructions can only be atomic.")((Ordering != AtomicOrdering::NotAtomic && "atomicrmw instructions can only be atomic."
) ? static_cast<void> (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"atomicrmw instructions can only be atomic.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 819, __PRETTY_FUNCTION__))
;
820 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 2)) |
821 ((unsigned)Ordering << 2));
822 }
823
824 /// Returns the synchronization scope ID of this rmw instruction.
825 SyncScope::ID getSyncScopeID() const {
826 return SSID;
827 }
828
829 /// Sets the synchronization scope ID of this rmw instruction.
830 void setSyncScopeID(SyncScope::ID SSID) {
831 this->SSID = SSID;
832 }
833
834 Value *getPointerOperand() { return getOperand(0); }
835 const Value *getPointerOperand() const { return getOperand(0); }
836 static unsigned getPointerOperandIndex() { return 0U; }
837
838 Value *getValOperand() { return getOperand(1); }
839 const Value *getValOperand() const { return getOperand(1); }
840
841 /// Returns the address space of the pointer operand.
842 unsigned getPointerAddressSpace() const {
843 return getPointerOperand()->getType()->getPointerAddressSpace();
844 }
845
846 bool isFloatingPointOperation() const {
847 return isFPOperation(getOperation());
848 }
849
850 // Methods for support type inquiry through isa, cast, and dyn_cast:
851 static bool classof(const Instruction *I) {
852 return I->getOpcode() == Instruction::AtomicRMW;
853 }
854 static bool classof(const Value *V) {
855 return isa<Instruction>(V) && classof(cast<Instruction>(V));
856 }
857
858private:
859 void Init(BinOp Operation, Value *Ptr, Value *Val,
860 AtomicOrdering Ordering, SyncScope::ID SSID);
861
862 // Shadow Instruction::setInstructionSubclassData with a private forwarding
863 // method so that subclasses cannot accidentally use it.
864 void setInstructionSubclassData(unsigned short D) {
865 Instruction::setInstructionSubclassData(D);
866 }
867
868 /// The synchronization scope ID of this rmw instruction. Not quite enough
869 /// room in SubClassData for everything, so synchronization scope ID gets its
870 /// own field.
871 SyncScope::ID SSID;
872};
873
874template <>
875struct OperandTraits<AtomicRMWInst>
876 : public FixedNumOperandTraits<AtomicRMWInst,2> {
877};
878
879DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)AtomicRMWInst::op_iterator AtomicRMWInst::op_begin() { return
OperandTraits<AtomicRMWInst>::op_begin(this); } AtomicRMWInst
::const_op_iterator AtomicRMWInst::op_begin() const { return OperandTraits
<AtomicRMWInst>::op_begin(const_cast<AtomicRMWInst*>
(this)); } AtomicRMWInst::op_iterator AtomicRMWInst::op_end()
{ return OperandTraits<AtomicRMWInst>::op_end(this); }
AtomicRMWInst::const_op_iterator AtomicRMWInst::op_end() const
{ return OperandTraits<AtomicRMWInst>::op_end(const_cast
<AtomicRMWInst*>(this)); } Value *AtomicRMWInst::getOperand
(unsigned i_nocapture) const { ((i_nocapture < OperandTraits
<AtomicRMWInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicRMWInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 879, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<AtomicRMWInst>::op_begin(const_cast<
AtomicRMWInst*>(this))[i_nocapture].get()); } void AtomicRMWInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<AtomicRMWInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicRMWInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 879, __PRETTY_FUNCTION__)); OperandTraits<AtomicRMWInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned AtomicRMWInst
::getNumOperands() const { return OperandTraits<AtomicRMWInst
>::operands(this); } template <int Idx_nocapture> Use
&AtomicRMWInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
AtomicRMWInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
880
881//===----------------------------------------------------------------------===//
882// GetElementPtrInst Class
883//===----------------------------------------------------------------------===//
884
885// checkGEPType - Simple wrapper function to give a better assertion failure
886// message on bad indexes for a gep instruction.
887//
888inline Type *checkGEPType(Type *Ty) {
889 assert(Ty && "Invalid GetElementPtrInst indices for type!")((Ty && "Invalid GetElementPtrInst indices for type!"
) ? static_cast<void> (0) : __assert_fail ("Ty && \"Invalid GetElementPtrInst indices for type!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 889, __PRETTY_FUNCTION__))
;
890 return Ty;
891}
892
893/// an instruction for type-safe pointer arithmetic to
894/// access elements of arrays and structs
895///
896class GetElementPtrInst : public Instruction {
897 Type *SourceElementType;
898 Type *ResultElementType;
899
900 GetElementPtrInst(const GetElementPtrInst &GEPI);
901
902 /// Constructors - Create a getelementptr instruction with a base pointer an
903 /// list of indices. The first ctor can optionally insert before an existing
904 /// instruction, the second appends the new instruction to the specified
905 /// BasicBlock.
906 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
907 ArrayRef<Value *> IdxList, unsigned Values,
908 const Twine &NameStr, Instruction *InsertBefore);
909 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
910 ArrayRef<Value *> IdxList, unsigned Values,
911 const Twine &NameStr, BasicBlock *InsertAtEnd);
912
913 void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr);
914
915protected:
916 // Note: Instruction needs to be a friend here to call cloneImpl.
917 friend class Instruction;
918
919 GetElementPtrInst *cloneImpl() const;
920
921public:
922 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
923 ArrayRef<Value *> IdxList,
924 const Twine &NameStr = "",
925 Instruction *InsertBefore = nullptr) {
926 unsigned Values = 1 + unsigned(IdxList.size());
927 if (!PointeeType
43.1
'PointeeType' is null
43.1
'PointeeType' is null
43.1
'PointeeType' is null
)
44
Taking true branch
928 PointeeType =
929 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType();
45
The object is a 'PointerType'
930 else
931 assert(((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 933, __PRETTY_FUNCTION__))
932 PointeeType ==((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 933, __PRETTY_FUNCTION__))
933 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType())((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 933, __PRETTY_FUNCTION__))
;
934 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
46
Calling constructor for 'GetElementPtrInst'
51
Returning from constructor for 'GetElementPtrInst'
935 NameStr, InsertBefore);
936 }
937
938 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
939 ArrayRef<Value *> IdxList,
940 const Twine &NameStr,
941 BasicBlock *InsertAtEnd) {
942 unsigned Values = 1 + unsigned(IdxList.size());
943 if (!PointeeType)
944 PointeeType =
945 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType();
946 else
947 assert(((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 949, __PRETTY_FUNCTION__))
948 PointeeType ==((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 949, __PRETTY_FUNCTION__))
949 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType())((PointeeType == cast<PointerType>(Ptr->getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("PointeeType == cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 949, __PRETTY_FUNCTION__))
;
950 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
951 NameStr, InsertAtEnd);
952 }
953
954 /// Create an "inbounds" getelementptr. See the documentation for the
955 /// "inbounds" flag in LangRef.html for details.
956 static GetElementPtrInst *CreateInBounds(Value *Ptr,
957 ArrayRef<Value *> IdxList,
958 const Twine &NameStr = "",
959 Instruction *InsertBefore = nullptr){
960 return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertBefore);
961 }
962
963 static GetElementPtrInst *
964 CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList,
965 const Twine &NameStr = "",
966 Instruction *InsertBefore = nullptr) {
967 GetElementPtrInst *GEP =
968 Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore);
969 GEP->setIsInBounds(true);
970 return GEP;
971 }
972
973 static GetElementPtrInst *CreateInBounds(Value *Ptr,
974 ArrayRef<Value *> IdxList,
975 const Twine &NameStr,
976 BasicBlock *InsertAtEnd) {
977 return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertAtEnd);
978 }
979
980 static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr,
981 ArrayRef<Value *> IdxList,
982 const Twine &NameStr,
983 BasicBlock *InsertAtEnd) {
984 GetElementPtrInst *GEP =
985 Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd);
986 GEP->setIsInBounds(true);
987 return GEP;
988 }
989
990 /// Transparently provide more efficient getOperand methods.
991 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
992
993 Type *getSourceElementType() const { return SourceElementType; }
994
995 void setSourceElementType(Type *Ty) { SourceElementType = Ty; }
996 void setResultElementType(Type *Ty) { ResultElementType = Ty; }
997
998 Type *getResultElementType() const {
999 assert(ResultElementType ==((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1000, __PRETTY_FUNCTION__))
1000 cast<PointerType>(getType()->getScalarType())->getElementType())((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1000, __PRETTY_FUNCTION__))
;
1001 return ResultElementType;
1002 }
1003
1004 /// Returns the address space of this instruction's pointer type.
1005 unsigned getAddressSpace() const {
1006 // Note that this is always the same as the pointer operand's address space
1007 // and that is cheaper to compute, so cheat here.
1008 return getPointerAddressSpace();
1009 }
1010
1011 /// Returns the type of the element that would be loaded with
1012 /// a load instruction with the specified parameters.
1013 ///
1014 /// Null is returned if the indices are invalid for the specified
1015 /// pointer type.
1016 ///
1017 static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList);
1018 static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList);
1019 static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList);
1020
1021 inline op_iterator idx_begin() { return op_begin()+1; }
1022 inline const_op_iterator idx_begin() const { return op_begin()+1; }
1023 inline op_iterator idx_end() { return op_end(); }
1024 inline const_op_iterator idx_end() const { return op_end(); }
1025
1026 inline iterator_range<op_iterator> indices() {
1027 return make_range(idx_begin(), idx_end());
1028 }
1029
1030 inline iterator_range<const_op_iterator> indices() const {
1031 return make_range(idx_begin(), idx_end());
1032 }
1033
1034 Value *getPointerOperand() {
1035 return getOperand(0);
1036 }
1037 const Value *getPointerOperand() const {
1038 return getOperand(0);
1039 }
1040 static unsigned getPointerOperandIndex() {
1041 return 0U; // get index for modifying correct operand.
1042 }
1043
1044 /// Method to return the pointer operand as a
1045 /// PointerType.
1046 Type *getPointerOperandType() const {
1047 return getPointerOperand()->getType();
1048 }
1049
1050 /// Returns the address space of the pointer operand.
1051 unsigned getPointerAddressSpace() const {
1052 return getPointerOperandType()->getPointerAddressSpace();
1053 }
1054
1055 /// Returns the pointer type returned by the GEP
1056 /// instruction, which may be a vector of pointers.
1057 static Type *getGEPReturnType(Type *ElTy, Value *Ptr,
1058 ArrayRef<Value *> IdxList) {
1059 Type *PtrTy = PointerType::get(checkGEPType(getIndexedType(ElTy, IdxList)),
1060 Ptr->getType()->getPointerAddressSpace());
1061 // Vector GEP
1062 if (Ptr->getType()->isVectorTy()) {
1063 ElementCount EltCount = Ptr->getType()->getVectorElementCount();
1064 return VectorType::get(PtrTy, EltCount);
1065 }
1066 for (Value *Index : IdxList)
1067 if (Index->getType()->isVectorTy()) {
1068 ElementCount EltCount = Index->getType()->getVectorElementCount();
1069 return VectorType::get(PtrTy, EltCount);
1070 }
1071 // Scalar GEP
1072 return PtrTy;
1073 }
1074
1075 unsigned getNumIndices() const { // Note: always non-negative
1076 return getNumOperands() - 1;
1077 }
1078
1079 bool hasIndices() const {
1080 return getNumOperands() > 1;
1081 }
1082
1083 /// Return true if all of the indices of this GEP are
1084 /// zeros. If so, the result pointer and the first operand have the same
1085 /// value, just potentially different types.
1086 bool hasAllZeroIndices() const;
1087
1088 /// Return true if all of the indices of this GEP are
1089 /// constant integers. If so, the result pointer and the first operand have
1090 /// a constant offset between them.
1091 bool hasAllConstantIndices() const;
1092
1093 /// Set or clear the inbounds flag on this GEP instruction.
1094 /// See LangRef.html for the meaning of inbounds on a getelementptr.
1095 void setIsInBounds(bool b = true);
1096
1097 /// Determine whether the GEP has the inbounds flag.
1098 bool isInBounds() const;
1099
1100 /// Accumulate the constant address offset of this GEP if possible.
1101 ///
1102 /// This routine accepts an APInt into which it will accumulate the constant
1103 /// offset of this GEP if the GEP is in fact constant. If the GEP is not
1104 /// all-constant, it returns false and the value of the offset APInt is
1105 /// undefined (it is *not* preserved!). The APInt passed into this routine
1106 /// must be at least as wide as the IntPtr type for the address space of
1107 /// the base GEP pointer.
1108 bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
1109
1110 // Methods for support type inquiry through isa, cast, and dyn_cast:
1111 static bool classof(const Instruction *I) {
1112 return (I->getOpcode() == Instruction::GetElementPtr);
1113 }
1114 static bool classof(const Value *V) {
1115 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1116 }
1117};
1118
1119template <>
1120struct OperandTraits<GetElementPtrInst> :
1121 public VariadicOperandTraits<GetElementPtrInst, 1> {
1122};
1123
1124GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1125 ArrayRef<Value *> IdxList, unsigned Values,
1126 const Twine &NameStr,
1127 Instruction *InsertBefore)
1128 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1129 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1130 Values, InsertBefore),
1131 SourceElementType(PointeeType),
1132 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1133 assert(ResultElementType ==((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1134, __PRETTY_FUNCTION__))
47
The object is a 'PointerType'
48
Assuming the condition is true
49
'?' condition is true
1134 cast<PointerType>(getType()->getScalarType())->getElementType())((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1134, __PRETTY_FUNCTION__))
;
1135 init(Ptr, IdxList, NameStr);
50
Value assigned to 'DebugFlag', which participates in a condition later
1136}
1137
1138GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1139 ArrayRef<Value *> IdxList, unsigned Values,
1140 const Twine &NameStr,
1141 BasicBlock *InsertAtEnd)
1142 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1143 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1144 Values, InsertAtEnd),
1145 SourceElementType(PointeeType),
1146 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1147 assert(ResultElementType ==((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1148, __PRETTY_FUNCTION__))
1148 cast<PointerType>(getType()->getScalarType())->getElementType())((ResultElementType == cast<PointerType>(getType()->
getScalarType())->getElementType()) ? static_cast<void>
(0) : __assert_fail ("ResultElementType == cast<PointerType>(getType()->getScalarType())->getElementType()"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1148, __PRETTY_FUNCTION__))
;
1149 init(Ptr, IdxList, NameStr);
1150}
1151
1152DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)GetElementPtrInst::op_iterator GetElementPtrInst::op_begin() {
return OperandTraits<GetElementPtrInst>::op_begin(this
); } GetElementPtrInst::const_op_iterator GetElementPtrInst::
op_begin() const { return OperandTraits<GetElementPtrInst>
::op_begin(const_cast<GetElementPtrInst*>(this)); } GetElementPtrInst
::op_iterator GetElementPtrInst::op_end() { return OperandTraits
<GetElementPtrInst>::op_end(this); } GetElementPtrInst::
const_op_iterator GetElementPtrInst::op_end() const { return OperandTraits
<GetElementPtrInst>::op_end(const_cast<GetElementPtrInst
*>(this)); } Value *GetElementPtrInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<GetElementPtrInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<GetElementPtrInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1152, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<GetElementPtrInst>::op_begin(const_cast
<GetElementPtrInst*>(this))[i_nocapture].get()); } void
GetElementPtrInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<GetElementPtrInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<GetElementPtrInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1152, __PRETTY_FUNCTION__)); OperandTraits<GetElementPtrInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
GetElementPtrInst::getNumOperands() const { return OperandTraits
<GetElementPtrInst>::operands(this); } template <int
Idx_nocapture> Use &GetElementPtrInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &GetElementPtrInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
1153
1154//===----------------------------------------------------------------------===//
1155// ICmpInst Class
1156//===----------------------------------------------------------------------===//
1157
1158/// This instruction compares its operands according to the predicate given
1159/// to the constructor. It only operates on integers or pointers. The operands
1160/// must be identical types.
1161/// Represent an integer comparison operator.
1162class ICmpInst: public CmpInst {
1163 void AssertOK() {
1164 assert(isIntPredicate() &&((isIntPredicate() && "Invalid ICmp predicate value")
? static_cast<void> (0) : __assert_fail ("isIntPredicate() && \"Invalid ICmp predicate value\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1165, __PRETTY_FUNCTION__))
1165 "Invalid ICmp predicate value")((isIntPredicate() && "Invalid ICmp predicate value")
? static_cast<void> (0) : __assert_fail ("isIntPredicate() && \"Invalid ICmp predicate value\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1165, __PRETTY_FUNCTION__))
;
1166 assert(getOperand(0)->getType() == getOperand(1)->getType() &&((getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to ICmp instruction are not of the same type!"
) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to ICmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1167, __PRETTY_FUNCTION__))
1167 "Both operands to ICmp instruction are not of the same type!")((getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to ICmp instruction are not of the same type!"
) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to ICmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1167, __PRETTY_FUNCTION__))
;
1168 // Check that the operands are the right type
1169 assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||(((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand
(0)->getType()->isPtrOrPtrVectorTy()) && "Invalid operand types for ICmp instruction"
) ? static_cast<void> (0) : __assert_fail ("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1171, __PRETTY_FUNCTION__))
1170 getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&(((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand
(0)->getType()->isPtrOrPtrVectorTy()) && "Invalid operand types for ICmp instruction"
) ? static_cast<void> (0) : __assert_fail ("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1171, __PRETTY_FUNCTION__))
1171 "Invalid operand types for ICmp instruction")(((getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand
(0)->getType()->isPtrOrPtrVectorTy()) && "Invalid operand types for ICmp instruction"
) ? static_cast<void> (0) : __assert_fail ("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1171, __PRETTY_FUNCTION__))
;
1172 }
1173
1174protected:
1175 // Note: Instruction needs to be a friend here to call cloneImpl.
1176 friend class Instruction;
1177
1178 /// Clone an identical ICmpInst
1179 ICmpInst *cloneImpl() const;
1180
1181public:
1182 /// Constructor with insert-before-instruction semantics.
1183 ICmpInst(
1184 Instruction *InsertBefore, ///< Where to insert
1185 Predicate pred, ///< The predicate to use for the comparison
1186 Value *LHS, ///< The left-hand-side of the expression
1187 Value *RHS, ///< The right-hand-side of the expression
1188 const Twine &NameStr = "" ///< Name of the instruction
1189 ) : CmpInst(makeCmpResultType(LHS->getType()),
1190 Instruction::ICmp, pred, LHS, RHS, NameStr,
1191 InsertBefore) {
1192#ifndef NDEBUG
1193 AssertOK();
1194#endif
1195 }
1196
1197 /// Constructor with insert-at-end semantics.
1198 ICmpInst(
1199 BasicBlock &InsertAtEnd, ///< Block to insert into.
1200 Predicate pred, ///< The predicate to use for the comparison
1201 Value *LHS, ///< The left-hand-side of the expression
1202 Value *RHS, ///< The right-hand-side of the expression
1203 const Twine &NameStr = "" ///< Name of the instruction
1204 ) : CmpInst(makeCmpResultType(LHS->getType()),
1205 Instruction::ICmp, pred, LHS, RHS, NameStr,
1206 &InsertAtEnd) {
1207#ifndef NDEBUG
1208 AssertOK();
1209#endif
1210 }
1211
1212 /// Constructor with no-insertion semantics
1213 ICmpInst(
1214 Predicate pred, ///< The predicate to use for the comparison
1215 Value *LHS, ///< The left-hand-side of the expression
1216 Value *RHS, ///< The right-hand-side of the expression
1217 const Twine &NameStr = "" ///< Name of the instruction
1218 ) : CmpInst(makeCmpResultType(LHS->getType()),
1219 Instruction::ICmp, pred, LHS, RHS, NameStr) {
1220#ifndef NDEBUG
1221 AssertOK();
1222#endif
1223 }
1224
1225 /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
1226 /// @returns the predicate that would be the result if the operand were
1227 /// regarded as signed.
1228 /// Return the signed version of the predicate
1229 Predicate getSignedPredicate() const {
1230 return getSignedPredicate(getPredicate());
1231 }
1232
1233 /// This is a static version that you can use without an instruction.
1234 /// Return the signed version of the predicate.
1235 static Predicate getSignedPredicate(Predicate pred);
1236
1237 /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
1238 /// @returns the predicate that would be the result if the operand were
1239 /// regarded as unsigned.
1240 /// Return the unsigned version of the predicate
1241 Predicate getUnsignedPredicate() const {
1242 return getUnsignedPredicate(getPredicate());
1243 }
1244
1245 /// This is a static version that you can use without an instruction.
1246 /// Return the unsigned version of the predicate.
1247 static Predicate getUnsignedPredicate(Predicate pred);
1248
1249 /// Return true if this predicate is either EQ or NE. This also
1250 /// tests for commutativity.
1251 static bool isEquality(Predicate P) {
1252 return P == ICMP_EQ || P == ICMP_NE;
1253 }
1254
1255 /// Return true if this predicate is either EQ or NE. This also
1256 /// tests for commutativity.
1257 bool isEquality() const {
1258 return isEquality(getPredicate());
1259 }
1260
1261 /// @returns true if the predicate of this ICmpInst is commutative
1262 /// Determine if this relation is commutative.
1263 bool isCommutative() const { return isEquality(); }
1264
1265 /// Return true if the predicate is relational (not EQ or NE).
1266 ///
1267 bool isRelational() const {
1268 return !isEquality();
1269 }
1270
1271 /// Return true if the predicate is relational (not EQ or NE).
1272 ///
1273 static bool isRelational(Predicate P) {
1274 return !isEquality(P);
1275 }
1276
1277 /// Exchange the two operands to this instruction in such a way that it does
1278 /// not modify the semantics of the instruction. The predicate value may be
1279 /// changed to retain the same result if the predicate is order dependent
1280 /// (e.g. ult).
1281 /// Swap operands and adjust predicate.
1282 void swapOperands() {
1283 setPredicate(getSwappedPredicate());
1284 Op<0>().swap(Op<1>());
1285 }
1286
1287 // Methods for support type inquiry through isa, cast, and dyn_cast:
1288 static bool classof(const Instruction *I) {
1289 return I->getOpcode() == Instruction::ICmp;
1290 }
1291 static bool classof(const Value *V) {
1292 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1293 }
1294};
1295
1296//===----------------------------------------------------------------------===//
1297// FCmpInst Class
1298//===----------------------------------------------------------------------===//
1299
1300/// This instruction compares its operands according to the predicate given
1301/// to the constructor. It only operates on floating point values or packed
1302/// vectors of floating point values. The operands must be identical types.
1303/// Represents a floating point comparison operator.
1304class FCmpInst: public CmpInst {
1305 void AssertOK() {
1306 assert(isFPPredicate() && "Invalid FCmp predicate value")((isFPPredicate() && "Invalid FCmp predicate value") ?
static_cast<void> (0) : __assert_fail ("isFPPredicate() && \"Invalid FCmp predicate value\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1306, __PRETTY_FUNCTION__))
;
1307 assert(getOperand(0)->getType() == getOperand(1)->getType() &&((getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to FCmp instruction are not of the same type!"
) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to FCmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1308, __PRETTY_FUNCTION__))
1308 "Both operands to FCmp instruction are not of the same type!")((getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to FCmp instruction are not of the same type!"
) ? static_cast<void> (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to FCmp instruction are not of the same type!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1308, __PRETTY_FUNCTION__))
;
1309 // Check that the operands are the right type
1310 assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&((getOperand(0)->getType()->isFPOrFPVectorTy() &&
"Invalid operand types for FCmp instruction") ? static_cast<
void> (0) : __assert_fail ("getOperand(0)->getType()->isFPOrFPVectorTy() && \"Invalid operand types for FCmp instruction\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1311, __PRETTY_FUNCTION__))
1311 "Invalid operand types for FCmp instruction")((getOperand(0)->getType()->isFPOrFPVectorTy() &&
"Invalid operand types for FCmp instruction") ? static_cast<
void> (0) : __assert_fail ("getOperand(0)->getType()->isFPOrFPVectorTy() && \"Invalid operand types for FCmp instruction\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1311, __PRETTY_FUNCTION__))
;
1312 }
1313
1314protected:
1315 // Note: Instruction needs to be a friend here to call cloneImpl.
1316 friend class Instruction;
1317
1318 /// Clone an identical FCmpInst
1319 FCmpInst *cloneImpl() const;
1320
1321public:
1322 /// Constructor with insert-before-instruction semantics.
1323 FCmpInst(
1324 Instruction *InsertBefore, ///< Where to insert
1325 Predicate pred, ///< The predicate to use for the comparison
1326 Value *LHS, ///< The left-hand-side of the expression
1327 Value *RHS, ///< The right-hand-side of the expression
1328 const Twine &NameStr = "" ///< Name of the instruction
1329 ) : CmpInst(makeCmpResultType(LHS->getType()),
1330 Instruction::FCmp, pred, LHS, RHS, NameStr,
1331 InsertBefore) {
1332 AssertOK();
1333 }
1334
1335 /// Constructor with insert-at-end semantics.
1336 FCmpInst(
1337 BasicBlock &InsertAtEnd, ///< Block to insert into.
1338 Predicate pred, ///< The predicate to use for the comparison
1339 Value *LHS, ///< The left-hand-side of the expression
1340 Value *RHS, ///< The right-hand-side of the expression
1341 const Twine &NameStr = "" ///< Name of the instruction
1342 ) : CmpInst(makeCmpResultType(LHS->getType()),
1343 Instruction::FCmp, pred, LHS, RHS, NameStr,
1344 &InsertAtEnd) {
1345 AssertOK();
1346 }
1347
1348 /// Constructor with no-insertion semantics
1349 FCmpInst(
1350 Predicate Pred, ///< The predicate to use for the comparison
1351 Value *LHS, ///< The left-hand-side of the expression
1352 Value *RHS, ///< The right-hand-side of the expression
1353 const Twine &NameStr = "", ///< Name of the instruction
1354 Instruction *FlagsSource = nullptr
1355 ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS,
1356 RHS, NameStr, nullptr, FlagsSource) {
1357 AssertOK();
1358 }
1359
1360 /// @returns true if the predicate of this instruction is EQ or NE.
1361 /// Determine if this is an equality predicate.
1362 static bool isEquality(Predicate Pred) {
1363 return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ ||
1364 Pred == FCMP_UNE;
1365 }
1366
1367 /// @returns true if the predicate of this instruction is EQ or NE.
1368 /// Determine if this is an equality predicate.
1369 bool isEquality() const { return isEquality(getPredicate()); }
1370
1371 /// @returns true if the predicate of this instruction is commutative.
1372 /// Determine if this is a commutative predicate.
1373 bool isCommutative() const {
1374 return isEquality() ||
1375 getPredicate() == FCMP_FALSE ||
1376 getPredicate() == FCMP_TRUE ||
1377 getPredicate() == FCMP_ORD ||
1378 getPredicate() == FCMP_UNO;
1379 }
1380
1381 /// @returns true if the predicate is relational (not EQ or NE).
1382 /// Determine if this a relational predicate.
1383 bool isRelational() const { return !isEquality(); }
1384
1385 /// Exchange the two operands to this instruction in such a way that it does
1386 /// not modify the semantics of the instruction. The predicate value may be
1387 /// changed to retain the same result if the predicate is order dependent
1388 /// (e.g. ult).
1389 /// Swap operands and adjust predicate.
1390 void swapOperands() {
1391 setPredicate(getSwappedPredicate());
1392 Op<0>().swap(Op<1>());
1393 }
1394
1395 /// Methods for support type inquiry through isa, cast, and dyn_cast:
1396 static bool classof(const Instruction *I) {
1397 return I->getOpcode() == Instruction::FCmp;
1398 }
1399 static bool classof(const Value *V) {
1400 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1401 }
1402};
1403
1404//===----------------------------------------------------------------------===//
1405/// This class represents a function call, abstracting a target
1406/// machine's calling convention. This class uses low bit of the SubClassData
1407/// field to indicate whether or not this is a tail call. The rest of the bits
1408/// hold the calling convention of the call.
1409///
1410class CallInst : public CallBase {
1411 CallInst(const CallInst &CI);
1412
1413 /// Construct a CallInst given a range of arguments.
1414 /// Construct a CallInst from a range of arguments
1415 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1416 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1417 Instruction *InsertBefore);
1418
1419 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1420 const Twine &NameStr, Instruction *InsertBefore)
1421 : CallInst(Ty, Func, Args, None, NameStr, InsertBefore) {}
1422
1423 /// Construct a CallInst given a range of arguments.
1424 /// Construct a CallInst from a range of arguments
1425 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1426 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1427 BasicBlock *InsertAtEnd);
1428
1429 explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr,
1430 Instruction *InsertBefore);
1431
1432 CallInst(FunctionType *ty, Value *F, const Twine &NameStr,
1433 BasicBlock *InsertAtEnd);
1434
1435 void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
1436 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
1437 void init(FunctionType *FTy, Value *Func, const Twine &NameStr);
1438
1439 /// Compute the number of operands to allocate.
1440 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
1441 // We need one operand for the called function, plus the input operand
1442 // counts provided.
1443 return 1 + NumArgs + NumBundleInputs;
1444 }
1445
1446protected:
1447 // Note: Instruction needs to be a friend here to call cloneImpl.
1448 friend class Instruction;
1449
1450 CallInst *cloneImpl() const;
1451
1452public:
1453 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "",
1454 Instruction *InsertBefore = nullptr) {
1455 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore);
1456 }
1457
1458 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1459 const Twine &NameStr,
1460 Instruction *InsertBefore = nullptr) {
1461 return new (ComputeNumOperands(Args.size()))
1462 CallInst(Ty, Func, Args, None, NameStr, InsertBefore);
1463 }
1464
1465 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1466 ArrayRef<OperandBundleDef> Bundles = None,
1467 const Twine &NameStr = "",
1468 Instruction *InsertBefore = nullptr) {
1469 const int NumOperands =
1470 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1471 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1472
1473 return new (NumOperands, DescriptorBytes)
1474 CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore);
1475 }
1476
1477 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr,
1478 BasicBlock *InsertAtEnd) {
1479 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd);
1480 }
1481
1482 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1483 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1484 return new (ComputeNumOperands(Args.size()))
1485 CallInst(Ty, Func, Args, None, NameStr, InsertAtEnd);
1486 }
1487
1488 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1489 ArrayRef<OperandBundleDef> Bundles,
1490 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1491 const int NumOperands =
1492 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1493 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1494
1495 return new (NumOperands, DescriptorBytes)
1496 CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd);
1497 }
1498
1499 static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "",
1500 Instruction *InsertBefore = nullptr) {
1501 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1502 InsertBefore);
1503 }
1504
1505 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1506 ArrayRef<OperandBundleDef> Bundles = None,
1507 const Twine &NameStr = "",
1508 Instruction *InsertBefore = nullptr) {
1509 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1510 NameStr, InsertBefore);
1511 }
1512
1513 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1514 const Twine &NameStr,
1515 Instruction *InsertBefore = nullptr) {
1516 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1517 InsertBefore);
1518 }
1519
1520 static CallInst *Create(FunctionCallee Func, const Twine &NameStr,
1521 BasicBlock *InsertAtEnd) {
1522 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1523 InsertAtEnd);
1524 }
1525
1526 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1527 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1528 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1529 InsertAtEnd);
1530 }
1531
1532 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1533 ArrayRef<OperandBundleDef> Bundles,
1534 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1535 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1536 NameStr, InsertAtEnd);
1537 }
1538
1539 // Deprecated [opaque pointer types]
1540 static CallInst *Create(Value *Func, const Twine &NameStr = "",
1541 Instruction *InsertBefore = nullptr) {
1542 return Create(cast<FunctionType>(
1543 cast<PointerType>(Func->getType())->getElementType()),
1544 Func, NameStr, InsertBefore);
1545 }
1546
1547 // Deprecated [opaque pointer types]
1548 static CallInst *Create(Value *Func, ArrayRef<Value *> Args,
1549 const Twine &NameStr,
1550 Instruction *InsertBefore = nullptr) {
1551 return Create(cast<FunctionType>(
1552 cast<PointerType>(Func->getType())->getElementType()),
1553 Func, Args, NameStr, InsertBefore);
1554 }
1555
1556 // Deprecated [opaque pointer types]
1557 static CallInst *Create(Value *Func, ArrayRef<Value *> Args,
1558 ArrayRef<OperandBundleDef> Bundles = None,
1559 const Twine &NameStr = "",
1560 Instruction *InsertBefore = nullptr) {
1561 return Create(cast<FunctionType>(
1562 cast<PointerType>(Func->getType())->getElementType()),
1563 Func, Args, Bundles, NameStr, InsertBefore);
1564 }
1565
1566 // Deprecated [opaque pointer types]
1567 static CallInst *Create(Value *Func, const Twine &NameStr,
1568 BasicBlock *InsertAtEnd) {
1569 return Create(cast<FunctionType>(
1570 cast<PointerType>(Func->getType())->getElementType()),
1571 Func, NameStr, InsertAtEnd);
1572 }
1573
1574 // Deprecated [opaque pointer types]
1575 static CallInst *Create(Value *Func, ArrayRef<Value *> Args,
1576 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1577 return Create(cast<FunctionType>(
1578 cast<PointerType>(Func->getType())->getElementType()),
1579 Func, Args, NameStr, InsertAtEnd);
1580 }
1581
1582 // Deprecated [opaque pointer types]
1583 static CallInst *Create(Value *Func, ArrayRef<Value *> Args,
1584 ArrayRef<OperandBundleDef> Bundles,
1585 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1586 return Create(cast<FunctionType>(
1587 cast<PointerType>(Func->getType())->getElementType()),
1588 Func, Args, Bundles, NameStr, InsertAtEnd);
1589 }
1590
1591 /// Create a clone of \p CI with a different set of operand bundles and
1592 /// insert it before \p InsertPt.
1593 ///
1594 /// The returned call instruction is identical \p CI in every way except that
1595 /// the operand bundles for the new instruction are set to the operand bundles
1596 /// in \p Bundles.
1597 static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles,
1598 Instruction *InsertPt = nullptr);
1599
1600 /// Generate the IR for a call to malloc:
1601 /// 1. Compute the malloc call's argument as the specified type's size,
1602 /// possibly multiplied by the array size if the array size is not
1603 /// constant 1.
1604 /// 2. Call malloc with that argument.
1605 /// 3. Bitcast the result of the malloc call to the specified type.
1606 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1607 Type *AllocTy, Value *AllocSize,
1608 Value *ArraySize = nullptr,
1609 Function *MallocF = nullptr,
1610 const Twine &Name = "");
1611 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1612 Type *AllocTy, Value *AllocSize,
1613 Value *ArraySize = nullptr,
1614 Function *MallocF = nullptr,
1615 const Twine &Name = "");
1616 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1617 Type *AllocTy, Value *AllocSize,
1618 Value *ArraySize = nullptr,
1619 ArrayRef<OperandBundleDef> Bundles = None,
1620 Function *MallocF = nullptr,
1621 const Twine &Name = "");
1622 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1623 Type *AllocTy, Value *AllocSize,
1624 Value *ArraySize = nullptr,
1625 ArrayRef<OperandBundleDef> Bundles = None,
1626 Function *MallocF = nullptr,
1627 const Twine &Name = "");
1628 /// Generate the IR for a call to the builtin free function.
1629 static Instruction *CreateFree(Value *Source, Instruction *InsertBefore);
1630 static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd);
1631 static Instruction *CreateFree(Value *Source,
1632 ArrayRef<OperandBundleDef> Bundles,
1633 Instruction *InsertBefore);
1634 static Instruction *CreateFree(Value *Source,
1635 ArrayRef<OperandBundleDef> Bundles,
1636 BasicBlock *InsertAtEnd);
1637
1638 // Note that 'musttail' implies 'tail'.
1639 enum TailCallKind {
1640 TCK_None = 0,
1641 TCK_Tail = 1,
1642 TCK_MustTail = 2,
1643 TCK_NoTail = 3
1644 };
1645 TailCallKind getTailCallKind() const {
1646 return TailCallKind(getSubclassDataFromInstruction() & 3);
1647 }
1648
1649 bool isTailCall() const {
1650 unsigned Kind = getSubclassDataFromInstruction() & 3;
1651 return Kind == TCK_Tail || Kind == TCK_MustTail;
1652 }
1653
1654 bool isMustTailCall() const {
1655 return (getSubclassDataFromInstruction() & 3) == TCK_MustTail;
1656 }
1657
1658 bool isNoTailCall() const {
1659 return (getSubclassDataFromInstruction() & 3) == TCK_NoTail;
1660 }
1661
1662 void setTailCall(bool isTC = true) {
1663 setInstructionSubclassData((getSubclassDataFromInstruction() & ~3) |
1664 unsigned(isTC ? TCK_Tail : TCK_None));
1665 }
1666
1667 void setTailCallKind(TailCallKind TCK) {
1668 setInstructionSubclassData((getSubclassDataFromInstruction() & ~3) |
1669 unsigned(TCK));
1670 }
1671
1672 /// Return true if the call can return twice
1673 bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); }
1674 void setCanReturnTwice() {
1675 addAttribute(AttributeList::FunctionIndex, Attribute::ReturnsTwice);
1676 }
1677
1678 // Methods for support type inquiry through isa, cast, and dyn_cast:
1679 static bool classof(const Instruction *I) {
1680 return I->getOpcode() == Instruction::Call;
1681 }
1682 static bool classof(const Value *V) {
1683 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1684 }
1685
1686 /// Updates profile metadata by scaling it by \p S / \p T.
1687 void updateProfWeight(uint64_t S, uint64_t T);
1688
1689private:
1690 // Shadow Instruction::setInstructionSubclassData with a private forwarding
1691 // method so that subclasses cannot accidentally use it.
1692 void setInstructionSubclassData(unsigned short D) {
1693 Instruction::setInstructionSubclassData(D);
1694 }
1695};
1696
1697CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1698 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1699 BasicBlock *InsertAtEnd)
1700 : CallBase(Ty->getReturnType(), Instruction::Call,
1701 OperandTraits<CallBase>::op_end(this) -
1702 (Args.size() + CountBundleInputs(Bundles) + 1),
1703 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1704 InsertAtEnd) {
1705 init(Ty, Func, Args, Bundles, NameStr);
1706}
1707
1708CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1709 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1710 Instruction *InsertBefore)
1711 : CallBase(Ty->getReturnType(), Instruction::Call,
1712 OperandTraits<CallBase>::op_end(this) -
1713 (Args.size() + CountBundleInputs(Bundles) + 1),
1714 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1715 InsertBefore) {
1716 init(Ty, Func, Args, Bundles, NameStr);
1717}
1718
1719//===----------------------------------------------------------------------===//
1720// SelectInst Class
1721//===----------------------------------------------------------------------===//
1722
1723/// This class represents the LLVM 'select' instruction.
1724///
1725class SelectInst : public Instruction {
1726 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1727 Instruction *InsertBefore)
1728 : Instruction(S1->getType(), Instruction::Select,
1729 &Op<0>(), 3, InsertBefore) {
1730 init(C, S1, S2);
1731 setName(NameStr);
1732 }
1733
1734 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1735 BasicBlock *InsertAtEnd)
1736 : Instruction(S1->getType(), Instruction::Select,
1737 &Op<0>(), 3, InsertAtEnd) {
1738 init(C, S1, S2);
1739 setName(NameStr);
1740 }
1741
1742 void init(Value *C, Value *S1, Value *S2) {
1743 assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select")((!areInvalidOperands(C, S1, S2) && "Invalid operands for select"
) ? static_cast<void> (0) : __assert_fail ("!areInvalidOperands(C, S1, S2) && \"Invalid operands for select\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1743, __PRETTY_FUNCTION__))
;
1744 Op<0>() = C;
1745 Op<1>() = S1;
1746 Op<2>() = S2;
1747 }
1748
1749protected:
1750 // Note: Instruction needs to be a friend here to call cloneImpl.
1751 friend class Instruction;
1752
1753 SelectInst *cloneImpl() const;
1754
1755public:
1756 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1757 const Twine &NameStr = "",
1758 Instruction *InsertBefore = nullptr,
1759 Instruction *MDFrom = nullptr) {
1760 SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore);
1761 if (MDFrom)
1762 Sel->copyMetadata(*MDFrom);
1763 return Sel;
1764 }
1765
1766 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1767 const Twine &NameStr,
1768 BasicBlock *InsertAtEnd) {
1769 return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd);
1770 }
1771
1772 const Value *getCondition() const { return Op<0>(); }
1773 const Value *getTrueValue() const { return Op<1>(); }
1774 const Value *getFalseValue() const { return Op<2>(); }
1775 Value *getCondition() { return Op<0>(); }
1776 Value *getTrueValue() { return Op<1>(); }
1777 Value *getFalseValue() { return Op<2>(); }
1778
1779 void setCondition(Value *V) { Op<0>() = V; }
1780 void setTrueValue(Value *V) { Op<1>() = V; }
1781 void setFalseValue(Value *V) { Op<2>() = V; }
1782
1783 /// Swap the true and false values of the select instruction.
1784 /// This doesn't swap prof metadata.
1785 void swapValues() { Op<1>().swap(Op<2>()); }
1786
1787 /// Return a string if the specified operands are invalid
1788 /// for a select operation, otherwise return null.
1789 static const char *areInvalidOperands(Value *Cond, Value *True, Value *False);
1790
1791 /// Transparently provide more efficient getOperand methods.
1792 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1793
1794 OtherOps getOpcode() const {
1795 return static_cast<OtherOps>(Instruction::getOpcode());
1796 }
1797
1798 // Methods for support type inquiry through isa, cast, and dyn_cast:
1799 static bool classof(const Instruction *I) {
1800 return I->getOpcode() == Instruction::Select;
1801 }
1802 static bool classof(const Value *V) {
1803 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1804 }
1805};
1806
1807template <>
1808struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> {
1809};
1810
1811DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)SelectInst::op_iterator SelectInst::op_begin() { return OperandTraits
<SelectInst>::op_begin(this); } SelectInst::const_op_iterator
SelectInst::op_begin() const { return OperandTraits<SelectInst
>::op_begin(const_cast<SelectInst*>(this)); } SelectInst
::op_iterator SelectInst::op_end() { return OperandTraits<
SelectInst>::op_end(this); } SelectInst::const_op_iterator
SelectInst::op_end() const { return OperandTraits<SelectInst
>::op_end(const_cast<SelectInst*>(this)); } Value *SelectInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<SelectInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<SelectInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1811, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<SelectInst>::op_begin(const_cast<SelectInst
*>(this))[i_nocapture].get()); } void SelectInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<SelectInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<SelectInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1811, __PRETTY_FUNCTION__)); OperandTraits<SelectInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned SelectInst
::getNumOperands() const { return OperandTraits<SelectInst
>::operands(this); } template <int Idx_nocapture> Use
&SelectInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
SelectInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
1812
1813//===----------------------------------------------------------------------===//
1814// VAArgInst Class
1815//===----------------------------------------------------------------------===//
1816
1817/// This class represents the va_arg llvm instruction, which returns
1818/// an argument of the specified type given a va_list and increments that list
1819///
1820class VAArgInst : public UnaryInstruction {
1821protected:
1822 // Note: Instruction needs to be a friend here to call cloneImpl.
1823 friend class Instruction;
1824
1825 VAArgInst *cloneImpl() const;
1826
1827public:
1828 VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "",
1829 Instruction *InsertBefore = nullptr)
1830 : UnaryInstruction(Ty, VAArg, List, InsertBefore) {
1831 setName(NameStr);
1832 }
1833
1834 VAArgInst(Value *List, Type *Ty, const Twine &NameStr,
1835 BasicBlock *InsertAtEnd)
1836 : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) {
1837 setName(NameStr);
1838 }
1839
1840 Value *getPointerOperand() { return getOperand(0); }
1841 const Value *getPointerOperand() const { return getOperand(0); }
1842 static unsigned getPointerOperandIndex() { return 0U; }
1843
1844 // Methods for support type inquiry through isa, cast, and dyn_cast:
1845 static bool classof(const Instruction *I) {
1846 return I->getOpcode() == VAArg;
1847 }
1848 static bool classof(const Value *V) {
1849 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1850 }
1851};
1852
1853//===----------------------------------------------------------------------===//
1854// ExtractElementInst Class
1855//===----------------------------------------------------------------------===//
1856
1857/// This instruction extracts a single (scalar)
1858/// element from a VectorType value
1859///
1860class ExtractElementInst : public Instruction {
1861 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "",
1862 Instruction *InsertBefore = nullptr);
1863 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr,
1864 BasicBlock *InsertAtEnd);
1865
1866protected:
1867 // Note: Instruction needs to be a friend here to call cloneImpl.
1868 friend class Instruction;
1869
1870 ExtractElementInst *cloneImpl() const;
1871
1872public:
1873 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1874 const Twine &NameStr = "",
1875 Instruction *InsertBefore = nullptr) {
1876 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore);
1877 }
1878
1879 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1880 const Twine &NameStr,
1881 BasicBlock *InsertAtEnd) {
1882 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd);
1883 }
1884
1885 /// Return true if an extractelement instruction can be
1886 /// formed with the specified operands.
1887 static bool isValidOperands(const Value *Vec, const Value *Idx);
1888
1889 Value *getVectorOperand() { return Op<0>(); }
1890 Value *getIndexOperand() { return Op<1>(); }
1891 const Value *getVectorOperand() const { return Op<0>(); }
1892 const Value *getIndexOperand() const { return Op<1>(); }
1893
1894 VectorType *getVectorOperandType() const {
1895 return cast<VectorType>(getVectorOperand()->getType());
1896 }
1897
1898 /// Transparently provide more efficient getOperand methods.
1899 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1900
1901 // Methods for support type inquiry through isa, cast, and dyn_cast:
1902 static bool classof(const Instruction *I) {
1903 return I->getOpcode() == Instruction::ExtractElement;
1904 }
1905 static bool classof(const Value *V) {
1906 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1907 }
1908};
1909
1910template <>
1911struct OperandTraits<ExtractElementInst> :
1912 public FixedNumOperandTraits<ExtractElementInst, 2> {
1913};
1914
1915DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)ExtractElementInst::op_iterator ExtractElementInst::op_begin(
) { return OperandTraits<ExtractElementInst>::op_begin(
this); } ExtractElementInst::const_op_iterator ExtractElementInst
::op_begin() const { return OperandTraits<ExtractElementInst
>::op_begin(const_cast<ExtractElementInst*>(this)); }
ExtractElementInst::op_iterator ExtractElementInst::op_end()
{ return OperandTraits<ExtractElementInst>::op_end(this
); } ExtractElementInst::const_op_iterator ExtractElementInst
::op_end() const { return OperandTraits<ExtractElementInst
>::op_end(const_cast<ExtractElementInst*>(this)); } Value
*ExtractElementInst::getOperand(unsigned i_nocapture) const {
((i_nocapture < OperandTraits<ExtractElementInst>::
operands(this) && "getOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ExtractElementInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1915, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<ExtractElementInst>::op_begin(const_cast
<ExtractElementInst*>(this))[i_nocapture].get()); } void
ExtractElementInst::setOperand(unsigned i_nocapture, Value *
Val_nocapture) { ((i_nocapture < OperandTraits<ExtractElementInst
>::operands(this) && "setOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ExtractElementInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1915, __PRETTY_FUNCTION__)); OperandTraits<ExtractElementInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
ExtractElementInst::getNumOperands() const { return OperandTraits
<ExtractElementInst>::operands(this); } template <int
Idx_nocapture> Use &ExtractElementInst::Op() { return
this->OpFrom<Idx_nocapture>(this); } template <int
Idx_nocapture> const Use &ExtractElementInst::Op() const
{ return this->OpFrom<Idx_nocapture>(this); }
1916
1917//===----------------------------------------------------------------------===//
1918// InsertElementInst Class
1919//===----------------------------------------------------------------------===//
1920
1921/// This instruction inserts a single (scalar)
1922/// element into a VectorType value
1923///
1924class InsertElementInst : public Instruction {
1925 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
1926 const Twine &NameStr = "",
1927 Instruction *InsertBefore = nullptr);
1928 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr,
1929 BasicBlock *InsertAtEnd);
1930
1931protected:
1932 // Note: Instruction needs to be a friend here to call cloneImpl.
1933 friend class Instruction;
1934
1935 InsertElementInst *cloneImpl() const;
1936
1937public:
1938 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1939 const Twine &NameStr = "",
1940 Instruction *InsertBefore = nullptr) {
1941 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore);
1942 }
1943
1944 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1945 const Twine &NameStr,
1946 BasicBlock *InsertAtEnd) {
1947 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd);
1948 }
1949
1950 /// Return true if an insertelement instruction can be
1951 /// formed with the specified operands.
1952 static bool isValidOperands(const Value *Vec, const Value *NewElt,
1953 const Value *Idx);
1954
1955 /// Overload to return most specific vector type.
1956 ///
1957 VectorType *getType() const {
1958 return cast<VectorType>(Instruction::getType());
1959 }
1960
1961 /// Transparently provide more efficient getOperand methods.
1962 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
1963
1964 // Methods for support type inquiry through isa, cast, and dyn_cast:
1965 static bool classof(const Instruction *I) {
1966 return I->getOpcode() == Instruction::InsertElement;
1967 }
1968 static bool classof(const Value *V) {
1969 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1970 }
1971};
1972
1973template <>
1974struct OperandTraits<InsertElementInst> :
1975 public FixedNumOperandTraits<InsertElementInst, 3> {
1976};
1977
1978DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)InsertElementInst::op_iterator InsertElementInst::op_begin() {
return OperandTraits<InsertElementInst>::op_begin(this
); } InsertElementInst::const_op_iterator InsertElementInst::
op_begin() const { return OperandTraits<InsertElementInst>
::op_begin(const_cast<InsertElementInst*>(this)); } InsertElementInst
::op_iterator InsertElementInst::op_end() { return OperandTraits
<InsertElementInst>::op_end(this); } InsertElementInst::
const_op_iterator InsertElementInst::op_end() const { return OperandTraits
<InsertElementInst>::op_end(const_cast<InsertElementInst
*>(this)); } Value *InsertElementInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<InsertElementInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<InsertElementInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1978, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<InsertElementInst>::op_begin(const_cast
<InsertElementInst*>(this))[i_nocapture].get()); } void
InsertElementInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<InsertElementInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<InsertElementInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 1978, __PRETTY_FUNCTION__)); OperandTraits<InsertElementInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
InsertElementInst::getNumOperands() const { return OperandTraits
<InsertElementInst>::operands(this); } template <int
Idx_nocapture> Use &InsertElementInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &InsertElementInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
1979
1980//===----------------------------------------------------------------------===//
1981// ShuffleVectorInst Class
1982//===----------------------------------------------------------------------===//
1983
1984/// This instruction constructs a fixed permutation of two
1985/// input vectors.
1986///
1987class ShuffleVectorInst : public Instruction {
1988protected:
1989 // Note: Instruction needs to be a friend here to call cloneImpl.
1990 friend class Instruction;
1991
1992 ShuffleVectorInst *cloneImpl() const;
1993
1994public:
1995 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1996 const Twine &NameStr = "",
1997 Instruction *InsertBefor = nullptr);
1998 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1999 const Twine &NameStr, BasicBlock *InsertAtEnd);
2000
2001 // allocate space for exactly three operands
2002 void *operator new(size_t s) {
2003 return User::operator new(s, 3);
2004 }
2005
2006 /// Swap the first 2 operands and adjust the mask to preserve the semantics
2007 /// of the instruction.
2008 void commute();
2009
2010 /// Return true if a shufflevector instruction can be
2011 /// formed with the specified operands.
2012 static bool isValidOperands(const Value *V1, const Value *V2,
2013 const Value *Mask);
2014
2015 /// Overload to return most specific vector type.
2016 ///
2017 VectorType *getType() const {
2018 return cast<VectorType>(Instruction::getType());
2019 }
2020
2021 /// Transparently provide more efficient getOperand methods.
2022 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2023
2024 Constant *getMask() const {
2025 return cast<Constant>(getOperand(2));
2026 }
2027
2028 /// Return the shuffle mask value for the specified element of the mask.
2029 /// Return -1 if the element is undef.
2030 static int getMaskValue(const Constant *Mask, unsigned Elt);
2031
2032 /// Return the shuffle mask value of this instruction for the given element
2033 /// index. Return -1 if the element is undef.
2034 int getMaskValue(unsigned Elt) const {
2035 return getMaskValue(getMask(), Elt);
2036 }
2037
2038 /// Convert the input shuffle mask operand to a vector of integers. Undefined
2039 /// elements of the mask are returned as -1.
2040 static void getShuffleMask(const Constant *Mask,
2041 SmallVectorImpl<int> &Result);
2042
2043 /// Return the mask for this instruction as a vector of integers. Undefined
2044 /// elements of the mask are returned as -1.
2045 void getShuffleMask(SmallVectorImpl<int> &Result) const {
2046 return getShuffleMask(getMask(), Result);
2047 }
2048
2049 SmallVector<int, 16> getShuffleMask() const {
2050 SmallVector<int, 16> Mask;
2051 getShuffleMask(Mask);
2052 return Mask;
2053 }
2054
2055 /// Return true if this shuffle returns a vector with a different number of
2056 /// elements than its source vectors.
2057 /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3>
2058 /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5>
2059 bool changesLength() const {
2060 unsigned NumSourceElts = Op<0>()->getType()->getVectorNumElements();
2061 unsigned NumMaskElts = getMask()->getType()->getVectorNumElements();
2062 return NumSourceElts != NumMaskElts;
2063 }
2064
2065 /// Return true if this shuffle returns a vector with a greater number of
2066 /// elements than its source vectors.
2067 /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3>
2068 bool increasesLength() const {
2069 unsigned NumSourceElts = Op<0>()->getType()->getVectorNumElements();
2070 unsigned NumMaskElts = getMask()->getType()->getVectorNumElements();
2071 return NumSourceElts < NumMaskElts;
2072 }
2073
2074 /// Return true if this shuffle mask chooses elements from exactly one source
2075 /// vector.
2076 /// Example: <7,5,undef,7>
2077 /// This assumes that vector operands are the same length as the mask.
2078 static bool isSingleSourceMask(ArrayRef<int> Mask);
2079 static bool isSingleSourceMask(const Constant *Mask) {
2080 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2080, __PRETTY_FUNCTION__))
;
2081 SmallVector<int, 16> MaskAsInts;
2082 getShuffleMask(Mask, MaskAsInts);
2083 return isSingleSourceMask(MaskAsInts);
2084 }
2085
2086 /// Return true if this shuffle chooses elements from exactly one source
2087 /// vector without changing the length of that vector.
2088 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3>
2089 /// TODO: Optionally allow length-changing shuffles.
2090 bool isSingleSource() const {
2091 return !changesLength() && isSingleSourceMask(getMask());
2092 }
2093
2094 /// Return true if this shuffle mask chooses elements from exactly one source
2095 /// vector without lane crossings. A shuffle using this mask is not
2096 /// necessarily a no-op because it may change the number of elements from its
2097 /// input vectors or it may provide demanded bits knowledge via undef lanes.
2098 /// Example: <undef,undef,2,3>
2099 static bool isIdentityMask(ArrayRef<int> Mask);
2100 static bool isIdentityMask(const Constant *Mask) {
2101 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2101, __PRETTY_FUNCTION__))
;
2102 SmallVector<int, 16> MaskAsInts;
2103 getShuffleMask(Mask, MaskAsInts);
2104 return isIdentityMask(MaskAsInts);
2105 }
2106
2107 /// Return true if this shuffle chooses elements from exactly one source
2108 /// vector without lane crossings and does not change the number of elements
2109 /// from its input vectors.
2110 /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef>
2111 bool isIdentity() const {
2112 return !changesLength() && isIdentityMask(getShuffleMask());
2113 }
2114
2115 /// Return true if this shuffle lengthens exactly one source vector with
2116 /// undefs in the high elements.
2117 bool isIdentityWithPadding() const;
2118
2119 /// Return true if this shuffle extracts the first N elements of exactly one
2120 /// source vector.
2121 bool isIdentityWithExtract() const;
2122
2123 /// Return true if this shuffle concatenates its 2 source vectors. This
2124 /// returns false if either input is undefined. In that case, the shuffle is
2125 /// is better classified as an identity with padding operation.
2126 bool isConcat() const;
2127
2128 /// Return true if this shuffle mask chooses elements from its source vectors
2129 /// without lane crossings. A shuffle using this mask would be
2130 /// equivalent to a vector select with a constant condition operand.
2131 /// Example: <4,1,6,undef>
2132 /// This returns false if the mask does not choose from both input vectors.
2133 /// In that case, the shuffle is better classified as an identity shuffle.
2134 /// This assumes that vector operands are the same length as the mask
2135 /// (a length-changing shuffle can never be equivalent to a vector select).
2136 static bool isSelectMask(ArrayRef<int> Mask);
2137 static bool isSelectMask(const Constant *Mask) {
2138 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2138, __PRETTY_FUNCTION__))
;
2139 SmallVector<int, 16> MaskAsInts;
2140 getShuffleMask(Mask, MaskAsInts);
2141 return isSelectMask(MaskAsInts);
2142 }
2143
2144 /// Return true if this shuffle chooses elements from its source vectors
2145 /// without lane crossings and all operands have the same number of elements.
2146 /// In other words, this shuffle is equivalent to a vector select with a
2147 /// constant condition operand.
2148 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3>
2149 /// This returns false if the mask does not choose from both input vectors.
2150 /// In that case, the shuffle is better classified as an identity shuffle.
2151 /// TODO: Optionally allow length-changing shuffles.
2152 bool isSelect() const {
2153 return !changesLength() && isSelectMask(getMask());
2154 }
2155
2156 /// Return true if this shuffle mask swaps the order of elements from exactly
2157 /// one source vector.
2158 /// Example: <7,6,undef,4>
2159 /// This assumes that vector operands are the same length as the mask.
2160 static bool isReverseMask(ArrayRef<int> Mask);
2161 static bool isReverseMask(const Constant *Mask) {
2162 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2162, __PRETTY_FUNCTION__))
;
2163 SmallVector<int, 16> MaskAsInts;
2164 getShuffleMask(Mask, MaskAsInts);
2165 return isReverseMask(MaskAsInts);
2166 }
2167
2168 /// Return true if this shuffle swaps the order of elements from exactly
2169 /// one source vector.
2170 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef>
2171 /// TODO: Optionally allow length-changing shuffles.
2172 bool isReverse() const {
2173 return !changesLength() && isReverseMask(getMask());
2174 }
2175
2176 /// Return true if this shuffle mask chooses all elements with the same value
2177 /// as the first element of exactly one source vector.
2178 /// Example: <4,undef,undef,4>
2179 /// This assumes that vector operands are the same length as the mask.
2180 static bool isZeroEltSplatMask(ArrayRef<int> Mask);
2181 static bool isZeroEltSplatMask(const Constant *Mask) {
2182 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2182, __PRETTY_FUNCTION__))
;
2183 SmallVector<int, 16> MaskAsInts;
2184 getShuffleMask(Mask, MaskAsInts);
2185 return isZeroEltSplatMask(MaskAsInts);
2186 }
2187
2188 /// Return true if all elements of this shuffle are the same value as the
2189 /// first element of exactly one source vector without changing the length
2190 /// of that vector.
2191 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0>
2192 /// TODO: Optionally allow length-changing shuffles.
2193 /// TODO: Optionally allow splats from other elements.
2194 bool isZeroEltSplat() const {
2195 return !changesLength() && isZeroEltSplatMask(getMask());
2196 }
2197
2198 /// Return true if this shuffle mask is a transpose mask.
2199 /// Transpose vector masks transpose a 2xn matrix. They read corresponding
2200 /// even- or odd-numbered vector elements from two n-dimensional source
2201 /// vectors and write each result into consecutive elements of an
2202 /// n-dimensional destination vector. Two shuffles are necessary to complete
2203 /// the transpose, one for the even elements and another for the odd elements.
2204 /// This description closely follows how the TRN1 and TRN2 AArch64
2205 /// instructions operate.
2206 ///
2207 /// For example, a simple 2x2 matrix can be transposed with:
2208 ///
2209 /// ; Original matrix
2210 /// m0 = < a, b >
2211 /// m1 = < c, d >
2212 ///
2213 /// ; Transposed matrix
2214 /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 >
2215 /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 >
2216 ///
2217 /// For matrices having greater than n columns, the resulting nx2 transposed
2218 /// matrix is stored in two result vectors such that one vector contains
2219 /// interleaved elements from all the even-numbered rows and the other vector
2220 /// contains interleaved elements from all the odd-numbered rows. For example,
2221 /// a 2x4 matrix can be transposed with:
2222 ///
2223 /// ; Original matrix
2224 /// m0 = < a, b, c, d >
2225 /// m1 = < e, f, g, h >
2226 ///
2227 /// ; Transposed matrix
2228 /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 >
2229 /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 >
2230 static bool isTransposeMask(ArrayRef<int> Mask);
2231 static bool isTransposeMask(const Constant *Mask) {
2232 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2232, __PRETTY_FUNCTION__))
;
2233 SmallVector<int, 16> MaskAsInts;
2234 getShuffleMask(Mask, MaskAsInts);
2235 return isTransposeMask(MaskAsInts);
2236 }
2237
2238 /// Return true if this shuffle transposes the elements of its inputs without
2239 /// changing the length of the vectors. This operation may also be known as a
2240 /// merge or interleave. See the description for isTransposeMask() for the
2241 /// exact specification.
2242 /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6>
2243 bool isTranspose() const {
2244 return !changesLength() && isTransposeMask(getMask());
2245 }
2246
2247 /// Return true if this shuffle mask is an extract subvector mask.
2248 /// A valid extract subvector mask returns a smaller vector from a single
2249 /// source operand. The base extraction index is returned as well.
2250 static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts,
2251 int &Index);
2252 static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts,
2253 int &Index) {
2254 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")((Mask->getType()->isVectorTy() && "Shuffle needs vector constant."
) ? static_cast<void> (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2254, __PRETTY_FUNCTION__))
;
2255 SmallVector<int, 16> MaskAsInts;
2256 getShuffleMask(Mask, MaskAsInts);
2257 return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index);
2258 }
2259
2260 /// Return true if this shuffle mask is an extract subvector mask.
2261 bool isExtractSubvectorMask(int &Index) const {
2262 int NumSrcElts = Op<0>()->getType()->getVectorNumElements();
2263 return isExtractSubvectorMask(getMask(), NumSrcElts, Index);
2264 }
2265
2266 /// Change values in a shuffle permute mask assuming the two vector operands
2267 /// of length InVecNumElts have swapped position.
2268 static void commuteShuffleMask(MutableArrayRef<int> Mask,
2269 unsigned InVecNumElts) {
2270 for (int &Idx : Mask) {
2271 if (Idx == -1)
2272 continue;
2273 Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts;
2274 assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&((Idx >= 0 && Idx < (int)InVecNumElts * 2 &&
"shufflevector mask index out of range") ? static_cast<void
> (0) : __assert_fail ("Idx >= 0 && Idx < (int)InVecNumElts * 2 && \"shufflevector mask index out of range\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2275, __PRETTY_FUNCTION__))
2275 "shufflevector mask index out of range")((Idx >= 0 && Idx < (int)InVecNumElts * 2 &&
"shufflevector mask index out of range") ? static_cast<void
> (0) : __assert_fail ("Idx >= 0 && Idx < (int)InVecNumElts * 2 && \"shufflevector mask index out of range\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2275, __PRETTY_FUNCTION__))
;
2276 }
2277 }
2278
2279 // Methods for support type inquiry through isa, cast, and dyn_cast:
2280 static bool classof(const Instruction *I) {
2281 return I->getOpcode() == Instruction::ShuffleVector;
2282 }
2283 static bool classof(const Value *V) {
2284 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2285 }
2286};
2287
2288template <>
2289struct OperandTraits<ShuffleVectorInst> :
2290 public FixedNumOperandTraits<ShuffleVectorInst, 3> {
2291};
2292
2293DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)ShuffleVectorInst::op_iterator ShuffleVectorInst::op_begin() {
return OperandTraits<ShuffleVectorInst>::op_begin(this
); } ShuffleVectorInst::const_op_iterator ShuffleVectorInst::
op_begin() const { return OperandTraits<ShuffleVectorInst>
::op_begin(const_cast<ShuffleVectorInst*>(this)); } ShuffleVectorInst
::op_iterator ShuffleVectorInst::op_end() { return OperandTraits
<ShuffleVectorInst>::op_end(this); } ShuffleVectorInst::
const_op_iterator ShuffleVectorInst::op_end() const { return OperandTraits
<ShuffleVectorInst>::op_end(const_cast<ShuffleVectorInst
*>(this)); } Value *ShuffleVectorInst::getOperand(unsigned
i_nocapture) const { ((i_nocapture < OperandTraits<ShuffleVectorInst
>::operands(this) && "getOperand() out of range!")
? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ShuffleVectorInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2293, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<ShuffleVectorInst>::op_begin(const_cast
<ShuffleVectorInst*>(this))[i_nocapture].get()); } void
ShuffleVectorInst::setOperand(unsigned i_nocapture, Value *Val_nocapture
) { ((i_nocapture < OperandTraits<ShuffleVectorInst>
::operands(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ShuffleVectorInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2293, __PRETTY_FUNCTION__)); OperandTraits<ShuffleVectorInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
ShuffleVectorInst::getNumOperands() const { return OperandTraits
<ShuffleVectorInst>::operands(this); } template <int
Idx_nocapture> Use &ShuffleVectorInst::Op() { return this
->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture
> const Use &ShuffleVectorInst::Op() const { return this
->OpFrom<Idx_nocapture>(this); }
2294
2295//===----------------------------------------------------------------------===//
2296// ExtractValueInst Class
2297//===----------------------------------------------------------------------===//
2298
2299/// This instruction extracts a struct member or array
2300/// element value from an aggregate value.
2301///
2302class ExtractValueInst : public UnaryInstruction {
2303 SmallVector<unsigned, 4> Indices;
2304
2305 ExtractValueInst(const ExtractValueInst &EVI);
2306
2307 /// Constructors - Create a extractvalue instruction with a base aggregate
2308 /// value and a list of indices. The first ctor can optionally insert before
2309 /// an existing instruction, the second appends the new instruction to the
2310 /// specified BasicBlock.
2311 inline ExtractValueInst(Value *Agg,
2312 ArrayRef<unsigned> Idxs,
2313 const Twine &NameStr,
2314 Instruction *InsertBefore);
2315 inline ExtractValueInst(Value *Agg,
2316 ArrayRef<unsigned> Idxs,
2317 const Twine &NameStr, BasicBlock *InsertAtEnd);
2318
2319 void init(ArrayRef<unsigned> Idxs, const Twine &NameStr);
2320
2321protected:
2322 // Note: Instruction needs to be a friend here to call cloneImpl.
2323 friend class Instruction;
2324
2325 ExtractValueInst *cloneImpl() const;
2326
2327public:
2328 static ExtractValueInst *Create(Value *Agg,
2329 ArrayRef<unsigned> Idxs,
2330 const Twine &NameStr = "",
2331 Instruction *InsertBefore = nullptr) {
2332 return new
2333 ExtractValueInst(Agg, Idxs, NameStr, InsertBefore);
2334 }
2335
2336 static ExtractValueInst *Create(Value *Agg,
2337 ArrayRef<unsigned> Idxs,
2338 const Twine &NameStr,
2339 BasicBlock *InsertAtEnd) {
2340 return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd);
2341 }
2342
2343 /// Returns the type of the element that would be extracted
2344 /// with an extractvalue instruction with the specified parameters.
2345 ///
2346 /// Null is returned if the indices are invalid for the specified type.
2347 static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs);
2348
2349 using idx_iterator = const unsigned*;
2350
2351 inline idx_iterator idx_begin() const { return Indices.begin(); }
2352 inline idx_iterator idx_end() const { return Indices.end(); }
2353 inline iterator_range<idx_iterator> indices() const {
2354 return make_range(idx_begin(), idx_end());
2355 }
2356
2357 Value *getAggregateOperand() {
2358 return getOperand(0);
2359 }
2360 const Value *getAggregateOperand() const {
2361 return getOperand(0);
2362 }
2363 static unsigned getAggregateOperandIndex() {
2364 return 0U; // get index for modifying correct operand
2365 }
2366
2367 ArrayRef<unsigned> getIndices() const {
2368 return Indices;
2369 }
2370
2371 unsigned getNumIndices() const {
2372 return (unsigned)Indices.size();
2373 }
2374
2375 bool hasIndices() const {
2376 return true;
2377 }
2378
2379 // Methods for support type inquiry through isa, cast, and dyn_cast:
2380 static bool classof(const Instruction *I) {
2381 return I->getOpcode() == Instruction::ExtractValue;
2382 }
2383 static bool classof(const Value *V) {
2384 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2385 }
2386};
2387
2388ExtractValueInst::ExtractValueInst(Value *Agg,
2389 ArrayRef<unsigned> Idxs,
2390 const Twine &NameStr,
2391 Instruction *InsertBefore)
2392 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2393 ExtractValue, Agg, InsertBefore) {
2394 init(Idxs, NameStr);
2395}
2396
2397ExtractValueInst::ExtractValueInst(Value *Agg,
2398 ArrayRef<unsigned> Idxs,
2399 const Twine &NameStr,
2400 BasicBlock *InsertAtEnd)
2401 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2402 ExtractValue, Agg, InsertAtEnd) {
2403 init(Idxs, NameStr);
2404}
2405
2406//===----------------------------------------------------------------------===//
2407// InsertValueInst Class
2408//===----------------------------------------------------------------------===//
2409
2410/// This instruction inserts a struct field of array element
2411/// value into an aggregate value.
2412///
2413class InsertValueInst : public Instruction {
2414 SmallVector<unsigned, 4> Indices;
2415
2416 InsertValueInst(const InsertValueInst &IVI);
2417
2418 /// Constructors - Create a insertvalue instruction with a base aggregate
2419 /// value, a value to insert, and a list of indices. The first ctor can
2420 /// optionally insert before an existing instruction, the second appends
2421 /// the new instruction to the specified BasicBlock.
2422 inline InsertValueInst(Value *Agg, Value *Val,
2423 ArrayRef<unsigned> Idxs,
2424 const Twine &NameStr,
2425 Instruction *InsertBefore);
2426 inline InsertValueInst(Value *Agg, Value *Val,
2427 ArrayRef<unsigned> Idxs,
2428 const Twine &NameStr, BasicBlock *InsertAtEnd);
2429
2430 /// Constructors - These two constructors are convenience methods because one
2431 /// and two index insertvalue instructions are so common.
2432 InsertValueInst(Value *Agg, Value *Val, unsigned Idx,
2433 const Twine &NameStr = "",
2434 Instruction *InsertBefore = nullptr);
2435 InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr,
2436 BasicBlock *InsertAtEnd);
2437
2438 void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2439 const Twine &NameStr);
2440
2441protected:
2442 // Note: Instruction needs to be a friend here to call cloneImpl.
2443 friend class Instruction;
2444
2445 InsertValueInst *cloneImpl() const;
2446
2447public:
2448 // allocate space for exactly two operands
2449 void *operator new(size_t s) {
2450 return User::operator new(s, 2);
2451 }
2452
2453 static InsertValueInst *Create(Value *Agg, Value *Val,
2454 ArrayRef<unsigned> Idxs,
2455 const Twine &NameStr = "",
2456 Instruction *InsertBefore = nullptr) {
2457 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore);
2458 }
2459
2460 static InsertValueInst *Create(Value *Agg, Value *Val,
2461 ArrayRef<unsigned> Idxs,
2462 const Twine &NameStr,
2463 BasicBlock *InsertAtEnd) {
2464 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd);
2465 }
2466
2467 /// Transparently provide more efficient getOperand methods.
2468 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2469
2470 using idx_iterator = const unsigned*;
2471
2472 inline idx_iterator idx_begin() const { return Indices.begin(); }
2473 inline idx_iterator idx_end() const { return Indices.end(); }
2474 inline iterator_range<idx_iterator> indices() const {
2475 return make_range(idx_begin(), idx_end());
2476 }
2477
2478 Value *getAggregateOperand() {
2479 return getOperand(0);
2480 }
2481 const Value *getAggregateOperand() const {
2482 return getOperand(0);
2483 }
2484 static unsigned getAggregateOperandIndex() {
2485 return 0U; // get index for modifying correct operand
2486 }
2487
2488 Value *getInsertedValueOperand() {
2489 return getOperand(1);
2490 }
2491 const Value *getInsertedValueOperand() const {
2492 return getOperand(1);
2493 }
2494 static unsigned getInsertedValueOperandIndex() {
2495 return 1U; // get index for modifying correct operand
2496 }
2497
2498 ArrayRef<unsigned> getIndices() const {
2499 return Indices;
2500 }
2501
2502 unsigned getNumIndices() const {
2503 return (unsigned)Indices.size();
2504 }
2505
2506 bool hasIndices() const {
2507 return true;
2508 }
2509
2510 // Methods for support type inquiry through isa, cast, and dyn_cast:
2511 static bool classof(const Instruction *I) {
2512 return I->getOpcode() == Instruction::InsertValue;
2513 }
2514 static bool classof(const Value *V) {
2515 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2516 }
2517};
2518
2519template <>
2520struct OperandTraits<InsertValueInst> :
2521 public FixedNumOperandTraits<InsertValueInst, 2> {
2522};
2523
2524InsertValueInst::InsertValueInst(Value *Agg,
2525 Value *Val,
2526 ArrayRef<unsigned> Idxs,
2527 const Twine &NameStr,
2528 Instruction *InsertBefore)
2529 : Instruction(Agg->getType(), InsertValue,
2530 OperandTraits<InsertValueInst>::op_begin(this),
2531 2, InsertBefore) {
2532 init(Agg, Val, Idxs, NameStr);
2533}
2534
2535InsertValueInst::InsertValueInst(Value *Agg,
2536 Value *Val,
2537 ArrayRef<unsigned> Idxs,
2538 const Twine &NameStr,
2539 BasicBlock *InsertAtEnd)
2540 : Instruction(Agg->getType(), InsertValue,
2541 OperandTraits<InsertValueInst>::op_begin(this),
2542 2, InsertAtEnd) {
2543 init(Agg, Val, Idxs, NameStr);
2544}
2545
2546DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)InsertValueInst::op_iterator InsertValueInst::op_begin() { return
OperandTraits<InsertValueInst>::op_begin(this); } InsertValueInst
::const_op_iterator InsertValueInst::op_begin() const { return
OperandTraits<InsertValueInst>::op_begin(const_cast<
InsertValueInst*>(this)); } InsertValueInst::op_iterator InsertValueInst
::op_end() { return OperandTraits<InsertValueInst>::op_end
(this); } InsertValueInst::const_op_iterator InsertValueInst::
op_end() const { return OperandTraits<InsertValueInst>::
op_end(const_cast<InsertValueInst*>(this)); } Value *InsertValueInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<InsertValueInst>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<InsertValueInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2546, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<InsertValueInst>::op_begin(const_cast<
InsertValueInst*>(this))[i_nocapture].get()); } void InsertValueInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<InsertValueInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<InsertValueInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2546, __PRETTY_FUNCTION__)); OperandTraits<InsertValueInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
InsertValueInst::getNumOperands() const { return OperandTraits
<InsertValueInst>::operands(this); } template <int Idx_nocapture
> Use &InsertValueInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &InsertValueInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
2547
2548//===----------------------------------------------------------------------===//
2549// PHINode Class
2550//===----------------------------------------------------------------------===//
2551
2552// PHINode - The PHINode class is used to represent the magical mystical PHI
2553// node, that can not exist in nature, but can be synthesized in a computer
2554// scientist's overactive imagination.
2555//
2556class PHINode : public Instruction {
2557 /// The number of operands actually allocated. NumOperands is
2558 /// the number actually in use.
2559 unsigned ReservedSpace;
2560
2561 PHINode(const PHINode &PN);
2562
2563 explicit PHINode(Type *Ty, unsigned NumReservedValues,
2564 const Twine &NameStr = "",
2565 Instruction *InsertBefore = nullptr)
2566 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore),
2567 ReservedSpace(NumReservedValues) {
2568 setName(NameStr);
2569 allocHungoffUses(ReservedSpace);
2570 }
2571
2572 PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr,
2573 BasicBlock *InsertAtEnd)
2574 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd),
2575 ReservedSpace(NumReservedValues) {
2576 setName(NameStr);
2577 allocHungoffUses(ReservedSpace);
2578 }
2579
2580protected:
2581 // Note: Instruction needs to be a friend here to call cloneImpl.
2582 friend class Instruction;
2583
2584 PHINode *cloneImpl() const;
2585
2586 // allocHungoffUses - this is more complicated than the generic
2587 // User::allocHungoffUses, because we have to allocate Uses for the incoming
2588 // values and pointers to the incoming blocks, all in one allocation.
2589 void allocHungoffUses(unsigned N) {
2590 User::allocHungoffUses(N, /* IsPhi */ true);
2591 }
2592
2593public:
2594 /// Constructors - NumReservedValues is a hint for the number of incoming
2595 /// edges that this phi node will have (use 0 if you really have no idea).
2596 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2597 const Twine &NameStr = "",
2598 Instruction *InsertBefore = nullptr) {
2599 return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore);
2600 }
2601
2602 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2603 const Twine &NameStr, BasicBlock *InsertAtEnd) {
2604 return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd);
2605 }
2606
2607 /// Provide fast operand accessors
2608 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2609
2610 // Block iterator interface. This provides access to the list of incoming
2611 // basic blocks, which parallels the list of incoming values.
2612
2613 using block_iterator = BasicBlock **;
2614 using const_block_iterator = BasicBlock * const *;
2615
2616 block_iterator block_begin() {
2617 Use::UserRef *ref =
2618 reinterpret_cast<Use::UserRef*>(op_begin() + ReservedSpace);
2619 return reinterpret_cast<block_iterator>(ref + 1);
2620 }
2621
2622 const_block_iterator block_begin() const {
2623 const Use::UserRef *ref =
2624 reinterpret_cast<const Use::UserRef*>(op_begin() + ReservedSpace);
2625 return reinterpret_cast<const_block_iterator>(ref + 1);
2626 }
2627
2628 block_iterator block_end() {
2629 return block_begin() + getNumOperands();
2630 }
2631
2632 const_block_iterator block_end() const {
2633 return block_begin() + getNumOperands();
2634 }
2635
2636 iterator_range<block_iterator> blocks() {
2637 return make_range(block_begin(), block_end());
2638 }
2639
2640 iterator_range<const_block_iterator> blocks() const {
2641 return make_range(block_begin(), block_end());
2642 }
2643
2644 op_range incoming_values() { return operands(); }
2645
2646 const_op_range incoming_values() const { return operands(); }
2647
2648 /// Return the number of incoming edges
2649 ///
2650 unsigned getNumIncomingValues() const { return getNumOperands(); }
2651
2652 /// Return incoming value number x
2653 ///
2654 Value *getIncomingValue(unsigned i) const {
2655 return getOperand(i);
2656 }
2657 void setIncomingValue(unsigned i, Value *V) {
2658 assert(V && "PHI node got a null value!")((V && "PHI node got a null value!") ? static_cast<
void> (0) : __assert_fail ("V && \"PHI node got a null value!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2658, __PRETTY_FUNCTION__))
;
2659 assert(getType() == V->getType() &&((getType() == V->getType() && "All operands to PHI node must be the same type as the PHI node!"
) ? static_cast<void> (0) : __assert_fail ("getType() == V->getType() && \"All operands to PHI node must be the same type as the PHI node!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2660, __PRETTY_FUNCTION__))
2660 "All operands to PHI node must be the same type as the PHI node!")((getType() == V->getType() && "All operands to PHI node must be the same type as the PHI node!"
) ? static_cast<void> (0) : __assert_fail ("getType() == V->getType() && \"All operands to PHI node must be the same type as the PHI node!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2660, __PRETTY_FUNCTION__))
;
2661 setOperand(i, V);
2662 }
2663
2664 static unsigned getOperandNumForIncomingValue(unsigned i) {
2665 return i;
2666 }
2667
2668 static unsigned getIncomingValueNumForOperand(unsigned i) {
2669 return i;
2670 }
2671
2672 /// Return incoming basic block number @p i.
2673 ///
2674 BasicBlock *getIncomingBlock(unsigned i) const {
2675 return block_begin()[i];
2676 }
2677
2678 /// Return incoming basic block corresponding
2679 /// to an operand of the PHI.
2680 ///
2681 BasicBlock *getIncomingBlock(const Use &U) const {
2682 assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?")((this == U.getUser() && "Iterator doesn't point to PHI's Uses?"
) ? static_cast<void> (0) : __assert_fail ("this == U.getUser() && \"Iterator doesn't point to PHI's Uses?\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2682, __PRETTY_FUNCTION__))
;
2683 return getIncomingBlock(unsigned(&U - op_begin()));
2684 }
2685
2686 /// Return incoming basic block corresponding
2687 /// to value use iterator.
2688 ///
2689 BasicBlock *getIncomingBlock(Value::const_user_iterator I) const {
2690 return getIncomingBlock(I.getUse());
2691 }
2692
2693 void setIncomingBlock(unsigned i, BasicBlock *BB) {
2694 assert(BB && "PHI node got a null basic block!")((BB && "PHI node got a null basic block!") ? static_cast
<void> (0) : __assert_fail ("BB && \"PHI node got a null basic block!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2694, __PRETTY_FUNCTION__))
;
2695 block_begin()[i] = BB;
2696 }
2697
2698 /// Replace every incoming basic block \p Old to basic block \p New.
2699 void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New) {
2700 assert(New && Old && "PHI node got a null basic block!")((New && Old && "PHI node got a null basic block!"
) ? static_cast<void> (0) : __assert_fail ("New && Old && \"PHI node got a null basic block!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2700, __PRETTY_FUNCTION__))
;
2701 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2702 if (getIncomingBlock(Op) == Old)
2703 setIncomingBlock(Op, New);
2704 }
2705
2706 /// Add an incoming value to the end of the PHI list
2707 ///
2708 void addIncoming(Value *V, BasicBlock *BB) {
2709 if (getNumOperands() == ReservedSpace)
2710 growOperands(); // Get more space!
2711 // Initialize some new operands.
2712 setNumHungOffUseOperands(getNumOperands() + 1);
2713 setIncomingValue(getNumOperands() - 1, V);
2714 setIncomingBlock(getNumOperands() - 1, BB);
2715 }
2716
2717 /// Remove an incoming value. This is useful if a
2718 /// predecessor basic block is deleted. The value removed is returned.
2719 ///
2720 /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
2721 /// is true), the PHI node is destroyed and any uses of it are replaced with
2722 /// dummy values. The only time there should be zero incoming values to a PHI
2723 /// node is when the block is dead, so this strategy is sound.
2724 ///
2725 Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);
2726
2727 Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) {
2728 int Idx = getBasicBlockIndex(BB);
2729 assert(Idx >= 0 && "Invalid basic block argument to remove!")((Idx >= 0 && "Invalid basic block argument to remove!"
) ? static_cast<void> (0) : __assert_fail ("Idx >= 0 && \"Invalid basic block argument to remove!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2729, __PRETTY_FUNCTION__))
;
2730 return removeIncomingValue(Idx, DeletePHIIfEmpty);
2731 }
2732
2733 /// Return the first index of the specified basic
2734 /// block in the value list for this PHI. Returns -1 if no instance.
2735 ///
2736 int getBasicBlockIndex(const BasicBlock *BB) const {
2737 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2738 if (block_begin()[i] == BB)
2739 return i;
2740 return -1;
2741 }
2742
2743 Value *getIncomingValueForBlock(const BasicBlock *BB) const {
2744 int Idx = getBasicBlockIndex(BB);
2745 assert(Idx >= 0 && "Invalid basic block argument!")((Idx >= 0 && "Invalid basic block argument!") ? static_cast
<void> (0) : __assert_fail ("Idx >= 0 && \"Invalid basic block argument!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2745, __PRETTY_FUNCTION__))
;
2746 return getIncomingValue(Idx);
2747 }
2748
2749 /// Set every incoming value(s) for block \p BB to \p V.
2750 void setIncomingValueForBlock(const BasicBlock *BB, Value *V) {
2751 assert(BB && "PHI node got a null basic block!")((BB && "PHI node got a null basic block!") ? static_cast
<void> (0) : __assert_fail ("BB && \"PHI node got a null basic block!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2751, __PRETTY_FUNCTION__))
;
2752 bool Found = false;
2753 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2754 if (getIncomingBlock(Op) == BB) {
2755 Found = true;
2756 setIncomingValue(Op, V);
2757 }
2758 (void)Found;
2759 assert(Found && "Invalid basic block argument to set!")((Found && "Invalid basic block argument to set!") ? static_cast
<void> (0) : __assert_fail ("Found && \"Invalid basic block argument to set!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2759, __PRETTY_FUNCTION__))
;
2760 }
2761
2762 /// If the specified PHI node always merges together the
2763 /// same value, return the value, otherwise return null.
2764 Value *hasConstantValue() const;
2765
2766 /// Whether the specified PHI node always merges
2767 /// together the same value, assuming undefs are equal to a unique
2768 /// non-undef value.
2769 bool hasConstantOrUndefValue() const;
2770
2771 /// Methods for support type inquiry through isa, cast, and dyn_cast:
2772 static bool classof(const Instruction *I) {
2773 return I->getOpcode() == Instruction::PHI;
2774 }
2775 static bool classof(const Value *V) {
2776 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2777 }
2778
2779private:
2780 void growOperands();
2781};
2782
2783template <>
2784struct OperandTraits<PHINode> : public HungoffOperandTraits<2> {
2785};
2786
2787DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)PHINode::op_iterator PHINode::op_begin() { return OperandTraits
<PHINode>::op_begin(this); } PHINode::const_op_iterator
PHINode::op_begin() const { return OperandTraits<PHINode>
::op_begin(const_cast<PHINode*>(this)); } PHINode::op_iterator
PHINode::op_end() { return OperandTraits<PHINode>::op_end
(this); } PHINode::const_op_iterator PHINode::op_end() const {
return OperandTraits<PHINode>::op_end(const_cast<PHINode
*>(this)); } Value *PHINode::getOperand(unsigned i_nocapture
) const { ((i_nocapture < OperandTraits<PHINode>::operands
(this) && "getOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<PHINode>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2787, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<PHINode>::op_begin(const_cast<PHINode
*>(this))[i_nocapture].get()); } void PHINode::setOperand(
unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<PHINode>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<PHINode>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2787, __PRETTY_FUNCTION__)); OperandTraits<PHINode>::
op_begin(this)[i_nocapture] = Val_nocapture; } unsigned PHINode
::getNumOperands() const { return OperandTraits<PHINode>
::operands(this); } template <int Idx_nocapture> Use &
PHINode::Op() { return this->OpFrom<Idx_nocapture>(this
); } template <int Idx_nocapture> const Use &PHINode
::Op() const { return this->OpFrom<Idx_nocapture>(this
); }
2788
2789//===----------------------------------------------------------------------===//
2790// LandingPadInst Class
2791//===----------------------------------------------------------------------===//
2792
2793//===---------------------------------------------------------------------------
2794/// The landingpad instruction holds all of the information
2795/// necessary to generate correct exception handling. The landingpad instruction
2796/// cannot be moved from the top of a landing pad block, which itself is
2797/// accessible only from the 'unwind' edge of an invoke. This uses the
2798/// SubclassData field in Value to store whether or not the landingpad is a
2799/// cleanup.
2800///
2801class LandingPadInst : public Instruction {
2802 /// The number of operands actually allocated. NumOperands is
2803 /// the number actually in use.
2804 unsigned ReservedSpace;
2805
2806 LandingPadInst(const LandingPadInst &LP);
2807
2808public:
2809 enum ClauseType { Catch, Filter };
2810
2811private:
2812 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2813 const Twine &NameStr, Instruction *InsertBefore);
2814 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues,
2815 const Twine &NameStr, BasicBlock *InsertAtEnd);
2816
2817 // Allocate space for exactly zero operands.
2818 void *operator new(size_t s) {
2819 return User::operator new(s);
2820 }
2821
2822 void growOperands(unsigned Size);
2823 void init(unsigned NumReservedValues, const Twine &NameStr);
2824
2825protected:
2826 // Note: Instruction needs to be a friend here to call cloneImpl.
2827 friend class Instruction;
2828
2829 LandingPadInst *cloneImpl() const;
2830
2831public:
2832 /// Constructors - NumReservedClauses is a hint for the number of incoming
2833 /// clauses that this landingpad will have (use 0 if you really have no idea).
2834 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2835 const Twine &NameStr = "",
2836 Instruction *InsertBefore = nullptr);
2837 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses,
2838 const Twine &NameStr, BasicBlock *InsertAtEnd);
2839
2840 /// Provide fast operand accessors
2841 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2842
2843 /// Return 'true' if this landingpad instruction is a
2844 /// cleanup. I.e., it should be run when unwinding even if its landing pad
2845 /// doesn't catch the exception.
2846 bool isCleanup() const { return getSubclassDataFromInstruction() & 1; }
2847
2848 /// Indicate that this landingpad instruction is a cleanup.
2849 void setCleanup(bool V) {
2850 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
2851 (V ? 1 : 0));
2852 }
2853
2854 /// Add a catch or filter clause to the landing pad.
2855 void addClause(Constant *ClauseVal);
2856
2857 /// Get the value of the clause at index Idx. Use isCatch/isFilter to
2858 /// determine what type of clause this is.
2859 Constant *getClause(unsigned Idx) const {
2860 return cast<Constant>(getOperandList()[Idx]);
2861 }
2862
2863 /// Return 'true' if the clause and index Idx is a catch clause.
2864 bool isCatch(unsigned Idx) const {
2865 return !isa<ArrayType>(getOperandList()[Idx]->getType());
2866 }
2867
2868 /// Return 'true' if the clause and index Idx is a filter clause.
2869 bool isFilter(unsigned Idx) const {
2870 return isa<ArrayType>(getOperandList()[Idx]->getType());
2871 }
2872
2873 /// Get the number of clauses for this landing pad.
2874 unsigned getNumClauses() const { return getNumOperands(); }
2875
2876 /// Grow the size of the operand list to accommodate the new
2877 /// number of clauses.
2878 void reserveClauses(unsigned Size) { growOperands(Size); }
2879
2880 // Methods for support type inquiry through isa, cast, and dyn_cast:
2881 static bool classof(const Instruction *I) {
2882 return I->getOpcode() == Instruction::LandingPad;
2883 }
2884 static bool classof(const Value *V) {
2885 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2886 }
2887};
2888
2889template <>
2890struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<1> {
2891};
2892
2893DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)LandingPadInst::op_iterator LandingPadInst::op_begin() { return
OperandTraits<LandingPadInst>::op_begin(this); } LandingPadInst
::const_op_iterator LandingPadInst::op_begin() const { return
OperandTraits<LandingPadInst>::op_begin(const_cast<
LandingPadInst*>(this)); } LandingPadInst::op_iterator LandingPadInst
::op_end() { return OperandTraits<LandingPadInst>::op_end
(this); } LandingPadInst::const_op_iterator LandingPadInst::op_end
() const { return OperandTraits<LandingPadInst>::op_end
(const_cast<LandingPadInst*>(this)); } Value *LandingPadInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<LandingPadInst>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<LandingPadInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2893, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<LandingPadInst>::op_begin(const_cast<
LandingPadInst*>(this))[i_nocapture].get()); } void LandingPadInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<LandingPadInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<LandingPadInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2893, __PRETTY_FUNCTION__)); OperandTraits<LandingPadInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
LandingPadInst::getNumOperands() const { return OperandTraits
<LandingPadInst>::operands(this); } template <int Idx_nocapture
> Use &LandingPadInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &LandingPadInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
2894
2895//===----------------------------------------------------------------------===//
2896// ReturnInst Class
2897//===----------------------------------------------------------------------===//
2898
2899//===---------------------------------------------------------------------------
2900/// Return a value (possibly void), from a function. Execution
2901/// does not continue in this function any longer.
2902///
2903class ReturnInst : public Instruction {
2904 ReturnInst(const ReturnInst &RI);
2905
2906private:
2907 // ReturnInst constructors:
2908 // ReturnInst() - 'ret void' instruction
2909 // ReturnInst( null) - 'ret void' instruction
2910 // ReturnInst(Value* X) - 'ret X' instruction
2911 // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I
2912 // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I
2913 // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B
2914 // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B
2915 //
2916 // NOTE: If the Value* passed is of type void then the constructor behaves as
2917 // if it was passed NULL.
2918 explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr,
2919 Instruction *InsertBefore = nullptr);
2920 ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd);
2921 explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd);
2922
2923protected:
2924 // Note: Instruction needs to be a friend here to call cloneImpl.
2925 friend class Instruction;
2926
2927 ReturnInst *cloneImpl() const;
2928
2929public:
2930 static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr,
2931 Instruction *InsertBefore = nullptr) {
2932 return new(!!retVal) ReturnInst(C, retVal, InsertBefore);
2933 }
2934
2935 static ReturnInst* Create(LLVMContext &C, Value *retVal,
2936 BasicBlock *InsertAtEnd) {
2937 return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd);
2938 }
2939
2940 static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) {
2941 return new(0) ReturnInst(C, InsertAtEnd);
2942 }
2943
2944 /// Provide fast operand accessors
2945 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
2946
2947 /// Convenience accessor. Returns null if there is no return value.
2948 Value *getReturnValue() const {
2949 return getNumOperands() != 0 ? getOperand(0) : nullptr;
2950 }
2951
2952 unsigned getNumSuccessors() const { return 0; }
2953
2954 // Methods for support type inquiry through isa, cast, and dyn_cast:
2955 static bool classof(const Instruction *I) {
2956 return (I->getOpcode() == Instruction::Ret);
2957 }
2958 static bool classof(const Value *V) {
2959 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2960 }
2961
2962private:
2963 BasicBlock *getSuccessor(unsigned idx) const {
2964 llvm_unreachable("ReturnInst has no successors!")::llvm::llvm_unreachable_internal("ReturnInst has no successors!"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2964)
;
2965 }
2966
2967 void setSuccessor(unsigned idx, BasicBlock *B) {
2968 llvm_unreachable("ReturnInst has no successors!")::llvm::llvm_unreachable_internal("ReturnInst has no successors!"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2968)
;
2969 }
2970};
2971
2972template <>
2973struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> {
2974};
2975
2976DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)ReturnInst::op_iterator ReturnInst::op_begin() { return OperandTraits
<ReturnInst>::op_begin(this); } ReturnInst::const_op_iterator
ReturnInst::op_begin() const { return OperandTraits<ReturnInst
>::op_begin(const_cast<ReturnInst*>(this)); } ReturnInst
::op_iterator ReturnInst::op_end() { return OperandTraits<
ReturnInst>::op_end(this); } ReturnInst::const_op_iterator
ReturnInst::op_end() const { return OperandTraits<ReturnInst
>::op_end(const_cast<ReturnInst*>(this)); } Value *ReturnInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<ReturnInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ReturnInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2976, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<ReturnInst>::op_begin(const_cast<ReturnInst
*>(this))[i_nocapture].get()); } void ReturnInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<ReturnInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ReturnInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 2976, __PRETTY_FUNCTION__)); OperandTraits<ReturnInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned ReturnInst
::getNumOperands() const { return OperandTraits<ReturnInst
>::operands(this); } template <int Idx_nocapture> Use
&ReturnInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
ReturnInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
2977
2978//===----------------------------------------------------------------------===//
2979// BranchInst Class
2980//===----------------------------------------------------------------------===//
2981
2982//===---------------------------------------------------------------------------
2983/// Conditional or Unconditional Branch instruction.
2984///
2985class BranchInst : public Instruction {
2986 /// Ops list - Branches are strange. The operands are ordered:
2987 /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because
2988 /// they don't have to check for cond/uncond branchness. These are mostly
2989 /// accessed relative from op_end().
2990 BranchInst(const BranchInst &BI);
2991 // BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
2992 // BranchInst(BB *B) - 'br B'
2993 // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F'
2994 // BranchInst(BB* B, Inst *I) - 'br B' insert before I
2995 // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
2996 // BranchInst(BB* B, BB *I) - 'br B' insert at end
2997 // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end
2998 explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr);
2999 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3000 Instruction *InsertBefore = nullptr);
3001 BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd);
3002 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
3003 BasicBlock *InsertAtEnd);
3004
3005 void AssertOK();
3006
3007protected:
3008 // Note: Instruction needs to be a friend here to call cloneImpl.
3009 friend class Instruction;
3010
3011 BranchInst *cloneImpl() const;
3012
3013public:
3014 /// Iterator type that casts an operand to a basic block.
3015 ///
3016 /// This only makes sense because the successors are stored as adjacent
3017 /// operands for branch instructions.
3018 struct succ_op_iterator
3019 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3020 std::random_access_iterator_tag, BasicBlock *,
3021 ptrdiff_t, BasicBlock *, BasicBlock *> {
3022 explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3023
3024 BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3025 BasicBlock *operator->() const { return operator*(); }
3026 };
3027
3028 /// The const version of `succ_op_iterator`.
3029 struct const_succ_op_iterator
3030 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3031 std::random_access_iterator_tag,
3032 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3033 const BasicBlock *> {
3034 explicit const_succ_op_iterator(const_value_op_iterator I)
3035 : iterator_adaptor_base(I) {}
3036
3037 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3038 const BasicBlock *operator->() const { return operator*(); }
3039 };
3040
3041 static BranchInst *Create(BasicBlock *IfTrue,
3042 Instruction *InsertBefore = nullptr) {
3043 return new(1) BranchInst(IfTrue, InsertBefore);
3044 }
3045
3046 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3047 Value *Cond, Instruction *InsertBefore = nullptr) {
3048 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore);
3049 }
3050
3051 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) {
3052 return new(1) BranchInst(IfTrue, InsertAtEnd);
3053 }
3054
3055 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
3056 Value *Cond, BasicBlock *InsertAtEnd) {
3057 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd);
3058 }
3059
3060 /// Transparently provide more efficient getOperand methods.
3061 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3062
3063 bool isUnconditional() const { return getNumOperands() == 1; }
3064 bool isConditional() const { return getNumOperands() == 3; }
3065
3066 Value *getCondition() const {
3067 assert(isConditional() && "Cannot get condition of an uncond branch!")((isConditional() && "Cannot get condition of an uncond branch!"
) ? static_cast<void> (0) : __assert_fail ("isConditional() && \"Cannot get condition of an uncond branch!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3067, __PRETTY_FUNCTION__))
;
3068 return Op<-3>();
3069 }
3070
3071 void setCondition(Value *V) {
3072 assert(isConditional() && "Cannot set condition of unconditional branch!")((isConditional() && "Cannot set condition of unconditional branch!"
) ? static_cast<void> (0) : __assert_fail ("isConditional() && \"Cannot set condition of unconditional branch!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3072, __PRETTY_FUNCTION__))
;
3073 Op<-3>() = V;
3074 }
3075
3076 unsigned getNumSuccessors() const { return 1+isConditional(); }
3077
3078 BasicBlock *getSuccessor(unsigned i) const {
3079 assert(i < getNumSuccessors() && "Successor # out of range for Branch!")((i < getNumSuccessors() && "Successor # out of range for Branch!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumSuccessors() && \"Successor # out of range for Branch!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3079, __PRETTY_FUNCTION__))
;
3080 return cast_or_null<BasicBlock>((&Op<-1>() - i)->get());
3081 }
3082
3083 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3084 assert(idx < getNumSuccessors() && "Successor # out of range for Branch!")((idx < getNumSuccessors() && "Successor # out of range for Branch!"
) ? static_cast<void> (0) : __assert_fail ("idx < getNumSuccessors() && \"Successor # out of range for Branch!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3084, __PRETTY_FUNCTION__))
;
3085 *(&Op<-1>() - idx) = NewSucc;
3086 }
3087
3088 /// Swap the successors of this branch instruction.
3089 ///
3090 /// Swaps the successors of the branch instruction. This also swaps any
3091 /// branch weight metadata associated with the instruction so that it
3092 /// continues to map correctly to each operand.
3093 void swapSuccessors();
3094
3095 iterator_range<succ_op_iterator> successors() {
3096 return make_range(
3097 succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)),
3098 succ_op_iterator(value_op_end()));
3099 }
3100
3101 iterator_range<const_succ_op_iterator> successors() const {
3102 return make_range(const_succ_op_iterator(
3103 std::next(value_op_begin(), isConditional() ? 1 : 0)),
3104 const_succ_op_iterator(value_op_end()));
3105 }
3106
3107 // Methods for support type inquiry through isa, cast, and dyn_cast:
3108 static bool classof(const Instruction *I) {
3109 return (I->getOpcode() == Instruction::Br);
3110 }
3111 static bool classof(const Value *V) {
3112 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3113 }
3114};
3115
3116template <>
3117struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> {
3118};
3119
3120DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)BranchInst::op_iterator BranchInst::op_begin() { return OperandTraits
<BranchInst>::op_begin(this); } BranchInst::const_op_iterator
BranchInst::op_begin() const { return OperandTraits<BranchInst
>::op_begin(const_cast<BranchInst*>(this)); } BranchInst
::op_iterator BranchInst::op_end() { return OperandTraits<
BranchInst>::op_end(this); } BranchInst::const_op_iterator
BranchInst::op_end() const { return OperandTraits<BranchInst
>::op_end(const_cast<BranchInst*>(this)); } Value *BranchInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<BranchInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<BranchInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3120, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<BranchInst>::op_begin(const_cast<BranchInst
*>(this))[i_nocapture].get()); } void BranchInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<BranchInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<BranchInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3120, __PRETTY_FUNCTION__)); OperandTraits<BranchInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned BranchInst
::getNumOperands() const { return OperandTraits<BranchInst
>::operands(this); } template <int Idx_nocapture> Use
&BranchInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
BranchInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
3121
3122//===----------------------------------------------------------------------===//
3123// SwitchInst Class
3124//===----------------------------------------------------------------------===//
3125
3126//===---------------------------------------------------------------------------
3127/// Multiway switch
3128///
3129class SwitchInst : public Instruction {
3130 unsigned ReservedSpace;
3131
3132 // Operand[0] = Value to switch on
3133 // Operand[1] = Default basic block destination
3134 // Operand[2n ] = Value to match
3135 // Operand[2n+1] = BasicBlock to go to on match
3136 SwitchInst(const SwitchInst &SI);
3137
3138 /// Create a new switch instruction, specifying a value to switch on and a
3139 /// default destination. The number of additional cases can be specified here
3140 /// to make memory allocation more efficient. This constructor can also
3141 /// auto-insert before another instruction.
3142 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3143 Instruction *InsertBefore);
3144
3145 /// Create a new switch instruction, specifying a value to switch on and a
3146 /// default destination. The number of additional cases can be specified here
3147 /// to make memory allocation more efficient. This constructor also
3148 /// auto-inserts at the end of the specified BasicBlock.
3149 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3150 BasicBlock *InsertAtEnd);
3151
3152 // allocate space for exactly zero operands
3153 void *operator new(size_t s) {
3154 return User::operator new(s);
3155 }
3156
3157 void init(Value *Value, BasicBlock *Default, unsigned NumReserved);
3158 void growOperands();
3159
3160protected:
3161 // Note: Instruction needs to be a friend here to call cloneImpl.
3162 friend class Instruction;
3163
3164 SwitchInst *cloneImpl() const;
3165
3166public:
3167 // -2
3168 static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1);
3169
3170 template <typename CaseHandleT> class CaseIteratorImpl;
3171
3172 /// A handle to a particular switch case. It exposes a convenient interface
3173 /// to both the case value and the successor block.
3174 ///
3175 /// We define this as a template and instantiate it to form both a const and
3176 /// non-const handle.
3177 template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT>
3178 class CaseHandleImpl {
3179 // Directly befriend both const and non-const iterators.
3180 friend class SwitchInst::CaseIteratorImpl<
3181 CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>;
3182
3183 protected:
3184 // Expose the switch type we're parameterized with to the iterator.
3185 using SwitchInstType = SwitchInstT;
3186
3187 SwitchInstT *SI;
3188 ptrdiff_t Index;
3189
3190 CaseHandleImpl() = default;
3191 CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {}
3192
3193 public:
3194 /// Resolves case value for current case.
3195 ConstantIntT *getCaseValue() const {
3196 assert((unsigned)Index < SI->getNumCases() &&(((unsigned)Index < SI->getNumCases() && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3197, __PRETTY_FUNCTION__))
3197 "Index out the number of cases.")(((unsigned)Index < SI->getNumCases() && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3197, __PRETTY_FUNCTION__))
;
3198 return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2));
3199 }
3200
3201 /// Resolves successor for current case.
3202 BasicBlockT *getCaseSuccessor() const {
3203 assert(((unsigned)Index < SI->getNumCases() ||((((unsigned)Index < SI->getNumCases() || (unsigned)Index
== DefaultPseudoIndex) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3205, __PRETTY_FUNCTION__))
3204 (unsigned)Index == DefaultPseudoIndex) &&((((unsigned)Index < SI->getNumCases() || (unsigned)Index
== DefaultPseudoIndex) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3205, __PRETTY_FUNCTION__))
3205 "Index out the number of cases.")((((unsigned)Index < SI->getNumCases() || (unsigned)Index
== DefaultPseudoIndex) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3205, __PRETTY_FUNCTION__))
;
3206 return SI->getSuccessor(getSuccessorIndex());
3207 }
3208
3209 /// Returns number of current case.
3210 unsigned getCaseIndex() const { return Index; }
3211
3212 /// Returns successor index for current case successor.
3213 unsigned getSuccessorIndex() const {
3214 assert(((unsigned)Index == DefaultPseudoIndex ||((((unsigned)Index == DefaultPseudoIndex || (unsigned)Index <
SI->getNumCases()) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3216, __PRETTY_FUNCTION__))
3215 (unsigned)Index < SI->getNumCases()) &&((((unsigned)Index == DefaultPseudoIndex || (unsigned)Index <
SI->getNumCases()) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3216, __PRETTY_FUNCTION__))
3216 "Index out the number of cases.")((((unsigned)Index == DefaultPseudoIndex || (unsigned)Index <
SI->getNumCases()) && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3216, __PRETTY_FUNCTION__))
;
3217 return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0;
3218 }
3219
3220 bool operator==(const CaseHandleImpl &RHS) const {
3221 assert(SI == RHS.SI && "Incompatible operators.")((SI == RHS.SI && "Incompatible operators.") ? static_cast
<void> (0) : __assert_fail ("SI == RHS.SI && \"Incompatible operators.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3221, __PRETTY_FUNCTION__))
;
3222 return Index == RHS.Index;
3223 }
3224 };
3225
3226 using ConstCaseHandle =
3227 CaseHandleImpl<const SwitchInst, const ConstantInt, const BasicBlock>;
3228
3229 class CaseHandle
3230 : public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> {
3231 friend class SwitchInst::CaseIteratorImpl<CaseHandle>;
3232
3233 public:
3234 CaseHandle(SwitchInst *SI, ptrdiff_t Index) : CaseHandleImpl(SI, Index) {}
3235
3236 /// Sets the new value for current case.
3237 void setValue(ConstantInt *V) {
3238 assert((unsigned)Index < SI->getNumCases() &&(((unsigned)Index < SI->getNumCases() && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3239, __PRETTY_FUNCTION__))
3239 "Index out the number of cases.")(((unsigned)Index < SI->getNumCases() && "Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3239, __PRETTY_FUNCTION__))
;
3240 SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V));
3241 }
3242
3243 /// Sets the new successor for current case.
3244 void setSuccessor(BasicBlock *S) {
3245 SI->setSuccessor(getSuccessorIndex(), S);
3246 }
3247 };
3248
3249 template <typename CaseHandleT>
3250 class CaseIteratorImpl
3251 : public iterator_facade_base<CaseIteratorImpl<CaseHandleT>,
3252 std::random_access_iterator_tag,
3253 CaseHandleT> {
3254 using SwitchInstT = typename CaseHandleT::SwitchInstType;
3255
3256 CaseHandleT Case;
3257
3258 public:
3259 /// Default constructed iterator is in an invalid state until assigned to
3260 /// a case for a particular switch.
3261 CaseIteratorImpl() = default;
3262
3263 /// Initializes case iterator for given SwitchInst and for given
3264 /// case number.
3265 CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {}
3266
3267 /// Initializes case iterator for given SwitchInst and for given
3268 /// successor index.
3269 static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI,
3270 unsigned SuccessorIndex) {
3271 assert(SuccessorIndex < SI->getNumSuccessors() &&((SuccessorIndex < SI->getNumSuccessors() && "Successor index # out of range!"
) ? static_cast<void> (0) : __assert_fail ("SuccessorIndex < SI->getNumSuccessors() && \"Successor index # out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3272, __PRETTY_FUNCTION__))
3272 "Successor index # out of range!")((SuccessorIndex < SI->getNumSuccessors() && "Successor index # out of range!"
) ? static_cast<void> (0) : __assert_fail ("SuccessorIndex < SI->getNumSuccessors() && \"Successor index # out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3272, __PRETTY_FUNCTION__))
;
3273 return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1)
3274 : CaseIteratorImpl(SI, DefaultPseudoIndex);
3275 }
3276
3277 /// Support converting to the const variant. This will be a no-op for const
3278 /// variant.
3279 operator CaseIteratorImpl<ConstCaseHandle>() const {
3280 return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index);
3281 }
3282
3283 CaseIteratorImpl &operator+=(ptrdiff_t N) {
3284 // Check index correctness after addition.
3285 // Note: Index == getNumCases() means end().
3286 assert(Case.Index + N >= 0 &&((Case.Index + N >= 0 && (unsigned)(Case.Index + N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3288, __PRETTY_FUNCTION__))
3287 (unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&((Case.Index + N >= 0 && (unsigned)(Case.Index + N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3288, __PRETTY_FUNCTION__))
3288 "Case.Index out the number of cases.")((Case.Index + N >= 0 && (unsigned)(Case.Index + N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3288, __PRETTY_FUNCTION__))
;
3289 Case.Index += N;
3290 return *this;
3291 }
3292 CaseIteratorImpl &operator-=(ptrdiff_t N) {
3293 // Check index correctness after subtraction.
3294 // Note: Case.Index == getNumCases() means end().
3295 assert(Case.Index - N >= 0 &&((Case.Index - N >= 0 && (unsigned)(Case.Index - N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3297, __PRETTY_FUNCTION__))
3296 (unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&((Case.Index - N >= 0 && (unsigned)(Case.Index - N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3297, __PRETTY_FUNCTION__))
3297 "Case.Index out the number of cases.")((Case.Index - N >= 0 && (unsigned)(Case.Index - N
) <= Case.SI->getNumCases() && "Case.Index out the number of cases."
) ? static_cast<void> (0) : __assert_fail ("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3297, __PRETTY_FUNCTION__))
;
3298 Case.Index -= N;
3299 return *this;
3300 }
3301 ptrdiff_t operator-(const CaseIteratorImpl &RHS) const {
3302 assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((Case.SI == RHS.Case.SI && "Incompatible operators."
) ? static_cast<void> (0) : __assert_fail ("Case.SI == RHS.Case.SI && \"Incompatible operators.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3302, __PRETTY_FUNCTION__))
;
3303 return Case.Index - RHS.Case.Index;
3304 }
3305 bool operator==(const CaseIteratorImpl &RHS) const {
3306 return Case == RHS.Case;
3307 }
3308 bool operator<(const CaseIteratorImpl &RHS) const {
3309 assert(Case.SI == RHS.Case.SI && "Incompatible operators.")((Case.SI == RHS.Case.SI && "Incompatible operators."
) ? static_cast<void> (0) : __assert_fail ("Case.SI == RHS.Case.SI && \"Incompatible operators.\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3309, __PRETTY_FUNCTION__))
;
3310 return Case.Index < RHS.Case.Index;
3311 }
3312 CaseHandleT &operator*() { return Case; }
3313 const CaseHandleT &operator*() const { return Case; }
3314 };
3315
3316 using CaseIt = CaseIteratorImpl<CaseHandle>;
3317 using ConstCaseIt = CaseIteratorImpl<ConstCaseHandle>;
3318
3319 static SwitchInst *Create(Value *Value, BasicBlock *Default,
3320 unsigned NumCases,
3321 Instruction *InsertBefore = nullptr) {
3322 return new SwitchInst(Value, Default, NumCases, InsertBefore);
3323 }
3324
3325 static SwitchInst *Create(Value *Value, BasicBlock *Default,
3326 unsigned NumCases, BasicBlock *InsertAtEnd) {
3327 return new SwitchInst(Value, Default, NumCases, InsertAtEnd);
3328 }
3329
3330 /// Provide fast operand accessors
3331 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3332
3333 // Accessor Methods for Switch stmt
3334 Value *getCondition() const { return getOperand(0); }
3335 void setCondition(Value *V) { setOperand(0, V); }
3336
3337 BasicBlock *getDefaultDest() const {
3338 return cast<BasicBlock>(getOperand(1));
3339 }
3340
3341 void setDefaultDest(BasicBlock *DefaultCase) {
3342 setOperand(1, reinterpret_cast<Value*>(DefaultCase));
3343 }
3344
3345 /// Return the number of 'cases' in this switch instruction, excluding the
3346 /// default case.
3347 unsigned getNumCases() const {
3348 return getNumOperands()/2 - 1;
3349 }
3350
3351 /// Returns a read/write iterator that points to the first case in the
3352 /// SwitchInst.
3353 CaseIt case_begin() {
3354 return CaseIt(this, 0);
3355 }
3356
3357 /// Returns a read-only iterator that points to the first case in the
3358 /// SwitchInst.
3359 ConstCaseIt case_begin() const {
3360 return ConstCaseIt(this, 0);
3361 }
3362
3363 /// Returns a read/write iterator that points one past the last in the
3364 /// SwitchInst.
3365 CaseIt case_end() {
3366 return CaseIt(this, getNumCases());
3367 }
3368
3369 /// Returns a read-only iterator that points one past the last in the
3370 /// SwitchInst.
3371 ConstCaseIt case_end() const {
3372 return ConstCaseIt(this, getNumCases());
3373 }
3374
3375 /// Iteration adapter for range-for loops.
3376 iterator_range<CaseIt> cases() {
3377 return make_range(case_begin(), case_end());
3378 }
3379
3380 /// Constant iteration adapter for range-for loops.
3381 iterator_range<ConstCaseIt> cases() const {
3382 return make_range(case_begin(), case_end());
3383 }
3384
3385 /// Returns an iterator that points to the default case.
3386 /// Note: this iterator allows to resolve successor only. Attempt
3387 /// to resolve case value causes an assertion.
3388 /// Also note, that increment and decrement also causes an assertion and
3389 /// makes iterator invalid.
3390 CaseIt case_default() {
3391 return CaseIt(this, DefaultPseudoIndex);
3392 }
3393 ConstCaseIt case_default() const {
3394 return ConstCaseIt(this, DefaultPseudoIndex);
3395 }
3396
3397 /// Search all of the case values for the specified constant. If it is
3398 /// explicitly handled, return the case iterator of it, otherwise return
3399 /// default case iterator to indicate that it is handled by the default
3400 /// handler.
3401 CaseIt findCaseValue(const ConstantInt *C) {
3402 CaseIt I = llvm::find_if(
3403 cases(), [C](CaseHandle &Case) { return Case.getCaseValue() == C; });
3404 if (I != case_end())
3405 return I;
3406
3407 return case_default();
3408 }
3409 ConstCaseIt findCaseValue(const ConstantInt *C) const {
3410 ConstCaseIt I = llvm::find_if(cases(), [C](ConstCaseHandle &Case) {
3411 return Case.getCaseValue() == C;
3412 });
3413 if (I != case_end())
3414 return I;
3415
3416 return case_default();
3417 }
3418
3419 /// Finds the unique case value for a given successor. Returns null if the
3420 /// successor is not found, not unique, or is the default case.
3421 ConstantInt *findCaseDest(BasicBlock *BB) {
3422 if (BB == getDefaultDest())
3423 return nullptr;
3424
3425 ConstantInt *CI = nullptr;
3426 for (auto Case : cases()) {
3427 if (Case.getCaseSuccessor() != BB)
3428 continue;
3429
3430 if (CI)
3431 return nullptr; // Multiple cases lead to BB.
3432
3433 CI = Case.getCaseValue();
3434 }
3435
3436 return CI;
3437 }
3438
3439 /// Add an entry to the switch instruction.
3440 /// Note:
3441 /// This action invalidates case_end(). Old case_end() iterator will
3442 /// point to the added case.
3443 void addCase(ConstantInt *OnVal, BasicBlock *Dest);
3444
3445 /// This method removes the specified case and its successor from the switch
3446 /// instruction. Note that this operation may reorder the remaining cases at
3447 /// index idx and above.
3448 /// Note:
3449 /// This action invalidates iterators for all cases following the one removed,
3450 /// including the case_end() iterator. It returns an iterator for the next
3451 /// case.
3452 CaseIt removeCase(CaseIt I);
3453
3454 unsigned getNumSuccessors() const { return getNumOperands()/2; }
3455 BasicBlock *getSuccessor(unsigned idx) const {
3456 assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!")((idx < getNumSuccessors() &&"Successor idx out of range for switch!"
) ? static_cast<void> (0) : __assert_fail ("idx < getNumSuccessors() &&\"Successor idx out of range for switch!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3456, __PRETTY_FUNCTION__))
;
3457 return cast<BasicBlock>(getOperand(idx*2+1));
3458 }
3459 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3460 assert(idx < getNumSuccessors() && "Successor # out of range for switch!")((idx < getNumSuccessors() && "Successor # out of range for switch!"
) ? static_cast<void> (0) : __assert_fail ("idx < getNumSuccessors() && \"Successor # out of range for switch!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3460, __PRETTY_FUNCTION__))
;
3461 setOperand(idx * 2 + 1, NewSucc);
3462 }
3463
3464 // Methods for support type inquiry through isa, cast, and dyn_cast:
3465 static bool classof(const Instruction *I) {
3466 return I->getOpcode() == Instruction::Switch;
3467 }
3468 static bool classof(const Value *V) {
3469 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3470 }
3471};
3472
3473/// A wrapper class to simplify modification of SwitchInst cases along with
3474/// their prof branch_weights metadata.
3475class SwitchInstProfUpdateWrapper {
3476 SwitchInst &SI;
3477 Optional<SmallVector<uint32_t, 8> > Weights = None;
3478 bool Changed = false;
3479
3480protected:
3481 static MDNode *getProfBranchWeightsMD(const SwitchInst &SI);
3482
3483 MDNode *buildProfBranchWeightsMD();
3484
3485 void init();
3486
3487public:
3488 using CaseWeightOpt = Optional<uint32_t>;
3489 SwitchInst *operator->() { return &SI; }
3490 SwitchInst &operator*() { return SI; }
3491 operator SwitchInst *() { return &SI; }
3492
3493 SwitchInstProfUpdateWrapper(SwitchInst &SI) : SI(SI) { init(); }
3494
3495 ~SwitchInstProfUpdateWrapper() {
3496 if (Changed)
3497 SI.setMetadata(LLVMContext::MD_prof, buildProfBranchWeightsMD());
3498 }
3499
3500 /// Delegate the call to the underlying SwitchInst::removeCase() and remove
3501 /// correspondent branch weight.
3502 SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I);
3503
3504 /// Delegate the call to the underlying SwitchInst::addCase() and set the
3505 /// specified branch weight for the added case.
3506 void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W);
3507
3508 /// Delegate the call to the underlying SwitchInst::eraseFromParent() and mark
3509 /// this object to not touch the underlying SwitchInst in destructor.
3510 SymbolTableList<Instruction>::iterator eraseFromParent();
3511
3512 void setSuccessorWeight(unsigned idx, CaseWeightOpt W);
3513 CaseWeightOpt getSuccessorWeight(unsigned idx);
3514
3515 static CaseWeightOpt getSuccessorWeight(const SwitchInst &SI, unsigned idx);
3516};
3517
3518template <>
3519struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> {
3520};
3521
3522DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)SwitchInst::op_iterator SwitchInst::op_begin() { return OperandTraits
<SwitchInst>::op_begin(this); } SwitchInst::const_op_iterator
SwitchInst::op_begin() const { return OperandTraits<SwitchInst
>::op_begin(const_cast<SwitchInst*>(this)); } SwitchInst
::op_iterator SwitchInst::op_end() { return OperandTraits<
SwitchInst>::op_end(this); } SwitchInst::const_op_iterator
SwitchInst::op_end() const { return OperandTraits<SwitchInst
>::op_end(const_cast<SwitchInst*>(this)); } Value *SwitchInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<SwitchInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<SwitchInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3522, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<SwitchInst>::op_begin(const_cast<SwitchInst
*>(this))[i_nocapture].get()); } void SwitchInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<SwitchInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<SwitchInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3522, __PRETTY_FUNCTION__)); OperandTraits<SwitchInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned SwitchInst
::getNumOperands() const { return OperandTraits<SwitchInst
>::operands(this); } template <int Idx_nocapture> Use
&SwitchInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
SwitchInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
3523
3524//===----------------------------------------------------------------------===//
3525// IndirectBrInst Class
3526//===----------------------------------------------------------------------===//
3527
3528//===---------------------------------------------------------------------------
3529/// Indirect Branch Instruction.
3530///
3531class IndirectBrInst : public Instruction {
3532 unsigned ReservedSpace;
3533
3534 // Operand[0] = Address to jump to
3535 // Operand[n+1] = n-th destination
3536 IndirectBrInst(const IndirectBrInst &IBI);
3537
3538 /// Create a new indirectbr instruction, specifying an
3539 /// Address to jump to. The number of expected destinations can be specified
3540 /// here to make memory allocation more efficient. This constructor can also
3541 /// autoinsert before another instruction.
3542 IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore);
3543
3544 /// Create a new indirectbr instruction, specifying an
3545 /// Address to jump to. The number of expected destinations can be specified
3546 /// here to make memory allocation more efficient. This constructor also
3547 /// autoinserts at the end of the specified BasicBlock.
3548 IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd);
3549
3550 // allocate space for exactly zero operands
3551 void *operator new(size_t s) {
3552 return User::operator new(s);
3553 }
3554
3555 void init(Value *Address, unsigned NumDests);
3556 void growOperands();
3557
3558protected:
3559 // Note: Instruction needs to be a friend here to call cloneImpl.
3560 friend class Instruction;
3561
3562 IndirectBrInst *cloneImpl() const;
3563
3564public:
3565 /// Iterator type that casts an operand to a basic block.
3566 ///
3567 /// This only makes sense because the successors are stored as adjacent
3568 /// operands for indirectbr instructions.
3569 struct succ_op_iterator
3570 : iterator_adaptor_base<succ_op_iterator, value_op_iterator,
3571 std::random_access_iterator_tag, BasicBlock *,
3572 ptrdiff_t, BasicBlock *, BasicBlock *> {
3573 explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {}
3574
3575 BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3576 BasicBlock *operator->() const { return operator*(); }
3577 };
3578
3579 /// The const version of `succ_op_iterator`.
3580 struct const_succ_op_iterator
3581 : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator,
3582 std::random_access_iterator_tag,
3583 const BasicBlock *, ptrdiff_t, const BasicBlock *,
3584 const BasicBlock *> {
3585 explicit const_succ_op_iterator(const_value_op_iterator I)
3586 : iterator_adaptor_base(I) {}
3587
3588 const BasicBlock *operator*() const { return cast<BasicBlock>(*I); }
3589 const BasicBlock *operator->() const { return operator*(); }
3590 };
3591
3592 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3593 Instruction *InsertBefore = nullptr) {
3594 return new IndirectBrInst(Address, NumDests, InsertBefore);
3595 }
3596
3597 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
3598 BasicBlock *InsertAtEnd) {
3599 return new IndirectBrInst(Address, NumDests, InsertAtEnd);
3600 }
3601
3602 /// Provide fast operand accessors.
3603 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
3604
3605 // Accessor Methods for IndirectBrInst instruction.
3606 Value *getAddress() { return getOperand(0); }
3607 const Value *getAddress() const { return getOperand(0); }
3608 void setAddress(Value *V) { setOperand(0, V); }
3609
3610 /// return the number of possible destinations in this
3611 /// indirectbr instruction.
3612 unsigned getNumDestinations() const { return getNumOperands()-1; }
3613
3614 /// Return the specified destination.
3615 BasicBlock *getDestination(unsigned i) { return getSuccessor(i); }
3616 const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); }
3617
3618 /// Add a destination.
3619 ///
3620 void addDestination(BasicBlock *Dest);
3621
3622 /// This method removes the specified successor from the
3623 /// indirectbr instruction.
3624 void removeDestination(unsigned i);
3625
3626 unsigned getNumSuccessors() const { return getNumOperands()-1; }
3627 BasicBlock *getSuccessor(unsigned i) const {
3628 return cast<BasicBlock>(getOperand(i+1));
3629 }
3630 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3631 setOperand(i + 1, NewSucc);
3632 }
3633
3634 iterator_range<succ_op_iterator> successors() {
3635 return make_range(succ_op_iterator(std::next(value_op_begin())),
3636 succ_op_iterator(value_op_end()));
3637 }
3638
3639 iterator_range<const_succ_op_iterator> successors() const {
3640 return make_range(const_succ_op_iterator(std::next(value_op_begin())),
3641 const_succ_op_iterator(value_op_end()));
3642 }
3643
3644 // Methods for support type inquiry through isa, cast, and dyn_cast:
3645 static bool classof(const Instruction *I) {
3646 return I->getOpcode() == Instruction::IndirectBr;
3647 }
3648 static bool classof(const Value *V) {
3649 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3650 }
3651};
3652
3653template <>
3654struct OperandTraits<IndirectBrInst> : public HungoffOperandTraits<1> {
3655};
3656
3657DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value)IndirectBrInst::op_iterator IndirectBrInst::op_begin() { return
OperandTraits<IndirectBrInst>::op_begin(this); } IndirectBrInst
::const_op_iterator IndirectBrInst::op_begin() const { return
OperandTraits<IndirectBrInst>::op_begin(const_cast<
IndirectBrInst*>(this)); } IndirectBrInst::op_iterator IndirectBrInst
::op_end() { return OperandTraits<IndirectBrInst>::op_end
(this); } IndirectBrInst::const_op_iterator IndirectBrInst::op_end
() const { return OperandTraits<IndirectBrInst>::op_end
(const_cast<IndirectBrInst*>(this)); } Value *IndirectBrInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<IndirectBrInst>::operands(this) &&
"getOperand() out of range!") ? static_cast<void> (0) :
__assert_fail ("i_nocapture < OperandTraits<IndirectBrInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3657, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<IndirectBrInst>::op_begin(const_cast<
IndirectBrInst*>(this))[i_nocapture].get()); } void IndirectBrInst
::setOperand(unsigned i_nocapture, Value *Val_nocapture) { ((
i_nocapture < OperandTraits<IndirectBrInst>::operands
(this) && "setOperand() out of range!") ? static_cast
<void> (0) : __assert_fail ("i_nocapture < OperandTraits<IndirectBrInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3657, __PRETTY_FUNCTION__)); OperandTraits<IndirectBrInst
>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned
IndirectBrInst::getNumOperands() const { return OperandTraits
<IndirectBrInst>::operands(this); } template <int Idx_nocapture
> Use &IndirectBrInst::Op() { return this->OpFrom<
Idx_nocapture>(this); } template <int Idx_nocapture>
const Use &IndirectBrInst::Op() const { return this->
OpFrom<Idx_nocapture>(this); }
3658
3659//===----------------------------------------------------------------------===//
3660// InvokeInst Class
3661//===----------------------------------------------------------------------===//
3662
3663/// Invoke instruction. The SubclassData field is used to hold the
3664/// calling convention of the call.
3665///
3666class InvokeInst : public CallBase {
3667 /// The number of operands for this call beyond the called function,
3668 /// arguments, and operand bundles.
3669 static constexpr int NumExtraOperands = 2;
3670
3671 /// The index from the end of the operand array to the normal destination.
3672 static constexpr int NormalDestOpEndIdx = -3;
3673
3674 /// The index from the end of the operand array to the unwind destination.
3675 static constexpr int UnwindDestOpEndIdx = -2;
3676
3677 InvokeInst(const InvokeInst &BI);
3678
3679 /// Construct an InvokeInst given a range of arguments.
3680 ///
3681 /// Construct an InvokeInst from a range of arguments
3682 inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3683 BasicBlock *IfException, ArrayRef<Value *> Args,
3684 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3685 const Twine &NameStr, Instruction *InsertBefore);
3686
3687 inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3688 BasicBlock *IfException, ArrayRef<Value *> Args,
3689 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3690 const Twine &NameStr, BasicBlock *InsertAtEnd);
3691
3692 void init(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3693 BasicBlock *IfException, ArrayRef<Value *> Args,
3694 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3695
3696 /// Compute the number of operands to allocate.
3697 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
3698 // We need one operand for the called function, plus our extra operands and
3699 // the input operand counts provided.
3700 return 1 + NumExtraOperands + NumArgs + NumBundleInputs;
3701 }
3702
3703protected:
3704 // Note: Instruction needs to be a friend here to call cloneImpl.
3705 friend class Instruction;
3706
3707 InvokeInst *cloneImpl() const;
3708
3709public:
3710 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3711 BasicBlock *IfException, ArrayRef<Value *> Args,
3712 const Twine &NameStr,
3713 Instruction *InsertBefore = nullptr) {
3714 int NumOperands = ComputeNumOperands(Args.size());
3715 return new (NumOperands)
3716 InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3717 NameStr, InsertBefore);
3718 }
3719
3720 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3721 BasicBlock *IfException, ArrayRef<Value *> Args,
3722 ArrayRef<OperandBundleDef> Bundles = None,
3723 const Twine &NameStr = "",
3724 Instruction *InsertBefore = nullptr) {
3725 int NumOperands =
3726 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3727 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3728
3729 return new (NumOperands, DescriptorBytes)
3730 InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3731 NameStr, InsertBefore);
3732 }
3733
3734 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3735 BasicBlock *IfException, ArrayRef<Value *> Args,
3736 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3737 int NumOperands = ComputeNumOperands(Args.size());
3738 return new (NumOperands)
3739 InvokeInst(Ty, Func, IfNormal, IfException, Args, None, NumOperands,
3740 NameStr, InsertAtEnd);
3741 }
3742
3743 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3744 BasicBlock *IfException, ArrayRef<Value *> Args,
3745 ArrayRef<OperandBundleDef> Bundles,
3746 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3747 int NumOperands =
3748 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
3749 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3750
3751 return new (NumOperands, DescriptorBytes)
3752 InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands,
3753 NameStr, InsertAtEnd);
3754 }
3755
3756 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3757 BasicBlock *IfException, ArrayRef<Value *> Args,
3758 const Twine &NameStr,
3759 Instruction *InsertBefore = nullptr) {
3760 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3761 IfException, Args, None, NameStr, InsertBefore);
3762 }
3763
3764 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3765 BasicBlock *IfException, ArrayRef<Value *> Args,
3766 ArrayRef<OperandBundleDef> Bundles = None,
3767 const Twine &NameStr = "",
3768 Instruction *InsertBefore = nullptr) {
3769 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3770 IfException, Args, Bundles, NameStr, InsertBefore);
3771 }
3772
3773 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3774 BasicBlock *IfException, ArrayRef<Value *> Args,
3775 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3776 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3777 IfException, Args, NameStr, InsertAtEnd);
3778 }
3779
3780 static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal,
3781 BasicBlock *IfException, ArrayRef<Value *> Args,
3782 ArrayRef<OperandBundleDef> Bundles,
3783 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3784 return Create(Func.getFunctionType(), Func.getCallee(), IfNormal,
3785 IfException, Args, Bundles, NameStr, InsertAtEnd);
3786 }
3787
3788 // Deprecated [opaque pointer types]
3789 static InvokeInst *Create(Value *Func, BasicBlock *IfNormal,
3790 BasicBlock *IfException, ArrayRef<Value *> Args,
3791 const Twine &NameStr,
3792 Instruction *InsertBefore = nullptr) {
3793 return Create(cast<FunctionType>(
3794 cast<PointerType>(Func->getType())->getElementType()),
3795 Func, IfNormal, IfException, Args, None, NameStr,
3796 InsertBefore);
3797 }
3798
3799 // Deprecated [opaque pointer types]
3800 static InvokeInst *Create(Value *Func, BasicBlock *IfNormal,
3801 BasicBlock *IfException, ArrayRef<Value *> Args,
3802 ArrayRef<OperandBundleDef> Bundles = None,
3803 const Twine &NameStr = "",
3804 Instruction *InsertBefore = nullptr) {
3805 return Create(cast<FunctionType>(
3806 cast<PointerType>(Func->getType())->getElementType()),
3807 Func, IfNormal, IfException, Args, Bundles, NameStr,
3808 InsertBefore);
3809 }
3810
3811 // Deprecated [opaque pointer types]
3812 static InvokeInst *Create(Value *Func, BasicBlock *IfNormal,
3813 BasicBlock *IfException, ArrayRef<Value *> Args,
3814 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3815 return Create(cast<FunctionType>(
3816 cast<PointerType>(Func->getType())->getElementType()),
3817 Func, IfNormal, IfException, Args, NameStr, InsertAtEnd);
3818 }
3819
3820 // Deprecated [opaque pointer types]
3821 static InvokeInst *Create(Value *Func, BasicBlock *IfNormal,
3822 BasicBlock *IfException, ArrayRef<Value *> Args,
3823 ArrayRef<OperandBundleDef> Bundles,
3824 const Twine &NameStr, BasicBlock *InsertAtEnd) {
3825 return Create(cast<FunctionType>(
3826 cast<PointerType>(Func->getType())->getElementType()),
3827 Func, IfNormal, IfException, Args, Bundles, NameStr,
3828 InsertAtEnd);
3829 }
3830
3831 /// Create a clone of \p II with a different set of operand bundles and
3832 /// insert it before \p InsertPt.
3833 ///
3834 /// The returned invoke instruction is identical to \p II in every way except
3835 /// that the operand bundles for the new instruction are set to the operand
3836 /// bundles in \p Bundles.
3837 static InvokeInst *Create(InvokeInst *II, ArrayRef<OperandBundleDef> Bundles,
3838 Instruction *InsertPt = nullptr);
3839
3840 /// Determine if the call should not perform indirect branch tracking.
3841 bool doesNoCfCheck() const { return hasFnAttr(Attribute::NoCfCheck); }
3842
3843 /// Determine if the call cannot unwind.
3844 bool doesNotThrow() const { return hasFnAttr(Attribute::NoUnwind); }
3845 void setDoesNotThrow() {
3846 addAttribute(AttributeList::FunctionIndex, Attribute::NoUnwind);
3847 }
3848
3849 // get*Dest - Return the destination basic blocks...
3850 BasicBlock *getNormalDest() const {
3851 return cast<BasicBlock>(Op<NormalDestOpEndIdx>());
3852 }
3853 BasicBlock *getUnwindDest() const {
3854 return cast<BasicBlock>(Op<UnwindDestOpEndIdx>());
3855 }
3856 void setNormalDest(BasicBlock *B) {
3857 Op<NormalDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3858 }
3859 void setUnwindDest(BasicBlock *B) {
3860 Op<UnwindDestOpEndIdx>() = reinterpret_cast<Value *>(B);
3861 }
3862
3863 /// Get the landingpad instruction from the landing pad
3864 /// block (the unwind destination).
3865 LandingPadInst *getLandingPadInst() const;
3866
3867 BasicBlock *getSuccessor(unsigned i) const {
3868 assert(i < 2 && "Successor # out of range for invoke!")((i < 2 && "Successor # out of range for invoke!")
? static_cast<void> (0) : __assert_fail ("i < 2 && \"Successor # out of range for invoke!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3868, __PRETTY_FUNCTION__))
;
3869 return i == 0 ? getNormalDest() : getUnwindDest();
3870 }
3871
3872 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
3873 assert(i < 2 && "Successor # out of range for invoke!")((i < 2 && "Successor # out of range for invoke!")
? static_cast<void> (0) : __assert_fail ("i < 2 && \"Successor # out of range for invoke!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 3873, __PRETTY_FUNCTION__))
;
3874 if (i == 0)
3875 setNormalDest(NewSucc);
3876 else
3877 setUnwindDest(NewSucc);
3878 }
3879
3880 unsigned getNumSuccessors() const { return 2; }
3881
3882 // Methods for support type inquiry through isa, cast, and dyn_cast:
3883 static bool classof(const Instruction *I) {
3884 return (I->getOpcode() == Instruction::Invoke);
3885 }
3886 static bool classof(const Value *V) {
3887 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3888 }
3889
3890private:
3891
3892 // Shadow Instruction::setInstructionSubclassData with a private forwarding
3893 // method so that subclasses cannot accidentally use it.
3894 void setInstructionSubclassData(unsigned short D) {
3895 Instruction::setInstructionSubclassData(D);
3896 }
3897};
3898
3899InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3900 BasicBlock *IfException, ArrayRef<Value *> Args,
3901 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3902 const Twine &NameStr, Instruction *InsertBefore)
3903 : CallBase(Ty->getReturnType(), Instruction::Invoke,
3904 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3905 InsertBefore) {
3906 init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3907}
3908
3909InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal,
3910 BasicBlock *IfException, ArrayRef<Value *> Args,
3911 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3912 const Twine &NameStr, BasicBlock *InsertAtEnd)
3913 : CallBase(Ty->getReturnType(), Instruction::Invoke,
3914 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
3915 InsertAtEnd) {
3916 init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr);
3917}
3918
3919//===----------------------------------------------------------------------===//
3920// CallBrInst Class
3921//===----------------------------------------------------------------------===//
3922
3923/// CallBr instruction, tracking function calls that may not return control but
3924/// instead transfer it to a third location. The SubclassData field is used to
3925/// hold the calling convention of the call.
3926///
3927class CallBrInst : public CallBase {
3928
3929 unsigned NumIndirectDests;
3930
3931 CallBrInst(const CallBrInst &BI);
3932
3933 /// Construct a CallBrInst given a range of arguments.
3934 ///
3935 /// Construct a CallBrInst from a range of arguments
3936 inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3937 ArrayRef<BasicBlock *> IndirectDests,
3938 ArrayRef<Value *> Args,
3939 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3940 const Twine &NameStr, Instruction *InsertBefore);
3941
3942 inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
3943 ArrayRef<BasicBlock *> IndirectDests,
3944 ArrayRef<Value *> Args,
3945 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
3946 const Twine &NameStr, BasicBlock *InsertAtEnd);
3947
3948 void init(FunctionType *FTy, Value *Func, BasicBlock *DefaultDest,
3949 ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args,
3950 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
3951
3952 /// Should the Indirect Destinations change, scan + update the Arg list.
3953 void updateArgBlockAddresses(unsigned i, BasicBlock *B);
3954
3955 /// Compute the number of operands to allocate.
3956 static int ComputeNumOperands(int NumArgs, int NumIndirectDests,
3957 int NumBundleInputs = 0) {
3958 // We need one operand for the called function, plus our extra operands and
3959 // the input operand counts provided.
3960 return 2 + NumIndirectDests + NumArgs + NumBundleInputs;
3961 }
3962
3963protected:
3964 // Note: Instruction needs to be a friend here to call cloneImpl.
3965 friend class Instruction;
3966
3967 CallBrInst *cloneImpl() const;
3968
3969public:
3970 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3971 BasicBlock *DefaultDest,
3972 ArrayRef<BasicBlock *> IndirectDests,
3973 ArrayRef<Value *> Args, const Twine &NameStr,
3974 Instruction *InsertBefore = nullptr) {
3975 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
3976 return new (NumOperands)
3977 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
3978 NumOperands, NameStr, InsertBefore);
3979 }
3980
3981 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3982 BasicBlock *DefaultDest,
3983 ArrayRef<BasicBlock *> IndirectDests,
3984 ArrayRef<Value *> Args,
3985 ArrayRef<OperandBundleDef> Bundles = None,
3986 const Twine &NameStr = "",
3987 Instruction *InsertBefore = nullptr) {
3988 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
3989 CountBundleInputs(Bundles));
3990 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
3991
3992 return new (NumOperands, DescriptorBytes)
3993 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
3994 NumOperands, NameStr, InsertBefore);
3995 }
3996
3997 static CallBrInst *Create(FunctionType *Ty, Value *Func,
3998 BasicBlock *DefaultDest,
3999 ArrayRef<BasicBlock *> IndirectDests,
4000 ArrayRef<Value *> Args, const Twine &NameStr,
4001 BasicBlock *InsertAtEnd) {
4002 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size());
4003 return new (NumOperands)
4004 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, None,
4005 NumOperands, NameStr, InsertAtEnd);
4006 }
4007
4008 static CallBrInst *Create(FunctionType *Ty, Value *Func,
4009 BasicBlock *DefaultDest,
4010 ArrayRef<BasicBlock *> IndirectDests,
4011 ArrayRef<Value *> Args,
4012 ArrayRef<OperandBundleDef> Bundles,
4013 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4014 int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(),
4015 CountBundleInputs(Bundles));
4016 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
4017
4018 return new (NumOperands, DescriptorBytes)
4019 CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles,
4020 NumOperands, NameStr, InsertAtEnd);
4021 }
4022
4023 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4024 ArrayRef<BasicBlock *> IndirectDests,
4025 ArrayRef<Value *> Args, const Twine &NameStr,
4026 Instruction *InsertBefore = nullptr) {
4027 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4028 IndirectDests, Args, NameStr, InsertBefore);
4029 }
4030
4031 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4032 ArrayRef<BasicBlock *> IndirectDests,
4033 ArrayRef<Value *> Args,
4034 ArrayRef<OperandBundleDef> Bundles = None,
4035 const Twine &NameStr = "",
4036 Instruction *InsertBefore = nullptr) {
4037 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4038 IndirectDests, Args, Bundles, NameStr, InsertBefore);
4039 }
4040
4041 static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest,
4042 ArrayRef<BasicBlock *> IndirectDests,
4043 ArrayRef<Value *> Args, const Twine &NameStr,
4044 BasicBlock *InsertAtEnd) {
4045 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4046 IndirectDests, Args, NameStr, InsertAtEnd);
4047 }
4048
4049 static CallBrInst *Create(FunctionCallee Func,
4050 BasicBlock *DefaultDest,
4051 ArrayRef<BasicBlock *> IndirectDests,
4052 ArrayRef<Value *> Args,
4053 ArrayRef<OperandBundleDef> Bundles,
4054 const Twine &NameStr, BasicBlock *InsertAtEnd) {
4055 return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest,
4056 IndirectDests, Args, Bundles, NameStr, InsertAtEnd);
4057 }
4058
4059 /// Create a clone of \p CBI with a different set of operand bundles and
4060 /// insert it before \p InsertPt.
4061 ///
4062 /// The returned callbr instruction is identical to \p CBI in every way
4063 /// except that the operand bundles for the new instruction are set to the
4064 /// operand bundles in \p Bundles.
4065 static CallBrInst *Create(CallBrInst *CBI,
4066 ArrayRef<OperandBundleDef> Bundles,
4067 Instruction *InsertPt = nullptr);
4068
4069 /// Return the number of callbr indirect dest labels.
4070 ///
4071 unsigned getNumIndirectDests() const { return NumIndirectDests; }
4072
4073 /// getIndirectDestLabel - Return the i-th indirect dest label.
4074 ///
4075 Value *getIndirectDestLabel(unsigned i) const {
4076 assert(i < getNumIndirectDests() && "Out of bounds!")((i < getNumIndirectDests() && "Out of bounds!") ?
static_cast<void> (0) : __assert_fail ("i < getNumIndirectDests() && \"Out of bounds!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4076, __PRETTY_FUNCTION__))
;
4077 return getOperand(i + getNumArgOperands() + getNumTotalBundleOperands() +
4078 1);
4079 }
4080
4081 Value *getIndirectDestLabelUse(unsigned i) const {
4082 assert(i < getNumIndirectDests() && "Out of bounds!")((i < getNumIndirectDests() && "Out of bounds!") ?
static_cast<void> (0) : __assert_fail ("i < getNumIndirectDests() && \"Out of bounds!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4082, __PRETTY_FUNCTION__))
;
4083 return getOperandUse(i + getNumArgOperands() + getNumTotalBundleOperands() +
4084 1);
4085 }
4086
4087 // Return the destination basic blocks...
4088 BasicBlock *getDefaultDest() const {
4089 return cast<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() - 1));
4090 }
4091 BasicBlock *getIndirectDest(unsigned i) const {
4092 return cast_or_null<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() + i));
4093 }
4094 SmallVector<BasicBlock *, 16> getIndirectDests() const {
4095 SmallVector<BasicBlock *, 16> IndirectDests;
4096 for (unsigned i = 0, e = getNumIndirectDests(); i < e; ++i)
4097 IndirectDests.push_back(getIndirectDest(i));
4098 return IndirectDests;
4099 }
4100 void setDefaultDest(BasicBlock *B) {
4101 *(&Op<-1>() - getNumIndirectDests() - 1) = reinterpret_cast<Value *>(B);
4102 }
4103 void setIndirectDest(unsigned i, BasicBlock *B) {
4104 updateArgBlockAddresses(i, B);
4105 *(&Op<-1>() - getNumIndirectDests() + i) = reinterpret_cast<Value *>(B);
4106 }
4107
4108 BasicBlock *getSuccessor(unsigned i) const {
4109 assert(i < getNumSuccessors() + 1 &&((i < getNumSuccessors() + 1 && "Successor # out of range for callbr!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumSuccessors() + 1 && \"Successor # out of range for callbr!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4110, __PRETTY_FUNCTION__))
4110 "Successor # out of range for callbr!")((i < getNumSuccessors() + 1 && "Successor # out of range for callbr!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumSuccessors() + 1 && \"Successor # out of range for callbr!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4110, __PRETTY_FUNCTION__))
;
4111 return i == 0 ? getDefaultDest() : getIndirectDest(i - 1);
4112 }
4113
4114 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
4115 assert(i < getNumIndirectDests() + 1 &&((i < getNumIndirectDests() + 1 && "Successor # out of range for callbr!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumIndirectDests() + 1 && \"Successor # out of range for callbr!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4116, __PRETTY_FUNCTION__))
4116 "Successor # out of range for callbr!")((i < getNumIndirectDests() + 1 && "Successor # out of range for callbr!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumIndirectDests() + 1 && \"Successor # out of range for callbr!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4116, __PRETTY_FUNCTION__))
;
4117 return i == 0 ? setDefaultDest(NewSucc) : setIndirectDest(i - 1, NewSucc);
4118 }
4119
4120 unsigned getNumSuccessors() const { return getNumIndirectDests() + 1; }
4121
4122 // Methods for support type inquiry through isa, cast, and dyn_cast:
4123 static bool classof(const Instruction *I) {
4124 return (I->getOpcode() == Instruction::CallBr);
4125 }
4126 static bool classof(const Value *V) {
4127 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4128 }
4129
4130private:
4131
4132 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4133 // method so that subclasses cannot accidentally use it.
4134 void setInstructionSubclassData(unsigned short D) {
4135 Instruction::setInstructionSubclassData(D);
4136 }
4137};
4138
4139CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4140 ArrayRef<BasicBlock *> IndirectDests,
4141 ArrayRef<Value *> Args,
4142 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4143 const Twine &NameStr, Instruction *InsertBefore)
4144 : CallBase(Ty->getReturnType(), Instruction::CallBr,
4145 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4146 InsertBefore) {
4147 init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4148}
4149
4150CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest,
4151 ArrayRef<BasicBlock *> IndirectDests,
4152 ArrayRef<Value *> Args,
4153 ArrayRef<OperandBundleDef> Bundles, int NumOperands,
4154 const Twine &NameStr, BasicBlock *InsertAtEnd)
4155 : CallBase(Ty->getReturnType(), Instruction::CallBr,
4156 OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands,
4157 InsertAtEnd) {
4158 init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr);
4159}
4160
4161//===----------------------------------------------------------------------===//
4162// ResumeInst Class
4163//===----------------------------------------------------------------------===//
4164
4165//===---------------------------------------------------------------------------
4166/// Resume the propagation of an exception.
4167///
4168class ResumeInst : public Instruction {
4169 ResumeInst(const ResumeInst &RI);
4170
4171 explicit ResumeInst(Value *Exn, Instruction *InsertBefore=nullptr);
4172 ResumeInst(Value *Exn, BasicBlock *InsertAtEnd);
4173
4174protected:
4175 // Note: Instruction needs to be a friend here to call cloneImpl.
4176 friend class Instruction;
4177
4178 ResumeInst *cloneImpl() const;
4179
4180public:
4181 static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = nullptr) {
4182 return new(1) ResumeInst(Exn, InsertBefore);
4183 }
4184
4185 static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) {
4186 return new(1) ResumeInst(Exn, InsertAtEnd);
4187 }
4188
4189 /// Provide fast operand accessors
4190 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void
setOperand(unsigned, Value*); inline op_iterator op_begin();
inline const_op_iterator op_begin() const; inline op_iterator
op_end(); inline const_op_iterator op_end() const; protected
: template <int> inline Use &Op(); template <int
> inline const Use &Op() const; public: inline unsigned
getNumOperands() const
;
4191
4192 /// Convenience accessor.
4193 Value *getValue() const { return Op<0>(); }
4194
4195 unsigned getNumSuccessors() const { return 0; }
4196
4197 // Methods for support type inquiry through isa, cast, and dyn_cast:
4198 static bool classof(const Instruction *I) {
4199 return I->getOpcode() == Instruction::Resume;
4200 }
4201 static bool classof(const Value *V) {
4202 return isa<Instruction>(V) && classof(cast<Instruction>(V));
4203 }
4204
4205private:
4206 BasicBlock *getSuccessor(unsigned idx) const {
4207 llvm_unreachable("ResumeInst has no successors!")::llvm::llvm_unreachable_internal("ResumeInst has no successors!"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4207)
;
4208 }
4209
4210 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
4211 llvm_unreachable("ResumeInst has no successors!")::llvm::llvm_unreachable_internal("ResumeInst has no successors!"
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4211)
;
4212 }
4213};
4214
4215template <>
4216struct OperandTraits<ResumeInst> :
4217 public FixedNumOperandTraits<ResumeInst, 1> {
4218};
4219
4220DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value)ResumeInst::op_iterator ResumeInst::op_begin() { return OperandTraits
<ResumeInst>::op_begin(this); } ResumeInst::const_op_iterator
ResumeInst::op_begin() const { return OperandTraits<ResumeInst
>::op_begin(const_cast<ResumeInst*>(this)); } ResumeInst
::op_iterator ResumeInst::op_end() { return OperandTraits<
ResumeInst>::op_end(this); } ResumeInst::const_op_iterator
ResumeInst::op_end() const { return OperandTraits<ResumeInst
>::op_end(const_cast<ResumeInst*>(this)); } Value *ResumeInst
::getOperand(unsigned i_nocapture) const { ((i_nocapture <
OperandTraits<ResumeInst>::operands(this) && "getOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ResumeInst>::operands(this) && \"getOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4220, __PRETTY_FUNCTION__)); return cast_or_null<Value>
( OperandTraits<ResumeInst>::op_begin(const_cast<ResumeInst
*>(this))[i_nocapture].get()); } void ResumeInst::setOperand
(unsigned i_nocapture, Value *Val_nocapture) { ((i_nocapture <
OperandTraits<ResumeInst>::operands(this) && "setOperand() out of range!"
) ? static_cast<void> (0) : __assert_fail ("i_nocapture < OperandTraits<ResumeInst>::operands(this) && \"setOperand() out of range!\""
, "/build/llvm-toolchain-snapshot-11~++20200309111110+2c36c23f347/llvm/include/llvm/IR/Instructions.h"
, 4220, __PRETTY_FUNCTION__)); OperandTraits<ResumeInst>
::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned ResumeInst
::getNumOperands() const { return OperandTraits<ResumeInst
>::operands(this); } template <int Idx_nocapture> Use
&ResumeInst::Op() { return this->OpFrom<Idx_nocapture
>(this); } template <int Idx_nocapture> const Use &
ResumeInst::Op() const { return this->OpFrom<Idx_nocapture
>(this); }
4221
4222//===----------------------------------------------------------------------===//
4223// CatchSwitchInst Class
4224//===----------------------------------------------------------------------===//
4225class CatchSwitchInst : public Instruction {
4226 /// The number of operands actually allocated. NumOperands is
4227 /// the number actually in use.
4228 unsigned ReservedSpace;
4229
4230 // Operand[0] = Outer scope
4231 // Operand[1] = Unwind block destination
4232 // Operand[n] = BasicBlock to go to on match
4233 CatchSwitchInst(const CatchSwitchInst &CSI);
4234
4235 /// Create a new switch instruction, specifying a
4236 /// default destination. The number of additional handlers can be specified
4237 /// here to make memory allocation more efficient.
4238 /// This constructor can also autoinsert before another instruction.
4239 CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4240 unsigned NumHandlers, const Twine &NameStr,
4241 Instruction *InsertBefore);
4242
4243 /// Create a new switch instruction, specifying a
4244 /// default destination. The number of additional handlers can be specified
4245 /// here to make memory allocation more efficient.
4246 /// This constructor also autoinserts at the end of the specified BasicBlock.
4247 CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
4248 unsigned NumHandlers, const Twine &NameStr,
4249 BasicBlock *InsertAtEnd);
4250
4251 // allocate space for exactly zero operands
4252 void *operator new(size_t s) { return User::operator new(s); }
4253
4254 void init(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumReserved);
4255 void growOperands(unsigned Size);
4256
4257protected:
4258 // Note: Instruction needs to be a friend here to call cloneImpl.
4259 friend class Instruction;
4260
4261 CatchSwitchInst *cloneImpl() const;
4262
4263public:
4264 static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest,
4265 unsigned NumHandlers,
4266 const Twine &NameStr = "",
4267