| File: | build/source/llvm/lib/Target/AMDGPU/AMDGPUPromoteAlloca.cpp |
| Warning: | line 483, column 39 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===// | ||||
| 2 | // | ||||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | ||||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||||
| 6 | // | ||||
| 7 | //===----------------------------------------------------------------------===// | ||||
| 8 | // | ||||
| 9 | // This pass eliminates allocas by either converting them into vectors or | ||||
| 10 | // by migrating them to local address space. | ||||
| 11 | // | ||||
| 12 | //===----------------------------------------------------------------------===// | ||||
| 13 | |||||
| 14 | #include "AMDGPU.h" | ||||
| 15 | #include "GCNSubtarget.h" | ||||
| 16 | #include "Utils/AMDGPUBaseInfo.h" | ||||
| 17 | #include "llvm/Analysis/CaptureTracking.h" | ||||
| 18 | #include "llvm/Analysis/ValueTracking.h" | ||||
| 19 | #include "llvm/CodeGen/TargetPassConfig.h" | ||||
| 20 | #include "llvm/IR/IRBuilder.h" | ||||
| 21 | #include "llvm/IR/IntrinsicInst.h" | ||||
| 22 | #include "llvm/IR/IntrinsicsAMDGPU.h" | ||||
| 23 | #include "llvm/IR/IntrinsicsR600.h" | ||||
| 24 | #include "llvm/Pass.h" | ||||
| 25 | #include "llvm/Target/TargetMachine.h" | ||||
| 26 | |||||
| 27 | #define DEBUG_TYPE"amdgpu-promote-alloca" "amdgpu-promote-alloca" | ||||
| 28 | |||||
| 29 | using namespace llvm; | ||||
| 30 | |||||
| 31 | namespace { | ||||
| 32 | |||||
| 33 | static cl::opt<bool> DisablePromoteAllocaToVector( | ||||
| 34 | "disable-promote-alloca-to-vector", | ||||
| 35 | cl::desc("Disable promote alloca to vector"), | ||||
| 36 | cl::init(false)); | ||||
| 37 | |||||
| 38 | static cl::opt<bool> DisablePromoteAllocaToLDS( | ||||
| 39 | "disable-promote-alloca-to-lds", | ||||
| 40 | cl::desc("Disable promote alloca to LDS"), | ||||
| 41 | cl::init(false)); | ||||
| 42 | |||||
| 43 | static cl::opt<unsigned> PromoteAllocaToVectorLimit( | ||||
| 44 | "amdgpu-promote-alloca-to-vector-limit", | ||||
| 45 | cl::desc("Maximum byte size to consider promote alloca to vector"), | ||||
| 46 | cl::init(0)); | ||||
| 47 | |||||
| 48 | // FIXME: This can create globals so should be a module pass. | ||||
| 49 | class AMDGPUPromoteAlloca : public FunctionPass { | ||||
| 50 | public: | ||||
| 51 | static char ID; | ||||
| 52 | |||||
| 53 | AMDGPUPromoteAlloca() : FunctionPass(ID) {} | ||||
| 54 | |||||
| 55 | bool runOnFunction(Function &F) override; | ||||
| 56 | |||||
| 57 | StringRef getPassName() const override { return "AMDGPU Promote Alloca"; } | ||||
| 58 | |||||
| 59 | bool handleAlloca(AllocaInst &I, bool SufficientLDS); | ||||
| 60 | |||||
| 61 | void getAnalysisUsage(AnalysisUsage &AU) const override { | ||||
| 62 | AU.setPreservesCFG(); | ||||
| 63 | FunctionPass::getAnalysisUsage(AU); | ||||
| 64 | } | ||||
| 65 | }; | ||||
| 66 | |||||
| 67 | class AMDGPUPromoteAllocaImpl { | ||||
| 68 | private: | ||||
| 69 | const TargetMachine &TM; | ||||
| 70 | Module *Mod = nullptr; | ||||
| 71 | const DataLayout *DL = nullptr; | ||||
| 72 | |||||
| 73 | // FIXME: This should be per-kernel. | ||||
| 74 | uint32_t LocalMemLimit = 0; | ||||
| 75 | uint32_t CurrentLocalMemUsage = 0; | ||||
| 76 | unsigned MaxVGPRs; | ||||
| 77 | |||||
| 78 | bool IsAMDGCN = false; | ||||
| 79 | bool IsAMDHSA = false; | ||||
| 80 | |||||
| 81 | std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder); | ||||
| 82 | Value *getWorkitemID(IRBuilder<> &Builder, unsigned N); | ||||
| 83 | |||||
| 84 | /// BaseAlloca is the alloca root the search started from. | ||||
| 85 | /// Val may be that alloca or a recursive user of it. | ||||
| 86 | bool collectUsesWithPtrTypes(Value *BaseAlloca, | ||||
| 87 | Value *Val, | ||||
| 88 | std::vector<Value*> &WorkList) const; | ||||
| 89 | |||||
| 90 | /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand | ||||
| 91 | /// indices to an instruction with 2 pointer inputs (e.g. select, icmp). | ||||
| 92 | /// Returns true if both operands are derived from the same alloca. Val should | ||||
| 93 | /// be the same value as one of the input operands of UseInst. | ||||
| 94 | bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val, | ||||
| 95 | Instruction *UseInst, | ||||
| 96 | int OpIdx0, int OpIdx1) const; | ||||
| 97 | |||||
| 98 | /// Check whether we have enough local memory for promotion. | ||||
| 99 | bool hasSufficientLocalMem(const Function &F); | ||||
| 100 | |||||
| 101 | bool handleAlloca(AllocaInst &I, bool SufficientLDS); | ||||
| 102 | |||||
| 103 | public: | ||||
| 104 | AMDGPUPromoteAllocaImpl(TargetMachine &TM) : TM(TM) {} | ||||
| 105 | bool run(Function &F); | ||||
| 106 | }; | ||||
| 107 | |||||
| 108 | class AMDGPUPromoteAllocaToVector : public FunctionPass { | ||||
| 109 | public: | ||||
| 110 | static char ID; | ||||
| 111 | |||||
| 112 | AMDGPUPromoteAllocaToVector() : FunctionPass(ID) {} | ||||
| 113 | |||||
| 114 | bool runOnFunction(Function &F) override; | ||||
| 115 | |||||
| 116 | StringRef getPassName() const override { | ||||
| 117 | return "AMDGPU Promote Alloca to vector"; | ||||
| 118 | } | ||||
| 119 | |||||
| 120 | void getAnalysisUsage(AnalysisUsage &AU) const override { | ||||
| 121 | AU.setPreservesCFG(); | ||||
| 122 | FunctionPass::getAnalysisUsage(AU); | ||||
| 123 | } | ||||
| 124 | }; | ||||
| 125 | |||||
| 126 | } // end anonymous namespace | ||||
| 127 | |||||
| 128 | char AMDGPUPromoteAlloca::ID = 0; | ||||
| 129 | char AMDGPUPromoteAllocaToVector::ID = 0; | ||||
| 130 | |||||
| 131 | INITIALIZE_PASS_BEGIN(AMDGPUPromoteAlloca, DEBUG_TYPE,static void *initializeAMDGPUPromoteAllocaPassOnce(PassRegistry &Registry) { | ||||
| 132 | "AMDGPU promote alloca to vector or LDS", false, false)static void *initializeAMDGPUPromoteAllocaPassOnce(PassRegistry &Registry) { | ||||
| 133 | // Move LDS uses from functions to kernels before promote alloca for accurate | ||||
| 134 | // estimation of LDS available | ||||
| 135 | INITIALIZE_PASS_DEPENDENCY(AMDGPULowerModuleLDS)initializeAMDGPULowerModuleLDSPass(Registry); | ||||
| 136 | INITIALIZE_PASS_END(AMDGPUPromoteAlloca, DEBUG_TYPE,PassInfo *PI = new PassInfo( "AMDGPU promote alloca to vector or LDS" , "amdgpu-promote-alloca", &AMDGPUPromoteAlloca::ID, PassInfo ::NormalCtor_t(callDefaultCtor<AMDGPUPromoteAlloca>), false , false); Registry.registerPass(*PI, true); return PI; } static llvm::once_flag InitializeAMDGPUPromoteAllocaPassFlag; void llvm ::initializeAMDGPUPromoteAllocaPass(PassRegistry &Registry ) { llvm::call_once(InitializeAMDGPUPromoteAllocaPassFlag, initializeAMDGPUPromoteAllocaPassOnce , std::ref(Registry)); } | ||||
| 137 | "AMDGPU promote alloca to vector or LDS", false, false)PassInfo *PI = new PassInfo( "AMDGPU promote alloca to vector or LDS" , "amdgpu-promote-alloca", &AMDGPUPromoteAlloca::ID, PassInfo ::NormalCtor_t(callDefaultCtor<AMDGPUPromoteAlloca>), false , false); Registry.registerPass(*PI, true); return PI; } static llvm::once_flag InitializeAMDGPUPromoteAllocaPassFlag; void llvm ::initializeAMDGPUPromoteAllocaPass(PassRegistry &Registry ) { llvm::call_once(InitializeAMDGPUPromoteAllocaPassFlag, initializeAMDGPUPromoteAllocaPassOnce , std::ref(Registry)); } | ||||
| 138 | |||||
| 139 | INITIALIZE_PASS(AMDGPUPromoteAllocaToVector, DEBUG_TYPE "-to-vector",static void *initializeAMDGPUPromoteAllocaToVectorPassOnce(PassRegistry &Registry) { PassInfo *PI = new PassInfo( "AMDGPU promote alloca to vector" , "amdgpu-promote-alloca" "-to-vector", &AMDGPUPromoteAllocaToVector ::ID, PassInfo::NormalCtor_t(callDefaultCtor<AMDGPUPromoteAllocaToVector >), false, false); Registry.registerPass(*PI, true); return PI; } static llvm::once_flag InitializeAMDGPUPromoteAllocaToVectorPassFlag ; void llvm::initializeAMDGPUPromoteAllocaToVectorPass(PassRegistry &Registry) { llvm::call_once(InitializeAMDGPUPromoteAllocaToVectorPassFlag , initializeAMDGPUPromoteAllocaToVectorPassOnce, std::ref(Registry )); } | ||||
| 140 | "AMDGPU promote alloca to vector", false, false)static void *initializeAMDGPUPromoteAllocaToVectorPassOnce(PassRegistry &Registry) { PassInfo *PI = new PassInfo( "AMDGPU promote alloca to vector" , "amdgpu-promote-alloca" "-to-vector", &AMDGPUPromoteAllocaToVector ::ID, PassInfo::NormalCtor_t(callDefaultCtor<AMDGPUPromoteAllocaToVector >), false, false); Registry.registerPass(*PI, true); return PI; } static llvm::once_flag InitializeAMDGPUPromoteAllocaToVectorPassFlag ; void llvm::initializeAMDGPUPromoteAllocaToVectorPass(PassRegistry &Registry) { llvm::call_once(InitializeAMDGPUPromoteAllocaToVectorPassFlag , initializeAMDGPUPromoteAllocaToVectorPassOnce, std::ref(Registry )); } | ||||
| 141 | |||||
| 142 | char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID; | ||||
| 143 | char &llvm::AMDGPUPromoteAllocaToVectorID = AMDGPUPromoteAllocaToVector::ID; | ||||
| 144 | |||||
| 145 | bool AMDGPUPromoteAlloca::runOnFunction(Function &F) { | ||||
| 146 | if (skipFunction(F)) | ||||
| 147 | return false; | ||||
| 148 | |||||
| 149 | if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { | ||||
| 150 | return AMDGPUPromoteAllocaImpl(TPC->getTM<TargetMachine>()).run(F); | ||||
| 151 | } | ||||
| 152 | return false; | ||||
| 153 | } | ||||
| 154 | |||||
| 155 | PreservedAnalyses AMDGPUPromoteAllocaPass::run(Function &F, | ||||
| 156 | FunctionAnalysisManager &AM) { | ||||
| 157 | bool Changed = AMDGPUPromoteAllocaImpl(TM).run(F); | ||||
| 158 | if (Changed) { | ||||
| 159 | PreservedAnalyses PA; | ||||
| 160 | PA.preserveSet<CFGAnalyses>(); | ||||
| 161 | return PA; | ||||
| 162 | } | ||||
| 163 | return PreservedAnalyses::all(); | ||||
| 164 | } | ||||
| 165 | |||||
| 166 | bool AMDGPUPromoteAllocaImpl::run(Function &F) { | ||||
| 167 | Mod = F.getParent(); | ||||
| 168 | DL = &Mod->getDataLayout(); | ||||
| 169 | |||||
| 170 | const Triple &TT = TM.getTargetTriple(); | ||||
| 171 | IsAMDGCN = TT.getArch() == Triple::amdgcn; | ||||
| 172 | IsAMDHSA = TT.getOS() == Triple::AMDHSA; | ||||
| 173 | |||||
| 174 | const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); | ||||
| 175 | if (!ST.isPromoteAllocaEnabled()) | ||||
| 176 | return false; | ||||
| 177 | |||||
| 178 | if (IsAMDGCN) { | ||||
| 179 | const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F); | ||||
| 180 | MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first); | ||||
| 181 | // A non-entry function has only 32 caller preserved registers. | ||||
| 182 | // Do not promote alloca which will force spilling. | ||||
| 183 | if (!AMDGPU::isEntryFunctionCC(F.getCallingConv())) | ||||
| 184 | MaxVGPRs = std::min(MaxVGPRs, 32u); | ||||
| 185 | } else { | ||||
| 186 | MaxVGPRs = 128; | ||||
| 187 | } | ||||
| 188 | |||||
| 189 | bool SufficientLDS = hasSufficientLocalMem(F); | ||||
| 190 | bool Changed = false; | ||||
| 191 | BasicBlock &EntryBB = *F.begin(); | ||||
| 192 | |||||
| 193 | SmallVector<AllocaInst *, 16> Allocas; | ||||
| 194 | for (Instruction &I : EntryBB) { | ||||
| 195 | if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) | ||||
| 196 | Allocas.push_back(AI); | ||||
| 197 | } | ||||
| 198 | |||||
| 199 | for (AllocaInst *AI : Allocas) { | ||||
| 200 | if (handleAlloca(*AI, SufficientLDS)) | ||||
| 201 | Changed = true; | ||||
| 202 | } | ||||
| 203 | |||||
| 204 | return Changed; | ||||
| 205 | } | ||||
| 206 | |||||
| 207 | std::pair<Value *, Value *> | ||||
| 208 | AMDGPUPromoteAllocaImpl::getLocalSizeYZ(IRBuilder<> &Builder) { | ||||
| 209 | Function &F = *Builder.GetInsertBlock()->getParent(); | ||||
| 210 | const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); | ||||
| 211 | |||||
| 212 | if (!IsAMDHSA) { | ||||
| 213 | Function *LocalSizeYFn | ||||
| 214 | = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y); | ||||
| 215 | Function *LocalSizeZFn | ||||
| 216 | = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z); | ||||
| 217 | |||||
| 218 | CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {}); | ||||
| 219 | CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {}); | ||||
| 220 | |||||
| 221 | ST.makeLIDRangeMetadata(LocalSizeY); | ||||
| 222 | ST.makeLIDRangeMetadata(LocalSizeZ); | ||||
| 223 | |||||
| 224 | return std::pair(LocalSizeY, LocalSizeZ); | ||||
| 225 | } | ||||
| 226 | |||||
| 227 | // We must read the size out of the dispatch pointer. | ||||
| 228 | assert(IsAMDGCN)(static_cast <bool> (IsAMDGCN) ? void (0) : __assert_fail ("IsAMDGCN", "llvm/lib/Target/AMDGPU/AMDGPUPromoteAlloca.cpp" , 228, __extension__ __PRETTY_FUNCTION__)); | ||||
| 229 | |||||
| 230 | // We are indexing into this struct, and want to extract the workgroup_size_* | ||||
| 231 | // fields. | ||||
| 232 | // | ||||
| 233 | // typedef struct hsa_kernel_dispatch_packet_s { | ||||
| 234 | // uint16_t header; | ||||
| 235 | // uint16_t setup; | ||||
| 236 | // uint16_t workgroup_size_x ; | ||||
| 237 | // uint16_t workgroup_size_y; | ||||
| 238 | // uint16_t workgroup_size_z; | ||||
| 239 | // uint16_t reserved0; | ||||
| 240 | // uint32_t grid_size_x ; | ||||
| 241 | // uint32_t grid_size_y ; | ||||
| 242 | // uint32_t grid_size_z; | ||||
| 243 | // | ||||
| 244 | // uint32_t private_segment_size; | ||||
| 245 | // uint32_t group_segment_size; | ||||
| 246 | // uint64_t kernel_object; | ||||
| 247 | // | ||||
| 248 | // #ifdef HSA_LARGE_MODEL | ||||
| 249 | // void *kernarg_address; | ||||
| 250 | // #elif defined HSA_LITTLE_ENDIAN | ||||
| 251 | // void *kernarg_address; | ||||
| 252 | // uint32_t reserved1; | ||||
| 253 | // #else | ||||
| 254 | // uint32_t reserved1; | ||||
| 255 | // void *kernarg_address; | ||||
| 256 | // #endif | ||||
| 257 | // uint64_t reserved2; | ||||
| 258 | // hsa_signal_t completion_signal; // uint64_t wrapper | ||||
| 259 | // } hsa_kernel_dispatch_packet_t | ||||
| 260 | // | ||||
| 261 | Function *DispatchPtrFn | ||||
| 262 | = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr); | ||||
| 263 | |||||
| 264 | CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {}); | ||||
| 265 | DispatchPtr->addRetAttr(Attribute::NoAlias); | ||||
| 266 | DispatchPtr->addRetAttr(Attribute::NonNull); | ||||
| 267 | F.removeFnAttr("amdgpu-no-dispatch-ptr"); | ||||
| 268 | |||||
| 269 | // Size of the dispatch packet struct. | ||||
| 270 | DispatchPtr->addDereferenceableRetAttr(64); | ||||
| 271 | |||||
| 272 | Type *I32Ty = Type::getInt32Ty(Mod->getContext()); | ||||
| 273 | Value *CastDispatchPtr = Builder.CreateBitCast( | ||||
| 274 | DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS)); | ||||
| 275 | |||||
| 276 | // We could do a single 64-bit load here, but it's likely that the basic | ||||
| 277 | // 32-bit and extract sequence is already present, and it is probably easier | ||||
| 278 | // to CSE this. The loads should be mergeable later anyway. | ||||
| 279 | Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 1); | ||||
| 280 | LoadInst *LoadXY = Builder.CreateAlignedLoad(I32Ty, GEPXY, Align(4)); | ||||
| 281 | |||||
| 282 | Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 2); | ||||
| 283 | LoadInst *LoadZU = Builder.CreateAlignedLoad(I32Ty, GEPZU, Align(4)); | ||||
| 284 | |||||
| 285 | MDNode *MD = MDNode::get(Mod->getContext(), std::nullopt); | ||||
| 286 | LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD); | ||||
| 287 | LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD); | ||||
| 288 | ST.makeLIDRangeMetadata(LoadZU); | ||||
| 289 | |||||
| 290 | // Extract y component. Upper half of LoadZU should be zero already. | ||||
| 291 | Value *Y = Builder.CreateLShr(LoadXY, 16); | ||||
| 292 | |||||
| 293 | return std::pair(Y, LoadZU); | ||||
| 294 | } | ||||
| 295 | |||||
| 296 | Value *AMDGPUPromoteAllocaImpl::getWorkitemID(IRBuilder<> &Builder, | ||||
| 297 | unsigned N) { | ||||
| 298 | Function *F = Builder.GetInsertBlock()->getParent(); | ||||
| 299 | const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, *F); | ||||
| 300 | Intrinsic::ID IntrID = Intrinsic::not_intrinsic; | ||||
| 301 | StringRef AttrName; | ||||
| 302 | |||||
| 303 | switch (N) { | ||||
| 304 | case 0: | ||||
| 305 | IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_x | ||||
| 306 | : (Intrinsic::ID)Intrinsic::r600_read_tidig_x; | ||||
| 307 | AttrName = "amdgpu-no-workitem-id-x"; | ||||
| 308 | break; | ||||
| 309 | case 1: | ||||
| 310 | IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_y | ||||
| 311 | : (Intrinsic::ID)Intrinsic::r600_read_tidig_y; | ||||
| 312 | AttrName = "amdgpu-no-workitem-id-y"; | ||||
| 313 | break; | ||||
| 314 | |||||
| 315 | case 2: | ||||
| 316 | IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_z | ||||
| 317 | : (Intrinsic::ID)Intrinsic::r600_read_tidig_z; | ||||
| 318 | AttrName = "amdgpu-no-workitem-id-z"; | ||||
| 319 | break; | ||||
| 320 | default: | ||||
| 321 | llvm_unreachable("invalid dimension")::llvm::llvm_unreachable_internal("invalid dimension", "llvm/lib/Target/AMDGPU/AMDGPUPromoteAlloca.cpp" , 321); | ||||
| 322 | } | ||||
| 323 | |||||
| 324 | Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID); | ||||
| 325 | CallInst *CI = Builder.CreateCall(WorkitemIdFn); | ||||
| 326 | ST.makeLIDRangeMetadata(CI); | ||||
| 327 | F->removeFnAttr(AttrName); | ||||
| 328 | |||||
| 329 | return CI; | ||||
| 330 | } | ||||
| 331 | |||||
| 332 | static FixedVectorType *arrayTypeToVecType(ArrayType *ArrayTy) { | ||||
| 333 | return FixedVectorType::get(ArrayTy->getElementType(), | ||||
| 334 | ArrayTy->getNumElements()); | ||||
| 335 | } | ||||
| 336 | |||||
| 337 | static Value * | ||||
| 338 | calculateVectorIndex(Value *Ptr, | ||||
| 339 | const std::map<GetElementPtrInst *, Value *> &GEPIdx) { | ||||
| 340 | auto *GEP = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts()); | ||||
| 341 | if (!GEP) | ||||
| 342 | return ConstantInt::getNullValue(Type::getInt32Ty(Ptr->getContext())); | ||||
| 343 | |||||
| 344 | auto I = GEPIdx.find(GEP); | ||||
| 345 | assert(I != GEPIdx.end() && "Must have entry for GEP!")(static_cast <bool> (I != GEPIdx.end() && "Must have entry for GEP!" ) ? void (0) : __assert_fail ("I != GEPIdx.end() && \"Must have entry for GEP!\"" , "llvm/lib/Target/AMDGPU/AMDGPUPromoteAlloca.cpp", 345, __extension__ __PRETTY_FUNCTION__)); | ||||
| 346 | return I->second; | ||||
| 347 | } | ||||
| 348 | |||||
| 349 | static Value *GEPToVectorIndex(GetElementPtrInst *GEP, AllocaInst *Alloca, | ||||
| 350 | Type *VecElemTy, const DataLayout &DL) { | ||||
| 351 | // TODO: Extracting a "multiple of X" from a GEP might be a useful generic | ||||
| 352 | // helper. | ||||
| 353 | unsigned BW = DL.getIndexTypeSizeInBits(GEP->getType()); | ||||
| 354 | MapVector<Value *, APInt> VarOffsets; | ||||
| 355 | APInt ConstOffset(BW, 0); | ||||
| 356 | if (GEP->getPointerOperand()->stripPointerCasts() != Alloca || | ||||
| 357 | !GEP->collectOffset(DL, BW, VarOffsets, ConstOffset)) | ||||
| 358 | return nullptr; | ||||
| 359 | |||||
| 360 | unsigned VecElemSize = DL.getTypeAllocSize(VecElemTy); | ||||
| 361 | if (VarOffsets.size() > 1) | ||||
| 362 | return nullptr; | ||||
| 363 | |||||
| 364 | if (VarOffsets.size() == 1) { | ||||
| 365 | // Only handle cases where we don't need to insert extra arithmetic | ||||
| 366 | // instructions. | ||||
| 367 | const auto &VarOffset = VarOffsets.front(); | ||||
| 368 | if (!ConstOffset.isZero() || VarOffset.second != VecElemSize) | ||||
| 369 | return nullptr; | ||||
| 370 | return VarOffset.first; | ||||
| 371 | } | ||||
| 372 | |||||
| 373 | APInt Quot; | ||||
| 374 | uint64_t Rem; | ||||
| 375 | APInt::udivrem(ConstOffset, VecElemSize, Quot, Rem); | ||||
| 376 | if (Rem != 0) | ||||
| 377 | return nullptr; | ||||
| 378 | |||||
| 379 | return ConstantInt::get(GEP->getContext(), Quot); | ||||
| 380 | } | ||||
| 381 | |||||
| 382 | static bool tryPromoteAllocaToVector(AllocaInst *Alloca, const DataLayout &DL, | ||||
| 383 | unsigned MaxVGPRs) { | ||||
| 384 | |||||
| 385 | if (DisablePromoteAllocaToVector) { | ||||
| |||||
| 386 | LLVM_DEBUG(dbgs() << " Promotion alloca to vector is disabled\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("amdgpu-promote-alloca")) { dbgs() << " Promotion alloca to vector is disabled\n" ; } } while (false); | ||||
| 387 | return false; | ||||
| 388 | } | ||||
| 389 | |||||
| 390 | Type *AllocaTy = Alloca->getAllocatedType(); | ||||
| 391 | auto *VectorTy = dyn_cast<FixedVectorType>(AllocaTy); | ||||
| 392 | if (auto *ArrayTy
| ||||
| 393 | if (VectorType::isValidElementType(ArrayTy->getElementType()) && | ||||
| 394 | ArrayTy->getNumElements() > 0) | ||||
| 395 | VectorTy = arrayTypeToVecType(ArrayTy); | ||||
| 396 | } | ||||
| 397 | |||||
| 398 | // Use up to 1/4 of available register budget for vectorization. | ||||
| 399 | unsigned Limit = PromoteAllocaToVectorLimit ? PromoteAllocaToVectorLimit * 8 | ||||
| 400 | : (MaxVGPRs * 32); | ||||
| 401 | |||||
| 402 | if (DL.getTypeSizeInBits(AllocaTy) * 4 > Limit) { | ||||
| 403 | LLVM_DEBUG(dbgs() << " Alloca too big for vectorization with "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("amdgpu-promote-alloca")) { dbgs() << " Alloca too big for vectorization with " << MaxVGPRs << " registers available\n"; } } while (false) | ||||
| 404 | << MaxVGPRs << " registers available\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("amdgpu-promote-alloca")) { dbgs() << " Alloca too big for vectorization with " << MaxVGPRs << " registers available\n"; } } while (false); | ||||
| 405 | return false; | ||||
| 406 | } | ||||
| 407 | |||||
| 408 | LLVM_DEBUG(dbgs() << "Alloca candidate for vectorization\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("amdgpu-promote-alloca")) { dbgs() << "Alloca candidate for vectorization\n" ; } } while (false); | ||||
| 409 | |||||
| 410 | // FIXME: There is no reason why we can't support larger arrays, we | ||||
| 411 | // are just being conservative for now. | ||||
| 412 | // FIXME: We also reject alloca's of the form [ 2 x [ 2 x i32 ]] or equivalent. Potentially these | ||||
| 413 | // could also be promoted but we don't currently handle this case | ||||
| 414 | if (!VectorTy || VectorTy->getNumElements() > 16 || | ||||
| 415 | VectorTy->getNumElements() < 2) { | ||||
| 416 | LLVM_DEBUG(dbgs() << " Cannot convert type to vector\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("amdgpu-promote-alloca")) { dbgs() << " Cannot convert type to vector\n" ; } } while (false); | ||||
| 417 | return false; | ||||
| 418 | } | ||||
| 419 | |||||
| 420 | std::map<GetElementPtrInst*, Value*> GEPVectorIdx; | ||||
| 421 | SmallVector<Instruction *> WorkList; | ||||
| 422 | SmallVector<Use *, 8> Uses; | ||||
| 423 | for (Use &U : Alloca->uses()) | ||||
| 424 | Uses.push_back(&U); | ||||
| 425 | |||||
| 426 | Type *VecEltTy = VectorTy->getElementType(); | ||||
| 427 | while (!Uses.empty()) { | ||||
| 428 | Use *U = Uses.pop_back_val(); | ||||
| 429 | Instruction *Inst = dyn_cast<Instruction>(U->getUser()); | ||||
| 430 | |||||
| 431 | if (Value *Ptr
| ||||
| 432 | // This is a store of the pointer, not to the pointer. | ||||
| 433 | if (isa<StoreInst>(Inst) && | ||||
| 434 | U->getOperandNo() != StoreInst::getPointerOperandIndex()) | ||||
| 435 | return false; | ||||
| 436 | |||||
| 437 | Type *AccessTy = getLoadStoreType(Inst); | ||||
| 438 | Ptr = Ptr->stripPointerCasts(); | ||||
| 439 | |||||
| 440 | // Alloca already accessed as vector, leave alone. | ||||
| 441 | if (Ptr == Alloca && DL.getTypeStoreSize(Alloca->getAllocatedType()) == | ||||
| 442 | DL.getTypeStoreSize(AccessTy)) | ||||
| 443 | continue; | ||||
| 444 | |||||
| 445 | // Check that this is a simple access of a vector element. | ||||
| 446 | bool IsSimple = isa<LoadInst>(Inst) ? cast<LoadInst>(Inst)->isSimple() | ||||
| 447 | : cast<StoreInst>(Inst)->isSimple(); | ||||
| 448 | if (!IsSimple || | ||||
| 449 | !CastInst::isBitOrNoopPointerCastable(VecEltTy, AccessTy, DL)) | ||||
| 450 | return false; | ||||
| 451 | |||||
| 452 | WorkList.push_back(Inst); | ||||
| 453 | continue; | ||||
| 454 | } | ||||
| 455 | |||||
| 456 | if (isa<BitCastInst>(Inst)) { | ||||
| 457 | // Look through bitcasts. | ||||
| 458 | for (Use &U : Inst->uses()) | ||||
| 459 | Uses.push_back(&U); | ||||
| 460 | continue; | ||||
| 461 | } | ||||
| 462 | |||||
| 463 | if (auto *GEP = dyn_cast<GetElementPtrInst>(Inst)) { | ||||
| 464 | // If we can't compute a vector index from this GEP, then we can't | ||||
| 465 | // promote this alloca to vector. | ||||
| 466 | Value *Index = GEPToVectorIndex(GEP, Alloca, VecEltTy, DL); | ||||
| 467 | if (!Index) { | ||||
| 468 | LLVM_DEBUG(dbgs() << " Cannot compute vector index for GEP " << *GEPdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("amdgpu-promote-alloca")) { dbgs() << " Cannot compute vector index for GEP " << *GEP << '\n'; } } while (false) | ||||
| 469 | << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("amdgpu-promote-alloca")) { dbgs() << " Cannot compute vector index for GEP " << *GEP << '\n'; } } while (false); | ||||
| 470 | return false; | ||||
| 471 | } | ||||
| 472 | |||||
| 473 | GEPVectorIdx[GEP] = Index; | ||||
| 474 | for (Use &U : Inst->uses()) | ||||
| 475 | Uses.push_back(&U); | ||||
| 476 | continue; | ||||
| 477 | } | ||||
| 478 | |||||
| 479 | // Ignore assume-like intrinsics and comparisons used in assumes. | ||||
| 480 | if (isAssumeLikeIntrinsic(Inst)) | ||||
| 481 | continue; | ||||
| 482 | |||||
| 483 | if (isa<ICmpInst>(Inst) && all_of(Inst->users(), [](User *U) { | ||||
| |||||
| 484 | return isAssumeLikeIntrinsic(cast<Instruction>(U)); | ||||
| 485 | })) | ||||
| 486 | continue; | ||||
| 487 | |||||
| 488 | // Unknown user. | ||||
| 489 | return false; | ||||
| 490 | } | ||||
| 491 | |||||
| 492 | LLVM_DEBUG(dbgs() << " Converting alloca to vector " << *AllocaTy << " -> "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("amdgpu-promote-alloca")) { dbgs() << " Converting alloca to vector " << *AllocaTy << " -> " << *VectorTy << '\n'; } } while (false) | ||||
| 493 | << *VectorTy << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("amdgpu-promote-alloca")) { dbgs() << " Converting alloca to vector " << *AllocaTy << " -> " << *VectorTy << '\n'; } } while (false); | ||||
| 494 | |||||
| 495 | for (Instruction *Inst : WorkList) { | ||||
| 496 | IRBuilder<> Builder(Inst); | ||||
| 497 | switch (Inst->getOpcode()) { | ||||
| 498 | case Instruction::Load: { | ||||
| 499 | Value *Ptr = cast<LoadInst>(Inst)->getPointerOperand(); | ||||
| 500 | Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); | ||||
| 501 | Type *VecPtrTy = VectorTy->getPointerTo(Alloca->getAddressSpace()); | ||||
| 502 | Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); | ||||
| 503 | Value *VecValue = Builder.CreateLoad(VectorTy, BitCast); | ||||
| 504 | Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index); | ||||
| 505 | if (Inst->getType() != VecEltTy) | ||||
| 506 | ExtractElement = Builder.CreateBitOrPointerCast(ExtractElement, Inst->getType()); | ||||
| 507 | Inst->replaceAllUsesWith(ExtractElement); | ||||
| 508 | Inst->eraseFromParent(); | ||||
| 509 | break; | ||||
| 510 | } | ||||
| 511 | case Instruction::Store: { | ||||
| 512 | StoreInst *SI = cast<StoreInst>(Inst); | ||||
| 513 | Value *Ptr = SI->getPointerOperand(); | ||||
| 514 | Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); | ||||
| 515 | Type *VecPtrTy = VectorTy->getPointerTo(Alloca->getAddressSpace()); | ||||
| 516 | Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); | ||||
| 517 | Value *VecValue = Builder.CreateLoad(VectorTy, BitCast); | ||||
| 518 | Value *Elt = SI->getValueOperand(); | ||||
| 519 | if (Elt->getType() != VecEltTy) | ||||
| 520 | Elt = Builder.CreateBitOrPointerCast(Elt, VecEltTy); | ||||
| 521 | Value *NewVecValue = Builder.CreateInsertElement(VecValue, Elt, Index); | ||||
| 522 | Builder.CreateStore(NewVecValue, BitCast); | ||||
| 523 | Inst->eraseFromParent(); | ||||
| 524 | break; | ||||
| 525 | } | ||||
| 526 | |||||
| 527 | default: | ||||
| 528 | llvm_unreachable("Inconsistency in instructions promotable to vector")::llvm::llvm_unreachable_internal("Inconsistency in instructions promotable to vector" , "llvm/lib/Target/AMDGPU/AMDGPUPromoteAlloca.cpp", 528); | ||||
| 529 | } | ||||
| 530 | } | ||||
| 531 | return true; | ||||
| 532 | } | ||||
| 533 | |||||
| 534 | static bool isCallPromotable(CallInst *CI) { | ||||
| 535 | IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); | ||||
| 536 | if (!II) | ||||
| 537 | return false; | ||||
| 538 | |||||
| 539 | switch (II->getIntrinsicID()) { | ||||
| 540 | case Intrinsic::memcpy: | ||||
| 541 | case Intrinsic::memmove: | ||||
| 542 | case Intrinsic::memset: | ||||
| 543 | case Intrinsic::lifetime_start: | ||||
| 544 | case Intrinsic::lifetime_end: | ||||
| 545 | case Intrinsic::invariant_start: | ||||
| 546 | case Intrinsic::invariant_end: | ||||
| 547 | case Intrinsic::launder_invariant_group: | ||||
| 548 | case Intrinsic::strip_invariant_group: | ||||
| 549 | case Intrinsic::objectsize: | ||||
| 550 | return true; | ||||
| 551 | default: | ||||
| 552 | return false; | ||||
| 553 | } | ||||
| 554 | } | ||||
| 555 | |||||
| 556 | bool AMDGPUPromoteAllocaImpl::binaryOpIsDerivedFromSameAlloca( | ||||
| 557 | Value *BaseAlloca, Value *Val, Instruction *Inst, int OpIdx0, | ||||
| 558 | int OpIdx1) const { | ||||
| 559 | // Figure out which operand is the one we might not be promoting. | ||||
| 560 | Value *OtherOp = Inst->getOperand(OpIdx0); | ||||
| 561 | if (Val == OtherOp) | ||||
| 562 | OtherOp = Inst->getOperand(OpIdx1); | ||||
| 563 | |||||
| 564 | if (isa<ConstantPointerNull>(OtherOp)) | ||||
| 565 | return true; | ||||
| 566 | |||||
| 567 | Value *OtherObj = getUnderlyingObject(OtherOp); | ||||
| 568 | if (!isa<AllocaInst>(OtherObj)) | ||||
| 569 | return false; | ||||
| 570 | |||||
| 571 | // TODO: We should be able to replace undefs with the right pointer type. | ||||
| 572 | |||||
| 573 | // TODO: If we know the other base object is another promotable | ||||
| 574 | // alloca, not necessarily this alloca, we can do this. The | ||||
| 575 | // important part is both must have the same address space at | ||||
| 576 | // the end. | ||||
| 577 | if (OtherObj != BaseAlloca) { | ||||
| 578 | LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("amdgpu-promote-alloca")) { dbgs() << "Found a binary instruction with another alloca object\n" ; } } while (false) | ||||
| 579 | dbgs() << "Found a binary instruction with another alloca object\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("amdgpu-promote-alloca")) { dbgs() << "Found a binary instruction with another alloca object\n" ; } } while (false); | ||||
| 580 | return false; | ||||
| 581 | } | ||||
| 582 | |||||
| 583 | return true; | ||||
| 584 | } | ||||
| 585 | |||||
| 586 | bool AMDGPUPromoteAllocaImpl::collectUsesWithPtrTypes( | ||||
| 587 | Value *BaseAlloca, Value *Val, std::vector<Value *> &WorkList) const { | ||||
| 588 | |||||
| 589 | for (User *User : Val->users()) { | ||||
| 590 | if (is_contained(WorkList, User)) | ||||
| 591 | continue; | ||||
| 592 | |||||
| 593 | if (CallInst *CI = dyn_cast<CallInst>(User)) { | ||||
| 594 | if (!isCallPromotable(CI)) | ||||
| 595 | return false; | ||||
| 596 | |||||
| 597 | WorkList.push_back(User); | ||||
| 598 | continue; | ||||
| 599 | } | ||||
| 600 | |||||
| 601 | Instruction *UseInst = cast<Instruction>(User); | ||||
| 602 | if (UseInst->getOpcode() == Instruction::PtrToInt) | ||||
| 603 | return false; | ||||
| 604 | |||||
| 605 | if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) { | ||||
| 606 | if (LI->isVolatile()) | ||||
| 607 | return false; | ||||
| 608 | |||||
| 609 | continue; | ||||
| 610 | } | ||||
| 611 | |||||
| 612 | if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) { | ||||
| 613 | if (SI->isVolatile()) | ||||
| 614 | return false; | ||||
| 615 | |||||
| 616 | // Reject if the stored value is not the pointer operand. | ||||
| 617 | if (SI->getPointerOperand() != Val) | ||||
| 618 | return false; | ||||
| 619 | } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) { | ||||
| 620 | if (RMW->isVolatile()) | ||||
| 621 | return false; | ||||
| 622 | } else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) { | ||||
| 623 | if (CAS->isVolatile()) | ||||
| 624 | return false; | ||||
| 625 | } | ||||
| 626 | |||||
| 627 | // Only promote a select if we know that the other select operand | ||||
| 628 | // is from another pointer that will also be promoted. | ||||
| 629 | if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { | ||||
| 630 | if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1)) | ||||
| 631 | return false; | ||||
| 632 | |||||
| 633 | // May need to rewrite constant operands. | ||||
| 634 | WorkList.push_back(ICmp); | ||||
| 635 | } | ||||
| 636 | |||||
| 637 | if (UseInst->getOpcode() == Instruction::AddrSpaceCast) { | ||||
| 638 | // Give up if the pointer may be captured. | ||||
| 639 | if (PointerMayBeCaptured(UseInst, true, true)) | ||||
| 640 | return false; | ||||
| 641 | // Don't collect the users of this. | ||||
| 642 | WorkList.push_back(User); | ||||
| 643 | continue; | ||||
| 644 | } | ||||
| 645 | |||||
| 646 | // Do not promote vector/aggregate type instructions. It is hard to track | ||||
| 647 | // their users. | ||||
| 648 | if (isa<InsertValueInst>(User) || isa<InsertElementInst>(User)) | ||||
| 649 | return false; | ||||
| 650 | |||||
| 651 | if (!User->getType()->isPointerTy()) | ||||
| 652 | continue; | ||||
| 653 | |||||
| 654 | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) { | ||||
| 655 | // Be conservative if an address could be computed outside the bounds of | ||||
| 656 | // the alloca. | ||||
| 657 | if (!GEP->isInBounds()) | ||||
| 658 | return false; | ||||
| 659 | } | ||||
| 660 | |||||
| 661 | // Only promote a select if we know that the other select operand is from | ||||
| 662 | // another pointer that will also be promoted. | ||||
| 663 | if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) { | ||||
| 664 | if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2)) | ||||
| 665 | return false; | ||||
| 666 | } | ||||
| 667 | |||||
| 668 | // Repeat for phis. | ||||
| 669 | if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) { | ||||
| 670 | // TODO: Handle more complex cases. We should be able to replace loops | ||||
| 671 | // over arrays. | ||||
| 672 | switch (Phi->getNumIncomingValues()) { | ||||
| 673 | case 1: | ||||
| 674 | break; | ||||
| 675 | case 2: | ||||
| 676 | if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1)) | ||||
| 677 | return false; | ||||
| 678 | break; | ||||
| 679 | default: | ||||
| 680 | return false; | ||||
| 681 | } | ||||
| 682 | } | ||||
| 683 | |||||
| 684 | WorkList.push_back(User); | ||||
| 685 | if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList)) | ||||
| 686 | return false; | ||||
| 687 | } | ||||
| 688 | |||||
| 689 | return true; | ||||
| 690 | } | ||||
| 691 | |||||
| 692 | bool AMDGPUPromoteAllocaImpl::hasSufficientLocalMem(const Function &F) { | ||||
| 693 | |||||
| 694 | FunctionType *FTy = F.getFunctionType(); | ||||
| 695 | const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); | ||||
| 696 | |||||
| 697 | // If the function has any arguments in the local address space, then it's | ||||
| 698 | // possible these arguments require the entire local memory space, so | ||||
| 699 | // we cannot use local memory in the pass. | ||||
| 700 | for (Type *ParamTy : FTy->params()) { | ||||
| 701 | PointerType *PtrTy = dyn_cast<PointerType>(ParamTy); | ||||
| 702 | if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { | ||||
| 703 | LocalMemLimit = 0; | ||||
| 704 | LLVM_DEBUG(dbgs() << "Function has local memory argument. Promoting to "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("amdgpu-promote-alloca")) { dbgs() << "Function has local memory argument. Promoting to " "local memory disabled.\n"; } } while (false) | ||||
| 705 | "local memory disabled.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("amdgpu-promote-alloca")) { dbgs() << "Function has local memory argument. Promoting to " "local memory disabled.\n"; } } while (false); | ||||
| 706 | return false; | ||||
| 707 | } | ||||
| 708 | } | ||||
| 709 | |||||
| 710 | LocalMemLimit = ST.getLocalMemorySize(); | ||||
| 711 | if (LocalMemLimit == 0) | ||||
| 712 | return false; | ||||
| 713 | |||||
| 714 | SmallVector<const Constant *, 16> Stack; | ||||
| 715 | SmallPtrSet<const Constant *, 8> VisitedConstants; | ||||
| 716 | SmallPtrSet<const GlobalVariable *, 8> UsedLDS; | ||||
| 717 | |||||
| 718 | auto visitUsers = [&](const GlobalVariable *GV, const Constant *Val) -> bool { | ||||
| 719 | for (const User *U : Val->users()) { | ||||
| 720 | if (const Instruction *Use = dyn_cast<Instruction>(U)) { | ||||
| 721 | if (Use->getParent()->getParent() == &F) | ||||
| 722 | return true; | ||||
| 723 | } else { | ||||
| 724 | const Constant *C = cast<Constant>(U); | ||||
| 725 | if (VisitedConstants.insert(C).second) | ||||
| 726 | Stack.push_back(C); | ||||
| 727 | } | ||||
| 728 | } | ||||
| 729 | |||||
| 730 | return false; | ||||
| 731 | }; | ||||
| 732 | |||||
| 733 | for (GlobalVariable &GV : Mod->globals()) { | ||||
| 734 | if (GV.getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) | ||||
| 735 | continue; | ||||
| 736 | |||||
| 737 | if (visitUsers(&GV, &GV)) { | ||||
| 738 | UsedLDS.insert(&GV); | ||||
| 739 | Stack.clear(); | ||||
| 740 | continue; | ||||
| 741 | } | ||||
| 742 | |||||
| 743 | // For any ConstantExpr uses, we need to recursively search the users until | ||||
| 744 | // we see a function. | ||||
| 745 | while (!Stack.empty()) { | ||||
| 746 | const Constant *C = Stack.pop_back_val(); | ||||
| 747 | if (visitUsers(&GV, C)) { | ||||
| 748 | UsedLDS.insert(&GV); | ||||
| 749 | Stack.clear(); | ||||
| 750 | break; | ||||
| 751 | } | ||||
| 752 | } | ||||
| 753 | } | ||||
| 754 | |||||
| 755 | const DataLayout &DL = Mod->getDataLayout(); | ||||
| 756 | SmallVector<std::pair<uint64_t, Align>, 16> AllocatedSizes; | ||||
| 757 | AllocatedSizes.reserve(UsedLDS.size()); | ||||
| 758 | |||||
| 759 | for (const GlobalVariable *GV : UsedLDS) { | ||||
| 760 | Align Alignment = | ||||
| 761 | DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getValueType()); | ||||
| 762 | uint64_t AllocSize = DL.getTypeAllocSize(GV->getValueType()); | ||||
| 763 | |||||
| 764 | // HIP uses an extern unsized array in local address space for dynamically | ||||
| 765 | // allocated shared memory. In that case, we have to disable the promotion. | ||||
| 766 | if (GV->hasExternalLinkage() && AllocSize == 0) { | ||||
| 767 | LocalMemLimit = 0; | ||||
| 768 | LLVM_DEBUG(dbgs() << "Function has a reference to externally allocated "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("amdgpu-promote-alloca")) { dbgs() << "Function has a reference to externally allocated " "local memory. Promoting to local memory " "disabled.\n"; } } while (false) | ||||
| 769 | "local memory. Promoting to local memory "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("amdgpu-promote-alloca")) { dbgs() << "Function has a reference to externally allocated " "local memory. Promoting to local memory " "disabled.\n"; } } while (false) | ||||
| 770 | "disabled.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("amdgpu-promote-alloca")) { dbgs() << "Function has a reference to externally allocated " "local memory. Promoting to local memory " "disabled.\n"; } } while (false); | ||||
| 771 | return false; | ||||
| 772 | } | ||||
| 773 | |||||
| 774 | AllocatedSizes.emplace_back(AllocSize, Alignment); | ||||
| 775 | } | ||||
| 776 | |||||
| 777 | // Sort to try to estimate the worst case alignment padding | ||||
| 778 | // | ||||
| 779 | // FIXME: We should really do something to fix the addresses to a more optimal | ||||
| 780 | // value instead | ||||
| 781 | llvm::sort(AllocatedSizes, llvm::less_second()); | ||||
| 782 | |||||
| 783 | // Check how much local memory is being used by global objects | ||||
| 784 | CurrentLocalMemUsage = 0; | ||||
| 785 | |||||
| 786 | // FIXME: Try to account for padding here. The real padding and address is | ||||
| 787 | // currently determined from the inverse order of uses in the function when | ||||
| 788 | // legalizing, which could also potentially change. We try to estimate the | ||||
| 789 | // worst case here, but we probably should fix the addresses earlier. | ||||
| 790 | for (auto Alloc : AllocatedSizes) { | ||||
| 791 | CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Alloc.second); | ||||
| 792 | CurrentLocalMemUsage += Alloc.first; | ||||
| 793 | } | ||||
| 794 | |||||
| 795 | unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage, | ||||
| 796 | F); | ||||
| 797 | |||||
| 798 | // Restrict local memory usage so that we don't drastically reduce occupancy, | ||||
| 799 | // unless it is already significantly reduced. | ||||
| 800 | |||||
| 801 | // TODO: Have some sort of hint or other heuristics to guess occupancy based | ||||
| 802 | // on other factors.. | ||||
| 803 | unsigned OccupancyHint = ST.getWavesPerEU(F).second; | ||||
| 804 | if (OccupancyHint == 0) | ||||
| 805 | OccupancyHint = 7; | ||||
| 806 | |||||
| 807 | // Clamp to max value. | ||||
| 808 | OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU()); | ||||
| 809 | |||||
| 810 | // Check the hint but ignore it if it's obviously wrong from the existing LDS | ||||
| 811 | // usage. | ||||
| 812 | MaxOccupancy = std::min(OccupancyHint, MaxOccupancy); | ||||
| 813 | |||||
| 814 | |||||
| 815 | // Round up to the next tier of usage. | ||||
| 816 | unsigned MaxSizeWithWaveCount | ||||
| 817 | = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F); | ||||
| 818 | |||||
| 819 | // Program is possibly broken by using more local mem than available. | ||||
| 820 | if (CurrentLocalMemUsage > MaxSizeWithWaveCount) | ||||
| 821 | return false; | ||||
| 822 | |||||
| 823 | LocalMemLimit = MaxSizeWithWaveCount; | ||||
| 824 | |||||
| 825 | LLVM_DEBUG(dbgs() << F.getName() << " uses " << CurrentLocalMemUsagedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("amdgpu-promote-alloca")) { dbgs() << F.getName() << " uses " << CurrentLocalMemUsage << " bytes of LDS\n" << " Rounding size to " << MaxSizeWithWaveCount << " with a maximum occupancy of " << MaxOccupancy << '\n' << " and " << (LocalMemLimit - CurrentLocalMemUsage ) << " available for promotion\n"; } } while (false) | ||||
| 826 | << " bytes of LDS\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("amdgpu-promote-alloca")) { dbgs() << F.getName() << " uses " << CurrentLocalMemUsage << " bytes of LDS\n" << " Rounding size to " << MaxSizeWithWaveCount << " with a maximum occupancy of " << MaxOccupancy << '\n' << " and " << (LocalMemLimit - CurrentLocalMemUsage ) << " available for promotion\n"; } } while (false) | ||||
| 827 | << " Rounding size to " << MaxSizeWithWaveCountdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("amdgpu-promote-alloca")) { dbgs() << F.getName() << " uses " << CurrentLocalMemUsage << " bytes of LDS\n" << " Rounding size to " << MaxSizeWithWaveCount << " with a maximum occupancy of " << MaxOccupancy << '\n' << " and " << (LocalMemLimit - CurrentLocalMemUsage ) << " available for promotion\n"; } } while (false) | ||||
| 828 | << " with a maximum occupancy of " << MaxOccupancy << '\n'do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("amdgpu-promote-alloca")) { dbgs() << F.getName() << " uses " << CurrentLocalMemUsage << " bytes of LDS\n" << " Rounding size to " << MaxSizeWithWaveCount << " with a maximum occupancy of " << MaxOccupancy << '\n' << " and " << (LocalMemLimit - CurrentLocalMemUsage ) << " available for promotion\n"; } } while (false) | ||||
| 829 | << " and " << (LocalMemLimit - CurrentLocalMemUsage)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("amdgpu-promote-alloca")) { dbgs() << F.getName() << " uses " << CurrentLocalMemUsage << " bytes of LDS\n" << " Rounding size to " << MaxSizeWithWaveCount << " with a maximum occupancy of " << MaxOccupancy << '\n' << " and " << (LocalMemLimit - CurrentLocalMemUsage ) << " available for promotion\n"; } } while (false) | ||||
| 830 | << " available for promotion\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("amdgpu-promote-alloca")) { dbgs() << F.getName() << " uses " << CurrentLocalMemUsage << " bytes of LDS\n" << " Rounding size to " << MaxSizeWithWaveCount << " with a maximum occupancy of " << MaxOccupancy << '\n' << " and " << (LocalMemLimit - CurrentLocalMemUsage ) << " available for promotion\n"; } } while (false); | ||||
| 831 | |||||
| 832 | return true; | ||||
| 833 | } | ||||
| 834 | |||||
| 835 | // FIXME: Should try to pick the most likely to be profitable allocas first. | ||||
| 836 | bool AMDGPUPromoteAllocaImpl::handleAlloca(AllocaInst &I, bool SufficientLDS) { | ||||
| 837 | // Array allocations are probably not worth handling, since an allocation of | ||||
| 838 | // the array type is the canonical form. | ||||
| 839 | if (!I.isStaticAlloca() || I.isArrayAllocation()) | ||||
| 840 | return false; | ||||
| 841 | |||||
| 842 | const DataLayout &DL = Mod->getDataLayout(); | ||||
| 843 | IRBuilder<> Builder(&I); | ||||
| 844 | |||||
| 845 | // First try to replace the alloca with a vector | ||||
| 846 | Type *AllocaTy = I.getAllocatedType(); | ||||
| 847 | |||||
| 848 | LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("amdgpu-promote-alloca")) { dbgs() << "Trying to promote " << I << '\n'; } } while (false); | ||||
| 849 | |||||
| 850 | if (tryPromoteAllocaToVector(&I, DL, MaxVGPRs)) | ||||
| 851 | return true; // Promoted to vector. | ||||
| 852 | |||||
| 853 | if (DisablePromoteAllocaToLDS) | ||||
| 854 | return false; | ||||
| 855 | |||||
| 856 | const Function &ContainingFunction = *I.getParent()->getParent(); | ||||
| 857 | CallingConv::ID CC = ContainingFunction.getCallingConv(); | ||||
| 858 | |||||
| 859 | // Don't promote the alloca to LDS for shader calling conventions as the work | ||||
| 860 | // item ID intrinsics are not supported for these calling conventions. | ||||
| 861 | // Furthermore not all LDS is available for some of the stages. | ||||
| 862 | switch (CC) { | ||||
| 863 | case CallingConv::AMDGPU_KERNEL: | ||||
| 864 | case CallingConv::SPIR_KERNEL: | ||||
| 865 | break; | ||||
| 866 | default: | ||||
| 867 | LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("amdgpu-promote-alloca")) { dbgs() << " promote alloca to LDS not supported with calling convention.\n" ; } } while (false) | ||||
| 868 | dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("amdgpu-promote-alloca")) { dbgs() << " promote alloca to LDS not supported with calling convention.\n" ; } } while (false) | ||||
| 869 | << " promote alloca to LDS not supported with calling convention.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("amdgpu-promote-alloca")) { dbgs() << " promote alloca to LDS not supported with calling convention.\n" ; } } while (false); | ||||
| 870 | return false; | ||||
| 871 | } | ||||
| 872 | |||||
| 873 | // Not likely to have sufficient local memory for promotion. | ||||
| 874 | if (!SufficientLDS) | ||||
| 875 | return false; | ||||
| 876 | |||||
| 877 | const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, ContainingFunction); | ||||
| 878 | unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second; | ||||
| 879 | |||||
| 880 | Align Alignment = | ||||
| 881 | DL.getValueOrABITypeAlignment(I.getAlign(), I.getAllocatedType()); | ||||
| 882 | |||||
| 883 | // FIXME: This computed padding is likely wrong since it depends on inverse | ||||
| 884 | // usage order. | ||||
| 885 | // | ||||
| 886 | // FIXME: It is also possible that if we're allowed to use all of the memory | ||||
| 887 | // could end up using more than the maximum due to alignment padding. | ||||
| 888 | |||||
| 889 | uint32_t NewSize = alignTo(CurrentLocalMemUsage, Alignment); | ||||
| 890 | uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy); | ||||
| 891 | NewSize += AllocSize; | ||||
| 892 | |||||
| 893 | if (NewSize > LocalMemLimit) { | ||||
| 894 | LLVM_DEBUG(dbgs() << " " << AllocSizedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("amdgpu-promote-alloca")) { dbgs() << " " << AllocSize << " bytes of local memory not available to promote\n" ; } } while (false) | ||||
| 895 | << " bytes of local memory not available to promote\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("amdgpu-promote-alloca")) { dbgs() << " " << AllocSize << " bytes of local memory not available to promote\n" ; } } while (false); | ||||
| 896 | return false; | ||||
| 897 | } | ||||
| 898 | |||||
| 899 | CurrentLocalMemUsage = NewSize; | ||||
| 900 | |||||
| 901 | std::vector<Value*> WorkList; | ||||
| 902 | |||||
| 903 | if (!collectUsesWithPtrTypes(&I, &I, WorkList)) { | ||||
| 904 | LLVM_DEBUG(dbgs() << " Do not know how to convert all uses\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("amdgpu-promote-alloca")) { dbgs() << " Do not know how to convert all uses\n" ; } } while (false); | ||||
| 905 | return false; | ||||
| 906 | } | ||||
| 907 | |||||
| 908 | LLVM_DEBUG(dbgs() << "Promoting alloca to local memory\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("amdgpu-promote-alloca")) { dbgs() << "Promoting alloca to local memory\n" ; } } while (false); | ||||
| 909 | |||||
| 910 | Function *F = I.getParent()->getParent(); | ||||
| 911 | |||||
| 912 | Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize); | ||||
| 913 | GlobalVariable *GV = new GlobalVariable( | ||||
| 914 | *Mod, GVTy, false, GlobalValue::InternalLinkage, PoisonValue::get(GVTy), | ||||
| 915 | Twine(F->getName()) + Twine('.') + I.getName(), nullptr, | ||||
| 916 | GlobalVariable::NotThreadLocal, AMDGPUAS::LOCAL_ADDRESS); | ||||
| 917 | GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); | ||||
| 918 | GV->setAlignment(I.getAlign()); | ||||
| 919 | |||||
| 920 | Value *TCntY, *TCntZ; | ||||
| 921 | |||||
| 922 | std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder); | ||||
| 923 | Value *TIdX = getWorkitemID(Builder, 0); | ||||
| 924 | Value *TIdY = getWorkitemID(Builder, 1); | ||||
| 925 | Value *TIdZ = getWorkitemID(Builder, 2); | ||||
| 926 | |||||
| 927 | Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true); | ||||
| 928 | Tmp0 = Builder.CreateMul(Tmp0, TIdX); | ||||
| 929 | Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true); | ||||
| 930 | Value *TID = Builder.CreateAdd(Tmp0, Tmp1); | ||||
| 931 | TID = Builder.CreateAdd(TID, TIdZ); | ||||
| 932 | |||||
| 933 | Value *Indices[] = { | ||||
| 934 | Constant::getNullValue(Type::getInt32Ty(Mod->getContext())), | ||||
| 935 | TID | ||||
| 936 | }; | ||||
| 937 | |||||
| 938 | Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices); | ||||
| 939 | I.mutateType(Offset->getType()); | ||||
| 940 | I.replaceAllUsesWith(Offset); | ||||
| 941 | I.eraseFromParent(); | ||||
| 942 | |||||
| 943 | SmallVector<IntrinsicInst *> DeferredIntrs; | ||||
| 944 | |||||
| 945 | for (Value *V : WorkList) { | ||||
| 946 | CallInst *Call = dyn_cast<CallInst>(V); | ||||
| 947 | if (!Call) { | ||||
| 948 | if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) { | ||||
| 949 | Value *Src0 = CI->getOperand(0); | ||||
| 950 | PointerType *NewTy = PointerType::getWithSamePointeeType( | ||||
| 951 | cast<PointerType>(Src0->getType()), AMDGPUAS::LOCAL_ADDRESS); | ||||
| 952 | |||||
| 953 | if (isa<ConstantPointerNull>(CI->getOperand(0))) | ||||
| 954 | CI->setOperand(0, ConstantPointerNull::get(NewTy)); | ||||
| 955 | |||||
| 956 | if (isa<ConstantPointerNull>(CI->getOperand(1))) | ||||
| 957 | CI->setOperand(1, ConstantPointerNull::get(NewTy)); | ||||
| 958 | |||||
| 959 | continue; | ||||
| 960 | } | ||||
| 961 | |||||
| 962 | // The operand's value should be corrected on its own and we don't want to | ||||
| 963 | // touch the users. | ||||
| 964 | if (isa<AddrSpaceCastInst>(V)) | ||||
| 965 | continue; | ||||
| 966 | |||||
| 967 | PointerType *NewTy = PointerType::getWithSamePointeeType( | ||||
| 968 | cast<PointerType>(V->getType()), AMDGPUAS::LOCAL_ADDRESS); | ||||
| 969 | |||||
| 970 | // FIXME: It doesn't really make sense to try to do this for all | ||||
| 971 | // instructions. | ||||
| 972 | V->mutateType(NewTy); | ||||
| 973 | |||||
| 974 | // Adjust the types of any constant operands. | ||||
| 975 | if (SelectInst *SI = dyn_cast<SelectInst>(V)) { | ||||
| 976 | if (isa<ConstantPointerNull>(SI->getOperand(1))) | ||||
| 977 | SI->setOperand(1, ConstantPointerNull::get(NewTy)); | ||||
| 978 | |||||
| 979 | if (isa<ConstantPointerNull>(SI->getOperand(2))) | ||||
| 980 | SI->setOperand(2, ConstantPointerNull::get(NewTy)); | ||||
| 981 | } else if (PHINode *Phi = dyn_cast<PHINode>(V)) { | ||||
| 982 | for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { | ||||
| 983 | if (isa<ConstantPointerNull>(Phi->getIncomingValue(I))) | ||||
| 984 | Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy)); | ||||
| 985 | } | ||||
| 986 | } | ||||
| 987 | |||||
| 988 | continue; | ||||
| 989 | } | ||||
| 990 | |||||
| 991 | IntrinsicInst *Intr = cast<IntrinsicInst>(Call); | ||||
| 992 | Builder.SetInsertPoint(Intr); | ||||
| 993 | switch (Intr->getIntrinsicID()) { | ||||
| 994 | case Intrinsic::lifetime_start: | ||||
| 995 | case Intrinsic::lifetime_end: | ||||
| 996 | // These intrinsics are for address space 0 only | ||||
| 997 | Intr->eraseFromParent(); | ||||
| 998 | continue; | ||||
| 999 | case Intrinsic::memcpy: | ||||
| 1000 | case Intrinsic::memmove: | ||||
| 1001 | // These have 2 pointer operands. In case if second pointer also needs | ||||
| 1002 | // to be replaced we defer processing of these intrinsics until all | ||||
| 1003 | // other values are processed. | ||||
| 1004 | DeferredIntrs.push_back(Intr); | ||||
| 1005 | continue; | ||||
| 1006 | case Intrinsic::memset: { | ||||
| 1007 | MemSetInst *MemSet = cast<MemSetInst>(Intr); | ||||
| 1008 | Builder.CreateMemSet( | ||||
| 1009 | MemSet->getRawDest(), MemSet->getValue(), MemSet->getLength(), | ||||
| 1010 | MaybeAlign(MemSet->getDestAlignment()), MemSet->isVolatile()); | ||||
| 1011 | Intr->eraseFromParent(); | ||||
| 1012 | continue; | ||||
| 1013 | } | ||||
| 1014 | case Intrinsic::invariant_start: | ||||
| 1015 | case Intrinsic::invariant_end: | ||||
| 1016 | case Intrinsic::launder_invariant_group: | ||||
| 1017 | case Intrinsic::strip_invariant_group: | ||||
| 1018 | Intr->eraseFromParent(); | ||||
| 1019 | // FIXME: I think the invariant marker should still theoretically apply, | ||||
| 1020 | // but the intrinsics need to be changed to accept pointers with any | ||||
| 1021 | // address space. | ||||
| 1022 | continue; | ||||
| 1023 | case Intrinsic::objectsize: { | ||||
| 1024 | Value *Src = Intr->getOperand(0); | ||||
| 1025 | Function *ObjectSize = Intrinsic::getDeclaration( | ||||
| 1026 | Mod, Intrinsic::objectsize, | ||||
| 1027 | {Intr->getType(), | ||||
| 1028 | PointerType::getWithSamePointeeType( | ||||
| 1029 | cast<PointerType>(Src->getType()), AMDGPUAS::LOCAL_ADDRESS)}); | ||||
| 1030 | |||||
| 1031 | CallInst *NewCall = Builder.CreateCall( | ||||
| 1032 | ObjectSize, | ||||
| 1033 | {Src, Intr->getOperand(1), Intr->getOperand(2), Intr->getOperand(3)}); | ||||
| 1034 | Intr->replaceAllUsesWith(NewCall); | ||||
| 1035 | Intr->eraseFromParent(); | ||||
| 1036 | continue; | ||||
| 1037 | } | ||||
| 1038 | default: | ||||
| 1039 | Intr->print(errs()); | ||||
| 1040 | llvm_unreachable("Don't know how to promote alloca intrinsic use.")::llvm::llvm_unreachable_internal("Don't know how to promote alloca intrinsic use." , "llvm/lib/Target/AMDGPU/AMDGPUPromoteAlloca.cpp", 1040); | ||||
| 1041 | } | ||||
| 1042 | } | ||||
| 1043 | |||||
| 1044 | for (IntrinsicInst *Intr : DeferredIntrs) { | ||||
| 1045 | Builder.SetInsertPoint(Intr); | ||||
| 1046 | Intrinsic::ID ID = Intr->getIntrinsicID(); | ||||
| 1047 | assert(ID == Intrinsic::memcpy || ID == Intrinsic::memmove)(static_cast <bool> (ID == Intrinsic::memcpy || ID == Intrinsic ::memmove) ? void (0) : __assert_fail ("ID == Intrinsic::memcpy || ID == Intrinsic::memmove" , "llvm/lib/Target/AMDGPU/AMDGPUPromoteAlloca.cpp", 1047, __extension__ __PRETTY_FUNCTION__)); | ||||
| 1048 | |||||
| 1049 | MemTransferInst *MI = cast<MemTransferInst>(Intr); | ||||
| 1050 | auto *B = | ||||
| 1051 | Builder.CreateMemTransferInst(ID, MI->getRawDest(), MI->getDestAlign(), | ||||
| 1052 | MI->getRawSource(), MI->getSourceAlign(), | ||||
| 1053 | MI->getLength(), MI->isVolatile()); | ||||
| 1054 | |||||
| 1055 | for (unsigned I = 0; I != 2; ++I) { | ||||
| 1056 | if (uint64_t Bytes = Intr->getParamDereferenceableBytes(I)) { | ||||
| 1057 | B->addDereferenceableParamAttr(I, Bytes); | ||||
| 1058 | } | ||||
| 1059 | } | ||||
| 1060 | |||||
| 1061 | Intr->eraseFromParent(); | ||||
| 1062 | } | ||||
| 1063 | |||||
| 1064 | return true; | ||||
| 1065 | } | ||||
| 1066 | |||||
| 1067 | bool handlePromoteAllocaToVector(AllocaInst &I, unsigned MaxVGPRs) { | ||||
| 1068 | // Array allocations are probably not worth handling, since an allocation of | ||||
| 1069 | // the array type is the canonical form. | ||||
| 1070 | if (!I.isStaticAlloca() || I.isArrayAllocation()) | ||||
| 1071 | return false; | ||||
| 1072 | |||||
| 1073 | LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("amdgpu-promote-alloca")) { dbgs() << "Trying to promote " << I << '\n'; } } while (false); | ||||
| 1074 | |||||
| 1075 | Module *Mod = I.getParent()->getParent()->getParent(); | ||||
| 1076 | return tryPromoteAllocaToVector(&I, Mod->getDataLayout(), MaxVGPRs); | ||||
| 1077 | } | ||||
| 1078 | |||||
| 1079 | bool promoteAllocasToVector(Function &F, TargetMachine &TM) { | ||||
| 1080 | if (DisablePromoteAllocaToVector) | ||||
| 1081 | return false; | ||||
| 1082 | |||||
| 1083 | const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); | ||||
| 1084 | if (!ST.isPromoteAllocaEnabled()) | ||||
| 1085 | return false; | ||||
| 1086 | |||||
| 1087 | unsigned MaxVGPRs; | ||||
| 1088 | if (TM.getTargetTriple().getArch() == Triple::amdgcn) { | ||||
| 1089 | const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F); | ||||
| 1090 | MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first); | ||||
| 1091 | // A non-entry function has only 32 caller preserved registers. | ||||
| 1092 | // Do not promote alloca which will force spilling. | ||||
| 1093 | if (!AMDGPU::isEntryFunctionCC(F.getCallingConv())) | ||||
| 1094 | MaxVGPRs = std::min(MaxVGPRs, 32u); | ||||
| 1095 | } else { | ||||
| 1096 | MaxVGPRs = 128; | ||||
| 1097 | } | ||||
| 1098 | |||||
| 1099 | bool Changed = false; | ||||
| 1100 | BasicBlock &EntryBB = *F.begin(); | ||||
| 1101 | |||||
| 1102 | SmallVector<AllocaInst *, 16> Allocas; | ||||
| 1103 | for (Instruction &I : EntryBB) { | ||||
| 1104 | if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) | ||||
| 1105 | Allocas.push_back(AI); | ||||
| 1106 | } | ||||
| 1107 | |||||
| 1108 | for (AllocaInst *AI : Allocas) { | ||||
| 1109 | if (handlePromoteAllocaToVector(*AI, MaxVGPRs)) | ||||
| 1110 | Changed = true; | ||||
| 1111 | } | ||||
| 1112 | |||||
| 1113 | return Changed; | ||||
| 1114 | } | ||||
| 1115 | |||||
| 1116 | bool AMDGPUPromoteAllocaToVector::runOnFunction(Function &F) { | ||||
| 1117 | if (skipFunction(F)) | ||||
| 1118 | return false; | ||||
| 1119 | if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { | ||||
| 1120 | return promoteAllocasToVector(F, TPC->getTM<TargetMachine>()); | ||||
| 1121 | } | ||||
| 1122 | return false; | ||||
| 1123 | } | ||||
| 1124 | |||||
| 1125 | PreservedAnalyses | ||||
| 1126 | AMDGPUPromoteAllocaToVectorPass::run(Function &F, FunctionAnalysisManager &AM) { | ||||
| 1127 | bool Changed = promoteAllocasToVector(F, TM); | ||||
| 1128 | if (Changed) { | ||||
| 1129 | PreservedAnalyses PA; | ||||
| 1130 | PA.preserveSet<CFGAnalyses>(); | ||||
| 1131 | return PA; | ||||
| 1132 | } | ||||
| 1133 | return PreservedAnalyses::all(); | ||||
| 1134 | } | ||||
| 1135 | |||||
| 1136 | FunctionPass *llvm::createAMDGPUPromoteAlloca() { | ||||
| 1137 | return new AMDGPUPromoteAlloca(); | ||||
| 1138 | } | ||||
| 1139 | |||||
| 1140 | FunctionPass *llvm::createAMDGPUPromoteAllocaToVector() { | ||||
| 1141 | return new AMDGPUPromoteAllocaToVector(); | ||||
| 1142 | } |
| 1 | //===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file exposes the class definitions of all of the subclasses of the |
| 10 | // Instruction class. This is meant to be an easy way to get access to all |
| 11 | // instruction subclasses. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #ifndef LLVM_IR_INSTRUCTIONS_H |
| 16 | #define LLVM_IR_INSTRUCTIONS_H |
| 17 | |
| 18 | #include "llvm/ADT/ArrayRef.h" |
| 19 | #include "llvm/ADT/Bitfields.h" |
| 20 | #include "llvm/ADT/MapVector.h" |
| 21 | #include "llvm/ADT/STLExtras.h" |
| 22 | #include "llvm/ADT/SmallVector.h" |
| 23 | #include "llvm/ADT/Twine.h" |
| 24 | #include "llvm/ADT/iterator.h" |
| 25 | #include "llvm/ADT/iterator_range.h" |
| 26 | #include "llvm/IR/CFG.h" |
| 27 | #include "llvm/IR/Constant.h" |
| 28 | #include "llvm/IR/DerivedTypes.h" |
| 29 | #include "llvm/IR/InstrTypes.h" |
| 30 | #include "llvm/IR/Instruction.h" |
| 31 | #include "llvm/IR/OperandTraits.h" |
| 32 | #include "llvm/IR/Use.h" |
| 33 | #include "llvm/IR/User.h" |
| 34 | #include "llvm/Support/AtomicOrdering.h" |
| 35 | #include "llvm/Support/ErrorHandling.h" |
| 36 | #include <cassert> |
| 37 | #include <cstddef> |
| 38 | #include <cstdint> |
| 39 | #include <iterator> |
| 40 | #include <optional> |
| 41 | |
| 42 | namespace llvm { |
| 43 | |
| 44 | class APFloat; |
| 45 | class APInt; |
| 46 | class BasicBlock; |
| 47 | class ConstantInt; |
| 48 | class DataLayout; |
| 49 | class StringRef; |
| 50 | class Type; |
| 51 | class Value; |
| 52 | |
| 53 | //===----------------------------------------------------------------------===// |
| 54 | // AllocaInst Class |
| 55 | //===----------------------------------------------------------------------===// |
| 56 | |
| 57 | /// an instruction to allocate memory on the stack |
| 58 | class AllocaInst : public UnaryInstruction { |
| 59 | Type *AllocatedType; |
| 60 | |
| 61 | using AlignmentField = AlignmentBitfieldElementT<0>; |
| 62 | using UsedWithInAllocaField = BoolBitfieldElementT<AlignmentField::NextBit>; |
| 63 | using SwiftErrorField = BoolBitfieldElementT<UsedWithInAllocaField::NextBit>; |
| 64 | static_assert(Bitfield::areContiguous<AlignmentField, UsedWithInAllocaField, |
| 65 | SwiftErrorField>(), |
| 66 | "Bitfields must be contiguous"); |
| 67 | |
| 68 | protected: |
| 69 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 70 | friend class Instruction; |
| 71 | |
| 72 | AllocaInst *cloneImpl() const; |
| 73 | |
| 74 | public: |
| 75 | explicit AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, |
| 76 | const Twine &Name, Instruction *InsertBefore); |
| 77 | AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, |
| 78 | const Twine &Name, BasicBlock *InsertAtEnd); |
| 79 | |
| 80 | AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name, |
| 81 | Instruction *InsertBefore); |
| 82 | AllocaInst(Type *Ty, unsigned AddrSpace, |
| 83 | const Twine &Name, BasicBlock *InsertAtEnd); |
| 84 | |
| 85 | AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align, |
| 86 | const Twine &Name = "", Instruction *InsertBefore = nullptr); |
| 87 | AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align, |
| 88 | const Twine &Name, BasicBlock *InsertAtEnd); |
| 89 | |
| 90 | /// Return true if there is an allocation size parameter to the allocation |
| 91 | /// instruction that is not 1. |
| 92 | bool isArrayAllocation() const; |
| 93 | |
| 94 | /// Get the number of elements allocated. For a simple allocation of a single |
| 95 | /// element, this will return a constant 1 value. |
| 96 | const Value *getArraySize() const { return getOperand(0); } |
| 97 | Value *getArraySize() { return getOperand(0); } |
| 98 | |
| 99 | /// Overload to return most specific pointer type. |
| 100 | PointerType *getType() const { |
| 101 | return cast<PointerType>(Instruction::getType()); |
| 102 | } |
| 103 | |
| 104 | /// Return the address space for the allocation. |
| 105 | unsigned getAddressSpace() const { |
| 106 | return getType()->getAddressSpace(); |
| 107 | } |
| 108 | |
| 109 | /// Get allocation size in bits. Returns std::nullopt if size can't be |
| 110 | /// determined, e.g. in case of a VLA. |
| 111 | std::optional<TypeSize> getAllocationSizeInBits(const DataLayout &DL) const; |
| 112 | |
| 113 | /// Return the type that is being allocated by the instruction. |
| 114 | Type *getAllocatedType() const { return AllocatedType; } |
| 115 | /// for use only in special circumstances that need to generically |
| 116 | /// transform a whole instruction (eg: IR linking and vectorization). |
| 117 | void setAllocatedType(Type *Ty) { AllocatedType = Ty; } |
| 118 | |
| 119 | /// Return the alignment of the memory that is being allocated by the |
| 120 | /// instruction. |
| 121 | Align getAlign() const { |
| 122 | return Align(1ULL << getSubclassData<AlignmentField>()); |
| 123 | } |
| 124 | |
| 125 | void setAlignment(Align Align) { |
| 126 | setSubclassData<AlignmentField>(Log2(Align)); |
| 127 | } |
| 128 | |
| 129 | /// Return true if this alloca is in the entry block of the function and is a |
| 130 | /// constant size. If so, the code generator will fold it into the |
| 131 | /// prolog/epilog code, so it is basically free. |
| 132 | bool isStaticAlloca() const; |
| 133 | |
| 134 | /// Return true if this alloca is used as an inalloca argument to a call. Such |
| 135 | /// allocas are never considered static even if they are in the entry block. |
| 136 | bool isUsedWithInAlloca() const { |
| 137 | return getSubclassData<UsedWithInAllocaField>(); |
| 138 | } |
| 139 | |
| 140 | /// Specify whether this alloca is used to represent the arguments to a call. |
| 141 | void setUsedWithInAlloca(bool V) { |
| 142 | setSubclassData<UsedWithInAllocaField>(V); |
| 143 | } |
| 144 | |
| 145 | /// Return true if this alloca is used as a swifterror argument to a call. |
| 146 | bool isSwiftError() const { return getSubclassData<SwiftErrorField>(); } |
| 147 | /// Specify whether this alloca is used to represent a swifterror. |
| 148 | void setSwiftError(bool V) { setSubclassData<SwiftErrorField>(V); } |
| 149 | |
| 150 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 151 | static bool classof(const Instruction *I) { |
| 152 | return (I->getOpcode() == Instruction::Alloca); |
| 153 | } |
| 154 | static bool classof(const Value *V) { |
| 155 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 156 | } |
| 157 | |
| 158 | private: |
| 159 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 160 | // method so that subclasses cannot accidentally use it. |
| 161 | template <typename Bitfield> |
| 162 | void setSubclassData(typename Bitfield::Type Value) { |
| 163 | Instruction::setSubclassData<Bitfield>(Value); |
| 164 | } |
| 165 | }; |
| 166 | |
| 167 | //===----------------------------------------------------------------------===// |
| 168 | // LoadInst Class |
| 169 | //===----------------------------------------------------------------------===// |
| 170 | |
| 171 | /// An instruction for reading from memory. This uses the SubclassData field in |
| 172 | /// Value to store whether or not the load is volatile. |
| 173 | class LoadInst : public UnaryInstruction { |
| 174 | using VolatileField = BoolBitfieldElementT<0>; |
| 175 | using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>; |
| 176 | using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>; |
| 177 | static_assert( |
| 178 | Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(), |
| 179 | "Bitfields must be contiguous"); |
| 180 | |
| 181 | void AssertOK(); |
| 182 | |
| 183 | protected: |
| 184 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 185 | friend class Instruction; |
| 186 | |
| 187 | LoadInst *cloneImpl() const; |
| 188 | |
| 189 | public: |
| 190 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, |
| 191 | Instruction *InsertBefore); |
| 192 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 193 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
| 194 | Instruction *InsertBefore); |
| 195 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
| 196 | BasicBlock *InsertAtEnd); |
| 197 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
| 198 | Align Align, Instruction *InsertBefore = nullptr); |
| 199 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
| 200 | Align Align, BasicBlock *InsertAtEnd); |
| 201 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
| 202 | Align Align, AtomicOrdering Order, |
| 203 | SyncScope::ID SSID = SyncScope::System, |
| 204 | Instruction *InsertBefore = nullptr); |
| 205 | LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, |
| 206 | Align Align, AtomicOrdering Order, SyncScope::ID SSID, |
| 207 | BasicBlock *InsertAtEnd); |
| 208 | |
| 209 | /// Return true if this is a load from a volatile memory location. |
| 210 | bool isVolatile() const { return getSubclassData<VolatileField>(); } |
| 211 | |
| 212 | /// Specify whether this is a volatile load or not. |
| 213 | void setVolatile(bool V) { setSubclassData<VolatileField>(V); } |
| 214 | |
| 215 | /// Return the alignment of the access that is being performed. |
| 216 | Align getAlign() const { |
| 217 | return Align(1ULL << (getSubclassData<AlignmentField>())); |
| 218 | } |
| 219 | |
| 220 | void setAlignment(Align Align) { |
| 221 | setSubclassData<AlignmentField>(Log2(Align)); |
| 222 | } |
| 223 | |
| 224 | /// Returns the ordering constraint of this load instruction. |
| 225 | AtomicOrdering getOrdering() const { |
| 226 | return getSubclassData<OrderingField>(); |
| 227 | } |
| 228 | /// Sets the ordering constraint of this load instruction. May not be Release |
| 229 | /// or AcquireRelease. |
| 230 | void setOrdering(AtomicOrdering Ordering) { |
| 231 | setSubclassData<OrderingField>(Ordering); |
| 232 | } |
| 233 | |
| 234 | /// Returns the synchronization scope ID of this load instruction. |
| 235 | SyncScope::ID getSyncScopeID() const { |
| 236 | return SSID; |
| 237 | } |
| 238 | |
| 239 | /// Sets the synchronization scope ID of this load instruction. |
| 240 | void setSyncScopeID(SyncScope::ID SSID) { |
| 241 | this->SSID = SSID; |
| 242 | } |
| 243 | |
| 244 | /// Sets the ordering constraint and the synchronization scope ID of this load |
| 245 | /// instruction. |
| 246 | void setAtomic(AtomicOrdering Ordering, |
| 247 | SyncScope::ID SSID = SyncScope::System) { |
| 248 | setOrdering(Ordering); |
| 249 | setSyncScopeID(SSID); |
| 250 | } |
| 251 | |
| 252 | bool isSimple() const { return !isAtomic() && !isVolatile(); } |
| 253 | |
| 254 | bool isUnordered() const { |
| 255 | return (getOrdering() == AtomicOrdering::NotAtomic || |
| 256 | getOrdering() == AtomicOrdering::Unordered) && |
| 257 | !isVolatile(); |
| 258 | } |
| 259 | |
| 260 | Value *getPointerOperand() { return getOperand(0); } |
| 261 | const Value *getPointerOperand() const { return getOperand(0); } |
| 262 | static unsigned getPointerOperandIndex() { return 0U; } |
| 263 | Type *getPointerOperandType() const { return getPointerOperand()->getType(); } |
| 264 | |
| 265 | /// Returns the address space of the pointer operand. |
| 266 | unsigned getPointerAddressSpace() const { |
| 267 | return getPointerOperandType()->getPointerAddressSpace(); |
| 268 | } |
| 269 | |
| 270 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 271 | static bool classof(const Instruction *I) { |
| 272 | return I->getOpcode() == Instruction::Load; |
| 273 | } |
| 274 | static bool classof(const Value *V) { |
| 275 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 276 | } |
| 277 | |
| 278 | private: |
| 279 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 280 | // method so that subclasses cannot accidentally use it. |
| 281 | template <typename Bitfield> |
| 282 | void setSubclassData(typename Bitfield::Type Value) { |
| 283 | Instruction::setSubclassData<Bitfield>(Value); |
| 284 | } |
| 285 | |
| 286 | /// The synchronization scope ID of this load instruction. Not quite enough |
| 287 | /// room in SubClassData for everything, so synchronization scope ID gets its |
| 288 | /// own field. |
| 289 | SyncScope::ID SSID; |
| 290 | }; |
| 291 | |
| 292 | //===----------------------------------------------------------------------===// |
| 293 | // StoreInst Class |
| 294 | //===----------------------------------------------------------------------===// |
| 295 | |
| 296 | /// An instruction for storing to memory. |
| 297 | class StoreInst : public Instruction { |
| 298 | using VolatileField = BoolBitfieldElementT<0>; |
| 299 | using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>; |
| 300 | using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>; |
| 301 | static_assert( |
| 302 | Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(), |
| 303 | "Bitfields must be contiguous"); |
| 304 | |
| 305 | void AssertOK(); |
| 306 | |
| 307 | protected: |
| 308 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 309 | friend class Instruction; |
| 310 | |
| 311 | StoreInst *cloneImpl() const; |
| 312 | |
| 313 | public: |
| 314 | StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore); |
| 315 | StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd); |
| 316 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Instruction *InsertBefore); |
| 317 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd); |
| 318 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, |
| 319 | Instruction *InsertBefore = nullptr); |
| 320 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, |
| 321 | BasicBlock *InsertAtEnd); |
| 322 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, |
| 323 | AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System, |
| 324 | Instruction *InsertBefore = nullptr); |
| 325 | StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align, |
| 326 | AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd); |
| 327 | |
| 328 | // allocate space for exactly two operands |
| 329 | void *operator new(size_t S) { return User::operator new(S, 2); } |
| 330 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 331 | |
| 332 | /// Return true if this is a store to a volatile memory location. |
| 333 | bool isVolatile() const { return getSubclassData<VolatileField>(); } |
| 334 | |
| 335 | /// Specify whether this is a volatile store or not. |
| 336 | void setVolatile(bool V) { setSubclassData<VolatileField>(V); } |
| 337 | |
| 338 | /// Transparently provide more efficient getOperand methods. |
| 339 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 340 | |
| 341 | Align getAlign() const { |
| 342 | return Align(1ULL << (getSubclassData<AlignmentField>())); |
| 343 | } |
| 344 | |
| 345 | void setAlignment(Align Align) { |
| 346 | setSubclassData<AlignmentField>(Log2(Align)); |
| 347 | } |
| 348 | |
| 349 | /// Returns the ordering constraint of this store instruction. |
| 350 | AtomicOrdering getOrdering() const { |
| 351 | return getSubclassData<OrderingField>(); |
| 352 | } |
| 353 | |
| 354 | /// Sets the ordering constraint of this store instruction. May not be |
| 355 | /// Acquire or AcquireRelease. |
| 356 | void setOrdering(AtomicOrdering Ordering) { |
| 357 | setSubclassData<OrderingField>(Ordering); |
| 358 | } |
| 359 | |
| 360 | /// Returns the synchronization scope ID of this store instruction. |
| 361 | SyncScope::ID getSyncScopeID() const { |
| 362 | return SSID; |
| 363 | } |
| 364 | |
| 365 | /// Sets the synchronization scope ID of this store instruction. |
| 366 | void setSyncScopeID(SyncScope::ID SSID) { |
| 367 | this->SSID = SSID; |
| 368 | } |
| 369 | |
| 370 | /// Sets the ordering constraint and the synchronization scope ID of this |
| 371 | /// store instruction. |
| 372 | void setAtomic(AtomicOrdering Ordering, |
| 373 | SyncScope::ID SSID = SyncScope::System) { |
| 374 | setOrdering(Ordering); |
| 375 | setSyncScopeID(SSID); |
| 376 | } |
| 377 | |
| 378 | bool isSimple() const { return !isAtomic() && !isVolatile(); } |
| 379 | |
| 380 | bool isUnordered() const { |
| 381 | return (getOrdering() == AtomicOrdering::NotAtomic || |
| 382 | getOrdering() == AtomicOrdering::Unordered) && |
| 383 | !isVolatile(); |
| 384 | } |
| 385 | |
| 386 | Value *getValueOperand() { return getOperand(0); } |
| 387 | const Value *getValueOperand() const { return getOperand(0); } |
| 388 | |
| 389 | Value *getPointerOperand() { return getOperand(1); } |
| 390 | const Value *getPointerOperand() const { return getOperand(1); } |
| 391 | static unsigned getPointerOperandIndex() { return 1U; } |
| 392 | Type *getPointerOperandType() const { return getPointerOperand()->getType(); } |
| 393 | |
| 394 | /// Returns the address space of the pointer operand. |
| 395 | unsigned getPointerAddressSpace() const { |
| 396 | return getPointerOperandType()->getPointerAddressSpace(); |
| 397 | } |
| 398 | |
| 399 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 400 | static bool classof(const Instruction *I) { |
| 401 | return I->getOpcode() == Instruction::Store; |
| 402 | } |
| 403 | static bool classof(const Value *V) { |
| 404 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 405 | } |
| 406 | |
| 407 | private: |
| 408 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 409 | // method so that subclasses cannot accidentally use it. |
| 410 | template <typename Bitfield> |
| 411 | void setSubclassData(typename Bitfield::Type Value) { |
| 412 | Instruction::setSubclassData<Bitfield>(Value); |
| 413 | } |
| 414 | |
| 415 | /// The synchronization scope ID of this store instruction. Not quite enough |
| 416 | /// room in SubClassData for everything, so synchronization scope ID gets its |
| 417 | /// own field. |
| 418 | SyncScope::ID SSID; |
| 419 | }; |
| 420 | |
| 421 | template <> |
| 422 | struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> { |
| 423 | }; |
| 424 | |
| 425 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)StoreInst::op_iterator StoreInst::op_begin() { return OperandTraits <StoreInst>::op_begin(this); } StoreInst::const_op_iterator StoreInst::op_begin() const { return OperandTraits<StoreInst >::op_begin(const_cast<StoreInst*>(this)); } StoreInst ::op_iterator StoreInst::op_end() { return OperandTraits<StoreInst >::op_end(this); } StoreInst::const_op_iterator StoreInst:: op_end() const { return OperandTraits<StoreInst>::op_end (const_cast<StoreInst*>(this)); } Value *StoreInst::getOperand (unsigned i_nocapture) const { (static_cast <bool> (i_nocapture < OperandTraits<StoreInst>::operands(this) && "getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<StoreInst>::operands(this) && \"getOperand() out of range!\"" , "llvm/include/llvm/IR/Instructions.h", 425, __extension__ __PRETTY_FUNCTION__ )); return cast_or_null<Value>( OperandTraits<StoreInst >::op_begin(const_cast<StoreInst*>(this))[i_nocapture ].get()); } void StoreInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (static_cast <bool> (i_nocapture < OperandTraits<StoreInst>::operands(this) && "setOperand() out of range!" ) ? void (0) : __assert_fail ("i_nocapture < OperandTraits<StoreInst>::operands(this) && \"setOperand() out of range!\"" , "llvm/include/llvm/IR/Instructions.h", 425, __extension__ __PRETTY_FUNCTION__ )); OperandTraits<StoreInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned StoreInst::getNumOperands() const { return OperandTraits<StoreInst>::operands(this); } template <int Idx_nocapture> Use &StoreInst::Op() { return this ->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture > const Use &StoreInst::Op() const { return this->OpFrom <Idx_nocapture>(this); } |
| 426 | |
| 427 | //===----------------------------------------------------------------------===// |
| 428 | // FenceInst Class |
| 429 | //===----------------------------------------------------------------------===// |
| 430 | |
| 431 | /// An instruction for ordering other memory operations. |
| 432 | class FenceInst : public Instruction { |
| 433 | using OrderingField = AtomicOrderingBitfieldElementT<0>; |
| 434 | |
| 435 | void Init(AtomicOrdering Ordering, SyncScope::ID SSID); |
| 436 | |
| 437 | protected: |
| 438 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 439 | friend class Instruction; |
| 440 | |
| 441 | FenceInst *cloneImpl() const; |
| 442 | |
| 443 | public: |
| 444 | // Ordering may only be Acquire, Release, AcquireRelease, or |
| 445 | // SequentiallyConsistent. |
| 446 | FenceInst(LLVMContext &C, AtomicOrdering Ordering, |
| 447 | SyncScope::ID SSID = SyncScope::System, |
| 448 | Instruction *InsertBefore = nullptr); |
| 449 | FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID, |
| 450 | BasicBlock *InsertAtEnd); |
| 451 | |
| 452 | // allocate space for exactly zero operands |
| 453 | void *operator new(size_t S) { return User::operator new(S, 0); } |
| 454 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 455 | |
| 456 | /// Returns the ordering constraint of this fence instruction. |
| 457 | AtomicOrdering getOrdering() const { |
| 458 | return getSubclassData<OrderingField>(); |
| 459 | } |
| 460 | |
| 461 | /// Sets the ordering constraint of this fence instruction. May only be |
| 462 | /// Acquire, Release, AcquireRelease, or SequentiallyConsistent. |
| 463 | void setOrdering(AtomicOrdering Ordering) { |
| 464 | setSubclassData<OrderingField>(Ordering); |
| 465 | } |
| 466 | |
| 467 | /// Returns the synchronization scope ID of this fence instruction. |
| 468 | SyncScope::ID getSyncScopeID() const { |
| 469 | return SSID; |
| 470 | } |
| 471 | |
| 472 | /// Sets the synchronization scope ID of this fence instruction. |
| 473 | void setSyncScopeID(SyncScope::ID SSID) { |
| 474 | this->SSID = SSID; |
| 475 | } |
| 476 | |
| 477 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 478 | static bool classof(const Instruction *I) { |
| 479 | return I->getOpcode() == Instruction::Fence; |
| 480 | } |
| 481 | static bool classof(const Value *V) { |
| 482 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 483 | } |
| 484 | |
| 485 | private: |
| 486 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 487 | // method so that subclasses cannot accidentally use it. |
| 488 | template <typename Bitfield> |
| 489 | void setSubclassData(typename Bitfield::Type Value) { |
| 490 | Instruction::setSubclassData<Bitfield>(Value); |
| 491 | } |
| 492 | |
| 493 | /// The synchronization scope ID of this fence instruction. Not quite enough |
| 494 | /// room in SubClassData for everything, so synchronization scope ID gets its |
| 495 | /// own field. |
| 496 | SyncScope::ID SSID; |
| 497 | }; |
| 498 | |
| 499 | //===----------------------------------------------------------------------===// |
| 500 | // AtomicCmpXchgInst Class |
| 501 | //===----------------------------------------------------------------------===// |
| 502 | |
| 503 | /// An instruction that atomically checks whether a |
| 504 | /// specified value is in a memory location, and, if it is, stores a new value |
| 505 | /// there. The value returned by this instruction is a pair containing the |
| 506 | /// original value as first element, and an i1 indicating success (true) or |
| 507 | /// failure (false) as second element. |
| 508 | /// |
| 509 | class AtomicCmpXchgInst : public Instruction { |
| 510 | void Init(Value *Ptr, Value *Cmp, Value *NewVal, Align Align, |
| 511 | AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering, |
| 512 | SyncScope::ID SSID); |
| 513 | |
| 514 | template <unsigned Offset> |
| 515 | using AtomicOrderingBitfieldElement = |
| 516 | typename Bitfield::Element<AtomicOrdering, Offset, 3, |
| 517 | AtomicOrdering::LAST>; |
| 518 | |
| 519 | protected: |
| 520 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 521 | friend class Instruction; |
| 522 | |
| 523 | AtomicCmpXchgInst *cloneImpl() const; |
| 524 | |
| 525 | public: |
| 526 | AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment, |
| 527 | AtomicOrdering SuccessOrdering, |
| 528 | AtomicOrdering FailureOrdering, SyncScope::ID SSID, |
| 529 | Instruction *InsertBefore = nullptr); |
| 530 | AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment, |
| 531 | AtomicOrdering SuccessOrdering, |
| 532 | AtomicOrdering FailureOrdering, SyncScope::ID SSID, |
| 533 | BasicBlock *InsertAtEnd); |
| 534 | |
| 535 | // allocate space for exactly three operands |
| 536 | void *operator new(size_t S) { return User::operator new(S, 3); } |
| 537 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 538 | |
| 539 | using VolatileField = BoolBitfieldElementT<0>; |
| 540 | using WeakField = BoolBitfieldElementT<VolatileField::NextBit>; |
| 541 | using SuccessOrderingField = |
| 542 | AtomicOrderingBitfieldElementT<WeakField::NextBit>; |
| 543 | using FailureOrderingField = |
| 544 | AtomicOrderingBitfieldElementT<SuccessOrderingField::NextBit>; |
| 545 | using AlignmentField = |
| 546 | AlignmentBitfieldElementT<FailureOrderingField::NextBit>; |
| 547 | static_assert( |
| 548 | Bitfield::areContiguous<VolatileField, WeakField, SuccessOrderingField, |
| 549 | FailureOrderingField, AlignmentField>(), |
| 550 | "Bitfields must be contiguous"); |
| 551 | |
| 552 | /// Return the alignment of the memory that is being allocated by the |
| 553 | /// instruction. |
| 554 | Align getAlign() const { |
| 555 | return Align(1ULL << getSubclassData<AlignmentField>()); |
| 556 | } |
| 557 | |
| 558 | void setAlignment(Align Align) { |
| 559 | setSubclassData<AlignmentField>(Log2(Align)); |
| 560 | } |
| 561 | |
| 562 | /// Return true if this is a cmpxchg from a volatile memory |
| 563 | /// location. |
| 564 | /// |
| 565 | bool isVolatile() const { return getSubclassData<VolatileField>(); } |
| 566 | |
| 567 | /// Specify whether this is a volatile cmpxchg. |
| 568 | /// |
| 569 | void setVolatile(bool V) { setSubclassData<VolatileField>(V); } |
| 570 | |
| 571 | /// Return true if this cmpxchg may spuriously fail. |
| 572 | bool isWeak() const { return getSubclassData<WeakField>(); } |
| 573 | |
| 574 | void setWeak(bool IsWeak) { setSubclassData<WeakField>(IsWeak); } |
| 575 | |
| 576 | /// Transparently provide more efficient getOperand methods. |
| 577 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 578 | |
| 579 | static bool isValidSuccessOrdering(AtomicOrdering Ordering) { |
| 580 | return Ordering != AtomicOrdering::NotAtomic && |
| 581 | Ordering != AtomicOrdering::Unordered; |
| 582 | } |
| 583 | |
| 584 | static bool isValidFailureOrdering(AtomicOrdering Ordering) { |
| 585 | return Ordering != AtomicOrdering::NotAtomic && |
| 586 | Ordering != AtomicOrdering::Unordered && |
| 587 | Ordering != AtomicOrdering::AcquireRelease && |
| 588 | Ordering != AtomicOrdering::Release; |
| 589 | } |
| 590 | |
| 591 | /// Returns the success ordering constraint of this cmpxchg instruction. |
| 592 | AtomicOrdering getSuccessOrdering() const { |
| 593 | return getSubclassData<SuccessOrderingField>(); |
| 594 | } |
| 595 | |
| 596 | /// Sets the success ordering constraint of this cmpxchg instruction. |
| 597 | void setSuccessOrdering(AtomicOrdering Ordering) { |
| 598 | assert(isValidSuccessOrdering(Ordering) &&(static_cast <bool> (isValidSuccessOrdering(Ordering) && "invalid CmpXchg success ordering") ? void (0) : __assert_fail ("isValidSuccessOrdering(Ordering) && \"invalid CmpXchg success ordering\"" , "llvm/include/llvm/IR/Instructions.h", 599, __extension__ __PRETTY_FUNCTION__ )) |
| 599 | "invalid CmpXchg success ordering")(static_cast <bool> (isValidSuccessOrdering(Ordering) && "invalid CmpXchg success ordering") ? void (0) : __assert_fail ("isValidSuccessOrdering(Ordering) && \"invalid CmpXchg success ordering\"" , "llvm/include/llvm/IR/Instructions.h", 599, __extension__ __PRETTY_FUNCTION__ )); |
| 600 | setSubclassData<SuccessOrderingField>(Ordering); |
| 601 | } |
| 602 | |
| 603 | /// Returns the failure ordering constraint of this cmpxchg instruction. |
| 604 | AtomicOrdering getFailureOrdering() const { |
| 605 | return getSubclassData<FailureOrderingField>(); |
| 606 | } |
| 607 | |
| 608 | /// Sets the failure ordering constraint of this cmpxchg instruction. |
| 609 | void setFailureOrdering(AtomicOrdering Ordering) { |
| 610 | assert(isValidFailureOrdering(Ordering) &&(static_cast <bool> (isValidFailureOrdering(Ordering) && "invalid CmpXchg failure ordering") ? void (0) : __assert_fail ("isValidFailureOrdering(Ordering) && \"invalid CmpXchg failure ordering\"" , "llvm/include/llvm/IR/Instructions.h", 611, __extension__ __PRETTY_FUNCTION__ )) |
| 611 | "invalid CmpXchg failure ordering")(static_cast <bool> (isValidFailureOrdering(Ordering) && "invalid CmpXchg failure ordering") ? void (0) : __assert_fail ("isValidFailureOrdering(Ordering) && \"invalid CmpXchg failure ordering\"" , "llvm/include/llvm/IR/Instructions.h", 611, __extension__ __PRETTY_FUNCTION__ )); |
| 612 | setSubclassData<FailureOrderingField>(Ordering); |
| 613 | } |
| 614 | |
| 615 | /// Returns a single ordering which is at least as strong as both the |
| 616 | /// success and failure orderings for this cmpxchg. |
| 617 | AtomicOrdering getMergedOrdering() const { |
| 618 | if (getFailureOrdering() == AtomicOrdering::SequentiallyConsistent) |
| 619 | return AtomicOrdering::SequentiallyConsistent; |
| 620 | if (getFailureOrdering() == AtomicOrdering::Acquire) { |
| 621 | if (getSuccessOrdering() == AtomicOrdering::Monotonic) |
| 622 | return AtomicOrdering::Acquire; |
| 623 | if (getSuccessOrdering() == AtomicOrdering::Release) |
| 624 | return AtomicOrdering::AcquireRelease; |
| 625 | } |
| 626 | return getSuccessOrdering(); |
| 627 | } |
| 628 | |
| 629 | /// Returns the synchronization scope ID of this cmpxchg instruction. |
| 630 | SyncScope::ID getSyncScopeID() const { |
| 631 | return SSID; |
| 632 | } |
| 633 | |
| 634 | /// Sets the synchronization scope ID of this cmpxchg instruction. |
| 635 | void setSyncScopeID(SyncScope::ID SSID) { |
| 636 | this->SSID = SSID; |
| 637 | } |
| 638 | |
| 639 | Value *getPointerOperand() { return getOperand(0); } |
| 640 | const Value *getPointerOperand() const { return getOperand(0); } |
| 641 | static unsigned getPointerOperandIndex() { return 0U; } |
| 642 | |
| 643 | Value *getCompareOperand() { return getOperand(1); } |
| 644 | const Value *getCompareOperand() const { return getOperand(1); } |
| 645 | |
| 646 | Value *getNewValOperand() { return getOperand(2); } |
| 647 | const Value *getNewValOperand() const { return getOperand(2); } |
| 648 | |
| 649 | /// Returns the address space of the pointer operand. |
| 650 | unsigned getPointerAddressSpace() const { |
| 651 | return getPointerOperand()->getType()->getPointerAddressSpace(); |
| 652 | } |
| 653 | |
| 654 | /// Returns the strongest permitted ordering on failure, given the |
| 655 | /// desired ordering on success. |
| 656 | /// |
| 657 | /// If the comparison in a cmpxchg operation fails, there is no atomic store |
| 658 | /// so release semantics cannot be provided. So this function drops explicit |
| 659 | /// Release requests from the AtomicOrdering. A SequentiallyConsistent |
| 660 | /// operation would remain SequentiallyConsistent. |
| 661 | static AtomicOrdering |
| 662 | getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) { |
| 663 | switch (SuccessOrdering) { |
| 664 | default: |
| 665 | llvm_unreachable("invalid cmpxchg success ordering")::llvm::llvm_unreachable_internal("invalid cmpxchg success ordering" , "llvm/include/llvm/IR/Instructions.h", 665); |
| 666 | case AtomicOrdering::Release: |
| 667 | case AtomicOrdering::Monotonic: |
| 668 | return AtomicOrdering::Monotonic; |
| 669 | case AtomicOrdering::AcquireRelease: |
| 670 | case AtomicOrdering::Acquire: |
| 671 | return AtomicOrdering::Acquire; |
| 672 | case AtomicOrdering::SequentiallyConsistent: |
| 673 | return AtomicOrdering::SequentiallyConsistent; |
| 674 | } |
| 675 | } |
| 676 | |
| 677 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 678 | static bool classof(const Instruction *I) { |
| 679 | return I->getOpcode() == Instruction::AtomicCmpXchg; |
| 680 | } |
| 681 | static bool classof(const Value *V) { |
| 682 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 683 | } |
| 684 | |
| 685 | private: |
| 686 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 687 | // method so that subclasses cannot accidentally use it. |
| 688 | template <typename Bitfield> |
| 689 | void setSubclassData(typename Bitfield::Type Value) { |
| 690 | Instruction::setSubclassData<Bitfield>(Value); |
| 691 | } |
| 692 | |
| 693 | /// The synchronization scope ID of this cmpxchg instruction. Not quite |
| 694 | /// enough room in SubClassData for everything, so synchronization scope ID |
| 695 | /// gets its own field. |
| 696 | SyncScope::ID SSID; |
| 697 | }; |
| 698 | |
| 699 | template <> |
| 700 | struct OperandTraits<AtomicCmpXchgInst> : |
| 701 | public FixedNumOperandTraits<AtomicCmpXchgInst, 3> { |
| 702 | }; |
| 703 | |
| 704 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)AtomicCmpXchgInst::op_iterator AtomicCmpXchgInst::op_begin() { return OperandTraits<AtomicCmpXchgInst>::op_begin(this ); } AtomicCmpXchgInst::const_op_iterator AtomicCmpXchgInst:: op_begin() const { return OperandTraits<AtomicCmpXchgInst> ::op_begin(const_cast<AtomicCmpXchgInst*>(this)); } AtomicCmpXchgInst ::op_iterator AtomicCmpXchgInst::op_end() { return OperandTraits <AtomicCmpXchgInst>::op_end(this); } AtomicCmpXchgInst:: const_op_iterator AtomicCmpXchgInst::op_end() const { return OperandTraits <AtomicCmpXchgInst>::op_end(const_cast<AtomicCmpXchgInst *>(this)); } Value *AtomicCmpXchgInst::getOperand(unsigned i_nocapture) const { (static_cast <bool> (i_nocapture < OperandTraits<AtomicCmpXchgInst>::operands(this) && "getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicCmpXchgInst>::operands(this) && \"getOperand() out of range!\"" , "llvm/include/llvm/IR/Instructions.h", 704, __extension__ __PRETTY_FUNCTION__ )); return cast_or_null<Value>( OperandTraits<AtomicCmpXchgInst >::op_begin(const_cast<AtomicCmpXchgInst*>(this))[i_nocapture ].get()); } void AtomicCmpXchgInst::setOperand(unsigned i_nocapture , Value *Val_nocapture) { (static_cast <bool> (i_nocapture < OperandTraits<AtomicCmpXchgInst>::operands(this) && "setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicCmpXchgInst>::operands(this) && \"setOperand() out of range!\"" , "llvm/include/llvm/IR/Instructions.h", 704, __extension__ __PRETTY_FUNCTION__ )); OperandTraits<AtomicCmpXchgInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned AtomicCmpXchgInst::getNumOperands () const { return OperandTraits<AtomicCmpXchgInst>::operands (this); } template <int Idx_nocapture> Use &AtomicCmpXchgInst ::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &AtomicCmpXchgInst ::Op() const { return this->OpFrom<Idx_nocapture>(this ); } |
| 705 | |
| 706 | //===----------------------------------------------------------------------===// |
| 707 | // AtomicRMWInst Class |
| 708 | //===----------------------------------------------------------------------===// |
| 709 | |
| 710 | /// an instruction that atomically reads a memory location, |
| 711 | /// combines it with another value, and then stores the result back. Returns |
| 712 | /// the old value. |
| 713 | /// |
| 714 | class AtomicRMWInst : public Instruction { |
| 715 | protected: |
| 716 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 717 | friend class Instruction; |
| 718 | |
| 719 | AtomicRMWInst *cloneImpl() const; |
| 720 | |
| 721 | public: |
| 722 | /// This enumeration lists the possible modifications atomicrmw can make. In |
| 723 | /// the descriptions, 'p' is the pointer to the instruction's memory location, |
| 724 | /// 'old' is the initial value of *p, and 'v' is the other value passed to the |
| 725 | /// instruction. These instructions always return 'old'. |
| 726 | enum BinOp : unsigned { |
| 727 | /// *p = v |
| 728 | Xchg, |
| 729 | /// *p = old + v |
| 730 | Add, |
| 731 | /// *p = old - v |
| 732 | Sub, |
| 733 | /// *p = old & v |
| 734 | And, |
| 735 | /// *p = ~(old & v) |
| 736 | Nand, |
| 737 | /// *p = old | v |
| 738 | Or, |
| 739 | /// *p = old ^ v |
| 740 | Xor, |
| 741 | /// *p = old >signed v ? old : v |
| 742 | Max, |
| 743 | /// *p = old <signed v ? old : v |
| 744 | Min, |
| 745 | /// *p = old >unsigned v ? old : v |
| 746 | UMax, |
| 747 | /// *p = old <unsigned v ? old : v |
| 748 | UMin, |
| 749 | |
| 750 | /// *p = old + v |
| 751 | FAdd, |
| 752 | |
| 753 | /// *p = old - v |
| 754 | FSub, |
| 755 | |
| 756 | /// *p = maxnum(old, v) |
| 757 | /// \p maxnum matches the behavior of \p llvm.maxnum.*. |
| 758 | FMax, |
| 759 | |
| 760 | /// *p = minnum(old, v) |
| 761 | /// \p minnum matches the behavior of \p llvm.minnum.*. |
| 762 | FMin, |
| 763 | |
| 764 | FIRST_BINOP = Xchg, |
| 765 | LAST_BINOP = FMin, |
| 766 | BAD_BINOP |
| 767 | }; |
| 768 | |
| 769 | private: |
| 770 | template <unsigned Offset> |
| 771 | using AtomicOrderingBitfieldElement = |
| 772 | typename Bitfield::Element<AtomicOrdering, Offset, 3, |
| 773 | AtomicOrdering::LAST>; |
| 774 | |
| 775 | template <unsigned Offset> |
| 776 | using BinOpBitfieldElement = |
| 777 | typename Bitfield::Element<BinOp, Offset, 4, BinOp::LAST_BINOP>; |
| 778 | |
| 779 | public: |
| 780 | AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment, |
| 781 | AtomicOrdering Ordering, SyncScope::ID SSID, |
| 782 | Instruction *InsertBefore = nullptr); |
| 783 | AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment, |
| 784 | AtomicOrdering Ordering, SyncScope::ID SSID, |
| 785 | BasicBlock *InsertAtEnd); |
| 786 | |
| 787 | // allocate space for exactly two operands |
| 788 | void *operator new(size_t S) { return User::operator new(S, 2); } |
| 789 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 790 | |
| 791 | using VolatileField = BoolBitfieldElementT<0>; |
| 792 | using AtomicOrderingField = |
| 793 | AtomicOrderingBitfieldElementT<VolatileField::NextBit>; |
| 794 | using OperationField = BinOpBitfieldElement<AtomicOrderingField::NextBit>; |
| 795 | using AlignmentField = AlignmentBitfieldElementT<OperationField::NextBit>; |
| 796 | static_assert(Bitfield::areContiguous<VolatileField, AtomicOrderingField, |
| 797 | OperationField, AlignmentField>(), |
| 798 | "Bitfields must be contiguous"); |
| 799 | |
| 800 | BinOp getOperation() const { return getSubclassData<OperationField>(); } |
| 801 | |
| 802 | static StringRef getOperationName(BinOp Op); |
| 803 | |
| 804 | static bool isFPOperation(BinOp Op) { |
| 805 | switch (Op) { |
| 806 | case AtomicRMWInst::FAdd: |
| 807 | case AtomicRMWInst::FSub: |
| 808 | case AtomicRMWInst::FMax: |
| 809 | case AtomicRMWInst::FMin: |
| 810 | return true; |
| 811 | default: |
| 812 | return false; |
| 813 | } |
| 814 | } |
| 815 | |
| 816 | void setOperation(BinOp Operation) { |
| 817 | setSubclassData<OperationField>(Operation); |
| 818 | } |
| 819 | |
| 820 | /// Return the alignment of the memory that is being allocated by the |
| 821 | /// instruction. |
| 822 | Align getAlign() const { |
| 823 | return Align(1ULL << getSubclassData<AlignmentField>()); |
| 824 | } |
| 825 | |
| 826 | void setAlignment(Align Align) { |
| 827 | setSubclassData<AlignmentField>(Log2(Align)); |
| 828 | } |
| 829 | |
| 830 | /// Return true if this is a RMW on a volatile memory location. |
| 831 | /// |
| 832 | bool isVolatile() const { return getSubclassData<VolatileField>(); } |
| 833 | |
| 834 | /// Specify whether this is a volatile RMW or not. |
| 835 | /// |
| 836 | void setVolatile(bool V) { setSubclassData<VolatileField>(V); } |
| 837 | |
| 838 | /// Transparently provide more efficient getOperand methods. |
| 839 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 840 | |
| 841 | /// Returns the ordering constraint of this rmw instruction. |
| 842 | AtomicOrdering getOrdering() const { |
| 843 | return getSubclassData<AtomicOrderingField>(); |
| 844 | } |
| 845 | |
| 846 | /// Sets the ordering constraint of this rmw instruction. |
| 847 | void setOrdering(AtomicOrdering Ordering) { |
| 848 | assert(Ordering != AtomicOrdering::NotAtomic &&(static_cast <bool> (Ordering != AtomicOrdering::NotAtomic && "atomicrmw instructions can only be atomic.") ? void (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"atomicrmw instructions can only be atomic.\"" , "llvm/include/llvm/IR/Instructions.h", 849, __extension__ __PRETTY_FUNCTION__ )) |
| 849 | "atomicrmw instructions can only be atomic.")(static_cast <bool> (Ordering != AtomicOrdering::NotAtomic && "atomicrmw instructions can only be atomic.") ? void (0) : __assert_fail ("Ordering != AtomicOrdering::NotAtomic && \"atomicrmw instructions can only be atomic.\"" , "llvm/include/llvm/IR/Instructions.h", 849, __extension__ __PRETTY_FUNCTION__ )); |
| 850 | assert(Ordering != AtomicOrdering::Unordered &&(static_cast <bool> (Ordering != AtomicOrdering::Unordered && "atomicrmw instructions cannot be unordered.") ? void (0) : __assert_fail ("Ordering != AtomicOrdering::Unordered && \"atomicrmw instructions cannot be unordered.\"" , "llvm/include/llvm/IR/Instructions.h", 851, __extension__ __PRETTY_FUNCTION__ )) |
| 851 | "atomicrmw instructions cannot be unordered.")(static_cast <bool> (Ordering != AtomicOrdering::Unordered && "atomicrmw instructions cannot be unordered.") ? void (0) : __assert_fail ("Ordering != AtomicOrdering::Unordered && \"atomicrmw instructions cannot be unordered.\"" , "llvm/include/llvm/IR/Instructions.h", 851, __extension__ __PRETTY_FUNCTION__ )); |
| 852 | setSubclassData<AtomicOrderingField>(Ordering); |
| 853 | } |
| 854 | |
| 855 | /// Returns the synchronization scope ID of this rmw instruction. |
| 856 | SyncScope::ID getSyncScopeID() const { |
| 857 | return SSID; |
| 858 | } |
| 859 | |
| 860 | /// Sets the synchronization scope ID of this rmw instruction. |
| 861 | void setSyncScopeID(SyncScope::ID SSID) { |
| 862 | this->SSID = SSID; |
| 863 | } |
| 864 | |
| 865 | Value *getPointerOperand() { return getOperand(0); } |
| 866 | const Value *getPointerOperand() const { return getOperand(0); } |
| 867 | static unsigned getPointerOperandIndex() { return 0U; } |
| 868 | |
| 869 | Value *getValOperand() { return getOperand(1); } |
| 870 | const Value *getValOperand() const { return getOperand(1); } |
| 871 | |
| 872 | /// Returns the address space of the pointer operand. |
| 873 | unsigned getPointerAddressSpace() const { |
| 874 | return getPointerOperand()->getType()->getPointerAddressSpace(); |
| 875 | } |
| 876 | |
| 877 | bool isFloatingPointOperation() const { |
| 878 | return isFPOperation(getOperation()); |
| 879 | } |
| 880 | |
| 881 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 882 | static bool classof(const Instruction *I) { |
| 883 | return I->getOpcode() == Instruction::AtomicRMW; |
| 884 | } |
| 885 | static bool classof(const Value *V) { |
| 886 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 887 | } |
| 888 | |
| 889 | private: |
| 890 | void Init(BinOp Operation, Value *Ptr, Value *Val, Align Align, |
| 891 | AtomicOrdering Ordering, SyncScope::ID SSID); |
| 892 | |
| 893 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 894 | // method so that subclasses cannot accidentally use it. |
| 895 | template <typename Bitfield> |
| 896 | void setSubclassData(typename Bitfield::Type Value) { |
| 897 | Instruction::setSubclassData<Bitfield>(Value); |
| 898 | } |
| 899 | |
| 900 | /// The synchronization scope ID of this rmw instruction. Not quite enough |
| 901 | /// room in SubClassData for everything, so synchronization scope ID gets its |
| 902 | /// own field. |
| 903 | SyncScope::ID SSID; |
| 904 | }; |
| 905 | |
| 906 | template <> |
| 907 | struct OperandTraits<AtomicRMWInst> |
| 908 | : public FixedNumOperandTraits<AtomicRMWInst,2> { |
| 909 | }; |
| 910 | |
| 911 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)AtomicRMWInst::op_iterator AtomicRMWInst::op_begin() { return OperandTraits<AtomicRMWInst>::op_begin(this); } AtomicRMWInst ::const_op_iterator AtomicRMWInst::op_begin() const { return OperandTraits <AtomicRMWInst>::op_begin(const_cast<AtomicRMWInst*> (this)); } AtomicRMWInst::op_iterator AtomicRMWInst::op_end() { return OperandTraits<AtomicRMWInst>::op_end(this); } AtomicRMWInst::const_op_iterator AtomicRMWInst::op_end() const { return OperandTraits<AtomicRMWInst>::op_end(const_cast <AtomicRMWInst*>(this)); } Value *AtomicRMWInst::getOperand (unsigned i_nocapture) const { (static_cast <bool> (i_nocapture < OperandTraits<AtomicRMWInst>::operands(this) && "getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicRMWInst>::operands(this) && \"getOperand() out of range!\"" , "llvm/include/llvm/IR/Instructions.h", 911, __extension__ __PRETTY_FUNCTION__ )); return cast_or_null<Value>( OperandTraits<AtomicRMWInst >::op_begin(const_cast<AtomicRMWInst*>(this))[i_nocapture ].get()); } void AtomicRMWInst::setOperand(unsigned i_nocapture , Value *Val_nocapture) { (static_cast <bool> (i_nocapture < OperandTraits<AtomicRMWInst>::operands(this) && "setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<AtomicRMWInst>::operands(this) && \"setOperand() out of range!\"" , "llvm/include/llvm/IR/Instructions.h", 911, __extension__ __PRETTY_FUNCTION__ )); OperandTraits<AtomicRMWInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned AtomicRMWInst::getNumOperands() const { return OperandTraits<AtomicRMWInst>::operands( this); } template <int Idx_nocapture> Use &AtomicRMWInst ::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &AtomicRMWInst ::Op() const { return this->OpFrom<Idx_nocapture>(this ); } |
| 912 | |
| 913 | //===----------------------------------------------------------------------===// |
| 914 | // GetElementPtrInst Class |
| 915 | //===----------------------------------------------------------------------===// |
| 916 | |
| 917 | // checkGEPType - Simple wrapper function to give a better assertion failure |
| 918 | // message on bad indexes for a gep instruction. |
| 919 | // |
| 920 | inline Type *checkGEPType(Type *Ty) { |
| 921 | assert(Ty && "Invalid GetElementPtrInst indices for type!")(static_cast <bool> (Ty && "Invalid GetElementPtrInst indices for type!" ) ? void (0) : __assert_fail ("Ty && \"Invalid GetElementPtrInst indices for type!\"" , "llvm/include/llvm/IR/Instructions.h", 921, __extension__ __PRETTY_FUNCTION__ )); |
| 922 | return Ty; |
| 923 | } |
| 924 | |
| 925 | /// an instruction for type-safe pointer arithmetic to |
| 926 | /// access elements of arrays and structs |
| 927 | /// |
| 928 | class GetElementPtrInst : public Instruction { |
| 929 | Type *SourceElementType; |
| 930 | Type *ResultElementType; |
| 931 | |
| 932 | GetElementPtrInst(const GetElementPtrInst &GEPI); |
| 933 | |
| 934 | /// Constructors - Create a getelementptr instruction with a base pointer an |
| 935 | /// list of indices. The first ctor can optionally insert before an existing |
| 936 | /// instruction, the second appends the new instruction to the specified |
| 937 | /// BasicBlock. |
| 938 | inline GetElementPtrInst(Type *PointeeType, Value *Ptr, |
| 939 | ArrayRef<Value *> IdxList, unsigned Values, |
| 940 | const Twine &NameStr, Instruction *InsertBefore); |
| 941 | inline GetElementPtrInst(Type *PointeeType, Value *Ptr, |
| 942 | ArrayRef<Value *> IdxList, unsigned Values, |
| 943 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 944 | |
| 945 | void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr); |
| 946 | |
| 947 | protected: |
| 948 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 949 | friend class Instruction; |
| 950 | |
| 951 | GetElementPtrInst *cloneImpl() const; |
| 952 | |
| 953 | public: |
| 954 | static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr, |
| 955 | ArrayRef<Value *> IdxList, |
| 956 | const Twine &NameStr = "", |
| 957 | Instruction *InsertBefore = nullptr) { |
| 958 | unsigned Values = 1 + unsigned(IdxList.size()); |
| 959 | assert(PointeeType && "Must specify element type")(static_cast <bool> (PointeeType && "Must specify element type" ) ? void (0) : __assert_fail ("PointeeType && \"Must specify element type\"" , "llvm/include/llvm/IR/Instructions.h", 959, __extension__ __PRETTY_FUNCTION__ )); |
| 960 | assert(cast<PointerType>(Ptr->getType()->getScalarType())(static_cast <bool> (cast<PointerType>(Ptr->getType ()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType )) ? void (0) : __assert_fail ("cast<PointerType>(Ptr->getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType)" , "llvm/include/llvm/IR/Instructions.h", 961, __extension__ __PRETTY_FUNCTION__ )) |
| 961 | ->isOpaqueOrPointeeTypeMatches(PointeeType))(static_cast <bool> (cast<PointerType>(Ptr->getType ()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType )) ? void (0) : __assert_fail ("cast<PointerType>(Ptr->getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType)" , "llvm/include/llvm/IR/Instructions.h", 961, __extension__ __PRETTY_FUNCTION__ )); |
| 962 | return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values, |
| 963 | NameStr, InsertBefore); |
| 964 | } |
| 965 | |
| 966 | static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr, |
| 967 | ArrayRef<Value *> IdxList, |
| 968 | const Twine &NameStr, |
| 969 | BasicBlock *InsertAtEnd) { |
| 970 | unsigned Values = 1 + unsigned(IdxList.size()); |
| 971 | assert(PointeeType && "Must specify element type")(static_cast <bool> (PointeeType && "Must specify element type" ) ? void (0) : __assert_fail ("PointeeType && \"Must specify element type\"" , "llvm/include/llvm/IR/Instructions.h", 971, __extension__ __PRETTY_FUNCTION__ )); |
| 972 | assert(cast<PointerType>(Ptr->getType()->getScalarType())(static_cast <bool> (cast<PointerType>(Ptr->getType ()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType )) ? void (0) : __assert_fail ("cast<PointerType>(Ptr->getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType)" , "llvm/include/llvm/IR/Instructions.h", 973, __extension__ __PRETTY_FUNCTION__ )) |
| 973 | ->isOpaqueOrPointeeTypeMatches(PointeeType))(static_cast <bool> (cast<PointerType>(Ptr->getType ()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType )) ? void (0) : __assert_fail ("cast<PointerType>(Ptr->getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(PointeeType)" , "llvm/include/llvm/IR/Instructions.h", 973, __extension__ __PRETTY_FUNCTION__ )); |
| 974 | return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values, |
| 975 | NameStr, InsertAtEnd); |
| 976 | } |
| 977 | |
| 978 | /// Create an "inbounds" getelementptr. See the documentation for the |
| 979 | /// "inbounds" flag in LangRef.html for details. |
| 980 | static GetElementPtrInst * |
| 981 | CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList, |
| 982 | const Twine &NameStr = "", |
| 983 | Instruction *InsertBefore = nullptr) { |
| 984 | GetElementPtrInst *GEP = |
| 985 | Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore); |
| 986 | GEP->setIsInBounds(true); |
| 987 | return GEP; |
| 988 | } |
| 989 | |
| 990 | static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr, |
| 991 | ArrayRef<Value *> IdxList, |
| 992 | const Twine &NameStr, |
| 993 | BasicBlock *InsertAtEnd) { |
| 994 | GetElementPtrInst *GEP = |
| 995 | Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd); |
| 996 | GEP->setIsInBounds(true); |
| 997 | return GEP; |
| 998 | } |
| 999 | |
| 1000 | /// Transparently provide more efficient getOperand methods. |
| 1001 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 1002 | |
| 1003 | Type *getSourceElementType() const { return SourceElementType; } |
| 1004 | |
| 1005 | void setSourceElementType(Type *Ty) { SourceElementType = Ty; } |
| 1006 | void setResultElementType(Type *Ty) { ResultElementType = Ty; } |
| 1007 | |
| 1008 | Type *getResultElementType() const { |
| 1009 | assert(cast<PointerType>(getType()->getScalarType())(static_cast <bool> (cast<PointerType>(getType()-> getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType )) ? void (0) : __assert_fail ("cast<PointerType>(getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType)" , "llvm/include/llvm/IR/Instructions.h", 1010, __extension__ __PRETTY_FUNCTION__ )) |
| 1010 | ->isOpaqueOrPointeeTypeMatches(ResultElementType))(static_cast <bool> (cast<PointerType>(getType()-> getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType )) ? void (0) : __assert_fail ("cast<PointerType>(getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType)" , "llvm/include/llvm/IR/Instructions.h", 1010, __extension__ __PRETTY_FUNCTION__ )); |
| 1011 | return ResultElementType; |
| 1012 | } |
| 1013 | |
| 1014 | /// Returns the address space of this instruction's pointer type. |
| 1015 | unsigned getAddressSpace() const { |
| 1016 | // Note that this is always the same as the pointer operand's address space |
| 1017 | // and that is cheaper to compute, so cheat here. |
| 1018 | return getPointerAddressSpace(); |
| 1019 | } |
| 1020 | |
| 1021 | /// Returns the result type of a getelementptr with the given source |
| 1022 | /// element type and indexes. |
| 1023 | /// |
| 1024 | /// Null is returned if the indices are invalid for the specified |
| 1025 | /// source element type. |
| 1026 | static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList); |
| 1027 | static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList); |
| 1028 | static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList); |
| 1029 | |
| 1030 | /// Return the type of the element at the given index of an indexable |
| 1031 | /// type. This is equivalent to "getIndexedType(Agg, {Zero, Idx})". |
| 1032 | /// |
| 1033 | /// Returns null if the type can't be indexed, or the given index is not |
| 1034 | /// legal for the given type. |
| 1035 | static Type *getTypeAtIndex(Type *Ty, Value *Idx); |
| 1036 | static Type *getTypeAtIndex(Type *Ty, uint64_t Idx); |
| 1037 | |
| 1038 | inline op_iterator idx_begin() { return op_begin()+1; } |
| 1039 | inline const_op_iterator idx_begin() const { return op_begin()+1; } |
| 1040 | inline op_iterator idx_end() { return op_end(); } |
| 1041 | inline const_op_iterator idx_end() const { return op_end(); } |
| 1042 | |
| 1043 | inline iterator_range<op_iterator> indices() { |
| 1044 | return make_range(idx_begin(), idx_end()); |
| 1045 | } |
| 1046 | |
| 1047 | inline iterator_range<const_op_iterator> indices() const { |
| 1048 | return make_range(idx_begin(), idx_end()); |
| 1049 | } |
| 1050 | |
| 1051 | Value *getPointerOperand() { |
| 1052 | return getOperand(0); |
| 1053 | } |
| 1054 | const Value *getPointerOperand() const { |
| 1055 | return getOperand(0); |
| 1056 | } |
| 1057 | static unsigned getPointerOperandIndex() { |
| 1058 | return 0U; // get index for modifying correct operand. |
| 1059 | } |
| 1060 | |
| 1061 | /// Method to return the pointer operand as a |
| 1062 | /// PointerType. |
| 1063 | Type *getPointerOperandType() const { |
| 1064 | return getPointerOperand()->getType(); |
| 1065 | } |
| 1066 | |
| 1067 | /// Returns the address space of the pointer operand. |
| 1068 | unsigned getPointerAddressSpace() const { |
| 1069 | return getPointerOperandType()->getPointerAddressSpace(); |
| 1070 | } |
| 1071 | |
| 1072 | /// Returns the pointer type returned by the GEP |
| 1073 | /// instruction, which may be a vector of pointers. |
| 1074 | static Type *getGEPReturnType(Type *ElTy, Value *Ptr, |
| 1075 | ArrayRef<Value *> IdxList) { |
| 1076 | PointerType *OrigPtrTy = cast<PointerType>(Ptr->getType()->getScalarType()); |
| 1077 | unsigned AddrSpace = OrigPtrTy->getAddressSpace(); |
| 1078 | Type *ResultElemTy = checkGEPType(getIndexedType(ElTy, IdxList)); |
| 1079 | Type *PtrTy = OrigPtrTy->isOpaque() |
| 1080 | ? PointerType::get(OrigPtrTy->getContext(), AddrSpace) |
| 1081 | : PointerType::get(ResultElemTy, AddrSpace); |
| 1082 | // Vector GEP |
| 1083 | if (auto *PtrVTy = dyn_cast<VectorType>(Ptr->getType())) { |
| 1084 | ElementCount EltCount = PtrVTy->getElementCount(); |
| 1085 | return VectorType::get(PtrTy, EltCount); |
| 1086 | } |
| 1087 | for (Value *Index : IdxList) |
| 1088 | if (auto *IndexVTy = dyn_cast<VectorType>(Index->getType())) { |
| 1089 | ElementCount EltCount = IndexVTy->getElementCount(); |
| 1090 | return VectorType::get(PtrTy, EltCount); |
| 1091 | } |
| 1092 | // Scalar GEP |
| 1093 | return PtrTy; |
| 1094 | } |
| 1095 | |
| 1096 | unsigned getNumIndices() const { // Note: always non-negative |
| 1097 | return getNumOperands() - 1; |
| 1098 | } |
| 1099 | |
| 1100 | bool hasIndices() const { |
| 1101 | return getNumOperands() > 1; |
| 1102 | } |
| 1103 | |
| 1104 | /// Return true if all of the indices of this GEP are |
| 1105 | /// zeros. If so, the result pointer and the first operand have the same |
| 1106 | /// value, just potentially different types. |
| 1107 | bool hasAllZeroIndices() const; |
| 1108 | |
| 1109 | /// Return true if all of the indices of this GEP are |
| 1110 | /// constant integers. If so, the result pointer and the first operand have |
| 1111 | /// a constant offset between them. |
| 1112 | bool hasAllConstantIndices() const; |
| 1113 | |
| 1114 | /// Set or clear the inbounds flag on this GEP instruction. |
| 1115 | /// See LangRef.html for the meaning of inbounds on a getelementptr. |
| 1116 | void setIsInBounds(bool b = true); |
| 1117 | |
| 1118 | /// Determine whether the GEP has the inbounds flag. |
| 1119 | bool isInBounds() const; |
| 1120 | |
| 1121 | /// Accumulate the constant address offset of this GEP if possible. |
| 1122 | /// |
| 1123 | /// This routine accepts an APInt into which it will accumulate the constant |
| 1124 | /// offset of this GEP if the GEP is in fact constant. If the GEP is not |
| 1125 | /// all-constant, it returns false and the value of the offset APInt is |
| 1126 | /// undefined (it is *not* preserved!). The APInt passed into this routine |
| 1127 | /// must be at least as wide as the IntPtr type for the address space of |
| 1128 | /// the base GEP pointer. |
| 1129 | bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const; |
| 1130 | bool collectOffset(const DataLayout &DL, unsigned BitWidth, |
| 1131 | MapVector<Value *, APInt> &VariableOffsets, |
| 1132 | APInt &ConstantOffset) const; |
| 1133 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1134 | static bool classof(const Instruction *I) { |
| 1135 | return (I->getOpcode() == Instruction::GetElementPtr); |
| 1136 | } |
| 1137 | static bool classof(const Value *V) { |
| 1138 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1139 | } |
| 1140 | }; |
| 1141 | |
| 1142 | template <> |
| 1143 | struct OperandTraits<GetElementPtrInst> : |
| 1144 | public VariadicOperandTraits<GetElementPtrInst, 1> { |
| 1145 | }; |
| 1146 | |
| 1147 | GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr, |
| 1148 | ArrayRef<Value *> IdxList, unsigned Values, |
| 1149 | const Twine &NameStr, |
| 1150 | Instruction *InsertBefore) |
| 1151 | : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr, |
| 1152 | OperandTraits<GetElementPtrInst>::op_end(this) - Values, |
| 1153 | Values, InsertBefore), |
| 1154 | SourceElementType(PointeeType), |
| 1155 | ResultElementType(getIndexedType(PointeeType, IdxList)) { |
| 1156 | assert(cast<PointerType>(getType()->getScalarType())(static_cast <bool> (cast<PointerType>(getType()-> getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType )) ? void (0) : __assert_fail ("cast<PointerType>(getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType)" , "llvm/include/llvm/IR/Instructions.h", 1157, __extension__ __PRETTY_FUNCTION__ )) |
| 1157 | ->isOpaqueOrPointeeTypeMatches(ResultElementType))(static_cast <bool> (cast<PointerType>(getType()-> getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType )) ? void (0) : __assert_fail ("cast<PointerType>(getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType)" , "llvm/include/llvm/IR/Instructions.h", 1157, __extension__ __PRETTY_FUNCTION__ )); |
| 1158 | init(Ptr, IdxList, NameStr); |
| 1159 | } |
| 1160 | |
| 1161 | GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr, |
| 1162 | ArrayRef<Value *> IdxList, unsigned Values, |
| 1163 | const Twine &NameStr, |
| 1164 | BasicBlock *InsertAtEnd) |
| 1165 | : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr, |
| 1166 | OperandTraits<GetElementPtrInst>::op_end(this) - Values, |
| 1167 | Values, InsertAtEnd), |
| 1168 | SourceElementType(PointeeType), |
| 1169 | ResultElementType(getIndexedType(PointeeType, IdxList)) { |
| 1170 | assert(cast<PointerType>(getType()->getScalarType())(static_cast <bool> (cast<PointerType>(getType()-> getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType )) ? void (0) : __assert_fail ("cast<PointerType>(getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType)" , "llvm/include/llvm/IR/Instructions.h", 1171, __extension__ __PRETTY_FUNCTION__ )) |
| 1171 | ->isOpaqueOrPointeeTypeMatches(ResultElementType))(static_cast <bool> (cast<PointerType>(getType()-> getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType )) ? void (0) : __assert_fail ("cast<PointerType>(getType()->getScalarType()) ->isOpaqueOrPointeeTypeMatches(ResultElementType)" , "llvm/include/llvm/IR/Instructions.h", 1171, __extension__ __PRETTY_FUNCTION__ )); |
| 1172 | init(Ptr, IdxList, NameStr); |
| 1173 | } |
| 1174 | |
| 1175 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)GetElementPtrInst::op_iterator GetElementPtrInst::op_begin() { return OperandTraits<GetElementPtrInst>::op_begin(this ); } GetElementPtrInst::const_op_iterator GetElementPtrInst:: op_begin() const { return OperandTraits<GetElementPtrInst> ::op_begin(const_cast<GetElementPtrInst*>(this)); } GetElementPtrInst ::op_iterator GetElementPtrInst::op_end() { return OperandTraits <GetElementPtrInst>::op_end(this); } GetElementPtrInst:: const_op_iterator GetElementPtrInst::op_end() const { return OperandTraits <GetElementPtrInst>::op_end(const_cast<GetElementPtrInst *>(this)); } Value *GetElementPtrInst::getOperand(unsigned i_nocapture) const { (static_cast <bool> (i_nocapture < OperandTraits<GetElementPtrInst>::operands(this) && "getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<GetElementPtrInst>::operands(this) && \"getOperand() out of range!\"" , "llvm/include/llvm/IR/Instructions.h", 1175, __extension__ __PRETTY_FUNCTION__ )); return cast_or_null<Value>( OperandTraits<GetElementPtrInst >::op_begin(const_cast<GetElementPtrInst*>(this))[i_nocapture ].get()); } void GetElementPtrInst::setOperand(unsigned i_nocapture , Value *Val_nocapture) { (static_cast <bool> (i_nocapture < OperandTraits<GetElementPtrInst>::operands(this) && "setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<GetElementPtrInst>::operands(this) && \"setOperand() out of range!\"" , "llvm/include/llvm/IR/Instructions.h", 1175, __extension__ __PRETTY_FUNCTION__ )); OperandTraits<GetElementPtrInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned GetElementPtrInst::getNumOperands () const { return OperandTraits<GetElementPtrInst>::operands (this); } template <int Idx_nocapture> Use &GetElementPtrInst ::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &GetElementPtrInst ::Op() const { return this->OpFrom<Idx_nocapture>(this ); } |
| 1176 | |
| 1177 | //===----------------------------------------------------------------------===// |
| 1178 | // ICmpInst Class |
| 1179 | //===----------------------------------------------------------------------===// |
| 1180 | |
| 1181 | /// This instruction compares its operands according to the predicate given |
| 1182 | /// to the constructor. It only operates on integers or pointers. The operands |
| 1183 | /// must be identical types. |
| 1184 | /// Represent an integer comparison operator. |
| 1185 | class ICmpInst: public CmpInst { |
| 1186 | void AssertOK() { |
| 1187 | assert(isIntPredicate() &&(static_cast <bool> (isIntPredicate() && "Invalid ICmp predicate value" ) ? void (0) : __assert_fail ("isIntPredicate() && \"Invalid ICmp predicate value\"" , "llvm/include/llvm/IR/Instructions.h", 1188, __extension__ __PRETTY_FUNCTION__ )) |
| 1188 | "Invalid ICmp predicate value")(static_cast <bool> (isIntPredicate() && "Invalid ICmp predicate value" ) ? void (0) : __assert_fail ("isIntPredicate() && \"Invalid ICmp predicate value\"" , "llvm/include/llvm/IR/Instructions.h", 1188, __extension__ __PRETTY_FUNCTION__ )); |
| 1189 | assert(getOperand(0)->getType() == getOperand(1)->getType() &&(static_cast <bool> (getOperand(0)->getType() == getOperand (1)->getType() && "Both operands to ICmp instruction are not of the same type!" ) ? void (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to ICmp instruction are not of the same type!\"" , "llvm/include/llvm/IR/Instructions.h", 1190, __extension__ __PRETTY_FUNCTION__ )) |
| 1190 | "Both operands to ICmp instruction are not of the same type!")(static_cast <bool> (getOperand(0)->getType() == getOperand (1)->getType() && "Both operands to ICmp instruction are not of the same type!" ) ? void (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to ICmp instruction are not of the same type!\"" , "llvm/include/llvm/IR/Instructions.h", 1190, __extension__ __PRETTY_FUNCTION__ )); |
| 1191 | // Check that the operands are the right type |
| 1192 | assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||(static_cast <bool> ((getOperand(0)->getType()->isIntOrIntVectorTy () || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && "Invalid operand types for ICmp instruction") ? void (0) : __assert_fail ("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\"" , "llvm/include/llvm/IR/Instructions.h", 1194, __extension__ __PRETTY_FUNCTION__ )) |
| 1193 | getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&(static_cast <bool> ((getOperand(0)->getType()->isIntOrIntVectorTy () || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && "Invalid operand types for ICmp instruction") ? void (0) : __assert_fail ("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\"" , "llvm/include/llvm/IR/Instructions.h", 1194, __extension__ __PRETTY_FUNCTION__ )) |
| 1194 | "Invalid operand types for ICmp instruction")(static_cast <bool> ((getOperand(0)->getType()->isIntOrIntVectorTy () || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && "Invalid operand types for ICmp instruction") ? void (0) : __assert_fail ("(getOperand(0)->getType()->isIntOrIntVectorTy() || getOperand(0)->getType()->isPtrOrPtrVectorTy()) && \"Invalid operand types for ICmp instruction\"" , "llvm/include/llvm/IR/Instructions.h", 1194, __extension__ __PRETTY_FUNCTION__ )); |
| 1195 | } |
| 1196 | |
| 1197 | protected: |
| 1198 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 1199 | friend class Instruction; |
| 1200 | |
| 1201 | /// Clone an identical ICmpInst |
| 1202 | ICmpInst *cloneImpl() const; |
| 1203 | |
| 1204 | public: |
| 1205 | /// Constructor with insert-before-instruction semantics. |
| 1206 | ICmpInst( |
| 1207 | Instruction *InsertBefore, ///< Where to insert |
| 1208 | Predicate pred, ///< The predicate to use for the comparison |
| 1209 | Value *LHS, ///< The left-hand-side of the expression |
| 1210 | Value *RHS, ///< The right-hand-side of the expression |
| 1211 | const Twine &NameStr = "" ///< Name of the instruction |
| 1212 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
| 1213 | Instruction::ICmp, pred, LHS, RHS, NameStr, |
| 1214 | InsertBefore) { |
| 1215 | #ifndef NDEBUG |
| 1216 | AssertOK(); |
| 1217 | #endif |
| 1218 | } |
| 1219 | |
| 1220 | /// Constructor with insert-at-end semantics. |
| 1221 | ICmpInst( |
| 1222 | BasicBlock &InsertAtEnd, ///< Block to insert into. |
| 1223 | Predicate pred, ///< The predicate to use for the comparison |
| 1224 | Value *LHS, ///< The left-hand-side of the expression |
| 1225 | Value *RHS, ///< The right-hand-side of the expression |
| 1226 | const Twine &NameStr = "" ///< Name of the instruction |
| 1227 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
| 1228 | Instruction::ICmp, pred, LHS, RHS, NameStr, |
| 1229 | &InsertAtEnd) { |
| 1230 | #ifndef NDEBUG |
| 1231 | AssertOK(); |
| 1232 | #endif |
| 1233 | } |
| 1234 | |
| 1235 | /// Constructor with no-insertion semantics |
| 1236 | ICmpInst( |
| 1237 | Predicate pred, ///< The predicate to use for the comparison |
| 1238 | Value *LHS, ///< The left-hand-side of the expression |
| 1239 | Value *RHS, ///< The right-hand-side of the expression |
| 1240 | const Twine &NameStr = "" ///< Name of the instruction |
| 1241 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
| 1242 | Instruction::ICmp, pred, LHS, RHS, NameStr) { |
| 1243 | #ifndef NDEBUG |
| 1244 | AssertOK(); |
| 1245 | #endif |
| 1246 | } |
| 1247 | |
| 1248 | /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc. |
| 1249 | /// @returns the predicate that would be the result if the operand were |
| 1250 | /// regarded as signed. |
| 1251 | /// Return the signed version of the predicate |
| 1252 | Predicate getSignedPredicate() const { |
| 1253 | return getSignedPredicate(getPredicate()); |
| 1254 | } |
| 1255 | |
| 1256 | /// This is a static version that you can use without an instruction. |
| 1257 | /// Return the signed version of the predicate. |
| 1258 | static Predicate getSignedPredicate(Predicate pred); |
| 1259 | |
| 1260 | /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc. |
| 1261 | /// @returns the predicate that would be the result if the operand were |
| 1262 | /// regarded as unsigned. |
| 1263 | /// Return the unsigned version of the predicate |
| 1264 | Predicate getUnsignedPredicate() const { |
| 1265 | return getUnsignedPredicate(getPredicate()); |
| 1266 | } |
| 1267 | |
| 1268 | /// This is a static version that you can use without an instruction. |
| 1269 | /// Return the unsigned version of the predicate. |
| 1270 | static Predicate getUnsignedPredicate(Predicate pred); |
| 1271 | |
| 1272 | /// Return true if this predicate is either EQ or NE. This also |
| 1273 | /// tests for commutativity. |
| 1274 | static bool isEquality(Predicate P) { |
| 1275 | return P == ICMP_EQ || P == ICMP_NE; |
| 1276 | } |
| 1277 | |
| 1278 | /// Return true if this predicate is either EQ or NE. This also |
| 1279 | /// tests for commutativity. |
| 1280 | bool isEquality() const { |
| 1281 | return isEquality(getPredicate()); |
| 1282 | } |
| 1283 | |
| 1284 | /// @returns true if the predicate of this ICmpInst is commutative |
| 1285 | /// Determine if this relation is commutative. |
| 1286 | bool isCommutative() const { return isEquality(); } |
| 1287 | |
| 1288 | /// Return true if the predicate is relational (not EQ or NE). |
| 1289 | /// |
| 1290 | bool isRelational() const { |
| 1291 | return !isEquality(); |
| 1292 | } |
| 1293 | |
| 1294 | /// Return true if the predicate is relational (not EQ or NE). |
| 1295 | /// |
| 1296 | static bool isRelational(Predicate P) { |
| 1297 | return !isEquality(P); |
| 1298 | } |
| 1299 | |
| 1300 | /// Return true if the predicate is SGT or UGT. |
| 1301 | /// |
| 1302 | static bool isGT(Predicate P) { |
| 1303 | return P == ICMP_SGT || P == ICMP_UGT; |
| 1304 | } |
| 1305 | |
| 1306 | /// Return true if the predicate is SLT or ULT. |
| 1307 | /// |
| 1308 | static bool isLT(Predicate P) { |
| 1309 | return P == ICMP_SLT || P == ICMP_ULT; |
| 1310 | } |
| 1311 | |
| 1312 | /// Return true if the predicate is SGE or UGE. |
| 1313 | /// |
| 1314 | static bool isGE(Predicate P) { |
| 1315 | return P == ICMP_SGE || P == ICMP_UGE; |
| 1316 | } |
| 1317 | |
| 1318 | /// Return true if the predicate is SLE or ULE. |
| 1319 | /// |
| 1320 | static bool isLE(Predicate P) { |
| 1321 | return P == ICMP_SLE || P == ICMP_ULE; |
| 1322 | } |
| 1323 | |
| 1324 | /// Returns the sequence of all ICmp predicates. |
| 1325 | /// |
| 1326 | static auto predicates() { return ICmpPredicates(); } |
| 1327 | |
| 1328 | /// Exchange the two operands to this instruction in such a way that it does |
| 1329 | /// not modify the semantics of the instruction. The predicate value may be |
| 1330 | /// changed to retain the same result if the predicate is order dependent |
| 1331 | /// (e.g. ult). |
| 1332 | /// Swap operands and adjust predicate. |
| 1333 | void swapOperands() { |
| 1334 | setPredicate(getSwappedPredicate()); |
| 1335 | Op<0>().swap(Op<1>()); |
| 1336 | } |
| 1337 | |
| 1338 | /// Return result of `LHS Pred RHS` comparison. |
| 1339 | static bool compare(const APInt &LHS, const APInt &RHS, |
| 1340 | ICmpInst::Predicate Pred); |
| 1341 | |
| 1342 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1343 | static bool classof(const Instruction *I) { |
| 1344 | return I->getOpcode() == Instruction::ICmp; |
| 1345 | } |
| 1346 | static bool classof(const Value *V) { |
| 1347 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1348 | } |
| 1349 | }; |
| 1350 | |
| 1351 | //===----------------------------------------------------------------------===// |
| 1352 | // FCmpInst Class |
| 1353 | //===----------------------------------------------------------------------===// |
| 1354 | |
| 1355 | /// This instruction compares its operands according to the predicate given |
| 1356 | /// to the constructor. It only operates on floating point values or packed |
| 1357 | /// vectors of floating point values. The operands must be identical types. |
| 1358 | /// Represents a floating point comparison operator. |
| 1359 | class FCmpInst: public CmpInst { |
| 1360 | void AssertOK() { |
| 1361 | assert(isFPPredicate() && "Invalid FCmp predicate value")(static_cast <bool> (isFPPredicate() && "Invalid FCmp predicate value" ) ? void (0) : __assert_fail ("isFPPredicate() && \"Invalid FCmp predicate value\"" , "llvm/include/llvm/IR/Instructions.h", 1361, __extension__ __PRETTY_FUNCTION__ )); |
| 1362 | assert(getOperand(0)->getType() == getOperand(1)->getType() &&(static_cast <bool> (getOperand(0)->getType() == getOperand (1)->getType() && "Both operands to FCmp instruction are not of the same type!" ) ? void (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to FCmp instruction are not of the same type!\"" , "llvm/include/llvm/IR/Instructions.h", 1363, __extension__ __PRETTY_FUNCTION__ )) |
| 1363 | "Both operands to FCmp instruction are not of the same type!")(static_cast <bool> (getOperand(0)->getType() == getOperand (1)->getType() && "Both operands to FCmp instruction are not of the same type!" ) ? void (0) : __assert_fail ("getOperand(0)->getType() == getOperand(1)->getType() && \"Both operands to FCmp instruction are not of the same type!\"" , "llvm/include/llvm/IR/Instructions.h", 1363, __extension__ __PRETTY_FUNCTION__ )); |
| 1364 | // Check that the operands are the right type |
| 1365 | assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&(static_cast <bool> (getOperand(0)->getType()->isFPOrFPVectorTy () && "Invalid operand types for FCmp instruction") ? void (0) : __assert_fail ("getOperand(0)->getType()->isFPOrFPVectorTy() && \"Invalid operand types for FCmp instruction\"" , "llvm/include/llvm/IR/Instructions.h", 1366, __extension__ __PRETTY_FUNCTION__ )) |
| 1366 | "Invalid operand types for FCmp instruction")(static_cast <bool> (getOperand(0)->getType()->isFPOrFPVectorTy () && "Invalid operand types for FCmp instruction") ? void (0) : __assert_fail ("getOperand(0)->getType()->isFPOrFPVectorTy() && \"Invalid operand types for FCmp instruction\"" , "llvm/include/llvm/IR/Instructions.h", 1366, __extension__ __PRETTY_FUNCTION__ )); |
| 1367 | } |
| 1368 | |
| 1369 | protected: |
| 1370 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 1371 | friend class Instruction; |
| 1372 | |
| 1373 | /// Clone an identical FCmpInst |
| 1374 | FCmpInst *cloneImpl() const; |
| 1375 | |
| 1376 | public: |
| 1377 | /// Constructor with insert-before-instruction semantics. |
| 1378 | FCmpInst( |
| 1379 | Instruction *InsertBefore, ///< Where to insert |
| 1380 | Predicate pred, ///< The predicate to use for the comparison |
| 1381 | Value *LHS, ///< The left-hand-side of the expression |
| 1382 | Value *RHS, ///< The right-hand-side of the expression |
| 1383 | const Twine &NameStr = "" ///< Name of the instruction |
| 1384 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
| 1385 | Instruction::FCmp, pred, LHS, RHS, NameStr, |
| 1386 | InsertBefore) { |
| 1387 | AssertOK(); |
| 1388 | } |
| 1389 | |
| 1390 | /// Constructor with insert-at-end semantics. |
| 1391 | FCmpInst( |
| 1392 | BasicBlock &InsertAtEnd, ///< Block to insert into. |
| 1393 | Predicate pred, ///< The predicate to use for the comparison |
| 1394 | Value *LHS, ///< The left-hand-side of the expression |
| 1395 | Value *RHS, ///< The right-hand-side of the expression |
| 1396 | const Twine &NameStr = "" ///< Name of the instruction |
| 1397 | ) : CmpInst(makeCmpResultType(LHS->getType()), |
| 1398 | Instruction::FCmp, pred, LHS, RHS, NameStr, |
| 1399 | &InsertAtEnd) { |
| 1400 | AssertOK(); |
| 1401 | } |
| 1402 | |
| 1403 | /// Constructor with no-insertion semantics |
| 1404 | FCmpInst( |
| 1405 | Predicate Pred, ///< The predicate to use for the comparison |
| 1406 | Value *LHS, ///< The left-hand-side of the expression |
| 1407 | Value *RHS, ///< The right-hand-side of the expression |
| 1408 | const Twine &NameStr = "", ///< Name of the instruction |
| 1409 | Instruction *FlagsSource = nullptr |
| 1410 | ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS, |
| 1411 | RHS, NameStr, nullptr, FlagsSource) { |
| 1412 | AssertOK(); |
| 1413 | } |
| 1414 | |
| 1415 | /// @returns true if the predicate of this instruction is EQ or NE. |
| 1416 | /// Determine if this is an equality predicate. |
| 1417 | static bool isEquality(Predicate Pred) { |
| 1418 | return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ || |
| 1419 | Pred == FCMP_UNE; |
| 1420 | } |
| 1421 | |
| 1422 | /// @returns true if the predicate of this instruction is EQ or NE. |
| 1423 | /// Determine if this is an equality predicate. |
| 1424 | bool isEquality() const { return isEquality(getPredicate()); } |
| 1425 | |
| 1426 | /// @returns true if the predicate of this instruction is commutative. |
| 1427 | /// Determine if this is a commutative predicate. |
| 1428 | bool isCommutative() const { |
| 1429 | return isEquality() || |
| 1430 | getPredicate() == FCMP_FALSE || |
| 1431 | getPredicate() == FCMP_TRUE || |
| 1432 | getPredicate() == FCMP_ORD || |
| 1433 | getPredicate() == FCMP_UNO; |
| 1434 | } |
| 1435 | |
| 1436 | /// @returns true if the predicate is relational (not EQ or NE). |
| 1437 | /// Determine if this a relational predicate. |
| 1438 | bool isRelational() const { return !isEquality(); } |
| 1439 | |
| 1440 | /// Exchange the two operands to this instruction in such a way that it does |
| 1441 | /// not modify the semantics of the instruction. The predicate value may be |
| 1442 | /// changed to retain the same result if the predicate is order dependent |
| 1443 | /// (e.g. ult). |
| 1444 | /// Swap operands and adjust predicate. |
| 1445 | void swapOperands() { |
| 1446 | setPredicate(getSwappedPredicate()); |
| 1447 | Op<0>().swap(Op<1>()); |
| 1448 | } |
| 1449 | |
| 1450 | /// Returns the sequence of all FCmp predicates. |
| 1451 | /// |
| 1452 | static auto predicates() { return FCmpPredicates(); } |
| 1453 | |
| 1454 | /// Return result of `LHS Pred RHS` comparison. |
| 1455 | static bool compare(const APFloat &LHS, const APFloat &RHS, |
| 1456 | FCmpInst::Predicate Pred); |
| 1457 | |
| 1458 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1459 | static bool classof(const Instruction *I) { |
| 1460 | return I->getOpcode() == Instruction::FCmp; |
| 1461 | } |
| 1462 | static bool classof(const Value *V) { |
| 1463 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1464 | } |
| 1465 | }; |
| 1466 | |
| 1467 | //===----------------------------------------------------------------------===// |
| 1468 | /// This class represents a function call, abstracting a target |
| 1469 | /// machine's calling convention. This class uses low bit of the SubClassData |
| 1470 | /// field to indicate whether or not this is a tail call. The rest of the bits |
| 1471 | /// hold the calling convention of the call. |
| 1472 | /// |
| 1473 | class CallInst : public CallBase { |
| 1474 | CallInst(const CallInst &CI); |
| 1475 | |
| 1476 | /// Construct a CallInst given a range of arguments. |
| 1477 | /// Construct a CallInst from a range of arguments |
| 1478 | inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1479 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, |
| 1480 | Instruction *InsertBefore); |
| 1481 | |
| 1482 | inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1483 | const Twine &NameStr, Instruction *InsertBefore) |
| 1484 | : CallInst(Ty, Func, Args, std::nullopt, NameStr, InsertBefore) {} |
| 1485 | |
| 1486 | /// Construct a CallInst given a range of arguments. |
| 1487 | /// Construct a CallInst from a range of arguments |
| 1488 | inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1489 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, |
| 1490 | BasicBlock *InsertAtEnd); |
| 1491 | |
| 1492 | explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr, |
| 1493 | Instruction *InsertBefore); |
| 1494 | |
| 1495 | CallInst(FunctionType *ty, Value *F, const Twine &NameStr, |
| 1496 | BasicBlock *InsertAtEnd); |
| 1497 | |
| 1498 | void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args, |
| 1499 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr); |
| 1500 | void init(FunctionType *FTy, Value *Func, const Twine &NameStr); |
| 1501 | |
| 1502 | /// Compute the number of operands to allocate. |
| 1503 | static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) { |
| 1504 | // We need one operand for the called function, plus the input operand |
| 1505 | // counts provided. |
| 1506 | return 1 + NumArgs + NumBundleInputs; |
| 1507 | } |
| 1508 | |
| 1509 | protected: |
| 1510 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 1511 | friend class Instruction; |
| 1512 | |
| 1513 | CallInst *cloneImpl() const; |
| 1514 | |
| 1515 | public: |
| 1516 | static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "", |
| 1517 | Instruction *InsertBefore = nullptr) { |
| 1518 | return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore); |
| 1519 | } |
| 1520 | |
| 1521 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1522 | const Twine &NameStr, |
| 1523 | Instruction *InsertBefore = nullptr) { |
| 1524 | return new (ComputeNumOperands(Args.size())) |
| 1525 | CallInst(Ty, Func, Args, std::nullopt, NameStr, InsertBefore); |
| 1526 | } |
| 1527 | |
| 1528 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1529 | ArrayRef<OperandBundleDef> Bundles = std::nullopt, |
| 1530 | const Twine &NameStr = "", |
| 1531 | Instruction *InsertBefore = nullptr) { |
| 1532 | const int NumOperands = |
| 1533 | ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); |
| 1534 | const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
| 1535 | |
| 1536 | return new (NumOperands, DescriptorBytes) |
| 1537 | CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore); |
| 1538 | } |
| 1539 | |
| 1540 | static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr, |
| 1541 | BasicBlock *InsertAtEnd) { |
| 1542 | return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd); |
| 1543 | } |
| 1544 | |
| 1545 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1546 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 1547 | return new (ComputeNumOperands(Args.size())) |
| 1548 | CallInst(Ty, Func, Args, std::nullopt, NameStr, InsertAtEnd); |
| 1549 | } |
| 1550 | |
| 1551 | static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1552 | ArrayRef<OperandBundleDef> Bundles, |
| 1553 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 1554 | const int NumOperands = |
| 1555 | ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); |
| 1556 | const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
| 1557 | |
| 1558 | return new (NumOperands, DescriptorBytes) |
| 1559 | CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd); |
| 1560 | } |
| 1561 | |
| 1562 | static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "", |
| 1563 | Instruction *InsertBefore = nullptr) { |
| 1564 | return Create(Func.getFunctionType(), Func.getCallee(), NameStr, |
| 1565 | InsertBefore); |
| 1566 | } |
| 1567 | |
| 1568 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, |
| 1569 | ArrayRef<OperandBundleDef> Bundles = std::nullopt, |
| 1570 | const Twine &NameStr = "", |
| 1571 | Instruction *InsertBefore = nullptr) { |
| 1572 | return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles, |
| 1573 | NameStr, InsertBefore); |
| 1574 | } |
| 1575 | |
| 1576 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, |
| 1577 | const Twine &NameStr, |
| 1578 | Instruction *InsertBefore = nullptr) { |
| 1579 | return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr, |
| 1580 | InsertBefore); |
| 1581 | } |
| 1582 | |
| 1583 | static CallInst *Create(FunctionCallee Func, const Twine &NameStr, |
| 1584 | BasicBlock *InsertAtEnd) { |
| 1585 | return Create(Func.getFunctionType(), Func.getCallee(), NameStr, |
| 1586 | InsertAtEnd); |
| 1587 | } |
| 1588 | |
| 1589 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, |
| 1590 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 1591 | return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr, |
| 1592 | InsertAtEnd); |
| 1593 | } |
| 1594 | |
| 1595 | static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args, |
| 1596 | ArrayRef<OperandBundleDef> Bundles, |
| 1597 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 1598 | return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles, |
| 1599 | NameStr, InsertAtEnd); |
| 1600 | } |
| 1601 | |
| 1602 | /// Create a clone of \p CI with a different set of operand bundles and |
| 1603 | /// insert it before \p InsertPt. |
| 1604 | /// |
| 1605 | /// The returned call instruction is identical \p CI in every way except that |
| 1606 | /// the operand bundles for the new instruction are set to the operand bundles |
| 1607 | /// in \p Bundles. |
| 1608 | static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles, |
| 1609 | Instruction *InsertPt = nullptr); |
| 1610 | |
| 1611 | /// Generate the IR for a call to malloc: |
| 1612 | /// 1. Compute the malloc call's argument as the specified type's size, |
| 1613 | /// possibly multiplied by the array size if the array size is not |
| 1614 | /// constant 1. |
| 1615 | /// 2. Call malloc with that argument. |
| 1616 | /// 3. Bitcast the result of the malloc call to the specified type. |
| 1617 | static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy, |
| 1618 | Type *AllocTy, Value *AllocSize, |
| 1619 | Value *ArraySize = nullptr, |
| 1620 | Function *MallocF = nullptr, |
| 1621 | const Twine &Name = ""); |
| 1622 | static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy, |
| 1623 | Type *AllocTy, Value *AllocSize, |
| 1624 | Value *ArraySize = nullptr, |
| 1625 | Function *MallocF = nullptr, |
| 1626 | const Twine &Name = ""); |
| 1627 | static Instruction * |
| 1628 | CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy, Type *AllocTy, |
| 1629 | Value *AllocSize, Value *ArraySize = nullptr, |
| 1630 | ArrayRef<OperandBundleDef> Bundles = std::nullopt, |
| 1631 | Function *MallocF = nullptr, const Twine &Name = ""); |
| 1632 | static Instruction * |
| 1633 | CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy, Type *AllocTy, |
| 1634 | Value *AllocSize, Value *ArraySize = nullptr, |
| 1635 | ArrayRef<OperandBundleDef> Bundles = std::nullopt, |
| 1636 | Function *MallocF = nullptr, const Twine &Name = ""); |
| 1637 | /// Generate the IR for a call to the builtin free function. |
| 1638 | static Instruction *CreateFree(Value *Source, Instruction *InsertBefore); |
| 1639 | static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd); |
| 1640 | static Instruction *CreateFree(Value *Source, |
| 1641 | ArrayRef<OperandBundleDef> Bundles, |
| 1642 | Instruction *InsertBefore); |
| 1643 | static Instruction *CreateFree(Value *Source, |
| 1644 | ArrayRef<OperandBundleDef> Bundles, |
| 1645 | BasicBlock *InsertAtEnd); |
| 1646 | |
| 1647 | // Note that 'musttail' implies 'tail'. |
| 1648 | enum TailCallKind : unsigned { |
| 1649 | TCK_None = 0, |
| 1650 | TCK_Tail = 1, |
| 1651 | TCK_MustTail = 2, |
| 1652 | TCK_NoTail = 3, |
| 1653 | TCK_LAST = TCK_NoTail |
| 1654 | }; |
| 1655 | |
| 1656 | using TailCallKindField = Bitfield::Element<TailCallKind, 0, 2, TCK_LAST>; |
| 1657 | static_assert( |
| 1658 | Bitfield::areContiguous<TailCallKindField, CallBase::CallingConvField>(), |
| 1659 | "Bitfields must be contiguous"); |
| 1660 | |
| 1661 | TailCallKind getTailCallKind() const { |
| 1662 | return getSubclassData<TailCallKindField>(); |
| 1663 | } |
| 1664 | |
| 1665 | bool isTailCall() const { |
| 1666 | TailCallKind Kind = getTailCallKind(); |
| 1667 | return Kind == TCK_Tail || Kind == TCK_MustTail; |
| 1668 | } |
| 1669 | |
| 1670 | bool isMustTailCall() const { return getTailCallKind() == TCK_MustTail; } |
| 1671 | |
| 1672 | bool isNoTailCall() const { return getTailCallKind() == TCK_NoTail; } |
| 1673 | |
| 1674 | void setTailCallKind(TailCallKind TCK) { |
| 1675 | setSubclassData<TailCallKindField>(TCK); |
| 1676 | } |
| 1677 | |
| 1678 | void setTailCall(bool IsTc = true) { |
| 1679 | setTailCallKind(IsTc ? TCK_Tail : TCK_None); |
| 1680 | } |
| 1681 | |
| 1682 | /// Return true if the call can return twice |
| 1683 | bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); } |
| 1684 | void setCanReturnTwice() { addFnAttr(Attribute::ReturnsTwice); } |
| 1685 | |
| 1686 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1687 | static bool classof(const Instruction *I) { |
| 1688 | return I->getOpcode() == Instruction::Call; |
| 1689 | } |
| 1690 | static bool classof(const Value *V) { |
| 1691 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1692 | } |
| 1693 | |
| 1694 | /// Updates profile metadata by scaling it by \p S / \p T. |
| 1695 | void updateProfWeight(uint64_t S, uint64_t T); |
| 1696 | |
| 1697 | private: |
| 1698 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 1699 | // method so that subclasses cannot accidentally use it. |
| 1700 | template <typename Bitfield> |
| 1701 | void setSubclassData(typename Bitfield::Type Value) { |
| 1702 | Instruction::setSubclassData<Bitfield>(Value); |
| 1703 | } |
| 1704 | }; |
| 1705 | |
| 1706 | CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1707 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, |
| 1708 | BasicBlock *InsertAtEnd) |
| 1709 | : CallBase(Ty->getReturnType(), Instruction::Call, |
| 1710 | OperandTraits<CallBase>::op_end(this) - |
| 1711 | (Args.size() + CountBundleInputs(Bundles) + 1), |
| 1712 | unsigned(Args.size() + CountBundleInputs(Bundles) + 1), |
| 1713 | InsertAtEnd) { |
| 1714 | init(Ty, Func, Args, Bundles, NameStr); |
| 1715 | } |
| 1716 | |
| 1717 | CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, |
| 1718 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, |
| 1719 | Instruction *InsertBefore) |
| 1720 | : CallBase(Ty->getReturnType(), Instruction::Call, |
| 1721 | OperandTraits<CallBase>::op_end(this) - |
| 1722 | (Args.size() + CountBundleInputs(Bundles) + 1), |
| 1723 | unsigned(Args.size() + CountBundleInputs(Bundles) + 1), |
| 1724 | InsertBefore) { |
| 1725 | init(Ty, Func, Args, Bundles, NameStr); |
| 1726 | } |
| 1727 | |
| 1728 | //===----------------------------------------------------------------------===// |
| 1729 | // SelectInst Class |
| 1730 | //===----------------------------------------------------------------------===// |
| 1731 | |
| 1732 | /// This class represents the LLVM 'select' instruction. |
| 1733 | /// |
| 1734 | class SelectInst : public Instruction { |
| 1735 | SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr, |
| 1736 | Instruction *InsertBefore) |
| 1737 | : Instruction(S1->getType(), Instruction::Select, |
| 1738 | &Op<0>(), 3, InsertBefore) { |
| 1739 | init(C, S1, S2); |
| 1740 | setName(NameStr); |
| 1741 | } |
| 1742 | |
| 1743 | SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr, |
| 1744 | BasicBlock *InsertAtEnd) |
| 1745 | : Instruction(S1->getType(), Instruction::Select, |
| 1746 | &Op<0>(), 3, InsertAtEnd) { |
| 1747 | init(C, S1, S2); |
| 1748 | setName(NameStr); |
| 1749 | } |
| 1750 | |
| 1751 | void init(Value *C, Value *S1, Value *S2) { |
| 1752 | assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select")(static_cast <bool> (!areInvalidOperands(C, S1, S2) && "Invalid operands for select") ? void (0) : __assert_fail ("!areInvalidOperands(C, S1, S2) && \"Invalid operands for select\"" , "llvm/include/llvm/IR/Instructions.h", 1752, __extension__ __PRETTY_FUNCTION__ )); |
| 1753 | Op<0>() = C; |
| 1754 | Op<1>() = S1; |
| 1755 | Op<2>() = S2; |
| 1756 | } |
| 1757 | |
| 1758 | protected: |
| 1759 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 1760 | friend class Instruction; |
| 1761 | |
| 1762 | SelectInst *cloneImpl() const; |
| 1763 | |
| 1764 | public: |
| 1765 | static SelectInst *Create(Value *C, Value *S1, Value *S2, |
| 1766 | const Twine &NameStr = "", |
| 1767 | Instruction *InsertBefore = nullptr, |
| 1768 | Instruction *MDFrom = nullptr) { |
| 1769 | SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore); |
| 1770 | if (MDFrom) |
| 1771 | Sel->copyMetadata(*MDFrom); |
| 1772 | return Sel; |
| 1773 | } |
| 1774 | |
| 1775 | static SelectInst *Create(Value *C, Value *S1, Value *S2, |
| 1776 | const Twine &NameStr, |
| 1777 | BasicBlock *InsertAtEnd) { |
| 1778 | return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd); |
| 1779 | } |
| 1780 | |
| 1781 | const Value *getCondition() const { return Op<0>(); } |
| 1782 | const Value *getTrueValue() const { return Op<1>(); } |
| 1783 | const Value *getFalseValue() const { return Op<2>(); } |
| 1784 | Value *getCondition() { return Op<0>(); } |
| 1785 | Value *getTrueValue() { return Op<1>(); } |
| 1786 | Value *getFalseValue() { return Op<2>(); } |
| 1787 | |
| 1788 | void setCondition(Value *V) { Op<0>() = V; } |
| 1789 | void setTrueValue(Value *V) { Op<1>() = V; } |
| 1790 | void setFalseValue(Value *V) { Op<2>() = V; } |
| 1791 | |
| 1792 | /// Swap the true and false values of the select instruction. |
| 1793 | /// This doesn't swap prof metadata. |
| 1794 | void swapValues() { Op<1>().swap(Op<2>()); } |
| 1795 | |
| 1796 | /// Return a string if the specified operands are invalid |
| 1797 | /// for a select operation, otherwise return null. |
| 1798 | static const char *areInvalidOperands(Value *Cond, Value *True, Value *False); |
| 1799 | |
| 1800 | /// Transparently provide more efficient getOperand methods. |
| 1801 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 1802 | |
| 1803 | OtherOps getOpcode() const { |
| 1804 | return static_cast<OtherOps>(Instruction::getOpcode()); |
| 1805 | } |
| 1806 | |
| 1807 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1808 | static bool classof(const Instruction *I) { |
| 1809 | return I->getOpcode() == Instruction::Select; |
| 1810 | } |
| 1811 | static bool classof(const Value *V) { |
| 1812 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1813 | } |
| 1814 | }; |
| 1815 | |
| 1816 | template <> |
| 1817 | struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> { |
| 1818 | }; |
| 1819 | |
| 1820 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)SelectInst::op_iterator SelectInst::op_begin() { return OperandTraits <SelectInst>::op_begin(this); } SelectInst::const_op_iterator SelectInst::op_begin() const { return OperandTraits<SelectInst >::op_begin(const_cast<SelectInst*>(this)); } SelectInst ::op_iterator SelectInst::op_end() { return OperandTraits< SelectInst>::op_end(this); } SelectInst::const_op_iterator SelectInst::op_end() const { return OperandTraits<SelectInst >::op_end(const_cast<SelectInst*>(this)); } Value *SelectInst ::getOperand(unsigned i_nocapture) const { (static_cast <bool > (i_nocapture < OperandTraits<SelectInst>::operands (this) && "getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<SelectInst>::operands(this) && \"getOperand() out of range!\"" , "llvm/include/llvm/IR/Instructions.h", 1820, __extension__ __PRETTY_FUNCTION__ )); return cast_or_null<Value>( OperandTraits<SelectInst >::op_begin(const_cast<SelectInst*>(this))[i_nocapture ].get()); } void SelectInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (static_cast <bool> (i_nocapture < OperandTraits<SelectInst>::operands(this) && "setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<SelectInst>::operands(this) && \"setOperand() out of range!\"" , "llvm/include/llvm/IR/Instructions.h", 1820, __extension__ __PRETTY_FUNCTION__ )); OperandTraits<SelectInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned SelectInst::getNumOperands() const { return OperandTraits<SelectInst>::operands(this); } template <int Idx_nocapture> Use &SelectInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &SelectInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
| 1821 | |
| 1822 | //===----------------------------------------------------------------------===// |
| 1823 | // VAArgInst Class |
| 1824 | //===----------------------------------------------------------------------===// |
| 1825 | |
| 1826 | /// This class represents the va_arg llvm instruction, which returns |
| 1827 | /// an argument of the specified type given a va_list and increments that list |
| 1828 | /// |
| 1829 | class VAArgInst : public UnaryInstruction { |
| 1830 | protected: |
| 1831 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 1832 | friend class Instruction; |
| 1833 | |
| 1834 | VAArgInst *cloneImpl() const; |
| 1835 | |
| 1836 | public: |
| 1837 | VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "", |
| 1838 | Instruction *InsertBefore = nullptr) |
| 1839 | : UnaryInstruction(Ty, VAArg, List, InsertBefore) { |
| 1840 | setName(NameStr); |
| 1841 | } |
| 1842 | |
| 1843 | VAArgInst(Value *List, Type *Ty, const Twine &NameStr, |
| 1844 | BasicBlock *InsertAtEnd) |
| 1845 | : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) { |
| 1846 | setName(NameStr); |
| 1847 | } |
| 1848 | |
| 1849 | Value *getPointerOperand() { return getOperand(0); } |
| 1850 | const Value *getPointerOperand() const { return getOperand(0); } |
| 1851 | static unsigned getPointerOperandIndex() { return 0U; } |
| 1852 | |
| 1853 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1854 | static bool classof(const Instruction *I) { |
| 1855 | return I->getOpcode() == VAArg; |
| 1856 | } |
| 1857 | static bool classof(const Value *V) { |
| 1858 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1859 | } |
| 1860 | }; |
| 1861 | |
| 1862 | //===----------------------------------------------------------------------===// |
| 1863 | // ExtractElementInst Class |
| 1864 | //===----------------------------------------------------------------------===// |
| 1865 | |
| 1866 | /// This instruction extracts a single (scalar) |
| 1867 | /// element from a VectorType value |
| 1868 | /// |
| 1869 | class ExtractElementInst : public Instruction { |
| 1870 | ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "", |
| 1871 | Instruction *InsertBefore = nullptr); |
| 1872 | ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr, |
| 1873 | BasicBlock *InsertAtEnd); |
| 1874 | |
| 1875 | protected: |
| 1876 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 1877 | friend class Instruction; |
| 1878 | |
| 1879 | ExtractElementInst *cloneImpl() const; |
| 1880 | |
| 1881 | public: |
| 1882 | static ExtractElementInst *Create(Value *Vec, Value *Idx, |
| 1883 | const Twine &NameStr = "", |
| 1884 | Instruction *InsertBefore = nullptr) { |
| 1885 | return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore); |
| 1886 | } |
| 1887 | |
| 1888 | static ExtractElementInst *Create(Value *Vec, Value *Idx, |
| 1889 | const Twine &NameStr, |
| 1890 | BasicBlock *InsertAtEnd) { |
| 1891 | return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd); |
| 1892 | } |
| 1893 | |
| 1894 | /// Return true if an extractelement instruction can be |
| 1895 | /// formed with the specified operands. |
| 1896 | static bool isValidOperands(const Value *Vec, const Value *Idx); |
| 1897 | |
| 1898 | Value *getVectorOperand() { return Op<0>(); } |
| 1899 | Value *getIndexOperand() { return Op<1>(); } |
| 1900 | const Value *getVectorOperand() const { return Op<0>(); } |
| 1901 | const Value *getIndexOperand() const { return Op<1>(); } |
| 1902 | |
| 1903 | VectorType *getVectorOperandType() const { |
| 1904 | return cast<VectorType>(getVectorOperand()->getType()); |
| 1905 | } |
| 1906 | |
| 1907 | /// Transparently provide more efficient getOperand methods. |
| 1908 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 1909 | |
| 1910 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1911 | static bool classof(const Instruction *I) { |
| 1912 | return I->getOpcode() == Instruction::ExtractElement; |
| 1913 | } |
| 1914 | static bool classof(const Value *V) { |
| 1915 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1916 | } |
| 1917 | }; |
| 1918 | |
| 1919 | template <> |
| 1920 | struct OperandTraits<ExtractElementInst> : |
| 1921 | public FixedNumOperandTraits<ExtractElementInst, 2> { |
| 1922 | }; |
| 1923 | |
| 1924 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)ExtractElementInst::op_iterator ExtractElementInst::op_begin( ) { return OperandTraits<ExtractElementInst>::op_begin( this); } ExtractElementInst::const_op_iterator ExtractElementInst ::op_begin() const { return OperandTraits<ExtractElementInst >::op_begin(const_cast<ExtractElementInst*>(this)); } ExtractElementInst::op_iterator ExtractElementInst::op_end() { return OperandTraits<ExtractElementInst>::op_end(this ); } ExtractElementInst::const_op_iterator ExtractElementInst ::op_end() const { return OperandTraits<ExtractElementInst >::op_end(const_cast<ExtractElementInst*>(this)); } Value *ExtractElementInst::getOperand(unsigned i_nocapture) const { (static_cast <bool> (i_nocapture < OperandTraits< ExtractElementInst>::operands(this) && "getOperand() out of range!" ) ? void (0) : __assert_fail ("i_nocapture < OperandTraits<ExtractElementInst>::operands(this) && \"getOperand() out of range!\"" , "llvm/include/llvm/IR/Instructions.h", 1924, __extension__ __PRETTY_FUNCTION__ )); return cast_or_null<Value>( OperandTraits<ExtractElementInst >::op_begin(const_cast<ExtractElementInst*>(this))[i_nocapture ].get()); } void ExtractElementInst::setOperand(unsigned i_nocapture , Value *Val_nocapture) { (static_cast <bool> (i_nocapture < OperandTraits<ExtractElementInst>::operands(this) && "setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<ExtractElementInst>::operands(this) && \"setOperand() out of range!\"" , "llvm/include/llvm/IR/Instructions.h", 1924, __extension__ __PRETTY_FUNCTION__ )); OperandTraits<ExtractElementInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned ExtractElementInst::getNumOperands () const { return OperandTraits<ExtractElementInst>::operands (this); } template <int Idx_nocapture> Use &ExtractElementInst ::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &ExtractElementInst ::Op() const { return this->OpFrom<Idx_nocapture>(this ); } |
| 1925 | |
| 1926 | //===----------------------------------------------------------------------===// |
| 1927 | // InsertElementInst Class |
| 1928 | //===----------------------------------------------------------------------===// |
| 1929 | |
| 1930 | /// This instruction inserts a single (scalar) |
| 1931 | /// element into a VectorType value |
| 1932 | /// |
| 1933 | class InsertElementInst : public Instruction { |
| 1934 | InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, |
| 1935 | const Twine &NameStr = "", |
| 1936 | Instruction *InsertBefore = nullptr); |
| 1937 | InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr, |
| 1938 | BasicBlock *InsertAtEnd); |
| 1939 | |
| 1940 | protected: |
| 1941 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 1942 | friend class Instruction; |
| 1943 | |
| 1944 | InsertElementInst *cloneImpl() const; |
| 1945 | |
| 1946 | public: |
| 1947 | static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx, |
| 1948 | const Twine &NameStr = "", |
| 1949 | Instruction *InsertBefore = nullptr) { |
| 1950 | return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore); |
| 1951 | } |
| 1952 | |
| 1953 | static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx, |
| 1954 | const Twine &NameStr, |
| 1955 | BasicBlock *InsertAtEnd) { |
| 1956 | return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd); |
| 1957 | } |
| 1958 | |
| 1959 | /// Return true if an insertelement instruction can be |
| 1960 | /// formed with the specified operands. |
| 1961 | static bool isValidOperands(const Value *Vec, const Value *NewElt, |
| 1962 | const Value *Idx); |
| 1963 | |
| 1964 | /// Overload to return most specific vector type. |
| 1965 | /// |
| 1966 | VectorType *getType() const { |
| 1967 | return cast<VectorType>(Instruction::getType()); |
| 1968 | } |
| 1969 | |
| 1970 | /// Transparently provide more efficient getOperand methods. |
| 1971 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 1972 | |
| 1973 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 1974 | static bool classof(const Instruction *I) { |
| 1975 | return I->getOpcode() == Instruction::InsertElement; |
| 1976 | } |
| 1977 | static bool classof(const Value *V) { |
| 1978 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 1979 | } |
| 1980 | }; |
| 1981 | |
| 1982 | template <> |
| 1983 | struct OperandTraits<InsertElementInst> : |
| 1984 | public FixedNumOperandTraits<InsertElementInst, 3> { |
| 1985 | }; |
| 1986 | |
| 1987 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)InsertElementInst::op_iterator InsertElementInst::op_begin() { return OperandTraits<InsertElementInst>::op_begin(this ); } InsertElementInst::const_op_iterator InsertElementInst:: op_begin() const { return OperandTraits<InsertElementInst> ::op_begin(const_cast<InsertElementInst*>(this)); } InsertElementInst ::op_iterator InsertElementInst::op_end() { return OperandTraits <InsertElementInst>::op_end(this); } InsertElementInst:: const_op_iterator InsertElementInst::op_end() const { return OperandTraits <InsertElementInst>::op_end(const_cast<InsertElementInst *>(this)); } Value *InsertElementInst::getOperand(unsigned i_nocapture) const { (static_cast <bool> (i_nocapture < OperandTraits<InsertElementInst>::operands(this) && "getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<InsertElementInst>::operands(this) && \"getOperand() out of range!\"" , "llvm/include/llvm/IR/Instructions.h", 1987, __extension__ __PRETTY_FUNCTION__ )); return cast_or_null<Value>( OperandTraits<InsertElementInst >::op_begin(const_cast<InsertElementInst*>(this))[i_nocapture ].get()); } void InsertElementInst::setOperand(unsigned i_nocapture , Value *Val_nocapture) { (static_cast <bool> (i_nocapture < OperandTraits<InsertElementInst>::operands(this) && "setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<InsertElementInst>::operands(this) && \"setOperand() out of range!\"" , "llvm/include/llvm/IR/Instructions.h", 1987, __extension__ __PRETTY_FUNCTION__ )); OperandTraits<InsertElementInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned InsertElementInst::getNumOperands () const { return OperandTraits<InsertElementInst>::operands (this); } template <int Idx_nocapture> Use &InsertElementInst ::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &InsertElementInst ::Op() const { return this->OpFrom<Idx_nocapture>(this ); } |
| 1988 | |
| 1989 | //===----------------------------------------------------------------------===// |
| 1990 | // ShuffleVectorInst Class |
| 1991 | //===----------------------------------------------------------------------===// |
| 1992 | |
| 1993 | constexpr int UndefMaskElem = -1; |
| 1994 | |
| 1995 | /// This instruction constructs a fixed permutation of two |
| 1996 | /// input vectors. |
| 1997 | /// |
| 1998 | /// For each element of the result vector, the shuffle mask selects an element |
| 1999 | /// from one of the input vectors to copy to the result. Non-negative elements |
| 2000 | /// in the mask represent an index into the concatenated pair of input vectors. |
| 2001 | /// UndefMaskElem (-1) specifies that the result element is undefined. |
| 2002 | /// |
| 2003 | /// For scalable vectors, all the elements of the mask must be 0 or -1. This |
| 2004 | /// requirement may be relaxed in the future. |
| 2005 | class ShuffleVectorInst : public Instruction { |
| 2006 | SmallVector<int, 4> ShuffleMask; |
| 2007 | Constant *ShuffleMaskForBitcode; |
| 2008 | |
| 2009 | protected: |
| 2010 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 2011 | friend class Instruction; |
| 2012 | |
| 2013 | ShuffleVectorInst *cloneImpl() const; |
| 2014 | |
| 2015 | public: |
| 2016 | ShuffleVectorInst(Value *V1, Value *Mask, const Twine &NameStr = "", |
| 2017 | Instruction *InsertBefore = nullptr); |
| 2018 | ShuffleVectorInst(Value *V1, Value *Mask, const Twine &NameStr, |
| 2019 | BasicBlock *InsertAtEnd); |
| 2020 | ShuffleVectorInst(Value *V1, ArrayRef<int> Mask, const Twine &NameStr = "", |
| 2021 | Instruction *InsertBefore = nullptr); |
| 2022 | ShuffleVectorInst(Value *V1, ArrayRef<int> Mask, const Twine &NameStr, |
| 2023 | BasicBlock *InsertAtEnd); |
| 2024 | ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, |
| 2025 | const Twine &NameStr = "", |
| 2026 | Instruction *InsertBefor = nullptr); |
| 2027 | ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, |
| 2028 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 2029 | ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask, |
| 2030 | const Twine &NameStr = "", |
| 2031 | Instruction *InsertBefor = nullptr); |
| 2032 | ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask, |
| 2033 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 2034 | |
| 2035 | void *operator new(size_t S) { return User::operator new(S, 2); } |
| 2036 | void operator delete(void *Ptr) { return User::operator delete(Ptr); } |
| 2037 | |
| 2038 | /// Swap the operands and adjust the mask to preserve the semantics |
| 2039 | /// of the instruction. |
| 2040 | void commute(); |
| 2041 | |
| 2042 | /// Return true if a shufflevector instruction can be |
| 2043 | /// formed with the specified operands. |
| 2044 | static bool isValidOperands(const Value *V1, const Value *V2, |
| 2045 | const Value *Mask); |
| 2046 | static bool isValidOperands(const Value *V1, const Value *V2, |
| 2047 | ArrayRef<int> Mask); |
| 2048 | |
| 2049 | /// Overload to return most specific vector type. |
| 2050 | /// |
| 2051 | VectorType *getType() const { |
| 2052 | return cast<VectorType>(Instruction::getType()); |
| 2053 | } |
| 2054 | |
| 2055 | /// Transparently provide more efficient getOperand methods. |
| 2056 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 2057 | |
| 2058 | /// Return the shuffle mask value of this instruction for the given element |
| 2059 | /// index. Return UndefMaskElem if the element is undef. |
| 2060 | int getMaskValue(unsigned Elt) const { return ShuffleMask[Elt]; } |
| 2061 | |
| 2062 | /// Convert the input shuffle mask operand to a vector of integers. Undefined |
| 2063 | /// elements of the mask are returned as UndefMaskElem. |
| 2064 | static void getShuffleMask(const Constant *Mask, |
| 2065 | SmallVectorImpl<int> &Result); |
| 2066 | |
| 2067 | /// Return the mask for this instruction as a vector of integers. Undefined |
| 2068 | /// elements of the mask are returned as UndefMaskElem. |
| 2069 | void getShuffleMask(SmallVectorImpl<int> &Result) const { |
| 2070 | Result.assign(ShuffleMask.begin(), ShuffleMask.end()); |
| 2071 | } |
| 2072 | |
| 2073 | /// Return the mask for this instruction, for use in bitcode. |
| 2074 | /// |
| 2075 | /// TODO: This is temporary until we decide a new bitcode encoding for |
| 2076 | /// shufflevector. |
| 2077 | Constant *getShuffleMaskForBitcode() const { return ShuffleMaskForBitcode; } |
| 2078 | |
| 2079 | static Constant *convertShuffleMaskForBitcode(ArrayRef<int> Mask, |
| 2080 | Type *ResultTy); |
| 2081 | |
| 2082 | void setShuffleMask(ArrayRef<int> Mask); |
| 2083 | |
| 2084 | ArrayRef<int> getShuffleMask() const { return ShuffleMask; } |
| 2085 | |
| 2086 | /// Return true if this shuffle returns a vector with a different number of |
| 2087 | /// elements than its source vectors. |
| 2088 | /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3> |
| 2089 | /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5> |
| 2090 | bool changesLength() const { |
| 2091 | unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType()) |
| 2092 | ->getElementCount() |
| 2093 | .getKnownMinValue(); |
| 2094 | unsigned NumMaskElts = ShuffleMask.size(); |
| 2095 | return NumSourceElts != NumMaskElts; |
| 2096 | } |
| 2097 | |
| 2098 | /// Return true if this shuffle returns a vector with a greater number of |
| 2099 | /// elements than its source vectors. |
| 2100 | /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3> |
| 2101 | bool increasesLength() const { |
| 2102 | unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType()) |
| 2103 | ->getElementCount() |
| 2104 | .getKnownMinValue(); |
| 2105 | unsigned NumMaskElts = ShuffleMask.size(); |
| 2106 | return NumSourceElts < NumMaskElts; |
| 2107 | } |
| 2108 | |
| 2109 | /// Return true if this shuffle mask chooses elements from exactly one source |
| 2110 | /// vector. |
| 2111 | /// Example: <7,5,undef,7> |
| 2112 | /// This assumes that vector operands are the same length as the mask. |
| 2113 | static bool isSingleSourceMask(ArrayRef<int> Mask); |
| 2114 | static bool isSingleSourceMask(const Constant *Mask) { |
| 2115 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy( ) && "Shuffle needs vector constant.") ? void (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\"" , "llvm/include/llvm/IR/Instructions.h", 2115, __extension__ __PRETTY_FUNCTION__ )); |
| 2116 | SmallVector<int, 16> MaskAsInts; |
| 2117 | getShuffleMask(Mask, MaskAsInts); |
| 2118 | return isSingleSourceMask(MaskAsInts); |
| 2119 | } |
| 2120 | |
| 2121 | /// Return true if this shuffle chooses elements from exactly one source |
| 2122 | /// vector without changing the length of that vector. |
| 2123 | /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3> |
| 2124 | /// TODO: Optionally allow length-changing shuffles. |
| 2125 | bool isSingleSource() const { |
| 2126 | return !changesLength() && isSingleSourceMask(ShuffleMask); |
| 2127 | } |
| 2128 | |
| 2129 | /// Return true if this shuffle mask chooses elements from exactly one source |
| 2130 | /// vector without lane crossings. A shuffle using this mask is not |
| 2131 | /// necessarily a no-op because it may change the number of elements from its |
| 2132 | /// input vectors or it may provide demanded bits knowledge via undef lanes. |
| 2133 | /// Example: <undef,undef,2,3> |
| 2134 | static bool isIdentityMask(ArrayRef<int> Mask); |
| 2135 | static bool isIdentityMask(const Constant *Mask) { |
| 2136 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy( ) && "Shuffle needs vector constant.") ? void (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\"" , "llvm/include/llvm/IR/Instructions.h", 2136, __extension__ __PRETTY_FUNCTION__ )); |
| 2137 | |
| 2138 | // Not possible to express a shuffle mask for a scalable vector for this |
| 2139 | // case. |
| 2140 | if (isa<ScalableVectorType>(Mask->getType())) |
| 2141 | return false; |
| 2142 | |
| 2143 | SmallVector<int, 16> MaskAsInts; |
| 2144 | getShuffleMask(Mask, MaskAsInts); |
| 2145 | return isIdentityMask(MaskAsInts); |
| 2146 | } |
| 2147 | |
| 2148 | /// Return true if this shuffle chooses elements from exactly one source |
| 2149 | /// vector without lane crossings and does not change the number of elements |
| 2150 | /// from its input vectors. |
| 2151 | /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef> |
| 2152 | bool isIdentity() const { |
| 2153 | // Not possible to express a shuffle mask for a scalable vector for this |
| 2154 | // case. |
| 2155 | if (isa<ScalableVectorType>(getType())) |
| 2156 | return false; |
| 2157 | |
| 2158 | return !changesLength() && isIdentityMask(ShuffleMask); |
| 2159 | } |
| 2160 | |
| 2161 | /// Return true if this shuffle lengthens exactly one source vector with |
| 2162 | /// undefs in the high elements. |
| 2163 | bool isIdentityWithPadding() const; |
| 2164 | |
| 2165 | /// Return true if this shuffle extracts the first N elements of exactly one |
| 2166 | /// source vector. |
| 2167 | bool isIdentityWithExtract() const; |
| 2168 | |
| 2169 | /// Return true if this shuffle concatenates its 2 source vectors. This |
| 2170 | /// returns false if either input is undefined. In that case, the shuffle is |
| 2171 | /// is better classified as an identity with padding operation. |
| 2172 | bool isConcat() const; |
| 2173 | |
| 2174 | /// Return true if this shuffle mask chooses elements from its source vectors |
| 2175 | /// without lane crossings. A shuffle using this mask would be |
| 2176 | /// equivalent to a vector select with a constant condition operand. |
| 2177 | /// Example: <4,1,6,undef> |
| 2178 | /// This returns false if the mask does not choose from both input vectors. |
| 2179 | /// In that case, the shuffle is better classified as an identity shuffle. |
| 2180 | /// This assumes that vector operands are the same length as the mask |
| 2181 | /// (a length-changing shuffle can never be equivalent to a vector select). |
| 2182 | static bool isSelectMask(ArrayRef<int> Mask); |
| 2183 | static bool isSelectMask(const Constant *Mask) { |
| 2184 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy( ) && "Shuffle needs vector constant.") ? void (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\"" , "llvm/include/llvm/IR/Instructions.h", 2184, __extension__ __PRETTY_FUNCTION__ )); |
| 2185 | SmallVector<int, 16> MaskAsInts; |
| 2186 | getShuffleMask(Mask, MaskAsInts); |
| 2187 | return isSelectMask(MaskAsInts); |
| 2188 | } |
| 2189 | |
| 2190 | /// Return true if this shuffle chooses elements from its source vectors |
| 2191 | /// without lane crossings and all operands have the same number of elements. |
| 2192 | /// In other words, this shuffle is equivalent to a vector select with a |
| 2193 | /// constant condition operand. |
| 2194 | /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3> |
| 2195 | /// This returns false if the mask does not choose from both input vectors. |
| 2196 | /// In that case, the shuffle is better classified as an identity shuffle. |
| 2197 | /// TODO: Optionally allow length-changing shuffles. |
| 2198 | bool isSelect() const { |
| 2199 | return !changesLength() && isSelectMask(ShuffleMask); |
| 2200 | } |
| 2201 | |
| 2202 | /// Return true if this shuffle mask swaps the order of elements from exactly |
| 2203 | /// one source vector. |
| 2204 | /// Example: <7,6,undef,4> |
| 2205 | /// This assumes that vector operands are the same length as the mask. |
| 2206 | static bool isReverseMask(ArrayRef<int> Mask); |
| 2207 | static bool isReverseMask(const Constant *Mask) { |
| 2208 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy( ) && "Shuffle needs vector constant.") ? void (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\"" , "llvm/include/llvm/IR/Instructions.h", 2208, __extension__ __PRETTY_FUNCTION__ )); |
| 2209 | SmallVector<int, 16> MaskAsInts; |
| 2210 | getShuffleMask(Mask, MaskAsInts); |
| 2211 | return isReverseMask(MaskAsInts); |
| 2212 | } |
| 2213 | |
| 2214 | /// Return true if this shuffle swaps the order of elements from exactly |
| 2215 | /// one source vector. |
| 2216 | /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef> |
| 2217 | /// TODO: Optionally allow length-changing shuffles. |
| 2218 | bool isReverse() const { |
| 2219 | return !changesLength() && isReverseMask(ShuffleMask); |
| 2220 | } |
| 2221 | |
| 2222 | /// Return true if this shuffle mask chooses all elements with the same value |
| 2223 | /// as the first element of exactly one source vector. |
| 2224 | /// Example: <4,undef,undef,4> |
| 2225 | /// This assumes that vector operands are the same length as the mask. |
| 2226 | static bool isZeroEltSplatMask(ArrayRef<int> Mask); |
| 2227 | static bool isZeroEltSplatMask(const Constant *Mask) { |
| 2228 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy( ) && "Shuffle needs vector constant.") ? void (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\"" , "llvm/include/llvm/IR/Instructions.h", 2228, __extension__ __PRETTY_FUNCTION__ )); |
| 2229 | SmallVector<int, 16> MaskAsInts; |
| 2230 | getShuffleMask(Mask, MaskAsInts); |
| 2231 | return isZeroEltSplatMask(MaskAsInts); |
| 2232 | } |
| 2233 | |
| 2234 | /// Return true if all elements of this shuffle are the same value as the |
| 2235 | /// first element of exactly one source vector without changing the length |
| 2236 | /// of that vector. |
| 2237 | /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0> |
| 2238 | /// TODO: Optionally allow length-changing shuffles. |
| 2239 | /// TODO: Optionally allow splats from other elements. |
| 2240 | bool isZeroEltSplat() const { |
| 2241 | return !changesLength() && isZeroEltSplatMask(ShuffleMask); |
| 2242 | } |
| 2243 | |
| 2244 | /// Return true if this shuffle mask is a transpose mask. |
| 2245 | /// Transpose vector masks transpose a 2xn matrix. They read corresponding |
| 2246 | /// even- or odd-numbered vector elements from two n-dimensional source |
| 2247 | /// vectors and write each result into consecutive elements of an |
| 2248 | /// n-dimensional destination vector. Two shuffles are necessary to complete |
| 2249 | /// the transpose, one for the even elements and another for the odd elements. |
| 2250 | /// This description closely follows how the TRN1 and TRN2 AArch64 |
| 2251 | /// instructions operate. |
| 2252 | /// |
| 2253 | /// For example, a simple 2x2 matrix can be transposed with: |
| 2254 | /// |
| 2255 | /// ; Original matrix |
| 2256 | /// m0 = < a, b > |
| 2257 | /// m1 = < c, d > |
| 2258 | /// |
| 2259 | /// ; Transposed matrix |
| 2260 | /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 > |
| 2261 | /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 > |
| 2262 | /// |
| 2263 | /// For matrices having greater than n columns, the resulting nx2 transposed |
| 2264 | /// matrix is stored in two result vectors such that one vector contains |
| 2265 | /// interleaved elements from all the even-numbered rows and the other vector |
| 2266 | /// contains interleaved elements from all the odd-numbered rows. For example, |
| 2267 | /// a 2x4 matrix can be transposed with: |
| 2268 | /// |
| 2269 | /// ; Original matrix |
| 2270 | /// m0 = < a, b, c, d > |
| 2271 | /// m1 = < e, f, g, h > |
| 2272 | /// |
| 2273 | /// ; Transposed matrix |
| 2274 | /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 > |
| 2275 | /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 > |
| 2276 | static bool isTransposeMask(ArrayRef<int> Mask); |
| 2277 | static bool isTransposeMask(const Constant *Mask) { |
| 2278 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy( ) && "Shuffle needs vector constant.") ? void (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\"" , "llvm/include/llvm/IR/Instructions.h", 2278, __extension__ __PRETTY_FUNCTION__ )); |
| 2279 | SmallVector<int, 16> MaskAsInts; |
| 2280 | getShuffleMask(Mask, MaskAsInts); |
| 2281 | return isTransposeMask(MaskAsInts); |
| 2282 | } |
| 2283 | |
| 2284 | /// Return true if this shuffle transposes the elements of its inputs without |
| 2285 | /// changing the length of the vectors. This operation may also be known as a |
| 2286 | /// merge or interleave. See the description for isTransposeMask() for the |
| 2287 | /// exact specification. |
| 2288 | /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6> |
| 2289 | bool isTranspose() const { |
| 2290 | return !changesLength() && isTransposeMask(ShuffleMask); |
| 2291 | } |
| 2292 | |
| 2293 | /// Return true if this shuffle mask is a splice mask, concatenating the two |
| 2294 | /// inputs together and then extracts an original width vector starting from |
| 2295 | /// the splice index. |
| 2296 | /// Example: shufflevector <4 x n> A, <4 x n> B, <1,2,3,4> |
| 2297 | static bool isSpliceMask(ArrayRef<int> Mask, int &Index); |
| 2298 | static bool isSpliceMask(const Constant *Mask, int &Index) { |
| 2299 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy( ) && "Shuffle needs vector constant.") ? void (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\"" , "llvm/include/llvm/IR/Instructions.h", 2299, __extension__ __PRETTY_FUNCTION__ )); |
| 2300 | SmallVector<int, 16> MaskAsInts; |
| 2301 | getShuffleMask(Mask, MaskAsInts); |
| 2302 | return isSpliceMask(MaskAsInts, Index); |
| 2303 | } |
| 2304 | |
| 2305 | /// Return true if this shuffle splices two inputs without changing the length |
| 2306 | /// of the vectors. This operation concatenates the two inputs together and |
| 2307 | /// then extracts an original width vector starting from the splice index. |
| 2308 | /// Example: shufflevector <4 x n> A, <4 x n> B, <1,2,3,4> |
| 2309 | bool isSplice(int &Index) const { |
| 2310 | return !changesLength() && isSpliceMask(ShuffleMask, Index); |
| 2311 | } |
| 2312 | |
| 2313 | /// Return true if this shuffle mask is an extract subvector mask. |
| 2314 | /// A valid extract subvector mask returns a smaller vector from a single |
| 2315 | /// source operand. The base extraction index is returned as well. |
| 2316 | static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts, |
| 2317 | int &Index); |
| 2318 | static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts, |
| 2319 | int &Index) { |
| 2320 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy( ) && "Shuffle needs vector constant.") ? void (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\"" , "llvm/include/llvm/IR/Instructions.h", 2320, __extension__ __PRETTY_FUNCTION__ )); |
| 2321 | // Not possible to express a shuffle mask for a scalable vector for this |
| 2322 | // case. |
| 2323 | if (isa<ScalableVectorType>(Mask->getType())) |
| 2324 | return false; |
| 2325 | SmallVector<int, 16> MaskAsInts; |
| 2326 | getShuffleMask(Mask, MaskAsInts); |
| 2327 | return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index); |
| 2328 | } |
| 2329 | |
| 2330 | /// Return true if this shuffle mask is an extract subvector mask. |
| 2331 | bool isExtractSubvectorMask(int &Index) const { |
| 2332 | // Not possible to express a shuffle mask for a scalable vector for this |
| 2333 | // case. |
| 2334 | if (isa<ScalableVectorType>(getType())) |
| 2335 | return false; |
| 2336 | |
| 2337 | int NumSrcElts = |
| 2338 | cast<FixedVectorType>(Op<0>()->getType())->getNumElements(); |
| 2339 | return isExtractSubvectorMask(ShuffleMask, NumSrcElts, Index); |
| 2340 | } |
| 2341 | |
| 2342 | /// Return true if this shuffle mask is an insert subvector mask. |
| 2343 | /// A valid insert subvector mask inserts the lowest elements of a second |
| 2344 | /// source operand into an in-place first source operand operand. |
| 2345 | /// Both the sub vector width and the insertion index is returned. |
| 2346 | static bool isInsertSubvectorMask(ArrayRef<int> Mask, int NumSrcElts, |
| 2347 | int &NumSubElts, int &Index); |
| 2348 | static bool isInsertSubvectorMask(const Constant *Mask, int NumSrcElts, |
| 2349 | int &NumSubElts, int &Index) { |
| 2350 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy( ) && "Shuffle needs vector constant.") ? void (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\"" , "llvm/include/llvm/IR/Instructions.h", 2350, __extension__ __PRETTY_FUNCTION__ )); |
| 2351 | // Not possible to express a shuffle mask for a scalable vector for this |
| 2352 | // case. |
| 2353 | if (isa<ScalableVectorType>(Mask->getType())) |
| 2354 | return false; |
| 2355 | SmallVector<int, 16> MaskAsInts; |
| 2356 | getShuffleMask(Mask, MaskAsInts); |
| 2357 | return isInsertSubvectorMask(MaskAsInts, NumSrcElts, NumSubElts, Index); |
| 2358 | } |
| 2359 | |
| 2360 | /// Return true if this shuffle mask is an insert subvector mask. |
| 2361 | bool isInsertSubvectorMask(int &NumSubElts, int &Index) const { |
| 2362 | // Not possible to express a shuffle mask for a scalable vector for this |
| 2363 | // case. |
| 2364 | if (isa<ScalableVectorType>(getType())) |
| 2365 | return false; |
| 2366 | |
| 2367 | int NumSrcElts = |
| 2368 | cast<FixedVectorType>(Op<0>()->getType())->getNumElements(); |
| 2369 | return isInsertSubvectorMask(ShuffleMask, NumSrcElts, NumSubElts, Index); |
| 2370 | } |
| 2371 | |
| 2372 | /// Return true if this shuffle mask replicates each of the \p VF elements |
| 2373 | /// in a vector \p ReplicationFactor times. |
| 2374 | /// For example, the mask for \p ReplicationFactor=3 and \p VF=4 is: |
| 2375 | /// <0,0,0,1,1,1,2,2,2,3,3,3> |
| 2376 | static bool isReplicationMask(ArrayRef<int> Mask, int &ReplicationFactor, |
| 2377 | int &VF); |
| 2378 | static bool isReplicationMask(const Constant *Mask, int &ReplicationFactor, |
| 2379 | int &VF) { |
| 2380 | assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.")(static_cast <bool> (Mask->getType()->isVectorTy( ) && "Shuffle needs vector constant.") ? void (0) : __assert_fail ("Mask->getType()->isVectorTy() && \"Shuffle needs vector constant.\"" , "llvm/include/llvm/IR/Instructions.h", 2380, __extension__ __PRETTY_FUNCTION__ )); |
| 2381 | // Not possible to express a shuffle mask for a scalable vector for this |
| 2382 | // case. |
| 2383 | if (isa<ScalableVectorType>(Mask->getType())) |
| 2384 | return false; |
| 2385 | SmallVector<int, 16> MaskAsInts; |
| 2386 | getShuffleMask(Mask, MaskAsInts); |
| 2387 | return isReplicationMask(MaskAsInts, ReplicationFactor, VF); |
| 2388 | } |
| 2389 | |
| 2390 | /// Return true if this shuffle mask is a replication mask. |
| 2391 | bool isReplicationMask(int &ReplicationFactor, int &VF) const; |
| 2392 | |
| 2393 | /// Return true if this shuffle mask represents "clustered" mask of size VF, |
| 2394 | /// i.e. each index between [0..VF) is used exactly once in each submask of |
| 2395 | /// size VF. |
| 2396 | /// For example, the mask for \p VF=4 is: |
| 2397 | /// 0, 1, 2, 3, 3, 2, 0, 1 - "clustered", because each submask of size 4 |
| 2398 | /// (0,1,2,3 and 3,2,0,1) uses indices [0..VF) exactly one time. |
| 2399 | /// 0, 1, 2, 3, 3, 3, 1, 0 - not "clustered", because |
| 2400 | /// element 3 is used twice in the second submask |
| 2401 | /// (3,3,1,0) and index 2 is not used at all. |
| 2402 | static bool isOneUseSingleSourceMask(ArrayRef<int> Mask, int VF); |
| 2403 | |
| 2404 | /// Return true if this shuffle mask is a one-use-single-source("clustered") |
| 2405 | /// mask. |
| 2406 | bool isOneUseSingleSourceMask(int VF) const; |
| 2407 | |
| 2408 | /// Change values in a shuffle permute mask assuming the two vector operands |
| 2409 | /// of length InVecNumElts have swapped position. |
| 2410 | static void commuteShuffleMask(MutableArrayRef<int> Mask, |
| 2411 | unsigned InVecNumElts) { |
| 2412 | for (int &Idx : Mask) { |
| 2413 | if (Idx == -1) |
| 2414 | continue; |
| 2415 | Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts; |
| 2416 | assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&(static_cast <bool> (Idx >= 0 && Idx < (int )InVecNumElts * 2 && "shufflevector mask index out of range" ) ? void (0) : __assert_fail ("Idx >= 0 && Idx < (int)InVecNumElts * 2 && \"shufflevector mask index out of range\"" , "llvm/include/llvm/IR/Instructions.h", 2417, __extension__ __PRETTY_FUNCTION__ )) |
| 2417 | "shufflevector mask index out of range")(static_cast <bool> (Idx >= 0 && Idx < (int )InVecNumElts * 2 && "shufflevector mask index out of range" ) ? void (0) : __assert_fail ("Idx >= 0 && Idx < (int)InVecNumElts * 2 && \"shufflevector mask index out of range\"" , "llvm/include/llvm/IR/Instructions.h", 2417, __extension__ __PRETTY_FUNCTION__ )); |
| 2418 | } |
| 2419 | } |
| 2420 | |
| 2421 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 2422 | static bool classof(const Instruction *I) { |
| 2423 | return I->getOpcode() == Instruction::ShuffleVector; |
| 2424 | } |
| 2425 | static bool classof(const Value *V) { |
| 2426 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 2427 | } |
| 2428 | }; |
| 2429 | |
| 2430 | template <> |
| 2431 | struct OperandTraits<ShuffleVectorInst> |
| 2432 | : public FixedNumOperandTraits<ShuffleVectorInst, 2> {}; |
| 2433 | |
| 2434 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)ShuffleVectorInst::op_iterator ShuffleVectorInst::op_begin() { return OperandTraits<ShuffleVectorInst>::op_begin(this ); } ShuffleVectorInst::const_op_iterator ShuffleVectorInst:: op_begin() const { return OperandTraits<ShuffleVectorInst> ::op_begin(const_cast<ShuffleVectorInst*>(this)); } ShuffleVectorInst ::op_iterator ShuffleVectorInst::op_end() { return OperandTraits <ShuffleVectorInst>::op_end(this); } ShuffleVectorInst:: const_op_iterator ShuffleVectorInst::op_end() const { return OperandTraits <ShuffleVectorInst>::op_end(const_cast<ShuffleVectorInst *>(this)); } Value *ShuffleVectorInst::getOperand(unsigned i_nocapture) const { (static_cast <bool> (i_nocapture < OperandTraits<ShuffleVectorInst>::operands(this) && "getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<ShuffleVectorInst>::operands(this) && \"getOperand() out of range!\"" , "llvm/include/llvm/IR/Instructions.h", 2434, __extension__ __PRETTY_FUNCTION__ )); return cast_or_null<Value>( OperandTraits<ShuffleVectorInst >::op_begin(const_cast<ShuffleVectorInst*>(this))[i_nocapture ].get()); } void ShuffleVectorInst::setOperand(unsigned i_nocapture , Value *Val_nocapture) { (static_cast <bool> (i_nocapture < OperandTraits<ShuffleVectorInst>::operands(this) && "setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<ShuffleVectorInst>::operands(this) && \"setOperand() out of range!\"" , "llvm/include/llvm/IR/Instructions.h", 2434, __extension__ __PRETTY_FUNCTION__ )); OperandTraits<ShuffleVectorInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned ShuffleVectorInst::getNumOperands () const { return OperandTraits<ShuffleVectorInst>::operands (this); } template <int Idx_nocapture> Use &ShuffleVectorInst ::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &ShuffleVectorInst ::Op() const { return this->OpFrom<Idx_nocapture>(this ); } |
| 2435 | |
| 2436 | //===----------------------------------------------------------------------===// |
| 2437 | // ExtractValueInst Class |
| 2438 | //===----------------------------------------------------------------------===// |
| 2439 | |
| 2440 | /// This instruction extracts a struct member or array |
| 2441 | /// element value from an aggregate value. |
| 2442 | /// |
| 2443 | class ExtractValueInst : public UnaryInstruction { |
| 2444 | SmallVector<unsigned, 4> Indices; |
| 2445 | |
| 2446 | ExtractValueInst(const ExtractValueInst &EVI); |
| 2447 | |
| 2448 | /// Constructors - Create a extractvalue instruction with a base aggregate |
| 2449 | /// value and a list of indices. The first ctor can optionally insert before |
| 2450 | /// an existing instruction, the second appends the new instruction to the |
| 2451 | /// specified BasicBlock. |
| 2452 | inline ExtractValueInst(Value *Agg, |
| 2453 | ArrayRef<unsigned> Idxs, |
| 2454 | const Twine &NameStr, |
| 2455 | Instruction *InsertBefore); |
| 2456 | inline ExtractValueInst(Value *Agg, |
| 2457 | ArrayRef<unsigned> Idxs, |
| 2458 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 2459 | |
| 2460 | void init(ArrayRef<unsigned> Idxs, const Twine &NameStr); |
| 2461 | |
| 2462 | protected: |
| 2463 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 2464 | friend class Instruction; |
| 2465 | |
| 2466 | ExtractValueInst *cloneImpl() const; |
| 2467 | |
| 2468 | public: |
| 2469 | static ExtractValueInst *Create(Value *Agg, |
| 2470 | ArrayRef<unsigned> Idxs, |
| 2471 | const Twine &NameStr = "", |
| 2472 | Instruction *InsertBefore = nullptr) { |
| 2473 | return new |
| 2474 | ExtractValueInst(Agg, Idxs, NameStr, InsertBefore); |
| 2475 | } |
| 2476 | |
| 2477 | static ExtractValueInst *Create(Value *Agg, |
| 2478 | ArrayRef<unsigned> Idxs, |
| 2479 | const Twine &NameStr, |
| 2480 | BasicBlock *InsertAtEnd) { |
| 2481 | return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd); |
| 2482 | } |
| 2483 | |
| 2484 | /// Returns the type of the element that would be extracted |
| 2485 | /// with an extractvalue instruction with the specified parameters. |
| 2486 | /// |
| 2487 | /// Null is returned if the indices are invalid for the specified type. |
| 2488 | static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs); |
| 2489 | |
| 2490 | using idx_iterator = const unsigned*; |
| 2491 | |
| 2492 | inline idx_iterator idx_begin() const { return Indices.begin(); } |
| 2493 | inline idx_iterator idx_end() const { return Indices.end(); } |
| 2494 | inline iterator_range<idx_iterator> indices() const { |
| 2495 | return make_range(idx_begin(), idx_end()); |
| 2496 | } |
| 2497 | |
| 2498 | Value *getAggregateOperand() { |
| 2499 | return getOperand(0); |
| 2500 | } |
| 2501 | const Value *getAggregateOperand() const { |
| 2502 | return getOperand(0); |
| 2503 | } |
| 2504 | static unsigned getAggregateOperandIndex() { |
| 2505 | return 0U; // get index for modifying correct operand |
| 2506 | } |
| 2507 | |
| 2508 | ArrayRef<unsigned> getIndices() const { |
| 2509 | return Indices; |
| 2510 | } |
| 2511 | |
| 2512 | unsigned getNumIndices() const { |
| 2513 | return (unsigned)Indices.size(); |
| 2514 | } |
| 2515 | |
| 2516 | bool hasIndices() const { |
| 2517 | return true; |
| 2518 | } |
| 2519 | |
| 2520 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 2521 | static bool classof(const Instruction *I) { |
| 2522 | return I->getOpcode() == Instruction::ExtractValue; |
| 2523 | } |
| 2524 | static bool classof(const Value *V) { |
| 2525 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 2526 | } |
| 2527 | }; |
| 2528 | |
| 2529 | ExtractValueInst::ExtractValueInst(Value *Agg, |
| 2530 | ArrayRef<unsigned> Idxs, |
| 2531 | const Twine &NameStr, |
| 2532 | Instruction *InsertBefore) |
| 2533 | : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)), |
| 2534 | ExtractValue, Agg, InsertBefore) { |
| 2535 | init(Idxs, NameStr); |
| 2536 | } |
| 2537 | |
| 2538 | ExtractValueInst::ExtractValueInst(Value *Agg, |
| 2539 | ArrayRef<unsigned> Idxs, |
| 2540 | const Twine &NameStr, |
| 2541 | BasicBlock *InsertAtEnd) |
| 2542 | : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)), |
| 2543 | ExtractValue, Agg, InsertAtEnd) { |
| 2544 | init(Idxs, NameStr); |
| 2545 | } |
| 2546 | |
| 2547 | //===----------------------------------------------------------------------===// |
| 2548 | // InsertValueInst Class |
| 2549 | //===----------------------------------------------------------------------===// |
| 2550 | |
| 2551 | /// This instruction inserts a struct field of array element |
| 2552 | /// value into an aggregate value. |
| 2553 | /// |
| 2554 | class InsertValueInst : public Instruction { |
| 2555 | SmallVector<unsigned, 4> Indices; |
| 2556 | |
| 2557 | InsertValueInst(const InsertValueInst &IVI); |
| 2558 | |
| 2559 | /// Constructors - Create a insertvalue instruction with a base aggregate |
| 2560 | /// value, a value to insert, and a list of indices. The first ctor can |
| 2561 | /// optionally insert before an existing instruction, the second appends |
| 2562 | /// the new instruction to the specified BasicBlock. |
| 2563 | inline InsertValueInst(Value *Agg, Value *Val, |
| 2564 | ArrayRef<unsigned> Idxs, |
| 2565 | const Twine &NameStr, |
| 2566 | Instruction *InsertBefore); |
| 2567 | inline InsertValueInst(Value *Agg, Value *Val, |
| 2568 | ArrayRef<unsigned> Idxs, |
| 2569 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 2570 | |
| 2571 | /// Constructors - These two constructors are convenience methods because one |
| 2572 | /// and two index insertvalue instructions are so common. |
| 2573 | InsertValueInst(Value *Agg, Value *Val, unsigned Idx, |
| 2574 | const Twine &NameStr = "", |
| 2575 | Instruction *InsertBefore = nullptr); |
| 2576 | InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr, |
| 2577 | BasicBlock *InsertAtEnd); |
| 2578 | |
| 2579 | void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, |
| 2580 | const Twine &NameStr); |
| 2581 | |
| 2582 | protected: |
| 2583 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 2584 | friend class Instruction; |
| 2585 | |
| 2586 | InsertValueInst *cloneImpl() const; |
| 2587 | |
| 2588 | public: |
| 2589 | // allocate space for exactly two operands |
| 2590 | void *operator new(size_t S) { return User::operator new(S, 2); } |
| 2591 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 2592 | |
| 2593 | static InsertValueInst *Create(Value *Agg, Value *Val, |
| 2594 | ArrayRef<unsigned> Idxs, |
| 2595 | const Twine &NameStr = "", |
| 2596 | Instruction *InsertBefore = nullptr) { |
| 2597 | return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore); |
| 2598 | } |
| 2599 | |
| 2600 | static InsertValueInst *Create(Value *Agg, Value *Val, |
| 2601 | ArrayRef<unsigned> Idxs, |
| 2602 | const Twine &NameStr, |
| 2603 | BasicBlock *InsertAtEnd) { |
| 2604 | return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd); |
| 2605 | } |
| 2606 | |
| 2607 | /// Transparently provide more efficient getOperand methods. |
| 2608 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 2609 | |
| 2610 | using idx_iterator = const unsigned*; |
| 2611 | |
| 2612 | inline idx_iterator idx_begin() const { return Indices.begin(); } |
| 2613 | inline idx_iterator idx_end() const { return Indices.end(); } |
| 2614 | inline iterator_range<idx_iterator> indices() const { |
| 2615 | return make_range(idx_begin(), idx_end()); |
| 2616 | } |
| 2617 | |
| 2618 | Value *getAggregateOperand() { |
| 2619 | return getOperand(0); |
| 2620 | } |
| 2621 | const Value *getAggregateOperand() const { |
| 2622 | return getOperand(0); |
| 2623 | } |
| 2624 | static unsigned getAggregateOperandIndex() { |
| 2625 | return 0U; // get index for modifying correct operand |
| 2626 | } |
| 2627 | |
| 2628 | Value *getInsertedValueOperand() { |
| 2629 | return getOperand(1); |
| 2630 | } |
| 2631 | const Value *getInsertedValueOperand() const { |
| 2632 | return getOperand(1); |
| 2633 | } |
| 2634 | static unsigned getInsertedValueOperandIndex() { |
| 2635 | return 1U; // get index for modifying correct operand |
| 2636 | } |
| 2637 | |
| 2638 | ArrayRef<unsigned> getIndices() const { |
| 2639 | return Indices; |
| 2640 | } |
| 2641 | |
| 2642 | unsigned getNumIndices() const { |
| 2643 | return (unsigned)Indices.size(); |
| 2644 | } |
| 2645 | |
| 2646 | bool hasIndices() const { |
| 2647 | return true; |
| 2648 | } |
| 2649 | |
| 2650 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 2651 | static bool classof(const Instruction *I) { |
| 2652 | return I->getOpcode() == Instruction::InsertValue; |
| 2653 | } |
| 2654 | static bool classof(const Value *V) { |
| 2655 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 2656 | } |
| 2657 | }; |
| 2658 | |
| 2659 | template <> |
| 2660 | struct OperandTraits<InsertValueInst> : |
| 2661 | public FixedNumOperandTraits<InsertValueInst, 2> { |
| 2662 | }; |
| 2663 | |
| 2664 | InsertValueInst::InsertValueInst(Value *Agg, |
| 2665 | Value *Val, |
| 2666 | ArrayRef<unsigned> Idxs, |
| 2667 | const Twine &NameStr, |
| 2668 | Instruction *InsertBefore) |
| 2669 | : Instruction(Agg->getType(), InsertValue, |
| 2670 | OperandTraits<InsertValueInst>::op_begin(this), |
| 2671 | 2, InsertBefore) { |
| 2672 | init(Agg, Val, Idxs, NameStr); |
| 2673 | } |
| 2674 | |
| 2675 | InsertValueInst::InsertValueInst(Value *Agg, |
| 2676 | Value *Val, |
| 2677 | ArrayRef<unsigned> Idxs, |
| 2678 | const Twine &NameStr, |
| 2679 | BasicBlock *InsertAtEnd) |
| 2680 | : Instruction(Agg->getType(), InsertValue, |
| 2681 | OperandTraits<InsertValueInst>::op_begin(this), |
| 2682 | 2, InsertAtEnd) { |
| 2683 | init(Agg, Val, Idxs, NameStr); |
| 2684 | } |
| 2685 | |
| 2686 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)InsertValueInst::op_iterator InsertValueInst::op_begin() { return OperandTraits<InsertValueInst>::op_begin(this); } InsertValueInst ::const_op_iterator InsertValueInst::op_begin() const { return OperandTraits<InsertValueInst>::op_begin(const_cast< InsertValueInst*>(this)); } InsertValueInst::op_iterator InsertValueInst ::op_end() { return OperandTraits<InsertValueInst>::op_end (this); } InsertValueInst::const_op_iterator InsertValueInst:: op_end() const { return OperandTraits<InsertValueInst>:: op_end(const_cast<InsertValueInst*>(this)); } Value *InsertValueInst ::getOperand(unsigned i_nocapture) const { (static_cast <bool > (i_nocapture < OperandTraits<InsertValueInst>:: operands(this) && "getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<InsertValueInst>::operands(this) && \"getOperand() out of range!\"" , "llvm/include/llvm/IR/Instructions.h", 2686, __extension__ __PRETTY_FUNCTION__ )); return cast_or_null<Value>( OperandTraits<InsertValueInst >::op_begin(const_cast<InsertValueInst*>(this))[i_nocapture ].get()); } void InsertValueInst::setOperand(unsigned i_nocapture , Value *Val_nocapture) { (static_cast <bool> (i_nocapture < OperandTraits<InsertValueInst>::operands(this) && "setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<InsertValueInst>::operands(this) && \"setOperand() out of range!\"" , "llvm/include/llvm/IR/Instructions.h", 2686, __extension__ __PRETTY_FUNCTION__ )); OperandTraits<InsertValueInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned InsertValueInst::getNumOperands () const { return OperandTraits<InsertValueInst>::operands (this); } template <int Idx_nocapture> Use &InsertValueInst ::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &InsertValueInst ::Op() const { return this->OpFrom<Idx_nocapture>(this ); } |
| 2687 | |
| 2688 | //===----------------------------------------------------------------------===// |
| 2689 | // PHINode Class |
| 2690 | //===----------------------------------------------------------------------===// |
| 2691 | |
| 2692 | // PHINode - The PHINode class is used to represent the magical mystical PHI |
| 2693 | // node, that can not exist in nature, but can be synthesized in a computer |
| 2694 | // scientist's overactive imagination. |
| 2695 | // |
| 2696 | class PHINode : public Instruction { |
| 2697 | /// The number of operands actually allocated. NumOperands is |
| 2698 | /// the number actually in use. |
| 2699 | unsigned ReservedSpace; |
| 2700 | |
| 2701 | PHINode(const PHINode &PN); |
| 2702 | |
| 2703 | explicit PHINode(Type *Ty, unsigned NumReservedValues, |
| 2704 | const Twine &NameStr = "", |
| 2705 | Instruction *InsertBefore = nullptr) |
| 2706 | : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore), |
| 2707 | ReservedSpace(NumReservedValues) { |
| 2708 | assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!")(static_cast <bool> (!Ty->isTokenTy() && "PHI nodes cannot have token type!" ) ? void (0) : __assert_fail ("!Ty->isTokenTy() && \"PHI nodes cannot have token type!\"" , "llvm/include/llvm/IR/Instructions.h", 2708, __extension__ __PRETTY_FUNCTION__ )); |
| 2709 | setName(NameStr); |
| 2710 | allocHungoffUses(ReservedSpace); |
| 2711 | } |
| 2712 | |
| 2713 | PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr, |
| 2714 | BasicBlock *InsertAtEnd) |
| 2715 | : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd), |
| 2716 | ReservedSpace(NumReservedValues) { |
| 2717 | assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!")(static_cast <bool> (!Ty->isTokenTy() && "PHI nodes cannot have token type!" ) ? void (0) : __assert_fail ("!Ty->isTokenTy() && \"PHI nodes cannot have token type!\"" , "llvm/include/llvm/IR/Instructions.h", 2717, __extension__ __PRETTY_FUNCTION__ )); |
| 2718 | setName(NameStr); |
| 2719 | allocHungoffUses(ReservedSpace); |
| 2720 | } |
| 2721 | |
| 2722 | protected: |
| 2723 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 2724 | friend class Instruction; |
| 2725 | |
| 2726 | PHINode *cloneImpl() const; |
| 2727 | |
| 2728 | // allocHungoffUses - this is more complicated than the generic |
| 2729 | // User::allocHungoffUses, because we have to allocate Uses for the incoming |
| 2730 | // values and pointers to the incoming blocks, all in one allocation. |
| 2731 | void allocHungoffUses(unsigned N) { |
| 2732 | User::allocHungoffUses(N, /* IsPhi */ true); |
| 2733 | } |
| 2734 | |
| 2735 | public: |
| 2736 | /// Constructors - NumReservedValues is a hint for the number of incoming |
| 2737 | /// edges that this phi node will have (use 0 if you really have no idea). |
| 2738 | static PHINode *Create(Type *Ty, unsigned NumReservedValues, |
| 2739 | const Twine &NameStr = "", |
| 2740 | Instruction *InsertBefore = nullptr) { |
| 2741 | return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore); |
| 2742 | } |
| 2743 | |
| 2744 | static PHINode *Create(Type *Ty, unsigned NumReservedValues, |
| 2745 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 2746 | return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd); |
| 2747 | } |
| 2748 | |
| 2749 | /// Provide fast operand accessors |
| 2750 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 2751 | |
| 2752 | // Block iterator interface. This provides access to the list of incoming |
| 2753 | // basic blocks, which parallels the list of incoming values. |
| 2754 | // Please note that we are not providing non-const iterators for blocks to |
| 2755 | // force all updates go through an interface function. |
| 2756 | |
| 2757 | using block_iterator = BasicBlock **; |
| 2758 | using const_block_iterator = BasicBlock * const *; |
| 2759 | |
| 2760 | const_block_iterator block_begin() const { |
| 2761 | return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace); |
| 2762 | } |
| 2763 | |
| 2764 | const_block_iterator block_end() const { |
| 2765 | return block_begin() + getNumOperands(); |
| 2766 | } |
| 2767 | |
| 2768 | iterator_range<const_block_iterator> blocks() const { |
| 2769 | return make_range(block_begin(), block_end()); |
| 2770 | } |
| 2771 | |
| 2772 | op_range incoming_values() { return operands(); } |
| 2773 | |
| 2774 | const_op_range incoming_values() const { return operands(); } |
| 2775 | |
| 2776 | /// Return the number of incoming edges |
| 2777 | /// |
| 2778 | unsigned getNumIncomingValues() const { return getNumOperands(); } |
| 2779 | |
| 2780 | /// Return incoming value number x |
| 2781 | /// |
| 2782 | Value *getIncomingValue(unsigned i) const { |
| 2783 | return getOperand(i); |
| 2784 | } |
| 2785 | void setIncomingValue(unsigned i, Value *V) { |
| 2786 | assert(V && "PHI node got a null value!")(static_cast <bool> (V && "PHI node got a null value!" ) ? void (0) : __assert_fail ("V && \"PHI node got a null value!\"" , "llvm/include/llvm/IR/Instructions.h", 2786, __extension__ __PRETTY_FUNCTION__ )); |
| 2787 | assert(getType() == V->getType() &&(static_cast <bool> (getType() == V->getType() && "All operands to PHI node must be the same type as the PHI node!" ) ? void (0) : __assert_fail ("getType() == V->getType() && \"All operands to PHI node must be the same type as the PHI node!\"" , "llvm/include/llvm/IR/Instructions.h", 2788, __extension__ __PRETTY_FUNCTION__ )) |
| 2788 | "All operands to PHI node must be the same type as the PHI node!")(static_cast <bool> (getType() == V->getType() && "All operands to PHI node must be the same type as the PHI node!" ) ? void (0) : __assert_fail ("getType() == V->getType() && \"All operands to PHI node must be the same type as the PHI node!\"" , "llvm/include/llvm/IR/Instructions.h", 2788, __extension__ __PRETTY_FUNCTION__ )); |
| 2789 | setOperand(i, V); |
| 2790 | } |
| 2791 | |
| 2792 | static unsigned getOperandNumForIncomingValue(unsigned i) { |
| 2793 | return i; |
| 2794 | } |
| 2795 | |
| 2796 | static unsigned getIncomingValueNumForOperand(unsigned i) { |
| 2797 | return i; |
| 2798 | } |
| 2799 | |
| 2800 | /// Return incoming basic block number @p i. |
| 2801 | /// |
| 2802 | BasicBlock *getIncomingBlock(unsigned i) const { |
| 2803 | return block_begin()[i]; |
| 2804 | } |
| 2805 | |
| 2806 | /// Return incoming basic block corresponding |
| 2807 | /// to an operand of the PHI. |
| 2808 | /// |
| 2809 | BasicBlock *getIncomingBlock(const Use &U) const { |
| 2810 | assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?")(static_cast <bool> (this == U.getUser() && "Iterator doesn't point to PHI's Uses?" ) ? void (0) : __assert_fail ("this == U.getUser() && \"Iterator doesn't point to PHI's Uses?\"" , "llvm/include/llvm/IR/Instructions.h", 2810, __extension__ __PRETTY_FUNCTION__ )); |
| 2811 | return getIncomingBlock(unsigned(&U - op_begin())); |
| 2812 | } |
| 2813 | |
| 2814 | /// Return incoming basic block corresponding |
| 2815 | /// to value use iterator. |
| 2816 | /// |
| 2817 | BasicBlock *getIncomingBlock(Value::const_user_iterator I) const { |
| 2818 | return getIncomingBlock(I.getUse()); |
| 2819 | } |
| 2820 | |
| 2821 | void setIncomingBlock(unsigned i, BasicBlock *BB) { |
| 2822 | const_cast<block_iterator>(block_begin())[i] = BB; |
| 2823 | } |
| 2824 | |
| 2825 | /// Copies the basic blocks from \p BBRange to the incoming basic block list |
| 2826 | /// of this PHINode, starting at \p ToIdx. |
| 2827 | void copyIncomingBlocks(iterator_range<const_block_iterator> BBRange, |
| 2828 | uint32_t ToIdx = 0) { |
| 2829 | copy(BBRange, const_cast<block_iterator>(block_begin()) + ToIdx); |
| 2830 | } |
| 2831 | |
| 2832 | /// Replace every incoming basic block \p Old to basic block \p New. |
| 2833 | void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New) { |
| 2834 | assert(New && Old && "PHI node got a null basic block!")(static_cast <bool> (New && Old && "PHI node got a null basic block!" ) ? void (0) : __assert_fail ("New && Old && \"PHI node got a null basic block!\"" , "llvm/include/llvm/IR/Instructions.h", 2834, __extension__ __PRETTY_FUNCTION__ )); |
| 2835 | for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op) |
| 2836 | if (getIncomingBlock(Op) == Old) |
| 2837 | setIncomingBlock(Op, New); |
| 2838 | } |
| 2839 | |
| 2840 | /// Add an incoming value to the end of the PHI list |
| 2841 | /// |
| 2842 | void addIncoming(Value *V, BasicBlock *BB) { |
| 2843 | if (getNumOperands() == ReservedSpace) |
| 2844 | growOperands(); // Get more space! |
| 2845 | // Initialize some new operands. |
| 2846 | setNumHungOffUseOperands(getNumOperands() + 1); |
| 2847 | setIncomingValue(getNumOperands() - 1, V); |
| 2848 | setIncomingBlock(getNumOperands() - 1, BB); |
| 2849 | } |
| 2850 | |
| 2851 | /// Remove an incoming value. This is useful if a |
| 2852 | /// predecessor basic block is deleted. The value removed is returned. |
| 2853 | /// |
| 2854 | /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty |
| 2855 | /// is true), the PHI node is destroyed and any uses of it are replaced with |
| 2856 | /// dummy values. The only time there should be zero incoming values to a PHI |
| 2857 | /// node is when the block is dead, so this strategy is sound. |
| 2858 | /// |
| 2859 | Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true); |
| 2860 | |
| 2861 | Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) { |
| 2862 | int Idx = getBasicBlockIndex(BB); |
| 2863 | assert(Idx >= 0 && "Invalid basic block argument to remove!")(static_cast <bool> (Idx >= 0 && "Invalid basic block argument to remove!" ) ? void (0) : __assert_fail ("Idx >= 0 && \"Invalid basic block argument to remove!\"" , "llvm/include/llvm/IR/Instructions.h", 2863, __extension__ __PRETTY_FUNCTION__ )); |
| 2864 | return removeIncomingValue(Idx, DeletePHIIfEmpty); |
| 2865 | } |
| 2866 | |
| 2867 | /// Return the first index of the specified basic |
| 2868 | /// block in the value list for this PHI. Returns -1 if no instance. |
| 2869 | /// |
| 2870 | int getBasicBlockIndex(const BasicBlock *BB) const { |
| 2871 | for (unsigned i = 0, e = getNumOperands(); i != e; ++i) |
| 2872 | if (block_begin()[i] == BB) |
| 2873 | return i; |
| 2874 | return -1; |
| 2875 | } |
| 2876 | |
| 2877 | Value *getIncomingValueForBlock(const BasicBlock *BB) const { |
| 2878 | int Idx = getBasicBlockIndex(BB); |
| 2879 | assert(Idx >= 0 && "Invalid basic block argument!")(static_cast <bool> (Idx >= 0 && "Invalid basic block argument!" ) ? void (0) : __assert_fail ("Idx >= 0 && \"Invalid basic block argument!\"" , "llvm/include/llvm/IR/Instructions.h", 2879, __extension__ __PRETTY_FUNCTION__ )); |
| 2880 | return getIncomingValue(Idx); |
| 2881 | } |
| 2882 | |
| 2883 | /// Set every incoming value(s) for block \p BB to \p V. |
| 2884 | void setIncomingValueForBlock(const BasicBlock *BB, Value *V) { |
| 2885 | assert(BB && "PHI node got a null basic block!")(static_cast <bool> (BB && "PHI node got a null basic block!" ) ? void (0) : __assert_fail ("BB && \"PHI node got a null basic block!\"" , "llvm/include/llvm/IR/Instructions.h", 2885, __extension__ __PRETTY_FUNCTION__ )); |
| 2886 | bool Found = false; |
| 2887 | for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op) |
| 2888 | if (getIncomingBlock(Op) == BB) { |
| 2889 | Found = true; |
| 2890 | setIncomingValue(Op, V); |
| 2891 | } |
| 2892 | (void)Found; |
| 2893 | assert(Found && "Invalid basic block argument to set!")(static_cast <bool> (Found && "Invalid basic block argument to set!" ) ? void (0) : __assert_fail ("Found && \"Invalid basic block argument to set!\"" , "llvm/include/llvm/IR/Instructions.h", 2893, __extension__ __PRETTY_FUNCTION__ )); |
| 2894 | } |
| 2895 | |
| 2896 | /// If the specified PHI node always merges together the |
| 2897 | /// same value, return the value, otherwise return null. |
| 2898 | Value *hasConstantValue() const; |
| 2899 | |
| 2900 | /// Whether the specified PHI node always merges |
| 2901 | /// together the same value, assuming undefs are equal to a unique |
| 2902 | /// non-undef value. |
| 2903 | bool hasConstantOrUndefValue() const; |
| 2904 | |
| 2905 | /// If the PHI node is complete which means all of its parent's predecessors |
| 2906 | /// have incoming value in this PHI, return true, otherwise return false. |
| 2907 | bool isComplete() const { |
| 2908 | return llvm::all_of(predecessors(getParent()), |
| 2909 | [this](const BasicBlock *Pred) { |
| 2910 | return getBasicBlockIndex(Pred) >= 0; |
| 2911 | }); |
| 2912 | } |
| 2913 | |
| 2914 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 2915 | static bool classof(const Instruction *I) { |
| 2916 | return I->getOpcode() == Instruction::PHI; |
| 2917 | } |
| 2918 | static bool classof(const Value *V) { |
| 2919 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 2920 | } |
| 2921 | |
| 2922 | private: |
| 2923 | void growOperands(); |
| 2924 | }; |
| 2925 | |
| 2926 | template <> |
| 2927 | struct OperandTraits<PHINode> : public HungoffOperandTraits<2> { |
| 2928 | }; |
| 2929 | |
| 2930 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)PHINode::op_iterator PHINode::op_begin() { return OperandTraits <PHINode>::op_begin(this); } PHINode::const_op_iterator PHINode::op_begin() const { return OperandTraits<PHINode> ::op_begin(const_cast<PHINode*>(this)); } PHINode::op_iterator PHINode::op_end() { return OperandTraits<PHINode>::op_end (this); } PHINode::const_op_iterator PHINode::op_end() const { return OperandTraits<PHINode>::op_end(const_cast<PHINode *>(this)); } Value *PHINode::getOperand(unsigned i_nocapture ) const { (static_cast <bool> (i_nocapture < OperandTraits <PHINode>::operands(this) && "getOperand() out of range!" ) ? void (0) : __assert_fail ("i_nocapture < OperandTraits<PHINode>::operands(this) && \"getOperand() out of range!\"" , "llvm/include/llvm/IR/Instructions.h", 2930, __extension__ __PRETTY_FUNCTION__ )); return cast_or_null<Value>( OperandTraits<PHINode >::op_begin(const_cast<PHINode*>(this))[i_nocapture] .get()); } void PHINode::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (static_cast <bool> (i_nocapture < OperandTraits<PHINode>::operands(this) && "setOperand() out of range!" ) ? void (0) : __assert_fail ("i_nocapture < OperandTraits<PHINode>::operands(this) && \"setOperand() out of range!\"" , "llvm/include/llvm/IR/Instructions.h", 2930, __extension__ __PRETTY_FUNCTION__ )); OperandTraits<PHINode>::op_begin(this)[i_nocapture] = Val_nocapture; } unsigned PHINode::getNumOperands() const { return OperandTraits<PHINode>::operands(this); } template <int Idx_nocapture> Use &PHINode::Op() { return this ->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture > const Use &PHINode::Op() const { return this->OpFrom <Idx_nocapture>(this); } |
| 2931 | |
| 2932 | //===----------------------------------------------------------------------===// |
| 2933 | // LandingPadInst Class |
| 2934 | //===----------------------------------------------------------------------===// |
| 2935 | |
| 2936 | //===--------------------------------------------------------------------------- |
| 2937 | /// The landingpad instruction holds all of the information |
| 2938 | /// necessary to generate correct exception handling. The landingpad instruction |
| 2939 | /// cannot be moved from the top of a landing pad block, which itself is |
| 2940 | /// accessible only from the 'unwind' edge of an invoke. This uses the |
| 2941 | /// SubclassData field in Value to store whether or not the landingpad is a |
| 2942 | /// cleanup. |
| 2943 | /// |
| 2944 | class LandingPadInst : public Instruction { |
| 2945 | using CleanupField = BoolBitfieldElementT<0>; |
| 2946 | |
| 2947 | /// The number of operands actually allocated. NumOperands is |
| 2948 | /// the number actually in use. |
| 2949 | unsigned ReservedSpace; |
| 2950 | |
| 2951 | LandingPadInst(const LandingPadInst &LP); |
| 2952 | |
| 2953 | public: |
| 2954 | enum ClauseType { Catch, Filter }; |
| 2955 | |
| 2956 | private: |
| 2957 | explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues, |
| 2958 | const Twine &NameStr, Instruction *InsertBefore); |
| 2959 | explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues, |
| 2960 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 2961 | |
| 2962 | // Allocate space for exactly zero operands. |
| 2963 | void *operator new(size_t S) { return User::operator new(S); } |
| 2964 | |
| 2965 | void growOperands(unsigned Size); |
| 2966 | void init(unsigned NumReservedValues, const Twine &NameStr); |
| 2967 | |
| 2968 | protected: |
| 2969 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 2970 | friend class Instruction; |
| 2971 | |
| 2972 | LandingPadInst *cloneImpl() const; |
| 2973 | |
| 2974 | public: |
| 2975 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 2976 | |
| 2977 | /// Constructors - NumReservedClauses is a hint for the number of incoming |
| 2978 | /// clauses that this landingpad will have (use 0 if you really have no idea). |
| 2979 | static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses, |
| 2980 | const Twine &NameStr = "", |
| 2981 | Instruction *InsertBefore = nullptr); |
| 2982 | static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses, |
| 2983 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 2984 | |
| 2985 | /// Provide fast operand accessors |
| 2986 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 2987 | |
| 2988 | /// Return 'true' if this landingpad instruction is a |
| 2989 | /// cleanup. I.e., it should be run when unwinding even if its landing pad |
| 2990 | /// doesn't catch the exception. |
| 2991 | bool isCleanup() const { return getSubclassData<CleanupField>(); } |
| 2992 | |
| 2993 | /// Indicate that this landingpad instruction is a cleanup. |
| 2994 | void setCleanup(bool V) { setSubclassData<CleanupField>(V); } |
| 2995 | |
| 2996 | /// Add a catch or filter clause to the landing pad. |
| 2997 | void addClause(Constant *ClauseVal); |
| 2998 | |
| 2999 | /// Get the value of the clause at index Idx. Use isCatch/isFilter to |
| 3000 | /// determine what type of clause this is. |
| 3001 | Constant *getClause(unsigned Idx) const { |
| 3002 | return cast<Constant>(getOperandList()[Idx]); |
| 3003 | } |
| 3004 | |
| 3005 | /// Return 'true' if the clause and index Idx is a catch clause. |
| 3006 | bool isCatch(unsigned Idx) const { |
| 3007 | return !isa<ArrayType>(getOperandList()[Idx]->getType()); |
| 3008 | } |
| 3009 | |
| 3010 | /// Return 'true' if the clause and index Idx is a filter clause. |
| 3011 | bool isFilter(unsigned Idx) const { |
| 3012 | return isa<ArrayType>(getOperandList()[Idx]->getType()); |
| 3013 | } |
| 3014 | |
| 3015 | /// Get the number of clauses for this landing pad. |
| 3016 | unsigned getNumClauses() const { return getNumOperands(); } |
| 3017 | |
| 3018 | /// Grow the size of the operand list to accommodate the new |
| 3019 | /// number of clauses. |
| 3020 | void reserveClauses(unsigned Size) { growOperands(Size); } |
| 3021 | |
| 3022 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 3023 | static bool classof(const Instruction *I) { |
| 3024 | return I->getOpcode() == Instruction::LandingPad; |
| 3025 | } |
| 3026 | static bool classof(const Value *V) { |
| 3027 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 3028 | } |
| 3029 | }; |
| 3030 | |
| 3031 | template <> |
| 3032 | struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<1> { |
| 3033 | }; |
| 3034 | |
| 3035 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)LandingPadInst::op_iterator LandingPadInst::op_begin() { return OperandTraits<LandingPadInst>::op_begin(this); } LandingPadInst ::const_op_iterator LandingPadInst::op_begin() const { return OperandTraits<LandingPadInst>::op_begin(const_cast< LandingPadInst*>(this)); } LandingPadInst::op_iterator LandingPadInst ::op_end() { return OperandTraits<LandingPadInst>::op_end (this); } LandingPadInst::const_op_iterator LandingPadInst::op_end () const { return OperandTraits<LandingPadInst>::op_end (const_cast<LandingPadInst*>(this)); } Value *LandingPadInst ::getOperand(unsigned i_nocapture) const { (static_cast <bool > (i_nocapture < OperandTraits<LandingPadInst>::operands (this) && "getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<LandingPadInst>::operands(this) && \"getOperand() out of range!\"" , "llvm/include/llvm/IR/Instructions.h", 3035, __extension__ __PRETTY_FUNCTION__ )); return cast_or_null<Value>( OperandTraits<LandingPadInst >::op_begin(const_cast<LandingPadInst*>(this))[i_nocapture ].get()); } void LandingPadInst::setOperand(unsigned i_nocapture , Value *Val_nocapture) { (static_cast <bool> (i_nocapture < OperandTraits<LandingPadInst>::operands(this) && "setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<LandingPadInst>::operands(this) && \"setOperand() out of range!\"" , "llvm/include/llvm/IR/Instructions.h", 3035, __extension__ __PRETTY_FUNCTION__ )); OperandTraits<LandingPadInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned LandingPadInst::getNumOperands( ) const { return OperandTraits<LandingPadInst>::operands (this); } template <int Idx_nocapture> Use &LandingPadInst ::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &LandingPadInst ::Op() const { return this->OpFrom<Idx_nocapture>(this ); } |
| 3036 | |
| 3037 | //===----------------------------------------------------------------------===// |
| 3038 | // ReturnInst Class |
| 3039 | //===----------------------------------------------------------------------===// |
| 3040 | |
| 3041 | //===--------------------------------------------------------------------------- |
| 3042 | /// Return a value (possibly void), from a function. Execution |
| 3043 | /// does not continue in this function any longer. |
| 3044 | /// |
| 3045 | class ReturnInst : public Instruction { |
| 3046 | ReturnInst(const ReturnInst &RI); |
| 3047 | |
| 3048 | private: |
| 3049 | // ReturnInst constructors: |
| 3050 | // ReturnInst() - 'ret void' instruction |
| 3051 | // ReturnInst( null) - 'ret void' instruction |
| 3052 | // ReturnInst(Value* X) - 'ret X' instruction |
| 3053 | // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I |
| 3054 | // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I |
| 3055 | // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B |
| 3056 | // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B |
| 3057 | // |
| 3058 | // NOTE: If the Value* passed is of type void then the constructor behaves as |
| 3059 | // if it was passed NULL. |
| 3060 | explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr, |
| 3061 | Instruction *InsertBefore = nullptr); |
| 3062 | ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd); |
| 3063 | explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd); |
| 3064 | |
| 3065 | protected: |
| 3066 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 3067 | friend class Instruction; |
| 3068 | |
| 3069 | ReturnInst *cloneImpl() const; |
| 3070 | |
| 3071 | public: |
| 3072 | static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr, |
| 3073 | Instruction *InsertBefore = nullptr) { |
| 3074 | return new(!!retVal) ReturnInst(C, retVal, InsertBefore); |
| 3075 | } |
| 3076 | |
| 3077 | static ReturnInst* Create(LLVMContext &C, Value *retVal, |
| 3078 | BasicBlock *InsertAtEnd) { |
| 3079 | return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd); |
| 3080 | } |
| 3081 | |
| 3082 | static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) { |
| 3083 | return new(0) ReturnInst(C, InsertAtEnd); |
| 3084 | } |
| 3085 | |
| 3086 | /// Provide fast operand accessors |
| 3087 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 3088 | |
| 3089 | /// Convenience accessor. Returns null if there is no return value. |
| 3090 | Value *getReturnValue() const { |
| 3091 | return getNumOperands() != 0 ? getOperand(0) : nullptr; |
| 3092 | } |
| 3093 | |
| 3094 | unsigned getNumSuccessors() const { return 0; } |
| 3095 | |
| 3096 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 3097 | static bool classof(const Instruction *I) { |
| 3098 | return (I->getOpcode() == Instruction::Ret); |
| 3099 | } |
| 3100 | static bool classof(const Value *V) { |
| 3101 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 3102 | } |
| 3103 | |
| 3104 | private: |
| 3105 | BasicBlock *getSuccessor(unsigned idx) const { |
| 3106 | llvm_unreachable("ReturnInst has no successors!")::llvm::llvm_unreachable_internal("ReturnInst has no successors!" , "llvm/include/llvm/IR/Instructions.h", 3106); |
| 3107 | } |
| 3108 | |
| 3109 | void setSuccessor(unsigned idx, BasicBlock *B) { |
| 3110 | llvm_unreachable("ReturnInst has no successors!")::llvm::llvm_unreachable_internal("ReturnInst has no successors!" , "llvm/include/llvm/IR/Instructions.h", 3110); |
| 3111 | } |
| 3112 | }; |
| 3113 | |
| 3114 | template <> |
| 3115 | struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> { |
| 3116 | }; |
| 3117 | |
| 3118 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)ReturnInst::op_iterator ReturnInst::op_begin() { return OperandTraits <ReturnInst>::op_begin(this); } ReturnInst::const_op_iterator ReturnInst::op_begin() const { return OperandTraits<ReturnInst >::op_begin(const_cast<ReturnInst*>(this)); } ReturnInst ::op_iterator ReturnInst::op_end() { return OperandTraits< ReturnInst>::op_end(this); } ReturnInst::const_op_iterator ReturnInst::op_end() const { return OperandTraits<ReturnInst >::op_end(const_cast<ReturnInst*>(this)); } Value *ReturnInst ::getOperand(unsigned i_nocapture) const { (static_cast <bool > (i_nocapture < OperandTraits<ReturnInst>::operands (this) && "getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<ReturnInst>::operands(this) && \"getOperand() out of range!\"" , "llvm/include/llvm/IR/Instructions.h", 3118, __extension__ __PRETTY_FUNCTION__ )); return cast_or_null<Value>( OperandTraits<ReturnInst >::op_begin(const_cast<ReturnInst*>(this))[i_nocapture ].get()); } void ReturnInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (static_cast <bool> (i_nocapture < OperandTraits<ReturnInst>::operands(this) && "setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<ReturnInst>::operands(this) && \"setOperand() out of range!\"" , "llvm/include/llvm/IR/Instructions.h", 3118, __extension__ __PRETTY_FUNCTION__ )); OperandTraits<ReturnInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned ReturnInst::getNumOperands() const { return OperandTraits<ReturnInst>::operands(this); } template <int Idx_nocapture> Use &ReturnInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &ReturnInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
| 3119 | |
| 3120 | //===----------------------------------------------------------------------===// |
| 3121 | // BranchInst Class |
| 3122 | //===----------------------------------------------------------------------===// |
| 3123 | |
| 3124 | //===--------------------------------------------------------------------------- |
| 3125 | /// Conditional or Unconditional Branch instruction. |
| 3126 | /// |
| 3127 | class BranchInst : public Instruction { |
| 3128 | /// Ops list - Branches are strange. The operands are ordered: |
| 3129 | /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because |
| 3130 | /// they don't have to check for cond/uncond branchness. These are mostly |
| 3131 | /// accessed relative from op_end(). |
| 3132 | BranchInst(const BranchInst &BI); |
| 3133 | // BranchInst constructors (where {B, T, F} are blocks, and C is a condition): |
| 3134 | // BranchInst(BB *B) - 'br B' |
| 3135 | // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F' |
| 3136 | // BranchInst(BB* B, Inst *I) - 'br B' insert before I |
| 3137 | // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I |
| 3138 | // BranchInst(BB* B, BB *I) - 'br B' insert at end |
| 3139 | // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end |
| 3140 | explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr); |
| 3141 | BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, |
| 3142 | Instruction *InsertBefore = nullptr); |
| 3143 | BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd); |
| 3144 | BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, |
| 3145 | BasicBlock *InsertAtEnd); |
| 3146 | |
| 3147 | void AssertOK(); |
| 3148 | |
| 3149 | protected: |
| 3150 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 3151 | friend class Instruction; |
| 3152 | |
| 3153 | BranchInst *cloneImpl() const; |
| 3154 | |
| 3155 | public: |
| 3156 | /// Iterator type that casts an operand to a basic block. |
| 3157 | /// |
| 3158 | /// This only makes sense because the successors are stored as adjacent |
| 3159 | /// operands for branch instructions. |
| 3160 | struct succ_op_iterator |
| 3161 | : iterator_adaptor_base<succ_op_iterator, value_op_iterator, |
| 3162 | std::random_access_iterator_tag, BasicBlock *, |
| 3163 | ptrdiff_t, BasicBlock *, BasicBlock *> { |
| 3164 | explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {} |
| 3165 | |
| 3166 | BasicBlock *operator*() const { return cast<BasicBlock>(*I); } |
| 3167 | BasicBlock *operator->() const { return operator*(); } |
| 3168 | }; |
| 3169 | |
| 3170 | /// The const version of `succ_op_iterator`. |
| 3171 | struct const_succ_op_iterator |
| 3172 | : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator, |
| 3173 | std::random_access_iterator_tag, |
| 3174 | const BasicBlock *, ptrdiff_t, const BasicBlock *, |
| 3175 | const BasicBlock *> { |
| 3176 | explicit const_succ_op_iterator(const_value_op_iterator I) |
| 3177 | : iterator_adaptor_base(I) {} |
| 3178 | |
| 3179 | const BasicBlock *operator*() const { return cast<BasicBlock>(*I); } |
| 3180 | const BasicBlock *operator->() const { return operator*(); } |
| 3181 | }; |
| 3182 | |
| 3183 | static BranchInst *Create(BasicBlock *IfTrue, |
| 3184 | Instruction *InsertBefore = nullptr) { |
| 3185 | return new(1) BranchInst(IfTrue, InsertBefore); |
| 3186 | } |
| 3187 | |
| 3188 | static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse, |
| 3189 | Value *Cond, Instruction *InsertBefore = nullptr) { |
| 3190 | return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore); |
| 3191 | } |
| 3192 | |
| 3193 | static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) { |
| 3194 | return new(1) BranchInst(IfTrue, InsertAtEnd); |
| 3195 | } |
| 3196 | |
| 3197 | static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse, |
| 3198 | Value *Cond, BasicBlock *InsertAtEnd) { |
| 3199 | return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd); |
| 3200 | } |
| 3201 | |
| 3202 | /// Transparently provide more efficient getOperand methods. |
| 3203 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 3204 | |
| 3205 | bool isUnconditional() const { return getNumOperands() == 1; } |
| 3206 | bool isConditional() const { return getNumOperands() == 3; } |
| 3207 | |
| 3208 | Value *getCondition() const { |
| 3209 | assert(isConditional() && "Cannot get condition of an uncond branch!")(static_cast <bool> (isConditional() && "Cannot get condition of an uncond branch!" ) ? void (0) : __assert_fail ("isConditional() && \"Cannot get condition of an uncond branch!\"" , "llvm/include/llvm/IR/Instructions.h", 3209, __extension__ __PRETTY_FUNCTION__ )); |
| 3210 | return Op<-3>(); |
| 3211 | } |
| 3212 | |
| 3213 | void setCondition(Value *V) { |
| 3214 | assert(isConditional() && "Cannot set condition of unconditional branch!")(static_cast <bool> (isConditional() && "Cannot set condition of unconditional branch!" ) ? void (0) : __assert_fail ("isConditional() && \"Cannot set condition of unconditional branch!\"" , "llvm/include/llvm/IR/Instructions.h", 3214, __extension__ __PRETTY_FUNCTION__ )); |
| 3215 | Op<-3>() = V; |
| 3216 | } |
| 3217 | |
| 3218 | unsigned getNumSuccessors() const { return 1+isConditional(); } |
| 3219 | |
| 3220 | BasicBlock *getSuccessor(unsigned i) const { |
| 3221 | assert(i < getNumSuccessors() && "Successor # out of range for Branch!")(static_cast <bool> (i < getNumSuccessors() && "Successor # out of range for Branch!") ? void (0) : __assert_fail ("i < getNumSuccessors() && \"Successor # out of range for Branch!\"" , "llvm/include/llvm/IR/Instructions.h", 3221, __extension__ __PRETTY_FUNCTION__ )); |
| 3222 | return cast_or_null<BasicBlock>((&Op<-1>() - i)->get()); |
| 3223 | } |
| 3224 | |
| 3225 | void setSuccessor(unsigned idx, BasicBlock *NewSucc) { |
| 3226 | assert(idx < getNumSuccessors() && "Successor # out of range for Branch!")(static_cast <bool> (idx < getNumSuccessors() && "Successor # out of range for Branch!") ? void (0) : __assert_fail ("idx < getNumSuccessors() && \"Successor # out of range for Branch!\"" , "llvm/include/llvm/IR/Instructions.h", 3226, __extension__ __PRETTY_FUNCTION__ )); |
| 3227 | *(&Op<-1>() - idx) = NewSucc; |
| 3228 | } |
| 3229 | |
| 3230 | /// Swap the successors of this branch instruction. |
| 3231 | /// |
| 3232 | /// Swaps the successors of the branch instruction. This also swaps any |
| 3233 | /// branch weight metadata associated with the instruction so that it |
| 3234 | /// continues to map correctly to each operand. |
| 3235 | void swapSuccessors(); |
| 3236 | |
| 3237 | iterator_range<succ_op_iterator> successors() { |
| 3238 | return make_range( |
| 3239 | succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)), |
| 3240 | succ_op_iterator(value_op_end())); |
| 3241 | } |
| 3242 | |
| 3243 | iterator_range<const_succ_op_iterator> successors() const { |
| 3244 | return make_range(const_succ_op_iterator( |
| 3245 | std::next(value_op_begin(), isConditional() ? 1 : 0)), |
| 3246 | const_succ_op_iterator(value_op_end())); |
| 3247 | } |
| 3248 | |
| 3249 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 3250 | static bool classof(const Instruction *I) { |
| 3251 | return (I->getOpcode() == Instruction::Br); |
| 3252 | } |
| 3253 | static bool classof(const Value *V) { |
| 3254 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 3255 | } |
| 3256 | }; |
| 3257 | |
| 3258 | template <> |
| 3259 | struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> { |
| 3260 | }; |
| 3261 | |
| 3262 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)BranchInst::op_iterator BranchInst::op_begin() { return OperandTraits <BranchInst>::op_begin(this); } BranchInst::const_op_iterator BranchInst::op_begin() const { return OperandTraits<BranchInst >::op_begin(const_cast<BranchInst*>(this)); } BranchInst ::op_iterator BranchInst::op_end() { return OperandTraits< BranchInst>::op_end(this); } BranchInst::const_op_iterator BranchInst::op_end() const { return OperandTraits<BranchInst >::op_end(const_cast<BranchInst*>(this)); } Value *BranchInst ::getOperand(unsigned i_nocapture) const { (static_cast <bool > (i_nocapture < OperandTraits<BranchInst>::operands (this) && "getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<BranchInst>::operands(this) && \"getOperand() out of range!\"" , "llvm/include/llvm/IR/Instructions.h", 3262, __extension__ __PRETTY_FUNCTION__ )); return cast_or_null<Value>( OperandTraits<BranchInst >::op_begin(const_cast<BranchInst*>(this))[i_nocapture ].get()); } void BranchInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (static_cast <bool> (i_nocapture < OperandTraits<BranchInst>::operands(this) && "setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<BranchInst>::operands(this) && \"setOperand() out of range!\"" , "llvm/include/llvm/IR/Instructions.h", 3262, __extension__ __PRETTY_FUNCTION__ )); OperandTraits<BranchInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned BranchInst::getNumOperands() const { return OperandTraits<BranchInst>::operands(this); } template <int Idx_nocapture> Use &BranchInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &BranchInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
| 3263 | |
| 3264 | //===----------------------------------------------------------------------===// |
| 3265 | // SwitchInst Class |
| 3266 | //===----------------------------------------------------------------------===// |
| 3267 | |
| 3268 | //===--------------------------------------------------------------------------- |
| 3269 | /// Multiway switch |
| 3270 | /// |
| 3271 | class SwitchInst : public Instruction { |
| 3272 | unsigned ReservedSpace; |
| 3273 | |
| 3274 | // Operand[0] = Value to switch on |
| 3275 | // Operand[1] = Default basic block destination |
| 3276 | // Operand[2n ] = Value to match |
| 3277 | // Operand[2n+1] = BasicBlock to go to on match |
| 3278 | SwitchInst(const SwitchInst &SI); |
| 3279 | |
| 3280 | /// Create a new switch instruction, specifying a value to switch on and a |
| 3281 | /// default destination. The number of additional cases can be specified here |
| 3282 | /// to make memory allocation more efficient. This constructor can also |
| 3283 | /// auto-insert before another instruction. |
| 3284 | SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, |
| 3285 | Instruction *InsertBefore); |
| 3286 | |
| 3287 | /// Create a new switch instruction, specifying a value to switch on and a |
| 3288 | /// default destination. The number of additional cases can be specified here |
| 3289 | /// to make memory allocation more efficient. This constructor also |
| 3290 | /// auto-inserts at the end of the specified BasicBlock. |
| 3291 | SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, |
| 3292 | BasicBlock *InsertAtEnd); |
| 3293 | |
| 3294 | // allocate space for exactly zero operands |
| 3295 | void *operator new(size_t S) { return User::operator new(S); } |
| 3296 | |
| 3297 | void init(Value *Value, BasicBlock *Default, unsigned NumReserved); |
| 3298 | void growOperands(); |
| 3299 | |
| 3300 | protected: |
| 3301 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 3302 | friend class Instruction; |
| 3303 | |
| 3304 | SwitchInst *cloneImpl() const; |
| 3305 | |
| 3306 | public: |
| 3307 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 3308 | |
| 3309 | // -2 |
| 3310 | static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1); |
| 3311 | |
| 3312 | template <typename CaseHandleT> class CaseIteratorImpl; |
| 3313 | |
| 3314 | /// A handle to a particular switch case. It exposes a convenient interface |
| 3315 | /// to both the case value and the successor block. |
| 3316 | /// |
| 3317 | /// We define this as a template and instantiate it to form both a const and |
| 3318 | /// non-const handle. |
| 3319 | template <typename SwitchInstT, typename ConstantIntT, typename BasicBlockT> |
| 3320 | class CaseHandleImpl { |
| 3321 | // Directly befriend both const and non-const iterators. |
| 3322 | friend class SwitchInst::CaseIteratorImpl< |
| 3323 | CaseHandleImpl<SwitchInstT, ConstantIntT, BasicBlockT>>; |
| 3324 | |
| 3325 | protected: |
| 3326 | // Expose the switch type we're parameterized with to the iterator. |
| 3327 | using SwitchInstType = SwitchInstT; |
| 3328 | |
| 3329 | SwitchInstT *SI; |
| 3330 | ptrdiff_t Index; |
| 3331 | |
| 3332 | CaseHandleImpl() = default; |
| 3333 | CaseHandleImpl(SwitchInstT *SI, ptrdiff_t Index) : SI(SI), Index(Index) {} |
| 3334 | |
| 3335 | public: |
| 3336 | /// Resolves case value for current case. |
| 3337 | ConstantIntT *getCaseValue() const { |
| 3338 | assert((unsigned)Index < SI->getNumCases() &&(static_cast <bool> ((unsigned)Index < SI->getNumCases () && "Index out the number of cases.") ? void (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\"" , "llvm/include/llvm/IR/Instructions.h", 3339, __extension__ __PRETTY_FUNCTION__ )) |
| 3339 | "Index out the number of cases.")(static_cast <bool> ((unsigned)Index < SI->getNumCases () && "Index out the number of cases.") ? void (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\"" , "llvm/include/llvm/IR/Instructions.h", 3339, __extension__ __PRETTY_FUNCTION__ )); |
| 3340 | return reinterpret_cast<ConstantIntT *>(SI->getOperand(2 + Index * 2)); |
| 3341 | } |
| 3342 | |
| 3343 | /// Resolves successor for current case. |
| 3344 | BasicBlockT *getCaseSuccessor() const { |
| 3345 | assert(((unsigned)Index < SI->getNumCases() ||(static_cast <bool> (((unsigned)Index < SI->getNumCases () || (unsigned)Index == DefaultPseudoIndex) && "Index out the number of cases." ) ? void (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\"" , "llvm/include/llvm/IR/Instructions.h", 3347, __extension__ __PRETTY_FUNCTION__ )) |
| 3346 | (unsigned)Index == DefaultPseudoIndex) &&(static_cast <bool> (((unsigned)Index < SI->getNumCases () || (unsigned)Index == DefaultPseudoIndex) && "Index out the number of cases." ) ? void (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\"" , "llvm/include/llvm/IR/Instructions.h", 3347, __extension__ __PRETTY_FUNCTION__ )) |
| 3347 | "Index out the number of cases.")(static_cast <bool> (((unsigned)Index < SI->getNumCases () || (unsigned)Index == DefaultPseudoIndex) && "Index out the number of cases." ) ? void (0) : __assert_fail ("((unsigned)Index < SI->getNumCases() || (unsigned)Index == DefaultPseudoIndex) && \"Index out the number of cases.\"" , "llvm/include/llvm/IR/Instructions.h", 3347, __extension__ __PRETTY_FUNCTION__ )); |
| 3348 | return SI->getSuccessor(getSuccessorIndex()); |
| 3349 | } |
| 3350 | |
| 3351 | /// Returns number of current case. |
| 3352 | unsigned getCaseIndex() const { return Index; } |
| 3353 | |
| 3354 | /// Returns successor index for current case successor. |
| 3355 | unsigned getSuccessorIndex() const { |
| 3356 | assert(((unsigned)Index == DefaultPseudoIndex ||(static_cast <bool> (((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && "Index out the number of cases." ) ? void (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\"" , "llvm/include/llvm/IR/Instructions.h", 3358, __extension__ __PRETTY_FUNCTION__ )) |
| 3357 | (unsigned)Index < SI->getNumCases()) &&(static_cast <bool> (((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && "Index out the number of cases." ) ? void (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\"" , "llvm/include/llvm/IR/Instructions.h", 3358, __extension__ __PRETTY_FUNCTION__ )) |
| 3358 | "Index out the number of cases.")(static_cast <bool> (((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && "Index out the number of cases." ) ? void (0) : __assert_fail ("((unsigned)Index == DefaultPseudoIndex || (unsigned)Index < SI->getNumCases()) && \"Index out the number of cases.\"" , "llvm/include/llvm/IR/Instructions.h", 3358, __extension__ __PRETTY_FUNCTION__ )); |
| 3359 | return (unsigned)Index != DefaultPseudoIndex ? Index + 1 : 0; |
| 3360 | } |
| 3361 | |
| 3362 | bool operator==(const CaseHandleImpl &RHS) const { |
| 3363 | assert(SI == RHS.SI && "Incompatible operators.")(static_cast <bool> (SI == RHS.SI && "Incompatible operators." ) ? void (0) : __assert_fail ("SI == RHS.SI && \"Incompatible operators.\"" , "llvm/include/llvm/IR/Instructions.h", 3363, __extension__ __PRETTY_FUNCTION__ )); |
| 3364 | return Index == RHS.Index; |
| 3365 | } |
| 3366 | }; |
| 3367 | |
| 3368 | using ConstCaseHandle = |
| 3369 | CaseHandleImpl<const SwitchInst, const ConstantInt, const BasicBlock>; |
| 3370 | |
| 3371 | class CaseHandle |
| 3372 | : public CaseHandleImpl<SwitchInst, ConstantInt, BasicBlock> { |
| 3373 | friend class SwitchInst::CaseIteratorImpl<CaseHandle>; |
| 3374 | |
| 3375 | public: |
| 3376 | CaseHandle(SwitchInst *SI, ptrdiff_t Index) : CaseHandleImpl(SI, Index) {} |
| 3377 | |
| 3378 | /// Sets the new value for current case. |
| 3379 | void setValue(ConstantInt *V) const { |
| 3380 | assert((unsigned)Index < SI->getNumCases() &&(static_cast <bool> ((unsigned)Index < SI->getNumCases () && "Index out the number of cases.") ? void (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\"" , "llvm/include/llvm/IR/Instructions.h", 3381, __extension__ __PRETTY_FUNCTION__ )) |
| 3381 | "Index out the number of cases.")(static_cast <bool> ((unsigned)Index < SI->getNumCases () && "Index out the number of cases.") ? void (0) : __assert_fail ("(unsigned)Index < SI->getNumCases() && \"Index out the number of cases.\"" , "llvm/include/llvm/IR/Instructions.h", 3381, __extension__ __PRETTY_FUNCTION__ )); |
| 3382 | SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V)); |
| 3383 | } |
| 3384 | |
| 3385 | /// Sets the new successor for current case. |
| 3386 | void setSuccessor(BasicBlock *S) const { |
| 3387 | SI->setSuccessor(getSuccessorIndex(), S); |
| 3388 | } |
| 3389 | }; |
| 3390 | |
| 3391 | template <typename CaseHandleT> |
| 3392 | class CaseIteratorImpl |
| 3393 | : public iterator_facade_base<CaseIteratorImpl<CaseHandleT>, |
| 3394 | std::random_access_iterator_tag, |
| 3395 | const CaseHandleT> { |
| 3396 | using SwitchInstT = typename CaseHandleT::SwitchInstType; |
| 3397 | |
| 3398 | CaseHandleT Case; |
| 3399 | |
| 3400 | public: |
| 3401 | /// Default constructed iterator is in an invalid state until assigned to |
| 3402 | /// a case for a particular switch. |
| 3403 | CaseIteratorImpl() = default; |
| 3404 | |
| 3405 | /// Initializes case iterator for given SwitchInst and for given |
| 3406 | /// case number. |
| 3407 | CaseIteratorImpl(SwitchInstT *SI, unsigned CaseNum) : Case(SI, CaseNum) {} |
| 3408 | |
| 3409 | /// Initializes case iterator for given SwitchInst and for given |
| 3410 | /// successor index. |
| 3411 | static CaseIteratorImpl fromSuccessorIndex(SwitchInstT *SI, |
| 3412 | unsigned SuccessorIndex) { |
| 3413 | assert(SuccessorIndex < SI->getNumSuccessors() &&(static_cast <bool> (SuccessorIndex < SI->getNumSuccessors () && "Successor index # out of range!") ? void (0) : __assert_fail ("SuccessorIndex < SI->getNumSuccessors() && \"Successor index # out of range!\"" , "llvm/include/llvm/IR/Instructions.h", 3414, __extension__ __PRETTY_FUNCTION__ )) |
| 3414 | "Successor index # out of range!")(static_cast <bool> (SuccessorIndex < SI->getNumSuccessors () && "Successor index # out of range!") ? void (0) : __assert_fail ("SuccessorIndex < SI->getNumSuccessors() && \"Successor index # out of range!\"" , "llvm/include/llvm/IR/Instructions.h", 3414, __extension__ __PRETTY_FUNCTION__ )); |
| 3415 | return SuccessorIndex != 0 ? CaseIteratorImpl(SI, SuccessorIndex - 1) |
| 3416 | : CaseIteratorImpl(SI, DefaultPseudoIndex); |
| 3417 | } |
| 3418 | |
| 3419 | /// Support converting to the const variant. This will be a no-op for const |
| 3420 | /// variant. |
| 3421 | operator CaseIteratorImpl<ConstCaseHandle>() const { |
| 3422 | return CaseIteratorImpl<ConstCaseHandle>(Case.SI, Case.Index); |
| 3423 | } |
| 3424 | |
| 3425 | CaseIteratorImpl &operator+=(ptrdiff_t N) { |
| 3426 | // Check index correctness after addition. |
| 3427 | // Note: Index == getNumCases() means end(). |
| 3428 | assert(Case.Index + N >= 0 &&(static_cast <bool> (Case.Index + N >= 0 && ( unsigned)(Case.Index + N) <= Case.SI->getNumCases() && "Case.Index out the number of cases.") ? void (0) : __assert_fail ("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\"" , "llvm/include/llvm/IR/Instructions.h", 3430, __extension__ __PRETTY_FUNCTION__ )) |
| 3429 | (unsigned)(Case.Index + N) <= Case.SI->getNumCases() &&(static_cast <bool> (Case.Index + N >= 0 && ( unsigned)(Case.Index + N) <= Case.SI->getNumCases() && "Case.Index out the number of cases.") ? void (0) : __assert_fail ("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\"" , "llvm/include/llvm/IR/Instructions.h", 3430, __extension__ __PRETTY_FUNCTION__ )) |
| 3430 | "Case.Index out the number of cases.")(static_cast <bool> (Case.Index + N >= 0 && ( unsigned)(Case.Index + N) <= Case.SI->getNumCases() && "Case.Index out the number of cases.") ? void (0) : __assert_fail ("Case.Index + N >= 0 && (unsigned)(Case.Index + N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\"" , "llvm/include/llvm/IR/Instructions.h", 3430, __extension__ __PRETTY_FUNCTION__ )); |
| 3431 | Case.Index += N; |
| 3432 | return *this; |
| 3433 | } |
| 3434 | CaseIteratorImpl &operator-=(ptrdiff_t N) { |
| 3435 | // Check index correctness after subtraction. |
| 3436 | // Note: Case.Index == getNumCases() means end(). |
| 3437 | assert(Case.Index - N >= 0 &&(static_cast <bool> (Case.Index - N >= 0 && ( unsigned)(Case.Index - N) <= Case.SI->getNumCases() && "Case.Index out the number of cases.") ? void (0) : __assert_fail ("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\"" , "llvm/include/llvm/IR/Instructions.h", 3439, __extension__ __PRETTY_FUNCTION__ )) |
| 3438 | (unsigned)(Case.Index - N) <= Case.SI->getNumCases() &&(static_cast <bool> (Case.Index - N >= 0 && ( unsigned)(Case.Index - N) <= Case.SI->getNumCases() && "Case.Index out the number of cases.") ? void (0) : __assert_fail ("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\"" , "llvm/include/llvm/IR/Instructions.h", 3439, __extension__ __PRETTY_FUNCTION__ )) |
| 3439 | "Case.Index out the number of cases.")(static_cast <bool> (Case.Index - N >= 0 && ( unsigned)(Case.Index - N) <= Case.SI->getNumCases() && "Case.Index out the number of cases.") ? void (0) : __assert_fail ("Case.Index - N >= 0 && (unsigned)(Case.Index - N) <= Case.SI->getNumCases() && \"Case.Index out the number of cases.\"" , "llvm/include/llvm/IR/Instructions.h", 3439, __extension__ __PRETTY_FUNCTION__ )); |
| 3440 | Case.Index -= N; |
| 3441 | return *this; |
| 3442 | } |
| 3443 | ptrdiff_t operator-(const CaseIteratorImpl &RHS) const { |
| 3444 | assert(Case.SI == RHS.Case.SI && "Incompatible operators.")(static_cast <bool> (Case.SI == RHS.Case.SI && "Incompatible operators." ) ? void (0) : __assert_fail ("Case.SI == RHS.Case.SI && \"Incompatible operators.\"" , "llvm/include/llvm/IR/Instructions.h", 3444, __extension__ __PRETTY_FUNCTION__ )); |
| 3445 | return Case.Index - RHS.Case.Index; |
| 3446 | } |
| 3447 | bool operator==(const CaseIteratorImpl &RHS) const { |
| 3448 | return Case == RHS.Case; |
| 3449 | } |
| 3450 | bool operator<(const CaseIteratorImpl &RHS) const { |
| 3451 | assert(Case.SI == RHS.Case.SI && "Incompatible operators.")(static_cast <bool> (Case.SI == RHS.Case.SI && "Incompatible operators." ) ? void (0) : __assert_fail ("Case.SI == RHS.Case.SI && \"Incompatible operators.\"" , "llvm/include/llvm/IR/Instructions.h", 3451, __extension__ __PRETTY_FUNCTION__ )); |
| 3452 | return Case.Index < RHS.Case.Index; |
| 3453 | } |
| 3454 | const CaseHandleT &operator*() const { return Case; } |
| 3455 | }; |
| 3456 | |
| 3457 | using CaseIt = CaseIteratorImpl<CaseHandle>; |
| 3458 | using ConstCaseIt = CaseIteratorImpl<ConstCaseHandle>; |
| 3459 | |
| 3460 | static SwitchInst *Create(Value *Value, BasicBlock *Default, |
| 3461 | unsigned NumCases, |
| 3462 | Instruction *InsertBefore = nullptr) { |
| 3463 | return new SwitchInst(Value, Default, NumCases, InsertBefore); |
| 3464 | } |
| 3465 | |
| 3466 | static SwitchInst *Create(Value *Value, BasicBlock *Default, |
| 3467 | unsigned NumCases, BasicBlock *InsertAtEnd) { |
| 3468 | return new SwitchInst(Value, Default, NumCases, InsertAtEnd); |
| 3469 | } |
| 3470 | |
| 3471 | /// Provide fast operand accessors |
| 3472 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 3473 | |
| 3474 | // Accessor Methods for Switch stmt |
| 3475 | Value *getCondition() const { return getOperand(0); } |
| 3476 | void setCondition(Value *V) { setOperand(0, V); } |
| 3477 | |
| 3478 | BasicBlock *getDefaultDest() const { |
| 3479 | return cast<BasicBlock>(getOperand(1)); |
| 3480 | } |
| 3481 | |
| 3482 | void setDefaultDest(BasicBlock *DefaultCase) { |
| 3483 | setOperand(1, reinterpret_cast<Value*>(DefaultCase)); |
| 3484 | } |
| 3485 | |
| 3486 | /// Return the number of 'cases' in this switch instruction, excluding the |
| 3487 | /// default case. |
| 3488 | unsigned getNumCases() const { |
| 3489 | return getNumOperands()/2 - 1; |
| 3490 | } |
| 3491 | |
| 3492 | /// Returns a read/write iterator that points to the first case in the |
| 3493 | /// SwitchInst. |
| 3494 | CaseIt case_begin() { |
| 3495 | return CaseIt(this, 0); |
| 3496 | } |
| 3497 | |
| 3498 | /// Returns a read-only iterator that points to the first case in the |
| 3499 | /// SwitchInst. |
| 3500 | ConstCaseIt case_begin() const { |
| 3501 | return ConstCaseIt(this, 0); |
| 3502 | } |
| 3503 | |
| 3504 | /// Returns a read/write iterator that points one past the last in the |
| 3505 | /// SwitchInst. |
| 3506 | CaseIt case_end() { |
| 3507 | return CaseIt(this, getNumCases()); |
| 3508 | } |
| 3509 | |
| 3510 | /// Returns a read-only iterator that points one past the last in the |
| 3511 | /// SwitchInst. |
| 3512 | ConstCaseIt case_end() const { |
| 3513 | return ConstCaseIt(this, getNumCases()); |
| 3514 | } |
| 3515 | |
| 3516 | /// Iteration adapter for range-for loops. |
| 3517 | iterator_range<CaseIt> cases() { |
| 3518 | return make_range(case_begin(), case_end()); |
| 3519 | } |
| 3520 | |
| 3521 | /// Constant iteration adapter for range-for loops. |
| 3522 | iterator_range<ConstCaseIt> cases() const { |
| 3523 | return make_range(case_begin(), case_end()); |
| 3524 | } |
| 3525 | |
| 3526 | /// Returns an iterator that points to the default case. |
| 3527 | /// Note: this iterator allows to resolve successor only. Attempt |
| 3528 | /// to resolve case value causes an assertion. |
| 3529 | /// Also note, that increment and decrement also causes an assertion and |
| 3530 | /// makes iterator invalid. |
| 3531 | CaseIt case_default() { |
| 3532 | return CaseIt(this, DefaultPseudoIndex); |
| 3533 | } |
| 3534 | ConstCaseIt case_default() const { |
| 3535 | return ConstCaseIt(this, DefaultPseudoIndex); |
| 3536 | } |
| 3537 | |
| 3538 | /// Search all of the case values for the specified constant. If it is |
| 3539 | /// explicitly handled, return the case iterator of it, otherwise return |
| 3540 | /// default case iterator to indicate that it is handled by the default |
| 3541 | /// handler. |
| 3542 | CaseIt findCaseValue(const ConstantInt *C) { |
| 3543 | return CaseIt( |
| 3544 | this, |
| 3545 | const_cast<const SwitchInst *>(this)->findCaseValue(C)->getCaseIndex()); |
| 3546 | } |
| 3547 | ConstCaseIt findCaseValue(const ConstantInt *C) const { |
| 3548 | ConstCaseIt I = llvm::find_if(cases(), [C](const ConstCaseHandle &Case) { |
| 3549 | return Case.getCaseValue() == C; |
| 3550 | }); |
| 3551 | if (I != case_end()) |
| 3552 | return I; |
| 3553 | |
| 3554 | return case_default(); |
| 3555 | } |
| 3556 | |
| 3557 | /// Finds the unique case value for a given successor. Returns null if the |
| 3558 | /// successor is not found, not unique, or is the default case. |
| 3559 | ConstantInt *findCaseDest(BasicBlock *BB) { |
| 3560 | if (BB == getDefaultDest()) |
| 3561 | return nullptr; |
| 3562 | |
| 3563 | ConstantInt *CI = nullptr; |
| 3564 | for (auto Case : cases()) { |
| 3565 | if (Case.getCaseSuccessor() != BB) |
| 3566 | continue; |
| 3567 | |
| 3568 | if (CI) |
| 3569 | return nullptr; // Multiple cases lead to BB. |
| 3570 | |
| 3571 | CI = Case.getCaseValue(); |
| 3572 | } |
| 3573 | |
| 3574 | return CI; |
| 3575 | } |
| 3576 | |
| 3577 | /// Add an entry to the switch instruction. |
| 3578 | /// Note: |
| 3579 | /// This action invalidates case_end(). Old case_end() iterator will |
| 3580 | /// point to the added case. |
| 3581 | void addCase(ConstantInt *OnVal, BasicBlock *Dest); |
| 3582 | |
| 3583 | /// This method removes the specified case and its successor from the switch |
| 3584 | /// instruction. Note that this operation may reorder the remaining cases at |
| 3585 | /// index idx and above. |
| 3586 | /// Note: |
| 3587 | /// This action invalidates iterators for all cases following the one removed, |
| 3588 | /// including the case_end() iterator. It returns an iterator for the next |
| 3589 | /// case. |
| 3590 | CaseIt removeCase(CaseIt I); |
| 3591 | |
| 3592 | unsigned getNumSuccessors() const { return getNumOperands()/2; } |
| 3593 | BasicBlock *getSuccessor(unsigned idx) const { |
| 3594 | assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!")(static_cast <bool> (idx < getNumSuccessors() && "Successor idx out of range for switch!") ? void (0) : __assert_fail ("idx < getNumSuccessors() &&\"Successor idx out of range for switch!\"" , "llvm/include/llvm/IR/Instructions.h", 3594, __extension__ __PRETTY_FUNCTION__ )); |
| 3595 | return cast<BasicBlock>(getOperand(idx*2+1)); |
| 3596 | } |
| 3597 | void setSuccessor(unsigned idx, BasicBlock *NewSucc) { |
| 3598 | assert(idx < getNumSuccessors() && "Successor # out of range for switch!")(static_cast <bool> (idx < getNumSuccessors() && "Successor # out of range for switch!") ? void (0) : __assert_fail ("idx < getNumSuccessors() && \"Successor # out of range for switch!\"" , "llvm/include/llvm/IR/Instructions.h", 3598, __extension__ __PRETTY_FUNCTION__ )); |
| 3599 | setOperand(idx * 2 + 1, NewSucc); |
| 3600 | } |
| 3601 | |
| 3602 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 3603 | static bool classof(const Instruction *I) { |
| 3604 | return I->getOpcode() == Instruction::Switch; |
| 3605 | } |
| 3606 | static bool classof(const Value *V) { |
| 3607 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 3608 | } |
| 3609 | }; |
| 3610 | |
| 3611 | /// A wrapper class to simplify modification of SwitchInst cases along with |
| 3612 | /// their prof branch_weights metadata. |
| 3613 | class SwitchInstProfUpdateWrapper { |
| 3614 | SwitchInst &SI; |
| 3615 | std::optional<SmallVector<uint32_t, 8>> Weights; |
| 3616 | bool Changed = false; |
| 3617 | |
| 3618 | protected: |
| 3619 | static MDNode *getProfBranchWeightsMD(const SwitchInst &SI); |
| 3620 | |
| 3621 | MDNode *buildProfBranchWeightsMD(); |
| 3622 | |
| 3623 | void init(); |
| 3624 | |
| 3625 | public: |
| 3626 | using CaseWeightOpt = std::optional<uint32_t>; |
| 3627 | SwitchInst *operator->() { return &SI; } |
| 3628 | SwitchInst &operator*() { return SI; } |
| 3629 | operator SwitchInst *() { return &SI; } |
| 3630 | |
| 3631 | SwitchInstProfUpdateWrapper(SwitchInst &SI) : SI(SI) { init(); } |
| 3632 | |
| 3633 | ~SwitchInstProfUpdateWrapper() { |
| 3634 | if (Changed) |
| 3635 | SI.setMetadata(LLVMContext::MD_prof, buildProfBranchWeightsMD()); |
| 3636 | } |
| 3637 | |
| 3638 | /// Delegate the call to the underlying SwitchInst::removeCase() and remove |
| 3639 | /// correspondent branch weight. |
| 3640 | SwitchInst::CaseIt removeCase(SwitchInst::CaseIt I); |
| 3641 | |
| 3642 | /// Delegate the call to the underlying SwitchInst::addCase() and set the |
| 3643 | /// specified branch weight for the added case. |
| 3644 | void addCase(ConstantInt *OnVal, BasicBlock *Dest, CaseWeightOpt W); |
| 3645 | |
| 3646 | /// Delegate the call to the underlying SwitchInst::eraseFromParent() and mark |
| 3647 | /// this object to not touch the underlying SwitchInst in destructor. |
| 3648 | SymbolTableList<Instruction>::iterator eraseFromParent(); |
| 3649 | |
| 3650 | void setSuccessorWeight(unsigned idx, CaseWeightOpt W); |
| 3651 | CaseWeightOpt getSuccessorWeight(unsigned idx); |
| 3652 | |
| 3653 | static CaseWeightOpt getSuccessorWeight(const SwitchInst &SI, unsigned idx); |
| 3654 | }; |
| 3655 | |
| 3656 | template <> |
| 3657 | struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> { |
| 3658 | }; |
| 3659 | |
| 3660 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)SwitchInst::op_iterator SwitchInst::op_begin() { return OperandTraits <SwitchInst>::op_begin(this); } SwitchInst::const_op_iterator SwitchInst::op_begin() const { return OperandTraits<SwitchInst >::op_begin(const_cast<SwitchInst*>(this)); } SwitchInst ::op_iterator SwitchInst::op_end() { return OperandTraits< SwitchInst>::op_end(this); } SwitchInst::const_op_iterator SwitchInst::op_end() const { return OperandTraits<SwitchInst >::op_end(const_cast<SwitchInst*>(this)); } Value *SwitchInst ::getOperand(unsigned i_nocapture) const { (static_cast <bool > (i_nocapture < OperandTraits<SwitchInst>::operands (this) && "getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<SwitchInst>::operands(this) && \"getOperand() out of range!\"" , "llvm/include/llvm/IR/Instructions.h", 3660, __extension__ __PRETTY_FUNCTION__ )); return cast_or_null<Value>( OperandTraits<SwitchInst >::op_begin(const_cast<SwitchInst*>(this))[i_nocapture ].get()); } void SwitchInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (static_cast <bool> (i_nocapture < OperandTraits<SwitchInst>::operands(this) && "setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<SwitchInst>::operands(this) && \"setOperand() out of range!\"" , "llvm/include/llvm/IR/Instructions.h", 3660, __extension__ __PRETTY_FUNCTION__ )); OperandTraits<SwitchInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned SwitchInst::getNumOperands() const { return OperandTraits<SwitchInst>::operands(this); } template <int Idx_nocapture> Use &SwitchInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &SwitchInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
| 3661 | |
| 3662 | //===----------------------------------------------------------------------===// |
| 3663 | // IndirectBrInst Class |
| 3664 | //===----------------------------------------------------------------------===// |
| 3665 | |
| 3666 | //===--------------------------------------------------------------------------- |
| 3667 | /// Indirect Branch Instruction. |
| 3668 | /// |
| 3669 | class IndirectBrInst : public Instruction { |
| 3670 | unsigned ReservedSpace; |
| 3671 | |
| 3672 | // Operand[0] = Address to jump to |
| 3673 | // Operand[n+1] = n-th destination |
| 3674 | IndirectBrInst(const IndirectBrInst &IBI); |
| 3675 | |
| 3676 | /// Create a new indirectbr instruction, specifying an |
| 3677 | /// Address to jump to. The number of expected destinations can be specified |
| 3678 | /// here to make memory allocation more efficient. This constructor can also |
| 3679 | /// autoinsert before another instruction. |
| 3680 | IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore); |
| 3681 | |
| 3682 | /// Create a new indirectbr instruction, specifying an |
| 3683 | /// Address to jump to. The number of expected destinations can be specified |
| 3684 | /// here to make memory allocation more efficient. This constructor also |
| 3685 | /// autoinserts at the end of the specified BasicBlock. |
| 3686 | IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd); |
| 3687 | |
| 3688 | // allocate space for exactly zero operands |
| 3689 | void *operator new(size_t S) { return User::operator new(S); } |
| 3690 | |
| 3691 | void init(Value *Address, unsigned NumDests); |
| 3692 | void growOperands(); |
| 3693 | |
| 3694 | protected: |
| 3695 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 3696 | friend class Instruction; |
| 3697 | |
| 3698 | IndirectBrInst *cloneImpl() const; |
| 3699 | |
| 3700 | public: |
| 3701 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 3702 | |
| 3703 | /// Iterator type that casts an operand to a basic block. |
| 3704 | /// |
| 3705 | /// This only makes sense because the successors are stored as adjacent |
| 3706 | /// operands for indirectbr instructions. |
| 3707 | struct succ_op_iterator |
| 3708 | : iterator_adaptor_base<succ_op_iterator, value_op_iterator, |
| 3709 | std::random_access_iterator_tag, BasicBlock *, |
| 3710 | ptrdiff_t, BasicBlock *, BasicBlock *> { |
| 3711 | explicit succ_op_iterator(value_op_iterator I) : iterator_adaptor_base(I) {} |
| 3712 | |
| 3713 | BasicBlock *operator*() const { return cast<BasicBlock>(*I); } |
| 3714 | BasicBlock *operator->() const { return operator*(); } |
| 3715 | }; |
| 3716 | |
| 3717 | /// The const version of `succ_op_iterator`. |
| 3718 | struct const_succ_op_iterator |
| 3719 | : iterator_adaptor_base<const_succ_op_iterator, const_value_op_iterator, |
| 3720 | std::random_access_iterator_tag, |
| 3721 | const BasicBlock *, ptrdiff_t, const BasicBlock *, |
| 3722 | const BasicBlock *> { |
| 3723 | explicit const_succ_op_iterator(const_value_op_iterator I) |
| 3724 | : iterator_adaptor_base(I) {} |
| 3725 | |
| 3726 | const BasicBlock *operator*() const { return cast<BasicBlock>(*I); } |
| 3727 | const BasicBlock *operator->() const { return operator*(); } |
| 3728 | }; |
| 3729 | |
| 3730 | static IndirectBrInst *Create(Value *Address, unsigned NumDests, |
| 3731 | Instruction *InsertBefore = nullptr) { |
| 3732 | return new IndirectBrInst(Address, NumDests, InsertBefore); |
| 3733 | } |
| 3734 | |
| 3735 | static IndirectBrInst *Create(Value *Address, unsigned NumDests, |
| 3736 | BasicBlock *InsertAtEnd) { |
| 3737 | return new IndirectBrInst(Address, NumDests, InsertAtEnd); |
| 3738 | } |
| 3739 | |
| 3740 | /// Provide fast operand accessors. |
| 3741 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 3742 | |
| 3743 | // Accessor Methods for IndirectBrInst instruction. |
| 3744 | Value *getAddress() { return getOperand(0); } |
| 3745 | const Value *getAddress() const { return getOperand(0); } |
| 3746 | void setAddress(Value *V) { setOperand(0, V); } |
| 3747 | |
| 3748 | /// return the number of possible destinations in this |
| 3749 | /// indirectbr instruction. |
| 3750 | unsigned getNumDestinations() const { return getNumOperands()-1; } |
| 3751 | |
| 3752 | /// Return the specified destination. |
| 3753 | BasicBlock *getDestination(unsigned i) { return getSuccessor(i); } |
| 3754 | const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); } |
| 3755 | |
| 3756 | /// Add a destination. |
| 3757 | /// |
| 3758 | void addDestination(BasicBlock *Dest); |
| 3759 | |
| 3760 | /// This method removes the specified successor from the |
| 3761 | /// indirectbr instruction. |
| 3762 | void removeDestination(unsigned i); |
| 3763 | |
| 3764 | unsigned getNumSuccessors() const { return getNumOperands()-1; } |
| 3765 | BasicBlock *getSuccessor(unsigned i) const { |
| 3766 | return cast<BasicBlock>(getOperand(i+1)); |
| 3767 | } |
| 3768 | void setSuccessor(unsigned i, BasicBlock *NewSucc) { |
| 3769 | setOperand(i + 1, NewSucc); |
| 3770 | } |
| 3771 | |
| 3772 | iterator_range<succ_op_iterator> successors() { |
| 3773 | return make_range(succ_op_iterator(std::next(value_op_begin())), |
| 3774 | succ_op_iterator(value_op_end())); |
| 3775 | } |
| 3776 | |
| 3777 | iterator_range<const_succ_op_iterator> successors() const { |
| 3778 | return make_range(const_succ_op_iterator(std::next(value_op_begin())), |
| 3779 | const_succ_op_iterator(value_op_end())); |
| 3780 | } |
| 3781 | |
| 3782 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 3783 | static bool classof(const Instruction *I) { |
| 3784 | return I->getOpcode() == Instruction::IndirectBr; |
| 3785 | } |
| 3786 | static bool classof(const Value *V) { |
| 3787 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 3788 | } |
| 3789 | }; |
| 3790 | |
| 3791 | template <> |
| 3792 | struct OperandTraits<IndirectBrInst> : public HungoffOperandTraits<1> { |
| 3793 | }; |
| 3794 | |
| 3795 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value)IndirectBrInst::op_iterator IndirectBrInst::op_begin() { return OperandTraits<IndirectBrInst>::op_begin(this); } IndirectBrInst ::const_op_iterator IndirectBrInst::op_begin() const { return OperandTraits<IndirectBrInst>::op_begin(const_cast< IndirectBrInst*>(this)); } IndirectBrInst::op_iterator IndirectBrInst ::op_end() { return OperandTraits<IndirectBrInst>::op_end (this); } IndirectBrInst::const_op_iterator IndirectBrInst::op_end () const { return OperandTraits<IndirectBrInst>::op_end (const_cast<IndirectBrInst*>(this)); } Value *IndirectBrInst ::getOperand(unsigned i_nocapture) const { (static_cast <bool > (i_nocapture < OperandTraits<IndirectBrInst>::operands (this) && "getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<IndirectBrInst>::operands(this) && \"getOperand() out of range!\"" , "llvm/include/llvm/IR/Instructions.h", 3795, __extension__ __PRETTY_FUNCTION__ )); return cast_or_null<Value>( OperandTraits<IndirectBrInst >::op_begin(const_cast<IndirectBrInst*>(this))[i_nocapture ].get()); } void IndirectBrInst::setOperand(unsigned i_nocapture , Value *Val_nocapture) { (static_cast <bool> (i_nocapture < OperandTraits<IndirectBrInst>::operands(this) && "setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<IndirectBrInst>::operands(this) && \"setOperand() out of range!\"" , "llvm/include/llvm/IR/Instructions.h", 3795, __extension__ __PRETTY_FUNCTION__ )); OperandTraits<IndirectBrInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned IndirectBrInst::getNumOperands( ) const { return OperandTraits<IndirectBrInst>::operands (this); } template <int Idx_nocapture> Use &IndirectBrInst ::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &IndirectBrInst ::Op() const { return this->OpFrom<Idx_nocapture>(this ); } |
| 3796 | |
| 3797 | //===----------------------------------------------------------------------===// |
| 3798 | // InvokeInst Class |
| 3799 | //===----------------------------------------------------------------------===// |
| 3800 | |
| 3801 | /// Invoke instruction. The SubclassData field is used to hold the |
| 3802 | /// calling convention of the call. |
| 3803 | /// |
| 3804 | class InvokeInst : public CallBase { |
| 3805 | /// The number of operands for this call beyond the called function, |
| 3806 | /// arguments, and operand bundles. |
| 3807 | static constexpr int NumExtraOperands = 2; |
| 3808 | |
| 3809 | /// The index from the end of the operand array to the normal destination. |
| 3810 | static constexpr int NormalDestOpEndIdx = -3; |
| 3811 | |
| 3812 | /// The index from the end of the operand array to the unwind destination. |
| 3813 | static constexpr int UnwindDestOpEndIdx = -2; |
| 3814 | |
| 3815 | InvokeInst(const InvokeInst &BI); |
| 3816 | |
| 3817 | /// Construct an InvokeInst given a range of arguments. |
| 3818 | /// |
| 3819 | /// Construct an InvokeInst from a range of arguments |
| 3820 | inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3821 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3822 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 3823 | const Twine &NameStr, Instruction *InsertBefore); |
| 3824 | |
| 3825 | inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3826 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3827 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 3828 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 3829 | |
| 3830 | void init(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3831 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3832 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr); |
| 3833 | |
| 3834 | /// Compute the number of operands to allocate. |
| 3835 | static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) { |
| 3836 | // We need one operand for the called function, plus our extra operands and |
| 3837 | // the input operand counts provided. |
| 3838 | return 1 + NumExtraOperands + NumArgs + NumBundleInputs; |
| 3839 | } |
| 3840 | |
| 3841 | protected: |
| 3842 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 3843 | friend class Instruction; |
| 3844 | |
| 3845 | InvokeInst *cloneImpl() const; |
| 3846 | |
| 3847 | public: |
| 3848 | static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3849 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3850 | const Twine &NameStr, |
| 3851 | Instruction *InsertBefore = nullptr) { |
| 3852 | int NumOperands = ComputeNumOperands(Args.size()); |
| 3853 | return new (NumOperands) |
| 3854 | InvokeInst(Ty, Func, IfNormal, IfException, Args, std::nullopt, |
| 3855 | NumOperands, NameStr, InsertBefore); |
| 3856 | } |
| 3857 | |
| 3858 | static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3859 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3860 | ArrayRef<OperandBundleDef> Bundles = std::nullopt, |
| 3861 | const Twine &NameStr = "", |
| 3862 | Instruction *InsertBefore = nullptr) { |
| 3863 | int NumOperands = |
| 3864 | ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); |
| 3865 | unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
| 3866 | |
| 3867 | return new (NumOperands, DescriptorBytes) |
| 3868 | InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands, |
| 3869 | NameStr, InsertBefore); |
| 3870 | } |
| 3871 | |
| 3872 | static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3873 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3874 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 3875 | int NumOperands = ComputeNumOperands(Args.size()); |
| 3876 | return new (NumOperands) |
| 3877 | InvokeInst(Ty, Func, IfNormal, IfException, Args, std::nullopt, |
| 3878 | NumOperands, NameStr, InsertAtEnd); |
| 3879 | } |
| 3880 | |
| 3881 | static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3882 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3883 | ArrayRef<OperandBundleDef> Bundles, |
| 3884 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 3885 | int NumOperands = |
| 3886 | ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)); |
| 3887 | unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
| 3888 | |
| 3889 | return new (NumOperands, DescriptorBytes) |
| 3890 | InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, NumOperands, |
| 3891 | NameStr, InsertAtEnd); |
| 3892 | } |
| 3893 | |
| 3894 | static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, |
| 3895 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3896 | const Twine &NameStr, |
| 3897 | Instruction *InsertBefore = nullptr) { |
| 3898 | return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, |
| 3899 | IfException, Args, std::nullopt, NameStr, InsertBefore); |
| 3900 | } |
| 3901 | |
| 3902 | static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, |
| 3903 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3904 | ArrayRef<OperandBundleDef> Bundles = std::nullopt, |
| 3905 | const Twine &NameStr = "", |
| 3906 | Instruction *InsertBefore = nullptr) { |
| 3907 | return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, |
| 3908 | IfException, Args, Bundles, NameStr, InsertBefore); |
| 3909 | } |
| 3910 | |
| 3911 | static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, |
| 3912 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3913 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 3914 | return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, |
| 3915 | IfException, Args, NameStr, InsertAtEnd); |
| 3916 | } |
| 3917 | |
| 3918 | static InvokeInst *Create(FunctionCallee Func, BasicBlock *IfNormal, |
| 3919 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3920 | ArrayRef<OperandBundleDef> Bundles, |
| 3921 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 3922 | return Create(Func.getFunctionType(), Func.getCallee(), IfNormal, |
| 3923 | IfException, Args, Bundles, NameStr, InsertAtEnd); |
| 3924 | } |
| 3925 | |
| 3926 | /// Create a clone of \p II with a different set of operand bundles and |
| 3927 | /// insert it before \p InsertPt. |
| 3928 | /// |
| 3929 | /// The returned invoke instruction is identical to \p II in every way except |
| 3930 | /// that the operand bundles for the new instruction are set to the operand |
| 3931 | /// bundles in \p Bundles. |
| 3932 | static InvokeInst *Create(InvokeInst *II, ArrayRef<OperandBundleDef> Bundles, |
| 3933 | Instruction *InsertPt = nullptr); |
| 3934 | |
| 3935 | // get*Dest - Return the destination basic blocks... |
| 3936 | BasicBlock *getNormalDest() const { |
| 3937 | return cast<BasicBlock>(Op<NormalDestOpEndIdx>()); |
| 3938 | } |
| 3939 | BasicBlock *getUnwindDest() const { |
| 3940 | return cast<BasicBlock>(Op<UnwindDestOpEndIdx>()); |
| 3941 | } |
| 3942 | void setNormalDest(BasicBlock *B) { |
| 3943 | Op<NormalDestOpEndIdx>() = reinterpret_cast<Value *>(B); |
| 3944 | } |
| 3945 | void setUnwindDest(BasicBlock *B) { |
| 3946 | Op<UnwindDestOpEndIdx>() = reinterpret_cast<Value *>(B); |
| 3947 | } |
| 3948 | |
| 3949 | /// Get the landingpad instruction from the landing pad |
| 3950 | /// block (the unwind destination). |
| 3951 | LandingPadInst *getLandingPadInst() const; |
| 3952 | |
| 3953 | BasicBlock *getSuccessor(unsigned i) const { |
| 3954 | assert(i < 2 && "Successor # out of range for invoke!")(static_cast <bool> (i < 2 && "Successor # out of range for invoke!" ) ? void (0) : __assert_fail ("i < 2 && \"Successor # out of range for invoke!\"" , "llvm/include/llvm/IR/Instructions.h", 3954, __extension__ __PRETTY_FUNCTION__ )); |
| 3955 | return i == 0 ? getNormalDest() : getUnwindDest(); |
| 3956 | } |
| 3957 | |
| 3958 | void setSuccessor(unsigned i, BasicBlock *NewSucc) { |
| 3959 | assert(i < 2 && "Successor # out of range for invoke!")(static_cast <bool> (i < 2 && "Successor # out of range for invoke!" ) ? void (0) : __assert_fail ("i < 2 && \"Successor # out of range for invoke!\"" , "llvm/include/llvm/IR/Instructions.h", 3959, __extension__ __PRETTY_FUNCTION__ )); |
| 3960 | if (i == 0) |
| 3961 | setNormalDest(NewSucc); |
| 3962 | else |
| 3963 | setUnwindDest(NewSucc); |
| 3964 | } |
| 3965 | |
| 3966 | unsigned getNumSuccessors() const { return 2; } |
| 3967 | |
| 3968 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 3969 | static bool classof(const Instruction *I) { |
| 3970 | return (I->getOpcode() == Instruction::Invoke); |
| 3971 | } |
| 3972 | static bool classof(const Value *V) { |
| 3973 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 3974 | } |
| 3975 | |
| 3976 | private: |
| 3977 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 3978 | // method so that subclasses cannot accidentally use it. |
| 3979 | template <typename Bitfield> |
| 3980 | void setSubclassData(typename Bitfield::Type Value) { |
| 3981 | Instruction::setSubclassData<Bitfield>(Value); |
| 3982 | } |
| 3983 | }; |
| 3984 | |
| 3985 | InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3986 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3987 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 3988 | const Twine &NameStr, Instruction *InsertBefore) |
| 3989 | : CallBase(Ty->getReturnType(), Instruction::Invoke, |
| 3990 | OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands, |
| 3991 | InsertBefore) { |
| 3992 | init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr); |
| 3993 | } |
| 3994 | |
| 3995 | InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, |
| 3996 | BasicBlock *IfException, ArrayRef<Value *> Args, |
| 3997 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 3998 | const Twine &NameStr, BasicBlock *InsertAtEnd) |
| 3999 | : CallBase(Ty->getReturnType(), Instruction::Invoke, |
| 4000 | OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands, |
| 4001 | InsertAtEnd) { |
| 4002 | init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr); |
| 4003 | } |
| 4004 | |
| 4005 | //===----------------------------------------------------------------------===// |
| 4006 | // CallBrInst Class |
| 4007 | //===----------------------------------------------------------------------===// |
| 4008 | |
| 4009 | /// CallBr instruction, tracking function calls that may not return control but |
| 4010 | /// instead transfer it to a third location. The SubclassData field is used to |
| 4011 | /// hold the calling convention of the call. |
| 4012 | /// |
| 4013 | class CallBrInst : public CallBase { |
| 4014 | |
| 4015 | unsigned NumIndirectDests; |
| 4016 | |
| 4017 | CallBrInst(const CallBrInst &BI); |
| 4018 | |
| 4019 | /// Construct a CallBrInst given a range of arguments. |
| 4020 | /// |
| 4021 | /// Construct a CallBrInst from a range of arguments |
| 4022 | inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, |
| 4023 | ArrayRef<BasicBlock *> IndirectDests, |
| 4024 | ArrayRef<Value *> Args, |
| 4025 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 4026 | const Twine &NameStr, Instruction *InsertBefore); |
| 4027 | |
| 4028 | inline CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, |
| 4029 | ArrayRef<BasicBlock *> IndirectDests, |
| 4030 | ArrayRef<Value *> Args, |
| 4031 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 4032 | const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 4033 | |
| 4034 | void init(FunctionType *FTy, Value *Func, BasicBlock *DefaultDest, |
| 4035 | ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args, |
| 4036 | ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr); |
| 4037 | |
| 4038 | /// Compute the number of operands to allocate. |
| 4039 | static int ComputeNumOperands(int NumArgs, int NumIndirectDests, |
| 4040 | int NumBundleInputs = 0) { |
| 4041 | // We need one operand for the called function, plus our extra operands and |
| 4042 | // the input operand counts provided. |
| 4043 | return 2 + NumIndirectDests + NumArgs + NumBundleInputs; |
| 4044 | } |
| 4045 | |
| 4046 | protected: |
| 4047 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4048 | friend class Instruction; |
| 4049 | |
| 4050 | CallBrInst *cloneImpl() const; |
| 4051 | |
| 4052 | public: |
| 4053 | static CallBrInst *Create(FunctionType *Ty, Value *Func, |
| 4054 | BasicBlock *DefaultDest, |
| 4055 | ArrayRef<BasicBlock *> IndirectDests, |
| 4056 | ArrayRef<Value *> Args, const Twine &NameStr, |
| 4057 | Instruction *InsertBefore = nullptr) { |
| 4058 | int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size()); |
| 4059 | return new (NumOperands) |
| 4060 | CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, std::nullopt, |
| 4061 | NumOperands, NameStr, InsertBefore); |
| 4062 | } |
| 4063 | |
| 4064 | static CallBrInst * |
| 4065 | Create(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, |
| 4066 | ArrayRef<BasicBlock *> IndirectDests, ArrayRef<Value *> Args, |
| 4067 | ArrayRef<OperandBundleDef> Bundles = std::nullopt, |
| 4068 | const Twine &NameStr = "", Instruction *InsertBefore = nullptr) { |
| 4069 | int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(), |
| 4070 | CountBundleInputs(Bundles)); |
| 4071 | unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
| 4072 | |
| 4073 | return new (NumOperands, DescriptorBytes) |
| 4074 | CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, |
| 4075 | NumOperands, NameStr, InsertBefore); |
| 4076 | } |
| 4077 | |
| 4078 | static CallBrInst *Create(FunctionType *Ty, Value *Func, |
| 4079 | BasicBlock *DefaultDest, |
| 4080 | ArrayRef<BasicBlock *> IndirectDests, |
| 4081 | ArrayRef<Value *> Args, const Twine &NameStr, |
| 4082 | BasicBlock *InsertAtEnd) { |
| 4083 | int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size()); |
| 4084 | return new (NumOperands) |
| 4085 | CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, std::nullopt, |
| 4086 | NumOperands, NameStr, InsertAtEnd); |
| 4087 | } |
| 4088 | |
| 4089 | static CallBrInst *Create(FunctionType *Ty, Value *Func, |
| 4090 | BasicBlock *DefaultDest, |
| 4091 | ArrayRef<BasicBlock *> IndirectDests, |
| 4092 | ArrayRef<Value *> Args, |
| 4093 | ArrayRef<OperandBundleDef> Bundles, |
| 4094 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 4095 | int NumOperands = ComputeNumOperands(Args.size(), IndirectDests.size(), |
| 4096 | CountBundleInputs(Bundles)); |
| 4097 | unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); |
| 4098 | |
| 4099 | return new (NumOperands, DescriptorBytes) |
| 4100 | CallBrInst(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, |
| 4101 | NumOperands, NameStr, InsertAtEnd); |
| 4102 | } |
| 4103 | |
| 4104 | static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest, |
| 4105 | ArrayRef<BasicBlock *> IndirectDests, |
| 4106 | ArrayRef<Value *> Args, const Twine &NameStr, |
| 4107 | Instruction *InsertBefore = nullptr) { |
| 4108 | return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, |
| 4109 | IndirectDests, Args, NameStr, InsertBefore); |
| 4110 | } |
| 4111 | |
| 4112 | static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest, |
| 4113 | ArrayRef<BasicBlock *> IndirectDests, |
| 4114 | ArrayRef<Value *> Args, |
| 4115 | ArrayRef<OperandBundleDef> Bundles = std::nullopt, |
| 4116 | const Twine &NameStr = "", |
| 4117 | Instruction *InsertBefore = nullptr) { |
| 4118 | return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, |
| 4119 | IndirectDests, Args, Bundles, NameStr, InsertBefore); |
| 4120 | } |
| 4121 | |
| 4122 | static CallBrInst *Create(FunctionCallee Func, BasicBlock *DefaultDest, |
| 4123 | ArrayRef<BasicBlock *> IndirectDests, |
| 4124 | ArrayRef<Value *> Args, const Twine &NameStr, |
| 4125 | BasicBlock *InsertAtEnd) { |
| 4126 | return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, |
| 4127 | IndirectDests, Args, NameStr, InsertAtEnd); |
| 4128 | } |
| 4129 | |
| 4130 | static CallBrInst *Create(FunctionCallee Func, |
| 4131 | BasicBlock *DefaultDest, |
| 4132 | ArrayRef<BasicBlock *> IndirectDests, |
| 4133 | ArrayRef<Value *> Args, |
| 4134 | ArrayRef<OperandBundleDef> Bundles, |
| 4135 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 4136 | return Create(Func.getFunctionType(), Func.getCallee(), DefaultDest, |
| 4137 | IndirectDests, Args, Bundles, NameStr, InsertAtEnd); |
| 4138 | } |
| 4139 | |
| 4140 | /// Create a clone of \p CBI with a different set of operand bundles and |
| 4141 | /// insert it before \p InsertPt. |
| 4142 | /// |
| 4143 | /// The returned callbr instruction is identical to \p CBI in every way |
| 4144 | /// except that the operand bundles for the new instruction are set to the |
| 4145 | /// operand bundles in \p Bundles. |
| 4146 | static CallBrInst *Create(CallBrInst *CBI, |
| 4147 | ArrayRef<OperandBundleDef> Bundles, |
| 4148 | Instruction *InsertPt = nullptr); |
| 4149 | |
| 4150 | /// Return the number of callbr indirect dest labels. |
| 4151 | /// |
| 4152 | unsigned getNumIndirectDests() const { return NumIndirectDests; } |
| 4153 | |
| 4154 | /// getIndirectDestLabel - Return the i-th indirect dest label. |
| 4155 | /// |
| 4156 | Value *getIndirectDestLabel(unsigned i) const { |
| 4157 | assert(i < getNumIndirectDests() && "Out of bounds!")(static_cast <bool> (i < getNumIndirectDests() && "Out of bounds!") ? void (0) : __assert_fail ("i < getNumIndirectDests() && \"Out of bounds!\"" , "llvm/include/llvm/IR/Instructions.h", 4157, __extension__ __PRETTY_FUNCTION__ )); |
| 4158 | return getOperand(i + arg_size() + getNumTotalBundleOperands() + 1); |
| 4159 | } |
| 4160 | |
| 4161 | Value *getIndirectDestLabelUse(unsigned i) const { |
| 4162 | assert(i < getNumIndirectDests() && "Out of bounds!")(static_cast <bool> (i < getNumIndirectDests() && "Out of bounds!") ? void (0) : __assert_fail ("i < getNumIndirectDests() && \"Out of bounds!\"" , "llvm/include/llvm/IR/Instructions.h", 4162, __extension__ __PRETTY_FUNCTION__ )); |
| 4163 | return getOperandUse(i + arg_size() + getNumTotalBundleOperands() + 1); |
| 4164 | } |
| 4165 | |
| 4166 | // Return the destination basic blocks... |
| 4167 | BasicBlock *getDefaultDest() const { |
| 4168 | return cast<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() - 1)); |
| 4169 | } |
| 4170 | BasicBlock *getIndirectDest(unsigned i) const { |
| 4171 | return cast_or_null<BasicBlock>(*(&Op<-1>() - getNumIndirectDests() + i)); |
| 4172 | } |
| 4173 | SmallVector<BasicBlock *, 16> getIndirectDests() const { |
| 4174 | SmallVector<BasicBlock *, 16> IndirectDests; |
| 4175 | for (unsigned i = 0, e = getNumIndirectDests(); i < e; ++i) |
| 4176 | IndirectDests.push_back(getIndirectDest(i)); |
| 4177 | return IndirectDests; |
| 4178 | } |
| 4179 | void setDefaultDest(BasicBlock *B) { |
| 4180 | *(&Op<-1>() - getNumIndirectDests() - 1) = reinterpret_cast<Value *>(B); |
| 4181 | } |
| 4182 | void setIndirectDest(unsigned i, BasicBlock *B) { |
| 4183 | *(&Op<-1>() - getNumIndirectDests() + i) = reinterpret_cast<Value *>(B); |
| 4184 | } |
| 4185 | |
| 4186 | BasicBlock *getSuccessor(unsigned i) const { |
| 4187 | assert(i < getNumSuccessors() + 1 &&(static_cast <bool> (i < getNumSuccessors() + 1 && "Successor # out of range for callbr!") ? void (0) : __assert_fail ("i < getNumSuccessors() + 1 && \"Successor # out of range for callbr!\"" , "llvm/include/llvm/IR/Instructions.h", 4188, __extension__ __PRETTY_FUNCTION__ )) |
| 4188 | "Successor # out of range for callbr!")(static_cast <bool> (i < getNumSuccessors() + 1 && "Successor # out of range for callbr!") ? void (0) : __assert_fail ("i < getNumSuccessors() + 1 && \"Successor # out of range for callbr!\"" , "llvm/include/llvm/IR/Instructions.h", 4188, __extension__ __PRETTY_FUNCTION__ )); |
| 4189 | return i == 0 ? getDefaultDest() : getIndirectDest(i - 1); |
| 4190 | } |
| 4191 | |
| 4192 | void setSuccessor(unsigned i, BasicBlock *NewSucc) { |
| 4193 | assert(i < getNumIndirectDests() + 1 &&(static_cast <bool> (i < getNumIndirectDests() + 1 && "Successor # out of range for callbr!") ? void (0) : __assert_fail ("i < getNumIndirectDests() + 1 && \"Successor # out of range for callbr!\"" , "llvm/include/llvm/IR/Instructions.h", 4194, __extension__ __PRETTY_FUNCTION__ )) |
| 4194 | "Successor # out of range for callbr!")(static_cast <bool> (i < getNumIndirectDests() + 1 && "Successor # out of range for callbr!") ? void (0) : __assert_fail ("i < getNumIndirectDests() + 1 && \"Successor # out of range for callbr!\"" , "llvm/include/llvm/IR/Instructions.h", 4194, __extension__ __PRETTY_FUNCTION__ )); |
| 4195 | return i == 0 ? setDefaultDest(NewSucc) : setIndirectDest(i - 1, NewSucc); |
| 4196 | } |
| 4197 | |
| 4198 | unsigned getNumSuccessors() const { return getNumIndirectDests() + 1; } |
| 4199 | |
| 4200 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4201 | static bool classof(const Instruction *I) { |
| 4202 | return (I->getOpcode() == Instruction::CallBr); |
| 4203 | } |
| 4204 | static bool classof(const Value *V) { |
| 4205 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4206 | } |
| 4207 | |
| 4208 | private: |
| 4209 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 4210 | // method so that subclasses cannot accidentally use it. |
| 4211 | template <typename Bitfield> |
| 4212 | void setSubclassData(typename Bitfield::Type Value) { |
| 4213 | Instruction::setSubclassData<Bitfield>(Value); |
| 4214 | } |
| 4215 | }; |
| 4216 | |
| 4217 | CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, |
| 4218 | ArrayRef<BasicBlock *> IndirectDests, |
| 4219 | ArrayRef<Value *> Args, |
| 4220 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 4221 | const Twine &NameStr, Instruction *InsertBefore) |
| 4222 | : CallBase(Ty->getReturnType(), Instruction::CallBr, |
| 4223 | OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands, |
| 4224 | InsertBefore) { |
| 4225 | init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr); |
| 4226 | } |
| 4227 | |
| 4228 | CallBrInst::CallBrInst(FunctionType *Ty, Value *Func, BasicBlock *DefaultDest, |
| 4229 | ArrayRef<BasicBlock *> IndirectDests, |
| 4230 | ArrayRef<Value *> Args, |
| 4231 | ArrayRef<OperandBundleDef> Bundles, int NumOperands, |
| 4232 | const Twine &NameStr, BasicBlock *InsertAtEnd) |
| 4233 | : CallBase(Ty->getReturnType(), Instruction::CallBr, |
| 4234 | OperandTraits<CallBase>::op_end(this) - NumOperands, NumOperands, |
| 4235 | InsertAtEnd) { |
| 4236 | init(Ty, Func, DefaultDest, IndirectDests, Args, Bundles, NameStr); |
| 4237 | } |
| 4238 | |
| 4239 | //===----------------------------------------------------------------------===// |
| 4240 | // ResumeInst Class |
| 4241 | //===----------------------------------------------------------------------===// |
| 4242 | |
| 4243 | //===--------------------------------------------------------------------------- |
| 4244 | /// Resume the propagation of an exception. |
| 4245 | /// |
| 4246 | class ResumeInst : public Instruction { |
| 4247 | ResumeInst(const ResumeInst &RI); |
| 4248 | |
| 4249 | explicit ResumeInst(Value *Exn, Instruction *InsertBefore=nullptr); |
| 4250 | ResumeInst(Value *Exn, BasicBlock *InsertAtEnd); |
| 4251 | |
| 4252 | protected: |
| 4253 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4254 | friend class Instruction; |
| 4255 | |
| 4256 | ResumeInst *cloneImpl() const; |
| 4257 | |
| 4258 | public: |
| 4259 | static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = nullptr) { |
| 4260 | return new(1) ResumeInst(Exn, InsertBefore); |
| 4261 | } |
| 4262 | |
| 4263 | static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) { |
| 4264 | return new(1) ResumeInst(Exn, InsertAtEnd); |
| 4265 | } |
| 4266 | |
| 4267 | /// Provide fast operand accessors |
| 4268 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 4269 | |
| 4270 | /// Convenience accessor. |
| 4271 | Value *getValue() const { return Op<0>(); } |
| 4272 | |
| 4273 | unsigned getNumSuccessors() const { return 0; } |
| 4274 | |
| 4275 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4276 | static bool classof(const Instruction *I) { |
| 4277 | return I->getOpcode() == Instruction::Resume; |
| 4278 | } |
| 4279 | static bool classof(const Value *V) { |
| 4280 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4281 | } |
| 4282 | |
| 4283 | private: |
| 4284 | BasicBlock *getSuccessor(unsigned idx) const { |
| 4285 | llvm_unreachable("ResumeInst has no successors!")::llvm::llvm_unreachable_internal("ResumeInst has no successors!" , "llvm/include/llvm/IR/Instructions.h", 4285); |
| 4286 | } |
| 4287 | |
| 4288 | void setSuccessor(unsigned idx, BasicBlock *NewSucc) { |
| 4289 | llvm_unreachable("ResumeInst has no successors!")::llvm::llvm_unreachable_internal("ResumeInst has no successors!" , "llvm/include/llvm/IR/Instructions.h", 4289); |
| 4290 | } |
| 4291 | }; |
| 4292 | |
| 4293 | template <> |
| 4294 | struct OperandTraits<ResumeInst> : |
| 4295 | public FixedNumOperandTraits<ResumeInst, 1> { |
| 4296 | }; |
| 4297 | |
| 4298 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value)ResumeInst::op_iterator ResumeInst::op_begin() { return OperandTraits <ResumeInst>::op_begin(this); } ResumeInst::const_op_iterator ResumeInst::op_begin() const { return OperandTraits<ResumeInst >::op_begin(const_cast<ResumeInst*>(this)); } ResumeInst ::op_iterator ResumeInst::op_end() { return OperandTraits< ResumeInst>::op_end(this); } ResumeInst::const_op_iterator ResumeInst::op_end() const { return OperandTraits<ResumeInst >::op_end(const_cast<ResumeInst*>(this)); } Value *ResumeInst ::getOperand(unsigned i_nocapture) const { (static_cast <bool > (i_nocapture < OperandTraits<ResumeInst>::operands (this) && "getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<ResumeInst>::operands(this) && \"getOperand() out of range!\"" , "llvm/include/llvm/IR/Instructions.h", 4298, __extension__ __PRETTY_FUNCTION__ )); return cast_or_null<Value>( OperandTraits<ResumeInst >::op_begin(const_cast<ResumeInst*>(this))[i_nocapture ].get()); } void ResumeInst::setOperand(unsigned i_nocapture, Value *Val_nocapture) { (static_cast <bool> (i_nocapture < OperandTraits<ResumeInst>::operands(this) && "setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<ResumeInst>::operands(this) && \"setOperand() out of range!\"" , "llvm/include/llvm/IR/Instructions.h", 4298, __extension__ __PRETTY_FUNCTION__ )); OperandTraits<ResumeInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned ResumeInst::getNumOperands() const { return OperandTraits<ResumeInst>::operands(this); } template <int Idx_nocapture> Use &ResumeInst::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &ResumeInst::Op() const { return this->OpFrom<Idx_nocapture>(this); } |
| 4299 | |
| 4300 | //===----------------------------------------------------------------------===// |
| 4301 | // CatchSwitchInst Class |
| 4302 | //===----------------------------------------------------------------------===// |
| 4303 | class CatchSwitchInst : public Instruction { |
| 4304 | using UnwindDestField = BoolBitfieldElementT<0>; |
| 4305 | |
| 4306 | /// The number of operands actually allocated. NumOperands is |
| 4307 | /// the number actually in use. |
| 4308 | unsigned ReservedSpace; |
| 4309 | |
| 4310 | // Operand[0] = Outer scope |
| 4311 | // Operand[1] = Unwind block destination |
| 4312 | // Operand[n] = BasicBlock to go to on match |
| 4313 | CatchSwitchInst(const CatchSwitchInst &CSI); |
| 4314 | |
| 4315 | /// Create a new switch instruction, specifying a |
| 4316 | /// default destination. The number of additional handlers can be specified |
| 4317 | /// here to make memory allocation more efficient. |
| 4318 | /// This constructor can also autoinsert before another instruction. |
| 4319 | CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, |
| 4320 | unsigned NumHandlers, const Twine &NameStr, |
| 4321 | Instruction *InsertBefore); |
| 4322 | |
| 4323 | /// Create a new switch instruction, specifying a |
| 4324 | /// default destination. The number of additional handlers can be specified |
| 4325 | /// here to make memory allocation more efficient. |
| 4326 | /// This constructor also autoinserts at the end of the specified BasicBlock. |
| 4327 | CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, |
| 4328 | unsigned NumHandlers, const Twine &NameStr, |
| 4329 | BasicBlock *InsertAtEnd); |
| 4330 | |
| 4331 | // allocate space for exactly zero operands |
| 4332 | void *operator new(size_t S) { return User::operator new(S); } |
| 4333 | |
| 4334 | void init(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumReserved); |
| 4335 | void growOperands(unsigned Size); |
| 4336 | |
| 4337 | protected: |
| 4338 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4339 | friend class Instruction; |
| 4340 | |
| 4341 | CatchSwitchInst *cloneImpl() const; |
| 4342 | |
| 4343 | public: |
| 4344 | void operator delete(void *Ptr) { return User::operator delete(Ptr); } |
| 4345 | |
| 4346 | static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest, |
| 4347 | unsigned NumHandlers, |
| 4348 | const Twine &NameStr = "", |
| 4349 | Instruction *InsertBefore = nullptr) { |
| 4350 | return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr, |
| 4351 | InsertBefore); |
| 4352 | } |
| 4353 | |
| 4354 | static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest, |
| 4355 | unsigned NumHandlers, const Twine &NameStr, |
| 4356 | BasicBlock *InsertAtEnd) { |
| 4357 | return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr, |
| 4358 | InsertAtEnd); |
| 4359 | } |
| 4360 | |
| 4361 | /// Provide fast operand accessors |
| 4362 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 4363 | |
| 4364 | // Accessor Methods for CatchSwitch stmt |
| 4365 | Value *getParentPad() const { return getOperand(0); } |
| 4366 | void setParentPad(Value *ParentPad) { setOperand(0, ParentPad); } |
| 4367 | |
| 4368 | // Accessor Methods for CatchSwitch stmt |
| 4369 | bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); } |
| 4370 | bool unwindsToCaller() const { return !hasUnwindDest(); } |
| 4371 | BasicBlock *getUnwindDest() const { |
| 4372 | if (hasUnwindDest()) |
| 4373 | return cast<BasicBlock>(getOperand(1)); |
| 4374 | return nullptr; |
| 4375 | } |
| 4376 | void setUnwindDest(BasicBlock *UnwindDest) { |
| 4377 | assert(UnwindDest)(static_cast <bool> (UnwindDest) ? void (0) : __assert_fail ("UnwindDest", "llvm/include/llvm/IR/Instructions.h", 4377, __extension__ __PRETTY_FUNCTION__)); |
| 4378 | assert(hasUnwindDest())(static_cast <bool> (hasUnwindDest()) ? void (0) : __assert_fail ("hasUnwindDest()", "llvm/include/llvm/IR/Instructions.h", 4378 , __extension__ __PRETTY_FUNCTION__)); |
| 4379 | setOperand(1, UnwindDest); |
| 4380 | } |
| 4381 | |
| 4382 | /// return the number of 'handlers' in this catchswitch |
| 4383 | /// instruction, except the default handler |
| 4384 | unsigned getNumHandlers() const { |
| 4385 | if (hasUnwindDest()) |
| 4386 | return getNumOperands() - 2; |
| 4387 | return getNumOperands() - 1; |
| 4388 | } |
| 4389 | |
| 4390 | private: |
| 4391 | static BasicBlock *handler_helper(Value *V) { return cast<BasicBlock>(V); } |
| 4392 | static const BasicBlock *handler_helper(const Value *V) { |
| 4393 | return cast<BasicBlock>(V); |
| 4394 | } |
| 4395 | |
| 4396 | public: |
| 4397 | using DerefFnTy = BasicBlock *(*)(Value *); |
| 4398 | using handler_iterator = mapped_iterator<op_iterator, DerefFnTy>; |
| 4399 | using handler_range = iterator_range<handler_iterator>; |
| 4400 | using ConstDerefFnTy = const BasicBlock *(*)(const Value *); |
| 4401 | using const_handler_iterator = |
| 4402 | mapped_iterator<const_op_iterator, ConstDerefFnTy>; |
| 4403 | using const_handler_range = iterator_range<const_handler_iterator>; |
| 4404 | |
| 4405 | /// Returns an iterator that points to the first handler in CatchSwitchInst. |
| 4406 | handler_iterator handler_begin() { |
| 4407 | op_iterator It = op_begin() + 1; |
| 4408 | if (hasUnwindDest()) |
| 4409 | ++It; |
| 4410 | return handler_iterator(It, DerefFnTy(handler_helper)); |
| 4411 | } |
| 4412 | |
| 4413 | /// Returns an iterator that points to the first handler in the |
| 4414 | /// CatchSwitchInst. |
| 4415 | const_handler_iterator handler_begin() const { |
| 4416 | const_op_iterator It = op_begin() + 1; |
| 4417 | if (hasUnwindDest()) |
| 4418 | ++It; |
| 4419 | return const_handler_iterator(It, ConstDerefFnTy(handler_helper)); |
| 4420 | } |
| 4421 | |
| 4422 | /// Returns a read-only iterator that points one past the last |
| 4423 | /// handler in the CatchSwitchInst. |
| 4424 | handler_iterator handler_end() { |
| 4425 | return handler_iterator(op_end(), DerefFnTy(handler_helper)); |
| 4426 | } |
| 4427 | |
| 4428 | /// Returns an iterator that points one past the last handler in the |
| 4429 | /// CatchSwitchInst. |
| 4430 | const_handler_iterator handler_end() const { |
| 4431 | return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper)); |
| 4432 | } |
| 4433 | |
| 4434 | /// iteration adapter for range-for loops. |
| 4435 | handler_range handlers() { |
| 4436 | return make_range(handler_begin(), handler_end()); |
| 4437 | } |
| 4438 | |
| 4439 | /// iteration adapter for range-for loops. |
| 4440 | const_handler_range handlers() const { |
| 4441 | return make_range(handler_begin(), handler_end()); |
| 4442 | } |
| 4443 | |
| 4444 | /// Add an entry to the switch instruction... |
| 4445 | /// Note: |
| 4446 | /// This action invalidates handler_end(). Old handler_end() iterator will |
| 4447 | /// point to the added handler. |
| 4448 | void addHandler(BasicBlock *Dest); |
| 4449 | |
| 4450 | void removeHandler(handler_iterator HI); |
| 4451 | |
| 4452 | unsigned getNumSuccessors() const { return getNumOperands() - 1; } |
| 4453 | BasicBlock *getSuccessor(unsigned Idx) const { |
| 4454 | assert(Idx < getNumSuccessors() &&(static_cast <bool> (Idx < getNumSuccessors() && "Successor # out of range for catchswitch!") ? void (0) : __assert_fail ("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\"" , "llvm/include/llvm/IR/Instructions.h", 4455, __extension__ __PRETTY_FUNCTION__ )) |
| 4455 | "Successor # out of range for catchswitch!")(static_cast <bool> (Idx < getNumSuccessors() && "Successor # out of range for catchswitch!") ? void (0) : __assert_fail ("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\"" , "llvm/include/llvm/IR/Instructions.h", 4455, __extension__ __PRETTY_FUNCTION__ )); |
| 4456 | return cast<BasicBlock>(getOperand(Idx + 1)); |
| 4457 | } |
| 4458 | void setSuccessor(unsigned Idx, BasicBlock *NewSucc) { |
| 4459 | assert(Idx < getNumSuccessors() &&(static_cast <bool> (Idx < getNumSuccessors() && "Successor # out of range for catchswitch!") ? void (0) : __assert_fail ("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\"" , "llvm/include/llvm/IR/Instructions.h", 4460, __extension__ __PRETTY_FUNCTION__ )) |
| 4460 | "Successor # out of range for catchswitch!")(static_cast <bool> (Idx < getNumSuccessors() && "Successor # out of range for catchswitch!") ? void (0) : __assert_fail ("Idx < getNumSuccessors() && \"Successor # out of range for catchswitch!\"" , "llvm/include/llvm/IR/Instructions.h", 4460, __extension__ __PRETTY_FUNCTION__ )); |
| 4461 | setOperand(Idx + 1, NewSucc); |
| 4462 | } |
| 4463 | |
| 4464 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4465 | static bool classof(const Instruction *I) { |
| 4466 | return I->getOpcode() == Instruction::CatchSwitch; |
| 4467 | } |
| 4468 | static bool classof(const Value *V) { |
| 4469 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4470 | } |
| 4471 | }; |
| 4472 | |
| 4473 | template <> |
| 4474 | struct OperandTraits<CatchSwitchInst> : public HungoffOperandTraits<2> {}; |
| 4475 | |
| 4476 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchSwitchInst, Value)CatchSwitchInst::op_iterator CatchSwitchInst::op_begin() { return OperandTraits<CatchSwitchInst>::op_begin(this); } CatchSwitchInst ::const_op_iterator CatchSwitchInst::op_begin() const { return OperandTraits<CatchSwitchInst>::op_begin(const_cast< CatchSwitchInst*>(this)); } CatchSwitchInst::op_iterator CatchSwitchInst ::op_end() { return OperandTraits<CatchSwitchInst>::op_end (this); } CatchSwitchInst::const_op_iterator CatchSwitchInst:: op_end() const { return OperandTraits<CatchSwitchInst>:: op_end(const_cast<CatchSwitchInst*>(this)); } Value *CatchSwitchInst ::getOperand(unsigned i_nocapture) const { (static_cast <bool > (i_nocapture < OperandTraits<CatchSwitchInst>:: operands(this) && "getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<CatchSwitchInst>::operands(this) && \"getOperand() out of range!\"" , "llvm/include/llvm/IR/Instructions.h", 4476, __extension__ __PRETTY_FUNCTION__ )); return cast_or_null<Value>( OperandTraits<CatchSwitchInst >::op_begin(const_cast<CatchSwitchInst*>(this))[i_nocapture ].get()); } void CatchSwitchInst::setOperand(unsigned i_nocapture , Value *Val_nocapture) { (static_cast <bool> (i_nocapture < OperandTraits<CatchSwitchInst>::operands(this) && "setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<CatchSwitchInst>::operands(this) && \"setOperand() out of range!\"" , "llvm/include/llvm/IR/Instructions.h", 4476, __extension__ __PRETTY_FUNCTION__ )); OperandTraits<CatchSwitchInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned CatchSwitchInst::getNumOperands () const { return OperandTraits<CatchSwitchInst>::operands (this); } template <int Idx_nocapture> Use &CatchSwitchInst ::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &CatchSwitchInst ::Op() const { return this->OpFrom<Idx_nocapture>(this ); } |
| 4477 | |
| 4478 | //===----------------------------------------------------------------------===// |
| 4479 | // CleanupPadInst Class |
| 4480 | //===----------------------------------------------------------------------===// |
| 4481 | class CleanupPadInst : public FuncletPadInst { |
| 4482 | private: |
| 4483 | explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args, |
| 4484 | unsigned Values, const Twine &NameStr, |
| 4485 | Instruction *InsertBefore) |
| 4486 | : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values, |
| 4487 | NameStr, InsertBefore) {} |
| 4488 | explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args, |
| 4489 | unsigned Values, const Twine &NameStr, |
| 4490 | BasicBlock *InsertAtEnd) |
| 4491 | : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values, |
| 4492 | NameStr, InsertAtEnd) {} |
| 4493 | |
| 4494 | public: |
| 4495 | static CleanupPadInst *Create(Value *ParentPad, |
| 4496 | ArrayRef<Value *> Args = std::nullopt, |
| 4497 | const Twine &NameStr = "", |
| 4498 | Instruction *InsertBefore = nullptr) { |
| 4499 | unsigned Values = 1 + Args.size(); |
| 4500 | return new (Values) |
| 4501 | CleanupPadInst(ParentPad, Args, Values, NameStr, InsertBefore); |
| 4502 | } |
| 4503 | |
| 4504 | static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args, |
| 4505 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 4506 | unsigned Values = 1 + Args.size(); |
| 4507 | return new (Values) |
| 4508 | CleanupPadInst(ParentPad, Args, Values, NameStr, InsertAtEnd); |
| 4509 | } |
| 4510 | |
| 4511 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4512 | static bool classof(const Instruction *I) { |
| 4513 | return I->getOpcode() == Instruction::CleanupPad; |
| 4514 | } |
| 4515 | static bool classof(const Value *V) { |
| 4516 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4517 | } |
| 4518 | }; |
| 4519 | |
| 4520 | //===----------------------------------------------------------------------===// |
| 4521 | // CatchPadInst Class |
| 4522 | //===----------------------------------------------------------------------===// |
| 4523 | class CatchPadInst : public FuncletPadInst { |
| 4524 | private: |
| 4525 | explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args, |
| 4526 | unsigned Values, const Twine &NameStr, |
| 4527 | Instruction *InsertBefore) |
| 4528 | : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values, |
| 4529 | NameStr, InsertBefore) {} |
| 4530 | explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args, |
| 4531 | unsigned Values, const Twine &NameStr, |
| 4532 | BasicBlock *InsertAtEnd) |
| 4533 | : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values, |
| 4534 | NameStr, InsertAtEnd) {} |
| 4535 | |
| 4536 | public: |
| 4537 | static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args, |
| 4538 | const Twine &NameStr = "", |
| 4539 | Instruction *InsertBefore = nullptr) { |
| 4540 | unsigned Values = 1 + Args.size(); |
| 4541 | return new (Values) |
| 4542 | CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertBefore); |
| 4543 | } |
| 4544 | |
| 4545 | static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args, |
| 4546 | const Twine &NameStr, BasicBlock *InsertAtEnd) { |
| 4547 | unsigned Values = 1 + Args.size(); |
| 4548 | return new (Values) |
| 4549 | CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertAtEnd); |
| 4550 | } |
| 4551 | |
| 4552 | /// Convenience accessors |
| 4553 | CatchSwitchInst *getCatchSwitch() const { |
| 4554 | return cast<CatchSwitchInst>(Op<-1>()); |
| 4555 | } |
| 4556 | void setCatchSwitch(Value *CatchSwitch) { |
| 4557 | assert(CatchSwitch)(static_cast <bool> (CatchSwitch) ? void (0) : __assert_fail ("CatchSwitch", "llvm/include/llvm/IR/Instructions.h", 4557, __extension__ __PRETTY_FUNCTION__)); |
| 4558 | Op<-1>() = CatchSwitch; |
| 4559 | } |
| 4560 | |
| 4561 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4562 | static bool classof(const Instruction *I) { |
| 4563 | return I->getOpcode() == Instruction::CatchPad; |
| 4564 | } |
| 4565 | static bool classof(const Value *V) { |
| 4566 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4567 | } |
| 4568 | }; |
| 4569 | |
| 4570 | //===----------------------------------------------------------------------===// |
| 4571 | // CatchReturnInst Class |
| 4572 | //===----------------------------------------------------------------------===// |
| 4573 | |
| 4574 | class CatchReturnInst : public Instruction { |
| 4575 | CatchReturnInst(const CatchReturnInst &RI); |
| 4576 | CatchReturnInst(Value *CatchPad, BasicBlock *BB, Instruction *InsertBefore); |
| 4577 | CatchReturnInst(Value *CatchPad, BasicBlock *BB, BasicBlock *InsertAtEnd); |
| 4578 | |
| 4579 | void init(Value *CatchPad, BasicBlock *BB); |
| 4580 | |
| 4581 | protected: |
| 4582 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4583 | friend class Instruction; |
| 4584 | |
| 4585 | CatchReturnInst *cloneImpl() const; |
| 4586 | |
| 4587 | public: |
| 4588 | static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB, |
| 4589 | Instruction *InsertBefore = nullptr) { |
| 4590 | assert(CatchPad)(static_cast <bool> (CatchPad) ? void (0) : __assert_fail ("CatchPad", "llvm/include/llvm/IR/Instructions.h", 4590, __extension__ __PRETTY_FUNCTION__)); |
| 4591 | assert(BB)(static_cast <bool> (BB) ? void (0) : __assert_fail ("BB" , "llvm/include/llvm/IR/Instructions.h", 4591, __extension__ __PRETTY_FUNCTION__ )); |
| 4592 | return new (2) CatchReturnInst(CatchPad, BB, InsertBefore); |
| 4593 | } |
| 4594 | |
| 4595 | static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB, |
| 4596 | BasicBlock *InsertAtEnd) { |
| 4597 | assert(CatchPad)(static_cast <bool> (CatchPad) ? void (0) : __assert_fail ("CatchPad", "llvm/include/llvm/IR/Instructions.h", 4597, __extension__ __PRETTY_FUNCTION__)); |
| 4598 | assert(BB)(static_cast <bool> (BB) ? void (0) : __assert_fail ("BB" , "llvm/include/llvm/IR/Instructions.h", 4598, __extension__ __PRETTY_FUNCTION__ )); |
| 4599 | return new (2) CatchReturnInst(CatchPad, BB, InsertAtEnd); |
| 4600 | } |
| 4601 | |
| 4602 | /// Provide fast operand accessors |
| 4603 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 4604 | |
| 4605 | /// Convenience accessors. |
| 4606 | CatchPadInst *getCatchPad() const { return cast<CatchPadInst>(Op<0>()); } |
| 4607 | void setCatchPad(CatchPadInst *CatchPad) { |
| 4608 | assert(CatchPad)(static_cast <bool> (CatchPad) ? void (0) : __assert_fail ("CatchPad", "llvm/include/llvm/IR/Instructions.h", 4608, __extension__ __PRETTY_FUNCTION__)); |
| 4609 | Op<0>() = CatchPad; |
| 4610 | } |
| 4611 | |
| 4612 | BasicBlock *getSuccessor() const { return cast<BasicBlock>(Op<1>()); } |
| 4613 | void setSuccessor(BasicBlock *NewSucc) { |
| 4614 | assert(NewSucc)(static_cast <bool> (NewSucc) ? void (0) : __assert_fail ("NewSucc", "llvm/include/llvm/IR/Instructions.h", 4614, __extension__ __PRETTY_FUNCTION__)); |
| 4615 | Op<1>() = NewSucc; |
| 4616 | } |
| 4617 | unsigned getNumSuccessors() const { return 1; } |
| 4618 | |
| 4619 | /// Get the parentPad of this catchret's catchpad's catchswitch. |
| 4620 | /// The successor block is implicitly a member of this funclet. |
| 4621 | Value *getCatchSwitchParentPad() const { |
| 4622 | return getCatchPad()->getCatchSwitch()->getParentPad(); |
| 4623 | } |
| 4624 | |
| 4625 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4626 | static bool classof(const Instruction *I) { |
| 4627 | return (I->getOpcode() == Instruction::CatchRet); |
| 4628 | } |
| 4629 | static bool classof(const Value *V) { |
| 4630 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4631 | } |
| 4632 | |
| 4633 | private: |
| 4634 | BasicBlock *getSuccessor(unsigned Idx) const { |
| 4635 | assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")(static_cast <bool> (Idx < getNumSuccessors() && "Successor # out of range for catchret!") ? void (0) : __assert_fail ("Idx < getNumSuccessors() && \"Successor # out of range for catchret!\"" , "llvm/include/llvm/IR/Instructions.h", 4635, __extension__ __PRETTY_FUNCTION__ )); |
| 4636 | return getSuccessor(); |
| 4637 | } |
| 4638 | |
| 4639 | void setSuccessor(unsigned Idx, BasicBlock *B) { |
| 4640 | assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!")(static_cast <bool> (Idx < getNumSuccessors() && "Successor # out of range for catchret!") ? void (0) : __assert_fail ("Idx < getNumSuccessors() && \"Successor # out of range for catchret!\"" , "llvm/include/llvm/IR/Instructions.h", 4640, __extension__ __PRETTY_FUNCTION__ )); |
| 4641 | setSuccessor(B); |
| 4642 | } |
| 4643 | }; |
| 4644 | |
| 4645 | template <> |
| 4646 | struct OperandTraits<CatchReturnInst> |
| 4647 | : public FixedNumOperandTraits<CatchReturnInst, 2> {}; |
| 4648 | |
| 4649 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchReturnInst, Value)CatchReturnInst::op_iterator CatchReturnInst::op_begin() { return OperandTraits<CatchReturnInst>::op_begin(this); } CatchReturnInst ::const_op_iterator CatchReturnInst::op_begin() const { return OperandTraits<CatchReturnInst>::op_begin(const_cast< CatchReturnInst*>(this)); } CatchReturnInst::op_iterator CatchReturnInst ::op_end() { return OperandTraits<CatchReturnInst>::op_end (this); } CatchReturnInst::const_op_iterator CatchReturnInst:: op_end() const { return OperandTraits<CatchReturnInst>:: op_end(const_cast<CatchReturnInst*>(this)); } Value *CatchReturnInst ::getOperand(unsigned i_nocapture) const { (static_cast <bool > (i_nocapture < OperandTraits<CatchReturnInst>:: operands(this) && "getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<CatchReturnInst>::operands(this) && \"getOperand() out of range!\"" , "llvm/include/llvm/IR/Instructions.h", 4649, __extension__ __PRETTY_FUNCTION__ )); return cast_or_null<Value>( OperandTraits<CatchReturnInst >::op_begin(const_cast<CatchReturnInst*>(this))[i_nocapture ].get()); } void CatchReturnInst::setOperand(unsigned i_nocapture , Value *Val_nocapture) { (static_cast <bool> (i_nocapture < OperandTraits<CatchReturnInst>::operands(this) && "setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<CatchReturnInst>::operands(this) && \"setOperand() out of range!\"" , "llvm/include/llvm/IR/Instructions.h", 4649, __extension__ __PRETTY_FUNCTION__ )); OperandTraits<CatchReturnInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned CatchReturnInst::getNumOperands () const { return OperandTraits<CatchReturnInst>::operands (this); } template <int Idx_nocapture> Use &CatchReturnInst ::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &CatchReturnInst ::Op() const { return this->OpFrom<Idx_nocapture>(this ); } |
| 4650 | |
| 4651 | //===----------------------------------------------------------------------===// |
| 4652 | // CleanupReturnInst Class |
| 4653 | //===----------------------------------------------------------------------===// |
| 4654 | |
| 4655 | class CleanupReturnInst : public Instruction { |
| 4656 | using UnwindDestField = BoolBitfieldElementT<0>; |
| 4657 | |
| 4658 | private: |
| 4659 | CleanupReturnInst(const CleanupReturnInst &RI); |
| 4660 | CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values, |
| 4661 | Instruction *InsertBefore = nullptr); |
| 4662 | CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values, |
| 4663 | BasicBlock *InsertAtEnd); |
| 4664 | |
| 4665 | void init(Value *CleanupPad, BasicBlock *UnwindBB); |
| 4666 | |
| 4667 | protected: |
| 4668 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4669 | friend class Instruction; |
| 4670 | |
| 4671 | CleanupReturnInst *cloneImpl() const; |
| 4672 | |
| 4673 | public: |
| 4674 | static CleanupReturnInst *Create(Value *CleanupPad, |
| 4675 | BasicBlock *UnwindBB = nullptr, |
| 4676 | Instruction *InsertBefore = nullptr) { |
| 4677 | assert(CleanupPad)(static_cast <bool> (CleanupPad) ? void (0) : __assert_fail ("CleanupPad", "llvm/include/llvm/IR/Instructions.h", 4677, __extension__ __PRETTY_FUNCTION__)); |
| 4678 | unsigned Values = 1; |
| 4679 | if (UnwindBB) |
| 4680 | ++Values; |
| 4681 | return new (Values) |
| 4682 | CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertBefore); |
| 4683 | } |
| 4684 | |
| 4685 | static CleanupReturnInst *Create(Value *CleanupPad, BasicBlock *UnwindBB, |
| 4686 | BasicBlock *InsertAtEnd) { |
| 4687 | assert(CleanupPad)(static_cast <bool> (CleanupPad) ? void (0) : __assert_fail ("CleanupPad", "llvm/include/llvm/IR/Instructions.h", 4687, __extension__ __PRETTY_FUNCTION__)); |
| 4688 | unsigned Values = 1; |
| 4689 | if (UnwindBB) |
| 4690 | ++Values; |
| 4691 | return new (Values) |
| 4692 | CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertAtEnd); |
| 4693 | } |
| 4694 | |
| 4695 | /// Provide fast operand accessors |
| 4696 | DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value)public: inline Value *getOperand(unsigned) const; inline void setOperand(unsigned, Value*); inline op_iterator op_begin(); inline const_op_iterator op_begin() const; inline op_iterator op_end(); inline const_op_iterator op_end() const; protected : template <int> inline Use &Op(); template <int > inline const Use &Op() const; public: inline unsigned getNumOperands() const; |
| 4697 | |
| 4698 | bool hasUnwindDest() const { return getSubclassData<UnwindDestField>(); } |
| 4699 | bool unwindsToCaller() const { return !hasUnwindDest(); } |
| 4700 | |
| 4701 | /// Convenience accessor. |
| 4702 | CleanupPadInst *getCleanupPad() const { |
| 4703 | return cast<CleanupPadInst>(Op<0>()); |
| 4704 | } |
| 4705 | void setCleanupPad(CleanupPadInst *CleanupPad) { |
| 4706 | assert(CleanupPad)(static_cast <bool> (CleanupPad) ? void (0) : __assert_fail ("CleanupPad", "llvm/include/llvm/IR/Instructions.h", 4706, __extension__ __PRETTY_FUNCTION__)); |
| 4707 | Op<0>() = CleanupPad; |
| 4708 | } |
| 4709 | |
| 4710 | unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; } |
| 4711 | |
| 4712 | BasicBlock *getUnwindDest() const { |
| 4713 | return hasUnwindDest() ? cast<BasicBlock>(Op<1>()) : nullptr; |
| 4714 | } |
| 4715 | void setUnwindDest(BasicBlock *NewDest) { |
| 4716 | assert(NewDest)(static_cast <bool> (NewDest) ? void (0) : __assert_fail ("NewDest", "llvm/include/llvm/IR/Instructions.h", 4716, __extension__ __PRETTY_FUNCTION__)); |
| 4717 | assert(hasUnwindDest())(static_cast <bool> (hasUnwindDest()) ? void (0) : __assert_fail ("hasUnwindDest()", "llvm/include/llvm/IR/Instructions.h", 4717 , __extension__ __PRETTY_FUNCTION__)); |
| 4718 | Op<1>() = NewDest; |
| 4719 | } |
| 4720 | |
| 4721 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4722 | static bool classof(const Instruction *I) { |
| 4723 | return (I->getOpcode() == Instruction::CleanupRet); |
| 4724 | } |
| 4725 | static bool classof(const Value *V) { |
| 4726 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4727 | } |
| 4728 | |
| 4729 | private: |
| 4730 | BasicBlock *getSuccessor(unsigned Idx) const { |
| 4731 | assert(Idx == 0)(static_cast <bool> (Idx == 0) ? void (0) : __assert_fail ("Idx == 0", "llvm/include/llvm/IR/Instructions.h", 4731, __extension__ __PRETTY_FUNCTION__)); |
| 4732 | return getUnwindDest(); |
| 4733 | } |
| 4734 | |
| 4735 | void setSuccessor(unsigned Idx, BasicBlock *B) { |
| 4736 | assert(Idx == 0)(static_cast <bool> (Idx == 0) ? void (0) : __assert_fail ("Idx == 0", "llvm/include/llvm/IR/Instructions.h", 4736, __extension__ __PRETTY_FUNCTION__)); |
| 4737 | setUnwindDest(B); |
| 4738 | } |
| 4739 | |
| 4740 | // Shadow Instruction::setInstructionSubclassData with a private forwarding |
| 4741 | // method so that subclasses cannot accidentally use it. |
| 4742 | template <typename Bitfield> |
| 4743 | void setSubclassData(typename Bitfield::Type Value) { |
| 4744 | Instruction::setSubclassData<Bitfield>(Value); |
| 4745 | } |
| 4746 | }; |
| 4747 | |
| 4748 | template <> |
| 4749 | struct OperandTraits<CleanupReturnInst> |
| 4750 | : public VariadicOperandTraits<CleanupReturnInst, /*MINARITY=*/1> {}; |
| 4751 | |
| 4752 | DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CleanupReturnInst, Value)CleanupReturnInst::op_iterator CleanupReturnInst::op_begin() { return OperandTraits<CleanupReturnInst>::op_begin(this ); } CleanupReturnInst::const_op_iterator CleanupReturnInst:: op_begin() const { return OperandTraits<CleanupReturnInst> ::op_begin(const_cast<CleanupReturnInst*>(this)); } CleanupReturnInst ::op_iterator CleanupReturnInst::op_end() { return OperandTraits <CleanupReturnInst>::op_end(this); } CleanupReturnInst:: const_op_iterator CleanupReturnInst::op_end() const { return OperandTraits <CleanupReturnInst>::op_end(const_cast<CleanupReturnInst *>(this)); } Value *CleanupReturnInst::getOperand(unsigned i_nocapture) const { (static_cast <bool> (i_nocapture < OperandTraits<CleanupReturnInst>::operands(this) && "getOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<CleanupReturnInst>::operands(this) && \"getOperand() out of range!\"" , "llvm/include/llvm/IR/Instructions.h", 4752, __extension__ __PRETTY_FUNCTION__ )); return cast_or_null<Value>( OperandTraits<CleanupReturnInst >::op_begin(const_cast<CleanupReturnInst*>(this))[i_nocapture ].get()); } void CleanupReturnInst::setOperand(unsigned i_nocapture , Value *Val_nocapture) { (static_cast <bool> (i_nocapture < OperandTraits<CleanupReturnInst>::operands(this) && "setOperand() out of range!") ? void (0) : __assert_fail ("i_nocapture < OperandTraits<CleanupReturnInst>::operands(this) && \"setOperand() out of range!\"" , "llvm/include/llvm/IR/Instructions.h", 4752, __extension__ __PRETTY_FUNCTION__ )); OperandTraits<CleanupReturnInst>::op_begin(this)[i_nocapture ] = Val_nocapture; } unsigned CleanupReturnInst::getNumOperands () const { return OperandTraits<CleanupReturnInst>::operands (this); } template <int Idx_nocapture> Use &CleanupReturnInst ::Op() { return this->OpFrom<Idx_nocapture>(this); } template <int Idx_nocapture> const Use &CleanupReturnInst ::Op() const { return this->OpFrom<Idx_nocapture>(this ); } |
| 4753 | |
| 4754 | //===----------------------------------------------------------------------===// |
| 4755 | // UnreachableInst Class |
| 4756 | //===----------------------------------------------------------------------===// |
| 4757 | |
| 4758 | //===--------------------------------------------------------------------------- |
| 4759 | /// This function has undefined behavior. In particular, the |
| 4760 | /// presence of this instruction indicates some higher level knowledge that the |
| 4761 | /// end of the block cannot be reached. |
| 4762 | /// |
| 4763 | class UnreachableInst : public Instruction { |
| 4764 | protected: |
| 4765 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4766 | friend class Instruction; |
| 4767 | |
| 4768 | UnreachableInst *cloneImpl() const; |
| 4769 | |
| 4770 | public: |
| 4771 | explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = nullptr); |
| 4772 | explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd); |
| 4773 | |
| 4774 | // allocate space for exactly zero operands |
| 4775 | void *operator new(size_t S) { return User::operator new(S, 0); } |
| 4776 | void operator delete(void *Ptr) { User::operator delete(Ptr); } |
| 4777 | |
| 4778 | unsigned getNumSuccessors() const { return 0; } |
| 4779 | |
| 4780 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4781 | static bool classof(const Instruction *I) { |
| 4782 | return I->getOpcode() == Instruction::Unreachable; |
| 4783 | } |
| 4784 | static bool classof(const Value *V) { |
| 4785 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4786 | } |
| 4787 | |
| 4788 | private: |
| 4789 | BasicBlock *getSuccessor(unsigned idx) const { |
| 4790 | llvm_unreachable("UnreachableInst has no successors!")::llvm::llvm_unreachable_internal("UnreachableInst has no successors!" , "llvm/include/llvm/IR/Instructions.h", 4790); |
| 4791 | } |
| 4792 | |
| 4793 | void setSuccessor(unsigned idx, BasicBlock *B) { |
| 4794 | llvm_unreachable("UnreachableInst has no successors!")::llvm::llvm_unreachable_internal("UnreachableInst has no successors!" , "llvm/include/llvm/IR/Instructions.h", 4794); |
| 4795 | } |
| 4796 | }; |
| 4797 | |
| 4798 | //===----------------------------------------------------------------------===// |
| 4799 | // TruncInst Class |
| 4800 | //===----------------------------------------------------------------------===// |
| 4801 | |
| 4802 | /// This class represents a truncation of integer types. |
| 4803 | class TruncInst : public CastInst { |
| 4804 | protected: |
| 4805 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4806 | friend class Instruction; |
| 4807 | |
| 4808 | /// Clone an identical TruncInst |
| 4809 | TruncInst *cloneImpl() const; |
| 4810 | |
| 4811 | public: |
| 4812 | /// Constructor with insert-before-instruction semantics |
| 4813 | TruncInst( |
| 4814 | Value *S, ///< The value to be truncated |
| 4815 | Type *Ty, ///< The (smaller) type to truncate to |
| 4816 | const Twine &NameStr = "", ///< A name for the new instruction |
| 4817 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 4818 | ); |
| 4819 | |
| 4820 | /// Constructor with insert-at-end-of-block semantics |
| 4821 | TruncInst( |
| 4822 | Value *S, ///< The value to be truncated |
| 4823 | Type *Ty, ///< The (smaller) type to truncate to |
| 4824 | const Twine &NameStr, ///< A name for the new instruction |
| 4825 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 4826 | ); |
| 4827 | |
| 4828 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4829 | static bool classof(const Instruction *I) { |
| 4830 | return I->getOpcode() == Trunc; |
| 4831 | } |
| 4832 | static bool classof(const Value *V) { |
| 4833 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4834 | } |
| 4835 | }; |
| 4836 | |
| 4837 | //===----------------------------------------------------------------------===// |
| 4838 | // ZExtInst Class |
| 4839 | //===----------------------------------------------------------------------===// |
| 4840 | |
| 4841 | /// This class represents zero extension of integer types. |
| 4842 | class ZExtInst : public CastInst { |
| 4843 | protected: |
| 4844 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4845 | friend class Instruction; |
| 4846 | |
| 4847 | /// Clone an identical ZExtInst |
| 4848 | ZExtInst *cloneImpl() const; |
| 4849 | |
| 4850 | public: |
| 4851 | /// Constructor with insert-before-instruction semantics |
| 4852 | ZExtInst( |
| 4853 | Value *S, ///< The value to be zero extended |
| 4854 | Type *Ty, ///< The type to zero extend to |
| 4855 | const Twine &NameStr = "", ///< A name for the new instruction |
| 4856 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 4857 | ); |
| 4858 | |
| 4859 | /// Constructor with insert-at-end semantics. |
| 4860 | ZExtInst( |
| 4861 | Value *S, ///< The value to be zero extended |
| 4862 | Type *Ty, ///< The type to zero extend to |
| 4863 | const Twine &NameStr, ///< A name for the new instruction |
| 4864 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 4865 | ); |
| 4866 | |
| 4867 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4868 | static bool classof(const Instruction *I) { |
| 4869 | return I->getOpcode() == ZExt; |
| 4870 | } |
| 4871 | static bool classof(const Value *V) { |
| 4872 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4873 | } |
| 4874 | }; |
| 4875 | |
| 4876 | //===----------------------------------------------------------------------===// |
| 4877 | // SExtInst Class |
| 4878 | //===----------------------------------------------------------------------===// |
| 4879 | |
| 4880 | /// This class represents a sign extension of integer types. |
| 4881 | class SExtInst : public CastInst { |
| 4882 | protected: |
| 4883 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4884 | friend class Instruction; |
| 4885 | |
| 4886 | /// Clone an identical SExtInst |
| 4887 | SExtInst *cloneImpl() const; |
| 4888 | |
| 4889 | public: |
| 4890 | /// Constructor with insert-before-instruction semantics |
| 4891 | SExtInst( |
| 4892 | Value *S, ///< The value to be sign extended |
| 4893 | Type *Ty, ///< The type to sign extend to |
| 4894 | const Twine &NameStr = "", ///< A name for the new instruction |
| 4895 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 4896 | ); |
| 4897 | |
| 4898 | /// Constructor with insert-at-end-of-block semantics |
| 4899 | SExtInst( |
| 4900 | Value *S, ///< The value to be sign extended |
| 4901 | Type *Ty, ///< The type to sign extend to |
| 4902 | const Twine &NameStr, ///< A name for the new instruction |
| 4903 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 4904 | ); |
| 4905 | |
| 4906 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4907 | static bool classof(const Instruction *I) { |
| 4908 | return I->getOpcode() == SExt; |
| 4909 | } |
| 4910 | static bool classof(const Value *V) { |
| 4911 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4912 | } |
| 4913 | }; |
| 4914 | |
| 4915 | //===----------------------------------------------------------------------===// |
| 4916 | // FPTruncInst Class |
| 4917 | //===----------------------------------------------------------------------===// |
| 4918 | |
| 4919 | /// This class represents a truncation of floating point types. |
| 4920 | class FPTruncInst : public CastInst { |
| 4921 | protected: |
| 4922 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4923 | friend class Instruction; |
| 4924 | |
| 4925 | /// Clone an identical FPTruncInst |
| 4926 | FPTruncInst *cloneImpl() const; |
| 4927 | |
| 4928 | public: |
| 4929 | /// Constructor with insert-before-instruction semantics |
| 4930 | FPTruncInst( |
| 4931 | Value *S, ///< The value to be truncated |
| 4932 | Type *Ty, ///< The type to truncate to |
| 4933 | const Twine &NameStr = "", ///< A name for the new instruction |
| 4934 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 4935 | ); |
| 4936 | |
| 4937 | /// Constructor with insert-before-instruction semantics |
| 4938 | FPTruncInst( |
| 4939 | Value *S, ///< The value to be truncated |
| 4940 | Type *Ty, ///< The type to truncate to |
| 4941 | const Twine &NameStr, ///< A name for the new instruction |
| 4942 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 4943 | ); |
| 4944 | |
| 4945 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4946 | static bool classof(const Instruction *I) { |
| 4947 | return I->getOpcode() == FPTrunc; |
| 4948 | } |
| 4949 | static bool classof(const Value *V) { |
| 4950 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4951 | } |
| 4952 | }; |
| 4953 | |
| 4954 | //===----------------------------------------------------------------------===// |
| 4955 | // FPExtInst Class |
| 4956 | //===----------------------------------------------------------------------===// |
| 4957 | |
| 4958 | /// This class represents an extension of floating point types. |
| 4959 | class FPExtInst : public CastInst { |
| 4960 | protected: |
| 4961 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 4962 | friend class Instruction; |
| 4963 | |
| 4964 | /// Clone an identical FPExtInst |
| 4965 | FPExtInst *cloneImpl() const; |
| 4966 | |
| 4967 | public: |
| 4968 | /// Constructor with insert-before-instruction semantics |
| 4969 | FPExtInst( |
| 4970 | Value *S, ///< The value to be extended |
| 4971 | Type *Ty, ///< The type to extend to |
| 4972 | const Twine &NameStr = "", ///< A name for the new instruction |
| 4973 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 4974 | ); |
| 4975 | |
| 4976 | /// Constructor with insert-at-end-of-block semantics |
| 4977 | FPExtInst( |
| 4978 | Value *S, ///< The value to be extended |
| 4979 | Type *Ty, ///< The type to extend to |
| 4980 | const Twine &NameStr, ///< A name for the new instruction |
| 4981 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 4982 | ); |
| 4983 | |
| 4984 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 4985 | static bool classof(const Instruction *I) { |
| 4986 | return I->getOpcode() == FPExt; |
| 4987 | } |
| 4988 | static bool classof(const Value *V) { |
| 4989 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 4990 | } |
| 4991 | }; |
| 4992 | |
| 4993 | //===----------------------------------------------------------------------===// |
| 4994 | // UIToFPInst Class |
| 4995 | //===----------------------------------------------------------------------===// |
| 4996 | |
| 4997 | /// This class represents a cast unsigned integer to floating point. |
| 4998 | class UIToFPInst : public CastInst { |
| 4999 | protected: |
| 5000 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 5001 | friend class Instruction; |
| 5002 | |
| 5003 | /// Clone an identical UIToFPInst |
| 5004 | UIToFPInst *cloneImpl() const; |
| 5005 | |
| 5006 | public: |
| 5007 | /// Constructor with insert-before-instruction semantics |
| 5008 | UIToFPInst( |
| 5009 | Value *S, ///< The value to be converted |
| 5010 | Type *Ty, ///< The type to convert to |
| 5011 | const Twine &NameStr = "", ///< A name for the new instruction |
| 5012 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 5013 | ); |
| 5014 | |
| 5015 | /// Constructor with insert-at-end-of-block semantics |
| 5016 | UIToFPInst( |
| 5017 | Value *S, ///< The value to be converted |
| 5018 | Type *Ty, ///< The type to convert to |
| 5019 | const Twine &NameStr, ///< A name for the new instruction |
| 5020 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 5021 | ); |
| 5022 | |
| 5023 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 5024 | static bool classof(const Instruction *I) { |
| 5025 | return I->getOpcode() == UIToFP; |
| 5026 | } |
| 5027 | static bool classof(const Value *V) { |
| 5028 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 5029 | } |
| 5030 | }; |
| 5031 | |
| 5032 | //===----------------------------------------------------------------------===// |
| 5033 | // SIToFPInst Class |
| 5034 | //===----------------------------------------------------------------------===// |
| 5035 | |
| 5036 | /// This class represents a cast from signed integer to floating point. |
| 5037 | class SIToFPInst : public CastInst { |
| 5038 | protected: |
| 5039 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 5040 | friend class Instruction; |
| 5041 | |
| 5042 | /// Clone an identical SIToFPInst |
| 5043 | SIToFPInst *cloneImpl() const; |
| 5044 | |
| 5045 | public: |
| 5046 | /// Constructor with insert-before-instruction semantics |
| 5047 | SIToFPInst( |
| 5048 | Value *S, ///< The value to be converted |
| 5049 | Type *Ty, ///< The type to convert to |
| 5050 | const Twine &NameStr = "", ///< A name for the new instruction |
| 5051 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 5052 | ); |
| 5053 | |
| 5054 | /// Constructor with insert-at-end-of-block semantics |
| 5055 | SIToFPInst( |
| 5056 | Value *S, ///< The value to be converted |
| 5057 | Type *Ty, ///< The type to convert to |
| 5058 | const Twine &NameStr, ///< A name for the new instruction |
| 5059 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 5060 | ); |
| 5061 | |
| 5062 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 5063 | static bool classof(const Instruction *I) { |
| 5064 | return I->getOpcode() == SIToFP; |
| 5065 | } |
| 5066 | static bool classof(const Value *V) { |
| 5067 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 5068 | } |
| 5069 | }; |
| 5070 | |
| 5071 | //===----------------------------------------------------------------------===// |
| 5072 | // FPToUIInst Class |
| 5073 | //===----------------------------------------------------------------------===// |
| 5074 | |
| 5075 | /// This class represents a cast from floating point to unsigned integer |
| 5076 | class FPToUIInst : public CastInst { |
| 5077 | protected: |
| 5078 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 5079 | friend class Instruction; |
| 5080 | |
| 5081 | /// Clone an identical FPToUIInst |
| 5082 | FPToUIInst *cloneImpl() const; |
| 5083 | |
| 5084 | public: |
| 5085 | /// Constructor with insert-before-instruction semantics |
| 5086 | FPToUIInst( |
| 5087 | Value *S, ///< The value to be converted |
| 5088 | Type *Ty, ///< The type to convert to |
| 5089 | const Twine &NameStr = "", ///< A name for the new instruction |
| 5090 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 5091 | ); |
| 5092 | |
| 5093 | /// Constructor with insert-at-end-of-block semantics |
| 5094 | FPToUIInst( |
| 5095 | Value *S, ///< The value to be converted |
| 5096 | Type *Ty, ///< The type to convert to |
| 5097 | const Twine &NameStr, ///< A name for the new instruction |
| 5098 | BasicBlock *InsertAtEnd ///< Where to insert the new instruction |
| 5099 | ); |
| 5100 | |
| 5101 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 5102 | static bool classof(const Instruction *I) { |
| 5103 | return I->getOpcode() == FPToUI; |
| 5104 | } |
| 5105 | static bool classof(const Value *V) { |
| 5106 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 5107 | } |
| 5108 | }; |
| 5109 | |
| 5110 | //===----------------------------------------------------------------------===// |
| 5111 | // FPToSIInst Class |
| 5112 | //===----------------------------------------------------------------------===// |
| 5113 | |
| 5114 | /// This class represents a cast from floating point to signed integer. |
| 5115 | class FPToSIInst : public CastInst { |
| 5116 | protected: |
| 5117 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 5118 | friend class Instruction; |
| 5119 | |
| 5120 | /// Clone an identical FPToSIInst |
| 5121 | FPToSIInst *cloneImpl() const; |
| 5122 | |
| 5123 | public: |
| 5124 | /// Constructor with insert-before-instruction semantics |
| 5125 | FPToSIInst( |
| 5126 | Value *S, ///< The value to be converted |
| 5127 | Type *Ty, ///< The type to convert to |
| 5128 | const Twine &NameStr = "", ///< A name for the new instruction |
| 5129 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 5130 | ); |
| 5131 | |
| 5132 | /// Constructor with insert-at-end-of-block semantics |
| 5133 | FPToSIInst( |
| 5134 | Value *S, ///< The value to be converted |
| 5135 | Type *Ty, ///< The type to convert to |
| 5136 | const Twine &NameStr, ///< A name for the new instruction |
| 5137 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 5138 | ); |
| 5139 | |
| 5140 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 5141 | static bool classof(const Instruction *I) { |
| 5142 | return I->getOpcode() == FPToSI; |
| 5143 | } |
| 5144 | static bool classof(const Value *V) { |
| 5145 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 5146 | } |
| 5147 | }; |
| 5148 | |
| 5149 | //===----------------------------------------------------------------------===// |
| 5150 | // IntToPtrInst Class |
| 5151 | //===----------------------------------------------------------------------===// |
| 5152 | |
| 5153 | /// This class represents a cast from an integer to a pointer. |
| 5154 | class IntToPtrInst : public CastInst { |
| 5155 | public: |
| 5156 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 5157 | friend class Instruction; |
| 5158 | |
| 5159 | /// Constructor with insert-before-instruction semantics |
| 5160 | IntToPtrInst( |
| 5161 | Value *S, ///< The value to be converted |
| 5162 | Type *Ty, ///< The type to convert to |
| 5163 | const Twine &NameStr = "", ///< A name for the new instruction |
| 5164 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 5165 | ); |
| 5166 | |
| 5167 | /// Constructor with insert-at-end-of-block semantics |
| 5168 | IntToPtrInst( |
| 5169 | Value *S, ///< The value to be converted |
| 5170 | Type *Ty, ///< The type to convert to |
| 5171 | const Twine &NameStr, ///< A name for the new instruction |
| 5172 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 5173 | ); |
| 5174 | |
| 5175 | /// Clone an identical IntToPtrInst. |
| 5176 | IntToPtrInst *cloneImpl() const; |
| 5177 | |
| 5178 | /// Returns the address space of this instruction's pointer type. |
| 5179 | unsigned getAddressSpace() const { |
| 5180 | return getType()->getPointerAddressSpace(); |
| 5181 | } |
| 5182 | |
| 5183 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 5184 | static bool classof(const Instruction *I) { |
| 5185 | return I->getOpcode() == IntToPtr; |
| 5186 | } |
| 5187 | static bool classof(const Value *V) { |
| 5188 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 5189 | } |
| 5190 | }; |
| 5191 | |
| 5192 | //===----------------------------------------------------------------------===// |
| 5193 | // PtrToIntInst Class |
| 5194 | //===----------------------------------------------------------------------===// |
| 5195 | |
| 5196 | /// This class represents a cast from a pointer to an integer. |
| 5197 | class PtrToIntInst : public CastInst { |
| 5198 | protected: |
| 5199 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 5200 | friend class Instruction; |
| 5201 | |
| 5202 | /// Clone an identical PtrToIntInst. |
| 5203 | PtrToIntInst *cloneImpl() const; |
| 5204 | |
| 5205 | public: |
| 5206 | /// Constructor with insert-before-instruction semantics |
| 5207 | PtrToIntInst( |
| 5208 | Value *S, ///< The value to be converted |
| 5209 | Type *Ty, ///< The type to convert to |
| 5210 | const Twine &NameStr = "", ///< A name for the new instruction |
| 5211 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 5212 | ); |
| 5213 | |
| 5214 | /// Constructor with insert-at-end-of-block semantics |
| 5215 | PtrToIntInst( |
| 5216 | Value *S, ///< The value to be converted |
| 5217 | Type *Ty, ///< The type to convert to |
| 5218 | const Twine &NameStr, ///< A name for the new instruction |
| 5219 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 5220 | ); |
| 5221 | |
| 5222 | /// Gets the pointer operand. |
| 5223 | Value *getPointerOperand() { return getOperand(0); } |
| 5224 | /// Gets the pointer operand. |
| 5225 | const Value *getPointerOperand() const { return getOperand(0); } |
| 5226 | /// Gets the operand index of the pointer operand. |
| 5227 | static unsigned getPointerOperandIndex() { return 0U; } |
| 5228 | |
| 5229 | /// Returns the address space of the pointer operand. |
| 5230 | unsigned getPointerAddressSpace() const { |
| 5231 | return getPointerOperand()->getType()->getPointerAddressSpace(); |
| 5232 | } |
| 5233 | |
| 5234 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 5235 | static bool classof(const Instruction *I) { |
| 5236 | return I->getOpcode() == PtrToInt; |
| 5237 | } |
| 5238 | static bool classof(const Value *V) { |
| 5239 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 5240 | } |
| 5241 | }; |
| 5242 | |
| 5243 | //===----------------------------------------------------------------------===// |
| 5244 | // BitCastInst Class |
| 5245 | //===----------------------------------------------------------------------===// |
| 5246 | |
| 5247 | /// This class represents a no-op cast from one type to another. |
| 5248 | class BitCastInst : public CastInst { |
| 5249 | protected: |
| 5250 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 5251 | friend class Instruction; |
| 5252 | |
| 5253 | /// Clone an identical BitCastInst. |
| 5254 | BitCastInst *cloneImpl() const; |
| 5255 | |
| 5256 | public: |
| 5257 | /// Constructor with insert-before-instruction semantics |
| 5258 | BitCastInst( |
| 5259 | Value *S, ///< The value to be casted |
| 5260 | Type *Ty, ///< The type to casted to |
| 5261 | const Twine &NameStr = "", ///< A name for the new instruction |
| 5262 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 5263 | ); |
| 5264 | |
| 5265 | /// Constructor with insert-at-end-of-block semantics |
| 5266 | BitCastInst( |
| 5267 | Value *S, ///< The value to be casted |
| 5268 | Type *Ty, ///< The type to casted to |
| 5269 | const Twine &NameStr, ///< A name for the new instruction |
| 5270 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 5271 | ); |
| 5272 | |
| 5273 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 5274 | static bool classof(const Instruction *I) { |
| 5275 | return I->getOpcode() == BitCast; |
| 5276 | } |
| 5277 | static bool classof(const Value *V) { |
| 5278 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 5279 | } |
| 5280 | }; |
| 5281 | |
| 5282 | //===----------------------------------------------------------------------===// |
| 5283 | // AddrSpaceCastInst Class |
| 5284 | //===----------------------------------------------------------------------===// |
| 5285 | |
| 5286 | /// This class represents a conversion between pointers from one address space |
| 5287 | /// to another. |
| 5288 | class AddrSpaceCastInst : public CastInst { |
| 5289 | protected: |
| 5290 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 5291 | friend class Instruction; |
| 5292 | |
| 5293 | /// Clone an identical AddrSpaceCastInst. |
| 5294 | AddrSpaceCastInst *cloneImpl() const; |
| 5295 | |
| 5296 | public: |
| 5297 | /// Constructor with insert-before-instruction semantics |
| 5298 | AddrSpaceCastInst( |
| 5299 | Value *S, ///< The value to be casted |
| 5300 | Type *Ty, ///< The type to casted to |
| 5301 | const Twine &NameStr = "", ///< A name for the new instruction |
| 5302 | Instruction *InsertBefore = nullptr ///< Where to insert the new instruction |
| 5303 | ); |
| 5304 | |
| 5305 | /// Constructor with insert-at-end-of-block semantics |
| 5306 | AddrSpaceCastInst( |
| 5307 | Value *S, ///< The value to be casted |
| 5308 | Type *Ty, ///< The type to casted to |
| 5309 | const Twine &NameStr, ///< A name for the new instruction |
| 5310 | BasicBlock *InsertAtEnd ///< The block to insert the instruction into |
| 5311 | ); |
| 5312 | |
| 5313 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 5314 | static bool classof(const Instruction *I) { |
| 5315 | return I->getOpcode() == AddrSpaceCast; |
| 5316 | } |
| 5317 | static bool classof(const Value *V) { |
| 5318 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 5319 | } |
| 5320 | |
| 5321 | /// Gets the pointer operand. |
| 5322 | Value *getPointerOperand() { |
| 5323 | return getOperand(0); |
| 5324 | } |
| 5325 | |
| 5326 | /// Gets the pointer operand. |
| 5327 | const Value *getPointerOperand() const { |
| 5328 | return getOperand(0); |
| 5329 | } |
| 5330 | |
| 5331 | /// Gets the operand index of the pointer operand. |
| 5332 | static unsigned getPointerOperandIndex() { |
| 5333 | return 0U; |
| 5334 | } |
| 5335 | |
| 5336 | /// Returns the address space of the pointer operand. |
| 5337 | unsigned getSrcAddressSpace() const { |
| 5338 | return getPointerOperand()->getType()->getPointerAddressSpace(); |
| 5339 | } |
| 5340 | |
| 5341 | /// Returns the address space of the result. |
| 5342 | unsigned getDestAddressSpace() const { |
| 5343 | return getType()->getPointerAddressSpace(); |
| 5344 | } |
| 5345 | }; |
| 5346 | |
| 5347 | //===----------------------------------------------------------------------===// |
| 5348 | // Helper functions |
| 5349 | //===----------------------------------------------------------------------===// |
| 5350 | |
| 5351 | /// A helper function that returns the pointer operand of a load or store |
| 5352 | /// instruction. Returns nullptr if not load or store. |
| 5353 | inline const Value *getLoadStorePointerOperand(const Value *V) { |
| 5354 | if (auto *Load = dyn_cast<LoadInst>(V)) |
| 5355 | return Load->getPointerOperand(); |
| 5356 | if (auto *Store = dyn_cast<StoreInst>(V)) |
| 5357 | return Store->getPointerOperand(); |
| 5358 | return nullptr; |
| 5359 | } |
| 5360 | inline Value *getLoadStorePointerOperand(Value *V) { |
| 5361 | return const_cast<Value *>( |
| 5362 | getLoadStorePointerOperand(static_cast<const Value *>(V))); |
| 5363 | } |
| 5364 | |
| 5365 | /// A helper function that returns the pointer operand of a load, store |
| 5366 | /// or GEP instruction. Returns nullptr if not load, store, or GEP. |
| 5367 | inline const Value *getPointerOperand(const Value *V) { |
| 5368 | if (auto *Ptr = getLoadStorePointerOperand(V)) |
| 5369 | return Ptr; |
| 5370 | if (auto *Gep = dyn_cast<GetElementPtrInst>(V)) |
| 5371 | return Gep->getPointerOperand(); |
| 5372 | return nullptr; |
| 5373 | } |
| 5374 | inline Value *getPointerOperand(Value *V) { |
| 5375 | return const_cast<Value *>(getPointerOperand(static_cast<const Value *>(V))); |
| 5376 | } |
| 5377 | |
| 5378 | /// A helper function that returns the alignment of load or store instruction. |
| 5379 | inline Align getLoadStoreAlignment(Value *I) { |
| 5380 | assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&(static_cast <bool> ((isa<LoadInst>(I) || isa< StoreInst>(I)) && "Expected Load or Store instruction" ) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\"" , "llvm/include/llvm/IR/Instructions.h", 5381, __extension__ __PRETTY_FUNCTION__ )) |
| 5381 | "Expected Load or Store instruction")(static_cast <bool> ((isa<LoadInst>(I) || isa< StoreInst>(I)) && "Expected Load or Store instruction" ) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\"" , "llvm/include/llvm/IR/Instructions.h", 5381, __extension__ __PRETTY_FUNCTION__ )); |
| 5382 | if (auto *LI = dyn_cast<LoadInst>(I)) |
| 5383 | return LI->getAlign(); |
| 5384 | return cast<StoreInst>(I)->getAlign(); |
| 5385 | } |
| 5386 | |
| 5387 | /// A helper function that returns the address space of the pointer operand of |
| 5388 | /// load or store instruction. |
| 5389 | inline unsigned getLoadStoreAddressSpace(Value *I) { |
| 5390 | assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&(static_cast <bool> ((isa<LoadInst>(I) || isa< StoreInst>(I)) && "Expected Load or Store instruction" ) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\"" , "llvm/include/llvm/IR/Instructions.h", 5391, __extension__ __PRETTY_FUNCTION__ )) |
| 5391 | "Expected Load or Store instruction")(static_cast <bool> ((isa<LoadInst>(I) || isa< StoreInst>(I)) && "Expected Load or Store instruction" ) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\"" , "llvm/include/llvm/IR/Instructions.h", 5391, __extension__ __PRETTY_FUNCTION__ )); |
| 5392 | if (auto *LI = dyn_cast<LoadInst>(I)) |
| 5393 | return LI->getPointerAddressSpace(); |
| 5394 | return cast<StoreInst>(I)->getPointerAddressSpace(); |
| 5395 | } |
| 5396 | |
| 5397 | /// A helper function that returns the type of a load or store instruction. |
| 5398 | inline Type *getLoadStoreType(Value *I) { |
| 5399 | assert((isa<LoadInst>(I) || isa<StoreInst>(I)) &&(static_cast <bool> ((isa<LoadInst>(I) || isa< StoreInst>(I)) && "Expected Load or Store instruction" ) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\"" , "llvm/include/llvm/IR/Instructions.h", 5400, __extension__ __PRETTY_FUNCTION__ )) |
| 5400 | "Expected Load or Store instruction")(static_cast <bool> ((isa<LoadInst>(I) || isa< StoreInst>(I)) && "Expected Load or Store instruction" ) ? void (0) : __assert_fail ("(isa<LoadInst>(I) || isa<StoreInst>(I)) && \"Expected Load or Store instruction\"" , "llvm/include/llvm/IR/Instructions.h", 5400, __extension__ __PRETTY_FUNCTION__ )); |
| 5401 | if (auto *LI = dyn_cast<LoadInst>(I)) |
| 5402 | return LI->getType(); |
| 5403 | return cast<StoreInst>(I)->getValueOperand()->getType(); |
| 5404 | } |
| 5405 | |
| 5406 | /// A helper function that returns an atomic operation's sync scope; returns |
| 5407 | /// std::nullopt if it is not an atomic operation. |
| 5408 | inline std::optional<SyncScope::ID> getAtomicSyncScopeID(const Instruction *I) { |
| 5409 | if (!I->isAtomic()) |
| 5410 | return std::nullopt; |
| 5411 | if (auto *AI = dyn_cast<LoadInst>(I)) |
| 5412 | return AI->getSyncScopeID(); |
| 5413 | if (auto *AI = dyn_cast<StoreInst>(I)) |
| 5414 | return AI->getSyncScopeID(); |
| 5415 | if (auto *AI = dyn_cast<FenceInst>(I)) |
| 5416 | return AI->getSyncScopeID(); |
| 5417 | if (auto *AI = dyn_cast<AtomicCmpXchgInst>(I)) |
| 5418 | return AI->getSyncScopeID(); |
| 5419 | if (auto *AI = dyn_cast<AtomicRMWInst>(I)) |
| 5420 | return AI->getSyncScopeID(); |
| 5421 | llvm_unreachable("unhandled atomic operation")::llvm::llvm_unreachable_internal("unhandled atomic operation" , "llvm/include/llvm/IR/Instructions.h", 5421); |
| 5422 | } |
| 5423 | |
| 5424 | //===----------------------------------------------------------------------===// |
| 5425 | // FreezeInst Class |
| 5426 | //===----------------------------------------------------------------------===// |
| 5427 | |
| 5428 | /// This class represents a freeze function that returns random concrete |
| 5429 | /// value if an operand is either a poison value or an undef value |
| 5430 | class FreezeInst : public UnaryInstruction { |
| 5431 | protected: |
| 5432 | // Note: Instruction needs to be a friend here to call cloneImpl. |
| 5433 | friend class Instruction; |
| 5434 | |
| 5435 | /// Clone an identical FreezeInst |
| 5436 | FreezeInst *cloneImpl() const; |
| 5437 | |
| 5438 | public: |
| 5439 | explicit FreezeInst(Value *S, |
| 5440 | const Twine &NameStr = "", |
| 5441 | Instruction *InsertBefore = nullptr); |
| 5442 | FreezeInst(Value *S, const Twine &NameStr, BasicBlock *InsertAtEnd); |
| 5443 | |
| 5444 | // Methods for support type inquiry through isa, cast, and dyn_cast: |
| 5445 | static inline bool classof(const Instruction *I) { |
| 5446 | return I->getOpcode() == Freeze; |
| 5447 | } |
| 5448 | static inline bool classof(const Value *V) { |
| 5449 | return isa<Instruction>(V) && classof(cast<Instruction>(V)); |
| 5450 | } |
| 5451 | }; |
| 5452 | |
| 5453 | } // end namespace llvm |
| 5454 | |
| 5455 | #endif // LLVM_IR_INSTRUCTIONS_H |