| File: | build/source/llvm/lib/Support/APFloat.cpp |
| Warning: | line 2268, column 7 Potential memory leak |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //===-- APFloat.cpp - Implement APFloat class -----------------------------===// | ||||
| 2 | // | ||||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | ||||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||||
| 6 | // | ||||
| 7 | //===----------------------------------------------------------------------===// | ||||
| 8 | // | ||||
| 9 | // This file implements a class to represent arbitrary precision floating | ||||
| 10 | // point values and provide a variety of arithmetic operations on them. | ||||
| 11 | // | ||||
| 12 | //===----------------------------------------------------------------------===// | ||||
| 13 | |||||
| 14 | #include "llvm/ADT/APFloat.h" | ||||
| 15 | #include "llvm/ADT/APSInt.h" | ||||
| 16 | #include "llvm/ADT/ArrayRef.h" | ||||
| 17 | #include "llvm/ADT/FoldingSet.h" | ||||
| 18 | #include "llvm/ADT/Hashing.h" | ||||
| 19 | #include "llvm/ADT/StringExtras.h" | ||||
| 20 | #include "llvm/ADT/StringRef.h" | ||||
| 21 | #include "llvm/Config/llvm-config.h" | ||||
| 22 | #include "llvm/Support/Debug.h" | ||||
| 23 | #include "llvm/Support/Error.h" | ||||
| 24 | #include "llvm/Support/MathExtras.h" | ||||
| 25 | #include "llvm/Support/raw_ostream.h" | ||||
| 26 | #include <cstring> | ||||
| 27 | #include <limits.h> | ||||
| 28 | |||||
| 29 | #define APFLOAT_DISPATCH_ON_SEMANTICS(METHOD_CALL) \ | ||||
| 30 | do { \ | ||||
| 31 | if (usesLayout<IEEEFloat>(getSemantics())) \ | ||||
| 32 | return U.IEEE.METHOD_CALL; \ | ||||
| 33 | if (usesLayout<DoubleAPFloat>(getSemantics())) \ | ||||
| 34 | return U.Double.METHOD_CALL; \ | ||||
| 35 | llvm_unreachable("Unexpected semantics")::llvm::llvm_unreachable_internal("Unexpected semantics", "llvm/lib/Support/APFloat.cpp" , 35); \ | ||||
| 36 | } while (false) | ||||
| 37 | |||||
| 38 | using namespace llvm; | ||||
| 39 | |||||
| 40 | /// A macro used to combine two fcCategory enums into one key which can be used | ||||
| 41 | /// in a switch statement to classify how the interaction of two APFloat's | ||||
| 42 | /// categories affects an operation. | ||||
| 43 | /// | ||||
| 44 | /// TODO: If clang source code is ever allowed to use constexpr in its own | ||||
| 45 | /// codebase, change this into a static inline function. | ||||
| 46 | #define PackCategoriesIntoKey(_lhs, _rhs)((_lhs) * 4 + (_rhs)) ((_lhs) * 4 + (_rhs)) | ||||
| 47 | |||||
| 48 | /* Assumed in hexadecimal significand parsing, and conversion to | ||||
| 49 | hexadecimal strings. */ | ||||
| 50 | static_assert(APFloatBase::integerPartWidth % 4 == 0, "Part width must be divisible by 4!"); | ||||
| 51 | |||||
| 52 | namespace llvm { | ||||
| 53 | /* Represents floating point arithmetic semantics. */ | ||||
| 54 | struct fltSemantics { | ||||
| 55 | /* The largest E such that 2^E is representable; this matches the | ||||
| 56 | definition of IEEE 754. */ | ||||
| 57 | APFloatBase::ExponentType maxExponent; | ||||
| 58 | |||||
| 59 | /* The smallest E such that 2^E is a normalized number; this | ||||
| 60 | matches the definition of IEEE 754. */ | ||||
| 61 | APFloatBase::ExponentType minExponent; | ||||
| 62 | |||||
| 63 | /* Number of bits in the significand. This includes the integer | ||||
| 64 | bit. */ | ||||
| 65 | unsigned int precision; | ||||
| 66 | |||||
| 67 | /* Number of bits actually used in the semantics. */ | ||||
| 68 | unsigned int sizeInBits; | ||||
| 69 | |||||
| 70 | // Returns true if any number described by this semantics can be precisely | ||||
| 71 | // represented by the specified semantics. | ||||
| 72 | bool isRepresentableBy(const fltSemantics &S) const { | ||||
| 73 | return maxExponent <= S.maxExponent && minExponent >= S.minExponent && | ||||
| 74 | precision <= S.precision; | ||||
| 75 | } | ||||
| 76 | }; | ||||
| 77 | |||||
| 78 | static const fltSemantics semIEEEhalf = {15, -14, 11, 16}; | ||||
| 79 | static const fltSemantics semBFloat = {127, -126, 8, 16}; | ||||
| 80 | static const fltSemantics semIEEEsingle = {127, -126, 24, 32}; | ||||
| 81 | static const fltSemantics semIEEEdouble = {1023, -1022, 53, 64}; | ||||
| 82 | static const fltSemantics semIEEEquad = {16383, -16382, 113, 128}; | ||||
| 83 | static const fltSemantics semFloat8E5M2 = {15, -14, 3, 8}; | ||||
| 84 | static const fltSemantics semX87DoubleExtended = {16383, -16382, 64, 80}; | ||||
| 85 | static const fltSemantics semBogus = {0, 0, 0, 0}; | ||||
| 86 | |||||
| 87 | /* The IBM double-double semantics. Such a number consists of a pair of IEEE | ||||
| 88 | 64-bit doubles (Hi, Lo), where |Hi| > |Lo|, and if normal, | ||||
| 89 | (double)(Hi + Lo) == Hi. The numeric value it's modeling is Hi + Lo. | ||||
| 90 | Therefore it has two 53-bit mantissa parts that aren't necessarily adjacent | ||||
| 91 | to each other, and two 11-bit exponents. | ||||
| 92 | |||||
| 93 | Note: we need to make the value different from semBogus as otherwise | ||||
| 94 | an unsafe optimization may collapse both values to a single address, | ||||
| 95 | and we heavily rely on them having distinct addresses. */ | ||||
| 96 | static const fltSemantics semPPCDoubleDouble = {-1, 0, 0, 128}; | ||||
| 97 | |||||
| 98 | /* These are legacy semantics for the fallback, inaccrurate implementation of | ||||
| 99 | IBM double-double, if the accurate semPPCDoubleDouble doesn't handle the | ||||
| 100 | operation. It's equivalent to having an IEEE number with consecutive 106 | ||||
| 101 | bits of mantissa and 11 bits of exponent. | ||||
| 102 | |||||
| 103 | It's not equivalent to IBM double-double. For example, a legit IBM | ||||
| 104 | double-double, 1 + epsilon: | ||||
| 105 | |||||
| 106 | 1 + epsilon = 1 + (1 >> 1076) | ||||
| 107 | |||||
| 108 | is not representable by a consecutive 106 bits of mantissa. | ||||
| 109 | |||||
| 110 | Currently, these semantics are used in the following way: | ||||
| 111 | |||||
| 112 | semPPCDoubleDouble -> (IEEEdouble, IEEEdouble) -> | ||||
| 113 | (64-bit APInt, 64-bit APInt) -> (128-bit APInt) -> | ||||
| 114 | semPPCDoubleDoubleLegacy -> IEEE operations | ||||
| 115 | |||||
| 116 | We use bitcastToAPInt() to get the bit representation (in APInt) of the | ||||
| 117 | underlying IEEEdouble, then use the APInt constructor to construct the | ||||
| 118 | legacy IEEE float. | ||||
| 119 | |||||
| 120 | TODO: Implement all operations in semPPCDoubleDouble, and delete these | ||||
| 121 | semantics. */ | ||||
| 122 | static const fltSemantics semPPCDoubleDoubleLegacy = {1023, -1022 + 53, | ||||
| 123 | 53 + 53, 128}; | ||||
| 124 | |||||
| 125 | const llvm::fltSemantics &APFloatBase::EnumToSemantics(Semantics S) { | ||||
| 126 | switch (S) { | ||||
| 127 | case S_IEEEhalf: | ||||
| 128 | return IEEEhalf(); | ||||
| 129 | case S_BFloat: | ||||
| 130 | return BFloat(); | ||||
| 131 | case S_IEEEsingle: | ||||
| 132 | return IEEEsingle(); | ||||
| 133 | case S_IEEEdouble: | ||||
| 134 | return IEEEdouble(); | ||||
| 135 | case S_IEEEquad: | ||||
| 136 | return IEEEquad(); | ||||
| 137 | case S_PPCDoubleDouble: | ||||
| 138 | return PPCDoubleDouble(); | ||||
| 139 | case S_Float8E5M2: | ||||
| 140 | return Float8E5M2(); | ||||
| 141 | case S_x87DoubleExtended: | ||||
| 142 | return x87DoubleExtended(); | ||||
| 143 | } | ||||
| 144 | llvm_unreachable("Unrecognised floating semantics")::llvm::llvm_unreachable_internal("Unrecognised floating semantics" , "llvm/lib/Support/APFloat.cpp", 144); | ||||
| 145 | } | ||||
| 146 | |||||
| 147 | APFloatBase::Semantics | ||||
| 148 | APFloatBase::SemanticsToEnum(const llvm::fltSemantics &Sem) { | ||||
| 149 | if (&Sem == &llvm::APFloat::IEEEhalf()) | ||||
| 150 | return S_IEEEhalf; | ||||
| 151 | else if (&Sem == &llvm::APFloat::BFloat()) | ||||
| 152 | return S_BFloat; | ||||
| 153 | else if (&Sem == &llvm::APFloat::IEEEsingle()) | ||||
| 154 | return S_IEEEsingle; | ||||
| 155 | else if (&Sem == &llvm::APFloat::IEEEdouble()) | ||||
| 156 | return S_IEEEdouble; | ||||
| 157 | else if (&Sem == &llvm::APFloat::IEEEquad()) | ||||
| 158 | return S_IEEEquad; | ||||
| 159 | else if (&Sem == &llvm::APFloat::PPCDoubleDouble()) | ||||
| 160 | return S_PPCDoubleDouble; | ||||
| 161 | else if (&Sem == &llvm::APFloat::Float8E5M2()) | ||||
| 162 | return S_Float8E5M2; | ||||
| 163 | else if (&Sem == &llvm::APFloat::x87DoubleExtended()) | ||||
| 164 | return S_x87DoubleExtended; | ||||
| 165 | else | ||||
| 166 | llvm_unreachable("Unknown floating semantics")::llvm::llvm_unreachable_internal("Unknown floating semantics" , "llvm/lib/Support/APFloat.cpp", 166); | ||||
| 167 | } | ||||
| 168 | |||||
| 169 | const fltSemantics &APFloatBase::IEEEhalf() { | ||||
| 170 | return semIEEEhalf; | ||||
| 171 | } | ||||
| 172 | const fltSemantics &APFloatBase::BFloat() { | ||||
| 173 | return semBFloat; | ||||
| 174 | } | ||||
| 175 | const fltSemantics &APFloatBase::IEEEsingle() { | ||||
| 176 | return semIEEEsingle; | ||||
| 177 | } | ||||
| 178 | const fltSemantics &APFloatBase::IEEEdouble() { | ||||
| 179 | return semIEEEdouble; | ||||
| 180 | } | ||||
| 181 | const fltSemantics &APFloatBase::IEEEquad() { return semIEEEquad; } | ||||
| 182 | const fltSemantics &APFloatBase::PPCDoubleDouble() { | ||||
| 183 | return semPPCDoubleDouble; | ||||
| 184 | } | ||||
| 185 | const fltSemantics &APFloatBase::Float8E5M2() { return semFloat8E5M2; } | ||||
| 186 | const fltSemantics &APFloatBase::x87DoubleExtended() { | ||||
| 187 | return semX87DoubleExtended; | ||||
| 188 | } | ||||
| 189 | const fltSemantics &APFloatBase::Bogus() { return semBogus; } | ||||
| 190 | |||||
| 191 | constexpr RoundingMode APFloatBase::rmNearestTiesToEven; | ||||
| 192 | constexpr RoundingMode APFloatBase::rmTowardPositive; | ||||
| 193 | constexpr RoundingMode APFloatBase::rmTowardNegative; | ||||
| 194 | constexpr RoundingMode APFloatBase::rmTowardZero; | ||||
| 195 | constexpr RoundingMode APFloatBase::rmNearestTiesToAway; | ||||
| 196 | |||||
| 197 | /* A tight upper bound on number of parts required to hold the value | ||||
| 198 | pow(5, power) is | ||||
| 199 | |||||
| 200 | power * 815 / (351 * integerPartWidth) + 1 | ||||
| 201 | |||||
| 202 | However, whilst the result may require only this many parts, | ||||
| 203 | because we are multiplying two values to get it, the | ||||
| 204 | multiplication may require an extra part with the excess part | ||||
| 205 | being zero (consider the trivial case of 1 * 1, tcFullMultiply | ||||
| 206 | requires two parts to hold the single-part result). So we add an | ||||
| 207 | extra one to guarantee enough space whilst multiplying. */ | ||||
| 208 | const unsigned int maxExponent = 16383; | ||||
| 209 | const unsigned int maxPrecision = 113; | ||||
| 210 | const unsigned int maxPowerOfFiveExponent = maxExponent + maxPrecision - 1; | ||||
| 211 | const unsigned int maxPowerOfFiveParts = 2 + ((maxPowerOfFiveExponent * 815) / (351 * APFloatBase::integerPartWidth)); | ||||
| 212 | |||||
| 213 | unsigned int APFloatBase::semanticsPrecision(const fltSemantics &semantics) { | ||||
| 214 | return semantics.precision; | ||||
| 215 | } | ||||
| 216 | APFloatBase::ExponentType | ||||
| 217 | APFloatBase::semanticsMaxExponent(const fltSemantics &semantics) { | ||||
| 218 | return semantics.maxExponent; | ||||
| 219 | } | ||||
| 220 | APFloatBase::ExponentType | ||||
| 221 | APFloatBase::semanticsMinExponent(const fltSemantics &semantics) { | ||||
| 222 | return semantics.minExponent; | ||||
| 223 | } | ||||
| 224 | unsigned int APFloatBase::semanticsSizeInBits(const fltSemantics &semantics) { | ||||
| 225 | return semantics.sizeInBits; | ||||
| 226 | } | ||||
| 227 | |||||
| 228 | unsigned APFloatBase::getSizeInBits(const fltSemantics &Sem) { | ||||
| 229 | return Sem.sizeInBits; | ||||
| 230 | } | ||||
| 231 | |||||
| 232 | /* A bunch of private, handy routines. */ | ||||
| 233 | |||||
| 234 | static inline Error createError(const Twine &Err) { | ||||
| 235 | return make_error<StringError>(Err, inconvertibleErrorCode()); | ||||
| 236 | } | ||||
| 237 | |||||
| 238 | static inline unsigned int | ||||
| 239 | partCountForBits(unsigned int bits) | ||||
| 240 | { | ||||
| 241 | return ((bits) + APFloatBase::integerPartWidth - 1) / APFloatBase::integerPartWidth; | ||||
| 242 | } | ||||
| 243 | |||||
| 244 | /* Returns 0U-9U. Return values >= 10U are not digits. */ | ||||
| 245 | static inline unsigned int | ||||
| 246 | decDigitValue(unsigned int c) | ||||
| 247 | { | ||||
| 248 | return c - '0'; | ||||
| 249 | } | ||||
| 250 | |||||
| 251 | /* Return the value of a decimal exponent of the form | ||||
| 252 | [+-]ddddddd. | ||||
| 253 | |||||
| 254 | If the exponent overflows, returns a large exponent with the | ||||
| 255 | appropriate sign. */ | ||||
| 256 | static Expected<int> readExponent(StringRef::iterator begin, | ||||
| 257 | StringRef::iterator end) { | ||||
| 258 | bool isNegative; | ||||
| 259 | unsigned int absExponent; | ||||
| 260 | const unsigned int overlargeExponent = 24000; /* FIXME. */ | ||||
| 261 | StringRef::iterator p = begin; | ||||
| 262 | |||||
| 263 | // Treat no exponent as 0 to match binutils | ||||
| 264 | if (p == end || ((*p == '-' || *p == '+') && (p + 1) == end)) { | ||||
| 265 | return 0; | ||||
| 266 | } | ||||
| 267 | |||||
| 268 | isNegative = (*p == '-'); | ||||
| 269 | if (*p == '-' || *p == '+') { | ||||
| 270 | p++; | ||||
| 271 | if (p == end) | ||||
| 272 | return createError("Exponent has no digits"); | ||||
| 273 | } | ||||
| 274 | |||||
| 275 | absExponent = decDigitValue(*p++); | ||||
| 276 | if (absExponent >= 10U) | ||||
| 277 | return createError("Invalid character in exponent"); | ||||
| 278 | |||||
| 279 | for (; p != end; ++p) { | ||||
| 280 | unsigned int value; | ||||
| 281 | |||||
| 282 | value = decDigitValue(*p); | ||||
| 283 | if (value >= 10U) | ||||
| 284 | return createError("Invalid character in exponent"); | ||||
| 285 | |||||
| 286 | absExponent = absExponent * 10U + value; | ||||
| 287 | if (absExponent >= overlargeExponent) { | ||||
| 288 | absExponent = overlargeExponent; | ||||
| 289 | break; | ||||
| 290 | } | ||||
| 291 | } | ||||
| 292 | |||||
| 293 | if (isNegative) | ||||
| 294 | return -(int) absExponent; | ||||
| 295 | else | ||||
| 296 | return (int) absExponent; | ||||
| 297 | } | ||||
| 298 | |||||
| 299 | /* This is ugly and needs cleaning up, but I don't immediately see | ||||
| 300 | how whilst remaining safe. */ | ||||
| 301 | static Expected<int> totalExponent(StringRef::iterator p, | ||||
| 302 | StringRef::iterator end, | ||||
| 303 | int exponentAdjustment) { | ||||
| 304 | int unsignedExponent; | ||||
| 305 | bool negative, overflow; | ||||
| 306 | int exponent = 0; | ||||
| 307 | |||||
| 308 | if (p == end) | ||||
| 309 | return createError("Exponent has no digits"); | ||||
| 310 | |||||
| 311 | negative = *p == '-'; | ||||
| 312 | if (*p == '-' || *p == '+') { | ||||
| 313 | p++; | ||||
| 314 | if (p == end) | ||||
| 315 | return createError("Exponent has no digits"); | ||||
| 316 | } | ||||
| 317 | |||||
| 318 | unsignedExponent = 0; | ||||
| 319 | overflow = false; | ||||
| 320 | for (; p != end; ++p) { | ||||
| 321 | unsigned int value; | ||||
| 322 | |||||
| 323 | value = decDigitValue(*p); | ||||
| 324 | if (value >= 10U) | ||||
| 325 | return createError("Invalid character in exponent"); | ||||
| 326 | |||||
| 327 | unsignedExponent = unsignedExponent * 10 + value; | ||||
| 328 | if (unsignedExponent > 32767) { | ||||
| 329 | overflow = true; | ||||
| 330 | break; | ||||
| 331 | } | ||||
| 332 | } | ||||
| 333 | |||||
| 334 | if (exponentAdjustment > 32767 || exponentAdjustment < -32768) | ||||
| 335 | overflow = true; | ||||
| 336 | |||||
| 337 | if (!overflow) { | ||||
| 338 | exponent = unsignedExponent; | ||||
| 339 | if (negative) | ||||
| 340 | exponent = -exponent; | ||||
| 341 | exponent += exponentAdjustment; | ||||
| 342 | if (exponent > 32767 || exponent < -32768) | ||||
| 343 | overflow = true; | ||||
| 344 | } | ||||
| 345 | |||||
| 346 | if (overflow) | ||||
| 347 | exponent = negative ? -32768: 32767; | ||||
| 348 | |||||
| 349 | return exponent; | ||||
| 350 | } | ||||
| 351 | |||||
| 352 | static Expected<StringRef::iterator> | ||||
| 353 | skipLeadingZeroesAndAnyDot(StringRef::iterator begin, StringRef::iterator end, | ||||
| 354 | StringRef::iterator *dot) { | ||||
| 355 | StringRef::iterator p = begin; | ||||
| 356 | *dot = end; | ||||
| 357 | while (p != end && *p == '0') | ||||
| 358 | p++; | ||||
| 359 | |||||
| 360 | if (p != end && *p == '.') { | ||||
| 361 | *dot = p++; | ||||
| 362 | |||||
| 363 | if (end - begin == 1) | ||||
| 364 | return createError("Significand has no digits"); | ||||
| 365 | |||||
| 366 | while (p != end && *p == '0') | ||||
| 367 | p++; | ||||
| 368 | } | ||||
| 369 | |||||
| 370 | return p; | ||||
| 371 | } | ||||
| 372 | |||||
| 373 | /* Given a normal decimal floating point number of the form | ||||
| 374 | |||||
| 375 | dddd.dddd[eE][+-]ddd | ||||
| 376 | |||||
| 377 | where the decimal point and exponent are optional, fill out the | ||||
| 378 | structure D. Exponent is appropriate if the significand is | ||||
| 379 | treated as an integer, and normalizedExponent if the significand | ||||
| 380 | is taken to have the decimal point after a single leading | ||||
| 381 | non-zero digit. | ||||
| 382 | |||||
| 383 | If the value is zero, V->firstSigDigit points to a non-digit, and | ||||
| 384 | the return exponent is zero. | ||||
| 385 | */ | ||||
| 386 | struct decimalInfo { | ||||
| 387 | const char *firstSigDigit; | ||||
| 388 | const char *lastSigDigit; | ||||
| 389 | int exponent; | ||||
| 390 | int normalizedExponent; | ||||
| 391 | }; | ||||
| 392 | |||||
| 393 | static Error interpretDecimal(StringRef::iterator begin, | ||||
| 394 | StringRef::iterator end, decimalInfo *D) { | ||||
| 395 | StringRef::iterator dot = end; | ||||
| 396 | |||||
| 397 | auto PtrOrErr = skipLeadingZeroesAndAnyDot(begin, end, &dot); | ||||
| 398 | if (!PtrOrErr) | ||||
| 399 | return PtrOrErr.takeError(); | ||||
| 400 | StringRef::iterator p = *PtrOrErr; | ||||
| 401 | |||||
| 402 | D->firstSigDigit = p; | ||||
| 403 | D->exponent = 0; | ||||
| 404 | D->normalizedExponent = 0; | ||||
| 405 | |||||
| 406 | for (; p != end; ++p) { | ||||
| 407 | if (*p == '.') { | ||||
| 408 | if (dot != end) | ||||
| 409 | return createError("String contains multiple dots"); | ||||
| 410 | dot = p++; | ||||
| 411 | if (p == end) | ||||
| 412 | break; | ||||
| 413 | } | ||||
| 414 | if (decDigitValue(*p) >= 10U) | ||||
| 415 | break; | ||||
| 416 | } | ||||
| 417 | |||||
| 418 | if (p != end) { | ||||
| 419 | if (*p != 'e' && *p != 'E') | ||||
| 420 | return createError("Invalid character in significand"); | ||||
| 421 | if (p == begin) | ||||
| 422 | return createError("Significand has no digits"); | ||||
| 423 | if (dot != end && p - begin == 1) | ||||
| 424 | return createError("Significand has no digits"); | ||||
| 425 | |||||
| 426 | /* p points to the first non-digit in the string */ | ||||
| 427 | auto ExpOrErr = readExponent(p + 1, end); | ||||
| 428 | if (!ExpOrErr) | ||||
| 429 | return ExpOrErr.takeError(); | ||||
| 430 | D->exponent = *ExpOrErr; | ||||
| 431 | |||||
| 432 | /* Implied decimal point? */ | ||||
| 433 | if (dot == end) | ||||
| 434 | dot = p; | ||||
| 435 | } | ||||
| 436 | |||||
| 437 | /* If number is all zeroes accept any exponent. */ | ||||
| 438 | if (p != D->firstSigDigit) { | ||||
| 439 | /* Drop insignificant trailing zeroes. */ | ||||
| 440 | if (p != begin) { | ||||
| 441 | do | ||||
| 442 | do | ||||
| 443 | p--; | ||||
| 444 | while (p != begin && *p == '0'); | ||||
| 445 | while (p != begin && *p == '.'); | ||||
| 446 | } | ||||
| 447 | |||||
| 448 | /* Adjust the exponents for any decimal point. */ | ||||
| 449 | D->exponent += static_cast<APFloat::ExponentType>((dot - p) - (dot > p)); | ||||
| 450 | D->normalizedExponent = (D->exponent + | ||||
| 451 | static_cast<APFloat::ExponentType>((p - D->firstSigDigit) | ||||
| 452 | - (dot > D->firstSigDigit && dot < p))); | ||||
| 453 | } | ||||
| 454 | |||||
| 455 | D->lastSigDigit = p; | ||||
| 456 | return Error::success(); | ||||
| 457 | } | ||||
| 458 | |||||
| 459 | /* Return the trailing fraction of a hexadecimal number. | ||||
| 460 | DIGITVALUE is the first hex digit of the fraction, P points to | ||||
| 461 | the next digit. */ | ||||
| 462 | static Expected<lostFraction> | ||||
| 463 | trailingHexadecimalFraction(StringRef::iterator p, StringRef::iterator end, | ||||
| 464 | unsigned int digitValue) { | ||||
| 465 | unsigned int hexDigit; | ||||
| 466 | |||||
| 467 | /* If the first trailing digit isn't 0 or 8 we can work out the | ||||
| 468 | fraction immediately. */ | ||||
| 469 | if (digitValue > 8) | ||||
| 470 | return lfMoreThanHalf; | ||||
| 471 | else if (digitValue < 8 && digitValue > 0) | ||||
| 472 | return lfLessThanHalf; | ||||
| 473 | |||||
| 474 | // Otherwise we need to find the first non-zero digit. | ||||
| 475 | while (p != end && (*p == '0' || *p == '.')) | ||||
| 476 | p++; | ||||
| 477 | |||||
| 478 | if (p == end) | ||||
| 479 | return createError("Invalid trailing hexadecimal fraction!"); | ||||
| 480 | |||||
| 481 | hexDigit = hexDigitValue(*p); | ||||
| 482 | |||||
| 483 | /* If we ran off the end it is exactly zero or one-half, otherwise | ||||
| 484 | a little more. */ | ||||
| 485 | if (hexDigit == -1U) | ||||
| 486 | return digitValue == 0 ? lfExactlyZero: lfExactlyHalf; | ||||
| 487 | else | ||||
| 488 | return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf; | ||||
| 489 | } | ||||
| 490 | |||||
| 491 | /* Return the fraction lost were a bignum truncated losing the least | ||||
| 492 | significant BITS bits. */ | ||||
| 493 | static lostFraction | ||||
| 494 | lostFractionThroughTruncation(const APFloatBase::integerPart *parts, | ||||
| 495 | unsigned int partCount, | ||||
| 496 | unsigned int bits) | ||||
| 497 | { | ||||
| 498 | unsigned int lsb; | ||||
| 499 | |||||
| 500 | lsb = APInt::tcLSB(parts, partCount); | ||||
| 501 | |||||
| 502 | /* Note this is guaranteed true if bits == 0, or LSB == -1U. */ | ||||
| 503 | if (bits <= lsb) | ||||
| 504 | return lfExactlyZero; | ||||
| 505 | if (bits == lsb + 1) | ||||
| 506 | return lfExactlyHalf; | ||||
| 507 | if (bits <= partCount * APFloatBase::integerPartWidth && | ||||
| 508 | APInt::tcExtractBit(parts, bits - 1)) | ||||
| 509 | return lfMoreThanHalf; | ||||
| 510 | |||||
| 511 | return lfLessThanHalf; | ||||
| 512 | } | ||||
| 513 | |||||
| 514 | /* Shift DST right BITS bits noting lost fraction. */ | ||||
| 515 | static lostFraction | ||||
| 516 | shiftRight(APFloatBase::integerPart *dst, unsigned int parts, unsigned int bits) | ||||
| 517 | { | ||||
| 518 | lostFraction lost_fraction; | ||||
| 519 | |||||
| 520 | lost_fraction = lostFractionThroughTruncation(dst, parts, bits); | ||||
| 521 | |||||
| 522 | APInt::tcShiftRight(dst, parts, bits); | ||||
| 523 | |||||
| 524 | return lost_fraction; | ||||
| 525 | } | ||||
| 526 | |||||
| 527 | /* Combine the effect of two lost fractions. */ | ||||
| 528 | static lostFraction | ||||
| 529 | combineLostFractions(lostFraction moreSignificant, | ||||
| 530 | lostFraction lessSignificant) | ||||
| 531 | { | ||||
| 532 | if (lessSignificant != lfExactlyZero) { | ||||
| 533 | if (moreSignificant == lfExactlyZero) | ||||
| 534 | moreSignificant = lfLessThanHalf; | ||||
| 535 | else if (moreSignificant == lfExactlyHalf) | ||||
| 536 | moreSignificant = lfMoreThanHalf; | ||||
| 537 | } | ||||
| 538 | |||||
| 539 | return moreSignificant; | ||||
| 540 | } | ||||
| 541 | |||||
| 542 | /* The error from the true value, in half-ulps, on multiplying two | ||||
| 543 | floating point numbers, which differ from the value they | ||||
| 544 | approximate by at most HUE1 and HUE2 half-ulps, is strictly less | ||||
| 545 | than the returned value. | ||||
| 546 | |||||
| 547 | See "How to Read Floating Point Numbers Accurately" by William D | ||||
| 548 | Clinger. */ | ||||
| 549 | static unsigned int | ||||
| 550 | HUerrBound(bool inexactMultiply, unsigned int HUerr1, unsigned int HUerr2) | ||||
| 551 | { | ||||
| 552 | assert(HUerr1 < 2 || HUerr2 < 2 || (HUerr1 + HUerr2 < 8))(static_cast <bool> (HUerr1 < 2 || HUerr2 < 2 || ( HUerr1 + HUerr2 < 8)) ? void (0) : __assert_fail ("HUerr1 < 2 || HUerr2 < 2 || (HUerr1 + HUerr2 < 8)" , "llvm/lib/Support/APFloat.cpp", 552, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 553 | |||||
| 554 | if (HUerr1 + HUerr2 == 0) | ||||
| 555 | return inexactMultiply * 2; /* <= inexactMultiply half-ulps. */ | ||||
| 556 | else | ||||
| 557 | return inexactMultiply + 2 * (HUerr1 + HUerr2); | ||||
| 558 | } | ||||
| 559 | |||||
| 560 | /* The number of ulps from the boundary (zero, or half if ISNEAREST) | ||||
| 561 | when the least significant BITS are truncated. BITS cannot be | ||||
| 562 | zero. */ | ||||
| 563 | static APFloatBase::integerPart | ||||
| 564 | ulpsFromBoundary(const APFloatBase::integerPart *parts, unsigned int bits, | ||||
| 565 | bool isNearest) { | ||||
| 566 | unsigned int count, partBits; | ||||
| 567 | APFloatBase::integerPart part, boundary; | ||||
| 568 | |||||
| 569 | assert(bits != 0)(static_cast <bool> (bits != 0) ? void (0) : __assert_fail ("bits != 0", "llvm/lib/Support/APFloat.cpp", 569, __extension__ __PRETTY_FUNCTION__)); | ||||
| 570 | |||||
| 571 | bits--; | ||||
| 572 | count = bits / APFloatBase::integerPartWidth; | ||||
| 573 | partBits = bits % APFloatBase::integerPartWidth + 1; | ||||
| 574 | |||||
| 575 | part = parts[count] & (~(APFloatBase::integerPart) 0 >> (APFloatBase::integerPartWidth - partBits)); | ||||
| 576 | |||||
| 577 | if (isNearest) | ||||
| 578 | boundary = (APFloatBase::integerPart) 1 << (partBits - 1); | ||||
| 579 | else | ||||
| 580 | boundary = 0; | ||||
| 581 | |||||
| 582 | if (count == 0) { | ||||
| 583 | if (part - boundary <= boundary - part) | ||||
| 584 | return part - boundary; | ||||
| 585 | else | ||||
| 586 | return boundary - part; | ||||
| 587 | } | ||||
| 588 | |||||
| 589 | if (part == boundary) { | ||||
| 590 | while (--count) | ||||
| 591 | if (parts[count]) | ||||
| 592 | return ~(APFloatBase::integerPart) 0; /* A lot. */ | ||||
| 593 | |||||
| 594 | return parts[0]; | ||||
| 595 | } else if (part == boundary - 1) { | ||||
| 596 | while (--count) | ||||
| 597 | if (~parts[count]) | ||||
| 598 | return ~(APFloatBase::integerPart) 0; /* A lot. */ | ||||
| 599 | |||||
| 600 | return -parts[0]; | ||||
| 601 | } | ||||
| 602 | |||||
| 603 | return ~(APFloatBase::integerPart) 0; /* A lot. */ | ||||
| 604 | } | ||||
| 605 | |||||
| 606 | /* Place pow(5, power) in DST, and return the number of parts used. | ||||
| 607 | DST must be at least one part larger than size of the answer. */ | ||||
| 608 | static unsigned int | ||||
| 609 | powerOf5(APFloatBase::integerPart *dst, unsigned int power) { | ||||
| 610 | static const APFloatBase::integerPart firstEightPowers[] = { 1, 5, 25, 125, 625, 3125, 15625, 78125 }; | ||||
| 611 | APFloatBase::integerPart pow5s[maxPowerOfFiveParts * 2 + 5]; | ||||
| 612 | pow5s[0] = 78125 * 5; | ||||
| 613 | |||||
| 614 | unsigned int partsCount[16] = { 1 }; | ||||
| 615 | APFloatBase::integerPart scratch[maxPowerOfFiveParts], *p1, *p2, *pow5; | ||||
| 616 | unsigned int result; | ||||
| 617 | assert(power <= maxExponent)(static_cast <bool> (power <= maxExponent) ? void (0 ) : __assert_fail ("power <= maxExponent", "llvm/lib/Support/APFloat.cpp" , 617, __extension__ __PRETTY_FUNCTION__)); | ||||
| 618 | |||||
| 619 | p1 = dst; | ||||
| 620 | p2 = scratch; | ||||
| 621 | |||||
| 622 | *p1 = firstEightPowers[power & 7]; | ||||
| 623 | power >>= 3; | ||||
| 624 | |||||
| 625 | result = 1; | ||||
| 626 | pow5 = pow5s; | ||||
| 627 | |||||
| 628 | for (unsigned int n = 0; power; power >>= 1, n++) { | ||||
| 629 | unsigned int pc; | ||||
| 630 | |||||
| 631 | pc = partsCount[n]; | ||||
| 632 | |||||
| 633 | /* Calculate pow(5,pow(2,n+3)) if we haven't yet. */ | ||||
| 634 | if (pc == 0) { | ||||
| 635 | pc = partsCount[n - 1]; | ||||
| 636 | APInt::tcFullMultiply(pow5, pow5 - pc, pow5 - pc, pc, pc); | ||||
| 637 | pc *= 2; | ||||
| 638 | if (pow5[pc - 1] == 0) | ||||
| 639 | pc--; | ||||
| 640 | partsCount[n] = pc; | ||||
| 641 | } | ||||
| 642 | |||||
| 643 | if (power & 1) { | ||||
| 644 | APFloatBase::integerPart *tmp; | ||||
| 645 | |||||
| 646 | APInt::tcFullMultiply(p2, p1, pow5, result, pc); | ||||
| 647 | result += pc; | ||||
| 648 | if (p2[result - 1] == 0) | ||||
| 649 | result--; | ||||
| 650 | |||||
| 651 | /* Now result is in p1 with partsCount parts and p2 is scratch | ||||
| 652 | space. */ | ||||
| 653 | tmp = p1; | ||||
| 654 | p1 = p2; | ||||
| 655 | p2 = tmp; | ||||
| 656 | } | ||||
| 657 | |||||
| 658 | pow5 += pc; | ||||
| 659 | } | ||||
| 660 | |||||
| 661 | if (p1 != dst) | ||||
| 662 | APInt::tcAssign(dst, p1, result); | ||||
| 663 | |||||
| 664 | return result; | ||||
| 665 | } | ||||
| 666 | |||||
| 667 | /* Zero at the end to avoid modular arithmetic when adding one; used | ||||
| 668 | when rounding up during hexadecimal output. */ | ||||
| 669 | static const char hexDigitsLower[] = "0123456789abcdef0"; | ||||
| 670 | static const char hexDigitsUpper[] = "0123456789ABCDEF0"; | ||||
| 671 | static const char infinityL[] = "infinity"; | ||||
| 672 | static const char infinityU[] = "INFINITY"; | ||||
| 673 | static const char NaNL[] = "nan"; | ||||
| 674 | static const char NaNU[] = "NAN"; | ||||
| 675 | |||||
| 676 | /* Write out an integerPart in hexadecimal, starting with the most | ||||
| 677 | significant nibble. Write out exactly COUNT hexdigits, return | ||||
| 678 | COUNT. */ | ||||
| 679 | static unsigned int | ||||
| 680 | partAsHex (char *dst, APFloatBase::integerPart part, unsigned int count, | ||||
| 681 | const char *hexDigitChars) | ||||
| 682 | { | ||||
| 683 | unsigned int result = count; | ||||
| 684 | |||||
| 685 | assert(count != 0 && count <= APFloatBase::integerPartWidth / 4)(static_cast <bool> (count != 0 && count <= APFloatBase ::integerPartWidth / 4) ? void (0) : __assert_fail ("count != 0 && count <= APFloatBase::integerPartWidth / 4" , "llvm/lib/Support/APFloat.cpp", 685, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 686 | |||||
| 687 | part >>= (APFloatBase::integerPartWidth - 4 * count); | ||||
| 688 | while (count--) { | ||||
| 689 | dst[count] = hexDigitChars[part & 0xf]; | ||||
| 690 | part >>= 4; | ||||
| 691 | } | ||||
| 692 | |||||
| 693 | return result; | ||||
| 694 | } | ||||
| 695 | |||||
| 696 | /* Write out an unsigned decimal integer. */ | ||||
| 697 | static char * | ||||
| 698 | writeUnsignedDecimal (char *dst, unsigned int n) | ||||
| 699 | { | ||||
| 700 | char buff[40], *p; | ||||
| 701 | |||||
| 702 | p = buff; | ||||
| 703 | do | ||||
| 704 | *p++ = '0' + n % 10; | ||||
| 705 | while (n /= 10); | ||||
| 706 | |||||
| 707 | do | ||||
| 708 | *dst++ = *--p; | ||||
| 709 | while (p != buff); | ||||
| 710 | |||||
| 711 | return dst; | ||||
| 712 | } | ||||
| 713 | |||||
| 714 | /* Write out a signed decimal integer. */ | ||||
| 715 | static char * | ||||
| 716 | writeSignedDecimal (char *dst, int value) | ||||
| 717 | { | ||||
| 718 | if (value < 0) { | ||||
| 719 | *dst++ = '-'; | ||||
| 720 | dst = writeUnsignedDecimal(dst, -(unsigned) value); | ||||
| 721 | } else | ||||
| 722 | dst = writeUnsignedDecimal(dst, value); | ||||
| 723 | |||||
| 724 | return dst; | ||||
| 725 | } | ||||
| 726 | |||||
| 727 | namespace detail { | ||||
| 728 | /* Constructors. */ | ||||
| 729 | void IEEEFloat::initialize(const fltSemantics *ourSemantics) { | ||||
| 730 | unsigned int count; | ||||
| 731 | |||||
| 732 | semantics = ourSemantics; | ||||
| 733 | count = partCount(); | ||||
| 734 | if (count > 1) | ||||
| 735 | significand.parts = new integerPart[count]; | ||||
| 736 | } | ||||
| 737 | |||||
| 738 | void IEEEFloat::freeSignificand() { | ||||
| 739 | if (needsCleanup()) | ||||
| 740 | delete [] significand.parts; | ||||
| 741 | } | ||||
| 742 | |||||
| 743 | void IEEEFloat::assign(const IEEEFloat &rhs) { | ||||
| 744 | assert(semantics == rhs.semantics)(static_cast <bool> (semantics == rhs.semantics) ? void (0) : __assert_fail ("semantics == rhs.semantics", "llvm/lib/Support/APFloat.cpp" , 744, __extension__ __PRETTY_FUNCTION__)); | ||||
| 745 | |||||
| 746 | sign = rhs.sign; | ||||
| 747 | category = rhs.category; | ||||
| 748 | exponent = rhs.exponent; | ||||
| 749 | if (isFiniteNonZero() || category == fcNaN) | ||||
| 750 | copySignificand(rhs); | ||||
| 751 | } | ||||
| 752 | |||||
| 753 | void IEEEFloat::copySignificand(const IEEEFloat &rhs) { | ||||
| 754 | assert(isFiniteNonZero() || category == fcNaN)(static_cast <bool> (isFiniteNonZero() || category == fcNaN ) ? void (0) : __assert_fail ("isFiniteNonZero() || category == fcNaN" , "llvm/lib/Support/APFloat.cpp", 754, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 755 | assert(rhs.partCount() >= partCount())(static_cast <bool> (rhs.partCount() >= partCount()) ? void (0) : __assert_fail ("rhs.partCount() >= partCount()" , "llvm/lib/Support/APFloat.cpp", 755, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 756 | |||||
| 757 | APInt::tcAssign(significandParts(), rhs.significandParts(), | ||||
| 758 | partCount()); | ||||
| 759 | } | ||||
| 760 | |||||
| 761 | /* Make this number a NaN, with an arbitrary but deterministic value | ||||
| 762 | for the significand. If double or longer, this is a signalling NaN, | ||||
| 763 | which may not be ideal. If float, this is QNaN(0). */ | ||||
| 764 | void IEEEFloat::makeNaN(bool SNaN, bool Negative, const APInt *fill) { | ||||
| 765 | category = fcNaN; | ||||
| 766 | sign = Negative; | ||||
| 767 | exponent = exponentNaN(); | ||||
| 768 | |||||
| 769 | integerPart *significand = significandParts(); | ||||
| 770 | unsigned numParts = partCount(); | ||||
| 771 | |||||
| 772 | // Set the significand bits to the fill. | ||||
| 773 | if (!fill || fill->getNumWords() < numParts) | ||||
| 774 | APInt::tcSet(significand, 0, numParts); | ||||
| 775 | if (fill) { | ||||
| 776 | APInt::tcAssign(significand, fill->getRawData(), | ||||
| 777 | std::min(fill->getNumWords(), numParts)); | ||||
| 778 | |||||
| 779 | // Zero out the excess bits of the significand. | ||||
| 780 | unsigned bitsToPreserve = semantics->precision - 1; | ||||
| 781 | unsigned part = bitsToPreserve / 64; | ||||
| 782 | bitsToPreserve %= 64; | ||||
| 783 | significand[part] &= ((1ULL << bitsToPreserve) - 1); | ||||
| 784 | for (part++; part != numParts; ++part) | ||||
| 785 | significand[part] = 0; | ||||
| 786 | } | ||||
| 787 | |||||
| 788 | unsigned QNaNBit = semantics->precision - 2; | ||||
| 789 | |||||
| 790 | if (SNaN) { | ||||
| 791 | // We always have to clear the QNaN bit to make it an SNaN. | ||||
| 792 | APInt::tcClearBit(significand, QNaNBit); | ||||
| 793 | |||||
| 794 | // If there are no bits set in the payload, we have to set | ||||
| 795 | // *something* to make it a NaN instead of an infinity; | ||||
| 796 | // conventionally, this is the next bit down from the QNaN bit. | ||||
| 797 | if (APInt::tcIsZero(significand, numParts)) | ||||
| 798 | APInt::tcSetBit(significand, QNaNBit - 1); | ||||
| 799 | } else { | ||||
| 800 | // We always have to set the QNaN bit to make it a QNaN. | ||||
| 801 | APInt::tcSetBit(significand, QNaNBit); | ||||
| 802 | } | ||||
| 803 | |||||
| 804 | // For x87 extended precision, we want to make a NaN, not a | ||||
| 805 | // pseudo-NaN. Maybe we should expose the ability to make | ||||
| 806 | // pseudo-NaNs? | ||||
| 807 | if (semantics == &semX87DoubleExtended) | ||||
| 808 | APInt::tcSetBit(significand, QNaNBit + 1); | ||||
| 809 | } | ||||
| 810 | |||||
| 811 | IEEEFloat &IEEEFloat::operator=(const IEEEFloat &rhs) { | ||||
| 812 | if (this != &rhs) { | ||||
| 813 | if (semantics != rhs.semantics) { | ||||
| 814 | freeSignificand(); | ||||
| 815 | initialize(rhs.semantics); | ||||
| 816 | } | ||||
| 817 | assign(rhs); | ||||
| 818 | } | ||||
| 819 | |||||
| 820 | return *this; | ||||
| 821 | } | ||||
| 822 | |||||
| 823 | IEEEFloat &IEEEFloat::operator=(IEEEFloat &&rhs) { | ||||
| 824 | freeSignificand(); | ||||
| 825 | |||||
| 826 | semantics = rhs.semantics; | ||||
| 827 | significand = rhs.significand; | ||||
| 828 | exponent = rhs.exponent; | ||||
| 829 | category = rhs.category; | ||||
| 830 | sign = rhs.sign; | ||||
| 831 | |||||
| 832 | rhs.semantics = &semBogus; | ||||
| 833 | return *this; | ||||
| 834 | } | ||||
| 835 | |||||
| 836 | bool IEEEFloat::isDenormal() const { | ||||
| 837 | return isFiniteNonZero() && (exponent == semantics->minExponent) && | ||||
| 838 | (APInt::tcExtractBit(significandParts(), | ||||
| 839 | semantics->precision - 1) == 0); | ||||
| 840 | } | ||||
| 841 | |||||
| 842 | bool IEEEFloat::isSmallest() const { | ||||
| 843 | // The smallest number by magnitude in our format will be the smallest | ||||
| 844 | // denormal, i.e. the floating point number with exponent being minimum | ||||
| 845 | // exponent and significand bitwise equal to 1 (i.e. with MSB equal to 0). | ||||
| 846 | return isFiniteNonZero() && exponent == semantics->minExponent && | ||||
| 847 | significandMSB() == 0; | ||||
| 848 | } | ||||
| 849 | |||||
| 850 | bool IEEEFloat::isSignificandAllOnes() const { | ||||
| 851 | // Test if the significand excluding the integral bit is all ones. This allows | ||||
| 852 | // us to test for binade boundaries. | ||||
| 853 | const integerPart *Parts = significandParts(); | ||||
| 854 | const unsigned PartCount = partCountForBits(semantics->precision); | ||||
| 855 | for (unsigned i = 0; i < PartCount - 1; i++) | ||||
| 856 | if (~Parts[i]) | ||||
| 857 | return false; | ||||
| 858 | |||||
| 859 | // Set the unused high bits to all ones when we compare. | ||||
| 860 | const unsigned NumHighBits = | ||||
| 861 | PartCount*integerPartWidth - semantics->precision + 1; | ||||
| 862 | assert(NumHighBits <= integerPartWidth && NumHighBits > 0 &&(static_cast <bool> (NumHighBits <= integerPartWidth && NumHighBits > 0 && "Can not have more high bits to fill than integerPartWidth" ) ? void (0) : __assert_fail ("NumHighBits <= integerPartWidth && NumHighBits > 0 && \"Can not have more high bits to fill than integerPartWidth\"" , "llvm/lib/Support/APFloat.cpp", 863, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 863 | "Can not have more high bits to fill than integerPartWidth")(static_cast <bool> (NumHighBits <= integerPartWidth && NumHighBits > 0 && "Can not have more high bits to fill than integerPartWidth" ) ? void (0) : __assert_fail ("NumHighBits <= integerPartWidth && NumHighBits > 0 && \"Can not have more high bits to fill than integerPartWidth\"" , "llvm/lib/Support/APFloat.cpp", 863, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 864 | const integerPart HighBitFill = | ||||
| 865 | ~integerPart(0) << (integerPartWidth - NumHighBits); | ||||
| 866 | if (~(Parts[PartCount - 1] | HighBitFill)) | ||||
| 867 | return false; | ||||
| 868 | |||||
| 869 | return true; | ||||
| 870 | } | ||||
| 871 | |||||
| 872 | bool IEEEFloat::isSignificandAllZeros() const { | ||||
| 873 | // Test if the significand excluding the integral bit is all zeros. This | ||||
| 874 | // allows us to test for binade boundaries. | ||||
| 875 | const integerPart *Parts = significandParts(); | ||||
| 876 | const unsigned PartCount = partCountForBits(semantics->precision); | ||||
| 877 | |||||
| 878 | for (unsigned i = 0; i < PartCount - 1; i++) | ||||
| 879 | if (Parts[i]) | ||||
| 880 | return false; | ||||
| 881 | |||||
| 882 | // Compute how many bits are used in the final word. | ||||
| 883 | const unsigned NumHighBits = | ||||
| 884 | PartCount*integerPartWidth - semantics->precision + 1; | ||||
| 885 | assert(NumHighBits < integerPartWidth && "Can not have more high bits to "(static_cast <bool> (NumHighBits < integerPartWidth && "Can not have more high bits to " "clear than integerPartWidth" ) ? void (0) : __assert_fail ("NumHighBits < integerPartWidth && \"Can not have more high bits to \" \"clear than integerPartWidth\"" , "llvm/lib/Support/APFloat.cpp", 886, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 886 | "clear than integerPartWidth")(static_cast <bool> (NumHighBits < integerPartWidth && "Can not have more high bits to " "clear than integerPartWidth" ) ? void (0) : __assert_fail ("NumHighBits < integerPartWidth && \"Can not have more high bits to \" \"clear than integerPartWidth\"" , "llvm/lib/Support/APFloat.cpp", 886, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 887 | const integerPart HighBitMask = ~integerPart(0) >> NumHighBits; | ||||
| 888 | |||||
| 889 | if (Parts[PartCount - 1] & HighBitMask) | ||||
| 890 | return false; | ||||
| 891 | |||||
| 892 | return true; | ||||
| 893 | } | ||||
| 894 | |||||
| 895 | bool IEEEFloat::isLargest() const { | ||||
| 896 | // The largest number by magnitude in our format will be the floating point | ||||
| 897 | // number with maximum exponent and with significand that is all ones. | ||||
| 898 | return isFiniteNonZero() && exponent == semantics->maxExponent | ||||
| 899 | && isSignificandAllOnes(); | ||||
| 900 | } | ||||
| 901 | |||||
| 902 | bool IEEEFloat::isInteger() const { | ||||
| 903 | // This could be made more efficient; I'm going for obviously correct. | ||||
| 904 | if (!isFinite()) return false; | ||||
| 905 | IEEEFloat truncated = *this; | ||||
| 906 | truncated.roundToIntegral(rmTowardZero); | ||||
| 907 | return compare(truncated) == cmpEqual; | ||||
| 908 | } | ||||
| 909 | |||||
| 910 | bool IEEEFloat::bitwiseIsEqual(const IEEEFloat &rhs) const { | ||||
| 911 | if (this == &rhs) | ||||
| 912 | return true; | ||||
| 913 | if (semantics != rhs.semantics || | ||||
| 914 | category != rhs.category || | ||||
| 915 | sign != rhs.sign) | ||||
| 916 | return false; | ||||
| 917 | if (category==fcZero || category==fcInfinity) | ||||
| 918 | return true; | ||||
| 919 | |||||
| 920 | if (isFiniteNonZero() && exponent != rhs.exponent) | ||||
| 921 | return false; | ||||
| 922 | |||||
| 923 | return std::equal(significandParts(), significandParts() + partCount(), | ||||
| 924 | rhs.significandParts()); | ||||
| 925 | } | ||||
| 926 | |||||
| 927 | IEEEFloat::IEEEFloat(const fltSemantics &ourSemantics, integerPart value) { | ||||
| 928 | initialize(&ourSemantics); | ||||
| 929 | sign = 0; | ||||
| 930 | category = fcNormal; | ||||
| 931 | zeroSignificand(); | ||||
| 932 | exponent = ourSemantics.precision - 1; | ||||
| 933 | significandParts()[0] = value; | ||||
| 934 | normalize(rmNearestTiesToEven, lfExactlyZero); | ||||
| 935 | } | ||||
| 936 | |||||
| 937 | IEEEFloat::IEEEFloat(const fltSemantics &ourSemantics) { | ||||
| 938 | initialize(&ourSemantics); | ||||
| 939 | makeZero(false); | ||||
| 940 | } | ||||
| 941 | |||||
| 942 | // Delegate to the previous constructor, because later copy constructor may | ||||
| 943 | // actually inspects category, which can't be garbage. | ||||
| 944 | IEEEFloat::IEEEFloat(const fltSemantics &ourSemantics, uninitializedTag tag) | ||||
| 945 | : IEEEFloat(ourSemantics) {} | ||||
| 946 | |||||
| 947 | IEEEFloat::IEEEFloat(const IEEEFloat &rhs) { | ||||
| 948 | initialize(rhs.semantics); | ||||
| 949 | assign(rhs); | ||||
| 950 | } | ||||
| 951 | |||||
| 952 | IEEEFloat::IEEEFloat(IEEEFloat &&rhs) : semantics(&semBogus) { | ||||
| 953 | *this = std::move(rhs); | ||||
| 954 | } | ||||
| 955 | |||||
| 956 | IEEEFloat::~IEEEFloat() { freeSignificand(); } | ||||
| 957 | |||||
| 958 | unsigned int IEEEFloat::partCount() const { | ||||
| 959 | return partCountForBits(semantics->precision + 1); | ||||
| 960 | } | ||||
| 961 | |||||
| 962 | const IEEEFloat::integerPart *IEEEFloat::significandParts() const { | ||||
| 963 | return const_cast<IEEEFloat *>(this)->significandParts(); | ||||
| 964 | } | ||||
| 965 | |||||
| 966 | IEEEFloat::integerPart *IEEEFloat::significandParts() { | ||||
| 967 | if (partCount() > 1) | ||||
| 968 | return significand.parts; | ||||
| 969 | else | ||||
| 970 | return &significand.part; | ||||
| 971 | } | ||||
| 972 | |||||
| 973 | void IEEEFloat::zeroSignificand() { | ||||
| 974 | APInt::tcSet(significandParts(), 0, partCount()); | ||||
| 975 | } | ||||
| 976 | |||||
| 977 | /* Increment an fcNormal floating point number's significand. */ | ||||
| 978 | void IEEEFloat::incrementSignificand() { | ||||
| 979 | integerPart carry; | ||||
| 980 | |||||
| 981 | carry = APInt::tcIncrement(significandParts(), partCount()); | ||||
| 982 | |||||
| 983 | /* Our callers should never cause us to overflow. */ | ||||
| 984 | assert(carry == 0)(static_cast <bool> (carry == 0) ? void (0) : __assert_fail ("carry == 0", "llvm/lib/Support/APFloat.cpp", 984, __extension__ __PRETTY_FUNCTION__)); | ||||
| 985 | (void)carry; | ||||
| 986 | } | ||||
| 987 | |||||
| 988 | /* Add the significand of the RHS. Returns the carry flag. */ | ||||
| 989 | IEEEFloat::integerPart IEEEFloat::addSignificand(const IEEEFloat &rhs) { | ||||
| 990 | integerPart *parts; | ||||
| 991 | |||||
| 992 | parts = significandParts(); | ||||
| 993 | |||||
| 994 | assert(semantics == rhs.semantics)(static_cast <bool> (semantics == rhs.semantics) ? void (0) : __assert_fail ("semantics == rhs.semantics", "llvm/lib/Support/APFloat.cpp" , 994, __extension__ __PRETTY_FUNCTION__)); | ||||
| 995 | assert(exponent == rhs.exponent)(static_cast <bool> (exponent == rhs.exponent) ? void ( 0) : __assert_fail ("exponent == rhs.exponent", "llvm/lib/Support/APFloat.cpp" , 995, __extension__ __PRETTY_FUNCTION__)); | ||||
| 996 | |||||
| 997 | return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount()); | ||||
| 998 | } | ||||
| 999 | |||||
| 1000 | /* Subtract the significand of the RHS with a borrow flag. Returns | ||||
| 1001 | the borrow flag. */ | ||||
| 1002 | IEEEFloat::integerPart IEEEFloat::subtractSignificand(const IEEEFloat &rhs, | ||||
| 1003 | integerPart borrow) { | ||||
| 1004 | integerPart *parts; | ||||
| 1005 | |||||
| 1006 | parts = significandParts(); | ||||
| 1007 | |||||
| 1008 | assert(semantics == rhs.semantics)(static_cast <bool> (semantics == rhs.semantics) ? void (0) : __assert_fail ("semantics == rhs.semantics", "llvm/lib/Support/APFloat.cpp" , 1008, __extension__ __PRETTY_FUNCTION__)); | ||||
| 1009 | assert(exponent == rhs.exponent)(static_cast <bool> (exponent == rhs.exponent) ? void ( 0) : __assert_fail ("exponent == rhs.exponent", "llvm/lib/Support/APFloat.cpp" , 1009, __extension__ __PRETTY_FUNCTION__)); | ||||
| 1010 | |||||
| 1011 | return APInt::tcSubtract(parts, rhs.significandParts(), borrow, | ||||
| 1012 | partCount()); | ||||
| 1013 | } | ||||
| 1014 | |||||
| 1015 | /* Multiply the significand of the RHS. If ADDEND is non-NULL, add it | ||||
| 1016 | on to the full-precision result of the multiplication. Returns the | ||||
| 1017 | lost fraction. */ | ||||
| 1018 | lostFraction IEEEFloat::multiplySignificand(const IEEEFloat &rhs, | ||||
| 1019 | IEEEFloat addend) { | ||||
| 1020 | unsigned int omsb; // One, not zero, based MSB. | ||||
| 1021 | unsigned int partsCount, newPartsCount, precision; | ||||
| 1022 | integerPart *lhsSignificand; | ||||
| 1023 | integerPart scratch[4]; | ||||
| 1024 | integerPart *fullSignificand; | ||||
| 1025 | lostFraction lost_fraction; | ||||
| 1026 | bool ignored; | ||||
| 1027 | |||||
| 1028 | assert(semantics == rhs.semantics)(static_cast <bool> (semantics == rhs.semantics) ? void (0) : __assert_fail ("semantics == rhs.semantics", "llvm/lib/Support/APFloat.cpp" , 1028, __extension__ __PRETTY_FUNCTION__)); | ||||
| 1029 | |||||
| 1030 | precision = semantics->precision; | ||||
| 1031 | |||||
| 1032 | // Allocate space for twice as many bits as the original significand, plus one | ||||
| 1033 | // extra bit for the addition to overflow into. | ||||
| 1034 | newPartsCount = partCountForBits(precision * 2 + 1); | ||||
| 1035 | |||||
| 1036 | if (newPartsCount > 4) | ||||
| 1037 | fullSignificand = new integerPart[newPartsCount]; | ||||
| 1038 | else | ||||
| 1039 | fullSignificand = scratch; | ||||
| 1040 | |||||
| 1041 | lhsSignificand = significandParts(); | ||||
| 1042 | partsCount = partCount(); | ||||
| 1043 | |||||
| 1044 | APInt::tcFullMultiply(fullSignificand, lhsSignificand, | ||||
| 1045 | rhs.significandParts(), partsCount, partsCount); | ||||
| 1046 | |||||
| 1047 | lost_fraction = lfExactlyZero; | ||||
| 1048 | omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1; | ||||
| 1049 | exponent += rhs.exponent; | ||||
| 1050 | |||||
| 1051 | // Assume the operands involved in the multiplication are single-precision | ||||
| 1052 | // FP, and the two multiplicants are: | ||||
| 1053 | // *this = a23 . a22 ... a0 * 2^e1 | ||||
| 1054 | // rhs = b23 . b22 ... b0 * 2^e2 | ||||
| 1055 | // the result of multiplication is: | ||||
| 1056 | // *this = c48 c47 c46 . c45 ... c0 * 2^(e1+e2) | ||||
| 1057 | // Note that there are three significant bits at the left-hand side of the | ||||
| 1058 | // radix point: two for the multiplication, and an overflow bit for the | ||||
| 1059 | // addition (that will always be zero at this point). Move the radix point | ||||
| 1060 | // toward left by two bits, and adjust exponent accordingly. | ||||
| 1061 | exponent += 2; | ||||
| 1062 | |||||
| 1063 | if (addend.isNonZero()) { | ||||
| 1064 | // The intermediate result of the multiplication has "2 * precision" | ||||
| 1065 | // signicant bit; adjust the addend to be consistent with mul result. | ||||
| 1066 | // | ||||
| 1067 | Significand savedSignificand = significand; | ||||
| 1068 | const fltSemantics *savedSemantics = semantics; | ||||
| 1069 | fltSemantics extendedSemantics; | ||||
| 1070 | opStatus status; | ||||
| 1071 | unsigned int extendedPrecision; | ||||
| 1072 | |||||
| 1073 | // Normalize our MSB to one below the top bit to allow for overflow. | ||||
| 1074 | extendedPrecision = 2 * precision + 1; | ||||
| 1075 | if (omsb != extendedPrecision - 1) { | ||||
| 1076 | assert(extendedPrecision > omsb)(static_cast <bool> (extendedPrecision > omsb) ? void (0) : __assert_fail ("extendedPrecision > omsb", "llvm/lib/Support/APFloat.cpp" , 1076, __extension__ __PRETTY_FUNCTION__)); | ||||
| 1077 | APInt::tcShiftLeft(fullSignificand, newPartsCount, | ||||
| 1078 | (extendedPrecision - 1) - omsb); | ||||
| 1079 | exponent -= (extendedPrecision - 1) - omsb; | ||||
| 1080 | } | ||||
| 1081 | |||||
| 1082 | /* Create new semantics. */ | ||||
| 1083 | extendedSemantics = *semantics; | ||||
| 1084 | extendedSemantics.precision = extendedPrecision; | ||||
| 1085 | |||||
| 1086 | if (newPartsCount == 1) | ||||
| 1087 | significand.part = fullSignificand[0]; | ||||
| 1088 | else | ||||
| 1089 | significand.parts = fullSignificand; | ||||
| 1090 | semantics = &extendedSemantics; | ||||
| 1091 | |||||
| 1092 | // Make a copy so we can convert it to the extended semantics. | ||||
| 1093 | // Note that we cannot convert the addend directly, as the extendedSemantics | ||||
| 1094 | // is a local variable (which we take a reference to). | ||||
| 1095 | IEEEFloat extendedAddend(addend); | ||||
| 1096 | status = extendedAddend.convert(extendedSemantics, rmTowardZero, &ignored); | ||||
| 1097 | assert(status == opOK)(static_cast <bool> (status == opOK) ? void (0) : __assert_fail ("status == opOK", "llvm/lib/Support/APFloat.cpp", 1097, __extension__ __PRETTY_FUNCTION__)); | ||||
| 1098 | (void)status; | ||||
| 1099 | |||||
| 1100 | // Shift the significand of the addend right by one bit. This guarantees | ||||
| 1101 | // that the high bit of the significand is zero (same as fullSignificand), | ||||
| 1102 | // so the addition will overflow (if it does overflow at all) into the top bit. | ||||
| 1103 | lost_fraction = extendedAddend.shiftSignificandRight(1); | ||||
| 1104 | assert(lost_fraction == lfExactlyZero &&(static_cast <bool> (lost_fraction == lfExactlyZero && "Lost precision while shifting addend for fused-multiply-add." ) ? void (0) : __assert_fail ("lost_fraction == lfExactlyZero && \"Lost precision while shifting addend for fused-multiply-add.\"" , "llvm/lib/Support/APFloat.cpp", 1105, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 1105 | "Lost precision while shifting addend for fused-multiply-add.")(static_cast <bool> (lost_fraction == lfExactlyZero && "Lost precision while shifting addend for fused-multiply-add." ) ? void (0) : __assert_fail ("lost_fraction == lfExactlyZero && \"Lost precision while shifting addend for fused-multiply-add.\"" , "llvm/lib/Support/APFloat.cpp", 1105, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 1106 | |||||
| 1107 | lost_fraction = addOrSubtractSignificand(extendedAddend, false); | ||||
| 1108 | |||||
| 1109 | /* Restore our state. */ | ||||
| 1110 | if (newPartsCount == 1) | ||||
| 1111 | fullSignificand[0] = significand.part; | ||||
| 1112 | significand = savedSignificand; | ||||
| 1113 | semantics = savedSemantics; | ||||
| 1114 | |||||
| 1115 | omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1; | ||||
| 1116 | } | ||||
| 1117 | |||||
| 1118 | // Convert the result having "2 * precision" significant-bits back to the one | ||||
| 1119 | // having "precision" significant-bits. First, move the radix point from | ||||
| 1120 | // poision "2*precision - 1" to "precision - 1". The exponent need to be | ||||
| 1121 | // adjusted by "2*precision - 1" - "precision - 1" = "precision". | ||||
| 1122 | exponent -= precision + 1; | ||||
| 1123 | |||||
| 1124 | // In case MSB resides at the left-hand side of radix point, shift the | ||||
| 1125 | // mantissa right by some amount to make sure the MSB reside right before | ||||
| 1126 | // the radix point (i.e. "MSB . rest-significant-bits"). | ||||
| 1127 | // | ||||
| 1128 | // Note that the result is not normalized when "omsb < precision". So, the | ||||
| 1129 | // caller needs to call IEEEFloat::normalize() if normalized value is | ||||
| 1130 | // expected. | ||||
| 1131 | if (omsb > precision) { | ||||
| 1132 | unsigned int bits, significantParts; | ||||
| 1133 | lostFraction lf; | ||||
| 1134 | |||||
| 1135 | bits = omsb - precision; | ||||
| 1136 | significantParts = partCountForBits(omsb); | ||||
| 1137 | lf = shiftRight(fullSignificand, significantParts, bits); | ||||
| 1138 | lost_fraction = combineLostFractions(lf, lost_fraction); | ||||
| 1139 | exponent += bits; | ||||
| 1140 | } | ||||
| 1141 | |||||
| 1142 | APInt::tcAssign(lhsSignificand, fullSignificand, partsCount); | ||||
| 1143 | |||||
| 1144 | if (newPartsCount > 4) | ||||
| 1145 | delete [] fullSignificand; | ||||
| 1146 | |||||
| 1147 | return lost_fraction; | ||||
| 1148 | } | ||||
| 1149 | |||||
| 1150 | lostFraction IEEEFloat::multiplySignificand(const IEEEFloat &rhs) { | ||||
| 1151 | return multiplySignificand(rhs, IEEEFloat(*semantics)); | ||||
| 1152 | } | ||||
| 1153 | |||||
| 1154 | /* Multiply the significands of LHS and RHS to DST. */ | ||||
| 1155 | lostFraction IEEEFloat::divideSignificand(const IEEEFloat &rhs) { | ||||
| 1156 | unsigned int bit, i, partsCount; | ||||
| 1157 | const integerPart *rhsSignificand; | ||||
| 1158 | integerPart *lhsSignificand, *dividend, *divisor; | ||||
| 1159 | integerPart scratch[4]; | ||||
| 1160 | lostFraction lost_fraction; | ||||
| 1161 | |||||
| 1162 | assert(semantics == rhs.semantics)(static_cast <bool> (semantics == rhs.semantics) ? void (0) : __assert_fail ("semantics == rhs.semantics", "llvm/lib/Support/APFloat.cpp" , 1162, __extension__ __PRETTY_FUNCTION__)); | ||||
| 1163 | |||||
| 1164 | lhsSignificand = significandParts(); | ||||
| 1165 | rhsSignificand = rhs.significandParts(); | ||||
| 1166 | partsCount = partCount(); | ||||
| 1167 | |||||
| 1168 | if (partsCount > 2) | ||||
| 1169 | dividend = new integerPart[partsCount * 2]; | ||||
| 1170 | else | ||||
| 1171 | dividend = scratch; | ||||
| 1172 | |||||
| 1173 | divisor = dividend + partsCount; | ||||
| 1174 | |||||
| 1175 | /* Copy the dividend and divisor as they will be modified in-place. */ | ||||
| 1176 | for (i = 0; i < partsCount; i++) { | ||||
| 1177 | dividend[i] = lhsSignificand[i]; | ||||
| 1178 | divisor[i] = rhsSignificand[i]; | ||||
| 1179 | lhsSignificand[i] = 0; | ||||
| 1180 | } | ||||
| 1181 | |||||
| 1182 | exponent -= rhs.exponent; | ||||
| 1183 | |||||
| 1184 | unsigned int precision = semantics->precision; | ||||
| 1185 | |||||
| 1186 | /* Normalize the divisor. */ | ||||
| 1187 | bit = precision - APInt::tcMSB(divisor, partsCount) - 1; | ||||
| 1188 | if (bit) { | ||||
| 1189 | exponent += bit; | ||||
| 1190 | APInt::tcShiftLeft(divisor, partsCount, bit); | ||||
| 1191 | } | ||||
| 1192 | |||||
| 1193 | /* Normalize the dividend. */ | ||||
| 1194 | bit = precision - APInt::tcMSB(dividend, partsCount) - 1; | ||||
| 1195 | if (bit) { | ||||
| 1196 | exponent -= bit; | ||||
| 1197 | APInt::tcShiftLeft(dividend, partsCount, bit); | ||||
| 1198 | } | ||||
| 1199 | |||||
| 1200 | /* Ensure the dividend >= divisor initially for the loop below. | ||||
| 1201 | Incidentally, this means that the division loop below is | ||||
| 1202 | guaranteed to set the integer bit to one. */ | ||||
| 1203 | if (APInt::tcCompare(dividend, divisor, partsCount) < 0) { | ||||
| 1204 | exponent--; | ||||
| 1205 | APInt::tcShiftLeft(dividend, partsCount, 1); | ||||
| 1206 | assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0)(static_cast <bool> (APInt::tcCompare(dividend, divisor , partsCount) >= 0) ? void (0) : __assert_fail ("APInt::tcCompare(dividend, divisor, partsCount) >= 0" , "llvm/lib/Support/APFloat.cpp", 1206, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 1207 | } | ||||
| 1208 | |||||
| 1209 | /* Long division. */ | ||||
| 1210 | for (bit = precision; bit; bit -= 1) { | ||||
| 1211 | if (APInt::tcCompare(dividend, divisor, partsCount) >= 0) { | ||||
| 1212 | APInt::tcSubtract(dividend, divisor, 0, partsCount); | ||||
| 1213 | APInt::tcSetBit(lhsSignificand, bit - 1); | ||||
| 1214 | } | ||||
| 1215 | |||||
| 1216 | APInt::tcShiftLeft(dividend, partsCount, 1); | ||||
| 1217 | } | ||||
| 1218 | |||||
| 1219 | /* Figure out the lost fraction. */ | ||||
| 1220 | int cmp = APInt::tcCompare(dividend, divisor, partsCount); | ||||
| 1221 | |||||
| 1222 | if (cmp > 0) | ||||
| 1223 | lost_fraction = lfMoreThanHalf; | ||||
| 1224 | else if (cmp == 0) | ||||
| 1225 | lost_fraction = lfExactlyHalf; | ||||
| 1226 | else if (APInt::tcIsZero(dividend, partsCount)) | ||||
| 1227 | lost_fraction = lfExactlyZero; | ||||
| 1228 | else | ||||
| 1229 | lost_fraction = lfLessThanHalf; | ||||
| 1230 | |||||
| 1231 | if (partsCount > 2) | ||||
| 1232 | delete [] dividend; | ||||
| 1233 | |||||
| 1234 | return lost_fraction; | ||||
| 1235 | } | ||||
| 1236 | |||||
| 1237 | unsigned int IEEEFloat::significandMSB() const { | ||||
| 1238 | return APInt::tcMSB(significandParts(), partCount()); | ||||
| 1239 | } | ||||
| 1240 | |||||
| 1241 | unsigned int IEEEFloat::significandLSB() const { | ||||
| 1242 | return APInt::tcLSB(significandParts(), partCount()); | ||||
| 1243 | } | ||||
| 1244 | |||||
| 1245 | /* Note that a zero result is NOT normalized to fcZero. */ | ||||
| 1246 | lostFraction IEEEFloat::shiftSignificandRight(unsigned int bits) { | ||||
| 1247 | /* Our exponent should not overflow. */ | ||||
| 1248 | assert((ExponentType) (exponent + bits) >= exponent)(static_cast <bool> ((ExponentType) (exponent + bits) >= exponent) ? void (0) : __assert_fail ("(ExponentType) (exponent + bits) >= exponent" , "llvm/lib/Support/APFloat.cpp", 1248, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 1249 | |||||
| 1250 | exponent += bits; | ||||
| 1251 | |||||
| 1252 | return shiftRight(significandParts(), partCount(), bits); | ||||
| 1253 | } | ||||
| 1254 | |||||
| 1255 | /* Shift the significand left BITS bits, subtract BITS from its exponent. */ | ||||
| 1256 | void IEEEFloat::shiftSignificandLeft(unsigned int bits) { | ||||
| 1257 | assert(bits < semantics->precision)(static_cast <bool> (bits < semantics->precision) ? void (0) : __assert_fail ("bits < semantics->precision" , "llvm/lib/Support/APFloat.cpp", 1257, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 1258 | |||||
| 1259 | if (bits) { | ||||
| 1260 | unsigned int partsCount = partCount(); | ||||
| 1261 | |||||
| 1262 | APInt::tcShiftLeft(significandParts(), partsCount, bits); | ||||
| 1263 | exponent -= bits; | ||||
| 1264 | |||||
| 1265 | assert(!APInt::tcIsZero(significandParts(), partsCount))(static_cast <bool> (!APInt::tcIsZero(significandParts( ), partsCount)) ? void (0) : __assert_fail ("!APInt::tcIsZero(significandParts(), partsCount)" , "llvm/lib/Support/APFloat.cpp", 1265, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 1266 | } | ||||
| 1267 | } | ||||
| 1268 | |||||
| 1269 | IEEEFloat::cmpResult | ||||
| 1270 | IEEEFloat::compareAbsoluteValue(const IEEEFloat &rhs) const { | ||||
| 1271 | int compare; | ||||
| 1272 | |||||
| 1273 | assert(semantics == rhs.semantics)(static_cast <bool> (semantics == rhs.semantics) ? void (0) : __assert_fail ("semantics == rhs.semantics", "llvm/lib/Support/APFloat.cpp" , 1273, __extension__ __PRETTY_FUNCTION__)); | ||||
| 1274 | assert(isFiniteNonZero())(static_cast <bool> (isFiniteNonZero()) ? void (0) : __assert_fail ("isFiniteNonZero()", "llvm/lib/Support/APFloat.cpp", 1274, __extension__ __PRETTY_FUNCTION__)); | ||||
| 1275 | assert(rhs.isFiniteNonZero())(static_cast <bool> (rhs.isFiniteNonZero()) ? void (0) : __assert_fail ("rhs.isFiniteNonZero()", "llvm/lib/Support/APFloat.cpp" , 1275, __extension__ __PRETTY_FUNCTION__)); | ||||
| 1276 | |||||
| 1277 | compare = exponent - rhs.exponent; | ||||
| 1278 | |||||
| 1279 | /* If exponents are equal, do an unsigned bignum comparison of the | ||||
| 1280 | significands. */ | ||||
| 1281 | if (compare == 0) | ||||
| 1282 | compare = APInt::tcCompare(significandParts(), rhs.significandParts(), | ||||
| 1283 | partCount()); | ||||
| 1284 | |||||
| 1285 | if (compare > 0) | ||||
| 1286 | return cmpGreaterThan; | ||||
| 1287 | else if (compare < 0) | ||||
| 1288 | return cmpLessThan; | ||||
| 1289 | else | ||||
| 1290 | return cmpEqual; | ||||
| 1291 | } | ||||
| 1292 | |||||
| 1293 | /* Set the least significant BITS bits of a bignum, clear the | ||||
| 1294 | rest. */ | ||||
| 1295 | static void tcSetLeastSignificantBits(APInt::WordType *dst, unsigned parts, | ||||
| 1296 | unsigned bits) { | ||||
| 1297 | unsigned i = 0; | ||||
| 1298 | while (bits > APInt::APINT_BITS_PER_WORD) { | ||||
| 1299 | dst[i++] = ~(APInt::WordType)0; | ||||
| 1300 | bits -= APInt::APINT_BITS_PER_WORD; | ||||
| 1301 | } | ||||
| 1302 | |||||
| 1303 | if (bits) | ||||
| 1304 | dst[i++] = ~(APInt::WordType)0 >> (APInt::APINT_BITS_PER_WORD - bits); | ||||
| 1305 | |||||
| 1306 | while (i < parts) | ||||
| 1307 | dst[i++] = 0; | ||||
| 1308 | } | ||||
| 1309 | |||||
| 1310 | /* Handle overflow. Sign is preserved. We either become infinity or | ||||
| 1311 | the largest finite number. */ | ||||
| 1312 | IEEEFloat::opStatus IEEEFloat::handleOverflow(roundingMode rounding_mode) { | ||||
| 1313 | /* Infinity? */ | ||||
| 1314 | if (rounding_mode == rmNearestTiesToEven || | ||||
| 1315 | rounding_mode == rmNearestTiesToAway || | ||||
| 1316 | (rounding_mode == rmTowardPositive && !sign) || | ||||
| 1317 | (rounding_mode == rmTowardNegative && sign)) { | ||||
| 1318 | category = fcInfinity; | ||||
| 1319 | return (opStatus) (opOverflow | opInexact); | ||||
| 1320 | } | ||||
| 1321 | |||||
| 1322 | /* Otherwise we become the largest finite number. */ | ||||
| 1323 | category = fcNormal; | ||||
| 1324 | exponent = semantics->maxExponent; | ||||
| 1325 | tcSetLeastSignificantBits(significandParts(), partCount(), | ||||
| 1326 | semantics->precision); | ||||
| 1327 | |||||
| 1328 | return opInexact; | ||||
| 1329 | } | ||||
| 1330 | |||||
| 1331 | /* Returns TRUE if, when truncating the current number, with BIT the | ||||
| 1332 | new LSB, with the given lost fraction and rounding mode, the result | ||||
| 1333 | would need to be rounded away from zero (i.e., by increasing the | ||||
| 1334 | signficand). This routine must work for fcZero of both signs, and | ||||
| 1335 | fcNormal numbers. */ | ||||
| 1336 | bool IEEEFloat::roundAwayFromZero(roundingMode rounding_mode, | ||||
| 1337 | lostFraction lost_fraction, | ||||
| 1338 | unsigned int bit) const { | ||||
| 1339 | /* NaNs and infinities should not have lost fractions. */ | ||||
| 1340 | assert(isFiniteNonZero() || category == fcZero)(static_cast <bool> (isFiniteNonZero() || category == fcZero ) ? void (0) : __assert_fail ("isFiniteNonZero() || category == fcZero" , "llvm/lib/Support/APFloat.cpp", 1340, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 1341 | |||||
| 1342 | /* Current callers never pass this so we don't handle it. */ | ||||
| 1343 | assert(lost_fraction != lfExactlyZero)(static_cast <bool> (lost_fraction != lfExactlyZero) ? void (0) : __assert_fail ("lost_fraction != lfExactlyZero", "llvm/lib/Support/APFloat.cpp" , 1343, __extension__ __PRETTY_FUNCTION__)); | ||||
| 1344 | |||||
| 1345 | switch (rounding_mode) { | ||||
| 1346 | case rmNearestTiesToAway: | ||||
| 1347 | return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf; | ||||
| 1348 | |||||
| 1349 | case rmNearestTiesToEven: | ||||
| 1350 | if (lost_fraction == lfMoreThanHalf) | ||||
| 1351 | return true; | ||||
| 1352 | |||||
| 1353 | /* Our zeroes don't have a significand to test. */ | ||||
| 1354 | if (lost_fraction == lfExactlyHalf && category != fcZero) | ||||
| 1355 | return APInt::tcExtractBit(significandParts(), bit); | ||||
| 1356 | |||||
| 1357 | return false; | ||||
| 1358 | |||||
| 1359 | case rmTowardZero: | ||||
| 1360 | return false; | ||||
| 1361 | |||||
| 1362 | case rmTowardPositive: | ||||
| 1363 | return !sign; | ||||
| 1364 | |||||
| 1365 | case rmTowardNegative: | ||||
| 1366 | return sign; | ||||
| 1367 | |||||
| 1368 | default: | ||||
| 1369 | break; | ||||
| 1370 | } | ||||
| 1371 | llvm_unreachable("Invalid rounding mode found")::llvm::llvm_unreachable_internal("Invalid rounding mode found" , "llvm/lib/Support/APFloat.cpp", 1371); | ||||
| 1372 | } | ||||
| 1373 | |||||
| 1374 | IEEEFloat::opStatus IEEEFloat::normalize(roundingMode rounding_mode, | ||||
| 1375 | lostFraction lost_fraction) { | ||||
| 1376 | unsigned int omsb; /* One, not zero, based MSB. */ | ||||
| 1377 | int exponentChange; | ||||
| 1378 | |||||
| 1379 | if (!isFiniteNonZero()) | ||||
| 1380 | return opOK; | ||||
| 1381 | |||||
| 1382 | /* Before rounding normalize the exponent of fcNormal numbers. */ | ||||
| 1383 | omsb = significandMSB() + 1; | ||||
| 1384 | |||||
| 1385 | if (omsb) { | ||||
| 1386 | /* OMSB is numbered from 1. We want to place it in the integer | ||||
| 1387 | bit numbered PRECISION if possible, with a compensating change in | ||||
| 1388 | the exponent. */ | ||||
| 1389 | exponentChange = omsb - semantics->precision; | ||||
| 1390 | |||||
| 1391 | /* If the resulting exponent is too high, overflow according to | ||||
| 1392 | the rounding mode. */ | ||||
| 1393 | if (exponent + exponentChange > semantics->maxExponent) | ||||
| 1394 | return handleOverflow(rounding_mode); | ||||
| 1395 | |||||
| 1396 | /* Subnormal numbers have exponent minExponent, and their MSB | ||||
| 1397 | is forced based on that. */ | ||||
| 1398 | if (exponent + exponentChange < semantics->minExponent) | ||||
| 1399 | exponentChange = semantics->minExponent - exponent; | ||||
| 1400 | |||||
| 1401 | /* Shifting left is easy as we don't lose precision. */ | ||||
| 1402 | if (exponentChange < 0) { | ||||
| 1403 | assert(lost_fraction == lfExactlyZero)(static_cast <bool> (lost_fraction == lfExactlyZero) ? void (0) : __assert_fail ("lost_fraction == lfExactlyZero", "llvm/lib/Support/APFloat.cpp" , 1403, __extension__ __PRETTY_FUNCTION__)); | ||||
| 1404 | |||||
| 1405 | shiftSignificandLeft(-exponentChange); | ||||
| 1406 | |||||
| 1407 | return opOK; | ||||
| 1408 | } | ||||
| 1409 | |||||
| 1410 | if (exponentChange > 0) { | ||||
| 1411 | lostFraction lf; | ||||
| 1412 | |||||
| 1413 | /* Shift right and capture any new lost fraction. */ | ||||
| 1414 | lf = shiftSignificandRight(exponentChange); | ||||
| 1415 | |||||
| 1416 | lost_fraction = combineLostFractions(lf, lost_fraction); | ||||
| 1417 | |||||
| 1418 | /* Keep OMSB up-to-date. */ | ||||
| 1419 | if (omsb > (unsigned) exponentChange) | ||||
| 1420 | omsb -= exponentChange; | ||||
| 1421 | else | ||||
| 1422 | omsb = 0; | ||||
| 1423 | } | ||||
| 1424 | } | ||||
| 1425 | |||||
| 1426 | /* Now round the number according to rounding_mode given the lost | ||||
| 1427 | fraction. */ | ||||
| 1428 | |||||
| 1429 | /* As specified in IEEE 754, since we do not trap we do not report | ||||
| 1430 | underflow for exact results. */ | ||||
| 1431 | if (lost_fraction == lfExactlyZero) { | ||||
| 1432 | /* Canonicalize zeroes. */ | ||||
| 1433 | if (omsb == 0) | ||||
| 1434 | category = fcZero; | ||||
| 1435 | |||||
| 1436 | return opOK; | ||||
| 1437 | } | ||||
| 1438 | |||||
| 1439 | /* Increment the significand if we're rounding away from zero. */ | ||||
| 1440 | if (roundAwayFromZero(rounding_mode, lost_fraction, 0)) { | ||||
| 1441 | if (omsb == 0) | ||||
| 1442 | exponent = semantics->minExponent; | ||||
| 1443 | |||||
| 1444 | incrementSignificand(); | ||||
| 1445 | omsb = significandMSB() + 1; | ||||
| 1446 | |||||
| 1447 | /* Did the significand increment overflow? */ | ||||
| 1448 | if (omsb == (unsigned) semantics->precision + 1) { | ||||
| 1449 | /* Renormalize by incrementing the exponent and shifting our | ||||
| 1450 | significand right one. However if we already have the | ||||
| 1451 | maximum exponent we overflow to infinity. */ | ||||
| 1452 | if (exponent == semantics->maxExponent) { | ||||
| 1453 | category = fcInfinity; | ||||
| 1454 | |||||
| 1455 | return (opStatus) (opOverflow | opInexact); | ||||
| 1456 | } | ||||
| 1457 | |||||
| 1458 | shiftSignificandRight(1); | ||||
| 1459 | |||||
| 1460 | return opInexact; | ||||
| 1461 | } | ||||
| 1462 | } | ||||
| 1463 | |||||
| 1464 | /* The normal case - we were and are not denormal, and any | ||||
| 1465 | significand increment above didn't overflow. */ | ||||
| 1466 | if (omsb == semantics->precision) | ||||
| 1467 | return opInexact; | ||||
| 1468 | |||||
| 1469 | /* We have a non-zero denormal. */ | ||||
| 1470 | assert(omsb < semantics->precision)(static_cast <bool> (omsb < semantics->precision) ? void (0) : __assert_fail ("omsb < semantics->precision" , "llvm/lib/Support/APFloat.cpp", 1470, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 1471 | |||||
| 1472 | /* Canonicalize zeroes. */ | ||||
| 1473 | if (omsb == 0) | ||||
| 1474 | category = fcZero; | ||||
| 1475 | |||||
| 1476 | /* The fcZero case is a denormal that underflowed to zero. */ | ||||
| 1477 | return (opStatus) (opUnderflow | opInexact); | ||||
| 1478 | } | ||||
| 1479 | |||||
| 1480 | IEEEFloat::opStatus IEEEFloat::addOrSubtractSpecials(const IEEEFloat &rhs, | ||||
| 1481 | bool subtract) { | ||||
| 1482 | switch (PackCategoriesIntoKey(category, rhs.category)((category) * 4 + (rhs.category))) { | ||||
| 1483 | default: | ||||
| 1484 | llvm_unreachable(nullptr)::llvm::llvm_unreachable_internal(nullptr, "llvm/lib/Support/APFloat.cpp" , 1484); | ||||
| 1485 | |||||
| 1486 | case PackCategoriesIntoKey(fcZero, fcNaN)((fcZero) * 4 + (fcNaN)): | ||||
| 1487 | case PackCategoriesIntoKey(fcNormal, fcNaN)((fcNormal) * 4 + (fcNaN)): | ||||
| 1488 | case PackCategoriesIntoKey(fcInfinity, fcNaN)((fcInfinity) * 4 + (fcNaN)): | ||||
| 1489 | assign(rhs); | ||||
| 1490 | [[fallthrough]]; | ||||
| 1491 | case PackCategoriesIntoKey(fcNaN, fcZero)((fcNaN) * 4 + (fcZero)): | ||||
| 1492 | case PackCategoriesIntoKey(fcNaN, fcNormal)((fcNaN) * 4 + (fcNormal)): | ||||
| 1493 | case PackCategoriesIntoKey(fcNaN, fcInfinity)((fcNaN) * 4 + (fcInfinity)): | ||||
| 1494 | case PackCategoriesIntoKey(fcNaN, fcNaN)((fcNaN) * 4 + (fcNaN)): | ||||
| 1495 | if (isSignaling()) { | ||||
| 1496 | makeQuiet(); | ||||
| 1497 | return opInvalidOp; | ||||
| 1498 | } | ||||
| 1499 | return rhs.isSignaling() ? opInvalidOp : opOK; | ||||
| 1500 | |||||
| 1501 | case PackCategoriesIntoKey(fcNormal, fcZero)((fcNormal) * 4 + (fcZero)): | ||||
| 1502 | case PackCategoriesIntoKey(fcInfinity, fcNormal)((fcInfinity) * 4 + (fcNormal)): | ||||
| 1503 | case PackCategoriesIntoKey(fcInfinity, fcZero)((fcInfinity) * 4 + (fcZero)): | ||||
| 1504 | return opOK; | ||||
| 1505 | |||||
| 1506 | case PackCategoriesIntoKey(fcNormal, fcInfinity)((fcNormal) * 4 + (fcInfinity)): | ||||
| 1507 | case PackCategoriesIntoKey(fcZero, fcInfinity)((fcZero) * 4 + (fcInfinity)): | ||||
| 1508 | category = fcInfinity; | ||||
| 1509 | sign = rhs.sign ^ subtract; | ||||
| 1510 | return opOK; | ||||
| 1511 | |||||
| 1512 | case PackCategoriesIntoKey(fcZero, fcNormal)((fcZero) * 4 + (fcNormal)): | ||||
| 1513 | assign(rhs); | ||||
| 1514 | sign = rhs.sign ^ subtract; | ||||
| 1515 | return opOK; | ||||
| 1516 | |||||
| 1517 | case PackCategoriesIntoKey(fcZero, fcZero)((fcZero) * 4 + (fcZero)): | ||||
| 1518 | /* Sign depends on rounding mode; handled by caller. */ | ||||
| 1519 | return opOK; | ||||
| 1520 | |||||
| 1521 | case PackCategoriesIntoKey(fcInfinity, fcInfinity)((fcInfinity) * 4 + (fcInfinity)): | ||||
| 1522 | /* Differently signed infinities can only be validly | ||||
| 1523 | subtracted. */ | ||||
| 1524 | if (((sign ^ rhs.sign)!=0) != subtract) { | ||||
| 1525 | makeNaN(); | ||||
| 1526 | return opInvalidOp; | ||||
| 1527 | } | ||||
| 1528 | |||||
| 1529 | return opOK; | ||||
| 1530 | |||||
| 1531 | case PackCategoriesIntoKey(fcNormal, fcNormal)((fcNormal) * 4 + (fcNormal)): | ||||
| 1532 | return opDivByZero; | ||||
| 1533 | } | ||||
| 1534 | } | ||||
| 1535 | |||||
| 1536 | /* Add or subtract two normal numbers. */ | ||||
| 1537 | lostFraction IEEEFloat::addOrSubtractSignificand(const IEEEFloat &rhs, | ||||
| 1538 | bool subtract) { | ||||
| 1539 | integerPart carry; | ||||
| 1540 | lostFraction lost_fraction; | ||||
| 1541 | int bits; | ||||
| 1542 | |||||
| 1543 | /* Determine if the operation on the absolute values is effectively | ||||
| 1544 | an addition or subtraction. */ | ||||
| 1545 | subtract ^= static_cast<bool>(sign ^ rhs.sign); | ||||
| 1546 | |||||
| 1547 | /* Are we bigger exponent-wise than the RHS? */ | ||||
| 1548 | bits = exponent - rhs.exponent; | ||||
| 1549 | |||||
| 1550 | /* Subtraction is more subtle than one might naively expect. */ | ||||
| 1551 | if (subtract) { | ||||
| 1552 | IEEEFloat temp_rhs(rhs); | ||||
| 1553 | |||||
| 1554 | if (bits == 0) | ||||
| 1555 | lost_fraction = lfExactlyZero; | ||||
| 1556 | else if (bits > 0) { | ||||
| 1557 | lost_fraction = temp_rhs.shiftSignificandRight(bits - 1); | ||||
| 1558 | shiftSignificandLeft(1); | ||||
| 1559 | } else { | ||||
| 1560 | lost_fraction = shiftSignificandRight(-bits - 1); | ||||
| 1561 | temp_rhs.shiftSignificandLeft(1); | ||||
| 1562 | } | ||||
| 1563 | |||||
| 1564 | // Should we reverse the subtraction. | ||||
| 1565 | if (compareAbsoluteValue(temp_rhs) == cmpLessThan) { | ||||
| 1566 | carry = temp_rhs.subtractSignificand | ||||
| 1567 | (*this, lost_fraction != lfExactlyZero); | ||||
| 1568 | copySignificand(temp_rhs); | ||||
| 1569 | sign = !sign; | ||||
| 1570 | } else { | ||||
| 1571 | carry = subtractSignificand | ||||
| 1572 | (temp_rhs, lost_fraction != lfExactlyZero); | ||||
| 1573 | } | ||||
| 1574 | |||||
| 1575 | /* Invert the lost fraction - it was on the RHS and | ||||
| 1576 | subtracted. */ | ||||
| 1577 | if (lost_fraction == lfLessThanHalf) | ||||
| 1578 | lost_fraction = lfMoreThanHalf; | ||||
| 1579 | else if (lost_fraction == lfMoreThanHalf) | ||||
| 1580 | lost_fraction = lfLessThanHalf; | ||||
| 1581 | |||||
| 1582 | /* The code above is intended to ensure that no borrow is | ||||
| 1583 | necessary. */ | ||||
| 1584 | assert(!carry)(static_cast <bool> (!carry) ? void (0) : __assert_fail ("!carry", "llvm/lib/Support/APFloat.cpp", 1584, __extension__ __PRETTY_FUNCTION__)); | ||||
| 1585 | (void)carry; | ||||
| 1586 | } else { | ||||
| 1587 | if (bits > 0) { | ||||
| 1588 | IEEEFloat temp_rhs(rhs); | ||||
| 1589 | |||||
| 1590 | lost_fraction = temp_rhs.shiftSignificandRight(bits); | ||||
| 1591 | carry = addSignificand(temp_rhs); | ||||
| 1592 | } else { | ||||
| 1593 | lost_fraction = shiftSignificandRight(-bits); | ||||
| 1594 | carry = addSignificand(rhs); | ||||
| 1595 | } | ||||
| 1596 | |||||
| 1597 | /* We have a guard bit; generating a carry cannot happen. */ | ||||
| 1598 | assert(!carry)(static_cast <bool> (!carry) ? void (0) : __assert_fail ("!carry", "llvm/lib/Support/APFloat.cpp", 1598, __extension__ __PRETTY_FUNCTION__)); | ||||
| 1599 | (void)carry; | ||||
| 1600 | } | ||||
| 1601 | |||||
| 1602 | return lost_fraction; | ||||
| 1603 | } | ||||
| 1604 | |||||
| 1605 | IEEEFloat::opStatus IEEEFloat::multiplySpecials(const IEEEFloat &rhs) { | ||||
| 1606 | switch (PackCategoriesIntoKey(category, rhs.category)((category) * 4 + (rhs.category))) { | ||||
| 1607 | default: | ||||
| 1608 | llvm_unreachable(nullptr)::llvm::llvm_unreachable_internal(nullptr, "llvm/lib/Support/APFloat.cpp" , 1608); | ||||
| 1609 | |||||
| 1610 | case PackCategoriesIntoKey(fcZero, fcNaN)((fcZero) * 4 + (fcNaN)): | ||||
| 1611 | case PackCategoriesIntoKey(fcNormal, fcNaN)((fcNormal) * 4 + (fcNaN)): | ||||
| 1612 | case PackCategoriesIntoKey(fcInfinity, fcNaN)((fcInfinity) * 4 + (fcNaN)): | ||||
| 1613 | assign(rhs); | ||||
| 1614 | sign = false; | ||||
| 1615 | [[fallthrough]]; | ||||
| 1616 | case PackCategoriesIntoKey(fcNaN, fcZero)((fcNaN) * 4 + (fcZero)): | ||||
| 1617 | case PackCategoriesIntoKey(fcNaN, fcNormal)((fcNaN) * 4 + (fcNormal)): | ||||
| 1618 | case PackCategoriesIntoKey(fcNaN, fcInfinity)((fcNaN) * 4 + (fcInfinity)): | ||||
| 1619 | case PackCategoriesIntoKey(fcNaN, fcNaN)((fcNaN) * 4 + (fcNaN)): | ||||
| 1620 | sign ^= rhs.sign; // restore the original sign | ||||
| 1621 | if (isSignaling()) { | ||||
| 1622 | makeQuiet(); | ||||
| 1623 | return opInvalidOp; | ||||
| 1624 | } | ||||
| 1625 | return rhs.isSignaling() ? opInvalidOp : opOK; | ||||
| 1626 | |||||
| 1627 | case PackCategoriesIntoKey(fcNormal, fcInfinity)((fcNormal) * 4 + (fcInfinity)): | ||||
| 1628 | case PackCategoriesIntoKey(fcInfinity, fcNormal)((fcInfinity) * 4 + (fcNormal)): | ||||
| 1629 | case PackCategoriesIntoKey(fcInfinity, fcInfinity)((fcInfinity) * 4 + (fcInfinity)): | ||||
| 1630 | category = fcInfinity; | ||||
| 1631 | return opOK; | ||||
| 1632 | |||||
| 1633 | case PackCategoriesIntoKey(fcZero, fcNormal)((fcZero) * 4 + (fcNormal)): | ||||
| 1634 | case PackCategoriesIntoKey(fcNormal, fcZero)((fcNormal) * 4 + (fcZero)): | ||||
| 1635 | case PackCategoriesIntoKey(fcZero, fcZero)((fcZero) * 4 + (fcZero)): | ||||
| 1636 | category = fcZero; | ||||
| 1637 | return opOK; | ||||
| 1638 | |||||
| 1639 | case PackCategoriesIntoKey(fcZero, fcInfinity)((fcZero) * 4 + (fcInfinity)): | ||||
| 1640 | case PackCategoriesIntoKey(fcInfinity, fcZero)((fcInfinity) * 4 + (fcZero)): | ||||
| 1641 | makeNaN(); | ||||
| 1642 | return opInvalidOp; | ||||
| 1643 | |||||
| 1644 | case PackCategoriesIntoKey(fcNormal, fcNormal)((fcNormal) * 4 + (fcNormal)): | ||||
| 1645 | return opOK; | ||||
| 1646 | } | ||||
| 1647 | } | ||||
| 1648 | |||||
| 1649 | IEEEFloat::opStatus IEEEFloat::divideSpecials(const IEEEFloat &rhs) { | ||||
| 1650 | switch (PackCategoriesIntoKey(category, rhs.category)((category) * 4 + (rhs.category))) { | ||||
| 1651 | default: | ||||
| 1652 | llvm_unreachable(nullptr)::llvm::llvm_unreachable_internal(nullptr, "llvm/lib/Support/APFloat.cpp" , 1652); | ||||
| 1653 | |||||
| 1654 | case PackCategoriesIntoKey(fcZero, fcNaN)((fcZero) * 4 + (fcNaN)): | ||||
| 1655 | case PackCategoriesIntoKey(fcNormal, fcNaN)((fcNormal) * 4 + (fcNaN)): | ||||
| 1656 | case PackCategoriesIntoKey(fcInfinity, fcNaN)((fcInfinity) * 4 + (fcNaN)): | ||||
| 1657 | assign(rhs); | ||||
| 1658 | sign = false; | ||||
| 1659 | [[fallthrough]]; | ||||
| 1660 | case PackCategoriesIntoKey(fcNaN, fcZero)((fcNaN) * 4 + (fcZero)): | ||||
| 1661 | case PackCategoriesIntoKey(fcNaN, fcNormal)((fcNaN) * 4 + (fcNormal)): | ||||
| 1662 | case PackCategoriesIntoKey(fcNaN, fcInfinity)((fcNaN) * 4 + (fcInfinity)): | ||||
| 1663 | case PackCategoriesIntoKey(fcNaN, fcNaN)((fcNaN) * 4 + (fcNaN)): | ||||
| 1664 | sign ^= rhs.sign; // restore the original sign | ||||
| 1665 | if (isSignaling()) { | ||||
| 1666 | makeQuiet(); | ||||
| 1667 | return opInvalidOp; | ||||
| 1668 | } | ||||
| 1669 | return rhs.isSignaling() ? opInvalidOp : opOK; | ||||
| 1670 | |||||
| 1671 | case PackCategoriesIntoKey(fcInfinity, fcZero)((fcInfinity) * 4 + (fcZero)): | ||||
| 1672 | case PackCategoriesIntoKey(fcInfinity, fcNormal)((fcInfinity) * 4 + (fcNormal)): | ||||
| 1673 | case PackCategoriesIntoKey(fcZero, fcInfinity)((fcZero) * 4 + (fcInfinity)): | ||||
| 1674 | case PackCategoriesIntoKey(fcZero, fcNormal)((fcZero) * 4 + (fcNormal)): | ||||
| 1675 | return opOK; | ||||
| 1676 | |||||
| 1677 | case PackCategoriesIntoKey(fcNormal, fcInfinity)((fcNormal) * 4 + (fcInfinity)): | ||||
| 1678 | category = fcZero; | ||||
| 1679 | return opOK; | ||||
| 1680 | |||||
| 1681 | case PackCategoriesIntoKey(fcNormal, fcZero)((fcNormal) * 4 + (fcZero)): | ||||
| 1682 | category = fcInfinity; | ||||
| 1683 | return opDivByZero; | ||||
| 1684 | |||||
| 1685 | case PackCategoriesIntoKey(fcInfinity, fcInfinity)((fcInfinity) * 4 + (fcInfinity)): | ||||
| 1686 | case PackCategoriesIntoKey(fcZero, fcZero)((fcZero) * 4 + (fcZero)): | ||||
| 1687 | makeNaN(); | ||||
| 1688 | return opInvalidOp; | ||||
| 1689 | |||||
| 1690 | case PackCategoriesIntoKey(fcNormal, fcNormal)((fcNormal) * 4 + (fcNormal)): | ||||
| 1691 | return opOK; | ||||
| 1692 | } | ||||
| 1693 | } | ||||
| 1694 | |||||
| 1695 | IEEEFloat::opStatus IEEEFloat::modSpecials(const IEEEFloat &rhs) { | ||||
| 1696 | switch (PackCategoriesIntoKey(category, rhs.category)((category) * 4 + (rhs.category))) { | ||||
| 1697 | default: | ||||
| 1698 | llvm_unreachable(nullptr)::llvm::llvm_unreachable_internal(nullptr, "llvm/lib/Support/APFloat.cpp" , 1698); | ||||
| 1699 | |||||
| 1700 | case PackCategoriesIntoKey(fcZero, fcNaN)((fcZero) * 4 + (fcNaN)): | ||||
| 1701 | case PackCategoriesIntoKey(fcNormal, fcNaN)((fcNormal) * 4 + (fcNaN)): | ||||
| 1702 | case PackCategoriesIntoKey(fcInfinity, fcNaN)((fcInfinity) * 4 + (fcNaN)): | ||||
| 1703 | assign(rhs); | ||||
| 1704 | [[fallthrough]]; | ||||
| 1705 | case PackCategoriesIntoKey(fcNaN, fcZero)((fcNaN) * 4 + (fcZero)): | ||||
| 1706 | case PackCategoriesIntoKey(fcNaN, fcNormal)((fcNaN) * 4 + (fcNormal)): | ||||
| 1707 | case PackCategoriesIntoKey(fcNaN, fcInfinity)((fcNaN) * 4 + (fcInfinity)): | ||||
| 1708 | case PackCategoriesIntoKey(fcNaN, fcNaN)((fcNaN) * 4 + (fcNaN)): | ||||
| 1709 | if (isSignaling()) { | ||||
| 1710 | makeQuiet(); | ||||
| 1711 | return opInvalidOp; | ||||
| 1712 | } | ||||
| 1713 | return rhs.isSignaling() ? opInvalidOp : opOK; | ||||
| 1714 | |||||
| 1715 | case PackCategoriesIntoKey(fcZero, fcInfinity)((fcZero) * 4 + (fcInfinity)): | ||||
| 1716 | case PackCategoriesIntoKey(fcZero, fcNormal)((fcZero) * 4 + (fcNormal)): | ||||
| 1717 | case PackCategoriesIntoKey(fcNormal, fcInfinity)((fcNormal) * 4 + (fcInfinity)): | ||||
| 1718 | return opOK; | ||||
| 1719 | |||||
| 1720 | case PackCategoriesIntoKey(fcNormal, fcZero)((fcNormal) * 4 + (fcZero)): | ||||
| 1721 | case PackCategoriesIntoKey(fcInfinity, fcZero)((fcInfinity) * 4 + (fcZero)): | ||||
| 1722 | case PackCategoriesIntoKey(fcInfinity, fcNormal)((fcInfinity) * 4 + (fcNormal)): | ||||
| 1723 | case PackCategoriesIntoKey(fcInfinity, fcInfinity)((fcInfinity) * 4 + (fcInfinity)): | ||||
| 1724 | case PackCategoriesIntoKey(fcZero, fcZero)((fcZero) * 4 + (fcZero)): | ||||
| 1725 | makeNaN(); | ||||
| 1726 | return opInvalidOp; | ||||
| 1727 | |||||
| 1728 | case PackCategoriesIntoKey(fcNormal, fcNormal)((fcNormal) * 4 + (fcNormal)): | ||||
| 1729 | return opOK; | ||||
| 1730 | } | ||||
| 1731 | } | ||||
| 1732 | |||||
| 1733 | IEEEFloat::opStatus IEEEFloat::remainderSpecials(const IEEEFloat &rhs) { | ||||
| 1734 | switch (PackCategoriesIntoKey(category, rhs.category)((category) * 4 + (rhs.category))) { | ||||
| 1735 | default: | ||||
| 1736 | llvm_unreachable(nullptr)::llvm::llvm_unreachable_internal(nullptr, "llvm/lib/Support/APFloat.cpp" , 1736); | ||||
| 1737 | |||||
| 1738 | case PackCategoriesIntoKey(fcZero, fcNaN)((fcZero) * 4 + (fcNaN)): | ||||
| 1739 | case PackCategoriesIntoKey(fcNormal, fcNaN)((fcNormal) * 4 + (fcNaN)): | ||||
| 1740 | case PackCategoriesIntoKey(fcInfinity, fcNaN)((fcInfinity) * 4 + (fcNaN)): | ||||
| 1741 | assign(rhs); | ||||
| 1742 | [[fallthrough]]; | ||||
| 1743 | case PackCategoriesIntoKey(fcNaN, fcZero)((fcNaN) * 4 + (fcZero)): | ||||
| 1744 | case PackCategoriesIntoKey(fcNaN, fcNormal)((fcNaN) * 4 + (fcNormal)): | ||||
| 1745 | case PackCategoriesIntoKey(fcNaN, fcInfinity)((fcNaN) * 4 + (fcInfinity)): | ||||
| 1746 | case PackCategoriesIntoKey(fcNaN, fcNaN)((fcNaN) * 4 + (fcNaN)): | ||||
| 1747 | if (isSignaling()) { | ||||
| 1748 | makeQuiet(); | ||||
| 1749 | return opInvalidOp; | ||||
| 1750 | } | ||||
| 1751 | return rhs.isSignaling() ? opInvalidOp : opOK; | ||||
| 1752 | |||||
| 1753 | case PackCategoriesIntoKey(fcZero, fcInfinity)((fcZero) * 4 + (fcInfinity)): | ||||
| 1754 | case PackCategoriesIntoKey(fcZero, fcNormal)((fcZero) * 4 + (fcNormal)): | ||||
| 1755 | case PackCategoriesIntoKey(fcNormal, fcInfinity)((fcNormal) * 4 + (fcInfinity)): | ||||
| 1756 | return opOK; | ||||
| 1757 | |||||
| 1758 | case PackCategoriesIntoKey(fcNormal, fcZero)((fcNormal) * 4 + (fcZero)): | ||||
| 1759 | case PackCategoriesIntoKey(fcInfinity, fcZero)((fcInfinity) * 4 + (fcZero)): | ||||
| 1760 | case PackCategoriesIntoKey(fcInfinity, fcNormal)((fcInfinity) * 4 + (fcNormal)): | ||||
| 1761 | case PackCategoriesIntoKey(fcInfinity, fcInfinity)((fcInfinity) * 4 + (fcInfinity)): | ||||
| 1762 | case PackCategoriesIntoKey(fcZero, fcZero)((fcZero) * 4 + (fcZero)): | ||||
| 1763 | makeNaN(); | ||||
| 1764 | return opInvalidOp; | ||||
| 1765 | |||||
| 1766 | case PackCategoriesIntoKey(fcNormal, fcNormal)((fcNormal) * 4 + (fcNormal)): | ||||
| 1767 | return opDivByZero; // fake status, indicating this is not a special case | ||||
| 1768 | } | ||||
| 1769 | } | ||||
| 1770 | |||||
| 1771 | /* Change sign. */ | ||||
| 1772 | void IEEEFloat::changeSign() { | ||||
| 1773 | /* Look mummy, this one's easy. */ | ||||
| 1774 | sign = !sign; | ||||
| 1775 | } | ||||
| 1776 | |||||
| 1777 | /* Normalized addition or subtraction. */ | ||||
| 1778 | IEEEFloat::opStatus IEEEFloat::addOrSubtract(const IEEEFloat &rhs, | ||||
| 1779 | roundingMode rounding_mode, | ||||
| 1780 | bool subtract) { | ||||
| 1781 | opStatus fs; | ||||
| 1782 | |||||
| 1783 | fs = addOrSubtractSpecials(rhs, subtract); | ||||
| 1784 | |||||
| 1785 | /* This return code means it was not a simple case. */ | ||||
| 1786 | if (fs == opDivByZero) { | ||||
| 1787 | lostFraction lost_fraction; | ||||
| 1788 | |||||
| 1789 | lost_fraction = addOrSubtractSignificand(rhs, subtract); | ||||
| 1790 | fs = normalize(rounding_mode, lost_fraction); | ||||
| 1791 | |||||
| 1792 | /* Can only be zero if we lost no fraction. */ | ||||
| 1793 | assert(category != fcZero || lost_fraction == lfExactlyZero)(static_cast <bool> (category != fcZero || lost_fraction == lfExactlyZero) ? void (0) : __assert_fail ("category != fcZero || lost_fraction == lfExactlyZero" , "llvm/lib/Support/APFloat.cpp", 1793, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 1794 | } | ||||
| 1795 | |||||
| 1796 | /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a | ||||
| 1797 | positive zero unless rounding to minus infinity, except that | ||||
| 1798 | adding two like-signed zeroes gives that zero. */ | ||||
| 1799 | if (category == fcZero) { | ||||
| 1800 | if (rhs.category != fcZero || (sign == rhs.sign) == subtract) | ||||
| 1801 | sign = (rounding_mode == rmTowardNegative); | ||||
| 1802 | } | ||||
| 1803 | |||||
| 1804 | return fs; | ||||
| 1805 | } | ||||
| 1806 | |||||
| 1807 | /* Normalized addition. */ | ||||
| 1808 | IEEEFloat::opStatus IEEEFloat::add(const IEEEFloat &rhs, | ||||
| 1809 | roundingMode rounding_mode) { | ||||
| 1810 | return addOrSubtract(rhs, rounding_mode, false); | ||||
| 1811 | } | ||||
| 1812 | |||||
| 1813 | /* Normalized subtraction. */ | ||||
| 1814 | IEEEFloat::opStatus IEEEFloat::subtract(const IEEEFloat &rhs, | ||||
| 1815 | roundingMode rounding_mode) { | ||||
| 1816 | return addOrSubtract(rhs, rounding_mode, true); | ||||
| 1817 | } | ||||
| 1818 | |||||
| 1819 | /* Normalized multiply. */ | ||||
| 1820 | IEEEFloat::opStatus IEEEFloat::multiply(const IEEEFloat &rhs, | ||||
| 1821 | roundingMode rounding_mode) { | ||||
| 1822 | opStatus fs; | ||||
| 1823 | |||||
| 1824 | sign ^= rhs.sign; | ||||
| 1825 | fs = multiplySpecials(rhs); | ||||
| 1826 | |||||
| 1827 | if (isFiniteNonZero()) { | ||||
| 1828 | lostFraction lost_fraction = multiplySignificand(rhs); | ||||
| 1829 | fs = normalize(rounding_mode, lost_fraction); | ||||
| 1830 | if (lost_fraction != lfExactlyZero) | ||||
| 1831 | fs = (opStatus) (fs | opInexact); | ||||
| 1832 | } | ||||
| 1833 | |||||
| 1834 | return fs; | ||||
| 1835 | } | ||||
| 1836 | |||||
| 1837 | /* Normalized divide. */ | ||||
| 1838 | IEEEFloat::opStatus IEEEFloat::divide(const IEEEFloat &rhs, | ||||
| 1839 | roundingMode rounding_mode) { | ||||
| 1840 | opStatus fs; | ||||
| 1841 | |||||
| 1842 | sign ^= rhs.sign; | ||||
| 1843 | fs = divideSpecials(rhs); | ||||
| 1844 | |||||
| 1845 | if (isFiniteNonZero()) { | ||||
| 1846 | lostFraction lost_fraction = divideSignificand(rhs); | ||||
| 1847 | fs = normalize(rounding_mode, lost_fraction); | ||||
| 1848 | if (lost_fraction != lfExactlyZero) | ||||
| 1849 | fs = (opStatus) (fs | opInexact); | ||||
| 1850 | } | ||||
| 1851 | |||||
| 1852 | return fs; | ||||
| 1853 | } | ||||
| 1854 | |||||
| 1855 | /* Normalized remainder. */ | ||||
| 1856 | IEEEFloat::opStatus IEEEFloat::remainder(const IEEEFloat &rhs) { | ||||
| 1857 | opStatus fs; | ||||
| 1858 | unsigned int origSign = sign; | ||||
| 1859 | |||||
| 1860 | // First handle the special cases. | ||||
| 1861 | fs = remainderSpecials(rhs); | ||||
| 1862 | if (fs != opDivByZero) | ||||
| 1863 | return fs; | ||||
| 1864 | |||||
| 1865 | fs = opOK; | ||||
| 1866 | |||||
| 1867 | // Make sure the current value is less than twice the denom. If the addition | ||||
| 1868 | // did not succeed (an overflow has happened), which means that the finite | ||||
| 1869 | // value we currently posses must be less than twice the denom (as we are | ||||
| 1870 | // using the same semantics). | ||||
| 1871 | IEEEFloat P2 = rhs; | ||||
| 1872 | if (P2.add(rhs, rmNearestTiesToEven) == opOK) { | ||||
| 1873 | fs = mod(P2); | ||||
| 1874 | assert(fs == opOK)(static_cast <bool> (fs == opOK) ? void (0) : __assert_fail ("fs == opOK", "llvm/lib/Support/APFloat.cpp", 1874, __extension__ __PRETTY_FUNCTION__)); | ||||
| 1875 | } | ||||
| 1876 | |||||
| 1877 | // Lets work with absolute numbers. | ||||
| 1878 | IEEEFloat P = rhs; | ||||
| 1879 | P.sign = false; | ||||
| 1880 | sign = false; | ||||
| 1881 | |||||
| 1882 | // | ||||
| 1883 | // To calculate the remainder we use the following scheme. | ||||
| 1884 | // | ||||
| 1885 | // The remainder is defained as follows: | ||||
| 1886 | // | ||||
| 1887 | // remainder = numer - rquot * denom = x - r * p | ||||
| 1888 | // | ||||
| 1889 | // Where r is the result of: x/p, rounded toward the nearest integral value | ||||
| 1890 | // (with halfway cases rounded toward the even number). | ||||
| 1891 | // | ||||
| 1892 | // Currently, (after x mod 2p): | ||||
| 1893 | // r is the number of 2p's present inside x, which is inherently, an even | ||||
| 1894 | // number of p's. | ||||
| 1895 | // | ||||
| 1896 | // We may split the remaining calculation into 4 options: | ||||
| 1897 | // - if x < 0.5p then we round to the nearest number with is 0, and are done. | ||||
| 1898 | // - if x == 0.5p then we round to the nearest even number which is 0, and we | ||||
| 1899 | // are done as well. | ||||
| 1900 | // - if 0.5p < x < p then we round to nearest number which is 1, and we have | ||||
| 1901 | // to subtract 1p at least once. | ||||
| 1902 | // - if x >= p then we must subtract p at least once, as x must be a | ||||
| 1903 | // remainder. | ||||
| 1904 | // | ||||
| 1905 | // By now, we were done, or we added 1 to r, which in turn, now an odd number. | ||||
| 1906 | // | ||||
| 1907 | // We can now split the remaining calculation to the following 3 options: | ||||
| 1908 | // - if x < 0.5p then we round to the nearest number with is 0, and are done. | ||||
| 1909 | // - if x == 0.5p then we round to the nearest even number. As r is odd, we | ||||
| 1910 | // must round up to the next even number. so we must subtract p once more. | ||||
| 1911 | // - if x > 0.5p (and inherently x < p) then we must round r up to the next | ||||
| 1912 | // integral, and subtract p once more. | ||||
| 1913 | // | ||||
| 1914 | |||||
| 1915 | // Extend the semantics to prevent an overflow/underflow or inexact result. | ||||
| 1916 | bool losesInfo; | ||||
| 1917 | fltSemantics extendedSemantics = *semantics; | ||||
| 1918 | extendedSemantics.maxExponent++; | ||||
| 1919 | extendedSemantics.minExponent--; | ||||
| 1920 | extendedSemantics.precision += 2; | ||||
| 1921 | |||||
| 1922 | IEEEFloat VEx = *this; | ||||
| 1923 | fs = VEx.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo); | ||||
| 1924 | assert(fs == opOK && !losesInfo)(static_cast <bool> (fs == opOK && !losesInfo) ? void (0) : __assert_fail ("fs == opOK && !losesInfo" , "llvm/lib/Support/APFloat.cpp", 1924, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 1925 | IEEEFloat PEx = P; | ||||
| 1926 | fs = PEx.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo); | ||||
| 1927 | assert(fs == opOK && !losesInfo)(static_cast <bool> (fs == opOK && !losesInfo) ? void (0) : __assert_fail ("fs == opOK && !losesInfo" , "llvm/lib/Support/APFloat.cpp", 1927, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 1928 | |||||
| 1929 | // It is simpler to work with 2x instead of 0.5p, and we do not need to lose | ||||
| 1930 | // any fraction. | ||||
| 1931 | fs = VEx.add(VEx, rmNearestTiesToEven); | ||||
| 1932 | assert(fs == opOK)(static_cast <bool> (fs == opOK) ? void (0) : __assert_fail ("fs == opOK", "llvm/lib/Support/APFloat.cpp", 1932, __extension__ __PRETTY_FUNCTION__)); | ||||
| 1933 | |||||
| 1934 | if (VEx.compare(PEx) == cmpGreaterThan) { | ||||
| 1935 | fs = subtract(P, rmNearestTiesToEven); | ||||
| 1936 | assert(fs == opOK)(static_cast <bool> (fs == opOK) ? void (0) : __assert_fail ("fs == opOK", "llvm/lib/Support/APFloat.cpp", 1936, __extension__ __PRETTY_FUNCTION__)); | ||||
| 1937 | |||||
| 1938 | // Make VEx = this.add(this), but because we have different semantics, we do | ||||
| 1939 | // not want to `convert` again, so we just subtract PEx twice (which equals | ||||
| 1940 | // to the desired value). | ||||
| 1941 | fs = VEx.subtract(PEx, rmNearestTiesToEven); | ||||
| 1942 | assert(fs == opOK)(static_cast <bool> (fs == opOK) ? void (0) : __assert_fail ("fs == opOK", "llvm/lib/Support/APFloat.cpp", 1942, __extension__ __PRETTY_FUNCTION__)); | ||||
| 1943 | fs = VEx.subtract(PEx, rmNearestTiesToEven); | ||||
| 1944 | assert(fs == opOK)(static_cast <bool> (fs == opOK) ? void (0) : __assert_fail ("fs == opOK", "llvm/lib/Support/APFloat.cpp", 1944, __extension__ __PRETTY_FUNCTION__)); | ||||
| 1945 | |||||
| 1946 | cmpResult result = VEx.compare(PEx); | ||||
| 1947 | if (result == cmpGreaterThan || result == cmpEqual) { | ||||
| 1948 | fs = subtract(P, rmNearestTiesToEven); | ||||
| 1949 | assert(fs == opOK)(static_cast <bool> (fs == opOK) ? void (0) : __assert_fail ("fs == opOK", "llvm/lib/Support/APFloat.cpp", 1949, __extension__ __PRETTY_FUNCTION__)); | ||||
| 1950 | } | ||||
| 1951 | } | ||||
| 1952 | |||||
| 1953 | if (isZero()) | ||||
| 1954 | sign = origSign; // IEEE754 requires this | ||||
| 1955 | else | ||||
| 1956 | sign ^= origSign; | ||||
| 1957 | return fs; | ||||
| 1958 | } | ||||
| 1959 | |||||
| 1960 | /* Normalized llvm frem (C fmod). */ | ||||
| 1961 | IEEEFloat::opStatus IEEEFloat::mod(const IEEEFloat &rhs) { | ||||
| 1962 | opStatus fs; | ||||
| 1963 | fs = modSpecials(rhs); | ||||
| 1964 | unsigned int origSign = sign; | ||||
| 1965 | |||||
| 1966 | while (isFiniteNonZero() && rhs.isFiniteNonZero() && | ||||
| 1967 | compareAbsoluteValue(rhs) != cmpLessThan) { | ||||
| 1968 | IEEEFloat V = scalbn(rhs, ilogb(*this) - ilogb(rhs), rmNearestTiesToEven); | ||||
| 1969 | if (compareAbsoluteValue(V) == cmpLessThan) | ||||
| 1970 | V = scalbn(V, -1, rmNearestTiesToEven); | ||||
| 1971 | V.sign = sign; | ||||
| 1972 | |||||
| 1973 | fs = subtract(V, rmNearestTiesToEven); | ||||
| 1974 | assert(fs==opOK)(static_cast <bool> (fs==opOK) ? void (0) : __assert_fail ("fs==opOK", "llvm/lib/Support/APFloat.cpp", 1974, __extension__ __PRETTY_FUNCTION__)); | ||||
| 1975 | } | ||||
| 1976 | if (isZero()) | ||||
| 1977 | sign = origSign; // fmod requires this | ||||
| 1978 | return fs; | ||||
| 1979 | } | ||||
| 1980 | |||||
| 1981 | /* Normalized fused-multiply-add. */ | ||||
| 1982 | IEEEFloat::opStatus IEEEFloat::fusedMultiplyAdd(const IEEEFloat &multiplicand, | ||||
| 1983 | const IEEEFloat &addend, | ||||
| 1984 | roundingMode rounding_mode) { | ||||
| 1985 | opStatus fs; | ||||
| 1986 | |||||
| 1987 | /* Post-multiplication sign, before addition. */ | ||||
| 1988 | sign ^= multiplicand.sign; | ||||
| 1989 | |||||
| 1990 | /* If and only if all arguments are normal do we need to do an | ||||
| 1991 | extended-precision calculation. */ | ||||
| 1992 | if (isFiniteNonZero() && | ||||
| 1993 | multiplicand.isFiniteNonZero() && | ||||
| 1994 | addend.isFinite()) { | ||||
| 1995 | lostFraction lost_fraction; | ||||
| 1996 | |||||
| 1997 | lost_fraction = multiplySignificand(multiplicand, addend); | ||||
| 1998 | fs = normalize(rounding_mode, lost_fraction); | ||||
| 1999 | if (lost_fraction != lfExactlyZero) | ||||
| 2000 | fs = (opStatus) (fs | opInexact); | ||||
| 2001 | |||||
| 2002 | /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a | ||||
| 2003 | positive zero unless rounding to minus infinity, except that | ||||
| 2004 | adding two like-signed zeroes gives that zero. */ | ||||
| 2005 | if (category == fcZero && !(fs & opUnderflow) && sign != addend.sign) | ||||
| 2006 | sign = (rounding_mode == rmTowardNegative); | ||||
| 2007 | } else { | ||||
| 2008 | fs = multiplySpecials(multiplicand); | ||||
| 2009 | |||||
| 2010 | /* FS can only be opOK or opInvalidOp. There is no more work | ||||
| 2011 | to do in the latter case. The IEEE-754R standard says it is | ||||
| 2012 | implementation-defined in this case whether, if ADDEND is a | ||||
| 2013 | quiet NaN, we raise invalid op; this implementation does so. | ||||
| 2014 | |||||
| 2015 | If we need to do the addition we can do so with normal | ||||
| 2016 | precision. */ | ||||
| 2017 | if (fs == opOK) | ||||
| 2018 | fs = addOrSubtract(addend, rounding_mode, false); | ||||
| 2019 | } | ||||
| 2020 | |||||
| 2021 | return fs; | ||||
| 2022 | } | ||||
| 2023 | |||||
| 2024 | /* Rounding-mode correct round to integral value. */ | ||||
| 2025 | IEEEFloat::opStatus IEEEFloat::roundToIntegral(roundingMode rounding_mode) { | ||||
| 2026 | opStatus fs; | ||||
| 2027 | |||||
| 2028 | if (isInfinity()) | ||||
| 2029 | // [IEEE Std 754-2008 6.1]: | ||||
| 2030 | // The behavior of infinity in floating-point arithmetic is derived from the | ||||
| 2031 | // limiting cases of real arithmetic with operands of arbitrarily | ||||
| 2032 | // large magnitude, when such a limit exists. | ||||
| 2033 | // ... | ||||
| 2034 | // Operations on infinite operands are usually exact and therefore signal no | ||||
| 2035 | // exceptions ... | ||||
| 2036 | return opOK; | ||||
| 2037 | |||||
| 2038 | if (isNaN()) { | ||||
| 2039 | if (isSignaling()) { | ||||
| 2040 | // [IEEE Std 754-2008 6.2]: | ||||
| 2041 | // Under default exception handling, any operation signaling an invalid | ||||
| 2042 | // operation exception and for which a floating-point result is to be | ||||
| 2043 | // delivered shall deliver a quiet NaN. | ||||
| 2044 | makeQuiet(); | ||||
| 2045 | // [IEEE Std 754-2008 6.2]: | ||||
| 2046 | // Signaling NaNs shall be reserved operands that, under default exception | ||||
| 2047 | // handling, signal the invalid operation exception(see 7.2) for every | ||||
| 2048 | // general-computational and signaling-computational operation except for | ||||
| 2049 | // the conversions described in 5.12. | ||||
| 2050 | return opInvalidOp; | ||||
| 2051 | } else { | ||||
| 2052 | // [IEEE Std 754-2008 6.2]: | ||||
| 2053 | // For an operation with quiet NaN inputs, other than maximum and minimum | ||||
| 2054 | // operations, if a floating-point result is to be delivered the result | ||||
| 2055 | // shall be a quiet NaN which should be one of the input NaNs. | ||||
| 2056 | // ... | ||||
| 2057 | // Every general-computational and quiet-computational operation involving | ||||
| 2058 | // one or more input NaNs, none of them signaling, shall signal no | ||||
| 2059 | // exception, except fusedMultiplyAdd might signal the invalid operation | ||||
| 2060 | // exception(see 7.2). | ||||
| 2061 | return opOK; | ||||
| 2062 | } | ||||
| 2063 | } | ||||
| 2064 | |||||
| 2065 | if (isZero()) { | ||||
| 2066 | // [IEEE Std 754-2008 6.3]: | ||||
| 2067 | // ... the sign of the result of conversions, the quantize operation, the | ||||
| 2068 | // roundToIntegral operations, and the roundToIntegralExact(see 5.3.1) is | ||||
| 2069 | // the sign of the first or only operand. | ||||
| 2070 | return opOK; | ||||
| 2071 | } | ||||
| 2072 | |||||
| 2073 | // If the exponent is large enough, we know that this value is already | ||||
| 2074 | // integral, and the arithmetic below would potentially cause it to saturate | ||||
| 2075 | // to +/-Inf. Bail out early instead. | ||||
| 2076 | if (exponent+1 >= (int)semanticsPrecision(*semantics)) | ||||
| 2077 | return opOK; | ||||
| 2078 | |||||
| 2079 | // The algorithm here is quite simple: we add 2^(p-1), where p is the | ||||
| 2080 | // precision of our format, and then subtract it back off again. The choice | ||||
| 2081 | // of rounding modes for the addition/subtraction determines the rounding mode | ||||
| 2082 | // for our integral rounding as well. | ||||
| 2083 | // NOTE: When the input value is negative, we do subtraction followed by | ||||
| 2084 | // addition instead. | ||||
| 2085 | APInt IntegerConstant(NextPowerOf2(semanticsPrecision(*semantics)), 1); | ||||
| 2086 | IntegerConstant <<= semanticsPrecision(*semantics)-1; | ||||
| 2087 | IEEEFloat MagicConstant(*semantics); | ||||
| 2088 | fs = MagicConstant.convertFromAPInt(IntegerConstant, false, | ||||
| 2089 | rmNearestTiesToEven); | ||||
| 2090 | assert(fs == opOK)(static_cast <bool> (fs == opOK) ? void (0) : __assert_fail ("fs == opOK", "llvm/lib/Support/APFloat.cpp", 2090, __extension__ __PRETTY_FUNCTION__)); | ||||
| 2091 | MagicConstant.sign = sign; | ||||
| 2092 | |||||
| 2093 | // Preserve the input sign so that we can handle the case of zero result | ||||
| 2094 | // correctly. | ||||
| 2095 | bool inputSign = isNegative(); | ||||
| 2096 | |||||
| 2097 | fs = add(MagicConstant, rounding_mode); | ||||
| 2098 | |||||
| 2099 | // Current value and 'MagicConstant' are both integers, so the result of the | ||||
| 2100 | // subtraction is always exact according to Sterbenz' lemma. | ||||
| 2101 | subtract(MagicConstant, rounding_mode); | ||||
| 2102 | |||||
| 2103 | // Restore the input sign. | ||||
| 2104 | if (inputSign != isNegative()) | ||||
| 2105 | changeSign(); | ||||
| 2106 | |||||
| 2107 | return fs; | ||||
| 2108 | } | ||||
| 2109 | |||||
| 2110 | |||||
| 2111 | /* Comparison requires normalized numbers. */ | ||||
| 2112 | IEEEFloat::cmpResult IEEEFloat::compare(const IEEEFloat &rhs) const { | ||||
| 2113 | cmpResult result; | ||||
| 2114 | |||||
| 2115 | assert(semantics == rhs.semantics)(static_cast <bool> (semantics == rhs.semantics) ? void (0) : __assert_fail ("semantics == rhs.semantics", "llvm/lib/Support/APFloat.cpp" , 2115, __extension__ __PRETTY_FUNCTION__)); | ||||
| 2116 | |||||
| 2117 | switch (PackCategoriesIntoKey(category, rhs.category)((category) * 4 + (rhs.category))) { | ||||
| 2118 | default: | ||||
| 2119 | llvm_unreachable(nullptr)::llvm::llvm_unreachable_internal(nullptr, "llvm/lib/Support/APFloat.cpp" , 2119); | ||||
| 2120 | |||||
| 2121 | case PackCategoriesIntoKey(fcNaN, fcZero)((fcNaN) * 4 + (fcZero)): | ||||
| 2122 | case PackCategoriesIntoKey(fcNaN, fcNormal)((fcNaN) * 4 + (fcNormal)): | ||||
| 2123 | case PackCategoriesIntoKey(fcNaN, fcInfinity)((fcNaN) * 4 + (fcInfinity)): | ||||
| 2124 | case PackCategoriesIntoKey(fcNaN, fcNaN)((fcNaN) * 4 + (fcNaN)): | ||||
| 2125 | case PackCategoriesIntoKey(fcZero, fcNaN)((fcZero) * 4 + (fcNaN)): | ||||
| 2126 | case PackCategoriesIntoKey(fcNormal, fcNaN)((fcNormal) * 4 + (fcNaN)): | ||||
| 2127 | case PackCategoriesIntoKey(fcInfinity, fcNaN)((fcInfinity) * 4 + (fcNaN)): | ||||
| 2128 | return cmpUnordered; | ||||
| 2129 | |||||
| 2130 | case PackCategoriesIntoKey(fcInfinity, fcNormal)((fcInfinity) * 4 + (fcNormal)): | ||||
| 2131 | case PackCategoriesIntoKey(fcInfinity, fcZero)((fcInfinity) * 4 + (fcZero)): | ||||
| 2132 | case PackCategoriesIntoKey(fcNormal, fcZero)((fcNormal) * 4 + (fcZero)): | ||||
| 2133 | if (sign) | ||||
| 2134 | return cmpLessThan; | ||||
| 2135 | else | ||||
| 2136 | return cmpGreaterThan; | ||||
| 2137 | |||||
| 2138 | case PackCategoriesIntoKey(fcNormal, fcInfinity)((fcNormal) * 4 + (fcInfinity)): | ||||
| 2139 | case PackCategoriesIntoKey(fcZero, fcInfinity)((fcZero) * 4 + (fcInfinity)): | ||||
| 2140 | case PackCategoriesIntoKey(fcZero, fcNormal)((fcZero) * 4 + (fcNormal)): | ||||
| 2141 | if (rhs.sign) | ||||
| 2142 | return cmpGreaterThan; | ||||
| 2143 | else | ||||
| 2144 | return cmpLessThan; | ||||
| 2145 | |||||
| 2146 | case PackCategoriesIntoKey(fcInfinity, fcInfinity)((fcInfinity) * 4 + (fcInfinity)): | ||||
| 2147 | if (sign == rhs.sign) | ||||
| 2148 | return cmpEqual; | ||||
| 2149 | else if (sign) | ||||
| 2150 | return cmpLessThan; | ||||
| 2151 | else | ||||
| 2152 | return cmpGreaterThan; | ||||
| 2153 | |||||
| 2154 | case PackCategoriesIntoKey(fcZero, fcZero)((fcZero) * 4 + (fcZero)): | ||||
| 2155 | return cmpEqual; | ||||
| 2156 | |||||
| 2157 | case PackCategoriesIntoKey(fcNormal, fcNormal)((fcNormal) * 4 + (fcNormal)): | ||||
| 2158 | break; | ||||
| 2159 | } | ||||
| 2160 | |||||
| 2161 | /* Two normal numbers. Do they have the same sign? */ | ||||
| 2162 | if (sign != rhs.sign) { | ||||
| 2163 | if (sign) | ||||
| 2164 | result = cmpLessThan; | ||||
| 2165 | else | ||||
| 2166 | result = cmpGreaterThan; | ||||
| 2167 | } else { | ||||
| 2168 | /* Compare absolute values; invert result if negative. */ | ||||
| 2169 | result = compareAbsoluteValue(rhs); | ||||
| 2170 | |||||
| 2171 | if (sign) { | ||||
| 2172 | if (result == cmpLessThan) | ||||
| 2173 | result = cmpGreaterThan; | ||||
| 2174 | else if (result == cmpGreaterThan) | ||||
| 2175 | result = cmpLessThan; | ||||
| 2176 | } | ||||
| 2177 | } | ||||
| 2178 | |||||
| 2179 | return result; | ||||
| 2180 | } | ||||
| 2181 | |||||
| 2182 | /// IEEEFloat::convert - convert a value of one floating point type to another. | ||||
| 2183 | /// The return value corresponds to the IEEE754 exceptions. *losesInfo | ||||
| 2184 | /// records whether the transformation lost information, i.e. whether | ||||
| 2185 | /// converting the result back to the original type will produce the | ||||
| 2186 | /// original value (this is almost the same as return value==fsOK, but there | ||||
| 2187 | /// are edge cases where this is not so). | ||||
| 2188 | |||||
| 2189 | IEEEFloat::opStatus IEEEFloat::convert(const fltSemantics &toSemantics, | ||||
| 2190 | roundingMode rounding_mode, | ||||
| 2191 | bool *losesInfo) { | ||||
| 2192 | lostFraction lostFraction; | ||||
| 2193 | unsigned int newPartCount, oldPartCount; | ||||
| 2194 | opStatus fs; | ||||
| 2195 | int shift; | ||||
| 2196 | const fltSemantics &fromSemantics = *semantics; | ||||
| 2197 | |||||
| 2198 | lostFraction = lfExactlyZero; | ||||
| 2199 | newPartCount = partCountForBits(toSemantics.precision + 1); | ||||
| 2200 | oldPartCount = partCount(); | ||||
| 2201 | shift = toSemantics.precision - fromSemantics.precision; | ||||
| 2202 | |||||
| 2203 | bool X86SpecialNan = false; | ||||
| 2204 | if (&fromSemantics == &semX87DoubleExtended && | ||||
| 2205 | &toSemantics != &semX87DoubleExtended && category == fcNaN && | ||||
| 2206 | (!(*significandParts() & 0x8000000000000000ULL) || | ||||
| 2207 | !(*significandParts() & 0x4000000000000000ULL))) { | ||||
| 2208 | // x86 has some unusual NaNs which cannot be represented in any other | ||||
| 2209 | // format; note them here. | ||||
| 2210 | X86SpecialNan = true; | ||||
| 2211 | } | ||||
| 2212 | |||||
| 2213 | // If this is a truncation of a denormal number, and the target semantics | ||||
| 2214 | // has larger exponent range than the source semantics (this can happen | ||||
| 2215 | // when truncating from PowerPC double-double to double format), the | ||||
| 2216 | // right shift could lose result mantissa bits. Adjust exponent instead | ||||
| 2217 | // of performing excessive shift. | ||||
| 2218 | // Also do a similar trick in case shifting denormal would produce zero | ||||
| 2219 | // significand as this case isn't handled correctly by normalize. | ||||
| 2220 | if (shift < 0 && isFiniteNonZero()) { | ||||
| 2221 | int omsb = significandMSB() + 1; | ||||
| 2222 | int exponentChange = omsb - fromSemantics.precision; | ||||
| 2223 | if (exponent + exponentChange < toSemantics.minExponent) | ||||
| 2224 | exponentChange = toSemantics.minExponent - exponent; | ||||
| 2225 | if (exponentChange < shift) | ||||
| 2226 | exponentChange = shift; | ||||
| 2227 | if (exponentChange < 0) { | ||||
| 2228 | shift -= exponentChange; | ||||
| 2229 | exponent += exponentChange; | ||||
| 2230 | } else if (omsb <= -shift) { | ||||
| 2231 | exponentChange = omsb + shift - 1; // leave at least one bit set | ||||
| 2232 | shift -= exponentChange; | ||||
| 2233 | exponent += exponentChange; | ||||
| 2234 | } | ||||
| 2235 | } | ||||
| 2236 | |||||
| 2237 | // If this is a truncation, perform the shift before we narrow the storage. | ||||
| 2238 | if (shift
| ||||
| 2239 | lostFraction = shiftRight(significandParts(), oldPartCount, -shift); | ||||
| 2240 | |||||
| 2241 | // Fix the storage so it can hold to new value. | ||||
| 2242 | if (newPartCount > oldPartCount) { | ||||
| 2243 | // The new type requires more storage; make it available. | ||||
| 2244 | integerPart *newParts; | ||||
| 2245 | newParts = new integerPart[newPartCount]; | ||||
| 2246 | APInt::tcSet(newParts, 0, newPartCount); | ||||
| 2247 | if (isFiniteNonZero() || category==fcNaN) | ||||
| 2248 | APInt::tcAssign(newParts, significandParts(), oldPartCount); | ||||
| 2249 | freeSignificand(); | ||||
| 2250 | significand.parts = newParts; | ||||
| 2251 | } else if (newPartCount
| ||||
| 2252 | // Switch to built-in storage for a single part. | ||||
| 2253 | integerPart newPart = 0; | ||||
| 2254 | if (isFiniteNonZero() || category==fcNaN) | ||||
| 2255 | newPart = significandParts()[0]; | ||||
| 2256 | freeSignificand(); | ||||
| 2257 | significand.part = newPart; | ||||
| 2258 | } | ||||
| 2259 | |||||
| 2260 | // Now that we have the right storage, switch the semantics. | ||||
| 2261 | semantics = &toSemantics; | ||||
| 2262 | |||||
| 2263 | // If this is an extension, perform the shift now that the storage is | ||||
| 2264 | // available. | ||||
| 2265 | if (shift > 0 && (isFiniteNonZero() || category==fcNaN)) | ||||
| 2266 | APInt::tcShiftLeft(significandParts(), newPartCount, shift); | ||||
| 2267 | |||||
| 2268 | if (isFiniteNonZero()) { | ||||
| |||||
| 2269 | fs = normalize(rounding_mode, lostFraction); | ||||
| 2270 | *losesInfo = (fs != opOK); | ||||
| 2271 | } else if (category == fcNaN) { | ||||
| 2272 | *losesInfo = lostFraction != lfExactlyZero || X86SpecialNan; | ||||
| 2273 | |||||
| 2274 | // For x87 extended precision, we want to make a NaN, not a special NaN if | ||||
| 2275 | // the input wasn't special either. | ||||
| 2276 | if (!X86SpecialNan && semantics == &semX87DoubleExtended) | ||||
| 2277 | APInt::tcSetBit(significandParts(), semantics->precision - 1); | ||||
| 2278 | |||||
| 2279 | // Convert of sNaN creates qNaN and raises an exception (invalid op). | ||||
| 2280 | // This also guarantees that a sNaN does not become Inf on a truncation | ||||
| 2281 | // that loses all payload bits. | ||||
| 2282 | if (isSignaling()) { | ||||
| 2283 | makeQuiet(); | ||||
| 2284 | fs = opInvalidOp; | ||||
| 2285 | } else { | ||||
| 2286 | fs = opOK; | ||||
| 2287 | } | ||||
| 2288 | } else { | ||||
| 2289 | *losesInfo = false; | ||||
| 2290 | fs = opOK; | ||||
| 2291 | } | ||||
| 2292 | |||||
| 2293 | return fs; | ||||
| 2294 | } | ||||
| 2295 | |||||
| 2296 | /* Convert a floating point number to an integer according to the | ||||
| 2297 | rounding mode. If the rounded integer value is out of range this | ||||
| 2298 | returns an invalid operation exception and the contents of the | ||||
| 2299 | destination parts are unspecified. If the rounded value is in | ||||
| 2300 | range but the floating point number is not the exact integer, the C | ||||
| 2301 | standard doesn't require an inexact exception to be raised. IEEE | ||||
| 2302 | 854 does require it so we do that. | ||||
| 2303 | |||||
| 2304 | Note that for conversions to integer type the C standard requires | ||||
| 2305 | round-to-zero to always be used. */ | ||||
| 2306 | IEEEFloat::opStatus IEEEFloat::convertToSignExtendedInteger( | ||||
| 2307 | MutableArrayRef<integerPart> parts, unsigned int width, bool isSigned, | ||||
| 2308 | roundingMode rounding_mode, bool *isExact) const { | ||||
| 2309 | lostFraction lost_fraction; | ||||
| 2310 | const integerPart *src; | ||||
| 2311 | unsigned int dstPartsCount, truncatedBits; | ||||
| 2312 | |||||
| 2313 | *isExact = false; | ||||
| 2314 | |||||
| 2315 | /* Handle the three special cases first. */ | ||||
| 2316 | if (category == fcInfinity || category == fcNaN) | ||||
| 2317 | return opInvalidOp; | ||||
| 2318 | |||||
| 2319 | dstPartsCount = partCountForBits(width); | ||||
| 2320 | assert(dstPartsCount <= parts.size() && "Integer too big")(static_cast <bool> (dstPartsCount <= parts.size() && "Integer too big") ? void (0) : __assert_fail ("dstPartsCount <= parts.size() && \"Integer too big\"" , "llvm/lib/Support/APFloat.cpp", 2320, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 2321 | |||||
| 2322 | if (category == fcZero) { | ||||
| 2323 | APInt::tcSet(parts.data(), 0, dstPartsCount); | ||||
| 2324 | // Negative zero can't be represented as an int. | ||||
| 2325 | *isExact = !sign; | ||||
| 2326 | return opOK; | ||||
| 2327 | } | ||||
| 2328 | |||||
| 2329 | src = significandParts(); | ||||
| 2330 | |||||
| 2331 | /* Step 1: place our absolute value, with any fraction truncated, in | ||||
| 2332 | the destination. */ | ||||
| 2333 | if (exponent < 0) { | ||||
| 2334 | /* Our absolute value is less than one; truncate everything. */ | ||||
| 2335 | APInt::tcSet(parts.data(), 0, dstPartsCount); | ||||
| 2336 | /* For exponent -1 the integer bit represents .5, look at that. | ||||
| 2337 | For smaller exponents leftmost truncated bit is 0. */ | ||||
| 2338 | truncatedBits = semantics->precision -1U - exponent; | ||||
| 2339 | } else { | ||||
| 2340 | /* We want the most significant (exponent + 1) bits; the rest are | ||||
| 2341 | truncated. */ | ||||
| 2342 | unsigned int bits = exponent + 1U; | ||||
| 2343 | |||||
| 2344 | /* Hopelessly large in magnitude? */ | ||||
| 2345 | if (bits > width) | ||||
| 2346 | return opInvalidOp; | ||||
| 2347 | |||||
| 2348 | if (bits < semantics->precision) { | ||||
| 2349 | /* We truncate (semantics->precision - bits) bits. */ | ||||
| 2350 | truncatedBits = semantics->precision - bits; | ||||
| 2351 | APInt::tcExtract(parts.data(), dstPartsCount, src, bits, truncatedBits); | ||||
| 2352 | } else { | ||||
| 2353 | /* We want at least as many bits as are available. */ | ||||
| 2354 | APInt::tcExtract(parts.data(), dstPartsCount, src, semantics->precision, | ||||
| 2355 | 0); | ||||
| 2356 | APInt::tcShiftLeft(parts.data(), dstPartsCount, | ||||
| 2357 | bits - semantics->precision); | ||||
| 2358 | truncatedBits = 0; | ||||
| 2359 | } | ||||
| 2360 | } | ||||
| 2361 | |||||
| 2362 | /* Step 2: work out any lost fraction, and increment the absolute | ||||
| 2363 | value if we would round away from zero. */ | ||||
| 2364 | if (truncatedBits) { | ||||
| 2365 | lost_fraction = lostFractionThroughTruncation(src, partCount(), | ||||
| 2366 | truncatedBits); | ||||
| 2367 | if (lost_fraction != lfExactlyZero && | ||||
| 2368 | roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) { | ||||
| 2369 | if (APInt::tcIncrement(parts.data(), dstPartsCount)) | ||||
| 2370 | return opInvalidOp; /* Overflow. */ | ||||
| 2371 | } | ||||
| 2372 | } else { | ||||
| 2373 | lost_fraction = lfExactlyZero; | ||||
| 2374 | } | ||||
| 2375 | |||||
| 2376 | /* Step 3: check if we fit in the destination. */ | ||||
| 2377 | unsigned int omsb = APInt::tcMSB(parts.data(), dstPartsCount) + 1; | ||||
| 2378 | |||||
| 2379 | if (sign) { | ||||
| 2380 | if (!isSigned) { | ||||
| 2381 | /* Negative numbers cannot be represented as unsigned. */ | ||||
| 2382 | if (omsb != 0) | ||||
| 2383 | return opInvalidOp; | ||||
| 2384 | } else { | ||||
| 2385 | /* It takes omsb bits to represent the unsigned integer value. | ||||
| 2386 | We lose a bit for the sign, but care is needed as the | ||||
| 2387 | maximally negative integer is a special case. */ | ||||
| 2388 | if (omsb == width && | ||||
| 2389 | APInt::tcLSB(parts.data(), dstPartsCount) + 1 != omsb) | ||||
| 2390 | return opInvalidOp; | ||||
| 2391 | |||||
| 2392 | /* This case can happen because of rounding. */ | ||||
| 2393 | if (omsb > width) | ||||
| 2394 | return opInvalidOp; | ||||
| 2395 | } | ||||
| 2396 | |||||
| 2397 | APInt::tcNegate (parts.data(), dstPartsCount); | ||||
| 2398 | } else { | ||||
| 2399 | if (omsb >= width + !isSigned) | ||||
| 2400 | return opInvalidOp; | ||||
| 2401 | } | ||||
| 2402 | |||||
| 2403 | if (lost_fraction == lfExactlyZero) { | ||||
| 2404 | *isExact = true; | ||||
| 2405 | return opOK; | ||||
| 2406 | } else | ||||
| 2407 | return opInexact; | ||||
| 2408 | } | ||||
| 2409 | |||||
| 2410 | /* Same as convertToSignExtendedInteger, except we provide | ||||
| 2411 | deterministic values in case of an invalid operation exception, | ||||
| 2412 | namely zero for NaNs and the minimal or maximal value respectively | ||||
| 2413 | for underflow or overflow. | ||||
| 2414 | The *isExact output tells whether the result is exact, in the sense | ||||
| 2415 | that converting it back to the original floating point type produces | ||||
| 2416 | the original value. This is almost equivalent to result==opOK, | ||||
| 2417 | except for negative zeroes. | ||||
| 2418 | */ | ||||
| 2419 | IEEEFloat::opStatus | ||||
| 2420 | IEEEFloat::convertToInteger(MutableArrayRef<integerPart> parts, | ||||
| 2421 | unsigned int width, bool isSigned, | ||||
| 2422 | roundingMode rounding_mode, bool *isExact) const { | ||||
| 2423 | opStatus fs; | ||||
| 2424 | |||||
| 2425 | fs = convertToSignExtendedInteger(parts, width, isSigned, rounding_mode, | ||||
| 2426 | isExact); | ||||
| 2427 | |||||
| 2428 | if (fs == opInvalidOp) { | ||||
| 2429 | unsigned int bits, dstPartsCount; | ||||
| 2430 | |||||
| 2431 | dstPartsCount = partCountForBits(width); | ||||
| 2432 | assert(dstPartsCount <= parts.size() && "Integer too big")(static_cast <bool> (dstPartsCount <= parts.size() && "Integer too big") ? void (0) : __assert_fail ("dstPartsCount <= parts.size() && \"Integer too big\"" , "llvm/lib/Support/APFloat.cpp", 2432, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 2433 | |||||
| 2434 | if (category == fcNaN) | ||||
| 2435 | bits = 0; | ||||
| 2436 | else if (sign) | ||||
| 2437 | bits = isSigned; | ||||
| 2438 | else | ||||
| 2439 | bits = width - isSigned; | ||||
| 2440 | |||||
| 2441 | tcSetLeastSignificantBits(parts.data(), dstPartsCount, bits); | ||||
| 2442 | if (sign && isSigned) | ||||
| 2443 | APInt::tcShiftLeft(parts.data(), dstPartsCount, width - 1); | ||||
| 2444 | } | ||||
| 2445 | |||||
| 2446 | return fs; | ||||
| 2447 | } | ||||
| 2448 | |||||
| 2449 | /* Convert an unsigned integer SRC to a floating point number, | ||||
| 2450 | rounding according to ROUNDING_MODE. The sign of the floating | ||||
| 2451 | point number is not modified. */ | ||||
| 2452 | IEEEFloat::opStatus IEEEFloat::convertFromUnsignedParts( | ||||
| 2453 | const integerPart *src, unsigned int srcCount, roundingMode rounding_mode) { | ||||
| 2454 | unsigned int omsb, precision, dstCount; | ||||
| 2455 | integerPart *dst; | ||||
| 2456 | lostFraction lost_fraction; | ||||
| 2457 | |||||
| 2458 | category = fcNormal; | ||||
| 2459 | omsb = APInt::tcMSB(src, srcCount) + 1; | ||||
| 2460 | dst = significandParts(); | ||||
| 2461 | dstCount = partCount(); | ||||
| 2462 | precision = semantics->precision; | ||||
| 2463 | |||||
| 2464 | /* We want the most significant PRECISION bits of SRC. There may not | ||||
| 2465 | be that many; extract what we can. */ | ||||
| 2466 | if (precision <= omsb) { | ||||
| 2467 | exponent = omsb - 1; | ||||
| 2468 | lost_fraction = lostFractionThroughTruncation(src, srcCount, | ||||
| 2469 | omsb - precision); | ||||
| 2470 | APInt::tcExtract(dst, dstCount, src, precision, omsb - precision); | ||||
| 2471 | } else { | ||||
| 2472 | exponent = precision - 1; | ||||
| 2473 | lost_fraction = lfExactlyZero; | ||||
| 2474 | APInt::tcExtract(dst, dstCount, src, omsb, 0); | ||||
| 2475 | } | ||||
| 2476 | |||||
| 2477 | return normalize(rounding_mode, lost_fraction); | ||||
| 2478 | } | ||||
| 2479 | |||||
| 2480 | IEEEFloat::opStatus IEEEFloat::convertFromAPInt(const APInt &Val, bool isSigned, | ||||
| 2481 | roundingMode rounding_mode) { | ||||
| 2482 | unsigned int partCount = Val.getNumWords(); | ||||
| 2483 | APInt api = Val; | ||||
| 2484 | |||||
| 2485 | sign = false; | ||||
| 2486 | if (isSigned && api.isNegative()) { | ||||
| 2487 | sign = true; | ||||
| 2488 | api = -api; | ||||
| 2489 | } | ||||
| 2490 | |||||
| 2491 | return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode); | ||||
| 2492 | } | ||||
| 2493 | |||||
| 2494 | /* Convert a two's complement integer SRC to a floating point number, | ||||
| 2495 | rounding according to ROUNDING_MODE. ISSIGNED is true if the | ||||
| 2496 | integer is signed, in which case it must be sign-extended. */ | ||||
| 2497 | IEEEFloat::opStatus | ||||
| 2498 | IEEEFloat::convertFromSignExtendedInteger(const integerPart *src, | ||||
| 2499 | unsigned int srcCount, bool isSigned, | ||||
| 2500 | roundingMode rounding_mode) { | ||||
| 2501 | opStatus status; | ||||
| 2502 | |||||
| 2503 | if (isSigned && | ||||
| 2504 | APInt::tcExtractBit(src, srcCount * integerPartWidth - 1)) { | ||||
| 2505 | integerPart *copy; | ||||
| 2506 | |||||
| 2507 | /* If we're signed and negative negate a copy. */ | ||||
| 2508 | sign = true; | ||||
| 2509 | copy = new integerPart[srcCount]; | ||||
| 2510 | APInt::tcAssign(copy, src, srcCount); | ||||
| 2511 | APInt::tcNegate(copy, srcCount); | ||||
| 2512 | status = convertFromUnsignedParts(copy, srcCount, rounding_mode); | ||||
| 2513 | delete [] copy; | ||||
| 2514 | } else { | ||||
| 2515 | sign = false; | ||||
| 2516 | status = convertFromUnsignedParts(src, srcCount, rounding_mode); | ||||
| 2517 | } | ||||
| 2518 | |||||
| 2519 | return status; | ||||
| 2520 | } | ||||
| 2521 | |||||
| 2522 | /* FIXME: should this just take a const APInt reference? */ | ||||
| 2523 | IEEEFloat::opStatus | ||||
| 2524 | IEEEFloat::convertFromZeroExtendedInteger(const integerPart *parts, | ||||
| 2525 | unsigned int width, bool isSigned, | ||||
| 2526 | roundingMode rounding_mode) { | ||||
| 2527 | unsigned int partCount = partCountForBits(width); | ||||
| 2528 | APInt api = APInt(width, makeArrayRef(parts, partCount)); | ||||
| 2529 | |||||
| 2530 | sign = false; | ||||
| 2531 | if (isSigned && APInt::tcExtractBit(parts, width - 1)) { | ||||
| 2532 | sign = true; | ||||
| 2533 | api = -api; | ||||
| 2534 | } | ||||
| 2535 | |||||
| 2536 | return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode); | ||||
| 2537 | } | ||||
| 2538 | |||||
| 2539 | Expected<IEEEFloat::opStatus> | ||||
| 2540 | IEEEFloat::convertFromHexadecimalString(StringRef s, | ||||
| 2541 | roundingMode rounding_mode) { | ||||
| 2542 | lostFraction lost_fraction = lfExactlyZero; | ||||
| 2543 | |||||
| 2544 | category = fcNormal; | ||||
| 2545 | zeroSignificand(); | ||||
| 2546 | exponent = 0; | ||||
| 2547 | |||||
| 2548 | integerPart *significand = significandParts(); | ||||
| 2549 | unsigned partsCount = partCount(); | ||||
| 2550 | unsigned bitPos = partsCount * integerPartWidth; | ||||
| 2551 | bool computedTrailingFraction = false; | ||||
| 2552 | |||||
| 2553 | // Skip leading zeroes and any (hexa)decimal point. | ||||
| 2554 | StringRef::iterator begin = s.begin(); | ||||
| 2555 | StringRef::iterator end = s.end(); | ||||
| 2556 | StringRef::iterator dot; | ||||
| 2557 | auto PtrOrErr = skipLeadingZeroesAndAnyDot(begin, end, &dot); | ||||
| 2558 | if (!PtrOrErr) | ||||
| 2559 | return PtrOrErr.takeError(); | ||||
| 2560 | StringRef::iterator p = *PtrOrErr; | ||||
| 2561 | StringRef::iterator firstSignificantDigit = p; | ||||
| 2562 | |||||
| 2563 | while (p != end) { | ||||
| 2564 | integerPart hex_value; | ||||
| 2565 | |||||
| 2566 | if (*p == '.') { | ||||
| 2567 | if (dot != end) | ||||
| 2568 | return createError("String contains multiple dots"); | ||||
| 2569 | dot = p++; | ||||
| 2570 | continue; | ||||
| 2571 | } | ||||
| 2572 | |||||
| 2573 | hex_value = hexDigitValue(*p); | ||||
| 2574 | if (hex_value == -1U) | ||||
| 2575 | break; | ||||
| 2576 | |||||
| 2577 | p++; | ||||
| 2578 | |||||
| 2579 | // Store the number while we have space. | ||||
| 2580 | if (bitPos) { | ||||
| 2581 | bitPos -= 4; | ||||
| 2582 | hex_value <<= bitPos % integerPartWidth; | ||||
| 2583 | significand[bitPos / integerPartWidth] |= hex_value; | ||||
| 2584 | } else if (!computedTrailingFraction) { | ||||
| 2585 | auto FractOrErr = trailingHexadecimalFraction(p, end, hex_value); | ||||
| 2586 | if (!FractOrErr) | ||||
| 2587 | return FractOrErr.takeError(); | ||||
| 2588 | lost_fraction = *FractOrErr; | ||||
| 2589 | computedTrailingFraction = true; | ||||
| 2590 | } | ||||
| 2591 | } | ||||
| 2592 | |||||
| 2593 | /* Hex floats require an exponent but not a hexadecimal point. */ | ||||
| 2594 | if (p == end) | ||||
| 2595 | return createError("Hex strings require an exponent"); | ||||
| 2596 | if (*p != 'p' && *p != 'P') | ||||
| 2597 | return createError("Invalid character in significand"); | ||||
| 2598 | if (p == begin) | ||||
| 2599 | return createError("Significand has no digits"); | ||||
| 2600 | if (dot != end && p - begin == 1) | ||||
| 2601 | return createError("Significand has no digits"); | ||||
| 2602 | |||||
| 2603 | /* Ignore the exponent if we are zero. */ | ||||
| 2604 | if (p != firstSignificantDigit) { | ||||
| 2605 | int expAdjustment; | ||||
| 2606 | |||||
| 2607 | /* Implicit hexadecimal point? */ | ||||
| 2608 | if (dot == end) | ||||
| 2609 | dot = p; | ||||
| 2610 | |||||
| 2611 | /* Calculate the exponent adjustment implicit in the number of | ||||
| 2612 | significant digits. */ | ||||
| 2613 | expAdjustment = static_cast<int>(dot - firstSignificantDigit); | ||||
| 2614 | if (expAdjustment < 0) | ||||
| 2615 | expAdjustment++; | ||||
| 2616 | expAdjustment = expAdjustment * 4 - 1; | ||||
| 2617 | |||||
| 2618 | /* Adjust for writing the significand starting at the most | ||||
| 2619 | significant nibble. */ | ||||
| 2620 | expAdjustment += semantics->precision; | ||||
| 2621 | expAdjustment -= partsCount * integerPartWidth; | ||||
| 2622 | |||||
| 2623 | /* Adjust for the given exponent. */ | ||||
| 2624 | auto ExpOrErr = totalExponent(p + 1, end, expAdjustment); | ||||
| 2625 | if (!ExpOrErr) | ||||
| 2626 | return ExpOrErr.takeError(); | ||||
| 2627 | exponent = *ExpOrErr; | ||||
| 2628 | } | ||||
| 2629 | |||||
| 2630 | return normalize(rounding_mode, lost_fraction); | ||||
| 2631 | } | ||||
| 2632 | |||||
| 2633 | IEEEFloat::opStatus | ||||
| 2634 | IEEEFloat::roundSignificandWithExponent(const integerPart *decSigParts, | ||||
| 2635 | unsigned sigPartCount, int exp, | ||||
| 2636 | roundingMode rounding_mode) { | ||||
| 2637 | unsigned int parts, pow5PartCount; | ||||
| 2638 | fltSemantics calcSemantics = { 32767, -32767, 0, 0 }; | ||||
| 2639 | integerPart pow5Parts[maxPowerOfFiveParts]; | ||||
| 2640 | bool isNearest; | ||||
| 2641 | |||||
| 2642 | isNearest = (rounding_mode == rmNearestTiesToEven || | ||||
| 2643 | rounding_mode == rmNearestTiesToAway); | ||||
| 2644 | |||||
| 2645 | parts = partCountForBits(semantics->precision + 11); | ||||
| 2646 | |||||
| 2647 | /* Calculate pow(5, abs(exp)). */ | ||||
| 2648 | pow5PartCount = powerOf5(pow5Parts, exp >= 0 ? exp: -exp); | ||||
| 2649 | |||||
| 2650 | for (;; parts *= 2) { | ||||
| 2651 | opStatus sigStatus, powStatus; | ||||
| 2652 | unsigned int excessPrecision, truncatedBits; | ||||
| 2653 | |||||
| 2654 | calcSemantics.precision = parts * integerPartWidth - 1; | ||||
| 2655 | excessPrecision = calcSemantics.precision - semantics->precision; | ||||
| 2656 | truncatedBits = excessPrecision; | ||||
| 2657 | |||||
| 2658 | IEEEFloat decSig(calcSemantics, uninitialized); | ||||
| 2659 | decSig.makeZero(sign); | ||||
| 2660 | IEEEFloat pow5(calcSemantics); | ||||
| 2661 | |||||
| 2662 | sigStatus = decSig.convertFromUnsignedParts(decSigParts, sigPartCount, | ||||
| 2663 | rmNearestTiesToEven); | ||||
| 2664 | powStatus = pow5.convertFromUnsignedParts(pow5Parts, pow5PartCount, | ||||
| 2665 | rmNearestTiesToEven); | ||||
| 2666 | /* Add exp, as 10^n = 5^n * 2^n. */ | ||||
| 2667 | decSig.exponent += exp; | ||||
| 2668 | |||||
| 2669 | lostFraction calcLostFraction; | ||||
| 2670 | integerPart HUerr, HUdistance; | ||||
| 2671 | unsigned int powHUerr; | ||||
| 2672 | |||||
| 2673 | if (exp >= 0) { | ||||
| 2674 | /* multiplySignificand leaves the precision-th bit set to 1. */ | ||||
| 2675 | calcLostFraction = decSig.multiplySignificand(pow5); | ||||
| 2676 | powHUerr = powStatus != opOK; | ||||
| 2677 | } else { | ||||
| 2678 | calcLostFraction = decSig.divideSignificand(pow5); | ||||
| 2679 | /* Denormal numbers have less precision. */ | ||||
| 2680 | if (decSig.exponent < semantics->minExponent) { | ||||
| 2681 | excessPrecision += (semantics->minExponent - decSig.exponent); | ||||
| 2682 | truncatedBits = excessPrecision; | ||||
| 2683 | if (excessPrecision > calcSemantics.precision) | ||||
| 2684 | excessPrecision = calcSemantics.precision; | ||||
| 2685 | } | ||||
| 2686 | /* Extra half-ulp lost in reciprocal of exponent. */ | ||||
| 2687 | powHUerr = (powStatus == opOK && calcLostFraction == lfExactlyZero) ? 0:2; | ||||
| 2688 | } | ||||
| 2689 | |||||
| 2690 | /* Both multiplySignificand and divideSignificand return the | ||||
| 2691 | result with the integer bit set. */ | ||||
| 2692 | assert(APInt::tcExtractBit(static_cast <bool> (APInt::tcExtractBit (decSig.significandParts (), calcSemantics.precision - 1) == 1) ? void (0) : __assert_fail ("APInt::tcExtractBit (decSig.significandParts(), calcSemantics.precision - 1) == 1" , "llvm/lib/Support/APFloat.cpp", 2693, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 2693 | (decSig.significandParts(), calcSemantics.precision - 1) == 1)(static_cast <bool> (APInt::tcExtractBit (decSig.significandParts (), calcSemantics.precision - 1) == 1) ? void (0) : __assert_fail ("APInt::tcExtractBit (decSig.significandParts(), calcSemantics.precision - 1) == 1" , "llvm/lib/Support/APFloat.cpp", 2693, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 2694 | |||||
| 2695 | HUerr = HUerrBound(calcLostFraction != lfExactlyZero, sigStatus != opOK, | ||||
| 2696 | powHUerr); | ||||
| 2697 | HUdistance = 2 * ulpsFromBoundary(decSig.significandParts(), | ||||
| 2698 | excessPrecision, isNearest); | ||||
| 2699 | |||||
| 2700 | /* Are we guaranteed to round correctly if we truncate? */ | ||||
| 2701 | if (HUdistance >= HUerr) { | ||||
| 2702 | APInt::tcExtract(significandParts(), partCount(), decSig.significandParts(), | ||||
| 2703 | calcSemantics.precision - excessPrecision, | ||||
| 2704 | excessPrecision); | ||||
| 2705 | /* Take the exponent of decSig. If we tcExtract-ed less bits | ||||
| 2706 | above we must adjust our exponent to compensate for the | ||||
| 2707 | implicit right shift. */ | ||||
| 2708 | exponent = (decSig.exponent + semantics->precision | ||||
| 2709 | - (calcSemantics.precision - excessPrecision)); | ||||
| 2710 | calcLostFraction = lostFractionThroughTruncation(decSig.significandParts(), | ||||
| 2711 | decSig.partCount(), | ||||
| 2712 | truncatedBits); | ||||
| 2713 | return normalize(rounding_mode, calcLostFraction); | ||||
| 2714 | } | ||||
| 2715 | } | ||||
| 2716 | } | ||||
| 2717 | |||||
| 2718 | Expected<IEEEFloat::opStatus> | ||||
| 2719 | IEEEFloat::convertFromDecimalString(StringRef str, roundingMode rounding_mode) { | ||||
| 2720 | decimalInfo D; | ||||
| 2721 | opStatus fs; | ||||
| 2722 | |||||
| 2723 | /* Scan the text. */ | ||||
| 2724 | StringRef::iterator p = str.begin(); | ||||
| 2725 | if (Error Err = interpretDecimal(p, str.end(), &D)) | ||||
| 2726 | return std::move(Err); | ||||
| 2727 | |||||
| 2728 | /* Handle the quick cases. First the case of no significant digits, | ||||
| 2729 | i.e. zero, and then exponents that are obviously too large or too | ||||
| 2730 | small. Writing L for log 10 / log 2, a number d.ddddd*10^exp | ||||
| 2731 | definitely overflows if | ||||
| 2732 | |||||
| 2733 | (exp - 1) * L >= maxExponent | ||||
| 2734 | |||||
| 2735 | and definitely underflows to zero where | ||||
| 2736 | |||||
| 2737 | (exp + 1) * L <= minExponent - precision | ||||
| 2738 | |||||
| 2739 | With integer arithmetic the tightest bounds for L are | ||||
| 2740 | |||||
| 2741 | 93/28 < L < 196/59 [ numerator <= 256 ] | ||||
| 2742 | 42039/12655 < L < 28738/8651 [ numerator <= 65536 ] | ||||
| 2743 | */ | ||||
| 2744 | |||||
| 2745 | // Test if we have a zero number allowing for strings with no null terminators | ||||
| 2746 | // and zero decimals with non-zero exponents. | ||||
| 2747 | // | ||||
| 2748 | // We computed firstSigDigit by ignoring all zeros and dots. Thus if | ||||
| 2749 | // D->firstSigDigit equals str.end(), every digit must be a zero and there can | ||||
| 2750 | // be at most one dot. On the other hand, if we have a zero with a non-zero | ||||
| 2751 | // exponent, then we know that D.firstSigDigit will be non-numeric. | ||||
| 2752 | if (D.firstSigDigit == str.end() || decDigitValue(*D.firstSigDigit) >= 10U) { | ||||
| 2753 | category = fcZero; | ||||
| 2754 | fs = opOK; | ||||
| 2755 | |||||
| 2756 | /* Check whether the normalized exponent is high enough to overflow | ||||
| 2757 | max during the log-rebasing in the max-exponent check below. */ | ||||
| 2758 | } else if (D.normalizedExponent - 1 > INT_MAX2147483647 / 42039) { | ||||
| 2759 | fs = handleOverflow(rounding_mode); | ||||
| 2760 | |||||
| 2761 | /* If it wasn't, then it also wasn't high enough to overflow max | ||||
| 2762 | during the log-rebasing in the min-exponent check. Check that it | ||||
| 2763 | won't overflow min in either check, then perform the min-exponent | ||||
| 2764 | check. */ | ||||
| 2765 | } else if (D.normalizedExponent - 1 < INT_MIN(-2147483647 -1) / 42039 || | ||||
| 2766 | (D.normalizedExponent + 1) * 28738 <= | ||||
| 2767 | 8651 * (semantics->minExponent - (int) semantics->precision)) { | ||||
| 2768 | /* Underflow to zero and round. */ | ||||
| 2769 | category = fcNormal; | ||||
| 2770 | zeroSignificand(); | ||||
| 2771 | fs = normalize(rounding_mode, lfLessThanHalf); | ||||
| 2772 | |||||
| 2773 | /* We can finally safely perform the max-exponent check. */ | ||||
| 2774 | } else if ((D.normalizedExponent - 1) * 42039 | ||||
| 2775 | >= 12655 * semantics->maxExponent) { | ||||
| 2776 | /* Overflow and round. */ | ||||
| 2777 | fs = handleOverflow(rounding_mode); | ||||
| 2778 | } else { | ||||
| 2779 | integerPart *decSignificand; | ||||
| 2780 | unsigned int partCount; | ||||
| 2781 | |||||
| 2782 | /* A tight upper bound on number of bits required to hold an | ||||
| 2783 | N-digit decimal integer is N * 196 / 59. Allocate enough space | ||||
| 2784 | to hold the full significand, and an extra part required by | ||||
| 2785 | tcMultiplyPart. */ | ||||
| 2786 | partCount = static_cast<unsigned int>(D.lastSigDigit - D.firstSigDigit) + 1; | ||||
| 2787 | partCount = partCountForBits(1 + 196 * partCount / 59); | ||||
| 2788 | decSignificand = new integerPart[partCount + 1]; | ||||
| 2789 | partCount = 0; | ||||
| 2790 | |||||
| 2791 | /* Convert to binary efficiently - we do almost all multiplication | ||||
| 2792 | in an integerPart. When this would overflow do we do a single | ||||
| 2793 | bignum multiplication, and then revert again to multiplication | ||||
| 2794 | in an integerPart. */ | ||||
| 2795 | do { | ||||
| 2796 | integerPart decValue, val, multiplier; | ||||
| 2797 | |||||
| 2798 | val = 0; | ||||
| 2799 | multiplier = 1; | ||||
| 2800 | |||||
| 2801 | do { | ||||
| 2802 | if (*p == '.') { | ||||
| 2803 | p++; | ||||
| 2804 | if (p == str.end()) { | ||||
| 2805 | break; | ||||
| 2806 | } | ||||
| 2807 | } | ||||
| 2808 | decValue = decDigitValue(*p++); | ||||
| 2809 | if (decValue >= 10U) { | ||||
| 2810 | delete[] decSignificand; | ||||
| 2811 | return createError("Invalid character in significand"); | ||||
| 2812 | } | ||||
| 2813 | multiplier *= 10; | ||||
| 2814 | val = val * 10 + decValue; | ||||
| 2815 | /* The maximum number that can be multiplied by ten with any | ||||
| 2816 | digit added without overflowing an integerPart. */ | ||||
| 2817 | } while (p <= D.lastSigDigit && multiplier <= (~ (integerPart) 0 - 9) / 10); | ||||
| 2818 | |||||
| 2819 | /* Multiply out the current part. */ | ||||
| 2820 | APInt::tcMultiplyPart(decSignificand, decSignificand, multiplier, val, | ||||
| 2821 | partCount, partCount + 1, false); | ||||
| 2822 | |||||
| 2823 | /* If we used another part (likely but not guaranteed), increase | ||||
| 2824 | the count. */ | ||||
| 2825 | if (decSignificand[partCount]) | ||||
| 2826 | partCount++; | ||||
| 2827 | } while (p <= D.lastSigDigit); | ||||
| 2828 | |||||
| 2829 | category = fcNormal; | ||||
| 2830 | fs = roundSignificandWithExponent(decSignificand, partCount, | ||||
| 2831 | D.exponent, rounding_mode); | ||||
| 2832 | |||||
| 2833 | delete [] decSignificand; | ||||
| 2834 | } | ||||
| 2835 | |||||
| 2836 | return fs; | ||||
| 2837 | } | ||||
| 2838 | |||||
| 2839 | bool IEEEFloat::convertFromStringSpecials(StringRef str) { | ||||
| 2840 | const size_t MIN_NAME_SIZE = 3; | ||||
| 2841 | |||||
| 2842 | if (str.size() < MIN_NAME_SIZE) | ||||
| 2843 | return false; | ||||
| 2844 | |||||
| 2845 | if (str.equals("inf") || str.equals("INFINITY") || str.equals("+Inf")) { | ||||
| 2846 | makeInf(false); | ||||
| 2847 | return true; | ||||
| 2848 | } | ||||
| 2849 | |||||
| 2850 | bool IsNegative = str.front() == '-'; | ||||
| 2851 | if (IsNegative) { | ||||
| 2852 | str = str.drop_front(); | ||||
| 2853 | if (str.size() < MIN_NAME_SIZE) | ||||
| 2854 | return false; | ||||
| 2855 | |||||
| 2856 | if (str.equals("inf") || str.equals("INFINITY") || str.equals("Inf")) { | ||||
| 2857 | makeInf(true); | ||||
| 2858 | return true; | ||||
| 2859 | } | ||||
| 2860 | } | ||||
| 2861 | |||||
| 2862 | // If we have a 's' (or 'S') prefix, then this is a Signaling NaN. | ||||
| 2863 | bool IsSignaling = str.front() == 's' || str.front() == 'S'; | ||||
| 2864 | if (IsSignaling) { | ||||
| 2865 | str = str.drop_front(); | ||||
| 2866 | if (str.size() < MIN_NAME_SIZE) | ||||
| 2867 | return false; | ||||
| 2868 | } | ||||
| 2869 | |||||
| 2870 | if (str.startswith("nan") || str.startswith("NaN")) { | ||||
| 2871 | str = str.drop_front(3); | ||||
| 2872 | |||||
| 2873 | // A NaN without payload. | ||||
| 2874 | if (str.empty()) { | ||||
| 2875 | makeNaN(IsSignaling, IsNegative); | ||||
| 2876 | return true; | ||||
| 2877 | } | ||||
| 2878 | |||||
| 2879 | // Allow the payload to be inside parentheses. | ||||
| 2880 | if (str.front() == '(') { | ||||
| 2881 | // Parentheses should be balanced (and not empty). | ||||
| 2882 | if (str.size() <= 2 || str.back() != ')') | ||||
| 2883 | return false; | ||||
| 2884 | |||||
| 2885 | str = str.slice(1, str.size() - 1); | ||||
| 2886 | } | ||||
| 2887 | |||||
| 2888 | // Determine the payload number's radix. | ||||
| 2889 | unsigned Radix = 10; | ||||
| 2890 | if (str[0] == '0') { | ||||
| 2891 | if (str.size() > 1 && tolower(str[1]) == 'x') { | ||||
| 2892 | str = str.drop_front(2); | ||||
| 2893 | Radix = 16; | ||||
| 2894 | } else | ||||
| 2895 | Radix = 8; | ||||
| 2896 | } | ||||
| 2897 | |||||
| 2898 | // Parse the payload and make the NaN. | ||||
| 2899 | APInt Payload; | ||||
| 2900 | if (!str.getAsInteger(Radix, Payload)) { | ||||
| 2901 | makeNaN(IsSignaling, IsNegative, &Payload); | ||||
| 2902 | return true; | ||||
| 2903 | } | ||||
| 2904 | } | ||||
| 2905 | |||||
| 2906 | return false; | ||||
| 2907 | } | ||||
| 2908 | |||||
| 2909 | Expected<IEEEFloat::opStatus> | ||||
| 2910 | IEEEFloat::convertFromString(StringRef str, roundingMode rounding_mode) { | ||||
| 2911 | if (str.empty()) | ||||
| 2912 | return createError("Invalid string length"); | ||||
| 2913 | |||||
| 2914 | // Handle special cases. | ||||
| 2915 | if (convertFromStringSpecials(str)) | ||||
| 2916 | return opOK; | ||||
| 2917 | |||||
| 2918 | /* Handle a leading minus sign. */ | ||||
| 2919 | StringRef::iterator p = str.begin(); | ||||
| 2920 | size_t slen = str.size(); | ||||
| 2921 | sign = *p == '-' ? 1 : 0; | ||||
| 2922 | if (*p == '-' || *p == '+') { | ||||
| 2923 | p++; | ||||
| 2924 | slen--; | ||||
| 2925 | if (!slen) | ||||
| 2926 | return createError("String has no digits"); | ||||
| 2927 | } | ||||
| 2928 | |||||
| 2929 | if (slen >= 2 && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) { | ||||
| 2930 | if (slen == 2) | ||||
| 2931 | return createError("Invalid string"); | ||||
| 2932 | return convertFromHexadecimalString(StringRef(p + 2, slen - 2), | ||||
| 2933 | rounding_mode); | ||||
| 2934 | } | ||||
| 2935 | |||||
| 2936 | return convertFromDecimalString(StringRef(p, slen), rounding_mode); | ||||
| 2937 | } | ||||
| 2938 | |||||
| 2939 | /* Write out a hexadecimal representation of the floating point value | ||||
| 2940 | to DST, which must be of sufficient size, in the C99 form | ||||
| 2941 | [-]0xh.hhhhp[+-]d. Return the number of characters written, | ||||
| 2942 | excluding the terminating NUL. | ||||
| 2943 | |||||
| 2944 | If UPPERCASE, the output is in upper case, otherwise in lower case. | ||||
| 2945 | |||||
| 2946 | HEXDIGITS digits appear altogether, rounding the value if | ||||
| 2947 | necessary. If HEXDIGITS is 0, the minimal precision to display the | ||||
| 2948 | number precisely is used instead. If nothing would appear after | ||||
| 2949 | the decimal point it is suppressed. | ||||
| 2950 | |||||
| 2951 | The decimal exponent is always printed and has at least one digit. | ||||
| 2952 | Zero values display an exponent of zero. Infinities and NaNs | ||||
| 2953 | appear as "infinity" or "nan" respectively. | ||||
| 2954 | |||||
| 2955 | The above rules are as specified by C99. There is ambiguity about | ||||
| 2956 | what the leading hexadecimal digit should be. This implementation | ||||
| 2957 | uses whatever is necessary so that the exponent is displayed as | ||||
| 2958 | stored. This implies the exponent will fall within the IEEE format | ||||
| 2959 | range, and the leading hexadecimal digit will be 0 (for denormals), | ||||
| 2960 | 1 (normal numbers) or 2 (normal numbers rounded-away-from-zero with | ||||
| 2961 | any other digits zero). | ||||
| 2962 | */ | ||||
| 2963 | unsigned int IEEEFloat::convertToHexString(char *dst, unsigned int hexDigits, | ||||
| 2964 | bool upperCase, | ||||
| 2965 | roundingMode rounding_mode) const { | ||||
| 2966 | char *p; | ||||
| 2967 | |||||
| 2968 | p = dst; | ||||
| 2969 | if (sign) | ||||
| 2970 | *dst++ = '-'; | ||||
| 2971 | |||||
| 2972 | switch (category) { | ||||
| 2973 | case fcInfinity: | ||||
| 2974 | memcpy (dst, upperCase ? infinityU: infinityL, sizeof infinityU - 1); | ||||
| 2975 | dst += sizeof infinityL - 1; | ||||
| 2976 | break; | ||||
| 2977 | |||||
| 2978 | case fcNaN: | ||||
| 2979 | memcpy (dst, upperCase ? NaNU: NaNL, sizeof NaNU - 1); | ||||
| 2980 | dst += sizeof NaNU - 1; | ||||
| 2981 | break; | ||||
| 2982 | |||||
| 2983 | case fcZero: | ||||
| 2984 | *dst++ = '0'; | ||||
| 2985 | *dst++ = upperCase ? 'X': 'x'; | ||||
| 2986 | *dst++ = '0'; | ||||
| 2987 | if (hexDigits > 1) { | ||||
| 2988 | *dst++ = '.'; | ||||
| 2989 | memset (dst, '0', hexDigits - 1); | ||||
| 2990 | dst += hexDigits - 1; | ||||
| 2991 | } | ||||
| 2992 | *dst++ = upperCase ? 'P': 'p'; | ||||
| 2993 | *dst++ = '0'; | ||||
| 2994 | break; | ||||
| 2995 | |||||
| 2996 | case fcNormal: | ||||
| 2997 | dst = convertNormalToHexString (dst, hexDigits, upperCase, rounding_mode); | ||||
| 2998 | break; | ||||
| 2999 | } | ||||
| 3000 | |||||
| 3001 | *dst = 0; | ||||
| 3002 | |||||
| 3003 | return static_cast<unsigned int>(dst - p); | ||||
| 3004 | } | ||||
| 3005 | |||||
| 3006 | /* Does the hard work of outputting the correctly rounded hexadecimal | ||||
| 3007 | form of a normal floating point number with the specified number of | ||||
| 3008 | hexadecimal digits. If HEXDIGITS is zero the minimum number of | ||||
| 3009 | digits necessary to print the value precisely is output. */ | ||||
| 3010 | char *IEEEFloat::convertNormalToHexString(char *dst, unsigned int hexDigits, | ||||
| 3011 | bool upperCase, | ||||
| 3012 | roundingMode rounding_mode) const { | ||||
| 3013 | unsigned int count, valueBits, shift, partsCount, outputDigits; | ||||
| 3014 | const char *hexDigitChars; | ||||
| 3015 | const integerPart *significand; | ||||
| 3016 | char *p; | ||||
| 3017 | bool roundUp; | ||||
| 3018 | |||||
| 3019 | *dst++ = '0'; | ||||
| 3020 | *dst++ = upperCase ? 'X': 'x'; | ||||
| 3021 | |||||
| 3022 | roundUp = false; | ||||
| 3023 | hexDigitChars = upperCase ? hexDigitsUpper: hexDigitsLower; | ||||
| 3024 | |||||
| 3025 | significand = significandParts(); | ||||
| 3026 | partsCount = partCount(); | ||||
| 3027 | |||||
| 3028 | /* +3 because the first digit only uses the single integer bit, so | ||||
| 3029 | we have 3 virtual zero most-significant-bits. */ | ||||
| 3030 | valueBits = semantics->precision + 3; | ||||
| 3031 | shift = integerPartWidth - valueBits % integerPartWidth; | ||||
| 3032 | |||||
| 3033 | /* The natural number of digits required ignoring trailing | ||||
| 3034 | insignificant zeroes. */ | ||||
| 3035 | outputDigits = (valueBits - significandLSB () + 3) / 4; | ||||
| 3036 | |||||
| 3037 | /* hexDigits of zero means use the required number for the | ||||
| 3038 | precision. Otherwise, see if we are truncating. If we are, | ||||
| 3039 | find out if we need to round away from zero. */ | ||||
| 3040 | if (hexDigits) { | ||||
| 3041 | if (hexDigits < outputDigits) { | ||||
| 3042 | /* We are dropping non-zero bits, so need to check how to round. | ||||
| 3043 | "bits" is the number of dropped bits. */ | ||||
| 3044 | unsigned int bits; | ||||
| 3045 | lostFraction fraction; | ||||
| 3046 | |||||
| 3047 | bits = valueBits - hexDigits * 4; | ||||
| 3048 | fraction = lostFractionThroughTruncation (significand, partsCount, bits); | ||||
| 3049 | roundUp = roundAwayFromZero(rounding_mode, fraction, bits); | ||||
| 3050 | } | ||||
| 3051 | outputDigits = hexDigits; | ||||
| 3052 | } | ||||
| 3053 | |||||
| 3054 | /* Write the digits consecutively, and start writing in the location | ||||
| 3055 | of the hexadecimal point. We move the most significant digit | ||||
| 3056 | left and add the hexadecimal point later. */ | ||||
| 3057 | p = ++dst; | ||||
| 3058 | |||||
| 3059 | count = (valueBits + integerPartWidth - 1) / integerPartWidth; | ||||
| 3060 | |||||
| 3061 | while (outputDigits && count) { | ||||
| 3062 | integerPart part; | ||||
| 3063 | |||||
| 3064 | /* Put the most significant integerPartWidth bits in "part". */ | ||||
| 3065 | if (--count == partsCount) | ||||
| 3066 | part = 0; /* An imaginary higher zero part. */ | ||||
| 3067 | else | ||||
| 3068 | part = significand[count] << shift; | ||||
| 3069 | |||||
| 3070 | if (count && shift) | ||||
| 3071 | part |= significand[count - 1] >> (integerPartWidth - shift); | ||||
| 3072 | |||||
| 3073 | /* Convert as much of "part" to hexdigits as we can. */ | ||||
| 3074 | unsigned int curDigits = integerPartWidth / 4; | ||||
| 3075 | |||||
| 3076 | if (curDigits > outputDigits) | ||||
| 3077 | curDigits = outputDigits; | ||||
| 3078 | dst += partAsHex (dst, part, curDigits, hexDigitChars); | ||||
| 3079 | outputDigits -= curDigits; | ||||
| 3080 | } | ||||
| 3081 | |||||
| 3082 | if (roundUp) { | ||||
| 3083 | char *q = dst; | ||||
| 3084 | |||||
| 3085 | /* Note that hexDigitChars has a trailing '0'. */ | ||||
| 3086 | do { | ||||
| 3087 | q--; | ||||
| 3088 | *q = hexDigitChars[hexDigitValue (*q) + 1]; | ||||
| 3089 | } while (*q == '0'); | ||||
| 3090 | assert(q >= p)(static_cast <bool> (q >= p) ? void (0) : __assert_fail ("q >= p", "llvm/lib/Support/APFloat.cpp", 3090, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3091 | } else { | ||||
| 3092 | /* Add trailing zeroes. */ | ||||
| 3093 | memset (dst, '0', outputDigits); | ||||
| 3094 | dst += outputDigits; | ||||
| 3095 | } | ||||
| 3096 | |||||
| 3097 | /* Move the most significant digit to before the point, and if there | ||||
| 3098 | is something after the decimal point add it. This must come | ||||
| 3099 | after rounding above. */ | ||||
| 3100 | p[-1] = p[0]; | ||||
| 3101 | if (dst -1 == p) | ||||
| 3102 | dst--; | ||||
| 3103 | else | ||||
| 3104 | p[0] = '.'; | ||||
| 3105 | |||||
| 3106 | /* Finally output the exponent. */ | ||||
| 3107 | *dst++ = upperCase ? 'P': 'p'; | ||||
| 3108 | |||||
| 3109 | return writeSignedDecimal (dst, exponent); | ||||
| 3110 | } | ||||
| 3111 | |||||
| 3112 | hash_code hash_value(const IEEEFloat &Arg) { | ||||
| 3113 | if (!Arg.isFiniteNonZero()) | ||||
| 3114 | return hash_combine((uint8_t)Arg.category, | ||||
| 3115 | // NaN has no sign, fix it at zero. | ||||
| 3116 | Arg.isNaN() ? (uint8_t)0 : (uint8_t)Arg.sign, | ||||
| 3117 | Arg.semantics->precision); | ||||
| 3118 | |||||
| 3119 | // Normal floats need their exponent and significand hashed. | ||||
| 3120 | return hash_combine((uint8_t)Arg.category, (uint8_t)Arg.sign, | ||||
| 3121 | Arg.semantics->precision, Arg.exponent, | ||||
| 3122 | hash_combine_range( | ||||
| 3123 | Arg.significandParts(), | ||||
| 3124 | Arg.significandParts() + Arg.partCount())); | ||||
| 3125 | } | ||||
| 3126 | |||||
| 3127 | // Conversion from APFloat to/from host float/double. It may eventually be | ||||
| 3128 | // possible to eliminate these and have everybody deal with APFloats, but that | ||||
| 3129 | // will take a while. This approach will not easily extend to long double. | ||||
| 3130 | // Current implementation requires integerPartWidth==64, which is correct at | ||||
| 3131 | // the moment but could be made more general. | ||||
| 3132 | |||||
| 3133 | // Denormals have exponent minExponent in APFloat, but minExponent-1 in | ||||
| 3134 | // the actual IEEE respresentations. We compensate for that here. | ||||
| 3135 | |||||
| 3136 | APInt IEEEFloat::convertF80LongDoubleAPFloatToAPInt() const { | ||||
| 3137 | assert(semantics == (const llvm::fltSemantics*)&semX87DoubleExtended)(static_cast <bool> (semantics == (const llvm::fltSemantics *)&semX87DoubleExtended) ? void (0) : __assert_fail ("semantics == (const llvm::fltSemantics*)&semX87DoubleExtended" , "llvm/lib/Support/APFloat.cpp", 3137, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 3138 | assert(partCount()==2)(static_cast <bool> (partCount()==2) ? void (0) : __assert_fail ("partCount()==2", "llvm/lib/Support/APFloat.cpp", 3138, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3139 | |||||
| 3140 | uint64_t myexponent, mysignificand; | ||||
| 3141 | |||||
| 3142 | if (isFiniteNonZero()) { | ||||
| 3143 | myexponent = exponent+16383; //bias | ||||
| 3144 | mysignificand = significandParts()[0]; | ||||
| 3145 | if (myexponent==1 && !(mysignificand & 0x8000000000000000ULL)) | ||||
| 3146 | myexponent = 0; // denormal | ||||
| 3147 | } else if (category==fcZero) { | ||||
| 3148 | myexponent = 0; | ||||
| 3149 | mysignificand = 0; | ||||
| 3150 | } else if (category==fcInfinity) { | ||||
| 3151 | myexponent = 0x7fff; | ||||
| 3152 | mysignificand = 0x8000000000000000ULL; | ||||
| 3153 | } else { | ||||
| 3154 | assert(category == fcNaN && "Unknown category")(static_cast <bool> (category == fcNaN && "Unknown category" ) ? void (0) : __assert_fail ("category == fcNaN && \"Unknown category\"" , "llvm/lib/Support/APFloat.cpp", 3154, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 3155 | myexponent = 0x7fff; | ||||
| 3156 | mysignificand = significandParts()[0]; | ||||
| 3157 | } | ||||
| 3158 | |||||
| 3159 | uint64_t words[2]; | ||||
| 3160 | words[0] = mysignificand; | ||||
| 3161 | words[1] = ((uint64_t)(sign & 1) << 15) | | ||||
| 3162 | (myexponent & 0x7fffLL); | ||||
| 3163 | return APInt(80, words); | ||||
| 3164 | } | ||||
| 3165 | |||||
| 3166 | APInt IEEEFloat::convertPPCDoubleDoubleAPFloatToAPInt() const { | ||||
| 3167 | assert(semantics == (const llvm::fltSemantics *)&semPPCDoubleDoubleLegacy)(static_cast <bool> (semantics == (const llvm::fltSemantics *)&semPPCDoubleDoubleLegacy) ? void (0) : __assert_fail ( "semantics == (const llvm::fltSemantics *)&semPPCDoubleDoubleLegacy" , "llvm/lib/Support/APFloat.cpp", 3167, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 3168 | assert(partCount()==2)(static_cast <bool> (partCount()==2) ? void (0) : __assert_fail ("partCount()==2", "llvm/lib/Support/APFloat.cpp", 3168, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3169 | |||||
| 3170 | uint64_t words[2]; | ||||
| 3171 | opStatus fs; | ||||
| 3172 | bool losesInfo; | ||||
| 3173 | |||||
| 3174 | // Convert number to double. To avoid spurious underflows, we re- | ||||
| 3175 | // normalize against the "double" minExponent first, and only *then* | ||||
| 3176 | // truncate the mantissa. The result of that second conversion | ||||
| 3177 | // may be inexact, but should never underflow. | ||||
| 3178 | // Declare fltSemantics before APFloat that uses it (and | ||||
| 3179 | // saves pointer to it) to ensure correct destruction order. | ||||
| 3180 | fltSemantics extendedSemantics = *semantics; | ||||
| 3181 | extendedSemantics.minExponent = semIEEEdouble.minExponent; | ||||
| 3182 | IEEEFloat extended(*this); | ||||
| 3183 | fs = extended.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo); | ||||
| 3184 | assert(fs == opOK && !losesInfo)(static_cast <bool> (fs == opOK && !losesInfo) ? void (0) : __assert_fail ("fs == opOK && !losesInfo" , "llvm/lib/Support/APFloat.cpp", 3184, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 3185 | (void)fs; | ||||
| 3186 | |||||
| 3187 | IEEEFloat u(extended); | ||||
| 3188 | fs = u.convert(semIEEEdouble, rmNearestTiesToEven, &losesInfo); | ||||
| 3189 | assert(fs == opOK || fs == opInexact)(static_cast <bool> (fs == opOK || fs == opInexact) ? void (0) : __assert_fail ("fs == opOK || fs == opInexact", "llvm/lib/Support/APFloat.cpp" , 3189, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3190 | (void)fs; | ||||
| 3191 | words[0] = *u.convertDoubleAPFloatToAPInt().getRawData(); | ||||
| 3192 | |||||
| 3193 | // If conversion was exact or resulted in a special case, we're done; | ||||
| 3194 | // just set the second double to zero. Otherwise, re-convert back to | ||||
| 3195 | // the extended format and compute the difference. This now should | ||||
| 3196 | // convert exactly to double. | ||||
| 3197 | if (u.isFiniteNonZero() && losesInfo) { | ||||
| 3198 | fs = u.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo); | ||||
| 3199 | assert(fs == opOK && !losesInfo)(static_cast <bool> (fs == opOK && !losesInfo) ? void (0) : __assert_fail ("fs == opOK && !losesInfo" , "llvm/lib/Support/APFloat.cpp", 3199, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 3200 | (void)fs; | ||||
| 3201 | |||||
| 3202 | IEEEFloat v(extended); | ||||
| 3203 | v.subtract(u, rmNearestTiesToEven); | ||||
| 3204 | fs = v.convert(semIEEEdouble, rmNearestTiesToEven, &losesInfo); | ||||
| 3205 | assert(fs == opOK && !losesInfo)(static_cast <bool> (fs == opOK && !losesInfo) ? void (0) : __assert_fail ("fs == opOK && !losesInfo" , "llvm/lib/Support/APFloat.cpp", 3205, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 3206 | (void)fs; | ||||
| 3207 | words[1] = *v.convertDoubleAPFloatToAPInt().getRawData(); | ||||
| 3208 | } else { | ||||
| 3209 | words[1] = 0; | ||||
| 3210 | } | ||||
| 3211 | |||||
| 3212 | return APInt(128, words); | ||||
| 3213 | } | ||||
| 3214 | |||||
| 3215 | APInt IEEEFloat::convertQuadrupleAPFloatToAPInt() const { | ||||
| 3216 | assert(semantics == (const llvm::fltSemantics*)&semIEEEquad)(static_cast <bool> (semantics == (const llvm::fltSemantics *)&semIEEEquad) ? void (0) : __assert_fail ("semantics == (const llvm::fltSemantics*)&semIEEEquad" , "llvm/lib/Support/APFloat.cpp", 3216, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 3217 | assert(partCount()==2)(static_cast <bool> (partCount()==2) ? void (0) : __assert_fail ("partCount()==2", "llvm/lib/Support/APFloat.cpp", 3217, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3218 | |||||
| 3219 | uint64_t myexponent, mysignificand, mysignificand2; | ||||
| 3220 | |||||
| 3221 | if (isFiniteNonZero()) { | ||||
| 3222 | myexponent = exponent+16383; //bias | ||||
| 3223 | mysignificand = significandParts()[0]; | ||||
| 3224 | mysignificand2 = significandParts()[1]; | ||||
| 3225 | if (myexponent==1 && !(mysignificand2 & 0x1000000000000LL)) | ||||
| 3226 | myexponent = 0; // denormal | ||||
| 3227 | } else if (category==fcZero) { | ||||
| 3228 | myexponent = 0; | ||||
| 3229 | mysignificand = mysignificand2 = 0; | ||||
| 3230 | } else if (category==fcInfinity) { | ||||
| 3231 | myexponent = 0x7fff; | ||||
| 3232 | mysignificand = mysignificand2 = 0; | ||||
| 3233 | } else { | ||||
| 3234 | assert(category == fcNaN && "Unknown category!")(static_cast <bool> (category == fcNaN && "Unknown category!" ) ? void (0) : __assert_fail ("category == fcNaN && \"Unknown category!\"" , "llvm/lib/Support/APFloat.cpp", 3234, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 3235 | myexponent = 0x7fff; | ||||
| 3236 | mysignificand = significandParts()[0]; | ||||
| 3237 | mysignificand2 = significandParts()[1]; | ||||
| 3238 | } | ||||
| 3239 | |||||
| 3240 | uint64_t words[2]; | ||||
| 3241 | words[0] = mysignificand; | ||||
| 3242 | words[1] = ((uint64_t)(sign & 1) << 63) | | ||||
| 3243 | ((myexponent & 0x7fff) << 48) | | ||||
| 3244 | (mysignificand2 & 0xffffffffffffLL); | ||||
| 3245 | |||||
| 3246 | return APInt(128, words); | ||||
| 3247 | } | ||||
| 3248 | |||||
| 3249 | APInt IEEEFloat::convertDoubleAPFloatToAPInt() const { | ||||
| 3250 | assert(semantics == (const llvm::fltSemantics*)&semIEEEdouble)(static_cast <bool> (semantics == (const llvm::fltSemantics *)&semIEEEdouble) ? void (0) : __assert_fail ("semantics == (const llvm::fltSemantics*)&semIEEEdouble" , "llvm/lib/Support/APFloat.cpp", 3250, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 3251 | assert(partCount()==1)(static_cast <bool> (partCount()==1) ? void (0) : __assert_fail ("partCount()==1", "llvm/lib/Support/APFloat.cpp", 3251, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3252 | |||||
| 3253 | uint64_t myexponent, mysignificand; | ||||
| 3254 | |||||
| 3255 | if (isFiniteNonZero()) { | ||||
| 3256 | myexponent = exponent+1023; //bias | ||||
| 3257 | mysignificand = *significandParts(); | ||||
| 3258 | if (myexponent==1 && !(mysignificand & 0x10000000000000LL)) | ||||
| 3259 | myexponent = 0; // denormal | ||||
| 3260 | } else if (category==fcZero) { | ||||
| 3261 | myexponent = 0; | ||||
| 3262 | mysignificand = 0; | ||||
| 3263 | } else if (category==fcInfinity) { | ||||
| 3264 | myexponent = 0x7ff; | ||||
| 3265 | mysignificand = 0; | ||||
| 3266 | } else { | ||||
| 3267 | assert(category == fcNaN && "Unknown category!")(static_cast <bool> (category == fcNaN && "Unknown category!" ) ? void (0) : __assert_fail ("category == fcNaN && \"Unknown category!\"" , "llvm/lib/Support/APFloat.cpp", 3267, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 3268 | myexponent = 0x7ff; | ||||
| 3269 | mysignificand = *significandParts(); | ||||
| 3270 | } | ||||
| 3271 | |||||
| 3272 | return APInt(64, ((((uint64_t)(sign & 1) << 63) | | ||||
| 3273 | ((myexponent & 0x7ff) << 52) | | ||||
| 3274 | (mysignificand & 0xfffffffffffffLL)))); | ||||
| 3275 | } | ||||
| 3276 | |||||
| 3277 | APInt IEEEFloat::convertFloatAPFloatToAPInt() const { | ||||
| 3278 | assert(semantics == (const llvm::fltSemantics*)&semIEEEsingle)(static_cast <bool> (semantics == (const llvm::fltSemantics *)&semIEEEsingle) ? void (0) : __assert_fail ("semantics == (const llvm::fltSemantics*)&semIEEEsingle" , "llvm/lib/Support/APFloat.cpp", 3278, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 3279 | assert(partCount()==1)(static_cast <bool> (partCount()==1) ? void (0) : __assert_fail ("partCount()==1", "llvm/lib/Support/APFloat.cpp", 3279, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3280 | |||||
| 3281 | uint32_t myexponent, mysignificand; | ||||
| 3282 | |||||
| 3283 | if (isFiniteNonZero()) { | ||||
| 3284 | myexponent = exponent+127; //bias | ||||
| 3285 | mysignificand = (uint32_t)*significandParts(); | ||||
| 3286 | if (myexponent == 1 && !(mysignificand & 0x800000)) | ||||
| 3287 | myexponent = 0; // denormal | ||||
| 3288 | } else if (category==fcZero) { | ||||
| 3289 | myexponent = 0; | ||||
| 3290 | mysignificand = 0; | ||||
| 3291 | } else if (category==fcInfinity) { | ||||
| 3292 | myexponent = 0xff; | ||||
| 3293 | mysignificand = 0; | ||||
| 3294 | } else { | ||||
| 3295 | assert(category == fcNaN && "Unknown category!")(static_cast <bool> (category == fcNaN && "Unknown category!" ) ? void (0) : __assert_fail ("category == fcNaN && \"Unknown category!\"" , "llvm/lib/Support/APFloat.cpp", 3295, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 3296 | myexponent = 0xff; | ||||
| 3297 | mysignificand = (uint32_t)*significandParts(); | ||||
| 3298 | } | ||||
| 3299 | |||||
| 3300 | return APInt(32, (((sign&1) << 31) | ((myexponent&0xff) << 23) | | ||||
| 3301 | (mysignificand & 0x7fffff))); | ||||
| 3302 | } | ||||
| 3303 | |||||
| 3304 | APInt IEEEFloat::convertBFloatAPFloatToAPInt() const { | ||||
| 3305 | assert(semantics == (const llvm::fltSemantics *)&semBFloat)(static_cast <bool> (semantics == (const llvm::fltSemantics *)&semBFloat) ? void (0) : __assert_fail ("semantics == (const llvm::fltSemantics *)&semBFloat" , "llvm/lib/Support/APFloat.cpp", 3305, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 3306 | assert(partCount() == 1)(static_cast <bool> (partCount() == 1) ? void (0) : __assert_fail ("partCount() == 1", "llvm/lib/Support/APFloat.cpp", 3306, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3307 | |||||
| 3308 | uint32_t myexponent, mysignificand; | ||||
| 3309 | |||||
| 3310 | if (isFiniteNonZero()) { | ||||
| 3311 | myexponent = exponent + 127; // bias | ||||
| 3312 | mysignificand = (uint32_t)*significandParts(); | ||||
| 3313 | if (myexponent == 1 && !(mysignificand & 0x80)) | ||||
| 3314 | myexponent = 0; // denormal | ||||
| 3315 | } else if (category == fcZero) { | ||||
| 3316 | myexponent = 0; | ||||
| 3317 | mysignificand = 0; | ||||
| 3318 | } else if (category == fcInfinity) { | ||||
| 3319 | myexponent = 0xff; | ||||
| 3320 | mysignificand = 0; | ||||
| 3321 | } else { | ||||
| 3322 | assert(category == fcNaN && "Unknown category!")(static_cast <bool> (category == fcNaN && "Unknown category!" ) ? void (0) : __assert_fail ("category == fcNaN && \"Unknown category!\"" , "llvm/lib/Support/APFloat.cpp", 3322, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 3323 | myexponent = 0xff; | ||||
| 3324 | mysignificand = (uint32_t)*significandParts(); | ||||
| 3325 | } | ||||
| 3326 | |||||
| 3327 | return APInt(16, (((sign & 1) << 15) | ((myexponent & 0xff) << 7) | | ||||
| 3328 | (mysignificand & 0x7f))); | ||||
| 3329 | } | ||||
| 3330 | |||||
| 3331 | APInt IEEEFloat::convertHalfAPFloatToAPInt() const { | ||||
| 3332 | assert(semantics == (const llvm::fltSemantics*)&semIEEEhalf)(static_cast <bool> (semantics == (const llvm::fltSemantics *)&semIEEEhalf) ? void (0) : __assert_fail ("semantics == (const llvm::fltSemantics*)&semIEEEhalf" , "llvm/lib/Support/APFloat.cpp", 3332, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 3333 | assert(partCount()==1)(static_cast <bool> (partCount()==1) ? void (0) : __assert_fail ("partCount()==1", "llvm/lib/Support/APFloat.cpp", 3333, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3334 | |||||
| 3335 | uint32_t myexponent, mysignificand; | ||||
| 3336 | |||||
| 3337 | if (isFiniteNonZero()) { | ||||
| 3338 | myexponent = exponent+15; //bias | ||||
| 3339 | mysignificand = (uint32_t)*significandParts(); | ||||
| 3340 | if (myexponent == 1 && !(mysignificand & 0x400)) | ||||
| 3341 | myexponent = 0; // denormal | ||||
| 3342 | } else if (category==fcZero) { | ||||
| 3343 | myexponent = 0; | ||||
| 3344 | mysignificand = 0; | ||||
| 3345 | } else if (category==fcInfinity) { | ||||
| 3346 | myexponent = 0x1f; | ||||
| 3347 | mysignificand = 0; | ||||
| 3348 | } else { | ||||
| 3349 | assert(category == fcNaN && "Unknown category!")(static_cast <bool> (category == fcNaN && "Unknown category!" ) ? void (0) : __assert_fail ("category == fcNaN && \"Unknown category!\"" , "llvm/lib/Support/APFloat.cpp", 3349, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 3350 | myexponent = 0x1f; | ||||
| 3351 | mysignificand = (uint32_t)*significandParts(); | ||||
| 3352 | } | ||||
| 3353 | |||||
| 3354 | return APInt(16, (((sign&1) << 15) | ((myexponent&0x1f) << 10) | | ||||
| 3355 | (mysignificand & 0x3ff))); | ||||
| 3356 | } | ||||
| 3357 | |||||
| 3358 | APInt IEEEFloat::convertFloat8E5M2APFloatToAPInt() const { | ||||
| 3359 | assert(semantics == (const llvm::fltSemantics *)&semFloat8E5M2)(static_cast <bool> (semantics == (const llvm::fltSemantics *)&semFloat8E5M2) ? void (0) : __assert_fail ("semantics == (const llvm::fltSemantics *)&semFloat8E5M2" , "llvm/lib/Support/APFloat.cpp", 3359, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 3360 | assert(partCount() == 1)(static_cast <bool> (partCount() == 1) ? void (0) : __assert_fail ("partCount() == 1", "llvm/lib/Support/APFloat.cpp", 3360, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3361 | |||||
| 3362 | uint32_t myexponent, mysignificand; | ||||
| 3363 | |||||
| 3364 | if (isFiniteNonZero()) { | ||||
| 3365 | myexponent = exponent + 15; // bias | ||||
| 3366 | mysignificand = (uint32_t)*significandParts(); | ||||
| 3367 | if (myexponent == 1 && !(mysignificand & 0x4)) | ||||
| 3368 | myexponent = 0; // denormal | ||||
| 3369 | } else if (category == fcZero) { | ||||
| 3370 | myexponent = 0; | ||||
| 3371 | mysignificand = 0; | ||||
| 3372 | } else if (category == fcInfinity) { | ||||
| 3373 | myexponent = 0x1f; | ||||
| 3374 | mysignificand = 0; | ||||
| 3375 | } else { | ||||
| 3376 | assert(category == fcNaN && "Unknown category!")(static_cast <bool> (category == fcNaN && "Unknown category!" ) ? void (0) : __assert_fail ("category == fcNaN && \"Unknown category!\"" , "llvm/lib/Support/APFloat.cpp", 3376, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 3377 | myexponent = 0x1f; | ||||
| 3378 | mysignificand = (uint32_t)*significandParts(); | ||||
| 3379 | } | ||||
| 3380 | |||||
| 3381 | return APInt(8, (((sign & 1) << 7) | ((myexponent & 0x1f) << 2) | | ||||
| 3382 | (mysignificand & 0x3))); | ||||
| 3383 | } | ||||
| 3384 | |||||
| 3385 | // This function creates an APInt that is just a bit map of the floating | ||||
| 3386 | // point constant as it would appear in memory. It is not a conversion, | ||||
| 3387 | // and treating the result as a normal integer is unlikely to be useful. | ||||
| 3388 | |||||
| 3389 | APInt IEEEFloat::bitcastToAPInt() const { | ||||
| 3390 | if (semantics == (const llvm::fltSemantics*)&semIEEEhalf) | ||||
| 3391 | return convertHalfAPFloatToAPInt(); | ||||
| 3392 | |||||
| 3393 | if (semantics == (const llvm::fltSemantics *)&semBFloat) | ||||
| 3394 | return convertBFloatAPFloatToAPInt(); | ||||
| 3395 | |||||
| 3396 | if (semantics == (const llvm::fltSemantics*)&semIEEEsingle) | ||||
| 3397 | return convertFloatAPFloatToAPInt(); | ||||
| 3398 | |||||
| 3399 | if (semantics == (const llvm::fltSemantics*)&semIEEEdouble) | ||||
| 3400 | return convertDoubleAPFloatToAPInt(); | ||||
| 3401 | |||||
| 3402 | if (semantics == (const llvm::fltSemantics*)&semIEEEquad) | ||||
| 3403 | return convertQuadrupleAPFloatToAPInt(); | ||||
| 3404 | |||||
| 3405 | if (semantics == (const llvm::fltSemantics *)&semPPCDoubleDoubleLegacy) | ||||
| 3406 | return convertPPCDoubleDoubleAPFloatToAPInt(); | ||||
| 3407 | |||||
| 3408 | if (semantics == (const llvm::fltSemantics *)&semFloat8E5M2) | ||||
| 3409 | return convertFloat8E5M2APFloatToAPInt(); | ||||
| 3410 | |||||
| 3411 | assert(semantics == (const llvm::fltSemantics*)&semX87DoubleExtended &&(static_cast <bool> (semantics == (const llvm::fltSemantics *)&semX87DoubleExtended && "unknown format!") ? void (0) : __assert_fail ("semantics == (const llvm::fltSemantics*)&semX87DoubleExtended && \"unknown format!\"" , "llvm/lib/Support/APFloat.cpp", 3412, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 3412 | "unknown format!")(static_cast <bool> (semantics == (const llvm::fltSemantics *)&semX87DoubleExtended && "unknown format!") ? void (0) : __assert_fail ("semantics == (const llvm::fltSemantics*)&semX87DoubleExtended && \"unknown format!\"" , "llvm/lib/Support/APFloat.cpp", 3412, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 3413 | return convertF80LongDoubleAPFloatToAPInt(); | ||||
| 3414 | } | ||||
| 3415 | |||||
| 3416 | float IEEEFloat::convertToFloat() const { | ||||
| 3417 | assert(semantics == (const llvm::fltSemantics*)&semIEEEsingle &&(static_cast <bool> (semantics == (const llvm::fltSemantics *)&semIEEEsingle && "Float semantics are not IEEEsingle" ) ? void (0) : __assert_fail ("semantics == (const llvm::fltSemantics*)&semIEEEsingle && \"Float semantics are not IEEEsingle\"" , "llvm/lib/Support/APFloat.cpp", 3418, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 3418 | "Float semantics are not IEEEsingle")(static_cast <bool> (semantics == (const llvm::fltSemantics *)&semIEEEsingle && "Float semantics are not IEEEsingle" ) ? void (0) : __assert_fail ("semantics == (const llvm::fltSemantics*)&semIEEEsingle && \"Float semantics are not IEEEsingle\"" , "llvm/lib/Support/APFloat.cpp", 3418, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 3419 | APInt api = bitcastToAPInt(); | ||||
| 3420 | return api.bitsToFloat(); | ||||
| 3421 | } | ||||
| 3422 | |||||
| 3423 | double IEEEFloat::convertToDouble() const { | ||||
| 3424 | assert(semantics == (const llvm::fltSemantics*)&semIEEEdouble &&(static_cast <bool> (semantics == (const llvm::fltSemantics *)&semIEEEdouble && "Float semantics are not IEEEdouble" ) ? void (0) : __assert_fail ("semantics == (const llvm::fltSemantics*)&semIEEEdouble && \"Float semantics are not IEEEdouble\"" , "llvm/lib/Support/APFloat.cpp", 3425, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 3425 | "Float semantics are not IEEEdouble")(static_cast <bool> (semantics == (const llvm::fltSemantics *)&semIEEEdouble && "Float semantics are not IEEEdouble" ) ? void (0) : __assert_fail ("semantics == (const llvm::fltSemantics*)&semIEEEdouble && \"Float semantics are not IEEEdouble\"" , "llvm/lib/Support/APFloat.cpp", 3425, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 3426 | APInt api = bitcastToAPInt(); | ||||
| 3427 | return api.bitsToDouble(); | ||||
| 3428 | } | ||||
| 3429 | |||||
| 3430 | /// Integer bit is explicit in this format. Intel hardware (387 and later) | ||||
| 3431 | /// does not support these bit patterns: | ||||
| 3432 | /// exponent = all 1's, integer bit 0, significand 0 ("pseudoinfinity") | ||||
| 3433 | /// exponent = all 1's, integer bit 0, significand nonzero ("pseudoNaN") | ||||
| 3434 | /// exponent!=0 nor all 1's, integer bit 0 ("unnormal") | ||||
| 3435 | /// exponent = 0, integer bit 1 ("pseudodenormal") | ||||
| 3436 | /// At the moment, the first three are treated as NaNs, the last one as Normal. | ||||
| 3437 | void IEEEFloat::initFromF80LongDoubleAPInt(const APInt &api) { | ||||
| 3438 | uint64_t i1 = api.getRawData()[0]; | ||||
| 3439 | uint64_t i2 = api.getRawData()[1]; | ||||
| 3440 | uint64_t myexponent = (i2 & 0x7fff); | ||||
| 3441 | uint64_t mysignificand = i1; | ||||
| 3442 | uint8_t myintegerbit = mysignificand >> 63; | ||||
| 3443 | |||||
| 3444 | initialize(&semX87DoubleExtended); | ||||
| 3445 | assert(partCount()==2)(static_cast <bool> (partCount()==2) ? void (0) : __assert_fail ("partCount()==2", "llvm/lib/Support/APFloat.cpp", 3445, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3446 | |||||
| 3447 | sign = static_cast<unsigned int>(i2>>15); | ||||
| 3448 | if (myexponent == 0 && mysignificand == 0) { | ||||
| 3449 | makeZero(sign); | ||||
| 3450 | } else if (myexponent==0x7fff && mysignificand==0x8000000000000000ULL) { | ||||
| 3451 | makeInf(sign); | ||||
| 3452 | } else if ((myexponent == 0x7fff && mysignificand != 0x8000000000000000ULL) || | ||||
| 3453 | (myexponent != 0x7fff && myexponent != 0 && myintegerbit == 0)) { | ||||
| 3454 | category = fcNaN; | ||||
| 3455 | exponent = exponentNaN(); | ||||
| 3456 | significandParts()[0] = mysignificand; | ||||
| 3457 | significandParts()[1] = 0; | ||||
| 3458 | } else { | ||||
| 3459 | category = fcNormal; | ||||
| 3460 | exponent = myexponent - 16383; | ||||
| 3461 | significandParts()[0] = mysignificand; | ||||
| 3462 | significandParts()[1] = 0; | ||||
| 3463 | if (myexponent==0) // denormal | ||||
| 3464 | exponent = -16382; | ||||
| 3465 | } | ||||
| 3466 | } | ||||
| 3467 | |||||
| 3468 | void IEEEFloat::initFromPPCDoubleDoubleAPInt(const APInt &api) { | ||||
| 3469 | uint64_t i1 = api.getRawData()[0]; | ||||
| 3470 | uint64_t i2 = api.getRawData()[1]; | ||||
| 3471 | opStatus fs; | ||||
| 3472 | bool losesInfo; | ||||
| 3473 | |||||
| 3474 | // Get the first double and convert to our format. | ||||
| 3475 | initFromDoubleAPInt(APInt(64, i1)); | ||||
| 3476 | fs = convert(semPPCDoubleDoubleLegacy, rmNearestTiesToEven, &losesInfo); | ||||
| 3477 | assert(fs == opOK && !losesInfo)(static_cast <bool> (fs == opOK && !losesInfo) ? void (0) : __assert_fail ("fs == opOK && !losesInfo" , "llvm/lib/Support/APFloat.cpp", 3477, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 3478 | (void)fs; | ||||
| 3479 | |||||
| 3480 | // Unless we have a special case, add in second double. | ||||
| 3481 | if (isFiniteNonZero()) { | ||||
| 3482 | IEEEFloat v(semIEEEdouble, APInt(64, i2)); | ||||
| 3483 | fs = v.convert(semPPCDoubleDoubleLegacy, rmNearestTiesToEven, &losesInfo); | ||||
| 3484 | assert(fs == opOK && !losesInfo)(static_cast <bool> (fs == opOK && !losesInfo) ? void (0) : __assert_fail ("fs == opOK && !losesInfo" , "llvm/lib/Support/APFloat.cpp", 3484, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 3485 | (void)fs; | ||||
| 3486 | |||||
| 3487 | add(v, rmNearestTiesToEven); | ||||
| 3488 | } | ||||
| 3489 | } | ||||
| 3490 | |||||
| 3491 | void IEEEFloat::initFromQuadrupleAPInt(const APInt &api) { | ||||
| 3492 | uint64_t i1 = api.getRawData()[0]; | ||||
| 3493 | uint64_t i2 = api.getRawData()[1]; | ||||
| 3494 | uint64_t myexponent = (i2 >> 48) & 0x7fff; | ||||
| 3495 | uint64_t mysignificand = i1; | ||||
| 3496 | uint64_t mysignificand2 = i2 & 0xffffffffffffLL; | ||||
| 3497 | |||||
| 3498 | initialize(&semIEEEquad); | ||||
| 3499 | assert(partCount()==2)(static_cast <bool> (partCount()==2) ? void (0) : __assert_fail ("partCount()==2", "llvm/lib/Support/APFloat.cpp", 3499, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3500 | |||||
| 3501 | sign = static_cast<unsigned int>(i2>>63); | ||||
| 3502 | if (myexponent==0 && | ||||
| 3503 | (mysignificand==0 && mysignificand2==0)) { | ||||
| 3504 | makeZero(sign); | ||||
| 3505 | } else if (myexponent==0x7fff && | ||||
| 3506 | (mysignificand==0 && mysignificand2==0)) { | ||||
| 3507 | makeInf(sign); | ||||
| 3508 | } else if (myexponent==0x7fff && | ||||
| 3509 | (mysignificand!=0 || mysignificand2 !=0)) { | ||||
| 3510 | category = fcNaN; | ||||
| 3511 | exponent = exponentNaN(); | ||||
| 3512 | significandParts()[0] = mysignificand; | ||||
| 3513 | significandParts()[1] = mysignificand2; | ||||
| 3514 | } else { | ||||
| 3515 | category = fcNormal; | ||||
| 3516 | exponent = myexponent - 16383; | ||||
| 3517 | significandParts()[0] = mysignificand; | ||||
| 3518 | significandParts()[1] = mysignificand2; | ||||
| 3519 | if (myexponent==0) // denormal | ||||
| 3520 | exponent = -16382; | ||||
| 3521 | else | ||||
| 3522 | significandParts()[1] |= 0x1000000000000LL; // integer bit | ||||
| 3523 | } | ||||
| 3524 | } | ||||
| 3525 | |||||
| 3526 | void IEEEFloat::initFromDoubleAPInt(const APInt &api) { | ||||
| 3527 | uint64_t i = *api.getRawData(); | ||||
| 3528 | uint64_t myexponent = (i >> 52) & 0x7ff; | ||||
| 3529 | uint64_t mysignificand = i & 0xfffffffffffffLL; | ||||
| 3530 | |||||
| 3531 | initialize(&semIEEEdouble); | ||||
| 3532 | assert(partCount()==1)(static_cast <bool> (partCount()==1) ? void (0) : __assert_fail ("partCount()==1", "llvm/lib/Support/APFloat.cpp", 3532, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3533 | |||||
| 3534 | sign = static_cast<unsigned int>(i>>63); | ||||
| 3535 | if (myexponent==0 && mysignificand==0) { | ||||
| 3536 | makeZero(sign); | ||||
| 3537 | } else if (myexponent==0x7ff && mysignificand==0) { | ||||
| 3538 | makeInf(sign); | ||||
| 3539 | } else if (myexponent==0x7ff && mysignificand!=0) { | ||||
| 3540 | category = fcNaN; | ||||
| 3541 | exponent = exponentNaN(); | ||||
| 3542 | *significandParts() = mysignificand; | ||||
| 3543 | } else { | ||||
| 3544 | category = fcNormal; | ||||
| 3545 | exponent = myexponent - 1023; | ||||
| 3546 | *significandParts() = mysignificand; | ||||
| 3547 | if (myexponent==0) // denormal | ||||
| 3548 | exponent = -1022; | ||||
| 3549 | else | ||||
| 3550 | *significandParts() |= 0x10000000000000LL; // integer bit | ||||
| 3551 | } | ||||
| 3552 | } | ||||
| 3553 | |||||
| 3554 | void IEEEFloat::initFromFloatAPInt(const APInt &api) { | ||||
| 3555 | uint32_t i = (uint32_t)*api.getRawData(); | ||||
| 3556 | uint32_t myexponent = (i >> 23) & 0xff; | ||||
| 3557 | uint32_t mysignificand = i & 0x7fffff; | ||||
| 3558 | |||||
| 3559 | initialize(&semIEEEsingle); | ||||
| 3560 | assert(partCount()==1)(static_cast <bool> (partCount()==1) ? void (0) : __assert_fail ("partCount()==1", "llvm/lib/Support/APFloat.cpp", 3560, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3561 | |||||
| 3562 | sign = i >> 31; | ||||
| 3563 | if (myexponent==0 && mysignificand==0) { | ||||
| 3564 | makeZero(sign); | ||||
| 3565 | } else if (myexponent==0xff && mysignificand==0) { | ||||
| 3566 | makeInf(sign); | ||||
| 3567 | } else if (myexponent==0xff && mysignificand!=0) { | ||||
| 3568 | category = fcNaN; | ||||
| 3569 | exponent = exponentNaN(); | ||||
| 3570 | *significandParts() = mysignificand; | ||||
| 3571 | } else { | ||||
| 3572 | category = fcNormal; | ||||
| 3573 | exponent = myexponent - 127; //bias | ||||
| 3574 | *significandParts() = mysignificand; | ||||
| 3575 | if (myexponent==0) // denormal | ||||
| 3576 | exponent = -126; | ||||
| 3577 | else | ||||
| 3578 | *significandParts() |= 0x800000; // integer bit | ||||
| 3579 | } | ||||
| 3580 | } | ||||
| 3581 | |||||
| 3582 | void IEEEFloat::initFromBFloatAPInt(const APInt &api) { | ||||
| 3583 | uint32_t i = (uint32_t)*api.getRawData(); | ||||
| 3584 | uint32_t myexponent = (i >> 7) & 0xff; | ||||
| 3585 | uint32_t mysignificand = i & 0x7f; | ||||
| 3586 | |||||
| 3587 | initialize(&semBFloat); | ||||
| 3588 | assert(partCount() == 1)(static_cast <bool> (partCount() == 1) ? void (0) : __assert_fail ("partCount() == 1", "llvm/lib/Support/APFloat.cpp", 3588, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3589 | |||||
| 3590 | sign = i >> 15; | ||||
| 3591 | if (myexponent == 0 && mysignificand == 0) { | ||||
| 3592 | makeZero(sign); | ||||
| 3593 | } else if (myexponent == 0xff && mysignificand == 0) { | ||||
| 3594 | makeInf(sign); | ||||
| 3595 | } else if (myexponent == 0xff && mysignificand != 0) { | ||||
| 3596 | category = fcNaN; | ||||
| 3597 | exponent = exponentNaN(); | ||||
| 3598 | *significandParts() = mysignificand; | ||||
| 3599 | } else { | ||||
| 3600 | category = fcNormal; | ||||
| 3601 | exponent = myexponent - 127; // bias | ||||
| 3602 | *significandParts() = mysignificand; | ||||
| 3603 | if (myexponent == 0) // denormal | ||||
| 3604 | exponent = -126; | ||||
| 3605 | else | ||||
| 3606 | *significandParts() |= 0x80; // integer bit | ||||
| 3607 | } | ||||
| 3608 | } | ||||
| 3609 | |||||
| 3610 | void IEEEFloat::initFromHalfAPInt(const APInt &api) { | ||||
| 3611 | uint32_t i = (uint32_t)*api.getRawData(); | ||||
| 3612 | uint32_t myexponent = (i >> 10) & 0x1f; | ||||
| 3613 | uint32_t mysignificand = i & 0x3ff; | ||||
| 3614 | |||||
| 3615 | initialize(&semIEEEhalf); | ||||
| 3616 | assert(partCount()==1)(static_cast <bool> (partCount()==1) ? void (0) : __assert_fail ("partCount()==1", "llvm/lib/Support/APFloat.cpp", 3616, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3617 | |||||
| 3618 | sign = i >> 15; | ||||
| 3619 | if (myexponent==0 && mysignificand==0) { | ||||
| 3620 | makeZero(sign); | ||||
| 3621 | } else if (myexponent==0x1f && mysignificand==0) { | ||||
| 3622 | makeInf(sign); | ||||
| 3623 | } else if (myexponent==0x1f && mysignificand!=0) { | ||||
| 3624 | category = fcNaN; | ||||
| 3625 | exponent = exponentNaN(); | ||||
| 3626 | *significandParts() = mysignificand; | ||||
| 3627 | } else { | ||||
| 3628 | category = fcNormal; | ||||
| 3629 | exponent = myexponent - 15; //bias | ||||
| 3630 | *significandParts() = mysignificand; | ||||
| 3631 | if (myexponent==0) // denormal | ||||
| 3632 | exponent = -14; | ||||
| 3633 | else | ||||
| 3634 | *significandParts() |= 0x400; // integer bit | ||||
| 3635 | } | ||||
| 3636 | } | ||||
| 3637 | |||||
| 3638 | void IEEEFloat::initFromFloat8E5M2APInt(const APInt &api) { | ||||
| 3639 | uint32_t i = (uint32_t)*api.getRawData(); | ||||
| 3640 | uint32_t myexponent = (i >> 2) & 0x1f; | ||||
| 3641 | uint32_t mysignificand = i & 0x3; | ||||
| 3642 | |||||
| 3643 | initialize(&semFloat8E5M2); | ||||
| 3644 | assert(partCount() == 1)(static_cast <bool> (partCount() == 1) ? void (0) : __assert_fail ("partCount() == 1", "llvm/lib/Support/APFloat.cpp", 3644, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3645 | |||||
| 3646 | sign = i >> 7; | ||||
| 3647 | if (myexponent == 0 && mysignificand == 0) { | ||||
| 3648 | makeZero(sign); | ||||
| 3649 | } else if (myexponent == 0x1f && mysignificand == 0) { | ||||
| 3650 | makeInf(sign); | ||||
| 3651 | } else if (myexponent == 0x1f && mysignificand != 0) { | ||||
| 3652 | category = fcNaN; | ||||
| 3653 | exponent = exponentNaN(); | ||||
| 3654 | *significandParts() = mysignificand; | ||||
| 3655 | } else { | ||||
| 3656 | category = fcNormal; | ||||
| 3657 | exponent = myexponent - 15; // bias | ||||
| 3658 | *significandParts() = mysignificand; | ||||
| 3659 | if (myexponent == 0) // denormal | ||||
| 3660 | exponent = -14; | ||||
| 3661 | else | ||||
| 3662 | *significandParts() |= 0x4; // integer bit | ||||
| 3663 | } | ||||
| 3664 | } | ||||
| 3665 | |||||
| 3666 | /// Treat api as containing the bits of a floating point number. Currently | ||||
| 3667 | /// we infer the floating point type from the size of the APInt. The | ||||
| 3668 | /// isIEEE argument distinguishes between PPC128 and IEEE128 (not meaningful | ||||
| 3669 | /// when the size is anything else). | ||||
| 3670 | void IEEEFloat::initFromAPInt(const fltSemantics *Sem, const APInt &api) { | ||||
| 3671 | assert(api.getBitWidth() == Sem->sizeInBits)(static_cast <bool> (api.getBitWidth() == Sem->sizeInBits ) ? void (0) : __assert_fail ("api.getBitWidth() == Sem->sizeInBits" , "llvm/lib/Support/APFloat.cpp", 3671, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 3672 | if (Sem == &semIEEEhalf) | ||||
| 3673 | return initFromHalfAPInt(api); | ||||
| 3674 | if (Sem == &semBFloat) | ||||
| 3675 | return initFromBFloatAPInt(api); | ||||
| 3676 | if (Sem == &semIEEEsingle) | ||||
| 3677 | return initFromFloatAPInt(api); | ||||
| 3678 | if (Sem == &semIEEEdouble) | ||||
| 3679 | return initFromDoubleAPInt(api); | ||||
| 3680 | if (Sem == &semX87DoubleExtended) | ||||
| 3681 | return initFromF80LongDoubleAPInt(api); | ||||
| 3682 | if (Sem == &semIEEEquad) | ||||
| 3683 | return initFromQuadrupleAPInt(api); | ||||
| 3684 | if (Sem == &semPPCDoubleDoubleLegacy) | ||||
| 3685 | return initFromPPCDoubleDoubleAPInt(api); | ||||
| 3686 | if (Sem == &semFloat8E5M2) | ||||
| 3687 | return initFromFloat8E5M2APInt(api); | ||||
| 3688 | |||||
| 3689 | llvm_unreachable(nullptr)::llvm::llvm_unreachable_internal(nullptr, "llvm/lib/Support/APFloat.cpp" , 3689); | ||||
| 3690 | } | ||||
| 3691 | |||||
| 3692 | /// Make this number the largest magnitude normal number in the given | ||||
| 3693 | /// semantics. | ||||
| 3694 | void IEEEFloat::makeLargest(bool Negative) { | ||||
| 3695 | // We want (in interchange format): | ||||
| 3696 | // sign = {Negative} | ||||
| 3697 | // exponent = 1..10 | ||||
| 3698 | // significand = 1..1 | ||||
| 3699 | category = fcNormal; | ||||
| 3700 | sign = Negative; | ||||
| 3701 | exponent = semantics->maxExponent; | ||||
| 3702 | |||||
| 3703 | // Use memset to set all but the highest integerPart to all ones. | ||||
| 3704 | integerPart *significand = significandParts(); | ||||
| 3705 | unsigned PartCount = partCount(); | ||||
| 3706 | memset(significand, 0xFF, sizeof(integerPart)*(PartCount - 1)); | ||||
| 3707 | |||||
| 3708 | // Set the high integerPart especially setting all unused top bits for | ||||
| 3709 | // internal consistency. | ||||
| 3710 | const unsigned NumUnusedHighBits = | ||||
| 3711 | PartCount*integerPartWidth - semantics->precision; | ||||
| 3712 | significand[PartCount - 1] = (NumUnusedHighBits < integerPartWidth) | ||||
| 3713 | ? (~integerPart(0) >> NumUnusedHighBits) | ||||
| 3714 | : 0; | ||||
| 3715 | } | ||||
| 3716 | |||||
| 3717 | /// Make this number the smallest magnitude denormal number in the given | ||||
| 3718 | /// semantics. | ||||
| 3719 | void IEEEFloat::makeSmallest(bool Negative) { | ||||
| 3720 | // We want (in interchange format): | ||||
| 3721 | // sign = {Negative} | ||||
| 3722 | // exponent = 0..0 | ||||
| 3723 | // significand = 0..01 | ||||
| 3724 | category = fcNormal; | ||||
| 3725 | sign = Negative; | ||||
| 3726 | exponent = semantics->minExponent; | ||||
| 3727 | APInt::tcSet(significandParts(), 1, partCount()); | ||||
| 3728 | } | ||||
| 3729 | |||||
| 3730 | void IEEEFloat::makeSmallestNormalized(bool Negative) { | ||||
| 3731 | // We want (in interchange format): | ||||
| 3732 | // sign = {Negative} | ||||
| 3733 | // exponent = 0..0 | ||||
| 3734 | // significand = 10..0 | ||||
| 3735 | |||||
| 3736 | category = fcNormal; | ||||
| 3737 | zeroSignificand(); | ||||
| 3738 | sign = Negative; | ||||
| 3739 | exponent = semantics->minExponent; | ||||
| 3740 | significandParts()[partCountForBits(semantics->precision) - 1] |= | ||||
| 3741 | (((integerPart)1) << ((semantics->precision - 1) % integerPartWidth)); | ||||
| 3742 | } | ||||
| 3743 | |||||
| 3744 | IEEEFloat::IEEEFloat(const fltSemantics &Sem, const APInt &API) { | ||||
| 3745 | initFromAPInt(&Sem, API); | ||||
| 3746 | } | ||||
| 3747 | |||||
| 3748 | IEEEFloat::IEEEFloat(float f) { | ||||
| 3749 | initFromAPInt(&semIEEEsingle, APInt::floatToBits(f)); | ||||
| 3750 | } | ||||
| 3751 | |||||
| 3752 | IEEEFloat::IEEEFloat(double d) { | ||||
| 3753 | initFromAPInt(&semIEEEdouble, APInt::doubleToBits(d)); | ||||
| 3754 | } | ||||
| 3755 | |||||
| 3756 | namespace { | ||||
| 3757 | void append(SmallVectorImpl<char> &Buffer, StringRef Str) { | ||||
| 3758 | Buffer.append(Str.begin(), Str.end()); | ||||
| 3759 | } | ||||
| 3760 | |||||
| 3761 | /// Removes data from the given significand until it is no more | ||||
| 3762 | /// precise than is required for the desired precision. | ||||
| 3763 | void AdjustToPrecision(APInt &significand, | ||||
| 3764 | int &exp, unsigned FormatPrecision) { | ||||
| 3765 | unsigned bits = significand.getActiveBits(); | ||||
| 3766 | |||||
| 3767 | // 196/59 is a very slight overestimate of lg_2(10). | ||||
| 3768 | unsigned bitsRequired = (FormatPrecision * 196 + 58) / 59; | ||||
| 3769 | |||||
| 3770 | if (bits <= bitsRequired) return; | ||||
| 3771 | |||||
| 3772 | unsigned tensRemovable = (bits - bitsRequired) * 59 / 196; | ||||
| 3773 | if (!tensRemovable) return; | ||||
| 3774 | |||||
| 3775 | exp += tensRemovable; | ||||
| 3776 | |||||
| 3777 | APInt divisor(significand.getBitWidth(), 1); | ||||
| 3778 | APInt powten(significand.getBitWidth(), 10); | ||||
| 3779 | while (true) { | ||||
| 3780 | if (tensRemovable & 1) | ||||
| 3781 | divisor *= powten; | ||||
| 3782 | tensRemovable >>= 1; | ||||
| 3783 | if (!tensRemovable) break; | ||||
| 3784 | powten *= powten; | ||||
| 3785 | } | ||||
| 3786 | |||||
| 3787 | significand = significand.udiv(divisor); | ||||
| 3788 | |||||
| 3789 | // Truncate the significand down to its active bit count. | ||||
| 3790 | significand = significand.trunc(significand.getActiveBits()); | ||||
| 3791 | } | ||||
| 3792 | |||||
| 3793 | |||||
| 3794 | void AdjustToPrecision(SmallVectorImpl<char> &buffer, | ||||
| 3795 | int &exp, unsigned FormatPrecision) { | ||||
| 3796 | unsigned N = buffer.size(); | ||||
| 3797 | if (N <= FormatPrecision) return; | ||||
| 3798 | |||||
| 3799 | // The most significant figures are the last ones in the buffer. | ||||
| 3800 | unsigned FirstSignificant = N - FormatPrecision; | ||||
| 3801 | |||||
| 3802 | // Round. | ||||
| 3803 | // FIXME: this probably shouldn't use 'round half up'. | ||||
| 3804 | |||||
| 3805 | // Rounding down is just a truncation, except we also want to drop | ||||
| 3806 | // trailing zeros from the new result. | ||||
| 3807 | if (buffer[FirstSignificant - 1] < '5') { | ||||
| 3808 | while (FirstSignificant < N && buffer[FirstSignificant] == '0') | ||||
| 3809 | FirstSignificant++; | ||||
| 3810 | |||||
| 3811 | exp += FirstSignificant; | ||||
| 3812 | buffer.erase(&buffer[0], &buffer[FirstSignificant]); | ||||
| 3813 | return; | ||||
| 3814 | } | ||||
| 3815 | |||||
| 3816 | // Rounding up requires a decimal add-with-carry. If we continue | ||||
| 3817 | // the carry, the newly-introduced zeros will just be truncated. | ||||
| 3818 | for (unsigned I = FirstSignificant; I != N; ++I) { | ||||
| 3819 | if (buffer[I] == '9') { | ||||
| 3820 | FirstSignificant++; | ||||
| 3821 | } else { | ||||
| 3822 | buffer[I]++; | ||||
| 3823 | break; | ||||
| 3824 | } | ||||
| 3825 | } | ||||
| 3826 | |||||
| 3827 | // If we carried through, we have exactly one digit of precision. | ||||
| 3828 | if (FirstSignificant == N) { | ||||
| 3829 | exp += FirstSignificant; | ||||
| 3830 | buffer.clear(); | ||||
| 3831 | buffer.push_back('1'); | ||||
| 3832 | return; | ||||
| 3833 | } | ||||
| 3834 | |||||
| 3835 | exp += FirstSignificant; | ||||
| 3836 | buffer.erase(&buffer[0], &buffer[FirstSignificant]); | ||||
| 3837 | } | ||||
| 3838 | } // namespace | ||||
| 3839 | |||||
| 3840 | void IEEEFloat::toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision, | ||||
| 3841 | unsigned FormatMaxPadding, bool TruncateZero) const { | ||||
| 3842 | switch (category) { | ||||
| 3843 | case fcInfinity: | ||||
| 3844 | if (isNegative()) | ||||
| 3845 | return append(Str, "-Inf"); | ||||
| 3846 | else | ||||
| 3847 | return append(Str, "+Inf"); | ||||
| 3848 | |||||
| 3849 | case fcNaN: return append(Str, "NaN"); | ||||
| 3850 | |||||
| 3851 | case fcZero: | ||||
| 3852 | if (isNegative()) | ||||
| 3853 | Str.push_back('-'); | ||||
| 3854 | |||||
| 3855 | if (!FormatMaxPadding) { | ||||
| 3856 | if (TruncateZero) | ||||
| 3857 | append(Str, "0.0E+0"); | ||||
| 3858 | else { | ||||
| 3859 | append(Str, "0.0"); | ||||
| 3860 | if (FormatPrecision > 1) | ||||
| 3861 | Str.append(FormatPrecision - 1, '0'); | ||||
| 3862 | append(Str, "e+00"); | ||||
| 3863 | } | ||||
| 3864 | } else | ||||
| 3865 | Str.push_back('0'); | ||||
| 3866 | return; | ||||
| 3867 | |||||
| 3868 | case fcNormal: | ||||
| 3869 | break; | ||||
| 3870 | } | ||||
| 3871 | |||||
| 3872 | if (isNegative()) | ||||
| 3873 | Str.push_back('-'); | ||||
| 3874 | |||||
| 3875 | // Decompose the number into an APInt and an exponent. | ||||
| 3876 | int exp = exponent - ((int) semantics->precision - 1); | ||||
| 3877 | APInt significand(semantics->precision, | ||||
| 3878 | makeArrayRef(significandParts(), | ||||
| 3879 | partCountForBits(semantics->precision))); | ||||
| 3880 | |||||
| 3881 | // Set FormatPrecision if zero. We want to do this before we | ||||
| 3882 | // truncate trailing zeros, as those are part of the precision. | ||||
| 3883 | if (!FormatPrecision) { | ||||
| 3884 | // We use enough digits so the number can be round-tripped back to an | ||||
| 3885 | // APFloat. The formula comes from "How to Print Floating-Point Numbers | ||||
| 3886 | // Accurately" by Steele and White. | ||||
| 3887 | // FIXME: Using a formula based purely on the precision is conservative; | ||||
| 3888 | // we can print fewer digits depending on the actual value being printed. | ||||
| 3889 | |||||
| 3890 | // FormatPrecision = 2 + floor(significandBits / lg_2(10)) | ||||
| 3891 | FormatPrecision = 2 + semantics->precision * 59 / 196; | ||||
| 3892 | } | ||||
| 3893 | |||||
| 3894 | // Ignore trailing binary zeros. | ||||
| 3895 | int trailingZeros = significand.countTrailingZeros(); | ||||
| 3896 | exp += trailingZeros; | ||||
| 3897 | significand.lshrInPlace(trailingZeros); | ||||
| 3898 | |||||
| 3899 | // Change the exponent from 2^e to 10^e. | ||||
| 3900 | if (exp == 0) { | ||||
| 3901 | // Nothing to do. | ||||
| 3902 | } else if (exp > 0) { | ||||
| 3903 | // Just shift left. | ||||
| 3904 | significand = significand.zext(semantics->precision + exp); | ||||
| 3905 | significand <<= exp; | ||||
| 3906 | exp = 0; | ||||
| 3907 | } else { /* exp < 0 */ | ||||
| 3908 | int texp = -exp; | ||||
| 3909 | |||||
| 3910 | // We transform this using the identity: | ||||
| 3911 | // (N)(2^-e) == (N)(5^e)(10^-e) | ||||
| 3912 | // This means we have to multiply N (the significand) by 5^e. | ||||
| 3913 | // To avoid overflow, we have to operate on numbers large | ||||
| 3914 | // enough to store N * 5^e: | ||||
| 3915 | // log2(N * 5^e) == log2(N) + e * log2(5) | ||||
| 3916 | // <= semantics->precision + e * 137 / 59 | ||||
| 3917 | // (log_2(5) ~ 2.321928 < 2.322034 ~ 137/59) | ||||
| 3918 | |||||
| 3919 | unsigned precision = semantics->precision + (137 * texp + 136) / 59; | ||||
| 3920 | |||||
| 3921 | // Multiply significand by 5^e. | ||||
| 3922 | // N * 5^0101 == N * 5^(1*1) * 5^(0*2) * 5^(1*4) * 5^(0*8) | ||||
| 3923 | significand = significand.zext(precision); | ||||
| 3924 | APInt five_to_the_i(precision, 5); | ||||
| 3925 | while (true) { | ||||
| 3926 | if (texp & 1) significand *= five_to_the_i; | ||||
| 3927 | |||||
| 3928 | texp >>= 1; | ||||
| 3929 | if (!texp) break; | ||||
| 3930 | five_to_the_i *= five_to_the_i; | ||||
| 3931 | } | ||||
| 3932 | } | ||||
| 3933 | |||||
| 3934 | AdjustToPrecision(significand, exp, FormatPrecision); | ||||
| 3935 | |||||
| 3936 | SmallVector<char, 256> buffer; | ||||
| 3937 | |||||
| 3938 | // Fill the buffer. | ||||
| 3939 | unsigned precision = significand.getBitWidth(); | ||||
| 3940 | APInt ten(precision, 10); | ||||
| 3941 | APInt digit(precision, 0); | ||||
| 3942 | |||||
| 3943 | bool inTrail = true; | ||||
| 3944 | while (significand != 0) { | ||||
| 3945 | // digit <- significand % 10 | ||||
| 3946 | // significand <- significand / 10 | ||||
| 3947 | APInt::udivrem(significand, ten, significand, digit); | ||||
| 3948 | |||||
| 3949 | unsigned d = digit.getZExtValue(); | ||||
| 3950 | |||||
| 3951 | // Drop trailing zeros. | ||||
| 3952 | if (inTrail && !d) exp++; | ||||
| 3953 | else { | ||||
| 3954 | buffer.push_back((char) ('0' + d)); | ||||
| 3955 | inTrail = false; | ||||
| 3956 | } | ||||
| 3957 | } | ||||
| 3958 | |||||
| 3959 | assert(!buffer.empty() && "no characters in buffer!")(static_cast <bool> (!buffer.empty() && "no characters in buffer!" ) ? void (0) : __assert_fail ("!buffer.empty() && \"no characters in buffer!\"" , "llvm/lib/Support/APFloat.cpp", 3959, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 3960 | |||||
| 3961 | // Drop down to FormatPrecision. | ||||
| 3962 | // TODO: don't do more precise calculations above than are required. | ||||
| 3963 | AdjustToPrecision(buffer, exp, FormatPrecision); | ||||
| 3964 | |||||
| 3965 | unsigned NDigits = buffer.size(); | ||||
| 3966 | |||||
| 3967 | // Check whether we should use scientific notation. | ||||
| 3968 | bool FormatScientific; | ||||
| 3969 | if (!FormatMaxPadding) | ||||
| 3970 | FormatScientific = true; | ||||
| 3971 | else { | ||||
| 3972 | if (exp >= 0) { | ||||
| 3973 | // 765e3 --> 765000 | ||||
| 3974 | // ^^^ | ||||
| 3975 | // But we shouldn't make the number look more precise than it is. | ||||
| 3976 | FormatScientific = ((unsigned) exp > FormatMaxPadding || | ||||
| 3977 | NDigits + (unsigned) exp > FormatPrecision); | ||||
| 3978 | } else { | ||||
| 3979 | // Power of the most significant digit. | ||||
| 3980 | int MSD = exp + (int) (NDigits - 1); | ||||
| 3981 | if (MSD >= 0) { | ||||
| 3982 | // 765e-2 == 7.65 | ||||
| 3983 | FormatScientific = false; | ||||
| 3984 | } else { | ||||
| 3985 | // 765e-5 == 0.00765 | ||||
| 3986 | // ^ ^^ | ||||
| 3987 | FormatScientific = ((unsigned) -MSD) > FormatMaxPadding; | ||||
| 3988 | } | ||||
| 3989 | } | ||||
| 3990 | } | ||||
| 3991 | |||||
| 3992 | // Scientific formatting is pretty straightforward. | ||||
| 3993 | if (FormatScientific) { | ||||
| 3994 | exp += (NDigits - 1); | ||||
| 3995 | |||||
| 3996 | Str.push_back(buffer[NDigits-1]); | ||||
| 3997 | Str.push_back('.'); | ||||
| 3998 | if (NDigits == 1 && TruncateZero) | ||||
| 3999 | Str.push_back('0'); | ||||
| 4000 | else | ||||
| 4001 | for (unsigned I = 1; I != NDigits; ++I) | ||||
| 4002 | Str.push_back(buffer[NDigits-1-I]); | ||||
| 4003 | // Fill with zeros up to FormatPrecision. | ||||
| 4004 | if (!TruncateZero && FormatPrecision > NDigits - 1) | ||||
| 4005 | Str.append(FormatPrecision - NDigits + 1, '0'); | ||||
| 4006 | // For !TruncateZero we use lower 'e'. | ||||
| 4007 | Str.push_back(TruncateZero ? 'E' : 'e'); | ||||
| 4008 | |||||
| 4009 | Str.push_back(exp >= 0 ? '+' : '-'); | ||||
| 4010 | if (exp < 0) exp = -exp; | ||||
| 4011 | SmallVector<char, 6> expbuf; | ||||
| 4012 | do { | ||||
| 4013 | expbuf.push_back((char) ('0' + (exp % 10))); | ||||
| 4014 | exp /= 10; | ||||
| 4015 | } while (exp); | ||||
| 4016 | // Exponent always at least two digits if we do not truncate zeros. | ||||
| 4017 | if (!TruncateZero && expbuf.size() < 2) | ||||
| 4018 | expbuf.push_back('0'); | ||||
| 4019 | for (unsigned I = 0, E = expbuf.size(); I != E; ++I) | ||||
| 4020 | Str.push_back(expbuf[E-1-I]); | ||||
| 4021 | return; | ||||
| 4022 | } | ||||
| 4023 | |||||
| 4024 | // Non-scientific, positive exponents. | ||||
| 4025 | if (exp >= 0) { | ||||
| 4026 | for (unsigned I = 0; I != NDigits; ++I) | ||||
| 4027 | Str.push_back(buffer[NDigits-1-I]); | ||||
| 4028 | for (unsigned I = 0; I != (unsigned) exp; ++I) | ||||
| 4029 | Str.push_back('0'); | ||||
| 4030 | return; | ||||
| 4031 | } | ||||
| 4032 | |||||
| 4033 | // Non-scientific, negative exponents. | ||||
| 4034 | |||||
| 4035 | // The number of digits to the left of the decimal point. | ||||
| 4036 | int NWholeDigits = exp + (int) NDigits; | ||||
| 4037 | |||||
| 4038 | unsigned I = 0; | ||||
| 4039 | if (NWholeDigits > 0) { | ||||
| 4040 | for (; I != (unsigned) NWholeDigits; ++I) | ||||
| 4041 | Str.push_back(buffer[NDigits-I-1]); | ||||
| 4042 | Str.push_back('.'); | ||||
| 4043 | } else { | ||||
| 4044 | unsigned NZeros = 1 + (unsigned) -NWholeDigits; | ||||
| 4045 | |||||
| 4046 | Str.push_back('0'); | ||||
| 4047 | Str.push_back('.'); | ||||
| 4048 | for (unsigned Z = 1; Z != NZeros; ++Z) | ||||
| 4049 | Str.push_back('0'); | ||||
| 4050 | } | ||||
| 4051 | |||||
| 4052 | for (; I != NDigits; ++I) | ||||
| 4053 | Str.push_back(buffer[NDigits-I-1]); | ||||
| 4054 | } | ||||
| 4055 | |||||
| 4056 | bool IEEEFloat::getExactInverse(APFloat *inv) const { | ||||
| 4057 | // Special floats and denormals have no exact inverse. | ||||
| 4058 | if (!isFiniteNonZero()) | ||||
| 4059 | return false; | ||||
| 4060 | |||||
| 4061 | // Check that the number is a power of two by making sure that only the | ||||
| 4062 | // integer bit is set in the significand. | ||||
| 4063 | if (significandLSB() != semantics->precision - 1) | ||||
| 4064 | return false; | ||||
| 4065 | |||||
| 4066 | // Get the inverse. | ||||
| 4067 | IEEEFloat reciprocal(*semantics, 1ULL); | ||||
| 4068 | if (reciprocal.divide(*this, rmNearestTiesToEven) != opOK) | ||||
| 4069 | return false; | ||||
| 4070 | |||||
| 4071 | // Avoid multiplication with a denormal, it is not safe on all platforms and | ||||
| 4072 | // may be slower than a normal division. | ||||
| 4073 | if (reciprocal.isDenormal()) | ||||
| 4074 | return false; | ||||
| 4075 | |||||
| 4076 | assert(reciprocal.isFiniteNonZero() &&(static_cast <bool> (reciprocal.isFiniteNonZero() && reciprocal.significandLSB() == reciprocal.semantics->precision - 1) ? void (0) : __assert_fail ("reciprocal.isFiniteNonZero() && reciprocal.significandLSB() == reciprocal.semantics->precision - 1" , "llvm/lib/Support/APFloat.cpp", 4077, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 4077 | reciprocal.significandLSB() == reciprocal.semantics->precision - 1)(static_cast <bool> (reciprocal.isFiniteNonZero() && reciprocal.significandLSB() == reciprocal.semantics->precision - 1) ? void (0) : __assert_fail ("reciprocal.isFiniteNonZero() && reciprocal.significandLSB() == reciprocal.semantics->precision - 1" , "llvm/lib/Support/APFloat.cpp", 4077, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4078 | |||||
| 4079 | if (inv) | ||||
| 4080 | *inv = APFloat(reciprocal, *semantics); | ||||
| 4081 | |||||
| 4082 | return true; | ||||
| 4083 | } | ||||
| 4084 | |||||
| 4085 | bool IEEEFloat::isSignaling() const { | ||||
| 4086 | if (!isNaN()) | ||||
| 4087 | return false; | ||||
| 4088 | |||||
| 4089 | // IEEE-754R 2008 6.2.1: A signaling NaN bit string should be encoded with the | ||||
| 4090 | // first bit of the trailing significand being 0. | ||||
| 4091 | return !APInt::tcExtractBit(significandParts(), semantics->precision - 2); | ||||
| 4092 | } | ||||
| 4093 | |||||
| 4094 | /// IEEE-754R 2008 5.3.1: nextUp/nextDown. | ||||
| 4095 | /// | ||||
| 4096 | /// *NOTE* since nextDown(x) = -nextUp(-x), we only implement nextUp with | ||||
| 4097 | /// appropriate sign switching before/after the computation. | ||||
| 4098 | IEEEFloat::opStatus IEEEFloat::next(bool nextDown) { | ||||
| 4099 | // If we are performing nextDown, swap sign so we have -x. | ||||
| 4100 | if (nextDown) | ||||
| 4101 | changeSign(); | ||||
| 4102 | |||||
| 4103 | // Compute nextUp(x) | ||||
| 4104 | opStatus result = opOK; | ||||
| 4105 | |||||
| 4106 | // Handle each float category separately. | ||||
| 4107 | switch (category) { | ||||
| 4108 | case fcInfinity: | ||||
| 4109 | // nextUp(+inf) = +inf | ||||
| 4110 | if (!isNegative()) | ||||
| 4111 | break; | ||||
| 4112 | // nextUp(-inf) = -getLargest() | ||||
| 4113 | makeLargest(true); | ||||
| 4114 | break; | ||||
| 4115 | case fcNaN: | ||||
| 4116 | // IEEE-754R 2008 6.2 Par 2: nextUp(sNaN) = qNaN. Set Invalid flag. | ||||
| 4117 | // IEEE-754R 2008 6.2: nextUp(qNaN) = qNaN. Must be identity so we do not | ||||
| 4118 | // change the payload. | ||||
| 4119 | if (isSignaling()) { | ||||
| 4120 | result = opInvalidOp; | ||||
| 4121 | // For consistency, propagate the sign of the sNaN to the qNaN. | ||||
| 4122 | makeNaN(false, isNegative(), nullptr); | ||||
| 4123 | } | ||||
| 4124 | break; | ||||
| 4125 | case fcZero: | ||||
| 4126 | // nextUp(pm 0) = +getSmallest() | ||||
| 4127 | makeSmallest(false); | ||||
| 4128 | break; | ||||
| 4129 | case fcNormal: | ||||
| 4130 | // nextUp(-getSmallest()) = -0 | ||||
| 4131 | if (isSmallest() && isNegative()) { | ||||
| 4132 | APInt::tcSet(significandParts(), 0, partCount()); | ||||
| 4133 | category = fcZero; | ||||
| 4134 | exponent = 0; | ||||
| 4135 | break; | ||||
| 4136 | } | ||||
| 4137 | |||||
| 4138 | // nextUp(getLargest()) == INFINITY | ||||
| 4139 | if (isLargest() && !isNegative()) { | ||||
| 4140 | APInt::tcSet(significandParts(), 0, partCount()); | ||||
| 4141 | category = fcInfinity; | ||||
| 4142 | exponent = semantics->maxExponent + 1; | ||||
| 4143 | break; | ||||
| 4144 | } | ||||
| 4145 | |||||
| 4146 | // nextUp(normal) == normal + inc. | ||||
| 4147 | if (isNegative()) { | ||||
| 4148 | // If we are negative, we need to decrement the significand. | ||||
| 4149 | |||||
| 4150 | // We only cross a binade boundary that requires adjusting the exponent | ||||
| 4151 | // if: | ||||
| 4152 | // 1. exponent != semantics->minExponent. This implies we are not in the | ||||
| 4153 | // smallest binade or are dealing with denormals. | ||||
| 4154 | // 2. Our significand excluding the integral bit is all zeros. | ||||
| 4155 | bool WillCrossBinadeBoundary = | ||||
| 4156 | exponent != semantics->minExponent && isSignificandAllZeros(); | ||||
| 4157 | |||||
| 4158 | // Decrement the significand. | ||||
| 4159 | // | ||||
| 4160 | // We always do this since: | ||||
| 4161 | // 1. If we are dealing with a non-binade decrement, by definition we | ||||
| 4162 | // just decrement the significand. | ||||
| 4163 | // 2. If we are dealing with a normal -> normal binade decrement, since | ||||
| 4164 | // we have an explicit integral bit the fact that all bits but the | ||||
| 4165 | // integral bit are zero implies that subtracting one will yield a | ||||
| 4166 | // significand with 0 integral bit and 1 in all other spots. Thus we | ||||
| 4167 | // must just adjust the exponent and set the integral bit to 1. | ||||
| 4168 | // 3. If we are dealing with a normal -> denormal binade decrement, | ||||
| 4169 | // since we set the integral bit to 0 when we represent denormals, we | ||||
| 4170 | // just decrement the significand. | ||||
| 4171 | integerPart *Parts = significandParts(); | ||||
| 4172 | APInt::tcDecrement(Parts, partCount()); | ||||
| 4173 | |||||
| 4174 | if (WillCrossBinadeBoundary) { | ||||
| 4175 | // Our result is a normal number. Do the following: | ||||
| 4176 | // 1. Set the integral bit to 1. | ||||
| 4177 | // 2. Decrement the exponent. | ||||
| 4178 | APInt::tcSetBit(Parts, semantics->precision - 1); | ||||
| 4179 | exponent--; | ||||
| 4180 | } | ||||
| 4181 | } else { | ||||
| 4182 | // If we are positive, we need to increment the significand. | ||||
| 4183 | |||||
| 4184 | // We only cross a binade boundary that requires adjusting the exponent if | ||||
| 4185 | // the input is not a denormal and all of said input's significand bits | ||||
| 4186 | // are set. If all of said conditions are true: clear the significand, set | ||||
| 4187 | // the integral bit to 1, and increment the exponent. If we have a | ||||
| 4188 | // denormal always increment since moving denormals and the numbers in the | ||||
| 4189 | // smallest normal binade have the same exponent in our representation. | ||||
| 4190 | bool WillCrossBinadeBoundary = !isDenormal() && isSignificandAllOnes(); | ||||
| 4191 | |||||
| 4192 | if (WillCrossBinadeBoundary) { | ||||
| 4193 | integerPart *Parts = significandParts(); | ||||
| 4194 | APInt::tcSet(Parts, 0, partCount()); | ||||
| 4195 | APInt::tcSetBit(Parts, semantics->precision - 1); | ||||
| 4196 | assert(exponent != semantics->maxExponent &&(static_cast <bool> (exponent != semantics->maxExponent && "We can not increment an exponent beyond the maxExponent allowed" " by the given floating point semantics.") ? void (0) : __assert_fail ("exponent != semantics->maxExponent && \"We can not increment an exponent beyond the maxExponent allowed\" \" by the given floating point semantics.\"" , "llvm/lib/Support/APFloat.cpp", 4198, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 4197 | "We can not increment an exponent beyond the maxExponent allowed"(static_cast <bool> (exponent != semantics->maxExponent && "We can not increment an exponent beyond the maxExponent allowed" " by the given floating point semantics.") ? void (0) : __assert_fail ("exponent != semantics->maxExponent && \"We can not increment an exponent beyond the maxExponent allowed\" \" by the given floating point semantics.\"" , "llvm/lib/Support/APFloat.cpp", 4198, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 4198 | " by the given floating point semantics.")(static_cast <bool> (exponent != semantics->maxExponent && "We can not increment an exponent beyond the maxExponent allowed" " by the given floating point semantics.") ? void (0) : __assert_fail ("exponent != semantics->maxExponent && \"We can not increment an exponent beyond the maxExponent allowed\" \" by the given floating point semantics.\"" , "llvm/lib/Support/APFloat.cpp", 4198, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4199 | exponent++; | ||||
| 4200 | } else { | ||||
| 4201 | incrementSignificand(); | ||||
| 4202 | } | ||||
| 4203 | } | ||||
| 4204 | break; | ||||
| 4205 | } | ||||
| 4206 | |||||
| 4207 | // If we are performing nextDown, swap sign so we have -nextUp(-x) | ||||
| 4208 | if (nextDown) | ||||
| 4209 | changeSign(); | ||||
| 4210 | |||||
| 4211 | return result; | ||||
| 4212 | } | ||||
| 4213 | |||||
| 4214 | APFloatBase::ExponentType IEEEFloat::exponentNaN() const { | ||||
| 4215 | return semantics->maxExponent + 1; | ||||
| 4216 | } | ||||
| 4217 | |||||
| 4218 | APFloatBase::ExponentType IEEEFloat::exponentInf() const { | ||||
| 4219 | return semantics->maxExponent + 1; | ||||
| 4220 | } | ||||
| 4221 | |||||
| 4222 | APFloatBase::ExponentType IEEEFloat::exponentZero() const { | ||||
| 4223 | return semantics->minExponent - 1; | ||||
| 4224 | } | ||||
| 4225 | |||||
| 4226 | void IEEEFloat::makeInf(bool Negative) { | ||||
| 4227 | category = fcInfinity; | ||||
| 4228 | sign = Negative; | ||||
| 4229 | exponent = exponentInf(); | ||||
| 4230 | APInt::tcSet(significandParts(), 0, partCount()); | ||||
| 4231 | } | ||||
| 4232 | |||||
| 4233 | void IEEEFloat::makeZero(bool Negative) { | ||||
| 4234 | category = fcZero; | ||||
| 4235 | sign = Negative; | ||||
| 4236 | exponent = exponentZero(); | ||||
| 4237 | APInt::tcSet(significandParts(), 0, partCount()); | ||||
| 4238 | } | ||||
| 4239 | |||||
| 4240 | void IEEEFloat::makeQuiet() { | ||||
| 4241 | assert(isNaN())(static_cast <bool> (isNaN()) ? void (0) : __assert_fail ("isNaN()", "llvm/lib/Support/APFloat.cpp", 4241, __extension__ __PRETTY_FUNCTION__)); | ||||
| 4242 | APInt::tcSetBit(significandParts(), semantics->precision - 2); | ||||
| 4243 | } | ||||
| 4244 | |||||
| 4245 | int ilogb(const IEEEFloat &Arg) { | ||||
| 4246 | if (Arg.isNaN()) | ||||
| 4247 | return IEEEFloat::IEK_NaN; | ||||
| 4248 | if (Arg.isZero()) | ||||
| 4249 | return IEEEFloat::IEK_Zero; | ||||
| 4250 | if (Arg.isInfinity()) | ||||
| 4251 | return IEEEFloat::IEK_Inf; | ||||
| 4252 | if (!Arg.isDenormal()) | ||||
| 4253 | return Arg.exponent; | ||||
| 4254 | |||||
| 4255 | IEEEFloat Normalized(Arg); | ||||
| 4256 | int SignificandBits = Arg.getSemantics().precision - 1; | ||||
| 4257 | |||||
| 4258 | Normalized.exponent += SignificandBits; | ||||
| 4259 | Normalized.normalize(IEEEFloat::rmNearestTiesToEven, lfExactlyZero); | ||||
| 4260 | return Normalized.exponent - SignificandBits; | ||||
| 4261 | } | ||||
| 4262 | |||||
| 4263 | IEEEFloat scalbn(IEEEFloat X, int Exp, IEEEFloat::roundingMode RoundingMode) { | ||||
| 4264 | auto MaxExp = X.getSemantics().maxExponent; | ||||
| 4265 | auto MinExp = X.getSemantics().minExponent; | ||||
| 4266 | |||||
| 4267 | // If Exp is wildly out-of-scale, simply adding it to X.exponent will | ||||
| 4268 | // overflow; clamp it to a safe range before adding, but ensure that the range | ||||
| 4269 | // is large enough that the clamp does not change the result. The range we | ||||
| 4270 | // need to support is the difference between the largest possible exponent and | ||||
| 4271 | // the normalized exponent of half the smallest denormal. | ||||
| 4272 | |||||
| 4273 | int SignificandBits = X.getSemantics().precision - 1; | ||||
| 4274 | int MaxIncrement = MaxExp - (MinExp - SignificandBits) + 1; | ||||
| 4275 | |||||
| 4276 | // Clamp to one past the range ends to let normalize handle overlflow. | ||||
| 4277 | X.exponent += std::min(std::max(Exp, -MaxIncrement - 1), MaxIncrement); | ||||
| 4278 | X.normalize(RoundingMode, lfExactlyZero); | ||||
| 4279 | if (X.isNaN()) | ||||
| 4280 | X.makeQuiet(); | ||||
| 4281 | return X; | ||||
| 4282 | } | ||||
| 4283 | |||||
| 4284 | IEEEFloat frexp(const IEEEFloat &Val, int &Exp, IEEEFloat::roundingMode RM) { | ||||
| 4285 | Exp = ilogb(Val); | ||||
| 4286 | |||||
| 4287 | // Quiet signalling nans. | ||||
| 4288 | if (Exp == IEEEFloat::IEK_NaN) { | ||||
| 4289 | IEEEFloat Quiet(Val); | ||||
| 4290 | Quiet.makeQuiet(); | ||||
| 4291 | return Quiet; | ||||
| 4292 | } | ||||
| 4293 | |||||
| 4294 | if (Exp == IEEEFloat::IEK_Inf) | ||||
| 4295 | return Val; | ||||
| 4296 | |||||
| 4297 | // 1 is added because frexp is defined to return a normalized fraction in | ||||
| 4298 | // +/-[0.5, 1.0), rather than the usual +/-[1.0, 2.0). | ||||
| 4299 | Exp = Exp == IEEEFloat::IEK_Zero ? 0 : Exp + 1; | ||||
| 4300 | return scalbn(Val, -Exp, RM); | ||||
| 4301 | } | ||||
| 4302 | |||||
| 4303 | DoubleAPFloat::DoubleAPFloat(const fltSemantics &S) | ||||
| 4304 | : Semantics(&S), | ||||
| 4305 | Floats(new APFloat[2]{APFloat(semIEEEdouble), APFloat(semIEEEdouble)}) { | ||||
| 4306 | assert(Semantics == &semPPCDoubleDouble)(static_cast <bool> (Semantics == &semPPCDoubleDouble ) ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble" , "llvm/lib/Support/APFloat.cpp", 4306, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4307 | } | ||||
| 4308 | |||||
| 4309 | DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, uninitializedTag) | ||||
| 4310 | : Semantics(&S), | ||||
| 4311 | Floats(new APFloat[2]{APFloat(semIEEEdouble, uninitialized), | ||||
| 4312 | APFloat(semIEEEdouble, uninitialized)}) { | ||||
| 4313 | assert(Semantics == &semPPCDoubleDouble)(static_cast <bool> (Semantics == &semPPCDoubleDouble ) ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble" , "llvm/lib/Support/APFloat.cpp", 4313, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4314 | } | ||||
| 4315 | |||||
| 4316 | DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, integerPart I) | ||||
| 4317 | : Semantics(&S), Floats(new APFloat[2]{APFloat(semIEEEdouble, I), | ||||
| 4318 | APFloat(semIEEEdouble)}) { | ||||
| 4319 | assert(Semantics == &semPPCDoubleDouble)(static_cast <bool> (Semantics == &semPPCDoubleDouble ) ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble" , "llvm/lib/Support/APFloat.cpp", 4319, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4320 | } | ||||
| 4321 | |||||
| 4322 | DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, const APInt &I) | ||||
| 4323 | : Semantics(&S), | ||||
| 4324 | Floats(new APFloat[2]{ | ||||
| 4325 | APFloat(semIEEEdouble, APInt(64, I.getRawData()[0])), | ||||
| 4326 | APFloat(semIEEEdouble, APInt(64, I.getRawData()[1]))}) { | ||||
| 4327 | assert(Semantics == &semPPCDoubleDouble)(static_cast <bool> (Semantics == &semPPCDoubleDouble ) ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble" , "llvm/lib/Support/APFloat.cpp", 4327, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4328 | } | ||||
| 4329 | |||||
| 4330 | DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, APFloat &&First, | ||||
| 4331 | APFloat &&Second) | ||||
| 4332 | : Semantics(&S), | ||||
| 4333 | Floats(new APFloat[2]{std::move(First), std::move(Second)}) { | ||||
| 4334 | assert(Semantics == &semPPCDoubleDouble)(static_cast <bool> (Semantics == &semPPCDoubleDouble ) ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble" , "llvm/lib/Support/APFloat.cpp", 4334, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4335 | assert(&Floats[0].getSemantics() == &semIEEEdouble)(static_cast <bool> (&Floats[0].getSemantics() == & semIEEEdouble) ? void (0) : __assert_fail ("&Floats[0].getSemantics() == &semIEEEdouble" , "llvm/lib/Support/APFloat.cpp", 4335, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4336 | assert(&Floats[1].getSemantics() == &semIEEEdouble)(static_cast <bool> (&Floats[1].getSemantics() == & semIEEEdouble) ? void (0) : __assert_fail ("&Floats[1].getSemantics() == &semIEEEdouble" , "llvm/lib/Support/APFloat.cpp", 4336, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4337 | } | ||||
| 4338 | |||||
| 4339 | DoubleAPFloat::DoubleAPFloat(const DoubleAPFloat &RHS) | ||||
| 4340 | : Semantics(RHS.Semantics), | ||||
| 4341 | Floats(RHS.Floats ? new APFloat[2]{APFloat(RHS.Floats[0]), | ||||
| 4342 | APFloat(RHS.Floats[1])} | ||||
| 4343 | : nullptr) { | ||||
| 4344 | assert(Semantics == &semPPCDoubleDouble)(static_cast <bool> (Semantics == &semPPCDoubleDouble ) ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble" , "llvm/lib/Support/APFloat.cpp", 4344, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4345 | } | ||||
| 4346 | |||||
| 4347 | DoubleAPFloat::DoubleAPFloat(DoubleAPFloat &&RHS) | ||||
| 4348 | : Semantics(RHS.Semantics), Floats(std::move(RHS.Floats)) { | ||||
| 4349 | RHS.Semantics = &semBogus; | ||||
| 4350 | assert(Semantics == &semPPCDoubleDouble)(static_cast <bool> (Semantics == &semPPCDoubleDouble ) ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble" , "llvm/lib/Support/APFloat.cpp", 4350, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4351 | } | ||||
| 4352 | |||||
| 4353 | DoubleAPFloat &DoubleAPFloat::operator=(const DoubleAPFloat &RHS) { | ||||
| 4354 | if (Semantics == RHS.Semantics && RHS.Floats) { | ||||
| 4355 | Floats[0] = RHS.Floats[0]; | ||||
| 4356 | Floats[1] = RHS.Floats[1]; | ||||
| 4357 | } else if (this != &RHS) { | ||||
| 4358 | this->~DoubleAPFloat(); | ||||
| 4359 | new (this) DoubleAPFloat(RHS); | ||||
| 4360 | } | ||||
| 4361 | return *this; | ||||
| 4362 | } | ||||
| 4363 | |||||
| 4364 | // Implement addition, subtraction, multiplication and division based on: | ||||
| 4365 | // "Software for Doubled-Precision Floating-Point Computations", | ||||
| 4366 | // by Seppo Linnainmaa, ACM TOMS vol 7 no 3, September 1981, pages 272-283. | ||||
| 4367 | APFloat::opStatus DoubleAPFloat::addImpl(const APFloat &a, const APFloat &aa, | ||||
| 4368 | const APFloat &c, const APFloat &cc, | ||||
| 4369 | roundingMode RM) { | ||||
| 4370 | int Status = opOK; | ||||
| 4371 | APFloat z = a; | ||||
| 4372 | Status |= z.add(c, RM); | ||||
| 4373 | if (!z.isFinite()) { | ||||
| 4374 | if (!z.isInfinity()) { | ||||
| 4375 | Floats[0] = std::move(z); | ||||
| 4376 | Floats[1].makeZero(/* Neg = */ false); | ||||
| 4377 | return (opStatus)Status; | ||||
| 4378 | } | ||||
| 4379 | Status = opOK; | ||||
| 4380 | auto AComparedToC = a.compareAbsoluteValue(c); | ||||
| 4381 | z = cc; | ||||
| 4382 | Status |= z.add(aa, RM); | ||||
| 4383 | if (AComparedToC == APFloat::cmpGreaterThan) { | ||||
| 4384 | // z = cc + aa + c + a; | ||||
| 4385 | Status |= z.add(c, RM); | ||||
| 4386 | Status |= z.add(a, RM); | ||||
| 4387 | } else { | ||||
| 4388 | // z = cc + aa + a + c; | ||||
| 4389 | Status |= z.add(a, RM); | ||||
| 4390 | Status |= z.add(c, RM); | ||||
| 4391 | } | ||||
| 4392 | if (!z.isFinite()) { | ||||
| 4393 | Floats[0] = std::move(z); | ||||
| 4394 | Floats[1].makeZero(/* Neg = */ false); | ||||
| 4395 | return (opStatus)Status; | ||||
| 4396 | } | ||||
| 4397 | Floats[0] = z; | ||||
| 4398 | APFloat zz = aa; | ||||
| 4399 | Status |= zz.add(cc, RM); | ||||
| 4400 | if (AComparedToC == APFloat::cmpGreaterThan) { | ||||
| 4401 | // Floats[1] = a - z + c + zz; | ||||
| 4402 | Floats[1] = a; | ||||
| 4403 | Status |= Floats[1].subtract(z, RM); | ||||
| 4404 | Status |= Floats[1].add(c, RM); | ||||
| 4405 | Status |= Floats[1].add(zz, RM); | ||||
| 4406 | } else { | ||||
| 4407 | // Floats[1] = c - z + a + zz; | ||||
| 4408 | Floats[1] = c; | ||||
| 4409 | Status |= Floats[1].subtract(z, RM); | ||||
| 4410 | Status |= Floats[1].add(a, RM); | ||||
| 4411 | Status |= Floats[1].add(zz, RM); | ||||
| 4412 | } | ||||
| 4413 | } else { | ||||
| 4414 | // q = a - z; | ||||
| 4415 | APFloat q = a; | ||||
| 4416 | Status |= q.subtract(z, RM); | ||||
| 4417 | |||||
| 4418 | // zz = q + c + (a - (q + z)) + aa + cc; | ||||
| 4419 | // Compute a - (q + z) as -((q + z) - a) to avoid temporary copies. | ||||
| 4420 | auto zz = q; | ||||
| 4421 | Status |= zz.add(c, RM); | ||||
| 4422 | Status |= q.add(z, RM); | ||||
| 4423 | Status |= q.subtract(a, RM); | ||||
| 4424 | q.changeSign(); | ||||
| 4425 | Status |= zz.add(q, RM); | ||||
| 4426 | Status |= zz.add(aa, RM); | ||||
| 4427 | Status |= zz.add(cc, RM); | ||||
| 4428 | if (zz.isZero() && !zz.isNegative()) { | ||||
| 4429 | Floats[0] = std::move(z); | ||||
| 4430 | Floats[1].makeZero(/* Neg = */ false); | ||||
| 4431 | return opOK; | ||||
| 4432 | } | ||||
| 4433 | Floats[0] = z; | ||||
| 4434 | Status |= Floats[0].add(zz, RM); | ||||
| 4435 | if (!Floats[0].isFinite()) { | ||||
| 4436 | Floats[1].makeZero(/* Neg = */ false); | ||||
| 4437 | return (opStatus)Status; | ||||
| 4438 | } | ||||
| 4439 | Floats[1] = std::move(z); | ||||
| 4440 | Status |= Floats[1].subtract(Floats[0], RM); | ||||
| 4441 | Status |= Floats[1].add(zz, RM); | ||||
| 4442 | } | ||||
| 4443 | return (opStatus)Status; | ||||
| 4444 | } | ||||
| 4445 | |||||
| 4446 | APFloat::opStatus DoubleAPFloat::addWithSpecial(const DoubleAPFloat &LHS, | ||||
| 4447 | const DoubleAPFloat &RHS, | ||||
| 4448 | DoubleAPFloat &Out, | ||||
| 4449 | roundingMode RM) { | ||||
| 4450 | if (LHS.getCategory() == fcNaN) { | ||||
| 4451 | Out = LHS; | ||||
| 4452 | return opOK; | ||||
| 4453 | } | ||||
| 4454 | if (RHS.getCategory() == fcNaN) { | ||||
| 4455 | Out = RHS; | ||||
| 4456 | return opOK; | ||||
| 4457 | } | ||||
| 4458 | if (LHS.getCategory() == fcZero) { | ||||
| 4459 | Out = RHS; | ||||
| 4460 | return opOK; | ||||
| 4461 | } | ||||
| 4462 | if (RHS.getCategory() == fcZero) { | ||||
| 4463 | Out = LHS; | ||||
| 4464 | return opOK; | ||||
| 4465 | } | ||||
| 4466 | if (LHS.getCategory() == fcInfinity && RHS.getCategory() == fcInfinity && | ||||
| 4467 | LHS.isNegative() != RHS.isNegative()) { | ||||
| 4468 | Out.makeNaN(false, Out.isNegative(), nullptr); | ||||
| 4469 | return opInvalidOp; | ||||
| 4470 | } | ||||
| 4471 | if (LHS.getCategory() == fcInfinity) { | ||||
| 4472 | Out = LHS; | ||||
| 4473 | return opOK; | ||||
| 4474 | } | ||||
| 4475 | if (RHS.getCategory() == fcInfinity) { | ||||
| 4476 | Out = RHS; | ||||
| 4477 | return opOK; | ||||
| 4478 | } | ||||
| 4479 | assert(LHS.getCategory() == fcNormal && RHS.getCategory() == fcNormal)(static_cast <bool> (LHS.getCategory() == fcNormal && RHS.getCategory() == fcNormal) ? void (0) : __assert_fail ("LHS.getCategory() == fcNormal && RHS.getCategory() == fcNormal" , "llvm/lib/Support/APFloat.cpp", 4479, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4480 | |||||
| 4481 | APFloat A(LHS.Floats[0]), AA(LHS.Floats[1]), C(RHS.Floats[0]), | ||||
| 4482 | CC(RHS.Floats[1]); | ||||
| 4483 | assert(&A.getSemantics() == &semIEEEdouble)(static_cast <bool> (&A.getSemantics() == &semIEEEdouble ) ? void (0) : __assert_fail ("&A.getSemantics() == &semIEEEdouble" , "llvm/lib/Support/APFloat.cpp", 4483, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4484 | assert(&AA.getSemantics() == &semIEEEdouble)(static_cast <bool> (&AA.getSemantics() == &semIEEEdouble ) ? void (0) : __assert_fail ("&AA.getSemantics() == &semIEEEdouble" , "llvm/lib/Support/APFloat.cpp", 4484, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4485 | assert(&C.getSemantics() == &semIEEEdouble)(static_cast <bool> (&C.getSemantics() == &semIEEEdouble ) ? void (0) : __assert_fail ("&C.getSemantics() == &semIEEEdouble" , "llvm/lib/Support/APFloat.cpp", 4485, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4486 | assert(&CC.getSemantics() == &semIEEEdouble)(static_cast <bool> (&CC.getSemantics() == &semIEEEdouble ) ? void (0) : __assert_fail ("&CC.getSemantics() == &semIEEEdouble" , "llvm/lib/Support/APFloat.cpp", 4486, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4487 | assert(&Out.Floats[0].getSemantics() == &semIEEEdouble)(static_cast <bool> (&Out.Floats[0].getSemantics() == &semIEEEdouble) ? void (0) : __assert_fail ("&Out.Floats[0].getSemantics() == &semIEEEdouble" , "llvm/lib/Support/APFloat.cpp", 4487, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4488 | assert(&Out.Floats[1].getSemantics() == &semIEEEdouble)(static_cast <bool> (&Out.Floats[1].getSemantics() == &semIEEEdouble) ? void (0) : __assert_fail ("&Out.Floats[1].getSemantics() == &semIEEEdouble" , "llvm/lib/Support/APFloat.cpp", 4488, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4489 | return Out.addImpl(A, AA, C, CC, RM); | ||||
| 4490 | } | ||||
| 4491 | |||||
| 4492 | APFloat::opStatus DoubleAPFloat::add(const DoubleAPFloat &RHS, | ||||
| 4493 | roundingMode RM) { | ||||
| 4494 | return addWithSpecial(*this, RHS, *this, RM); | ||||
| 4495 | } | ||||
| 4496 | |||||
| 4497 | APFloat::opStatus DoubleAPFloat::subtract(const DoubleAPFloat &RHS, | ||||
| 4498 | roundingMode RM) { | ||||
| 4499 | changeSign(); | ||||
| 4500 | auto Ret = add(RHS, RM); | ||||
| 4501 | changeSign(); | ||||
| 4502 | return Ret; | ||||
| 4503 | } | ||||
| 4504 | |||||
| 4505 | APFloat::opStatus DoubleAPFloat::multiply(const DoubleAPFloat &RHS, | ||||
| 4506 | APFloat::roundingMode RM) { | ||||
| 4507 | const auto &LHS = *this; | ||||
| 4508 | auto &Out = *this; | ||||
| 4509 | /* Interesting observation: For special categories, finding the lowest | ||||
| 4510 | common ancestor of the following layered graph gives the correct | ||||
| 4511 | return category: | ||||
| 4512 | |||||
| 4513 | NaN | ||||
| 4514 | / \ | ||||
| 4515 | Zero Inf | ||||
| 4516 | \ / | ||||
| 4517 | Normal | ||||
| 4518 | |||||
| 4519 | e.g. NaN * NaN = NaN | ||||
| 4520 | Zero * Inf = NaN | ||||
| 4521 | Normal * Zero = Zero | ||||
| 4522 | Normal * Inf = Inf | ||||
| 4523 | */ | ||||
| 4524 | if (LHS.getCategory() == fcNaN) { | ||||
| 4525 | Out = LHS; | ||||
| 4526 | return opOK; | ||||
| 4527 | } | ||||
| 4528 | if (RHS.getCategory() == fcNaN) { | ||||
| 4529 | Out = RHS; | ||||
| 4530 | return opOK; | ||||
| 4531 | } | ||||
| 4532 | if ((LHS.getCategory() == fcZero && RHS.getCategory() == fcInfinity) || | ||||
| 4533 | (LHS.getCategory() == fcInfinity && RHS.getCategory() == fcZero)) { | ||||
| 4534 | Out.makeNaN(false, false, nullptr); | ||||
| 4535 | return opOK; | ||||
| 4536 | } | ||||
| 4537 | if (LHS.getCategory() == fcZero || LHS.getCategory() == fcInfinity) { | ||||
| 4538 | Out = LHS; | ||||
| 4539 | return opOK; | ||||
| 4540 | } | ||||
| 4541 | if (RHS.getCategory() == fcZero || RHS.getCategory() == fcInfinity) { | ||||
| 4542 | Out = RHS; | ||||
| 4543 | return opOK; | ||||
| 4544 | } | ||||
| 4545 | assert(LHS.getCategory() == fcNormal && RHS.getCategory() == fcNormal &&(static_cast <bool> (LHS.getCategory() == fcNormal && RHS.getCategory() == fcNormal && "Special cases not handled exhaustively" ) ? void (0) : __assert_fail ("LHS.getCategory() == fcNormal && RHS.getCategory() == fcNormal && \"Special cases not handled exhaustively\"" , "llvm/lib/Support/APFloat.cpp", 4546, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 4546 | "Special cases not handled exhaustively")(static_cast <bool> (LHS.getCategory() == fcNormal && RHS.getCategory() == fcNormal && "Special cases not handled exhaustively" ) ? void (0) : __assert_fail ("LHS.getCategory() == fcNormal && RHS.getCategory() == fcNormal && \"Special cases not handled exhaustively\"" , "llvm/lib/Support/APFloat.cpp", 4546, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4547 | |||||
| 4548 | int Status = opOK; | ||||
| 4549 | APFloat A = Floats[0], B = Floats[1], C = RHS.Floats[0], D = RHS.Floats[1]; | ||||
| 4550 | // t = a * c | ||||
| 4551 | APFloat T = A; | ||||
| 4552 | Status |= T.multiply(C, RM); | ||||
| 4553 | if (!T.isFiniteNonZero()) { | ||||
| 4554 | Floats[0] = T; | ||||
| 4555 | Floats[1].makeZero(/* Neg = */ false); | ||||
| 4556 | return (opStatus)Status; | ||||
| 4557 | } | ||||
| 4558 | |||||
| 4559 | // tau = fmsub(a, c, t), that is -fmadd(-a, c, t). | ||||
| 4560 | APFloat Tau = A; | ||||
| 4561 | T.changeSign(); | ||||
| 4562 | Status |= Tau.fusedMultiplyAdd(C, T, RM); | ||||
| 4563 | T.changeSign(); | ||||
| 4564 | { | ||||
| 4565 | // v = a * d | ||||
| 4566 | APFloat V = A; | ||||
| 4567 | Status |= V.multiply(D, RM); | ||||
| 4568 | // w = b * c | ||||
| 4569 | APFloat W = B; | ||||
| 4570 | Status |= W.multiply(C, RM); | ||||
| 4571 | Status |= V.add(W, RM); | ||||
| 4572 | // tau += v + w | ||||
| 4573 | Status |= Tau.add(V, RM); | ||||
| 4574 | } | ||||
| 4575 | // u = t + tau | ||||
| 4576 | APFloat U = T; | ||||
| 4577 | Status |= U.add(Tau, RM); | ||||
| 4578 | |||||
| 4579 | Floats[0] = U; | ||||
| 4580 | if (!U.isFinite()) { | ||||
| 4581 | Floats[1].makeZero(/* Neg = */ false); | ||||
| 4582 | } else { | ||||
| 4583 | // Floats[1] = (t - u) + tau | ||||
| 4584 | Status |= T.subtract(U, RM); | ||||
| 4585 | Status |= T.add(Tau, RM); | ||||
| 4586 | Floats[1] = T; | ||||
| 4587 | } | ||||
| 4588 | return (opStatus)Status; | ||||
| 4589 | } | ||||
| 4590 | |||||
| 4591 | APFloat::opStatus DoubleAPFloat::divide(const DoubleAPFloat &RHS, | ||||
| 4592 | APFloat::roundingMode RM) { | ||||
| 4593 | assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics")(static_cast <bool> (Semantics == &semPPCDoubleDouble && "Unexpected Semantics") ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble && \"Unexpected Semantics\"" , "llvm/lib/Support/APFloat.cpp", 4593, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4594 | APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); | ||||
| 4595 | auto Ret = | ||||
| 4596 | Tmp.divide(APFloat(semPPCDoubleDoubleLegacy, RHS.bitcastToAPInt()), RM); | ||||
| 4597 | *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); | ||||
| 4598 | return Ret; | ||||
| 4599 | } | ||||
| 4600 | |||||
| 4601 | APFloat::opStatus DoubleAPFloat::remainder(const DoubleAPFloat &RHS) { | ||||
| 4602 | assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics")(static_cast <bool> (Semantics == &semPPCDoubleDouble && "Unexpected Semantics") ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble && \"Unexpected Semantics\"" , "llvm/lib/Support/APFloat.cpp", 4602, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4603 | APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); | ||||
| 4604 | auto Ret = | ||||
| 4605 | Tmp.remainder(APFloat(semPPCDoubleDoubleLegacy, RHS.bitcastToAPInt())); | ||||
| 4606 | *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); | ||||
| 4607 | return Ret; | ||||
| 4608 | } | ||||
| 4609 | |||||
| 4610 | APFloat::opStatus DoubleAPFloat::mod(const DoubleAPFloat &RHS) { | ||||
| 4611 | assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics")(static_cast <bool> (Semantics == &semPPCDoubleDouble && "Unexpected Semantics") ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble && \"Unexpected Semantics\"" , "llvm/lib/Support/APFloat.cpp", 4611, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4612 | APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); | ||||
| 4613 | auto Ret = Tmp.mod(APFloat(semPPCDoubleDoubleLegacy, RHS.bitcastToAPInt())); | ||||
| 4614 | *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); | ||||
| 4615 | return Ret; | ||||
| 4616 | } | ||||
| 4617 | |||||
| 4618 | APFloat::opStatus | ||||
| 4619 | DoubleAPFloat::fusedMultiplyAdd(const DoubleAPFloat &Multiplicand, | ||||
| 4620 | const DoubleAPFloat &Addend, | ||||
| 4621 | APFloat::roundingMode RM) { | ||||
| 4622 | assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics")(static_cast <bool> (Semantics == &semPPCDoubleDouble && "Unexpected Semantics") ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble && \"Unexpected Semantics\"" , "llvm/lib/Support/APFloat.cpp", 4622, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4623 | APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); | ||||
| 4624 | auto Ret = Tmp.fusedMultiplyAdd( | ||||
| 4625 | APFloat(semPPCDoubleDoubleLegacy, Multiplicand.bitcastToAPInt()), | ||||
| 4626 | APFloat(semPPCDoubleDoubleLegacy, Addend.bitcastToAPInt()), RM); | ||||
| 4627 | *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); | ||||
| 4628 | return Ret; | ||||
| 4629 | } | ||||
| 4630 | |||||
| 4631 | APFloat::opStatus DoubleAPFloat::roundToIntegral(APFloat::roundingMode RM) { | ||||
| 4632 | assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics")(static_cast <bool> (Semantics == &semPPCDoubleDouble && "Unexpected Semantics") ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble && \"Unexpected Semantics\"" , "llvm/lib/Support/APFloat.cpp", 4632, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4633 | APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); | ||||
| 4634 | auto Ret = Tmp.roundToIntegral(RM); | ||||
| 4635 | *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); | ||||
| 4636 | return Ret; | ||||
| 4637 | } | ||||
| 4638 | |||||
| 4639 | void DoubleAPFloat::changeSign() { | ||||
| 4640 | Floats[0].changeSign(); | ||||
| 4641 | Floats[1].changeSign(); | ||||
| 4642 | } | ||||
| 4643 | |||||
| 4644 | APFloat::cmpResult | ||||
| 4645 | DoubleAPFloat::compareAbsoluteValue(const DoubleAPFloat &RHS) const { | ||||
| 4646 | auto Result = Floats[0].compareAbsoluteValue(RHS.Floats[0]); | ||||
| 4647 | if (Result != cmpEqual) | ||||
| 4648 | return Result; | ||||
| 4649 | Result = Floats[1].compareAbsoluteValue(RHS.Floats[1]); | ||||
| 4650 | if (Result == cmpLessThan || Result == cmpGreaterThan) { | ||||
| 4651 | auto Against = Floats[0].isNegative() ^ Floats[1].isNegative(); | ||||
| 4652 | auto RHSAgainst = RHS.Floats[0].isNegative() ^ RHS.Floats[1].isNegative(); | ||||
| 4653 | if (Against && !RHSAgainst) | ||||
| 4654 | return cmpLessThan; | ||||
| 4655 | if (!Against && RHSAgainst) | ||||
| 4656 | return cmpGreaterThan; | ||||
| 4657 | if (!Against && !RHSAgainst) | ||||
| 4658 | return Result; | ||||
| 4659 | if (Against && RHSAgainst) | ||||
| 4660 | return (cmpResult)(cmpLessThan + cmpGreaterThan - Result); | ||||
| 4661 | } | ||||
| 4662 | return Result; | ||||
| 4663 | } | ||||
| 4664 | |||||
| 4665 | APFloat::fltCategory DoubleAPFloat::getCategory() const { | ||||
| 4666 | return Floats[0].getCategory(); | ||||
| 4667 | } | ||||
| 4668 | |||||
| 4669 | bool DoubleAPFloat::isNegative() const { return Floats[0].isNegative(); } | ||||
| 4670 | |||||
| 4671 | void DoubleAPFloat::makeInf(bool Neg) { | ||||
| 4672 | Floats[0].makeInf(Neg); | ||||
| 4673 | Floats[1].makeZero(/* Neg = */ false); | ||||
| 4674 | } | ||||
| 4675 | |||||
| 4676 | void DoubleAPFloat::makeZero(bool Neg) { | ||||
| 4677 | Floats[0].makeZero(Neg); | ||||
| 4678 | Floats[1].makeZero(/* Neg = */ false); | ||||
| 4679 | } | ||||
| 4680 | |||||
| 4681 | void DoubleAPFloat::makeLargest(bool Neg) { | ||||
| 4682 | assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics")(static_cast <bool> (Semantics == &semPPCDoubleDouble && "Unexpected Semantics") ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble && \"Unexpected Semantics\"" , "llvm/lib/Support/APFloat.cpp", 4682, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4683 | Floats[0] = APFloat(semIEEEdouble, APInt(64, 0x7fefffffffffffffull)); | ||||
| 4684 | Floats[1] = APFloat(semIEEEdouble, APInt(64, 0x7c8ffffffffffffeull)); | ||||
| 4685 | if (Neg) | ||||
| 4686 | changeSign(); | ||||
| 4687 | } | ||||
| 4688 | |||||
| 4689 | void DoubleAPFloat::makeSmallest(bool Neg) { | ||||
| 4690 | assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics")(static_cast <bool> (Semantics == &semPPCDoubleDouble && "Unexpected Semantics") ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble && \"Unexpected Semantics\"" , "llvm/lib/Support/APFloat.cpp", 4690, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4691 | Floats[0].makeSmallest(Neg); | ||||
| 4692 | Floats[1].makeZero(/* Neg = */ false); | ||||
| 4693 | } | ||||
| 4694 | |||||
| 4695 | void DoubleAPFloat::makeSmallestNormalized(bool Neg) { | ||||
| 4696 | assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics")(static_cast <bool> (Semantics == &semPPCDoubleDouble && "Unexpected Semantics") ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble && \"Unexpected Semantics\"" , "llvm/lib/Support/APFloat.cpp", 4696, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4697 | Floats[0] = APFloat(semIEEEdouble, APInt(64, 0x0360000000000000ull)); | ||||
| 4698 | if (Neg) | ||||
| 4699 | Floats[0].changeSign(); | ||||
| 4700 | Floats[1].makeZero(/* Neg = */ false); | ||||
| 4701 | } | ||||
| 4702 | |||||
| 4703 | void DoubleAPFloat::makeNaN(bool SNaN, bool Neg, const APInt *fill) { | ||||
| 4704 | Floats[0].makeNaN(SNaN, Neg, fill); | ||||
| 4705 | Floats[1].makeZero(/* Neg = */ false); | ||||
| 4706 | } | ||||
| 4707 | |||||
| 4708 | APFloat::cmpResult DoubleAPFloat::compare(const DoubleAPFloat &RHS) const { | ||||
| 4709 | auto Result = Floats[0].compare(RHS.Floats[0]); | ||||
| 4710 | // |Float[0]| > |Float[1]| | ||||
| 4711 | if (Result == APFloat::cmpEqual) | ||||
| 4712 | return Floats[1].compare(RHS.Floats[1]); | ||||
| 4713 | return Result; | ||||
| 4714 | } | ||||
| 4715 | |||||
| 4716 | bool DoubleAPFloat::bitwiseIsEqual(const DoubleAPFloat &RHS) const { | ||||
| 4717 | return Floats[0].bitwiseIsEqual(RHS.Floats[0]) && | ||||
| 4718 | Floats[1].bitwiseIsEqual(RHS.Floats[1]); | ||||
| 4719 | } | ||||
| 4720 | |||||
| 4721 | hash_code hash_value(const DoubleAPFloat &Arg) { | ||||
| 4722 | if (Arg.Floats) | ||||
| 4723 | return hash_combine(hash_value(Arg.Floats[0]), hash_value(Arg.Floats[1])); | ||||
| 4724 | return hash_combine(Arg.Semantics); | ||||
| 4725 | } | ||||
| 4726 | |||||
| 4727 | APInt DoubleAPFloat::bitcastToAPInt() const { | ||||
| 4728 | assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics")(static_cast <bool> (Semantics == &semPPCDoubleDouble && "Unexpected Semantics") ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble && \"Unexpected Semantics\"" , "llvm/lib/Support/APFloat.cpp", 4728, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4729 | uint64_t Data[] = { | ||||
| 4730 | Floats[0].bitcastToAPInt().getRawData()[0], | ||||
| 4731 | Floats[1].bitcastToAPInt().getRawData()[0], | ||||
| 4732 | }; | ||||
| 4733 | return APInt(128, 2, Data); | ||||
| 4734 | } | ||||
| 4735 | |||||
| 4736 | Expected<APFloat::opStatus> DoubleAPFloat::convertFromString(StringRef S, | ||||
| 4737 | roundingMode RM) { | ||||
| 4738 | assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics")(static_cast <bool> (Semantics == &semPPCDoubleDouble && "Unexpected Semantics") ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble && \"Unexpected Semantics\"" , "llvm/lib/Support/APFloat.cpp", 4738, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4739 | APFloat Tmp(semPPCDoubleDoubleLegacy); | ||||
| 4740 | auto Ret = Tmp.convertFromString(S, RM); | ||||
| 4741 | *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); | ||||
| 4742 | return Ret; | ||||
| 4743 | } | ||||
| 4744 | |||||
| 4745 | APFloat::opStatus DoubleAPFloat::next(bool nextDown) { | ||||
| 4746 | assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics")(static_cast <bool> (Semantics == &semPPCDoubleDouble && "Unexpected Semantics") ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble && \"Unexpected Semantics\"" , "llvm/lib/Support/APFloat.cpp", 4746, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4747 | APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); | ||||
| 4748 | auto Ret = Tmp.next(nextDown); | ||||
| 4749 | *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); | ||||
| 4750 | return Ret; | ||||
| 4751 | } | ||||
| 4752 | |||||
| 4753 | APFloat::opStatus | ||||
| 4754 | DoubleAPFloat::convertToInteger(MutableArrayRef<integerPart> Input, | ||||
| 4755 | unsigned int Width, bool IsSigned, | ||||
| 4756 | roundingMode RM, bool *IsExact) const { | ||||
| 4757 | assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics")(static_cast <bool> (Semantics == &semPPCDoubleDouble && "Unexpected Semantics") ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble && \"Unexpected Semantics\"" , "llvm/lib/Support/APFloat.cpp", 4757, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4758 | return APFloat(semPPCDoubleDoubleLegacy, bitcastToAPInt()) | ||||
| 4759 | .convertToInteger(Input, Width, IsSigned, RM, IsExact); | ||||
| 4760 | } | ||||
| 4761 | |||||
| 4762 | APFloat::opStatus DoubleAPFloat::convertFromAPInt(const APInt &Input, | ||||
| 4763 | bool IsSigned, | ||||
| 4764 | roundingMode RM) { | ||||
| 4765 | assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics")(static_cast <bool> (Semantics == &semPPCDoubleDouble && "Unexpected Semantics") ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble && \"Unexpected Semantics\"" , "llvm/lib/Support/APFloat.cpp", 4765, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4766 | APFloat Tmp(semPPCDoubleDoubleLegacy); | ||||
| 4767 | auto Ret = Tmp.convertFromAPInt(Input, IsSigned, RM); | ||||
| 4768 | *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); | ||||
| 4769 | return Ret; | ||||
| 4770 | } | ||||
| 4771 | |||||
| 4772 | APFloat::opStatus | ||||
| 4773 | DoubleAPFloat::convertFromSignExtendedInteger(const integerPart *Input, | ||||
| 4774 | unsigned int InputSize, | ||||
| 4775 | bool IsSigned, roundingMode RM) { | ||||
| 4776 | assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics")(static_cast <bool> (Semantics == &semPPCDoubleDouble && "Unexpected Semantics") ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble && \"Unexpected Semantics\"" , "llvm/lib/Support/APFloat.cpp", 4776, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4777 | APFloat Tmp(semPPCDoubleDoubleLegacy); | ||||
| 4778 | auto Ret = Tmp.convertFromSignExtendedInteger(Input, InputSize, IsSigned, RM); | ||||
| 4779 | *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); | ||||
| 4780 | return Ret; | ||||
| 4781 | } | ||||
| 4782 | |||||
| 4783 | APFloat::opStatus | ||||
| 4784 | DoubleAPFloat::convertFromZeroExtendedInteger(const integerPart *Input, | ||||
| 4785 | unsigned int InputSize, | ||||
| 4786 | bool IsSigned, roundingMode RM) { | ||||
| 4787 | assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics")(static_cast <bool> (Semantics == &semPPCDoubleDouble && "Unexpected Semantics") ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble && \"Unexpected Semantics\"" , "llvm/lib/Support/APFloat.cpp", 4787, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4788 | APFloat Tmp(semPPCDoubleDoubleLegacy); | ||||
| 4789 | auto Ret = Tmp.convertFromZeroExtendedInteger(Input, InputSize, IsSigned, RM); | ||||
| 4790 | *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); | ||||
| 4791 | return Ret; | ||||
| 4792 | } | ||||
| 4793 | |||||
| 4794 | unsigned int DoubleAPFloat::convertToHexString(char *DST, | ||||
| 4795 | unsigned int HexDigits, | ||||
| 4796 | bool UpperCase, | ||||
| 4797 | roundingMode RM) const { | ||||
| 4798 | assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics")(static_cast <bool> (Semantics == &semPPCDoubleDouble && "Unexpected Semantics") ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble && \"Unexpected Semantics\"" , "llvm/lib/Support/APFloat.cpp", 4798, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4799 | return APFloat(semPPCDoubleDoubleLegacy, bitcastToAPInt()) | ||||
| 4800 | .convertToHexString(DST, HexDigits, UpperCase, RM); | ||||
| 4801 | } | ||||
| 4802 | |||||
| 4803 | bool DoubleAPFloat::isDenormal() const { | ||||
| 4804 | return getCategory() == fcNormal && | ||||
| 4805 | (Floats[0].isDenormal() || Floats[1].isDenormal() || | ||||
| 4806 | // (double)(Hi + Lo) == Hi defines a normal number. | ||||
| 4807 | Floats[0] != Floats[0] + Floats[1]); | ||||
| 4808 | } | ||||
| 4809 | |||||
| 4810 | bool DoubleAPFloat::isSmallest() const { | ||||
| 4811 | if (getCategory() != fcNormal) | ||||
| 4812 | return false; | ||||
| 4813 | DoubleAPFloat Tmp(*this); | ||||
| 4814 | Tmp.makeSmallest(this->isNegative()); | ||||
| 4815 | return Tmp.compare(*this) == cmpEqual; | ||||
| 4816 | } | ||||
| 4817 | |||||
| 4818 | bool DoubleAPFloat::isLargest() const { | ||||
| 4819 | if (getCategory() != fcNormal) | ||||
| 4820 | return false; | ||||
| 4821 | DoubleAPFloat Tmp(*this); | ||||
| 4822 | Tmp.makeLargest(this->isNegative()); | ||||
| 4823 | return Tmp.compare(*this) == cmpEqual; | ||||
| 4824 | } | ||||
| 4825 | |||||
| 4826 | bool DoubleAPFloat::isInteger() const { | ||||
| 4827 | assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics")(static_cast <bool> (Semantics == &semPPCDoubleDouble && "Unexpected Semantics") ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble && \"Unexpected Semantics\"" , "llvm/lib/Support/APFloat.cpp", 4827, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4828 | return Floats[0].isInteger() && Floats[1].isInteger(); | ||||
| 4829 | } | ||||
| 4830 | |||||
| 4831 | void DoubleAPFloat::toString(SmallVectorImpl<char> &Str, | ||||
| 4832 | unsigned FormatPrecision, | ||||
| 4833 | unsigned FormatMaxPadding, | ||||
| 4834 | bool TruncateZero) const { | ||||
| 4835 | assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics")(static_cast <bool> (Semantics == &semPPCDoubleDouble && "Unexpected Semantics") ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble && \"Unexpected Semantics\"" , "llvm/lib/Support/APFloat.cpp", 4835, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4836 | APFloat(semPPCDoubleDoubleLegacy, bitcastToAPInt()) | ||||
| 4837 | .toString(Str, FormatPrecision, FormatMaxPadding, TruncateZero); | ||||
| 4838 | } | ||||
| 4839 | |||||
| 4840 | bool DoubleAPFloat::getExactInverse(APFloat *inv) const { | ||||
| 4841 | assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics")(static_cast <bool> (Semantics == &semPPCDoubleDouble && "Unexpected Semantics") ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble && \"Unexpected Semantics\"" , "llvm/lib/Support/APFloat.cpp", 4841, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4842 | APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); | ||||
| 4843 | if (!inv) | ||||
| 4844 | return Tmp.getExactInverse(nullptr); | ||||
| 4845 | APFloat Inv(semPPCDoubleDoubleLegacy); | ||||
| 4846 | auto Ret = Tmp.getExactInverse(&Inv); | ||||
| 4847 | *inv = APFloat(semPPCDoubleDouble, Inv.bitcastToAPInt()); | ||||
| 4848 | return Ret; | ||||
| 4849 | } | ||||
| 4850 | |||||
| 4851 | DoubleAPFloat scalbn(const DoubleAPFloat &Arg, int Exp, | ||||
| 4852 | APFloat::roundingMode RM) { | ||||
| 4853 | assert(Arg.Semantics == &semPPCDoubleDouble && "Unexpected Semantics")(static_cast <bool> (Arg.Semantics == &semPPCDoubleDouble && "Unexpected Semantics") ? void (0) : __assert_fail ("Arg.Semantics == &semPPCDoubleDouble && \"Unexpected Semantics\"" , "llvm/lib/Support/APFloat.cpp", 4853, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4854 | return DoubleAPFloat(semPPCDoubleDouble, scalbn(Arg.Floats[0], Exp, RM), | ||||
| 4855 | scalbn(Arg.Floats[1], Exp, RM)); | ||||
| 4856 | } | ||||
| 4857 | |||||
| 4858 | DoubleAPFloat frexp(const DoubleAPFloat &Arg, int &Exp, | ||||
| 4859 | APFloat::roundingMode RM) { | ||||
| 4860 | assert(Arg.Semantics == &semPPCDoubleDouble && "Unexpected Semantics")(static_cast <bool> (Arg.Semantics == &semPPCDoubleDouble && "Unexpected Semantics") ? void (0) : __assert_fail ("Arg.Semantics == &semPPCDoubleDouble && \"Unexpected Semantics\"" , "llvm/lib/Support/APFloat.cpp", 4860, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4861 | APFloat First = frexp(Arg.Floats[0], Exp, RM); | ||||
| 4862 | APFloat Second = Arg.Floats[1]; | ||||
| 4863 | if (Arg.getCategory() == APFloat::fcNormal) | ||||
| 4864 | Second = scalbn(Second, -Exp, RM); | ||||
| 4865 | return DoubleAPFloat(semPPCDoubleDouble, std::move(First), std::move(Second)); | ||||
| 4866 | } | ||||
| 4867 | |||||
| 4868 | } // namespace detail | ||||
| 4869 | |||||
| 4870 | APFloat::Storage::Storage(IEEEFloat F, const fltSemantics &Semantics) { | ||||
| 4871 | if (usesLayout<IEEEFloat>(Semantics)) { | ||||
| 4872 | new (&IEEE) IEEEFloat(std::move(F)); | ||||
| 4873 | return; | ||||
| 4874 | } | ||||
| 4875 | if (usesLayout<DoubleAPFloat>(Semantics)) { | ||||
| 4876 | const fltSemantics& S = F.getSemantics(); | ||||
| 4877 | new (&Double) | ||||
| 4878 | DoubleAPFloat(Semantics, APFloat(std::move(F), S), | ||||
| 4879 | APFloat(semIEEEdouble)); | ||||
| 4880 | return; | ||||
| 4881 | } | ||||
| 4882 | llvm_unreachable("Unexpected semantics")::llvm::llvm_unreachable_internal("Unexpected semantics", "llvm/lib/Support/APFloat.cpp" , 4882); | ||||
| 4883 | } | ||||
| 4884 | |||||
| 4885 | Expected<APFloat::opStatus> APFloat::convertFromString(StringRef Str, | ||||
| 4886 | roundingMode RM) { | ||||
| 4887 | APFLOAT_DISPATCH_ON_SEMANTICS(convertFromString(Str, RM)); | ||||
| 4888 | } | ||||
| 4889 | |||||
| 4890 | hash_code hash_value(const APFloat &Arg) { | ||||
| 4891 | if (APFloat::usesLayout<detail::IEEEFloat>(Arg.getSemantics())) | ||||
| 4892 | return hash_value(Arg.U.IEEE); | ||||
| 4893 | if (APFloat::usesLayout<detail::DoubleAPFloat>(Arg.getSemantics())) | ||||
| 4894 | return hash_value(Arg.U.Double); | ||||
| 4895 | llvm_unreachable("Unexpected semantics")::llvm::llvm_unreachable_internal("Unexpected semantics", "llvm/lib/Support/APFloat.cpp" , 4895); | ||||
| 4896 | } | ||||
| 4897 | |||||
| 4898 | APFloat::APFloat(const fltSemantics &Semantics, StringRef S) | ||||
| 4899 | : APFloat(Semantics) { | ||||
| 4900 | auto StatusOrErr = convertFromString(S, rmNearestTiesToEven); | ||||
| 4901 | assert(StatusOrErr && "Invalid floating point representation")(static_cast <bool> (StatusOrErr && "Invalid floating point representation" ) ? void (0) : __assert_fail ("StatusOrErr && \"Invalid floating point representation\"" , "llvm/lib/Support/APFloat.cpp", 4901, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4902 | consumeError(StatusOrErr.takeError()); | ||||
| 4903 | } | ||||
| 4904 | |||||
| 4905 | APFloat::opStatus APFloat::convert(const fltSemantics &ToSemantics, | ||||
| 4906 | roundingMode RM, bool *losesInfo) { | ||||
| 4907 | if (&getSemantics() == &ToSemantics) { | ||||
| 4908 | *losesInfo = false; | ||||
| 4909 | return opOK; | ||||
| 4910 | } | ||||
| 4911 | if (usesLayout<IEEEFloat>(getSemantics()) && | ||||
| 4912 | usesLayout<IEEEFloat>(ToSemantics)) | ||||
| 4913 | return U.IEEE.convert(ToSemantics, RM, losesInfo); | ||||
| 4914 | if (usesLayout<IEEEFloat>(getSemantics()) && | ||||
| 4915 | usesLayout<DoubleAPFloat>(ToSemantics)) { | ||||
| 4916 | assert(&ToSemantics == &semPPCDoubleDouble)(static_cast <bool> (&ToSemantics == &semPPCDoubleDouble ) ? void (0) : __assert_fail ("&ToSemantics == &semPPCDoubleDouble" , "llvm/lib/Support/APFloat.cpp", 4916, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4917 | auto Ret = U.IEEE.convert(semPPCDoubleDoubleLegacy, RM, losesInfo); | ||||
| 4918 | *this = APFloat(ToSemantics, U.IEEE.bitcastToAPInt()); | ||||
| 4919 | return Ret; | ||||
| 4920 | } | ||||
| 4921 | if (usesLayout<DoubleAPFloat>(getSemantics()) && | ||||
| 4922 | usesLayout<IEEEFloat>(ToSemantics)) { | ||||
| 4923 | auto Ret = getIEEE().convert(ToSemantics, RM, losesInfo); | ||||
| 4924 | *this = APFloat(std::move(getIEEE()), ToSemantics); | ||||
| 4925 | return Ret; | ||||
| 4926 | } | ||||
| 4927 | llvm_unreachable("Unexpected semantics")::llvm::llvm_unreachable_internal("Unexpected semantics", "llvm/lib/Support/APFloat.cpp" , 4927); | ||||
| 4928 | } | ||||
| 4929 | |||||
| 4930 | APFloat APFloat::getAllOnesValue(const fltSemantics &Semantics) { | ||||
| 4931 | return APFloat(Semantics, APInt::getAllOnes(Semantics.sizeInBits)); | ||||
| 4932 | } | ||||
| 4933 | |||||
| 4934 | void APFloat::print(raw_ostream &OS) const { | ||||
| 4935 | SmallVector<char, 16> Buffer; | ||||
| 4936 | toString(Buffer); | ||||
| 4937 | OS << Buffer << "\n"; | ||||
| 4938 | } | ||||
| 4939 | |||||
| 4940 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | ||||
| 4941 | LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void APFloat::dump() const { print(dbgs()); } | ||||
| 4942 | #endif | ||||
| 4943 | |||||
| 4944 | void APFloat::Profile(FoldingSetNodeID &NID) const { | ||||
| 4945 | NID.Add(bitcastToAPInt()); | ||||
| 4946 | } | ||||
| 4947 | |||||
| 4948 | /* Same as convertToInteger(integerPart*, ...), except the result is returned in | ||||
| 4949 | an APSInt, whose initial bit-width and signed-ness are used to determine the | ||||
| 4950 | precision of the conversion. | ||||
| 4951 | */ | ||||
| 4952 | APFloat::opStatus APFloat::convertToInteger(APSInt &result, | ||||
| 4953 | roundingMode rounding_mode, | ||||
| 4954 | bool *isExact) const { | ||||
| 4955 | unsigned bitWidth = result.getBitWidth(); | ||||
| 4956 | SmallVector<uint64_t, 4> parts(result.getNumWords()); | ||||
| 4957 | opStatus status = convertToInteger(parts, bitWidth, result.isSigned(), | ||||
| 4958 | rounding_mode, isExact); | ||||
| 4959 | // Keeps the original signed-ness. | ||||
| 4960 | result = APInt(bitWidth, parts); | ||||
| 4961 | return status; | ||||
| 4962 | } | ||||
| 4963 | |||||
| 4964 | double APFloat::convertToDouble() const { | ||||
| 4965 | if (&getSemantics() == (const llvm::fltSemantics *)&semIEEEdouble) | ||||
| 4966 | return getIEEE().convertToDouble(); | ||||
| 4967 | assert(getSemantics().isRepresentableBy(semIEEEdouble) &&(static_cast <bool> (getSemantics().isRepresentableBy(semIEEEdouble ) && "Float semantics is not representable by IEEEdouble" ) ? void (0) : __assert_fail ("getSemantics().isRepresentableBy(semIEEEdouble) && \"Float semantics is not representable by IEEEdouble\"" , "llvm/lib/Support/APFloat.cpp", 4968, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 4968 | "Float semantics is not representable by IEEEdouble")(static_cast <bool> (getSemantics().isRepresentableBy(semIEEEdouble ) && "Float semantics is not representable by IEEEdouble" ) ? void (0) : __assert_fail ("getSemantics().isRepresentableBy(semIEEEdouble) && \"Float semantics is not representable by IEEEdouble\"" , "llvm/lib/Support/APFloat.cpp", 4968, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4969 | APFloat Temp = *this; | ||||
| 4970 | bool LosesInfo; | ||||
| 4971 | opStatus St = Temp.convert(semIEEEdouble, rmNearestTiesToEven, &LosesInfo); | ||||
| 4972 | assert(!(St & opInexact) && !LosesInfo && "Unexpected imprecision")(static_cast <bool> (!(St & opInexact) && ! LosesInfo && "Unexpected imprecision") ? void (0) : __assert_fail ("!(St & opInexact) && !LosesInfo && \"Unexpected imprecision\"" , "llvm/lib/Support/APFloat.cpp", 4972, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4973 | (void)St; | ||||
| 4974 | return Temp.getIEEE().convertToDouble(); | ||||
| 4975 | } | ||||
| 4976 | |||||
| 4977 | float APFloat::convertToFloat() const { | ||||
| 4978 | if (&getSemantics() == (const llvm::fltSemantics *)&semIEEEsingle) | ||||
| |||||
| 4979 | return getIEEE().convertToFloat(); | ||||
| 4980 | assert(getSemantics().isRepresentableBy(semIEEEsingle) &&(static_cast <bool> (getSemantics().isRepresentableBy(semIEEEsingle ) && "Float semantics is not representable by IEEEsingle" ) ? void (0) : __assert_fail ("getSemantics().isRepresentableBy(semIEEEsingle) && \"Float semantics is not representable by IEEEsingle\"" , "llvm/lib/Support/APFloat.cpp", 4981, __extension__ __PRETTY_FUNCTION__ )) | ||||
| 4981 | "Float semantics is not representable by IEEEsingle")(static_cast <bool> (getSemantics().isRepresentableBy(semIEEEsingle ) && "Float semantics is not representable by IEEEsingle" ) ? void (0) : __assert_fail ("getSemantics().isRepresentableBy(semIEEEsingle) && \"Float semantics is not representable by IEEEsingle\"" , "llvm/lib/Support/APFloat.cpp", 4981, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4982 | APFloat Temp = *this; | ||||
| 4983 | bool LosesInfo; | ||||
| 4984 | opStatus St = Temp.convert(semIEEEsingle, rmNearestTiesToEven, &LosesInfo); | ||||
| 4985 | assert(!(St & opInexact) && !LosesInfo && "Unexpected imprecision")(static_cast <bool> (!(St & opInexact) && ! LosesInfo && "Unexpected imprecision") ? void (0) : __assert_fail ("!(St & opInexact) && !LosesInfo && \"Unexpected imprecision\"" , "llvm/lib/Support/APFloat.cpp", 4985, __extension__ __PRETTY_FUNCTION__ )); | ||||
| 4986 | (void)St; | ||||
| 4987 | return Temp.getIEEE().convertToFloat(); | ||||
| 4988 | } | ||||
| 4989 | |||||
| 4990 | } // namespace llvm | ||||
| 4991 | |||||
| 4992 | #undef APFLOAT_DISPATCH_ON_SEMANTICS |
| 1 | //===- llvm/ADT/APFloat.h - Arbitrary Precision Floating Point ---*- C++ -*-==// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// |
| 9 | /// \file |
| 10 | /// This file declares a class to represent arbitrary precision floating point |
| 11 | /// values and provide a variety of arithmetic operations on them. |
| 12 | /// |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #ifndef LLVM_ADT_APFLOAT_H |
| 16 | #define LLVM_ADT_APFLOAT_H |
| 17 | |
| 18 | #include "llvm/ADT/APInt.h" |
| 19 | #include "llvm/ADT/ArrayRef.h" |
| 20 | #include "llvm/ADT/FloatingPointMode.h" |
| 21 | #include "llvm/Support/ErrorHandling.h" |
| 22 | #include <memory> |
| 23 | |
| 24 | #define APFLOAT_DISPATCH_ON_SEMANTICS(METHOD_CALL) \ |
| 25 | do { \ |
| 26 | if (usesLayout<IEEEFloat>(getSemantics())) \ |
| 27 | return U.IEEE.METHOD_CALL; \ |
| 28 | if (usesLayout<DoubleAPFloat>(getSemantics())) \ |
| 29 | return U.Double.METHOD_CALL; \ |
| 30 | llvm_unreachable("Unexpected semantics")::llvm::llvm_unreachable_internal("Unexpected semantics", "llvm/include/llvm/ADT/APFloat.h" , 30); \ |
| 31 | } while (false) |
| 32 | |
| 33 | namespace llvm { |
| 34 | |
| 35 | struct fltSemantics; |
| 36 | class APSInt; |
| 37 | class StringRef; |
| 38 | class APFloat; |
| 39 | class raw_ostream; |
| 40 | |
| 41 | template <typename T> class Expected; |
| 42 | template <typename T> class SmallVectorImpl; |
| 43 | |
| 44 | /// Enum that represents what fraction of the LSB truncated bits of an fp number |
| 45 | /// represent. |
| 46 | /// |
| 47 | /// This essentially combines the roles of guard and sticky bits. |
| 48 | enum lostFraction { // Example of truncated bits: |
| 49 | lfExactlyZero, // 000000 |
| 50 | lfLessThanHalf, // 0xxxxx x's not all zero |
| 51 | lfExactlyHalf, // 100000 |
| 52 | lfMoreThanHalf // 1xxxxx x's not all zero |
| 53 | }; |
| 54 | |
| 55 | /// A self-contained host- and target-independent arbitrary-precision |
| 56 | /// floating-point software implementation. |
| 57 | /// |
| 58 | /// APFloat uses bignum integer arithmetic as provided by static functions in |
| 59 | /// the APInt class. The library will work with bignum integers whose parts are |
| 60 | /// any unsigned type at least 16 bits wide, but 64 bits is recommended. |
| 61 | /// |
| 62 | /// Written for clarity rather than speed, in particular with a view to use in |
| 63 | /// the front-end of a cross compiler so that target arithmetic can be correctly |
| 64 | /// performed on the host. Performance should nonetheless be reasonable, |
| 65 | /// particularly for its intended use. It may be useful as a base |
| 66 | /// implementation for a run-time library during development of a faster |
| 67 | /// target-specific one. |
| 68 | /// |
| 69 | /// All 5 rounding modes in the IEEE-754R draft are handled correctly for all |
| 70 | /// implemented operations. Currently implemented operations are add, subtract, |
| 71 | /// multiply, divide, fused-multiply-add, conversion-to-float, |
| 72 | /// conversion-to-integer and conversion-from-integer. New rounding modes |
| 73 | /// (e.g. away from zero) can be added with three or four lines of code. |
| 74 | /// |
| 75 | /// Four formats are built-in: IEEE single precision, double precision, |
| 76 | /// quadruple precision, and x87 80-bit extended double (when operating with |
| 77 | /// full extended precision). Adding a new format that obeys IEEE semantics |
| 78 | /// only requires adding two lines of code: a declaration and definition of the |
| 79 | /// format. |
| 80 | /// |
| 81 | /// All operations return the status of that operation as an exception bit-mask, |
| 82 | /// so multiple operations can be done consecutively with their results or-ed |
| 83 | /// together. The returned status can be useful for compiler diagnostics; e.g., |
| 84 | /// inexact, underflow and overflow can be easily diagnosed on constant folding, |
| 85 | /// and compiler optimizers can determine what exceptions would be raised by |
| 86 | /// folding operations and optimize, or perhaps not optimize, accordingly. |
| 87 | /// |
| 88 | /// At present, underflow tininess is detected after rounding; it should be |
| 89 | /// straight forward to add support for the before-rounding case too. |
| 90 | /// |
| 91 | /// The library reads hexadecimal floating point numbers as per C99, and |
| 92 | /// correctly rounds if necessary according to the specified rounding mode. |
| 93 | /// Syntax is required to have been validated by the caller. It also converts |
| 94 | /// floating point numbers to hexadecimal text as per the C99 %a and %A |
| 95 | /// conversions. The output precision (or alternatively the natural minimal |
| 96 | /// precision) can be specified; if the requested precision is less than the |
| 97 | /// natural precision the output is correctly rounded for the specified rounding |
| 98 | /// mode. |
| 99 | /// |
| 100 | /// It also reads decimal floating point numbers and correctly rounds according |
| 101 | /// to the specified rounding mode. |
| 102 | /// |
| 103 | /// Conversion to decimal text is not currently implemented. |
| 104 | /// |
| 105 | /// Non-zero finite numbers are represented internally as a sign bit, a 16-bit |
| 106 | /// signed exponent, and the significand as an array of integer parts. After |
| 107 | /// normalization of a number of precision P the exponent is within the range of |
| 108 | /// the format, and if the number is not denormal the P-th bit of the |
| 109 | /// significand is set as an explicit integer bit. For denormals the most |
| 110 | /// significant bit is shifted right so that the exponent is maintained at the |
| 111 | /// format's minimum, so that the smallest denormal has just the least |
| 112 | /// significant bit of the significand set. The sign of zeroes and infinities |
| 113 | /// is significant; the exponent and significand of such numbers is not stored, |
| 114 | /// but has a known implicit (deterministic) value: 0 for the significands, 0 |
| 115 | /// for zero exponent, all 1 bits for infinity exponent. For NaNs the sign and |
| 116 | /// significand are deterministic, although not really meaningful, and preserved |
| 117 | /// in non-conversion operations. The exponent is implicitly all 1 bits. |
| 118 | /// |
| 119 | /// APFloat does not provide any exception handling beyond default exception |
| 120 | /// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause |
| 121 | /// by encoding Signaling NaNs with the first bit of its trailing significand as |
| 122 | /// 0. |
| 123 | /// |
| 124 | /// TODO |
| 125 | /// ==== |
| 126 | /// |
| 127 | /// Some features that may or may not be worth adding: |
| 128 | /// |
| 129 | /// Binary to decimal conversion (hard). |
| 130 | /// |
| 131 | /// Optional ability to detect underflow tininess before rounding. |
| 132 | /// |
| 133 | /// New formats: x87 in single and double precision mode (IEEE apart from |
| 134 | /// extended exponent range) (hard). |
| 135 | /// |
| 136 | /// New operations: sqrt, IEEE remainder, C90 fmod, nexttoward. |
| 137 | /// |
| 138 | |
| 139 | // This is the common type definitions shared by APFloat and its internal |
| 140 | // implementation classes. This struct should not define any non-static data |
| 141 | // members. |
| 142 | struct APFloatBase { |
| 143 | typedef APInt::WordType integerPart; |
| 144 | static constexpr unsigned integerPartWidth = APInt::APINT_BITS_PER_WORD; |
| 145 | |
| 146 | /// A signed type to represent a floating point numbers unbiased exponent. |
| 147 | typedef int32_t ExponentType; |
| 148 | |
| 149 | /// \name Floating Point Semantics. |
| 150 | /// @{ |
| 151 | enum Semantics { |
| 152 | S_IEEEhalf, |
| 153 | S_BFloat, |
| 154 | S_IEEEsingle, |
| 155 | S_IEEEdouble, |
| 156 | S_IEEEquad, |
| 157 | S_PPCDoubleDouble, |
| 158 | // 8-bit floating point number following IEEE-754 conventions with bit |
| 159 | // layout S1E5M2 as described in https://arxiv.org/abs/2209.05433 |
| 160 | S_Float8E5M2, |
| 161 | S_x87DoubleExtended, |
| 162 | S_MaxSemantics = S_x87DoubleExtended, |
| 163 | }; |
| 164 | |
| 165 | static const llvm::fltSemantics &EnumToSemantics(Semantics S); |
| 166 | static Semantics SemanticsToEnum(const llvm::fltSemantics &Sem); |
| 167 | |
| 168 | static const fltSemantics &IEEEhalf() LLVM_READNONE__attribute__((__const__)); |
| 169 | static const fltSemantics &BFloat() LLVM_READNONE__attribute__((__const__)); |
| 170 | static const fltSemantics &IEEEsingle() LLVM_READNONE__attribute__((__const__)); |
| 171 | static const fltSemantics &IEEEdouble() LLVM_READNONE__attribute__((__const__)); |
| 172 | static const fltSemantics &IEEEquad() LLVM_READNONE__attribute__((__const__)); |
| 173 | static const fltSemantics &PPCDoubleDouble() LLVM_READNONE__attribute__((__const__)); |
| 174 | static const fltSemantics &Float8E5M2() LLVM_READNONE__attribute__((__const__)); |
| 175 | static const fltSemantics &x87DoubleExtended() LLVM_READNONE__attribute__((__const__)); |
| 176 | |
| 177 | /// A Pseudo fltsemantic used to construct APFloats that cannot conflict with |
| 178 | /// anything real. |
| 179 | static const fltSemantics &Bogus() LLVM_READNONE__attribute__((__const__)); |
| 180 | |
| 181 | /// @} |
| 182 | |
| 183 | /// IEEE-754R 5.11: Floating Point Comparison Relations. |
| 184 | enum cmpResult { |
| 185 | cmpLessThan, |
| 186 | cmpEqual, |
| 187 | cmpGreaterThan, |
| 188 | cmpUnordered |
| 189 | }; |
| 190 | |
| 191 | /// IEEE-754R 4.3: Rounding-direction attributes. |
| 192 | using roundingMode = llvm::RoundingMode; |
| 193 | |
| 194 | static constexpr roundingMode rmNearestTiesToEven = |
| 195 | RoundingMode::NearestTiesToEven; |
| 196 | static constexpr roundingMode rmTowardPositive = RoundingMode::TowardPositive; |
| 197 | static constexpr roundingMode rmTowardNegative = RoundingMode::TowardNegative; |
| 198 | static constexpr roundingMode rmTowardZero = RoundingMode::TowardZero; |
| 199 | static constexpr roundingMode rmNearestTiesToAway = |
| 200 | RoundingMode::NearestTiesToAway; |
| 201 | |
| 202 | /// IEEE-754R 7: Default exception handling. |
| 203 | /// |
| 204 | /// opUnderflow or opOverflow are always returned or-ed with opInexact. |
| 205 | /// |
| 206 | /// APFloat models this behavior specified by IEEE-754: |
| 207 | /// "For operations producing results in floating-point format, the default |
| 208 | /// result of an operation that signals the invalid operation exception |
| 209 | /// shall be a quiet NaN." |
| 210 | enum opStatus { |
| 211 | opOK = 0x00, |
| 212 | opInvalidOp = 0x01, |
| 213 | opDivByZero = 0x02, |
| 214 | opOverflow = 0x04, |
| 215 | opUnderflow = 0x08, |
| 216 | opInexact = 0x10 |
| 217 | }; |
| 218 | |
| 219 | /// Category of internally-represented number. |
| 220 | enum fltCategory { |
| 221 | fcInfinity, |
| 222 | fcNaN, |
| 223 | fcNormal, |
| 224 | fcZero |
| 225 | }; |
| 226 | |
| 227 | /// Convenience enum used to construct an uninitialized APFloat. |
| 228 | enum uninitializedTag { |
| 229 | uninitialized |
| 230 | }; |
| 231 | |
| 232 | /// Enumeration of \c ilogb error results. |
| 233 | enum IlogbErrorKinds { |
| 234 | IEK_Zero = INT_MIN(-2147483647 -1) + 1, |
| 235 | IEK_NaN = INT_MIN(-2147483647 -1), |
| 236 | IEK_Inf = INT_MAX2147483647 |
| 237 | }; |
| 238 | |
| 239 | static unsigned int semanticsPrecision(const fltSemantics &); |
| 240 | static ExponentType semanticsMinExponent(const fltSemantics &); |
| 241 | static ExponentType semanticsMaxExponent(const fltSemantics &); |
| 242 | static unsigned int semanticsSizeInBits(const fltSemantics &); |
| 243 | |
| 244 | /// Returns the size of the floating point number (in bits) in the given |
| 245 | /// semantics. |
| 246 | static unsigned getSizeInBits(const fltSemantics &Sem); |
| 247 | }; |
| 248 | |
| 249 | namespace detail { |
| 250 | |
| 251 | class IEEEFloat final : public APFloatBase { |
| 252 | public: |
| 253 | /// \name Constructors |
| 254 | /// @{ |
| 255 | |
| 256 | IEEEFloat(const fltSemantics &); // Default construct to +0.0 |
| 257 | IEEEFloat(const fltSemantics &, integerPart); |
| 258 | IEEEFloat(const fltSemantics &, uninitializedTag); |
| 259 | IEEEFloat(const fltSemantics &, const APInt &); |
| 260 | explicit IEEEFloat(double d); |
| 261 | explicit IEEEFloat(float f); |
| 262 | IEEEFloat(const IEEEFloat &); |
| 263 | IEEEFloat(IEEEFloat &&); |
| 264 | ~IEEEFloat(); |
| 265 | |
| 266 | /// @} |
| 267 | |
| 268 | /// Returns whether this instance allocated memory. |
| 269 | bool needsCleanup() const { return partCount() > 1; } |
| 270 | |
| 271 | /// \name Convenience "constructors" |
| 272 | /// @{ |
| 273 | |
| 274 | /// @} |
| 275 | |
| 276 | /// \name Arithmetic |
| 277 | /// @{ |
| 278 | |
| 279 | opStatus add(const IEEEFloat &, roundingMode); |
| 280 | opStatus subtract(const IEEEFloat &, roundingMode); |
| 281 | opStatus multiply(const IEEEFloat &, roundingMode); |
| 282 | opStatus divide(const IEEEFloat &, roundingMode); |
| 283 | /// IEEE remainder. |
| 284 | opStatus remainder(const IEEEFloat &); |
| 285 | /// C fmod, or llvm frem. |
| 286 | opStatus mod(const IEEEFloat &); |
| 287 | opStatus fusedMultiplyAdd(const IEEEFloat &, const IEEEFloat &, roundingMode); |
| 288 | opStatus roundToIntegral(roundingMode); |
| 289 | /// IEEE-754R 5.3.1: nextUp/nextDown. |
| 290 | opStatus next(bool nextDown); |
| 291 | |
| 292 | /// @} |
| 293 | |
| 294 | /// \name Sign operations. |
| 295 | /// @{ |
| 296 | |
| 297 | void changeSign(); |
| 298 | |
| 299 | /// @} |
| 300 | |
| 301 | /// \name Conversions |
| 302 | /// @{ |
| 303 | |
| 304 | opStatus convert(const fltSemantics &, roundingMode, bool *); |
| 305 | opStatus convertToInteger(MutableArrayRef<integerPart>, unsigned int, bool, |
| 306 | roundingMode, bool *) const; |
| 307 | opStatus convertFromAPInt(const APInt &, bool, roundingMode); |
| 308 | opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int, |
| 309 | bool, roundingMode); |
| 310 | opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int, |
| 311 | bool, roundingMode); |
| 312 | Expected<opStatus> convertFromString(StringRef, roundingMode); |
| 313 | APInt bitcastToAPInt() const; |
| 314 | double convertToDouble() const; |
| 315 | float convertToFloat() const; |
| 316 | |
| 317 | /// @} |
| 318 | |
| 319 | /// The definition of equality is not straightforward for floating point, so |
| 320 | /// we won't use operator==. Use one of the following, or write whatever it |
| 321 | /// is you really mean. |
| 322 | bool operator==(const IEEEFloat &) const = delete; |
| 323 | |
| 324 | /// IEEE comparison with another floating point number (NaNs compare |
| 325 | /// unordered, 0==-0). |
| 326 | cmpResult compare(const IEEEFloat &) const; |
| 327 | |
| 328 | /// Bitwise comparison for equality (QNaNs compare equal, 0!=-0). |
| 329 | bool bitwiseIsEqual(const IEEEFloat &) const; |
| 330 | |
| 331 | /// Write out a hexadecimal representation of the floating point value to DST, |
| 332 | /// which must be of sufficient size, in the C99 form [-]0xh.hhhhp[+-]d. |
| 333 | /// Return the number of characters written, excluding the terminating NUL. |
| 334 | unsigned int convertToHexString(char *dst, unsigned int hexDigits, |
| 335 | bool upperCase, roundingMode) const; |
| 336 | |
| 337 | /// \name IEEE-754R 5.7.2 General operations. |
| 338 | /// @{ |
| 339 | |
| 340 | /// IEEE-754R isSignMinus: Returns true if and only if the current value is |
| 341 | /// negative. |
| 342 | /// |
| 343 | /// This applies to zeros and NaNs as well. |
| 344 | bool isNegative() const { return sign; } |
| 345 | |
| 346 | /// IEEE-754R isNormal: Returns true if and only if the current value is normal. |
| 347 | /// |
| 348 | /// This implies that the current value of the float is not zero, subnormal, |
| 349 | /// infinite, or NaN following the definition of normality from IEEE-754R. |
| 350 | bool isNormal() const { return !isDenormal() && isFiniteNonZero(); } |
| 351 | |
| 352 | /// Returns true if and only if the current value is zero, subnormal, or |
| 353 | /// normal. |
| 354 | /// |
| 355 | /// This means that the value is not infinite or NaN. |
| 356 | bool isFinite() const { return !isNaN() && !isInfinity(); } |
| 357 | |
| 358 | /// Returns true if and only if the float is plus or minus zero. |
| 359 | bool isZero() const { return category == fcZero; } |
| 360 | |
| 361 | /// IEEE-754R isSubnormal(): Returns true if and only if the float is a |
| 362 | /// denormal. |
| 363 | bool isDenormal() const; |
| 364 | |
| 365 | /// IEEE-754R isInfinite(): Returns true if and only if the float is infinity. |
| 366 | bool isInfinity() const { return category == fcInfinity; } |
| 367 | |
| 368 | /// Returns true if and only if the float is a quiet or signaling NaN. |
| 369 | bool isNaN() const { return category == fcNaN; } |
| 370 | |
| 371 | /// Returns true if and only if the float is a signaling NaN. |
| 372 | bool isSignaling() const; |
| 373 | |
| 374 | /// @} |
| 375 | |
| 376 | /// \name Simple Queries |
| 377 | /// @{ |
| 378 | |
| 379 | fltCategory getCategory() const { return category; } |
| 380 | const fltSemantics &getSemantics() const { return *semantics; } |
| 381 | bool isNonZero() const { return category != fcZero; } |
| 382 | bool isFiniteNonZero() const { return isFinite() && !isZero(); } |
| 383 | bool isPosZero() const { return isZero() && !isNegative(); } |
| 384 | bool isNegZero() const { return isZero() && isNegative(); } |
| 385 | |
| 386 | /// Returns true if and only if the number has the smallest possible non-zero |
| 387 | /// magnitude in the current semantics. |
| 388 | bool isSmallest() const; |
| 389 | |
| 390 | /// Returns true if and only if the number has the largest possible finite |
| 391 | /// magnitude in the current semantics. |
| 392 | bool isLargest() const; |
| 393 | |
| 394 | /// Returns true if and only if the number is an exact integer. |
| 395 | bool isInteger() const; |
| 396 | |
| 397 | /// @} |
| 398 | |
| 399 | IEEEFloat &operator=(const IEEEFloat &); |
| 400 | IEEEFloat &operator=(IEEEFloat &&); |
| 401 | |
| 402 | /// Overload to compute a hash code for an APFloat value. |
| 403 | /// |
| 404 | /// Note that the use of hash codes for floating point values is in general |
| 405 | /// frought with peril. Equality is hard to define for these values. For |
| 406 | /// example, should negative and positive zero hash to different codes? Are |
| 407 | /// they equal or not? This hash value implementation specifically |
| 408 | /// emphasizes producing different codes for different inputs in order to |
| 409 | /// be used in canonicalization and memoization. As such, equality is |
| 410 | /// bitwiseIsEqual, and 0 != -0. |
| 411 | friend hash_code hash_value(const IEEEFloat &Arg); |
| 412 | |
| 413 | /// Converts this value into a decimal string. |
| 414 | /// |
| 415 | /// \param FormatPrecision The maximum number of digits of |
| 416 | /// precision to output. If there are fewer digits available, |
| 417 | /// zero padding will not be used unless the value is |
| 418 | /// integral and small enough to be expressed in |
| 419 | /// FormatPrecision digits. 0 means to use the natural |
| 420 | /// precision of the number. |
| 421 | /// \param FormatMaxPadding The maximum number of zeros to |
| 422 | /// consider inserting before falling back to scientific |
| 423 | /// notation. 0 means to always use scientific notation. |
| 424 | /// |
| 425 | /// \param TruncateZero Indicate whether to remove the trailing zero in |
| 426 | /// fraction part or not. Also setting this parameter to false forcing |
| 427 | /// producing of output more similar to default printf behavior. |
| 428 | /// Specifically the lower e is used as exponent delimiter and exponent |
| 429 | /// always contains no less than two digits. |
| 430 | /// |
| 431 | /// Number Precision MaxPadding Result |
| 432 | /// ------ --------- ---------- ------ |
| 433 | /// 1.01E+4 5 2 10100 |
| 434 | /// 1.01E+4 4 2 1.01E+4 |
| 435 | /// 1.01E+4 5 1 1.01E+4 |
| 436 | /// 1.01E-2 5 2 0.0101 |
| 437 | /// 1.01E-2 4 2 0.0101 |
| 438 | /// 1.01E-2 4 1 1.01E-2 |
| 439 | void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0, |
| 440 | unsigned FormatMaxPadding = 3, bool TruncateZero = true) const; |
| 441 | |
| 442 | /// If this value has an exact multiplicative inverse, store it in inv and |
| 443 | /// return true. |
| 444 | bool getExactInverse(APFloat *inv) const; |
| 445 | |
| 446 | /// Returns the exponent of the internal representation of the APFloat. |
| 447 | /// |
| 448 | /// Because the radix of APFloat is 2, this is equivalent to floor(log2(x)). |
| 449 | /// For special APFloat values, this returns special error codes: |
| 450 | /// |
| 451 | /// NaN -> \c IEK_NaN |
| 452 | /// 0 -> \c IEK_Zero |
| 453 | /// Inf -> \c IEK_Inf |
| 454 | /// |
| 455 | friend int ilogb(const IEEEFloat &Arg); |
| 456 | |
| 457 | /// Returns: X * 2^Exp for integral exponents. |
| 458 | friend IEEEFloat scalbn(IEEEFloat X, int Exp, roundingMode); |
| 459 | |
| 460 | friend IEEEFloat frexp(const IEEEFloat &X, int &Exp, roundingMode); |
| 461 | |
| 462 | /// \name Special value setters. |
| 463 | /// @{ |
| 464 | |
| 465 | void makeLargest(bool Neg = false); |
| 466 | void makeSmallest(bool Neg = false); |
| 467 | void makeNaN(bool SNaN = false, bool Neg = false, |
| 468 | const APInt *fill = nullptr); |
| 469 | void makeInf(bool Neg = false); |
| 470 | void makeZero(bool Neg = false); |
| 471 | void makeQuiet(); |
| 472 | |
| 473 | /// Returns the smallest (by magnitude) normalized finite number in the given |
| 474 | /// semantics. |
| 475 | /// |
| 476 | /// \param Negative - True iff the number should be negative |
| 477 | void makeSmallestNormalized(bool Negative = false); |
| 478 | |
| 479 | /// @} |
| 480 | |
| 481 | cmpResult compareAbsoluteValue(const IEEEFloat &) const; |
| 482 | |
| 483 | private: |
| 484 | /// \name Simple Queries |
| 485 | /// @{ |
| 486 | |
| 487 | integerPart *significandParts(); |
| 488 | const integerPart *significandParts() const; |
| 489 | unsigned int partCount() const; |
| 490 | |
| 491 | /// @} |
| 492 | |
| 493 | /// \name Significand operations. |
| 494 | /// @{ |
| 495 | |
| 496 | integerPart addSignificand(const IEEEFloat &); |
| 497 | integerPart subtractSignificand(const IEEEFloat &, integerPart); |
| 498 | lostFraction addOrSubtractSignificand(const IEEEFloat &, bool subtract); |
| 499 | lostFraction multiplySignificand(const IEEEFloat &, IEEEFloat); |
| 500 | lostFraction multiplySignificand(const IEEEFloat&); |
| 501 | lostFraction divideSignificand(const IEEEFloat &); |
| 502 | void incrementSignificand(); |
| 503 | void initialize(const fltSemantics *); |
| 504 | void shiftSignificandLeft(unsigned int); |
| 505 | lostFraction shiftSignificandRight(unsigned int); |
| 506 | unsigned int significandLSB() const; |
| 507 | unsigned int significandMSB() const; |
| 508 | void zeroSignificand(); |
| 509 | /// Return true if the significand excluding the integral bit is all ones. |
| 510 | bool isSignificandAllOnes() const; |
| 511 | /// Return true if the significand excluding the integral bit is all zeros. |
| 512 | bool isSignificandAllZeros() const; |
| 513 | |
| 514 | /// @} |
| 515 | |
| 516 | /// \name Arithmetic on special values. |
| 517 | /// @{ |
| 518 | |
| 519 | opStatus addOrSubtractSpecials(const IEEEFloat &, bool subtract); |
| 520 | opStatus divideSpecials(const IEEEFloat &); |
| 521 | opStatus multiplySpecials(const IEEEFloat &); |
| 522 | opStatus modSpecials(const IEEEFloat &); |
| 523 | opStatus remainderSpecials(const IEEEFloat&); |
| 524 | |
| 525 | /// @} |
| 526 | |
| 527 | /// \name Miscellany |
| 528 | /// @{ |
| 529 | |
| 530 | bool convertFromStringSpecials(StringRef str); |
| 531 | opStatus normalize(roundingMode, lostFraction); |
| 532 | opStatus addOrSubtract(const IEEEFloat &, roundingMode, bool subtract); |
| 533 | opStatus handleOverflow(roundingMode); |
| 534 | bool roundAwayFromZero(roundingMode, lostFraction, unsigned int) const; |
| 535 | opStatus convertToSignExtendedInteger(MutableArrayRef<integerPart>, |
| 536 | unsigned int, bool, roundingMode, |
| 537 | bool *) const; |
| 538 | opStatus convertFromUnsignedParts(const integerPart *, unsigned int, |
| 539 | roundingMode); |
| 540 | Expected<opStatus> convertFromHexadecimalString(StringRef, roundingMode); |
| 541 | Expected<opStatus> convertFromDecimalString(StringRef, roundingMode); |
| 542 | char *convertNormalToHexString(char *, unsigned int, bool, |
| 543 | roundingMode) const; |
| 544 | opStatus roundSignificandWithExponent(const integerPart *, unsigned int, int, |
| 545 | roundingMode); |
| 546 | ExponentType exponentNaN() const; |
| 547 | ExponentType exponentInf() const; |
| 548 | ExponentType exponentZero() const; |
| 549 | |
| 550 | /// @} |
| 551 | |
| 552 | APInt convertHalfAPFloatToAPInt() const; |
| 553 | APInt convertBFloatAPFloatToAPInt() const; |
| 554 | APInt convertFloatAPFloatToAPInt() const; |
| 555 | APInt convertDoubleAPFloatToAPInt() const; |
| 556 | APInt convertQuadrupleAPFloatToAPInt() const; |
| 557 | APInt convertF80LongDoubleAPFloatToAPInt() const; |
| 558 | APInt convertPPCDoubleDoubleAPFloatToAPInt() const; |
| 559 | APInt convertFloat8E5M2APFloatToAPInt() const; |
| 560 | void initFromAPInt(const fltSemantics *Sem, const APInt &api); |
| 561 | void initFromHalfAPInt(const APInt &api); |
| 562 | void initFromBFloatAPInt(const APInt &api); |
| 563 | void initFromFloatAPInt(const APInt &api); |
| 564 | void initFromDoubleAPInt(const APInt &api); |
| 565 | void initFromQuadrupleAPInt(const APInt &api); |
| 566 | void initFromF80LongDoubleAPInt(const APInt &api); |
| 567 | void initFromPPCDoubleDoubleAPInt(const APInt &api); |
| 568 | void initFromFloat8E5M2APInt(const APInt &api); |
| 569 | |
| 570 | void assign(const IEEEFloat &); |
| 571 | void copySignificand(const IEEEFloat &); |
| 572 | void freeSignificand(); |
| 573 | |
| 574 | /// Note: this must be the first data member. |
| 575 | /// The semantics that this value obeys. |
| 576 | const fltSemantics *semantics; |
| 577 | |
| 578 | /// A binary fraction with an explicit integer bit. |
| 579 | /// |
| 580 | /// The significand must be at least one bit wider than the target precision. |
| 581 | union Significand { |
| 582 | integerPart part; |
| 583 | integerPart *parts; |
| 584 | } significand; |
| 585 | |
| 586 | /// The signed unbiased exponent of the value. |
| 587 | ExponentType exponent; |
| 588 | |
| 589 | /// What kind of floating point number this is. |
| 590 | /// |
| 591 | /// Only 2 bits are required, but VisualStudio incorrectly sign extends it. |
| 592 | /// Using the extra bit keeps it from failing under VisualStudio. |
| 593 | fltCategory category : 3; |
| 594 | |
| 595 | /// Sign bit of the number. |
| 596 | unsigned int sign : 1; |
| 597 | }; |
| 598 | |
| 599 | hash_code hash_value(const IEEEFloat &Arg); |
| 600 | int ilogb(const IEEEFloat &Arg); |
| 601 | IEEEFloat scalbn(IEEEFloat X, int Exp, IEEEFloat::roundingMode); |
| 602 | IEEEFloat frexp(const IEEEFloat &Val, int &Exp, IEEEFloat::roundingMode RM); |
| 603 | |
| 604 | // This mode implements more precise float in terms of two APFloats. |
| 605 | // The interface and layout is designed for arbitrary underlying semantics, |
| 606 | // though currently only PPCDoubleDouble semantics are supported, whose |
| 607 | // corresponding underlying semantics are IEEEdouble. |
| 608 | class DoubleAPFloat final : public APFloatBase { |
| 609 | // Note: this must be the first data member. |
| 610 | const fltSemantics *Semantics; |
| 611 | std::unique_ptr<APFloat[]> Floats; |
| 612 | |
| 613 | opStatus addImpl(const APFloat &a, const APFloat &aa, const APFloat &c, |
| 614 | const APFloat &cc, roundingMode RM); |
| 615 | |
| 616 | opStatus addWithSpecial(const DoubleAPFloat &LHS, const DoubleAPFloat &RHS, |
| 617 | DoubleAPFloat &Out, roundingMode RM); |
| 618 | |
| 619 | public: |
| 620 | DoubleAPFloat(const fltSemantics &S); |
| 621 | DoubleAPFloat(const fltSemantics &S, uninitializedTag); |
| 622 | DoubleAPFloat(const fltSemantics &S, integerPart); |
| 623 | DoubleAPFloat(const fltSemantics &S, const APInt &I); |
| 624 | DoubleAPFloat(const fltSemantics &S, APFloat &&First, APFloat &&Second); |
| 625 | DoubleAPFloat(const DoubleAPFloat &RHS); |
| 626 | DoubleAPFloat(DoubleAPFloat &&RHS); |
| 627 | |
| 628 | DoubleAPFloat &operator=(const DoubleAPFloat &RHS); |
| 629 | |
| 630 | DoubleAPFloat &operator=(DoubleAPFloat &&RHS) { |
| 631 | if (this != &RHS) { |
| 632 | this->~DoubleAPFloat(); |
| 633 | new (this) DoubleAPFloat(std::move(RHS)); |
| 634 | } |
| 635 | return *this; |
| 636 | } |
| 637 | |
| 638 | bool needsCleanup() const { return Floats != nullptr; } |
| 639 | |
| 640 | APFloat &getFirst() { return Floats[0]; } |
| 641 | const APFloat &getFirst() const { return Floats[0]; } |
| 642 | APFloat &getSecond() { return Floats[1]; } |
| 643 | const APFloat &getSecond() const { return Floats[1]; } |
| 644 | |
| 645 | opStatus add(const DoubleAPFloat &RHS, roundingMode RM); |
| 646 | opStatus subtract(const DoubleAPFloat &RHS, roundingMode RM); |
| 647 | opStatus multiply(const DoubleAPFloat &RHS, roundingMode RM); |
| 648 | opStatus divide(const DoubleAPFloat &RHS, roundingMode RM); |
| 649 | opStatus remainder(const DoubleAPFloat &RHS); |
| 650 | opStatus mod(const DoubleAPFloat &RHS); |
| 651 | opStatus fusedMultiplyAdd(const DoubleAPFloat &Multiplicand, |
| 652 | const DoubleAPFloat &Addend, roundingMode RM); |
| 653 | opStatus roundToIntegral(roundingMode RM); |
| 654 | void changeSign(); |
| 655 | cmpResult compareAbsoluteValue(const DoubleAPFloat &RHS) const; |
| 656 | |
| 657 | fltCategory getCategory() const; |
| 658 | bool isNegative() const; |
| 659 | |
| 660 | void makeInf(bool Neg); |
| 661 | void makeZero(bool Neg); |
| 662 | void makeLargest(bool Neg); |
| 663 | void makeSmallest(bool Neg); |
| 664 | void makeSmallestNormalized(bool Neg); |
| 665 | void makeNaN(bool SNaN, bool Neg, const APInt *fill); |
| 666 | |
| 667 | cmpResult compare(const DoubleAPFloat &RHS) const; |
| 668 | bool bitwiseIsEqual(const DoubleAPFloat &RHS) const; |
| 669 | APInt bitcastToAPInt() const; |
| 670 | Expected<opStatus> convertFromString(StringRef, roundingMode); |
| 671 | opStatus next(bool nextDown); |
| 672 | |
| 673 | opStatus convertToInteger(MutableArrayRef<integerPart> Input, |
| 674 | unsigned int Width, bool IsSigned, roundingMode RM, |
| 675 | bool *IsExact) const; |
| 676 | opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM); |
| 677 | opStatus convertFromSignExtendedInteger(const integerPart *Input, |
| 678 | unsigned int InputSize, bool IsSigned, |
| 679 | roundingMode RM); |
| 680 | opStatus convertFromZeroExtendedInteger(const integerPart *Input, |
| 681 | unsigned int InputSize, bool IsSigned, |
| 682 | roundingMode RM); |
| 683 | unsigned int convertToHexString(char *DST, unsigned int HexDigits, |
| 684 | bool UpperCase, roundingMode RM) const; |
| 685 | |
| 686 | bool isDenormal() const; |
| 687 | bool isSmallest() const; |
| 688 | bool isLargest() const; |
| 689 | bool isInteger() const; |
| 690 | |
| 691 | void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision, |
| 692 | unsigned FormatMaxPadding, bool TruncateZero = true) const; |
| 693 | |
| 694 | bool getExactInverse(APFloat *inv) const; |
| 695 | |
| 696 | friend DoubleAPFloat scalbn(const DoubleAPFloat &X, int Exp, roundingMode); |
| 697 | friend DoubleAPFloat frexp(const DoubleAPFloat &X, int &Exp, roundingMode); |
| 698 | friend hash_code hash_value(const DoubleAPFloat &Arg); |
| 699 | }; |
| 700 | |
| 701 | hash_code hash_value(const DoubleAPFloat &Arg); |
| 702 | |
| 703 | } // End detail namespace |
| 704 | |
| 705 | // This is a interface class that is currently forwarding functionalities from |
| 706 | // detail::IEEEFloat. |
| 707 | class APFloat : public APFloatBase { |
| 708 | typedef detail::IEEEFloat IEEEFloat; |
| 709 | typedef detail::DoubleAPFloat DoubleAPFloat; |
| 710 | |
| 711 | static_assert(std::is_standard_layout<IEEEFloat>::value); |
| 712 | |
| 713 | union Storage { |
| 714 | const fltSemantics *semantics; |
| 715 | IEEEFloat IEEE; |
| 716 | DoubleAPFloat Double; |
| 717 | |
| 718 | explicit Storage(IEEEFloat F, const fltSemantics &S); |
| 719 | explicit Storage(DoubleAPFloat F, const fltSemantics &S) |
| 720 | : Double(std::move(F)) { |
| 721 | assert(&S == &PPCDoubleDouble())(static_cast <bool> (&S == &PPCDoubleDouble()) ? void (0) : __assert_fail ("&S == &PPCDoubleDouble()" , "llvm/include/llvm/ADT/APFloat.h", 721, __extension__ __PRETTY_FUNCTION__ )); |
| 722 | } |
| 723 | |
| 724 | template <typename... ArgTypes> |
| 725 | Storage(const fltSemantics &Semantics, ArgTypes &&... Args) { |
| 726 | if (usesLayout<IEEEFloat>(Semantics)) { |
| 727 | new (&IEEE) IEEEFloat(Semantics, std::forward<ArgTypes>(Args)...); |
| 728 | return; |
| 729 | } |
| 730 | if (usesLayout<DoubleAPFloat>(Semantics)) { |
| 731 | new (&Double) DoubleAPFloat(Semantics, std::forward<ArgTypes>(Args)...); |
| 732 | return; |
| 733 | } |
| 734 | llvm_unreachable("Unexpected semantics")::llvm::llvm_unreachable_internal("Unexpected semantics", "llvm/include/llvm/ADT/APFloat.h" , 734); |
| 735 | } |
| 736 | |
| 737 | ~Storage() { |
| 738 | if (usesLayout<IEEEFloat>(*semantics)) { |
| 739 | IEEE.~IEEEFloat(); |
| 740 | return; |
| 741 | } |
| 742 | if (usesLayout<DoubleAPFloat>(*semantics)) { |
| 743 | Double.~DoubleAPFloat(); |
| 744 | return; |
| 745 | } |
| 746 | llvm_unreachable("Unexpected semantics")::llvm::llvm_unreachable_internal("Unexpected semantics", "llvm/include/llvm/ADT/APFloat.h" , 746); |
| 747 | } |
| 748 | |
| 749 | Storage(const Storage &RHS) { |
| 750 | if (usesLayout<IEEEFloat>(*RHS.semantics)) { |
| 751 | new (this) IEEEFloat(RHS.IEEE); |
| 752 | return; |
| 753 | } |
| 754 | if (usesLayout<DoubleAPFloat>(*RHS.semantics)) { |
| 755 | new (this) DoubleAPFloat(RHS.Double); |
| 756 | return; |
| 757 | } |
| 758 | llvm_unreachable("Unexpected semantics")::llvm::llvm_unreachable_internal("Unexpected semantics", "llvm/include/llvm/ADT/APFloat.h" , 758); |
| 759 | } |
| 760 | |
| 761 | Storage(Storage &&RHS) { |
| 762 | if (usesLayout<IEEEFloat>(*RHS.semantics)) { |
| 763 | new (this) IEEEFloat(std::move(RHS.IEEE)); |
| 764 | return; |
| 765 | } |
| 766 | if (usesLayout<DoubleAPFloat>(*RHS.semantics)) { |
| 767 | new (this) DoubleAPFloat(std::move(RHS.Double)); |
| 768 | return; |
| 769 | } |
| 770 | llvm_unreachable("Unexpected semantics")::llvm::llvm_unreachable_internal("Unexpected semantics", "llvm/include/llvm/ADT/APFloat.h" , 770); |
| 771 | } |
| 772 | |
| 773 | Storage &operator=(const Storage &RHS) { |
| 774 | if (usesLayout<IEEEFloat>(*semantics) && |
| 775 | usesLayout<IEEEFloat>(*RHS.semantics)) { |
| 776 | IEEE = RHS.IEEE; |
| 777 | } else if (usesLayout<DoubleAPFloat>(*semantics) && |
| 778 | usesLayout<DoubleAPFloat>(*RHS.semantics)) { |
| 779 | Double = RHS.Double; |
| 780 | } else if (this != &RHS) { |
| 781 | this->~Storage(); |
| 782 | new (this) Storage(RHS); |
| 783 | } |
| 784 | return *this; |
| 785 | } |
| 786 | |
| 787 | Storage &operator=(Storage &&RHS) { |
| 788 | if (usesLayout<IEEEFloat>(*semantics) && |
| 789 | usesLayout<IEEEFloat>(*RHS.semantics)) { |
| 790 | IEEE = std::move(RHS.IEEE); |
| 791 | } else if (usesLayout<DoubleAPFloat>(*semantics) && |
| 792 | usesLayout<DoubleAPFloat>(*RHS.semantics)) { |
| 793 | Double = std::move(RHS.Double); |
| 794 | } else if (this != &RHS) { |
| 795 | this->~Storage(); |
| 796 | new (this) Storage(std::move(RHS)); |
| 797 | } |
| 798 | return *this; |
| 799 | } |
| 800 | } U; |
| 801 | |
| 802 | template <typename T> static bool usesLayout(const fltSemantics &Semantics) { |
| 803 | static_assert(std::is_same<T, IEEEFloat>::value || |
| 804 | std::is_same<T, DoubleAPFloat>::value); |
| 805 | if (std::is_same<T, DoubleAPFloat>::value) { |
| 806 | return &Semantics == &PPCDoubleDouble(); |
| 807 | } |
| 808 | return &Semantics != &PPCDoubleDouble(); |
| 809 | } |
| 810 | |
| 811 | IEEEFloat &getIEEE() { |
| 812 | if (usesLayout<IEEEFloat>(*U.semantics)) |
| 813 | return U.IEEE; |
| 814 | if (usesLayout<DoubleAPFloat>(*U.semantics)) |
| 815 | return U.Double.getFirst().U.IEEE; |
| 816 | llvm_unreachable("Unexpected semantics")::llvm::llvm_unreachable_internal("Unexpected semantics", "llvm/include/llvm/ADT/APFloat.h" , 816); |
| 817 | } |
| 818 | |
| 819 | const IEEEFloat &getIEEE() const { |
| 820 | if (usesLayout<IEEEFloat>(*U.semantics)) |
| 821 | return U.IEEE; |
| 822 | if (usesLayout<DoubleAPFloat>(*U.semantics)) |
| 823 | return U.Double.getFirst().U.IEEE; |
| 824 | llvm_unreachable("Unexpected semantics")::llvm::llvm_unreachable_internal("Unexpected semantics", "llvm/include/llvm/ADT/APFloat.h" , 824); |
| 825 | } |
| 826 | |
| 827 | void makeZero(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeZero(Neg)); } |
| 828 | |
| 829 | void makeInf(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeInf(Neg)); } |
| 830 | |
| 831 | void makeNaN(bool SNaN, bool Neg, const APInt *fill) { |
| 832 | APFLOAT_DISPATCH_ON_SEMANTICS(makeNaN(SNaN, Neg, fill)); |
| 833 | } |
| 834 | |
| 835 | void makeLargest(bool Neg) { |
| 836 | APFLOAT_DISPATCH_ON_SEMANTICS(makeLargest(Neg)); |
| 837 | } |
| 838 | |
| 839 | void makeSmallest(bool Neg) { |
| 840 | APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallest(Neg)); |
| 841 | } |
| 842 | |
| 843 | void makeSmallestNormalized(bool Neg) { |
| 844 | APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallestNormalized(Neg)); |
| 845 | } |
| 846 | |
| 847 | // FIXME: This is due to clang 3.3 (or older version) always checks for the |
| 848 | // default constructor in an array aggregate initialization, even if no |
| 849 | // elements in the array is default initialized. |
| 850 | APFloat() : U(IEEEdouble()) { |
| 851 | llvm_unreachable("This is a workaround for old clang.")::llvm::llvm_unreachable_internal("This is a workaround for old clang." , "llvm/include/llvm/ADT/APFloat.h", 851); |
| 852 | } |
| 853 | |
| 854 | explicit APFloat(IEEEFloat F, const fltSemantics &S) : U(std::move(F), S) {} |
| 855 | explicit APFloat(DoubleAPFloat F, const fltSemantics &S) |
| 856 | : U(std::move(F), S) {} |
| 857 | |
| 858 | cmpResult compareAbsoluteValue(const APFloat &RHS) const { |
| 859 | assert(&getSemantics() == &RHS.getSemantics() &&(static_cast <bool> (&getSemantics() == &RHS.getSemantics () && "Should only compare APFloats with the same semantics" ) ? void (0) : __assert_fail ("&getSemantics() == &RHS.getSemantics() && \"Should only compare APFloats with the same semantics\"" , "llvm/include/llvm/ADT/APFloat.h", 860, __extension__ __PRETTY_FUNCTION__ )) |
| 860 | "Should only compare APFloats with the same semantics")(static_cast <bool> (&getSemantics() == &RHS.getSemantics () && "Should only compare APFloats with the same semantics" ) ? void (0) : __assert_fail ("&getSemantics() == &RHS.getSemantics() && \"Should only compare APFloats with the same semantics\"" , "llvm/include/llvm/ADT/APFloat.h", 860, __extension__ __PRETTY_FUNCTION__ )); |
| 861 | if (usesLayout<IEEEFloat>(getSemantics())) |
| 862 | return U.IEEE.compareAbsoluteValue(RHS.U.IEEE); |
| 863 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
| 864 | return U.Double.compareAbsoluteValue(RHS.U.Double); |
| 865 | llvm_unreachable("Unexpected semantics")::llvm::llvm_unreachable_internal("Unexpected semantics", "llvm/include/llvm/ADT/APFloat.h" , 865); |
| 866 | } |
| 867 | |
| 868 | public: |
| 869 | APFloat(const fltSemantics &Semantics) : U(Semantics) {} |
| 870 | APFloat(const fltSemantics &Semantics, StringRef S); |
| 871 | APFloat(const fltSemantics &Semantics, integerPart I) : U(Semantics, I) {} |
| 872 | template <typename T, |
| 873 | typename = std::enable_if_t<std::is_floating_point<T>::value>> |
| 874 | APFloat(const fltSemantics &Semantics, T V) = delete; |
| 875 | // TODO: Remove this constructor. This isn't faster than the first one. |
| 876 | APFloat(const fltSemantics &Semantics, uninitializedTag) |
| 877 | : U(Semantics, uninitialized) {} |
| 878 | APFloat(const fltSemantics &Semantics, const APInt &I) : U(Semantics, I) {} |
| 879 | explicit APFloat(double d) : U(IEEEFloat(d), IEEEdouble()) {} |
| 880 | explicit APFloat(float f) : U(IEEEFloat(f), IEEEsingle()) {} |
| 881 | APFloat(const APFloat &RHS) = default; |
| 882 | APFloat(APFloat &&RHS) = default; |
| 883 | |
| 884 | ~APFloat() = default; |
| 885 | |
| 886 | bool needsCleanup() const { APFLOAT_DISPATCH_ON_SEMANTICS(needsCleanup()); } |
| 887 | |
| 888 | /// Factory for Positive and Negative Zero. |
| 889 | /// |
| 890 | /// \param Negative True iff the number should be negative. |
| 891 | static APFloat getZero(const fltSemantics &Sem, bool Negative = false) { |
| 892 | APFloat Val(Sem, uninitialized); |
| 893 | Val.makeZero(Negative); |
| 894 | return Val; |
| 895 | } |
| 896 | |
| 897 | /// Factory for Positive and Negative Infinity. |
| 898 | /// |
| 899 | /// \param Negative True iff the number should be negative. |
| 900 | static APFloat getInf(const fltSemantics &Sem, bool Negative = false) { |
| 901 | APFloat Val(Sem, uninitialized); |
| 902 | Val.makeInf(Negative); |
| 903 | return Val; |
| 904 | } |
| 905 | |
| 906 | /// Factory for NaN values. |
| 907 | /// |
| 908 | /// \param Negative - True iff the NaN generated should be negative. |
| 909 | /// \param payload - The unspecified fill bits for creating the NaN, 0 by |
| 910 | /// default. The value is truncated as necessary. |
| 911 | static APFloat getNaN(const fltSemantics &Sem, bool Negative = false, |
| 912 | uint64_t payload = 0) { |
| 913 | if (payload) { |
| 914 | APInt intPayload(64, payload); |
| 915 | return getQNaN(Sem, Negative, &intPayload); |
| 916 | } else { |
| 917 | return getQNaN(Sem, Negative, nullptr); |
| 918 | } |
| 919 | } |
| 920 | |
| 921 | /// Factory for QNaN values. |
| 922 | static APFloat getQNaN(const fltSemantics &Sem, bool Negative = false, |
| 923 | const APInt *payload = nullptr) { |
| 924 | APFloat Val(Sem, uninitialized); |
| 925 | Val.makeNaN(false, Negative, payload); |
| 926 | return Val; |
| 927 | } |
| 928 | |
| 929 | /// Factory for SNaN values. |
| 930 | static APFloat getSNaN(const fltSemantics &Sem, bool Negative = false, |
| 931 | const APInt *payload = nullptr) { |
| 932 | APFloat Val(Sem, uninitialized); |
| 933 | Val.makeNaN(true, Negative, payload); |
| 934 | return Val; |
| 935 | } |
| 936 | |
| 937 | /// Returns the largest finite number in the given semantics. |
| 938 | /// |
| 939 | /// \param Negative - True iff the number should be negative |
| 940 | static APFloat getLargest(const fltSemantics &Sem, bool Negative = false) { |
| 941 | APFloat Val(Sem, uninitialized); |
| 942 | Val.makeLargest(Negative); |
| 943 | return Val; |
| 944 | } |
| 945 | |
| 946 | /// Returns the smallest (by magnitude) finite number in the given semantics. |
| 947 | /// Might be denormalized, which implies a relative loss of precision. |
| 948 | /// |
| 949 | /// \param Negative - True iff the number should be negative |
| 950 | static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false) { |
| 951 | APFloat Val(Sem, uninitialized); |
| 952 | Val.makeSmallest(Negative); |
| 953 | return Val; |
| 954 | } |
| 955 | |
| 956 | /// Returns the smallest (by magnitude) normalized finite number in the given |
| 957 | /// semantics. |
| 958 | /// |
| 959 | /// \param Negative - True iff the number should be negative |
| 960 | static APFloat getSmallestNormalized(const fltSemantics &Sem, |
| 961 | bool Negative = false) { |
| 962 | APFloat Val(Sem, uninitialized); |
| 963 | Val.makeSmallestNormalized(Negative); |
| 964 | return Val; |
| 965 | } |
| 966 | |
| 967 | /// Returns a float which is bitcasted from an all one value int. |
| 968 | /// |
| 969 | /// \param Semantics - type float semantics |
| 970 | static APFloat getAllOnesValue(const fltSemantics &Semantics); |
| 971 | |
| 972 | /// Used to insert APFloat objects, or objects that contain APFloat objects, |
| 973 | /// into FoldingSets. |
| 974 | void Profile(FoldingSetNodeID &NID) const; |
| 975 | |
| 976 | opStatus add(const APFloat &RHS, roundingMode RM) { |
| 977 | assert(&getSemantics() == &RHS.getSemantics() &&(static_cast <bool> (&getSemantics() == &RHS.getSemantics () && "Should only call on two APFloats with the same semantics" ) ? void (0) : __assert_fail ("&getSemantics() == &RHS.getSemantics() && \"Should only call on two APFloats with the same semantics\"" , "llvm/include/llvm/ADT/APFloat.h", 978, __extension__ __PRETTY_FUNCTION__ )) |
| 978 | "Should only call on two APFloats with the same semantics")(static_cast <bool> (&getSemantics() == &RHS.getSemantics () && "Should only call on two APFloats with the same semantics" ) ? void (0) : __assert_fail ("&getSemantics() == &RHS.getSemantics() && \"Should only call on two APFloats with the same semantics\"" , "llvm/include/llvm/ADT/APFloat.h", 978, __extension__ __PRETTY_FUNCTION__ )); |
| 979 | if (usesLayout<IEEEFloat>(getSemantics())) |
| 980 | return U.IEEE.add(RHS.U.IEEE, RM); |
| 981 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
| 982 | return U.Double.add(RHS.U.Double, RM); |
| 983 | llvm_unreachable("Unexpected semantics")::llvm::llvm_unreachable_internal("Unexpected semantics", "llvm/include/llvm/ADT/APFloat.h" , 983); |
| 984 | } |
| 985 | opStatus subtract(const APFloat &RHS, roundingMode RM) { |
| 986 | assert(&getSemantics() == &RHS.getSemantics() &&(static_cast <bool> (&getSemantics() == &RHS.getSemantics () && "Should only call on two APFloats with the same semantics" ) ? void (0) : __assert_fail ("&getSemantics() == &RHS.getSemantics() && \"Should only call on two APFloats with the same semantics\"" , "llvm/include/llvm/ADT/APFloat.h", 987, __extension__ __PRETTY_FUNCTION__ )) |
| 987 | "Should only call on two APFloats with the same semantics")(static_cast <bool> (&getSemantics() == &RHS.getSemantics () && "Should only call on two APFloats with the same semantics" ) ? void (0) : __assert_fail ("&getSemantics() == &RHS.getSemantics() && \"Should only call on two APFloats with the same semantics\"" , "llvm/include/llvm/ADT/APFloat.h", 987, __extension__ __PRETTY_FUNCTION__ )); |
| 988 | if (usesLayout<IEEEFloat>(getSemantics())) |
| 989 | return U.IEEE.subtract(RHS.U.IEEE, RM); |
| 990 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
| 991 | return U.Double.subtract(RHS.U.Double, RM); |
| 992 | llvm_unreachable("Unexpected semantics")::llvm::llvm_unreachable_internal("Unexpected semantics", "llvm/include/llvm/ADT/APFloat.h" , 992); |
| 993 | } |
| 994 | opStatus multiply(const APFloat &RHS, roundingMode RM) { |
| 995 | assert(&getSemantics() == &RHS.getSemantics() &&(static_cast <bool> (&getSemantics() == &RHS.getSemantics () && "Should only call on two APFloats with the same semantics" ) ? void (0) : __assert_fail ("&getSemantics() == &RHS.getSemantics() && \"Should only call on two APFloats with the same semantics\"" , "llvm/include/llvm/ADT/APFloat.h", 996, __extension__ __PRETTY_FUNCTION__ )) |
| 996 | "Should only call on two APFloats with the same semantics")(static_cast <bool> (&getSemantics() == &RHS.getSemantics () && "Should only call on two APFloats with the same semantics" ) ? void (0) : __assert_fail ("&getSemantics() == &RHS.getSemantics() && \"Should only call on two APFloats with the same semantics\"" , "llvm/include/llvm/ADT/APFloat.h", 996, __extension__ __PRETTY_FUNCTION__ )); |
| 997 | if (usesLayout<IEEEFloat>(getSemantics())) |
| 998 | return U.IEEE.multiply(RHS.U.IEEE, RM); |
| 999 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
| 1000 | return U.Double.multiply(RHS.U.Double, RM); |
| 1001 | llvm_unreachable("Unexpected semantics")::llvm::llvm_unreachable_internal("Unexpected semantics", "llvm/include/llvm/ADT/APFloat.h" , 1001); |
| 1002 | } |
| 1003 | opStatus divide(const APFloat &RHS, roundingMode RM) { |
| 1004 | assert(&getSemantics() == &RHS.getSemantics() &&(static_cast <bool> (&getSemantics() == &RHS.getSemantics () && "Should only call on two APFloats with the same semantics" ) ? void (0) : __assert_fail ("&getSemantics() == &RHS.getSemantics() && \"Should only call on two APFloats with the same semantics\"" , "llvm/include/llvm/ADT/APFloat.h", 1005, __extension__ __PRETTY_FUNCTION__ )) |
| 1005 | "Should only call on two APFloats with the same semantics")(static_cast <bool> (&getSemantics() == &RHS.getSemantics () && "Should only call on two APFloats with the same semantics" ) ? void (0) : __assert_fail ("&getSemantics() == &RHS.getSemantics() && \"Should only call on two APFloats with the same semantics\"" , "llvm/include/llvm/ADT/APFloat.h", 1005, __extension__ __PRETTY_FUNCTION__ )); |
| 1006 | if (usesLayout<IEEEFloat>(getSemantics())) |
| 1007 | return U.IEEE.divide(RHS.U.IEEE, RM); |
| 1008 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
| 1009 | return U.Double.divide(RHS.U.Double, RM); |
| 1010 | llvm_unreachable("Unexpected semantics")::llvm::llvm_unreachable_internal("Unexpected semantics", "llvm/include/llvm/ADT/APFloat.h" , 1010); |
| 1011 | } |
| 1012 | opStatus remainder(const APFloat &RHS) { |
| 1013 | assert(&getSemantics() == &RHS.getSemantics() &&(static_cast <bool> (&getSemantics() == &RHS.getSemantics () && "Should only call on two APFloats with the same semantics" ) ? void (0) : __assert_fail ("&getSemantics() == &RHS.getSemantics() && \"Should only call on two APFloats with the same semantics\"" , "llvm/include/llvm/ADT/APFloat.h", 1014, __extension__ __PRETTY_FUNCTION__ )) |
| 1014 | "Should only call on two APFloats with the same semantics")(static_cast <bool> (&getSemantics() == &RHS.getSemantics () && "Should only call on two APFloats with the same semantics" ) ? void (0) : __assert_fail ("&getSemantics() == &RHS.getSemantics() && \"Should only call on two APFloats with the same semantics\"" , "llvm/include/llvm/ADT/APFloat.h", 1014, __extension__ __PRETTY_FUNCTION__ )); |
| 1015 | if (usesLayout<IEEEFloat>(getSemantics())) |
| 1016 | return U.IEEE.remainder(RHS.U.IEEE); |
| 1017 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
| 1018 | return U.Double.remainder(RHS.U.Double); |
| 1019 | llvm_unreachable("Unexpected semantics")::llvm::llvm_unreachable_internal("Unexpected semantics", "llvm/include/llvm/ADT/APFloat.h" , 1019); |
| 1020 | } |
| 1021 | opStatus mod(const APFloat &RHS) { |
| 1022 | assert(&getSemantics() == &RHS.getSemantics() &&(static_cast <bool> (&getSemantics() == &RHS.getSemantics () && "Should only call on two APFloats with the same semantics" ) ? void (0) : __assert_fail ("&getSemantics() == &RHS.getSemantics() && \"Should only call on two APFloats with the same semantics\"" , "llvm/include/llvm/ADT/APFloat.h", 1023, __extension__ __PRETTY_FUNCTION__ )) |
| 1023 | "Should only call on two APFloats with the same semantics")(static_cast <bool> (&getSemantics() == &RHS.getSemantics () && "Should only call on two APFloats with the same semantics" ) ? void (0) : __assert_fail ("&getSemantics() == &RHS.getSemantics() && \"Should only call on two APFloats with the same semantics\"" , "llvm/include/llvm/ADT/APFloat.h", 1023, __extension__ __PRETTY_FUNCTION__ )); |
| 1024 | if (usesLayout<IEEEFloat>(getSemantics())) |
| 1025 | return U.IEEE.mod(RHS.U.IEEE); |
| 1026 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
| 1027 | return U.Double.mod(RHS.U.Double); |
| 1028 | llvm_unreachable("Unexpected semantics")::llvm::llvm_unreachable_internal("Unexpected semantics", "llvm/include/llvm/ADT/APFloat.h" , 1028); |
| 1029 | } |
| 1030 | opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend, |
| 1031 | roundingMode RM) { |
| 1032 | assert(&getSemantics() == &Multiplicand.getSemantics() &&(static_cast <bool> (&getSemantics() == &Multiplicand .getSemantics() && "Should only call on APFloats with the same semantics" ) ? void (0) : __assert_fail ("&getSemantics() == &Multiplicand.getSemantics() && \"Should only call on APFloats with the same semantics\"" , "llvm/include/llvm/ADT/APFloat.h", 1033, __extension__ __PRETTY_FUNCTION__ )) |
| 1033 | "Should only call on APFloats with the same semantics")(static_cast <bool> (&getSemantics() == &Multiplicand .getSemantics() && "Should only call on APFloats with the same semantics" ) ? void (0) : __assert_fail ("&getSemantics() == &Multiplicand.getSemantics() && \"Should only call on APFloats with the same semantics\"" , "llvm/include/llvm/ADT/APFloat.h", 1033, __extension__ __PRETTY_FUNCTION__ )); |
| 1034 | assert(&getSemantics() == &Addend.getSemantics() &&(static_cast <bool> (&getSemantics() == &Addend .getSemantics() && "Should only call on APFloats with the same semantics" ) ? void (0) : __assert_fail ("&getSemantics() == &Addend.getSemantics() && \"Should only call on APFloats with the same semantics\"" , "llvm/include/llvm/ADT/APFloat.h", 1035, __extension__ __PRETTY_FUNCTION__ )) |
| 1035 | "Should only call on APFloats with the same semantics")(static_cast <bool> (&getSemantics() == &Addend .getSemantics() && "Should only call on APFloats with the same semantics" ) ? void (0) : __assert_fail ("&getSemantics() == &Addend.getSemantics() && \"Should only call on APFloats with the same semantics\"" , "llvm/include/llvm/ADT/APFloat.h", 1035, __extension__ __PRETTY_FUNCTION__ )); |
| 1036 | if (usesLayout<IEEEFloat>(getSemantics())) |
| 1037 | return U.IEEE.fusedMultiplyAdd(Multiplicand.U.IEEE, Addend.U.IEEE, RM); |
| 1038 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
| 1039 | return U.Double.fusedMultiplyAdd(Multiplicand.U.Double, Addend.U.Double, |
| 1040 | RM); |
| 1041 | llvm_unreachable("Unexpected semantics")::llvm::llvm_unreachable_internal("Unexpected semantics", "llvm/include/llvm/ADT/APFloat.h" , 1041); |
| 1042 | } |
| 1043 | opStatus roundToIntegral(roundingMode RM) { |
| 1044 | APFLOAT_DISPATCH_ON_SEMANTICS(roundToIntegral(RM)); |
| 1045 | } |
| 1046 | |
| 1047 | // TODO: bool parameters are not readable and a source of bugs. |
| 1048 | // Do something. |
| 1049 | opStatus next(bool nextDown) { |
| 1050 | APFLOAT_DISPATCH_ON_SEMANTICS(next(nextDown)); |
| 1051 | } |
| 1052 | |
| 1053 | /// Negate an APFloat. |
| 1054 | APFloat operator-() const { |
| 1055 | APFloat Result(*this); |
| 1056 | Result.changeSign(); |
| 1057 | return Result; |
| 1058 | } |
| 1059 | |
| 1060 | /// Add two APFloats, rounding ties to the nearest even. |
| 1061 | /// No error checking. |
| 1062 | APFloat operator+(const APFloat &RHS) const { |
| 1063 | APFloat Result(*this); |
| 1064 | (void)Result.add(RHS, rmNearestTiesToEven); |
| 1065 | return Result; |
| 1066 | } |
| 1067 | |
| 1068 | /// Subtract two APFloats, rounding ties to the nearest even. |
| 1069 | /// No error checking. |
| 1070 | APFloat operator-(const APFloat &RHS) const { |
| 1071 | APFloat Result(*this); |
| 1072 | (void)Result.subtract(RHS, rmNearestTiesToEven); |
| 1073 | return Result; |
| 1074 | } |
| 1075 | |
| 1076 | /// Multiply two APFloats, rounding ties to the nearest even. |
| 1077 | /// No error checking. |
| 1078 | APFloat operator*(const APFloat &RHS) const { |
| 1079 | APFloat Result(*this); |
| 1080 | (void)Result.multiply(RHS, rmNearestTiesToEven); |
| 1081 | return Result; |
| 1082 | } |
| 1083 | |
| 1084 | /// Divide the first APFloat by the second, rounding ties to the nearest even. |
| 1085 | /// No error checking. |
| 1086 | APFloat operator/(const APFloat &RHS) const { |
| 1087 | APFloat Result(*this); |
| 1088 | (void)Result.divide(RHS, rmNearestTiesToEven); |
| 1089 | return Result; |
| 1090 | } |
| 1091 | |
| 1092 | void changeSign() { APFLOAT_DISPATCH_ON_SEMANTICS(changeSign()); } |
| 1093 | void clearSign() { |
| 1094 | if (isNegative()) |
| 1095 | changeSign(); |
| 1096 | } |
| 1097 | void copySign(const APFloat &RHS) { |
| 1098 | if (isNegative() != RHS.isNegative()) |
| 1099 | changeSign(); |
| 1100 | } |
| 1101 | |
| 1102 | /// A static helper to produce a copy of an APFloat value with its sign |
| 1103 | /// copied from some other APFloat. |
| 1104 | static APFloat copySign(APFloat Value, const APFloat &Sign) { |
| 1105 | Value.copySign(Sign); |
| 1106 | return Value; |
| 1107 | } |
| 1108 | |
| 1109 | opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, |
| 1110 | bool *losesInfo); |
| 1111 | opStatus convertToInteger(MutableArrayRef<integerPart> Input, |
| 1112 | unsigned int Width, bool IsSigned, roundingMode RM, |
| 1113 | bool *IsExact) const { |
| 1114 | APFLOAT_DISPATCH_ON_SEMANTICS( |
| 1115 | convertToInteger(Input, Width, IsSigned, RM, IsExact)); |
| 1116 | } |
| 1117 | opStatus convertToInteger(APSInt &Result, roundingMode RM, |
| 1118 | bool *IsExact) const; |
| 1119 | opStatus convertFromAPInt(const APInt &Input, bool IsSigned, |
| 1120 | roundingMode RM) { |
| 1121 | APFLOAT_DISPATCH_ON_SEMANTICS(convertFromAPInt(Input, IsSigned, RM)); |
| 1122 | } |
| 1123 | opStatus convertFromSignExtendedInteger(const integerPart *Input, |
| 1124 | unsigned int InputSize, bool IsSigned, |
| 1125 | roundingMode RM) { |
| 1126 | APFLOAT_DISPATCH_ON_SEMANTICS( |
| 1127 | convertFromSignExtendedInteger(Input, InputSize, IsSigned, RM)); |
| 1128 | } |
| 1129 | opStatus convertFromZeroExtendedInteger(const integerPart *Input, |
| 1130 | unsigned int InputSize, bool IsSigned, |
| 1131 | roundingMode RM) { |
| 1132 | APFLOAT_DISPATCH_ON_SEMANTICS( |
| 1133 | convertFromZeroExtendedInteger(Input, InputSize, IsSigned, RM)); |
| 1134 | } |
| 1135 | Expected<opStatus> convertFromString(StringRef, roundingMode); |
| 1136 | APInt bitcastToAPInt() const { |
| 1137 | APFLOAT_DISPATCH_ON_SEMANTICS(bitcastToAPInt()); |
| 1138 | } |
| 1139 | |
| 1140 | /// Converts this APFloat to host double value. |
| 1141 | /// |
| 1142 | /// \pre The APFloat must be built using semantics, that can be represented by |
| 1143 | /// the host double type without loss of precision. It can be IEEEdouble and |
| 1144 | /// shorter semantics, like IEEEsingle and others. |
| 1145 | double convertToDouble() const; |
| 1146 | |
| 1147 | /// Converts this APFloat to host float value. |
| 1148 | /// |
| 1149 | /// \pre The APFloat must be built using semantics, that can be represented by |
| 1150 | /// the host float type without loss of precision. It can be IEEEsingle and |
| 1151 | /// shorter semantics, like IEEEhalf. |
| 1152 | float convertToFloat() const; |
| 1153 | |
| 1154 | bool operator==(const APFloat &RHS) const { return compare(RHS) == cmpEqual; } |
| 1155 | |
| 1156 | bool operator!=(const APFloat &RHS) const { return compare(RHS) != cmpEqual; } |
| 1157 | |
| 1158 | bool operator<(const APFloat &RHS) const { |
| 1159 | return compare(RHS) == cmpLessThan; |
| 1160 | } |
| 1161 | |
| 1162 | bool operator>(const APFloat &RHS) const { |
| 1163 | return compare(RHS) == cmpGreaterThan; |
| 1164 | } |
| 1165 | |
| 1166 | bool operator<=(const APFloat &RHS) const { |
| 1167 | cmpResult Res = compare(RHS); |
| 1168 | return Res == cmpLessThan || Res == cmpEqual; |
| 1169 | } |
| 1170 | |
| 1171 | bool operator>=(const APFloat &RHS) const { |
| 1172 | cmpResult Res = compare(RHS); |
| 1173 | return Res == cmpGreaterThan || Res == cmpEqual; |
| 1174 | } |
| 1175 | |
| 1176 | cmpResult compare(const APFloat &RHS) const { |
| 1177 | assert(&getSemantics() == &RHS.getSemantics() &&(static_cast <bool> (&getSemantics() == &RHS.getSemantics () && "Should only compare APFloats with the same semantics" ) ? void (0) : __assert_fail ("&getSemantics() == &RHS.getSemantics() && \"Should only compare APFloats with the same semantics\"" , "llvm/include/llvm/ADT/APFloat.h", 1178, __extension__ __PRETTY_FUNCTION__ )) |
| 1178 | "Should only compare APFloats with the same semantics")(static_cast <bool> (&getSemantics() == &RHS.getSemantics () && "Should only compare APFloats with the same semantics" ) ? void (0) : __assert_fail ("&getSemantics() == &RHS.getSemantics() && \"Should only compare APFloats with the same semantics\"" , "llvm/include/llvm/ADT/APFloat.h", 1178, __extension__ __PRETTY_FUNCTION__ )); |
| 1179 | if (usesLayout<IEEEFloat>(getSemantics())) |
| 1180 | return U.IEEE.compare(RHS.U.IEEE); |
| 1181 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
| 1182 | return U.Double.compare(RHS.U.Double); |
| 1183 | llvm_unreachable("Unexpected semantics")::llvm::llvm_unreachable_internal("Unexpected semantics", "llvm/include/llvm/ADT/APFloat.h" , 1183); |
| 1184 | } |
| 1185 | |
| 1186 | bool bitwiseIsEqual(const APFloat &RHS) const { |
| 1187 | if (&getSemantics() != &RHS.getSemantics()) |
| 1188 | return false; |
| 1189 | if (usesLayout<IEEEFloat>(getSemantics())) |
| 1190 | return U.IEEE.bitwiseIsEqual(RHS.U.IEEE); |
| 1191 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
| 1192 | return U.Double.bitwiseIsEqual(RHS.U.Double); |
| 1193 | llvm_unreachable("Unexpected semantics")::llvm::llvm_unreachable_internal("Unexpected semantics", "llvm/include/llvm/ADT/APFloat.h" , 1193); |
| 1194 | } |
| 1195 | |
| 1196 | /// We don't rely on operator== working on double values, as |
| 1197 | /// it returns true for things that are clearly not equal, like -0.0 and 0.0. |
| 1198 | /// As such, this method can be used to do an exact bit-for-bit comparison of |
| 1199 | /// two floating point values. |
| 1200 | /// |
| 1201 | /// We leave the version with the double argument here because it's just so |
| 1202 | /// convenient to write "2.0" and the like. Without this function we'd |
| 1203 | /// have to duplicate its logic everywhere it's called. |
| 1204 | bool isExactlyValue(double V) const { |
| 1205 | bool ignored; |
| 1206 | APFloat Tmp(V); |
| 1207 | Tmp.convert(getSemantics(), APFloat::rmNearestTiesToEven, &ignored); |
| 1208 | return bitwiseIsEqual(Tmp); |
| 1209 | } |
| 1210 | |
| 1211 | unsigned int convertToHexString(char *DST, unsigned int HexDigits, |
| 1212 | bool UpperCase, roundingMode RM) const { |
| 1213 | APFLOAT_DISPATCH_ON_SEMANTICS( |
| 1214 | convertToHexString(DST, HexDigits, UpperCase, RM)); |
| 1215 | } |
| 1216 | |
| 1217 | bool isZero() const { return getCategory() == fcZero; } |
| 1218 | bool isInfinity() const { return getCategory() == fcInfinity; } |
| 1219 | bool isNaN() const { return getCategory() == fcNaN; } |
| 1220 | |
| 1221 | bool isNegative() const { return getIEEE().isNegative(); } |
| 1222 | bool isDenormal() const { APFLOAT_DISPATCH_ON_SEMANTICS(isDenormal()); } |
| 1223 | bool isSignaling() const { return getIEEE().isSignaling(); } |
| 1224 | |
| 1225 | bool isNormal() const { return !isDenormal() && isFiniteNonZero(); } |
| 1226 | bool isFinite() const { return !isNaN() && !isInfinity(); } |
| 1227 | |
| 1228 | fltCategory getCategory() const { return getIEEE().getCategory(); } |
| 1229 | const fltSemantics &getSemantics() const { return *U.semantics; } |
| 1230 | bool isNonZero() const { return !isZero(); } |
| 1231 | bool isFiniteNonZero() const { return isFinite() && !isZero(); } |
| 1232 | bool isPosZero() const { return isZero() && !isNegative(); } |
| 1233 | bool isNegZero() const { return isZero() && isNegative(); } |
| 1234 | bool isSmallest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isSmallest()); } |
| 1235 | bool isLargest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isLargest()); } |
| 1236 | bool isInteger() const { APFLOAT_DISPATCH_ON_SEMANTICS(isInteger()); } |
| 1237 | bool isIEEE() const { return usesLayout<IEEEFloat>(getSemantics()); } |
| 1238 | |
| 1239 | APFloat &operator=(const APFloat &RHS) = default; |
| 1240 | APFloat &operator=(APFloat &&RHS) = default; |
| 1241 | |
| 1242 | void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0, |
| 1243 | unsigned FormatMaxPadding = 3, bool TruncateZero = true) const { |
| 1244 | APFLOAT_DISPATCH_ON_SEMANTICS( |
| 1245 | toString(Str, FormatPrecision, FormatMaxPadding, TruncateZero)); |
| 1246 | } |
| 1247 | |
| 1248 | void print(raw_ostream &) const; |
| 1249 | void dump() const; |
| 1250 | |
| 1251 | bool getExactInverse(APFloat *inv) const { |
| 1252 | APFLOAT_DISPATCH_ON_SEMANTICS(getExactInverse(inv)); |
| 1253 | } |
| 1254 | |
| 1255 | friend hash_code hash_value(const APFloat &Arg); |
| 1256 | friend int ilogb(const APFloat &Arg) { return ilogb(Arg.getIEEE()); } |
| 1257 | friend APFloat scalbn(APFloat X, int Exp, roundingMode RM); |
| 1258 | friend APFloat frexp(const APFloat &X, int &Exp, roundingMode RM); |
| 1259 | friend IEEEFloat; |
| 1260 | friend DoubleAPFloat; |
| 1261 | }; |
| 1262 | |
| 1263 | /// See friend declarations above. |
| 1264 | /// |
| 1265 | /// These additional declarations are required in order to compile LLVM with IBM |
| 1266 | /// xlC compiler. |
| 1267 | hash_code hash_value(const APFloat &Arg); |
| 1268 | inline APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM) { |
| 1269 | if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics())) |
| 1270 | return APFloat(scalbn(X.U.IEEE, Exp, RM), X.getSemantics()); |
| 1271 | if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics())) |
| 1272 | return APFloat(scalbn(X.U.Double, Exp, RM), X.getSemantics()); |
| 1273 | llvm_unreachable("Unexpected semantics")::llvm::llvm_unreachable_internal("Unexpected semantics", "llvm/include/llvm/ADT/APFloat.h" , 1273); |
| 1274 | } |
| 1275 | |
| 1276 | /// Equivalent of C standard library function. |
| 1277 | /// |
| 1278 | /// While the C standard says Exp is an unspecified value for infinity and nan, |
| 1279 | /// this returns INT_MAX for infinities, and INT_MIN for NaNs. |
| 1280 | inline APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM) { |
| 1281 | if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics())) |
| 1282 | return APFloat(frexp(X.U.IEEE, Exp, RM), X.getSemantics()); |
| 1283 | if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics())) |
| 1284 | return APFloat(frexp(X.U.Double, Exp, RM), X.getSemantics()); |
| 1285 | llvm_unreachable("Unexpected semantics")::llvm::llvm_unreachable_internal("Unexpected semantics", "llvm/include/llvm/ADT/APFloat.h" , 1285); |
| 1286 | } |
| 1287 | /// Returns the absolute value of the argument. |
| 1288 | inline APFloat abs(APFloat X) { |
| 1289 | X.clearSign(); |
| 1290 | return X; |
| 1291 | } |
| 1292 | |
| 1293 | /// Returns the negated value of the argument. |
| 1294 | inline APFloat neg(APFloat X) { |
| 1295 | X.changeSign(); |
| 1296 | return X; |
| 1297 | } |
| 1298 | |
| 1299 | /// Implements IEEE minNum semantics. Returns the smaller of the 2 arguments if |
| 1300 | /// both are not NaN. If either argument is a NaN, returns the other argument. |
| 1301 | LLVM_READONLY__attribute__((__pure__)) |
| 1302 | inline APFloat minnum(const APFloat &A, const APFloat &B) { |
| 1303 | if (A.isNaN()) |
| 1304 | return B; |
| 1305 | if (B.isNaN()) |
| 1306 | return A; |
| 1307 | return B < A ? B : A; |
| 1308 | } |
| 1309 | |
| 1310 | /// Implements IEEE maxNum semantics. Returns the larger of the 2 arguments if |
| 1311 | /// both are not NaN. If either argument is a NaN, returns the other argument. |
| 1312 | LLVM_READONLY__attribute__((__pure__)) |
| 1313 | inline APFloat maxnum(const APFloat &A, const APFloat &B) { |
| 1314 | if (A.isNaN()) |
| 1315 | return B; |
| 1316 | if (B.isNaN()) |
| 1317 | return A; |
| 1318 | return A < B ? B : A; |
| 1319 | } |
| 1320 | |
| 1321 | /// Implements IEEE 754-2018 minimum semantics. Returns the smaller of 2 |
| 1322 | /// arguments, propagating NaNs and treating -0 as less than +0. |
| 1323 | LLVM_READONLY__attribute__((__pure__)) |
| 1324 | inline APFloat minimum(const APFloat &A, const APFloat &B) { |
| 1325 | if (A.isNaN()) |
| 1326 | return A; |
| 1327 | if (B.isNaN()) |
| 1328 | return B; |
| 1329 | if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative())) |
| 1330 | return A.isNegative() ? A : B; |
| 1331 | return B < A ? B : A; |
| 1332 | } |
| 1333 | |
| 1334 | /// Implements IEEE 754-2018 maximum semantics. Returns the larger of 2 |
| 1335 | /// arguments, propagating NaNs and treating -0 as less than +0. |
| 1336 | LLVM_READONLY__attribute__((__pure__)) |
| 1337 | inline APFloat maximum(const APFloat &A, const APFloat &B) { |
| 1338 | if (A.isNaN()) |
| 1339 | return A; |
| 1340 | if (B.isNaN()) |
| 1341 | return B; |
| 1342 | if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative())) |
| 1343 | return A.isNegative() ? B : A; |
| 1344 | return A < B ? B : A; |
| 1345 | } |
| 1346 | |
| 1347 | } // namespace llvm |
| 1348 | |
| 1349 | #undef APFLOAT_DISPATCH_ON_SEMANTICS |
| 1350 | #endif // LLVM_ADT_APFLOAT_H |