| File: | build/source/llvm/lib/Support/APFloat.cpp |
| Warning: | line 5084, column 24 Potential memory leak |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //===-- APFloat.cpp - Implement APFloat class -----------------------------===// | |||
| 2 | // | |||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | |||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
| 6 | // | |||
| 7 | //===----------------------------------------------------------------------===// | |||
| 8 | // | |||
| 9 | // This file implements a class to represent arbitrary precision floating | |||
| 10 | // point values and provide a variety of arithmetic operations on them. | |||
| 11 | // | |||
| 12 | //===----------------------------------------------------------------------===// | |||
| 13 | ||||
| 14 | #include "llvm/ADT/APFloat.h" | |||
| 15 | #include "llvm/ADT/APSInt.h" | |||
| 16 | #include "llvm/ADT/ArrayRef.h" | |||
| 17 | #include "llvm/ADT/FloatingPointMode.h" | |||
| 18 | #include "llvm/ADT/FoldingSet.h" | |||
| 19 | #include "llvm/ADT/Hashing.h" | |||
| 20 | #include "llvm/ADT/STLExtras.h" | |||
| 21 | #include "llvm/ADT/StringExtras.h" | |||
| 22 | #include "llvm/ADT/StringRef.h" | |||
| 23 | #include "llvm/Config/llvm-config.h" | |||
| 24 | #include "llvm/Support/Debug.h" | |||
| 25 | #include "llvm/Support/Error.h" | |||
| 26 | #include "llvm/Support/MathExtras.h" | |||
| 27 | #include "llvm/Support/raw_ostream.h" | |||
| 28 | #include <cstring> | |||
| 29 | #include <limits.h> | |||
| 30 | ||||
| 31 | #define APFLOAT_DISPATCH_ON_SEMANTICS(METHOD_CALL) \ | |||
| 32 | do { \ | |||
| 33 | if (usesLayout<IEEEFloat>(getSemantics())) \ | |||
| 34 | return U.IEEE.METHOD_CALL; \ | |||
| 35 | if (usesLayout<DoubleAPFloat>(getSemantics())) \ | |||
| 36 | return U.Double.METHOD_CALL; \ | |||
| 37 | llvm_unreachable("Unexpected semantics")::llvm::llvm_unreachable_internal("Unexpected semantics", "llvm/lib/Support/APFloat.cpp" , 37); \ | |||
| 38 | } while (false) | |||
| 39 | ||||
| 40 | using namespace llvm; | |||
| 41 | ||||
| 42 | /// A macro used to combine two fcCategory enums into one key which can be used | |||
| 43 | /// in a switch statement to classify how the interaction of two APFloat's | |||
| 44 | /// categories affects an operation. | |||
| 45 | /// | |||
| 46 | /// TODO: If clang source code is ever allowed to use constexpr in its own | |||
| 47 | /// codebase, change this into a static inline function. | |||
| 48 | #define PackCategoriesIntoKey(_lhs, _rhs)((_lhs) * 4 + (_rhs)) ((_lhs) * 4 + (_rhs)) | |||
| 49 | ||||
| 50 | /* Assumed in hexadecimal significand parsing, and conversion to | |||
| 51 | hexadecimal strings. */ | |||
| 52 | static_assert(APFloatBase::integerPartWidth % 4 == 0, "Part width must be divisible by 4!"); | |||
| 53 | ||||
| 54 | namespace llvm { | |||
| 55 | ||||
| 56 | // How the nonfinite values Inf and NaN are represented. | |||
| 57 | enum class fltNonfiniteBehavior { | |||
| 58 | // Represents standard IEEE 754 behavior. A value is nonfinite if the | |||
| 59 | // exponent field is all 1s. In such cases, a value is Inf if the | |||
| 60 | // significand bits are all zero, and NaN otherwise | |||
| 61 | IEEE754, | |||
| 62 | ||||
| 63 | // This behavior is present in the Float8ExMyFN* types (Float8E4M3FN, | |||
| 64 | // Float8E5M2FNUZ, Float8E4M3FNUZ, and Float8E4M3B11FNUZ). There is no | |||
| 65 | // representation for Inf, and operations that would ordinarily produce Inf | |||
| 66 | // produce NaN instead. | |||
| 67 | // The details of the NaN representation(s) in this form are determined by the | |||
| 68 | // `fltNanEncoding` enum. We treat all NaNs as quiet, as the available | |||
| 69 | // encodings do not distinguish between signalling and quiet NaN. | |||
| 70 | NanOnly, | |||
| 71 | }; | |||
| 72 | ||||
| 73 | // How NaN values are represented. This is curently only used in combination | |||
| 74 | // with fltNonfiniteBehavior::NanOnly, and using a variant other than IEEE | |||
| 75 | // while having IEEE non-finite behavior is liable to lead to unexpected | |||
| 76 | // results. | |||
| 77 | enum class fltNanEncoding { | |||
| 78 | // Represents the standard IEEE behavior where a value is NaN if its | |||
| 79 | // exponent is all 1s and the significand is non-zero. | |||
| 80 | IEEE, | |||
| 81 | ||||
| 82 | // Represents the behavior in the Float8E4M3 floating point type where NaN is | |||
| 83 | // represented by having the exponent and mantissa set to all 1s. | |||
| 84 | // This behavior matches the FP8 E4M3 type described in | |||
| 85 | // https://arxiv.org/abs/2209.05433. We treat both signed and unsigned NaNs | |||
| 86 | // as non-signalling, although the paper does not state whether the NaN | |||
| 87 | // values are signalling or not. | |||
| 88 | AllOnes, | |||
| 89 | ||||
| 90 | // Represents the behavior in Float8E{5,4}E{2,3}FNUZ floating point types | |||
| 91 | // where NaN is represented by a sign bit of 1 and all 0s in the exponent | |||
| 92 | // and mantissa (i.e. the negative zero encoding in a IEEE float). Since | |||
| 93 | // there is only one NaN value, it is treated as quiet NaN. This matches the | |||
| 94 | // behavior described in https://arxiv.org/abs/2206.02915 . | |||
| 95 | NegativeZero, | |||
| 96 | }; | |||
| 97 | ||||
| 98 | /* Represents floating point arithmetic semantics. */ | |||
| 99 | struct fltSemantics { | |||
| 100 | /* The largest E such that 2^E is representable; this matches the | |||
| 101 | definition of IEEE 754. */ | |||
| 102 | APFloatBase::ExponentType maxExponent; | |||
| 103 | ||||
| 104 | /* The smallest E such that 2^E is a normalized number; this | |||
| 105 | matches the definition of IEEE 754. */ | |||
| 106 | APFloatBase::ExponentType minExponent; | |||
| 107 | ||||
| 108 | /* Number of bits in the significand. This includes the integer | |||
| 109 | bit. */ | |||
| 110 | unsigned int precision; | |||
| 111 | ||||
| 112 | /* Number of bits actually used in the semantics. */ | |||
| 113 | unsigned int sizeInBits; | |||
| 114 | ||||
| 115 | fltNonfiniteBehavior nonFiniteBehavior = fltNonfiniteBehavior::IEEE754; | |||
| 116 | ||||
| 117 | fltNanEncoding nanEncoding = fltNanEncoding::IEEE; | |||
| 118 | // Returns true if any number described by this semantics can be precisely | |||
| 119 | // represented by the specified semantics. Does not take into account | |||
| 120 | // the value of fltNonfiniteBehavior. | |||
| 121 | bool isRepresentableBy(const fltSemantics &S) const { | |||
| 122 | return maxExponent <= S.maxExponent && minExponent >= S.minExponent && | |||
| 123 | precision <= S.precision; | |||
| 124 | } | |||
| 125 | }; | |||
| 126 | ||||
| 127 | static constexpr fltSemantics semIEEEhalf = {15, -14, 11, 16}; | |||
| 128 | static constexpr fltSemantics semBFloat = {127, -126, 8, 16}; | |||
| 129 | static constexpr fltSemantics semIEEEsingle = {127, -126, 24, 32}; | |||
| 130 | static constexpr fltSemantics semIEEEdouble = {1023, -1022, 53, 64}; | |||
| 131 | static constexpr fltSemantics semIEEEquad = {16383, -16382, 113, 128}; | |||
| 132 | static constexpr fltSemantics semFloat8E5M2 = {15, -14, 3, 8}; | |||
| 133 | static constexpr fltSemantics semFloat8E5M2FNUZ = { | |||
| 134 | 15, -15, 3, 8, fltNonfiniteBehavior::NanOnly, fltNanEncoding::NegativeZero}; | |||
| 135 | static constexpr fltSemantics semFloat8E4M3FN = { | |||
| 136 | 8, -6, 4, 8, fltNonfiniteBehavior::NanOnly, fltNanEncoding::AllOnes}; | |||
| 137 | static constexpr fltSemantics semFloat8E4M3FNUZ = { | |||
| 138 | 7, -7, 4, 8, fltNonfiniteBehavior::NanOnly, fltNanEncoding::NegativeZero}; | |||
| 139 | static constexpr fltSemantics semFloat8E4M3B11FNUZ = { | |||
| 140 | 4, -10, 4, 8, fltNonfiniteBehavior::NanOnly, fltNanEncoding::NegativeZero}; | |||
| 141 | static constexpr fltSemantics semX87DoubleExtended = {16383, -16382, 64, 80}; | |||
| 142 | static constexpr fltSemantics semBogus = {0, 0, 0, 0}; | |||
| 143 | ||||
| 144 | /* The IBM double-double semantics. Such a number consists of a pair of IEEE | |||
| 145 | 64-bit doubles (Hi, Lo), where |Hi| > |Lo|, and if normal, | |||
| 146 | (double)(Hi + Lo) == Hi. The numeric value it's modeling is Hi + Lo. | |||
| 147 | Therefore it has two 53-bit mantissa parts that aren't necessarily adjacent | |||
| 148 | to each other, and two 11-bit exponents. | |||
| 149 | ||||
| 150 | Note: we need to make the value different from semBogus as otherwise | |||
| 151 | an unsafe optimization may collapse both values to a single address, | |||
| 152 | and we heavily rely on them having distinct addresses. */ | |||
| 153 | static constexpr fltSemantics semPPCDoubleDouble = {-1, 0, 0, 128}; | |||
| 154 | ||||
| 155 | /* These are legacy semantics for the fallback, inaccrurate implementation of | |||
| 156 | IBM double-double, if the accurate semPPCDoubleDouble doesn't handle the | |||
| 157 | operation. It's equivalent to having an IEEE number with consecutive 106 | |||
| 158 | bits of mantissa and 11 bits of exponent. | |||
| 159 | ||||
| 160 | It's not equivalent to IBM double-double. For example, a legit IBM | |||
| 161 | double-double, 1 + epsilon: | |||
| 162 | ||||
| 163 | 1 + epsilon = 1 + (1 >> 1076) | |||
| 164 | ||||
| 165 | is not representable by a consecutive 106 bits of mantissa. | |||
| 166 | ||||
| 167 | Currently, these semantics are used in the following way: | |||
| 168 | ||||
| 169 | semPPCDoubleDouble -> (IEEEdouble, IEEEdouble) -> | |||
| 170 | (64-bit APInt, 64-bit APInt) -> (128-bit APInt) -> | |||
| 171 | semPPCDoubleDoubleLegacy -> IEEE operations | |||
| 172 | ||||
| 173 | We use bitcastToAPInt() to get the bit representation (in APInt) of the | |||
| 174 | underlying IEEEdouble, then use the APInt constructor to construct the | |||
| 175 | legacy IEEE float. | |||
| 176 | ||||
| 177 | TODO: Implement all operations in semPPCDoubleDouble, and delete these | |||
| 178 | semantics. */ | |||
| 179 | static constexpr fltSemantics semPPCDoubleDoubleLegacy = {1023, -1022 + 53, | |||
| 180 | 53 + 53, 128}; | |||
| 181 | ||||
| 182 | const llvm::fltSemantics &APFloatBase::EnumToSemantics(Semantics S) { | |||
| 183 | switch (S) { | |||
| 184 | case S_IEEEhalf: | |||
| 185 | return IEEEhalf(); | |||
| 186 | case S_BFloat: | |||
| 187 | return BFloat(); | |||
| 188 | case S_IEEEsingle: | |||
| 189 | return IEEEsingle(); | |||
| 190 | case S_IEEEdouble: | |||
| 191 | return IEEEdouble(); | |||
| 192 | case S_IEEEquad: | |||
| 193 | return IEEEquad(); | |||
| 194 | case S_PPCDoubleDouble: | |||
| 195 | return PPCDoubleDouble(); | |||
| 196 | case S_Float8E5M2: | |||
| 197 | return Float8E5M2(); | |||
| 198 | case S_Float8E5M2FNUZ: | |||
| 199 | return Float8E5M2FNUZ(); | |||
| 200 | case S_Float8E4M3FN: | |||
| 201 | return Float8E4M3FN(); | |||
| 202 | case S_Float8E4M3FNUZ: | |||
| 203 | return Float8E4M3FNUZ(); | |||
| 204 | case S_Float8E4M3B11FNUZ: | |||
| 205 | return Float8E4M3B11FNUZ(); | |||
| 206 | case S_x87DoubleExtended: | |||
| 207 | return x87DoubleExtended(); | |||
| 208 | } | |||
| 209 | llvm_unreachable("Unrecognised floating semantics")::llvm::llvm_unreachable_internal("Unrecognised floating semantics" , "llvm/lib/Support/APFloat.cpp", 209); | |||
| 210 | } | |||
| 211 | ||||
| 212 | APFloatBase::Semantics | |||
| 213 | APFloatBase::SemanticsToEnum(const llvm::fltSemantics &Sem) { | |||
| 214 | if (&Sem == &llvm::APFloat::IEEEhalf()) | |||
| 215 | return S_IEEEhalf; | |||
| 216 | else if (&Sem == &llvm::APFloat::BFloat()) | |||
| 217 | return S_BFloat; | |||
| 218 | else if (&Sem == &llvm::APFloat::IEEEsingle()) | |||
| 219 | return S_IEEEsingle; | |||
| 220 | else if (&Sem == &llvm::APFloat::IEEEdouble()) | |||
| 221 | return S_IEEEdouble; | |||
| 222 | else if (&Sem == &llvm::APFloat::IEEEquad()) | |||
| 223 | return S_IEEEquad; | |||
| 224 | else if (&Sem == &llvm::APFloat::PPCDoubleDouble()) | |||
| 225 | return S_PPCDoubleDouble; | |||
| 226 | else if (&Sem == &llvm::APFloat::Float8E5M2()) | |||
| 227 | return S_Float8E5M2; | |||
| 228 | else if (&Sem == &llvm::APFloat::Float8E5M2FNUZ()) | |||
| 229 | return S_Float8E5M2FNUZ; | |||
| 230 | else if (&Sem == &llvm::APFloat::Float8E4M3FN()) | |||
| 231 | return S_Float8E4M3FN; | |||
| 232 | else if (&Sem == &llvm::APFloat::Float8E4M3FNUZ()) | |||
| 233 | return S_Float8E4M3FNUZ; | |||
| 234 | else if (&Sem == &llvm::APFloat::Float8E4M3B11FNUZ()) | |||
| 235 | return S_Float8E4M3B11FNUZ; | |||
| 236 | else if (&Sem == &llvm::APFloat::x87DoubleExtended()) | |||
| 237 | return S_x87DoubleExtended; | |||
| 238 | else | |||
| 239 | llvm_unreachable("Unknown floating semantics")::llvm::llvm_unreachable_internal("Unknown floating semantics" , "llvm/lib/Support/APFloat.cpp", 239); | |||
| 240 | } | |||
| 241 | ||||
| 242 | const fltSemantics &APFloatBase::IEEEhalf() { return semIEEEhalf; } | |||
| 243 | const fltSemantics &APFloatBase::BFloat() { return semBFloat; } | |||
| 244 | const fltSemantics &APFloatBase::IEEEsingle() { return semIEEEsingle; } | |||
| 245 | const fltSemantics &APFloatBase::IEEEdouble() { return semIEEEdouble; } | |||
| 246 | const fltSemantics &APFloatBase::IEEEquad() { return semIEEEquad; } | |||
| 247 | const fltSemantics &APFloatBase::PPCDoubleDouble() { | |||
| 248 | return semPPCDoubleDouble; | |||
| 249 | } | |||
| 250 | const fltSemantics &APFloatBase::Float8E5M2() { return semFloat8E5M2; } | |||
| 251 | const fltSemantics &APFloatBase::Float8E5M2FNUZ() { return semFloat8E5M2FNUZ; } | |||
| 252 | const fltSemantics &APFloatBase::Float8E4M3FN() { return semFloat8E4M3FN; } | |||
| 253 | const fltSemantics &APFloatBase::Float8E4M3FNUZ() { return semFloat8E4M3FNUZ; } | |||
| 254 | const fltSemantics &APFloatBase::Float8E4M3B11FNUZ() { | |||
| 255 | return semFloat8E4M3B11FNUZ; | |||
| 256 | } | |||
| 257 | const fltSemantics &APFloatBase::x87DoubleExtended() { | |||
| 258 | return semX87DoubleExtended; | |||
| 259 | } | |||
| 260 | const fltSemantics &APFloatBase::Bogus() { return semBogus; } | |||
| 261 | ||||
| 262 | constexpr RoundingMode APFloatBase::rmNearestTiesToEven; | |||
| 263 | constexpr RoundingMode APFloatBase::rmTowardPositive; | |||
| 264 | constexpr RoundingMode APFloatBase::rmTowardNegative; | |||
| 265 | constexpr RoundingMode APFloatBase::rmTowardZero; | |||
| 266 | constexpr RoundingMode APFloatBase::rmNearestTiesToAway; | |||
| 267 | ||||
| 268 | /* A tight upper bound on number of parts required to hold the value | |||
| 269 | pow(5, power) is | |||
| 270 | ||||
| 271 | power * 815 / (351 * integerPartWidth) + 1 | |||
| 272 | ||||
| 273 | However, whilst the result may require only this many parts, | |||
| 274 | because we are multiplying two values to get it, the | |||
| 275 | multiplication may require an extra part with the excess part | |||
| 276 | being zero (consider the trivial case of 1 * 1, tcFullMultiply | |||
| 277 | requires two parts to hold the single-part result). So we add an | |||
| 278 | extra one to guarantee enough space whilst multiplying. */ | |||
| 279 | const unsigned int maxExponent = 16383; | |||
| 280 | const unsigned int maxPrecision = 113; | |||
| 281 | const unsigned int maxPowerOfFiveExponent = maxExponent + maxPrecision - 1; | |||
| 282 | const unsigned int maxPowerOfFiveParts = | |||
| 283 | 2 + | |||
| 284 | ((maxPowerOfFiveExponent * 815) / (351 * APFloatBase::integerPartWidth)); | |||
| 285 | ||||
| 286 | unsigned int APFloatBase::semanticsPrecision(const fltSemantics &semantics) { | |||
| 287 | return semantics.precision; | |||
| 288 | } | |||
| 289 | APFloatBase::ExponentType | |||
| 290 | APFloatBase::semanticsMaxExponent(const fltSemantics &semantics) { | |||
| 291 | return semantics.maxExponent; | |||
| 292 | } | |||
| 293 | APFloatBase::ExponentType | |||
| 294 | APFloatBase::semanticsMinExponent(const fltSemantics &semantics) { | |||
| 295 | return semantics.minExponent; | |||
| 296 | } | |||
| 297 | unsigned int APFloatBase::semanticsSizeInBits(const fltSemantics &semantics) { | |||
| 298 | return semantics.sizeInBits; | |||
| 299 | } | |||
| 300 | unsigned int APFloatBase::semanticsIntSizeInBits(const fltSemantics &semantics, | |||
| 301 | bool isSigned) { | |||
| 302 | // The max FP value is pow(2, MaxExponent) * (1 + MaxFraction), so we need | |||
| 303 | // at least one more bit than the MaxExponent to hold the max FP value. | |||
| 304 | unsigned int MinBitWidth = semanticsMaxExponent(semantics) + 1; | |||
| 305 | // Extra sign bit needed. | |||
| 306 | if (isSigned) | |||
| 307 | ++MinBitWidth; | |||
| 308 | return MinBitWidth; | |||
| 309 | } | |||
| 310 | ||||
| 311 | bool APFloatBase::isRepresentableAsNormalIn(const fltSemantics &Src, | |||
| 312 | const fltSemantics &Dst) { | |||
| 313 | // Exponent range must be larger. | |||
| 314 | if (Src.maxExponent >= Dst.maxExponent || Src.minExponent <= Dst.minExponent) | |||
| 315 | return false; | |||
| 316 | ||||
| 317 | // If the mantissa is long enough, the result value could still be denormal | |||
| 318 | // with a larger exponent range. | |||
| 319 | // | |||
| 320 | // FIXME: This condition is probably not accurate but also shouldn't be a | |||
| 321 | // practical concern with existing types. | |||
| 322 | return Dst.precision >= Src.precision; | |||
| 323 | } | |||
| 324 | ||||
| 325 | unsigned APFloatBase::getSizeInBits(const fltSemantics &Sem) { | |||
| 326 | return Sem.sizeInBits; | |||
| 327 | } | |||
| 328 | ||||
| 329 | static constexpr APFloatBase::ExponentType | |||
| 330 | exponentZero(const fltSemantics &semantics) { | |||
| 331 | return semantics.minExponent - 1; | |||
| 332 | } | |||
| 333 | ||||
| 334 | static constexpr APFloatBase::ExponentType | |||
| 335 | exponentInf(const fltSemantics &semantics) { | |||
| 336 | return semantics.maxExponent + 1; | |||
| 337 | } | |||
| 338 | ||||
| 339 | static constexpr APFloatBase::ExponentType | |||
| 340 | exponentNaN(const fltSemantics &semantics) { | |||
| 341 | if (semantics.nonFiniteBehavior == fltNonfiniteBehavior::NanOnly) { | |||
| 342 | if (semantics.nanEncoding == fltNanEncoding::NegativeZero) | |||
| 343 | return exponentZero(semantics); | |||
| 344 | return semantics.maxExponent; | |||
| 345 | } | |||
| 346 | return semantics.maxExponent + 1; | |||
| 347 | } | |||
| 348 | ||||
| 349 | /* A bunch of private, handy routines. */ | |||
| 350 | ||||
| 351 | static inline Error createError(const Twine &Err) { | |||
| 352 | return make_error<StringError>(Err, inconvertibleErrorCode()); | |||
| 353 | } | |||
| 354 | ||||
| 355 | static constexpr inline unsigned int partCountForBits(unsigned int bits) { | |||
| 356 | return ((bits) + APFloatBase::integerPartWidth - 1) / APFloatBase::integerPartWidth; | |||
| 357 | } | |||
| 358 | ||||
| 359 | /* Returns 0U-9U. Return values >= 10U are not digits. */ | |||
| 360 | static inline unsigned int | |||
| 361 | decDigitValue(unsigned int c) | |||
| 362 | { | |||
| 363 | return c - '0'; | |||
| 364 | } | |||
| 365 | ||||
| 366 | /* Return the value of a decimal exponent of the form | |||
| 367 | [+-]ddddddd. | |||
| 368 | ||||
| 369 | If the exponent overflows, returns a large exponent with the | |||
| 370 | appropriate sign. */ | |||
| 371 | static Expected<int> readExponent(StringRef::iterator begin, | |||
| 372 | StringRef::iterator end) { | |||
| 373 | bool isNegative; | |||
| 374 | unsigned int absExponent; | |||
| 375 | const unsigned int overlargeExponent = 24000; /* FIXME. */ | |||
| 376 | StringRef::iterator p = begin; | |||
| 377 | ||||
| 378 | // Treat no exponent as 0 to match binutils | |||
| 379 | if (p == end || ((*p == '-' || *p == '+') && (p + 1) == end)) { | |||
| 380 | return 0; | |||
| 381 | } | |||
| 382 | ||||
| 383 | isNegative = (*p == '-'); | |||
| 384 | if (*p == '-' || *p == '+') { | |||
| 385 | p++; | |||
| 386 | if (p == end) | |||
| 387 | return createError("Exponent has no digits"); | |||
| 388 | } | |||
| 389 | ||||
| 390 | absExponent = decDigitValue(*p++); | |||
| 391 | if (absExponent >= 10U) | |||
| 392 | return createError("Invalid character in exponent"); | |||
| 393 | ||||
| 394 | for (; p != end; ++p) { | |||
| 395 | unsigned int value; | |||
| 396 | ||||
| 397 | value = decDigitValue(*p); | |||
| 398 | if (value >= 10U) | |||
| 399 | return createError("Invalid character in exponent"); | |||
| 400 | ||||
| 401 | absExponent = absExponent * 10U + value; | |||
| 402 | if (absExponent >= overlargeExponent) { | |||
| 403 | absExponent = overlargeExponent; | |||
| 404 | break; | |||
| 405 | } | |||
| 406 | } | |||
| 407 | ||||
| 408 | if (isNegative) | |||
| 409 | return -(int) absExponent; | |||
| 410 | else | |||
| 411 | return (int) absExponent; | |||
| 412 | } | |||
| 413 | ||||
| 414 | /* This is ugly and needs cleaning up, but I don't immediately see | |||
| 415 | how whilst remaining safe. */ | |||
| 416 | static Expected<int> totalExponent(StringRef::iterator p, | |||
| 417 | StringRef::iterator end, | |||
| 418 | int exponentAdjustment) { | |||
| 419 | int unsignedExponent; | |||
| 420 | bool negative, overflow; | |||
| 421 | int exponent = 0; | |||
| 422 | ||||
| 423 | if (p == end) | |||
| 424 | return createError("Exponent has no digits"); | |||
| 425 | ||||
| 426 | negative = *p == '-'; | |||
| 427 | if (*p == '-' || *p == '+') { | |||
| 428 | p++; | |||
| 429 | if (p == end) | |||
| 430 | return createError("Exponent has no digits"); | |||
| 431 | } | |||
| 432 | ||||
| 433 | unsignedExponent = 0; | |||
| 434 | overflow = false; | |||
| 435 | for (; p != end; ++p) { | |||
| 436 | unsigned int value; | |||
| 437 | ||||
| 438 | value = decDigitValue(*p); | |||
| 439 | if (value >= 10U) | |||
| 440 | return createError("Invalid character in exponent"); | |||
| 441 | ||||
| 442 | unsignedExponent = unsignedExponent * 10 + value; | |||
| 443 | if (unsignedExponent > 32767) { | |||
| 444 | overflow = true; | |||
| 445 | break; | |||
| 446 | } | |||
| 447 | } | |||
| 448 | ||||
| 449 | if (exponentAdjustment > 32767 || exponentAdjustment < -32768) | |||
| 450 | overflow = true; | |||
| 451 | ||||
| 452 | if (!overflow) { | |||
| 453 | exponent = unsignedExponent; | |||
| 454 | if (negative) | |||
| 455 | exponent = -exponent; | |||
| 456 | exponent += exponentAdjustment; | |||
| 457 | if (exponent > 32767 || exponent < -32768) | |||
| 458 | overflow = true; | |||
| 459 | } | |||
| 460 | ||||
| 461 | if (overflow) | |||
| 462 | exponent = negative ? -32768: 32767; | |||
| 463 | ||||
| 464 | return exponent; | |||
| 465 | } | |||
| 466 | ||||
| 467 | static Expected<StringRef::iterator> | |||
| 468 | skipLeadingZeroesAndAnyDot(StringRef::iterator begin, StringRef::iterator end, | |||
| 469 | StringRef::iterator *dot) { | |||
| 470 | StringRef::iterator p = begin; | |||
| 471 | *dot = end; | |||
| 472 | while (p != end && *p == '0') | |||
| 473 | p++; | |||
| 474 | ||||
| 475 | if (p != end && *p == '.') { | |||
| 476 | *dot = p++; | |||
| 477 | ||||
| 478 | if (end - begin == 1) | |||
| 479 | return createError("Significand has no digits"); | |||
| 480 | ||||
| 481 | while (p != end && *p == '0') | |||
| 482 | p++; | |||
| 483 | } | |||
| 484 | ||||
| 485 | return p; | |||
| 486 | } | |||
| 487 | ||||
| 488 | /* Given a normal decimal floating point number of the form | |||
| 489 | ||||
| 490 | dddd.dddd[eE][+-]ddd | |||
| 491 | ||||
| 492 | where the decimal point and exponent are optional, fill out the | |||
| 493 | structure D. Exponent is appropriate if the significand is | |||
| 494 | treated as an integer, and normalizedExponent if the significand | |||
| 495 | is taken to have the decimal point after a single leading | |||
| 496 | non-zero digit. | |||
| 497 | ||||
| 498 | If the value is zero, V->firstSigDigit points to a non-digit, and | |||
| 499 | the return exponent is zero. | |||
| 500 | */ | |||
| 501 | struct decimalInfo { | |||
| 502 | const char *firstSigDigit; | |||
| 503 | const char *lastSigDigit; | |||
| 504 | int exponent; | |||
| 505 | int normalizedExponent; | |||
| 506 | }; | |||
| 507 | ||||
| 508 | static Error interpretDecimal(StringRef::iterator begin, | |||
| 509 | StringRef::iterator end, decimalInfo *D) { | |||
| 510 | StringRef::iterator dot = end; | |||
| 511 | ||||
| 512 | auto PtrOrErr = skipLeadingZeroesAndAnyDot(begin, end, &dot); | |||
| 513 | if (!PtrOrErr) | |||
| 514 | return PtrOrErr.takeError(); | |||
| 515 | StringRef::iterator p = *PtrOrErr; | |||
| 516 | ||||
| 517 | D->firstSigDigit = p; | |||
| 518 | D->exponent = 0; | |||
| 519 | D->normalizedExponent = 0; | |||
| 520 | ||||
| 521 | for (; p != end; ++p) { | |||
| 522 | if (*p == '.') { | |||
| 523 | if (dot != end) | |||
| 524 | return createError("String contains multiple dots"); | |||
| 525 | dot = p++; | |||
| 526 | if (p == end) | |||
| 527 | break; | |||
| 528 | } | |||
| 529 | if (decDigitValue(*p) >= 10U) | |||
| 530 | break; | |||
| 531 | } | |||
| 532 | ||||
| 533 | if (p != end) { | |||
| 534 | if (*p != 'e' && *p != 'E') | |||
| 535 | return createError("Invalid character in significand"); | |||
| 536 | if (p == begin) | |||
| 537 | return createError("Significand has no digits"); | |||
| 538 | if (dot != end && p - begin == 1) | |||
| 539 | return createError("Significand has no digits"); | |||
| 540 | ||||
| 541 | /* p points to the first non-digit in the string */ | |||
| 542 | auto ExpOrErr = readExponent(p + 1, end); | |||
| 543 | if (!ExpOrErr) | |||
| 544 | return ExpOrErr.takeError(); | |||
| 545 | D->exponent = *ExpOrErr; | |||
| 546 | ||||
| 547 | /* Implied decimal point? */ | |||
| 548 | if (dot == end) | |||
| 549 | dot = p; | |||
| 550 | } | |||
| 551 | ||||
| 552 | /* If number is all zeroes accept any exponent. */ | |||
| 553 | if (p != D->firstSigDigit) { | |||
| 554 | /* Drop insignificant trailing zeroes. */ | |||
| 555 | if (p != begin) { | |||
| 556 | do | |||
| 557 | do | |||
| 558 | p--; | |||
| 559 | while (p != begin && *p == '0'); | |||
| 560 | while (p != begin && *p == '.'); | |||
| 561 | } | |||
| 562 | ||||
| 563 | /* Adjust the exponents for any decimal point. */ | |||
| 564 | D->exponent += static_cast<APFloat::ExponentType>((dot - p) - (dot > p)); | |||
| 565 | D->normalizedExponent = (D->exponent + | |||
| 566 | static_cast<APFloat::ExponentType>((p - D->firstSigDigit) | |||
| 567 | - (dot > D->firstSigDigit && dot < p))); | |||
| 568 | } | |||
| 569 | ||||
| 570 | D->lastSigDigit = p; | |||
| 571 | return Error::success(); | |||
| 572 | } | |||
| 573 | ||||
| 574 | /* Return the trailing fraction of a hexadecimal number. | |||
| 575 | DIGITVALUE is the first hex digit of the fraction, P points to | |||
| 576 | the next digit. */ | |||
| 577 | static Expected<lostFraction> | |||
| 578 | trailingHexadecimalFraction(StringRef::iterator p, StringRef::iterator end, | |||
| 579 | unsigned int digitValue) { | |||
| 580 | unsigned int hexDigit; | |||
| 581 | ||||
| 582 | /* If the first trailing digit isn't 0 or 8 we can work out the | |||
| 583 | fraction immediately. */ | |||
| 584 | if (digitValue > 8) | |||
| 585 | return lfMoreThanHalf; | |||
| 586 | else if (digitValue < 8 && digitValue > 0) | |||
| 587 | return lfLessThanHalf; | |||
| 588 | ||||
| 589 | // Otherwise we need to find the first non-zero digit. | |||
| 590 | while (p != end && (*p == '0' || *p == '.')) | |||
| 591 | p++; | |||
| 592 | ||||
| 593 | if (p == end) | |||
| 594 | return createError("Invalid trailing hexadecimal fraction!"); | |||
| 595 | ||||
| 596 | hexDigit = hexDigitValue(*p); | |||
| 597 | ||||
| 598 | /* If we ran off the end it is exactly zero or one-half, otherwise | |||
| 599 | a little more. */ | |||
| 600 | if (hexDigit == UINT_MAX(2147483647 *2U +1U)) | |||
| 601 | return digitValue == 0 ? lfExactlyZero: lfExactlyHalf; | |||
| 602 | else | |||
| 603 | return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf; | |||
| 604 | } | |||
| 605 | ||||
| 606 | /* Return the fraction lost were a bignum truncated losing the least | |||
| 607 | significant BITS bits. */ | |||
| 608 | static lostFraction | |||
| 609 | lostFractionThroughTruncation(const APFloatBase::integerPart *parts, | |||
| 610 | unsigned int partCount, | |||
| 611 | unsigned int bits) | |||
| 612 | { | |||
| 613 | unsigned int lsb; | |||
| 614 | ||||
| 615 | lsb = APInt::tcLSB(parts, partCount); | |||
| 616 | ||||
| 617 | /* Note this is guaranteed true if bits == 0, or LSB == UINT_MAX. */ | |||
| 618 | if (bits <= lsb) | |||
| 619 | return lfExactlyZero; | |||
| 620 | if (bits == lsb + 1) | |||
| 621 | return lfExactlyHalf; | |||
| 622 | if (bits <= partCount * APFloatBase::integerPartWidth && | |||
| 623 | APInt::tcExtractBit(parts, bits - 1)) | |||
| 624 | return lfMoreThanHalf; | |||
| 625 | ||||
| 626 | return lfLessThanHalf; | |||
| 627 | } | |||
| 628 | ||||
| 629 | /* Shift DST right BITS bits noting lost fraction. */ | |||
| 630 | static lostFraction | |||
| 631 | shiftRight(APFloatBase::integerPart *dst, unsigned int parts, unsigned int bits) | |||
| 632 | { | |||
| 633 | lostFraction lost_fraction; | |||
| 634 | ||||
| 635 | lost_fraction = lostFractionThroughTruncation(dst, parts, bits); | |||
| 636 | ||||
| 637 | APInt::tcShiftRight(dst, parts, bits); | |||
| 638 | ||||
| 639 | return lost_fraction; | |||
| 640 | } | |||
| 641 | ||||
| 642 | /* Combine the effect of two lost fractions. */ | |||
| 643 | static lostFraction | |||
| 644 | combineLostFractions(lostFraction moreSignificant, | |||
| 645 | lostFraction lessSignificant) | |||
| 646 | { | |||
| 647 | if (lessSignificant != lfExactlyZero) { | |||
| 648 | if (moreSignificant == lfExactlyZero) | |||
| 649 | moreSignificant = lfLessThanHalf; | |||
| 650 | else if (moreSignificant == lfExactlyHalf) | |||
| 651 | moreSignificant = lfMoreThanHalf; | |||
| 652 | } | |||
| 653 | ||||
| 654 | return moreSignificant; | |||
| 655 | } | |||
| 656 | ||||
| 657 | /* The error from the true value, in half-ulps, on multiplying two | |||
| 658 | floating point numbers, which differ from the value they | |||
| 659 | approximate by at most HUE1 and HUE2 half-ulps, is strictly less | |||
| 660 | than the returned value. | |||
| 661 | ||||
| 662 | See "How to Read Floating Point Numbers Accurately" by William D | |||
| 663 | Clinger. */ | |||
| 664 | static unsigned int | |||
| 665 | HUerrBound(bool inexactMultiply, unsigned int HUerr1, unsigned int HUerr2) | |||
| 666 | { | |||
| 667 | assert(HUerr1 < 2 || HUerr2 < 2 || (HUerr1 + HUerr2 < 8))(static_cast <bool> (HUerr1 < 2 || HUerr2 < 2 || ( HUerr1 + HUerr2 < 8)) ? void (0) : __assert_fail ("HUerr1 < 2 || HUerr2 < 2 || (HUerr1 + HUerr2 < 8)" , "llvm/lib/Support/APFloat.cpp", 667, __extension__ __PRETTY_FUNCTION__ )); | |||
| 668 | ||||
| 669 | if (HUerr1 + HUerr2 == 0) | |||
| 670 | return inexactMultiply * 2; /* <= inexactMultiply half-ulps. */ | |||
| 671 | else | |||
| 672 | return inexactMultiply + 2 * (HUerr1 + HUerr2); | |||
| 673 | } | |||
| 674 | ||||
| 675 | /* The number of ulps from the boundary (zero, or half if ISNEAREST) | |||
| 676 | when the least significant BITS are truncated. BITS cannot be | |||
| 677 | zero. */ | |||
| 678 | static APFloatBase::integerPart | |||
| 679 | ulpsFromBoundary(const APFloatBase::integerPart *parts, unsigned int bits, | |||
| 680 | bool isNearest) { | |||
| 681 | unsigned int count, partBits; | |||
| 682 | APFloatBase::integerPart part, boundary; | |||
| 683 | ||||
| 684 | assert(bits != 0)(static_cast <bool> (bits != 0) ? void (0) : __assert_fail ("bits != 0", "llvm/lib/Support/APFloat.cpp", 684, __extension__ __PRETTY_FUNCTION__)); | |||
| 685 | ||||
| 686 | bits--; | |||
| 687 | count = bits / APFloatBase::integerPartWidth; | |||
| 688 | partBits = bits % APFloatBase::integerPartWidth + 1; | |||
| 689 | ||||
| 690 | part = parts[count] & (~(APFloatBase::integerPart) 0 >> (APFloatBase::integerPartWidth - partBits)); | |||
| 691 | ||||
| 692 | if (isNearest) | |||
| 693 | boundary = (APFloatBase::integerPart) 1 << (partBits - 1); | |||
| 694 | else | |||
| 695 | boundary = 0; | |||
| 696 | ||||
| 697 | if (count == 0) { | |||
| 698 | if (part - boundary <= boundary - part) | |||
| 699 | return part - boundary; | |||
| 700 | else | |||
| 701 | return boundary - part; | |||
| 702 | } | |||
| 703 | ||||
| 704 | if (part == boundary) { | |||
| 705 | while (--count) | |||
| 706 | if (parts[count]) | |||
| 707 | return ~(APFloatBase::integerPart) 0; /* A lot. */ | |||
| 708 | ||||
| 709 | return parts[0]; | |||
| 710 | } else if (part == boundary - 1) { | |||
| 711 | while (--count) | |||
| 712 | if (~parts[count]) | |||
| 713 | return ~(APFloatBase::integerPart) 0; /* A lot. */ | |||
| 714 | ||||
| 715 | return -parts[0]; | |||
| 716 | } | |||
| 717 | ||||
| 718 | return ~(APFloatBase::integerPart) 0; /* A lot. */ | |||
| 719 | } | |||
| 720 | ||||
| 721 | /* Place pow(5, power) in DST, and return the number of parts used. | |||
| 722 | DST must be at least one part larger than size of the answer. */ | |||
| 723 | static unsigned int | |||
| 724 | powerOf5(APFloatBase::integerPart *dst, unsigned int power) { | |||
| 725 | static const APFloatBase::integerPart firstEightPowers[] = { 1, 5, 25, 125, 625, 3125, 15625, 78125 }; | |||
| 726 | APFloatBase::integerPart pow5s[maxPowerOfFiveParts * 2 + 5]; | |||
| 727 | pow5s[0] = 78125 * 5; | |||
| 728 | ||||
| 729 | unsigned int partsCount[16] = { 1 }; | |||
| 730 | APFloatBase::integerPart scratch[maxPowerOfFiveParts], *p1, *p2, *pow5; | |||
| 731 | unsigned int result; | |||
| 732 | assert(power <= maxExponent)(static_cast <bool> (power <= maxExponent) ? void (0 ) : __assert_fail ("power <= maxExponent", "llvm/lib/Support/APFloat.cpp" , 732, __extension__ __PRETTY_FUNCTION__)); | |||
| 733 | ||||
| 734 | p1 = dst; | |||
| 735 | p2 = scratch; | |||
| 736 | ||||
| 737 | *p1 = firstEightPowers[power & 7]; | |||
| 738 | power >>= 3; | |||
| 739 | ||||
| 740 | result = 1; | |||
| 741 | pow5 = pow5s; | |||
| 742 | ||||
| 743 | for (unsigned int n = 0; power; power >>= 1, n++) { | |||
| 744 | unsigned int pc; | |||
| 745 | ||||
| 746 | pc = partsCount[n]; | |||
| 747 | ||||
| 748 | /* Calculate pow(5,pow(2,n+3)) if we haven't yet. */ | |||
| 749 | if (pc == 0) { | |||
| 750 | pc = partsCount[n - 1]; | |||
| 751 | APInt::tcFullMultiply(pow5, pow5 - pc, pow5 - pc, pc, pc); | |||
| 752 | pc *= 2; | |||
| 753 | if (pow5[pc - 1] == 0) | |||
| 754 | pc--; | |||
| 755 | partsCount[n] = pc; | |||
| 756 | } | |||
| 757 | ||||
| 758 | if (power & 1) { | |||
| 759 | APFloatBase::integerPart *tmp; | |||
| 760 | ||||
| 761 | APInt::tcFullMultiply(p2, p1, pow5, result, pc); | |||
| 762 | result += pc; | |||
| 763 | if (p2[result - 1] == 0) | |||
| 764 | result--; | |||
| 765 | ||||
| 766 | /* Now result is in p1 with partsCount parts and p2 is scratch | |||
| 767 | space. */ | |||
| 768 | tmp = p1; | |||
| 769 | p1 = p2; | |||
| 770 | p2 = tmp; | |||
| 771 | } | |||
| 772 | ||||
| 773 | pow5 += pc; | |||
| 774 | } | |||
| 775 | ||||
| 776 | if (p1 != dst) | |||
| 777 | APInt::tcAssign(dst, p1, result); | |||
| 778 | ||||
| 779 | return result; | |||
| 780 | } | |||
| 781 | ||||
| 782 | /* Zero at the end to avoid modular arithmetic when adding one; used | |||
| 783 | when rounding up during hexadecimal output. */ | |||
| 784 | static const char hexDigitsLower[] = "0123456789abcdef0"; | |||
| 785 | static const char hexDigitsUpper[] = "0123456789ABCDEF0"; | |||
| 786 | static const char infinityL[] = "infinity"; | |||
| 787 | static const char infinityU[] = "INFINITY"; | |||
| 788 | static const char NaNL[] = "nan"; | |||
| 789 | static const char NaNU[] = "NAN"; | |||
| 790 | ||||
| 791 | /* Write out an integerPart in hexadecimal, starting with the most | |||
| 792 | significant nibble. Write out exactly COUNT hexdigits, return | |||
| 793 | COUNT. */ | |||
| 794 | static unsigned int | |||
| 795 | partAsHex (char *dst, APFloatBase::integerPart part, unsigned int count, | |||
| 796 | const char *hexDigitChars) | |||
| 797 | { | |||
| 798 | unsigned int result = count; | |||
| 799 | ||||
| 800 | assert(count != 0 && count <= APFloatBase::integerPartWidth / 4)(static_cast <bool> (count != 0 && count <= APFloatBase ::integerPartWidth / 4) ? void (0) : __assert_fail ("count != 0 && count <= APFloatBase::integerPartWidth / 4" , "llvm/lib/Support/APFloat.cpp", 800, __extension__ __PRETTY_FUNCTION__ )); | |||
| 801 | ||||
| 802 | part >>= (APFloatBase::integerPartWidth - 4 * count); | |||
| 803 | while (count--) { | |||
| 804 | dst[count] = hexDigitChars[part & 0xf]; | |||
| 805 | part >>= 4; | |||
| 806 | } | |||
| 807 | ||||
| 808 | return result; | |||
| 809 | } | |||
| 810 | ||||
| 811 | /* Write out an unsigned decimal integer. */ | |||
| 812 | static char * | |||
| 813 | writeUnsignedDecimal (char *dst, unsigned int n) | |||
| 814 | { | |||
| 815 | char buff[40], *p; | |||
| 816 | ||||
| 817 | p = buff; | |||
| 818 | do | |||
| 819 | *p++ = '0' + n % 10; | |||
| 820 | while (n /= 10); | |||
| 821 | ||||
| 822 | do | |||
| 823 | *dst++ = *--p; | |||
| 824 | while (p != buff); | |||
| 825 | ||||
| 826 | return dst; | |||
| 827 | } | |||
| 828 | ||||
| 829 | /* Write out a signed decimal integer. */ | |||
| 830 | static char * | |||
| 831 | writeSignedDecimal (char *dst, int value) | |||
| 832 | { | |||
| 833 | if (value < 0) { | |||
| 834 | *dst++ = '-'; | |||
| 835 | dst = writeUnsignedDecimal(dst, -(unsigned) value); | |||
| 836 | } else | |||
| 837 | dst = writeUnsignedDecimal(dst, value); | |||
| 838 | ||||
| 839 | return dst; | |||
| 840 | } | |||
| 841 | ||||
| 842 | namespace detail { | |||
| 843 | /* Constructors. */ | |||
| 844 | void IEEEFloat::initialize(const fltSemantics *ourSemantics) { | |||
| 845 | unsigned int count; | |||
| 846 | ||||
| 847 | semantics = ourSemantics; | |||
| 848 | count = partCount(); | |||
| 849 | if (count > 1) | |||
| 850 | significand.parts = new integerPart[count]; | |||
| 851 | } | |||
| 852 | ||||
| 853 | void IEEEFloat::freeSignificand() { | |||
| 854 | if (needsCleanup()) | |||
| 855 | delete [] significand.parts; | |||
| 856 | } | |||
| 857 | ||||
| 858 | void IEEEFloat::assign(const IEEEFloat &rhs) { | |||
| 859 | assert(semantics == rhs.semantics)(static_cast <bool> (semantics == rhs.semantics) ? void (0) : __assert_fail ("semantics == rhs.semantics", "llvm/lib/Support/APFloat.cpp" , 859, __extension__ __PRETTY_FUNCTION__)); | |||
| 860 | ||||
| 861 | sign = rhs.sign; | |||
| 862 | category = rhs.category; | |||
| 863 | exponent = rhs.exponent; | |||
| 864 | if (isFiniteNonZero() || category == fcNaN) | |||
| 865 | copySignificand(rhs); | |||
| 866 | } | |||
| 867 | ||||
| 868 | void IEEEFloat::copySignificand(const IEEEFloat &rhs) { | |||
| 869 | assert(isFiniteNonZero() || category == fcNaN)(static_cast <bool> (isFiniteNonZero() || category == fcNaN ) ? void (0) : __assert_fail ("isFiniteNonZero() || category == fcNaN" , "llvm/lib/Support/APFloat.cpp", 869, __extension__ __PRETTY_FUNCTION__ )); | |||
| 870 | assert(rhs.partCount() >= partCount())(static_cast <bool> (rhs.partCount() >= partCount()) ? void (0) : __assert_fail ("rhs.partCount() >= partCount()" , "llvm/lib/Support/APFloat.cpp", 870, __extension__ __PRETTY_FUNCTION__ )); | |||
| 871 | ||||
| 872 | APInt::tcAssign(significandParts(), rhs.significandParts(), | |||
| 873 | partCount()); | |||
| 874 | } | |||
| 875 | ||||
| 876 | /* Make this number a NaN, with an arbitrary but deterministic value | |||
| 877 | for the significand. If double or longer, this is a signalling NaN, | |||
| 878 | which may not be ideal. If float, this is QNaN(0). */ | |||
| 879 | void IEEEFloat::makeNaN(bool SNaN, bool Negative, const APInt *fill) { | |||
| 880 | category = fcNaN; | |||
| 881 | sign = Negative; | |||
| 882 | exponent = exponentNaN(); | |||
| 883 | ||||
| 884 | integerPart *significand = significandParts(); | |||
| 885 | unsigned numParts = partCount(); | |||
| 886 | ||||
| 887 | APInt fill_storage; | |||
| 888 | if (semantics->nonFiniteBehavior == fltNonfiniteBehavior::NanOnly) { | |||
| 889 | // Finite-only types do not distinguish signalling and quiet NaN, so | |||
| 890 | // make them all signalling. | |||
| 891 | SNaN = false; | |||
| 892 | if (semantics->nanEncoding == fltNanEncoding::NegativeZero) { | |||
| 893 | sign = true; | |||
| 894 | fill_storage = APInt::getZero(semantics->precision - 1); | |||
| 895 | } else { | |||
| 896 | fill_storage = APInt::getAllOnes(semantics->precision - 1); | |||
| 897 | } | |||
| 898 | fill = &fill_storage; | |||
| 899 | } | |||
| 900 | ||||
| 901 | // Set the significand bits to the fill. | |||
| 902 | if (!fill || fill->getNumWords() < numParts) | |||
| 903 | APInt::tcSet(significand, 0, numParts); | |||
| 904 | if (fill) { | |||
| 905 | APInt::tcAssign(significand, fill->getRawData(), | |||
| 906 | std::min(fill->getNumWords(), numParts)); | |||
| 907 | ||||
| 908 | // Zero out the excess bits of the significand. | |||
| 909 | unsigned bitsToPreserve = semantics->precision - 1; | |||
| 910 | unsigned part = bitsToPreserve / 64; | |||
| 911 | bitsToPreserve %= 64; | |||
| 912 | significand[part] &= ((1ULL << bitsToPreserve) - 1); | |||
| 913 | for (part++; part != numParts; ++part) | |||
| 914 | significand[part] = 0; | |||
| 915 | } | |||
| 916 | ||||
| 917 | unsigned QNaNBit = semantics->precision - 2; | |||
| 918 | ||||
| 919 | if (SNaN) { | |||
| 920 | // We always have to clear the QNaN bit to make it an SNaN. | |||
| 921 | APInt::tcClearBit(significand, QNaNBit); | |||
| 922 | ||||
| 923 | // If there are no bits set in the payload, we have to set | |||
| 924 | // *something* to make it a NaN instead of an infinity; | |||
| 925 | // conventionally, this is the next bit down from the QNaN bit. | |||
| 926 | if (APInt::tcIsZero(significand, numParts)) | |||
| 927 | APInt::tcSetBit(significand, QNaNBit - 1); | |||
| 928 | } else if (semantics->nanEncoding == fltNanEncoding::NegativeZero) { | |||
| 929 | // The only NaN is a quiet NaN, and it has no bits sets in the significand. | |||
| 930 | // Do nothing. | |||
| 931 | } else { | |||
| 932 | // We always have to set the QNaN bit to make it a QNaN. | |||
| 933 | APInt::tcSetBit(significand, QNaNBit); | |||
| 934 | } | |||
| 935 | ||||
| 936 | // For x87 extended precision, we want to make a NaN, not a | |||
| 937 | // pseudo-NaN. Maybe we should expose the ability to make | |||
| 938 | // pseudo-NaNs? | |||
| 939 | if (semantics == &semX87DoubleExtended) | |||
| 940 | APInt::tcSetBit(significand, QNaNBit + 1); | |||
| 941 | } | |||
| 942 | ||||
| 943 | IEEEFloat &IEEEFloat::operator=(const IEEEFloat &rhs) { | |||
| 944 | if (this != &rhs) { | |||
| 945 | if (semantics != rhs.semantics) { | |||
| 946 | freeSignificand(); | |||
| 947 | initialize(rhs.semantics); | |||
| 948 | } | |||
| 949 | assign(rhs); | |||
| 950 | } | |||
| 951 | ||||
| 952 | return *this; | |||
| 953 | } | |||
| 954 | ||||
| 955 | IEEEFloat &IEEEFloat::operator=(IEEEFloat &&rhs) { | |||
| 956 | freeSignificand(); | |||
| 957 | ||||
| 958 | semantics = rhs.semantics; | |||
| 959 | significand = rhs.significand; | |||
| 960 | exponent = rhs.exponent; | |||
| 961 | category = rhs.category; | |||
| 962 | sign = rhs.sign; | |||
| 963 | ||||
| 964 | rhs.semantics = &semBogus; | |||
| 965 | return *this; | |||
| 966 | } | |||
| 967 | ||||
| 968 | bool IEEEFloat::isDenormal() const { | |||
| 969 | return isFiniteNonZero() && (exponent == semantics->minExponent) && | |||
| 970 | (APInt::tcExtractBit(significandParts(), | |||
| 971 | semantics->precision - 1) == 0); | |||
| 972 | } | |||
| 973 | ||||
| 974 | bool IEEEFloat::isSmallest() const { | |||
| 975 | // The smallest number by magnitude in our format will be the smallest | |||
| 976 | // denormal, i.e. the floating point number with exponent being minimum | |||
| 977 | // exponent and significand bitwise equal to 1 (i.e. with MSB equal to 0). | |||
| 978 | return isFiniteNonZero() && exponent == semantics->minExponent && | |||
| 979 | significandMSB() == 0; | |||
| 980 | } | |||
| 981 | ||||
| 982 | bool IEEEFloat::isSmallestNormalized() const { | |||
| 983 | return getCategory() == fcNormal && exponent == semantics->minExponent && | |||
| 984 | isSignificandAllZerosExceptMSB(); | |||
| 985 | } | |||
| 986 | ||||
| 987 | bool IEEEFloat::isSignificandAllOnes() const { | |||
| 988 | // Test if the significand excluding the integral bit is all ones. This allows | |||
| 989 | // us to test for binade boundaries. | |||
| 990 | const integerPart *Parts = significandParts(); | |||
| 991 | const unsigned PartCount = partCountForBits(semantics->precision); | |||
| 992 | for (unsigned i = 0; i < PartCount - 1; i++) | |||
| 993 | if (~Parts[i]) | |||
| 994 | return false; | |||
| 995 | ||||
| 996 | // Set the unused high bits to all ones when we compare. | |||
| 997 | const unsigned NumHighBits = | |||
| 998 | PartCount*integerPartWidth - semantics->precision + 1; | |||
| 999 | assert(NumHighBits <= integerPartWidth && NumHighBits > 0 &&(static_cast <bool> (NumHighBits <= integerPartWidth && NumHighBits > 0 && "Can not have more high bits to fill than integerPartWidth" ) ? void (0) : __assert_fail ("NumHighBits <= integerPartWidth && NumHighBits > 0 && \"Can not have more high bits to fill than integerPartWidth\"" , "llvm/lib/Support/APFloat.cpp", 1000, __extension__ __PRETTY_FUNCTION__ )) | |||
| 1000 | "Can not have more high bits to fill than integerPartWidth")(static_cast <bool> (NumHighBits <= integerPartWidth && NumHighBits > 0 && "Can not have more high bits to fill than integerPartWidth" ) ? void (0) : __assert_fail ("NumHighBits <= integerPartWidth && NumHighBits > 0 && \"Can not have more high bits to fill than integerPartWidth\"" , "llvm/lib/Support/APFloat.cpp", 1000, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1001 | const integerPart HighBitFill = | |||
| 1002 | ~integerPart(0) << (integerPartWidth - NumHighBits); | |||
| 1003 | if (~(Parts[PartCount - 1] | HighBitFill)) | |||
| 1004 | return false; | |||
| 1005 | ||||
| 1006 | return true; | |||
| 1007 | } | |||
| 1008 | ||||
| 1009 | bool IEEEFloat::isSignificandAllOnesExceptLSB() const { | |||
| 1010 | // Test if the significand excluding the integral bit is all ones except for | |||
| 1011 | // the least significant bit. | |||
| 1012 | const integerPart *Parts = significandParts(); | |||
| 1013 | ||||
| 1014 | if (Parts[0] & 1) | |||
| 1015 | return false; | |||
| 1016 | ||||
| 1017 | const unsigned PartCount = partCountForBits(semantics->precision); | |||
| 1018 | for (unsigned i = 0; i < PartCount - 1; i++) { | |||
| 1019 | if (~Parts[i] & ~unsigned{!i}) | |||
| 1020 | return false; | |||
| 1021 | } | |||
| 1022 | ||||
| 1023 | // Set the unused high bits to all ones when we compare. | |||
| 1024 | const unsigned NumHighBits = | |||
| 1025 | PartCount * integerPartWidth - semantics->precision + 1; | |||
| 1026 | assert(NumHighBits <= integerPartWidth && NumHighBits > 0 &&(static_cast <bool> (NumHighBits <= integerPartWidth && NumHighBits > 0 && "Can not have more high bits to fill than integerPartWidth" ) ? void (0) : __assert_fail ("NumHighBits <= integerPartWidth && NumHighBits > 0 && \"Can not have more high bits to fill than integerPartWidth\"" , "llvm/lib/Support/APFloat.cpp", 1027, __extension__ __PRETTY_FUNCTION__ )) | |||
| 1027 | "Can not have more high bits to fill than integerPartWidth")(static_cast <bool> (NumHighBits <= integerPartWidth && NumHighBits > 0 && "Can not have more high bits to fill than integerPartWidth" ) ? void (0) : __assert_fail ("NumHighBits <= integerPartWidth && NumHighBits > 0 && \"Can not have more high bits to fill than integerPartWidth\"" , "llvm/lib/Support/APFloat.cpp", 1027, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1028 | const integerPart HighBitFill = ~integerPart(0) | |||
| 1029 | << (integerPartWidth - NumHighBits); | |||
| 1030 | if (~(Parts[PartCount - 1] | HighBitFill | 0x1)) | |||
| 1031 | return false; | |||
| 1032 | ||||
| 1033 | return true; | |||
| 1034 | } | |||
| 1035 | ||||
| 1036 | bool IEEEFloat::isSignificandAllZeros() const { | |||
| 1037 | // Test if the significand excluding the integral bit is all zeros. This | |||
| 1038 | // allows us to test for binade boundaries. | |||
| 1039 | const integerPart *Parts = significandParts(); | |||
| 1040 | const unsigned PartCount = partCountForBits(semantics->precision); | |||
| 1041 | ||||
| 1042 | for (unsigned i = 0; i < PartCount - 1; i++) | |||
| 1043 | if (Parts[i]) | |||
| 1044 | return false; | |||
| 1045 | ||||
| 1046 | // Compute how many bits are used in the final word. | |||
| 1047 | const unsigned NumHighBits = | |||
| 1048 | PartCount*integerPartWidth - semantics->precision + 1; | |||
| 1049 | assert(NumHighBits < integerPartWidth && "Can not have more high bits to "(static_cast <bool> (NumHighBits < integerPartWidth && "Can not have more high bits to " "clear than integerPartWidth" ) ? void (0) : __assert_fail ("NumHighBits < integerPartWidth && \"Can not have more high bits to \" \"clear than integerPartWidth\"" , "llvm/lib/Support/APFloat.cpp", 1050, __extension__ __PRETTY_FUNCTION__ )) | |||
| 1050 | "clear than integerPartWidth")(static_cast <bool> (NumHighBits < integerPartWidth && "Can not have more high bits to " "clear than integerPartWidth" ) ? void (0) : __assert_fail ("NumHighBits < integerPartWidth && \"Can not have more high bits to \" \"clear than integerPartWidth\"" , "llvm/lib/Support/APFloat.cpp", 1050, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1051 | const integerPart HighBitMask = ~integerPart(0) >> NumHighBits; | |||
| 1052 | ||||
| 1053 | if (Parts[PartCount - 1] & HighBitMask) | |||
| 1054 | return false; | |||
| 1055 | ||||
| 1056 | return true; | |||
| 1057 | } | |||
| 1058 | ||||
| 1059 | bool IEEEFloat::isSignificandAllZerosExceptMSB() const { | |||
| 1060 | const integerPart *Parts = significandParts(); | |||
| 1061 | const unsigned PartCount = partCountForBits(semantics->precision); | |||
| 1062 | ||||
| 1063 | for (unsigned i = 0; i < PartCount - 1; i++) { | |||
| 1064 | if (Parts[i]) | |||
| 1065 | return false; | |||
| 1066 | } | |||
| 1067 | ||||
| 1068 | const unsigned NumHighBits = | |||
| 1069 | PartCount * integerPartWidth - semantics->precision + 1; | |||
| 1070 | return Parts[PartCount - 1] == integerPart(1) | |||
| 1071 | << (integerPartWidth - NumHighBits); | |||
| 1072 | } | |||
| 1073 | ||||
| 1074 | bool IEEEFloat::isLargest() const { | |||
| 1075 | if (semantics->nonFiniteBehavior == fltNonfiniteBehavior::NanOnly && | |||
| 1076 | semantics->nanEncoding == fltNanEncoding::AllOnes) { | |||
| 1077 | // The largest number by magnitude in our format will be the floating point | |||
| 1078 | // number with maximum exponent and with significand that is all ones except | |||
| 1079 | // the LSB. | |||
| 1080 | return isFiniteNonZero() && exponent == semantics->maxExponent && | |||
| 1081 | isSignificandAllOnesExceptLSB(); | |||
| 1082 | } else { | |||
| 1083 | // The largest number by magnitude in our format will be the floating point | |||
| 1084 | // number with maximum exponent and with significand that is all ones. | |||
| 1085 | return isFiniteNonZero() && exponent == semantics->maxExponent && | |||
| 1086 | isSignificandAllOnes(); | |||
| 1087 | } | |||
| 1088 | } | |||
| 1089 | ||||
| 1090 | bool IEEEFloat::isInteger() const { | |||
| 1091 | // This could be made more efficient; I'm going for obviously correct. | |||
| 1092 | if (!isFinite()) return false; | |||
| 1093 | IEEEFloat truncated = *this; | |||
| 1094 | truncated.roundToIntegral(rmTowardZero); | |||
| 1095 | return compare(truncated) == cmpEqual; | |||
| 1096 | } | |||
| 1097 | ||||
| 1098 | bool IEEEFloat::bitwiseIsEqual(const IEEEFloat &rhs) const { | |||
| 1099 | if (this == &rhs) | |||
| 1100 | return true; | |||
| 1101 | if (semantics != rhs.semantics || | |||
| 1102 | category != rhs.category || | |||
| 1103 | sign != rhs.sign) | |||
| 1104 | return false; | |||
| 1105 | if (category==fcZero || category==fcInfinity) | |||
| 1106 | return true; | |||
| 1107 | ||||
| 1108 | if (isFiniteNonZero() && exponent != rhs.exponent) | |||
| 1109 | return false; | |||
| 1110 | ||||
| 1111 | return std::equal(significandParts(), significandParts() + partCount(), | |||
| 1112 | rhs.significandParts()); | |||
| 1113 | } | |||
| 1114 | ||||
| 1115 | IEEEFloat::IEEEFloat(const fltSemantics &ourSemantics, integerPart value) { | |||
| 1116 | initialize(&ourSemantics); | |||
| 1117 | sign = 0; | |||
| 1118 | category = fcNormal; | |||
| 1119 | zeroSignificand(); | |||
| 1120 | exponent = ourSemantics.precision - 1; | |||
| 1121 | significandParts()[0] = value; | |||
| 1122 | normalize(rmNearestTiesToEven, lfExactlyZero); | |||
| 1123 | } | |||
| 1124 | ||||
| 1125 | IEEEFloat::IEEEFloat(const fltSemantics &ourSemantics) { | |||
| 1126 | initialize(&ourSemantics); | |||
| 1127 | makeZero(false); | |||
| 1128 | } | |||
| 1129 | ||||
| 1130 | // Delegate to the previous constructor, because later copy constructor may | |||
| 1131 | // actually inspects category, which can't be garbage. | |||
| 1132 | IEEEFloat::IEEEFloat(const fltSemantics &ourSemantics, uninitializedTag tag) | |||
| 1133 | : IEEEFloat(ourSemantics) {} | |||
| 1134 | ||||
| 1135 | IEEEFloat::IEEEFloat(const IEEEFloat &rhs) { | |||
| 1136 | initialize(rhs.semantics); | |||
| 1137 | assign(rhs); | |||
| 1138 | } | |||
| 1139 | ||||
| 1140 | IEEEFloat::IEEEFloat(IEEEFloat &&rhs) : semantics(&semBogus) { | |||
| 1141 | *this = std::move(rhs); | |||
| 1142 | } | |||
| 1143 | ||||
| 1144 | IEEEFloat::~IEEEFloat() { freeSignificand(); } | |||
| 1145 | ||||
| 1146 | unsigned int IEEEFloat::partCount() const { | |||
| 1147 | return partCountForBits(semantics->precision + 1); | |||
| 1148 | } | |||
| 1149 | ||||
| 1150 | const IEEEFloat::integerPart *IEEEFloat::significandParts() const { | |||
| 1151 | return const_cast<IEEEFloat *>(this)->significandParts(); | |||
| 1152 | } | |||
| 1153 | ||||
| 1154 | IEEEFloat::integerPart *IEEEFloat::significandParts() { | |||
| 1155 | if (partCount() > 1) | |||
| 1156 | return significand.parts; | |||
| 1157 | else | |||
| 1158 | return &significand.part; | |||
| 1159 | } | |||
| 1160 | ||||
| 1161 | void IEEEFloat::zeroSignificand() { | |||
| 1162 | APInt::tcSet(significandParts(), 0, partCount()); | |||
| 1163 | } | |||
| 1164 | ||||
| 1165 | /* Increment an fcNormal floating point number's significand. */ | |||
| 1166 | void IEEEFloat::incrementSignificand() { | |||
| 1167 | integerPart carry; | |||
| 1168 | ||||
| 1169 | carry = APInt::tcIncrement(significandParts(), partCount()); | |||
| 1170 | ||||
| 1171 | /* Our callers should never cause us to overflow. */ | |||
| 1172 | assert(carry == 0)(static_cast <bool> (carry == 0) ? void (0) : __assert_fail ("carry == 0", "llvm/lib/Support/APFloat.cpp", 1172, __extension__ __PRETTY_FUNCTION__)); | |||
| 1173 | (void)carry; | |||
| 1174 | } | |||
| 1175 | ||||
| 1176 | /* Add the significand of the RHS. Returns the carry flag. */ | |||
| 1177 | IEEEFloat::integerPart IEEEFloat::addSignificand(const IEEEFloat &rhs) { | |||
| 1178 | integerPart *parts; | |||
| 1179 | ||||
| 1180 | parts = significandParts(); | |||
| 1181 | ||||
| 1182 | assert(semantics == rhs.semantics)(static_cast <bool> (semantics == rhs.semantics) ? void (0) : __assert_fail ("semantics == rhs.semantics", "llvm/lib/Support/APFloat.cpp" , 1182, __extension__ __PRETTY_FUNCTION__)); | |||
| 1183 | assert(exponent == rhs.exponent)(static_cast <bool> (exponent == rhs.exponent) ? void ( 0) : __assert_fail ("exponent == rhs.exponent", "llvm/lib/Support/APFloat.cpp" , 1183, __extension__ __PRETTY_FUNCTION__)); | |||
| 1184 | ||||
| 1185 | return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount()); | |||
| 1186 | } | |||
| 1187 | ||||
| 1188 | /* Subtract the significand of the RHS with a borrow flag. Returns | |||
| 1189 | the borrow flag. */ | |||
| 1190 | IEEEFloat::integerPart IEEEFloat::subtractSignificand(const IEEEFloat &rhs, | |||
| 1191 | integerPart borrow) { | |||
| 1192 | integerPart *parts; | |||
| 1193 | ||||
| 1194 | parts = significandParts(); | |||
| 1195 | ||||
| 1196 | assert(semantics == rhs.semantics)(static_cast <bool> (semantics == rhs.semantics) ? void (0) : __assert_fail ("semantics == rhs.semantics", "llvm/lib/Support/APFloat.cpp" , 1196, __extension__ __PRETTY_FUNCTION__)); | |||
| 1197 | assert(exponent == rhs.exponent)(static_cast <bool> (exponent == rhs.exponent) ? void ( 0) : __assert_fail ("exponent == rhs.exponent", "llvm/lib/Support/APFloat.cpp" , 1197, __extension__ __PRETTY_FUNCTION__)); | |||
| 1198 | ||||
| 1199 | return APInt::tcSubtract(parts, rhs.significandParts(), borrow, | |||
| 1200 | partCount()); | |||
| 1201 | } | |||
| 1202 | ||||
| 1203 | /* Multiply the significand of the RHS. If ADDEND is non-NULL, add it | |||
| 1204 | on to the full-precision result of the multiplication. Returns the | |||
| 1205 | lost fraction. */ | |||
| 1206 | lostFraction IEEEFloat::multiplySignificand(const IEEEFloat &rhs, | |||
| 1207 | IEEEFloat addend) { | |||
| 1208 | unsigned int omsb; // One, not zero, based MSB. | |||
| 1209 | unsigned int partsCount, newPartsCount, precision; | |||
| 1210 | integerPart *lhsSignificand; | |||
| 1211 | integerPart scratch[4]; | |||
| 1212 | integerPart *fullSignificand; | |||
| 1213 | lostFraction lost_fraction; | |||
| 1214 | bool ignored; | |||
| 1215 | ||||
| 1216 | assert(semantics == rhs.semantics)(static_cast <bool> (semantics == rhs.semantics) ? void (0) : __assert_fail ("semantics == rhs.semantics", "llvm/lib/Support/APFloat.cpp" , 1216, __extension__ __PRETTY_FUNCTION__)); | |||
| 1217 | ||||
| 1218 | precision = semantics->precision; | |||
| 1219 | ||||
| 1220 | // Allocate space for twice as many bits as the original significand, plus one | |||
| 1221 | // extra bit for the addition to overflow into. | |||
| 1222 | newPartsCount = partCountForBits(precision * 2 + 1); | |||
| 1223 | ||||
| 1224 | if (newPartsCount > 4) | |||
| 1225 | fullSignificand = new integerPart[newPartsCount]; | |||
| 1226 | else | |||
| 1227 | fullSignificand = scratch; | |||
| 1228 | ||||
| 1229 | lhsSignificand = significandParts(); | |||
| 1230 | partsCount = partCount(); | |||
| 1231 | ||||
| 1232 | APInt::tcFullMultiply(fullSignificand, lhsSignificand, | |||
| 1233 | rhs.significandParts(), partsCount, partsCount); | |||
| 1234 | ||||
| 1235 | lost_fraction = lfExactlyZero; | |||
| 1236 | omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1; | |||
| 1237 | exponent += rhs.exponent; | |||
| 1238 | ||||
| 1239 | // Assume the operands involved in the multiplication are single-precision | |||
| 1240 | // FP, and the two multiplicants are: | |||
| 1241 | // *this = a23 . a22 ... a0 * 2^e1 | |||
| 1242 | // rhs = b23 . b22 ... b0 * 2^e2 | |||
| 1243 | // the result of multiplication is: | |||
| 1244 | // *this = c48 c47 c46 . c45 ... c0 * 2^(e1+e2) | |||
| 1245 | // Note that there are three significant bits at the left-hand side of the | |||
| 1246 | // radix point: two for the multiplication, and an overflow bit for the | |||
| 1247 | // addition (that will always be zero at this point). Move the radix point | |||
| 1248 | // toward left by two bits, and adjust exponent accordingly. | |||
| 1249 | exponent += 2; | |||
| 1250 | ||||
| 1251 | if (addend.isNonZero()) { | |||
| 1252 | // The intermediate result of the multiplication has "2 * precision" | |||
| 1253 | // signicant bit; adjust the addend to be consistent with mul result. | |||
| 1254 | // | |||
| 1255 | Significand savedSignificand = significand; | |||
| 1256 | const fltSemantics *savedSemantics = semantics; | |||
| 1257 | fltSemantics extendedSemantics; | |||
| 1258 | opStatus status; | |||
| 1259 | unsigned int extendedPrecision; | |||
| 1260 | ||||
| 1261 | // Normalize our MSB to one below the top bit to allow for overflow. | |||
| 1262 | extendedPrecision = 2 * precision + 1; | |||
| 1263 | if (omsb != extendedPrecision - 1) { | |||
| 1264 | assert(extendedPrecision > omsb)(static_cast <bool> (extendedPrecision > omsb) ? void (0) : __assert_fail ("extendedPrecision > omsb", "llvm/lib/Support/APFloat.cpp" , 1264, __extension__ __PRETTY_FUNCTION__)); | |||
| 1265 | APInt::tcShiftLeft(fullSignificand, newPartsCount, | |||
| 1266 | (extendedPrecision - 1) - omsb); | |||
| 1267 | exponent -= (extendedPrecision - 1) - omsb; | |||
| 1268 | } | |||
| 1269 | ||||
| 1270 | /* Create new semantics. */ | |||
| 1271 | extendedSemantics = *semantics; | |||
| 1272 | extendedSemantics.precision = extendedPrecision; | |||
| 1273 | ||||
| 1274 | if (newPartsCount == 1) | |||
| 1275 | significand.part = fullSignificand[0]; | |||
| 1276 | else | |||
| 1277 | significand.parts = fullSignificand; | |||
| 1278 | semantics = &extendedSemantics; | |||
| 1279 | ||||
| 1280 | // Make a copy so we can convert it to the extended semantics. | |||
| 1281 | // Note that we cannot convert the addend directly, as the extendedSemantics | |||
| 1282 | // is a local variable (which we take a reference to). | |||
| 1283 | IEEEFloat extendedAddend(addend); | |||
| 1284 | status = extendedAddend.convert(extendedSemantics, rmTowardZero, &ignored); | |||
| 1285 | assert(status == opOK)(static_cast <bool> (status == opOK) ? void (0) : __assert_fail ("status == opOK", "llvm/lib/Support/APFloat.cpp", 1285, __extension__ __PRETTY_FUNCTION__)); | |||
| 1286 | (void)status; | |||
| 1287 | ||||
| 1288 | // Shift the significand of the addend right by one bit. This guarantees | |||
| 1289 | // that the high bit of the significand is zero (same as fullSignificand), | |||
| 1290 | // so the addition will overflow (if it does overflow at all) into the top bit. | |||
| 1291 | lost_fraction = extendedAddend.shiftSignificandRight(1); | |||
| 1292 | assert(lost_fraction == lfExactlyZero &&(static_cast <bool> (lost_fraction == lfExactlyZero && "Lost precision while shifting addend for fused-multiply-add." ) ? void (0) : __assert_fail ("lost_fraction == lfExactlyZero && \"Lost precision while shifting addend for fused-multiply-add.\"" , "llvm/lib/Support/APFloat.cpp", 1293, __extension__ __PRETTY_FUNCTION__ )) | |||
| 1293 | "Lost precision while shifting addend for fused-multiply-add.")(static_cast <bool> (lost_fraction == lfExactlyZero && "Lost precision while shifting addend for fused-multiply-add." ) ? void (0) : __assert_fail ("lost_fraction == lfExactlyZero && \"Lost precision while shifting addend for fused-multiply-add.\"" , "llvm/lib/Support/APFloat.cpp", 1293, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1294 | ||||
| 1295 | lost_fraction = addOrSubtractSignificand(extendedAddend, false); | |||
| 1296 | ||||
| 1297 | /* Restore our state. */ | |||
| 1298 | if (newPartsCount == 1) | |||
| 1299 | fullSignificand[0] = significand.part; | |||
| 1300 | significand = savedSignificand; | |||
| 1301 | semantics = savedSemantics; | |||
| 1302 | ||||
| 1303 | omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1; | |||
| 1304 | } | |||
| 1305 | ||||
| 1306 | // Convert the result having "2 * precision" significant-bits back to the one | |||
| 1307 | // having "precision" significant-bits. First, move the radix point from | |||
| 1308 | // poision "2*precision - 1" to "precision - 1". The exponent need to be | |||
| 1309 | // adjusted by "2*precision - 1" - "precision - 1" = "precision". | |||
| 1310 | exponent -= precision + 1; | |||
| 1311 | ||||
| 1312 | // In case MSB resides at the left-hand side of radix point, shift the | |||
| 1313 | // mantissa right by some amount to make sure the MSB reside right before | |||
| 1314 | // the radix point (i.e. "MSB . rest-significant-bits"). | |||
| 1315 | // | |||
| 1316 | // Note that the result is not normalized when "omsb < precision". So, the | |||
| 1317 | // caller needs to call IEEEFloat::normalize() if normalized value is | |||
| 1318 | // expected. | |||
| 1319 | if (omsb > precision) { | |||
| 1320 | unsigned int bits, significantParts; | |||
| 1321 | lostFraction lf; | |||
| 1322 | ||||
| 1323 | bits = omsb - precision; | |||
| 1324 | significantParts = partCountForBits(omsb); | |||
| 1325 | lf = shiftRight(fullSignificand, significantParts, bits); | |||
| 1326 | lost_fraction = combineLostFractions(lf, lost_fraction); | |||
| 1327 | exponent += bits; | |||
| 1328 | } | |||
| 1329 | ||||
| 1330 | APInt::tcAssign(lhsSignificand, fullSignificand, partsCount); | |||
| 1331 | ||||
| 1332 | if (newPartsCount > 4) | |||
| 1333 | delete [] fullSignificand; | |||
| 1334 | ||||
| 1335 | return lost_fraction; | |||
| 1336 | } | |||
| 1337 | ||||
| 1338 | lostFraction IEEEFloat::multiplySignificand(const IEEEFloat &rhs) { | |||
| 1339 | return multiplySignificand(rhs, IEEEFloat(*semantics)); | |||
| 1340 | } | |||
| 1341 | ||||
| 1342 | /* Multiply the significands of LHS and RHS to DST. */ | |||
| 1343 | lostFraction IEEEFloat::divideSignificand(const IEEEFloat &rhs) { | |||
| 1344 | unsigned int bit, i, partsCount; | |||
| 1345 | const integerPart *rhsSignificand; | |||
| 1346 | integerPart *lhsSignificand, *dividend, *divisor; | |||
| 1347 | integerPart scratch[4]; | |||
| 1348 | lostFraction lost_fraction; | |||
| 1349 | ||||
| 1350 | assert(semantics == rhs.semantics)(static_cast <bool> (semantics == rhs.semantics) ? void (0) : __assert_fail ("semantics == rhs.semantics", "llvm/lib/Support/APFloat.cpp" , 1350, __extension__ __PRETTY_FUNCTION__)); | |||
| 1351 | ||||
| 1352 | lhsSignificand = significandParts(); | |||
| 1353 | rhsSignificand = rhs.significandParts(); | |||
| 1354 | partsCount = partCount(); | |||
| 1355 | ||||
| 1356 | if (partsCount > 2) | |||
| 1357 | dividend = new integerPart[partsCount * 2]; | |||
| 1358 | else | |||
| 1359 | dividend = scratch; | |||
| 1360 | ||||
| 1361 | divisor = dividend + partsCount; | |||
| 1362 | ||||
| 1363 | /* Copy the dividend and divisor as they will be modified in-place. */ | |||
| 1364 | for (i = 0; i < partsCount; i++) { | |||
| 1365 | dividend[i] = lhsSignificand[i]; | |||
| 1366 | divisor[i] = rhsSignificand[i]; | |||
| 1367 | lhsSignificand[i] = 0; | |||
| 1368 | } | |||
| 1369 | ||||
| 1370 | exponent -= rhs.exponent; | |||
| 1371 | ||||
| 1372 | unsigned int precision = semantics->precision; | |||
| 1373 | ||||
| 1374 | /* Normalize the divisor. */ | |||
| 1375 | bit = precision - APInt::tcMSB(divisor, partsCount) - 1; | |||
| 1376 | if (bit) { | |||
| 1377 | exponent += bit; | |||
| 1378 | APInt::tcShiftLeft(divisor, partsCount, bit); | |||
| 1379 | } | |||
| 1380 | ||||
| 1381 | /* Normalize the dividend. */ | |||
| 1382 | bit = precision - APInt::tcMSB(dividend, partsCount) - 1; | |||
| 1383 | if (bit) { | |||
| 1384 | exponent -= bit; | |||
| 1385 | APInt::tcShiftLeft(dividend, partsCount, bit); | |||
| 1386 | } | |||
| 1387 | ||||
| 1388 | /* Ensure the dividend >= divisor initially for the loop below. | |||
| 1389 | Incidentally, this means that the division loop below is | |||
| 1390 | guaranteed to set the integer bit to one. */ | |||
| 1391 | if (APInt::tcCompare(dividend, divisor, partsCount) < 0) { | |||
| 1392 | exponent--; | |||
| 1393 | APInt::tcShiftLeft(dividend, partsCount, 1); | |||
| 1394 | assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0)(static_cast <bool> (APInt::tcCompare(dividend, divisor , partsCount) >= 0) ? void (0) : __assert_fail ("APInt::tcCompare(dividend, divisor, partsCount) >= 0" , "llvm/lib/Support/APFloat.cpp", 1394, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1395 | } | |||
| 1396 | ||||
| 1397 | /* Long division. */ | |||
| 1398 | for (bit = precision; bit; bit -= 1) { | |||
| 1399 | if (APInt::tcCompare(dividend, divisor, partsCount) >= 0) { | |||
| 1400 | APInt::tcSubtract(dividend, divisor, 0, partsCount); | |||
| 1401 | APInt::tcSetBit(lhsSignificand, bit - 1); | |||
| 1402 | } | |||
| 1403 | ||||
| 1404 | APInt::tcShiftLeft(dividend, partsCount, 1); | |||
| 1405 | } | |||
| 1406 | ||||
| 1407 | /* Figure out the lost fraction. */ | |||
| 1408 | int cmp = APInt::tcCompare(dividend, divisor, partsCount); | |||
| 1409 | ||||
| 1410 | if (cmp > 0) | |||
| 1411 | lost_fraction = lfMoreThanHalf; | |||
| 1412 | else if (cmp == 0) | |||
| 1413 | lost_fraction = lfExactlyHalf; | |||
| 1414 | else if (APInt::tcIsZero(dividend, partsCount)) | |||
| 1415 | lost_fraction = lfExactlyZero; | |||
| 1416 | else | |||
| 1417 | lost_fraction = lfLessThanHalf; | |||
| 1418 | ||||
| 1419 | if (partsCount > 2) | |||
| 1420 | delete [] dividend; | |||
| 1421 | ||||
| 1422 | return lost_fraction; | |||
| 1423 | } | |||
| 1424 | ||||
| 1425 | unsigned int IEEEFloat::significandMSB() const { | |||
| 1426 | return APInt::tcMSB(significandParts(), partCount()); | |||
| 1427 | } | |||
| 1428 | ||||
| 1429 | unsigned int IEEEFloat::significandLSB() const { | |||
| 1430 | return APInt::tcLSB(significandParts(), partCount()); | |||
| 1431 | } | |||
| 1432 | ||||
| 1433 | /* Note that a zero result is NOT normalized to fcZero. */ | |||
| 1434 | lostFraction IEEEFloat::shiftSignificandRight(unsigned int bits) { | |||
| 1435 | /* Our exponent should not overflow. */ | |||
| 1436 | assert((ExponentType) (exponent + bits) >= exponent)(static_cast <bool> ((ExponentType) (exponent + bits) >= exponent) ? void (0) : __assert_fail ("(ExponentType) (exponent + bits) >= exponent" , "llvm/lib/Support/APFloat.cpp", 1436, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1437 | ||||
| 1438 | exponent += bits; | |||
| 1439 | ||||
| 1440 | return shiftRight(significandParts(), partCount(), bits); | |||
| 1441 | } | |||
| 1442 | ||||
| 1443 | /* Shift the significand left BITS bits, subtract BITS from its exponent. */ | |||
| 1444 | void IEEEFloat::shiftSignificandLeft(unsigned int bits) { | |||
| 1445 | assert(bits < semantics->precision)(static_cast <bool> (bits < semantics->precision) ? void (0) : __assert_fail ("bits < semantics->precision" , "llvm/lib/Support/APFloat.cpp", 1445, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1446 | ||||
| 1447 | if (bits) { | |||
| 1448 | unsigned int partsCount = partCount(); | |||
| 1449 | ||||
| 1450 | APInt::tcShiftLeft(significandParts(), partsCount, bits); | |||
| 1451 | exponent -= bits; | |||
| 1452 | ||||
| 1453 | assert(!APInt::tcIsZero(significandParts(), partsCount))(static_cast <bool> (!APInt::tcIsZero(significandParts( ), partsCount)) ? void (0) : __assert_fail ("!APInt::tcIsZero(significandParts(), partsCount)" , "llvm/lib/Support/APFloat.cpp", 1453, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1454 | } | |||
| 1455 | } | |||
| 1456 | ||||
| 1457 | IEEEFloat::cmpResult | |||
| 1458 | IEEEFloat::compareAbsoluteValue(const IEEEFloat &rhs) const { | |||
| 1459 | int compare; | |||
| 1460 | ||||
| 1461 | assert(semantics == rhs.semantics)(static_cast <bool> (semantics == rhs.semantics) ? void (0) : __assert_fail ("semantics == rhs.semantics", "llvm/lib/Support/APFloat.cpp" , 1461, __extension__ __PRETTY_FUNCTION__)); | |||
| 1462 | assert(isFiniteNonZero())(static_cast <bool> (isFiniteNonZero()) ? void (0) : __assert_fail ("isFiniteNonZero()", "llvm/lib/Support/APFloat.cpp", 1462, __extension__ __PRETTY_FUNCTION__)); | |||
| 1463 | assert(rhs.isFiniteNonZero())(static_cast <bool> (rhs.isFiniteNonZero()) ? void (0) : __assert_fail ("rhs.isFiniteNonZero()", "llvm/lib/Support/APFloat.cpp" , 1463, __extension__ __PRETTY_FUNCTION__)); | |||
| 1464 | ||||
| 1465 | compare = exponent - rhs.exponent; | |||
| 1466 | ||||
| 1467 | /* If exponents are equal, do an unsigned bignum comparison of the | |||
| 1468 | significands. */ | |||
| 1469 | if (compare == 0) | |||
| 1470 | compare = APInt::tcCompare(significandParts(), rhs.significandParts(), | |||
| 1471 | partCount()); | |||
| 1472 | ||||
| 1473 | if (compare > 0) | |||
| 1474 | return cmpGreaterThan; | |||
| 1475 | else if (compare < 0) | |||
| 1476 | return cmpLessThan; | |||
| 1477 | else | |||
| 1478 | return cmpEqual; | |||
| 1479 | } | |||
| 1480 | ||||
| 1481 | /* Set the least significant BITS bits of a bignum, clear the | |||
| 1482 | rest. */ | |||
| 1483 | static void tcSetLeastSignificantBits(APInt::WordType *dst, unsigned parts, | |||
| 1484 | unsigned bits) { | |||
| 1485 | unsigned i = 0; | |||
| 1486 | while (bits > APInt::APINT_BITS_PER_WORD) { | |||
| 1487 | dst[i++] = ~(APInt::WordType)0; | |||
| 1488 | bits -= APInt::APINT_BITS_PER_WORD; | |||
| 1489 | } | |||
| 1490 | ||||
| 1491 | if (bits) | |||
| 1492 | dst[i++] = ~(APInt::WordType)0 >> (APInt::APINT_BITS_PER_WORD - bits); | |||
| 1493 | ||||
| 1494 | while (i < parts) | |||
| 1495 | dst[i++] = 0; | |||
| 1496 | } | |||
| 1497 | ||||
| 1498 | /* Handle overflow. Sign is preserved. We either become infinity or | |||
| 1499 | the largest finite number. */ | |||
| 1500 | IEEEFloat::opStatus IEEEFloat::handleOverflow(roundingMode rounding_mode) { | |||
| 1501 | /* Infinity? */ | |||
| 1502 | if (rounding_mode == rmNearestTiesToEven || | |||
| 1503 | rounding_mode == rmNearestTiesToAway || | |||
| 1504 | (rounding_mode == rmTowardPositive && !sign) || | |||
| 1505 | (rounding_mode == rmTowardNegative && sign)) { | |||
| 1506 | if (semantics->nonFiniteBehavior == fltNonfiniteBehavior::NanOnly) | |||
| 1507 | makeNaN(false, sign); | |||
| 1508 | else | |||
| 1509 | category = fcInfinity; | |||
| 1510 | return (opStatus) (opOverflow | opInexact); | |||
| 1511 | } | |||
| 1512 | ||||
| 1513 | /* Otherwise we become the largest finite number. */ | |||
| 1514 | category = fcNormal; | |||
| 1515 | exponent = semantics->maxExponent; | |||
| 1516 | tcSetLeastSignificantBits(significandParts(), partCount(), | |||
| 1517 | semantics->precision); | |||
| 1518 | if (semantics->nonFiniteBehavior == fltNonfiniteBehavior::NanOnly && | |||
| 1519 | semantics->nanEncoding == fltNanEncoding::AllOnes) | |||
| 1520 | APInt::tcClearBit(significandParts(), 0); | |||
| 1521 | ||||
| 1522 | return opInexact; | |||
| 1523 | } | |||
| 1524 | ||||
| 1525 | /* Returns TRUE if, when truncating the current number, with BIT the | |||
| 1526 | new LSB, with the given lost fraction and rounding mode, the result | |||
| 1527 | would need to be rounded away from zero (i.e., by increasing the | |||
| 1528 | signficand). This routine must work for fcZero of both signs, and | |||
| 1529 | fcNormal numbers. */ | |||
| 1530 | bool IEEEFloat::roundAwayFromZero(roundingMode rounding_mode, | |||
| 1531 | lostFraction lost_fraction, | |||
| 1532 | unsigned int bit) const { | |||
| 1533 | /* NaNs and infinities should not have lost fractions. */ | |||
| 1534 | assert(isFiniteNonZero() || category == fcZero)(static_cast <bool> (isFiniteNonZero() || category == fcZero ) ? void (0) : __assert_fail ("isFiniteNonZero() || category == fcZero" , "llvm/lib/Support/APFloat.cpp", 1534, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1535 | ||||
| 1536 | /* Current callers never pass this so we don't handle it. */ | |||
| 1537 | assert(lost_fraction != lfExactlyZero)(static_cast <bool> (lost_fraction != lfExactlyZero) ? void (0) : __assert_fail ("lost_fraction != lfExactlyZero", "llvm/lib/Support/APFloat.cpp" , 1537, __extension__ __PRETTY_FUNCTION__)); | |||
| 1538 | ||||
| 1539 | switch (rounding_mode) { | |||
| 1540 | case rmNearestTiesToAway: | |||
| 1541 | return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf; | |||
| 1542 | ||||
| 1543 | case rmNearestTiesToEven: | |||
| 1544 | if (lost_fraction == lfMoreThanHalf) | |||
| 1545 | return true; | |||
| 1546 | ||||
| 1547 | /* Our zeroes don't have a significand to test. */ | |||
| 1548 | if (lost_fraction == lfExactlyHalf && category != fcZero) | |||
| 1549 | return APInt::tcExtractBit(significandParts(), bit); | |||
| 1550 | ||||
| 1551 | return false; | |||
| 1552 | ||||
| 1553 | case rmTowardZero: | |||
| 1554 | return false; | |||
| 1555 | ||||
| 1556 | case rmTowardPositive: | |||
| 1557 | return !sign; | |||
| 1558 | ||||
| 1559 | case rmTowardNegative: | |||
| 1560 | return sign; | |||
| 1561 | ||||
| 1562 | default: | |||
| 1563 | break; | |||
| 1564 | } | |||
| 1565 | llvm_unreachable("Invalid rounding mode found")::llvm::llvm_unreachable_internal("Invalid rounding mode found" , "llvm/lib/Support/APFloat.cpp", 1565); | |||
| 1566 | } | |||
| 1567 | ||||
| 1568 | IEEEFloat::opStatus IEEEFloat::normalize(roundingMode rounding_mode, | |||
| 1569 | lostFraction lost_fraction) { | |||
| 1570 | unsigned int omsb; /* One, not zero, based MSB. */ | |||
| 1571 | int exponentChange; | |||
| 1572 | ||||
| 1573 | if (!isFiniteNonZero()) | |||
| 1574 | return opOK; | |||
| 1575 | ||||
| 1576 | /* Before rounding normalize the exponent of fcNormal numbers. */ | |||
| 1577 | omsb = significandMSB() + 1; | |||
| 1578 | ||||
| 1579 | if (omsb) { | |||
| 1580 | /* OMSB is numbered from 1. We want to place it in the integer | |||
| 1581 | bit numbered PRECISION if possible, with a compensating change in | |||
| 1582 | the exponent. */ | |||
| 1583 | exponentChange = omsb - semantics->precision; | |||
| 1584 | ||||
| 1585 | /* If the resulting exponent is too high, overflow according to | |||
| 1586 | the rounding mode. */ | |||
| 1587 | if (exponent + exponentChange > semantics->maxExponent) | |||
| 1588 | return handleOverflow(rounding_mode); | |||
| 1589 | ||||
| 1590 | /* Subnormal numbers have exponent minExponent, and their MSB | |||
| 1591 | is forced based on that. */ | |||
| 1592 | if (exponent + exponentChange < semantics->minExponent) | |||
| 1593 | exponentChange = semantics->minExponent - exponent; | |||
| 1594 | ||||
| 1595 | /* Shifting left is easy as we don't lose precision. */ | |||
| 1596 | if (exponentChange < 0) { | |||
| 1597 | assert(lost_fraction == lfExactlyZero)(static_cast <bool> (lost_fraction == lfExactlyZero) ? void (0) : __assert_fail ("lost_fraction == lfExactlyZero", "llvm/lib/Support/APFloat.cpp" , 1597, __extension__ __PRETTY_FUNCTION__)); | |||
| 1598 | ||||
| 1599 | shiftSignificandLeft(-exponentChange); | |||
| 1600 | ||||
| 1601 | return opOK; | |||
| 1602 | } | |||
| 1603 | ||||
| 1604 | if (exponentChange > 0) { | |||
| 1605 | lostFraction lf; | |||
| 1606 | ||||
| 1607 | /* Shift right and capture any new lost fraction. */ | |||
| 1608 | lf = shiftSignificandRight(exponentChange); | |||
| 1609 | ||||
| 1610 | lost_fraction = combineLostFractions(lf, lost_fraction); | |||
| 1611 | ||||
| 1612 | /* Keep OMSB up-to-date. */ | |||
| 1613 | if (omsb > (unsigned) exponentChange) | |||
| 1614 | omsb -= exponentChange; | |||
| 1615 | else | |||
| 1616 | omsb = 0; | |||
| 1617 | } | |||
| 1618 | } | |||
| 1619 | ||||
| 1620 | // The all-ones values is an overflow if NaN is all ones. If NaN is | |||
| 1621 | // represented by negative zero, then it is a valid finite value. | |||
| 1622 | if (semantics->nonFiniteBehavior == fltNonfiniteBehavior::NanOnly && | |||
| 1623 | semantics->nanEncoding == fltNanEncoding::AllOnes && | |||
| 1624 | exponent == semantics->maxExponent && isSignificandAllOnes()) | |||
| 1625 | return handleOverflow(rounding_mode); | |||
| 1626 | ||||
| 1627 | /* Now round the number according to rounding_mode given the lost | |||
| 1628 | fraction. */ | |||
| 1629 | ||||
| 1630 | /* As specified in IEEE 754, since we do not trap we do not report | |||
| 1631 | underflow for exact results. */ | |||
| 1632 | if (lost_fraction == lfExactlyZero) { | |||
| 1633 | /* Canonicalize zeroes. */ | |||
| 1634 | if (omsb == 0) { | |||
| 1635 | category = fcZero; | |||
| 1636 | if (semantics->nanEncoding == fltNanEncoding::NegativeZero) | |||
| 1637 | sign = false; | |||
| 1638 | } | |||
| 1639 | ||||
| 1640 | return opOK; | |||
| 1641 | } | |||
| 1642 | ||||
| 1643 | /* Increment the significand if we're rounding away from zero. */ | |||
| 1644 | if (roundAwayFromZero(rounding_mode, lost_fraction, 0)) { | |||
| 1645 | if (omsb == 0) | |||
| 1646 | exponent = semantics->minExponent; | |||
| 1647 | ||||
| 1648 | incrementSignificand(); | |||
| 1649 | omsb = significandMSB() + 1; | |||
| 1650 | ||||
| 1651 | /* Did the significand increment overflow? */ | |||
| 1652 | if (omsb == (unsigned) semantics->precision + 1) { | |||
| 1653 | /* Renormalize by incrementing the exponent and shifting our | |||
| 1654 | significand right one. However if we already have the | |||
| 1655 | maximum exponent we overflow to infinity. */ | |||
| 1656 | if (exponent == semantics->maxExponent) | |||
| 1657 | // Invoke overflow handling with a rounding mode that will guarantee | |||
| 1658 | // that the result gets turned into the correct infinity representation. | |||
| 1659 | // This is needed instead of just setting the category to infinity to | |||
| 1660 | // account for 8-bit floating point types that have no inf, only NaN. | |||
| 1661 | return handleOverflow(sign ? rmTowardNegative : rmTowardPositive); | |||
| 1662 | ||||
| 1663 | shiftSignificandRight(1); | |||
| 1664 | ||||
| 1665 | return opInexact; | |||
| 1666 | } | |||
| 1667 | ||||
| 1668 | // The all-ones values is an overflow if NaN is all ones. If NaN is | |||
| 1669 | // represented by negative zero, then it is a valid finite value. | |||
| 1670 | if (semantics->nonFiniteBehavior == fltNonfiniteBehavior::NanOnly && | |||
| 1671 | semantics->nanEncoding == fltNanEncoding::AllOnes && | |||
| 1672 | exponent == semantics->maxExponent && isSignificandAllOnes()) | |||
| 1673 | return handleOverflow(rounding_mode); | |||
| 1674 | } | |||
| 1675 | ||||
| 1676 | /* The normal case - we were and are not denormal, and any | |||
| 1677 | significand increment above didn't overflow. */ | |||
| 1678 | if (omsb == semantics->precision) | |||
| 1679 | return opInexact; | |||
| 1680 | ||||
| 1681 | /* We have a non-zero denormal. */ | |||
| 1682 | assert(omsb < semantics->precision)(static_cast <bool> (omsb < semantics->precision) ? void (0) : __assert_fail ("omsb < semantics->precision" , "llvm/lib/Support/APFloat.cpp", 1682, __extension__ __PRETTY_FUNCTION__ )); | |||
| 1683 | ||||
| 1684 | /* Canonicalize zeroes. */ | |||
| 1685 | if (omsb == 0) { | |||
| 1686 | category = fcZero; | |||
| 1687 | if (semantics->nanEncoding == fltNanEncoding::NegativeZero) | |||
| 1688 | sign = false; | |||
| 1689 | } | |||
| 1690 | ||||
| 1691 | /* The fcZero case is a denormal that underflowed to zero. */ | |||
| 1692 | return (opStatus) (opUnderflow | opInexact); | |||
| 1693 | } | |||
| 1694 | ||||
| 1695 | IEEEFloat::opStatus IEEEFloat::addOrSubtractSpecials(const IEEEFloat &rhs, | |||
| 1696 | bool subtract) { | |||
| 1697 | switch (PackCategoriesIntoKey(category, rhs.category)((category) * 4 + (rhs.category))) { | |||
| 1698 | default: | |||
| 1699 | llvm_unreachable(nullptr)::llvm::llvm_unreachable_internal(nullptr, "llvm/lib/Support/APFloat.cpp" , 1699); | |||
| 1700 | ||||
| 1701 | case PackCategoriesIntoKey(fcZero, fcNaN)((fcZero) * 4 + (fcNaN)): | |||
| 1702 | case PackCategoriesIntoKey(fcNormal, fcNaN)((fcNormal) * 4 + (fcNaN)): | |||
| 1703 | case PackCategoriesIntoKey(fcInfinity, fcNaN)((fcInfinity) * 4 + (fcNaN)): | |||
| 1704 | assign(rhs); | |||
| 1705 | [[fallthrough]]; | |||
| 1706 | case PackCategoriesIntoKey(fcNaN, fcZero)((fcNaN) * 4 + (fcZero)): | |||
| 1707 | case PackCategoriesIntoKey(fcNaN, fcNormal)((fcNaN) * 4 + (fcNormal)): | |||
| 1708 | case PackCategoriesIntoKey(fcNaN, fcInfinity)((fcNaN) * 4 + (fcInfinity)): | |||
| 1709 | case PackCategoriesIntoKey(fcNaN, fcNaN)((fcNaN) * 4 + (fcNaN)): | |||
| 1710 | if (isSignaling()) { | |||
| 1711 | makeQuiet(); | |||
| 1712 | return opInvalidOp; | |||
| 1713 | } | |||
| 1714 | return rhs.isSignaling() ? opInvalidOp : opOK; | |||
| 1715 | ||||
| 1716 | case PackCategoriesIntoKey(fcNormal, fcZero)((fcNormal) * 4 + (fcZero)): | |||
| 1717 | case PackCategoriesIntoKey(fcInfinity, fcNormal)((fcInfinity) * 4 + (fcNormal)): | |||
| 1718 | case PackCategoriesIntoKey(fcInfinity, fcZero)((fcInfinity) * 4 + (fcZero)): | |||
| 1719 | return opOK; | |||
| 1720 | ||||
| 1721 | case PackCategoriesIntoKey(fcNormal, fcInfinity)((fcNormal) * 4 + (fcInfinity)): | |||
| 1722 | case PackCategoriesIntoKey(fcZero, fcInfinity)((fcZero) * 4 + (fcInfinity)): | |||
| 1723 | category = fcInfinity; | |||
| 1724 | sign = rhs.sign ^ subtract; | |||
| 1725 | return opOK; | |||
| 1726 | ||||
| 1727 | case PackCategoriesIntoKey(fcZero, fcNormal)((fcZero) * 4 + (fcNormal)): | |||
| 1728 | assign(rhs); | |||
| 1729 | sign = rhs.sign ^ subtract; | |||
| 1730 | return opOK; | |||
| 1731 | ||||
| 1732 | case PackCategoriesIntoKey(fcZero, fcZero)((fcZero) * 4 + (fcZero)): | |||
| 1733 | /* Sign depends on rounding mode; handled by caller. */ | |||
| 1734 | return opOK; | |||
| 1735 | ||||
| 1736 | case PackCategoriesIntoKey(fcInfinity, fcInfinity)((fcInfinity) * 4 + (fcInfinity)): | |||
| 1737 | /* Differently signed infinities can only be validly | |||
| 1738 | subtracted. */ | |||
| 1739 | if (((sign ^ rhs.sign)!=0) != subtract) { | |||
| 1740 | makeNaN(); | |||
| 1741 | return opInvalidOp; | |||
| 1742 | } | |||
| 1743 | ||||
| 1744 | return opOK; | |||
| 1745 | ||||
| 1746 | case PackCategoriesIntoKey(fcNormal, fcNormal)((fcNormal) * 4 + (fcNormal)): | |||
| 1747 | return opDivByZero; | |||
| 1748 | } | |||
| 1749 | } | |||
| 1750 | ||||
| 1751 | /* Add or subtract two normal numbers. */ | |||
| 1752 | lostFraction IEEEFloat::addOrSubtractSignificand(const IEEEFloat &rhs, | |||
| 1753 | bool subtract) { | |||
| 1754 | integerPart carry; | |||
| 1755 | lostFraction lost_fraction; | |||
| 1756 | int bits; | |||
| 1757 | ||||
| 1758 | /* Determine if the operation on the absolute values is effectively | |||
| 1759 | an addition or subtraction. */ | |||
| 1760 | subtract ^= static_cast<bool>(sign ^ rhs.sign); | |||
| 1761 | ||||
| 1762 | /* Are we bigger exponent-wise than the RHS? */ | |||
| 1763 | bits = exponent - rhs.exponent; | |||
| 1764 | ||||
| 1765 | /* Subtraction is more subtle than one might naively expect. */ | |||
| 1766 | if (subtract) { | |||
| 1767 | IEEEFloat temp_rhs(rhs); | |||
| 1768 | ||||
| 1769 | if (bits == 0) | |||
| 1770 | lost_fraction = lfExactlyZero; | |||
| 1771 | else if (bits > 0) { | |||
| 1772 | lost_fraction = temp_rhs.shiftSignificandRight(bits - 1); | |||
| 1773 | shiftSignificandLeft(1); | |||
| 1774 | } else { | |||
| 1775 | lost_fraction = shiftSignificandRight(-bits - 1); | |||
| 1776 | temp_rhs.shiftSignificandLeft(1); | |||
| 1777 | } | |||
| 1778 | ||||
| 1779 | // Should we reverse the subtraction. | |||
| 1780 | if (compareAbsoluteValue(temp_rhs) == cmpLessThan) { | |||
| 1781 | carry = temp_rhs.subtractSignificand | |||
| 1782 | (*this, lost_fraction != lfExactlyZero); | |||
| 1783 | copySignificand(temp_rhs); | |||
| 1784 | sign = !sign; | |||
| 1785 | } else { | |||
| 1786 | carry = subtractSignificand | |||
| 1787 | (temp_rhs, lost_fraction != lfExactlyZero); | |||
| 1788 | } | |||
| 1789 | ||||
| 1790 | /* Invert the lost fraction - it was on the RHS and | |||
| 1791 | subtracted. */ | |||
| 1792 | if (lost_fraction == lfLessThanHalf) | |||
| 1793 | lost_fraction = lfMoreThanHalf; | |||
| 1794 | else if (lost_fraction == lfMoreThanHalf) | |||
| 1795 | lost_fraction = lfLessThanHalf; | |||
| 1796 | ||||
| 1797 | /* The code above is intended to ensure that no borrow is | |||
| 1798 | necessary. */ | |||
| 1799 | assert(!carry)(static_cast <bool> (!carry) ? void (0) : __assert_fail ("!carry", "llvm/lib/Support/APFloat.cpp", 1799, __extension__ __PRETTY_FUNCTION__)); | |||
| 1800 | (void)carry; | |||
| 1801 | } else { | |||
| 1802 | if (bits > 0) { | |||
| 1803 | IEEEFloat temp_rhs(rhs); | |||
| 1804 | ||||
| 1805 | lost_fraction = temp_rhs.shiftSignificandRight(bits); | |||
| 1806 | carry = addSignificand(temp_rhs); | |||
| 1807 | } else { | |||
| 1808 | lost_fraction = shiftSignificandRight(-bits); | |||
| 1809 | carry = addSignificand(rhs); | |||
| 1810 | } | |||
| 1811 | ||||
| 1812 | /* We have a guard bit; generating a carry cannot happen. */ | |||
| 1813 | assert(!carry)(static_cast <bool> (!carry) ? void (0) : __assert_fail ("!carry", "llvm/lib/Support/APFloat.cpp", 1813, __extension__ __PRETTY_FUNCTION__)); | |||
| 1814 | (void)carry; | |||
| 1815 | } | |||
| 1816 | ||||
| 1817 | return lost_fraction; | |||
| 1818 | } | |||
| 1819 | ||||
| 1820 | IEEEFloat::opStatus IEEEFloat::multiplySpecials(const IEEEFloat &rhs) { | |||
| 1821 | switch (PackCategoriesIntoKey(category, rhs.category)((category) * 4 + (rhs.category))) { | |||
| 1822 | default: | |||
| 1823 | llvm_unreachable(nullptr)::llvm::llvm_unreachable_internal(nullptr, "llvm/lib/Support/APFloat.cpp" , 1823); | |||
| 1824 | ||||
| 1825 | case PackCategoriesIntoKey(fcZero, fcNaN)((fcZero) * 4 + (fcNaN)): | |||
| 1826 | case PackCategoriesIntoKey(fcNormal, fcNaN)((fcNormal) * 4 + (fcNaN)): | |||
| 1827 | case PackCategoriesIntoKey(fcInfinity, fcNaN)((fcInfinity) * 4 + (fcNaN)): | |||
| 1828 | assign(rhs); | |||
| 1829 | sign = false; | |||
| 1830 | [[fallthrough]]; | |||
| 1831 | case PackCategoriesIntoKey(fcNaN, fcZero)((fcNaN) * 4 + (fcZero)): | |||
| 1832 | case PackCategoriesIntoKey(fcNaN, fcNormal)((fcNaN) * 4 + (fcNormal)): | |||
| 1833 | case PackCategoriesIntoKey(fcNaN, fcInfinity)((fcNaN) * 4 + (fcInfinity)): | |||
| 1834 | case PackCategoriesIntoKey(fcNaN, fcNaN)((fcNaN) * 4 + (fcNaN)): | |||
| 1835 | sign ^= rhs.sign; // restore the original sign | |||
| 1836 | if (isSignaling()) { | |||
| 1837 | makeQuiet(); | |||
| 1838 | return opInvalidOp; | |||
| 1839 | } | |||
| 1840 | return rhs.isSignaling() ? opInvalidOp : opOK; | |||
| 1841 | ||||
| 1842 | case PackCategoriesIntoKey(fcNormal, fcInfinity)((fcNormal) * 4 + (fcInfinity)): | |||
| 1843 | case PackCategoriesIntoKey(fcInfinity, fcNormal)((fcInfinity) * 4 + (fcNormal)): | |||
| 1844 | case PackCategoriesIntoKey(fcInfinity, fcInfinity)((fcInfinity) * 4 + (fcInfinity)): | |||
| 1845 | category = fcInfinity; | |||
| 1846 | return opOK; | |||
| 1847 | ||||
| 1848 | case PackCategoriesIntoKey(fcZero, fcNormal)((fcZero) * 4 + (fcNormal)): | |||
| 1849 | case PackCategoriesIntoKey(fcNormal, fcZero)((fcNormal) * 4 + (fcZero)): | |||
| 1850 | case PackCategoriesIntoKey(fcZero, fcZero)((fcZero) * 4 + (fcZero)): | |||
| 1851 | category = fcZero; | |||
| 1852 | return opOK; | |||
| 1853 | ||||
| 1854 | case PackCategoriesIntoKey(fcZero, fcInfinity)((fcZero) * 4 + (fcInfinity)): | |||
| 1855 | case PackCategoriesIntoKey(fcInfinity, fcZero)((fcInfinity) * 4 + (fcZero)): | |||
| 1856 | makeNaN(); | |||
| 1857 | return opInvalidOp; | |||
| 1858 | ||||
| 1859 | case PackCategoriesIntoKey(fcNormal, fcNormal)((fcNormal) * 4 + (fcNormal)): | |||
| 1860 | return opOK; | |||
| 1861 | } | |||
| 1862 | } | |||
| 1863 | ||||
| 1864 | IEEEFloat::opStatus IEEEFloat::divideSpecials(const IEEEFloat &rhs) { | |||
| 1865 | switch (PackCategoriesIntoKey(category, rhs.category)((category) * 4 + (rhs.category))) { | |||
| 1866 | default: | |||
| 1867 | llvm_unreachable(nullptr)::llvm::llvm_unreachable_internal(nullptr, "llvm/lib/Support/APFloat.cpp" , 1867); | |||
| 1868 | ||||
| 1869 | case PackCategoriesIntoKey(fcZero, fcNaN)((fcZero) * 4 + (fcNaN)): | |||
| 1870 | case PackCategoriesIntoKey(fcNormal, fcNaN)((fcNormal) * 4 + (fcNaN)): | |||
| 1871 | case PackCategoriesIntoKey(fcInfinity, fcNaN)((fcInfinity) * 4 + (fcNaN)): | |||
| 1872 | assign(rhs); | |||
| 1873 | sign = false; | |||
| 1874 | [[fallthrough]]; | |||
| 1875 | case PackCategoriesIntoKey(fcNaN, fcZero)((fcNaN) * 4 + (fcZero)): | |||
| 1876 | case PackCategoriesIntoKey(fcNaN, fcNormal)((fcNaN) * 4 + (fcNormal)): | |||
| 1877 | case PackCategoriesIntoKey(fcNaN, fcInfinity)((fcNaN) * 4 + (fcInfinity)): | |||
| 1878 | case PackCategoriesIntoKey(fcNaN, fcNaN)((fcNaN) * 4 + (fcNaN)): | |||
| 1879 | sign ^= rhs.sign; // restore the original sign | |||
| 1880 | if (isSignaling()) { | |||
| 1881 | makeQuiet(); | |||
| 1882 | return opInvalidOp; | |||
| 1883 | } | |||
| 1884 | return rhs.isSignaling() ? opInvalidOp : opOK; | |||
| 1885 | ||||
| 1886 | case PackCategoriesIntoKey(fcInfinity, fcZero)((fcInfinity) * 4 + (fcZero)): | |||
| 1887 | case PackCategoriesIntoKey(fcInfinity, fcNormal)((fcInfinity) * 4 + (fcNormal)): | |||
| 1888 | case PackCategoriesIntoKey(fcZero, fcInfinity)((fcZero) * 4 + (fcInfinity)): | |||
| 1889 | case PackCategoriesIntoKey(fcZero, fcNormal)((fcZero) * 4 + (fcNormal)): | |||
| 1890 | return opOK; | |||
| 1891 | ||||
| 1892 | case PackCategoriesIntoKey(fcNormal, fcInfinity)((fcNormal) * 4 + (fcInfinity)): | |||
| 1893 | category = fcZero; | |||
| 1894 | return opOK; | |||
| 1895 | ||||
| 1896 | case PackCategoriesIntoKey(fcNormal, fcZero)((fcNormal) * 4 + (fcZero)): | |||
| 1897 | if (semantics->nonFiniteBehavior == fltNonfiniteBehavior::NanOnly) | |||
| 1898 | makeNaN(false, sign); | |||
| 1899 | else | |||
| 1900 | category = fcInfinity; | |||
| 1901 | return opDivByZero; | |||
| 1902 | ||||
| 1903 | case PackCategoriesIntoKey(fcInfinity, fcInfinity)((fcInfinity) * 4 + (fcInfinity)): | |||
| 1904 | case PackCategoriesIntoKey(fcZero, fcZero)((fcZero) * 4 + (fcZero)): | |||
| 1905 | makeNaN(); | |||
| 1906 | return opInvalidOp; | |||
| 1907 | ||||
| 1908 | case PackCategoriesIntoKey(fcNormal, fcNormal)((fcNormal) * 4 + (fcNormal)): | |||
| 1909 | return opOK; | |||
| 1910 | } | |||
| 1911 | } | |||
| 1912 | ||||
| 1913 | IEEEFloat::opStatus IEEEFloat::modSpecials(const IEEEFloat &rhs) { | |||
| 1914 | switch (PackCategoriesIntoKey(category, rhs.category)((category) * 4 + (rhs.category))) { | |||
| 1915 | default: | |||
| 1916 | llvm_unreachable(nullptr)::llvm::llvm_unreachable_internal(nullptr, "llvm/lib/Support/APFloat.cpp" , 1916); | |||
| 1917 | ||||
| 1918 | case PackCategoriesIntoKey(fcZero, fcNaN)((fcZero) * 4 + (fcNaN)): | |||
| 1919 | case PackCategoriesIntoKey(fcNormal, fcNaN)((fcNormal) * 4 + (fcNaN)): | |||
| 1920 | case PackCategoriesIntoKey(fcInfinity, fcNaN)((fcInfinity) * 4 + (fcNaN)): | |||
| 1921 | assign(rhs); | |||
| 1922 | [[fallthrough]]; | |||
| 1923 | case PackCategoriesIntoKey(fcNaN, fcZero)((fcNaN) * 4 + (fcZero)): | |||
| 1924 | case PackCategoriesIntoKey(fcNaN, fcNormal)((fcNaN) * 4 + (fcNormal)): | |||
| 1925 | case PackCategoriesIntoKey(fcNaN, fcInfinity)((fcNaN) * 4 + (fcInfinity)): | |||
| 1926 | case PackCategoriesIntoKey(fcNaN, fcNaN)((fcNaN) * 4 + (fcNaN)): | |||
| 1927 | if (isSignaling()) { | |||
| 1928 | makeQuiet(); | |||
| 1929 | return opInvalidOp; | |||
| 1930 | } | |||
| 1931 | return rhs.isSignaling() ? opInvalidOp : opOK; | |||
| 1932 | ||||
| 1933 | case PackCategoriesIntoKey(fcZero, fcInfinity)((fcZero) * 4 + (fcInfinity)): | |||
| 1934 | case PackCategoriesIntoKey(fcZero, fcNormal)((fcZero) * 4 + (fcNormal)): | |||
| 1935 | case PackCategoriesIntoKey(fcNormal, fcInfinity)((fcNormal) * 4 + (fcInfinity)): | |||
| 1936 | return opOK; | |||
| 1937 | ||||
| 1938 | case PackCategoriesIntoKey(fcNormal, fcZero)((fcNormal) * 4 + (fcZero)): | |||
| 1939 | case PackCategoriesIntoKey(fcInfinity, fcZero)((fcInfinity) * 4 + (fcZero)): | |||
| 1940 | case PackCategoriesIntoKey(fcInfinity, fcNormal)((fcInfinity) * 4 + (fcNormal)): | |||
| 1941 | case PackCategoriesIntoKey(fcInfinity, fcInfinity)((fcInfinity) * 4 + (fcInfinity)): | |||
| 1942 | case PackCategoriesIntoKey(fcZero, fcZero)((fcZero) * 4 + (fcZero)): | |||
| 1943 | makeNaN(); | |||
| 1944 | return opInvalidOp; | |||
| 1945 | ||||
| 1946 | case PackCategoriesIntoKey(fcNormal, fcNormal)((fcNormal) * 4 + (fcNormal)): | |||
| 1947 | return opOK; | |||
| 1948 | } | |||
| 1949 | } | |||
| 1950 | ||||
| 1951 | IEEEFloat::opStatus IEEEFloat::remainderSpecials(const IEEEFloat &rhs) { | |||
| 1952 | switch (PackCategoriesIntoKey(category, rhs.category)((category) * 4 + (rhs.category))) { | |||
| 1953 | default: | |||
| 1954 | llvm_unreachable(nullptr)::llvm::llvm_unreachable_internal(nullptr, "llvm/lib/Support/APFloat.cpp" , 1954); | |||
| 1955 | ||||
| 1956 | case PackCategoriesIntoKey(fcZero, fcNaN)((fcZero) * 4 + (fcNaN)): | |||
| 1957 | case PackCategoriesIntoKey(fcNormal, fcNaN)((fcNormal) * 4 + (fcNaN)): | |||
| 1958 | case PackCategoriesIntoKey(fcInfinity, fcNaN)((fcInfinity) * 4 + (fcNaN)): | |||
| 1959 | assign(rhs); | |||
| 1960 | [[fallthrough]]; | |||
| 1961 | case PackCategoriesIntoKey(fcNaN, fcZero)((fcNaN) * 4 + (fcZero)): | |||
| 1962 | case PackCategoriesIntoKey(fcNaN, fcNormal)((fcNaN) * 4 + (fcNormal)): | |||
| 1963 | case PackCategoriesIntoKey(fcNaN, fcInfinity)((fcNaN) * 4 + (fcInfinity)): | |||
| 1964 | case PackCategoriesIntoKey(fcNaN, fcNaN)((fcNaN) * 4 + (fcNaN)): | |||
| 1965 | if (isSignaling()) { | |||
| 1966 | makeQuiet(); | |||
| 1967 | return opInvalidOp; | |||
| 1968 | } | |||
| 1969 | return rhs.isSignaling() ? opInvalidOp : opOK; | |||
| 1970 | ||||
| 1971 | case PackCategoriesIntoKey(fcZero, fcInfinity)((fcZero) * 4 + (fcInfinity)): | |||
| 1972 | case PackCategoriesIntoKey(fcZero, fcNormal)((fcZero) * 4 + (fcNormal)): | |||
| 1973 | case PackCategoriesIntoKey(fcNormal, fcInfinity)((fcNormal) * 4 + (fcInfinity)): | |||
| 1974 | return opOK; | |||
| 1975 | ||||
| 1976 | case PackCategoriesIntoKey(fcNormal, fcZero)((fcNormal) * 4 + (fcZero)): | |||
| 1977 | case PackCategoriesIntoKey(fcInfinity, fcZero)((fcInfinity) * 4 + (fcZero)): | |||
| 1978 | case PackCategoriesIntoKey(fcInfinity, fcNormal)((fcInfinity) * 4 + (fcNormal)): | |||
| 1979 | case PackCategoriesIntoKey(fcInfinity, fcInfinity)((fcInfinity) * 4 + (fcInfinity)): | |||
| 1980 | case PackCategoriesIntoKey(fcZero, fcZero)((fcZero) * 4 + (fcZero)): | |||
| 1981 | makeNaN(); | |||
| 1982 | return opInvalidOp; | |||
| 1983 | ||||
| 1984 | case PackCategoriesIntoKey(fcNormal, fcNormal)((fcNormal) * 4 + (fcNormal)): | |||
| 1985 | return opDivByZero; // fake status, indicating this is not a special case | |||
| 1986 | } | |||
| 1987 | } | |||
| 1988 | ||||
| 1989 | /* Change sign. */ | |||
| 1990 | void IEEEFloat::changeSign() { | |||
| 1991 | // With NaN-as-negative-zero, neither NaN or negative zero can change | |||
| 1992 | // their signs. | |||
| 1993 | if (semantics->nanEncoding == fltNanEncoding::NegativeZero && | |||
| 1994 | (isZero() || isNaN())) | |||
| 1995 | return; | |||
| 1996 | /* Look mummy, this one's easy. */ | |||
| 1997 | sign = !sign; | |||
| 1998 | } | |||
| 1999 | ||||
| 2000 | /* Normalized addition or subtraction. */ | |||
| 2001 | IEEEFloat::opStatus IEEEFloat::addOrSubtract(const IEEEFloat &rhs, | |||
| 2002 | roundingMode rounding_mode, | |||
| 2003 | bool subtract) { | |||
| 2004 | opStatus fs; | |||
| 2005 | ||||
| 2006 | fs = addOrSubtractSpecials(rhs, subtract); | |||
| 2007 | ||||
| 2008 | /* This return code means it was not a simple case. */ | |||
| 2009 | if (fs == opDivByZero) { | |||
| 2010 | lostFraction lost_fraction; | |||
| 2011 | ||||
| 2012 | lost_fraction = addOrSubtractSignificand(rhs, subtract); | |||
| 2013 | fs = normalize(rounding_mode, lost_fraction); | |||
| 2014 | ||||
| 2015 | /* Can only be zero if we lost no fraction. */ | |||
| 2016 | assert(category != fcZero || lost_fraction == lfExactlyZero)(static_cast <bool> (category != fcZero || lost_fraction == lfExactlyZero) ? void (0) : __assert_fail ("category != fcZero || lost_fraction == lfExactlyZero" , "llvm/lib/Support/APFloat.cpp", 2016, __extension__ __PRETTY_FUNCTION__ )); | |||
| 2017 | } | |||
| 2018 | ||||
| 2019 | /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a | |||
| 2020 | positive zero unless rounding to minus infinity, except that | |||
| 2021 | adding two like-signed zeroes gives that zero. */ | |||
| 2022 | if (category == fcZero) { | |||
| 2023 | if (rhs.category != fcZero || (sign == rhs.sign) == subtract) | |||
| 2024 | sign = (rounding_mode == rmTowardNegative); | |||
| 2025 | // NaN-in-negative-zero means zeros need to be normalized to +0. | |||
| 2026 | if (semantics->nanEncoding == fltNanEncoding::NegativeZero) | |||
| 2027 | sign = false; | |||
| 2028 | } | |||
| 2029 | ||||
| 2030 | return fs; | |||
| 2031 | } | |||
| 2032 | ||||
| 2033 | /* Normalized addition. */ | |||
| 2034 | IEEEFloat::opStatus IEEEFloat::add(const IEEEFloat &rhs, | |||
| 2035 | roundingMode rounding_mode) { | |||
| 2036 | return addOrSubtract(rhs, rounding_mode, false); | |||
| 2037 | } | |||
| 2038 | ||||
| 2039 | /* Normalized subtraction. */ | |||
| 2040 | IEEEFloat::opStatus IEEEFloat::subtract(const IEEEFloat &rhs, | |||
| 2041 | roundingMode rounding_mode) { | |||
| 2042 | return addOrSubtract(rhs, rounding_mode, true); | |||
| 2043 | } | |||
| 2044 | ||||
| 2045 | /* Normalized multiply. */ | |||
| 2046 | IEEEFloat::opStatus IEEEFloat::multiply(const IEEEFloat &rhs, | |||
| 2047 | roundingMode rounding_mode) { | |||
| 2048 | opStatus fs; | |||
| 2049 | ||||
| 2050 | sign ^= rhs.sign; | |||
| 2051 | fs = multiplySpecials(rhs); | |||
| 2052 | ||||
| 2053 | if (isZero() && semantics->nanEncoding == fltNanEncoding::NegativeZero) | |||
| 2054 | sign = false; | |||
| 2055 | if (isFiniteNonZero()) { | |||
| 2056 | lostFraction lost_fraction = multiplySignificand(rhs); | |||
| 2057 | fs = normalize(rounding_mode, lost_fraction); | |||
| 2058 | if (lost_fraction != lfExactlyZero) | |||
| 2059 | fs = (opStatus) (fs | opInexact); | |||
| 2060 | } | |||
| 2061 | ||||
| 2062 | return fs; | |||
| 2063 | } | |||
| 2064 | ||||
| 2065 | /* Normalized divide. */ | |||
| 2066 | IEEEFloat::opStatus IEEEFloat::divide(const IEEEFloat &rhs, | |||
| 2067 | roundingMode rounding_mode) { | |||
| 2068 | opStatus fs; | |||
| 2069 | ||||
| 2070 | sign ^= rhs.sign; | |||
| 2071 | fs = divideSpecials(rhs); | |||
| 2072 | ||||
| 2073 | if (isZero() && semantics->nanEncoding == fltNanEncoding::NegativeZero) | |||
| 2074 | sign = false; | |||
| 2075 | if (isFiniteNonZero()) { | |||
| 2076 | lostFraction lost_fraction = divideSignificand(rhs); | |||
| 2077 | fs = normalize(rounding_mode, lost_fraction); | |||
| 2078 | if (lost_fraction != lfExactlyZero) | |||
| 2079 | fs = (opStatus) (fs | opInexact); | |||
| 2080 | } | |||
| 2081 | ||||
| 2082 | return fs; | |||
| 2083 | } | |||
| 2084 | ||||
| 2085 | /* Normalized remainder. */ | |||
| 2086 | IEEEFloat::opStatus IEEEFloat::remainder(const IEEEFloat &rhs) { | |||
| 2087 | opStatus fs; | |||
| 2088 | unsigned int origSign = sign; | |||
| 2089 | ||||
| 2090 | // First handle the special cases. | |||
| 2091 | fs = remainderSpecials(rhs); | |||
| 2092 | if (fs != opDivByZero) | |||
| 2093 | return fs; | |||
| 2094 | ||||
| 2095 | fs = opOK; | |||
| 2096 | ||||
| 2097 | // Make sure the current value is less than twice the denom. If the addition | |||
| 2098 | // did not succeed (an overflow has happened), which means that the finite | |||
| 2099 | // value we currently posses must be less than twice the denom (as we are | |||
| 2100 | // using the same semantics). | |||
| 2101 | IEEEFloat P2 = rhs; | |||
| 2102 | if (P2.add(rhs, rmNearestTiesToEven) == opOK) { | |||
| 2103 | fs = mod(P2); | |||
| 2104 | assert(fs == opOK)(static_cast <bool> (fs == opOK) ? void (0) : __assert_fail ("fs == opOK", "llvm/lib/Support/APFloat.cpp", 2104, __extension__ __PRETTY_FUNCTION__)); | |||
| 2105 | } | |||
| 2106 | ||||
| 2107 | // Lets work with absolute numbers. | |||
| 2108 | IEEEFloat P = rhs; | |||
| 2109 | P.sign = false; | |||
| 2110 | sign = false; | |||
| 2111 | ||||
| 2112 | // | |||
| 2113 | // To calculate the remainder we use the following scheme. | |||
| 2114 | // | |||
| 2115 | // The remainder is defained as follows: | |||
| 2116 | // | |||
| 2117 | // remainder = numer - rquot * denom = x - r * p | |||
| 2118 | // | |||
| 2119 | // Where r is the result of: x/p, rounded toward the nearest integral value | |||
| 2120 | // (with halfway cases rounded toward the even number). | |||
| 2121 | // | |||
| 2122 | // Currently, (after x mod 2p): | |||
| 2123 | // r is the number of 2p's present inside x, which is inherently, an even | |||
| 2124 | // number of p's. | |||
| 2125 | // | |||
| 2126 | // We may split the remaining calculation into 4 options: | |||
| 2127 | // - if x < 0.5p then we round to the nearest number with is 0, and are done. | |||
| 2128 | // - if x == 0.5p then we round to the nearest even number which is 0, and we | |||
| 2129 | // are done as well. | |||
| 2130 | // - if 0.5p < x < p then we round to nearest number which is 1, and we have | |||
| 2131 | // to subtract 1p at least once. | |||
| 2132 | // - if x >= p then we must subtract p at least once, as x must be a | |||
| 2133 | // remainder. | |||
| 2134 | // | |||
| 2135 | // By now, we were done, or we added 1 to r, which in turn, now an odd number. | |||
| 2136 | // | |||
| 2137 | // We can now split the remaining calculation to the following 3 options: | |||
| 2138 | // - if x < 0.5p then we round to the nearest number with is 0, and are done. | |||
| 2139 | // - if x == 0.5p then we round to the nearest even number. As r is odd, we | |||
| 2140 | // must round up to the next even number. so we must subtract p once more. | |||
| 2141 | // - if x > 0.5p (and inherently x < p) then we must round r up to the next | |||
| 2142 | // integral, and subtract p once more. | |||
| 2143 | // | |||
| 2144 | ||||
| 2145 | // Extend the semantics to prevent an overflow/underflow or inexact result. | |||
| 2146 | bool losesInfo; | |||
| 2147 | fltSemantics extendedSemantics = *semantics; | |||
| 2148 | extendedSemantics.maxExponent++; | |||
| 2149 | extendedSemantics.minExponent--; | |||
| 2150 | extendedSemantics.precision += 2; | |||
| 2151 | ||||
| 2152 | IEEEFloat VEx = *this; | |||
| 2153 | fs = VEx.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo); | |||
| 2154 | assert(fs == opOK && !losesInfo)(static_cast <bool> (fs == opOK && !losesInfo) ? void (0) : __assert_fail ("fs == opOK && !losesInfo" , "llvm/lib/Support/APFloat.cpp", 2154, __extension__ __PRETTY_FUNCTION__ )); | |||
| 2155 | IEEEFloat PEx = P; | |||
| 2156 | fs = PEx.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo); | |||
| 2157 | assert(fs == opOK && !losesInfo)(static_cast <bool> (fs == opOK && !losesInfo) ? void (0) : __assert_fail ("fs == opOK && !losesInfo" , "llvm/lib/Support/APFloat.cpp", 2157, __extension__ __PRETTY_FUNCTION__ )); | |||
| 2158 | ||||
| 2159 | // It is simpler to work with 2x instead of 0.5p, and we do not need to lose | |||
| 2160 | // any fraction. | |||
| 2161 | fs = VEx.add(VEx, rmNearestTiesToEven); | |||
| 2162 | assert(fs == opOK)(static_cast <bool> (fs == opOK) ? void (0) : __assert_fail ("fs == opOK", "llvm/lib/Support/APFloat.cpp", 2162, __extension__ __PRETTY_FUNCTION__)); | |||
| 2163 | ||||
| 2164 | if (VEx.compare(PEx) == cmpGreaterThan) { | |||
| 2165 | fs = subtract(P, rmNearestTiesToEven); | |||
| 2166 | assert(fs == opOK)(static_cast <bool> (fs == opOK) ? void (0) : __assert_fail ("fs == opOK", "llvm/lib/Support/APFloat.cpp", 2166, __extension__ __PRETTY_FUNCTION__)); | |||
| 2167 | ||||
| 2168 | // Make VEx = this.add(this), but because we have different semantics, we do | |||
| 2169 | // not want to `convert` again, so we just subtract PEx twice (which equals | |||
| 2170 | // to the desired value). | |||
| 2171 | fs = VEx.subtract(PEx, rmNearestTiesToEven); | |||
| 2172 | assert(fs == opOK)(static_cast <bool> (fs == opOK) ? void (0) : __assert_fail ("fs == opOK", "llvm/lib/Support/APFloat.cpp", 2172, __extension__ __PRETTY_FUNCTION__)); | |||
| 2173 | fs = VEx.subtract(PEx, rmNearestTiesToEven); | |||
| 2174 | assert(fs == opOK)(static_cast <bool> (fs == opOK) ? void (0) : __assert_fail ("fs == opOK", "llvm/lib/Support/APFloat.cpp", 2174, __extension__ __PRETTY_FUNCTION__)); | |||
| 2175 | ||||
| 2176 | cmpResult result = VEx.compare(PEx); | |||
| 2177 | if (result == cmpGreaterThan || result == cmpEqual) { | |||
| 2178 | fs = subtract(P, rmNearestTiesToEven); | |||
| 2179 | assert(fs == opOK)(static_cast <bool> (fs == opOK) ? void (0) : __assert_fail ("fs == opOK", "llvm/lib/Support/APFloat.cpp", 2179, __extension__ __PRETTY_FUNCTION__)); | |||
| 2180 | } | |||
| 2181 | } | |||
| 2182 | ||||
| 2183 | if (isZero()) { | |||
| 2184 | sign = origSign; // IEEE754 requires this | |||
| 2185 | if (semantics->nanEncoding == fltNanEncoding::NegativeZero) | |||
| 2186 | // But some 8-bit floats only have positive 0. | |||
| 2187 | sign = false; | |||
| 2188 | } | |||
| 2189 | ||||
| 2190 | else | |||
| 2191 | sign ^= origSign; | |||
| 2192 | return fs; | |||
| 2193 | } | |||
| 2194 | ||||
| 2195 | /* Normalized llvm frem (C fmod). */ | |||
| 2196 | IEEEFloat::opStatus IEEEFloat::mod(const IEEEFloat &rhs) { | |||
| 2197 | opStatus fs; | |||
| 2198 | fs = modSpecials(rhs); | |||
| 2199 | unsigned int origSign = sign; | |||
| 2200 | ||||
| 2201 | while (isFiniteNonZero() && rhs.isFiniteNonZero() && | |||
| 2202 | compareAbsoluteValue(rhs) != cmpLessThan) { | |||
| 2203 | int Exp = ilogb(*this) - ilogb(rhs); | |||
| 2204 | IEEEFloat V = scalbn(rhs, Exp, rmNearestTiesToEven); | |||
| 2205 | // V can overflow to NaN with fltNonfiniteBehavior::NanOnly, so explicitly | |||
| 2206 | // check for it. | |||
| 2207 | if (V.isNaN() || compareAbsoluteValue(V) == cmpLessThan) | |||
| 2208 | V = scalbn(rhs, Exp - 1, rmNearestTiesToEven); | |||
| 2209 | V.sign = sign; | |||
| 2210 | ||||
| 2211 | fs = subtract(V, rmNearestTiesToEven); | |||
| 2212 | assert(fs==opOK)(static_cast <bool> (fs==opOK) ? void (0) : __assert_fail ("fs==opOK", "llvm/lib/Support/APFloat.cpp", 2212, __extension__ __PRETTY_FUNCTION__)); | |||
| 2213 | } | |||
| 2214 | if (isZero()) { | |||
| 2215 | sign = origSign; // fmod requires this | |||
| 2216 | if (semantics->nanEncoding == fltNanEncoding::NegativeZero) | |||
| 2217 | sign = false; | |||
| 2218 | } | |||
| 2219 | return fs; | |||
| 2220 | } | |||
| 2221 | ||||
| 2222 | /* Normalized fused-multiply-add. */ | |||
| 2223 | IEEEFloat::opStatus IEEEFloat::fusedMultiplyAdd(const IEEEFloat &multiplicand, | |||
| 2224 | const IEEEFloat &addend, | |||
| 2225 | roundingMode rounding_mode) { | |||
| 2226 | opStatus fs; | |||
| 2227 | ||||
| 2228 | /* Post-multiplication sign, before addition. */ | |||
| 2229 | sign ^= multiplicand.sign; | |||
| 2230 | ||||
| 2231 | /* If and only if all arguments are normal do we need to do an | |||
| 2232 | extended-precision calculation. */ | |||
| 2233 | if (isFiniteNonZero() && | |||
| 2234 | multiplicand.isFiniteNonZero() && | |||
| 2235 | addend.isFinite()) { | |||
| 2236 | lostFraction lost_fraction; | |||
| 2237 | ||||
| 2238 | lost_fraction = multiplySignificand(multiplicand, addend); | |||
| 2239 | fs = normalize(rounding_mode, lost_fraction); | |||
| 2240 | if (lost_fraction != lfExactlyZero) | |||
| 2241 | fs = (opStatus) (fs | opInexact); | |||
| 2242 | ||||
| 2243 | /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a | |||
| 2244 | positive zero unless rounding to minus infinity, except that | |||
| 2245 | adding two like-signed zeroes gives that zero. */ | |||
| 2246 | if (category == fcZero && !(fs & opUnderflow) && sign != addend.sign) { | |||
| 2247 | sign = (rounding_mode == rmTowardNegative); | |||
| 2248 | if (semantics->nanEncoding == fltNanEncoding::NegativeZero) | |||
| 2249 | sign = false; | |||
| 2250 | } | |||
| 2251 | } else { | |||
| 2252 | fs = multiplySpecials(multiplicand); | |||
| 2253 | ||||
| 2254 | /* FS can only be opOK or opInvalidOp. There is no more work | |||
| 2255 | to do in the latter case. The IEEE-754R standard says it is | |||
| 2256 | implementation-defined in this case whether, if ADDEND is a | |||
| 2257 | quiet NaN, we raise invalid op; this implementation does so. | |||
| 2258 | ||||
| 2259 | If we need to do the addition we can do so with normal | |||
| 2260 | precision. */ | |||
| 2261 | if (fs == opOK) | |||
| 2262 | fs = addOrSubtract(addend, rounding_mode, false); | |||
| 2263 | } | |||
| 2264 | ||||
| 2265 | return fs; | |||
| 2266 | } | |||
| 2267 | ||||
| 2268 | /* Rounding-mode correct round to integral value. */ | |||
| 2269 | IEEEFloat::opStatus IEEEFloat::roundToIntegral(roundingMode rounding_mode) { | |||
| 2270 | opStatus fs; | |||
| 2271 | ||||
| 2272 | if (isInfinity()) | |||
| 2273 | // [IEEE Std 754-2008 6.1]: | |||
| 2274 | // The behavior of infinity in floating-point arithmetic is derived from the | |||
| 2275 | // limiting cases of real arithmetic with operands of arbitrarily | |||
| 2276 | // large magnitude, when such a limit exists. | |||
| 2277 | // ... | |||
| 2278 | // Operations on infinite operands are usually exact and therefore signal no | |||
| 2279 | // exceptions ... | |||
| 2280 | return opOK; | |||
| 2281 | ||||
| 2282 | if (isNaN()) { | |||
| 2283 | if (isSignaling()) { | |||
| 2284 | // [IEEE Std 754-2008 6.2]: | |||
| 2285 | // Under default exception handling, any operation signaling an invalid | |||
| 2286 | // operation exception and for which a floating-point result is to be | |||
| 2287 | // delivered shall deliver a quiet NaN. | |||
| 2288 | makeQuiet(); | |||
| 2289 | // [IEEE Std 754-2008 6.2]: | |||
| 2290 | // Signaling NaNs shall be reserved operands that, under default exception | |||
| 2291 | // handling, signal the invalid operation exception(see 7.2) for every | |||
| 2292 | // general-computational and signaling-computational operation except for | |||
| 2293 | // the conversions described in 5.12. | |||
| 2294 | return opInvalidOp; | |||
| 2295 | } else { | |||
| 2296 | // [IEEE Std 754-2008 6.2]: | |||
| 2297 | // For an operation with quiet NaN inputs, other than maximum and minimum | |||
| 2298 | // operations, if a floating-point result is to be delivered the result | |||
| 2299 | // shall be a quiet NaN which should be one of the input NaNs. | |||
| 2300 | // ... | |||
| 2301 | // Every general-computational and quiet-computational operation involving | |||
| 2302 | // one or more input NaNs, none of them signaling, shall signal no | |||
| 2303 | // exception, except fusedMultiplyAdd might signal the invalid operation | |||
| 2304 | // exception(see 7.2). | |||
| 2305 | return opOK; | |||
| 2306 | } | |||
| 2307 | } | |||
| 2308 | ||||
| 2309 | if (isZero()) { | |||
| 2310 | // [IEEE Std 754-2008 6.3]: | |||
| 2311 | // ... the sign of the result of conversions, the quantize operation, the | |||
| 2312 | // roundToIntegral operations, and the roundToIntegralExact(see 5.3.1) is | |||
| 2313 | // the sign of the first or only operand. | |||
| 2314 | return opOK; | |||
| 2315 | } | |||
| 2316 | ||||
| 2317 | // If the exponent is large enough, we know that this value is already | |||
| 2318 | // integral, and the arithmetic below would potentially cause it to saturate | |||
| 2319 | // to +/-Inf. Bail out early instead. | |||
| 2320 | if (exponent+1 >= (int)semanticsPrecision(*semantics)) | |||
| 2321 | return opOK; | |||
| 2322 | ||||
| 2323 | // The algorithm here is quite simple: we add 2^(p-1), where p is the | |||
| 2324 | // precision of our format, and then subtract it back off again. The choice | |||
| 2325 | // of rounding modes for the addition/subtraction determines the rounding mode | |||
| 2326 | // for our integral rounding as well. | |||
| 2327 | // NOTE: When the input value is negative, we do subtraction followed by | |||
| 2328 | // addition instead. | |||
| 2329 | APInt IntegerConstant(NextPowerOf2(semanticsPrecision(*semantics)), 1); | |||
| 2330 | IntegerConstant <<= semanticsPrecision(*semantics)-1; | |||
| 2331 | IEEEFloat MagicConstant(*semantics); | |||
| 2332 | fs = MagicConstant.convertFromAPInt(IntegerConstant, false, | |||
| 2333 | rmNearestTiesToEven); | |||
| 2334 | assert(fs == opOK)(static_cast <bool> (fs == opOK) ? void (0) : __assert_fail ("fs == opOK", "llvm/lib/Support/APFloat.cpp", 2334, __extension__ __PRETTY_FUNCTION__)); | |||
| 2335 | MagicConstant.sign = sign; | |||
| 2336 | ||||
| 2337 | // Preserve the input sign so that we can handle the case of zero result | |||
| 2338 | // correctly. | |||
| 2339 | bool inputSign = isNegative(); | |||
| 2340 | ||||
| 2341 | fs = add(MagicConstant, rounding_mode); | |||
| 2342 | ||||
| 2343 | // Current value and 'MagicConstant' are both integers, so the result of the | |||
| 2344 | // subtraction is always exact according to Sterbenz' lemma. | |||
| 2345 | subtract(MagicConstant, rounding_mode); | |||
| 2346 | ||||
| 2347 | // Restore the input sign. | |||
| 2348 | if (inputSign != isNegative()) | |||
| 2349 | changeSign(); | |||
| 2350 | ||||
| 2351 | return fs; | |||
| 2352 | } | |||
| 2353 | ||||
| 2354 | ||||
| 2355 | /* Comparison requires normalized numbers. */ | |||
| 2356 | IEEEFloat::cmpResult IEEEFloat::compare(const IEEEFloat &rhs) const { | |||
| 2357 | cmpResult result; | |||
| 2358 | ||||
| 2359 | assert(semantics == rhs.semantics)(static_cast <bool> (semantics == rhs.semantics) ? void (0) : __assert_fail ("semantics == rhs.semantics", "llvm/lib/Support/APFloat.cpp" , 2359, __extension__ __PRETTY_FUNCTION__)); | |||
| 2360 | ||||
| 2361 | switch (PackCategoriesIntoKey(category, rhs.category)((category) * 4 + (rhs.category))) { | |||
| 2362 | default: | |||
| 2363 | llvm_unreachable(nullptr)::llvm::llvm_unreachable_internal(nullptr, "llvm/lib/Support/APFloat.cpp" , 2363); | |||
| 2364 | ||||
| 2365 | case PackCategoriesIntoKey(fcNaN, fcZero)((fcNaN) * 4 + (fcZero)): | |||
| 2366 | case PackCategoriesIntoKey(fcNaN, fcNormal)((fcNaN) * 4 + (fcNormal)): | |||
| 2367 | case PackCategoriesIntoKey(fcNaN, fcInfinity)((fcNaN) * 4 + (fcInfinity)): | |||
| 2368 | case PackCategoriesIntoKey(fcNaN, fcNaN)((fcNaN) * 4 + (fcNaN)): | |||
| 2369 | case PackCategoriesIntoKey(fcZero, fcNaN)((fcZero) * 4 + (fcNaN)): | |||
| 2370 | case PackCategoriesIntoKey(fcNormal, fcNaN)((fcNormal) * 4 + (fcNaN)): | |||
| 2371 | case PackCategoriesIntoKey(fcInfinity, fcNaN)((fcInfinity) * 4 + (fcNaN)): | |||
| 2372 | return cmpUnordered; | |||
| 2373 | ||||
| 2374 | case PackCategoriesIntoKey(fcInfinity, fcNormal)((fcInfinity) * 4 + (fcNormal)): | |||
| 2375 | case PackCategoriesIntoKey(fcInfinity, fcZero)((fcInfinity) * 4 + (fcZero)): | |||
| 2376 | case PackCategoriesIntoKey(fcNormal, fcZero)((fcNormal) * 4 + (fcZero)): | |||
| 2377 | if (sign) | |||
| 2378 | return cmpLessThan; | |||
| 2379 | else | |||
| 2380 | return cmpGreaterThan; | |||
| 2381 | ||||
| 2382 | case PackCategoriesIntoKey(fcNormal, fcInfinity)((fcNormal) * 4 + (fcInfinity)): | |||
| 2383 | case PackCategoriesIntoKey(fcZero, fcInfinity)((fcZero) * 4 + (fcInfinity)): | |||
| 2384 | case PackCategoriesIntoKey(fcZero, fcNormal)((fcZero) * 4 + (fcNormal)): | |||
| 2385 | if (rhs.sign) | |||
| 2386 | return cmpGreaterThan; | |||
| 2387 | else | |||
| 2388 | return cmpLessThan; | |||
| 2389 | ||||
| 2390 | case PackCategoriesIntoKey(fcInfinity, fcInfinity)((fcInfinity) * 4 + (fcInfinity)): | |||
| 2391 | if (sign == rhs.sign) | |||
| 2392 | return cmpEqual; | |||
| 2393 | else if (sign) | |||
| 2394 | return cmpLessThan; | |||
| 2395 | else | |||
| 2396 | return cmpGreaterThan; | |||
| 2397 | ||||
| 2398 | case PackCategoriesIntoKey(fcZero, fcZero)((fcZero) * 4 + (fcZero)): | |||
| 2399 | return cmpEqual; | |||
| 2400 | ||||
| 2401 | case PackCategoriesIntoKey(fcNormal, fcNormal)((fcNormal) * 4 + (fcNormal)): | |||
| 2402 | break; | |||
| 2403 | } | |||
| 2404 | ||||
| 2405 | /* Two normal numbers. Do they have the same sign? */ | |||
| 2406 | if (sign != rhs.sign) { | |||
| 2407 | if (sign) | |||
| 2408 | result = cmpLessThan; | |||
| 2409 | else | |||
| 2410 | result = cmpGreaterThan; | |||
| 2411 | } else { | |||
| 2412 | /* Compare absolute values; invert result if negative. */ | |||
| 2413 | result = compareAbsoluteValue(rhs); | |||
| 2414 | ||||
| 2415 | if (sign) { | |||
| 2416 | if (result == cmpLessThan) | |||
| 2417 | result = cmpGreaterThan; | |||
| 2418 | else if (result == cmpGreaterThan) | |||
| 2419 | result = cmpLessThan; | |||
| 2420 | } | |||
| 2421 | } | |||
| 2422 | ||||
| 2423 | return result; | |||
| 2424 | } | |||
| 2425 | ||||
| 2426 | /// IEEEFloat::convert - convert a value of one floating point type to another. | |||
| 2427 | /// The return value corresponds to the IEEE754 exceptions. *losesInfo | |||
| 2428 | /// records whether the transformation lost information, i.e. whether | |||
| 2429 | /// converting the result back to the original type will produce the | |||
| 2430 | /// original value (this is almost the same as return value==fsOK, but there | |||
| 2431 | /// are edge cases where this is not so). | |||
| 2432 | ||||
| 2433 | IEEEFloat::opStatus IEEEFloat::convert(const fltSemantics &toSemantics, | |||
| 2434 | roundingMode rounding_mode, | |||
| 2435 | bool *losesInfo) { | |||
| 2436 | lostFraction lostFraction; | |||
| 2437 | unsigned int newPartCount, oldPartCount; | |||
| 2438 | opStatus fs; | |||
| 2439 | int shift; | |||
| 2440 | const fltSemantics &fromSemantics = *semantics; | |||
| 2441 | bool is_signaling = isSignaling(); | |||
| 2442 | ||||
| 2443 | lostFraction = lfExactlyZero; | |||
| 2444 | newPartCount = partCountForBits(toSemantics.precision + 1); | |||
| 2445 | oldPartCount = partCount(); | |||
| 2446 | shift = toSemantics.precision - fromSemantics.precision; | |||
| 2447 | ||||
| 2448 | bool X86SpecialNan = false; | |||
| 2449 | if (&fromSemantics == &semX87DoubleExtended && | |||
| 2450 | &toSemantics != &semX87DoubleExtended && category == fcNaN && | |||
| 2451 | (!(*significandParts() & 0x8000000000000000ULL) || | |||
| 2452 | !(*significandParts() & 0x4000000000000000ULL))) { | |||
| 2453 | // x86 has some unusual NaNs which cannot be represented in any other | |||
| 2454 | // format; note them here. | |||
| 2455 | X86SpecialNan = true; | |||
| 2456 | } | |||
| 2457 | ||||
| 2458 | // If this is a truncation of a denormal number, and the target semantics | |||
| 2459 | // has larger exponent range than the source semantics (this can happen | |||
| 2460 | // when truncating from PowerPC double-double to double format), the | |||
| 2461 | // right shift could lose result mantissa bits. Adjust exponent instead | |||
| 2462 | // of performing excessive shift. | |||
| 2463 | // Also do a similar trick in case shifting denormal would produce zero | |||
| 2464 | // significand as this case isn't handled correctly by normalize. | |||
| 2465 | if (shift < 0 && isFiniteNonZero()) { | |||
| 2466 | int omsb = significandMSB() + 1; | |||
| 2467 | int exponentChange = omsb - fromSemantics.precision; | |||
| 2468 | if (exponent + exponentChange < toSemantics.minExponent) | |||
| 2469 | exponentChange = toSemantics.minExponent - exponent; | |||
| 2470 | if (exponentChange < shift) | |||
| 2471 | exponentChange = shift; | |||
| 2472 | if (exponentChange < 0) { | |||
| 2473 | shift -= exponentChange; | |||
| 2474 | exponent += exponentChange; | |||
| 2475 | } else if (omsb <= -shift) { | |||
| 2476 | exponentChange = omsb + shift - 1; // leave at least one bit set | |||
| 2477 | shift -= exponentChange; | |||
| 2478 | exponent += exponentChange; | |||
| 2479 | } | |||
| 2480 | } | |||
| 2481 | ||||
| 2482 | // If this is a truncation, perform the shift before we narrow the storage. | |||
| 2483 | if (shift < 0 && (isFiniteNonZero() || | |||
| 2484 | (category == fcNaN && semantics->nonFiniteBehavior != | |||
| 2485 | fltNonfiniteBehavior::NanOnly))) | |||
| 2486 | lostFraction = shiftRight(significandParts(), oldPartCount, -shift); | |||
| 2487 | ||||
| 2488 | // Fix the storage so it can hold to new value. | |||
| 2489 | if (newPartCount > oldPartCount) { | |||
| 2490 | // The new type requires more storage; make it available. | |||
| 2491 | integerPart *newParts; | |||
| 2492 | newParts = new integerPart[newPartCount]; | |||
| 2493 | APInt::tcSet(newParts, 0, newPartCount); | |||
| 2494 | if (isFiniteNonZero() || category==fcNaN) | |||
| 2495 | APInt::tcAssign(newParts, significandParts(), oldPartCount); | |||
| 2496 | freeSignificand(); | |||
| 2497 | significand.parts = newParts; | |||
| 2498 | } else if (newPartCount == 1 && oldPartCount != 1) { | |||
| 2499 | // Switch to built-in storage for a single part. | |||
| 2500 | integerPart newPart = 0; | |||
| 2501 | if (isFiniteNonZero() || category==fcNaN) | |||
| 2502 | newPart = significandParts()[0]; | |||
| 2503 | freeSignificand(); | |||
| 2504 | significand.part = newPart; | |||
| 2505 | } | |||
| 2506 | ||||
| 2507 | // Now that we have the right storage, switch the semantics. | |||
| 2508 | semantics = &toSemantics; | |||
| 2509 | ||||
| 2510 | // If this is an extension, perform the shift now that the storage is | |||
| 2511 | // available. | |||
| 2512 | if (shift > 0 && (isFiniteNonZero() || category==fcNaN)) | |||
| 2513 | APInt::tcShiftLeft(significandParts(), newPartCount, shift); | |||
| 2514 | ||||
| 2515 | if (isFiniteNonZero()) { | |||
| 2516 | fs = normalize(rounding_mode, lostFraction); | |||
| 2517 | *losesInfo = (fs != opOK); | |||
| 2518 | } else if (category == fcNaN) { | |||
| 2519 | if (semantics->nonFiniteBehavior == fltNonfiniteBehavior::NanOnly) { | |||
| 2520 | *losesInfo = | |||
| 2521 | fromSemantics.nonFiniteBehavior != fltNonfiniteBehavior::NanOnly; | |||
| 2522 | makeNaN(false, sign); | |||
| 2523 | return is_signaling ? opInvalidOp : opOK; | |||
| 2524 | } | |||
| 2525 | ||||
| 2526 | // If NaN is negative zero, we need to create a new NaN to avoid converting | |||
| 2527 | // NaN to -Inf. | |||
| 2528 | if (fromSemantics.nanEncoding == fltNanEncoding::NegativeZero && | |||
| 2529 | semantics->nanEncoding != fltNanEncoding::NegativeZero) | |||
| 2530 | makeNaN(false, false); | |||
| 2531 | ||||
| 2532 | *losesInfo = lostFraction != lfExactlyZero || X86SpecialNan; | |||
| 2533 | ||||
| 2534 | // For x87 extended precision, we want to make a NaN, not a special NaN if | |||
| 2535 | // the input wasn't special either. | |||
| 2536 | if (!X86SpecialNan && semantics == &semX87DoubleExtended) | |||
| 2537 | APInt::tcSetBit(significandParts(), semantics->precision - 1); | |||
| 2538 | ||||
| 2539 | // Convert of sNaN creates qNaN and raises an exception (invalid op). | |||
| 2540 | // This also guarantees that a sNaN does not become Inf on a truncation | |||
| 2541 | // that loses all payload bits. | |||
| 2542 | if (is_signaling) { | |||
| 2543 | makeQuiet(); | |||
| 2544 | fs = opInvalidOp; | |||
| 2545 | } else { | |||
| 2546 | fs = opOK; | |||
| 2547 | } | |||
| 2548 | } else if (category == fcInfinity && | |||
| 2549 | semantics->nonFiniteBehavior == fltNonfiniteBehavior::NanOnly) { | |||
| 2550 | makeNaN(false, sign); | |||
| 2551 | *losesInfo = true; | |||
| 2552 | fs = opInexact; | |||
| 2553 | } else if (category == fcZero && | |||
| 2554 | semantics->nanEncoding == fltNanEncoding::NegativeZero) { | |||
| 2555 | // Negative zero loses info, but positive zero doesn't. | |||
| 2556 | *losesInfo = | |||
| 2557 | fromSemantics.nanEncoding != fltNanEncoding::NegativeZero && sign; | |||
| 2558 | fs = *losesInfo ? opInexact : opOK; | |||
| 2559 | // NaN is negative zero means -0 -> +0, which can lose information | |||
| 2560 | sign = false; | |||
| 2561 | } else { | |||
| 2562 | *losesInfo = false; | |||
| 2563 | fs = opOK; | |||
| 2564 | } | |||
| 2565 | ||||
| 2566 | return fs; | |||
| 2567 | } | |||
| 2568 | ||||
| 2569 | /* Convert a floating point number to an integer according to the | |||
| 2570 | rounding mode. If the rounded integer value is out of range this | |||
| 2571 | returns an invalid operation exception and the contents of the | |||
| 2572 | destination parts are unspecified. If the rounded value is in | |||
| 2573 | range but the floating point number is not the exact integer, the C | |||
| 2574 | standard doesn't require an inexact exception to be raised. IEEE | |||
| 2575 | 854 does require it so we do that. | |||
| 2576 | ||||
| 2577 | Note that for conversions to integer type the C standard requires | |||
| 2578 | round-to-zero to always be used. */ | |||
| 2579 | IEEEFloat::opStatus IEEEFloat::convertToSignExtendedInteger( | |||
| 2580 | MutableArrayRef<integerPart> parts, unsigned int width, bool isSigned, | |||
| 2581 | roundingMode rounding_mode, bool *isExact) const { | |||
| 2582 | lostFraction lost_fraction; | |||
| 2583 | const integerPart *src; | |||
| 2584 | unsigned int dstPartsCount, truncatedBits; | |||
| 2585 | ||||
| 2586 | *isExact = false; | |||
| 2587 | ||||
| 2588 | /* Handle the three special cases first. */ | |||
| 2589 | if (category == fcInfinity || category == fcNaN) | |||
| 2590 | return opInvalidOp; | |||
| 2591 | ||||
| 2592 | dstPartsCount = partCountForBits(width); | |||
| 2593 | assert(dstPartsCount <= parts.size() && "Integer too big")(static_cast <bool> (dstPartsCount <= parts.size() && "Integer too big") ? void (0) : __assert_fail ("dstPartsCount <= parts.size() && \"Integer too big\"" , "llvm/lib/Support/APFloat.cpp", 2593, __extension__ __PRETTY_FUNCTION__ )); | |||
| 2594 | ||||
| 2595 | if (category == fcZero) { | |||
| 2596 | APInt::tcSet(parts.data(), 0, dstPartsCount); | |||
| 2597 | // Negative zero can't be represented as an int. | |||
| 2598 | *isExact = !sign; | |||
| 2599 | return opOK; | |||
| 2600 | } | |||
| 2601 | ||||
| 2602 | src = significandParts(); | |||
| 2603 | ||||
| 2604 | /* Step 1: place our absolute value, with any fraction truncated, in | |||
| 2605 | the destination. */ | |||
| 2606 | if (exponent < 0) { | |||
| 2607 | /* Our absolute value is less than one; truncate everything. */ | |||
| 2608 | APInt::tcSet(parts.data(), 0, dstPartsCount); | |||
| 2609 | /* For exponent -1 the integer bit represents .5, look at that. | |||
| 2610 | For smaller exponents leftmost truncated bit is 0. */ | |||
| 2611 | truncatedBits = semantics->precision -1U - exponent; | |||
| 2612 | } else { | |||
| 2613 | /* We want the most significant (exponent + 1) bits; the rest are | |||
| 2614 | truncated. */ | |||
| 2615 | unsigned int bits = exponent + 1U; | |||
| 2616 | ||||
| 2617 | /* Hopelessly large in magnitude? */ | |||
| 2618 | if (bits > width) | |||
| 2619 | return opInvalidOp; | |||
| 2620 | ||||
| 2621 | if (bits < semantics->precision) { | |||
| 2622 | /* We truncate (semantics->precision - bits) bits. */ | |||
| 2623 | truncatedBits = semantics->precision - bits; | |||
| 2624 | APInt::tcExtract(parts.data(), dstPartsCount, src, bits, truncatedBits); | |||
| 2625 | } else { | |||
| 2626 | /* We want at least as many bits as are available. */ | |||
| 2627 | APInt::tcExtract(parts.data(), dstPartsCount, src, semantics->precision, | |||
| 2628 | 0); | |||
| 2629 | APInt::tcShiftLeft(parts.data(), dstPartsCount, | |||
| 2630 | bits - semantics->precision); | |||
| 2631 | truncatedBits = 0; | |||
| 2632 | } | |||
| 2633 | } | |||
| 2634 | ||||
| 2635 | /* Step 2: work out any lost fraction, and increment the absolute | |||
| 2636 | value if we would round away from zero. */ | |||
| 2637 | if (truncatedBits) { | |||
| 2638 | lost_fraction = lostFractionThroughTruncation(src, partCount(), | |||
| 2639 | truncatedBits); | |||
| 2640 | if (lost_fraction != lfExactlyZero && | |||
| 2641 | roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) { | |||
| 2642 | if (APInt::tcIncrement(parts.data(), dstPartsCount)) | |||
| 2643 | return opInvalidOp; /* Overflow. */ | |||
| 2644 | } | |||
| 2645 | } else { | |||
| 2646 | lost_fraction = lfExactlyZero; | |||
| 2647 | } | |||
| 2648 | ||||
| 2649 | /* Step 3: check if we fit in the destination. */ | |||
| 2650 | unsigned int omsb = APInt::tcMSB(parts.data(), dstPartsCount) + 1; | |||
| 2651 | ||||
| 2652 | if (sign) { | |||
| 2653 | if (!isSigned) { | |||
| 2654 | /* Negative numbers cannot be represented as unsigned. */ | |||
| 2655 | if (omsb != 0) | |||
| 2656 | return opInvalidOp; | |||
| 2657 | } else { | |||
| 2658 | /* It takes omsb bits to represent the unsigned integer value. | |||
| 2659 | We lose a bit for the sign, but care is needed as the | |||
| 2660 | maximally negative integer is a special case. */ | |||
| 2661 | if (omsb == width && | |||
| 2662 | APInt::tcLSB(parts.data(), dstPartsCount) + 1 != omsb) | |||
| 2663 | return opInvalidOp; | |||
| 2664 | ||||
| 2665 | /* This case can happen because of rounding. */ | |||
| 2666 | if (omsb > width) | |||
| 2667 | return opInvalidOp; | |||
| 2668 | } | |||
| 2669 | ||||
| 2670 | APInt::tcNegate (parts.data(), dstPartsCount); | |||
| 2671 | } else { | |||
| 2672 | if (omsb >= width + !isSigned) | |||
| 2673 | return opInvalidOp; | |||
| 2674 | } | |||
| 2675 | ||||
| 2676 | if (lost_fraction == lfExactlyZero) { | |||
| 2677 | *isExact = true; | |||
| 2678 | return opOK; | |||
| 2679 | } else | |||
| 2680 | return opInexact; | |||
| 2681 | } | |||
| 2682 | ||||
| 2683 | /* Same as convertToSignExtendedInteger, except we provide | |||
| 2684 | deterministic values in case of an invalid operation exception, | |||
| 2685 | namely zero for NaNs and the minimal or maximal value respectively | |||
| 2686 | for underflow or overflow. | |||
| 2687 | The *isExact output tells whether the result is exact, in the sense | |||
| 2688 | that converting it back to the original floating point type produces | |||
| 2689 | the original value. This is almost equivalent to result==opOK, | |||
| 2690 | except for negative zeroes. | |||
| 2691 | */ | |||
| 2692 | IEEEFloat::opStatus | |||
| 2693 | IEEEFloat::convertToInteger(MutableArrayRef<integerPart> parts, | |||
| 2694 | unsigned int width, bool isSigned, | |||
| 2695 | roundingMode rounding_mode, bool *isExact) const { | |||
| 2696 | opStatus fs; | |||
| 2697 | ||||
| 2698 | fs = convertToSignExtendedInteger(parts, width, isSigned, rounding_mode, | |||
| 2699 | isExact); | |||
| 2700 | ||||
| 2701 | if (fs == opInvalidOp) { | |||
| 2702 | unsigned int bits, dstPartsCount; | |||
| 2703 | ||||
| 2704 | dstPartsCount = partCountForBits(width); | |||
| 2705 | assert(dstPartsCount <= parts.size() && "Integer too big")(static_cast <bool> (dstPartsCount <= parts.size() && "Integer too big") ? void (0) : __assert_fail ("dstPartsCount <= parts.size() && \"Integer too big\"" , "llvm/lib/Support/APFloat.cpp", 2705, __extension__ __PRETTY_FUNCTION__ )); | |||
| 2706 | ||||
| 2707 | if (category == fcNaN) | |||
| 2708 | bits = 0; | |||
| 2709 | else if (sign) | |||
| 2710 | bits = isSigned; | |||
| 2711 | else | |||
| 2712 | bits = width - isSigned; | |||
| 2713 | ||||
| 2714 | tcSetLeastSignificantBits(parts.data(), dstPartsCount, bits); | |||
| 2715 | if (sign && isSigned) | |||
| 2716 | APInt::tcShiftLeft(parts.data(), dstPartsCount, width - 1); | |||
| 2717 | } | |||
| 2718 | ||||
| 2719 | return fs; | |||
| 2720 | } | |||
| 2721 | ||||
| 2722 | /* Convert an unsigned integer SRC to a floating point number, | |||
| 2723 | rounding according to ROUNDING_MODE. The sign of the floating | |||
| 2724 | point number is not modified. */ | |||
| 2725 | IEEEFloat::opStatus IEEEFloat::convertFromUnsignedParts( | |||
| 2726 | const integerPart *src, unsigned int srcCount, roundingMode rounding_mode) { | |||
| 2727 | unsigned int omsb, precision, dstCount; | |||
| 2728 | integerPart *dst; | |||
| 2729 | lostFraction lost_fraction; | |||
| 2730 | ||||
| 2731 | category = fcNormal; | |||
| 2732 | omsb = APInt::tcMSB(src, srcCount) + 1; | |||
| 2733 | dst = significandParts(); | |||
| 2734 | dstCount = partCount(); | |||
| 2735 | precision = semantics->precision; | |||
| 2736 | ||||
| 2737 | /* We want the most significant PRECISION bits of SRC. There may not | |||
| 2738 | be that many; extract what we can. */ | |||
| 2739 | if (precision <= omsb) { | |||
| 2740 | exponent = omsb - 1; | |||
| 2741 | lost_fraction = lostFractionThroughTruncation(src, srcCount, | |||
| 2742 | omsb - precision); | |||
| 2743 | APInt::tcExtract(dst, dstCount, src, precision, omsb - precision); | |||
| 2744 | } else { | |||
| 2745 | exponent = precision - 1; | |||
| 2746 | lost_fraction = lfExactlyZero; | |||
| 2747 | APInt::tcExtract(dst, dstCount, src, omsb, 0); | |||
| 2748 | } | |||
| 2749 | ||||
| 2750 | return normalize(rounding_mode, lost_fraction); | |||
| 2751 | } | |||
| 2752 | ||||
| 2753 | IEEEFloat::opStatus IEEEFloat::convertFromAPInt(const APInt &Val, bool isSigned, | |||
| 2754 | roundingMode rounding_mode) { | |||
| 2755 | unsigned int partCount = Val.getNumWords(); | |||
| 2756 | APInt api = Val; | |||
| 2757 | ||||
| 2758 | sign = false; | |||
| 2759 | if (isSigned && api.isNegative()) { | |||
| 2760 | sign = true; | |||
| 2761 | api = -api; | |||
| 2762 | } | |||
| 2763 | ||||
| 2764 | return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode); | |||
| 2765 | } | |||
| 2766 | ||||
| 2767 | /* Convert a two's complement integer SRC to a floating point number, | |||
| 2768 | rounding according to ROUNDING_MODE. ISSIGNED is true if the | |||
| 2769 | integer is signed, in which case it must be sign-extended. */ | |||
| 2770 | IEEEFloat::opStatus | |||
| 2771 | IEEEFloat::convertFromSignExtendedInteger(const integerPart *src, | |||
| 2772 | unsigned int srcCount, bool isSigned, | |||
| 2773 | roundingMode rounding_mode) { | |||
| 2774 | opStatus status; | |||
| 2775 | ||||
| 2776 | if (isSigned && | |||
| 2777 | APInt::tcExtractBit(src, srcCount * integerPartWidth - 1)) { | |||
| 2778 | integerPart *copy; | |||
| 2779 | ||||
| 2780 | /* If we're signed and negative negate a copy. */ | |||
| 2781 | sign = true; | |||
| 2782 | copy = new integerPart[srcCount]; | |||
| 2783 | APInt::tcAssign(copy, src, srcCount); | |||
| 2784 | APInt::tcNegate(copy, srcCount); | |||
| 2785 | status = convertFromUnsignedParts(copy, srcCount, rounding_mode); | |||
| 2786 | delete [] copy; | |||
| 2787 | } else { | |||
| 2788 | sign = false; | |||
| 2789 | status = convertFromUnsignedParts(src, srcCount, rounding_mode); | |||
| 2790 | } | |||
| 2791 | ||||
| 2792 | return status; | |||
| 2793 | } | |||
| 2794 | ||||
| 2795 | /* FIXME: should this just take a const APInt reference? */ | |||
| 2796 | IEEEFloat::opStatus | |||
| 2797 | IEEEFloat::convertFromZeroExtendedInteger(const integerPart *parts, | |||
| 2798 | unsigned int width, bool isSigned, | |||
| 2799 | roundingMode rounding_mode) { | |||
| 2800 | unsigned int partCount = partCountForBits(width); | |||
| 2801 | APInt api = APInt(width, ArrayRef(parts, partCount)); | |||
| 2802 | ||||
| 2803 | sign = false; | |||
| 2804 | if (isSigned && APInt::tcExtractBit(parts, width - 1)) { | |||
| 2805 | sign = true; | |||
| 2806 | api = -api; | |||
| 2807 | } | |||
| 2808 | ||||
| 2809 | return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode); | |||
| 2810 | } | |||
| 2811 | ||||
| 2812 | Expected<IEEEFloat::opStatus> | |||
| 2813 | IEEEFloat::convertFromHexadecimalString(StringRef s, | |||
| 2814 | roundingMode rounding_mode) { | |||
| 2815 | lostFraction lost_fraction = lfExactlyZero; | |||
| 2816 | ||||
| 2817 | category = fcNormal; | |||
| 2818 | zeroSignificand(); | |||
| 2819 | exponent = 0; | |||
| 2820 | ||||
| 2821 | integerPart *significand = significandParts(); | |||
| 2822 | unsigned partsCount = partCount(); | |||
| 2823 | unsigned bitPos = partsCount * integerPartWidth; | |||
| 2824 | bool computedTrailingFraction = false; | |||
| 2825 | ||||
| 2826 | // Skip leading zeroes and any (hexa)decimal point. | |||
| 2827 | StringRef::iterator begin = s.begin(); | |||
| 2828 | StringRef::iterator end = s.end(); | |||
| 2829 | StringRef::iterator dot; | |||
| 2830 | auto PtrOrErr = skipLeadingZeroesAndAnyDot(begin, end, &dot); | |||
| 2831 | if (!PtrOrErr) | |||
| 2832 | return PtrOrErr.takeError(); | |||
| 2833 | StringRef::iterator p = *PtrOrErr; | |||
| 2834 | StringRef::iterator firstSignificantDigit = p; | |||
| 2835 | ||||
| 2836 | while (p != end) { | |||
| 2837 | integerPart hex_value; | |||
| 2838 | ||||
| 2839 | if (*p == '.') { | |||
| 2840 | if (dot != end) | |||
| 2841 | return createError("String contains multiple dots"); | |||
| 2842 | dot = p++; | |||
| 2843 | continue; | |||
| 2844 | } | |||
| 2845 | ||||
| 2846 | hex_value = hexDigitValue(*p); | |||
| 2847 | if (hex_value == UINT_MAX(2147483647 *2U +1U)) | |||
| 2848 | break; | |||
| 2849 | ||||
| 2850 | p++; | |||
| 2851 | ||||
| 2852 | // Store the number while we have space. | |||
| 2853 | if (bitPos) { | |||
| 2854 | bitPos -= 4; | |||
| 2855 | hex_value <<= bitPos % integerPartWidth; | |||
| 2856 | significand[bitPos / integerPartWidth] |= hex_value; | |||
| 2857 | } else if (!computedTrailingFraction) { | |||
| 2858 | auto FractOrErr = trailingHexadecimalFraction(p, end, hex_value); | |||
| 2859 | if (!FractOrErr) | |||
| 2860 | return FractOrErr.takeError(); | |||
| 2861 | lost_fraction = *FractOrErr; | |||
| 2862 | computedTrailingFraction = true; | |||
| 2863 | } | |||
| 2864 | } | |||
| 2865 | ||||
| 2866 | /* Hex floats require an exponent but not a hexadecimal point. */ | |||
| 2867 | if (p == end) | |||
| 2868 | return createError("Hex strings require an exponent"); | |||
| 2869 | if (*p != 'p' && *p != 'P') | |||
| 2870 | return createError("Invalid character in significand"); | |||
| 2871 | if (p == begin) | |||
| 2872 | return createError("Significand has no digits"); | |||
| 2873 | if (dot != end && p - begin == 1) | |||
| 2874 | return createError("Significand has no digits"); | |||
| 2875 | ||||
| 2876 | /* Ignore the exponent if we are zero. */ | |||
| 2877 | if (p != firstSignificantDigit) { | |||
| 2878 | int expAdjustment; | |||
| 2879 | ||||
| 2880 | /* Implicit hexadecimal point? */ | |||
| 2881 | if (dot == end) | |||
| 2882 | dot = p; | |||
| 2883 | ||||
| 2884 | /* Calculate the exponent adjustment implicit in the number of | |||
| 2885 | significant digits. */ | |||
| 2886 | expAdjustment = static_cast<int>(dot - firstSignificantDigit); | |||
| 2887 | if (expAdjustment < 0) | |||
| 2888 | expAdjustment++; | |||
| 2889 | expAdjustment = expAdjustment * 4 - 1; | |||
| 2890 | ||||
| 2891 | /* Adjust for writing the significand starting at the most | |||
| 2892 | significant nibble. */ | |||
| 2893 | expAdjustment += semantics->precision; | |||
| 2894 | expAdjustment -= partsCount * integerPartWidth; | |||
| 2895 | ||||
| 2896 | /* Adjust for the given exponent. */ | |||
| 2897 | auto ExpOrErr = totalExponent(p + 1, end, expAdjustment); | |||
| 2898 | if (!ExpOrErr) | |||
| 2899 | return ExpOrErr.takeError(); | |||
| 2900 | exponent = *ExpOrErr; | |||
| 2901 | } | |||
| 2902 | ||||
| 2903 | return normalize(rounding_mode, lost_fraction); | |||
| 2904 | } | |||
| 2905 | ||||
| 2906 | IEEEFloat::opStatus | |||
| 2907 | IEEEFloat::roundSignificandWithExponent(const integerPart *decSigParts, | |||
| 2908 | unsigned sigPartCount, int exp, | |||
| 2909 | roundingMode rounding_mode) { | |||
| 2910 | unsigned int parts, pow5PartCount; | |||
| 2911 | fltSemantics calcSemantics = { 32767, -32767, 0, 0 }; | |||
| 2912 | integerPart pow5Parts[maxPowerOfFiveParts]; | |||
| 2913 | bool isNearest; | |||
| 2914 | ||||
| 2915 | isNearest = (rounding_mode == rmNearestTiesToEven || | |||
| 2916 | rounding_mode == rmNearestTiesToAway); | |||
| 2917 | ||||
| 2918 | parts = partCountForBits(semantics->precision + 11); | |||
| 2919 | ||||
| 2920 | /* Calculate pow(5, abs(exp)). */ | |||
| 2921 | pow5PartCount = powerOf5(pow5Parts, exp >= 0 ? exp: -exp); | |||
| 2922 | ||||
| 2923 | for (;; parts *= 2) { | |||
| 2924 | opStatus sigStatus, powStatus; | |||
| 2925 | unsigned int excessPrecision, truncatedBits; | |||
| 2926 | ||||
| 2927 | calcSemantics.precision = parts * integerPartWidth - 1; | |||
| 2928 | excessPrecision = calcSemantics.precision - semantics->precision; | |||
| 2929 | truncatedBits = excessPrecision; | |||
| 2930 | ||||
| 2931 | IEEEFloat decSig(calcSemantics, uninitialized); | |||
| 2932 | decSig.makeZero(sign); | |||
| 2933 | IEEEFloat pow5(calcSemantics); | |||
| 2934 | ||||
| 2935 | sigStatus = decSig.convertFromUnsignedParts(decSigParts, sigPartCount, | |||
| 2936 | rmNearestTiesToEven); | |||
| 2937 | powStatus = pow5.convertFromUnsignedParts(pow5Parts, pow5PartCount, | |||
| 2938 | rmNearestTiesToEven); | |||
| 2939 | /* Add exp, as 10^n = 5^n * 2^n. */ | |||
| 2940 | decSig.exponent += exp; | |||
| 2941 | ||||
| 2942 | lostFraction calcLostFraction; | |||
| 2943 | integerPart HUerr, HUdistance; | |||
| 2944 | unsigned int powHUerr; | |||
| 2945 | ||||
| 2946 | if (exp >= 0) { | |||
| 2947 | /* multiplySignificand leaves the precision-th bit set to 1. */ | |||
| 2948 | calcLostFraction = decSig.multiplySignificand(pow5); | |||
| 2949 | powHUerr = powStatus != opOK; | |||
| 2950 | } else { | |||
| 2951 | calcLostFraction = decSig.divideSignificand(pow5); | |||
| 2952 | /* Denormal numbers have less precision. */ | |||
| 2953 | if (decSig.exponent < semantics->minExponent) { | |||
| 2954 | excessPrecision += (semantics->minExponent - decSig.exponent); | |||
| 2955 | truncatedBits = excessPrecision; | |||
| 2956 | if (excessPrecision > calcSemantics.precision) | |||
| 2957 | excessPrecision = calcSemantics.precision; | |||
| 2958 | } | |||
| 2959 | /* Extra half-ulp lost in reciprocal of exponent. */ | |||
| 2960 | powHUerr = (powStatus == opOK && calcLostFraction == lfExactlyZero) ? 0:2; | |||
| 2961 | } | |||
| 2962 | ||||
| 2963 | /* Both multiplySignificand and divideSignificand return the | |||
| 2964 | result with the integer bit set. */ | |||
| 2965 | assert(APInt::tcExtractBit(static_cast <bool> (APInt::tcExtractBit (decSig.significandParts (), calcSemantics.precision - 1) == 1) ? void (0) : __assert_fail ("APInt::tcExtractBit (decSig.significandParts(), calcSemantics.precision - 1) == 1" , "llvm/lib/Support/APFloat.cpp", 2966, __extension__ __PRETTY_FUNCTION__ )) | |||
| 2966 | (decSig.significandParts(), calcSemantics.precision - 1) == 1)(static_cast <bool> (APInt::tcExtractBit (decSig.significandParts (), calcSemantics.precision - 1) == 1) ? void (0) : __assert_fail ("APInt::tcExtractBit (decSig.significandParts(), calcSemantics.precision - 1) == 1" , "llvm/lib/Support/APFloat.cpp", 2966, __extension__ __PRETTY_FUNCTION__ )); | |||
| 2967 | ||||
| 2968 | HUerr = HUerrBound(calcLostFraction != lfExactlyZero, sigStatus != opOK, | |||
| 2969 | powHUerr); | |||
| 2970 | HUdistance = 2 * ulpsFromBoundary(decSig.significandParts(), | |||
| 2971 | excessPrecision, isNearest); | |||
| 2972 | ||||
| 2973 | /* Are we guaranteed to round correctly if we truncate? */ | |||
| 2974 | if (HUdistance >= HUerr) { | |||
| 2975 | APInt::tcExtract(significandParts(), partCount(), decSig.significandParts(), | |||
| 2976 | calcSemantics.precision - excessPrecision, | |||
| 2977 | excessPrecision); | |||
| 2978 | /* Take the exponent of decSig. If we tcExtract-ed less bits | |||
| 2979 | above we must adjust our exponent to compensate for the | |||
| 2980 | implicit right shift. */ | |||
| 2981 | exponent = (decSig.exponent + semantics->precision | |||
| 2982 | - (calcSemantics.precision - excessPrecision)); | |||
| 2983 | calcLostFraction = lostFractionThroughTruncation(decSig.significandParts(), | |||
| 2984 | decSig.partCount(), | |||
| 2985 | truncatedBits); | |||
| 2986 | return normalize(rounding_mode, calcLostFraction); | |||
| 2987 | } | |||
| 2988 | } | |||
| 2989 | } | |||
| 2990 | ||||
| 2991 | Expected<IEEEFloat::opStatus> | |||
| 2992 | IEEEFloat::convertFromDecimalString(StringRef str, roundingMode rounding_mode) { | |||
| 2993 | decimalInfo D; | |||
| 2994 | opStatus fs; | |||
| 2995 | ||||
| 2996 | /* Scan the text. */ | |||
| 2997 | StringRef::iterator p = str.begin(); | |||
| 2998 | if (Error Err = interpretDecimal(p, str.end(), &D)) | |||
| 2999 | return std::move(Err); | |||
| 3000 | ||||
| 3001 | /* Handle the quick cases. First the case of no significant digits, | |||
| 3002 | i.e. zero, and then exponents that are obviously too large or too | |||
| 3003 | small. Writing L for log 10 / log 2, a number d.ddddd*10^exp | |||
| 3004 | definitely overflows if | |||
| 3005 | ||||
| 3006 | (exp - 1) * L >= maxExponent | |||
| 3007 | ||||
| 3008 | and definitely underflows to zero where | |||
| 3009 | ||||
| 3010 | (exp + 1) * L <= minExponent - precision | |||
| 3011 | ||||
| 3012 | With integer arithmetic the tightest bounds for L are | |||
| 3013 | ||||
| 3014 | 93/28 < L < 196/59 [ numerator <= 256 ] | |||
| 3015 | 42039/12655 < L < 28738/8651 [ numerator <= 65536 ] | |||
| 3016 | */ | |||
| 3017 | ||||
| 3018 | // Test if we have a zero number allowing for strings with no null terminators | |||
| 3019 | // and zero decimals with non-zero exponents. | |||
| 3020 | // | |||
| 3021 | // We computed firstSigDigit by ignoring all zeros and dots. Thus if | |||
| 3022 | // D->firstSigDigit equals str.end(), every digit must be a zero and there can | |||
| 3023 | // be at most one dot. On the other hand, if we have a zero with a non-zero | |||
| 3024 | // exponent, then we know that D.firstSigDigit will be non-numeric. | |||
| 3025 | if (D.firstSigDigit == str.end() || decDigitValue(*D.firstSigDigit) >= 10U) { | |||
| 3026 | category = fcZero; | |||
| 3027 | fs = opOK; | |||
| 3028 | if (semantics->nanEncoding == fltNanEncoding::NegativeZero) | |||
| 3029 | sign = false; | |||
| 3030 | ||||
| 3031 | /* Check whether the normalized exponent is high enough to overflow | |||
| 3032 | max during the log-rebasing in the max-exponent check below. */ | |||
| 3033 | } else if (D.normalizedExponent - 1 > INT_MAX2147483647 / 42039) { | |||
| 3034 | fs = handleOverflow(rounding_mode); | |||
| 3035 | ||||
| 3036 | /* If it wasn't, then it also wasn't high enough to overflow max | |||
| 3037 | during the log-rebasing in the min-exponent check. Check that it | |||
| 3038 | won't overflow min in either check, then perform the min-exponent | |||
| 3039 | check. */ | |||
| 3040 | } else if (D.normalizedExponent - 1 < INT_MIN(-2147483647 -1) / 42039 || | |||
| 3041 | (D.normalizedExponent + 1) * 28738 <= | |||
| 3042 | 8651 * (semantics->minExponent - (int) semantics->precision)) { | |||
| 3043 | /* Underflow to zero and round. */ | |||
| 3044 | category = fcNormal; | |||
| 3045 | zeroSignificand(); | |||
| 3046 | fs = normalize(rounding_mode, lfLessThanHalf); | |||
| 3047 | ||||
| 3048 | /* We can finally safely perform the max-exponent check. */ | |||
| 3049 | } else if ((D.normalizedExponent - 1) * 42039 | |||
| 3050 | >= 12655 * semantics->maxExponent) { | |||
| 3051 | /* Overflow and round. */ | |||
| 3052 | fs = handleOverflow(rounding_mode); | |||
| 3053 | } else { | |||
| 3054 | integerPart *decSignificand; | |||
| 3055 | unsigned int partCount; | |||
| 3056 | ||||
| 3057 | /* A tight upper bound on number of bits required to hold an | |||
| 3058 | N-digit decimal integer is N * 196 / 59. Allocate enough space | |||
| 3059 | to hold the full significand, and an extra part required by | |||
| 3060 | tcMultiplyPart. */ | |||
| 3061 | partCount = static_cast<unsigned int>(D.lastSigDigit - D.firstSigDigit) + 1; | |||
| 3062 | partCount = partCountForBits(1 + 196 * partCount / 59); | |||
| 3063 | decSignificand = new integerPart[partCount + 1]; | |||
| 3064 | partCount = 0; | |||
| 3065 | ||||
| 3066 | /* Convert to binary efficiently - we do almost all multiplication | |||
| 3067 | in an integerPart. When this would overflow do we do a single | |||
| 3068 | bignum multiplication, and then revert again to multiplication | |||
| 3069 | in an integerPart. */ | |||
| 3070 | do { | |||
| 3071 | integerPart decValue, val, multiplier; | |||
| 3072 | ||||
| 3073 | val = 0; | |||
| 3074 | multiplier = 1; | |||
| 3075 | ||||
| 3076 | do { | |||
| 3077 | if (*p == '.') { | |||
| 3078 | p++; | |||
| 3079 | if (p == str.end()) { | |||
| 3080 | break; | |||
| 3081 | } | |||
| 3082 | } | |||
| 3083 | decValue = decDigitValue(*p++); | |||
| 3084 | if (decValue >= 10U) { | |||
| 3085 | delete[] decSignificand; | |||
| 3086 | return createError("Invalid character in significand"); | |||
| 3087 | } | |||
| 3088 | multiplier *= 10; | |||
| 3089 | val = val * 10 + decValue; | |||
| 3090 | /* The maximum number that can be multiplied by ten with any | |||
| 3091 | digit added without overflowing an integerPart. */ | |||
| 3092 | } while (p <= D.lastSigDigit && multiplier <= (~ (integerPart) 0 - 9) / 10); | |||
| 3093 | ||||
| 3094 | /* Multiply out the current part. */ | |||
| 3095 | APInt::tcMultiplyPart(decSignificand, decSignificand, multiplier, val, | |||
| 3096 | partCount, partCount + 1, false); | |||
| 3097 | ||||
| 3098 | /* If we used another part (likely but not guaranteed), increase | |||
| 3099 | the count. */ | |||
| 3100 | if (decSignificand[partCount]) | |||
| 3101 | partCount++; | |||
| 3102 | } while (p <= D.lastSigDigit); | |||
| 3103 | ||||
| 3104 | category = fcNormal; | |||
| 3105 | fs = roundSignificandWithExponent(decSignificand, partCount, | |||
| 3106 | D.exponent, rounding_mode); | |||
| 3107 | ||||
| 3108 | delete [] decSignificand; | |||
| 3109 | } | |||
| 3110 | ||||
| 3111 | return fs; | |||
| 3112 | } | |||
| 3113 | ||||
| 3114 | bool IEEEFloat::convertFromStringSpecials(StringRef str) { | |||
| 3115 | const size_t MIN_NAME_SIZE = 3; | |||
| 3116 | ||||
| 3117 | if (str.size() < MIN_NAME_SIZE) | |||
| 3118 | return false; | |||
| 3119 | ||||
| 3120 | if (str.equals("inf") || str.equals("INFINITY") || str.equals("+Inf")) { | |||
| 3121 | makeInf(false); | |||
| 3122 | return true; | |||
| 3123 | } | |||
| 3124 | ||||
| 3125 | bool IsNegative = str.front() == '-'; | |||
| 3126 | if (IsNegative) { | |||
| 3127 | str = str.drop_front(); | |||
| 3128 | if (str.size() < MIN_NAME_SIZE) | |||
| 3129 | return false; | |||
| 3130 | ||||
| 3131 | if (str.equals("inf") || str.equals("INFINITY") || str.equals("Inf")) { | |||
| 3132 | makeInf(true); | |||
| 3133 | return true; | |||
| 3134 | } | |||
| 3135 | } | |||
| 3136 | ||||
| 3137 | // If we have a 's' (or 'S') prefix, then this is a Signaling NaN. | |||
| 3138 | bool IsSignaling = str.front() == 's' || str.front() == 'S'; | |||
| 3139 | if (IsSignaling) { | |||
| 3140 | str = str.drop_front(); | |||
| 3141 | if (str.size() < MIN_NAME_SIZE) | |||
| 3142 | return false; | |||
| 3143 | } | |||
| 3144 | ||||
| 3145 | if (str.startswith("nan") || str.startswith("NaN")) { | |||
| 3146 | str = str.drop_front(3); | |||
| 3147 | ||||
| 3148 | // A NaN without payload. | |||
| 3149 | if (str.empty()) { | |||
| 3150 | makeNaN(IsSignaling, IsNegative); | |||
| 3151 | return true; | |||
| 3152 | } | |||
| 3153 | ||||
| 3154 | // Allow the payload to be inside parentheses. | |||
| 3155 | if (str.front() == '(') { | |||
| 3156 | // Parentheses should be balanced (and not empty). | |||
| 3157 | if (str.size() <= 2 || str.back() != ')') | |||
| 3158 | return false; | |||
| 3159 | ||||
| 3160 | str = str.slice(1, str.size() - 1); | |||
| 3161 | } | |||
| 3162 | ||||
| 3163 | // Determine the payload number's radix. | |||
| 3164 | unsigned Radix = 10; | |||
| 3165 | if (str[0] == '0') { | |||
| 3166 | if (str.size() > 1 && tolower(str[1]) == 'x') { | |||
| 3167 | str = str.drop_front(2); | |||
| 3168 | Radix = 16; | |||
| 3169 | } else | |||
| 3170 | Radix = 8; | |||
| 3171 | } | |||
| 3172 | ||||
| 3173 | // Parse the payload and make the NaN. | |||
| 3174 | APInt Payload; | |||
| 3175 | if (!str.getAsInteger(Radix, Payload)) { | |||
| 3176 | makeNaN(IsSignaling, IsNegative, &Payload); | |||
| 3177 | return true; | |||
| 3178 | } | |||
| 3179 | } | |||
| 3180 | ||||
| 3181 | return false; | |||
| 3182 | } | |||
| 3183 | ||||
| 3184 | Expected<IEEEFloat::opStatus> | |||
| 3185 | IEEEFloat::convertFromString(StringRef str, roundingMode rounding_mode) { | |||
| 3186 | if (str.empty()) | |||
| 3187 | return createError("Invalid string length"); | |||
| 3188 | ||||
| 3189 | // Handle special cases. | |||
| 3190 | if (convertFromStringSpecials(str)) | |||
| 3191 | return opOK; | |||
| 3192 | ||||
| 3193 | /* Handle a leading minus sign. */ | |||
| 3194 | StringRef::iterator p = str.begin(); | |||
| 3195 | size_t slen = str.size(); | |||
| 3196 | sign = *p == '-' ? 1 : 0; | |||
| 3197 | if (*p == '-' || *p == '+') { | |||
| 3198 | p++; | |||
| 3199 | slen--; | |||
| 3200 | if (!slen) | |||
| 3201 | return createError("String has no digits"); | |||
| 3202 | } | |||
| 3203 | ||||
| 3204 | if (slen >= 2 && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) { | |||
| 3205 | if (slen == 2) | |||
| 3206 | return createError("Invalid string"); | |||
| 3207 | return convertFromHexadecimalString(StringRef(p + 2, slen - 2), | |||
| 3208 | rounding_mode); | |||
| 3209 | } | |||
| 3210 | ||||
| 3211 | return convertFromDecimalString(StringRef(p, slen), rounding_mode); | |||
| 3212 | } | |||
| 3213 | ||||
| 3214 | /* Write out a hexadecimal representation of the floating point value | |||
| 3215 | to DST, which must be of sufficient size, in the C99 form | |||
| 3216 | [-]0xh.hhhhp[+-]d. Return the number of characters written, | |||
| 3217 | excluding the terminating NUL. | |||
| 3218 | ||||
| 3219 | If UPPERCASE, the output is in upper case, otherwise in lower case. | |||
| 3220 | ||||
| 3221 | HEXDIGITS digits appear altogether, rounding the value if | |||
| 3222 | necessary. If HEXDIGITS is 0, the minimal precision to display the | |||
| 3223 | number precisely is used instead. If nothing would appear after | |||
| 3224 | the decimal point it is suppressed. | |||
| 3225 | ||||
| 3226 | The decimal exponent is always printed and has at least one digit. | |||
| 3227 | Zero values display an exponent of zero. Infinities and NaNs | |||
| 3228 | appear as "infinity" or "nan" respectively. | |||
| 3229 | ||||
| 3230 | The above rules are as specified by C99. There is ambiguity about | |||
| 3231 | what the leading hexadecimal digit should be. This implementation | |||
| 3232 | uses whatever is necessary so that the exponent is displayed as | |||
| 3233 | stored. This implies the exponent will fall within the IEEE format | |||
| 3234 | range, and the leading hexadecimal digit will be 0 (for denormals), | |||
| 3235 | 1 (normal numbers) or 2 (normal numbers rounded-away-from-zero with | |||
| 3236 | any other digits zero). | |||
| 3237 | */ | |||
| 3238 | unsigned int IEEEFloat::convertToHexString(char *dst, unsigned int hexDigits, | |||
| 3239 | bool upperCase, | |||
| 3240 | roundingMode rounding_mode) const { | |||
| 3241 | char *p; | |||
| 3242 | ||||
| 3243 | p = dst; | |||
| 3244 | if (sign) | |||
| 3245 | *dst++ = '-'; | |||
| 3246 | ||||
| 3247 | switch (category) { | |||
| 3248 | case fcInfinity: | |||
| 3249 | memcpy (dst, upperCase ? infinityU: infinityL, sizeof infinityU - 1); | |||
| 3250 | dst += sizeof infinityL - 1; | |||
| 3251 | break; | |||
| 3252 | ||||
| 3253 | case fcNaN: | |||
| 3254 | memcpy (dst, upperCase ? NaNU: NaNL, sizeof NaNU - 1); | |||
| 3255 | dst += sizeof NaNU - 1; | |||
| 3256 | break; | |||
| 3257 | ||||
| 3258 | case fcZero: | |||
| 3259 | *dst++ = '0'; | |||
| 3260 | *dst++ = upperCase ? 'X': 'x'; | |||
| 3261 | *dst++ = '0'; | |||
| 3262 | if (hexDigits > 1) { | |||
| 3263 | *dst++ = '.'; | |||
| 3264 | memset (dst, '0', hexDigits - 1); | |||
| 3265 | dst += hexDigits - 1; | |||
| 3266 | } | |||
| 3267 | *dst++ = upperCase ? 'P': 'p'; | |||
| 3268 | *dst++ = '0'; | |||
| 3269 | break; | |||
| 3270 | ||||
| 3271 | case fcNormal: | |||
| 3272 | dst = convertNormalToHexString (dst, hexDigits, upperCase, rounding_mode); | |||
| 3273 | break; | |||
| 3274 | } | |||
| 3275 | ||||
| 3276 | *dst = 0; | |||
| 3277 | ||||
| 3278 | return static_cast<unsigned int>(dst - p); | |||
| 3279 | } | |||
| 3280 | ||||
| 3281 | /* Does the hard work of outputting the correctly rounded hexadecimal | |||
| 3282 | form of a normal floating point number with the specified number of | |||
| 3283 | hexadecimal digits. If HEXDIGITS is zero the minimum number of | |||
| 3284 | digits necessary to print the value precisely is output. */ | |||
| 3285 | char *IEEEFloat::convertNormalToHexString(char *dst, unsigned int hexDigits, | |||
| 3286 | bool upperCase, | |||
| 3287 | roundingMode rounding_mode) const { | |||
| 3288 | unsigned int count, valueBits, shift, partsCount, outputDigits; | |||
| 3289 | const char *hexDigitChars; | |||
| 3290 | const integerPart *significand; | |||
| 3291 | char *p; | |||
| 3292 | bool roundUp; | |||
| 3293 | ||||
| 3294 | *dst++ = '0'; | |||
| 3295 | *dst++ = upperCase ? 'X': 'x'; | |||
| 3296 | ||||
| 3297 | roundUp = false; | |||
| 3298 | hexDigitChars = upperCase ? hexDigitsUpper: hexDigitsLower; | |||
| 3299 | ||||
| 3300 | significand = significandParts(); | |||
| 3301 | partsCount = partCount(); | |||
| 3302 | ||||
| 3303 | /* +3 because the first digit only uses the single integer bit, so | |||
| 3304 | we have 3 virtual zero most-significant-bits. */ | |||
| 3305 | valueBits = semantics->precision + 3; | |||
| 3306 | shift = integerPartWidth - valueBits % integerPartWidth; | |||
| 3307 | ||||
| 3308 | /* The natural number of digits required ignoring trailing | |||
| 3309 | insignificant zeroes. */ | |||
| 3310 | outputDigits = (valueBits - significandLSB () + 3) / 4; | |||
| 3311 | ||||
| 3312 | /* hexDigits of zero means use the required number for the | |||
| 3313 | precision. Otherwise, see if we are truncating. If we are, | |||
| 3314 | find out if we need to round away from zero. */ | |||
| 3315 | if (hexDigits) { | |||
| 3316 | if (hexDigits < outputDigits) { | |||
| 3317 | /* We are dropping non-zero bits, so need to check how to round. | |||
| 3318 | "bits" is the number of dropped bits. */ | |||
| 3319 | unsigned int bits; | |||
| 3320 | lostFraction fraction; | |||
| 3321 | ||||
| 3322 | bits = valueBits - hexDigits * 4; | |||
| 3323 | fraction = lostFractionThroughTruncation (significand, partsCount, bits); | |||
| 3324 | roundUp = roundAwayFromZero(rounding_mode, fraction, bits); | |||
| 3325 | } | |||
| 3326 | outputDigits = hexDigits; | |||
| 3327 | } | |||
| 3328 | ||||
| 3329 | /* Write the digits consecutively, and start writing in the location | |||
| 3330 | of the hexadecimal point. We move the most significant digit | |||
| 3331 | left and add the hexadecimal point later. */ | |||
| 3332 | p = ++dst; | |||
| 3333 | ||||
| 3334 | count = (valueBits + integerPartWidth - 1) / integerPartWidth; | |||
| 3335 | ||||
| 3336 | while (outputDigits && count) { | |||
| 3337 | integerPart part; | |||
| 3338 | ||||
| 3339 | /* Put the most significant integerPartWidth bits in "part". */ | |||
| 3340 | if (--count == partsCount) | |||
| 3341 | part = 0; /* An imaginary higher zero part. */ | |||
| 3342 | else | |||
| 3343 | part = significand[count] << shift; | |||
| 3344 | ||||
| 3345 | if (count && shift) | |||
| 3346 | part |= significand[count - 1] >> (integerPartWidth - shift); | |||
| 3347 | ||||
| 3348 | /* Convert as much of "part" to hexdigits as we can. */ | |||
| 3349 | unsigned int curDigits = integerPartWidth / 4; | |||
| 3350 | ||||
| 3351 | if (curDigits > outputDigits) | |||
| 3352 | curDigits = outputDigits; | |||
| 3353 | dst += partAsHex (dst, part, curDigits, hexDigitChars); | |||
| 3354 | outputDigits -= curDigits; | |||
| 3355 | } | |||
| 3356 | ||||
| 3357 | if (roundUp) { | |||
| 3358 | char *q = dst; | |||
| 3359 | ||||
| 3360 | /* Note that hexDigitChars has a trailing '0'. */ | |||
| 3361 | do { | |||
| 3362 | q--; | |||
| 3363 | *q = hexDigitChars[hexDigitValue (*q) + 1]; | |||
| 3364 | } while (*q == '0'); | |||
| 3365 | assert(q >= p)(static_cast <bool> (q >= p) ? void (0) : __assert_fail ("q >= p", "llvm/lib/Support/APFloat.cpp", 3365, __extension__ __PRETTY_FUNCTION__)); | |||
| 3366 | } else { | |||
| 3367 | /* Add trailing zeroes. */ | |||
| 3368 | memset (dst, '0', outputDigits); | |||
| 3369 | dst += outputDigits; | |||
| 3370 | } | |||
| 3371 | ||||
| 3372 | /* Move the most significant digit to before the point, and if there | |||
| 3373 | is something after the decimal point add it. This must come | |||
| 3374 | after rounding above. */ | |||
| 3375 | p[-1] = p[0]; | |||
| 3376 | if (dst -1 == p) | |||
| 3377 | dst--; | |||
| 3378 | else | |||
| 3379 | p[0] = '.'; | |||
| 3380 | ||||
| 3381 | /* Finally output the exponent. */ | |||
| 3382 | *dst++ = upperCase ? 'P': 'p'; | |||
| 3383 | ||||
| 3384 | return writeSignedDecimal (dst, exponent); | |||
| 3385 | } | |||
| 3386 | ||||
| 3387 | hash_code hash_value(const IEEEFloat &Arg) { | |||
| 3388 | if (!Arg.isFiniteNonZero()) | |||
| 3389 | return hash_combine((uint8_t)Arg.category, | |||
| 3390 | // NaN has no sign, fix it at zero. | |||
| 3391 | Arg.isNaN() ? (uint8_t)0 : (uint8_t)Arg.sign, | |||
| 3392 | Arg.semantics->precision); | |||
| 3393 | ||||
| 3394 | // Normal floats need their exponent and significand hashed. | |||
| 3395 | return hash_combine((uint8_t)Arg.category, (uint8_t)Arg.sign, | |||
| 3396 | Arg.semantics->precision, Arg.exponent, | |||
| 3397 | hash_combine_range( | |||
| 3398 | Arg.significandParts(), | |||
| 3399 | Arg.significandParts() + Arg.partCount())); | |||
| 3400 | } | |||
| 3401 | ||||
| 3402 | // Conversion from APFloat to/from host float/double. It may eventually be | |||
| 3403 | // possible to eliminate these and have everybody deal with APFloats, but that | |||
| 3404 | // will take a while. This approach will not easily extend to long double. | |||
| 3405 | // Current implementation requires integerPartWidth==64, which is correct at | |||
| 3406 | // the moment but could be made more general. | |||
| 3407 | ||||
| 3408 | // Denormals have exponent minExponent in APFloat, but minExponent-1 in | |||
| 3409 | // the actual IEEE respresentations. We compensate for that here. | |||
| 3410 | ||||
| 3411 | APInt IEEEFloat::convertF80LongDoubleAPFloatToAPInt() const { | |||
| 3412 | assert(semantics == (const llvm::fltSemantics*)&semX87DoubleExtended)(static_cast <bool> (semantics == (const llvm::fltSemantics *)&semX87DoubleExtended) ? void (0) : __assert_fail ("semantics == (const llvm::fltSemantics*)&semX87DoubleExtended" , "llvm/lib/Support/APFloat.cpp", 3412, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3413 | assert(partCount()==2)(static_cast <bool> (partCount()==2) ? void (0) : __assert_fail ("partCount()==2", "llvm/lib/Support/APFloat.cpp", 3413, __extension__ __PRETTY_FUNCTION__)); | |||
| 3414 | ||||
| 3415 | uint64_t myexponent, mysignificand; | |||
| 3416 | ||||
| 3417 | if (isFiniteNonZero()) { | |||
| 3418 | myexponent = exponent+16383; //bias | |||
| 3419 | mysignificand = significandParts()[0]; | |||
| 3420 | if (myexponent==1 && !(mysignificand & 0x8000000000000000ULL)) | |||
| 3421 | myexponent = 0; // denormal | |||
| 3422 | } else if (category==fcZero) { | |||
| 3423 | myexponent = 0; | |||
| 3424 | mysignificand = 0; | |||
| 3425 | } else if (category==fcInfinity) { | |||
| 3426 | myexponent = 0x7fff; | |||
| 3427 | mysignificand = 0x8000000000000000ULL; | |||
| 3428 | } else { | |||
| 3429 | assert(category == fcNaN && "Unknown category")(static_cast <bool> (category == fcNaN && "Unknown category" ) ? void (0) : __assert_fail ("category == fcNaN && \"Unknown category\"" , "llvm/lib/Support/APFloat.cpp", 3429, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3430 | myexponent = 0x7fff; | |||
| 3431 | mysignificand = significandParts()[0]; | |||
| 3432 | } | |||
| 3433 | ||||
| 3434 | uint64_t words[2]; | |||
| 3435 | words[0] = mysignificand; | |||
| 3436 | words[1] = ((uint64_t)(sign & 1) << 15) | | |||
| 3437 | (myexponent & 0x7fffLL); | |||
| 3438 | return APInt(80, words); | |||
| 3439 | } | |||
| 3440 | ||||
| 3441 | APInt IEEEFloat::convertPPCDoubleDoubleAPFloatToAPInt() const { | |||
| 3442 | assert(semantics == (const llvm::fltSemantics *)&semPPCDoubleDoubleLegacy)(static_cast <bool> (semantics == (const llvm::fltSemantics *)&semPPCDoubleDoubleLegacy) ? void (0) : __assert_fail ( "semantics == (const llvm::fltSemantics *)&semPPCDoubleDoubleLegacy" , "llvm/lib/Support/APFloat.cpp", 3442, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3443 | assert(partCount()==2)(static_cast <bool> (partCount()==2) ? void (0) : __assert_fail ("partCount()==2", "llvm/lib/Support/APFloat.cpp", 3443, __extension__ __PRETTY_FUNCTION__)); | |||
| 3444 | ||||
| 3445 | uint64_t words[2]; | |||
| 3446 | opStatus fs; | |||
| 3447 | bool losesInfo; | |||
| 3448 | ||||
| 3449 | // Convert number to double. To avoid spurious underflows, we re- | |||
| 3450 | // normalize against the "double" minExponent first, and only *then* | |||
| 3451 | // truncate the mantissa. The result of that second conversion | |||
| 3452 | // may be inexact, but should never underflow. | |||
| 3453 | // Declare fltSemantics before APFloat that uses it (and | |||
| 3454 | // saves pointer to it) to ensure correct destruction order. | |||
| 3455 | fltSemantics extendedSemantics = *semantics; | |||
| 3456 | extendedSemantics.minExponent = semIEEEdouble.minExponent; | |||
| 3457 | IEEEFloat extended(*this); | |||
| 3458 | fs = extended.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo); | |||
| 3459 | assert(fs == opOK && !losesInfo)(static_cast <bool> (fs == opOK && !losesInfo) ? void (0) : __assert_fail ("fs == opOK && !losesInfo" , "llvm/lib/Support/APFloat.cpp", 3459, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3460 | (void)fs; | |||
| 3461 | ||||
| 3462 | IEEEFloat u(extended); | |||
| 3463 | fs = u.convert(semIEEEdouble, rmNearestTiesToEven, &losesInfo); | |||
| 3464 | assert(fs == opOK || fs == opInexact)(static_cast <bool> (fs == opOK || fs == opInexact) ? void (0) : __assert_fail ("fs == opOK || fs == opInexact", "llvm/lib/Support/APFloat.cpp" , 3464, __extension__ __PRETTY_FUNCTION__)); | |||
| 3465 | (void)fs; | |||
| 3466 | words[0] = *u.convertDoubleAPFloatToAPInt().getRawData(); | |||
| 3467 | ||||
| 3468 | // If conversion was exact or resulted in a special case, we're done; | |||
| 3469 | // just set the second double to zero. Otherwise, re-convert back to | |||
| 3470 | // the extended format and compute the difference. This now should | |||
| 3471 | // convert exactly to double. | |||
| 3472 | if (u.isFiniteNonZero() && losesInfo) { | |||
| 3473 | fs = u.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo); | |||
| 3474 | assert(fs == opOK && !losesInfo)(static_cast <bool> (fs == opOK && !losesInfo) ? void (0) : __assert_fail ("fs == opOK && !losesInfo" , "llvm/lib/Support/APFloat.cpp", 3474, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3475 | (void)fs; | |||
| 3476 | ||||
| 3477 | IEEEFloat v(extended); | |||
| 3478 | v.subtract(u, rmNearestTiesToEven); | |||
| 3479 | fs = v.convert(semIEEEdouble, rmNearestTiesToEven, &losesInfo); | |||
| 3480 | assert(fs == opOK && !losesInfo)(static_cast <bool> (fs == opOK && !losesInfo) ? void (0) : __assert_fail ("fs == opOK && !losesInfo" , "llvm/lib/Support/APFloat.cpp", 3480, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3481 | (void)fs; | |||
| 3482 | words[1] = *v.convertDoubleAPFloatToAPInt().getRawData(); | |||
| 3483 | } else { | |||
| 3484 | words[1] = 0; | |||
| 3485 | } | |||
| 3486 | ||||
| 3487 | return APInt(128, words); | |||
| 3488 | } | |||
| 3489 | ||||
| 3490 | template <const fltSemantics &S> | |||
| 3491 | APInt IEEEFloat::convertIEEEFloatToAPInt() const { | |||
| 3492 | assert(semantics == &S)(static_cast <bool> (semantics == &S) ? void (0) : __assert_fail ("semantics == &S", "llvm/lib/Support/APFloat.cpp", 3492 , __extension__ __PRETTY_FUNCTION__)); | |||
| 3493 | ||||
| 3494 | constexpr int bias = -(S.minExponent - 1); | |||
| 3495 | constexpr unsigned int trailing_significand_bits = S.precision - 1; | |||
| 3496 | constexpr int integer_bit_part = trailing_significand_bits / integerPartWidth; | |||
| 3497 | constexpr integerPart integer_bit = | |||
| 3498 | integerPart{1} << (trailing_significand_bits % integerPartWidth); | |||
| 3499 | constexpr uint64_t significand_mask = integer_bit - 1; | |||
| 3500 | constexpr unsigned int exponent_bits = | |||
| 3501 | S.sizeInBits - 1 - trailing_significand_bits; | |||
| 3502 | static_assert(exponent_bits < 64); | |||
| 3503 | constexpr uint64_t exponent_mask = (uint64_t{1} << exponent_bits) - 1; | |||
| 3504 | ||||
| 3505 | uint64_t myexponent; | |||
| 3506 | std::array<integerPart, partCountForBits(trailing_significand_bits)> | |||
| 3507 | mysignificand; | |||
| 3508 | ||||
| 3509 | if (isFiniteNonZero()) { | |||
| 3510 | myexponent = exponent + bias; | |||
| 3511 | std::copy_n(significandParts(), mysignificand.size(), | |||
| 3512 | mysignificand.begin()); | |||
| 3513 | if (myexponent == 1 && | |||
| 3514 | !(significandParts()[integer_bit_part] & integer_bit)) | |||
| 3515 | myexponent = 0; // denormal | |||
| 3516 | } else if (category == fcZero) { | |||
| 3517 | myexponent = ::exponentZero(S) + bias; | |||
| 3518 | mysignificand.fill(0); | |||
| 3519 | } else if (category == fcInfinity) { | |||
| 3520 | if (S.nonFiniteBehavior == fltNonfiniteBehavior::NanOnly) { | |||
| 3521 | llvm_unreachable("semantics don't support inf!")::llvm::llvm_unreachable_internal("semantics don't support inf!" , "llvm/lib/Support/APFloat.cpp", 3521); | |||
| 3522 | } | |||
| 3523 | myexponent = ::exponentInf(S) + bias; | |||
| 3524 | mysignificand.fill(0); | |||
| 3525 | } else { | |||
| 3526 | assert(category == fcNaN && "Unknown category!")(static_cast <bool> (category == fcNaN && "Unknown category!" ) ? void (0) : __assert_fail ("category == fcNaN && \"Unknown category!\"" , "llvm/lib/Support/APFloat.cpp", 3526, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3527 | myexponent = ::exponentNaN(S) + bias; | |||
| 3528 | std::copy_n(significandParts(), mysignificand.size(), | |||
| 3529 | mysignificand.begin()); | |||
| 3530 | } | |||
| 3531 | std::array<uint64_t, (S.sizeInBits + 63) / 64> words; | |||
| 3532 | auto words_iter = | |||
| 3533 | std::copy_n(mysignificand.begin(), mysignificand.size(), words.begin()); | |||
| 3534 | if constexpr (significand_mask != 0) { | |||
| 3535 | // Clear the integer bit. | |||
| 3536 | words[mysignificand.size() - 1] &= significand_mask; | |||
| 3537 | } | |||
| 3538 | std::fill(words_iter, words.end(), uint64_t{0}); | |||
| 3539 | constexpr size_t last_word = words.size() - 1; | |||
| 3540 | uint64_t shifted_sign = static_cast<uint64_t>(sign & 1) | |||
| 3541 | << ((S.sizeInBits - 1) % 64); | |||
| 3542 | words[last_word] |= shifted_sign; | |||
| 3543 | uint64_t shifted_exponent = (myexponent & exponent_mask) | |||
| 3544 | << (trailing_significand_bits % 64); | |||
| 3545 | words[last_word] |= shifted_exponent; | |||
| 3546 | if constexpr (last_word == 0) { | |||
| 3547 | return APInt(S.sizeInBits, words[0]); | |||
| 3548 | } | |||
| 3549 | return APInt(S.sizeInBits, words); | |||
| 3550 | } | |||
| 3551 | ||||
| 3552 | APInt IEEEFloat::convertQuadrupleAPFloatToAPInt() const { | |||
| 3553 | assert(partCount() == 2)(static_cast <bool> (partCount() == 2) ? void (0) : __assert_fail ("partCount() == 2", "llvm/lib/Support/APFloat.cpp", 3553, __extension__ __PRETTY_FUNCTION__)); | |||
| 3554 | return convertIEEEFloatToAPInt<semIEEEquad>(); | |||
| 3555 | } | |||
| 3556 | ||||
| 3557 | APInt IEEEFloat::convertDoubleAPFloatToAPInt() const { | |||
| 3558 | assert(partCount()==1)(static_cast <bool> (partCount()==1) ? void (0) : __assert_fail ("partCount()==1", "llvm/lib/Support/APFloat.cpp", 3558, __extension__ __PRETTY_FUNCTION__)); | |||
| 3559 | return convertIEEEFloatToAPInt<semIEEEdouble>(); | |||
| 3560 | } | |||
| 3561 | ||||
| 3562 | APInt IEEEFloat::convertFloatAPFloatToAPInt() const { | |||
| 3563 | assert(partCount()==1)(static_cast <bool> (partCount()==1) ? void (0) : __assert_fail ("partCount()==1", "llvm/lib/Support/APFloat.cpp", 3563, __extension__ __PRETTY_FUNCTION__)); | |||
| 3564 | return convertIEEEFloatToAPInt<semIEEEsingle>(); | |||
| 3565 | } | |||
| 3566 | ||||
| 3567 | APInt IEEEFloat::convertBFloatAPFloatToAPInt() const { | |||
| 3568 | assert(partCount() == 1)(static_cast <bool> (partCount() == 1) ? void (0) : __assert_fail ("partCount() == 1", "llvm/lib/Support/APFloat.cpp", 3568, __extension__ __PRETTY_FUNCTION__)); | |||
| 3569 | return convertIEEEFloatToAPInt<semBFloat>(); | |||
| 3570 | } | |||
| 3571 | ||||
| 3572 | APInt IEEEFloat::convertHalfAPFloatToAPInt() const { | |||
| 3573 | assert(partCount()==1)(static_cast <bool> (partCount()==1) ? void (0) : __assert_fail ("partCount()==1", "llvm/lib/Support/APFloat.cpp", 3573, __extension__ __PRETTY_FUNCTION__)); | |||
| 3574 | return convertIEEEFloatToAPInt<semIEEEhalf>(); | |||
| 3575 | } | |||
| 3576 | ||||
| 3577 | APInt IEEEFloat::convertFloat8E5M2APFloatToAPInt() const { | |||
| 3578 | assert(partCount() == 1)(static_cast <bool> (partCount() == 1) ? void (0) : __assert_fail ("partCount() == 1", "llvm/lib/Support/APFloat.cpp", 3578, __extension__ __PRETTY_FUNCTION__)); | |||
| 3579 | return convertIEEEFloatToAPInt<semFloat8E5M2>(); | |||
| 3580 | } | |||
| 3581 | ||||
| 3582 | APInt IEEEFloat::convertFloat8E5M2FNUZAPFloatToAPInt() const { | |||
| 3583 | assert(partCount() == 1)(static_cast <bool> (partCount() == 1) ? void (0) : __assert_fail ("partCount() == 1", "llvm/lib/Support/APFloat.cpp", 3583, __extension__ __PRETTY_FUNCTION__)); | |||
| 3584 | return convertIEEEFloatToAPInt<semFloat8E5M2FNUZ>(); | |||
| 3585 | } | |||
| 3586 | ||||
| 3587 | APInt IEEEFloat::convertFloat8E4M3FNAPFloatToAPInt() const { | |||
| 3588 | assert(partCount() == 1)(static_cast <bool> (partCount() == 1) ? void (0) : __assert_fail ("partCount() == 1", "llvm/lib/Support/APFloat.cpp", 3588, __extension__ __PRETTY_FUNCTION__)); | |||
| 3589 | return convertIEEEFloatToAPInt<semFloat8E4M3FN>(); | |||
| 3590 | } | |||
| 3591 | ||||
| 3592 | APInt IEEEFloat::convertFloat8E4M3FNUZAPFloatToAPInt() const { | |||
| 3593 | assert(partCount() == 1)(static_cast <bool> (partCount() == 1) ? void (0) : __assert_fail ("partCount() == 1", "llvm/lib/Support/APFloat.cpp", 3593, __extension__ __PRETTY_FUNCTION__)); | |||
| 3594 | return convertIEEEFloatToAPInt<semFloat8E4M3FNUZ>(); | |||
| 3595 | } | |||
| 3596 | ||||
| 3597 | APInt IEEEFloat::convertFloat8E4M3B11FNUZAPFloatToAPInt() const { | |||
| 3598 | assert(partCount() == 1)(static_cast <bool> (partCount() == 1) ? void (0) : __assert_fail ("partCount() == 1", "llvm/lib/Support/APFloat.cpp", 3598, __extension__ __PRETTY_FUNCTION__)); | |||
| 3599 | return convertIEEEFloatToAPInt<semFloat8E4M3B11FNUZ>(); | |||
| 3600 | } | |||
| 3601 | ||||
| 3602 | // This function creates an APInt that is just a bit map of the floating | |||
| 3603 | // point constant as it would appear in memory. It is not a conversion, | |||
| 3604 | // and treating the result as a normal integer is unlikely to be useful. | |||
| 3605 | ||||
| 3606 | APInt IEEEFloat::bitcastToAPInt() const { | |||
| 3607 | if (semantics == (const llvm::fltSemantics*)&semIEEEhalf) | |||
| 3608 | return convertHalfAPFloatToAPInt(); | |||
| 3609 | ||||
| 3610 | if (semantics == (const llvm::fltSemantics *)&semBFloat) | |||
| 3611 | return convertBFloatAPFloatToAPInt(); | |||
| 3612 | ||||
| 3613 | if (semantics == (const llvm::fltSemantics*)&semIEEEsingle) | |||
| 3614 | return convertFloatAPFloatToAPInt(); | |||
| 3615 | ||||
| 3616 | if (semantics == (const llvm::fltSemantics*)&semIEEEdouble) | |||
| 3617 | return convertDoubleAPFloatToAPInt(); | |||
| 3618 | ||||
| 3619 | if (semantics == (const llvm::fltSemantics*)&semIEEEquad) | |||
| 3620 | return convertQuadrupleAPFloatToAPInt(); | |||
| 3621 | ||||
| 3622 | if (semantics == (const llvm::fltSemantics *)&semPPCDoubleDoubleLegacy) | |||
| 3623 | return convertPPCDoubleDoubleAPFloatToAPInt(); | |||
| 3624 | ||||
| 3625 | if (semantics == (const llvm::fltSemantics *)&semFloat8E5M2) | |||
| 3626 | return convertFloat8E5M2APFloatToAPInt(); | |||
| 3627 | ||||
| 3628 | if (semantics == (const llvm::fltSemantics *)&semFloat8E5M2FNUZ) | |||
| 3629 | return convertFloat8E5M2FNUZAPFloatToAPInt(); | |||
| 3630 | ||||
| 3631 | if (semantics == (const llvm::fltSemantics *)&semFloat8E4M3FN) | |||
| 3632 | return convertFloat8E4M3FNAPFloatToAPInt(); | |||
| 3633 | ||||
| 3634 | if (semantics == (const llvm::fltSemantics *)&semFloat8E4M3FNUZ) | |||
| 3635 | return convertFloat8E4M3FNUZAPFloatToAPInt(); | |||
| 3636 | ||||
| 3637 | if (semantics == (const llvm::fltSemantics *)&semFloat8E4M3B11FNUZ) | |||
| 3638 | return convertFloat8E4M3B11FNUZAPFloatToAPInt(); | |||
| 3639 | ||||
| 3640 | assert(semantics == (const llvm::fltSemantics*)&semX87DoubleExtended &&(static_cast <bool> (semantics == (const llvm::fltSemantics *)&semX87DoubleExtended && "unknown format!") ? void (0) : __assert_fail ("semantics == (const llvm::fltSemantics*)&semX87DoubleExtended && \"unknown format!\"" , "llvm/lib/Support/APFloat.cpp", 3641, __extension__ __PRETTY_FUNCTION__ )) | |||
| 3641 | "unknown format!")(static_cast <bool> (semantics == (const llvm::fltSemantics *)&semX87DoubleExtended && "unknown format!") ? void (0) : __assert_fail ("semantics == (const llvm::fltSemantics*)&semX87DoubleExtended && \"unknown format!\"" , "llvm/lib/Support/APFloat.cpp", 3641, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3642 | return convertF80LongDoubleAPFloatToAPInt(); | |||
| 3643 | } | |||
| 3644 | ||||
| 3645 | float IEEEFloat::convertToFloat() const { | |||
| 3646 | assert(semantics == (const llvm::fltSemantics*)&semIEEEsingle &&(static_cast <bool> (semantics == (const llvm::fltSemantics *)&semIEEEsingle && "Float semantics are not IEEEsingle" ) ? void (0) : __assert_fail ("semantics == (const llvm::fltSemantics*)&semIEEEsingle && \"Float semantics are not IEEEsingle\"" , "llvm/lib/Support/APFloat.cpp", 3647, __extension__ __PRETTY_FUNCTION__ )) | |||
| 3647 | "Float semantics are not IEEEsingle")(static_cast <bool> (semantics == (const llvm::fltSemantics *)&semIEEEsingle && "Float semantics are not IEEEsingle" ) ? void (0) : __assert_fail ("semantics == (const llvm::fltSemantics*)&semIEEEsingle && \"Float semantics are not IEEEsingle\"" , "llvm/lib/Support/APFloat.cpp", 3647, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3648 | APInt api = bitcastToAPInt(); | |||
| 3649 | return api.bitsToFloat(); | |||
| 3650 | } | |||
| 3651 | ||||
| 3652 | double IEEEFloat::convertToDouble() const { | |||
| 3653 | assert(semantics == (const llvm::fltSemantics*)&semIEEEdouble &&(static_cast <bool> (semantics == (const llvm::fltSemantics *)&semIEEEdouble && "Float semantics are not IEEEdouble" ) ? void (0) : __assert_fail ("semantics == (const llvm::fltSemantics*)&semIEEEdouble && \"Float semantics are not IEEEdouble\"" , "llvm/lib/Support/APFloat.cpp", 3654, __extension__ __PRETTY_FUNCTION__ )) | |||
| 3654 | "Float semantics are not IEEEdouble")(static_cast <bool> (semantics == (const llvm::fltSemantics *)&semIEEEdouble && "Float semantics are not IEEEdouble" ) ? void (0) : __assert_fail ("semantics == (const llvm::fltSemantics*)&semIEEEdouble && \"Float semantics are not IEEEdouble\"" , "llvm/lib/Support/APFloat.cpp", 3654, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3655 | APInt api = bitcastToAPInt(); | |||
| 3656 | return api.bitsToDouble(); | |||
| 3657 | } | |||
| 3658 | ||||
| 3659 | /// Integer bit is explicit in this format. Intel hardware (387 and later) | |||
| 3660 | /// does not support these bit patterns: | |||
| 3661 | /// exponent = all 1's, integer bit 0, significand 0 ("pseudoinfinity") | |||
| 3662 | /// exponent = all 1's, integer bit 0, significand nonzero ("pseudoNaN") | |||
| 3663 | /// exponent!=0 nor all 1's, integer bit 0 ("unnormal") | |||
| 3664 | /// exponent = 0, integer bit 1 ("pseudodenormal") | |||
| 3665 | /// At the moment, the first three are treated as NaNs, the last one as Normal. | |||
| 3666 | void IEEEFloat::initFromF80LongDoubleAPInt(const APInt &api) { | |||
| 3667 | uint64_t i1 = api.getRawData()[0]; | |||
| 3668 | uint64_t i2 = api.getRawData()[1]; | |||
| 3669 | uint64_t myexponent = (i2 & 0x7fff); | |||
| 3670 | uint64_t mysignificand = i1; | |||
| 3671 | uint8_t myintegerbit = mysignificand >> 63; | |||
| 3672 | ||||
| 3673 | initialize(&semX87DoubleExtended); | |||
| 3674 | assert(partCount()==2)(static_cast <bool> (partCount()==2) ? void (0) : __assert_fail ("partCount()==2", "llvm/lib/Support/APFloat.cpp", 3674, __extension__ __PRETTY_FUNCTION__)); | |||
| 3675 | ||||
| 3676 | sign = static_cast<unsigned int>(i2>>15); | |||
| 3677 | if (myexponent == 0 && mysignificand == 0) { | |||
| 3678 | makeZero(sign); | |||
| 3679 | } else if (myexponent==0x7fff && mysignificand==0x8000000000000000ULL) { | |||
| 3680 | makeInf(sign); | |||
| 3681 | } else if ((myexponent == 0x7fff && mysignificand != 0x8000000000000000ULL) || | |||
| 3682 | (myexponent != 0x7fff && myexponent != 0 && myintegerbit == 0)) { | |||
| 3683 | category = fcNaN; | |||
| 3684 | exponent = exponentNaN(); | |||
| 3685 | significandParts()[0] = mysignificand; | |||
| 3686 | significandParts()[1] = 0; | |||
| 3687 | } else { | |||
| 3688 | category = fcNormal; | |||
| 3689 | exponent = myexponent - 16383; | |||
| 3690 | significandParts()[0] = mysignificand; | |||
| 3691 | significandParts()[1] = 0; | |||
| 3692 | if (myexponent==0) // denormal | |||
| 3693 | exponent = -16382; | |||
| 3694 | } | |||
| 3695 | } | |||
| 3696 | ||||
| 3697 | void IEEEFloat::initFromPPCDoubleDoubleAPInt(const APInt &api) { | |||
| 3698 | uint64_t i1 = api.getRawData()[0]; | |||
| 3699 | uint64_t i2 = api.getRawData()[1]; | |||
| 3700 | opStatus fs; | |||
| 3701 | bool losesInfo; | |||
| 3702 | ||||
| 3703 | // Get the first double and convert to our format. | |||
| 3704 | initFromDoubleAPInt(APInt(64, i1)); | |||
| 3705 | fs = convert(semPPCDoubleDoubleLegacy, rmNearestTiesToEven, &losesInfo); | |||
| 3706 | assert(fs == opOK && !losesInfo)(static_cast <bool> (fs == opOK && !losesInfo) ? void (0) : __assert_fail ("fs == opOK && !losesInfo" , "llvm/lib/Support/APFloat.cpp", 3706, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3707 | (void)fs; | |||
| 3708 | ||||
| 3709 | // Unless we have a special case, add in second double. | |||
| 3710 | if (isFiniteNonZero()) { | |||
| 3711 | IEEEFloat v(semIEEEdouble, APInt(64, i2)); | |||
| 3712 | fs = v.convert(semPPCDoubleDoubleLegacy, rmNearestTiesToEven, &losesInfo); | |||
| 3713 | assert(fs == opOK && !losesInfo)(static_cast <bool> (fs == opOK && !losesInfo) ? void (0) : __assert_fail ("fs == opOK && !losesInfo" , "llvm/lib/Support/APFloat.cpp", 3713, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3714 | (void)fs; | |||
| 3715 | ||||
| 3716 | add(v, rmNearestTiesToEven); | |||
| 3717 | } | |||
| 3718 | } | |||
| 3719 | ||||
| 3720 | template <const fltSemantics &S> | |||
| 3721 | void IEEEFloat::initFromIEEEAPInt(const APInt &api) { | |||
| 3722 | assert(api.getBitWidth() == S.sizeInBits)(static_cast <bool> (api.getBitWidth() == S.sizeInBits) ? void (0) : __assert_fail ("api.getBitWidth() == S.sizeInBits" , "llvm/lib/Support/APFloat.cpp", 3722, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3723 | constexpr integerPart integer_bit = integerPart{1} | |||
| 3724 | << ((S.precision - 1) % integerPartWidth); | |||
| 3725 | constexpr uint64_t significand_mask = integer_bit - 1; | |||
| 3726 | constexpr unsigned int trailing_significand_bits = S.precision - 1; | |||
| 3727 | constexpr unsigned int stored_significand_parts = | |||
| 3728 | partCountForBits(trailing_significand_bits); | |||
| 3729 | constexpr unsigned int exponent_bits = | |||
| 3730 | S.sizeInBits - 1 - trailing_significand_bits; | |||
| 3731 | static_assert(exponent_bits < 64); | |||
| 3732 | constexpr uint64_t exponent_mask = (uint64_t{1} << exponent_bits) - 1; | |||
| 3733 | constexpr int bias = -(S.minExponent - 1); | |||
| 3734 | ||||
| 3735 | // Copy the bits of the significand. We need to clear out the exponent and | |||
| 3736 | // sign bit in the last word. | |||
| 3737 | std::array<integerPart, stored_significand_parts> mysignificand; | |||
| 3738 | std::copy_n(api.getRawData(), mysignificand.size(), mysignificand.begin()); | |||
| 3739 | if constexpr (significand_mask != 0) { | |||
| 3740 | mysignificand[mysignificand.size() - 1] &= significand_mask; | |||
| 3741 | } | |||
| 3742 | ||||
| 3743 | // We assume the last word holds the sign bit, the exponent, and potentially | |||
| 3744 | // some of the trailing significand field. | |||
| 3745 | uint64_t last_word = api.getRawData()[api.getNumWords() - 1]; | |||
| 3746 | uint64_t myexponent = | |||
| 3747 | (last_word >> (trailing_significand_bits % 64)) & exponent_mask; | |||
| 3748 | ||||
| 3749 | initialize(&S); | |||
| 3750 | assert(partCount() == mysignificand.size())(static_cast <bool> (partCount() == mysignificand.size( )) ? void (0) : __assert_fail ("partCount() == mysignificand.size()" , "llvm/lib/Support/APFloat.cpp", 3750, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3751 | ||||
| 3752 | sign = static_cast<unsigned int>(last_word >> ((S.sizeInBits - 1) % 64)); | |||
| 3753 | ||||
| 3754 | bool all_zero_significand = | |||
| 3755 | llvm::all_of(mysignificand, [](integerPart bits) { return bits == 0; }); | |||
| 3756 | ||||
| 3757 | bool is_zero = myexponent == 0 && all_zero_significand; | |||
| 3758 | ||||
| 3759 | if constexpr (S.nonFiniteBehavior == fltNonfiniteBehavior::IEEE754) { | |||
| 3760 | if (myexponent - bias == ::exponentInf(S) && all_zero_significand) { | |||
| 3761 | makeInf(sign); | |||
| 3762 | return; | |||
| 3763 | } | |||
| 3764 | } | |||
| 3765 | ||||
| 3766 | bool is_nan = false; | |||
| 3767 | ||||
| 3768 | if constexpr (S.nanEncoding == fltNanEncoding::IEEE) { | |||
| 3769 | is_nan = myexponent - bias == ::exponentNaN(S) && !all_zero_significand; | |||
| 3770 | } else if constexpr (S.nanEncoding == fltNanEncoding::AllOnes) { | |||
| 3771 | bool all_ones_significand = | |||
| 3772 | std::all_of(mysignificand.begin(), mysignificand.end() - 1, | |||
| 3773 | [](integerPart bits) { return bits == ~integerPart{0}; }) && | |||
| 3774 | (!significand_mask || | |||
| 3775 | mysignificand[mysignificand.size() - 1] == significand_mask); | |||
| 3776 | is_nan = myexponent - bias == ::exponentNaN(S) && all_ones_significand; | |||
| 3777 | } else if constexpr (S.nanEncoding == fltNanEncoding::NegativeZero) { | |||
| 3778 | is_nan = is_zero && sign; | |||
| 3779 | } | |||
| 3780 | ||||
| 3781 | if (is_nan) { | |||
| 3782 | category = fcNaN; | |||
| 3783 | exponent = ::exponentNaN(S); | |||
| 3784 | std::copy_n(mysignificand.begin(), mysignificand.size(), | |||
| 3785 | significandParts()); | |||
| 3786 | return; | |||
| 3787 | } | |||
| 3788 | ||||
| 3789 | if (is_zero) { | |||
| 3790 | makeZero(sign); | |||
| 3791 | return; | |||
| 3792 | } | |||
| 3793 | ||||
| 3794 | category = fcNormal; | |||
| 3795 | exponent = myexponent - bias; | |||
| 3796 | std::copy_n(mysignificand.begin(), mysignificand.size(), significandParts()); | |||
| 3797 | if (myexponent == 0) // denormal | |||
| 3798 | exponent = S.minExponent; | |||
| 3799 | else | |||
| 3800 | significandParts()[mysignificand.size()-1] |= integer_bit; // integer bit | |||
| 3801 | } | |||
| 3802 | ||||
| 3803 | void IEEEFloat::initFromQuadrupleAPInt(const APInt &api) { | |||
| 3804 | initFromIEEEAPInt<semIEEEquad>(api); | |||
| 3805 | } | |||
| 3806 | ||||
| 3807 | void IEEEFloat::initFromDoubleAPInt(const APInt &api) { | |||
| 3808 | initFromIEEEAPInt<semIEEEdouble>(api); | |||
| 3809 | } | |||
| 3810 | ||||
| 3811 | void IEEEFloat::initFromFloatAPInt(const APInt &api) { | |||
| 3812 | initFromIEEEAPInt<semIEEEsingle>(api); | |||
| 3813 | } | |||
| 3814 | ||||
| 3815 | void IEEEFloat::initFromBFloatAPInt(const APInt &api) { | |||
| 3816 | initFromIEEEAPInt<semBFloat>(api); | |||
| 3817 | } | |||
| 3818 | ||||
| 3819 | void IEEEFloat::initFromHalfAPInt(const APInt &api) { | |||
| 3820 | initFromIEEEAPInt<semIEEEhalf>(api); | |||
| 3821 | } | |||
| 3822 | ||||
| 3823 | void IEEEFloat::initFromFloat8E5M2APInt(const APInt &api) { | |||
| 3824 | initFromIEEEAPInt<semFloat8E5M2>(api); | |||
| 3825 | } | |||
| 3826 | ||||
| 3827 | void IEEEFloat::initFromFloat8E5M2FNUZAPInt(const APInt &api) { | |||
| 3828 | initFromIEEEAPInt<semFloat8E5M2FNUZ>(api); | |||
| 3829 | } | |||
| 3830 | ||||
| 3831 | void IEEEFloat::initFromFloat8E4M3FNAPInt(const APInt &api) { | |||
| 3832 | initFromIEEEAPInt<semFloat8E4M3FN>(api); | |||
| 3833 | } | |||
| 3834 | ||||
| 3835 | void IEEEFloat::initFromFloat8E4M3FNUZAPInt(const APInt &api) { | |||
| 3836 | initFromIEEEAPInt<semFloat8E4M3FNUZ>(api); | |||
| 3837 | } | |||
| 3838 | ||||
| 3839 | void IEEEFloat::initFromFloat8E4M3B11FNUZAPInt(const APInt &api) { | |||
| 3840 | initFromIEEEAPInt<semFloat8E4M3B11FNUZ>(api); | |||
| 3841 | } | |||
| 3842 | ||||
| 3843 | /// Treat api as containing the bits of a floating point number. | |||
| 3844 | void IEEEFloat::initFromAPInt(const fltSemantics *Sem, const APInt &api) { | |||
| 3845 | assert(api.getBitWidth() == Sem->sizeInBits)(static_cast <bool> (api.getBitWidth() == Sem->sizeInBits ) ? void (0) : __assert_fail ("api.getBitWidth() == Sem->sizeInBits" , "llvm/lib/Support/APFloat.cpp", 3845, __extension__ __PRETTY_FUNCTION__ )); | |||
| 3846 | if (Sem == &semIEEEhalf) | |||
| 3847 | return initFromHalfAPInt(api); | |||
| 3848 | if (Sem == &semBFloat) | |||
| 3849 | return initFromBFloatAPInt(api); | |||
| 3850 | if (Sem == &semIEEEsingle) | |||
| 3851 | return initFromFloatAPInt(api); | |||
| 3852 | if (Sem == &semIEEEdouble) | |||
| 3853 | return initFromDoubleAPInt(api); | |||
| 3854 | if (Sem == &semX87DoubleExtended) | |||
| 3855 | return initFromF80LongDoubleAPInt(api); | |||
| 3856 | if (Sem == &semIEEEquad) | |||
| 3857 | return initFromQuadrupleAPInt(api); | |||
| 3858 | if (Sem == &semPPCDoubleDoubleLegacy) | |||
| 3859 | return initFromPPCDoubleDoubleAPInt(api); | |||
| 3860 | if (Sem == &semFloat8E5M2) | |||
| 3861 | return initFromFloat8E5M2APInt(api); | |||
| 3862 | if (Sem == &semFloat8E5M2FNUZ) | |||
| 3863 | return initFromFloat8E5M2FNUZAPInt(api); | |||
| 3864 | if (Sem == &semFloat8E4M3FN) | |||
| 3865 | return initFromFloat8E4M3FNAPInt(api); | |||
| 3866 | if (Sem == &semFloat8E4M3FNUZ) | |||
| 3867 | return initFromFloat8E4M3FNUZAPInt(api); | |||
| 3868 | if (Sem == &semFloat8E4M3B11FNUZ) | |||
| 3869 | return initFromFloat8E4M3B11FNUZAPInt(api); | |||
| 3870 | ||||
| 3871 | llvm_unreachable(nullptr)::llvm::llvm_unreachable_internal(nullptr, "llvm/lib/Support/APFloat.cpp" , 3871); | |||
| 3872 | } | |||
| 3873 | ||||
| 3874 | /// Make this number the largest magnitude normal number in the given | |||
| 3875 | /// semantics. | |||
| 3876 | void IEEEFloat::makeLargest(bool Negative) { | |||
| 3877 | // We want (in interchange format): | |||
| 3878 | // sign = {Negative} | |||
| 3879 | // exponent = 1..10 | |||
| 3880 | // significand = 1..1 | |||
| 3881 | category = fcNormal; | |||
| 3882 | sign = Negative; | |||
| 3883 | exponent = semantics->maxExponent; | |||
| 3884 | ||||
| 3885 | // Use memset to set all but the highest integerPart to all ones. | |||
| 3886 | integerPart *significand = significandParts(); | |||
| 3887 | unsigned PartCount = partCount(); | |||
| 3888 | memset(significand, 0xFF, sizeof(integerPart)*(PartCount - 1)); | |||
| 3889 | ||||
| 3890 | // Set the high integerPart especially setting all unused top bits for | |||
| 3891 | // internal consistency. | |||
| 3892 | const unsigned NumUnusedHighBits = | |||
| 3893 | PartCount*integerPartWidth - semantics->precision; | |||
| 3894 | significand[PartCount - 1] = (NumUnusedHighBits < integerPartWidth) | |||
| 3895 | ? (~integerPart(0) >> NumUnusedHighBits) | |||
| 3896 | : 0; | |||
| 3897 | ||||
| 3898 | if (semantics->nonFiniteBehavior == fltNonfiniteBehavior::NanOnly && | |||
| 3899 | semantics->nanEncoding == fltNanEncoding::AllOnes) | |||
| 3900 | significand[0] &= ~integerPart(1); | |||
| 3901 | } | |||
| 3902 | ||||
| 3903 | /// Make this number the smallest magnitude denormal number in the given | |||
| 3904 | /// semantics. | |||
| 3905 | void IEEEFloat::makeSmallest(bool Negative) { | |||
| 3906 | // We want (in interchange format): | |||
| 3907 | // sign = {Negative} | |||
| 3908 | // exponent = 0..0 | |||
| 3909 | // significand = 0..01 | |||
| 3910 | category = fcNormal; | |||
| 3911 | sign = Negative; | |||
| 3912 | exponent = semantics->minExponent; | |||
| 3913 | APInt::tcSet(significandParts(), 1, partCount()); | |||
| 3914 | } | |||
| 3915 | ||||
| 3916 | void IEEEFloat::makeSmallestNormalized(bool Negative) { | |||
| 3917 | // We want (in interchange format): | |||
| 3918 | // sign = {Negative} | |||
| 3919 | // exponent = 0..0 | |||
| 3920 | // significand = 10..0 | |||
| 3921 | ||||
| 3922 | category = fcNormal; | |||
| 3923 | zeroSignificand(); | |||
| 3924 | sign = Negative; | |||
| 3925 | exponent = semantics->minExponent; | |||
| 3926 | APInt::tcSetBit(significandParts(), semantics->precision - 1); | |||
| 3927 | } | |||
| 3928 | ||||
| 3929 | IEEEFloat::IEEEFloat(const fltSemantics &Sem, const APInt &API) { | |||
| 3930 | initFromAPInt(&Sem, API); | |||
| 3931 | } | |||
| 3932 | ||||
| 3933 | IEEEFloat::IEEEFloat(float f) { | |||
| 3934 | initFromAPInt(&semIEEEsingle, APInt::floatToBits(f)); | |||
| 3935 | } | |||
| 3936 | ||||
| 3937 | IEEEFloat::IEEEFloat(double d) { | |||
| 3938 | initFromAPInt(&semIEEEdouble, APInt::doubleToBits(d)); | |||
| 3939 | } | |||
| 3940 | ||||
| 3941 | namespace { | |||
| 3942 | void append(SmallVectorImpl<char> &Buffer, StringRef Str) { | |||
| 3943 | Buffer.append(Str.begin(), Str.end()); | |||
| 3944 | } | |||
| 3945 | ||||
| 3946 | /// Removes data from the given significand until it is no more | |||
| 3947 | /// precise than is required for the desired precision. | |||
| 3948 | void AdjustToPrecision(APInt &significand, | |||
| 3949 | int &exp, unsigned FormatPrecision) { | |||
| 3950 | unsigned bits = significand.getActiveBits(); | |||
| 3951 | ||||
| 3952 | // 196/59 is a very slight overestimate of lg_2(10). | |||
| 3953 | unsigned bitsRequired = (FormatPrecision * 196 + 58) / 59; | |||
| 3954 | ||||
| 3955 | if (bits <= bitsRequired) return; | |||
| 3956 | ||||
| 3957 | unsigned tensRemovable = (bits - bitsRequired) * 59 / 196; | |||
| 3958 | if (!tensRemovable) return; | |||
| 3959 | ||||
| 3960 | exp += tensRemovable; | |||
| 3961 | ||||
| 3962 | APInt divisor(significand.getBitWidth(), 1); | |||
| 3963 | APInt powten(significand.getBitWidth(), 10); | |||
| 3964 | while (true) { | |||
| 3965 | if (tensRemovable & 1) | |||
| 3966 | divisor *= powten; | |||
| 3967 | tensRemovable >>= 1; | |||
| 3968 | if (!tensRemovable) break; | |||
| 3969 | powten *= powten; | |||
| 3970 | } | |||
| 3971 | ||||
| 3972 | significand = significand.udiv(divisor); | |||
| 3973 | ||||
| 3974 | // Truncate the significand down to its active bit count. | |||
| 3975 | significand = significand.trunc(significand.getActiveBits()); | |||
| 3976 | } | |||
| 3977 | ||||
| 3978 | ||||
| 3979 | void AdjustToPrecision(SmallVectorImpl<char> &buffer, | |||
| 3980 | int &exp, unsigned FormatPrecision) { | |||
| 3981 | unsigned N = buffer.size(); | |||
| 3982 | if (N <= FormatPrecision) return; | |||
| 3983 | ||||
| 3984 | // The most significant figures are the last ones in the buffer. | |||
| 3985 | unsigned FirstSignificant = N - FormatPrecision; | |||
| 3986 | ||||
| 3987 | // Round. | |||
| 3988 | // FIXME: this probably shouldn't use 'round half up'. | |||
| 3989 | ||||
| 3990 | // Rounding down is just a truncation, except we also want to drop | |||
| 3991 | // trailing zeros from the new result. | |||
| 3992 | if (buffer[FirstSignificant - 1] < '5') { | |||
| 3993 | while (FirstSignificant < N && buffer[FirstSignificant] == '0') | |||
| 3994 | FirstSignificant++; | |||
| 3995 | ||||
| 3996 | exp += FirstSignificant; | |||
| 3997 | buffer.erase(&buffer[0], &buffer[FirstSignificant]); | |||
| 3998 | return; | |||
| 3999 | } | |||
| 4000 | ||||
| 4001 | // Rounding up requires a decimal add-with-carry. If we continue | |||
| 4002 | // the carry, the newly-introduced zeros will just be truncated. | |||
| 4003 | for (unsigned I = FirstSignificant; I != N; ++I) { | |||
| 4004 | if (buffer[I] == '9') { | |||
| 4005 | FirstSignificant++; | |||
| 4006 | } else { | |||
| 4007 | buffer[I]++; | |||
| 4008 | break; | |||
| 4009 | } | |||
| 4010 | } | |||
| 4011 | ||||
| 4012 | // If we carried through, we have exactly one digit of precision. | |||
| 4013 | if (FirstSignificant == N) { | |||
| 4014 | exp += FirstSignificant; | |||
| 4015 | buffer.clear(); | |||
| 4016 | buffer.push_back('1'); | |||
| 4017 | return; | |||
| 4018 | } | |||
| 4019 | ||||
| 4020 | exp += FirstSignificant; | |||
| 4021 | buffer.erase(&buffer[0], &buffer[FirstSignificant]); | |||
| 4022 | } | |||
| 4023 | } // namespace | |||
| 4024 | ||||
| 4025 | void IEEEFloat::toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision, | |||
| 4026 | unsigned FormatMaxPadding, bool TruncateZero) const { | |||
| 4027 | switch (category) { | |||
| 4028 | case fcInfinity: | |||
| 4029 | if (isNegative()) | |||
| 4030 | return append(Str, "-Inf"); | |||
| 4031 | else | |||
| 4032 | return append(Str, "+Inf"); | |||
| 4033 | ||||
| 4034 | case fcNaN: return append(Str, "NaN"); | |||
| 4035 | ||||
| 4036 | case fcZero: | |||
| 4037 | if (isNegative()) | |||
| 4038 | Str.push_back('-'); | |||
| 4039 | ||||
| 4040 | if (!FormatMaxPadding) { | |||
| 4041 | if (TruncateZero) | |||
| 4042 | append(Str, "0.0E+0"); | |||
| 4043 | else { | |||
| 4044 | append(Str, "0.0"); | |||
| 4045 | if (FormatPrecision > 1) | |||
| 4046 | Str.append(FormatPrecision - 1, '0'); | |||
| 4047 | append(Str, "e+00"); | |||
| 4048 | } | |||
| 4049 | } else | |||
| 4050 | Str.push_back('0'); | |||
| 4051 | return; | |||
| 4052 | ||||
| 4053 | case fcNormal: | |||
| 4054 | break; | |||
| 4055 | } | |||
| 4056 | ||||
| 4057 | if (isNegative()) | |||
| 4058 | Str.push_back('-'); | |||
| 4059 | ||||
| 4060 | // Decompose the number into an APInt and an exponent. | |||
| 4061 | int exp = exponent - ((int) semantics->precision - 1); | |||
| 4062 | APInt significand( | |||
| 4063 | semantics->precision, | |||
| 4064 | ArrayRef(significandParts(), partCountForBits(semantics->precision))); | |||
| 4065 | ||||
| 4066 | // Set FormatPrecision if zero. We want to do this before we | |||
| 4067 | // truncate trailing zeros, as those are part of the precision. | |||
| 4068 | if (!FormatPrecision) { | |||
| 4069 | // We use enough digits so the number can be round-tripped back to an | |||
| 4070 | // APFloat. The formula comes from "How to Print Floating-Point Numbers | |||
| 4071 | // Accurately" by Steele and White. | |||
| 4072 | // FIXME: Using a formula based purely on the precision is conservative; | |||
| 4073 | // we can print fewer digits depending on the actual value being printed. | |||
| 4074 | ||||
| 4075 | // FormatPrecision = 2 + floor(significandBits / lg_2(10)) | |||
| 4076 | FormatPrecision = 2 + semantics->precision * 59 / 196; | |||
| 4077 | } | |||
| 4078 | ||||
| 4079 | // Ignore trailing binary zeros. | |||
| 4080 | int trailingZeros = significand.countr_zero(); | |||
| 4081 | exp += trailingZeros; | |||
| 4082 | significand.lshrInPlace(trailingZeros); | |||
| 4083 | ||||
| 4084 | // Change the exponent from 2^e to 10^e. | |||
| 4085 | if (exp == 0) { | |||
| 4086 | // Nothing to do. | |||
| 4087 | } else if (exp > 0) { | |||
| 4088 | // Just shift left. | |||
| 4089 | significand = significand.zext(semantics->precision + exp); | |||
| 4090 | significand <<= exp; | |||
| 4091 | exp = 0; | |||
| 4092 | } else { /* exp < 0 */ | |||
| 4093 | int texp = -exp; | |||
| 4094 | ||||
| 4095 | // We transform this using the identity: | |||
| 4096 | // (N)(2^-e) == (N)(5^e)(10^-e) | |||
| 4097 | // This means we have to multiply N (the significand) by 5^e. | |||
| 4098 | // To avoid overflow, we have to operate on numbers large | |||
| 4099 | // enough to store N * 5^e: | |||
| 4100 | // log2(N * 5^e) == log2(N) + e * log2(5) | |||
| 4101 | // <= semantics->precision + e * 137 / 59 | |||
| 4102 | // (log_2(5) ~ 2.321928 < 2.322034 ~ 137/59) | |||
| 4103 | ||||
| 4104 | unsigned precision = semantics->precision + (137 * texp + 136) / 59; | |||
| 4105 | ||||
| 4106 | // Multiply significand by 5^e. | |||
| 4107 | // N * 5^0101 == N * 5^(1*1) * 5^(0*2) * 5^(1*4) * 5^(0*8) | |||
| 4108 | significand = significand.zext(precision); | |||
| 4109 | APInt five_to_the_i(precision, 5); | |||
| 4110 | while (true) { | |||
| 4111 | if (texp & 1) significand *= five_to_the_i; | |||
| 4112 | ||||
| 4113 | texp >>= 1; | |||
| 4114 | if (!texp) break; | |||
| 4115 | five_to_the_i *= five_to_the_i; | |||
| 4116 | } | |||
| 4117 | } | |||
| 4118 | ||||
| 4119 | AdjustToPrecision(significand, exp, FormatPrecision); | |||
| 4120 | ||||
| 4121 | SmallVector<char, 256> buffer; | |||
| 4122 | ||||
| 4123 | // Fill the buffer. | |||
| 4124 | unsigned precision = significand.getBitWidth(); | |||
| 4125 | if (precision < 4) { | |||
| 4126 | // We need enough precision to store the value 10. | |||
| 4127 | precision = 4; | |||
| 4128 | significand = significand.zext(precision); | |||
| 4129 | } | |||
| 4130 | APInt ten(precision, 10); | |||
| 4131 | APInt digit(precision, 0); | |||
| 4132 | ||||
| 4133 | bool inTrail = true; | |||
| 4134 | while (significand != 0) { | |||
| 4135 | // digit <- significand % 10 | |||
| 4136 | // significand <- significand / 10 | |||
| 4137 | APInt::udivrem(significand, ten, significand, digit); | |||
| 4138 | ||||
| 4139 | unsigned d = digit.getZExtValue(); | |||
| 4140 | ||||
| 4141 | // Drop trailing zeros. | |||
| 4142 | if (inTrail && !d) exp++; | |||
| 4143 | else { | |||
| 4144 | buffer.push_back((char) ('0' + d)); | |||
| 4145 | inTrail = false; | |||
| 4146 | } | |||
| 4147 | } | |||
| 4148 | ||||
| 4149 | assert(!buffer.empty() && "no characters in buffer!")(static_cast <bool> (!buffer.empty() && "no characters in buffer!" ) ? void (0) : __assert_fail ("!buffer.empty() && \"no characters in buffer!\"" , "llvm/lib/Support/APFloat.cpp", 4149, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4150 | ||||
| 4151 | // Drop down to FormatPrecision. | |||
| 4152 | // TODO: don't do more precise calculations above than are required. | |||
| 4153 | AdjustToPrecision(buffer, exp, FormatPrecision); | |||
| 4154 | ||||
| 4155 | unsigned NDigits = buffer.size(); | |||
| 4156 | ||||
| 4157 | // Check whether we should use scientific notation. | |||
| 4158 | bool FormatScientific; | |||
| 4159 | if (!FormatMaxPadding) | |||
| 4160 | FormatScientific = true; | |||
| 4161 | else { | |||
| 4162 | if (exp >= 0) { | |||
| 4163 | // 765e3 --> 765000 | |||
| 4164 | // ^^^ | |||
| 4165 | // But we shouldn't make the number look more precise than it is. | |||
| 4166 | FormatScientific = ((unsigned) exp > FormatMaxPadding || | |||
| 4167 | NDigits + (unsigned) exp > FormatPrecision); | |||
| 4168 | } else { | |||
| 4169 | // Power of the most significant digit. | |||
| 4170 | int MSD = exp + (int) (NDigits - 1); | |||
| 4171 | if (MSD >= 0) { | |||
| 4172 | // 765e-2 == 7.65 | |||
| 4173 | FormatScientific = false; | |||
| 4174 | } else { | |||
| 4175 | // 765e-5 == 0.00765 | |||
| 4176 | // ^ ^^ | |||
| 4177 | FormatScientific = ((unsigned) -MSD) > FormatMaxPadding; | |||
| 4178 | } | |||
| 4179 | } | |||
| 4180 | } | |||
| 4181 | ||||
| 4182 | // Scientific formatting is pretty straightforward. | |||
| 4183 | if (FormatScientific) { | |||
| 4184 | exp += (NDigits - 1); | |||
| 4185 | ||||
| 4186 | Str.push_back(buffer[NDigits-1]); | |||
| 4187 | Str.push_back('.'); | |||
| 4188 | if (NDigits == 1 && TruncateZero) | |||
| 4189 | Str.push_back('0'); | |||
| 4190 | else | |||
| 4191 | for (unsigned I = 1; I != NDigits; ++I) | |||
| 4192 | Str.push_back(buffer[NDigits-1-I]); | |||
| 4193 | // Fill with zeros up to FormatPrecision. | |||
| 4194 | if (!TruncateZero && FormatPrecision > NDigits - 1) | |||
| 4195 | Str.append(FormatPrecision - NDigits + 1, '0'); | |||
| 4196 | // For !TruncateZero we use lower 'e'. | |||
| 4197 | Str.push_back(TruncateZero ? 'E' : 'e'); | |||
| 4198 | ||||
| 4199 | Str.push_back(exp >= 0 ? '+' : '-'); | |||
| 4200 | if (exp < 0) exp = -exp; | |||
| 4201 | SmallVector<char, 6> expbuf; | |||
| 4202 | do { | |||
| 4203 | expbuf.push_back((char) ('0' + (exp % 10))); | |||
| 4204 | exp /= 10; | |||
| 4205 | } while (exp); | |||
| 4206 | // Exponent always at least two digits if we do not truncate zeros. | |||
| 4207 | if (!TruncateZero && expbuf.size() < 2) | |||
| 4208 | expbuf.push_back('0'); | |||
| 4209 | for (unsigned I = 0, E = expbuf.size(); I != E; ++I) | |||
| 4210 | Str.push_back(expbuf[E-1-I]); | |||
| 4211 | return; | |||
| 4212 | } | |||
| 4213 | ||||
| 4214 | // Non-scientific, positive exponents. | |||
| 4215 | if (exp >= 0) { | |||
| 4216 | for (unsigned I = 0; I != NDigits; ++I) | |||
| 4217 | Str.push_back(buffer[NDigits-1-I]); | |||
| 4218 | for (unsigned I = 0; I != (unsigned) exp; ++I) | |||
| 4219 | Str.push_back('0'); | |||
| 4220 | return; | |||
| 4221 | } | |||
| 4222 | ||||
| 4223 | // Non-scientific, negative exponents. | |||
| 4224 | ||||
| 4225 | // The number of digits to the left of the decimal point. | |||
| 4226 | int NWholeDigits = exp + (int) NDigits; | |||
| 4227 | ||||
| 4228 | unsigned I = 0; | |||
| 4229 | if (NWholeDigits > 0) { | |||
| 4230 | for (; I != (unsigned) NWholeDigits; ++I) | |||
| 4231 | Str.push_back(buffer[NDigits-I-1]); | |||
| 4232 | Str.push_back('.'); | |||
| 4233 | } else { | |||
| 4234 | unsigned NZeros = 1 + (unsigned) -NWholeDigits; | |||
| 4235 | ||||
| 4236 | Str.push_back('0'); | |||
| 4237 | Str.push_back('.'); | |||
| 4238 | for (unsigned Z = 1; Z != NZeros; ++Z) | |||
| 4239 | Str.push_back('0'); | |||
| 4240 | } | |||
| 4241 | ||||
| 4242 | for (; I != NDigits; ++I) | |||
| 4243 | Str.push_back(buffer[NDigits-I-1]); | |||
| 4244 | } | |||
| 4245 | ||||
| 4246 | bool IEEEFloat::getExactInverse(APFloat *inv) const { | |||
| 4247 | // Special floats and denormals have no exact inverse. | |||
| 4248 | if (!isFiniteNonZero()) | |||
| 4249 | return false; | |||
| 4250 | ||||
| 4251 | // Check that the number is a power of two by making sure that only the | |||
| 4252 | // integer bit is set in the significand. | |||
| 4253 | if (significandLSB() != semantics->precision - 1) | |||
| 4254 | return false; | |||
| 4255 | ||||
| 4256 | // Get the inverse. | |||
| 4257 | IEEEFloat reciprocal(*semantics, 1ULL); | |||
| 4258 | if (reciprocal.divide(*this, rmNearestTiesToEven) != opOK) | |||
| 4259 | return false; | |||
| 4260 | ||||
| 4261 | // Avoid multiplication with a denormal, it is not safe on all platforms and | |||
| 4262 | // may be slower than a normal division. | |||
| 4263 | if (reciprocal.isDenormal()) | |||
| 4264 | return false; | |||
| 4265 | ||||
| 4266 | assert(reciprocal.isFiniteNonZero() &&(static_cast <bool> (reciprocal.isFiniteNonZero() && reciprocal.significandLSB() == reciprocal.semantics->precision - 1) ? void (0) : __assert_fail ("reciprocal.isFiniteNonZero() && reciprocal.significandLSB() == reciprocal.semantics->precision - 1" , "llvm/lib/Support/APFloat.cpp", 4267, __extension__ __PRETTY_FUNCTION__ )) | |||
| 4267 | reciprocal.significandLSB() == reciprocal.semantics->precision - 1)(static_cast <bool> (reciprocal.isFiniteNonZero() && reciprocal.significandLSB() == reciprocal.semantics->precision - 1) ? void (0) : __assert_fail ("reciprocal.isFiniteNonZero() && reciprocal.significandLSB() == reciprocal.semantics->precision - 1" , "llvm/lib/Support/APFloat.cpp", 4267, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4268 | ||||
| 4269 | if (inv) | |||
| 4270 | *inv = APFloat(reciprocal, *semantics); | |||
| 4271 | ||||
| 4272 | return true; | |||
| 4273 | } | |||
| 4274 | ||||
| 4275 | bool IEEEFloat::isSignaling() const { | |||
| 4276 | if (!isNaN()) | |||
| 4277 | return false; | |||
| 4278 | if (semantics->nonFiniteBehavior == fltNonfiniteBehavior::NanOnly) | |||
| 4279 | return false; | |||
| 4280 | ||||
| 4281 | // IEEE-754R 2008 6.2.1: A signaling NaN bit string should be encoded with the | |||
| 4282 | // first bit of the trailing significand being 0. | |||
| 4283 | return !APInt::tcExtractBit(significandParts(), semantics->precision - 2); | |||
| 4284 | } | |||
| 4285 | ||||
| 4286 | /// IEEE-754R 2008 5.3.1: nextUp/nextDown. | |||
| 4287 | /// | |||
| 4288 | /// *NOTE* since nextDown(x) = -nextUp(-x), we only implement nextUp with | |||
| 4289 | /// appropriate sign switching before/after the computation. | |||
| 4290 | IEEEFloat::opStatus IEEEFloat::next(bool nextDown) { | |||
| 4291 | // If we are performing nextDown, swap sign so we have -x. | |||
| 4292 | if (nextDown) | |||
| 4293 | changeSign(); | |||
| 4294 | ||||
| 4295 | // Compute nextUp(x) | |||
| 4296 | opStatus result = opOK; | |||
| 4297 | ||||
| 4298 | // Handle each float category separately. | |||
| 4299 | switch (category) { | |||
| 4300 | case fcInfinity: | |||
| 4301 | // nextUp(+inf) = +inf | |||
| 4302 | if (!isNegative()) | |||
| 4303 | break; | |||
| 4304 | // nextUp(-inf) = -getLargest() | |||
| 4305 | makeLargest(true); | |||
| 4306 | break; | |||
| 4307 | case fcNaN: | |||
| 4308 | // IEEE-754R 2008 6.2 Par 2: nextUp(sNaN) = qNaN. Set Invalid flag. | |||
| 4309 | // IEEE-754R 2008 6.2: nextUp(qNaN) = qNaN. Must be identity so we do not | |||
| 4310 | // change the payload. | |||
| 4311 | if (isSignaling()) { | |||
| 4312 | result = opInvalidOp; | |||
| 4313 | // For consistency, propagate the sign of the sNaN to the qNaN. | |||
| 4314 | makeNaN(false, isNegative(), nullptr); | |||
| 4315 | } | |||
| 4316 | break; | |||
| 4317 | case fcZero: | |||
| 4318 | // nextUp(pm 0) = +getSmallest() | |||
| 4319 | makeSmallest(false); | |||
| 4320 | break; | |||
| 4321 | case fcNormal: | |||
| 4322 | // nextUp(-getSmallest()) = -0 | |||
| 4323 | if (isSmallest() && isNegative()) { | |||
| 4324 | APInt::tcSet(significandParts(), 0, partCount()); | |||
| 4325 | category = fcZero; | |||
| 4326 | exponent = 0; | |||
| 4327 | if (semantics->nanEncoding == fltNanEncoding::NegativeZero) | |||
| 4328 | sign = false; | |||
| 4329 | break; | |||
| 4330 | } | |||
| 4331 | ||||
| 4332 | if (isLargest() && !isNegative()) { | |||
| 4333 | if (semantics->nonFiniteBehavior == fltNonfiniteBehavior::NanOnly) { | |||
| 4334 | // nextUp(getLargest()) == NAN | |||
| 4335 | makeNaN(); | |||
| 4336 | break; | |||
| 4337 | } else { | |||
| 4338 | // nextUp(getLargest()) == INFINITY | |||
| 4339 | APInt::tcSet(significandParts(), 0, partCount()); | |||
| 4340 | category = fcInfinity; | |||
| 4341 | exponent = semantics->maxExponent + 1; | |||
| 4342 | break; | |||
| 4343 | } | |||
| 4344 | } | |||
| 4345 | ||||
| 4346 | // nextUp(normal) == normal + inc. | |||
| 4347 | if (isNegative()) { | |||
| 4348 | // If we are negative, we need to decrement the significand. | |||
| 4349 | ||||
| 4350 | // We only cross a binade boundary that requires adjusting the exponent | |||
| 4351 | // if: | |||
| 4352 | // 1. exponent != semantics->minExponent. This implies we are not in the | |||
| 4353 | // smallest binade or are dealing with denormals. | |||
| 4354 | // 2. Our significand excluding the integral bit is all zeros. | |||
| 4355 | bool WillCrossBinadeBoundary = | |||
| 4356 | exponent != semantics->minExponent && isSignificandAllZeros(); | |||
| 4357 | ||||
| 4358 | // Decrement the significand. | |||
| 4359 | // | |||
| 4360 | // We always do this since: | |||
| 4361 | // 1. If we are dealing with a non-binade decrement, by definition we | |||
| 4362 | // just decrement the significand. | |||
| 4363 | // 2. If we are dealing with a normal -> normal binade decrement, since | |||
| 4364 | // we have an explicit integral bit the fact that all bits but the | |||
| 4365 | // integral bit are zero implies that subtracting one will yield a | |||
| 4366 | // significand with 0 integral bit and 1 in all other spots. Thus we | |||
| 4367 | // must just adjust the exponent and set the integral bit to 1. | |||
| 4368 | // 3. If we are dealing with a normal -> denormal binade decrement, | |||
| 4369 | // since we set the integral bit to 0 when we represent denormals, we | |||
| 4370 | // just decrement the significand. | |||
| 4371 | integerPart *Parts = significandParts(); | |||
| 4372 | APInt::tcDecrement(Parts, partCount()); | |||
| 4373 | ||||
| 4374 | if (WillCrossBinadeBoundary) { | |||
| 4375 | // Our result is a normal number. Do the following: | |||
| 4376 | // 1. Set the integral bit to 1. | |||
| 4377 | // 2. Decrement the exponent. | |||
| 4378 | APInt::tcSetBit(Parts, semantics->precision - 1); | |||
| 4379 | exponent--; | |||
| 4380 | } | |||
| 4381 | } else { | |||
| 4382 | // If we are positive, we need to increment the significand. | |||
| 4383 | ||||
| 4384 | // We only cross a binade boundary that requires adjusting the exponent if | |||
| 4385 | // the input is not a denormal and all of said input's significand bits | |||
| 4386 | // are set. If all of said conditions are true: clear the significand, set | |||
| 4387 | // the integral bit to 1, and increment the exponent. If we have a | |||
| 4388 | // denormal always increment since moving denormals and the numbers in the | |||
| 4389 | // smallest normal binade have the same exponent in our representation. | |||
| 4390 | bool WillCrossBinadeBoundary = !isDenormal() && isSignificandAllOnes(); | |||
| 4391 | ||||
| 4392 | if (WillCrossBinadeBoundary) { | |||
| 4393 | integerPart *Parts = significandParts(); | |||
| 4394 | APInt::tcSet(Parts, 0, partCount()); | |||
| 4395 | APInt::tcSetBit(Parts, semantics->precision - 1); | |||
| 4396 | assert(exponent != semantics->maxExponent &&(static_cast <bool> (exponent != semantics->maxExponent && "We can not increment an exponent beyond the maxExponent allowed" " by the given floating point semantics.") ? void (0) : __assert_fail ("exponent != semantics->maxExponent && \"We can not increment an exponent beyond the maxExponent allowed\" \" by the given floating point semantics.\"" , "llvm/lib/Support/APFloat.cpp", 4398, __extension__ __PRETTY_FUNCTION__ )) | |||
| 4397 | "We can not increment an exponent beyond the maxExponent allowed"(static_cast <bool> (exponent != semantics->maxExponent && "We can not increment an exponent beyond the maxExponent allowed" " by the given floating point semantics.") ? void (0) : __assert_fail ("exponent != semantics->maxExponent && \"We can not increment an exponent beyond the maxExponent allowed\" \" by the given floating point semantics.\"" , "llvm/lib/Support/APFloat.cpp", 4398, __extension__ __PRETTY_FUNCTION__ )) | |||
| 4398 | " by the given floating point semantics.")(static_cast <bool> (exponent != semantics->maxExponent && "We can not increment an exponent beyond the maxExponent allowed" " by the given floating point semantics.") ? void (0) : __assert_fail ("exponent != semantics->maxExponent && \"We can not increment an exponent beyond the maxExponent allowed\" \" by the given floating point semantics.\"" , "llvm/lib/Support/APFloat.cpp", 4398, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4399 | exponent++; | |||
| 4400 | } else { | |||
| 4401 | incrementSignificand(); | |||
| 4402 | } | |||
| 4403 | } | |||
| 4404 | break; | |||
| 4405 | } | |||
| 4406 | ||||
| 4407 | // If we are performing nextDown, swap sign so we have -nextUp(-x) | |||
| 4408 | if (nextDown) | |||
| 4409 | changeSign(); | |||
| 4410 | ||||
| 4411 | return result; | |||
| 4412 | } | |||
| 4413 | ||||
| 4414 | APFloatBase::ExponentType IEEEFloat::exponentNaN() const { | |||
| 4415 | return ::exponentNaN(*semantics); | |||
| 4416 | } | |||
| 4417 | ||||
| 4418 | APFloatBase::ExponentType IEEEFloat::exponentInf() const { | |||
| 4419 | return ::exponentInf(*semantics); | |||
| 4420 | } | |||
| 4421 | ||||
| 4422 | APFloatBase::ExponentType IEEEFloat::exponentZero() const { | |||
| 4423 | return ::exponentZero(*semantics); | |||
| 4424 | } | |||
| 4425 | ||||
| 4426 | void IEEEFloat::makeInf(bool Negative) { | |||
| 4427 | if (semantics->nonFiniteBehavior == fltNonfiniteBehavior::NanOnly) { | |||
| 4428 | // There is no Inf, so make NaN instead. | |||
| 4429 | makeNaN(false, Negative); | |||
| 4430 | return; | |||
| 4431 | } | |||
| 4432 | category = fcInfinity; | |||
| 4433 | sign = Negative; | |||
| 4434 | exponent = exponentInf(); | |||
| 4435 | APInt::tcSet(significandParts(), 0, partCount()); | |||
| 4436 | } | |||
| 4437 | ||||
| 4438 | void IEEEFloat::makeZero(bool Negative) { | |||
| 4439 | category = fcZero; | |||
| 4440 | sign = Negative; | |||
| 4441 | if (semantics->nanEncoding == fltNanEncoding::NegativeZero) { | |||
| 4442 | // Merge negative zero to positive because 0b10000...000 is used for NaN | |||
| 4443 | sign = false; | |||
| 4444 | } | |||
| 4445 | exponent = exponentZero(); | |||
| 4446 | APInt::tcSet(significandParts(), 0, partCount()); | |||
| 4447 | } | |||
| 4448 | ||||
| 4449 | void IEEEFloat::makeQuiet() { | |||
| 4450 | assert(isNaN())(static_cast <bool> (isNaN()) ? void (0) : __assert_fail ("isNaN()", "llvm/lib/Support/APFloat.cpp", 4450, __extension__ __PRETTY_FUNCTION__)); | |||
| 4451 | if (semantics->nonFiniteBehavior != fltNonfiniteBehavior::NanOnly) | |||
| 4452 | APInt::tcSetBit(significandParts(), semantics->precision - 2); | |||
| 4453 | } | |||
| 4454 | ||||
| 4455 | int ilogb(const IEEEFloat &Arg) { | |||
| 4456 | if (Arg.isNaN()) | |||
| 4457 | return IEEEFloat::IEK_NaN; | |||
| 4458 | if (Arg.isZero()) | |||
| 4459 | return IEEEFloat::IEK_Zero; | |||
| 4460 | if (Arg.isInfinity()) | |||
| 4461 | return IEEEFloat::IEK_Inf; | |||
| 4462 | if (!Arg.isDenormal()) | |||
| 4463 | return Arg.exponent; | |||
| 4464 | ||||
| 4465 | IEEEFloat Normalized(Arg); | |||
| 4466 | int SignificandBits = Arg.getSemantics().precision - 1; | |||
| 4467 | ||||
| 4468 | Normalized.exponent += SignificandBits; | |||
| 4469 | Normalized.normalize(IEEEFloat::rmNearestTiesToEven, lfExactlyZero); | |||
| 4470 | return Normalized.exponent - SignificandBits; | |||
| 4471 | } | |||
| 4472 | ||||
| 4473 | IEEEFloat scalbn(IEEEFloat X, int Exp, IEEEFloat::roundingMode RoundingMode) { | |||
| 4474 | auto MaxExp = X.getSemantics().maxExponent; | |||
| 4475 | auto MinExp = X.getSemantics().minExponent; | |||
| 4476 | ||||
| 4477 | // If Exp is wildly out-of-scale, simply adding it to X.exponent will | |||
| 4478 | // overflow; clamp it to a safe range before adding, but ensure that the range | |||
| 4479 | // is large enough that the clamp does not change the result. The range we | |||
| 4480 | // need to support is the difference between the largest possible exponent and | |||
| 4481 | // the normalized exponent of half the smallest denormal. | |||
| 4482 | ||||
| 4483 | int SignificandBits = X.getSemantics().precision - 1; | |||
| 4484 | int MaxIncrement = MaxExp - (MinExp - SignificandBits) + 1; | |||
| 4485 | ||||
| 4486 | // Clamp to one past the range ends to let normalize handle overlflow. | |||
| 4487 | X.exponent += std::clamp(Exp, -MaxIncrement - 1, MaxIncrement); | |||
| 4488 | X.normalize(RoundingMode, lfExactlyZero); | |||
| 4489 | if (X.isNaN()) | |||
| 4490 | X.makeQuiet(); | |||
| 4491 | return X; | |||
| 4492 | } | |||
| 4493 | ||||
| 4494 | IEEEFloat frexp(const IEEEFloat &Val, int &Exp, IEEEFloat::roundingMode RM) { | |||
| 4495 | Exp = ilogb(Val); | |||
| 4496 | ||||
| 4497 | // Quiet signalling nans. | |||
| 4498 | if (Exp == IEEEFloat::IEK_NaN) { | |||
| 4499 | IEEEFloat Quiet(Val); | |||
| 4500 | Quiet.makeQuiet(); | |||
| 4501 | return Quiet; | |||
| 4502 | } | |||
| 4503 | ||||
| 4504 | if (Exp == IEEEFloat::IEK_Inf) | |||
| 4505 | return Val; | |||
| 4506 | ||||
| 4507 | // 1 is added because frexp is defined to return a normalized fraction in | |||
| 4508 | // +/-[0.5, 1.0), rather than the usual +/-[1.0, 2.0). | |||
| 4509 | Exp = Exp == IEEEFloat::IEK_Zero ? 0 : Exp + 1; | |||
| 4510 | return scalbn(Val, -Exp, RM); | |||
| 4511 | } | |||
| 4512 | ||||
| 4513 | DoubleAPFloat::DoubleAPFloat(const fltSemantics &S) | |||
| 4514 | : Semantics(&S), | |||
| 4515 | Floats(new APFloat[2]{APFloat(semIEEEdouble), APFloat(semIEEEdouble)}) { | |||
| 4516 | assert(Semantics == &semPPCDoubleDouble)(static_cast <bool> (Semantics == &semPPCDoubleDouble ) ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble" , "llvm/lib/Support/APFloat.cpp", 4516, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4517 | } | |||
| 4518 | ||||
| 4519 | DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, uninitializedTag) | |||
| 4520 | : Semantics(&S), | |||
| 4521 | Floats(new APFloat[2]{APFloat(semIEEEdouble, uninitialized), | |||
| 4522 | APFloat(semIEEEdouble, uninitialized)}) { | |||
| 4523 | assert(Semantics == &semPPCDoubleDouble)(static_cast <bool> (Semantics == &semPPCDoubleDouble ) ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble" , "llvm/lib/Support/APFloat.cpp", 4523, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4524 | } | |||
| 4525 | ||||
| 4526 | DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, integerPart I) | |||
| 4527 | : Semantics(&S), Floats(new APFloat[2]{APFloat(semIEEEdouble, I), | |||
| 4528 | APFloat(semIEEEdouble)}) { | |||
| 4529 | assert(Semantics == &semPPCDoubleDouble)(static_cast <bool> (Semantics == &semPPCDoubleDouble ) ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble" , "llvm/lib/Support/APFloat.cpp", 4529, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4530 | } | |||
| 4531 | ||||
| 4532 | DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, const APInt &I) | |||
| 4533 | : Semantics(&S), | |||
| 4534 | Floats(new APFloat[2]{ | |||
| 4535 | APFloat(semIEEEdouble, APInt(64, I.getRawData()[0])), | |||
| 4536 | APFloat(semIEEEdouble, APInt(64, I.getRawData()[1]))}) { | |||
| 4537 | assert(Semantics == &semPPCDoubleDouble)(static_cast <bool> (Semantics == &semPPCDoubleDouble ) ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble" , "llvm/lib/Support/APFloat.cpp", 4537, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4538 | } | |||
| 4539 | ||||
| 4540 | DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, APFloat &&First, | |||
| 4541 | APFloat &&Second) | |||
| 4542 | : Semantics(&S), | |||
| 4543 | Floats(new APFloat[2]{std::move(First), std::move(Second)}) { | |||
| 4544 | assert(Semantics == &semPPCDoubleDouble)(static_cast <bool> (Semantics == &semPPCDoubleDouble ) ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble" , "llvm/lib/Support/APFloat.cpp", 4544, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4545 | assert(&Floats[0].getSemantics() == &semIEEEdouble)(static_cast <bool> (&Floats[0].getSemantics() == & semIEEEdouble) ? void (0) : __assert_fail ("&Floats[0].getSemantics() == &semIEEEdouble" , "llvm/lib/Support/APFloat.cpp", 4545, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4546 | assert(&Floats[1].getSemantics() == &semIEEEdouble)(static_cast <bool> (&Floats[1].getSemantics() == & semIEEEdouble) ? void (0) : __assert_fail ("&Floats[1].getSemantics() == &semIEEEdouble" , "llvm/lib/Support/APFloat.cpp", 4546, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4547 | } | |||
| 4548 | ||||
| 4549 | DoubleAPFloat::DoubleAPFloat(const DoubleAPFloat &RHS) | |||
| 4550 | : Semantics(RHS.Semantics), | |||
| 4551 | Floats(RHS.Floats ? new APFloat[2]{APFloat(RHS.Floats[0]), | |||
| 4552 | APFloat(RHS.Floats[1])} | |||
| 4553 | : nullptr) { | |||
| 4554 | assert(Semantics == &semPPCDoubleDouble)(static_cast <bool> (Semantics == &semPPCDoubleDouble ) ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble" , "llvm/lib/Support/APFloat.cpp", 4554, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4555 | } | |||
| 4556 | ||||
| 4557 | DoubleAPFloat::DoubleAPFloat(DoubleAPFloat &&RHS) | |||
| 4558 | : Semantics(RHS.Semantics), Floats(std::move(RHS.Floats)) { | |||
| 4559 | RHS.Semantics = &semBogus; | |||
| 4560 | assert(Semantics == &semPPCDoubleDouble)(static_cast <bool> (Semantics == &semPPCDoubleDouble ) ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble" , "llvm/lib/Support/APFloat.cpp", 4560, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4561 | } | |||
| 4562 | ||||
| 4563 | DoubleAPFloat &DoubleAPFloat::operator=(const DoubleAPFloat &RHS) { | |||
| 4564 | if (Semantics == RHS.Semantics && RHS.Floats) { | |||
| 4565 | Floats[0] = RHS.Floats[0]; | |||
| 4566 | Floats[1] = RHS.Floats[1]; | |||
| 4567 | } else if (this != &RHS) { | |||
| 4568 | this->~DoubleAPFloat(); | |||
| 4569 | new (this) DoubleAPFloat(RHS); | |||
| 4570 | } | |||
| 4571 | return *this; | |||
| 4572 | } | |||
| 4573 | ||||
| 4574 | // Implement addition, subtraction, multiplication and division based on: | |||
| 4575 | // "Software for Doubled-Precision Floating-Point Computations", | |||
| 4576 | // by Seppo Linnainmaa, ACM TOMS vol 7 no 3, September 1981, pages 272-283. | |||
| 4577 | APFloat::opStatus DoubleAPFloat::addImpl(const APFloat &a, const APFloat &aa, | |||
| 4578 | const APFloat &c, const APFloat &cc, | |||
| 4579 | roundingMode RM) { | |||
| 4580 | int Status = opOK; | |||
| 4581 | APFloat z = a; | |||
| 4582 | Status |= z.add(c, RM); | |||
| 4583 | if (!z.isFinite()) { | |||
| 4584 | if (!z.isInfinity()) { | |||
| 4585 | Floats[0] = std::move(z); | |||
| 4586 | Floats[1].makeZero(/* Neg = */ false); | |||
| 4587 | return (opStatus)Status; | |||
| 4588 | } | |||
| 4589 | Status = opOK; | |||
| 4590 | auto AComparedToC = a.compareAbsoluteValue(c); | |||
| 4591 | z = cc; | |||
| 4592 | Status |= z.add(aa, RM); | |||
| 4593 | if (AComparedToC == APFloat::cmpGreaterThan) { | |||
| 4594 | // z = cc + aa + c + a; | |||
| 4595 | Status |= z.add(c, RM); | |||
| 4596 | Status |= z.add(a, RM); | |||
| 4597 | } else { | |||
| 4598 | // z = cc + aa + a + c; | |||
| 4599 | Status |= z.add(a, RM); | |||
| 4600 | Status |= z.add(c, RM); | |||
| 4601 | } | |||
| 4602 | if (!z.isFinite()) { | |||
| 4603 | Floats[0] = std::move(z); | |||
| 4604 | Floats[1].makeZero(/* Neg = */ false); | |||
| 4605 | return (opStatus)Status; | |||
| 4606 | } | |||
| 4607 | Floats[0] = z; | |||
| 4608 | APFloat zz = aa; | |||
| 4609 | Status |= zz.add(cc, RM); | |||
| 4610 | if (AComparedToC == APFloat::cmpGreaterThan) { | |||
| 4611 | // Floats[1] = a - z + c + zz; | |||
| 4612 | Floats[1] = a; | |||
| 4613 | Status |= Floats[1].subtract(z, RM); | |||
| 4614 | Status |= Floats[1].add(c, RM); | |||
| 4615 | Status |= Floats[1].add(zz, RM); | |||
| 4616 | } else { | |||
| 4617 | // Floats[1] = c - z + a + zz; | |||
| 4618 | Floats[1] = c; | |||
| 4619 | Status |= Floats[1].subtract(z, RM); | |||
| 4620 | Status |= Floats[1].add(a, RM); | |||
| 4621 | Status |= Floats[1].add(zz, RM); | |||
| 4622 | } | |||
| 4623 | } else { | |||
| 4624 | // q = a - z; | |||
| 4625 | APFloat q = a; | |||
| 4626 | Status |= q.subtract(z, RM); | |||
| 4627 | ||||
| 4628 | // zz = q + c + (a - (q + z)) + aa + cc; | |||
| 4629 | // Compute a - (q + z) as -((q + z) - a) to avoid temporary copies. | |||
| 4630 | auto zz = q; | |||
| 4631 | Status |= zz.add(c, RM); | |||
| 4632 | Status |= q.add(z, RM); | |||
| 4633 | Status |= q.subtract(a, RM); | |||
| 4634 | q.changeSign(); | |||
| 4635 | Status |= zz.add(q, RM); | |||
| 4636 | Status |= zz.add(aa, RM); | |||
| 4637 | Status |= zz.add(cc, RM); | |||
| 4638 | if (zz.isZero() && !zz.isNegative()) { | |||
| 4639 | Floats[0] = std::move(z); | |||
| 4640 | Floats[1].makeZero(/* Neg = */ false); | |||
| 4641 | return opOK; | |||
| 4642 | } | |||
| 4643 | Floats[0] = z; | |||
| 4644 | Status |= Floats[0].add(zz, RM); | |||
| 4645 | if (!Floats[0].isFinite()) { | |||
| 4646 | Floats[1].makeZero(/* Neg = */ false); | |||
| 4647 | return (opStatus)Status; | |||
| 4648 | } | |||
| 4649 | Floats[1] = std::move(z); | |||
| 4650 | Status |= Floats[1].subtract(Floats[0], RM); | |||
| 4651 | Status |= Floats[1].add(zz, RM); | |||
| 4652 | } | |||
| 4653 | return (opStatus)Status; | |||
| 4654 | } | |||
| 4655 | ||||
| 4656 | APFloat::opStatus DoubleAPFloat::addWithSpecial(const DoubleAPFloat &LHS, | |||
| 4657 | const DoubleAPFloat &RHS, | |||
| 4658 | DoubleAPFloat &Out, | |||
| 4659 | roundingMode RM) { | |||
| 4660 | if (LHS.getCategory() == fcNaN) { | |||
| 4661 | Out = LHS; | |||
| 4662 | return opOK; | |||
| 4663 | } | |||
| 4664 | if (RHS.getCategory() == fcNaN) { | |||
| 4665 | Out = RHS; | |||
| 4666 | return opOK; | |||
| 4667 | } | |||
| 4668 | if (LHS.getCategory() == fcZero) { | |||
| 4669 | Out = RHS; | |||
| 4670 | return opOK; | |||
| 4671 | } | |||
| 4672 | if (RHS.getCategory() == fcZero) { | |||
| 4673 | Out = LHS; | |||
| 4674 | return opOK; | |||
| 4675 | } | |||
| 4676 | if (LHS.getCategory() == fcInfinity && RHS.getCategory() == fcInfinity && | |||
| 4677 | LHS.isNegative() != RHS.isNegative()) { | |||
| 4678 | Out.makeNaN(false, Out.isNegative(), nullptr); | |||
| 4679 | return opInvalidOp; | |||
| 4680 | } | |||
| 4681 | if (LHS.getCategory() == fcInfinity) { | |||
| 4682 | Out = LHS; | |||
| 4683 | return opOK; | |||
| 4684 | } | |||
| 4685 | if (RHS.getCategory() == fcInfinity) { | |||
| 4686 | Out = RHS; | |||
| 4687 | return opOK; | |||
| 4688 | } | |||
| 4689 | assert(LHS.getCategory() == fcNormal && RHS.getCategory() == fcNormal)(static_cast <bool> (LHS.getCategory() == fcNormal && RHS.getCategory() == fcNormal) ? void (0) : __assert_fail ("LHS.getCategory() == fcNormal && RHS.getCategory() == fcNormal" , "llvm/lib/Support/APFloat.cpp", 4689, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4690 | ||||
| 4691 | APFloat A(LHS.Floats[0]), AA(LHS.Floats[1]), C(RHS.Floats[0]), | |||
| 4692 | CC(RHS.Floats[1]); | |||
| 4693 | assert(&A.getSemantics() == &semIEEEdouble)(static_cast <bool> (&A.getSemantics() == &semIEEEdouble ) ? void (0) : __assert_fail ("&A.getSemantics() == &semIEEEdouble" , "llvm/lib/Support/APFloat.cpp", 4693, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4694 | assert(&AA.getSemantics() == &semIEEEdouble)(static_cast <bool> (&AA.getSemantics() == &semIEEEdouble ) ? void (0) : __assert_fail ("&AA.getSemantics() == &semIEEEdouble" , "llvm/lib/Support/APFloat.cpp", 4694, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4695 | assert(&C.getSemantics() == &semIEEEdouble)(static_cast <bool> (&C.getSemantics() == &semIEEEdouble ) ? void (0) : __assert_fail ("&C.getSemantics() == &semIEEEdouble" , "llvm/lib/Support/APFloat.cpp", 4695, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4696 | assert(&CC.getSemantics() == &semIEEEdouble)(static_cast <bool> (&CC.getSemantics() == &semIEEEdouble ) ? void (0) : __assert_fail ("&CC.getSemantics() == &semIEEEdouble" , "llvm/lib/Support/APFloat.cpp", 4696, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4697 | assert(&Out.Floats[0].getSemantics() == &semIEEEdouble)(static_cast <bool> (&Out.Floats[0].getSemantics() == &semIEEEdouble) ? void (0) : __assert_fail ("&Out.Floats[0].getSemantics() == &semIEEEdouble" , "llvm/lib/Support/APFloat.cpp", 4697, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4698 | assert(&Out.Floats[1].getSemantics() == &semIEEEdouble)(static_cast <bool> (&Out.Floats[1].getSemantics() == &semIEEEdouble) ? void (0) : __assert_fail ("&Out.Floats[1].getSemantics() == &semIEEEdouble" , "llvm/lib/Support/APFloat.cpp", 4698, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4699 | return Out.addImpl(A, AA, C, CC, RM); | |||
| 4700 | } | |||
| 4701 | ||||
| 4702 | APFloat::opStatus DoubleAPFloat::add(const DoubleAPFloat &RHS, | |||
| 4703 | roundingMode RM) { | |||
| 4704 | return addWithSpecial(*this, RHS, *this, RM); | |||
| 4705 | } | |||
| 4706 | ||||
| 4707 | APFloat::opStatus DoubleAPFloat::subtract(const DoubleAPFloat &RHS, | |||
| 4708 | roundingMode RM) { | |||
| 4709 | changeSign(); | |||
| 4710 | auto Ret = add(RHS, RM); | |||
| 4711 | changeSign(); | |||
| 4712 | return Ret; | |||
| 4713 | } | |||
| 4714 | ||||
| 4715 | APFloat::opStatus DoubleAPFloat::multiply(const DoubleAPFloat &RHS, | |||
| 4716 | APFloat::roundingMode RM) { | |||
| 4717 | const auto &LHS = *this; | |||
| 4718 | auto &Out = *this; | |||
| 4719 | /* Interesting observation: For special categories, finding the lowest | |||
| 4720 | common ancestor of the following layered graph gives the correct | |||
| 4721 | return category: | |||
| 4722 | ||||
| 4723 | NaN | |||
| 4724 | / \ | |||
| 4725 | Zero Inf | |||
| 4726 | \ / | |||
| 4727 | Normal | |||
| 4728 | ||||
| 4729 | e.g. NaN * NaN = NaN | |||
| 4730 | Zero * Inf = NaN | |||
| 4731 | Normal * Zero = Zero | |||
| 4732 | Normal * Inf = Inf | |||
| 4733 | */ | |||
| 4734 | if (LHS.getCategory() == fcNaN) { | |||
| 4735 | Out = LHS; | |||
| 4736 | return opOK; | |||
| 4737 | } | |||
| 4738 | if (RHS.getCategory() == fcNaN) { | |||
| 4739 | Out = RHS; | |||
| 4740 | return opOK; | |||
| 4741 | } | |||
| 4742 | if ((LHS.getCategory() == fcZero && RHS.getCategory() == fcInfinity) || | |||
| 4743 | (LHS.getCategory() == fcInfinity && RHS.getCategory() == fcZero)) { | |||
| 4744 | Out.makeNaN(false, false, nullptr); | |||
| 4745 | return opOK; | |||
| 4746 | } | |||
| 4747 | if (LHS.getCategory() == fcZero || LHS.getCategory() == fcInfinity) { | |||
| 4748 | Out = LHS; | |||
| 4749 | return opOK; | |||
| 4750 | } | |||
| 4751 | if (RHS.getCategory() == fcZero || RHS.getCategory() == fcInfinity) { | |||
| 4752 | Out = RHS; | |||
| 4753 | return opOK; | |||
| 4754 | } | |||
| 4755 | assert(LHS.getCategory() == fcNormal && RHS.getCategory() == fcNormal &&(static_cast <bool> (LHS.getCategory() == fcNormal && RHS.getCategory() == fcNormal && "Special cases not handled exhaustively" ) ? void (0) : __assert_fail ("LHS.getCategory() == fcNormal && RHS.getCategory() == fcNormal && \"Special cases not handled exhaustively\"" , "llvm/lib/Support/APFloat.cpp", 4756, __extension__ __PRETTY_FUNCTION__ )) | |||
| 4756 | "Special cases not handled exhaustively")(static_cast <bool> (LHS.getCategory() == fcNormal && RHS.getCategory() == fcNormal && "Special cases not handled exhaustively" ) ? void (0) : __assert_fail ("LHS.getCategory() == fcNormal && RHS.getCategory() == fcNormal && \"Special cases not handled exhaustively\"" , "llvm/lib/Support/APFloat.cpp", 4756, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4757 | ||||
| 4758 | int Status = opOK; | |||
| 4759 | APFloat A = Floats[0], B = Floats[1], C = RHS.Floats[0], D = RHS.Floats[1]; | |||
| 4760 | // t = a * c | |||
| 4761 | APFloat T = A; | |||
| 4762 | Status |= T.multiply(C, RM); | |||
| 4763 | if (!T.isFiniteNonZero()) { | |||
| 4764 | Floats[0] = T; | |||
| 4765 | Floats[1].makeZero(/* Neg = */ false); | |||
| 4766 | return (opStatus)Status; | |||
| 4767 | } | |||
| 4768 | ||||
| 4769 | // tau = fmsub(a, c, t), that is -fmadd(-a, c, t). | |||
| 4770 | APFloat Tau = A; | |||
| 4771 | T.changeSign(); | |||
| 4772 | Status |= Tau.fusedMultiplyAdd(C, T, RM); | |||
| 4773 | T.changeSign(); | |||
| 4774 | { | |||
| 4775 | // v = a * d | |||
| 4776 | APFloat V = A; | |||
| 4777 | Status |= V.multiply(D, RM); | |||
| 4778 | // w = b * c | |||
| 4779 | APFloat W = B; | |||
| 4780 | Status |= W.multiply(C, RM); | |||
| 4781 | Status |= V.add(W, RM); | |||
| 4782 | // tau += v + w | |||
| 4783 | Status |= Tau.add(V, RM); | |||
| 4784 | } | |||
| 4785 | // u = t + tau | |||
| 4786 | APFloat U = T; | |||
| 4787 | Status |= U.add(Tau, RM); | |||
| 4788 | ||||
| 4789 | Floats[0] = U; | |||
| 4790 | if (!U.isFinite()) { | |||
| 4791 | Floats[1].makeZero(/* Neg = */ false); | |||
| 4792 | } else { | |||
| 4793 | // Floats[1] = (t - u) + tau | |||
| 4794 | Status |= T.subtract(U, RM); | |||
| 4795 | Status |= T.add(Tau, RM); | |||
| 4796 | Floats[1] = T; | |||
| 4797 | } | |||
| 4798 | return (opStatus)Status; | |||
| 4799 | } | |||
| 4800 | ||||
| 4801 | APFloat::opStatus DoubleAPFloat::divide(const DoubleAPFloat &RHS, | |||
| 4802 | APFloat::roundingMode RM) { | |||
| 4803 | assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics")(static_cast <bool> (Semantics == &semPPCDoubleDouble && "Unexpected Semantics") ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble && \"Unexpected Semantics\"" , "llvm/lib/Support/APFloat.cpp", 4803, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4804 | APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); | |||
| 4805 | auto Ret = | |||
| 4806 | Tmp.divide(APFloat(semPPCDoubleDoubleLegacy, RHS.bitcastToAPInt()), RM); | |||
| 4807 | *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); | |||
| 4808 | return Ret; | |||
| 4809 | } | |||
| 4810 | ||||
| 4811 | APFloat::opStatus DoubleAPFloat::remainder(const DoubleAPFloat &RHS) { | |||
| 4812 | assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics")(static_cast <bool> (Semantics == &semPPCDoubleDouble && "Unexpected Semantics") ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble && \"Unexpected Semantics\"" , "llvm/lib/Support/APFloat.cpp", 4812, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4813 | APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); | |||
| 4814 | auto Ret = | |||
| 4815 | Tmp.remainder(APFloat(semPPCDoubleDoubleLegacy, RHS.bitcastToAPInt())); | |||
| 4816 | *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); | |||
| 4817 | return Ret; | |||
| 4818 | } | |||
| 4819 | ||||
| 4820 | APFloat::opStatus DoubleAPFloat::mod(const DoubleAPFloat &RHS) { | |||
| 4821 | assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics")(static_cast <bool> (Semantics == &semPPCDoubleDouble && "Unexpected Semantics") ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble && \"Unexpected Semantics\"" , "llvm/lib/Support/APFloat.cpp", 4821, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4822 | APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); | |||
| 4823 | auto Ret = Tmp.mod(APFloat(semPPCDoubleDoubleLegacy, RHS.bitcastToAPInt())); | |||
| 4824 | *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); | |||
| 4825 | return Ret; | |||
| 4826 | } | |||
| 4827 | ||||
| 4828 | APFloat::opStatus | |||
| 4829 | DoubleAPFloat::fusedMultiplyAdd(const DoubleAPFloat &Multiplicand, | |||
| 4830 | const DoubleAPFloat &Addend, | |||
| 4831 | APFloat::roundingMode RM) { | |||
| 4832 | assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics")(static_cast <bool> (Semantics == &semPPCDoubleDouble && "Unexpected Semantics") ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble && \"Unexpected Semantics\"" , "llvm/lib/Support/APFloat.cpp", 4832, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4833 | APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); | |||
| 4834 | auto Ret = Tmp.fusedMultiplyAdd( | |||
| 4835 | APFloat(semPPCDoubleDoubleLegacy, Multiplicand.bitcastToAPInt()), | |||
| 4836 | APFloat(semPPCDoubleDoubleLegacy, Addend.bitcastToAPInt()), RM); | |||
| 4837 | *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); | |||
| 4838 | return Ret; | |||
| 4839 | } | |||
| 4840 | ||||
| 4841 | APFloat::opStatus DoubleAPFloat::roundToIntegral(APFloat::roundingMode RM) { | |||
| 4842 | assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics")(static_cast <bool> (Semantics == &semPPCDoubleDouble && "Unexpected Semantics") ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble && \"Unexpected Semantics\"" , "llvm/lib/Support/APFloat.cpp", 4842, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4843 | APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); | |||
| 4844 | auto Ret = Tmp.roundToIntegral(RM); | |||
| 4845 | *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); | |||
| 4846 | return Ret; | |||
| 4847 | } | |||
| 4848 | ||||
| 4849 | void DoubleAPFloat::changeSign() { | |||
| 4850 | Floats[0].changeSign(); | |||
| 4851 | Floats[1].changeSign(); | |||
| 4852 | } | |||
| 4853 | ||||
| 4854 | APFloat::cmpResult | |||
| 4855 | DoubleAPFloat::compareAbsoluteValue(const DoubleAPFloat &RHS) const { | |||
| 4856 | auto Result = Floats[0].compareAbsoluteValue(RHS.Floats[0]); | |||
| 4857 | if (Result != cmpEqual) | |||
| 4858 | return Result; | |||
| 4859 | Result = Floats[1].compareAbsoluteValue(RHS.Floats[1]); | |||
| 4860 | if (Result == cmpLessThan || Result == cmpGreaterThan) { | |||
| 4861 | auto Against = Floats[0].isNegative() ^ Floats[1].isNegative(); | |||
| 4862 | auto RHSAgainst = RHS.Floats[0].isNegative() ^ RHS.Floats[1].isNegative(); | |||
| 4863 | if (Against && !RHSAgainst) | |||
| 4864 | return cmpLessThan; | |||
| 4865 | if (!Against && RHSAgainst) | |||
| 4866 | return cmpGreaterThan; | |||
| 4867 | if (!Against && !RHSAgainst) | |||
| 4868 | return Result; | |||
| 4869 | if (Against && RHSAgainst) | |||
| 4870 | return (cmpResult)(cmpLessThan + cmpGreaterThan - Result); | |||
| 4871 | } | |||
| 4872 | return Result; | |||
| 4873 | } | |||
| 4874 | ||||
| 4875 | APFloat::fltCategory DoubleAPFloat::getCategory() const { | |||
| 4876 | return Floats[0].getCategory(); | |||
| 4877 | } | |||
| 4878 | ||||
| 4879 | bool DoubleAPFloat::isNegative() const { return Floats[0].isNegative(); } | |||
| 4880 | ||||
| 4881 | void DoubleAPFloat::makeInf(bool Neg) { | |||
| 4882 | Floats[0].makeInf(Neg); | |||
| 4883 | Floats[1].makeZero(/* Neg = */ false); | |||
| 4884 | } | |||
| 4885 | ||||
| 4886 | void DoubleAPFloat::makeZero(bool Neg) { | |||
| 4887 | Floats[0].makeZero(Neg); | |||
| 4888 | Floats[1].makeZero(/* Neg = */ false); | |||
| 4889 | } | |||
| 4890 | ||||
| 4891 | void DoubleAPFloat::makeLargest(bool Neg) { | |||
| 4892 | assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics")(static_cast <bool> (Semantics == &semPPCDoubleDouble && "Unexpected Semantics") ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble && \"Unexpected Semantics\"" , "llvm/lib/Support/APFloat.cpp", 4892, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4893 | Floats[0] = APFloat(semIEEEdouble, APInt(64, 0x7fefffffffffffffull)); | |||
| 4894 | Floats[1] = APFloat(semIEEEdouble, APInt(64, 0x7c8ffffffffffffeull)); | |||
| 4895 | if (Neg) | |||
| 4896 | changeSign(); | |||
| 4897 | } | |||
| 4898 | ||||
| 4899 | void DoubleAPFloat::makeSmallest(bool Neg) { | |||
| 4900 | assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics")(static_cast <bool> (Semantics == &semPPCDoubleDouble && "Unexpected Semantics") ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble && \"Unexpected Semantics\"" , "llvm/lib/Support/APFloat.cpp", 4900, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4901 | Floats[0].makeSmallest(Neg); | |||
| 4902 | Floats[1].makeZero(/* Neg = */ false); | |||
| 4903 | } | |||
| 4904 | ||||
| 4905 | void DoubleAPFloat::makeSmallestNormalized(bool Neg) { | |||
| 4906 | assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics")(static_cast <bool> (Semantics == &semPPCDoubleDouble && "Unexpected Semantics") ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble && \"Unexpected Semantics\"" , "llvm/lib/Support/APFloat.cpp", 4906, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4907 | Floats[0] = APFloat(semIEEEdouble, APInt(64, 0x0360000000000000ull)); | |||
| 4908 | if (Neg) | |||
| 4909 | Floats[0].changeSign(); | |||
| 4910 | Floats[1].makeZero(/* Neg = */ false); | |||
| 4911 | } | |||
| 4912 | ||||
| 4913 | void DoubleAPFloat::makeNaN(bool SNaN, bool Neg, const APInt *fill) { | |||
| 4914 | Floats[0].makeNaN(SNaN, Neg, fill); | |||
| 4915 | Floats[1].makeZero(/* Neg = */ false); | |||
| 4916 | } | |||
| 4917 | ||||
| 4918 | APFloat::cmpResult DoubleAPFloat::compare(const DoubleAPFloat &RHS) const { | |||
| 4919 | auto Result = Floats[0].compare(RHS.Floats[0]); | |||
| 4920 | // |Float[0]| > |Float[1]| | |||
| 4921 | if (Result == APFloat::cmpEqual) | |||
| 4922 | return Floats[1].compare(RHS.Floats[1]); | |||
| 4923 | return Result; | |||
| 4924 | } | |||
| 4925 | ||||
| 4926 | bool DoubleAPFloat::bitwiseIsEqual(const DoubleAPFloat &RHS) const { | |||
| 4927 | return Floats[0].bitwiseIsEqual(RHS.Floats[0]) && | |||
| 4928 | Floats[1].bitwiseIsEqual(RHS.Floats[1]); | |||
| 4929 | } | |||
| 4930 | ||||
| 4931 | hash_code hash_value(const DoubleAPFloat &Arg) { | |||
| 4932 | if (Arg.Floats) | |||
| 4933 | return hash_combine(hash_value(Arg.Floats[0]), hash_value(Arg.Floats[1])); | |||
| 4934 | return hash_combine(Arg.Semantics); | |||
| 4935 | } | |||
| 4936 | ||||
| 4937 | APInt DoubleAPFloat::bitcastToAPInt() const { | |||
| 4938 | assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics")(static_cast <bool> (Semantics == &semPPCDoubleDouble && "Unexpected Semantics") ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble && \"Unexpected Semantics\"" , "llvm/lib/Support/APFloat.cpp", 4938, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4939 | uint64_t Data[] = { | |||
| 4940 | Floats[0].bitcastToAPInt().getRawData()[0], | |||
| 4941 | Floats[1].bitcastToAPInt().getRawData()[0], | |||
| 4942 | }; | |||
| 4943 | return APInt(128, 2, Data); | |||
| 4944 | } | |||
| 4945 | ||||
| 4946 | Expected<APFloat::opStatus> DoubleAPFloat::convertFromString(StringRef S, | |||
| 4947 | roundingMode RM) { | |||
| 4948 | assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics")(static_cast <bool> (Semantics == &semPPCDoubleDouble && "Unexpected Semantics") ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble && \"Unexpected Semantics\"" , "llvm/lib/Support/APFloat.cpp", 4948, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4949 | APFloat Tmp(semPPCDoubleDoubleLegacy); | |||
| 4950 | auto Ret = Tmp.convertFromString(S, RM); | |||
| 4951 | *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); | |||
| 4952 | return Ret; | |||
| 4953 | } | |||
| 4954 | ||||
| 4955 | APFloat::opStatus DoubleAPFloat::next(bool nextDown) { | |||
| 4956 | assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics")(static_cast <bool> (Semantics == &semPPCDoubleDouble && "Unexpected Semantics") ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble && \"Unexpected Semantics\"" , "llvm/lib/Support/APFloat.cpp", 4956, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4957 | APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); | |||
| 4958 | auto Ret = Tmp.next(nextDown); | |||
| 4959 | *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); | |||
| 4960 | return Ret; | |||
| 4961 | } | |||
| 4962 | ||||
| 4963 | APFloat::opStatus | |||
| 4964 | DoubleAPFloat::convertToInteger(MutableArrayRef<integerPart> Input, | |||
| 4965 | unsigned int Width, bool IsSigned, | |||
| 4966 | roundingMode RM, bool *IsExact) const { | |||
| 4967 | assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics")(static_cast <bool> (Semantics == &semPPCDoubleDouble && "Unexpected Semantics") ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble && \"Unexpected Semantics\"" , "llvm/lib/Support/APFloat.cpp", 4967, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4968 | return APFloat(semPPCDoubleDoubleLegacy, bitcastToAPInt()) | |||
| 4969 | .convertToInteger(Input, Width, IsSigned, RM, IsExact); | |||
| 4970 | } | |||
| 4971 | ||||
| 4972 | APFloat::opStatus DoubleAPFloat::convertFromAPInt(const APInt &Input, | |||
| 4973 | bool IsSigned, | |||
| 4974 | roundingMode RM) { | |||
| 4975 | assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics")(static_cast <bool> (Semantics == &semPPCDoubleDouble && "Unexpected Semantics") ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble && \"Unexpected Semantics\"" , "llvm/lib/Support/APFloat.cpp", 4975, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4976 | APFloat Tmp(semPPCDoubleDoubleLegacy); | |||
| 4977 | auto Ret = Tmp.convertFromAPInt(Input, IsSigned, RM); | |||
| 4978 | *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); | |||
| 4979 | return Ret; | |||
| 4980 | } | |||
| 4981 | ||||
| 4982 | APFloat::opStatus | |||
| 4983 | DoubleAPFloat::convertFromSignExtendedInteger(const integerPart *Input, | |||
| 4984 | unsigned int InputSize, | |||
| 4985 | bool IsSigned, roundingMode RM) { | |||
| 4986 | assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics")(static_cast <bool> (Semantics == &semPPCDoubleDouble && "Unexpected Semantics") ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble && \"Unexpected Semantics\"" , "llvm/lib/Support/APFloat.cpp", 4986, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4987 | APFloat Tmp(semPPCDoubleDoubleLegacy); | |||
| 4988 | auto Ret = Tmp.convertFromSignExtendedInteger(Input, InputSize, IsSigned, RM); | |||
| 4989 | *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); | |||
| 4990 | return Ret; | |||
| 4991 | } | |||
| 4992 | ||||
| 4993 | APFloat::opStatus | |||
| 4994 | DoubleAPFloat::convertFromZeroExtendedInteger(const integerPart *Input, | |||
| 4995 | unsigned int InputSize, | |||
| 4996 | bool IsSigned, roundingMode RM) { | |||
| 4997 | assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics")(static_cast <bool> (Semantics == &semPPCDoubleDouble && "Unexpected Semantics") ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble && \"Unexpected Semantics\"" , "llvm/lib/Support/APFloat.cpp", 4997, __extension__ __PRETTY_FUNCTION__ )); | |||
| 4998 | APFloat Tmp(semPPCDoubleDoubleLegacy); | |||
| 4999 | auto Ret = Tmp.convertFromZeroExtendedInteger(Input, InputSize, IsSigned, RM); | |||
| 5000 | *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt()); | |||
| 5001 | return Ret; | |||
| 5002 | } | |||
| 5003 | ||||
| 5004 | unsigned int DoubleAPFloat::convertToHexString(char *DST, | |||
| 5005 | unsigned int HexDigits, | |||
| 5006 | bool UpperCase, | |||
| 5007 | roundingMode RM) const { | |||
| 5008 | assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics")(static_cast <bool> (Semantics == &semPPCDoubleDouble && "Unexpected Semantics") ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble && \"Unexpected Semantics\"" , "llvm/lib/Support/APFloat.cpp", 5008, __extension__ __PRETTY_FUNCTION__ )); | |||
| 5009 | return APFloat(semPPCDoubleDoubleLegacy, bitcastToAPInt()) | |||
| 5010 | .convertToHexString(DST, HexDigits, UpperCase, RM); | |||
| 5011 | } | |||
| 5012 | ||||
| 5013 | bool DoubleAPFloat::isDenormal() const { | |||
| 5014 | return getCategory() == fcNormal && | |||
| 5015 | (Floats[0].isDenormal() || Floats[1].isDenormal() || | |||
| 5016 | // (double)(Hi + Lo) == Hi defines a normal number. | |||
| 5017 | Floats[0] != Floats[0] + Floats[1]); | |||
| 5018 | } | |||
| 5019 | ||||
| 5020 | bool DoubleAPFloat::isSmallest() const { | |||
| 5021 | if (getCategory() != fcNormal) | |||
| 5022 | return false; | |||
| 5023 | DoubleAPFloat Tmp(*this); | |||
| 5024 | Tmp.makeSmallest(this->isNegative()); | |||
| 5025 | return Tmp.compare(*this) == cmpEqual; | |||
| 5026 | } | |||
| 5027 | ||||
| 5028 | bool DoubleAPFloat::isSmallestNormalized() const { | |||
| 5029 | if (getCategory() != fcNormal) | |||
| 5030 | return false; | |||
| 5031 | ||||
| 5032 | DoubleAPFloat Tmp(*this); | |||
| 5033 | Tmp.makeSmallestNormalized(this->isNegative()); | |||
| 5034 | return Tmp.compare(*this) == cmpEqual; | |||
| 5035 | } | |||
| 5036 | ||||
| 5037 | bool DoubleAPFloat::isLargest() const { | |||
| 5038 | if (getCategory() != fcNormal) | |||
| 5039 | return false; | |||
| 5040 | DoubleAPFloat Tmp(*this); | |||
| 5041 | Tmp.makeLargest(this->isNegative()); | |||
| 5042 | return Tmp.compare(*this) == cmpEqual; | |||
| 5043 | } | |||
| 5044 | ||||
| 5045 | bool DoubleAPFloat::isInteger() const { | |||
| 5046 | assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics")(static_cast <bool> (Semantics == &semPPCDoubleDouble && "Unexpected Semantics") ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble && \"Unexpected Semantics\"" , "llvm/lib/Support/APFloat.cpp", 5046, __extension__ __PRETTY_FUNCTION__ )); | |||
| 5047 | return Floats[0].isInteger() && Floats[1].isInteger(); | |||
| 5048 | } | |||
| 5049 | ||||
| 5050 | void DoubleAPFloat::toString(SmallVectorImpl<char> &Str, | |||
| 5051 | unsigned FormatPrecision, | |||
| 5052 | unsigned FormatMaxPadding, | |||
| 5053 | bool TruncateZero) const { | |||
| 5054 | assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics")(static_cast <bool> (Semantics == &semPPCDoubleDouble && "Unexpected Semantics") ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble && \"Unexpected Semantics\"" , "llvm/lib/Support/APFloat.cpp", 5054, __extension__ __PRETTY_FUNCTION__ )); | |||
| 5055 | APFloat(semPPCDoubleDoubleLegacy, bitcastToAPInt()) | |||
| 5056 | .toString(Str, FormatPrecision, FormatMaxPadding, TruncateZero); | |||
| 5057 | } | |||
| 5058 | ||||
| 5059 | bool DoubleAPFloat::getExactInverse(APFloat *inv) const { | |||
| 5060 | assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics")(static_cast <bool> (Semantics == &semPPCDoubleDouble && "Unexpected Semantics") ? void (0) : __assert_fail ("Semantics == &semPPCDoubleDouble && \"Unexpected Semantics\"" , "llvm/lib/Support/APFloat.cpp", 5060, __extension__ __PRETTY_FUNCTION__ )); | |||
| 5061 | APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt()); | |||
| 5062 | if (!inv) | |||
| 5063 | return Tmp.getExactInverse(nullptr); | |||
| 5064 | APFloat Inv(semPPCDoubleDoubleLegacy); | |||
| 5065 | auto Ret = Tmp.getExactInverse(&Inv); | |||
| 5066 | *inv = APFloat(semPPCDoubleDouble, Inv.bitcastToAPInt()); | |||
| 5067 | return Ret; | |||
| 5068 | } | |||
| 5069 | ||||
| 5070 | DoubleAPFloat scalbn(const DoubleAPFloat &Arg, int Exp, | |||
| 5071 | APFloat::roundingMode RM) { | |||
| 5072 | assert(Arg.Semantics == &semPPCDoubleDouble && "Unexpected Semantics")(static_cast <bool> (Arg.Semantics == &semPPCDoubleDouble && "Unexpected Semantics") ? void (0) : __assert_fail ("Arg.Semantics == &semPPCDoubleDouble && \"Unexpected Semantics\"" , "llvm/lib/Support/APFloat.cpp", 5072, __extension__ __PRETTY_FUNCTION__ )); | |||
| 5073 | return DoubleAPFloat(semPPCDoubleDouble, scalbn(Arg.Floats[0], Exp, RM), | |||
| 5074 | scalbn(Arg.Floats[1], Exp, RM)); | |||
| 5075 | } | |||
| 5076 | ||||
| 5077 | DoubleAPFloat frexp(const DoubleAPFloat &Arg, int &Exp, | |||
| 5078 | APFloat::roundingMode RM) { | |||
| 5079 | assert(Arg.Semantics == &semPPCDoubleDouble && "Unexpected Semantics")(static_cast <bool> (Arg.Semantics == &semPPCDoubleDouble && "Unexpected Semantics") ? void (0) : __assert_fail ("Arg.Semantics == &semPPCDoubleDouble && \"Unexpected Semantics\"" , "llvm/lib/Support/APFloat.cpp", 5079, __extension__ __PRETTY_FUNCTION__ )); | |||
| ||||
| 5080 | APFloat First = frexp(Arg.Floats[0], Exp, RM); | |||
| 5081 | APFloat Second = Arg.Floats[1]; | |||
| 5082 | if (Arg.getCategory() == APFloat::fcNormal) | |||
| 5083 | Second = scalbn(Second, -Exp, RM); | |||
| 5084 | return DoubleAPFloat(semPPCDoubleDouble, std::move(First), std::move(Second)); | |||
| ||||
| 5085 | } | |||
| 5086 | ||||
| 5087 | } // namespace detail | |||
| 5088 | ||||
| 5089 | APFloat::Storage::Storage(IEEEFloat F, const fltSemantics &Semantics) { | |||
| 5090 | if (usesLayout<IEEEFloat>(Semantics)) { | |||
| 5091 | new (&IEEE) IEEEFloat(std::move(F)); | |||
| 5092 | return; | |||
| 5093 | } | |||
| 5094 | if (usesLayout<DoubleAPFloat>(Semantics)) { | |||
| 5095 | const fltSemantics& S = F.getSemantics(); | |||
| 5096 | new (&Double) | |||
| 5097 | DoubleAPFloat(Semantics, APFloat(std::move(F), S), | |||
| 5098 | APFloat(semIEEEdouble)); | |||
| 5099 | return; | |||
| 5100 | } | |||
| 5101 | llvm_unreachable("Unexpected semantics")::llvm::llvm_unreachable_internal("Unexpected semantics", "llvm/lib/Support/APFloat.cpp" , 5101); | |||
| 5102 | } | |||
| 5103 | ||||
| 5104 | Expected<APFloat::opStatus> APFloat::convertFromString(StringRef Str, | |||
| 5105 | roundingMode RM) { | |||
| 5106 | APFLOAT_DISPATCH_ON_SEMANTICS(convertFromString(Str, RM)); | |||
| 5107 | } | |||
| 5108 | ||||
| 5109 | hash_code hash_value(const APFloat &Arg) { | |||
| 5110 | if (APFloat::usesLayout<detail::IEEEFloat>(Arg.getSemantics())) | |||
| 5111 | return hash_value(Arg.U.IEEE); | |||
| 5112 | if (APFloat::usesLayout<detail::DoubleAPFloat>(Arg.getSemantics())) | |||
| 5113 | return hash_value(Arg.U.Double); | |||
| 5114 | llvm_unreachable("Unexpected semantics")::llvm::llvm_unreachable_internal("Unexpected semantics", "llvm/lib/Support/APFloat.cpp" , 5114); | |||
| 5115 | } | |||
| 5116 | ||||
| 5117 | APFloat::APFloat(const fltSemantics &Semantics, StringRef S) | |||
| 5118 | : APFloat(Semantics) { | |||
| 5119 | auto StatusOrErr = convertFromString(S, rmNearestTiesToEven); | |||
| 5120 | assert(StatusOrErr && "Invalid floating point representation")(static_cast <bool> (StatusOrErr && "Invalid floating point representation" ) ? void (0) : __assert_fail ("StatusOrErr && \"Invalid floating point representation\"" , "llvm/lib/Support/APFloat.cpp", 5120, __extension__ __PRETTY_FUNCTION__ )); | |||
| 5121 | consumeError(StatusOrErr.takeError()); | |||
| 5122 | } | |||
| 5123 | ||||
| 5124 | FPClassTest APFloat::classify() const { | |||
| 5125 | if (isZero()) | |||
| 5126 | return isNegative() ? fcNegZero : fcPosZero; | |||
| 5127 | if (isNormal()) | |||
| 5128 | return isNegative() ? fcNegNormal : fcPosNormal; | |||
| 5129 | if (isDenormal()) | |||
| 5130 | return isNegative() ? fcNegSubnormal : fcPosSubnormal; | |||
| 5131 | if (isInfinity()) | |||
| 5132 | return isNegative() ? fcNegInf : fcPosInf; | |||
| 5133 | assert(isNaN() && "Other class of FP constant")(static_cast <bool> (isNaN() && "Other class of FP constant" ) ? void (0) : __assert_fail ("isNaN() && \"Other class of FP constant\"" , "llvm/lib/Support/APFloat.cpp", 5133, __extension__ __PRETTY_FUNCTION__ )); | |||
| 5134 | return isSignaling() ? fcSNan : fcQNan; | |||
| 5135 | } | |||
| 5136 | ||||
| 5137 | APFloat::opStatus APFloat::convert(const fltSemantics &ToSemantics, | |||
| 5138 | roundingMode RM, bool *losesInfo) { | |||
| 5139 | if (&getSemantics() == &ToSemantics) { | |||
| 5140 | *losesInfo = false; | |||
| 5141 | return opOK; | |||
| 5142 | } | |||
| 5143 | if (usesLayout<IEEEFloat>(getSemantics()) && | |||
| 5144 | usesLayout<IEEEFloat>(ToSemantics)) | |||
| 5145 | return U.IEEE.convert(ToSemantics, RM, losesInfo); | |||
| 5146 | if (usesLayout<IEEEFloat>(getSemantics()) && | |||
| 5147 | usesLayout<DoubleAPFloat>(ToSemantics)) { | |||
| 5148 | assert(&ToSemantics == &semPPCDoubleDouble)(static_cast <bool> (&ToSemantics == &semPPCDoubleDouble ) ? void (0) : __assert_fail ("&ToSemantics == &semPPCDoubleDouble" , "llvm/lib/Support/APFloat.cpp", 5148, __extension__ __PRETTY_FUNCTION__ )); | |||
| 5149 | auto Ret = U.IEEE.convert(semPPCDoubleDoubleLegacy, RM, losesInfo); | |||
| 5150 | *this = APFloat(ToSemantics, U.IEEE.bitcastToAPInt()); | |||
| 5151 | return Ret; | |||
| 5152 | } | |||
| 5153 | if (usesLayout<DoubleAPFloat>(getSemantics()) && | |||
| 5154 | usesLayout<IEEEFloat>(ToSemantics)) { | |||
| 5155 | auto Ret = getIEEE().convert(ToSemantics, RM, losesInfo); | |||
| 5156 | *this = APFloat(std::move(getIEEE()), ToSemantics); | |||
| 5157 | return Ret; | |||
| 5158 | } | |||
| 5159 | llvm_unreachable("Unexpected semantics")::llvm::llvm_unreachable_internal("Unexpected semantics", "llvm/lib/Support/APFloat.cpp" , 5159); | |||
| 5160 | } | |||
| 5161 | ||||
| 5162 | APFloat APFloat::getAllOnesValue(const fltSemantics &Semantics) { | |||
| 5163 | return APFloat(Semantics, APInt::getAllOnes(Semantics.sizeInBits)); | |||
| 5164 | } | |||
| 5165 | ||||
| 5166 | void APFloat::print(raw_ostream &OS) const { | |||
| 5167 | SmallVector<char, 16> Buffer; | |||
| 5168 | toString(Buffer); | |||
| 5169 | OS << Buffer << "\n"; | |||
| 5170 | } | |||
| 5171 | ||||
| 5172 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | |||
| 5173 | LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void APFloat::dump() const { print(dbgs()); } | |||
| 5174 | #endif | |||
| 5175 | ||||
| 5176 | void APFloat::Profile(FoldingSetNodeID &NID) const { | |||
| 5177 | NID.Add(bitcastToAPInt()); | |||
| 5178 | } | |||
| 5179 | ||||
| 5180 | /* Same as convertToInteger(integerPart*, ...), except the result is returned in | |||
| 5181 | an APSInt, whose initial bit-width and signed-ness are used to determine the | |||
| 5182 | precision of the conversion. | |||
| 5183 | */ | |||
| 5184 | APFloat::opStatus APFloat::convertToInteger(APSInt &result, | |||
| 5185 | roundingMode rounding_mode, | |||
| 5186 | bool *isExact) const { | |||
| 5187 | unsigned bitWidth = result.getBitWidth(); | |||
| 5188 | SmallVector<uint64_t, 4> parts(result.getNumWords()); | |||
| 5189 | opStatus status = convertToInteger(parts, bitWidth, result.isSigned(), | |||
| 5190 | rounding_mode, isExact); | |||
| 5191 | // Keeps the original signed-ness. | |||
| 5192 | result = APInt(bitWidth, parts); | |||
| 5193 | return status; | |||
| 5194 | } | |||
| 5195 | ||||
| 5196 | double APFloat::convertToDouble() const { | |||
| 5197 | if (&getSemantics() == (const llvm::fltSemantics *)&semIEEEdouble) | |||
| 5198 | return getIEEE().convertToDouble(); | |||
| 5199 | assert(getSemantics().isRepresentableBy(semIEEEdouble) &&(static_cast <bool> (getSemantics().isRepresentableBy(semIEEEdouble ) && "Float semantics is not representable by IEEEdouble" ) ? void (0) : __assert_fail ("getSemantics().isRepresentableBy(semIEEEdouble) && \"Float semantics is not representable by IEEEdouble\"" , "llvm/lib/Support/APFloat.cpp", 5200, __extension__ __PRETTY_FUNCTION__ )) | |||
| 5200 | "Float semantics is not representable by IEEEdouble")(static_cast <bool> (getSemantics().isRepresentableBy(semIEEEdouble ) && "Float semantics is not representable by IEEEdouble" ) ? void (0) : __assert_fail ("getSemantics().isRepresentableBy(semIEEEdouble) && \"Float semantics is not representable by IEEEdouble\"" , "llvm/lib/Support/APFloat.cpp", 5200, __extension__ __PRETTY_FUNCTION__ )); | |||
| 5201 | APFloat Temp = *this; | |||
| 5202 | bool LosesInfo; | |||
| 5203 | opStatus St = Temp.convert(semIEEEdouble, rmNearestTiesToEven, &LosesInfo); | |||
| 5204 | assert(!(St & opInexact) && !LosesInfo && "Unexpected imprecision")(static_cast <bool> (!(St & opInexact) && ! LosesInfo && "Unexpected imprecision") ? void (0) : __assert_fail ("!(St & opInexact) && !LosesInfo && \"Unexpected imprecision\"" , "llvm/lib/Support/APFloat.cpp", 5204, __extension__ __PRETTY_FUNCTION__ )); | |||
| 5205 | (void)St; | |||
| 5206 | return Temp.getIEEE().convertToDouble(); | |||
| 5207 | } | |||
| 5208 | ||||
| 5209 | float APFloat::convertToFloat() const { | |||
| 5210 | if (&getSemantics() == (const llvm::fltSemantics *)&semIEEEsingle) | |||
| 5211 | return getIEEE().convertToFloat(); | |||
| 5212 | assert(getSemantics().isRepresentableBy(semIEEEsingle) &&(static_cast <bool> (getSemantics().isRepresentableBy(semIEEEsingle ) && "Float semantics is not representable by IEEEsingle" ) ? void (0) : __assert_fail ("getSemantics().isRepresentableBy(semIEEEsingle) && \"Float semantics is not representable by IEEEsingle\"" , "llvm/lib/Support/APFloat.cpp", 5213, __extension__ __PRETTY_FUNCTION__ )) | |||
| 5213 | "Float semantics is not representable by IEEEsingle")(static_cast <bool> (getSemantics().isRepresentableBy(semIEEEsingle ) && "Float semantics is not representable by IEEEsingle" ) ? void (0) : __assert_fail ("getSemantics().isRepresentableBy(semIEEEsingle) && \"Float semantics is not representable by IEEEsingle\"" , "llvm/lib/Support/APFloat.cpp", 5213, __extension__ __PRETTY_FUNCTION__ )); | |||
| 5214 | APFloat Temp = *this; | |||
| 5215 | bool LosesInfo; | |||
| 5216 | opStatus St = Temp.convert(semIEEEsingle, rmNearestTiesToEven, &LosesInfo); | |||
| 5217 | assert(!(St & opInexact) && !LosesInfo && "Unexpected imprecision")(static_cast <bool> (!(St & opInexact) && ! LosesInfo && "Unexpected imprecision") ? void (0) : __assert_fail ("!(St & opInexact) && !LosesInfo && \"Unexpected imprecision\"" , "llvm/lib/Support/APFloat.cpp", 5217, __extension__ __PRETTY_FUNCTION__ )); | |||
| 5218 | (void)St; | |||
| 5219 | return Temp.getIEEE().convertToFloat(); | |||
| 5220 | } | |||
| 5221 | ||||
| 5222 | } // namespace llvm | |||
| 5223 | ||||
| 5224 | #undef APFLOAT_DISPATCH_ON_SEMANTICS |
| 1 | //===- llvm/ADT/APFloat.h - Arbitrary Precision Floating Point ---*- C++ -*-==// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// |
| 9 | /// \file |
| 10 | /// This file declares a class to represent arbitrary precision floating point |
| 11 | /// values and provide a variety of arithmetic operations on them. |
| 12 | /// |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #ifndef LLVM_ADT_APFLOAT_H |
| 16 | #define LLVM_ADT_APFLOAT_H |
| 17 | |
| 18 | #include "llvm/ADT/APInt.h" |
| 19 | #include "llvm/ADT/ArrayRef.h" |
| 20 | #include "llvm/ADT/FloatingPointMode.h" |
| 21 | #include "llvm/Support/ErrorHandling.h" |
| 22 | #include <memory> |
| 23 | |
| 24 | #define APFLOAT_DISPATCH_ON_SEMANTICS(METHOD_CALL) \ |
| 25 | do { \ |
| 26 | if (usesLayout<IEEEFloat>(getSemantics())) \ |
| 27 | return U.IEEE.METHOD_CALL; \ |
| 28 | if (usesLayout<DoubleAPFloat>(getSemantics())) \ |
| 29 | return U.Double.METHOD_CALL; \ |
| 30 | llvm_unreachable("Unexpected semantics")::llvm::llvm_unreachable_internal("Unexpected semantics", "llvm/include/llvm/ADT/APFloat.h" , 30); \ |
| 31 | } while (false) |
| 32 | |
| 33 | namespace llvm { |
| 34 | |
| 35 | struct fltSemantics; |
| 36 | class APSInt; |
| 37 | class StringRef; |
| 38 | class APFloat; |
| 39 | class raw_ostream; |
| 40 | |
| 41 | template <typename T> class Expected; |
| 42 | template <typename T> class SmallVectorImpl; |
| 43 | |
| 44 | /// Enum that represents what fraction of the LSB truncated bits of an fp number |
| 45 | /// represent. |
| 46 | /// |
| 47 | /// This essentially combines the roles of guard and sticky bits. |
| 48 | enum lostFraction { // Example of truncated bits: |
| 49 | lfExactlyZero, // 000000 |
| 50 | lfLessThanHalf, // 0xxxxx x's not all zero |
| 51 | lfExactlyHalf, // 100000 |
| 52 | lfMoreThanHalf // 1xxxxx x's not all zero |
| 53 | }; |
| 54 | |
| 55 | /// A self-contained host- and target-independent arbitrary-precision |
| 56 | /// floating-point software implementation. |
| 57 | /// |
| 58 | /// APFloat uses bignum integer arithmetic as provided by static functions in |
| 59 | /// the APInt class. The library will work with bignum integers whose parts are |
| 60 | /// any unsigned type at least 16 bits wide, but 64 bits is recommended. |
| 61 | /// |
| 62 | /// Written for clarity rather than speed, in particular with a view to use in |
| 63 | /// the front-end of a cross compiler so that target arithmetic can be correctly |
| 64 | /// performed on the host. Performance should nonetheless be reasonable, |
| 65 | /// particularly for its intended use. It may be useful as a base |
| 66 | /// implementation for a run-time library during development of a faster |
| 67 | /// target-specific one. |
| 68 | /// |
| 69 | /// All 5 rounding modes in the IEEE-754R draft are handled correctly for all |
| 70 | /// implemented operations. Currently implemented operations are add, subtract, |
| 71 | /// multiply, divide, fused-multiply-add, conversion-to-float, |
| 72 | /// conversion-to-integer and conversion-from-integer. New rounding modes |
| 73 | /// (e.g. away from zero) can be added with three or four lines of code. |
| 74 | /// |
| 75 | /// Four formats are built-in: IEEE single precision, double precision, |
| 76 | /// quadruple precision, and x87 80-bit extended double (when operating with |
| 77 | /// full extended precision). Adding a new format that obeys IEEE semantics |
| 78 | /// only requires adding two lines of code: a declaration and definition of the |
| 79 | /// format. |
| 80 | /// |
| 81 | /// All operations return the status of that operation as an exception bit-mask, |
| 82 | /// so multiple operations can be done consecutively with their results or-ed |
| 83 | /// together. The returned status can be useful for compiler diagnostics; e.g., |
| 84 | /// inexact, underflow and overflow can be easily diagnosed on constant folding, |
| 85 | /// and compiler optimizers can determine what exceptions would be raised by |
| 86 | /// folding operations and optimize, or perhaps not optimize, accordingly. |
| 87 | /// |
| 88 | /// At present, underflow tininess is detected after rounding; it should be |
| 89 | /// straight forward to add support for the before-rounding case too. |
| 90 | /// |
| 91 | /// The library reads hexadecimal floating point numbers as per C99, and |
| 92 | /// correctly rounds if necessary according to the specified rounding mode. |
| 93 | /// Syntax is required to have been validated by the caller. It also converts |
| 94 | /// floating point numbers to hexadecimal text as per the C99 %a and %A |
| 95 | /// conversions. The output precision (or alternatively the natural minimal |
| 96 | /// precision) can be specified; if the requested precision is less than the |
| 97 | /// natural precision the output is correctly rounded for the specified rounding |
| 98 | /// mode. |
| 99 | /// |
| 100 | /// It also reads decimal floating point numbers and correctly rounds according |
| 101 | /// to the specified rounding mode. |
| 102 | /// |
| 103 | /// Conversion to decimal text is not currently implemented. |
| 104 | /// |
| 105 | /// Non-zero finite numbers are represented internally as a sign bit, a 16-bit |
| 106 | /// signed exponent, and the significand as an array of integer parts. After |
| 107 | /// normalization of a number of precision P the exponent is within the range of |
| 108 | /// the format, and if the number is not denormal the P-th bit of the |
| 109 | /// significand is set as an explicit integer bit. For denormals the most |
| 110 | /// significant bit is shifted right so that the exponent is maintained at the |
| 111 | /// format's minimum, so that the smallest denormal has just the least |
| 112 | /// significant bit of the significand set. The sign of zeroes and infinities |
| 113 | /// is significant; the exponent and significand of such numbers is not stored, |
| 114 | /// but has a known implicit (deterministic) value: 0 for the significands, 0 |
| 115 | /// for zero exponent, all 1 bits for infinity exponent. For NaNs the sign and |
| 116 | /// significand are deterministic, although not really meaningful, and preserved |
| 117 | /// in non-conversion operations. The exponent is implicitly all 1 bits. |
| 118 | /// |
| 119 | /// APFloat does not provide any exception handling beyond default exception |
| 120 | /// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause |
| 121 | /// by encoding Signaling NaNs with the first bit of its trailing significand as |
| 122 | /// 0. |
| 123 | /// |
| 124 | /// TODO |
| 125 | /// ==== |
| 126 | /// |
| 127 | /// Some features that may or may not be worth adding: |
| 128 | /// |
| 129 | /// Binary to decimal conversion (hard). |
| 130 | /// |
| 131 | /// Optional ability to detect underflow tininess before rounding. |
| 132 | /// |
| 133 | /// New formats: x87 in single and double precision mode (IEEE apart from |
| 134 | /// extended exponent range) (hard). |
| 135 | /// |
| 136 | /// New operations: sqrt, IEEE remainder, C90 fmod, nexttoward. |
| 137 | /// |
| 138 | |
| 139 | // This is the common type definitions shared by APFloat and its internal |
| 140 | // implementation classes. This struct should not define any non-static data |
| 141 | // members. |
| 142 | struct APFloatBase { |
| 143 | typedef APInt::WordType integerPart; |
| 144 | static constexpr unsigned integerPartWidth = APInt::APINT_BITS_PER_WORD; |
| 145 | |
| 146 | /// A signed type to represent a floating point numbers unbiased exponent. |
| 147 | typedef int32_t ExponentType; |
| 148 | |
| 149 | /// \name Floating Point Semantics. |
| 150 | /// @{ |
| 151 | enum Semantics { |
| 152 | S_IEEEhalf, |
| 153 | S_BFloat, |
| 154 | S_IEEEsingle, |
| 155 | S_IEEEdouble, |
| 156 | S_IEEEquad, |
| 157 | S_PPCDoubleDouble, |
| 158 | // 8-bit floating point number following IEEE-754 conventions with bit |
| 159 | // layout S1E5M2 as described in https://arxiv.org/abs/2209.05433. |
| 160 | S_Float8E5M2, |
| 161 | // 8-bit floating point number mostly following IEEE-754 conventions |
| 162 | // and bit layout S1E5M2 described in https://arxiv.org/abs/2206.02915, |
| 163 | // with expanded range and with no infinity or signed zero. |
| 164 | // NaN is represented as negative zero. (FN -> Finite, UZ -> unsigned zero). |
| 165 | // This format's exponent bias is 16, instead of the 15 (2 ** (5 - 1) - 1) |
| 166 | // that IEEE precedent would imply. |
| 167 | S_Float8E5M2FNUZ, |
| 168 | // 8-bit floating point number mostly following IEEE-754 conventions with |
| 169 | // bit layout S1E4M3 as described in https://arxiv.org/abs/2209.05433. |
| 170 | // Unlike IEEE-754 types, there are no infinity values, and NaN is |
| 171 | // represented with the exponent and mantissa bits set to all 1s. |
| 172 | S_Float8E4M3FN, |
| 173 | // 8-bit floating point number mostly following IEEE-754 conventions |
| 174 | // and bit layout S1E4M3 described in https://arxiv.org/abs/2206.02915, |
| 175 | // with expanded range and with no infinity or signed zero. |
| 176 | // NaN is represented as negative zero. (FN -> Finite, UZ -> unsigned zero). |
| 177 | // This format's exponent bias is 8, instead of the 7 (2 ** (4 - 1) - 1) |
| 178 | // that IEEE precedent would imply. |
| 179 | S_Float8E4M3FNUZ, |
| 180 | // 8-bit floating point number mostly following IEEE-754 conventions |
| 181 | // and bit layout S1E4M3 with expanded range and with no infinity or signed |
| 182 | // zero. |
| 183 | // NaN is represented as negative zero. (FN -> Finite, UZ -> unsigned zero). |
| 184 | // This format's exponent bias is 11, instead of the 7 (2 ** (4 - 1) - 1) |
| 185 | // that IEEE precedent would imply. |
| 186 | S_Float8E4M3B11FNUZ, |
| 187 | |
| 188 | S_x87DoubleExtended, |
| 189 | S_MaxSemantics = S_x87DoubleExtended, |
| 190 | }; |
| 191 | |
| 192 | static const llvm::fltSemantics &EnumToSemantics(Semantics S); |
| 193 | static Semantics SemanticsToEnum(const llvm::fltSemantics &Sem); |
| 194 | |
| 195 | static const fltSemantics &IEEEhalf() LLVM_READNONE__attribute__((__const__)); |
| 196 | static const fltSemantics &BFloat() LLVM_READNONE__attribute__((__const__)); |
| 197 | static const fltSemantics &IEEEsingle() LLVM_READNONE__attribute__((__const__)); |
| 198 | static const fltSemantics &IEEEdouble() LLVM_READNONE__attribute__((__const__)); |
| 199 | static const fltSemantics &IEEEquad() LLVM_READNONE__attribute__((__const__)); |
| 200 | static const fltSemantics &PPCDoubleDouble() LLVM_READNONE__attribute__((__const__)); |
| 201 | static const fltSemantics &Float8E5M2() LLVM_READNONE__attribute__((__const__)); |
| 202 | static const fltSemantics &Float8E5M2FNUZ() LLVM_READNONE__attribute__((__const__)); |
| 203 | static const fltSemantics &Float8E4M3FN() LLVM_READNONE__attribute__((__const__)); |
| 204 | static const fltSemantics &Float8E4M3FNUZ() LLVM_READNONE__attribute__((__const__)); |
| 205 | static const fltSemantics &Float8E4M3B11FNUZ() LLVM_READNONE__attribute__((__const__)); |
| 206 | static const fltSemantics &x87DoubleExtended() LLVM_READNONE__attribute__((__const__)); |
| 207 | |
| 208 | /// A Pseudo fltsemantic used to construct APFloats that cannot conflict with |
| 209 | /// anything real. |
| 210 | static const fltSemantics &Bogus() LLVM_READNONE__attribute__((__const__)); |
| 211 | |
| 212 | /// @} |
| 213 | |
| 214 | /// IEEE-754R 5.11: Floating Point Comparison Relations. |
| 215 | enum cmpResult { |
| 216 | cmpLessThan, |
| 217 | cmpEqual, |
| 218 | cmpGreaterThan, |
| 219 | cmpUnordered |
| 220 | }; |
| 221 | |
| 222 | /// IEEE-754R 4.3: Rounding-direction attributes. |
| 223 | using roundingMode = llvm::RoundingMode; |
| 224 | |
| 225 | static constexpr roundingMode rmNearestTiesToEven = |
| 226 | RoundingMode::NearestTiesToEven; |
| 227 | static constexpr roundingMode rmTowardPositive = RoundingMode::TowardPositive; |
| 228 | static constexpr roundingMode rmTowardNegative = RoundingMode::TowardNegative; |
| 229 | static constexpr roundingMode rmTowardZero = RoundingMode::TowardZero; |
| 230 | static constexpr roundingMode rmNearestTiesToAway = |
| 231 | RoundingMode::NearestTiesToAway; |
| 232 | |
| 233 | /// IEEE-754R 7: Default exception handling. |
| 234 | /// |
| 235 | /// opUnderflow or opOverflow are always returned or-ed with opInexact. |
| 236 | /// |
| 237 | /// APFloat models this behavior specified by IEEE-754: |
| 238 | /// "For operations producing results in floating-point format, the default |
| 239 | /// result of an operation that signals the invalid operation exception |
| 240 | /// shall be a quiet NaN." |
| 241 | enum opStatus { |
| 242 | opOK = 0x00, |
| 243 | opInvalidOp = 0x01, |
| 244 | opDivByZero = 0x02, |
| 245 | opOverflow = 0x04, |
| 246 | opUnderflow = 0x08, |
| 247 | opInexact = 0x10 |
| 248 | }; |
| 249 | |
| 250 | /// Category of internally-represented number. |
| 251 | enum fltCategory { |
| 252 | fcInfinity, |
| 253 | fcNaN, |
| 254 | fcNormal, |
| 255 | fcZero |
| 256 | }; |
| 257 | |
| 258 | /// Convenience enum used to construct an uninitialized APFloat. |
| 259 | enum uninitializedTag { |
| 260 | uninitialized |
| 261 | }; |
| 262 | |
| 263 | /// Enumeration of \c ilogb error results. |
| 264 | enum IlogbErrorKinds { |
| 265 | IEK_Zero = INT_MIN(-2147483647 -1) + 1, |
| 266 | IEK_NaN = INT_MIN(-2147483647 -1), |
| 267 | IEK_Inf = INT_MAX2147483647 |
| 268 | }; |
| 269 | |
| 270 | static unsigned int semanticsPrecision(const fltSemantics &); |
| 271 | static ExponentType semanticsMinExponent(const fltSemantics &); |
| 272 | static ExponentType semanticsMaxExponent(const fltSemantics &); |
| 273 | static unsigned int semanticsSizeInBits(const fltSemantics &); |
| 274 | static unsigned int semanticsIntSizeInBits(const fltSemantics&, bool); |
| 275 | |
| 276 | // Returns true if any number described by \p Src can be precisely represented |
| 277 | // by a normal (not subnormal) value in \p Dst. |
| 278 | static bool isRepresentableAsNormalIn(const fltSemantics &Src, |
| 279 | const fltSemantics &Dst); |
| 280 | |
| 281 | /// Returns the size of the floating point number (in bits) in the given |
| 282 | /// semantics. |
| 283 | static unsigned getSizeInBits(const fltSemantics &Sem); |
| 284 | }; |
| 285 | |
| 286 | namespace detail { |
| 287 | |
| 288 | class IEEEFloat final : public APFloatBase { |
| 289 | public: |
| 290 | /// \name Constructors |
| 291 | /// @{ |
| 292 | |
| 293 | IEEEFloat(const fltSemantics &); // Default construct to +0.0 |
| 294 | IEEEFloat(const fltSemantics &, integerPart); |
| 295 | IEEEFloat(const fltSemantics &, uninitializedTag); |
| 296 | IEEEFloat(const fltSemantics &, const APInt &); |
| 297 | explicit IEEEFloat(double d); |
| 298 | explicit IEEEFloat(float f); |
| 299 | IEEEFloat(const IEEEFloat &); |
| 300 | IEEEFloat(IEEEFloat &&); |
| 301 | ~IEEEFloat(); |
| 302 | |
| 303 | /// @} |
| 304 | |
| 305 | /// Returns whether this instance allocated memory. |
| 306 | bool needsCleanup() const { return partCount() > 1; } |
| 307 | |
| 308 | /// \name Convenience "constructors" |
| 309 | /// @{ |
| 310 | |
| 311 | /// @} |
| 312 | |
| 313 | /// \name Arithmetic |
| 314 | /// @{ |
| 315 | |
| 316 | opStatus add(const IEEEFloat &, roundingMode); |
| 317 | opStatus subtract(const IEEEFloat &, roundingMode); |
| 318 | opStatus multiply(const IEEEFloat &, roundingMode); |
| 319 | opStatus divide(const IEEEFloat &, roundingMode); |
| 320 | /// IEEE remainder. |
| 321 | opStatus remainder(const IEEEFloat &); |
| 322 | /// C fmod, or llvm frem. |
| 323 | opStatus mod(const IEEEFloat &); |
| 324 | opStatus fusedMultiplyAdd(const IEEEFloat &, const IEEEFloat &, roundingMode); |
| 325 | opStatus roundToIntegral(roundingMode); |
| 326 | /// IEEE-754R 5.3.1: nextUp/nextDown. |
| 327 | opStatus next(bool nextDown); |
| 328 | |
| 329 | /// @} |
| 330 | |
| 331 | /// \name Sign operations. |
| 332 | /// @{ |
| 333 | |
| 334 | void changeSign(); |
| 335 | |
| 336 | /// @} |
| 337 | |
| 338 | /// \name Conversions |
| 339 | /// @{ |
| 340 | |
| 341 | opStatus convert(const fltSemantics &, roundingMode, bool *); |
| 342 | opStatus convertToInteger(MutableArrayRef<integerPart>, unsigned int, bool, |
| 343 | roundingMode, bool *) const; |
| 344 | opStatus convertFromAPInt(const APInt &, bool, roundingMode); |
| 345 | opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int, |
| 346 | bool, roundingMode); |
| 347 | opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int, |
| 348 | bool, roundingMode); |
| 349 | Expected<opStatus> convertFromString(StringRef, roundingMode); |
| 350 | APInt bitcastToAPInt() const; |
| 351 | double convertToDouble() const; |
| 352 | float convertToFloat() const; |
| 353 | |
| 354 | /// @} |
| 355 | |
| 356 | /// The definition of equality is not straightforward for floating point, so |
| 357 | /// we won't use operator==. Use one of the following, or write whatever it |
| 358 | /// is you really mean. |
| 359 | bool operator==(const IEEEFloat &) const = delete; |
| 360 | |
| 361 | /// IEEE comparison with another floating point number (NaNs compare |
| 362 | /// unordered, 0==-0). |
| 363 | cmpResult compare(const IEEEFloat &) const; |
| 364 | |
| 365 | /// Bitwise comparison for equality (QNaNs compare equal, 0!=-0). |
| 366 | bool bitwiseIsEqual(const IEEEFloat &) const; |
| 367 | |
| 368 | /// Write out a hexadecimal representation of the floating point value to DST, |
| 369 | /// which must be of sufficient size, in the C99 form [-]0xh.hhhhp[+-]d. |
| 370 | /// Return the number of characters written, excluding the terminating NUL. |
| 371 | unsigned int convertToHexString(char *dst, unsigned int hexDigits, |
| 372 | bool upperCase, roundingMode) const; |
| 373 | |
| 374 | /// \name IEEE-754R 5.7.2 General operations. |
| 375 | /// @{ |
| 376 | |
| 377 | /// IEEE-754R isSignMinus: Returns true if and only if the current value is |
| 378 | /// negative. |
| 379 | /// |
| 380 | /// This applies to zeros and NaNs as well. |
| 381 | bool isNegative() const { return sign; } |
| 382 | |
| 383 | /// IEEE-754R isNormal: Returns true if and only if the current value is normal. |
| 384 | /// |
| 385 | /// This implies that the current value of the float is not zero, subnormal, |
| 386 | /// infinite, or NaN following the definition of normality from IEEE-754R. |
| 387 | bool isNormal() const { return !isDenormal() && isFiniteNonZero(); } |
| 388 | |
| 389 | /// Returns true if and only if the current value is zero, subnormal, or |
| 390 | /// normal. |
| 391 | /// |
| 392 | /// This means that the value is not infinite or NaN. |
| 393 | bool isFinite() const { return !isNaN() && !isInfinity(); } |
| 394 | |
| 395 | /// Returns true if and only if the float is plus or minus zero. |
| 396 | bool isZero() const { return category == fcZero; } |
| 397 | |
| 398 | /// IEEE-754R isSubnormal(): Returns true if and only if the float is a |
| 399 | /// denormal. |
| 400 | bool isDenormal() const; |
| 401 | |
| 402 | /// IEEE-754R isInfinite(): Returns true if and only if the float is infinity. |
| 403 | bool isInfinity() const { return category == fcInfinity; } |
| 404 | |
| 405 | /// Returns true if and only if the float is a quiet or signaling NaN. |
| 406 | bool isNaN() const { return category == fcNaN; } |
| 407 | |
| 408 | /// Returns true if and only if the float is a signaling NaN. |
| 409 | bool isSignaling() const; |
| 410 | |
| 411 | /// @} |
| 412 | |
| 413 | /// \name Simple Queries |
| 414 | /// @{ |
| 415 | |
| 416 | fltCategory getCategory() const { return category; } |
| 417 | const fltSemantics &getSemantics() const { return *semantics; } |
| 418 | bool isNonZero() const { return category != fcZero; } |
| 419 | bool isFiniteNonZero() const { return isFinite() && !isZero(); } |
| 420 | bool isPosZero() const { return isZero() && !isNegative(); } |
| 421 | bool isNegZero() const { return isZero() && isNegative(); } |
| 422 | |
| 423 | /// Returns true if and only if the number has the smallest possible non-zero |
| 424 | /// magnitude in the current semantics. |
| 425 | bool isSmallest() const; |
| 426 | |
| 427 | /// Returns true if this is the smallest (by magnitude) normalized finite |
| 428 | /// number in the given semantics. |
| 429 | bool isSmallestNormalized() const; |
| 430 | |
| 431 | /// Returns true if and only if the number has the largest possible finite |
| 432 | /// magnitude in the current semantics. |
| 433 | bool isLargest() const; |
| 434 | |
| 435 | /// Returns true if and only if the number is an exact integer. |
| 436 | bool isInteger() const; |
| 437 | |
| 438 | /// @} |
| 439 | |
| 440 | IEEEFloat &operator=(const IEEEFloat &); |
| 441 | IEEEFloat &operator=(IEEEFloat &&); |
| 442 | |
| 443 | /// Overload to compute a hash code for an APFloat value. |
| 444 | /// |
| 445 | /// Note that the use of hash codes for floating point values is in general |
| 446 | /// frought with peril. Equality is hard to define for these values. For |
| 447 | /// example, should negative and positive zero hash to different codes? Are |
| 448 | /// they equal or not? This hash value implementation specifically |
| 449 | /// emphasizes producing different codes for different inputs in order to |
| 450 | /// be used in canonicalization and memoization. As such, equality is |
| 451 | /// bitwiseIsEqual, and 0 != -0. |
| 452 | friend hash_code hash_value(const IEEEFloat &Arg); |
| 453 | |
| 454 | /// Converts this value into a decimal string. |
| 455 | /// |
| 456 | /// \param FormatPrecision The maximum number of digits of |
| 457 | /// precision to output. If there are fewer digits available, |
| 458 | /// zero padding will not be used unless the value is |
| 459 | /// integral and small enough to be expressed in |
| 460 | /// FormatPrecision digits. 0 means to use the natural |
| 461 | /// precision of the number. |
| 462 | /// \param FormatMaxPadding The maximum number of zeros to |
| 463 | /// consider inserting before falling back to scientific |
| 464 | /// notation. 0 means to always use scientific notation. |
| 465 | /// |
| 466 | /// \param TruncateZero Indicate whether to remove the trailing zero in |
| 467 | /// fraction part or not. Also setting this parameter to false forcing |
| 468 | /// producing of output more similar to default printf behavior. |
| 469 | /// Specifically the lower e is used as exponent delimiter and exponent |
| 470 | /// always contains no less than two digits. |
| 471 | /// |
| 472 | /// Number Precision MaxPadding Result |
| 473 | /// ------ --------- ---------- ------ |
| 474 | /// 1.01E+4 5 2 10100 |
| 475 | /// 1.01E+4 4 2 1.01E+4 |
| 476 | /// 1.01E+4 5 1 1.01E+4 |
| 477 | /// 1.01E-2 5 2 0.0101 |
| 478 | /// 1.01E-2 4 2 0.0101 |
| 479 | /// 1.01E-2 4 1 1.01E-2 |
| 480 | void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0, |
| 481 | unsigned FormatMaxPadding = 3, bool TruncateZero = true) const; |
| 482 | |
| 483 | /// If this value has an exact multiplicative inverse, store it in inv and |
| 484 | /// return true. |
| 485 | bool getExactInverse(APFloat *inv) const; |
| 486 | |
| 487 | /// Returns the exponent of the internal representation of the APFloat. |
| 488 | /// |
| 489 | /// Because the radix of APFloat is 2, this is equivalent to floor(log2(x)). |
| 490 | /// For special APFloat values, this returns special error codes: |
| 491 | /// |
| 492 | /// NaN -> \c IEK_NaN |
| 493 | /// 0 -> \c IEK_Zero |
| 494 | /// Inf -> \c IEK_Inf |
| 495 | /// |
| 496 | friend int ilogb(const IEEEFloat &Arg); |
| 497 | |
| 498 | /// Returns: X * 2^Exp for integral exponents. |
| 499 | friend IEEEFloat scalbn(IEEEFloat X, int Exp, roundingMode); |
| 500 | |
| 501 | friend IEEEFloat frexp(const IEEEFloat &X, int &Exp, roundingMode); |
| 502 | |
| 503 | /// \name Special value setters. |
| 504 | /// @{ |
| 505 | |
| 506 | void makeLargest(bool Neg = false); |
| 507 | void makeSmallest(bool Neg = false); |
| 508 | void makeNaN(bool SNaN = false, bool Neg = false, |
| 509 | const APInt *fill = nullptr); |
| 510 | void makeInf(bool Neg = false); |
| 511 | void makeZero(bool Neg = false); |
| 512 | void makeQuiet(); |
| 513 | |
| 514 | /// Returns the smallest (by magnitude) normalized finite number in the given |
| 515 | /// semantics. |
| 516 | /// |
| 517 | /// \param Negative - True iff the number should be negative |
| 518 | void makeSmallestNormalized(bool Negative = false); |
| 519 | |
| 520 | /// @} |
| 521 | |
| 522 | cmpResult compareAbsoluteValue(const IEEEFloat &) const; |
| 523 | |
| 524 | private: |
| 525 | /// \name Simple Queries |
| 526 | /// @{ |
| 527 | |
| 528 | integerPart *significandParts(); |
| 529 | const integerPart *significandParts() const; |
| 530 | unsigned int partCount() const; |
| 531 | |
| 532 | /// @} |
| 533 | |
| 534 | /// \name Significand operations. |
| 535 | /// @{ |
| 536 | |
| 537 | integerPart addSignificand(const IEEEFloat &); |
| 538 | integerPart subtractSignificand(const IEEEFloat &, integerPart); |
| 539 | lostFraction addOrSubtractSignificand(const IEEEFloat &, bool subtract); |
| 540 | lostFraction multiplySignificand(const IEEEFloat &, IEEEFloat); |
| 541 | lostFraction multiplySignificand(const IEEEFloat&); |
| 542 | lostFraction divideSignificand(const IEEEFloat &); |
| 543 | void incrementSignificand(); |
| 544 | void initialize(const fltSemantics *); |
| 545 | void shiftSignificandLeft(unsigned int); |
| 546 | lostFraction shiftSignificandRight(unsigned int); |
| 547 | unsigned int significandLSB() const; |
| 548 | unsigned int significandMSB() const; |
| 549 | void zeroSignificand(); |
| 550 | /// Return true if the significand excluding the integral bit is all ones. |
| 551 | bool isSignificandAllOnes() const; |
| 552 | bool isSignificandAllOnesExceptLSB() const; |
| 553 | /// Return true if the significand excluding the integral bit is all zeros. |
| 554 | bool isSignificandAllZeros() const; |
| 555 | bool isSignificandAllZerosExceptMSB() const; |
| 556 | |
| 557 | /// @} |
| 558 | |
| 559 | /// \name Arithmetic on special values. |
| 560 | /// @{ |
| 561 | |
| 562 | opStatus addOrSubtractSpecials(const IEEEFloat &, bool subtract); |
| 563 | opStatus divideSpecials(const IEEEFloat &); |
| 564 | opStatus multiplySpecials(const IEEEFloat &); |
| 565 | opStatus modSpecials(const IEEEFloat &); |
| 566 | opStatus remainderSpecials(const IEEEFloat&); |
| 567 | |
| 568 | /// @} |
| 569 | |
| 570 | /// \name Miscellany |
| 571 | /// @{ |
| 572 | |
| 573 | bool convertFromStringSpecials(StringRef str); |
| 574 | opStatus normalize(roundingMode, lostFraction); |
| 575 | opStatus addOrSubtract(const IEEEFloat &, roundingMode, bool subtract); |
| 576 | opStatus handleOverflow(roundingMode); |
| 577 | bool roundAwayFromZero(roundingMode, lostFraction, unsigned int) const; |
| 578 | opStatus convertToSignExtendedInteger(MutableArrayRef<integerPart>, |
| 579 | unsigned int, bool, roundingMode, |
| 580 | bool *) const; |
| 581 | opStatus convertFromUnsignedParts(const integerPart *, unsigned int, |
| 582 | roundingMode); |
| 583 | Expected<opStatus> convertFromHexadecimalString(StringRef, roundingMode); |
| 584 | Expected<opStatus> convertFromDecimalString(StringRef, roundingMode); |
| 585 | char *convertNormalToHexString(char *, unsigned int, bool, |
| 586 | roundingMode) const; |
| 587 | opStatus roundSignificandWithExponent(const integerPart *, unsigned int, int, |
| 588 | roundingMode); |
| 589 | ExponentType exponentNaN() const; |
| 590 | ExponentType exponentInf() const; |
| 591 | ExponentType exponentZero() const; |
| 592 | |
| 593 | /// @} |
| 594 | |
| 595 | template <const fltSemantics &S> APInt convertIEEEFloatToAPInt() const; |
| 596 | APInt convertHalfAPFloatToAPInt() const; |
| 597 | APInt convertBFloatAPFloatToAPInt() const; |
| 598 | APInt convertFloatAPFloatToAPInt() const; |
| 599 | APInt convertDoubleAPFloatToAPInt() const; |
| 600 | APInt convertQuadrupleAPFloatToAPInt() const; |
| 601 | APInt convertF80LongDoubleAPFloatToAPInt() const; |
| 602 | APInt convertPPCDoubleDoubleAPFloatToAPInt() const; |
| 603 | APInt convertFloat8E5M2APFloatToAPInt() const; |
| 604 | APInt convertFloat8E5M2FNUZAPFloatToAPInt() const; |
| 605 | APInt convertFloat8E4M3FNAPFloatToAPInt() const; |
| 606 | APInt convertFloat8E4M3FNUZAPFloatToAPInt() const; |
| 607 | APInt convertFloat8E4M3B11FNUZAPFloatToAPInt() const; |
| 608 | void initFromAPInt(const fltSemantics *Sem, const APInt &api); |
| 609 | template <const fltSemantics &S> void initFromIEEEAPInt(const APInt &api); |
| 610 | void initFromHalfAPInt(const APInt &api); |
| 611 | void initFromBFloatAPInt(const APInt &api); |
| 612 | void initFromFloatAPInt(const APInt &api); |
| 613 | void initFromDoubleAPInt(const APInt &api); |
| 614 | void initFromQuadrupleAPInt(const APInt &api); |
| 615 | void initFromF80LongDoubleAPInt(const APInt &api); |
| 616 | void initFromPPCDoubleDoubleAPInt(const APInt &api); |
| 617 | void initFromFloat8E5M2APInt(const APInt &api); |
| 618 | void initFromFloat8E5M2FNUZAPInt(const APInt &api); |
| 619 | void initFromFloat8E4M3FNAPInt(const APInt &api); |
| 620 | void initFromFloat8E4M3FNUZAPInt(const APInt &api); |
| 621 | void initFromFloat8E4M3B11FNUZAPInt(const APInt &api); |
| 622 | |
| 623 | void assign(const IEEEFloat &); |
| 624 | void copySignificand(const IEEEFloat &); |
| 625 | void freeSignificand(); |
| 626 | |
| 627 | /// Note: this must be the first data member. |
| 628 | /// The semantics that this value obeys. |
| 629 | const fltSemantics *semantics; |
| 630 | |
| 631 | /// A binary fraction with an explicit integer bit. |
| 632 | /// |
| 633 | /// The significand must be at least one bit wider than the target precision. |
| 634 | union Significand { |
| 635 | integerPart part; |
| 636 | integerPart *parts; |
| 637 | } significand; |
| 638 | |
| 639 | /// The signed unbiased exponent of the value. |
| 640 | ExponentType exponent; |
| 641 | |
| 642 | /// What kind of floating point number this is. |
| 643 | /// |
| 644 | /// Only 2 bits are required, but VisualStudio incorrectly sign extends it. |
| 645 | /// Using the extra bit keeps it from failing under VisualStudio. |
| 646 | fltCategory category : 3; |
| 647 | |
| 648 | /// Sign bit of the number. |
| 649 | unsigned int sign : 1; |
| 650 | }; |
| 651 | |
| 652 | hash_code hash_value(const IEEEFloat &Arg); |
| 653 | int ilogb(const IEEEFloat &Arg); |
| 654 | IEEEFloat scalbn(IEEEFloat X, int Exp, IEEEFloat::roundingMode); |
| 655 | IEEEFloat frexp(const IEEEFloat &Val, int &Exp, IEEEFloat::roundingMode RM); |
| 656 | |
| 657 | // This mode implements more precise float in terms of two APFloats. |
| 658 | // The interface and layout is designed for arbitrary underlying semantics, |
| 659 | // though currently only PPCDoubleDouble semantics are supported, whose |
| 660 | // corresponding underlying semantics are IEEEdouble. |
| 661 | class DoubleAPFloat final : public APFloatBase { |
| 662 | // Note: this must be the first data member. |
| 663 | const fltSemantics *Semantics; |
| 664 | std::unique_ptr<APFloat[]> Floats; |
| 665 | |
| 666 | opStatus addImpl(const APFloat &a, const APFloat &aa, const APFloat &c, |
| 667 | const APFloat &cc, roundingMode RM); |
| 668 | |
| 669 | opStatus addWithSpecial(const DoubleAPFloat &LHS, const DoubleAPFloat &RHS, |
| 670 | DoubleAPFloat &Out, roundingMode RM); |
| 671 | |
| 672 | public: |
| 673 | DoubleAPFloat(const fltSemantics &S); |
| 674 | DoubleAPFloat(const fltSemantics &S, uninitializedTag); |
| 675 | DoubleAPFloat(const fltSemantics &S, integerPart); |
| 676 | DoubleAPFloat(const fltSemantics &S, const APInt &I); |
| 677 | DoubleAPFloat(const fltSemantics &S, APFloat &&First, APFloat &&Second); |
| 678 | DoubleAPFloat(const DoubleAPFloat &RHS); |
| 679 | DoubleAPFloat(DoubleAPFloat &&RHS); |
| 680 | |
| 681 | DoubleAPFloat &operator=(const DoubleAPFloat &RHS); |
| 682 | |
| 683 | DoubleAPFloat &operator=(DoubleAPFloat &&RHS) { |
| 684 | if (this != &RHS) { |
| 685 | this->~DoubleAPFloat(); |
| 686 | new (this) DoubleAPFloat(std::move(RHS)); |
| 687 | } |
| 688 | return *this; |
| 689 | } |
| 690 | |
| 691 | bool needsCleanup() const { return Floats != nullptr; } |
| 692 | |
| 693 | APFloat &getFirst() { return Floats[0]; } |
| 694 | const APFloat &getFirst() const { return Floats[0]; } |
| 695 | APFloat &getSecond() { return Floats[1]; } |
| 696 | const APFloat &getSecond() const { return Floats[1]; } |
| 697 | |
| 698 | opStatus add(const DoubleAPFloat &RHS, roundingMode RM); |
| 699 | opStatus subtract(const DoubleAPFloat &RHS, roundingMode RM); |
| 700 | opStatus multiply(const DoubleAPFloat &RHS, roundingMode RM); |
| 701 | opStatus divide(const DoubleAPFloat &RHS, roundingMode RM); |
| 702 | opStatus remainder(const DoubleAPFloat &RHS); |
| 703 | opStatus mod(const DoubleAPFloat &RHS); |
| 704 | opStatus fusedMultiplyAdd(const DoubleAPFloat &Multiplicand, |
| 705 | const DoubleAPFloat &Addend, roundingMode RM); |
| 706 | opStatus roundToIntegral(roundingMode RM); |
| 707 | void changeSign(); |
| 708 | cmpResult compareAbsoluteValue(const DoubleAPFloat &RHS) const; |
| 709 | |
| 710 | fltCategory getCategory() const; |
| 711 | bool isNegative() const; |
| 712 | |
| 713 | void makeInf(bool Neg); |
| 714 | void makeZero(bool Neg); |
| 715 | void makeLargest(bool Neg); |
| 716 | void makeSmallest(bool Neg); |
| 717 | void makeSmallestNormalized(bool Neg); |
| 718 | void makeNaN(bool SNaN, bool Neg, const APInt *fill); |
| 719 | |
| 720 | cmpResult compare(const DoubleAPFloat &RHS) const; |
| 721 | bool bitwiseIsEqual(const DoubleAPFloat &RHS) const; |
| 722 | APInt bitcastToAPInt() const; |
| 723 | Expected<opStatus> convertFromString(StringRef, roundingMode); |
| 724 | opStatus next(bool nextDown); |
| 725 | |
| 726 | opStatus convertToInteger(MutableArrayRef<integerPart> Input, |
| 727 | unsigned int Width, bool IsSigned, roundingMode RM, |
| 728 | bool *IsExact) const; |
| 729 | opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM); |
| 730 | opStatus convertFromSignExtendedInteger(const integerPart *Input, |
| 731 | unsigned int InputSize, bool IsSigned, |
| 732 | roundingMode RM); |
| 733 | opStatus convertFromZeroExtendedInteger(const integerPart *Input, |
| 734 | unsigned int InputSize, bool IsSigned, |
| 735 | roundingMode RM); |
| 736 | unsigned int convertToHexString(char *DST, unsigned int HexDigits, |
| 737 | bool UpperCase, roundingMode RM) const; |
| 738 | |
| 739 | bool isDenormal() const; |
| 740 | bool isSmallest() const; |
| 741 | bool isSmallestNormalized() const; |
| 742 | bool isLargest() const; |
| 743 | bool isInteger() const; |
| 744 | |
| 745 | void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision, |
| 746 | unsigned FormatMaxPadding, bool TruncateZero = true) const; |
| 747 | |
| 748 | bool getExactInverse(APFloat *inv) const; |
| 749 | |
| 750 | friend DoubleAPFloat scalbn(const DoubleAPFloat &X, int Exp, roundingMode); |
| 751 | friend DoubleAPFloat frexp(const DoubleAPFloat &X, int &Exp, roundingMode); |
| 752 | friend hash_code hash_value(const DoubleAPFloat &Arg); |
| 753 | }; |
| 754 | |
| 755 | hash_code hash_value(const DoubleAPFloat &Arg); |
| 756 | |
| 757 | } // End detail namespace |
| 758 | |
| 759 | // This is a interface class that is currently forwarding functionalities from |
| 760 | // detail::IEEEFloat. |
| 761 | class APFloat : public APFloatBase { |
| 762 | typedef detail::IEEEFloat IEEEFloat; |
| 763 | typedef detail::DoubleAPFloat DoubleAPFloat; |
| 764 | |
| 765 | static_assert(std::is_standard_layout<IEEEFloat>::value); |
| 766 | |
| 767 | union Storage { |
| 768 | const fltSemantics *semantics; |
| 769 | IEEEFloat IEEE; |
| 770 | DoubleAPFloat Double; |
| 771 | |
| 772 | explicit Storage(IEEEFloat F, const fltSemantics &S); |
| 773 | explicit Storage(DoubleAPFloat F, const fltSemantics &S) |
| 774 | : Double(std::move(F)) { |
| 775 | assert(&S == &PPCDoubleDouble())(static_cast <bool> (&S == &PPCDoubleDouble()) ? void (0) : __assert_fail ("&S == &PPCDoubleDouble()" , "llvm/include/llvm/ADT/APFloat.h", 775, __extension__ __PRETTY_FUNCTION__ )); |
| 776 | } |
| 777 | |
| 778 | template <typename... ArgTypes> |
| 779 | Storage(const fltSemantics &Semantics, ArgTypes &&... Args) { |
| 780 | if (usesLayout<IEEEFloat>(Semantics)) { |
| 781 | new (&IEEE) IEEEFloat(Semantics, std::forward<ArgTypes>(Args)...); |
| 782 | return; |
| 783 | } |
| 784 | if (usesLayout<DoubleAPFloat>(Semantics)) { |
| 785 | new (&Double) DoubleAPFloat(Semantics, std::forward<ArgTypes>(Args)...); |
| 786 | return; |
| 787 | } |
| 788 | llvm_unreachable("Unexpected semantics")::llvm::llvm_unreachable_internal("Unexpected semantics", "llvm/include/llvm/ADT/APFloat.h" , 788); |
| 789 | } |
| 790 | |
| 791 | ~Storage() { |
| 792 | if (usesLayout<IEEEFloat>(*semantics)) { |
| 793 | IEEE.~IEEEFloat(); |
| 794 | return; |
| 795 | } |
| 796 | if (usesLayout<DoubleAPFloat>(*semantics)) { |
| 797 | Double.~DoubleAPFloat(); |
| 798 | return; |
| 799 | } |
| 800 | llvm_unreachable("Unexpected semantics")::llvm::llvm_unreachable_internal("Unexpected semantics", "llvm/include/llvm/ADT/APFloat.h" , 800); |
| 801 | } |
| 802 | |
| 803 | Storage(const Storage &RHS) { |
| 804 | if (usesLayout<IEEEFloat>(*RHS.semantics)) { |
| 805 | new (this) IEEEFloat(RHS.IEEE); |
| 806 | return; |
| 807 | } |
| 808 | if (usesLayout<DoubleAPFloat>(*RHS.semantics)) { |
| 809 | new (this) DoubleAPFloat(RHS.Double); |
| 810 | return; |
| 811 | } |
| 812 | llvm_unreachable("Unexpected semantics")::llvm::llvm_unreachable_internal("Unexpected semantics", "llvm/include/llvm/ADT/APFloat.h" , 812); |
| 813 | } |
| 814 | |
| 815 | Storage(Storage &&RHS) { |
| 816 | if (usesLayout<IEEEFloat>(*RHS.semantics)) { |
| 817 | new (this) IEEEFloat(std::move(RHS.IEEE)); |
| 818 | return; |
| 819 | } |
| 820 | if (usesLayout<DoubleAPFloat>(*RHS.semantics)) { |
| 821 | new (this) DoubleAPFloat(std::move(RHS.Double)); |
| 822 | return; |
| 823 | } |
| 824 | llvm_unreachable("Unexpected semantics")::llvm::llvm_unreachable_internal("Unexpected semantics", "llvm/include/llvm/ADT/APFloat.h" , 824); |
| 825 | } |
| 826 | |
| 827 | Storage &operator=(const Storage &RHS) { |
| 828 | if (usesLayout<IEEEFloat>(*semantics) && |
| 829 | usesLayout<IEEEFloat>(*RHS.semantics)) { |
| 830 | IEEE = RHS.IEEE; |
| 831 | } else if (usesLayout<DoubleAPFloat>(*semantics) && |
| 832 | usesLayout<DoubleAPFloat>(*RHS.semantics)) { |
| 833 | Double = RHS.Double; |
| 834 | } else if (this != &RHS) { |
| 835 | this->~Storage(); |
| 836 | new (this) Storage(RHS); |
| 837 | } |
| 838 | return *this; |
| 839 | } |
| 840 | |
| 841 | Storage &operator=(Storage &&RHS) { |
| 842 | if (usesLayout<IEEEFloat>(*semantics) && |
| 843 | usesLayout<IEEEFloat>(*RHS.semantics)) { |
| 844 | IEEE = std::move(RHS.IEEE); |
| 845 | } else if (usesLayout<DoubleAPFloat>(*semantics) && |
| 846 | usesLayout<DoubleAPFloat>(*RHS.semantics)) { |
| 847 | Double = std::move(RHS.Double); |
| 848 | } else if (this != &RHS) { |
| 849 | this->~Storage(); |
| 850 | new (this) Storage(std::move(RHS)); |
| 851 | } |
| 852 | return *this; |
| 853 | } |
| 854 | } U; |
| 855 | |
| 856 | template <typename T> static bool usesLayout(const fltSemantics &Semantics) { |
| 857 | static_assert(std::is_same<T, IEEEFloat>::value || |
| 858 | std::is_same<T, DoubleAPFloat>::value); |
| 859 | if (std::is_same<T, DoubleAPFloat>::value) { |
| 860 | return &Semantics == &PPCDoubleDouble(); |
| 861 | } |
| 862 | return &Semantics != &PPCDoubleDouble(); |
| 863 | } |
| 864 | |
| 865 | IEEEFloat &getIEEE() { |
| 866 | if (usesLayout<IEEEFloat>(*U.semantics)) |
| 867 | return U.IEEE; |
| 868 | if (usesLayout<DoubleAPFloat>(*U.semantics)) |
| 869 | return U.Double.getFirst().U.IEEE; |
| 870 | llvm_unreachable("Unexpected semantics")::llvm::llvm_unreachable_internal("Unexpected semantics", "llvm/include/llvm/ADT/APFloat.h" , 870); |
| 871 | } |
| 872 | |
| 873 | const IEEEFloat &getIEEE() const { |
| 874 | if (usesLayout<IEEEFloat>(*U.semantics)) |
| 875 | return U.IEEE; |
| 876 | if (usesLayout<DoubleAPFloat>(*U.semantics)) |
| 877 | return U.Double.getFirst().U.IEEE; |
| 878 | llvm_unreachable("Unexpected semantics")::llvm::llvm_unreachable_internal("Unexpected semantics", "llvm/include/llvm/ADT/APFloat.h" , 878); |
| 879 | } |
| 880 | |
| 881 | void makeZero(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeZero(Neg)); } |
| 882 | |
| 883 | void makeInf(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeInf(Neg)); } |
| 884 | |
| 885 | void makeNaN(bool SNaN, bool Neg, const APInt *fill) { |
| 886 | APFLOAT_DISPATCH_ON_SEMANTICS(makeNaN(SNaN, Neg, fill)); |
| 887 | } |
| 888 | |
| 889 | void makeLargest(bool Neg) { |
| 890 | APFLOAT_DISPATCH_ON_SEMANTICS(makeLargest(Neg)); |
| 891 | } |
| 892 | |
| 893 | void makeSmallest(bool Neg) { |
| 894 | APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallest(Neg)); |
| 895 | } |
| 896 | |
| 897 | void makeSmallestNormalized(bool Neg) { |
| 898 | APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallestNormalized(Neg)); |
| 899 | } |
| 900 | |
| 901 | explicit APFloat(IEEEFloat F, const fltSemantics &S) : U(std::move(F), S) {} |
| 902 | explicit APFloat(DoubleAPFloat F, const fltSemantics &S) |
| 903 | : U(std::move(F), S) {} |
| 904 | |
| 905 | cmpResult compareAbsoluteValue(const APFloat &RHS) const { |
| 906 | assert(&getSemantics() == &RHS.getSemantics() &&(static_cast <bool> (&getSemantics() == &RHS.getSemantics () && "Should only compare APFloats with the same semantics" ) ? void (0) : __assert_fail ("&getSemantics() == &RHS.getSemantics() && \"Should only compare APFloats with the same semantics\"" , "llvm/include/llvm/ADT/APFloat.h", 907, __extension__ __PRETTY_FUNCTION__ )) |
| 907 | "Should only compare APFloats with the same semantics")(static_cast <bool> (&getSemantics() == &RHS.getSemantics () && "Should only compare APFloats with the same semantics" ) ? void (0) : __assert_fail ("&getSemantics() == &RHS.getSemantics() && \"Should only compare APFloats with the same semantics\"" , "llvm/include/llvm/ADT/APFloat.h", 907, __extension__ __PRETTY_FUNCTION__ )); |
| 908 | if (usesLayout<IEEEFloat>(getSemantics())) |
| 909 | return U.IEEE.compareAbsoluteValue(RHS.U.IEEE); |
| 910 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
| 911 | return U.Double.compareAbsoluteValue(RHS.U.Double); |
| 912 | llvm_unreachable("Unexpected semantics")::llvm::llvm_unreachable_internal("Unexpected semantics", "llvm/include/llvm/ADT/APFloat.h" , 912); |
| 913 | } |
| 914 | |
| 915 | public: |
| 916 | APFloat(const fltSemantics &Semantics) : U(Semantics) {} |
| 917 | APFloat(const fltSemantics &Semantics, StringRef S); |
| 918 | APFloat(const fltSemantics &Semantics, integerPart I) : U(Semantics, I) {} |
| 919 | template <typename T, |
| 920 | typename = std::enable_if_t<std::is_floating_point<T>::value>> |
| 921 | APFloat(const fltSemantics &Semantics, T V) = delete; |
| 922 | // TODO: Remove this constructor. This isn't faster than the first one. |
| 923 | APFloat(const fltSemantics &Semantics, uninitializedTag) |
| 924 | : U(Semantics, uninitialized) {} |
| 925 | APFloat(const fltSemantics &Semantics, const APInt &I) : U(Semantics, I) {} |
| 926 | explicit APFloat(double d) : U(IEEEFloat(d), IEEEdouble()) {} |
| 927 | explicit APFloat(float f) : U(IEEEFloat(f), IEEEsingle()) {} |
| 928 | APFloat(const APFloat &RHS) = default; |
| 929 | APFloat(APFloat &&RHS) = default; |
| 930 | |
| 931 | ~APFloat() = default; |
| 932 | |
| 933 | bool needsCleanup() const { APFLOAT_DISPATCH_ON_SEMANTICS(needsCleanup()); } |
| 934 | |
| 935 | /// Factory for Positive and Negative Zero. |
| 936 | /// |
| 937 | /// \param Negative True iff the number should be negative. |
| 938 | static APFloat getZero(const fltSemantics &Sem, bool Negative = false) { |
| 939 | APFloat Val(Sem, uninitialized); |
| 940 | Val.makeZero(Negative); |
| 941 | return Val; |
| 942 | } |
| 943 | |
| 944 | /// Factory for Positive and Negative Infinity. |
| 945 | /// |
| 946 | /// \param Negative True iff the number should be negative. |
| 947 | static APFloat getInf(const fltSemantics &Sem, bool Negative = false) { |
| 948 | APFloat Val(Sem, uninitialized); |
| 949 | Val.makeInf(Negative); |
| 950 | return Val; |
| 951 | } |
| 952 | |
| 953 | /// Factory for NaN values. |
| 954 | /// |
| 955 | /// \param Negative - True iff the NaN generated should be negative. |
| 956 | /// \param payload - The unspecified fill bits for creating the NaN, 0 by |
| 957 | /// default. The value is truncated as necessary. |
| 958 | static APFloat getNaN(const fltSemantics &Sem, bool Negative = false, |
| 959 | uint64_t payload = 0) { |
| 960 | if (payload) { |
| 961 | APInt intPayload(64, payload); |
| 962 | return getQNaN(Sem, Negative, &intPayload); |
| 963 | } else { |
| 964 | return getQNaN(Sem, Negative, nullptr); |
| 965 | } |
| 966 | } |
| 967 | |
| 968 | /// Factory for QNaN values. |
| 969 | static APFloat getQNaN(const fltSemantics &Sem, bool Negative = false, |
| 970 | const APInt *payload = nullptr) { |
| 971 | APFloat Val(Sem, uninitialized); |
| 972 | Val.makeNaN(false, Negative, payload); |
| 973 | return Val; |
| 974 | } |
| 975 | |
| 976 | /// Factory for SNaN values. |
| 977 | static APFloat getSNaN(const fltSemantics &Sem, bool Negative = false, |
| 978 | const APInt *payload = nullptr) { |
| 979 | APFloat Val(Sem, uninitialized); |
| 980 | Val.makeNaN(true, Negative, payload); |
| 981 | return Val; |
| 982 | } |
| 983 | |
| 984 | /// Returns the largest finite number in the given semantics. |
| 985 | /// |
| 986 | /// \param Negative - True iff the number should be negative |
| 987 | static APFloat getLargest(const fltSemantics &Sem, bool Negative = false) { |
| 988 | APFloat Val(Sem, uninitialized); |
| 989 | Val.makeLargest(Negative); |
| 990 | return Val; |
| 991 | } |
| 992 | |
| 993 | /// Returns the smallest (by magnitude) finite number in the given semantics. |
| 994 | /// Might be denormalized, which implies a relative loss of precision. |
| 995 | /// |
| 996 | /// \param Negative - True iff the number should be negative |
| 997 | static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false) { |
| 998 | APFloat Val(Sem, uninitialized); |
| 999 | Val.makeSmallest(Negative); |
| 1000 | return Val; |
| 1001 | } |
| 1002 | |
| 1003 | /// Returns the smallest (by magnitude) normalized finite number in the given |
| 1004 | /// semantics. |
| 1005 | /// |
| 1006 | /// \param Negative - True iff the number should be negative |
| 1007 | static APFloat getSmallestNormalized(const fltSemantics &Sem, |
| 1008 | bool Negative = false) { |
| 1009 | APFloat Val(Sem, uninitialized); |
| 1010 | Val.makeSmallestNormalized(Negative); |
| 1011 | return Val; |
| 1012 | } |
| 1013 | |
| 1014 | /// Returns a float which is bitcasted from an all one value int. |
| 1015 | /// |
| 1016 | /// \param Semantics - type float semantics |
| 1017 | static APFloat getAllOnesValue(const fltSemantics &Semantics); |
| 1018 | |
| 1019 | /// Used to insert APFloat objects, or objects that contain APFloat objects, |
| 1020 | /// into FoldingSets. |
| 1021 | void Profile(FoldingSetNodeID &NID) const; |
| 1022 | |
| 1023 | opStatus add(const APFloat &RHS, roundingMode RM) { |
| 1024 | assert(&getSemantics() == &RHS.getSemantics() &&(static_cast <bool> (&getSemantics() == &RHS.getSemantics () && "Should only call on two APFloats with the same semantics" ) ? void (0) : __assert_fail ("&getSemantics() == &RHS.getSemantics() && \"Should only call on two APFloats with the same semantics\"" , "llvm/include/llvm/ADT/APFloat.h", 1025, __extension__ __PRETTY_FUNCTION__ )) |
| 1025 | "Should only call on two APFloats with the same semantics")(static_cast <bool> (&getSemantics() == &RHS.getSemantics () && "Should only call on two APFloats with the same semantics" ) ? void (0) : __assert_fail ("&getSemantics() == &RHS.getSemantics() && \"Should only call on two APFloats with the same semantics\"" , "llvm/include/llvm/ADT/APFloat.h", 1025, __extension__ __PRETTY_FUNCTION__ )); |
| 1026 | if (usesLayout<IEEEFloat>(getSemantics())) |
| 1027 | return U.IEEE.add(RHS.U.IEEE, RM); |
| 1028 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
| 1029 | return U.Double.add(RHS.U.Double, RM); |
| 1030 | llvm_unreachable("Unexpected semantics")::llvm::llvm_unreachable_internal("Unexpected semantics", "llvm/include/llvm/ADT/APFloat.h" , 1030); |
| 1031 | } |
| 1032 | opStatus subtract(const APFloat &RHS, roundingMode RM) { |
| 1033 | assert(&getSemantics() == &RHS.getSemantics() &&(static_cast <bool> (&getSemantics() == &RHS.getSemantics () && "Should only call on two APFloats with the same semantics" ) ? void (0) : __assert_fail ("&getSemantics() == &RHS.getSemantics() && \"Should only call on two APFloats with the same semantics\"" , "llvm/include/llvm/ADT/APFloat.h", 1034, __extension__ __PRETTY_FUNCTION__ )) |
| 1034 | "Should only call on two APFloats with the same semantics")(static_cast <bool> (&getSemantics() == &RHS.getSemantics () && "Should only call on two APFloats with the same semantics" ) ? void (0) : __assert_fail ("&getSemantics() == &RHS.getSemantics() && \"Should only call on two APFloats with the same semantics\"" , "llvm/include/llvm/ADT/APFloat.h", 1034, __extension__ __PRETTY_FUNCTION__ )); |
| 1035 | if (usesLayout<IEEEFloat>(getSemantics())) |
| 1036 | return U.IEEE.subtract(RHS.U.IEEE, RM); |
| 1037 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
| 1038 | return U.Double.subtract(RHS.U.Double, RM); |
| 1039 | llvm_unreachable("Unexpected semantics")::llvm::llvm_unreachable_internal("Unexpected semantics", "llvm/include/llvm/ADT/APFloat.h" , 1039); |
| 1040 | } |
| 1041 | opStatus multiply(const APFloat &RHS, roundingMode RM) { |
| 1042 | assert(&getSemantics() == &RHS.getSemantics() &&(static_cast <bool> (&getSemantics() == &RHS.getSemantics () && "Should only call on two APFloats with the same semantics" ) ? void (0) : __assert_fail ("&getSemantics() == &RHS.getSemantics() && \"Should only call on two APFloats with the same semantics\"" , "llvm/include/llvm/ADT/APFloat.h", 1043, __extension__ __PRETTY_FUNCTION__ )) |
| 1043 | "Should only call on two APFloats with the same semantics")(static_cast <bool> (&getSemantics() == &RHS.getSemantics () && "Should only call on two APFloats with the same semantics" ) ? void (0) : __assert_fail ("&getSemantics() == &RHS.getSemantics() && \"Should only call on two APFloats with the same semantics\"" , "llvm/include/llvm/ADT/APFloat.h", 1043, __extension__ __PRETTY_FUNCTION__ )); |
| 1044 | if (usesLayout<IEEEFloat>(getSemantics())) |
| 1045 | return U.IEEE.multiply(RHS.U.IEEE, RM); |
| 1046 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
| 1047 | return U.Double.multiply(RHS.U.Double, RM); |
| 1048 | llvm_unreachable("Unexpected semantics")::llvm::llvm_unreachable_internal("Unexpected semantics", "llvm/include/llvm/ADT/APFloat.h" , 1048); |
| 1049 | } |
| 1050 | opStatus divide(const APFloat &RHS, roundingMode RM) { |
| 1051 | assert(&getSemantics() == &RHS.getSemantics() &&(static_cast <bool> (&getSemantics() == &RHS.getSemantics () && "Should only call on two APFloats with the same semantics" ) ? void (0) : __assert_fail ("&getSemantics() == &RHS.getSemantics() && \"Should only call on two APFloats with the same semantics\"" , "llvm/include/llvm/ADT/APFloat.h", 1052, __extension__ __PRETTY_FUNCTION__ )) |
| 1052 | "Should only call on two APFloats with the same semantics")(static_cast <bool> (&getSemantics() == &RHS.getSemantics () && "Should only call on two APFloats with the same semantics" ) ? void (0) : __assert_fail ("&getSemantics() == &RHS.getSemantics() && \"Should only call on two APFloats with the same semantics\"" , "llvm/include/llvm/ADT/APFloat.h", 1052, __extension__ __PRETTY_FUNCTION__ )); |
| 1053 | if (usesLayout<IEEEFloat>(getSemantics())) |
| 1054 | return U.IEEE.divide(RHS.U.IEEE, RM); |
| 1055 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
| 1056 | return U.Double.divide(RHS.U.Double, RM); |
| 1057 | llvm_unreachable("Unexpected semantics")::llvm::llvm_unreachable_internal("Unexpected semantics", "llvm/include/llvm/ADT/APFloat.h" , 1057); |
| 1058 | } |
| 1059 | opStatus remainder(const APFloat &RHS) { |
| 1060 | assert(&getSemantics() == &RHS.getSemantics() &&(static_cast <bool> (&getSemantics() == &RHS.getSemantics () && "Should only call on two APFloats with the same semantics" ) ? void (0) : __assert_fail ("&getSemantics() == &RHS.getSemantics() && \"Should only call on two APFloats with the same semantics\"" , "llvm/include/llvm/ADT/APFloat.h", 1061, __extension__ __PRETTY_FUNCTION__ )) |
| 1061 | "Should only call on two APFloats with the same semantics")(static_cast <bool> (&getSemantics() == &RHS.getSemantics () && "Should only call on two APFloats with the same semantics" ) ? void (0) : __assert_fail ("&getSemantics() == &RHS.getSemantics() && \"Should only call on two APFloats with the same semantics\"" , "llvm/include/llvm/ADT/APFloat.h", 1061, __extension__ __PRETTY_FUNCTION__ )); |
| 1062 | if (usesLayout<IEEEFloat>(getSemantics())) |
| 1063 | return U.IEEE.remainder(RHS.U.IEEE); |
| 1064 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
| 1065 | return U.Double.remainder(RHS.U.Double); |
| 1066 | llvm_unreachable("Unexpected semantics")::llvm::llvm_unreachable_internal("Unexpected semantics", "llvm/include/llvm/ADT/APFloat.h" , 1066); |
| 1067 | } |
| 1068 | opStatus mod(const APFloat &RHS) { |
| 1069 | assert(&getSemantics() == &RHS.getSemantics() &&(static_cast <bool> (&getSemantics() == &RHS.getSemantics () && "Should only call on two APFloats with the same semantics" ) ? void (0) : __assert_fail ("&getSemantics() == &RHS.getSemantics() && \"Should only call on two APFloats with the same semantics\"" , "llvm/include/llvm/ADT/APFloat.h", 1070, __extension__ __PRETTY_FUNCTION__ )) |
| 1070 | "Should only call on two APFloats with the same semantics")(static_cast <bool> (&getSemantics() == &RHS.getSemantics () && "Should only call on two APFloats with the same semantics" ) ? void (0) : __assert_fail ("&getSemantics() == &RHS.getSemantics() && \"Should only call on two APFloats with the same semantics\"" , "llvm/include/llvm/ADT/APFloat.h", 1070, __extension__ __PRETTY_FUNCTION__ )); |
| 1071 | if (usesLayout<IEEEFloat>(getSemantics())) |
| 1072 | return U.IEEE.mod(RHS.U.IEEE); |
| 1073 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
| 1074 | return U.Double.mod(RHS.U.Double); |
| 1075 | llvm_unreachable("Unexpected semantics")::llvm::llvm_unreachable_internal("Unexpected semantics", "llvm/include/llvm/ADT/APFloat.h" , 1075); |
| 1076 | } |
| 1077 | opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend, |
| 1078 | roundingMode RM) { |
| 1079 | assert(&getSemantics() == &Multiplicand.getSemantics() &&(static_cast <bool> (&getSemantics() == &Multiplicand .getSemantics() && "Should only call on APFloats with the same semantics" ) ? void (0) : __assert_fail ("&getSemantics() == &Multiplicand.getSemantics() && \"Should only call on APFloats with the same semantics\"" , "llvm/include/llvm/ADT/APFloat.h", 1080, __extension__ __PRETTY_FUNCTION__ )) |
| 1080 | "Should only call on APFloats with the same semantics")(static_cast <bool> (&getSemantics() == &Multiplicand .getSemantics() && "Should only call on APFloats with the same semantics" ) ? void (0) : __assert_fail ("&getSemantics() == &Multiplicand.getSemantics() && \"Should only call on APFloats with the same semantics\"" , "llvm/include/llvm/ADT/APFloat.h", 1080, __extension__ __PRETTY_FUNCTION__ )); |
| 1081 | assert(&getSemantics() == &Addend.getSemantics() &&(static_cast <bool> (&getSemantics() == &Addend .getSemantics() && "Should only call on APFloats with the same semantics" ) ? void (0) : __assert_fail ("&getSemantics() == &Addend.getSemantics() && \"Should only call on APFloats with the same semantics\"" , "llvm/include/llvm/ADT/APFloat.h", 1082, __extension__ __PRETTY_FUNCTION__ )) |
| 1082 | "Should only call on APFloats with the same semantics")(static_cast <bool> (&getSemantics() == &Addend .getSemantics() && "Should only call on APFloats with the same semantics" ) ? void (0) : __assert_fail ("&getSemantics() == &Addend.getSemantics() && \"Should only call on APFloats with the same semantics\"" , "llvm/include/llvm/ADT/APFloat.h", 1082, __extension__ __PRETTY_FUNCTION__ )); |
| 1083 | if (usesLayout<IEEEFloat>(getSemantics())) |
| 1084 | return U.IEEE.fusedMultiplyAdd(Multiplicand.U.IEEE, Addend.U.IEEE, RM); |
| 1085 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
| 1086 | return U.Double.fusedMultiplyAdd(Multiplicand.U.Double, Addend.U.Double, |
| 1087 | RM); |
| 1088 | llvm_unreachable("Unexpected semantics")::llvm::llvm_unreachable_internal("Unexpected semantics", "llvm/include/llvm/ADT/APFloat.h" , 1088); |
| 1089 | } |
| 1090 | opStatus roundToIntegral(roundingMode RM) { |
| 1091 | APFLOAT_DISPATCH_ON_SEMANTICS(roundToIntegral(RM)); |
| 1092 | } |
| 1093 | |
| 1094 | // TODO: bool parameters are not readable and a source of bugs. |
| 1095 | // Do something. |
| 1096 | opStatus next(bool nextDown) { |
| 1097 | APFLOAT_DISPATCH_ON_SEMANTICS(next(nextDown)); |
| 1098 | } |
| 1099 | |
| 1100 | /// Negate an APFloat. |
| 1101 | APFloat operator-() const { |
| 1102 | APFloat Result(*this); |
| 1103 | Result.changeSign(); |
| 1104 | return Result; |
| 1105 | } |
| 1106 | |
| 1107 | /// Add two APFloats, rounding ties to the nearest even. |
| 1108 | /// No error checking. |
| 1109 | APFloat operator+(const APFloat &RHS) const { |
| 1110 | APFloat Result(*this); |
| 1111 | (void)Result.add(RHS, rmNearestTiesToEven); |
| 1112 | return Result; |
| 1113 | } |
| 1114 | |
| 1115 | /// Subtract two APFloats, rounding ties to the nearest even. |
| 1116 | /// No error checking. |
| 1117 | APFloat operator-(const APFloat &RHS) const { |
| 1118 | APFloat Result(*this); |
| 1119 | (void)Result.subtract(RHS, rmNearestTiesToEven); |
| 1120 | return Result; |
| 1121 | } |
| 1122 | |
| 1123 | /// Multiply two APFloats, rounding ties to the nearest even. |
| 1124 | /// No error checking. |
| 1125 | APFloat operator*(const APFloat &RHS) const { |
| 1126 | APFloat Result(*this); |
| 1127 | (void)Result.multiply(RHS, rmNearestTiesToEven); |
| 1128 | return Result; |
| 1129 | } |
| 1130 | |
| 1131 | /// Divide the first APFloat by the second, rounding ties to the nearest even. |
| 1132 | /// No error checking. |
| 1133 | APFloat operator/(const APFloat &RHS) const { |
| 1134 | APFloat Result(*this); |
| 1135 | (void)Result.divide(RHS, rmNearestTiesToEven); |
| 1136 | return Result; |
| 1137 | } |
| 1138 | |
| 1139 | void changeSign() { APFLOAT_DISPATCH_ON_SEMANTICS(changeSign()); } |
| 1140 | void clearSign() { |
| 1141 | if (isNegative()) |
| 1142 | changeSign(); |
| 1143 | } |
| 1144 | void copySign(const APFloat &RHS) { |
| 1145 | if (isNegative() != RHS.isNegative()) |
| 1146 | changeSign(); |
| 1147 | } |
| 1148 | |
| 1149 | /// A static helper to produce a copy of an APFloat value with its sign |
| 1150 | /// copied from some other APFloat. |
| 1151 | static APFloat copySign(APFloat Value, const APFloat &Sign) { |
| 1152 | Value.copySign(Sign); |
| 1153 | return Value; |
| 1154 | } |
| 1155 | |
| 1156 | /// Assuming this is an IEEE-754 NaN value, quiet its signaling bit. |
| 1157 | /// This preserves the sign and payload bits. |
| 1158 | APFloat makeQuiet() const { |
| 1159 | APFloat Result(*this); |
| 1160 | Result.getIEEE().makeQuiet(); |
| 1161 | return Result; |
| 1162 | } |
| 1163 | |
| 1164 | opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, |
| 1165 | bool *losesInfo); |
| 1166 | opStatus convertToInteger(MutableArrayRef<integerPart> Input, |
| 1167 | unsigned int Width, bool IsSigned, roundingMode RM, |
| 1168 | bool *IsExact) const { |
| 1169 | APFLOAT_DISPATCH_ON_SEMANTICS( |
| 1170 | convertToInteger(Input, Width, IsSigned, RM, IsExact)); |
| 1171 | } |
| 1172 | opStatus convertToInteger(APSInt &Result, roundingMode RM, |
| 1173 | bool *IsExact) const; |
| 1174 | opStatus convertFromAPInt(const APInt &Input, bool IsSigned, |
| 1175 | roundingMode RM) { |
| 1176 | APFLOAT_DISPATCH_ON_SEMANTICS(convertFromAPInt(Input, IsSigned, RM)); |
| 1177 | } |
| 1178 | opStatus convertFromSignExtendedInteger(const integerPart *Input, |
| 1179 | unsigned int InputSize, bool IsSigned, |
| 1180 | roundingMode RM) { |
| 1181 | APFLOAT_DISPATCH_ON_SEMANTICS( |
| 1182 | convertFromSignExtendedInteger(Input, InputSize, IsSigned, RM)); |
| 1183 | } |
| 1184 | opStatus convertFromZeroExtendedInteger(const integerPart *Input, |
| 1185 | unsigned int InputSize, bool IsSigned, |
| 1186 | roundingMode RM) { |
| 1187 | APFLOAT_DISPATCH_ON_SEMANTICS( |
| 1188 | convertFromZeroExtendedInteger(Input, InputSize, IsSigned, RM)); |
| 1189 | } |
| 1190 | Expected<opStatus> convertFromString(StringRef, roundingMode); |
| 1191 | APInt bitcastToAPInt() const { |
| 1192 | APFLOAT_DISPATCH_ON_SEMANTICS(bitcastToAPInt()); |
| 1193 | } |
| 1194 | |
| 1195 | /// Converts this APFloat to host double value. |
| 1196 | /// |
| 1197 | /// \pre The APFloat must be built using semantics, that can be represented by |
| 1198 | /// the host double type without loss of precision. It can be IEEEdouble and |
| 1199 | /// shorter semantics, like IEEEsingle and others. |
| 1200 | double convertToDouble() const; |
| 1201 | |
| 1202 | /// Converts this APFloat to host float value. |
| 1203 | /// |
| 1204 | /// \pre The APFloat must be built using semantics, that can be represented by |
| 1205 | /// the host float type without loss of precision. It can be IEEEsingle and |
| 1206 | /// shorter semantics, like IEEEhalf. |
| 1207 | float convertToFloat() const; |
| 1208 | |
| 1209 | bool operator==(const APFloat &RHS) const { return compare(RHS) == cmpEqual; } |
| 1210 | |
| 1211 | bool operator!=(const APFloat &RHS) const { return compare(RHS) != cmpEqual; } |
| 1212 | |
| 1213 | bool operator<(const APFloat &RHS) const { |
| 1214 | return compare(RHS) == cmpLessThan; |
| 1215 | } |
| 1216 | |
| 1217 | bool operator>(const APFloat &RHS) const { |
| 1218 | return compare(RHS) == cmpGreaterThan; |
| 1219 | } |
| 1220 | |
| 1221 | bool operator<=(const APFloat &RHS) const { |
| 1222 | cmpResult Res = compare(RHS); |
| 1223 | return Res == cmpLessThan || Res == cmpEqual; |
| 1224 | } |
| 1225 | |
| 1226 | bool operator>=(const APFloat &RHS) const { |
| 1227 | cmpResult Res = compare(RHS); |
| 1228 | return Res == cmpGreaterThan || Res == cmpEqual; |
| 1229 | } |
| 1230 | |
| 1231 | cmpResult compare(const APFloat &RHS) const { |
| 1232 | assert(&getSemantics() == &RHS.getSemantics() &&(static_cast <bool> (&getSemantics() == &RHS.getSemantics () && "Should only compare APFloats with the same semantics" ) ? void (0) : __assert_fail ("&getSemantics() == &RHS.getSemantics() && \"Should only compare APFloats with the same semantics\"" , "llvm/include/llvm/ADT/APFloat.h", 1233, __extension__ __PRETTY_FUNCTION__ )) |
| 1233 | "Should only compare APFloats with the same semantics")(static_cast <bool> (&getSemantics() == &RHS.getSemantics () && "Should only compare APFloats with the same semantics" ) ? void (0) : __assert_fail ("&getSemantics() == &RHS.getSemantics() && \"Should only compare APFloats with the same semantics\"" , "llvm/include/llvm/ADT/APFloat.h", 1233, __extension__ __PRETTY_FUNCTION__ )); |
| 1234 | if (usesLayout<IEEEFloat>(getSemantics())) |
| 1235 | return U.IEEE.compare(RHS.U.IEEE); |
| 1236 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
| 1237 | return U.Double.compare(RHS.U.Double); |
| 1238 | llvm_unreachable("Unexpected semantics")::llvm::llvm_unreachable_internal("Unexpected semantics", "llvm/include/llvm/ADT/APFloat.h" , 1238); |
| 1239 | } |
| 1240 | |
| 1241 | bool bitwiseIsEqual(const APFloat &RHS) const { |
| 1242 | if (&getSemantics() != &RHS.getSemantics()) |
| 1243 | return false; |
| 1244 | if (usesLayout<IEEEFloat>(getSemantics())) |
| 1245 | return U.IEEE.bitwiseIsEqual(RHS.U.IEEE); |
| 1246 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
| 1247 | return U.Double.bitwiseIsEqual(RHS.U.Double); |
| 1248 | llvm_unreachable("Unexpected semantics")::llvm::llvm_unreachable_internal("Unexpected semantics", "llvm/include/llvm/ADT/APFloat.h" , 1248); |
| 1249 | } |
| 1250 | |
| 1251 | /// We don't rely on operator== working on double values, as |
| 1252 | /// it returns true for things that are clearly not equal, like -0.0 and 0.0. |
| 1253 | /// As such, this method can be used to do an exact bit-for-bit comparison of |
| 1254 | /// two floating point values. |
| 1255 | /// |
| 1256 | /// We leave the version with the double argument here because it's just so |
| 1257 | /// convenient to write "2.0" and the like. Without this function we'd |
| 1258 | /// have to duplicate its logic everywhere it's called. |
| 1259 | bool isExactlyValue(double V) const { |
| 1260 | bool ignored; |
| 1261 | APFloat Tmp(V); |
| 1262 | Tmp.convert(getSemantics(), APFloat::rmNearestTiesToEven, &ignored); |
| 1263 | return bitwiseIsEqual(Tmp); |
| 1264 | } |
| 1265 | |
| 1266 | unsigned int convertToHexString(char *DST, unsigned int HexDigits, |
| 1267 | bool UpperCase, roundingMode RM) const { |
| 1268 | APFLOAT_DISPATCH_ON_SEMANTICS( |
| 1269 | convertToHexString(DST, HexDigits, UpperCase, RM)); |
| 1270 | } |
| 1271 | |
| 1272 | bool isZero() const { return getCategory() == fcZero; } |
| 1273 | bool isInfinity() const { return getCategory() == fcInfinity; } |
| 1274 | bool isNaN() const { return getCategory() == fcNaN; } |
| 1275 | |
| 1276 | bool isNegative() const { return getIEEE().isNegative(); } |
| 1277 | bool isDenormal() const { APFLOAT_DISPATCH_ON_SEMANTICS(isDenormal()); } |
| 1278 | bool isSignaling() const { return getIEEE().isSignaling(); } |
| 1279 | |
| 1280 | bool isNormal() const { return !isDenormal() && isFiniteNonZero(); } |
| 1281 | bool isFinite() const { return !isNaN() && !isInfinity(); } |
| 1282 | |
| 1283 | fltCategory getCategory() const { return getIEEE().getCategory(); } |
| 1284 | const fltSemantics &getSemantics() const { return *U.semantics; } |
| 1285 | bool isNonZero() const { return !isZero(); } |
| 1286 | bool isFiniteNonZero() const { return isFinite() && !isZero(); } |
| 1287 | bool isPosZero() const { return isZero() && !isNegative(); } |
| 1288 | bool isNegZero() const { return isZero() && isNegative(); } |
| 1289 | bool isPosInfinity() const { return isInfinity() && !isNegative(); } |
| 1290 | bool isNegInfinity() const { return isInfinity() && isNegative(); } |
| 1291 | bool isSmallest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isSmallest()); } |
| 1292 | bool isLargest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isLargest()); } |
| 1293 | bool isInteger() const { APFLOAT_DISPATCH_ON_SEMANTICS(isInteger()); } |
| 1294 | bool isIEEE() const { return usesLayout<IEEEFloat>(getSemantics()); } |
| 1295 | |
| 1296 | bool isSmallestNormalized() const { |
| 1297 | APFLOAT_DISPATCH_ON_SEMANTICS(isSmallestNormalized()); |
| 1298 | } |
| 1299 | |
| 1300 | /// Return the FPClassTest which will return true for the value. |
| 1301 | FPClassTest classify() const; |
| 1302 | |
| 1303 | APFloat &operator=(const APFloat &RHS) = default; |
| 1304 | APFloat &operator=(APFloat &&RHS) = default; |
| 1305 | |
| 1306 | void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0, |
| 1307 | unsigned FormatMaxPadding = 3, bool TruncateZero = true) const { |
| 1308 | APFLOAT_DISPATCH_ON_SEMANTICS( |
| 1309 | toString(Str, FormatPrecision, FormatMaxPadding, TruncateZero)); |
| 1310 | } |
| 1311 | |
| 1312 | void print(raw_ostream &) const; |
| 1313 | void dump() const; |
| 1314 | |
| 1315 | bool getExactInverse(APFloat *inv) const { |
| 1316 | APFLOAT_DISPATCH_ON_SEMANTICS(getExactInverse(inv)); |
| 1317 | } |
| 1318 | |
| 1319 | friend hash_code hash_value(const APFloat &Arg); |
| 1320 | friend int ilogb(const APFloat &Arg) { return ilogb(Arg.getIEEE()); } |
| 1321 | friend APFloat scalbn(APFloat X, int Exp, roundingMode RM); |
| 1322 | friend APFloat frexp(const APFloat &X, int &Exp, roundingMode RM); |
| 1323 | friend IEEEFloat; |
| 1324 | friend DoubleAPFloat; |
| 1325 | }; |
| 1326 | |
| 1327 | /// See friend declarations above. |
| 1328 | /// |
| 1329 | /// These additional declarations are required in order to compile LLVM with IBM |
| 1330 | /// xlC compiler. |
| 1331 | hash_code hash_value(const APFloat &Arg); |
| 1332 | inline APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM) { |
| 1333 | if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics())) |
| 1334 | return APFloat(scalbn(X.U.IEEE, Exp, RM), X.getSemantics()); |
| 1335 | if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics())) |
| 1336 | return APFloat(scalbn(X.U.Double, Exp, RM), X.getSemantics()); |
| 1337 | llvm_unreachable("Unexpected semantics")::llvm::llvm_unreachable_internal("Unexpected semantics", "llvm/include/llvm/ADT/APFloat.h" , 1337); |
| 1338 | } |
| 1339 | |
| 1340 | /// Equivalent of C standard library function. |
| 1341 | /// |
| 1342 | /// While the C standard says Exp is an unspecified value for infinity and nan, |
| 1343 | /// this returns INT_MAX for infinities, and INT_MIN for NaNs. |
| 1344 | inline APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM) { |
| 1345 | if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics())) |
| 1346 | return APFloat(frexp(X.U.IEEE, Exp, RM), X.getSemantics()); |
| 1347 | if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics())) |
| 1348 | return APFloat(frexp(X.U.Double, Exp, RM), X.getSemantics()); |
| 1349 | llvm_unreachable("Unexpected semantics")::llvm::llvm_unreachable_internal("Unexpected semantics", "llvm/include/llvm/ADT/APFloat.h" , 1349); |
| 1350 | } |
| 1351 | /// Returns the absolute value of the argument. |
| 1352 | inline APFloat abs(APFloat X) { |
| 1353 | X.clearSign(); |
| 1354 | return X; |
| 1355 | } |
| 1356 | |
| 1357 | /// Returns the negated value of the argument. |
| 1358 | inline APFloat neg(APFloat X) { |
| 1359 | X.changeSign(); |
| 1360 | return X; |
| 1361 | } |
| 1362 | |
| 1363 | /// Implements IEEE minNum semantics. Returns the smaller of the 2 arguments if |
| 1364 | /// both are not NaN. If either argument is a NaN, returns the other argument. |
| 1365 | LLVM_READONLY__attribute__((__pure__)) |
| 1366 | inline APFloat minnum(const APFloat &A, const APFloat &B) { |
| 1367 | if (A.isNaN()) |
| 1368 | return B; |
| 1369 | if (B.isNaN()) |
| 1370 | return A; |
| 1371 | return B < A ? B : A; |
| 1372 | } |
| 1373 | |
| 1374 | /// Implements IEEE maxNum semantics. Returns the larger of the 2 arguments if |
| 1375 | /// both are not NaN. If either argument is a NaN, returns the other argument. |
| 1376 | LLVM_READONLY__attribute__((__pure__)) |
| 1377 | inline APFloat maxnum(const APFloat &A, const APFloat &B) { |
| 1378 | if (A.isNaN()) |
| 1379 | return B; |
| 1380 | if (B.isNaN()) |
| 1381 | return A; |
| 1382 | return A < B ? B : A; |
| 1383 | } |
| 1384 | |
| 1385 | /// Implements IEEE 754-2018 minimum semantics. Returns the smaller of 2 |
| 1386 | /// arguments, propagating NaNs and treating -0 as less than +0. |
| 1387 | LLVM_READONLY__attribute__((__pure__)) |
| 1388 | inline APFloat minimum(const APFloat &A, const APFloat &B) { |
| 1389 | if (A.isNaN()) |
| 1390 | return A; |
| 1391 | if (B.isNaN()) |
| 1392 | return B; |
| 1393 | if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative())) |
| 1394 | return A.isNegative() ? A : B; |
| 1395 | return B < A ? B : A; |
| 1396 | } |
| 1397 | |
| 1398 | /// Implements IEEE 754-2018 maximum semantics. Returns the larger of 2 |
| 1399 | /// arguments, propagating NaNs and treating -0 as less than +0. |
| 1400 | LLVM_READONLY__attribute__((__pure__)) |
| 1401 | inline APFloat maximum(const APFloat &A, const APFloat &B) { |
| 1402 | if (A.isNaN()) |
| 1403 | return A; |
| 1404 | if (B.isNaN()) |
| 1405 | return B; |
| 1406 | if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative())) |
| 1407 | return A.isNegative() ? B : A; |
| 1408 | return A < B ? B : A; |
| 1409 | } |
| 1410 | |
| 1411 | } // namespace llvm |
| 1412 | |
| 1413 | #undef APFLOAT_DISPATCH_ON_SEMANTICS |
| 1414 | #endif // LLVM_ADT_APFLOAT_H |