Bug Summary

File:lib/Support/APInt.cpp
Warning:line 332, column 3
Potential leak of memory pointed to by field 'pVal'

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name APInt.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-eagerly-assume -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-7/lib/clang/7.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/lib/Support -I /build/llvm-toolchain-snapshot-7~svn329677/lib/Support -I /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/include -I /build/llvm-toolchain-snapshot-7~svn329677/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0/backward -internal-isystem /usr/include/clang/7.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-7/lib/clang/7.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/lib/Support -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-checker optin.performance.Padding -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-04-11-031539-24776-1 -x c++ /build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp

/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp

1//===-- APInt.cpp - Implement APInt class ---------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a class to represent arbitrary precision integer
11// constant values and provide a variety of arithmetic operations on them.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/ADT/APInt.h"
16#include "llvm/ADT/ArrayRef.h"
17#include "llvm/ADT/FoldingSet.h"
18#include "llvm/ADT/Hashing.h"
19#include "llvm/ADT/SmallString.h"
20#include "llvm/ADT/StringRef.h"
21#include "llvm/Support/Debug.h"
22#include "llvm/Support/ErrorHandling.h"
23#include "llvm/Support/MathExtras.h"
24#include "llvm/Support/raw_ostream.h"
25#include <climits>
26#include <cmath>
27#include <cstdlib>
28#include <cstring>
29using namespace llvm;
30
31#define DEBUG_TYPE"apint" "apint"
32
33/// A utility function for allocating memory, checking for allocation failures,
34/// and ensuring the contents are zeroed.
35inline static uint64_t* getClearedMemory(unsigned numWords) {
36 uint64_t *result = new uint64_t[numWords];
37 memset(result, 0, numWords * sizeof(uint64_t));
38 return result;
39}
40
41/// A utility function for allocating memory and checking for allocation
42/// failure. The content is not zeroed.
43inline static uint64_t* getMemory(unsigned numWords) {
44 return new uint64_t[numWords];
10
Memory is allocated
45}
46
47/// A utility function that converts a character to a digit.
48inline static unsigned getDigit(char cdigit, uint8_t radix) {
49 unsigned r;
50
51 if (radix == 16 || radix == 36) {
52 r = cdigit - '0';
53 if (r <= 9)
54 return r;
55
56 r = cdigit - 'A';
57 if (r <= radix - 11U)
58 return r + 10;
59
60 r = cdigit - 'a';
61 if (r <= radix - 11U)
62 return r + 10;
63
64 radix = 10;
65 }
66
67 r = cdigit - '0';
68 if (r < radix)
69 return r;
70
71 return -1U;
72}
73
74
75void APInt::initSlowCase(uint64_t val, bool isSigned) {
76 U.pVal = getClearedMemory(getNumWords());
77 U.pVal[0] = val;
78 if (isSigned && int64_t(val) < 0)
79 for (unsigned i = 1; i < getNumWords(); ++i)
80 U.pVal[i] = WORD_MAX;
81 clearUnusedBits();
82}
83
84void APInt::initSlowCase(const APInt& that) {
85 U.pVal = getMemory(getNumWords());
9
Calling 'getMemory'
11
Returned allocated memory
86 memcpy(U.pVal, that.U.pVal, getNumWords() * APINT_WORD_SIZE);
87}
88
89void APInt::initFromArray(ArrayRef<uint64_t> bigVal) {
90 assert(BitWidth && "Bitwidth too small")(static_cast <bool> (BitWidth && "Bitwidth too small"
) ? void (0) : __assert_fail ("BitWidth && \"Bitwidth too small\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 90, __extension__ __PRETTY_FUNCTION__))
;
91 assert(bigVal.data() && "Null pointer detected!")(static_cast <bool> (bigVal.data() && "Null pointer detected!"
) ? void (0) : __assert_fail ("bigVal.data() && \"Null pointer detected!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 91, __extension__ __PRETTY_FUNCTION__))
;
92 if (isSingleWord())
93 U.VAL = bigVal[0];
94 else {
95 // Get memory, cleared to 0
96 U.pVal = getClearedMemory(getNumWords());
97 // Calculate the number of words to copy
98 unsigned words = std::min<unsigned>(bigVal.size(), getNumWords());
99 // Copy the words from bigVal to pVal
100 memcpy(U.pVal, bigVal.data(), words * APINT_WORD_SIZE);
101 }
102 // Make sure unused high bits are cleared
103 clearUnusedBits();
104}
105
106APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal)
107 : BitWidth(numBits) {
108 initFromArray(bigVal);
109}
110
111APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
112 : BitWidth(numBits) {
113 initFromArray(makeArrayRef(bigVal, numWords));
114}
115
116APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix)
117 : BitWidth(numbits) {
118 assert(BitWidth && "Bitwidth too small")(static_cast <bool> (BitWidth && "Bitwidth too small"
) ? void (0) : __assert_fail ("BitWidth && \"Bitwidth too small\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 118, __extension__ __PRETTY_FUNCTION__))
;
119 fromString(numbits, Str, radix);
120}
121
122void APInt::reallocate(unsigned NewBitWidth) {
123 // If the number of words is the same we can just change the width and stop.
124 if (getNumWords() == getNumWords(NewBitWidth)) {
125 BitWidth = NewBitWidth;
126 return;
127 }
128
129 // If we have an allocation, delete it.
130 if (!isSingleWord())
131 delete [] U.pVal;
132
133 // Update BitWidth.
134 BitWidth = NewBitWidth;
135
136 // If we are supposed to have an allocation, create it.
137 if (!isSingleWord())
138 U.pVal = getMemory(getNumWords());
139}
140
141void APInt::AssignSlowCase(const APInt& RHS) {
142 // Don't do anything for X = X
143 if (this == &RHS)
144 return;
145
146 // Adjust the bit width and handle allocations as necessary.
147 reallocate(RHS.getBitWidth());
148
149 // Copy the data.
150 if (isSingleWord())
151 U.VAL = RHS.U.VAL;
152 else
153 memcpy(U.pVal, RHS.U.pVal, getNumWords() * APINT_WORD_SIZE);
154}
155
156/// This method 'profiles' an APInt for use with FoldingSet.
157void APInt::Profile(FoldingSetNodeID& ID) const {
158 ID.AddInteger(BitWidth);
159
160 if (isSingleWord()) {
161 ID.AddInteger(U.VAL);
162 return;
163 }
164
165 unsigned NumWords = getNumWords();
166 for (unsigned i = 0; i < NumWords; ++i)
167 ID.AddInteger(U.pVal[i]);
168}
169
170/// @brief Prefix increment operator. Increments the APInt by one.
171APInt& APInt::operator++() {
172 if (isSingleWord())
173 ++U.VAL;
174 else
175 tcIncrement(U.pVal, getNumWords());
176 return clearUnusedBits();
177}
178
179/// @brief Prefix decrement operator. Decrements the APInt by one.
180APInt& APInt::operator--() {
181 if (isSingleWord())
182 --U.VAL;
183 else
184 tcDecrement(U.pVal, getNumWords());
185 return clearUnusedBits();
186}
187
188/// Adds the RHS APint to this APInt.
189/// @returns this, after addition of RHS.
190/// @brief Addition assignment operator.
191APInt& APInt::operator+=(const APInt& RHS) {
192 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 192, __extension__ __PRETTY_FUNCTION__))
;
193 if (isSingleWord())
194 U.VAL += RHS.U.VAL;
195 else
196 tcAdd(U.pVal, RHS.U.pVal, 0, getNumWords());
197 return clearUnusedBits();
198}
199
200APInt& APInt::operator+=(uint64_t RHS) {
201 if (isSingleWord())
202 U.VAL += RHS;
203 else
204 tcAddPart(U.pVal, RHS, getNumWords());
205 return clearUnusedBits();
206}
207
208/// Subtracts the RHS APInt from this APInt
209/// @returns this, after subtraction
210/// @brief Subtraction assignment operator.
211APInt& APInt::operator-=(const APInt& RHS) {
212 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 212, __extension__ __PRETTY_FUNCTION__))
;
213 if (isSingleWord())
214 U.VAL -= RHS.U.VAL;
215 else
216 tcSubtract(U.pVal, RHS.U.pVal, 0, getNumWords());
217 return clearUnusedBits();
218}
219
220APInt& APInt::operator-=(uint64_t RHS) {
221 if (isSingleWord())
222 U.VAL -= RHS;
223 else
224 tcSubtractPart(U.pVal, RHS, getNumWords());
225 return clearUnusedBits();
226}
227
228APInt APInt::operator*(const APInt& RHS) const {
229 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 229, __extension__ __PRETTY_FUNCTION__))
;
230 if (isSingleWord())
231 return APInt(BitWidth, U.VAL * RHS.U.VAL);
232
233 APInt Result(getMemory(getNumWords()), getBitWidth());
234
235 tcMultiply(Result.U.pVal, U.pVal, RHS.U.pVal, getNumWords());
236
237 Result.clearUnusedBits();
238 return Result;
239}
240
241void APInt::AndAssignSlowCase(const APInt& RHS) {
242 tcAnd(U.pVal, RHS.U.pVal, getNumWords());
243}
244
245void APInt::OrAssignSlowCase(const APInt& RHS) {
246 tcOr(U.pVal, RHS.U.pVal, getNumWords());
247}
248
249void APInt::XorAssignSlowCase(const APInt& RHS) {
250 tcXor(U.pVal, RHS.U.pVal, getNumWords());
251}
252
253APInt& APInt::operator*=(const APInt& RHS) {
254 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 254, __extension__ __PRETTY_FUNCTION__))
;
255 *this = *this * RHS;
256 return *this;
257}
258
259APInt& APInt::operator*=(uint64_t RHS) {
260 if (isSingleWord()) {
261 U.VAL *= RHS;
262 } else {
263 unsigned NumWords = getNumWords();
264 tcMultiplyPart(U.pVal, U.pVal, RHS, 0, NumWords, NumWords, false);
265 }
266 return clearUnusedBits();
267}
268
269bool APInt::EqualSlowCase(const APInt& RHS) const {
270 return std::equal(U.pVal, U.pVal + getNumWords(), RHS.U.pVal);
271}
272
273int APInt::compare(const APInt& RHS) const {
274 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be same for comparison") ? void (0) : __assert_fail
("BitWidth == RHS.BitWidth && \"Bit widths must be same for comparison\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 274, __extension__ __PRETTY_FUNCTION__))
;
275 if (isSingleWord())
276 return U.VAL < RHS.U.VAL ? -1 : U.VAL > RHS.U.VAL;
277
278 return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
279}
280
281int APInt::compareSigned(const APInt& RHS) const {
282 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be same for comparison") ? void (0) : __assert_fail
("BitWidth == RHS.BitWidth && \"Bit widths must be same for comparison\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 282, __extension__ __PRETTY_FUNCTION__))
;
283 if (isSingleWord()) {
284 int64_t lhsSext = SignExtend64(U.VAL, BitWidth);
285 int64_t rhsSext = SignExtend64(RHS.U.VAL, BitWidth);
286 return lhsSext < rhsSext ? -1 : lhsSext > rhsSext;
287 }
288
289 bool lhsNeg = isNegative();
290 bool rhsNeg = RHS.isNegative();
291
292 // If the sign bits don't match, then (LHS < RHS) if LHS is negative
293 if (lhsNeg != rhsNeg)
294 return lhsNeg ? -1 : 1;
295
296 // Otherwise we can just use an unsigned comparison, because even negative
297 // numbers compare correctly this way if both have the same signed-ness.
298 return tcCompare(U.pVal, RHS.U.pVal, getNumWords());
299}
300
301void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) {
302 unsigned loWord = whichWord(loBit);
303 unsigned hiWord = whichWord(hiBit);
304
305 // Create an initial mask for the low word with zeros below loBit.
306 uint64_t loMask = WORD_MAX << whichBit(loBit);
307
308 // If hiBit is not aligned, we need a high mask.
309 unsigned hiShiftAmt = whichBit(hiBit);
310 if (hiShiftAmt != 0) {
311 // Create a high mask with zeros above hiBit.
312 uint64_t hiMask = WORD_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt);
313 // If loWord and hiWord are equal, then we combine the masks. Otherwise,
314 // set the bits in hiWord.
315 if (hiWord == loWord)
316 loMask &= hiMask;
317 else
318 U.pVal[hiWord] |= hiMask;
319 }
320 // Apply the mask to the low word.
321 U.pVal[loWord] |= loMask;
322
323 // Fill any words between loWord and hiWord with all ones.
324 for (unsigned word = loWord + 1; word < hiWord; ++word)
325 U.pVal[word] = WORD_MAX;
326}
327
328/// @brief Toggle every bit to its opposite value.
329void APInt::flipAllBitsSlowCase() {
330 tcComplement(U.pVal, getNumWords());
331 clearUnusedBits();
332}
333
334/// Toggle a given bit to its opposite value whose position is given
335/// as "bitPosition".
336/// @brief Toggles a given bit to its opposite value.
337void APInt::flipBit(unsigned bitPosition) {
338 assert(bitPosition < BitWidth && "Out of the bit-width range!")(static_cast <bool> (bitPosition < BitWidth &&
"Out of the bit-width range!") ? void (0) : __assert_fail ("bitPosition < BitWidth && \"Out of the bit-width range!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 338, __extension__ __PRETTY_FUNCTION__))
;
339 if ((*this)[bitPosition]) clearBit(bitPosition);
340 else setBit(bitPosition);
341}
342
343void APInt::insertBits(const APInt &subBits, unsigned bitPosition) {
344 unsigned subBitWidth = subBits.getBitWidth();
345 assert(0 < subBitWidth && (subBitWidth + bitPosition) <= BitWidth &&(static_cast <bool> (0 < subBitWidth && (subBitWidth
+ bitPosition) <= BitWidth && "Illegal bit insertion"
) ? void (0) : __assert_fail ("0 < subBitWidth && (subBitWidth + bitPosition) <= BitWidth && \"Illegal bit insertion\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 346, __extension__ __PRETTY_FUNCTION__))
346 "Illegal bit insertion")(static_cast <bool> (0 < subBitWidth && (subBitWidth
+ bitPosition) <= BitWidth && "Illegal bit insertion"
) ? void (0) : __assert_fail ("0 < subBitWidth && (subBitWidth + bitPosition) <= BitWidth && \"Illegal bit insertion\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 346, __extension__ __PRETTY_FUNCTION__))
;
347
348 // Insertion is a direct copy.
349 if (subBitWidth == BitWidth) {
350 *this = subBits;
351 return;
352 }
353
354 // Single word result can be done as a direct bitmask.
355 if (isSingleWord()) {
356 uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
357 U.VAL &= ~(mask << bitPosition);
358 U.VAL |= (subBits.U.VAL << bitPosition);
359 return;
360 }
361
362 unsigned loBit = whichBit(bitPosition);
363 unsigned loWord = whichWord(bitPosition);
364 unsigned hi1Word = whichWord(bitPosition + subBitWidth - 1);
365
366 // Insertion within a single word can be done as a direct bitmask.
367 if (loWord == hi1Word) {
368 uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - subBitWidth);
369 U.pVal[loWord] &= ~(mask << loBit);
370 U.pVal[loWord] |= (subBits.U.VAL << loBit);
371 return;
372 }
373
374 // Insert on word boundaries.
375 if (loBit == 0) {
376 // Direct copy whole words.
377 unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD;
378 memcpy(U.pVal + loWord, subBits.getRawData(),
379 numWholeSubWords * APINT_WORD_SIZE);
380
381 // Mask+insert remaining bits.
382 unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD;
383 if (remainingBits != 0) {
384 uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - remainingBits);
385 U.pVal[hi1Word] &= ~mask;
386 U.pVal[hi1Word] |= subBits.getWord(subBitWidth - 1);
387 }
388 return;
389 }
390
391 // General case - set/clear individual bits in dst based on src.
392 // TODO - there is scope for optimization here, but at the moment this code
393 // path is barely used so prefer readability over performance.
394 for (unsigned i = 0; i != subBitWidth; ++i) {
395 if (subBits[i])
396 setBit(bitPosition + i);
397 else
398 clearBit(bitPosition + i);
399 }
400}
401
402APInt APInt::extractBits(unsigned numBits, unsigned bitPosition) const {
403 assert(numBits > 0 && "Can't extract zero bits")(static_cast <bool> (numBits > 0 && "Can't extract zero bits"
) ? void (0) : __assert_fail ("numBits > 0 && \"Can't extract zero bits\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 403, __extension__ __PRETTY_FUNCTION__))
;
404 assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&(static_cast <bool> (bitPosition < BitWidth &&
(numBits + bitPosition) <= BitWidth && "Illegal bit extraction"
) ? void (0) : __assert_fail ("bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth && \"Illegal bit extraction\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 405, __extension__ __PRETTY_FUNCTION__))
405 "Illegal bit extraction")(static_cast <bool> (bitPosition < BitWidth &&
(numBits + bitPosition) <= BitWidth && "Illegal bit extraction"
) ? void (0) : __assert_fail ("bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth && \"Illegal bit extraction\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 405, __extension__ __PRETTY_FUNCTION__))
;
406
407 if (isSingleWord())
408 return APInt(numBits, U.VAL >> bitPosition);
409
410 unsigned loBit = whichBit(bitPosition);
411 unsigned loWord = whichWord(bitPosition);
412 unsigned hiWord = whichWord(bitPosition + numBits - 1);
413
414 // Single word result extracting bits from a single word source.
415 if (loWord == hiWord)
416 return APInt(numBits, U.pVal[loWord] >> loBit);
417
418 // Extracting bits that start on a source word boundary can be done
419 // as a fast memory copy.
420 if (loBit == 0)
421 return APInt(numBits, makeArrayRef(U.pVal + loWord, 1 + hiWord - loWord));
422
423 // General case - shift + copy source words directly into place.
424 APInt Result(numBits, 0);
425 unsigned NumSrcWords = getNumWords();
426 unsigned NumDstWords = Result.getNumWords();
427
428 uint64_t *DestPtr = Result.isSingleWord() ? &Result.U.VAL : Result.U.pVal;
429 for (unsigned word = 0; word < NumDstWords; ++word) {
430 uint64_t w0 = U.pVal[loWord + word];
431 uint64_t w1 =
432 (loWord + word + 1) < NumSrcWords ? U.pVal[loWord + word + 1] : 0;
433 DestPtr[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit));
434 }
435
436 return Result.clearUnusedBits();
437}
438
439unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) {
440 assert(!str.empty() && "Invalid string length")(static_cast <bool> (!str.empty() && "Invalid string length"
) ? void (0) : __assert_fail ("!str.empty() && \"Invalid string length\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 440, __extension__ __PRETTY_FUNCTION__))
;
441 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||(static_cast <bool> ((radix == 10 || radix == 8 || radix
== 16 || radix == 2 || radix == 36) && "Radix should be 2, 8, 10, 16, or 36!"
) ? void (0) : __assert_fail ("(radix == 10 || radix == 8 || radix == 16 || radix == 2 || radix == 36) && \"Radix should be 2, 8, 10, 16, or 36!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 443, __extension__ __PRETTY_FUNCTION__))
442 radix == 36) &&(static_cast <bool> ((radix == 10 || radix == 8 || radix
== 16 || radix == 2 || radix == 36) && "Radix should be 2, 8, 10, 16, or 36!"
) ? void (0) : __assert_fail ("(radix == 10 || radix == 8 || radix == 16 || radix == 2 || radix == 36) && \"Radix should be 2, 8, 10, 16, or 36!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 443, __extension__ __PRETTY_FUNCTION__))
443 "Radix should be 2, 8, 10, 16, or 36!")(static_cast <bool> ((radix == 10 || radix == 8 || radix
== 16 || radix == 2 || radix == 36) && "Radix should be 2, 8, 10, 16, or 36!"
) ? void (0) : __assert_fail ("(radix == 10 || radix == 8 || radix == 16 || radix == 2 || radix == 36) && \"Radix should be 2, 8, 10, 16, or 36!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 443, __extension__ __PRETTY_FUNCTION__))
;
444
445 size_t slen = str.size();
446
447 // Each computation below needs to know if it's negative.
448 StringRef::iterator p = str.begin();
449 unsigned isNegative = *p == '-';
450 if (*p == '-' || *p == '+') {
451 p++;
452 slen--;
453 assert(slen && "String is only a sign, needs a value.")(static_cast <bool> (slen && "String is only a sign, needs a value."
) ? void (0) : __assert_fail ("slen && \"String is only a sign, needs a value.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 453, __extension__ __PRETTY_FUNCTION__))
;
454 }
455
456 // For radixes of power-of-two values, the bits required is accurately and
457 // easily computed
458 if (radix == 2)
459 return slen + isNegative;
460 if (radix == 8)
461 return slen * 3 + isNegative;
462 if (radix == 16)
463 return slen * 4 + isNegative;
464
465 // FIXME: base 36
466
467 // This is grossly inefficient but accurate. We could probably do something
468 // with a computation of roughly slen*64/20 and then adjust by the value of
469 // the first few digits. But, I'm not sure how accurate that could be.
470
471 // Compute a sufficient number of bits that is always large enough but might
472 // be too large. This avoids the assertion in the constructor. This
473 // calculation doesn't work appropriately for the numbers 0-9, so just use 4
474 // bits in that case.
475 unsigned sufficient
476 = radix == 10? (slen == 1 ? 4 : slen * 64/18)
477 : (slen == 1 ? 7 : slen * 16/3);
478
479 // Convert to the actual binary value.
480 APInt tmp(sufficient, StringRef(p, slen), radix);
481
482 // Compute how many bits are required. If the log is infinite, assume we need
483 // just bit.
484 unsigned log = tmp.logBase2();
485 if (log == (unsigned)-1) {
486 return isNegative + 1;
487 } else {
488 return isNegative + log + 1;
489 }
490}
491
492hash_code llvm::hash_value(const APInt &Arg) {
493 if (Arg.isSingleWord())
494 return hash_combine(Arg.U.VAL);
495
496 return hash_combine_range(Arg.U.pVal, Arg.U.pVal + Arg.getNumWords());
497}
498
499bool APInt::isSplat(unsigned SplatSizeInBits) const {
500 assert(getBitWidth() % SplatSizeInBits == 0 &&(static_cast <bool> (getBitWidth() % SplatSizeInBits ==
0 && "SplatSizeInBits must divide width!") ? void (0
) : __assert_fail ("getBitWidth() % SplatSizeInBits == 0 && \"SplatSizeInBits must divide width!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 501, __extension__ __PRETTY_FUNCTION__))
501 "SplatSizeInBits must divide width!")(static_cast <bool> (getBitWidth() % SplatSizeInBits ==
0 && "SplatSizeInBits must divide width!") ? void (0
) : __assert_fail ("getBitWidth() % SplatSizeInBits == 0 && \"SplatSizeInBits must divide width!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 501, __extension__ __PRETTY_FUNCTION__))
;
502 // We can check that all parts of an integer are equal by making use of a
503 // little trick: rotate and check if it's still the same value.
504 return *this == rotl(SplatSizeInBits);
505}
506
507/// This function returns the high "numBits" bits of this APInt.
508APInt APInt::getHiBits(unsigned numBits) const {
509 return this->lshr(BitWidth - numBits);
510}
511
512/// This function returns the low "numBits" bits of this APInt.
513APInt APInt::getLoBits(unsigned numBits) const {
514 APInt Result(getLowBitsSet(BitWidth, numBits));
515 Result &= *this;
516 return Result;
517}
518
519/// Return a value containing V broadcasted over NewLen bits.
520APInt APInt::getSplat(unsigned NewLen, const APInt &V) {
521 assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!")(static_cast <bool> (NewLen >= V.getBitWidth() &&
"Can't splat to smaller bit width!") ? void (0) : __assert_fail
("NewLen >= V.getBitWidth() && \"Can't splat to smaller bit width!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 521, __extension__ __PRETTY_FUNCTION__))
;
522
523 APInt Val = V.zextOrSelf(NewLen);
524 for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
525 Val |= Val << I;
526
527 return Val;
528}
529
530unsigned APInt::countLeadingZerosSlowCase() const {
531 unsigned Count = 0;
532 for (int i = getNumWords()-1; i >= 0; --i) {
533 uint64_t V = U.pVal[i];
534 if (V == 0)
535 Count += APINT_BITS_PER_WORD;
536 else {
537 Count += llvm::countLeadingZeros(V);
538 break;
539 }
540 }
541 // Adjust for unused bits in the most significant word (they are zero).
542 unsigned Mod = BitWidth % APINT_BITS_PER_WORD;
543 Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0;
544 return Count;
545}
546
547unsigned APInt::countLeadingOnesSlowCase() const {
548 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
549 unsigned shift;
550 if (!highWordBits) {
551 highWordBits = APINT_BITS_PER_WORD;
552 shift = 0;
553 } else {
554 shift = APINT_BITS_PER_WORD - highWordBits;
555 }
556 int i = getNumWords() - 1;
557 unsigned Count = llvm::countLeadingOnes(U.pVal[i] << shift);
558 if (Count == highWordBits) {
559 for (i--; i >= 0; --i) {
560 if (U.pVal[i] == WORD_MAX)
561 Count += APINT_BITS_PER_WORD;
562 else {
563 Count += llvm::countLeadingOnes(U.pVal[i]);
564 break;
565 }
566 }
567 }
568 return Count;
569}
570
571unsigned APInt::countTrailingZerosSlowCase() const {
572 unsigned Count = 0;
573 unsigned i = 0;
574 for (; i < getNumWords() && U.pVal[i] == 0; ++i)
575 Count += APINT_BITS_PER_WORD;
576 if (i < getNumWords())
577 Count += llvm::countTrailingZeros(U.pVal[i]);
578 return std::min(Count, BitWidth);
579}
580
581unsigned APInt::countTrailingOnesSlowCase() const {
582 unsigned Count = 0;
583 unsigned i = 0;
584 for (; i < getNumWords() && U.pVal[i] == WORD_MAX; ++i)
585 Count += APINT_BITS_PER_WORD;
586 if (i < getNumWords())
587 Count += llvm::countTrailingOnes(U.pVal[i]);
588 assert(Count <= BitWidth)(static_cast <bool> (Count <= BitWidth) ? void (0) :
__assert_fail ("Count <= BitWidth", "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 588, __extension__ __PRETTY_FUNCTION__))
;
589 return Count;
590}
591
592unsigned APInt::countPopulationSlowCase() const {
593 unsigned Count = 0;
594 for (unsigned i = 0; i < getNumWords(); ++i)
595 Count += llvm::countPopulation(U.pVal[i]);
596 return Count;
597}
598
599bool APInt::intersectsSlowCase(const APInt &RHS) const {
600 for (unsigned i = 0, e = getNumWords(); i != e; ++i)
601 if ((U.pVal[i] & RHS.U.pVal[i]) != 0)
602 return true;
603
604 return false;
605}
606
607bool APInt::isSubsetOfSlowCase(const APInt &RHS) const {
608 for (unsigned i = 0, e = getNumWords(); i != e; ++i)
609 if ((U.pVal[i] & ~RHS.U.pVal[i]) != 0)
610 return false;
611
612 return true;
613}
614
615APInt APInt::byteSwap() const {
616 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!")(static_cast <bool> (BitWidth >= 16 && BitWidth
% 16 == 0 && "Cannot byteswap!") ? void (0) : __assert_fail
("BitWidth >= 16 && BitWidth % 16 == 0 && \"Cannot byteswap!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 616, __extension__ __PRETTY_FUNCTION__))
;
617 if (BitWidth == 16)
618 return APInt(BitWidth, ByteSwap_16(uint16_t(U.VAL)));
619 if (BitWidth == 32)
620 return APInt(BitWidth, ByteSwap_32(unsigned(U.VAL)));
621 if (BitWidth == 48) {
622 unsigned Tmp1 = unsigned(U.VAL >> 16);
623 Tmp1 = ByteSwap_32(Tmp1);
624 uint16_t Tmp2 = uint16_t(U.VAL);
625 Tmp2 = ByteSwap_16(Tmp2);
626 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
627 }
628 if (BitWidth == 64)
629 return APInt(BitWidth, ByteSwap_64(U.VAL));
630
631 APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0);
632 for (unsigned I = 0, N = getNumWords(); I != N; ++I)
633 Result.U.pVal[I] = ByteSwap_64(U.pVal[N - I - 1]);
634 if (Result.BitWidth != BitWidth) {
635 Result.lshrInPlace(Result.BitWidth - BitWidth);
636 Result.BitWidth = BitWidth;
637 }
638 return Result;
639}
640
641APInt APInt::reverseBits() const {
642 switch (BitWidth) {
643 case 64:
644 return APInt(BitWidth, llvm::reverseBits<uint64_t>(U.VAL));
645 case 32:
646 return APInt(BitWidth, llvm::reverseBits<uint32_t>(U.VAL));
647 case 16:
648 return APInt(BitWidth, llvm::reverseBits<uint16_t>(U.VAL));
649 case 8:
650 return APInt(BitWidth, llvm::reverseBits<uint8_t>(U.VAL));
651 default:
652 break;
653 }
654
655 APInt Val(*this);
656 APInt Reversed(BitWidth, 0);
657 unsigned S = BitWidth;
658
659 for (; Val != 0; Val.lshrInPlace(1)) {
660 Reversed <<= 1;
661 Reversed |= Val[0];
662 --S;
663 }
664
665 Reversed <<= S;
666 return Reversed;
667}
668
669APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) {
670 // Fast-path a common case.
671 if (A == B) return A;
672
673 // Corner cases: if either operand is zero, the other is the gcd.
674 if (!A) return B;
675 if (!B) return A;
676
677 // Count common powers of 2 and remove all other powers of 2.
678 unsigned Pow2;
679 {
680 unsigned Pow2_A = A.countTrailingZeros();
681 unsigned Pow2_B = B.countTrailingZeros();
682 if (Pow2_A > Pow2_B) {
683 A.lshrInPlace(Pow2_A - Pow2_B);
684 Pow2 = Pow2_B;
685 } else if (Pow2_B > Pow2_A) {
686 B.lshrInPlace(Pow2_B - Pow2_A);
687 Pow2 = Pow2_A;
688 } else {
689 Pow2 = Pow2_A;
690 }
691 }
692
693 // Both operands are odd multiples of 2^Pow_2:
694 //
695 // gcd(a, b) = gcd(|a - b| / 2^i, min(a, b))
696 //
697 // This is a modified version of Stein's algorithm, taking advantage of
698 // efficient countTrailingZeros().
699 while (A != B) {
700 if (A.ugt(B)) {
701 A -= B;
702 A.lshrInPlace(A.countTrailingZeros() - Pow2);
703 } else {
704 B -= A;
705 B.lshrInPlace(B.countTrailingZeros() - Pow2);
706 }
707 }
708
709 return A;
710}
711
712APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
713 union {
714 double D;
715 uint64_t I;
716 } T;
717 T.D = Double;
718
719 // Get the sign bit from the highest order bit
720 bool isNeg = T.I >> 63;
721
722 // Get the 11-bit exponent and adjust for the 1023 bit bias
723 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
724
725 // If the exponent is negative, the value is < 0 so just return 0.
726 if (exp < 0)
727 return APInt(width, 0u);
728
729 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
730 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
731
732 // If the exponent doesn't shift all bits out of the mantissa
733 if (exp < 52)
734 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
735 APInt(width, mantissa >> (52 - exp));
736
737 // If the client didn't provide enough bits for us to shift the mantissa into
738 // then the result is undefined, just return 0
739 if (width <= exp - 52)
740 return APInt(width, 0);
741
742 // Otherwise, we have to shift the mantissa bits up to the right location
743 APInt Tmp(width, mantissa);
744 Tmp <<= (unsigned)exp - 52;
745 return isNeg ? -Tmp : Tmp;
746}
747
748/// This function converts this APInt to a double.
749/// The layout for double is as following (IEEE Standard 754):
750/// --------------------------------------
751/// | Sign Exponent Fraction Bias |
752/// |-------------------------------------- |
753/// | 1[63] 11[62-52] 52[51-00] 1023 |
754/// --------------------------------------
755double APInt::roundToDouble(bool isSigned) const {
756
757 // Handle the simple case where the value is contained in one uint64_t.
758 // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
759 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
1
Taking false branch
760 if (isSigned) {
761 int64_t sext = SignExtend64(getWord(0), BitWidth);
762 return double(sext);
763 } else
764 return double(getWord(0));
765 }
766
767 // Determine if the value is negative.
768 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
2
Assuming 'isSigned' is not equal to 0
3
'?' condition is true
769
770 // Construct the absolute value if we're negative.
771 APInt Tmp(isNeg ? -(*this) : (*this));
4
Assuming 'isNeg' is not equal to 0
5
'?' condition is true
6
Calling copy constructor for 'APInt'
13
Returning from copy constructor for 'APInt'
14
Calling '~APInt'
772
773 // Figure out how many bits we're using.
774 unsigned n = Tmp.getActiveBits();
775
776 // The exponent (without bias normalization) is just the number of bits
777 // we are using. Note that the sign bit is gone since we constructed the
778 // absolute value.
779 uint64_t exp = n;
780
781 // Return infinity for exponent overflow
782 if (exp > 1023) {
783 if (!isSigned || !isNeg)
784 return std::numeric_limits<double>::infinity();
785 else
786 return -std::numeric_limits<double>::infinity();
787 }
788 exp += 1023; // Increment for 1023 bias
789
790 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
791 // extract the high 52 bits from the correct words in pVal.
792 uint64_t mantissa;
793 unsigned hiWord = whichWord(n-1);
794 if (hiWord == 0) {
795 mantissa = Tmp.U.pVal[0];
796 if (n > 52)
797 mantissa >>= n - 52; // shift down, we want the top 52 bits.
798 } else {
799 assert(hiWord > 0 && "huh?")(static_cast <bool> (hiWord > 0 && "huh?") ?
void (0) : __assert_fail ("hiWord > 0 && \"huh?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 799, __extension__ __PRETTY_FUNCTION__))
;
800 uint64_t hibits = Tmp.U.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
801 uint64_t lobits = Tmp.U.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
802 mantissa = hibits | lobits;
803 }
804
805 // The leading bit of mantissa is implicit, so get rid of it.
806 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
807 union {
808 double D;
809 uint64_t I;
810 } T;
811 T.I = sign | (exp << 52) | mantissa;
812 return T.D;
813}
814
815// Truncate to new width.
816APInt APInt::trunc(unsigned width) const {
817 assert(width < BitWidth && "Invalid APInt Truncate request")(static_cast <bool> (width < BitWidth && "Invalid APInt Truncate request"
) ? void (0) : __assert_fail ("width < BitWidth && \"Invalid APInt Truncate request\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 817, __extension__ __PRETTY_FUNCTION__))
;
818 assert(width && "Can't truncate to 0 bits")(static_cast <bool> (width && "Can't truncate to 0 bits"
) ? void (0) : __assert_fail ("width && \"Can't truncate to 0 bits\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 818, __extension__ __PRETTY_FUNCTION__))
;
819
820 if (width <= APINT_BITS_PER_WORD)
821 return APInt(width, getRawData()[0]);
822
823 APInt Result(getMemory(getNumWords(width)), width);
824
825 // Copy full words.
826 unsigned i;
827 for (i = 0; i != width / APINT_BITS_PER_WORD; i++)
828 Result.U.pVal[i] = U.pVal[i];
829
830 // Truncate and copy any partial word.
831 unsigned bits = (0 - width) % APINT_BITS_PER_WORD;
832 if (bits != 0)
833 Result.U.pVal[i] = U.pVal[i] << bits >> bits;
834
835 return Result;
836}
837
838// Sign extend to a new width.
839APInt APInt::sext(unsigned Width) const {
840 assert(Width > BitWidth && "Invalid APInt SignExtend request")(static_cast <bool> (Width > BitWidth && "Invalid APInt SignExtend request"
) ? void (0) : __assert_fail ("Width > BitWidth && \"Invalid APInt SignExtend request\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 840, __extension__ __PRETTY_FUNCTION__))
;
841
842 if (Width <= APINT_BITS_PER_WORD)
843 return APInt(Width, SignExtend64(U.VAL, BitWidth));
844
845 APInt Result(getMemory(getNumWords(Width)), Width);
846
847 // Copy words.
848 std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
849
850 // Sign extend the last word since there may be unused bits in the input.
851 Result.U.pVal[getNumWords() - 1] =
852 SignExtend64(Result.U.pVal[getNumWords() - 1],
853 ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
854
855 // Fill with sign bits.
856 std::memset(Result.U.pVal + getNumWords(), isNegative() ? -1 : 0,
857 (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
858 Result.clearUnusedBits();
859 return Result;
860}
861
862// Zero extend to a new width.
863APInt APInt::zext(unsigned width) const {
864 assert(width > BitWidth && "Invalid APInt ZeroExtend request")(static_cast <bool> (width > BitWidth && "Invalid APInt ZeroExtend request"
) ? void (0) : __assert_fail ("width > BitWidth && \"Invalid APInt ZeroExtend request\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 864, __extension__ __PRETTY_FUNCTION__))
;
865
866 if (width <= APINT_BITS_PER_WORD)
867 return APInt(width, U.VAL);
868
869 APInt Result(getMemory(getNumWords(width)), width);
870
871 // Copy words.
872 std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE);
873
874 // Zero remaining words.
875 std::memset(Result.U.pVal + getNumWords(), 0,
876 (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE);
877
878 return Result;
879}
880
881APInt APInt::zextOrTrunc(unsigned width) const {
882 if (BitWidth < width)
883 return zext(width);
884 if (BitWidth > width)
885 return trunc(width);
886 return *this;
887}
888
889APInt APInt::sextOrTrunc(unsigned width) const {
890 if (BitWidth < width)
891 return sext(width);
892 if (BitWidth > width)
893 return trunc(width);
894 return *this;
895}
896
897APInt APInt::zextOrSelf(unsigned width) const {
898 if (BitWidth < width)
899 return zext(width);
900 return *this;
901}
902
903APInt APInt::sextOrSelf(unsigned width) const {
904 if (BitWidth < width)
905 return sext(width);
906 return *this;
907}
908
909/// Arithmetic right-shift this APInt by shiftAmt.
910/// @brief Arithmetic right-shift function.
911void APInt::ashrInPlace(const APInt &shiftAmt) {
912 ashrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
913}
914
915/// Arithmetic right-shift this APInt by shiftAmt.
916/// @brief Arithmetic right-shift function.
917void APInt::ashrSlowCase(unsigned ShiftAmt) {
918 // Don't bother performing a no-op shift.
919 if (!ShiftAmt)
920 return;
921
922 // Save the original sign bit for later.
923 bool Negative = isNegative();
924
925 // WordShift is the inter-part shift; BitShift is intra-part shift.
926 unsigned WordShift = ShiftAmt / APINT_BITS_PER_WORD;
927 unsigned BitShift = ShiftAmt % APINT_BITS_PER_WORD;
928
929 unsigned WordsToMove = getNumWords() - WordShift;
930 if (WordsToMove != 0) {
931 // Sign extend the last word to fill in the unused bits.
932 U.pVal[getNumWords() - 1] = SignExtend64(
933 U.pVal[getNumWords() - 1], ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1);
934
935 // Fastpath for moving by whole words.
936 if (BitShift == 0) {
937 std::memmove(U.pVal, U.pVal + WordShift, WordsToMove * APINT_WORD_SIZE);
938 } else {
939 // Move the words containing significant bits.
940 for (unsigned i = 0; i != WordsToMove - 1; ++i)
941 U.pVal[i] = (U.pVal[i + WordShift] >> BitShift) |
942 (U.pVal[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift));
943
944 // Handle the last word which has no high bits to copy.
945 U.pVal[WordsToMove - 1] = U.pVal[WordShift + WordsToMove - 1] >> BitShift;
946 // Sign extend one more time.
947 U.pVal[WordsToMove - 1] =
948 SignExtend64(U.pVal[WordsToMove - 1], APINT_BITS_PER_WORD - BitShift);
949 }
950 }
951
952 // Fill in the remainder based on the original sign.
953 std::memset(U.pVal + WordsToMove, Negative ? -1 : 0,
954 WordShift * APINT_WORD_SIZE);
955 clearUnusedBits();
956}
957
958/// Logical right-shift this APInt by shiftAmt.
959/// @brief Logical right-shift function.
960void APInt::lshrInPlace(const APInt &shiftAmt) {
961 lshrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth));
962}
963
964/// Logical right-shift this APInt by shiftAmt.
965/// @brief Logical right-shift function.
966void APInt::lshrSlowCase(unsigned ShiftAmt) {
967 tcShiftRight(U.pVal, getNumWords(), ShiftAmt);
968}
969
970/// Left-shift this APInt by shiftAmt.
971/// @brief Left-shift function.
972APInt &APInt::operator<<=(const APInt &shiftAmt) {
973 // It's undefined behavior in C to shift by BitWidth or greater.
974 *this <<= (unsigned)shiftAmt.getLimitedValue(BitWidth);
975 return *this;
976}
977
978void APInt::shlSlowCase(unsigned ShiftAmt) {
979 tcShiftLeft(U.pVal, getNumWords(), ShiftAmt);
980 clearUnusedBits();
981}
982
983// Calculate the rotate amount modulo the bit width.
984static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) {
985 unsigned rotBitWidth = rotateAmt.getBitWidth();
986 APInt rot = rotateAmt;
987 if (rotBitWidth < BitWidth) {
988 // Extend the rotate APInt, so that the urem doesn't divide by 0.
989 // e.g. APInt(1, 32) would give APInt(1, 0).
990 rot = rotateAmt.zext(BitWidth);
991 }
992 rot = rot.urem(APInt(rot.getBitWidth(), BitWidth));
993 return rot.getLimitedValue(BitWidth);
994}
995
996APInt APInt::rotl(const APInt &rotateAmt) const {
997 return rotl(rotateModulo(BitWidth, rotateAmt));
998}
999
1000APInt APInt::rotl(unsigned rotateAmt) const {
1001 rotateAmt %= BitWidth;
1002 if (rotateAmt == 0)
1003 return *this;
1004 return shl(rotateAmt) | lshr(BitWidth - rotateAmt);
1005}
1006
1007APInt APInt::rotr(const APInt &rotateAmt) const {
1008 return rotr(rotateModulo(BitWidth, rotateAmt));
1009}
1010
1011APInt APInt::rotr(unsigned rotateAmt) const {
1012 rotateAmt %= BitWidth;
1013 if (rotateAmt == 0)
1014 return *this;
1015 return lshr(rotateAmt) | shl(BitWidth - rotateAmt);
1016}
1017
1018// Square Root - this method computes and returns the square root of "this".
1019// Three mechanisms are used for computation. For small values (<= 5 bits),
1020// a table lookup is done. This gets some performance for common cases. For
1021// values using less than 52 bits, the value is converted to double and then
1022// the libc sqrt function is called. The result is rounded and then converted
1023// back to a uint64_t which is then used to construct the result. Finally,
1024// the Babylonian method for computing square roots is used.
1025APInt APInt::sqrt() const {
1026
1027 // Determine the magnitude of the value.
1028 unsigned magnitude = getActiveBits();
1029
1030 // Use a fast table for some small values. This also gets rid of some
1031 // rounding errors in libc sqrt for small values.
1032 if (magnitude <= 5) {
1033 static const uint8_t results[32] = {
1034 /* 0 */ 0,
1035 /* 1- 2 */ 1, 1,
1036 /* 3- 6 */ 2, 2, 2, 2,
1037 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1038 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1039 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1040 /* 31 */ 6
1041 };
1042 return APInt(BitWidth, results[ (isSingleWord() ? U.VAL : U.pVal[0]) ]);
1043 }
1044
1045 // If the magnitude of the value fits in less than 52 bits (the precision of
1046 // an IEEE double precision floating point value), then we can use the
1047 // libc sqrt function which will probably use a hardware sqrt computation.
1048 // This should be faster than the algorithm below.
1049 if (magnitude < 52) {
1050 return APInt(BitWidth,
1051 uint64_t(::round(::sqrt(double(isSingleWord() ? U.VAL
1052 : U.pVal[0])))));
1053 }
1054
1055 // Okay, all the short cuts are exhausted. We must compute it. The following
1056 // is a classical Babylonian method for computing the square root. This code
1057 // was adapted to APInt from a wikipedia article on such computations.
1058 // See http://www.wikipedia.org/ and go to the page named
1059 // Calculate_an_integer_square_root.
1060 unsigned nbits = BitWidth, i = 4;
1061 APInt testy(BitWidth, 16);
1062 APInt x_old(BitWidth, 1);
1063 APInt x_new(BitWidth, 0);
1064 APInt two(BitWidth, 2);
1065
1066 // Select a good starting value using binary logarithms.
1067 for (;; i += 2, testy = testy.shl(2))
1068 if (i >= nbits || this->ule(testy)) {
1069 x_old = x_old.shl(i / 2);
1070 break;
1071 }
1072
1073 // Use the Babylonian method to arrive at the integer square root:
1074 for (;;) {
1075 x_new = (this->udiv(x_old) + x_old).udiv(two);
1076 if (x_old.ule(x_new))
1077 break;
1078 x_old = x_new;
1079 }
1080
1081 // Make sure we return the closest approximation
1082 // NOTE: The rounding calculation below is correct. It will produce an
1083 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1084 // determined to be a rounding issue with pari/gp as it begins to use a
1085 // floating point representation after 192 bits. There are no discrepancies
1086 // between this algorithm and pari/gp for bit widths < 192 bits.
1087 APInt square(x_old * x_old);
1088 APInt nextSquare((x_old + 1) * (x_old +1));
1089 if (this->ult(square))
1090 return x_old;
1091 assert(this->ule(nextSquare) && "Error in APInt::sqrt computation")(static_cast <bool> (this->ule(nextSquare) &&
"Error in APInt::sqrt computation") ? void (0) : __assert_fail
("this->ule(nextSquare) && \"Error in APInt::sqrt computation\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 1091, __extension__ __PRETTY_FUNCTION__))
;
1092 APInt midpoint((nextSquare - square).udiv(two));
1093 APInt offset(*this - square);
1094 if (offset.ult(midpoint))
1095 return x_old;
1096 return x_old + 1;
1097}
1098
1099/// Computes the multiplicative inverse of this APInt for a given modulo. The
1100/// iterative extended Euclidean algorithm is used to solve for this value,
1101/// however we simplify it to speed up calculating only the inverse, and take
1102/// advantage of div+rem calculations. We also use some tricks to avoid copying
1103/// (potentially large) APInts around.
1104APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1105 assert(ult(modulo) && "This APInt must be smaller than the modulo")(static_cast <bool> (ult(modulo) && "This APInt must be smaller than the modulo"
) ? void (0) : __assert_fail ("ult(modulo) && \"This APInt must be smaller than the modulo\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 1105, __extension__ __PRETTY_FUNCTION__))
;
1106
1107 // Using the properties listed at the following web page (accessed 06/21/08):
1108 // http://www.numbertheory.org/php/euclid.html
1109 // (especially the properties numbered 3, 4 and 9) it can be proved that
1110 // BitWidth bits suffice for all the computations in the algorithm implemented
1111 // below. More precisely, this number of bits suffice if the multiplicative
1112 // inverse exists, but may not suffice for the general extended Euclidean
1113 // algorithm.
1114
1115 APInt r[2] = { modulo, *this };
1116 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1117 APInt q(BitWidth, 0);
1118
1119 unsigned i;
1120 for (i = 0; r[i^1] != 0; i ^= 1) {
1121 // An overview of the math without the confusing bit-flipping:
1122 // q = r[i-2] / r[i-1]
1123 // r[i] = r[i-2] % r[i-1]
1124 // t[i] = t[i-2] - t[i-1] * q
1125 udivrem(r[i], r[i^1], q, r[i]);
1126 t[i] -= t[i^1] * q;
1127 }
1128
1129 // If this APInt and the modulo are not coprime, there is no multiplicative
1130 // inverse, so return 0. We check this by looking at the next-to-last
1131 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1132 // algorithm.
1133 if (r[i] != 1)
1134 return APInt(BitWidth, 0);
1135
1136 // The next-to-last t is the multiplicative inverse. However, we are
1137 // interested in a positive inverse. Calculate a positive one from a negative
1138 // one if necessary. A simple addition of the modulo suffices because
1139 // abs(t[i]) is known to be less than *this/2 (see the link above).
1140 if (t[i].isNegative())
1141 t[i] += modulo;
1142
1143 return std::move(t[i]);
1144}
1145
1146/// Calculate the magic numbers required to implement a signed integer division
1147/// by a constant as a sequence of multiplies, adds and shifts. Requires that
1148/// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S.
1149/// Warren, Jr., chapter 10.
1150APInt::ms APInt::magic() const {
1151 const APInt& d = *this;
1152 unsigned p;
1153 APInt ad, anc, delta, q1, r1, q2, r2, t;
1154 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1155 struct ms mag;
1156
1157 ad = d.abs();
1158 t = signedMin + (d.lshr(d.getBitWidth() - 1));
1159 anc = t - 1 - t.urem(ad); // absolute value of nc
1160 p = d.getBitWidth() - 1; // initialize p
1161 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc)
1162 r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc))
1163 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d)
1164 r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d))
1165 do {
1166 p = p + 1;
1167 q1 = q1<<1; // update q1 = 2p/abs(nc)
1168 r1 = r1<<1; // update r1 = rem(2p/abs(nc))
1169 if (r1.uge(anc)) { // must be unsigned comparison
1170 q1 = q1 + 1;
1171 r1 = r1 - anc;
1172 }
1173 q2 = q2<<1; // update q2 = 2p/abs(d)
1174 r2 = r2<<1; // update r2 = rem(2p/abs(d))
1175 if (r2.uge(ad)) { // must be unsigned comparison
1176 q2 = q2 + 1;
1177 r2 = r2 - ad;
1178 }
1179 delta = ad - r2;
1180 } while (q1.ult(delta) || (q1 == delta && r1 == 0));
1181
1182 mag.m = q2 + 1;
1183 if (d.isNegative()) mag.m = -mag.m; // resulting magic number
1184 mag.s = p - d.getBitWidth(); // resulting shift
1185 return mag;
1186}
1187
1188/// Calculate the magic numbers required to implement an unsigned integer
1189/// division by a constant as a sequence of multiplies, adds and shifts.
1190/// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry
1191/// S. Warren, Jr., chapter 10.
1192/// LeadingZeros can be used to simplify the calculation if the upper bits
1193/// of the divided value are known zero.
1194APInt::mu APInt::magicu(unsigned LeadingZeros) const {
1195 const APInt& d = *this;
1196 unsigned p;
1197 APInt nc, delta, q1, r1, q2, r2;
1198 struct mu magu;
1199 magu.a = 0; // initialize "add" indicator
1200 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()).lshr(LeadingZeros);
1201 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1202 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1203
1204 nc = allOnes - (allOnes - d).urem(d);
1205 p = d.getBitWidth() - 1; // initialize p
1206 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc
1207 r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc)
1208 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d
1209 r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d)
1210 do {
1211 p = p + 1;
1212 if (r1.uge(nc - r1)) {
1213 q1 = q1 + q1 + 1; // update q1
1214 r1 = r1 + r1 - nc; // update r1
1215 }
1216 else {
1217 q1 = q1+q1; // update q1
1218 r1 = r1+r1; // update r1
1219 }
1220 if ((r2 + 1).uge(d - r2)) {
1221 if (q2.uge(signedMax)) magu.a = 1;
1222 q2 = q2+q2 + 1; // update q2
1223 r2 = r2+r2 + 1 - d; // update r2
1224 }
1225 else {
1226 if (q2.uge(signedMin)) magu.a = 1;
1227 q2 = q2+q2; // update q2
1228 r2 = r2+r2 + 1; // update r2
1229 }
1230 delta = d - 1 - r2;
1231 } while (p < d.getBitWidth()*2 &&
1232 (q1.ult(delta) || (q1 == delta && r1 == 0)));
1233 magu.m = q2 + 1; // resulting magic number
1234 magu.s = p - d.getBitWidth(); // resulting shift
1235 return magu;
1236}
1237
1238/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1239/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1240/// variables here have the same names as in the algorithm. Comments explain
1241/// the algorithm and any deviation from it.
1242static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r,
1243 unsigned m, unsigned n) {
1244 assert(u && "Must provide dividend")(static_cast <bool> (u && "Must provide dividend"
) ? void (0) : __assert_fail ("u && \"Must provide dividend\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 1244, __extension__ __PRETTY_FUNCTION__))
;
1245 assert(v && "Must provide divisor")(static_cast <bool> (v && "Must provide divisor"
) ? void (0) : __assert_fail ("v && \"Must provide divisor\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 1245, __extension__ __PRETTY_FUNCTION__))
;
1246 assert(q && "Must provide quotient")(static_cast <bool> (q && "Must provide quotient"
) ? void (0) : __assert_fail ("q && \"Must provide quotient\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 1246, __extension__ __PRETTY_FUNCTION__))
;
1247 assert(u != v && u != q && v != q && "Must use different memory")(static_cast <bool> (u != v && u != q &&
v != q && "Must use different memory") ? void (0) : __assert_fail
("u != v && u != q && v != q && \"Must use different memory\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 1247, __extension__ __PRETTY_FUNCTION__))
;
1248 assert(n>1 && "n must be > 1")(static_cast <bool> (n>1 && "n must be > 1"
) ? void (0) : __assert_fail ("n>1 && \"n must be > 1\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 1248, __extension__ __PRETTY_FUNCTION__))
;
1249
1250 // b denotes the base of the number system. In our case b is 2^32.
1251 const uint64_t b = uint64_t(1) << 32;
1252
1253// The DEBUG macros here tend to be spam in the debug output if you're not
1254// debugging this code. Disable them unless KNUTH_DEBUG is defined.
1255#pragma push_macro("DEBUG")
1256#ifndef KNUTH_DEBUG
1257#undef DEBUG
1258#define DEBUG(X)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { X; } } while (false)
do {} while (false)
1259#endif
1260
1261 DEBUG(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << "KnuthDiv: m=" << m <<
" n=" << n << '\n'; } } while (false)
;
1262 DEBUG(dbgs() << "KnuthDiv: original:")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << "KnuthDiv: original:"; } } while
(false)
;
1263 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i])do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { for (int i = m+n; i >=0; i--) dbgs() <<
" " << u[i]; } } while (false)
;
1264 DEBUG(dbgs() << " by")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << " by"; } } while (false)
;
1265 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1])do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { for (int i = n; i >0; i--) dbgs() << " "
<< v[i-1]; } } while (false)
;
1266 DEBUG(dbgs() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << '\n'; } } while (false)
;
1267 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1268 // u and v by d. Note that we have taken Knuth's advice here to use a power
1269 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1270 // 2 allows us to shift instead of multiply and it is easy to determine the
1271 // shift amount from the leading zeros. We are basically normalizing the u
1272 // and v so that its high bits are shifted to the top of v's range without
1273 // overflow. Note that this can require an extra word in u so that u must
1274 // be of length m+n+1.
1275 unsigned shift = countLeadingZeros(v[n-1]);
1276 uint32_t v_carry = 0;
1277 uint32_t u_carry = 0;
1278 if (shift) {
1279 for (unsigned i = 0; i < m+n; ++i) {
1280 uint32_t u_tmp = u[i] >> (32 - shift);
1281 u[i] = (u[i] << shift) | u_carry;
1282 u_carry = u_tmp;
1283 }
1284 for (unsigned i = 0; i < n; ++i) {
1285 uint32_t v_tmp = v[i] >> (32 - shift);
1286 v[i] = (v[i] << shift) | v_carry;
1287 v_carry = v_tmp;
1288 }
1289 }
1290 u[m+n] = u_carry;
1291
1292 DEBUG(dbgs() << "KnuthDiv: normal:")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << "KnuthDiv: normal:"; } } while
(false)
;
1293 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i])do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { for (int i = m+n; i >=0; i--) dbgs() <<
" " << u[i]; } } while (false)
;
1294 DEBUG(dbgs() << " by")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << " by"; } } while (false)
;
1295 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1])do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { for (int i = n; i >0; i--) dbgs() << " "
<< v[i-1]; } } while (false)
;
1296 DEBUG(dbgs() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << '\n'; } } while (false)
;
1297
1298 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1299 int j = m;
1300 do {
1301 DEBUG(dbgs() << "KnuthDiv: quotient digit #" << j << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << "KnuthDiv: quotient digit #" <<
j << '\n'; } } while (false)
;
1302 // D3. [Calculate q'.].
1303 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1304 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1305 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1306 // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test
1307 // on v[n-2] determines at high speed most of the cases in which the trial
1308 // value qp is one too large, and it eliminates all cases where qp is two
1309 // too large.
1310 uint64_t dividend = Make_64(u[j+n], u[j+n-1]);
1311 DEBUG(dbgs() << "KnuthDiv: dividend == " << dividend << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << "KnuthDiv: dividend == " <<
dividend << '\n'; } } while (false)
;
1312 uint64_t qp = dividend / v[n-1];
1313 uint64_t rp = dividend % v[n-1];
1314 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1315 qp--;
1316 rp += v[n-1];
1317 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1318 qp--;
1319 }
1320 DEBUG(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << "KnuthDiv: qp == " << qp <<
", rp == " << rp << '\n'; } } while (false)
;
1321
1322 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1323 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1324 // consists of a simple multiplication by a one-place number, combined with
1325 // a subtraction.
1326 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1327 // this step is actually negative, (u[j+n]...u[j]) should be left as the
1328 // true value plus b**(n+1), namely as the b's complement of
1329 // the true value, and a "borrow" to the left should be remembered.
1330 int64_t borrow = 0;
1331 for (unsigned i = 0; i < n; ++i) {
1332 uint64_t p = uint64_t(qp) * uint64_t(v[i]);
1333 int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p);
1334 u[j+i] = Lo_32(subres);
1335 borrow = Hi_32(p) - Hi_32(subres);
1336 DEBUG(dbgs() << "KnuthDiv: u[j+i] = " << u[j+i]do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << "KnuthDiv: u[j+i] = " << u
[j+i] << ", borrow = " << borrow << '\n'; }
} while (false)
1337 << ", borrow = " << borrow << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << "KnuthDiv: u[j+i] = " << u
[j+i] << ", borrow = " << borrow << '\n'; }
} while (false)
;
1338 }
1339 bool isNeg = u[j+n] < borrow;
1340 u[j+n] -= Lo_32(borrow);
1341
1342 DEBUG(dbgs() << "KnuthDiv: after subtraction:")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << "KnuthDiv: after subtraction:"; }
} while (false)
;
1343 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i])do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { for (int i = m+n; i >=0; i--) dbgs() <<
" " << u[i]; } } while (false)
;
1344 DEBUG(dbgs() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << '\n'; } } while (false)
;
1345
1346 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1347 // negative, go to step D6; otherwise go on to step D7.
1348 q[j] = Lo_32(qp);
1349 if (isNeg) {
1350 // D6. [Add back]. The probability that this step is necessary is very
1351 // small, on the order of only 2/b. Make sure that test data accounts for
1352 // this possibility. Decrease q[j] by 1
1353 q[j]--;
1354 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1355 // A carry will occur to the left of u[j+n], and it should be ignored
1356 // since it cancels with the borrow that occurred in D4.
1357 bool carry = false;
1358 for (unsigned i = 0; i < n; i++) {
1359 uint32_t limit = std::min(u[j+i],v[i]);
1360 u[j+i] += v[i] + carry;
1361 carry = u[j+i] < limit || (carry && u[j+i] == limit);
1362 }
1363 u[j+n] += carry;
1364 }
1365 DEBUG(dbgs() << "KnuthDiv: after correction:")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << "KnuthDiv: after correction:"; }
} while (false)
;
1366 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i])do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { for (int i = m+n; i >=0; i--) dbgs() <<
" " << u[i]; } } while (false)
;
1367 DEBUG(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << "\nKnuthDiv: digit result = " <<
q[j] << '\n'; } } while (false)
;
1368
1369 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1370 } while (--j >= 0);
1371
1372 DEBUG(dbgs() << "KnuthDiv: quotient:")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << "KnuthDiv: quotient:"; } } while
(false)
;
1373 DEBUG(for (int i = m; i >=0; i--) dbgs() <<" " << q[i])do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { for (int i = m; i >=0; i--) dbgs() <<" "
<< q[i]; } } while (false)
;
1374 DEBUG(dbgs() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << '\n'; } } while (false)
;
1375
1376 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1377 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1378 // compute the remainder (urem uses this).
1379 if (r) {
1380 // The value d is expressed by the "shift" value above since we avoided
1381 // multiplication by d by using a shift left. So, all we have to do is
1382 // shift right here.
1383 if (shift) {
1384 uint32_t carry = 0;
1385 DEBUG(dbgs() << "KnuthDiv: remainder:")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << "KnuthDiv: remainder:"; } } while
(false)
;
1386 for (int i = n-1; i >= 0; i--) {
1387 r[i] = (u[i] >> shift) | carry;
1388 carry = u[i] << (32 - shift);
1389 DEBUG(dbgs() << " " << r[i])do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << " " << r[i]; } } while (false
)
;
1390 }
1391 } else {
1392 for (int i = n-1; i >= 0; i--) {
1393 r[i] = u[i];
1394 DEBUG(dbgs() << " " << r[i])do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << " " << r[i]; } } while (false
)
;
1395 }
1396 }
1397 DEBUG(dbgs() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << '\n'; } } while (false)
;
1398 }
1399 DEBUG(dbgs() << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("apint")) { dbgs() << '\n'; } } while (false)
;
1400
1401#pragma pop_macro("DEBUG")
1402}
1403
1404void APInt::divide(const WordType *LHS, unsigned lhsWords, const WordType *RHS,
1405 unsigned rhsWords, WordType *Quotient, WordType *Remainder) {
1406 assert(lhsWords >= rhsWords && "Fractional result")(static_cast <bool> (lhsWords >= rhsWords &&
"Fractional result") ? void (0) : __assert_fail ("lhsWords >= rhsWords && \"Fractional result\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 1406, __extension__ __PRETTY_FUNCTION__))
;
1407
1408 // First, compose the values into an array of 32-bit words instead of
1409 // 64-bit words. This is a necessity of both the "short division" algorithm
1410 // and the Knuth "classical algorithm" which requires there to be native
1411 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1412 // can't use 64-bit operands here because we don't have native results of
1413 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
1414 // work on large-endian machines.
1415 unsigned n = rhsWords * 2;
1416 unsigned m = (lhsWords * 2) - n;
1417
1418 // Allocate space for the temporary values we need either on the stack, if
1419 // it will fit, or on the heap if it won't.
1420 uint32_t SPACE[128];
1421 uint32_t *U = nullptr;
1422 uint32_t *V = nullptr;
1423 uint32_t *Q = nullptr;
1424 uint32_t *R = nullptr;
1425 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1426 U = &SPACE[0];
1427 V = &SPACE[m+n+1];
1428 Q = &SPACE[(m+n+1) + n];
1429 if (Remainder)
1430 R = &SPACE[(m+n+1) + n + (m+n)];
1431 } else {
1432 U = new uint32_t[m + n + 1];
1433 V = new uint32_t[n];
1434 Q = new uint32_t[m+n];
1435 if (Remainder)
1436 R = new uint32_t[n];
1437 }
1438
1439 // Initialize the dividend
1440 memset(U, 0, (m+n+1)*sizeof(uint32_t));
1441 for (unsigned i = 0; i < lhsWords; ++i) {
1442 uint64_t tmp = LHS[i];
1443 U[i * 2] = Lo_32(tmp);
1444 U[i * 2 + 1] = Hi_32(tmp);
1445 }
1446 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1447
1448 // Initialize the divisor
1449 memset(V, 0, (n)*sizeof(uint32_t));
1450 for (unsigned i = 0; i < rhsWords; ++i) {
1451 uint64_t tmp = RHS[i];
1452 V[i * 2] = Lo_32(tmp);
1453 V[i * 2 + 1] = Hi_32(tmp);
1454 }
1455
1456 // initialize the quotient and remainder
1457 memset(Q, 0, (m+n) * sizeof(uint32_t));
1458 if (Remainder)
1459 memset(R, 0, n * sizeof(uint32_t));
1460
1461 // Now, adjust m and n for the Knuth division. n is the number of words in
1462 // the divisor. m is the number of words by which the dividend exceeds the
1463 // divisor (i.e. m+n is the length of the dividend). These sizes must not
1464 // contain any zero words or the Knuth algorithm fails.
1465 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1466 n--;
1467 m++;
1468 }
1469 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1470 m--;
1471
1472 // If we're left with only a single word for the divisor, Knuth doesn't work
1473 // so we implement the short division algorithm here. This is much simpler
1474 // and faster because we are certain that we can divide a 64-bit quantity
1475 // by a 32-bit quantity at hardware speed and short division is simply a
1476 // series of such operations. This is just like doing short division but we
1477 // are using base 2^32 instead of base 10.
1478 assert(n != 0 && "Divide by zero?")(static_cast <bool> (n != 0 && "Divide by zero?"
) ? void (0) : __assert_fail ("n != 0 && \"Divide by zero?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 1478, __extension__ __PRETTY_FUNCTION__))
;
1479 if (n == 1) {
1480 uint32_t divisor = V[0];
1481 uint32_t remainder = 0;
1482 for (int i = m; i >= 0; i--) {
1483 uint64_t partial_dividend = Make_64(remainder, U[i]);
1484 if (partial_dividend == 0) {
1485 Q[i] = 0;
1486 remainder = 0;
1487 } else if (partial_dividend < divisor) {
1488 Q[i] = 0;
1489 remainder = Lo_32(partial_dividend);
1490 } else if (partial_dividend == divisor) {
1491 Q[i] = 1;
1492 remainder = 0;
1493 } else {
1494 Q[i] = Lo_32(partial_dividend / divisor);
1495 remainder = Lo_32(partial_dividend - (Q[i] * divisor));
1496 }
1497 }
1498 if (R)
1499 R[0] = remainder;
1500 } else {
1501 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1502 // case n > 1.
1503 KnuthDiv(U, V, Q, R, m, n);
1504 }
1505
1506 // If the caller wants the quotient
1507 if (Quotient) {
1508 for (unsigned i = 0; i < lhsWords; ++i)
1509 Quotient[i] = Make_64(Q[i*2+1], Q[i*2]);
1510 }
1511
1512 // If the caller wants the remainder
1513 if (Remainder) {
1514 for (unsigned i = 0; i < rhsWords; ++i)
1515 Remainder[i] = Make_64(R[i*2+1], R[i*2]);
1516 }
1517
1518 // Clean up the memory we allocated.
1519 if (U != &SPACE[0]) {
1520 delete [] U;
1521 delete [] V;
1522 delete [] Q;
1523 delete [] R;
1524 }
1525}
1526
1527APInt APInt::udiv(const APInt &RHS) const {
1528 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 1528, __extension__ __PRETTY_FUNCTION__))
;
1529
1530 // First, deal with the easy case
1531 if (isSingleWord()) {
1532 assert(RHS.U.VAL != 0 && "Divide by zero?")(static_cast <bool> (RHS.U.VAL != 0 && "Divide by zero?"
) ? void (0) : __assert_fail ("RHS.U.VAL != 0 && \"Divide by zero?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 1532, __extension__ __PRETTY_FUNCTION__))
;
1533 return APInt(BitWidth, U.VAL / RHS.U.VAL);
1534 }
1535
1536 // Get some facts about the LHS and RHS number of bits and words
1537 unsigned lhsWords = getNumWords(getActiveBits());
1538 unsigned rhsBits = RHS.getActiveBits();
1539 unsigned rhsWords = getNumWords(rhsBits);
1540 assert(rhsWords && "Divided by zero???")(static_cast <bool> (rhsWords && "Divided by zero???"
) ? void (0) : __assert_fail ("rhsWords && \"Divided by zero???\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 1540, __extension__ __PRETTY_FUNCTION__))
;
1541
1542 // Deal with some degenerate cases
1543 if (!lhsWords)
1544 // 0 / X ===> 0
1545 return APInt(BitWidth, 0);
1546 if (rhsBits == 1)
1547 // X / 1 ===> X
1548 return *this;
1549 if (lhsWords < rhsWords || this->ult(RHS))
1550 // X / Y ===> 0, iff X < Y
1551 return APInt(BitWidth, 0);
1552 if (*this == RHS)
1553 // X / X ===> 1
1554 return APInt(BitWidth, 1);
1555 if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1556 // All high words are zero, just use native divide
1557 return APInt(BitWidth, this->U.pVal[0] / RHS.U.pVal[0]);
1558
1559 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1560 APInt Quotient(BitWidth, 0); // to hold result.
1561 divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, nullptr);
1562 return Quotient;
1563}
1564
1565APInt APInt::udiv(uint64_t RHS) const {
1566 assert(RHS != 0 && "Divide by zero?")(static_cast <bool> (RHS != 0 && "Divide by zero?"
) ? void (0) : __assert_fail ("RHS != 0 && \"Divide by zero?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 1566, __extension__ __PRETTY_FUNCTION__))
;
1567
1568 // First, deal with the easy case
1569 if (isSingleWord())
1570 return APInt(BitWidth, U.VAL / RHS);
1571
1572 // Get some facts about the LHS words.
1573 unsigned lhsWords = getNumWords(getActiveBits());
1574
1575 // Deal with some degenerate cases
1576 if (!lhsWords)
1577 // 0 / X ===> 0
1578 return APInt(BitWidth, 0);
1579 if (RHS == 1)
1580 // X / 1 ===> X
1581 return *this;
1582 if (this->ult(RHS))
1583 // X / Y ===> 0, iff X < Y
1584 return APInt(BitWidth, 0);
1585 if (*this == RHS)
1586 // X / X ===> 1
1587 return APInt(BitWidth, 1);
1588 if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1.
1589 // All high words are zero, just use native divide
1590 return APInt(BitWidth, this->U.pVal[0] / RHS);
1591
1592 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1593 APInt Quotient(BitWidth, 0); // to hold result.
1594 divide(U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, nullptr);
1595 return Quotient;
1596}
1597
1598APInt APInt::sdiv(const APInt &RHS) const {
1599 if (isNegative()) {
1600 if (RHS.isNegative())
1601 return (-(*this)).udiv(-RHS);
1602 return -((-(*this)).udiv(RHS));
1603 }
1604 if (RHS.isNegative())
1605 return -(this->udiv(-RHS));
1606 return this->udiv(RHS);
1607}
1608
1609APInt APInt::sdiv(int64_t RHS) const {
1610 if (isNegative()) {
1611 if (RHS < 0)
1612 return (-(*this)).udiv(-RHS);
1613 return -((-(*this)).udiv(RHS));
1614 }
1615 if (RHS < 0)
1616 return -(this->udiv(-RHS));
1617 return this->udiv(RHS);
1618}
1619
1620APInt APInt::urem(const APInt &RHS) const {
1621 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 1621, __extension__ __PRETTY_FUNCTION__))
;
1622 if (isSingleWord()) {
1623 assert(RHS.U.VAL != 0 && "Remainder by zero?")(static_cast <bool> (RHS.U.VAL != 0 && "Remainder by zero?"
) ? void (0) : __assert_fail ("RHS.U.VAL != 0 && \"Remainder by zero?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 1623, __extension__ __PRETTY_FUNCTION__))
;
1624 return APInt(BitWidth, U.VAL % RHS.U.VAL);
1625 }
1626
1627 // Get some facts about the LHS
1628 unsigned lhsWords = getNumWords(getActiveBits());
1629
1630 // Get some facts about the RHS
1631 unsigned rhsBits = RHS.getActiveBits();
1632 unsigned rhsWords = getNumWords(rhsBits);
1633 assert(rhsWords && "Performing remainder operation by zero ???")(static_cast <bool> (rhsWords && "Performing remainder operation by zero ???"
) ? void (0) : __assert_fail ("rhsWords && \"Performing remainder operation by zero ???\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 1633, __extension__ __PRETTY_FUNCTION__))
;
1634
1635 // Check the degenerate cases
1636 if (lhsWords == 0)
1637 // 0 % Y ===> 0
1638 return APInt(BitWidth, 0);
1639 if (rhsBits == 1)
1640 // X % 1 ===> 0
1641 return APInt(BitWidth, 0);
1642 if (lhsWords < rhsWords || this->ult(RHS))
1643 // X % Y ===> X, iff X < Y
1644 return *this;
1645 if (*this == RHS)
1646 // X % X == 0;
1647 return APInt(BitWidth, 0);
1648 if (lhsWords == 1)
1649 // All high words are zero, just use native remainder
1650 return APInt(BitWidth, U.pVal[0] % RHS.U.pVal[0]);
1651
1652 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1653 APInt Remainder(BitWidth, 0);
1654 divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, nullptr, Remainder.U.pVal);
1655 return Remainder;
1656}
1657
1658uint64_t APInt::urem(uint64_t RHS) const {
1659 assert(RHS != 0 && "Remainder by zero?")(static_cast <bool> (RHS != 0 && "Remainder by zero?"
) ? void (0) : __assert_fail ("RHS != 0 && \"Remainder by zero?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 1659, __extension__ __PRETTY_FUNCTION__))
;
1660
1661 if (isSingleWord())
1662 return U.VAL % RHS;
1663
1664 // Get some facts about the LHS
1665 unsigned lhsWords = getNumWords(getActiveBits());
1666
1667 // Check the degenerate cases
1668 if (lhsWords == 0)
1669 // 0 % Y ===> 0
1670 return 0;
1671 if (RHS == 1)
1672 // X % 1 ===> 0
1673 return 0;
1674 if (this->ult(RHS))
1675 // X % Y ===> X, iff X < Y
1676 return getZExtValue();
1677 if (*this == RHS)
1678 // X % X == 0;
1679 return 0;
1680 if (lhsWords == 1)
1681 // All high words are zero, just use native remainder
1682 return U.pVal[0] % RHS;
1683
1684 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1685 uint64_t Remainder;
1686 divide(U.pVal, lhsWords, &RHS, 1, nullptr, &Remainder);
1687 return Remainder;
1688}
1689
1690APInt APInt::srem(const APInt &RHS) const {
1691 if (isNegative()) {
1692 if (RHS.isNegative())
1693 return -((-(*this)).urem(-RHS));
1694 return -((-(*this)).urem(RHS));
1695 }
1696 if (RHS.isNegative())
1697 return this->urem(-RHS);
1698 return this->urem(RHS);
1699}
1700
1701int64_t APInt::srem(int64_t RHS) const {
1702 if (isNegative()) {
1703 if (RHS < 0)
1704 return -((-(*this)).urem(-RHS));
1705 return -((-(*this)).urem(RHS));
1706 }
1707 if (RHS < 0)
1708 return this->urem(-RHS);
1709 return this->urem(RHS);
1710}
1711
1712void APInt::udivrem(const APInt &LHS, const APInt &RHS,
1713 APInt &Quotient, APInt &Remainder) {
1714 assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (LHS.BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("LHS.BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 1714, __extension__ __PRETTY_FUNCTION__))
;
1715 unsigned BitWidth = LHS.BitWidth;
1716
1717 // First, deal with the easy case
1718 if (LHS.isSingleWord()) {
1719 assert(RHS.U.VAL != 0 && "Divide by zero?")(static_cast <bool> (RHS.U.VAL != 0 && "Divide by zero?"
) ? void (0) : __assert_fail ("RHS.U.VAL != 0 && \"Divide by zero?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 1719, __extension__ __PRETTY_FUNCTION__))
;
1720 uint64_t QuotVal = LHS.U.VAL / RHS.U.VAL;
1721 uint64_t RemVal = LHS.U.VAL % RHS.U.VAL;
1722 Quotient = APInt(BitWidth, QuotVal);
1723 Remainder = APInt(BitWidth, RemVal);
1724 return;
1725 }
1726
1727 // Get some size facts about the dividend and divisor
1728 unsigned lhsWords = getNumWords(LHS.getActiveBits());
1729 unsigned rhsBits = RHS.getActiveBits();
1730 unsigned rhsWords = getNumWords(rhsBits);
1731 assert(rhsWords && "Performing divrem operation by zero ???")(static_cast <bool> (rhsWords && "Performing divrem operation by zero ???"
) ? void (0) : __assert_fail ("rhsWords && \"Performing divrem operation by zero ???\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 1731, __extension__ __PRETTY_FUNCTION__))
;
1732
1733 // Check the degenerate cases
1734 if (lhsWords == 0) {
1735 Quotient = 0; // 0 / Y ===> 0
1736 Remainder = 0; // 0 % Y ===> 0
1737 return;
1738 }
1739
1740 if (rhsBits == 1) {
1741 Quotient = LHS; // X / 1 ===> X
1742 Remainder = 0; // X % 1 ===> 0
1743 }
1744
1745 if (lhsWords < rhsWords || LHS.ult(RHS)) {
1746 Remainder = LHS; // X % Y ===> X, iff X < Y
1747 Quotient = 0; // X / Y ===> 0, iff X < Y
1748 return;
1749 }
1750
1751 if (LHS == RHS) {
1752 Quotient = 1; // X / X ===> 1
1753 Remainder = 0; // X % X ===> 0;
1754 return;
1755 }
1756
1757 // Make sure there is enough space to hold the results.
1758 // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1759 // change the size. This is necessary if Quotient or Remainder is aliased
1760 // with LHS or RHS.
1761 Quotient.reallocate(BitWidth);
1762 Remainder.reallocate(BitWidth);
1763
1764 if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
1765 // There is only one word to consider so use the native versions.
1766 uint64_t lhsValue = LHS.U.pVal[0];
1767 uint64_t rhsValue = RHS.U.pVal[0];
1768 Quotient = lhsValue / rhsValue;
1769 Remainder = lhsValue % rhsValue;
1770 return;
1771 }
1772
1773 // Okay, lets do it the long way
1774 divide(LHS.U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal,
1775 Remainder.U.pVal);
1776 // Clear the rest of the Quotient and Remainder.
1777 std::memset(Quotient.U.pVal + lhsWords, 0,
1778 (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1779 std::memset(Remainder.U.pVal + rhsWords, 0,
1780 (getNumWords(BitWidth) - rhsWords) * APINT_WORD_SIZE);
1781}
1782
1783void APInt::udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1784 uint64_t &Remainder) {
1785 assert(RHS != 0 && "Divide by zero?")(static_cast <bool> (RHS != 0 && "Divide by zero?"
) ? void (0) : __assert_fail ("RHS != 0 && \"Divide by zero?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 1785, __extension__ __PRETTY_FUNCTION__))
;
1786 unsigned BitWidth = LHS.BitWidth;
1787
1788 // First, deal with the easy case
1789 if (LHS.isSingleWord()) {
1790 uint64_t QuotVal = LHS.U.VAL / RHS;
1791 Remainder = LHS.U.VAL % RHS;
1792 Quotient = APInt(BitWidth, QuotVal);
1793 return;
1794 }
1795
1796 // Get some size facts about the dividend and divisor
1797 unsigned lhsWords = getNumWords(LHS.getActiveBits());
1798
1799 // Check the degenerate cases
1800 if (lhsWords == 0) {
1801 Quotient = 0; // 0 / Y ===> 0
1802 Remainder = 0; // 0 % Y ===> 0
1803 return;
1804 }
1805
1806 if (RHS == 1) {
1807 Quotient = LHS; // X / 1 ===> X
1808 Remainder = 0; // X % 1 ===> 0
1809 }
1810
1811 if (LHS.ult(RHS)) {
1812 Remainder = LHS.getZExtValue(); // X % Y ===> X, iff X < Y
1813 Quotient = 0; // X / Y ===> 0, iff X < Y
1814 return;
1815 }
1816
1817 if (LHS == RHS) {
1818 Quotient = 1; // X / X ===> 1
1819 Remainder = 0; // X % X ===> 0;
1820 return;
1821 }
1822
1823 // Make sure there is enough space to hold the results.
1824 // NOTE: This assumes that reallocate won't affect any bits if it doesn't
1825 // change the size. This is necessary if Quotient is aliased with LHS.
1826 Quotient.reallocate(BitWidth);
1827
1828 if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1.
1829 // There is only one word to consider so use the native versions.
1830 uint64_t lhsValue = LHS.U.pVal[0];
1831 Quotient = lhsValue / RHS;
1832 Remainder = lhsValue % RHS;
1833 return;
1834 }
1835
1836 // Okay, lets do it the long way
1837 divide(LHS.U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, &Remainder);
1838 // Clear the rest of the Quotient.
1839 std::memset(Quotient.U.pVal + lhsWords, 0,
1840 (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE);
1841}
1842
1843void APInt::sdivrem(const APInt &LHS, const APInt &RHS,
1844 APInt &Quotient, APInt &Remainder) {
1845 if (LHS.isNegative()) {
1846 if (RHS.isNegative())
1847 APInt::udivrem(-LHS, -RHS, Quotient, Remainder);
1848 else {
1849 APInt::udivrem(-LHS, RHS, Quotient, Remainder);
1850 Quotient.negate();
1851 }
1852 Remainder.negate();
1853 } else if (RHS.isNegative()) {
1854 APInt::udivrem(LHS, -RHS, Quotient, Remainder);
1855 Quotient.negate();
1856 } else {
1857 APInt::udivrem(LHS, RHS, Quotient, Remainder);
1858 }
1859}
1860
1861void APInt::sdivrem(const APInt &LHS, int64_t RHS,
1862 APInt &Quotient, int64_t &Remainder) {
1863 uint64_t R = Remainder;
1864 if (LHS.isNegative()) {
1865 if (RHS < 0)
1866 APInt::udivrem(-LHS, -RHS, Quotient, R);
1867 else {
1868 APInt::udivrem(-LHS, RHS, Quotient, R);
1869 Quotient.negate();
1870 }
1871 R = -R;
1872 } else if (RHS < 0) {
1873 APInt::udivrem(LHS, -RHS, Quotient, R);
1874 Quotient.negate();
1875 } else {
1876 APInt::udivrem(LHS, RHS, Quotient, R);
1877 }
1878 Remainder = R;
1879}
1880
1881APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const {
1882 APInt Res = *this+RHS;
1883 Overflow = isNonNegative() == RHS.isNonNegative() &&
1884 Res.isNonNegative() != isNonNegative();
1885 return Res;
1886}
1887
1888APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const {
1889 APInt Res = *this+RHS;
1890 Overflow = Res.ult(RHS);
1891 return Res;
1892}
1893
1894APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const {
1895 APInt Res = *this - RHS;
1896 Overflow = isNonNegative() != RHS.isNonNegative() &&
1897 Res.isNonNegative() != isNonNegative();
1898 return Res;
1899}
1900
1901APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const {
1902 APInt Res = *this-RHS;
1903 Overflow = Res.ugt(*this);
1904 return Res;
1905}
1906
1907APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const {
1908 // MININT/-1 --> overflow.
1909 Overflow = isMinSignedValue() && RHS.isAllOnesValue();
1910 return sdiv(RHS);
1911}
1912
1913APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const {
1914 APInt Res = *this * RHS;
1915
1916 if (*this != 0 && RHS != 0)
1917 Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS;
1918 else
1919 Overflow = false;
1920 return Res;
1921}
1922
1923APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const {
1924 APInt Res = *this * RHS;
1925
1926 if (*this != 0 && RHS != 0)
1927 Overflow = Res.udiv(RHS) != *this || Res.udiv(*this) != RHS;
1928 else
1929 Overflow = false;
1930 return Res;
1931}
1932
1933APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const {
1934 Overflow = ShAmt.uge(getBitWidth());
1935 if (Overflow)
1936 return APInt(BitWidth, 0);
1937
1938 if (isNonNegative()) // Don't allow sign change.
1939 Overflow = ShAmt.uge(countLeadingZeros());
1940 else
1941 Overflow = ShAmt.uge(countLeadingOnes());
1942
1943 return *this << ShAmt;
1944}
1945
1946APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const {
1947 Overflow = ShAmt.uge(getBitWidth());
1948 if (Overflow)
1949 return APInt(BitWidth, 0);
1950
1951 Overflow = ShAmt.ugt(countLeadingZeros());
1952
1953 return *this << ShAmt;
1954}
1955
1956
1957
1958
1959void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) {
1960 // Check our assumptions here
1961 assert(!str.empty() && "Invalid string length")(static_cast <bool> (!str.empty() && "Invalid string length"
) ? void (0) : __assert_fail ("!str.empty() && \"Invalid string length\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 1961, __extension__ __PRETTY_FUNCTION__))
;
1962 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||(static_cast <bool> ((radix == 10 || radix == 8 || radix
== 16 || radix == 2 || radix == 36) && "Radix should be 2, 8, 10, 16, or 36!"
) ? void (0) : __assert_fail ("(radix == 10 || radix == 8 || radix == 16 || radix == 2 || radix == 36) && \"Radix should be 2, 8, 10, 16, or 36!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 1964, __extension__ __PRETTY_FUNCTION__))
1963 radix == 36) &&(static_cast <bool> ((radix == 10 || radix == 8 || radix
== 16 || radix == 2 || radix == 36) && "Radix should be 2, 8, 10, 16, or 36!"
) ? void (0) : __assert_fail ("(radix == 10 || radix == 8 || radix == 16 || radix == 2 || radix == 36) && \"Radix should be 2, 8, 10, 16, or 36!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 1964, __extension__ __PRETTY_FUNCTION__))
1964 "Radix should be 2, 8, 10, 16, or 36!")(static_cast <bool> ((radix == 10 || radix == 8 || radix
== 16 || radix == 2 || radix == 36) && "Radix should be 2, 8, 10, 16, or 36!"
) ? void (0) : __assert_fail ("(radix == 10 || radix == 8 || radix == 16 || radix == 2 || radix == 36) && \"Radix should be 2, 8, 10, 16, or 36!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 1964, __extension__ __PRETTY_FUNCTION__))
;
1965
1966 StringRef::iterator p = str.begin();
1967 size_t slen = str.size();
1968 bool isNeg = *p == '-';
1969 if (*p == '-' || *p == '+') {
1970 p++;
1971 slen--;
1972 assert(slen && "String is only a sign, needs a value.")(static_cast <bool> (slen && "String is only a sign, needs a value."
) ? void (0) : __assert_fail ("slen && \"String is only a sign, needs a value.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 1972, __extension__ __PRETTY_FUNCTION__))
;
1973 }
1974 assert((slen <= numbits || radix != 2) && "Insufficient bit width")(static_cast <bool> ((slen <= numbits || radix != 2)
&& "Insufficient bit width") ? void (0) : __assert_fail
("(slen <= numbits || radix != 2) && \"Insufficient bit width\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 1974, __extension__ __PRETTY_FUNCTION__))
;
1975 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width")(static_cast <bool> (((slen-1)*3 <= numbits || radix
!= 8) && "Insufficient bit width") ? void (0) : __assert_fail
("((slen-1)*3 <= numbits || radix != 8) && \"Insufficient bit width\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 1975, __extension__ __PRETTY_FUNCTION__))
;
1976 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width")(static_cast <bool> (((slen-1)*4 <= numbits || radix
!= 16) && "Insufficient bit width") ? void (0) : __assert_fail
("((slen-1)*4 <= numbits || radix != 16) && \"Insufficient bit width\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 1976, __extension__ __PRETTY_FUNCTION__))
;
1977 assert((((slen-1)*64)/22 <= numbits || radix != 10) &&(static_cast <bool> ((((slen-1)*64)/22 <= numbits ||
radix != 10) && "Insufficient bit width") ? void (0)
: __assert_fail ("(((slen-1)*64)/22 <= numbits || radix != 10) && \"Insufficient bit width\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 1978, __extension__ __PRETTY_FUNCTION__))
1978 "Insufficient bit width")(static_cast <bool> ((((slen-1)*64)/22 <= numbits ||
radix != 10) && "Insufficient bit width") ? void (0)
: __assert_fail ("(((slen-1)*64)/22 <= numbits || radix != 10) && \"Insufficient bit width\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 1978, __extension__ __PRETTY_FUNCTION__))
;
1979
1980 // Allocate memory if needed
1981 if (isSingleWord())
1982 U.VAL = 0;
1983 else
1984 U.pVal = getClearedMemory(getNumWords());
1985
1986 // Figure out if we can shift instead of multiply
1987 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
1988
1989 // Enter digit traversal loop
1990 for (StringRef::iterator e = str.end(); p != e; ++p) {
1991 unsigned digit = getDigit(*p, radix);
1992 assert(digit < radix && "Invalid character in digit string")(static_cast <bool> (digit < radix && "Invalid character in digit string"
) ? void (0) : __assert_fail ("digit < radix && \"Invalid character in digit string\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 1992, __extension__ __PRETTY_FUNCTION__))
;
1993
1994 // Shift or multiply the value by the radix
1995 if (slen > 1) {
1996 if (shift)
1997 *this <<= shift;
1998 else
1999 *this *= radix;
2000 }
2001
2002 // Add in the digit we just interpreted
2003 *this += digit;
2004 }
2005 // If its negative, put it in two's complement form
2006 if (isNeg)
2007 this->negate();
2008}
2009
2010void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
2011 bool Signed, bool formatAsCLiteral) const {
2012 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 ||(static_cast <bool> ((Radix == 10 || Radix == 8 || Radix
== 16 || Radix == 2 || Radix == 36) && "Radix should be 2, 8, 10, 16, or 36!"
) ? void (0) : __assert_fail ("(Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 || Radix == 36) && \"Radix should be 2, 8, 10, 16, or 36!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 2014, __extension__ __PRETTY_FUNCTION__))
2013 Radix == 36) &&(static_cast <bool> ((Radix == 10 || Radix == 8 || Radix
== 16 || Radix == 2 || Radix == 36) && "Radix should be 2, 8, 10, 16, or 36!"
) ? void (0) : __assert_fail ("(Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 || Radix == 36) && \"Radix should be 2, 8, 10, 16, or 36!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 2014, __extension__ __PRETTY_FUNCTION__))
2014 "Radix should be 2, 8, 10, 16, or 36!")(static_cast <bool> ((Radix == 10 || Radix == 8 || Radix
== 16 || Radix == 2 || Radix == 36) && "Radix should be 2, 8, 10, 16, or 36!"
) ? void (0) : __assert_fail ("(Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 || Radix == 36) && \"Radix should be 2, 8, 10, 16, or 36!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 2014, __extension__ __PRETTY_FUNCTION__))
;
2015
2016 const char *Prefix = "";
2017 if (formatAsCLiteral) {
2018 switch (Radix) {
2019 case 2:
2020 // Binary literals are a non-standard extension added in gcc 4.3:
2021 // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html
2022 Prefix = "0b";
2023 break;
2024 case 8:
2025 Prefix = "0";
2026 break;
2027 case 10:
2028 break; // No prefix
2029 case 16:
2030 Prefix = "0x";
2031 break;
2032 default:
2033 llvm_unreachable("Invalid radix!")::llvm::llvm_unreachable_internal("Invalid radix!", "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 2033)
;
2034 }
2035 }
2036
2037 // First, check for a zero value and just short circuit the logic below.
2038 if (*this == 0) {
2039 while (*Prefix) {
2040 Str.push_back(*Prefix);
2041 ++Prefix;
2042 };
2043 Str.push_back('0');
2044 return;
2045 }
2046
2047 static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
2048
2049 if (isSingleWord()) {
2050 char Buffer[65];
2051 char *BufPtr = std::end(Buffer);
2052
2053 uint64_t N;
2054 if (!Signed) {
2055 N = getZExtValue();
2056 } else {
2057 int64_t I = getSExtValue();
2058 if (I >= 0) {
2059 N = I;
2060 } else {
2061 Str.push_back('-');
2062 N = -(uint64_t)I;
2063 }
2064 }
2065
2066 while (*Prefix) {
2067 Str.push_back(*Prefix);
2068 ++Prefix;
2069 };
2070
2071 while (N) {
2072 *--BufPtr = Digits[N % Radix];
2073 N /= Radix;
2074 }
2075 Str.append(BufPtr, std::end(Buffer));
2076 return;
2077 }
2078
2079 APInt Tmp(*this);
2080
2081 if (Signed && isNegative()) {
2082 // They want to print the signed version and it is a negative value
2083 // Flip the bits and add one to turn it into the equivalent positive
2084 // value and put a '-' in the result.
2085 Tmp.negate();
2086 Str.push_back('-');
2087 }
2088
2089 while (*Prefix) {
2090 Str.push_back(*Prefix);
2091 ++Prefix;
2092 };
2093
2094 // We insert the digits backward, then reverse them to get the right order.
2095 unsigned StartDig = Str.size();
2096
2097 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2098 // because the number of bits per digit (1, 3 and 4 respectively) divides
2099 // equally. We just shift until the value is zero.
2100 if (Radix == 2 || Radix == 8 || Radix == 16) {
2101 // Just shift tmp right for each digit width until it becomes zero
2102 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2103 unsigned MaskAmt = Radix - 1;
2104
2105 while (Tmp.getBoolValue()) {
2106 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2107 Str.push_back(Digits[Digit]);
2108 Tmp.lshrInPlace(ShiftAmt);
2109 }
2110 } else {
2111 while (Tmp.getBoolValue()) {
2112 uint64_t Digit;
2113 udivrem(Tmp, Radix, Tmp, Digit);
2114 assert(Digit < Radix && "divide failed")(static_cast <bool> (Digit < Radix && "divide failed"
) ? void (0) : __assert_fail ("Digit < Radix && \"divide failed\""
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 2114, __extension__ __PRETTY_FUNCTION__))
;
2115 Str.push_back(Digits[Digit]);
2116 }
2117 }
2118
2119 // Reverse the digits before returning.
2120 std::reverse(Str.begin()+StartDig, Str.end());
2121}
2122
2123/// Returns the APInt as a std::string. Note that this is an inefficient method.
2124/// It is better to pass in a SmallVector/SmallString to the methods above.
2125std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
2126 SmallString<40> S;
2127 toString(S, Radix, Signed, /* formatAsCLiteral = */false);
2128 return S.str();
2129}
2130
2131#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
2132LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void APInt::dump() const {
2133 SmallString<40> S, U;
2134 this->toStringUnsigned(U);
2135 this->toStringSigned(S);
2136 dbgs() << "APInt(" << BitWidth << "b, "
2137 << U << "u " << S << "s)\n";
2138}
2139#endif
2140
2141void APInt::print(raw_ostream &OS, bool isSigned) const {
2142 SmallString<40> S;
2143 this->toString(S, 10, isSigned, /* formatAsCLiteral = */false);
2144 OS << S;
2145}
2146
2147// This implements a variety of operations on a representation of
2148// arbitrary precision, two's-complement, bignum integer values.
2149
2150// Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2151// and unrestricting assumption.
2152static_assert(APInt::APINT_BITS_PER_WORD % 2 == 0,
2153 "Part width must be divisible by 2!");
2154
2155/* Some handy functions local to this file. */
2156
2157/* Returns the integer part with the least significant BITS set.
2158 BITS cannot be zero. */
2159static inline APInt::WordType lowBitMask(unsigned bits) {
2160 assert(bits != 0 && bits <= APInt::APINT_BITS_PER_WORD)(static_cast <bool> (bits != 0 && bits <= APInt
::APINT_BITS_PER_WORD) ? void (0) : __assert_fail ("bits != 0 && bits <= APInt::APINT_BITS_PER_WORD"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 2160, __extension__ __PRETTY_FUNCTION__))
;
2161
2162 return ~(APInt::WordType) 0 >> (APInt::APINT_BITS_PER_WORD - bits);
2163}
2164
2165/* Returns the value of the lower half of PART. */
2166static inline APInt::WordType lowHalf(APInt::WordType part) {
2167 return part & lowBitMask(APInt::APINT_BITS_PER_WORD / 2);
2168}
2169
2170/* Returns the value of the upper half of PART. */
2171static inline APInt::WordType highHalf(APInt::WordType part) {
2172 return part >> (APInt::APINT_BITS_PER_WORD / 2);
2173}
2174
2175/* Returns the bit number of the most significant set bit of a part.
2176 If the input number has no bits set -1U is returned. */
2177static unsigned partMSB(APInt::WordType value) {
2178 return findLastSet(value, ZB_Max);
2179}
2180
2181/* Returns the bit number of the least significant set bit of a
2182 part. If the input number has no bits set -1U is returned. */
2183static unsigned partLSB(APInt::WordType value) {
2184 return findFirstSet(value, ZB_Max);
2185}
2186
2187/* Sets the least significant part of a bignum to the input value, and
2188 zeroes out higher parts. */
2189void APInt::tcSet(WordType *dst, WordType part, unsigned parts) {
2190 assert(parts > 0)(static_cast <bool> (parts > 0) ? void (0) : __assert_fail
("parts > 0", "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 2190, __extension__ __PRETTY_FUNCTION__))
;
2191
2192 dst[0] = part;
2193 for (unsigned i = 1; i < parts; i++)
2194 dst[i] = 0;
2195}
2196
2197/* Assign one bignum to another. */
2198void APInt::tcAssign(WordType *dst, const WordType *src, unsigned parts) {
2199 for (unsigned i = 0; i < parts; i++)
2200 dst[i] = src[i];
2201}
2202
2203/* Returns true if a bignum is zero, false otherwise. */
2204bool APInt::tcIsZero(const WordType *src, unsigned parts) {
2205 for (unsigned i = 0; i < parts; i++)
2206 if (src[i])
2207 return false;
2208
2209 return true;
2210}
2211
2212/* Extract the given bit of a bignum; returns 0 or 1. */
2213int APInt::tcExtractBit(const WordType *parts, unsigned bit) {
2214 return (parts[whichWord(bit)] & maskBit(bit)) != 0;
2215}
2216
2217/* Set the given bit of a bignum. */
2218void APInt::tcSetBit(WordType *parts, unsigned bit) {
2219 parts[whichWord(bit)] |= maskBit(bit);
2220}
2221
2222/* Clears the given bit of a bignum. */
2223void APInt::tcClearBit(WordType *parts, unsigned bit) {
2224 parts[whichWord(bit)] &= ~maskBit(bit);
2225}
2226
2227/* Returns the bit number of the least significant set bit of a
2228 number. If the input number has no bits set -1U is returned. */
2229unsigned APInt::tcLSB(const WordType *parts, unsigned n) {
2230 for (unsigned i = 0; i < n; i++) {
2231 if (parts[i] != 0) {
2232 unsigned lsb = partLSB(parts[i]);
2233
2234 return lsb + i * APINT_BITS_PER_WORD;
2235 }
2236 }
2237
2238 return -1U;
2239}
2240
2241/* Returns the bit number of the most significant set bit of a number.
2242 If the input number has no bits set -1U is returned. */
2243unsigned APInt::tcMSB(const WordType *parts, unsigned n) {
2244 do {
2245 --n;
2246
2247 if (parts[n] != 0) {
2248 unsigned msb = partMSB(parts[n]);
2249
2250 return msb + n * APINT_BITS_PER_WORD;
2251 }
2252 } while (n);
2253
2254 return -1U;
2255}
2256
2257/* Copy the bit vector of width srcBITS from SRC, starting at bit
2258 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2259 the least significant bit of DST. All high bits above srcBITS in
2260 DST are zero-filled. */
2261void
2262APInt::tcExtract(WordType *dst, unsigned dstCount, const WordType *src,
2263 unsigned srcBits, unsigned srcLSB) {
2264 unsigned dstParts = (srcBits + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
2265 assert(dstParts <= dstCount)(static_cast <bool> (dstParts <= dstCount) ? void (0
) : __assert_fail ("dstParts <= dstCount", "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 2265, __extension__ __PRETTY_FUNCTION__))
;
2266
2267 unsigned firstSrcPart = srcLSB / APINT_BITS_PER_WORD;
2268 tcAssign (dst, src + firstSrcPart, dstParts);
2269
2270 unsigned shift = srcLSB % APINT_BITS_PER_WORD;
2271 tcShiftRight (dst, dstParts, shift);
2272
2273 /* We now have (dstParts * APINT_BITS_PER_WORD - shift) bits from SRC
2274 in DST. If this is less that srcBits, append the rest, else
2275 clear the high bits. */
2276 unsigned n = dstParts * APINT_BITS_PER_WORD - shift;
2277 if (n < srcBits) {
2278 WordType mask = lowBitMask (srcBits - n);
2279 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2280 << n % APINT_BITS_PER_WORD);
2281 } else if (n > srcBits) {
2282 if (srcBits % APINT_BITS_PER_WORD)
2283 dst[dstParts - 1] &= lowBitMask (srcBits % APINT_BITS_PER_WORD);
2284 }
2285
2286 /* Clear high parts. */
2287 while (dstParts < dstCount)
2288 dst[dstParts++] = 0;
2289}
2290
2291/* DST += RHS + C where C is zero or one. Returns the carry flag. */
2292APInt::WordType APInt::tcAdd(WordType *dst, const WordType *rhs,
2293 WordType c, unsigned parts) {
2294 assert(c <= 1)(static_cast <bool> (c <= 1) ? void (0) : __assert_fail
("c <= 1", "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 2294, __extension__ __PRETTY_FUNCTION__))
;
2295
2296 for (unsigned i = 0; i < parts; i++) {
2297 WordType l = dst[i];
2298 if (c) {
2299 dst[i] += rhs[i] + 1;
2300 c = (dst[i] <= l);
2301 } else {
2302 dst[i] += rhs[i];
2303 c = (dst[i] < l);
2304 }
2305 }
2306
2307 return c;
2308}
2309
2310/// This function adds a single "word" integer, src, to the multiple
2311/// "word" integer array, dst[]. dst[] is modified to reflect the addition and
2312/// 1 is returned if there is a carry out, otherwise 0 is returned.
2313/// @returns the carry of the addition.
2314APInt::WordType APInt::tcAddPart(WordType *dst, WordType src,
2315 unsigned parts) {
2316 for (unsigned i = 0; i < parts; ++i) {
2317 dst[i] += src;
2318 if (dst[i] >= src)
2319 return 0; // No need to carry so exit early.
2320 src = 1; // Carry one to next digit.
2321 }
2322
2323 return 1;
2324}
2325
2326/* DST -= RHS + C where C is zero or one. Returns the carry flag. */
2327APInt::WordType APInt::tcSubtract(WordType *dst, const WordType *rhs,
2328 WordType c, unsigned parts) {
2329 assert(c <= 1)(static_cast <bool> (c <= 1) ? void (0) : __assert_fail
("c <= 1", "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 2329, __extension__ __PRETTY_FUNCTION__))
;
2330
2331 for (unsigned i = 0; i < parts; i++) {
2332 WordType l = dst[i];
2333 if (c) {
2334 dst[i] -= rhs[i] + 1;
2335 c = (dst[i] >= l);
2336 } else {
2337 dst[i] -= rhs[i];
2338 c = (dst[i] > l);
2339 }
2340 }
2341
2342 return c;
2343}
2344
2345/// This function subtracts a single "word" (64-bit word), src, from
2346/// the multi-word integer array, dst[], propagating the borrowed 1 value until
2347/// no further borrowing is needed or it runs out of "words" in dst. The result
2348/// is 1 if "borrowing" exhausted the digits in dst, or 0 if dst was not
2349/// exhausted. In other words, if src > dst then this function returns 1,
2350/// otherwise 0.
2351/// @returns the borrow out of the subtraction
2352APInt::WordType APInt::tcSubtractPart(WordType *dst, WordType src,
2353 unsigned parts) {
2354 for (unsigned i = 0; i < parts; ++i) {
2355 WordType Dst = dst[i];
2356 dst[i] -= src;
2357 if (src <= Dst)
2358 return 0; // No need to borrow so exit early.
2359 src = 1; // We have to "borrow 1" from next "word"
2360 }
2361
2362 return 1;
2363}
2364
2365/* Negate a bignum in-place. */
2366void APInt::tcNegate(WordType *dst, unsigned parts) {
2367 tcComplement(dst, parts);
2368 tcIncrement(dst, parts);
2369}
2370
2371/* DST += SRC * MULTIPLIER + CARRY if add is true
2372 DST = SRC * MULTIPLIER + CARRY if add is false
2373
2374 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2375 they must start at the same point, i.e. DST == SRC.
2376
2377 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2378 returned. Otherwise DST is filled with the least significant
2379 DSTPARTS parts of the result, and if all of the omitted higher
2380 parts were zero return zero, otherwise overflow occurred and
2381 return one. */
2382int APInt::tcMultiplyPart(WordType *dst, const WordType *src,
2383 WordType multiplier, WordType carry,
2384 unsigned srcParts, unsigned dstParts,
2385 bool add) {
2386 /* Otherwise our writes of DST kill our later reads of SRC. */
2387 assert(dst <= src || dst >= src + srcParts)(static_cast <bool> (dst <= src || dst >= src + srcParts
) ? void (0) : __assert_fail ("dst <= src || dst >= src + srcParts"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 2387, __extension__ __PRETTY_FUNCTION__))
;
2388 assert(dstParts <= srcParts + 1)(static_cast <bool> (dstParts <= srcParts + 1) ? void
(0) : __assert_fail ("dstParts <= srcParts + 1", "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 2388, __extension__ __PRETTY_FUNCTION__))
;
2389
2390 /* N loops; minimum of dstParts and srcParts. */
2391 unsigned n = std::min(dstParts, srcParts);
2392
2393 for (unsigned i = 0; i < n; i++) {
2394 WordType low, mid, high, srcPart;
2395
2396 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2397
2398 This cannot overflow, because
2399
2400 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2401
2402 which is less than n^2. */
2403
2404 srcPart = src[i];
2405
2406 if (multiplier == 0 || srcPart == 0) {
2407 low = carry;
2408 high = 0;
2409 } else {
2410 low = lowHalf(srcPart) * lowHalf(multiplier);
2411 high = highHalf(srcPart) * highHalf(multiplier);
2412
2413 mid = lowHalf(srcPart) * highHalf(multiplier);
2414 high += highHalf(mid);
2415 mid <<= APINT_BITS_PER_WORD / 2;
2416 if (low + mid < low)
2417 high++;
2418 low += mid;
2419
2420 mid = highHalf(srcPart) * lowHalf(multiplier);
2421 high += highHalf(mid);
2422 mid <<= APINT_BITS_PER_WORD / 2;
2423 if (low + mid < low)
2424 high++;
2425 low += mid;
2426
2427 /* Now add carry. */
2428 if (low + carry < low)
2429 high++;
2430 low += carry;
2431 }
2432
2433 if (add) {
2434 /* And now DST[i], and store the new low part there. */
2435 if (low + dst[i] < low)
2436 high++;
2437 dst[i] += low;
2438 } else
2439 dst[i] = low;
2440
2441 carry = high;
2442 }
2443
2444 if (srcParts < dstParts) {
2445 /* Full multiplication, there is no overflow. */
2446 assert(srcParts + 1 == dstParts)(static_cast <bool> (srcParts + 1 == dstParts) ? void (
0) : __assert_fail ("srcParts + 1 == dstParts", "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 2446, __extension__ __PRETTY_FUNCTION__))
;
2447 dst[srcParts] = carry;
2448 return 0;
2449 }
2450
2451 /* We overflowed if there is carry. */
2452 if (carry)
2453 return 1;
2454
2455 /* We would overflow if any significant unwritten parts would be
2456 non-zero. This is true if any remaining src parts are non-zero
2457 and the multiplier is non-zero. */
2458 if (multiplier)
2459 for (unsigned i = dstParts; i < srcParts; i++)
2460 if (src[i])
2461 return 1;
2462
2463 /* We fitted in the narrow destination. */
2464 return 0;
2465}
2466
2467/* DST = LHS * RHS, where DST has the same width as the operands and
2468 is filled with the least significant parts of the result. Returns
2469 one if overflow occurred, otherwise zero. DST must be disjoint
2470 from both operands. */
2471int APInt::tcMultiply(WordType *dst, const WordType *lhs,
2472 const WordType *rhs, unsigned parts) {
2473 assert(dst != lhs && dst != rhs)(static_cast <bool> (dst != lhs && dst != rhs) ?
void (0) : __assert_fail ("dst != lhs && dst != rhs"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 2473, __extension__ __PRETTY_FUNCTION__))
;
2474
2475 int overflow = 0;
2476 tcSet(dst, 0, parts);
2477
2478 for (unsigned i = 0; i < parts; i++)
2479 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2480 parts - i, true);
2481
2482 return overflow;
2483}
2484
2485/// DST = LHS * RHS, where DST has width the sum of the widths of the
2486/// operands. No overflow occurs. DST must be disjoint from both operands.
2487void APInt::tcFullMultiply(WordType *dst, const WordType *lhs,
2488 const WordType *rhs, unsigned lhsParts,
2489 unsigned rhsParts) {
2490 /* Put the narrower number on the LHS for less loops below. */
2491 if (lhsParts > rhsParts)
2492 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2493
2494 assert(dst != lhs && dst != rhs)(static_cast <bool> (dst != lhs && dst != rhs) ?
void (0) : __assert_fail ("dst != lhs && dst != rhs"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 2494, __extension__ __PRETTY_FUNCTION__))
;
2495
2496 tcSet(dst, 0, rhsParts);
2497
2498 for (unsigned i = 0; i < lhsParts; i++)
2499 tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, true);
2500}
2501
2502/* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2503 Otherwise set LHS to LHS / RHS with the fractional part discarded,
2504 set REMAINDER to the remainder, return zero. i.e.
2505
2506 OLD_LHS = RHS * LHS + REMAINDER
2507
2508 SCRATCH is a bignum of the same size as the operands and result for
2509 use by the routine; its contents need not be initialized and are
2510 destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2511*/
2512int APInt::tcDivide(WordType *lhs, const WordType *rhs,
2513 WordType *remainder, WordType *srhs,
2514 unsigned parts) {
2515 assert(lhs != remainder && lhs != srhs && remainder != srhs)(static_cast <bool> (lhs != remainder && lhs !=
srhs && remainder != srhs) ? void (0) : __assert_fail
("lhs != remainder && lhs != srhs && remainder != srhs"
, "/build/llvm-toolchain-snapshot-7~svn329677/lib/Support/APInt.cpp"
, 2515, __extension__ __PRETTY_FUNCTION__))
;
2516
2517 unsigned shiftCount = tcMSB(rhs, parts) + 1;
2518 if (shiftCount == 0)
2519 return true;
2520
2521 shiftCount = parts * APINT_BITS_PER_WORD - shiftCount;
2522 unsigned n = shiftCount / APINT_BITS_PER_WORD;
2523 WordType mask = (WordType) 1 << (shiftCount % APINT_BITS_PER_WORD);
2524
2525 tcAssign(srhs, rhs, parts);
2526 tcShiftLeft(srhs, parts, shiftCount);
2527 tcAssign(remainder, lhs, parts);
2528 tcSet(lhs, 0, parts);
2529
2530 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2531 the total. */
2532 for (;;) {
2533 int compare = tcCompare(remainder, srhs, parts);
2534 if (compare >= 0) {
2535 tcSubtract(remainder, srhs, 0, parts);
2536 lhs[n] |= mask;
2537 }
2538
2539 if (shiftCount == 0)
2540 break;
2541 shiftCount--;
2542 tcShiftRight(srhs, parts, 1);
2543 if ((mask >>= 1) == 0) {
2544 mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1);
2545 n--;
2546 }
2547 }
2548
2549 return false;
2550}
2551
2552/// Shift a bignum left Cound bits in-place. Shifted in bits are zero. There are
2553/// no restrictions on Count.
2554void APInt::tcShiftLeft(WordType *Dst, unsigned Words, unsigned Count) {
2555 // Don't bother performing a no-op shift.
2556 if (!Count)
2557 return;
2558
2559 // WordShift is the inter-part shift; BitShift is the intra-part shift.
2560 unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2561 unsigned BitShift = Count % APINT_BITS_PER_WORD;
2562
2563 // Fastpath for moving by whole words.
2564 if (BitShift == 0) {
2565 std::memmove(Dst + WordShift, Dst, (Words - WordShift) * APINT_WORD_SIZE);
2566 } else {
2567 while (Words-- > WordShift) {
2568 Dst[Words] = Dst[Words - WordShift] << BitShift;
2569 if (Words > WordShift)
2570 Dst[Words] |=
2571 Dst[Words - WordShift - 1] >> (APINT_BITS_PER_WORD - BitShift);
2572 }
2573 }
2574
2575 // Fill in the remainder with 0s.
2576 std::memset(Dst, 0, WordShift * APINT_WORD_SIZE);
2577}
2578
2579/// Shift a bignum right Count bits in-place. Shifted in bits are zero. There
2580/// are no restrictions on Count.
2581void APInt::tcShiftRight(WordType *Dst, unsigned Words, unsigned Count) {
2582 // Don't bother performing a no-op shift.
2583 if (!Count)
2584 return;
2585
2586 // WordShift is the inter-part shift; BitShift is the intra-part shift.
2587 unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words);
2588 unsigned BitShift = Count % APINT_BITS_PER_WORD;
2589
2590 unsigned WordsToMove = Words - WordShift;
2591 // Fastpath for moving by whole words.
2592 if (BitShift == 0) {
2593 std::memmove(Dst, Dst + WordShift, WordsToMove * APINT_WORD_SIZE);
2594 } else {
2595 for (unsigned i = 0; i != WordsToMove; ++i) {
2596 Dst[i] = Dst[i + WordShift] >> BitShift;
2597 if (i + 1 != WordsToMove)
2598 Dst[i] |= Dst[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift);
2599 }
2600 }
2601
2602 // Fill in the remainder with 0s.
2603 std::memset(Dst + WordsToMove, 0, WordShift * APINT_WORD_SIZE);
2604}
2605
2606/* Bitwise and of two bignums. */
2607void APInt::tcAnd(WordType *dst, const WordType *rhs, unsigned parts) {
2608 for (unsigned i = 0; i < parts; i++)
2609 dst[i] &= rhs[i];
2610}
2611
2612/* Bitwise inclusive or of two bignums. */
2613void APInt::tcOr(WordType *dst, const WordType *rhs, unsigned parts) {
2614 for (unsigned i = 0; i < parts; i++)
2615 dst[i] |= rhs[i];
2616}
2617
2618/* Bitwise exclusive or of two bignums. */
2619void APInt::tcXor(WordType *dst, const WordType *rhs, unsigned parts) {
2620 for (unsigned i = 0; i < parts; i++)
2621 dst[i] ^= rhs[i];
2622}
2623
2624/* Complement a bignum in-place. */
2625void APInt::tcComplement(WordType *dst, unsigned parts) {
2626 for (unsigned i = 0; i < parts; i++)
2627 dst[i] = ~dst[i];
2628}
2629
2630/* Comparison (unsigned) of two bignums. */
2631int APInt::tcCompare(const WordType *lhs, const WordType *rhs,
2632 unsigned parts) {
2633 while (parts) {
2634 parts--;
2635 if (lhs[parts] != rhs[parts])
2636 return (lhs[parts] > rhs[parts]) ? 1 : -1;
2637 }
2638
2639 return 0;
2640}
2641
2642/* Set the least significant BITS bits of a bignum, clear the
2643 rest. */
2644void APInt::tcSetLeastSignificantBits(WordType *dst, unsigned parts,
2645 unsigned bits) {
2646 unsigned i = 0;
2647 while (bits > APINT_BITS_PER_WORD) {
2648 dst[i++] = ~(WordType) 0;
2649 bits -= APINT_BITS_PER_WORD;
2650 }
2651
2652 if (bits)
2653 dst[i++] = ~(WordType) 0 >> (APINT_BITS_PER_WORD - bits);
2654
2655 while (i < parts)
2656 dst[i++] = 0;
2657}

/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h

1//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief This file implements a class to represent arbitrary precision
12/// integral constant values and operations on them.
13///
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_ADT_APINT_H
17#define LLVM_ADT_APINT_H
18
19#include "llvm/Support/Compiler.h"
20#include "llvm/Support/MathExtras.h"
21#include <cassert>
22#include <climits>
23#include <cstring>
24#include <string>
25
26namespace llvm {
27class FoldingSetNodeID;
28class StringRef;
29class hash_code;
30class raw_ostream;
31
32template <typename T> class SmallVectorImpl;
33template <typename T> class ArrayRef;
34
35class APInt;
36
37inline APInt operator-(APInt);
38
39//===----------------------------------------------------------------------===//
40// APInt Class
41//===----------------------------------------------------------------------===//
42
43/// \brief Class for arbitrary precision integers.
44///
45/// APInt is a functional replacement for common case unsigned integer type like
46/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
47/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
48/// than 64-bits of precision. APInt provides a variety of arithmetic operators
49/// and methods to manipulate integer values of any bit-width. It supports both
50/// the typical integer arithmetic and comparison operations as well as bitwise
51/// manipulation.
52///
53/// The class has several invariants worth noting:
54/// * All bit, byte, and word positions are zero-based.
55/// * Once the bit width is set, it doesn't change except by the Truncate,
56/// SignExtend, or ZeroExtend operations.
57/// * All binary operators must be on APInt instances of the same bit width.
58/// Attempting to use these operators on instances with different bit
59/// widths will yield an assertion.
60/// * The value is stored canonically as an unsigned value. For operations
61/// where it makes a difference, there are both signed and unsigned variants
62/// of the operation. For example, sdiv and udiv. However, because the bit
63/// widths must be the same, operations such as Mul and Add produce the same
64/// results regardless of whether the values are interpreted as signed or
65/// not.
66/// * In general, the class tries to follow the style of computation that LLVM
67/// uses in its IR. This simplifies its use for LLVM.
68///
69class LLVM_NODISCARD[[clang::warn_unused_result]] APInt {
70public:
71 typedef uint64_t WordType;
72
73 /// This enum is used to hold the constants we needed for APInt.
74 enum : unsigned {
75 /// Byte size of a word.
76 APINT_WORD_SIZE = sizeof(WordType),
77 /// Bits in a word.
78 APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT8
79 };
80
81 static const WordType WORD_MAX = ~WordType(0);
82
83private:
84 /// This union is used to store the integer value. When the
85 /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
86 union {
87 uint64_t VAL; ///< Used to store the <= 64 bits integer value.
88 uint64_t *pVal; ///< Used to store the >64 bits integer value.
89 } U;
90
91 unsigned BitWidth; ///< The number of bits in this APInt.
92
93 friend struct DenseMapAPIntKeyInfo;
94
95 friend class APSInt;
96
97 /// \brief Fast internal constructor
98 ///
99 /// This constructor is used only internally for speed of construction of
100 /// temporaries. It is unsafe for general use so it is not public.
101 APInt(uint64_t *val, unsigned bits) : BitWidth(bits) {
102 U.pVal = val;
103 }
104
105 /// \brief Determine if this APInt just has one word to store value.
106 ///
107 /// \returns true if the number of bits <= 64, false otherwise.
108 bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
109
110 /// \brief Determine which word a bit is in.
111 ///
112 /// \returns the word position for the specified bit position.
113 static unsigned whichWord(unsigned bitPosition) {
114 return bitPosition / APINT_BITS_PER_WORD;
115 }
116
117 /// \brief Determine which bit in a word a bit is in.
118 ///
119 /// \returns the bit position in a word for the specified bit position
120 /// in the APInt.
121 static unsigned whichBit(unsigned bitPosition) {
122 return bitPosition % APINT_BITS_PER_WORD;
123 }
124
125 /// \brief Get a single bit mask.
126 ///
127 /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
128 /// This method generates and returns a uint64_t (word) mask for a single
129 /// bit at a specific bit position. This is used to mask the bit in the
130 /// corresponding word.
131 static uint64_t maskBit(unsigned bitPosition) {
132 return 1ULL << whichBit(bitPosition);
133 }
134
135 /// \brief Clear unused high order bits
136 ///
137 /// This method is used internally to clear the top "N" bits in the high order
138 /// word that are not used by the APInt. This is needed after the most
139 /// significant word is assigned a value to ensure that those bits are
140 /// zero'd out.
141 APInt &clearUnusedBits() {
142 // Compute how many bits are used in the final word
143 unsigned WordBits = ((BitWidth-1) % APINT_BITS_PER_WORD) + 1;
144
145 // Mask out the high bits.
146 uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - WordBits);
147 if (isSingleWord())
148 U.VAL &= mask;
149 else
150 U.pVal[getNumWords() - 1] &= mask;
151 return *this;
152 }
153
154 /// \brief Get the word corresponding to a bit position
155 /// \returns the corresponding word for the specified bit position.
156 uint64_t getWord(unsigned bitPosition) const {
157 return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)];
158 }
159
160 /// Utility method to change the bit width of this APInt to new bit width,
161 /// allocating and/or deallocating as necessary. There is no guarantee on the
162 /// value of any bits upon return. Caller should populate the bits after.
163 void reallocate(unsigned NewBitWidth);
164
165 /// \brief Convert a char array into an APInt
166 ///
167 /// \param radix 2, 8, 10, 16, or 36
168 /// Converts a string into a number. The string must be non-empty
169 /// and well-formed as a number of the given base. The bit-width
170 /// must be sufficient to hold the result.
171 ///
172 /// This is used by the constructors that take string arguments.
173 ///
174 /// StringRef::getAsInteger is superficially similar but (1) does
175 /// not assume that the string is well-formed and (2) grows the
176 /// result to hold the input.
177 void fromString(unsigned numBits, StringRef str, uint8_t radix);
178
179 /// \brief An internal division function for dividing APInts.
180 ///
181 /// This is used by the toString method to divide by the radix. It simply
182 /// provides a more convenient form of divide for internal use since KnuthDiv
183 /// has specific constraints on its inputs. If those constraints are not met
184 /// then it provides a simpler form of divide.
185 static void divide(const WordType *LHS, unsigned lhsWords,
186 const WordType *RHS, unsigned rhsWords, WordType *Quotient,
187 WordType *Remainder);
188
189 /// out-of-line slow case for inline constructor
190 void initSlowCase(uint64_t val, bool isSigned);
191
192 /// shared code between two array constructors
193 void initFromArray(ArrayRef<uint64_t> array);
194
195 /// out-of-line slow case for inline copy constructor
196 void initSlowCase(const APInt &that);
197
198 /// out-of-line slow case for shl
199 void shlSlowCase(unsigned ShiftAmt);
200
201 /// out-of-line slow case for lshr.
202 void lshrSlowCase(unsigned ShiftAmt);
203
204 /// out-of-line slow case for ashr.
205 void ashrSlowCase(unsigned ShiftAmt);
206
207 /// out-of-line slow case for operator=
208 void AssignSlowCase(const APInt &RHS);
209
210 /// out-of-line slow case for operator==
211 bool EqualSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
212
213 /// out-of-line slow case for countLeadingZeros
214 unsigned countLeadingZerosSlowCase() const LLVM_READONLY__attribute__((__pure__));
215
216 /// out-of-line slow case for countLeadingOnes.
217 unsigned countLeadingOnesSlowCase() const LLVM_READONLY__attribute__((__pure__));
218
219 /// out-of-line slow case for countTrailingZeros.
220 unsigned countTrailingZerosSlowCase() const LLVM_READONLY__attribute__((__pure__));
221
222 /// out-of-line slow case for countTrailingOnes
223 unsigned countTrailingOnesSlowCase() const LLVM_READONLY__attribute__((__pure__));
224
225 /// out-of-line slow case for countPopulation
226 unsigned countPopulationSlowCase() const LLVM_READONLY__attribute__((__pure__));
227
228 /// out-of-line slow case for intersects.
229 bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
230
231 /// out-of-line slow case for isSubsetOf.
232 bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
233
234 /// out-of-line slow case for setBits.
235 void setBitsSlowCase(unsigned loBit, unsigned hiBit);
236
237 /// out-of-line slow case for flipAllBits.
238 void flipAllBitsSlowCase();
239
240 /// out-of-line slow case for operator&=.
241 void AndAssignSlowCase(const APInt& RHS);
242
243 /// out-of-line slow case for operator|=.
244 void OrAssignSlowCase(const APInt& RHS);
245
246 /// out-of-line slow case for operator^=.
247 void XorAssignSlowCase(const APInt& RHS);
248
249 /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
250 /// to, or greater than RHS.
251 int compare(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
252
253 /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
254 /// to, or greater than RHS.
255 int compareSigned(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
256
257public:
258 /// \name Constructors
259 /// @{
260
261 /// \brief Create a new APInt of numBits width, initialized as val.
262 ///
263 /// If isSigned is true then val is treated as if it were a signed value
264 /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
265 /// will be done. Otherwise, no sign extension occurs (high order bits beyond
266 /// the range of val are zero filled).
267 ///
268 /// \param numBits the bit width of the constructed APInt
269 /// \param val the initial value of the APInt
270 /// \param isSigned how to treat signedness of val
271 APInt(unsigned numBits, uint64_t val, bool isSigned = false)
272 : BitWidth(numBits) {
273 assert(BitWidth && "bitwidth too small")(static_cast <bool> (BitWidth && "bitwidth too small"
) ? void (0) : __assert_fail ("BitWidth && \"bitwidth too small\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h"
, 273, __extension__ __PRETTY_FUNCTION__))
;
274 if (isSingleWord()) {
275 U.VAL = val;
276 clearUnusedBits();
277 } else {
278 initSlowCase(val, isSigned);
279 }
280 }
281
282 /// \brief Construct an APInt of numBits width, initialized as bigVal[].
283 ///
284 /// Note that bigVal.size() can be smaller or larger than the corresponding
285 /// bit width but any extraneous bits will be dropped.
286 ///
287 /// \param numBits the bit width of the constructed APInt
288 /// \param bigVal a sequence of words to form the initial value of the APInt
289 APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
290
291 /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
292 /// deprecated because this constructor is prone to ambiguity with the
293 /// APInt(unsigned, uint64_t, bool) constructor.
294 ///
295 /// If this overload is ever deleted, care should be taken to prevent calls
296 /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
297 /// constructor.
298 APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
299
300 /// \brief Construct an APInt from a string representation.
301 ///
302 /// This constructor interprets the string \p str in the given radix. The
303 /// interpretation stops when the first character that is not suitable for the
304 /// radix is encountered, or the end of the string. Acceptable radix values
305 /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
306 /// string to require more bits than numBits.
307 ///
308 /// \param numBits the bit width of the constructed APInt
309 /// \param str the string to be interpreted
310 /// \param radix the radix to use for the conversion
311 APInt(unsigned numBits, StringRef str, uint8_t radix);
312
313 /// Simply makes *this a copy of that.
314 /// @brief Copy Constructor.
315 APInt(const APInt &that) : BitWidth(that.BitWidth) {
316 if (isSingleWord())
7
Taking false branch
317 U.VAL = that.U.VAL;
318 else
319 initSlowCase(that);
8
Calling 'APInt::initSlowCase'
12
Returned allocated memory
320 }
321
322 /// \brief Move Constructor.
323 APInt(APInt &&that) : BitWidth(that.BitWidth) {
324 memcpy(&U, &that.U, sizeof(U));
325 that.BitWidth = 0;
326 }
327
328 /// \brief Destructor.
329 ~APInt() {
330 if (needsCleanup())
15
Taking false branch
331 delete[] U.pVal;
332 }
16
Potential leak of memory pointed to by field 'pVal'
333
334 /// \brief Default constructor that creates an uninteresting APInt
335 /// representing a 1-bit zero value.
336 ///
337 /// This is useful for object deserialization (pair this with the static
338 /// method Read).
339 explicit APInt() : BitWidth(1) { U.VAL = 0; }
340
341 /// \brief Returns whether this instance allocated memory.
342 bool needsCleanup() const { return !isSingleWord(); }
343
344 /// Used to insert APInt objects, or objects that contain APInt objects, into
345 /// FoldingSets.
346 void Profile(FoldingSetNodeID &id) const;
347
348 /// @}
349 /// \name Value Tests
350 /// @{
351
352 /// \brief Determine sign of this APInt.
353 ///
354 /// This tests the high bit of this APInt to determine if it is set.
355 ///
356 /// \returns true if this APInt is negative, false otherwise
357 bool isNegative() const { return (*this)[BitWidth - 1]; }
358
359 /// \brief Determine if this APInt Value is non-negative (>= 0)
360 ///
361 /// This tests the high bit of the APInt to determine if it is unset.
362 bool isNonNegative() const { return !isNegative(); }
363
364 /// \brief Determine if sign bit of this APInt is set.
365 ///
366 /// This tests the high bit of this APInt to determine if it is set.
367 ///
368 /// \returns true if this APInt has its sign bit set, false otherwise.
369 bool isSignBitSet() const { return (*this)[BitWidth-1]; }
370
371 /// \brief Determine if sign bit of this APInt is clear.
372 ///
373 /// This tests the high bit of this APInt to determine if it is clear.
374 ///
375 /// \returns true if this APInt has its sign bit clear, false otherwise.
376 bool isSignBitClear() const { return !isSignBitSet(); }
377
378 /// \brief Determine if this APInt Value is positive.
379 ///
380 /// This tests if the value of this APInt is positive (> 0). Note
381 /// that 0 is not a positive value.
382 ///
383 /// \returns true if this APInt is positive.
384 bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); }
385
386 /// \brief Determine if all bits are set
387 ///
388 /// This checks to see if the value has all bits of the APInt are set or not.
389 bool isAllOnesValue() const {
390 if (isSingleWord())
391 return U.VAL == WORD_MAX >> (APINT_BITS_PER_WORD - BitWidth);
392 return countTrailingOnesSlowCase() == BitWidth;
393 }
394
395 /// \brief Determine if all bits are clear
396 ///
397 /// This checks to see if the value has all bits of the APInt are clear or
398 /// not.
399 bool isNullValue() const { return !*this; }
400
401 /// \brief Determine if this is a value of 1.
402 ///
403 /// This checks to see if the value of this APInt is one.
404 bool isOneValue() const {
405 if (isSingleWord())
406 return U.VAL == 1;
407 return countLeadingZerosSlowCase() == BitWidth - 1;
408 }
409
410 /// \brief Determine if this is the largest unsigned value.
411 ///
412 /// This checks to see if the value of this APInt is the maximum unsigned
413 /// value for the APInt's bit width.
414 bool isMaxValue() const { return isAllOnesValue(); }
415
416 /// \brief Determine if this is the largest signed value.
417 ///
418 /// This checks to see if the value of this APInt is the maximum signed
419 /// value for the APInt's bit width.
420 bool isMaxSignedValue() const {
421 if (isSingleWord())
422 return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
423 return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1;
424 }
425
426 /// \brief Determine if this is the smallest unsigned value.
427 ///
428 /// This checks to see if the value of this APInt is the minimum unsigned
429 /// value for the APInt's bit width.
430 bool isMinValue() const { return isNullValue(); }
431
432 /// \brief Determine if this is the smallest signed value.
433 ///
434 /// This checks to see if the value of this APInt is the minimum signed
435 /// value for the APInt's bit width.
436 bool isMinSignedValue() const {
437 if (isSingleWord())
438 return U.VAL == (WordType(1) << (BitWidth - 1));
439 return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1;
440 }
441
442 /// \brief Check if this APInt has an N-bits unsigned integer value.
443 bool isIntN(unsigned N) const {
444 assert(N && "N == 0 ???")(static_cast <bool> (N && "N == 0 ???") ? void (
0) : __assert_fail ("N && \"N == 0 ???\"", "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h"
, 444, __extension__ __PRETTY_FUNCTION__))
;
445 return getActiveBits() <= N;
446 }
447
448 /// \brief Check if this APInt has an N-bits signed integer value.
449 bool isSignedIntN(unsigned N) const {
450 assert(N && "N == 0 ???")(static_cast <bool> (N && "N == 0 ???") ? void (
0) : __assert_fail ("N && \"N == 0 ???\"", "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h"
, 450, __extension__ __PRETTY_FUNCTION__))
;
451 return getMinSignedBits() <= N;
452 }
453
454 /// \brief Check if this APInt's value is a power of two greater than zero.
455 ///
456 /// \returns true if the argument APInt value is a power of two > 0.
457 bool isPowerOf2() const {
458 if (isSingleWord())
459 return isPowerOf2_64(U.VAL);
460 return countPopulationSlowCase() == 1;
461 }
462
463 /// \brief Check if the APInt's value is returned by getSignMask.
464 ///
465 /// \returns true if this is the value returned by getSignMask.
466 bool isSignMask() const { return isMinSignedValue(); }
467
468 /// \brief Convert APInt to a boolean value.
469 ///
470 /// This converts the APInt to a boolean value as a test against zero.
471 bool getBoolValue() const { return !!*this; }
472
473 /// If this value is smaller than the specified limit, return it, otherwise
474 /// return the limit value. This causes the value to saturate to the limit.
475 uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX(18446744073709551615UL)) const {
476 return ugt(Limit) ? Limit : getZExtValue();
477 }
478
479 /// \brief Check if the APInt consists of a repeated bit pattern.
480 ///
481 /// e.g. 0x01010101 satisfies isSplat(8).
482 /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
483 /// width without remainder.
484 bool isSplat(unsigned SplatSizeInBits) const;
485
486 /// \returns true if this APInt value is a sequence of \param numBits ones
487 /// starting at the least significant bit with the remainder zero.
488 bool isMask(unsigned numBits) const {
489 assert(numBits != 0 && "numBits must be non-zero")(static_cast <bool> (numBits != 0 && "numBits must be non-zero"
) ? void (0) : __assert_fail ("numBits != 0 && \"numBits must be non-zero\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h"
, 489, __extension__ __PRETTY_FUNCTION__))
;
490 assert(numBits <= BitWidth && "numBits out of range")(static_cast <bool> (numBits <= BitWidth && "numBits out of range"
) ? void (0) : __assert_fail ("numBits <= BitWidth && \"numBits out of range\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h"
, 490, __extension__ __PRETTY_FUNCTION__))
;
491 if (isSingleWord())
492 return U.VAL == (WORD_MAX >> (APINT_BITS_PER_WORD - numBits));
493 unsigned Ones = countTrailingOnesSlowCase();
494 return (numBits == Ones) &&
495 ((Ones + countLeadingZerosSlowCase()) == BitWidth);
496 }
497
498 /// \returns true if this APInt is a non-empty sequence of ones starting at
499 /// the least significant bit with the remainder zero.
500 /// Ex. isMask(0x0000FFFFU) == true.
501 bool isMask() const {
502 if (isSingleWord())
503 return isMask_64(U.VAL);
504 unsigned Ones = countTrailingOnesSlowCase();
505 return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth);
506 }
507
508 /// \brief Return true if this APInt value contains a sequence of ones with
509 /// the remainder zero.
510 bool isShiftedMask() const {
511 if (isSingleWord())
512 return isShiftedMask_64(U.VAL);
513 unsigned Ones = countPopulationSlowCase();
514 unsigned LeadZ = countLeadingZerosSlowCase();
515 return (Ones + LeadZ + countTrailingZeros()) == BitWidth;
516 }
517
518 /// @}
519 /// \name Value Generators
520 /// @{
521
522 /// \brief Gets maximum unsigned value of APInt for specific bit width.
523 static APInt getMaxValue(unsigned numBits) {
524 return getAllOnesValue(numBits);
525 }
526
527 /// \brief Gets maximum signed value of APInt for a specific bit width.
528 static APInt getSignedMaxValue(unsigned numBits) {
529 APInt API = getAllOnesValue(numBits);
530 API.clearBit(numBits - 1);
531 return API;
532 }
533
534 /// \brief Gets minimum unsigned value of APInt for a specific bit width.
535 static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
536
537 /// \brief Gets minimum signed value of APInt for a specific bit width.
538 static APInt getSignedMinValue(unsigned numBits) {
539 APInt API(numBits, 0);
540 API.setBit(numBits - 1);
541 return API;
542 }
543
544 /// \brief Get the SignMask for a specific bit width.
545 ///
546 /// This is just a wrapper function of getSignedMinValue(), and it helps code
547 /// readability when we want to get a SignMask.
548 static APInt getSignMask(unsigned BitWidth) {
549 return getSignedMinValue(BitWidth);
550 }
551
552 /// \brief Get the all-ones value.
553 ///
554 /// \returns the all-ones value for an APInt of the specified bit-width.
555 static APInt getAllOnesValue(unsigned numBits) {
556 return APInt(numBits, WORD_MAX, true);
557 }
558
559 /// \brief Get the '0' value.
560 ///
561 /// \returns the '0' value for an APInt of the specified bit-width.
562 static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
563
564 /// \brief Compute an APInt containing numBits highbits from this APInt.
565 ///
566 /// Get an APInt with the same BitWidth as this APInt, just zero mask
567 /// the low bits and right shift to the least significant bit.
568 ///
569 /// \returns the high "numBits" bits of this APInt.
570 APInt getHiBits(unsigned numBits) const;
571
572 /// \brief Compute an APInt containing numBits lowbits from this APInt.
573 ///
574 /// Get an APInt with the same BitWidth as this APInt, just zero mask
575 /// the high bits.
576 ///
577 /// \returns the low "numBits" bits of this APInt.
578 APInt getLoBits(unsigned numBits) const;
579
580 /// \brief Return an APInt with exactly one bit set in the result.
581 static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
582 APInt Res(numBits, 0);
583 Res.setBit(BitNo);
584 return Res;
585 }
586
587 /// \brief Get a value with a block of bits set.
588 ///
589 /// Constructs an APInt value that has a contiguous range of bits set. The
590 /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
591 /// bits will be zero. For example, with parameters(32, 0, 16) you would get
592 /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
593 /// example, with parameters (32, 28, 4), you would get 0xF000000F.
594 ///
595 /// \param numBits the intended bit width of the result
596 /// \param loBit the index of the lowest bit set.
597 /// \param hiBit the index of the highest bit set.
598 ///
599 /// \returns An APInt value with the requested bits set.
600 static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
601 APInt Res(numBits, 0);
602 Res.setBits(loBit, hiBit);
603 return Res;
604 }
605
606 /// \brief Get a value with upper bits starting at loBit set.
607 ///
608 /// Constructs an APInt value that has a contiguous range of bits set. The
609 /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
610 /// bits will be zero. For example, with parameters(32, 12) you would get
611 /// 0xFFFFF000.
612 ///
613 /// \param numBits the intended bit width of the result
614 /// \param loBit the index of the lowest bit to set.
615 ///
616 /// \returns An APInt value with the requested bits set.
617 static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
618 APInt Res(numBits, 0);
619 Res.setBitsFrom(loBit);
620 return Res;
621 }
622
623 /// \brief Get a value with high bits set
624 ///
625 /// Constructs an APInt value that has the top hiBitsSet bits set.
626 ///
627 /// \param numBits the bitwidth of the result
628 /// \param hiBitsSet the number of high-order bits set in the result.
629 static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
630 APInt Res(numBits, 0);
631 Res.setHighBits(hiBitsSet);
632 return Res;
633 }
634
635 /// \brief Get a value with low bits set
636 ///
637 /// Constructs an APInt value that has the bottom loBitsSet bits set.
638 ///
639 /// \param numBits the bitwidth of the result
640 /// \param loBitsSet the number of low-order bits set in the result.
641 static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
642 APInt Res(numBits, 0);
643 Res.setLowBits(loBitsSet);
644 return Res;
645 }
646
647 /// \brief Return a value containing V broadcasted over NewLen bits.
648 static APInt getSplat(unsigned NewLen, const APInt &V);
649
650 /// \brief Determine if two APInts have the same value, after zero-extending
651 /// one of them (if needed!) to ensure that the bit-widths match.
652 static bool isSameValue(const APInt &I1, const APInt &I2) {
653 if (I1.getBitWidth() == I2.getBitWidth())
654 return I1 == I2;
655
656 if (I1.getBitWidth() > I2.getBitWidth())
657 return I1 == I2.zext(I1.getBitWidth());
658
659 return I1.zext(I2.getBitWidth()) == I2;
660 }
661
662 /// \brief Overload to compute a hash_code for an APInt value.
663 friend hash_code hash_value(const APInt &Arg);
664
665 /// This function returns a pointer to the internal storage of the APInt.
666 /// This is useful for writing out the APInt in binary form without any
667 /// conversions.
668 const uint64_t *getRawData() const {
669 if (isSingleWord())
670 return &U.VAL;
671 return &U.pVal[0];
672 }
673
674 /// @}
675 /// \name Unary Operators
676 /// @{
677
678 /// \brief Postfix increment operator.
679 ///
680 /// Increments *this by 1.
681 ///
682 /// \returns a new APInt value representing the original value of *this.
683 const APInt operator++(int) {
684 APInt API(*this);
685 ++(*this);
686 return API;
687 }
688
689 /// \brief Prefix increment operator.
690 ///
691 /// \returns *this incremented by one
692 APInt &operator++();
693
694 /// \brief Postfix decrement operator.
695 ///
696 /// Decrements *this by 1.
697 ///
698 /// \returns a new APInt value representing the original value of *this.
699 const APInt operator--(int) {
700 APInt API(*this);
701 --(*this);
702 return API;
703 }
704
705 /// \brief Prefix decrement operator.
706 ///
707 /// \returns *this decremented by one.
708 APInt &operator--();
709
710 /// \brief Logical negation operator.
711 ///
712 /// Performs logical negation operation on this APInt.
713 ///
714 /// \returns true if *this is zero, false otherwise.
715 bool operator!() const {
716 if (isSingleWord())
717 return U.VAL == 0;
718 return countLeadingZerosSlowCase() == BitWidth;
719 }
720
721 /// @}
722 /// \name Assignment Operators
723 /// @{
724
725 /// \brief Copy assignment operator.
726 ///
727 /// \returns *this after assignment of RHS.
728 APInt &operator=(const APInt &RHS) {
729 // If the bitwidths are the same, we can avoid mucking with memory
730 if (isSingleWord() && RHS.isSingleWord()) {
731 U.VAL = RHS.U.VAL;
732 BitWidth = RHS.BitWidth;
733 return clearUnusedBits();
734 }
735
736 AssignSlowCase(RHS);
737 return *this;
738 }
739
740 /// @brief Move assignment operator.
741 APInt &operator=(APInt &&that) {
742 assert(this != &that && "Self-move not supported")(static_cast <bool> (this != &that && "Self-move not supported"
) ? void (0) : __assert_fail ("this != &that && \"Self-move not supported\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h"
, 742, __extension__ __PRETTY_FUNCTION__))
;
743 if (!isSingleWord())
744 delete[] U.pVal;
745
746 // Use memcpy so that type based alias analysis sees both VAL and pVal
747 // as modified.
748 memcpy(&U, &that.U, sizeof(U));
749
750 BitWidth = that.BitWidth;
751 that.BitWidth = 0;
752
753 return *this;
754 }
755
756 /// \brief Assignment operator.
757 ///
758 /// The RHS value is assigned to *this. If the significant bits in RHS exceed
759 /// the bit width, the excess bits are truncated. If the bit width is larger
760 /// than 64, the value is zero filled in the unspecified high order bits.
761 ///
762 /// \returns *this after assignment of RHS value.
763 APInt &operator=(uint64_t RHS) {
764 if (isSingleWord()) {
765 U.VAL = RHS;
766 clearUnusedBits();
767 } else {
768 U.pVal[0] = RHS;
769 memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
770 }
771 return *this;
772 }
773
774 /// \brief Bitwise AND assignment operator.
775 ///
776 /// Performs a bitwise AND operation on this APInt and RHS. The result is
777 /// assigned to *this.
778 ///
779 /// \returns *this after ANDing with RHS.
780 APInt &operator&=(const APInt &RHS) {
781 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h"
, 781, __extension__ __PRETTY_FUNCTION__))
;
782 if (isSingleWord())
783 U.VAL &= RHS.U.VAL;
784 else
785 AndAssignSlowCase(RHS);
786 return *this;
787 }
788
789 /// \brief Bitwise AND assignment operator.
790 ///
791 /// Performs a bitwise AND operation on this APInt and RHS. RHS is
792 /// logically zero-extended or truncated to match the bit-width of
793 /// the LHS.
794 APInt &operator&=(uint64_t RHS) {
795 if (isSingleWord()) {
796 U.VAL &= RHS;
797 return *this;
798 }
799 U.pVal[0] &= RHS;
800 memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
801 return *this;
802 }
803
804 /// \brief Bitwise OR assignment operator.
805 ///
806 /// Performs a bitwise OR operation on this APInt and RHS. The result is
807 /// assigned *this;
808 ///
809 /// \returns *this after ORing with RHS.
810 APInt &operator|=(const APInt &RHS) {
811 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h"
, 811, __extension__ __PRETTY_FUNCTION__))
;
812 if (isSingleWord())
813 U.VAL |= RHS.U.VAL;
814 else
815 OrAssignSlowCase(RHS);
816 return *this;
817 }
818
819 /// \brief Bitwise OR assignment operator.
820 ///
821 /// Performs a bitwise OR operation on this APInt and RHS. RHS is
822 /// logically zero-extended or truncated to match the bit-width of
823 /// the LHS.
824 APInt &operator|=(uint64_t RHS) {
825 if (isSingleWord()) {
826 U.VAL |= RHS;
827 clearUnusedBits();
828 } else {
829 U.pVal[0] |= RHS;
830 }
831 return *this;
832 }
833
834 /// \brief Bitwise XOR assignment operator.
835 ///
836 /// Performs a bitwise XOR operation on this APInt and RHS. The result is
837 /// assigned to *this.
838 ///
839 /// \returns *this after XORing with RHS.
840 APInt &operator^=(const APInt &RHS) {
841 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h"
, 841, __extension__ __PRETTY_FUNCTION__))
;
842 if (isSingleWord())
843 U.VAL ^= RHS.U.VAL;
844 else
845 XorAssignSlowCase(RHS);
846 return *this;
847 }
848
849 /// \brief Bitwise XOR assignment operator.
850 ///
851 /// Performs a bitwise XOR operation on this APInt and RHS. RHS is
852 /// logically zero-extended or truncated to match the bit-width of
853 /// the LHS.
854 APInt &operator^=(uint64_t RHS) {
855 if (isSingleWord()) {
856 U.VAL ^= RHS;
857 clearUnusedBits();
858 } else {
859 U.pVal[0] ^= RHS;
860 }
861 return *this;
862 }
863
864 /// \brief Multiplication assignment operator.
865 ///
866 /// Multiplies this APInt by RHS and assigns the result to *this.
867 ///
868 /// \returns *this
869 APInt &operator*=(const APInt &RHS);
870 APInt &operator*=(uint64_t RHS);
871
872 /// \brief Addition assignment operator.
873 ///
874 /// Adds RHS to *this and assigns the result to *this.
875 ///
876 /// \returns *this
877 APInt &operator+=(const APInt &RHS);
878 APInt &operator+=(uint64_t RHS);
879
880 /// \brief Subtraction assignment operator.
881 ///
882 /// Subtracts RHS from *this and assigns the result to *this.
883 ///
884 /// \returns *this
885 APInt &operator-=(const APInt &RHS);
886 APInt &operator-=(uint64_t RHS);
887
888 /// \brief Left-shift assignment function.
889 ///
890 /// Shifts *this left by shiftAmt and assigns the result to *this.
891 ///
892 /// \returns *this after shifting left by ShiftAmt
893 APInt &operator<<=(unsigned ShiftAmt) {
894 assert(ShiftAmt <= BitWidth && "Invalid shift amount")(static_cast <bool> (ShiftAmt <= BitWidth &&
"Invalid shift amount") ? void (0) : __assert_fail ("ShiftAmt <= BitWidth && \"Invalid shift amount\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h"
, 894, __extension__ __PRETTY_FUNCTION__))
;
895 if (isSingleWord()) {
896 if (ShiftAmt == BitWidth)
897 U.VAL = 0;
898 else
899 U.VAL <<= ShiftAmt;
900 return clearUnusedBits();
901 }
902 shlSlowCase(ShiftAmt);
903 return *this;
904 }
905
906 /// \brief Left-shift assignment function.
907 ///
908 /// Shifts *this left by shiftAmt and assigns the result to *this.
909 ///
910 /// \returns *this after shifting left by ShiftAmt
911 APInt &operator<<=(const APInt &ShiftAmt);
912
913 /// @}
914 /// \name Binary Operators
915 /// @{
916
917 /// \brief Multiplication operator.
918 ///
919 /// Multiplies this APInt by RHS and returns the result.
920 APInt operator*(const APInt &RHS) const;
921
922 /// \brief Left logical shift operator.
923 ///
924 /// Shifts this APInt left by \p Bits and returns the result.
925 APInt operator<<(unsigned Bits) const { return shl(Bits); }
926
927 /// \brief Left logical shift operator.
928 ///
929 /// Shifts this APInt left by \p Bits and returns the result.
930 APInt operator<<(const APInt &Bits) const { return shl(Bits); }
931
932 /// \brief Arithmetic right-shift function.
933 ///
934 /// Arithmetic right-shift this APInt by shiftAmt.
935 APInt ashr(unsigned ShiftAmt) const {
936 APInt R(*this);
937 R.ashrInPlace(ShiftAmt);
938 return R;
939 }
940
941 /// Arithmetic right-shift this APInt by ShiftAmt in place.
942 void ashrInPlace(unsigned ShiftAmt) {
943 assert(ShiftAmt <= BitWidth && "Invalid shift amount")(static_cast <bool> (ShiftAmt <= BitWidth &&
"Invalid shift amount") ? void (0) : __assert_fail ("ShiftAmt <= BitWidth && \"Invalid shift amount\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h"
, 943, __extension__ __PRETTY_FUNCTION__))
;
944 if (isSingleWord()) {
945 int64_t SExtVAL = SignExtend64(U.VAL, BitWidth);
946 if (ShiftAmt == BitWidth)
947 U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
948 else
949 U.VAL = SExtVAL >> ShiftAmt;
950 clearUnusedBits();
951 return;
952 }
953 ashrSlowCase(ShiftAmt);
954 }
955
956 /// \brief Logical right-shift function.
957 ///
958 /// Logical right-shift this APInt by shiftAmt.
959 APInt lshr(unsigned shiftAmt) const {
960 APInt R(*this);
961 R.lshrInPlace(shiftAmt);
962 return R;
963 }
964
965 /// Logical right-shift this APInt by ShiftAmt in place.
966 void lshrInPlace(unsigned ShiftAmt) {
967 assert(ShiftAmt <= BitWidth && "Invalid shift amount")(static_cast <bool> (ShiftAmt <= BitWidth &&
"Invalid shift amount") ? void (0) : __assert_fail ("ShiftAmt <= BitWidth && \"Invalid shift amount\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h"
, 967, __extension__ __PRETTY_FUNCTION__))
;
968 if (isSingleWord()) {
969 if (ShiftAmt == BitWidth)
970 U.VAL = 0;
971 else
972 U.VAL >>= ShiftAmt;
973 return;
974 }
975 lshrSlowCase(ShiftAmt);
976 }
977
978 /// \brief Left-shift function.
979 ///
980 /// Left-shift this APInt by shiftAmt.
981 APInt shl(unsigned shiftAmt) const {
982 APInt R(*this);
983 R <<= shiftAmt;
984 return R;
985 }
986
987 /// \brief Rotate left by rotateAmt.
988 APInt rotl(unsigned rotateAmt) const;
989
990 /// \brief Rotate right by rotateAmt.
991 APInt rotr(unsigned rotateAmt) const;
992
993 /// \brief Arithmetic right-shift function.
994 ///
995 /// Arithmetic right-shift this APInt by shiftAmt.
996 APInt ashr(const APInt &ShiftAmt) const {
997 APInt R(*this);
998 R.ashrInPlace(ShiftAmt);
999 return R;
1000 }
1001
1002 /// Arithmetic right-shift this APInt by shiftAmt in place.
1003 void ashrInPlace(const APInt &shiftAmt);
1004
1005 /// \brief Logical right-shift function.
1006 ///
1007 /// Logical right-shift this APInt by shiftAmt.
1008 APInt lshr(const APInt &ShiftAmt) const {
1009 APInt R(*this);
1010 R.lshrInPlace(ShiftAmt);
1011 return R;
1012 }
1013
1014 /// Logical right-shift this APInt by ShiftAmt in place.
1015 void lshrInPlace(const APInt &ShiftAmt);
1016
1017 /// \brief Left-shift function.
1018 ///
1019 /// Left-shift this APInt by shiftAmt.
1020 APInt shl(const APInt &ShiftAmt) const {
1021 APInt R(*this);
1022 R <<= ShiftAmt;
1023 return R;
1024 }
1025
1026 /// \brief Rotate left by rotateAmt.
1027 APInt rotl(const APInt &rotateAmt) const;
1028
1029 /// \brief Rotate right by rotateAmt.
1030 APInt rotr(const APInt &rotateAmt) const;
1031
1032 /// \brief Unsigned division operation.
1033 ///
1034 /// Perform an unsigned divide operation on this APInt by RHS. Both this and
1035 /// RHS are treated as unsigned quantities for purposes of this division.
1036 ///
1037 /// \returns a new APInt value containing the division result
1038 APInt udiv(const APInt &RHS) const;
1039 APInt udiv(uint64_t RHS) const;
1040
1041 /// \brief Signed division function for APInt.
1042 ///
1043 /// Signed divide this APInt by APInt RHS.
1044 APInt sdiv(const APInt &RHS) const;
1045 APInt sdiv(int64_t RHS) const;
1046
1047 /// \brief Unsigned remainder operation.
1048 ///
1049 /// Perform an unsigned remainder operation on this APInt with RHS being the
1050 /// divisor. Both this and RHS are treated as unsigned quantities for purposes
1051 /// of this operation. Note that this is a true remainder operation and not a
1052 /// modulo operation because the sign follows the sign of the dividend which
1053 /// is *this.
1054 ///
1055 /// \returns a new APInt value containing the remainder result
1056 APInt urem(const APInt &RHS) const;
1057 uint64_t urem(uint64_t RHS) const;
1058
1059 /// \brief Function for signed remainder operation.
1060 ///
1061 /// Signed remainder operation on APInt.
1062 APInt srem(const APInt &RHS) const;
1063 int64_t srem(int64_t RHS) const;
1064
1065 /// \brief Dual division/remainder interface.
1066 ///
1067 /// Sometimes it is convenient to divide two APInt values and obtain both the
1068 /// quotient and remainder. This function does both operations in the same
1069 /// computation making it a little more efficient. The pair of input arguments
1070 /// may overlap with the pair of output arguments. It is safe to call
1071 /// udivrem(X, Y, X, Y), for example.
1072 static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
1073 APInt &Remainder);
1074 static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1075 uint64_t &Remainder);
1076
1077 static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
1078 APInt &Remainder);
1079 static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
1080 int64_t &Remainder);
1081
1082 // Operations that return overflow indicators.
1083 APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
1084 APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
1085 APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
1086 APInt usub_ov(const APInt &RHS, bool &Overflow) const;
1087 APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
1088 APInt smul_ov(const APInt &RHS, bool &Overflow) const;
1089 APInt umul_ov(const APInt &RHS, bool &Overflow) const;
1090 APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
1091 APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
1092
1093 /// \brief Array-indexing support.
1094 ///
1095 /// \returns the bit value at bitPosition
1096 bool operator[](unsigned bitPosition) const {
1097 assert(bitPosition < getBitWidth() && "Bit position out of bounds!")(static_cast <bool> (bitPosition < getBitWidth() &&
"Bit position out of bounds!") ? void (0) : __assert_fail ("bitPosition < getBitWidth() && \"Bit position out of bounds!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h"
, 1097, __extension__ __PRETTY_FUNCTION__))
;
1098 return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
1099 }
1100
1101 /// @}
1102 /// \name Comparison Operators
1103 /// @{
1104
1105 /// \brief Equality operator.
1106 ///
1107 /// Compares this APInt with RHS for the validity of the equality
1108 /// relationship.
1109 bool operator==(const APInt &RHS) const {
1110 assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Comparison requires equal bit widths") ? void (0) : __assert_fail
("BitWidth == RHS.BitWidth && \"Comparison requires equal bit widths\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h"
, 1110, __extension__ __PRETTY_FUNCTION__))
;
1111 if (isSingleWord())
1112 return U.VAL == RHS.U.VAL;
1113 return EqualSlowCase(RHS);
1114 }
1115
1116 /// \brief Equality operator.
1117 ///
1118 /// Compares this APInt with a uint64_t for the validity of the equality
1119 /// relationship.
1120 ///
1121 /// \returns true if *this == Val
1122 bool operator==(uint64_t Val) const {
1123 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
1124 }
1125
1126 /// \brief Equality comparison.
1127 ///
1128 /// Compares this APInt with RHS for the validity of the equality
1129 /// relationship.
1130 ///
1131 /// \returns true if *this == Val
1132 bool eq(const APInt &RHS) const { return (*this) == RHS; }
1133
1134 /// \brief Inequality operator.
1135 ///
1136 /// Compares this APInt with RHS for the validity of the inequality
1137 /// relationship.
1138 ///
1139 /// \returns true if *this != Val
1140 bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
1141
1142 /// \brief Inequality operator.
1143 ///
1144 /// Compares this APInt with a uint64_t for the validity of the inequality
1145 /// relationship.
1146 ///
1147 /// \returns true if *this != Val
1148 bool operator!=(uint64_t Val) const { return !((*this) == Val); }
1149
1150 /// \brief Inequality comparison
1151 ///
1152 /// Compares this APInt with RHS for the validity of the inequality
1153 /// relationship.
1154 ///
1155 /// \returns true if *this != Val
1156 bool ne(const APInt &RHS) const { return !((*this) == RHS); }
1157
1158 /// \brief Unsigned less than comparison
1159 ///
1160 /// Regards both *this and RHS as unsigned quantities and compares them for
1161 /// the validity of the less-than relationship.
1162 ///
1163 /// \returns true if *this < RHS when both are considered unsigned.
1164 bool ult(const APInt &RHS) const { return compare(RHS) < 0; }
1165
1166 /// \brief Unsigned less than comparison
1167 ///
1168 /// Regards both *this as an unsigned quantity and compares it with RHS for
1169 /// the validity of the less-than relationship.
1170 ///
1171 /// \returns true if *this < RHS when considered unsigned.
1172 bool ult(uint64_t RHS) const {
1173 // Only need to check active bits if not a single word.
1174 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS;
1175 }
1176
1177 /// \brief Signed less than comparison
1178 ///
1179 /// Regards both *this and RHS as signed quantities and compares them for
1180 /// validity of the less-than relationship.
1181 ///
1182 /// \returns true if *this < RHS when both are considered signed.
1183 bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }
1184
1185 /// \brief Signed less than comparison
1186 ///
1187 /// Regards both *this as a signed quantity and compares it with RHS for
1188 /// the validity of the less-than relationship.
1189 ///
1190 /// \returns true if *this < RHS when considered signed.
1191 bool slt(int64_t RHS) const {
1192 return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative()
1193 : getSExtValue() < RHS;
1194 }
1195
1196 /// \brief Unsigned less or equal comparison
1197 ///
1198 /// Regards both *this and RHS as unsigned quantities and compares them for
1199 /// validity of the less-or-equal relationship.
1200 ///
1201 /// \returns true if *this <= RHS when both are considered unsigned.
1202 bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }
1203
1204 /// \brief Unsigned less or equal comparison
1205 ///
1206 /// Regards both *this as an unsigned quantity and compares it with RHS for
1207 /// the validity of the less-or-equal relationship.
1208 ///
1209 /// \returns true if *this <= RHS when considered unsigned.
1210 bool ule(uint64_t RHS) const { return !ugt(RHS); }
1211
1212 /// \brief Signed less or equal comparison
1213 ///
1214 /// Regards both *this and RHS as signed quantities and compares them for
1215 /// validity of the less-or-equal relationship.
1216 ///
1217 /// \returns true if *this <= RHS when both are considered signed.
1218 bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }
1219
1220 /// \brief Signed less or equal comparison
1221 ///
1222 /// Regards both *this as a signed quantity and compares it with RHS for the
1223 /// validity of the less-or-equal relationship.
1224 ///
1225 /// \returns true if *this <= RHS when considered signed.
1226 bool sle(uint64_t RHS) const { return !sgt(RHS); }
1227
1228 /// \brief Unsigned greather than comparison
1229 ///
1230 /// Regards both *this and RHS as unsigned quantities and compares them for
1231 /// the validity of the greater-than relationship.
1232 ///
1233 /// \returns true if *this > RHS when both are considered unsigned.
1234 bool ugt(const APInt &RHS) const { return !ule(RHS); }
1235
1236 /// \brief Unsigned greater than comparison
1237 ///
1238 /// Regards both *this as an unsigned quantity and compares it with RHS for
1239 /// the validity of the greater-than relationship.
1240 ///
1241 /// \returns true if *this > RHS when considered unsigned.
1242 bool ugt(uint64_t RHS) const {
1243 // Only need to check active bits if not a single word.
1244 return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS;
1245 }
1246
1247 /// \brief Signed greather than comparison
1248 ///
1249 /// Regards both *this and RHS as signed quantities and compares them for the
1250 /// validity of the greater-than relationship.
1251 ///
1252 /// \returns true if *this > RHS when both are considered signed.
1253 bool sgt(const APInt &RHS) const { return !sle(RHS); }
1254
1255 /// \brief Signed greater than comparison
1256 ///
1257 /// Regards both *this as a signed quantity and compares it with RHS for
1258 /// the validity of the greater-than relationship.
1259 ///
1260 /// \returns true if *this > RHS when considered signed.
1261 bool sgt(int64_t RHS) const {
1262 return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative()
1263 : getSExtValue() > RHS;
1264 }
1265
1266 /// \brief Unsigned greater or equal comparison
1267 ///
1268 /// Regards both *this and RHS as unsigned quantities and compares them for
1269 /// validity of the greater-or-equal relationship.
1270 ///
1271 /// \returns true if *this >= RHS when both are considered unsigned.
1272 bool uge(const APInt &RHS) const { return !ult(RHS); }
1273
1274 /// \brief Unsigned greater or equal comparison
1275 ///
1276 /// Regards both *this as an unsigned quantity and compares it with RHS for
1277 /// the validity of the greater-or-equal relationship.
1278 ///
1279 /// \returns true if *this >= RHS when considered unsigned.
1280 bool uge(uint64_t RHS) const { return !ult(RHS); }
1281
1282 /// \brief Signed greater or equal comparison
1283 ///
1284 /// Regards both *this and RHS as signed quantities and compares them for
1285 /// validity of the greater-or-equal relationship.
1286 ///
1287 /// \returns true if *this >= RHS when both are considered signed.
1288 bool sge(const APInt &RHS) const { return !slt(RHS); }
1289
1290 /// \brief Signed greater or equal comparison
1291 ///
1292 /// Regards both *this as a signed quantity and compares it with RHS for
1293 /// the validity of the greater-or-equal relationship.
1294 ///
1295 /// \returns true if *this >= RHS when considered signed.
1296 bool sge(int64_t RHS) const { return !slt(RHS); }
1297
1298 /// This operation tests if there are any pairs of corresponding bits
1299 /// between this APInt and RHS that are both set.
1300 bool intersects(const APInt &RHS) const {
1301 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h"
, 1301, __extension__ __PRETTY_FUNCTION__))
;
1302 if (isSingleWord())
1303 return (U.VAL & RHS.U.VAL) != 0;
1304 return intersectsSlowCase(RHS);
1305 }
1306
1307 /// This operation checks that all bits set in this APInt are also set in RHS.
1308 bool isSubsetOf(const APInt &RHS) const {
1309 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h"
, 1309, __extension__ __PRETTY_FUNCTION__))
;
1310 if (isSingleWord())
1311 return (U.VAL & ~RHS.U.VAL) == 0;
1312 return isSubsetOfSlowCase(RHS);
1313 }
1314
1315 /// @}
1316 /// \name Resizing Operators
1317 /// @{
1318
1319 /// \brief Truncate to new width.
1320 ///
1321 /// Truncate the APInt to a specified width. It is an error to specify a width
1322 /// that is greater than or equal to the current width.
1323 APInt trunc(unsigned width) const;
1324
1325 /// \brief Sign extend to a new width.
1326 ///
1327 /// This operation sign extends the APInt to a new width. If the high order
1328 /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1329 /// It is an error to specify a width that is less than or equal to the
1330 /// current width.
1331 APInt sext(unsigned width) const;
1332
1333 /// \brief Zero extend to a new width.
1334 ///
1335 /// This operation zero extends the APInt to a new width. The high order bits
1336 /// are filled with 0 bits. It is an error to specify a width that is less
1337 /// than or equal to the current width.
1338 APInt zext(unsigned width) const;
1339
1340 /// \brief Sign extend or truncate to width
1341 ///
1342 /// Make this APInt have the bit width given by \p width. The value is sign
1343 /// extended, truncated, or left alone to make it that width.
1344 APInt sextOrTrunc(unsigned width) const;
1345
1346 /// \brief Zero extend or truncate to width
1347 ///
1348 /// Make this APInt have the bit width given by \p width. The value is zero
1349 /// extended, truncated, or left alone to make it that width.
1350 APInt zextOrTrunc(unsigned width) const;
1351
1352 /// \brief Sign extend or truncate to width
1353 ///
1354 /// Make this APInt have the bit width given by \p width. The value is sign
1355 /// extended, or left alone to make it that width.
1356 APInt sextOrSelf(unsigned width) const;
1357
1358 /// \brief Zero extend or truncate to width
1359 ///
1360 /// Make this APInt have the bit width given by \p width. The value is zero
1361 /// extended, or left alone to make it that width.
1362 APInt zextOrSelf(unsigned width) const;
1363
1364 /// @}
1365 /// \name Bit Manipulation Operators
1366 /// @{
1367
1368 /// \brief Set every bit to 1.
1369 void setAllBits() {
1370 if (isSingleWord())
1371 U.VAL = WORD_MAX;
1372 else
1373 // Set all the bits in all the words.
1374 memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
1375 // Clear the unused ones
1376 clearUnusedBits();
1377 }
1378
1379 /// \brief Set a given bit to 1.
1380 ///
1381 /// Set the given bit to 1 whose position is given as "bitPosition".
1382 void setBit(unsigned BitPosition) {
1383 assert(BitPosition <= BitWidth && "BitPosition out of range")(static_cast <bool> (BitPosition <= BitWidth &&
"BitPosition out of range") ? void (0) : __assert_fail ("BitPosition <= BitWidth && \"BitPosition out of range\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h"
, 1383, __extension__ __PRETTY_FUNCTION__))
;
1384 WordType Mask = maskBit(BitPosition);
1385 if (isSingleWord())
1386 U.VAL |= Mask;
1387 else
1388 U.pVal[whichWord(BitPosition)] |= Mask;
1389 }
1390
1391 /// Set the sign bit to 1.
1392 void setSignBit() {
1393 setBit(BitWidth - 1);
1394 }
1395
1396 /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1397 void setBits(unsigned loBit, unsigned hiBit) {
1398 assert(hiBit <= BitWidth && "hiBit out of range")(static_cast <bool> (hiBit <= BitWidth && "hiBit out of range"
) ? void (0) : __assert_fail ("hiBit <= BitWidth && \"hiBit out of range\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h"
, 1398, __extension__ __PRETTY_FUNCTION__))
;
1399 assert(loBit <= BitWidth && "loBit out of range")(static_cast <bool> (loBit <= BitWidth && "loBit out of range"
) ? void (0) : __assert_fail ("loBit <= BitWidth && \"loBit out of range\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h"
, 1399, __extension__ __PRETTY_FUNCTION__))
;
1400 assert(loBit <= hiBit && "loBit greater than hiBit")(static_cast <bool> (loBit <= hiBit && "loBit greater than hiBit"
) ? void (0) : __assert_fail ("loBit <= hiBit && \"loBit greater than hiBit\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h"
, 1400, __extension__ __PRETTY_FUNCTION__))
;
1401 if (loBit == hiBit)
1402 return;
1403 if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
1404 uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
1405 mask <<= loBit;
1406 if (isSingleWord())
1407 U.VAL |= mask;
1408 else
1409 U.pVal[0] |= mask;
1410 } else {
1411 setBitsSlowCase(loBit, hiBit);
1412 }
1413 }
1414
1415 /// Set the top bits starting from loBit.
1416 void setBitsFrom(unsigned loBit) {
1417 return setBits(loBit, BitWidth);
1418 }
1419
1420 /// Set the bottom loBits bits.
1421 void setLowBits(unsigned loBits) {
1422 return setBits(0, loBits);
1423 }
1424
1425 /// Set the top hiBits bits.
1426 void setHighBits(unsigned hiBits) {
1427 return setBits(BitWidth - hiBits, BitWidth);
1428 }
1429
1430 /// \brief Set every bit to 0.
1431 void clearAllBits() {
1432 if (isSingleWord())
1433 U.VAL = 0;
1434 else
1435 memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
1436 }
1437
1438 /// \brief Set a given bit to 0.
1439 ///
1440 /// Set the given bit to 0 whose position is given as "bitPosition".
1441 void clearBit(unsigned BitPosition) {
1442 assert(BitPosition <= BitWidth && "BitPosition out of range")(static_cast <bool> (BitPosition <= BitWidth &&
"BitPosition out of range") ? void (0) : __assert_fail ("BitPosition <= BitWidth && \"BitPosition out of range\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h"
, 1442, __extension__ __PRETTY_FUNCTION__))
;
1443 WordType Mask = ~maskBit(BitPosition);
1444 if (isSingleWord())
1445 U.VAL &= Mask;
1446 else
1447 U.pVal[whichWord(BitPosition)] &= Mask;
1448 }
1449
1450 /// Set the sign bit to 0.
1451 void clearSignBit() {
1452 clearBit(BitWidth - 1);
1453 }
1454
1455 /// \brief Toggle every bit to its opposite value.
1456 void flipAllBits() {
1457 if (isSingleWord()) {
1458 U.VAL ^= WORD_MAX;
1459 clearUnusedBits();
1460 } else {
1461 flipAllBitsSlowCase();
1462 }
1463 }
1464
1465 /// \brief Toggles a given bit to its opposite value.
1466 ///
1467 /// Toggle a given bit to its opposite value whose position is given
1468 /// as "bitPosition".
1469 void flipBit(unsigned bitPosition);
1470
1471 /// Negate this APInt in place.
1472 void negate() {
1473 flipAllBits();
1474 ++(*this);
1475 }
1476
1477 /// Insert the bits from a smaller APInt starting at bitPosition.
1478 void insertBits(const APInt &SubBits, unsigned bitPosition);
1479
1480 /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
1481 APInt extractBits(unsigned numBits, unsigned bitPosition) const;
1482
1483 /// @}
1484 /// \name Value Characterization Functions
1485 /// @{
1486
1487 /// \brief Return the number of bits in the APInt.
1488 unsigned getBitWidth() const { return BitWidth; }
1489
1490 /// \brief Get the number of words.
1491 ///
1492 /// Here one word's bitwidth equals to that of uint64_t.
1493 ///
1494 /// \returns the number of words to hold the integer value of this APInt.
1495 unsigned getNumWords() const { return getNumWords(BitWidth); }
1496
1497 /// \brief Get the number of words.
1498 ///
1499 /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
1500 ///
1501 /// \returns the number of words to hold the integer value with a given bit
1502 /// width.
1503 static unsigned getNumWords(unsigned BitWidth) {
1504 return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1505 }
1506
1507 /// \brief Compute the number of active bits in the value
1508 ///
1509 /// This function returns the number of active bits which is defined as the
1510 /// bit width minus the number of leading zeros. This is used in several
1511 /// computations to see how "wide" the value is.
1512 unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
1513
1514 /// \brief Compute the number of active words in the value of this APInt.
1515 ///
1516 /// This is used in conjunction with getActiveData to extract the raw value of
1517 /// the APInt.
1518 unsigned getActiveWords() const {
1519 unsigned numActiveBits = getActiveBits();
1520 return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1521 }
1522
1523 /// \brief Get the minimum bit size for this signed APInt
1524 ///
1525 /// Computes the minimum bit width for this APInt while considering it to be a
1526 /// signed (and probably negative) value. If the value is not negative, this
1527 /// function returns the same value as getActiveBits()+1. Otherwise, it
1528 /// returns the smallest bit width that will retain the negative value. For
1529 /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1530 /// for -1, this function will always return 1.
1531 unsigned getMinSignedBits() const {
1532 if (isNegative())
1533 return BitWidth - countLeadingOnes() + 1;
1534 return getActiveBits() + 1;
1535 }
1536
1537 /// \brief Get zero extended value
1538 ///
1539 /// This method attempts to return the value of this APInt as a zero extended
1540 /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1541 /// uint64_t. Otherwise an assertion will result.
1542 uint64_t getZExtValue() const {
1543 if (isSingleWord())
1544 return U.VAL;
1545 assert(getActiveBits() <= 64 && "Too many bits for uint64_t")(static_cast <bool> (getActiveBits() <= 64 &&
"Too many bits for uint64_t") ? void (0) : __assert_fail ("getActiveBits() <= 64 && \"Too many bits for uint64_t\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h"
, 1545, __extension__ __PRETTY_FUNCTION__))
;
1546 return U.pVal[0];
1547 }
1548
1549 /// \brief Get sign extended value
1550 ///
1551 /// This method attempts to return the value of this APInt as a sign extended
1552 /// int64_t. The bit width must be <= 64 or the value must fit within an
1553 /// int64_t. Otherwise an assertion will result.
1554 int64_t getSExtValue() const {
1555 if (isSingleWord())
1556 return SignExtend64(U.VAL, BitWidth);
1557 assert(getMinSignedBits() <= 64 && "Too many bits for int64_t")(static_cast <bool> (getMinSignedBits() <= 64 &&
"Too many bits for int64_t") ? void (0) : __assert_fail ("getMinSignedBits() <= 64 && \"Too many bits for int64_t\""
, "/build/llvm-toolchain-snapshot-7~svn329677/include/llvm/ADT/APInt.h"
, 1557, __extension__ __PRETTY_FUNCTION__))
;
1558 return int64_t(U.pVal[0]);
1559 }
1560
1561 /// \brief Get bits required for string value.
1562 ///
1563 /// This method determines how many bits are required to hold the APInt
1564 /// equivalent of the string given by \p str.
1565 static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1566
1567 /// \brief The APInt version of the countLeadingZeros functions in
1568 /// MathExtras.h.
1569 ///
1570 /// It counts the number of zeros from the most significant bit to the first
1571 /// one bit.
1572 ///
1573 /// \returns BitWidth if the value is zero, otherwise returns the number of
1574 /// zeros from the most significant bit to the first one bits.
1575 unsigned countLeadingZeros() const {
1576 if (isSingleWord()) {
1577 unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1578 return llvm::countLeadingZeros(U.VAL) - unusedBits;
1579 }
1580 return countLeadingZerosSlowCase();
1581 }
1582
1583 /// \brief Count the number of leading one bits.
1584 ///
1585 /// This function is an APInt version of the countLeadingOnes
1586 /// functions in MathExtras.h. It counts the number of ones from the most
1587 /// significant bit to the first zero bit.
1588 ///
1589 /// \returns 0 if the high order bit is not set, otherwise returns the number
1590 /// of 1 bits from the most significant to the least
1591 unsigned countLeadingOnes() const {
1592 if (isSingleWord())
1593 return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth));
1594 return countLeadingOnesSlowCase();
1595 }
1596
1597 /// Computes the number of leading bits of this APInt that are equal to its
1598 /// sign bit.
1599 unsigned getNumSignBits() const {
1600 return isNegative() ? countLeadingOnes() : countLeadingZeros();
1601 }
1602
1603 /// \brief Count the number of trailing zero bits.
1604 ///
1605 /// This function is an APInt version of the countTrailingZeros
1606 /// functions in MathExtras.h. It counts the number of zeros from the least
1607 /// significant bit to the first set bit.
1608 ///
1609 /// \returns BitWidth if the value is zero, otherwise returns the number of
1610 /// zeros from the least significant bit to the first one bit.
1611 unsigned countTrailingZeros() const {
1612 if (isSingleWord())
1613 return std::min(unsigned(llvm::countTrailingZeros(U.VAL)), BitWidth);
1614 return countTrailingZerosSlowCase();
1615 }
1616
1617 /// \brief Count the number of trailing one bits.
1618 ///
1619 /// This function is an APInt version of the countTrailingOnes
1620 /// functions in MathExtras.h. It counts the number of ones from the least
1621 /// significant bit to the first zero bit.
1622 ///
1623 /// \returns BitWidth if the value is all ones, otherwise returns the number
1624 /// of ones from the least significant bit to the first zero bit.
1625 unsigned countTrailingOnes() const {
1626 if (isSingleWord())
1627 return llvm::countTrailingOnes(U.VAL);
1628 return countTrailingOnesSlowCase();
1629 }
1630
1631 /// \brief Count the number of bits set.
1632 ///
1633 /// This function is an APInt version of the countPopulation functions
1634 /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
1635 ///
1636 /// \returns 0 if the value is zero, otherwise returns the number of set bits.
1637 unsigned countPopulation() const {
1638 if (isSingleWord())
1639 return llvm::countPopulation(U.VAL);
1640 return countPopulationSlowCase();
1641 }
1642
1643 /// @}
1644 /// \name Conversion Functions
1645 /// @{
1646 void print(raw_ostream &OS, bool isSigned) const;
1647
1648 /// Converts an APInt to a string and append it to Str. Str is commonly a
1649 /// SmallString.
1650 void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1651 bool formatAsCLiteral = false) const;
1652
1653 /// Considers the APInt to be unsigned and converts it into a string in the
1654 /// radix given. The radix can be 2, 8, 10 16, or 36.
1655 void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1656 toString(Str, Radix, false, false);
1657 }
1658
1659 /// Considers the APInt to be signed and converts it into a string in the
1660 /// radix given. The radix can be 2, 8, 10, 16, or 36.
1661 void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1662 toString(Str, Radix, true, false);
1663 }
1664
1665 /// \brief Return the APInt as a std::string.
1666 ///
1667 /// Note that this is an inefficient method. It is better to pass in a
1668 /// SmallVector/SmallString to the methods above to avoid thrashing the heap
1669 /// for the string.
1670 std::string toString(unsigned Radix, bool Signed) const;
1671
1672 /// \returns a byte-swapped representation of this APInt Value.
1673 APInt byteSwap() const;
1674
1675 /// \returns the value with the bit representation reversed of this APInt
1676 /// Value.
1677 APInt reverseBits() const;
1678
1679 /// \brief Converts this APInt to a double value.
1680 double roundToDouble(bool isSigned) const;
1681
1682 /// \brief Converts this unsigned APInt to a double value.
1683 double roundToDouble() const { return roundToDouble(false); }
1684
1685 /// \brief Converts this signed APInt to a double value.
1686 double signedRoundToDouble() const { return roundToDouble(true); }
1687
1688 /// \brief Converts APInt bits to a double
1689 ///
1690 /// The conversion does not do a translation from integer to double, it just
1691 /// re-interprets the bits as a double. Note that it is valid to do this on
1692 /// any bit width. Exactly 64 bits will be translated.
1693 double bitsToDouble() const {
1694 return BitsToDouble(getWord(0));
1695 }
1696
1697 /// \brief Converts APInt bits to a double
1698 ///
1699 /// The conversion does not do a translation from integer to float, it just
1700 /// re-interprets the bits as a float. Note that it is valid to do this on
1701 /// any bit width. Exactly 32 bits will be translated.
1702 float bitsToFloat() const {
1703 return BitsToFloat(getWord(0));
1704 }
1705
1706 /// \brief Converts a double to APInt bits.
1707 ///
1708 /// The conversion does not do a translation from double to integer, it just
1709 /// re-interprets the bits of the double.
1710 static APInt doubleToBits(double V) {
1711 return APInt(sizeof(double) * CHAR_BIT8, DoubleToBits(V));
1712 }
1713
1714 /// \brief Converts a float to APInt bits.
1715 ///
1716 /// The conversion does not do a translation from float to integer, it just
1717 /// re-interprets the bits of the float.
1718 static APInt floatToBits(float V) {
1719 return APInt(sizeof(float) * CHAR_BIT8, FloatToBits(V));
1720 }
1721
1722 /// @}
1723 /// \name Mathematics Operations
1724 /// @{
1725
1726 /// \returns the floor log base 2 of this APInt.
1727 unsigned logBase2() const { return getActiveBits() - 1; }
1728
1729 /// \returns the ceil log base 2 of this APInt.
1730 unsigned ceilLogBase2() const {
1731 APInt temp(*this);
1732 --temp;
1733 return temp.getActiveBits();
1734 }
1735
1736 /// \returns the nearest log base 2 of this APInt. Ties round up.
1737 ///
1738 /// NOTE: When we have a BitWidth of 1, we define:
1739 ///
1740 /// log2(0) = UINT32_MAX
1741 /// log2(1) = 0
1742 ///
1743 /// to get around any mathematical concerns resulting from
1744 /// referencing 2 in a space where 2 does no exist.
1745 unsigned nearestLogBase2() const {
1746 // Special case when we have a bitwidth of 1. If VAL is 1, then we
1747 // get 0. If VAL is 0, we get WORD_MAX which gets truncated to
1748 // UINT32_MAX.
1749 if (BitWidth == 1)
1750 return U.VAL - 1;
1751
1752 // Handle the zero case.
1753 if (isNullValue())
1754 return UINT32_MAX(4294967295U);
1755
1756 // The non-zero case is handled by computing:
1757 //
1758 // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
1759 //
1760 // where x[i] is referring to the value of the ith bit of x.
1761 unsigned lg = logBase2();
1762 return lg + unsigned((*this)[lg - 1]);
1763 }
1764
1765 /// \returns the log base 2 of this APInt if its an exact power of two, -1
1766 /// otherwise
1767 int32_t exactLogBase2() const {
1768 if (!isPowerOf2())
1769 return -1;
1770 return logBase2();
1771 }
1772
1773 /// \brief Compute the square root
1774 APInt sqrt() const;
1775
1776 /// \brief Get the absolute value;
1777 ///
1778 /// If *this is < 0 then return -(*this), otherwise *this;
1779 APInt abs() const {
1780 if (isNegative())
1781 return -(*this);
1782 return *this;
1783 }
1784
1785 /// \returns the multiplicative inverse for a given modulo.
1786 APInt multiplicativeInverse(const APInt &modulo) const;
1787
1788 /// @}
1789 /// \name Support for division by constant
1790 /// @{
1791
1792 /// Calculate the magic number for signed division by a constant.
1793 struct ms;
1794 ms magic() const;
1795
1796 /// Calculate the magic number for unsigned division by a constant.
1797 struct mu;
1798 mu magicu(unsigned LeadingZeros = 0) const;
1799
1800 /// @}
1801 /// \name Building-block Operations for APInt and APFloat
1802 /// @{
1803
1804 // These building block operations operate on a representation of arbitrary
1805 // precision, two's-complement, bignum integer values. They should be
1806 // sufficient to implement APInt and APFloat bignum requirements. Inputs are
1807 // generally a pointer to the base of an array of integer parts, representing
1808 // an unsigned bignum, and a count of how many parts there are.
1809
1810 /// Sets the least significant part of a bignum to the input value, and zeroes
1811 /// out higher parts.
1812 static void tcSet(WordType *, WordType, unsigned);
1813
1814 /// Assign one bignum to another.
1815 static void tcAssign(WordType *, const WordType *, unsigned);
1816
1817 /// Returns true if a bignum is zero, false otherwise.
1818 static bool tcIsZero(const WordType *, unsigned);
1819
1820 /// Extract the given bit of a bignum; returns 0 or 1. Zero-based.
1821 static int tcExtractBit(const WordType *, unsigned bit);
1822
1823 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
1824 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
1825 /// significant bit of DST. All high bits above srcBITS in DST are
1826 /// zero-filled.
1827 static void tcExtract(WordType *, unsigned dstCount,
1828 const WordType *, unsigned srcBits,
1829 unsigned srcLSB);
1830
1831 /// Set the given bit of a bignum. Zero-based.
1832 static void tcSetBit(WordType *, unsigned bit);
1833
1834 /// Clear the given bit of a bignum. Zero-based.
1835 static void tcClearBit(WordType *, unsigned bit);
1836
1837 /// Returns the bit number of the least or most significant set bit of a
1838 /// number. If the input number has no bits set -1U is returned.
1839 static unsigned tcLSB(const WordType *, unsigned n);
1840 static unsigned tcMSB(const WordType *parts, unsigned n);
1841
1842 /// Negate a bignum in-place.
1843 static void tcNegate(WordType *, unsigned);
1844
1845 /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1846 static WordType tcAdd(WordType *, const WordType *,
1847 WordType carry, unsigned);
1848 /// DST += RHS. Returns the carry flag.
1849 static WordType tcAddPart(WordType *, WordType, unsigned);
1850
1851 /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1852 static WordType tcSubtract(WordType *, const WordType *,
1853 WordType carry, unsigned);
1854 /// DST -= RHS. Returns the carry flag.
1855 static WordType tcSubtractPart(WordType *, WordType, unsigned);
1856
1857 /// DST += SRC * MULTIPLIER + PART if add is true
1858 /// DST = SRC * MULTIPLIER + PART if add is false
1859 ///
1860 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must
1861 /// start at the same point, i.e. DST == SRC.
1862 ///
1863 /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
1864 /// Otherwise DST is filled with the least significant DSTPARTS parts of the
1865 /// result, and if all of the omitted higher parts were zero return zero,
1866 /// otherwise overflow occurred and return one.
1867 static int tcMultiplyPart(WordType *dst, const WordType *src,
1868 WordType multiplier, WordType carry,
1869 unsigned srcParts, unsigned dstParts,
1870 bool add);
1871
1872 /// DST = LHS * RHS, where DST has the same width as the operands and is
1873 /// filled with the least significant parts of the result. Returns one if
1874 /// overflow occurred, otherwise zero. DST must be disjoint from both
1875 /// operands.
1876 static int tcMultiply(WordType *, const WordType *, const WordType *,
1877 unsigned);
1878
1879 /// DST = LHS * RHS, where DST has width the sum of the widths of the
1880 /// operands. No overflow occurs. DST must be disjoint from both operands.
1881 static void tcFullMultiply(WordType *, const WordType *,
1882 const WordType *, unsigned, unsigned);
1883
1884 /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1885 /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
1886 /// REMAINDER to the remainder, return zero. i.e.
1887 ///
1888 /// OLD_LHS = RHS * LHS + REMAINDER
1889 ///
1890 /// SCRATCH is a bignum of the same size as the operands and result for use by
1891 /// the routine; its contents need not be initialized and are destroyed. LHS,
1892 /// REMAINDER and SCRATCH must be distinct.
1893 static int tcDivide(WordType *lhs, const WordType *rhs,
1894 WordType *remainder, WordType *scratch,
1895 unsigned parts);
1896
1897 /// Shift a bignum left Count bits. Shifted in bits are zero. There are no
1898 /// restrictions on Count.
1899 static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);
1900
1901 /// Shift a bignum right Count bits. Shifted in bits are zero. There are no
1902 /// restrictions on Count.
1903 static void tcShiftRight(WordType *, unsigned Words, unsigned Count);
1904
1905 /// The obvious AND, OR and XOR and complement operations.
1906 static void tcAnd(WordType *, const WordType *, unsigned);
1907 static void tcOr(WordType *, const WordType *, unsigned);
1908 static void tcXor(WordType *, const WordType *, unsigned);
1909 static void tcComplement(WordType *, unsigned);
1910
1911 /// Comparison (unsigned) of two bignums.
1912 static int tcCompare(const WordType *, const WordType *, unsigned);
1913
1914 /// Increment a bignum in-place. Return the carry flag.
1915 static WordType tcIncrement(WordType *dst, unsigned parts) {
1916 return tcAddPart(dst, 1, parts);
1917 }
1918
1919 /// Decrement a bignum in-place. Return the borrow flag.
1920 static WordType tcDecrement(WordType *dst, unsigned parts) {
1921 return tcSubtractPart(dst, 1, parts);
1922 }
1923
1924 /// Set the least significant BITS and clear the rest.
1925 static void tcSetLeastSignificantBits(WordType *, unsigned, unsigned bits);
1926
1927 /// \brief debug method
1928 void dump() const;
1929
1930 /// @}
1931};
1932
1933/// Magic data for optimising signed division by a constant.
1934struct APInt::ms {
1935 APInt m; ///< magic number
1936 unsigned s; ///< shift amount
1937};
1938
1939/// Magic data for optimising unsigned division by a constant.
1940struct APInt::mu {
1941 APInt m; ///< magic number
1942 bool a; ///< add indicator
1943 unsigned s; ///< shift amount
1944};
1945
1946inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
1947
1948inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
1949
1950/// \brief Unary bitwise complement operator.
1951///
1952/// \returns an APInt that is the bitwise complement of \p v.
1953inline APInt operator~(APInt v) {
1954 v.flipAllBits();
1955 return v;
1956}
1957
1958inline APInt operator&(APInt a, const APInt &b) {
1959 a &= b;
1960 return a;
1961}
1962
1963inline APInt operator&(const APInt &a, APInt &&b) {
1964 b &= a;
1965 return std::move(b);
1966}
1967
1968inline APInt operator&(APInt a, uint64_t RHS) {
1969 a &= RHS;
1970 return a;
1971}
1972
1973inline APInt operator&(uint64_t LHS, APInt b) {
1974 b &= LHS;
1975 return b;
1976}
1977
1978inline APInt operator|(APInt a, const APInt &b) {
1979 a |= b;
1980 return a;
1981}
1982
1983inline APInt operator|(const APInt &a, APInt &&b) {
1984 b |= a;
1985 return std::move(b);
1986}
1987
1988inline APInt operator|(APInt a, uint64_t RHS) {
1989 a |= RHS;
1990 return a;
1991}
1992
1993inline APInt operator|(uint64_t LHS, APInt b) {
1994 b |= LHS;
1995 return b;
1996}
1997
1998inline APInt operator^(APInt a, const APInt &b) {
1999 a ^= b;
2000 return a;
2001}
2002
2003inline APInt operator^(const APInt &a, APInt &&b) {
2004 b ^= a;
2005 return std::move(b);
2006}
2007
2008inline APInt operator^(APInt a, uint64_t RHS) {
2009 a ^= RHS;
2010 return a;
2011}
2012
2013inline APInt operator^(uint64_t LHS, APInt b) {
2014 b ^= LHS;
2015 return b;
2016}
2017
2018inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
2019 I.print(OS, true);
2020 return OS;
2021}
2022
2023inline APInt operator-(APInt v) {
2024 v.negate();
2025 return v;
2026}
2027
2028inline APInt operator+(APInt a, const APInt &b) {
2029 a += b;
2030 return a;
2031}
2032
2033inline APInt operator+(const APInt &a, APInt &&b) {
2034 b += a;
2035 return std::move(b);
2036}
2037
2038inline APInt operator+(APInt a, uint64_t RHS) {
2039 a += RHS;
2040 return a;
2041}
2042
2043inline APInt operator+(uint64_t LHS, APInt b) {
2044 b += LHS;
2045 return b;
2046}
2047
2048inline APInt operator-(APInt a, const APInt &b) {
2049 a -= b;
2050 return a;
2051}
2052
2053inline APInt operator-(const APInt &a, APInt &&b) {
2054 b.negate();
2055 b += a;
2056 return std::move(b);
2057}
2058
2059inline APInt operator-(APInt a, uint64_t RHS) {
2060 a -= RHS;
2061 return a;
2062}
2063
2064inline APInt operator-(uint64_t LHS, APInt b) {
2065 b.negate();
2066 b += LHS;
2067 return b;
2068}
2069
2070inline APInt operator*(APInt a, uint64_t RHS) {
2071 a *= RHS;
2072 return a;
2073}
2074
2075inline APInt operator*(uint64_t LHS, APInt b) {
2076 b *= LHS;
2077 return b;
2078}
2079
2080
2081namespace APIntOps {
2082
2083/// \brief Determine the smaller of two APInts considered to be signed.
2084inline const APInt &smin(const APInt &A, const APInt &B) {
2085 return A.slt(B) ? A : B;
2086}
2087
2088/// \brief Determine the larger of two APInts considered to be signed.
2089inline const APInt &smax(const APInt &A, const APInt &B) {
2090 return A.sgt(B) ? A : B;
2091}
2092
2093/// \brief Determine the smaller of two APInts considered to be signed.
2094inline const APInt &umin(const APInt &A, const APInt &B) {
2095 return A.ult(B) ? A : B;
2096}
2097
2098/// \brief Determine the larger of two APInts considered to be unsigned.
2099inline const APInt &umax(const APInt &A, const APInt &B) {
2100 return A.ugt(B) ? A : B;
2101}
2102
2103/// \brief Compute GCD of two unsigned APInt values.
2104///
2105/// This function returns the greatest common divisor of the two APInt values
2106/// using Stein's algorithm.
2107///
2108/// \returns the greatest common divisor of A and B.
2109APInt GreatestCommonDivisor(APInt A, APInt B);
2110
2111/// \brief Converts the given APInt to a double value.
2112///
2113/// Treats the APInt as an unsigned value for conversion purposes.
2114inline double RoundAPIntToDouble(const APInt &APIVal) {
2115 return APIVal.roundToDouble();
2116}
2117
2118/// \brief Converts the given APInt to a double value.
2119///
2120/// Treats the APInt as a signed value for conversion purposes.
2121inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
2122 return APIVal.signedRoundToDouble();
2123}
2124
2125/// \brief Converts the given APInt to a float vlalue.
2126inline float RoundAPIntToFloat(const APInt &APIVal) {
2127 return float(RoundAPIntToDouble(APIVal));
2128}
2129
2130/// \brief Converts the given APInt to a float value.
2131///
2132/// Treast the APInt as a signed value for conversion purposes.
2133inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
2134 return float(APIVal.signedRoundToDouble());
2135}
2136
2137/// \brief Converts the given double value into a APInt.
2138///
2139/// This function convert a double value to an APInt value.
2140APInt RoundDoubleToAPInt(double Double, unsigned width);
2141
2142/// \brief Converts a float value into a APInt.
2143///
2144/// Converts a float value into an APInt value.
2145inline APInt RoundFloatToAPInt(float Float, unsigned width) {
2146 return RoundDoubleToAPInt(double(Float), width);
2147}
2148
2149} // End of APIntOps namespace
2150
2151// See friend declaration above. This additional declaration is required in
2152// order to compile LLVM with IBM xlC compiler.
2153hash_code hash_value(const APInt &Arg);
2154} // End of llvm namespace
2155
2156#endif