File: | build/source/llvm/include/llvm/ADT/APInt.h |
Warning: | line 780, column 14 Potential memory leak |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===-- APInt.cpp - Implement APInt class ---------------------------------===// | |||
2 | // | |||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
4 | // See https://llvm.org/LICENSE.txt for license information. | |||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
6 | // | |||
7 | //===----------------------------------------------------------------------===// | |||
8 | // | |||
9 | // This file implements a class to represent arbitrary precision integer | |||
10 | // constant values and provide a variety of arithmetic operations on them. | |||
11 | // | |||
12 | //===----------------------------------------------------------------------===// | |||
13 | ||||
14 | #include "llvm/ADT/APInt.h" | |||
15 | #include "llvm/ADT/ArrayRef.h" | |||
16 | #include "llvm/ADT/FoldingSet.h" | |||
17 | #include "llvm/ADT/Hashing.h" | |||
18 | #include "llvm/ADT/SmallString.h" | |||
19 | #include "llvm/ADT/StringRef.h" | |||
20 | #include "llvm/ADT/bit.h" | |||
21 | #include "llvm/Config/llvm-config.h" | |||
22 | #include "llvm/Support/Debug.h" | |||
23 | #include "llvm/Support/ErrorHandling.h" | |||
24 | #include "llvm/Support/MathExtras.h" | |||
25 | #include "llvm/Support/raw_ostream.h" | |||
26 | #include <cmath> | |||
27 | #include <optional> | |||
28 | ||||
29 | using namespace llvm; | |||
30 | ||||
31 | #define DEBUG_TYPE"apint" "apint" | |||
32 | ||||
33 | /// A utility function for allocating memory, checking for allocation failures, | |||
34 | /// and ensuring the contents are zeroed. | |||
35 | inline static uint64_t* getClearedMemory(unsigned numWords) { | |||
36 | uint64_t *result = new uint64_t[numWords]; | |||
37 | memset(result, 0, numWords * sizeof(uint64_t)); | |||
38 | return result; | |||
39 | } | |||
40 | ||||
41 | /// A utility function for allocating memory and checking for allocation | |||
42 | /// failure. The content is not zeroed. | |||
43 | inline static uint64_t* getMemory(unsigned numWords) { | |||
44 | return new uint64_t[numWords]; | |||
45 | } | |||
46 | ||||
47 | /// A utility function that converts a character to a digit. | |||
48 | inline static unsigned getDigit(char cdigit, uint8_t radix) { | |||
49 | unsigned r; | |||
50 | ||||
51 | if (radix == 16 || radix == 36) { | |||
52 | r = cdigit - '0'; | |||
53 | if (r <= 9) | |||
54 | return r; | |||
55 | ||||
56 | r = cdigit - 'A'; | |||
57 | if (r <= radix - 11U) | |||
58 | return r + 10; | |||
59 | ||||
60 | r = cdigit - 'a'; | |||
61 | if (r <= radix - 11U) | |||
62 | return r + 10; | |||
63 | ||||
64 | radix = 10; | |||
65 | } | |||
66 | ||||
67 | r = cdigit - '0'; | |||
68 | if (r < radix) | |||
69 | return r; | |||
70 | ||||
71 | return UINT_MAX(2147483647 *2U +1U); | |||
72 | } | |||
73 | ||||
74 | ||||
75 | void APInt::initSlowCase(uint64_t val, bool isSigned) { | |||
76 | U.pVal = getClearedMemory(getNumWords()); | |||
77 | U.pVal[0] = val; | |||
78 | if (isSigned && int64_t(val) < 0) | |||
79 | for (unsigned i = 1; i < getNumWords(); ++i) | |||
80 | U.pVal[i] = WORDTYPE_MAX; | |||
81 | clearUnusedBits(); | |||
82 | } | |||
83 | ||||
84 | void APInt::initSlowCase(const APInt& that) { | |||
85 | U.pVal = getMemory(getNumWords()); | |||
86 | memcpy(U.pVal, that.U.pVal, getNumWords() * APINT_WORD_SIZE); | |||
87 | } | |||
88 | ||||
89 | void APInt::initFromArray(ArrayRef<uint64_t> bigVal) { | |||
90 | assert(bigVal.data() && "Null pointer detected!")(static_cast <bool> (bigVal.data() && "Null pointer detected!" ) ? void (0) : __assert_fail ("bigVal.data() && \"Null pointer detected!\"" , "llvm/lib/Support/APInt.cpp", 90, __extension__ __PRETTY_FUNCTION__ )); | |||
91 | if (isSingleWord()) | |||
92 | U.VAL = bigVal[0]; | |||
93 | else { | |||
94 | // Get memory, cleared to 0 | |||
95 | U.pVal = getClearedMemory(getNumWords()); | |||
96 | // Calculate the number of words to copy | |||
97 | unsigned words = std::min<unsigned>(bigVal.size(), getNumWords()); | |||
98 | // Copy the words from bigVal to pVal | |||
99 | memcpy(U.pVal, bigVal.data(), words * APINT_WORD_SIZE); | |||
100 | } | |||
101 | // Make sure unused high bits are cleared | |||
102 | clearUnusedBits(); | |||
103 | } | |||
104 | ||||
105 | APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal) : BitWidth(numBits) { | |||
106 | initFromArray(bigVal); | |||
107 | } | |||
108 | ||||
109 | APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]) | |||
110 | : BitWidth(numBits) { | |||
111 | initFromArray(ArrayRef(bigVal, numWords)); | |||
112 | } | |||
113 | ||||
114 | APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix) | |||
115 | : BitWidth(numbits) { | |||
116 | fromString(numbits, Str, radix); | |||
117 | } | |||
118 | ||||
119 | void APInt::reallocate(unsigned NewBitWidth) { | |||
120 | // If the number of words is the same we can just change the width and stop. | |||
121 | if (getNumWords() == getNumWords(NewBitWidth)) { | |||
122 | BitWidth = NewBitWidth; | |||
123 | return; | |||
124 | } | |||
125 | ||||
126 | // If we have an allocation, delete it. | |||
127 | if (!isSingleWord()) | |||
128 | delete [] U.pVal; | |||
129 | ||||
130 | // Update BitWidth. | |||
131 | BitWidth = NewBitWidth; | |||
132 | ||||
133 | // If we are supposed to have an allocation, create it. | |||
134 | if (!isSingleWord()) | |||
135 | U.pVal = getMemory(getNumWords()); | |||
136 | } | |||
137 | ||||
138 | void APInt::assignSlowCase(const APInt &RHS) { | |||
139 | // Don't do anything for X = X | |||
140 | if (this == &RHS) | |||
141 | return; | |||
142 | ||||
143 | // Adjust the bit width and handle allocations as necessary. | |||
144 | reallocate(RHS.getBitWidth()); | |||
145 | ||||
146 | // Copy the data. | |||
147 | if (isSingleWord()) | |||
148 | U.VAL = RHS.U.VAL; | |||
149 | else | |||
150 | memcpy(U.pVal, RHS.U.pVal, getNumWords() * APINT_WORD_SIZE); | |||
151 | } | |||
152 | ||||
153 | /// This method 'profiles' an APInt for use with FoldingSet. | |||
154 | void APInt::Profile(FoldingSetNodeID& ID) const { | |||
155 | ID.AddInteger(BitWidth); | |||
156 | ||||
157 | if (isSingleWord()) { | |||
158 | ID.AddInteger(U.VAL); | |||
159 | return; | |||
160 | } | |||
161 | ||||
162 | unsigned NumWords = getNumWords(); | |||
163 | for (unsigned i = 0; i < NumWords; ++i) | |||
164 | ID.AddInteger(U.pVal[i]); | |||
165 | } | |||
166 | ||||
167 | /// Prefix increment operator. Increments the APInt by one. | |||
168 | APInt& APInt::operator++() { | |||
169 | if (isSingleWord()) | |||
170 | ++U.VAL; | |||
171 | else | |||
172 | tcIncrement(U.pVal, getNumWords()); | |||
173 | return clearUnusedBits(); | |||
174 | } | |||
175 | ||||
176 | /// Prefix decrement operator. Decrements the APInt by one. | |||
177 | APInt& APInt::operator--() { | |||
178 | if (isSingleWord()) | |||
179 | --U.VAL; | |||
180 | else | |||
181 | tcDecrement(U.pVal, getNumWords()); | |||
182 | return clearUnusedBits(); | |||
183 | } | |||
184 | ||||
185 | /// Adds the RHS APInt to this APInt. | |||
186 | /// @returns this, after addition of RHS. | |||
187 | /// Addition assignment operator. | |||
188 | APInt& APInt::operator+=(const APInt& RHS) { | |||
189 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth && "Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\"" , "llvm/lib/Support/APInt.cpp", 189, __extension__ __PRETTY_FUNCTION__ )); | |||
190 | if (isSingleWord()) | |||
191 | U.VAL += RHS.U.VAL; | |||
192 | else | |||
193 | tcAdd(U.pVal, RHS.U.pVal, 0, getNumWords()); | |||
194 | return clearUnusedBits(); | |||
195 | } | |||
196 | ||||
197 | APInt& APInt::operator+=(uint64_t RHS) { | |||
198 | if (isSingleWord()) | |||
199 | U.VAL += RHS; | |||
200 | else | |||
201 | tcAddPart(U.pVal, RHS, getNumWords()); | |||
202 | return clearUnusedBits(); | |||
203 | } | |||
204 | ||||
205 | /// Subtracts the RHS APInt from this APInt | |||
206 | /// @returns this, after subtraction | |||
207 | /// Subtraction assignment operator. | |||
208 | APInt& APInt::operator-=(const APInt& RHS) { | |||
209 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth && "Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\"" , "llvm/lib/Support/APInt.cpp", 209, __extension__ __PRETTY_FUNCTION__ )); | |||
210 | if (isSingleWord()) | |||
211 | U.VAL -= RHS.U.VAL; | |||
212 | else | |||
213 | tcSubtract(U.pVal, RHS.U.pVal, 0, getNumWords()); | |||
214 | return clearUnusedBits(); | |||
215 | } | |||
216 | ||||
217 | APInt& APInt::operator-=(uint64_t RHS) { | |||
218 | if (isSingleWord()) | |||
219 | U.VAL -= RHS; | |||
220 | else | |||
221 | tcSubtractPart(U.pVal, RHS, getNumWords()); | |||
222 | return clearUnusedBits(); | |||
223 | } | |||
224 | ||||
225 | APInt APInt::operator*(const APInt& RHS) const { | |||
226 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth && "Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\"" , "llvm/lib/Support/APInt.cpp", 226, __extension__ __PRETTY_FUNCTION__ )); | |||
227 | if (isSingleWord()) | |||
228 | return APInt(BitWidth, U.VAL * RHS.U.VAL); | |||
229 | ||||
230 | APInt Result(getMemory(getNumWords()), getBitWidth()); | |||
231 | tcMultiply(Result.U.pVal, U.pVal, RHS.U.pVal, getNumWords()); | |||
232 | Result.clearUnusedBits(); | |||
233 | return Result; | |||
234 | } | |||
235 | ||||
236 | void APInt::andAssignSlowCase(const APInt &RHS) { | |||
237 | WordType *dst = U.pVal, *rhs = RHS.U.pVal; | |||
238 | for (size_t i = 0, e = getNumWords(); i != e; ++i) | |||
239 | dst[i] &= rhs[i]; | |||
240 | } | |||
241 | ||||
242 | void APInt::orAssignSlowCase(const APInt &RHS) { | |||
243 | WordType *dst = U.pVal, *rhs = RHS.U.pVal; | |||
244 | for (size_t i = 0, e = getNumWords(); i != e; ++i) | |||
245 | dst[i] |= rhs[i]; | |||
246 | } | |||
247 | ||||
248 | void APInt::xorAssignSlowCase(const APInt &RHS) { | |||
249 | WordType *dst = U.pVal, *rhs = RHS.U.pVal; | |||
250 | for (size_t i = 0, e = getNumWords(); i != e; ++i) | |||
251 | dst[i] ^= rhs[i]; | |||
252 | } | |||
253 | ||||
254 | APInt &APInt::operator*=(const APInt &RHS) { | |||
255 | *this = *this * RHS; | |||
256 | return *this; | |||
257 | } | |||
258 | ||||
259 | APInt& APInt::operator*=(uint64_t RHS) { | |||
260 | if (isSingleWord()) { | |||
261 | U.VAL *= RHS; | |||
262 | } else { | |||
263 | unsigned NumWords = getNumWords(); | |||
264 | tcMultiplyPart(U.pVal, U.pVal, RHS, 0, NumWords, NumWords, false); | |||
265 | } | |||
266 | return clearUnusedBits(); | |||
267 | } | |||
268 | ||||
269 | bool APInt::equalSlowCase(const APInt &RHS) const { | |||
270 | return std::equal(U.pVal, U.pVal + getNumWords(), RHS.U.pVal); | |||
271 | } | |||
272 | ||||
273 | int APInt::compare(const APInt& RHS) const { | |||
274 | assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison")(static_cast <bool> (BitWidth == RHS.BitWidth && "Bit widths must be same for comparison") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be same for comparison\"" , "llvm/lib/Support/APInt.cpp", 274, __extension__ __PRETTY_FUNCTION__ )); | |||
275 | if (isSingleWord()) | |||
276 | return U.VAL < RHS.U.VAL ? -1 : U.VAL > RHS.U.VAL; | |||
277 | ||||
278 | return tcCompare(U.pVal, RHS.U.pVal, getNumWords()); | |||
279 | } | |||
280 | ||||
281 | int APInt::compareSigned(const APInt& RHS) const { | |||
282 | assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison")(static_cast <bool> (BitWidth == RHS.BitWidth && "Bit widths must be same for comparison") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be same for comparison\"" , "llvm/lib/Support/APInt.cpp", 282, __extension__ __PRETTY_FUNCTION__ )); | |||
283 | if (isSingleWord()) { | |||
284 | int64_t lhsSext = SignExtend64(U.VAL, BitWidth); | |||
285 | int64_t rhsSext = SignExtend64(RHS.U.VAL, BitWidth); | |||
286 | return lhsSext < rhsSext ? -1 : lhsSext > rhsSext; | |||
287 | } | |||
288 | ||||
289 | bool lhsNeg = isNegative(); | |||
290 | bool rhsNeg = RHS.isNegative(); | |||
291 | ||||
292 | // If the sign bits don't match, then (LHS < RHS) if LHS is negative | |||
293 | if (lhsNeg != rhsNeg) | |||
294 | return lhsNeg ? -1 : 1; | |||
295 | ||||
296 | // Otherwise we can just use an unsigned comparison, because even negative | |||
297 | // numbers compare correctly this way if both have the same signed-ness. | |||
298 | return tcCompare(U.pVal, RHS.U.pVal, getNumWords()); | |||
299 | } | |||
300 | ||||
301 | void APInt::setBitsSlowCase(unsigned loBit, unsigned hiBit) { | |||
302 | unsigned loWord = whichWord(loBit); | |||
303 | unsigned hiWord = whichWord(hiBit); | |||
304 | ||||
305 | // Create an initial mask for the low word with zeros below loBit. | |||
306 | uint64_t loMask = WORDTYPE_MAX << whichBit(loBit); | |||
307 | ||||
308 | // If hiBit is not aligned, we need a high mask. | |||
309 | unsigned hiShiftAmt = whichBit(hiBit); | |||
310 | if (hiShiftAmt != 0) { | |||
311 | // Create a high mask with zeros above hiBit. | |||
312 | uint64_t hiMask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - hiShiftAmt); | |||
313 | // If loWord and hiWord are equal, then we combine the masks. Otherwise, | |||
314 | // set the bits in hiWord. | |||
315 | if (hiWord == loWord) | |||
316 | loMask &= hiMask; | |||
317 | else | |||
318 | U.pVal[hiWord] |= hiMask; | |||
319 | } | |||
320 | // Apply the mask to the low word. | |||
321 | U.pVal[loWord] |= loMask; | |||
322 | ||||
323 | // Fill any words between loWord and hiWord with all ones. | |||
324 | for (unsigned word = loWord + 1; word < hiWord; ++word) | |||
325 | U.pVal[word] = WORDTYPE_MAX; | |||
326 | } | |||
327 | ||||
328 | // Complement a bignum in-place. | |||
329 | static void tcComplement(APInt::WordType *dst, unsigned parts) { | |||
330 | for (unsigned i = 0; i < parts; i++) | |||
331 | dst[i] = ~dst[i]; | |||
332 | } | |||
333 | ||||
334 | /// Toggle every bit to its opposite value. | |||
335 | void APInt::flipAllBitsSlowCase() { | |||
336 | tcComplement(U.pVal, getNumWords()); | |||
337 | clearUnusedBits(); | |||
338 | } | |||
339 | ||||
340 | /// Concatenate the bits from "NewLSB" onto the bottom of *this. This is | |||
341 | /// equivalent to: | |||
342 | /// (this->zext(NewWidth) << NewLSB.getBitWidth()) | NewLSB.zext(NewWidth) | |||
343 | /// In the slow case, we know the result is large. | |||
344 | APInt APInt::concatSlowCase(const APInt &NewLSB) const { | |||
345 | unsigned NewWidth = getBitWidth() + NewLSB.getBitWidth(); | |||
346 | APInt Result = NewLSB.zext(NewWidth); | |||
347 | Result.insertBits(*this, NewLSB.getBitWidth()); | |||
348 | return Result; | |||
349 | } | |||
350 | ||||
351 | /// Toggle a given bit to its opposite value whose position is given | |||
352 | /// as "bitPosition". | |||
353 | /// Toggles a given bit to its opposite value. | |||
354 | void APInt::flipBit(unsigned bitPosition) { | |||
355 | assert(bitPosition < BitWidth && "Out of the bit-width range!")(static_cast <bool> (bitPosition < BitWidth && "Out of the bit-width range!") ? void (0) : __assert_fail ("bitPosition < BitWidth && \"Out of the bit-width range!\"" , "llvm/lib/Support/APInt.cpp", 355, __extension__ __PRETTY_FUNCTION__ )); | |||
356 | setBitVal(bitPosition, !(*this)[bitPosition]); | |||
357 | } | |||
358 | ||||
359 | void APInt::insertBits(const APInt &subBits, unsigned bitPosition) { | |||
360 | unsigned subBitWidth = subBits.getBitWidth(); | |||
361 | assert((subBitWidth + bitPosition) <= BitWidth && "Illegal bit insertion")(static_cast <bool> ((subBitWidth + bitPosition) <= BitWidth && "Illegal bit insertion") ? void (0) : __assert_fail ("(subBitWidth + bitPosition) <= BitWidth && \"Illegal bit insertion\"" , "llvm/lib/Support/APInt.cpp", 361, __extension__ __PRETTY_FUNCTION__ )); | |||
362 | ||||
363 | // inserting no bits is a noop. | |||
364 | if (subBitWidth == 0) | |||
365 | return; | |||
366 | ||||
367 | // Insertion is a direct copy. | |||
368 | if (subBitWidth == BitWidth) { | |||
369 | *this = subBits; | |||
370 | return; | |||
371 | } | |||
372 | ||||
373 | // Single word result can be done as a direct bitmask. | |||
374 | if (isSingleWord()) { | |||
375 | uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth); | |||
376 | U.VAL &= ~(mask << bitPosition); | |||
377 | U.VAL |= (subBits.U.VAL << bitPosition); | |||
378 | return; | |||
379 | } | |||
380 | ||||
381 | unsigned loBit = whichBit(bitPosition); | |||
382 | unsigned loWord = whichWord(bitPosition); | |||
383 | unsigned hi1Word = whichWord(bitPosition + subBitWidth - 1); | |||
384 | ||||
385 | // Insertion within a single word can be done as a direct bitmask. | |||
386 | if (loWord == hi1Word) { | |||
387 | uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - subBitWidth); | |||
388 | U.pVal[loWord] &= ~(mask << loBit); | |||
389 | U.pVal[loWord] |= (subBits.U.VAL << loBit); | |||
390 | return; | |||
391 | } | |||
392 | ||||
393 | // Insert on word boundaries. | |||
394 | if (loBit == 0) { | |||
395 | // Direct copy whole words. | |||
396 | unsigned numWholeSubWords = subBitWidth / APINT_BITS_PER_WORD; | |||
397 | memcpy(U.pVal + loWord, subBits.getRawData(), | |||
398 | numWholeSubWords * APINT_WORD_SIZE); | |||
399 | ||||
400 | // Mask+insert remaining bits. | |||
401 | unsigned remainingBits = subBitWidth % APINT_BITS_PER_WORD; | |||
402 | if (remainingBits != 0) { | |||
403 | uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - remainingBits); | |||
404 | U.pVal[hi1Word] &= ~mask; | |||
405 | U.pVal[hi1Word] |= subBits.getWord(subBitWidth - 1); | |||
406 | } | |||
407 | return; | |||
408 | } | |||
409 | ||||
410 | // General case - set/clear individual bits in dst based on src. | |||
411 | // TODO - there is scope for optimization here, but at the moment this code | |||
412 | // path is barely used so prefer readability over performance. | |||
413 | for (unsigned i = 0; i != subBitWidth; ++i) | |||
414 | setBitVal(bitPosition + i, subBits[i]); | |||
415 | } | |||
416 | ||||
417 | void APInt::insertBits(uint64_t subBits, unsigned bitPosition, unsigned numBits) { | |||
418 | uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits); | |||
419 | subBits &= maskBits; | |||
420 | if (isSingleWord()) { | |||
421 | U.VAL &= ~(maskBits << bitPosition); | |||
422 | U.VAL |= subBits << bitPosition; | |||
423 | return; | |||
424 | } | |||
425 | ||||
426 | unsigned loBit = whichBit(bitPosition); | |||
427 | unsigned loWord = whichWord(bitPosition); | |||
428 | unsigned hiWord = whichWord(bitPosition + numBits - 1); | |||
429 | if (loWord == hiWord) { | |||
430 | U.pVal[loWord] &= ~(maskBits << loBit); | |||
431 | U.pVal[loWord] |= subBits << loBit; | |||
432 | return; | |||
433 | } | |||
434 | ||||
435 | static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected"); | |||
436 | unsigned wordBits = 8 * sizeof(WordType); | |||
437 | U.pVal[loWord] &= ~(maskBits << loBit); | |||
438 | U.pVal[loWord] |= subBits << loBit; | |||
439 | ||||
440 | U.pVal[hiWord] &= ~(maskBits >> (wordBits - loBit)); | |||
441 | U.pVal[hiWord] |= subBits >> (wordBits - loBit); | |||
442 | } | |||
443 | ||||
444 | APInt APInt::extractBits(unsigned numBits, unsigned bitPosition) const { | |||
445 | assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&(static_cast <bool> (bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth && "Illegal bit extraction" ) ? void (0) : __assert_fail ("bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth && \"Illegal bit extraction\"" , "llvm/lib/Support/APInt.cpp", 446, __extension__ __PRETTY_FUNCTION__ )) | |||
446 | "Illegal bit extraction")(static_cast <bool> (bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth && "Illegal bit extraction" ) ? void (0) : __assert_fail ("bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth && \"Illegal bit extraction\"" , "llvm/lib/Support/APInt.cpp", 446, __extension__ __PRETTY_FUNCTION__ )); | |||
447 | ||||
448 | if (isSingleWord()) | |||
449 | return APInt(numBits, U.VAL >> bitPosition); | |||
450 | ||||
451 | unsigned loBit = whichBit(bitPosition); | |||
452 | unsigned loWord = whichWord(bitPosition); | |||
453 | unsigned hiWord = whichWord(bitPosition + numBits - 1); | |||
454 | ||||
455 | // Single word result extracting bits from a single word source. | |||
456 | if (loWord == hiWord) | |||
457 | return APInt(numBits, U.pVal[loWord] >> loBit); | |||
458 | ||||
459 | // Extracting bits that start on a source word boundary can be done | |||
460 | // as a fast memory copy. | |||
461 | if (loBit == 0) | |||
462 | return APInt(numBits, ArrayRef(U.pVal + loWord, 1 + hiWord - loWord)); | |||
463 | ||||
464 | // General case - shift + copy source words directly into place. | |||
465 | APInt Result(numBits, 0); | |||
466 | unsigned NumSrcWords = getNumWords(); | |||
467 | unsigned NumDstWords = Result.getNumWords(); | |||
468 | ||||
469 | uint64_t *DestPtr = Result.isSingleWord() ? &Result.U.VAL : Result.U.pVal; | |||
470 | for (unsigned word = 0; word < NumDstWords; ++word) { | |||
471 | uint64_t w0 = U.pVal[loWord + word]; | |||
472 | uint64_t w1 = | |||
473 | (loWord + word + 1) < NumSrcWords ? U.pVal[loWord + word + 1] : 0; | |||
474 | DestPtr[word] = (w0 >> loBit) | (w1 << (APINT_BITS_PER_WORD - loBit)); | |||
475 | } | |||
476 | ||||
477 | return Result.clearUnusedBits(); | |||
478 | } | |||
479 | ||||
480 | uint64_t APInt::extractBitsAsZExtValue(unsigned numBits, | |||
481 | unsigned bitPosition) const { | |||
482 | assert(numBits > 0 && "Can't extract zero bits")(static_cast <bool> (numBits > 0 && "Can't extract zero bits" ) ? void (0) : __assert_fail ("numBits > 0 && \"Can't extract zero bits\"" , "llvm/lib/Support/APInt.cpp", 482, __extension__ __PRETTY_FUNCTION__ )); | |||
483 | assert(bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth &&(static_cast <bool> (bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth && "Illegal bit extraction" ) ? void (0) : __assert_fail ("bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth && \"Illegal bit extraction\"" , "llvm/lib/Support/APInt.cpp", 484, __extension__ __PRETTY_FUNCTION__ )) | |||
484 | "Illegal bit extraction")(static_cast <bool> (bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth && "Illegal bit extraction" ) ? void (0) : __assert_fail ("bitPosition < BitWidth && (numBits + bitPosition) <= BitWidth && \"Illegal bit extraction\"" , "llvm/lib/Support/APInt.cpp", 484, __extension__ __PRETTY_FUNCTION__ )); | |||
485 | assert(numBits <= 64 && "Illegal bit extraction")(static_cast <bool> (numBits <= 64 && "Illegal bit extraction" ) ? void (0) : __assert_fail ("numBits <= 64 && \"Illegal bit extraction\"" , "llvm/lib/Support/APInt.cpp", 485, __extension__ __PRETTY_FUNCTION__ )); | |||
486 | ||||
487 | uint64_t maskBits = maskTrailingOnes<uint64_t>(numBits); | |||
488 | if (isSingleWord()) | |||
489 | return (U.VAL >> bitPosition) & maskBits; | |||
490 | ||||
491 | unsigned loBit = whichBit(bitPosition); | |||
492 | unsigned loWord = whichWord(bitPosition); | |||
493 | unsigned hiWord = whichWord(bitPosition + numBits - 1); | |||
494 | if (loWord == hiWord) | |||
495 | return (U.pVal[loWord] >> loBit) & maskBits; | |||
496 | ||||
497 | static_assert(8 * sizeof(WordType) <= 64, "This code assumes only two words affected"); | |||
498 | unsigned wordBits = 8 * sizeof(WordType); | |||
499 | uint64_t retBits = U.pVal[loWord] >> loBit; | |||
500 | retBits |= U.pVal[hiWord] << (wordBits - loBit); | |||
501 | retBits &= maskBits; | |||
502 | return retBits; | |||
503 | } | |||
504 | ||||
505 | unsigned APInt::getSufficientBitsNeeded(StringRef Str, uint8_t Radix) { | |||
506 | assert(!Str.empty() && "Invalid string length")(static_cast <bool> (!Str.empty() && "Invalid string length" ) ? void (0) : __assert_fail ("!Str.empty() && \"Invalid string length\"" , "llvm/lib/Support/APInt.cpp", 506, __extension__ __PRETTY_FUNCTION__ )); | |||
507 | size_t StrLen = Str.size(); | |||
508 | ||||
509 | // Each computation below needs to know if it's negative. | |||
510 | unsigned IsNegative = false; | |||
511 | if (Str[0] == '-' || Str[0] == '+') { | |||
512 | IsNegative = Str[0] == '-'; | |||
513 | StrLen--; | |||
514 | assert(StrLen && "String is only a sign, needs a value.")(static_cast <bool> (StrLen && "String is only a sign, needs a value." ) ? void (0) : __assert_fail ("StrLen && \"String is only a sign, needs a value.\"" , "llvm/lib/Support/APInt.cpp", 514, __extension__ __PRETTY_FUNCTION__ )); | |||
515 | } | |||
516 | ||||
517 | // For radixes of power-of-two values, the bits required is accurately and | |||
518 | // easily computed. | |||
519 | if (Radix == 2) | |||
520 | return StrLen + IsNegative; | |||
521 | if (Radix == 8) | |||
522 | return StrLen * 3 + IsNegative; | |||
523 | if (Radix == 16) | |||
524 | return StrLen * 4 + IsNegative; | |||
525 | ||||
526 | // Compute a sufficient number of bits that is always large enough but might | |||
527 | // be too large. This avoids the assertion in the constructor. This | |||
528 | // calculation doesn't work appropriately for the numbers 0-9, so just use 4 | |||
529 | // bits in that case. | |||
530 | if (Radix == 10) | |||
531 | return (StrLen == 1 ? 4 : StrLen * 64 / 18) + IsNegative; | |||
532 | ||||
533 | assert(Radix == 36)(static_cast <bool> (Radix == 36) ? void (0) : __assert_fail ("Radix == 36", "llvm/lib/Support/APInt.cpp", 533, __extension__ __PRETTY_FUNCTION__)); | |||
534 | return (StrLen == 1 ? 7 : StrLen * 16 / 3) + IsNegative; | |||
535 | } | |||
536 | ||||
537 | unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) { | |||
538 | // Compute a sufficient number of bits that is always large enough but might | |||
539 | // be too large. | |||
540 | unsigned sufficient = getSufficientBitsNeeded(str, radix); | |||
541 | ||||
542 | // For bases 2, 8, and 16, the sufficient number of bits is exact and we can | |||
543 | // return the value directly. For bases 10 and 36, we need to do extra work. | |||
544 | if (radix == 2 || radix == 8 || radix == 16) | |||
545 | return sufficient; | |||
546 | ||||
547 | // This is grossly inefficient but accurate. We could probably do something | |||
548 | // with a computation of roughly slen*64/20 and then adjust by the value of | |||
549 | // the first few digits. But, I'm not sure how accurate that could be. | |||
550 | size_t slen = str.size(); | |||
551 | ||||
552 | // Each computation below needs to know if it's negative. | |||
553 | StringRef::iterator p = str.begin(); | |||
554 | unsigned isNegative = *p == '-'; | |||
555 | if (*p == '-' || *p == '+') { | |||
556 | p++; | |||
557 | slen--; | |||
558 | assert(slen && "String is only a sign, needs a value.")(static_cast <bool> (slen && "String is only a sign, needs a value." ) ? void (0) : __assert_fail ("slen && \"String is only a sign, needs a value.\"" , "llvm/lib/Support/APInt.cpp", 558, __extension__ __PRETTY_FUNCTION__ )); | |||
559 | } | |||
560 | ||||
561 | ||||
562 | // Convert to the actual binary value. | |||
563 | APInt tmp(sufficient, StringRef(p, slen), radix); | |||
564 | ||||
565 | // Compute how many bits are required. If the log is infinite, assume we need | |||
566 | // just bit. If the log is exact and value is negative, then the value is | |||
567 | // MinSignedValue with (log + 1) bits. | |||
568 | unsigned log = tmp.logBase2(); | |||
569 | if (log == (unsigned)-1) { | |||
570 | return isNegative + 1; | |||
571 | } else if (isNegative && tmp.isPowerOf2()) { | |||
572 | return isNegative + log; | |||
573 | } else { | |||
574 | return isNegative + log + 1; | |||
575 | } | |||
576 | } | |||
577 | ||||
578 | hash_code llvm::hash_value(const APInt &Arg) { | |||
579 | if (Arg.isSingleWord()) | |||
580 | return hash_combine(Arg.BitWidth, Arg.U.VAL); | |||
581 | ||||
582 | return hash_combine( | |||
583 | Arg.BitWidth, | |||
584 | hash_combine_range(Arg.U.pVal, Arg.U.pVal + Arg.getNumWords())); | |||
585 | } | |||
586 | ||||
587 | unsigned DenseMapInfo<APInt, void>::getHashValue(const APInt &Key) { | |||
588 | return static_cast<unsigned>(hash_value(Key)); | |||
589 | } | |||
590 | ||||
591 | bool APInt::isSplat(unsigned SplatSizeInBits) const { | |||
592 | assert(getBitWidth() % SplatSizeInBits == 0 &&(static_cast <bool> (getBitWidth() % SplatSizeInBits == 0 && "SplatSizeInBits must divide width!") ? void (0 ) : __assert_fail ("getBitWidth() % SplatSizeInBits == 0 && \"SplatSizeInBits must divide width!\"" , "llvm/lib/Support/APInt.cpp", 593, __extension__ __PRETTY_FUNCTION__ )) | |||
593 | "SplatSizeInBits must divide width!")(static_cast <bool> (getBitWidth() % SplatSizeInBits == 0 && "SplatSizeInBits must divide width!") ? void (0 ) : __assert_fail ("getBitWidth() % SplatSizeInBits == 0 && \"SplatSizeInBits must divide width!\"" , "llvm/lib/Support/APInt.cpp", 593, __extension__ __PRETTY_FUNCTION__ )); | |||
594 | // We can check that all parts of an integer are equal by making use of a | |||
595 | // little trick: rotate and check if it's still the same value. | |||
596 | return *this == rotl(SplatSizeInBits); | |||
597 | } | |||
598 | ||||
599 | /// This function returns the high "numBits" bits of this APInt. | |||
600 | APInt APInt::getHiBits(unsigned numBits) const { | |||
601 | return this->lshr(BitWidth - numBits); | |||
602 | } | |||
603 | ||||
604 | /// This function returns the low "numBits" bits of this APInt. | |||
605 | APInt APInt::getLoBits(unsigned numBits) const { | |||
606 | APInt Result(getLowBitsSet(BitWidth, numBits)); | |||
607 | Result &= *this; | |||
608 | return Result; | |||
609 | } | |||
610 | ||||
611 | /// Return a value containing V broadcasted over NewLen bits. | |||
612 | APInt APInt::getSplat(unsigned NewLen, const APInt &V) { | |||
613 | assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!")(static_cast <bool> (NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!") ? void (0) : __assert_fail ("NewLen >= V.getBitWidth() && \"Can't splat to smaller bit width!\"" , "llvm/lib/Support/APInt.cpp", 613, __extension__ __PRETTY_FUNCTION__ )); | |||
| ||||
614 | ||||
615 | APInt Val = V.zext(NewLen); | |||
616 | for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1) | |||
617 | Val |= Val << I; | |||
618 | ||||
619 | return Val; | |||
620 | } | |||
621 | ||||
622 | unsigned APInt::countLeadingZerosSlowCase() const { | |||
623 | unsigned Count = 0; | |||
624 | for (int i = getNumWords()-1; i >= 0; --i) { | |||
625 | uint64_t V = U.pVal[i]; | |||
626 | if (V == 0) | |||
627 | Count += APINT_BITS_PER_WORD; | |||
628 | else { | |||
629 | Count += llvm::countl_zero(V); | |||
630 | break; | |||
631 | } | |||
632 | } | |||
633 | // Adjust for unused bits in the most significant word (they are zero). | |||
634 | unsigned Mod = BitWidth % APINT_BITS_PER_WORD; | |||
635 | Count -= Mod > 0 ? APINT_BITS_PER_WORD - Mod : 0; | |||
636 | return Count; | |||
637 | } | |||
638 | ||||
639 | unsigned APInt::countLeadingOnesSlowCase() const { | |||
640 | unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD; | |||
641 | unsigned shift; | |||
642 | if (!highWordBits) { | |||
643 | highWordBits = APINT_BITS_PER_WORD; | |||
644 | shift = 0; | |||
645 | } else { | |||
646 | shift = APINT_BITS_PER_WORD - highWordBits; | |||
647 | } | |||
648 | int i = getNumWords() - 1; | |||
649 | unsigned Count = llvm::countl_one(U.pVal[i] << shift); | |||
650 | if (Count == highWordBits) { | |||
651 | for (i--; i >= 0; --i) { | |||
652 | if (U.pVal[i] == WORDTYPE_MAX) | |||
653 | Count += APINT_BITS_PER_WORD; | |||
654 | else { | |||
655 | Count += llvm::countl_one(U.pVal[i]); | |||
656 | break; | |||
657 | } | |||
658 | } | |||
659 | } | |||
660 | return Count; | |||
661 | } | |||
662 | ||||
663 | unsigned APInt::countTrailingZerosSlowCase() const { | |||
664 | unsigned Count = 0; | |||
665 | unsigned i = 0; | |||
666 | for (; i < getNumWords() && U.pVal[i] == 0; ++i) | |||
667 | Count += APINT_BITS_PER_WORD; | |||
668 | if (i < getNumWords()) | |||
669 | Count += llvm::countr_zero(U.pVal[i]); | |||
670 | return std::min(Count, BitWidth); | |||
671 | } | |||
672 | ||||
673 | unsigned APInt::countTrailingOnesSlowCase() const { | |||
674 | unsigned Count = 0; | |||
675 | unsigned i = 0; | |||
676 | for (; i < getNumWords() && U.pVal[i] == WORDTYPE_MAX; ++i) | |||
677 | Count += APINT_BITS_PER_WORD; | |||
678 | if (i < getNumWords()) | |||
679 | Count += llvm::countr_one(U.pVal[i]); | |||
680 | assert(Count <= BitWidth)(static_cast <bool> (Count <= BitWidth) ? void (0) : __assert_fail ("Count <= BitWidth", "llvm/lib/Support/APInt.cpp" , 680, __extension__ __PRETTY_FUNCTION__)); | |||
681 | return Count; | |||
682 | } | |||
683 | ||||
684 | unsigned APInt::countPopulationSlowCase() const { | |||
685 | unsigned Count = 0; | |||
686 | for (unsigned i = 0; i < getNumWords(); ++i) | |||
687 | Count += llvm::popcount(U.pVal[i]); | |||
688 | return Count; | |||
689 | } | |||
690 | ||||
691 | bool APInt::intersectsSlowCase(const APInt &RHS) const { | |||
692 | for (unsigned i = 0, e = getNumWords(); i != e; ++i) | |||
693 | if ((U.pVal[i] & RHS.U.pVal[i]) != 0) | |||
694 | return true; | |||
695 | ||||
696 | return false; | |||
697 | } | |||
698 | ||||
699 | bool APInt::isSubsetOfSlowCase(const APInt &RHS) const { | |||
700 | for (unsigned i = 0, e = getNumWords(); i != e; ++i) | |||
701 | if ((U.pVal[i] & ~RHS.U.pVal[i]) != 0) | |||
702 | return false; | |||
703 | ||||
704 | return true; | |||
705 | } | |||
706 | ||||
707 | APInt APInt::byteSwap() const { | |||
708 | assert(BitWidth >= 16 && BitWidth % 8 == 0 && "Cannot byteswap!")(static_cast <bool> (BitWidth >= 16 && BitWidth % 8 == 0 && "Cannot byteswap!") ? void (0) : __assert_fail ("BitWidth >= 16 && BitWidth % 8 == 0 && \"Cannot byteswap!\"" , "llvm/lib/Support/APInt.cpp", 708, __extension__ __PRETTY_FUNCTION__ )); | |||
709 | if (BitWidth == 16) | |||
710 | return APInt(BitWidth, llvm::byteswap<uint16_t>(U.VAL)); | |||
711 | if (BitWidth == 32) | |||
712 | return APInt(BitWidth, llvm::byteswap<uint32_t>(U.VAL)); | |||
713 | if (BitWidth <= 64) { | |||
714 | uint64_t Tmp1 = llvm::byteswap<uint64_t>(U.VAL); | |||
715 | Tmp1 >>= (64 - BitWidth); | |||
716 | return APInt(BitWidth, Tmp1); | |||
717 | } | |||
718 | ||||
719 | APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0); | |||
720 | for (unsigned I = 0, N = getNumWords(); I != N; ++I) | |||
721 | Result.U.pVal[I] = llvm::byteswap<uint64_t>(U.pVal[N - I - 1]); | |||
722 | if (Result.BitWidth != BitWidth) { | |||
723 | Result.lshrInPlace(Result.BitWidth - BitWidth); | |||
724 | Result.BitWidth = BitWidth; | |||
725 | } | |||
726 | return Result; | |||
727 | } | |||
728 | ||||
729 | APInt APInt::reverseBits() const { | |||
730 | switch (BitWidth) { | |||
731 | case 64: | |||
732 | return APInt(BitWidth, llvm::reverseBits<uint64_t>(U.VAL)); | |||
733 | case 32: | |||
734 | return APInt(BitWidth, llvm::reverseBits<uint32_t>(U.VAL)); | |||
735 | case 16: | |||
736 | return APInt(BitWidth, llvm::reverseBits<uint16_t>(U.VAL)); | |||
737 | case 8: | |||
738 | return APInt(BitWidth, llvm::reverseBits<uint8_t>(U.VAL)); | |||
739 | case 0: | |||
740 | return *this; | |||
741 | default: | |||
742 | break; | |||
743 | } | |||
744 | ||||
745 | APInt Val(*this); | |||
746 | APInt Reversed(BitWidth, 0); | |||
747 | unsigned S = BitWidth; | |||
748 | ||||
749 | for (; Val != 0; Val.lshrInPlace(1)) { | |||
750 | Reversed <<= 1; | |||
751 | Reversed |= Val[0]; | |||
752 | --S; | |||
753 | } | |||
754 | ||||
755 | Reversed <<= S; | |||
756 | return Reversed; | |||
757 | } | |||
758 | ||||
759 | APInt llvm::APIntOps::GreatestCommonDivisor(APInt A, APInt B) { | |||
760 | // Fast-path a common case. | |||
761 | if (A == B) return A; | |||
762 | ||||
763 | // Corner cases: if either operand is zero, the other is the gcd. | |||
764 | if (!A) return B; | |||
765 | if (!B) return A; | |||
766 | ||||
767 | // Count common powers of 2 and remove all other powers of 2. | |||
768 | unsigned Pow2; | |||
769 | { | |||
770 | unsigned Pow2_A = A.countr_zero(); | |||
771 | unsigned Pow2_B = B.countr_zero(); | |||
772 | if (Pow2_A > Pow2_B) { | |||
773 | A.lshrInPlace(Pow2_A - Pow2_B); | |||
774 | Pow2 = Pow2_B; | |||
775 | } else if (Pow2_B > Pow2_A) { | |||
776 | B.lshrInPlace(Pow2_B - Pow2_A); | |||
777 | Pow2 = Pow2_A; | |||
778 | } else { | |||
779 | Pow2 = Pow2_A; | |||
780 | } | |||
781 | } | |||
782 | ||||
783 | // Both operands are odd multiples of 2^Pow_2: | |||
784 | // | |||
785 | // gcd(a, b) = gcd(|a - b| / 2^i, min(a, b)) | |||
786 | // | |||
787 | // This is a modified version of Stein's algorithm, taking advantage of | |||
788 | // efficient countTrailingZeros(). | |||
789 | while (A != B) { | |||
790 | if (A.ugt(B)) { | |||
791 | A -= B; | |||
792 | A.lshrInPlace(A.countr_zero() - Pow2); | |||
793 | } else { | |||
794 | B -= A; | |||
795 | B.lshrInPlace(B.countr_zero() - Pow2); | |||
796 | } | |||
797 | } | |||
798 | ||||
799 | return A; | |||
800 | } | |||
801 | ||||
802 | APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) { | |||
803 | uint64_t I = bit_cast<uint64_t>(Double); | |||
804 | ||||
805 | // Get the sign bit from the highest order bit | |||
806 | bool isNeg = I >> 63; | |||
807 | ||||
808 | // Get the 11-bit exponent and adjust for the 1023 bit bias | |||
809 | int64_t exp = ((I >> 52) & 0x7ff) - 1023; | |||
810 | ||||
811 | // If the exponent is negative, the value is < 0 so just return 0. | |||
812 | if (exp < 0) | |||
813 | return APInt(width, 0u); | |||
814 | ||||
815 | // Extract the mantissa by clearing the top 12 bits (sign + exponent). | |||
816 | uint64_t mantissa = (I & (~0ULL >> 12)) | 1ULL << 52; | |||
817 | ||||
818 | // If the exponent doesn't shift all bits out of the mantissa | |||
819 | if (exp < 52) | |||
820 | return isNeg ? -APInt(width, mantissa >> (52 - exp)) : | |||
821 | APInt(width, mantissa >> (52 - exp)); | |||
822 | ||||
823 | // If the client didn't provide enough bits for us to shift the mantissa into | |||
824 | // then the result is undefined, just return 0 | |||
825 | if (width <= exp - 52) | |||
826 | return APInt(width, 0); | |||
827 | ||||
828 | // Otherwise, we have to shift the mantissa bits up to the right location | |||
829 | APInt Tmp(width, mantissa); | |||
830 | Tmp <<= (unsigned)exp - 52; | |||
831 | return isNeg ? -Tmp : Tmp; | |||
832 | } | |||
833 | ||||
834 | /// This function converts this APInt to a double. | |||
835 | /// The layout for double is as following (IEEE Standard 754): | |||
836 | /// -------------------------------------- | |||
837 | /// | Sign Exponent Fraction Bias | | |||
838 | /// |-------------------------------------- | | |||
839 | /// | 1[63] 11[62-52] 52[51-00] 1023 | | |||
840 | /// -------------------------------------- | |||
841 | double APInt::roundToDouble(bool isSigned) const { | |||
842 | ||||
843 | // Handle the simple case where the value is contained in one uint64_t. | |||
844 | // It is wrong to optimize getWord(0) to VAL; there might be more than one word. | |||
845 | if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) { | |||
846 | if (isSigned) { | |||
847 | int64_t sext = SignExtend64(getWord(0), BitWidth); | |||
848 | return double(sext); | |||
849 | } else | |||
850 | return double(getWord(0)); | |||
851 | } | |||
852 | ||||
853 | // Determine if the value is negative. | |||
854 | bool isNeg = isSigned ? (*this)[BitWidth-1] : false; | |||
855 | ||||
856 | // Construct the absolute value if we're negative. | |||
857 | APInt Tmp(isNeg ? -(*this) : (*this)); | |||
858 | ||||
859 | // Figure out how many bits we're using. | |||
860 | unsigned n = Tmp.getActiveBits(); | |||
861 | ||||
862 | // The exponent (without bias normalization) is just the number of bits | |||
863 | // we are using. Note that the sign bit is gone since we constructed the | |||
864 | // absolute value. | |||
865 | uint64_t exp = n; | |||
866 | ||||
867 | // Return infinity for exponent overflow | |||
868 | if (exp > 1023) { | |||
869 | if (!isSigned || !isNeg) | |||
870 | return std::numeric_limits<double>::infinity(); | |||
871 | else | |||
872 | return -std::numeric_limits<double>::infinity(); | |||
873 | } | |||
874 | exp += 1023; // Increment for 1023 bias | |||
875 | ||||
876 | // Number of bits in mantissa is 52. To obtain the mantissa value, we must | |||
877 | // extract the high 52 bits from the correct words in pVal. | |||
878 | uint64_t mantissa; | |||
879 | unsigned hiWord = whichWord(n-1); | |||
880 | if (hiWord == 0) { | |||
881 | mantissa = Tmp.U.pVal[0]; | |||
882 | if (n > 52) | |||
883 | mantissa >>= n - 52; // shift down, we want the top 52 bits. | |||
884 | } else { | |||
885 | assert(hiWord > 0 && "huh?")(static_cast <bool> (hiWord > 0 && "huh?") ? void (0) : __assert_fail ("hiWord > 0 && \"huh?\"" , "llvm/lib/Support/APInt.cpp", 885, __extension__ __PRETTY_FUNCTION__ )); | |||
886 | uint64_t hibits = Tmp.U.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD); | |||
887 | uint64_t lobits = Tmp.U.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD); | |||
888 | mantissa = hibits | lobits; | |||
889 | } | |||
890 | ||||
891 | // The leading bit of mantissa is implicit, so get rid of it. | |||
892 | uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0; | |||
893 | uint64_t I = sign | (exp << 52) | mantissa; | |||
894 | return bit_cast<double>(I); | |||
895 | } | |||
896 | ||||
897 | // Truncate to new width. | |||
898 | APInt APInt::trunc(unsigned width) const { | |||
899 | assert(width <= BitWidth && "Invalid APInt Truncate request")(static_cast <bool> (width <= BitWidth && "Invalid APInt Truncate request" ) ? void (0) : __assert_fail ("width <= BitWidth && \"Invalid APInt Truncate request\"" , "llvm/lib/Support/APInt.cpp", 899, __extension__ __PRETTY_FUNCTION__ )); | |||
900 | ||||
901 | if (width <= APINT_BITS_PER_WORD) | |||
902 | return APInt(width, getRawData()[0]); | |||
903 | ||||
904 | if (width == BitWidth) | |||
905 | return *this; | |||
906 | ||||
907 | APInt Result(getMemory(getNumWords(width)), width); | |||
908 | ||||
909 | // Copy full words. | |||
910 | unsigned i; | |||
911 | for (i = 0; i != width / APINT_BITS_PER_WORD; i++) | |||
912 | Result.U.pVal[i] = U.pVal[i]; | |||
913 | ||||
914 | // Truncate and copy any partial word. | |||
915 | unsigned bits = (0 - width) % APINT_BITS_PER_WORD; | |||
916 | if (bits != 0) | |||
917 | Result.U.pVal[i] = U.pVal[i] << bits >> bits; | |||
918 | ||||
919 | return Result; | |||
920 | } | |||
921 | ||||
922 | // Truncate to new width with unsigned saturation. | |||
923 | APInt APInt::truncUSat(unsigned width) const { | |||
924 | assert(width <= BitWidth && "Invalid APInt Truncate request")(static_cast <bool> (width <= BitWidth && "Invalid APInt Truncate request" ) ? void (0) : __assert_fail ("width <= BitWidth && \"Invalid APInt Truncate request\"" , "llvm/lib/Support/APInt.cpp", 924, __extension__ __PRETTY_FUNCTION__ )); | |||
925 | ||||
926 | // Can we just losslessly truncate it? | |||
927 | if (isIntN(width)) | |||
928 | return trunc(width); | |||
929 | // If not, then just return the new limit. | |||
930 | return APInt::getMaxValue(width); | |||
931 | } | |||
932 | ||||
933 | // Truncate to new width with signed saturation. | |||
934 | APInt APInt::truncSSat(unsigned width) const { | |||
935 | assert(width <= BitWidth && "Invalid APInt Truncate request")(static_cast <bool> (width <= BitWidth && "Invalid APInt Truncate request" ) ? void (0) : __assert_fail ("width <= BitWidth && \"Invalid APInt Truncate request\"" , "llvm/lib/Support/APInt.cpp", 935, __extension__ __PRETTY_FUNCTION__ )); | |||
936 | ||||
937 | // Can we just losslessly truncate it? | |||
938 | if (isSignedIntN(width)) | |||
939 | return trunc(width); | |||
940 | // If not, then just return the new limits. | |||
941 | return isNegative() ? APInt::getSignedMinValue(width) | |||
942 | : APInt::getSignedMaxValue(width); | |||
943 | } | |||
944 | ||||
945 | // Sign extend to a new width. | |||
946 | APInt APInt::sext(unsigned Width) const { | |||
947 | assert(Width >= BitWidth && "Invalid APInt SignExtend request")(static_cast <bool> (Width >= BitWidth && "Invalid APInt SignExtend request" ) ? void (0) : __assert_fail ("Width >= BitWidth && \"Invalid APInt SignExtend request\"" , "llvm/lib/Support/APInt.cpp", 947, __extension__ __PRETTY_FUNCTION__ )); | |||
948 | ||||
949 | if (Width <= APINT_BITS_PER_WORD) | |||
950 | return APInt(Width, SignExtend64(U.VAL, BitWidth)); | |||
951 | ||||
952 | if (Width == BitWidth) | |||
953 | return *this; | |||
954 | ||||
955 | APInt Result(getMemory(getNumWords(Width)), Width); | |||
956 | ||||
957 | // Copy words. | |||
958 | std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE); | |||
959 | ||||
960 | // Sign extend the last word since there may be unused bits in the input. | |||
961 | Result.U.pVal[getNumWords() - 1] = | |||
962 | SignExtend64(Result.U.pVal[getNumWords() - 1], | |||
963 | ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1); | |||
964 | ||||
965 | // Fill with sign bits. | |||
966 | std::memset(Result.U.pVal + getNumWords(), isNegative() ? -1 : 0, | |||
967 | (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE); | |||
968 | Result.clearUnusedBits(); | |||
969 | return Result; | |||
970 | } | |||
971 | ||||
972 | // Zero extend to a new width. | |||
973 | APInt APInt::zext(unsigned width) const { | |||
974 | assert(width >= BitWidth && "Invalid APInt ZeroExtend request")(static_cast <bool> (width >= BitWidth && "Invalid APInt ZeroExtend request" ) ? void (0) : __assert_fail ("width >= BitWidth && \"Invalid APInt ZeroExtend request\"" , "llvm/lib/Support/APInt.cpp", 974, __extension__ __PRETTY_FUNCTION__ )); | |||
975 | ||||
976 | if (width <= APINT_BITS_PER_WORD) | |||
977 | return APInt(width, U.VAL); | |||
978 | ||||
979 | if (width == BitWidth) | |||
980 | return *this; | |||
981 | ||||
982 | APInt Result(getMemory(getNumWords(width)), width); | |||
983 | ||||
984 | // Copy words. | |||
985 | std::memcpy(Result.U.pVal, getRawData(), getNumWords() * APINT_WORD_SIZE); | |||
986 | ||||
987 | // Zero remaining words. | |||
988 | std::memset(Result.U.pVal + getNumWords(), 0, | |||
989 | (Result.getNumWords() - getNumWords()) * APINT_WORD_SIZE); | |||
990 | ||||
991 | return Result; | |||
992 | } | |||
993 | ||||
994 | APInt APInt::zextOrTrunc(unsigned width) const { | |||
995 | if (BitWidth < width) | |||
996 | return zext(width); | |||
997 | if (BitWidth > width) | |||
998 | return trunc(width); | |||
999 | return *this; | |||
1000 | } | |||
1001 | ||||
1002 | APInt APInt::sextOrTrunc(unsigned width) const { | |||
1003 | if (BitWidth < width) | |||
1004 | return sext(width); | |||
1005 | if (BitWidth > width) | |||
1006 | return trunc(width); | |||
1007 | return *this; | |||
1008 | } | |||
1009 | ||||
1010 | /// Arithmetic right-shift this APInt by shiftAmt. | |||
1011 | /// Arithmetic right-shift function. | |||
1012 | void APInt::ashrInPlace(const APInt &shiftAmt) { | |||
1013 | ashrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth)); | |||
1014 | } | |||
1015 | ||||
1016 | /// Arithmetic right-shift this APInt by shiftAmt. | |||
1017 | /// Arithmetic right-shift function. | |||
1018 | void APInt::ashrSlowCase(unsigned ShiftAmt) { | |||
1019 | // Don't bother performing a no-op shift. | |||
1020 | if (!ShiftAmt) | |||
1021 | return; | |||
1022 | ||||
1023 | // Save the original sign bit for later. | |||
1024 | bool Negative = isNegative(); | |||
1025 | ||||
1026 | // WordShift is the inter-part shift; BitShift is intra-part shift. | |||
1027 | unsigned WordShift = ShiftAmt / APINT_BITS_PER_WORD; | |||
1028 | unsigned BitShift = ShiftAmt % APINT_BITS_PER_WORD; | |||
1029 | ||||
1030 | unsigned WordsToMove = getNumWords() - WordShift; | |||
1031 | if (WordsToMove != 0) { | |||
1032 | // Sign extend the last word to fill in the unused bits. | |||
1033 | U.pVal[getNumWords() - 1] = SignExtend64( | |||
1034 | U.pVal[getNumWords() - 1], ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1); | |||
1035 | ||||
1036 | // Fastpath for moving by whole words. | |||
1037 | if (BitShift == 0) { | |||
1038 | std::memmove(U.pVal, U.pVal + WordShift, WordsToMove * APINT_WORD_SIZE); | |||
1039 | } else { | |||
1040 | // Move the words containing significant bits. | |||
1041 | for (unsigned i = 0; i != WordsToMove - 1; ++i) | |||
1042 | U.pVal[i] = (U.pVal[i + WordShift] >> BitShift) | | |||
1043 | (U.pVal[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift)); | |||
1044 | ||||
1045 | // Handle the last word which has no high bits to copy. | |||
1046 | U.pVal[WordsToMove - 1] = U.pVal[WordShift + WordsToMove - 1] >> BitShift; | |||
1047 | // Sign extend one more time. | |||
1048 | U.pVal[WordsToMove - 1] = | |||
1049 | SignExtend64(U.pVal[WordsToMove - 1], APINT_BITS_PER_WORD - BitShift); | |||
1050 | } | |||
1051 | } | |||
1052 | ||||
1053 | // Fill in the remainder based on the original sign. | |||
1054 | std::memset(U.pVal + WordsToMove, Negative ? -1 : 0, | |||
1055 | WordShift * APINT_WORD_SIZE); | |||
1056 | clearUnusedBits(); | |||
1057 | } | |||
1058 | ||||
1059 | /// Logical right-shift this APInt by shiftAmt. | |||
1060 | /// Logical right-shift function. | |||
1061 | void APInt::lshrInPlace(const APInt &shiftAmt) { | |||
1062 | lshrInPlace((unsigned)shiftAmt.getLimitedValue(BitWidth)); | |||
1063 | } | |||
1064 | ||||
1065 | /// Logical right-shift this APInt by shiftAmt. | |||
1066 | /// Logical right-shift function. | |||
1067 | void APInt::lshrSlowCase(unsigned ShiftAmt) { | |||
1068 | tcShiftRight(U.pVal, getNumWords(), ShiftAmt); | |||
1069 | } | |||
1070 | ||||
1071 | /// Left-shift this APInt by shiftAmt. | |||
1072 | /// Left-shift function. | |||
1073 | APInt &APInt::operator<<=(const APInt &shiftAmt) { | |||
1074 | // It's undefined behavior in C to shift by BitWidth or greater. | |||
1075 | *this <<= (unsigned)shiftAmt.getLimitedValue(BitWidth); | |||
1076 | return *this; | |||
1077 | } | |||
1078 | ||||
1079 | void APInt::shlSlowCase(unsigned ShiftAmt) { | |||
1080 | tcShiftLeft(U.pVal, getNumWords(), ShiftAmt); | |||
1081 | clearUnusedBits(); | |||
1082 | } | |||
1083 | ||||
1084 | // Calculate the rotate amount modulo the bit width. | |||
1085 | static unsigned rotateModulo(unsigned BitWidth, const APInt &rotateAmt) { | |||
1086 | if (LLVM_UNLIKELY(BitWidth == 0)__builtin_expect((bool)(BitWidth == 0), false)) | |||
1087 | return 0; | |||
1088 | unsigned rotBitWidth = rotateAmt.getBitWidth(); | |||
1089 | APInt rot = rotateAmt; | |||
1090 | if (rotBitWidth < BitWidth) { | |||
1091 | // Extend the rotate APInt, so that the urem doesn't divide by 0. | |||
1092 | // e.g. APInt(1, 32) would give APInt(1, 0). | |||
1093 | rot = rotateAmt.zext(BitWidth); | |||
1094 | } | |||
1095 | rot = rot.urem(APInt(rot.getBitWidth(), BitWidth)); | |||
1096 | return rot.getLimitedValue(BitWidth); | |||
1097 | } | |||
1098 | ||||
1099 | APInt APInt::rotl(const APInt &rotateAmt) const { | |||
1100 | return rotl(rotateModulo(BitWidth, rotateAmt)); | |||
1101 | } | |||
1102 | ||||
1103 | APInt APInt::rotl(unsigned rotateAmt) const { | |||
1104 | if (LLVM_UNLIKELY(BitWidth == 0)__builtin_expect((bool)(BitWidth == 0), false)) | |||
1105 | return *this; | |||
1106 | rotateAmt %= BitWidth; | |||
1107 | if (rotateAmt == 0) | |||
1108 | return *this; | |||
1109 | return shl(rotateAmt) | lshr(BitWidth - rotateAmt); | |||
1110 | } | |||
1111 | ||||
1112 | APInt APInt::rotr(const APInt &rotateAmt) const { | |||
1113 | return rotr(rotateModulo(BitWidth, rotateAmt)); | |||
1114 | } | |||
1115 | ||||
1116 | APInt APInt::rotr(unsigned rotateAmt) const { | |||
1117 | if (BitWidth == 0) | |||
1118 | return *this; | |||
1119 | rotateAmt %= BitWidth; | |||
1120 | if (rotateAmt == 0) | |||
1121 | return *this; | |||
1122 | return lshr(rotateAmt) | shl(BitWidth - rotateAmt); | |||
1123 | } | |||
1124 | ||||
1125 | /// \returns the nearest log base 2 of this APInt. Ties round up. | |||
1126 | /// | |||
1127 | /// NOTE: When we have a BitWidth of 1, we define: | |||
1128 | /// | |||
1129 | /// log2(0) = UINT32_MAX | |||
1130 | /// log2(1) = 0 | |||
1131 | /// | |||
1132 | /// to get around any mathematical concerns resulting from | |||
1133 | /// referencing 2 in a space where 2 does no exist. | |||
1134 | unsigned APInt::nearestLogBase2() const { | |||
1135 | // Special case when we have a bitwidth of 1. If VAL is 1, then we | |||
1136 | // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to | |||
1137 | // UINT32_MAX. | |||
1138 | if (BitWidth == 1) | |||
1139 | return U.VAL - 1; | |||
1140 | ||||
1141 | // Handle the zero case. | |||
1142 | if (isZero()) | |||
1143 | return UINT32_MAX(4294967295U); | |||
1144 | ||||
1145 | // The non-zero case is handled by computing: | |||
1146 | // | |||
1147 | // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1]. | |||
1148 | // | |||
1149 | // where x[i] is referring to the value of the ith bit of x. | |||
1150 | unsigned lg = logBase2(); | |||
1151 | return lg + unsigned((*this)[lg - 1]); | |||
1152 | } | |||
1153 | ||||
1154 | // Square Root - this method computes and returns the square root of "this". | |||
1155 | // Three mechanisms are used for computation. For small values (<= 5 bits), | |||
1156 | // a table lookup is done. This gets some performance for common cases. For | |||
1157 | // values using less than 52 bits, the value is converted to double and then | |||
1158 | // the libc sqrt function is called. The result is rounded and then converted | |||
1159 | // back to a uint64_t which is then used to construct the result. Finally, | |||
1160 | // the Babylonian method for computing square roots is used. | |||
1161 | APInt APInt::sqrt() const { | |||
1162 | ||||
1163 | // Determine the magnitude of the value. | |||
1164 | unsigned magnitude = getActiveBits(); | |||
1165 | ||||
1166 | // Use a fast table for some small values. This also gets rid of some | |||
1167 | // rounding errors in libc sqrt for small values. | |||
1168 | if (magnitude <= 5) { | |||
1169 | static const uint8_t results[32] = { | |||
1170 | /* 0 */ 0, | |||
1171 | /* 1- 2 */ 1, 1, | |||
1172 | /* 3- 6 */ 2, 2, 2, 2, | |||
1173 | /* 7-12 */ 3, 3, 3, 3, 3, 3, | |||
1174 | /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4, | |||
1175 | /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, | |||
1176 | /* 31 */ 6 | |||
1177 | }; | |||
1178 | return APInt(BitWidth, results[ (isSingleWord() ? U.VAL : U.pVal[0]) ]); | |||
1179 | } | |||
1180 | ||||
1181 | // If the magnitude of the value fits in less than 52 bits (the precision of | |||
1182 | // an IEEE double precision floating point value), then we can use the | |||
1183 | // libc sqrt function which will probably use a hardware sqrt computation. | |||
1184 | // This should be faster than the algorithm below. | |||
1185 | if (magnitude < 52) { | |||
1186 | return APInt(BitWidth, | |||
1187 | uint64_t(::round(::sqrt(double(isSingleWord() ? U.VAL | |||
1188 | : U.pVal[0]))))); | |||
1189 | } | |||
1190 | ||||
1191 | // Okay, all the short cuts are exhausted. We must compute it. The following | |||
1192 | // is a classical Babylonian method for computing the square root. This code | |||
1193 | // was adapted to APInt from a wikipedia article on such computations. | |||
1194 | // See http://www.wikipedia.org/ and go to the page named | |||
1195 | // Calculate_an_integer_square_root. | |||
1196 | unsigned nbits = BitWidth, i = 4; | |||
1197 | APInt testy(BitWidth, 16); | |||
1198 | APInt x_old(BitWidth, 1); | |||
1199 | APInt x_new(BitWidth, 0); | |||
1200 | APInt two(BitWidth, 2); | |||
1201 | ||||
1202 | // Select a good starting value using binary logarithms. | |||
1203 | for (;; i += 2, testy = testy.shl(2)) | |||
1204 | if (i >= nbits || this->ule(testy)) { | |||
1205 | x_old = x_old.shl(i / 2); | |||
1206 | break; | |||
1207 | } | |||
1208 | ||||
1209 | // Use the Babylonian method to arrive at the integer square root: | |||
1210 | for (;;) { | |||
1211 | x_new = (this->udiv(x_old) + x_old).udiv(two); | |||
1212 | if (x_old.ule(x_new)) | |||
1213 | break; | |||
1214 | x_old = x_new; | |||
1215 | } | |||
1216 | ||||
1217 | // Make sure we return the closest approximation | |||
1218 | // NOTE: The rounding calculation below is correct. It will produce an | |||
1219 | // off-by-one discrepancy with results from pari/gp. That discrepancy has been | |||
1220 | // determined to be a rounding issue with pari/gp as it begins to use a | |||
1221 | // floating point representation after 192 bits. There are no discrepancies | |||
1222 | // between this algorithm and pari/gp for bit widths < 192 bits. | |||
1223 | APInt square(x_old * x_old); | |||
1224 | APInt nextSquare((x_old + 1) * (x_old +1)); | |||
1225 | if (this->ult(square)) | |||
1226 | return x_old; | |||
1227 | assert(this->ule(nextSquare) && "Error in APInt::sqrt computation")(static_cast <bool> (this->ule(nextSquare) && "Error in APInt::sqrt computation") ? void (0) : __assert_fail ("this->ule(nextSquare) && \"Error in APInt::sqrt computation\"" , "llvm/lib/Support/APInt.cpp", 1227, __extension__ __PRETTY_FUNCTION__ )); | |||
1228 | APInt midpoint((nextSquare - square).udiv(two)); | |||
1229 | APInt offset(*this - square); | |||
1230 | if (offset.ult(midpoint)) | |||
1231 | return x_old; | |||
1232 | return x_old + 1; | |||
1233 | } | |||
1234 | ||||
1235 | /// Computes the multiplicative inverse of this APInt for a given modulo. The | |||
1236 | /// iterative extended Euclidean algorithm is used to solve for this value, | |||
1237 | /// however we simplify it to speed up calculating only the inverse, and take | |||
1238 | /// advantage of div+rem calculations. We also use some tricks to avoid copying | |||
1239 | /// (potentially large) APInts around. | |||
1240 | /// WARNING: a value of '0' may be returned, | |||
1241 | /// signifying that no multiplicative inverse exists! | |||
1242 | APInt APInt::multiplicativeInverse(const APInt& modulo) const { | |||
1243 | assert(ult(modulo) && "This APInt must be smaller than the modulo")(static_cast <bool> (ult(modulo) && "This APInt must be smaller than the modulo" ) ? void (0) : __assert_fail ("ult(modulo) && \"This APInt must be smaller than the modulo\"" , "llvm/lib/Support/APInt.cpp", 1243, __extension__ __PRETTY_FUNCTION__ )); | |||
1244 | ||||
1245 | // Using the properties listed at the following web page (accessed 06/21/08): | |||
1246 | // http://www.numbertheory.org/php/euclid.html | |||
1247 | // (especially the properties numbered 3, 4 and 9) it can be proved that | |||
1248 | // BitWidth bits suffice for all the computations in the algorithm implemented | |||
1249 | // below. More precisely, this number of bits suffice if the multiplicative | |||
1250 | // inverse exists, but may not suffice for the general extended Euclidean | |||
1251 | // algorithm. | |||
1252 | ||||
1253 | APInt r[2] = { modulo, *this }; | |||
1254 | APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) }; | |||
1255 | APInt q(BitWidth, 0); | |||
1256 | ||||
1257 | unsigned i; | |||
1258 | for (i = 0; r[i^1] != 0; i ^= 1) { | |||
1259 | // An overview of the math without the confusing bit-flipping: | |||
1260 | // q = r[i-2] / r[i-1] | |||
1261 | // r[i] = r[i-2] % r[i-1] | |||
1262 | // t[i] = t[i-2] - t[i-1] * q | |||
1263 | udivrem(r[i], r[i^1], q, r[i]); | |||
1264 | t[i] -= t[i^1] * q; | |||
1265 | } | |||
1266 | ||||
1267 | // If this APInt and the modulo are not coprime, there is no multiplicative | |||
1268 | // inverse, so return 0. We check this by looking at the next-to-last | |||
1269 | // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean | |||
1270 | // algorithm. | |||
1271 | if (r[i] != 1) | |||
1272 | return APInt(BitWidth, 0); | |||
1273 | ||||
1274 | // The next-to-last t is the multiplicative inverse. However, we are | |||
1275 | // interested in a positive inverse. Calculate a positive one from a negative | |||
1276 | // one if necessary. A simple addition of the modulo suffices because | |||
1277 | // abs(t[i]) is known to be less than *this/2 (see the link above). | |||
1278 | if (t[i].isNegative()) | |||
1279 | t[i] += modulo; | |||
1280 | ||||
1281 | return std::move(t[i]); | |||
1282 | } | |||
1283 | ||||
1284 | /// Implementation of Knuth's Algorithm D (Division of nonnegative integers) | |||
1285 | /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The | |||
1286 | /// variables here have the same names as in the algorithm. Comments explain | |||
1287 | /// the algorithm and any deviation from it. | |||
1288 | static void KnuthDiv(uint32_t *u, uint32_t *v, uint32_t *q, uint32_t* r, | |||
1289 | unsigned m, unsigned n) { | |||
1290 | assert(u && "Must provide dividend")(static_cast <bool> (u && "Must provide dividend" ) ? void (0) : __assert_fail ("u && \"Must provide dividend\"" , "llvm/lib/Support/APInt.cpp", 1290, __extension__ __PRETTY_FUNCTION__ )); | |||
1291 | assert(v && "Must provide divisor")(static_cast <bool> (v && "Must provide divisor" ) ? void (0) : __assert_fail ("v && \"Must provide divisor\"" , "llvm/lib/Support/APInt.cpp", 1291, __extension__ __PRETTY_FUNCTION__ )); | |||
1292 | assert(q && "Must provide quotient")(static_cast <bool> (q && "Must provide quotient" ) ? void (0) : __assert_fail ("q && \"Must provide quotient\"" , "llvm/lib/Support/APInt.cpp", 1292, __extension__ __PRETTY_FUNCTION__ )); | |||
1293 | assert(u != v && u != q && v != q && "Must use different memory")(static_cast <bool> (u != v && u != q && v != q && "Must use different memory") ? void (0) : __assert_fail ("u != v && u != q && v != q && \"Must use different memory\"" , "llvm/lib/Support/APInt.cpp", 1293, __extension__ __PRETTY_FUNCTION__ )); | |||
1294 | assert(n>1 && "n must be > 1")(static_cast <bool> (n>1 && "n must be > 1" ) ? void (0) : __assert_fail ("n>1 && \"n must be > 1\"" , "llvm/lib/Support/APInt.cpp", 1294, __extension__ __PRETTY_FUNCTION__ )); | |||
1295 | ||||
1296 | // b denotes the base of the number system. In our case b is 2^32. | |||
1297 | const uint64_t b = uint64_t(1) << 32; | |||
1298 | ||||
1299 | // The DEBUG macros here tend to be spam in the debug output if you're not | |||
1300 | // debugging this code. Disable them unless KNUTH_DEBUG is defined. | |||
1301 | #ifdef KNUTH_DEBUG | |||
1302 | #define DEBUG_KNUTH(X)do {} while(false) LLVM_DEBUG(X)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("apint")) { X; } } while (false) | |||
1303 | #else | |||
1304 | #define DEBUG_KNUTH(X)do {} while(false) do {} while(false) | |||
1305 | #endif | |||
1306 | ||||
1307 | DEBUG_KNUTH(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n')do {} while(false); | |||
1308 | DEBUG_KNUTH(dbgs() << "KnuthDiv: original:")do {} while(false); | |||
1309 | DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i])do {} while(false); | |||
1310 | DEBUG_KNUTH(dbgs() << " by")do {} while(false); | |||
1311 | DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1])do {} while(false); | |||
1312 | DEBUG_KNUTH(dbgs() << '\n')do {} while(false); | |||
1313 | // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of | |||
1314 | // u and v by d. Note that we have taken Knuth's advice here to use a power | |||
1315 | // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of | |||
1316 | // 2 allows us to shift instead of multiply and it is easy to determine the | |||
1317 | // shift amount from the leading zeros. We are basically normalizing the u | |||
1318 | // and v so that its high bits are shifted to the top of v's range without | |||
1319 | // overflow. Note that this can require an extra word in u so that u must | |||
1320 | // be of length m+n+1. | |||
1321 | unsigned shift = llvm::countl_zero(v[n - 1]); | |||
1322 | uint32_t v_carry = 0; | |||
1323 | uint32_t u_carry = 0; | |||
1324 | if (shift) { | |||
1325 | for (unsigned i = 0; i < m+n; ++i) { | |||
1326 | uint32_t u_tmp = u[i] >> (32 - shift); | |||
1327 | u[i] = (u[i] << shift) | u_carry; | |||
1328 | u_carry = u_tmp; | |||
1329 | } | |||
1330 | for (unsigned i = 0; i < n; ++i) { | |||
1331 | uint32_t v_tmp = v[i] >> (32 - shift); | |||
1332 | v[i] = (v[i] << shift) | v_carry; | |||
1333 | v_carry = v_tmp; | |||
1334 | } | |||
1335 | } | |||
1336 | u[m+n] = u_carry; | |||
1337 | ||||
1338 | DEBUG_KNUTH(dbgs() << "KnuthDiv: normal:")do {} while(false); | |||
1339 | DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i])do {} while(false); | |||
1340 | DEBUG_KNUTH(dbgs() << " by")do {} while(false); | |||
1341 | DEBUG_KNUTH(for (int i = n; i > 0; i--) dbgs() << " " << v[i - 1])do {} while(false); | |||
1342 | DEBUG_KNUTH(dbgs() << '\n')do {} while(false); | |||
1343 | ||||
1344 | // D2. [Initialize j.] Set j to m. This is the loop counter over the places. | |||
1345 | int j = m; | |||
1346 | do { | |||
1347 | DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient digit #" << j << '\n')do {} while(false); | |||
1348 | // D3. [Calculate q'.]. | |||
1349 | // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q') | |||
1350 | // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r') | |||
1351 | // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease | |||
1352 | // qp by 1, increase rp by v[n-1], and repeat this test if rp < b. The test | |||
1353 | // on v[n-2] determines at high speed most of the cases in which the trial | |||
1354 | // value qp is one too large, and it eliminates all cases where qp is two | |||
1355 | // too large. | |||
1356 | uint64_t dividend = Make_64(u[j+n], u[j+n-1]); | |||
1357 | DEBUG_KNUTH(dbgs() << "KnuthDiv: dividend == " << dividend << '\n')do {} while(false); | |||
1358 | uint64_t qp = dividend / v[n-1]; | |||
1359 | uint64_t rp = dividend % v[n-1]; | |||
1360 | if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) { | |||
1361 | qp--; | |||
1362 | rp += v[n-1]; | |||
1363 | if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2])) | |||
1364 | qp--; | |||
1365 | } | |||
1366 | DEBUG_KNUTH(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n')do {} while(false); | |||
1367 | ||||
1368 | // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with | |||
1369 | // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation | |||
1370 | // consists of a simple multiplication by a one-place number, combined with | |||
1371 | // a subtraction. | |||
1372 | // The digits (u[j+n]...u[j]) should be kept positive; if the result of | |||
1373 | // this step is actually negative, (u[j+n]...u[j]) should be left as the | |||
1374 | // true value plus b**(n+1), namely as the b's complement of | |||
1375 | // the true value, and a "borrow" to the left should be remembered. | |||
1376 | int64_t borrow = 0; | |||
1377 | for (unsigned i = 0; i < n; ++i) { | |||
1378 | uint64_t p = uint64_t(qp) * uint64_t(v[i]); | |||
1379 | int64_t subres = int64_t(u[j+i]) - borrow - Lo_32(p); | |||
1380 | u[j+i] = Lo_32(subres); | |||
1381 | borrow = Hi_32(p) - Hi_32(subres); | |||
1382 | DEBUG_KNUTH(dbgs() << "KnuthDiv: u[j+i] = " << u[j + i]do {} while(false) | |||
1383 | << ", borrow = " << borrow << '\n')do {} while(false); | |||
1384 | } | |||
1385 | bool isNeg = u[j+n] < borrow; | |||
1386 | u[j+n] -= Lo_32(borrow); | |||
1387 | ||||
1388 | DEBUG_KNUTH(dbgs() << "KnuthDiv: after subtraction:")do {} while(false); | |||
1389 | DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i])do {} while(false); | |||
1390 | DEBUG_KNUTH(dbgs() << '\n')do {} while(false); | |||
1391 | ||||
1392 | // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was | |||
1393 | // negative, go to step D6; otherwise go on to step D7. | |||
1394 | q[j] = Lo_32(qp); | |||
1395 | if (isNeg) { | |||
1396 | // D6. [Add back]. The probability that this step is necessary is very | |||
1397 | // small, on the order of only 2/b. Make sure that test data accounts for | |||
1398 | // this possibility. Decrease q[j] by 1 | |||
1399 | q[j]--; | |||
1400 | // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]). | |||
1401 | // A carry will occur to the left of u[j+n], and it should be ignored | |||
1402 | // since it cancels with the borrow that occurred in D4. | |||
1403 | bool carry = false; | |||
1404 | for (unsigned i = 0; i < n; i++) { | |||
1405 | uint32_t limit = std::min(u[j+i],v[i]); | |||
1406 | u[j+i] += v[i] + carry; | |||
1407 | carry = u[j+i] < limit || (carry && u[j+i] == limit); | |||
1408 | } | |||
1409 | u[j+n] += carry; | |||
1410 | } | |||
1411 | DEBUG_KNUTH(dbgs() << "KnuthDiv: after correction:")do {} while(false); | |||
1412 | DEBUG_KNUTH(for (int i = m + n; i >= 0; i--) dbgs() << " " << u[i])do {} while(false); | |||
1413 | DEBUG_KNUTH(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n')do {} while(false); | |||
1414 | ||||
1415 | // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3. | |||
1416 | } while (--j >= 0); | |||
1417 | ||||
1418 | DEBUG_KNUTH(dbgs() << "KnuthDiv: quotient:")do {} while(false); | |||
1419 | DEBUG_KNUTH(for (int i = m; i >= 0; i--) dbgs() << " " << q[i])do {} while(false); | |||
1420 | DEBUG_KNUTH(dbgs() << '\n')do {} while(false); | |||
1421 | ||||
1422 | // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired | |||
1423 | // remainder may be obtained by dividing u[...] by d. If r is non-null we | |||
1424 | // compute the remainder (urem uses this). | |||
1425 | if (r) { | |||
1426 | // The value d is expressed by the "shift" value above since we avoided | |||
1427 | // multiplication by d by using a shift left. So, all we have to do is | |||
1428 | // shift right here. | |||
1429 | if (shift) { | |||
1430 | uint32_t carry = 0; | |||
1431 | DEBUG_KNUTH(dbgs() << "KnuthDiv: remainder:")do {} while(false); | |||
1432 | for (int i = n-1; i >= 0; i--) { | |||
1433 | r[i] = (u[i] >> shift) | carry; | |||
1434 | carry = u[i] << (32 - shift); | |||
1435 | DEBUG_KNUTH(dbgs() << " " << r[i])do {} while(false); | |||
1436 | } | |||
1437 | } else { | |||
1438 | for (int i = n-1; i >= 0; i--) { | |||
1439 | r[i] = u[i]; | |||
1440 | DEBUG_KNUTH(dbgs() << " " << r[i])do {} while(false); | |||
1441 | } | |||
1442 | } | |||
1443 | DEBUG_KNUTH(dbgs() << '\n')do {} while(false); | |||
1444 | } | |||
1445 | DEBUG_KNUTH(dbgs() << '\n')do {} while(false); | |||
1446 | } | |||
1447 | ||||
1448 | void APInt::divide(const WordType *LHS, unsigned lhsWords, const WordType *RHS, | |||
1449 | unsigned rhsWords, WordType *Quotient, WordType *Remainder) { | |||
1450 | assert(lhsWords >= rhsWords && "Fractional result")(static_cast <bool> (lhsWords >= rhsWords && "Fractional result") ? void (0) : __assert_fail ("lhsWords >= rhsWords && \"Fractional result\"" , "llvm/lib/Support/APInt.cpp", 1450, __extension__ __PRETTY_FUNCTION__ )); | |||
1451 | ||||
1452 | // First, compose the values into an array of 32-bit words instead of | |||
1453 | // 64-bit words. This is a necessity of both the "short division" algorithm | |||
1454 | // and the Knuth "classical algorithm" which requires there to be native | |||
1455 | // operations for +, -, and * on an m bit value with an m*2 bit result. We | |||
1456 | // can't use 64-bit operands here because we don't have native results of | |||
1457 | // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't | |||
1458 | // work on large-endian machines. | |||
1459 | unsigned n = rhsWords * 2; | |||
1460 | unsigned m = (lhsWords * 2) - n; | |||
1461 | ||||
1462 | // Allocate space for the temporary values we need either on the stack, if | |||
1463 | // it will fit, or on the heap if it won't. | |||
1464 | uint32_t SPACE[128]; | |||
1465 | uint32_t *U = nullptr; | |||
1466 | uint32_t *V = nullptr; | |||
1467 | uint32_t *Q = nullptr; | |||
1468 | uint32_t *R = nullptr; | |||
1469 | if ((Remainder?4:3)*n+2*m+1 <= 128) { | |||
1470 | U = &SPACE[0]; | |||
1471 | V = &SPACE[m+n+1]; | |||
1472 | Q = &SPACE[(m+n+1) + n]; | |||
1473 | if (Remainder) | |||
1474 | R = &SPACE[(m+n+1) + n + (m+n)]; | |||
1475 | } else { | |||
1476 | U = new uint32_t[m + n + 1]; | |||
1477 | V = new uint32_t[n]; | |||
1478 | Q = new uint32_t[m+n]; | |||
1479 | if (Remainder) | |||
1480 | R = new uint32_t[n]; | |||
1481 | } | |||
1482 | ||||
1483 | // Initialize the dividend | |||
1484 | memset(U, 0, (m+n+1)*sizeof(uint32_t)); | |||
1485 | for (unsigned i = 0; i < lhsWords; ++i) { | |||
1486 | uint64_t tmp = LHS[i]; | |||
1487 | U[i * 2] = Lo_32(tmp); | |||
1488 | U[i * 2 + 1] = Hi_32(tmp); | |||
1489 | } | |||
1490 | U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm. | |||
1491 | ||||
1492 | // Initialize the divisor | |||
1493 | memset(V, 0, (n)*sizeof(uint32_t)); | |||
1494 | for (unsigned i = 0; i < rhsWords; ++i) { | |||
1495 | uint64_t tmp = RHS[i]; | |||
1496 | V[i * 2] = Lo_32(tmp); | |||
1497 | V[i * 2 + 1] = Hi_32(tmp); | |||
1498 | } | |||
1499 | ||||
1500 | // initialize the quotient and remainder | |||
1501 | memset(Q, 0, (m+n) * sizeof(uint32_t)); | |||
1502 | if (Remainder) | |||
1503 | memset(R, 0, n * sizeof(uint32_t)); | |||
1504 | ||||
1505 | // Now, adjust m and n for the Knuth division. n is the number of words in | |||
1506 | // the divisor. m is the number of words by which the dividend exceeds the | |||
1507 | // divisor (i.e. m+n is the length of the dividend). These sizes must not | |||
1508 | // contain any zero words or the Knuth algorithm fails. | |||
1509 | for (unsigned i = n; i > 0 && V[i-1] == 0; i--) { | |||
1510 | n--; | |||
1511 | m++; | |||
1512 | } | |||
1513 | for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--) | |||
1514 | m--; | |||
1515 | ||||
1516 | // If we're left with only a single word for the divisor, Knuth doesn't work | |||
1517 | // so we implement the short division algorithm here. This is much simpler | |||
1518 | // and faster because we are certain that we can divide a 64-bit quantity | |||
1519 | // by a 32-bit quantity at hardware speed and short division is simply a | |||
1520 | // series of such operations. This is just like doing short division but we | |||
1521 | // are using base 2^32 instead of base 10. | |||
1522 | assert(n != 0 && "Divide by zero?")(static_cast <bool> (n != 0 && "Divide by zero?" ) ? void (0) : __assert_fail ("n != 0 && \"Divide by zero?\"" , "llvm/lib/Support/APInt.cpp", 1522, __extension__ __PRETTY_FUNCTION__ )); | |||
1523 | if (n == 1) { | |||
1524 | uint32_t divisor = V[0]; | |||
1525 | uint32_t remainder = 0; | |||
1526 | for (int i = m; i >= 0; i--) { | |||
1527 | uint64_t partial_dividend = Make_64(remainder, U[i]); | |||
1528 | if (partial_dividend == 0) { | |||
1529 | Q[i] = 0; | |||
1530 | remainder = 0; | |||
1531 | } else if (partial_dividend < divisor) { | |||
1532 | Q[i] = 0; | |||
1533 | remainder = Lo_32(partial_dividend); | |||
1534 | } else if (partial_dividend == divisor) { | |||
1535 | Q[i] = 1; | |||
1536 | remainder = 0; | |||
1537 | } else { | |||
1538 | Q[i] = Lo_32(partial_dividend / divisor); | |||
1539 | remainder = Lo_32(partial_dividend - (Q[i] * divisor)); | |||
1540 | } | |||
1541 | } | |||
1542 | if (R) | |||
1543 | R[0] = remainder; | |||
1544 | } else { | |||
1545 | // Now we're ready to invoke the Knuth classical divide algorithm. In this | |||
1546 | // case n > 1. | |||
1547 | KnuthDiv(U, V, Q, R, m, n); | |||
1548 | } | |||
1549 | ||||
1550 | // If the caller wants the quotient | |||
1551 | if (Quotient) { | |||
1552 | for (unsigned i = 0; i < lhsWords; ++i) | |||
1553 | Quotient[i] = Make_64(Q[i*2+1], Q[i*2]); | |||
1554 | } | |||
1555 | ||||
1556 | // If the caller wants the remainder | |||
1557 | if (Remainder) { | |||
1558 | for (unsigned i = 0; i < rhsWords; ++i) | |||
1559 | Remainder[i] = Make_64(R[i*2+1], R[i*2]); | |||
1560 | } | |||
1561 | ||||
1562 | // Clean up the memory we allocated. | |||
1563 | if (U != &SPACE[0]) { | |||
1564 | delete [] U; | |||
1565 | delete [] V; | |||
1566 | delete [] Q; | |||
1567 | delete [] R; | |||
1568 | } | |||
1569 | } | |||
1570 | ||||
1571 | APInt APInt::udiv(const APInt &RHS) const { | |||
1572 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth && "Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\"" , "llvm/lib/Support/APInt.cpp", 1572, __extension__ __PRETTY_FUNCTION__ )); | |||
1573 | ||||
1574 | // First, deal with the easy case | |||
1575 | if (isSingleWord()) { | |||
1576 | assert(RHS.U.VAL != 0 && "Divide by zero?")(static_cast <bool> (RHS.U.VAL != 0 && "Divide by zero?" ) ? void (0) : __assert_fail ("RHS.U.VAL != 0 && \"Divide by zero?\"" , "llvm/lib/Support/APInt.cpp", 1576, __extension__ __PRETTY_FUNCTION__ )); | |||
1577 | return APInt(BitWidth, U.VAL / RHS.U.VAL); | |||
1578 | } | |||
1579 | ||||
1580 | // Get some facts about the LHS and RHS number of bits and words | |||
1581 | unsigned lhsWords = getNumWords(getActiveBits()); | |||
1582 | unsigned rhsBits = RHS.getActiveBits(); | |||
1583 | unsigned rhsWords = getNumWords(rhsBits); | |||
1584 | assert(rhsWords && "Divided by zero???")(static_cast <bool> (rhsWords && "Divided by zero???" ) ? void (0) : __assert_fail ("rhsWords && \"Divided by zero???\"" , "llvm/lib/Support/APInt.cpp", 1584, __extension__ __PRETTY_FUNCTION__ )); | |||
1585 | ||||
1586 | // Deal with some degenerate cases | |||
1587 | if (!lhsWords) | |||
1588 | // 0 / X ===> 0 | |||
1589 | return APInt(BitWidth, 0); | |||
1590 | if (rhsBits == 1) | |||
1591 | // X / 1 ===> X | |||
1592 | return *this; | |||
1593 | if (lhsWords < rhsWords || this->ult(RHS)) | |||
1594 | // X / Y ===> 0, iff X < Y | |||
1595 | return APInt(BitWidth, 0); | |||
1596 | if (*this == RHS) | |||
1597 | // X / X ===> 1 | |||
1598 | return APInt(BitWidth, 1); | |||
1599 | if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1. | |||
1600 | // All high words are zero, just use native divide | |||
1601 | return APInt(BitWidth, this->U.pVal[0] / RHS.U.pVal[0]); | |||
1602 | ||||
1603 | // We have to compute it the hard way. Invoke the Knuth divide algorithm. | |||
1604 | APInt Quotient(BitWidth, 0); // to hold result. | |||
1605 | divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, nullptr); | |||
1606 | return Quotient; | |||
1607 | } | |||
1608 | ||||
1609 | APInt APInt::udiv(uint64_t RHS) const { | |||
1610 | assert(RHS != 0 && "Divide by zero?")(static_cast <bool> (RHS != 0 && "Divide by zero?" ) ? void (0) : __assert_fail ("RHS != 0 && \"Divide by zero?\"" , "llvm/lib/Support/APInt.cpp", 1610, __extension__ __PRETTY_FUNCTION__ )); | |||
1611 | ||||
1612 | // First, deal with the easy case | |||
1613 | if (isSingleWord()) | |||
1614 | return APInt(BitWidth, U.VAL / RHS); | |||
1615 | ||||
1616 | // Get some facts about the LHS words. | |||
1617 | unsigned lhsWords = getNumWords(getActiveBits()); | |||
1618 | ||||
1619 | // Deal with some degenerate cases | |||
1620 | if (!lhsWords) | |||
1621 | // 0 / X ===> 0 | |||
1622 | return APInt(BitWidth, 0); | |||
1623 | if (RHS == 1) | |||
1624 | // X / 1 ===> X | |||
1625 | return *this; | |||
1626 | if (this->ult(RHS)) | |||
1627 | // X / Y ===> 0, iff X < Y | |||
1628 | return APInt(BitWidth, 0); | |||
1629 | if (*this == RHS) | |||
1630 | // X / X ===> 1 | |||
1631 | return APInt(BitWidth, 1); | |||
1632 | if (lhsWords == 1) // rhsWords is 1 if lhsWords is 1. | |||
1633 | // All high words are zero, just use native divide | |||
1634 | return APInt(BitWidth, this->U.pVal[0] / RHS); | |||
1635 | ||||
1636 | // We have to compute it the hard way. Invoke the Knuth divide algorithm. | |||
1637 | APInt Quotient(BitWidth, 0); // to hold result. | |||
1638 | divide(U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, nullptr); | |||
1639 | return Quotient; | |||
1640 | } | |||
1641 | ||||
1642 | APInt APInt::sdiv(const APInt &RHS) const { | |||
1643 | if (isNegative()) { | |||
1644 | if (RHS.isNegative()) | |||
1645 | return (-(*this)).udiv(-RHS); | |||
1646 | return -((-(*this)).udiv(RHS)); | |||
1647 | } | |||
1648 | if (RHS.isNegative()) | |||
1649 | return -(this->udiv(-RHS)); | |||
1650 | return this->udiv(RHS); | |||
1651 | } | |||
1652 | ||||
1653 | APInt APInt::sdiv(int64_t RHS) const { | |||
1654 | if (isNegative()) { | |||
1655 | if (RHS < 0) | |||
1656 | return (-(*this)).udiv(-RHS); | |||
1657 | return -((-(*this)).udiv(RHS)); | |||
1658 | } | |||
1659 | if (RHS < 0) | |||
1660 | return -(this->udiv(-RHS)); | |||
1661 | return this->udiv(RHS); | |||
1662 | } | |||
1663 | ||||
1664 | APInt APInt::urem(const APInt &RHS) const { | |||
1665 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth && "Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\"" , "llvm/lib/Support/APInt.cpp", 1665, __extension__ __PRETTY_FUNCTION__ )); | |||
1666 | if (isSingleWord()) { | |||
1667 | assert(RHS.U.VAL != 0 && "Remainder by zero?")(static_cast <bool> (RHS.U.VAL != 0 && "Remainder by zero?" ) ? void (0) : __assert_fail ("RHS.U.VAL != 0 && \"Remainder by zero?\"" , "llvm/lib/Support/APInt.cpp", 1667, __extension__ __PRETTY_FUNCTION__ )); | |||
1668 | return APInt(BitWidth, U.VAL % RHS.U.VAL); | |||
1669 | } | |||
1670 | ||||
1671 | // Get some facts about the LHS | |||
1672 | unsigned lhsWords = getNumWords(getActiveBits()); | |||
1673 | ||||
1674 | // Get some facts about the RHS | |||
1675 | unsigned rhsBits = RHS.getActiveBits(); | |||
1676 | unsigned rhsWords = getNumWords(rhsBits); | |||
1677 | assert(rhsWords && "Performing remainder operation by zero ???")(static_cast <bool> (rhsWords && "Performing remainder operation by zero ???" ) ? void (0) : __assert_fail ("rhsWords && \"Performing remainder operation by zero ???\"" , "llvm/lib/Support/APInt.cpp", 1677, __extension__ __PRETTY_FUNCTION__ )); | |||
1678 | ||||
1679 | // Check the degenerate cases | |||
1680 | if (lhsWords == 0) | |||
1681 | // 0 % Y ===> 0 | |||
1682 | return APInt(BitWidth, 0); | |||
1683 | if (rhsBits == 1) | |||
1684 | // X % 1 ===> 0 | |||
1685 | return APInt(BitWidth, 0); | |||
1686 | if (lhsWords < rhsWords || this->ult(RHS)) | |||
1687 | // X % Y ===> X, iff X < Y | |||
1688 | return *this; | |||
1689 | if (*this == RHS) | |||
1690 | // X % X == 0; | |||
1691 | return APInt(BitWidth, 0); | |||
1692 | if (lhsWords == 1) | |||
1693 | // All high words are zero, just use native remainder | |||
1694 | return APInt(BitWidth, U.pVal[0] % RHS.U.pVal[0]); | |||
1695 | ||||
1696 | // We have to compute it the hard way. Invoke the Knuth divide algorithm. | |||
1697 | APInt Remainder(BitWidth, 0); | |||
1698 | divide(U.pVal, lhsWords, RHS.U.pVal, rhsWords, nullptr, Remainder.U.pVal); | |||
1699 | return Remainder; | |||
1700 | } | |||
1701 | ||||
1702 | uint64_t APInt::urem(uint64_t RHS) const { | |||
1703 | assert(RHS != 0 && "Remainder by zero?")(static_cast <bool> (RHS != 0 && "Remainder by zero?" ) ? void (0) : __assert_fail ("RHS != 0 && \"Remainder by zero?\"" , "llvm/lib/Support/APInt.cpp", 1703, __extension__ __PRETTY_FUNCTION__ )); | |||
1704 | ||||
1705 | if (isSingleWord()) | |||
1706 | return U.VAL % RHS; | |||
1707 | ||||
1708 | // Get some facts about the LHS | |||
1709 | unsigned lhsWords = getNumWords(getActiveBits()); | |||
1710 | ||||
1711 | // Check the degenerate cases | |||
1712 | if (lhsWords == 0) | |||
1713 | // 0 % Y ===> 0 | |||
1714 | return 0; | |||
1715 | if (RHS == 1) | |||
1716 | // X % 1 ===> 0 | |||
1717 | return 0; | |||
1718 | if (this->ult(RHS)) | |||
1719 | // X % Y ===> X, iff X < Y | |||
1720 | return getZExtValue(); | |||
1721 | if (*this == RHS) | |||
1722 | // X % X == 0; | |||
1723 | return 0; | |||
1724 | if (lhsWords == 1) | |||
1725 | // All high words are zero, just use native remainder | |||
1726 | return U.pVal[0] % RHS; | |||
1727 | ||||
1728 | // We have to compute it the hard way. Invoke the Knuth divide algorithm. | |||
1729 | uint64_t Remainder; | |||
1730 | divide(U.pVal, lhsWords, &RHS, 1, nullptr, &Remainder); | |||
1731 | return Remainder; | |||
1732 | } | |||
1733 | ||||
1734 | APInt APInt::srem(const APInt &RHS) const { | |||
1735 | if (isNegative()) { | |||
1736 | if (RHS.isNegative()) | |||
1737 | return -((-(*this)).urem(-RHS)); | |||
1738 | return -((-(*this)).urem(RHS)); | |||
1739 | } | |||
1740 | if (RHS.isNegative()) | |||
1741 | return this->urem(-RHS); | |||
1742 | return this->urem(RHS); | |||
1743 | } | |||
1744 | ||||
1745 | int64_t APInt::srem(int64_t RHS) const { | |||
1746 | if (isNegative()) { | |||
1747 | if (RHS < 0) | |||
1748 | return -((-(*this)).urem(-RHS)); | |||
1749 | return -((-(*this)).urem(RHS)); | |||
1750 | } | |||
1751 | if (RHS < 0) | |||
1752 | return this->urem(-RHS); | |||
1753 | return this->urem(RHS); | |||
1754 | } | |||
1755 | ||||
1756 | void APInt::udivrem(const APInt &LHS, const APInt &RHS, | |||
1757 | APInt &Quotient, APInt &Remainder) { | |||
1758 | assert(LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (LHS.BitWidth == RHS.BitWidth && "Bit widths must be the same") ? void (0) : __assert_fail ("LHS.BitWidth == RHS.BitWidth && \"Bit widths must be the same\"" , "llvm/lib/Support/APInt.cpp", 1758, __extension__ __PRETTY_FUNCTION__ )); | |||
1759 | unsigned BitWidth = LHS.BitWidth; | |||
1760 | ||||
1761 | // First, deal with the easy case | |||
1762 | if (LHS.isSingleWord()) { | |||
1763 | assert(RHS.U.VAL != 0 && "Divide by zero?")(static_cast <bool> (RHS.U.VAL != 0 && "Divide by zero?" ) ? void (0) : __assert_fail ("RHS.U.VAL != 0 && \"Divide by zero?\"" , "llvm/lib/Support/APInt.cpp", 1763, __extension__ __PRETTY_FUNCTION__ )); | |||
1764 | uint64_t QuotVal = LHS.U.VAL / RHS.U.VAL; | |||
1765 | uint64_t RemVal = LHS.U.VAL % RHS.U.VAL; | |||
1766 | Quotient = APInt(BitWidth, QuotVal); | |||
1767 | Remainder = APInt(BitWidth, RemVal); | |||
1768 | return; | |||
1769 | } | |||
1770 | ||||
1771 | // Get some size facts about the dividend and divisor | |||
1772 | unsigned lhsWords = getNumWords(LHS.getActiveBits()); | |||
1773 | unsigned rhsBits = RHS.getActiveBits(); | |||
1774 | unsigned rhsWords = getNumWords(rhsBits); | |||
1775 | assert(rhsWords && "Performing divrem operation by zero ???")(static_cast <bool> (rhsWords && "Performing divrem operation by zero ???" ) ? void (0) : __assert_fail ("rhsWords && \"Performing divrem operation by zero ???\"" , "llvm/lib/Support/APInt.cpp", 1775, __extension__ __PRETTY_FUNCTION__ )); | |||
1776 | ||||
1777 | // Check the degenerate cases | |||
1778 | if (lhsWords == 0) { | |||
1779 | Quotient = APInt(BitWidth, 0); // 0 / Y ===> 0 | |||
1780 | Remainder = APInt(BitWidth, 0); // 0 % Y ===> 0 | |||
1781 | return; | |||
1782 | } | |||
1783 | ||||
1784 | if (rhsBits == 1) { | |||
1785 | Quotient = LHS; // X / 1 ===> X | |||
1786 | Remainder = APInt(BitWidth, 0); // X % 1 ===> 0 | |||
1787 | } | |||
1788 | ||||
1789 | if (lhsWords < rhsWords || LHS.ult(RHS)) { | |||
1790 | Remainder = LHS; // X % Y ===> X, iff X < Y | |||
1791 | Quotient = APInt(BitWidth, 0); // X / Y ===> 0, iff X < Y | |||
1792 | return; | |||
1793 | } | |||
1794 | ||||
1795 | if (LHS == RHS) { | |||
1796 | Quotient = APInt(BitWidth, 1); // X / X ===> 1 | |||
1797 | Remainder = APInt(BitWidth, 0); // X % X ===> 0; | |||
1798 | return; | |||
1799 | } | |||
1800 | ||||
1801 | // Make sure there is enough space to hold the results. | |||
1802 | // NOTE: This assumes that reallocate won't affect any bits if it doesn't | |||
1803 | // change the size. This is necessary if Quotient or Remainder is aliased | |||
1804 | // with LHS or RHS. | |||
1805 | Quotient.reallocate(BitWidth); | |||
1806 | Remainder.reallocate(BitWidth); | |||
1807 | ||||
1808 | if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1. | |||
1809 | // There is only one word to consider so use the native versions. | |||
1810 | uint64_t lhsValue = LHS.U.pVal[0]; | |||
1811 | uint64_t rhsValue = RHS.U.pVal[0]; | |||
1812 | Quotient = lhsValue / rhsValue; | |||
1813 | Remainder = lhsValue % rhsValue; | |||
1814 | return; | |||
1815 | } | |||
1816 | ||||
1817 | // Okay, lets do it the long way | |||
1818 | divide(LHS.U.pVal, lhsWords, RHS.U.pVal, rhsWords, Quotient.U.pVal, | |||
1819 | Remainder.U.pVal); | |||
1820 | // Clear the rest of the Quotient and Remainder. | |||
1821 | std::memset(Quotient.U.pVal + lhsWords, 0, | |||
1822 | (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE); | |||
1823 | std::memset(Remainder.U.pVal + rhsWords, 0, | |||
1824 | (getNumWords(BitWidth) - rhsWords) * APINT_WORD_SIZE); | |||
1825 | } | |||
1826 | ||||
1827 | void APInt::udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient, | |||
1828 | uint64_t &Remainder) { | |||
1829 | assert(RHS != 0 && "Divide by zero?")(static_cast <bool> (RHS != 0 && "Divide by zero?" ) ? void (0) : __assert_fail ("RHS != 0 && \"Divide by zero?\"" , "llvm/lib/Support/APInt.cpp", 1829, __extension__ __PRETTY_FUNCTION__ )); | |||
1830 | unsigned BitWidth = LHS.BitWidth; | |||
1831 | ||||
1832 | // First, deal with the easy case | |||
1833 | if (LHS.isSingleWord()) { | |||
1834 | uint64_t QuotVal = LHS.U.VAL / RHS; | |||
1835 | Remainder = LHS.U.VAL % RHS; | |||
1836 | Quotient = APInt(BitWidth, QuotVal); | |||
1837 | return; | |||
1838 | } | |||
1839 | ||||
1840 | // Get some size facts about the dividend and divisor | |||
1841 | unsigned lhsWords = getNumWords(LHS.getActiveBits()); | |||
1842 | ||||
1843 | // Check the degenerate cases | |||
1844 | if (lhsWords == 0) { | |||
1845 | Quotient = APInt(BitWidth, 0); // 0 / Y ===> 0 | |||
1846 | Remainder = 0; // 0 % Y ===> 0 | |||
1847 | return; | |||
1848 | } | |||
1849 | ||||
1850 | if (RHS == 1) { | |||
1851 | Quotient = LHS; // X / 1 ===> X | |||
1852 | Remainder = 0; // X % 1 ===> 0 | |||
1853 | return; | |||
1854 | } | |||
1855 | ||||
1856 | if (LHS.ult(RHS)) { | |||
1857 | Remainder = LHS.getZExtValue(); // X % Y ===> X, iff X < Y | |||
1858 | Quotient = APInt(BitWidth, 0); // X / Y ===> 0, iff X < Y | |||
1859 | return; | |||
1860 | } | |||
1861 | ||||
1862 | if (LHS == RHS) { | |||
1863 | Quotient = APInt(BitWidth, 1); // X / X ===> 1 | |||
1864 | Remainder = 0; // X % X ===> 0; | |||
1865 | return; | |||
1866 | } | |||
1867 | ||||
1868 | // Make sure there is enough space to hold the results. | |||
1869 | // NOTE: This assumes that reallocate won't affect any bits if it doesn't | |||
1870 | // change the size. This is necessary if Quotient is aliased with LHS. | |||
1871 | Quotient.reallocate(BitWidth); | |||
1872 | ||||
1873 | if (lhsWords == 1) { // rhsWords is 1 if lhsWords is 1. | |||
1874 | // There is only one word to consider so use the native versions. | |||
1875 | uint64_t lhsValue = LHS.U.pVal[0]; | |||
1876 | Quotient = lhsValue / RHS; | |||
1877 | Remainder = lhsValue % RHS; | |||
1878 | return; | |||
1879 | } | |||
1880 | ||||
1881 | // Okay, lets do it the long way | |||
1882 | divide(LHS.U.pVal, lhsWords, &RHS, 1, Quotient.U.pVal, &Remainder); | |||
1883 | // Clear the rest of the Quotient. | |||
1884 | std::memset(Quotient.U.pVal + lhsWords, 0, | |||
1885 | (getNumWords(BitWidth) - lhsWords) * APINT_WORD_SIZE); | |||
1886 | } | |||
1887 | ||||
1888 | void APInt::sdivrem(const APInt &LHS, const APInt &RHS, | |||
1889 | APInt &Quotient, APInt &Remainder) { | |||
1890 | if (LHS.isNegative()) { | |||
1891 | if (RHS.isNegative()) | |||
1892 | APInt::udivrem(-LHS, -RHS, Quotient, Remainder); | |||
1893 | else { | |||
1894 | APInt::udivrem(-LHS, RHS, Quotient, Remainder); | |||
1895 | Quotient.negate(); | |||
1896 | } | |||
1897 | Remainder.negate(); | |||
1898 | } else if (RHS.isNegative()) { | |||
1899 | APInt::udivrem(LHS, -RHS, Quotient, Remainder); | |||
1900 | Quotient.negate(); | |||
1901 | } else { | |||
1902 | APInt::udivrem(LHS, RHS, Quotient, Remainder); | |||
1903 | } | |||
1904 | } | |||
1905 | ||||
1906 | void APInt::sdivrem(const APInt &LHS, int64_t RHS, | |||
1907 | APInt &Quotient, int64_t &Remainder) { | |||
1908 | uint64_t R = Remainder; | |||
1909 | if (LHS.isNegative()) { | |||
1910 | if (RHS < 0) | |||
1911 | APInt::udivrem(-LHS, -RHS, Quotient, R); | |||
1912 | else { | |||
1913 | APInt::udivrem(-LHS, RHS, Quotient, R); | |||
1914 | Quotient.negate(); | |||
1915 | } | |||
1916 | R = -R; | |||
1917 | } else if (RHS < 0) { | |||
1918 | APInt::udivrem(LHS, -RHS, Quotient, R); | |||
1919 | Quotient.negate(); | |||
1920 | } else { | |||
1921 | APInt::udivrem(LHS, RHS, Quotient, R); | |||
1922 | } | |||
1923 | Remainder = R; | |||
1924 | } | |||
1925 | ||||
1926 | APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const { | |||
1927 | APInt Res = *this+RHS; | |||
1928 | Overflow = isNonNegative() == RHS.isNonNegative() && | |||
1929 | Res.isNonNegative() != isNonNegative(); | |||
1930 | return Res; | |||
1931 | } | |||
1932 | ||||
1933 | APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const { | |||
1934 | APInt Res = *this+RHS; | |||
1935 | Overflow = Res.ult(RHS); | |||
1936 | return Res; | |||
1937 | } | |||
1938 | ||||
1939 | APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const { | |||
1940 | APInt Res = *this - RHS; | |||
1941 | Overflow = isNonNegative() != RHS.isNonNegative() && | |||
1942 | Res.isNonNegative() != isNonNegative(); | |||
1943 | return Res; | |||
1944 | } | |||
1945 | ||||
1946 | APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const { | |||
1947 | APInt Res = *this-RHS; | |||
1948 | Overflow = Res.ugt(*this); | |||
1949 | return Res; | |||
1950 | } | |||
1951 | ||||
1952 | APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const { | |||
1953 | // MININT/-1 --> overflow. | |||
1954 | Overflow = isMinSignedValue() && RHS.isAllOnes(); | |||
1955 | return sdiv(RHS); | |||
1956 | } | |||
1957 | ||||
1958 | APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const { | |||
1959 | APInt Res = *this * RHS; | |||
1960 | ||||
1961 | if (RHS != 0) | |||
1962 | Overflow = Res.sdiv(RHS) != *this || | |||
1963 | (isMinSignedValue() && RHS.isAllOnes()); | |||
1964 | else | |||
1965 | Overflow = false; | |||
1966 | return Res; | |||
1967 | } | |||
1968 | ||||
1969 | APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const { | |||
1970 | if (countl_zero() + RHS.countl_zero() + 2 <= BitWidth) { | |||
1971 | Overflow = true; | |||
1972 | return *this * RHS; | |||
1973 | } | |||
1974 | ||||
1975 | APInt Res = lshr(1) * RHS; | |||
1976 | Overflow = Res.isNegative(); | |||
1977 | Res <<= 1; | |||
1978 | if ((*this)[0]) { | |||
1979 | Res += RHS; | |||
1980 | if (Res.ult(RHS)) | |||
1981 | Overflow = true; | |||
1982 | } | |||
1983 | return Res; | |||
1984 | } | |||
1985 | ||||
1986 | APInt APInt::sshl_ov(const APInt &ShAmt, bool &Overflow) const { | |||
1987 | Overflow = ShAmt.uge(getBitWidth()); | |||
1988 | if (Overflow) | |||
1989 | return APInt(BitWidth, 0); | |||
1990 | ||||
1991 | if (isNonNegative()) // Don't allow sign change. | |||
1992 | Overflow = ShAmt.uge(countl_zero()); | |||
1993 | else | |||
1994 | Overflow = ShAmt.uge(countl_one()); | |||
1995 | ||||
1996 | return *this << ShAmt; | |||
1997 | } | |||
1998 | ||||
1999 | APInt APInt::ushl_ov(const APInt &ShAmt, bool &Overflow) const { | |||
2000 | Overflow = ShAmt.uge(getBitWidth()); | |||
2001 | if (Overflow) | |||
2002 | return APInt(BitWidth, 0); | |||
2003 | ||||
2004 | Overflow = ShAmt.ugt(countl_zero()); | |||
2005 | ||||
2006 | return *this << ShAmt; | |||
2007 | } | |||
2008 | ||||
2009 | APInt APInt::sadd_sat(const APInt &RHS) const { | |||
2010 | bool Overflow; | |||
2011 | APInt Res = sadd_ov(RHS, Overflow); | |||
2012 | if (!Overflow) | |||
2013 | return Res; | |||
2014 | ||||
2015 | return isNegative() ? APInt::getSignedMinValue(BitWidth) | |||
2016 | : APInt::getSignedMaxValue(BitWidth); | |||
2017 | } | |||
2018 | ||||
2019 | APInt APInt::uadd_sat(const APInt &RHS) const { | |||
2020 | bool Overflow; | |||
2021 | APInt Res = uadd_ov(RHS, Overflow); | |||
2022 | if (!Overflow) | |||
2023 | return Res; | |||
2024 | ||||
2025 | return APInt::getMaxValue(BitWidth); | |||
2026 | } | |||
2027 | ||||
2028 | APInt APInt::ssub_sat(const APInt &RHS) const { | |||
2029 | bool Overflow; | |||
2030 | APInt Res = ssub_ov(RHS, Overflow); | |||
2031 | if (!Overflow) | |||
2032 | return Res; | |||
2033 | ||||
2034 | return isNegative() ? APInt::getSignedMinValue(BitWidth) | |||
2035 | : APInt::getSignedMaxValue(BitWidth); | |||
2036 | } | |||
2037 | ||||
2038 | APInt APInt::usub_sat(const APInt &RHS) const { | |||
2039 | bool Overflow; | |||
2040 | APInt Res = usub_ov(RHS, Overflow); | |||
2041 | if (!Overflow) | |||
2042 | return Res; | |||
2043 | ||||
2044 | return APInt(BitWidth, 0); | |||
2045 | } | |||
2046 | ||||
2047 | APInt APInt::smul_sat(const APInt &RHS) const { | |||
2048 | bool Overflow; | |||
2049 | APInt Res = smul_ov(RHS, Overflow); | |||
2050 | if (!Overflow) | |||
2051 | return Res; | |||
2052 | ||||
2053 | // The result is negative if one and only one of inputs is negative. | |||
2054 | bool ResIsNegative = isNegative() ^ RHS.isNegative(); | |||
2055 | ||||
2056 | return ResIsNegative ? APInt::getSignedMinValue(BitWidth) | |||
2057 | : APInt::getSignedMaxValue(BitWidth); | |||
2058 | } | |||
2059 | ||||
2060 | APInt APInt::umul_sat(const APInt &RHS) const { | |||
2061 | bool Overflow; | |||
2062 | APInt Res = umul_ov(RHS, Overflow); | |||
2063 | if (!Overflow) | |||
2064 | return Res; | |||
2065 | ||||
2066 | return APInt::getMaxValue(BitWidth); | |||
2067 | } | |||
2068 | ||||
2069 | APInt APInt::sshl_sat(const APInt &RHS) const { | |||
2070 | bool Overflow; | |||
2071 | APInt Res = sshl_ov(RHS, Overflow); | |||
2072 | if (!Overflow) | |||
2073 | return Res; | |||
2074 | ||||
2075 | return isNegative() ? APInt::getSignedMinValue(BitWidth) | |||
2076 | : APInt::getSignedMaxValue(BitWidth); | |||
2077 | } | |||
2078 | ||||
2079 | APInt APInt::ushl_sat(const APInt &RHS) const { | |||
2080 | bool Overflow; | |||
2081 | APInt Res = ushl_ov(RHS, Overflow); | |||
2082 | if (!Overflow) | |||
2083 | return Res; | |||
2084 | ||||
2085 | return APInt::getMaxValue(BitWidth); | |||
2086 | } | |||
2087 | ||||
2088 | void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) { | |||
2089 | // Check our assumptions here | |||
2090 | assert(!str.empty() && "Invalid string length")(static_cast <bool> (!str.empty() && "Invalid string length" ) ? void (0) : __assert_fail ("!str.empty() && \"Invalid string length\"" , "llvm/lib/Support/APInt.cpp", 2090, __extension__ __PRETTY_FUNCTION__ )); | |||
2091 | assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 ||(static_cast <bool> ((radix == 10 || radix == 8 || radix == 16 || radix == 2 || radix == 36) && "Radix should be 2, 8, 10, 16, or 36!" ) ? void (0) : __assert_fail ("(radix == 10 || radix == 8 || radix == 16 || radix == 2 || radix == 36) && \"Radix should be 2, 8, 10, 16, or 36!\"" , "llvm/lib/Support/APInt.cpp", 2093, __extension__ __PRETTY_FUNCTION__ )) | |||
2092 | radix == 36) &&(static_cast <bool> ((radix == 10 || radix == 8 || radix == 16 || radix == 2 || radix == 36) && "Radix should be 2, 8, 10, 16, or 36!" ) ? void (0) : __assert_fail ("(radix == 10 || radix == 8 || radix == 16 || radix == 2 || radix == 36) && \"Radix should be 2, 8, 10, 16, or 36!\"" , "llvm/lib/Support/APInt.cpp", 2093, __extension__ __PRETTY_FUNCTION__ )) | |||
2093 | "Radix should be 2, 8, 10, 16, or 36!")(static_cast <bool> ((radix == 10 || radix == 8 || radix == 16 || radix == 2 || radix == 36) && "Radix should be 2, 8, 10, 16, or 36!" ) ? void (0) : __assert_fail ("(radix == 10 || radix == 8 || radix == 16 || radix == 2 || radix == 36) && \"Radix should be 2, 8, 10, 16, or 36!\"" , "llvm/lib/Support/APInt.cpp", 2093, __extension__ __PRETTY_FUNCTION__ )); | |||
2094 | ||||
2095 | StringRef::iterator p = str.begin(); | |||
2096 | size_t slen = str.size(); | |||
2097 | bool isNeg = *p == '-'; | |||
2098 | if (*p == '-' || *p == '+') { | |||
2099 | p++; | |||
2100 | slen--; | |||
2101 | assert(slen && "String is only a sign, needs a value.")(static_cast <bool> (slen && "String is only a sign, needs a value." ) ? void (0) : __assert_fail ("slen && \"String is only a sign, needs a value.\"" , "llvm/lib/Support/APInt.cpp", 2101, __extension__ __PRETTY_FUNCTION__ )); | |||
2102 | } | |||
2103 | assert((slen <= numbits || radix != 2) && "Insufficient bit width")(static_cast <bool> ((slen <= numbits || radix != 2) && "Insufficient bit width") ? void (0) : __assert_fail ("(slen <= numbits || radix != 2) && \"Insufficient bit width\"" , "llvm/lib/Support/APInt.cpp", 2103, __extension__ __PRETTY_FUNCTION__ )); | |||
2104 | assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width")(static_cast <bool> (((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width") ? void (0) : __assert_fail ("((slen-1)*3 <= numbits || radix != 8) && \"Insufficient bit width\"" , "llvm/lib/Support/APInt.cpp", 2104, __extension__ __PRETTY_FUNCTION__ )); | |||
2105 | assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width")(static_cast <bool> (((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width") ? void (0) : __assert_fail ("((slen-1)*4 <= numbits || radix != 16) && \"Insufficient bit width\"" , "llvm/lib/Support/APInt.cpp", 2105, __extension__ __PRETTY_FUNCTION__ )); | |||
2106 | assert((((slen-1)*64)/22 <= numbits || radix != 10) &&(static_cast <bool> ((((slen-1)*64)/22 <= numbits || radix != 10) && "Insufficient bit width") ? void (0) : __assert_fail ("(((slen-1)*64)/22 <= numbits || radix != 10) && \"Insufficient bit width\"" , "llvm/lib/Support/APInt.cpp", 2107, __extension__ __PRETTY_FUNCTION__ )) | |||
2107 | "Insufficient bit width")(static_cast <bool> ((((slen-1)*64)/22 <= numbits || radix != 10) && "Insufficient bit width") ? void (0) : __assert_fail ("(((slen-1)*64)/22 <= numbits || radix != 10) && \"Insufficient bit width\"" , "llvm/lib/Support/APInt.cpp", 2107, __extension__ __PRETTY_FUNCTION__ )); | |||
2108 | ||||
2109 | // Allocate memory if needed | |||
2110 | if (isSingleWord()) | |||
2111 | U.VAL = 0; | |||
2112 | else | |||
2113 | U.pVal = getClearedMemory(getNumWords()); | |||
2114 | ||||
2115 | // Figure out if we can shift instead of multiply | |||
2116 | unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0); | |||
2117 | ||||
2118 | // Enter digit traversal loop | |||
2119 | for (StringRef::iterator e = str.end(); p != e; ++p) { | |||
2120 | unsigned digit = getDigit(*p, radix); | |||
2121 | assert(digit < radix && "Invalid character in digit string")(static_cast <bool> (digit < radix && "Invalid character in digit string" ) ? void (0) : __assert_fail ("digit < radix && \"Invalid character in digit string\"" , "llvm/lib/Support/APInt.cpp", 2121, __extension__ __PRETTY_FUNCTION__ )); | |||
2122 | ||||
2123 | // Shift or multiply the value by the radix | |||
2124 | if (slen > 1) { | |||
2125 | if (shift) | |||
2126 | *this <<= shift; | |||
2127 | else | |||
2128 | *this *= radix; | |||
2129 | } | |||
2130 | ||||
2131 | // Add in the digit we just interpreted | |||
2132 | *this += digit; | |||
2133 | } | |||
2134 | // If its negative, put it in two's complement form | |||
2135 | if (isNeg) | |||
2136 | this->negate(); | |||
2137 | } | |||
2138 | ||||
2139 | void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix, | |||
2140 | bool Signed, bool formatAsCLiteral) const { | |||
2141 | assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 ||(static_cast <bool> ((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 || Radix == 36) && "Radix should be 2, 8, 10, 16, or 36!" ) ? void (0) : __assert_fail ("(Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 || Radix == 36) && \"Radix should be 2, 8, 10, 16, or 36!\"" , "llvm/lib/Support/APInt.cpp", 2143, __extension__ __PRETTY_FUNCTION__ )) | |||
2142 | Radix == 36) &&(static_cast <bool> ((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 || Radix == 36) && "Radix should be 2, 8, 10, 16, or 36!" ) ? void (0) : __assert_fail ("(Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 || Radix == 36) && \"Radix should be 2, 8, 10, 16, or 36!\"" , "llvm/lib/Support/APInt.cpp", 2143, __extension__ __PRETTY_FUNCTION__ )) | |||
2143 | "Radix should be 2, 8, 10, 16, or 36!")(static_cast <bool> ((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 || Radix == 36) && "Radix should be 2, 8, 10, 16, or 36!" ) ? void (0) : __assert_fail ("(Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 || Radix == 36) && \"Radix should be 2, 8, 10, 16, or 36!\"" , "llvm/lib/Support/APInt.cpp", 2143, __extension__ __PRETTY_FUNCTION__ )); | |||
2144 | ||||
2145 | const char *Prefix = ""; | |||
2146 | if (formatAsCLiteral) { | |||
2147 | switch (Radix) { | |||
2148 | case 2: | |||
2149 | // Binary literals are a non-standard extension added in gcc 4.3: | |||
2150 | // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html | |||
2151 | Prefix = "0b"; | |||
2152 | break; | |||
2153 | case 8: | |||
2154 | Prefix = "0"; | |||
2155 | break; | |||
2156 | case 10: | |||
2157 | break; // No prefix | |||
2158 | case 16: | |||
2159 | Prefix = "0x"; | |||
2160 | break; | |||
2161 | default: | |||
2162 | llvm_unreachable("Invalid radix!")::llvm::llvm_unreachable_internal("Invalid radix!", "llvm/lib/Support/APInt.cpp" , 2162); | |||
2163 | } | |||
2164 | } | |||
2165 | ||||
2166 | // First, check for a zero value and just short circuit the logic below. | |||
2167 | if (isZero()) { | |||
2168 | while (*Prefix) { | |||
2169 | Str.push_back(*Prefix); | |||
2170 | ++Prefix; | |||
2171 | }; | |||
2172 | Str.push_back('0'); | |||
2173 | return; | |||
2174 | } | |||
2175 | ||||
2176 | static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"; | |||
2177 | ||||
2178 | if (isSingleWord()) { | |||
2179 | char Buffer[65]; | |||
2180 | char *BufPtr = std::end(Buffer); | |||
2181 | ||||
2182 | uint64_t N; | |||
2183 | if (!Signed) { | |||
2184 | N = getZExtValue(); | |||
2185 | } else { | |||
2186 | int64_t I = getSExtValue(); | |||
2187 | if (I >= 0) { | |||
2188 | N = I; | |||
2189 | } else { | |||
2190 | Str.push_back('-'); | |||
2191 | N = -(uint64_t)I; | |||
2192 | } | |||
2193 | } | |||
2194 | ||||
2195 | while (*Prefix) { | |||
2196 | Str.push_back(*Prefix); | |||
2197 | ++Prefix; | |||
2198 | }; | |||
2199 | ||||
2200 | while (N) { | |||
2201 | *--BufPtr = Digits[N % Radix]; | |||
2202 | N /= Radix; | |||
2203 | } | |||
2204 | Str.append(BufPtr, std::end(Buffer)); | |||
2205 | return; | |||
2206 | } | |||
2207 | ||||
2208 | APInt Tmp(*this); | |||
2209 | ||||
2210 | if (Signed && isNegative()) { | |||
2211 | // They want to print the signed version and it is a negative value | |||
2212 | // Flip the bits and add one to turn it into the equivalent positive | |||
2213 | // value and put a '-' in the result. | |||
2214 | Tmp.negate(); | |||
2215 | Str.push_back('-'); | |||
2216 | } | |||
2217 | ||||
2218 | while (*Prefix) { | |||
2219 | Str.push_back(*Prefix); | |||
2220 | ++Prefix; | |||
2221 | }; | |||
2222 | ||||
2223 | // We insert the digits backward, then reverse them to get the right order. | |||
2224 | unsigned StartDig = Str.size(); | |||
2225 | ||||
2226 | // For the 2, 8 and 16 bit cases, we can just shift instead of divide | |||
2227 | // because the number of bits per digit (1, 3 and 4 respectively) divides | |||
2228 | // equally. We just shift until the value is zero. | |||
2229 | if (Radix == 2 || Radix == 8 || Radix == 16) { | |||
2230 | // Just shift tmp right for each digit width until it becomes zero | |||
2231 | unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1)); | |||
2232 | unsigned MaskAmt = Radix - 1; | |||
2233 | ||||
2234 | while (Tmp.getBoolValue()) { | |||
2235 | unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt; | |||
2236 | Str.push_back(Digits[Digit]); | |||
2237 | Tmp.lshrInPlace(ShiftAmt); | |||
2238 | } | |||
2239 | } else { | |||
2240 | while (Tmp.getBoolValue()) { | |||
2241 | uint64_t Digit; | |||
2242 | udivrem(Tmp, Radix, Tmp, Digit); | |||
2243 | assert(Digit < Radix && "divide failed")(static_cast <bool> (Digit < Radix && "divide failed" ) ? void (0) : __assert_fail ("Digit < Radix && \"divide failed\"" , "llvm/lib/Support/APInt.cpp", 2243, __extension__ __PRETTY_FUNCTION__ )); | |||
2244 | Str.push_back(Digits[Digit]); | |||
2245 | } | |||
2246 | } | |||
2247 | ||||
2248 | // Reverse the digits before returning. | |||
2249 | std::reverse(Str.begin()+StartDig, Str.end()); | |||
2250 | } | |||
2251 | ||||
2252 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | |||
2253 | LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void APInt::dump() const { | |||
2254 | SmallString<40> S, U; | |||
2255 | this->toStringUnsigned(U); | |||
2256 | this->toStringSigned(S); | |||
2257 | dbgs() << "APInt(" << BitWidth << "b, " | |||
2258 | << U << "u " << S << "s)\n"; | |||
2259 | } | |||
2260 | #endif | |||
2261 | ||||
2262 | void APInt::print(raw_ostream &OS, bool isSigned) const { | |||
2263 | SmallString<40> S; | |||
2264 | this->toString(S, 10, isSigned, /* formatAsCLiteral = */false); | |||
2265 | OS << S; | |||
2266 | } | |||
2267 | ||||
2268 | // This implements a variety of operations on a representation of | |||
2269 | // arbitrary precision, two's-complement, bignum integer values. | |||
2270 | ||||
2271 | // Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe | |||
2272 | // and unrestricting assumption. | |||
2273 | static_assert(APInt::APINT_BITS_PER_WORD % 2 == 0, | |||
2274 | "Part width must be divisible by 2!"); | |||
2275 | ||||
2276 | // Returns the integer part with the least significant BITS set. | |||
2277 | // BITS cannot be zero. | |||
2278 | static inline APInt::WordType lowBitMask(unsigned bits) { | |||
2279 | assert(bits != 0 && bits <= APInt::APINT_BITS_PER_WORD)(static_cast <bool> (bits != 0 && bits <= APInt ::APINT_BITS_PER_WORD) ? void (0) : __assert_fail ("bits != 0 && bits <= APInt::APINT_BITS_PER_WORD" , "llvm/lib/Support/APInt.cpp", 2279, __extension__ __PRETTY_FUNCTION__ )); | |||
2280 | return ~(APInt::WordType) 0 >> (APInt::APINT_BITS_PER_WORD - bits); | |||
2281 | } | |||
2282 | ||||
2283 | /// Returns the value of the lower half of PART. | |||
2284 | static inline APInt::WordType lowHalf(APInt::WordType part) { | |||
2285 | return part & lowBitMask(APInt::APINT_BITS_PER_WORD / 2); | |||
2286 | } | |||
2287 | ||||
2288 | /// Returns the value of the upper half of PART. | |||
2289 | static inline APInt::WordType highHalf(APInt::WordType part) { | |||
2290 | return part >> (APInt::APINT_BITS_PER_WORD / 2); | |||
2291 | } | |||
2292 | ||||
2293 | /// Sets the least significant part of a bignum to the input value, and zeroes | |||
2294 | /// out higher parts. | |||
2295 | void APInt::tcSet(WordType *dst, WordType part, unsigned parts) { | |||
2296 | assert(parts > 0)(static_cast <bool> (parts > 0) ? void (0) : __assert_fail ("parts > 0", "llvm/lib/Support/APInt.cpp", 2296, __extension__ __PRETTY_FUNCTION__)); | |||
2297 | dst[0] = part; | |||
2298 | for (unsigned i = 1; i < parts; i++) | |||
2299 | dst[i] = 0; | |||
2300 | } | |||
2301 | ||||
2302 | /// Assign one bignum to another. | |||
2303 | void APInt::tcAssign(WordType *dst, const WordType *src, unsigned parts) { | |||
2304 | for (unsigned i = 0; i < parts; i++) | |||
2305 | dst[i] = src[i]; | |||
2306 | } | |||
2307 | ||||
2308 | /// Returns true if a bignum is zero, false otherwise. | |||
2309 | bool APInt::tcIsZero(const WordType *src, unsigned parts) { | |||
2310 | for (unsigned i = 0; i < parts; i++) | |||
2311 | if (src[i]) | |||
2312 | return false; | |||
2313 | ||||
2314 | return true; | |||
2315 | } | |||
2316 | ||||
2317 | /// Extract the given bit of a bignum; returns 0 or 1. | |||
2318 | int APInt::tcExtractBit(const WordType *parts, unsigned bit) { | |||
2319 | return (parts[whichWord(bit)] & maskBit(bit)) != 0; | |||
2320 | } | |||
2321 | ||||
2322 | /// Set the given bit of a bignum. | |||
2323 | void APInt::tcSetBit(WordType *parts, unsigned bit) { | |||
2324 | parts[whichWord(bit)] |= maskBit(bit); | |||
2325 | } | |||
2326 | ||||
2327 | /// Clears the given bit of a bignum. | |||
2328 | void APInt::tcClearBit(WordType *parts, unsigned bit) { | |||
2329 | parts[whichWord(bit)] &= ~maskBit(bit); | |||
2330 | } | |||
2331 | ||||
2332 | /// Returns the bit number of the least significant set bit of a number. If the | |||
2333 | /// input number has no bits set UINT_MAX is returned. | |||
2334 | unsigned APInt::tcLSB(const WordType *parts, unsigned n) { | |||
2335 | for (unsigned i = 0; i < n; i++) { | |||
2336 | if (parts[i] != 0) { | |||
2337 | unsigned lsb = llvm::countr_zero(parts[i]); | |||
2338 | return lsb + i * APINT_BITS_PER_WORD; | |||
2339 | } | |||
2340 | } | |||
2341 | ||||
2342 | return UINT_MAX(2147483647 *2U +1U); | |||
2343 | } | |||
2344 | ||||
2345 | /// Returns the bit number of the most significant set bit of a number. | |||
2346 | /// If the input number has no bits set UINT_MAX is returned. | |||
2347 | unsigned APInt::tcMSB(const WordType *parts, unsigned n) { | |||
2348 | do { | |||
2349 | --n; | |||
2350 | ||||
2351 | if (parts[n] != 0) { | |||
2352 | static_assert(sizeof(parts[n]) <= sizeof(uint64_t)); | |||
2353 | unsigned msb = llvm::Log2_64(parts[n]); | |||
2354 | ||||
2355 | return msb + n * APINT_BITS_PER_WORD; | |||
2356 | } | |||
2357 | } while (n); | |||
2358 | ||||
2359 | return UINT_MAX(2147483647 *2U +1U); | |||
2360 | } | |||
2361 | ||||
2362 | /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to | |||
2363 | /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least | |||
2364 | /// significant bit of DST. All high bits above srcBITS in DST are zero-filled. | |||
2365 | /// */ | |||
2366 | void | |||
2367 | APInt::tcExtract(WordType *dst, unsigned dstCount, const WordType *src, | |||
2368 | unsigned srcBits, unsigned srcLSB) { | |||
2369 | unsigned dstParts = (srcBits + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD; | |||
2370 | assert(dstParts <= dstCount)(static_cast <bool> (dstParts <= dstCount) ? void (0 ) : __assert_fail ("dstParts <= dstCount", "llvm/lib/Support/APInt.cpp" , 2370, __extension__ __PRETTY_FUNCTION__)); | |||
2371 | ||||
2372 | unsigned firstSrcPart = srcLSB / APINT_BITS_PER_WORD; | |||
2373 | tcAssign(dst, src + firstSrcPart, dstParts); | |||
2374 | ||||
2375 | unsigned shift = srcLSB % APINT_BITS_PER_WORD; | |||
2376 | tcShiftRight(dst, dstParts, shift); | |||
2377 | ||||
2378 | // We now have (dstParts * APINT_BITS_PER_WORD - shift) bits from SRC | |||
2379 | // in DST. If this is less that srcBits, append the rest, else | |||
2380 | // clear the high bits. | |||
2381 | unsigned n = dstParts * APINT_BITS_PER_WORD - shift; | |||
2382 | if (n < srcBits) { | |||
2383 | WordType mask = lowBitMask (srcBits - n); | |||
2384 | dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask) | |||
2385 | << n % APINT_BITS_PER_WORD); | |||
2386 | } else if (n > srcBits) { | |||
2387 | if (srcBits % APINT_BITS_PER_WORD) | |||
2388 | dst[dstParts - 1] &= lowBitMask (srcBits % APINT_BITS_PER_WORD); | |||
2389 | } | |||
2390 | ||||
2391 | // Clear high parts. | |||
2392 | while (dstParts < dstCount) | |||
2393 | dst[dstParts++] = 0; | |||
2394 | } | |||
2395 | ||||
2396 | //// DST += RHS + C where C is zero or one. Returns the carry flag. | |||
2397 | APInt::WordType APInt::tcAdd(WordType *dst, const WordType *rhs, | |||
2398 | WordType c, unsigned parts) { | |||
2399 | assert(c <= 1)(static_cast <bool> (c <= 1) ? void (0) : __assert_fail ("c <= 1", "llvm/lib/Support/APInt.cpp", 2399, __extension__ __PRETTY_FUNCTION__)); | |||
2400 | ||||
2401 | for (unsigned i = 0; i < parts; i++) { | |||
2402 | WordType l = dst[i]; | |||
2403 | if (c) { | |||
2404 | dst[i] += rhs[i] + 1; | |||
2405 | c = (dst[i] <= l); | |||
2406 | } else { | |||
2407 | dst[i] += rhs[i]; | |||
2408 | c = (dst[i] < l); | |||
2409 | } | |||
2410 | } | |||
2411 | ||||
2412 | return c; | |||
2413 | } | |||
2414 | ||||
2415 | /// This function adds a single "word" integer, src, to the multiple | |||
2416 | /// "word" integer array, dst[]. dst[] is modified to reflect the addition and | |||
2417 | /// 1 is returned if there is a carry out, otherwise 0 is returned. | |||
2418 | /// @returns the carry of the addition. | |||
2419 | APInt::WordType APInt::tcAddPart(WordType *dst, WordType src, | |||
2420 | unsigned parts) { | |||
2421 | for (unsigned i = 0; i < parts; ++i) { | |||
2422 | dst[i] += src; | |||
2423 | if (dst[i] >= src) | |||
2424 | return 0; // No need to carry so exit early. | |||
2425 | src = 1; // Carry one to next digit. | |||
2426 | } | |||
2427 | ||||
2428 | return 1; | |||
2429 | } | |||
2430 | ||||
2431 | /// DST -= RHS + C where C is zero or one. Returns the carry flag. | |||
2432 | APInt::WordType APInt::tcSubtract(WordType *dst, const WordType *rhs, | |||
2433 | WordType c, unsigned parts) { | |||
2434 | assert(c <= 1)(static_cast <bool> (c <= 1) ? void (0) : __assert_fail ("c <= 1", "llvm/lib/Support/APInt.cpp", 2434, __extension__ __PRETTY_FUNCTION__)); | |||
2435 | ||||
2436 | for (unsigned i = 0; i < parts; i++) { | |||
2437 | WordType l = dst[i]; | |||
2438 | if (c) { | |||
2439 | dst[i] -= rhs[i] + 1; | |||
2440 | c = (dst[i] >= l); | |||
2441 | } else { | |||
2442 | dst[i] -= rhs[i]; | |||
2443 | c = (dst[i] > l); | |||
2444 | } | |||
2445 | } | |||
2446 | ||||
2447 | return c; | |||
2448 | } | |||
2449 | ||||
2450 | /// This function subtracts a single "word" (64-bit word), src, from | |||
2451 | /// the multi-word integer array, dst[], propagating the borrowed 1 value until | |||
2452 | /// no further borrowing is needed or it runs out of "words" in dst. The result | |||
2453 | /// is 1 if "borrowing" exhausted the digits in dst, or 0 if dst was not | |||
2454 | /// exhausted. In other words, if src > dst then this function returns 1, | |||
2455 | /// otherwise 0. | |||
2456 | /// @returns the borrow out of the subtraction | |||
2457 | APInt::WordType APInt::tcSubtractPart(WordType *dst, WordType src, | |||
2458 | unsigned parts) { | |||
2459 | for (unsigned i = 0; i < parts; ++i) { | |||
2460 | WordType Dst = dst[i]; | |||
2461 | dst[i] -= src; | |||
2462 | if (src <= Dst) | |||
2463 | return 0; // No need to borrow so exit early. | |||
2464 | src = 1; // We have to "borrow 1" from next "word" | |||
2465 | } | |||
2466 | ||||
2467 | return 1; | |||
2468 | } | |||
2469 | ||||
2470 | /// Negate a bignum in-place. | |||
2471 | void APInt::tcNegate(WordType *dst, unsigned parts) { | |||
2472 | tcComplement(dst, parts); | |||
2473 | tcIncrement(dst, parts); | |||
2474 | } | |||
2475 | ||||
2476 | /// DST += SRC * MULTIPLIER + CARRY if add is true | |||
2477 | /// DST = SRC * MULTIPLIER + CARRY if add is false | |||
2478 | /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC | |||
2479 | /// they must start at the same point, i.e. DST == SRC. | |||
2480 | /// If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is | |||
2481 | /// returned. Otherwise DST is filled with the least significant | |||
2482 | /// DSTPARTS parts of the result, and if all of the omitted higher | |||
2483 | /// parts were zero return zero, otherwise overflow occurred and | |||
2484 | /// return one. | |||
2485 | int APInt::tcMultiplyPart(WordType *dst, const WordType *src, | |||
2486 | WordType multiplier, WordType carry, | |||
2487 | unsigned srcParts, unsigned dstParts, | |||
2488 | bool add) { | |||
2489 | // Otherwise our writes of DST kill our later reads of SRC. | |||
2490 | assert(dst <= src || dst >= src + srcParts)(static_cast <bool> (dst <= src || dst >= src + srcParts ) ? void (0) : __assert_fail ("dst <= src || dst >= src + srcParts" , "llvm/lib/Support/APInt.cpp", 2490, __extension__ __PRETTY_FUNCTION__ )); | |||
2491 | assert(dstParts <= srcParts + 1)(static_cast <bool> (dstParts <= srcParts + 1) ? void (0) : __assert_fail ("dstParts <= srcParts + 1", "llvm/lib/Support/APInt.cpp" , 2491, __extension__ __PRETTY_FUNCTION__)); | |||
2492 | ||||
2493 | // N loops; minimum of dstParts and srcParts. | |||
2494 | unsigned n = std::min(dstParts, srcParts); | |||
2495 | ||||
2496 | for (unsigned i = 0; i < n; i++) { | |||
2497 | // [LOW, HIGH] = MULTIPLIER * SRC[i] + DST[i] + CARRY. | |||
2498 | // This cannot overflow, because: | |||
2499 | // (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1) | |||
2500 | // which is less than n^2. | |||
2501 | WordType srcPart = src[i]; | |||
2502 | WordType low, mid, high; | |||
2503 | if (multiplier == 0 || srcPart == 0) { | |||
2504 | low = carry; | |||
2505 | high = 0; | |||
2506 | } else { | |||
2507 | low = lowHalf(srcPart) * lowHalf(multiplier); | |||
2508 | high = highHalf(srcPart) * highHalf(multiplier); | |||
2509 | ||||
2510 | mid = lowHalf(srcPart) * highHalf(multiplier); | |||
2511 | high += highHalf(mid); | |||
2512 | mid <<= APINT_BITS_PER_WORD / 2; | |||
2513 | if (low + mid < low) | |||
2514 | high++; | |||
2515 | low += mid; | |||
2516 | ||||
2517 | mid = highHalf(srcPart) * lowHalf(multiplier); | |||
2518 | high += highHalf(mid); | |||
2519 | mid <<= APINT_BITS_PER_WORD / 2; | |||
2520 | if (low + mid < low) | |||
2521 | high++; | |||
2522 | low += mid; | |||
2523 | ||||
2524 | // Now add carry. | |||
2525 | if (low + carry < low) | |||
2526 | high++; | |||
2527 | low += carry; | |||
2528 | } | |||
2529 | ||||
2530 | if (add) { | |||
2531 | // And now DST[i], and store the new low part there. | |||
2532 | if (low + dst[i] < low) | |||
2533 | high++; | |||
2534 | dst[i] += low; | |||
2535 | } else | |||
2536 | dst[i] = low; | |||
2537 | ||||
2538 | carry = high; | |||
2539 | } | |||
2540 | ||||
2541 | if (srcParts < dstParts) { | |||
2542 | // Full multiplication, there is no overflow. | |||
2543 | assert(srcParts + 1 == dstParts)(static_cast <bool> (srcParts + 1 == dstParts) ? void ( 0) : __assert_fail ("srcParts + 1 == dstParts", "llvm/lib/Support/APInt.cpp" , 2543, __extension__ __PRETTY_FUNCTION__)); | |||
2544 | dst[srcParts] = carry; | |||
2545 | return 0; | |||
2546 | } | |||
2547 | ||||
2548 | // We overflowed if there is carry. | |||
2549 | if (carry) | |||
2550 | return 1; | |||
2551 | ||||
2552 | // We would overflow if any significant unwritten parts would be | |||
2553 | // non-zero. This is true if any remaining src parts are non-zero | |||
2554 | // and the multiplier is non-zero. | |||
2555 | if (multiplier) | |||
2556 | for (unsigned i = dstParts; i < srcParts; i++) | |||
2557 | if (src[i]) | |||
2558 | return 1; | |||
2559 | ||||
2560 | // We fitted in the narrow destination. | |||
2561 | return 0; | |||
2562 | } | |||
2563 | ||||
2564 | /// DST = LHS * RHS, where DST has the same width as the operands and | |||
2565 | /// is filled with the least significant parts of the result. Returns | |||
2566 | /// one if overflow occurred, otherwise zero. DST must be disjoint | |||
2567 | /// from both operands. | |||
2568 | int APInt::tcMultiply(WordType *dst, const WordType *lhs, | |||
2569 | const WordType *rhs, unsigned parts) { | |||
2570 | assert(dst != lhs && dst != rhs)(static_cast <bool> (dst != lhs && dst != rhs) ? void (0) : __assert_fail ("dst != lhs && dst != rhs" , "llvm/lib/Support/APInt.cpp", 2570, __extension__ __PRETTY_FUNCTION__ )); | |||
2571 | ||||
2572 | int overflow = 0; | |||
2573 | tcSet(dst, 0, parts); | |||
2574 | ||||
2575 | for (unsigned i = 0; i < parts; i++) | |||
2576 | overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts, | |||
2577 | parts - i, true); | |||
2578 | ||||
2579 | return overflow; | |||
2580 | } | |||
2581 | ||||
2582 | /// DST = LHS * RHS, where DST has width the sum of the widths of the | |||
2583 | /// operands. No overflow occurs. DST must be disjoint from both operands. | |||
2584 | void APInt::tcFullMultiply(WordType *dst, const WordType *lhs, | |||
2585 | const WordType *rhs, unsigned lhsParts, | |||
2586 | unsigned rhsParts) { | |||
2587 | // Put the narrower number on the LHS for less loops below. | |||
2588 | if (lhsParts > rhsParts) | |||
2589 | return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts); | |||
2590 | ||||
2591 | assert(dst != lhs && dst != rhs)(static_cast <bool> (dst != lhs && dst != rhs) ? void (0) : __assert_fail ("dst != lhs && dst != rhs" , "llvm/lib/Support/APInt.cpp", 2591, __extension__ __PRETTY_FUNCTION__ )); | |||
2592 | ||||
2593 | tcSet(dst, 0, rhsParts); | |||
2594 | ||||
2595 | for (unsigned i = 0; i < lhsParts; i++) | |||
2596 | tcMultiplyPart(&dst[i], rhs, lhs[i], 0, rhsParts, rhsParts + 1, true); | |||
2597 | } | |||
2598 | ||||
2599 | // If RHS is zero LHS and REMAINDER are left unchanged, return one. | |||
2600 | // Otherwise set LHS to LHS / RHS with the fractional part discarded, | |||
2601 | // set REMAINDER to the remainder, return zero. i.e. | |||
2602 | // | |||
2603 | // OLD_LHS = RHS * LHS + REMAINDER | |||
2604 | // | |||
2605 | // SCRATCH is a bignum of the same size as the operands and result for | |||
2606 | // use by the routine; its contents need not be initialized and are | |||
2607 | // destroyed. LHS, REMAINDER and SCRATCH must be distinct. | |||
2608 | int APInt::tcDivide(WordType *lhs, const WordType *rhs, | |||
2609 | WordType *remainder, WordType *srhs, | |||
2610 | unsigned parts) { | |||
2611 | assert(lhs != remainder && lhs != srhs && remainder != srhs)(static_cast <bool> (lhs != remainder && lhs != srhs && remainder != srhs) ? void (0) : __assert_fail ("lhs != remainder && lhs != srhs && remainder != srhs" , "llvm/lib/Support/APInt.cpp", 2611, __extension__ __PRETTY_FUNCTION__ )); | |||
2612 | ||||
2613 | unsigned shiftCount = tcMSB(rhs, parts) + 1; | |||
2614 | if (shiftCount == 0) | |||
2615 | return true; | |||
2616 | ||||
2617 | shiftCount = parts * APINT_BITS_PER_WORD - shiftCount; | |||
2618 | unsigned n = shiftCount / APINT_BITS_PER_WORD; | |||
2619 | WordType mask = (WordType) 1 << (shiftCount % APINT_BITS_PER_WORD); | |||
2620 | ||||
2621 | tcAssign(srhs, rhs, parts); | |||
2622 | tcShiftLeft(srhs, parts, shiftCount); | |||
2623 | tcAssign(remainder, lhs, parts); | |||
2624 | tcSet(lhs, 0, parts); | |||
2625 | ||||
2626 | // Loop, subtracting SRHS if REMAINDER is greater and adding that to the | |||
2627 | // total. | |||
2628 | for (;;) { | |||
2629 | int compare = tcCompare(remainder, srhs, parts); | |||
2630 | if (compare >= 0) { | |||
2631 | tcSubtract(remainder, srhs, 0, parts); | |||
2632 | lhs[n] |= mask; | |||
2633 | } | |||
2634 | ||||
2635 | if (shiftCount == 0) | |||
2636 | break; | |||
2637 | shiftCount--; | |||
2638 | tcShiftRight(srhs, parts, 1); | |||
2639 | if ((mask >>= 1) == 0) { | |||
2640 | mask = (WordType) 1 << (APINT_BITS_PER_WORD - 1); | |||
2641 | n--; | |||
2642 | } | |||
2643 | } | |||
2644 | ||||
2645 | return false; | |||
2646 | } | |||
2647 | ||||
2648 | /// Shift a bignum left Cound bits in-place. Shifted in bits are zero. There are | |||
2649 | /// no restrictions on Count. | |||
2650 | void APInt::tcShiftLeft(WordType *Dst, unsigned Words, unsigned Count) { | |||
2651 | // Don't bother performing a no-op shift. | |||
2652 | if (!Count) | |||
2653 | return; | |||
2654 | ||||
2655 | // WordShift is the inter-part shift; BitShift is the intra-part shift. | |||
2656 | unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words); | |||
2657 | unsigned BitShift = Count % APINT_BITS_PER_WORD; | |||
2658 | ||||
2659 | // Fastpath for moving by whole words. | |||
2660 | if (BitShift == 0) { | |||
2661 | std::memmove(Dst + WordShift, Dst, (Words - WordShift) * APINT_WORD_SIZE); | |||
2662 | } else { | |||
2663 | while (Words-- > WordShift) { | |||
2664 | Dst[Words] = Dst[Words - WordShift] << BitShift; | |||
2665 | if (Words > WordShift) | |||
2666 | Dst[Words] |= | |||
2667 | Dst[Words - WordShift - 1] >> (APINT_BITS_PER_WORD - BitShift); | |||
2668 | } | |||
2669 | } | |||
2670 | ||||
2671 | // Fill in the remainder with 0s. | |||
2672 | std::memset(Dst, 0, WordShift * APINT_WORD_SIZE); | |||
2673 | } | |||
2674 | ||||
2675 | /// Shift a bignum right Count bits in-place. Shifted in bits are zero. There | |||
2676 | /// are no restrictions on Count. | |||
2677 | void APInt::tcShiftRight(WordType *Dst, unsigned Words, unsigned Count) { | |||
2678 | // Don't bother performing a no-op shift. | |||
2679 | if (!Count) | |||
2680 | return; | |||
2681 | ||||
2682 | // WordShift is the inter-part shift; BitShift is the intra-part shift. | |||
2683 | unsigned WordShift = std::min(Count / APINT_BITS_PER_WORD, Words); | |||
2684 | unsigned BitShift = Count % APINT_BITS_PER_WORD; | |||
2685 | ||||
2686 | unsigned WordsToMove = Words - WordShift; | |||
2687 | // Fastpath for moving by whole words. | |||
2688 | if (BitShift == 0) { | |||
2689 | std::memmove(Dst, Dst + WordShift, WordsToMove * APINT_WORD_SIZE); | |||
2690 | } else { | |||
2691 | for (unsigned i = 0; i != WordsToMove; ++i) { | |||
2692 | Dst[i] = Dst[i + WordShift] >> BitShift; | |||
2693 | if (i + 1 != WordsToMove) | |||
2694 | Dst[i] |= Dst[i + WordShift + 1] << (APINT_BITS_PER_WORD - BitShift); | |||
2695 | } | |||
2696 | } | |||
2697 | ||||
2698 | // Fill in the remainder with 0s. | |||
2699 | std::memset(Dst + WordsToMove, 0, WordShift * APINT_WORD_SIZE); | |||
2700 | } | |||
2701 | ||||
2702 | // Comparison (unsigned) of two bignums. | |||
2703 | int APInt::tcCompare(const WordType *lhs, const WordType *rhs, | |||
2704 | unsigned parts) { | |||
2705 | while (parts) { | |||
2706 | parts--; | |||
2707 | if (lhs[parts] != rhs[parts]) | |||
2708 | return (lhs[parts] > rhs[parts]) ? 1 : -1; | |||
2709 | } | |||
2710 | ||||
2711 | return 0; | |||
2712 | } | |||
2713 | ||||
2714 | APInt llvm::APIntOps::RoundingUDiv(const APInt &A, const APInt &B, | |||
2715 | APInt::Rounding RM) { | |||
2716 | // Currently udivrem always rounds down. | |||
2717 | switch (RM) { | |||
2718 | case APInt::Rounding::DOWN: | |||
2719 | case APInt::Rounding::TOWARD_ZERO: | |||
2720 | return A.udiv(B); | |||
2721 | case APInt::Rounding::UP: { | |||
2722 | APInt Quo, Rem; | |||
2723 | APInt::udivrem(A, B, Quo, Rem); | |||
2724 | if (Rem.isZero()) | |||
2725 | return Quo; | |||
2726 | return Quo + 1; | |||
2727 | } | |||
2728 | } | |||
2729 | llvm_unreachable("Unknown APInt::Rounding enum")::llvm::llvm_unreachable_internal("Unknown APInt::Rounding enum" , "llvm/lib/Support/APInt.cpp", 2729); | |||
2730 | } | |||
2731 | ||||
2732 | APInt llvm::APIntOps::RoundingSDiv(const APInt &A, const APInt &B, | |||
2733 | APInt::Rounding RM) { | |||
2734 | switch (RM) { | |||
2735 | case APInt::Rounding::DOWN: | |||
2736 | case APInt::Rounding::UP: { | |||
2737 | APInt Quo, Rem; | |||
2738 | APInt::sdivrem(A, B, Quo, Rem); | |||
2739 | if (Rem.isZero()) | |||
2740 | return Quo; | |||
2741 | // This algorithm deals with arbitrary rounding mode used by sdivrem. | |||
2742 | // We want to check whether the non-integer part of the mathematical value | |||
2743 | // is negative or not. If the non-integer part is negative, we need to round | |||
2744 | // down from Quo; otherwise, if it's positive or 0, we return Quo, as it's | |||
2745 | // already rounded down. | |||
2746 | if (RM == APInt::Rounding::DOWN) { | |||
2747 | if (Rem.isNegative() != B.isNegative()) | |||
2748 | return Quo - 1; | |||
2749 | return Quo; | |||
2750 | } | |||
2751 | if (Rem.isNegative() != B.isNegative()) | |||
2752 | return Quo; | |||
2753 | return Quo + 1; | |||
2754 | } | |||
2755 | // Currently sdiv rounds towards zero. | |||
2756 | case APInt::Rounding::TOWARD_ZERO: | |||
2757 | return A.sdiv(B); | |||
2758 | } | |||
2759 | llvm_unreachable("Unknown APInt::Rounding enum")::llvm::llvm_unreachable_internal("Unknown APInt::Rounding enum" , "llvm/lib/Support/APInt.cpp", 2759); | |||
2760 | } | |||
2761 | ||||
2762 | std::optional<APInt> | |||
2763 | llvm::APIntOps::SolveQuadraticEquationWrap(APInt A, APInt B, APInt C, | |||
2764 | unsigned RangeWidth) { | |||
2765 | unsigned CoeffWidth = A.getBitWidth(); | |||
2766 | assert(CoeffWidth == B.getBitWidth() && CoeffWidth == C.getBitWidth())(static_cast <bool> (CoeffWidth == B.getBitWidth() && CoeffWidth == C.getBitWidth()) ? void (0) : __assert_fail ("CoeffWidth == B.getBitWidth() && CoeffWidth == C.getBitWidth()" , "llvm/lib/Support/APInt.cpp", 2766, __extension__ __PRETTY_FUNCTION__ )); | |||
2767 | assert(RangeWidth <= CoeffWidth &&(static_cast <bool> (RangeWidth <= CoeffWidth && "Value range width should be less than coefficient width") ? void (0) : __assert_fail ("RangeWidth <= CoeffWidth && \"Value range width should be less than coefficient width\"" , "llvm/lib/Support/APInt.cpp", 2768, __extension__ __PRETTY_FUNCTION__ )) | |||
2768 | "Value range width should be less than coefficient width")(static_cast <bool> (RangeWidth <= CoeffWidth && "Value range width should be less than coefficient width") ? void (0) : __assert_fail ("RangeWidth <= CoeffWidth && \"Value range width should be less than coefficient width\"" , "llvm/lib/Support/APInt.cpp", 2768, __extension__ __PRETTY_FUNCTION__ )); | |||
2769 | assert(RangeWidth > 1 && "Value range bit width should be > 1")(static_cast <bool> (RangeWidth > 1 && "Value range bit width should be > 1" ) ? void (0) : __assert_fail ("RangeWidth > 1 && \"Value range bit width should be > 1\"" , "llvm/lib/Support/APInt.cpp", 2769, __extension__ __PRETTY_FUNCTION__ )); | |||
2770 | ||||
2771 | LLVM_DEBUG(dbgs() << __func__ << ": solving " << A << "x^2 + " << Bdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("apint")) { dbgs() << __func__ << ": solving " << A << "x^2 + " << B << "x + " << C << ", rw:" << RangeWidth << '\n'; } } while (false) | |||
2772 | << "x + " << C << ", rw:" << RangeWidth << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("apint")) { dbgs() << __func__ << ": solving " << A << "x^2 + " << B << "x + " << C << ", rw:" << RangeWidth << '\n'; } } while (false); | |||
2773 | ||||
2774 | // Identify 0 as a (non)solution immediately. | |||
2775 | if (C.sextOrTrunc(RangeWidth).isZero()) { | |||
2776 | LLVM_DEBUG(dbgs() << __func__ << ": zero solution\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("apint")) { dbgs() << __func__ << ": zero solution\n" ; } } while (false); | |||
2777 | return APInt(CoeffWidth, 0); | |||
2778 | } | |||
2779 | ||||
2780 | // The result of APInt arithmetic has the same bit width as the operands, | |||
2781 | // so it can actually lose high bits. A product of two n-bit integers needs | |||
2782 | // 2n-1 bits to represent the full value. | |||
2783 | // The operation done below (on quadratic coefficients) that can produce | |||
2784 | // the largest value is the evaluation of the equation during bisection, | |||
2785 | // which needs 3 times the bitwidth of the coefficient, so the total number | |||
2786 | // of required bits is 3n. | |||
2787 | // | |||
2788 | // The purpose of this extension is to simulate the set Z of all integers, | |||
2789 | // where n+1 > n for all n in Z. In Z it makes sense to talk about positive | |||
2790 | // and negative numbers (not so much in a modulo arithmetic). The method | |||
2791 | // used to solve the equation is based on the standard formula for real | |||
2792 | // numbers, and uses the concepts of "positive" and "negative" with their | |||
2793 | // usual meanings. | |||
2794 | CoeffWidth *= 3; | |||
2795 | A = A.sext(CoeffWidth); | |||
2796 | B = B.sext(CoeffWidth); | |||
2797 | C = C.sext(CoeffWidth); | |||
2798 | ||||
2799 | // Make A > 0 for simplicity. Negate cannot overflow at this point because | |||
2800 | // the bit width has increased. | |||
2801 | if (A.isNegative()) { | |||
2802 | A.negate(); | |||
2803 | B.negate(); | |||
2804 | C.negate(); | |||
2805 | } | |||
2806 | ||||
2807 | // Solving an equation q(x) = 0 with coefficients in modular arithmetic | |||
2808 | // is really solving a set of equations q(x) = kR for k = 0, 1, 2, ..., | |||
2809 | // and R = 2^BitWidth. | |||
2810 | // Since we're trying not only to find exact solutions, but also values | |||
2811 | // that "wrap around", such a set will always have a solution, i.e. an x | |||
2812 | // that satisfies at least one of the equations, or such that |q(x)| | |||
2813 | // exceeds kR, while |q(x-1)| for the same k does not. | |||
2814 | // | |||
2815 | // We need to find a value k, such that Ax^2 + Bx + C = kR will have a | |||
2816 | // positive solution n (in the above sense), and also such that the n | |||
2817 | // will be the least among all solutions corresponding to k = 0, 1, ... | |||
2818 | // (more precisely, the least element in the set | |||
2819 | // { n(k) | k is such that a solution n(k) exists }). | |||
2820 | // | |||
2821 | // Consider the parabola (over real numbers) that corresponds to the | |||
2822 | // quadratic equation. Since A > 0, the arms of the parabola will point | |||
2823 | // up. Picking different values of k will shift it up and down by R. | |||
2824 | // | |||
2825 | // We want to shift the parabola in such a way as to reduce the problem | |||
2826 | // of solving q(x) = kR to solving shifted_q(x) = 0. | |||
2827 | // (The interesting solutions are the ceilings of the real number | |||
2828 | // solutions.) | |||
2829 | APInt R = APInt::getOneBitSet(CoeffWidth, RangeWidth); | |||
2830 | APInt TwoA = 2 * A; | |||
2831 | APInt SqrB = B * B; | |||
2832 | bool PickLow; | |||
2833 | ||||
2834 | auto RoundUp = [] (const APInt &V, const APInt &A) -> APInt { | |||
2835 | assert(A.isStrictlyPositive())(static_cast <bool> (A.isStrictlyPositive()) ? void (0) : __assert_fail ("A.isStrictlyPositive()", "llvm/lib/Support/APInt.cpp" , 2835, __extension__ __PRETTY_FUNCTION__)); | |||
2836 | APInt T = V.abs().urem(A); | |||
2837 | if (T.isZero()) | |||
2838 | return V; | |||
2839 | return V.isNegative() ? V+T : V+(A-T); | |||
2840 | }; | |||
2841 | ||||
2842 | // The vertex of the parabola is at -B/2A, but since A > 0, it's negative | |||
2843 | // iff B is positive. | |||
2844 | if (B.isNonNegative()) { | |||
2845 | // If B >= 0, the vertex it at a negative location (or at 0), so in | |||
2846 | // order to have a non-negative solution we need to pick k that makes | |||
2847 | // C-kR negative. To satisfy all the requirements for the solution | |||
2848 | // that we are looking for, it needs to be closest to 0 of all k. | |||
2849 | C = C.srem(R); | |||
2850 | if (C.isStrictlyPositive()) | |||
2851 | C -= R; | |||
2852 | // Pick the greater solution. | |||
2853 | PickLow = false; | |||
2854 | } else { | |||
2855 | // If B < 0, the vertex is at a positive location. For any solution | |||
2856 | // to exist, the discriminant must be non-negative. This means that | |||
2857 | // C-kR <= B^2/4A is a necessary condition for k, i.e. there is a | |||
2858 | // lower bound on values of k: kR >= C - B^2/4A. | |||
2859 | APInt LowkR = C - SqrB.udiv(2*TwoA); // udiv because all values > 0. | |||
2860 | // Round LowkR up (towards +inf) to the nearest kR. | |||
2861 | LowkR = RoundUp(LowkR, R); | |||
2862 | ||||
2863 | // If there exists k meeting the condition above, and such that | |||
2864 | // C-kR > 0, there will be two positive real number solutions of | |||
2865 | // q(x) = kR. Out of all such values of k, pick the one that makes | |||
2866 | // C-kR closest to 0, (i.e. pick maximum k such that C-kR > 0). | |||
2867 | // In other words, find maximum k such that LowkR <= kR < C. | |||
2868 | if (C.sgt(LowkR)) { | |||
2869 | // If LowkR < C, then such a k is guaranteed to exist because | |||
2870 | // LowkR itself is a multiple of R. | |||
2871 | C -= -RoundUp(-C, R); // C = C - RoundDown(C, R) | |||
2872 | // Pick the smaller solution. | |||
2873 | PickLow = true; | |||
2874 | } else { | |||
2875 | // If C-kR < 0 for all potential k's, it means that one solution | |||
2876 | // will be negative, while the other will be positive. The positive | |||
2877 | // solution will shift towards 0 if the parabola is moved up. | |||
2878 | // Pick the kR closest to the lower bound (i.e. make C-kR closest | |||
2879 | // to 0, or in other words, out of all parabolas that have solutions, | |||
2880 | // pick the one that is the farthest "up"). | |||
2881 | // Since LowkR is itself a multiple of R, simply take C-LowkR. | |||
2882 | C -= LowkR; | |||
2883 | // Pick the greater solution. | |||
2884 | PickLow = false; | |||
2885 | } | |||
2886 | } | |||
2887 | ||||
2888 | LLVM_DEBUG(dbgs() << __func__ << ": updated coefficients " << A << "x^2 + "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("apint")) { dbgs() << __func__ << ": updated coefficients " << A << "x^2 + " << B << "x + " << C << ", rw:" << RangeWidth << '\n'; } } while (false) | |||
2889 | << B << "x + " << C << ", rw:" << RangeWidth << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("apint")) { dbgs() << __func__ << ": updated coefficients " << A << "x^2 + " << B << "x + " << C << ", rw:" << RangeWidth << '\n'; } } while (false); | |||
2890 | ||||
2891 | APInt D = SqrB - 4*A*C; | |||
2892 | assert(D.isNonNegative() && "Negative discriminant")(static_cast <bool> (D.isNonNegative() && "Negative discriminant" ) ? void (0) : __assert_fail ("D.isNonNegative() && \"Negative discriminant\"" , "llvm/lib/Support/APInt.cpp", 2892, __extension__ __PRETTY_FUNCTION__ )); | |||
2893 | APInt SQ = D.sqrt(); | |||
2894 | ||||
2895 | APInt Q = SQ * SQ; | |||
2896 | bool InexactSQ = Q != D; | |||
2897 | // The calculated SQ may actually be greater than the exact (non-integer) | |||
2898 | // value. If that's the case, decrement SQ to get a value that is lower. | |||
2899 | if (Q.sgt(D)) | |||
2900 | SQ -= 1; | |||
2901 | ||||
2902 | APInt X; | |||
2903 | APInt Rem; | |||
2904 | ||||
2905 | // SQ is rounded down (i.e SQ * SQ <= D), so the roots may be inexact. | |||
2906 | // When using the quadratic formula directly, the calculated low root | |||
2907 | // may be greater than the exact one, since we would be subtracting SQ. | |||
2908 | // To make sure that the calculated root is not greater than the exact | |||
2909 | // one, subtract SQ+1 when calculating the low root (for inexact value | |||
2910 | // of SQ). | |||
2911 | if (PickLow) | |||
2912 | APInt::sdivrem(-B - (SQ+InexactSQ), TwoA, X, Rem); | |||
2913 | else | |||
2914 | APInt::sdivrem(-B + SQ, TwoA, X, Rem); | |||
2915 | ||||
2916 | // The updated coefficients should be such that the (exact) solution is | |||
2917 | // positive. Since APInt division rounds towards 0, the calculated one | |||
2918 | // can be 0, but cannot be negative. | |||
2919 | assert(X.isNonNegative() && "Solution should be non-negative")(static_cast <bool> (X.isNonNegative() && "Solution should be non-negative" ) ? void (0) : __assert_fail ("X.isNonNegative() && \"Solution should be non-negative\"" , "llvm/lib/Support/APInt.cpp", 2919, __extension__ __PRETTY_FUNCTION__ )); | |||
2920 | ||||
2921 | if (!InexactSQ && Rem.isZero()) { | |||
2922 | LLVM_DEBUG(dbgs() << __func__ << ": solution (root): " << X << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("apint")) { dbgs() << __func__ << ": solution (root): " << X << '\n'; } } while (false); | |||
2923 | return X; | |||
2924 | } | |||
2925 | ||||
2926 | assert((SQ*SQ).sle(D) && "SQ = |_sqrt(D)_|, so SQ*SQ <= D")(static_cast <bool> ((SQ*SQ).sle(D) && "SQ = |_sqrt(D)_|, so SQ*SQ <= D" ) ? void (0) : __assert_fail ("(SQ*SQ).sle(D) && \"SQ = |_sqrt(D)_|, so SQ*SQ <= D\"" , "llvm/lib/Support/APInt.cpp", 2926, __extension__ __PRETTY_FUNCTION__ )); | |||
2927 | // The exact value of the square root of D should be between SQ and SQ+1. | |||
2928 | // This implies that the solution should be between that corresponding to | |||
2929 | // SQ (i.e. X) and that corresponding to SQ+1. | |||
2930 | // | |||
2931 | // The calculated X cannot be greater than the exact (real) solution. | |||
2932 | // Actually it must be strictly less than the exact solution, while | |||
2933 | // X+1 will be greater than or equal to it. | |||
2934 | ||||
2935 | APInt VX = (A*X + B)*X + C; | |||
2936 | APInt VY = VX + TwoA*X + A + B; | |||
2937 | bool SignChange = | |||
2938 | VX.isNegative() != VY.isNegative() || VX.isZero() != VY.isZero(); | |||
2939 | // If the sign did not change between X and X+1, X is not a valid solution. | |||
2940 | // This could happen when the actual (exact) roots don't have an integer | |||
2941 | // between them, so they would both be contained between X and X+1. | |||
2942 | if (!SignChange) { | |||
2943 | LLVM_DEBUG(dbgs() << __func__ << ": no valid solution\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("apint")) { dbgs() << __func__ << ": no valid solution\n" ; } } while (false); | |||
2944 | return std::nullopt; | |||
2945 | } | |||
2946 | ||||
2947 | X += 1; | |||
2948 | LLVM_DEBUG(dbgs() << __func__ << ": solution (wrap): " << X << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("apint")) { dbgs() << __func__ << ": solution (wrap): " << X << '\n'; } } while (false); | |||
2949 | return X; | |||
2950 | } | |||
2951 | ||||
2952 | std::optional<unsigned> | |||
2953 | llvm::APIntOps::GetMostSignificantDifferentBit(const APInt &A, const APInt &B) { | |||
2954 | assert(A.getBitWidth() == B.getBitWidth() && "Must have the same bitwidth")(static_cast <bool> (A.getBitWidth() == B.getBitWidth() && "Must have the same bitwidth") ? void (0) : __assert_fail ("A.getBitWidth() == B.getBitWidth() && \"Must have the same bitwidth\"" , "llvm/lib/Support/APInt.cpp", 2954, __extension__ __PRETTY_FUNCTION__ )); | |||
2955 | if (A == B) | |||
2956 | return std::nullopt; | |||
2957 | return A.getBitWidth() - ((A ^ B).countl_zero() + 1); | |||
2958 | } | |||
2959 | ||||
2960 | APInt llvm::APIntOps::ScaleBitMask(const APInt &A, unsigned NewBitWidth, | |||
2961 | bool MatchAllBits) { | |||
2962 | unsigned OldBitWidth = A.getBitWidth(); | |||
2963 | assert((((OldBitWidth % NewBitWidth) == 0) ||(static_cast <bool> ((((OldBitWidth % NewBitWidth) == 0 ) || ((NewBitWidth % OldBitWidth) == 0)) && "One size should be a multiple of the other one. " "Can't do fractional scaling.") ? void (0) : __assert_fail ( "(((OldBitWidth % NewBitWidth) == 0) || ((NewBitWidth % OldBitWidth) == 0)) && \"One size should be a multiple of the other one. \" \"Can't do fractional scaling.\"" , "llvm/lib/Support/APInt.cpp", 2966, __extension__ __PRETTY_FUNCTION__ )) | |||
2964 | ((NewBitWidth % OldBitWidth) == 0)) &&(static_cast <bool> ((((OldBitWidth % NewBitWidth) == 0 ) || ((NewBitWidth % OldBitWidth) == 0)) && "One size should be a multiple of the other one. " "Can't do fractional scaling.") ? void (0) : __assert_fail ( "(((OldBitWidth % NewBitWidth) == 0) || ((NewBitWidth % OldBitWidth) == 0)) && \"One size should be a multiple of the other one. \" \"Can't do fractional scaling.\"" , "llvm/lib/Support/APInt.cpp", 2966, __extension__ __PRETTY_FUNCTION__ )) | |||
2965 | "One size should be a multiple of the other one. "(static_cast <bool> ((((OldBitWidth % NewBitWidth) == 0 ) || ((NewBitWidth % OldBitWidth) == 0)) && "One size should be a multiple of the other one. " "Can't do fractional scaling.") ? void (0) : __assert_fail ( "(((OldBitWidth % NewBitWidth) == 0) || ((NewBitWidth % OldBitWidth) == 0)) && \"One size should be a multiple of the other one. \" \"Can't do fractional scaling.\"" , "llvm/lib/Support/APInt.cpp", 2966, __extension__ __PRETTY_FUNCTION__ )) | |||
2966 | "Can't do fractional scaling.")(static_cast <bool> ((((OldBitWidth % NewBitWidth) == 0 ) || ((NewBitWidth % OldBitWidth) == 0)) && "One size should be a multiple of the other one. " "Can't do fractional scaling.") ? void (0) : __assert_fail ( "(((OldBitWidth % NewBitWidth) == 0) || ((NewBitWidth % OldBitWidth) == 0)) && \"One size should be a multiple of the other one. \" \"Can't do fractional scaling.\"" , "llvm/lib/Support/APInt.cpp", 2966, __extension__ __PRETTY_FUNCTION__ )); | |||
2967 | ||||
2968 | // Check for matching bitwidths. | |||
2969 | if (OldBitWidth == NewBitWidth) | |||
2970 | return A; | |||
2971 | ||||
2972 | APInt NewA = APInt::getZero(NewBitWidth); | |||
2973 | ||||
2974 | // Check for null input. | |||
2975 | if (A.isZero()) | |||
2976 | return NewA; | |||
2977 | ||||
2978 | if (NewBitWidth > OldBitWidth) { | |||
2979 | // Repeat bits. | |||
2980 | unsigned Scale = NewBitWidth / OldBitWidth; | |||
2981 | for (unsigned i = 0; i != OldBitWidth; ++i) | |||
2982 | if (A[i]) | |||
2983 | NewA.setBits(i * Scale, (i + 1) * Scale); | |||
2984 | } else { | |||
2985 | unsigned Scale = OldBitWidth / NewBitWidth; | |||
2986 | for (unsigned i = 0; i != NewBitWidth; ++i) { | |||
2987 | if (MatchAllBits) { | |||
2988 | if (A.extractBits(Scale, i * Scale).isAllOnes()) | |||
2989 | NewA.setBit(i); | |||
2990 | } else { | |||
2991 | if (!A.extractBits(Scale, i * Scale).isZero()) | |||
2992 | NewA.setBit(i); | |||
2993 | } | |||
2994 | } | |||
2995 | } | |||
2996 | ||||
2997 | return NewA; | |||
2998 | } | |||
2999 | ||||
3000 | /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst | |||
3001 | /// with the integer held in IntVal. | |||
3002 | void llvm::StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, | |||
3003 | unsigned StoreBytes) { | |||
3004 | assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!")(static_cast <bool> ((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!") ? void (0) : __assert_fail ( "(IntVal.getBitWidth()+7)/8 >= StoreBytes && \"Integer too small!\"" , "llvm/lib/Support/APInt.cpp", 3004, __extension__ __PRETTY_FUNCTION__ )); | |||
3005 | const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); | |||
3006 | ||||
3007 | if (sys::IsLittleEndianHost) { | |||
3008 | // Little-endian host - the source is ordered from LSB to MSB. Order the | |||
3009 | // destination from LSB to MSB: Do a straight copy. | |||
3010 | memcpy(Dst, Src, StoreBytes); | |||
3011 | } else { | |||
3012 | // Big-endian host - the source is an array of 64 bit words ordered from | |||
3013 | // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination | |||
3014 | // from MSB to LSB: Reverse the word order, but not the bytes in a word. | |||
3015 | while (StoreBytes > sizeof(uint64_t)) { | |||
3016 | StoreBytes -= sizeof(uint64_t); | |||
3017 | // May not be aligned so use memcpy. | |||
3018 | memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); | |||
3019 | Src += sizeof(uint64_t); | |||
3020 | } | |||
3021 | ||||
3022 | memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); | |||
3023 | } | |||
3024 | } | |||
3025 | ||||
3026 | /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting | |||
3027 | /// from Src into IntVal, which is assumed to be wide enough and to hold zero. | |||
3028 | void llvm::LoadIntFromMemory(APInt &IntVal, const uint8_t *Src, | |||
3029 | unsigned LoadBytes) { | |||
3030 | assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!")(static_cast <bool> ((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!") ? void (0) : __assert_fail ( "(IntVal.getBitWidth()+7)/8 >= LoadBytes && \"Integer too small!\"" , "llvm/lib/Support/APInt.cpp", 3030, __extension__ __PRETTY_FUNCTION__ )); | |||
3031 | uint8_t *Dst = reinterpret_cast<uint8_t *>( | |||
3032 | const_cast<uint64_t *>(IntVal.getRawData())); | |||
3033 | ||||
3034 | if (sys::IsLittleEndianHost) | |||
3035 | // Little-endian host - the destination must be ordered from LSB to MSB. | |||
3036 | // The source is ordered from LSB to MSB: Do a straight copy. | |||
3037 | memcpy(Dst, Src, LoadBytes); | |||
3038 | else { | |||
3039 | // Big-endian - the destination is an array of 64 bit words ordered from | |||
3040 | // LSW to MSW. Each word must be ordered from MSB to LSB. The source is | |||
3041 | // ordered from MSB to LSB: Reverse the word order, but not the bytes in | |||
3042 | // a word. | |||
3043 | while (LoadBytes > sizeof(uint64_t)) { | |||
3044 | LoadBytes -= sizeof(uint64_t); | |||
3045 | // May not be aligned so use memcpy. | |||
3046 | memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); | |||
3047 | Dst += sizeof(uint64_t); | |||
3048 | } | |||
3049 | ||||
3050 | memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); | |||
3051 | } | |||
3052 | } |
1 | //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===// | |||
2 | // | |||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | |||
4 | // See https://llvm.org/LICENSE.txt for license information. | |||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | |||
6 | // | |||
7 | //===----------------------------------------------------------------------===// | |||
8 | /// | |||
9 | /// \file | |||
10 | /// This file implements a class to represent arbitrary precision | |||
11 | /// integral constant values and operations on them. | |||
12 | /// | |||
13 | //===----------------------------------------------------------------------===// | |||
14 | ||||
15 | #ifndef LLVM_ADT_APINT_H | |||
16 | #define LLVM_ADT_APINT_H | |||
17 | ||||
18 | #include "llvm/Support/Compiler.h" | |||
19 | #include "llvm/Support/MathExtras.h" | |||
20 | #include <cassert> | |||
21 | #include <climits> | |||
22 | #include <cstring> | |||
23 | #include <optional> | |||
24 | #include <utility> | |||
25 | ||||
26 | namespace llvm { | |||
27 | class FoldingSetNodeID; | |||
28 | class StringRef; | |||
29 | class hash_code; | |||
30 | class raw_ostream; | |||
31 | ||||
32 | template <typename T> class SmallVectorImpl; | |||
33 | template <typename T> class ArrayRef; | |||
34 | template <typename T, typename Enable> struct DenseMapInfo; | |||
35 | ||||
36 | class APInt; | |||
37 | ||||
38 | inline APInt operator-(APInt); | |||
39 | ||||
40 | //===----------------------------------------------------------------------===// | |||
41 | // APInt Class | |||
42 | //===----------------------------------------------------------------------===// | |||
43 | ||||
44 | /// Class for arbitrary precision integers. | |||
45 | /// | |||
46 | /// APInt is a functional replacement for common case unsigned integer type like | |||
47 | /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width | |||
48 | /// integer sizes and large integer value types such as 3-bits, 15-bits, or more | |||
49 | /// than 64-bits of precision. APInt provides a variety of arithmetic operators | |||
50 | /// and methods to manipulate integer values of any bit-width. It supports both | |||
51 | /// the typical integer arithmetic and comparison operations as well as bitwise | |||
52 | /// manipulation. | |||
53 | /// | |||
54 | /// The class has several invariants worth noting: | |||
55 | /// * All bit, byte, and word positions are zero-based. | |||
56 | /// * Once the bit width is set, it doesn't change except by the Truncate, | |||
57 | /// SignExtend, or ZeroExtend operations. | |||
58 | /// * All binary operators must be on APInt instances of the same bit width. | |||
59 | /// Attempting to use these operators on instances with different bit | |||
60 | /// widths will yield an assertion. | |||
61 | /// * The value is stored canonically as an unsigned value. For operations | |||
62 | /// where it makes a difference, there are both signed and unsigned variants | |||
63 | /// of the operation. For example, sdiv and udiv. However, because the bit | |||
64 | /// widths must be the same, operations such as Mul and Add produce the same | |||
65 | /// results regardless of whether the values are interpreted as signed or | |||
66 | /// not. | |||
67 | /// * In general, the class tries to follow the style of computation that LLVM | |||
68 | /// uses in its IR. This simplifies its use for LLVM. | |||
69 | /// * APInt supports zero-bit-width values, but operations that require bits | |||
70 | /// are not defined on it (e.g. you cannot ask for the sign of a zero-bit | |||
71 | /// integer). This means that operations like zero extension and logical | |||
72 | /// shifts are defined, but sign extension and ashr is not. Zero bit values | |||
73 | /// compare and hash equal to themselves, and countLeadingZeros returns 0. | |||
74 | /// | |||
75 | class [[nodiscard]] APInt { | |||
76 | public: | |||
77 | typedef uint64_t WordType; | |||
78 | ||||
79 | /// This enum is used to hold the constants we needed for APInt. | |||
80 | enum : unsigned { | |||
81 | /// Byte size of a word. | |||
82 | APINT_WORD_SIZE = sizeof(WordType), | |||
83 | /// Bits in a word. | |||
84 | APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT8 | |||
85 | }; | |||
86 | ||||
87 | enum class Rounding { | |||
88 | DOWN, | |||
89 | TOWARD_ZERO, | |||
90 | UP, | |||
91 | }; | |||
92 | ||||
93 | static constexpr WordType WORDTYPE_MAX = ~WordType(0); | |||
94 | ||||
95 | /// \name Constructors | |||
96 | /// @{ | |||
97 | ||||
98 | /// Create a new APInt of numBits width, initialized as val. | |||
99 | /// | |||
100 | /// If isSigned is true then val is treated as if it were a signed value | |||
101 | /// (i.e. as an int64_t) and the appropriate sign extension to the bit width | |||
102 | /// will be done. Otherwise, no sign extension occurs (high order bits beyond | |||
103 | /// the range of val are zero filled). | |||
104 | /// | |||
105 | /// \param numBits the bit width of the constructed APInt | |||
106 | /// \param val the initial value of the APInt | |||
107 | /// \param isSigned how to treat signedness of val | |||
108 | APInt(unsigned numBits, uint64_t val, bool isSigned = false) | |||
109 | : BitWidth(numBits) { | |||
110 | if (isSingleWord()) { | |||
111 | U.VAL = val; | |||
112 | clearUnusedBits(); | |||
113 | } else { | |||
114 | initSlowCase(val, isSigned); | |||
115 | } | |||
116 | } | |||
117 | ||||
118 | /// Construct an APInt of numBits width, initialized as bigVal[]. | |||
119 | /// | |||
120 | /// Note that bigVal.size() can be smaller or larger than the corresponding | |||
121 | /// bit width but any extraneous bits will be dropped. | |||
122 | /// | |||
123 | /// \param numBits the bit width of the constructed APInt | |||
124 | /// \param bigVal a sequence of words to form the initial value of the APInt | |||
125 | APInt(unsigned numBits, ArrayRef<uint64_t> bigVal); | |||
126 | ||||
127 | /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but | |||
128 | /// deprecated because this constructor is prone to ambiguity with the | |||
129 | /// APInt(unsigned, uint64_t, bool) constructor. | |||
130 | /// | |||
131 | /// If this overload is ever deleted, care should be taken to prevent calls | |||
132 | /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool) | |||
133 | /// constructor. | |||
134 | APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]); | |||
135 | ||||
136 | /// Construct an APInt from a string representation. | |||
137 | /// | |||
138 | /// This constructor interprets the string \p str in the given radix. The | |||
139 | /// interpretation stops when the first character that is not suitable for the | |||
140 | /// radix is encountered, or the end of the string. Acceptable radix values | |||
141 | /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the | |||
142 | /// string to require more bits than numBits. | |||
143 | /// | |||
144 | /// \param numBits the bit width of the constructed APInt | |||
145 | /// \param str the string to be interpreted | |||
146 | /// \param radix the radix to use for the conversion | |||
147 | APInt(unsigned numBits, StringRef str, uint8_t radix); | |||
148 | ||||
149 | /// Default constructor that creates an APInt with a 1-bit zero value. | |||
150 | explicit APInt() { U.VAL = 0; } | |||
151 | ||||
152 | /// Copy Constructor. | |||
153 | APInt(const APInt &that) : BitWidth(that.BitWidth) { | |||
154 | if (isSingleWord()) | |||
155 | U.VAL = that.U.VAL; | |||
156 | else | |||
157 | initSlowCase(that); | |||
158 | } | |||
159 | ||||
160 | /// Move Constructor. | |||
161 | APInt(APInt &&that) : BitWidth(that.BitWidth) { | |||
162 | memcpy(&U, &that.U, sizeof(U)); | |||
163 | that.BitWidth = 0; | |||
164 | } | |||
165 | ||||
166 | /// Destructor. | |||
167 | ~APInt() { | |||
168 | if (needsCleanup()) | |||
169 | delete[] U.pVal; | |||
170 | } | |||
171 | ||||
172 | /// @} | |||
173 | /// \name Value Generators | |||
174 | /// @{ | |||
175 | ||||
176 | /// Get the '0' value for the specified bit-width. | |||
177 | static APInt getZero(unsigned numBits) { return APInt(numBits, 0); } | |||
178 | ||||
179 | LLVM_DEPRECATED("use getZero instead", "getZero")__attribute__((deprecated("use getZero instead", "getZero"))) | |||
180 | static APInt getNullValue(unsigned numBits) { return getZero(numBits); } | |||
181 | ||||
182 | /// Return an APInt zero bits wide. | |||
183 | static APInt getZeroWidth() { return getZero(0); } | |||
184 | ||||
185 | /// Gets maximum unsigned value of APInt for specific bit width. | |||
186 | static APInt getMaxValue(unsigned numBits) { return getAllOnes(numBits); } | |||
187 | ||||
188 | /// Gets maximum signed value of APInt for a specific bit width. | |||
189 | static APInt getSignedMaxValue(unsigned numBits) { | |||
190 | APInt API = getAllOnes(numBits); | |||
191 | API.clearBit(numBits - 1); | |||
192 | return API; | |||
193 | } | |||
194 | ||||
195 | /// Gets minimum unsigned value of APInt for a specific bit width. | |||
196 | static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); } | |||
197 | ||||
198 | /// Gets minimum signed value of APInt for a specific bit width. | |||
199 | static APInt getSignedMinValue(unsigned numBits) { | |||
200 | APInt API(numBits, 0); | |||
201 | API.setBit(numBits - 1); | |||
202 | return API; | |||
203 | } | |||
204 | ||||
205 | /// Get the SignMask for a specific bit width. | |||
206 | /// | |||
207 | /// This is just a wrapper function of getSignedMinValue(), and it helps code | |||
208 | /// readability when we want to get a SignMask. | |||
209 | static APInt getSignMask(unsigned BitWidth) { | |||
210 | return getSignedMinValue(BitWidth); | |||
211 | } | |||
212 | ||||
213 | /// Return an APInt of a specified width with all bits set. | |||
214 | static APInt getAllOnes(unsigned numBits) { | |||
215 | return APInt(numBits, WORDTYPE_MAX, true); | |||
216 | } | |||
217 | ||||
218 | LLVM_DEPRECATED("use getAllOnes instead", "getAllOnes")__attribute__((deprecated("use getAllOnes instead", "getAllOnes" ))) | |||
219 | static APInt getAllOnesValue(unsigned numBits) { return getAllOnes(numBits); } | |||
220 | ||||
221 | /// Return an APInt with exactly one bit set in the result. | |||
222 | static APInt getOneBitSet(unsigned numBits, unsigned BitNo) { | |||
223 | APInt Res(numBits, 0); | |||
224 | Res.setBit(BitNo); | |||
225 | return Res; | |||
226 | } | |||
227 | ||||
228 | /// Get a value with a block of bits set. | |||
229 | /// | |||
230 | /// Constructs an APInt value that has a contiguous range of bits set. The | |||
231 | /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other | |||
232 | /// bits will be zero. For example, with parameters(32, 0, 16) you would get | |||
233 | /// 0x0000FFFF. Please call getBitsSetWithWrap if \p loBit may be greater than | |||
234 | /// \p hiBit. | |||
235 | /// | |||
236 | /// \param numBits the intended bit width of the result | |||
237 | /// \param loBit the index of the lowest bit set. | |||
238 | /// \param hiBit the index of the highest bit set. | |||
239 | /// | |||
240 | /// \returns An APInt value with the requested bits set. | |||
241 | static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) { | |||
242 | APInt Res(numBits, 0); | |||
243 | Res.setBits(loBit, hiBit); | |||
244 | return Res; | |||
245 | } | |||
246 | ||||
247 | /// Wrap version of getBitsSet. | |||
248 | /// If \p hiBit is bigger than \p loBit, this is same with getBitsSet. | |||
249 | /// If \p hiBit is not bigger than \p loBit, the set bits "wrap". For example, | |||
250 | /// with parameters (32, 28, 4), you would get 0xF000000F. | |||
251 | /// If \p hiBit is equal to \p loBit, you would get a result with all bits | |||
252 | /// set. | |||
253 | static APInt getBitsSetWithWrap(unsigned numBits, unsigned loBit, | |||
254 | unsigned hiBit) { | |||
255 | APInt Res(numBits, 0); | |||
256 | Res.setBitsWithWrap(loBit, hiBit); | |||
257 | return Res; | |||
258 | } | |||
259 | ||||
260 | /// Constructs an APInt value that has a contiguous range of bits set. The | |||
261 | /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other | |||
262 | /// bits will be zero. For example, with parameters(32, 12) you would get | |||
263 | /// 0xFFFFF000. | |||
264 | /// | |||
265 | /// \param numBits the intended bit width of the result | |||
266 | /// \param loBit the index of the lowest bit to set. | |||
267 | /// | |||
268 | /// \returns An APInt value with the requested bits set. | |||
269 | static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) { | |||
270 | APInt Res(numBits, 0); | |||
271 | Res.setBitsFrom(loBit); | |||
272 | return Res; | |||
273 | } | |||
274 | ||||
275 | /// Constructs an APInt value that has the top hiBitsSet bits set. | |||
276 | /// | |||
277 | /// \param numBits the bitwidth of the result | |||
278 | /// \param hiBitsSet the number of high-order bits set in the result. | |||
279 | static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) { | |||
280 | APInt Res(numBits, 0); | |||
281 | Res.setHighBits(hiBitsSet); | |||
282 | return Res; | |||
283 | } | |||
284 | ||||
285 | /// Constructs an APInt value that has the bottom loBitsSet bits set. | |||
286 | /// | |||
287 | /// \param numBits the bitwidth of the result | |||
288 | /// \param loBitsSet the number of low-order bits set in the result. | |||
289 | static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) { | |||
290 | APInt Res(numBits, 0); | |||
291 | Res.setLowBits(loBitsSet); | |||
292 | return Res; | |||
293 | } | |||
294 | ||||
295 | /// Return a value containing V broadcasted over NewLen bits. | |||
296 | static APInt getSplat(unsigned NewLen, const APInt &V); | |||
297 | ||||
298 | /// @} | |||
299 | /// \name Value Tests | |||
300 | /// @{ | |||
301 | ||||
302 | /// Determine if this APInt just has one word to store value. | |||
303 | /// | |||
304 | /// \returns true if the number of bits <= 64, false otherwise. | |||
305 | bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; } | |||
306 | ||||
307 | /// Determine sign of this APInt. | |||
308 | /// | |||
309 | /// This tests the high bit of this APInt to determine if it is set. | |||
310 | /// | |||
311 | /// \returns true if this APInt is negative, false otherwise | |||
312 | bool isNegative() const { return (*this)[BitWidth - 1]; } | |||
313 | ||||
314 | /// Determine if this APInt Value is non-negative (>= 0) | |||
315 | /// | |||
316 | /// This tests the high bit of the APInt to determine if it is unset. | |||
317 | bool isNonNegative() const { return !isNegative(); } | |||
318 | ||||
319 | /// Determine if sign bit of this APInt is set. | |||
320 | /// | |||
321 | /// This tests the high bit of this APInt to determine if it is set. | |||
322 | /// | |||
323 | /// \returns true if this APInt has its sign bit set, false otherwise. | |||
324 | bool isSignBitSet() const { return (*this)[BitWidth - 1]; } | |||
325 | ||||
326 | /// Determine if sign bit of this APInt is clear. | |||
327 | /// | |||
328 | /// This tests the high bit of this APInt to determine if it is clear. | |||
329 | /// | |||
330 | /// \returns true if this APInt has its sign bit clear, false otherwise. | |||
331 | bool isSignBitClear() const { return !isSignBitSet(); } | |||
332 | ||||
333 | /// Determine if this APInt Value is positive. | |||
334 | /// | |||
335 | /// This tests if the value of this APInt is positive (> 0). Note | |||
336 | /// that 0 is not a positive value. | |||
337 | /// | |||
338 | /// \returns true if this APInt is positive. | |||
339 | bool isStrictlyPositive() const { return isNonNegative() && !isZero(); } | |||
340 | ||||
341 | /// Determine if this APInt Value is non-positive (<= 0). | |||
342 | /// | |||
343 | /// \returns true if this APInt is non-positive. | |||
344 | bool isNonPositive() const { return !isStrictlyPositive(); } | |||
345 | ||||
346 | /// Determine if this APInt Value only has the specified bit set. | |||
347 | /// | |||
348 | /// \returns true if this APInt only has the specified bit set. | |||
349 | bool isOneBitSet(unsigned BitNo) const { | |||
350 | return (*this)[BitNo] && popcount() == 1; | |||
351 | } | |||
352 | ||||
353 | /// Determine if all bits are set. This is true for zero-width values. | |||
354 | bool isAllOnes() const { | |||
355 | if (BitWidth == 0) | |||
356 | return true; | |||
357 | if (isSingleWord()) | |||
358 | return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth); | |||
359 | return countTrailingOnesSlowCase() == BitWidth; | |||
360 | } | |||
361 | ||||
362 | LLVM_DEPRECATED("use isAllOnes instead", "isAllOnes")__attribute__((deprecated("use isAllOnes instead", "isAllOnes" ))) | |||
363 | bool isAllOnesValue() const { return isAllOnes(); } | |||
364 | ||||
365 | /// Determine if this value is zero, i.e. all bits are clear. | |||
366 | bool isZero() const { | |||
367 | if (isSingleWord()) | |||
368 | return U.VAL == 0; | |||
369 | return countLeadingZerosSlowCase() == BitWidth; | |||
370 | } | |||
371 | ||||
372 | LLVM_DEPRECATED("use isZero instead", "isZero")__attribute__((deprecated("use isZero instead", "isZero"))) | |||
373 | bool isNullValue() const { return isZero(); } | |||
374 | ||||
375 | /// Determine if this is a value of 1. | |||
376 | /// | |||
377 | /// This checks to see if the value of this APInt is one. | |||
378 | bool isOne() const { | |||
379 | if (isSingleWord()) | |||
380 | return U.VAL == 1; | |||
381 | return countLeadingZerosSlowCase() == BitWidth - 1; | |||
382 | } | |||
383 | ||||
384 | LLVM_DEPRECATED("use isOne instead", "isOne")__attribute__((deprecated("use isOne instead", "isOne"))) | |||
385 | bool isOneValue() const { return isOne(); } | |||
386 | ||||
387 | /// Determine if this is the largest unsigned value. | |||
388 | /// | |||
389 | /// This checks to see if the value of this APInt is the maximum unsigned | |||
390 | /// value for the APInt's bit width. | |||
391 | bool isMaxValue() const { return isAllOnes(); } | |||
392 | ||||
393 | /// Determine if this is the largest signed value. | |||
394 | /// | |||
395 | /// This checks to see if the value of this APInt is the maximum signed | |||
396 | /// value for the APInt's bit width. | |||
397 | bool isMaxSignedValue() const { | |||
398 | if (isSingleWord()) { | |||
399 | assert(BitWidth && "zero width values not allowed")(static_cast <bool> (BitWidth && "zero width values not allowed" ) ? void (0) : __assert_fail ("BitWidth && \"zero width values not allowed\"" , "llvm/include/llvm/ADT/APInt.h", 399, __extension__ __PRETTY_FUNCTION__ )); | |||
400 | return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1); | |||
401 | } | |||
402 | return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1; | |||
403 | } | |||
404 | ||||
405 | /// Determine if this is the smallest unsigned value. | |||
406 | /// | |||
407 | /// This checks to see if the value of this APInt is the minimum unsigned | |||
408 | /// value for the APInt's bit width. | |||
409 | bool isMinValue() const { return isZero(); } | |||
410 | ||||
411 | /// Determine if this is the smallest signed value. | |||
412 | /// | |||
413 | /// This checks to see if the value of this APInt is the minimum signed | |||
414 | /// value for the APInt's bit width. | |||
415 | bool isMinSignedValue() const { | |||
416 | if (isSingleWord()) { | |||
417 | assert(BitWidth && "zero width values not allowed")(static_cast <bool> (BitWidth && "zero width values not allowed" ) ? void (0) : __assert_fail ("BitWidth && \"zero width values not allowed\"" , "llvm/include/llvm/ADT/APInt.h", 417, __extension__ __PRETTY_FUNCTION__ )); | |||
418 | return U.VAL == (WordType(1) << (BitWidth - 1)); | |||
419 | } | |||
420 | return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1; | |||
421 | } | |||
422 | ||||
423 | /// Check if this APInt has an N-bits unsigned integer value. | |||
424 | bool isIntN(unsigned N) const { return getActiveBits() <= N; } | |||
425 | ||||
426 | /// Check if this APInt has an N-bits signed integer value. | |||
427 | bool isSignedIntN(unsigned N) const { return getSignificantBits() <= N; } | |||
428 | ||||
429 | /// Check if this APInt's value is a power of two greater than zero. | |||
430 | /// | |||
431 | /// \returns true if the argument APInt value is a power of two > 0. | |||
432 | bool isPowerOf2() const { | |||
433 | if (isSingleWord()) { | |||
434 | assert(BitWidth && "zero width values not allowed")(static_cast <bool> (BitWidth && "zero width values not allowed" ) ? void (0) : __assert_fail ("BitWidth && \"zero width values not allowed\"" , "llvm/include/llvm/ADT/APInt.h", 434, __extension__ __PRETTY_FUNCTION__ )); | |||
435 | return isPowerOf2_64(U.VAL); | |||
436 | } | |||
437 | return countPopulationSlowCase() == 1; | |||
438 | } | |||
439 | ||||
440 | /// Check if this APInt's negated value is a power of two greater than zero. | |||
441 | bool isNegatedPowerOf2() const { | |||
442 | assert(BitWidth && "zero width values not allowed")(static_cast <bool> (BitWidth && "zero width values not allowed" ) ? void (0) : __assert_fail ("BitWidth && \"zero width values not allowed\"" , "llvm/include/llvm/ADT/APInt.h", 442, __extension__ __PRETTY_FUNCTION__ )); | |||
443 | if (isNonNegative()) | |||
444 | return false; | |||
445 | // NegatedPowerOf2 - shifted mask in the top bits. | |||
446 | unsigned LO = countl_one(); | |||
447 | unsigned TZ = countr_zero(); | |||
448 | return (LO + TZ) == BitWidth; | |||
449 | } | |||
450 | ||||
451 | /// Check if the APInt's value is returned by getSignMask. | |||
452 | /// | |||
453 | /// \returns true if this is the value returned by getSignMask. | |||
454 | bool isSignMask() const { return isMinSignedValue(); } | |||
455 | ||||
456 | /// Convert APInt to a boolean value. | |||
457 | /// | |||
458 | /// This converts the APInt to a boolean value as a test against zero. | |||
459 | bool getBoolValue() const { return !isZero(); } | |||
460 | ||||
461 | /// If this value is smaller than the specified limit, return it, otherwise | |||
462 | /// return the limit value. This causes the value to saturate to the limit. | |||
463 | uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX(18446744073709551615UL)) const { | |||
464 | return ugt(Limit) ? Limit : getZExtValue(); | |||
465 | } | |||
466 | ||||
467 | /// Check if the APInt consists of a repeated bit pattern. | |||
468 | /// | |||
469 | /// e.g. 0x01010101 satisfies isSplat(8). | |||
470 | /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit | |||
471 | /// width without remainder. | |||
472 | bool isSplat(unsigned SplatSizeInBits) const; | |||
473 | ||||
474 | /// \returns true if this APInt value is a sequence of \param numBits ones | |||
475 | /// starting at the least significant bit with the remainder zero. | |||
476 | bool isMask(unsigned numBits) const { | |||
477 | assert(numBits != 0 && "numBits must be non-zero")(static_cast <bool> (numBits != 0 && "numBits must be non-zero" ) ? void (0) : __assert_fail ("numBits != 0 && \"numBits must be non-zero\"" , "llvm/include/llvm/ADT/APInt.h", 477, __extension__ __PRETTY_FUNCTION__ )); | |||
478 | assert(numBits <= BitWidth && "numBits out of range")(static_cast <bool> (numBits <= BitWidth && "numBits out of range" ) ? void (0) : __assert_fail ("numBits <= BitWidth && \"numBits out of range\"" , "llvm/include/llvm/ADT/APInt.h", 478, __extension__ __PRETTY_FUNCTION__ )); | |||
479 | if (isSingleWord()) | |||
480 | return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits)); | |||
481 | unsigned Ones = countTrailingOnesSlowCase(); | |||
482 | return (numBits == Ones) && | |||
483 | ((Ones + countLeadingZerosSlowCase()) == BitWidth); | |||
484 | } | |||
485 | ||||
486 | /// \returns true if this APInt is a non-empty sequence of ones starting at | |||
487 | /// the least significant bit with the remainder zero. | |||
488 | /// Ex. isMask(0x0000FFFFU) == true. | |||
489 | bool isMask() const { | |||
490 | if (isSingleWord()) | |||
491 | return isMask_64(U.VAL); | |||
492 | unsigned Ones = countTrailingOnesSlowCase(); | |||
493 | return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth); | |||
494 | } | |||
495 | ||||
496 | /// Return true if this APInt value contains a non-empty sequence of ones with | |||
497 | /// the remainder zero. | |||
498 | bool isShiftedMask() const { | |||
499 | if (isSingleWord()) | |||
500 | return isShiftedMask_64(U.VAL); | |||
501 | unsigned Ones = countPopulationSlowCase(); | |||
502 | unsigned LeadZ = countLeadingZerosSlowCase(); | |||
503 | return (Ones + LeadZ + countr_zero()) == BitWidth; | |||
504 | } | |||
505 | ||||
506 | /// Return true if this APInt value contains a non-empty sequence of ones with | |||
507 | /// the remainder zero. If true, \p MaskIdx will specify the index of the | |||
508 | /// lowest set bit and \p MaskLen is updated to specify the length of the | |||
509 | /// mask, else neither are updated. | |||
510 | bool isShiftedMask(unsigned &MaskIdx, unsigned &MaskLen) const { | |||
511 | if (isSingleWord()) | |||
512 | return isShiftedMask_64(U.VAL, MaskIdx, MaskLen); | |||
513 | unsigned Ones = countPopulationSlowCase(); | |||
514 | unsigned LeadZ = countLeadingZerosSlowCase(); | |||
515 | unsigned TrailZ = countTrailingZerosSlowCase(); | |||
516 | if ((Ones + LeadZ + TrailZ) != BitWidth) | |||
517 | return false; | |||
518 | MaskLen = Ones; | |||
519 | MaskIdx = TrailZ; | |||
520 | return true; | |||
521 | } | |||
522 | ||||
523 | /// Compute an APInt containing numBits highbits from this APInt. | |||
524 | /// | |||
525 | /// Get an APInt with the same BitWidth as this APInt, just zero mask the low | |||
526 | /// bits and right shift to the least significant bit. | |||
527 | /// | |||
528 | /// \returns the high "numBits" bits of this APInt. | |||
529 | APInt getHiBits(unsigned numBits) const; | |||
530 | ||||
531 | /// Compute an APInt containing numBits lowbits from this APInt. | |||
532 | /// | |||
533 | /// Get an APInt with the same BitWidth as this APInt, just zero mask the high | |||
534 | /// bits. | |||
535 | /// | |||
536 | /// \returns the low "numBits" bits of this APInt. | |||
537 | APInt getLoBits(unsigned numBits) const; | |||
538 | ||||
539 | /// Determine if two APInts have the same value, after zero-extending | |||
540 | /// one of them (if needed!) to ensure that the bit-widths match. | |||
541 | static bool isSameValue(const APInt &I1, const APInt &I2) { | |||
542 | if (I1.getBitWidth() == I2.getBitWidth()) | |||
543 | return I1 == I2; | |||
544 | ||||
545 | if (I1.getBitWidth() > I2.getBitWidth()) | |||
546 | return I1 == I2.zext(I1.getBitWidth()); | |||
547 | ||||
548 | return I1.zext(I2.getBitWidth()) == I2; | |||
549 | } | |||
550 | ||||
551 | /// Overload to compute a hash_code for an APInt value. | |||
552 | friend hash_code hash_value(const APInt &Arg); | |||
553 | ||||
554 | /// This function returns a pointer to the internal storage of the APInt. | |||
555 | /// This is useful for writing out the APInt in binary form without any | |||
556 | /// conversions. | |||
557 | const uint64_t *getRawData() const { | |||
558 | if (isSingleWord()) | |||
559 | return &U.VAL; | |||
560 | return &U.pVal[0]; | |||
561 | } | |||
562 | ||||
563 | /// @} | |||
564 | /// \name Unary Operators | |||
565 | /// @{ | |||
566 | ||||
567 | /// Postfix increment operator. Increment *this by 1. | |||
568 | /// | |||
569 | /// \returns a new APInt value representing the original value of *this. | |||
570 | APInt operator++(int) { | |||
571 | APInt API(*this); | |||
572 | ++(*this); | |||
573 | return API; | |||
574 | } | |||
575 | ||||
576 | /// Prefix increment operator. | |||
577 | /// | |||
578 | /// \returns *this incremented by one | |||
579 | APInt &operator++(); | |||
580 | ||||
581 | /// Postfix decrement operator. Decrement *this by 1. | |||
582 | /// | |||
583 | /// \returns a new APInt value representing the original value of *this. | |||
584 | APInt operator--(int) { | |||
585 | APInt API(*this); | |||
586 | --(*this); | |||
587 | return API; | |||
588 | } | |||
589 | ||||
590 | /// Prefix decrement operator. | |||
591 | /// | |||
592 | /// \returns *this decremented by one. | |||
593 | APInt &operator--(); | |||
594 | ||||
595 | /// Logical negation operation on this APInt returns true if zero, like normal | |||
596 | /// integers. | |||
597 | bool operator!() const { return isZero(); } | |||
598 | ||||
599 | /// @} | |||
600 | /// \name Assignment Operators | |||
601 | /// @{ | |||
602 | ||||
603 | /// Copy assignment operator. | |||
604 | /// | |||
605 | /// \returns *this after assignment of RHS. | |||
606 | APInt &operator=(const APInt &RHS) { | |||
607 | // The common case (both source or dest being inline) doesn't require | |||
608 | // allocation or deallocation. | |||
609 | if (isSingleWord() && RHS.isSingleWord()) { | |||
610 | U.VAL = RHS.U.VAL; | |||
611 | BitWidth = RHS.BitWidth; | |||
612 | return *this; | |||
613 | } | |||
614 | ||||
615 | assignSlowCase(RHS); | |||
616 | return *this; | |||
617 | } | |||
618 | ||||
619 | /// Move assignment operator. | |||
620 | APInt &operator=(APInt &&that) { | |||
621 | #ifdef EXPENSIVE_CHECKS | |||
622 | // Some std::shuffle implementations still do self-assignment. | |||
623 | if (this == &that) | |||
624 | return *this; | |||
625 | #endif | |||
626 | assert(this != &that && "Self-move not supported")(static_cast <bool> (this != &that && "Self-move not supported" ) ? void (0) : __assert_fail ("this != &that && \"Self-move not supported\"" , "llvm/include/llvm/ADT/APInt.h", 626, __extension__ __PRETTY_FUNCTION__ )); | |||
627 | if (!isSingleWord()) | |||
628 | delete[] U.pVal; | |||
629 | ||||
630 | // Use memcpy so that type based alias analysis sees both VAL and pVal | |||
631 | // as modified. | |||
632 | memcpy(&U, &that.U, sizeof(U)); | |||
633 | ||||
634 | BitWidth = that.BitWidth; | |||
635 | that.BitWidth = 0; | |||
636 | return *this; | |||
637 | } | |||
638 | ||||
639 | /// Assignment operator. | |||
640 | /// | |||
641 | /// The RHS value is assigned to *this. If the significant bits in RHS exceed | |||
642 | /// the bit width, the excess bits are truncated. If the bit width is larger | |||
643 | /// than 64, the value is zero filled in the unspecified high order bits. | |||
644 | /// | |||
645 | /// \returns *this after assignment of RHS value. | |||
646 | APInt &operator=(uint64_t RHS) { | |||
647 | if (isSingleWord()) { | |||
648 | U.VAL = RHS; | |||
649 | return clearUnusedBits(); | |||
650 | } | |||
651 | U.pVal[0] = RHS; | |||
652 | memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); | |||
653 | return *this; | |||
654 | } | |||
655 | ||||
656 | /// Bitwise AND assignment operator. | |||
657 | /// | |||
658 | /// Performs a bitwise AND operation on this APInt and RHS. The result is | |||
659 | /// assigned to *this. | |||
660 | /// | |||
661 | /// \returns *this after ANDing with RHS. | |||
662 | APInt &operator&=(const APInt &RHS) { | |||
663 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth && "Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\"" , "llvm/include/llvm/ADT/APInt.h", 663, __extension__ __PRETTY_FUNCTION__ )); | |||
664 | if (isSingleWord()) | |||
665 | U.VAL &= RHS.U.VAL; | |||
666 | else | |||
667 | andAssignSlowCase(RHS); | |||
668 | return *this; | |||
669 | } | |||
670 | ||||
671 | /// Bitwise AND assignment operator. | |||
672 | /// | |||
673 | /// Performs a bitwise AND operation on this APInt and RHS. RHS is | |||
674 | /// logically zero-extended or truncated to match the bit-width of | |||
675 | /// the LHS. | |||
676 | APInt &operator&=(uint64_t RHS) { | |||
677 | if (isSingleWord()) { | |||
678 | U.VAL &= RHS; | |||
679 | return *this; | |||
680 | } | |||
681 | U.pVal[0] &= RHS; | |||
682 | memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); | |||
683 | return *this; | |||
684 | } | |||
685 | ||||
686 | /// Bitwise OR assignment operator. | |||
687 | /// | |||
688 | /// Performs a bitwise OR operation on this APInt and RHS. The result is | |||
689 | /// assigned *this; | |||
690 | /// | |||
691 | /// \returns *this after ORing with RHS. | |||
692 | APInt &operator|=(const APInt &RHS) { | |||
693 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth && "Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\"" , "llvm/include/llvm/ADT/APInt.h", 693, __extension__ __PRETTY_FUNCTION__ )); | |||
694 | if (isSingleWord()) | |||
695 | U.VAL |= RHS.U.VAL; | |||
696 | else | |||
697 | orAssignSlowCase(RHS); | |||
698 | return *this; | |||
699 | } | |||
700 | ||||
701 | /// Bitwise OR assignment operator. | |||
702 | /// | |||
703 | /// Performs a bitwise OR operation on this APInt and RHS. RHS is | |||
704 | /// logically zero-extended or truncated to match the bit-width of | |||
705 | /// the LHS. | |||
706 | APInt &operator|=(uint64_t RHS) { | |||
707 | if (isSingleWord()) { | |||
708 | U.VAL |= RHS; | |||
709 | return clearUnusedBits(); | |||
710 | } | |||
711 | U.pVal[0] |= RHS; | |||
712 | return *this; | |||
713 | } | |||
714 | ||||
715 | /// Bitwise XOR assignment operator. | |||
716 | /// | |||
717 | /// Performs a bitwise XOR operation on this APInt and RHS. The result is | |||
718 | /// assigned to *this. | |||
719 | /// | |||
720 | /// \returns *this after XORing with RHS. | |||
721 | APInt &operator^=(const APInt &RHS) { | |||
722 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth && "Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\"" , "llvm/include/llvm/ADT/APInt.h", 722, __extension__ __PRETTY_FUNCTION__ )); | |||
723 | if (isSingleWord()) | |||
724 | U.VAL ^= RHS.U.VAL; | |||
725 | else | |||
726 | xorAssignSlowCase(RHS); | |||
727 | return *this; | |||
728 | } | |||
729 | ||||
730 | /// Bitwise XOR assignment operator. | |||
731 | /// | |||
732 | /// Performs a bitwise XOR operation on this APInt and RHS. RHS is | |||
733 | /// logically zero-extended or truncated to match the bit-width of | |||
734 | /// the LHS. | |||
735 | APInt &operator^=(uint64_t RHS) { | |||
736 | if (isSingleWord()) { | |||
737 | U.VAL ^= RHS; | |||
738 | return clearUnusedBits(); | |||
739 | } | |||
740 | U.pVal[0] ^= RHS; | |||
741 | return *this; | |||
742 | } | |||
743 | ||||
744 | /// Multiplication assignment operator. | |||
745 | /// | |||
746 | /// Multiplies this APInt by RHS and assigns the result to *this. | |||
747 | /// | |||
748 | /// \returns *this | |||
749 | APInt &operator*=(const APInt &RHS); | |||
750 | APInt &operator*=(uint64_t RHS); | |||
751 | ||||
752 | /// Addition assignment operator. | |||
753 | /// | |||
754 | /// Adds RHS to *this and assigns the result to *this. | |||
755 | /// | |||
756 | /// \returns *this | |||
757 | APInt &operator+=(const APInt &RHS); | |||
758 | APInt &operator+=(uint64_t RHS); | |||
759 | ||||
760 | /// Subtraction assignment operator. | |||
761 | /// | |||
762 | /// Subtracts RHS from *this and assigns the result to *this. | |||
763 | /// | |||
764 | /// \returns *this | |||
765 | APInt &operator-=(const APInt &RHS); | |||
766 | APInt &operator-=(uint64_t RHS); | |||
767 | ||||
768 | /// Left-shift assignment function. | |||
769 | /// | |||
770 | /// Shifts *this left by shiftAmt and assigns the result to *this. | |||
771 | /// | |||
772 | /// \returns *this after shifting left by ShiftAmt | |||
773 | APInt &operator<<=(unsigned ShiftAmt) { | |||
774 | assert(ShiftAmt <= BitWidth && "Invalid shift amount")(static_cast <bool> (ShiftAmt <= BitWidth && "Invalid shift amount") ? void (0) : __assert_fail ("ShiftAmt <= BitWidth && \"Invalid shift amount\"" , "llvm/include/llvm/ADT/APInt.h", 774, __extension__ __PRETTY_FUNCTION__ )); | |||
775 | if (isSingleWord()) { | |||
776 | if (ShiftAmt == BitWidth) | |||
777 | U.VAL = 0; | |||
778 | else | |||
779 | U.VAL <<= ShiftAmt; | |||
780 | return clearUnusedBits(); | |||
| ||||
781 | } | |||
782 | shlSlowCase(ShiftAmt); | |||
783 | return *this; | |||
784 | } | |||
785 | ||||
786 | /// Left-shift assignment function. | |||
787 | /// | |||
788 | /// Shifts *this left by shiftAmt and assigns the result to *this. | |||
789 | /// | |||
790 | /// \returns *this after shifting left by ShiftAmt | |||
791 | APInt &operator<<=(const APInt &ShiftAmt); | |||
792 | ||||
793 | /// @} | |||
794 | /// \name Binary Operators | |||
795 | /// @{ | |||
796 | ||||
797 | /// Multiplication operator. | |||
798 | /// | |||
799 | /// Multiplies this APInt by RHS and returns the result. | |||
800 | APInt operator*(const APInt &RHS) const; | |||
801 | ||||
802 | /// Left logical shift operator. | |||
803 | /// | |||
804 | /// Shifts this APInt left by \p Bits and returns the result. | |||
805 | APInt operator<<(unsigned Bits) const { return shl(Bits); } | |||
806 | ||||
807 | /// Left logical shift operator. | |||
808 | /// | |||
809 | /// Shifts this APInt left by \p Bits and returns the result. | |||
810 | APInt operator<<(const APInt &Bits) const { return shl(Bits); } | |||
811 | ||||
812 | /// Arithmetic right-shift function. | |||
813 | /// | |||
814 | /// Arithmetic right-shift this APInt by shiftAmt. | |||
815 | APInt ashr(unsigned ShiftAmt) const { | |||
816 | APInt R(*this); | |||
817 | R.ashrInPlace(ShiftAmt); | |||
818 | return R; | |||
819 | } | |||
820 | ||||
821 | /// Arithmetic right-shift this APInt by ShiftAmt in place. | |||
822 | void ashrInPlace(unsigned ShiftAmt) { | |||
823 | assert(ShiftAmt <= BitWidth && "Invalid shift amount")(static_cast <bool> (ShiftAmt <= BitWidth && "Invalid shift amount") ? void (0) : __assert_fail ("ShiftAmt <= BitWidth && \"Invalid shift amount\"" , "llvm/include/llvm/ADT/APInt.h", 823, __extension__ __PRETTY_FUNCTION__ )); | |||
824 | if (isSingleWord()) { | |||
825 | int64_t SExtVAL = SignExtend64(U.VAL, BitWidth); | |||
826 | if (ShiftAmt == BitWidth) | |||
827 | U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit. | |||
828 | else | |||
829 | U.VAL = SExtVAL >> ShiftAmt; | |||
830 | clearUnusedBits(); | |||
831 | return; | |||
832 | } | |||
833 | ashrSlowCase(ShiftAmt); | |||
834 | } | |||
835 | ||||
836 | /// Logical right-shift function. | |||
837 | /// | |||
838 | /// Logical right-shift this APInt by shiftAmt. | |||
839 | APInt lshr(unsigned shiftAmt) const { | |||
840 | APInt R(*this); | |||
841 | R.lshrInPlace(shiftAmt); | |||
842 | return R; | |||
843 | } | |||
844 | ||||
845 | /// Logical right-shift this APInt by ShiftAmt in place. | |||
846 | void lshrInPlace(unsigned ShiftAmt) { | |||
847 | assert(ShiftAmt <= BitWidth && "Invalid shift amount")(static_cast <bool> (ShiftAmt <= BitWidth && "Invalid shift amount") ? void (0) : __assert_fail ("ShiftAmt <= BitWidth && \"Invalid shift amount\"" , "llvm/include/llvm/ADT/APInt.h", 847, __extension__ __PRETTY_FUNCTION__ )); | |||
848 | if (isSingleWord()) { | |||
849 | if (ShiftAmt == BitWidth) | |||
850 | U.VAL = 0; | |||
851 | else | |||
852 | U.VAL >>= ShiftAmt; | |||
853 | return; | |||
854 | } | |||
855 | lshrSlowCase(ShiftAmt); | |||
856 | } | |||
857 | ||||
858 | /// Left-shift function. | |||
859 | /// | |||
860 | /// Left-shift this APInt by shiftAmt. | |||
861 | APInt shl(unsigned shiftAmt) const { | |||
862 | APInt R(*this); | |||
863 | R <<= shiftAmt; | |||
864 | return R; | |||
865 | } | |||
866 | ||||
867 | /// relative logical shift right | |||
868 | APInt relativeLShr(int RelativeShift) const { | |||
869 | return RelativeShift > 0 ? lshr(RelativeShift) : shl(-RelativeShift); | |||
870 | } | |||
871 | ||||
872 | /// relative logical shift left | |||
873 | APInt relativeLShl(int RelativeShift) const { | |||
874 | return relativeLShr(-RelativeShift); | |||
875 | } | |||
876 | ||||
877 | /// relative arithmetic shift right | |||
878 | APInt relativeAShr(int RelativeShift) const { | |||
879 | return RelativeShift > 0 ? ashr(RelativeShift) : shl(-RelativeShift); | |||
880 | } | |||
881 | ||||
882 | /// relative arithmetic shift left | |||
883 | APInt relativeAShl(int RelativeShift) const { | |||
884 | return relativeAShr(-RelativeShift); | |||
885 | } | |||
886 | ||||
887 | /// Rotate left by rotateAmt. | |||
888 | APInt rotl(unsigned rotateAmt) const; | |||
889 | ||||
890 | /// Rotate right by rotateAmt. | |||
891 | APInt rotr(unsigned rotateAmt) const; | |||
892 | ||||
893 | /// Arithmetic right-shift function. | |||
894 | /// | |||
895 | /// Arithmetic right-shift this APInt by shiftAmt. | |||
896 | APInt ashr(const APInt &ShiftAmt) const { | |||
897 | APInt R(*this); | |||
898 | R.ashrInPlace(ShiftAmt); | |||
899 | return R; | |||
900 | } | |||
901 | ||||
902 | /// Arithmetic right-shift this APInt by shiftAmt in place. | |||
903 | void ashrInPlace(const APInt &shiftAmt); | |||
904 | ||||
905 | /// Logical right-shift function. | |||
906 | /// | |||
907 | /// Logical right-shift this APInt by shiftAmt. | |||
908 | APInt lshr(const APInt &ShiftAmt) const { | |||
909 | APInt R(*this); | |||
910 | R.lshrInPlace(ShiftAmt); | |||
911 | return R; | |||
912 | } | |||
913 | ||||
914 | /// Logical right-shift this APInt by ShiftAmt in place. | |||
915 | void lshrInPlace(const APInt &ShiftAmt); | |||
916 | ||||
917 | /// Left-shift function. | |||
918 | /// | |||
919 | /// Left-shift this APInt by shiftAmt. | |||
920 | APInt shl(const APInt &ShiftAmt) const { | |||
921 | APInt R(*this); | |||
922 | R <<= ShiftAmt; | |||
923 | return R; | |||
924 | } | |||
925 | ||||
926 | /// Rotate left by rotateAmt. | |||
927 | APInt rotl(const APInt &rotateAmt) const; | |||
928 | ||||
929 | /// Rotate right by rotateAmt. | |||
930 | APInt rotr(const APInt &rotateAmt) const; | |||
931 | ||||
932 | /// Concatenate the bits from "NewLSB" onto the bottom of *this. This is | |||
933 | /// equivalent to: | |||
934 | /// (this->zext(NewWidth) << NewLSB.getBitWidth()) | NewLSB.zext(NewWidth) | |||
935 | APInt concat(const APInt &NewLSB) const { | |||
936 | /// If the result will be small, then both the merged values are small. | |||
937 | unsigned NewWidth = getBitWidth() + NewLSB.getBitWidth(); | |||
938 | if (NewWidth <= APINT_BITS_PER_WORD) | |||
939 | return APInt(NewWidth, (U.VAL << NewLSB.getBitWidth()) | NewLSB.U.VAL); | |||
940 | return concatSlowCase(NewLSB); | |||
941 | } | |||
942 | ||||
943 | /// Unsigned division operation. | |||
944 | /// | |||
945 | /// Perform an unsigned divide operation on this APInt by RHS. Both this and | |||
946 | /// RHS are treated as unsigned quantities for purposes of this division. | |||
947 | /// | |||
948 | /// \returns a new APInt value containing the division result, rounded towards | |||
949 | /// zero. | |||
950 | APInt udiv(const APInt &RHS) const; | |||
951 | APInt udiv(uint64_t RHS) const; | |||
952 | ||||
953 | /// Signed division function for APInt. | |||
954 | /// | |||
955 | /// Signed divide this APInt by APInt RHS. | |||
956 | /// | |||
957 | /// The result is rounded towards zero. | |||
958 | APInt sdiv(const APInt &RHS) const; | |||
959 | APInt sdiv(int64_t RHS) const; | |||
960 | ||||
961 | /// Unsigned remainder operation. | |||
962 | /// | |||
963 | /// Perform an unsigned remainder operation on this APInt with RHS being the | |||
964 | /// divisor. Both this and RHS are treated as unsigned quantities for purposes | |||
965 | /// of this operation. | |||
966 | /// | |||
967 | /// \returns a new APInt value containing the remainder result | |||
968 | APInt urem(const APInt &RHS) const; | |||
969 | uint64_t urem(uint64_t RHS) const; | |||
970 | ||||
971 | /// Function for signed remainder operation. | |||
972 | /// | |||
973 | /// Signed remainder operation on APInt. | |||
974 | /// | |||
975 | /// Note that this is a true remainder operation and not a modulo operation | |||
976 | /// because the sign follows the sign of the dividend which is *this. | |||
977 | APInt srem(const APInt &RHS) const; | |||
978 | int64_t srem(int64_t RHS) const; | |||
979 | ||||
980 | /// Dual division/remainder interface. | |||
981 | /// | |||
982 | /// Sometimes it is convenient to divide two APInt values and obtain both the | |||
983 | /// quotient and remainder. This function does both operations in the same | |||
984 | /// computation making it a little more efficient. The pair of input arguments | |||
985 | /// may overlap with the pair of output arguments. It is safe to call | |||
986 | /// udivrem(X, Y, X, Y), for example. | |||
987 | static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, | |||
988 | APInt &Remainder); | |||
989 | static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient, | |||
990 | uint64_t &Remainder); | |||
991 | ||||
992 | static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, | |||
993 | APInt &Remainder); | |||
994 | static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient, | |||
995 | int64_t &Remainder); | |||
996 | ||||
997 | // Operations that return overflow indicators. | |||
998 | APInt sadd_ov(const APInt &RHS, bool &Overflow) const; | |||
999 | APInt uadd_ov(const APInt &RHS, bool &Overflow) const; | |||
1000 | APInt ssub_ov(const APInt &RHS, bool &Overflow) const; | |||
1001 | APInt usub_ov(const APInt &RHS, bool &Overflow) const; | |||
1002 | APInt sdiv_ov(const APInt &RHS, bool &Overflow) const; | |||
1003 | APInt smul_ov(const APInt &RHS, bool &Overflow) const; | |||
1004 | APInt umul_ov(const APInt &RHS, bool &Overflow) const; | |||
1005 | APInt sshl_ov(const APInt &Amt, bool &Overflow) const; | |||
1006 | APInt ushl_ov(const APInt &Amt, bool &Overflow) const; | |||
1007 | ||||
1008 | // Operations that saturate | |||
1009 | APInt sadd_sat(const APInt &RHS) const; | |||
1010 | APInt uadd_sat(const APInt &RHS) const; | |||
1011 | APInt ssub_sat(const APInt &RHS) const; | |||
1012 | APInt usub_sat(const APInt &RHS) const; | |||
1013 | APInt smul_sat(const APInt &RHS) const; | |||
1014 | APInt umul_sat(const APInt &RHS) const; | |||
1015 | APInt sshl_sat(const APInt &RHS) const; | |||
1016 | APInt ushl_sat(const APInt &RHS) const; | |||
1017 | ||||
1018 | /// Array-indexing support. | |||
1019 | /// | |||
1020 | /// \returns the bit value at bitPosition | |||
1021 | bool operator[](unsigned bitPosition) const { | |||
1022 | assert(bitPosition < getBitWidth() && "Bit position out of bounds!")(static_cast <bool> (bitPosition < getBitWidth() && "Bit position out of bounds!") ? void (0) : __assert_fail ("bitPosition < getBitWidth() && \"Bit position out of bounds!\"" , "llvm/include/llvm/ADT/APInt.h", 1022, __extension__ __PRETTY_FUNCTION__ )); | |||
1023 | return (maskBit(bitPosition) & getWord(bitPosition)) != 0; | |||
1024 | } | |||
1025 | ||||
1026 | /// @} | |||
1027 | /// \name Comparison Operators | |||
1028 | /// @{ | |||
1029 | ||||
1030 | /// Equality operator. | |||
1031 | /// | |||
1032 | /// Compares this APInt with RHS for the validity of the equality | |||
1033 | /// relationship. | |||
1034 | bool operator==(const APInt &RHS) const { | |||
1035 | assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths")(static_cast <bool> (BitWidth == RHS.BitWidth && "Comparison requires equal bit widths") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Comparison requires equal bit widths\"" , "llvm/include/llvm/ADT/APInt.h", 1035, __extension__ __PRETTY_FUNCTION__ )); | |||
1036 | if (isSingleWord()) | |||
1037 | return U.VAL == RHS.U.VAL; | |||
1038 | return equalSlowCase(RHS); | |||
1039 | } | |||
1040 | ||||
1041 | /// Equality operator. | |||
1042 | /// | |||
1043 | /// Compares this APInt with a uint64_t for the validity of the equality | |||
1044 | /// relationship. | |||
1045 | /// | |||
1046 | /// \returns true if *this == Val | |||
1047 | bool operator==(uint64_t Val) const { | |||
1048 | return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val; | |||
1049 | } | |||
1050 | ||||
1051 | /// Equality comparison. | |||
1052 | /// | |||
1053 | /// Compares this APInt with RHS for the validity of the equality | |||
1054 | /// relationship. | |||
1055 | /// | |||
1056 | /// \returns true if *this == Val | |||
1057 | bool eq(const APInt &RHS) const { return (*this) == RHS; } | |||
1058 | ||||
1059 | /// Inequality operator. | |||
1060 | /// | |||
1061 | /// Compares this APInt with RHS for the validity of the inequality | |||
1062 | /// relationship. | |||
1063 | /// | |||
1064 | /// \returns true if *this != Val | |||
1065 | bool operator!=(const APInt &RHS) const { return !((*this) == RHS); } | |||
1066 | ||||
1067 | /// Inequality operator. | |||
1068 | /// | |||
1069 | /// Compares this APInt with a uint64_t for the validity of the inequality | |||
1070 | /// relationship. | |||
1071 | /// | |||
1072 | /// \returns true if *this != Val | |||
1073 | bool operator!=(uint64_t Val) const { return !((*this) == Val); } | |||
1074 | ||||
1075 | /// Inequality comparison | |||
1076 | /// | |||
1077 | /// Compares this APInt with RHS for the validity of the inequality | |||
1078 | /// relationship. | |||
1079 | /// | |||
1080 | /// \returns true if *this != Val | |||
1081 | bool ne(const APInt &RHS) const { return !((*this) == RHS); } | |||
1082 | ||||
1083 | /// Unsigned less than comparison | |||
1084 | /// | |||
1085 | /// Regards both *this and RHS as unsigned quantities and compares them for | |||
1086 | /// the validity of the less-than relationship. | |||
1087 | /// | |||
1088 | /// \returns true if *this < RHS when both are considered unsigned. | |||
1089 | bool ult(const APInt &RHS) const { return compare(RHS) < 0; } | |||
1090 | ||||
1091 | /// Unsigned less than comparison | |||
1092 | /// | |||
1093 | /// Regards both *this as an unsigned quantity and compares it with RHS for | |||
1094 | /// the validity of the less-than relationship. | |||
1095 | /// | |||
1096 | /// \returns true if *this < RHS when considered unsigned. | |||
1097 | bool ult(uint64_t RHS) const { | |||
1098 | // Only need to check active bits if not a single word. | |||
1099 | return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS; | |||
1100 | } | |||
1101 | ||||
1102 | /// Signed less than comparison | |||
1103 | /// | |||
1104 | /// Regards both *this and RHS as signed quantities and compares them for | |||
1105 | /// validity of the less-than relationship. | |||
1106 | /// | |||
1107 | /// \returns true if *this < RHS when both are considered signed. | |||
1108 | bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; } | |||
1109 | ||||
1110 | /// Signed less than comparison | |||
1111 | /// | |||
1112 | /// Regards both *this as a signed quantity and compares it with RHS for | |||
1113 | /// the validity of the less-than relationship. | |||
1114 | /// | |||
1115 | /// \returns true if *this < RHS when considered signed. | |||
1116 | bool slt(int64_t RHS) const { | |||
1117 | return (!isSingleWord() && getSignificantBits() > 64) | |||
1118 | ? isNegative() | |||
1119 | : getSExtValue() < RHS; | |||
1120 | } | |||
1121 | ||||
1122 | /// Unsigned less or equal comparison | |||
1123 | /// | |||
1124 | /// Regards both *this and RHS as unsigned quantities and compares them for | |||
1125 | /// validity of the less-or-equal relationship. | |||
1126 | /// | |||
1127 | /// \returns true if *this <= RHS when both are considered unsigned. | |||
1128 | bool ule(const APInt &RHS) const { return compare(RHS) <= 0; } | |||
1129 | ||||
1130 | /// Unsigned less or equal comparison | |||
1131 | /// | |||
1132 | /// Regards both *this as an unsigned quantity and compares it with RHS for | |||
1133 | /// the validity of the less-or-equal relationship. | |||
1134 | /// | |||
1135 | /// \returns true if *this <= RHS when considered unsigned. | |||
1136 | bool ule(uint64_t RHS) const { return !ugt(RHS); } | |||
1137 | ||||
1138 | /// Signed less or equal comparison | |||
1139 | /// | |||
1140 | /// Regards both *this and RHS as signed quantities and compares them for | |||
1141 | /// validity of the less-or-equal relationship. | |||
1142 | /// | |||
1143 | /// \returns true if *this <= RHS when both are considered signed. | |||
1144 | bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; } | |||
1145 | ||||
1146 | /// Signed less or equal comparison | |||
1147 | /// | |||
1148 | /// Regards both *this as a signed quantity and compares it with RHS for the | |||
1149 | /// validity of the less-or-equal relationship. | |||
1150 | /// | |||
1151 | /// \returns true if *this <= RHS when considered signed. | |||
1152 | bool sle(uint64_t RHS) const { return !sgt(RHS); } | |||
1153 | ||||
1154 | /// Unsigned greater than comparison | |||
1155 | /// | |||
1156 | /// Regards both *this and RHS as unsigned quantities and compares them for | |||
1157 | /// the validity of the greater-than relationship. | |||
1158 | /// | |||
1159 | /// \returns true if *this > RHS when both are considered unsigned. | |||
1160 | bool ugt(const APInt &RHS) const { return !ule(RHS); } | |||
1161 | ||||
1162 | /// Unsigned greater than comparison | |||
1163 | /// | |||
1164 | /// Regards both *this as an unsigned quantity and compares it with RHS for | |||
1165 | /// the validity of the greater-than relationship. | |||
1166 | /// | |||
1167 | /// \returns true if *this > RHS when considered unsigned. | |||
1168 | bool ugt(uint64_t RHS) const { | |||
1169 | // Only need to check active bits if not a single word. | |||
1170 | return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS; | |||
1171 | } | |||
1172 | ||||
1173 | /// Signed greater than comparison | |||
1174 | /// | |||
1175 | /// Regards both *this and RHS as signed quantities and compares them for the | |||
1176 | /// validity of the greater-than relationship. | |||
1177 | /// | |||
1178 | /// \returns true if *this > RHS when both are considered signed. | |||
1179 | bool sgt(const APInt &RHS) const { return !sle(RHS); } | |||
1180 | ||||
1181 | /// Signed greater than comparison | |||
1182 | /// | |||
1183 | /// Regards both *this as a signed quantity and compares it with RHS for | |||
1184 | /// the validity of the greater-than relationship. | |||
1185 | /// | |||
1186 | /// \returns true if *this > RHS when considered signed. | |||
1187 | bool sgt(int64_t RHS) const { | |||
1188 | return (!isSingleWord() && getSignificantBits() > 64) | |||
1189 | ? !isNegative() | |||
1190 | : getSExtValue() > RHS; | |||
1191 | } | |||
1192 | ||||
1193 | /// Unsigned greater or equal comparison | |||
1194 | /// | |||
1195 | /// Regards both *this and RHS as unsigned quantities and compares them for | |||
1196 | /// validity of the greater-or-equal relationship. | |||
1197 | /// | |||
1198 | /// \returns true if *this >= RHS when both are considered unsigned. | |||
1199 | bool uge(const APInt &RHS) const { return !ult(RHS); } | |||
1200 | ||||
1201 | /// Unsigned greater or equal comparison | |||
1202 | /// | |||
1203 | /// Regards both *this as an unsigned quantity and compares it with RHS for | |||
1204 | /// the validity of the greater-or-equal relationship. | |||
1205 | /// | |||
1206 | /// \returns true if *this >= RHS when considered unsigned. | |||
1207 | bool uge(uint64_t RHS) const { return !ult(RHS); } | |||
1208 | ||||
1209 | /// Signed greater or equal comparison | |||
1210 | /// | |||
1211 | /// Regards both *this and RHS as signed quantities and compares them for | |||
1212 | /// validity of the greater-or-equal relationship. | |||
1213 | /// | |||
1214 | /// \returns true if *this >= RHS when both are considered signed. | |||
1215 | bool sge(const APInt &RHS) const { return !slt(RHS); } | |||
1216 | ||||
1217 | /// Signed greater or equal comparison | |||
1218 | /// | |||
1219 | /// Regards both *this as a signed quantity and compares it with RHS for | |||
1220 | /// the validity of the greater-or-equal relationship. | |||
1221 | /// | |||
1222 | /// \returns true if *this >= RHS when considered signed. | |||
1223 | bool sge(int64_t RHS) const { return !slt(RHS); } | |||
1224 | ||||
1225 | /// This operation tests if there are any pairs of corresponding bits | |||
1226 | /// between this APInt and RHS that are both set. | |||
1227 | bool intersects(const APInt &RHS) const { | |||
1228 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth && "Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\"" , "llvm/include/llvm/ADT/APInt.h", 1228, __extension__ __PRETTY_FUNCTION__ )); | |||
1229 | if (isSingleWord()) | |||
1230 | return (U.VAL & RHS.U.VAL) != 0; | |||
1231 | return intersectsSlowCase(RHS); | |||
1232 | } | |||
1233 | ||||
1234 | /// This operation checks that all bits set in this APInt are also set in RHS. | |||
1235 | bool isSubsetOf(const APInt &RHS) const { | |||
1236 | assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth && "Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\"" , "llvm/include/llvm/ADT/APInt.h", 1236, __extension__ __PRETTY_FUNCTION__ )); | |||
1237 | if (isSingleWord()) | |||
1238 | return (U.VAL & ~RHS.U.VAL) == 0; | |||
1239 | return isSubsetOfSlowCase(RHS); | |||
1240 | } | |||
1241 | ||||
1242 | /// @} | |||
1243 | /// \name Resizing Operators | |||
1244 | /// @{ | |||
1245 | ||||
1246 | /// Truncate to new width. | |||
1247 | /// | |||
1248 | /// Truncate the APInt to a specified width. It is an error to specify a width | |||
1249 | /// that is greater than the current width. | |||
1250 | APInt trunc(unsigned width) const; | |||
1251 | ||||
1252 | /// Truncate to new width with unsigned saturation. | |||
1253 | /// | |||
1254 | /// If the APInt, treated as unsigned integer, can be losslessly truncated to | |||
1255 | /// the new bitwidth, then return truncated APInt. Else, return max value. | |||
1256 | APInt truncUSat(unsigned width) const; | |||
1257 | ||||
1258 | /// Truncate to new width with signed saturation. | |||
1259 | /// | |||
1260 | /// If this APInt, treated as signed integer, can be losslessly truncated to | |||
1261 | /// the new bitwidth, then return truncated APInt. Else, return either | |||
1262 | /// signed min value if the APInt was negative, or signed max value. | |||
1263 | APInt truncSSat(unsigned width) const; | |||
1264 | ||||
1265 | /// Sign extend to a new width. | |||
1266 | /// | |||
1267 | /// This operation sign extends the APInt to a new width. If the high order | |||
1268 | /// bit is set, the fill on the left will be done with 1 bits, otherwise zero. | |||
1269 | /// It is an error to specify a width that is less than the | |||
1270 | /// current width. | |||
1271 | APInt sext(unsigned width) const; | |||
1272 | ||||
1273 | /// Zero extend to a new width. | |||
1274 | /// | |||
1275 | /// This operation zero extends the APInt to a new width. The high order bits | |||
1276 | /// are filled with 0 bits. It is an error to specify a width that is less | |||
1277 | /// than the current width. | |||
1278 | APInt zext(unsigned width) const; | |||
1279 | ||||
1280 | /// Sign extend or truncate to width | |||
1281 | /// | |||
1282 | /// Make this APInt have the bit width given by \p width. The value is sign | |||
1283 | /// extended, truncated, or left alone to make it that width. | |||
1284 | APInt sextOrTrunc(unsigned width) const; | |||
1285 | ||||
1286 | /// Zero extend or truncate to width | |||
1287 | /// | |||
1288 | /// Make this APInt have the bit width given by \p width. The value is zero | |||
1289 | /// extended, truncated, or left alone to make it that width. | |||
1290 | APInt zextOrTrunc(unsigned width) const; | |||
1291 | ||||
1292 | /// @} | |||
1293 | /// \name Bit Manipulation Operators | |||
1294 | /// @{ | |||
1295 | ||||
1296 | /// Set every bit to 1. | |||
1297 | void setAllBits() { | |||
1298 | if (isSingleWord()) | |||
1299 | U.VAL = WORDTYPE_MAX; | |||
1300 | else | |||
1301 | // Set all the bits in all the words. | |||
1302 | memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE); | |||
1303 | // Clear the unused ones | |||
1304 | clearUnusedBits(); | |||
1305 | } | |||
1306 | ||||
1307 | /// Set the given bit to 1 whose position is given as "bitPosition". | |||
1308 | void setBit(unsigned BitPosition) { | |||
1309 | assert(BitPosition < BitWidth && "BitPosition out of range")(static_cast <bool> (BitPosition < BitWidth && "BitPosition out of range") ? void (0) : __assert_fail ("BitPosition < BitWidth && \"BitPosition out of range\"" , "llvm/include/llvm/ADT/APInt.h", 1309, __extension__ __PRETTY_FUNCTION__ )); | |||
1310 | WordType Mask = maskBit(BitPosition); | |||
1311 | if (isSingleWord()) | |||
1312 | U.VAL |= Mask; | |||
1313 | else | |||
1314 | U.pVal[whichWord(BitPosition)] |= Mask; | |||
1315 | } | |||
1316 | ||||
1317 | /// Set the sign bit to 1. | |||
1318 | void setSignBit() { setBit(BitWidth - 1); } | |||
1319 | ||||
1320 | /// Set a given bit to a given value. | |||
1321 | void setBitVal(unsigned BitPosition, bool BitValue) { | |||
1322 | if (BitValue) | |||
1323 | setBit(BitPosition); | |||
1324 | else | |||
1325 | clearBit(BitPosition); | |||
1326 | } | |||
1327 | ||||
1328 | /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1. | |||
1329 | /// This function handles "wrap" case when \p loBit >= \p hiBit, and calls | |||
1330 | /// setBits when \p loBit < \p hiBit. | |||
1331 | /// For \p loBit == \p hiBit wrap case, set every bit to 1. | |||
1332 | void setBitsWithWrap(unsigned loBit, unsigned hiBit) { | |||
1333 | assert(hiBit <= BitWidth && "hiBit out of range")(static_cast <bool> (hiBit <= BitWidth && "hiBit out of range" ) ? void (0) : __assert_fail ("hiBit <= BitWidth && \"hiBit out of range\"" , "llvm/include/llvm/ADT/APInt.h", 1333, __extension__ __PRETTY_FUNCTION__ )); | |||
1334 | assert(loBit <= BitWidth && "loBit out of range")(static_cast <bool> (loBit <= BitWidth && "loBit out of range" ) ? void (0) : __assert_fail ("loBit <= BitWidth && \"loBit out of range\"" , "llvm/include/llvm/ADT/APInt.h", 1334, __extension__ __PRETTY_FUNCTION__ )); | |||
1335 | if (loBit < hiBit) { | |||
1336 | setBits(loBit, hiBit); | |||
1337 | return; | |||
1338 | } | |||
1339 | setLowBits(hiBit); | |||
1340 | setHighBits(BitWidth - loBit); | |||
1341 | } | |||
1342 | ||||
1343 | /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1. | |||
1344 | /// This function handles case when \p loBit <= \p hiBit. | |||
1345 | void setBits(unsigned loBit, unsigned hiBit) { | |||
1346 | assert(hiBit <= BitWidth && "hiBit out of range")(static_cast <bool> (hiBit <= BitWidth && "hiBit out of range" ) ? void (0) : __assert_fail ("hiBit <= BitWidth && \"hiBit out of range\"" , "llvm/include/llvm/ADT/APInt.h", 1346, __extension__ __PRETTY_FUNCTION__ )); | |||
1347 | assert(loBit <= BitWidth && "loBit out of range")(static_cast <bool> (loBit <= BitWidth && "loBit out of range" ) ? void (0) : __assert_fail ("loBit <= BitWidth && \"loBit out of range\"" , "llvm/include/llvm/ADT/APInt.h", 1347, __extension__ __PRETTY_FUNCTION__ )); | |||
1348 | assert(loBit <= hiBit && "loBit greater than hiBit")(static_cast <bool> (loBit <= hiBit && "loBit greater than hiBit" ) ? void (0) : __assert_fail ("loBit <= hiBit && \"loBit greater than hiBit\"" , "llvm/include/llvm/ADT/APInt.h", 1348, __extension__ __PRETTY_FUNCTION__ )); | |||
1349 | if (loBit == hiBit) | |||
1350 | return; | |||
1351 | if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) { | |||
1352 | uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit)); | |||
1353 | mask <<= loBit; | |||
1354 | if (isSingleWord()) | |||
1355 | U.VAL |= mask; | |||
1356 | else | |||
1357 | U.pVal[0] |= mask; | |||
1358 | } else { | |||
1359 | setBitsSlowCase(loBit, hiBit); | |||
1360 | } | |||
1361 | } | |||
1362 | ||||
1363 | /// Set the top bits starting from loBit. | |||
1364 | void setBitsFrom(unsigned loBit) { return setBits(loBit, BitWidth); } | |||
1365 | ||||
1366 | /// Set the bottom loBits bits. | |||
1367 | void setLowBits(unsigned loBits) { return setBits(0, loBits); } | |||
1368 | ||||
1369 | /// Set the top hiBits bits. | |||
1370 | void setHighBits(unsigned hiBits) { | |||
1371 | return setBits(BitWidth - hiBits, BitWidth); | |||
1372 | } | |||
1373 | ||||
1374 | /// Set every bit to 0. | |||
1375 | void clearAllBits() { | |||
1376 | if (isSingleWord()) | |||
1377 | U.VAL = 0; | |||
1378 | else | |||
1379 | memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE); | |||
1380 | } | |||
1381 | ||||
1382 | /// Set a given bit to 0. | |||
1383 | /// | |||
1384 | /// Set the given bit to 0 whose position is given as "bitPosition". | |||
1385 | void clearBit(unsigned BitPosition) { | |||
1386 | assert(BitPosition < BitWidth && "BitPosition out of range")(static_cast <bool> (BitPosition < BitWidth && "BitPosition out of range") ? void (0) : __assert_fail ("BitPosition < BitWidth && \"BitPosition out of range\"" , "llvm/include/llvm/ADT/APInt.h", 1386, __extension__ __PRETTY_FUNCTION__ )); | |||
1387 | WordType Mask = ~maskBit(BitPosition); | |||
1388 | if (isSingleWord()) | |||
1389 | U.VAL &= Mask; | |||
1390 | else | |||
1391 | U.pVal[whichWord(BitPosition)] &= Mask; | |||
1392 | } | |||
1393 | ||||
1394 | /// Set bottom loBits bits to 0. | |||
1395 | void clearLowBits(unsigned loBits) { | |||
1396 | assert(loBits <= BitWidth && "More bits than bitwidth")(static_cast <bool> (loBits <= BitWidth && "More bits than bitwidth" ) ? void (0) : __assert_fail ("loBits <= BitWidth && \"More bits than bitwidth\"" , "llvm/include/llvm/ADT/APInt.h", 1396, __extension__ __PRETTY_FUNCTION__ )); | |||
1397 | APInt Keep = getHighBitsSet(BitWidth, BitWidth - loBits); | |||
1398 | *this &= Keep; | |||
1399 | } | |||
1400 | ||||
1401 | /// Set the sign bit to 0. | |||
1402 | void clearSignBit() { clearBit(BitWidth - 1); } | |||
1403 | ||||
1404 | /// Toggle every bit to its opposite value. | |||
1405 | void flipAllBits() { | |||
1406 | if (isSingleWord()) { | |||
1407 | U.VAL ^= WORDTYPE_MAX; | |||
1408 | clearUnusedBits(); | |||
1409 | } else { | |||
1410 | flipAllBitsSlowCase(); | |||
1411 | } | |||
1412 | } | |||
1413 | ||||
1414 | /// Toggles a given bit to its opposite value. | |||
1415 | /// | |||
1416 | /// Toggle a given bit to its opposite value whose position is given | |||
1417 | /// as "bitPosition". | |||
1418 | void flipBit(unsigned bitPosition); | |||
1419 | ||||
1420 | /// Negate this APInt in place. | |||
1421 | void negate() { | |||
1422 | flipAllBits(); | |||
1423 | ++(*this); | |||
1424 | } | |||
1425 | ||||
1426 | /// Insert the bits from a smaller APInt starting at bitPosition. | |||
1427 | void insertBits(const APInt &SubBits, unsigned bitPosition); | |||
1428 | void insertBits(uint64_t SubBits, unsigned bitPosition, unsigned numBits); | |||
1429 | ||||
1430 | /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits). | |||
1431 | APInt extractBits(unsigned numBits, unsigned bitPosition) const; | |||
1432 | uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const; | |||
1433 | ||||
1434 | /// @} | |||
1435 | /// \name Value Characterization Functions | |||
1436 | /// @{ | |||
1437 | ||||
1438 | /// Return the number of bits in the APInt. | |||
1439 | unsigned getBitWidth() const { return BitWidth; } | |||
1440 | ||||
1441 | /// Get the number of words. | |||
1442 | /// | |||
1443 | /// Here one word's bitwidth equals to that of uint64_t. | |||
1444 | /// | |||
1445 | /// \returns the number of words to hold the integer value of this APInt. | |||
1446 | unsigned getNumWords() const { return getNumWords(BitWidth); } | |||
1447 | ||||
1448 | /// Get the number of words. | |||
1449 | /// | |||
1450 | /// *NOTE* Here one word's bitwidth equals to that of uint64_t. | |||
1451 | /// | |||
1452 | /// \returns the number of words to hold the integer value with a given bit | |||
1453 | /// width. | |||
1454 | static unsigned getNumWords(unsigned BitWidth) { | |||
1455 | return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD; | |||
1456 | } | |||
1457 | ||||
1458 | /// Compute the number of active bits in the value | |||
1459 | /// | |||
1460 | /// This function returns the number of active bits which is defined as the | |||
1461 | /// bit width minus the number of leading zeros. This is used in several | |||
1462 | /// computations to see how "wide" the value is. | |||
1463 | unsigned getActiveBits() const { return BitWidth - countl_zero(); } | |||
1464 | ||||
1465 | /// Compute the number of active words in the value of this APInt. | |||
1466 | /// | |||
1467 | /// This is used in conjunction with getActiveData to extract the raw value of | |||
1468 | /// the APInt. | |||
1469 | unsigned getActiveWords() const { | |||
1470 | unsigned numActiveBits = getActiveBits(); | |||
1471 | return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1; | |||
1472 | } | |||
1473 | ||||
1474 | /// Get the minimum bit size for this signed APInt | |||
1475 | /// | |||
1476 | /// Computes the minimum bit width for this APInt while considering it to be a | |||
1477 | /// signed (and probably negative) value. If the value is not negative, this | |||
1478 | /// function returns the same value as getActiveBits()+1. Otherwise, it | |||
1479 | /// returns the smallest bit width that will retain the negative value. For | |||
1480 | /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so | |||
1481 | /// for -1, this function will always return 1. | |||
1482 | unsigned getSignificantBits() const { | |||
1483 | return BitWidth - getNumSignBits() + 1; | |||
1484 | } | |||
1485 | ||||
1486 | LLVM_DEPRECATED("use getSignificantBits instead", "getSignificantBits")__attribute__((deprecated("use getSignificantBits instead", "getSignificantBits" ))) | |||
1487 | unsigned getMinSignedBits() const { return getSignificantBits(); } | |||
1488 | ||||
1489 | /// Get zero extended value | |||
1490 | /// | |||
1491 | /// This method attempts to return the value of this APInt as a zero extended | |||
1492 | /// uint64_t. The bitwidth must be <= 64 or the value must fit within a | |||
1493 | /// uint64_t. Otherwise an assertion will result. | |||
1494 | uint64_t getZExtValue() const { | |||
1495 | if (isSingleWord()) | |||
1496 | return U.VAL; | |||
1497 | assert(getActiveBits() <= 64 && "Too many bits for uint64_t")(static_cast <bool> (getActiveBits() <= 64 && "Too many bits for uint64_t") ? void (0) : __assert_fail ("getActiveBits() <= 64 && \"Too many bits for uint64_t\"" , "llvm/include/llvm/ADT/APInt.h", 1497, __extension__ __PRETTY_FUNCTION__ )); | |||
1498 | return U.pVal[0]; | |||
1499 | } | |||
1500 | ||||
1501 | /// Get zero extended value if possible | |||
1502 | /// | |||
1503 | /// This method attempts to return the value of this APInt as a zero extended | |||
1504 | /// uint64_t. The bitwidth must be <= 64 or the value must fit within a | |||
1505 | /// uint64_t. Otherwise no value is returned. | |||
1506 | std::optional<uint64_t> tryZExtValue() const { | |||
1507 | return (getActiveBits() <= 64) ? std::optional<uint64_t>(getZExtValue()) | |||
1508 | : std::nullopt; | |||
1509 | }; | |||
1510 | ||||
1511 | /// Get sign extended value | |||
1512 | /// | |||
1513 | /// This method attempts to return the value of this APInt as a sign extended | |||
1514 | /// int64_t. The bit width must be <= 64 or the value must fit within an | |||
1515 | /// int64_t. Otherwise an assertion will result. | |||
1516 | int64_t getSExtValue() const { | |||
1517 | if (isSingleWord()) | |||
1518 | return SignExtend64(U.VAL, BitWidth); | |||
1519 | assert(getSignificantBits() <= 64 && "Too many bits for int64_t")(static_cast <bool> (getSignificantBits() <= 64 && "Too many bits for int64_t") ? void (0) : __assert_fail ("getSignificantBits() <= 64 && \"Too many bits for int64_t\"" , "llvm/include/llvm/ADT/APInt.h", 1519, __extension__ __PRETTY_FUNCTION__ )); | |||
1520 | return int64_t(U.pVal[0]); | |||
1521 | } | |||
1522 | ||||
1523 | /// Get sign extended value if possible | |||
1524 | /// | |||
1525 | /// This method attempts to return the value of this APInt as a sign extended | |||
1526 | /// int64_t. The bitwidth must be <= 64 or the value must fit within an | |||
1527 | /// int64_t. Otherwise no value is returned. | |||
1528 | std::optional<int64_t> trySExtValue() const { | |||
1529 | return (getSignificantBits() <= 64) ? std::optional<int64_t>(getSExtValue()) | |||
1530 | : std::nullopt; | |||
1531 | }; | |||
1532 | ||||
1533 | /// Get bits required for string value. | |||
1534 | /// | |||
1535 | /// This method determines how many bits are required to hold the APInt | |||
1536 | /// equivalent of the string given by \p str. | |||
1537 | static unsigned getBitsNeeded(StringRef str, uint8_t radix); | |||
1538 | ||||
1539 | /// Get the bits that are sufficient to represent the string value. This may | |||
1540 | /// over estimate the amount of bits required, but it does not require | |||
1541 | /// parsing the value in the string. | |||
1542 | static unsigned getSufficientBitsNeeded(StringRef Str, uint8_t Radix); | |||
1543 | ||||
1544 | /// The APInt version of std::countl_zero. | |||
1545 | /// | |||
1546 | /// It counts the number of zeros from the most significant bit to the first | |||
1547 | /// one bit. | |||
1548 | /// | |||
1549 | /// \returns BitWidth if the value is zero, otherwise returns the number of | |||
1550 | /// zeros from the most significant bit to the first one bits. | |||
1551 | unsigned countl_zero() const { | |||
1552 | if (isSingleWord()) { | |||
1553 | unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth; | |||
1554 | return llvm::countl_zero(U.VAL) - unusedBits; | |||
1555 | } | |||
1556 | return countLeadingZerosSlowCase(); | |||
1557 | } | |||
1558 | ||||
1559 | unsigned countLeadingZeros() const { return countl_zero(); } | |||
1560 | ||||
1561 | /// Count the number of leading one bits. | |||
1562 | /// | |||
1563 | /// This function is an APInt version of std::countl_one. It counts the number | |||
1564 | /// of ones from the most significant bit to the first zero bit. | |||
1565 | /// | |||
1566 | /// \returns 0 if the high order bit is not set, otherwise returns the number | |||
1567 | /// of 1 bits from the most significant to the least | |||
1568 | unsigned countl_one() const { | |||
1569 | if (isSingleWord()) { | |||
1570 | if (LLVM_UNLIKELY(BitWidth == 0)__builtin_expect((bool)(BitWidth == 0), false)) | |||
1571 | return 0; | |||
1572 | return llvm::countl_one(U.VAL << (APINT_BITS_PER_WORD - BitWidth)); | |||
1573 | } | |||
1574 | return countLeadingOnesSlowCase(); | |||
1575 | } | |||
1576 | ||||
1577 | unsigned countLeadingOnes() const { return countl_one(); } | |||
1578 | ||||
1579 | /// Computes the number of leading bits of this APInt that are equal to its | |||
1580 | /// sign bit. | |||
1581 | unsigned getNumSignBits() const { | |||
1582 | return isNegative() ? countl_one() : countl_zero(); | |||
1583 | } | |||
1584 | ||||
1585 | /// Count the number of trailing zero bits. | |||
1586 | /// | |||
1587 | /// This function is an APInt version of std::countr_zero. It counts the number | |||
1588 | /// of zeros from the least significant bit to the first set bit. | |||
1589 | /// | |||
1590 | /// \returns BitWidth if the value is zero, otherwise returns the number of | |||
1591 | /// zeros from the least significant bit to the first one bit. | |||
1592 | unsigned countr_zero() const { | |||
1593 | if (isSingleWord()) { | |||
1594 | unsigned TrailingZeros = llvm::countr_zero(U.VAL); | |||
1595 | return (TrailingZeros > BitWidth ? BitWidth : TrailingZeros); | |||
1596 | } | |||
1597 | return countTrailingZerosSlowCase(); | |||
1598 | } | |||
1599 | ||||
1600 | unsigned countTrailingZeros() const { return countr_zero(); } | |||
1601 | ||||
1602 | /// Count the number of trailing one bits. | |||
1603 | /// | |||
1604 | /// This function is an APInt version of std::countr_one. It counts the number | |||
1605 | /// of ones from the least significant bit to the first zero bit. | |||
1606 | /// | |||
1607 | /// \returns BitWidth if the value is all ones, otherwise returns the number | |||
1608 | /// of ones from the least significant bit to the first zero bit. | |||
1609 | unsigned countr_one() const { | |||
1610 | if (isSingleWord()) | |||
1611 | return llvm::countr_one(U.VAL); | |||
1612 | return countTrailingOnesSlowCase(); | |||
1613 | } | |||
1614 | ||||
1615 | unsigned countTrailingOnes() const { return countr_one(); } | |||
1616 | ||||
1617 | /// Count the number of bits set. | |||
1618 | /// | |||
1619 | /// This function is an APInt version of std::popcount. It counts the number | |||
1620 | /// of 1 bits in the APInt value. | |||
1621 | /// | |||
1622 | /// \returns 0 if the value is zero, otherwise returns the number of set bits. | |||
1623 | unsigned popcount() const { | |||
1624 | if (isSingleWord()) | |||
1625 | return llvm::popcount(U.VAL); | |||
1626 | return countPopulationSlowCase(); | |||
1627 | } | |||
1628 | ||||
1629 | LLVM_DEPRECATED("use popcount instead", "popcount")__attribute__((deprecated("use popcount instead", "popcount") )) | |||
1630 | unsigned countPopulation() const { return popcount(); } | |||
1631 | ||||
1632 | /// @} | |||
1633 | /// \name Conversion Functions | |||
1634 | /// @{ | |||
1635 | void print(raw_ostream &OS, bool isSigned) const; | |||
1636 | ||||
1637 | /// Converts an APInt to a string and append it to Str. Str is commonly a | |||
1638 | /// SmallString. | |||
1639 | void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed, | |||
1640 | bool formatAsCLiteral = false) const; | |||
1641 | ||||
1642 | /// Considers the APInt to be unsigned and converts it into a string in the | |||
1643 | /// radix given. The radix can be 2, 8, 10 16, or 36. | |||
1644 | void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { | |||
1645 | toString(Str, Radix, false, false); | |||
1646 | } | |||
1647 | ||||
1648 | /// Considers the APInt to be signed and converts it into a string in the | |||
1649 | /// radix given. The radix can be 2, 8, 10, 16, or 36. | |||
1650 | void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { | |||
1651 | toString(Str, Radix, true, false); | |||
1652 | } | |||
1653 | ||||
1654 | /// \returns a byte-swapped representation of this APInt Value. | |||
1655 | APInt byteSwap() const; | |||
1656 | ||||
1657 | /// \returns the value with the bit representation reversed of this APInt | |||
1658 | /// Value. | |||
1659 | APInt reverseBits() const; | |||
1660 | ||||
1661 | /// Converts this APInt to a double value. | |||
1662 | double roundToDouble(bool isSigned) const; | |||
1663 | ||||
1664 | /// Converts this unsigned APInt to a double value. | |||
1665 | double roundToDouble() const { return roundToDouble(false); } | |||
1666 | ||||
1667 | /// Converts this signed APInt to a double value. | |||
1668 | double signedRoundToDouble() const { return roundToDouble(true); } | |||
1669 | ||||
1670 | /// Converts APInt bits to a double | |||
1671 | /// | |||
1672 | /// The conversion does not do a translation from integer to double, it just | |||
1673 | /// re-interprets the bits as a double. Note that it is valid to do this on | |||
1674 | /// any bit width. Exactly 64 bits will be translated. | |||
1675 | double bitsToDouble() const { return llvm::bit_cast<double>(getWord(0)); } | |||
1676 | ||||
1677 | /// Converts APInt bits to a float | |||
1678 | /// | |||
1679 | /// The conversion does not do a translation from integer to float, it just | |||
1680 | /// re-interprets the bits as a float. Note that it is valid to do this on | |||
1681 | /// any bit width. Exactly 32 bits will be translated. | |||
1682 | float bitsToFloat() const { | |||
1683 | return llvm::bit_cast<float>(static_cast<uint32_t>(getWord(0))); | |||
1684 | } | |||
1685 | ||||
1686 | /// Converts a double to APInt bits. | |||
1687 | /// | |||
1688 | /// The conversion does not do a translation from double to integer, it just | |||
1689 | /// re-interprets the bits of the double. | |||
1690 | static APInt doubleToBits(double V) { | |||
1691 | return APInt(sizeof(double) * CHAR_BIT8, llvm::bit_cast<uint64_t>(V)); | |||
1692 | } | |||
1693 | ||||
1694 | /// Converts a float to APInt bits. | |||
1695 | /// | |||
1696 | /// The conversion does not do a translation from float to integer, it just | |||
1697 | /// re-interprets the bits of the float. | |||
1698 | static APInt floatToBits(float V) { | |||
1699 | return APInt(sizeof(float) * CHAR_BIT8, llvm::bit_cast<uint32_t>(V)); | |||
1700 | } | |||
1701 | ||||
1702 | /// @} | |||
1703 | /// \name Mathematics Operations | |||
1704 | /// @{ | |||
1705 | ||||
1706 | /// \returns the floor log base 2 of this APInt. | |||
1707 | unsigned logBase2() const { return getActiveBits() - 1; } | |||
1708 | ||||
1709 | /// \returns the ceil log base 2 of this APInt. | |||
1710 | unsigned ceilLogBase2() const { | |||
1711 | APInt temp(*this); | |||
1712 | --temp; | |||
1713 | return temp.getActiveBits(); | |||
1714 | } | |||
1715 | ||||
1716 | /// \returns the nearest log base 2 of this APInt. Ties round up. | |||
1717 | /// | |||
1718 | /// NOTE: When we have a BitWidth of 1, we define: | |||
1719 | /// | |||
1720 | /// log2(0) = UINT32_MAX | |||
1721 | /// log2(1) = 0 | |||
1722 | /// | |||
1723 | /// to get around any mathematical concerns resulting from | |||
1724 | /// referencing 2 in a space where 2 does no exist. | |||
1725 | unsigned nearestLogBase2() const; | |||
1726 | ||||
1727 | /// \returns the log base 2 of this APInt if its an exact power of two, -1 | |||
1728 | /// otherwise | |||
1729 | int32_t exactLogBase2() const { | |||
1730 | if (!isPowerOf2()) | |||
1731 | return -1; | |||
1732 | return logBase2(); | |||
1733 | } | |||
1734 | ||||
1735 | /// Compute the square root. | |||
1736 | APInt sqrt() const; | |||
1737 | ||||
1738 | /// Get the absolute value. If *this is < 0 then return -(*this), otherwise | |||
1739 | /// *this. Note that the "most negative" signed number (e.g. -128 for 8 bit | |||
1740 | /// wide APInt) is unchanged due to how negation works. | |||
1741 | APInt abs() const { | |||
1742 | if (isNegative()) | |||
1743 | return -(*this); | |||
1744 | return *this; | |||
1745 | } | |||
1746 | ||||
1747 | /// \returns the multiplicative inverse for a given modulo. | |||
1748 | APInt multiplicativeInverse(const APInt &modulo) const; | |||
1749 | ||||
1750 | /// @} | |||
1751 | /// \name Building-block Operations for APInt and APFloat | |||
1752 | /// @{ | |||
1753 | ||||
1754 | // These building block operations operate on a representation of arbitrary | |||
1755 | // precision, two's-complement, bignum integer values. They should be | |||
1756 | // sufficient to implement APInt and APFloat bignum requirements. Inputs are | |||
1757 | // generally a pointer to the base of an array of integer parts, representing | |||
1758 | // an unsigned bignum, and a count of how many parts there are. | |||
1759 | ||||
1760 | /// Sets the least significant part of a bignum to the input value, and zeroes | |||
1761 | /// out higher parts. | |||
1762 | static void tcSet(WordType *, WordType, unsigned); | |||
1763 | ||||
1764 | /// Assign one bignum to another. | |||
1765 | static void tcAssign(WordType *, const WordType *, unsigned); | |||
1766 | ||||
1767 | /// Returns true if a bignum is zero, false otherwise. | |||
1768 | static bool tcIsZero(const WordType *, unsigned); | |||
1769 | ||||
1770 | /// Extract the given bit of a bignum; returns 0 or 1. Zero-based. | |||
1771 | static int tcExtractBit(const WordType *, unsigned bit); | |||
1772 | ||||
1773 | /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to | |||
1774 | /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least | |||
1775 | /// significant bit of DST. All high bits above srcBITS in DST are | |||
1776 | /// zero-filled. | |||
1777 | static void tcExtract(WordType *, unsigned dstCount, const WordType *, | |||
1778 | unsigned srcBits, unsigned srcLSB); | |||
1779 | ||||
1780 | /// Set the given bit of a bignum. Zero-based. | |||
1781 | static void tcSetBit(WordType *, unsigned bit); | |||
1782 | ||||
1783 | /// Clear the given bit of a bignum. Zero-based. | |||
1784 | static void tcClearBit(WordType *, unsigned bit); | |||
1785 | ||||
1786 | /// Returns the bit number of the least or most significant set bit of a | |||
1787 | /// number. If the input number has no bits set -1U is returned. | |||
1788 | static unsigned tcLSB(const WordType *, unsigned n); | |||
1789 | static unsigned tcMSB(const WordType *parts, unsigned n); | |||
1790 | ||||
1791 | /// Negate a bignum in-place. | |||
1792 | static void tcNegate(WordType *, unsigned); | |||
1793 | ||||
1794 | /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag. | |||
1795 | static WordType tcAdd(WordType *, const WordType *, WordType carry, unsigned); | |||
1796 | /// DST += RHS. Returns the carry flag. | |||
1797 | static WordType tcAddPart(WordType *, WordType, unsigned); | |||
1798 | ||||
1799 | /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag. | |||
1800 | static WordType tcSubtract(WordType *, const WordType *, WordType carry, | |||
1801 | unsigned); | |||
1802 | /// DST -= RHS. Returns the carry flag. | |||
1803 | static WordType tcSubtractPart(WordType *, WordType, unsigned); | |||
1804 | ||||
1805 | /// DST += SRC * MULTIPLIER + PART if add is true | |||
1806 | /// DST = SRC * MULTIPLIER + PART if add is false | |||
1807 | /// | |||
1808 | /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must | |||
1809 | /// start at the same point, i.e. DST == SRC. | |||
1810 | /// | |||
1811 | /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned. | |||
1812 | /// Otherwise DST is filled with the least significant DSTPARTS parts of the | |||
1813 | /// result, and if all of the omitted higher parts were zero return zero, | |||
1814 | /// otherwise overflow occurred and return one. | |||
1815 | static int tcMultiplyPart(WordType *dst, const WordType *src, | |||
1816 | WordType multiplier, WordType carry, | |||
1817 | unsigned srcParts, unsigned dstParts, bool add); | |||
1818 | ||||
1819 | /// DST = LHS * RHS, where DST has the same width as the operands and is | |||
1820 | /// filled with the least significant parts of the result. Returns one if | |||
1821 | /// overflow occurred, otherwise zero. DST must be disjoint from both | |||
1822 | /// operands. | |||
1823 | static int tcMultiply(WordType *, const WordType *, const WordType *, | |||
1824 | unsigned); | |||
1825 | ||||
1826 | /// DST = LHS * RHS, where DST has width the sum of the widths of the | |||
1827 | /// operands. No overflow occurs. DST must be disjoint from both operands. | |||
1828 | static void tcFullMultiply(WordType *, const WordType *, const WordType *, | |||
1829 | unsigned, unsigned); | |||
1830 | ||||
1831 | /// If RHS is zero LHS and REMAINDER are left unchanged, return one. | |||
1832 | /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set | |||
1833 | /// REMAINDER to the remainder, return zero. i.e. | |||
1834 | /// | |||
1835 | /// OLD_LHS = RHS * LHS + REMAINDER | |||
1836 | /// | |||
1837 | /// SCRATCH is a bignum of the same size as the operands and result for use by | |||
1838 | /// the routine; its contents need not be initialized and are destroyed. LHS, | |||
1839 | /// REMAINDER and SCRATCH must be distinct. | |||
1840 | static int tcDivide(WordType *lhs, const WordType *rhs, WordType *remainder, | |||
1841 | WordType *scratch, unsigned parts); | |||
1842 | ||||
1843 | /// Shift a bignum left Count bits. Shifted in bits are zero. There are no | |||
1844 | /// restrictions on Count. | |||
1845 | static void tcShiftLeft(WordType *, unsigned Words, unsigned Count); | |||
1846 | ||||
1847 | /// Shift a bignum right Count bits. Shifted in bits are zero. There are no | |||
1848 | /// restrictions on Count. | |||
1849 | static void tcShiftRight(WordType *, unsigned Words, unsigned Count); | |||
1850 | ||||
1851 | /// Comparison (unsigned) of two bignums. | |||
1852 | static int tcCompare(const WordType *, const WordType *, unsigned); | |||
1853 | ||||
1854 | /// Increment a bignum in-place. Return the carry flag. | |||
1855 | static WordType tcIncrement(WordType *dst, unsigned parts) { | |||
1856 | return tcAddPart(dst, 1, parts); | |||
1857 | } | |||
1858 | ||||
1859 | /// Decrement a bignum in-place. Return the borrow flag. | |||
1860 | static WordType tcDecrement(WordType *dst, unsigned parts) { | |||
1861 | return tcSubtractPart(dst, 1, parts); | |||
1862 | } | |||
1863 | ||||
1864 | /// Used to insert APInt objects, or objects that contain APInt objects, into | |||
1865 | /// FoldingSets. | |||
1866 | void Profile(FoldingSetNodeID &id) const; | |||
1867 | ||||
1868 | /// debug method | |||
1869 | void dump() const; | |||
1870 | ||||
1871 | /// Returns whether this instance allocated memory. | |||
1872 | bool needsCleanup() const { return !isSingleWord(); } | |||
1873 | ||||
1874 | private: | |||
1875 | /// This union is used to store the integer value. When the | |||
1876 | /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal. | |||
1877 | union { | |||
1878 | uint64_t VAL; ///< Used to store the <= 64 bits integer value. | |||
1879 | uint64_t *pVal; ///< Used to store the >64 bits integer value. | |||
1880 | } U; | |||
1881 | ||||
1882 | unsigned BitWidth = 1; ///< The number of bits in this APInt. | |||
1883 | ||||
1884 | friend struct DenseMapInfo<APInt, void>; | |||
1885 | friend class APSInt; | |||
1886 | ||||
1887 | /// This constructor is used only internally for speed of construction of | |||
1888 | /// temporaries. It is unsafe since it takes ownership of the pointer, so it | |||
1889 | /// is not public. | |||
1890 | APInt(uint64_t *val, unsigned bits) : BitWidth(bits) { U.pVal = val; } | |||
1891 | ||||
1892 | /// Determine which word a bit is in. | |||
1893 | /// | |||
1894 | /// \returns the word position for the specified bit position. | |||
1895 | static unsigned whichWord(unsigned bitPosition) { | |||
1896 | return bitPosition / APINT_BITS_PER_WORD; | |||
1897 | } | |||
1898 | ||||
1899 | /// Determine which bit in a word the specified bit position is in. | |||
1900 | static unsigned whichBit(unsigned bitPosition) { | |||
1901 | return bitPosition % APINT_BITS_PER_WORD; | |||
1902 | } | |||
1903 | ||||
1904 | /// Get a single bit mask. | |||
1905 | /// | |||
1906 | /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set | |||
1907 | /// This method generates and returns a uint64_t (word) mask for a single | |||
1908 | /// bit at a specific bit position. This is used to mask the bit in the | |||
1909 | /// corresponding word. | |||
1910 | static uint64_t maskBit(unsigned bitPosition) { | |||
1911 | return 1ULL << whichBit(bitPosition); | |||
1912 | } | |||
1913 | ||||
1914 | /// Clear unused high order bits | |||
1915 | /// | |||
1916 | /// This method is used internally to clear the top "N" bits in the high order | |||
1917 | /// word that are not used by the APInt. This is needed after the most | |||
1918 | /// significant word is assigned a value to ensure that those bits are | |||
1919 | /// zero'd out. | |||
1920 | APInt &clearUnusedBits() { | |||
1921 | // Compute how many bits are used in the final word. | |||
1922 | unsigned WordBits = ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1; | |||
1923 | ||||
1924 | // Mask out the high bits. | |||
1925 | uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits); | |||
1926 | if (LLVM_UNLIKELY(BitWidth == 0)__builtin_expect((bool)(BitWidth == 0), false)) | |||
1927 | mask = 0; | |||
1928 | ||||
1929 | if (isSingleWord()) | |||
1930 | U.VAL &= mask; | |||
1931 | else | |||
1932 | U.pVal[getNumWords() - 1] &= mask; | |||
1933 | return *this; | |||
1934 | } | |||
1935 | ||||
1936 | /// Get the word corresponding to a bit position | |||
1937 | /// \returns the corresponding word for the specified bit position. | |||
1938 | uint64_t getWord(unsigned bitPosition) const { | |||
1939 | return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)]; | |||
1940 | } | |||
1941 | ||||
1942 | /// Utility method to change the bit width of this APInt to new bit width, | |||
1943 | /// allocating and/or deallocating as necessary. There is no guarantee on the | |||
1944 | /// value of any bits upon return. Caller should populate the bits after. | |||
1945 | void reallocate(unsigned NewBitWidth); | |||
1946 | ||||
1947 | /// Convert a char array into an APInt | |||
1948 | /// | |||
1949 | /// \param radix 2, 8, 10, 16, or 36 | |||
1950 | /// Converts a string into a number. The string must be non-empty | |||
1951 | /// and well-formed as a number of the given base. The bit-width | |||
1952 | /// must be sufficient to hold the result. | |||
1953 | /// | |||
1954 | /// This is used by the constructors that take string arguments. | |||
1955 | /// | |||
1956 | /// StringRef::getAsInteger is superficially similar but (1) does | |||
1957 | /// not assume that the string is well-formed and (2) grows the | |||
1958 | /// result to hold the input. | |||
1959 | void fromString(unsigned numBits, StringRef str, uint8_t radix); | |||
1960 | ||||
1961 | /// An internal division function for dividing APInts. | |||
1962 | /// | |||
1963 | /// This is used by the toString method to divide by the radix. It simply | |||
1964 | /// provides a more convenient form of divide for internal use since KnuthDiv | |||
1965 | /// has specific constraints on its inputs. If those constraints are not met | |||
1966 | /// then it provides a simpler form of divide. | |||
1967 | static void divide(const WordType *LHS, unsigned lhsWords, | |||
1968 | const WordType *RHS, unsigned rhsWords, WordType *Quotient, | |||
1969 | WordType *Remainder); | |||
1970 | ||||
1971 | /// out-of-line slow case for inline constructor | |||
1972 | void initSlowCase(uint64_t val, bool isSigned); | |||
1973 | ||||
1974 | /// shared code between two array constructors | |||
1975 | void initFromArray(ArrayRef<uint64_t> array); | |||
1976 | ||||
1977 | /// out-of-line slow case for inline copy constructor | |||
1978 | void initSlowCase(const APInt &that); | |||
1979 | ||||
1980 | /// out-of-line slow case for shl | |||
1981 | void shlSlowCase(unsigned ShiftAmt); | |||
1982 | ||||
1983 | /// out-of-line slow case for lshr. | |||
1984 | void lshrSlowCase(unsigned ShiftAmt); | |||
1985 | ||||
1986 | /// out-of-line slow case for ashr. | |||
1987 | void ashrSlowCase(unsigned ShiftAmt); | |||
1988 | ||||
1989 | /// out-of-line slow case for operator= | |||
1990 | void assignSlowCase(const APInt &RHS); | |||
1991 | ||||
1992 | /// out-of-line slow case for operator== | |||
1993 | bool equalSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__)); | |||
1994 | ||||
1995 | /// out-of-line slow case for countLeadingZeros | |||
1996 | unsigned countLeadingZerosSlowCase() const LLVM_READONLY__attribute__((__pure__)); | |||
1997 | ||||
1998 | /// out-of-line slow case for countLeadingOnes. | |||
1999 | unsigned countLeadingOnesSlowCase() const LLVM_READONLY__attribute__((__pure__)); | |||
2000 | ||||
2001 | /// out-of-line slow case for countTrailingZeros. | |||
2002 | unsigned countTrailingZerosSlowCase() const LLVM_READONLY__attribute__((__pure__)); | |||
2003 | ||||
2004 | /// out-of-line slow case for countTrailingOnes | |||
2005 | unsigned countTrailingOnesSlowCase() const LLVM_READONLY__attribute__((__pure__)); | |||
2006 | ||||
2007 | /// out-of-line slow case for countPopulation | |||
2008 | unsigned countPopulationSlowCase() const LLVM_READONLY__attribute__((__pure__)); | |||
2009 | ||||
2010 | /// out-of-line slow case for intersects. | |||
2011 | bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__)); | |||
2012 | ||||
2013 | /// out-of-line slow case for isSubsetOf. | |||
2014 | bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__)); | |||
2015 | ||||
2016 | /// out-of-line slow case for setBits. | |||
2017 | void setBitsSlowCase(unsigned loBit, unsigned hiBit); | |||
2018 | ||||
2019 | /// out-of-line slow case for flipAllBits. | |||
2020 | void flipAllBitsSlowCase(); | |||
2021 | ||||
2022 | /// out-of-line slow case for concat. | |||
2023 | APInt concatSlowCase(const APInt &NewLSB) const; | |||
2024 | ||||
2025 | /// out-of-line slow case for operator&=. | |||
2026 | void andAssignSlowCase(const APInt &RHS); | |||
2027 | ||||
2028 | /// out-of-line slow case for operator|=. | |||
2029 | void orAssignSlowCase(const APInt &RHS); | |||
2030 | ||||
2031 | /// out-of-line slow case for operator^=. | |||
2032 | void xorAssignSlowCase(const APInt &RHS); | |||
2033 | ||||
2034 | /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal | |||
2035 | /// to, or greater than RHS. | |||
2036 | int compare(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__)); | |||
2037 | ||||
2038 | /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal | |||
2039 | /// to, or greater than RHS. | |||
2040 | int compareSigned(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__)); | |||
2041 | ||||
2042 | /// @} | |||
2043 | }; | |||
2044 | ||||
2045 | inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; } | |||
2046 | ||||
2047 | inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; } | |||
2048 | ||||
2049 | /// Unary bitwise complement operator. | |||
2050 | /// | |||
2051 | /// \returns an APInt that is the bitwise complement of \p v. | |||
2052 | inline APInt operator~(APInt v) { | |||
2053 | v.flipAllBits(); | |||
2054 | return v; | |||
2055 | } | |||
2056 | ||||
2057 | inline APInt operator&(APInt a, const APInt &b) { | |||
2058 | a &= b; | |||
2059 | return a; | |||
2060 | } | |||
2061 | ||||
2062 | inline APInt operator&(const APInt &a, APInt &&b) { | |||
2063 | b &= a; | |||
2064 | return std::move(b); | |||
2065 | } | |||
2066 | ||||
2067 | inline APInt operator&(APInt a, uint64_t RHS) { | |||
2068 | a &= RHS; | |||
2069 | return a; | |||
2070 | } | |||
2071 | ||||
2072 | inline APInt operator&(uint64_t LHS, APInt b) { | |||
2073 | b &= LHS; | |||
2074 | return b; | |||
2075 | } | |||
2076 | ||||
2077 | inline APInt operator|(APInt a, const APInt &b) { | |||
2078 | a |= b; | |||
2079 | return a; | |||
2080 | } | |||
2081 | ||||
2082 | inline APInt operator|(const APInt &a, APInt &&b) { | |||
2083 | b |= a; | |||
2084 | return std::move(b); | |||
2085 | } | |||
2086 | ||||
2087 | inline APInt operator|(APInt a, uint64_t RHS) { | |||
2088 | a |= RHS; | |||
2089 | return a; | |||
2090 | } | |||
2091 | ||||
2092 | inline APInt operator|(uint64_t LHS, APInt b) { | |||
2093 | b |= LHS; | |||
2094 | return b; | |||
2095 | } | |||
2096 | ||||
2097 | inline APInt operator^(APInt a, const APInt &b) { | |||
2098 | a ^= b; | |||
2099 | return a; | |||
2100 | } | |||
2101 | ||||
2102 | inline APInt operator^(const APInt &a, APInt &&b) { | |||
2103 | b ^= a; | |||
2104 | return std::move(b); | |||
2105 | } | |||
2106 | ||||
2107 | inline APInt operator^(APInt a, uint64_t RHS) { | |||
2108 | a ^= RHS; | |||
2109 | return a; | |||
2110 | } | |||
2111 | ||||
2112 | inline APInt operator^(uint64_t LHS, APInt b) { | |||
2113 | b ^= LHS; | |||
2114 | return b; | |||
2115 | } | |||
2116 | ||||
2117 | inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) { | |||
2118 | I.print(OS, true); | |||
2119 | return OS; | |||
2120 | } | |||
2121 | ||||
2122 | inline APInt operator-(APInt v) { | |||
2123 | v.negate(); | |||
2124 | return v; | |||
2125 | } | |||
2126 | ||||
2127 | inline APInt operator+(APInt a, const APInt &b) { | |||
2128 | a += b; | |||
2129 | return a; | |||
2130 | } | |||
2131 | ||||
2132 | inline APInt operator+(const APInt &a, APInt &&b) { | |||
2133 | b += a; | |||
2134 | return std::move(b); | |||
2135 | } | |||
2136 | ||||
2137 | inline APInt operator+(APInt a, uint64_t RHS) { | |||
2138 | a += RHS; | |||
2139 | return a; | |||
2140 | } | |||
2141 | ||||
2142 | inline APInt operator+(uint64_t LHS, APInt b) { | |||
2143 | b += LHS; | |||
2144 | return b; | |||
2145 | } | |||
2146 | ||||
2147 | inline APInt operator-(APInt a, const APInt &b) { | |||
2148 | a -= b; | |||
2149 | return a; | |||
2150 | } | |||
2151 | ||||
2152 | inline APInt operator-(const APInt &a, APInt &&b) { | |||
2153 | b.negate(); | |||
2154 | b += a; | |||
2155 | return std::move(b); | |||
2156 | } | |||
2157 | ||||
2158 | inline APInt operator-(APInt a, uint64_t RHS) { | |||
2159 | a -= RHS; | |||
2160 | return a; | |||
2161 | } | |||
2162 | ||||
2163 | inline APInt operator-(uint64_t LHS, APInt b) { | |||
2164 | b.negate(); | |||
2165 | b += LHS; | |||
2166 | return b; | |||
2167 | } | |||
2168 | ||||
2169 | inline APInt operator*(APInt a, uint64_t RHS) { | |||
2170 | a *= RHS; | |||
2171 | return a; | |||
2172 | } | |||
2173 | ||||
2174 | inline APInt operator*(uint64_t LHS, APInt b) { | |||
2175 | b *= LHS; | |||
2176 | return b; | |||
2177 | } | |||
2178 | ||||
2179 | namespace APIntOps { | |||
2180 | ||||
2181 | /// Determine the smaller of two APInts considered to be signed. | |||
2182 | inline const APInt &smin(const APInt &A, const APInt &B) { | |||
2183 | return A.slt(B) ? A : B; | |||
2184 | } | |||
2185 | ||||
2186 | /// Determine the larger of two APInts considered to be signed. | |||
2187 | inline const APInt &smax(const APInt &A, const APInt &B) { | |||
2188 | return A.sgt(B) ? A : B; | |||
2189 | } | |||
2190 | ||||
2191 | /// Determine the smaller of two APInts considered to be unsigned. | |||
2192 | inline const APInt &umin(const APInt &A, const APInt &B) { | |||
2193 | return A.ult(B) ? A : B; | |||
2194 | } | |||
2195 | ||||
2196 | /// Determine the larger of two APInts considered to be unsigned. | |||
2197 | inline const APInt &umax(const APInt &A, const APInt &B) { | |||
2198 | return A.ugt(B) ? A : B; | |||
2199 | } | |||
2200 | ||||
2201 | /// Compute GCD of two unsigned APInt values. | |||
2202 | /// | |||
2203 | /// This function returns the greatest common divisor of the two APInt values | |||
2204 | /// using Stein's algorithm. | |||
2205 | /// | |||
2206 | /// \returns the greatest common divisor of A and B. | |||
2207 | APInt GreatestCommonDivisor(APInt A, APInt B); | |||
2208 | ||||
2209 | /// Converts the given APInt to a double value. | |||
2210 | /// | |||
2211 | /// Treats the APInt as an unsigned value for conversion purposes. | |||
2212 | inline double RoundAPIntToDouble(const APInt &APIVal) { | |||
2213 | return APIVal.roundToDouble(); | |||
2214 | } | |||
2215 | ||||
2216 | /// Converts the given APInt to a double value. | |||
2217 | /// | |||
2218 | /// Treats the APInt as a signed value for conversion purposes. | |||
2219 | inline double RoundSignedAPIntToDouble(const APInt &APIVal) { | |||
2220 | return APIVal.signedRoundToDouble(); | |||
2221 | } | |||
2222 | ||||
2223 | /// Converts the given APInt to a float value. | |||
2224 | inline float RoundAPIntToFloat(const APInt &APIVal) { | |||
2225 | return float(RoundAPIntToDouble(APIVal)); | |||
2226 | } | |||
2227 | ||||
2228 | /// Converts the given APInt to a float value. | |||
2229 | /// | |||
2230 | /// Treats the APInt as a signed value for conversion purposes. | |||
2231 | inline float RoundSignedAPIntToFloat(const APInt &APIVal) { | |||
2232 | return float(APIVal.signedRoundToDouble()); | |||
2233 | } | |||
2234 | ||||
2235 | /// Converts the given double value into a APInt. | |||
2236 | /// | |||
2237 | /// This function convert a double value to an APInt value. | |||
2238 | APInt RoundDoubleToAPInt(double Double, unsigned width); | |||
2239 | ||||
2240 | /// Converts a float value into a APInt. | |||
2241 | /// | |||
2242 | /// Converts a float value into an APInt value. | |||
2243 | inline APInt RoundFloatToAPInt(float Float, unsigned width) { | |||
2244 | return RoundDoubleToAPInt(double(Float), width); | |||
2245 | } | |||
2246 | ||||
2247 | /// Return A unsign-divided by B, rounded by the given rounding mode. | |||
2248 | APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM); | |||
2249 | ||||
2250 | /// Return A sign-divided by B, rounded by the given rounding mode. | |||
2251 | APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM); | |||
2252 | ||||
2253 | /// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range | |||
2254 | /// (e.g. 32 for i32). | |||
2255 | /// This function finds the smallest number n, such that | |||
2256 | /// (a) n >= 0 and q(n) = 0, or | |||
2257 | /// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all | |||
2258 | /// integers, belong to two different intervals [Rk, Rk+R), | |||
2259 | /// where R = 2^BW, and k is an integer. | |||
2260 | /// The idea here is to find when q(n) "overflows" 2^BW, while at the | |||
2261 | /// same time "allowing" subtraction. In unsigned modulo arithmetic a | |||
2262 | /// subtraction (treated as addition of negated numbers) would always | |||
2263 | /// count as an overflow, but here we want to allow values to decrease | |||
2264 | /// and increase as long as they are within the same interval. | |||
2265 | /// Specifically, adding of two negative numbers should not cause an | |||
2266 | /// overflow (as long as the magnitude does not exceed the bit width). | |||
2267 | /// On the other hand, given a positive number, adding a negative | |||
2268 | /// number to it can give a negative result, which would cause the | |||
2269 | /// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is | |||
2270 | /// treated as a special case of an overflow. | |||
2271 | /// | |||
2272 | /// This function returns std::nullopt if after finding k that minimizes the | |||
2273 | /// positive solution to q(n) = kR, both solutions are contained between | |||
2274 | /// two consecutive integers. | |||
2275 | /// | |||
2276 | /// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation | |||
2277 | /// in arithmetic modulo 2^BW, and treating the values as signed) by the | |||
2278 | /// virtue of *signed* overflow. This function will *not* find such an n, | |||
2279 | /// however it may find a value of n satisfying the inequalities due to | |||
2280 | /// an *unsigned* overflow (if the values are treated as unsigned). | |||
2281 | /// To find a solution for a signed overflow, treat it as a problem of | |||
2282 | /// finding an unsigned overflow with a range with of BW-1. | |||
2283 | /// | |||
2284 | /// The returned value may have a different bit width from the input | |||
2285 | /// coefficients. | |||
2286 | std::optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C, | |||
2287 | unsigned RangeWidth); | |||
2288 | ||||
2289 | /// Compare two values, and if they are different, return the position of the | |||
2290 | /// most significant bit that is different in the values. | |||
2291 | std::optional<unsigned> GetMostSignificantDifferentBit(const APInt &A, | |||
2292 | const APInt &B); | |||
2293 | ||||
2294 | /// Splat/Merge neighboring bits to widen/narrow the bitmask represented | |||
2295 | /// by \param A to \param NewBitWidth bits. | |||
2296 | /// | |||
2297 | /// MatchAnyBits: (Default) | |||
2298 | /// e.g. ScaleBitMask(0b0101, 8) -> 0b00110011 | |||
2299 | /// e.g. ScaleBitMask(0b00011011, 4) -> 0b0111 | |||
2300 | /// | |||
2301 | /// MatchAllBits: | |||
2302 | /// e.g. ScaleBitMask(0b0101, 8) -> 0b00110011 | |||
2303 | /// e.g. ScaleBitMask(0b00011011, 4) -> 0b0001 | |||
2304 | /// A.getBitwidth() or NewBitWidth must be a whole multiples of the other. | |||
2305 | APInt ScaleBitMask(const APInt &A, unsigned NewBitWidth, | |||
2306 | bool MatchAllBits = false); | |||
2307 | } // namespace APIntOps | |||
2308 | ||||
2309 | // See friend declaration above. This additional declaration is required in | |||
2310 | // order to compile LLVM with IBM xlC compiler. | |||
2311 | hash_code hash_value(const APInt &Arg); | |||
2312 | ||||
2313 | /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst | |||
2314 | /// with the integer held in IntVal. | |||
2315 | void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, unsigned StoreBytes); | |||
2316 | ||||
2317 | /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting | |||
2318 | /// from Src into IntVal, which is assumed to be wide enough and to hold zero. | |||
2319 | void LoadIntFromMemory(APInt &IntVal, const uint8_t *Src, unsigned LoadBytes); | |||
2320 | ||||
2321 | /// Provide DenseMapInfo for APInt. | |||
2322 | template <> struct DenseMapInfo<APInt, void> { | |||
2323 | static inline APInt getEmptyKey() { | |||
2324 | APInt V(nullptr, 0); | |||
2325 | V.U.VAL = ~0ULL; | |||
2326 | return V; | |||
2327 | } | |||
2328 | ||||
2329 | static inline APInt getTombstoneKey() { | |||
2330 | APInt V(nullptr, 0); | |||
2331 | V.U.VAL = ~1ULL; | |||
2332 | return V; | |||
2333 | } | |||
2334 | ||||
2335 | static unsigned getHashValue(const APInt &Key); | |||
2336 | ||||
2337 | static bool isEqual(const APInt &LHS, const APInt &RHS) { | |||
2338 | return LHS.getBitWidth() == RHS.getBitWidth() && LHS == RHS; | |||
2339 | } | |||
2340 | }; | |||
2341 | ||||
2342 | } // namespace llvm | |||
2343 | ||||
2344 | #endif |