Bug Summary

File:build/llvm-toolchain-snapshot-15~++20220214111405+a87d3ba61c64/lld/ELF/ARMErrataFix.cpp
Warning:line 209, column 12
Value stored to 'destAddr' during its initialization is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name ARMErrataFix.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220214111405+a87d3ba61c64/build-llvm -resource-dir /usr/lib/llvm-15/lib/clang/15.0.0 -D LLD_VENDOR="Debian" -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/lld/ELF -I /build/llvm-toolchain-snapshot-15~++20220214111405+a87d3ba61c64/lld/ELF -I /build/llvm-toolchain-snapshot-15~++20220214111405+a87d3ba61c64/lld/include -I tools/lld/include -I include -I /build/llvm-toolchain-snapshot-15~++20220214111405+a87d3ba61c64/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-15/lib/clang/15.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220214111405+a87d3ba61c64/build-llvm=build-llvm -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220214111405+a87d3ba61c64/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220214111405+a87d3ba61c64/build-llvm=build-llvm -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220214111405+a87d3ba61c64/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220214111405+a87d3ba61c64/build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220214111405+a87d3ba61c64/build-llvm=build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220214111405+a87d3ba61c64/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-02-14-124508-141753-1 -x c++ /build/llvm-toolchain-snapshot-15~++20220214111405+a87d3ba61c64/lld/ELF/ARMErrataFix.cpp
1//===- ARMErrataFix.cpp ---------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8// This file implements Section Patching for the purpose of working around the
9// Cortex-a8 erratum 657417 "A 32bit branch instruction that spans 2 4K regions
10// can result in an incorrect instruction fetch or processor deadlock." The
11// erratum affects all but r1p7, r2p5, r2p6, r3p1 and r3p2 revisions of the
12// Cortex-A8. A high level description of the patching technique is given in
13// the opening comment of AArch64ErrataFix.cpp.
14//===----------------------------------------------------------------------===//
15
16#include "ARMErrataFix.h"
17#include "LinkerScript.h"
18#include "OutputSections.h"
19#include "Relocations.h"
20#include "Symbols.h"
21#include "SyntheticSections.h"
22#include "Target.h"
23#include "lld/Common/CommonLinkerContext.h"
24#include "lld/Common/Strings.h"
25#include "llvm/Support/Endian.h"
26#include <algorithm>
27
28using namespace llvm;
29using namespace llvm::ELF;
30using namespace llvm::object;
31using namespace llvm::support;
32using namespace llvm::support::endian;
33using namespace lld;
34using namespace lld::elf;
35
36// The documented title for Erratum 657417 is:
37// "A 32bit branch instruction that spans two 4K regions can result in an
38// incorrect instruction fetch or processor deadlock". Graphically using a
39// 32-bit B.w instruction encoded as a pair of halfwords 0xf7fe 0xbfff
40// xxxxxx000 // Memory region 1 start
41// target:
42// ...
43// xxxxxxffe f7fe // First halfword of branch to target:
44// xxxxxx000 // Memory region 2 start
45// xxxxxx002 bfff // Second halfword of branch to target:
46//
47// The specific trigger conditions that can be detected at link time are:
48// - There is a 32-bit Thumb-2 branch instruction with an address of the form
49// xxxxxxFFE. The first 2 bytes of the instruction are in 4KiB region 1, the
50// second 2 bytes are in region 2.
51// - The branch instruction is one of BLX, BL, B.w BCC.w
52// - The instruction preceding the branch is a 32-bit non-branch instruction.
53// - The target of the branch is in region 1.
54//
55// The linker mitigation for the fix is to redirect any branch that meets the
56// erratum conditions to a patch section containing a branch to the target.
57//
58// As adding patch sections may move branches onto region boundaries the patch
59// must iterate until no more patches are added.
60//
61// Example, before:
62// 00000FFA func: NOP.w // 32-bit Thumb function
63// 00000FFE B.W func // 32-bit branch spanning 2 regions, dest in 1st.
64// Example, after:
65// 00000FFA func: NOP.w // 32-bit Thumb function
66// 00000FFE B.w __CortexA8657417_00000FFE
67// 00001002 2 - bytes padding
68// 00001004 __CortexA8657417_00000FFE: B.w func
69
70class elf::Patch657417Section : public SyntheticSection {
71public:
72 Patch657417Section(InputSection *p, uint64_t off, uint32_t instr, bool isARM);
73
74 void writeTo(uint8_t *buf) override;
75
76 size_t getSize() const override { return 4; }
77
78 // Get the virtual address of the branch instruction at patcheeOffset.
79 uint64_t getBranchAddr() const;
80
81 static bool classof(const SectionBase *d) {
82 return d->kind() == InputSectionBase::Synthetic && d->name ==".text.patch";
83 }
84
85 // The Section we are patching.
86 const InputSection *patchee;
87 // The offset of the instruction in the Patchee section we are patching.
88 uint64_t patcheeOffset;
89 // A label for the start of the Patch that we can use as a relocation target.
90 Symbol *patchSym;
91 // A decoding of the branch instruction at patcheeOffset.
92 uint32_t instr;
93 // True If the patch is to be written in ARM state, otherwise the patch will
94 // be written in Thumb state.
95 bool isARM;
96};
97
98// Return true if the half-word, when taken as the first of a pair of halfwords
99// is the first half of a 32-bit instruction.
100// Reference from ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition
101// section A6.3: 32-bit Thumb instruction encoding
102// | HW1 | HW2 |
103// | 1 1 1 | op1 (2) | op2 (7) | x (4) |op| x (15) |
104// With op1 == 0b00, a 16-bit instruction is encoded.
105//
106// We test only the first halfword, looking for op != 0b00.
107static bool is32bitInstruction(uint16_t hw) {
108 return (hw & 0xe000) == 0xe000 && (hw & 0x1800) != 0x0000;
109}
110
111// Reference from ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition
112// section A6.3.4 Branches and miscellaneous control.
113// | HW1 | HW2 |
114// | 1 1 1 | 1 0 | op (7) | x (4) | 1 | op1 (3) | op2 (4) | imm8 (8) |
115// op1 == 0x0 op != x111xxx | Conditional branch (Bcc.W)
116// op1 == 0x1 | Branch (B.W)
117// op1 == 1x0 | Branch with Link and Exchange (BLX.w)
118// op1 == 1x1 | Branch with Link (BL.W)
119
120static bool isBcc(uint32_t instr) {
121 return (instr & 0xf800d000) == 0xf0008000 &&
122 (instr & 0x03800000) != 0x03800000;
123}
124
125static bool isB(uint32_t instr) { return (instr & 0xf800d000) == 0xf0009000; }
126
127static bool isBLX(uint32_t instr) { return (instr & 0xf800d000) == 0xf000c000; }
128
129static bool isBL(uint32_t instr) { return (instr & 0xf800d000) == 0xf000d000; }
130
131static bool is32bitBranch(uint32_t instr) {
132 return isBcc(instr) || isB(instr) || isBL(instr) || isBLX(instr);
133}
134
135Patch657417Section::Patch657417Section(InputSection *p, uint64_t off,
136 uint32_t instr, bool isARM)
137 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 4,
138 ".text.patch"),
139 patchee(p), patcheeOffset(off), instr(instr), isARM(isARM) {
140 parent = p->getParent();
141 patchSym = addSyntheticLocal(
142 saver().save("__CortexA8657417_" + utohexstr(getBranchAddr())), STT_FUNC,
143 isARM ? 0 : 1, getSize(), *this);
144 addSyntheticLocal(saver().save(isARM ? "$a" : "$t"), STT_NOTYPE, 0, 0, *this);
145}
146
147uint64_t Patch657417Section::getBranchAddr() const {
148 return patchee->getVA(patcheeOffset);
149}
150
151// Given a branch instruction instr at sourceAddr work out its destination
152// address. This is only used when the branch instruction has no relocation.
153static uint64_t getThumbDestAddr(uint64_t sourceAddr, uint32_t instr) {
154 uint8_t buf[4];
155 write16le(buf, instr >> 16);
156 write16le(buf + 2, instr & 0x0000ffff);
157 int64_t offset;
158 if (isBcc(instr))
159 offset = target->getImplicitAddend(buf, R_ARM_THM_JUMP19);
160 else if (isB(instr))
161 offset = target->getImplicitAddend(buf, R_ARM_THM_JUMP24);
162 else
163 offset = target->getImplicitAddend(buf, R_ARM_THM_CALL);
164 // A BLX instruction from Thumb to Arm may have an address that is
165 // not 4-byte aligned. As Arm instructions are always 4-byte aligned
166 // the instruction is calculated (from Arm ARM):
167 // targetAddress = Align(PC, 4) + imm32
168 // where
169 // Align(x, y) = y * (x Div y)
170 // which corresponds to alignDown.
171 if (isBLX(instr))
172 sourceAddr = alignDown(sourceAddr, 4);
173 return sourceAddr + offset + 4;
174}
175
176void Patch657417Section::writeTo(uint8_t *buf) {
177 // The base instruction of the patch is always a 32-bit unconditional branch.
178 if (isARM)
179 write32le(buf, 0xea000000);
180 else
181 write32le(buf, 0x9000f000);
182 // If we have a relocation then apply it.
183 if (!relocations.empty()) {
184 relocateAlloc(buf, buf + getSize());
185 return;
186 }
187
188 // If we don't have a relocation then we must calculate and write the offset
189 // ourselves.
190 // Get the destination offset from the addend in the branch instruction.
191 // We cannot use the instruction in the patchee section as this will have
192 // been altered to point to us!
193 uint64_t s = getThumbDestAddr(getBranchAddr(), instr);
194 // A BLX changes the state of the branch in the patch to Arm state, which
195 // has a PC Bias of 8, whereas in all other cases the branch is in Thumb
196 // state with a PC Bias of 4.
197 uint64_t pcBias = isBLX(instr) ? 8 : 4;
198 uint64_t p = getVA(pcBias);
199 target->relocateNoSym(buf, isARM ? R_ARM_JUMP24 : R_ARM_THM_JUMP24, s - p);
200}
201
202// Given a branch instruction spanning two 4KiB regions, at offset off from the
203// start of isec, return true if the destination of the branch is within the
204// first of the two 4Kib regions.
205static bool branchDestInFirstRegion(const InputSection *isec, uint64_t off,
206 uint32_t instr, const Relocation *r) {
207 uint64_t sourceAddr = isec->getVA(0) + off;
208 assert((sourceAddr & 0xfff) == 0xffe)(static_cast <bool> ((sourceAddr & 0xfff) == 0xffe)
? void (0) : __assert_fail ("(sourceAddr & 0xfff) == 0xffe"
, "lld/ELF/ARMErrataFix.cpp", 208, __extension__ __PRETTY_FUNCTION__
))
;
209 uint64_t destAddr = sourceAddr;
Value stored to 'destAddr' during its initialization is never read
210 // If there is a branch relocation at the same offset we must use this to
211 // find the destination address as the branch could be indirected via a thunk
212 // or the PLT.
213 if (r) {
214 uint64_t dst = (r->expr == R_PLT_PC) ? r->sym->getPltVA() : r->sym->getVA();
215 // Account for Thumb PC bias, usually cancelled to 0 by addend of -4.
216 destAddr = dst + r->addend + 4;
217 } else {
218 // If there is no relocation, we must have an intra-section branch
219 // We must extract the offset from the addend manually.
220 destAddr = getThumbDestAddr(sourceAddr, instr);
221 }
222
223 return (destAddr & 0xfffff000) == (sourceAddr & 0xfffff000);
224}
225
226// Return true if a branch can reach a patch section placed after isec.
227// The Bcc.w instruction has a range of 1 MiB, all others have 16 MiB.
228static bool patchInRange(const InputSection *isec, uint64_t off,
229 uint32_t instr) {
230
231 // We need the branch at source to reach a patch section placed immediately
232 // after isec. As there can be more than one patch in the patch section we
233 // add 0x100 as contingency to account for worst case of 1 branch every 4KiB
234 // for a 1 MiB range.
235 return target->inBranchRange(
236 isBcc(instr) ? R_ARM_THM_JUMP19 : R_ARM_THM_JUMP24, isec->getVA(off),
237 isec->getVA() + isec->getSize() + 0x100);
238}
239
240struct ScanResult {
241 // Offset of branch within its InputSection.
242 uint64_t off;
243 // Cached decoding of the branch instruction.
244 uint32_t instr;
245 // Branch relocation at off. Will be nullptr if no relocation exists.
246 Relocation *rel;
247};
248
249// Detect the erratum sequence, returning the offset of the branch instruction
250// and a decoding of the branch. If the erratum sequence is not found then
251// return an offset of 0 for the branch. 0 is a safe value to use for no patch
252// as there must be at least one 32-bit non-branch instruction before the
253// branch so the minimum offset for a patch is 4.
254static ScanResult scanCortexA8Errata657417(InputSection *isec, uint64_t &off,
255 uint64_t limit) {
256 uint64_t isecAddr = isec->getVA(0);
257 // Advance Off so that (isecAddr + off) modulo 0x1000 is at least 0xffa. We
258 // need to check for a 32-bit instruction immediately before a 32-bit branch
259 // at 0xffe modulo 0x1000.
260 off = alignTo(isecAddr + off, 0x1000, 0xffa) - isecAddr;
261 if (off >= limit || limit - off < 8) {
262 // Need at least 2 4-byte sized instructions to trigger erratum.
263 off = limit;
264 return {0, 0, nullptr};
265 }
266
267 ScanResult scanRes = {0, 0, nullptr};
268 const uint8_t *buf = isec->data().begin();
269 // ARMv7-A Thumb 32-bit instructions are encoded 2 consecutive
270 // little-endian halfwords.
271 const ulittle16_t *instBuf = reinterpret_cast<const ulittle16_t *>(buf + off);
272 uint16_t hw11 = *instBuf++;
273 uint16_t hw12 = *instBuf++;
274 uint16_t hw21 = *instBuf++;
275 uint16_t hw22 = *instBuf++;
276 if (is32bitInstruction(hw11) && is32bitInstruction(hw21)) {
277 uint32_t instr1 = (hw11 << 16) | hw12;
278 uint32_t instr2 = (hw21 << 16) | hw22;
279 if (!is32bitBranch(instr1) && is32bitBranch(instr2)) {
280 // Find a relocation for the branch if it exists. This will be used
281 // to determine the target.
282 uint64_t branchOff = off + 4;
283 auto relIt = llvm::find_if(isec->relocations, [=](const Relocation &r) {
284 return r.offset == branchOff &&
285 (r.type == R_ARM_THM_JUMP19 || r.type == R_ARM_THM_JUMP24 ||
286 r.type == R_ARM_THM_CALL);
287 });
288 if (relIt != isec->relocations.end())
289 scanRes.rel = &(*relIt);
290 if (branchDestInFirstRegion(isec, branchOff, instr2, scanRes.rel)) {
291 if (patchInRange(isec, branchOff, instr2)) {
292 scanRes.off = branchOff;
293 scanRes.instr = instr2;
294 } else {
295 warn(toString(isec->file) +
296 ": skipping cortex-a8 657417 erratum sequence, section " +
297 isec->name + " is too large to patch");
298 }
299 }
300 }
301 }
302 off += 0x1000;
303 return scanRes;
304}
305
306void ARMErr657417Patcher::init() {
307 // The Arm ABI permits a mix of ARM, Thumb and Data in the same
308 // InputSection. We must only scan Thumb instructions to avoid false
309 // matches. We use the mapping symbols in the InputObjects to identify this
310 // data, caching the results in sectionMap so we don't have to recalculate
311 // it each pass.
312
313 // The ABI Section 4.5.5 Mapping symbols; defines local symbols that describe
314 // half open intervals [Symbol Value, Next Symbol Value) of code and data
315 // within sections. If there is no next symbol then the half open interval is
316 // [Symbol Value, End of section). The type, code or data, is determined by
317 // the mapping symbol name, $a for Arm code, $t for Thumb code, $d for data.
318 auto isArmMapSymbol = [](const Symbol *s) {
319 return s->getName() == "$a" || s->getName().startswith("$a.");
320 };
321 auto isThumbMapSymbol = [](const Symbol *s) {
322 return s->getName() == "$t" || s->getName().startswith("$t.");
323 };
324 auto isDataMapSymbol = [](const Symbol *s) {
325 return s->getName() == "$d" || s->getName().startswith("$d.");
326 };
327
328 // Collect mapping symbols for every executable InputSection.
329 for (ELFFileBase *file : objectFiles) {
330 for (Symbol *s : file->getLocalSymbols()) {
331 auto *def = dyn_cast<Defined>(s);
332 if (!def)
333 continue;
334 if (!isArmMapSymbol(def) && !isThumbMapSymbol(def) &&
335 !isDataMapSymbol(def))
336 continue;
337 if (auto *sec = dyn_cast_or_null<InputSection>(def->section))
338 if (sec->flags & SHF_EXECINSTR)
339 sectionMap[sec].push_back(def);
340 }
341 }
342 // For each InputSection make sure the mapping symbols are in sorted in
343 // ascending order and are in alternating Thumb, non-Thumb order.
344 for (auto &kv : sectionMap) {
345 std::vector<const Defined *> &mapSyms = kv.second;
346 llvm::stable_sort(mapSyms, [](const Defined *a, const Defined *b) {
347 return a->value < b->value;
348 });
349 mapSyms.erase(std::unique(mapSyms.begin(), mapSyms.end(),
350 [=](const Defined *a, const Defined *b) {
351 return (isThumbMapSymbol(a) ==
352 isThumbMapSymbol(b));
353 }),
354 mapSyms.end());
355 // Always start with a Thumb Mapping Symbol
356 if (!mapSyms.empty() && !isThumbMapSymbol(mapSyms.front()))
357 mapSyms.erase(mapSyms.begin());
358 }
359 initialized = true;
360}
361
362void ARMErr657417Patcher::insertPatches(
363 InputSectionDescription &isd, std::vector<Patch657417Section *> &patches) {
364 uint64_t spacing = 0x100000 - 0x7500;
365 uint64_t isecLimit;
366 uint64_t prevIsecLimit = isd.sections.front()->outSecOff;
367 uint64_t patchUpperBound = prevIsecLimit + spacing;
368 uint64_t outSecAddr = isd.sections.front()->getParent()->addr;
369
370 // Set the outSecOff of patches to the place where we want to insert them.
371 // We use a similar strategy to initial thunk placement, using 1 MiB as the
372 // range of the Thumb-2 conditional branch with a contingency accounting for
373 // thunk generation.
374 auto patchIt = patches.begin();
375 auto patchEnd = patches.end();
376 for (const InputSection *isec : isd.sections) {
377 isecLimit = isec->outSecOff + isec->getSize();
378 if (isecLimit > patchUpperBound) {
379 for (; patchIt != patchEnd; ++patchIt) {
380 if ((*patchIt)->getBranchAddr() - outSecAddr >= prevIsecLimit)
381 break;
382 (*patchIt)->outSecOff = prevIsecLimit;
383 }
384 patchUpperBound = prevIsecLimit + spacing;
385 }
386 prevIsecLimit = isecLimit;
387 }
388 for (; patchIt != patchEnd; ++patchIt)
389 (*patchIt)->outSecOff = isecLimit;
390
391 // Merge all patch sections. We use the outSecOff assigned above to
392 // determine the insertion point. This is ok as we only merge into an
393 // InputSectionDescription once per pass, and at the end of the pass
394 // assignAddresses() will recalculate all the outSecOff values.
395 SmallVector<InputSection *, 0> tmp;
396 tmp.reserve(isd.sections.size() + patches.size());
397 auto mergeCmp = [](const InputSection *a, const InputSection *b) {
398 if (a->outSecOff != b->outSecOff)
399 return a->outSecOff < b->outSecOff;
400 return isa<Patch657417Section>(a) && !isa<Patch657417Section>(b);
401 };
402 std::merge(isd.sections.begin(), isd.sections.end(), patches.begin(),
403 patches.end(), std::back_inserter(tmp), mergeCmp);
404 isd.sections = std::move(tmp);
405}
406
407// Given a branch instruction described by ScanRes redirect it to a patch
408// section containing an unconditional branch instruction to the target.
409// Ensure that this patch section is 4-byte aligned so that the branch cannot
410// span two 4 KiB regions. Place the patch section so that it is always after
411// isec so the branch we are patching always goes forwards.
412static void implementPatch(ScanResult sr, InputSection *isec,
413 std::vector<Patch657417Section *> &patches) {
414
415 log("detected cortex-a8-657419 erratum sequence starting at " +
416 utohexstr(isec->getVA(sr.off)) + " in unpatched output.");
417 Patch657417Section *psec;
418 // We have two cases to deal with.
419 // Case 1. There is a relocation at patcheeOffset to a symbol. The
420 // unconditional branch in the patch must have a relocation so that any
421 // further redirection via the PLT or a Thunk happens as normal. At
422 // patcheeOffset we redirect the existing relocation to a Symbol defined at
423 // the start of the patch section.
424 //
425 // Case 2. There is no relocation at patcheeOffset. We are unlikely to have
426 // a symbol that we can use as a target for a relocation in the patch section.
427 // Luckily we know that the destination cannot be indirected via the PLT or
428 // a Thunk so we can just write the destination directly.
429 if (sr.rel) {
430 // Case 1. We have an existing relocation to redirect to patch and a
431 // Symbol target.
432
433 // Create a branch relocation for the unconditional branch in the patch.
434 // This can be redirected via the PLT or Thunks.
435 RelType patchRelType = R_ARM_THM_JUMP24;
436 int64_t patchRelAddend = sr.rel->addend;
437 bool destIsARM = false;
438 if (isBL(sr.instr) || isBLX(sr.instr)) {
439 // The final target of the branch may be ARM or Thumb, if the target
440 // is ARM then we write the patch in ARM state to avoid a state change
441 // Thunk from the patch to the target.
442 uint64_t dstSymAddr = (sr.rel->expr == R_PLT_PC) ? sr.rel->sym->getPltVA()
443 : sr.rel->sym->getVA();
444 destIsARM = (dstSymAddr & 1) == 0;
445 }
446 psec = make<Patch657417Section>(isec, sr.off, sr.instr, destIsARM);
447 if (destIsARM) {
448 // The patch will be in ARM state. Use an ARM relocation and account for
449 // the larger ARM PC-bias of 8 rather than Thumb's 4.
450 patchRelType = R_ARM_JUMP24;
451 patchRelAddend -= 4;
452 }
453 psec->relocations.push_back(
454 Relocation{sr.rel->expr, patchRelType, 0, patchRelAddend, sr.rel->sym});
455 // Redirect the existing branch relocation to the patch.
456 sr.rel->expr = R_PC;
457 sr.rel->addend = -4;
458 sr.rel->sym = psec->patchSym;
459 } else {
460 // Case 2. We do not have a relocation to the patch. Add a relocation of the
461 // appropriate type to the patch at patcheeOffset.
462
463 // The destination is ARM if we have a BLX.
464 psec = make<Patch657417Section>(isec, sr.off, sr.instr, isBLX(sr.instr));
465 RelType type;
466 if (isBcc(sr.instr))
467 type = R_ARM_THM_JUMP19;
468 else if (isB(sr.instr))
469 type = R_ARM_THM_JUMP24;
470 else
471 type = R_ARM_THM_CALL;
472 isec->relocations.push_back(
473 Relocation{R_PC, type, sr.off, -4, psec->patchSym});
474 }
475 patches.push_back(psec);
476}
477
478// Scan all the instructions in InputSectionDescription, for each instance of
479// the erratum sequence create a Patch657417Section. We return the list of
480// Patch657417Sections that need to be applied to the InputSectionDescription.
481std::vector<Patch657417Section *>
482ARMErr657417Patcher::patchInputSectionDescription(
483 InputSectionDescription &isd) {
484 std::vector<Patch657417Section *> patches;
485 for (InputSection *isec : isd.sections) {
486 // LLD doesn't use the erratum sequence in SyntheticSections.
487 if (isa<SyntheticSection>(isec))
488 continue;
489 // Use sectionMap to make sure we only scan Thumb code and not Arm or inline
490 // data. We have already sorted mapSyms in ascending order and removed
491 // consecutive mapping symbols of the same type. Our range of executable
492 // instructions to scan is therefore [thumbSym->value, nonThumbSym->value)
493 // or [thumbSym->value, section size).
494 std::vector<const Defined *> &mapSyms = sectionMap[isec];
495
496 auto thumbSym = mapSyms.begin();
497 while (thumbSym != mapSyms.end()) {
498 auto nonThumbSym = std::next(thumbSym);
499 uint64_t off = (*thumbSym)->value;
500 uint64_t limit = (nonThumbSym == mapSyms.end()) ? isec->data().size()
501 : (*nonThumbSym)->value;
502
503 while (off < limit) {
504 ScanResult sr = scanCortexA8Errata657417(isec, off, limit);
505 if (sr.off)
506 implementPatch(sr, isec, patches);
507 }
508 if (nonThumbSym == mapSyms.end())
509 break;
510 thumbSym = std::next(nonThumbSym);
511 }
512 }
513 return patches;
514}
515
516bool ARMErr657417Patcher::createFixes() {
517 if (!initialized)
518 init();
519
520 bool addressesChanged = false;
521 for (OutputSection *os : outputSections) {
522 if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR))
523 continue;
524 for (SectionCommand *cmd : os->commands)
525 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) {
526 std::vector<Patch657417Section *> patches =
527 patchInputSectionDescription(*isd);
528 if (!patches.empty()) {
529 insertPatches(*isd, patches);
530 addressesChanged = true;
531 }
532 }
533 }
534 return addressesChanged;
535}