Bug Summary

File:build/source/llvm/lib/Target/ARM/ARMISelLowering.cpp
Warning:line 5093, column 7
1st function call argument is an uninitialized value

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name ARMISelLowering.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm/tools/clang/stage2-bins -resource-dir /usr/lib/llvm-17/lib/clang/17 -D _DEBUG -D _GLIBCXX_ASSERTIONS -D _GNU_SOURCE -D _LIBCPP_ENABLE_ASSERTIONS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I lib/Target/ARM -I /build/source/llvm/lib/Target/ARM -I include -I /build/source/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-17/lib/clang/17/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fcoverage-prefix-map=/build/source/= -source-date-epoch 1679443490 -O2 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility=hidden -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2023-03-22-005342-16304-1 -x c++ /build/source/llvm/lib/Target/ARM/ARMISelLowering.cpp
1//===- ARMISelLowering.cpp - ARM DAG Lowering Implementation --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the interfaces that ARM uses to lower LLVM code into a
10// selection DAG.
11//
12//===----------------------------------------------------------------------===//
13
14#include "ARMISelLowering.h"
15#include "ARMBaseInstrInfo.h"
16#include "ARMBaseRegisterInfo.h"
17#include "ARMCallingConv.h"
18#include "ARMConstantPoolValue.h"
19#include "ARMMachineFunctionInfo.h"
20#include "ARMPerfectShuffle.h"
21#include "ARMRegisterInfo.h"
22#include "ARMSelectionDAGInfo.h"
23#include "ARMSubtarget.h"
24#include "ARMTargetTransformInfo.h"
25#include "MCTargetDesc/ARMAddressingModes.h"
26#include "MCTargetDesc/ARMBaseInfo.h"
27#include "Utils/ARMBaseInfo.h"
28#include "llvm/ADT/APFloat.h"
29#include "llvm/ADT/APInt.h"
30#include "llvm/ADT/ArrayRef.h"
31#include "llvm/ADT/BitVector.h"
32#include "llvm/ADT/DenseMap.h"
33#include "llvm/ADT/STLExtras.h"
34#include "llvm/ADT/SmallPtrSet.h"
35#include "llvm/ADT/SmallVector.h"
36#include "llvm/ADT/Statistic.h"
37#include "llvm/ADT/StringExtras.h"
38#include "llvm/ADT/StringRef.h"
39#include "llvm/ADT/StringSwitch.h"
40#include "llvm/ADT/Twine.h"
41#include "llvm/Analysis/VectorUtils.h"
42#include "llvm/CodeGen/CallingConvLower.h"
43#include "llvm/CodeGen/ISDOpcodes.h"
44#include "llvm/CodeGen/IntrinsicLowering.h"
45#include "llvm/CodeGen/MachineBasicBlock.h"
46#include "llvm/CodeGen/MachineConstantPool.h"
47#include "llvm/CodeGen/MachineFrameInfo.h"
48#include "llvm/CodeGen/MachineFunction.h"
49#include "llvm/CodeGen/MachineInstr.h"
50#include "llvm/CodeGen/MachineInstrBuilder.h"
51#include "llvm/CodeGen/MachineJumpTableInfo.h"
52#include "llvm/CodeGen/MachineMemOperand.h"
53#include "llvm/CodeGen/MachineOperand.h"
54#include "llvm/CodeGen/MachineRegisterInfo.h"
55#include "llvm/CodeGen/RuntimeLibcalls.h"
56#include "llvm/CodeGen/SelectionDAG.h"
57#include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
58#include "llvm/CodeGen/SelectionDAGNodes.h"
59#include "llvm/CodeGen/TargetInstrInfo.h"
60#include "llvm/CodeGen/TargetLowering.h"
61#include "llvm/CodeGen/TargetOpcodes.h"
62#include "llvm/CodeGen/TargetRegisterInfo.h"
63#include "llvm/CodeGen/TargetSubtargetInfo.h"
64#include "llvm/CodeGen/ValueTypes.h"
65#include "llvm/IR/Attributes.h"
66#include "llvm/IR/CallingConv.h"
67#include "llvm/IR/Constant.h"
68#include "llvm/IR/Constants.h"
69#include "llvm/IR/DataLayout.h"
70#include "llvm/IR/DebugLoc.h"
71#include "llvm/IR/DerivedTypes.h"
72#include "llvm/IR/Function.h"
73#include "llvm/IR/GlobalAlias.h"
74#include "llvm/IR/GlobalValue.h"
75#include "llvm/IR/GlobalVariable.h"
76#include "llvm/IR/IRBuilder.h"
77#include "llvm/IR/InlineAsm.h"
78#include "llvm/IR/Instruction.h"
79#include "llvm/IR/Instructions.h"
80#include "llvm/IR/IntrinsicInst.h"
81#include "llvm/IR/Intrinsics.h"
82#include "llvm/IR/IntrinsicsARM.h"
83#include "llvm/IR/Module.h"
84#include "llvm/IR/PatternMatch.h"
85#include "llvm/IR/Type.h"
86#include "llvm/IR/User.h"
87#include "llvm/IR/Value.h"
88#include "llvm/MC/MCInstrDesc.h"
89#include "llvm/MC/MCInstrItineraries.h"
90#include "llvm/MC/MCRegisterInfo.h"
91#include "llvm/MC/MCSchedule.h"
92#include "llvm/Support/AtomicOrdering.h"
93#include "llvm/Support/BranchProbability.h"
94#include "llvm/Support/Casting.h"
95#include "llvm/Support/CodeGen.h"
96#include "llvm/Support/CommandLine.h"
97#include "llvm/Support/Compiler.h"
98#include "llvm/Support/Debug.h"
99#include "llvm/Support/ErrorHandling.h"
100#include "llvm/Support/KnownBits.h"
101#include "llvm/Support/MachineValueType.h"
102#include "llvm/Support/MathExtras.h"
103#include "llvm/Support/raw_ostream.h"
104#include "llvm/Target/TargetMachine.h"
105#include "llvm/Target/TargetOptions.h"
106#include "llvm/TargetParser/Triple.h"
107#include <algorithm>
108#include <cassert>
109#include <cstdint>
110#include <cstdlib>
111#include <iterator>
112#include <limits>
113#include <optional>
114#include <string>
115#include <tuple>
116#include <utility>
117#include <vector>
118
119using namespace llvm;
120using namespace llvm::PatternMatch;
121
122#define DEBUG_TYPE"arm-isel" "arm-isel"
123
124STATISTIC(NumTailCalls, "Number of tail calls")static llvm::Statistic NumTailCalls = {"arm-isel", "NumTailCalls"
, "Number of tail calls"}
;
125STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt")static llvm::Statistic NumMovwMovt = {"arm-isel", "NumMovwMovt"
, "Number of GAs materialized with movw + movt"}
;
126STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments")static llvm::Statistic NumLoopByVals = {"arm-isel", "NumLoopByVals"
, "Number of loops generated for byval arguments"}
;
127STATISTIC(NumConstpoolPromoted,static llvm::Statistic NumConstpoolPromoted = {"arm-isel", "NumConstpoolPromoted"
, "Number of constants with their storage promoted into constant pools"
}
128 "Number of constants with their storage promoted into constant pools")static llvm::Statistic NumConstpoolPromoted = {"arm-isel", "NumConstpoolPromoted"
, "Number of constants with their storage promoted into constant pools"
}
;
129
130static cl::opt<bool>
131ARMInterworking("arm-interworking", cl::Hidden,
132 cl::desc("Enable / disable ARM interworking (for debugging only)"),
133 cl::init(true));
134
135static cl::opt<bool> EnableConstpoolPromotion(
136 "arm-promote-constant", cl::Hidden,
137 cl::desc("Enable / disable promotion of unnamed_addr constants into "
138 "constant pools"),
139 cl::init(false)); // FIXME: set to true by default once PR32780 is fixed
140static cl::opt<unsigned> ConstpoolPromotionMaxSize(
141 "arm-promote-constant-max-size", cl::Hidden,
142 cl::desc("Maximum size of constant to promote into a constant pool"),
143 cl::init(64));
144static cl::opt<unsigned> ConstpoolPromotionMaxTotal(
145 "arm-promote-constant-max-total", cl::Hidden,
146 cl::desc("Maximum size of ALL constants to promote into a constant pool"),
147 cl::init(128));
148
149cl::opt<unsigned>
150MVEMaxSupportedInterleaveFactor("mve-max-interleave-factor", cl::Hidden,
151 cl::desc("Maximum interleave factor for MVE VLDn to generate."),
152 cl::init(2));
153
154// The APCS parameter registers.
155static const MCPhysReg GPRArgRegs[] = {
156 ARM::R0, ARM::R1, ARM::R2, ARM::R3
157};
158
159void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT) {
160 if (VT != PromotedLdStVT) {
161 setOperationAction(ISD::LOAD, VT, Promote);
162 AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
163
164 setOperationAction(ISD::STORE, VT, Promote);
165 AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
166 }
167
168 MVT ElemTy = VT.getVectorElementType();
169 if (ElemTy != MVT::f64)
170 setOperationAction(ISD::SETCC, VT, Custom);
171 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
172 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
173 if (ElemTy == MVT::i32) {
174 setOperationAction(ISD::SINT_TO_FP, VT, Custom);
175 setOperationAction(ISD::UINT_TO_FP, VT, Custom);
176 setOperationAction(ISD::FP_TO_SINT, VT, Custom);
177 setOperationAction(ISD::FP_TO_UINT, VT, Custom);
178 } else {
179 setOperationAction(ISD::SINT_TO_FP, VT, Expand);
180 setOperationAction(ISD::UINT_TO_FP, VT, Expand);
181 setOperationAction(ISD::FP_TO_SINT, VT, Expand);
182 setOperationAction(ISD::FP_TO_UINT, VT, Expand);
183 }
184 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
185 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
186 setOperationAction(ISD::CONCAT_VECTORS, VT, Legal);
187 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
188 setOperationAction(ISD::SELECT, VT, Expand);
189 setOperationAction(ISD::SELECT_CC, VT, Expand);
190 setOperationAction(ISD::VSELECT, VT, Expand);
191 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
192 if (VT.isInteger()) {
193 setOperationAction(ISD::SHL, VT, Custom);
194 setOperationAction(ISD::SRA, VT, Custom);
195 setOperationAction(ISD::SRL, VT, Custom);
196 }
197
198 // Neon does not support vector divide/remainder operations.
199 setOperationAction(ISD::SDIV, VT, Expand);
200 setOperationAction(ISD::UDIV, VT, Expand);
201 setOperationAction(ISD::FDIV, VT, Expand);
202 setOperationAction(ISD::SREM, VT, Expand);
203 setOperationAction(ISD::UREM, VT, Expand);
204 setOperationAction(ISD::FREM, VT, Expand);
205 setOperationAction(ISD::SDIVREM, VT, Expand);
206 setOperationAction(ISD::UDIVREM, VT, Expand);
207
208 if (!VT.isFloatingPoint() &&
209 VT != MVT::v2i64 && VT != MVT::v1i64)
210 for (auto Opcode : {ISD::ABS, ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
211 setOperationAction(Opcode, VT, Legal);
212 if (!VT.isFloatingPoint())
213 for (auto Opcode : {ISD::SADDSAT, ISD::UADDSAT, ISD::SSUBSAT, ISD::USUBSAT})
214 setOperationAction(Opcode, VT, Legal);
215}
216
217void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
218 addRegisterClass(VT, &ARM::DPRRegClass);
219 addTypeForNEON(VT, MVT::f64);
220}
221
222void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
223 addRegisterClass(VT, &ARM::DPairRegClass);
224 addTypeForNEON(VT, MVT::v2f64);
225}
226
227void ARMTargetLowering::setAllExpand(MVT VT) {
228 for (unsigned Opc = 0; Opc < ISD::BUILTIN_OP_END; ++Opc)
229 setOperationAction(Opc, VT, Expand);
230
231 // We support these really simple operations even on types where all
232 // the actual arithmetic has to be broken down into simpler
233 // operations or turned into library calls.
234 setOperationAction(ISD::BITCAST, VT, Legal);
235 setOperationAction(ISD::LOAD, VT, Legal);
236 setOperationAction(ISD::STORE, VT, Legal);
237 setOperationAction(ISD::UNDEF, VT, Legal);
238}
239
240void ARMTargetLowering::addAllExtLoads(const MVT From, const MVT To,
241 LegalizeAction Action) {
242 setLoadExtAction(ISD::EXTLOAD, From, To, Action);
243 setLoadExtAction(ISD::ZEXTLOAD, From, To, Action);
244 setLoadExtAction(ISD::SEXTLOAD, From, To, Action);
245}
246
247void ARMTargetLowering::addMVEVectorTypes(bool HasMVEFP) {
248 const MVT IntTypes[] = { MVT::v16i8, MVT::v8i16, MVT::v4i32 };
249
250 for (auto VT : IntTypes) {
251 addRegisterClass(VT, &ARM::MQPRRegClass);
252 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
253 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
254 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
255 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
256 setOperationAction(ISD::SHL, VT, Custom);
257 setOperationAction(ISD::SRA, VT, Custom);
258 setOperationAction(ISD::SRL, VT, Custom);
259 setOperationAction(ISD::SMIN, VT, Legal);
260 setOperationAction(ISD::SMAX, VT, Legal);
261 setOperationAction(ISD::UMIN, VT, Legal);
262 setOperationAction(ISD::UMAX, VT, Legal);
263 setOperationAction(ISD::ABS, VT, Legal);
264 setOperationAction(ISD::SETCC, VT, Custom);
265 setOperationAction(ISD::MLOAD, VT, Custom);
266 setOperationAction(ISD::MSTORE, VT, Legal);
267 setOperationAction(ISD::CTLZ, VT, Legal);
268 setOperationAction(ISD::CTTZ, VT, Custom);
269 setOperationAction(ISD::BITREVERSE, VT, Legal);
270 setOperationAction(ISD::BSWAP, VT, Legal);
271 setOperationAction(ISD::SADDSAT, VT, Legal);
272 setOperationAction(ISD::UADDSAT, VT, Legal);
273 setOperationAction(ISD::SSUBSAT, VT, Legal);
274 setOperationAction(ISD::USUBSAT, VT, Legal);
275 setOperationAction(ISD::ABDS, VT, Legal);
276 setOperationAction(ISD::ABDU, VT, Legal);
277 setOperationAction(ISD::AVGFLOORS, VT, Legal);
278 setOperationAction(ISD::AVGFLOORU, VT, Legal);
279 setOperationAction(ISD::AVGCEILS, VT, Legal);
280 setOperationAction(ISD::AVGCEILU, VT, Legal);
281
282 // No native support for these.
283 setOperationAction(ISD::UDIV, VT, Expand);
284 setOperationAction(ISD::SDIV, VT, Expand);
285 setOperationAction(ISD::UREM, VT, Expand);
286 setOperationAction(ISD::SREM, VT, Expand);
287 setOperationAction(ISD::UDIVREM, VT, Expand);
288 setOperationAction(ISD::SDIVREM, VT, Expand);
289 setOperationAction(ISD::CTPOP, VT, Expand);
290 setOperationAction(ISD::SELECT, VT, Expand);
291 setOperationAction(ISD::SELECT_CC, VT, Expand);
292
293 // Vector reductions
294 setOperationAction(ISD::VECREDUCE_ADD, VT, Legal);
295 setOperationAction(ISD::VECREDUCE_SMAX, VT, Legal);
296 setOperationAction(ISD::VECREDUCE_UMAX, VT, Legal);
297 setOperationAction(ISD::VECREDUCE_SMIN, VT, Legal);
298 setOperationAction(ISD::VECREDUCE_UMIN, VT, Legal);
299 setOperationAction(ISD::VECREDUCE_MUL, VT, Custom);
300 setOperationAction(ISD::VECREDUCE_AND, VT, Custom);
301 setOperationAction(ISD::VECREDUCE_OR, VT, Custom);
302 setOperationAction(ISD::VECREDUCE_XOR, VT, Custom);
303
304 if (!HasMVEFP) {
305 setOperationAction(ISD::SINT_TO_FP, VT, Expand);
306 setOperationAction(ISD::UINT_TO_FP, VT, Expand);
307 setOperationAction(ISD::FP_TO_SINT, VT, Expand);
308 setOperationAction(ISD::FP_TO_UINT, VT, Expand);
309 } else {
310 setOperationAction(ISD::FP_TO_SINT_SAT, VT, Custom);
311 setOperationAction(ISD::FP_TO_UINT_SAT, VT, Custom);
312 }
313
314 // Pre and Post inc are supported on loads and stores
315 for (unsigned im = (unsigned)ISD::PRE_INC;
316 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
317 setIndexedLoadAction(im, VT, Legal);
318 setIndexedStoreAction(im, VT, Legal);
319 setIndexedMaskedLoadAction(im, VT, Legal);
320 setIndexedMaskedStoreAction(im, VT, Legal);
321 }
322 }
323
324 const MVT FloatTypes[] = { MVT::v8f16, MVT::v4f32 };
325 for (auto VT : FloatTypes) {
326 addRegisterClass(VT, &ARM::MQPRRegClass);
327 if (!HasMVEFP)
328 setAllExpand(VT);
329
330 // These are legal or custom whether we have MVE.fp or not
331 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
332 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
333 setOperationAction(ISD::INSERT_VECTOR_ELT, VT.getVectorElementType(), Custom);
334 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
335 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
336 setOperationAction(ISD::BUILD_VECTOR, VT.getVectorElementType(), Custom);
337 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Legal);
338 setOperationAction(ISD::SETCC, VT, Custom);
339 setOperationAction(ISD::MLOAD, VT, Custom);
340 setOperationAction(ISD::MSTORE, VT, Legal);
341 setOperationAction(ISD::SELECT, VT, Expand);
342 setOperationAction(ISD::SELECT_CC, VT, Expand);
343
344 // Pre and Post inc are supported on loads and stores
345 for (unsigned im = (unsigned)ISD::PRE_INC;
346 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
347 setIndexedLoadAction(im, VT, Legal);
348 setIndexedStoreAction(im, VT, Legal);
349 setIndexedMaskedLoadAction(im, VT, Legal);
350 setIndexedMaskedStoreAction(im, VT, Legal);
351 }
352
353 if (HasMVEFP) {
354 setOperationAction(ISD::FMINNUM, VT, Legal);
355 setOperationAction(ISD::FMAXNUM, VT, Legal);
356 setOperationAction(ISD::FROUND, VT, Legal);
357 setOperationAction(ISD::VECREDUCE_FADD, VT, Custom);
358 setOperationAction(ISD::VECREDUCE_FMUL, VT, Custom);
359 setOperationAction(ISD::VECREDUCE_FMIN, VT, Custom);
360 setOperationAction(ISD::VECREDUCE_FMAX, VT, Custom);
361
362 // No native support for these.
363 setOperationAction(ISD::FDIV, VT, Expand);
364 setOperationAction(ISD::FREM, VT, Expand);
365 setOperationAction(ISD::FSQRT, VT, Expand);
366 setOperationAction(ISD::FSIN, VT, Expand);
367 setOperationAction(ISD::FCOS, VT, Expand);
368 setOperationAction(ISD::FPOW, VT, Expand);
369 setOperationAction(ISD::FLOG, VT, Expand);
370 setOperationAction(ISD::FLOG2, VT, Expand);
371 setOperationAction(ISD::FLOG10, VT, Expand);
372 setOperationAction(ISD::FEXP, VT, Expand);
373 setOperationAction(ISD::FEXP2, VT, Expand);
374 setOperationAction(ISD::FNEARBYINT, VT, Expand);
375 }
376 }
377
378 // Custom Expand smaller than legal vector reductions to prevent false zero
379 // items being added.
380 setOperationAction(ISD::VECREDUCE_FADD, MVT::v4f16, Custom);
381 setOperationAction(ISD::VECREDUCE_FMUL, MVT::v4f16, Custom);
382 setOperationAction(ISD::VECREDUCE_FMIN, MVT::v4f16, Custom);
383 setOperationAction(ISD::VECREDUCE_FMAX, MVT::v4f16, Custom);
384 setOperationAction(ISD::VECREDUCE_FADD, MVT::v2f16, Custom);
385 setOperationAction(ISD::VECREDUCE_FMUL, MVT::v2f16, Custom);
386 setOperationAction(ISD::VECREDUCE_FMIN, MVT::v2f16, Custom);
387 setOperationAction(ISD::VECREDUCE_FMAX, MVT::v2f16, Custom);
388
389 // We 'support' these types up to bitcast/load/store level, regardless of
390 // MVE integer-only / float support. Only doing FP data processing on the FP
391 // vector types is inhibited at integer-only level.
392 const MVT LongTypes[] = { MVT::v2i64, MVT::v2f64 };
393 for (auto VT : LongTypes) {
394 addRegisterClass(VT, &ARM::MQPRRegClass);
395 setAllExpand(VT);
396 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
397 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
398 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
399 setOperationAction(ISD::VSELECT, VT, Legal);
400 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
401 }
402 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
403
404 // We can do bitwise operations on v2i64 vectors
405 setOperationAction(ISD::AND, MVT::v2i64, Legal);
406 setOperationAction(ISD::OR, MVT::v2i64, Legal);
407 setOperationAction(ISD::XOR, MVT::v2i64, Legal);
408
409 // It is legal to extload from v4i8 to v4i16 or v4i32.
410 addAllExtLoads(MVT::v8i16, MVT::v8i8, Legal);
411 addAllExtLoads(MVT::v4i32, MVT::v4i16, Legal);
412 addAllExtLoads(MVT::v4i32, MVT::v4i8, Legal);
413
414 // It is legal to sign extend from v4i8/v4i16 to v4i32 or v8i8 to v8i16.
415 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal);
416 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
417 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
418 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v8i8, Legal);
419 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v8i16, Legal);
420
421 // Some truncating stores are legal too.
422 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal);
423 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Legal);
424 setTruncStoreAction(MVT::v8i16, MVT::v8i8, Legal);
425
426 // Pre and Post inc on these are legal, given the correct extends
427 for (unsigned im = (unsigned)ISD::PRE_INC;
428 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
429 for (auto VT : {MVT::v8i8, MVT::v4i8, MVT::v4i16}) {
430 setIndexedLoadAction(im, VT, Legal);
431 setIndexedStoreAction(im, VT, Legal);
432 setIndexedMaskedLoadAction(im, VT, Legal);
433 setIndexedMaskedStoreAction(im, VT, Legal);
434 }
435 }
436
437 // Predicate types
438 const MVT pTypes[] = {MVT::v16i1, MVT::v8i1, MVT::v4i1, MVT::v2i1};
439 for (auto VT : pTypes) {
440 addRegisterClass(VT, &ARM::VCCRRegClass);
441 setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
442 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
443 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
444 setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
445 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
446 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
447 setOperationAction(ISD::SETCC, VT, Custom);
448 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
449 setOperationAction(ISD::LOAD, VT, Custom);
450 setOperationAction(ISD::STORE, VT, Custom);
451 setOperationAction(ISD::TRUNCATE, VT, Custom);
452 setOperationAction(ISD::VSELECT, VT, Expand);
453 setOperationAction(ISD::SELECT, VT, Expand);
454 setOperationAction(ISD::SELECT_CC, VT, Expand);
455
456 if (!HasMVEFP) {
457 setOperationAction(ISD::SINT_TO_FP, VT, Expand);
458 setOperationAction(ISD::UINT_TO_FP, VT, Expand);
459 setOperationAction(ISD::FP_TO_SINT, VT, Expand);
460 setOperationAction(ISD::FP_TO_UINT, VT, Expand);
461 }
462 }
463 setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
464 setOperationAction(ISD::TRUNCATE, MVT::v2i1, Expand);
465 setOperationAction(ISD::AND, MVT::v2i1, Expand);
466 setOperationAction(ISD::OR, MVT::v2i1, Expand);
467 setOperationAction(ISD::XOR, MVT::v2i1, Expand);
468 setOperationAction(ISD::SINT_TO_FP, MVT::v2i1, Expand);
469 setOperationAction(ISD::UINT_TO_FP, MVT::v2i1, Expand);
470 setOperationAction(ISD::FP_TO_SINT, MVT::v2i1, Expand);
471 setOperationAction(ISD::FP_TO_UINT, MVT::v2i1, Expand);
472
473 setOperationAction(ISD::SIGN_EXTEND, MVT::v8i32, Custom);
474 setOperationAction(ISD::SIGN_EXTEND, MVT::v16i16, Custom);
475 setOperationAction(ISD::SIGN_EXTEND, MVT::v16i32, Custom);
476 setOperationAction(ISD::ZERO_EXTEND, MVT::v8i32, Custom);
477 setOperationAction(ISD::ZERO_EXTEND, MVT::v16i16, Custom);
478 setOperationAction(ISD::ZERO_EXTEND, MVT::v16i32, Custom);
479 setOperationAction(ISD::TRUNCATE, MVT::v8i32, Custom);
480 setOperationAction(ISD::TRUNCATE, MVT::v16i16, Custom);
481}
482
483ARMTargetLowering::ARMTargetLowering(const TargetMachine &TM,
484 const ARMSubtarget &STI)
485 : TargetLowering(TM), Subtarget(&STI) {
486 RegInfo = Subtarget->getRegisterInfo();
487 Itins = Subtarget->getInstrItineraryData();
488
489 setBooleanContents(ZeroOrOneBooleanContent);
490 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
491
492 if (!Subtarget->isTargetDarwin() && !Subtarget->isTargetIOS() &&
493 !Subtarget->isTargetWatchOS() && !Subtarget->isTargetDriverKit()) {
494 bool IsHFTarget = TM.Options.FloatABIType == FloatABI::Hard;
495 for (int LCID = 0; LCID < RTLIB::UNKNOWN_LIBCALL; ++LCID)
496 setLibcallCallingConv(static_cast<RTLIB::Libcall>(LCID),
497 IsHFTarget ? CallingConv::ARM_AAPCS_VFP
498 : CallingConv::ARM_AAPCS);
499 }
500
501 if (Subtarget->isTargetMachO()) {
502 // Uses VFP for Thumb libfuncs if available.
503 if (Subtarget->isThumb() && Subtarget->hasVFP2Base() &&
504 Subtarget->hasARMOps() && !Subtarget->useSoftFloat()) {
505 static const struct {
506 const RTLIB::Libcall Op;
507 const char * const Name;
508 const ISD::CondCode Cond;
509 } LibraryCalls[] = {
510 // Single-precision floating-point arithmetic.
511 { RTLIB::ADD_F32, "__addsf3vfp", ISD::SETCC_INVALID },
512 { RTLIB::SUB_F32, "__subsf3vfp", ISD::SETCC_INVALID },
513 { RTLIB::MUL_F32, "__mulsf3vfp", ISD::SETCC_INVALID },
514 { RTLIB::DIV_F32, "__divsf3vfp", ISD::SETCC_INVALID },
515
516 // Double-precision floating-point arithmetic.
517 { RTLIB::ADD_F64, "__adddf3vfp", ISD::SETCC_INVALID },
518 { RTLIB::SUB_F64, "__subdf3vfp", ISD::SETCC_INVALID },
519 { RTLIB::MUL_F64, "__muldf3vfp", ISD::SETCC_INVALID },
520 { RTLIB::DIV_F64, "__divdf3vfp", ISD::SETCC_INVALID },
521
522 // Single-precision comparisons.
523 { RTLIB::OEQ_F32, "__eqsf2vfp", ISD::SETNE },
524 { RTLIB::UNE_F32, "__nesf2vfp", ISD::SETNE },
525 { RTLIB::OLT_F32, "__ltsf2vfp", ISD::SETNE },
526 { RTLIB::OLE_F32, "__lesf2vfp", ISD::SETNE },
527 { RTLIB::OGE_F32, "__gesf2vfp", ISD::SETNE },
528 { RTLIB::OGT_F32, "__gtsf2vfp", ISD::SETNE },
529 { RTLIB::UO_F32, "__unordsf2vfp", ISD::SETNE },
530
531 // Double-precision comparisons.
532 { RTLIB::OEQ_F64, "__eqdf2vfp", ISD::SETNE },
533 { RTLIB::UNE_F64, "__nedf2vfp", ISD::SETNE },
534 { RTLIB::OLT_F64, "__ltdf2vfp", ISD::SETNE },
535 { RTLIB::OLE_F64, "__ledf2vfp", ISD::SETNE },
536 { RTLIB::OGE_F64, "__gedf2vfp", ISD::SETNE },
537 { RTLIB::OGT_F64, "__gtdf2vfp", ISD::SETNE },
538 { RTLIB::UO_F64, "__unorddf2vfp", ISD::SETNE },
539
540 // Floating-point to integer conversions.
541 // i64 conversions are done via library routines even when generating VFP
542 // instructions, so use the same ones.
543 { RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp", ISD::SETCC_INVALID },
544 { RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp", ISD::SETCC_INVALID },
545 { RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp", ISD::SETCC_INVALID },
546 { RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp", ISD::SETCC_INVALID },
547
548 // Conversions between floating types.
549 { RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp", ISD::SETCC_INVALID },
550 { RTLIB::FPEXT_F32_F64, "__extendsfdf2vfp", ISD::SETCC_INVALID },
551
552 // Integer to floating-point conversions.
553 // i64 conversions are done via library routines even when generating VFP
554 // instructions, so use the same ones.
555 // FIXME: There appears to be some naming inconsistency in ARM libgcc:
556 // e.g., __floatunsidf vs. __floatunssidfvfp.
557 { RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp", ISD::SETCC_INVALID },
558 { RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp", ISD::SETCC_INVALID },
559 { RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp", ISD::SETCC_INVALID },
560 { RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp", ISD::SETCC_INVALID },
561 };
562
563 for (const auto &LC : LibraryCalls) {
564 setLibcallName(LC.Op, LC.Name);
565 if (LC.Cond != ISD::SETCC_INVALID)
566 setCmpLibcallCC(LC.Op, LC.Cond);
567 }
568 }
569 }
570
571 // These libcalls are not available in 32-bit.
572 setLibcallName(RTLIB::SHL_I128, nullptr);
573 setLibcallName(RTLIB::SRL_I128, nullptr);
574 setLibcallName(RTLIB::SRA_I128, nullptr);
575 setLibcallName(RTLIB::MUL_I128, nullptr);
576 setLibcallName(RTLIB::MULO_I64, nullptr);
577 setLibcallName(RTLIB::MULO_I128, nullptr);
578
579 // RTLIB
580 if (Subtarget->isAAPCS_ABI() &&
581 (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
582 Subtarget->isTargetMuslAEABI() || Subtarget->isTargetAndroid())) {
583 static const struct {
584 const RTLIB::Libcall Op;
585 const char * const Name;
586 const CallingConv::ID CC;
587 const ISD::CondCode Cond;
588 } LibraryCalls[] = {
589 // Double-precision floating-point arithmetic helper functions
590 // RTABI chapter 4.1.2, Table 2
591 { RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
592 { RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
593 { RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
594 { RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
595
596 // Double-precision floating-point comparison helper functions
597 // RTABI chapter 4.1.2, Table 3
598 { RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
599 { RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
600 { RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
601 { RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
602 { RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
603 { RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
604 { RTLIB::UO_F64, "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
605
606 // Single-precision floating-point arithmetic helper functions
607 // RTABI chapter 4.1.2, Table 4
608 { RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
609 { RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
610 { RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
611 { RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
612
613 // Single-precision floating-point comparison helper functions
614 // RTABI chapter 4.1.2, Table 5
615 { RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
616 { RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
617 { RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
618 { RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
619 { RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
620 { RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
621 { RTLIB::UO_F32, "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
622
623 // Floating-point to integer conversions.
624 // RTABI chapter 4.1.2, Table 6
625 { RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
626 { RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
627 { RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
628 { RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
629 { RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
630 { RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
631 { RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
632 { RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
633
634 // Conversions between floating types.
635 // RTABI chapter 4.1.2, Table 7
636 { RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
637 { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
638 { RTLIB::FPEXT_F32_F64, "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
639
640 // Integer to floating-point conversions.
641 // RTABI chapter 4.1.2, Table 8
642 { RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
643 { RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
644 { RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
645 { RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
646 { RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
647 { RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
648 { RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
649 { RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
650
651 // Long long helper functions
652 // RTABI chapter 4.2, Table 9
653 { RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
654 { RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
655 { RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
656 { RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
657
658 // Integer division functions
659 // RTABI chapter 4.3.1
660 { RTLIB::SDIV_I8, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
661 { RTLIB::SDIV_I16, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
662 { RTLIB::SDIV_I32, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
663 { RTLIB::SDIV_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
664 { RTLIB::UDIV_I8, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
665 { RTLIB::UDIV_I16, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
666 { RTLIB::UDIV_I32, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
667 { RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
668 };
669
670 for (const auto &LC : LibraryCalls) {
671 setLibcallName(LC.Op, LC.Name);
672 setLibcallCallingConv(LC.Op, LC.CC);
673 if (LC.Cond != ISD::SETCC_INVALID)
674 setCmpLibcallCC(LC.Op, LC.Cond);
675 }
676
677 // EABI dependent RTLIB
678 if (TM.Options.EABIVersion == EABI::EABI4 ||
679 TM.Options.EABIVersion == EABI::EABI5) {
680 static const struct {
681 const RTLIB::Libcall Op;
682 const char *const Name;
683 const CallingConv::ID CC;
684 const ISD::CondCode Cond;
685 } MemOpsLibraryCalls[] = {
686 // Memory operations
687 // RTABI chapter 4.3.4
688 { RTLIB::MEMCPY, "__aeabi_memcpy", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
689 { RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
690 { RTLIB::MEMSET, "__aeabi_memset", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
691 };
692
693 for (const auto &LC : MemOpsLibraryCalls) {
694 setLibcallName(LC.Op, LC.Name);
695 setLibcallCallingConv(LC.Op, LC.CC);
696 if (LC.Cond != ISD::SETCC_INVALID)
697 setCmpLibcallCC(LC.Op, LC.Cond);
698 }
699 }
700 }
701
702 if (Subtarget->isTargetWindows()) {
703 static const struct {
704 const RTLIB::Libcall Op;
705 const char * const Name;
706 const CallingConv::ID CC;
707 } LibraryCalls[] = {
708 { RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP },
709 { RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP },
710 { RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP },
711 { RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP },
712 { RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP },
713 { RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP },
714 { RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP },
715 { RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP },
716 };
717
718 for (const auto &LC : LibraryCalls) {
719 setLibcallName(LC.Op, LC.Name);
720 setLibcallCallingConv(LC.Op, LC.CC);
721 }
722 }
723
724 // Use divmod compiler-rt calls for iOS 5.0 and later.
725 if (Subtarget->isTargetMachO() &&
726 !(Subtarget->isTargetIOS() &&
727 Subtarget->getTargetTriple().isOSVersionLT(5, 0))) {
728 setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
729 setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
730 }
731
732 // The half <-> float conversion functions are always soft-float on
733 // non-watchos platforms, but are needed for some targets which use a
734 // hard-float calling convention by default.
735 if (!Subtarget->isTargetWatchABI()) {
736 if (Subtarget->isAAPCS_ABI()) {
737 setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_AAPCS);
738 setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_AAPCS);
739 setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_AAPCS);
740 } else {
741 setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_APCS);
742 setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_APCS);
743 setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_APCS);
744 }
745 }
746
747 // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
748 // a __gnu_ prefix (which is the default).
749 if (Subtarget->isTargetAEABI()) {
750 static const struct {
751 const RTLIB::Libcall Op;
752 const char * const Name;
753 const CallingConv::ID CC;
754 } LibraryCalls[] = {
755 { RTLIB::FPROUND_F32_F16, "__aeabi_f2h", CallingConv::ARM_AAPCS },
756 { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS },
757 { RTLIB::FPEXT_F16_F32, "__aeabi_h2f", CallingConv::ARM_AAPCS },
758 };
759
760 for (const auto &LC : LibraryCalls) {
761 setLibcallName(LC.Op, LC.Name);
762 setLibcallCallingConv(LC.Op, LC.CC);
763 }
764 }
765
766 if (Subtarget->isThumb1Only())
767 addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
768 else
769 addRegisterClass(MVT::i32, &ARM::GPRRegClass);
770
771 if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only() &&
772 Subtarget->hasFPRegs()) {
773 addRegisterClass(MVT::f32, &ARM::SPRRegClass);
774 addRegisterClass(MVT::f64, &ARM::DPRRegClass);
775
776 setOperationAction(ISD::FP_TO_SINT_SAT, MVT::i32, Custom);
777 setOperationAction(ISD::FP_TO_UINT_SAT, MVT::i32, Custom);
778 setOperationAction(ISD::FP_TO_SINT_SAT, MVT::i64, Custom);
779 setOperationAction(ISD::FP_TO_UINT_SAT, MVT::i64, Custom);
780
781 if (!Subtarget->hasVFP2Base())
782 setAllExpand(MVT::f32);
783 if (!Subtarget->hasFP64())
784 setAllExpand(MVT::f64);
785 }
786
787 if (Subtarget->hasFullFP16()) {
788 addRegisterClass(MVT::f16, &ARM::HPRRegClass);
789 setOperationAction(ISD::BITCAST, MVT::i16, Custom);
790 setOperationAction(ISD::BITCAST, MVT::f16, Custom);
791
792 setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
793 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
794 }
795
796 if (Subtarget->hasBF16()) {
797 addRegisterClass(MVT::bf16, &ARM::HPRRegClass);
798 setAllExpand(MVT::bf16);
799 if (!Subtarget->hasFullFP16())
800 setOperationAction(ISD::BITCAST, MVT::bf16, Custom);
801 }
802
803 for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
804 for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
805 setTruncStoreAction(VT, InnerVT, Expand);
806 addAllExtLoads(VT, InnerVT, Expand);
807 }
808
809 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
810 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
811
812 setOperationAction(ISD::BSWAP, VT, Expand);
813 }
814
815 setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
816 setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
817
818 setOperationAction(ISD::READ_REGISTER, MVT::i64, Custom);
819 setOperationAction(ISD::WRITE_REGISTER, MVT::i64, Custom);
820
821 if (Subtarget->hasMVEIntegerOps())
822 addMVEVectorTypes(Subtarget->hasMVEFloatOps());
823
824 // Combine low-overhead loop intrinsics so that we can lower i1 types.
825 if (Subtarget->hasLOB()) {
826 setTargetDAGCombine({ISD::BRCOND, ISD::BR_CC});
827 }
828
829 if (Subtarget->hasNEON()) {
830 addDRTypeForNEON(MVT::v2f32);
831 addDRTypeForNEON(MVT::v8i8);
832 addDRTypeForNEON(MVT::v4i16);
833 addDRTypeForNEON(MVT::v2i32);
834 addDRTypeForNEON(MVT::v1i64);
835
836 addQRTypeForNEON(MVT::v4f32);
837 addQRTypeForNEON(MVT::v2f64);
838 addQRTypeForNEON(MVT::v16i8);
839 addQRTypeForNEON(MVT::v8i16);
840 addQRTypeForNEON(MVT::v4i32);
841 addQRTypeForNEON(MVT::v2i64);
842
843 if (Subtarget->hasFullFP16()) {
844 addQRTypeForNEON(MVT::v8f16);
845 addDRTypeForNEON(MVT::v4f16);
846 }
847
848 if (Subtarget->hasBF16()) {
849 addQRTypeForNEON(MVT::v8bf16);
850 addDRTypeForNEON(MVT::v4bf16);
851 }
852 }
853
854 if (Subtarget->hasMVEIntegerOps() || Subtarget->hasNEON()) {
855 // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
856 // none of Neon, MVE or VFP supports any arithmetic operations on it.
857 setOperationAction(ISD::FADD, MVT::v2f64, Expand);
858 setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
859 setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
860 // FIXME: Code duplication: FDIV and FREM are expanded always, see
861 // ARMTargetLowering::addTypeForNEON method for details.
862 setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
863 setOperationAction(ISD::FREM, MVT::v2f64, Expand);
864 // FIXME: Create unittest.
865 // In another words, find a way when "copysign" appears in DAG with vector
866 // operands.
867 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
868 // FIXME: Code duplication: SETCC has custom operation action, see
869 // ARMTargetLowering::addTypeForNEON method for details.
870 setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
871 // FIXME: Create unittest for FNEG and for FABS.
872 setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
873 setOperationAction(ISD::FABS, MVT::v2f64, Expand);
874 setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
875 setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
876 setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
877 setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
878 setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
879 setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
880 setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
881 setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
882 setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
883 // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
884 setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
885 setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
886 setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
887 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
888 setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
889 setOperationAction(ISD::FMA, MVT::v2f64, Expand);
890 }
891
892 if (Subtarget->hasNEON()) {
893 // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
894 // supported for v4f32.
895 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
896 setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
897 setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
898 setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
899 setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
900 setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
901 setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
902 setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
903 setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
904 setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
905 setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
906 setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
907 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
908 setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
909
910 // Mark v2f32 intrinsics.
911 setOperationAction(ISD::FSQRT, MVT::v2f32, Expand);
912 setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
913 setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
914 setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
915 setOperationAction(ISD::FLOG, MVT::v2f32, Expand);
916 setOperationAction(ISD::FLOG2, MVT::v2f32, Expand);
917 setOperationAction(ISD::FLOG10, MVT::v2f32, Expand);
918 setOperationAction(ISD::FEXP, MVT::v2f32, Expand);
919 setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
920 setOperationAction(ISD::FCEIL, MVT::v2f32, Expand);
921 setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand);
922 setOperationAction(ISD::FRINT, MVT::v2f32, Expand);
923 setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand);
924 setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand);
925
926 // Neon does not support some operations on v1i64 and v2i64 types.
927 setOperationAction(ISD::MUL, MVT::v1i64, Expand);
928 // Custom handling for some quad-vector types to detect VMULL.
929 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
930 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
931 setOperationAction(ISD::MUL, MVT::v2i64, Custom);
932 // Custom handling for some vector types to avoid expensive expansions
933 setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
934 setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
935 setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
936 setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
937 // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
938 // a destination type that is wider than the source, and nor does
939 // it have a FP_TO_[SU]INT instruction with a narrower destination than
940 // source.
941 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
942 setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Custom);
943 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
944 setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom);
945 setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
946 setOperationAction(ISD::FP_TO_UINT, MVT::v8i16, Custom);
947 setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
948 setOperationAction(ISD::FP_TO_SINT, MVT::v8i16, Custom);
949
950 setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
951 setOperationAction(ISD::FP_EXTEND, MVT::v2f64, Expand);
952
953 // NEON does not have single instruction CTPOP for vectors with element
954 // types wider than 8-bits. However, custom lowering can leverage the
955 // v8i8/v16i8 vcnt instruction.
956 setOperationAction(ISD::CTPOP, MVT::v2i32, Custom);
957 setOperationAction(ISD::CTPOP, MVT::v4i32, Custom);
958 setOperationAction(ISD::CTPOP, MVT::v4i16, Custom);
959 setOperationAction(ISD::CTPOP, MVT::v8i16, Custom);
960 setOperationAction(ISD::CTPOP, MVT::v1i64, Custom);
961 setOperationAction(ISD::CTPOP, MVT::v2i64, Custom);
962
963 setOperationAction(ISD::CTLZ, MVT::v1i64, Expand);
964 setOperationAction(ISD::CTLZ, MVT::v2i64, Expand);
965
966 // NEON does not have single instruction CTTZ for vectors.
967 setOperationAction(ISD::CTTZ, MVT::v8i8, Custom);
968 setOperationAction(ISD::CTTZ, MVT::v4i16, Custom);
969 setOperationAction(ISD::CTTZ, MVT::v2i32, Custom);
970 setOperationAction(ISD::CTTZ, MVT::v1i64, Custom);
971
972 setOperationAction(ISD::CTTZ, MVT::v16i8, Custom);
973 setOperationAction(ISD::CTTZ, MVT::v8i16, Custom);
974 setOperationAction(ISD::CTTZ, MVT::v4i32, Custom);
975 setOperationAction(ISD::CTTZ, MVT::v2i64, Custom);
976
977 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i8, Custom);
978 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i16, Custom);
979 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i32, Custom);
980 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v1i64, Custom);
981
982 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i8, Custom);
983 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i16, Custom);
984 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom);
985 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i64, Custom);
986
987 for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
988 setOperationAction(ISD::MULHS, VT, Expand);
989 setOperationAction(ISD::MULHU, VT, Expand);
990 }
991
992 // NEON only has FMA instructions as of VFP4.
993 if (!Subtarget->hasVFP4Base()) {
994 setOperationAction(ISD::FMA, MVT::v2f32, Expand);
995 setOperationAction(ISD::FMA, MVT::v4f32, Expand);
996 }
997
998 setTargetDAGCombine({ISD::SHL, ISD::SRL, ISD::SRA, ISD::FP_TO_SINT,
999 ISD::FP_TO_UINT, ISD::FDIV, ISD::LOAD});
1000
1001 // It is legal to extload from v4i8 to v4i16 or v4i32.
1002 for (MVT Ty : {MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v4i16, MVT::v2i16,
1003 MVT::v2i32}) {
1004 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
1005 setLoadExtAction(ISD::EXTLOAD, VT, Ty, Legal);
1006 setLoadExtAction(ISD::ZEXTLOAD, VT, Ty, Legal);
1007 setLoadExtAction(ISD::SEXTLOAD, VT, Ty, Legal);
1008 }
1009 }
1010 }
1011
1012 if (Subtarget->hasNEON() || Subtarget->hasMVEIntegerOps()) {
1013 setTargetDAGCombine(
1014 {ISD::BUILD_VECTOR, ISD::VECTOR_SHUFFLE, ISD::INSERT_SUBVECTOR,
1015 ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT,
1016 ISD::SIGN_EXTEND_INREG, ISD::STORE, ISD::SIGN_EXTEND, ISD::ZERO_EXTEND,
1017 ISD::ANY_EXTEND, ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN,
1018 ISD::INTRINSIC_VOID, ISD::VECREDUCE_ADD, ISD::ADD, ISD::BITCAST});
1019 }
1020 if (Subtarget->hasMVEIntegerOps()) {
1021 setTargetDAGCombine({ISD::SMIN, ISD::UMIN, ISD::SMAX, ISD::UMAX,
1022 ISD::FP_EXTEND, ISD::SELECT, ISD::SELECT_CC,
1023 ISD::SETCC});
1024 }
1025 if (Subtarget->hasMVEFloatOps()) {
1026 setTargetDAGCombine(ISD::FADD);
1027 }
1028
1029 if (!Subtarget->hasFP64()) {
1030 // When targeting a floating-point unit with only single-precision
1031 // operations, f64 is legal for the few double-precision instructions which
1032 // are present However, no double-precision operations other than moves,
1033 // loads and stores are provided by the hardware.
1034 setOperationAction(ISD::FADD, MVT::f64, Expand);
1035 setOperationAction(ISD::FSUB, MVT::f64, Expand);
1036 setOperationAction(ISD::FMUL, MVT::f64, Expand);
1037 setOperationAction(ISD::FMA, MVT::f64, Expand);
1038 setOperationAction(ISD::FDIV, MVT::f64, Expand);
1039 setOperationAction(ISD::FREM, MVT::f64, Expand);
1040 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
1041 setOperationAction(ISD::FGETSIGN, MVT::f64, Expand);
1042 setOperationAction(ISD::FNEG, MVT::f64, Expand);
1043 setOperationAction(ISD::FABS, MVT::f64, Expand);
1044 setOperationAction(ISD::FSQRT, MVT::f64, Expand);
1045 setOperationAction(ISD::FSIN, MVT::f64, Expand);
1046 setOperationAction(ISD::FCOS, MVT::f64, Expand);
1047 setOperationAction(ISD::FPOW, MVT::f64, Expand);
1048 setOperationAction(ISD::FLOG, MVT::f64, Expand);
1049 setOperationAction(ISD::FLOG2, MVT::f64, Expand);
1050 setOperationAction(ISD::FLOG10, MVT::f64, Expand);
1051 setOperationAction(ISD::FEXP, MVT::f64, Expand);
1052 setOperationAction(ISD::FEXP2, MVT::f64, Expand);
1053 setOperationAction(ISD::FCEIL, MVT::f64, Expand);
1054 setOperationAction(ISD::FTRUNC, MVT::f64, Expand);
1055 setOperationAction(ISD::FRINT, MVT::f64, Expand);
1056 setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
1057 setOperationAction(ISD::FFLOOR, MVT::f64, Expand);
1058 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
1059 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
1060 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
1061 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
1062 setOperationAction(ISD::FP_TO_SINT, MVT::f64, Custom);
1063 setOperationAction(ISD::FP_TO_UINT, MVT::f64, Custom);
1064 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
1065 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
1066 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
1067 setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::f64, Custom);
1068 setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::f64, Custom);
1069 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Custom);
1070 }
1071
1072 if (!Subtarget->hasFP64() || !Subtarget->hasFPARMv8Base()) {
1073 setOperationAction(ISD::FP_EXTEND, MVT::f64, Custom);
1074 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Custom);
1075 if (Subtarget->hasFullFP16()) {
1076 setOperationAction(ISD::FP_ROUND, MVT::f16, Custom);
1077 setOperationAction(ISD::STRICT_FP_ROUND, MVT::f16, Custom);
1078 }
1079 }
1080
1081 if (!Subtarget->hasFP16()) {
1082 setOperationAction(ISD::FP_EXTEND, MVT::f32, Custom);
1083 setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Custom);
1084 }
1085
1086 computeRegisterProperties(Subtarget->getRegisterInfo());
1087
1088 // ARM does not have floating-point extending loads.
1089 for (MVT VT : MVT::fp_valuetypes()) {
1090 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
1091 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
1092 }
1093
1094 // ... or truncating stores
1095 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
1096 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
1097 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
1098
1099 // ARM does not have i1 sign extending load.
1100 for (MVT VT : MVT::integer_valuetypes())
1101 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
1102
1103 // ARM supports all 4 flavors of integer indexed load / store.
1104 if (!Subtarget->isThumb1Only()) {
1105 for (unsigned im = (unsigned)ISD::PRE_INC;
1106 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
1107 setIndexedLoadAction(im, MVT::i1, Legal);
1108 setIndexedLoadAction(im, MVT::i8, Legal);
1109 setIndexedLoadAction(im, MVT::i16, Legal);
1110 setIndexedLoadAction(im, MVT::i32, Legal);
1111 setIndexedStoreAction(im, MVT::i1, Legal);
1112 setIndexedStoreAction(im, MVT::i8, Legal);
1113 setIndexedStoreAction(im, MVT::i16, Legal);
1114 setIndexedStoreAction(im, MVT::i32, Legal);
1115 }
1116 } else {
1117 // Thumb-1 has limited post-inc load/store support - LDM r0!, {r1}.
1118 setIndexedLoadAction(ISD::POST_INC, MVT::i32, Legal);
1119 setIndexedStoreAction(ISD::POST_INC, MVT::i32, Legal);
1120 }
1121
1122 setOperationAction(ISD::SADDO, MVT::i32, Custom);
1123 setOperationAction(ISD::UADDO, MVT::i32, Custom);
1124 setOperationAction(ISD::SSUBO, MVT::i32, Custom);
1125 setOperationAction(ISD::USUBO, MVT::i32, Custom);
1126
1127 setOperationAction(ISD::ADDCARRY, MVT::i32, Custom);
1128 setOperationAction(ISD::SUBCARRY, MVT::i32, Custom);
1129 if (Subtarget->hasDSP()) {
1130 setOperationAction(ISD::SADDSAT, MVT::i8, Custom);
1131 setOperationAction(ISD::SSUBSAT, MVT::i8, Custom);
1132 setOperationAction(ISD::SADDSAT, MVT::i16, Custom);
1133 setOperationAction(ISD::SSUBSAT, MVT::i16, Custom);
1134 setOperationAction(ISD::UADDSAT, MVT::i8, Custom);
1135 setOperationAction(ISD::USUBSAT, MVT::i8, Custom);
1136 setOperationAction(ISD::UADDSAT, MVT::i16, Custom);
1137 setOperationAction(ISD::USUBSAT, MVT::i16, Custom);
1138 }
1139 if (Subtarget->hasBaseDSP()) {
1140 setOperationAction(ISD::SADDSAT, MVT::i32, Legal);
1141 setOperationAction(ISD::SSUBSAT, MVT::i32, Legal);
1142 }
1143
1144 // i64 operation support.
1145 setOperationAction(ISD::MUL, MVT::i64, Expand);
1146 setOperationAction(ISD::MULHU, MVT::i32, Expand);
1147 if (Subtarget->isThumb1Only()) {
1148 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
1149 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
1150 }
1151 if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
1152 || (Subtarget->isThumb2() && !Subtarget->hasDSP()))
1153 setOperationAction(ISD::MULHS, MVT::i32, Expand);
1154
1155 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
1156 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
1157 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
1158 setOperationAction(ISD::SRL, MVT::i64, Custom);
1159 setOperationAction(ISD::SRA, MVT::i64, Custom);
1160 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
1161 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
1162 setOperationAction(ISD::LOAD, MVT::i64, Custom);
1163 setOperationAction(ISD::STORE, MVT::i64, Custom);
1164
1165 // MVE lowers 64 bit shifts to lsll and lsrl
1166 // assuming that ISD::SRL and SRA of i64 are already marked custom
1167 if (Subtarget->hasMVEIntegerOps())
1168 setOperationAction(ISD::SHL, MVT::i64, Custom);
1169
1170 // Expand to __aeabi_l{lsl,lsr,asr} calls for Thumb1.
1171 if (Subtarget->isThumb1Only()) {
1172 setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
1173 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
1174 setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
1175 }
1176
1177 if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops())
1178 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
1179
1180 // ARM does not have ROTL.
1181 setOperationAction(ISD::ROTL, MVT::i32, Expand);
1182 for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
1183 setOperationAction(ISD::ROTL, VT, Expand);
1184 setOperationAction(ISD::ROTR, VT, Expand);
1185 }
1186 setOperationAction(ISD::CTTZ, MVT::i32, Custom);
1187 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
1188 if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only()) {
1189 setOperationAction(ISD::CTLZ, MVT::i32, Expand);
1190 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, LibCall);
1191 }
1192
1193 // @llvm.readcyclecounter requires the Performance Monitors extension.
1194 // Default to the 0 expansion on unsupported platforms.
1195 // FIXME: Technically there are older ARM CPUs that have
1196 // implementation-specific ways of obtaining this information.
1197 if (Subtarget->hasPerfMon())
1198 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
1199
1200 // Only ARMv6 has BSWAP.
1201 if (!Subtarget->hasV6Ops())
1202 setOperationAction(ISD::BSWAP, MVT::i32, Expand);
1203
1204 bool hasDivide = Subtarget->isThumb() ? Subtarget->hasDivideInThumbMode()
1205 : Subtarget->hasDivideInARMMode();
1206 if (!hasDivide) {
1207 // These are expanded into libcalls if the cpu doesn't have HW divider.
1208 setOperationAction(ISD::SDIV, MVT::i32, LibCall);
1209 setOperationAction(ISD::UDIV, MVT::i32, LibCall);
1210 }
1211
1212 if (Subtarget->isTargetWindows() && !Subtarget->hasDivideInThumbMode()) {
1213 setOperationAction(ISD::SDIV, MVT::i32, Custom);
1214 setOperationAction(ISD::UDIV, MVT::i32, Custom);
1215
1216 setOperationAction(ISD::SDIV, MVT::i64, Custom);
1217 setOperationAction(ISD::UDIV, MVT::i64, Custom);
1218 }
1219
1220 setOperationAction(ISD::SREM, MVT::i32, Expand);
1221 setOperationAction(ISD::UREM, MVT::i32, Expand);
1222
1223 // Register based DivRem for AEABI (RTABI 4.2)
1224 if (Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid() ||
1225 Subtarget->isTargetGNUAEABI() || Subtarget->isTargetMuslAEABI() ||
1226 Subtarget->isTargetWindows()) {
1227 setOperationAction(ISD::SREM, MVT::i64, Custom);
1228 setOperationAction(ISD::UREM, MVT::i64, Custom);
1229 HasStandaloneRem = false;
1230
1231 if (Subtarget->isTargetWindows()) {
1232 const struct {
1233 const RTLIB::Libcall Op;
1234 const char * const Name;
1235 const CallingConv::ID CC;
1236 } LibraryCalls[] = {
1237 { RTLIB::SDIVREM_I8, "__rt_sdiv", CallingConv::ARM_AAPCS },
1238 { RTLIB::SDIVREM_I16, "__rt_sdiv", CallingConv::ARM_AAPCS },
1239 { RTLIB::SDIVREM_I32, "__rt_sdiv", CallingConv::ARM_AAPCS },
1240 { RTLIB::SDIVREM_I64, "__rt_sdiv64", CallingConv::ARM_AAPCS },
1241
1242 { RTLIB::UDIVREM_I8, "__rt_udiv", CallingConv::ARM_AAPCS },
1243 { RTLIB::UDIVREM_I16, "__rt_udiv", CallingConv::ARM_AAPCS },
1244 { RTLIB::UDIVREM_I32, "__rt_udiv", CallingConv::ARM_AAPCS },
1245 { RTLIB::UDIVREM_I64, "__rt_udiv64", CallingConv::ARM_AAPCS },
1246 };
1247
1248 for (const auto &LC : LibraryCalls) {
1249 setLibcallName(LC.Op, LC.Name);
1250 setLibcallCallingConv(LC.Op, LC.CC);
1251 }
1252 } else {
1253 const struct {
1254 const RTLIB::Libcall Op;
1255 const char * const Name;
1256 const CallingConv::ID CC;
1257 } LibraryCalls[] = {
1258 { RTLIB::SDIVREM_I8, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
1259 { RTLIB::SDIVREM_I16, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
1260 { RTLIB::SDIVREM_I32, "__aeabi_idivmod", CallingConv::ARM_AAPCS },
1261 { RTLIB::SDIVREM_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS },
1262
1263 { RTLIB::UDIVREM_I8, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
1264 { RTLIB::UDIVREM_I16, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
1265 { RTLIB::UDIVREM_I32, "__aeabi_uidivmod", CallingConv::ARM_AAPCS },
1266 { RTLIB::UDIVREM_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS },
1267 };
1268
1269 for (const auto &LC : LibraryCalls) {
1270 setLibcallName(LC.Op, LC.Name);
1271 setLibcallCallingConv(LC.Op, LC.CC);
1272 }
1273 }
1274
1275 setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
1276 setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
1277 setOperationAction(ISD::SDIVREM, MVT::i64, Custom);
1278 setOperationAction(ISD::UDIVREM, MVT::i64, Custom);
1279 } else {
1280 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
1281 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
1282 }
1283
1284 if (Subtarget->getTargetTriple().isOSMSVCRT()) {
1285 // MSVCRT doesn't have powi; fall back to pow
1286 setLibcallName(RTLIB::POWI_F32, nullptr);
1287 setLibcallName(RTLIB::POWI_F64, nullptr);
1288 }
1289
1290 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
1291 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
1292 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
1293 setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
1294
1295 setOperationAction(ISD::TRAP, MVT::Other, Legal);
1296 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
1297
1298 // Use the default implementation.
1299 setOperationAction(ISD::VASTART, MVT::Other, Custom);
1300 setOperationAction(ISD::VAARG, MVT::Other, Expand);
1301 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
1302 setOperationAction(ISD::VAEND, MVT::Other, Expand);
1303 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
1304 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
1305
1306 if (Subtarget->isTargetWindows())
1307 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
1308 else
1309 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
1310
1311 // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
1312 // the default expansion.
1313 InsertFencesForAtomic = false;
1314 if (Subtarget->hasAnyDataBarrier() &&
1315 (!Subtarget->isThumb() || Subtarget->hasV8MBaselineOps())) {
1316 // ATOMIC_FENCE needs custom lowering; the others should have been expanded
1317 // to ldrex/strex loops already.
1318 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
1319 if (!Subtarget->isThumb() || !Subtarget->isMClass())
1320 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
1321
1322 // On v8, we have particularly efficient implementations of atomic fences
1323 // if they can be combined with nearby atomic loads and stores.
1324 if (!Subtarget->hasAcquireRelease() ||
1325 getTargetMachine().getOptLevel() == 0) {
1326 // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
1327 InsertFencesForAtomic = true;
1328 }
1329 } else {
1330 // If there's anything we can use as a barrier, go through custom lowering
1331 // for ATOMIC_FENCE.
1332 // If target has DMB in thumb, Fences can be inserted.
1333 if (Subtarget->hasDataBarrier())
1334 InsertFencesForAtomic = true;
1335
1336 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other,
1337 Subtarget->hasAnyDataBarrier() ? Custom : Expand);
1338
1339 // Set them all for expansion, which will force libcalls.
1340 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Expand);
1341 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Expand);
1342 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Expand);
1343 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Expand);
1344 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Expand);
1345 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Expand);
1346 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Expand);
1347 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
1348 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
1349 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
1350 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
1351 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
1352 // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
1353 // Unordered/Monotonic case.
1354 if (!InsertFencesForAtomic) {
1355 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
1356 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
1357 }
1358 }
1359
1360 // Compute supported atomic widths.
1361 if (Subtarget->isTargetLinux() ||
1362 (!Subtarget->isMClass() && Subtarget->hasV6Ops())) {
1363 // For targets where __sync_* routines are reliably available, we use them
1364 // if necessary.
1365 //
1366 // ARM Linux always supports 64-bit atomics through kernel-assisted atomic
1367 // routines (kernel 3.1 or later). FIXME: Not with compiler-rt?
1368 //
1369 // ARMv6 targets have native instructions in ARM mode. For Thumb mode,
1370 // such targets should provide __sync_* routines, which use the ARM mode
1371 // instructions. (ARMv6 doesn't have dmb, but it has an equivalent
1372 // encoding; see ARMISD::MEMBARRIER_MCR.)
1373 setMaxAtomicSizeInBitsSupported(64);
1374 } else if ((Subtarget->isMClass() && Subtarget->hasV8MBaselineOps()) ||
1375 Subtarget->hasForced32BitAtomics()) {
1376 // Cortex-M (besides Cortex-M0) have 32-bit atomics.
1377 setMaxAtomicSizeInBitsSupported(32);
1378 } else {
1379 // We can't assume anything about other targets; just use libatomic
1380 // routines.
1381 setMaxAtomicSizeInBitsSupported(0);
1382 }
1383
1384 setMaxDivRemBitWidthSupported(64);
1385
1386 setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
1387
1388 // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
1389 if (!Subtarget->hasV6Ops()) {
1390 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
1391 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
1392 }
1393 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
1394
1395 if (!Subtarget->useSoftFloat() && Subtarget->hasFPRegs() &&
1396 !Subtarget->isThumb1Only()) {
1397 // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
1398 // iff target supports vfp2.
1399 setOperationAction(ISD::BITCAST, MVT::i64, Custom);
1400 setOperationAction(ISD::GET_ROUNDING, MVT::i32, Custom);
1401 setOperationAction(ISD::SET_ROUNDING, MVT::Other, Custom);
1402 }
1403
1404 // We want to custom lower some of our intrinsics.
1405 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1406 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
1407 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
1408 setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom);
1409 if (Subtarget->useSjLjEH())
1410 setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
1411
1412 setOperationAction(ISD::SETCC, MVT::i32, Expand);
1413 setOperationAction(ISD::SETCC, MVT::f32, Expand);
1414 setOperationAction(ISD::SETCC, MVT::f64, Expand);
1415 setOperationAction(ISD::SELECT, MVT::i32, Custom);
1416 setOperationAction(ISD::SELECT, MVT::f32, Custom);
1417 setOperationAction(ISD::SELECT, MVT::f64, Custom);
1418 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
1419 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
1420 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
1421 if (Subtarget->hasFullFP16()) {
1422 setOperationAction(ISD::SETCC, MVT::f16, Expand);
1423 setOperationAction(ISD::SELECT, MVT::f16, Custom);
1424 setOperationAction(ISD::SELECT_CC, MVT::f16, Custom);
1425 }
1426
1427 setOperationAction(ISD::SETCCCARRY, MVT::i32, Custom);
1428
1429 setOperationAction(ISD::BRCOND, MVT::Other, Custom);
1430 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
1431 if (Subtarget->hasFullFP16())
1432 setOperationAction(ISD::BR_CC, MVT::f16, Custom);
1433 setOperationAction(ISD::BR_CC, MVT::f32, Custom);
1434 setOperationAction(ISD::BR_CC, MVT::f64, Custom);
1435 setOperationAction(ISD::BR_JT, MVT::Other, Custom);
1436
1437 // We don't support sin/cos/fmod/copysign/pow
1438 setOperationAction(ISD::FSIN, MVT::f64, Expand);
1439 setOperationAction(ISD::FSIN, MVT::f32, Expand);
1440 setOperationAction(ISD::FCOS, MVT::f32, Expand);
1441 setOperationAction(ISD::FCOS, MVT::f64, Expand);
1442 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
1443 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
1444 setOperationAction(ISD::FREM, MVT::f64, Expand);
1445 setOperationAction(ISD::FREM, MVT::f32, Expand);
1446 if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2Base() &&
1447 !Subtarget->isThumb1Only()) {
1448 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
1449 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
1450 }
1451 setOperationAction(ISD::FPOW, MVT::f64, Expand);
1452 setOperationAction(ISD::FPOW, MVT::f32, Expand);
1453
1454 if (!Subtarget->hasVFP4Base()) {
1455 setOperationAction(ISD::FMA, MVT::f64, Expand);
1456 setOperationAction(ISD::FMA, MVT::f32, Expand);
1457 }
1458
1459 // Various VFP goodness
1460 if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only()) {
1461 // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
1462 if (!Subtarget->hasFPARMv8Base() || !Subtarget->hasFP64()) {
1463 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
1464 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
1465 }
1466
1467 // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
1468 if (!Subtarget->hasFP16()) {
1469 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
1470 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
1471 }
1472
1473 // Strict floating-point comparisons need custom lowering.
1474 setOperationAction(ISD::STRICT_FSETCC, MVT::f16, Custom);
1475 setOperationAction(ISD::STRICT_FSETCCS, MVT::f16, Custom);
1476 setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Custom);
1477 setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Custom);
1478 setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Custom);
1479 setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Custom);
1480 }
1481
1482 // Use __sincos_stret if available.
1483 if (getLibcallName(RTLIB::SINCOS_STRET_F32) != nullptr &&
1484 getLibcallName(RTLIB::SINCOS_STRET_F64) != nullptr) {
1485 setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
1486 setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
1487 }
1488
1489 // FP-ARMv8 implements a lot of rounding-like FP operations.
1490 if (Subtarget->hasFPARMv8Base()) {
1491 setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
1492 setOperationAction(ISD::FCEIL, MVT::f32, Legal);
1493 setOperationAction(ISD::FROUND, MVT::f32, Legal);
1494 setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
1495 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
1496 setOperationAction(ISD::FRINT, MVT::f32, Legal);
1497 setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
1498 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
1499 if (Subtarget->hasNEON()) {
1500 setOperationAction(ISD::FMINNUM, MVT::v2f32, Legal);
1501 setOperationAction(ISD::FMAXNUM, MVT::v2f32, Legal);
1502 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
1503 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
1504 }
1505
1506 if (Subtarget->hasFP64()) {
1507 setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
1508 setOperationAction(ISD::FCEIL, MVT::f64, Legal);
1509 setOperationAction(ISD::FROUND, MVT::f64, Legal);
1510 setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
1511 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
1512 setOperationAction(ISD::FRINT, MVT::f64, Legal);
1513 setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
1514 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
1515 }
1516 }
1517
1518 // FP16 often need to be promoted to call lib functions
1519 if (Subtarget->hasFullFP16()) {
1520 setOperationAction(ISD::FREM, MVT::f16, Promote);
1521 setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand);
1522 setOperationAction(ISD::FSIN, MVT::f16, Promote);
1523 setOperationAction(ISD::FCOS, MVT::f16, Promote);
1524 setOperationAction(ISD::FSINCOS, MVT::f16, Promote);
1525 setOperationAction(ISD::FPOWI, MVT::f16, Promote);
1526 setOperationAction(ISD::FPOW, MVT::f16, Promote);
1527 setOperationAction(ISD::FEXP, MVT::f16, Promote);
1528 setOperationAction(ISD::FEXP2, MVT::f16, Promote);
1529 setOperationAction(ISD::FLOG, MVT::f16, Promote);
1530 setOperationAction(ISD::FLOG10, MVT::f16, Promote);
1531 setOperationAction(ISD::FLOG2, MVT::f16, Promote);
1532
1533 setOperationAction(ISD::FROUND, MVT::f16, Legal);
1534 }
1535
1536 if (Subtarget->hasNEON()) {
1537 // vmin and vmax aren't available in a scalar form, so we can use
1538 // a NEON instruction with an undef lane instead. This has a performance
1539 // penalty on some cores, so we don't do this unless we have been
1540 // asked to by the core tuning model.
1541 if (Subtarget->useNEONForSinglePrecisionFP()) {
1542 setOperationAction(ISD::FMINIMUM, MVT::f32, Legal);
1543 setOperationAction(ISD::FMAXIMUM, MVT::f32, Legal);
1544 setOperationAction(ISD::FMINIMUM, MVT::f16, Legal);
1545 setOperationAction(ISD::FMAXIMUM, MVT::f16, Legal);
1546 }
1547 setOperationAction(ISD::FMINIMUM, MVT::v2f32, Legal);
1548 setOperationAction(ISD::FMAXIMUM, MVT::v2f32, Legal);
1549 setOperationAction(ISD::FMINIMUM, MVT::v4f32, Legal);
1550 setOperationAction(ISD::FMAXIMUM, MVT::v4f32, Legal);
1551
1552 if (Subtarget->hasFullFP16()) {
1553 setOperationAction(ISD::FMINNUM, MVT::v4f16, Legal);
1554 setOperationAction(ISD::FMAXNUM, MVT::v4f16, Legal);
1555 setOperationAction(ISD::FMINNUM, MVT::v8f16, Legal);
1556 setOperationAction(ISD::FMAXNUM, MVT::v8f16, Legal);
1557
1558 setOperationAction(ISD::FMINIMUM, MVT::v4f16, Legal);
1559 setOperationAction(ISD::FMAXIMUM, MVT::v4f16, Legal);
1560 setOperationAction(ISD::FMINIMUM, MVT::v8f16, Legal);
1561 setOperationAction(ISD::FMAXIMUM, MVT::v8f16, Legal);
1562 }
1563 }
1564
1565 // We have target-specific dag combine patterns for the following nodes:
1566 // ARMISD::VMOVRRD - No need to call setTargetDAGCombine
1567 setTargetDAGCombine(
1568 {ISD::ADD, ISD::SUB, ISD::MUL, ISD::AND, ISD::OR, ISD::XOR});
1569
1570 if (Subtarget->hasMVEIntegerOps())
1571 setTargetDAGCombine(ISD::VSELECT);
1572
1573 if (Subtarget->hasV6Ops())
1574 setTargetDAGCombine(ISD::SRL);
1575 if (Subtarget->isThumb1Only())
1576 setTargetDAGCombine(ISD::SHL);
1577 // Attempt to lower smin/smax to ssat/usat
1578 if ((!Subtarget->isThumb() && Subtarget->hasV6Ops()) ||
1579 Subtarget->isThumb2()) {
1580 setTargetDAGCombine({ISD::SMIN, ISD::SMAX});
1581 }
1582
1583 setStackPointerRegisterToSaveRestore(ARM::SP);
1584
1585 if (Subtarget->useSoftFloat() || Subtarget->isThumb1Only() ||
1586 !Subtarget->hasVFP2Base() || Subtarget->hasMinSize())
1587 setSchedulingPreference(Sched::RegPressure);
1588 else
1589 setSchedulingPreference(Sched::Hybrid);
1590
1591 //// temporary - rewrite interface to use type
1592 MaxStoresPerMemset = 8;
1593 MaxStoresPerMemsetOptSize = 4;
1594 MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
1595 MaxStoresPerMemcpyOptSize = 2;
1596 MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
1597 MaxStoresPerMemmoveOptSize = 2;
1598
1599 // On ARM arguments smaller than 4 bytes are extended, so all arguments
1600 // are at least 4 bytes aligned.
1601 setMinStackArgumentAlignment(Align(4));
1602
1603 // Prefer likely predicted branches to selects on out-of-order cores.
1604 PredictableSelectIsExpensive = Subtarget->getSchedModel().isOutOfOrder();
1605
1606 setPrefLoopAlignment(Align(1ULL << Subtarget->getPrefLoopLogAlignment()));
1607
1608 setMinFunctionAlignment(Subtarget->isThumb() ? Align(2) : Align(4));
1609
1610 if (Subtarget->isThumb() || Subtarget->isThumb2())
1611 setTargetDAGCombine(ISD::ABS);
1612}
1613
1614bool ARMTargetLowering::useSoftFloat() const {
1615 return Subtarget->useSoftFloat();
1616}
1617
1618// FIXME: It might make sense to define the representative register class as the
1619// nearest super-register that has a non-null superset. For example, DPR_VFP2 is
1620// a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
1621// SPR's representative would be DPR_VFP2. This should work well if register
1622// pressure tracking were modified such that a register use would increment the
1623// pressure of the register class's representative and all of it's super
1624// classes' representatives transitively. We have not implemented this because
1625// of the difficulty prior to coalescing of modeling operand register classes
1626// due to the common occurrence of cross class copies and subregister insertions
1627// and extractions.
1628std::pair<const TargetRegisterClass *, uint8_t>
1629ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
1630 MVT VT) const {
1631 const TargetRegisterClass *RRC = nullptr;
1632 uint8_t Cost = 1;
1633 switch (VT.SimpleTy) {
1634 default:
1635 return TargetLowering::findRepresentativeClass(TRI, VT);
1636 // Use DPR as representative register class for all floating point
1637 // and vector types. Since there are 32 SPR registers and 32 DPR registers so
1638 // the cost is 1 for both f32 and f64.
1639 case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
1640 case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
1641 RRC = &ARM::DPRRegClass;
1642 // When NEON is used for SP, only half of the register file is available
1643 // because operations that define both SP and DP results will be constrained
1644 // to the VFP2 class (D0-D15). We currently model this constraint prior to
1645 // coalescing by double-counting the SP regs. See the FIXME above.
1646 if (Subtarget->useNEONForSinglePrecisionFP())
1647 Cost = 2;
1648 break;
1649 case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1650 case MVT::v4f32: case MVT::v2f64:
1651 RRC = &ARM::DPRRegClass;
1652 Cost = 2;
1653 break;
1654 case MVT::v4i64:
1655 RRC = &ARM::DPRRegClass;
1656 Cost = 4;
1657 break;
1658 case MVT::v8i64:
1659 RRC = &ARM::DPRRegClass;
1660 Cost = 8;
1661 break;
1662 }
1663 return std::make_pair(RRC, Cost);
1664}
1665
1666const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
1667#define MAKE_CASE(V) \
1668 case V: \
1669 return #V;
1670 switch ((ARMISD::NodeType)Opcode) {
1671 case ARMISD::FIRST_NUMBER:
1672 break;
1673 MAKE_CASE(ARMISD::Wrapper)
1674 MAKE_CASE(ARMISD::WrapperPIC)
1675 MAKE_CASE(ARMISD::WrapperJT)
1676 MAKE_CASE(ARMISD::COPY_STRUCT_BYVAL)
1677 MAKE_CASE(ARMISD::CALL)
1678 MAKE_CASE(ARMISD::CALL_PRED)
1679 MAKE_CASE(ARMISD::CALL_NOLINK)
1680 MAKE_CASE(ARMISD::tSECALL)
1681 MAKE_CASE(ARMISD::t2CALL_BTI)
1682 MAKE_CASE(ARMISD::BRCOND)
1683 MAKE_CASE(ARMISD::BR_JT)
1684 MAKE_CASE(ARMISD::BR2_JT)
1685 MAKE_CASE(ARMISD::RET_FLAG)
1686 MAKE_CASE(ARMISD::SERET_FLAG)
1687 MAKE_CASE(ARMISD::INTRET_FLAG)
1688 MAKE_CASE(ARMISD::PIC_ADD)
1689 MAKE_CASE(ARMISD::CMP)
1690 MAKE_CASE(ARMISD::CMN)
1691 MAKE_CASE(ARMISD::CMPZ)
1692 MAKE_CASE(ARMISD::CMPFP)
1693 MAKE_CASE(ARMISD::CMPFPE)
1694 MAKE_CASE(ARMISD::CMPFPw0)
1695 MAKE_CASE(ARMISD::CMPFPEw0)
1696 MAKE_CASE(ARMISD::BCC_i64)
1697 MAKE_CASE(ARMISD::FMSTAT)
1698 MAKE_CASE(ARMISD::CMOV)
1699 MAKE_CASE(ARMISD::SUBS)
1700 MAKE_CASE(ARMISD::SSAT)
1701 MAKE_CASE(ARMISD::USAT)
1702 MAKE_CASE(ARMISD::ASRL)
1703 MAKE_CASE(ARMISD::LSRL)
1704 MAKE_CASE(ARMISD::LSLL)
1705 MAKE_CASE(ARMISD::SRL_FLAG)
1706 MAKE_CASE(ARMISD::SRA_FLAG)
1707 MAKE_CASE(ARMISD::RRX)
1708 MAKE_CASE(ARMISD::ADDC)
1709 MAKE_CASE(ARMISD::ADDE)
1710 MAKE_CASE(ARMISD::SUBC)
1711 MAKE_CASE(ARMISD::SUBE)
1712 MAKE_CASE(ARMISD::LSLS)
1713 MAKE_CASE(ARMISD::VMOVRRD)
1714 MAKE_CASE(ARMISD::VMOVDRR)
1715 MAKE_CASE(ARMISD::VMOVhr)
1716 MAKE_CASE(ARMISD::VMOVrh)
1717 MAKE_CASE(ARMISD::VMOVSR)
1718 MAKE_CASE(ARMISD::EH_SJLJ_SETJMP)
1719 MAKE_CASE(ARMISD::EH_SJLJ_LONGJMP)
1720 MAKE_CASE(ARMISD::EH_SJLJ_SETUP_DISPATCH)
1721 MAKE_CASE(ARMISD::TC_RETURN)
1722 MAKE_CASE(ARMISD::THREAD_POINTER)
1723 MAKE_CASE(ARMISD::DYN_ALLOC)
1724 MAKE_CASE(ARMISD::MEMBARRIER_MCR)
1725 MAKE_CASE(ARMISD::PRELOAD)
1726 MAKE_CASE(ARMISD::LDRD)
1727 MAKE_CASE(ARMISD::STRD)
1728 MAKE_CASE(ARMISD::WIN__CHKSTK)
1729 MAKE_CASE(ARMISD::WIN__DBZCHK)
1730 MAKE_CASE(ARMISD::PREDICATE_CAST)
1731 MAKE_CASE(ARMISD::VECTOR_REG_CAST)
1732 MAKE_CASE(ARMISD::MVESEXT)
1733 MAKE_CASE(ARMISD::MVEZEXT)
1734 MAKE_CASE(ARMISD::MVETRUNC)
1735 MAKE_CASE(ARMISD::VCMP)
1736 MAKE_CASE(ARMISD::VCMPZ)
1737 MAKE_CASE(ARMISD::VTST)
1738 MAKE_CASE(ARMISD::VSHLs)
1739 MAKE_CASE(ARMISD::VSHLu)
1740 MAKE_CASE(ARMISD::VSHLIMM)
1741 MAKE_CASE(ARMISD::VSHRsIMM)
1742 MAKE_CASE(ARMISD::VSHRuIMM)
1743 MAKE_CASE(ARMISD::VRSHRsIMM)
1744 MAKE_CASE(ARMISD::VRSHRuIMM)
1745 MAKE_CASE(ARMISD::VRSHRNIMM)
1746 MAKE_CASE(ARMISD::VQSHLsIMM)
1747 MAKE_CASE(ARMISD::VQSHLuIMM)
1748 MAKE_CASE(ARMISD::VQSHLsuIMM)
1749 MAKE_CASE(ARMISD::VQSHRNsIMM)
1750 MAKE_CASE(ARMISD::VQSHRNuIMM)
1751 MAKE_CASE(ARMISD::VQSHRNsuIMM)
1752 MAKE_CASE(ARMISD::VQRSHRNsIMM)
1753 MAKE_CASE(ARMISD::VQRSHRNuIMM)
1754 MAKE_CASE(ARMISD::VQRSHRNsuIMM)
1755 MAKE_CASE(ARMISD::VSLIIMM)
1756 MAKE_CASE(ARMISD::VSRIIMM)
1757 MAKE_CASE(ARMISD::VGETLANEu)
1758 MAKE_CASE(ARMISD::VGETLANEs)
1759 MAKE_CASE(ARMISD::VMOVIMM)
1760 MAKE_CASE(ARMISD::VMVNIMM)
1761 MAKE_CASE(ARMISD::VMOVFPIMM)
1762 MAKE_CASE(ARMISD::VDUP)
1763 MAKE_CASE(ARMISD::VDUPLANE)
1764 MAKE_CASE(ARMISD::VEXT)
1765 MAKE_CASE(ARMISD::VREV64)
1766 MAKE_CASE(ARMISD::VREV32)
1767 MAKE_CASE(ARMISD::VREV16)
1768 MAKE_CASE(ARMISD::VZIP)
1769 MAKE_CASE(ARMISD::VUZP)
1770 MAKE_CASE(ARMISD::VTRN)
1771 MAKE_CASE(ARMISD::VTBL1)
1772 MAKE_CASE(ARMISD::VTBL2)
1773 MAKE_CASE(ARMISD::VMOVN)
1774 MAKE_CASE(ARMISD::VQMOVNs)
1775 MAKE_CASE(ARMISD::VQMOVNu)
1776 MAKE_CASE(ARMISD::VCVTN)
1777 MAKE_CASE(ARMISD::VCVTL)
1778 MAKE_CASE(ARMISD::VIDUP)
1779 MAKE_CASE(ARMISD::VMULLs)
1780 MAKE_CASE(ARMISD::VMULLu)
1781 MAKE_CASE(ARMISD::VQDMULH)
1782 MAKE_CASE(ARMISD::VADDVs)
1783 MAKE_CASE(ARMISD::VADDVu)
1784 MAKE_CASE(ARMISD::VADDVps)
1785 MAKE_CASE(ARMISD::VADDVpu)
1786 MAKE_CASE(ARMISD::VADDLVs)
1787 MAKE_CASE(ARMISD::VADDLVu)
1788 MAKE_CASE(ARMISD::VADDLVAs)
1789 MAKE_CASE(ARMISD::VADDLVAu)
1790 MAKE_CASE(ARMISD::VADDLVps)
1791 MAKE_CASE(ARMISD::VADDLVpu)
1792 MAKE_CASE(ARMISD::VADDLVAps)
1793 MAKE_CASE(ARMISD::VADDLVApu)
1794 MAKE_CASE(ARMISD::VMLAVs)
1795 MAKE_CASE(ARMISD::VMLAVu)
1796 MAKE_CASE(ARMISD::VMLAVps)
1797 MAKE_CASE(ARMISD::VMLAVpu)
1798 MAKE_CASE(ARMISD::VMLALVs)
1799 MAKE_CASE(ARMISD::VMLALVu)
1800 MAKE_CASE(ARMISD::VMLALVps)
1801 MAKE_CASE(ARMISD::VMLALVpu)
1802 MAKE_CASE(ARMISD::VMLALVAs)
1803 MAKE_CASE(ARMISD::VMLALVAu)
1804 MAKE_CASE(ARMISD::VMLALVAps)
1805 MAKE_CASE(ARMISD::VMLALVApu)
1806 MAKE_CASE(ARMISD::VMINVu)
1807 MAKE_CASE(ARMISD::VMINVs)
1808 MAKE_CASE(ARMISD::VMAXVu)
1809 MAKE_CASE(ARMISD::VMAXVs)
1810 MAKE_CASE(ARMISD::UMAAL)
1811 MAKE_CASE(ARMISD::UMLAL)
1812 MAKE_CASE(ARMISD::SMLAL)
1813 MAKE_CASE(ARMISD::SMLALBB)
1814 MAKE_CASE(ARMISD::SMLALBT)
1815 MAKE_CASE(ARMISD::SMLALTB)
1816 MAKE_CASE(ARMISD::SMLALTT)
1817 MAKE_CASE(ARMISD::SMULWB)
1818 MAKE_CASE(ARMISD::SMULWT)
1819 MAKE_CASE(ARMISD::SMLALD)
1820 MAKE_CASE(ARMISD::SMLALDX)
1821 MAKE_CASE(ARMISD::SMLSLD)
1822 MAKE_CASE(ARMISD::SMLSLDX)
1823 MAKE_CASE(ARMISD::SMMLAR)
1824 MAKE_CASE(ARMISD::SMMLSR)
1825 MAKE_CASE(ARMISD::QADD16b)
1826 MAKE_CASE(ARMISD::QSUB16b)
1827 MAKE_CASE(ARMISD::QADD8b)
1828 MAKE_CASE(ARMISD::QSUB8b)
1829 MAKE_CASE(ARMISD::UQADD16b)
1830 MAKE_CASE(ARMISD::UQSUB16b)
1831 MAKE_CASE(ARMISD::UQADD8b)
1832 MAKE_CASE(ARMISD::UQSUB8b)
1833 MAKE_CASE(ARMISD::BUILD_VECTOR)
1834 MAKE_CASE(ARMISD::BFI)
1835 MAKE_CASE(ARMISD::VORRIMM)
1836 MAKE_CASE(ARMISD::VBICIMM)
1837 MAKE_CASE(ARMISD::VBSP)
1838 MAKE_CASE(ARMISD::MEMCPY)
1839 MAKE_CASE(ARMISD::VLD1DUP)
1840 MAKE_CASE(ARMISD::VLD2DUP)
1841 MAKE_CASE(ARMISD::VLD3DUP)
1842 MAKE_CASE(ARMISD::VLD4DUP)
1843 MAKE_CASE(ARMISD::VLD1_UPD)
1844 MAKE_CASE(ARMISD::VLD2_UPD)
1845 MAKE_CASE(ARMISD::VLD3_UPD)
1846 MAKE_CASE(ARMISD::VLD4_UPD)
1847 MAKE_CASE(ARMISD::VLD1x2_UPD)
1848 MAKE_CASE(ARMISD::VLD1x3_UPD)
1849 MAKE_CASE(ARMISD::VLD1x4_UPD)
1850 MAKE_CASE(ARMISD::VLD2LN_UPD)
1851 MAKE_CASE(ARMISD::VLD3LN_UPD)
1852 MAKE_CASE(ARMISD::VLD4LN_UPD)
1853 MAKE_CASE(ARMISD::VLD1DUP_UPD)
1854 MAKE_CASE(ARMISD::VLD2DUP_UPD)
1855 MAKE_CASE(ARMISD::VLD3DUP_UPD)
1856 MAKE_CASE(ARMISD::VLD4DUP_UPD)
1857 MAKE_CASE(ARMISD::VST1_UPD)
1858 MAKE_CASE(ARMISD::VST2_UPD)
1859 MAKE_CASE(ARMISD::VST3_UPD)
1860 MAKE_CASE(ARMISD::VST4_UPD)
1861 MAKE_CASE(ARMISD::VST1x2_UPD)
1862 MAKE_CASE(ARMISD::VST1x3_UPD)
1863 MAKE_CASE(ARMISD::VST1x4_UPD)
1864 MAKE_CASE(ARMISD::VST2LN_UPD)
1865 MAKE_CASE(ARMISD::VST3LN_UPD)
1866 MAKE_CASE(ARMISD::VST4LN_UPD)
1867 MAKE_CASE(ARMISD::WLS)
1868 MAKE_CASE(ARMISD::WLSSETUP)
1869 MAKE_CASE(ARMISD::LE)
1870 MAKE_CASE(ARMISD::LOOP_DEC)
1871 MAKE_CASE(ARMISD::CSINV)
1872 MAKE_CASE(ARMISD::CSNEG)
1873 MAKE_CASE(ARMISD::CSINC)
1874 MAKE_CASE(ARMISD::MEMCPYLOOP)
1875 MAKE_CASE(ARMISD::MEMSETLOOP)
1876#undef MAKE_CASE
1877 }
1878 return nullptr;
1879}
1880
1881EVT ARMTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1882 EVT VT) const {
1883 if (!VT.isVector())
1884 return getPointerTy(DL);
1885
1886 // MVE has a predicate register.
1887 if ((Subtarget->hasMVEIntegerOps() &&
1888 (VT == MVT::v2i64 || VT == MVT::v4i32 || VT == MVT::v8i16 ||
1889 VT == MVT::v16i8)) ||
1890 (Subtarget->hasMVEFloatOps() &&
1891 (VT == MVT::v2f64 || VT == MVT::v4f32 || VT == MVT::v8f16)))
1892 return MVT::getVectorVT(MVT::i1, VT.getVectorElementCount());
1893 return VT.changeVectorElementTypeToInteger();
1894}
1895
1896/// getRegClassFor - Return the register class that should be used for the
1897/// specified value type.
1898const TargetRegisterClass *
1899ARMTargetLowering::getRegClassFor(MVT VT, bool isDivergent) const {
1900 (void)isDivergent;
1901 // Map v4i64 to QQ registers but do not make the type legal. Similarly map
1902 // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
1903 // load / store 4 to 8 consecutive NEON D registers, or 2 to 4 consecutive
1904 // MVE Q registers.
1905 if (Subtarget->hasNEON()) {
1906 if (VT == MVT::v4i64)
1907 return &ARM::QQPRRegClass;
1908 if (VT == MVT::v8i64)
1909 return &ARM::QQQQPRRegClass;
1910 }
1911 if (Subtarget->hasMVEIntegerOps()) {
1912 if (VT == MVT::v4i64)
1913 return &ARM::MQQPRRegClass;
1914 if (VT == MVT::v8i64)
1915 return &ARM::MQQQQPRRegClass;
1916 }
1917 return TargetLowering::getRegClassFor(VT);
1918}
1919
1920// memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
1921// source/dest is aligned and the copy size is large enough. We therefore want
1922// to align such objects passed to memory intrinsics.
1923bool ARMTargetLowering::shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize,
1924 Align &PrefAlign) const {
1925 if (!isa<MemIntrinsic>(CI))
1926 return false;
1927 MinSize = 8;
1928 // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
1929 // cycle faster than 4-byte aligned LDM.
1930 PrefAlign =
1931 (Subtarget->hasV6Ops() && !Subtarget->isMClass() ? Align(8) : Align(4));
1932 return true;
1933}
1934
1935// Create a fast isel object.
1936FastISel *
1937ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
1938 const TargetLibraryInfo *libInfo) const {
1939 return ARM::createFastISel(funcInfo, libInfo);
1940}
1941
1942Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
1943 unsigned NumVals = N->getNumValues();
1944 if (!NumVals)
1945 return Sched::RegPressure;
1946
1947 for (unsigned i = 0; i != NumVals; ++i) {
1948 EVT VT = N->getValueType(i);
1949 if (VT == MVT::Glue || VT == MVT::Other)
1950 continue;
1951 if (VT.isFloatingPoint() || VT.isVector())
1952 return Sched::ILP;
1953 }
1954
1955 if (!N->isMachineOpcode())
1956 return Sched::RegPressure;
1957
1958 // Load are scheduled for latency even if there instruction itinerary
1959 // is not available.
1960 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
1961 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1962
1963 if (MCID.getNumDefs() == 0)
1964 return Sched::RegPressure;
1965 if (!Itins->isEmpty() &&
1966 Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
1967 return Sched::ILP;
1968
1969 return Sched::RegPressure;
1970}
1971
1972//===----------------------------------------------------------------------===//
1973// Lowering Code
1974//===----------------------------------------------------------------------===//
1975
1976static bool isSRL16(const SDValue &Op) {
1977 if (Op.getOpcode() != ISD::SRL)
1978 return false;
1979 if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1980 return Const->getZExtValue() == 16;
1981 return false;
1982}
1983
1984static bool isSRA16(const SDValue &Op) {
1985 if (Op.getOpcode() != ISD::SRA)
1986 return false;
1987 if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1988 return Const->getZExtValue() == 16;
1989 return false;
1990}
1991
1992static bool isSHL16(const SDValue &Op) {
1993 if (Op.getOpcode() != ISD::SHL)
1994 return false;
1995 if (auto Const = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
1996 return Const->getZExtValue() == 16;
1997 return false;
1998}
1999
2000// Check for a signed 16-bit value. We special case SRA because it makes it
2001// more simple when also looking for SRAs that aren't sign extending a
2002// smaller value. Without the check, we'd need to take extra care with
2003// checking order for some operations.
2004static bool isS16(const SDValue &Op, SelectionDAG &DAG) {
2005 if (isSRA16(Op))
2006 return isSHL16(Op.getOperand(0));
2007 return DAG.ComputeNumSignBits(Op) == 17;
2008}
2009
2010/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
2011static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
2012 switch (CC) {
2013 default: llvm_unreachable("Unknown condition code!")::llvm::llvm_unreachable_internal("Unknown condition code!", "llvm/lib/Target/ARM/ARMISelLowering.cpp"
, 2013)
;
2014 case ISD::SETNE: return ARMCC::NE;
2015 case ISD::SETEQ: return ARMCC::EQ;
2016 case ISD::SETGT: return ARMCC::GT;
2017 case ISD::SETGE: return ARMCC::GE;
2018 case ISD::SETLT: return ARMCC::LT;
2019 case ISD::SETLE: return ARMCC::LE;
2020 case ISD::SETUGT: return ARMCC::HI;
2021 case ISD::SETUGE: return ARMCC::HS;
2022 case ISD::SETULT: return ARMCC::LO;
2023 case ISD::SETULE: return ARMCC::LS;
2024 }
2025}
2026
2027/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
2028static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
2029 ARMCC::CondCodes &CondCode2) {
2030 CondCode2 = ARMCC::AL;
2031 switch (CC) {
2032 default: llvm_unreachable("Unknown FP condition!")::llvm::llvm_unreachable_internal("Unknown FP condition!", "llvm/lib/Target/ARM/ARMISelLowering.cpp"
, 2032)
;
2033 case ISD::SETEQ:
2034 case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
2035 case ISD::SETGT:
2036 case ISD::SETOGT: CondCode = ARMCC::GT; break;
2037 case ISD::SETGE:
2038 case ISD::SETOGE: CondCode = ARMCC::GE; break;
2039 case ISD::SETOLT: CondCode = ARMCC::MI; break;
2040 case ISD::SETOLE: CondCode = ARMCC::LS; break;
2041 case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
2042 case ISD::SETO: CondCode = ARMCC::VC; break;
2043 case ISD::SETUO: CondCode = ARMCC::VS; break;
2044 case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
2045 case ISD::SETUGT: CondCode = ARMCC::HI; break;
2046 case ISD::SETUGE: CondCode = ARMCC::PL; break;
2047 case ISD::SETLT:
2048 case ISD::SETULT: CondCode = ARMCC::LT; break;
2049 case ISD::SETLE:
2050 case ISD::SETULE: CondCode = ARMCC::LE; break;
2051 case ISD::SETNE:
2052 case ISD::SETUNE: CondCode = ARMCC::NE; break;
2053 }
2054}
2055
2056//===----------------------------------------------------------------------===//
2057// Calling Convention Implementation
2058//===----------------------------------------------------------------------===//
2059
2060/// getEffectiveCallingConv - Get the effective calling convention, taking into
2061/// account presence of floating point hardware and calling convention
2062/// limitations, such as support for variadic functions.
2063CallingConv::ID
2064ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC,
2065 bool isVarArg) const {
2066 switch (CC) {
2067 default:
2068 report_fatal_error("Unsupported calling convention");
2069 case CallingConv::ARM_AAPCS:
2070 case CallingConv::ARM_APCS:
2071 case CallingConv::GHC:
2072 case CallingConv::CFGuard_Check:
2073 return CC;
2074 case CallingConv::PreserveMost:
2075 return CallingConv::PreserveMost;
2076 case CallingConv::ARM_AAPCS_VFP:
2077 case CallingConv::Swift:
2078 case CallingConv::SwiftTail:
2079 return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP;
2080 case CallingConv::C:
2081 case CallingConv::Tail:
2082 if (!Subtarget->isAAPCS_ABI())
2083 return CallingConv::ARM_APCS;
2084 else if (Subtarget->hasFPRegs() && !Subtarget->isThumb1Only() &&
2085 getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
2086 !isVarArg)
2087 return CallingConv::ARM_AAPCS_VFP;
2088 else
2089 return CallingConv::ARM_AAPCS;
2090 case CallingConv::Fast:
2091 case CallingConv::CXX_FAST_TLS:
2092 if (!Subtarget->isAAPCS_ABI()) {
2093 if (Subtarget->hasVFP2Base() && !Subtarget->isThumb1Only() && !isVarArg)
2094 return CallingConv::Fast;
2095 return CallingConv::ARM_APCS;
2096 } else if (Subtarget->hasVFP2Base() &&
2097 !Subtarget->isThumb1Only() && !isVarArg)
2098 return CallingConv::ARM_AAPCS_VFP;
2099 else
2100 return CallingConv::ARM_AAPCS;
2101 }
2102}
2103
2104CCAssignFn *ARMTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
2105 bool isVarArg) const {
2106 return CCAssignFnForNode(CC, false, isVarArg);
2107}
2108
2109CCAssignFn *ARMTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
2110 bool isVarArg) const {
2111 return CCAssignFnForNode(CC, true, isVarArg);
2112}
2113
2114/// CCAssignFnForNode - Selects the correct CCAssignFn for the given
2115/// CallingConvention.
2116CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
2117 bool Return,
2118 bool isVarArg) const {
2119 switch (getEffectiveCallingConv(CC, isVarArg)) {
2120 default:
2121 report_fatal_error("Unsupported calling convention");
2122 case CallingConv::ARM_APCS:
2123 return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
2124 case CallingConv::ARM_AAPCS:
2125 return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
2126 case CallingConv::ARM_AAPCS_VFP:
2127 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
2128 case CallingConv::Fast:
2129 return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
2130 case CallingConv::GHC:
2131 return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
2132 case CallingConv::PreserveMost:
2133 return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
2134 case CallingConv::CFGuard_Check:
2135 return (Return ? RetCC_ARM_AAPCS : CC_ARM_Win32_CFGuard_Check);
2136 }
2137}
2138
2139SDValue ARMTargetLowering::MoveToHPR(const SDLoc &dl, SelectionDAG &DAG,
2140 MVT LocVT, MVT ValVT, SDValue Val) const {
2141 Val = DAG.getNode(ISD::BITCAST, dl, MVT::getIntegerVT(LocVT.getSizeInBits()),
2142 Val);
2143 if (Subtarget->hasFullFP16()) {
2144 Val = DAG.getNode(ARMISD::VMOVhr, dl, ValVT, Val);
2145 } else {
2146 Val = DAG.getNode(ISD::TRUNCATE, dl,
2147 MVT::getIntegerVT(ValVT.getSizeInBits()), Val);
2148 Val = DAG.getNode(ISD::BITCAST, dl, ValVT, Val);
2149 }
2150 return Val;
2151}
2152
2153SDValue ARMTargetLowering::MoveFromHPR(const SDLoc &dl, SelectionDAG &DAG,
2154 MVT LocVT, MVT ValVT,
2155 SDValue Val) const {
2156 if (Subtarget->hasFullFP16()) {
2157 Val = DAG.getNode(ARMISD::VMOVrh, dl,
2158 MVT::getIntegerVT(LocVT.getSizeInBits()), Val);
2159 } else {
2160 Val = DAG.getNode(ISD::BITCAST, dl,
2161 MVT::getIntegerVT(ValVT.getSizeInBits()), Val);
2162 Val = DAG.getNode(ISD::ZERO_EXTEND, dl,
2163 MVT::getIntegerVT(LocVT.getSizeInBits()), Val);
2164 }
2165 return DAG.getNode(ISD::BITCAST, dl, LocVT, Val);
2166}
2167
2168/// LowerCallResult - Lower the result values of a call into the
2169/// appropriate copies out of appropriate physical registers.
2170SDValue ARMTargetLowering::LowerCallResult(
2171 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
2172 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
2173 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
2174 SDValue ThisVal) const {
2175 // Assign locations to each value returned by this call.
2176 SmallVector<CCValAssign, 16> RVLocs;
2177 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2178 *DAG.getContext());
2179 CCInfo.AnalyzeCallResult(Ins, CCAssignFnForReturn(CallConv, isVarArg));
2180
2181 // Copy all of the result registers out of their specified physreg.
2182 for (unsigned i = 0; i != RVLocs.size(); ++i) {
2183 CCValAssign VA = RVLocs[i];
2184
2185 // Pass 'this' value directly from the argument to return value, to avoid
2186 // reg unit interference
2187 if (i == 0 && isThisReturn) {
2188 assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&(static_cast <bool> (!VA.needsCustom() && VA.getLocVT
() == MVT::i32 && "unexpected return calling convention register assignment"
) ? void (0) : __assert_fail ("!VA.needsCustom() && VA.getLocVT() == MVT::i32 && \"unexpected return calling convention register assignment\""
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 2189, __extension__
__PRETTY_FUNCTION__))
2189 "unexpected return calling convention register assignment")(static_cast <bool> (!VA.needsCustom() && VA.getLocVT
() == MVT::i32 && "unexpected return calling convention register assignment"
) ? void (0) : __assert_fail ("!VA.needsCustom() && VA.getLocVT() == MVT::i32 && \"unexpected return calling convention register assignment\""
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 2189, __extension__
__PRETTY_FUNCTION__))
;
2190 InVals.push_back(ThisVal);
2191 continue;
2192 }
2193
2194 SDValue Val;
2195 if (VA.needsCustom() &&
2196 (VA.getLocVT() == MVT::f64 || VA.getLocVT() == MVT::v2f64)) {
2197 // Handle f64 or half of a v2f64.
2198 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
2199 InFlag);
2200 Chain = Lo.getValue(1);
2201 InFlag = Lo.getValue(2);
2202 VA = RVLocs[++i]; // skip ahead to next loc
2203 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
2204 InFlag);
2205 Chain = Hi.getValue(1);
2206 InFlag = Hi.getValue(2);
2207 if (!Subtarget->isLittle())
2208 std::swap (Lo, Hi);
2209 Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
2210
2211 if (VA.getLocVT() == MVT::v2f64) {
2212 SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
2213 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
2214 DAG.getConstant(0, dl, MVT::i32));
2215
2216 VA = RVLocs[++i]; // skip ahead to next loc
2217 Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
2218 Chain = Lo.getValue(1);
2219 InFlag = Lo.getValue(2);
2220 VA = RVLocs[++i]; // skip ahead to next loc
2221 Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
2222 Chain = Hi.getValue(1);
2223 InFlag = Hi.getValue(2);
2224 if (!Subtarget->isLittle())
2225 std::swap (Lo, Hi);
2226 Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
2227 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
2228 DAG.getConstant(1, dl, MVT::i32));
2229 }
2230 } else {
2231 Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
2232 InFlag);
2233 Chain = Val.getValue(1);
2234 InFlag = Val.getValue(2);
2235 }
2236
2237 switch (VA.getLocInfo()) {
2238 default: llvm_unreachable("Unknown loc info!")::llvm::llvm_unreachable_internal("Unknown loc info!", "llvm/lib/Target/ARM/ARMISelLowering.cpp"
, 2238)
;
2239 case CCValAssign::Full: break;
2240 case CCValAssign::BCvt:
2241 Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
2242 break;
2243 }
2244
2245 // f16 arguments have their size extended to 4 bytes and passed as if they
2246 // had been copied to the LSBs of a 32-bit register.
2247 // For that, it's passed extended to i32 (soft ABI) or to f32 (hard ABI)
2248 if (VA.needsCustom() &&
2249 (VA.getValVT() == MVT::f16 || VA.getValVT() == MVT::bf16))
2250 Val = MoveToHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), Val);
2251
2252 InVals.push_back(Val);
2253 }
2254
2255 return Chain;
2256}
2257
2258std::pair<SDValue, MachinePointerInfo> ARMTargetLowering::computeAddrForCallArg(
2259 const SDLoc &dl, SelectionDAG &DAG, const CCValAssign &VA, SDValue StackPtr,
2260 bool IsTailCall, int SPDiff) const {
2261 SDValue DstAddr;
2262 MachinePointerInfo DstInfo;
2263 int32_t Offset = VA.getLocMemOffset();
2264 MachineFunction &MF = DAG.getMachineFunction();
2265
2266 if (IsTailCall) {
2267 Offset += SPDiff;
2268 auto PtrVT = getPointerTy(DAG.getDataLayout());
2269 int Size = VA.getLocVT().getFixedSizeInBits() / 8;
2270 int FI = MF.getFrameInfo().CreateFixedObject(Size, Offset, true);
2271 DstAddr = DAG.getFrameIndex(FI, PtrVT);
2272 DstInfo =
2273 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
2274 } else {
2275 SDValue PtrOff = DAG.getIntPtrConstant(Offset, dl);
2276 DstAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
2277 StackPtr, PtrOff);
2278 DstInfo =
2279 MachinePointerInfo::getStack(DAG.getMachineFunction(), Offset);
2280 }
2281
2282 return std::make_pair(DstAddr, DstInfo);
2283}
2284
2285void ARMTargetLowering::PassF64ArgInRegs(const SDLoc &dl, SelectionDAG &DAG,
2286 SDValue Chain, SDValue &Arg,
2287 RegsToPassVector &RegsToPass,
2288 CCValAssign &VA, CCValAssign &NextVA,
2289 SDValue &StackPtr,
2290 SmallVectorImpl<SDValue> &MemOpChains,
2291 bool IsTailCall,
2292 int SPDiff) const {
2293 SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
2294 DAG.getVTList(MVT::i32, MVT::i32), Arg);
2295 unsigned id = Subtarget->isLittle() ? 0 : 1;
2296 RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id)));
2297
2298 if (NextVA.isRegLoc())
2299 RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id)));
2300 else {
2301 assert(NextVA.isMemLoc())(static_cast <bool> (NextVA.isMemLoc()) ? void (0) : __assert_fail
("NextVA.isMemLoc()", "llvm/lib/Target/ARM/ARMISelLowering.cpp"
, 2301, __extension__ __PRETTY_FUNCTION__))
;
2302 if (!StackPtr.getNode())
2303 StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP,
2304 getPointerTy(DAG.getDataLayout()));
2305
2306 SDValue DstAddr;
2307 MachinePointerInfo DstInfo;
2308 std::tie(DstAddr, DstInfo) =
2309 computeAddrForCallArg(dl, DAG, NextVA, StackPtr, IsTailCall, SPDiff);
2310 MemOpChains.push_back(
2311 DAG.getStore(Chain, dl, fmrrd.getValue(1 - id), DstAddr, DstInfo));
2312 }
2313}
2314
2315static bool canGuaranteeTCO(CallingConv::ID CC, bool GuaranteeTailCalls) {
2316 return (CC == CallingConv::Fast && GuaranteeTailCalls) ||
2317 CC == CallingConv::Tail || CC == CallingConv::SwiftTail;
2318}
2319
2320/// LowerCall - Lowering a call into a callseq_start <-
2321/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
2322/// nodes.
2323SDValue
2324ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
2325 SmallVectorImpl<SDValue> &InVals) const {
2326 SelectionDAG &DAG = CLI.DAG;
2327 SDLoc &dl = CLI.DL;
2328 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
2329 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
2330 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
2331 SDValue Chain = CLI.Chain;
2332 SDValue Callee = CLI.Callee;
2333 bool &isTailCall = CLI.IsTailCall;
2334 CallingConv::ID CallConv = CLI.CallConv;
2335 bool doesNotRet = CLI.DoesNotReturn;
2336 bool isVarArg = CLI.IsVarArg;
2337
2338 MachineFunction &MF = DAG.getMachineFunction();
2339 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2340 MachineFunction::CallSiteInfo CSInfo;
2341 bool isStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
2342 bool isThisReturn = false;
2343 bool isCmseNSCall = false;
2344 bool isSibCall = false;
2345 bool PreferIndirect = false;
2346 bool GuardWithBTI = false;
2347
2348 // Lower 'returns_twice' calls to a pseudo-instruction.
2349 if (CLI.CB && CLI.CB->getAttributes().hasFnAttr(Attribute::ReturnsTwice) &&
2350 !Subtarget->noBTIAtReturnTwice())
2351 GuardWithBTI = AFI->branchTargetEnforcement();
2352
2353 // Determine whether this is a non-secure function call.
2354 if (CLI.CB && CLI.CB->getAttributes().hasFnAttr("cmse_nonsecure_call"))
2355 isCmseNSCall = true;
2356
2357 // Disable tail calls if they're not supported.
2358 if (!Subtarget->supportsTailCall())
2359 isTailCall = false;
2360
2361 // For both the non-secure calls and the returns from a CMSE entry function,
2362 // the function needs to do some extra work afte r the call, or before the
2363 // return, respectively, thus it cannot end with atail call
2364 if (isCmseNSCall || AFI->isCmseNSEntryFunction())
2365 isTailCall = false;
2366
2367 if (isa<GlobalAddressSDNode>(Callee)) {
2368 // If we're optimizing for minimum size and the function is called three or
2369 // more times in this block, we can improve codesize by calling indirectly
2370 // as BLXr has a 16-bit encoding.
2371 auto *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
2372 if (CLI.CB) {
2373 auto *BB = CLI.CB->getParent();
2374 PreferIndirect = Subtarget->isThumb() && Subtarget->hasMinSize() &&
2375 count_if(GV->users(), [&BB](const User *U) {
2376 return isa<Instruction>(U) &&
2377 cast<Instruction>(U)->getParent() == BB;
2378 }) > 2;
2379 }
2380 }
2381 if (isTailCall) {
2382 // Check if it's really possible to do a tail call.
2383 isTailCall = IsEligibleForTailCallOptimization(
2384 Callee, CallConv, isVarArg, isStructRet,
2385 MF.getFunction().hasStructRetAttr(), Outs, OutVals, Ins, DAG,
2386 PreferIndirect);
2387
2388 if (isTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt &&
2389 CallConv != CallingConv::Tail && CallConv != CallingConv::SwiftTail)
2390 isSibCall = true;
2391
2392 // We don't support GuaranteedTailCallOpt for ARM, only automatically
2393 // detected sibcalls.
2394 if (isTailCall)
2395 ++NumTailCalls;
2396 }
2397
2398 if (!isTailCall && CLI.CB && CLI.CB->isMustTailCall())
2399 report_fatal_error("failed to perform tail call elimination on a call "
2400 "site marked musttail");
2401 // Analyze operands of the call, assigning locations to each operand.
2402 SmallVector<CCValAssign, 16> ArgLocs;
2403 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2404 *DAG.getContext());
2405 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CallConv, isVarArg));
2406
2407 // Get a count of how many bytes are to be pushed on the stack.
2408 unsigned NumBytes = CCInfo.getNextStackOffset();
2409
2410 // SPDiff is the byte offset of the call's argument area from the callee's.
2411 // Stores to callee stack arguments will be placed in FixedStackSlots offset
2412 // by this amount for a tail call. In a sibling call it must be 0 because the
2413 // caller will deallocate the entire stack and the callee still expects its
2414 // arguments to begin at SP+0. Completely unused for non-tail calls.
2415 int SPDiff = 0;
2416
2417 if (isTailCall && !isSibCall) {
2418 auto FuncInfo = MF.getInfo<ARMFunctionInfo>();
2419 unsigned NumReusableBytes = FuncInfo->getArgumentStackSize();
2420
2421 // Since callee will pop argument stack as a tail call, we must keep the
2422 // popped size 16-byte aligned.
2423 Align StackAlign = DAG.getDataLayout().getStackAlignment();
2424 NumBytes = alignTo(NumBytes, StackAlign);
2425
2426 // SPDiff will be negative if this tail call requires more space than we
2427 // would automatically have in our incoming argument space. Positive if we
2428 // can actually shrink the stack.
2429 SPDiff = NumReusableBytes - NumBytes;
2430
2431 // If this call requires more stack than we have available from
2432 // LowerFormalArguments, tell FrameLowering to reserve space for it.
2433 if (SPDiff < 0 && AFI->getArgRegsSaveSize() < (unsigned)-SPDiff)
2434 AFI->setArgRegsSaveSize(-SPDiff);
2435 }
2436
2437 if (isSibCall) {
2438 // For sibling tail calls, memory operands are available in our caller's stack.
2439 NumBytes = 0;
2440 } else {
2441 // Adjust the stack pointer for the new arguments...
2442 // These operations are automatically eliminated by the prolog/epilog pass
2443 Chain = DAG.getCALLSEQ_START(Chain, isTailCall ? 0 : NumBytes, 0, dl);
2444 }
2445
2446 SDValue StackPtr =
2447 DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy(DAG.getDataLayout()));
2448
2449 RegsToPassVector RegsToPass;
2450 SmallVector<SDValue, 8> MemOpChains;
2451
2452 // During a tail call, stores to the argument area must happen after all of
2453 // the function's incoming arguments have been loaded because they may alias.
2454 // This is done by folding in a TokenFactor from LowerFormalArguments, but
2455 // there's no point in doing so repeatedly so this tracks whether that's
2456 // happened yet.
2457 bool AfterFormalArgLoads = false;
2458
2459 // Walk the register/memloc assignments, inserting copies/loads. In the case
2460 // of tail call optimization, arguments are handled later.
2461 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
2462 i != e;
2463 ++i, ++realArgIdx) {
2464 CCValAssign &VA = ArgLocs[i];
2465 SDValue Arg = OutVals[realArgIdx];
2466 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2467 bool isByVal = Flags.isByVal();
2468
2469 // Promote the value if needed.
2470 switch (VA.getLocInfo()) {
2471 default: llvm_unreachable("Unknown loc info!")::llvm::llvm_unreachable_internal("Unknown loc info!", "llvm/lib/Target/ARM/ARMISelLowering.cpp"
, 2471)
;
2472 case CCValAssign::Full: break;
2473 case CCValAssign::SExt:
2474 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
2475 break;
2476 case CCValAssign::ZExt:
2477 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
2478 break;
2479 case CCValAssign::AExt:
2480 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
2481 break;
2482 case CCValAssign::BCvt:
2483 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
2484 break;
2485 }
2486
2487 if (isTailCall && VA.isMemLoc() && !AfterFormalArgLoads) {
2488 Chain = DAG.getStackArgumentTokenFactor(Chain);
2489 AfterFormalArgLoads = true;
2490 }
2491
2492 // f16 arguments have their size extended to 4 bytes and passed as if they
2493 // had been copied to the LSBs of a 32-bit register.
2494 // For that, it's passed extended to i32 (soft ABI) or to f32 (hard ABI)
2495 if (VA.needsCustom() &&
2496 (VA.getValVT() == MVT::f16 || VA.getValVT() == MVT::bf16)) {
2497 Arg = MoveFromHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), Arg);
2498 } else {
2499 // f16 arguments could have been extended prior to argument lowering.
2500 // Mask them arguments if this is a CMSE nonsecure call.
2501 auto ArgVT = Outs[realArgIdx].ArgVT;
2502 if (isCmseNSCall && (ArgVT == MVT::f16)) {
2503 auto LocBits = VA.getLocVT().getSizeInBits();
2504 auto MaskValue = APInt::getLowBitsSet(LocBits, ArgVT.getSizeInBits());
2505 SDValue Mask =
2506 DAG.getConstant(MaskValue, dl, MVT::getIntegerVT(LocBits));
2507 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::getIntegerVT(LocBits), Arg);
2508 Arg = DAG.getNode(ISD::AND, dl, MVT::getIntegerVT(LocBits), Arg, Mask);
2509 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
2510 }
2511 }
2512
2513 // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
2514 if (VA.needsCustom() && VA.getLocVT() == MVT::v2f64) {
2515 SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2516 DAG.getConstant(0, dl, MVT::i32));
2517 SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
2518 DAG.getConstant(1, dl, MVT::i32));
2519
2520 PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass, VA, ArgLocs[++i],
2521 StackPtr, MemOpChains, isTailCall, SPDiff);
2522
2523 VA = ArgLocs[++i]; // skip ahead to next loc
2524 if (VA.isRegLoc()) {
2525 PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass, VA, ArgLocs[++i],
2526 StackPtr, MemOpChains, isTailCall, SPDiff);
2527 } else {
2528 assert(VA.isMemLoc())(static_cast <bool> (VA.isMemLoc()) ? void (0) : __assert_fail
("VA.isMemLoc()", "llvm/lib/Target/ARM/ARMISelLowering.cpp",
2528, __extension__ __PRETTY_FUNCTION__))
;
2529 SDValue DstAddr;
2530 MachinePointerInfo DstInfo;
2531 std::tie(DstAddr, DstInfo) =
2532 computeAddrForCallArg(dl, DAG, VA, StackPtr, isTailCall, SPDiff);
2533 MemOpChains.push_back(DAG.getStore(Chain, dl, Op1, DstAddr, DstInfo));
2534 }
2535 } else if (VA.needsCustom() && VA.getLocVT() == MVT::f64) {
2536 PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
2537 StackPtr, MemOpChains, isTailCall, SPDiff);
2538 } else if (VA.isRegLoc()) {
2539 if (realArgIdx == 0 && Flags.isReturned() && !Flags.isSwiftSelf() &&
2540 Outs[0].VT == MVT::i32) {
2541 assert(VA.getLocVT() == MVT::i32 &&(static_cast <bool> (VA.getLocVT() == MVT::i32 &&
"unexpected calling convention register assignment") ? void (
0) : __assert_fail ("VA.getLocVT() == MVT::i32 && \"unexpected calling convention register assignment\""
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 2542, __extension__
__PRETTY_FUNCTION__))
2542 "unexpected calling convention register assignment")(static_cast <bool> (VA.getLocVT() == MVT::i32 &&
"unexpected calling convention register assignment") ? void (
0) : __assert_fail ("VA.getLocVT() == MVT::i32 && \"unexpected calling convention register assignment\""
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 2542, __extension__
__PRETTY_FUNCTION__))
;
2543 assert(!Ins.empty() && Ins[0].VT == MVT::i32 &&(static_cast <bool> (!Ins.empty() && Ins[0].VT ==
MVT::i32 && "unexpected use of 'returned'") ? void (
0) : __assert_fail ("!Ins.empty() && Ins[0].VT == MVT::i32 && \"unexpected use of 'returned'\""
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 2544, __extension__
__PRETTY_FUNCTION__))
2544 "unexpected use of 'returned'")(static_cast <bool> (!Ins.empty() && Ins[0].VT ==
MVT::i32 && "unexpected use of 'returned'") ? void (
0) : __assert_fail ("!Ins.empty() && Ins[0].VT == MVT::i32 && \"unexpected use of 'returned'\""
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 2544, __extension__
__PRETTY_FUNCTION__))
;
2545 isThisReturn = true;
2546 }
2547 const TargetOptions &Options = DAG.getTarget().Options;
2548 if (Options.EmitCallSiteInfo)
2549 CSInfo.emplace_back(VA.getLocReg(), i);
2550 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2551 } else if (isByVal) {
2552 assert(VA.isMemLoc())(static_cast <bool> (VA.isMemLoc()) ? void (0) : __assert_fail
("VA.isMemLoc()", "llvm/lib/Target/ARM/ARMISelLowering.cpp",
2552, __extension__ __PRETTY_FUNCTION__))
;
2553 unsigned offset = 0;
2554
2555 // True if this byval aggregate will be split between registers
2556 // and memory.
2557 unsigned ByValArgsCount = CCInfo.getInRegsParamsCount();
2558 unsigned CurByValIdx = CCInfo.getInRegsParamsProcessed();
2559
2560 if (CurByValIdx < ByValArgsCount) {
2561
2562 unsigned RegBegin, RegEnd;
2563 CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd);
2564
2565 EVT PtrVT =
2566 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2567 unsigned int i, j;
2568 for (i = 0, j = RegBegin; j < RegEnd; i++, j++) {
2569 SDValue Const = DAG.getConstant(4*i, dl, MVT::i32);
2570 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
2571 SDValue Load =
2572 DAG.getLoad(PtrVT, dl, Chain, AddArg, MachinePointerInfo(),
2573 DAG.InferPtrAlign(AddArg));
2574 MemOpChains.push_back(Load.getValue(1));
2575 RegsToPass.push_back(std::make_pair(j, Load));
2576 }
2577
2578 // If parameter size outsides register area, "offset" value
2579 // helps us to calculate stack slot for remained part properly.
2580 offset = RegEnd - RegBegin;
2581
2582 CCInfo.nextInRegsParam();
2583 }
2584
2585 if (Flags.getByValSize() > 4*offset) {
2586 auto PtrVT = getPointerTy(DAG.getDataLayout());
2587 SDValue Dst;
2588 MachinePointerInfo DstInfo;
2589 std::tie(Dst, DstInfo) =
2590 computeAddrForCallArg(dl, DAG, VA, StackPtr, isTailCall, SPDiff);
2591 SDValue SrcOffset = DAG.getIntPtrConstant(4*offset, dl);
2592 SDValue Src = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, SrcOffset);
2593 SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset, dl,
2594 MVT::i32);
2595 SDValue AlignNode =
2596 DAG.getConstant(Flags.getNonZeroByValAlign().value(), dl, MVT::i32);
2597
2598 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
2599 SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
2600 MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
2601 Ops));
2602 }
2603 } else {
2604 assert(VA.isMemLoc())(static_cast <bool> (VA.isMemLoc()) ? void (0) : __assert_fail
("VA.isMemLoc()", "llvm/lib/Target/ARM/ARMISelLowering.cpp",
2604, __extension__ __PRETTY_FUNCTION__))
;
2605 SDValue DstAddr;
2606 MachinePointerInfo DstInfo;
2607 std::tie(DstAddr, DstInfo) =
2608 computeAddrForCallArg(dl, DAG, VA, StackPtr, isTailCall, SPDiff);
2609
2610 SDValue Store = DAG.getStore(Chain, dl, Arg, DstAddr, DstInfo);
2611 MemOpChains.push_back(Store);
2612 }
2613 }
2614
2615 if (!MemOpChains.empty())
2616 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
2617
2618 // Build a sequence of copy-to-reg nodes chained together with token chain
2619 // and flag operands which copy the outgoing args into the appropriate regs.
2620 SDValue InFlag;
2621 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2622 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2623 RegsToPass[i].second, InFlag);
2624 InFlag = Chain.getValue(1);
2625 }
2626
2627 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
2628 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
2629 // node so that legalize doesn't hack it.
2630 bool isDirect = false;
2631
2632 const TargetMachine &TM = getTargetMachine();
2633 const Module *Mod = MF.getFunction().getParent();
2634 const GlobalValue *GVal = nullptr;
2635 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2636 GVal = G->getGlobal();
2637 bool isStub =
2638 !TM.shouldAssumeDSOLocal(*Mod, GVal) && Subtarget->isTargetMachO();
2639
2640 bool isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
2641 bool isLocalARMFunc = false;
2642 auto PtrVt = getPointerTy(DAG.getDataLayout());
2643
2644 if (Subtarget->genLongCalls()) {
2645 assert((!isPositionIndependent() || Subtarget->isTargetWindows()) &&(static_cast <bool> ((!isPositionIndependent() || Subtarget
->isTargetWindows()) && "long-calls codegen is not position independent!"
) ? void (0) : __assert_fail ("(!isPositionIndependent() || Subtarget->isTargetWindows()) && \"long-calls codegen is not position independent!\""
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 2646, __extension__
__PRETTY_FUNCTION__))
2646 "long-calls codegen is not position independent!")(static_cast <bool> ((!isPositionIndependent() || Subtarget
->isTargetWindows()) && "long-calls codegen is not position independent!"
) ? void (0) : __assert_fail ("(!isPositionIndependent() || Subtarget->isTargetWindows()) && \"long-calls codegen is not position independent!\""
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 2646, __extension__
__PRETTY_FUNCTION__))
;
2647 // Handle a global address or an external symbol. If it's not one of
2648 // those, the target's already in a register, so we don't need to do
2649 // anything extra.
2650 if (isa<GlobalAddressSDNode>(Callee)) {
2651 // When generating execute-only code we use movw movt pair.
2652 // Currently execute-only is only available for architectures that
2653 // support movw movt, so we are safe to assume that.
2654 if (Subtarget->genExecuteOnly()) {
2655 assert(Subtarget->useMovt() &&(static_cast <bool> (Subtarget->useMovt() &&
"long-calls with execute-only requires movt and movw!") ? void
(0) : __assert_fail ("Subtarget->useMovt() && \"long-calls with execute-only requires movt and movw!\""
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 2656, __extension__
__PRETTY_FUNCTION__))
2656 "long-calls with execute-only requires movt and movw!")(static_cast <bool> (Subtarget->useMovt() &&
"long-calls with execute-only requires movt and movw!") ? void
(0) : __assert_fail ("Subtarget->useMovt() && \"long-calls with execute-only requires movt and movw!\""
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 2656, __extension__
__PRETTY_FUNCTION__))
;
2657 ++NumMovwMovt;
2658 Callee = DAG.getNode(ARMISD::Wrapper, dl, PtrVt,
2659 DAG.getTargetGlobalAddress(GVal, dl, PtrVt));
2660 } else {
2661 // Create a constant pool entry for the callee address
2662 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2663 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(
2664 GVal, ARMPCLabelIndex, ARMCP::CPValue, 0);
2665
2666 // Get the address of the callee into a register
2667 SDValue Addr = DAG.getTargetConstantPool(CPV, PtrVt, Align(4));
2668 Addr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Addr);
2669 Callee = DAG.getLoad(
2670 PtrVt, dl, DAG.getEntryNode(), Addr,
2671 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2672 }
2673 } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
2674 const char *Sym = S->getSymbol();
2675
2676 // When generating execute-only code we use movw movt pair.
2677 // Currently execute-only is only available for architectures that
2678 // support movw movt, so we are safe to assume that.
2679 if (Subtarget->genExecuteOnly()) {
2680 assert(Subtarget->useMovt() &&(static_cast <bool> (Subtarget->useMovt() &&
"long-calls with execute-only requires movt and movw!") ? void
(0) : __assert_fail ("Subtarget->useMovt() && \"long-calls with execute-only requires movt and movw!\""
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 2681, __extension__
__PRETTY_FUNCTION__))
2681 "long-calls with execute-only requires movt and movw!")(static_cast <bool> (Subtarget->useMovt() &&
"long-calls with execute-only requires movt and movw!") ? void
(0) : __assert_fail ("Subtarget->useMovt() && \"long-calls with execute-only requires movt and movw!\""
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 2681, __extension__
__PRETTY_FUNCTION__))
;
2682 ++NumMovwMovt;
2683 Callee = DAG.getNode(ARMISD::Wrapper, dl, PtrVt,
2684 DAG.getTargetGlobalAddress(GVal, dl, PtrVt));
2685 } else {
2686 // Create a constant pool entry for the callee address
2687 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2688 ARMConstantPoolValue *CPV = ARMConstantPoolSymbol::Create(
2689 *DAG.getContext(), Sym, ARMPCLabelIndex, 0);
2690
2691 // Get the address of the callee into a register
2692 SDValue Addr = DAG.getTargetConstantPool(CPV, PtrVt, Align(4));
2693 Addr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Addr);
2694 Callee = DAG.getLoad(
2695 PtrVt, dl, DAG.getEntryNode(), Addr,
2696 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2697 }
2698 }
2699 } else if (isa<GlobalAddressSDNode>(Callee)) {
2700 if (!PreferIndirect) {
2701 isDirect = true;
2702 bool isDef = GVal->isStrongDefinitionForLinker();
2703
2704 // ARM call to a local ARM function is predicable.
2705 isLocalARMFunc = !Subtarget->isThumb() && (isDef || !ARMInterworking);
2706 // tBX takes a register source operand.
2707 if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
2708 assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?")(static_cast <bool> (Subtarget->isTargetMachO() &&
"WrapperPIC use on non-MachO?") ? void (0) : __assert_fail (
"Subtarget->isTargetMachO() && \"WrapperPIC use on non-MachO?\""
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 2708, __extension__
__PRETTY_FUNCTION__))
;
2709 Callee = DAG.getNode(
2710 ARMISD::WrapperPIC, dl, PtrVt,
2711 DAG.getTargetGlobalAddress(GVal, dl, PtrVt, 0, ARMII::MO_NONLAZY));
2712 Callee = DAG.getLoad(
2713 PtrVt, dl, DAG.getEntryNode(), Callee,
2714 MachinePointerInfo::getGOT(DAG.getMachineFunction()), MaybeAlign(),
2715 MachineMemOperand::MODereferenceable |
2716 MachineMemOperand::MOInvariant);
2717 } else if (Subtarget->isTargetCOFF()) {
2718 assert(Subtarget->isTargetWindows() &&(static_cast <bool> (Subtarget->isTargetWindows() &&
"Windows is the only supported COFF target") ? void (0) : __assert_fail
("Subtarget->isTargetWindows() && \"Windows is the only supported COFF target\""
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 2719, __extension__
__PRETTY_FUNCTION__))
2719 "Windows is the only supported COFF target")(static_cast <bool> (Subtarget->isTargetWindows() &&
"Windows is the only supported COFF target") ? void (0) : __assert_fail
("Subtarget->isTargetWindows() && \"Windows is the only supported COFF target\""
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 2719, __extension__
__PRETTY_FUNCTION__))
;
2720 unsigned TargetFlags = ARMII::MO_NO_FLAG;
2721 if (GVal->hasDLLImportStorageClass())
2722 TargetFlags = ARMII::MO_DLLIMPORT;
2723 else if (!TM.shouldAssumeDSOLocal(*GVal->getParent(), GVal))
2724 TargetFlags = ARMII::MO_COFFSTUB;
2725 Callee = DAG.getTargetGlobalAddress(GVal, dl, PtrVt, /*offset=*/0,
2726 TargetFlags);
2727 if (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB))
2728 Callee =
2729 DAG.getLoad(PtrVt, dl, DAG.getEntryNode(),
2730 DAG.getNode(ARMISD::Wrapper, dl, PtrVt, Callee),
2731 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
2732 } else {
2733 Callee = DAG.getTargetGlobalAddress(GVal, dl, PtrVt, 0, 0);
2734 }
2735 }
2736 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2737 isDirect = true;
2738 // tBX takes a register source operand.
2739 const char *Sym = S->getSymbol();
2740 if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
2741 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
2742 ARMConstantPoolValue *CPV =
2743 ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
2744 ARMPCLabelIndex, 4);
2745 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, Align(4));
2746 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
2747 Callee = DAG.getLoad(
2748 PtrVt, dl, DAG.getEntryNode(), CPAddr,
2749 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
2750 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
2751 Callee = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVt, Callee, PICLabel);
2752 } else {
2753 Callee = DAG.getTargetExternalSymbol(Sym, PtrVt, 0);
2754 }
2755 }
2756
2757 if (isCmseNSCall) {
2758 assert(!isARMFunc && !isDirect &&(static_cast <bool> (!isARMFunc && !isDirect &&
"Cannot handle call to ARM function or direct call") ? void (
0) : __assert_fail ("!isARMFunc && !isDirect && \"Cannot handle call to ARM function or direct call\""
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 2759, __extension__
__PRETTY_FUNCTION__))
2759 "Cannot handle call to ARM function or direct call")(static_cast <bool> (!isARMFunc && !isDirect &&
"Cannot handle call to ARM function or direct call") ? void (
0) : __assert_fail ("!isARMFunc && !isDirect && \"Cannot handle call to ARM function or direct call\""
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 2759, __extension__
__PRETTY_FUNCTION__))
;
2760 if (NumBytes > 0) {
2761 DiagnosticInfoUnsupported Diag(DAG.getMachineFunction().getFunction(),
2762 "call to non-secure function would "
2763 "require passing arguments on stack",
2764 dl.getDebugLoc());
2765 DAG.getContext()->diagnose(Diag);
2766 }
2767 if (isStructRet) {
2768 DiagnosticInfoUnsupported Diag(
2769 DAG.getMachineFunction().getFunction(),
2770 "call to non-secure function would return value through pointer",
2771 dl.getDebugLoc());
2772 DAG.getContext()->diagnose(Diag);
2773 }
2774 }
2775
2776 // FIXME: handle tail calls differently.
2777 unsigned CallOpc;
2778 if (Subtarget->isThumb()) {
2779 if (GuardWithBTI)
2780 CallOpc = ARMISD::t2CALL_BTI;
2781 else if (isCmseNSCall)
2782 CallOpc = ARMISD::tSECALL;
2783 else if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
2784 CallOpc = ARMISD::CALL_NOLINK;
2785 else
2786 CallOpc = ARMISD::CALL;
2787 } else {
2788 if (!isDirect && !Subtarget->hasV5TOps())
2789 CallOpc = ARMISD::CALL_NOLINK;
2790 else if (doesNotRet && isDirect && Subtarget->hasRetAddrStack() &&
2791 // Emit regular call when code size is the priority
2792 !Subtarget->hasMinSize())
2793 // "mov lr, pc; b _foo" to avoid confusing the RSP
2794 CallOpc = ARMISD::CALL_NOLINK;
2795 else
2796 CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
2797 }
2798
2799 // We don't usually want to end the call-sequence here because we would tidy
2800 // the frame up *after* the call, however in the ABI-changing tail-call case
2801 // we've carefully laid out the parameters so that when sp is reset they'll be
2802 // in the correct location.
2803 if (isTailCall && !isSibCall) {
2804 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InFlag, dl);
2805 InFlag = Chain.getValue(1);
2806 }
2807
2808 std::vector<SDValue> Ops;
2809 Ops.push_back(Chain);
2810 Ops.push_back(Callee);
2811
2812 if (isTailCall) {
2813 Ops.push_back(DAG.getTargetConstant(SPDiff, dl, MVT::i32));
2814 }
2815
2816 // Add argument registers to the end of the list so that they are known live
2817 // into the call.
2818 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2819 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2820 RegsToPass[i].second.getValueType()));
2821
2822 // Add a register mask operand representing the call-preserved registers.
2823 const uint32_t *Mask;
2824 const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
2825 if (isThisReturn) {
2826 // For 'this' returns, use the R0-preserving mask if applicable
2827 Mask = ARI->getThisReturnPreservedMask(MF, CallConv);
2828 if (!Mask) {
2829 // Set isThisReturn to false if the calling convention is not one that
2830 // allows 'returned' to be modeled in this way, so LowerCallResult does
2831 // not try to pass 'this' straight through
2832 isThisReturn = false;
2833 Mask = ARI->getCallPreservedMask(MF, CallConv);
2834 }
2835 } else
2836 Mask = ARI->getCallPreservedMask(MF, CallConv);
2837
2838 assert(Mask && "Missing call preserved mask for calling convention")(static_cast <bool> (Mask && "Missing call preserved mask for calling convention"
) ? void (0) : __assert_fail ("Mask && \"Missing call preserved mask for calling convention\""
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 2838, __extension__
__PRETTY_FUNCTION__))
;
2839 Ops.push_back(DAG.getRegisterMask(Mask));
2840
2841 if (InFlag.getNode())
2842 Ops.push_back(InFlag);
2843
2844 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2845 if (isTailCall) {
2846 MF.getFrameInfo().setHasTailCall();
2847 SDValue Ret = DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, Ops);
2848 DAG.addCallSiteInfo(Ret.getNode(), std::move(CSInfo));
2849 return Ret;
2850 }
2851
2852 // Returns a chain and a flag for retval copy to use.
2853 Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
2854 DAG.addNoMergeSiteInfo(Chain.getNode(), CLI.NoMerge);
2855 InFlag = Chain.getValue(1);
2856 DAG.addCallSiteInfo(Chain.getNode(), std::move(CSInfo));
2857
2858 // If we're guaranteeing tail-calls will be honoured, the callee must
2859 // pop its own argument stack on return. But this call is *not* a tail call so
2860 // we need to undo that after it returns to restore the status-quo.
2861 bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
2862 uint64_t CalleePopBytes =
2863 canGuaranteeTCO(CallConv, TailCallOpt) ? alignTo(NumBytes, 16) : -1ULL;
2864
2865 Chain = DAG.getCALLSEQ_END(Chain, NumBytes, CalleePopBytes, InFlag, dl);
2866 if (!Ins.empty())
2867 InFlag = Chain.getValue(1);
2868
2869 // Handle result values, copying them out of physregs into vregs that we
2870 // return.
2871 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
2872 InVals, isThisReturn,
2873 isThisReturn ? OutVals[0] : SDValue());
2874}
2875
2876/// HandleByVal - Every parameter *after* a byval parameter is passed
2877/// on the stack. Remember the next parameter register to allocate,
2878/// and then confiscate the rest of the parameter registers to insure
2879/// this.
2880void ARMTargetLowering::HandleByVal(CCState *State, unsigned &Size,
2881 Align Alignment) const {
2882 // Byval (as with any stack) slots are always at least 4 byte aligned.
2883 Alignment = std::max(Alignment, Align(4));
2884
2885 unsigned Reg = State->AllocateReg(GPRArgRegs);
2886 if (!Reg)
2887 return;
2888
2889 unsigned AlignInRegs = Alignment.value() / 4;
2890 unsigned Waste = (ARM::R4 - Reg) % AlignInRegs;
2891 for (unsigned i = 0; i < Waste; ++i)
2892 Reg = State->AllocateReg(GPRArgRegs);
2893
2894 if (!Reg)
2895 return;
2896
2897 unsigned Excess = 4 * (ARM::R4 - Reg);
2898
2899 // Special case when NSAA != SP and parameter size greater than size of
2900 // all remained GPR regs. In that case we can't split parameter, we must
2901 // send it to stack. We also must set NCRN to R4, so waste all
2902 // remained registers.
2903 const unsigned NSAAOffset = State->getNextStackOffset();
2904 if (NSAAOffset != 0 && Size > Excess) {
2905 while (State->AllocateReg(GPRArgRegs))
2906 ;
2907 return;
2908 }
2909
2910 // First register for byval parameter is the first register that wasn't
2911 // allocated before this method call, so it would be "reg".
2912 // If parameter is small enough to be saved in range [reg, r4), then
2913 // the end (first after last) register would be reg + param-size-in-regs,
2914 // else parameter would be splitted between registers and stack,
2915 // end register would be r4 in this case.
2916 unsigned ByValRegBegin = Reg;
2917 unsigned ByValRegEnd = std::min<unsigned>(Reg + Size / 4, ARM::R4);
2918 State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd);
2919 // Note, first register is allocated in the beginning of function already,
2920 // allocate remained amount of registers we need.
2921 for (unsigned i = Reg + 1; i != ByValRegEnd; ++i)
2922 State->AllocateReg(GPRArgRegs);
2923 // A byval parameter that is split between registers and memory needs its
2924 // size truncated here.
2925 // In the case where the entire structure fits in registers, we set the
2926 // size in memory to zero.
2927 Size = std::max<int>(Size - Excess, 0);
2928}
2929
2930/// MatchingStackOffset - Return true if the given stack call argument is
2931/// already available in the same position (relatively) of the caller's
2932/// incoming argument stack.
2933static
2934bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2935 MachineFrameInfo &MFI, const MachineRegisterInfo *MRI,
2936 const TargetInstrInfo *TII) {
2937 unsigned Bytes = Arg.getValueSizeInBits() / 8;
2938 int FI = std::numeric_limits<int>::max();
2939 if (Arg.getOpcode() == ISD::CopyFromReg) {
2940 Register VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2941 if (!VR.isVirtual())
2942 return false;
2943 MachineInstr *Def = MRI->getVRegDef(VR);
2944 if (!Def)
2945 return false;
2946 if (!Flags.isByVal()) {
2947 if (!TII->isLoadFromStackSlot(*Def, FI))
2948 return false;
2949 } else {
2950 return false;
2951 }
2952 } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2953 if (Flags.isByVal())
2954 // ByVal argument is passed in as a pointer but it's now being
2955 // dereferenced. e.g.
2956 // define @foo(%struct.X* %A) {
2957 // tail call @bar(%struct.X* byval %A)
2958 // }
2959 return false;
2960 SDValue Ptr = Ld->getBasePtr();
2961 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2962 if (!FINode)
2963 return false;
2964 FI = FINode->getIndex();
2965 } else
2966 return false;
2967
2968 assert(FI != std::numeric_limits<int>::max())(static_cast <bool> (FI != std::numeric_limits<int>
::max()) ? void (0) : __assert_fail ("FI != std::numeric_limits<int>::max()"
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 2968, __extension__
__PRETTY_FUNCTION__))
;
2969 if (!MFI.isFixedObjectIndex(FI))
2970 return false;
2971 return Offset == MFI.getObjectOffset(FI) && Bytes == MFI.getObjectSize(FI);
2972}
2973
2974/// IsEligibleForTailCallOptimization - Check whether the call is eligible
2975/// for tail call optimization. Targets which want to do tail call
2976/// optimization should implement this function.
2977bool ARMTargetLowering::IsEligibleForTailCallOptimization(
2978 SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
2979 bool isCalleeStructRet, bool isCallerStructRet,
2980 const SmallVectorImpl<ISD::OutputArg> &Outs,
2981 const SmallVectorImpl<SDValue> &OutVals,
2982 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG,
2983 const bool isIndirect) const {
2984 MachineFunction &MF = DAG.getMachineFunction();
2985 const Function &CallerF = MF.getFunction();
2986 CallingConv::ID CallerCC = CallerF.getCallingConv();
2987
2988 assert(Subtarget->supportsTailCall())(static_cast <bool> (Subtarget->supportsTailCall()) ?
void (0) : __assert_fail ("Subtarget->supportsTailCall()"
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 2988, __extension__
__PRETTY_FUNCTION__))
;
2989
2990 // Indirect tail calls cannot be optimized for Thumb1 if the args
2991 // to the call take up r0-r3. The reason is that there are no legal registers
2992 // left to hold the pointer to the function to be called.
2993 // Similarly, if the function uses return address sign and authentication,
2994 // r12 is needed to hold the PAC and is not available to hold the callee
2995 // address.
2996 if (Outs.size() >= 4 &&
2997 (!isa<GlobalAddressSDNode>(Callee.getNode()) || isIndirect)) {
2998 if (Subtarget->isThumb1Only())
2999 return false;
3000 // Conservatively assume the function spills LR.
3001 if (MF.getInfo<ARMFunctionInfo>()->shouldSignReturnAddress(true))
3002 return false;
3003 }
3004
3005 // Look for obvious safe cases to perform tail call optimization that do not
3006 // require ABI changes. This is what gcc calls sibcall.
3007
3008 // Exception-handling functions need a special set of instructions to indicate
3009 // a return to the hardware. Tail-calling another function would probably
3010 // break this.
3011 if (CallerF.hasFnAttribute("interrupt"))
3012 return false;
3013
3014 if (canGuaranteeTCO(CalleeCC, getTargetMachine().Options.GuaranteedTailCallOpt))
3015 return CalleeCC == CallerCC;
3016
3017 // Also avoid sibcall optimization if either caller or callee uses struct
3018 // return semantics.
3019 if (isCalleeStructRet || isCallerStructRet)
3020 return false;
3021
3022 // Externally-defined functions with weak linkage should not be
3023 // tail-called on ARM when the OS does not support dynamic
3024 // pre-emption of symbols, as the AAELF spec requires normal calls
3025 // to undefined weak functions to be replaced with a NOP or jump to the
3026 // next instruction. The behaviour of branch instructions in this
3027 // situation (as used for tail calls) is implementation-defined, so we
3028 // cannot rely on the linker replacing the tail call with a return.
3029 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3030 const GlobalValue *GV = G->getGlobal();
3031 const Triple &TT = getTargetMachine().getTargetTriple();
3032 if (GV->hasExternalWeakLinkage() &&
3033 (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
3034 return false;
3035 }
3036
3037 // Check that the call results are passed in the same way.
3038 LLVMContext &C = *DAG.getContext();
3039 if (!CCState::resultsCompatible(
3040 getEffectiveCallingConv(CalleeCC, isVarArg),
3041 getEffectiveCallingConv(CallerCC, CallerF.isVarArg()), MF, C, Ins,
3042 CCAssignFnForReturn(CalleeCC, isVarArg),
3043 CCAssignFnForReturn(CallerCC, CallerF.isVarArg())))
3044 return false;
3045 // The callee has to preserve all registers the caller needs to preserve.
3046 const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
3047 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
3048 if (CalleeCC != CallerCC) {
3049 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
3050 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
3051 return false;
3052 }
3053
3054 // If Caller's vararg or byval argument has been split between registers and
3055 // stack, do not perform tail call, since part of the argument is in caller's
3056 // local frame.
3057 const ARMFunctionInfo *AFI_Caller = MF.getInfo<ARMFunctionInfo>();
3058 if (AFI_Caller->getArgRegsSaveSize())
3059 return false;
3060
3061 // If the callee takes no arguments then go on to check the results of the
3062 // call.
3063 if (!Outs.empty()) {
3064 // Check if stack adjustment is needed. For now, do not do this if any
3065 // argument is passed on the stack.
3066 SmallVector<CCValAssign, 16> ArgLocs;
3067 CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
3068 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, isVarArg));
3069 if (CCInfo.getNextStackOffset()) {
3070 // Check if the arguments are already laid out in the right way as
3071 // the caller's fixed stack objects.
3072 MachineFrameInfo &MFI = MF.getFrameInfo();
3073 const MachineRegisterInfo *MRI = &MF.getRegInfo();
3074 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
3075 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
3076 i != e;
3077 ++i, ++realArgIdx) {
3078 CCValAssign &VA = ArgLocs[i];
3079 EVT RegVT = VA.getLocVT();
3080 SDValue Arg = OutVals[realArgIdx];
3081 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
3082 if (VA.getLocInfo() == CCValAssign::Indirect)
3083 return false;
3084 if (VA.needsCustom() && (RegVT == MVT::f64 || RegVT == MVT::v2f64)) {
3085 // f64 and vector types are split into multiple registers or
3086 // register/stack-slot combinations. The types will not match
3087 // the registers; give up on memory f64 refs until we figure
3088 // out what to do about this.
3089 if (!VA.isRegLoc())
3090 return false;
3091 if (!ArgLocs[++i].isRegLoc())
3092 return false;
3093 if (RegVT == MVT::v2f64) {
3094 if (!ArgLocs[++i].isRegLoc())
3095 return false;
3096 if (!ArgLocs[++i].isRegLoc())
3097 return false;
3098 }
3099 } else if (!VA.isRegLoc()) {
3100 if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
3101 MFI, MRI, TII))
3102 return false;
3103 }
3104 }
3105 }
3106
3107 const MachineRegisterInfo &MRI = MF.getRegInfo();
3108 if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
3109 return false;
3110 }
3111
3112 return true;
3113}
3114
3115bool
3116ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
3117 MachineFunction &MF, bool isVarArg,
3118 const SmallVectorImpl<ISD::OutputArg> &Outs,
3119 LLVMContext &Context) const {
3120 SmallVector<CCValAssign, 16> RVLocs;
3121 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
3122 return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
3123}
3124
3125static SDValue LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
3126 const SDLoc &DL, SelectionDAG &DAG) {
3127 const MachineFunction &MF = DAG.getMachineFunction();
3128 const Function &F = MF.getFunction();
3129
3130 StringRef IntKind = F.getFnAttribute("interrupt").getValueAsString();
3131
3132 // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
3133 // version of the "preferred return address". These offsets affect the return
3134 // instruction if this is a return from PL1 without hypervisor extensions.
3135 // IRQ/FIQ: +4 "subs pc, lr, #4"
3136 // SWI: 0 "subs pc, lr, #0"
3137 // ABORT: +4 "subs pc, lr, #4"
3138 // UNDEF: +4/+2 "subs pc, lr, #0"
3139 // UNDEF varies depending on where the exception came from ARM or Thumb
3140 // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
3141
3142 int64_t LROffset;
3143 if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" ||
3144 IntKind == "ABORT")
3145 LROffset = 4;
3146 else if (IntKind == "SWI" || IntKind == "UNDEF")
3147 LROffset = 0;
3148 else
3149 report_fatal_error("Unsupported interrupt attribute. If present, value "
3150 "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
3151
3152 RetOps.insert(RetOps.begin() + 1,
3153 DAG.getConstant(LROffset, DL, MVT::i32, false));
3154
3155 return DAG.getNode(ARMISD::INTRET_FLAG, DL, MVT::Other, RetOps);
3156}
3157
3158SDValue
3159ARMTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
3160 bool isVarArg,
3161 const SmallVectorImpl<ISD::OutputArg> &Outs,
3162 const SmallVectorImpl<SDValue> &OutVals,
3163 const SDLoc &dl, SelectionDAG &DAG) const {
3164 // CCValAssign - represent the assignment of the return value to a location.
3165 SmallVector<CCValAssign, 16> RVLocs;
3166
3167 // CCState - Info about the registers and stack slots.
3168 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
3169 *DAG.getContext());
3170
3171 // Analyze outgoing return values.
3172 CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
3173
3174 SDValue Flag;
3175 SmallVector<SDValue, 4> RetOps;
3176 RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
3177 bool isLittleEndian = Subtarget->isLittle();
3178
3179 MachineFunction &MF = DAG.getMachineFunction();
3180 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3181 AFI->setReturnRegsCount(RVLocs.size());
3182
3183 // Report error if cmse entry function returns structure through first ptr arg.
3184 if (AFI->isCmseNSEntryFunction() && MF.getFunction().hasStructRetAttr()) {
3185 // Note: using an empty SDLoc(), as the first line of the function is a
3186 // better place to report than the last line.
3187 DiagnosticInfoUnsupported Diag(
3188 DAG.getMachineFunction().getFunction(),
3189 "secure entry function would return value through pointer",
3190 SDLoc().getDebugLoc());
3191 DAG.getContext()->diagnose(Diag);
3192 }
3193
3194 // Copy the result values into the output registers.
3195 for (unsigned i = 0, realRVLocIdx = 0;
3196 i != RVLocs.size();
3197 ++i, ++realRVLocIdx) {
3198 CCValAssign &VA = RVLocs[i];
3199 assert(VA.isRegLoc() && "Can only return in registers!")(static_cast <bool> (VA.isRegLoc() && "Can only return in registers!"
) ? void (0) : __assert_fail ("VA.isRegLoc() && \"Can only return in registers!\""
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 3199, __extension__
__PRETTY_FUNCTION__))
;
3200
3201 SDValue Arg = OutVals[realRVLocIdx];
3202 bool ReturnF16 = false;
3203
3204 if (Subtarget->hasFullFP16() && Subtarget->isTargetHardFloat()) {
3205 // Half-precision return values can be returned like this:
3206 //
3207 // t11 f16 = fadd ...
3208 // t12: i16 = bitcast t11
3209 // t13: i32 = zero_extend t12
3210 // t14: f32 = bitcast t13 <~~~~~~~ Arg
3211 //
3212 // to avoid code generation for bitcasts, we simply set Arg to the node
3213 // that produces the f16 value, t11 in this case.
3214 //
3215 if (Arg.getValueType() == MVT::f32 && Arg.getOpcode() == ISD::BITCAST) {
3216 SDValue ZE = Arg.getOperand(0);
3217 if (ZE.getOpcode() == ISD::ZERO_EXTEND && ZE.getValueType() == MVT::i32) {
3218 SDValue BC = ZE.getOperand(0);
3219 if (BC.getOpcode() == ISD::BITCAST && BC.getValueType() == MVT::i16) {
3220 Arg = BC.getOperand(0);
3221 ReturnF16 = true;
3222 }
3223 }
3224 }
3225 }
3226
3227 switch (VA.getLocInfo()) {
3228 default: llvm_unreachable("Unknown loc info!")::llvm::llvm_unreachable_internal("Unknown loc info!", "llvm/lib/Target/ARM/ARMISelLowering.cpp"
, 3228)
;
3229 case CCValAssign::Full: break;
3230 case CCValAssign::BCvt:
3231 if (!ReturnF16)
3232 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
3233 break;
3234 }
3235
3236 // Mask f16 arguments if this is a CMSE nonsecure entry.
3237 auto RetVT = Outs[realRVLocIdx].ArgVT;
3238 if (AFI->isCmseNSEntryFunction() && (RetVT == MVT::f16)) {
3239 if (VA.needsCustom() && VA.getValVT() == MVT::f16) {
3240 Arg = MoveFromHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), Arg);
3241 } else {
3242 auto LocBits = VA.getLocVT().getSizeInBits();
3243 auto MaskValue = APInt::getLowBitsSet(LocBits, RetVT.getSizeInBits());
3244 SDValue Mask =
3245 DAG.getConstant(MaskValue, dl, MVT::getIntegerVT(LocBits));
3246 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::getIntegerVT(LocBits), Arg);
3247 Arg = DAG.getNode(ISD::AND, dl, MVT::getIntegerVT(LocBits), Arg, Mask);
3248 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
3249 }
3250 }
3251
3252 if (VA.needsCustom() &&
3253 (VA.getLocVT() == MVT::v2f64 || VA.getLocVT() == MVT::f64)) {
3254 if (VA.getLocVT() == MVT::v2f64) {
3255 // Extract the first half and return it in two registers.
3256 SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
3257 DAG.getConstant(0, dl, MVT::i32));
3258 SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
3259 DAG.getVTList(MVT::i32, MVT::i32), Half);
3260
3261 Chain =
3262 DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3263 HalfGPRs.getValue(isLittleEndian ? 0 : 1), Flag);
3264 Flag = Chain.getValue(1);
3265 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3266 VA = RVLocs[++i]; // skip ahead to next loc
3267 Chain =
3268 DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3269 HalfGPRs.getValue(isLittleEndian ? 1 : 0), Flag);
3270 Flag = Chain.getValue(1);
3271 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3272 VA = RVLocs[++i]; // skip ahead to next loc
3273
3274 // Extract the 2nd half and fall through to handle it as an f64 value.
3275 Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
3276 DAG.getConstant(1, dl, MVT::i32));
3277 }
3278 // Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is
3279 // available.
3280 SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
3281 DAG.getVTList(MVT::i32, MVT::i32), Arg);
3282 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3283 fmrrd.getValue(isLittleEndian ? 0 : 1), Flag);
3284 Flag = Chain.getValue(1);
3285 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
3286 VA = RVLocs[++i]; // skip ahead to next loc
3287 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3288 fmrrd.getValue(isLittleEndian ? 1 : 0), Flag);
3289 } else
3290 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
3291
3292 // Guarantee that all emitted copies are
3293 // stuck together, avoiding something bad.
3294 Flag = Chain.getValue(1);
3295 RetOps.push_back(DAG.getRegister(
3296 VA.getLocReg(), ReturnF16 ? Arg.getValueType() : VA.getLocVT()));
3297 }
3298 const ARMBaseRegisterInfo *TRI = Subtarget->getRegisterInfo();
3299 const MCPhysReg *I =
3300 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
3301 if (I) {
3302 for (; *I; ++I) {
3303 if (ARM::GPRRegClass.contains(*I))
3304 RetOps.push_back(DAG.getRegister(*I, MVT::i32));
3305 else if (ARM::DPRRegClass.contains(*I))
3306 RetOps.push_back(DAG.getRegister(*I, MVT::getFloatingPointVT(64)));
3307 else
3308 llvm_unreachable("Unexpected register class in CSRsViaCopy!")::llvm::llvm_unreachable_internal("Unexpected register class in CSRsViaCopy!"
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 3308)
;
3309 }
3310 }
3311
3312 // Update chain and glue.
3313 RetOps[0] = Chain;
3314 if (Flag.getNode())
3315 RetOps.push_back(Flag);
3316
3317 // CPUs which aren't M-class use a special sequence to return from
3318 // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
3319 // though we use "subs pc, lr, #N").
3320 //
3321 // M-class CPUs actually use a normal return sequence with a special
3322 // (hardware-provided) value in LR, so the normal code path works.
3323 if (DAG.getMachineFunction().getFunction().hasFnAttribute("interrupt") &&
3324 !Subtarget->isMClass()) {
3325 if (Subtarget->isThumb1Only())
3326 report_fatal_error("interrupt attribute is not supported in Thumb1");
3327 return LowerInterruptReturn(RetOps, dl, DAG);
3328 }
3329
3330 ARMISD::NodeType RetNode = AFI->isCmseNSEntryFunction() ? ARMISD::SERET_FLAG :
3331 ARMISD::RET_FLAG;
3332 return DAG.getNode(RetNode, dl, MVT::Other, RetOps);
3333}
3334
3335bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
3336 if (N->getNumValues() != 1)
3337 return false;
3338 if (!N->hasNUsesOfValue(1, 0))
3339 return false;
3340
3341 SDValue TCChain = Chain;
3342 SDNode *Copy = *N->use_begin();
3343 if (Copy->getOpcode() == ISD::CopyToReg) {
3344 // If the copy has a glue operand, we conservatively assume it isn't safe to
3345 // perform a tail call.
3346 if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
3347 return false;
3348 TCChain = Copy->getOperand(0);
3349 } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
3350 SDNode *VMov = Copy;
3351 // f64 returned in a pair of GPRs.
3352 SmallPtrSet<SDNode*, 2> Copies;
3353 for (SDNode *U : VMov->uses()) {
3354 if (U->getOpcode() != ISD::CopyToReg)
3355 return false;
3356 Copies.insert(U);
3357 }
3358 if (Copies.size() > 2)
3359 return false;
3360
3361 for (SDNode *U : VMov->uses()) {
3362 SDValue UseChain = U->getOperand(0);
3363 if (Copies.count(UseChain.getNode()))
3364 // Second CopyToReg
3365 Copy = U;
3366 else {
3367 // We are at the top of this chain.
3368 // If the copy has a glue operand, we conservatively assume it
3369 // isn't safe to perform a tail call.
3370 if (U->getOperand(U->getNumOperands() - 1).getValueType() == MVT::Glue)
3371 return false;
3372 // First CopyToReg
3373 TCChain = UseChain;
3374 }
3375 }
3376 } else if (Copy->getOpcode() == ISD::BITCAST) {
3377 // f32 returned in a single GPR.
3378 if (!Copy->hasOneUse())
3379 return false;
3380 Copy = *Copy->use_begin();
3381 if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
3382 return false;
3383 // If the copy has a glue operand, we conservatively assume it isn't safe to
3384 // perform a tail call.
3385 if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
3386 return false;
3387 TCChain = Copy->getOperand(0);
3388 } else {
3389 return false;
3390 }
3391
3392 bool HasRet = false;
3393 for (const SDNode *U : Copy->uses()) {
3394 if (U->getOpcode() != ARMISD::RET_FLAG &&
3395 U->getOpcode() != ARMISD::INTRET_FLAG)
3396 return false;
3397 HasRet = true;
3398 }
3399
3400 if (!HasRet)
3401 return false;
3402
3403 Chain = TCChain;
3404 return true;
3405}
3406
3407bool ARMTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
3408 if (!Subtarget->supportsTailCall())
3409 return false;
3410
3411 if (!CI->isTailCall())
3412 return false;
3413
3414 return true;
3415}
3416
3417// Trying to write a 64 bit value so need to split into two 32 bit values first,
3418// and pass the lower and high parts through.
3419static SDValue LowerWRITE_REGISTER(SDValue Op, SelectionDAG &DAG) {
3420 SDLoc DL(Op);
3421 SDValue WriteValue = Op->getOperand(2);
3422
3423 // This function is only supposed to be called for i64 type argument.
3424 assert(WriteValue.getValueType() == MVT::i64(static_cast <bool> (WriteValue.getValueType() == MVT::
i64 && "LowerWRITE_REGISTER called for non-i64 type argument."
) ? void (0) : __assert_fail ("WriteValue.getValueType() == MVT::i64 && \"LowerWRITE_REGISTER called for non-i64 type argument.\""
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 3425, __extension__
__PRETTY_FUNCTION__))
3425 && "LowerWRITE_REGISTER called for non-i64 type argument.")(static_cast <bool> (WriteValue.getValueType() == MVT::
i64 && "LowerWRITE_REGISTER called for non-i64 type argument."
) ? void (0) : __assert_fail ("WriteValue.getValueType() == MVT::i64 && \"LowerWRITE_REGISTER called for non-i64 type argument.\""
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 3425, __extension__
__PRETTY_FUNCTION__))
;
3426
3427 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
3428 DAG.getConstant(0, DL, MVT::i32));
3429 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
3430 DAG.getConstant(1, DL, MVT::i32));
3431 SDValue Ops[] = { Op->getOperand(0), Op->getOperand(1), Lo, Hi };
3432 return DAG.getNode(ISD::WRITE_REGISTER, DL, MVT::Other, Ops);
3433}
3434
3435// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
3436// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
3437// one of the above mentioned nodes. It has to be wrapped because otherwise
3438// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
3439// be used to form addressing mode. These wrapped nodes will be selected
3440// into MOVi.
3441SDValue ARMTargetLowering::LowerConstantPool(SDValue Op,
3442 SelectionDAG &DAG) const {
3443 EVT PtrVT = Op.getValueType();
3444 // FIXME there is no actual debug info here
3445 SDLoc dl(Op);
3446 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3447 SDValue Res;
3448
3449 // When generating execute-only code Constant Pools must be promoted to the
3450 // global data section. It's a bit ugly that we can't share them across basic
3451 // blocks, but this way we guarantee that execute-only behaves correct with
3452 // position-independent addressing modes.
3453 if (Subtarget->genExecuteOnly()) {
3454 auto AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
3455 auto T = const_cast<Type*>(CP->getType());
3456 auto C = const_cast<Constant*>(CP->getConstVal());
3457 auto M = const_cast<Module*>(DAG.getMachineFunction().
3458 getFunction().getParent());
3459 auto GV = new GlobalVariable(
3460 *M, T, /*isConstant=*/true, GlobalVariable::InternalLinkage, C,
3461 Twine(DAG.getDataLayout().getPrivateGlobalPrefix()) + "CP" +
3462 Twine(DAG.getMachineFunction().getFunctionNumber()) + "_" +
3463 Twine(AFI->createPICLabelUId())
3464 );
3465 SDValue GA = DAG.getTargetGlobalAddress(dyn_cast<GlobalValue>(GV),
3466 dl, PtrVT);
3467 return LowerGlobalAddress(GA, DAG);
3468 }
3469
3470 // The 16-bit ADR instruction can only encode offsets that are multiples of 4,
3471 // so we need to align to at least 4 bytes when we don't have 32-bit ADR.
3472 Align CPAlign = CP->getAlign();
3473 if (Subtarget->isThumb1Only())
3474 CPAlign = std::max(CPAlign, Align(4));
3475 if (CP->isMachineConstantPoolEntry())
3476 Res =
3477 DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, CPAlign);
3478 else
3479 Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, CPAlign);
3480 return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
3481}
3482
3483unsigned ARMTargetLowering::getJumpTableEncoding() const {
3484 return MachineJumpTableInfo::EK_Inline;
3485}
3486
3487SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
3488 SelectionDAG &DAG) const {
3489 MachineFunction &MF = DAG.getMachineFunction();
3490 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3491 unsigned ARMPCLabelIndex = 0;
3492 SDLoc DL(Op);
3493 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3494 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
3495 SDValue CPAddr;
3496 bool IsPositionIndependent = isPositionIndependent() || Subtarget->isROPI();
3497 if (!IsPositionIndependent) {
3498 CPAddr = DAG.getTargetConstantPool(BA, PtrVT, Align(4));
3499 } else {
3500 unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
3501 ARMPCLabelIndex = AFI->createPICLabelUId();
3502 ARMConstantPoolValue *CPV =
3503 ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
3504 ARMCP::CPBlockAddress, PCAdj);
3505 CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3506 }
3507 CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
3508 SDValue Result = DAG.getLoad(
3509 PtrVT, DL, DAG.getEntryNode(), CPAddr,
3510 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3511 if (!IsPositionIndependent)
3512 return Result;
3513 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, DL, MVT::i32);
3514 return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
3515}
3516
3517/// Convert a TLS address reference into the correct sequence of loads
3518/// and calls to compute the variable's address for Darwin, and return an
3519/// SDValue containing the final node.
3520
3521/// Darwin only has one TLS scheme which must be capable of dealing with the
3522/// fully general situation, in the worst case. This means:
3523/// + "extern __thread" declaration.
3524/// + Defined in a possibly unknown dynamic library.
3525///
3526/// The general system is that each __thread variable has a [3 x i32] descriptor
3527/// which contains information used by the runtime to calculate the address. The
3528/// only part of this the compiler needs to know about is the first word, which
3529/// contains a function pointer that must be called with the address of the
3530/// entire descriptor in "r0".
3531///
3532/// Since this descriptor may be in a different unit, in general access must
3533/// proceed along the usual ARM rules. A common sequence to produce is:
3534///
3535/// movw rT1, :lower16:_var$non_lazy_ptr
3536/// movt rT1, :upper16:_var$non_lazy_ptr
3537/// ldr r0, [rT1]
3538/// ldr rT2, [r0]
3539/// blx rT2
3540/// [...address now in r0...]
3541SDValue
3542ARMTargetLowering::LowerGlobalTLSAddressDarwin(SDValue Op,
3543 SelectionDAG &DAG) const {
3544 assert(Subtarget->isTargetDarwin() &&(static_cast <bool> (Subtarget->isTargetDarwin() &&
"This function expects a Darwin target") ? void (0) : __assert_fail
("Subtarget->isTargetDarwin() && \"This function expects a Darwin target\""
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 3545, __extension__
__PRETTY_FUNCTION__))
3545 "This function expects a Darwin target")(static_cast <bool> (Subtarget->isTargetDarwin() &&
"This function expects a Darwin target") ? void (0) : __assert_fail
("Subtarget->isTargetDarwin() && \"This function expects a Darwin target\""
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 3545, __extension__
__PRETTY_FUNCTION__))
;
3546 SDLoc DL(Op);
3547
3548 // First step is to get the address of the actua global symbol. This is where
3549 // the TLS descriptor lives.
3550 SDValue DescAddr = LowerGlobalAddressDarwin(Op, DAG);
3551
3552 // The first entry in the descriptor is a function pointer that we must call
3553 // to obtain the address of the variable.
3554 SDValue Chain = DAG.getEntryNode();
3555 SDValue FuncTLVGet = DAG.getLoad(
3556 MVT::i32, DL, Chain, DescAddr,
3557 MachinePointerInfo::getGOT(DAG.getMachineFunction()), Align(4),
3558 MachineMemOperand::MONonTemporal | MachineMemOperand::MODereferenceable |
3559 MachineMemOperand::MOInvariant);
3560 Chain = FuncTLVGet.getValue(1);
3561
3562 MachineFunction &F = DAG.getMachineFunction();
3563 MachineFrameInfo &MFI = F.getFrameInfo();
3564 MFI.setAdjustsStack(true);
3565
3566 // TLS calls preserve all registers except those that absolutely must be
3567 // trashed: R0 (it takes an argument), LR (it's a call) and CPSR (let's not be
3568 // silly).
3569 auto TRI =
3570 getTargetMachine().getSubtargetImpl(F.getFunction())->getRegisterInfo();
3571 auto ARI = static_cast<const ARMRegisterInfo *>(TRI);
3572 const uint32_t *Mask = ARI->getTLSCallPreservedMask(DAG.getMachineFunction());
3573
3574 // Finally, we can make the call. This is just a degenerate version of a
3575 // normal AArch64 call node: r0 takes the address of the descriptor, and
3576 // returns the address of the variable in this thread.
3577 Chain = DAG.getCopyToReg(Chain, DL, ARM::R0, DescAddr, SDValue());
3578 Chain =
3579 DAG.getNode(ARMISD::CALL, DL, DAG.getVTList(MVT::Other, MVT::Glue),
3580 Chain, FuncTLVGet, DAG.getRegister(ARM::R0, MVT::i32),
3581 DAG.getRegisterMask(Mask), Chain.getValue(1));
3582 return DAG.getCopyFromReg(Chain, DL, ARM::R0, MVT::i32, Chain.getValue(1));
3583}
3584
3585SDValue
3586ARMTargetLowering::LowerGlobalTLSAddressWindows(SDValue Op,
3587 SelectionDAG &DAG) const {
3588 assert(Subtarget->isTargetWindows() && "Windows specific TLS lowering")(static_cast <bool> (Subtarget->isTargetWindows() &&
"Windows specific TLS lowering") ? void (0) : __assert_fail (
"Subtarget->isTargetWindows() && \"Windows specific TLS lowering\""
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 3588, __extension__
__PRETTY_FUNCTION__))
;
3589
3590 SDValue Chain = DAG.getEntryNode();
3591 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3592 SDLoc DL(Op);
3593
3594 // Load the current TEB (thread environment block)
3595 SDValue Ops[] = {Chain,
3596 DAG.getTargetConstant(Intrinsic::arm_mrc, DL, MVT::i32),
3597 DAG.getTargetConstant(15, DL, MVT::i32),
3598 DAG.getTargetConstant(0, DL, MVT::i32),
3599 DAG.getTargetConstant(13, DL, MVT::i32),
3600 DAG.getTargetConstant(0, DL, MVT::i32),
3601 DAG.getTargetConstant(2, DL, MVT::i32)};
3602 SDValue CurrentTEB = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
3603 DAG.getVTList(MVT::i32, MVT::Other), Ops);
3604
3605 SDValue TEB = CurrentTEB.getValue(0);
3606 Chain = CurrentTEB.getValue(1);
3607
3608 // Load the ThreadLocalStoragePointer from the TEB
3609 // A pointer to the TLS array is located at offset 0x2c from the TEB.
3610 SDValue TLSArray =
3611 DAG.getNode(ISD::ADD, DL, PtrVT, TEB, DAG.getIntPtrConstant(0x2c, DL));
3612 TLSArray = DAG.getLoad(PtrVT, DL, Chain, TLSArray, MachinePointerInfo());
3613
3614 // The pointer to the thread's TLS data area is at the TLS Index scaled by 4
3615 // offset into the TLSArray.
3616
3617 // Load the TLS index from the C runtime
3618 SDValue TLSIndex =
3619 DAG.getTargetExternalSymbol("_tls_index", PtrVT, ARMII::MO_NO_FLAG);
3620 TLSIndex = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, TLSIndex);
3621 TLSIndex = DAG.getLoad(PtrVT, DL, Chain, TLSIndex, MachinePointerInfo());
3622
3623 SDValue Slot = DAG.getNode(ISD::SHL, DL, PtrVT, TLSIndex,
3624 DAG.getConstant(2, DL, MVT::i32));
3625 SDValue TLS = DAG.getLoad(PtrVT, DL, Chain,
3626 DAG.getNode(ISD::ADD, DL, PtrVT, TLSArray, Slot),
3627 MachinePointerInfo());
3628
3629 // Get the offset of the start of the .tls section (section base)
3630 const auto *GA = cast<GlobalAddressSDNode>(Op);
3631 auto *CPV = ARMConstantPoolConstant::Create(GA->getGlobal(), ARMCP::SECREL);
3632 SDValue Offset = DAG.getLoad(
3633 PtrVT, DL, Chain,
3634 DAG.getNode(ARMISD::Wrapper, DL, MVT::i32,
3635 DAG.getTargetConstantPool(CPV, PtrVT, Align(4))),
3636 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3637
3638 return DAG.getNode(ISD::ADD, DL, PtrVT, TLS, Offset);
3639}
3640
3641// Lower ISD::GlobalTLSAddress using the "general dynamic" model
3642SDValue
3643ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
3644 SelectionDAG &DAG) const {
3645 SDLoc dl(GA);
3646 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3647 unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
3648 MachineFunction &MF = DAG.getMachineFunction();
3649 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3650 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
3651 ARMConstantPoolValue *CPV =
3652 ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
3653 ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
3654 SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3655 Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
3656 Argument = DAG.getLoad(
3657 PtrVT, dl, DAG.getEntryNode(), Argument,
3658 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3659 SDValue Chain = Argument.getValue(1);
3660
3661 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
3662 Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
3663
3664 // call __tls_get_addr.
3665 ArgListTy Args;
3666 ArgListEntry Entry;
3667 Entry.Node = Argument;
3668 Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
3669 Args.push_back(Entry);
3670
3671 // FIXME: is there useful debug info available here?
3672 TargetLowering::CallLoweringInfo CLI(DAG);
3673 CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3674 CallingConv::C, Type::getInt32Ty(*DAG.getContext()),
3675 DAG.getExternalSymbol("__tls_get_addr", PtrVT), std::move(Args));
3676
3677 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3678 return CallResult.first;
3679}
3680
3681// Lower ISD::GlobalTLSAddress using the "initial exec" or
3682// "local exec" model.
3683SDValue
3684ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
3685 SelectionDAG &DAG,
3686 TLSModel::Model model) const {
3687 const GlobalValue *GV = GA->getGlobal();
3688 SDLoc dl(GA);
3689 SDValue Offset;
3690 SDValue Chain = DAG.getEntryNode();
3691 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3692 // Get the Thread Pointer
3693 SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
3694
3695 if (model == TLSModel::InitialExec) {
3696 MachineFunction &MF = DAG.getMachineFunction();
3697 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3698 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
3699 // Initial exec model.
3700 unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
3701 ARMConstantPoolValue *CPV =
3702 ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
3703 ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
3704 true);
3705 Offset = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3706 Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
3707 Offset = DAG.getLoad(
3708 PtrVT, dl, Chain, Offset,
3709 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3710 Chain = Offset.getValue(1);
3711
3712 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
3713 Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
3714
3715 Offset = DAG.getLoad(
3716 PtrVT, dl, Chain, Offset,
3717 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3718 } else {
3719 // local exec model
3720 assert(model == TLSModel::LocalExec)(static_cast <bool> (model == TLSModel::LocalExec) ? void
(0) : __assert_fail ("model == TLSModel::LocalExec", "llvm/lib/Target/ARM/ARMISelLowering.cpp"
, 3720, __extension__ __PRETTY_FUNCTION__))
;
3721 ARMConstantPoolValue *CPV =
3722 ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
3723 Offset = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3724 Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
3725 Offset = DAG.getLoad(
3726 PtrVT, dl, Chain, Offset,
3727 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3728 }
3729
3730 // The address of the thread local variable is the add of the thread
3731 // pointer with the offset of the variable.
3732 return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
3733}
3734
3735SDValue
3736ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
3737 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3738 if (DAG.getTarget().useEmulatedTLS())
3739 return LowerToTLSEmulatedModel(GA, DAG);
3740
3741 if (Subtarget->isTargetDarwin())
3742 return LowerGlobalTLSAddressDarwin(Op, DAG);
3743
3744 if (Subtarget->isTargetWindows())
3745 return LowerGlobalTLSAddressWindows(Op, DAG);
3746
3747 // TODO: implement the "local dynamic" model
3748 assert(Subtarget->isTargetELF() && "Only ELF implemented here")(static_cast <bool> (Subtarget->isTargetELF() &&
"Only ELF implemented here") ? void (0) : __assert_fail ("Subtarget->isTargetELF() && \"Only ELF implemented here\""
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 3748, __extension__
__PRETTY_FUNCTION__))
;
3749 TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
3750
3751 switch (model) {
3752 case TLSModel::GeneralDynamic:
3753 case TLSModel::LocalDynamic:
3754 return LowerToTLSGeneralDynamicModel(GA, DAG);
3755 case TLSModel::InitialExec:
3756 case TLSModel::LocalExec:
3757 return LowerToTLSExecModels(GA, DAG, model);
3758 }
3759 llvm_unreachable("bogus TLS model")::llvm::llvm_unreachable_internal("bogus TLS model", "llvm/lib/Target/ARM/ARMISelLowering.cpp"
, 3759)
;
3760}
3761
3762/// Return true if all users of V are within function F, looking through
3763/// ConstantExprs.
3764static bool allUsersAreInFunction(const Value *V, const Function *F) {
3765 SmallVector<const User*,4> Worklist(V->users());
3766 while (!Worklist.empty()) {
3767 auto *U = Worklist.pop_back_val();
3768 if (isa<ConstantExpr>(U)) {
3769 append_range(Worklist, U->users());
3770 continue;
3771 }
3772
3773 auto *I = dyn_cast<Instruction>(U);
3774 if (!I || I->getParent()->getParent() != F)
3775 return false;
3776 }
3777 return true;
3778}
3779
3780static SDValue promoteToConstantPool(const ARMTargetLowering *TLI,
3781 const GlobalValue *GV, SelectionDAG &DAG,
3782 EVT PtrVT, const SDLoc &dl) {
3783 // If we're creating a pool entry for a constant global with unnamed address,
3784 // and the global is small enough, we can emit it inline into the constant pool
3785 // to save ourselves an indirection.
3786 //
3787 // This is a win if the constant is only used in one function (so it doesn't
3788 // need to be duplicated) or duplicating the constant wouldn't increase code
3789 // size (implying the constant is no larger than 4 bytes).
3790 const Function &F = DAG.getMachineFunction().getFunction();
3791
3792 // We rely on this decision to inline being idemopotent and unrelated to the
3793 // use-site. We know that if we inline a variable at one use site, we'll
3794 // inline it elsewhere too (and reuse the constant pool entry). Fast-isel
3795 // doesn't know about this optimization, so bail out if it's enabled else
3796 // we could decide to inline here (and thus never emit the GV) but require
3797 // the GV from fast-isel generated code.
3798 if (!EnableConstpoolPromotion ||
3799 DAG.getMachineFunction().getTarget().Options.EnableFastISel)
3800 return SDValue();
3801
3802 auto *GVar = dyn_cast<GlobalVariable>(GV);
3803 if (!GVar || !GVar->hasInitializer() ||
3804 !GVar->isConstant() || !GVar->hasGlobalUnnamedAddr() ||
3805 !GVar->hasLocalLinkage())
3806 return SDValue();
3807
3808 // If we inline a value that contains relocations, we move the relocations
3809 // from .data to .text. This is not allowed in position-independent code.
3810 auto *Init = GVar->getInitializer();
3811 if ((TLI->isPositionIndependent() || TLI->getSubtarget()->isROPI()) &&
3812 Init->needsDynamicRelocation())
3813 return SDValue();
3814
3815 // The constant islands pass can only really deal with alignment requests
3816 // <= 4 bytes and cannot pad constants itself. Therefore we cannot promote
3817 // any type wanting greater alignment requirements than 4 bytes. We also
3818 // can only promote constants that are multiples of 4 bytes in size or
3819 // are paddable to a multiple of 4. Currently we only try and pad constants
3820 // that are strings for simplicity.
3821 auto *CDAInit = dyn_cast<ConstantDataArray>(Init);
3822 unsigned Size = DAG.getDataLayout().getTypeAllocSize(Init->getType());
3823 Align PrefAlign = DAG.getDataLayout().getPreferredAlign(GVar);
3824 unsigned RequiredPadding = 4 - (Size % 4);
3825 bool PaddingPossible =
3826 RequiredPadding == 4 || (CDAInit && CDAInit->isString());
3827 if (!PaddingPossible || PrefAlign > 4 || Size > ConstpoolPromotionMaxSize ||
3828 Size == 0)
3829 return SDValue();
3830
3831 unsigned PaddedSize = Size + ((RequiredPadding == 4) ? 0 : RequiredPadding);
3832 MachineFunction &MF = DAG.getMachineFunction();
3833 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
3834
3835 // We can't bloat the constant pool too much, else the ConstantIslands pass
3836 // may fail to converge. If we haven't promoted this global yet (it may have
3837 // multiple uses), and promoting it would increase the constant pool size (Sz
3838 // > 4), ensure we have space to do so up to MaxTotal.
3839 if (!AFI->getGlobalsPromotedToConstantPool().count(GVar) && Size > 4)
3840 if (AFI->getPromotedConstpoolIncrease() + PaddedSize - 4 >=
3841 ConstpoolPromotionMaxTotal)
3842 return SDValue();
3843
3844 // This is only valid if all users are in a single function; we can't clone
3845 // the constant in general. The LLVM IR unnamed_addr allows merging
3846 // constants, but not cloning them.
3847 //
3848 // We could potentially allow cloning if we could prove all uses of the
3849 // constant in the current function don't care about the address, like
3850 // printf format strings. But that isn't implemented for now.
3851 if (!allUsersAreInFunction(GVar, &F))
3852 return SDValue();
3853
3854 // We're going to inline this global. Pad it out if needed.
3855 if (RequiredPadding != 4) {
3856 StringRef S = CDAInit->getAsString();
3857
3858 SmallVector<uint8_t,16> V(S.size());
3859 std::copy(S.bytes_begin(), S.bytes_end(), V.begin());
3860 while (RequiredPadding--)
3861 V.push_back(0);
3862 Init = ConstantDataArray::get(*DAG.getContext(), V);
3863 }
3864
3865 auto CPVal = ARMConstantPoolConstant::Create(GVar, Init);
3866 SDValue CPAddr = DAG.getTargetConstantPool(CPVal, PtrVT, Align(4));
3867 if (!AFI->getGlobalsPromotedToConstantPool().count(GVar)) {
3868 AFI->markGlobalAsPromotedToConstantPool(GVar);
3869 AFI->setPromotedConstpoolIncrease(AFI->getPromotedConstpoolIncrease() +
3870 PaddedSize - 4);
3871 }
3872 ++NumConstpoolPromoted;
3873 return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3874}
3875
3876bool ARMTargetLowering::isReadOnly(const GlobalValue *GV) const {
3877 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
3878 if (!(GV = GA->getAliaseeObject()))
3879 return false;
3880 if (const auto *V = dyn_cast<GlobalVariable>(GV))
3881 return V->isConstant();
3882 return isa<Function>(GV);
3883}
3884
3885SDValue ARMTargetLowering::LowerGlobalAddress(SDValue Op,
3886 SelectionDAG &DAG) const {
3887 switch (Subtarget->getTargetTriple().getObjectFormat()) {
3888 default: llvm_unreachable("unknown object format")::llvm::llvm_unreachable_internal("unknown object format", "llvm/lib/Target/ARM/ARMISelLowering.cpp"
, 3888)
;
3889 case Triple::COFF:
3890 return LowerGlobalAddressWindows(Op, DAG);
3891 case Triple::ELF:
3892 return LowerGlobalAddressELF(Op, DAG);
3893 case Triple::MachO:
3894 return LowerGlobalAddressDarwin(Op, DAG);
3895 }
3896}
3897
3898SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
3899 SelectionDAG &DAG) const {
3900 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3901 SDLoc dl(Op);
3902 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3903 const TargetMachine &TM = getTargetMachine();
3904 bool IsRO = isReadOnly(GV);
3905
3906 // promoteToConstantPool only if not generating XO text section
3907 if (TM.shouldAssumeDSOLocal(*GV->getParent(), GV) && !Subtarget->genExecuteOnly())
3908 if (SDValue V = promoteToConstantPool(this, GV, DAG, PtrVT, dl))
3909 return V;
3910
3911 if (isPositionIndependent()) {
3912 bool UseGOT_PREL = !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
3913 SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3914 UseGOT_PREL ? ARMII::MO_GOT : 0);
3915 SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
3916 if (UseGOT_PREL)
3917 Result =
3918 DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
3919 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3920 return Result;
3921 } else if (Subtarget->isROPI() && IsRO) {
3922 // PC-relative.
3923 SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT);
3924 SDValue Result = DAG.getNode(ARMISD::WrapperPIC, dl, PtrVT, G);
3925 return Result;
3926 } else if (Subtarget->isRWPI() && !IsRO) {
3927 // SB-relative.
3928 SDValue RelAddr;
3929 if (Subtarget->useMovt()) {
3930 ++NumMovwMovt;
3931 SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_SBREL);
3932 RelAddr = DAG.getNode(ARMISD::Wrapper, dl, PtrVT, G);
3933 } else { // use literal pool for address constant
3934 ARMConstantPoolValue *CPV =
3935 ARMConstantPoolConstant::Create(GV, ARMCP::SBREL);
3936 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
3937 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3938 RelAddr = DAG.getLoad(
3939 PtrVT, dl, DAG.getEntryNode(), CPAddr,
3940 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3941 }
3942 SDValue SB = DAG.getCopyFromReg(DAG.getEntryNode(), dl, ARM::R9, PtrVT);
3943 SDValue Result = DAG.getNode(ISD::ADD, dl, PtrVT, SB, RelAddr);
3944 return Result;
3945 }
3946
3947 // If we have T2 ops, we can materialize the address directly via movt/movw
3948 // pair. This is always cheaper.
3949 if (Subtarget->useMovt()) {
3950 ++NumMovwMovt;
3951 // FIXME: Once remat is capable of dealing with instructions with register
3952 // operands, expand this into two nodes.
3953 return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
3954 DAG.getTargetGlobalAddress(GV, dl, PtrVT));
3955 } else {
3956 SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, Align(4));
3957 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
3958 return DAG.getLoad(
3959 PtrVT, dl, DAG.getEntryNode(), CPAddr,
3960 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
3961 }
3962}
3963
3964SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
3965 SelectionDAG &DAG) const {
3966 assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&(static_cast <bool> (!Subtarget->isROPI() &&
!Subtarget->isRWPI() && "ROPI/RWPI not currently supported for Darwin"
) ? void (0) : __assert_fail ("!Subtarget->isROPI() && !Subtarget->isRWPI() && \"ROPI/RWPI not currently supported for Darwin\""
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 3967, __extension__
__PRETTY_FUNCTION__))
3967 "ROPI/RWPI not currently supported for Darwin")(static_cast <bool> (!Subtarget->isROPI() &&
!Subtarget->isRWPI() && "ROPI/RWPI not currently supported for Darwin"
) ? void (0) : __assert_fail ("!Subtarget->isROPI() && !Subtarget->isRWPI() && \"ROPI/RWPI not currently supported for Darwin\""
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 3967, __extension__
__PRETTY_FUNCTION__))
;
3968 EVT PtrVT = getPointerTy(DAG.getDataLayout());
3969 SDLoc dl(Op);
3970 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3971
3972 if (Subtarget->useMovt())
3973 ++NumMovwMovt;
3974
3975 // FIXME: Once remat is capable of dealing with instructions with register
3976 // operands, expand this into multiple nodes
3977 unsigned Wrapper =
3978 isPositionIndependent() ? ARMISD::WrapperPIC : ARMISD::Wrapper;
3979
3980 SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY);
3981 SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G);
3982
3983 if (Subtarget->isGVIndirectSymbol(GV))
3984 Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
3985 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
3986 return Result;
3987}
3988
3989SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op,
3990 SelectionDAG &DAG) const {
3991 assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported")(static_cast <bool> (Subtarget->isTargetWindows() &&
"non-Windows COFF is not supported") ? void (0) : __assert_fail
("Subtarget->isTargetWindows() && \"non-Windows COFF is not supported\""
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 3991, __extension__
__PRETTY_FUNCTION__))
;
3992 assert(Subtarget->useMovt() &&(static_cast <bool> (Subtarget->useMovt() &&
"Windows on ARM expects to use movw/movt") ? void (0) : __assert_fail
("Subtarget->useMovt() && \"Windows on ARM expects to use movw/movt\""
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 3993, __extension__
__PRETTY_FUNCTION__))
3993 "Windows on ARM expects to use movw/movt")(static_cast <bool> (Subtarget->useMovt() &&
"Windows on ARM expects to use movw/movt") ? void (0) : __assert_fail
("Subtarget->useMovt() && \"Windows on ARM expects to use movw/movt\""
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 3993, __extension__
__PRETTY_FUNCTION__))
;
3994 assert(!Subtarget->isROPI() && !Subtarget->isRWPI() &&(static_cast <bool> (!Subtarget->isROPI() &&
!Subtarget->isRWPI() && "ROPI/RWPI not currently supported for Windows"
) ? void (0) : __assert_fail ("!Subtarget->isROPI() && !Subtarget->isRWPI() && \"ROPI/RWPI not currently supported for Windows\""
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 3995, __extension__
__PRETTY_FUNCTION__))
3995 "ROPI/RWPI not currently supported for Windows")(static_cast <bool> (!Subtarget->isROPI() &&
!Subtarget->isRWPI() && "ROPI/RWPI not currently supported for Windows"
) ? void (0) : __assert_fail ("!Subtarget->isROPI() && !Subtarget->isRWPI() && \"ROPI/RWPI not currently supported for Windows\""
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 3995, __extension__
__PRETTY_FUNCTION__))
;
3996
3997 const TargetMachine &TM = getTargetMachine();
3998 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
3999 ARMII::TOF TargetFlags = ARMII::MO_NO_FLAG;
4000 if (GV->hasDLLImportStorageClass())
4001 TargetFlags = ARMII::MO_DLLIMPORT;
4002 else if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
4003 TargetFlags = ARMII::MO_COFFSTUB;
4004 EVT PtrVT = getPointerTy(DAG.getDataLayout());
4005 SDValue Result;
4006 SDLoc DL(Op);
4007
4008 ++NumMovwMovt;
4009
4010 // FIXME: Once remat is capable of dealing with instructions with register
4011 // operands, expand this into two nodes.
4012 Result = DAG.getNode(ARMISD::Wrapper, DL, PtrVT,
4013 DAG.getTargetGlobalAddress(GV, DL, PtrVT, /*offset=*/0,
4014 TargetFlags));
4015 if (TargetFlags & (ARMII::MO_DLLIMPORT | ARMII::MO_COFFSTUB))
4016 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
4017 MachinePointerInfo::getGOT(DAG.getMachineFunction()));
4018 return Result;
4019}
4020
4021SDValue
4022ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
4023 SDLoc dl(Op);
4024 SDValue Val = DAG.getConstant(0, dl, MVT::i32);
4025 return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
4026 DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
4027 Op.getOperand(1), Val);
4028}
4029
4030SDValue
4031ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
4032 SDLoc dl(Op);
4033 return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
4034 Op.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
4035}
4036
4037SDValue ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,
4038 SelectionDAG &DAG) const {
4039 SDLoc dl(Op);
4040 return DAG.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH, dl, MVT::Other,
4041 Op.getOperand(0));
4042}
4043
4044SDValue ARMTargetLowering::LowerINTRINSIC_VOID(
4045 SDValue Op, SelectionDAG &DAG, const ARMSubtarget *Subtarget) const {
4046 unsigned IntNo =
4047 cast<ConstantSDNode>(
4048 Op.getOperand(Op.getOperand(0).getValueType() == MVT::Other))
4049 ->getZExtValue();
4050 switch (IntNo) {
4051 default:
4052 return SDValue(); // Don't custom lower most intrinsics.
4053 case Intrinsic::arm_gnu_eabi_mcount: {
4054 MachineFunction &MF = DAG.getMachineFunction();
4055 EVT PtrVT = getPointerTy(DAG.getDataLayout());
4056 SDLoc dl(Op);
4057 SDValue Chain = Op.getOperand(0);
4058 // call "\01__gnu_mcount_nc"
4059 const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
4060 const uint32_t *Mask =
4061 ARI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C);
4062 assert(Mask && "Missing call preserved mask for calling convention")(static_cast <bool> (Mask && "Missing call preserved mask for calling convention"
) ? void (0) : __assert_fail ("Mask && \"Missing call preserved mask for calling convention\""
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 4062, __extension__
__PRETTY_FUNCTION__))
;
4063 // Mark LR an implicit live-in.
4064 Register Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
4065 SDValue ReturnAddress =
4066 DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, PtrVT);
4067 constexpr EVT ResultTys[] = {MVT::Other, MVT::Glue};
4068 SDValue Callee =
4069 DAG.getTargetExternalSymbol("\01__gnu_mcount_nc", PtrVT, 0);
4070 SDValue RegisterMask = DAG.getRegisterMask(Mask);
4071 if (Subtarget->isThumb())
4072 return SDValue(
4073 DAG.getMachineNode(
4074 ARM::tBL_PUSHLR, dl, ResultTys,
4075 {ReturnAddress, DAG.getTargetConstant(ARMCC::AL, dl, PtrVT),
4076 DAG.getRegister(0, PtrVT), Callee, RegisterMask, Chain}),
4077 0);
4078 return SDValue(
4079 DAG.getMachineNode(ARM::BL_PUSHLR, dl, ResultTys,
4080 {ReturnAddress, Callee, RegisterMask, Chain}),
4081 0);
4082 }
4083 }
4084}
4085
4086SDValue
4087ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
4088 const ARMSubtarget *Subtarget) const {
4089 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4090 SDLoc dl(Op);
4091 switch (IntNo) {
4092 default: return SDValue(); // Don't custom lower most intrinsics.
4093 case Intrinsic::thread_pointer: {
4094 EVT PtrVT = getPointerTy(DAG.getDataLayout());
4095 return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
4096 }
4097 case Intrinsic::arm_cls: {
4098 const SDValue &Operand = Op.getOperand(1);
4099 const EVT VTy = Op.getValueType();
4100 SDValue SRA =
4101 DAG.getNode(ISD::SRA, dl, VTy, Operand, DAG.getConstant(31, dl, VTy));
4102 SDValue XOR = DAG.getNode(ISD::XOR, dl, VTy, SRA, Operand);
4103 SDValue SHL =
4104 DAG.getNode(ISD::SHL, dl, VTy, XOR, DAG.getConstant(1, dl, VTy));
4105 SDValue OR =
4106 DAG.getNode(ISD::OR, dl, VTy, SHL, DAG.getConstant(1, dl, VTy));
4107 SDValue Result = DAG.getNode(ISD::CTLZ, dl, VTy, OR);
4108 return Result;
4109 }
4110 case Intrinsic::arm_cls64: {
4111 // cls(x) = if cls(hi(x)) != 31 then cls(hi(x))
4112 // else 31 + clz(if hi(x) == 0 then lo(x) else not(lo(x)))
4113 const SDValue &Operand = Op.getOperand(1);
4114 const EVT VTy = Op.getValueType();
4115
4116 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VTy, Operand,
4117 DAG.getConstant(1, dl, VTy));
4118 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VTy, Operand,
4119 DAG.getConstant(0, dl, VTy));
4120 SDValue Constant0 = DAG.getConstant(0, dl, VTy);
4121 SDValue Constant1 = DAG.getConstant(1, dl, VTy);
4122 SDValue Constant31 = DAG.getConstant(31, dl, VTy);
4123 SDValue SRAHi = DAG.getNode(ISD::SRA, dl, VTy, Hi, Constant31);
4124 SDValue XORHi = DAG.getNode(ISD::XOR, dl, VTy, SRAHi, Hi);
4125 SDValue SHLHi = DAG.getNode(ISD::SHL, dl, VTy, XORHi, Constant1);
4126 SDValue ORHi = DAG.getNode(ISD::OR, dl, VTy, SHLHi, Constant1);
4127 SDValue CLSHi = DAG.getNode(ISD::CTLZ, dl, VTy, ORHi);
4128 SDValue CheckLo =
4129 DAG.getSetCC(dl, MVT::i1, CLSHi, Constant31, ISD::CondCode::SETEQ);
4130 SDValue HiIsZero =
4131 DAG.getSetCC(dl, MVT::i1, Hi, Constant0, ISD::CondCode::SETEQ);
4132 SDValue AdjustedLo =
4133 DAG.getSelect(dl, VTy, HiIsZero, Lo, DAG.getNOT(dl, Lo, VTy));
4134 SDValue CLZAdjustedLo = DAG.getNode(ISD::CTLZ, dl, VTy, AdjustedLo);
4135 SDValue Result =
4136 DAG.getSelect(dl, VTy, CheckLo,
4137 DAG.getNode(ISD::ADD, dl, VTy, CLZAdjustedLo, Constant31), CLSHi);
4138 return Result;
4139 }
4140 case Intrinsic::eh_sjlj_lsda: {
4141 MachineFunction &MF = DAG.getMachineFunction();
4142 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
4143 unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
4144 EVT PtrVT = getPointerTy(DAG.getDataLayout());
4145 SDValue CPAddr;
4146 bool IsPositionIndependent = isPositionIndependent();
4147 unsigned PCAdj = IsPositionIndependent ? (Subtarget->isThumb() ? 4 : 8) : 0;
4148 ARMConstantPoolValue *CPV =
4149 ARMConstantPoolConstant::Create(&MF.getFunction(), ARMPCLabelIndex,
4150 ARMCP::CPLSDA, PCAdj);
4151 CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, Align(4));
4152 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
4153 SDValue Result = DAG.getLoad(
4154 PtrVT, dl, DAG.getEntryNode(), CPAddr,
4155 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()));
4156
4157 if (IsPositionIndependent) {
4158 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
4159 Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
4160 }
4161 return Result;
4162 }
4163 case Intrinsic::arm_neon_vabs:
4164 return DAG.getNode(ISD::ABS, SDLoc(Op), Op.getValueType(),
4165 Op.getOperand(1));
4166 case Intrinsic::arm_neon_vmulls:
4167 case Intrinsic::arm_neon_vmullu: {
4168 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
4169 ? ARMISD::VMULLs : ARMISD::VMULLu;
4170 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
4171 Op.getOperand(1), Op.getOperand(2));
4172 }
4173 case Intrinsic::arm_neon_vminnm:
4174 case Intrinsic::arm_neon_vmaxnm: {
4175 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminnm)
4176 ? ISD::FMINNUM : ISD::FMAXNUM;
4177 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
4178 Op.getOperand(1), Op.getOperand(2));
4179 }
4180 case Intrinsic::arm_neon_vminu:
4181 case Intrinsic::arm_neon_vmaxu: {
4182 if (Op.getValueType().isFloatingPoint())
4183 return SDValue();
4184 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminu)
4185 ? ISD::UMIN : ISD::UMAX;
4186 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
4187 Op.getOperand(1), Op.getOperand(2));
4188 }
4189 case Intrinsic::arm_neon_vmins:
4190 case Intrinsic::arm_neon_vmaxs: {
4191 // v{min,max}s is overloaded between signed integers and floats.
4192 if (!Op.getValueType().isFloatingPoint()) {
4193 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
4194 ? ISD::SMIN : ISD::SMAX;
4195 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
4196 Op.getOperand(1), Op.getOperand(2));
4197 }
4198 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
4199 ? ISD::FMINIMUM : ISD::FMAXIMUM;
4200 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
4201 Op.getOperand(1), Op.getOperand(2));
4202 }
4203 case Intrinsic::arm_neon_vtbl1:
4204 return DAG.getNode(ARMISD::VTBL1, SDLoc(Op), Op.getValueType(),
4205 Op.getOperand(1), Op.getOperand(2));
4206 case Intrinsic::arm_neon_vtbl2:
4207 return DAG.getNode(ARMISD::VTBL2, SDLoc(Op), Op.getValueType(),
4208 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4209 case Intrinsic::arm_mve_pred_i2v:
4210 case Intrinsic::arm_mve_pred_v2i:
4211 return DAG.getNode(ARMISD::PREDICATE_CAST, SDLoc(Op), Op.getValueType(),
4212 Op.getOperand(1));
4213 case Intrinsic::arm_mve_vreinterpretq:
4214 return DAG.getNode(ARMISD::VECTOR_REG_CAST, SDLoc(Op), Op.getValueType(),
4215 Op.getOperand(1));
4216 case Intrinsic::arm_mve_lsll:
4217 return DAG.getNode(ARMISD::LSLL, SDLoc(Op), Op->getVTList(),
4218 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4219 case Intrinsic::arm_mve_asrl:
4220 return DAG.getNode(ARMISD::ASRL, SDLoc(Op), Op->getVTList(),
4221 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
4222 }
4223}
4224
4225static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
4226 const ARMSubtarget *Subtarget) {
4227 SDLoc dl(Op);
4228 ConstantSDNode *SSIDNode = cast<ConstantSDNode>(Op.getOperand(2));
4229 auto SSID = static_cast<SyncScope::ID>(SSIDNode->getZExtValue());
4230 if (SSID == SyncScope::SingleThread)
4231 return Op;
4232
4233 if (!Subtarget->hasDataBarrier()) {
4234 // Some ARMv6 cpus can support data barriers with an mcr instruction.
4235 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
4236 // here.
4237 assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&(static_cast <bool> (Subtarget->hasV6Ops() &&
!Subtarget->isThumb() && "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!"
) ? void (0) : __assert_fail ("Subtarget->hasV6Ops() && !Subtarget->isThumb() && \"Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!\""
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 4238, __extension__
__PRETTY_FUNCTION__))
4238 "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!")(static_cast <bool> (Subtarget->hasV6Ops() &&
!Subtarget->isThumb() && "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!"
) ? void (0) : __assert_fail ("Subtarget->hasV6Ops() && !Subtarget->isThumb() && \"Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!\""
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 4238, __extension__
__PRETTY_FUNCTION__))
;
4239 return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
4240 DAG.getConstant(0, dl, MVT::i32));
4241 }
4242
4243 ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1));
4244 AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue());
4245 ARM_MB::MemBOpt Domain = ARM_MB::ISH;
4246 if (Subtarget->isMClass()) {
4247 // Only a full system barrier exists in the M-class architectures.
4248 Domain = ARM_MB::SY;
4249 } else if (Subtarget->preferISHSTBarriers() &&
4250 Ord == AtomicOrdering::Release) {
4251 // Swift happens to implement ISHST barriers in a way that's compatible with
4252 // Release semantics but weaker than ISH so we'd be fools not to use
4253 // it. Beware: other processors probably don't!
4254 Domain = ARM_MB::ISHST;
4255 }
4256
4257 return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0),
4258 DAG.getConstant(Intrinsic::arm_dmb, dl, MVT::i32),
4259 DAG.getConstant(Domain, dl, MVT::i32));
4260}
4261
4262static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
4263 const ARMSubtarget *Subtarget) {
4264 // ARM pre v5TE and Thumb1 does not have preload instructions.
4265 if (!(Subtarget->isThumb2() ||
4266 (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
4267 // Just preserve the chain.
4268 return Op.getOperand(0);
4269
4270 SDLoc dl(Op);
4271 unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
4272 if (!isRead &&
4273 (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
4274 // ARMv7 with MP extension has PLDW.
4275 return Op.getOperand(0);
4276
4277 unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
4278 if (Subtarget->isThumb()) {
4279 // Invert the bits.
4280 isRead = ~isRead & 1;
4281 isData = ~isData & 1;
4282 }
4283
4284 return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
4285 Op.getOperand(1), DAG.getConstant(isRead, dl, MVT::i32),
4286 DAG.getConstant(isData, dl, MVT::i32));
4287}
4288
4289static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
4290 MachineFunction &MF = DAG.getMachineFunction();
4291 ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
4292
4293 // vastart just stores the address of the VarArgsFrameIndex slot into the
4294 // memory location argument.
4295 SDLoc dl(Op);
4296 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
4297 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4298 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
4299 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
4300 MachinePointerInfo(SV));
4301}
4302
4303SDValue ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA,
4304 CCValAssign &NextVA,
4305 SDValue &Root,
4306 SelectionDAG &DAG,
4307 const SDLoc &dl) const {
4308 MachineFunction &MF = DAG.getMachineFunction();
4309 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
4310
4311 const TargetRegisterClass *RC;
4312 if (AFI->isThumb1OnlyFunction())
4313 RC = &ARM::tGPRRegClass;
4314 else
4315 RC = &ARM::GPRRegClass;
4316
4317 // Transform the arguments stored in physical registers into virtual ones.
4318 Register Reg = MF.addLiveIn(VA.getLocReg(), RC);
4319 SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
4320
4321 SDValue ArgValue2;
4322 if (NextVA.isMemLoc()) {
4323 MachineFrameInfo &MFI = MF.getFrameInfo();
4324 int FI = MFI.CreateFixedObject(4, NextVA.getLocMemOffset(), true);
4325
4326 // Create load node to retrieve arguments from the stack.
4327 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
4328 ArgValue2 = DAG.getLoad(
4329 MVT::i32, dl, Root, FIN,
4330 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
4331 } else {
4332 Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
4333 ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
4334 }
4335 if (!Subtarget->isLittle())
4336 std::swap (ArgValue, ArgValue2);
4337 return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
4338}
4339
4340// The remaining GPRs hold either the beginning of variable-argument
4341// data, or the beginning of an aggregate passed by value (usually
4342// byval). Either way, we allocate stack slots adjacent to the data
4343// provided by our caller, and store the unallocated registers there.
4344// If this is a variadic function, the va_list pointer will begin with
4345// these values; otherwise, this reassembles a (byval) structure that
4346// was split between registers and memory.
4347// Return: The frame index registers were stored into.
4348int ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG,
4349 const SDLoc &dl, SDValue &Chain,
4350 const Value *OrigArg,
4351 unsigned InRegsParamRecordIdx,
4352 int ArgOffset, unsigned ArgSize) const {
4353 // Currently, two use-cases possible:
4354 // Case #1. Non-var-args function, and we meet first byval parameter.
4355 // Setup first unallocated register as first byval register;
4356 // eat all remained registers
4357 // (these two actions are performed by HandleByVal method).
4358 // Then, here, we initialize stack frame with
4359 // "store-reg" instructions.
4360 // Case #2. Var-args function, that doesn't contain byval parameters.
4361 // The same: eat all remained unallocated registers,
4362 // initialize stack frame.
4363
4364 MachineFunction &MF = DAG.getMachineFunction();
4365 MachineFrameInfo &MFI = MF.getFrameInfo();
4366 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
4367 unsigned RBegin, REnd;
4368 if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
4369 CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
4370 } else {
4371 unsigned RBeginIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
4372 RBegin = RBeginIdx == 4 ? (unsigned)ARM::R4 : GPRArgRegs[RBeginIdx];
4373 REnd = ARM::R4;
4374 }
4375
4376 if (REnd != RBegin)
4377 ArgOffset = -4 * (ARM::R4 - RBegin);
4378
4379 auto PtrVT = getPointerTy(DAG.getDataLayout());
4380 int FrameIndex = MFI.CreateFixedObject(ArgSize, ArgOffset, false);
4381 SDValue FIN = DAG.getFrameIndex(FrameIndex, PtrVT);
4382
4383 SmallVector<SDValue, 4> MemOps;
4384 const TargetRegisterClass *RC =
4385 AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
4386
4387 for (unsigned Reg = RBegin, i = 0; Reg < REnd; ++Reg, ++i) {
4388 Register VReg = MF.addLiveIn(Reg, RC);
4389 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
4390 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
4391 MachinePointerInfo(OrigArg, 4 * i));
4392 MemOps.push_back(Store);
4393 FIN = DAG.getNode(ISD::ADD, dl, PtrVT, FIN, DAG.getConstant(4, dl, PtrVT));
4394 }
4395
4396 if (!MemOps.empty())
4397 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4398 return FrameIndex;
4399}
4400
4401// Setup stack frame, the va_list pointer will start from.
4402void ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
4403 const SDLoc &dl, SDValue &Chain,
4404 unsigned ArgOffset,
4405 unsigned TotalArgRegsSaveSize,
4406 bool ForceMutable) const {
4407 MachineFunction &MF = DAG.getMachineFunction();
4408 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
4409
4410 // Try to store any remaining integer argument regs
4411 // to their spots on the stack so that they may be loaded by dereferencing
4412 // the result of va_next.
4413 // If there is no regs to be stored, just point address after last
4414 // argument passed via stack.
4415 int FrameIndex = StoreByValRegs(CCInfo, DAG, dl, Chain, nullptr,
4416 CCInfo.getInRegsParamsCount(),
4417 CCInfo.getNextStackOffset(),
4418 std::max(4U, TotalArgRegsSaveSize));
4419 AFI->setVarArgsFrameIndex(FrameIndex);
4420}
4421
4422bool ARMTargetLowering::splitValueIntoRegisterParts(
4423 SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
4424 unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const {
4425 EVT ValueVT = Val.getValueType();
4426 if ((ValueVT == MVT::f16 || ValueVT == MVT::bf16) && PartVT == MVT::f32) {
4427 unsigned ValueBits = ValueVT.getSizeInBits();
4428 unsigned PartBits = PartVT.getSizeInBits();
4429 Val = DAG.getNode(ISD::BITCAST, DL, MVT::getIntegerVT(ValueBits), Val);
4430 Val = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::getIntegerVT(PartBits), Val);
4431 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
4432 Parts[0] = Val;
4433 return true;
4434 }
4435 return false;
4436}
4437
4438SDValue ARMTargetLowering::joinRegisterPartsIntoValue(
4439 SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts,
4440 MVT PartVT, EVT ValueVT, std::optional<CallingConv::ID> CC) const {
4441 if ((ValueVT == MVT::f16 || ValueVT == MVT::bf16) && PartVT == MVT::f32) {
4442 unsigned ValueBits = ValueVT.getSizeInBits();
4443 unsigned PartBits = PartVT.getSizeInBits();
4444 SDValue Val = Parts[0];
4445
4446 Val = DAG.getNode(ISD::BITCAST, DL, MVT::getIntegerVT(PartBits), Val);
4447 Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::getIntegerVT(ValueBits), Val);
4448 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
4449 return Val;
4450 }
4451 return SDValue();
4452}
4453
4454SDValue ARMTargetLowering::LowerFormalArguments(
4455 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4456 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4457 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4458 MachineFunction &MF = DAG.getMachineFunction();
4459 MachineFrameInfo &MFI = MF.getFrameInfo();
4460
4461 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
4462
4463 // Assign locations to all of the incoming arguments.
4464 SmallVector<CCValAssign, 16> ArgLocs;
4465 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
4466 *DAG.getContext());
4467 CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg));
4468
4469 SmallVector<SDValue, 16> ArgValues;
4470 SDValue ArgValue;
4471 Function::const_arg_iterator CurOrigArg = MF.getFunction().arg_begin();
4472 unsigned CurArgIdx = 0;
4473
4474 // Initially ArgRegsSaveSize is zero.
4475 // Then we increase this value each time we meet byval parameter.
4476 // We also increase this value in case of varargs function.
4477 AFI->setArgRegsSaveSize(0);
4478
4479 // Calculate the amount of stack space that we need to allocate to store
4480 // byval and variadic arguments that are passed in registers.
4481 // We need to know this before we allocate the first byval or variadic
4482 // argument, as they will be allocated a stack slot below the CFA (Canonical
4483 // Frame Address, the stack pointer at entry to the function).
4484 unsigned ArgRegBegin = ARM::R4;
4485 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
4486 if (CCInfo.getInRegsParamsProcessed() >= CCInfo.getInRegsParamsCount())
4487 break;
4488
4489 CCValAssign &VA = ArgLocs[i];
4490 unsigned Index = VA.getValNo();
4491 ISD::ArgFlagsTy Flags = Ins[Index].Flags;
4492 if (!Flags.isByVal())
4493 continue;
4494
4495 assert(VA.isMemLoc() && "unexpected byval pointer in reg")(static_cast <bool> (VA.isMemLoc() && "unexpected byval pointer in reg"
) ? void (0) : __assert_fail ("VA.isMemLoc() && \"unexpected byval pointer in reg\""
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 4495, __extension__
__PRETTY_FUNCTION__))
;
4496 unsigned RBegin, REnd;
4497 CCInfo.getInRegsParamInfo(CCInfo.getInRegsParamsProcessed(), RBegin, REnd);
4498 ArgRegBegin = std::min(ArgRegBegin, RBegin);
4499
4500 CCInfo.nextInRegsParam();
4501 }
4502 CCInfo.rewindByValRegsInfo();
4503
4504 int lastInsIndex = -1;
4505 if (isVarArg && MFI.hasVAStart()) {
4506 unsigned RegIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
4507 if (RegIdx != std::size(GPRArgRegs))
4508 ArgRegBegin = std::min(ArgRegBegin, (unsigned)GPRArgRegs[RegIdx]);
4509 }
4510
4511 unsigned TotalArgRegsSaveSize = 4 * (ARM::R4 - ArgRegBegin);
4512 AFI->setArgRegsSaveSize(TotalArgRegsSaveSize);
4513 auto PtrVT = getPointerTy(DAG.getDataLayout());
4514
4515 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
4516 CCValAssign &VA = ArgLocs[i];
4517 if (Ins[VA.getValNo()].isOrigArg()) {
4518 std::advance(CurOrigArg,
4519 Ins[VA.getValNo()].getOrigArgIndex() - CurArgIdx);
4520 CurArgIdx = Ins[VA.getValNo()].getOrigArgIndex();
4521 }
4522 // Arguments stored in registers.
4523 if (VA.isRegLoc()) {
4524 EVT RegVT = VA.getLocVT();
4525
4526 if (VA.needsCustom() && VA.getLocVT() == MVT::v2f64) {
4527 // f64 and vector types are split up into multiple registers or
4528 // combinations of registers and stack slots.
4529 SDValue ArgValue1 =
4530 GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
4531 VA = ArgLocs[++i]; // skip ahead to next loc
4532 SDValue ArgValue2;
4533 if (VA.isMemLoc()) {
4534 int FI = MFI.CreateFixedObject(8, VA.getLocMemOffset(), true);
4535 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4536 ArgValue2 = DAG.getLoad(
4537 MVT::f64, dl, Chain, FIN,
4538 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI));
4539 } else {
4540 ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
4541 }
4542 ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
4543 ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, ArgValue,
4544 ArgValue1, DAG.getIntPtrConstant(0, dl));
4545 ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, ArgValue,
4546 ArgValue2, DAG.getIntPtrConstant(1, dl));
4547 } else if (VA.needsCustom() && VA.getLocVT() == MVT::f64) {
4548 ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
4549 } else {
4550 const TargetRegisterClass *RC;
4551
4552 if (RegVT == MVT::f16 || RegVT == MVT::bf16)
4553 RC = &ARM::HPRRegClass;
4554 else if (RegVT == MVT::f32)
4555 RC = &ARM::SPRRegClass;
4556 else if (RegVT == MVT::f64 || RegVT == MVT::v4f16 ||
4557 RegVT == MVT::v4bf16)
4558 RC = &ARM::DPRRegClass;
4559 else if (RegVT == MVT::v2f64 || RegVT == MVT::v8f16 ||
4560 RegVT == MVT::v8bf16)
4561 RC = &ARM::QPRRegClass;
4562 else if (RegVT == MVT::i32)
4563 RC = AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
4564 : &ARM::GPRRegClass;
4565 else
4566 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering")::llvm::llvm_unreachable_internal("RegVT not supported by FORMAL_ARGUMENTS Lowering"
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 4566)
;
4567
4568 // Transform the arguments in physical registers into virtual ones.
4569 Register Reg = MF.addLiveIn(VA.getLocReg(), RC);
4570 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
4571
4572 // If this value is passed in r0 and has the returned attribute (e.g.
4573 // C++ 'structors), record this fact for later use.
4574 if (VA.getLocReg() == ARM::R0 && Ins[VA.getValNo()].Flags.isReturned()) {
4575 AFI->setPreservesR0();
4576 }
4577 }
4578
4579 // If this is an 8 or 16-bit value, it is really passed promoted
4580 // to 32 bits. Insert an assert[sz]ext to capture this, then
4581 // truncate to the right size.
4582 switch (VA.getLocInfo()) {
4583 default: llvm_unreachable("Unknown loc info!")::llvm::llvm_unreachable_internal("Unknown loc info!", "llvm/lib/Target/ARM/ARMISelLowering.cpp"
, 4583)
;
4584 case CCValAssign::Full: break;
4585 case CCValAssign::BCvt:
4586 ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
4587 break;
4588 case CCValAssign::SExt:
4589 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
4590 DAG.getValueType(VA.getValVT()));
4591 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
4592 break;
4593 case CCValAssign::ZExt:
4594 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
4595 DAG.getValueType(VA.getValVT()));
4596 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
4597 break;
4598 }
4599
4600 // f16 arguments have their size extended to 4 bytes and passed as if they
4601 // had been copied to the LSBs of a 32-bit register.
4602 // For that, it's passed extended to i32 (soft ABI) or to f32 (hard ABI)
4603 if (VA.needsCustom() &&
4604 (VA.getValVT() == MVT::f16 || VA.getValVT() == MVT::bf16))
4605 ArgValue = MoveToHPR(dl, DAG, VA.getLocVT(), VA.getValVT(), ArgValue);
4606
4607 InVals.push_back(ArgValue);
4608 } else { // VA.isRegLoc()
4609 // Only arguments passed on the stack should make it here.
4610 assert(VA.isMemLoc())(static_cast <bool> (VA.isMemLoc()) ? void (0) : __assert_fail
("VA.isMemLoc()", "llvm/lib/Target/ARM/ARMISelLowering.cpp",
4610, __extension__ __PRETTY_FUNCTION__))
;
4611 assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered")(static_cast <bool> (VA.getValVT() != MVT::i64 &&
"i64 should already be lowered") ? void (0) : __assert_fail (
"VA.getValVT() != MVT::i64 && \"i64 should already be lowered\""
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 4611, __extension__
__PRETTY_FUNCTION__))
;
4612
4613 int index = VA.getValNo();
4614
4615 // Some Ins[] entries become multiple ArgLoc[] entries.
4616 // Process them only once.
4617 if (index != lastInsIndex)
4618 {
4619 ISD::ArgFlagsTy Flags = Ins[index].Flags;
4620 // FIXME: For now, all byval parameter objects are marked mutable.
4621 // This can be changed with more analysis.
4622 // In case of tail call optimization mark all arguments mutable.
4623 // Since they could be overwritten by lowering of arguments in case of
4624 // a tail call.
4625 if (Flags.isByVal()) {
4626 assert(Ins[index].isOrigArg() &&(static_cast <bool> (Ins[index].isOrigArg() && "Byval arguments cannot be implicit"
) ? void (0) : __assert_fail ("Ins[index].isOrigArg() && \"Byval arguments cannot be implicit\""
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 4627, __extension__
__PRETTY_FUNCTION__))
4627 "Byval arguments cannot be implicit")(static_cast <bool> (Ins[index].isOrigArg() && "Byval arguments cannot be implicit"
) ? void (0) : __assert_fail ("Ins[index].isOrigArg() && \"Byval arguments cannot be implicit\""
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 4627, __extension__
__PRETTY_FUNCTION__))
;
4628 unsigned CurByValIndex = CCInfo.getInRegsParamsProcessed();
4629
4630 int FrameIndex = StoreByValRegs(
4631 CCInfo, DAG, dl, Chain, &*CurOrigArg, CurByValIndex,
4632 VA.getLocMemOffset(), Flags.getByValSize());
4633 InVals.push_back(DAG.getFrameIndex(FrameIndex, PtrVT));
4634 CCInfo.nextInRegsParam();
4635 } else {
4636 unsigned FIOffset = VA.getLocMemOffset();
4637 int FI = MFI.CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
4638 FIOffset, true);
4639
4640 // Create load nodes to retrieve arguments from the stack.
4641 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4642 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
4643 MachinePointerInfo::getFixedStack(
4644 DAG.getMachineFunction(), FI)));
4645 }
4646 lastInsIndex = index;
4647 }
4648 }
4649 }
4650
4651 // varargs
4652 if (isVarArg && MFI.hasVAStart()) {
4653 VarArgStyleRegisters(CCInfo, DAG, dl, Chain, CCInfo.getNextStackOffset(),
4654 TotalArgRegsSaveSize);
4655 if (AFI->isCmseNSEntryFunction()) {
4656 DiagnosticInfoUnsupported Diag(
4657 DAG.getMachineFunction().getFunction(),
4658 "secure entry function must not be variadic", dl.getDebugLoc());
4659 DAG.getContext()->diagnose(Diag);
4660 }
4661 }
4662
4663 unsigned StackArgSize = CCInfo.getNextStackOffset();
4664 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
4665 if (canGuaranteeTCO(CallConv, TailCallOpt)) {
4666 // The only way to guarantee a tail call is if the callee restores its
4667 // argument area, but it must also keep the stack aligned when doing so.
4668 const DataLayout &DL = DAG.getDataLayout();
4669 StackArgSize = alignTo(StackArgSize, DL.getStackAlignment());
4670
4671 AFI->setArgumentStackToRestore(StackArgSize);
4672 }
4673 AFI->setArgumentStackSize(StackArgSize);
4674
4675 if (CCInfo.getNextStackOffset() > 0 && AFI->isCmseNSEntryFunction()) {
4676 DiagnosticInfoUnsupported Diag(
4677 DAG.getMachineFunction().getFunction(),
4678 "secure entry function requires arguments on stack", dl.getDebugLoc());
4679 DAG.getContext()->diagnose(Diag);
4680 }
4681
4682 return Chain;
4683}
4684
4685/// isFloatingPointZero - Return true if this is +0.0.
4686static bool isFloatingPointZero(SDValue Op) {
4687 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
4688 return CFP->getValueAPF().isPosZero();
4689 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
4690 // Maybe this has already been legalized into the constant pool?
4691 if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
4692 SDValue WrapperOp = Op.getOperand(1).getOperand(0);
4693 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
4694 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
4695 return CFP->getValueAPF().isPosZero();
4696 }
4697 } else if (Op->getOpcode() == ISD::BITCAST &&
4698 Op->getValueType(0) == MVT::f64) {
4699 // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
4700 // created by LowerConstantFP().
4701 SDValue BitcastOp = Op->getOperand(0);
4702 if (BitcastOp->getOpcode() == ARMISD::VMOVIMM &&
4703 isNullConstant(BitcastOp->getOperand(0)))
4704 return true;
4705 }
4706 return false;
4707}
4708
4709/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
4710/// the given operands.
4711SDValue ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
4712 SDValue &ARMcc, SelectionDAG &DAG,
4713 const SDLoc &dl) const {
4714 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
4715 unsigned C = RHSC->getZExtValue();
4716 if (!isLegalICmpImmediate((int32_t)C)) {
4717 // Constant does not fit, try adjusting it by one.
4718 switch (CC) {
4719 default: break;
4720 case ISD::SETLT:
4721 case ISD::SETGE:
4722 if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
4723 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
4724 RHS = DAG.getConstant(C - 1, dl, MVT::i32);
4725 }
4726 break;
4727 case ISD::SETULT:
4728 case ISD::SETUGE:
4729 if (C != 0 && isLegalICmpImmediate(C-1)) {
4730 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
4731 RHS = DAG.getConstant(C - 1, dl, MVT::i32);
4732 }
4733 break;
4734 case ISD::SETLE:
4735 case ISD::SETGT:
4736 if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
4737 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
4738 RHS = DAG.getConstant(C + 1, dl, MVT::i32);
4739 }
4740 break;
4741 case ISD::SETULE:
4742 case ISD::SETUGT:
4743 if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
4744 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4745 RHS = DAG.getConstant(C + 1, dl, MVT::i32);
4746 }
4747 break;
4748 }
4749 }
4750 } else if ((ARM_AM::getShiftOpcForNode(LHS.getOpcode()) != ARM_AM::no_shift) &&
4751 (ARM_AM::getShiftOpcForNode(RHS.getOpcode()) == ARM_AM::no_shift)) {
4752 // In ARM and Thumb-2, the compare instructions can shift their second
4753 // operand.
4754 CC = ISD::getSetCCSwappedOperands(CC);
4755 std::swap(LHS, RHS);
4756 }
4757
4758 // Thumb1 has very limited immediate modes, so turning an "and" into a
4759 // shift can save multiple instructions.
4760 //
4761 // If we have (x & C1), and C1 is an appropriate mask, we can transform it
4762 // into "((x << n) >> n)". But that isn't necessarily profitable on its
4763 // own. If it's the operand to an unsigned comparison with an immediate,
4764 // we can eliminate one of the shifts: we transform
4765 // "((x << n) >> n) == C2" to "(x << n) == (C2 << n)".
4766 //
4767 // We avoid transforming cases which aren't profitable due to encoding
4768 // details:
4769 //
4770 // 1. C2 fits into the immediate field of a cmp, and the transformed version
4771 // would not; in that case, we're essentially trading one immediate load for
4772 // another.
4773 // 2. C1 is 255 or 65535, so we can use uxtb or uxth.
4774 // 3. C2 is zero; we have other code for this special case.
4775 //
4776 // FIXME: Figure out profitability for Thumb2; we usually can't save an
4777 // instruction, since the AND is always one instruction anyway, but we could
4778 // use narrow instructions in some cases.
4779 if (Subtarget->isThumb1Only() && LHS->getOpcode() == ISD::AND &&
4780 LHS->hasOneUse() && isa<ConstantSDNode>(LHS.getOperand(1)) &&
4781 LHS.getValueType() == MVT::i32 && isa<ConstantSDNode>(RHS) &&
4782 !isSignedIntSetCC(CC)) {
4783 unsigned Mask = cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue();
4784 auto *RHSC = cast<ConstantSDNode>(RHS.getNode());
4785 uint64_t RHSV = RHSC->getZExtValue();
4786 if (isMask_32(Mask) && (RHSV & ~Mask) == 0 && Mask != 255 && Mask != 65535) {
4787 unsigned ShiftBits = llvm::countl_zero(Mask);
4788 if (RHSV && (RHSV > 255 || (RHSV << ShiftBits) <= 255)) {
4789 SDValue ShiftAmt = DAG.getConstant(ShiftBits, dl, MVT::i32);
4790 LHS = DAG.getNode(ISD::SHL, dl, MVT::i32, LHS.getOperand(0), ShiftAmt);
4791 RHS = DAG.getConstant(RHSV << ShiftBits, dl, MVT::i32);
4792 }
4793 }
4794 }
4795
4796 // The specific comparison "(x<<c) > 0x80000000U" can be optimized to a
4797 // single "lsls x, c+1". The shift sets the "C" and "Z" flags the same
4798 // way a cmp would.
4799 // FIXME: Add support for ARM/Thumb2; this would need isel patterns, and
4800 // some tweaks to the heuristics for the previous and->shift transform.
4801 // FIXME: Optimize cases where the LHS isn't a shift.
4802 if (Subtarget->isThumb1Only() && LHS->getOpcode() == ISD::SHL &&
4803 isa<ConstantSDNode>(RHS) &&
4804 cast<ConstantSDNode>(RHS)->getZExtValue() == 0x80000000U &&
4805 CC == ISD::SETUGT && isa<ConstantSDNode>(LHS.getOperand(1)) &&
4806 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() < 31) {
4807 unsigned ShiftAmt =
4808 cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue() + 1;
4809 SDValue Shift = DAG.getNode(ARMISD::LSLS, dl,
4810 DAG.getVTList(MVT::i32, MVT::i32),
4811 LHS.getOperand(0),
4812 DAG.getConstant(ShiftAmt, dl, MVT::i32));
4813 SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, ARM::CPSR,
4814 Shift.getValue(1), SDValue());
4815 ARMcc = DAG.getConstant(ARMCC::HI, dl, MVT::i32);
4816 return Chain.getValue(1);
4817 }
4818
4819 ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
4820
4821 // If the RHS is a constant zero then the V (overflow) flag will never be
4822 // set. This can allow us to simplify GE to PL or LT to MI, which can be
4823 // simpler for other passes (like the peephole optimiser) to deal with.
4824 if (isNullConstant(RHS)) {
4825 switch (CondCode) {
4826 default: break;
4827 case ARMCC::GE:
4828 CondCode = ARMCC::PL;
4829 break;
4830 case ARMCC::LT:
4831 CondCode = ARMCC::MI;
4832 break;
4833 }
4834 }
4835
4836 ARMISD::NodeType CompareType;
4837 switch (CondCode) {
4838 default:
4839 CompareType = ARMISD::CMP;
4840 break;
4841 case ARMCC::EQ:
4842 case ARMCC::NE:
4843 // Uses only Z Flag
4844 CompareType = ARMISD::CMPZ;
4845 break;
4846 }
4847 ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
4848 return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
4849}
4850
4851/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
4852SDValue ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS,
4853 SelectionDAG &DAG, const SDLoc &dl,
4854 bool Signaling) const {
4855 assert(Subtarget->hasFP64() || RHS.getValueType() != MVT::f64)(static_cast <bool> (Subtarget->hasFP64() || RHS.getValueType
() != MVT::f64) ? void (0) : __assert_fail ("Subtarget->hasFP64() || RHS.getValueType() != MVT::f64"
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 4855, __extension__
__PRETTY_FUNCTION__))
;
4856 SDValue Cmp;
4857 if (!isFloatingPointZero(RHS))
4858 Cmp = DAG.getNode(Signaling ? ARMISD::CMPFPE : ARMISD::CMPFP,
4859 dl, MVT::Glue, LHS, RHS);
4860 else
4861 Cmp = DAG.getNode(Signaling ? ARMISD::CMPFPEw0 : ARMISD::CMPFPw0,
4862 dl, MVT::Glue, LHS);
4863 return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
4864}
4865
4866/// duplicateCmp - Glue values can have only one use, so this function
4867/// duplicates a comparison node.
4868SDValue
4869ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
4870 unsigned Opc = Cmp.getOpcode();
4871 SDLoc DL(Cmp);
4872 if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
4873 return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
4874
4875 assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation")(static_cast <bool> (Opc == ARMISD::FMSTAT && "unexpected comparison operation"
) ? void (0) : __assert_fail ("Opc == ARMISD::FMSTAT && \"unexpected comparison operation\""
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 4875, __extension__
__PRETTY_FUNCTION__))
;
4876 Cmp = Cmp.getOperand(0);
4877 Opc = Cmp.getOpcode();
4878 if (Opc == ARMISD::CMPFP)
4879 Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
4880 else {
4881 assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT")(static_cast <bool> (Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT"
) ? void (0) : __assert_fail ("Opc == ARMISD::CMPFPw0 && \"unexpected operand of FMSTAT\""
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 4881, __extension__
__PRETTY_FUNCTION__))
;
4882 Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
4883 }
4884 return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
4885}
4886
4887// This function returns three things: the arithmetic computation itself
4888// (Value), a comparison (OverflowCmp), and a condition code (ARMcc). The
4889// comparison and the condition code define the case in which the arithmetic
4890// computation *does not* overflow.
4891std::pair<SDValue, SDValue>
4892ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG,
4893 SDValue &ARMcc) const {
4894 assert(Op.getValueType() == MVT::i32 && "Unsupported value type")(static_cast <bool> (Op.getValueType() == MVT::i32 &&
"Unsupported value type") ? void (0) : __assert_fail ("Op.getValueType() == MVT::i32 && \"Unsupported value type\""
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 4894, __extension__
__PRETTY_FUNCTION__))
;
4895
4896 SDValue Value, OverflowCmp;
4897 SDValue LHS = Op.getOperand(0);
4898 SDValue RHS = Op.getOperand(1);
4899 SDLoc dl(Op);
4900
4901 // FIXME: We are currently always generating CMPs because we don't support
4902 // generating CMN through the backend. This is not as good as the natural
4903 // CMP case because it causes a register dependency and cannot be folded
4904 // later.
4905
4906 switch (Op.getOpcode()) {
4907 default:
4908 llvm_unreachable("Unknown overflow instruction!")::llvm::llvm_unreachable_internal("Unknown overflow instruction!"
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 4908)
;
4909 case ISD::SADDO:
4910 ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
4911 Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS);
4912 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
4913 break;
4914 case ISD::UADDO:
4915 ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
4916 // We use ADDC here to correspond to its use in LowerUnsignedALUO.
4917 // We do not use it in the USUBO case as Value may not be used.
4918 Value = DAG.getNode(ARMISD::ADDC, dl,
4919 DAG.getVTList(Op.getValueType(), MVT::i32), LHS, RHS)
4920 .getValue(0);
4921 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
4922 break;
4923 case ISD::SSUBO:
4924 ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
4925 Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
4926 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
4927 break;
4928 case ISD::USUBO:
4929 ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
4930 Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
4931 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
4932 break;
4933 case ISD::UMULO:
4934 // We generate a UMUL_LOHI and then check if the high word is 0.
4935 ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
4936 Value = DAG.getNode(ISD::UMUL_LOHI, dl,
4937 DAG.getVTList(Op.getValueType(), Op.getValueType()),
4938 LHS, RHS);
4939 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
4940 DAG.getConstant(0, dl, MVT::i32));
4941 Value = Value.getValue(0); // We only want the low 32 bits for the result.
4942 break;
4943 case ISD::SMULO:
4944 // We generate a SMUL_LOHI and then check if all the bits of the high word
4945 // are the same as the sign bit of the low word.
4946 ARMcc = DAG.getConstant(ARMCC::EQ, dl, MVT::i32);
4947 Value = DAG.getNode(ISD::SMUL_LOHI, dl,
4948 DAG.getVTList(Op.getValueType(), Op.getValueType()),
4949 LHS, RHS);
4950 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value.getValue(1),
4951 DAG.getNode(ISD::SRA, dl, Op.getValueType(),
4952 Value.getValue(0),
4953 DAG.getConstant(31, dl, MVT::i32)));
4954 Value = Value.getValue(0); // We only want the low 32 bits for the result.
4955 break;
4956 } // switch (...)
4957
4958 return std::make_pair(Value, OverflowCmp);
4959}
4960
4961SDValue
4962ARMTargetLowering::LowerSignedALUO(SDValue Op, SelectionDAG &DAG) const {
4963 // Let legalize expand this if it isn't a legal type yet.
4964 if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
4965 return SDValue();
4966
4967 SDValue Value, OverflowCmp;
4968 SDValue ARMcc;
4969 std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc);
4970 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
4971 SDLoc dl(Op);
4972 // We use 0 and 1 as false and true values.
4973 SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
4974 SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
4975 EVT VT = Op.getValueType();
4976
4977 SDValue Overflow = DAG.getNode(ARMISD::CMOV, dl, VT, TVal, FVal,
4978 ARMcc, CCR, OverflowCmp);
4979
4980 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
4981 return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
4982}
4983
4984static SDValue ConvertBooleanCarryToCarryFlag(SDValue BoolCarry,
4985 SelectionDAG &DAG) {
4986 SDLoc DL(BoolCarry);
4987 EVT CarryVT = BoolCarry.getValueType();
4988
4989 // This converts the boolean value carry into the carry flag by doing
4990 // ARMISD::SUBC Carry, 1
4991 SDValue Carry = DAG.getNode(ARMISD::SUBC, DL,
4992 DAG.getVTList(CarryVT, MVT::i32),
4993 BoolCarry, DAG.getConstant(1, DL, CarryVT));
4994 return Carry.getValue(1);
4995}
4996
4997static SDValue ConvertCarryFlagToBooleanCarry(SDValue Flags, EVT VT,
4998 SelectionDAG &DAG) {
4999 SDLoc DL(Flags);
5000
5001 // Now convert the carry flag into a boolean carry. We do this
5002 // using ARMISD:ADDE 0, 0, Carry
5003 return DAG.getNode(ARMISD::ADDE, DL, DAG.getVTList(VT, MVT::i32),
5004 DAG.getConstant(0, DL, MVT::i32),
5005 DAG.getConstant(0, DL, MVT::i32), Flags);
5006}
5007
5008SDValue ARMTargetLowering::LowerUnsignedALUO(SDValue Op,
5009 SelectionDAG &DAG) const {
5010 // Let legalize expand this if it isn't a legal type yet.
5011 if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
5012 return SDValue();
5013
5014 SDValue LHS = Op.getOperand(0);
5015 SDValue RHS = Op.getOperand(1);
5016 SDLoc dl(Op);
5017
5018 EVT VT = Op.getValueType();
5019 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
5020 SDValue Value;
5021 SDValue Overflow;
5022 switch (Op.getOpcode()) {
5023 default:
5024 llvm_unreachable("Unknown overflow instruction!")::llvm::llvm_unreachable_internal("Unknown overflow instruction!"
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 5024)
;
5025 case ISD::UADDO:
5026 Value = DAG.getNode(ARMISD::ADDC, dl, VTs, LHS, RHS);
5027 // Convert the carry flag into a boolean value.
5028 Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
5029 break;
5030 case ISD::USUBO: {
5031 Value = DAG.getNode(ARMISD::SUBC, dl, VTs, LHS, RHS);
5032 // Convert the carry flag into a boolean value.
5033 Overflow = ConvertCarryFlagToBooleanCarry(Value.getValue(1), VT, DAG);
5034 // ARMISD::SUBC returns 0 when we have to borrow, so make it an overflow
5035 // value. So compute 1 - C.
5036 Overflow = DAG.getNode(ISD::SUB, dl, MVT::i32,
5037 DAG.getConstant(1, dl, MVT::i32), Overflow);
5038 break;
5039 }
5040 }
5041
5042 return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
5043}
5044
5045static SDValue LowerADDSUBSAT(SDValue Op, SelectionDAG &DAG,
5046 const ARMSubtarget *Subtarget) {
5047 EVT VT = Op.getValueType();
5048 if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
3
Assuming the condition is false
4
Assuming the condition is false
5
Taking false branch
5049 return SDValue();
5050 if (!VT.isSimple())
6
Taking false branch
5051 return SDValue();
5052
5053 unsigned NewOpcode;
7
'NewOpcode' declared without an initial value
5054 switch (VT.getSimpleVT().SimpleTy) {
8
Control jumps to 'case i8:' at line 5057
5055 default:
5056 return SDValue();
5057 case MVT::i8:
5058 switch (Op->getOpcode()) {
9
'Default' branch taken. Execution continues on line 5072
5059 case ISD::UADDSAT:
5060 NewOpcode = ARMISD::UQADD8b;
5061 break;
5062 case ISD::SADDSAT:
5063 NewOpcode = ARMISD::QADD8b;
5064 break;
5065 case ISD::USUBSAT:
5066 NewOpcode = ARMISD::UQSUB8b;
5067 break;
5068 case ISD::SSUBSAT:
5069 NewOpcode = ARMISD::QSUB8b;
5070 break;
5071 }
5072 break;
10
Execution continues on line 5091
5073 case MVT::i16:
5074 switch (Op->getOpcode()) {
5075 case ISD::UADDSAT:
5076 NewOpcode = ARMISD::UQADD16b;
5077 break;
5078 case ISD::SADDSAT:
5079 NewOpcode = ARMISD::QADD16b;
5080 break;
5081 case ISD::USUBSAT:
5082 NewOpcode = ARMISD::UQSUB16b;
5083 break;
5084 case ISD::SSUBSAT:
5085 NewOpcode = ARMISD::QSUB16b;
5086 break;
5087 }
5088 break;
5089 }
5090
5091 SDLoc dl(Op);
5092 SDValue Add =
5093 DAG.getNode(NewOpcode, dl, MVT::i32,
11
1st function call argument is an uninitialized value
5094 DAG.getSExtOrTrunc(Op->getOperand(0), dl, MVT::i32),
5095 DAG.getSExtOrTrunc(Op->getOperand(1), dl, MVT::i32));
5096 return DAG.getNode(ISD::TRUNCATE, dl, VT, Add);
5097}
5098
5099SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
5100 SDValue Cond = Op.getOperand(0);
5101 SDValue SelectTrue = Op.getOperand(1);
5102 SDValue SelectFalse = Op.getOperand(2);
5103 SDLoc dl(Op);
5104 unsigned Opc = Cond.getOpcode();
5105
5106 if (Cond.getResNo() == 1 &&
5107 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
5108 Opc == ISD::USUBO)) {
5109 if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
5110 return SDValue();
5111
5112 SDValue Value, OverflowCmp;
5113 SDValue ARMcc;
5114 std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
5115 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5116 EVT VT = Op.getValueType();
5117
5118 return getCMOV(dl, VT, SelectTrue, SelectFalse, ARMcc, CCR,
5119 OverflowCmp, DAG);
5120 }
5121
5122 // Convert:
5123 //
5124 // (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
5125 // (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
5126 //
5127 if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
5128 const ConstantSDNode *CMOVTrue =
5129 dyn_cast<ConstantSDNode>(Cond.getOperand(0));
5130 const ConstantSDNode *CMOVFalse =
5131 dyn_cast<ConstantSDNode>(Cond.getOperand(1));
5132
5133 if (CMOVTrue && CMOVFalse) {
5134 unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
5135 unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
5136
5137 SDValue True;
5138 SDValue False;
5139 if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
5140 True = SelectTrue;
5141 False = SelectFalse;
5142 } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
5143 True = SelectFalse;
5144 False = SelectTrue;
5145 }
5146
5147 if (True.getNode() && False.getNode()) {
5148 EVT VT = Op.getValueType();
5149 SDValue ARMcc = Cond.getOperand(2);
5150 SDValue CCR = Cond.getOperand(3);
5151 SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
5152 assert(True.getValueType() == VT)(static_cast <bool> (True.getValueType() == VT) ? void (
0) : __assert_fail ("True.getValueType() == VT", "llvm/lib/Target/ARM/ARMISelLowering.cpp"
, 5152, __extension__ __PRETTY_FUNCTION__))
;
5153 return getCMOV(dl, VT, True, False, ARMcc, CCR, Cmp, DAG);
5154 }
5155 }
5156 }
5157
5158 // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
5159 // undefined bits before doing a full-word comparison with zero.
5160 Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
5161 DAG.getConstant(1, dl, Cond.getValueType()));
5162
5163 return DAG.getSelectCC(dl, Cond,
5164 DAG.getConstant(0, dl, Cond.getValueType()),
5165 SelectTrue, SelectFalse, ISD::SETNE);
5166}
5167
5168static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
5169 bool &swpCmpOps, bool &swpVselOps) {
5170 // Start by selecting the GE condition code for opcodes that return true for
5171 // 'equality'
5172 if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE ||
5173 CC == ISD::SETULE || CC == ISD::SETGE || CC == ISD::SETLE)
5174 CondCode = ARMCC::GE;
5175
5176 // and GT for opcodes that return false for 'equality'.
5177 else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT ||
5178 CC == ISD::SETULT || CC == ISD::SETGT || CC == ISD::SETLT)
5179 CondCode = ARMCC::GT;
5180
5181 // Since we are constrained to GE/GT, if the opcode contains 'less', we need
5182 // to swap the compare operands.
5183 if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT ||
5184 CC == ISD::SETULT || CC == ISD::SETLE || CC == ISD::SETLT)
5185 swpCmpOps = true;
5186
5187 // Both GT and GE are ordered comparisons, and return false for 'unordered'.
5188 // If we have an unordered opcode, we need to swap the operands to the VSEL
5189 // instruction (effectively negating the condition).
5190 //
5191 // This also has the effect of swapping which one of 'less' or 'greater'
5192 // returns true, so we also swap the compare operands. It also switches
5193 // whether we return true for 'equality', so we compensate by picking the
5194 // opposite condition code to our original choice.
5195 if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE ||
5196 CC == ISD::SETUGT) {
5197 swpCmpOps = !swpCmpOps;
5198 swpVselOps = !swpVselOps;
5199 CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT;
5200 }
5201
5202 // 'ordered' is 'anything but unordered', so use the VS condition code and
5203 // swap the VSEL operands.
5204 if (CC == ISD::SETO) {
5205 CondCode = ARMCC::VS;
5206 swpVselOps = true;
5207 }
5208
5209 // 'unordered or not equal' is 'anything but equal', so use the EQ condition
5210 // code and swap the VSEL operands. Also do this if we don't care about the
5211 // unordered case.
5212 if (CC == ISD::SETUNE || CC == ISD::SETNE) {
5213 CondCode = ARMCC::EQ;
5214 swpVselOps = true;
5215 }
5216}
5217
5218SDValue ARMTargetLowering::getCMOV(const SDLoc &dl, EVT VT, SDValue FalseVal,
5219 SDValue TrueVal, SDValue ARMcc, SDValue CCR,
5220 SDValue Cmp, SelectionDAG &DAG) const {
5221 if (!Subtarget->hasFP64() && VT == MVT::f64) {
5222 FalseVal = DAG.getNode(ARMISD::VMOVRRD, dl,
5223 DAG.getVTList(MVT::i32, MVT::i32), FalseVal);
5224 TrueVal = DAG.getNode(ARMISD::VMOVRRD, dl,
5225 DAG.getVTList(MVT::i32, MVT::i32), TrueVal);
5226
5227 SDValue TrueLow = TrueVal.getValue(0);
5228 SDValue TrueHigh = TrueVal.getValue(1);
5229 SDValue FalseLow = FalseVal.getValue(0);
5230 SDValue FalseHigh = FalseVal.getValue(1);
5231
5232 SDValue Low = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseLow, TrueLow,
5233 ARMcc, CCR, Cmp);
5234 SDValue High = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseHigh, TrueHigh,
5235 ARMcc, CCR, duplicateCmp(Cmp, DAG));
5236
5237 return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Low, High);
5238 } else {
5239 return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,
5240 Cmp);
5241 }
5242}
5243
5244static bool isGTorGE(ISD::CondCode CC) {
5245 return CC == ISD::SETGT || CC == ISD::SETGE;
5246}
5247
5248static bool isLTorLE(ISD::CondCode CC) {
5249 return CC == ISD::SETLT || CC == ISD::SETLE;
5250}
5251
5252// See if a conditional (LHS CC RHS ? TrueVal : FalseVal) is lower-saturating.
5253// All of these conditions (and their <= and >= counterparts) will do:
5254// x < k ? k : x
5255// x > k ? x : k
5256// k < x ? x : k
5257// k > x ? k : x
5258static bool isLowerSaturate(const SDValue LHS, const SDValue RHS,
5259 const SDValue TrueVal, const SDValue FalseVal,
5260 const ISD::CondCode CC, const SDValue K) {
5261 return (isGTorGE(CC) &&
5262 ((K == LHS && K == TrueVal) || (K == RHS && K == FalseVal))) ||
5263 (isLTorLE(CC) &&
5264 ((K == RHS && K == TrueVal) || (K == LHS && K == FalseVal)));
5265}
5266
5267// Check if two chained conditionals could be converted into SSAT or USAT.
5268//
5269// SSAT can replace a set of two conditional selectors that bound a number to an
5270// interval of type [k, ~k] when k + 1 is a power of 2. Here are some examples:
5271//
5272// x < -k ? -k : (x > k ? k : x)
5273// x < -k ? -k : (x < k ? x : k)
5274// x > -k ? (x > k ? k : x) : -k
5275// x < k ? (x < -k ? -k : x) : k
5276// etc.
5277//
5278// LLVM canonicalizes these to either a min(max()) or a max(min())
5279// pattern. This function tries to match one of these and will return a SSAT
5280// node if successful.
5281//
5282// USAT works similarily to SSAT but bounds on the interval [0, k] where k + 1
5283// is a power of 2.
5284static SDValue LowerSaturatingConditional(SDValue Op, SelectionDAG &DAG) {
5285 EVT VT = Op.getValueType();
5286 SDValue V1 = Op.getOperand(0);
5287 SDValue K1 = Op.getOperand(1);
5288 SDValue TrueVal1 = Op.getOperand(2);
5289 SDValue FalseVal1 = Op.getOperand(3);
5290 ISD::CondCode CC1 = cast<CondCodeSDNode>(Op.getOperand(4))->get();
5291
5292 const SDValue Op2 = isa<ConstantSDNode>(TrueVal1) ? FalseVal1 : TrueVal1;
5293 if (Op2.getOpcode() != ISD::SELECT_CC)
5294 return SDValue();
5295
5296 SDValue V2 = Op2.getOperand(0);
5297 SDValue K2 = Op2.getOperand(1);
5298 SDValue TrueVal2 = Op2.getOperand(2);
5299 SDValue FalseVal2 = Op2.getOperand(3);
5300 ISD::CondCode CC2 = cast<CondCodeSDNode>(Op2.getOperand(4))->get();
5301
5302 SDValue V1Tmp = V1;
5303 SDValue V2Tmp = V2;
5304
5305 // Check that the registers and the constants match a max(min()) or min(max())
5306 // pattern
5307 if (V1Tmp != TrueVal1 || V2Tmp != TrueVal2 || K1 != FalseVal1 ||
5308 K2 != FalseVal2 ||
5309 !((isGTorGE(CC1) && isLTorLE(CC2)) || (isLTorLE(CC1) && isGTorGE(CC2))))
5310 return SDValue();
5311
5312 // Check that the constant in the lower-bound check is
5313 // the opposite of the constant in the upper-bound check
5314 // in 1's complement.
5315 if (!isa<ConstantSDNode>(K1) || !isa<ConstantSDNode>(K2))
5316 return SDValue();
5317
5318 int64_t Val1 = cast<ConstantSDNode>(K1)->getSExtValue();
5319 int64_t Val2 = cast<ConstantSDNode>(K2)->getSExtValue();
5320 int64_t PosVal = std::max(Val1, Val2);
5321 int64_t NegVal = std::min(Val1, Val2);
5322
5323 if (!((Val1 > Val2 && isLTorLE(CC1)) || (Val1 < Val2 && isLTorLE(CC2))) ||
5324 !isPowerOf2_64(PosVal + 1))
5325 return SDValue();
5326
5327 // Handle the difference between USAT (unsigned) and SSAT (signed)
5328 // saturation
5329 // At this point, PosVal is guaranteed to be positive
5330 uint64_t K = PosVal;
5331 SDLoc dl(Op);
5332 if (Val1 == ~Val2)
5333 return DAG.getNode(ARMISD::SSAT, dl, VT, V2Tmp,
5334 DAG.getConstant(llvm::countr_one(K), dl, VT));
5335 if (NegVal == 0)
5336 return DAG.getNode(ARMISD::USAT, dl, VT, V2Tmp,
5337 DAG.getConstant(llvm::countr_one(K), dl, VT));
5338
5339 return SDValue();
5340}
5341
5342// Check if a condition of the type x < k ? k : x can be converted into a
5343// bit operation instead of conditional moves.
5344// Currently this is allowed given:
5345// - The conditions and values match up
5346// - k is 0 or -1 (all ones)
5347// This function will not check the last condition, thats up to the caller
5348// It returns true if the transformation can be made, and in such case
5349// returns x in V, and k in SatK.
5350static bool isLowerSaturatingConditional(const SDValue &Op, SDValue &V,
5351 SDValue &SatK)
5352{
5353 SDValue LHS = Op.getOperand(0);
5354 SDValue RHS = Op.getOperand(1);
5355 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
5356 SDValue TrueVal = Op.getOperand(2);
5357 SDValue FalseVal = Op.getOperand(3);
5358
5359 SDValue *K = isa<ConstantSDNode>(LHS) ? &LHS : isa<ConstantSDNode>(RHS)
5360 ? &RHS
5361 : nullptr;
5362
5363 // No constant operation in comparison, early out
5364 if (!K)
5365 return false;
5366
5367 SDValue KTmp = isa<ConstantSDNode>(TrueVal) ? TrueVal : FalseVal;
5368 V = (KTmp == TrueVal) ? FalseVal : TrueVal;
5369 SDValue VTmp = (K && *K == LHS) ? RHS : LHS;
5370
5371 // If the constant on left and right side, or variable on left and right,
5372 // does not match, early out
5373 if (*K != KTmp || V != VTmp)
5374 return false;
5375
5376 if (isLowerSaturate(LHS, RHS, TrueVal, FalseVal, CC, *K)) {
5377 SatK = *K;
5378 return true;
5379 }
5380
5381 return false;
5382}
5383
5384bool ARMTargetLowering::isUnsupportedFloatingType(EVT VT) const {
5385 if (VT == MVT::f32)
5386 return !Subtarget->hasVFP2Base();
5387 if (VT == MVT::f64)
5388 return !Subtarget->hasFP64();
5389 if (VT == MVT::f16)
5390 return !Subtarget->hasFullFP16();
5391 return false;
5392}
5393
5394SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
5395 EVT VT = Op.getValueType();
5396 SDLoc dl(Op);
5397
5398 // Try to convert two saturating conditional selects into a single SSAT
5399 if ((!Subtarget->isThumb() && Subtarget->hasV6Ops()) || Subtarget->isThumb2())
5400 if (SDValue SatValue = LowerSaturatingConditional(Op, DAG))
5401 return SatValue;
5402
5403 // Try to convert expressions of the form x < k ? k : x (and similar forms)
5404 // into more efficient bit operations, which is possible when k is 0 or -1
5405 // On ARM and Thumb-2 which have flexible operand 2 this will result in
5406 // single instructions. On Thumb the shift and the bit operation will be two
5407 // instructions.
5408 // Only allow this transformation on full-width (32-bit) operations
5409 SDValue LowerSatConstant;
5410 SDValue SatValue;
5411 if (VT == MVT::i32 &&
5412 isLowerSaturatingConditional(Op, SatValue, LowerSatConstant)) {
5413 SDValue ShiftV = DAG.getNode(ISD::SRA, dl, VT, SatValue,
5414 DAG.getConstant(31, dl, VT));
5415 if (isNullConstant(LowerSatConstant)) {
5416 SDValue NotShiftV = DAG.getNode(ISD::XOR, dl, VT, ShiftV,
5417 DAG.getAllOnesConstant(dl, VT));
5418 return DAG.getNode(ISD::AND, dl, VT, SatValue, NotShiftV);
5419 } else if (isAllOnesConstant(LowerSatConstant))
5420 return DAG.getNode(ISD::OR, dl, VT, SatValue, ShiftV);
5421 }
5422
5423 SDValue LHS = Op.getOperand(0);
5424 SDValue RHS = Op.getOperand(1);
5425 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
5426 SDValue TrueVal = Op.getOperand(2);
5427 SDValue FalseVal = Op.getOperand(3);
5428 ConstantSDNode *CFVal = dyn_cast<ConstantSDNode>(FalseVal);
5429 ConstantSDNode *CTVal = dyn_cast<ConstantSDNode>(TrueVal);
5430
5431 if (Subtarget->hasV8_1MMainlineOps() && CFVal && CTVal &&
5432 LHS.getValueType() == MVT::i32 && RHS.getValueType() == MVT::i32) {
5433 unsigned TVal = CTVal->getZExtValue();
5434 unsigned FVal = CFVal->getZExtValue();
5435 unsigned Opcode = 0;
5436
5437 if (TVal == ~FVal) {
5438 Opcode = ARMISD::CSINV;
5439 } else if (TVal == ~FVal + 1) {
5440 Opcode = ARMISD::CSNEG;
5441 } else if (TVal + 1 == FVal) {
5442 Opcode = ARMISD::CSINC;
5443 } else if (TVal == FVal + 1) {
5444 Opcode = ARMISD::CSINC;
5445 std::swap(TrueVal, FalseVal);
5446 std::swap(TVal, FVal);
5447 CC = ISD::getSetCCInverse(CC, LHS.getValueType());
5448 }
5449
5450 if (Opcode) {
5451 // If one of the constants is cheaper than another, materialise the
5452 // cheaper one and let the csel generate the other.
5453 if (Opcode != ARMISD::CSINC &&
5454 HasLowerConstantMaterializationCost(FVal, TVal, Subtarget)) {
5455 std::swap(TrueVal, FalseVal);
5456 std::swap(TVal, FVal);
5457 CC = ISD::getSetCCInverse(CC, LHS.getValueType());
5458 }
5459
5460 // Attempt to use ZR checking TVal is 0, possibly inverting the condition
5461 // to get there. CSINC not is invertable like the other two (~(~a) == a,
5462 // -(-a) == a, but (a+1)+1 != a).
5463 if (FVal == 0 && Opcode != ARMISD::CSINC) {
5464 std::swap(TrueVal, FalseVal);
5465 std::swap(TVal, FVal);
5466 CC = ISD::getSetCCInverse(CC, LHS.getValueType());
5467 }
5468
5469 // Drops F's value because we can get it by inverting/negating TVal.
5470 FalseVal = TrueVal;
5471
5472 SDValue ARMcc;
5473 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5474 EVT VT = TrueVal.getValueType();
5475 return DAG.getNode(Opcode, dl, VT, TrueVal, FalseVal, ARMcc, Cmp);
5476 }
5477 }
5478
5479 if (isUnsupportedFloatingType(LHS.getValueType())) {
5480 DAG.getTargetLoweringInfo().softenSetCCOperands(
5481 DAG, LHS.getValueType(), LHS, RHS, CC, dl, LHS, RHS);
5482
5483 // If softenSetCCOperands only returned one value, we should compare it to
5484 // zero.
5485 if (!RHS.getNode()) {
5486 RHS = DAG.getConstant(0, dl, LHS.getValueType());
5487 CC = ISD::SETNE;
5488 }
5489 }
5490
5491 if (LHS.getValueType() == MVT::i32) {
5492 // Try to generate VSEL on ARMv8.
5493 // The VSEL instruction can't use all the usual ARM condition
5494 // codes: it only has two bits to select the condition code, so it's
5495 // constrained to use only GE, GT, VS and EQ.
5496 //
5497 // To implement all the various ISD::SETXXX opcodes, we sometimes need to
5498 // swap the operands of the previous compare instruction (effectively
5499 // inverting the compare condition, swapping 'less' and 'greater') and
5500 // sometimes need to swap the operands to the VSEL (which inverts the
5501 // condition in the sense of firing whenever the previous condition didn't)
5502 if (Subtarget->hasFPARMv8Base() && (TrueVal.getValueType() == MVT::f16 ||
5503 TrueVal.getValueType() == MVT::f32 ||
5504 TrueVal.getValueType() == MVT::f64)) {
5505 ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
5506 if (CondCode == ARMCC::LT || CondCode == ARMCC::LE ||
5507 CondCode == ARMCC::VC || CondCode == ARMCC::NE) {
5508 CC = ISD::getSetCCInverse(CC, LHS.getValueType());
5509 std::swap(TrueVal, FalseVal);
5510 }
5511 }
5512
5513 SDValue ARMcc;
5514 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5515 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5516 // Choose GE over PL, which vsel does now support
5517 if (cast<ConstantSDNode>(ARMcc)->getZExtValue() == ARMCC::PL)
5518 ARMcc = DAG.getConstant(ARMCC::GE, dl, MVT::i32);
5519 return getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
5520 }
5521
5522 ARMCC::CondCodes CondCode, CondCode2;
5523 FPCCToARMCC(CC, CondCode, CondCode2);
5524
5525 // Normalize the fp compare. If RHS is zero we prefer to keep it there so we
5526 // match CMPFPw0 instead of CMPFP, though we don't do this for f16 because we
5527 // must use VSEL (limited condition codes), due to not having conditional f16
5528 // moves.
5529 if (Subtarget->hasFPARMv8Base() &&
5530 !(isFloatingPointZero(RHS) && TrueVal.getValueType() != MVT::f16) &&
5531 (TrueVal.getValueType() == MVT::f16 ||
5532 TrueVal.getValueType() == MVT::f32 ||
5533 TrueVal.getValueType() == MVT::f64)) {
5534 bool swpCmpOps = false;
5535 bool swpVselOps = false;
5536 checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps);
5537
5538 if (CondCode == ARMCC::GT || CondCode == ARMCC::GE ||
5539 CondCode == ARMCC::VS || CondCode == ARMCC::EQ) {
5540 if (swpCmpOps)
5541 std::swap(LHS, RHS);
5542 if (swpVselOps)
5543 std::swap(TrueVal, FalseVal);
5544 }
5545 }
5546
5547 SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
5548 SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
5549 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5550 SDValue Result = getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
5551 if (CondCode2 != ARMCC::AL) {
5552 SDValue ARMcc2 = DAG.getConstant(CondCode2, dl, MVT::i32);
5553 // FIXME: Needs another CMP because flag can have but one use.
5554 SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
5555 Result = getCMOV(dl, VT, Result, TrueVal, ARMcc2, CCR, Cmp2, DAG);
5556 }
5557 return Result;
5558}
5559
5560/// canChangeToInt - Given the fp compare operand, return true if it is suitable
5561/// to morph to an integer compare sequence.
5562static bool canChangeToInt(SDValue Op, bool &SeenZero,
5563 const ARMSubtarget *Subtarget) {
5564 SDNode *N = Op.getNode();
5565 if (!N->hasOneUse())
5566 // Otherwise it requires moving the value from fp to integer registers.
5567 return false;
5568 if (!N->getNumValues())
5569 return false;
5570 EVT VT = Op.getValueType();
5571 if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
5572 // f32 case is generally profitable. f64 case only makes sense when vcmpe +
5573 // vmrs are very slow, e.g. cortex-a8.
5574 return false;
5575
5576 if (isFloatingPointZero(Op)) {
5577 SeenZero = true;
5578 return true;
5579 }
5580 return ISD::isNormalLoad(N);
5581}
5582
5583static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
5584 if (isFloatingPointZero(Op))
5585 return DAG.getConstant(0, SDLoc(Op), MVT::i32);
5586
5587 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
5588 return DAG.getLoad(MVT::i32, SDLoc(Op), Ld->getChain(), Ld->getBasePtr(),
5589 Ld->getPointerInfo(), Ld->getAlign(),
5590 Ld->getMemOperand()->getFlags());
5591
5592 llvm_unreachable("Unknown VFP cmp argument!")::llvm::llvm_unreachable_internal("Unknown VFP cmp argument!"
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 5592)
;
5593}
5594
5595static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
5596 SDValue &RetVal1, SDValue &RetVal2) {
5597 SDLoc dl(Op);
5598
5599 if (isFloatingPointZero(Op)) {
5600 RetVal1 = DAG.getConstant(0, dl, MVT::i32);
5601 RetVal2 = DAG.getConstant(0, dl, MVT::i32);
5602 return;
5603 }
5604
5605 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
5606 SDValue Ptr = Ld->getBasePtr();
5607 RetVal1 =
5608 DAG.getLoad(MVT::i32, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(),
5609 Ld->getAlign(), Ld->getMemOperand()->getFlags());
5610
5611 EVT PtrType = Ptr.getValueType();
5612 SDValue NewPtr = DAG.getNode(ISD::ADD, dl,
5613 PtrType, Ptr, DAG.getConstant(4, dl, PtrType));
5614 RetVal2 = DAG.getLoad(MVT::i32, dl, Ld->getChain(), NewPtr,
5615 Ld->getPointerInfo().getWithOffset(4),
5616 commonAlignment(Ld->getAlign(), 4),
5617 Ld->getMemOperand()->getFlags());
5618 return;
5619 }
5620
5621 llvm_unreachable("Unknown VFP cmp argument!")::llvm::llvm_unreachable_internal("Unknown VFP cmp argument!"
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 5621)
;
5622}
5623
5624/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
5625/// f32 and even f64 comparisons to integer ones.
5626SDValue
5627ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
5628 SDValue Chain = Op.getOperand(0);
5629 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
5630 SDValue LHS = Op.getOperand(2);
5631 SDValue RHS = Op.getOperand(3);
5632 SDValue Dest = Op.getOperand(4);
5633 SDLoc dl(Op);
5634
5635 bool LHSSeenZero = false;
5636 bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
5637 bool RHSSeenZero = false;
5638 bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
5639 if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
5640 // If unsafe fp math optimization is enabled and there are no other uses of
5641 // the CMP operands, and the condition code is EQ or NE, we can optimize it
5642 // to an integer comparison.
5643 if (CC == ISD::SETOEQ)
5644 CC = ISD::SETEQ;
5645 else if (CC == ISD::SETUNE)
5646 CC = ISD::SETNE;
5647
5648 SDValue Mask = DAG.getConstant(0x7fffffff, dl, MVT::i32);
5649 SDValue ARMcc;
5650 if (LHS.getValueType() == MVT::f32) {
5651 LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
5652 bitcastf32Toi32(LHS, DAG), Mask);
5653 RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
5654 bitcastf32Toi32(RHS, DAG), Mask);
5655 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5656 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5657 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
5658 Chain, Dest, ARMcc, CCR, Cmp);
5659 }
5660
5661 SDValue LHS1, LHS2;
5662 SDValue RHS1, RHS2;
5663 expandf64Toi32(LHS, DAG, LHS1, LHS2);
5664 expandf64Toi32(RHS, DAG, RHS1, RHS2);
5665 LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
5666 RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
5667 ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
5668 ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
5669 SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
5670 SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
5671 return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops);
5672 }
5673
5674 return SDValue();
5675}
5676
5677SDValue ARMTargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
5678 SDValue Chain = Op.getOperand(0);
5679 SDValue Cond = Op.getOperand(1);
5680 SDValue Dest = Op.getOperand(2);
5681 SDLoc dl(Op);
5682
5683 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
5684 // instruction.
5685 unsigned Opc = Cond.getOpcode();
5686 bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
5687 !Subtarget->isThumb1Only();
5688 if (Cond.getResNo() == 1 &&
5689 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
5690 Opc == ISD::USUBO || OptimizeMul)) {
5691 // Only lower legal XALUO ops.
5692 if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
5693 return SDValue();
5694
5695 // The actual operation with overflow check.
5696 SDValue Value, OverflowCmp;
5697 SDValue ARMcc;
5698 std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
5699
5700 // Reverse the condition code.
5701 ARMCC::CondCodes CondCode =
5702 (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
5703 CondCode = ARMCC::getOppositeCondition(CondCode);
5704 ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
5705 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5706
5707 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
5708 OverflowCmp);
5709 }
5710
5711 return SDValue();
5712}
5713
5714SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
5715 SDValue Chain = Op.getOperand(0);
5716 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
5717 SDValue LHS = Op.getOperand(2);
5718 SDValue RHS = Op.getOperand(3);
5719 SDValue Dest = Op.getOperand(4);
5720 SDLoc dl(Op);
5721
5722 if (isUnsupportedFloatingType(LHS.getValueType())) {
5723 DAG.getTargetLoweringInfo().softenSetCCOperands(
5724 DAG, LHS.getValueType(), LHS, RHS, CC, dl, LHS, RHS);
5725
5726 // If softenSetCCOperands only returned one value, we should compare it to
5727 // zero.
5728 if (!RHS.getNode()) {
5729 RHS = DAG.getConstant(0, dl, LHS.getValueType());
5730 CC = ISD::SETNE;
5731 }
5732 }
5733
5734 // Optimize {s|u}{add|sub|mul}.with.overflow feeding into a branch
5735 // instruction.
5736 unsigned Opc = LHS.getOpcode();
5737 bool OptimizeMul = (Opc == ISD::SMULO || Opc == ISD::UMULO) &&
5738 !Subtarget->isThumb1Only();
5739 if (LHS.getResNo() == 1 && (isOneConstant(RHS) || isNullConstant(RHS)) &&
5740 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
5741 Opc == ISD::USUBO || OptimizeMul) &&
5742 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
5743 // Only lower legal XALUO ops.
5744 if (!DAG.getTargetLoweringInfo().isTypeLegal(LHS->getValueType(0)))
5745 return SDValue();
5746
5747 // The actual operation with overflow check.
5748 SDValue Value, OverflowCmp;
5749 SDValue ARMcc;
5750 std::tie(Value, OverflowCmp) = getARMXALUOOp(LHS.getValue(0), DAG, ARMcc);
5751
5752 if ((CC == ISD::SETNE) != isOneConstant(RHS)) {
5753 // Reverse the condition code.
5754 ARMCC::CondCodes CondCode =
5755 (ARMCC::CondCodes)cast<const ConstantSDNode>(ARMcc)->getZExtValue();
5756 CondCode = ARMCC::getOppositeCondition(CondCode);
5757 ARMcc = DAG.getConstant(CondCode, SDLoc(ARMcc), MVT::i32);
5758 }
5759 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5760
5761 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, Chain, Dest, ARMcc, CCR,
5762 OverflowCmp);
5763 }
5764
5765 if (LHS.getValueType() == MVT::i32) {
5766 SDValue ARMcc;
5767 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
5768 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5769 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
5770 Chain, Dest, ARMcc, CCR, Cmp);
5771 }
5772
5773 if (getTargetMachine().Options.UnsafeFPMath &&
5774 (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
5775 CC == ISD::SETNE || CC == ISD::SETUNE)) {
5776 if (SDValue Result = OptimizeVFPBrcond(Op, DAG))
5777 return Result;
5778 }
5779
5780 ARMCC::CondCodes CondCode, CondCode2;
5781 FPCCToARMCC(CC, CondCode, CondCode2);
5782
5783 SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
5784 SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
5785 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
5786 SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
5787 SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
5788 SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
5789 if (CondCode2 != ARMCC::AL) {
5790 ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32);
5791 SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
5792 Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
5793 }
5794 return Res;
5795}
5796
5797SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
5798 SDValue Chain = Op.getOperand(0);
5799 SDValue Table = Op.getOperand(1);
5800 SDValue Index = Op.getOperand(2);
5801 SDLoc dl(Op);
5802
5803 EVT PTy = getPointerTy(DAG.getDataLayout());
5804 JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
5805 SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
5806 Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI);
5807 Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, dl, PTy));
5808 SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Index);
5809 if (Subtarget->isThumb2() || (Subtarget->hasV8MBaselineOps() && Subtarget->isThumb())) {
5810 // Thumb2 and ARMv8-M use a two-level jump. That is, it jumps into the jump table
5811 // which does another jump to the destination. This also makes it easier
5812 // to translate it to TBB / TBH later (Thumb2 only).
5813 // FIXME: This might not work if the function is extremely large.
5814 return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
5815 Addr, Op.getOperand(2), JTI);
5816 }
5817 if (isPositionIndependent() || Subtarget->isROPI()) {
5818 Addr =
5819 DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
5820 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
5821 Chain = Addr.getValue(1);
5822 Addr = DAG.getNode(ISD::ADD, dl, PTy, Table, Addr);
5823 return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
5824 } else {
5825 Addr =
5826 DAG.getLoad(PTy, dl, Chain, Addr,
5827 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()));
5828 Chain = Addr.getValue(1);
5829 return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
5830 }
5831}
5832
5833static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
5834 EVT VT = Op.getValueType();
5835 SDLoc dl(Op);
5836
5837 if (Op.getValueType().getVectorElementType() == MVT::i32) {
5838 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
5839 return Op;
5840 return DAG.UnrollVectorOp(Op.getNode());
5841 }
5842
5843 const bool HasFullFP16 = DAG.getSubtarget<ARMSubtarget>().hasFullFP16();
5844
5845 EVT NewTy;
5846 const EVT OpTy = Op.getOperand(0).getValueType();
5847 if (OpTy == MVT::v4f32)
5848 NewTy = MVT::v4i32;
5849 else if (OpTy == MVT::v4f16 && HasFullFP16)
5850 NewTy = MVT::v4i16;
5851 else if (OpTy == MVT::v8f16 && HasFullFP16)
5852 NewTy = MVT::v8i16;
5853 else
5854 llvm_unreachable("Invalid type for custom lowering!")::llvm::llvm_unreachable_internal("Invalid type for custom lowering!"
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 5854)
;
5855
5856 if (VT != MVT::v4i16 && VT != MVT::v8i16)
5857 return DAG.UnrollVectorOp(Op.getNode());
5858
5859 Op = DAG.getNode(Op.getOpcode(), dl, NewTy, Op.getOperand(0));
5860 return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
5861}
5862
5863SDValue ARMTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const {
5864 EVT VT = Op.getValueType();
5865 if (VT.isVector())
5866 return LowerVectorFP_TO_INT(Op, DAG);
5867
5868 bool IsStrict = Op->isStrictFPOpcode();
5869 SDValue SrcVal = Op.getOperand(IsStrict ? 1 : 0);
5870
5871 if (isUnsupportedFloatingType(SrcVal.getValueType())) {
5872 RTLIB::Libcall LC;
5873 if (Op.getOpcode() == ISD::FP_TO_SINT ||
5874 Op.getOpcode() == ISD::STRICT_FP_TO_SINT)
5875 LC = RTLIB::getFPTOSINT(SrcVal.getValueType(),
5876 Op.getValueType());
5877 else
5878 LC = RTLIB::getFPTOUINT(SrcVal.getValueType(),
5879 Op.getValueType());
5880 SDLoc Loc(Op);
5881 MakeLibCallOptions CallOptions;
5882 SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
5883 SDValue Result;
5884 std::tie(Result, Chain) = makeLibCall(DAG, LC, Op.getValueType(), SrcVal,
5885 CallOptions, Loc, Chain);
5886 return IsStrict ? DAG.getMergeValues({Result, Chain}, Loc) : Result;
5887 }
5888
5889 // FIXME: Remove this when we have strict fp instruction selection patterns
5890 if (IsStrict) {
5891 SDLoc Loc(Op);
5892 SDValue Result =
5893 DAG.getNode(Op.getOpcode() == ISD::STRICT_FP_TO_SINT ? ISD::FP_TO_SINT
5894 : ISD::FP_TO_UINT,
5895 Loc, Op.getValueType(), SrcVal);
5896 return DAG.getMergeValues({Result, Op.getOperand(0)}, Loc);
5897 }
5898
5899 return Op;
5900}
5901
5902static SDValue LowerFP_TO_INT_SAT(SDValue Op, SelectionDAG &DAG,
5903 const ARMSubtarget *Subtarget) {
5904 EVT VT = Op.getValueType();
5905 EVT ToVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
5906 EVT FromVT = Op.getOperand(0).getValueType();
5907
5908 if (VT == MVT::i32 && ToVT == MVT::i32 && FromVT == MVT::f32)
5909 return Op;
5910 if (VT == MVT::i32 && ToVT == MVT::i32 && FromVT == MVT::f64 &&
5911 Subtarget->hasFP64())
5912 return Op;
5913 if (VT == MVT::i32 && ToVT == MVT::i32 && FromVT == MVT::f16 &&
5914 Subtarget->hasFullFP16())
5915 return Op;
5916 if (VT == MVT::v4i32 && ToVT == MVT::i32 && FromVT == MVT::v4f32 &&
5917 Subtarget->hasMVEFloatOps())
5918 return Op;
5919 if (VT == MVT::v8i16 && ToVT == MVT::i16 && FromVT == MVT::v8f16 &&
5920 Subtarget->hasMVEFloatOps())
5921 return Op;
5922
5923 if (FromVT != MVT::v4f32 && FromVT != MVT::v8f16)
5924 return SDValue();
5925
5926 SDLoc DL(Op);
5927 bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT_SAT;
5928 unsigned BW = ToVT.getScalarSizeInBits() - IsSigned;
5929 SDValue CVT = DAG.getNode(Op.getOpcode(), DL, VT, Op.getOperand(0),
5930 DAG.getValueType(VT.getScalarType()));
5931 SDValue Max = DAG.getNode(IsSigned ? ISD::SMIN : ISD::UMIN, DL, VT, CVT,
5932 DAG.getConstant((1 << BW) - 1, DL, VT));
5933 if (IsSigned)
5934 Max = DAG.getNode(ISD::SMAX, DL, VT, Max,
5935 DAG.getConstant(-(1 << BW), DL, VT));
5936 return Max;
5937}
5938
5939static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
5940 EVT VT = Op.getValueType();
5941 SDLoc dl(Op);
5942
5943 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
5944 if (VT.getVectorElementType() == MVT::f32)
5945 return Op;
5946 return DAG.UnrollVectorOp(Op.getNode());
5947 }
5948
5949 assert((Op.getOperand(0).getValueType() == MVT::v4i16 ||(static_cast <bool> ((Op.getOperand(0).getValueType() ==
MVT::v4i16 || Op.getOperand(0).getValueType() == MVT::v8i16)
&& "Invalid type for custom lowering!") ? void (0) :
__assert_fail ("(Op.getOperand(0).getValueType() == MVT::v4i16 || Op.getOperand(0).getValueType() == MVT::v8i16) && \"Invalid type for custom lowering!\""
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 5951, __extension__
__PRETTY_FUNCTION__))
5950 Op.getOperand(0).getValueType() == MVT::v8i16) &&(static_cast <bool> ((Op.getOperand(0).getValueType() ==
MVT::v4i16 || Op.getOperand(0).getValueType() == MVT::v8i16)
&& "Invalid type for custom lowering!") ? void (0) :
__assert_fail ("(Op.getOperand(0).getValueType() == MVT::v4i16 || Op.getOperand(0).getValueType() == MVT::v8i16) && \"Invalid type for custom lowering!\""
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 5951, __extension__
__PRETTY_FUNCTION__))
5951 "Invalid type for custom lowering!")(static_cast <bool> ((Op.getOperand(0).getValueType() ==
MVT::v4i16 || Op.getOperand(0).getValueType() == MVT::v8i16)
&& "Invalid type for custom lowering!") ? void (0) :
__assert_fail ("(Op.getOperand(0).getValueType() == MVT::v4i16 || Op.getOperand(0).getValueType() == MVT::v8i16) && \"Invalid type for custom lowering!\""
, "llvm/lib/Target/ARM/ARMISelLowering.cpp", 5951, __extension__
__PRETTY_FUNCTION__))
;
5952
5953 const bool HasFullFP16 = DAG.getSubtarget<ARMSubtarget>().hasFullFP16();
5954
5955 EVT DestVecType;
5956 if (VT == MVT::v4f32)
5957 DestVecType = MVT::v4i32;
5958 else if (VT == MVT::v4f16 && HasFullFP16)
5959 DestVecType = MVT::v4i16;
5960 else if (VT == MVT::v8f16 && HasFullFP16)
5961 DestVecType = MVT::v8i16;
5962 else
5963 return DAG.UnrollVectorOp(Op.getNode());
5964
5965 unsigned CastOpc;
5966 unsigned Opc;
5967 switch (Op.getOpcode()) {
5968 default: llvm_unreachable("Invalid opcode!")::llvm::llvm_unreachable_internal("Invalid opcode!", "llvm/lib/Target/ARM/ARMISelLowering.cpp"
, 5968)
;
5969 case ISD::SINT_TO_FP:
5970 CastOpc = ISD::SIGN_EXTEND;
5971 Opc = ISD::SINT_TO_FP;
5972 break;
5973 case ISD::UINT_TO_FP:
5974 CastOpc = ISD::ZERO_EXTEND;
5975 Opc = ISD::UINT_TO_FP;
5976 break;
5977 }
5978
5979 Op = DAG.getNode(CastOpc, dl, DestVecType, Op.getOperand(0));
5980 return DAG.getNode(Opc, dl, VT, Op);
5981}
5982
5983SDValue ARMTargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const {
5984 EVT VT = Op.getValueType();
5985 if (VT.isVector())
5986 return LowerVectorINT_TO_FP(Op, DAG);
5987 if (isUnsupportedFloatingType(VT)) {
5988 RTLIB::Libcall LC;
5989 if (Op.getOpcode() == ISD::SINT_TO_FP)
5990 LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(),
5991 Op.getValueType());
5992 else
5993 LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(),
5994 Op.getValueType());
5995 MakeLibCallOptions CallOptions;
5996 return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
5997 CallOptions, SDLoc(Op)).first;
5998 }
5999
6000 return Op;
6001}
6002
6003SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
6004 // Implement fcopysign with a fabs and a conditional fneg.
6005 SDValue Tmp0 = Op.getOperand(0);
6006 SDValue Tmp1 = Op.getOperand(1);
6007 SDLoc dl(Op);
6008 EVT VT = Op.getValueType();
6009 EVT SrcVT = Tmp1.getValueType();
6010 bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
6011 Tmp0.getOpcode() == ARMISD::VMOVDRR;
6012 bool UseNEON = !InGPR && Subtarget->hasNEON();
6013
6014 if (UseNEON) {
6015 // Use VBSL to copy the sign bit.
6016 unsigned EncodedVal = ARM_AM::createVMOVModImm(0x6, 0x80);
6017 SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
6018 DAG.getTargetConstant(EncodedVal, dl, MVT::i32));
6019 EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
6020 if (VT == MVT::f64)
6021 Mask = DAG.getNode(ARMISD::VSHLIMM, dl, OpVT,
6022 DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
6023 DAG.getConstant(32, dl, MVT::i32));
6024 else /*if (VT == MVT::f32)*/
6025 Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
6026 if (SrcVT == MVT::f32) {
6027 Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
6028 if (VT == MVT::f64)
6029 Tmp1 = DAG.getNode(ARMISD::VSHLIMM, dl, OpVT,
6030 DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
6031 DAG.getConstant(32, dl, MVT::i32));
6032 } else if (VT == MVT::f32)
6033 Tmp1 = DAG.getNode(ARMISD::VSHRuIMM, dl, MVT::v1i64,
6034 DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
6035 DAG.getConstant(32, dl, MVT::i32));
6036 Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);