Bug Summary

File:build/source/clang/lib/AST/ASTContext.cpp
Warning:line 4163, column 3
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name ASTContext.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm -resource-dir /usr/lib/llvm-17/lib/clang/17 -I tools/clang/lib/AST -I /build/source/clang/lib/AST -I /build/source/clang/include -I tools/clang/include -I include -I /build/source/llvm/include -D _DEBUG -D _GLIBCXX_ASSERTIONS -D _GNU_SOURCE -D _LIBCPP_ENABLE_ASSERTIONS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-17/lib/clang/17/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm=build-llvm -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm=build-llvm -fcoverage-prefix-map=/build/source/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -fdebug-prefix-map=/build/source/build-llvm=build-llvm -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2023-05-10-133810-16478-1 -x c++ /build/source/clang/lib/AST/ASTContext.cpp
1//===- ASTContext.cpp - Context to hold long-lived AST nodes --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the ASTContext interface.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/ASTContext.h"
14#include "CXXABI.h"
15#include "Interp/Context.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTConcept.h"
18#include "clang/AST/ASTMutationListener.h"
19#include "clang/AST/ASTTypeTraits.h"
20#include "clang/AST/Attr.h"
21#include "clang/AST/AttrIterator.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/Comment.h"
24#include "clang/AST/Decl.h"
25#include "clang/AST/DeclBase.h"
26#include "clang/AST/DeclCXX.h"
27#include "clang/AST/DeclContextInternals.h"
28#include "clang/AST/DeclObjC.h"
29#include "clang/AST/DeclOpenMP.h"
30#include "clang/AST/DeclTemplate.h"
31#include "clang/AST/DeclarationName.h"
32#include "clang/AST/DependenceFlags.h"
33#include "clang/AST/Expr.h"
34#include "clang/AST/ExprCXX.h"
35#include "clang/AST/ExprConcepts.h"
36#include "clang/AST/ExternalASTSource.h"
37#include "clang/AST/Mangle.h"
38#include "clang/AST/MangleNumberingContext.h"
39#include "clang/AST/NestedNameSpecifier.h"
40#include "clang/AST/ParentMapContext.h"
41#include "clang/AST/RawCommentList.h"
42#include "clang/AST/RecordLayout.h"
43#include "clang/AST/Stmt.h"
44#include "clang/AST/TemplateBase.h"
45#include "clang/AST/TemplateName.h"
46#include "clang/AST/Type.h"
47#include "clang/AST/TypeLoc.h"
48#include "clang/AST/UnresolvedSet.h"
49#include "clang/AST/VTableBuilder.h"
50#include "clang/Basic/AddressSpaces.h"
51#include "clang/Basic/Builtins.h"
52#include "clang/Basic/CommentOptions.h"
53#include "clang/Basic/ExceptionSpecificationType.h"
54#include "clang/Basic/IdentifierTable.h"
55#include "clang/Basic/LLVM.h"
56#include "clang/Basic/LangOptions.h"
57#include "clang/Basic/Linkage.h"
58#include "clang/Basic/Module.h"
59#include "clang/Basic/NoSanitizeList.h"
60#include "clang/Basic/ObjCRuntime.h"
61#include "clang/Basic/SourceLocation.h"
62#include "clang/Basic/SourceManager.h"
63#include "clang/Basic/Specifiers.h"
64#include "clang/Basic/TargetCXXABI.h"
65#include "clang/Basic/TargetInfo.h"
66#include "clang/Basic/XRayLists.h"
67#include "llvm/ADT/APFixedPoint.h"
68#include "llvm/ADT/APInt.h"
69#include "llvm/ADT/APSInt.h"
70#include "llvm/ADT/ArrayRef.h"
71#include "llvm/ADT/DenseMap.h"
72#include "llvm/ADT/DenseSet.h"
73#include "llvm/ADT/FoldingSet.h"
74#include "llvm/ADT/PointerUnion.h"
75#include "llvm/ADT/STLExtras.h"
76#include "llvm/ADT/SmallPtrSet.h"
77#include "llvm/ADT/SmallVector.h"
78#include "llvm/ADT/StringExtras.h"
79#include "llvm/ADT/StringRef.h"
80#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
81#include "llvm/Support/Capacity.h"
82#include "llvm/Support/Casting.h"
83#include "llvm/Support/Compiler.h"
84#include "llvm/Support/ErrorHandling.h"
85#include "llvm/Support/MD5.h"
86#include "llvm/Support/MathExtras.h"
87#include "llvm/Support/raw_ostream.h"
88#include "llvm/TargetParser/RISCVTargetParser.h"
89#include "llvm/TargetParser/Triple.h"
90#include <algorithm>
91#include <cassert>
92#include <cstddef>
93#include <cstdint>
94#include <cstdlib>
95#include <map>
96#include <memory>
97#include <optional>
98#include <string>
99#include <tuple>
100#include <utility>
101
102using namespace clang;
103
104enum FloatingRank {
105 BFloat16Rank,
106 Float16Rank,
107 HalfRank,
108 FloatRank,
109 DoubleRank,
110 LongDoubleRank,
111 Float128Rank,
112 Ibm128Rank
113};
114
115/// \returns location that is relevant when searching for Doc comments related
116/// to \p D.
117static SourceLocation getDeclLocForCommentSearch(const Decl *D,
118 SourceManager &SourceMgr) {
119 assert(D)(static_cast <bool> (D) ? void (0) : __assert_fail ("D"
, "clang/lib/AST/ASTContext.cpp", 119, __extension__ __PRETTY_FUNCTION__
))
;
120
121 // User can not attach documentation to implicit declarations.
122 if (D->isImplicit())
123 return {};
124
125 // User can not attach documentation to implicit instantiations.
126 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
127 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
128 return {};
129 }
130
131 if (const auto *VD = dyn_cast<VarDecl>(D)) {
132 if (VD->isStaticDataMember() &&
133 VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
134 return {};
135 }
136
137 if (const auto *CRD = dyn_cast<CXXRecordDecl>(D)) {
138 if (CRD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
139 return {};
140 }
141
142 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
143 TemplateSpecializationKind TSK = CTSD->getSpecializationKind();
144 if (TSK == TSK_ImplicitInstantiation ||
145 TSK == TSK_Undeclared)
146 return {};
147 }
148
149 if (const auto *ED = dyn_cast<EnumDecl>(D)) {
150 if (ED->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
151 return {};
152 }
153 if (const auto *TD = dyn_cast<TagDecl>(D)) {
154 // When tag declaration (but not definition!) is part of the
155 // decl-specifier-seq of some other declaration, it doesn't get comment
156 if (TD->isEmbeddedInDeclarator() && !TD->isCompleteDefinition())
157 return {};
158 }
159 // TODO: handle comments for function parameters properly.
160 if (isa<ParmVarDecl>(D))
161 return {};
162
163 // TODO: we could look up template parameter documentation in the template
164 // documentation.
165 if (isa<TemplateTypeParmDecl>(D) ||
166 isa<NonTypeTemplateParmDecl>(D) ||
167 isa<TemplateTemplateParmDecl>(D))
168 return {};
169
170 // Find declaration location.
171 // For Objective-C declarations we generally don't expect to have multiple
172 // declarators, thus use declaration starting location as the "declaration
173 // location".
174 // For all other declarations multiple declarators are used quite frequently,
175 // so we use the location of the identifier as the "declaration location".
176 if (isa<ObjCMethodDecl>(D) || isa<ObjCContainerDecl>(D) ||
177 isa<ObjCPropertyDecl>(D) ||
178 isa<RedeclarableTemplateDecl>(D) ||
179 isa<ClassTemplateSpecializationDecl>(D) ||
180 // Allow association with Y across {} in `typedef struct X {} Y`.
181 isa<TypedefDecl>(D))
182 return D->getBeginLoc();
183
184 const SourceLocation DeclLoc = D->getLocation();
185 if (DeclLoc.isMacroID()) {
186 // There are (at least) three types of macros we care about here.
187 //
188 // 1. Macros that are used in the definition of a type outside the macro,
189 // with a comment attached at the macro call site.
190 // ```
191 // #define MAKE_NAME(Foo) Name##Foo
192 //
193 // /// Comment is here, where we use the macro.
194 // struct MAKE_NAME(Foo) {
195 // int a;
196 // int b;
197 // };
198 // ```
199 // 2. Macros that define whole things along with the comment.
200 // ```
201 // #define MAKE_METHOD(name) \
202 // /** Comment is here, inside the macro. */ \
203 // void name() {}
204 //
205 // struct S {
206 // MAKE_METHOD(f)
207 // }
208 // ```
209 // 3. Macros that both declare a type and name a decl outside the macro.
210 // ```
211 // /// Comment is here, where we use the macro.
212 // typedef NS_ENUM(NSInteger, Size) {
213 // SizeWidth,
214 // SizeHeight
215 // };
216 // ```
217 // In this case NS_ENUM declares am enum type, and uses the same name for
218 // the typedef declaration that appears outside the macro. The comment
219 // here should be applied to both declarations inside and outside the
220 // macro.
221 //
222 // We have found a Decl name that comes from inside a macro, but
223 // Decl::getLocation() returns the place where the macro is being called.
224 // If the declaration (and not just the name) resides inside the macro,
225 // then we want to map Decl::getLocation() into the macro to where the
226 // declaration and its attached comment (if any) were written.
227 //
228 // This mapping into the macro is done by mapping the location to its
229 // spelling location, however even if the declaration is inside a macro,
230 // the name's spelling can come from a macro argument (case 2 above). In
231 // this case mapping the location to the spelling location finds the
232 // argument's position (at `f` in MAKE_METHOD(`f`) above), which is not
233 // where the declaration and its comment are located.
234 //
235 // To avoid this issue, we make use of Decl::getBeginLocation() instead.
236 // While the declaration's position is where the name is written, the
237 // comment is always attached to the begining of the declaration, not to
238 // the name.
239 //
240 // In the first case, the begin location of the decl is outside the macro,
241 // at the location of `typedef`. This is where the comment is found as
242 // well. The begin location is not inside a macro, so it's spelling
243 // location is the same.
244 //
245 // In the second case, the begin location of the decl is the call to the
246 // macro, at `MAKE_METHOD`. However its spelling location is inside the
247 // the macro at the location of `void`. This is where the comment is found
248 // again.
249 //
250 // In the third case, there's no correct single behaviour. We want to use
251 // the comment outside the macro for the definition that's inside the macro.
252 // There is also a definition outside the macro, and we want the comment to
253 // apply to both. The cases we care about here is NS_ENUM() and
254 // NS_OPTIONS(). In general, if an enum is defined inside a macro, we should
255 // try to find the comment there.
256
257 // This is handling case 3 for NS_ENUM() and NS_OPTIONS(), which define
258 // enum types inside the macro.
259 if (isa<EnumDecl>(D)) {
260 SourceLocation MacroCallLoc = SourceMgr.getExpansionLoc(DeclLoc);
261 if (auto BufferRef =
262 SourceMgr.getBufferOrNone(SourceMgr.getFileID(MacroCallLoc));
263 BufferRef.has_value()) {
264 llvm::StringRef buffer = BufferRef->getBuffer().substr(
265 SourceMgr.getFileOffset(MacroCallLoc));
266 if (buffer.starts_with("NS_ENUM(") ||
267 buffer.starts_with("NS_OPTIONS(")) {
268 // We want to use the comment on the call to NS_ENUM and NS_OPTIONS
269 // macros for the types defined inside the macros, which is at the
270 // expansion location.
271 return MacroCallLoc;
272 }
273 }
274 }
275 return SourceMgr.getSpellingLoc(D->getBeginLoc());
276 }
277
278 return DeclLoc;
279}
280
281RawComment *ASTContext::getRawCommentForDeclNoCacheImpl(
282 const Decl *D, const SourceLocation RepresentativeLocForDecl,
283 const std::map<unsigned, RawComment *> &CommentsInTheFile) const {
284 // If the declaration doesn't map directly to a location in a file, we
285 // can't find the comment.
286 if (RepresentativeLocForDecl.isInvalid() ||
287 !RepresentativeLocForDecl.isFileID())
288 return nullptr;
289
290 // If there are no comments anywhere, we won't find anything.
291 if (CommentsInTheFile.empty())
292 return nullptr;
293
294 // Decompose the location for the declaration and find the beginning of the
295 // file buffer.
296 const std::pair<FileID, unsigned> DeclLocDecomp =
297 SourceMgr.getDecomposedLoc(RepresentativeLocForDecl);
298
299 // Slow path.
300 auto OffsetCommentBehindDecl =
301 CommentsInTheFile.lower_bound(DeclLocDecomp.second);
302
303 // First check whether we have a trailing comment.
304 if (OffsetCommentBehindDecl != CommentsInTheFile.end()) {
305 RawComment *CommentBehindDecl = OffsetCommentBehindDecl->second;
306 if ((CommentBehindDecl->isDocumentation() ||
307 LangOpts.CommentOpts.ParseAllComments) &&
308 CommentBehindDecl->isTrailingComment() &&
309 (isa<FieldDecl>(D) || isa<EnumConstantDecl>(D) || isa<VarDecl>(D) ||
310 isa<ObjCMethodDecl>(D) || isa<ObjCPropertyDecl>(D))) {
311
312 // Check that Doxygen trailing comment comes after the declaration, starts
313 // on the same line and in the same file as the declaration.
314 if (SourceMgr.getLineNumber(DeclLocDecomp.first, DeclLocDecomp.second) ==
315 Comments.getCommentBeginLine(CommentBehindDecl, DeclLocDecomp.first,
316 OffsetCommentBehindDecl->first)) {
317 return CommentBehindDecl;
318 }
319 }
320 }
321
322 // The comment just after the declaration was not a trailing comment.
323 // Let's look at the previous comment.
324 if (OffsetCommentBehindDecl == CommentsInTheFile.begin())
325 return nullptr;
326
327 auto OffsetCommentBeforeDecl = --OffsetCommentBehindDecl;
328 RawComment *CommentBeforeDecl = OffsetCommentBeforeDecl->second;
329
330 // Check that we actually have a non-member Doxygen comment.
331 if (!(CommentBeforeDecl->isDocumentation() ||
332 LangOpts.CommentOpts.ParseAllComments) ||
333 CommentBeforeDecl->isTrailingComment())
334 return nullptr;
335
336 // Decompose the end of the comment.
337 const unsigned CommentEndOffset =
338 Comments.getCommentEndOffset(CommentBeforeDecl);
339
340 // Get the corresponding buffer.
341 bool Invalid = false;
342 const char *Buffer = SourceMgr.getBufferData(DeclLocDecomp.first,
343 &Invalid).data();
344 if (Invalid)
345 return nullptr;
346
347 // Extract text between the comment and declaration.
348 StringRef Text(Buffer + CommentEndOffset,
349 DeclLocDecomp.second - CommentEndOffset);
350
351 // There should be no other declarations or preprocessor directives between
352 // comment and declaration.
353 if (Text.find_last_of(";{}#@") != StringRef::npos)
354 return nullptr;
355
356 return CommentBeforeDecl;
357}
358
359RawComment *ASTContext::getRawCommentForDeclNoCache(const Decl *D) const {
360 const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr);
361
362 // If the declaration doesn't map directly to a location in a file, we
363 // can't find the comment.
364 if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
365 return nullptr;
366
367 if (ExternalSource && !CommentsLoaded) {
368 ExternalSource->ReadComments();
369 CommentsLoaded = true;
370 }
371
372 if (Comments.empty())
373 return nullptr;
374
375 const FileID File = SourceMgr.getDecomposedLoc(DeclLoc).first;
376 if (!File.isValid()) {
377 return nullptr;
378 }
379 const auto CommentsInThisFile = Comments.getCommentsInFile(File);
380 if (!CommentsInThisFile || CommentsInThisFile->empty())
381 return nullptr;
382
383 return getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile);
384}
385
386void ASTContext::addComment(const RawComment &RC) {
387 assert(LangOpts.RetainCommentsFromSystemHeaders ||(static_cast <bool> (LangOpts.RetainCommentsFromSystemHeaders
|| !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin(
))) ? void (0) : __assert_fail ("LangOpts.RetainCommentsFromSystemHeaders || !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin())"
, "clang/lib/AST/ASTContext.cpp", 388, __extension__ __PRETTY_FUNCTION__
))
388 !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin()))(static_cast <bool> (LangOpts.RetainCommentsFromSystemHeaders
|| !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin(
))) ? void (0) : __assert_fail ("LangOpts.RetainCommentsFromSystemHeaders || !SourceMgr.isInSystemHeader(RC.getSourceRange().getBegin())"
, "clang/lib/AST/ASTContext.cpp", 388, __extension__ __PRETTY_FUNCTION__
))
;
389 Comments.addComment(RC, LangOpts.CommentOpts, BumpAlloc);
390}
391
392/// If we have a 'templated' declaration for a template, adjust 'D' to
393/// refer to the actual template.
394/// If we have an implicit instantiation, adjust 'D' to refer to template.
395static const Decl &adjustDeclToTemplate(const Decl &D) {
396 if (const auto *FD = dyn_cast<FunctionDecl>(&D)) {
397 // Is this function declaration part of a function template?
398 if (const FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
399 return *FTD;
400
401 // Nothing to do if function is not an implicit instantiation.
402 if (FD->getTemplateSpecializationKind() != TSK_ImplicitInstantiation)
403 return D;
404
405 // Function is an implicit instantiation of a function template?
406 if (const FunctionTemplateDecl *FTD = FD->getPrimaryTemplate())
407 return *FTD;
408
409 // Function is instantiated from a member definition of a class template?
410 if (const FunctionDecl *MemberDecl =
411 FD->getInstantiatedFromMemberFunction())
412 return *MemberDecl;
413
414 return D;
415 }
416 if (const auto *VD = dyn_cast<VarDecl>(&D)) {
417 // Static data member is instantiated from a member definition of a class
418 // template?
419 if (VD->isStaticDataMember())
420 if (const VarDecl *MemberDecl = VD->getInstantiatedFromStaticDataMember())
421 return *MemberDecl;
422
423 return D;
424 }
425 if (const auto *CRD = dyn_cast<CXXRecordDecl>(&D)) {
426 // Is this class declaration part of a class template?
427 if (const ClassTemplateDecl *CTD = CRD->getDescribedClassTemplate())
428 return *CTD;
429
430 // Class is an implicit instantiation of a class template or partial
431 // specialization?
432 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(CRD)) {
433 if (CTSD->getSpecializationKind() != TSK_ImplicitInstantiation)
434 return D;
435 llvm::PointerUnion<ClassTemplateDecl *,
436 ClassTemplatePartialSpecializationDecl *>
437 PU = CTSD->getSpecializedTemplateOrPartial();
438 return PU.is<ClassTemplateDecl *>()
439 ? *static_cast<const Decl *>(PU.get<ClassTemplateDecl *>())
440 : *static_cast<const Decl *>(
441 PU.get<ClassTemplatePartialSpecializationDecl *>());
442 }
443
444 // Class is instantiated from a member definition of a class template?
445 if (const MemberSpecializationInfo *Info =
446 CRD->getMemberSpecializationInfo())
447 return *Info->getInstantiatedFrom();
448
449 return D;
450 }
451 if (const auto *ED = dyn_cast<EnumDecl>(&D)) {
452 // Enum is instantiated from a member definition of a class template?
453 if (const EnumDecl *MemberDecl = ED->getInstantiatedFromMemberEnum())
454 return *MemberDecl;
455
456 return D;
457 }
458 // FIXME: Adjust alias templates?
459 return D;
460}
461
462const RawComment *ASTContext::getRawCommentForAnyRedecl(
463 const Decl *D,
464 const Decl **OriginalDecl) const {
465 if (!D) {
466 if (OriginalDecl)
467 OriginalDecl = nullptr;
468 return nullptr;
469 }
470
471 D = &adjustDeclToTemplate(*D);
472
473 // Any comment directly attached to D?
474 {
475 auto DeclComment = DeclRawComments.find(D);
476 if (DeclComment != DeclRawComments.end()) {
477 if (OriginalDecl)
478 *OriginalDecl = D;
479 return DeclComment->second;
480 }
481 }
482
483 // Any comment attached to any redeclaration of D?
484 const Decl *CanonicalD = D->getCanonicalDecl();
485 if (!CanonicalD)
486 return nullptr;
487
488 {
489 auto RedeclComment = RedeclChainComments.find(CanonicalD);
490 if (RedeclComment != RedeclChainComments.end()) {
491 if (OriginalDecl)
492 *OriginalDecl = RedeclComment->second;
493 auto CommentAtRedecl = DeclRawComments.find(RedeclComment->second);
494 assert(CommentAtRedecl != DeclRawComments.end() &&(static_cast <bool> (CommentAtRedecl != DeclRawComments
.end() && "This decl is supposed to have comment attached."
) ? void (0) : __assert_fail ("CommentAtRedecl != DeclRawComments.end() && \"This decl is supposed to have comment attached.\""
, "clang/lib/AST/ASTContext.cpp", 495, __extension__ __PRETTY_FUNCTION__
))
495 "This decl is supposed to have comment attached.")(static_cast <bool> (CommentAtRedecl != DeclRawComments
.end() && "This decl is supposed to have comment attached."
) ? void (0) : __assert_fail ("CommentAtRedecl != DeclRawComments.end() && \"This decl is supposed to have comment attached.\""
, "clang/lib/AST/ASTContext.cpp", 495, __extension__ __PRETTY_FUNCTION__
))
;
496 return CommentAtRedecl->second;
497 }
498 }
499
500 // Any redeclarations of D that we haven't checked for comments yet?
501 // We can't use DenseMap::iterator directly since it'd get invalid.
502 auto LastCheckedRedecl = [this, CanonicalD]() -> const Decl * {
503 auto LookupRes = CommentlessRedeclChains.find(CanonicalD);
504 if (LookupRes != CommentlessRedeclChains.end())
505 return LookupRes->second;
506 return nullptr;
507 }();
508
509 for (const auto Redecl : D->redecls()) {
510 assert(Redecl)(static_cast <bool> (Redecl) ? void (0) : __assert_fail
("Redecl", "clang/lib/AST/ASTContext.cpp", 510, __extension__
__PRETTY_FUNCTION__))
;
511 // Skip all redeclarations that have been checked previously.
512 if (LastCheckedRedecl) {
513 if (LastCheckedRedecl == Redecl) {
514 LastCheckedRedecl = nullptr;
515 }
516 continue;
517 }
518 const RawComment *RedeclComment = getRawCommentForDeclNoCache(Redecl);
519 if (RedeclComment) {
520 cacheRawCommentForDecl(*Redecl, *RedeclComment);
521 if (OriginalDecl)
522 *OriginalDecl = Redecl;
523 return RedeclComment;
524 }
525 CommentlessRedeclChains[CanonicalD] = Redecl;
526 }
527
528 if (OriginalDecl)
529 *OriginalDecl = nullptr;
530 return nullptr;
531}
532
533void ASTContext::cacheRawCommentForDecl(const Decl &OriginalD,
534 const RawComment &Comment) const {
535 assert(Comment.isDocumentation() || LangOpts.CommentOpts.ParseAllComments)(static_cast <bool> (Comment.isDocumentation() || LangOpts
.CommentOpts.ParseAllComments) ? void (0) : __assert_fail ("Comment.isDocumentation() || LangOpts.CommentOpts.ParseAllComments"
, "clang/lib/AST/ASTContext.cpp", 535, __extension__ __PRETTY_FUNCTION__
))
;
536 DeclRawComments.try_emplace(&OriginalD, &Comment);
537 const Decl *const CanonicalDecl = OriginalD.getCanonicalDecl();
538 RedeclChainComments.try_emplace(CanonicalDecl, &OriginalD);
539 CommentlessRedeclChains.erase(CanonicalDecl);
540}
541
542static void addRedeclaredMethods(const ObjCMethodDecl *ObjCMethod,
543 SmallVectorImpl<const NamedDecl *> &Redeclared) {
544 const DeclContext *DC = ObjCMethod->getDeclContext();
545 if (const auto *IMD = dyn_cast<ObjCImplDecl>(DC)) {
546 const ObjCInterfaceDecl *ID = IMD->getClassInterface();
547 if (!ID)
548 return;
549 // Add redeclared method here.
550 for (const auto *Ext : ID->known_extensions()) {
551 if (ObjCMethodDecl *RedeclaredMethod =
552 Ext->getMethod(ObjCMethod->getSelector(),
553 ObjCMethod->isInstanceMethod()))
554 Redeclared.push_back(RedeclaredMethod);
555 }
556 }
557}
558
559void ASTContext::attachCommentsToJustParsedDecls(ArrayRef<Decl *> Decls,
560 const Preprocessor *PP) {
561 if (Comments.empty() || Decls.empty())
562 return;
563
564 FileID File;
565 for (Decl *D : Decls) {
566 SourceLocation Loc = D->getLocation();
567 if (Loc.isValid()) {
568 // See if there are any new comments that are not attached to a decl.
569 // The location doesn't have to be precise - we care only about the file.
570 File = SourceMgr.getDecomposedLoc(Loc).first;
571 break;
572 }
573 }
574
575 if (File.isInvalid())
576 return;
577
578 auto CommentsInThisFile = Comments.getCommentsInFile(File);
579 if (!CommentsInThisFile || CommentsInThisFile->empty() ||
580 CommentsInThisFile->rbegin()->second->isAttached())
581 return;
582
583 // There is at least one comment not attached to a decl.
584 // Maybe it should be attached to one of Decls?
585 //
586 // Note that this way we pick up not only comments that precede the
587 // declaration, but also comments that *follow* the declaration -- thanks to
588 // the lookahead in the lexer: we've consumed the semicolon and looked
589 // ahead through comments.
590
591 for (const Decl *D : Decls) {
592 assert(D)(static_cast <bool> (D) ? void (0) : __assert_fail ("D"
, "clang/lib/AST/ASTContext.cpp", 592, __extension__ __PRETTY_FUNCTION__
))
;
593 if (D->isInvalidDecl())
594 continue;
595
596 D = &adjustDeclToTemplate(*D);
597
598 const SourceLocation DeclLoc = getDeclLocForCommentSearch(D, SourceMgr);
599
600 if (DeclLoc.isInvalid() || !DeclLoc.isFileID())
601 continue;
602
603 if (DeclRawComments.count(D) > 0)
604 continue;
605
606 if (RawComment *const DocComment =
607 getRawCommentForDeclNoCacheImpl(D, DeclLoc, *CommentsInThisFile)) {
608 cacheRawCommentForDecl(*D, *DocComment);
609 comments::FullComment *FC = DocComment->parse(*this, PP, D);
610 ParsedComments[D->getCanonicalDecl()] = FC;
611 }
612 }
613}
614
615comments::FullComment *ASTContext::cloneFullComment(comments::FullComment *FC,
616 const Decl *D) const {
617 auto *ThisDeclInfo = new (*this) comments::DeclInfo;
618 ThisDeclInfo->CommentDecl = D;
619 ThisDeclInfo->IsFilled = false;
620 ThisDeclInfo->fill();
621 ThisDeclInfo->CommentDecl = FC->getDecl();
622 if (!ThisDeclInfo->TemplateParameters)
623 ThisDeclInfo->TemplateParameters = FC->getDeclInfo()->TemplateParameters;
624 comments::FullComment *CFC =
625 new (*this) comments::FullComment(FC->getBlocks(),
626 ThisDeclInfo);
627 return CFC;
628}
629
630comments::FullComment *ASTContext::getLocalCommentForDeclUncached(const Decl *D) const {
631 const RawComment *RC = getRawCommentForDeclNoCache(D);
632 return RC ? RC->parse(*this, nullptr, D) : nullptr;
633}
634
635comments::FullComment *ASTContext::getCommentForDecl(
636 const Decl *D,
637 const Preprocessor *PP) const {
638 if (!D || D->isInvalidDecl())
639 return nullptr;
640 D = &adjustDeclToTemplate(*D);
641
642 const Decl *Canonical = D->getCanonicalDecl();
643 llvm::DenseMap<const Decl *, comments::FullComment *>::iterator Pos =
644 ParsedComments.find(Canonical);
645
646 if (Pos != ParsedComments.end()) {
647 if (Canonical != D) {
648 comments::FullComment *FC = Pos->second;
649 comments::FullComment *CFC = cloneFullComment(FC, D);
650 return CFC;
651 }
652 return Pos->second;
653 }
654
655 const Decl *OriginalDecl = nullptr;
656
657 const RawComment *RC = getRawCommentForAnyRedecl(D, &OriginalDecl);
658 if (!RC) {
659 if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
660 SmallVector<const NamedDecl*, 8> Overridden;
661 const auto *OMD = dyn_cast<ObjCMethodDecl>(D);
662 if (OMD && OMD->isPropertyAccessor())
663 if (const ObjCPropertyDecl *PDecl = OMD->findPropertyDecl())
664 if (comments::FullComment *FC = getCommentForDecl(PDecl, PP))
665 return cloneFullComment(FC, D);
666 if (OMD)
667 addRedeclaredMethods(OMD, Overridden);
668 getOverriddenMethods(dyn_cast<NamedDecl>(D), Overridden);
669 for (unsigned i = 0, e = Overridden.size(); i < e; i++)
670 if (comments::FullComment *FC = getCommentForDecl(Overridden[i], PP))
671 return cloneFullComment(FC, D);
672 }
673 else if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
674 // Attach any tag type's documentation to its typedef if latter
675 // does not have one of its own.
676 QualType QT = TD->getUnderlyingType();
677 if (const auto *TT = QT->getAs<TagType>())
678 if (const Decl *TD = TT->getDecl())
679 if (comments::FullComment *FC = getCommentForDecl(TD, PP))
680 return cloneFullComment(FC, D);
681 }
682 else if (const auto *IC = dyn_cast<ObjCInterfaceDecl>(D)) {
683 while (IC->getSuperClass()) {
684 IC = IC->getSuperClass();
685 if (comments::FullComment *FC = getCommentForDecl(IC, PP))
686 return cloneFullComment(FC, D);
687 }
688 }
689 else if (const auto *CD = dyn_cast<ObjCCategoryDecl>(D)) {
690 if (const ObjCInterfaceDecl *IC = CD->getClassInterface())
691 if (comments::FullComment *FC = getCommentForDecl(IC, PP))
692 return cloneFullComment(FC, D);
693 }
694 else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
695 if (!(RD = RD->getDefinition()))
696 return nullptr;
697 // Check non-virtual bases.
698 for (const auto &I : RD->bases()) {
699 if (I.isVirtual() || (I.getAccessSpecifier() != AS_public))
700 continue;
701 QualType Ty = I.getType();
702 if (Ty.isNull())
703 continue;
704 if (const CXXRecordDecl *NonVirtualBase = Ty->getAsCXXRecordDecl()) {
705 if (!(NonVirtualBase= NonVirtualBase->getDefinition()))
706 continue;
707
708 if (comments::FullComment *FC = getCommentForDecl((NonVirtualBase), PP))
709 return cloneFullComment(FC, D);
710 }
711 }
712 // Check virtual bases.
713 for (const auto &I : RD->vbases()) {
714 if (I.getAccessSpecifier() != AS_public)
715 continue;
716 QualType Ty = I.getType();
717 if (Ty.isNull())
718 continue;
719 if (const CXXRecordDecl *VirtualBase = Ty->getAsCXXRecordDecl()) {
720 if (!(VirtualBase= VirtualBase->getDefinition()))
721 continue;
722 if (comments::FullComment *FC = getCommentForDecl((VirtualBase), PP))
723 return cloneFullComment(FC, D);
724 }
725 }
726 }
727 return nullptr;
728 }
729
730 // If the RawComment was attached to other redeclaration of this Decl, we
731 // should parse the comment in context of that other Decl. This is important
732 // because comments can contain references to parameter names which can be
733 // different across redeclarations.
734 if (D != OriginalDecl && OriginalDecl)
735 return getCommentForDecl(OriginalDecl, PP);
736
737 comments::FullComment *FC = RC->parse(*this, PP, D);
738 ParsedComments[Canonical] = FC;
739 return FC;
740}
741
742void
743ASTContext::CanonicalTemplateTemplateParm::Profile(llvm::FoldingSetNodeID &ID,
744 const ASTContext &C,
745 TemplateTemplateParmDecl *Parm) {
746 ID.AddInteger(Parm->getDepth());
747 ID.AddInteger(Parm->getPosition());
748 ID.AddBoolean(Parm->isParameterPack());
749
750 TemplateParameterList *Params = Parm->getTemplateParameters();
751 ID.AddInteger(Params->size());
752 for (TemplateParameterList::const_iterator P = Params->begin(),
753 PEnd = Params->end();
754 P != PEnd; ++P) {
755 if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
756 ID.AddInteger(0);
757 ID.AddBoolean(TTP->isParameterPack());
758 if (TTP->isExpandedParameterPack()) {
759 ID.AddBoolean(true);
760 ID.AddInteger(TTP->getNumExpansionParameters());
761 } else
762 ID.AddBoolean(false);
763 continue;
764 }
765
766 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
767 ID.AddInteger(1);
768 ID.AddBoolean(NTTP->isParameterPack());
769 ID.AddPointer(C.getUnconstrainedType(C.getCanonicalType(NTTP->getType()))
770 .getAsOpaquePtr());
771 if (NTTP->isExpandedParameterPack()) {
772 ID.AddBoolean(true);
773 ID.AddInteger(NTTP->getNumExpansionTypes());
774 for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
775 QualType T = NTTP->getExpansionType(I);
776 ID.AddPointer(T.getCanonicalType().getAsOpaquePtr());
777 }
778 } else
779 ID.AddBoolean(false);
780 continue;
781 }
782
783 auto *TTP = cast<TemplateTemplateParmDecl>(*P);
784 ID.AddInteger(2);
785 Profile(ID, C, TTP);
786 }
787}
788
789TemplateTemplateParmDecl *
790ASTContext::getCanonicalTemplateTemplateParmDecl(
791 TemplateTemplateParmDecl *TTP) const {
792 // Check if we already have a canonical template template parameter.
793 llvm::FoldingSetNodeID ID;
794 CanonicalTemplateTemplateParm::Profile(ID, *this, TTP);
795 void *InsertPos = nullptr;
796 CanonicalTemplateTemplateParm *Canonical
797 = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
798 if (Canonical)
799 return Canonical->getParam();
800
801 // Build a canonical template parameter list.
802 TemplateParameterList *Params = TTP->getTemplateParameters();
803 SmallVector<NamedDecl *, 4> CanonParams;
804 CanonParams.reserve(Params->size());
805 for (TemplateParameterList::const_iterator P = Params->begin(),
806 PEnd = Params->end();
807 P != PEnd; ++P) {
808 // Note that, per C++20 [temp.over.link]/6, when determining whether
809 // template-parameters are equivalent, constraints are ignored.
810 if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(*P)) {
811 TemplateTypeParmDecl *NewTTP = TemplateTypeParmDecl::Create(
812 *this, getTranslationUnitDecl(), SourceLocation(), SourceLocation(),
813 TTP->getDepth(), TTP->getIndex(), nullptr, false,
814 TTP->isParameterPack(), /*HasTypeConstraint=*/false,
815 TTP->isExpandedParameterPack()
816 ? std::optional<unsigned>(TTP->getNumExpansionParameters())
817 : std::nullopt);
818 CanonParams.push_back(NewTTP);
819 } else if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(*P)) {
820 QualType T = getUnconstrainedType(getCanonicalType(NTTP->getType()));
821 TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
822 NonTypeTemplateParmDecl *Param;
823 if (NTTP->isExpandedParameterPack()) {
824 SmallVector<QualType, 2> ExpandedTypes;
825 SmallVector<TypeSourceInfo *, 2> ExpandedTInfos;
826 for (unsigned I = 0, N = NTTP->getNumExpansionTypes(); I != N; ++I) {
827 ExpandedTypes.push_back(getCanonicalType(NTTP->getExpansionType(I)));
828 ExpandedTInfos.push_back(
829 getTrivialTypeSourceInfo(ExpandedTypes.back()));
830 }
831
832 Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
833 SourceLocation(),
834 SourceLocation(),
835 NTTP->getDepth(),
836 NTTP->getPosition(), nullptr,
837 T,
838 TInfo,
839 ExpandedTypes,
840 ExpandedTInfos);
841 } else {
842 Param = NonTypeTemplateParmDecl::Create(*this, getTranslationUnitDecl(),
843 SourceLocation(),
844 SourceLocation(),
845 NTTP->getDepth(),
846 NTTP->getPosition(), nullptr,
847 T,
848 NTTP->isParameterPack(),
849 TInfo);
850 }
851 CanonParams.push_back(Param);
852 } else
853 CanonParams.push_back(getCanonicalTemplateTemplateParmDecl(
854 cast<TemplateTemplateParmDecl>(*P)));
855 }
856
857 TemplateTemplateParmDecl *CanonTTP = TemplateTemplateParmDecl::Create(
858 *this, getTranslationUnitDecl(), SourceLocation(), TTP->getDepth(),
859 TTP->getPosition(), TTP->isParameterPack(), nullptr,
860 TemplateParameterList::Create(*this, SourceLocation(), SourceLocation(),
861 CanonParams, SourceLocation(),
862 /*RequiresClause=*/nullptr));
863
864 // Get the new insert position for the node we care about.
865 Canonical = CanonTemplateTemplateParms.FindNodeOrInsertPos(ID, InsertPos);
866 assert(!Canonical && "Shouldn't be in the map!")(static_cast <bool> (!Canonical && "Shouldn't be in the map!"
) ? void (0) : __assert_fail ("!Canonical && \"Shouldn't be in the map!\""
, "clang/lib/AST/ASTContext.cpp", 866, __extension__ __PRETTY_FUNCTION__
))
;
867 (void)Canonical;
868
869 // Create the canonical template template parameter entry.
870 Canonical = new (*this) CanonicalTemplateTemplateParm(CanonTTP);
871 CanonTemplateTemplateParms.InsertNode(Canonical, InsertPos);
872 return CanonTTP;
873}
874
875TargetCXXABI::Kind ASTContext::getCXXABIKind() const {
876 auto Kind = getTargetInfo().getCXXABI().getKind();
877 return getLangOpts().CXXABI.value_or(Kind);
878}
879
880CXXABI *ASTContext::createCXXABI(const TargetInfo &T) {
881 if (!LangOpts.CPlusPlus) return nullptr;
882
883 switch (getCXXABIKind()) {
884 case TargetCXXABI::AppleARM64:
885 case TargetCXXABI::Fuchsia:
886 case TargetCXXABI::GenericARM: // Same as Itanium at this level
887 case TargetCXXABI::iOS:
888 case TargetCXXABI::WatchOS:
889 case TargetCXXABI::GenericAArch64:
890 case TargetCXXABI::GenericMIPS:
891 case TargetCXXABI::GenericItanium:
892 case TargetCXXABI::WebAssembly:
893 case TargetCXXABI::XL:
894 return CreateItaniumCXXABI(*this);
895 case TargetCXXABI::Microsoft:
896 return CreateMicrosoftCXXABI(*this);
897 }
898 llvm_unreachable("Invalid CXXABI type!")::llvm::llvm_unreachable_internal("Invalid CXXABI type!", "clang/lib/AST/ASTContext.cpp"
, 898)
;
899}
900
901interp::Context &ASTContext::getInterpContext() {
902 if (!InterpContext) {
903 InterpContext.reset(new interp::Context(*this));
904 }
905 return *InterpContext.get();
906}
907
908ParentMapContext &ASTContext::getParentMapContext() {
909 if (!ParentMapCtx)
910 ParentMapCtx.reset(new ParentMapContext(*this));
911 return *ParentMapCtx.get();
912}
913
914static bool isAddrSpaceMapManglingEnabled(const TargetInfo &TI,
915 const LangOptions &LangOpts) {
916 switch (LangOpts.getAddressSpaceMapMangling()) {
917 case LangOptions::ASMM_Target:
918 return TI.useAddressSpaceMapMangling();
919 case LangOptions::ASMM_On:
920 return true;
921 case LangOptions::ASMM_Off:
922 return false;
923 }
924 llvm_unreachable("getAddressSpaceMapMangling() doesn't cover anything.")::llvm::llvm_unreachable_internal("getAddressSpaceMapMangling() doesn't cover anything."
, "clang/lib/AST/ASTContext.cpp", 924)
;
925}
926
927ASTContext::ASTContext(LangOptions &LOpts, SourceManager &SM,
928 IdentifierTable &idents, SelectorTable &sels,
929 Builtin::Context &builtins, TranslationUnitKind TUKind)
930 : ConstantArrayTypes(this_(), ConstantArrayTypesLog2InitSize),
931 FunctionProtoTypes(this_(), FunctionProtoTypesLog2InitSize),
932 TemplateSpecializationTypes(this_()),
933 DependentTemplateSpecializationTypes(this_()), AutoTypes(this_()),
934 SubstTemplateTemplateParmPacks(this_()),
935 CanonTemplateTemplateParms(this_()), SourceMgr(SM), LangOpts(LOpts),
936 NoSanitizeL(new NoSanitizeList(LangOpts.NoSanitizeFiles, SM)),
937 XRayFilter(new XRayFunctionFilter(LangOpts.XRayAlwaysInstrumentFiles,
938 LangOpts.XRayNeverInstrumentFiles,
939 LangOpts.XRayAttrListFiles, SM)),
940 ProfList(new ProfileList(LangOpts.ProfileListFiles, SM)),
941 PrintingPolicy(LOpts), Idents(idents), Selectors(sels),
942 BuiltinInfo(builtins), TUKind(TUKind), DeclarationNames(*this),
943 Comments(SM), CommentCommandTraits(BumpAlloc, LOpts.CommentOpts),
944 CompCategories(this_()), LastSDM(nullptr, 0) {
945 addTranslationUnitDecl();
946}
947
948void ASTContext::cleanup() {
949 // Release the DenseMaps associated with DeclContext objects.
950 // FIXME: Is this the ideal solution?
951 ReleaseDeclContextMaps();
952
953 // Call all of the deallocation functions on all of their targets.
954 for (auto &Pair : Deallocations)
955 (Pair.first)(Pair.second);
956 Deallocations.clear();
957
958 // ASTRecordLayout objects in ASTRecordLayouts must always be destroyed
959 // because they can contain DenseMaps.
960 for (llvm::DenseMap<const ObjCContainerDecl*,
961 const ASTRecordLayout*>::iterator
962 I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; )
963 // Increment in loop to prevent using deallocated memory.
964 if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
965 R->Destroy(*this);
966 ObjCLayouts.clear();
967
968 for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
969 I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
970 // Increment in loop to prevent using deallocated memory.
971 if (auto *R = const_cast<ASTRecordLayout *>((I++)->second))
972 R->Destroy(*this);
973 }
974 ASTRecordLayouts.clear();
975
976 for (llvm::DenseMap<const Decl*, AttrVec*>::iterator A = DeclAttrs.begin(),
977 AEnd = DeclAttrs.end();
978 A != AEnd; ++A)
979 A->second->~AttrVec();
980 DeclAttrs.clear();
981
982 for (const auto &Value : ModuleInitializers)
983 Value.second->~PerModuleInitializers();
984 ModuleInitializers.clear();
985}
986
987ASTContext::~ASTContext() { cleanup(); }
988
989void ASTContext::setTraversalScope(const std::vector<Decl *> &TopLevelDecls) {
990 TraversalScope = TopLevelDecls;
991 getParentMapContext().clear();
992}
993
994void ASTContext::AddDeallocation(void (*Callback)(void *), void *Data) const {
995 Deallocations.push_back({Callback, Data});
996}
997
998void
999ASTContext::setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source) {
1000 ExternalSource = std::move(Source);
1001}
1002
1003void ASTContext::PrintStats() const {
1004 llvm::errs() << "\n*** AST Context Stats:\n";
1005 llvm::errs() << " " << Types.size() << " types total.\n";
1006
1007 unsigned counts[] = {
1008#define TYPE(Name, Parent) 0,
1009#define ABSTRACT_TYPE(Name, Parent)
1010#include "clang/AST/TypeNodes.inc"
1011 0 // Extra
1012 };
1013
1014 for (unsigned i = 0, e = Types.size(); i != e; ++i) {
1015 Type *T = Types[i];
1016 counts[(unsigned)T->getTypeClass()]++;
1017 }
1018
1019 unsigned Idx = 0;
1020 unsigned TotalBytes = 0;
1021#define TYPE(Name, Parent) \
1022 if (counts[Idx]) \
1023 llvm::errs() << " " << counts[Idx] << " " << #Name \
1024 << " types, " << sizeof(Name##Type) << " each " \
1025 << "(" << counts[Idx] * sizeof(Name##Type) \
1026 << " bytes)\n"; \
1027 TotalBytes += counts[Idx] * sizeof(Name##Type); \
1028 ++Idx;
1029#define ABSTRACT_TYPE(Name, Parent)
1030#include "clang/AST/TypeNodes.inc"
1031
1032 llvm::errs() << "Total bytes = " << TotalBytes << "\n";
1033
1034 // Implicit special member functions.
1035 llvm::errs() << NumImplicitDefaultConstructorsDeclared << "/"
1036 << NumImplicitDefaultConstructors
1037 << " implicit default constructors created\n";
1038 llvm::errs() << NumImplicitCopyConstructorsDeclared << "/"
1039 << NumImplicitCopyConstructors
1040 << " implicit copy constructors created\n";
1041 if (getLangOpts().CPlusPlus)
1042 llvm::errs() << NumImplicitMoveConstructorsDeclared << "/"
1043 << NumImplicitMoveConstructors
1044 << " implicit move constructors created\n";
1045 llvm::errs() << NumImplicitCopyAssignmentOperatorsDeclared << "/"
1046 << NumImplicitCopyAssignmentOperators
1047 << " implicit copy assignment operators created\n";
1048 if (getLangOpts().CPlusPlus)
1049 llvm::errs() << NumImplicitMoveAssignmentOperatorsDeclared << "/"
1050 << NumImplicitMoveAssignmentOperators
1051 << " implicit move assignment operators created\n";
1052 llvm::errs() << NumImplicitDestructorsDeclared << "/"
1053 << NumImplicitDestructors
1054 << " implicit destructors created\n";
1055
1056 if (ExternalSource) {
1057 llvm::errs() << "\n";
1058 ExternalSource->PrintStats();
1059 }
1060
1061 BumpAlloc.PrintStats();
1062}
1063
1064void ASTContext::mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
1065 bool NotifyListeners) {
1066 if (NotifyListeners)
1067 if (auto *Listener = getASTMutationListener())
1068 Listener->RedefinedHiddenDefinition(ND, M);
1069
1070 MergedDefModules[cast<NamedDecl>(ND->getCanonicalDecl())].push_back(M);
1071}
1072
1073void ASTContext::deduplicateMergedDefinitonsFor(NamedDecl *ND) {
1074 auto It = MergedDefModules.find(cast<NamedDecl>(ND->getCanonicalDecl()));
1075 if (It == MergedDefModules.end())
1076 return;
1077
1078 auto &Merged = It->second;
1079 llvm::DenseSet<Module*> Found;
1080 for (Module *&M : Merged)
1081 if (!Found.insert(M).second)
1082 M = nullptr;
1083 llvm::erase_value(Merged, nullptr);
1084}
1085
1086ArrayRef<Module *>
1087ASTContext::getModulesWithMergedDefinition(const NamedDecl *Def) {
1088 auto MergedIt =
1089 MergedDefModules.find(cast<NamedDecl>(Def->getCanonicalDecl()));
1090 if (MergedIt == MergedDefModules.end())
1091 return std::nullopt;
1092 return MergedIt->second;
1093}
1094
1095void ASTContext::PerModuleInitializers::resolve(ASTContext &Ctx) {
1096 if (LazyInitializers.empty())
1097 return;
1098
1099 auto *Source = Ctx.getExternalSource();
1100 assert(Source && "lazy initializers but no external source")(static_cast <bool> (Source && "lazy initializers but no external source"
) ? void (0) : __assert_fail ("Source && \"lazy initializers but no external source\""
, "clang/lib/AST/ASTContext.cpp", 1100, __extension__ __PRETTY_FUNCTION__
))
;
1101
1102 auto LazyInits = std::move(LazyInitializers);
1103 LazyInitializers.clear();
1104
1105 for (auto ID : LazyInits)
1106 Initializers.push_back(Source->GetExternalDecl(ID));
1107
1108 assert(LazyInitializers.empty() &&(static_cast <bool> (LazyInitializers.empty() &&
"GetExternalDecl for lazy module initializer added more inits"
) ? void (0) : __assert_fail ("LazyInitializers.empty() && \"GetExternalDecl for lazy module initializer added more inits\""
, "clang/lib/AST/ASTContext.cpp", 1109, __extension__ __PRETTY_FUNCTION__
))
1109 "GetExternalDecl for lazy module initializer added more inits")(static_cast <bool> (LazyInitializers.empty() &&
"GetExternalDecl for lazy module initializer added more inits"
) ? void (0) : __assert_fail ("LazyInitializers.empty() && \"GetExternalDecl for lazy module initializer added more inits\""
, "clang/lib/AST/ASTContext.cpp", 1109, __extension__ __PRETTY_FUNCTION__
))
;
1110}
1111
1112void ASTContext::addModuleInitializer(Module *M, Decl *D) {
1113 // One special case: if we add a module initializer that imports another
1114 // module, and that module's only initializer is an ImportDecl, simplify.
1115 if (const auto *ID = dyn_cast<ImportDecl>(D)) {
1116 auto It = ModuleInitializers.find(ID->getImportedModule());
1117
1118 // Maybe the ImportDecl does nothing at all. (Common case.)
1119 if (It == ModuleInitializers.end())
1120 return;
1121
1122 // Maybe the ImportDecl only imports another ImportDecl.
1123 auto &Imported = *It->second;
1124 if (Imported.Initializers.size() + Imported.LazyInitializers.size() == 1) {
1125 Imported.resolve(*this);
1126 auto *OnlyDecl = Imported.Initializers.front();
1127 if (isa<ImportDecl>(OnlyDecl))
1128 D = OnlyDecl;
1129 }
1130 }
1131
1132 auto *&Inits = ModuleInitializers[M];
1133 if (!Inits)
1134 Inits = new (*this) PerModuleInitializers;
1135 Inits->Initializers.push_back(D);
1136}
1137
1138void ASTContext::addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs) {
1139 auto *&Inits = ModuleInitializers[M];
1140 if (!Inits)
1141 Inits = new (*this) PerModuleInitializers;
1142 Inits->LazyInitializers.insert(Inits->LazyInitializers.end(),
1143 IDs.begin(), IDs.end());
1144}
1145
1146ArrayRef<Decl *> ASTContext::getModuleInitializers(Module *M) {
1147 auto It = ModuleInitializers.find(M);
1148 if (It == ModuleInitializers.end())
1149 return std::nullopt;
1150
1151 auto *Inits = It->second;
1152 Inits->resolve(*this);
1153 return Inits->Initializers;
1154}
1155
1156void ASTContext::setCurrentNamedModule(Module *M) {
1157 assert(M->isModulePurview())(static_cast <bool> (M->isModulePurview()) ? void (0
) : __assert_fail ("M->isModulePurview()", "clang/lib/AST/ASTContext.cpp"
, 1157, __extension__ __PRETTY_FUNCTION__))
;
1158 assert(!CurrentCXXNamedModule &&(static_cast <bool> (!CurrentCXXNamedModule && "We should set named module for ASTContext for only once"
) ? void (0) : __assert_fail ("!CurrentCXXNamedModule && \"We should set named module for ASTContext for only once\""
, "clang/lib/AST/ASTContext.cpp", 1159, __extension__ __PRETTY_FUNCTION__
))
1159 "We should set named module for ASTContext for only once")(static_cast <bool> (!CurrentCXXNamedModule && "We should set named module for ASTContext for only once"
) ? void (0) : __assert_fail ("!CurrentCXXNamedModule && \"We should set named module for ASTContext for only once\""
, "clang/lib/AST/ASTContext.cpp", 1159, __extension__ __PRETTY_FUNCTION__
))
;
1160 CurrentCXXNamedModule = M;
1161}
1162
1163ExternCContextDecl *ASTContext::getExternCContextDecl() const {
1164 if (!ExternCContext)
1165 ExternCContext = ExternCContextDecl::Create(*this, getTranslationUnitDecl());
1166
1167 return ExternCContext;
1168}
1169
1170BuiltinTemplateDecl *
1171ASTContext::buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
1172 const IdentifierInfo *II) const {
1173 auto *BuiltinTemplate =
1174 BuiltinTemplateDecl::Create(*this, getTranslationUnitDecl(), II, BTK);
1175 BuiltinTemplate->setImplicit();
1176 getTranslationUnitDecl()->addDecl(BuiltinTemplate);
1177
1178 return BuiltinTemplate;
1179}
1180
1181BuiltinTemplateDecl *
1182ASTContext::getMakeIntegerSeqDecl() const {
1183 if (!MakeIntegerSeqDecl)
1184 MakeIntegerSeqDecl = buildBuiltinTemplateDecl(BTK__make_integer_seq,
1185 getMakeIntegerSeqName());
1186 return MakeIntegerSeqDecl;
1187}
1188
1189BuiltinTemplateDecl *
1190ASTContext::getTypePackElementDecl() const {
1191 if (!TypePackElementDecl)
1192 TypePackElementDecl = buildBuiltinTemplateDecl(BTK__type_pack_element,
1193 getTypePackElementName());
1194 return TypePackElementDecl;
1195}
1196
1197RecordDecl *ASTContext::buildImplicitRecord(StringRef Name,
1198 RecordDecl::TagKind TK) const {
1199 SourceLocation Loc;
1200 RecordDecl *NewDecl;
1201 if (getLangOpts().CPlusPlus)
1202 NewDecl = CXXRecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc,
1203 Loc, &Idents.get(Name));
1204 else
1205 NewDecl = RecordDecl::Create(*this, TK, getTranslationUnitDecl(), Loc, Loc,
1206 &Idents.get(Name));
1207 NewDecl->setImplicit();
1208 NewDecl->addAttr(TypeVisibilityAttr::CreateImplicit(
1209 const_cast<ASTContext &>(*this), TypeVisibilityAttr::Default));
1210 return NewDecl;
1211}
1212
1213TypedefDecl *ASTContext::buildImplicitTypedef(QualType T,
1214 StringRef Name) const {
1215 TypeSourceInfo *TInfo = getTrivialTypeSourceInfo(T);
1216 TypedefDecl *NewDecl = TypedefDecl::Create(
1217 const_cast<ASTContext &>(*this), getTranslationUnitDecl(),
1218 SourceLocation(), SourceLocation(), &Idents.get(Name), TInfo);
1219 NewDecl->setImplicit();
1220 return NewDecl;
1221}
1222
1223TypedefDecl *ASTContext::getInt128Decl() const {
1224 if (!Int128Decl)
1225 Int128Decl = buildImplicitTypedef(Int128Ty, "__int128_t");
1226 return Int128Decl;
1227}
1228
1229TypedefDecl *ASTContext::getUInt128Decl() const {
1230 if (!UInt128Decl)
1231 UInt128Decl = buildImplicitTypedef(UnsignedInt128Ty, "__uint128_t");
1232 return UInt128Decl;
1233}
1234
1235void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
1236 auto *Ty = new (*this, TypeAlignment) BuiltinType(K);
1237 R = CanQualType::CreateUnsafe(QualType(Ty, 0));
1238 Types.push_back(Ty);
1239}
1240
1241void ASTContext::InitBuiltinTypes(const TargetInfo &Target,
1242 const TargetInfo *AuxTarget) {
1243 assert((!this->Target || this->Target == &Target) &&(static_cast <bool> ((!this->Target || this->Target
== &Target) && "Incorrect target reinitialization"
) ? void (0) : __assert_fail ("(!this->Target || this->Target == &Target) && \"Incorrect target reinitialization\""
, "clang/lib/AST/ASTContext.cpp", 1244, __extension__ __PRETTY_FUNCTION__
))
1244 "Incorrect target reinitialization")(static_cast <bool> ((!this->Target || this->Target
== &Target) && "Incorrect target reinitialization"
) ? void (0) : __assert_fail ("(!this->Target || this->Target == &Target) && \"Incorrect target reinitialization\""
, "clang/lib/AST/ASTContext.cpp", 1244, __extension__ __PRETTY_FUNCTION__
))
;
1245 assert(VoidTy.isNull() && "Context reinitialized?")(static_cast <bool> (VoidTy.isNull() && "Context reinitialized?"
) ? void (0) : __assert_fail ("VoidTy.isNull() && \"Context reinitialized?\""
, "clang/lib/AST/ASTContext.cpp", 1245, __extension__ __PRETTY_FUNCTION__
))
;
1246
1247 this->Target = &Target;
1248 this->AuxTarget = AuxTarget;
1249
1250 ABI.reset(createCXXABI(Target));
1251 AddrSpaceMapMangling = isAddrSpaceMapManglingEnabled(Target, LangOpts);
1252
1253 // C99 6.2.5p19.
1254 InitBuiltinType(VoidTy, BuiltinType::Void);
1255
1256 // C99 6.2.5p2.
1257 InitBuiltinType(BoolTy, BuiltinType::Bool);
1258 // C99 6.2.5p3.
1259 if (LangOpts.CharIsSigned)
1260 InitBuiltinType(CharTy, BuiltinType::Char_S);
1261 else
1262 InitBuiltinType(CharTy, BuiltinType::Char_U);
1263 // C99 6.2.5p4.
1264 InitBuiltinType(SignedCharTy, BuiltinType::SChar);
1265 InitBuiltinType(ShortTy, BuiltinType::Short);
1266 InitBuiltinType(IntTy, BuiltinType::Int);
1267 InitBuiltinType(LongTy, BuiltinType::Long);
1268 InitBuiltinType(LongLongTy, BuiltinType::LongLong);
1269
1270 // C99 6.2.5p6.
1271 InitBuiltinType(UnsignedCharTy, BuiltinType::UChar);
1272 InitBuiltinType(UnsignedShortTy, BuiltinType::UShort);
1273 InitBuiltinType(UnsignedIntTy, BuiltinType::UInt);
1274 InitBuiltinType(UnsignedLongTy, BuiltinType::ULong);
1275 InitBuiltinType(UnsignedLongLongTy, BuiltinType::ULongLong);
1276
1277 // C99 6.2.5p10.
1278 InitBuiltinType(FloatTy, BuiltinType::Float);
1279 InitBuiltinType(DoubleTy, BuiltinType::Double);
1280 InitBuiltinType(LongDoubleTy, BuiltinType::LongDouble);
1281
1282 // GNU extension, __float128 for IEEE quadruple precision
1283 InitBuiltinType(Float128Ty, BuiltinType::Float128);
1284
1285 // __ibm128 for IBM extended precision
1286 InitBuiltinType(Ibm128Ty, BuiltinType::Ibm128);
1287
1288 // C11 extension ISO/IEC TS 18661-3
1289 InitBuiltinType(Float16Ty, BuiltinType::Float16);
1290
1291 // ISO/IEC JTC1 SC22 WG14 N1169 Extension
1292 InitBuiltinType(ShortAccumTy, BuiltinType::ShortAccum);
1293 InitBuiltinType(AccumTy, BuiltinType::Accum);
1294 InitBuiltinType(LongAccumTy, BuiltinType::LongAccum);
1295 InitBuiltinType(UnsignedShortAccumTy, BuiltinType::UShortAccum);
1296 InitBuiltinType(UnsignedAccumTy, BuiltinType::UAccum);
1297 InitBuiltinType(UnsignedLongAccumTy, BuiltinType::ULongAccum);
1298 InitBuiltinType(ShortFractTy, BuiltinType::ShortFract);
1299 InitBuiltinType(FractTy, BuiltinType::Fract);
1300 InitBuiltinType(LongFractTy, BuiltinType::LongFract);
1301 InitBuiltinType(UnsignedShortFractTy, BuiltinType::UShortFract);
1302 InitBuiltinType(UnsignedFractTy, BuiltinType::UFract);
1303 InitBuiltinType(UnsignedLongFractTy, BuiltinType::ULongFract);
1304 InitBuiltinType(SatShortAccumTy, BuiltinType::SatShortAccum);
1305 InitBuiltinType(SatAccumTy, BuiltinType::SatAccum);
1306 InitBuiltinType(SatLongAccumTy, BuiltinType::SatLongAccum);
1307 InitBuiltinType(SatUnsignedShortAccumTy, BuiltinType::SatUShortAccum);
1308 InitBuiltinType(SatUnsignedAccumTy, BuiltinType::SatUAccum);
1309 InitBuiltinType(SatUnsignedLongAccumTy, BuiltinType::SatULongAccum);
1310 InitBuiltinType(SatShortFractTy, BuiltinType::SatShortFract);
1311 InitBuiltinType(SatFractTy, BuiltinType::SatFract);
1312 InitBuiltinType(SatLongFractTy, BuiltinType::SatLongFract);
1313 InitBuiltinType(SatUnsignedShortFractTy, BuiltinType::SatUShortFract);
1314 InitBuiltinType(SatUnsignedFractTy, BuiltinType::SatUFract);
1315 InitBuiltinType(SatUnsignedLongFractTy, BuiltinType::SatULongFract);
1316
1317 // GNU extension, 128-bit integers.
1318 InitBuiltinType(Int128Ty, BuiltinType::Int128);
1319 InitBuiltinType(UnsignedInt128Ty, BuiltinType::UInt128);
1320
1321 // C++ 3.9.1p5
1322 if (TargetInfo::isTypeSigned(Target.getWCharType()))
1323 InitBuiltinType(WCharTy, BuiltinType::WChar_S);
1324 else // -fshort-wchar makes wchar_t be unsigned.
1325 InitBuiltinType(WCharTy, BuiltinType::WChar_U);
1326 if (LangOpts.CPlusPlus && LangOpts.WChar)
1327 WideCharTy = WCharTy;
1328 else {
1329 // C99 (or C++ using -fno-wchar).
1330 WideCharTy = getFromTargetType(Target.getWCharType());
1331 }
1332
1333 WIntTy = getFromTargetType(Target.getWIntType());
1334
1335 // C++20 (proposed)
1336 InitBuiltinType(Char8Ty, BuiltinType::Char8);
1337
1338 if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1339 InitBuiltinType(Char16Ty, BuiltinType::Char16);
1340 else // C99
1341 Char16Ty = getFromTargetType(Target.getChar16Type());
1342
1343 if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
1344 InitBuiltinType(Char32Ty, BuiltinType::Char32);
1345 else // C99
1346 Char32Ty = getFromTargetType(Target.getChar32Type());
1347
1348 // Placeholder type for type-dependent expressions whose type is
1349 // completely unknown. No code should ever check a type against
1350 // DependentTy and users should never see it; however, it is here to
1351 // help diagnose failures to properly check for type-dependent
1352 // expressions.
1353 InitBuiltinType(DependentTy, BuiltinType::Dependent);
1354
1355 // Placeholder type for functions.
1356 InitBuiltinType(OverloadTy, BuiltinType::Overload);
1357
1358 // Placeholder type for bound members.
1359 InitBuiltinType(BoundMemberTy, BuiltinType::BoundMember);
1360
1361 // Placeholder type for pseudo-objects.
1362 InitBuiltinType(PseudoObjectTy, BuiltinType::PseudoObject);
1363
1364 // "any" type; useful for debugger-like clients.
1365 InitBuiltinType(UnknownAnyTy, BuiltinType::UnknownAny);
1366
1367 // Placeholder type for unbridged ARC casts.
1368 InitBuiltinType(ARCUnbridgedCastTy, BuiltinType::ARCUnbridgedCast);
1369
1370 // Placeholder type for builtin functions.
1371 InitBuiltinType(BuiltinFnTy, BuiltinType::BuiltinFn);
1372
1373 // Placeholder type for OMP array sections.
1374 if (LangOpts.OpenMP) {
1375 InitBuiltinType(OMPArraySectionTy, BuiltinType::OMPArraySection);
1376 InitBuiltinType(OMPArrayShapingTy, BuiltinType::OMPArrayShaping);
1377 InitBuiltinType(OMPIteratorTy, BuiltinType::OMPIterator);
1378 }
1379 if (LangOpts.MatrixTypes)
1380 InitBuiltinType(IncompleteMatrixIdxTy, BuiltinType::IncompleteMatrixIdx);
1381
1382 // Builtin types for 'id', 'Class', and 'SEL'.
1383 InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
1384 InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
1385 InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
1386
1387 if (LangOpts.OpenCL) {
1388#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
1389 InitBuiltinType(SingletonId, BuiltinType::Id);
1390#include "clang/Basic/OpenCLImageTypes.def"
1391
1392 InitBuiltinType(OCLSamplerTy, BuiltinType::OCLSampler);
1393 InitBuiltinType(OCLEventTy, BuiltinType::OCLEvent);
1394 InitBuiltinType(OCLClkEventTy, BuiltinType::OCLClkEvent);
1395 InitBuiltinType(OCLQueueTy, BuiltinType::OCLQueue);
1396 InitBuiltinType(OCLReserveIDTy, BuiltinType::OCLReserveID);
1397
1398#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
1399 InitBuiltinType(Id##Ty, BuiltinType::Id);
1400#include "clang/Basic/OpenCLExtensionTypes.def"
1401 }
1402
1403 if (Target.hasAArch64SVETypes()) {
1404#define SVE_TYPE(Name, Id, SingletonId) \
1405 InitBuiltinType(SingletonId, BuiltinType::Id);
1406#include "clang/Basic/AArch64SVEACLETypes.def"
1407 }
1408
1409 if (Target.getTriple().isPPC64()) {
1410#define PPC_VECTOR_MMA_TYPE(Name, Id, Size) \
1411 InitBuiltinType(Id##Ty, BuiltinType::Id);
1412#include "clang/Basic/PPCTypes.def"
1413#define PPC_VECTOR_VSX_TYPE(Name, Id, Size) \
1414 InitBuiltinType(Id##Ty, BuiltinType::Id);
1415#include "clang/Basic/PPCTypes.def"
1416 }
1417
1418 if (Target.hasRISCVVTypes()) {
1419#define RVV_TYPE(Name, Id, SingletonId) \
1420 InitBuiltinType(SingletonId, BuiltinType::Id);
1421#include "clang/Basic/RISCVVTypes.def"
1422 }
1423
1424 if (Target.getTriple().isWasm() && Target.hasFeature("reference-types")) {
1425#define WASM_TYPE(Name, Id, SingletonId) \
1426 InitBuiltinType(SingletonId, BuiltinType::Id);
1427#include "clang/Basic/WebAssemblyReferenceTypes.def"
1428 }
1429
1430 // Builtin type for __objc_yes and __objc_no
1431 ObjCBuiltinBoolTy = (Target.useSignedCharForObjCBool() ?
1432 SignedCharTy : BoolTy);
1433
1434 ObjCConstantStringType = QualType();
1435
1436 ObjCSuperType = QualType();
1437
1438 // void * type
1439 if (LangOpts.OpenCLGenericAddressSpace) {
1440 auto Q = VoidTy.getQualifiers();
1441 Q.setAddressSpace(LangAS::opencl_generic);
1442 VoidPtrTy = getPointerType(getCanonicalType(
1443 getQualifiedType(VoidTy.getUnqualifiedType(), Q)));
1444 } else {
1445 VoidPtrTy = getPointerType(VoidTy);
1446 }
1447
1448 // nullptr type (C++0x 2.14.7)
1449 InitBuiltinType(NullPtrTy, BuiltinType::NullPtr);
1450
1451 // half type (OpenCL 6.1.1.1) / ARM NEON __fp16
1452 InitBuiltinType(HalfTy, BuiltinType::Half);
1453
1454 InitBuiltinType(BFloat16Ty, BuiltinType::BFloat16);
1455
1456 // Builtin type used to help define __builtin_va_list.
1457 VaListTagDecl = nullptr;
1458
1459 // MSVC predeclares struct _GUID, and we need it to create MSGuidDecls.
1460 if (LangOpts.MicrosoftExt || LangOpts.Borland) {
1461 MSGuidTagDecl = buildImplicitRecord("_GUID");
1462 getTranslationUnitDecl()->addDecl(MSGuidTagDecl);
1463 }
1464}
1465
1466DiagnosticsEngine &ASTContext::getDiagnostics() const {
1467 return SourceMgr.getDiagnostics();
1468}
1469
1470AttrVec& ASTContext::getDeclAttrs(const Decl *D) {
1471 AttrVec *&Result = DeclAttrs[D];
1472 if (!Result) {
1473 void *Mem = Allocate(sizeof(AttrVec));
1474 Result = new (Mem) AttrVec;
1475 }
1476
1477 return *Result;
1478}
1479
1480/// Erase the attributes corresponding to the given declaration.
1481void ASTContext::eraseDeclAttrs(const Decl *D) {
1482 llvm::DenseMap<const Decl*, AttrVec*>::iterator Pos = DeclAttrs.find(D);
1483 if (Pos != DeclAttrs.end()) {
1484 Pos->second->~AttrVec();
1485 DeclAttrs.erase(Pos);
1486 }
1487}
1488
1489// FIXME: Remove ?
1490MemberSpecializationInfo *
1491ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
1492 assert(Var->isStaticDataMember() && "Not a static data member")(static_cast <bool> (Var->isStaticDataMember() &&
"Not a static data member") ? void (0) : __assert_fail ("Var->isStaticDataMember() && \"Not a static data member\""
, "clang/lib/AST/ASTContext.cpp", 1492, __extension__ __PRETTY_FUNCTION__
))
;
1493 return getTemplateOrSpecializationInfo(Var)
1494 .dyn_cast<MemberSpecializationInfo *>();
1495}
1496
1497ASTContext::TemplateOrSpecializationInfo
1498ASTContext::getTemplateOrSpecializationInfo(const VarDecl *Var) {
1499 llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>::iterator Pos =
1500 TemplateOrInstantiation.find(Var);
1501 if (Pos == TemplateOrInstantiation.end())
1502 return {};
1503
1504 return Pos->second;
1505}
1506
1507void
1508ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
1509 TemplateSpecializationKind TSK,
1510 SourceLocation PointOfInstantiation) {
1511 assert(Inst->isStaticDataMember() && "Not a static data member")(static_cast <bool> (Inst->isStaticDataMember() &&
"Not a static data member") ? void (0) : __assert_fail ("Inst->isStaticDataMember() && \"Not a static data member\""
, "clang/lib/AST/ASTContext.cpp", 1511, __extension__ __PRETTY_FUNCTION__
))
;
1512 assert(Tmpl->isStaticDataMember() && "Not a static data member")(static_cast <bool> (Tmpl->isStaticDataMember() &&
"Not a static data member") ? void (0) : __assert_fail ("Tmpl->isStaticDataMember() && \"Not a static data member\""
, "clang/lib/AST/ASTContext.cpp", 1512, __extension__ __PRETTY_FUNCTION__
))
;
1513 setTemplateOrSpecializationInfo(Inst, new (*this) MemberSpecializationInfo(
1514 Tmpl, TSK, PointOfInstantiation));
1515}
1516
1517void
1518ASTContext::setTemplateOrSpecializationInfo(VarDecl *Inst,
1519 TemplateOrSpecializationInfo TSI) {
1520 assert(!TemplateOrInstantiation[Inst] &&(static_cast <bool> (!TemplateOrInstantiation[Inst] &&
"Already noted what the variable was instantiated from") ? void
(0) : __assert_fail ("!TemplateOrInstantiation[Inst] && \"Already noted what the variable was instantiated from\""
, "clang/lib/AST/ASTContext.cpp", 1521, __extension__ __PRETTY_FUNCTION__
))
1521 "Already noted what the variable was instantiated from")(static_cast <bool> (!TemplateOrInstantiation[Inst] &&
"Already noted what the variable was instantiated from") ? void
(0) : __assert_fail ("!TemplateOrInstantiation[Inst] && \"Already noted what the variable was instantiated from\""
, "clang/lib/AST/ASTContext.cpp", 1521, __extension__ __PRETTY_FUNCTION__
))
;
1522 TemplateOrInstantiation[Inst] = TSI;
1523}
1524
1525NamedDecl *
1526ASTContext::getInstantiatedFromUsingDecl(NamedDecl *UUD) {
1527 auto Pos = InstantiatedFromUsingDecl.find(UUD);
1528 if (Pos == InstantiatedFromUsingDecl.end())
1529 return nullptr;
1530
1531 return Pos->second;
1532}
1533
1534void
1535ASTContext::setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern) {
1536 assert((isa<UsingDecl>(Pattern) ||(static_cast <bool> ((isa<UsingDecl>(Pattern) || isa
<UnresolvedUsingValueDecl>(Pattern) || isa<UnresolvedUsingTypenameDecl
>(Pattern)) && "pattern decl is not a using decl")
? void (0) : __assert_fail ("(isa<UsingDecl>(Pattern) || isa<UnresolvedUsingValueDecl>(Pattern) || isa<UnresolvedUsingTypenameDecl>(Pattern)) && \"pattern decl is not a using decl\""
, "clang/lib/AST/ASTContext.cpp", 1539, __extension__ __PRETTY_FUNCTION__
))
1537 isa<UnresolvedUsingValueDecl>(Pattern) ||(static_cast <bool> ((isa<UsingDecl>(Pattern) || isa
<UnresolvedUsingValueDecl>(Pattern) || isa<UnresolvedUsingTypenameDecl
>(Pattern)) && "pattern decl is not a using decl")
? void (0) : __assert_fail ("(isa<UsingDecl>(Pattern) || isa<UnresolvedUsingValueDecl>(Pattern) || isa<UnresolvedUsingTypenameDecl>(Pattern)) && \"pattern decl is not a using decl\""
, "clang/lib/AST/ASTContext.cpp", 1539, __extension__ __PRETTY_FUNCTION__
))
1538 isa<UnresolvedUsingTypenameDecl>(Pattern)) &&(static_cast <bool> ((isa<UsingDecl>(Pattern) || isa
<UnresolvedUsingValueDecl>(Pattern) || isa<UnresolvedUsingTypenameDecl
>(Pattern)) && "pattern decl is not a using decl")
? void (0) : __assert_fail ("(isa<UsingDecl>(Pattern) || isa<UnresolvedUsingValueDecl>(Pattern) || isa<UnresolvedUsingTypenameDecl>(Pattern)) && \"pattern decl is not a using decl\""
, "clang/lib/AST/ASTContext.cpp", 1539, __extension__ __PRETTY_FUNCTION__
))
1539 "pattern decl is not a using decl")(static_cast <bool> ((isa<UsingDecl>(Pattern) || isa
<UnresolvedUsingValueDecl>(Pattern) || isa<UnresolvedUsingTypenameDecl
>(Pattern)) && "pattern decl is not a using decl")
? void (0) : __assert_fail ("(isa<UsingDecl>(Pattern) || isa<UnresolvedUsingValueDecl>(Pattern) || isa<UnresolvedUsingTypenameDecl>(Pattern)) && \"pattern decl is not a using decl\""
, "clang/lib/AST/ASTContext.cpp", 1539, __extension__ __PRETTY_FUNCTION__
))
;
1540 assert((isa<UsingDecl>(Inst) ||(static_cast <bool> ((isa<UsingDecl>(Inst) || isa
<UnresolvedUsingValueDecl>(Inst) || isa<UnresolvedUsingTypenameDecl
>(Inst)) && "instantiation did not produce a using decl"
) ? void (0) : __assert_fail ("(isa<UsingDecl>(Inst) || isa<UnresolvedUsingValueDecl>(Inst) || isa<UnresolvedUsingTypenameDecl>(Inst)) && \"instantiation did not produce a using decl\""
, "clang/lib/AST/ASTContext.cpp", 1543, __extension__ __PRETTY_FUNCTION__
))
1541 isa<UnresolvedUsingValueDecl>(Inst) ||(static_cast <bool> ((isa<UsingDecl>(Inst) || isa
<UnresolvedUsingValueDecl>(Inst) || isa<UnresolvedUsingTypenameDecl
>(Inst)) && "instantiation did not produce a using decl"
) ? void (0) : __assert_fail ("(isa<UsingDecl>(Inst) || isa<UnresolvedUsingValueDecl>(Inst) || isa<UnresolvedUsingTypenameDecl>(Inst)) && \"instantiation did not produce a using decl\""
, "clang/lib/AST/ASTContext.cpp", 1543, __extension__ __PRETTY_FUNCTION__
))
1542 isa<UnresolvedUsingTypenameDecl>(Inst)) &&(static_cast <bool> ((isa<UsingDecl>(Inst) || isa
<UnresolvedUsingValueDecl>(Inst) || isa<UnresolvedUsingTypenameDecl
>(Inst)) && "instantiation did not produce a using decl"
) ? void (0) : __assert_fail ("(isa<UsingDecl>(Inst) || isa<UnresolvedUsingValueDecl>(Inst) || isa<UnresolvedUsingTypenameDecl>(Inst)) && \"instantiation did not produce a using decl\""
, "clang/lib/AST/ASTContext.cpp", 1543, __extension__ __PRETTY_FUNCTION__
))
1543 "instantiation did not produce a using decl")(static_cast <bool> ((isa<UsingDecl>(Inst) || isa
<UnresolvedUsingValueDecl>(Inst) || isa<UnresolvedUsingTypenameDecl
>(Inst)) && "instantiation did not produce a using decl"
) ? void (0) : __assert_fail ("(isa<UsingDecl>(Inst) || isa<UnresolvedUsingValueDecl>(Inst) || isa<UnresolvedUsingTypenameDecl>(Inst)) && \"instantiation did not produce a using decl\""
, "clang/lib/AST/ASTContext.cpp", 1543, __extension__ __PRETTY_FUNCTION__
))
;
1544 assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists")(static_cast <bool> (!InstantiatedFromUsingDecl[Inst] &&
"pattern already exists") ? void (0) : __assert_fail ("!InstantiatedFromUsingDecl[Inst] && \"pattern already exists\""
, "clang/lib/AST/ASTContext.cpp", 1544, __extension__ __PRETTY_FUNCTION__
))
;
1545 InstantiatedFromUsingDecl[Inst] = Pattern;
1546}
1547
1548UsingEnumDecl *
1549ASTContext::getInstantiatedFromUsingEnumDecl(UsingEnumDecl *UUD) {
1550 auto Pos = InstantiatedFromUsingEnumDecl.find(UUD);
1551 if (Pos == InstantiatedFromUsingEnumDecl.end())
1552 return nullptr;
1553
1554 return Pos->second;
1555}
1556
1557void ASTContext::setInstantiatedFromUsingEnumDecl(UsingEnumDecl *Inst,
1558 UsingEnumDecl *Pattern) {
1559 assert(!InstantiatedFromUsingEnumDecl[Inst] && "pattern already exists")(static_cast <bool> (!InstantiatedFromUsingEnumDecl[Inst
] && "pattern already exists") ? void (0) : __assert_fail
("!InstantiatedFromUsingEnumDecl[Inst] && \"pattern already exists\""
, "clang/lib/AST/ASTContext.cpp", 1559, __extension__ __PRETTY_FUNCTION__
))
;
1560 InstantiatedFromUsingEnumDecl[Inst] = Pattern;
1561}
1562
1563UsingShadowDecl *
1564ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
1565 llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
1566 = InstantiatedFromUsingShadowDecl.find(Inst);
1567 if (Pos == InstantiatedFromUsingShadowDecl.end())
1568 return nullptr;
1569
1570 return Pos->second;
1571}
1572
1573void
1574ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
1575 UsingShadowDecl *Pattern) {
1576 assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists")(static_cast <bool> (!InstantiatedFromUsingShadowDecl[Inst
] && "pattern already exists") ? void (0) : __assert_fail
("!InstantiatedFromUsingShadowDecl[Inst] && \"pattern already exists\""
, "clang/lib/AST/ASTContext.cpp", 1576, __extension__ __PRETTY_FUNCTION__
))
;
1577 InstantiatedFromUsingShadowDecl[Inst] = Pattern;
1578}
1579
1580FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
1581 llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
1582 = InstantiatedFromUnnamedFieldDecl.find(Field);
1583 if (Pos == InstantiatedFromUnnamedFieldDecl.end())
1584 return nullptr;
1585
1586 return Pos->second;
1587}
1588
1589void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
1590 FieldDecl *Tmpl) {
1591 assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed")(static_cast <bool> (!Inst->getDeclName() &&
"Instantiated field decl is not unnamed") ? void (0) : __assert_fail
("!Inst->getDeclName() && \"Instantiated field decl is not unnamed\""
, "clang/lib/AST/ASTContext.cpp", 1591, __extension__ __PRETTY_FUNCTION__
))
;
1592 assert(!Tmpl->getDeclName() && "Template field decl is not unnamed")(static_cast <bool> (!Tmpl->getDeclName() &&
"Template field decl is not unnamed") ? void (0) : __assert_fail
("!Tmpl->getDeclName() && \"Template field decl is not unnamed\""
, "clang/lib/AST/ASTContext.cpp", 1592, __extension__ __PRETTY_FUNCTION__
))
;
1593 assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&(static_cast <bool> (!InstantiatedFromUnnamedFieldDecl[
Inst] && "Already noted what unnamed field was instantiated from"
) ? void (0) : __assert_fail ("!InstantiatedFromUnnamedFieldDecl[Inst] && \"Already noted what unnamed field was instantiated from\""
, "clang/lib/AST/ASTContext.cpp", 1594, __extension__ __PRETTY_FUNCTION__
))
1594 "Already noted what unnamed field was instantiated from")(static_cast <bool> (!InstantiatedFromUnnamedFieldDecl[
Inst] && "Already noted what unnamed field was instantiated from"
) ? void (0) : __assert_fail ("!InstantiatedFromUnnamedFieldDecl[Inst] && \"Already noted what unnamed field was instantiated from\""
, "clang/lib/AST/ASTContext.cpp", 1594, __extension__ __PRETTY_FUNCTION__
))
;
1595
1596 InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
1597}
1598
1599ASTContext::overridden_cxx_method_iterator
1600ASTContext::overridden_methods_begin(const CXXMethodDecl *Method) const {
1601 return overridden_methods(Method).begin();
1602}
1603
1604ASTContext::overridden_cxx_method_iterator
1605ASTContext::overridden_methods_end(const CXXMethodDecl *Method) const {
1606 return overridden_methods(Method).end();
1607}
1608
1609unsigned
1610ASTContext::overridden_methods_size(const CXXMethodDecl *Method) const {
1611 auto Range = overridden_methods(Method);
1612 return Range.end() - Range.begin();
1613}
1614
1615ASTContext::overridden_method_range
1616ASTContext::overridden_methods(const CXXMethodDecl *Method) const {
1617 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector>::const_iterator Pos =
1618 OverriddenMethods.find(Method->getCanonicalDecl());
1619 if (Pos == OverriddenMethods.end())
1620 return overridden_method_range(nullptr, nullptr);
1621 return overridden_method_range(Pos->second.begin(), Pos->second.end());
1622}
1623
1624void ASTContext::addOverriddenMethod(const CXXMethodDecl *Method,
1625 const CXXMethodDecl *Overridden) {
1626 assert(Method->isCanonicalDecl() && Overridden->isCanonicalDecl())(static_cast <bool> (Method->isCanonicalDecl() &&
Overridden->isCanonicalDecl()) ? void (0) : __assert_fail
("Method->isCanonicalDecl() && Overridden->isCanonicalDecl()"
, "clang/lib/AST/ASTContext.cpp", 1626, __extension__ __PRETTY_FUNCTION__
))
;
1627 OverriddenMethods[Method].push_back(Overridden);
1628}
1629
1630void ASTContext::getOverriddenMethods(
1631 const NamedDecl *D,
1632 SmallVectorImpl<const NamedDecl *> &Overridden) const {
1633 assert(D)(static_cast <bool> (D) ? void (0) : __assert_fail ("D"
, "clang/lib/AST/ASTContext.cpp", 1633, __extension__ __PRETTY_FUNCTION__
))
;
1634
1635 if (const auto *CXXMethod = dyn_cast<CXXMethodDecl>(D)) {
1636 Overridden.append(overridden_methods_begin(CXXMethod),
1637 overridden_methods_end(CXXMethod));
1638 return;
1639 }
1640
1641 const auto *Method = dyn_cast<ObjCMethodDecl>(D);
1642 if (!Method)
1643 return;
1644
1645 SmallVector<const ObjCMethodDecl *, 8> OverDecls;
1646 Method->getOverriddenMethods(OverDecls);
1647 Overridden.append(OverDecls.begin(), OverDecls.end());
1648}
1649
1650void ASTContext::addedLocalImportDecl(ImportDecl *Import) {
1651 assert(!Import->getNextLocalImport() &&(static_cast <bool> (!Import->getNextLocalImport() &&
"Import declaration already in the chain") ? void (0) : __assert_fail
("!Import->getNextLocalImport() && \"Import declaration already in the chain\""
, "clang/lib/AST/ASTContext.cpp", 1652, __extension__ __PRETTY_FUNCTION__
))
1652 "Import declaration already in the chain")(static_cast <bool> (!Import->getNextLocalImport() &&
"Import declaration already in the chain") ? void (0) : __assert_fail
("!Import->getNextLocalImport() && \"Import declaration already in the chain\""
, "clang/lib/AST/ASTContext.cpp", 1652, __extension__ __PRETTY_FUNCTION__
))
;
1653 assert(!Import->isFromASTFile() && "Non-local import declaration")(static_cast <bool> (!Import->isFromASTFile() &&
"Non-local import declaration") ? void (0) : __assert_fail (
"!Import->isFromASTFile() && \"Non-local import declaration\""
, "clang/lib/AST/ASTContext.cpp", 1653, __extension__ __PRETTY_FUNCTION__
))
;
1654 if (!FirstLocalImport) {
1655 FirstLocalImport = Import;
1656 LastLocalImport = Import;
1657 return;
1658 }
1659
1660 LastLocalImport->setNextLocalImport(Import);
1661 LastLocalImport = Import;
1662}
1663
1664//===----------------------------------------------------------------------===//
1665// Type Sizing and Analysis
1666//===----------------------------------------------------------------------===//
1667
1668/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
1669/// scalar floating point type.
1670const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
1671 switch (T->castAs<BuiltinType>()->getKind()) {
1672 default:
1673 llvm_unreachable("Not a floating point type!")::llvm::llvm_unreachable_internal("Not a floating point type!"
, "clang/lib/AST/ASTContext.cpp", 1673)
;
1674 case BuiltinType::BFloat16:
1675 return Target->getBFloat16Format();
1676 case BuiltinType::Float16:
1677 return Target->getHalfFormat();
1678 case BuiltinType::Half:
1679 // For HLSL, when the native half type is disabled, half will be treat as
1680 // float.
1681 if (getLangOpts().HLSL)
1682 if (getLangOpts().NativeHalfType)
1683 return Target->getHalfFormat();
1684 else
1685 return Target->getFloatFormat();
1686 else
1687 return Target->getHalfFormat();
1688 case BuiltinType::Float: return Target->getFloatFormat();
1689 case BuiltinType::Double: return Target->getDoubleFormat();
1690 case BuiltinType::Ibm128:
1691 return Target->getIbm128Format();
1692 case BuiltinType::LongDouble:
1693 if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice)
1694 return AuxTarget->getLongDoubleFormat();
1695 return Target->getLongDoubleFormat();
1696 case BuiltinType::Float128:
1697 if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice)
1698 return AuxTarget->getFloat128Format();
1699 return Target->getFloat128Format();
1700 }
1701}
1702
1703CharUnits ASTContext::getDeclAlign(const Decl *D, bool ForAlignof) const {
1704 unsigned Align = Target->getCharWidth();
1705
1706 bool UseAlignAttrOnly = false;
1707 if (unsigned AlignFromAttr = D->getMaxAlignment()) {
1708 Align = AlignFromAttr;
1709
1710 // __attribute__((aligned)) can increase or decrease alignment
1711 // *except* on a struct or struct member, where it only increases
1712 // alignment unless 'packed' is also specified.
1713 //
1714 // It is an error for alignas to decrease alignment, so we can
1715 // ignore that possibility; Sema should diagnose it.
1716 if (isa<FieldDecl>(D)) {
1717 UseAlignAttrOnly = D->hasAttr<PackedAttr>() ||
1718 cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1719 } else {
1720 UseAlignAttrOnly = true;
1721 }
1722 }
1723 else if (isa<FieldDecl>(D))
1724 UseAlignAttrOnly =
1725 D->hasAttr<PackedAttr>() ||
1726 cast<FieldDecl>(D)->getParent()->hasAttr<PackedAttr>();
1727
1728 // If we're using the align attribute only, just ignore everything
1729 // else about the declaration and its type.
1730 if (UseAlignAttrOnly) {
1731 // do nothing
1732 } else if (const auto *VD = dyn_cast<ValueDecl>(D)) {
1733 QualType T = VD->getType();
1734 if (const auto *RT = T->getAs<ReferenceType>()) {
1735 if (ForAlignof)
1736 T = RT->getPointeeType();
1737 else
1738 T = getPointerType(RT->getPointeeType());
1739 }
1740 QualType BaseT = getBaseElementType(T);
1741 if (T->isFunctionType())
1742 Align = getTypeInfoImpl(T.getTypePtr()).Align;
1743 else if (!BaseT->isIncompleteType()) {
1744 // Adjust alignments of declarations with array type by the
1745 // large-array alignment on the target.
1746 if (const ArrayType *arrayType = getAsArrayType(T)) {
1747 unsigned MinWidth = Target->getLargeArrayMinWidth();
1748 if (!ForAlignof && MinWidth) {
1749 if (isa<VariableArrayType>(arrayType))
1750 Align = std::max(Align, Target->getLargeArrayAlign());
1751 else if (isa<ConstantArrayType>(arrayType) &&
1752 MinWidth <= getTypeSize(cast<ConstantArrayType>(arrayType)))
1753 Align = std::max(Align, Target->getLargeArrayAlign());
1754 }
1755 }
1756 Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
1757 if (BaseT.getQualifiers().hasUnaligned())
1758 Align = Target->getCharWidth();
1759 if (const auto *VD = dyn_cast<VarDecl>(D)) {
1760 if (VD->hasGlobalStorage() && !ForAlignof) {
1761 uint64_t TypeSize = getTypeSize(T.getTypePtr());
1762 Align = std::max(Align, getTargetInfo().getMinGlobalAlign(TypeSize));
1763 }
1764 }
1765 }
1766
1767 // Fields can be subject to extra alignment constraints, like if
1768 // the field is packed, the struct is packed, or the struct has a
1769 // a max-field-alignment constraint (#pragma pack). So calculate
1770 // the actual alignment of the field within the struct, and then
1771 // (as we're expected to) constrain that by the alignment of the type.
1772 if (const auto *Field = dyn_cast<FieldDecl>(VD)) {
1773 const RecordDecl *Parent = Field->getParent();
1774 // We can only produce a sensible answer if the record is valid.
1775 if (!Parent->isInvalidDecl()) {
1776 const ASTRecordLayout &Layout = getASTRecordLayout(Parent);
1777
1778 // Start with the record's overall alignment.
1779 unsigned FieldAlign = toBits(Layout.getAlignment());
1780
1781 // Use the GCD of that and the offset within the record.
1782 uint64_t Offset = Layout.getFieldOffset(Field->getFieldIndex());
1783 if (Offset > 0) {
1784 // Alignment is always a power of 2, so the GCD will be a power of 2,
1785 // which means we get to do this crazy thing instead of Euclid's.
1786 uint64_t LowBitOfOffset = Offset & (~Offset + 1);
1787 if (LowBitOfOffset < FieldAlign)
1788 FieldAlign = static_cast<unsigned>(LowBitOfOffset);
1789 }
1790
1791 Align = std::min(Align, FieldAlign);
1792 }
1793 }
1794 }
1795
1796 // Some targets have hard limitation on the maximum requestable alignment in
1797 // aligned attribute for static variables.
1798 const unsigned MaxAlignedAttr = getTargetInfo().getMaxAlignedAttribute();
1799 const auto *VD = dyn_cast<VarDecl>(D);
1800 if (MaxAlignedAttr && VD && VD->getStorageClass() == SC_Static)
1801 Align = std::min(Align, MaxAlignedAttr);
1802
1803 return toCharUnitsFromBits(Align);
1804}
1805
1806CharUnits ASTContext::getExnObjectAlignment() const {
1807 return toCharUnitsFromBits(Target->getExnObjectAlignment());
1808}
1809
1810// getTypeInfoDataSizeInChars - Return the size of a type, in
1811// chars. If the type is a record, its data size is returned. This is
1812// the size of the memcpy that's performed when assigning this type
1813// using a trivial copy/move assignment operator.
1814TypeInfoChars ASTContext::getTypeInfoDataSizeInChars(QualType T) const {
1815 TypeInfoChars Info = getTypeInfoInChars(T);
1816
1817 // In C++, objects can sometimes be allocated into the tail padding
1818 // of a base-class subobject. We decide whether that's possible
1819 // during class layout, so here we can just trust the layout results.
1820 if (getLangOpts().CPlusPlus) {
1821 if (const auto *RT = T->getAs<RecordType>()) {
1822 const ASTRecordLayout &layout = getASTRecordLayout(RT->getDecl());
1823 Info.Width = layout.getDataSize();
1824 }
1825 }
1826
1827 return Info;
1828}
1829
1830/// getConstantArrayInfoInChars - Performing the computation in CharUnits
1831/// instead of in bits prevents overflowing the uint64_t for some large arrays.
1832TypeInfoChars
1833static getConstantArrayInfoInChars(const ASTContext &Context,
1834 const ConstantArrayType *CAT) {
1835 TypeInfoChars EltInfo = Context.getTypeInfoInChars(CAT->getElementType());
1836 uint64_t Size = CAT->getSize().getZExtValue();
1837 assert((Size == 0 || static_cast<uint64_t>(EltInfo.Width.getQuantity()) <=(static_cast <bool> ((Size == 0 || static_cast<uint64_t
>(EltInfo.Width.getQuantity()) <= (uint64_t)(-1)/Size) &&
"Overflow in array type char size evaluation") ? void (0) : __assert_fail
("(Size == 0 || static_cast<uint64_t>(EltInfo.Width.getQuantity()) <= (uint64_t)(-1)/Size) && \"Overflow in array type char size evaluation\""
, "clang/lib/AST/ASTContext.cpp", 1839, __extension__ __PRETTY_FUNCTION__
))
1838 (uint64_t)(-1)/Size) &&(static_cast <bool> ((Size == 0 || static_cast<uint64_t
>(EltInfo.Width.getQuantity()) <= (uint64_t)(-1)/Size) &&
"Overflow in array type char size evaluation") ? void (0) : __assert_fail
("(Size == 0 || static_cast<uint64_t>(EltInfo.Width.getQuantity()) <= (uint64_t)(-1)/Size) && \"Overflow in array type char size evaluation\""
, "clang/lib/AST/ASTContext.cpp", 1839, __extension__ __PRETTY_FUNCTION__
))
1839 "Overflow in array type char size evaluation")(static_cast <bool> ((Size == 0 || static_cast<uint64_t
>(EltInfo.Width.getQuantity()) <= (uint64_t)(-1)/Size) &&
"Overflow in array type char size evaluation") ? void (0) : __assert_fail
("(Size == 0 || static_cast<uint64_t>(EltInfo.Width.getQuantity()) <= (uint64_t)(-1)/Size) && \"Overflow in array type char size evaluation\""
, "clang/lib/AST/ASTContext.cpp", 1839, __extension__ __PRETTY_FUNCTION__
))
;
1840 uint64_t Width = EltInfo.Width.getQuantity() * Size;
1841 unsigned Align = EltInfo.Align.getQuantity();
1842 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() ||
1843 Context.getTargetInfo().getPointerWidth(LangAS::Default) == 64)
1844 Width = llvm::alignTo(Width, Align);
1845 return TypeInfoChars(CharUnits::fromQuantity(Width),
1846 CharUnits::fromQuantity(Align),
1847 EltInfo.AlignRequirement);
1848}
1849
1850TypeInfoChars ASTContext::getTypeInfoInChars(const Type *T) const {
1851 if (const auto *CAT = dyn_cast<ConstantArrayType>(T))
1852 return getConstantArrayInfoInChars(*this, CAT);
1853 TypeInfo Info = getTypeInfo(T);
1854 return TypeInfoChars(toCharUnitsFromBits(Info.Width),
1855 toCharUnitsFromBits(Info.Align), Info.AlignRequirement);
1856}
1857
1858TypeInfoChars ASTContext::getTypeInfoInChars(QualType T) const {
1859 return getTypeInfoInChars(T.getTypePtr());
1860}
1861
1862bool ASTContext::isPromotableIntegerType(QualType T) const {
1863 // HLSL doesn't promote all small integer types to int, it
1864 // just uses the rank-based promotion rules for all types.
1865 if (getLangOpts().HLSL)
1866 return false;
1867
1868 if (const auto *BT = T->getAs<BuiltinType>())
1869 switch (BT->getKind()) {
1870 case BuiltinType::Bool:
1871 case BuiltinType::Char_S:
1872 case BuiltinType::Char_U:
1873 case BuiltinType::SChar:
1874 case BuiltinType::UChar:
1875 case BuiltinType::Short:
1876 case BuiltinType::UShort:
1877 case BuiltinType::WChar_S:
1878 case BuiltinType::WChar_U:
1879 case BuiltinType::Char8:
1880 case BuiltinType::Char16:
1881 case BuiltinType::Char32:
1882 return true;
1883 default:
1884 return false;
1885 }
1886
1887 // Enumerated types are promotable to their compatible integer types
1888 // (C99 6.3.1.1) a.k.a. its underlying type (C++ [conv.prom]p2).
1889 if (const auto *ET = T->getAs<EnumType>()) {
1890 if (T->isDependentType() || ET->getDecl()->getPromotionType().isNull() ||
1891 ET->getDecl()->isScoped())
1892 return false;
1893
1894 return true;
1895 }
1896
1897 return false;
1898}
1899
1900bool ASTContext::isAlignmentRequired(const Type *T) const {
1901 return getTypeInfo(T).AlignRequirement != AlignRequirementKind::None;
1902}
1903
1904bool ASTContext::isAlignmentRequired(QualType T) const {
1905 return isAlignmentRequired(T.getTypePtr());
1906}
1907
1908unsigned ASTContext::getTypeAlignIfKnown(QualType T,
1909 bool NeedsPreferredAlignment) const {
1910 // An alignment on a typedef overrides anything else.
1911 if (const auto *TT = T->getAs<TypedefType>())
1912 if (unsigned Align = TT->getDecl()->getMaxAlignment())
1913 return Align;
1914
1915 // If we have an (array of) complete type, we're done.
1916 T = getBaseElementType(T);
1917 if (!T->isIncompleteType())
1918 return NeedsPreferredAlignment ? getPreferredTypeAlign(T) : getTypeAlign(T);
1919
1920 // If we had an array type, its element type might be a typedef
1921 // type with an alignment attribute.
1922 if (const auto *TT = T->getAs<TypedefType>())
1923 if (unsigned Align = TT->getDecl()->getMaxAlignment())
1924 return Align;
1925
1926 // Otherwise, see if the declaration of the type had an attribute.
1927 if (const auto *TT = T->getAs<TagType>())
1928 return TT->getDecl()->getMaxAlignment();
1929
1930 return 0;
1931}
1932
1933TypeInfo ASTContext::getTypeInfo(const Type *T) const {
1934 TypeInfoMap::iterator I = MemoizedTypeInfo.find(T);
1935 if (I != MemoizedTypeInfo.end())
1936 return I->second;
1937
1938 // This call can invalidate MemoizedTypeInfo[T], so we need a second lookup.
1939 TypeInfo TI = getTypeInfoImpl(T);
1940 MemoizedTypeInfo[T] = TI;
1941 return TI;
1942}
1943
1944/// getTypeInfoImpl - Return the size of the specified type, in bits. This
1945/// method does not work on incomplete types.
1946///
1947/// FIXME: Pointers into different addr spaces could have different sizes and
1948/// alignment requirements: getPointerInfo should take an AddrSpace, this
1949/// should take a QualType, &c.
1950TypeInfo ASTContext::getTypeInfoImpl(const Type *T) const {
1951 uint64_t Width = 0;
1952 unsigned Align = 8;
1953 AlignRequirementKind AlignRequirement = AlignRequirementKind::None;
1954 LangAS AS = LangAS::Default;
1955 switch (T->getTypeClass()) {
1956#define TYPE(Class, Base)
1957#define ABSTRACT_TYPE(Class, Base)
1958#define NON_CANONICAL_TYPE(Class, Base)
1959#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1960#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) \
1961 case Type::Class: \
1962 assert(!T->isDependentType() && "should not see dependent types here")(static_cast <bool> (!T->isDependentType() &&
"should not see dependent types here") ? void (0) : __assert_fail
("!T->isDependentType() && \"should not see dependent types here\""
, "clang/lib/AST/ASTContext.cpp", 1962, __extension__ __PRETTY_FUNCTION__
))
; \
1963 return getTypeInfo(cast<Class##Type>(T)->desugar().getTypePtr());
1964#include "clang/AST/TypeNodes.inc"
1965 llvm_unreachable("Should not see dependent types")::llvm::llvm_unreachable_internal("Should not see dependent types"
, "clang/lib/AST/ASTContext.cpp", 1965)
;
1966
1967 case Type::FunctionNoProto:
1968 case Type::FunctionProto:
1969 // GCC extension: alignof(function) = 32 bits
1970 Width = 0;
1971 Align = 32;
1972 break;
1973
1974 case Type::IncompleteArray:
1975 case Type::VariableArray:
1976 case Type::ConstantArray: {
1977 // Model non-constant sized arrays as size zero, but track the alignment.
1978 uint64_t Size = 0;
1979 if (const auto *CAT = dyn_cast<ConstantArrayType>(T))
1980 Size = CAT->getSize().getZExtValue();
1981
1982 TypeInfo EltInfo = getTypeInfo(cast<ArrayType>(T)->getElementType());
1983 assert((Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) &&(static_cast <bool> ((Size == 0 || EltInfo.Width <= (
uint64_t)(-1) / Size) && "Overflow in array type bit size evaluation"
) ? void (0) : __assert_fail ("(Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) && \"Overflow in array type bit size evaluation\""
, "clang/lib/AST/ASTContext.cpp", 1984, __extension__ __PRETTY_FUNCTION__
))
1984 "Overflow in array type bit size evaluation")(static_cast <bool> ((Size == 0 || EltInfo.Width <= (
uint64_t)(-1) / Size) && "Overflow in array type bit size evaluation"
) ? void (0) : __assert_fail ("(Size == 0 || EltInfo.Width <= (uint64_t)(-1) / Size) && \"Overflow in array type bit size evaluation\""
, "clang/lib/AST/ASTContext.cpp", 1984, __extension__ __PRETTY_FUNCTION__
))
;
1985 Width = EltInfo.Width * Size;
1986 Align = EltInfo.Align;
1987 AlignRequirement = EltInfo.AlignRequirement;
1988 if (!getTargetInfo().getCXXABI().isMicrosoft() ||
1989 getTargetInfo().getPointerWidth(LangAS::Default) == 64)
1990 Width = llvm::alignTo(Width, Align);
1991 break;
1992 }
1993
1994 case Type::ExtVector:
1995 case Type::Vector: {
1996 const auto *VT = cast<VectorType>(T);
1997 TypeInfo EltInfo = getTypeInfo(VT->getElementType());
1998 Width = VT->isExtVectorBoolType() ? VT->getNumElements()
1999 : EltInfo.Width * VT->getNumElements();
2000 // Enforce at least byte size and alignment.
2001 Width = std::max<unsigned>(8, Width);
2002 Align = std::max<unsigned>(8, Width);
2003
2004 // If the alignment is not a power of 2, round up to the next power of 2.
2005 // This happens for non-power-of-2 length vectors.
2006 if (Align & (Align-1)) {
2007 Align = llvm::bit_ceil(Align);
2008 Width = llvm::alignTo(Width, Align);
2009 }
2010 // Adjust the alignment based on the target max.
2011 uint64_t TargetVectorAlign = Target->getMaxVectorAlign();
2012 if (TargetVectorAlign && TargetVectorAlign < Align)
2013 Align = TargetVectorAlign;
2014 if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector)
2015 // Adjust the alignment for fixed-length SVE vectors. This is important
2016 // for non-power-of-2 vector lengths.
2017 Align = 128;
2018 else if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
2019 // Adjust the alignment for fixed-length SVE predicates.
2020 Align = 16;
2021 else if (VT->getVectorKind() == VectorType::RVVFixedLengthDataVector)
2022 // Adjust the alignment for fixed-length RVV vectors.
2023 Align = 64;
2024 break;
2025 }
2026
2027 case Type::ConstantMatrix: {
2028 const auto *MT = cast<ConstantMatrixType>(T);
2029 TypeInfo ElementInfo = getTypeInfo(MT->getElementType());
2030 // The internal layout of a matrix value is implementation defined.
2031 // Initially be ABI compatible with arrays with respect to alignment and
2032 // size.
2033 Width = ElementInfo.Width * MT->getNumRows() * MT->getNumColumns();
2034 Align = ElementInfo.Align;
2035 break;
2036 }
2037
2038 case Type::Builtin:
2039 switch (cast<BuiltinType>(T)->getKind()) {
2040 default: llvm_unreachable("Unknown builtin type!")::llvm::llvm_unreachable_internal("Unknown builtin type!", "clang/lib/AST/ASTContext.cpp"
, 2040)
;
2041 case BuiltinType::Void:
2042 // GCC extension: alignof(void) = 8 bits.
2043 Width = 0;
2044 Align = 8;
2045 break;
2046 case BuiltinType::Bool:
2047 Width = Target->getBoolWidth();
2048 Align = Target->getBoolAlign();
2049 break;
2050 case BuiltinType::Char_S:
2051 case BuiltinType::Char_U:
2052 case BuiltinType::UChar:
2053 case BuiltinType::SChar:
2054 case BuiltinType::Char8:
2055 Width = Target->getCharWidth();
2056 Align = Target->getCharAlign();
2057 break;
2058 case BuiltinType::WChar_S:
2059 case BuiltinType::WChar_U:
2060 Width = Target->getWCharWidth();
2061 Align = Target->getWCharAlign();
2062 break;
2063 case BuiltinType::Char16:
2064 Width = Target->getChar16Width();
2065 Align = Target->getChar16Align();
2066 break;
2067 case BuiltinType::Char32:
2068 Width = Target->getChar32Width();
2069 Align = Target->getChar32Align();
2070 break;
2071 case BuiltinType::UShort:
2072 case BuiltinType::Short:
2073 Width = Target->getShortWidth();
2074 Align = Target->getShortAlign();
2075 break;
2076 case BuiltinType::UInt:
2077 case BuiltinType::Int:
2078 Width = Target->getIntWidth();
2079 Align = Target->getIntAlign();
2080 break;
2081 case BuiltinType::ULong:
2082 case BuiltinType::Long:
2083 Width = Target->getLongWidth();
2084 Align = Target->getLongAlign();
2085 break;
2086 case BuiltinType::ULongLong:
2087 case BuiltinType::LongLong:
2088 Width = Target->getLongLongWidth();
2089 Align = Target->getLongLongAlign();
2090 break;
2091 case BuiltinType::Int128:
2092 case BuiltinType::UInt128:
2093 Width = 128;
2094 Align = Target->getInt128Align();
2095 break;
2096 case BuiltinType::ShortAccum:
2097 case BuiltinType::UShortAccum:
2098 case BuiltinType::SatShortAccum:
2099 case BuiltinType::SatUShortAccum:
2100 Width = Target->getShortAccumWidth();
2101 Align = Target->getShortAccumAlign();
2102 break;
2103 case BuiltinType::Accum:
2104 case BuiltinType::UAccum:
2105 case BuiltinType::SatAccum:
2106 case BuiltinType::SatUAccum:
2107 Width = Target->getAccumWidth();
2108 Align = Target->getAccumAlign();
2109 break;
2110 case BuiltinType::LongAccum:
2111 case BuiltinType::ULongAccum:
2112 case BuiltinType::SatLongAccum:
2113 case BuiltinType::SatULongAccum:
2114 Width = Target->getLongAccumWidth();
2115 Align = Target->getLongAccumAlign();
2116 break;
2117 case BuiltinType::ShortFract:
2118 case BuiltinType::UShortFract:
2119 case BuiltinType::SatShortFract:
2120 case BuiltinType::SatUShortFract:
2121 Width = Target->getShortFractWidth();
2122 Align = Target->getShortFractAlign();
2123 break;
2124 case BuiltinType::Fract:
2125 case BuiltinType::UFract:
2126 case BuiltinType::SatFract:
2127 case BuiltinType::SatUFract:
2128 Width = Target->getFractWidth();
2129 Align = Target->getFractAlign();
2130 break;
2131 case BuiltinType::LongFract:
2132 case BuiltinType::ULongFract:
2133 case BuiltinType::SatLongFract:
2134 case BuiltinType::SatULongFract:
2135 Width = Target->getLongFractWidth();
2136 Align = Target->getLongFractAlign();
2137 break;
2138 case BuiltinType::BFloat16:
2139 if (Target->hasBFloat16Type()) {
2140 Width = Target->getBFloat16Width();
2141 Align = Target->getBFloat16Align();
2142 } else if ((getLangOpts().SYCLIsDevice ||
2143 (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice)) &&
2144 AuxTarget->hasBFloat16Type()) {
2145 Width = AuxTarget->getBFloat16Width();
2146 Align = AuxTarget->getBFloat16Align();
2147 }
2148 break;
2149 case BuiltinType::Float16:
2150 case BuiltinType::Half:
2151 if (Target->hasFloat16Type() || !getLangOpts().OpenMP ||
2152 !getLangOpts().OpenMPIsDevice) {
2153 Width = Target->getHalfWidth();
2154 Align = Target->getHalfAlign();
2155 } else {
2156 assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&(static_cast <bool> (getLangOpts().OpenMP && getLangOpts
().OpenMPIsDevice && "Expected OpenMP device compilation."
) ? void (0) : __assert_fail ("getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && \"Expected OpenMP device compilation.\""
, "clang/lib/AST/ASTContext.cpp", 2157, __extension__ __PRETTY_FUNCTION__
))
2157 "Expected OpenMP device compilation.")(static_cast <bool> (getLangOpts().OpenMP && getLangOpts
().OpenMPIsDevice && "Expected OpenMP device compilation."
) ? void (0) : __assert_fail ("getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && \"Expected OpenMP device compilation.\""
, "clang/lib/AST/ASTContext.cpp", 2157, __extension__ __PRETTY_FUNCTION__
))
;
2158 Width = AuxTarget->getHalfWidth();
2159 Align = AuxTarget->getHalfAlign();
2160 }
2161 break;
2162 case BuiltinType::Float:
2163 Width = Target->getFloatWidth();
2164 Align = Target->getFloatAlign();
2165 break;
2166 case BuiltinType::Double:
2167 Width = Target->getDoubleWidth();
2168 Align = Target->getDoubleAlign();
2169 break;
2170 case BuiltinType::Ibm128:
2171 Width = Target->getIbm128Width();
2172 Align = Target->getIbm128Align();
2173 break;
2174 case BuiltinType::LongDouble:
2175 if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
2176 (Target->getLongDoubleWidth() != AuxTarget->getLongDoubleWidth() ||
2177 Target->getLongDoubleAlign() != AuxTarget->getLongDoubleAlign())) {
2178 Width = AuxTarget->getLongDoubleWidth();
2179 Align = AuxTarget->getLongDoubleAlign();
2180 } else {
2181 Width = Target->getLongDoubleWidth();
2182 Align = Target->getLongDoubleAlign();
2183 }
2184 break;
2185 case BuiltinType::Float128:
2186 if (Target->hasFloat128Type() || !getLangOpts().OpenMP ||
2187 !getLangOpts().OpenMPIsDevice) {
2188 Width = Target->getFloat128Width();
2189 Align = Target->getFloat128Align();
2190 } else {
2191 assert(getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&(static_cast <bool> (getLangOpts().OpenMP && getLangOpts
().OpenMPIsDevice && "Expected OpenMP device compilation."
) ? void (0) : __assert_fail ("getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && \"Expected OpenMP device compilation.\""
, "clang/lib/AST/ASTContext.cpp", 2192, __extension__ __PRETTY_FUNCTION__
))
2192 "Expected OpenMP device compilation.")(static_cast <bool> (getLangOpts().OpenMP && getLangOpts
().OpenMPIsDevice && "Expected OpenMP device compilation."
) ? void (0) : __assert_fail ("getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice && \"Expected OpenMP device compilation.\""
, "clang/lib/AST/ASTContext.cpp", 2192, __extension__ __PRETTY_FUNCTION__
))
;
2193 Width = AuxTarget->getFloat128Width();
2194 Align = AuxTarget->getFloat128Align();
2195 }
2196 break;
2197 case BuiltinType::NullPtr:
2198 // C++ 3.9.1p11: sizeof(nullptr_t) == sizeof(void*)
2199 Width = Target->getPointerWidth(LangAS::Default);
2200 Align = Target->getPointerAlign(LangAS::Default);
2201 break;
2202 case BuiltinType::ObjCId:
2203 case BuiltinType::ObjCClass:
2204 case BuiltinType::ObjCSel:
2205 Width = Target->getPointerWidth(LangAS::Default);
2206 Align = Target->getPointerAlign(LangAS::Default);
2207 break;
2208 case BuiltinType::OCLSampler:
2209 case BuiltinType::OCLEvent:
2210 case BuiltinType::OCLClkEvent:
2211 case BuiltinType::OCLQueue:
2212 case BuiltinType::OCLReserveID:
2213#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2214 case BuiltinType::Id:
2215#include "clang/Basic/OpenCLImageTypes.def"
2216#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2217 case BuiltinType::Id:
2218#include "clang/Basic/OpenCLExtensionTypes.def"
2219 AS = Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T));
2220 Width = Target->getPointerWidth(AS);
2221 Align = Target->getPointerAlign(AS);
2222 break;
2223 // The SVE types are effectively target-specific. The length of an
2224 // SVE_VECTOR_TYPE is only known at runtime, but it is always a multiple
2225 // of 128 bits. There is one predicate bit for each vector byte, so the
2226 // length of an SVE_PREDICATE_TYPE is always a multiple of 16 bits.
2227 //
2228 // Because the length is only known at runtime, we use a dummy value
2229 // of 0 for the static length. The alignment values are those defined
2230 // by the Procedure Call Standard for the Arm Architecture.
2231#define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId, NumEls, ElBits, \
2232 IsSigned, IsFP, IsBF) \
2233 case BuiltinType::Id: \
2234 Width = 0; \
2235 Align = 128; \
2236 break;
2237#define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId, NumEls) \
2238 case BuiltinType::Id: \
2239 Width = 0; \
2240 Align = 16; \
2241 break;
2242#define SVE_OPAQUE_TYPE(Name, MangledName, Id, SingletonId) \
2243 case BuiltinType::Id: \
2244 Width = 0; \
2245 Align = 16; \
2246 break;
2247#include "clang/Basic/AArch64SVEACLETypes.def"
2248#define PPC_VECTOR_TYPE(Name, Id, Size) \
2249 case BuiltinType::Id: \
2250 Width = Size; \
2251 Align = Size; \
2252 break;
2253#include "clang/Basic/PPCTypes.def"
2254#define RVV_VECTOR_TYPE(Name, Id, SingletonId, ElKind, ElBits, NF, IsSigned, \
2255 IsFP) \
2256 case BuiltinType::Id: \
2257 Width = 0; \
2258 Align = ElBits; \
2259 break;
2260#define RVV_PREDICATE_TYPE(Name, Id, SingletonId, ElKind) \
2261 case BuiltinType::Id: \
2262 Width = 0; \
2263 Align = 8; \
2264 break;
2265#include "clang/Basic/RISCVVTypes.def"
2266#define WASM_TYPE(Name, Id, SingletonId) \
2267 case BuiltinType::Id: \
2268 Width = 0; \
2269 Align = 8; \
2270 break;
2271#include "clang/Basic/WebAssemblyReferenceTypes.def"
2272 }
2273 break;
2274 case Type::ObjCObjectPointer:
2275 Width = Target->getPointerWidth(LangAS::Default);
2276 Align = Target->getPointerAlign(LangAS::Default);
2277 break;
2278 case Type::BlockPointer:
2279 AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
2280 Width = Target->getPointerWidth(AS);
2281 Align = Target->getPointerAlign(AS);
2282 break;
2283 case Type::LValueReference:
2284 case Type::RValueReference:
2285 // alignof and sizeof should never enter this code path here, so we go
2286 // the pointer route.
2287 AS = cast<ReferenceType>(T)->getPointeeType().getAddressSpace();
2288 Width = Target->getPointerWidth(AS);
2289 Align = Target->getPointerAlign(AS);
2290 break;
2291 case Type::Pointer:
2292 AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
2293 Width = Target->getPointerWidth(AS);
2294 Align = Target->getPointerAlign(AS);
2295 break;
2296 case Type::MemberPointer: {
2297 const auto *MPT = cast<MemberPointerType>(T);
2298 CXXABI::MemberPointerInfo MPI = ABI->getMemberPointerInfo(MPT);
2299 Width = MPI.Width;
2300 Align = MPI.Align;
2301 break;
2302 }
2303 case Type::Complex: {
2304 // Complex types have the same alignment as their elements, but twice the
2305 // size.
2306 TypeInfo EltInfo = getTypeInfo(cast<ComplexType>(T)->getElementType());
2307 Width = EltInfo.Width * 2;
2308 Align = EltInfo.Align;
2309 break;
2310 }
2311 case Type::ObjCObject:
2312 return getTypeInfo(cast<ObjCObjectType>(T)->getBaseType().getTypePtr());
2313 case Type::Adjusted:
2314 case Type::Decayed:
2315 return getTypeInfo(cast<AdjustedType>(T)->getAdjustedType().getTypePtr());
2316 case Type::ObjCInterface: {
2317 const auto *ObjCI = cast<ObjCInterfaceType>(T);
2318 if (ObjCI->getDecl()->isInvalidDecl()) {
2319 Width = 8;
2320 Align = 8;
2321 break;
2322 }
2323 const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
2324 Width = toBits(Layout.getSize());
2325 Align = toBits(Layout.getAlignment());
2326 break;
2327 }
2328 case Type::BitInt: {
2329 const auto *EIT = cast<BitIntType>(T);
2330 Align = std::clamp<unsigned>(llvm::PowerOf2Ceil(EIT->getNumBits()),
2331 getCharWidth(), Target->getLongLongAlign());
2332 Width = llvm::alignTo(EIT->getNumBits(), Align);
2333 break;
2334 }
2335 case Type::Record:
2336 case Type::Enum: {
2337 const auto *TT = cast<TagType>(T);
2338
2339 if (TT->getDecl()->isInvalidDecl()) {
2340 Width = 8;
2341 Align = 8;
2342 break;
2343 }
2344
2345 if (const auto *ET = dyn_cast<EnumType>(TT)) {
2346 const EnumDecl *ED = ET->getDecl();
2347 TypeInfo Info =
2348 getTypeInfo(ED->getIntegerType()->getUnqualifiedDesugaredType());
2349 if (unsigned AttrAlign = ED->getMaxAlignment()) {
2350 Info.Align = AttrAlign;
2351 Info.AlignRequirement = AlignRequirementKind::RequiredByEnum;
2352 }
2353 return Info;
2354 }
2355
2356 const auto *RT = cast<RecordType>(TT);
2357 const RecordDecl *RD = RT->getDecl();
2358 const ASTRecordLayout &Layout = getASTRecordLayout(RD);
2359 Width = toBits(Layout.getSize());
2360 Align = toBits(Layout.getAlignment());
2361 AlignRequirement = RD->hasAttr<AlignedAttr>()
2362 ? AlignRequirementKind::RequiredByRecord
2363 : AlignRequirementKind::None;
2364 break;
2365 }
2366
2367 case Type::SubstTemplateTypeParm:
2368 return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
2369 getReplacementType().getTypePtr());
2370
2371 case Type::Auto:
2372 case Type::DeducedTemplateSpecialization: {
2373 const auto *A = cast<DeducedType>(T);
2374 assert(!A->getDeducedType().isNull() &&(static_cast <bool> (!A->getDeducedType().isNull() &&
"cannot request the size of an undeduced or dependent auto type"
) ? void (0) : __assert_fail ("!A->getDeducedType().isNull() && \"cannot request the size of an undeduced or dependent auto type\""
, "clang/lib/AST/ASTContext.cpp", 2375, __extension__ __PRETTY_FUNCTION__
))
2375 "cannot request the size of an undeduced or dependent auto type")(static_cast <bool> (!A->getDeducedType().isNull() &&
"cannot request the size of an undeduced or dependent auto type"
) ? void (0) : __assert_fail ("!A->getDeducedType().isNull() && \"cannot request the size of an undeduced or dependent auto type\""
, "clang/lib/AST/ASTContext.cpp", 2375, __extension__ __PRETTY_FUNCTION__
))
;
2376 return getTypeInfo(A->getDeducedType().getTypePtr());
2377 }
2378
2379 case Type::Paren:
2380 return getTypeInfo(cast<ParenType>(T)->getInnerType().getTypePtr());
2381
2382 case Type::MacroQualified:
2383 return getTypeInfo(
2384 cast<MacroQualifiedType>(T)->getUnderlyingType().getTypePtr());
2385
2386 case Type::ObjCTypeParam:
2387 return getTypeInfo(cast<ObjCTypeParamType>(T)->desugar().getTypePtr());
2388
2389 case Type::Using:
2390 return getTypeInfo(cast<UsingType>(T)->desugar().getTypePtr());
2391
2392 case Type::Typedef: {
2393 const auto *TT = cast<TypedefType>(T);
2394 TypeInfo Info = getTypeInfo(TT->desugar().getTypePtr());
2395 // If the typedef has an aligned attribute on it, it overrides any computed
2396 // alignment we have. This violates the GCC documentation (which says that
2397 // attribute(aligned) can only round up) but matches its implementation.
2398 if (unsigned AttrAlign = TT->getDecl()->getMaxAlignment()) {
2399 Align = AttrAlign;
2400 AlignRequirement = AlignRequirementKind::RequiredByTypedef;
2401 } else {
2402 Align = Info.Align;
2403 AlignRequirement = Info.AlignRequirement;
2404 }
2405 Width = Info.Width;
2406 break;
2407 }
2408
2409 case Type::Elaborated:
2410 return getTypeInfo(cast<ElaboratedType>(T)->getNamedType().getTypePtr());
2411
2412 case Type::Attributed:
2413 return getTypeInfo(
2414 cast<AttributedType>(T)->getEquivalentType().getTypePtr());
2415
2416 case Type::BTFTagAttributed:
2417 return getTypeInfo(
2418 cast<BTFTagAttributedType>(T)->getWrappedType().getTypePtr());
2419
2420 case Type::Atomic: {
2421 // Start with the base type information.
2422 TypeInfo Info = getTypeInfo(cast<AtomicType>(T)->getValueType());
2423 Width = Info.Width;
2424 Align = Info.Align;
2425
2426 if (!Width) {
2427 // An otherwise zero-sized type should still generate an
2428 // atomic operation.
2429 Width = Target->getCharWidth();
2430 assert(Align)(static_cast <bool> (Align) ? void (0) : __assert_fail (
"Align", "clang/lib/AST/ASTContext.cpp", 2430, __extension__ __PRETTY_FUNCTION__
))
;
2431 } else if (Width <= Target->getMaxAtomicPromoteWidth()) {
2432 // If the size of the type doesn't exceed the platform's max
2433 // atomic promotion width, make the size and alignment more
2434 // favorable to atomic operations:
2435
2436 // Round the size up to a power of 2.
2437 Width = llvm::bit_ceil(Width);
2438
2439 // Set the alignment equal to the size.
2440 Align = static_cast<unsigned>(Width);
2441 }
2442 }
2443 break;
2444
2445 case Type::Pipe:
2446 Width = Target->getPointerWidth(LangAS::opencl_global);
2447 Align = Target->getPointerAlign(LangAS::opencl_global);
2448 break;
2449 }
2450
2451 assert(llvm::isPowerOf2_32(Align) && "Alignment must be power of 2")(static_cast <bool> (llvm::isPowerOf2_32(Align) &&
"Alignment must be power of 2") ? void (0) : __assert_fail (
"llvm::isPowerOf2_32(Align) && \"Alignment must be power of 2\""
, "clang/lib/AST/ASTContext.cpp", 2451, __extension__ __PRETTY_FUNCTION__
))
;
2452 return TypeInfo(Width, Align, AlignRequirement);
2453}
2454
2455unsigned ASTContext::getTypeUnadjustedAlign(const Type *T) const {
2456 UnadjustedAlignMap::iterator I = MemoizedUnadjustedAlign.find(T);
2457 if (I != MemoizedUnadjustedAlign.end())
2458 return I->second;
2459
2460 unsigned UnadjustedAlign;
2461 if (const auto *RT = T->getAs<RecordType>()) {
2462 const RecordDecl *RD = RT->getDecl();
2463 const ASTRecordLayout &Layout = getASTRecordLayout(RD);
2464 UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
2465 } else if (const auto *ObjCI = T->getAs<ObjCInterfaceType>()) {
2466 const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
2467 UnadjustedAlign = toBits(Layout.getUnadjustedAlignment());
2468 } else {
2469 UnadjustedAlign = getTypeAlign(T->getUnqualifiedDesugaredType());
2470 }
2471
2472 MemoizedUnadjustedAlign[T] = UnadjustedAlign;
2473 return UnadjustedAlign;
2474}
2475
2476unsigned ASTContext::getOpenMPDefaultSimdAlign(QualType T) const {
2477 unsigned SimdAlign = llvm::OpenMPIRBuilder::getOpenMPDefaultSimdAlign(
2478 getTargetInfo().getTriple(), Target->getTargetOpts().FeatureMap);
2479 return SimdAlign;
2480}
2481
2482/// toCharUnitsFromBits - Convert a size in bits to a size in characters.
2483CharUnits ASTContext::toCharUnitsFromBits(int64_t BitSize) const {
2484 return CharUnits::fromQuantity(BitSize / getCharWidth());
2485}
2486
2487/// toBits - Convert a size in characters to a size in characters.
2488int64_t ASTContext::toBits(CharUnits CharSize) const {
2489 return CharSize.getQuantity() * getCharWidth();
2490}
2491
2492/// getTypeSizeInChars - Return the size of the specified type, in characters.
2493/// This method does not work on incomplete types.
2494CharUnits ASTContext::getTypeSizeInChars(QualType T) const {
2495 return getTypeInfoInChars(T).Width;
2496}
2497CharUnits ASTContext::getTypeSizeInChars(const Type *T) const {
2498 return getTypeInfoInChars(T).Width;
2499}
2500
2501/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in
2502/// characters. This method does not work on incomplete types.
2503CharUnits ASTContext::getTypeAlignInChars(QualType T) const {
2504 return toCharUnitsFromBits(getTypeAlign(T));
2505}
2506CharUnits ASTContext::getTypeAlignInChars(const Type *T) const {
2507 return toCharUnitsFromBits(getTypeAlign(T));
2508}
2509
2510/// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a
2511/// type, in characters, before alignment adjustments. This method does
2512/// not work on incomplete types.
2513CharUnits ASTContext::getTypeUnadjustedAlignInChars(QualType T) const {
2514 return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
2515}
2516CharUnits ASTContext::getTypeUnadjustedAlignInChars(const Type *T) const {
2517 return toCharUnitsFromBits(getTypeUnadjustedAlign(T));
2518}
2519
2520/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
2521/// type for the current target in bits. This can be different than the ABI
2522/// alignment in cases where it is beneficial for performance or backwards
2523/// compatibility preserving to overalign a data type. (Note: despite the name,
2524/// the preferred alignment is ABI-impacting, and not an optimization.)
2525unsigned ASTContext::getPreferredTypeAlign(const Type *T) const {
2526 TypeInfo TI = getTypeInfo(T);
2527 unsigned ABIAlign = TI.Align;
2528
2529 T = T->getBaseElementTypeUnsafe();
2530
2531 // The preferred alignment of member pointers is that of a pointer.
2532 if (T->isMemberPointerType())
2533 return getPreferredTypeAlign(getPointerDiffType().getTypePtr());
2534
2535 if (!Target->allowsLargerPreferedTypeAlignment())
2536 return ABIAlign;
2537
2538 if (const auto *RT = T->getAs<RecordType>()) {
2539 const RecordDecl *RD = RT->getDecl();
2540
2541 // When used as part of a typedef, or together with a 'packed' attribute,
2542 // the 'aligned' attribute can be used to decrease alignment. Note that the
2543 // 'packed' case is already taken into consideration when computing the
2544 // alignment, we only need to handle the typedef case here.
2545 if (TI.AlignRequirement == AlignRequirementKind::RequiredByTypedef ||
2546 RD->isInvalidDecl())
2547 return ABIAlign;
2548
2549 unsigned PreferredAlign = static_cast<unsigned>(
2550 toBits(getASTRecordLayout(RD).PreferredAlignment));
2551 assert(PreferredAlign >= ABIAlign &&(static_cast <bool> (PreferredAlign >= ABIAlign &&
"PreferredAlign should be at least as large as ABIAlign.") ?
void (0) : __assert_fail ("PreferredAlign >= ABIAlign && \"PreferredAlign should be at least as large as ABIAlign.\""
, "clang/lib/AST/ASTContext.cpp", 2552, __extension__ __PRETTY_FUNCTION__
))
2552 "PreferredAlign should be at least as large as ABIAlign.")(static_cast <bool> (PreferredAlign >= ABIAlign &&
"PreferredAlign should be at least as large as ABIAlign.") ?
void (0) : __assert_fail ("PreferredAlign >= ABIAlign && \"PreferredAlign should be at least as large as ABIAlign.\""
, "clang/lib/AST/ASTContext.cpp", 2552, __extension__ __PRETTY_FUNCTION__
))
;
2553 return PreferredAlign;
2554 }
2555
2556 // Double (and, for targets supporting AIX `power` alignment, long double) and
2557 // long long should be naturally aligned (despite requiring less alignment) if
2558 // possible.
2559 if (const auto *CT = T->getAs<ComplexType>())
2560 T = CT->getElementType().getTypePtr();
2561 if (const auto *ET = T->getAs<EnumType>())
2562 T = ET->getDecl()->getIntegerType().getTypePtr();
2563 if (T->isSpecificBuiltinType(BuiltinType::Double) ||
2564 T->isSpecificBuiltinType(BuiltinType::LongLong) ||
2565 T->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2566 (T->isSpecificBuiltinType(BuiltinType::LongDouble) &&
2567 Target->defaultsToAIXPowerAlignment()))
2568 // Don't increase the alignment if an alignment attribute was specified on a
2569 // typedef declaration.
2570 if (!TI.isAlignRequired())
2571 return std::max(ABIAlign, (unsigned)getTypeSize(T));
2572
2573 return ABIAlign;
2574}
2575
2576/// getTargetDefaultAlignForAttributeAligned - Return the default alignment
2577/// for __attribute__((aligned)) on this target, to be used if no alignment
2578/// value is specified.
2579unsigned ASTContext::getTargetDefaultAlignForAttributeAligned() const {
2580 return getTargetInfo().getDefaultAlignForAttributeAligned();
2581}
2582
2583/// getAlignOfGlobalVar - Return the alignment in bits that should be given
2584/// to a global variable of the specified type.
2585unsigned ASTContext::getAlignOfGlobalVar(QualType T) const {
2586 uint64_t TypeSize = getTypeSize(T.getTypePtr());
2587 return std::max(getPreferredTypeAlign(T),
2588 getTargetInfo().getMinGlobalAlign(TypeSize));
2589}
2590
2591/// getAlignOfGlobalVarInChars - Return the alignment in characters that
2592/// should be given to a global variable of the specified type.
2593CharUnits ASTContext::getAlignOfGlobalVarInChars(QualType T) const {
2594 return toCharUnitsFromBits(getAlignOfGlobalVar(T));
2595}
2596
2597CharUnits ASTContext::getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const {
2598 CharUnits Offset = CharUnits::Zero();
2599 const ASTRecordLayout *Layout = &getASTRecordLayout(RD);
2600 while (const CXXRecordDecl *Base = Layout->getBaseSharingVBPtr()) {
2601 Offset += Layout->getBaseClassOffset(Base);
2602 Layout = &getASTRecordLayout(Base);
2603 }
2604 return Offset;
2605}
2606
2607CharUnits ASTContext::getMemberPointerPathAdjustment(const APValue &MP) const {
2608 const ValueDecl *MPD = MP.getMemberPointerDecl();
2609 CharUnits ThisAdjustment = CharUnits::Zero();
2610 ArrayRef<const CXXRecordDecl*> Path = MP.getMemberPointerPath();
2611 bool DerivedMember = MP.isMemberPointerToDerivedMember();
2612 const CXXRecordDecl *RD = cast<CXXRecordDecl>(MPD->getDeclContext());
2613 for (unsigned I = 0, N = Path.size(); I != N; ++I) {
2614 const CXXRecordDecl *Base = RD;
2615 const CXXRecordDecl *Derived = Path[I];
2616 if (DerivedMember)
2617 std::swap(Base, Derived);
2618 ThisAdjustment += getASTRecordLayout(Derived).getBaseClassOffset(Base);
2619 RD = Path[I];
2620 }
2621 if (DerivedMember)
2622 ThisAdjustment = -ThisAdjustment;
2623 return ThisAdjustment;
2624}
2625
2626/// DeepCollectObjCIvars -
2627/// This routine first collects all declared, but not synthesized, ivars in
2628/// super class and then collects all ivars, including those synthesized for
2629/// current class. This routine is used for implementation of current class
2630/// when all ivars, declared and synthesized are known.
2631void ASTContext::DeepCollectObjCIvars(const ObjCInterfaceDecl *OI,
2632 bool leafClass,
2633 SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const {
2634 if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
2635 DeepCollectObjCIvars(SuperClass, false, Ivars);
2636 if (!leafClass) {
2637 llvm::append_range(Ivars, OI->ivars());
2638 } else {
2639 auto *IDecl = const_cast<ObjCInterfaceDecl *>(OI);
2640 for (const ObjCIvarDecl *Iv = IDecl->all_declared_ivar_begin(); Iv;
2641 Iv= Iv->getNextIvar())
2642 Ivars.push_back(Iv);
2643 }
2644}
2645
2646/// CollectInheritedProtocols - Collect all protocols in current class and
2647/// those inherited by it.
2648void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
2649 llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols) {
2650 if (const auto *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
2651 // We can use protocol_iterator here instead of
2652 // all_referenced_protocol_iterator since we are walking all categories.
2653 for (auto *Proto : OI->all_referenced_protocols()) {
2654 CollectInheritedProtocols(Proto, Protocols);
2655 }
2656
2657 // Categories of this Interface.
2658 for (const auto *Cat : OI->visible_categories())
2659 CollectInheritedProtocols(Cat, Protocols);
2660
2661 if (ObjCInterfaceDecl *SD = OI->getSuperClass())
2662 while (SD) {
2663 CollectInheritedProtocols(SD, Protocols);
2664 SD = SD->getSuperClass();
2665 }
2666 } else if (const auto *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
2667 for (auto *Proto : OC->protocols()) {
2668 CollectInheritedProtocols(Proto, Protocols);
2669 }
2670 } else if (const auto *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
2671 // Insert the protocol.
2672 if (!Protocols.insert(
2673 const_cast<ObjCProtocolDecl *>(OP->getCanonicalDecl())).second)
2674 return;
2675
2676 for (auto *Proto : OP->protocols())
2677 CollectInheritedProtocols(Proto, Protocols);
2678 }
2679}
2680
2681static bool unionHasUniqueObjectRepresentations(const ASTContext &Context,
2682 const RecordDecl *RD,
2683 bool CheckIfTriviallyCopyable) {
2684 assert(RD->isUnion() && "Must be union type")(static_cast <bool> (RD->isUnion() && "Must be union type"
) ? void (0) : __assert_fail ("RD->isUnion() && \"Must be union type\""
, "clang/lib/AST/ASTContext.cpp", 2684, __extension__ __PRETTY_FUNCTION__
))
;
2685 CharUnits UnionSize = Context.getTypeSizeInChars(RD->getTypeForDecl());
2686
2687 for (const auto *Field : RD->fields()) {
2688 if (!Context.hasUniqueObjectRepresentations(Field->getType(),
2689 CheckIfTriviallyCopyable))
2690 return false;
2691 CharUnits FieldSize = Context.getTypeSizeInChars(Field->getType());
2692 if (FieldSize != UnionSize)
2693 return false;
2694 }
2695 return !RD->field_empty();
2696}
2697
2698static int64_t getSubobjectOffset(const FieldDecl *Field,
2699 const ASTContext &Context,
2700 const clang::ASTRecordLayout & /*Layout*/) {
2701 return Context.getFieldOffset(Field);
2702}
2703
2704static int64_t getSubobjectOffset(const CXXRecordDecl *RD,
2705 const ASTContext &Context,
2706 const clang::ASTRecordLayout &Layout) {
2707 return Context.toBits(Layout.getBaseClassOffset(RD));
2708}
2709
2710static std::optional<int64_t>
2711structHasUniqueObjectRepresentations(const ASTContext &Context,
2712 const RecordDecl *RD,
2713 bool CheckIfTriviallyCopyable);
2714
2715static std::optional<int64_t>
2716getSubobjectSizeInBits(const FieldDecl *Field, const ASTContext &Context,
2717 bool CheckIfTriviallyCopyable) {
2718 if (Field->getType()->isRecordType()) {
2719 const RecordDecl *RD = Field->getType()->getAsRecordDecl();
2720 if (!RD->isUnion())
2721 return structHasUniqueObjectRepresentations(Context, RD,
2722 CheckIfTriviallyCopyable);
2723 }
2724
2725 // A _BitInt type may not be unique if it has padding bits
2726 // but if it is a bitfield the padding bits are not used.
2727 bool IsBitIntType = Field->getType()->isBitIntType();
2728 if (!Field->getType()->isReferenceType() && !IsBitIntType &&
2729 !Context.hasUniqueObjectRepresentations(Field->getType(),
2730 CheckIfTriviallyCopyable))
2731 return std::nullopt;
2732
2733 int64_t FieldSizeInBits =
2734 Context.toBits(Context.getTypeSizeInChars(Field->getType()));
2735 if (Field->isBitField()) {
2736 // If we have explicit padding bits, they don't contribute bits
2737 // to the actual object representation, so return 0.
2738 if (Field->isUnnamedBitfield())
2739 return 0;
2740
2741 int64_t BitfieldSize = Field->getBitWidthValue(Context);
2742 if (IsBitIntType) {
2743 if ((unsigned)BitfieldSize >
2744 cast<BitIntType>(Field->getType())->getNumBits())
2745 return std::nullopt;
2746 } else if (BitfieldSize > FieldSizeInBits) {
2747 return std::nullopt;
2748 }
2749 FieldSizeInBits = BitfieldSize;
2750 } else if (IsBitIntType && !Context.hasUniqueObjectRepresentations(
2751 Field->getType(), CheckIfTriviallyCopyable)) {
2752 return std::nullopt;
2753 }
2754 return FieldSizeInBits;
2755}
2756
2757static std::optional<int64_t>
2758getSubobjectSizeInBits(const CXXRecordDecl *RD, const ASTContext &Context,
2759 bool CheckIfTriviallyCopyable) {
2760 return structHasUniqueObjectRepresentations(Context, RD,
2761 CheckIfTriviallyCopyable);
2762}
2763
2764template <typename RangeT>
2765static std::optional<int64_t> structSubobjectsHaveUniqueObjectRepresentations(
2766 const RangeT &Subobjects, int64_t CurOffsetInBits,
2767 const ASTContext &Context, const clang::ASTRecordLayout &Layout,
2768 bool CheckIfTriviallyCopyable) {
2769 for (const auto *Subobject : Subobjects) {
2770 std::optional<int64_t> SizeInBits =
2771 getSubobjectSizeInBits(Subobject, Context, CheckIfTriviallyCopyable);
2772 if (!SizeInBits)
2773 return std::nullopt;
2774 if (*SizeInBits != 0) {
2775 int64_t Offset = getSubobjectOffset(Subobject, Context, Layout);
2776 if (Offset != CurOffsetInBits)
2777 return std::nullopt;
2778 CurOffsetInBits += *SizeInBits;
2779 }
2780 }
2781 return CurOffsetInBits;
2782}
2783
2784static std::optional<int64_t>
2785structHasUniqueObjectRepresentations(const ASTContext &Context,
2786 const RecordDecl *RD,
2787 bool CheckIfTriviallyCopyable) {
2788 assert(!RD->isUnion() && "Must be struct/class type")(static_cast <bool> (!RD->isUnion() && "Must be struct/class type"
) ? void (0) : __assert_fail ("!RD->isUnion() && \"Must be struct/class type\""
, "clang/lib/AST/ASTContext.cpp", 2788, __extension__ __PRETTY_FUNCTION__
))
;
2789 const auto &Layout = Context.getASTRecordLayout(RD);
2790
2791 int64_t CurOffsetInBits = 0;
2792 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RD)) {
2793 if (ClassDecl->isDynamicClass())
2794 return std::nullopt;
2795
2796 SmallVector<CXXRecordDecl *, 4> Bases;
2797 for (const auto &Base : ClassDecl->bases()) {
2798 // Empty types can be inherited from, and non-empty types can potentially
2799 // have tail padding, so just make sure there isn't an error.
2800 Bases.emplace_back(Base.getType()->getAsCXXRecordDecl());
2801 }
2802
2803 llvm::sort(Bases, [&](const CXXRecordDecl *L, const CXXRecordDecl *R) {
2804 return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R);
2805 });
2806
2807 std::optional<int64_t> OffsetAfterBases =
2808 structSubobjectsHaveUniqueObjectRepresentations(
2809 Bases, CurOffsetInBits, Context, Layout, CheckIfTriviallyCopyable);
2810 if (!OffsetAfterBases)
2811 return std::nullopt;
2812 CurOffsetInBits = *OffsetAfterBases;
2813 }
2814
2815 std::optional<int64_t> OffsetAfterFields =
2816 structSubobjectsHaveUniqueObjectRepresentations(
2817 RD->fields(), CurOffsetInBits, Context, Layout,
2818 CheckIfTriviallyCopyable);
2819 if (!OffsetAfterFields)
2820 return std::nullopt;
2821 CurOffsetInBits = *OffsetAfterFields;
2822
2823 return CurOffsetInBits;
2824}
2825
2826bool ASTContext::hasUniqueObjectRepresentations(
2827 QualType Ty, bool CheckIfTriviallyCopyable) const {
2828 // C++17 [meta.unary.prop]:
2829 // The predicate condition for a template specialization
2830 // has_unique_object_representations<T> shall be
2831 // satisfied if and only if:
2832 // (9.1) - T is trivially copyable, and
2833 // (9.2) - any two objects of type T with the same value have the same
2834 // object representation, where two objects
2835 // of array or non-union class type are considered to have the same value
2836 // if their respective sequences of
2837 // direct subobjects have the same values, and two objects of union type
2838 // are considered to have the same
2839 // value if they have the same active member and the corresponding members
2840 // have the same value.
2841 // The set of scalar types for which this condition holds is
2842 // implementation-defined. [ Note: If a type has padding
2843 // bits, the condition does not hold; otherwise, the condition holds true
2844 // for unsigned integral types. -- end note ]
2845 assert(!Ty.isNull() && "Null QualType sent to unique object rep check")(static_cast <bool> (!Ty.isNull() && "Null QualType sent to unique object rep check"
) ? void (0) : __assert_fail ("!Ty.isNull() && \"Null QualType sent to unique object rep check\""
, "clang/lib/AST/ASTContext.cpp", 2845, __extension__ __PRETTY_FUNCTION__
))
;
2846
2847 // Arrays are unique only if their element type is unique.
2848 if (Ty->isArrayType())
2849 return hasUniqueObjectRepresentations(getBaseElementType(Ty),
2850 CheckIfTriviallyCopyable);
2851
2852 // (9.1) - T is trivially copyable...
2853 if (CheckIfTriviallyCopyable && !Ty.isTriviallyCopyableType(*this))
2854 return false;
2855
2856 // All integrals and enums are unique.
2857 if (Ty->isIntegralOrEnumerationType()) {
2858 // Except _BitInt types that have padding bits.
2859 if (const auto *BIT = Ty->getAs<BitIntType>())
2860 return getTypeSize(BIT) == BIT->getNumBits();
2861
2862 return true;
2863 }
2864
2865 // All other pointers are unique.
2866 if (Ty->isPointerType())
2867 return true;
2868
2869 if (const auto *MPT = Ty->getAs<MemberPointerType>())
2870 return !ABI->getMemberPointerInfo(MPT).HasPadding;
2871
2872 if (Ty->isRecordType()) {
2873 const RecordDecl *Record = Ty->castAs<RecordType>()->getDecl();
2874
2875 if (Record->isInvalidDecl())
2876 return false;
2877
2878 if (Record->isUnion())
2879 return unionHasUniqueObjectRepresentations(*this, Record,
2880 CheckIfTriviallyCopyable);
2881
2882 std::optional<int64_t> StructSize = structHasUniqueObjectRepresentations(
2883 *this, Record, CheckIfTriviallyCopyable);
2884
2885 return StructSize && *StructSize == static_cast<int64_t>(getTypeSize(Ty));
2886 }
2887
2888 // FIXME: More cases to handle here (list by rsmith):
2889 // vectors (careful about, eg, vector of 3 foo)
2890 // _Complex int and friends
2891 // _Atomic T
2892 // Obj-C block pointers
2893 // Obj-C object pointers
2894 // and perhaps OpenCL's various builtin types (pipe, sampler_t, event_t,
2895 // clk_event_t, queue_t, reserve_id_t)
2896 // There're also Obj-C class types and the Obj-C selector type, but I think it
2897 // makes sense for those to return false here.
2898
2899 return false;
2900}
2901
2902unsigned ASTContext::CountNonClassIvars(const ObjCInterfaceDecl *OI) const {
2903 unsigned count = 0;
2904 // Count ivars declared in class extension.
2905 for (const auto *Ext : OI->known_extensions())
2906 count += Ext->ivar_size();
2907
2908 // Count ivar defined in this class's implementation. This
2909 // includes synthesized ivars.
2910 if (ObjCImplementationDecl *ImplDecl = OI->getImplementation())
2911 count += ImplDecl->ivar_size();
2912
2913 return count;
2914}
2915
2916bool ASTContext::isSentinelNullExpr(const Expr *E) {
2917 if (!E)
2918 return false;
2919
2920 // nullptr_t is always treated as null.
2921 if (E->getType()->isNullPtrType()) return true;
2922
2923 if (E->getType()->isAnyPointerType() &&
2924 E->IgnoreParenCasts()->isNullPointerConstant(*this,
2925 Expr::NPC_ValueDependentIsNull))
2926 return true;
2927
2928 // Unfortunately, __null has type 'int'.
2929 if (isa<GNUNullExpr>(E)) return true;
2930
2931 return false;
2932}
2933
2934/// Get the implementation of ObjCInterfaceDecl, or nullptr if none
2935/// exists.
2936ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
2937 llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2938 I = ObjCImpls.find(D);
2939 if (I != ObjCImpls.end())
2940 return cast<ObjCImplementationDecl>(I->second);
2941 return nullptr;
2942}
2943
2944/// Get the implementation of ObjCCategoryDecl, or nullptr if none
2945/// exists.
2946ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
2947 llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
2948 I = ObjCImpls.find(D);
2949 if (I != ObjCImpls.end())
2950 return cast<ObjCCategoryImplDecl>(I->second);
2951 return nullptr;
2952}
2953
2954/// Set the implementation of ObjCInterfaceDecl.
2955void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2956 ObjCImplementationDecl *ImplD) {
2957 assert(IFaceD && ImplD && "Passed null params")(static_cast <bool> (IFaceD && ImplD &&
"Passed null params") ? void (0) : __assert_fail ("IFaceD && ImplD && \"Passed null params\""
, "clang/lib/AST/ASTContext.cpp", 2957, __extension__ __PRETTY_FUNCTION__
))
;
2958 ObjCImpls[IFaceD] = ImplD;
2959}
2960
2961/// Set the implementation of ObjCCategoryDecl.
2962void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
2963 ObjCCategoryImplDecl *ImplD) {
2964 assert(CatD && ImplD && "Passed null params")(static_cast <bool> (CatD && ImplD && "Passed null params"
) ? void (0) : __assert_fail ("CatD && ImplD && \"Passed null params\""
, "clang/lib/AST/ASTContext.cpp", 2964, __extension__ __PRETTY_FUNCTION__
))
;
2965 ObjCImpls[CatD] = ImplD;
2966}
2967
2968const ObjCMethodDecl *
2969ASTContext::getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const {
2970 return ObjCMethodRedecls.lookup(MD);
2971}
2972
2973void ASTContext::setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
2974 const ObjCMethodDecl *Redecl) {
2975 assert(!getObjCMethodRedeclaration(MD) && "MD already has a redeclaration")(static_cast <bool> (!getObjCMethodRedeclaration(MD) &&
"MD already has a redeclaration") ? void (0) : __assert_fail
("!getObjCMethodRedeclaration(MD) && \"MD already has a redeclaration\""
, "clang/lib/AST/ASTContext.cpp", 2975, __extension__ __PRETTY_FUNCTION__
))
;
2976 ObjCMethodRedecls[MD] = Redecl;
2977}
2978
2979const ObjCInterfaceDecl *ASTContext::getObjContainingInterface(
2980 const NamedDecl *ND) const {
2981 if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(ND->getDeclContext()))
2982 return ID;
2983 if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND->getDeclContext()))
2984 return CD->getClassInterface();
2985 if (const auto *IMD = dyn_cast<ObjCImplDecl>(ND->getDeclContext()))
2986 return IMD->getClassInterface();
2987
2988 return nullptr;
2989}
2990
2991/// Get the copy initialization expression of VarDecl, or nullptr if
2992/// none exists.
2993BlockVarCopyInit ASTContext::getBlockVarCopyInit(const VarDecl *VD) const {
2994 assert(VD && "Passed null params")(static_cast <bool> (VD && "Passed null params"
) ? void (0) : __assert_fail ("VD && \"Passed null params\""
, "clang/lib/AST/ASTContext.cpp", 2994, __extension__ __PRETTY_FUNCTION__
))
;
2995 assert(VD->hasAttr<BlocksAttr>() &&(static_cast <bool> (VD->hasAttr<BlocksAttr>()
&& "getBlockVarCopyInits - not __block var") ? void (
0) : __assert_fail ("VD->hasAttr<BlocksAttr>() && \"getBlockVarCopyInits - not __block var\""
, "clang/lib/AST/ASTContext.cpp", 2996, __extension__ __PRETTY_FUNCTION__
))
2996 "getBlockVarCopyInits - not __block var")(static_cast <bool> (VD->hasAttr<BlocksAttr>()
&& "getBlockVarCopyInits - not __block var") ? void (
0) : __assert_fail ("VD->hasAttr<BlocksAttr>() && \"getBlockVarCopyInits - not __block var\""
, "clang/lib/AST/ASTContext.cpp", 2996, __extension__ __PRETTY_FUNCTION__
))
;
2997 auto I = BlockVarCopyInits.find(VD);
2998 if (I != BlockVarCopyInits.end())
2999 return I->second;
3000 return {nullptr, false};
3001}
3002
3003/// Set the copy initialization expression of a block var decl.
3004void ASTContext::setBlockVarCopyInit(const VarDecl*VD, Expr *CopyExpr,
3005 bool CanThrow) {
3006 assert(VD && CopyExpr && "Passed null params")(static_cast <bool> (VD && CopyExpr && "Passed null params"
) ? void (0) : __assert_fail ("VD && CopyExpr && \"Passed null params\""
, "clang/lib/AST/ASTContext.cpp", 3006, __extension__ __PRETTY_FUNCTION__
))
;
3007 assert(VD->hasAttr<BlocksAttr>() &&(static_cast <bool> (VD->hasAttr<BlocksAttr>()
&& "setBlockVarCopyInits - not __block var") ? void (
0) : __assert_fail ("VD->hasAttr<BlocksAttr>() && \"setBlockVarCopyInits - not __block var\""
, "clang/lib/AST/ASTContext.cpp", 3008, __extension__ __PRETTY_FUNCTION__
))
3008 "setBlockVarCopyInits - not __block var")(static_cast <bool> (VD->hasAttr<BlocksAttr>()
&& "setBlockVarCopyInits - not __block var") ? void (
0) : __assert_fail ("VD->hasAttr<BlocksAttr>() && \"setBlockVarCopyInits - not __block var\""
, "clang/lib/AST/ASTContext.cpp", 3008, __extension__ __PRETTY_FUNCTION__
))
;
3009 BlockVarCopyInits[VD].setExprAndFlag(CopyExpr, CanThrow);
3010}
3011
3012TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
3013 unsigned DataSize) const {
3014 if (!DataSize)
3015 DataSize = TypeLoc::getFullDataSizeForType(T);
3016 else
3017 assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&(static_cast <bool> (DataSize == TypeLoc::getFullDataSizeForType
(T) && "incorrect data size provided to CreateTypeSourceInfo!"
) ? void (0) : __assert_fail ("DataSize == TypeLoc::getFullDataSizeForType(T) && \"incorrect data size provided to CreateTypeSourceInfo!\""
, "clang/lib/AST/ASTContext.cpp", 3018, __extension__ __PRETTY_FUNCTION__
))
3018 "incorrect data size provided to CreateTypeSourceInfo!")(static_cast <bool> (DataSize == TypeLoc::getFullDataSizeForType
(T) && "incorrect data size provided to CreateTypeSourceInfo!"
) ? void (0) : __assert_fail ("DataSize == TypeLoc::getFullDataSizeForType(T) && \"incorrect data size provided to CreateTypeSourceInfo!\""
, "clang/lib/AST/ASTContext.cpp", 3018, __extension__ __PRETTY_FUNCTION__
))
;
3019
3020 auto *TInfo =
3021 (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
3022 new (TInfo) TypeSourceInfo(T);
3023 return TInfo;
3024}
3025
3026TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
3027 SourceLocation L) const {
3028 TypeSourceInfo *DI = CreateTypeSourceInfo(T);
3029 DI->getTypeLoc().initialize(const_cast<ASTContext &>(*this), L);
3030 return DI;
3031}
3032
3033const ASTRecordLayout &
3034ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) const {
3035 return getObjCLayout(D, nullptr);
3036}
3037
3038const ASTRecordLayout &
3039ASTContext::getASTObjCImplementationLayout(
3040 const ObjCImplementationDecl *D) const {
3041 return getObjCLayout(D->getClassInterface(), D);
3042}
3043
3044static auto getCanonicalTemplateArguments(const ASTContext &C,
3045 ArrayRef<TemplateArgument> Args,
3046 bool &AnyNonCanonArgs) {
3047 SmallVector<TemplateArgument, 16> CanonArgs(Args);
3048 for (auto &Arg : CanonArgs) {
3049 TemplateArgument OrigArg = Arg;
3050 Arg = C.getCanonicalTemplateArgument(Arg);
3051 AnyNonCanonArgs |= !Arg.structurallyEquals(OrigArg);
3052 }
3053 return CanonArgs;
3054}
3055
3056//===----------------------------------------------------------------------===//
3057// Type creation/memoization methods
3058//===----------------------------------------------------------------------===//
3059
3060QualType
3061ASTContext::getExtQualType(const Type *baseType, Qualifiers quals) const {
3062 unsigned fastQuals = quals.getFastQualifiers();
3063 quals.removeFastQualifiers();
3064
3065 // Check if we've already instantiated this type.
3066 llvm::FoldingSetNodeID ID;
3067 ExtQuals::Profile(ID, baseType, quals);
3068 void *insertPos = nullptr;
3069 if (ExtQuals *eq = ExtQualNodes.FindNodeOrInsertPos(ID, insertPos)) {
3070 assert(eq->getQualifiers() == quals)(static_cast <bool> (eq->getQualifiers() == quals) ?
void (0) : __assert_fail ("eq->getQualifiers() == quals",
"clang/lib/AST/ASTContext.cpp", 3070, __extension__ __PRETTY_FUNCTION__
))
;
3071 return QualType(eq, fastQuals);
3072 }
3073
3074 // If the base type is not canonical, make the appropriate canonical type.
3075 QualType canon;
3076 if (!baseType->isCanonicalUnqualified()) {
3077 SplitQualType canonSplit = baseType->getCanonicalTypeInternal().split();
3078 canonSplit.Quals.addConsistentQualifiers(quals);
3079 canon = getExtQualType(canonSplit.Ty, canonSplit.Quals);
3080
3081 // Re-find the insert position.
3082 (void) ExtQualNodes.FindNodeOrInsertPos(ID, insertPos);
3083 }
3084
3085 auto *eq = new (*this, TypeAlignment) ExtQuals(baseType, canon, quals);
3086 ExtQualNodes.InsertNode(eq, insertPos);
3087 return QualType(eq, fastQuals);
3088}
3089
3090QualType ASTContext::getAddrSpaceQualType(QualType T,
3091 LangAS AddressSpace) const {
3092 QualType CanT = getCanonicalType(T);
3093 if (CanT.getAddressSpace() == AddressSpace)
3094 return T;
3095
3096 // If we are composing extended qualifiers together, merge together
3097 // into one ExtQuals node.
3098 QualifierCollector Quals;
3099 const Type *TypeNode = Quals.strip(T);
3100
3101 // If this type already has an address space specified, it cannot get
3102 // another one.
3103 assert(!Quals.hasAddressSpace() &&(static_cast <bool> (!Quals.hasAddressSpace() &&
"Type cannot be in multiple addr spaces!") ? void (0) : __assert_fail
("!Quals.hasAddressSpace() && \"Type cannot be in multiple addr spaces!\""
, "clang/lib/AST/ASTContext.cpp", 3104, __extension__ __PRETTY_FUNCTION__
))
3104 "Type cannot be in multiple addr spaces!")(static_cast <bool> (!Quals.hasAddressSpace() &&
"Type cannot be in multiple addr spaces!") ? void (0) : __assert_fail
("!Quals.hasAddressSpace() && \"Type cannot be in multiple addr spaces!\""
, "clang/lib/AST/ASTContext.cpp", 3104, __extension__ __PRETTY_FUNCTION__
))
;
3105 Quals.addAddressSpace(AddressSpace);
3106
3107 return getExtQualType(TypeNode, Quals);
3108}
3109
3110QualType ASTContext::removeAddrSpaceQualType(QualType T) const {
3111 // If the type is not qualified with an address space, just return it
3112 // immediately.
3113 if (!T.hasAddressSpace())
3114 return T;
3115
3116 // If we are composing extended qualifiers together, merge together
3117 // into one ExtQuals node.
3118 QualifierCollector Quals;
3119 const Type *TypeNode;
3120
3121 while (T.hasAddressSpace()) {
3122 TypeNode = Quals.strip(T);
3123
3124 // If the type no longer has an address space after stripping qualifiers,
3125 // jump out.
3126 if (!QualType(TypeNode, 0).hasAddressSpace())
3127 break;
3128
3129 // There might be sugar in the way. Strip it and try again.
3130 T = T.getSingleStepDesugaredType(*this);
3131 }
3132
3133 Quals.removeAddressSpace();
3134
3135 // Removal of the address space can mean there are no longer any
3136 // non-fast qualifiers, so creating an ExtQualType isn't possible (asserts)
3137 // or required.
3138 if (Quals.hasNonFastQualifiers())
3139 return getExtQualType(TypeNode, Quals);
3140 else
3141 return QualType(TypeNode, Quals.getFastQualifiers());
3142}
3143
3144QualType ASTContext::getObjCGCQualType(QualType T,
3145 Qualifiers::GC GCAttr) const {
3146 QualType CanT = getCanonicalType(T);
3147 if (CanT.getObjCGCAttr() == GCAttr)
3148 return T;
3149
3150 if (const auto *ptr = T->getAs<PointerType>()) {
3151 QualType Pointee = ptr->getPointeeType();
3152 if (Pointee->isAnyPointerType()) {
3153 QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
3154 return getPointerType(ResultType);
3155 }
3156 }
3157
3158 // If we are composing extended qualifiers together, merge together
3159 // into one ExtQuals node.
3160 QualifierCollector Quals;
3161 const Type *TypeNode = Quals.strip(T);
3162
3163 // If this type already has an ObjCGC specified, it cannot get
3164 // another one.
3165 assert(!Quals.hasObjCGCAttr() &&(static_cast <bool> (!Quals.hasObjCGCAttr() && "Type cannot have multiple ObjCGCs!"
) ? void (0) : __assert_fail ("!Quals.hasObjCGCAttr() && \"Type cannot have multiple ObjCGCs!\""
, "clang/lib/AST/ASTContext.cpp", 3166, __extension__ __PRETTY_FUNCTION__
))
3166 "Type cannot have multiple ObjCGCs!")(static_cast <bool> (!Quals.hasObjCGCAttr() && "Type cannot have multiple ObjCGCs!"
) ? void (0) : __assert_fail ("!Quals.hasObjCGCAttr() && \"Type cannot have multiple ObjCGCs!\""
, "clang/lib/AST/ASTContext.cpp", 3166, __extension__ __PRETTY_FUNCTION__
))
;
3167 Quals.addObjCGCAttr(GCAttr);
3168
3169 return getExtQualType(TypeNode, Quals);
3170}
3171
3172QualType ASTContext::removePtrSizeAddrSpace(QualType T) const {
3173 if (const PointerType *Ptr = T->getAs<PointerType>()) {
3174 QualType Pointee = Ptr->getPointeeType();
3175 if (isPtrSizeAddressSpace(Pointee.getAddressSpace())) {
3176 return getPointerType(removeAddrSpaceQualType(Pointee));
3177 }
3178 }
3179 return T;
3180}
3181
3182const FunctionType *ASTContext::adjustFunctionType(const FunctionType *T,
3183 FunctionType::ExtInfo Info) {
3184 if (T->getExtInfo() == Info)
3185 return T;
3186
3187 QualType Result;
3188 if (const auto *FNPT = dyn_cast<FunctionNoProtoType>(T)) {
3189 Result = getFunctionNoProtoType(FNPT->getReturnType(), Info);
3190 } else {
3191 const auto *FPT = cast<FunctionProtoType>(T);
3192 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
3193 EPI.ExtInfo = Info;
3194 Result = getFunctionType(FPT->getReturnType(), FPT->getParamTypes(), EPI);
3195 }
3196
3197 return cast<FunctionType>(Result.getTypePtr());
3198}
3199
3200void ASTContext::adjustDeducedFunctionResultType(FunctionDecl *FD,
3201 QualType ResultType) {
3202 FD = FD->getMostRecentDecl();
3203 while (true) {
3204 const auto *FPT = FD->getType()->castAs<FunctionProtoType>();
3205 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
3206 FD->setType(getFunctionType(ResultType, FPT->getParamTypes(), EPI));
3207 if (FunctionDecl *Next = FD->getPreviousDecl())
3208 FD = Next;
3209 else
3210 break;
3211 }
3212 if (ASTMutationListener *L = getASTMutationListener())
3213 L->DeducedReturnType(FD, ResultType);
3214}
3215
3216/// Get a function type and produce the equivalent function type with the
3217/// specified exception specification. Type sugar that can be present on a
3218/// declaration of a function with an exception specification is permitted
3219/// and preserved. Other type sugar (for instance, typedefs) is not.
3220QualType ASTContext::getFunctionTypeWithExceptionSpec(
3221 QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI) const {
3222 // Might have some parens.
3223 if (const auto *PT = dyn_cast<ParenType>(Orig))
3224 return getParenType(
3225 getFunctionTypeWithExceptionSpec(PT->getInnerType(), ESI));
3226
3227 // Might be wrapped in a macro qualified type.
3228 if (const auto *MQT = dyn_cast<MacroQualifiedType>(Orig))
3229 return getMacroQualifiedType(
3230 getFunctionTypeWithExceptionSpec(MQT->getUnderlyingType(), ESI),
3231 MQT->getMacroIdentifier());
3232
3233 // Might have a calling-convention attribute.
3234 if (const auto *AT = dyn_cast<AttributedType>(Orig))
3235 return getAttributedType(
3236 AT->getAttrKind(),
3237 getFunctionTypeWithExceptionSpec(AT->getModifiedType(), ESI),
3238 getFunctionTypeWithExceptionSpec(AT->getEquivalentType(), ESI));
3239
3240 // Anything else must be a function type. Rebuild it with the new exception
3241 // specification.
3242 const auto *Proto = Orig->castAs<FunctionProtoType>();
3243 return getFunctionType(
3244 Proto->getReturnType(), Proto->getParamTypes(),
3245 Proto->getExtProtoInfo().withExceptionSpec(ESI));
3246}
3247
3248bool ASTContext::hasSameFunctionTypeIgnoringExceptionSpec(QualType T,
3249 QualType U) const {
3250 return hasSameType(T, U) ||
3251 (getLangOpts().CPlusPlus17 &&
3252 hasSameType(getFunctionTypeWithExceptionSpec(T, EST_None),
3253 getFunctionTypeWithExceptionSpec(U, EST_None)));
3254}
3255
3256QualType ASTContext::getFunctionTypeWithoutPtrSizes(QualType T) {
3257 if (const auto *Proto = T->getAs<FunctionProtoType>()) {
3258 QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType());
3259 SmallVector<QualType, 16> Args(Proto->param_types().size());
3260 for (unsigned i = 0, n = Args.size(); i != n; ++i)
3261 Args[i] = removePtrSizeAddrSpace(Proto->param_types()[i]);
3262 return getFunctionType(RetTy, Args, Proto->getExtProtoInfo());
3263 }
3264
3265 if (const FunctionNoProtoType *Proto = T->getAs<FunctionNoProtoType>()) {
3266 QualType RetTy = removePtrSizeAddrSpace(Proto->getReturnType());
3267 return getFunctionNoProtoType(RetTy, Proto->getExtInfo());
3268 }
3269
3270 return T;
3271}
3272
3273bool ASTContext::hasSameFunctionTypeIgnoringPtrSizes(QualType T, QualType U) {
3274 return hasSameType(T, U) ||
3275 hasSameType(getFunctionTypeWithoutPtrSizes(T),
3276 getFunctionTypeWithoutPtrSizes(U));
3277}
3278
3279void ASTContext::adjustExceptionSpec(
3280 FunctionDecl *FD, const FunctionProtoType::ExceptionSpecInfo &ESI,
3281 bool AsWritten) {
3282 // Update the type.
3283 QualType Updated =
3284 getFunctionTypeWithExceptionSpec(FD->getType(), ESI);
3285 FD->setType(Updated);
3286
3287 if (!AsWritten)
3288 return;
3289
3290 // Update the type in the type source information too.
3291 if (TypeSourceInfo *TSInfo = FD->getTypeSourceInfo()) {
3292 // If the type and the type-as-written differ, we may need to update
3293 // the type-as-written too.
3294 if (TSInfo->getType() != FD->getType())
3295 Updated = getFunctionTypeWithExceptionSpec(TSInfo->getType(), ESI);
3296
3297 // FIXME: When we get proper type location information for exceptions,
3298 // we'll also have to rebuild the TypeSourceInfo. For now, we just patch
3299 // up the TypeSourceInfo;
3300 assert(TypeLoc::getFullDataSizeForType(Updated) ==(static_cast <bool> (TypeLoc::getFullDataSizeForType(Updated
) == TypeLoc::getFullDataSizeForType(TSInfo->getType()) &&
"TypeLoc size mismatch from updating exception specification"
) ? void (0) : __assert_fail ("TypeLoc::getFullDataSizeForType(Updated) == TypeLoc::getFullDataSizeForType(TSInfo->getType()) && \"TypeLoc size mismatch from updating exception specification\""
, "clang/lib/AST/ASTContext.cpp", 3302, __extension__ __PRETTY_FUNCTION__
))
3301 TypeLoc::getFullDataSizeForType(TSInfo->getType()) &&(static_cast <bool> (TypeLoc::getFullDataSizeForType(Updated
) == TypeLoc::getFullDataSizeForType(TSInfo->getType()) &&
"TypeLoc size mismatch from updating exception specification"
) ? void (0) : __assert_fail ("TypeLoc::getFullDataSizeForType(Updated) == TypeLoc::getFullDataSizeForType(TSInfo->getType()) && \"TypeLoc size mismatch from updating exception specification\""
, "clang/lib/AST/ASTContext.cpp", 3302, __extension__ __PRETTY_FUNCTION__
))
3302 "TypeLoc size mismatch from updating exception specification")(static_cast <bool> (TypeLoc::getFullDataSizeForType(Updated
) == TypeLoc::getFullDataSizeForType(TSInfo->getType()) &&
"TypeLoc size mismatch from updating exception specification"
) ? void (0) : __assert_fail ("TypeLoc::getFullDataSizeForType(Updated) == TypeLoc::getFullDataSizeForType(TSInfo->getType()) && \"TypeLoc size mismatch from updating exception specification\""
, "clang/lib/AST/ASTContext.cpp", 3302, __extension__ __PRETTY_FUNCTION__
))
;
3303 TSInfo->overrideType(Updated);
3304 }
3305}
3306
3307/// getComplexType - Return the uniqued reference to the type for a complex
3308/// number with the specified element type.
3309QualType ASTContext::getComplexType(QualType T) const {
3310 // Unique pointers, to guarantee there is only one pointer of a particular
3311 // structure.
3312 llvm::FoldingSetNodeID ID;
3313 ComplexType::Profile(ID, T);
3314
3315 void *InsertPos = nullptr;
3316 if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
3317 return QualType(CT, 0);
3318
3319 // If the pointee type isn't canonical, this won't be a canonical type either,
3320 // so fill in the canonical type field.
3321 QualType Canonical;
3322 if (!T.isCanonical()) {
3323 Canonical = getComplexType(getCanonicalType(T));
3324
3325 // Get the new insert position for the node we care about.
3326 ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
3327 assert(!NewIP && "Shouldn't be in the map!")(static_cast <bool> (!NewIP && "Shouldn't be in the map!"
) ? void (0) : __assert_fail ("!NewIP && \"Shouldn't be in the map!\""
, "clang/lib/AST/ASTContext.cpp", 3327, __extension__ __PRETTY_FUNCTION__
))
; (void)NewIP;
3328 }
3329 auto *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
3330 Types.push_back(New);
3331 ComplexTypes.InsertNode(New, InsertPos);
3332 return QualType(New, 0);
3333}
3334
3335/// getPointerType - Return the uniqued reference to the type for a pointer to
3336/// the specified type.
3337QualType ASTContext::getPointerType(QualType T) const {
3338 // Unique pointers, to guarantee there is only one pointer of a particular
3339 // structure.
3340 llvm::FoldingSetNodeID ID;
3341 PointerType::Profile(ID, T);
3342
3343 void *InsertPos = nullptr;
3344 if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3345 return QualType(PT, 0);
3346
3347 // If the pointee type isn't canonical, this won't be a canonical type either,
3348 // so fill in the canonical type field.
3349 QualType Canonical;
3350 if (!T.isCanonical()) {
3351 Canonical = getPointerType(getCanonicalType(T));
3352
3353 // Get the new insert position for the node we care about.
3354 PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3355 assert(!NewIP && "Shouldn't be in the map!")(static_cast <bool> (!NewIP && "Shouldn't be in the map!"
) ? void (0) : __assert_fail ("!NewIP && \"Shouldn't be in the map!\""
, "clang/lib/AST/ASTContext.cpp", 3355, __extension__ __PRETTY_FUNCTION__
))
; (void)NewIP;
3356 }
3357 auto *New = new (*this, TypeAlignment) PointerType(T, Canonical);
3358 Types.push_back(New);
3359 PointerTypes.InsertNode(New, InsertPos);
3360 return QualType(New, 0);
3361}
3362
3363QualType ASTContext::getAdjustedType(QualType Orig, QualType New) const {
3364 llvm::FoldingSetNodeID ID;
3365 AdjustedType::Profile(ID, Orig, New);
3366 void *InsertPos = nullptr;
3367 AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3368 if (AT)
3369 return QualType(AT, 0);
3370
3371 QualType Canonical = getCanonicalType(New);
3372
3373 // Get the new insert position for the node we care about.
3374 AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3375 assert(!AT && "Shouldn't be in the map!")(static_cast <bool> (!AT && "Shouldn't be in the map!"
) ? void (0) : __assert_fail ("!AT && \"Shouldn't be in the map!\""
, "clang/lib/AST/ASTContext.cpp", 3375, __extension__ __PRETTY_FUNCTION__
))
;
3376
3377 AT = new (*this, TypeAlignment)
3378 AdjustedType(Type::Adjusted, Orig, New, Canonical);
3379 Types.push_back(AT);
3380 AdjustedTypes.InsertNode(AT, InsertPos);
3381 return QualType(AT, 0);
3382}
3383
3384QualType ASTContext::getDecayedType(QualType Orig, QualType Decayed) const {
3385 llvm::FoldingSetNodeID ID;
3386 AdjustedType::Profile(ID, Orig, Decayed);
3387 void *InsertPos = nullptr;
3388 AdjustedType *AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3389 if (AT)
3390 return QualType(AT, 0);
3391
3392 QualType Canonical = getCanonicalType(Decayed);
3393
3394 // Get the new insert position for the node we care about.
3395 AT = AdjustedTypes.FindNodeOrInsertPos(ID, InsertPos);
3396 assert(!AT && "Shouldn't be in the map!")(static_cast <bool> (!AT && "Shouldn't be in the map!"
) ? void (0) : __assert_fail ("!AT && \"Shouldn't be in the map!\""
, "clang/lib/AST/ASTContext.cpp", 3396, __extension__ __PRETTY_FUNCTION__
))
;
3397
3398 AT = new (*this, TypeAlignment) DecayedType(Orig, Decayed, Canonical);
3399 Types.push_back(AT);
3400 AdjustedTypes.InsertNode(AT, InsertPos);
3401 return QualType(AT, 0);
3402}
3403
3404QualType ASTContext::getDecayedType(QualType T) const {
3405 assert((T->isArrayType() || T->isFunctionType()) && "T does not decay")(static_cast <bool> ((T->isArrayType() || T->isFunctionType
()) && "T does not decay") ? void (0) : __assert_fail
("(T->isArrayType() || T->isFunctionType()) && \"T does not decay\""
, "clang/lib/AST/ASTContext.cpp", 3405, __extension__ __PRETTY_FUNCTION__
))
;
3406
3407 QualType Decayed;
3408
3409 // C99 6.7.5.3p7:
3410 // A declaration of a parameter as "array of type" shall be
3411 // adjusted to "qualified pointer to type", where the type
3412 // qualifiers (if any) are those specified within the [ and ] of
3413 // the array type derivation.
3414 if (T->isArrayType())
3415 Decayed = getArrayDecayedType(T);
3416
3417 // C99 6.7.5.3p8:
3418 // A declaration of a parameter as "function returning type"
3419 // shall be adjusted to "pointer to function returning type", as
3420 // in 6.3.2.1.
3421 if (T->isFunctionType())
3422 Decayed = getPointerType(T);
3423
3424 return getDecayedType(T, Decayed);
3425}
3426
3427/// getBlockPointerType - Return the uniqued reference to the type for
3428/// a pointer to the specified block.
3429QualType ASTContext::getBlockPointerType(QualType T) const {
3430 assert(T->isFunctionType() && "block of function types only")(static_cast <bool> (T->isFunctionType() && "block of function types only"
) ? void (0) : __assert_fail ("T->isFunctionType() && \"block of function types only\""
, "clang/lib/AST/ASTContext.cpp", 3430, __extension__ __PRETTY_FUNCTION__
))
;
3431 // Unique pointers, to guarantee there is only one block of a particular
3432 // structure.
3433 llvm::FoldingSetNodeID ID;
3434 BlockPointerType::Profile(ID, T);
3435
3436 void *InsertPos = nullptr;
3437 if (BlockPointerType *PT =
3438 BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3439 return QualType(PT, 0);
3440
3441 // If the block pointee type isn't canonical, this won't be a canonical
3442 // type either so fill in the canonical type field.
3443 QualType Canonical;
3444 if (!T.isCanonical()) {
3445 Canonical = getBlockPointerType(getCanonicalType(T));
3446
3447 // Get the new insert position for the node we care about.
3448 BlockPointerType *NewIP =
3449 BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3450 assert(!NewIP && "Shouldn't be in the map!")(static_cast <bool> (!NewIP && "Shouldn't be in the map!"
) ? void (0) : __assert_fail ("!NewIP && \"Shouldn't be in the map!\""
, "clang/lib/AST/ASTContext.cpp", 3450, __extension__ __PRETTY_FUNCTION__
))
; (void)NewIP;
3451 }
3452 auto *New = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
3453 Types.push_back(New);
3454 BlockPointerTypes.InsertNode(New, InsertPos);
3455 return QualType(New, 0);
3456}
3457
3458/// getLValueReferenceType - Return the uniqued reference to the type for an
3459/// lvalue reference to the specified type.
3460QualType
3461ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) const {
3462 assert((!T->isPlaceholderType() ||(static_cast <bool> ((!T->isPlaceholderType() || T->
isSpecificPlaceholderType(BuiltinType::UnknownAny)) &&
"Unresolved placeholder type") ? void (0) : __assert_fail ("(!T->isPlaceholderType() || T->isSpecificPlaceholderType(BuiltinType::UnknownAny)) && \"Unresolved placeholder type\""
, "clang/lib/AST/ASTContext.cpp", 3464, __extension__ __PRETTY_FUNCTION__
))
3463 T->isSpecificPlaceholderType(BuiltinType::UnknownAny)) &&(static_cast <bool> ((!T->isPlaceholderType() || T->
isSpecificPlaceholderType(BuiltinType::UnknownAny)) &&
"Unresolved placeholder type") ? void (0) : __assert_fail ("(!T->isPlaceholderType() || T->isSpecificPlaceholderType(BuiltinType::UnknownAny)) && \"Unresolved placeholder type\""
, "clang/lib/AST/ASTContext.cpp", 3464, __extension__ __PRETTY_FUNCTION__
))
3464 "Unresolved placeholder type")(static_cast <bool> ((!T->isPlaceholderType() || T->
isSpecificPlaceholderType(BuiltinType::UnknownAny)) &&
"Unresolved placeholder type") ? void (0) : __assert_fail ("(!T->isPlaceholderType() || T->isSpecificPlaceholderType(BuiltinType::UnknownAny)) && \"Unresolved placeholder type\""
, "clang/lib/AST/ASTContext.cpp", 3464, __extension__ __PRETTY_FUNCTION__
))
;
3465
3466 // Unique pointers, to guarantee there is only one pointer of a particular
3467 // structure.
3468 llvm::FoldingSetNodeID ID;
3469 ReferenceType::Profile(ID, T, SpelledAsLValue);
3470
3471 void *InsertPos = nullptr;
3472 if (LValueReferenceType *RT =
3473 LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
3474 return QualType(RT, 0);
3475
3476 const auto *InnerRef = T->getAs<ReferenceType>();
3477
3478 // If the referencee type isn't canonical, this won't be a canonical type
3479 // either, so fill in the canonical type field.
3480 QualType Canonical;
3481 if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
3482 QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
3483 Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
3484
3485 // Get the new insert position for the node we care about.
3486 LValueReferenceType *NewIP =
3487 LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
3488 assert(!NewIP && "Shouldn't be in the map!")(static_cast <bool> (!NewIP && "Shouldn't be in the map!"
) ? void (0) : __assert_fail ("!NewIP && \"Shouldn't be in the map!\""
, "clang/lib/AST/ASTContext.cpp", 3488, __extension__ __PRETTY_FUNCTION__
))
; (void)NewIP;
3489 }
3490
3491 auto *New = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
3492 SpelledAsLValue);
3493 Types.push_back(New);
3494 LValueReferenceTypes.InsertNode(New, InsertPos);
3495
3496 return QualType(New, 0);
3497}
3498
3499/// getRValueReferenceType - Return the uniqued reference to the type for an
3500/// rvalue reference to the specified type.
3501QualType ASTContext::getRValueReferenceType(QualType T) const {
3502 assert((!T->isPlaceholderType() ||(static_cast <bool> ((!T->isPlaceholderType() || T->
isSpecificPlaceholderType(BuiltinType::UnknownAny)) &&
"Unresolved placeholder type") ? void (0) : __assert_fail ("(!T->isPlaceholderType() || T->isSpecificPlaceholderType(BuiltinType::UnknownAny)) && \"Unresolved placeholder type\""
, "clang/lib/AST/ASTContext.cpp", 3504, __extension__ __PRETTY_FUNCTION__
))
3503 T->isSpecificPlaceholderType(BuiltinType::UnknownAny)) &&(static_cast <bool> ((!T->isPlaceholderType() || T->
isSpecificPlaceholderType(BuiltinType::UnknownAny)) &&
"Unresolved placeholder type") ? void (0) : __assert_fail ("(!T->isPlaceholderType() || T->isSpecificPlaceholderType(BuiltinType::UnknownAny)) && \"Unresolved placeholder type\""
, "clang/lib/AST/ASTContext.cpp", 3504, __extension__ __PRETTY_FUNCTION__
))
3504 "Unresolved placeholder type")(static_cast <bool> ((!T->isPlaceholderType() || T->
isSpecificPlaceholderType(BuiltinType::UnknownAny)) &&
"Unresolved placeholder type") ? void (0) : __assert_fail ("(!T->isPlaceholderType() || T->isSpecificPlaceholderType(BuiltinType::UnknownAny)) && \"Unresolved placeholder type\""
, "clang/lib/AST/ASTContext.cpp", 3504, __extension__ __PRETTY_FUNCTION__
))
;
3505
3506 // Unique pointers, to guarantee there is only one pointer of a particular
3507 // structure.
3508 llvm::FoldingSetNodeID ID;
3509 ReferenceType::Profile(ID, T, false);
3510
3511 void *InsertPos = nullptr;
3512 if (RValueReferenceType *RT =
3513 RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
3514 return QualType(RT, 0);
3515
3516 const auto *InnerRef = T->getAs<ReferenceType>();
3517
3518 // If the referencee type isn't canonical, this won't be a canonical type
3519 // either, so fill in the canonical type field.
3520 QualType Canonical;
3521 if (InnerRef || !T.isCanonical()) {
3522 QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
3523 Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
3524
3525 // Get the new insert position for the node we care about.
3526 RValueReferenceType *NewIP =
3527 RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
3528 assert(!NewIP && "Shouldn't be in the map!")(static_cast <bool> (!NewIP && "Shouldn't be in the map!"
) ? void (0) : __assert_fail ("!NewIP && \"Shouldn't be in the map!\""
, "clang/lib/AST/ASTContext.cpp", 3528, __extension__ __PRETTY_FUNCTION__
))
; (void)NewIP;
3529 }
3530
3531 auto *New = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
3532 Types.push_back(New);
3533 RValueReferenceTypes.InsertNode(New, InsertPos);
3534 return QualType(New, 0);
3535}
3536
3537/// getMemberPointerType - Return the uniqued reference to the type for a
3538/// member pointer to the specified type, in the specified class.
3539QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) const {
3540 // Unique pointers, to guarantee there is only one pointer of a particular
3541 // structure.
3542 llvm::FoldingSetNodeID ID;
3543 MemberPointerType::Profile(ID, T, Cls);
3544
3545 void *InsertPos = nullptr;
3546 if (MemberPointerType *PT =
3547 MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
3548 return QualType(PT, 0);
3549
3550 // If the pointee or class type isn't canonical, this won't be a canonical
3551 // type either, so fill in the canonical type field.
3552 QualType Canonical;
3553 if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
3554 Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
3555
3556 // Get the new insert position for the node we care about.
3557 MemberPointerType *NewIP =
3558 MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
3559 assert(!NewIP && "Shouldn't be in the map!")(static_cast <bool> (!NewIP && "Shouldn't be in the map!"
) ? void (0) : __assert_fail ("!NewIP && \"Shouldn't be in the map!\""
, "clang/lib/AST/ASTContext.cpp", 3559, __extension__ __PRETTY_FUNCTION__
))
; (void)NewIP;
3560 }
3561 auto *New = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
3562 Types.push_back(New);
3563 MemberPointerTypes.InsertNode(New, InsertPos);
3564 return QualType(New, 0);
3565}
3566
3567/// getConstantArrayType - Return the unique reference to the type for an
3568/// array of the specified element type.
3569QualType ASTContext::getConstantArrayType(QualType EltTy,
3570 const llvm::APInt &ArySizeIn,
3571 const Expr *SizeExpr,
3572 ArrayType::ArraySizeModifier ASM,
3573 unsigned IndexTypeQuals) const {
3574 assert((EltTy->isDependentType() ||(static_cast <bool> ((EltTy->isDependentType() || EltTy
->isIncompleteType() || EltTy->isConstantSizeType()) &&
"Constant array of VLAs is illegal!") ? void (0) : __assert_fail
("(EltTy->isDependentType() || EltTy->isIncompleteType() || EltTy->isConstantSizeType()) && \"Constant array of VLAs is illegal!\""
, "clang/lib/AST/ASTContext.cpp", 3576, __extension__ __PRETTY_FUNCTION__
))
3575 EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&(static_cast <bool> ((EltTy->isDependentType() || EltTy
->isIncompleteType() || EltTy->isConstantSizeType()) &&
"Constant array of VLAs is illegal!") ? void (0) : __assert_fail
("(EltTy->isDependentType() || EltTy->isIncompleteType() || EltTy->isConstantSizeType()) && \"Constant array of VLAs is illegal!\""
, "clang/lib/AST/ASTContext.cpp", 3576, __extension__ __PRETTY_FUNCTION__
))
3576 "Constant array of VLAs is illegal!")(static_cast <bool> ((EltTy->isDependentType() || EltTy
->isIncompleteType() || EltTy->isConstantSizeType()) &&
"Constant array of VLAs is illegal!") ? void (0) : __assert_fail
("(EltTy->isDependentType() || EltTy->isIncompleteType() || EltTy->isConstantSizeType()) && \"Constant array of VLAs is illegal!\""
, "clang/lib/AST/ASTContext.cpp", 3576, __extension__ __PRETTY_FUNCTION__
))
;
3577
3578 // We only need the size as part of the type if it's instantiation-dependent.
3579 if (SizeExpr && !SizeExpr->isInstantiationDependent())
3580 SizeExpr = nullptr;
3581
3582 // Convert the array size into a canonical width matching the pointer size for
3583 // the target.
3584 llvm::APInt ArySize(ArySizeIn);
3585 ArySize = ArySize.zextOrTrunc(Target->getMaxPointerWidth());
3586
3587 llvm::FoldingSetNodeID ID;
3588 ConstantArrayType::Profile(ID, *this, EltTy, ArySize, SizeExpr, ASM,
3589 IndexTypeQuals);
3590
3591 void *InsertPos = nullptr;
3592 if (ConstantArrayType *ATP =
3593 ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
3594 return QualType(ATP, 0);
3595
3596 // If the element type isn't canonical or has qualifiers, or the array bound
3597 // is instantiation-dependent, this won't be a canonical type either, so fill
3598 // in the canonical type field.
3599 QualType Canon;
3600 // FIXME: Check below should look for qualifiers behind sugar.
3601 if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers() || SizeExpr) {
3602 SplitQualType canonSplit = getCanonicalType(EltTy).split();
3603 Canon = getConstantArrayType(QualType(canonSplit.Ty, 0), ArySize, nullptr,
3604 ASM, IndexTypeQuals);
3605 Canon = getQualifiedType(Canon, canonSplit.Quals);
3606
3607 // Get the new insert position for the node we care about.
3608 ConstantArrayType *NewIP =
3609 ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
3610 assert(!NewIP && "Shouldn't be in the map!")(static_cast <bool> (!NewIP && "Shouldn't be in the map!"
) ? void (0) : __assert_fail ("!NewIP && \"Shouldn't be in the map!\""
, "clang/lib/AST/ASTContext.cpp", 3610, __extension__ __PRETTY_FUNCTION__
))
; (void)NewIP;
3611 }
3612
3613 void *Mem = Allocate(
3614 ConstantArrayType::totalSizeToAlloc<const Expr *>(SizeExpr ? 1 : 0),
3615 TypeAlignment);
3616 auto *New = new (Mem)
3617 ConstantArrayType(EltTy, Canon, ArySize, SizeExpr, ASM, IndexTypeQuals);
3618 ConstantArrayTypes.InsertNode(New, InsertPos);
3619 Types.push_back(New);
3620 return QualType(New, 0);
3621}
3622
3623/// getVariableArrayDecayedType - Turns the given type, which may be
3624/// variably-modified, into the corresponding type with all the known
3625/// sizes replaced with [*].
3626QualType ASTContext::getVariableArrayDecayedType(QualType type) const {
3627 // Vastly most common case.
3628 if (!type->isVariablyModifiedType()) return type;
3629
3630 QualType result;
3631
3632 SplitQualType split = type.getSplitDesugaredType();
3633 const Type *ty = split.Ty;
3634 switch (ty->getTypeClass()) {
3635#define TYPE(Class, Base)
3636#define ABSTRACT_TYPE(Class, Base)
3637#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
3638#include "clang/AST/TypeNodes.inc"
3639 llvm_unreachable("didn't desugar past all non-canonical types?")::llvm::llvm_unreachable_internal("didn't desugar past all non-canonical types?"
, "clang/lib/AST/ASTContext.cpp", 3639)
;
3640
3641 // These types should never be variably-modified.
3642 case Type::Builtin:
3643 case Type::Complex:
3644 case Type::Vector:
3645 case Type::DependentVector:
3646 case Type::ExtVector:
3647 case Type::DependentSizedExtVector:
3648 case Type::ConstantMatrix:
3649 case Type::DependentSizedMatrix:
3650 case Type::DependentAddressSpace:
3651 case Type::ObjCObject:
3652 case Type::ObjCInterface:
3653 case Type::ObjCObjectPointer:
3654 case Type::Record:
3655 case Type::Enum:
3656 case Type::UnresolvedUsing:
3657 case Type::TypeOfExpr:
3658 case Type::TypeOf:
3659 case Type::Decltype:
3660 case Type::UnaryTransform:
3661 case Type::DependentName:
3662 case Type::InjectedClassName:
3663 case Type::TemplateSpecialization:
3664 case Type::DependentTemplateSpecialization:
3665 case Type::TemplateTypeParm:
3666 case Type::SubstTemplateTypeParmPack:
3667 case Type::Auto:
3668 case Type::DeducedTemplateSpecialization:
3669 case Type::PackExpansion:
3670 case Type::BitInt:
3671 case Type::DependentBitInt:
3672 llvm_unreachable("type should never be variably-modified")::llvm::llvm_unreachable_internal("type should never be variably-modified"
, "clang/lib/AST/ASTContext.cpp", 3672)
;
3673
3674 // These types can be variably-modified but should never need to
3675 // further decay.
3676 case Type::FunctionNoProto:
3677 case Type::FunctionProto:
3678 case Type::BlockPointer:
3679 case Type::MemberPointer:
3680 case Type::Pipe:
3681 return type;
3682
3683 // These types can be variably-modified. All these modifications
3684 // preserve structure except as noted by comments.
3685 // TODO: if we ever care about optimizing VLAs, there are no-op
3686 // optimizations available here.
3687 case Type::Pointer:
3688 result = getPointerType(getVariableArrayDecayedType(
3689 cast<PointerType>(ty)->getPointeeType()));
3690 break;
3691
3692 case Type::LValueReference: {
3693 const auto *lv = cast<LValueReferenceType>(ty);
3694 result = getLValueReferenceType(
3695 getVariableArrayDecayedType(lv->getPointeeType()),
3696 lv->isSpelledAsLValue());
3697 break;
3698 }
3699
3700 case Type::RValueReference: {
3701 const auto *lv = cast<RValueReferenceType>(ty);
3702 result = getRValueReferenceType(
3703 getVariableArrayDecayedType(lv->getPointeeType()));
3704 break;
3705 }
3706
3707 case Type::Atomic: {
3708 const auto *at = cast<AtomicType>(ty);
3709 result = getAtomicType(getVariableArrayDecayedType(at->getValueType()));
3710 break;
3711 }
3712
3713 case Type::ConstantArray: {
3714 const auto *cat = cast<ConstantArrayType>(ty);
3715 result = getConstantArrayType(
3716 getVariableArrayDecayedType(cat->getElementType()),
3717 cat->getSize(),
3718 cat->getSizeExpr(),
3719 cat->getSizeModifier(),
3720 cat->getIndexTypeCVRQualifiers());
3721 break;
3722 }
3723
3724 case Type::DependentSizedArray: {
3725 const auto *dat = cast<DependentSizedArrayType>(ty);
3726 result = getDependentSizedArrayType(
3727 getVariableArrayDecayedType(dat->getElementType()),
3728 dat->getSizeExpr(),
3729 dat->getSizeModifier(),
3730 dat->getIndexTypeCVRQualifiers(),
3731 dat->getBracketsRange());
3732 break;
3733 }
3734
3735 // Turn incomplete types into [*] types.
3736 case Type::IncompleteArray: {
3737 const auto *iat = cast<IncompleteArrayType>(ty);
3738 result = getVariableArrayType(
3739 getVariableArrayDecayedType(iat->getElementType()),
3740 /*size*/ nullptr,
3741 ArrayType::Normal,
3742 iat->getIndexTypeCVRQualifiers(),
3743 SourceRange());
3744 break;
3745 }
3746
3747 // Turn VLA types into [*] types.
3748 case Type::VariableArray: {
3749 const auto *vat = cast<VariableArrayType>(ty);
3750 result = getVariableArrayType(
3751 getVariableArrayDecayedType(vat->getElementType()),
3752 /*size*/ nullptr,
3753 ArrayType::Star,
3754 vat->getIndexTypeCVRQualifiers(),
3755 vat->getBracketsRange());
3756 break;
3757 }
3758 }
3759
3760 // Apply the top-level qualifiers from the original.
3761 return getQualifiedType(result, split.Quals);
3762}
3763
3764/// getVariableArrayType - Returns a non-unique reference to the type for a
3765/// variable array of the specified element type.
3766QualType ASTContext::getVariableArrayType(QualType EltTy,
3767 Expr *NumElts,
3768 ArrayType::ArraySizeModifier ASM,
3769 unsigned IndexTypeQuals,
3770 SourceRange Brackets) const {
3771 // Since we don't unique expressions, it isn't possible to unique VLA's
3772 // that have an expression provided for their size.
3773 QualType Canon;
3774
3775 // Be sure to pull qualifiers off the element type.
3776 // FIXME: Check below should look for qualifiers behind sugar.
3777 if (!EltTy.isCanonical() || EltTy.hasLocalQualifiers()) {
3778 SplitQualType canonSplit = getCanonicalType(EltTy).split();
3779 Canon = getVariableArrayType(QualType(canonSplit.Ty, 0), NumElts, ASM,
3780 IndexTypeQuals, Brackets);
3781 Canon = getQualifiedType(Canon, canonSplit.Quals);
3782 }
3783
3784 auto *New = new (*this, TypeAlignment)
3785 VariableArrayType(EltTy, Canon, NumElts, ASM, IndexTypeQuals, Brackets);
3786
3787 VariableArrayTypes.push_back(New);
3788 Types.push_back(New);
3789 return QualType(New, 0);
3790}
3791
3792/// getDependentSizedArrayType - Returns a non-unique reference to
3793/// the type for a dependently-sized array of the specified element
3794/// type.
3795QualType ASTContext::getDependentSizedArrayType(QualType elementType,
3796 Expr *numElements,
3797 ArrayType::ArraySizeModifier ASM,
3798 unsigned elementTypeQuals,
3799 SourceRange brackets) const {
3800 assert((!numElements || numElements->isTypeDependent() ||(static_cast <bool> ((!numElements || numElements->isTypeDependent
() || numElements->isValueDependent()) && "Size must be type- or value-dependent!"
) ? void (0) : __assert_fail ("(!numElements || numElements->isTypeDependent() || numElements->isValueDependent()) && \"Size must be type- or value-dependent!\""
, "clang/lib/AST/ASTContext.cpp", 3802, __extension__ __PRETTY_FUNCTION__
))
3801 numElements->isValueDependent()) &&(static_cast <bool> ((!numElements || numElements->isTypeDependent
() || numElements->isValueDependent()) && "Size must be type- or value-dependent!"
) ? void (0) : __assert_fail ("(!numElements || numElements->isTypeDependent() || numElements->isValueDependent()) && \"Size must be type- or value-dependent!\""
, "clang/lib/AST/ASTContext.cpp", 3802, __extension__ __PRETTY_FUNCTION__
))
3802 "Size must be type- or value-dependent!")(static_cast <bool> ((!numElements || numElements->isTypeDependent
() || numElements->isValueDependent()) && "Size must be type- or value-dependent!"
) ? void (0) : __assert_fail ("(!numElements || numElements->isTypeDependent() || numElements->isValueDependent()) && \"Size must be type- or value-dependent!\""
, "clang/lib/AST/ASTContext.cpp", 3802, __extension__ __PRETTY_FUNCTION__
))
;
3803
3804 // Dependently-sized array types that do not have a specified number
3805 // of elements will have their sizes deduced from a dependent
3806 // initializer. We do no canonicalization here at all, which is okay
3807 // because they can't be used in most locations.
3808 if (!numElements) {
3809 auto *newType
3810 = new (*this, TypeAlignment)
3811 DependentSizedArrayType(*this, elementType, QualType(),
3812 numElements, ASM, elementTypeQuals,
3813 brackets);
3814 Types.push_back(newType);
3815 return QualType(newType, 0);
3816 }
3817
3818 // Otherwise, we actually build a new type every time, but we
3819 // also build a canonical type.
3820
3821 SplitQualType canonElementType = getCanonicalType(elementType).split();
3822
3823 void *insertPos = nullptr;
3824 llvm::FoldingSetNodeID ID;
3825 DependentSizedArrayType::Profile(ID, *this,
3826 QualType(canonElementType.Ty, 0),
3827 ASM, elementTypeQuals, numElements);
3828
3829 // Look for an existing type with these properties.
3830 DependentSizedArrayType *canonTy =
3831 DependentSizedArrayTypes.FindNodeOrInsertPos(ID, insertPos);
3832
3833 // If we don't have one, build one.
3834 if (!canonTy) {
3835 canonTy = new (*this, TypeAlignment)
3836 DependentSizedArrayType(*this, QualType(canonElementType.Ty, 0),
3837 QualType(), numElements, ASM, elementTypeQuals,
3838 brackets);
3839 DependentSizedArrayTypes.InsertNode(canonTy, insertPos);
3840 Types.push_back(canonTy);
3841 }
3842
3843 // Apply qualifiers from the element type to the array.
3844 QualType canon = getQualifiedType(QualType(canonTy,0),
3845 canonElementType.Quals);
3846
3847 // If we didn't need extra canonicalization for the element type or the size
3848 // expression, then just use that as our result.
3849 if (QualType(canonElementType.Ty, 0) == elementType &&
3850 canonTy->getSizeExpr() == numElements)
3851 return canon;
3852
3853 // Otherwise, we need to build a type which follows the spelling
3854 // of the element type.
3855 auto *sugaredType
3856 = new (*this, TypeAlignment)
3857 DependentSizedArrayType(*this, elementType, canon, numElements,
3858 ASM, elementTypeQuals, brackets);
3859 Types.push_back(sugaredType);
3860 return QualType(sugaredType, 0);
3861}
3862
3863QualType ASTContext::getIncompleteArrayType(QualType elementType,
3864 ArrayType::ArraySizeModifier ASM,
3865 unsigned elementTypeQuals) const {
3866 llvm::FoldingSetNodeID ID;
3867 IncompleteArrayType::Profile(ID, elementType, ASM, elementTypeQuals);
3868
3869 void *insertPos = nullptr;
3870 if (IncompleteArrayType *iat =
3871 IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos))
3872 return QualType(iat, 0);
3873
3874 // If the element type isn't canonical, this won't be a canonical type
3875 // either, so fill in the canonical type field. We also have to pull
3876 // qualifiers off the element type.
3877 QualType canon;
3878
3879 // FIXME: Check below should look for qualifiers behind sugar.
3880 if (!elementType.isCanonical() || elementType.hasLocalQualifiers()) {
3881 SplitQualType canonSplit = getCanonicalType(elementType).split();
3882 canon = getIncompleteArrayType(QualType(canonSplit.Ty, 0),
3883 ASM, elementTypeQuals);
3884 canon = getQualifiedType(canon, canonSplit.Quals);
3885
3886 // Get the new insert position for the node we care about.
3887 IncompleteArrayType *existing =
3888 IncompleteArrayTypes.FindNodeOrInsertPos(ID, insertPos);
3889 assert(!existing && "Shouldn't be in the map!")(static_cast <bool> (!existing && "Shouldn't be in the map!"
) ? void (0) : __assert_fail ("!existing && \"Shouldn't be in the map!\""
, "clang/lib/AST/ASTContext.cpp", 3889, __extension__ __PRETTY_FUNCTION__
))
; (void) existing;
3890 }
3891
3892 auto *newType = new (*this, TypeAlignment)
3893 IncompleteArrayType(elementType, canon, ASM, elementTypeQuals);
3894
3895 IncompleteArrayTypes.InsertNode(newType, insertPos);
3896 Types.push_back(newType);
3897 return QualType(newType, 0);
3898}
3899
3900ASTContext::BuiltinVectorTypeInfo
3901ASTContext::getBuiltinVectorTypeInfo(const BuiltinType *Ty) const {
3902#define SVE_INT_ELTTY(BITS, ELTS, SIGNED, NUMVECTORS){getIntTypeForBitwidth(BITS, SIGNED), llvm::ElementCount::getScalable
(ELTS), NUMVECTORS};
\
3903 {getIntTypeForBitwidth(BITS, SIGNED), llvm::ElementCount::getScalable(ELTS), \
3904 NUMVECTORS};
3905
3906#define SVE_ELTTY(ELTTY, ELTS, NUMVECTORS){ELTTY, llvm::ElementCount::getScalable(ELTS), NUMVECTORS}; \
3907 {ELTTY, llvm::ElementCount::getScalable(ELTS), NUMVECTORS};
3908
3909 switch (Ty->getKind()) {
3910 default:
3911 llvm_unreachable("Unsupported builtin vector type")::llvm::llvm_unreachable_internal("Unsupported builtin vector type"
, "clang/lib/AST/ASTContext.cpp", 3911)
;
3912 case BuiltinType::SveInt8:
3913 return SVE_INT_ELTTY(8, 16, true, 1){getIntTypeForBitwidth(8, true), llvm::ElementCount::getScalable
(16), 1};
;
3914 case BuiltinType::SveUint8:
3915 return SVE_INT_ELTTY(8, 16, false, 1){getIntTypeForBitwidth(8, false), llvm::ElementCount::getScalable
(16), 1};
;
3916 case BuiltinType::SveInt8x2:
3917 return SVE_INT_ELTTY(8, 16, true, 2){getIntTypeForBitwidth(8, true), llvm::ElementCount::getScalable
(16), 2};
;
3918 case BuiltinType::SveUint8x2:
3919 return SVE_INT_ELTTY(8, 16, false, 2){getIntTypeForBitwidth(8, false), llvm::ElementCount::getScalable
(16), 2};
;
3920 case BuiltinType::SveInt8x3:
3921 return SVE_INT_ELTTY(8, 16, true, 3){getIntTypeForBitwidth(8, true), llvm::ElementCount::getScalable
(16), 3};
;
3922 case BuiltinType::SveUint8x3:
3923 return SVE_INT_ELTTY(8, 16, false, 3){getIntTypeForBitwidth(8, false), llvm::ElementCount::getScalable
(16), 3};
;
3924 case BuiltinType::SveInt8x4:
3925 return SVE_INT_ELTTY(8, 16, true, 4){getIntTypeForBitwidth(8, true), llvm::ElementCount::getScalable
(16), 4};
;
3926 case BuiltinType::SveUint8x4:
3927 return SVE_INT_ELTTY(8, 16, false, 4){getIntTypeForBitwidth(8, false), llvm::ElementCount::getScalable
(16), 4};
;
3928 case BuiltinType::SveInt16:
3929 return SVE_INT_ELTTY(16, 8, true, 1){getIntTypeForBitwidth(16, true), llvm::ElementCount::getScalable
(8), 1};
;
3930 case BuiltinType::SveUint16:
3931 return SVE_INT_ELTTY(16, 8, false, 1){getIntTypeForBitwidth(16, false), llvm::ElementCount::getScalable
(8), 1};
;
3932 case BuiltinType::SveInt16x2:
3933 return SVE_INT_ELTTY(16, 8, true, 2){getIntTypeForBitwidth(16, true), llvm::ElementCount::getScalable
(8), 2};
;
3934 case BuiltinType::SveUint16x2:
3935 return SVE_INT_ELTTY(16, 8, false, 2){getIntTypeForBitwidth(16, false), llvm::ElementCount::getScalable
(8), 2};
;
3936 case BuiltinType::SveInt16x3:
3937 return SVE_INT_ELTTY(16, 8, true, 3){getIntTypeForBitwidth(16, true), llvm::ElementCount::getScalable
(8), 3};
;
3938 case BuiltinType::SveUint16x3:
3939 return SVE_INT_ELTTY(16, 8, false, 3){getIntTypeForBitwidth(16, false), llvm::ElementCount::getScalable
(8), 3};
;
3940 case BuiltinType::SveInt16x4:
3941 return SVE_INT_ELTTY(16, 8, true, 4){getIntTypeForBitwidth(16, true), llvm::ElementCount::getScalable
(8), 4};
;
3942 case BuiltinType::SveUint16x4:
3943 return SVE_INT_ELTTY(16, 8, false, 4){getIntTypeForBitwidth(16, false), llvm::ElementCount::getScalable
(8), 4};
;
3944 case BuiltinType::SveInt32:
3945 return SVE_INT_ELTTY(32, 4, true, 1){getIntTypeForBitwidth(32, true), llvm::ElementCount::getScalable
(4), 1};
;
3946 case BuiltinType::SveUint32:
3947 return SVE_INT_ELTTY(32, 4, false, 1){getIntTypeForBitwidth(32, false), llvm::ElementCount::getScalable
(4), 1};
;
3948 case BuiltinType::SveInt32x2:
3949 return SVE_INT_ELTTY(32, 4, true, 2){getIntTypeForBitwidth(32, true), llvm::ElementCount::getScalable
(4), 2};
;
3950 case BuiltinType::SveUint32x2:
3951 return SVE_INT_ELTTY(32, 4, false, 2){getIntTypeForBitwidth(32, false), llvm::ElementCount::getScalable
(4), 2};
;
3952 case BuiltinType::SveInt32x3:
3953 return SVE_INT_ELTTY(32, 4, true, 3){getIntTypeForBitwidth(32, true), llvm::ElementCount::getScalable
(4), 3};
;
3954 case BuiltinType::SveUint32x3:
3955 return SVE_INT_ELTTY(32, 4, false, 3){getIntTypeForBitwidth(32, false), llvm::ElementCount::getScalable
(4), 3};
;
3956 case BuiltinType::SveInt32x4:
3957 return SVE_INT_ELTTY(32, 4, true, 4){getIntTypeForBitwidth(32, true), llvm::ElementCount::getScalable
(4), 4};
;
3958 case BuiltinType::SveUint32x4:
3959 return SVE_INT_ELTTY(32, 4, false, 4){getIntTypeForBitwidth(32, false), llvm::ElementCount::getScalable
(4), 4};
;
3960 case BuiltinType::SveInt64:
3961 return SVE_INT_ELTTY(64, 2, true, 1){getIntTypeForBitwidth(64, true), llvm::ElementCount::getScalable
(2), 1};
;
3962 case BuiltinType::SveUint64:
3963 return SVE_INT_ELTTY(64, 2, false, 1){getIntTypeForBitwidth(64, false), llvm::ElementCount::getScalable
(2), 1};
;
3964 case BuiltinType::SveInt64x2:
3965 return SVE_INT_ELTTY(64, 2, true, 2){getIntTypeForBitwidth(64, true), llvm::ElementCount::getScalable
(2), 2};
;
3966 case BuiltinType::SveUint64x2:
3967 return SVE_INT_ELTTY(64, 2, false, 2){getIntTypeForBitwidth(64, false), llvm::ElementCount::getScalable
(2), 2};
;
3968 case BuiltinType::SveInt64x3:
3969 return SVE_INT_ELTTY(64, 2, true, 3){getIntTypeForBitwidth(64, true), llvm::ElementCount::getScalable
(2), 3};
;
3970 case BuiltinType::SveUint64x3:
3971 return SVE_INT_ELTTY(64, 2, false, 3){getIntTypeForBitwidth(64, false), llvm::ElementCount::getScalable
(2), 3};
;
3972 case BuiltinType::SveInt64x4:
3973 return SVE_INT_ELTTY(64, 2, true, 4){getIntTypeForBitwidth(64, true), llvm::ElementCount::getScalable
(2), 4};
;
3974 case BuiltinType::SveUint64x4:
3975 return SVE_INT_ELTTY(64, 2, false, 4){getIntTypeForBitwidth(64, false), llvm::ElementCount::getScalable
(2), 4};
;
3976 case BuiltinType::SveBool:
3977 return SVE_ELTTY(BoolTy, 16, 1){BoolTy, llvm::ElementCount::getScalable(16), 1};;
3978 case BuiltinType::SveBoolx2:
3979 return SVE_ELTTY(BoolTy, 16, 2){BoolTy, llvm::ElementCount::getScalable(16), 2};;
3980 case BuiltinType::SveBoolx4:
3981 return SVE_ELTTY(BoolTy, 16, 4){BoolTy, llvm::ElementCount::getScalable(16), 4};;
3982 case BuiltinType::SveFloat16:
3983 return SVE_ELTTY(HalfTy, 8, 1){HalfTy, llvm::ElementCount::getScalable(8), 1};;
3984 case BuiltinType::SveFloat16x2:
3985 return SVE_ELTTY(HalfTy, 8, 2){HalfTy, llvm::ElementCount::getScalable(8), 2};;
3986 case BuiltinType::SveFloat16x3:
3987 return SVE_ELTTY(HalfTy, 8, 3){HalfTy, llvm::ElementCount::getScalable(8), 3};;
3988 case BuiltinType::SveFloat16x4:
3989 return SVE_ELTTY(HalfTy, 8, 4){HalfTy, llvm::ElementCount::getScalable(8), 4};;
3990 case BuiltinType::SveFloat32:
3991 return SVE_ELTTY(FloatTy, 4, 1){FloatTy, llvm::ElementCount::getScalable(4), 1};;
3992 case BuiltinType::SveFloat32x2:
3993 return SVE_ELTTY(FloatTy, 4, 2){FloatTy, llvm::ElementCount::getScalable(4), 2};;
3994 case BuiltinType::SveFloat32x3:
3995 return SVE_ELTTY(FloatTy, 4, 3){FloatTy, llvm::ElementCount::getScalable(4), 3};;
3996 case BuiltinType::SveFloat32x4:
3997 return SVE_ELTTY(FloatTy, 4, 4){FloatTy, llvm::ElementCount::getScalable(4), 4};;
3998 case BuiltinType::SveFloat64:
3999 return SVE_ELTTY(DoubleTy, 2, 1){DoubleTy, llvm::ElementCount::getScalable(2), 1};;
4000 case BuiltinType::SveFloat64x2:
4001 return SVE_ELTTY(DoubleTy, 2, 2){DoubleTy, llvm::ElementCount::getScalable(2), 2};;
4002 case BuiltinType::SveFloat64x3:
4003 return SVE_ELTTY(DoubleTy, 2, 3){DoubleTy, llvm::ElementCount::getScalable(2), 3};;
4004 case BuiltinType::SveFloat64x4:
4005 return SVE_ELTTY(DoubleTy, 2, 4){DoubleTy, llvm::ElementCount::getScalable(2), 4};;
4006 case BuiltinType::SveBFloat16:
4007 return SVE_ELTTY(BFloat16Ty, 8, 1){BFloat16Ty, llvm::ElementCount::getScalable(8), 1};;
4008 case BuiltinType::SveBFloat16x2:
4009 return SVE_ELTTY(BFloat16Ty, 8, 2){BFloat16Ty, llvm::ElementCount::getScalable(8), 2};;
4010 case BuiltinType::SveBFloat16x3:
4011 return SVE_ELTTY(BFloat16Ty, 8, 3){BFloat16Ty, llvm::ElementCount::getScalable(8), 3};;
4012 case BuiltinType::SveBFloat16x4:
4013 return SVE_ELTTY(BFloat16Ty, 8, 4){BFloat16Ty, llvm::ElementCount::getScalable(8), 4};;
4014#define RVV_VECTOR_TYPE_INT(Name, Id, SingletonId, NumEls, ElBits, NF, \
4015 IsSigned) \
4016 case BuiltinType::Id: \
4017 return {getIntTypeForBitwidth(ElBits, IsSigned), \
4018 llvm::ElementCount::getScalable(NumEls), NF};
4019#define RVV_VECTOR_TYPE_FLOAT(Name, Id, SingletonId, NumEls, ElBits, NF) \
4020 case BuiltinType::Id: \
4021 return {ElBits == 16 ? Float16Ty : (ElBits == 32 ? FloatTy : DoubleTy), \
4022 llvm::ElementCount::getScalable(NumEls), NF};
4023#define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls) \
4024 case BuiltinType::Id: \
4025 return {BoolTy, llvm::ElementCount::getScalable(NumEls), 1};
4026#include "clang/Basic/RISCVVTypes.def"
4027 }
4028}
4029
4030/// getExternrefType - Return a WebAssembly externref type, which represents an
4031/// opaque reference to a host value.
4032QualType ASTContext::getWebAssemblyExternrefType() const {
4033 if (Target->getTriple().isWasm() && Target->hasFeature("reference-types")) {
4034#define WASM_REF_TYPE(Name, MangledName, Id, SingletonId, AS) \
4035 if (BuiltinType::Id == BuiltinType::WasmExternRef) \
4036 return SingletonId;
4037#include "clang/Basic/WebAssemblyReferenceTypes.def"
4038 }
4039 llvm_unreachable(::llvm::llvm_unreachable_internal("shouldn't try to generate type externref outside WebAssembly target"
, "clang/lib/AST/ASTContext.cpp", 4040)
4040 "shouldn't try to generate type externref outside WebAssembly target")::llvm::llvm_unreachable_internal("shouldn't try to generate type externref outside WebAssembly target"
, "clang/lib/AST/ASTContext.cpp", 4040)
;
4041}
4042
4043/// getScalableVectorType - Return the unique reference to a scalable vector
4044/// type of the specified element type and size. VectorType must be a built-in
4045/// type.
4046QualType ASTContext::getScalableVectorType(QualType EltTy,
4047 unsigned NumElts) const {
4048 if (Target->hasAArch64SVETypes()) {
4049 uint64_t EltTySize = getTypeSize(EltTy);
4050#define SVE_VECTOR_TYPE(Name, MangledName, Id, SingletonId, NumEls, ElBits, \
4051 IsSigned, IsFP, IsBF) \
4052 if (!EltTy->isBooleanType() && \
4053 ((EltTy->hasIntegerRepresentation() && \
4054 EltTy->hasSignedIntegerRepresentation() == IsSigned) || \
4055 (EltTy->hasFloatingRepresentation() && !EltTy->isBFloat16Type() && \
4056 IsFP && !IsBF) || \
4057 (EltTy->hasFloatingRepresentation() && EltTy->isBFloat16Type() && \
4058 IsBF && !IsFP)) && \
4059 EltTySize == ElBits && NumElts == NumEls) { \
4060 return SingletonId; \
4061 }
4062#define SVE_PREDICATE_TYPE(Name, MangledName, Id, SingletonId, NumEls) \
4063 if (EltTy->isBooleanType() && NumElts == NumEls) \
4064 return SingletonId;
4065#define SVE_OPAQUE_TYPE(Name, MangledName, Id, SingleTonId)
4066#include "clang/Basic/AArch64SVEACLETypes.def"
4067 } else if (Target->hasRISCVVTypes()) {
4068 uint64_t EltTySize = getTypeSize(EltTy);
4069#define RVV_VECTOR_TYPE(Name, Id, SingletonId, NumEls, ElBits, NF, IsSigned, \
4070 IsFP) \
4071 if (!EltTy->isBooleanType() && \
4072 ((EltTy->hasIntegerRepresentation() && \
4073 EltTy->hasSignedIntegerRepresentation() == IsSigned) || \
4074 (EltTy->hasFloatingRepresentation() && IsFP)) && \
4075 EltTySize == ElBits && NumElts == NumEls) \
4076 return SingletonId;
4077#define RVV_PREDICATE_TYPE(Name, Id, SingletonId, NumEls) \
4078 if (EltTy->isBooleanType() && NumElts == NumEls) \
4079 return SingletonId;
4080#include "clang/Basic/RISCVVTypes.def"
4081 }
4082 return QualType();
4083}
4084
4085/// getVectorType - Return the unique reference to a vector type of
4086/// the specified element type and size. VectorType must be a built-in type.
4087QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
4088 VectorType::VectorKind VecKind) const {
4089 assert(vecType->isBuiltinType() ||(static_cast <bool> (vecType->isBuiltinType() || (vecType
->isBitIntType() && llvm::isPowerOf2_32(vecType->
getAs<BitIntType>()->getNumBits()) && vecType
->getAs<BitIntType>()->getNumBits() >= 8)) ? void
(0) : __assert_fail ("vecType->isBuiltinType() || (vecType->isBitIntType() && llvm::isPowerOf2_32(vecType->getAs<BitIntType>()->getNumBits()) && vecType->getAs<BitIntType>()->getNumBits() >= 8)"
, "clang/lib/AST/ASTContext.cpp", 4093, __extension__ __PRETTY_FUNCTION__
))
4090 (vecType->isBitIntType() &&(static_cast <bool> (vecType->isBuiltinType() || (vecType
->isBitIntType() && llvm::isPowerOf2_32(vecType->
getAs<BitIntType>()->getNumBits()) && vecType
->getAs<BitIntType>()->getNumBits() >= 8)) ? void
(0) : __assert_fail ("vecType->isBuiltinType() || (vecType->isBitIntType() && llvm::isPowerOf2_32(vecType->getAs<BitIntType>()->getNumBits()) && vecType->getAs<BitIntType>()->getNumBits() >= 8)"
, "clang/lib/AST/ASTContext.cpp", 4093, __extension__ __PRETTY_FUNCTION__
))
4091 // Only support _BitInt elements with byte-sized power of 2 NumBits.(static_cast <bool> (vecType->isBuiltinType() || (vecType
->isBitIntType() && llvm::isPowerOf2_32(vecType->
getAs<BitIntType>()->getNumBits()) && vecType
->getAs<BitIntType>()->getNumBits() >= 8)) ? void
(0) : __assert_fail ("vecType->isBuiltinType() || (vecType->isBitIntType() && llvm::isPowerOf2_32(vecType->getAs<BitIntType>()->getNumBits()) && vecType->getAs<BitIntType>()->getNumBits() >= 8)"
, "clang/lib/AST/ASTContext.cpp", 4093, __extension__ __PRETTY_FUNCTION__
))
4092 llvm::isPowerOf2_32(vecType->getAs<BitIntType>()->getNumBits()) &&(static_cast <bool> (vecType->isBuiltinType() || (vecType
->isBitIntType() && llvm::isPowerOf2_32(vecType->
getAs<BitIntType>()->getNumBits()) && vecType
->getAs<BitIntType>()->getNumBits() >= 8)) ? void
(0) : __assert_fail ("vecType->isBuiltinType() || (vecType->isBitIntType() && llvm::isPowerOf2_32(vecType->getAs<BitIntType>()->getNumBits()) && vecType->getAs<BitIntType>()->getNumBits() >= 8)"
, "clang/lib/AST/ASTContext.cpp", 4093, __extension__ __PRETTY_FUNCTION__
))
4093 vecType->getAs<BitIntType>()->getNumBits() >= 8))(static_cast <bool> (vecType->isBuiltinType() || (vecType
->isBitIntType() && llvm::isPowerOf2_32(vecType->
getAs<BitIntType>()->getNumBits()) && vecType
->getAs<BitIntType>()->getNumBits() >= 8)) ? void
(0) : __assert_fail ("vecType->isBuiltinType() || (vecType->isBitIntType() && llvm::isPowerOf2_32(vecType->getAs<BitIntType>()->getNumBits()) && vecType->getAs<BitIntType>()->getNumBits() >= 8)"
, "clang/lib/AST/ASTContext.cpp", 4093, __extension__ __PRETTY_FUNCTION__
))
;
4094
4095 // Check if we've already instantiated a vector of this type.
4096 llvm::FoldingSetNodeID ID;
4097 VectorType::Profile(ID, vecType, NumElts, Type::Vector, VecKind);
4098
4099 void *InsertPos = nullptr;
4100 if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
4101 return QualType(VTP, 0);
4102
4103 // If the element type isn't canonical, this won't be a canonical type either,
4104 // so fill in the canonical type field.
4105 QualType Canonical;
4106 if (!vecType.isCanonical()) {
4107 Canonical = getVectorType(getCanonicalType(vecType), NumElts, VecKind);
4108
4109 // Get the new insert position for the node we care about.
4110 VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4111 assert(!NewIP && "Shouldn't be in the map!")(static_cast <bool> (!NewIP && "Shouldn't be in the map!"
) ? void (0) : __assert_fail ("!NewIP && \"Shouldn't be in the map!\""
, "clang/lib/AST/ASTContext.cpp", 4111, __extension__ __PRETTY_FUNCTION__
))
; (void)NewIP;
4112 }
4113 auto *New = new (*this, TypeAlignment)
4114 VectorType(vecType, NumElts, Canonical, VecKind);
4115 VectorTypes.InsertNode(New, InsertPos);
4116 Types.push_back(New);
4117 return QualType(New, 0);
4118}
4119
4120QualType
4121ASTContext::getDependentVectorType(QualType VecType, Expr *SizeExpr,
4122 SourceLocation AttrLoc,
4123 VectorType::VectorKind VecKind) const {
4124 llvm::FoldingSetNodeID ID;
4125 DependentVectorType::Profile(ID, *this, getCanonicalType(VecType), SizeExpr,
4126 VecKind);
4127 void *InsertPos = nullptr;
4128 DependentVectorType *Canon =
4129 DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4130 DependentVectorType *New;
4131
4132 if (Canon) {
4133 New = new (*this, TypeAlignment) DependentVectorType(
4134 *this, VecType, QualType(Canon, 0), SizeExpr, AttrLoc, VecKind);
4135 } else {
4136 QualType CanonVecTy = getCanonicalType(VecType);
4137 if (CanonVecTy == VecType) {
4138 New = new (*this, TypeAlignment) DependentVectorType(
4139 *this, VecType, QualType(), SizeExpr, AttrLoc, VecKind);
4140
4141 DependentVectorType *CanonCheck =
4142 DependentVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4143 assert(!CanonCheck &&(static_cast <bool> (!CanonCheck && "Dependent-sized vector_size canonical type broken"
) ? void (0) : __assert_fail ("!CanonCheck && \"Dependent-sized vector_size canonical type broken\""
, "clang/lib/AST/ASTContext.cpp", 4144, __extension__ __PRETTY_FUNCTION__
))
4144 "Dependent-sized vector_size canonical type broken")(static_cast <bool> (!CanonCheck && "Dependent-sized vector_size canonical type broken"
) ? void (0) : __assert_fail ("!CanonCheck && \"Dependent-sized vector_size canonical type broken\""
, "clang/lib/AST/ASTContext.cpp", 4144, __extension__ __PRETTY_FUNCTION__
))
;
4145 (void)CanonCheck;
4146 DependentVectorTypes.InsertNode(New, InsertPos);
4147 } else {
4148 QualType CanonTy = getDependentVectorType(CanonVecTy, SizeExpr,
4149 SourceLocation(), VecKind);
4150 New = new (*this, TypeAlignment) DependentVectorType(
4151 *this, VecType, CanonTy, SizeExpr, AttrLoc, VecKind);
4152 }
4153 }
4154
4155 Types.push_back(New);
4156 return QualType(New, 0);
4157}
4158
4159/// getExtVectorType - Return the unique reference to an extended vector type of
4160/// the specified element type and size. VectorType must be a built-in type.
4161QualType ASTContext::getExtVectorType(QualType vecType,
4162 unsigned NumElts) const {
4163 assert(vecType->isBuiltinType() || vecType->isDependentType() ||(static_cast <bool> (vecType->isBuiltinType() || vecType
->isDependentType() || (vecType->isBitIntType() &&
llvm::isPowerOf2_32(vecType->getAs<BitIntType>()->
getNumBits()) && vecType->getAs<BitIntType>(
)->getNumBits() >= 8)) ? void (0) : __assert_fail ("vecType->isBuiltinType() || vecType->isDependentType() || (vecType->isBitIntType() && llvm::isPowerOf2_32(vecType->getAs<BitIntType>()->getNumBits()) && vecType->getAs<BitIntType>()->getNumBits() >= 8)"
, "clang/lib/AST/ASTContext.cpp", 4167, __extension__ __PRETTY_FUNCTION__
))
1
Assuming the condition is false
2
Assuming the object is not a 'const class clang::BitIntType *'
3
Called C++ object pointer is null
4164 (vecType->isBitIntType() &&(static_cast <bool> (vecType->isBuiltinType() || vecType
->isDependentType() || (vecType->isBitIntType() &&
llvm::isPowerOf2_32(vecType->getAs<BitIntType>()->
getNumBits()) && vecType->getAs<BitIntType>(
)->getNumBits() >= 8)) ? void (0) : __assert_fail ("vecType->isBuiltinType() || vecType->isDependentType() || (vecType->isBitIntType() && llvm::isPowerOf2_32(vecType->getAs<BitIntType>()->getNumBits()) && vecType->getAs<BitIntType>()->getNumBits() >= 8)"
, "clang/lib/AST/ASTContext.cpp", 4167, __extension__ __PRETTY_FUNCTION__
))
4165 // Only support _BitInt elements with byte-sized power of 2 NumBits.(static_cast <bool> (vecType->isBuiltinType() || vecType
->isDependentType() || (vecType->isBitIntType() &&
llvm::isPowerOf2_32(vecType->getAs<BitIntType>()->
getNumBits()) && vecType->getAs<BitIntType>(
)->getNumBits() >= 8)) ? void (0) : __assert_fail ("vecType->isBuiltinType() || vecType->isDependentType() || (vecType->isBitIntType() && llvm::isPowerOf2_32(vecType->getAs<BitIntType>()->getNumBits()) && vecType->getAs<BitIntType>()->getNumBits() >= 8)"
, "clang/lib/AST/ASTContext.cpp", 4167, __extension__ __PRETTY_FUNCTION__
))
4166 llvm::isPowerOf2_32(vecType->getAs<BitIntType>()->getNumBits()) &&(static_cast <bool> (vecType->isBuiltinType() || vecType
->isDependentType() || (vecType->isBitIntType() &&
llvm::isPowerOf2_32(vecType->getAs<BitIntType>()->
getNumBits()) && vecType->getAs<BitIntType>(
)->getNumBits() >= 8)) ? void (0) : __assert_fail ("vecType->isBuiltinType() || vecType->isDependentType() || (vecType->isBitIntType() && llvm::isPowerOf2_32(vecType->getAs<BitIntType>()->getNumBits()) && vecType->getAs<BitIntType>()->getNumBits() >= 8)"
, "clang/lib/AST/ASTContext.cpp", 4167, __extension__ __PRETTY_FUNCTION__
))
4167 vecType->getAs<BitIntType>()->getNumBits() >= 8))(static_cast <bool> (vecType->isBuiltinType() || vecType
->isDependentType() || (vecType->isBitIntType() &&
llvm::isPowerOf2_32(vecType->getAs<BitIntType>()->
getNumBits()) && vecType->getAs<BitIntType>(
)->getNumBits() >= 8)) ? void (0) : __assert_fail ("vecType->isBuiltinType() || vecType->isDependentType() || (vecType->isBitIntType() && llvm::isPowerOf2_32(vecType->getAs<BitIntType>()->getNumBits()) && vecType->getAs<BitIntType>()->getNumBits() >= 8)"
, "clang/lib/AST/ASTContext.cpp", 4167, __extension__ __PRETTY_FUNCTION__
))
;
4168
4169 // Check if we've already instantiated a vector of this type.
4170 llvm::FoldingSetNodeID ID;
4171 VectorType::Profile(ID, vecType, NumElts, Type::ExtVector,
4172 VectorType::GenericVector);
4173 void *InsertPos = nullptr;
4174 if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
4175 return QualType(VTP, 0);
4176
4177 // If the element type isn't canonical, this won't be a canonical type either,
4178 // so fill in the canonical type field.
4179 QualType Canonical;
4180 if (!vecType.isCanonical()) {
4181 Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
4182
4183 // Get the new insert position for the node we care about.
4184 VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4185 assert(!NewIP && "Shouldn't be in the map!")(static_cast <bool> (!NewIP && "Shouldn't be in the map!"
) ? void (0) : __assert_fail ("!NewIP && \"Shouldn't be in the map!\""
, "clang/lib/AST/ASTContext.cpp", 4185, __extension__ __PRETTY_FUNCTION__
))
; (void)NewIP;
4186 }
4187 auto *New = new (*this, TypeAlignment)
4188 ExtVectorType(vecType, NumElts, Canonical);
4189 VectorTypes.InsertNode(New, InsertPos);
4190 Types.push_back(New);
4191 return QualType(New, 0);
4192}
4193
4194QualType
4195ASTContext::getDependentSizedExtVectorType(QualType vecType,
4196 Expr *SizeExpr,
4197 SourceLocation AttrLoc) const {
4198 llvm::FoldingSetNodeID ID;
4199 DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
4200 SizeExpr);
4201
4202 void *InsertPos = nullptr;
4203 DependentSizedExtVectorType *Canon
4204 = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4205 DependentSizedExtVectorType *New;
4206 if (Canon) {
4207 // We already have a canonical version of this array type; use it as
4208 // the canonical type for a newly-built type.
4209 New = new (*this, TypeAlignment)
4210 DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
4211 SizeExpr, AttrLoc);
4212 } else {
4213 QualType CanonVecTy = getCanonicalType(vecType);
4214 if (CanonVecTy == vecType) {
4215 New = new (*this, TypeAlignment)
4216 DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
4217 AttrLoc);
4218
4219 DependentSizedExtVectorType *CanonCheck
4220 = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
4221 assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken")(static_cast <bool> (!CanonCheck && "Dependent-sized ext_vector canonical type broken"
) ? void (0) : __assert_fail ("!CanonCheck && \"Dependent-sized ext_vector canonical type broken\""
, "clang/lib/AST/ASTContext.cpp", 4221, __extension__ __PRETTY_FUNCTION__
))
;
4222 (void)CanonCheck;
4223 DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
4224 } else {
4225 QualType CanonExtTy = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
4226 SourceLocation());
4227 New = new (*this, TypeAlignment) DependentSizedExtVectorType(
4228 *this, vecType, CanonExtTy, SizeExpr, AttrLoc);
4229 }
4230 }
4231
4232 Types.push_back(New);
4233 return QualType(New, 0);
4234}
4235
4236QualType ASTContext::getConstantMatrixType(QualType ElementTy, unsigned NumRows,
4237 unsigned NumColumns) const {
4238 llvm::FoldingSetNodeID ID;
4239 ConstantMatrixType::Profile(ID, ElementTy, NumRows, NumColumns,
4240 Type::ConstantMatrix);
4241
4242 assert(MatrixType::isValidElementType(ElementTy) &&(static_cast <bool> (MatrixType::isValidElementType(ElementTy
) && "need a valid element type") ? void (0) : __assert_fail
("MatrixType::isValidElementType(ElementTy) && \"need a valid element type\""
, "clang/lib/AST/ASTContext.cpp", 4243, __extension__ __PRETTY_FUNCTION__
))
4243 "need a valid element type")(static_cast <bool> (MatrixType::isValidElementType(ElementTy
) && "need a valid element type") ? void (0) : __assert_fail
("MatrixType::isValidElementType(ElementTy) && \"need a valid element type\""
, "clang/lib/AST/ASTContext.cpp", 4243, __extension__ __PRETTY_FUNCTION__
))
;
4244 assert(ConstantMatrixType::isDimensionValid(NumRows) &&(static_cast <bool> (ConstantMatrixType::isDimensionValid
(NumRows) && ConstantMatrixType::isDimensionValid(NumColumns
) && "need valid matrix dimensions") ? void (0) : __assert_fail
("ConstantMatrixType::isDimensionValid(NumRows) && ConstantMatrixType::isDimensionValid(NumColumns) && \"need valid matrix dimensions\""
, "clang/lib/AST/ASTContext.cpp", 4246, __extension__ __PRETTY_FUNCTION__
))
4245 ConstantMatrixType::isDimensionValid(NumColumns) &&(static_cast <bool> (ConstantMatrixType::isDimensionValid
(NumRows) && ConstantMatrixType::isDimensionValid(NumColumns
) && "need valid matrix dimensions") ? void (0) : __assert_fail
("ConstantMatrixType::isDimensionValid(NumRows) && ConstantMatrixType::isDimensionValid(NumColumns) && \"need valid matrix dimensions\""
, "clang/lib/AST/ASTContext.cpp", 4246, __extension__ __PRETTY_FUNCTION__
))
4246 "need valid matrix dimensions")(static_cast <bool> (ConstantMatrixType::isDimensionValid
(NumRows) && ConstantMatrixType::isDimensionValid(NumColumns
) && "need valid matrix dimensions") ? void (0) : __assert_fail
("ConstantMatrixType::isDimensionValid(NumRows) && ConstantMatrixType::isDimensionValid(NumColumns) && \"need valid matrix dimensions\""
, "clang/lib/AST/ASTContext.cpp", 4246, __extension__ __PRETTY_FUNCTION__
))
;
4247 void *InsertPos = nullptr;
4248 if (ConstantMatrixType *MTP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos))
4249 return QualType(MTP, 0);
4250
4251 QualType Canonical;
4252 if (!ElementTy.isCanonical()) {
4253 Canonical =
4254 getConstantMatrixType(getCanonicalType(ElementTy), NumRows, NumColumns);
4255
4256 ConstantMatrixType *NewIP = MatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
4257 assert(!NewIP && "Matrix type shouldn't already exist in the map")(static_cast <bool> (!NewIP && "Matrix type shouldn't already exist in the map"
) ? void (0) : __assert_fail ("!NewIP && \"Matrix type shouldn't already exist in the map\""
, "clang/lib/AST/ASTContext.cpp", 4257, __extension__ __PRETTY_FUNCTION__
))
;
4258 (void)NewIP;
4259 }
4260
4261 auto *New = new (*this, TypeAlignment)
4262 ConstantMatrixType(ElementTy, NumRows, NumColumns, Canonical);
4263 MatrixTypes.InsertNode(New, InsertPos);
4264 Types.push_back(New);
4265 return QualType(New, 0);
4266}
4267
4268QualType ASTContext::getDependentSizedMatrixType(QualType ElementTy,
4269 Expr *RowExpr,
4270 Expr *ColumnExpr,
4271 SourceLocation AttrLoc) const {
4272 QualType CanonElementTy = getCanonicalType(ElementTy);
4273 llvm::FoldingSetNodeID ID;
4274 DependentSizedMatrixType::Profile(ID, *this, CanonElementTy, RowExpr,
4275 ColumnExpr);
4276
4277 void *InsertPos = nullptr;
4278 DependentSizedMatrixType *Canon =
4279 DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
4280
4281 if (!Canon) {
4282 Canon = new (*this, TypeAlignment) DependentSizedMatrixType(
4283 *this, CanonElementTy, QualType(), RowExpr, ColumnExpr, AttrLoc);
4284#ifndef NDEBUG
4285 DependentSizedMatrixType *CanonCheck =
4286 DependentSizedMatrixTypes.FindNodeOrInsertPos(ID, InsertPos);
4287 assert(!CanonCheck && "Dependent-sized matrix canonical type broken")(static_cast <bool> (!CanonCheck && "Dependent-sized matrix canonical type broken"
) ? void (0) : __assert_fail ("!CanonCheck && \"Dependent-sized matrix canonical type broken\""
, "clang/lib/AST/ASTContext.cpp", 4287, __extension__ __PRETTY_FUNCTION__
))
;
4288#endif
4289 DependentSizedMatrixTypes.InsertNode(Canon, InsertPos);
4290 Types.push_back(Canon);
4291 }
4292
4293 // Already have a canonical version of the matrix type
4294 //
4295 // If it exactly matches the requested type, use it directly.
4296 if (Canon->getElementType() == ElementTy && Canon->getRowExpr() == RowExpr &&
4297 Canon->getRowExpr() == ColumnExpr)
4298 return QualType(Canon, 0);
4299
4300 // Use Canon as the canonical type for newly-built type.
4301 DependentSizedMatrixType *New = new (*this, TypeAlignment)
4302 DependentSizedMatrixType(*this, ElementTy, QualType(Canon, 0), RowExpr,
4303 ColumnExpr, AttrLoc);
4304 Types.push_back(New);
4305 return QualType(New, 0);
4306}
4307
4308QualType ASTContext::getDependentAddressSpaceType(QualType PointeeType,
4309 Expr *AddrSpaceExpr,
4310 SourceLocation AttrLoc) const {
4311 assert(AddrSpaceExpr->isInstantiationDependent())(static_cast <bool> (AddrSpaceExpr->isInstantiationDependent
()) ? void (0) : __assert_fail ("AddrSpaceExpr->isInstantiationDependent()"
, "clang/lib/AST/ASTContext.cpp", 4311, __extension__ __PRETTY_FUNCTION__
))
;
4312
4313 QualType canonPointeeType = getCanonicalType(PointeeType);
4314
4315 void *insertPos = nullptr;
4316 llvm::FoldingSetNodeID ID;
4317 DependentAddressSpaceType::Profile(ID, *this, canonPointeeType,
4318 AddrSpaceExpr);
4319
4320 DependentAddressSpaceType *canonTy =
4321 DependentAddressSpaceTypes.FindNodeOrInsertPos(ID, insertPos);
4322
4323 if (!canonTy) {
4324 canonTy = new (*this, TypeAlignment)
4325 DependentAddressSpaceType(*this, canonPointeeType,
4326 QualType(), AddrSpaceExpr, AttrLoc);
4327 DependentAddressSpaceTypes.InsertNode(canonTy, insertPos);
4328 Types.push_back(canonTy);
4329 }
4330
4331 if (canonPointeeType == PointeeType &&
4332 canonTy->getAddrSpaceExpr() == AddrSpaceExpr)
4333 return QualType(canonTy, 0);
4334
4335 auto *sugaredType
4336 = new (*this, TypeAlignment)
4337 DependentAddressSpaceType(*this, PointeeType, QualType(canonTy, 0),
4338 AddrSpaceExpr, AttrLoc);
4339 Types.push_back(sugaredType);
4340 return QualType(sugaredType, 0);
4341}
4342
4343/// Determine whether \p T is canonical as the result type of a function.
4344static bool isCanonicalResultType(QualType T) {
4345 return T.isCanonical() &&
4346 (T.getObjCLifetime() == Qualifiers::OCL_None ||
4347 T.getObjCLifetime() == Qualifiers::OCL_ExplicitNone);
4348}
4349
4350/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
4351QualType
4352ASTContext::getFunctionNoProtoType(QualType ResultTy,
4353 const FunctionType::ExtInfo &Info) const {
4354 // FIXME: This assertion cannot be enabled (yet) because the ObjC rewriter
4355 // functionality creates a function without a prototype regardless of
4356 // language mode (so it makes them even in C++). Once the rewriter has been
4357 // fixed, this assertion can be enabled again.
4358 //assert(!LangOpts.requiresStrictPrototypes() &&
4359 // "strict prototypes are disabled");
4360
4361 // Unique functions, to guarantee there is only one function of a particular
4362 // structure.
4363 llvm::FoldingSetNodeID ID;
4364 FunctionNoProtoType::Profile(ID, ResultTy, Info);
4365
4366 void *InsertPos = nullptr;
4367 if (FunctionNoProtoType *FT =
4368 FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
4369 return QualType(FT, 0);
4370
4371 QualType Canonical;
4372 if (!isCanonicalResultType(ResultTy)) {
4373 Canonical =
4374 getFunctionNoProtoType(getCanonicalFunctionResultType(ResultTy), Info);
4375
4376 // Get the new insert position for the node we care about.
4377 FunctionNoProtoType *NewIP =
4378 FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
4379 assert(!NewIP && "Shouldn't be in the map!")(static_cast <bool> (!NewIP && "Shouldn't be in the map!"
) ? void (0) : __assert_fail ("!NewIP && \"Shouldn't be in the map!\""
, "clang/lib/AST/ASTContext.cpp", 4379, __extension__ __PRETTY_FUNCTION__
))
; (void)NewIP;
4380 }
4381
4382 auto *New = new (*this, TypeAlignment)
4383 FunctionNoProtoType(ResultTy, Canonical, Info);
4384 Types.push_back(New);
4385 FunctionNoProtoTypes.InsertNode(New, InsertPos);
4386 return QualType(New, 0);
4387}
4388
4389CanQualType
4390ASTContext::getCanonicalFunctionResultType(QualType ResultType) const {
4391 CanQualType CanResultType = getCanonicalType(ResultType);
4392
4393 // Canonical result types do not have ARC lifetime qualifiers.
4394 if (CanResultType.getQualifiers().hasObjCLifetime()) {
4395 Qualifiers Qs = CanResultType.getQualifiers();
4396 Qs.removeObjCLifetime();
4397 return CanQualType::CreateUnsafe(
4398 getQualifiedType(CanResultType.getUnqualifiedType(), Qs));
4399 }
4400
4401 return CanResultType;
4402}
4403
4404static bool isCanonicalExceptionSpecification(
4405 const FunctionProtoType::ExceptionSpecInfo &ESI, bool NoexceptInType) {
4406 if (ESI.Type == EST_None)
4407 return true;
4408 if (!NoexceptInType)
4409 return false;
4410
4411 // C++17 onwards: exception specification is part of the type, as a simple
4412 // boolean "can this function type throw".
4413 if (ESI.Type == EST_BasicNoexcept)
4414 return true;
4415
4416 // A noexcept(expr) specification is (possibly) canonical if expr is
4417 // value-dependent.
4418 if (ESI.Type == EST_DependentNoexcept)
4419 return true;
4420
4421 // A dynamic exception specification is canonical if it only contains pack
4422 // expansions (so we can't tell whether it's non-throwing) and all its
4423 // contained types are canonical.
4424 if (ESI.Type == EST_Dynamic) {
4425 bool AnyPackExpansions = false;
4426 for (QualType ET : ESI.Exceptions) {
4427 if (!ET.isCanonical())
4428 return false;
4429 if (ET->getAs<PackExpansionType>())
4430 AnyPackExpansions = true;
4431 }
4432 return AnyPackExpansions;
4433 }
4434
4435 return false;
4436}
4437
4438QualType ASTContext::getFunctionTypeInternal(
4439 QualType ResultTy, ArrayRef<QualType> ArgArray,
4440 const FunctionProtoType::ExtProtoInfo &EPI, bool OnlyWantCanonical) const {
4441 size_t NumArgs = ArgArray.size();
4442
4443 // Unique functions, to guarantee there is only one function of a particular
4444 // structure.
4445 llvm::FoldingSetNodeID ID;
4446 FunctionProtoType::Profile(ID, ResultTy, ArgArray.begin(), NumArgs, EPI,
4447 *this, true);
4448
4449 QualType Canonical;
4450 bool Unique = false;
4451
4452 void *InsertPos = nullptr;
4453 if (FunctionProtoType *FPT =
4454 FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos)) {
4455 QualType Existing = QualType(FPT, 0);
4456
4457 // If we find a pre-existing equivalent FunctionProtoType, we can just reuse
4458 // it so long as our exception specification doesn't contain a dependent
4459 // noexcept expression, or we're just looking for a canonical type.
4460 // Otherwise, we're going to need to create a type
4461 // sugar node to hold the concrete expression.
4462 if (OnlyWantCanonical || !isComputedNoexcept(EPI.ExceptionSpec.Type) ||
4463 EPI.ExceptionSpec.NoexceptExpr == FPT->getNoexceptExpr())
4464 return Existing;
4465
4466 // We need a new type sugar node for this one, to hold the new noexcept
4467 // expression. We do no canonicalization here, but that's OK since we don't
4468 // expect to see the same noexcept expression much more than once.
4469 Canonical = getCanonicalType(Existing);
4470 Unique = true;
4471 }
4472
4473 bool NoexceptInType = getLangOpts().CPlusPlus17;
4474 bool IsCanonicalExceptionSpec =
4475 isCanonicalExceptionSpecification(EPI.ExceptionSpec, NoexceptInType);
4476
4477 // Determine whether the type being created is already canonical or not.
4478 bool isCanonical = !Unique && IsCanonicalExceptionSpec &&
4479 isCanonicalResultType(ResultTy) && !EPI.HasTrailingReturn;
4480 for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
4481 if (!ArgArray[i].isCanonicalAsParam())
4482 isCanonical = false;
4483
4484 if (OnlyWantCanonical)
4485 assert(isCanonical &&(static_cast <bool> (isCanonical && "given non-canonical parameters constructing canonical type"
) ? void (0) : __assert_fail ("isCanonical && \"given non-canonical parameters constructing canonical type\""
, "clang/lib/AST/ASTContext.cpp", 4486, __extension__ __PRETTY_FUNCTION__
))
4486 "given non-canonical parameters constructing canonical type")(static_cast <bool> (isCanonical && "given non-canonical parameters constructing canonical type"
) ? void (0) : __assert_fail ("isCanonical && \"given non-canonical parameters constructing canonical type\""
, "clang/lib/AST/ASTContext.cpp", 4486, __extension__ __PRETTY_FUNCTION__
))
;
4487
4488 // If this type isn't canonical, get the canonical version of it if we don't
4489 // already have it. The exception spec is only partially part of the
4490 // canonical type, and only in C++17 onwards.
4491 if (!isCanonical && Canonical.isNull()) {
4492 SmallVector<QualType, 16> CanonicalArgs;
4493 CanonicalArgs.reserve(NumArgs);
4494 for (unsigned i = 0; i != NumArgs; ++i)
4495 CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
4496
4497 llvm::SmallVector<QualType, 8> ExceptionTypeStorage;
4498 FunctionProtoType::ExtProtoInfo CanonicalEPI = EPI;
4499 CanonicalEPI.HasTrailingReturn = false;
4500
4501 if (IsCanonicalExceptionSpec) {
4502 // Exception spec is already OK.
4503 } else if (NoexceptInType) {
4504 switch (EPI.ExceptionSpec.Type) {
4505 case EST_Unparsed: case EST_Unevaluated: case EST_Uninstantiated:
4506 // We don't know yet. It shouldn't matter what we pick here; no-one
4507 // should ever look at this.
4508 [[fallthrough]];
4509 case EST_None: case EST_MSAny: case EST_NoexceptFalse:
4510 CanonicalEPI.ExceptionSpec.Type = EST_None;
4511 break;
4512
4513 // A dynamic exception specification is almost always "not noexcept",
4514 // with the exception that a pack expansion might expand to no types.
4515 case EST_Dynamic: {
4516 bool AnyPacks = false;
4517 for (QualType ET : EPI.ExceptionSpec.Exceptions) {
4518 if (ET->getAs<PackExpansionType>())
4519 AnyPacks = true;
4520 ExceptionTypeStorage.push_back(getCanonicalType(ET));
4521 }
4522 if (!AnyPacks)
4523 CanonicalEPI.ExceptionSpec.Type = EST_None;
4524 else {
4525 CanonicalEPI.ExceptionSpec.Type = EST_Dynamic;
4526 CanonicalEPI.ExceptionSpec.Exceptions = ExceptionTypeStorage;
4527 }
4528 break;
4529 }
4530
4531 case EST_DynamicNone:
4532 case EST_BasicNoexcept:
4533 case EST_NoexceptTrue:
4534 case EST_NoThrow:
4535 CanonicalEPI.ExceptionSpec.Type = EST_BasicNoexcept;
4536 break;
4537
4538 case EST_DependentNoexcept:
4539 llvm_unreachable("dependent noexcept is already canonical")::llvm::llvm_unreachable_internal("dependent noexcept is already canonical"
, "clang/lib/AST/ASTContext.cpp", 4539)
;
4540 }
4541 } else {
4542 CanonicalEPI.ExceptionSpec = FunctionProtoType::ExceptionSpecInfo();
4543 }
4544
4545 // Adjust the canonical function result type.
4546 CanQualType CanResultTy = getCanonicalFunctionResultType(ResultTy);
4547 Canonical =
4548 getFunctionTypeInternal(CanResultTy, CanonicalArgs, CanonicalEPI, true);
4549
4550 // Get the new insert position for the node we care about.
4551 FunctionProtoType *NewIP =
4552 FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
4553 assert(!NewIP && "Shouldn't be in the map!")(static_cast <bool> (!NewIP && "Shouldn't be in the map!"
) ? void (0) : __assert_fail ("!NewIP && \"Shouldn't be in the map!\""
, "clang/lib/AST/ASTContext.cpp", 4553, __extension__ __PRETTY_FUNCTION__
))
; (void)NewIP;
4554 }
4555
4556 // Compute the needed size to hold this FunctionProtoType and the
4557 // various trailing objects.
4558 auto ESH = FunctionProtoType::getExceptionSpecSize(
4559 EPI.ExceptionSpec.Type, EPI.ExceptionSpec.Exceptions.size());
4560 size_t Size = FunctionProtoType::totalSizeToAlloc<
4561 QualType, SourceLocation, FunctionType::FunctionTypeExtraBitfields,
4562 FunctionType::ExceptionType, Expr *, FunctionDecl *,
4563 FunctionProtoType::ExtParameterInfo, Qualifiers>(
4564 NumArgs, EPI.Variadic, EPI.requiresFunctionProtoTypeExtraBitfields(),
4565 ESH.NumExceptionType, ESH.NumExprPtr, ESH.NumFunctionDeclPtr,
4566 EPI.ExtParameterInfos ? NumArgs : 0,
4567 EPI.TypeQuals.hasNonFastQualifiers() ? 1 : 0);
4568
4569 auto *FTP = (FunctionProtoType *)Allocate(Size, TypeAlignment);
4570 FunctionProtoType::ExtProtoInfo newEPI = EPI;
4571 new (FTP) FunctionProtoType(ResultTy, ArgArray, Canonical, newEPI);
4572 Types.push_back(FTP);
4573 if (!Unique)
4574 FunctionProtoTypes.InsertNode(FTP, InsertPos);
4575 return QualType(FTP, 0);
4576}
4577
4578QualType ASTContext::getPipeType(QualType T, bool ReadOnly) const {
4579 llvm::FoldingSetNodeID ID;
4580 PipeType::Profile(ID, T, ReadOnly);
4581
4582 void *InsertPos = nullptr;
4583 if (PipeType *PT = PipeTypes.FindNodeOrInsertPos(ID, InsertPos))
4584 return QualType(PT, 0);
4585
4586 // If the pipe element type isn't canonical, this won't be a canonical type
4587 // either, so fill in the canonical type field.
4588 QualType Canonical;
4589 if (!T.isCanonical()) {
4590 Canonical = getPipeType(getCanonicalType(T), ReadOnly);
4591
4592 // Get the new insert position for the node we care about.
4593 PipeType *NewIP = PipeTypes.FindNodeOrInsertPos(ID, InsertPos);
4594 assert(!NewIP && "Shouldn't be in the map!")(static_cast <bool> (!NewIP && "Shouldn't be in the map!"
) ? void (0) : __assert_fail ("!NewIP && \"Shouldn't be in the map!\""
, "clang/lib/AST/ASTContext.cpp", 4594, __extension__ __PRETTY_FUNCTION__
))
;
4595 (void)NewIP;
4596 }
4597 auto *New = new (*this, TypeAlignment) PipeType(T, Canonical, ReadOnly);
4598 Types.push_back(New);
4599 PipeTypes.InsertNode(New, InsertPos);
4600 return QualType(New, 0);
4601}
4602
4603QualType ASTContext::adjustStringLiteralBaseType(QualType Ty) const {
4604 // OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
4605 return LangOpts.OpenCL ? getAddrSpaceQualType(Ty, LangAS::opencl_constant)
4606 : Ty;
4607}
4608
4609QualType ASTContext::getReadPipeType(QualType T) const {
4610 return getPipeType(T, true);
4611}
4612
4613QualType ASTContext::getWritePipeType(QualType T) const {
4614 return getPipeType(T, false);
4615}
4616
4617QualType ASTContext::getBitIntType(bool IsUnsigned, unsigned NumBits) const {
4618 llvm::FoldingSetNodeID ID;
4619 BitIntType::Profile(ID, IsUnsigned, NumBits);
4620
4621 void *InsertPos = nullptr;
4622 if (BitIntType *EIT = BitIntTypes.FindNodeOrInsertPos(ID, InsertPos))
4623 return QualType(EIT, 0);
4624
4625 auto *New = new (*this, TypeAlignment) BitIntType(IsUnsigned, NumBits);
4626 BitIntTypes.InsertNode(New, InsertPos);
4627 Types.push_back(New);
4628 return QualType(New, 0);
4629}
4630
4631QualType ASTContext::getDependentBitIntType(bool IsUnsigned,
4632 Expr *NumBitsExpr) const {
4633 assert(NumBitsExpr->isInstantiationDependent() && "Only good for dependent")(static_cast <bool> (NumBitsExpr->isInstantiationDependent
() && "Only good for dependent") ? void (0) : __assert_fail
("NumBitsExpr->isInstantiationDependent() && \"Only good for dependent\""
, "clang/lib/AST/ASTContext.cpp", 4633, __extension__ __PRETTY_FUNCTION__
))
;
4634 llvm::FoldingSetNodeID ID;
4635 DependentBitIntType::Profile(ID, *this, IsUnsigned, NumBitsExpr);
4636
4637 void *InsertPos = nullptr;
4638 if (DependentBitIntType *Existing =
4639 DependentBitIntTypes.FindNodeOrInsertPos(ID, InsertPos))
4640 return QualType(Existing, 0);
4641
4642 auto *New = new (*this, TypeAlignment)
4643 DependentBitIntType(*this, IsUnsigned, NumBitsExpr);
4644 DependentBitIntTypes.InsertNode(New, InsertPos);
4645
4646 Types.push_back(New);
4647 return QualType(New, 0);
4648}
4649
4650#ifndef NDEBUG
4651static bool NeedsInjectedClassNameType(const RecordDecl *D) {
4652 if (!isa<CXXRecordDecl>(D)) return false;
4653 const auto *RD = cast<CXXRecordDecl>(D);
4654 if (isa<ClassTemplatePartialSpecializationDecl>(RD))
4655 return true;
4656 if (RD->getDescribedClassTemplate() &&
4657 !isa<ClassTemplateSpecializationDecl>(RD))
4658 return true;
4659 return false;
4660}
4661#endif
4662
4663/// getInjectedClassNameType - Return the unique reference to the
4664/// injected class name type for the specified templated declaration.
4665QualType ASTContext::getInjectedClassNameType(CXXRecordDecl *Decl,
4666 QualType TST) const {
4667 assert(NeedsInjectedClassNameType(Decl))(static_cast <bool> (NeedsInjectedClassNameType(Decl)) ?
void (0) : __assert_fail ("NeedsInjectedClassNameType(Decl)"
, "clang/lib/AST/ASTContext.cpp", 4667, __extension__ __PRETTY_FUNCTION__
))
;
4668 if (Decl->TypeForDecl) {
4669 assert(isa<InjectedClassNameType>(Decl->TypeForDecl))(static_cast <bool> (isa<InjectedClassNameType>(Decl
->TypeForDecl)) ? void (0) : __assert_fail ("isa<InjectedClassNameType>(Decl->TypeForDecl)"
, "clang/lib/AST/ASTContext.cpp", 4669, __extension__ __PRETTY_FUNCTION__
))
;
4670 } else if (CXXRecordDecl *PrevDecl = Decl->getPreviousDecl()) {
4671 assert(PrevDecl->TypeForDecl && "previous declaration has no type")(static_cast <bool> (PrevDecl->TypeForDecl &&
"previous declaration has no type") ? void (0) : __assert_fail
("PrevDecl->TypeForDecl && \"previous declaration has no type\""
, "clang/lib/AST/ASTContext.cpp", 4671, __extension__ __PRETTY_FUNCTION__
))
;
4672 Decl->TypeForDecl = PrevDecl->TypeForDecl;
4673 assert(isa<InjectedClassNameType>(Decl->TypeForDecl))(static_cast <bool> (isa<InjectedClassNameType>(Decl
->TypeForDecl)) ? void (0) : __assert_fail ("isa<InjectedClassNameType>(Decl->TypeForDecl)"
, "clang/lib/AST/ASTContext.cpp", 4673, __extension__ __PRETTY_FUNCTION__
))
;
4674 } else {
4675 Type *newType =
4676 new (*this, TypeAlignment) InjectedClassNameType(Decl, TST);
4677 Decl->TypeForDecl = newType;
4678 Types.push_back(newType);
4679 }
4680 return QualType(Decl->TypeForDecl, 0);
4681}
4682
4683/// getTypeDeclType - Return the unique reference to the type for the
4684/// specified type declaration.
4685QualType ASTContext::getTypeDeclTypeSlow(const TypeDecl *Decl) const {
4686 assert(Decl && "Passed null for Decl param")(static_cast <bool> (Decl && "Passed null for Decl param"
) ? void (0) : __assert_fail ("Decl && \"Passed null for Decl param\""
, "clang/lib/AST/ASTContext.cpp", 4686, __extension__ __PRETTY_FUNCTION__
))
;
4687 assert(!Decl->TypeForDecl && "TypeForDecl present in slow case")(static_cast <bool> (!Decl->TypeForDecl && "TypeForDecl present in slow case"
) ? void (0) : __assert_fail ("!Decl->TypeForDecl && \"TypeForDecl present in slow case\""
, "clang/lib/AST/ASTContext.cpp", 4687, __extension__ __PRETTY_FUNCTION__
))
;
4688
4689 if (const auto *Typedef = dyn_cast<TypedefNameDecl>(Decl))
4690 return getTypedefType(Typedef);
4691
4692 assert(!isa<TemplateTypeParmDecl>(Decl) &&(static_cast <bool> (!isa<TemplateTypeParmDecl>(Decl
) && "Template type parameter types are always available."
) ? void (0) : __assert_fail ("!isa<TemplateTypeParmDecl>(Decl) && \"Template type parameter types are always available.\""
, "clang/lib/AST/ASTContext.cpp", 4693, __extension__ __PRETTY_FUNCTION__
))
4693 "Template type parameter types are always available.")(static_cast <bool> (!isa<TemplateTypeParmDecl>(Decl
) && "Template type parameter types are always available."
) ? void (0) : __assert_fail ("!isa<TemplateTypeParmDecl>(Decl) && \"Template type parameter types are always available.\""
, "clang/lib/AST/ASTContext.cpp", 4693, __extension__ __PRETTY_FUNCTION__
))
;
4694
4695 if (const auto *Record = dyn_cast<RecordDecl>(Decl)) {
4696 assert(Record->isFirstDecl() && "struct/union has previous declaration")(static_cast <bool> (Record->isFirstDecl() &&
"struct/union has previous declaration") ? void (0) : __assert_fail
("Record->isFirstDecl() && \"struct/union has previous declaration\""
, "clang/lib/AST/ASTContext.cpp", 4696, __extension__ __PRETTY_FUNCTION__
))
;
4697 assert(!NeedsInjectedClassNameType(Record))(static_cast <bool> (!NeedsInjectedClassNameType(Record
)) ? void (0) : __assert_fail ("!NeedsInjectedClassNameType(Record)"
, "clang/lib/AST/ASTContext.cpp", 4697, __extension__ __PRETTY_FUNCTION__
))
;
4698 return getRecordType(Record);
4699 } else if (const auto *Enum = dyn_cast<EnumDecl>(Decl)) {
4700 assert(Enum->isFirstDecl() && "enum has previous declaration")(static_cast <bool> (Enum->isFirstDecl() && "enum has previous declaration"
) ? void (0) : __assert_fail ("Enum->isFirstDecl() && \"enum has previous declaration\""
, "clang/lib/AST/ASTContext.cpp", 4700, __extension__ __PRETTY_FUNCTION__
))
;
4701 return getEnumType(Enum);
4702 } else if (const auto *Using = dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
4703 return getUnresolvedUsingType(Using);
4704 } else
4705 llvm_unreachable("TypeDecl without a type?")::llvm::llvm_unreachable_internal("TypeDecl without a type?",
"clang/lib/AST/ASTContext.cpp", 4705)
;
4706
4707 return QualType(Decl->TypeForDecl, 0);
4708}
4709
4710/// getTypedefType - Return the unique reference to the type for the
4711/// specified typedef name decl.
4712QualType ASTContext::getTypedefType(const TypedefNameDecl *Decl,
4713 QualType Underlying) const {
4714 if (!Decl->TypeForDecl) {
4715 if (Underlying.isNull())
4716 Underlying = Decl->getUnderlyingType();
4717 auto *NewType = new (*this, TypeAlignment) TypedefType(
4718 Type::Typedef, Decl, QualType(), getCanonicalType(Underlying));
4719 Decl->TypeForDecl = NewType;
4720 Types.push_back(NewType);
4721 return QualType(NewType, 0);
4722 }
4723 if (Underlying.isNull() || Decl->getUnderlyingType() == Underlying)
4724 return QualType(Decl->TypeForDecl, 0);
4725 assert(hasSameType(Decl->getUnderlyingType(), Underlying))(static_cast <bool> (hasSameType(Decl->getUnderlyingType
(), Underlying)) ? void (0) : __assert_fail ("hasSameType(Decl->getUnderlyingType(), Underlying)"
, "clang/lib/AST/ASTContext.cpp", 4725, __extension__ __PRETTY_FUNCTION__
))
;
4726
4727 llvm::FoldingSetNodeID ID;
4728 TypedefType::Profile(ID, Decl, Underlying);
4729
4730 void *InsertPos = nullptr;
4731 if (TypedefType *T = TypedefTypes.FindNodeOrInsertPos(ID, InsertPos)) {
4732 assert(!T->typeMatchesDecl() &&(static_cast <bool> (!T->typeMatchesDecl() &&
"non-divergent case should be handled with TypeDecl") ? void
(0) : __assert_fail ("!T->typeMatchesDecl() && \"non-divergent case should be handled with TypeDecl\""
, "clang/lib/AST/ASTContext.cpp", 4733, __extension__ __PRETTY_FUNCTION__
))
4733 "non-divergent case should be handled with TypeDecl")(static_cast <bool> (!T->typeMatchesDecl() &&
"non-divergent case should be handled with TypeDecl") ? void
(0) : __assert_fail ("!T->typeMatchesDecl() && \"non-divergent case should be handled with TypeDecl\""
, "clang/lib/AST/ASTContext.cpp", 4733, __extension__ __PRETTY_FUNCTION__
))
;
4734 return QualType(T, 0);
4735 }
4736
4737 void *Mem =
4738 Allocate(TypedefType::totalSizeToAlloc<QualType>(true), TypeAlignment);
4739 auto *NewType = new (Mem) TypedefType(Type::Typedef, Decl, Underlying,
4740 getCanonicalType(Underlying));
4741 TypedefTypes.InsertNode(NewType, InsertPos);
4742 Types.push_back(NewType);
4743 return QualType(NewType, 0);
4744}
4745
4746QualType ASTContext::getUsingType(const UsingShadowDecl *Found,
4747 QualType Underlying) const {
4748 llvm::FoldingSetNodeID ID;
4749 UsingType::Profile(ID, Found, Underlying);
4750
4751 void *InsertPos = nullptr;
4752 if (UsingType *T = UsingTypes.FindNodeOrInsertPos(ID, InsertPos))
4753 return QualType(T, 0);
4754
4755 const Type *TypeForDecl =
4756 cast<TypeDecl>(Found->getTargetDecl())->getTypeForDecl();
4757
4758 assert(!Underlying.hasLocalQualifiers())(static_cast <bool> (!Underlying.hasLocalQualifiers()) ?
void (0) : __assert_fail ("!Underlying.hasLocalQualifiers()"
, "clang/lib/AST/ASTContext.cpp", 4758, __extension__ __PRETTY_FUNCTION__
))
;
4759 QualType Canon = Underlying->getCanonicalTypeInternal();
4760 assert(TypeForDecl->getCanonicalTypeInternal() == Canon)(static_cast <bool> (TypeForDecl->getCanonicalTypeInternal
() == Canon) ? void (0) : __assert_fail ("TypeForDecl->getCanonicalTypeInternal() == Canon"
, "clang/lib/AST/ASTContext.cpp", 4760, __extension__ __PRETTY_FUNCTION__
))
;
4761
4762 if (Underlying.getTypePtr() == TypeForDecl)
4763 Underlying = QualType();
4764 void *Mem =
4765 Allocate(UsingType::totalSizeToAlloc<QualType>(!Underlying.isNull()),
4766 TypeAlignment);
4767 UsingType *NewType = new (Mem) UsingType(Found, Underlying, Canon);
4768 Types.push_back(NewType);
4769 UsingTypes.InsertNode(NewType, InsertPos);
4770 return QualType(NewType, 0);
4771}
4772
4773QualType ASTContext::getRecordType(const RecordDecl *Decl) const {
4774 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
4775
4776 if (const RecordDecl *PrevDecl = Decl->getPreviousDecl())
4777 if (PrevDecl->TypeForDecl)
4778 return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
4779
4780 auto *newType = new (*this, TypeAlignment) RecordType(Decl);
4781 Decl->TypeForDecl = newType;
4782 Types.push_back(newType);
4783 return QualType(newType, 0);
4784}
4785
4786QualType ASTContext::getEnumType(const EnumDecl *Decl) const {
4787 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
4788
4789 if (const EnumDecl *PrevDecl = Decl->getPreviousDecl())
4790 if (PrevDecl->TypeForDecl)
4791 return QualType(Decl->TypeForDecl = PrevDecl->TypeForDecl, 0);
4792
4793 auto *newType = new (*this, TypeAlignment) EnumType(Decl);
4794 Decl->TypeForDecl = newType;
4795 Types.push_back(newType);
4796 return QualType(newType, 0);
4797}
4798
4799QualType ASTContext::getUnresolvedUsingType(
4800 const UnresolvedUsingTypenameDecl *Decl) const {
4801 if (Decl->TypeForDecl)
4802 return QualType(Decl->TypeForDecl, 0);
4803
4804 if (const UnresolvedUsingTypenameDecl *CanonicalDecl =
4805 Decl->getCanonicalDecl())
4806 if (CanonicalDecl->TypeForDecl)
4807 return QualType(Decl->TypeForDecl = CanonicalDecl->TypeForDecl, 0);
4808
4809 Type *newType = new (*this, TypeAlignment) UnresolvedUsingType(Decl);
4810 Decl->TypeForDecl = newType;
4811 Types.push_back(newType);
4812 return QualType(newType, 0);
4813}
4814
4815QualType ASTContext::getAttributedType(attr::Kind attrKind,
4816 QualType modifiedType,
4817 QualType equivalentType) const {
4818 llvm::FoldingSetNodeID id;
4819 AttributedType::Profile(id, attrKind, modifiedType, equivalentType);
4820
4821 void *insertPos = nullptr;
4822 AttributedType *type = AttributedTypes.FindNodeOrInsertPos(id, insertPos);
4823 if (type) return QualType(type, 0);
4824
4825 QualType canon = getCanonicalType(equivalentType);
4826 type = new (*this, TypeAlignment)
4827 AttributedType(canon, attrKind, modifiedType, equivalentType);
4828
4829 Types.push_back(type);
4830 AttributedTypes.InsertNode(type, insertPos);
4831
4832 return QualType(type, 0);
4833}
4834
4835QualType ASTContext::getBTFTagAttributedType(const BTFTypeTagAttr *BTFAttr,
4836 QualType Wrapped) {
4837 llvm::FoldingSetNodeID ID;
4838 BTFTagAttributedType::Profile(ID, Wrapped, BTFAttr);
4839
4840 void *InsertPos = nullptr;
4841 BTFTagAttributedType *Ty =
4842 BTFTagAttributedTypes.FindNodeOrInsertPos(ID, InsertPos);
4843 if (Ty)
4844 return QualType(Ty, 0);
4845
4846 QualType Canon = getCanonicalType(Wrapped);
4847 Ty = new (*this, TypeAlignment) BTFTagAttributedType(Canon, Wrapped, BTFAttr);
4848
4849 Types.push_back(Ty);
4850 BTFTagAttributedTypes.InsertNode(Ty, InsertPos);
4851
4852 return QualType(Ty, 0);
4853}
4854
4855/// Retrieve a substitution-result type.
4856QualType ASTContext::getSubstTemplateTypeParmType(
4857 QualType Replacement, Decl *AssociatedDecl, unsigned Index,
4858 std::optional<unsigned> PackIndex) const {
4859 llvm::FoldingSetNodeID ID;
4860 SubstTemplateTypeParmType::Profile(ID, Replacement, AssociatedDecl, Index,
4861 PackIndex);
4862 void *InsertPos = nullptr;
4863 SubstTemplateTypeParmType *SubstParm =
4864 SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4865
4866 if (!SubstParm) {
4867 void *Mem = Allocate(SubstTemplateTypeParmType::totalSizeToAlloc<QualType>(
4868 !Replacement.isCanonical()),
4869 TypeAlignment);
4870 SubstParm = new (Mem) SubstTemplateTypeParmType(Replacement, AssociatedDecl,
4871 Index, PackIndex);
4872 Types.push_back(SubstParm);
4873 SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
4874 }
4875
4876 return QualType(SubstParm, 0);
4877}
4878
4879/// Retrieve a
4880QualType
4881ASTContext::getSubstTemplateTypeParmPackType(Decl *AssociatedDecl,
4882 unsigned Index, bool Final,
4883 const TemplateArgument &ArgPack) {
4884#ifndef NDEBUG
4885 for (const auto &P : ArgPack.pack_elements())
4886 assert(P.getKind() == TemplateArgument::Type && "Pack contains a non-type")(static_cast <bool> (P.getKind() == TemplateArgument::Type
&& "Pack contains a non-type") ? void (0) : __assert_fail
("P.getKind() == TemplateArgument::Type && \"Pack contains a non-type\""
, "clang/lib/AST/ASTContext.cpp", 4886, __extension__ __PRETTY_FUNCTION__
))
;
4887#endif
4888
4889 llvm::FoldingSetNodeID ID;
4890 SubstTemplateTypeParmPackType::Profile(ID, AssociatedDecl, Index, Final,
4891 ArgPack);
4892 void *InsertPos = nullptr;
4893 if (SubstTemplateTypeParmPackType *SubstParm =
4894 SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos))
4895 return QualType(SubstParm, 0);
4896
4897 QualType Canon;
4898 {
4899 TemplateArgument CanonArgPack = getCanonicalTemplateArgument(ArgPack);
4900 if (!AssociatedDecl->isCanonicalDecl() ||
4901 !CanonArgPack.structurallyEquals(ArgPack)) {
4902 Canon = getSubstTemplateTypeParmPackType(
4903 AssociatedDecl->getCanonicalDecl(), Index, Final, CanonArgPack);
4904 [[maybe_unused]] const auto *Nothing =
4905 SubstTemplateTypeParmPackTypes.FindNodeOrInsertPos(ID, InsertPos);
4906 assert(!Nothing)(static_cast <bool> (!Nothing) ? void (0) : __assert_fail
("!Nothing", "clang/lib/AST/ASTContext.cpp", 4906, __extension__
__PRETTY_FUNCTION__))
;
4907 }
4908 }
4909
4910 auto *SubstParm = new (*this, TypeAlignment) SubstTemplateTypeParmPackType(
4911 Canon, AssociatedDecl, Index, Final, ArgPack);
4912 Types.push_back(SubstParm);
4913 SubstTemplateTypeParmPackTypes.InsertNode(SubstParm, InsertPos);
4914 return QualType(SubstParm, 0);
4915}
4916
4917/// Retrieve the template type parameter type for a template
4918/// parameter or parameter pack with the given depth, index, and (optionally)
4919/// name.
4920QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
4921 bool ParameterPack,
4922 TemplateTypeParmDecl *TTPDecl) const {
4923 llvm::FoldingSetNodeID ID;
4924 TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, TTPDecl);
4925 void *InsertPos = nullptr;
4926 TemplateTypeParmType *TypeParm
4927 = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4928
4929 if (TypeParm)
4930 return QualType(TypeParm, 0);
4931
4932 if (TTPDecl) {
4933 QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
4934 TypeParm = new (*this, TypeAlignment) TemplateTypeParmType(TTPDecl, Canon);
4935
4936 TemplateTypeParmType *TypeCheck
4937 = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
4938 assert(!TypeCheck && "Template type parameter canonical type broken")(static_cast <bool> (!TypeCheck && "Template type parameter canonical type broken"
) ? void (0) : __assert_fail ("!TypeCheck && \"Template type parameter canonical type broken\""
, "clang/lib/AST/ASTContext.cpp", 4938, __extension__ __PRETTY_FUNCTION__
))
;
4939 (void)TypeCheck;
4940 } else
4941 TypeParm = new (*this, TypeAlignment)
4942 TemplateTypeParmType(Depth, Index, ParameterPack);
4943
4944 Types.push_back(TypeParm);
4945 TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
4946
4947 return QualType(TypeParm, 0);
4948}
4949
4950TypeSourceInfo *
4951ASTContext::getTemplateSpecializationTypeInfo(TemplateName Name,
4952 SourceLocation NameLoc,
4953 const TemplateArgumentListInfo &Args,
4954 QualType Underlying) const {
4955 assert(!Name.getAsDependentTemplateName() &&(static_cast <bool> (!Name.getAsDependentTemplateName()
&& "No dependent template names here!") ? void (0) :
__assert_fail ("!Name.getAsDependentTemplateName() && \"No dependent template names here!\""
, "clang/lib/AST/ASTContext.cpp", 4956, __extension__ __PRETTY_FUNCTION__
))
4956 "No dependent template names here!")(static_cast <bool> (!Name.getAsDependentTemplateName()
&& "No dependent template names here!") ? void (0) :
__assert_fail ("!Name.getAsDependentTemplateName() && \"No dependent template names here!\""
, "clang/lib/AST/ASTContext.cpp", 4956, __extension__ __PRETTY_FUNCTION__
))
;
4957 QualType TST =
4958 getTemplateSpecializationType(Name, Args.arguments(), Underlying);
4959
4960 TypeSourceInfo *DI = CreateTypeSourceInfo(TST);
4961 TemplateSpecializationTypeLoc TL =
4962 DI->getTypeLoc().castAs<TemplateSpecializationTypeLoc>();
4963 TL.setTemplateKeywordLoc(SourceLocation());
4964 TL.setTemplateNameLoc(NameLoc);
4965 TL.setLAngleLoc(Args.getLAngleLoc());
4966 TL.setRAngleLoc(Args.getRAngleLoc());
4967 for (unsigned i = 0, e = TL.getNumArgs(); i != e; ++i)
4968 TL.setArgLocInfo(i, Args[i].getLocInfo());
4969 return DI;
4970}
4971
4972QualType
4973ASTContext::getTemplateSpecializationType(TemplateName Template,
4974 ArrayRef<TemplateArgumentLoc> Args,
4975 QualType Underlying) const {
4976 assert(!Template.getAsDependentTemplateName() &&(static_cast <bool> (!Template.getAsDependentTemplateName
() && "No dependent template names here!") ? void (0)
: __assert_fail ("!Template.getAsDependentTemplateName() && \"No dependent template names here!\""
, "clang/lib/AST/ASTContext.cpp", 4977, __extension__ __PRETTY_FUNCTION__
))
4977 "No dependent template names here!")(static_cast <bool> (!Template.getAsDependentTemplateName
() && "No dependent template names here!") ? void (0)
: __assert_fail ("!Template.getAsDependentTemplateName() && \"No dependent template names here!\""
, "clang/lib/AST/ASTContext.cpp", 4977, __extension__ __PRETTY_FUNCTION__
))
;
4978
4979 SmallVector<TemplateArgument, 4> ArgVec;
4980 ArgVec.reserve(Args.size());
4981 for (const TemplateArgumentLoc &Arg : Args)
4982 ArgVec.push_back(Arg.getArgument());
4983
4984 return getTemplateSpecializationType(Template, ArgVec, Underlying);
4985}
4986
4987#ifndef NDEBUG
4988static bool hasAnyPackExpansions(ArrayRef<TemplateArgument> Args) {
4989 for (const TemplateArgument &Arg : Args)
4990 if (Arg.isPackExpansion())
4991 return true;
4992
4993 return true;
4994}
4995#endif
4996
4997QualType
4998ASTContext::getTemplateSpecializationType(TemplateName Template,
4999 ArrayRef<TemplateArgument> Args,
5000 QualType Underlying) const {
5001 assert(!Template.getAsDependentTemplateName() &&(static_cast <bool> (!Template.getAsDependentTemplateName
() && "No dependent template names here!") ? void (0)
: __assert_fail ("!Template.getAsDependentTemplateName() && \"No dependent template names here!\""
, "clang/lib/AST/ASTContext.cpp", 5002, __extension__ __PRETTY_FUNCTION__
))
5002 "No dependent template names here!")(static_cast <bool> (!Template.getAsDependentTemplateName
() && "No dependent template names here!") ? void (0)
: __assert_fail ("!Template.getAsDependentTemplateName() && \"No dependent template names here!\""
, "clang/lib/AST/ASTContext.cpp", 5002, __extension__ __PRETTY_FUNCTION__
))
;
5003 // Look through qualified template names.
5004 if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
5005 Template = QTN->getUnderlyingTemplate();
5006
5007 const auto *TD = Template.getAsTemplateDecl();
5008 bool IsTypeAlias = TD && TD->isTypeAlias();
5009 QualType CanonType;
5010 if (!Underlying.isNull())
5011 CanonType = getCanonicalType(Underlying);
5012 else {
5013 // We can get here with an alias template when the specialization contains
5014 // a pack expansion that does not match up with a parameter pack.
5015 assert((!IsTypeAlias || hasAnyPackExpansions(Args)) &&(static_cast <bool> ((!IsTypeAlias || hasAnyPackExpansions
(Args)) && "Caller must compute aliased type") ? void
(0) : __assert_fail ("(!IsTypeAlias || hasAnyPackExpansions(Args)) && \"Caller must compute aliased type\""
, "clang/lib/AST/ASTContext.cpp", 5016, __extension__ __PRETTY_FUNCTION__
))
5016 "Caller must compute aliased type")(static_cast <bool> ((!IsTypeAlias || hasAnyPackExpansions
(Args)) && "Caller must compute aliased type") ? void
(0) : __assert_fail ("(!IsTypeAlias || hasAnyPackExpansions(Args)) && \"Caller must compute aliased type\""
, "clang/lib/AST/ASTContext.cpp", 5016, __extension__ __PRETTY_FUNCTION__
))
;
5017 IsTypeAlias = false;
5018 CanonType = getCanonicalTemplateSpecializationType(Template, Args);
5019 }
5020
5021 // Allocate the (non-canonical) template specialization type, but don't
5022 // try to unique it: these types typically have location information that
5023 // we don't unique and don't want to lose.
5024 void *Mem = Allocate(sizeof(TemplateSpecializationType) +
5025 sizeof(TemplateArgument) * Args.size() +
5026 (IsTypeAlias? sizeof(QualType) : 0),
5027 TypeAlignment);
5028 auto *Spec
5029 = new (Mem) TemplateSpecializationType(Template, Args, CanonType,
5030 IsTypeAlias ? Underlying : QualType());
5031
5032 Types.push_back(Spec);
5033 return QualType(Spec, 0);
5034}
5035
5036QualType ASTContext::getCanonicalTemplateSpecializationType(
5037 TemplateName Template, ArrayRef<TemplateArgument> Args) const {
5038 assert(!Template.getAsDependentTemplateName() &&(static_cast <bool> (!Template.getAsDependentTemplateName
() && "No dependent template names here!") ? void (0)
: __assert_fail ("!Template.getAsDependentTemplateName() && \"No dependent template names here!\""
, "clang/lib/AST/ASTContext.cpp", 5039, __extension__ __PRETTY_FUNCTION__
))
5039 "No dependent template names here!")(static_cast <bool> (!Template.getAsDependentTemplateName
() && "No dependent template names here!") ? void (0)
: __assert_fail ("!Template.getAsDependentTemplateName() && \"No dependent template names here!\""
, "clang/lib/AST/ASTContext.cpp", 5039, __extension__ __PRETTY_FUNCTION__
))
;
5040
5041 // Look through qualified template names.
5042 if (QualifiedTemplateName *QTN = Template.getAsQualifiedTemplateName())
5043 Template = TemplateName(QTN->getUnderlyingTemplate());
5044
5045 // Build the canonical template specialization type.
5046 TemplateName CanonTemplate = getCanonicalTemplateName(Template);
5047 bool AnyNonCanonArgs = false;
5048 auto CanonArgs =
5049 ::getCanonicalTemplateArguments(*this, Args, AnyNonCanonArgs);
5050
5051 // Determine whether this canonical template specialization type already
5052 // exists.
5053 llvm::FoldingSetNodeID ID;
5054 TemplateSpecializationType::Profile(ID, CanonTemplate,
5055 CanonArgs, *this);
5056
5057 void *InsertPos = nullptr;
5058 TemplateSpecializationType *Spec
5059 = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
5060
5061 if (!Spec) {
5062 // Allocate a new canonical template specialization type.
5063 void *Mem = Allocate((sizeof(TemplateSpecializationType) +
5064 sizeof(TemplateArgument) * CanonArgs.size()),
5065 TypeAlignment);
5066 Spec = new (Mem) TemplateSpecializationType(CanonTemplate,
5067 CanonArgs,
5068 QualType(), QualType());
5069 Types.push_back(Spec);
5070 TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
5071 }
5072
5073 assert(Spec->isDependentType() &&(static_cast <bool> (Spec->isDependentType() &&
"Non-dependent template-id type must have a canonical type")
? void (0) : __assert_fail ("Spec->isDependentType() && \"Non-dependent template-id type must have a canonical type\""
, "clang/lib/AST/ASTContext.cpp", 5074, __extension__ __PRETTY_FUNCTION__
))
5074 "Non-dependent template-id type must have a canonical type")(static_cast <bool> (Spec->isDependentType() &&
"Non-dependent template-id type must have a canonical type")
? void (0) : __assert_fail ("Spec->isDependentType() && \"Non-dependent template-id type must have a canonical type\""
, "clang/lib/AST/ASTContext.cpp", 5074, __extension__ __PRETTY_FUNCTION__
))
;
5075 return QualType(Spec, 0);
5076}
5077
5078QualType ASTContext::getElaboratedType(ElaboratedTypeKeyword Keyword,
5079 NestedNameSpecifier *NNS,
5080 QualType NamedType,
5081 TagDecl *OwnedTagDecl) const {
5082 llvm::FoldingSetNodeID ID;
5083 ElaboratedType::Profile(ID, Keyword, NNS, NamedType, OwnedTagDecl);
5084
5085 void *InsertPos = nullptr;
5086 ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
5087 if (T)
5088 return QualType(T, 0);
5089
5090 QualType Canon = NamedType;
5091 if (!Canon.isCanonical()) {
5092 Canon = getCanonicalType(NamedType);
5093 ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
5094 assert(!CheckT && "Elaborated canonical type broken")(static_cast <bool> (!CheckT && "Elaborated canonical type broken"
) ? void (0) : __assert_fail ("!CheckT && \"Elaborated canonical type broken\""
, "clang/lib/AST/ASTContext.cpp", 5094, __extension__ __PRETTY_FUNCTION__
))
;
5095 (void)CheckT;
5096 }
5097
5098 void *Mem = Allocate(ElaboratedType::totalSizeToAlloc<TagDecl *>(!!OwnedTagDecl),
5099 TypeAlignment);
5100 T = new (Mem) ElaboratedType(Keyword, NNS, NamedType, Canon, OwnedTagDecl);
5101
5102 Types.push_back(T);
5103 ElaboratedTypes.InsertNode(T, InsertPos);
5104 return QualType(T, 0);
5105}
5106
5107QualType
5108ASTContext::getParenType(QualType InnerType) const {
5109 llvm::FoldingSetNodeID ID;
5110 ParenType::Profile(ID, InnerType);
5111
5112 void *InsertPos = nullptr;
5113 ParenType *T = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
5114 if (T)
5115 return QualType(T, 0);
5116
5117 QualType Canon = InnerType;
5118 if (!Canon.isCanonical()) {
5119 Canon = getCanonicalType(InnerType);
5120 ParenType *CheckT = ParenTypes.FindNodeOrInsertPos(ID, InsertPos);
5121 assert(!CheckT && "Paren canonical type broken")(static_cast <bool> (!CheckT && "Paren canonical type broken"
) ? void (0) : __assert_fail ("!CheckT && \"Paren canonical type broken\""
, "clang/lib/AST/ASTContext.cpp", 5121, __extension__ __PRETTY_FUNCTION__
))
;
5122 (void)CheckT;
5123 }
5124
5125 T = new (*this, TypeAlignment) ParenType(InnerType, Canon);
5126 Types.push_back(T);
5127 ParenTypes.InsertNode(T, InsertPos);
5128 return QualType(T, 0);
5129}
5130
5131QualType
5132ASTContext::getMacroQualifiedType(QualType UnderlyingTy,
5133 const IdentifierInfo *MacroII) const {
5134 QualType Canon = UnderlyingTy;
5135 if (!Canon.isCanonical())
5136 Canon = getCanonicalType(UnderlyingTy);
5137
5138 auto *newType = new (*this, TypeAlignment)
5139 MacroQualifiedType(UnderlyingTy, Canon, MacroII);
5140 Types.push_back(newType);
5141 return QualType(newType, 0);
5142}
5143
5144QualType ASTContext::getDependentNameType(ElaboratedTypeKeyword Keyword,
5145 NestedNameSpecifier *NNS,
5146 const IdentifierInfo *Name,
5147 QualType Canon) const {
5148 if (Canon.isNull()) {
5149 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5150 if (CanonNNS != NNS)
5151 Canon = getDependentNameType(Keyword, CanonNNS, Name);
5152 }
5153
5154 llvm::FoldingSetNodeID ID;
5155 DependentNameType::Profile(ID, Keyword, NNS, Name);
5156
5157 void *InsertPos = nullptr;
5158 DependentNameType *T
5159 = DependentNameTypes.FindNodeOrInsertPos(ID, InsertPos);
5160 if (T)
5161 return QualType(T, 0);
5162
5163 T = new (*this, TypeAlignment) DependentNameType(Keyword, NNS, Name, Canon);
5164 Types.push_back(T);
5165 DependentNameTypes.InsertNode(T, InsertPos);
5166 return QualType(T, 0);
5167}
5168
5169QualType ASTContext::getDependentTemplateSpecializationType(
5170 ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
5171 const IdentifierInfo *Name, ArrayRef<TemplateArgumentLoc> Args) const {
5172 // TODO: avoid this copy
5173 SmallVector<TemplateArgument, 16> ArgCopy;
5174 for (unsigned I = 0, E = Args.size(); I != E; ++I)
5175 ArgCopy.push_back(Args[I].getArgument());
5176 return getDependentTemplateSpecializationType(Keyword, NNS, Name, ArgCopy);
5177}
5178
5179QualType
5180ASTContext::getDependentTemplateSpecializationType(
5181 ElaboratedTypeKeyword Keyword,
5182 NestedNameSpecifier *NNS,
5183 const IdentifierInfo *Name,
5184 ArrayRef<TemplateArgument> Args) const {
5185 assert((!NNS || NNS->isDependent()) &&(static_cast <bool> ((!NNS || NNS->isDependent()) &&
"nested-name-specifier must be dependent") ? void (0) : __assert_fail
("(!NNS || NNS->isDependent()) && \"nested-name-specifier must be dependent\""
, "clang/lib/AST/ASTContext.cpp", 5186, __extension__ __PRETTY_FUNCTION__
))
5186 "nested-name-specifier must be dependent")(static_cast <bool> ((!NNS || NNS->isDependent()) &&
"nested-name-specifier must be dependent") ? void (0) : __assert_fail
("(!NNS || NNS->isDependent()) && \"nested-name-specifier must be dependent\""
, "clang/lib/AST/ASTContext.cpp", 5186, __extension__ __PRETTY_FUNCTION__
))
;
5187
5188 llvm::FoldingSetNodeID ID;
5189 DependentTemplateSpecializationType::Profile(ID, *this, Keyword, NNS,
5190 Name, Args);
5191
5192 void *InsertPos = nullptr;
5193 DependentTemplateSpecializationType *T
5194 = DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
5195 if (T)
5196 return QualType(T, 0);
5197
5198 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
5199
5200 ElaboratedTypeKeyword CanonKeyword = Keyword;
5201 if (Keyword == ETK_None) CanonKeyword = ETK_Typename;
5202
5203 bool AnyNonCanonArgs = false;
5204 auto CanonArgs =
5205 ::getCanonicalTemplateArguments(*this, Args, AnyNonCanonArgs);
5206
5207 QualType Canon;
5208 if (AnyNonCanonArgs || CanonNNS != NNS || CanonKeyword != Keyword) {
5209 Canon = getDependentTemplateSpecializationType(CanonKeyword, CanonNNS,
5210 Name,
5211 CanonArgs);
5212
5213 // Find the insert position again.
5214 [[maybe_unused]] auto *Nothing =
5215 DependentTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
5216 assert(!Nothing && "canonical type broken")(static_cast <bool> (!Nothing && "canonical type broken"
) ? void (0) : __assert_fail ("!Nothing && \"canonical type broken\""
, "clang/lib/AST/ASTContext.cpp", 5216, __extension__ __PRETTY_FUNCTION__
))
;
5217 }
5218
5219 void *Mem = Allocate((sizeof(DependentTemplateSpecializationType) +
5220 sizeof(TemplateArgument) * Args.size()),
5221 TypeAlignment);
5222 T = new (Mem) DependentTemplateSpecializationType(Keyword, NNS,
5223 Name, Args, Canon);
5224 Types.push_back(T);
5225 DependentTemplateSpecializationTypes.InsertNode(T, InsertPos);
5226 return QualType(T, 0);
5227}
5228
5229TemplateArgument ASTContext::getInjectedTemplateArg(NamedDecl *Param) {
5230 TemplateArgument Arg;
5231 if (const auto *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
5232 QualType ArgType = getTypeDeclType(TTP);
5233 if (TTP->isParameterPack())
5234 ArgType = getPackExpansionType(ArgType, std::nullopt);
5235
5236 Arg = TemplateArgument(ArgType);
5237 } else if (auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
5238 QualType T =
5239 NTTP->getType().getNonPackExpansionType().getNonLValueExprType(*this);
5240 // For class NTTPs, ensure we include the 'const' so the type matches that
5241 // of a real template argument.
5242 // FIXME: It would be more faithful to model this as something like an
5243 // lvalue-to-rvalue conversion applied to a const-qualified lvalue.
5244 if (T->isRecordType())
5245 T.addConst();
5246 Expr *E = new (*this) DeclRefExpr(
5247 *this, NTTP, /*RefersToEnclosingVariableOrCapture*/ false, T,
5248 Expr::getValueKindForType(NTTP->getType()), NTTP->getLocation());
5249
5250 if (NTTP->isParameterPack())
5251 E = new (*this)
5252 PackExpansionExpr(DependentTy, E, NTTP->getLocation(), std::nullopt);
5253 Arg = TemplateArgument(E);
5254 } else {
5255 auto *TTP = cast<TemplateTemplateParmDecl>(Param);
5256 if (TTP->isParameterPack())
5257 Arg = TemplateArgument(TemplateName(TTP), std::optional<unsigned>());
5258 else
5259 Arg = TemplateArgument(TemplateName(TTP));
5260 }
5261
5262 if (Param->isTemplateParameterPack())
5263 Arg = TemplateArgument::CreatePackCopy(*this, Arg);
5264
5265 return Arg;
5266}
5267
5268void
5269ASTContext::getInjectedTemplateArgs(const TemplateParameterList *Params,
5270 SmallVectorImpl<TemplateArgument> &Args) {
5271 Args.reserve(Args.size() + Params->size());
5272
5273 for (NamedDecl *Param : *Params)
5274 Args.push_back(getInjectedTemplateArg(Param));
5275}
5276
5277QualType ASTContext::getPackExpansionType(QualType Pattern,
5278 std::optional<unsigned> NumExpansions,
5279 bool ExpectPackInType) {
5280 assert((!ExpectPackInType || Pattern->containsUnexpandedParameterPack()) &&(static_cast <bool> ((!ExpectPackInType || Pattern->
containsUnexpandedParameterPack()) && "Pack expansions must expand one or more parameter packs"
) ? void (0) : __assert_fail ("(!ExpectPackInType || Pattern->containsUnexpandedParameterPack()) && \"Pack expansions must expand one or more parameter packs\""
, "clang/lib/AST/ASTContext.cpp", 5281, __extension__ __PRETTY_FUNCTION__
))
5281 "Pack expansions must expand one or more parameter packs")(static_cast <bool> ((!ExpectPackInType || Pattern->
containsUnexpandedParameterPack()) && "Pack expansions must expand one or more parameter packs"
) ? void (0) : __assert_fail ("(!ExpectPackInType || Pattern->containsUnexpandedParameterPack()) && \"Pack expansions must expand one or more parameter packs\""
, "clang/lib/AST/ASTContext.cpp", 5281, __extension__ __PRETTY_FUNCTION__
))
;
5282
5283 llvm::FoldingSetNodeID ID;
5284 PackExpansionType::Profile(ID, Pattern, NumExpansions);
5285
5286 void *InsertPos = nullptr;
5287 PackExpansionType *T = PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
5288 if (T)
5289 return QualType(T, 0);
5290
5291 QualType Canon;
5292 if (!Pattern.isCanonical()) {
5293 Canon = getPackExpansionType(getCanonicalType(Pattern), NumExpansions,
5294 /*ExpectPackInType=*/false);
5295
5296 // Find the insert position again, in case we inserted an element into
5297 // PackExpansionTypes and invalidated our insert position.
5298 PackExpansionTypes.FindNodeOrInsertPos(ID, InsertPos);
5299 }
5300
5301 T = new (*this, TypeAlignment)
5302 PackExpansionType(Pattern, Canon, NumExpansions);
5303 Types.push_back(T);
5304 PackExpansionTypes.InsertNode(T, InsertPos);
5305 return QualType(T, 0);
5306}
5307
5308/// CmpProtocolNames - Comparison predicate for sorting protocols
5309/// alphabetically.
5310static int CmpProtocolNames(ObjCProtocolDecl *const *LHS,
5311 ObjCProtocolDecl *const *RHS) {
5312 return DeclarationName::compare((*LHS)->getDeclName(), (*RHS)->getDeclName());
5313}
5314
5315static bool areSortedAndUniqued(ArrayRef<ObjCProtocolDecl *> Protocols) {
5316 if (Protocols.empty()) return true;
5317
5318 if (Protocols[0]->getCanonicalDecl() != Protocols[0])
5319 return false;
5320
5321 for (unsigned i = 1; i != Protocols.size(); ++i)
5322 if (CmpProtocolNames(&Protocols[i - 1], &Protocols[i]) >= 0 ||
5323 Protocols[i]->getCanonicalDecl() != Protocols[i])
5324 return false;
5325 return true;
5326}
5327
5328static void
5329SortAndUniqueProtocols(SmallVectorImpl<ObjCProtocolDecl *> &Protocols) {
5330 // Sort protocols, keyed by name.
5331 llvm::array_pod_sort(Protocols.begin(), Protocols.end(), CmpProtocolNames);
5332
5333 // Canonicalize.
5334 for (ObjCProtocolDecl *&P : Protocols)
5335 P = P->getCanonicalDecl();
5336
5337 // Remove duplicates.
5338 auto ProtocolsEnd = std::unique(Protocols.begin(), Protocols.end());
5339 Protocols.erase(ProtocolsEnd, Protocols.end());
5340}
5341
5342QualType ASTContext::getObjCObjectType(QualType BaseType,
5343 ObjCProtocolDecl * const *Protocols,
5344 unsigned NumProtocols) const {
5345 return getObjCObjectType(BaseType, {},
5346 llvm::ArrayRef(Protocols, NumProtocols),
5347 /*isKindOf=*/false);
5348}
5349
5350QualType ASTContext::getObjCObjectType(
5351 QualType baseType,
5352 ArrayRef<QualType> typeArgs,
5353 ArrayRef<ObjCProtocolDecl *> protocols,
5354 bool isKindOf) const {
5355 // If the base type is an interface and there aren't any protocols or
5356 // type arguments to add, then the interface type will do just fine.
5357 if (typeArgs.empty() && protocols.empty() && !isKindOf &&
5358 isa<ObjCInterfaceType>(baseType))
5359 return baseType;
5360
5361 // Look in the folding set for an existing type.
5362 llvm::FoldingSetNodeID ID;
5363 ObjCObjectTypeImpl::Profile(ID, baseType, typeArgs, protocols, isKindOf);
5364 void *InsertPos = nullptr;
5365 if (ObjCObjectType *QT = ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos))
5366 return QualType(QT, 0);
5367
5368 // Determine the type arguments to be used for canonicalization,
5369 // which may be explicitly specified here or written on the base
5370 // type.
5371 ArrayRef<QualType> effectiveTypeArgs = typeArgs;
5372 if (effectiveTypeArgs.empty()) {
5373 if (const auto *baseObject = baseType->getAs<ObjCObjectType>())
5374 effectiveTypeArgs = baseObject->getTypeArgs();
5375 }
5376
5377 // Build the canonical type, which has the canonical base type and a
5378 // sorted-and-uniqued list of protocols and the type arguments
5379 // canonicalized.
5380 QualType canonical;
5381 bool typeArgsAreCanonical = llvm::all_of(
5382 effectiveTypeArgs, [&](QualType type) { return type.isCanonical(); });
5383 bool protocolsSorted = areSortedAndUniqued(protocols);
5384 if (!typeArgsAreCanonical || !protocolsSorted || !baseType.isCanonical()) {
5385 // Determine the canonical type arguments.
5386 ArrayRef<QualType> canonTypeArgs;
5387 SmallVector<QualType, 4> canonTypeArgsVec;
5388 if (!typeArgsAreCanonical) {
5389 canonTypeArgsVec.reserve(effectiveTypeArgs.size());
5390 for (auto typeArg : effectiveTypeArgs)
5391 canonTypeArgsVec.push_back(getCanonicalType(typeArg));
5392 canonTypeArgs = canonTypeArgsVec;
5393 } else {
5394 canonTypeArgs = effectiveTypeArgs;
5395 }
5396
5397 ArrayRef<ObjCProtocolDecl *> canonProtocols;
5398 SmallVector<ObjCProtocolDecl*, 8> canonProtocolsVec;
5399 if (!protocolsSorted) {
5400 canonProtocolsVec.append(protocols.begin(), protocols.end());
5401 SortAndUniqueProtocols(canonProtocolsVec);
5402 canonProtocols = canonProtocolsVec;
5403 } else {
5404 canonProtocols = protocols;
5405 }
5406
5407 canonical = getObjCObjectType(getCanonicalType(baseType), canonTypeArgs,
5408 canonProtocols, isKindOf);
5409
5410 // Regenerate InsertPos.
5411 ObjCObjectTypes.FindNodeOrInsertPos(ID, InsertPos);
5412 }
5413
5414 unsigned size = sizeof(ObjCObjectTypeImpl);
5415 size += typeArgs.size() * sizeof(QualType);
5416 size += protocols.size() * sizeof(ObjCProtocolDecl *);
5417 void *mem = Allocate(size, TypeAlignment);
5418 auto *T =
5419 new (mem) ObjCObjectTypeImpl(canonical, baseType, typeArgs, protocols,
5420 isKindOf);
5421
5422 Types.push_back(T);
5423 ObjCObjectTypes.InsertNode(T, InsertPos);
5424 return QualType(T, 0);
5425}
5426
5427/// Apply Objective-C protocol qualifiers to the given type.
5428/// If this is for the canonical type of a type parameter, we can apply
5429/// protocol qualifiers on the ObjCObjectPointerType.
5430QualType
5431ASTContext::applyObjCProtocolQualifiers(QualType type,
5432 ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError,
5433 bool allowOnPointerType) const {
5434 hasError = false;
5435
5436 if (const auto *objT = dyn_cast<ObjCTypeParamType>(type.getTypePtr())) {
5437 return getObjCTypeParamType(objT->getDecl(), protocols);
5438 }
5439
5440 // Apply protocol qualifiers to ObjCObjectPointerType.
5441 if (allowOnPointerType) {
5442 if (const auto *objPtr =
5443 dyn_cast<ObjCObjectPointerType>(type.getTypePtr())) {
5444 const ObjCObjectType *objT = objPtr->getObjectType();
5445 // Merge protocol lists and construct ObjCObjectType.
5446 SmallVector<ObjCProtocolDecl*, 8> protocolsVec;
5447 protocolsVec.append(objT->qual_begin(),
5448 objT->qual_end());
5449 protocolsVec.append(protocols.begin(), protocols.end());
5450 ArrayRef<ObjCProtocolDecl *> protocols = protocolsVec;
5451 type = getObjCObjectType(
5452 objT->getBaseType(),
5453 objT->getTypeArgsAsWritten(),
5454 protocols,
5455 objT->isKindOfTypeAsWritten());
5456 return getObjCObjectPointerType(type);
5457 }
5458 }
5459
5460 // Apply protocol qualifiers to ObjCObjectType.
5461 if (const auto *objT = dyn_cast<ObjCObjectType>(type.getTypePtr())){
5462 // FIXME: Check for protocols to which the class type is already
5463 // known to conform.
5464
5465 return getObjCObjectType(objT->getBaseType(),
5466 objT->getTypeArgsAsWritten(),
5467 protocols,
5468 objT->isKindOfTypeAsWritten());
5469 }
5470
5471 // If the canonical type is ObjCObjectType, ...
5472 if (type->isObjCObjectType()) {
5473 // Silently overwrite any existing protocol qualifiers.
5474 // TODO: determine whether that's the right thing to do.
5475
5476 // FIXME: Check for protocols to which the class type is already
5477 // known to conform.
5478 return getObjCObjectType(type, {}, protocols, false);
5479 }
5480
5481 // id<protocol-list>
5482 if (type->isObjCIdType()) {
5483 const auto *objPtr = type->castAs<ObjCObjectPointerType>();
5484 type = getObjCObjectType(ObjCBuiltinIdTy, {}, protocols,
5485 objPtr->isKindOfType());
5486 return getObjCObjectPointerType(type);
5487 }
5488
5489 // Class<protocol-list>
5490 if (type->isObjCClassType()) {
5491 const auto *objPtr = type->castAs<ObjCObjectPointerType>();
5492 type = getObjCObjectType(ObjCBuiltinClassTy, {}, protocols,
5493 objPtr->isKindOfType());
5494 return getObjCObjectPointerType(type);
5495 }
5496
5497 hasError = true;
5498 return type;
5499}
5500
5501QualType
5502ASTContext::getObjCTypeParamType(const ObjCTypeParamDecl *Decl,
5503 ArrayRef<ObjCProtocolDecl *> protocols) const {
5504 // Look in the folding set for an existing type.
5505 llvm::FoldingSetNodeID ID;
5506 ObjCTypeParamType::Profile(ID, Decl, Decl->getUnderlyingType(), protocols);
5507 void *InsertPos = nullptr;
5508 if (ObjCTypeParamType *TypeParam =
5509 ObjCTypeParamTypes.FindNodeOrInsertPos(ID, InsertPos))
5510 return QualType(TypeParam, 0);
5511
5512 // We canonicalize to the underlying type.
5513 QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
5514 if (!protocols.empty()) {
5515 // Apply the protocol qualifers.
5516 bool hasError;
5517 Canonical = getCanonicalType(applyObjCProtocolQualifiers(
5518 Canonical, protocols, hasError, true /*allowOnPointerType*/));
5519 assert(!hasError && "Error when apply protocol qualifier to bound type")(static_cast <bool> (!hasError && "Error when apply protocol qualifier to bound type"
) ? void (0) : __assert_fail ("!hasError && \"Error when apply protocol qualifier to bound type\""
, "clang/lib/AST/ASTContext.cpp", 5519, __extension__ __PRETTY_FUNCTION__
))
;
5520 }
5521
5522 unsigned size = sizeof(ObjCTypeParamType);
5523 size += protocols.size() * sizeof(ObjCProtocolDecl *);
5524 void *mem = Allocate(size, TypeAlignment);
5525 auto *newType = new (mem) ObjCTypeParamType(Decl, Canonical, protocols);
5526
5527 Types.push_back(newType);
5528 ObjCTypeParamTypes.InsertNode(newType, InsertPos);
5529 return QualType(newType, 0);
5530}
5531
5532void ASTContext::adjustObjCTypeParamBoundType(const ObjCTypeParamDecl *Orig,
5533 ObjCTypeParamDecl *New) const {
5534 New->setTypeSourceInfo(getTrivialTypeSourceInfo(Orig->getUnderlyingType()));
5535 // Update TypeForDecl after updating TypeSourceInfo.
5536 auto NewTypeParamTy = cast<ObjCTypeParamType>(New->getTypeForDecl());
5537 SmallVector<ObjCProtocolDecl *, 8> protocols;
5538 protocols.append(NewTypeParamTy->qual_begin(), NewTypeParamTy->qual_end());
5539 QualType UpdatedTy = getObjCTypeParamType(New, protocols);
5540 New->setTypeForDecl(UpdatedTy.getTypePtr());
5541}
5542
5543/// ObjCObjectAdoptsQTypeProtocols - Checks that protocols in IC's
5544/// protocol list adopt all protocols in QT's qualified-id protocol
5545/// list.
5546bool ASTContext::ObjCObjectAdoptsQTypeProtocols(QualType QT,
5547 ObjCInterfaceDecl *IC) {
5548 if (!QT->isObjCQualifiedIdType())
5549 return false;
5550
5551 if (const auto *OPT = QT->getAs<ObjCObjectPointerType>()) {
5552 // If both the right and left sides have qualifiers.
5553 for (auto *Proto : OPT->quals()) {
5554 if (!IC->ClassImplementsProtocol(Proto, false))
5555 return false;
5556 }
5557 return true;
5558 }
5559 return false;
5560}
5561
5562/// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
5563/// QT's qualified-id protocol list adopt all protocols in IDecl's list
5564/// of protocols.
5565bool ASTContext::QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
5566 ObjCInterfaceDecl *IDecl) {
5567 if (!QT->isObjCQualifiedIdType())
5568 return false;
5569 const auto *OPT = QT->getAs<ObjCObjectPointerType>();
5570 if (!OPT)
5571 return false;
5572 if (!IDecl->hasDefinition())
5573 return false;
5574 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocols;
5575 CollectInheritedProtocols(IDecl, InheritedProtocols);
5576 if (InheritedProtocols.empty())
5577 return false;
5578 // Check that if every protocol in list of id<plist> conforms to a protocol
5579 // of IDecl's, then bridge casting is ok.
5580 bool Conforms = false;
5581 for (auto *Proto : OPT->quals()) {
5582 Conforms = false;
5583 for (auto *PI : InheritedProtocols) {
5584 if (ProtocolCompatibleWithProtocol(Proto, PI)) {
5585 Conforms = true;
5586 break;
5587 }
5588 }
5589 if (!Conforms)
5590 break;
5591 }
5592 if (Conforms)
5593 return true;
5594
5595 for (auto *PI : InheritedProtocols) {
5596 // If both the right and left sides have qualifiers.
5597 bool Adopts = false;
5598 for (auto *Proto : OPT->quals()) {
5599 // return 'true' if 'PI' is in the inheritance hierarchy of Proto
5600 if ((Adopts = ProtocolCompatibleWithProtocol(PI, Proto)))
5601 break;
5602 }
5603 if (!Adopts)
5604 return false;
5605 }
5606 return true;
5607}
5608
5609/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
5610/// the given object type.
5611QualType ASTContext::getObjCObjectPointerType(QualType ObjectT) const {
5612 llvm::FoldingSetNodeID ID;
5613 ObjCObjectPointerType::Profile(ID, ObjectT);
5614
5615 void *InsertPos = nullptr;
5616 if (ObjCObjectPointerType *QT =
5617 ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
5618 return QualType(QT, 0);
5619
5620 // Find the canonical object type.
5621 QualType Canonical;
5622 if (!ObjectT.isCanonical()) {
5623 Canonical = getObjCObjectPointerType(getCanonicalType(ObjectT));
5624
5625 // Regenerate InsertPos.
5626 ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
5627 }
5628
5629 // No match.
5630 void *Mem = Allocate(sizeof(ObjCObjectPointerType), TypeAlignment);
5631 auto *QType =
5632 new (Mem) ObjCObjectPointerType(Canonical, ObjectT);
5633
5634 Types.push_back(QType);
5635 ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
5636 return QualType(QType, 0);
5637}
5638
5639/// getObjCInterfaceType - Return the unique reference to the type for the
5640/// specified ObjC interface decl. The list of protocols is optional.
5641QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
5642 ObjCInterfaceDecl *PrevDecl) const {
5643 if (Decl->TypeForDecl)
5644 return QualType(Decl->TypeForDecl, 0);
5645
5646 if (PrevDecl) {
5647 assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl")(static_cast <bool> (PrevDecl->TypeForDecl &&
"previous decl has no TypeForDecl") ? void (0) : __assert_fail
("PrevDecl->TypeForDecl && \"previous decl has no TypeForDecl\""
, "clang/lib/AST/ASTContext.cpp", 5647, __extension__ __PRETTY_FUNCTION__
))
;
5648 Decl->TypeForDecl = PrevDecl->TypeForDecl;
5649 return QualType(PrevDecl->TypeForDecl, 0);
5650 }
5651
5652 // Prefer the definition, if there is one.
5653 if (const ObjCInterfaceDecl *Def = Decl->getDefinition())
5654 Decl = Def;
5655
5656 void *Mem = Allocate(sizeof(ObjCInterfaceType), TypeAlignment);
5657 auto *T = new (Mem) ObjCInterfaceType(Decl);
5658 Decl->TypeForDecl = T;
5659 Types.push_back(T);
5660 return QualType(T, 0);
5661}
5662
5663/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
5664/// TypeOfExprType AST's (since expression's are never shared). For example,
5665/// multiple declarations that refer to "typeof(x)" all contain different
5666/// DeclRefExpr's. This doesn't effect the type checker, since it operates
5667/// on canonical type's (which are always unique).
5668QualType ASTContext::getTypeOfExprType(Expr *tofExpr, TypeOfKind Kind) const {
5669 TypeOfExprType *toe;
5670 if (tofExpr->isTypeDependent()) {
5671 llvm::FoldingSetNodeID ID;
5672 DependentTypeOfExprType::Profile(ID, *this, tofExpr,
5673 Kind == TypeOfKind::Unqualified);
5674
5675 void *InsertPos = nullptr;
5676 DependentTypeOfExprType *Canon =
5677 DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
5678 if (Canon) {
5679 // We already have a "canonical" version of an identical, dependent
5680 // typeof(expr) type. Use that as our canonical type.
5681 toe = new (*this, TypeAlignment)
5682 TypeOfExprType(tofExpr, Kind, QualType((TypeOfExprType *)Canon, 0));
5683 } else {
5684 // Build a new, canonical typeof(expr) type.
5685 Canon = new (*this, TypeAlignment)
5686 DependentTypeOfExprType(*this, tofExpr, Kind);
5687 DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
5688 toe = Canon;
5689 }
5690 } else {
5691 QualType Canonical = getCanonicalType(tofExpr->getType());
5692 toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Kind, Canonical);
5693 }
5694 Types.push_back(toe);
5695 return QualType(toe, 0);
5696}
5697
5698/// getTypeOfType - Unlike many "get<Type>" functions, we don't unique
5699/// TypeOfType nodes. The only motivation to unique these nodes would be
5700/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
5701/// an issue. This doesn't affect the type checker, since it operates
5702/// on canonical types (which are always unique).
5703QualType ASTContext::getTypeOfType(QualType tofType, TypeOfKind Kind) const {
5704 QualType Canonical = getCanonicalType(tofType);
5705 auto *tot =
5706 new (*this, TypeAlignment) TypeOfType(tofType, Canonical, Kind);
5707 Types.push_back(tot);
5708 return QualType(tot, 0);
5709}
5710
5711/// getReferenceQualifiedType - Given an expr, will return the type for
5712/// that expression, as in [dcl.type.simple]p4 but without taking id-expressions
5713/// and class member access into account.
5714QualType ASTContext::getReferenceQualifiedType(const Expr *E) const {
5715 // C++11 [dcl.type.simple]p4:
5716 // [...]
5717 QualType T = E->getType();
5718 switch (E->getValueKind()) {
5719 // - otherwise, if e is an xvalue, decltype(e) is T&&, where T is the
5720 // type of e;
5721 case VK_XValue:
5722 return getRValueReferenceType(T);
5723 // - otherwise, if e is an lvalue, decltype(e) is T&, where T is the
5724 // type of e;
5725 case VK_LValue:
5726 return getLValueReferenceType(T);
5727 // - otherwise, decltype(e) is the type of e.
5728 case VK_PRValue:
5729 return T;
5730 }
5731 llvm_unreachable("Unknown value kind")::llvm::llvm_unreachable_internal("Unknown value kind", "clang/lib/AST/ASTContext.cpp"
, 5731)
;
5732}
5733
5734/// Unlike many "get<Type>" functions, we don't unique DecltypeType
5735/// nodes. This would never be helpful, since each such type has its own
5736/// expression, and would not give a significant memory saving, since there
5737/// is an Expr tree under each such type.
5738QualType ASTContext::getDecltypeType(Expr *e, QualType UnderlyingType) const {
5739 DecltypeType *dt;
5740
5741 // C++11 [temp.type]p2:
5742 // If an expression e involves a template parameter, decltype(e) denotes a
5743 // unique dependent type. Two such decltype-specifiers refer to the same
5744 // type only if their expressions are equivalent (14.5.6.1).
5745 if (e->isInstantiationDependent()) {
5746 llvm::FoldingSetNodeID ID;
5747 DependentDecltypeType::Profile(ID, *this, e);
5748
5749 void *InsertPos = nullptr;
5750 DependentDecltypeType *Canon
5751 = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
5752 if (!Canon) {
5753 // Build a new, canonical decltype(expr) type.
5754 Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
5755 DependentDecltypeTypes.InsertNode(Canon, InsertPos);
5756 }
5757 dt = new (*this, TypeAlignment)
5758 DecltypeType(e, UnderlyingType, QualType((DecltypeType *)Canon, 0));
5759 } else {
5760 dt = new (*this, TypeAlignment)
5761 DecltypeType(e, UnderlyingType, getCanonicalType(UnderlyingType));
5762 }
5763 Types.push_back(dt);
5764 return QualType(dt, 0);
5765}
5766
5767/// getUnaryTransformationType - We don't unique these, since the memory
5768/// savings are minimal and these are rare.
5769QualType ASTContext::getUnaryTransformType(QualType BaseType,
5770 QualType UnderlyingType,
5771 UnaryTransformType::UTTKind Kind)
5772 const {
5773 UnaryTransformType *ut = nullptr;
5774
5775 if (BaseType->isDependentType()) {
5776 // Look in the folding set for an existing type.
5777 llvm::FoldingSetNodeID ID;
5778 DependentUnaryTransformType::Profile(ID, getCanonicalType(BaseType), Kind);
5779
5780 void *InsertPos = nullptr;
5781 DependentUnaryTransformType *Canon
5782 = DependentUnaryTransformTypes.FindNodeOrInsertPos(ID, InsertPos);
5783
5784 if (!Canon) {
5785 // Build a new, canonical __underlying_type(type) type.
5786 Canon = new (*this, TypeAlignment)
5787 DependentUnaryTransformType(*this, getCanonicalType(BaseType),
5788 Kind);
5789 DependentUnaryTransformTypes.InsertNode(Canon, InsertPos);
5790 }
5791 ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
5792 QualType(), Kind,
5793 QualType(Canon, 0));
5794 } else {
5795 QualType CanonType = getCanonicalType(UnderlyingType);
5796 ut = new (*this, TypeAlignment) UnaryTransformType (BaseType,
5797 UnderlyingType, Kind,
5798 CanonType);
5799 }
5800 Types.push_back(ut);
5801 return QualType(ut, 0);
5802}
5803
5804QualType ASTContext::getAutoTypeInternal(
5805 QualType DeducedType, AutoTypeKeyword Keyword, bool IsDependent,
5806 bool IsPack, ConceptDecl *TypeConstraintConcept,
5807 ArrayRef<TemplateArgument> TypeConstraintArgs, bool IsCanon) const {
5808 if (DeducedType.isNull() && Keyword == AutoTypeKeyword::Auto &&
5809 !TypeConstraintConcept && !IsDependent)
5810 return getAutoDeductType();
5811
5812 // Look in the folding set for an existing type.
5813 void *InsertPos = nullptr;
5814 llvm::FoldingSetNodeID ID;
5815 AutoType::Profile(ID, *this, DeducedType, Keyword, IsDependent,
5816 TypeConstraintConcept, TypeConstraintArgs);
5817 if (AutoType *AT = AutoTypes.FindNodeOrInsertPos(ID, InsertPos))
5818 return QualType(AT, 0);
5819
5820 QualType Canon;
5821 if (!IsCanon) {
5822 if (!DeducedType.isNull()) {
5823 Canon = DeducedType.getCanonicalType();
5824 } else if (TypeConstraintConcept) {
5825 bool AnyNonCanonArgs = false;
5826 ConceptDecl *CanonicalConcept = TypeConstraintConcept->getCanonicalDecl();
5827 auto CanonicalConceptArgs = ::getCanonicalTemplateArguments(
5828 *this, TypeConstraintArgs, AnyNonCanonArgs);
5829 if (CanonicalConcept != TypeConstraintConcept || AnyNonCanonArgs) {
5830 Canon =
5831 getAutoTypeInternal(QualType(), Keyword, IsDependent, IsPack,
5832 CanonicalConcept, CanonicalConceptArgs, true);
5833 // Find the insert position again.
5834 [[maybe_unused]] auto *Nothing =
5835 AutoTypes.FindNodeOrInsertPos(ID, InsertPos);
5836 assert(!Nothing && "canonical type broken")(static_cast <bool> (!Nothing && "canonical type broken"
) ? void (0) : __assert_fail ("!Nothing && \"canonical type broken\""
, "clang/lib/AST/ASTContext.cpp", 5836, __extension__ __PRETTY_FUNCTION__
))
;
5837 }
5838 }
5839 }
5840
5841 void *Mem = Allocate(sizeof(AutoType) +
5842 sizeof(TemplateArgument) * TypeConstraintArgs.size(),
5843 TypeAlignment);
5844 auto *AT = new (Mem) AutoType(
5845 DeducedType, Keyword,
5846 (IsDependent ? TypeDependence::DependentInstantiation
5847 : TypeDependence::None) |
5848 (IsPack ? TypeDependence::UnexpandedPack : TypeDependence::None),
5849 Canon, TypeConstraintConcept, TypeConstraintArgs);
5850 Types.push_back(AT);
5851 AutoTypes.InsertNode(AT, InsertPos);
5852 return QualType(AT, 0);
5853}
5854
5855/// getAutoType - Return the uniqued reference to the 'auto' type which has been
5856/// deduced to the given type, or to the canonical undeduced 'auto' type, or the
5857/// canonical deduced-but-dependent 'auto' type.
5858QualType
5859ASTContext::getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
5860 bool IsDependent, bool IsPack,
5861 ConceptDecl *TypeConstraintConcept,
5862 ArrayRef<TemplateArgument> TypeConstraintArgs) const {
5863 assert((!IsPack || IsDependent) && "only use IsPack for a dependent pack")(static_cast <bool> ((!IsPack || IsDependent) &&
"only use IsPack for a dependent pack") ? void (0) : __assert_fail
("(!IsPack || IsDependent) && \"only use IsPack for a dependent pack\""
, "clang/lib/AST/ASTContext.cpp", 5863, __extension__ __PRETTY_FUNCTION__
))
;
5864 assert((!IsDependent || DeducedType.isNull()) &&(static_cast <bool> ((!IsDependent || DeducedType.isNull
()) && "A dependent auto should be undeduced") ? void
(0) : __assert_fail ("(!IsDependent || DeducedType.isNull()) && \"A dependent auto should be undeduced\""
, "clang/lib/AST/ASTContext.cpp", 5865, __extension__ __PRETTY_FUNCTION__
))
5865 "A dependent auto should be undeduced")(static_cast <bool> ((!IsDependent || DeducedType.isNull
()) && "A dependent auto should be undeduced") ? void
(0) : __assert_fail ("(!IsDependent || DeducedType.isNull()) && \"A dependent auto should be undeduced\""
, "clang/lib/AST/ASTContext.cpp", 5865, __extension__ __PRETTY_FUNCTION__
))
;
5866 return getAutoTypeInternal(DeducedType, Keyword, IsDependent, IsPack,
5867 TypeConstraintConcept, TypeConstraintArgs);
5868}
5869
5870QualType ASTContext::getUnconstrainedType(QualType T) const {
5871 QualType CanonT = T.getCanonicalType();
5872
5873 // Remove a type-constraint from a top-level auto or decltype(auto).
5874 if (auto *AT = CanonT->getAs<AutoType>()) {
5875 if (!AT->isConstrained())
5876 return T;
5877 return getQualifiedType(getAutoType(QualType(), AT->getKeyword(), false,
5878 AT->containsUnexpandedParameterPack()),
5879 T.getQualifiers());
5880 }
5881
5882 // FIXME: We only support constrained auto at the top level in the type of a
5883 // non-type template parameter at the moment. Once we lift that restriction,
5884 // we'll need to recursively build types containing auto here.
5885 assert(!CanonT->getContainedAutoType() ||(static_cast <bool> (!CanonT->getContainedAutoType()
|| !CanonT->getContainedAutoType()->isConstrained()) ?
void (0) : __assert_fail ("!CanonT->getContainedAutoType() || !CanonT->getContainedAutoType()->isConstrained()"
, "clang/lib/AST/ASTContext.cpp", 5886, __extension__ __PRETTY_FUNCTION__
))
5886 !CanonT->getContainedAutoType()->isConstrained())(static_cast <bool> (!CanonT->getContainedAutoType()
|| !CanonT->getContainedAutoType()->isConstrained()) ?
void (0) : __assert_fail ("!CanonT->getContainedAutoType() || !CanonT->getContainedAutoType()->isConstrained()"
, "clang/lib/AST/ASTContext.cpp", 5886, __extension__ __PRETTY_FUNCTION__
))
;
5887 return T;
5888}
5889
5890/// Return the uniqued reference to the deduced template specialization type
5891/// which has been deduced to the given type, or to the canonical undeduced
5892/// such type, or the canonical deduced-but-dependent such type.
5893QualType ASTContext::getDeducedTemplateSpecializationType(
5894 TemplateName Template, QualType DeducedType, bool IsDependent) const {
5895 // Look in the folding set for an existing type.
5896 void *InsertPos = nullptr;
5897 llvm::FoldingSetNodeID ID;
5898 DeducedTemplateSpecializationType::Profile(ID, Template, DeducedType,
5899 IsDependent);
5900 if (DeducedTemplateSpecializationType *DTST =
5901 DeducedTemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos))
5902 return QualType(DTST, 0);
5903
5904 auto *DTST = new (*this, TypeAlignment)
5905 DeducedTemplateSpecializationType(Template, DeducedType, IsDependent);
5906 llvm::FoldingSetNodeID TempID;
5907 DTST->Profile(TempID);
5908 assert(ID == TempID && "ID does not match")(static_cast <bool> (ID == TempID && "ID does not match"
) ? void (0) : __assert_fail ("ID == TempID && \"ID does not match\""
, "clang/lib/AST/ASTContext.cpp", 5908, __extension__ __PRETTY_FUNCTION__
))
;
5909 Types.push_back(DTST);
5910 DeducedTemplateSpecializationTypes.InsertNode(DTST, InsertPos);
5911 return QualType(DTST, 0);
5912}
5913
5914/// getAtomicType - Return the uniqued reference to the atomic type for
5915/// the given value type.
5916QualType ASTContext::getAtomicType(QualType T) const {
5917 // Unique pointers, to guarantee there is only one pointer of a particular
5918 // structure.
5919 llvm::FoldingSetNodeID ID;
5920 AtomicType::Profile(ID, T);
5921
5922 void *InsertPos = nullptr;
5923 if (AtomicType *AT = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos))
5924 return QualType(AT, 0);
5925
5926 // If the atomic value type isn't canonical, this won't be a canonical type
5927 // either, so fill in the canonical type field.
5928 QualType Canonical;
5929 if (!T.isCanonical()) {
5930 Canonical = getAtomicType(getCanonicalType(T));
5931
5932 // Get the new insert position for the node we care about.
5933 AtomicType *NewIP = AtomicTypes.FindNodeOrInsertPos(ID, InsertPos);
5934 assert(!NewIP && "Shouldn't be in the map!")(static_cast <bool> (!NewIP && "Shouldn't be in the map!"
) ? void (0) : __assert_fail ("!NewIP && \"Shouldn't be in the map!\""
, "clang/lib/AST/ASTContext.cpp", 5934, __extension__ __PRETTY_FUNCTION__
))
; (void)NewIP;
5935 }
5936 auto *New = new (*this, TypeAlignment) AtomicType(T, Canonical);
5937 Types.push_back(New);
5938 AtomicTypes.InsertNode(New, InsertPos);
5939 return QualType(New, 0);
5940}
5941
5942/// getAutoDeductType - Get type pattern for deducing against 'auto'.
5943QualType ASTContext::getAutoDeductType() const {
5944 if (AutoDeductTy.isNull())
5945 AutoDeductTy = QualType(new (*this, TypeAlignment)
5946 AutoType(QualType(), AutoTypeKeyword::Auto,
5947 TypeDependence::None, QualType(),
5948 /*concept*/ nullptr, /*args*/ {}),
5949 0);
5950 return AutoDeductTy;
5951}
5952
5953/// getAutoRRefDeductType - Get type pattern for deducing against 'auto &&'.
5954QualType ASTContext::getAutoRRefDeductType() const {
5955 if (AutoRRefDeductTy.isNull())
5956 AutoRRefDeductTy = getRValueReferenceType(getAutoDeductType());
5957 assert(!AutoRRefDeductTy.isNull() && "can't build 'auto &&' pattern")(static_cast <bool> (!AutoRRefDeductTy.isNull() &&
"can't build 'auto &&' pattern") ? void (0) : __assert_fail
("!AutoRRefDeductTy.isNull() && \"can't build 'auto &&' pattern\""
, "clang/lib/AST/ASTContext.cpp", 5957, __extension__ __PRETTY_FUNCTION__
))
;
5958 return AutoRRefDeductTy;
5959}
5960
5961/// getTagDeclType - Return the unique reference to the type for the
5962/// specified TagDecl (struct/union/class/enum) decl.
5963QualType ASTContext::getTagDeclType(const TagDecl *Decl) const {
5964 assert(Decl)(static_cast <bool> (Decl) ? void (0) : __assert_fail (
"Decl", "clang/lib/AST/ASTContext.cpp", 5964, __extension__ __PRETTY_FUNCTION__
))
;
5965 // FIXME: What is the design on getTagDeclType when it requires casting
5966 // away const? mutable?
5967 return getTypeDeclType(const_cast<TagDecl*>(Decl));
5968}
5969
5970/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
5971/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
5972/// needs to agree with the definition in <stddef.h>.
5973CanQualType ASTContext::getSizeType() const {
5974 return getFromTargetType(Target->getSizeType());
5975}
5976
5977/// Return the unique signed counterpart of the integer type
5978/// corresponding to size_t.
5979CanQualType ASTContext::getSignedSizeType() const {
5980 return getFromTargetType(Target->getSignedSizeType());
5981}
5982
5983/// getIntMaxType - Return the unique type for "intmax_t" (C99 7.18.1.5).
5984CanQualType ASTContext::getIntMaxType() const {
5985 return getFromTargetType(Target->getIntMaxType());
5986}
5987
5988/// getUIntMaxType - Return the unique type for "uintmax_t" (C99 7.18.1.5).
5989CanQualType ASTContext::getUIntMaxType() const {
5990 return getFromTargetType(Target->getUIntMaxType());
5991}
5992
5993/// getSignedWCharType - Return the type of "signed wchar_t".
5994/// Used when in C++, as a GCC extension.
5995QualType ASTContext::getSignedWCharType() const {
5996 // FIXME: derive from "Target" ?
5997 return WCharTy;
5998}
5999
6000/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
6001/// Used when in C++, as a GCC extension.
6002QualType ASTContext::getUnsignedWCharType() const {
6003 // FIXME: derive from "Target" ?
6004 return UnsignedIntTy;
6005}
6006
6007QualType ASTContext::getIntPtrType() const {
6008 return getFromTargetType(Target->getIntPtrType());
6009}
6010
6011QualType ASTContext::getUIntPtrType() const {
6012 return getCorrespondingUnsignedType(getIntPtrType());
6013}
6014
6015/// getPointerDiffType - Return the unique type for "ptrdiff_t" (C99 7.17)
6016/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
6017QualType ASTContext::getPointerDiffType() const {
6018 return getFromTargetType(Target->getPtrDiffType(LangAS::Default));
6019}
6020
6021/// Return the unique unsigned counterpart of "ptrdiff_t"
6022/// integer type. The standard (C11 7.21.6.1p7) refers to this type
6023/// in the definition of %tu format specifier.
6024QualType ASTContext::getUnsignedPointerDiffType() const {
6025 return getFromTargetType(Target->getUnsignedPtrDiffType(LangAS::Default));
6026}
6027
6028/// Return the unique type for "pid_t" defined in
6029/// <sys/types.h>. We need this to compute the correct type for vfork().
6030QualType ASTContext::getProcessIDType() const {
6031 return getFromTargetType(Target->getProcessIDType());
6032}
6033
6034//===----------------------------------------------------------------------===//
6035// Type Operators
6036//===----------------------------------------------------------------------===//
6037
6038CanQualType ASTContext::getCanonicalParamType(QualType T) const {
6039 // Push qualifiers into arrays, and then discard any remaining
6040 // qualifiers.
6041 T = getCanonicalType(T);
6042 T = getVariableArrayDecayedType(T);
6043 const Type *Ty = T.getTypePtr();
6044 QualType Result;
6045 if (isa<ArrayType>(Ty)) {
6046 Result = getArrayDecayedType(QualType(Ty,0));
6047 } else if (isa<FunctionType>(Ty)) {
6048 Result = getPointerType(QualType(Ty, 0));
6049 } else {
6050 Result = QualType(Ty, 0);
6051 }
6052
6053 return CanQualType::CreateUnsafe(Result);
6054}
6055
6056QualType ASTContext::getUnqualifiedArrayType(QualType type,
6057 Qualifiers &quals) {
6058 SplitQualType splitType = type.getSplitUnqualifiedType();
6059
6060 // FIXME: getSplitUnqualifiedType() actually walks all the way to
6061 // the unqualified desugared type and then drops it on the floor.
6062 // We then have to strip that sugar back off with
6063 // getUnqualifiedDesugaredType(), which is silly.
6064 const auto *AT =
6065 dyn_cast<ArrayType>(splitType.Ty->getUnqualifiedDesugaredType());
6066
6067 // If we don't have an array, just use the results in splitType.
6068 if (!AT) {
6069 quals = splitType.Quals;
6070 return QualType(splitType.Ty, 0);
6071 }
6072
6073 // Otherwise, recurse on the array's element type.
6074 QualType elementType = AT->getElementType();
6075 QualType unqualElementType = getUnqualifiedArrayType(elementType, quals);
6076
6077 // If that didn't change the element type, AT has no qualifiers, so we
6078 // can just use the results in splitType.
6079 if (elementType == unqualElementType) {
6080 assert(quals.empty())(static_cast <bool> (quals.empty()) ? void (0) : __assert_fail
("quals.empty()", "clang/lib/AST/ASTContext.cpp", 6080, __extension__
__PRETTY_FUNCTION__))
; // from the recursive call
6081 quals = splitType.Quals;
6082 return QualType(splitType.Ty, 0);
6083 }
6084
6085 // Otherwise, add in the qualifiers from the outermost type, then
6086 // build the type back up.
6087 quals.addConsistentQualifiers(splitType.Quals);
6088
6089 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
6090 return getConstantArrayType(unqualElementType, CAT->getSize(),
6091 CAT->getSizeExpr(), CAT->getSizeModifier(), 0);
6092 }
6093
6094 if (const auto *IAT = dyn_cast<IncompleteArrayType>(AT)) {
6095 return getIncompleteArrayType(unqualElementType, IAT->getSizeModifier(), 0);
6096 }
6097
6098 if (const auto *VAT = dyn_cast<VariableArrayType>(AT)) {
6099 return getVariableArrayType(unqualElementType,
6100 VAT->getSizeExpr(),
6101 VAT->getSizeModifier(),
6102 VAT->getIndexTypeCVRQualifiers(),
6103 VAT->getBracketsRange());
6104 }
6105
6106 const auto *DSAT = cast<DependentSizedArrayType>(AT);
6107 return getDependentSizedArrayType(unqualElementType, DSAT->getSizeExpr(),
6108 DSAT->getSizeModifier(), 0,
6109 SourceRange());
6110}
6111
6112/// Attempt to unwrap two types that may both be array types with the same bound
6113/// (or both be array types of unknown bound) for the purpose of comparing the
6114/// cv-decomposition of two types per C++ [conv.qual].
6115///
6116/// \param AllowPiMismatch Allow the Pi1 and Pi2 to differ as described in
6117/// C++20 [conv.qual], if permitted by the current language mode.
6118void ASTContext::UnwrapSimilarArrayTypes(QualType &T1, QualType &T2,
6119 bool AllowPiMismatch) {
6120 while (true) {
6121 auto *AT1 = getAsArrayType(T1);
6122 if (!AT1)
6123 return;
6124
6125 auto *AT2 = getAsArrayType(T2);
6126 if (!AT2)
6127 return;
6128
6129 // If we don't have two array types with the same constant bound nor two
6130 // incomplete array types, we've unwrapped everything we can.
6131 // C++20 also permits one type to be a constant array type and the other
6132 // to be an incomplete array type.
6133 // FIXME: Consider also unwrapping array of unknown bound and VLA.
6134 if (auto *CAT1 = dyn_cast<ConstantArrayType>(AT1)) {
6135 auto *CAT2 = dyn_cast<ConstantArrayType>(AT2);
6136 if (!((CAT2 && CAT1->getSize() == CAT2->getSize()) ||
6137 (AllowPiMismatch && getLangOpts().CPlusPlus20 &&
6138 isa<IncompleteArrayType>(AT2))))
6139 return;
6140 } else if (isa<IncompleteArrayType>(AT1)) {
6141 if (!(isa<IncompleteArrayType>(AT2) ||
6142 (AllowPiMismatch && getLangOpts().CPlusPlus20 &&
6143 isa<ConstantArrayType>(AT2))))
6144 return;
6145 } else {
6146 return;
6147 }
6148
6149 T1 = AT1->getElementType();
6150 T2 = AT2->getElementType();
6151 }
6152}
6153
6154/// Attempt to unwrap two types that may be similar (C++ [conv.qual]).
6155///
6156/// If T1 and T2 are both pointer types of the same kind, or both array types
6157/// with the same bound, unwraps layers from T1 and T2 until a pointer type is
6158/// unwrapped. Top-level qualifiers on T1 and T2 are ignored.
6159///
6160/// This function will typically be called in a loop that successively
6161/// "unwraps" pointer and pointer-to-member types to compare them at each
6162/// level.
6163///
6164/// \param AllowPiMismatch Allow the Pi1 and Pi2 to differ as described in
6165/// C++20 [conv.qual], if permitted by the current language mode.
6166///
6167/// \return \c true if a pointer type was unwrapped, \c false if we reached a
6168/// pair of types that can't be unwrapped further.
6169bool ASTContext::UnwrapSimilarTypes(QualType &T1, QualType &T2,
6170 bool AllowPiMismatch) {
6171 UnwrapSimilarArrayTypes(T1, T2, AllowPiMismatch);
6172
6173 const auto *T1PtrType = T1->getAs<PointerType>();
6174 const auto *T2PtrType = T2->getAs<PointerType>();
6175 if (T1PtrType && T2PtrType) {
6176 T1 = T1PtrType->getPointeeType();
6177 T2 = T2PtrType->getPointeeType();
6178 return true;
6179 }
6180
6181 const auto *T1MPType = T1->getAs<MemberPointerType>();
6182 const auto *T2MPType = T2->getAs<MemberPointerType>();
6183 if (T1MPType && T2MPType &&
6184 hasSameUnqualifiedType(QualType(T1MPType->getClass(), 0),
6185 QualType(T2MPType->getClass(), 0))) {
6186 T1 = T1MPType->getPointeeType();
6187 T2 = T2MPType->getPointeeType();
6188 return true;
6189 }
6190
6191 if (getLangOpts().ObjC) {
6192 const auto *T1OPType = T1->getAs<ObjCObjectPointerType>();
6193 const auto *T2OPType = T2->getAs<ObjCObjectPointerType>();
6194 if (T1OPType && T2OPType) {
6195 T1 = T1OPType->getPointeeType();
6196 T2 = T2OPType->getPointeeType();
6197 return true;
6198 }
6199 }
6200
6201 // FIXME: Block pointers, too?
6202
6203 return false;
6204}
6205
6206bool ASTContext::hasSimilarType(QualType T1, QualType T2) {
6207 while (true) {
6208 Qualifiers Quals;
6209 T1 = getUnqualifiedArrayType(T1, Quals);
6210 T2 = getUnqualifiedArrayType(T2, Quals);
6211 if (hasSameType(T1, T2))
6212 return true;
6213 if (!UnwrapSimilarTypes(T1, T2))
6214 return false;
6215 }
6216}
6217
6218bool ASTContext::hasCvrSimilarType(QualType T1, QualType T2) {
6219 while (true) {
6220 Qualifiers Quals1, Quals2;
6221 T1 = getUnqualifiedArrayType(T1, Quals1);
6222 T2 = getUnqualifiedArrayType(T2, Quals2);
6223
6224 Quals1.removeCVRQualifiers();
6225 Quals2.removeCVRQualifiers();
6226 if (Quals1 != Quals2)
6227 return false;
6228
6229 if (hasSameType(T1, T2))
6230 return true;
6231
6232 if (!UnwrapSimilarTypes(T1, T2, /*AllowPiMismatch*/ false))
6233 return false;
6234 }
6235}
6236
6237DeclarationNameInfo
6238ASTContext::getNameForTemplate(TemplateName Name,
6239 SourceLocation NameLoc) const {
6240 switch (Name.getKind()) {
6241 case TemplateName::QualifiedTemplate:
6242 case TemplateName::Template:
6243 // DNInfo work in progress: CHECKME: what about DNLoc?
6244 return DeclarationNameInfo(Name.getAsTemplateDecl()->getDeclName(),
6245 NameLoc);
6246
6247 case TemplateName::OverloadedTemplate: {
6248 OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
6249 // DNInfo work in progress: CHECKME: what about DNLoc?
6250 return DeclarationNameInfo((*Storage->begin())->getDeclName(), NameLoc);
6251 }
6252
6253 case TemplateName::AssumedTemplate: {
6254 AssumedTemplateStorage *Storage = Name.getAsAssumedTemplateName();
6255 return DeclarationNameInfo(Storage->getDeclName(), NameLoc);
6256 }
6257
6258 case TemplateName::DependentTemplate: {
6259 DependentTemplateName *DTN = Name.getAsDependentTemplateName();
6260 DeclarationName DName;
6261 if (DTN->isIdentifier()) {
6262 DName = DeclarationNames.getIdentifier(DTN->getIdentifier());
6263 return DeclarationNameInfo(DName, NameLoc);
6264 } else {
6265 DName = DeclarationNames.getCXXOperatorName(DTN->getOperator());
6266 // DNInfo work in progress: FIXME: source locations?
6267 DeclarationNameLoc DNLoc =
6268 DeclarationNameLoc::makeCXXOperatorNameLoc(SourceRange());
6269 return DeclarationNameInfo(DName, NameLoc, DNLoc);
6270 }
6271 }
6272
6273 case TemplateName::SubstTemplateTemplateParm: {
6274 SubstTemplateTemplateParmStorage *subst
6275 = Name.getAsSubstTemplateTemplateParm();
6276 return DeclarationNameInfo(subst->getParameter()->getDeclName(),
6277 NameLoc);
6278 }
6279
6280 case TemplateName::SubstTemplateTemplateParmPack: {
6281 SubstTemplateTemplateParmPackStorage *subst
6282 = Name.getAsSubstTemplateTemplateParmPack();
6283 return DeclarationNameInfo(subst->getParameterPack()->getDeclName(),
6284 NameLoc);
6285 }
6286 case TemplateName::UsingTemplate:
6287 return DeclarationNameInfo(Name.getAsUsingShadowDecl()->getDeclName(),
6288 NameLoc);
6289 }
6290
6291 llvm_unreachable("bad template name kind!")::llvm::llvm_unreachable_internal("bad template name kind!", "clang/lib/AST/ASTContext.cpp"
, 6291)
;
6292}
6293
6294TemplateName
6295ASTContext::getCanonicalTemplateName(const TemplateName &Name) const {
6296 switch (Name.getKind()) {
6297 case TemplateName::UsingTemplate:
6298 case TemplateName::QualifiedTemplate:
6299 case TemplateName::Template: {
6300 TemplateDecl *Template = Name.getAsTemplateDecl();
6301 if (auto *TTP = dyn_cast<TemplateTemplateParmDecl>(Template))
6302 Template = getCanonicalTemplateTemplateParmDecl(TTP);
6303
6304 // The canonical template name is the canonical template declaration.
6305 return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
6306 }
6307
6308 case TemplateName::OverloadedTemplate:
6309 case TemplateName::AssumedTemplate:
6310 llvm_unreachable("cannot canonicalize unresolved template")::llvm::llvm_unreachable_internal("cannot canonicalize unresolved template"
, "clang/lib/AST/ASTContext.cpp", 6310)
;
6311
6312 case TemplateName::DependentTemplate: {
6313 DependentTemplateName *DTN = Name.getAsDependentTemplateName();
6314 assert(DTN && "Non-dependent template names must refer to template decls.")(static_cast <bool> (DTN && "Non-dependent template names must refer to template decls."
) ? void (0) : __assert_fail ("DTN && \"Non-dependent template names must refer to template decls.\""
, "clang/lib/AST/ASTContext.cpp", 6314, __extension__ __PRETTY_FUNCTION__
))
;
6315 return DTN->CanonicalTemplateName;
6316 }
6317
6318 case TemplateName::SubstTemplateTemplateParm: {
6319 SubstTemplateTemplateParmStorage *subst
6320 = Name.getAsSubstTemplateTemplateParm();
6321 return getCanonicalTemplateName(subst->getReplacement());
6322 }
6323
6324 case TemplateName::SubstTemplateTemplateParmPack: {
6325 SubstTemplateTemplateParmPackStorage *subst =
6326 Name.getAsSubstTemplateTemplateParmPack();
6327 TemplateArgument canonArgPack =
6328 getCanonicalTemplateArgument(subst->getArgumentPack());
6329 return getSubstTemplateTemplateParmPack(
6330 canonArgPack, subst->getAssociatedDecl()->getCanonicalDecl(),
6331 subst->getFinal(), subst->getIndex());
6332 }
6333 }
6334
6335 llvm_unreachable("bad template name!")::llvm::llvm_unreachable_internal("bad template name!", "clang/lib/AST/ASTContext.cpp"
, 6335)
;
6336}
6337
6338bool ASTContext::hasSameTemplateName(const TemplateName &X,
6339 const TemplateName &Y) const {
6340 return getCanonicalTemplateName(X).getAsVoidPointer() ==
6341 getCanonicalTemplateName(Y).getAsVoidPointer();
6342}
6343
6344bool ASTContext::isSameConstraintExpr(const Expr *XCE, const Expr *YCE) const {
6345 if (!XCE != !YCE)
6346 return false;
6347
6348 if (!XCE)
6349 return true;
6350
6351 llvm::FoldingSetNodeID XCEID, YCEID;
6352 XCE->Profile(XCEID, *this, /*Canonical=*/true);
6353 YCE->Profile(YCEID, *this, /*Canonical=*/true);
6354 return XCEID == YCEID;
6355}
6356
6357bool ASTContext::isSameTypeConstraint(const TypeConstraint *XTC,
6358 const TypeConstraint *YTC) const {
6359 if (!XTC != !YTC)
6360 return false;
6361
6362 if (!XTC)
6363 return true;
6364
6365 auto *NCX = XTC->getNamedConcept();
6366 auto *NCY = YTC->getNamedConcept();
6367 if (!NCX || !NCY || !isSameEntity(NCX, NCY))
6368 return false;
6369 if (XTC->hasExplicitTemplateArgs() != YTC->hasExplicitTemplateArgs())
6370 return false;
6371 if (XTC->hasExplicitTemplateArgs())
6372 if (XTC->getTemplateArgsAsWritten()->NumTemplateArgs !=
6373 YTC->getTemplateArgsAsWritten()->NumTemplateArgs)
6374 return false;
6375
6376 // Compare slowly by profiling.
6377 //
6378 // We couldn't compare the profiling result for the template
6379 // args here. Consider the following example in different modules:
6380 //
6381 // template <__integer_like _Tp, C<_Tp> Sentinel>
6382 // constexpr _Tp operator()(_Tp &&__t, Sentinel &&last) const {
6383 // return __t;
6384 // }
6385 //
6386 // When we compare the profiling result for `C<_Tp>` in different
6387 // modules, it will compare the type of `_Tp` in different modules.
6388 // However, the type of `_Tp` in different modules refer to different
6389 // types here naturally. So we couldn't compare the profiling result
6390 // for the template args directly.
6391 return isSameConstraintExpr(XTC->getImmediatelyDeclaredConstraint(),
6392 YTC->getImmediatelyDeclaredConstraint());
6393}
6394
6395bool ASTContext::isSameTemplateParameter(const NamedDecl *X,
6396 const NamedDecl *Y) const {
6397 if (X->getKind() != Y->getKind())
6398 return false;
6399
6400 if (auto *TX = dyn_cast<TemplateTypeParmDecl>(X)) {
6401 auto *TY = cast<TemplateTypeParmDecl>(Y);
6402 if (TX->isParameterPack() != TY->isParameterPack())
6403 return false;
6404 if (TX->hasTypeConstraint() != TY->hasTypeConstraint())
6405 return false;
6406 return isSameTypeConstraint(TX->getTypeConstraint(),
6407 TY->getTypeConstraint());
6408 }
6409
6410 if (auto *TX = dyn_cast<NonTypeTemplateParmDecl>(X)) {
6411 auto *TY = cast<NonTypeTemplateParmDecl>(Y);
6412 return TX->isParameterPack() == TY->isParameterPack() &&
6413 TX->getASTContext().hasSameType(TX->getType(), TY->getType()) &&
6414 isSameConstraintExpr(TX->getPlaceholderTypeConstraint(),
6415 TY->getPlaceholderTypeConstraint());
6416 }
6417
6418 auto *TX = cast<TemplateTemplateParmDecl>(X);
6419 auto *TY = cast<TemplateTemplateParmDecl>(Y);
6420 return TX->isParameterPack() == TY->isParameterPack() &&
6421 isSameTemplateParameterList(TX->getTemplateParameters(),
6422 TY->getTemplateParameters());
6423}
6424
6425bool ASTContext::isSameTemplateParameterList(
6426 const TemplateParameterList *X, const TemplateParameterList *Y) const {
6427 if (X->size() != Y->size())
6428 return false;
6429
6430 for (unsigned I = 0, N = X->size(); I != N; ++I)
6431 if (!isSameTemplateParameter(X->getParam(I), Y->getParam(I)))
6432 return false;
6433
6434 return isSameConstraintExpr(X->getRequiresClause(), Y->getRequiresClause());
6435}
6436
6437bool ASTContext::isSameDefaultTemplateArgument(const NamedDecl *X,
6438 const NamedDecl *Y) const {
6439 // If the type parameter isn't the same already, we don't need to check the
6440 // default argument further.
6441 if (!isSameTemplateParameter(X, Y))
6442 return false;
6443
6444 if (auto *TTPX = dyn_cast<TemplateTypeParmDecl>(X)) {
6445 auto *TTPY = cast<TemplateTypeParmDecl>(Y);
6446 if (!TTPX->hasDefaultArgument() || !TTPY->hasDefaultArgument())
6447 return false;
6448
6449 return hasSameType(TTPX->getDefaultArgument(), TTPY->getDefaultArgument());
6450 }
6451
6452 if (auto *NTTPX = dyn_cast<NonTypeTemplateParmDecl>(X)) {
6453 auto *NTTPY = cast<NonTypeTemplateParmDecl>(Y);
6454 if (!NTTPX->hasDefaultArgument() || !NTTPY->hasDefaultArgument())
6455 return false;
6456
6457 Expr *DefaultArgumentX = NTTPX->getDefaultArgument()->IgnoreImpCasts();
6458 Expr *DefaultArgumentY = NTTPY->getDefaultArgument()->IgnoreImpCasts();
6459 llvm::FoldingSetNodeID XID, YID;
6460 DefaultArgumentX->Profile(XID, *this, /*Canonical=*/true);
6461 DefaultArgumentY->Profile(YID, *this, /*Canonical=*/true);
6462 return XID == YID;
6463 }
6464
6465 auto *TTPX = cast<TemplateTemplateParmDecl>(X);
6466 auto *TTPY = cast<TemplateTemplateParmDecl>(Y);
6467
6468 if (!TTPX->hasDefaultArgument() || !TTPY->hasDefaultArgument())
6469 return false;
6470
6471 const TemplateArgument &TAX = TTPX->getDefaultArgument().getArgument();
6472 const TemplateArgument &TAY = TTPY->getDefaultArgument().getArgument();
6473 return hasSameTemplateName(TAX.getAsTemplate(), TAY.getAsTemplate());
6474}
6475
6476static NamespaceDecl *getNamespace(const NestedNameSpecifier *X) {
6477 if (auto *NS = X->getAsNamespace())
6478 return NS;
6479 if (auto *NAS = X->getAsNamespaceAlias())
6480 return NAS->getNamespace();
6481 return nullptr;
6482}
6483
6484static bool isSameQualifier(const NestedNameSpecifier *X,
6485 const NestedNameSpecifier *Y) {
6486 if (auto *NSX = getNamespace(X)) {
6487 auto *NSY = getNamespace(Y);
6488 if (!NSY || NSX->getCanonicalDecl() != NSY->getCanonicalDecl())
6489 return false;
6490 } else if (X->getKind() != Y->getKind())
6491 return false;
6492
6493 // FIXME: For namespaces and types, we're permitted to check that the entity
6494 // is named via the same tokens. We should probably do so.
6495 switch (X->getKind()) {
6496 case NestedNameSpecifier::Identifier:
6497 if (X->getAsIdentifier() != Y->getAsIdentifier())
6498 return false;
6499 break;
6500 case NestedNameSpecifier::Namespace:
6501 case NestedNameSpecifier::NamespaceAlias:
6502 // We've already checked that we named the same namespace.
6503 break;
6504 case NestedNameSpecifier::TypeSpec:
6505 case NestedNameSpecifier::TypeSpecWithTemplate:
6506 if (X->getAsType()->getCanonicalTypeInternal() !=
6507 Y->getAsType()->getCanonicalTypeInternal())
6508 return false;
6509 break;
6510 case NestedNameSpecifier::Global:
6511 case NestedNameSpecifier::Super:
6512 return true;
6513 }
6514
6515 // Recurse into earlier portion of NNS, if any.
6516 auto *PX = X->getPrefix();
6517 auto *PY = Y->getPrefix();
6518 if (PX && PY)
6519 return isSameQualifier(PX, PY);
6520 return !PX && !PY;
6521}
6522
6523/// Determine whether the attributes we can overload on are identical for A and
6524/// B. Will ignore any overloadable attrs represented in the type of A and B.
6525static bool hasSameOverloadableAttrs(const FunctionDecl *A,
6526 const FunctionDecl *B) {
6527 // Note that pass_object_size attributes are represented in the function's
6528 // ExtParameterInfo, so we don't need to check them here.
6529
6530 llvm::FoldingSetNodeID Cand1ID, Cand2ID;
6531 auto AEnableIfAttrs = A->specific_attrs<EnableIfAttr>();
6532 auto BEnableIfAttrs = B->specific_attrs<EnableIfAttr>();
6533
6534 for (auto Pair : zip_longest(AEnableIfAttrs, BEnableIfAttrs)) {
6535 std::optional<EnableIfAttr *> Cand1A = std::get<0>(Pair);
6536 std::optional<EnableIfAttr *> Cand2A = std::get<1>(Pair);
6537
6538 // Return false if the number of enable_if attributes is different.
6539 if (!Cand1A || !Cand2A)
6540 return false;
6541
6542 Cand1ID.clear();
6543 Cand2ID.clear();
6544
6545 (*Cand1A)->getCond()->Profile(Cand1ID, A->getASTContext(), true);
6546 (*Cand2A)->getCond()->Profile(Cand2ID, B->getASTContext(), true);
6547
6548 // Return false if any of the enable_if expressions of A and B are
6549 // different.
6550 if (Cand1ID != Cand2ID)
6551 return false;
6552 }
6553 return true;
6554}
6555
6556bool ASTContext::isSameEntity(const NamedDecl *X, const NamedDecl *Y) const {
6557 // Caution: this function is called by the AST reader during deserialization,
6558 // so it cannot rely on AST invariants being met. Non-trivial accessors
6559 // should be avoided, along with any traversal of redeclaration chains.
6560
6561 if (X == Y)
6562 return true;
6563
6564 if (X->getDeclName() != Y->getDeclName())
6565 return false;
6566
6567 // Must be in the same context.
6568 //
6569 // Note that we can't use DeclContext::Equals here, because the DeclContexts
6570 // could be two different declarations of the same function. (We will fix the
6571 // semantic DC to refer to the primary definition after merging.)
6572 if (!declaresSameEntity(cast<Decl>(X->getDeclContext()->getRedeclContext()),
6573 cast<Decl>(Y->getDeclContext()->getRedeclContext())))
6574 return false;
6575
6576 // Two typedefs refer to the same entity if they have the same underlying
6577 // type.
6578 if (const auto *TypedefX = dyn_cast<TypedefNameDecl>(X))
6579 if (const auto *TypedefY = dyn_cast<TypedefNameDecl>(Y))
6580 return hasSameType(TypedefX->getUnderlyingType(),
6581 TypedefY->getUnderlyingType());
6582
6583 // Must have the same kind.
6584 if (X->getKind() != Y->getKind())
6585 return false;
6586
6587 // Objective-C classes and protocols with the same name always match.
6588 if (isa<ObjCInterfaceDecl>(X) || isa<ObjCProtocolDecl>(X))
6589 return true;
6590
6591 if (isa<ClassTemplateSpecializationDecl>(X)) {
6592 // No need to handle these here: we merge them when adding them to the
6593 // template.
6594 return false;
6595 }
6596
6597 // Compatible tags match.
6598 if (const auto *TagX = dyn_cast<TagDecl>(X)) {
6599 const auto *TagY = cast<TagDecl>(Y);
6600 return (TagX->getTagKind() == TagY->getTagKind()) ||
6601 ((TagX->getTagKind() == TTK_Struct ||
6602 TagX->getTagKind() == TTK_Class ||
6603 TagX->getTagKind() == TTK_Interface) &&
6604 (TagY->getTagKind() == TTK_Struct ||
6605 TagY->getTagKind() == TTK_Class ||
6606 TagY->getTagKind() == TTK_Interface));
6607 }
6608
6609 // Functions with the same type and linkage match.
6610 // FIXME: This needs to cope with merging of prototyped/non-prototyped
6611 // functions, etc.
6612 if (const auto *FuncX = dyn_cast<FunctionDecl>(X)) {
6613 const auto *FuncY = cast<FunctionDecl>(Y);
6614 if (const auto *CtorX = dyn_cast<CXXConstructorDecl>(X)) {
6615 const auto *CtorY = cast<CXXConstructorDecl>(Y);
6616 if (CtorX->getInheritedConstructor() &&
6617 !isSameEntity(CtorX->getInheritedConstructor().getConstructor(),
6618 CtorY->getInheritedConstructor().getConstructor()))
6619 return false;
6620 }
6621
6622 if (FuncX->isMultiVersion() != FuncY->isMultiVersion())
6623 return false;
6624
6625 // Multiversioned functions with different feature strings are represented
6626 // as separate declarations.
6627 if (FuncX->isMultiVersion()) {
6628 const auto *TAX = FuncX->getAttr<TargetAttr>();
6629 const auto *TAY = FuncY->getAttr<TargetAttr>();
6630 assert(TAX && TAY && "Multiversion Function without target attribute")(static_cast <bool> (TAX && TAY && "Multiversion Function without target attribute"
) ? void (0) : __assert_fail ("TAX && TAY && \"Multiversion Function without target attribute\""
, "clang/lib/AST/ASTContext.cpp", 6630, __extension__ __PRETTY_FUNCTION__
))
;
6631
6632 if (TAX->getFeaturesStr() != TAY->getFeaturesStr())
6633 return false;
6634 }
6635
6636 // Per C++20 [temp.over.link]/4, friends in different classes are sometimes
6637 // not the same entity if they are constrained.
6638 if ((FuncX->isMemberLikeConstrainedFriend() ||
6639 FuncY->isMemberLikeConstrainedFriend()) &&
6640 !FuncX->getLexicalDeclContext()->Equals(
6641 FuncY->getLexicalDeclContext())) {
6642 return false;
6643 }
6644
6645 if (!isSameConstraintExpr(FuncX->getTrailingRequiresClause(),
6646 FuncY->getTrailingRequiresClause()))
6647 return false;
6648
6649 auto GetTypeAsWritten = [](const FunctionDecl *FD) {
6650 // Map to the first declaration that we've already merged into this one.
6651 // The TSI of redeclarations might not match (due to calling conventions
6652 // being inherited onto the type but not the TSI), but the TSI type of
6653 // the first declaration of the function should match across modules.
6654 FD = FD->getCanonicalDecl();
6655 return FD->getTypeSourceInfo() ? FD->getTypeSourceInfo()->getType()
6656 : FD->getType();
6657 };
6658 QualType XT = GetTypeAsWritten(FuncX), YT = GetTypeAsWritten(FuncY);
6659 if (!hasSameType(XT, YT)) {
6660 // We can get functions with different types on the redecl chain in C++17
6661 // if they have differing exception specifications and at least one of
6662 // the excpetion specs is unresolved.
6663 auto *XFPT = XT->getAs<FunctionProtoType>();
6664 auto *YFPT = YT->getAs<FunctionProtoType>();
6665 if (getLangOpts().CPlusPlus17 && XFPT && YFPT &&
6666 (isUnresolvedExceptionSpec(XFPT->getExceptionSpecType()) ||
6667 isUnresolvedExceptionSpec(YFPT->getExceptionSpecType())) &&
6668 hasSameFunctionTypeIgnoringExceptionSpec(XT, YT))
6669 return true;
6670 return false;
6671 }
6672
6673 return FuncX->getLinkageInternal() == FuncY->getLinkageInternal() &&
6674 hasSameOverloadableAttrs(FuncX, FuncY);
6675 }
6676
6677 // Variables with the same type and linkage match.
6678 if (const auto *VarX = dyn_cast<VarDecl>(X)) {
6679 const auto *VarY = cast<VarDecl>(Y);
6680 if (VarX->getLinkageInternal() == VarY->getLinkageInternal()) {
6681 // During deserialization, we might compare variables before we load
6682 // their types. Assume the types will end up being the same.
6683 if (VarX->getType().isNull() || VarY->getType().isNull())
6684 return true;
6685
6686 if (hasSameType(VarX->getType(), VarY->getType()))
6687 return true;
6688
6689 // We can get decls with different types on the redecl chain. Eg.
6690 // template <typename T> struct S { static T Var[]; }; // #1
6691 // template <typename T> T S<T>::Var[sizeof(T)]; // #2
6692 // Only? happens when completing an incomplete array type. In this case
6693 // when comparing #1 and #2 we should go through their element type.
6694 const ArrayType *VarXTy = getAsArrayType(VarX->getType());
6695 const ArrayType *VarYTy = getAsArrayType(VarY->getType());
6696 if (!VarXTy || !VarYTy)
6697 return false;
6698 if (VarXTy->isIncompleteArrayType() || VarYTy->isIncompleteArrayType())
6699 return hasSameType(VarXTy->getElementType(), VarYTy->getElementType());
6700 }
6701 return false;
6702 }
6703
6704 // Namespaces with the same name and inlinedness match.
6705 if (const auto *NamespaceX = dyn_cast<NamespaceDecl>(X)) {
6706 const auto *NamespaceY = cast<NamespaceDecl>(Y);
6707 return NamespaceX->isInline() == NamespaceY->isInline();
6708 }
6709
6710 // Identical template names and kinds match if their template parameter lists
6711 // and patterns match.
6712 if (const auto *TemplateX = dyn_cast<TemplateDecl>(X)) {
6713 const auto *TemplateY = cast<TemplateDecl>(Y);
6714
6715 // ConceptDecl wouldn't be the same if their constraint expression differs.
6716 if (const auto *ConceptX = dyn_cast<ConceptDecl>(X)) {
6717 const auto *ConceptY = cast<ConceptDecl>(Y);
6718 const Expr *XCE = ConceptX->getConstraintExpr();
6719 const Expr *YCE = ConceptY->getConstraintExpr();
6720 assert(XCE && YCE && "ConceptDecl without constraint expression?")(static_cast <bool> (XCE && YCE && "ConceptDecl without constraint expression?"
) ? void (0) : __assert_fail ("XCE && YCE && \"ConceptDecl without constraint expression?\""
, "clang/lib/AST/ASTContext.cpp", 6720, __extension__ __PRETTY_FUNCTION__
))
;
6721 llvm::FoldingSetNodeID XID, YID;
6722 XCE->Profile(XID, *this, /*Canonical=*/true);
6723 YCE->Profile(YID, *this, /*Canonical=*/true);
6724 if (XID != YID)
6725 return false;
6726 }
6727
6728 return isSameEntity(TemplateX->getTemplatedDecl(),
6729 TemplateY->getTemplatedDecl()) &&
6730 isSameTemplateParameterList(TemplateX->getTemplateParameters(),
6731 TemplateY->getTemplateParameters());
6732 }
6733
6734 // Fields with the same name and the same type match.
6735 if (const auto *FDX = dyn_cast<FieldDecl>(X)) {
6736 const auto *FDY = cast<FieldDecl>(Y);
6737 // FIXME: Also check the bitwidth is odr-equivalent, if any.
6738 return hasSameType(FDX->getType(), FDY->getType());
6739 }
6740
6741 // Indirect fields with the same target field match.
6742 if (const auto *IFDX = dyn_cast<IndirectFieldDecl>(X)) {
6743 const auto *IFDY = cast<IndirectFieldDecl>(Y);
6744 return IFDX->getAnonField()->getCanonicalDecl() ==
6745 IFDY->getAnonField()->getCanonicalDecl();
6746 }
6747
6748 // Enumerators with the same name match.
6749 if (isa<EnumConstantDecl>(X))
6750 // FIXME: Also check the value is odr-equivalent.
6751 return true;
6752
6753 // Using shadow declarations with the same target match.
6754 if (const auto *USX = dyn_cast<UsingShadowDecl>(X)) {
6755 const auto *USY = cast<UsingShadowDecl>(Y);
6756 return USX->getTargetDecl() == USY->getTargetDecl();
6757 }
6758
6759 // Using declarations with the same qualifier match. (We already know that
6760 // the name matches.)
6761 if (const auto *UX = dyn_cast<UsingDecl>(X)) {
6762 const auto *UY = cast<UsingDecl>(Y);
6763 return isSameQualifier(UX->getQualifier(), UY->getQualifier()) &&
6764 UX->hasTypename() == UY->hasTypename() &&
6765 UX->isAccessDeclaration() == UY->isAccessDeclaration();
6766 }
6767 if (const auto *UX = dyn_cast<UnresolvedUsingValueDecl>(X)) {
6768 const auto *UY = cast<UnresolvedUsingValueDecl>(Y);
6769 return isSameQualifier(UX->getQualifier(), UY->getQualifier()) &&
6770 UX->isAccessDeclaration() == UY->isAccessDeclaration();
6771 }
6772 if (const auto *UX = dyn_cast<UnresolvedUsingTypenameDecl>(X)) {
6773 return isSameQualifier(
6774 UX->getQualifier(),
6775 cast<UnresolvedUsingTypenameDecl>(Y)->getQualifier());
6776 }
6777
6778 // Using-pack declarations are only created by instantiation, and match if
6779 // they're instantiated from matching UnresolvedUsing...Decls.
6780 if (const auto *UX = dyn_cast<UsingPackDecl>(X)) {
6781 return declaresSameEntity(
6782 UX->getInstantiatedFromUsingDecl(),
6783 cast<UsingPackDecl>(Y)->getInstantiatedFromUsingDecl());
6784 }
6785
6786 // Namespace alias definitions with the same target match.
6787 if (const auto *NAX = dyn_cast<NamespaceAliasDecl>(X)) {
6788 const auto *NAY = cast<NamespaceAliasDecl>(Y);
6789 return NAX->getNamespace()->Equals(NAY->getNamespace());
6790 }
6791
6792 return false;
6793}
6794
6795TemplateArgument
6796ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) const {
6797 switch (Arg.getKind()) {
6798 case TemplateArgument::Null:
6799 return Arg;
6800
6801 case TemplateArgument::Expression:
6802 return Arg;
6803
6804 case TemplateArgument::Declaration: {
6805 auto *D = cast<ValueDecl>(Arg.getAsDecl()->getCanonicalDecl());
6806 return TemplateArgument(D, getCanonicalType(Arg.getParamTypeForDecl()),
6807 Arg.getIsDefaulted());
6808 }
6809
6810 case TemplateArgument::NullPtr:
6811 return TemplateArgument(getCanonicalType(Arg.getNullPtrType()),
6812 /*isNullPtr*/ true, Arg.getIsDefaulted());
6813
6814 case TemplateArgument::Template:
6815 return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()),
6816 Arg.getIsDefaulted());
6817
6818 case TemplateArgument::TemplateExpansion:
6819 return TemplateArgument(
6820 getCanonicalTemplateName(Arg.getAsTemplateOrTemplatePattern()),
6821 Arg.getNumTemplateExpansions(), Arg.getIsDefaulted());
6822
6823 case TemplateArgument::Integral:
6824 return TemplateArgument(Arg, getCanonicalType(Arg.getIntegralType()));
6825
6826 case TemplateArgument::Type:
6827 return TemplateArgument(getCanonicalType(Arg.getAsType()),
6828 /*isNullPtr*/ false, Arg.getIsDefaulted());
6829
6830 case TemplateArgument::Pack: {
6831 bool AnyNonCanonArgs = false;
6832 auto CanonArgs = ::getCanonicalTemplateArguments(
6833 *this, Arg.pack_elements(), AnyNonCanonArgs);
6834 if (!AnyNonCanonArgs)
6835 return Arg;
6836 return TemplateArgument::CreatePackCopy(const_cast<ASTContext &>(*this),
6837 CanonArgs);
6838 }
6839 }
6840
6841 // Silence GCC warning
6842 llvm_unreachable("Unhandled template argument kind")::llvm::llvm_unreachable_internal("Unhandled template argument kind"
, "clang/lib/AST/ASTContext.cpp", 6842)
;
6843}
6844
6845NestedNameSpecifier *
6846ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const {
6847 if (!NNS)
6848 return nullptr;
6849
6850 switch (NNS->getKind()) {
6851 case NestedNameSpecifier::Identifier:
6852 // Canonicalize the prefix but keep the identifier the same.
6853 return NestedNameSpecifier::Create(*this,
6854 getCanonicalNestedNameSpecifier(NNS->getPrefix()),
6855 NNS->getAsIdentifier());
6856
6857 case NestedNameSpecifier::Namespace:
6858 // A namespace is canonical; build a nested-name-specifier with
6859 // this namespace and no prefix.
6860 return NestedNameSpecifier::Create(*this, nullptr,
6861 NNS->getAsNamespace()->getOriginalNamespace());
6862
6863 case NestedNameSpecifier::NamespaceAlias:
6864 // A namespace is canonical; build a nested-name-specifier with
6865 // this namespace and no prefix.
6866 return NestedNameSpecifier::Create(*this, nullptr,
6867 NNS->getAsNamespaceAlias()->getNamespace()
6868 ->getOriginalNamespace());
6869
6870 // The difference between TypeSpec and TypeSpecWithTemplate is that the
6871 // latter will have the 'template' keyword when printed.
6872 case NestedNameSpecifier::TypeSpec:
6873 case NestedNameSpecifier::TypeSpecWithTemplate: {
6874 const Type *T = getCanonicalType(NNS->getAsType());
6875
6876 // If we have some kind of dependent-named type (e.g., "typename T::type"),
6877 // break it apart into its prefix and identifier, then reconsititute those
6878 // as the canonical nested-name-specifier. This is required to canonicalize
6879 // a dependent nested-name-specifier involving typedefs of dependent-name
6880 // types, e.g.,
6881 // typedef typename T::type T1;
6882 // typedef typename T1::type T2;
6883 if (const auto *DNT = T->getAs<DependentNameType>())
6884 return NestedNameSpecifier::Create(
6885 *this, DNT->getQualifier(),
6886 const_cast<IdentifierInfo *>(DNT->getIdentifier()));
6887 if (const auto *DTST = T->getAs<DependentTemplateSpecializationType>())
6888 return NestedNameSpecifier::Create(*this, DTST->getQualifier(), true,
6889 const_cast<Type *>(T));
6890
6891 // TODO: Set 'Template' parameter to true for other template types.
6892 return NestedNameSpecifier::Create(*this, nullptr, false,
6893 const_cast<Type *>(T));
6894 }
6895
6896 case NestedNameSpecifier::Global:
6897 case NestedNameSpecifier::Super:
6898 // The global specifier and __super specifer are canonical and unique.
6899 return NNS;
6900 }
6901
6902 llvm_unreachable("Invalid NestedNameSpecifier::Kind!")::llvm::llvm_unreachable_internal("Invalid NestedNameSpecifier::Kind!"
, "clang/lib/AST/ASTContext.cpp", 6902)
;
6903}
6904
6905const ArrayType *ASTContext::getAsArrayType(QualType T) const {
6906 // Handle the non-qualified case efficiently.
6907 if (!T.hasLocalQualifiers()) {
6908 // Handle the common positive case fast.
6909 if (const auto *AT = dyn_cast<ArrayType>(T))
6910 return AT;
6911 }
6912
6913 // Handle the common negative case fast.
6914 if (!isa<ArrayType>(T.getCanonicalType()))
6915 return nullptr;
6916
6917 // Apply any qualifiers from the array type to the element type. This
6918 // implements C99 6.7.3p8: "If the specification of an array type includes
6919 // any type qualifiers, the element type is so qualified, not the array type."
6920
6921 // If we get here, we either have type qualifiers on the type, or we have
6922 // sugar such as a typedef in the way. If we have type qualifiers on the type
6923 // we must propagate them down into the element type.
6924
6925 SplitQualType split = T.getSplitDesugaredType();
6926 Qualifiers qs = split.Quals;
6927
6928 // If we have a simple case, just return now.
6929 const auto *ATy = dyn_cast<ArrayType>(split.Ty);
6930 if (!ATy || qs.empty())
6931 return ATy;
6932
6933 // Otherwise, we have an array and we have qualifiers on it. Push the
6934 // qualifiers into the array element type and return a new array type.
6935 QualType NewEltTy = getQualifiedType(ATy->getElementType(), qs);
6936
6937 if (const auto *CAT = dyn_cast<ConstantArrayType>(ATy))
6938 return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
6939 CAT->getSizeExpr(),
6940 CAT->getSizeModifier(),
6941 CAT->getIndexTypeCVRQualifiers()));
6942 if (const auto *IAT = dyn_cast<IncompleteArrayType>(ATy))
6943 return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
6944 IAT->getSizeModifier(),
6945 IAT->getIndexTypeCVRQualifiers()));
6946
6947 if (const auto *DSAT = dyn_cast<DependentSizedArrayType>(ATy))
6948 return cast<ArrayType>(
6949 getDependentSizedArrayType(NewEltTy,
6950 DSAT->getSizeExpr(),
6951 DSAT->getSizeModifier(),
6952 DSAT->getIndexTypeCVRQualifiers(),
6953 DSAT->getBracketsRange()));
6954
6955 const auto *VAT = cast<VariableArrayType>(ATy);
6956 return cast<ArrayType>(getVariableArrayType(NewEltTy,
6957 VAT->getSizeExpr(),
6958 VAT->getSizeModifier(),
6959 VAT->getIndexTypeCVRQualifiers(),
6960 VAT->getBracketsRange()));
6961}
6962
6963QualType ASTContext::getAdjustedParameterType(QualType T) const {
6964 if (T->isArrayType() || T->isFunctionType())
6965 return getDecayedType(T);
6966 return T;
6967}
6968
6969QualType ASTContext::getSignatureParameterType(QualType T) const {
6970 T = getVariableArrayDecayedType(T);
6971 T = getAdjustedParameterType(T);
6972 return T.getUnqualifiedType();
6973}
6974
6975QualType ASTContext::getExceptionObjectType(QualType T) const {
6976 // C++ [except.throw]p3:
6977 // A throw-expression initializes a temporary object, called the exception
6978 // object, the type of which is determined by removing any top-level
6979 // cv-qualifiers from the static type of the operand of throw and adjusting
6980 // the type from "array of T" or "function returning T" to "pointer to T"
6981 // or "pointer to function returning T", [...]
6982 T = getVariableArrayDecayedType(T);
6983 if (T->isArrayType() || T->isFunctionType())
6984 T = getDecayedType(T);
6985 return T.getUnqualifiedType();
6986}
6987
6988/// getArrayDecayedType - Return the properly qualified result of decaying the
6989/// specified array type to a pointer. This operation is non-trivial when
6990/// handling typedefs etc. The canonical type of "T" must be an array type,
6991/// this returns a pointer to a properly qualified element of the array.
6992///
6993/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
6994QualType ASTContext::getArrayDecayedType(QualType Ty) const {
6995 // Get the element type with 'getAsArrayType' so that we don't lose any
6996 // typedefs in the element type of the array. This also handles propagation
6997 // of type qualifiers from the array type into the element type if present
6998 // (C99 6.7.3p8).
6999 const ArrayType *PrettyArrayType = getAsArrayType(Ty);
7000 assert(PrettyArrayType && "Not an array type!")(static_cast <bool> (PrettyArrayType && "Not an array type!"
) ? void (0) : __assert_fail ("PrettyArrayType && \"Not an array type!\""
, "clang/lib/AST/ASTContext.cpp", 7000, __extension__ __PRETTY_FUNCTION__
))
;
7001
7002 QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
7003
7004 // int x[restrict 4] -> int *restrict
7005 QualType Result = getQualifiedType(PtrTy,
7006 PrettyArrayType->getIndexTypeQualifiers());
7007
7008 // int x[_Nullable] -> int * _Nullable
7009 if (auto Nullability = Ty->getNullability()) {
7010 Result = const_cast<ASTContext *>(this)->getAttributedType(
7011 AttributedType::getNullabilityAttrKind(*Nullability), Result, Result);
7012 }
7013 return Result;
7014}
7015
7016QualType ASTContext::getBaseElementType(const ArrayType *array) const {
7017 return getBaseElementType(array->getElementType());
7018}
7019
7020QualType ASTContext::getBaseElementType(QualType type) const {
7021 Qualifiers qs;
7022 while (true) {
7023 SplitQualType split = type.getSplitDesugaredType();
7024 const ArrayType *array = split.Ty->getAsArrayTypeUnsafe();
7025 if (!array) break;
7026
7027 type = array->getElementType();
7028 qs.addConsistentQualifiers(split.Quals);
7029 }
7030
7031 return getQualifiedType(type, qs);
7032}
7033
7034/// getConstantArrayElementCount - Returns number of constant array elements.
7035uint64_t
7036ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA) const {
7037 uint64_t ElementCount = 1;
7038 do {
7039 ElementCount *= CA->getSize().getZExtValue();
7040 CA = dyn_cast_or_null<ConstantArrayType>(
7041 CA->getElementType()->getAsArrayTypeUnsafe());
7042 } while (CA);
7043 return ElementCount;
7044}
7045
7046uint64_t ASTContext::getArrayInitLoopExprElementCount(
7047 const ArrayInitLoopExpr *AILE) const {
7048 if (!AILE)
7049 return 0;
7050
7051 uint64_t ElementCount = 1;
7052
7053 do {
7054 ElementCount *= AILE->getArraySize().getZExtValue();
7055 AILE = dyn_cast<ArrayInitLoopExpr>(AILE->getSubExpr());
7056 } while (AILE);
7057
7058 return ElementCount;
7059}
7060
7061/// getFloatingRank - Return a relative rank for floating point types.
7062/// This routine will assert if passed a built-in type that isn't a float.
7063static FloatingRank getFloatingRank(QualType T) {
7064 if (const auto *CT = T->getAs<ComplexType>())
7065 return getFloatingRank(CT->getElementType());
7066
7067 switch (T->castAs<BuiltinType>()->getKind()) {
7068 default: llvm_unreachable("getFloatingRank(): not a floating type")::llvm::llvm_unreachable_internal("getFloatingRank(): not a floating type"
, "clang/lib/AST/ASTContext.cpp", 7068)
;
7069 case BuiltinType::Float16: return Float16Rank;
7070 case BuiltinType::Half: return HalfRank;
7071 case BuiltinType::Float: return FloatRank;
7072 case BuiltinType::Double: return DoubleRank;
7073 case BuiltinType::LongDouble: return LongDoubleRank;
7074 case BuiltinType::Float128: return Float128Rank;
7075 case BuiltinType::BFloat16: return BFloat16Rank;
7076 case BuiltinType::Ibm128: return Ibm128Rank;
7077 }
7078}
7079
7080/// getFloatingTypeOrder - Compare the rank of the two specified floating
7081/// point types, ignoring the domain of the type (i.e. 'double' ==
7082/// '_Complex double'). If LHS > RHS, return 1. If LHS == RHS, return 0. If
7083/// LHS < RHS, return -1.
7084int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) const {
7085 FloatingRank LHSR = getFloatingRank(LHS);
7086 FloatingRank RHSR = getFloatingRank(RHS);
7087
7088 if (LHSR == RHSR)
7089 return 0;
7090 if (LHSR > RHSR)
7091 return 1;
7092 return -1;
7093}
7094
7095int ASTContext::getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const {
7096 if (&getFloatTypeSemantics(LHS) == &getFloatTypeSemantics(RHS))
7097 return 0;
7098 return getFloatingTypeOrder(LHS, RHS);
7099}
7100
7101/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
7102/// routine will assert if passed a built-in type that isn't an integer or enum,
7103/// or if it is not canonicalized.
7104unsigned ASTContext::getIntegerRank(const Type *T) const {
7105 assert(T->isCanonicalUnqualified() && "T should be canonicalized")(static_cast <bool> (T->isCanonicalUnqualified() &&
"T should be canonicalized") ? void (0) : __assert_fail ("T->isCanonicalUnqualified() && \"T should be canonicalized\""
, "clang/lib/AST/ASTContext.cpp", 7105, __extension__ __PRETTY_FUNCTION__
))
;
7106
7107 // Results in this 'losing' to any type of the same size, but winning if
7108 // larger.
7109 if (const auto *EIT = dyn_cast<BitIntType>(T))
7110 return 0 + (EIT->getNumBits() << 3);
7111
7112 switch (cast<BuiltinType>(T)->getKind()) {
7113 default: llvm_unreachable("getIntegerRank(): not a built-in integer")::llvm::llvm_unreachable_internal("getIntegerRank(): not a built-in integer"
, "clang/lib/AST/ASTContext.cpp", 7113)
;
7114 case BuiltinType::Bool:
7115 return 1 + (getIntWidth(BoolTy) << 3);
7116 case BuiltinType::Char_S:
7117 case BuiltinType::Char_U:
7118 case BuiltinType::SChar:
7119 case BuiltinType::UChar:
7120 return 2 + (getIntWidth(CharTy) << 3);
7121 case BuiltinType::Short:
7122 case BuiltinType::UShort:
7123 return 3 + (getIntWidth(ShortTy) << 3);
7124 case BuiltinType::Int:
7125 case BuiltinType::UInt:
7126 return 4 + (getIntWidth(IntTy) << 3);
7127 case BuiltinType::Long:
7128 case BuiltinType::ULong:
7129 return 5 + (getIntWidth(LongTy) << 3);
7130 case BuiltinType::LongLong:
7131 case BuiltinType::ULongLong:
7132 return 6 + (getIntWidth(LongLongTy) << 3);
7133 case BuiltinType::Int128:
7134 case BuiltinType::UInt128:
7135 return 7 + (getIntWidth(Int128Ty) << 3);
7136
7137 // "The ranks of char8_t, char16_t, char32_t, and wchar_t equal the ranks of
7138 // their underlying types" [c++20 conv.rank]
7139 case BuiltinType::Char8:
7140 return getIntegerRank(UnsignedCharTy.getTypePtr());
7141 case BuiltinType::Char16:
7142 return getIntegerRank(
7143 getFromTargetType(Target->getChar16Type()).getTypePtr());
7144 case BuiltinType::Char32:
7145 return getIntegerRank(
7146 getFromTargetType(Target->getChar32Type()).getTypePtr());
7147 case BuiltinType::WChar_S:
7148 case BuiltinType::WChar_U:
7149 return getIntegerRank(
7150 getFromTargetType(Target->getWCharType()).getTypePtr());
7151 }
7152}
7153
7154/// Whether this is a promotable bitfield reference according
7155/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
7156///
7157/// \returns the type this bit-field will promote to, or NULL if no
7158/// promotion occurs.
7159QualType ASTContext::isPromotableBitField(Expr *E) const {
7160 if (E->isTypeDependent() || E->isValueDependent())
7161 return {};
7162
7163 // C++ [conv.prom]p5:
7164 // If the bit-field has an enumerated type, it is treated as any other
7165 // value of that type for promotion purposes.
7166 if (getLangOpts().CPlusPlus && E->getType()->isEnumeralType())
7167 return {};
7168
7169 // FIXME: We should not do this unless E->refersToBitField() is true. This
7170 // matters in C where getSourceBitField() will find bit-fields for various
7171 // cases where the source expression is not a bit-field designator.
7172
7173 FieldDecl *Field = E->getSourceBitField(); // FIXME: conditional bit-fields?
7174 if (!Field)
7175 return {};
7176
7177 QualType FT = Field->getType();
7178
7179 uint64_t BitWidth = Field->getBitWidthValue(*this);
7180 uint64_t IntSize = getTypeSize(IntTy);
7181 // C++ [conv.prom]p5:
7182 // A prvalue for an integral bit-field can be converted to a prvalue of type
7183 // int if int can represent all the values of the bit-field; otherwise, it
7184 // can be converted to unsigned int if unsigned int can represent all the
7185 // values of the bit-field. If the bit-field is larger yet, no integral
7186 // promotion applies to it.
7187 // C11 6.3.1.1/2:
7188 // [For a bit-field of type _Bool, int, signed int, or unsigned int:]
7189 // If an int can represent all values of the original type (as restricted by
7190 // the width, for a bit-field), the value is converted to an int; otherwise,
7191 // it is converted to an unsigned int.
7192 //
7193 // FIXME: C does not permit promotion of a 'long : 3' bitfield to int.
7194 // We perform that promotion here to match GCC and C++.
7195 // FIXME: C does not permit promotion of an enum bit-field whose rank is
7196 // greater than that of 'int'. We perform that promotion to match GCC.
7197 if (BitWidth < IntSize)
7198 return IntTy;
7199
7200 if (BitWidth == IntSize)
7201 return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
7202
7203 // Bit-fields wider than int are not subject to promotions, and therefore act
7204 // like the base type. GCC has some weird bugs in this area that we
7205 // deliberately do not follow (GCC follows a pre-standard resolution to
7206 // C's DR315 which treats bit-width as being part of the type, and this leaks
7207 // into their semantics in some cases).
7208 return {};
7209}
7210
7211/// getPromotedIntegerType - Returns the type that Promotable will
7212/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
7213/// integer type.
7214QualType ASTContext::getPromotedIntegerType(QualType Promotable) const {
7215 assert(!Promotable.isNull())(static_cast <bool> (!Promotable.isNull()) ? void (0) :
__assert_fail ("!Promotable.isNull()", "clang/lib/AST/ASTContext.cpp"
, 7215, __extension__ __PRETTY_FUNCTION__))
;
7216 assert(isPromotableIntegerType(Promotable))(static_cast <bool> (isPromotableIntegerType(Promotable
)) ? void (0) : __assert_fail ("isPromotableIntegerType(Promotable)"
, "clang/lib/AST/ASTContext.cpp", 7216, __extension__ __PRETTY_FUNCTION__
))
;
7217 if (const auto *ET = Promotable->getAs<EnumType>())
7218 return ET->getDecl()->getPromotionType();
7219
7220 if (const auto *BT = Promotable->getAs<BuiltinType>()) {
7221 // C++ [conv.prom]: A prvalue of type char16_t, char32_t, or wchar_t
7222 // (3.9.1) can be converted to a prvalue of the first of the following
7223 // types that can represent all the values of its underlying type:
7224 // int, unsigned int, long int, unsigned long int, long long int, or
7225 // unsigned long long int [...]
7226 // FIXME: Is there some better way to compute this?
7227 if (BT->getKind() == BuiltinType::WChar_S ||
7228 BT->getKind() == BuiltinType::WChar_U ||
7229 BT->getKind() == BuiltinType::Char8 ||
7230 BT->getKind() == BuiltinType::Char16 ||
7231 BT->getKind() == BuiltinType::Char32) {
7232 bool FromIsSigned = BT->getKind() == BuiltinType::WChar_S;
7233 uint64_t FromSize = getTypeSize(BT);
7234 QualType PromoteTypes[] = { IntTy, UnsignedIntTy, LongTy, UnsignedLongTy,
7235 LongLongTy, UnsignedLongLongTy };
7236 for (const auto &PT : PromoteTypes) {
7237 uint64_t ToSize = getTypeSize(PT);
7238 if (FromSize < ToSize ||
7239 (FromSize == ToSize && FromIsSigned == PT->isSignedIntegerType()))
7240 return PT;
7241 }
7242 llvm_unreachable("char type should fit into long long")::llvm::llvm_unreachable_internal("char type should fit into long long"
, "clang/lib/AST/ASTContext.cpp", 7242)
;
7243 }
7244 }
7245
7246 // At this point, we should have a signed or unsigned integer type.
7247 if (Promotable->isSignedIntegerType())
7248 return IntTy;
7249 uint64_t PromotableSize = getIntWidth(Promotable);
7250 uint64_t IntSize = getIntWidth(IntTy);
7251 assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize)(static_cast <bool> (Promotable->isUnsignedIntegerType
() && PromotableSize <= IntSize) ? void (0) : __assert_fail
("Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize"
, "clang/lib/AST/ASTContext.cpp", 7251, __extension__ __PRETTY_FUNCTION__
))
;
7252 return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
7253}
7254
7255/// Recurses in pointer/array types until it finds an objc retainable
7256/// type and returns its ownership.
7257Qualifiers::ObjCLifetime ASTContext::getInnerObjCOwnership(QualType T) const {
7258 while (!T.isNull()) {
7259 if (T.getObjCLifetime() != Qualifiers::OCL_None)
7260 return T.getObjCLifetime();
7261 if (T->isArrayType())
7262 T = getBaseElementType(T);
7263 else if (const auto *PT = T->getAs<PointerType>())
7264 T = PT->getPointeeType();
7265 else if (const auto *RT = T->getAs<ReferenceType>())
7266 T = RT->getPointeeType();
7267 else
7268 break;
7269 }
7270
7271 return Qualifiers::OCL_None;
7272}
7273
7274static const Type *getIntegerTypeForEnum(const EnumType *ET) {
7275 // Incomplete enum types are not treated as integer types.
7276 // FIXME: In C++, enum types are never integer types.
7277 if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
7278 return ET->getDecl()->getIntegerType().getTypePtr();
7279 return nullptr;
7280}
7281
7282/// getIntegerTypeOrder - Returns the highest ranked integer type:
7283/// C99 6.3.1.8p1. If LHS > RHS, return 1. If LHS == RHS, return 0. If
7284/// LHS < RHS, return -1.
7285int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) const {
7286 const Type *LHSC = getCanonicalType(LHS).getTypePtr();
7287 const Type *RHSC = getCanonicalType(RHS).getTypePtr();
7288
7289 // Unwrap enums to their underlying type.
7290 if (const auto *ET = dyn_cast<EnumType>(LHSC))
7291 LHSC = getIntegerTypeForEnum(ET);
7292 if (const auto *ET = dyn_cast<EnumType>(RHSC))
7293 RHSC = getIntegerTypeForEnum(ET);
7294
7295 if (LHSC == RHSC) return 0;
7296
7297 bool LHSUnsigned = LHSC->isUnsignedIntegerType();
7298 bool RHSUnsigned = RHSC->isUnsignedIntegerType();
7299
7300 unsigned LHSRank = getIntegerRank(LHSC);
7301 unsigned RHSRank = getIntegerRank(RHSC);
7302
7303 if (LHSUnsigned == RHSUnsigned) { // Both signed or both unsigned.
7304 if (LHSRank == RHSRank) return 0;
7305 return LHSRank > RHSRank ? 1 : -1;
7306 }
7307
7308 // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
7309 if (LHSUnsigned) {
7310 // If the unsigned [LHS] type is larger, return it.
7311 if (LHSRank >= RHSRank)
7312 return 1;
7313
7314 // If the signed type can represent all values of the unsigned type, it
7315 // wins. Because we are dealing with 2's complement and types that are
7316 // powers of two larger than each other, this is always safe.
7317 return -1;
7318 }
7319
7320 // If the unsigned [RHS] type is larger, return it.
7321 if (RHSRank >= LHSRank)
7322 return -1;
7323
7324 // If the signed type can represent all values of the unsigned type, it
7325 // wins. Because we are dealing with 2's complement and types that are
7326 // powers of two larger than each other, this is always safe.
7327 return 1;
7328}
7329
7330TypedefDecl *ASTContext::getCFConstantStringDecl() const {
7331 if (CFConstantStringTypeDecl)
7332 return CFConstantStringTypeDecl;
7333
7334 assert(!CFConstantStringTagDecl &&(static_cast <bool> (!CFConstantStringTagDecl &&
"tag and typedef should be initialized together") ? void (0)
: __assert_fail ("!CFConstantStringTagDecl && \"tag and typedef should be initialized together\""
, "clang/lib/AST/ASTContext.cpp", 7335, __extension__ __PRETTY_FUNCTION__
))
7335 "tag and typedef should be initialized together")(static_cast <bool> (!CFConstantStringTagDecl &&
"tag and typedef should be initialized together") ? void (0)
: __assert_fail ("!CFConstantStringTagDecl && \"tag and typedef should be initialized together\""
, "clang/lib/AST/ASTContext.cpp", 7335, __extension__ __PRETTY_FUNCTION__
))
;
7336 CFConstantStringTagDecl = buildImplicitRecord("__NSConstantString_tag");
7337 CFConstantStringTagDecl->startDefinition();
7338
7339 struct {
7340 QualType Type;
7341 const char *Name;
7342 } Fields[5];
7343 unsigned Count = 0;
7344
7345 /// Objective-C ABI
7346 ///
7347 /// typedef struct __NSConstantString_tag {
7348 /// const int *isa;
7349 /// int flags;
7350 /// const char *str;
7351 /// long length;
7352 /// } __NSConstantString;
7353 ///
7354 /// Swift ABI (4.1, 4.2)
7355 ///
7356 /// typedef struct __NSConstantString_tag {
7357 /// uintptr_t _cfisa;
7358 /// uintptr_t _swift_rc;
7359 /// _Atomic(uint64_t) _cfinfoa;
7360 /// const char *_ptr;
7361 /// uint32_t _length;
7362 /// } __NSConstantString;
7363 ///
7364 /// Swift ABI (5.0)
7365 ///
7366 /// typedef struct __NSConstantString_tag {
7367 /// uintptr_t _cfisa;
7368 /// uintptr_t _swift_rc;
7369 /// _Atomic(uint64_t) _cfinfoa;
7370 /// const char *_ptr;
7371 /// uintptr_t _length;
7372 /// } __NSConstantString;
7373
7374 const auto CFRuntime = getLangOpts().CFRuntime;
7375 if (static_cast<unsigned>(CFRuntime) <
7376 static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift)) {
7377 Fields[Count++] = { getPointerType(IntTy.withConst()), "isa" };
7378 Fields[Count++] = { IntTy, "flags" };
7379 Fields[Count++] = { getPointerType(CharTy.withConst()), "str" };
7380 Fields[Count++] = { LongTy, "length" };
7381 } else {
7382 Fields[Count++] = { getUIntPtrType(), "_cfisa" };
7383 Fields[Count++] = { getUIntPtrType(), "_swift_rc" };
7384 Fields[Count++] = { getFromTargetType(Target->getUInt64Type()), "_swift_rc" };
7385 Fields[Count++] = { getPointerType(CharTy.withConst()), "_ptr" };
7386 if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
7387 CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
7388 Fields[Count++] = { IntTy, "_ptr" };
7389 else
7390 Fields[Count++] = { getUIntPtrType(), "_ptr" };
7391 }
7392
7393 // Create fields
7394 for (unsigned i = 0; i < Count; ++i) {
7395 FieldDecl *Field =
7396 FieldDecl::Create(*this, CFConstantStringTagDecl, SourceLocation(),
7397 SourceLocation(), &Idents.get(Fields[i].Name),
7398 Fields[i].Type, /*TInfo=*/nullptr,
7399 /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
7400 Field->setAccess(AS_public);
7401 CFConstantStringTagDecl->addDecl(Field);
7402 }
7403
7404 CFConstantStringTagDecl->completeDefinition();
7405 // This type is designed to be compatible with NSConstantString, but cannot
7406 // use the same name, since NSConstantString is an interface.
7407 auto tagType = getTagDeclType(CFConstantStringTagDecl);
7408 CFConstantStringTypeDecl =
7409 buildImplicitTypedef(tagType, "__NSConstantString");
7410
7411 return CFConstantStringTypeDecl;
7412}
7413
7414RecordDecl *ASTContext::getCFConstantStringTagDecl() const {
7415 if (!CFConstantStringTagDecl)
7416 getCFConstantStringDecl(); // Build the tag and the typedef.
7417 return CFConstantStringTagDecl;
7418}
7419
7420// getCFConstantStringType - Return the type used for constant CFStrings.
7421QualType ASTContext::getCFConstantStringType() const {
7422 return getTypedefType(getCFConstantStringDecl());
7423}
7424
7425QualType ASTContext::getObjCSuperType() const {
7426 if (ObjCSuperType.isNull()) {
7427 RecordDecl *ObjCSuperTypeDecl = buildImplicitRecord("objc_super");
7428 getTranslationUnitDecl()->addDecl(ObjCSuperTypeDecl);
7429 ObjCSuperType = getTagDeclType(ObjCSuperTypeDecl);
7430 }
7431 return ObjCSuperType;
7432}
7433
7434void ASTContext::setCFConstantStringType(QualType T) {
7435 const auto *TD = T->castAs<TypedefType>();
7436 CFConstantStringTypeDecl = cast<TypedefDecl>(TD->getDecl());
7437 const auto *TagType =
7438 CFConstantStringTypeDecl->getUnderlyingType()->castAs<RecordType>();
7439 CFConstantStringTagDecl = TagType->getDecl();
7440}
7441
7442QualType ASTContext::getBlockDescriptorType() const {
7443 if (BlockDescriptorType)
7444 return getTagDeclType(BlockDescriptorType);
7445
7446 RecordDecl *RD;
7447 // FIXME: Needs the FlagAppleBlock bit.
7448 RD = buildImplicitRecord("__block_descriptor");
7449 RD->startDefinition();
7450
7451 QualType FieldTypes[] = {
7452 UnsignedLongTy,
7453 UnsignedLongTy,
7454 };
7455
7456 static const char *const FieldNames[] = {
7457 "reserved",
7458 "Size"
7459 };
7460
7461 for (size_t i = 0; i < 2; ++i) {
7462 FieldDecl *Field = FieldDecl::Create(
7463 *this, RD, SourceLocation(), SourceLocation(),
7464 &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
7465 /*BitWidth=*/nullptr, /*Mutable=*/false, ICIS_NoInit);
7466 Field->setAccess(AS_public);
7467 RD->addDecl(Field);
7468 }
7469
7470 RD->completeDefinition();
7471
7472 BlockDescriptorType = RD;
7473
7474 return getTagDeclType(BlockDescriptorType);
7475}
7476
7477QualType ASTContext::getBlockDescriptorExtendedType() const {
7478 if (BlockDescriptorExtendedType)
7479 return getTagDeclType(BlockDescriptorExtendedType);
7480
7481 RecordDecl *RD;
7482 // FIXME: Needs the FlagAppleBlock bit.
7483 RD = buildImplicitRecord("__block_descriptor_withcopydispose");
7484 RD->startDefinition();
7485
7486 QualType FieldTypes[] = {
7487 UnsignedLongTy,
7488 UnsignedLongTy,
7489 getPointerType(VoidPtrTy),
7490 getPointerType(VoidPtrTy)
7491 };
7492
7493 static const char *const FieldNames[] = {
7494 "reserved",
7495 "Size",
7496 "CopyFuncPtr",
7497 "DestroyFuncPtr"
7498 };
7499
7500 for (size_t i = 0; i < 4; ++i) {
7501 FieldDecl *Field = FieldDecl::Create(
7502 *this, RD, SourceLocation(), SourceLocation(),
7503 &Idents.get(FieldNames[i]), FieldTypes[i], /*TInfo=*/nullptr,
7504 /*BitWidth=*/nullptr,
7505 /*Mutable=*/false, ICIS_NoInit);
7506 Field->setAccess(AS_public);
7507 RD->addDecl(Field);
7508 }
7509
7510 RD->completeDefinition();
7511
7512 BlockDescriptorExtendedType = RD;
7513 return getTagDeclType(BlockDescriptorExtendedType);
7514}
7515
7516OpenCLTypeKind ASTContext::getOpenCLTypeKind(const Type *T) const {
7517 const auto *BT = dyn_cast<BuiltinType>(T);
7518
7519 if (!BT) {
7520 if (isa<PipeType>(T))
7521 return OCLTK_Pipe;
7522
7523 return OCLTK_Default;
7524 }
7525
7526 switch (BT->getKind()) {
7527#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
7528 case BuiltinType::Id: \
7529 return OCLTK_Image;
7530#include "clang/Basic/OpenCLImageTypes.def"
7531
7532 case BuiltinType::OCLClkEvent:
7533 return OCLTK_ClkEvent;
7534
7535 case BuiltinType::OCLEvent:
7536 return OCLTK_Event;
7537
7538 case BuiltinType::OCLQueue:
7539 return OCLTK_Queue;
7540
7541 case BuiltinType::OCLReserveID:
7542 return OCLTK_ReserveID;
7543
7544 case BuiltinType::OCLSampler:
7545 return OCLTK_Sampler;
7546
7547 default:
7548 return OCLTK_Default;
7549 }
7550}
7551
7552LangAS ASTContext::getOpenCLTypeAddrSpace(const Type *T) const {
7553 return Target->getOpenCLTypeAddrSpace(getOpenCLTypeKind(T));
7554}
7555
7556/// BlockRequiresCopying - Returns true if byref variable "D" of type "Ty"
7557/// requires copy/dispose. Note that this must match the logic
7558/// in buildByrefHelpers.
7559bool ASTContext::BlockRequiresCopying(QualType Ty,
7560 const VarDecl *D) {
7561 if (const CXXRecordDecl *record = Ty->getAsCXXRecordDecl()) {
7562 const Expr *copyExpr = getBlockVarCopyInit(D).getCopyExpr();
7563 if (!copyExpr && record->hasTrivialDestructor()) return false;
7564
7565 return true;
7566 }
7567
7568 // The block needs copy/destroy helpers if Ty is non-trivial to destructively
7569 // move or destroy.
7570 if (Ty.isNonTrivialToPrimitiveDestructiveMove() || Ty.isDestructedType())
7571 return true;
7572
7573 if (!Ty->isObjCRetainableType()) return false;
7574
7575 Qualifiers qs = Ty.getQualifiers();
7576
7577 // If we have lifetime, that dominates.
7578 if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
7579 switch (lifetime) {
7580 case Qualifiers::OCL_None: llvm_unreachable("impossible")::llvm::llvm_unreachable_internal("impossible", "clang/lib/AST/ASTContext.cpp"
, 7580)
;
7581
7582 // These are just bits as far as the runtime is concerned.
7583 case Qualifiers::OCL_ExplicitNone:
7584 case Qualifiers::OCL_Autoreleasing:
7585 return false;
7586
7587 // These cases should have been taken care of when checking the type's
7588 // non-triviality.
7589 case Qualifiers::OCL_Weak:
7590 case Qualifiers::OCL_Strong:
7591 llvm_unreachable("impossible")::llvm::llvm_unreachable_internal("impossible", "clang/lib/AST/ASTContext.cpp"
, 7591)
;
7592 }
7593 llvm_unreachable("fell out of lifetime switch!")::llvm::llvm_unreachable_internal("fell out of lifetime switch!"
, "clang/lib/AST/ASTContext.cpp", 7593)
;
7594 }
7595 return (Ty->isBlockPointerType() || isObjCNSObjectType(Ty) ||
7596 Ty->isObjCObjectPointerType());
7597}
7598
7599bool ASTContext::getByrefLifetime(QualType Ty,
7600 Qualifiers::ObjCLifetime &LifeTime,
7601 bool &HasByrefExtendedLayout) const {
7602 if (!getLangOpts().ObjC ||
7603 getLangOpts().getGC() != LangOptions::NonGC)
7604 return false;
7605
7606 HasByrefExtendedLayout = false;
7607 if (Ty->isRecordType()) {
7608 HasByrefExtendedLayout = true;
7609 LifeTime = Qualifiers::OCL_None;
7610 } else if ((LifeTime = Ty.getObjCLifetime())) {
7611 // Honor the ARC qualifiers.
7612 } else if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType()) {
7613 // The MRR rule.
7614 LifeTime = Qualifiers::OCL_ExplicitNone;
7615 } else {
7616 LifeTime = Qualifiers::OCL_None;
7617 }
7618 return true;
7619}
7620
7621CanQualType ASTContext::getNSUIntegerType() const {
7622 assert(Target && "Expected target to be initialized")(static_cast <bool> (Target && "Expected target to be initialized"
) ? void (0) : __assert_fail ("Target && \"Expected target to be initialized\""
, "clang/lib/AST/ASTContext.cpp", 7622, __extension__ __PRETTY_FUNCTION__
))
;
7623 const llvm::Triple &T = Target->getTriple();
7624 // Windows is LLP64 rather than LP64
7625 if (T.isOSWindows() && T.isArch64Bit())
7626 return UnsignedLongLongTy;
7627 return UnsignedLongTy;
7628}
7629
7630CanQualType ASTContext::getNSIntegerType() const {
7631 assert(Target && "Expected target to be initialized")(static_cast <bool> (Target && "Expected target to be initialized"
) ? void (0) : __assert_fail ("Target && \"Expected target to be initialized\""
, "clang/lib/AST/ASTContext.cpp", 7631, __extension__ __PRETTY_FUNCTION__
))
;
7632 const llvm::Triple &T = Target->getTriple();
7633 // Windows is LLP64 rather than LP64
7634 if (T.isOSWindows() && T.isArch64Bit())
7635 return LongLongTy;
7636 return LongTy;
7637}
7638
7639TypedefDecl *ASTContext::getObjCInstanceTypeDecl() {
7640 if (!ObjCInstanceTypeDecl)
7641 ObjCInstanceTypeDecl =
7642 buildImplicitTypedef(getObjCIdType(), "instancetype");
7643 return ObjCInstanceTypeDecl;
7644}
7645
7646// This returns true if a type has been typedefed to BOOL:
7647// typedef <type> BOOL;
7648static bool isTypeTypedefedAsBOOL(QualType T) {
7649 if (const auto *TT = dyn_cast<TypedefType>(T))
7650 if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
7651 return II->isStr("BOOL");
7652
7653 return false;
7654}
7655
7656/// getObjCEncodingTypeSize returns size of type for objective-c encoding
7657/// purpose.
7658CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) const {
7659 if (!type->isIncompleteArrayType() && type->isIncompleteType())
7660 return CharUnits::Zero();
7661
7662 CharUnits sz = getTypeSizeInChars(type);
7663
7664 // Make all integer and enum types at least as large as an int
7665 if (sz.isPositive() && type->isIntegralOrEnumerationType())
7666 sz = std::max(sz, getTypeSizeInChars(IntTy));
7667 // Treat arrays as pointers, since that's how they're passed in.
7668 else if (type->isArrayType())
7669 sz = getTypeSizeInChars(VoidPtrTy);
7670 return sz;
7671}
7672
7673bool ASTContext::isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const {
7674 return getTargetInfo().getCXXABI().isMicrosoft() &&
7675 VD->isStaticDataMember() &&
7676 VD->getType()->isIntegralOrEnumerationType() &&
7677 !VD->getFirstDecl()->isOutOfLine() && VD->getFirstDecl()->hasInit();
7678}
7679
7680ASTContext::InlineVariableDefinitionKind
7681ASTContext::getInlineVariableDefinitionKind(const VarDecl *VD) const {
7682 if (!VD->isInline())
7683 return InlineVariableDefinitionKind::None;
7684
7685 // In almost all cases, it's a weak definition.
7686 auto *First = VD->getFirstDecl();
7687 if (First->isInlineSpecified() || !First->isStaticDataMember())
7688 return InlineVariableDefinitionKind::Weak;
7689
7690 // If there's a file-context declaration in this translation unit, it's a
7691 // non-discardable definition.
7692 for (auto *D : VD->redecls())
7693 if (D->getLexicalDeclContext()->isFileContext() &&
7694 !D->isInlineSpecified() && (D->isConstexpr() || First->isConstexpr()))
7695 return InlineVariableDefinitionKind::Strong;
7696
7697 // If we've not seen one yet, we don't know.
7698 return InlineVariableDefinitionKind::WeakUnknown;
7699}
7700
7701static std::string charUnitsToString(const CharUnits &CU) {
7702 return llvm::itostr(CU.getQuantity());
7703}
7704
7705/// getObjCEncodingForBlock - Return the encoded type for this block
7706/// declaration.
7707std::string ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr) const {
7708 std::string S;
7709
7710 const BlockDecl *Decl = Expr->getBlockDecl();
7711 QualType BlockTy =
7712 Expr->getType()->castAs<BlockPointerType>()->getPointeeType();
7713 QualType BlockReturnTy = BlockTy->castAs<FunctionType>()->getReturnType();
7714 // Encode result type.
7715 if (getLangOpts().EncodeExtendedBlockSig)
7716 getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, BlockReturnTy, S,
7717 true /*Extended*/);
7718 else
7719 getObjCEncodingForType(BlockReturnTy, S);
7720 // Compute size of all parameters.
7721 // Start with computing size of a pointer in number of bytes.
7722 // FIXME: There might(should) be a better way of doing this computation!
7723 CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
7724 CharUnits ParmOffset = PtrSize;
7725 for (auto *PI : Decl->parameters()) {
7726 QualType PType = PI->getType();
7727 CharUnits sz = getObjCEncodingTypeSize(PType);
7728 if (sz.isZero())
7729 continue;
7730 assert(sz.isPositive() && "BlockExpr - Incomplete param type")(static_cast <bool> (sz.isPositive() && "BlockExpr - Incomplete param type"
) ? void (0) : __assert_fail ("sz.isPositive() && \"BlockExpr - Incomplete param type\""
, "clang/lib/AST/ASTContext.cpp", 7730, __extension__ __PRETTY_FUNCTION__
))
;
7731 ParmOffset += sz;
7732 }
7733 // Size of the argument frame
7734 S += charUnitsToString(ParmOffset);
7735 // Block pointer and offset.
7736 S += "@?0";
7737
7738 // Argument types.
7739 ParmOffset = PtrSize;
7740 for (auto *PVDecl : Decl->parameters()) {
7741 QualType PType = PVDecl->getOriginalType();
7742 if (const auto *AT =
7743 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
7744 // Use array's original type only if it has known number of
7745 // elements.
7746 if (!isa<ConstantArrayType>(AT))
7747 PType = PVDecl->getType();
7748 } else if (PType->isFunctionType())
7749 PType = PVDecl->getType();
7750 if (getLangOpts().EncodeExtendedBlockSig)
7751 getObjCEncodingForMethodParameter(Decl::OBJC_TQ_None, PType,
7752 S, true /*Extended*/);
7753 else
7754 getObjCEncodingForType(PType, S);
7755 S += charUnitsToString(ParmOffset);
7756 ParmOffset += getObjCEncodingTypeSize(PType);
7757 }
7758
7759 return S;
7760}
7761
7762std::string
7763ASTContext::getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const {
7764 std::string S;
7765 // Encode result type.
7766 getObjCEncodingForType(Decl->getReturnType(), S);
7767 CharUnits ParmOffset;
7768 // Compute size of all parameters.
7769 for (auto *PI : Decl->parameters()) {
7770 QualType PType = PI->getType();
7771 CharUnits sz = getObjCEncodingTypeSize(PType);
7772 if (sz.isZero())
7773 continue;
7774
7775 assert(sz.isPositive() &&(static_cast <bool> (sz.isPositive() && "getObjCEncodingForFunctionDecl - Incomplete param type"
) ? void (0) : __assert_fail ("sz.isPositive() && \"getObjCEncodingForFunctionDecl - Incomplete param type\""
, "clang/lib/AST/ASTContext.cpp", 7776, __extension__ __PRETTY_FUNCTION__
))
7776 "getObjCEncodingForFunctionDecl - Incomplete param type")(static_cast <bool> (sz.isPositive() && "getObjCEncodingForFunctionDecl - Incomplete param type"
) ? void (0) : __assert_fail ("sz.isPositive() && \"getObjCEncodingForFunctionDecl - Incomplete param type\""
, "clang/lib/AST/ASTContext.cpp", 7776, __extension__ __PRETTY_FUNCTION__
))
;
7777 ParmOffset += sz;
7778 }
7779 S += charUnitsToString(ParmOffset);
7780 ParmOffset = CharUnits::Zero();
7781
7782 // Argument types.
7783 for (auto *PVDecl : Decl->parameters()) {
7784 QualType PType = PVDecl->getOriginalType();
7785 if (const auto *AT =
7786 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
7787 // Use array's original type only if it has known number of
7788 // elements.
7789 if (!isa<ConstantArrayType>(AT))
7790 PType = PVDecl->getType();
7791 } else if (PType->isFunctionType())
7792 PType = PVDecl->getType();
7793 getObjCEncodingForType(PType, S);
7794 S += charUnitsToString(ParmOffset);
7795 ParmOffset += getObjCEncodingTypeSize(PType);
7796 }
7797
7798 return S;
7799}
7800
7801/// getObjCEncodingForMethodParameter - Return the encoded type for a single
7802/// method parameter or return type. If Extended, include class names and
7803/// block object types.
7804void ASTContext::getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
7805 QualType T, std::string& S,
7806 bool Extended) const {
7807 // Encode type qualifier, 'in', 'inout', etc. for the parameter.
7808 getObjCEncodingForTypeQualifier(QT, S);
7809 // Encode parameter type.
7810 ObjCEncOptions Options = ObjCEncOptions()
7811 .setExpandPointedToStructures()
7812 .setExpandStructures()
7813 .setIsOutermostType();
7814 if (Extended)
7815 Options.setEncodeBlockParameters().setEncodeClassNames();
7816 getObjCEncodingForTypeImpl(T, S, Options, /*Field=*/nullptr);
7817}
7818
7819/// getObjCEncodingForMethodDecl - Return the encoded type for this method
7820/// declaration.
7821std::string ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
7822 bool Extended) const {
7823 // FIXME: This is not very efficient.
7824 // Encode return type.
7825 std::string S;
7826 getObjCEncodingForMethodParameter(Decl->getObjCDeclQualifier(),
7827 Decl->getReturnType(), S, Extended);
7828 // Compute size of all parameters.
7829 // Start with computing size of a pointer in number of bytes.
7830 // FIXME: There might(should) be a better way of doing this computation!
7831 CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
7832 // The first two arguments (self and _cmd) are pointers; account for
7833 // their size.
7834 CharUnits ParmOffset = 2 * PtrSize;
7835 for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
7836 E = Decl->sel_param_end(); PI != E; ++PI) {
7837 QualType PType = (*PI)->getType();
7838 CharUnits sz = getObjCEncodingTypeSize(PType);
7839 if (sz.isZero())
7840 continue;
7841
7842 assert(sz.isPositive() &&(static_cast <bool> (sz.isPositive() && "getObjCEncodingForMethodDecl - Incomplete param type"
) ? void (0) : __assert_fail ("sz.isPositive() && \"getObjCEncodingForMethodDecl - Incomplete param type\""
, "clang/lib/AST/ASTContext.cpp", 7843, __extension__ __PRETTY_FUNCTION__
))
7843 "getObjCEncodingForMethodDecl - Incomplete param type")(static_cast <bool> (sz.isPositive() && "getObjCEncodingForMethodDecl - Incomplete param type"
) ? void (0) : __assert_fail ("sz.isPositive() && \"getObjCEncodingForMethodDecl - Incomplete param type\""
, "clang/lib/AST/ASTContext.cpp", 7843, __extension__ __PRETTY_FUNCTION__
))
;
7844 ParmOffset += sz;
7845 }
7846 S += charUnitsToString(ParmOffset);
7847 S += "@0:";
7848 S += charUnitsToString(PtrSize);
7849
7850 // Argument types.
7851 ParmOffset = 2 * PtrSize;
7852 for (ObjCMethodDecl::param_const_iterator PI = Decl->param_begin(),
7853 E = Decl->sel_param_end(); PI != E; ++PI) {
7854 const ParmVarDecl *PVDecl = *PI;
7855 QualType PType = PVDecl->getOriginalType();
7856 if (const auto *AT =
7857 dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
7858 // Use array's original type only if it has known number of
7859 // elements.
7860 if (!isa<ConstantArrayType>(AT))
7861 PType = PVDecl->getType();
7862 } else if (PType->isFunctionType())
7863 PType = PVDecl->getType();
7864 getObjCEncodingForMethodParameter(PVDecl->getObjCDeclQualifier(),
7865 PType, S, Extended);
7866 S += charUnitsToString(ParmOffset);
7867 ParmOffset += getObjCEncodingTypeSize(PType);
7868 }
7869
7870 return S;
7871}
7872
7873ObjCPropertyImplDecl *
7874ASTContext::getObjCPropertyImplDeclForPropertyDecl(
7875 const ObjCPropertyDecl *PD,
7876 const Decl *Container) const {
7877 if (!Container)
7878 return nullptr;
7879 if (const auto *CID = dyn_cast<ObjCCategoryImplDecl>(Container)) {
7880 for (auto *PID : CID->property_impls())
7881 if (PID->getPropertyDecl() == PD)
7882 return PID;
7883 } else {
7884 const auto *OID = cast<ObjCImplementationDecl>(Container);
7885 for (auto *PID : OID->property_impls())
7886 if (PID->getPropertyDecl() == PD)
7887 return PID;
7888 }
7889 return nullptr;
7890}
7891
7892/// getObjCEncodingForPropertyDecl - Return the encoded type for this
7893/// property declaration. If non-NULL, Container must be either an
7894/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
7895/// NULL when getting encodings for protocol properties.
7896/// Property attributes are stored as a comma-delimited C string. The simple
7897/// attributes readonly and bycopy are encoded as single characters. The
7898/// parametrized attributes, getter=name, setter=name, and ivar=name, are
7899/// encoded as single characters, followed by an identifier. Property types
7900/// are also encoded as a parametrized attribute. The characters used to encode
7901/// these attributes are defined by the following enumeration:
7902/// @code
7903/// enum PropertyAttributes {
7904/// kPropertyReadOnly = 'R', // property is read-only.
7905/// kPropertyBycopy = 'C', // property is a copy of the value last assigned
7906/// kPropertyByref = '&', // property is a reference to the value last assigned
7907/// kPropertyDynamic = 'D', // property is dynamic
7908/// kPropertyGetter = 'G', // followed by getter selector name
7909/// kPropertySetter = 'S', // followed by setter selector name
7910/// kPropertyInstanceVariable = 'V' // followed by instance variable name
7911/// kPropertyType = 'T' // followed by old-style type encoding.
7912/// kPropertyWeak = 'W' // 'weak' property
7913/// kPropertyStrong = 'P' // property GC'able
7914/// kPropertyNonAtomic = 'N' // property non-atomic
7915/// };
7916/// @endcode
7917std::string
7918ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
7919 const Decl *Container) const {
7920 // Collect information from the property implementation decl(s).
7921 bool Dynamic = false;
7922 ObjCPropertyImplDecl *SynthesizePID = nullptr;
7923
7924 if (ObjCPropertyImplDecl *PropertyImpDecl =
7925 getObjCPropertyImplDeclForPropertyDecl(PD, Container)) {
7926 if (PropertyImpDecl->getPropertyImplementation() == ObjCPropertyImplDecl::Dynamic)
7927 Dynamic = true;
7928 else
7929 SynthesizePID = PropertyImpDecl;
7930 }
7931
7932 // FIXME: This is not very efficient.
7933 std::string S = "T";
7934
7935 // Encode result type.
7936 // GCC has some special rules regarding encoding of properties which
7937 // closely resembles encoding of ivars.
7938 getObjCEncodingForPropertyType(PD->getType(), S);
7939
7940 if (PD->isReadOnly()) {
7941 S += ",R";
7942 if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_copy)
7943 S += ",C";
7944 if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_retain)
7945 S += ",&";
7946 if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_weak)
7947 S += ",W";
7948 } else {
7949 switch (PD->getSetterKind()) {
7950 case ObjCPropertyDecl::Assign: break;
7951 case ObjCPropertyDecl::Copy: S += ",C"; break;
7952 case ObjCPropertyDecl::Retain: S += ",&"; break;
7953 case ObjCPropertyDecl::Weak: S += ",W"; break;
7954 }
7955 }
7956
7957 // It really isn't clear at all what this means, since properties
7958 // are "dynamic by default".
7959 if (Dynamic)
7960 S += ",D";
7961
7962 if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_nonatomic)
7963 S += ",N";
7964
7965 if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_getter) {
7966 S += ",G";
7967 S += PD->getGetterName().getAsString();
7968 }
7969
7970 if (PD->getPropertyAttributes() & ObjCPropertyAttribute::kind_setter) {
7971 S += ",S";
7972 S += PD->getSetterName().getAsString();
7973 }
7974
7975 if (SynthesizePID) {
7976 const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
7977 S += ",V";
7978 S += OID->getNameAsString();
7979 }
7980
7981 // FIXME: OBJCGC: weak & strong
7982 return S;
7983}
7984
7985/// getLegacyIntegralTypeEncoding -
7986/// Another legacy compatibility encoding: 32-bit longs are encoded as
7987/// 'l' or 'L' , but not always. For typedefs, we need to use
7988/// 'i' or 'I' instead if encoding a struct field, or a pointer!
7989void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
7990 if (PointeeTy->getAs<TypedefType>()) {
7991 if (const auto *BT = PointeeTy->getAs<BuiltinType>()) {
7992 if (BT->getKind() == BuiltinType::ULong && getIntWidth(PointeeTy) == 32)
7993 PointeeTy = UnsignedIntTy;
7994 else
7995 if (BT->getKind() == BuiltinType::Long && getIntWidth(PointeeTy) == 32)
7996 PointeeTy = IntTy;
7997 }
7998 }
7999}
8000
8001void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
8002 const FieldDecl *Field,
8003 QualType *NotEncodedT) const {
8004 // We follow the behavior of gcc, expanding structures which are
8005 // directly pointed to, and expanding embedded structures. Note that
8006 // these rules are sufficient to prevent recursive encoding of the
8007 // same type.
8008 getObjCEncodingForTypeImpl(T, S,
8009 ObjCEncOptions()
8010 .setExpandPointedToStructures()
8011 .setExpandStructures()
8012 .setIsOutermostType(),
8013 Field, NotEncodedT);
8014}
8015
8016void ASTContext::getObjCEncodingForPropertyType(QualType T,
8017 std::string& S) const {
8018 // Encode result type.
8019 // GCC has some special rules regarding encoding of properties which
8020 // closely resembles encoding of ivars.
8021 getObjCEncodingForTypeImpl(T, S,
8022 ObjCEncOptions()
8023 .setExpandPointedToStructures()
8024 .setExpandStructures()
8025 .setIsOutermostType()
8026 .setEncodingProperty(),
8027 /*Field=*/nullptr);
8028}
8029
8030static char getObjCEncodingForPrimitiveType(const ASTContext *C,
8031 const BuiltinType *BT) {
8032 BuiltinType::Kind kind = BT->getKind();
8033 switch (kind) {
8034 case BuiltinType::Void: return 'v';
8035 case BuiltinType::Bool: return 'B';
8036 case BuiltinType::Char8:
8037 case BuiltinType::Char_U:
8038 case BuiltinType::UChar: return 'C';
8039 case BuiltinType::Char16:
8040 case BuiltinType::UShort: return 'S';
8041 case BuiltinType::Char32:
8042 case BuiltinType::UInt: return 'I';
8043 case BuiltinType::ULong:
8044 return C->getTargetInfo().getLongWidth() == 32 ? 'L' : 'Q';
8045 case BuiltinType::UInt128: return 'T';
8046 case BuiltinType::ULongLong: return 'Q';
8047 case BuiltinType::Char_S:
8048 case BuiltinType::SChar: return 'c';
8049 case BuiltinType::Short: return 's';
8050 case BuiltinType::WChar_S:
8051 case BuiltinType::WChar_U:
8052 case BuiltinType::Int: return 'i';
8053 case BuiltinType::Long:
8054 return C->getTargetInfo().getLongWidth() == 32 ? 'l' : 'q';
8055 case BuiltinType::LongLong: return 'q';
8056 case BuiltinType::Int128: return 't';
8057 case BuiltinType::Float: return 'f';
8058 case BuiltinType::Double: return 'd';
8059 case BuiltinType::LongDouble: return 'D';
8060 case BuiltinType::NullPtr: return '*'; // like char*
8061
8062 case BuiltinType::BFloat16:
8063 case BuiltinType::Float16:
8064 case BuiltinType::Float128:
8065 case BuiltinType::Ibm128:
8066 case BuiltinType::Half:
8067 case BuiltinType::ShortAccum:
8068 case BuiltinType::Accum:
8069 case BuiltinType::LongAccum:
8070 case BuiltinType::UShortAccum:
8071 case BuiltinType::UAccum:
8072 case BuiltinType::ULongAccum:
8073 case BuiltinType::ShortFract:
8074 case BuiltinType::Fract:
8075 case BuiltinType::LongFract:
8076 case BuiltinType::UShortFract:
8077 case BuiltinType::UFract:
8078 case BuiltinType::ULongFract:
8079 case BuiltinType::SatShortAccum:
8080 case BuiltinType::SatAccum:
8081 case BuiltinType::SatLongAccum:
8082 case BuiltinType::SatUShortAccum:
8083 case BuiltinType::SatUAccum:
8084 case BuiltinType::SatULongAccum:
8085 case BuiltinType::SatShortFract:
8086 case BuiltinType::SatFract:
8087 case BuiltinType::SatLongFract:
8088 case BuiltinType::SatUShortFract:
8089 case BuiltinType::SatUFract:
8090 case BuiltinType::SatULongFract:
8091 // FIXME: potentially need @encodes for these!
8092 return ' ';
8093
8094#define SVE_TYPE(Name, Id, SingletonId) \
8095 case BuiltinType::Id:
8096#include "clang/Basic/AArch64SVEACLETypes.def"
8097#define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
8098#include "clang/Basic/RISCVVTypes.def"
8099#define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
8100#include "clang/Basic/WebAssemblyReferenceTypes.def"
8101 {
8102 DiagnosticsEngine &Diags = C->getDiagnostics();
8103 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
8104 "cannot yet @encode type %0");
8105 Diags.Report(DiagID) << BT->getName(C->getPrintingPolicy());
8106 return ' ';
8107 }
8108
8109 case BuiltinType::ObjCId:
8110 case BuiltinType::ObjCClass:
8111 case BuiltinType::ObjCSel:
8112 llvm_unreachable("@encoding ObjC primitive type")::llvm::llvm_unreachable_internal("@encoding ObjC primitive type"
, "clang/lib/AST/ASTContext.cpp", 8112)
;
8113
8114 // OpenCL and placeholder types don't need @encodings.
8115#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
8116 case BuiltinType::Id:
8117#include "clang/Basic/OpenCLImageTypes.def"
8118#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
8119 case BuiltinType::Id:
8120#include "clang/Basic/OpenCLExtensionTypes.def"
8121 case BuiltinType::OCLEvent:
8122 case BuiltinType::OCLClkEvent:
8123 case BuiltinType::OCLQueue:
8124 case BuiltinType::OCLReserveID:
8125 case BuiltinType::OCLSampler:
8126 case BuiltinType::Dependent:
8127#define PPC_VECTOR_TYPE(Name, Id, Size) \
8128 case BuiltinType::Id:
8129#include "clang/Basic/PPCTypes.def"
8130#define BUILTIN_TYPE(KIND, ID)
8131#define PLACEHOLDER_TYPE(KIND, ID) \
8132 case BuiltinType::KIND:
8133#include "clang/AST/BuiltinTypes.def"
8134 llvm_unreachable("invalid builtin type for @encode")::llvm::llvm_unreachable_internal("invalid builtin type for @encode"
, "clang/lib/AST/ASTContext.cpp", 8134)
;
8135 }
8136 llvm_unreachable("invalid BuiltinType::Kind value")::llvm::llvm_unreachable_internal("invalid BuiltinType::Kind value"
, "clang/lib/AST/ASTContext.cpp", 8136)
;
8137}
8138
8139static char ObjCEncodingForEnumType(const ASTContext *C, const EnumType *ET) {
8140 EnumDecl *Enum = ET->getDecl();
8141
8142 // The encoding of an non-fixed enum type is always 'i', regardless of size.
8143 if (!Enum->isFixed())
8144 return 'i';
8145
8146 // The encoding of a fixed enum type matches its fixed underlying type.
8147 const auto *BT = Enum->getIntegerType()->castAs<BuiltinType>();
8148 return getObjCEncodingForPrimitiveType(C, BT);
8149}
8150
8151static void EncodeBitField(const ASTContext *Ctx, std::string& S,
8152 QualType T, const FieldDecl *FD) {
8153 assert(FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl")(static_cast <bool> (FD->isBitField() && "not a bitfield - getObjCEncodingForTypeImpl"
) ? void (0) : __assert_fail ("FD->isBitField() && \"not a bitfield - getObjCEncodingForTypeImpl\""
, "clang/lib/AST/ASTContext.cpp", 8153, __extension__ __PRETTY_FUNCTION__
))
;
8154 S += 'b';
8155 // The NeXT runtime encodes bit fields as b followed by the number of bits.
8156 // The GNU runtime requires more information; bitfields are encoded as b,
8157 // then the offset (in bits) of the first element, then the type of the
8158 // bitfield, then the size in bits. For example, in this structure:
8159 //
8160 // struct
8161 // {
8162 // int integer;
8163 // int flags:2;
8164 // };
8165 // On a 32-bit system, the encoding for flags would be b2 for the NeXT
8166 // runtime, but b32i2 for the GNU runtime. The reason for this extra
8167 // information is not especially sensible, but we're stuck with it for
8168 // compatibility with GCC, although providing it breaks anything that
8169 // actually uses runtime introspection and wants to work on both runtimes...
8170 if (Ctx->getLangOpts().ObjCRuntime.isGNUFamily()) {
8171 uint64_t Offset;
8172
8173 if (const auto *IVD = dyn_cast<ObjCIvarDecl>(FD)) {
8174 Offset = Ctx->lookupFieldBitOffset(IVD->getContainingInterface(), nullptr,
8175 IVD);
8176 } else {
8177 const RecordDecl *RD = FD->getParent();
8178 const ASTRecordLayout &RL = Ctx->getASTRecordLayout(RD);
8179 Offset = RL.getFieldOffset(FD->getFieldIndex());
8180 }
8181
8182 S += llvm::utostr(Offset);
8183
8184 if (const auto *ET = T->getAs<EnumType>())
8185 S += ObjCEncodingForEnumType(Ctx, ET);
8186 else {
8187 const auto *BT = T->castAs<BuiltinType>();
8188 S += getObjCEncodingForPrimitiveType(Ctx, BT);
8189 }
8190 }
8191 S += llvm::utostr(FD->getBitWidthValue(*Ctx));
8192}
8193
8194// Helper function for determining whether the encoded type string would include
8195// a template specialization type.
8196static bool hasTemplateSpecializationInEncodedString(const Type *T,
8197 bool VisitBasesAndFields) {
8198 T = T->getBaseElementTypeUnsafe();
8199
8200 if (auto *PT = T->getAs<PointerType>())
8201 return hasTemplateSpecializationInEncodedString(
8202 PT->getPointeeType().getTypePtr(), false);
8203
8204 auto *CXXRD = T->getAsCXXRecordDecl();
8205
8206 if (!CXXRD)
8207 return false;
8208
8209 if (isa<ClassTemplateSpecializationDecl>(CXXRD))
8210 return true;
8211
8212 if (!CXXRD->hasDefinition() || !VisitBasesAndFields)
8213 return false;
8214
8215 for (const auto &B : CXXRD->bases())
8216 if (hasTemplateSpecializationInEncodedString(B.getType().getTypePtr(),
8217 true))
8218 return true;
8219
8220 for (auto *FD : CXXRD->fields())
8221 if (hasTemplateSpecializationInEncodedString(FD->getType().getTypePtr(),
8222 true))
8223 return true;
8224
8225 return false;
8226}
8227
8228// FIXME: Use SmallString for accumulating string.
8229void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string &S,
8230 const ObjCEncOptions Options,
8231 const FieldDecl *FD,
8232 QualType *NotEncodedT) const {
8233 CanQualType CT = getCanonicalType(T);
8234 switch (CT->getTypeClass()) {
8235 case Type::Builtin:
8236 case Type::Enum:
8237 if (FD && FD->isBitField())
8238 return EncodeBitField(this, S, T, FD);
8239 if (const auto *BT = dyn_cast<BuiltinType>(CT))
8240 S += getObjCEncodingForPrimitiveType(this, BT);
8241 else
8242 S += ObjCEncodingForEnumType(this, cast<EnumType>(CT));
8243 return;
8244
8245 case Type::Complex:
8246 S += 'j';
8247 getObjCEncodingForTypeImpl(T->castAs<ComplexType>()->getElementType(), S,
8248 ObjCEncOptions(),
8249 /*Field=*/nullptr);
8250 return;
8251
8252 case Type::Atomic:
8253 S += 'A';
8254 getObjCEncodingForTypeImpl(T->castAs<AtomicType>()->getValueType(), S,
8255 ObjCEncOptions(),
8256 /*Field=*/nullptr);
8257 return;
8258
8259 // encoding for pointer or reference types.
8260 case Type::Pointer:
8261 case Type::LValueReference:
8262 case Type::RValueReference: {
8263 QualType PointeeTy;
8264 if (isa<PointerType>(CT)) {
8265 const auto *PT = T->castAs<PointerType>();
8266 if (PT->isObjCSelType()) {
8267 S += ':';
8268 return;
8269 }
8270 PointeeTy = PT->getPointeeType();
8271 } else {
8272 PointeeTy = T->castAs<ReferenceType>()->getPointeeType();
8273 }
8274
8275 bool isReadOnly = false;
8276 // For historical/compatibility reasons, the read-only qualifier of the
8277 // pointee gets emitted _before_ the '^'. The read-only qualifier of
8278 // the pointer itself gets ignored, _unless_ we are looking at a typedef!
8279 // Also, do not emit the 'r' for anything but the outermost type!
8280 if (T->getAs<TypedefType>()) {
8281 if (Options.IsOutermostType() && T.isConstQualified()) {
8282 isReadOnly = true;
8283 S += 'r';
8284 }
8285 } else if (Options.IsOutermostType()) {
8286 QualType P = PointeeTy;
8287 while (auto PT = P->getAs<PointerType>())
8288 P = PT->getPointeeType();
8289 if (P.isConstQualified()) {
8290 isReadOnly = true;
8291 S += 'r';
8292 }
8293 }
8294 if (isReadOnly) {
8295 // Another legacy compatibility encoding. Some ObjC qualifier and type
8296 // combinations need to be rearranged.
8297 // Rewrite "in const" from "nr" to "rn"
8298 if (StringRef(S).endswith("nr"))
8299 S.replace(S.end()-2, S.end(), "rn");
8300 }
8301
8302 if (PointeeTy->isCharType()) {
8303 // char pointer types should be encoded as '*' unless it is a
8304 // type that has been typedef'd to 'BOOL'.
8305 if (!isTypeTypedefedAsBOOL(PointeeTy)) {
8306 S += '*';
8307 return;
8308 }
8309 } else if (const auto *RTy = PointeeTy->getAs<RecordType>()) {
8310 // GCC binary compat: Need to convert "struct objc_class *" to "#".
8311 if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
8312 S += '#';
8313 return;
8314 }
8315 // GCC binary compat: Need to convert "struct objc_object *" to "@".
8316 if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
8317 S += '@';
8318 return;
8319 }
8320 // If the encoded string for the class includes template names, just emit
8321 // "^v" for pointers to the class.
8322 if (getLangOpts().CPlusPlus &&
8323 (!getLangOpts().EncodeCXXClassTemplateSpec &&
8324 hasTemplateSpecializationInEncodedString(
8325 RTy, Options.ExpandPointedToStructures()))) {
8326 S += "^v";
8327 return;
8328 }
8329 // fall through...
8330 }
8331 S += '^';
8332 getLegacyIntegralTypeEncoding(PointeeTy);
8333
8334 ObjCEncOptions NewOptions;
8335 if (Options.ExpandPointedToStructures())
8336 NewOptions.setExpandStructures();
8337 getObjCEncodingForTypeImpl(PointeeTy, S, NewOptions,
8338 /*Field=*/nullptr, NotEncodedT);
8339 return;
8340 }
8341
8342 case Type::ConstantArray:
8343 case Type::IncompleteArray:
8344 case Type::VariableArray: {
8345 const auto *AT = cast<ArrayType>(CT);
8346
8347 if (isa<IncompleteArrayType>(AT) && !Options.IsStructField()) {
8348 // Incomplete arrays are encoded as a pointer to the array element.
8349 S += '^';
8350
8351 getObjCEncodingForTypeImpl(
8352 AT->getElementType(), S,
8353 Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD);
8354 } else {
8355 S += '[';
8356
8357 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
8358 S += llvm::utostr(CAT->getSize().getZExtValue());
8359 else {
8360 //Variable length arrays are encoded as a regular array with 0 elements.
8361 assert((isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) &&(static_cast <bool> ((isa<VariableArrayType>(AT) ||
isa<IncompleteArrayType>(AT)) && "Unknown array type!"
) ? void (0) : __assert_fail ("(isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) && \"Unknown array type!\""
, "clang/lib/AST/ASTContext.cpp", 8362, __extension__ __PRETTY_FUNCTION__
))
8362 "Unknown array type!")(static_cast <bool> ((isa<VariableArrayType>(AT) ||
isa<IncompleteArrayType>(AT)) && "Unknown array type!"
) ? void (0) : __assert_fail ("(isa<VariableArrayType>(AT) || isa<IncompleteArrayType>(AT)) && \"Unknown array type!\""
, "clang/lib/AST/ASTContext.cpp", 8362, __extension__ __PRETTY_FUNCTION__
))
;
8363 S += '0';
8364 }
8365
8366 getObjCEncodingForTypeImpl(
8367 AT->getElementType(), S,
8368 Options.keepingOnly(ObjCEncOptions().setExpandStructures()), FD,
8369 NotEncodedT);
8370 S += ']';
8371 }
8372 return;
8373 }
8374
8375 case Type::FunctionNoProto:
8376 case Type::FunctionProto:
8377 S += '?';
8378 return;
8379
8380 case Type::Record: {
8381 RecordDecl *RDecl = cast<RecordType>(CT)->getDecl();
8382 S += RDecl->isUnion() ? '(' : '{';
8383 // Anonymous structures print as '?'
8384 if (const IdentifierInfo *II = RDecl->getIdentifier()) {
8385 S += II->getName();
8386 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(RDecl)) {
8387 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
8388 llvm::raw_string_ostream OS(S);
8389 printTemplateArgumentList(OS, TemplateArgs.asArray(),
8390 getPrintingPolicy());
8391 }
8392 } else {
8393 S += '?';
8394 }
8395 if (Options.ExpandStructures()) {
8396 S += '=';
8397 if (!RDecl->isUnion()) {
8398 getObjCEncodingForStructureImpl(RDecl, S, FD, true, NotEncodedT);
8399 } else {
8400 for (const auto *Field : RDecl->fields()) {
8401 if (FD) {
8402 S += '"';
8403 S += Field->getNameAsString();
8404 S += '"';
8405 }
8406
8407 // Special case bit-fields.
8408 if (Field->isBitField()) {
8409 getObjCEncodingForTypeImpl(Field->getType(), S,
8410 ObjCEncOptions().setExpandStructures(),
8411 Field);
8412 } else {
8413 QualType qt = Field->getType();
8414 getLegacyIntegralTypeEncoding(qt);
8415 getObjCEncodingForTypeImpl(
8416 qt, S,
8417 ObjCEncOptions().setExpandStructures().setIsStructField(), FD,
8418 NotEncodedT);
8419 }
8420 }
8421 }
8422 }
8423 S += RDecl->isUnion() ? ')' : '}';
8424 return;
8425 }
8426
8427 case Type::BlockPointer: {
8428 const auto *BT = T->castAs<BlockPointerType>();
8429 S += "@?"; // Unlike a pointer-to-function, which is "^?".
8430 if (Options.EncodeBlockParameters()) {
8431 const auto *FT = BT->getPointeeType()->castAs<FunctionType>();
8432
8433 S += '<';
8434 // Block return type
8435 getObjCEncodingForTypeImpl(FT->getReturnType(), S,
8436 Options.forComponentType(), FD, NotEncodedT);
8437 // Block self
8438 S += "@?";
8439 // Block parameters
8440 if (const auto *FPT = dyn_cast<FunctionProtoType>(FT)) {
8441 for (const auto &I : FPT->param_types())
8442 getObjCEncodingForTypeImpl(I, S, Options.forComponentType(), FD,
8443 NotEncodedT);
8444 }
8445 S += '>';
8446 }
8447 return;
8448 }
8449
8450 case Type::ObjCObject: {
8451 // hack to match legacy encoding of *id and *Class
8452 QualType Ty = getObjCObjectPointerType(CT);
8453 if (Ty->isObjCIdType()) {
8454 S += "{objc_object=}";
8455 return;
8456 }
8457 else if (Ty->isObjCClassType()) {
8458 S += "{objc_class=}";
8459 return;
8460 }
8461 // TODO: Double check to make sure this intentionally falls through.
8462 [[fallthrough]];
8463 }
8464
8465 case Type::ObjCInterface: {
8466 // Ignore protocol qualifiers when mangling at this level.
8467 // @encode(class_name)
8468 ObjCInterfaceDecl *OI = T->castAs<ObjCObjectType>()->getInterface();
8469 S += '{';
8470 S += OI->getObjCRuntimeNameAsString();
8471 if (Options.ExpandStructures()) {
8472 S += '=';
8473 SmallVector<const ObjCIvarDecl*, 32> Ivars;
8474 DeepCollectObjCIvars(OI, true, Ivars);
8475 for (unsigned i = 0, e = Ivars.size(); i != e; ++i) {
8476 const FieldDecl *Field = Ivars[i];
8477 if (Field->isBitField())
8478 getObjCEncodingForTypeImpl(Field->getType(), S,
8479 ObjCEncOptions().setExpandStructures(),
8480 Field);
8481 else
8482 getObjCEncodingForTypeImpl(Field->getType(), S,
8483 ObjCEncOptions().setExpandStructures(), FD,
8484 NotEncodedT);
8485 }
8486 }
8487 S += '}';
8488 return;
8489 }
8490
8491 case Type::ObjCObjectPointer: {
8492 const auto *OPT = T->castAs<ObjCObjectPointerType>();
8493 if (OPT->isObjCIdType()) {
8494 S += '@';
8495 return;
8496 }
8497
8498 if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
8499 // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
8500 // Since this is a binary compatibility issue, need to consult with
8501 // runtime folks. Fortunately, this is a *very* obscure construct.
8502 S += '#';
8503 return;
8504 }
8505
8506 if (OPT->isObjCQualifiedIdType()) {
8507 getObjCEncodingForTypeImpl(
8508 getObjCIdType(), S,
8509 Options.keepingOnly(ObjCEncOptions()
8510 .setExpandPointedToStructures()
8511 .setExpandStructures()),
8512 FD);
8513 if (FD || Options.EncodingProperty() || Options.EncodeClassNames()) {
8514 // Note that we do extended encoding of protocol qualifier list
8515 // Only when doing ivar or property encoding.
8516 S += '"';
8517 for (const auto *I : OPT->quals()) {
8518 S += '<';
8519 S += I->getObjCRuntimeNameAsString();
8520 S += '>';
8521 }
8522 S += '"';
8523 }
8524 return;
8525 }
8526
8527 S += '@';
8528 if (OPT->getInterfaceDecl() &&
8529 (FD || Options.EncodingProperty() || Options.EncodeClassNames())) {
8530 S += '"';
8531 S += OPT->getInterfaceDecl()->getObjCRuntimeNameAsString();
8532 for (const auto *I : OPT->quals()) {
8533 S += '<';
8534 S += I->getObjCRuntimeNameAsString();
8535 S += '>';
8536 }
8537 S += '"';
8538 }
8539 return;
8540 }
8541
8542 // gcc just blithely ignores member pointers.
8543 // FIXME: we should do better than that. 'M' is available.
8544 case Type::MemberPointer:
8545 // This matches gcc's encoding, even though technically it is insufficient.
8546 //FIXME. We should do a better job than gcc.
8547 case Type::Vector:
8548 case Type::ExtVector:
8549 // Until we have a coherent encoding of these three types, issue warning.
8550 if (NotEncodedT)
8551 *NotEncodedT = T;
8552 return;
8553
8554 case Type::ConstantMatrix:
8555 if (NotEncodedT)
8556 *NotEncodedT = T;
8557 return;
8558
8559 case Type::BitInt:
8560 if (NotEncodedT)
8561 *NotEncodedT = T;
8562 return;
8563
8564 // We could see an undeduced auto type here during error recovery.
8565 // Just ignore it.
8566 case Type::Auto:
8567 case Type::DeducedTemplateSpecialization:
8568 return;
8569
8570 case Type::Pipe:
8571#define ABSTRACT_TYPE(KIND, BASE)
8572#define TYPE(KIND, BASE)
8573#define DEPENDENT_TYPE(KIND, BASE) \
8574 case Type::KIND:
8575#define NON_CANONICAL_TYPE(KIND, BASE) \
8576 case Type::KIND:
8577#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(KIND, BASE) \
8578 case Type::KIND:
8579#include "clang/AST/TypeNodes.inc"
8580 llvm_unreachable("@encode for dependent type!")::llvm::llvm_unreachable_internal("@encode for dependent type!"
, "clang/lib/AST/ASTContext.cpp", 8580)
;
8581 }
8582 llvm_unreachable("bad type kind!")::llvm::llvm_unreachable_internal("bad type kind!", "clang/lib/AST/ASTContext.cpp"
, 8582)
;
8583}
8584
8585void ASTContext::getObjCEncodingForStructureImpl(RecordDecl *RDecl,
8586 std::string &S,
8587 const FieldDecl *FD,
8588 bool includeVBases,
8589 QualType *NotEncodedT) const {
8590 assert(RDecl && "Expected non-null RecordDecl")(static_cast <bool> (RDecl && "Expected non-null RecordDecl"
) ? void (0) : __assert_fail ("RDecl && \"Expected non-null RecordDecl\""
, "clang/lib/AST/ASTContext.cpp", 8590, __extension__ __PRETTY_FUNCTION__
))
;
8591 assert(!RDecl->isUnion() && "Should not be called for unions")(static_cast <bool> (!RDecl->isUnion() && "Should not be called for unions"
) ? void (0) : __assert_fail ("!RDecl->isUnion() && \"Should not be called for unions\""
, "clang/lib/AST/ASTContext.cpp", 8591, __extension__ __PRETTY_FUNCTION__
))
;
8592 if (!RDecl->getDefinition() || RDecl->getDefinition()->isInvalidDecl())
8593 return;
8594
8595 const auto *CXXRec = dyn_cast<CXXRecordDecl>(RDecl);
8596 std::multimap<uint64_t, NamedDecl *> FieldOrBaseOffsets;
8597 const ASTRecordLayout &layout = getASTRecordLayout(RDecl);
8598
8599 if (CXXRec) {
8600 for (const auto &BI : CXXRec->bases()) {
8601 if (!BI.isVirtual()) {
8602 CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
8603 if (base->isEmpty())
8604 continue;
8605 uint64_t offs = toBits(layout.getBaseClassOffset(base));
8606 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
8607 std::make_pair(offs, base));
8608 }
8609 }
8610 }
8611
8612 unsigned i = 0;
8613 for (FieldDecl *Field : RDecl->fields()) {
8614 if (!Field->isZeroLengthBitField(*this) && Field->isZeroSize(*this))
8615 continue;
8616 uint64_t offs = layout.getFieldOffset(i);
8617 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
8618 std::make_pair(offs, Field));
8619 ++i;
8620 }
8621
8622 if (CXXRec && includeVBases) {
8623 for (const auto &BI : CXXRec->vbases()) {
8624 CXXRecordDecl *base = BI.getType()->getAsCXXRecordDecl();
8625 if (base->isEmpty())
8626 continue;
8627 uint64_t offs = toBits(layout.getVBaseClassOffset(base));
8628 if (offs >= uint64_t(toBits(layout.getNonVirtualSize())) &&
8629 FieldOrBaseOffsets.find(offs) == FieldOrBaseOffsets.end())
8630 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.end(),
8631 std::make_pair(offs, base));
8632 }
8633 }
8634
8635 CharUnits size;
8636 if (CXXRec) {
8637 size = includeVBases ? layout.getSize() : layout.getNonVirtualSize();
8638 } else {
8639 size = layout.getSize();
8640 }
8641
8642#ifndef NDEBUG
8643 uint64_t CurOffs = 0;
8644#endif
8645 std::multimap<uint64_t, NamedDecl *>::iterator
8646 CurLayObj = FieldOrBaseOffsets.begin();
8647
8648 if (CXXRec && CXXRec->isDynamicClass() &&
8649 (CurLayObj == FieldOrBaseOffsets.end() || CurLayObj->first != 0)) {
8650 if (FD) {
8651 S += "\"_vptr$";
8652 std::string recname = CXXRec->getNameAsString();
8653 if (recname.empty()) recname = "?";
8654 S += recname;
8655 S += '"';
8656 }
8657 S += "^^?";
8658#ifndef NDEBUG
8659 CurOffs += getTypeSize(VoidPtrTy);
8660#endif
8661 }
8662
8663 if (!RDecl->hasFlexibleArrayMember()) {
8664 // Mark the end of the structure.
8665 uint64_t offs = toBits(size);
8666 FieldOrBaseOffsets.insert(FieldOrBaseOffsets.upper_bound(offs),
8667 std::make_pair(offs, nullptr));
8668 }
8669
8670 for (; CurLayObj != FieldOrBaseOffsets.end(); ++CurLayObj) {
8671#ifndef NDEBUG
8672 assert(CurOffs <= CurLayObj->first)(static_cast <bool> (CurOffs <= CurLayObj->first)
? void (0) : __assert_fail ("CurOffs <= CurLayObj->first"
, "clang/lib/AST/ASTContext.cpp", 8672, __extension__ __PRETTY_FUNCTION__
))
;
8673 if (CurOffs < CurLayObj->first) {
8674 uint64_t padding = CurLayObj->first - CurOffs;
8675 // FIXME: There doesn't seem to be a way to indicate in the encoding that
8676 // packing/alignment of members is different that normal, in which case
8677 // the encoding will be out-of-sync with the real layout.
8678 // If the runtime switches to just consider the size of types without
8679 // taking into account alignment, we could make padding explicit in the
8680 // encoding (e.g. using arrays of chars). The encoding strings would be
8681 // longer then though.
8682 CurOffs += padding;
8683 }
8684#endif
8685
8686 NamedDecl *dcl = CurLayObj->second;
8687 if (!dcl)
8688 break; // reached end of structure.
8689
8690 if (auto *base = dyn_cast<CXXRecordDecl>(dcl)) {
8691 // We expand the bases without their virtual bases since those are going
8692 // in the initial structure. Note that this differs from gcc which
8693 // expands virtual bases each time one is encountered in the hierarchy,
8694 // making the encoding type bigger than it really is.
8695 getObjCEncodingForStructureImpl(base, S, FD, /*includeVBases*/false,
8696 NotEncodedT);
8697 assert(!base->isEmpty())(static_cast <bool> (!base->isEmpty()) ? void (0) : __assert_fail
("!base->isEmpty()", "clang/lib/AST/ASTContext.cpp", 8697
, __extension__ __PRETTY_FUNCTION__))
;
8698#ifndef NDEBUG
8699 CurOffs += toBits(getASTRecordLayout(base).getNonVirtualSize());
8700#endif
8701 } else {
8702 const auto *field = cast<FieldDecl>(dcl);
8703 if (FD) {
8704 S += '"';
8705 S += field->getNameAsString();
8706 S += '"';
8707 }
8708
8709 if (field->isBitField()) {
8710 EncodeBitField(this, S, field->getType(), field);
8711#ifndef NDEBUG
8712 CurOffs += field->getBitWidthValue(*this);
8713#endif
8714 } else {
8715 QualType qt = field->getType();
8716 getLegacyIntegralTypeEncoding(qt);
8717 getObjCEncodingForTypeImpl(
8718 qt, S, ObjCEncOptions().setExpandStructures().setIsStructField(),
8719 FD, NotEncodedT);
8720#ifndef NDEBUG
8721 CurOffs += getTypeSize(field->getType());
8722#endif
8723 }
8724 }
8725 }
8726}
8727
8728void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
8729 std::string& S) const {
8730 if (QT & Decl::OBJC_TQ_In)
8731 S += 'n';
8732 if (QT & Decl::OBJC_TQ_Inout)
8733 S += 'N';
8734 if (QT & Decl::OBJC_TQ_Out)
8735 S += 'o';
8736 if (QT & Decl::OBJC_TQ_Bycopy)
8737 S += 'O';
8738 if (QT & Decl::OBJC_TQ_Byref)
8739 S += 'R';
8740 if (QT & Decl::OBJC_TQ_Oneway)
8741 S += 'V';
8742}
8743
8744TypedefDecl *ASTContext::getObjCIdDecl() const {
8745 if (!ObjCIdDecl) {
8746 QualType T = getObjCObjectType(ObjCBuiltinIdTy, {}, {});
8747 T = getObjCObjectPointerType(T);
8748 ObjCIdDecl = buildImplicitTypedef(T, "id");
8749 }
8750 return ObjCIdDecl;
8751}
8752
8753TypedefDecl *ASTContext::getObjCSelDecl() const {
8754 if (!ObjCSelDecl) {
8755 QualType T = getPointerType(ObjCBuiltinSelTy);
8756 ObjCSelDecl = buildImplicitTypedef(T, "SEL");
8757 }
8758 return ObjCSelDecl;
8759}
8760
8761TypedefDecl *ASTContext::getObjCClassDecl() const {
8762 if (!ObjCClassDecl) {
8763 QualType T = getObjCObjectType(ObjCBuiltinClassTy, {}, {});
8764 T = getObjCObjectPointerType(T);
8765 ObjCClassDecl = buildImplicitTypedef(T, "Class");
8766 }
8767 return ObjCClassDecl;
8768}
8769
8770ObjCInterfaceDecl *ASTContext::getObjCProtocolDecl() const {
8771 if (!ObjCProtocolClassDecl) {
8772 ObjCProtocolClassDecl
8773 = ObjCInterfaceDecl::Create(*this, getTranslationUnitDecl(),
8774 SourceLocation(),
8775 &Idents.get("Protocol"),
8776 /*typeParamList=*/nullptr,
8777 /*PrevDecl=*/nullptr,
8778 SourceLocation(), true);
8779 }
8780
8781 return ObjCProtocolClassDecl;
8782}
8783
8784//===----------------------------------------------------------------------===//
8785// __builtin_va_list Construction Functions
8786//===----------------------------------------------------------------------===//
8787
8788static TypedefDecl *CreateCharPtrNamedVaListDecl(const ASTContext *Context,
8789 StringRef Name) {
8790 // typedef char* __builtin[_ms]_va_list;
8791 QualType T = Context->getPointerType(Context->CharTy);
8792 return Context->buildImplicitTypedef(T, Name);
8793}
8794
8795static TypedefDecl *CreateMSVaListDecl(const ASTContext *Context) {
8796 return CreateCharPtrNamedVaListDecl(Context, "__builtin_ms_va_list");
8797}
8798
8799static TypedefDecl *CreateCharPtrBuiltinVaListDecl(const ASTContext *Context) {
8800 return CreateCharPtrNamedVaListDecl(Context, "__builtin_va_list");
8801}
8802
8803static TypedefDecl *CreateVoidPtrBuiltinVaListDecl(const ASTContext *Context) {
8804 // typedef void* __builtin_va_list;
8805 QualType T = Context->getPointerType(Context->VoidTy);
8806 return Context->buildImplicitTypedef(T, "__builtin_va_list");
8807}
8808
8809static TypedefDecl *
8810CreateAArch64ABIBuiltinVaListDecl(const ASTContext *Context) {
8811 // struct __va_list
8812 RecordDecl *VaListTagDecl = Context->buildImplicitRecord("__va_list");
8813 if (Context->getLangOpts().CPlusPlus) {
8814 // namespace std { struct __va_list {
8815 auto *NS = NamespaceDecl::Create(
8816 const_cast<ASTContext &>(*Context), Context->getTranslationUnitDecl(),
8817 /*Inline=*/false, SourceLocation(), SourceLocation(),
8818 &Context->Idents.get("std"),
8819 /*PrevDecl=*/nullptr, /*Nested=*/false);
8820 NS->setImplicit();
8821 VaListTagDecl->setDeclContext(NS);
8822 }
8823
8824 VaListTagDecl->startDefinition();
8825
8826 const size_t NumFields = 5;
8827 QualType FieldTypes[NumFields];
8828 const char *FieldNames[NumFields];
8829
8830 // void *__stack;
8831 FieldTypes[0] = Context->getPointerType(Context->VoidTy);
8832 FieldNames[0] = "__stack";
8833
8834 // void *__gr_top;
8835 FieldTypes[1] = Context->getPointerType(Context->VoidTy);
8836 FieldNames[1] = "__gr_top";
8837
8838 // void *__vr_top;
8839 FieldTypes[2] = Context->getPointerType(Context->VoidTy);
8840 FieldNames[2] = "__vr_top";
8841
8842 // int __gr_offs;
8843 FieldTypes[3] = Context->IntTy;
8844 FieldNames[3] = "__gr_offs";
8845
8846 // int __vr_offs;
8847 FieldTypes[4] = Context->IntTy;
8848 FieldNames[4] = "__vr_offs";
8849
8850 // Create fields
8851 for (unsigned i = 0; i < NumFields; ++i) {
8852 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8853 VaListTagDecl,
8854 SourceLocation(),
8855 SourceLocation(),
8856 &Context->Idents.get(FieldNames[i]),
8857 FieldTypes[i], /*TInfo=*/nullptr,
8858 /*BitWidth=*/nullptr,
8859 /*Mutable=*/false,
8860 ICIS_NoInit);
8861 Field->setAccess(AS_public);
8862 VaListTagDecl->addDecl(Field);
8863 }
8864 VaListTagDecl->completeDefinition();
8865 Context->VaListTagDecl = VaListTagDecl;
8866 QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8867
8868 // } __builtin_va_list;
8869 return Context->buildImplicitTypedef(VaListTagType, "__builtin_va_list");
8870}
8871
8872static TypedefDecl *CreatePowerABIBuiltinVaListDecl(const ASTContext *Context) {
8873 // typedef struct __va_list_tag {
8874 RecordDecl *VaListTagDecl;
8875
8876 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
8877 VaListTagDecl->startDefinition();
8878
8879 const size_t NumFields = 5;
8880 QualType FieldTypes[NumFields];
8881 const char *FieldNames[NumFields];
8882
8883 // unsigned char gpr;
8884 FieldTypes[0] = Context->UnsignedCharTy;
8885 FieldNames[0] = "gpr";
8886
8887 // unsigned char fpr;
8888 FieldTypes[1] = Context->UnsignedCharTy;
8889 FieldNames[1] = "fpr";
8890
8891 // unsigned short reserved;
8892 FieldTypes[2] = Context->UnsignedShortTy;
8893 FieldNames[2] = "reserved";
8894
8895 // void* overflow_arg_area;
8896 FieldTypes[3] = Context->getPointerType(Context->VoidTy);
8897 FieldNames[3] = "overflow_arg_area";
8898
8899 // void* reg_save_area;
8900 FieldTypes[4] = Context->getPointerType(Context->VoidTy);
8901 FieldNames[4] = "reg_save_area";
8902
8903 // Create fields
8904 for (unsigned i = 0; i < NumFields; ++i) {
8905 FieldDecl *Field = FieldDecl::Create(*Context, VaListTagDecl,
8906 SourceLocation(),
8907 SourceLocation(),
8908 &Context->Idents.get(FieldNames[i]),
8909 FieldTypes[i], /*TInfo=*/nullptr,
8910 /*BitWidth=*/nullptr,
8911 /*Mutable=*/false,
8912 ICIS_NoInit);
8913 Field->setAccess(AS_public);
8914 VaListTagDecl->addDecl(Field);
8915 }
8916 VaListTagDecl->completeDefinition();
8917 Context->VaListTagDecl = VaListTagDecl;
8918 QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8919
8920 // } __va_list_tag;
8921 TypedefDecl *VaListTagTypedefDecl =
8922 Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
8923
8924 QualType VaListTagTypedefType =
8925 Context->getTypedefType(VaListTagTypedefDecl);
8926
8927 // typedef __va_list_tag __builtin_va_list[1];
8928 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
8929 QualType VaListTagArrayType
8930 = Context->getConstantArrayType(VaListTagTypedefType,
8931 Size, nullptr, ArrayType::Normal, 0);
8932 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
8933}
8934
8935static TypedefDecl *
8936CreateX86_64ABIBuiltinVaListDecl(const ASTContext *Context) {
8937 // struct __va_list_tag {
8938 RecordDecl *VaListTagDecl;
8939 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
8940 VaListTagDecl->startDefinition();
8941
8942 const size_t NumFields = 4;
8943 QualType FieldTypes[NumFields];
8944 const char *FieldNames[NumFields];
8945
8946 // unsigned gp_offset;
8947 FieldTypes[0] = Context->UnsignedIntTy;
8948 FieldNames[0] = "gp_offset";
8949
8950 // unsigned fp_offset;
8951 FieldTypes[1] = Context->UnsignedIntTy;
8952 FieldNames[1] = "fp_offset";
8953
8954 // void* overflow_arg_area;
8955 FieldTypes[2] = Context->getPointerType(Context->VoidTy);
8956 FieldNames[2] = "overflow_arg_area";
8957
8958 // void* reg_save_area;
8959 FieldTypes[3] = Context->getPointerType(Context->VoidTy);
8960 FieldNames[3] = "reg_save_area";
8961
8962 // Create fields
8963 for (unsigned i = 0; i < NumFields; ++i) {
8964 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
8965 VaListTagDecl,
8966 SourceLocation(),
8967 SourceLocation(),
8968 &Context->Idents.get(FieldNames[i]),
8969 FieldTypes[i], /*TInfo=*/nullptr,
8970 /*BitWidth=*/nullptr,
8971 /*Mutable=*/false,
8972 ICIS_NoInit);
8973 Field->setAccess(AS_public);
8974 VaListTagDecl->addDecl(Field);
8975 }
8976 VaListTagDecl->completeDefinition();
8977 Context->VaListTagDecl = VaListTagDecl;
8978 QualType VaListTagType = Context->getRecordType(VaListTagDecl);
8979
8980 // };
8981
8982 // typedef struct __va_list_tag __builtin_va_list[1];
8983 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
8984 QualType VaListTagArrayType = Context->getConstantArrayType(
8985 VaListTagType, Size, nullptr, ArrayType::Normal, 0);
8986 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
8987}
8988
8989static TypedefDecl *CreatePNaClABIBuiltinVaListDecl(const ASTContext *Context) {
8990 // typedef int __builtin_va_list[4];
8991 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 4);
8992 QualType IntArrayType = Context->getConstantArrayType(
8993 Context->IntTy, Size, nullptr, ArrayType::Normal, 0);
8994 return Context->buildImplicitTypedef(IntArrayType, "__builtin_va_list");
8995}
8996
8997static TypedefDecl *
8998CreateAAPCSABIBuiltinVaListDecl(const ASTContext *Context) {
8999 // struct __va_list
9000 RecordDecl *VaListDecl = Context->buildImplicitRecord("__va_list");
9001 if (Context->getLangOpts().CPlusPlus) {
9002 // namespace std { struct __va_list {
9003 NamespaceDecl *NS;
9004 NS = NamespaceDecl::Create(const_cast<ASTContext &>(*Context),
9005 Context->getTranslationUnitDecl(),
9006 /*Inline=*/false, SourceLocation(),
9007 SourceLocation(), &Context->Idents.get("std"),
9008 /*PrevDecl=*/nullptr, /*Nested=*/false);
9009 NS->setImplicit();
9010 VaListDecl->setDeclContext(NS);
9011 }
9012
9013 VaListDecl->startDefinition();
9014
9015 // void * __ap;
9016 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
9017 VaListDecl,
9018 SourceLocation(),
9019 SourceLocation(),
9020 &Context->Idents.get("__ap"),
9021 Context->getPointerType(Context->VoidTy),
9022 /*TInfo=*/nullptr,
9023 /*BitWidth=*/nullptr,
9024 /*Mutable=*/false,
9025 ICIS_NoInit);
9026 Field->setAccess(AS_public);
9027 VaListDecl->addDecl(Field);
9028
9029 // };
9030 VaListDecl->completeDefinition();
9031 Context->VaListTagDecl = VaListDecl;
9032
9033 // typedef struct __va_list __builtin_va_list;
9034 QualType T = Context->getRecordType(VaListDecl);
9035 return Context->buildImplicitTypedef(T, "__builtin_va_list");
9036}
9037
9038static TypedefDecl *
9039CreateSystemZBuiltinVaListDecl(const ASTContext *Context) {
9040 // struct __va_list_tag {
9041 RecordDecl *VaListTagDecl;
9042 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
9043 VaListTagDecl->startDefinition();
9044
9045 const size_t NumFields = 4;
9046 QualType FieldTypes[NumFields];
9047 const char *FieldNames[NumFields];
9048
9049 // long __gpr;
9050 FieldTypes[0] = Context->LongTy;
9051 FieldNames[0] = "__gpr";
9052
9053 // long __fpr;
9054 FieldTypes[1] = Context->LongTy;
9055 FieldNames[1] = "__fpr";
9056
9057 // void *__overflow_arg_area;
9058 FieldTypes[2] = Context->getPointerType(Context->VoidTy);
9059 FieldNames[2] = "__overflow_arg_area";
9060
9061 // void *__reg_save_area;
9062 FieldTypes[3] = Context->getPointerType(Context->VoidTy);
9063 FieldNames[3] = "__reg_save_area";
9064
9065 // Create fields
9066 for (unsigned i = 0; i < NumFields; ++i) {
9067 FieldDecl *Field = FieldDecl::Create(const_cast<ASTContext &>(*Context),
9068 VaListTagDecl,
9069 SourceLocation(),
9070 SourceLocation(),
9071 &Context->Idents.get(FieldNames[i]),
9072 FieldTypes[i], /*TInfo=*/nullptr,
9073 /*BitWidth=*/nullptr,
9074 /*Mutable=*/false,
9075 ICIS_NoInit);
9076 Field->setAccess(AS_public);
9077 VaListTagDecl->addDecl(Field);
9078 }
9079 VaListTagDecl->completeDefinition();
9080 Context->VaListTagDecl = VaListTagDecl;
9081 QualType VaListTagType = Context->getRecordType(VaListTagDecl);
9082
9083 // };
9084
9085 // typedef __va_list_tag __builtin_va_list[1];
9086 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
9087 QualType VaListTagArrayType = Context->getConstantArrayType(
9088 VaListTagType, Size, nullptr, ArrayType::Normal, 0);
9089
9090 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
9091}
9092
9093static TypedefDecl *CreateHexagonBuiltinVaListDecl(const ASTContext *Context) {
9094 // typedef struct __va_list_tag {
9095 RecordDecl *VaListTagDecl;
9096 VaListTagDecl = Context->buildImplicitRecord("__va_list_tag");
9097 VaListTagDecl->startDefinition();
9098
9099 const size_t NumFields = 3;
9100 QualType FieldTypes[NumFields];
9101 const char *FieldNames[NumFields];
9102
9103 // void *CurrentSavedRegisterArea;
9104 FieldTypes[0] = Context->getPointerType(Context->VoidTy);
9105 FieldNames[0] = "__current_saved_reg_area_pointer";
9106
9107 // void *SavedRegAreaEnd;
9108 FieldTypes[1] = Context->getPointerType(Context->VoidTy);
9109 FieldNames[1] = "__saved_reg_area_end_pointer";
9110
9111 // void *OverflowArea;
9112 FieldTypes[2] = Context->getPointerType(Context->VoidTy);
9113 FieldNames[2] = "__overflow_area_pointer";
9114
9115 // Create fields
9116 for (unsigned i = 0; i < NumFields; ++i) {
9117 FieldDecl *Field = FieldDecl::Create(
9118 const_cast<ASTContext &>(*Context), VaListTagDecl, SourceLocation(),
9119 SourceLocation(), &Context->Idents.get(FieldNames[i]), FieldTypes[i],
9120 /*TInfo=*/nullptr,
9121 /*BitWidth=*/nullptr,
9122 /*Mutable=*/false, ICIS_NoInit);
9123 Field->setAccess(AS_public);
9124 VaListTagDecl->addDecl(Field);
9125 }
9126 VaListTagDecl->completeDefinition();
9127 Context->VaListTagDecl = VaListTagDecl;
9128 QualType VaListTagType = Context->getRecordType(VaListTagDecl);
9129
9130 // } __va_list_tag;
9131 TypedefDecl *VaListTagTypedefDecl =
9132 Context->buildImplicitTypedef(VaListTagType, "__va_list_tag");
9133
9134 QualType VaListTagTypedefType = Context->getTypedefType(VaListTagTypedefDecl);
9135
9136 // typedef __va_list_tag __builtin_va_list[1];
9137 llvm::APInt Size(Context->getTypeSize(Context->getSizeType()), 1);
9138 QualType VaListTagArrayType = Context->getConstantArrayType(
9139 VaListTagTypedefType, Size, nullptr, ArrayType::Normal, 0);
9140
9141 return Context->buildImplicitTypedef(VaListTagArrayType, "__builtin_va_list");
9142}
9143
9144static TypedefDecl *CreateVaListDecl(const ASTContext *Context,
9145 TargetInfo::BuiltinVaListKind Kind) {
9146 switch (Kind) {
9147 case TargetInfo::CharPtrBuiltinVaList:
9148 return CreateCharPtrBuiltinVaListDecl(Context);
9149 case TargetInfo::VoidPtrBuiltinVaList:
9150 return CreateVoidPtrBuiltinVaListDecl(Context);
9151 case TargetInfo::AArch64ABIBuiltinVaList:
9152 return CreateAArch64ABIBuiltinVaListDecl(Context);
9153 case TargetInfo::PowerABIBuiltinVaList:
9154 return CreatePowerABIBuiltinVaListDecl(Context);
9155 case TargetInfo::X86_64ABIBuiltinVaList:
9156 return CreateX86_64ABIBuiltinVaListDecl(Context);
9157 case TargetInfo::PNaClABIBuiltinVaList:
9158 return CreatePNaClABIBuiltinVaListDecl(Context);
9159 case TargetInfo::AAPCSABIBuiltinVaList:
9160 return CreateAAPCSABIBuiltinVaListDecl(Context);
9161 case TargetInfo::SystemZBuiltinVaList:
9162 return CreateSystemZBuiltinVaListDecl(Context);
9163 case TargetInfo::HexagonBuiltinVaList:
9164 return CreateHexagonBuiltinVaListDecl(Context);
9165 }
9166
9167 llvm_unreachable("Unhandled __builtin_va_list type kind")::llvm::llvm_unreachable_internal("Unhandled __builtin_va_list type kind"
, "clang/lib/AST/ASTContext.cpp", 9167)
;
9168}
9169
9170TypedefDecl *ASTContext::getBuiltinVaListDecl() const {
9171 if (!BuiltinVaListDecl) {
9172 BuiltinVaListDecl = CreateVaListDecl(this, Target->getBuiltinVaListKind());
9173 assert(BuiltinVaListDecl->isImplicit())(static_cast <bool> (BuiltinVaListDecl->isImplicit()
) ? void (0) : __assert_fail ("BuiltinVaListDecl->isImplicit()"
, "clang/lib/AST/ASTContext.cpp", 9173, __extension__ __PRETTY_FUNCTION__
))
;
9174 }
9175
9176 return BuiltinVaListDecl;
9177}
9178
9179Decl *ASTContext::getVaListTagDecl() const {
9180 // Force the creation of VaListTagDecl by building the __builtin_va_list
9181 // declaration.
9182 if (!VaListTagDecl)
9183 (void)getBuiltinVaListDecl();
9184
9185 return VaListTagDecl;
9186}
9187
9188TypedefDecl *ASTContext::getBuiltinMSVaListDecl() const {
9189 if (!BuiltinMSVaListDecl)
9190 BuiltinMSVaListDecl = CreateMSVaListDecl(this);
9191
9192 return BuiltinMSVaListDecl;
9193}
9194
9195bool ASTContext::canBuiltinBeRedeclared(const FunctionDecl *FD) const {
9196 // Allow redecl custom type checking builtin for HLSL.
9197 if (LangOpts.HLSL && FD->getBuiltinID() != Builtin::NotBuiltin &&
9198 BuiltinInfo.hasCustomTypechecking(FD->getBuiltinID()))
9199 return true;
9200 return BuiltinInfo.canBeRedeclared(FD->getBuiltinID());
9201}
9202
9203void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
9204 assert(ObjCConstantStringType.isNull() &&(static_cast <bool> (ObjCConstantStringType.isNull() &&
"'NSConstantString' type already set!") ? void (0) : __assert_fail
("ObjCConstantStringType.isNull() && \"'NSConstantString' type already set!\""
, "clang/lib/AST/ASTContext.cpp", 9205, __extension__ __PRETTY_FUNCTION__
))
9205 "'NSConstantString' type already set!")(static_cast <bool> (ObjCConstantStringType.isNull() &&
"'NSConstantString' type already set!") ? void (0) : __assert_fail
("ObjCConstantStringType.isNull() && \"'NSConstantString' type already set!\""
, "clang/lib/AST/ASTContext.cpp", 9205, __extension__ __PRETTY_FUNCTION__
))
;
9206
9207 ObjCConstantStringType = getObjCInterfaceType(Decl);
9208}
9209
9210/// Retrieve the template name that corresponds to a non-empty
9211/// lookup.
9212TemplateName
9213ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
9214 UnresolvedSetIterator End) const {
9215 unsigned size = End - Begin;
9216 assert(size > 1 && "set is not overloaded!")(static_cast <bool> (size > 1 && "set is not overloaded!"
) ? void (0) : __assert_fail ("size > 1 && \"set is not overloaded!\""
, "clang/lib/AST/ASTContext.cpp", 9216, __extension__ __PRETTY_FUNCTION__
))
;
9217
9218 void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
9219 size * sizeof(FunctionTemplateDecl*));
9220 auto *OT = new (memory) OverloadedTemplateStorage(size);
9221
9222 NamedDecl **Storage = OT->getStorage();
9223 for (UnresolvedSetIterator I = Begin; I != End; ++I) {
9224 NamedDecl *D = *I;
9225 assert(isa<FunctionTemplateDecl>(D) ||(static_cast <bool> (isa<FunctionTemplateDecl>(D)
|| isa<UnresolvedUsingValueDecl>(D) || (isa<UsingShadowDecl
>(D) && isa<FunctionTemplateDecl>(D->getUnderlyingDecl
()))) ? void (0) : __assert_fail ("isa<FunctionTemplateDecl>(D) || isa<UnresolvedUsingValueDecl>(D) || (isa<UsingShadowDecl>(D) && isa<FunctionTemplateDecl>(D->getUnderlyingDecl()))"
, "clang/lib/AST/ASTContext.cpp", 9228, __extension__ __PRETTY_FUNCTION__
))
9226 isa<UnresolvedUsingValueDecl>(D) ||(static_cast <bool> (isa<FunctionTemplateDecl>(D)
|| isa<UnresolvedUsingValueDecl>(D) || (isa<UsingShadowDecl
>(D) && isa<FunctionTemplateDecl>(D->getUnderlyingDecl
()))) ? void (0) : __assert_fail ("isa<FunctionTemplateDecl>(D) || isa<UnresolvedUsingValueDecl>(D) || (isa<UsingShadowDecl>(D) && isa<FunctionTemplateDecl>(D->getUnderlyingDecl()))"
, "clang/lib/AST/ASTContext.cpp", 9228, __extension__ __PRETTY_FUNCTION__
))
9227 (isa<UsingShadowDecl>(D) &&(static_cast <bool> (isa<FunctionTemplateDecl>(D)
|| isa<UnresolvedUsingValueDecl>(D) || (isa<UsingShadowDecl
>(D) && isa<FunctionTemplateDecl>(D->getUnderlyingDecl
()))) ? void (0) : __assert_fail ("isa<FunctionTemplateDecl>(D) || isa<UnresolvedUsingValueDecl>(D) || (isa<UsingShadowDecl>(D) && isa<FunctionTemplateDecl>(D->getUnderlyingDecl()))"
, "clang/lib/AST/ASTContext.cpp", 9228, __extension__ __PRETTY_FUNCTION__
))
9228 isa<FunctionTemplateDecl>(D->getUnderlyingDecl())))(static_cast <bool> (isa<FunctionTemplateDecl>(D)
|| isa<UnresolvedUsingValueDecl>(D) || (isa<UsingShadowDecl
>(D) && isa<FunctionTemplateDecl>(D->getUnderlyingDecl
()))) ? void (0) : __assert_fail ("isa<FunctionTemplateDecl>(D) || isa<UnresolvedUsingValueDecl>(D) || (isa<UsingShadowDecl>(D) && isa<FunctionTemplateDecl>(D->getUnderlyingDecl()))"
, "clang/lib/AST/ASTContext.cpp", 9228, __extension__ __PRETTY_FUNCTION__
))
;
9229 *Storage++ = D;
9230 }
9231
9232 return TemplateName(OT);
9233}
9234
9235/// Retrieve a template name representing an unqualified-id that has been
9236/// assumed to name a template for ADL purposes.
9237TemplateName ASTContext::getAssumedTemplateName(DeclarationName Name) const {
9238 auto *OT = new (*this) AssumedTemplateStorage(Name);
9239 return TemplateName(OT);
9240}
9241
9242/// Retrieve the template name that represents a qualified
9243/// template name such as \c std::vector.
9244TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
9245 bool TemplateKeyword,
9246 TemplateName Template) const {
9247 assert(NNS && "Missing nested-name-specifier in qualified template name")(static_cast <bool> (NNS && "Missing nested-name-specifier in qualified template name"
) ? void (0) : __assert_fail ("NNS && \"Missing nested-name-specifier in qualified template name\""
, "clang/lib/AST/ASTContext.cpp", 9247, __extension__ __PRETTY_FUNCTION__
))
;
9248
9249 // FIXME: Canonicalization?
9250 llvm::FoldingSetNodeID ID;
9251 QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
9252
9253 void *InsertPos = nullptr;
9254 QualifiedTemplateName *QTN =
9255 QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
9256 if (!QTN) {
9257 QTN = new (*this, alignof(QualifiedTemplateName))
9258 QualifiedTemplateName(NNS, TemplateKeyword, Template);
9259 QualifiedTemplateNames.InsertNode(QTN, InsertPos);
9260 }
9261
9262 return TemplateName(QTN);
9263}
9264
9265/// Retrieve the template name that represents a dependent
9266/// template name such as \c MetaFun::template apply.
9267TemplateName
9268ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
9269 const IdentifierInfo *Name) const {
9270 assert((!NNS || NNS->isDependent()) &&(static_cast <bool> ((!NNS || NNS->isDependent()) &&
"Nested name specifier must be dependent") ? void (0) : __assert_fail
("(!NNS || NNS->isDependent()) && \"Nested name specifier must be dependent\""
, "clang/lib/AST/ASTContext.cpp", 9271, __extension__ __PRETTY_FUNCTION__
))
9271 "Nested name specifier must be dependent")(static_cast <bool> ((!NNS || NNS->isDependent()) &&
"Nested name specifier must be dependent") ? void (0) : __assert_fail
("(!NNS || NNS->isDependent()) && \"Nested name specifier must be dependent\""
, "clang/lib/AST/ASTContext.cpp", 9271, __extension__ __PRETTY_FUNCTION__
))
;
9272
9273 llvm::FoldingSetNodeID ID;
9274 DependentTemplateName::Profile(ID, NNS, Name);
9275
9276 void *InsertPos = nullptr;
9277 DependentTemplateName *QTN =
9278 DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
9279
9280 if (QTN)
9281 return TemplateName(QTN);
9282
9283 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
9284 if (CanonNNS == NNS) {
9285 QTN = new (*this, alignof(DependentTemplateName))
9286 DependentTemplateName(NNS, Name);
9287 } else {
9288 TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
9289 QTN = new (*this, alignof(DependentTemplateName))
9290 DependentTemplateName(NNS, Name, Canon);
9291 DependentTemplateName *CheckQTN =
9292 DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
9293 assert(!CheckQTN && "Dependent type name canonicalization broken")(static_cast <bool> (!CheckQTN && "Dependent type name canonicalization broken"
) ? void (0) : __assert_fail ("!CheckQTN && \"Dependent type name canonicalization broken\""
, "clang/lib/AST/ASTContext.cpp", 9293, __extension__ __PRETTY_FUNCTION__
))
;
9294 (void)CheckQTN;
9295 }
9296
9297 DependentTemplateNames.InsertNode(QTN, InsertPos);
9298 return TemplateName(QTN);
9299}
9300
9301/// Retrieve the template name that represents a dependent
9302/// template name such as \c MetaFun::template operator+.
9303TemplateName
9304ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
9305 OverloadedOperatorKind Operator) const {
9306 assert((!NNS || NNS->isDependent()) &&(static_cast <bool> ((!NNS || NNS->isDependent()) &&
"Nested name specifier must be dependent") ? void (0) : __assert_fail
("(!NNS || NNS->isDependent()) && \"Nested name specifier must be dependent\""
, "clang/lib/AST/ASTContext.cpp", 9307, __extension__ __PRETTY_FUNCTION__
))
9307 "Nested name specifier must be dependent")(static_cast <bool> ((!NNS || NNS->isDependent()) &&
"Nested name specifier must be dependent") ? void (0) : __assert_fail
("(!NNS || NNS->isDependent()) && \"Nested name specifier must be dependent\""
, "clang/lib/AST/ASTContext.cpp", 9307, __extension__ __PRETTY_FUNCTION__
))
;
9308
9309 llvm::FoldingSetNodeID ID;
9310 DependentTemplateName::Profile(ID, NNS, Operator);
9311
9312 void *InsertPos = nullptr;
9313 DependentTemplateName *QTN
9314 = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
9315
9316 if (QTN)
9317 return TemplateName(QTN);
9318
9319 NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
9320 if (CanonNNS == NNS) {
9321 QTN = new (*this, alignof(DependentTemplateName))
9322 DependentTemplateName(NNS, Operator);
9323 } else {
9324 TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
9325 QTN = new (*this, alignof(DependentTemplateName))
9326 DependentTemplateName(NNS, Operator, Canon);
9327
9328 DependentTemplateName *CheckQTN
9329 = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
9330 assert(!CheckQTN && "Dependent template name canonicalization broken")(static_cast <bool> (!CheckQTN && "Dependent template name canonicalization broken"
) ? void (0) : __assert_fail ("!CheckQTN && \"Dependent template name canonicalization broken\""
, "clang/lib/AST/ASTContext.cpp", 9330, __extension__ __PRETTY_FUNCTION__
))
;
9331 (void)CheckQTN;
9332 }
9333
9334 DependentTemplateNames.InsertNode(QTN, InsertPos);
9335 return TemplateName(QTN);
9336}
9337
9338TemplateName ASTContext::getSubstTemplateTemplateParm(
9339 TemplateName Replacement, Decl *AssociatedDecl, unsigned Index,
9340 std::optional<unsigned> PackIndex) const {
9341 llvm::FoldingSetNodeID ID;
9342 SubstTemplateTemplateParmStorage::Profile(ID, Replacement, AssociatedDecl,
9343 Index, PackIndex);
9344
9345 void *insertPos = nullptr;
9346 SubstTemplateTemplateParmStorage *subst
9347 = SubstTemplateTemplateParms.FindNodeOrInsertPos(ID, insertPos);
9348
9349 if (!subst) {
9350 subst = new (*this) SubstTemplateTemplateParmStorage(
9351 Replacement, AssociatedDecl, Index, PackIndex);
9352 SubstTemplateTemplateParms.InsertNode(subst, insertPos);
9353 }
9354
9355 return TemplateName(subst);
9356}
9357
9358TemplateName
9359ASTContext::getSubstTemplateTemplateParmPack(const TemplateArgument &ArgPack,
9360 Decl *AssociatedDecl,
9361 unsigned Index, bool Final) const {
9362 auto &Self = const_cast<ASTContext &>(*this);
9363 llvm::FoldingSetNodeID ID;
9364 SubstTemplateTemplateParmPackStorage::Profile(ID, Self, ArgPack,
9365 AssociatedDecl, Index, Final);
9366
9367 void *InsertPos = nullptr;
9368 SubstTemplateTemplateParmPackStorage *Subst
9369 = SubstTemplateTemplateParmPacks.FindNodeOrInsertPos(ID, InsertPos);
9370
9371 if (!Subst) {
9372 Subst = new (*this) SubstTemplateTemplateParmPackStorage(
9373 ArgPack.pack_elements(), AssociatedDecl, Index, Final);
9374 SubstTemplateTemplateParmPacks.InsertNode(Subst, InsertPos);
9375 }
9376
9377 return TemplateName(Subst);
9378}
9379
9380/// getFromTargetType - Given one of the integer types provided by
9381/// TargetInfo, produce the corresponding type. The unsigned @p Type
9382/// is actually a value of type @c TargetInfo::IntType.
9383CanQualType ASTContext::getFromTargetType(unsigned Type) const {
9384 switch (Type) {
9385 case TargetInfo::NoInt: return {};
9386 case TargetInfo::SignedChar: return SignedCharTy;
9387 case TargetInfo::UnsignedChar: return UnsignedCharTy;
9388 case TargetInfo::SignedShort: return ShortTy;
9389 case TargetInfo::UnsignedShort: return UnsignedShortTy;
9390 case TargetInfo::SignedInt: return IntTy;
9391 case TargetInfo::UnsignedInt: return UnsignedIntTy;
9392 case TargetInfo::SignedLong: return LongTy;
9393 case TargetInfo::UnsignedLong: return UnsignedLongTy;
9394 case TargetInfo::SignedLongLong: return LongLongTy;
9395 case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
9396 }
9397
9398 llvm_unreachable("Unhandled TargetInfo::IntType value")::llvm::llvm_unreachable_internal("Unhandled TargetInfo::IntType value"
, "clang/lib/AST/ASTContext.cpp", 9398)
;
9399}
9400
9401//===----------------------------------------------------------------------===//
9402// Type Predicates.
9403//===----------------------------------------------------------------------===//
9404
9405/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
9406/// garbage collection attribute.
9407///
9408Qualifiers::GC ASTContext::getObjCGCAttrKind(QualType Ty) const {
9409 if (getLangOpts().getGC() == LangOptions::NonGC)
9410 return Qualifiers::GCNone;
9411
9412 assert(getLangOpts().ObjC)(static_cast <bool> (getLangOpts().ObjC) ? void (0) : __assert_fail
("getLangOpts().ObjC", "clang/lib/AST/ASTContext.cpp", 9412,
__extension__ __PRETTY_FUNCTION__))
;
9413 Qualifiers::GC GCAttrs = Ty.getObjCGCAttr();
9414
9415 // Default behaviour under objective-C's gc is for ObjC pointers
9416 // (or pointers to them) be treated as though they were declared
9417 // as __strong.
9418 if (GCAttrs == Qualifiers::GCNone) {
9419 if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
9420 return Qualifiers::Strong;
9421 else if (Ty->isPointerType())
9422 return getObjCGCAttrKind(Ty->castAs<PointerType>()->getPointeeType());
9423 } else {
9424 // It's not valid to set GC attributes on anything that isn't a
9425 // pointer.
9426#ifndef NDEBUG
9427 QualType CT = Ty->getCanonicalTypeInternal();
9428 while (const auto *AT = dyn_cast<ArrayType>(CT))
9429 CT = AT->getElementType();
9430 assert(CT->isAnyPointerType() || CT->isBlockPointerType())(static_cast <bool> (CT->isAnyPointerType() || CT->
isBlockPointerType()) ? void (0) : __assert_fail ("CT->isAnyPointerType() || CT->isBlockPointerType()"
, "clang/lib/AST/ASTContext.cpp", 9430, __extension__ __PRETTY_FUNCTION__
))
;
9431#endif
9432 }
9433 return GCAttrs;
9434}
9435
9436//===----------------------------------------------------------------------===//
9437// Type Compatibility Testing
9438//===----------------------------------------------------------------------===//
9439
9440/// areCompatVectorTypes - Return true if the two specified vector types are
9441/// compatible.
9442static bool areCompatVectorTypes(const VectorType *LHS,
9443 const VectorType *RHS) {
9444 assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified())(static_cast <bool> (LHS->isCanonicalUnqualified() &&
RHS->isCanonicalUnqualified()) ? void (0) : __assert_fail
("LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified()"
, "clang/lib/AST/ASTContext.cpp", 9444, __extension__ __PRETTY_FUNCTION__
))
;
9445 return LHS->getElementType() == RHS->getElementType() &&
9446 LHS->getNumElements() == RHS->getNumElements();
9447}
9448
9449/// areCompatMatrixTypes - Return true if the two specified matrix types are
9450/// compatible.
9451static bool areCompatMatrixTypes(const ConstantMatrixType *LHS,
9452 const ConstantMatrixType *RHS) {
9453 assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified())(static_cast <bool> (LHS->isCanonicalUnqualified() &&
RHS->isCanonicalUnqualified()) ? void (0) : __assert_fail
("LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified()"
, "clang/lib/AST/ASTContext.cpp", 9453, __extension__ __PRETTY_FUNCTION__
))
;
9454 return LHS->getElementType() == RHS->getElementType() &&
9455 LHS->getNumRows() == RHS->getNumRows() &&
9456 LHS->getNumColumns() == RHS->getNumColumns();
9457}
9458
9459bool ASTContext::areCompatibleVectorTypes(QualType FirstVec,
9460 QualType SecondVec) {
9461 assert(FirstVec->isVectorType() && "FirstVec should be a vector type")(static_cast <bool> (FirstVec->isVectorType() &&
"FirstVec should be a vector type") ? void (0) : __assert_fail
("FirstVec->isVectorType() && \"FirstVec should be a vector type\""
, "clang/lib/AST/ASTContext.cpp", 9461, __extension__ __PRETTY_FUNCTION__
))
;
9462 assert(SecondVec->isVectorType() && "SecondVec should be a vector type")(static_cast <bool> (SecondVec->isVectorType() &&
"SecondVec should be a vector type") ? void (0) : __assert_fail
("SecondVec->isVectorType() && \"SecondVec should be a vector type\""
, "clang/lib/AST/ASTContext.cpp", 9462, __extension__ __PRETTY_FUNCTION__
))
;
9463
9464 if (hasSameUnqualifiedType(FirstVec, SecondVec))
9465 return true;
9466
9467 // Treat Neon vector types and most AltiVec vector types as if they are the
9468 // equivalent GCC vector types.
9469 const auto *First = FirstVec->castAs<VectorType>();
9470 const auto *Second = SecondVec->castAs<VectorType>();
9471 if (First->getNumElements() == Second->getNumElements() &&
9472 hasSameType(First->getElementType(), Second->getElementType()) &&
9473 First->getVectorKind() != VectorType::AltiVecPixel &&
9474 First->getVectorKind() != VectorType::AltiVecBool &&
9475 Second->getVectorKind() != VectorType::AltiVecPixel &&
9476 Second->getVectorKind() != VectorType::AltiVecBool &&
9477 First->getVectorKind() != VectorType::SveFixedLengthDataVector &&
9478 First->getVectorKind() != VectorType::SveFixedLengthPredicateVector &&
9479 Second->getVectorKind() != VectorType::SveFixedLengthDataVector &&
9480 Second->getVectorKind() != VectorType::SveFixedLengthPredicateVector &&
9481 First->getVectorKind() != VectorType::RVVFixedLengthDataVector &&
9482 Second->getVectorKind() != VectorType::RVVFixedLengthDataVector)
9483 return true;
9484
9485 return false;
9486}
9487
9488/// getSVETypeSize - Return SVE vector or predicate register size.
9489static uint64_t getSVETypeSize(ASTContext &Context, const BuiltinType *Ty) {
9490 assert(Ty->isVLSTBuiltinType() && "Invalid SVE Type")(static_cast <bool> (Ty->isVLSTBuiltinType() &&
"Invalid SVE Type") ? void (0) : __assert_fail ("Ty->isVLSTBuiltinType() && \"Invalid SVE Type\""
, "clang/lib/AST/ASTContext.cpp", 9490, __extension__ __PRETTY_FUNCTION__
))
;
9491 if (Ty->getKind() == BuiltinType::SveBool ||
9492 Ty->getKind() == BuiltinType::SveCount)
9493 return (Context.getLangOpts().VScaleMin * 128) / Context.getCharWidth();
9494 return Context.getLangOpts().VScaleMin * 128;
9495}
9496
9497bool ASTContext::areCompatibleSveTypes(QualType FirstType,
9498 QualType SecondType) {
9499 assert((static_cast <bool> (((FirstType->isSVESizelessBuiltinType
() && SecondType->isVectorType()) || (FirstType->
isVectorType() && SecondType->isSVESizelessBuiltinType
())) && "Expected SVE builtin type and vector type!")
? void (0) : __assert_fail ("((FirstType->isSVESizelessBuiltinType() && SecondType->isVectorType()) || (FirstType->isVectorType() && SecondType->isSVESizelessBuiltinType())) && \"Expected SVE builtin type and vector type!\""
, "clang/lib/AST/ASTContext.cpp", 9502, __extension__ __PRETTY_FUNCTION__
))
9500 ((FirstType->isSVESizelessBuiltinType() && SecondType->isVectorType()) ||(static_cast <bool> (((FirstType->isSVESizelessBuiltinType
() && SecondType->isVectorType()) || (FirstType->
isVectorType() && SecondType->isSVESizelessBuiltinType
())) && "Expected SVE builtin type and vector type!")
? void (0) : __assert_fail ("((FirstType->isSVESizelessBuiltinType() && SecondType->isVectorType()) || (FirstType->isVectorType() && SecondType->isSVESizelessBuiltinType())) && \"Expected SVE builtin type and vector type!\""
, "clang/lib/AST/ASTContext.cpp", 9502, __extension__ __PRETTY_FUNCTION__
))
9501 (FirstType->isVectorType() && SecondType->isSVESizelessBuiltinType())) &&(static_cast <bool> (((FirstType->isSVESizelessBuiltinType
() && SecondType->isVectorType()) || (FirstType->
isVectorType() && SecondType->isSVESizelessBuiltinType
())) && "Expected SVE builtin type and vector type!")
? void (0) : __assert_fail ("((FirstType->isSVESizelessBuiltinType() && SecondType->isVectorType()) || (FirstType->isVectorType() && SecondType->isSVESizelessBuiltinType())) && \"Expected SVE builtin type and vector type!\""
, "clang/lib/AST/ASTContext.cpp", 9502, __extension__ __PRETTY_FUNCTION__
))
9502 "Expected SVE builtin type and vector type!")(static_cast <bool> (((FirstType->isSVESizelessBuiltinType
() && SecondType->isVectorType()) || (FirstType->
isVectorType() && SecondType->isSVESizelessBuiltinType
())) && "Expected SVE builtin type and vector type!")
? void (0) : __assert_fail ("((FirstType->isSVESizelessBuiltinType() && SecondType->isVectorType()) || (FirstType->isVectorType() && SecondType->isSVESizelessBuiltinType())) && \"Expected SVE builtin type and vector type!\""
, "clang/lib/AST/ASTContext.cpp", 9502, __extension__ __PRETTY_FUNCTION__
))
;
9503
9504 auto IsValidCast = [this](QualType FirstType, QualType SecondType) {
9505 if (const auto *BT = FirstType->getAs<BuiltinType>()) {
9506 if (const auto *VT = SecondType->getAs<VectorType>()) {
9507 // Predicates have the same representation as uint8 so we also have to
9508 // check the kind to make these types incompatible.
9509 if (VT->getVectorKind() == VectorType::SveFixedLengthPredicateVector)
9510 return BT->getKind() == BuiltinType::SveBool;
9511 else if (VT->getVectorKind() == VectorType::SveFixedLengthDataVector)
9512 return VT->getElementType().getCanonicalType() ==
9513 FirstType->getSveEltType(*this);
9514 else if (VT->getVectorKind() == VectorType::GenericVector)
9515 return getTypeSize(SecondType) == getSVETypeSize(*this, BT) &&
9516 hasSameType(VT->getElementType(),
9517 getBuiltinVectorTypeInfo(BT).ElementType);
9518 }
9519 }
9520 return false;
9521 };
9522
9523 return IsValidCast(FirstType, SecondType) ||
9524 IsValidCast(SecondType, FirstType);
9525}
9526
9527bool ASTContext::areLaxCompatibleSveTypes(QualType FirstType,
9528 QualType SecondType) {
9529 assert((static_cast <bool> (((FirstType->isSVESizelessBuiltinType
() && SecondType->isVectorType()) || (FirstType->
isVectorType() && SecondType->isSVESizelessBuiltinType
())) && "Expected SVE builtin type and vector type!")
? void (0) : __assert_fail ("((FirstType->isSVESizelessBuiltinType() && SecondType->isVectorType()) || (FirstType->isVectorType() && SecondType->isSVESizelessBuiltinType())) && \"Expected SVE builtin type and vector type!\""
, "clang/lib/AST/ASTContext.cpp", 9532, __extension__ __PRETTY_FUNCTION__
))
9530 ((FirstType->isSVESizelessBuiltinType() && SecondType->isVectorType()) ||(static_cast <bool> (((FirstType->isSVESizelessBuiltinType
() && SecondType->isVectorType()) || (FirstType->
isVectorType() && SecondType->isSVESizelessBuiltinType
())) && "Expected SVE builtin type and vector type!")
? void (0) : __assert_fail ("((FirstType->isSVESizelessBuiltinType() && SecondType->isVectorType()) || (FirstType->isVectorType() && SecondType->isSVESizelessBuiltinType())) && \"Expected SVE builtin type and vector type!\""
, "clang/lib/AST/ASTContext.cpp", 9532, __extension__ __PRETTY_FUNCTION__
))
9531 (FirstType->isVectorType() && SecondType->isSVESizelessBuiltinType())) &&(static_cast <bool> (((FirstType->isSVESizelessBuiltinType
() && SecondType->isVectorType()) || (FirstType->
isVectorType() && SecondType->isSVESizelessBuiltinType
())) && "Expected SVE builtin type and vector type!")
? void (0) : __assert_fail ("((FirstType->isSVESizelessBuiltinType() && SecondType->isVectorType()) || (FirstType->isVectorType() && SecondType->isSVESizelessBuiltinType())) && \"Expected SVE builtin type and vector type!\""
, "clang/lib/AST/ASTContext.cpp", 9532, __extension__ __PRETTY_FUNCTION__
))
9532 "Expected SVE builtin type and vector type!")(static_cast <bool> (((FirstType->isSVESizelessBuiltinType
() && SecondType->isVectorType()) || (FirstType->
isVectorType() && SecondType->isSVESizelessBuiltinType
())) && "Expected SVE builtin type and vector type!")
? void (0) : __assert_fail ("((FirstType->isSVESizelessBuiltinType() && SecondType->isVectorType()) || (FirstType->isVectorType() && SecondType->isSVESizelessBuiltinType())) && \"Expected SVE builtin type and vector type!\""
, "clang/lib/AST/ASTContext.cpp", 9532, __extension__ __PRETTY_FUNCTION__
))
;
9533
9534 auto IsLaxCompatible = [this](QualType FirstType, QualType SecondType) {
9535 const auto *BT = FirstType->getAs<BuiltinType>();
9536 if (!BT)
9537 return false;
9538
9539 const auto *VecTy = SecondType->getAs<VectorType>();
9540 if (VecTy &&
9541 (VecTy->getVectorKind() == VectorType::SveFixedLengthDataVector ||
9542 VecTy->getVectorKind() == VectorType::GenericVector)) {
9543 const LangOptions::LaxVectorConversionKind LVCKind =
9544 getLangOpts().getLaxVectorConversions();
9545
9546 // Can not convert between sve predicates and sve vectors because of
9547 // different size.
9548 if (BT->getKind() == BuiltinType::SveBool &&
9549 VecTy->getVectorKind() == VectorType::SveFixedLengthDataVector)
9550 return false;
9551
9552 // If __ARM_FEATURE_SVE_BITS != N do not allow GNU vector lax conversion.
9553 // "Whenever __ARM_FEATURE_SVE_BITS==N, GNUT implicitly
9554 // converts to VLAT and VLAT implicitly converts to GNUT."
9555 // ACLE Spec Version 00bet6, 3.7.3.2. Behavior common to vectors and
9556 // predicates.
9557 if (VecTy->getVectorKind() == VectorType::GenericVector &&
9558 getTypeSize(SecondType) != getSVETypeSize(*this, BT))
9559 return false;
9560
9561 // If -flax-vector-conversions=all is specified, the types are
9562 // certainly compatible.
9563 if (LVCKind == LangOptions::LaxVectorConversionKind::All)
9564 return true;
9565
9566 // If -flax-vector-conversions=integer is specified, the types are
9567 // compatible if the elements are integer types.
9568 if (LVCKind == LangOptions::LaxVectorConversionKind::Integer)
9569 return VecTy->getElementType().getCanonicalType()->isIntegerType() &&
9570 FirstType->getSveEltType(*this)->isIntegerType();
9571 }
9572
9573 return false;
9574 };
9575
9576 return IsLaxCompatible(FirstType, SecondType) ||
9577 IsLaxCompatible(SecondType, FirstType);
9578}
9579
9580/// getRVVTypeSize - Return RVV vector register size.
9581static uint64_t getRVVTypeSize(ASTContext &Context, const BuiltinType *Ty) {
9582 assert(Ty->isRVVVLSBuiltinType() && "Invalid RVV Type")(static_cast <bool> (Ty->isRVVVLSBuiltinType() &&
"Invalid RVV Type") ? void (0) : __assert_fail ("Ty->isRVVVLSBuiltinType() && \"Invalid RVV Type\""
, "clang/lib/AST/ASTContext.cpp", 9582, __extension__ __PRETTY_FUNCTION__
))
;
9583 auto VScale = Context.getTargetInfo().getVScaleRange(Context.getLangOpts());
9584 return VScale ? VScale->first * llvm::RISCV::RVVBitsPerBlock : 0;
9585}
9586
9587bool ASTContext::areCompatibleRVVTypes(QualType FirstType,
9588 QualType SecondType) {
9589 assert((static_cast <bool> (((FirstType->isRVVSizelessBuiltinType
() && SecondType->isVectorType()) || (FirstType->
isVectorType() && SecondType->isRVVSizelessBuiltinType
())) && "Expected RVV builtin type and vector type!")
? void (0) : __assert_fail ("((FirstType->isRVVSizelessBuiltinType() && SecondType->isVectorType()) || (FirstType->isVectorType() && SecondType->isRVVSizelessBuiltinType())) && \"Expected RVV builtin type and vector type!\""
, "clang/lib/AST/ASTContext.cpp", 9592, __extension__ __PRETTY_FUNCTION__
))
9590 ((FirstType->isRVVSizelessBuiltinType() && SecondType->isVectorType()) ||(static_cast <bool> (((FirstType->isRVVSizelessBuiltinType
() && SecondType->isVectorType()) || (FirstType->
isVectorType() && SecondType->isRVVSizelessBuiltinType
())) && "Expected RVV builtin type and vector type!")
? void (0) : __assert_fail ("((FirstType->isRVVSizelessBuiltinType() && SecondType->isVectorType()) || (FirstType->isVectorType() && SecondType->isRVVSizelessBuiltinType())) && \"Expected RVV builtin type and vector type!\""
, "clang/lib/AST/ASTContext.cpp", 9592, __extension__ __PRETTY_FUNCTION__
))
9591 (FirstType->isVectorType() && SecondType->isRVVSizelessBuiltinType())) &&(static_cast <bool> (((FirstType->isRVVSizelessBuiltinType
() && SecondType->isVectorType()) || (FirstType->
isVectorType() && SecondType->isRVVSizelessBuiltinType
())) && "Expected RVV builtin type and vector type!")
? void (0) : __assert_fail ("((FirstType->isRVVSizelessBuiltinType() && SecondType->isVectorType()) || (FirstType->isVectorType() && SecondType->isRVVSizelessBuiltinType())) && \"Expected RVV builtin type and vector type!\""
, "clang/lib/AST/ASTContext.cpp", 9592, __extension__ __PRETTY_FUNCTION__
))
9592 "Expected RVV builtin type and vector type!")(static_cast <bool> (((FirstType->isRVVSizelessBuiltinType
() && SecondType->isVectorType()) || (FirstType->
isVectorType() && SecondType->isRVVSizelessBuiltinType
())) && "Expected RVV builtin type and vector type!")
? void (0) : __assert_fail ("((FirstType->isRVVSizelessBuiltinType() && SecondType->isVectorType()) || (FirstType->isVectorType() && SecondType->isRVVSizelessBuiltinType())) && \"Expected RVV builtin type and vector type!\""
, "clang/lib/AST/ASTContext.cpp", 9592, __extension__ __PRETTY_FUNCTION__
))
;
9593
9594 auto IsValidCast = [this](QualType FirstType, QualType SecondType) {
9595 if (const auto *BT = FirstType->getAs<BuiltinType>()) {
9596 if (const auto *VT = SecondType->getAs<VectorType>()) {
9597 // Predicates have the same representation as uint8 so we also have to
9598 // check the kind to make these types incompatible.
9599 if (VT->getVectorKind() == VectorType::RVVFixedLengthDataVector)
9600 return FirstType->isRVVVLSBuiltinType() &&
9601 VT->getElementType().getCanonicalType() ==
9602 FirstType->getRVVEltType(*this);
9603 if (VT->getVectorKind() == VectorType::GenericVector)
9604 return getTypeSize(SecondType) == getRVVTypeSize(*this, BT) &&
9605 hasSameType(VT->getElementType(),
9606 getBuiltinVectorTypeInfo(BT).ElementType);
9607 }
9608 }
9609 return false;
9610 };
9611
9612 return IsValidCast(FirstType, SecondType) ||
9613 IsValidCast(SecondType, FirstType);
9614}
9615
9616bool ASTContext::areLaxCompatibleRVVTypes(QualType FirstType,
9617 QualType SecondType) {
9618 assert((static_cast <bool> (((FirstType->isRVVSizelessBuiltinType
() && SecondType->isVectorType()) || (FirstType->
isVectorType() && SecondType->isRVVSizelessBuiltinType
())) && "Expected RVV builtin type and vector type!")
? void (0) : __assert_fail ("((FirstType->isRVVSizelessBuiltinType() && SecondType->isVectorType()) || (FirstType->isVectorType() && SecondType->isRVVSizelessBuiltinType())) && \"Expected RVV builtin type and vector type!\""
, "clang/lib/AST/ASTContext.cpp", 9621, __extension__ __PRETTY_FUNCTION__
))
9619 ((FirstType->isRVVSizelessBuiltinType() && SecondType->isVectorType()) ||(static_cast <bool> (((FirstType->isRVVSizelessBuiltinType
() && SecondType->isVectorType()) || (FirstType->
isVectorType() && SecondType->isRVVSizelessBuiltinType
())) && "Expected RVV builtin type and vector type!")
? void (0) : __assert_fail ("((FirstType->isRVVSizelessBuiltinType() && SecondType->isVectorType()) || (FirstType->isVectorType() && SecondType->isRVVSizelessBuiltinType())) && \"Expected RVV builtin type and vector type!\""
, "clang/lib/AST/ASTContext.cpp", 9621, __extension__ __PRETTY_FUNCTION__
))
9620 (FirstType->isVectorType() && SecondType->isRVVSizelessBuiltinType())) &&(static_cast <bool> (((FirstType->isRVVSizelessBuiltinType
() && SecondType->isVectorType()) || (FirstType->
isVectorType() && SecondType->isRVVSizelessBuiltinType
())) && "Expected RVV builtin type and vector type!")
? void (0) : __assert_fail ("((FirstType->isRVVSizelessBuiltinType() && SecondType->isVectorType()) || (FirstType->isVectorType() && SecondType->isRVVSizelessBuiltinType())) && \"Expected RVV builtin type and vector type!\""
, "clang/lib/AST/ASTContext.cpp", 9621, __extension__ __PRETTY_FUNCTION__
))
9621 "Expected RVV builtin type and vector type!")(static_cast <bool> (((FirstType->isRVVSizelessBuiltinType
() && SecondType->isVectorType()) || (FirstType->
isVectorType() && SecondType->isRVVSizelessBuiltinType
())) && "Expected RVV builtin type and vector type!")
? void (0) : __assert_fail ("((FirstType->isRVVSizelessBuiltinType() && SecondType->isVectorType()) || (FirstType->isVectorType() && SecondType->isRVVSizelessBuiltinType())) && \"Expected RVV builtin type and vector type!\""
, "clang/lib/AST/ASTContext.cpp", 9621, __extension__ __PRETTY_FUNCTION__
))
;
9622
9623 auto IsLaxCompatible = [this](QualType FirstType, QualType SecondType) {
9624 const auto *BT = FirstType->getAs<BuiltinType>();
9625 if (!BT)
9626 return false;
9627
9628 const auto *VecTy = SecondType->getAs<VectorType>();
9629 if (VecTy &&
9630 (VecTy->getVectorKind() == VectorType::RVVFixedLengthDataVector ||
9631 VecTy->getVectorKind() == VectorType::GenericVector)) {
9632 const LangOptions::LaxVectorConversionKind LVCKind =
9633 getLangOpts().getLaxVectorConversions();
9634
9635 // If __riscv_v_fixed_vlen != N do not allow GNU vector lax conversion.
9636 if (VecTy->getVectorKind() == VectorType::GenericVector &&
9637 getTypeSize(SecondType) != getRVVTypeSize(*this, BT))
9638 return false;
9639
9640 // If -flax-vector-conversions=all is specified, the types are
9641 // certainly compatible.
9642 if (LVCKind == LangOptions::LaxVectorConversionKind::All)
9643 return true;
9644
9645 // If -flax-vector-conversions=integer is specified, the types are
9646 // compatible if the elements are integer types.
9647 if (LVCKind == LangOptions::LaxVectorConversionKind::Integer)
9648 return VecTy->getElementType().getCanonicalType()->isIntegerType() &&
9649 FirstType->getRVVEltType(*this)->isIntegerType();
9650 }
9651
9652 return false;
9653 };
9654
9655 return IsLaxCompatible(FirstType, SecondType) ||
9656 IsLaxCompatible(SecondType, FirstType);
9657}
9658
9659bool ASTContext::hasDirectOwnershipQualifier(QualType Ty) const {
9660 while (true) {
9661 // __strong id
9662 if (const AttributedType *Attr = dyn_cast<AttributedType>(Ty)) {
9663 if (Attr->getAttrKind() == attr::ObjCOwnership)
9664 return true;
9665
9666 Ty = Attr->getModifiedType();
9667
9668 // X *__strong (...)
9669 } else if (const ParenType *Paren = dyn_cast<ParenType>(Ty)) {
9670 Ty = Paren->getInnerType();
9671
9672 // We do not want to look through typedefs, typeof(expr),
9673 // typeof(type), or any other way that the type is somehow
9674 // abstracted.
9675 } else {
9676 return false;
9677 }
9678 }
9679}
9680
9681//===----------------------------------------------------------------------===//
9682// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
9683//===----------------------------------------------------------------------===//
9684
9685/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
9686/// inheritance hierarchy of 'rProto'.
9687bool
9688ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
9689 ObjCProtocolDecl *rProto) const {
9690 if (declaresSameEntity(lProto, rProto))
9691 return true;
9692 for (auto *PI : rProto->protocols())
9693 if (ProtocolCompatibleWithProtocol(lProto, PI))
9694 return true;
9695 return false;
9696}
9697
9698/// ObjCQualifiedClassTypesAreCompatible - compare Class<pr,...> and
9699/// Class<pr1, ...>.
9700bool ASTContext::ObjCQualifiedClassTypesAreCompatible(
9701 const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs) {
9702 for (auto *lhsProto : lhs->quals()) {
9703 bool match = false;
9704 for (auto *rhsProto : rhs->quals()) {
9705 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto)) {
9706 match = true;
9707 break;
9708 }
9709 }
9710 if (!match)
9711 return false;
9712 }
9713 return true;
9714}
9715
9716/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
9717/// ObjCQualifiedIDType.
9718bool ASTContext::ObjCQualifiedIdTypesAreCompatible(
9719 const ObjCObjectPointerType *lhs, const ObjCObjectPointerType *rhs,
9720 bool compare) {
9721 // Allow id<P..> and an 'id' in all cases.
9722 if (lhs->isObjCIdType() || rhs->isObjCIdType())
9723 return true;
9724
9725 // Don't allow id<P..> to convert to Class or Class<P..> in either direction.
9726 if (lhs->isObjCClassType() || lhs->isObjCQualifiedClassType() ||
9727 rhs->isObjCClassType() || rhs->isObjCQualifiedClassType())
9728 return false;
9729
9730 if (lhs->isObjCQualifiedIdType()) {
9731 if (rhs->qual_empty()) {
9732 // If the RHS is a unqualified interface pointer "NSString*",
9733 // make sure we check the class hierarchy.
9734 if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) {
9735 for (auto *I : lhs->quals()) {
9736 // when comparing an id<P> on lhs with a static type on rhs,
9737 // see if static class implements all of id's protocols, directly or
9738 // through its super class and categories.
9739 if (!rhsID->ClassImplementsProtocol(I, true))
9740 return false;
9741 }
9742 }
9743 // If there are no qualifiers and no interface, we have an 'id'.
9744 return true;
9745 }
9746 // Both the right and left sides have qualifiers.
9747 for (auto *lhsProto : lhs->quals()) {
9748 bool match = false;
9749
9750 // when comparing an id<P> on lhs with a static type on rhs,
9751 // see if static class implements all of id's protocols, directly or
9752 // through its super class and categories.
9753 for (auto *rhsProto : rhs->quals()) {
9754 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
9755 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
9756 match = true;
9757 break;
9758 }
9759 }
9760 // If the RHS is a qualified interface pointer "NSString<P>*",
9761 // make sure we check the class hierarchy.
9762 if (ObjCInterfaceDecl *rhsID = rhs->getInterfaceDecl()) {
9763 for (auto *I : lhs->quals()) {
9764 // when comparing an id<P> on lhs with a static type on rhs,
9765 // see if static class implements all of id's protocols, directly or
9766 // through its super class and categories.
9767 if (rhsID->ClassImplementsProtocol(I, true)) {
9768 match = true;
9769 break;
9770 }
9771 }
9772 }
9773 if (!match)
9774 return false;
9775 }
9776
9777 return true;
9778 }
9779
9780 assert(rhs->isObjCQualifiedIdType() && "One of the LHS/RHS should be id<x>")(static_cast <bool> (rhs->isObjCQualifiedIdType() &&
"One of the LHS/RHS should be id<x>") ? void (0) : __assert_fail
("rhs->isObjCQualifiedIdType() && \"One of the LHS/RHS should be id<x>\""
, "clang/lib/AST/ASTContext.cpp", 9780, __extension__ __PRETTY_FUNCTION__
))
;
9781
9782 if (lhs->getInterfaceType()) {
9783 // If both the right and left sides have qualifiers.
9784 for (auto *lhsProto : lhs->quals()) {
9785 bool match = false;
9786
9787 // when comparing an id<P> on rhs with a static type on lhs,
9788 // see if static class implements all of id's protocols, directly or
9789 // through its super class and categories.
9790 // First, lhs protocols in the qualifier list must be found, direct
9791 // or indirect in rhs's qualifier list or it is a mismatch.
9792 for (auto *rhsProto : rhs->quals()) {
9793 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
9794 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
9795 match = true;
9796 break;
9797 }
9798 }
9799 if (!match)
9800 return false;
9801 }
9802
9803 // Static class's protocols, or its super class or category protocols
9804 // must be found, direct or indirect in rhs's qualifier list or it is a mismatch.
9805 if (ObjCInterfaceDecl *lhsID = lhs->getInterfaceDecl()) {
9806 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
9807 CollectInheritedProtocols(lhsID, LHSInheritedProtocols);
9808 // This is rather dubious but matches gcc's behavior. If lhs has
9809 // no type qualifier and its class has no static protocol(s)
9810 // assume that it is mismatch.
9811 if (LHSInheritedProtocols.empty() && lhs->qual_empty())
9812 return false;
9813 for (auto *lhsProto : LHSInheritedProtocols) {
9814 bool match = false;
9815 for (auto *rhsProto : rhs->quals()) {
9816 if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
9817 (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
9818 match = true;
9819 break;
9820 }
9821 }
9822 if (!match)
9823 return false;
9824 }
9825 }
9826 return true;
9827 }
9828 return false;
9829}
9830
9831/// canAssignObjCInterfaces - Return true if the two interface types are
9832/// compatible for assignment from RHS to LHS. This handles validation of any
9833/// protocol qualifiers on the LHS or RHS.
9834bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
9835 const ObjCObjectPointerType *RHSOPT) {
9836 const ObjCObjectType* LHS = LHSOPT->getObjectType();
9837 const ObjCObjectType* RHS = RHSOPT->getObjectType();
9838
9839 // If either type represents the built-in 'id' type, return true.
9840 if (LHS->isObjCUnqualifiedId() || RHS->isObjCUnqualifiedId())
9841 return true;
9842
9843 // Function object that propagates a successful result or handles
9844 // __kindof types.
9845 auto finish = [&](bool succeeded) -> bool {
9846 if (succeeded)
9847 return true;
9848
9849 if (!RHS->isKindOfType())
9850 return false;
9851
9852 // Strip off __kindof and protocol qualifiers, then check whether
9853 // we can assign the other way.
9854 return canAssignObjCInterfaces(RHSOPT->stripObjCKindOfTypeAndQuals(*this),
9855 LHSOPT->stripObjCKindOfTypeAndQuals(*this));
9856 };
9857
9858 // Casts from or to id<P> are allowed when the other side has compatible
9859 // protocols.
9860 if (LHS->isObjCQualifiedId() || RHS->isObjCQualifiedId()) {
9861 return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false));
9862 }
9863
9864 // Verify protocol compatibility for casts from Class<P1> to Class<P2>.
9865 if (LHS->isObjCQualifiedClass() && RHS->isObjCQualifiedClass()) {
9866 return finish(ObjCQualifiedClassTypesAreCompatible(LHSOPT, RHSOPT));
9867 }
9868
9869 // Casts from Class to Class<Foo>, or vice-versa, are allowed.
9870 if (LHS->isObjCClass() && RHS->isObjCClass()) {
9871 return true;
9872 }
9873
9874 // If we have 2 user-defined types, fall into that path.
9875 if (LHS->getInterface() && RHS->getInterface()) {
9876 return finish(canAssignObjCInterfaces(LHS, RHS));
9877 }
9878
9879 return false;
9880}
9881
9882/// canAssignObjCInterfacesInBlockPointer - This routine is specifically written
9883/// for providing type-safety for objective-c pointers used to pass/return
9884/// arguments in block literals. When passed as arguments, passing 'A*' where
9885/// 'id' is expected is not OK. Passing 'Sub *" where 'Super *" is expected is
9886/// not OK. For the return type, the opposite is not OK.
9887bool ASTContext::canAssignObjCInterfacesInBlockPointer(
9888 const ObjCObjectPointerType *LHSOPT,
9889 const ObjCObjectPointerType *RHSOPT,
9890 bool BlockReturnType) {
9891
9892 // Function object that propagates a successful result or handles
9893 // __kindof types.
9894 auto finish = [&](bool succeeded) -> bool {
9895 if (succeeded)
9896 return true;
9897
9898 const ObjCObjectPointerType *Expected = BlockReturnType ? RHSOPT : LHSOPT;
9899 if (!Expected->isKindOfType())
9900 return false;
9901
9902 // Strip off __kindof and protocol qualifiers, then check whether
9903 // we can assign the other way.
9904 return canAssignObjCInterfacesInBlockPointer(
9905 RHSOPT->stripObjCKindOfTypeAndQuals(*this),
9906 LHSOPT->stripObjCKindOfTypeAndQuals(*this),
9907 BlockReturnType);
9908 };
9909
9910 if (RHSOPT->isObjCBuiltinType() || LHSOPT->isObjCIdType())
9911 return true;
9912
9913 if (LHSOPT->isObjCBuiltinType()) {
9914 return finish(RHSOPT->isObjCBuiltinType() ||
9915 RHSOPT->isObjCQualifiedIdType());
9916 }
9917
9918 if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType()) {
9919 if (getLangOpts().CompatibilityQualifiedIdBlockParamTypeChecking)
9920 // Use for block parameters previous type checking for compatibility.
9921 return finish(ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT, false) ||
9922 // Or corrected type checking as in non-compat mode.
9923 (!BlockReturnType &&
9924 ObjCQualifiedIdTypesAreCompatible(RHSOPT, LHSOPT, false)));
9925 else
9926 return finish(ObjCQualifiedIdTypesAreCompatible(
9927 (BlockReturnType ? LHSOPT : RHSOPT),
9928 (BlockReturnType ? RHSOPT : LHSOPT), false));
9929 }
9930
9931 const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
9932 const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
9933 if (LHS && RHS) { // We have 2 user-defined types.
9934 if (LHS != RHS) {
9935 if (LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
9936 return finish(BlockReturnType);
9937 if (RHS->getDecl()->isSuperClassOf(LHS->getDecl()))
9938 return finish(!BlockReturnType);
9939 }
9940 else
9941 return true;
9942 }
9943 return false;
9944}
9945
9946/// Comparison routine for Objective-C protocols to be used with
9947/// llvm::array_pod_sort.
9948static int compareObjCProtocolsByName(ObjCProtocolDecl * const *lhs,
9949 ObjCProtocolDecl * const *rhs) {
9950 return (*lhs)->getName().compare((*rhs)->getName());
9951}
9952
9953/// getIntersectionOfProtocols - This routine finds the intersection of set
9954/// of protocols inherited from two distinct objective-c pointer objects with
9955/// the given common base.
9956/// It is used to build composite qualifier list of the composite type of
9957/// the conditional expression involving two objective-c pointer objects.
9958static
9959void getIntersectionOfProtocols(ASTContext &Context,
9960 const ObjCInterfaceDecl *CommonBase,
9961 const ObjCObjectPointerType *LHSOPT,
9962 const ObjCObjectPointerType *RHSOPT,
9963 SmallVectorImpl<ObjCProtocolDecl *> &IntersectionSet) {
9964
9965 const ObjCObjectType* LHS = LHSOPT->getObjectType();
9966 const ObjCObjectType* RHS = RHSOPT->getObjectType();
9967 assert(LHS->getInterface() && "LHS must have an interface base")(static_cast <bool> (LHS->getInterface() && "LHS must have an interface base"
) ? void (0) : __assert_fail ("LHS->getInterface() && \"LHS must have an interface base\""
, "clang/lib/AST/ASTContext.cpp", 9967, __extension__ __PRETTY_FUNCTION__
))
;
9968 assert(RHS->getInterface() && "RHS must have an interface base")(static_cast <bool> (RHS->getInterface() && "RHS must have an interface base"
) ? void (0) : __assert_fail ("RHS->getInterface() && \"RHS must have an interface base\""
, "clang/lib/AST/ASTContext.cpp", 9968, __extension__ __PRETTY_FUNCTION__
))
;
9969
9970 // Add all of the protocols for the LHS.
9971 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> LHSProtocolSet;
9972
9973 // Start with the protocol qualifiers.
9974 for (auto *proto : LHS->quals()) {
9975 Context.CollectInheritedProtocols(proto, LHSProtocolSet);
9976 }
9977
9978 // Also add the protocols associated with the LHS interface.
9979 Context.CollectInheritedProtocols(LHS->getInterface(), LHSProtocolSet);
9980
9981 // Add all of the protocols for the RHS.
9982 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> RHSProtocolSet;
9983
9984 // Start with the protocol qualifiers.
9985 for (auto *proto : RHS->quals()) {
9986 Context.CollectInheritedProtocols(proto, RHSProtocolSet);
9987 }
9988
9989 // Also add the protocols associated with the RHS interface.
9990 Context.CollectInheritedProtocols(RHS->getInterface(), RHSProtocolSet);
9991
9992 // Compute the intersection of the collected protocol sets.
9993 for (auto *proto : LHSProtocolSet) {
9994 if (RHSProtocolSet.count(proto))
9995 IntersectionSet.push_back(proto);
9996 }
9997
9998 // Compute the set of protocols that is implied by either the common type or
9999 // the protocols within the intersection.
10000 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> ImpliedProtocols;
10001 Context.CollectInheritedProtocols(CommonBase, ImpliedProtocols);
10002
10003 // Remove any implied protocols from the list of inherited protocols.
10004 if (!ImpliedProtocols.empty()) {
10005 llvm::erase_if(IntersectionSet, [&](ObjCProtocolDecl *proto) -> bool {
10006 return ImpliedProtocols.contains(proto);
10007 });
10008 }
10009
10010 // Sort the remaining protocols by name.
10011 llvm::array_pod_sort(IntersectionSet.begin(), IntersectionSet.end(),
10012 compareObjCProtocolsByName);
10013}
10014
10015/// Determine whether the first type is a subtype of the second.
10016static bool canAssignObjCObjectTypes(ASTContext &ctx, QualType lhs,
10017 QualType rhs) {
10018 // Common case: two object pointers.
10019 const auto *lhsOPT = lhs->getAs<ObjCObjectPointerType>();
10020 const auto *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
10021 if (lhsOPT && rhsOPT)
10022 return ctx.canAssignObjCInterfaces(lhsOPT, rhsOPT);
10023
10024 // Two block pointers.
10025 const auto *lhsBlock = lhs->getAs<BlockPointerType>();
10026 const auto *rhsBlock = rhs->getAs<BlockPointerType>();
10027 if (lhsBlock && rhsBlock)
10028 return ctx.typesAreBlockPointerCompatible(lhs, rhs);
10029
10030 // If either is an unqualified 'id' and the other is a block, it's
10031 // acceptable.
10032 if ((lhsOPT && lhsOPT->isObjCIdType() && rhsBlock) ||
10033 (rhsOPT && rhsOPT->isObjCIdType() && lhsBlock))
10034 return true;
10035
10036 return false;
10037}
10038
10039// Check that the given Objective-C type argument lists are equivalent.
10040static bool sameObjCTypeArgs(ASTContext &ctx,
10041 const ObjCInterfaceDecl *iface,
10042 ArrayRef<QualType> lhsArgs,
10043 ArrayRef<QualType> rhsArgs,
10044 bool stripKindOf) {
10045 if (lhsArgs.size() != rhsArgs.size())
10046 return false;
10047
10048 ObjCTypeParamList *typeParams = iface->getTypeParamList();
10049 for (unsigned i = 0, n = lhsArgs.size(); i != n; ++i) {
10050 if (ctx.hasSameType(lhsArgs[i], rhsArgs[i]))
10051 continue;
10052
10053 switch (typeParams->begin()[i]->getVariance()) {
10054 case ObjCTypeParamVariance::Invariant:
10055 if (!stripKindOf ||
10056 !ctx.hasSameType(lhsArgs[i].stripObjCKindOfType(ctx),
10057 rhsArgs[i].stripObjCKindOfType(ctx))) {
10058 return false;
10059 }
10060 break;
10061
10062 case ObjCTypeParamVariance::Covariant:
10063 if (!canAssignObjCObjectTypes(ctx, lhsArgs[i], rhsArgs[i]))
10064 return false;
10065 break;
10066
10067 case ObjCTypeParamVariance::Contravariant:
10068 if (!canAssignObjCObjectTypes(ctx, rhsArgs[i], lhsArgs[i]))
10069 return false;
10070 break;
10071 }
10072 }
10073
10074 return true;
10075}
10076
10077QualType ASTContext::areCommonBaseCompatible(
10078 const ObjCObjectPointerType *Lptr,
10079 const ObjCObjectPointerType *Rptr) {
10080 const ObjCObjectType *LHS = Lptr->getObjectType();
10081 const ObjCObjectType *RHS = Rptr->getObjectType();
10082 const ObjCInterfaceDecl* LDecl = LHS->getInterface();
10083 const ObjCInterfaceDecl* RDecl = RHS->getInterface();
10084
10085 if (!LDecl || !RDecl)
10086 return {};
10087
10088 // When either LHS or RHS is a kindof type, we should return a kindof type.
10089 // For example, for common base of kindof(ASub1) and kindof(ASub2), we return
10090 // kindof(A).
10091 bool anyKindOf = LHS->isKindOfType() || RHS->isKindOfType();
10092
10093 // Follow the left-hand side up the class hierarchy until we either hit a
10094 // root or find the RHS. Record the ancestors in case we don't find it.
10095 llvm::SmallDenseMap<const ObjCInterfaceDecl *, const ObjCObjectType *, 4>
10096 LHSAncestors;
10097 while (true) {
10098 // Record this ancestor. We'll need this if the common type isn't in the
10099 // path from the LHS to the root.
10100 LHSAncestors[LHS->getInterface()->getCanonicalDecl()] = LHS;
10101
10102 if (declaresSameEntity(LHS->getInterface(), RDecl)) {
10103 // Get the type arguments.
10104 ArrayRef<QualType> LHSTypeArgs = LHS->getTypeArgsAsWritten();
10105 bool anyChanges = false;
10106 if (LHS->isSpecialized() && RHS->isSpecialized()) {
10107 // Both have type arguments, compare them.
10108 if (!sameObjCTypeArgs(*this, LHS->getInterface(),
10109 LHS->getTypeArgs(), RHS->getTypeArgs(),
10110 /*stripKindOf=*/true))
10111 return {};
10112 } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
10113 // If only one has type arguments, the result will not have type
10114 // arguments.
10115 LHSTypeArgs = {};
10116 anyChanges = true;
10117 }
10118
10119 // Compute the intersection of protocols.
10120 SmallVector<ObjCProtocolDecl *, 8> Protocols;
10121 getIntersectionOfProtocols(*this, LHS->getInterface(), Lptr, Rptr,
10122 Protocols);
10123 if (!Protocols.empty())
10124 anyChanges = true;
10125
10126 // If anything in the LHS will have changed, build a new result type.
10127 // If we need to return a kindof type but LHS is not a kindof type, we
10128 // build a new result type.
10129 if (anyChanges || LHS->isKindOfType() != anyKindOf) {
10130 QualType Result = getObjCInterfaceType(LHS->getInterface());
10131 Result = getObjCObjectType(Result, LHSTypeArgs, Protocols,
10132 anyKindOf || LHS->isKindOfType());
10133 return getObjCObjectPointerType(Result);
10134 }
10135
10136 return getObjCObjectPointerType(QualType(LHS, 0));
10137 }
10138
10139 // Find the superclass.
10140 QualType LHSSuperType = LHS->getSuperClassType();
10141 if (LHSSuperType.isNull())
10142 break;
10143
10144 LHS = LHSSuperType->castAs<ObjCObjectType>();
10145 }
10146
10147 // We didn't find anything by following the LHS to its root; now check
10148 // the RHS against the cached set of ancestors.
10149 while (true) {
10150 auto KnownLHS = LHSAncestors.find(RHS->getInterface()->getCanonicalDecl());
10151 if (KnownLHS != LHSAncestors.end()) {
10152 LHS = KnownLHS->second;
10153
10154 // Get the type arguments.
10155 ArrayRef<QualType> RHSTypeArgs = RHS->getTypeArgsAsWritten();
10156 bool anyChanges = false;
10157 if (LHS->isSpecialized() && RHS->isSpecialized()) {
10158 // Both have type arguments, compare them.
10159 if (!sameObjCTypeArgs(*this, LHS->getInterface(),
10160 LHS->getTypeArgs(), RHS->getTypeArgs(),
10161 /*stripKindOf=*/true))
10162 return {};
10163 } else if (LHS->isSpecialized() != RHS->isSpecialized()) {
10164 // If only one has type arguments, the result will not have type
10165 // arguments.
10166 RHSTypeArgs = {};
10167 anyChanges = true;
10168 }
10169
10170 // Compute the intersection of protocols.
10171 SmallVector<ObjCProtocolDecl *, 8> Protocols;
10172 getIntersectionOfProtocols(*this, RHS->getInterface(), Lptr, Rptr,
10173 Protocols);
10174 if (!Protocols.empty())
10175 anyChanges = true;
10176
10177 // If we need to return a kindof type but RHS is not a kindof type, we
10178 // build a new result type.
10179 if (anyChanges || RHS->isKindOfType() != anyKindOf) {
10180 QualType Result = getObjCInterfaceType(RHS->getInterface());
10181 Result = getObjCObjectType(Result, RHSTypeArgs, Protocols,
10182 anyKindOf || RHS->isKindOfType());
10183 return getObjCObjectPointerType(Result);
10184 }
10185
10186 return getObjCObjectPointerType(QualType(RHS, 0));
10187 }
10188
10189 // Find the superclass of the RHS.
10190 QualType RHSSuperType = RHS->getSuperClassType();
10191 if (RHSSuperType.isNull())
10192 break;
10193
10194 RHS = RHSSuperType->castAs<ObjCObjectType>();
10195 }
10196
10197 return {};
10198}
10199
10200bool ASTContext::canAssignObjCInterfaces(const ObjCObjectType *LHS,
10201 const ObjCObjectType *RHS) {
10202 assert(LHS->getInterface() && "LHS is not an interface type")(static_cast <bool> (LHS->getInterface() && "LHS is not an interface type"
) ? void (0) : __assert_fail ("LHS->getInterface() && \"LHS is not an interface type\""
, "clang/lib/AST/ASTContext.cpp", 10202, __extension__ __PRETTY_FUNCTION__
))
;
10203 assert(RHS->getInterface() && "RHS is not an interface type")(static_cast <bool> (RHS->getInterface() && "RHS is not an interface type"
) ? void (0) : __assert_fail ("RHS->getInterface() && \"RHS is not an interface type\""
, "clang/lib/AST/ASTContext.cpp", 10203, __extension__ __PRETTY_FUNCTION__
))
;
10204
10205 // Verify that the base decls are compatible: the RHS must be a subclass of
10206 // the LHS.
10207 ObjCInterfaceDecl *LHSInterface = LHS->getInterface();
10208 bool IsSuperClass = LHSInterface->isSuperClassOf(RHS->getInterface());
10209 if (!IsSuperClass)
10210 return false;
10211
10212 // If the LHS has protocol qualifiers, determine whether all of them are
10213 // satisfied by the RHS (i.e., the RHS has a superset of the protocols in the
10214 // LHS).
10215 if (LHS->getNumProtocols() > 0) {
10216 // OK if conversion of LHS to SuperClass results in narrowing of types
10217 // ; i.e., SuperClass may implement at least one of the protocols
10218 // in LHS's protocol list. Example, SuperObj<P1> = lhs<P1,P2> is ok.
10219 // But not SuperObj<P1,P2,P3> = lhs<P1,P2>.
10220 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> SuperClassInheritedProtocols;
10221 CollectInheritedProtocols(RHS->getInterface(), SuperClassInheritedProtocols);
10222 // Also, if RHS has explicit quelifiers, include them for comparing with LHS's
10223 // qualifiers.
10224 for (auto *RHSPI : RHS->quals())
10225 CollectInheritedProtocols(RHSPI, SuperClassInheritedProtocols);
10226 // If there is no protocols associated with RHS, it is not a match.
10227 if (SuperClassInheritedProtocols.empty())
10228 return false;
10229
10230 for (const auto *LHSProto : LHS->quals()) {
10231 bool SuperImplementsProtocol = false;
10232 for (auto *SuperClassProto : SuperClassInheritedProtocols)
10233 if (SuperClassProto->lookupProtocolNamed(LHSProto->getIdentifier())) {
10234 SuperImplementsProtocol = true;
10235 break;
10236 }
10237 if (!SuperImplementsProtocol)
10238 return false;
10239 }
10240 }
10241
10242 // If the LHS is specialized, we may need to check type arguments.
10243 if (LHS->isSpecialized()) {
10244 // Follow the superclass chain until we've matched the LHS class in the
10245 // hierarchy. This substitutes type arguments through.
10246 const ObjCObjectType *RHSSuper = RHS;
10247 while (!declaresSameEntity(RHSSuper->getInterface(), LHSInterface))
10248 RHSSuper = RHSSuper->getSuperClassType()->castAs<ObjCObjectType>();
10249
10250 // If the RHS is specializd, compare type arguments.
10251 if (RHSSuper->isSpecialized() &&
10252 !sameObjCTypeArgs(*this, LHS->getInterface(),
10253 LHS->getTypeArgs(), RHSSuper->getTypeArgs(),
10254 /*stripKindOf=*/true)) {
10255 return false;
10256 }
10257 }
10258
10259 return true;
10260}
10261
10262bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
10263 // get the "pointed to" types
10264 const auto *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
10265 const auto *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
10266
10267 if (!LHSOPT || !RHSOPT)
10268 return false;
10269
10270 return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
10271 canAssignObjCInterfaces(RHSOPT, LHSOPT);
10272}
10273
10274bool ASTContext::canBindObjCObjectType(QualType To, QualType From) {
10275 return canAssignObjCInterfaces(
10276 getObjCObjectPointerType(To)->castAs<ObjCObjectPointerType>(),
10277 getObjCObjectPointerType(From)->castAs<ObjCObjectPointerType>());
10278}
10279
10280/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
10281/// both shall have the identically qualified version of a compatible type.
10282/// C99 6.2.7p1: Two types have compatible types if their types are the
10283/// same. See 6.7.[2,3,5] for additional rules.
10284bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS,
10285 bool CompareUnqualified) {
10286 if (getLangOpts().CPlusPlus)
10287 return hasSameType(LHS, RHS);
10288
10289 return !mergeTypes(LHS, RHS, false, CompareUnqualified).isNull();
10290}
10291
10292bool ASTContext::propertyTypesAreCompatible(QualType LHS, QualType RHS) {
10293 return typesAreCompatible(LHS, RHS);
10294}
10295
10296bool ASTContext::typesAreBlockPointerCompatible(QualType LHS, QualType RHS) {
10297 return !mergeTypes(LHS, RHS, true).isNull();
10298}
10299
10300/// mergeTransparentUnionType - if T is a transparent union type and a member
10301/// of T is compatible with SubType, return the merged type, else return
10302/// QualType()
10303QualType ASTContext::mergeTransparentUnionType(QualType T, QualType SubType,
10304 bool OfBlockPointer,
10305 bool Unqualified) {
10306 if (const RecordType *UT = T->getAsUnionType()) {
10307 RecordDecl *UD = UT->getDecl();
10308 if (UD->hasAttr<TransparentUnionAttr>()) {
10309 for (const auto *I : UD->fields()) {
10310 QualType ET = I->getType().getUnqualifiedType();
10311 QualType MT = mergeTypes(ET, SubType, OfBlockPointer, Unqualified);
10312 if (!MT.isNull())
10313 return MT;
10314 }
10315 }
10316 }
10317
10318 return {};
10319}
10320
10321/// mergeFunctionParameterTypes - merge two types which appear as function
10322/// parameter types
10323QualType ASTContext::mergeFunctionParameterTypes(QualType lhs, QualType rhs,
10324 bool OfBlockPointer,
10325 bool Unqualified) {
10326 // GNU extension: two types are compatible if they appear as a function
10327 // argument, one of the types is a transparent union type and the other
10328 // type is compatible with a union member
10329 QualType lmerge = mergeTransparentUnionType(lhs, rhs, OfBlockPointer,
10330 Unqualified);
10331 if (!lmerge.isNull())
10332 return lmerge;
10333
10334 QualType rmerge = mergeTransparentUnionType(rhs, lhs, OfBlockPointer,
10335 Unqualified);
10336 if (!rmerge.isNull())
10337 return rmerge;
10338
10339 return mergeTypes(lhs, rhs, OfBlockPointer, Unqualified);
10340}
10341
10342QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs,
10343 bool OfBlockPointer, bool Unqualified,
10344 bool AllowCXX,
10345 bool IsConditionalOperator) {
10346 const auto *lbase = lhs->castAs<FunctionType>();
10347 const auto *rbase = rhs->castAs<FunctionType>();
10348 const auto *lproto = dyn_cast<FunctionProtoType>(lbase);
10349 const auto *rproto = dyn_cast<FunctionProtoType>(rbase);
10350 bool allLTypes = true;
10351 bool allRTypes = true;
10352
10353 // Check return type
10354 QualType retType;
10355 if (OfBlockPointer) {
10356 QualType RHS = rbase->getReturnType();
10357 QualType LHS = lbase->getReturnType();
10358 bool UnqualifiedResult = Unqualified;
10359 if (!UnqualifiedResult)
10360 UnqualifiedResult = (!RHS.hasQualifiers() && LHS.hasQualifiers());
10361 retType = mergeTypes(LHS, RHS, true, UnqualifiedResult, true);
10362 }
10363 else
10364 retType = mergeTypes(lbase->getReturnType(), rbase->getReturnType(), false,
10365 Unqualified);
10366 if (retType.isNull())
10367 return {};
10368
10369 if (Unqualified)
10370 retType = retType.getUnqualifiedType();
10371
10372 CanQualType LRetType = getCanonicalType(lbase->getReturnType());
10373 CanQualType RRetType = getCanonicalType(rbase->getReturnType());
10374 if (Unqualified) {
10375 LRetType = LRetType.getUnqualifiedType();
10376 RRetType = RRetType.getUnqualifiedType();
10377 }
10378
10379 if (getCanonicalType(retType) != LRetType)
10380 allLTypes = false;
10381 if (getCanonicalType(retType) != RRetType)
10382 allRTypes = false;
10383
10384 // FIXME: double check this
10385 // FIXME: should we error if lbase->getRegParmAttr() != 0 &&
10386 // rbase->getRegParmAttr() != 0 &&
10387 // lbase->getRegParmAttr() != rbase->getRegParmAttr()?
10388 FunctionType::ExtInfo lbaseInfo = lbase->getExtInfo();
10389 FunctionType::ExtInfo rbaseInfo = rbase->getExtInfo();
10390
10391 // Compatible functions must have compatible calling conventions
10392 if (lbaseInfo.getCC() != rbaseInfo.getCC())
10393 return {};
10394
10395 // Regparm is part of the calling convention.
10396 if (lbaseInfo.getHasRegParm() != rbaseInfo.getHasRegParm())
10397 return {};
10398 if (lbaseInfo.getRegParm() != rbaseInfo.getRegParm())
10399 return {};
10400
10401 if (lbaseInfo.getProducesResult() != rbaseInfo.getProducesResult())
10402 return {};
10403 if (lbaseInfo.getNoCallerSavedRegs() != rbaseInfo.getNoCallerSavedRegs())
10404 return {};
10405 if (lbaseInfo.getNoCfCheck() != rbaseInfo.getNoCfCheck())
10406 return {};
10407
10408 // When merging declarations, it's common for supplemental information like
10409 // attributes to only be present in one of the declarations, and we generally
10410 // want type merging to preserve the union of information. So a merged
10411 // function type should be noreturn if it was noreturn in *either* operand
10412 // type.
10413 //
10414 // But for the conditional operator, this is backwards. The result of the
10415 // operator could be either operand, and its type should conservatively
10416 // reflect that. So a function type in a composite type is noreturn only
10417 // if it's noreturn in *both* operand types.
10418 //
10419 // Arguably, noreturn is a kind of subtype, and the conditional operator
10420 // ought to produce the most specific common supertype of its operand types.
10421 // That would differ from this rule in contravariant positions. However,
10422 // neither C nor C++ generally uses this kind of subtype reasoning. Also,
10423 // as a practical matter, it would only affect C code that does abstraction of
10424 // higher-order functions (taking noreturn callbacks!), which is uncommon to
10425 // say the least. So we use the simpler rule.
10426 bool NoReturn = IsConditionalOperator
10427 ? lbaseInfo.getNoReturn() && rbaseInfo.getNoReturn()
10428 : lbaseInfo.getNoReturn() || rbaseInfo.getNoReturn();
10429 if (lbaseInfo.getNoReturn() != NoReturn)
10430 allLTypes = false;
10431 if (rbaseInfo.getNoReturn() != NoReturn)
10432 allRTypes = false;
10433
10434 FunctionType::ExtInfo einfo = lbaseInfo.withNoReturn(NoReturn);
10435
10436 if (lproto && rproto) { // two C99 style function prototypes
10437 assert((AllowCXX ||(static_cast <bool> ((AllowCXX || (!lproto->hasExceptionSpec
() && !rproto->hasExceptionSpec())) && "C++ shouldn't be here"
) ? void (0) : __assert_fail ("(AllowCXX || (!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec())) && \"C++ shouldn't be here\""
, "clang/lib/AST/ASTContext.cpp", 10439, __extension__ __PRETTY_FUNCTION__
))
10438 (!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec())) &&(static_cast <bool> ((AllowCXX || (!lproto->hasExceptionSpec
() && !rproto->hasExceptionSpec())) && "C++ shouldn't be here"
) ? void (0) : __assert_fail ("(AllowCXX || (!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec())) && \"C++ shouldn't be here\""
, "clang/lib/AST/ASTContext.cpp", 10439, __extension__ __PRETTY_FUNCTION__
))
10439 "C++ shouldn't be here")(static_cast <bool> ((AllowCXX || (!lproto->hasExceptionSpec
() && !rproto->hasExceptionSpec())) && "C++ shouldn't be here"
) ? void (0) : __assert_fail ("(AllowCXX || (!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec())) && \"C++ shouldn't be here\""
, "clang/lib/AST/ASTContext.cpp", 10439, __extension__ __PRETTY_FUNCTION__
))
;
10440 // Compatible functions must have the same number of parameters
10441 if (lproto->getNumParams() != rproto->getNumParams())
10442 return {};
10443
10444 // Variadic and non-variadic functions aren't compatible
10445 if (lproto->isVariadic() != rproto->isVariadic())
10446 return {};
10447
10448 if (lproto->getMethodQuals() != rproto->getMethodQuals())
10449 return {};
10450
10451 SmallVector<FunctionProtoType::ExtParameterInfo, 4> newParamInfos;
10452 bool canUseLeft, canUseRight;
10453 if (!mergeExtParameterInfo(lproto, rproto, canUseLeft, canUseRight,
10454 newParamInfos))
10455 return {};
10456
10457 if (!canUseLeft)
10458 allLTypes = false;
10459 if (!canUseRight)
10460 allRTypes = false;
10461
10462 // Check parameter type compatibility
10463 SmallVector<QualType, 10> types;
10464 for (unsigned i = 0, n = lproto->getNumParams(); i < n; i++) {
10465 QualType lParamType = lproto->getParamType(i).getUnqualifiedType();
10466 QualType rParamType = rproto->getParamType(i).getUnqualifiedType();
10467 QualType paramType = mergeFunctionParameterTypes(
10468 lParamType, rParamType, OfBlockPointer, Unqualified);
10469 if (paramType.isNull())
10470 return {};
10471
10472 if (Unqualified)
10473 paramType = paramType.getUnqualifiedType();
10474
10475 types.push_back(paramType);
10476 if (Unqualified) {
10477 lParamType = lParamType.getUnqualifiedType();
10478 rParamType = rParamType.getUnqualifiedType();
10479 }
10480
10481 if (getCanonicalType(paramType) != getCanonicalType(lParamType))
10482 allLTypes = false;
10483 if (getCanonicalType(paramType) != getCanonicalType(rParamType))
10484 allRTypes = false;
10485 }
10486
10487 if (allLTypes) return lhs;
10488 if (allRTypes) return rhs;
10489
10490 FunctionProtoType::ExtProtoInfo EPI = lproto->getExtProtoInfo();
10491 EPI.ExtInfo = einfo;
10492 EPI.ExtParameterInfos =
10493 newParamInfos.empty() ? nullptr : newParamInfos.data();
10494 return getFunctionType(retType, types, EPI);
10495 }
10496
10497 if (lproto) allRTypes = false;
10498 if (rproto) allLTypes = false;
10499
10500 const FunctionProtoType *proto = lproto ? lproto : rproto;
10501 if (proto) {
10502 assert((AllowCXX || !proto->hasExceptionSpec()) && "C++ shouldn't be here")(static_cast <bool> ((AllowCXX || !proto->hasExceptionSpec
()) && "C++ shouldn't be here") ? void (0) : __assert_fail
("(AllowCXX || !proto->hasExceptionSpec()) && \"C++ shouldn't be here\""
, "clang/lib/AST/ASTContext.cpp", 10502, __extension__ __PRETTY_FUNCTION__
))
;
10503 if (proto->isVariadic())
10504 return {};
10505 // Check that the types are compatible with the types that
10506 // would result from default argument promotions (C99 6.7.5.3p15).
10507 // The only types actually affected are promotable integer
10508 // types and floats, which would be passed as a different
10509 // type depending on whether the prototype is visible.
10510 for (unsigned i = 0, n = proto->getNumParams(); i < n; ++i) {
10511 QualType paramTy = proto->getParamType(i);
10512
10513 // Look at the converted type of enum types, since that is the type used
10514 // to pass enum values.
10515 if (const auto *Enum = paramTy->getAs<EnumType>()) {
10516 paramTy = Enum->getDecl()->getIntegerType();
10517 if (paramTy.isNull())
10518 return {};
10519 }
10520
10521 if (isPromotableIntegerType(paramTy) ||
10522 getCanonicalType(paramTy).getUnqualifiedType() == FloatTy)
10523 return {};
10524 }
10525
10526 if (allLTypes) return lhs;
10527 if (allRTypes) return rhs;
10528
10529 FunctionProtoType::ExtProtoInfo EPI = proto->getExtProtoInfo();
10530 EPI.ExtInfo = einfo;
10531 return getFunctionType(retType, proto->getParamTypes(), EPI);
10532 }
10533
10534 if (allLTypes) return lhs;
10535 if (allRTypes) return rhs;
10536 return getFunctionNoProtoType(retType, einfo);
10537}
10538
10539/// Given that we have an enum type and a non-enum type, try to merge them.
10540static QualType mergeEnumWithInteger(ASTContext &Context, const EnumType *ET,
10541 QualType other, bool isBlockReturnType) {
10542 // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
10543 // a signed integer type, or an unsigned integer type.
10544 // Compatibility is based on the underlying type, not the promotion
10545 // type.
10546 QualType underlyingType = ET->getDecl()->getIntegerType();
10547 if (underlyingType.isNull())
10548 return {};
10549 if (Context.hasSameType(underlyingType, other))
10550 return other;
10551
10552 // In block return types, we're more permissive and accept any
10553 // integral type of the same size.
10554 if (isBlockReturnType && other->isIntegerType() &&
10555 Context.getTypeSize(underlyingType) == Context.getTypeSize(other))
10556 return other;
10557
10558 return {};
10559}
10560
10561QualType ASTContext::mergeTypes(QualType LHS, QualType RHS, bool OfBlockPointer,
10562 bool Unqualified, bool BlockReturnType,
10563 bool IsConditionalOperator) {
10564 // For C++ we will not reach this code with reference types (see below),
10565 // for OpenMP variant call overloading we might.
10566 //
10567 // C++ [expr]: If an expression initially has the type "reference to T", the
10568 // type is adjusted to "T" prior to any further analysis, the expression
10569 // designates the object or function denoted by the reference, and the
10570 // expression is an lvalue unless the reference is an rvalue reference and
10571 // the expression is a function call (possibly inside parentheses).
10572 auto *LHSRefTy = LHS->getAs<ReferenceType>();
10573 auto *RHSRefTy = RHS->getAs<ReferenceType>();
10574 if (LangOpts.OpenMP && LHSRefTy && RHSRefTy &&
10575 LHS->getTypeClass() == RHS->getTypeClass())
10576 return mergeTypes(LHSRefTy->getPointeeType(), RHSRefTy->getPointeeType(),
10577 OfBlockPointer, Unqualified, BlockReturnType);
10578 if (LHSRefTy || RHSRefTy)
10579 return {};
10580
10581 if (Unqualified) {
10582 LHS = LHS.getUnqualifiedType();
10583 RHS = RHS.getUnqualifiedType();
10584 }
10585
10586 QualType LHSCan = getCanonicalType(LHS),
10587 RHSCan = getCanonicalType(RHS);
10588
10589 // If two types are identical, they are compatible.
10590 if (LHSCan == RHSCan)
10591 return LHS;
10592
10593 // If the qualifiers are different, the types aren't compatible... mostly.
10594 Qualifiers LQuals = LHSCan.getLocalQualifiers();
10595 Qualifiers RQuals = RHSCan.getLocalQualifiers();
10596 if (LQuals != RQuals) {
10597 // If any of these qualifiers are different, we have a type
10598 // mismatch.
10599 if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
10600 LQuals.getAddressSpace() != RQuals.getAddressSpace() ||
10601 LQuals.getObjCLifetime() != RQuals.getObjCLifetime() ||
10602 LQuals.hasUnaligned() != RQuals.hasUnaligned())
10603 return {};
10604
10605 // Exactly one GC qualifier difference is allowed: __strong is
10606 // okay if the other type has no GC qualifier but is an Objective
10607 // C object pointer (i.e. implicitly strong by default). We fix
10608 // this by pretending that the unqualified type was actually
10609 // qualified __strong.
10610 Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
10611 Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
10612 assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements")(static_cast <bool> ((GC_L != GC_R) && "unequal qualifier sets had only equal elements"
) ? void (0) : __assert_fail ("(GC_L != GC_R) && \"unequal qualifier sets had only equal elements\""
, "clang/lib/AST/ASTContext.cpp", 10612, __extension__ __PRETTY_FUNCTION__
))
;
10613
10614 if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
10615 return {};
10616
10617 if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
10618 return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
10619 }
10620 if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
10621 return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
10622 }
10623 return {};
10624 }
10625
10626 // Okay, qualifiers are equal.
10627
10628 Type::TypeClass LHSClass = LHSCan->getTypeClass();
10629 Type::TypeClass RHSClass = RHSCan->getTypeClass();
10630
10631 // We want to consider the two function types to be the same for these
10632 // comparisons, just force one to the other.
10633 if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
10634 if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
10635
10636 // Same as above for arrays
10637 if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
10638 LHSClass = Type::ConstantArray;
10639 if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
10640 RHSClass = Type::ConstantArray;
10641
10642 // ObjCInterfaces are just specialized ObjCObjects.
10643 if (LHSClass == Type::ObjCInterface) LHSClass = Type::ObjCObject;
10644 if (RHSClass == Type::ObjCInterface) RHSClass = Type::ObjCObject;
10645
10646 // Canonicalize ExtVector -> Vector.
10647 if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
10648 if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
10649
10650 // If the canonical type classes don't match.
10651 if (LHSClass != RHSClass) {
10652 // Note that we only have special rules for turning block enum
10653 // returns into block int returns, not vice-versa.
10654 if (const auto *ETy = LHS->getAs<EnumType>()) {
10655 return mergeEnumWithInteger(*this, ETy, RHS, false);
10656 }
10657 if (const EnumType* ETy = RHS->getAs<EnumType>()) {
10658 return mergeEnumWithInteger(*this, ETy, LHS, BlockReturnType);
10659 }
10660 // allow block pointer type to match an 'id' type.
10661 if (OfBlockPointer && !BlockReturnType) {
10662 if (LHS->isObjCIdType() && RHS->isBlockPointerType())
10663 return LHS;
10664 if (RHS->isObjCIdType() && LHS->isBlockPointerType())
10665 return RHS;
10666 }
10667 // Allow __auto_type to match anything; it merges to the type with more
10668 // information.
10669 if (const auto *AT = LHS->getAs<AutoType>()) {
10670 if (!AT->isDeduced() && AT->isGNUAutoType())
10671 return RHS;
10672 }
10673 if (const auto *AT = RHS->getAs<AutoType>()) {
10674 if (!AT->isDeduced() && AT->isGNUAutoType())
10675 return LHS;
10676 }
10677 return {};
10678 }
10679
10680 // The canonical type classes match.
10681 switch (LHSClass) {
10682#define TYPE(Class, Base)
10683#define ABSTRACT_TYPE(Class, Base)
10684#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
10685#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
10686#define DEPENDENT_TYPE(Class, Base) case Type::Class:
10687#include "clang/AST/TypeNodes.inc"
10688 llvm_unreachable("Non-canonical and dependent types shouldn't get here")::llvm::llvm_unreachable_internal("Non-canonical and dependent types shouldn't get here"
, "clang/lib/AST/ASTContext.cpp", 10688)
;
10689
10690 case Type::Auto:
10691 case Type::DeducedTemplateSpecialization:
10692 case Type::LValueReference:
10693 case Type::RValueReference:
10694 case Type::MemberPointer:
10695 llvm_unreachable("C++ should never be in mergeTypes")::llvm::llvm_unreachable_internal("C++ should never be in mergeTypes"
, "clang/lib/AST/ASTContext.cpp", 10695)
;
10696
10697 case Type::ObjCInterface:
10698 case Type::IncompleteArray:
10699 case Type::VariableArray:
10700 case Type::FunctionProto:
10701 case Type::ExtVector:
10702 llvm_unreachable("Types are eliminated above")::llvm::llvm_unreachable_internal("Types are eliminated above"
, "clang/lib/AST/ASTContext.cpp", 10702)
;
10703
10704 case Type::Pointer:
10705 {
10706 // Merge two pointer types, while trying to preserve typedef info
10707 QualType LHSPointee = LHS->castAs<PointerType>()->getPointeeType();
10708 QualType RHSPointee = RHS->castAs<PointerType>()->getPointeeType();
10709 if (Unqualified) {
10710 LHSPointee = LHSPointee.getUnqualifiedType();
10711 RHSPointee = RHSPointee.getUnqualifiedType();
10712 }
10713 QualType ResultType = mergeTypes(LHSPointee, RHSPointee, false,
10714 Unqualified);
10715 if (ResultType.isNull())
10716 return {};
10717 if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
10718 return LHS;
10719 if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
10720 return RHS;
10721 return getPointerType(ResultType);
10722 }
10723 case Type::BlockPointer:
10724 {
10725 // Merge two block pointer types, while trying to preserve typedef info
10726 QualType LHSPointee = LHS->castAs<BlockPointerType>()->getPointeeType();
10727 QualType RHSPointee = RHS->castAs<BlockPointerType>()->getPointeeType();
10728 if (Unqualified) {
10729 LHSPointee = LHSPointee.getUnqualifiedType();
10730 RHSPointee = RHSPointee.getUnqualifiedType();
10731 }
10732 if (getLangOpts().OpenCL) {
10733 Qualifiers LHSPteeQual = LHSPointee.getQualifiers();
10734 Qualifiers RHSPteeQual = RHSPointee.getQualifiers();
10735 // Blocks can't be an expression in a ternary operator (OpenCL v2.0
10736 // 6.12.5) thus the following check is asymmetric.
10737 if (!LHSPteeQual.isAddressSpaceSupersetOf(RHSPteeQual))
10738 return {};
10739 LHSPteeQual.removeAddressSpace();
10740 RHSPteeQual.removeAddressSpace();
10741 LHSPointee =
10742 QualType(LHSPointee.getTypePtr(), LHSPteeQual.getAsOpaqueValue());
10743 RHSPointee =
10744 QualType(RHSPointee.getTypePtr(), RHSPteeQual.getAsOpaqueValue());
10745 }
10746 QualType ResultType = mergeTypes(LHSPointee, RHSPointee, OfBlockPointer,
10747 Unqualified);
10748 if (ResultType.isNull())
10749 return {};
10750 if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
10751 return LHS;
10752 if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
10753 return RHS;
10754 return getBlockPointerType(ResultType);
10755 }
10756 case Type::Atomic:
10757 {
10758 // Merge two pointer types, while trying to preserve typedef info
10759 QualType LHSValue = LHS->castAs<AtomicType>()->getValueType();
10760 QualType RHSValue = RHS->castAs<AtomicType>()->getValueType();
10761 if (Unqualified) {
10762 LHSValue = LHSValue.getUnqualifiedType();
10763 RHSValue = RHSValue.getUnqualifiedType();
10764 }
10765 QualType ResultType = mergeTypes(LHSValue, RHSValue, false,
10766 Unqualified);
10767 if (ResultType.isNull())
10768 return {};
10769 if (getCanonicalType(LHSValue) == getCanonicalType(ResultType))
10770 return LHS;
10771 if (getCanonicalType(RHSValue) == getCanonicalType(ResultType))
10772 return RHS;
10773 return getAtomicType(ResultType);
10774 }
10775 case Type::ConstantArray:
10776 {
10777 const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
10778 const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
10779 if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
10780 return {};
10781
10782 QualType LHSElem = getAsArrayType(LHS)->getElementType();
10783 QualType RHSElem = getAsArrayType(RHS)->getElementType();
10784 if (Unqualified) {
10785 LHSElem = LHSElem.getUnqualifiedType();
10786 RHSElem = RHSElem.getUnqualifiedType();
10787 }
10788
10789 QualType ResultType = mergeTypes(LHSElem, RHSElem, false, Unqualified);
10790 if (ResultType.isNull())
10791 return {};
10792
10793 const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
10794 const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
10795
10796 // If either side is a variable array, and both are complete, check whether
10797 // the current dimension is definite.
10798 if (LVAT || RVAT) {
10799 auto SizeFetch = [this](const VariableArrayType* VAT,
10800 const ConstantArrayType* CAT)
10801 -> std::pair<bool,llvm::APInt> {
10802 if (VAT) {
10803 std::optional<llvm::APSInt> TheInt;
10804 Expr *E = VAT->getSizeExpr();
10805 if (E && (TheInt = E->getIntegerConstantExpr(*this)))
10806 return std::make_pair(true, *TheInt);
10807 return std::make_pair(false, llvm::APSInt());
10808 }
10809 if (CAT)
10810 return std::make_pair(true, CAT->getSize());
10811 return std::make_pair(false, llvm::APInt());
10812 };
10813
10814 bool HaveLSize, HaveRSize;
10815 llvm::APInt LSize, RSize;
10816 std::tie(HaveLSize, LSize) = SizeFetch(LVAT, LCAT);
10817 std::tie(HaveRSize, RSize) = SizeFetch(RVAT, RCAT);
10818 if (HaveLSize && HaveRSize && !llvm::APInt::isSameValue(LSize, RSize))
10819 return {}; // Definite, but unequal, array dimension
10820 }
10821
10822 if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
10823 return LHS;
10824 if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
10825 return RHS;
10826 if (LCAT)
10827 return getConstantArrayType(ResultType, LCAT->getSize(),
10828 LCAT->getSizeExpr(),
10829 ArrayType::ArraySizeModifier(), 0);
10830 if (RCAT)
10831 return getConstantArrayType(ResultType, RCAT->getSize(),
10832 RCAT->getSizeExpr(),
10833 ArrayType::ArraySizeModifier(), 0);
10834 if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
10835 return LHS;
10836 if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
10837 return RHS;
10838 if (LVAT) {
10839 // FIXME: This isn't correct! But tricky to implement because
10840 // the array's size has to be the size of LHS, but the type
10841 // has to be different.
10842 return LHS;
10843 }
10844 if (RVAT) {
10845 // FIXME: This isn't correct! But tricky to implement because
10846 // the array's size has to be the size of RHS, but the type
10847 // has to be different.
10848 return RHS;
10849 }
10850 if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
10851 if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
10852 return getIncompleteArrayType(ResultType,
10853 ArrayType::ArraySizeModifier(), 0);
10854 }
10855 case Type::FunctionNoProto:
10856 return mergeFunctionTypes(LHS, RHS, OfBlockPointer, Unqualified,
10857 /*AllowCXX=*/false, IsConditionalOperator);
10858 case Type::Record:
10859 case Type::Enum:
10860 return {};
10861 case Type::Builtin:
10862 // Only exactly equal builtin types are compatible, which is tested above.
10863 return {};
10864 case Type::Complex:
10865 // Distinct complex types are incompatible.
10866 return {};
10867 case Type::Vector:
10868 // FIXME: The merged type should be an ExtVector!
10869 if (areCompatVectorTypes(LHSCan->castAs<VectorType>(),
10870 RHSCan->castAs<VectorType>()))
10871 return LHS;
10872 return {};
10873 case Type::ConstantMatrix:
10874 if (areCompatMatrixTypes(LHSCan->castAs<ConstantMatrixType>(),
10875 RHSCan->castAs<ConstantMatrixType>()))
10876 return LHS;
10877 return {};
10878 case Type::ObjCObject: {
10879 // Check if the types are assignment compatible.
10880 // FIXME: This should be type compatibility, e.g. whether
10881 // "LHS x; RHS x;" at global scope is legal.
10882 if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectType>(),
10883 RHS->castAs<ObjCObjectType>()))
10884 return LHS;
10885 return {};
10886 }
10887 case Type::ObjCObjectPointer:
10888 if (OfBlockPointer) {
10889 if (canAssignObjCInterfacesInBlockPointer(
10890 LHS->castAs<ObjCObjectPointerType>(),
10891 RHS->castAs<ObjCObjectPointerType>(), BlockReturnType))
10892 return LHS;
10893 return {};
10894 }
10895 if (canAssignObjCInterfaces(LHS->castAs<ObjCObjectPointerType>(),
10896 RHS->castAs<ObjCObjectPointerType>()))
10897 return LHS;
10898 return {};
10899 case Type::Pipe:
10900 assert(LHS != RHS &&(static_cast <bool> (LHS != RHS && "Equivalent pipe types should have already been handled!"
) ? void (0) : __assert_fail ("LHS != RHS && \"Equivalent pipe types should have already been handled!\""
, "clang/lib/AST/ASTContext.cpp", 10901, __extension__ __PRETTY_FUNCTION__
))
10901 "Equivalent pipe types should have already been handled!")(static_cast <bool> (LHS != RHS && "Equivalent pipe types should have already been handled!"
) ? void (0) : __assert_fail ("LHS != RHS && \"Equivalent pipe types should have already been handled!\""
, "clang/lib/AST/ASTContext.cpp", 10901, __extension__ __PRETTY_FUNCTION__
))
;
10902 return {};
10903 case Type::BitInt: {
10904 // Merge two bit-precise int types, while trying to preserve typedef info.
10905 bool LHSUnsigned = LHS->castAs<BitIntType>()->isUnsigned();
10906 bool RHSUnsigned = RHS->castAs<BitIntType>()->isUnsigned();
10907 unsigned LHSBits = LHS->castAs<BitIntType>()->getNumBits();
10908 unsigned RHSBits = RHS->castAs<BitIntType>()->getNumBits();
10909
10910 // Like unsigned/int, shouldn't have a type if they don't match.
10911 if (LHSUnsigned != RHSUnsigned)
10912 return {};
10913
10914 if (LHSBits != RHSBits)
10915 return {};
10916 return LHS;
10917 }
10918 }
10919
10920 llvm_unreachable("Invalid Type::Class!")::llvm::llvm_unreachable_internal("Invalid Type::Class!", "clang/lib/AST/ASTContext.cpp"
, 10920)
;
10921}
10922
10923bool ASTContext::mergeExtParameterInfo(
10924 const FunctionProtoType *FirstFnType, const FunctionProtoType *SecondFnType,
10925 bool &CanUseFirst, bool &CanUseSecond,
10926 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos) {
10927 assert(NewParamInfos.empty() && "param info list not empty")(static_cast <bool> (NewParamInfos.empty() && "param info list not empty"
) ? void (0) : __assert_fail ("NewParamInfos.empty() && \"param info list not empty\""
, "clang/lib/AST/ASTContext.cpp", 10927, __extension__ __PRETTY_FUNCTION__
))
;
10928 CanUseFirst = CanUseSecond = true;
10929 bool FirstHasInfo = FirstFnType->hasExtParameterInfos();
10930 bool SecondHasInfo = SecondFnType->hasExtParameterInfos();
10931
10932 // Fast path: if the first type doesn't have ext parameter infos,
10933 // we match if and only if the second type also doesn't have them.
10934 if (!FirstHasInfo && !SecondHasInfo)
10935 return true;
10936
10937 bool NeedParamInfo = false;
10938 size_t E = FirstHasInfo ? FirstFnType->getExtParameterInfos().size()
10939 : SecondFnType->getExtParameterInfos().size();
10940
10941 for (size_t I = 0; I < E; ++I) {
10942 FunctionProtoType::ExtParameterInfo FirstParam, SecondParam;
10943 if (FirstHasInfo)
10944 FirstParam = FirstFnType->getExtParameterInfo(I);
10945 if (SecondHasInfo)
10946 SecondParam = SecondFnType->getExtParameterInfo(I);
10947
10948 // Cannot merge unless everything except the noescape flag matches.
10949 if (FirstParam.withIsNoEscape(false) != SecondParam.withIsNoEscape(false))
10950 return false;
10951
10952 bool FirstNoEscape = FirstParam.isNoEscape();
10953 bool SecondNoEscape = SecondParam.isNoEscape();
10954 bool IsNoEscape = FirstNoEscape && SecondNoEscape;
10955 NewParamInfos.push_back(FirstParam.withIsNoEscape(IsNoEscape));
10956 if (NewParamInfos.back().getOpaqueValue())
10957 NeedParamInfo = true;
10958 if (FirstNoEscape != IsNoEscape)
10959 CanUseFirst = false;
10960 if (SecondNoEscape != IsNoEscape)
10961 CanUseSecond = false;
10962 }
10963
10964 if (!NeedParamInfo)
10965 NewParamInfos.clear();
10966
10967 return true;
10968}
10969
10970void ASTContext::ResetObjCLayout(const ObjCContainerDecl *CD) {
10971 ObjCLayouts[CD] = nullptr;
10972}
10973
10974/// mergeObjCGCQualifiers - This routine merges ObjC's GC attribute of 'LHS' and
10975/// 'RHS' attributes and returns the merged version; including for function
10976/// return types.
10977QualType ASTContext::mergeObjCGCQualifiers(QualType LHS, QualType RHS) {
10978 QualType LHSCan = getCanonicalType(LHS),
10979 RHSCan = getCanonicalType(RHS);
10980 // If two types are identical, they are compatible.
10981 if (LHSCan == RHSCan)
10982 return LHS;
10983 if (RHSCan->isFunctionType()) {
10984 if (!LHSCan->isFunctionType())
10985 return {};
10986 QualType OldReturnType =
10987 cast<FunctionType>(RHSCan.getTypePtr())->getReturnType();
10988 QualType NewReturnType =
10989 cast<FunctionType>(LHSCan.getTypePtr())->getReturnType();
10990 QualType ResReturnType =
10991 mergeObjCGCQualifiers(NewReturnType, OldReturnType);
10992 if (ResReturnType.isNull())
10993 return {};
10994 if (ResReturnType == NewReturnType || ResReturnType == OldReturnType) {
10995 // id foo(); ... __strong id foo(); or: __strong id foo(); ... id foo();
10996 // In either case, use OldReturnType to build the new function type.
10997 const auto *F = LHS->castAs<FunctionType>();
10998 if (const auto *FPT = cast<FunctionProtoType>(F)) {
10999 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
11000 EPI.ExtInfo = getFunctionExtInfo(LHS);
11001 QualType ResultType =
11002 getFunctionType(OldReturnType, FPT->getParamTypes(), EPI);
11003 return ResultType;
11004 }
11005 }
11006 return {};
11007 }
11008
11009 // If the qualifiers are different, the types can still be merged.
11010 Qualifiers LQuals = LHSCan.getLocalQualifiers();
11011 Qualifiers RQuals = RHSCan.getLocalQualifiers();
11012 if (LQuals != RQuals) {
11013 // If any of these qualifiers are different, we have a type mismatch.
11014 if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
11015 LQuals.getAddressSpace() != RQuals.getAddressSpace())
11016 return {};
11017
11018 // Exactly one GC qualifier difference is allowed: __strong is
11019 // okay if the other type has no GC qualifier but is an Objective
11020 // C object pointer (i.e. implicitly strong by default). We fix
11021 // this by pretending that the unqualified type was actually
11022 // qualified __strong.
11023 Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
11024 Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
11025 assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements")(static_cast <bool> ((GC_L != GC_R) && "unequal qualifier sets had only equal elements"
) ? void (0) : __assert_fail ("(GC_L != GC_R) && \"unequal qualifier sets had only equal elements\""
, "clang/lib/AST/ASTContext.cpp", 11025, __extension__ __PRETTY_FUNCTION__
))
;
11026
11027 if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
11028 return {};
11029
11030 if (GC_L == Qualifiers::Strong)
11031 return LHS;
11032 if (GC_R == Qualifiers::Strong)
11033 return RHS;
11034 return {};
11035 }
11036
11037 if (LHSCan->isObjCObjectPointerType() && RHSCan->isObjCObjectPointerType()) {
11038 QualType LHSBaseQT = LHS->castAs<ObjCObjectPointerType>()->getPointeeType();
11039 QualType RHSBaseQT = RHS->castAs<ObjCObjectPointerType>()->getPointeeType();
11040 QualType ResQT = mergeObjCGCQualifiers(LHSBaseQT, RHSBaseQT);
11041 if (ResQT == LHSBaseQT)
11042 return LHS;
11043 if (ResQT == RHSBaseQT)
11044 return RHS;
11045 }
11046 return {};
11047}
11048
11049//===----------------------------------------------------------------------===//
11050// Integer Predicates
11051//===----------------------------------------------------------------------===//
11052
11053unsigned ASTContext::getIntWidth(QualType T) const {
11054 if (const auto *ET = T->getAs<EnumType>())
11055 T = ET->getDecl()->getIntegerType();
11056 if (T->isBooleanType())
11057 return 1;
11058 if (const auto *EIT = T->getAs<BitIntType>())
11059 return EIT->getNumBits();
11060 // For builtin types, just use the standard type sizing method
11061 return (unsigned)getTypeSize(T);
11062}
11063
11064QualType ASTContext::getCorrespondingUnsignedType(QualType T) const {
11065 assert((T->hasIntegerRepresentation() || T->isEnumeralType() ||(static_cast <bool> ((T->hasIntegerRepresentation() ||
T->isEnumeralType() || T->isFixedPointType()) &&
"Unexpected type") ? void (0) : __assert_fail ("(T->hasIntegerRepresentation() || T->isEnumeralType() || T->isFixedPointType()) && \"Unexpected type\""
, "clang/lib/AST/ASTContext.cpp", 11067, __extension__ __PRETTY_FUNCTION__
))
11066 T->isFixedPointType()) &&(static_cast <bool> ((T->hasIntegerRepresentation() ||
T->isEnumeralType() || T->isFixedPointType()) &&
"Unexpected type") ? void (0) : __assert_fail ("(T->hasIntegerRepresentation() || T->isEnumeralType() || T->isFixedPointType()) && \"Unexpected type\""
, "clang/lib/AST/ASTContext.cpp", 11067, __extension__ __PRETTY_FUNCTION__
))
11067 "Unexpected type")(static_cast <bool> ((T->hasIntegerRepresentation() ||
T->isEnumeralType() || T->isFixedPointType()) &&
"Unexpected type") ? void (0) : __assert_fail ("(T->hasIntegerRepresentation() || T->isEnumeralType() || T->isFixedPointType()) && \"Unexpected type\""
, "clang/lib/AST/ASTContext.cpp", 11067, __extension__ __PRETTY_FUNCTION__
))
;
11068
11069 // Turn <4 x signed int> -> <4 x unsigned int>
11070 if (const auto *VTy = T->getAs<VectorType>())
11071 return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
11072 VTy->getNumElements(), VTy->getVectorKind());
11073
11074 // For _BitInt, return an unsigned _BitInt with same width.
11075 if (const auto *EITy = T->getAs<BitIntType>())
11076 return getBitIntType(/*Unsigned=*/true, EITy->getNumBits());
11077
11078 // For enums, get the underlying integer type of the enum, and let the general
11079 // integer type signchanging code handle it.
11080 if (const auto *ETy = T->getAs<EnumType>())
11081 T = ETy->getDecl()->getIntegerType();
11082
11083 switch (T->castAs<BuiltinType>()->getKind()) {
11084 case BuiltinType::Char_U:
11085 // Plain `char` is mapped to `unsigned char` even if it's already unsigned
11086 case BuiltinType::Char_S:
11087 case BuiltinType::SChar:
11088 case BuiltinType::Char8:
11089 return UnsignedCharTy;
11090 case BuiltinType::Short:
11091 return UnsignedShortTy;
11092 case BuiltinType::Int:
11093 return UnsignedIntTy;
11094 case BuiltinType::Long:
11095 return UnsignedLongTy;
11096 case BuiltinType::LongLong:
11097 return UnsignedLongLongTy;
11098 case BuiltinType::Int128:
11099 return UnsignedInt128Ty;
11100 // wchar_t is special. It is either signed or not, but when it's signed,
11101 // there's no matching "unsigned wchar_t". Therefore we return the unsigned
11102 // version of its underlying type instead.
11103 case BuiltinType::WChar_S:
11104 return getUnsignedWCharType();
11105
11106 case BuiltinType::ShortAccum:
11107 return UnsignedShortAccumTy;
11108 case BuiltinType::Accum:
11109 return UnsignedAccumTy;
11110 case BuiltinType::LongAccum:
11111 return UnsignedLongAccumTy;
11112 case BuiltinType::SatShortAccum:
11113 return SatUnsignedShortAccumTy;
11114 case BuiltinType::SatAccum:
11115 return SatUnsignedAccumTy;
11116 case BuiltinType::SatLongAccum:
11117 return SatUnsignedLongAccumTy;
11118 case BuiltinType::ShortFract:
11119 return UnsignedShortFractTy;
11120 case BuiltinType::Fract:
11121 return UnsignedFractTy;
11122 case BuiltinType::LongFract:
11123 return UnsignedLongFractTy;
11124 case BuiltinType::SatShortFract:
11125 return SatUnsignedShortFractTy;
11126 case BuiltinType::SatFract:
11127 return SatUnsignedFractTy;
11128 case BuiltinType::SatLongFract:
11129 return SatUnsignedLongFractTy;
11130 default:
11131 assert((T->hasUnsignedIntegerRepresentation() ||(static_cast <bool> ((T->hasUnsignedIntegerRepresentation
() || T->isUnsignedFixedPointType()) && "Unexpected signed integer or fixed point type"
) ? void (0) : __assert_fail ("(T->hasUnsignedIntegerRepresentation() || T->isUnsignedFixedPointType()) && \"Unexpected signed integer or fixed point type\""
, "clang/lib/AST/ASTContext.cpp", 11133, __extension__ __PRETTY_FUNCTION__
))
11132 T->isUnsignedFixedPointType()) &&(static_cast <bool> ((T->hasUnsignedIntegerRepresentation
() || T->isUnsignedFixedPointType()) && "Unexpected signed integer or fixed point type"
) ? void (0) : __assert_fail ("(T->hasUnsignedIntegerRepresentation() || T->isUnsignedFixedPointType()) && \"Unexpected signed integer or fixed point type\""
, "clang/lib/AST/ASTContext.cpp", 11133, __extension__ __PRETTY_FUNCTION__
))
11133 "Unexpected signed integer or fixed point type")(static_cast <bool> ((T->hasUnsignedIntegerRepresentation
() || T->isUnsignedFixedPointType()) && "Unexpected signed integer or fixed point type"
) ? void (0) : __assert_fail ("(T->hasUnsignedIntegerRepresentation() || T->isUnsignedFixedPointType()) && \"Unexpected signed integer or fixed point type\""
, "clang/lib/AST/ASTContext.cpp", 11133, __extension__ __PRETTY_FUNCTION__
))
;
11134 return T;
11135 }
11136}
11137
11138QualType ASTContext::getCorrespondingSignedType(QualType T) const {
11139 assert((T->hasIntegerRepresentation() || T->isEnumeralType() ||(static_cast <bool> ((T->hasIntegerRepresentation() ||
T->isEnumeralType() || T->isFixedPointType()) &&
"Unexpected type") ? void (0) : __assert_fail ("(T->hasIntegerRepresentation() || T->isEnumeralType() || T->isFixedPointType()) && \"Unexpected type\""
, "clang/lib/AST/ASTContext.cpp", 11141, __extension__ __PRETTY_FUNCTION__
))
11140 T->isFixedPointType()) &&(static_cast <bool> ((T->hasIntegerRepresentation() ||
T->isEnumeralType() || T->isFixedPointType()) &&
"Unexpected type") ? void (0) : __assert_fail ("(T->hasIntegerRepresentation() || T->isEnumeralType() || T->isFixedPointType()) && \"Unexpected type\""
, "clang/lib/AST/ASTContext.cpp", 11141, __extension__ __PRETTY_FUNCTION__
))
11141 "Unexpected type")(static_cast <bool> ((T->hasIntegerRepresentation() ||
T->isEnumeralType() || T->isFixedPointType()) &&
"Unexpected type") ? void (0) : __assert_fail ("(T->hasIntegerRepresentation() || T->isEnumeralType() || T->isFixedPointType()) && \"Unexpected type\""
, "clang/lib/AST/ASTContext.cpp", 11141, __extension__ __PRETTY_FUNCTION__
))
;
11142
11143 // Turn <4 x unsigned int> -> <4 x signed int>
11144 if (const auto *VTy = T->getAs<VectorType>())
11145 return getVectorType(getCorrespondingSignedType(VTy->getElementType()),
11146 VTy->getNumElements(), VTy->getVectorKind());
11147
11148 // For _BitInt, return a signed _BitInt with same width.
11149 if (const auto *EITy = T->getAs<BitIntType>())
11150 return getBitIntType(/*Unsigned=*/false, EITy->getNumBits());
11151
11152 // For enums, get the underlying integer type of the enum, and let the general
11153 // integer type signchanging code handle it.
11154 if (const auto *ETy = T->getAs<EnumType>())
11155 T = ETy->getDecl()->getIntegerType();
11156
11157 switch (T->castAs<BuiltinType>()->getKind()) {
11158 case BuiltinType::Char_S:
11159 // Plain `char` is mapped to `signed char` even if it's already signed
11160 case BuiltinType::Char_U:
11161 case BuiltinType::UChar:
11162 case BuiltinType::Char8:
11163 return SignedCharTy;
11164 case BuiltinType::UShort:
11165 return ShortTy;
11166 case BuiltinType::UInt:
11167 return IntTy;
11168 case BuiltinType::ULong:
11169 return LongTy;
11170 case BuiltinType::ULongLong:
11171 return LongLongTy;
11172 case BuiltinType::UInt128:
11173 return Int128Ty;
11174 // wchar_t is special. It is either unsigned or not, but when it's unsigned,
11175 // there's no matching "signed wchar_t". Therefore we return the signed
11176 // version of its underlying type instead.
11177 case BuiltinType::WChar_U:
11178 return getSignedWCharType();
11179
11180 case BuiltinType::UShortAccum:
11181 return ShortAccumTy;
11182 case BuiltinType::UAccum:
11183 return AccumTy;
11184 case BuiltinType::ULongAccum:
11185 return LongAccumTy;
11186 case BuiltinType::SatUShortAccum:
11187 return SatShortAccumTy;
11188 case BuiltinType::SatUAccum:
11189 return SatAccumTy;
11190 case BuiltinType::SatULongAccum:
11191 return SatLongAccumTy;
11192 case BuiltinType::UShortFract:
11193 return ShortFractTy;
11194 case BuiltinType::UFract:
11195 return FractTy;
11196 case BuiltinType::ULongFract:
11197 return LongFractTy;
11198 case BuiltinType::SatUShortFract:
11199 return SatShortFractTy;
11200 case BuiltinType::SatUFract:
11201 return SatFractTy;
11202 case BuiltinType::SatULongFract:
11203 return SatLongFractTy;
11204 default:
11205 assert((static_cast <bool> ((T->hasSignedIntegerRepresentation
() || T->isSignedFixedPointType()) && "Unexpected signed integer or fixed point type"
) ? void (0) : __assert_fail ("(T->hasSignedIntegerRepresentation() || T->isSignedFixedPointType()) && \"Unexpected signed integer or fixed point type\""
, "clang/lib/AST/ASTContext.cpp", 11207, __extension__ __PRETTY_FUNCTION__
))
11206 (T->hasSignedIntegerRepresentation() || T->isSignedFixedPointType()) &&(static_cast <bool> ((T->hasSignedIntegerRepresentation
() || T->isSignedFixedPointType()) && "Unexpected signed integer or fixed point type"
) ? void (0) : __assert_fail ("(T->hasSignedIntegerRepresentation() || T->isSignedFixedPointType()) && \"Unexpected signed integer or fixed point type\""
, "clang/lib/AST/ASTContext.cpp", 11207, __extension__ __PRETTY_FUNCTION__
))
11207 "Unexpected signed integer or fixed point type")(static_cast <bool> ((T->hasSignedIntegerRepresentation
() || T->isSignedFixedPointType()) && "Unexpected signed integer or fixed point type"
) ? void (0) : __assert_fail ("(T->hasSignedIntegerRepresentation() || T->isSignedFixedPointType()) && \"Unexpected signed integer or fixed point type\""
, "clang/lib/AST/ASTContext.cpp", 11207, __extension__ __PRETTY_FUNCTION__
))
;
11208 return T;
11209 }
11210}
11211
11212ASTMutationListener::~ASTMutationListener() = default;
11213
11214void ASTMutationListener::DeducedReturnType(const FunctionDecl *FD,
11215 QualType ReturnType) {}
11216
11217//===----------------------------------------------------------------------===//
11218// Builtin Type Computation
11219//===----------------------------------------------------------------------===//
11220
11221/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
11222/// pointer over the consumed characters. This returns the resultant type. If
11223/// AllowTypeModifiers is false then modifier like * are not parsed, just basic
11224/// types. This allows "v2i*" to be parsed as a pointer to a v2i instead of
11225/// a vector of "i*".
11226///
11227/// RequiresICE is filled in on return to indicate whether the value is required
11228/// to be an Integer Constant Expression.
11229static QualType DecodeTypeFromStr(const char *&Str, const ASTContext &Context,
11230 ASTContext::GetBuiltinTypeError &Error,
11231 bool &RequiresICE,
11232 bool AllowTypeModifiers) {
11233 // Modifiers.
11234 int HowLong = 0;
11235 bool Signed = false, Unsigned = false;
11236 RequiresICE = false;
11237
11238 // Read the prefixed modifiers first.
11239 bool Done = false;
11240 #ifndef NDEBUG
11241 bool IsSpecial = false;
11242 #endif
11243 while (!Done) {
11244 switch (*Str++) {
11245 default: Done = true; --Str; break;
11246 case 'I':
11247 RequiresICE = true;
11248 break;
11249 case 'S':
11250 assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!")(static_cast <bool> (!Unsigned && "Can't use both 'S' and 'U' modifiers!"
) ? void (0) : __assert_fail ("!Unsigned && \"Can't use both 'S' and 'U' modifiers!\""
, "clang/lib/AST/ASTContext.cpp", 11250, __extension__ __PRETTY_FUNCTION__
))
;
11251 assert(!Signed && "Can't use 'S' modifier multiple times!")(static_cast <bool> (!Signed && "Can't use 'S' modifier multiple times!"
) ? void (0) : __assert_fail ("!Signed && \"Can't use 'S' modifier multiple times!\""
, "clang/lib/AST/ASTContext.cpp", 11251, __extension__ __PRETTY_FUNCTION__
))
;
11252 Signed = true;
11253 break;
11254 case 'U':
11255 assert(!Signed && "Can't use both 'S' and 'U' modifiers!")(static_cast <bool> (!Signed && "Can't use both 'S' and 'U' modifiers!"
) ? void (0) : __assert_fail ("!Signed && \"Can't use both 'S' and 'U' modifiers!\""
, "clang/lib/AST/ASTContext.cpp", 11255, __extension__ __PRETTY_FUNCTION__
))
;
11256 assert(!Unsigned && "Can't use 'U' modifier multiple times!")(static_cast <bool> (!Unsigned && "Can't use 'U' modifier multiple times!"
) ? void (0) : __assert_fail ("!Unsigned && \"Can't use 'U' modifier multiple times!\""
, "clang/lib/AST/ASTContext.cpp", 11256, __extension__ __PRETTY_FUNCTION__
))
;
11257 Unsigned = true;
11258 break;
11259 case 'L':
11260 assert(!IsSpecial && "Can't use 'L' with 'W', 'N', 'Z' or 'O' modifiers")(static_cast <bool> (!IsSpecial && "Can't use 'L' with 'W', 'N', 'Z' or 'O' modifiers"
) ? void (0) : __assert_fail ("!IsSpecial && \"Can't use 'L' with 'W', 'N', 'Z' or 'O' modifiers\""
, "clang/lib/AST/ASTContext.cpp", 11260, __extension__ __PRETTY_FUNCTION__
))
;
11261 assert(HowLong <= 2 && "Can't have LLLL modifier")(static_cast <bool> (HowLong <= 2 && "Can't have LLLL modifier"
) ? void (0) : __assert_fail ("HowLong <= 2 && \"Can't have LLLL modifier\""
, "clang/lib/AST/ASTContext.cpp", 11261, __extension__ __PRETTY_FUNCTION__
))
;
11262 ++HowLong;
11263 break;
11264 case 'N':
11265 // 'N' behaves like 'L' for all non LP64 targets and 'int' otherwise.
11266 assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!")(static_cast <bool> (!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!"
) ? void (0) : __assert_fail ("!IsSpecial && \"Can't use two 'N', 'W', 'Z' or 'O' modifiers!\""
, "clang/lib/AST/ASTContext.cpp", 11266, __extension__ __PRETTY_FUNCTION__
))
;
11267 assert(HowLong == 0 && "Can't use both 'L' and 'N' modifiers!")(static_cast <bool> (HowLong == 0 && "Can't use both 'L' and 'N' modifiers!"
) ? void (0) : __assert_fail ("HowLong == 0 && \"Can't use both 'L' and 'N' modifiers!\""
, "clang/lib/AST/ASTContext.cpp", 11267, __extension__ __PRETTY_FUNCTION__
))
;
11268 #ifndef NDEBUG
11269 IsSpecial = true;
11270 #endif
11271 if (Context.getTargetInfo().getLongWidth() == 32)
11272 ++HowLong;
11273 break;
11274 case 'W':
11275 // This modifier represents int64 type.
11276 assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!")(static_cast <bool> (!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!"
) ? void (0) : __assert_fail ("!IsSpecial && \"Can't use two 'N', 'W', 'Z' or 'O' modifiers!\""
, "clang/lib/AST/ASTContext.cpp", 11276, __extension__ __PRETTY_FUNCTION__
))
;
11277 assert(HowLong == 0 && "Can't use both 'L' and 'W' modifiers!")(static_cast <bool> (HowLong == 0 && "Can't use both 'L' and 'W' modifiers!"
) ? void (0) : __assert_fail ("HowLong == 0 && \"Can't use both 'L' and 'W' modifiers!\""
, "clang/lib/AST/ASTContext.cpp", 11277, __extension__ __PRETTY_FUNCTION__
))
;
11278 #ifndef NDEBUG
11279 IsSpecial = true;
11280 #endif
11281 switch (Context.getTargetInfo().getInt64Type()) {
11282 default:
11283 llvm_unreachable("Unexpected integer type")::llvm::llvm_unreachable_internal("Unexpected integer type", "clang/lib/AST/ASTContext.cpp"
, 11283)
;
11284 case TargetInfo::SignedLong:
11285 HowLong = 1;
11286 break;
11287 case TargetInfo::SignedLongLong:
11288 HowLong = 2;
11289 break;
11290 }
11291 break;
11292 case 'Z':
11293 // This modifier represents int32 type.
11294 assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!")(static_cast <bool> (!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!"
) ? void (0) : __assert_fail ("!IsSpecial && \"Can't use two 'N', 'W', 'Z' or 'O' modifiers!\""
, "clang/lib/AST/ASTContext.cpp", 11294, __extension__ __PRETTY_FUNCTION__
))
;
11295 assert(HowLong == 0 && "Can't use both 'L' and 'Z' modifiers!")(static_cast <bool> (HowLong == 0 && "Can't use both 'L' and 'Z' modifiers!"
) ? void (0) : __assert_fail ("HowLong == 0 && \"Can't use both 'L' and 'Z' modifiers!\""
, "clang/lib/AST/ASTContext.cpp", 11295, __extension__ __PRETTY_FUNCTION__
))
;
11296 #ifndef NDEBUG
11297 IsSpecial = true;
11298 #endif
11299 switch (Context.getTargetInfo().getIntTypeByWidth(32, true)) {
11300 default:
11301 llvm_unreachable("Unexpected integer type")::llvm::llvm_unreachable_internal("Unexpected integer type", "clang/lib/AST/ASTContext.cpp"
, 11301)
;
11302 case TargetInfo::SignedInt:
11303 HowLong = 0;
11304 break;
11305 case TargetInfo::SignedLong:
11306 HowLong = 1;
11307 break;
11308 case TargetInfo::SignedLongLong:
11309 HowLong = 2;
11310 break;
11311 }
11312 break;
11313 case 'O':
11314 assert(!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!")(static_cast <bool> (!IsSpecial && "Can't use two 'N', 'W', 'Z' or 'O' modifiers!"
) ? void (0) : __assert_fail ("!IsSpecial && \"Can't use two 'N', 'W', 'Z' or 'O' modifiers!\""
, "clang/lib/AST/ASTContext.cpp", 11314, __extension__ __PRETTY_FUNCTION__
))
;
11315 assert(HowLong == 0 && "Can't use both 'L' and 'O' modifiers!")(static_cast <bool> (HowLong == 0 && "Can't use both 'L' and 'O' modifiers!"
) ? void (0) : __assert_fail ("HowLong == 0 && \"Can't use both 'L' and 'O' modifiers!\""
, "clang/lib/AST/ASTContext.cpp", 11315, __extension__ __PRETTY_FUNCTION__
))
;
11316 #ifndef NDEBUG
11317 IsSpecial = true;
11318 #endif
11319 if (Context.getLangOpts().OpenCL)
11320 HowLong = 1;
11321 else
11322 HowLong = 2;
11323 break;
11324 }
11325 }
11326
11327 QualType Type;
11328
11329 // Read the base type.
11330 switch (*Str++) {
11331 default: llvm_unreachable("Unknown builtin type letter!")::llvm::llvm_unreachable_internal("Unknown builtin type letter!"
, "clang/lib/AST/ASTContext.cpp", 11331)
;
11332 case 'x':
11333 assert(HowLong == 0 && !Signed && !Unsigned &&(static_cast <bool> (HowLong == 0 && !Signed &&
!Unsigned && "Bad modifiers used with 'x'!") ? void (
0) : __assert_fail ("HowLong == 0 && !Signed && !Unsigned && \"Bad modifiers used with 'x'!\""
, "clang/lib/AST/ASTContext.cpp", 11334, __extension__ __PRETTY_FUNCTION__
))
11334 "Bad modifiers used with 'x'!")(static_cast <bool> (HowLong == 0 && !Signed &&
!Unsigned && "Bad modifiers used with 'x'!") ? void (
0) : __assert_fail ("HowLong == 0 && !Signed && !Unsigned && \"Bad modifiers used with 'x'!\""
, "clang/lib/AST/ASTContext.cpp", 11334, __extension__ __PRETTY_FUNCTION__
))
;
11335 Type = Context.Float16Ty;
11336 break;
11337 case 'y':
11338 assert(HowLong == 0 && !Signed && !Unsigned &&(static_cast <bool> (HowLong == 0 && !Signed &&
!Unsigned && "Bad modifiers used with 'y'!") ? void (
0) : __assert_fail ("HowLong == 0 && !Signed && !Unsigned && \"Bad modifiers used with 'y'!\""
, "clang/lib/AST/ASTContext.cpp", 11339, __extension__ __PRETTY_FUNCTION__
))
11339 "Bad modifiers used with 'y'!")(static_cast <bool> (HowLong == 0 && !Signed &&
!Unsigned && "Bad modifiers used with 'y'!") ? void (
0) : __assert_fail ("HowLong == 0 && !Signed && !Unsigned && \"Bad modifiers used with 'y'!\""
, "clang/lib/AST/ASTContext.cpp", 11339, __extension__ __PRETTY_FUNCTION__
))
;
11340 Type = Context.BFloat16Ty;
11341 break;
11342 case 'v':
11343 assert(HowLong == 0 && !Signed && !Unsigned &&(static_cast <bool> (HowLong == 0 && !Signed &&
!Unsigned && "Bad modifiers used with 'v'!") ? void (
0) : __assert_fail ("HowLong == 0 && !Signed && !Unsigned && \"Bad modifiers used with 'v'!\""
, "clang/lib/AST/ASTContext.cpp", 11344, __extension__ __PRETTY_FUNCTION__
))
11344 "Bad modifiers used with 'v'!")(static_cast <bool> (HowLong == 0 && !Signed &&
!Unsigned && "Bad modifiers used with 'v'!") ? void (
0) : __assert_fail ("HowLong == 0 && !Signed && !Unsigned && \"Bad modifiers used with 'v'!\""
, "clang/lib/AST/ASTContext.cpp", 11344, __extension__ __PRETTY_FUNCTION__
))
;
11345 Type = Context.VoidTy;
11346 break;
11347 case 'h':
11348 assert(HowLong == 0 && !Signed && !Unsigned &&(static_cast <bool> (HowLong == 0 && !Signed &&
!Unsigned && "Bad modifiers used with 'h'!") ? void (
0) : __assert_fail ("HowLong == 0 && !Signed && !Unsigned && \"Bad modifiers used with 'h'!\""
, "clang/lib/AST/ASTContext.cpp", 11349, __extension__ __PRETTY_FUNCTION__
))
11349 "Bad modifiers used with 'h'!")(static_cast <bool> (HowLong == 0 && !Signed &&
!Unsigned && "Bad modifiers used with 'h'!") ? void (
0) : __assert_fail ("HowLong == 0 && !Signed && !Unsigned && \"Bad modifiers used with 'h'!\""
, "clang/lib/AST/ASTContext.cpp", 11349, __extension__ __PRETTY_FUNCTION__
))
;
11350 Type = Context.HalfTy;
11351 break;
11352 case 'f':
11353 assert(HowLong == 0 && !Signed && !Unsigned &&(static_cast <bool> (HowLong == 0 && !Signed &&
!Unsigned && "Bad modifiers used with 'f'!") ? void (
0) : __assert_fail ("HowLong == 0 && !Signed && !Unsigned && \"Bad modifiers used with 'f'!\""
, "clang/lib/AST/ASTContext.cpp", 11354, __extension__ __PRETTY_FUNCTION__
))
11354 "Bad modifiers used with 'f'!")(static_cast <bool> (HowLong == 0 && !Signed &&
!Unsigned && "Bad modifiers used with 'f'!") ? void (
0) : __assert_fail ("HowLong == 0 && !Signed && !Unsigned && \"Bad modifiers used with 'f'!\""
, "clang/lib/AST/ASTContext.cpp", 11354, __extension__ __PRETTY_FUNCTION__
))
;
11355 Type = Context.FloatTy;
11356 break;
11357 case 'd':
11358 assert(HowLong < 3 && !Signed && !Unsigned &&(static_cast <bool> (HowLong < 3 && !Signed &&
!Unsigned && "Bad modifiers used with 'd'!") ? void (
0) : __assert_fail ("HowLong < 3 && !Signed && !Unsigned && \"Bad modifiers used with 'd'!\""
, "clang/lib/AST/ASTContext.cpp", 11359, __extension__ __PRETTY_FUNCTION__
))
11359 "Bad modifiers used with 'd'!")(static_cast <bool> (HowLong < 3 && !Signed &&
!Unsigned && "Bad modifiers used with 'd'!") ? void (
0) : __assert_fail ("HowLong < 3 && !Signed && !Unsigned && \"Bad modifiers used with 'd'!\""
, "clang/lib/AST/ASTContext.cpp", 11359, __extension__ __PRETTY_FUNCTION__
))
;
11360 if (HowLong == 1)
11361 Type = Context.LongDoubleTy;
11362 else if (HowLong == 2)
11363 Type = Context.Float128Ty;
11364 else
11365 Type = Context.DoubleTy;
11366 break;
11367 case 's':
11368 assert(HowLong == 0 && "Bad modifiers used with 's'!")(static_cast <bool> (HowLong == 0 && "Bad modifiers used with 's'!"
) ? void (0) : __assert_fail ("HowLong == 0 && \"Bad modifiers used with 's'!\""
, "clang/lib/AST/ASTContext.cpp", 11368, __extension__ __PRETTY_FUNCTION__
))
;
11369 if (Unsigned)
11370 Type = Context.UnsignedShortTy;
11371 else
11372 Type = Context.ShortTy;
11373 break;
11374 case 'i':
11375 if (HowLong == 3)
11376 Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
11377 else if (HowLong == 2)
11378 Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
11379 else if (HowLong == 1)
11380 Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
11381 else
11382 Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
11383 break;
11384 case 'c':
11385 assert(HowLong == 0 && "Bad modifiers used with 'c'!")(static_cast <bool> (HowLong == 0 && "Bad modifiers used with 'c'!"
) ? void (0) : __assert_fail ("HowLong == 0 && \"Bad modifiers used with 'c'!\""
, "clang/lib/AST/ASTContext.cpp", 11385, __extension__ __PRETTY_FUNCTION__
))
;
11386 if (Signed)
11387 Type = Context.SignedCharTy;
11388 else if (Unsigned)
11389 Type = Context.UnsignedCharTy;
11390 else
11391 Type = Context.CharTy;
11392 break;
11393 case 'b': // boolean
11394 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!")(static_cast <bool> (HowLong == 0 && !Signed &&
!Unsigned && "Bad modifiers for 'b'!") ? void (0) : __assert_fail
("HowLong == 0 && !Signed && !Unsigned && \"Bad modifiers for 'b'!\""
, "clang/lib/AST/ASTContext.cpp", 11394, __extension__ __PRETTY_FUNCTION__
))
;
11395 Type = Context.BoolTy;
11396 break;
11397 case 'z': // size_t.
11398 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!")(static_cast <bool> (HowLong == 0 && !Signed &&
!Unsigned && "Bad modifiers for 'z'!") ? void (0) : __assert_fail
("HowLong == 0 && !Signed && !Unsigned && \"Bad modifiers for 'z'!\""
, "clang/lib/AST/ASTContext.cpp", 11398, __extension__ __PRETTY_FUNCTION__
))
;
11399 Type = Context.getSizeType();
11400 break;
11401 case 'w': // wchar_t.
11402 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'w'!")(static_cast <bool> (HowLong == 0 && !Signed &&
!Unsigned && "Bad modifiers for 'w'!") ? void (0) : __assert_fail
("HowLong == 0 && !Signed && !Unsigned && \"Bad modifiers for 'w'!\""
, "clang/lib/AST/ASTContext.cpp", 11402, __extension__ __PRETTY_FUNCTION__
))
;
11403 Type = Context.getWideCharType();
11404 break;
11405 case 'F':
11406 Type = Context.getCFConstantStringType();
11407 break;
11408 case 'G':
11409 Type = Context.getObjCIdType();
11410 break;
11411 case 'H':
11412 Type = Context.getObjCSelType();
11413 break;
11414 case 'M':
11415 Type = Context.getObjCSuperType();
11416 break;
11417 case 'a':
11418 Type = Context.getBuiltinVaListType();
11419 assert(!Type.isNull() && "builtin va list type not initialized!")(static_cast <bool> (!Type.isNull() && "builtin va list type not initialized!"
) ? void (0) : __assert_fail ("!Type.isNull() && \"builtin va list type not initialized!\""
, "clang/lib/AST/ASTContext.cpp", 11419, __extension__ __PRETTY_FUNCTION__
))
;
11420 break;
11421 case 'A':
11422 // This is a "reference" to a va_list; however, what exactly
11423 // this means depends on how va_list is defined. There are two
11424 // different kinds of va_list: ones passed by value, and ones
11425 // passed by reference. An example of a by-value va_list is
11426 // x86, where va_list is a char*. An example of by-ref va_list
11427 // is x86-64, where va_list is a __va_list_tag[1]. For x86,
11428 // we want this argument to be a char*&; for x86-64, we want
11429 // it to be a __va_list_tag*.
11430 Type = Context.getBuiltinVaListType();
11431 assert(!Type.isNull() && "builtin va list type not initialized!")(static_cast <bool> (!Type.isNull() && "builtin va list type not initialized!"
) ? void (0) : __assert_fail ("!Type.isNull() && \"builtin va list type not initialized!\""
, "clang/lib/AST/ASTContext.cpp", 11431, __extension__ __PRETTY_FUNCTION__
))
;
11432 if (Type->isArrayType())
11433 Type = Context.getArrayDecayedType(Type);
11434 else
11435 Type = Context.getLValueReferenceType(Type);
11436 break;
11437 case 'q': {
11438 char *End;
11439 unsigned NumElements = strtoul(Str, &End, 10);
11440 assert(End != Str && "Missing vector size")(static_cast <bool> (End != Str && "Missing vector size"
) ? void (0) : __assert_fail ("End != Str && \"Missing vector size\""
, "clang/lib/AST/ASTContext.cpp", 11440, __extension__ __PRETTY_FUNCTION__
))
;
11441 Str = End;
11442
11443 QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
11444 RequiresICE, false);
11445 assert(!RequiresICE && "Can't require vector ICE")(static_cast <bool> (!RequiresICE && "Can't require vector ICE"
) ? void (0) : __assert_fail ("!RequiresICE && \"Can't require vector ICE\""
, "clang/lib/AST/ASTContext.cpp", 11445, __extension__ __PRETTY_FUNCTION__
))
;
11446
11447 Type = Context.getScalableVectorType(ElementType, NumElements);
11448 break;
11449 }
11450 case 'V': {
11451 char *End;
11452 unsigned NumElements = strtoul(Str, &End, 10);
11453 assert(End != Str && "Missing vector size")(static_cast <bool> (End != Str && "Missing vector size"
) ? void (0) : __assert_fail ("End != Str && \"Missing vector size\""
, "clang/lib/AST/ASTContext.cpp", 11453, __extension__ __PRETTY_FUNCTION__
))
;
11454 Str = End;
11455
11456 QualType ElementType = DecodeTypeFromStr(Str, Context, Error,
11457 RequiresICE, false);
11458 assert(!RequiresICE && "Can't require vector ICE")(static_cast <bool> (!RequiresICE && "Can't require vector ICE"
) ? void (0) : __assert_fail ("!RequiresICE && \"Can't require vector ICE\""
, "clang/lib/AST/ASTContext.cpp", 11458, __extension__ __PRETTY_FUNCTION__
))
;
11459
11460 // TODO: No way to make AltiVec vectors in builtins yet.
11461 Type = Context.getVectorType(ElementType, NumElements,
11462 VectorType::GenericVector);
11463 break;
11464 }
11465 case 'E': {
11466 char *End;
11467
11468 unsigned NumElements = strtoul(Str, &End, 10);
11469 assert(End != Str && "Missing vector size")(static_cast <bool> (End != Str && "Missing vector size"
) ? void (0) : __assert_fail ("End != Str && \"Missing vector size\""
, "clang/lib/AST/ASTContext.cpp", 11469, __extension__ __PRETTY_FUNCTION__
))
;
11470
11471 Str = End;
11472
11473 QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
11474 false);
11475 Type = Context.getExtVectorType(ElementType, NumElements);
11476 break;
11477 }
11478 case 'X': {
11479 QualType ElementType = DecodeTypeFromStr(Str, Context, Error, RequiresICE,
11480 false);
11481 assert(!RequiresICE && "Can't require complex ICE")(static_cast <bool> (!RequiresICE && "Can't require complex ICE"
) ? void (0) : __assert_fail ("!RequiresICE && \"Can't require complex ICE\""
, "clang/lib/AST/ASTContext.cpp", 11481, __extension__ __PRETTY_FUNCTION__
))
;
11482 Type = Context.getComplexType(ElementType);
11483 break;
11484 }
11485 case 'Y':
11486 Type = Context.getPointerDiffType();
11487 break;
11488 case 'P':
11489 Type = Context.getFILEType();
11490 if (Type.isNull()) {
11491 Error = ASTContext::GE_Missing_stdio;
11492 return {};
11493 }
11494 break;
11495 case 'J':
11496 if (Signed)
11497 Type = Context.getsigjmp_bufType();
11498 else
11499 Type = Context.getjmp_bufType();
11500
11501 if (Type.isNull()) {
11502 Error = ASTContext::GE_Missing_setjmp;
11503 return {};
11504 }
11505 break;
11506 case 'K':
11507 assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'K'!")(static_cast <bool> (HowLong == 0 && !Signed &&
!Unsigned && "Bad modifiers for 'K'!") ? void (0) : __assert_fail
("HowLong == 0 && !Signed && !Unsigned && \"Bad modifiers for 'K'!\""
, "clang/lib/AST/ASTContext.cpp", 11507, __extension__ __PRETTY_FUNCTION__
))
;
11508 Type = Context.getucontext_tType();
11509
11510 if (Type.isNull()) {
11511 Error = ASTContext::GE_Missing_ucontext;
11512 return {};
11513 }
11514 break;
11515 case 'p':
11516 Type = Context.getProcessIDType();
11517 break;
11518 }
11519
11520 // If there are modifiers and if we're allowed to parse them, go for it.
11521 Done = !AllowTypeModifiers;
11522 while (!Done) {
11523 switch (char c = *Str++) {
11524 default: Done = true; --Str; break;
11525 case '*':
11526 case '&': {
11527 // Both pointers and references can have their pointee types
11528 // qualified with an address space.
11529 char *End;
11530 unsigned AddrSpace = strtoul(Str, &End, 10);
11531 if (End != Str) {
11532 // Note AddrSpace == 0 is not the same as an unspecified address space.
11533 Type = Context.getAddrSpaceQualType(
11534 Type,
11535 Context.getLangASForBuiltinAddressSpace(AddrSpace));
11536 Str = End;
11537 }
11538 if (c == '*')
11539 Type = Context.getPointerType(Type);
11540 else
11541 Type = Context.getLValueReferenceType(Type);
11542 break;
11543 }
11544 // FIXME: There's no way to have a built-in with an rvalue ref arg.
11545 case 'C':
11546 Type = Type.withConst();
11547 break;
11548 case 'D':
11549 Type = Context.getVolatileType(Type);
11550 break;
11551 case 'R':
11552 Type = Type.withRestrict();
11553 break;
11554 }
11555 }
11556
11557 assert((!RequiresICE || Type->isIntegralOrEnumerationType()) &&(static_cast <bool> ((!RequiresICE || Type->isIntegralOrEnumerationType
()) && "Integer constant 'I' type must be an integer"
) ? void (0) : __assert_fail ("(!RequiresICE || Type->isIntegralOrEnumerationType()) && \"Integer constant 'I' type must be an integer\""
, "clang/lib/AST/ASTContext.cpp", 11558, __extension__ __PRETTY_FUNCTION__
))
11558 "Integer constant 'I' type must be an integer")(static_cast <bool> ((!RequiresICE || Type->isIntegralOrEnumerationType
()) && "Integer constant 'I' type must be an integer"
) ? void (0) : __assert_fail ("(!RequiresICE || Type->isIntegralOrEnumerationType()) && \"Integer constant 'I' type must be an integer\""
, "clang/lib/AST/ASTContext.cpp", 11558, __extension__ __PRETTY_FUNCTION__
))
;
11559
11560 return Type;
11561}
11562
11563// On some targets such as PowerPC, some of the builtins are defined with custom
11564// type descriptors for target-dependent types. These descriptors are decoded in
11565// other functions, but it may be useful to be able to fall back to default
11566// descriptor decoding to define builtins mixing target-dependent and target-
11567// independent types. This function allows decoding one type descriptor with
11568// default decoding.
11569QualType ASTContext::DecodeTypeStr(const char *&Str, const ASTContext &Context,
11570 GetBuiltinTypeError &Error, bool &RequireICE,
11571 bool AllowTypeModifiers) const {
11572 return DecodeTypeFromStr(Str, Context, Error, RequireICE, AllowTypeModifiers);
11573}
11574
11575/// GetBuiltinType - Return the type for the specified builtin.
11576QualType ASTContext::GetBuiltinType(unsigned Id,
11577 GetBuiltinTypeError &Error,
11578 unsigned *IntegerConstantArgs) const {
11579 const char *TypeStr = BuiltinInfo.getTypeString(Id);
11580 if (TypeStr[0] == '\0') {
11581 Error = GE_Missing_type;
11582 return {};
11583 }
11584
11585 SmallVector<QualType, 8> ArgTypes;
11586
11587 bool RequiresICE = false;
11588 Error = GE_None;
11589 QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error,
11590 RequiresICE, true);
11591 if (Error != GE_None)
11592 return {};
11593
11594 assert(!RequiresICE && "Result of intrinsic cannot be required to be an ICE")(static_cast <bool> (!RequiresICE && "Result of intrinsic cannot be required to be an ICE"
) ? void (0) : __assert_fail ("!RequiresICE && \"Result of intrinsic cannot be required to be an ICE\""
, "clang/lib/AST/ASTContext.cpp", 11594, __extension__ __PRETTY_FUNCTION__
))
;
11595
11596 while (TypeStr[0] && TypeStr[0] != '.') {
11597 QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error, RequiresICE, true);
11598 if (Error != GE_None)
11599 return {};
11600
11601 // If this argument is required to be an IntegerConstantExpression and the
11602 // caller cares, fill in the bitmask we return.
11603 if (RequiresICE && IntegerConstantArgs)
11604 *IntegerConstantArgs |= 1 << ArgTypes.size();
11605
11606 // Do array -> pointer decay. The builtin should use the decayed type.
11607 if (Ty->isArrayType())
11608 Ty = getArrayDecayedType(Ty);
11609
11610 ArgTypes.push_back(Ty);
11611 }
11612
11613 if (Id == Builtin::BI__GetExceptionInfo)
11614 return {};
11615
11616 assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&(static_cast <bool> ((TypeStr[0] != '.' || TypeStr[1] ==
0) && "'.' should only occur at end of builtin type list!"
) ? void (0) : __assert_fail ("(TypeStr[0] != '.' || TypeStr[1] == 0) && \"'.' should only occur at end of builtin type list!\""
, "clang/lib/AST/ASTContext.cpp", 11617, __extension__ __PRETTY_FUNCTION__
))
11617 "'.' should only occur at end of builtin type list!")(static_cast <bool> ((TypeStr[0] != '.' || TypeStr[1] ==
0) && "'.' should only occur at end of builtin type list!"
) ? void (0) : __assert_fail ("(TypeStr[0] != '.' || TypeStr[1] == 0) && \"'.' should only occur at end of builtin type list!\""
, "clang/lib/AST/ASTContext.cpp", 11617, __extension__ __PRETTY_FUNCTION__
))
;
11618
11619 bool Variadic = (TypeStr[0] == '.');
11620
11621 FunctionType::ExtInfo EI(getDefaultCallingConvention(
11622 Variadic, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
11623 if (BuiltinInfo.isNoReturn(Id)) EI = EI.withNoReturn(true);
11624
11625
11626 // We really shouldn't be making a no-proto type here.
11627 if (ArgTypes.empty() && Variadic && !getLangOpts().requiresStrictPrototypes())
11628 return getFunctionNoProtoType(ResType, EI);
11629
11630 FunctionProtoType::ExtProtoInfo EPI;
11631 EPI.ExtInfo = EI;
11632 EPI.Variadic = Variadic;
11633 if (getLangOpts().CPlusPlus && BuiltinInfo.isNoThrow(Id))
11634 EPI.ExceptionSpec.Type =
11635 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
11636
11637 return getFunctionType(ResType, ArgTypes, EPI);
11638}
11639
11640static GVALinkage basicGVALinkageForFunction(const ASTContext &Context,
11641 const FunctionDecl *FD) {
11642 if (!FD->isExternallyVisible())
11643 return GVA_Internal;
11644
11645 // Non-user-provided functions get emitted as weak definitions with every
11646 // use, no matter whether they've been explicitly instantiated etc.
11647 if (!FD->isUserProvided())
11648 return GVA_DiscardableODR;
11649
11650 GVALinkage External;
11651 switch (FD->getTemplateSpecializationKind()) {
11652 case TSK_Undeclared:
11653 case TSK_ExplicitSpecialization:
11654 External = GVA_StrongExternal;
11655 break;
11656
11657 case TSK_ExplicitInstantiationDefinition:
11658 return GVA_StrongODR;
11659
11660 // C++11 [temp.explicit]p10:
11661 // [ Note: The intent is that an inline function that is the subject of
11662 // an explicit instantiation declaration will still be implicitly
11663 // instantiated when used so that the body can be considered for
11664 // inlining, but that no out-of-line copy of the inline function would be
11665 // generated in the translation unit. -- end note ]
11666 case TSK_ExplicitInstantiationDeclaration:
11667 return GVA_AvailableExternally;
11668
11669 case TSK_ImplicitInstantiation:
11670 External = GVA_DiscardableODR;
11671 break;
11672 }
11673
11674 if (!FD->isInlined())
11675 return External;
11676
11677 if ((!Context.getLangOpts().CPlusPlus &&
11678 !Context.getTargetInfo().getCXXABI().isMicrosoft() &&
11679 !FD->hasAttr<DLLExportAttr>()) ||
11680 FD->hasAttr<GNUInlineAttr>()) {
11681 // FIXME: This doesn't match gcc's behavior for dllexport inline functions.
11682
11683 // GNU or C99 inline semantics. Determine whether this symbol should be
11684 // externally visible.
11685 if (FD->isInlineDefinitionExternallyVisible())
11686 return External;
11687
11688 // C99 inline semantics, where the symbol is not externally visible.
11689 return GVA_AvailableExternally;
11690 }
11691
11692 // Functions specified with extern and inline in -fms-compatibility mode
11693 // forcibly get emitted. While the body of the function cannot be later
11694 // replaced, the function definition cannot be discarded.
11695 if (FD->isMSExternInline())
11696 return GVA_StrongODR;
11697
11698 return GVA_DiscardableODR;
11699}
11700
11701static GVALinkage adjustGVALinkageForAttributes(const ASTContext &Context,
11702 const Decl *D, GVALinkage L) {
11703 // See http://msdn.microsoft.com/en-us/library/xa0d9ste.aspx
11704 // dllexport/dllimport on inline functions.
11705 if (D->hasAttr<DLLImportAttr>()) {
11706 if (L == GVA_DiscardableODR || L == GVA_StrongODR)
11707 return GVA_AvailableExternally;
11708 } else if (D->hasAttr<DLLExportAttr>()) {
11709 if (L == GVA_DiscardableODR)
11710 return GVA_StrongODR;
11711 } else if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) {
11712 // Device-side functions with __global__ attribute must always be
11713 // visible externally so they can be launched from host.
11714 if (D->hasAttr<CUDAGlobalAttr>() &&
11715 (L == GVA_DiscardableODR || L == GVA_Internal))
11716 return GVA_StrongODR;
11717 // Single source offloading languages like CUDA/HIP need to be able to
11718 // access static device variables from host code of the same compilation
11719 // unit. This is done by externalizing the static variable with a shared
11720 // name between the host and device compilation which is the same for the
11721 // same compilation unit whereas different among different compilation
11722 // units.
11723 if (Context.shouldExternalize(D))
11724 return GVA_StrongExternal;
11725 }
11726 return L;
11727}
11728
11729/// Adjust the GVALinkage for a declaration based on what an external AST source
11730/// knows about whether there can be other definitions of this declaration.
11731static GVALinkage
11732adjustGVALinkageForExternalDefinitionKind(const ASTContext &Ctx, const Decl *D,
11733 GVALinkage L) {
11734 ExternalASTSource *Source = Ctx.getExternalSource();
11735 if (!Source)
11736 return L;
11737
11738 switch (Source->hasExternalDefinitions(D)) {
11739 case ExternalASTSource::EK_Never:
11740 // Other translation units rely on us to provide the definition.
11741 if (L == GVA_DiscardableODR)
11742 return GVA_StrongODR;
11743 break;
11744
11745 case ExternalASTSource::EK_Always:
11746 return GVA_AvailableExternally;
11747
11748 case ExternalASTSource::EK_ReplyHazy:
11749 break;
11750 }
11751 return L;
11752}
11753
11754GVALinkage ASTContext::GetGVALinkageForFunction(const FunctionDecl *FD) const {
11755 return adjustGVALinkageForExternalDefinitionKind(*this, FD,
11756 adjustGVALinkageForAttributes(*this, FD,
11757 basicGVALinkageForFunction(*this, FD)));
11758}
11759
11760static GVALinkage basicGVALinkageForVariable(const ASTContext &Context,
11761 const VarDecl *VD) {
11762 if (!VD->isExternallyVisible())
11763 return GVA_Internal;
11764
11765 if (VD->isStaticLocal()) {
11766 const DeclContext *LexicalContext = VD->getParentFunctionOrMethod();
11767 while (LexicalContext && !isa<FunctionDecl>(LexicalContext))
11768 LexicalContext = LexicalContext->getLexicalParent();
11769
11770 // ObjC Blocks can create local variables that don't have a FunctionDecl
11771 // LexicalContext.
11772 if (!LexicalContext)
11773 return GVA_DiscardableODR;
11774
11775 // Otherwise, let the static local variable inherit its linkage from the
11776 // nearest enclosing function.
11777 auto StaticLocalLinkage =
11778 Context.GetGVALinkageForFunction(cast<FunctionDecl>(LexicalContext));
11779
11780 // Itanium ABI 5.2.2: "Each COMDAT group [for a static local variable] must
11781 // be emitted in any object with references to the symbol for the object it
11782 // contains, whether inline or out-of-line."
11783 // Similar behavior is observed with MSVC. An alternative ABI could use
11784 // StrongODR/AvailableExternally to match the function, but none are
11785 // known/supported currently.
11786 if (StaticLocalLinkage == GVA_StrongODR ||
11787 StaticLocalLinkage == GVA_AvailableExternally)
11788 return GVA_DiscardableODR;
11789 return StaticLocalLinkage;
11790 }
11791
11792 // MSVC treats in-class initialized static data members as definitions.
11793 // By giving them non-strong linkage, out-of-line definitions won't
11794 // cause link errors.
11795 if (Context.isMSStaticDataMemberInlineDefinition(VD))
11796 return GVA_DiscardableODR;
11797
11798 // Most non-template variables have strong linkage; inline variables are
11799 // linkonce_odr or (occasionally, for compatibility) weak_odr.
11800 GVALinkage StrongLinkage;
11801 switch (Context.getInlineVariableDefinitionKind(VD)) {
11802 case ASTContext::InlineVariableDefinitionKind::None:
11803 StrongLinkage = GVA_StrongExternal;
11804 break;
11805 case ASTContext::InlineVariableDefinitionKind::Weak:
11806 case ASTContext::InlineVariableDefinitionKind::WeakUnknown:
11807 StrongLinkage = GVA_DiscardableODR;
11808 break;
11809 case ASTContext::InlineVariableDefinitionKind::Strong:
11810 StrongLinkage = GVA_StrongODR;
11811 break;
11812 }
11813
11814 switch (VD->getTemplateSpecializationKind()) {
11815 case TSK_Undeclared:
11816 return StrongLinkage;
11817
11818 case TSK_ExplicitSpecialization:
11819 return Context.getTargetInfo().getCXXABI().isMicrosoft() &&
11820 VD->isStaticDataMember()
11821 ? GVA_StrongODR
11822 : StrongLinkage;
11823
11824 case TSK_ExplicitInstantiationDefinition:
11825 return GVA_StrongODR;
11826
11827 case TSK_ExplicitInstantiationDeclaration:
11828 return GVA_AvailableExternally;
11829
11830 case TSK_ImplicitInstantiation:
11831 return GVA_DiscardableODR;
11832 }
11833
11834 llvm_unreachable("Invalid Linkage!")::llvm::llvm_unreachable_internal("Invalid Linkage!", "clang/lib/AST/ASTContext.cpp"
, 11834)
;
11835}
11836
11837GVALinkage ASTContext::GetGVALinkageForVariable(const VarDecl *VD) const {
11838 return adjustGVALinkageForExternalDefinitionKind(*this, VD,
11839 adjustGVALinkageForAttributes(*this, VD,
11840 basicGVALinkageForVariable(*this, VD)));
11841}
11842
11843bool ASTContext::DeclMustBeEmitted(const Decl *D) {
11844 if (const auto *VD = dyn_cast<VarDecl>(D)) {
11845 if (!VD->isFileVarDecl())
11846 return false;
11847 // Global named register variables (GNU extension) are never emitted.
11848 if (VD->getStorageClass() == SC_Register)
11849 return false;
11850 if (VD->getDescribedVarTemplate() ||
11851 isa<VarTemplatePartialSpecializationDecl>(VD))
11852 return false;
11853 } else if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
11854 // We never need to emit an uninstantiated function template.
11855 if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
11856 return false;
11857 } else if (isa<PragmaCommentDecl>(D))
11858 return true;
11859 else if (isa<PragmaDetectMismatchDecl>(D))
11860 return true;
11861 else if (isa<OMPRequiresDecl>(D))
11862 return true;
11863 else if (isa<OMPThreadPrivateDecl>(D))
11864 return !D->getDeclContext()->isDependentContext();
11865 else if (isa<OMPAllocateDecl>(D))
11866 return !D->getDeclContext()->isDependentContext();
11867 else if (isa<OMPDeclareReductionDecl>(D) || isa<OMPDeclareMapperDecl>(D))
11868 return !D->getDeclContext()->isDependentContext();
11869 else if (isa<ImportDecl>(D))
11870 return true;
11871 else
11872 return false;
11873
11874 // If this is a member of a class template, we do not need to emit it.
11875 if (D->getDeclContext()->isDependentContext())
11876 return false;
11877
11878 // Weak references don't produce any output by themselves.
11879 if (D->hasAttr<WeakRefAttr>())
11880 return false;
11881
11882 // Aliases and used decls are required.
11883 if (D->hasAttr<AliasAttr>() || D->hasAttr<UsedAttr>())
11884 return true;
11885
11886 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
11887 // Forward declarations aren't required.
11888 if (!FD->doesThisDeclarationHaveABody())
11889 return FD->doesDeclarationForceExternallyVisibleDefinition();
11890
11891 // Constructors and destructors are required.
11892 if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
11893 return true;
11894
11895 // The key function for a class is required. This rule only comes
11896 // into play when inline functions can be key functions, though.
11897 if (getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
11898 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
11899 const CXXRecordDecl *RD = MD->getParent();
11900 if (MD->isOutOfLine() && RD->isDynamicClass()) {
11901 const CXXMethodDecl *KeyFunc = getCurrentKeyFunction(RD);
11902 if (KeyFunc && KeyFunc->getCanonicalDecl() == MD->getCanonicalDecl())
11903 return true;
11904 }
11905 }
11906 }
11907
11908 GVALinkage Linkage = GetGVALinkageForFunction(FD);
11909
11910 // static, static inline, always_inline, and extern inline functions can
11911 // always be deferred. Normal inline functions can be deferred in C99/C++.
11912 // Implicit template instantiations can also be deferred in C++.
11913 return !isDiscardableGVALinkage(Linkage);
11914 }
11915
11916 const auto *VD = cast<VarDecl>(D);
11917 assert(VD->isFileVarDecl() && "Expected file scoped var")(static_cast <bool> (VD->isFileVarDecl() && "Expected file scoped var"
) ? void (0) : __assert_fail ("VD->isFileVarDecl() && \"Expected file scoped var\""
, "clang/lib/AST/ASTContext.cpp", 11917, __extension__ __PRETTY_FUNCTION__
))
;
11918
11919 // If the decl is marked as `declare target to`, it should be emitted for the
11920 // host and for the device.
11921 if (LangOpts.OpenMP &&
11922 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
11923 return true;
11924
11925 if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly &&
11926 !isMSStaticDataMemberInlineDefinition(VD))
11927 return false;
11928
11929 // Variables in other module units shouldn't be forced to be emitted.
11930 if (VD->isInAnotherModuleUnit())
11931 return false;
11932
11933 // Variables that can be needed in other TUs are required.
11934 auto Linkage = GetGVALinkageForVariable(VD);
11935 if (!isDiscardableGVALinkage(Linkage))
11936 return true;
11937
11938 // We never need to emit a variable that is available in another TU.
11939 if (Linkage == GVA_AvailableExternally)
11940 return false;
11941
11942 // Variables that have destruction with side-effects are required.
11943 if (VD->needsDestruction(*this))
11944 return true;
11945
11946 // Variables that have initialization with side-effects are required.
11947 if (VD->getInit() && VD->getInit()->HasSideEffects(*this) &&
11948 // We can get a value-dependent initializer during error recovery.
11949 (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
11950 return true;
11951
11952 // Likewise, variables with tuple-like bindings are required if their
11953 // bindings have side-effects.
11954 if (const auto *DD = dyn_cast<DecompositionDecl>(VD))
11955 for (const auto *BD : DD->bindings())
11956 if (const auto *BindingVD = BD->getHoldingVar())
11957 if (DeclMustBeEmitted(BindingVD))
11958 return true;
11959
11960 return false;
11961}
11962
11963void ASTContext::forEachMultiversionedFunctionVersion(
11964 const FunctionDecl *FD,
11965 llvm::function_ref<void(FunctionDecl *)> Pred) const {
11966 assert(FD->isMultiVersion() && "Only valid for multiversioned functions")(static_cast <bool> (FD->isMultiVersion() &&
"Only valid for multiversioned functions") ? void (0) : __assert_fail
("FD->isMultiVersion() && \"Only valid for multiversioned functions\""
, "clang/lib/AST/ASTContext.cpp", 11966, __extension__ __PRETTY_FUNCTION__
))
;
11967 llvm::SmallDenseSet<const FunctionDecl*, 4> SeenDecls;
11968 FD = FD->getMostRecentDecl();
11969 // FIXME: The order of traversal here matters and depends on the order of
11970 // lookup results, which happens to be (mostly) oldest-to-newest, but we
11971 // shouldn't rely on that.
11972 for (auto *CurDecl :
11973 FD->getDeclContext()->getRedeclContext()->lookup(FD->getDeclName())) {
11974 FunctionDecl *CurFD = CurDecl->getAsFunction()->getMostRecentDecl();
11975 if (CurFD && hasSameType(CurFD->getType(), FD->getType()) &&
11976 !SeenDecls.contains(CurFD)) {
11977 SeenDecls.insert(CurFD);
11978 Pred(CurFD);
11979 }
11980 }
11981}
11982
11983CallingConv ASTContext::getDefaultCallingConvention(bool IsVariadic,
11984 bool IsCXXMethod,
11985 bool IsBuiltin) const {
11986 // Pass through to the C++ ABI object
11987 if (IsCXXMethod)
11988 return ABI->getDefaultMethodCallConv(IsVariadic);
11989
11990 // Builtins ignore user-specified default calling convention and remain the
11991 // Target's default calling convention.
11992 if (!IsBuiltin) {
11993 switch (LangOpts.getDefaultCallingConv()) {
11994 case LangOptions::DCC_None:
11995 break;
11996 case LangOptions::DCC_CDecl:
11997 return CC_C;
11998 case LangOptions::DCC_FastCall:
11999 if (getTargetInfo().hasFeature("sse2") && !IsVariadic)
12000 return CC_X86FastCall;
12001 break;
12002 case LangOptions::DCC_StdCall:
12003 if (!IsVariadic)
12004 return CC_X86StdCall;
12005 break;
12006 case LangOptions::DCC_VectorCall:
12007 // __vectorcall cannot be applied to variadic functions.
12008 if (!IsVariadic)
12009 return CC_X86VectorCall;
12010 break;
12011 case LangOptions::DCC_RegCall:
12012 // __regcall cannot be applied to variadic functions.
12013 if (!IsVariadic)
12014 return CC_X86RegCall;
12015 break;
12016 }
12017 }
12018 return Target->getDefaultCallingConv();
12019}
12020
12021bool ASTContext::isNearlyEmpty(const CXXRecordDecl *RD) const {
12022 // Pass through to the C++ ABI object
12023 return ABI->isNearlyEmpty(RD);
12024}
12025
12026VTableContextBase *ASTContext::getVTableContext() {
12027 if (!VTContext.get()) {
12028 auto ABI = Target->getCXXABI();
12029 if (ABI.isMicrosoft())
12030 VTContext.reset(new MicrosoftVTableContext(*this));
12031 else {
12032 auto ComponentLayout = getLangOpts().RelativeCXXABIVTables
12033 ? ItaniumVTableContext::Relative
12034 : ItaniumVTableContext::Pointer;
12035 VTContext.reset(new ItaniumVTableContext(*this, ComponentLayout));
12036 }
12037 }
12038 return VTContext.get();
12039}
12040
12041MangleContext *ASTContext::createMangleContext(const TargetInfo *T) {
12042 if (!T)
12043 T = Target;
12044 switch (T->getCXXABI().getKind()) {
12045 case TargetCXXABI::AppleARM64:
12046 case TargetCXXABI::Fuchsia:
12047 case TargetCXXABI::GenericAArch64:
12048 case TargetCXXABI::GenericItanium:
12049 case TargetCXXABI::GenericARM:
12050 case TargetCXXABI::GenericMIPS:
12051 case TargetCXXABI::iOS:
12052 case TargetCXXABI::WebAssembly:
12053 case TargetCXXABI::WatchOS:
12054 case TargetCXXABI::XL:
12055 return ItaniumMangleContext::create(*this, getDiagnostics());
12056 case TargetCXXABI::Microsoft:
12057 return MicrosoftMangleContext::create(*this, getDiagnostics());
12058 }
12059 llvm_unreachable("Unsupported ABI")::llvm::llvm_unreachable_internal("Unsupported ABI", "clang/lib/AST/ASTContext.cpp"
, 12059)
;
12060}
12061
12062MangleContext *ASTContext::createDeviceMangleContext(const TargetInfo &T) {
12063 assert(T.getCXXABI().getKind() != TargetCXXABI::Microsoft &&(static_cast <bool> (T.getCXXABI().getKind() != TargetCXXABI
::Microsoft && "Device mangle context does not support Microsoft mangling."
) ? void (0) : __assert_fail ("T.getCXXABI().getKind() != TargetCXXABI::Microsoft && \"Device mangle context does not support Microsoft mangling.\""
, "clang/lib/AST/ASTContext.cpp", 12064, __extension__ __PRETTY_FUNCTION__
))
12064 "Device mangle context does not support Microsoft mangling.")(static_cast <bool> (T.getCXXABI().getKind() != TargetCXXABI
::Microsoft && "Device mangle context does not support Microsoft mangling."
) ? void (0) : __assert_fail ("T.getCXXABI().getKind() != TargetCXXABI::Microsoft && \"Device mangle context does not support Microsoft mangling.\""
, "clang/lib/AST/ASTContext.cpp", 12064, __extension__ __PRETTY_FUNCTION__
))
;
12065 switch (T.getCXXABI().getKind()) {
12066 case TargetCXXABI::AppleARM64:
12067 case TargetCXXABI::Fuchsia:
12068 case TargetCXXABI::GenericAArch64:
12069 case TargetCXXABI::GenericItanium:
12070 case TargetCXXABI::GenericARM:
12071 case TargetCXXABI::GenericMIPS:
12072 case TargetCXXABI::iOS:
12073 case TargetCXXABI::WebAssembly:
12074 case TargetCXXABI::WatchOS:
12075 case TargetCXXABI::XL:
12076 return ItaniumMangleContext::create(
12077 *this, getDiagnostics(),
12078 [](ASTContext &, const NamedDecl *ND) -> std::optional<unsigned> {
12079 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND))
12080 return RD->getDeviceLambdaManglingNumber();
12081 return std::nullopt;
12082 },
12083 /*IsAux=*/true);
12084 case TargetCXXABI::Microsoft:
12085 return MicrosoftMangleContext::create(*this, getDiagnostics(),
12086 /*IsAux=*/true);
12087 }
12088 llvm_unreachable("Unsupported ABI")::llvm::llvm_unreachable_internal("Unsupported ABI", "clang/lib/AST/ASTContext.cpp"
, 12088)
;
12089}
12090
12091CXXABI::~CXXABI() = default;
12092
12093size_t ASTContext::getSideTableAllocatedMemory() const {
12094 return ASTRecordLayouts.getMemorySize() +
12095 llvm::capacity_in_bytes(ObjCLayouts) +
12096 llvm::capacity_in_bytes(KeyFunctions) +
12097 llvm::capacity_in_bytes(ObjCImpls) +
12098 llvm::capacity_in_bytes(BlockVarCopyInits) +
12099 llvm::capacity_in_bytes(DeclAttrs) +
12100 llvm::capacity_in_bytes(TemplateOrInstantiation) +
12101 llvm::capacity_in_bytes(InstantiatedFromUsingDecl) +
12102 llvm::capacity_in_bytes(InstantiatedFromUsingShadowDecl) +
12103 llvm::capacity_in_bytes(InstantiatedFromUnnamedFieldDecl) +
12104 llvm::capacity_in_bytes(OverriddenMethods) +
12105 llvm::capacity_in_bytes(Types) +
12106 llvm::capacity_in_bytes(VariableArrayTypes);
12107}
12108
12109/// getIntTypeForBitwidth -
12110/// sets integer QualTy according to specified details:
12111/// bitwidth, signed/unsigned.
12112/// Returns empty type if there is no appropriate target types.
12113QualType ASTContext::getIntTypeForBitwidth(unsigned DestWidth,
12114 unsigned Signed) const {
12115 TargetInfo::IntType Ty = getTargetInfo().getIntTypeByWidth(DestWidth, Signed);
12116 CanQualType QualTy = getFromTargetType(Ty);
12117 if (!QualTy && DestWidth == 128)
12118 return Signed ? Int128Ty : UnsignedInt128Ty;
12119 return QualTy;
12120}
12121
12122/// getRealTypeForBitwidth -
12123/// sets floating point QualTy according to specified bitwidth.
12124/// Returns empty type if there is no appropriate target types.
12125QualType ASTContext::getRealTypeForBitwidth(unsigned DestWidth,
12126 FloatModeKind ExplicitType) const {
12127 FloatModeKind Ty =
12128 getTargetInfo().getRealTypeByWidth(DestWidth, ExplicitType);
12129 switch (Ty) {
12130 case FloatModeKind::Half:
12131 return HalfTy;
12132 case FloatModeKind::Float:
12133 return FloatTy;
12134 case FloatModeKind::Double:
12135 return DoubleTy;
12136 case FloatModeKind::LongDouble:
12137 return LongDoubleTy;
12138 case FloatModeKind::Float128:
12139 return Float128Ty;
12140 case FloatModeKind::Ibm128:
12141 return Ibm128Ty;
12142 case FloatModeKind::NoFloat:
12143 return {};
12144 }
12145
12146 llvm_unreachable("Unhandled TargetInfo::RealType value")::llvm::llvm_unreachable_internal("Unhandled TargetInfo::RealType value"
, "clang/lib/AST/ASTContext.cpp", 12146)
;
12147}
12148
12149void ASTContext::setManglingNumber(const NamedDecl *ND, unsigned Number) {
12150 if (Number > 1)
12151 MangleNumbers[ND] = Number;
12152}
12153
12154unsigned ASTContext::getManglingNumber(const NamedDecl *ND,
12155 bool ForAuxTarget) const {
12156 auto I = MangleNumbers.find(ND);
12157 unsigned Res = I != MangleNumbers.end() ? I->second : 1;
12158 // CUDA/HIP host compilation encodes host and device mangling numbers
12159 // as lower and upper half of 32 bit integer.
12160 if (LangOpts.CUDA && !LangOpts.CUDAIsDevice) {
12161 Res = ForAuxTarget ? Res >> 16 : Res & 0xFFFF;
12162 } else {
12163 assert(!ForAuxTarget && "Only CUDA/HIP host compilation supports mangling "(static_cast <bool> (!ForAuxTarget && "Only CUDA/HIP host compilation supports mangling "
"number for aux target") ? void (0) : __assert_fail ("!ForAuxTarget && \"Only CUDA/HIP host compilation supports mangling \" \"number for aux target\""
, "clang/lib/AST/ASTContext.cpp", 12164, __extension__ __PRETTY_FUNCTION__
))
12164 "number for aux target")(static_cast <bool> (!ForAuxTarget && "Only CUDA/HIP host compilation supports mangling "
"number for aux target") ? void (0) : __assert_fail ("!ForAuxTarget && \"Only CUDA/HIP host compilation supports mangling \" \"number for aux target\""
, "clang/lib/AST/ASTContext.cpp", 12164, __extension__ __PRETTY_FUNCTION__
))
;
12165 }
12166 return Res > 1 ? Res : 1;
12167}
12168
12169void ASTContext::setStaticLocalNumber(const VarDecl *VD, unsigned Number) {
12170 if (Number > 1)
12171 StaticLocalNumbers[VD] = Number;
12172}
12173
12174unsigned ASTContext::getStaticLocalNumber(const VarDecl *VD) const {
12175 auto I = StaticLocalNumbers.find(VD);
12176 return I != StaticLocalNumbers.end() ? I->second : 1;
12177}
12178
12179MangleNumberingContext &
12180ASTContext::getManglingNumberContext(const DeclContext *DC) {
12181 assert(LangOpts.CPlusPlus)(static_cast <bool> (LangOpts.CPlusPlus) ? void (0) : __assert_fail
("LangOpts.CPlusPlus", "clang/lib/AST/ASTContext.cpp", 12181
, __extension__ __PRETTY_FUNCTION__))
; // We don't need mangling numbers for plain C.
12182 std::unique_ptr<MangleNumberingContext> &MCtx = MangleNumberingContexts[DC];
12183 if (!MCtx)
12184 MCtx = createMangleNumberingContext();
12185 return *MCtx;
12186}
12187
12188MangleNumberingContext &
12189ASTContext::getManglingNumberContext(NeedExtraManglingDecl_t, const Decl *D) {
12190 assert(LangOpts.CPlusPlus)(static_cast <bool> (LangOpts.CPlusPlus) ? void (0) : __assert_fail
("LangOpts.CPlusPlus", "clang/lib/AST/ASTContext.cpp", 12190
, __extension__ __PRETTY_FUNCTION__))
; // We don't need mangling numbers for plain C.
12191 std::unique_ptr<MangleNumberingContext> &MCtx =
12192 ExtraMangleNumberingContexts[D];
12193 if (!MCtx)
12194 MCtx = createMangleNumberingContext();
12195 return *MCtx;
12196}
12197
12198std::unique_ptr<MangleNumberingContext>
12199ASTContext::createMangleNumberingContext() const {
12200 return ABI->createMangleNumberingContext();
12201}
12202
12203const CXXConstructorDecl *
12204ASTContext::getCopyConstructorForExceptionObject(CXXRecordDecl *RD) {
12205 return ABI->getCopyConstructorForExceptionObject(
12206 cast<CXXRecordDecl>(RD->getFirstDecl()));
12207}
12208
12209void ASTContext::addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
12210 CXXConstructorDecl *CD) {
12211 return ABI->addCopyConstructorForExceptionObject(
12212 cast<CXXRecordDecl>(RD->getFirstDecl()),
12213 cast<CXXConstructorDecl>(CD->getFirstDecl()));
12214}
12215
12216void ASTContext::addTypedefNameForUnnamedTagDecl(TagDecl *TD,
12217 TypedefNameDecl *DD) {
12218 return ABI->addTypedefNameForUnnamedTagDecl(TD, DD);
12219}
12220
12221TypedefNameDecl *
12222ASTContext::getTypedefNameForUnnamedTagDecl(const TagDecl *TD) {
12223 return ABI->getTypedefNameForUnnamedTagDecl(TD);
12224}
12225
12226void ASTContext::addDeclaratorForUnnamedTagDecl(TagDecl *TD,
12227 DeclaratorDecl *DD) {
12228 return ABI->addDeclaratorForUnnamedTagDecl(TD, DD);
12229}
12230
12231DeclaratorDecl *ASTContext::getDeclaratorForUnnamedTagDecl(const TagDecl *TD) {
12232 return ABI->getDeclaratorForUnnamedTagDecl(TD);
12233}
12234
12235void ASTContext::setParameterIndex(const ParmVarDecl *D, unsigned int index) {
12236 ParamIndices[D] = index;
12237}
12238
12239unsigned ASTContext::getParameterIndex(const ParmVarDecl *D) const {
12240 ParameterIndexTable::const_iterator I = ParamIndices.find(D);
12241 assert(I != ParamIndices.end() &&(static_cast <bool> (I != ParamIndices.end() &&
"ParmIndices lacks entry set by ParmVarDecl") ? void (0) : __assert_fail
("I != ParamIndices.end() && \"ParmIndices lacks entry set by ParmVarDecl\""
, "clang/lib/AST/ASTContext.cpp", 12242, __extension__ __PRETTY_FUNCTION__
))
12242 "ParmIndices lacks entry set by ParmVarDecl")(static_cast <bool> (I != ParamIndices.end() &&
"ParmIndices lacks entry set by ParmVarDecl") ? void (0) : __assert_fail
("I != ParamIndices.end() && \"ParmIndices lacks entry set by ParmVarDecl\""
, "clang/lib/AST/ASTContext.cpp", 12242, __extension__ __PRETTY_FUNCTION__
))
;
12243 return I->second;
12244}
12245
12246QualType ASTContext::getStringLiteralArrayType(QualType EltTy,
12247 unsigned Length) const {
12248 // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
12249 if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
12250 EltTy = EltTy.withConst();
12251
12252 EltTy = adjustStringLiteralBaseType(EltTy);
12253
12254 // Get an array type for the string, according to C99 6.4.5. This includes
12255 // the null terminator character.
12256 return getConstantArrayType(EltTy, llvm::APInt(32, Length + 1), nullptr,
12257 ArrayType::Normal, /*IndexTypeQuals*/ 0);
12258}
12259
12260StringLiteral *
12261ASTContext::getPredefinedStringLiteralFromCache(StringRef Key) const {
12262 StringLiteral *&Result = StringLiteralCache[Key];
12263 if (!Result)
12264 Result = StringLiteral::Create(
12265 *this, Key, StringLiteral::Ordinary,
12266 /*Pascal*/ false, getStringLiteralArrayType(CharTy, Key.size()),
12267 SourceLocation());
12268 return Result;
12269}
12270
12271MSGuidDecl *
12272ASTContext::getMSGuidDecl(MSGuidDecl::Parts Parts) const {
12273 assert(MSGuidTagDecl && "building MS GUID without MS extensions?")(static_cast <bool> (MSGuidTagDecl && "building MS GUID without MS extensions?"
) ? void (0) : __assert_fail ("MSGuidTagDecl && \"building MS GUID without MS extensions?\""
, "clang/lib/AST/ASTContext.cpp", 12273, __extension__ __PRETTY_FUNCTION__
))
;
12274
12275 llvm::FoldingSetNodeID ID;
12276 MSGuidDecl::Profile(ID, Parts);
12277
12278 void *InsertPos;
12279 if (MSGuidDecl *Existing = MSGuidDecls.FindNodeOrInsertPos(ID, InsertPos))
12280 return Existing;
12281
12282 QualType GUIDType = getMSGuidType().withConst();
12283 MSGuidDecl *New = MSGuidDecl::Create(*this, GUIDType, Parts);
12284 MSGuidDecls.InsertNode(New, InsertPos);
12285 return New;
12286}
12287
12288UnnamedGlobalConstantDecl *
12289ASTContext::getUnnamedGlobalConstantDecl(QualType Ty,
12290 const APValue &APVal) const {
12291 llvm::FoldingSetNodeID ID;
12292 UnnamedGlobalConstantDecl::Profile(ID, Ty, APVal);
12293
12294 void *InsertPos;
12295 if (UnnamedGlobalConstantDecl *Existing =
12296 UnnamedGlobalConstantDecls.FindNodeOrInsertPos(ID, InsertPos))
12297 return Existing;
12298
12299 UnnamedGlobalConstantDecl *New =
12300 UnnamedGlobalConstantDecl::Create(*this, Ty, APVal);
12301 UnnamedGlobalConstantDecls.InsertNode(New, InsertPos);
12302 return New;
12303}
12304
12305TemplateParamObjectDecl *
12306ASTContext::getTemplateParamObjectDecl(QualType T, const APValue &V) const {
12307 assert(T->isRecordType() && "template param object of unexpected type")(static_cast <bool> (T->isRecordType() && "template param object of unexpected type"
) ? void (0) : __assert_fail ("T->isRecordType() && \"template param object of unexpected type\""
, "clang/lib/AST/ASTContext.cpp", 12307, __extension__ __PRETTY_FUNCTION__
))
;
12308
12309 // C++ [temp.param]p8:
12310 // [...] a static storage duration object of type 'const T' [...]
12311 T.addConst();
12312
12313 llvm::FoldingSetNodeID ID;
12314 TemplateParamObjectDecl::Profile(ID, T, V);
12315
12316 void *InsertPos;
12317 if (TemplateParamObjectDecl *Existing =
12318 TemplateParamObjectDecls.FindNodeOrInsertPos(ID, InsertPos))
12319 return Existing;
12320
12321 TemplateParamObjectDecl *New = TemplateParamObjectDecl::Create(*this, T, V);
12322 TemplateParamObjectDecls.InsertNode(New, InsertPos);
12323 return New;
12324}
12325
12326bool ASTContext::AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const {
12327 const llvm::Triple &T = getTargetInfo().getTriple();
12328 if (!T.isOSDarwin())
12329 return false;
12330
12331 if (!(T.isiOS() && T.isOSVersionLT(7)) &&
12332 !(T.isMacOSX() && T.isOSVersionLT(10, 9)))
12333 return false;
12334
12335 QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
12336 CharUnits sizeChars = getTypeSizeInChars(AtomicTy);
12337 uint64_t Size = sizeChars.getQuantity();
12338 CharUnits alignChars = getTypeAlignInChars(AtomicTy);
12339 unsigned Align = alignChars.getQuantity();
12340 unsigned MaxInlineWidthInBits = getTargetInfo().getMaxAtomicInlineWidth();
12341 return (Size != Align || toBits(sizeChars) > MaxInlineWidthInBits);
12342}
12343
12344bool
12345ASTContext::ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
12346 const ObjCMethodDecl *MethodImpl) {
12347 // No point trying to match an unavailable/deprecated mothod.
12348 if (MethodDecl->hasAttr<UnavailableAttr>()
12349 || MethodDecl->hasAttr<DeprecatedAttr>())
12350 return false;
12351 if (MethodDecl->getObjCDeclQualifier() !=
12352 MethodImpl->getObjCDeclQualifier())
12353 return false;
12354 if (!hasSameType(MethodDecl->getReturnType(), MethodImpl->getReturnType()))
12355 return false;
12356
12357 if (MethodDecl->param_size() != MethodImpl->param_size())
12358 return false;
12359
12360 for (ObjCMethodDecl::param_const_iterator IM = MethodImpl->param_begin(),
12361 IF = MethodDecl->param_begin(), EM = MethodImpl->param_end(),
12362 EF = MethodDecl->param_end();
12363 IM != EM && IF != EF; ++IM, ++IF) {
12364 const ParmVarDecl *DeclVar = (*IF);
12365 const ParmVarDecl *ImplVar = (*IM);
12366 if (ImplVar->getObjCDeclQualifier() != DeclVar->getObjCDeclQualifier())
12367 return false;
12368 if (!hasSameType(DeclVar->getType(), ImplVar->getType()))
12369 return false;
12370 }
12371
12372 return (MethodDecl->isVariadic() == MethodImpl->isVariadic());
12373}
12374
12375uint64_t ASTContext::getTargetNullPointerValue(QualType QT) const {
12376 LangAS AS;
12377 if (QT->getUnqualifiedDesugaredType()->isNullPtrType())
12378 AS = LangAS::Default;
12379 else
12380 AS = QT->getPointeeType().getAddressSpace();
12381
12382 return getTargetInfo().getNullPointerValue(AS);
12383}
12384
12385unsigned ASTContext::getTargetAddressSpace(LangAS AS) const {
12386 return getTargetInfo().getTargetAddressSpace(AS);
12387}
12388
12389bool ASTContext::hasSameExpr(const Expr *X, const Expr *Y) const {
12390 if (X == Y)
12391 return true;
12392 if (!X || !Y)
12393 return false;
12394 llvm::FoldingSetNodeID IDX, IDY;
12395 X->Profile(IDX, *this, /*Canonical=*/true);
12396 Y->Profile(IDY, *this, /*Canonical=*/true);
12397 return IDX == IDY;
12398}
12399
12400// The getCommon* helpers return, for given 'same' X and Y entities given as
12401// inputs, another entity which is also the 'same' as the inputs, but which
12402// is closer to the canonical form of the inputs, each according to a given
12403// criteria.
12404// The getCommon*Checked variants are 'null inputs not-allowed' equivalents of
12405// the regular ones.
12406
12407static Decl *getCommonDecl(Decl *X, Decl *Y) {
12408 if (!declaresSameEntity(X, Y))
12409 return nullptr;
12410 for (const Decl *DX : X->redecls()) {
12411 // If we reach Y before reaching the first decl, that means X is older.
12412 if (DX == Y)
12413 return X;
12414 // If we reach the first decl, then Y is older.
12415 if (DX->isFirstDecl())
12416 return Y;
12417 }
12418 llvm_unreachable("Corrupt redecls chain")::llvm::llvm_unreachable_internal("Corrupt redecls chain", "clang/lib/AST/ASTContext.cpp"
, 12418)
;
12419}
12420
12421template <class T, std::enable_if_t<std::is_base_of_v<Decl, T>, bool> = true>
12422static T *getCommonDecl(T *X, T *Y) {
12423 return cast_or_null<T>(
12424 getCommonDecl(const_cast<Decl *>(cast_or_null<Decl>(X)),
12425 const_cast<Decl *>(cast_or_null<Decl>(Y))));
12426}
12427
12428template <class T, std::enable_if_t<std::is_base_of_v<Decl, T>, bool> = true>
12429static T *getCommonDeclChecked(T *X, T *Y) {
12430 return cast<T>(getCommonDecl(const_cast<Decl *>(cast<Decl>(X)),
12431 const_cast<Decl *>(cast<Decl>(Y))));
12432}
12433
12434static TemplateName getCommonTemplateName(ASTContext &Ctx, TemplateName X,
12435 TemplateName Y) {
12436 if (X.getAsVoidPointer() == Y.getAsVoidPointer())
12437 return X;
12438 // FIXME: There are cases here where we could find a common template name
12439 // with more sugar. For example one could be a SubstTemplateTemplate*
12440 // replacing the other.
12441 TemplateName CX = Ctx.getCanonicalTemplateName(X);
12442 if (CX.getAsVoidPointer() !=
12443 Ctx.getCanonicalTemplateName(Y).getAsVoidPointer())
12444 return TemplateName();
12445 return CX;
12446}
12447
12448static TemplateName
12449getCommonTemplateNameChecked(ASTContext &Ctx, TemplateName X, TemplateName Y) {
12450 TemplateName R = getCommonTemplateName(Ctx, X, Y);
12451 assert(R.getAsVoidPointer() != nullptr)(static_cast <bool> (R.getAsVoidPointer() != nullptr) ?
void (0) : __assert_fail ("R.getAsVoidPointer() != nullptr",
"clang/lib/AST/ASTContext.cpp", 12451, __extension__ __PRETTY_FUNCTION__
))
;
12452 return R;
12453}
12454
12455static auto getCommonTypes(ASTContext &Ctx, ArrayRef<QualType> Xs,
12456 ArrayRef<QualType> Ys, bool Unqualified = false) {
12457 assert(Xs.size() == Ys.size())(static_cast <bool> (Xs.size() == Ys.size()) ? void (0)
: __assert_fail ("Xs.size() == Ys.size()", "clang/lib/AST/ASTContext.cpp"
, 12457, __extension__ __PRETTY_FUNCTION__))
;
12458 SmallVector<QualType, 8> Rs(Xs.size());
12459 for (size_t I = 0; I < Rs.size(); ++I)
12460 Rs[I] = Ctx.getCommonSugaredType(Xs[I], Ys[I], Unqualified);
12461 return Rs;
12462}
12463
12464template <class T>
12465static SourceLocation getCommonAttrLoc(const T *X, const T *Y) {
12466 return X->getAttributeLoc() == Y->getAttributeLoc() ? X->getAttributeLoc()
12467 : SourceLocation();
12468}
12469
12470static TemplateArgument getCommonTemplateArgument(ASTContext &Ctx,
12471 const TemplateArgument &X,
12472 const TemplateArgument &Y) {
12473 if (X.getKind() != Y.getKind())
12474 return TemplateArgument();
12475
12476 switch (X.getKind()) {
12477 case TemplateArgument::ArgKind::Type:
12478 if (!Ctx.hasSameType(X.getAsType(), Y.getAsType()))
12479 return TemplateArgument();
12480 return TemplateArgument(
12481 Ctx.getCommonSugaredType(X.getAsType(), Y.getAsType()));
12482 case TemplateArgument::ArgKind::NullPtr:
12483 if (!Ctx.hasSameType(X.getNullPtrType(), Y.getNullPtrType()))
12484 return TemplateArgument();
12485 return TemplateArgument(
12486 Ctx.getCommonSugaredType(X.getNullPtrType(), Y.getNullPtrType()),
12487 /*Unqualified=*/true);
12488 case TemplateArgument::ArgKind::Expression:
12489 if (!Ctx.hasSameType(X.getAsExpr()->getType(), Y.getAsExpr()->getType()))
12490 return TemplateArgument();
12491 // FIXME: Try to keep the common sugar.
12492 return X;
12493 case TemplateArgument::ArgKind::Template: {
12494 TemplateName TX = X.getAsTemplate(), TY = Y.getAsTemplate();
12495 TemplateName CTN = ::getCommonTemplateName(Ctx, TX, TY);
12496 if (!CTN.getAsVoidPointer())
12497 return TemplateArgument();
12498 return TemplateArgument(CTN);
12499 }
12500 case TemplateArgument::ArgKind::TemplateExpansion: {
12501 TemplateName TX = X.getAsTemplateOrTemplatePattern(),
12502 TY = Y.getAsTemplateOrTemplatePattern();
12503 TemplateName CTN = ::getCommonTemplateName(Ctx, TX, TY);
12504 if (!CTN.getAsVoidPointer())
12505 return TemplateName();
12506 auto NExpX = X.getNumTemplateExpansions();
12507 assert(NExpX == Y.getNumTemplateExpansions())(static_cast <bool> (NExpX == Y.getNumTemplateExpansions
()) ? void (0) : __assert_fail ("NExpX == Y.getNumTemplateExpansions()"
, "clang/lib/AST/ASTContext.cpp", 12507, __extension__ __PRETTY_FUNCTION__
))
;
12508 return TemplateArgument(CTN, NExpX);
12509 }
12510 default:
12511 // FIXME: Handle the other argument kinds.
12512 return X;
12513 }
12514}
12515
12516static bool getCommonTemplateArguments(ASTContext &Ctx,
12517 SmallVectorImpl<TemplateArgument> &R,
12518 ArrayRef<TemplateArgument> Xs,
12519 ArrayRef<TemplateArgument> Ys) {
12520 if (Xs.size() != Ys.size())
12521 return true;
12522 R.resize(Xs.size());
12523 for (size_t I = 0; I < R.size(); ++I) {
12524 R[I] = getCommonTemplateArgument(Ctx, Xs[I], Ys[I]);
12525 if (R[I].isNull())
12526 return true;
12527 }
12528 return false;
12529}
12530
12531static auto getCommonTemplateArguments(ASTContext &Ctx,
12532 ArrayRef<TemplateArgument> Xs,
12533 ArrayRef<TemplateArgument> Ys) {
12534 SmallVector<TemplateArgument, 8> R;
12535 bool Different = getCommonTemplateArguments(Ctx, R, Xs, Ys);
12536 assert(!Different)(static_cast <bool> (!Different) ? void (0) : __assert_fail
("!Different", "clang/lib/AST/ASTContext.cpp", 12536, __extension__
__PRETTY_FUNCTION__))
;
12537 (void)Different;
12538 return R;
12539}
12540
12541template <class T>
12542static ElaboratedTypeKeyword getCommonTypeKeyword(const T *X, const T *Y) {
12543 return X->getKeyword() == Y->getKeyword() ? X->getKeyword()
12544 : ElaboratedTypeKeyword::ETK_None;
12545}
12546
12547template <class T>
12548static NestedNameSpecifier *getCommonNNS(ASTContext &Ctx, const T *X,
12549 const T *Y) {
12550 // FIXME: Try to keep the common NNS sugar.
12551 return X->getQualifier() == Y->getQualifier()
12552 ? X->getQualifier()
12553 : Ctx.getCanonicalNestedNameSpecifier(X->getQualifier());
12554}
12555
12556template <class T>
12557static QualType getCommonElementType(ASTContext &Ctx, const T *X, const T *Y) {
12558 return Ctx.getCommonSugaredType(X->getElementType(), Y->getElementType());
12559}
12560
12561template <class T>
12562static QualType getCommonArrayElementType(ASTContext &Ctx, const T *X,
12563 Qualifiers &QX, const T *Y,
12564 Qualifiers &QY) {
12565 QualType EX = X->getElementType(), EY = Y->getElementType();
12566 QualType R = Ctx.getCommonSugaredType(EX, EY,
12567 /*Unqualified=*/true);
12568 Qualifiers RQ = R.getQualifiers();
12569 QX += EX.getQualifiers() - RQ;
12570 QY += EY.getQualifiers() - RQ;
12571 return R;
12572}
12573
12574template <class T>
12575static QualType getCommonPointeeType(ASTContext &Ctx, const T *X, const T *Y) {
12576 return Ctx.getCommonSugaredType(X->getPointeeType(), Y->getPointeeType());
12577}
12578
12579template <class T> static auto *getCommonSizeExpr(ASTContext &Ctx, T *X, T *Y) {
12580 assert(Ctx.hasSameExpr(X->getSizeExpr(), Y->getSizeExpr()))(static_cast <bool> (Ctx.hasSameExpr(X->getSizeExpr(
), Y->getSizeExpr())) ? void (0) : __assert_fail ("Ctx.hasSameExpr(X->getSizeExpr(), Y->getSizeExpr())"
, "clang/lib/AST/ASTContext.cpp", 12580, __extension__ __PRETTY_FUNCTION__
))
;
12581 return X->getSizeExpr();
12582}
12583
12584static auto getCommonSizeModifier(const ArrayType *X, const ArrayType *Y) {
12585 assert(X->getSizeModifier() == Y->getSizeModifier())(static_cast <bool> (X->getSizeModifier() == Y->getSizeModifier
()) ? void (0) : __assert_fail ("X->getSizeModifier() == Y->getSizeModifier()"
, "clang/lib/AST/ASTContext.cpp", 12585, __extension__ __PRETTY_FUNCTION__
))
;
12586 return X->getSizeModifier();
12587}
12588
12589static auto getCommonIndexTypeCVRQualifiers(const ArrayType *X,
12590 const ArrayType *Y) {
12591 assert(X->getIndexTypeCVRQualifiers() == Y->getIndexTypeCVRQualifiers())(static_cast <bool> (X->getIndexTypeCVRQualifiers() ==
Y->getIndexTypeCVRQualifiers()) ? void (0) : __assert_fail
("X->getIndexTypeCVRQualifiers() == Y->getIndexTypeCVRQualifiers()"
, "clang/lib/AST/ASTContext.cpp", 12591, __extension__ __PRETTY_FUNCTION__
))
;
12592 return X->getIndexTypeCVRQualifiers();
12593}
12594
12595// Merges two type lists such that the resulting vector will contain
12596// each type (in a canonical sense) only once, in the order they appear
12597// from X to Y. If they occur in both X and Y, the result will contain
12598// the common sugared type between them.
12599static void mergeTypeLists(ASTContext &Ctx, SmallVectorImpl<QualType> &Out,
12600 ArrayRef<QualType> X, ArrayRef<QualType> Y) {
12601 llvm::DenseMap<QualType, unsigned> Found;
12602 for (auto Ts : {X, Y}) {
12603 for (QualType T : Ts) {
12604 auto Res = Found.try_emplace(Ctx.getCanonicalType(T), Out.size());
12605 if (!Res.second) {
12606 QualType &U = Out[Res.first->second];
12607 U = Ctx.getCommonSugaredType(U, T);
12608 } else {
12609 Out.emplace_back(T);
12610 }
12611 }
12612 }
12613}
12614
12615FunctionProtoType::ExceptionSpecInfo
12616ASTContext::mergeExceptionSpecs(FunctionProtoType::ExceptionSpecInfo ESI1,
12617 FunctionProtoType::ExceptionSpecInfo ESI2,
12618 SmallVectorImpl<QualType> &ExceptionTypeStorage,
12619 bool AcceptDependent) {
12620 ExceptionSpecificationType EST1 = ESI1.Type, EST2 = ESI2.Type;
12621
12622 // If either of them can throw anything, that is the result.
12623 for (auto I : {EST_None, EST_MSAny, EST_NoexceptFalse}) {
12624 if (EST1 == I)
12625 return ESI1;
12626 if (EST2 == I)
12627 return ESI2;
12628 }
12629
12630 // If either of them is non-throwing, the result is the other.
12631 for (auto I :
12632 {EST_NoThrow, EST_DynamicNone, EST_BasicNoexcept, EST_NoexceptTrue}) {
12633 if (EST1 == I)
12634 return ESI2;
12635 if (EST2 == I)
12636 return ESI1;
12637 }
12638
12639 // If we're left with value-dependent computed noexcept expressions, we're
12640 // stuck. Before C++17, we can just drop the exception specification entirely,
12641 // since it's not actually part of the canonical type. And this should never
12642 // happen in C++17, because it would mean we were computing the composite
12643 // pointer type of dependent types, which should never happen.
12644 if (EST1 == EST_DependentNoexcept || EST2 == EST_DependentNoexcept) {
12645 assert(AcceptDependent &&(static_cast <bool> (AcceptDependent && "computing composite pointer type of dependent types"
) ? void (0) : __assert_fail ("AcceptDependent && \"computing composite pointer type of dependent types\""
, "clang/lib/AST/ASTContext.cpp", 12646, __extension__ __PRETTY_FUNCTION__
))
12646 "computing composite pointer type of dependent types")(static_cast <bool> (AcceptDependent && "computing composite pointer type of dependent types"
) ? void (0) : __assert_fail ("AcceptDependent && \"computing composite pointer type of dependent types\""
, "clang/lib/AST/ASTContext.cpp", 12646, __extension__ __PRETTY_FUNCTION__
))
;
12647 return FunctionProtoType::ExceptionSpecInfo();
12648 }
12649
12650 // Switch over the possibilities so that people adding new values know to
12651 // update this function.
12652 switch (EST1) {
12653 case EST_None:
12654 case EST_DynamicNone:
12655 case EST_MSAny:
12656 case EST_BasicNoexcept:
12657 case EST_DependentNoexcept:
12658 case EST_NoexceptFalse:
12659 case EST_NoexceptTrue:
12660 case EST_NoThrow:
12661 llvm_unreachable("These ESTs should be handled above")::llvm::llvm_unreachable_internal("These ESTs should be handled above"
, "clang/lib/AST/ASTContext.cpp", 12661)
;
12662
12663 case EST_Dynamic: {
12664 // This is the fun case: both exception specifications are dynamic. Form
12665 // the union of the two lists.
12666 assert(EST2 == EST_Dynamic && "other cases should already be handled")(static_cast <bool> (EST2 == EST_Dynamic && "other cases should already be handled"
) ? void (0) : __assert_fail ("EST2 == EST_Dynamic && \"other cases should already be handled\""
, "clang/lib/AST/ASTContext.cpp", 12666, __extension__ __PRETTY_FUNCTION__
))
;
12667 mergeTypeLists(*this, ExceptionTypeStorage, ESI1.Exceptions,
12668 ESI2.Exceptions);
12669 FunctionProtoType::ExceptionSpecInfo Result(EST_Dynamic);
12670 Result.Exceptions = ExceptionTypeStorage;
12671 return Result;
12672 }
12673
12674 case EST_Unevaluated:
12675 case EST_Uninstantiated:
12676 case EST_Unparsed:
12677 llvm_unreachable("shouldn't see unresolved exception specifications here")::llvm::llvm_unreachable_internal("shouldn't see unresolved exception specifications here"
, "clang/lib/AST/ASTContext.cpp", 12677)
;
12678 }
12679
12680 llvm_unreachable("invalid ExceptionSpecificationType")::llvm::llvm_unreachable_internal("invalid ExceptionSpecificationType"
, "clang/lib/AST/ASTContext.cpp", 12680)
;
12681}
12682
12683static QualType getCommonNonSugarTypeNode(ASTContext &Ctx, const Type *X,
12684 Qualifiers &QX, const Type *Y,
12685 Qualifiers &QY) {
12686 Type::TypeClass TC = X->getTypeClass();
12687 assert(TC == Y->getTypeClass())(static_cast <bool> (TC == Y->getTypeClass()) ? void
(0) : __assert_fail ("TC == Y->getTypeClass()", "clang/lib/AST/ASTContext.cpp"
, 12687, __extension__ __PRETTY_FUNCTION__))
;
12688 switch (TC) {
12689#define UNEXPECTED_TYPE(Class, Kind) \
12690 case Type::Class: \
12691 llvm_unreachable("Unexpected " Kind ": " #Class)::llvm::llvm_unreachable_internal("Unexpected " Kind ": " #Class
, "clang/lib/AST/ASTContext.cpp", 12691)
;
12692
12693#define NON_CANONICAL_TYPE(Class, Base) UNEXPECTED_TYPE(Class, "non-canonical")
12694#define TYPE(Class, Base)
12695#include "clang/AST/TypeNodes.inc"
12696
12697#define SUGAR_FREE_TYPE(Class) UNEXPECTED_TYPE(Class, "sugar-free")
12698 SUGAR_FREE_TYPE(Builtin)
12699 SUGAR_FREE_TYPE(Decltype)
12700 SUGAR_FREE_TYPE(DeducedTemplateSpecialization)
12701 SUGAR_FREE_TYPE(DependentBitInt)
12702 SUGAR_FREE_TYPE(Enum)
12703 SUGAR_FREE_TYPE(BitInt)
12704 SUGAR_FREE_TYPE(ObjCInterface)
12705 SUGAR_FREE_TYPE(Record)
12706 SUGAR_FREE_TYPE(SubstTemplateTypeParmPack)
12707 SUGAR_FREE_TYPE(UnresolvedUsing)
12708#undef SUGAR_FREE_TYPE
12709#define NON_UNIQUE_TYPE(Class) UNEXPECTED_TYPE(Class, "non-unique")
12710 NON_UNIQUE_TYPE(TypeOfExpr)
12711 NON_UNIQUE_TYPE(VariableArray)
12712#undef NON_UNIQUE_TYPE
12713
12714 UNEXPECTED_TYPE(TypeOf, "sugar")
12715
12716#undef UNEXPECTED_TYPE
12717
12718 case Type::Auto: {
12719 const auto *AX = cast<AutoType>(X), *AY = cast<AutoType>(Y);
12720 assert(AX->getDeducedType().isNull())(static_cast <bool> (AX->getDeducedType().isNull()) ?
void (0) : __assert_fail ("AX->getDeducedType().isNull()"
, "clang/lib/AST/ASTContext.cpp", 12720, __extension__ __PRETTY_FUNCTION__
))
;
12721 assert(AY->getDeducedType().isNull())(static_cast <bool> (AY->getDeducedType().isNull()) ?
void (0) : __assert_fail ("AY->getDeducedType().isNull()"
, "clang/lib/AST/ASTContext.cpp", 12721, __extension__ __PRETTY_FUNCTION__
))
;
12722 assert(AX->getKeyword() == AY->getKeyword())(static_cast <bool> (AX->getKeyword() == AY->getKeyword
()) ? void (0) : __assert_fail ("AX->getKeyword() == AY->getKeyword()"
, "clang/lib/AST/ASTContext.cpp", 12722, __extension__ __PRETTY_FUNCTION__
))
;
12723 assert(AX->isInstantiationDependentType() ==(static_cast <bool> (AX->isInstantiationDependentType
() == AY->isInstantiationDependentType()) ? void (0) : __assert_fail
("AX->isInstantiationDependentType() == AY->isInstantiationDependentType()"
, "clang/lib/AST/ASTContext.cpp", 12724, __extension__ __PRETTY_FUNCTION__
))
12724 AY->isInstantiationDependentType())(static_cast <bool> (AX->isInstantiationDependentType
() == AY->isInstantiationDependentType()) ? void (0) : __assert_fail
("AX->isInstantiationDependentType() == AY->isInstantiationDependentType()"
, "clang/lib/AST/ASTContext.cpp", 12724, __extension__ __PRETTY_FUNCTION__
))
;
12725 auto As = getCommonTemplateArguments(Ctx, AX->getTypeConstraintArguments(),
12726 AY->getTypeConstraintArguments());
12727 return Ctx.getAutoType(QualType(), AX->getKeyword(),
12728 AX->isInstantiationDependentType(),
12729 AX->containsUnexpandedParameterPack(),
12730 getCommonDeclChecked(AX->getTypeConstraintConcept(),
12731 AY->getTypeConstraintConcept()),
12732 As);
12733 }
12734 case Type::IncompleteArray: {
12735 const auto *AX = cast<IncompleteArrayType>(X),
12736 *AY = cast<IncompleteArrayType>(Y);
12737 return Ctx.getIncompleteArrayType(
12738 getCommonArrayElementType(Ctx, AX, QX, AY, QY),
12739 getCommonSizeModifier(AX, AY), getCommonIndexTypeCVRQualifiers(AX, AY));
12740 }
12741 case Type::DependentSizedArray: {
12742 const auto *AX = cast<DependentSizedArrayType>(X),
12743 *AY = cast<DependentSizedArrayType>(Y);
12744 return Ctx.getDependentSizedArrayType(
12745 getCommonArrayElementType(Ctx, AX, QX, AY, QY),
12746 getCommonSizeExpr(Ctx, AX, AY), getCommonSizeModifier(AX, AY),
12747 getCommonIndexTypeCVRQualifiers(AX, AY),
12748 AX->getBracketsRange() == AY->getBracketsRange()
12749 ? AX->getBracketsRange()
12750 : SourceRange());
12751 }
12752 case Type::ConstantArray: {
12753 const auto *AX = cast<ConstantArrayType>(X),
12754 *AY = cast<ConstantArrayType>(Y);
12755 assert(AX->getSize() == AY->getSize())(static_cast <bool> (AX->getSize() == AY->getSize
()) ? void (0) : __assert_fail ("AX->getSize() == AY->getSize()"
, "clang/lib/AST/ASTContext.cpp", 12755, __extension__ __PRETTY_FUNCTION__
))
;
12756 const Expr *SizeExpr = Ctx.hasSameExpr(AX->getSizeExpr(), AY->getSizeExpr())
12757 ? AX->getSizeExpr()
12758 : nullptr;
12759 return Ctx.getConstantArrayType(
12760 getCommonArrayElementType(Ctx, AX, QX, AY, QY), AX->getSize(), SizeExpr,
12761 getCommonSizeModifier(AX, AY), getCommonIndexTypeCVRQualifiers(AX, AY));
12762 }
12763 case Type::Atomic: {
12764 const auto *AX = cast<AtomicType>(X), *AY = cast<AtomicType>(Y);
12765 return Ctx.getAtomicType(
12766 Ctx.getCommonSugaredType(AX->getValueType(), AY->getValueType()));
12767 }
12768 case Type::Complex: {
12769 const auto *CX = cast<ComplexType>(X), *CY = cast<ComplexType>(Y);
12770 return Ctx.getComplexType(getCommonArrayElementType(Ctx, CX, QX, CY, QY));
12771 }
12772 case Type::Pointer: {
12773 const auto *PX = cast<PointerType>(X), *PY = cast<PointerType>(Y);
12774 return Ctx.getPointerType(getCommonPointeeType(Ctx, PX, PY));
12775 }
12776 case Type::BlockPointer: {
12777 const auto *PX = cast<BlockPointerType>(X), *PY = cast<BlockPointerType>(Y);
12778 return Ctx.getBlockPointerType(getCommonPointeeType(Ctx, PX, PY));
12779 }
12780 case Type::ObjCObjectPointer: {
12781 const auto *PX = cast<ObjCObjectPointerType>(X),
12782 *PY = cast<ObjCObjectPointerType>(Y);
12783 return Ctx.getObjCObjectPointerType(getCommonPointeeType(Ctx, PX, PY));
12784 }
12785 case Type::MemberPointer: {
12786 const auto *PX = cast<MemberPointerType>(X),
12787 *PY = cast<MemberPointerType>(Y);
12788 return Ctx.getMemberPointerType(
12789 getCommonPointeeType(Ctx, PX, PY),
12790 Ctx.getCommonSugaredType(QualType(PX->getClass(), 0),
12791 QualType(PY->getClass(), 0))
12792 .getTypePtr());
12793 }
12794 case Type::LValueReference: {
12795 const auto *PX = cast<LValueReferenceType>(X),
12796 *PY = cast<LValueReferenceType>(Y);
12797 // FIXME: Preserve PointeeTypeAsWritten.
12798 return Ctx.getLValueReferenceType(getCommonPointeeType(Ctx, PX, PY),
12799 PX->isSpelledAsLValue() ||
12800 PY->isSpelledAsLValue());
12801 }
12802 case Type::RValueReference: {
12803 const auto *PX = cast<RValueReferenceType>(X),
12804 *PY = cast<RValueReferenceType>(Y);
12805 // FIXME: Preserve PointeeTypeAsWritten.
12806 return Ctx.getRValueReferenceType(getCommonPointeeType(Ctx, PX, PY));
12807 }
12808 case Type::DependentAddressSpace: {
12809 const auto *PX = cast<DependentAddressSpaceType>(X),
12810 *PY = cast<DependentAddressSpaceType>(Y);
12811 assert(Ctx.hasSameExpr(PX->getAddrSpaceExpr(), PY->getAddrSpaceExpr()))(static_cast <bool> (Ctx.hasSameExpr(PX->getAddrSpaceExpr
(), PY->getAddrSpaceExpr())) ? void (0) : __assert_fail ("Ctx.hasSameExpr(PX->getAddrSpaceExpr(), PY->getAddrSpaceExpr())"
, "clang/lib/AST/ASTContext.cpp", 12811, __extension__ __PRETTY_FUNCTION__
))
;
12812 return Ctx.getDependentAddressSpaceType(getCommonPointeeType(Ctx, PX, PY),
12813 PX->getAddrSpaceExpr(),
12814 getCommonAttrLoc(PX, PY));
12815 }
12816 case Type::FunctionNoProto: {
12817 const auto *FX = cast<FunctionNoProtoType>(X),
12818 *FY = cast<FunctionNoProtoType>(Y);
12819 assert(FX->getExtInfo() == FY->getExtInfo())(static_cast <bool> (FX->getExtInfo() == FY->getExtInfo
()) ? void (0) : __assert_fail ("FX->getExtInfo() == FY->getExtInfo()"
, "clang/lib/AST/ASTContext.cpp", 12819, __extension__ __PRETTY_FUNCTION__
))
;
12820 return Ctx.getFunctionNoProtoType(
12821 Ctx.getCommonSugaredType(FX->getReturnType(), FY->getReturnType()),
12822 FX->getExtInfo());
12823 }
12824 case Type::FunctionProto: {
12825 const auto *FX = cast<FunctionProtoType>(X),
12826 *FY = cast<FunctionProtoType>(Y);
12827 FunctionProtoType::ExtProtoInfo EPIX = FX->getExtProtoInfo(),
12828 EPIY = FY->getExtProtoInfo();
12829 assert(EPIX.ExtInfo == EPIY.ExtInfo)(static_cast <bool> (EPIX.ExtInfo == EPIY.ExtInfo) ? void
(0) : __assert_fail ("EPIX.ExtInfo == EPIY.ExtInfo", "clang/lib/AST/ASTContext.cpp"
, 12829, __extension__ __PRETTY_FUNCTION__))
;
12830 assert(EPIX.ExtParameterInfos == EPIY.ExtParameterInfos)(static_cast <bool> (EPIX.ExtParameterInfos == EPIY.ExtParameterInfos
) ? void (0) : __assert_fail ("EPIX.ExtParameterInfos == EPIY.ExtParameterInfos"
, "clang/lib/AST/ASTContext.cpp", 12830, __extension__ __PRETTY_FUNCTION__
))
;
12831 assert(EPIX.RefQualifier == EPIY.RefQualifier)(static_cast <bool> (EPIX.RefQualifier == EPIY.RefQualifier
) ? void (0) : __assert_fail ("EPIX.RefQualifier == EPIY.RefQualifier"
, "clang/lib/AST/ASTContext.cpp", 12831, __extension__ __PRETTY_FUNCTION__
))
;
12832 assert(EPIX.TypeQuals == EPIY.TypeQuals)(static_cast <bool> (EPIX.TypeQuals == EPIY.TypeQuals) ?
void (0) : __assert_fail ("EPIX.TypeQuals == EPIY.TypeQuals"
, "clang/lib/AST/ASTContext.cpp", 12832, __extension__ __PRETTY_FUNCTION__
))
;
12833 assert(EPIX.Variadic == EPIY.Variadic)(static_cast <bool> (EPIX.Variadic == EPIY.Variadic) ? void
(0) : __assert_fail ("EPIX.Variadic == EPIY.Variadic", "clang/lib/AST/ASTContext.cpp"
, 12833, __extension__ __PRETTY_FUNCTION__))
;
12834
12835 // FIXME: Can we handle an empty EllipsisLoc?
12836 // Use emtpy EllipsisLoc if X and Y differ.
12837
12838 EPIX.HasTrailingReturn = EPIX.HasTrailingReturn && EPIY.HasTrailingReturn;
12839
12840 QualType R =
12841 Ctx.getCommonSugaredType(FX->getReturnType(), FY->getReturnType());
12842 auto P = getCommonTypes(Ctx, FX->param_types(), FY->param_types(),
12843 /*Unqualified=*/true);
12844
12845 SmallVector<QualType, 8> Exceptions;
12846 EPIX.ExceptionSpec = Ctx.mergeExceptionSpecs(
12847 EPIX.ExceptionSpec, EPIY.ExceptionSpec, Exceptions, true);
12848 return Ctx.getFunctionType(R, P, EPIX);
12849 }
12850 case Type::ObjCObject: {
12851 const auto *OX = cast<ObjCObjectType>(X), *OY = cast<ObjCObjectType>(Y);
12852 assert((static_cast <bool> (std::equal(OX->getProtocols().begin
(), OX->getProtocols().end(), OY->getProtocols().begin(
), OY->getProtocols().end(), [](const ObjCProtocolDecl *P0
, const ObjCProtocolDecl *P1) { return P0->getCanonicalDecl
() == P1->getCanonicalDecl(); }) && "protocol lists must be the same"
) ? void (0) : __assert_fail ("std::equal(OX->getProtocols().begin(), OX->getProtocols().end(), OY->getProtocols().begin(), OY->getProtocols().end(), [](const ObjCProtocolDecl *P0, const ObjCProtocolDecl *P1) { return P0->getCanonicalDecl() == P1->getCanonicalDecl(); }) && \"protocol lists must be the same\""
, "clang/lib/AST/ASTContext.cpp", 12858, __extension__ __PRETTY_FUNCTION__
))
12853 std::equal(OX->getProtocols().begin(), OX->getProtocols().end(),(static_cast <bool> (std::equal(OX->getProtocols().begin
(), OX->getProtocols().end(), OY->getProtocols().begin(
), OY->getProtocols().end(), [](const ObjCProtocolDecl *P0
, const ObjCProtocolDecl *P1) { return P0->getCanonicalDecl
() == P1->getCanonicalDecl(); }) && "protocol lists must be the same"
) ? void (0) : __assert_fail ("std::equal(OX->getProtocols().begin(), OX->getProtocols().end(), OY->getProtocols().begin(), OY->getProtocols().end(), [](const ObjCProtocolDecl *P0, const ObjCProtocolDecl *P1) { return P0->getCanonicalDecl() == P1->getCanonicalDecl(); }) && \"protocol lists must be the same\""
, "clang/lib/AST/ASTContext.cpp", 12858, __extension__ __PRETTY_FUNCTION__
))
12854 OY->getProtocols().begin(), OY->getProtocols().end(),(static_cast <bool> (std::equal(OX->getProtocols().begin
(), OX->getProtocols().end(), OY->getProtocols().begin(
), OY->getProtocols().end(), [](const ObjCProtocolDecl *P0
, const ObjCProtocolDecl *P1) { return P0->getCanonicalDecl
() == P1->getCanonicalDecl(); }) && "protocol lists must be the same"
) ? void (0) : __assert_fail ("std::equal(OX->getProtocols().begin(), OX->getProtocols().end(), OY->getProtocols().begin(), OY->getProtocols().end(), [](const ObjCProtocolDecl *P0, const ObjCProtocolDecl *P1) { return P0->getCanonicalDecl() == P1->getCanonicalDecl(); }) && \"protocol lists must be the same\""
, "clang/lib/AST/ASTContext.cpp", 12858, __extension__ __PRETTY_FUNCTION__
))
12855 [](const ObjCProtocolDecl *P0, const ObjCProtocolDecl *P1) {(static_cast <bool> (std::equal(OX->getProtocols().begin
(), OX->getProtocols().end(), OY->getProtocols().begin(
), OY->getProtocols().end(), [](const ObjCProtocolDecl *P0
, const ObjCProtocolDecl *P1) { return P0->getCanonicalDecl
() == P1->getCanonicalDecl(); }) && "protocol lists must be the same"
) ? void (0) : __assert_fail ("std::equal(OX->getProtocols().begin(), OX->getProtocols().end(), OY->getProtocols().begin(), OY->getProtocols().end(), [](const ObjCProtocolDecl *P0, const ObjCProtocolDecl *P1) { return P0->getCanonicalDecl() == P1->getCanonicalDecl(); }) && \"protocol lists must be the same\""
, "clang/lib/AST/ASTContext.cpp", 12858, __extension__ __PRETTY_FUNCTION__
))
12856 return P0->getCanonicalDecl() == P1->getCanonicalDecl();(static_cast <bool> (std::equal(OX->getProtocols().begin
(), OX->getProtocols().end(), OY->getProtocols().begin(
), OY->getProtocols().end(), [](const ObjCProtocolDecl *P0
, const ObjCProtocolDecl *P1) { return P0->getCanonicalDecl
() == P1->getCanonicalDecl(); }) && "protocol lists must be the same"
) ? void (0) : __assert_fail ("std::equal(OX->getProtocols().begin(), OX->getProtocols().end(), OY->getProtocols().begin(), OY->getProtocols().end(), [](const ObjCProtocolDecl *P0, const ObjCProtocolDecl *P1) { return P0->getCanonicalDecl() == P1->getCanonicalDecl(); }) && \"protocol lists must be the same\""
, "clang/lib/AST/ASTContext.cpp", 12858, __extension__ __PRETTY_FUNCTION__
))
12857 }) &&(static_cast <bool> (std::equal(OX->getProtocols().begin
(), OX->getProtocols().end(), OY->getProtocols().begin(
), OY->getProtocols().end(), [](const ObjCProtocolDecl *P0
, const ObjCProtocolDecl *P1) { return P0->getCanonicalDecl
() == P1->getCanonicalDecl(); }) && "protocol lists must be the same"
) ? void (0) : __assert_fail ("std::equal(OX->getProtocols().begin(), OX->getProtocols().end(), OY->getProtocols().begin(), OY->getProtocols().end(), [](const ObjCProtocolDecl *P0, const ObjCProtocolDecl *P1) { return P0->getCanonicalDecl() == P1->getCanonicalDecl(); }) && \"protocol lists must be the same\""
, "clang/lib/AST/ASTContext.cpp", 12858, __extension__ __PRETTY_FUNCTION__
))
12858 "protocol lists must be the same")(static_cast <bool> (std::equal(OX->getProtocols().begin
(), OX->getProtocols().end(), OY->getProtocols().begin(
), OY->getProtocols().end(), [](const ObjCProtocolDecl *P0
, const ObjCProtocolDecl *P1) { return P0->getCanonicalDecl
() == P1->getCanonicalDecl(); }) && "protocol lists must be the same"
) ? void (0) : __assert_fail ("std::equal(OX->getProtocols().begin(), OX->getProtocols().end(), OY->getProtocols().begin(), OY->getProtocols().end(), [](const ObjCProtocolDecl *P0, const ObjCProtocolDecl *P1) { return P0->getCanonicalDecl() == P1->getCanonicalDecl(); }) && \"protocol lists must be the same\""
, "clang/lib/AST/ASTContext.cpp", 12858, __extension__ __PRETTY_FUNCTION__
))
;
12859 auto TAs = getCommonTypes(Ctx, OX->getTypeArgsAsWritten(),
12860 OY->getTypeArgsAsWritten());
12861 return Ctx.getObjCObjectType(
12862 Ctx.getCommonSugaredType(OX->getBaseType(), OY->getBaseType()), TAs,
12863 OX->getProtocols(),
12864 OX->isKindOfTypeAsWritten() && OY->isKindOfTypeAsWritten());
12865 }
12866 case Type::ConstantMatrix: {
12867 const auto *MX = cast<ConstantMatrixType>(X),
12868 *MY = cast<ConstantMatrixType>(Y);
12869 assert(MX->getNumRows() == MY->getNumRows())(static_cast <bool> (MX->getNumRows() == MY->getNumRows
()) ? void (0) : __assert_fail ("MX->getNumRows() == MY->getNumRows()"
, "clang/lib/AST/ASTContext.cpp", 12869, __extension__ __PRETTY_FUNCTION__
))
;
12870 assert(MX->getNumColumns() == MY->getNumColumns())(static_cast <bool> (MX->getNumColumns() == MY->getNumColumns
()) ? void (0) : __assert_fail ("MX->getNumColumns() == MY->getNumColumns()"
, "clang/lib/AST/ASTContext.cpp", 12870, __extension__ __PRETTY_FUNCTION__
))
;
12871 return Ctx.getConstantMatrixType(getCommonElementType(Ctx, MX, MY),
12872 MX->getNumRows(), MX->getNumColumns());
12873 }
12874 case Type::DependentSizedMatrix: {
12875 const auto *MX = cast<DependentSizedMatrixType>(X),
12876 *MY = cast<DependentSizedMatrixType>(Y);
12877 assert(Ctx.hasSameExpr(MX->getRowExpr(), MY->getRowExpr()))(static_cast <bool> (Ctx.hasSameExpr(MX->getRowExpr(
), MY->getRowExpr())) ? void (0) : __assert_fail ("Ctx.hasSameExpr(MX->getRowExpr(), MY->getRowExpr())"
, "clang/lib/AST/ASTContext.cpp", 12877, __extension__ __PRETTY_FUNCTION__
))
;
12878 assert(Ctx.hasSameExpr(MX->getColumnExpr(), MY->getColumnExpr()))(static_cast <bool> (Ctx.hasSameExpr(MX->getColumnExpr
(), MY->getColumnExpr())) ? void (0) : __assert_fail ("Ctx.hasSameExpr(MX->getColumnExpr(), MY->getColumnExpr())"
, "clang/lib/AST/ASTContext.cpp", 12878, __extension__ __PRETTY_FUNCTION__
))
;
12879 return Ctx.getDependentSizedMatrixType(
12880 getCommonElementType(Ctx, MX, MY), MX->getRowExpr(),
12881 MX->getColumnExpr(), getCommonAttrLoc(MX, MY));
12882 }
12883 case Type::Vector: {
12884 const auto *VX = cast<VectorType>(X), *VY = cast<VectorType>(Y);
12885 assert(VX->getNumElements() == VY->getNumElements())(static_cast <bool> (VX->getNumElements() == VY->
getNumElements()) ? void (0) : __assert_fail ("VX->getNumElements() == VY->getNumElements()"
, "clang/lib/AST/ASTContext.cpp", 12885, __extension__ __PRETTY_FUNCTION__
))
;
12886 assert(VX->getVectorKind() == VY->getVectorKind())(static_cast <bool> (VX->getVectorKind() == VY->getVectorKind
()) ? void (0) : __assert_fail ("VX->getVectorKind() == VY->getVectorKind()"
, "clang/lib/AST/ASTContext.cpp", 12886, __extension__ __PRETTY_FUNCTION__
))
;
12887 return Ctx.getVectorType(getCommonElementType(Ctx, VX, VY),
12888 VX->getNumElements(), VX->getVectorKind());
12889 }
12890 case Type::ExtVector: {
12891 const auto *VX = cast<ExtVectorType>(X), *VY = cast<ExtVectorType>(Y);
12892 assert(VX->getNumElements() == VY->getNumElements())(static_cast <bool> (VX->getNumElements() == VY->
getNumElements()) ? void (0) : __assert_fail ("VX->getNumElements() == VY->getNumElements()"
, "clang/lib/AST/ASTContext.cpp", 12892, __extension__ __PRETTY_FUNCTION__
))
;
12893 return Ctx.getExtVectorType(getCommonElementType(Ctx, VX, VY),
12894 VX->getNumElements());
12895 }
12896 case Type::DependentSizedExtVector: {
12897 const auto *VX = cast<DependentSizedExtVectorType>(X),
12898 *VY = cast<DependentSizedExtVectorType>(Y);
12899 return Ctx.getDependentSizedExtVectorType(getCommonElementType(Ctx, VX, VY),
12900 getCommonSizeExpr(Ctx, VX, VY),
12901 getCommonAttrLoc(VX, VY));
12902 }
12903 case Type::DependentVector: {
12904 const auto *VX = cast<DependentVectorType>(X),
12905 *VY = cast<DependentVectorType>(Y);
12906 assert(VX->getVectorKind() == VY->getVectorKind())(static_cast <bool> (VX->getVectorKind() == VY->getVectorKind
()) ? void (0) : __assert_fail ("VX->getVectorKind() == VY->getVectorKind()"
, "clang/lib/AST/ASTContext.cpp", 12906, __extension__ __PRETTY_FUNCTION__
))
;
12907 return Ctx.getDependentVectorType(
12908 getCommonElementType(Ctx, VX, VY), getCommonSizeExpr(Ctx, VX, VY),
12909 getCommonAttrLoc(VX, VY), VX->getVectorKind());
12910 }
12911 case Type::InjectedClassName: {
12912 const auto *IX = cast<InjectedClassNameType>(X),
12913 *IY = cast<InjectedClassNameType>(Y);
12914 return Ctx.getInjectedClassNameType(
12915 getCommonDeclChecked(IX->getDecl(), IY->getDecl()),
12916 Ctx.getCommonSugaredType(IX->getInjectedSpecializationType(),
12917 IY->getInjectedSpecializationType()));
12918 }
12919 case Type::TemplateSpecialization: {
12920 const auto *TX = cast<TemplateSpecializationType>(X),
12921 *TY = cast<TemplateSpecializationType>(Y);
12922 auto As = getCommonTemplateArguments(Ctx, TX->template_arguments(),
12923 TY->template_arguments());
12924 return Ctx.getTemplateSpecializationType(
12925 ::getCommonTemplateNameChecked(Ctx, TX->getTemplateName(),
12926 TY->getTemplateName()),
12927 As, X->getCanonicalTypeInternal());
12928 }
12929 case Type::DependentName: {
12930 const auto *NX = cast<DependentNameType>(X),
12931 *NY = cast<DependentNameType>(Y);
12932 assert(NX->getIdentifier() == NY->getIdentifier())(static_cast <bool> (NX->getIdentifier() == NY->getIdentifier
()) ? void (0) : __assert_fail ("NX->getIdentifier() == NY->getIdentifier()"
, "clang/lib/AST/ASTContext.cpp", 12932, __extension__ __PRETTY_FUNCTION__
))
;
12933 return Ctx.getDependentNameType(
12934 getCommonTypeKeyword(NX, NY), getCommonNNS(Ctx, NX, NY),
12935 NX->getIdentifier(), NX->getCanonicalTypeInternal());
12936 }
12937 case Type::DependentTemplateSpecialization: {
12938 const auto *TX = cast<DependentTemplateSpecializationType>(X),
12939 *TY = cast<DependentTemplateSpecializationType>(Y);
12940 assert(TX->getIdentifier() == TY->getIdentifier())(static_cast <bool> (TX->getIdentifier() == TY->getIdentifier
()) ? void (0) : __assert_fail ("TX->getIdentifier() == TY->getIdentifier()"
, "clang/lib/AST/ASTContext.cpp", 12940, __extension__ __PRETTY_FUNCTION__
))
;
12941 auto As = getCommonTemplateArguments(Ctx, TX->template_arguments(),
12942 TY->template_arguments());
12943 return Ctx.getDependentTemplateSpecializationType(
12944 getCommonTypeKeyword(TX, TY), getCommonNNS(Ctx, TX, TY),
12945 TX->getIdentifier(), As);
12946 }
12947 case Type::UnaryTransform: {
12948 const auto *TX = cast<UnaryTransformType>(X),
12949 *TY = cast<UnaryTransformType>(Y);
12950 assert(TX->getUTTKind() == TY->getUTTKind())(static_cast <bool> (TX->getUTTKind() == TY->getUTTKind
()) ? void (0) : __assert_fail ("TX->getUTTKind() == TY->getUTTKind()"
, "clang/lib/AST/ASTContext.cpp", 12950, __extension__ __PRETTY_FUNCTION__
))
;
12951 return Ctx.getUnaryTransformType(
12952 Ctx.getCommonSugaredType(TX->getBaseType(), TY->getBaseType()),
12953 Ctx.getCommonSugaredType(TX->getUnderlyingType(),
12954 TY->getUnderlyingType()),
12955 TX->getUTTKind());
12956 }
12957 case Type::PackExpansion: {
12958 const auto *PX = cast<PackExpansionType>(X),
12959 *PY = cast<PackExpansionType>(Y);
12960 assert(PX->getNumExpansions() == PY->getNumExpansions())(static_cast <bool> (PX->getNumExpansions() == PY->
getNumExpansions()) ? void (0) : __assert_fail ("PX->getNumExpansions() == PY->getNumExpansions()"
, "clang/lib/AST/ASTContext.cpp", 12960, __extension__ __PRETTY_FUNCTION__
))
;
12961 return Ctx.getPackExpansionType(
12962 Ctx.getCommonSugaredType(PX->getPattern(), PY->getPattern()),
12963 PX->getNumExpansions(), false);
12964 }
12965 case Type::Pipe: {
12966 const auto *PX = cast<PipeType>(X), *PY = cast<PipeType>(Y);
12967 assert(PX->isReadOnly() == PY->isReadOnly())(static_cast <bool> (PX->isReadOnly() == PY->isReadOnly
()) ? void (0) : __assert_fail ("PX->isReadOnly() == PY->isReadOnly()"
, "clang/lib/AST/ASTContext.cpp", 12967, __extension__ __PRETTY_FUNCTION__
))
;
12968 auto MP = PX->isReadOnly() ? &ASTContext::getReadPipeType
12969 : &ASTContext::getWritePipeType;
12970 return (Ctx.*MP)(getCommonElementType(Ctx, PX, PY));
12971 }
12972 case Type::TemplateTypeParm: {
12973 const auto *TX = cast<TemplateTypeParmType>(X),
12974 *TY = cast<TemplateTypeParmType>(Y);
12975 assert(TX->getDepth() == TY->getDepth())(static_cast <bool> (TX->getDepth() == TY->getDepth
()) ? void (0) : __assert_fail ("TX->getDepth() == TY->getDepth()"
, "clang/lib/AST/ASTContext.cpp", 12975, __extension__ __PRETTY_FUNCTION__
))
;
12976 assert(TX->getIndex() == TY->getIndex())(static_cast <bool> (TX->getIndex() == TY->getIndex
()) ? void (0) : __assert_fail ("TX->getIndex() == TY->getIndex()"
, "clang/lib/AST/ASTContext.cpp", 12976, __extension__ __PRETTY_FUNCTION__
))
;
12977 assert(TX->isParameterPack() == TY->isParameterPack())(static_cast <bool> (TX->isParameterPack() == TY->
isParameterPack()) ? void (0) : __assert_fail ("TX->isParameterPack() == TY->isParameterPack()"
, "clang/lib/AST/ASTContext.cpp", 12977, __extension__ __PRETTY_FUNCTION__
))
;
12978 return Ctx.getTemplateTypeParmType(
12979 TX->getDepth(), TX->getIndex(), TX->isParameterPack(),
12980 getCommonDecl(TX->getDecl(), TY->getDecl()));
12981 }
12982 }
12983 llvm_unreachable("Unknown Type Class")::llvm::llvm_unreachable_internal("Unknown Type Class", "clang/lib/AST/ASTContext.cpp"
, 12983)
;
12984}
12985
12986static QualType getCommonSugarTypeNode(ASTContext &Ctx, const Type *X,
12987 const Type *Y,
12988 SplitQualType Underlying) {
12989 Type::TypeClass TC = X->getTypeClass();
12990 if (TC != Y->getTypeClass())
12991 return QualType();
12992 switch (TC) {
12993#define UNEXPECTED_TYPE(Class, Kind) \
12994 case Type::Class: \
12995 llvm_unreachable("Unexpected " Kind ": " #Class)::llvm::llvm_unreachable_internal("Unexpected " Kind ": " #Class
, "clang/lib/AST/ASTContext.cpp", 12995)
;
12996#define TYPE(Class, Base)
12997#define DEPENDENT_TYPE(Class, Base) UNEXPECTED_TYPE(Class, "dependent")
12998#include "clang/AST/TypeNodes.inc"
12999
13000#define CANONICAL_TYPE(Class) UNEXPECTED_TYPE(Class, "canonical")
13001 CANONICAL_TYPE(Atomic)
13002 CANONICAL_TYPE(BitInt)
13003 CANONICAL_TYPE(BlockPointer)
13004 CANONICAL_TYPE(Builtin)
13005 CANONICAL_TYPE(Complex)
13006 CANONICAL_TYPE(ConstantArray)
13007 CANONICAL_TYPE(ConstantMatrix)
13008 CANONICAL_TYPE(Enum)
13009 CANONICAL_TYPE(ExtVector)
13010 CANONICAL_TYPE(FunctionNoProto)
13011 CANONICAL_TYPE(FunctionProto)
13012 CANONICAL_TYPE(IncompleteArray)
13013 CANONICAL_TYPE(LValueReference)
13014 CANONICAL_TYPE(MemberPointer)
13015 CANONICAL_TYPE(ObjCInterface)
13016 CANONICAL_TYPE(ObjCObject)
13017 CANONICAL_TYPE(ObjCObjectPointer)
13018 CANONICAL_TYPE(Pipe)
13019 CANONICAL_TYPE(Pointer)
13020 CANONICAL_TYPE(Record)
13021 CANONICAL_TYPE(RValueReference)
13022 CANONICAL_TYPE(VariableArray)
13023 CANONICAL_TYPE(Vector)
13024#undef CANONICAL_TYPE
13025
13026#undef UNEXPECTED_TYPE
13027
13028 case Type::Adjusted: {
13029 const auto *AX = cast<AdjustedType>(X), *AY = cast<AdjustedType>(Y);
13030 QualType OX = AX->getOriginalType(), OY = AY->getOriginalType();
13031 if (!Ctx.hasSameType(OX, OY))
13032 return QualType();
13033 // FIXME: It's inefficient to have to unify the original types.
13034 return Ctx.getAdjustedType(Ctx.getCommonSugaredType(OX, OY),
13035 Ctx.getQualifiedType(Underlying));
13036 }
13037 case Type::Decayed: {
13038 const auto *DX = cast<DecayedType>(X), *DY = cast<DecayedType>(Y);
13039 QualType OX = DX->getOriginalType(), OY = DY->getOriginalType();
13040 if (!Ctx.hasSameType(OX, OY))
13041 return QualType();
13042 // FIXME: It's inefficient to have to unify the original types.
13043 return Ctx.getDecayedType(Ctx.getCommonSugaredType(OX, OY),
13044 Ctx.getQualifiedType(Underlying));
13045 }
13046 case Type::Attributed: {
13047 const auto *AX = cast<AttributedType>(X), *AY = cast<AttributedType>(Y);
13048 AttributedType::Kind Kind = AX->getAttrKind();
13049 if (Kind != AY->getAttrKind())
13050 return QualType();
13051 QualType MX = AX->getModifiedType(), MY = AY->getModifiedType();
13052 if (!Ctx.hasSameType(MX, MY))
13053 return QualType();
13054 // FIXME: It's inefficient to have to unify the modified types.
13055 return Ctx.getAttributedType(Kind, Ctx.getCommonSugaredType(MX, MY),
13056 Ctx.getQualifiedType(Underlying));
13057 }
13058 case Type::BTFTagAttributed: {
13059 const auto *BX = cast<BTFTagAttributedType>(X);
13060 const BTFTypeTagAttr *AX = BX->getAttr();
13061 // The attribute is not uniqued, so just compare the tag.
13062 if (AX->getBTFTypeTag() !=
13063 cast<BTFTagAttributedType>(Y)->getAttr()->getBTFTypeTag())
13064 return QualType();
13065 return Ctx.getBTFTagAttributedType(AX, Ctx.getQualifiedType(Underlying));
13066 }
13067 case Type::Auto: {
13068 const auto *AX = cast<AutoType>(X), *AY = cast<AutoType>(Y);
13069
13070 AutoTypeKeyword KW = AX->getKeyword();
13071 if (KW != AY->getKeyword())
13072 return QualType();
13073
13074 ConceptDecl *CD = ::getCommonDecl(AX->getTypeConstraintConcept(),
13075 AY->getTypeConstraintConcept());
13076 SmallVector<TemplateArgument, 8> As;
13077 if (CD &&
13078 getCommonTemplateArguments(Ctx, As, AX->getTypeConstraintArguments(),
13079 AY->getTypeConstraintArguments())) {
13080 CD = nullptr; // The arguments differ, so make it unconstrained.
13081 As.clear();
13082 }
13083
13084 // Both auto types can't be dependent, otherwise they wouldn't have been
13085 // sugar. This implies they can't contain unexpanded packs either.
13086 return Ctx.getAutoType(Ctx.getQualifiedType(Underlying), AX->getKeyword(),
13087 /*IsDependent=*/false, /*IsPack=*/false, CD, As);
13088 }
13089 case Type::Decltype:
13090 return QualType();
13091 case Type::DeducedTemplateSpecialization:
13092 // FIXME: Try to merge these.
13093 return QualType();
13094
13095 case Type::Elaborated: {
13096 const auto *EX = cast<ElaboratedType>(X), *EY = cast<ElaboratedType>(Y);
13097 return Ctx.getElaboratedType(
13098 ::getCommonTypeKeyword(EX, EY), ::getCommonNNS(Ctx, EX, EY),
13099 Ctx.getQualifiedType(Underlying),
13100 ::getCommonDecl(EX->getOwnedTagDecl(), EY->getOwnedTagDecl()));
13101 }
13102 case Type::MacroQualified: {
13103 const auto *MX = cast<MacroQualifiedType>(X),
13104 *MY = cast<MacroQualifiedType>(Y);
13105 const IdentifierInfo *IX = MX->getMacroIdentifier();
13106 if (IX != MY->getMacroIdentifier())
13107 return QualType();
13108 return Ctx.getMacroQualifiedType(Ctx.getQualifiedType(Underlying), IX);
13109 }
13110 case Type::SubstTemplateTypeParm: {
13111 const auto *SX = cast<SubstTemplateTypeParmType>(X),
13112 *SY = cast<SubstTemplateTypeParmType>(Y);
13113 Decl *CD =
13114 ::getCommonDecl(SX->getAssociatedDecl(), SY->getAssociatedDecl());
13115 if (!CD)
13116 return QualType();
13117 unsigned Index = SX->getIndex();
13118 if (Index != SY->getIndex())
13119 return QualType();
13120 auto PackIndex = SX->getPackIndex();
13121 if (PackIndex != SY->getPackIndex())
13122 return QualType();
13123 return Ctx.getSubstTemplateTypeParmType(Ctx.getQualifiedType(Underlying),
13124 CD, Index, PackIndex);
13125 }
13126 case Type::ObjCTypeParam:
13127 // FIXME: Try to merge these.
13128 return QualType();
13129 case Type::Paren:
13130 return Ctx.getParenType(Ctx.getQualifiedType(Underlying));
13131
13132 case Type::TemplateSpecialization: {
13133 const auto *TX = cast<TemplateSpecializationType>(X),
13134 *TY = cast<TemplateSpecializationType>(Y);
13135 TemplateName CTN = ::getCommonTemplateName(Ctx, TX->getTemplateName(),
13136 TY->getTemplateName());
13137 if (!CTN.getAsVoidPointer())
13138 return QualType();
13139 SmallVector<TemplateArgument, 8> Args;
13140 if (getCommonTemplateArguments(Ctx, Args, TX->template_arguments(),
13141 TY->template_arguments()))
13142 return QualType();
13143 return Ctx.getTemplateSpecializationType(CTN, Args,
13144 Ctx.getQualifiedType(Underlying));
13145 }
13146 case Type::Typedef: {
13147 const auto *TX = cast<TypedefType>(X), *TY = cast<TypedefType>(Y);
13148 const TypedefNameDecl *CD = ::getCommonDecl(TX->getDecl(), TY->getDecl());
13149 if (!CD)
13150 return QualType();
13151 return Ctx.getTypedefType(CD, Ctx.getQualifiedType(Underlying));
13152 }
13153 case Type::TypeOf: {
13154 // The common sugar between two typeof expressions, where one is
13155 // potentially a typeof_unqual and the other is not, we unify to the
13156 // qualified type as that retains the most information along with the type.
13157 // We only return a typeof_unqual type when both types are unqual types.
13158 TypeOfKind Kind = TypeOfKind::Qualified;
13159 if (cast<TypeOfType>(X)->getKind() == cast<TypeOfType>(Y)->getKind() &&
13160 cast<TypeOfType>(X)->getKind() == TypeOfKind::Unqualified)
13161 Kind = TypeOfKind::Unqualified;
13162 return Ctx.getTypeOfType(Ctx.getQualifiedType(Underlying), Kind);
13163 }
13164 case Type::TypeOfExpr:
13165 return QualType();
13166
13167 case Type::UnaryTransform: {
13168 const auto *UX = cast<UnaryTransformType>(X),
13169 *UY = cast<UnaryTransformType>(Y);
13170 UnaryTransformType::UTTKind KX = UX->getUTTKind();
13171 if (KX != UY->getUTTKind())
13172 return QualType();
13173 QualType BX = UX->getBaseType(), BY = UY->getBaseType();
13174 if (!Ctx.hasSameType(BX, BY))
13175 return QualType();
13176 // FIXME: It's inefficient to have to unify the base types.
13177 return Ctx.getUnaryTransformType(Ctx.getCommonSugaredType(BX, BY),
13178 Ctx.getQualifiedType(Underlying), KX);
13179 }
13180 case Type::Using: {
13181 const auto *UX = cast<UsingType>(X), *UY = cast<UsingType>(Y);
13182 const UsingShadowDecl *CD =
13183 ::getCommonDecl(UX->getFoundDecl(), UY->getFoundDecl());
13184 if (!CD)
13185 return QualType();
13186 return Ctx.getUsingType(CD, Ctx.getQualifiedType(Underlying));
13187 }
13188 }
13189 llvm_unreachable("Unhandled Type Class")::llvm::llvm_unreachable_internal("Unhandled Type Class", "clang/lib/AST/ASTContext.cpp"
, 13189)
;
13190}
13191
13192static auto unwrapSugar(SplitQualType &T, Qualifiers &QTotal) {
13193 SmallVector<SplitQualType, 8> R;
13194 while (true) {
13195 QTotal.addConsistentQualifiers(T.Quals);
13196 QualType NT = T.Ty->getLocallyUnqualifiedSingleStepDesugaredType();
13197 if (NT == QualType(T.Ty, 0))
13198 break;
13199 R.push_back(T);
13200 T = NT.split();
13201 }
13202 return R;
13203}
13204
13205QualType ASTContext::getCommonSugaredType(QualType X, QualType Y,
13206 bool Unqualified) {
13207 assert(Unqualified ? hasSameUnqualifiedType(X, Y) : hasSameType(X, Y))(static_cast <bool> (Unqualified ? hasSameUnqualifiedType
(X, Y) : hasSameType(X, Y)) ? void (0) : __assert_fail ("Unqualified ? hasSameUnqualifiedType(X, Y) : hasSameType(X, Y)"
, "clang/lib/AST/ASTContext.cpp", 13207, __extension__ __PRETTY_FUNCTION__
))
;
13208 if (X == Y)
13209 return X;
13210 if (!Unqualified) {
13211 if (X.isCanonical())
13212 return X;
13213 if (Y.isCanonical())
13214 return Y;
13215 }
13216
13217 SplitQualType SX = X.split(), SY = Y.split();
13218 Qualifiers QX, QY;
13219 // Desugar SX and SY, setting the sugar and qualifiers aside into Xs and Ys,
13220 // until we reach their underlying "canonical nodes". Note these are not
13221 // necessarily canonical types, as they may still have sugared properties.
13222 // QX and QY will store the sum of all qualifiers in Xs and Ys respectively.
13223 auto Xs = ::unwrapSugar(SX, QX), Ys = ::unwrapSugar(SY, QY);
13224 if (SX.Ty != SY.Ty) {
13225 // The canonical nodes differ. Build a common canonical node out of the two,
13226 // unifying their sugar. This may recurse back here.
13227 SX.Ty =
13228 ::getCommonNonSugarTypeNode(*this, SX.Ty, QX, SY.Ty, QY).getTypePtr();
13229 } else {
13230 // The canonical nodes were identical: We may have desugared too much.
13231 // Add any common sugar back in.
13232 while (!Xs.empty() && !Ys.empty() && Xs.back().Ty == Ys.back().Ty) {
13233 QX -= SX.Quals;
13234 QY -= SY.Quals;
13235 SX = Xs.pop_back_val();
13236 SY = Ys.pop_back_val();
13237 }
13238 }
13239 if (Unqualified)
13240 QX = Qualifiers::removeCommonQualifiers(QX, QY);
13241 else
13242 assert(QX == QY)(static_cast <bool> (QX == QY) ? void (0) : __assert_fail
("QX == QY", "clang/lib/AST/ASTContext.cpp", 13242, __extension__
__PRETTY_FUNCTION__))
;
13243
13244 // Even though the remaining sugar nodes in Xs and Ys differ, some may be
13245 // related. Walk up these nodes, unifying them and adding the result.
13246 while (!Xs.empty() && !Ys.empty()) {
13247 auto Underlying = SplitQualType(
13248 SX.Ty, Qualifiers::removeCommonQualifiers(SX.Quals, SY.Quals));
13249 SX = Xs.pop_back_val();
13250 SY = Ys.pop_back_val();
13251 SX.Ty = ::getCommonSugarTypeNode(*this, SX.Ty, SY.Ty, Underlying)
13252 .getTypePtrOrNull();
13253 // Stop at the first pair which is unrelated.
13254 if (!SX.Ty) {
13255 SX.Ty = Underlying.Ty;
13256 break;
13257 }
13258 QX -= Underlying.Quals;
13259 };
13260
13261 // Add back the missing accumulated qualifiers, which were stripped off
13262 // with the sugar nodes we could not unify.
13263 QualType R = getQualifiedType(SX.Ty, QX);
13264 assert(Unqualified ? hasSameUnqualifiedType(R, X) : hasSameType(R, X))(static_cast <bool> (Unqualified ? hasSameUnqualifiedType
(R, X) : hasSameType(R, X)) ? void (0) : __assert_fail ("Unqualified ? hasSameUnqualifiedType(R, X) : hasSameType(R, X)"
, "clang/lib/AST/ASTContext.cpp", 13264, __extension__ __PRETTY_FUNCTION__
))
;
13265 return R;
13266}
13267
13268QualType ASTContext::getCorrespondingSaturatedType(QualType Ty) const {
13269 assert(Ty->isFixedPointType())(static_cast <bool> (Ty->isFixedPointType()) ? void (
0) : __assert_fail ("Ty->isFixedPointType()", "clang/lib/AST/ASTContext.cpp"
, 13269, __extension__ __PRETTY_FUNCTION__))
;
13270
13271 if (Ty->isSaturatedFixedPointType()) return Ty;
13272
13273 switch (Ty->castAs<BuiltinType>()->getKind()) {
13274 default:
13275 llvm_unreachable("Not a fixed point type!")::llvm::llvm_unreachable_internal("Not a fixed point type!", "clang/lib/AST/ASTContext.cpp"
, 13275)
;
13276 case BuiltinType::ShortAccum:
13277 return SatShortAccumTy;
13278 case BuiltinType::Accum:
13279 return SatAccumTy;
13280 case BuiltinType::LongAccum:
13281 return SatLongAccumTy;
13282 case BuiltinType::UShortAccum:
13283 return SatUnsignedShortAccumTy;
13284 case BuiltinType::UAccum:
13285 return SatUnsignedAccumTy;
13286 case BuiltinType::ULongAccum:
13287 return SatUnsignedLongAccumTy;
13288 case BuiltinType::ShortFract:
13289 return SatShortFractTy;
13290 case BuiltinType::Fract:
13291 return SatFractTy;
13292 case BuiltinType::LongFract:
13293 return SatLongFractTy;
13294 case BuiltinType::UShortFract:
13295 return SatUnsignedShortFractTy;
13296 case BuiltinType::UFract:
13297 return SatUnsignedFractTy;
13298 case BuiltinType::ULongFract:
13299 return SatUnsignedLongFractTy;
13300 }
13301}
13302
13303LangAS ASTContext::getLangASForBuiltinAddressSpace(unsigned AS) const {
13304 if (LangOpts.OpenCL)
13305 return getTargetInfo().getOpenCLBuiltinAddressSpace(AS);
13306
13307 if (LangOpts.CUDA)
13308 return getTargetInfo().getCUDABuiltinAddressSpace(AS);
13309
13310 return getLangASFromTargetAS(AS);
13311}
13312
13313// Explicitly instantiate this in case a Redeclarable<T> is used from a TU that
13314// doesn't include ASTContext.h
13315template
13316clang::LazyGenerationalUpdatePtr<
13317 const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::ValueType
13318clang::LazyGenerationalUpdatePtr<
13319 const Decl *, Decl *, &ExternalASTSource::CompleteRedeclChain>::makeValue(
13320 const clang::ASTContext &Ctx, Decl *Value);
13321
13322unsigned char ASTContext::getFixedPointScale(QualType Ty) const {
13323 assert(Ty->isFixedPointType())(static_cast <bool> (Ty->isFixedPointType()) ? void (
0) : __assert_fail ("Ty->isFixedPointType()", "clang/lib/AST/ASTContext.cpp"
, 13323, __extension__ __PRETTY_FUNCTION__))
;
13324
13325 const TargetInfo &Target = getTargetInfo();
13326 switch (Ty->castAs<BuiltinType>()->getKind()) {
13327 default:
13328 llvm_unreachable("Not a fixed point type!")::llvm::llvm_unreachable_internal("Not a fixed point type!", "clang/lib/AST/ASTContext.cpp"
, 13328)
;
13329 case BuiltinType::ShortAccum:
13330 case BuiltinType::SatShortAccum:
13331 return Target.getShortAccumScale();
13332 case BuiltinType::Accum:
13333 case BuiltinType::SatAccum:
13334 return Target.getAccumScale();
13335 case BuiltinType::LongAccum:
13336 case BuiltinType::SatLongAccum:
13337 return Target.getLongAccumScale();
13338 case BuiltinType::UShortAccum:
13339 case BuiltinType::SatUShortAccum:
13340 return Target.getUnsignedShortAccumScale();
13341 case BuiltinType::UAccum:
13342 case BuiltinType::SatUAccum:
13343 return Target.getUnsignedAccumScale();
13344 case BuiltinType::ULongAccum:
13345 case BuiltinType::SatULongAccum:
13346 return Target.getUnsignedLongAccumScale();
13347 case BuiltinType::ShortFract:
13348 case BuiltinType::SatShortFract:
13349 return Target.getShortFractScale();
13350 case BuiltinType::Fract:
13351 case BuiltinType::SatFract:
13352 return Target.getFractScale();
13353 case BuiltinType::LongFract:
13354 case BuiltinType::SatLongFract:
13355 return Target.getLongFractScale();
13356 case BuiltinType::UShortFract:
13357 case BuiltinType::SatUShortFract:
13358 return Target.getUnsignedShortFractScale();
13359 case BuiltinType::UFract:
13360 case BuiltinType::SatUFract:
13361 return Target.getUnsignedFractScale();
13362 case BuiltinType::ULongFract:
13363 case BuiltinType::SatULongFract:
13364 return Target.getUnsignedLongFractScale();
13365 }
13366}
13367
13368unsigned char ASTContext::getFixedPointIBits(QualType Ty) const {
13369 assert(Ty->isFixedPointType())(static_cast <bool> (Ty->isFixedPointType()) ? void (
0) : __assert_fail ("Ty->isFixedPointType()", "clang/lib/AST/ASTContext.cpp"
, 13369, __extension__ __PRETTY_FUNCTION__))
;
13370
13371 const TargetInfo &Target = getTargetInfo();
13372 switch (Ty->castAs<BuiltinType>()->getKind()) {
13373 default:
13374 llvm_unreachable("Not a fixed point type!")::llvm::llvm_unreachable_internal("Not a fixed point type!", "clang/lib/AST/ASTContext.cpp"
, 13374)
;
13375 case BuiltinType::ShortAccum:
13376 case BuiltinType::SatShortAccum:
13377 return Target.getShortAccumIBits();
13378 case BuiltinType::Accum:
13379 case BuiltinType::SatAccum:
13380 return Target.getAccumIBits();
13381 case BuiltinType::LongAccum:
13382 case BuiltinType::SatLongAccum:
13383 return Target.getLongAccumIBits();
13384 case BuiltinType::UShortAccum:
13385 case BuiltinType::SatUShortAccum:
13386 return Target.getUnsignedShortAccumIBits();
13387 case BuiltinType::UAccum:
13388 case BuiltinType::SatUAccum:
13389 return Target.getUnsignedAccumIBits();
13390 case BuiltinType::ULongAccum:
13391 case BuiltinType::SatULongAccum:
13392 return Target.getUnsignedLongAccumIBits();
13393 case BuiltinType::ShortFract:
13394 case BuiltinType::SatShortFract:
13395 case BuiltinType::Fract:
13396 case BuiltinType::SatFract:
13397 case BuiltinType::LongFract:
13398 case BuiltinType::SatLongFract:
13399 case BuiltinType::UShortFract:
13400 case BuiltinType::SatUShortFract:
13401 case BuiltinType::UFract:
13402 case BuiltinType::SatUFract:
13403 case BuiltinType::ULongFract:
13404 case BuiltinType::SatULongFract:
13405 return 0;
13406 }
13407}
13408
13409llvm::FixedPointSemantics
13410ASTContext::getFixedPointSemantics(QualType Ty) const {
13411 assert((Ty->isFixedPointType() || Ty->isIntegerType()) &&(static_cast <bool> ((Ty->isFixedPointType() || Ty->
isIntegerType()) && "Can only get the fixed point semantics for a "
"fixed point or integer type.") ? void (0) : __assert_fail (
"(Ty->isFixedPointType() || Ty->isIntegerType()) && \"Can only get the fixed point semantics for a \" \"fixed point or integer type.\""
, "clang/lib/AST/ASTContext.cpp", 13413, __extension__ __PRETTY_FUNCTION__
))
13412 "Can only get the fixed point semantics for a "(static_cast <bool> ((Ty->isFixedPointType() || Ty->
isIntegerType()) && "Can only get the fixed point semantics for a "
"fixed point or integer type.") ? void (0) : __assert_fail (
"(Ty->isFixedPointType() || Ty->isIntegerType()) && \"Can only get the fixed point semantics for a \" \"fixed point or integer type.\""
, "clang/lib/AST/ASTContext.cpp", 13413, __extension__ __PRETTY_FUNCTION__
))
13413 "fixed point or integer type.")(static_cast <bool> ((Ty->isFixedPointType() || Ty->
isIntegerType()) && "Can only get the fixed point semantics for a "
"fixed point or integer type.") ? void (0) : __assert_fail (
"(Ty->isFixedPointType() || Ty->isIntegerType()) && \"Can only get the fixed point semantics for a \" \"fixed point or integer type.\""
, "clang/lib/AST/ASTContext.cpp", 13413, __extension__ __PRETTY_FUNCTION__
))
;
13414 if (Ty->isIntegerType())
13415 return llvm::FixedPointSemantics::GetIntegerSemantics(
13416 getIntWidth(Ty), Ty->isSignedIntegerType());
13417
13418 bool isSigned = Ty->isSignedFixedPointType();
13419 return llvm::FixedPointSemantics(
13420 static_cast<unsigned>(getTypeSize(Ty)), getFixedPointScale(Ty), isSigned,
13421 Ty->isSaturatedFixedPointType(),
13422 !isSigned && getTargetInfo().doUnsignedFixedPointTypesHavePadding());
13423}
13424
13425llvm::APFixedPoint ASTContext::getFixedPointMax(QualType Ty) const {
13426 assert(Ty->isFixedPointType())(static_cast <bool> (Ty->isFixedPointType()) ? void (
0) : __assert_fail ("Ty->isFixedPointType()", "clang/lib/AST/ASTContext.cpp"
, 13426, __extension__ __PRETTY_FUNCTION__))
;
13427 return llvm::APFixedPoint::getMax(getFixedPointSemantics(Ty));
13428}
13429
13430llvm::APFixedPoint ASTContext::getFixedPointMin(QualType Ty) const {
13431 assert(Ty->isFixedPointType())(static_cast <bool> (Ty->isFixedPointType()) ? void (
0) : __assert_fail ("Ty->isFixedPointType()", "clang/lib/AST/ASTContext.cpp"
, 13431, __extension__ __PRETTY_FUNCTION__))
;
13432 return llvm::APFixedPoint::getMin(getFixedPointSemantics(Ty));
13433}
13434
13435QualType ASTContext::getCorrespondingSignedFixedPointType(QualType Ty) const {
13436 assert(Ty->isUnsignedFixedPointType() &&(static_cast <bool> (Ty->isUnsignedFixedPointType() &&
"Expected unsigned fixed point type") ? void (0) : __assert_fail
("Ty->isUnsignedFixedPointType() && \"Expected unsigned fixed point type\""
, "clang/lib/AST/ASTContext.cpp", 13437, __extension__ __PRETTY_FUNCTION__
))
13437 "Expected unsigned fixed point type")(static_cast <bool> (Ty->isUnsignedFixedPointType() &&
"Expected unsigned fixed point type") ? void (0) : __assert_fail
("Ty->isUnsignedFixedPointType() && \"Expected unsigned fixed point type\""
, "clang/lib/AST/ASTContext.cpp", 13437, __extension__ __PRETTY_FUNCTION__
))
;
13438
13439 switch (Ty->castAs<BuiltinType>()->getKind()) {
13440 case BuiltinType::UShortAccum:
13441 return ShortAccumTy;
13442 case BuiltinType::UAccum:
13443 return AccumTy;
13444 case BuiltinType::ULongAccum:
13445 return LongAccumTy;
13446 case BuiltinType::SatUShortAccum:
13447 return SatShortAccumTy;
13448 case BuiltinType::SatUAccum:
13449 return SatAccumTy;
13450 case BuiltinType::SatULongAccum:
13451 return SatLongAccumTy;
13452 case BuiltinType::UShortFract:
13453 return ShortFractTy;
13454 case BuiltinType::UFract:
13455 return FractTy;
13456 case BuiltinType::ULongFract:
13457 return LongFractTy;
13458 case BuiltinType::SatUShortFract:
13459 return SatShortFractTy;
13460 case BuiltinType::SatUFract:
13461 return SatFractTy;
13462 case BuiltinType::SatULongFract:
13463 return SatLongFractTy;
13464 default:
13465 llvm_unreachable("Unexpected unsigned fixed point type")::llvm::llvm_unreachable_internal("Unexpected unsigned fixed point type"
, "clang/lib/AST/ASTContext.cpp", 13465)
;
13466 }
13467}
13468
13469std::vector<std::string> ASTContext::filterFunctionTargetVersionAttrs(
13470 const TargetVersionAttr *TV) const {
13471 assert(TV != nullptr)(static_cast <bool> (TV != nullptr) ? void (0) : __assert_fail
("TV != nullptr", "clang/lib/AST/ASTContext.cpp", 13471, __extension__
__PRETTY_FUNCTION__))
;
13472 llvm::SmallVector<StringRef, 8> Feats;
13473 std::vector<std::string> ResFeats;
13474 TV->getFeatures(Feats);
13475 for (auto &Feature : Feats)
13476 if (Target->validateCpuSupports(Feature.str()))
13477 // Use '?' to mark features that came from TargetVersion.
13478 ResFeats.push_back("?" + Feature.str());
13479 return ResFeats;
13480}
13481
13482ParsedTargetAttr
13483ASTContext::filterFunctionTargetAttrs(const TargetAttr *TD) const {
13484 assert(TD != nullptr)(static_cast <bool> (TD != nullptr) ? void (0) : __assert_fail
("TD != nullptr", "clang/lib/AST/ASTContext.cpp", 13484, __extension__
__PRETTY_FUNCTION__))
;
13485 ParsedTargetAttr ParsedAttr = Target->parseTargetAttr(TD->getFeaturesStr());
13486
13487 llvm::erase_if(ParsedAttr.Features, [&](const std::string &Feat) {
13488 return !Target->isValidFeatureName(StringRef{Feat}.substr(1));
13489 });
13490 return ParsedAttr;
13491}
13492
13493void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
13494 const FunctionDecl *FD) const {
13495 if (FD)
13496 getFunctionFeatureMap(FeatureMap, GlobalDecl().getWithDecl(FD));
13497 else
13498 Target->initFeatureMap(FeatureMap, getDiagnostics(),
13499 Target->getTargetOpts().CPU,
13500 Target->getTargetOpts().Features);
13501}
13502
13503// Fills in the supplied string map with the set of target features for the
13504// passed in function.
13505void ASTContext::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
13506 GlobalDecl GD) const {
13507 StringRef TargetCPU = Target->getTargetOpts().CPU;
13508 const FunctionDecl *FD = GD.getDecl()->getAsFunction();
13509 if (const auto *TD = FD->getAttr<TargetAttr>()) {
13510 ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD);
13511
13512 // Make a copy of the features as passed on the command line into the
13513 // beginning of the additional features from the function to override.
13514 ParsedAttr.Features.insert(
13515 ParsedAttr.Features.begin(),
13516 Target->getTargetOpts().FeaturesAsWritten.begin(),
13517 Target->getTargetOpts().FeaturesAsWritten.end());
13518
13519 if (ParsedAttr.CPU != "" && Target->isValidCPUName(ParsedAttr.CPU))
13520 TargetCPU = ParsedAttr.CPU;
13521
13522 // Now populate the feature map, first with the TargetCPU which is either
13523 // the default or a new one from the target attribute string. Then we'll use
13524 // the passed in features (FeaturesAsWritten) along with the new ones from
13525 // the attribute.
13526 Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU,
13527 ParsedAttr.Features);
13528 } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) {
13529 llvm::SmallVector<StringRef, 32> FeaturesTmp;
13530 Target->getCPUSpecificCPUDispatchFeatures(
13531 SD->getCPUName(GD.getMultiVersionIndex())->getName(), FeaturesTmp);
13532 std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end());
13533 Features.insert(Features.begin(),
13534 Target->getTargetOpts().FeaturesAsWritten.begin(),
13535 Target->getTargetOpts().FeaturesAsWritten.end());
13536 Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Features);
13537 } else if (const auto *TC = FD->getAttr<TargetClonesAttr>()) {
13538 std::vector<std::string> Features;
13539 StringRef VersionStr = TC->getFeatureStr(GD.getMultiVersionIndex());
13540 if (Target->getTriple().isAArch64()) {
13541 // TargetClones for AArch64
13542 if (VersionStr != "default") {
13543 SmallVector<StringRef, 1> VersionFeatures;
13544 VersionStr.split(VersionFeatures, "+");
13545 for (auto &VFeature : VersionFeatures) {
13546 VFeature = VFeature.trim();
13547 // Use '?' to mark features that came from AArch64 TargetClones.
13548 Features.push_back((StringRef{"?"} + VFeature).str());
13549 }
13550 }
13551 Features.insert(Features.begin(),
13552 Target->getTargetOpts().FeaturesAsWritten.begin(),
13553 Target->getTargetOpts().FeaturesAsWritten.end());
13554 } else {
13555 if (VersionStr.startswith("arch="))
13556 TargetCPU = VersionStr.drop_front(sizeof("arch=") - 1);
13557 else if (VersionStr != "default")
13558 Features.push_back((StringRef{"+"} + VersionStr).str());
13559 }
13560 Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Features);
13561 } else if (const auto *TV = FD->getAttr<TargetVersionAttr>()) {
13562 std::vector<std::string> Feats = filterFunctionTargetVersionAttrs(TV);
13563 Feats.insert(Feats.begin(),
13564 Target->getTargetOpts().FeaturesAsWritten.begin(),
13565 Target->getTargetOpts().FeaturesAsWritten.end());
13566 Target->initFeatureMap(FeatureMap, getDiagnostics(), TargetCPU, Feats);
13567 } else {
13568 FeatureMap = Target->getTargetOpts().FeatureMap;
13569 }
13570}
13571
13572OMPTraitInfo &ASTContext::getNewOMPTraitInfo() {
13573 OMPTraitInfoVector.emplace_back(new OMPTraitInfo());
13574 return *OMPTraitInfoVector.back();
13575}
13576
13577const StreamingDiagnostic &clang::
13578operator<<(const StreamingDiagnostic &DB,
13579 const ASTContext::SectionInfo &Section) {
13580 if (Section.Decl)
13581 return DB << Section.Decl;
13582 return DB << "a prior #pragma section";
13583}
13584
13585bool ASTContext::mayExternalize(const Decl *D) const {
13586 bool IsStaticVar =
13587 isa<VarDecl>(D) && cast<VarDecl>(D)->getStorageClass() == SC_Static;
13588 bool IsExplicitDeviceVar = (D->hasAttr<CUDADeviceAttr>() &&
13589 !D->getAttr<CUDADeviceAttr>()->isImplicit()) ||
13590 (D->hasAttr<CUDAConstantAttr>() &&
13591 !D->getAttr<CUDAConstantAttr>()->isImplicit());
13592 // CUDA/HIP: static managed variables need to be externalized since it is
13593 // a declaration in IR, therefore cannot have internal linkage. Kernels in
13594 // anonymous name space needs to be externalized to avoid duplicate symbols.
13595 return (IsStaticVar &&
13596 (D->hasAttr<HIPManagedAttr>() || IsExplicitDeviceVar)) ||
13597 (D->hasAttr<CUDAGlobalAttr>() &&
13598 basicGVALinkageForFunction(*this, cast<FunctionDecl>(D)) ==
13599 GVA_Internal);
13600}
13601
13602bool ASTContext::shouldExternalize(const Decl *D) const {
13603 return mayExternalize(D) &&
13604 (D->hasAttr<HIPManagedAttr>() || D->hasAttr<CUDAGlobalAttr>() ||
13605 CUDADeviceVarODRUsedByHost.count(cast<VarDecl>(D)));
13606}
13607
13608StringRef ASTContext::getCUIDHash() const {
13609 if (!CUIDHash.empty())
13610 return CUIDHash;
13611 if (LangOpts.CUID.empty())
13612 return StringRef();
13613 CUIDHash = llvm::utohexstr(llvm::MD5Hash(LangOpts.CUID), /*LowerCase=*/true);
13614 return CUIDHash;
13615}