Bug Summary

File:build/llvm-toolchain-snapshot-15~++20220320100729+487629cc61b5/llvm/lib/Target/AVR/AVRISelLowering.cpp
Warning:line 1149, column 13
1st function call argument is an uninitialized value

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name AVRISelLowering.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220320100729+487629cc61b5/build-llvm/tools/clang/stage2-bins -resource-dir /usr/lib/llvm-15/lib/clang/15.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I lib/Target/AVR -I /build/llvm-toolchain-snapshot-15~++20220320100729+487629cc61b5/llvm/lib/Target/AVR -I include -I /build/llvm-toolchain-snapshot-15~++20220320100729+487629cc61b5/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-15/lib/clang/15.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220320100729+487629cc61b5/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220320100729+487629cc61b5/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220320100729+487629cc61b5/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220320100729+487629cc61b5/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220320100729+487629cc61b5/build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220320100729+487629cc61b5/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220320100729+487629cc61b5/= -ferror-limit 19 -fvisibility hidden -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-03-20-232535-108605-1 -x c++ /build/llvm-toolchain-snapshot-15~++20220320100729+487629cc61b5/llvm/lib/Target/AVR/AVRISelLowering.cpp

/build/llvm-toolchain-snapshot-15~++20220320100729+487629cc61b5/llvm/lib/Target/AVR/AVRISelLowering.cpp

1//===-- AVRISelLowering.cpp - AVR DAG Lowering Implementation -------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the interfaces that AVR uses to lower LLVM code into a
10// selection DAG.
11//
12//===----------------------------------------------------------------------===//
13
14#include "AVRISelLowering.h"
15
16#include "llvm/ADT/STLExtras.h"
17#include "llvm/ADT/StringSwitch.h"
18#include "llvm/CodeGen/CallingConvLower.h"
19#include "llvm/CodeGen/MachineFrameInfo.h"
20#include "llvm/CodeGen/MachineInstrBuilder.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/CodeGen/SelectionDAG.h"
23#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
24#include "llvm/IR/Function.h"
25#include "llvm/Support/ErrorHandling.h"
26
27#include "AVR.h"
28#include "AVRMachineFunctionInfo.h"
29#include "AVRSubtarget.h"
30#include "AVRTargetMachine.h"
31#include "MCTargetDesc/AVRMCTargetDesc.h"
32
33namespace llvm {
34
35AVRTargetLowering::AVRTargetLowering(const AVRTargetMachine &TM,
36 const AVRSubtarget &STI)
37 : TargetLowering(TM), Subtarget(STI) {
38 // Set up the register classes.
39 addRegisterClass(MVT::i8, &AVR::GPR8RegClass);
40 addRegisterClass(MVT::i16, &AVR::DREGSRegClass);
41
42 // Compute derived properties from the register classes.
43 computeRegisterProperties(Subtarget.getRegisterInfo());
44
45 setBooleanContents(ZeroOrOneBooleanContent);
46 setBooleanVectorContents(ZeroOrOneBooleanContent);
47 setSchedulingPreference(Sched::RegPressure);
48 setStackPointerRegisterToSaveRestore(AVR::SP);
49 setSupportsUnalignedAtomics(true);
50
51 setOperationAction(ISD::GlobalAddress, MVT::i16, Custom);
52 setOperationAction(ISD::BlockAddress, MVT::i16, Custom);
53
54 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
55 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
56 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i8, Expand);
57 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i16, Expand);
58
59 for (MVT VT : MVT::integer_valuetypes()) {
60 for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD}) {
61 setLoadExtAction(N, VT, MVT::i1, Promote);
62 setLoadExtAction(N, VT, MVT::i8, Expand);
63 }
64 }
65
66 setTruncStoreAction(MVT::i16, MVT::i8, Expand);
67
68 for (MVT VT : MVT::integer_valuetypes()) {
69 setOperationAction(ISD::ADDC, VT, Legal);
70 setOperationAction(ISD::SUBC, VT, Legal);
71 setOperationAction(ISD::ADDE, VT, Legal);
72 setOperationAction(ISD::SUBE, VT, Legal);
73 }
74
75 // sub (x, imm) gets canonicalized to add (x, -imm), so for illegal types
76 // revert into a sub since we don't have an add with immediate instruction.
77 setOperationAction(ISD::ADD, MVT::i32, Custom);
78 setOperationAction(ISD::ADD, MVT::i64, Custom);
79
80 // our shift instructions are only able to shift 1 bit at a time, so handle
81 // this in a custom way.
82 setOperationAction(ISD::SRA, MVT::i8, Custom);
83 setOperationAction(ISD::SHL, MVT::i8, Custom);
84 setOperationAction(ISD::SRL, MVT::i8, Custom);
85 setOperationAction(ISD::SRA, MVT::i16, Custom);
86 setOperationAction(ISD::SHL, MVT::i16, Custom);
87 setOperationAction(ISD::SRL, MVT::i16, Custom);
88 setOperationAction(ISD::SHL_PARTS, MVT::i16, Expand);
89 setOperationAction(ISD::SRA_PARTS, MVT::i16, Expand);
90 setOperationAction(ISD::SRL_PARTS, MVT::i16, Expand);
91
92 setOperationAction(ISD::ROTL, MVT::i8, Custom);
93 setOperationAction(ISD::ROTL, MVT::i16, Expand);
94 setOperationAction(ISD::ROTR, MVT::i8, Custom);
95 setOperationAction(ISD::ROTR, MVT::i16, Expand);
96
97 setOperationAction(ISD::BR_CC, MVT::i8, Custom);
98 setOperationAction(ISD::BR_CC, MVT::i16, Custom);
99 setOperationAction(ISD::BR_CC, MVT::i32, Custom);
100 setOperationAction(ISD::BR_CC, MVT::i64, Custom);
101 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
102
103 setOperationAction(ISD::SELECT_CC, MVT::i8, Custom);
104 setOperationAction(ISD::SELECT_CC, MVT::i16, Custom);
105 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
106 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
107 setOperationAction(ISD::SETCC, MVT::i8, Custom);
108 setOperationAction(ISD::SETCC, MVT::i16, Custom);
109 setOperationAction(ISD::SETCC, MVT::i32, Custom);
110 setOperationAction(ISD::SETCC, MVT::i64, Custom);
111 setOperationAction(ISD::SELECT, MVT::i8, Expand);
112 setOperationAction(ISD::SELECT, MVT::i16, Expand);
113
114 setOperationAction(ISD::BSWAP, MVT::i16, Expand);
115
116 // Add support for postincrement and predecrement load/stores.
117 setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal);
118 setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal);
119 setIndexedLoadAction(ISD::PRE_DEC, MVT::i8, Legal);
120 setIndexedLoadAction(ISD::PRE_DEC, MVT::i16, Legal);
121 setIndexedStoreAction(ISD::POST_INC, MVT::i8, Legal);
122 setIndexedStoreAction(ISD::POST_INC, MVT::i16, Legal);
123 setIndexedStoreAction(ISD::PRE_DEC, MVT::i8, Legal);
124 setIndexedStoreAction(ISD::PRE_DEC, MVT::i16, Legal);
125
126 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
127
128 setOperationAction(ISD::VASTART, MVT::Other, Custom);
129 setOperationAction(ISD::VAEND, MVT::Other, Expand);
130 setOperationAction(ISD::VAARG, MVT::Other, Expand);
131 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
132
133 // Atomic operations which must be lowered to rtlib calls
134 for (MVT VT : MVT::integer_valuetypes()) {
135 setOperationAction(ISD::ATOMIC_SWAP, VT, Expand);
136 setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Expand);
137 setOperationAction(ISD::ATOMIC_LOAD_NAND, VT, Expand);
138 setOperationAction(ISD::ATOMIC_LOAD_MAX, VT, Expand);
139 setOperationAction(ISD::ATOMIC_LOAD_MIN, VT, Expand);
140 setOperationAction(ISD::ATOMIC_LOAD_UMAX, VT, Expand);
141 setOperationAction(ISD::ATOMIC_LOAD_UMIN, VT, Expand);
142 }
143
144 // Division/remainder
145 setOperationAction(ISD::UDIV, MVT::i8, Expand);
146 setOperationAction(ISD::UDIV, MVT::i16, Expand);
147 setOperationAction(ISD::UREM, MVT::i8, Expand);
148 setOperationAction(ISD::UREM, MVT::i16, Expand);
149 setOperationAction(ISD::SDIV, MVT::i8, Expand);
150 setOperationAction(ISD::SDIV, MVT::i16, Expand);
151 setOperationAction(ISD::SREM, MVT::i8, Expand);
152 setOperationAction(ISD::SREM, MVT::i16, Expand);
153
154 // Make division and modulus custom
155 setOperationAction(ISD::UDIVREM, MVT::i8, Custom);
156 setOperationAction(ISD::UDIVREM, MVT::i16, Custom);
157 setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
158 setOperationAction(ISD::SDIVREM, MVT::i8, Custom);
159 setOperationAction(ISD::SDIVREM, MVT::i16, Custom);
160 setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
161
162 // Do not use MUL. The AVR instructions are closer to SMUL_LOHI &co.
163 setOperationAction(ISD::MUL, MVT::i8, Expand);
164 setOperationAction(ISD::MUL, MVT::i16, Expand);
165
166 // Expand 16 bit multiplications.
167 setOperationAction(ISD::SMUL_LOHI, MVT::i16, Expand);
168 setOperationAction(ISD::UMUL_LOHI, MVT::i16, Expand);
169
170 // Expand multiplications to libcalls when there is
171 // no hardware MUL.
172 if (!Subtarget.supportsMultiplication()) {
173 setOperationAction(ISD::SMUL_LOHI, MVT::i8, Expand);
174 setOperationAction(ISD::UMUL_LOHI, MVT::i8, Expand);
175 }
176
177 for (MVT VT : MVT::integer_valuetypes()) {
178 setOperationAction(ISD::MULHS, VT, Expand);
179 setOperationAction(ISD::MULHU, VT, Expand);
180 }
181
182 for (MVT VT : MVT::integer_valuetypes()) {
183 setOperationAction(ISD::CTPOP, VT, Expand);
184 setOperationAction(ISD::CTLZ, VT, Expand);
185 setOperationAction(ISD::CTTZ, VT, Expand);
186 }
187
188 for (MVT VT : MVT::integer_valuetypes()) {
189 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
190 // TODO: The generated code is pretty poor. Investigate using the
191 // same "shift and subtract with carry" trick that we do for
192 // extending 8-bit to 16-bit. This may require infrastructure
193 // improvements in how we treat 16-bit "registers" to be feasible.
194 }
195
196 // Division rtlib functions (not supported), use divmod functions instead
197 setLibcallName(RTLIB::SDIV_I8, nullptr);
198 setLibcallName(RTLIB::SDIV_I16, nullptr);
199 setLibcallName(RTLIB::SDIV_I32, nullptr);
200 setLibcallName(RTLIB::UDIV_I8, nullptr);
201 setLibcallName(RTLIB::UDIV_I16, nullptr);
202 setLibcallName(RTLIB::UDIV_I32, nullptr);
203
204 // Modulus rtlib functions (not supported), use divmod functions instead
205 setLibcallName(RTLIB::SREM_I8, nullptr);
206 setLibcallName(RTLIB::SREM_I16, nullptr);
207 setLibcallName(RTLIB::SREM_I32, nullptr);
208 setLibcallName(RTLIB::UREM_I8, nullptr);
209 setLibcallName(RTLIB::UREM_I16, nullptr);
210 setLibcallName(RTLIB::UREM_I32, nullptr);
211
212 // Division and modulus rtlib functions
213 setLibcallName(RTLIB::SDIVREM_I8, "__divmodqi4");
214 setLibcallName(RTLIB::SDIVREM_I16, "__divmodhi4");
215 setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
216 setLibcallName(RTLIB::UDIVREM_I8, "__udivmodqi4");
217 setLibcallName(RTLIB::UDIVREM_I16, "__udivmodhi4");
218 setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
219
220 // Several of the runtime library functions use a special calling conv
221 setLibcallCallingConv(RTLIB::SDIVREM_I8, CallingConv::AVR_BUILTIN);
222 setLibcallCallingConv(RTLIB::SDIVREM_I16, CallingConv::AVR_BUILTIN);
223 setLibcallCallingConv(RTLIB::UDIVREM_I8, CallingConv::AVR_BUILTIN);
224 setLibcallCallingConv(RTLIB::UDIVREM_I16, CallingConv::AVR_BUILTIN);
225
226 // Trigonometric rtlib functions
227 setLibcallName(RTLIB::SIN_F32, "sin");
228 setLibcallName(RTLIB::COS_F32, "cos");
229
230 setMinFunctionAlignment(Align(2));
231 setMinimumJumpTableEntries(UINT_MAX(2147483647 *2U +1U));
232}
233
234const char *AVRTargetLowering::getTargetNodeName(unsigned Opcode) const {
235#define NODE(name) \
236 case AVRISD::name: \
237 return #name
238
239 switch (Opcode) {
240 default:
241 return nullptr;
242 NODE(RET_FLAG);
243 NODE(RETI_FLAG);
244 NODE(CALL);
245 NODE(WRAPPER);
246 NODE(LSL);
247 NODE(LSR);
248 NODE(ROL);
249 NODE(ROR);
250 NODE(ASR);
251 NODE(LSLLOOP);
252 NODE(LSRLOOP);
253 NODE(ROLLOOP);
254 NODE(RORLOOP);
255 NODE(ASRLOOP);
256 NODE(BRCOND);
257 NODE(CMP);
258 NODE(CMPC);
259 NODE(TST);
260 NODE(SELECT_CC);
261#undef NODE
262 }
263}
264
265EVT AVRTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
266 EVT VT) const {
267 assert(!VT.isVector() && "No AVR SetCC type for vectors!")(static_cast <bool> (!VT.isVector() && "No AVR SetCC type for vectors!"
) ? void (0) : __assert_fail ("!VT.isVector() && \"No AVR SetCC type for vectors!\""
, "llvm/lib/Target/AVR/AVRISelLowering.cpp", 267, __extension__
__PRETTY_FUNCTION__))
;
268 return MVT::i8;
269}
270
271SDValue AVRTargetLowering::LowerShifts(SDValue Op, SelectionDAG &DAG) const {
272 //: TODO: this function has to be completely rewritten to produce optimal
273 // code, for now it's producing very long but correct code.
274 unsigned Opc8;
275 const SDNode *N = Op.getNode();
276 EVT VT = Op.getValueType();
277 SDLoc dl(N);
278 assert(isPowerOf2_32(VT.getSizeInBits()) &&(static_cast <bool> (isPowerOf2_32(VT.getSizeInBits()) &&
"Expected power-of-2 shift amount") ? void (0) : __assert_fail
("isPowerOf2_32(VT.getSizeInBits()) && \"Expected power-of-2 shift amount\""
, "llvm/lib/Target/AVR/AVRISelLowering.cpp", 279, __extension__
__PRETTY_FUNCTION__))
279 "Expected power-of-2 shift amount")(static_cast <bool> (isPowerOf2_32(VT.getSizeInBits()) &&
"Expected power-of-2 shift amount") ? void (0) : __assert_fail
("isPowerOf2_32(VT.getSizeInBits()) && \"Expected power-of-2 shift amount\""
, "llvm/lib/Target/AVR/AVRISelLowering.cpp", 279, __extension__
__PRETTY_FUNCTION__))
;
280
281 // Expand non-constant shifts to loops.
282 if (!isa<ConstantSDNode>(N->getOperand(1))) {
283 switch (Op.getOpcode()) {
284 default:
285 llvm_unreachable("Invalid shift opcode!")::llvm::llvm_unreachable_internal("Invalid shift opcode!", "llvm/lib/Target/AVR/AVRISelLowering.cpp"
, 285)
;
286 case ISD::SHL:
287 return DAG.getNode(AVRISD::LSLLOOP, dl, VT, N->getOperand(0),
288 N->getOperand(1));
289 case ISD::SRL:
290 return DAG.getNode(AVRISD::LSRLOOP, dl, VT, N->getOperand(0),
291 N->getOperand(1));
292 case ISD::ROTL: {
293 SDValue Amt = N->getOperand(1);
294 EVT AmtVT = Amt.getValueType();
295 Amt = DAG.getNode(ISD::AND, dl, AmtVT, Amt,
296 DAG.getConstant(VT.getSizeInBits() - 1, dl, AmtVT));
297 return DAG.getNode(AVRISD::ROLLOOP, dl, VT, N->getOperand(0), Amt);
298 }
299 case ISD::ROTR: {
300 SDValue Amt = N->getOperand(1);
301 EVT AmtVT = Amt.getValueType();
302 Amt = DAG.getNode(ISD::AND, dl, AmtVT, Amt,
303 DAG.getConstant(VT.getSizeInBits() - 1, dl, AmtVT));
304 return DAG.getNode(AVRISD::RORLOOP, dl, VT, N->getOperand(0), Amt);
305 }
306 case ISD::SRA:
307 return DAG.getNode(AVRISD::ASRLOOP, dl, VT, N->getOperand(0),
308 N->getOperand(1));
309 }
310 }
311
312 uint64_t ShiftAmount = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
313 SDValue Victim = N->getOperand(0);
314
315 switch (Op.getOpcode()) {
316 case ISD::SRA:
317 Opc8 = AVRISD::ASR;
318 break;
319 case ISD::ROTL:
320 Opc8 = AVRISD::ROL;
321 ShiftAmount = ShiftAmount % VT.getSizeInBits();
322 break;
323 case ISD::ROTR:
324 Opc8 = AVRISD::ROR;
325 ShiftAmount = ShiftAmount % VT.getSizeInBits();
326 break;
327 case ISD::SRL:
328 Opc8 = AVRISD::LSR;
329 break;
330 case ISD::SHL:
331 Opc8 = AVRISD::LSL;
332 break;
333 default:
334 llvm_unreachable("Invalid shift opcode")::llvm::llvm_unreachable_internal("Invalid shift opcode", "llvm/lib/Target/AVR/AVRISelLowering.cpp"
, 334)
;
335 }
336
337 // Optimize int8/int16 shifts.
338 if (VT.getSizeInBits() == 8) {
339 if (Op.getOpcode() == ISD::SHL && 4 <= ShiftAmount && ShiftAmount < 7) {
340 // Optimize LSL when 4 <= ShiftAmount <= 6.
341 Victim = DAG.getNode(AVRISD::SWAP, dl, VT, Victim);
342 Victim =
343 DAG.getNode(ISD::AND, dl, VT, Victim, DAG.getConstant(0xf0, dl, VT));
344 ShiftAmount -= 4;
345 } else if (Op.getOpcode() == ISD::SRL && 4 <= ShiftAmount &&
346 ShiftAmount < 7) {
347 // Optimize LSR when 4 <= ShiftAmount <= 6.
348 Victim = DAG.getNode(AVRISD::SWAP, dl, VT, Victim);
349 Victim =
350 DAG.getNode(ISD::AND, dl, VT, Victim, DAG.getConstant(0x0f, dl, VT));
351 ShiftAmount -= 4;
352 } else if (Op.getOpcode() == ISD::SHL && ShiftAmount == 7) {
353 // Optimize LSL when ShiftAmount == 7.
354 Victim = DAG.getNode(AVRISD::LSLBN, dl, VT, Victim,
355 DAG.getConstant(7, dl, VT));
356 ShiftAmount = 0;
357 } else if (Op.getOpcode() == ISD::SRL && ShiftAmount == 7) {
358 // Optimize LSR when ShiftAmount == 7.
359 Victim = DAG.getNode(AVRISD::LSRBN, dl, VT, Victim,
360 DAG.getConstant(7, dl, VT));
361 ShiftAmount = 0;
362 } else if (Op.getOpcode() == ISD::SRA && ShiftAmount == 6) {
363 // Optimize ASR when ShiftAmount == 6.
364 Victim = DAG.getNode(AVRISD::ASRBN, dl, VT, Victim,
365 DAG.getConstant(6, dl, VT));
366 ShiftAmount = 0;
367 } else if (Op.getOpcode() == ISD::SRA && ShiftAmount == 7) {
368 // Optimize ASR when ShiftAmount == 7.
369 Victim = DAG.getNode(AVRISD::ASRBN, dl, VT, Victim,
370 DAG.getConstant(7, dl, VT));
371 ShiftAmount = 0;
372 }
373 } else if (VT.getSizeInBits() == 16) {
374 if (4 <= ShiftAmount && ShiftAmount < 8)
375 switch (Op.getOpcode()) {
376 case ISD::SHL:
377 Victim = DAG.getNode(AVRISD::LSLWN, dl, VT, Victim,
378 DAG.getConstant(4, dl, VT));
379 ShiftAmount -= 4;
380 break;
381 case ISD::SRL:
382 Victim = DAG.getNode(AVRISD::LSRWN, dl, VT, Victim,
383 DAG.getConstant(4, dl, VT));
384 ShiftAmount -= 4;
385 break;
386 default:
387 break;
388 }
389 else if (8 <= ShiftAmount && ShiftAmount < 12)
390 switch (Op.getOpcode()) {
391 case ISD::SHL:
392 Victim = DAG.getNode(AVRISD::LSLWN, dl, VT, Victim,
393 DAG.getConstant(8, dl, VT));
394 ShiftAmount -= 8;
395 // Only operate on the higher byte for remaining shift bits.
396 Opc8 = AVRISD::LSLHI;
397 break;
398 case ISD::SRL:
399 Victim = DAG.getNode(AVRISD::LSRWN, dl, VT, Victim,
400 DAG.getConstant(8, dl, VT));
401 ShiftAmount -= 8;
402 // Only operate on the lower byte for remaining shift bits.
403 Opc8 = AVRISD::LSRLO;
404 break;
405 case ISD::SRA:
406 Victim = DAG.getNode(AVRISD::ASRWN, dl, VT, Victim,
407 DAG.getConstant(8, dl, VT));
408 ShiftAmount -= 8;
409 // Only operate on the lower byte for remaining shift bits.
410 Opc8 = AVRISD::ASRLO;
411 break;
412 default:
413 break;
414 }
415 else if (12 <= ShiftAmount)
416 switch (Op.getOpcode()) {
417 case ISD::SHL:
418 Victim = DAG.getNode(AVRISD::LSLWN, dl, VT, Victim,
419 DAG.getConstant(12, dl, VT));
420 ShiftAmount -= 12;
421 // Only operate on the higher byte for remaining shift bits.
422 Opc8 = AVRISD::LSLHI;
423 break;
424 case ISD::SRL:
425 Victim = DAG.getNode(AVRISD::LSRWN, dl, VT, Victim,
426 DAG.getConstant(12, dl, VT));
427 ShiftAmount -= 12;
428 // Only operate on the lower byte for remaining shift bits.
429 Opc8 = AVRISD::LSRLO;
430 break;
431 case ISD::SRA:
432 Victim = DAG.getNode(AVRISD::ASRWN, dl, VT, Victim,
433 DAG.getConstant(8, dl, VT));
434 ShiftAmount -= 8;
435 // Only operate on the lower byte for remaining shift bits.
436 Opc8 = AVRISD::ASRLO;
437 break;
438 default:
439 break;
440 }
441 }
442
443 while (ShiftAmount--) {
444 Victim = DAG.getNode(Opc8, dl, VT, Victim);
445 }
446
447 return Victim;
448}
449
450SDValue AVRTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
451 unsigned Opcode = Op->getOpcode();
452 assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&(static_cast <bool> ((Opcode == ISD::SDIVREM || Opcode ==
ISD::UDIVREM) && "Invalid opcode for Div/Rem lowering"
) ? void (0) : __assert_fail ("(Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) && \"Invalid opcode for Div/Rem lowering\""
, "llvm/lib/Target/AVR/AVRISelLowering.cpp", 453, __extension__
__PRETTY_FUNCTION__))
453 "Invalid opcode for Div/Rem lowering")(static_cast <bool> ((Opcode == ISD::SDIVREM || Opcode ==
ISD::UDIVREM) && "Invalid opcode for Div/Rem lowering"
) ? void (0) : __assert_fail ("(Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) && \"Invalid opcode for Div/Rem lowering\""
, "llvm/lib/Target/AVR/AVRISelLowering.cpp", 453, __extension__
__PRETTY_FUNCTION__))
;
454 bool IsSigned = (Opcode == ISD::SDIVREM);
455 EVT VT = Op->getValueType(0);
456 Type *Ty = VT.getTypeForEVT(*DAG.getContext());
457
458 RTLIB::Libcall LC;
459 switch (VT.getSimpleVT().SimpleTy) {
460 default:
461 llvm_unreachable("Unexpected request for libcall!")::llvm::llvm_unreachable_internal("Unexpected request for libcall!"
, "llvm/lib/Target/AVR/AVRISelLowering.cpp", 461)
;
462 case MVT::i8:
463 LC = IsSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8;
464 break;
465 case MVT::i16:
466 LC = IsSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16;
467 break;
468 case MVT::i32:
469 LC = IsSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32;
470 break;
471 }
472
473 SDValue InChain = DAG.getEntryNode();
474
475 TargetLowering::ArgListTy Args;
476 TargetLowering::ArgListEntry Entry;
477 for (SDValue const &Value : Op->op_values()) {
478 Entry.Node = Value;
479 Entry.Ty = Value.getValueType().getTypeForEVT(*DAG.getContext());
480 Entry.IsSExt = IsSigned;
481 Entry.IsZExt = !IsSigned;
482 Args.push_back(Entry);
483 }
484
485 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
486 getPointerTy(DAG.getDataLayout()));
487
488 Type *RetTy = (Type *)StructType::get(Ty, Ty);
489
490 SDLoc dl(Op);
491 TargetLowering::CallLoweringInfo CLI(DAG);
492 CLI.setDebugLoc(dl)
493 .setChain(InChain)
494 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
495 .setInRegister()
496 .setSExtResult(IsSigned)
497 .setZExtResult(!IsSigned);
498
499 std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
500 return CallInfo.first;
501}
502
503SDValue AVRTargetLowering::LowerGlobalAddress(SDValue Op,
504 SelectionDAG &DAG) const {
505 auto DL = DAG.getDataLayout();
506
507 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
508 int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
509
510 // Create the TargetGlobalAddress node, folding in the constant offset.
511 SDValue Result =
512 DAG.getTargetGlobalAddress(GV, SDLoc(Op), getPointerTy(DL), Offset);
513 return DAG.getNode(AVRISD::WRAPPER, SDLoc(Op), getPointerTy(DL), Result);
514}
515
516SDValue AVRTargetLowering::LowerBlockAddress(SDValue Op,
517 SelectionDAG &DAG) const {
518 auto DL = DAG.getDataLayout();
519 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
520
521 SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy(DL));
522
523 return DAG.getNode(AVRISD::WRAPPER, SDLoc(Op), getPointerTy(DL), Result);
524}
525
526/// IntCCToAVRCC - Convert a DAG integer condition code to an AVR CC.
527static AVRCC::CondCodes intCCToAVRCC(ISD::CondCode CC) {
528 switch (CC) {
529 default:
530 llvm_unreachable("Unknown condition code!")::llvm::llvm_unreachable_internal("Unknown condition code!", "llvm/lib/Target/AVR/AVRISelLowering.cpp"
, 530)
;
531 case ISD::SETEQ:
532 return AVRCC::COND_EQ;
533 case ISD::SETNE:
534 return AVRCC::COND_NE;
535 case ISD::SETGE:
536 return AVRCC::COND_GE;
537 case ISD::SETLT:
538 return AVRCC::COND_LT;
539 case ISD::SETUGE:
540 return AVRCC::COND_SH;
541 case ISD::SETULT:
542 return AVRCC::COND_LO;
543 }
544}
545
546/// Returns appropriate CP/CPI/CPC nodes code for the given 8/16-bit operands.
547SDValue AVRTargetLowering::getAVRCmp(SDValue LHS, SDValue RHS,
548 SelectionDAG &DAG, SDLoc DL) const {
549 assert((LHS.getSimpleValueType() == RHS.getSimpleValueType()) &&(static_cast <bool> ((LHS.getSimpleValueType() == RHS.getSimpleValueType
()) && "LHS and RHS have different types") ? void (0)
: __assert_fail ("(LHS.getSimpleValueType() == RHS.getSimpleValueType()) && \"LHS and RHS have different types\""
, "llvm/lib/Target/AVR/AVRISelLowering.cpp", 550, __extension__
__PRETTY_FUNCTION__))
550 "LHS and RHS have different types")(static_cast <bool> ((LHS.getSimpleValueType() == RHS.getSimpleValueType
()) && "LHS and RHS have different types") ? void (0)
: __assert_fail ("(LHS.getSimpleValueType() == RHS.getSimpleValueType()) && \"LHS and RHS have different types\""
, "llvm/lib/Target/AVR/AVRISelLowering.cpp", 550, __extension__
__PRETTY_FUNCTION__))
;
551 assert(((LHS.getSimpleValueType() == MVT::i16) ||(static_cast <bool> (((LHS.getSimpleValueType() == MVT::
i16) || (LHS.getSimpleValueType() == MVT::i8)) && "invalid comparison type"
) ? void (0) : __assert_fail ("((LHS.getSimpleValueType() == MVT::i16) || (LHS.getSimpleValueType() == MVT::i8)) && \"invalid comparison type\""
, "llvm/lib/Target/AVR/AVRISelLowering.cpp", 553, __extension__
__PRETTY_FUNCTION__))
552 (LHS.getSimpleValueType() == MVT::i8)) &&(static_cast <bool> (((LHS.getSimpleValueType() == MVT::
i16) || (LHS.getSimpleValueType() == MVT::i8)) && "invalid comparison type"
) ? void (0) : __assert_fail ("((LHS.getSimpleValueType() == MVT::i16) || (LHS.getSimpleValueType() == MVT::i8)) && \"invalid comparison type\""
, "llvm/lib/Target/AVR/AVRISelLowering.cpp", 553, __extension__
__PRETTY_FUNCTION__))
553 "invalid comparison type")(static_cast <bool> (((LHS.getSimpleValueType() == MVT::
i16) || (LHS.getSimpleValueType() == MVT::i8)) && "invalid comparison type"
) ? void (0) : __assert_fail ("((LHS.getSimpleValueType() == MVT::i16) || (LHS.getSimpleValueType() == MVT::i8)) && \"invalid comparison type\""
, "llvm/lib/Target/AVR/AVRISelLowering.cpp", 553, __extension__
__PRETTY_FUNCTION__))
;
554
555 SDValue Cmp;
556
557 if (LHS.getSimpleValueType() == MVT::i16 && isa<ConstantSDNode>(RHS)) {
558 // Generate a CPI/CPC pair if RHS is a 16-bit constant.
559 SDValue LHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHS,
560 DAG.getIntPtrConstant(0, DL));
561 SDValue LHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHS,
562 DAG.getIntPtrConstant(1, DL));
563 SDValue RHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, RHS,
564 DAG.getIntPtrConstant(0, DL));
565 SDValue RHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, RHS,
566 DAG.getIntPtrConstant(1, DL));
567 Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHSlo, RHSlo);
568 Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHShi, RHShi, Cmp);
569 } else {
570 // Generate ordinary 16-bit comparison.
571 Cmp = DAG.getNode(AVRISD::CMP, DL, MVT::Glue, LHS, RHS);
572 }
573
574 return Cmp;
575}
576
577/// Returns appropriate AVR CMP/CMPC nodes and corresponding condition code for
578/// the given operands.
579SDValue AVRTargetLowering::getAVRCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
580 SDValue &AVRcc, SelectionDAG &DAG,
581 SDLoc DL) const {
582 SDValue Cmp;
583 EVT VT = LHS.getValueType();
584 bool UseTest = false;
585
586 switch (CC) {
587 default:
588 break;
589 case ISD::SETLE: {
590 // Swap operands and reverse the branching condition.
591 std::swap(LHS, RHS);
592 CC = ISD::SETGE;
593 break;
594 }
595 case ISD::SETGT: {
596 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
597 switch (C->getSExtValue()) {
598 case -1: {
599 // When doing lhs > -1 use a tst instruction on the top part of lhs
600 // and use brpl instead of using a chain of cp/cpc.
601 UseTest = true;
602 AVRcc = DAG.getConstant(AVRCC::COND_PL, DL, MVT::i8);
603 break;
604 }
605 case 0: {
606 // Turn lhs > 0 into 0 < lhs since 0 can be materialized with
607 // __zero_reg__ in lhs.
608 RHS = LHS;
609 LHS = DAG.getConstant(0, DL, VT);
610 CC = ISD::SETLT;
611 break;
612 }
613 default: {
614 // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows
615 // us to fold the constant into the cmp instruction.
616 RHS = DAG.getConstant(C->getSExtValue() + 1, DL, VT);
617 CC = ISD::SETGE;
618 break;
619 }
620 }
621 break;
622 }
623 // Swap operands and reverse the branching condition.
624 std::swap(LHS, RHS);
625 CC = ISD::SETLT;
626 break;
627 }
628 case ISD::SETLT: {
629 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
630 switch (C->getSExtValue()) {
631 case 1: {
632 // Turn lhs < 1 into 0 >= lhs since 0 can be materialized with
633 // __zero_reg__ in lhs.
634 RHS = LHS;
635 LHS = DAG.getConstant(0, DL, VT);
636 CC = ISD::SETGE;
637 break;
638 }
639 case 0: {
640 // When doing lhs < 0 use a tst instruction on the top part of lhs
641 // and use brmi instead of using a chain of cp/cpc.
642 UseTest = true;
643 AVRcc = DAG.getConstant(AVRCC::COND_MI, DL, MVT::i8);
644 break;
645 }
646 }
647 }
648 break;
649 }
650 case ISD::SETULE: {
651 // Swap operands and reverse the branching condition.
652 std::swap(LHS, RHS);
653 CC = ISD::SETUGE;
654 break;
655 }
656 case ISD::SETUGT: {
657 // Turn lhs < rhs with lhs constant into rhs >= lhs+1, this allows us to
658 // fold the constant into the cmp instruction.
659 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
660 RHS = DAG.getConstant(C->getSExtValue() + 1, DL, VT);
661 CC = ISD::SETUGE;
662 break;
663 }
664 // Swap operands and reverse the branching condition.
665 std::swap(LHS, RHS);
666 CC = ISD::SETULT;
667 break;
668 }
669 }
670
671 // Expand 32 and 64 bit comparisons with custom CMP and CMPC nodes instead of
672 // using the default and/or/xor expansion code which is much longer.
673 if (VT == MVT::i32) {
674 SDValue LHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS,
675 DAG.getIntPtrConstant(0, DL));
676 SDValue LHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS,
677 DAG.getIntPtrConstant(1, DL));
678 SDValue RHSlo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS,
679 DAG.getIntPtrConstant(0, DL));
680 SDValue RHShi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS,
681 DAG.getIntPtrConstant(1, DL));
682
683 if (UseTest) {
684 // When using tst we only care about the highest part.
685 SDValue Top = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHShi,
686 DAG.getIntPtrConstant(1, DL));
687 Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, Top);
688 } else {
689 Cmp = getAVRCmp(LHSlo, RHSlo, DAG, DL);
690 Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHShi, RHShi, Cmp);
691 }
692 } else if (VT == MVT::i64) {
693 SDValue LHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, LHS,
694 DAG.getIntPtrConstant(0, DL));
695 SDValue LHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, LHS,
696 DAG.getIntPtrConstant(1, DL));
697
698 SDValue LHS0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_0,
699 DAG.getIntPtrConstant(0, DL));
700 SDValue LHS1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_0,
701 DAG.getIntPtrConstant(1, DL));
702 SDValue LHS2 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_1,
703 DAG.getIntPtrConstant(0, DL));
704 SDValue LHS3 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, LHS_1,
705 DAG.getIntPtrConstant(1, DL));
706
707 SDValue RHS_0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, RHS,
708 DAG.getIntPtrConstant(0, DL));
709 SDValue RHS_1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, RHS,
710 DAG.getIntPtrConstant(1, DL));
711
712 SDValue RHS0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_0,
713 DAG.getIntPtrConstant(0, DL));
714 SDValue RHS1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_0,
715 DAG.getIntPtrConstant(1, DL));
716 SDValue RHS2 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_1,
717 DAG.getIntPtrConstant(0, DL));
718 SDValue RHS3 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i16, RHS_1,
719 DAG.getIntPtrConstant(1, DL));
720
721 if (UseTest) {
722 // When using tst we only care about the highest part.
723 SDValue Top = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8, LHS3,
724 DAG.getIntPtrConstant(1, DL));
725 Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue, Top);
726 } else {
727 Cmp = getAVRCmp(LHS0, RHS0, DAG, DL);
728 Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS1, RHS1, Cmp);
729 Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS2, RHS2, Cmp);
730 Cmp = DAG.getNode(AVRISD::CMPC, DL, MVT::Glue, LHS3, RHS3, Cmp);
731 }
732 } else if (VT == MVT::i8 || VT == MVT::i16) {
733 if (UseTest) {
734 // When using tst we only care about the highest part.
735 Cmp = DAG.getNode(AVRISD::TST, DL, MVT::Glue,
736 (VT == MVT::i8)
737 ? LHS
738 : DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i8,
739 LHS, DAG.getIntPtrConstant(1, DL)));
740 } else {
741 Cmp = getAVRCmp(LHS, RHS, DAG, DL);
742 }
743 } else {
744 llvm_unreachable("Invalid comparison size")::llvm::llvm_unreachable_internal("Invalid comparison size", "llvm/lib/Target/AVR/AVRISelLowering.cpp"
, 744)
;
745 }
746
747 // When using a test instruction AVRcc is already set.
748 if (!UseTest) {
749 AVRcc = DAG.getConstant(intCCToAVRCC(CC), DL, MVT::i8);
750 }
751
752 return Cmp;
753}
754
755SDValue AVRTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
756 SDValue Chain = Op.getOperand(0);
757 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
758 SDValue LHS = Op.getOperand(2);
759 SDValue RHS = Op.getOperand(3);
760 SDValue Dest = Op.getOperand(4);
761 SDLoc dl(Op);
762
763 SDValue TargetCC;
764 SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, dl);
765
766 return DAG.getNode(AVRISD::BRCOND, dl, MVT::Other, Chain, Dest, TargetCC,
767 Cmp);
768}
769
770SDValue AVRTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
771 SDValue LHS = Op.getOperand(0);
772 SDValue RHS = Op.getOperand(1);
773 SDValue TrueV = Op.getOperand(2);
774 SDValue FalseV = Op.getOperand(3);
775 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
776 SDLoc dl(Op);
777
778 SDValue TargetCC;
779 SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, dl);
780
781 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
782 SDValue Ops[] = {TrueV, FalseV, TargetCC, Cmp};
783
784 return DAG.getNode(AVRISD::SELECT_CC, dl, VTs, Ops);
785}
786
787SDValue AVRTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
788 SDValue LHS = Op.getOperand(0);
789 SDValue RHS = Op.getOperand(1);
790 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
791 SDLoc DL(Op);
792
793 SDValue TargetCC;
794 SDValue Cmp = getAVRCmp(LHS, RHS, CC, TargetCC, DAG, DL);
795
796 SDValue TrueV = DAG.getConstant(1, DL, Op.getValueType());
797 SDValue FalseV = DAG.getConstant(0, DL, Op.getValueType());
798 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
799 SDValue Ops[] = {TrueV, FalseV, TargetCC, Cmp};
800
801 return DAG.getNode(AVRISD::SELECT_CC, DL, VTs, Ops);
802}
803
804SDValue AVRTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
805 const MachineFunction &MF = DAG.getMachineFunction();
806 const AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();
807 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
808 auto DL = DAG.getDataLayout();
809 SDLoc dl(Op);
810
811 // Vastart just stores the address of the VarArgsFrameIndex slot into the
812 // memory location argument.
813 SDValue FI = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(), getPointerTy(DL));
814
815 return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1),
816 MachinePointerInfo(SV));
817}
818
819SDValue AVRTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
820 switch (Op.getOpcode()) {
821 default:
822 llvm_unreachable("Don't know how to custom lower this!")::llvm::llvm_unreachable_internal("Don't know how to custom lower this!"
, "llvm/lib/Target/AVR/AVRISelLowering.cpp", 822)
;
823 case ISD::SHL:
824 case ISD::SRA:
825 case ISD::SRL:
826 case ISD::ROTL:
827 case ISD::ROTR:
828 return LowerShifts(Op, DAG);
829 case ISD::GlobalAddress:
830 return LowerGlobalAddress(Op, DAG);
831 case ISD::BlockAddress:
832 return LowerBlockAddress(Op, DAG);
833 case ISD::BR_CC:
834 return LowerBR_CC(Op, DAG);
835 case ISD::SELECT_CC:
836 return LowerSELECT_CC(Op, DAG);
837 case ISD::SETCC:
838 return LowerSETCC(Op, DAG);
839 case ISD::VASTART:
840 return LowerVASTART(Op, DAG);
841 case ISD::SDIVREM:
842 case ISD::UDIVREM:
843 return LowerDivRem(Op, DAG);
844 }
845
846 return SDValue();
847}
848
849/// Replace a node with an illegal result type
850/// with a new node built out of custom code.
851void AVRTargetLowering::ReplaceNodeResults(SDNode *N,
852 SmallVectorImpl<SDValue> &Results,
853 SelectionDAG &DAG) const {
854 SDLoc DL(N);
855
856 switch (N->getOpcode()) {
857 case ISD::ADD: {
858 // Convert add (x, imm) into sub (x, -imm).
859 if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
860 SDValue Sub = DAG.getNode(
861 ISD::SUB, DL, N->getValueType(0), N->getOperand(0),
862 DAG.getConstant(-C->getAPIntValue(), DL, C->getValueType(0)));
863 Results.push_back(Sub);
864 }
865 break;
866 }
867 default: {
868 SDValue Res = LowerOperation(SDValue(N, 0), DAG);
869
870 for (unsigned I = 0, E = Res->getNumValues(); I != E; ++I)
871 Results.push_back(Res.getValue(I));
872
873 break;
874 }
875 }
876}
877
878/// Return true if the addressing mode represented
879/// by AM is legal for this target, for a load/store of the specified type.
880bool AVRTargetLowering::isLegalAddressingMode(const DataLayout &DL,
881 const AddrMode &AM, Type *Ty,
882 unsigned AS,
883 Instruction *I) const {
884 int64_t Offs = AM.BaseOffs;
885
886 // Allow absolute addresses.
887 if (AM.BaseGV && !AM.HasBaseReg && AM.Scale == 0 && Offs == 0) {
888 return true;
889 }
890
891 // Flash memory instructions only allow zero offsets.
892 if (isa<PointerType>(Ty) && AS == AVR::ProgramMemory) {
893 return false;
894 }
895
896 // Allow reg+<6bit> offset.
897 if (Offs < 0)
898 Offs = -Offs;
899 if (AM.BaseGV == nullptr && AM.HasBaseReg && AM.Scale == 0 &&
900 isUInt<6>(Offs)) {
901 return true;
902 }
903
904 return false;
905}
906
907/// Returns true by value, base pointer and
908/// offset pointer and addressing mode by reference if the node's address
909/// can be legally represented as pre-indexed load / store address.
910bool AVRTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
911 SDValue &Offset,
912 ISD::MemIndexedMode &AM,
913 SelectionDAG &DAG) const {
914 EVT VT;
915 const SDNode *Op;
916 SDLoc DL(N);
917
918 if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
919 VT = LD->getMemoryVT();
920 Op = LD->getBasePtr().getNode();
921 if (LD->getExtensionType() != ISD::NON_EXTLOAD)
922 return false;
923 if (AVR::isProgramMemoryAccess(LD)) {
924 return false;
925 }
926 } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
927 VT = ST->getMemoryVT();
928 Op = ST->getBasePtr().getNode();
929 if (AVR::isProgramMemoryAccess(ST)) {
930 return false;
931 }
932 } else {
933 return false;
934 }
935
936 if (VT != MVT::i8 && VT != MVT::i16) {
937 return false;
938 }
939
940 if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) {
941 return false;
942 }
943
944 if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
945 int RHSC = RHS->getSExtValue();
946 if (Op->getOpcode() == ISD::SUB)
947 RHSC = -RHSC;
948
949 if ((VT == MVT::i16 && RHSC != -2) || (VT == MVT::i8 && RHSC != -1)) {
950 return false;
951 }
952
953 Base = Op->getOperand(0);
954 Offset = DAG.getConstant(RHSC, DL, MVT::i8);
955 AM = ISD::PRE_DEC;
956
957 return true;
958 }
959
960 return false;
961}
962
963/// Returns true by value, base pointer and
964/// offset pointer and addressing mode by reference if this node can be
965/// combined with a load / store to form a post-indexed load / store.
966bool AVRTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
967 SDValue &Base,
968 SDValue &Offset,
969 ISD::MemIndexedMode &AM,
970 SelectionDAG &DAG) const {
971 EVT VT;
972 SDLoc DL(N);
973
974 if (const LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
975 VT = LD->getMemoryVT();
976 if (LD->getExtensionType() != ISD::NON_EXTLOAD)
977 return false;
978 } else if (const StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
979 VT = ST->getMemoryVT();
980 if (AVR::isProgramMemoryAccess(ST)) {
981 return false;
982 }
983 } else {
984 return false;
985 }
986
987 if (VT != MVT::i8 && VT != MVT::i16) {
988 return false;
989 }
990
991 if (Op->getOpcode() != ISD::ADD && Op->getOpcode() != ISD::SUB) {
992 return false;
993 }
994
995 if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Op->getOperand(1))) {
996 int RHSC = RHS->getSExtValue();
997 if (Op->getOpcode() == ISD::SUB)
998 RHSC = -RHSC;
999 if ((VT == MVT::i16 && RHSC != 2) || (VT == MVT::i8 && RHSC != 1)) {
1000 return false;
1001 }
1002
1003 Base = Op->getOperand(0);
1004 Offset = DAG.getConstant(RHSC, DL, MVT::i8);
1005 AM = ISD::POST_INC;
1006
1007 return true;
1008 }
1009
1010 return false;
1011}
1012
1013bool AVRTargetLowering::isOffsetFoldingLegal(
1014 const GlobalAddressSDNode *GA) const {
1015 return true;
1016}
1017
1018//===----------------------------------------------------------------------===//
1019// Formal Arguments Calling Convention Implementation
1020//===----------------------------------------------------------------------===//
1021
1022#include "AVRGenCallingConv.inc"
1023
1024/// Registers for calling conventions, ordered in reverse as required by ABI.
1025/// Both arrays must be of the same length.
1026static const MCPhysReg RegList8[] = {
1027 AVR::R25, AVR::R24, AVR::R23, AVR::R22, AVR::R21, AVR::R20,
1028 AVR::R19, AVR::R18, AVR::R17, AVR::R16, AVR::R15, AVR::R14,
1029 AVR::R13, AVR::R12, AVR::R11, AVR::R10, AVR::R9, AVR::R8};
1030static const MCPhysReg RegList16[] = {
1031 AVR::R26R25, AVR::R25R24, AVR::R24R23, AVR::R23R22, AVR::R22R21,
1032 AVR::R21R20, AVR::R20R19, AVR::R19R18, AVR::R18R17, AVR::R17R16,
1033 AVR::R16R15, AVR::R15R14, AVR::R14R13, AVR::R13R12, AVR::R12R11,
1034 AVR::R11R10, AVR::R10R9, AVR::R9R8};
1035
1036static_assert(array_lengthof(RegList8) == array_lengthof(RegList16),
1037 "8-bit and 16-bit register arrays must be of equal length");
1038
1039/// Analyze incoming and outgoing function arguments. We need custom C++ code
1040/// to handle special constraints in the ABI.
1041/// In addition, all pieces of a certain argument have to be passed either
1042/// using registers or the stack but never mixing both.
1043template <typename ArgT>
1044static void
1045analyzeArguments(TargetLowering::CallLoweringInfo *CLI, const Function *F,
1046 const DataLayout *TD, const SmallVectorImpl<ArgT> &Args,
1047 SmallVectorImpl<CCValAssign> &ArgLocs, CCState &CCInfo) {
1048 unsigned NumArgs = Args.size();
1049 // This is the index of the last used register, in RegList*.
1050 // -1 means R26 (R26 is never actually used in CC).
1051 int RegLastIdx = -1;
1052 // Once a value is passed to the stack it will always be used
1053 bool UseStack = false;
1054 for (unsigned i = 0; i != NumArgs;) {
1055 MVT VT = Args[i].VT;
1056 // We have to count the number of bytes for each function argument, that is
1057 // those Args with the same OrigArgIndex. This is important in case the
1058 // function takes an aggregate type.
1059 // Current argument will be between [i..j).
1060 unsigned ArgIndex = Args[i].OrigArgIndex;
1061 unsigned TotalBytes = VT.getStoreSize();
1062 unsigned j = i + 1;
1063 for (; j != NumArgs; ++j) {
1064 if (Args[j].OrigArgIndex != ArgIndex)
1065 break;
1066 TotalBytes += Args[j].VT.getStoreSize();
1067 }
1068 // Round up to even number of bytes.
1069 TotalBytes = alignTo(TotalBytes, 2);
1070 // Skip zero sized arguments
1071 if (TotalBytes == 0)
1072 continue;
1073 // The index of the first register to be used
1074 unsigned RegIdx = RegLastIdx + TotalBytes;
1075 RegLastIdx = RegIdx;
1076 // If there are not enough registers, use the stack
1077 if (RegIdx >= array_lengthof(RegList8)) {
1078 UseStack = true;
1079 }
1080 for (; i != j; ++i) {
1081 MVT VT = Args[i].VT;
1082
1083 if (UseStack) {
1084 auto evt = EVT(VT).getTypeForEVT(CCInfo.getContext());
1085 unsigned Offset = CCInfo.AllocateStack(TD->getTypeAllocSize(evt),
1086 TD->getABITypeAlign(evt));
1087 CCInfo.addLoc(
1088 CCValAssign::getMem(i, VT, Offset, VT, CCValAssign::Full));
1089 } else {
1090 unsigned Reg;
1091 if (VT == MVT::i8) {
1092 Reg = CCInfo.AllocateReg(RegList8[RegIdx]);
1093 } else if (VT == MVT::i16) {
1094 Reg = CCInfo.AllocateReg(RegList16[RegIdx]);
1095 } else {
1096 llvm_unreachable(::llvm::llvm_unreachable_internal("calling convention can only manage i8 and i16 types"
, "llvm/lib/Target/AVR/AVRISelLowering.cpp", 1097)
1097 "calling convention can only manage i8 and i16 types")::llvm::llvm_unreachable_internal("calling convention can only manage i8 and i16 types"
, "llvm/lib/Target/AVR/AVRISelLowering.cpp", 1097)
;
1098 }
1099 assert(Reg && "register not available in calling convention")(static_cast <bool> (Reg && "register not available in calling convention"
) ? void (0) : __assert_fail ("Reg && \"register not available in calling convention\""
, "llvm/lib/Target/AVR/AVRISelLowering.cpp", 1099, __extension__
__PRETTY_FUNCTION__))
;
1100 CCInfo.addLoc(CCValAssign::getReg(i, VT, Reg, VT, CCValAssign::Full));
1101 // Registers inside a particular argument are sorted in increasing order
1102 // (remember the array is reversed).
1103 RegIdx -= VT.getStoreSize();
1104 }
1105 }
1106 }
1107}
1108
1109/// Count the total number of bytes needed to pass or return these arguments.
1110template <typename ArgT>
1111static unsigned
1112getTotalArgumentsSizeInBytes(const SmallVectorImpl<ArgT> &Args) {
1113 unsigned TotalBytes = 0;
1114
1115 for (const ArgT &Arg : Args) {
1116 TotalBytes += Arg.VT.getStoreSize();
1117 }
1118 return TotalBytes;
1119}
1120
1121/// Analyze incoming and outgoing value of returning from a function.
1122/// The algorithm is similar to analyzeArguments, but there can only be
1123/// one value, possibly an aggregate, and it is limited to 8 bytes.
1124template <typename ArgT>
1125static void analyzeReturnValues(const SmallVectorImpl<ArgT> &Args,
1126 CCState &CCInfo) {
1127 unsigned NumArgs = Args.size();
1128 unsigned TotalBytes = getTotalArgumentsSizeInBytes(Args);
1129 // CanLowerReturn() guarantees this assertion.
1130 assert(TotalBytes <= 8 &&(static_cast <bool> (TotalBytes <= 8 && "return values greater than 8 bytes cannot be lowered"
) ? void (0) : __assert_fail ("TotalBytes <= 8 && \"return values greater than 8 bytes cannot be lowered\""
, "llvm/lib/Target/AVR/AVRISelLowering.cpp", 1131, __extension__
__PRETTY_FUNCTION__))
4
'?' condition is true
1131 "return values greater than 8 bytes cannot be lowered")(static_cast <bool> (TotalBytes <= 8 && "return values greater than 8 bytes cannot be lowered"
) ? void (0) : __assert_fail ("TotalBytes <= 8 && \"return values greater than 8 bytes cannot be lowered\""
, "llvm/lib/Target/AVR/AVRISelLowering.cpp", 1131, __extension__
__PRETTY_FUNCTION__))
;
1132
1133 // GCC-ABI says that the size is rounded up to the next even number,
1134 // but actually once it is more than 4 it will always round up to 8.
1135 if (TotalBytes
4.1
'TotalBytes' is <= 4
4.1
'TotalBytes' is <= 4
> 4) {
5
Taking false branch
1136 TotalBytes = 8;
1137 } else {
1138 TotalBytes = alignTo(TotalBytes, 2);
1139 }
1140
1141 // The index of the first register to use.
1142 int RegIdx = TotalBytes - 1;
6
'RegIdx' initialized to -1
1143 for (unsigned i = 0; i != NumArgs; ++i) {
7
Assuming 'i' is not equal to 'NumArgs'
8
Loop condition is true. Entering loop body
1144 MVT VT = Args[i].VT;
1145 unsigned Reg;
1146 if (VT == MVT::i8) {
9
Calling 'MVT::operator=='
12
Returning from 'MVT::operator=='
13
Taking false branch
1147 Reg = CCInfo.AllocateReg(RegList8[RegIdx]);
1148 } else if (VT == MVT::i16) {
14
Taking true branch
1149 Reg = CCInfo.AllocateReg(RegList16[RegIdx]);
15
1st function call argument is an uninitialized value
1150 } else {
1151 llvm_unreachable("calling convention can only manage i8 and i16 types")::llvm::llvm_unreachable_internal("calling convention can only manage i8 and i16 types"
, "llvm/lib/Target/AVR/AVRISelLowering.cpp", 1151)
;
1152 }
1153 assert(Reg && "register not available in calling convention")(static_cast <bool> (Reg && "register not available in calling convention"
) ? void (0) : __assert_fail ("Reg && \"register not available in calling convention\""
, "llvm/lib/Target/AVR/AVRISelLowering.cpp", 1153, __extension__
__PRETTY_FUNCTION__))
;
1154 CCInfo.addLoc(CCValAssign::getReg(i, VT, Reg, VT, CCValAssign::Full));
1155 // Registers sort in increasing order
1156 RegIdx -= VT.getStoreSize();
1157 }
1158}
1159
1160SDValue AVRTargetLowering::LowerFormalArguments(
1161 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
1162 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1163 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1164 MachineFunction &MF = DAG.getMachineFunction();
1165 MachineFrameInfo &MFI = MF.getFrameInfo();
1166 auto DL = DAG.getDataLayout();
1167
1168 // Assign locations to all of the incoming arguments.
1169 SmallVector<CCValAssign, 16> ArgLocs;
1170 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1171 *DAG.getContext());
1172
1173 // Variadic functions do not need all the analysis below.
1174 if (isVarArg) {
1175 CCInfo.AnalyzeFormalArguments(Ins, ArgCC_AVR_Vararg);
1176 } else {
1177 analyzeArguments(nullptr, &MF.getFunction(), &DL, Ins, ArgLocs, CCInfo);
1178 }
1179
1180 SDValue ArgValue;
1181 for (CCValAssign &VA : ArgLocs) {
1182
1183 // Arguments stored on registers.
1184 if (VA.isRegLoc()) {
1185 EVT RegVT = VA.getLocVT();
1186 const TargetRegisterClass *RC;
1187 if (RegVT == MVT::i8) {
1188 RC = &AVR::GPR8RegClass;
1189 } else if (RegVT == MVT::i16) {
1190 RC = &AVR::DREGSRegClass;
1191 } else {
1192 llvm_unreachable("Unknown argument type!")::llvm::llvm_unreachable_internal("Unknown argument type!", "llvm/lib/Target/AVR/AVRISelLowering.cpp"
, 1192)
;
1193 }
1194
1195 Register Reg = MF.addLiveIn(VA.getLocReg(), RC);
1196 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1197
1198 // :NOTE: Clang should not promote any i8 into i16 but for safety the
1199 // following code will handle zexts or sexts generated by other
1200 // front ends. Otherwise:
1201 // If this is an 8 bit value, it is really passed promoted
1202 // to 16 bits. Insert an assert[sz]ext to capture this, then
1203 // truncate to the right size.
1204 switch (VA.getLocInfo()) {
1205 default:
1206 llvm_unreachable("Unknown loc info!")::llvm::llvm_unreachable_internal("Unknown loc info!", "llvm/lib/Target/AVR/AVRISelLowering.cpp"
, 1206)
;
1207 case CCValAssign::Full:
1208 break;
1209 case CCValAssign::BCvt:
1210 ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1211 break;
1212 case CCValAssign::SExt:
1213 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1214 DAG.getValueType(VA.getValVT()));
1215 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1216 break;
1217 case CCValAssign::ZExt:
1218 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1219 DAG.getValueType(VA.getValVT()));
1220 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1221 break;
1222 }
1223
1224 InVals.push_back(ArgValue);
1225 } else {
1226 // Only arguments passed on the stack should make it here.
1227 assert(VA.isMemLoc())(static_cast <bool> (VA.isMemLoc()) ? void (0) : __assert_fail
("VA.isMemLoc()", "llvm/lib/Target/AVR/AVRISelLowering.cpp",
1227, __extension__ __PRETTY_FUNCTION__))
;
1228
1229 EVT LocVT = VA.getLocVT();
1230
1231 // Create the frame index object for this incoming parameter.
1232 int FI = MFI.CreateFixedObject(LocVT.getSizeInBits() / 8,
1233 VA.getLocMemOffset(), true);
1234
1235 // Create the SelectionDAG nodes corresponding to a load
1236 // from this parameter.
1237 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DL));
1238 InVals.push_back(DAG.getLoad(LocVT, dl, Chain, FIN,
1239 MachinePointerInfo::getFixedStack(MF, FI)));
1240 }
1241 }
1242
1243 // If the function takes variable number of arguments, make a frame index for
1244 // the start of the first vararg value... for expansion of llvm.va_start.
1245 if (isVarArg) {
1246 unsigned StackSize = CCInfo.getNextStackOffset();
1247 AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();
1248
1249 AFI->setVarArgsFrameIndex(MFI.CreateFixedObject(2, StackSize, true));
1250 }
1251
1252 return Chain;
1253}
1254
1255//===----------------------------------------------------------------------===//
1256// Call Calling Convention Implementation
1257//===----------------------------------------------------------------------===//
1258
1259SDValue AVRTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1260 SmallVectorImpl<SDValue> &InVals) const {
1261 SelectionDAG &DAG = CLI.DAG;
1262 SDLoc &DL = CLI.DL;
1263 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1264 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1265 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1266 SDValue Chain = CLI.Chain;
1267 SDValue Callee = CLI.Callee;
1268 bool &isTailCall = CLI.IsTailCall;
1269 CallingConv::ID CallConv = CLI.CallConv;
1270 bool isVarArg = CLI.IsVarArg;
1271
1272 MachineFunction &MF = DAG.getMachineFunction();
1273
1274 // AVR does not yet support tail call optimization.
1275 isTailCall = false;
1276
1277 // Analyze operands of the call, assigning locations to each operand.
1278 SmallVector<CCValAssign, 16> ArgLocs;
1279 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
1280 *DAG.getContext());
1281
1282 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1283 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1284 // node so that legalize doesn't hack it.
1285 const Function *F = nullptr;
1286 if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
1287 const GlobalValue *GV = G->getGlobal();
1288 if (isa<Function>(GV))
1289 F = cast<Function>(GV);
1290 Callee =
1291 DAG.getTargetGlobalAddress(GV, DL, getPointerTy(DAG.getDataLayout()));
1292 } else if (const ExternalSymbolSDNode *ES =
1293 dyn_cast<ExternalSymbolSDNode>(Callee)) {
1294 Callee = DAG.getTargetExternalSymbol(ES->getSymbol(),
1295 getPointerTy(DAG.getDataLayout()));
1296 }
1297
1298 // Variadic functions do not need all the analysis below.
1299 if (isVarArg) {
1300 CCInfo.AnalyzeCallOperands(Outs, ArgCC_AVR_Vararg);
1301 } else {
1302 analyzeArguments(&CLI, F, &DAG.getDataLayout(), Outs, ArgLocs, CCInfo);
1303 }
1304
1305 // Get a count of how many bytes are to be pushed on the stack.
1306 unsigned NumBytes = CCInfo.getNextStackOffset();
1307
1308 Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, DL);
1309
1310 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
1311
1312 // First, walk the register assignments, inserting copies.
1313 unsigned AI, AE;
1314 bool HasStackArgs = false;
1315 for (AI = 0, AE = ArgLocs.size(); AI != AE; ++AI) {
1316 CCValAssign &VA = ArgLocs[AI];
1317 EVT RegVT = VA.getLocVT();
1318 SDValue Arg = OutVals[AI];
1319
1320 // Promote the value if needed. With Clang this should not happen.
1321 switch (VA.getLocInfo()) {
1322 default:
1323 llvm_unreachable("Unknown loc info!")::llvm::llvm_unreachable_internal("Unknown loc info!", "llvm/lib/Target/AVR/AVRISelLowering.cpp"
, 1323)
;
1324 case CCValAssign::Full:
1325 break;
1326 case CCValAssign::SExt:
1327 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, RegVT, Arg);
1328 break;
1329 case CCValAssign::ZExt:
1330 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, RegVT, Arg);
1331 break;
1332 case CCValAssign::AExt:
1333 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, RegVT, Arg);
1334 break;
1335 case CCValAssign::BCvt:
1336 Arg = DAG.getNode(ISD::BITCAST, DL, RegVT, Arg);
1337 break;
1338 }
1339
1340 // Stop when we encounter a stack argument, we need to process them
1341 // in reverse order in the loop below.
1342 if (VA.isMemLoc()) {
1343 HasStackArgs = true;
1344 break;
1345 }
1346
1347 // Arguments that can be passed on registers must be kept in the RegsToPass
1348 // vector.
1349 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
1350 }
1351
1352 // Second, stack arguments have to walked.
1353 // Previously this code created chained stores but those chained stores appear
1354 // to be unchained in the legalization phase. Therefore, do not attempt to
1355 // chain them here. In fact, chaining them here somehow causes the first and
1356 // second store to be reversed which is the exact opposite of the intended
1357 // effect.
1358 if (HasStackArgs) {
1359 SmallVector<SDValue, 8> MemOpChains;
1360 for (; AI != AE; AI++) {
1361 CCValAssign &VA = ArgLocs[AI];
1362 SDValue Arg = OutVals[AI];
1363
1364 assert(VA.isMemLoc())(static_cast <bool> (VA.isMemLoc()) ? void (0) : __assert_fail
("VA.isMemLoc()", "llvm/lib/Target/AVR/AVRISelLowering.cpp",
1364, __extension__ __PRETTY_FUNCTION__))
;
1365
1366 // SP points to one stack slot further so add one to adjust it.
1367 SDValue PtrOff = DAG.getNode(
1368 ISD::ADD, DL, getPointerTy(DAG.getDataLayout()),
1369 DAG.getRegister(AVR::SP, getPointerTy(DAG.getDataLayout())),
1370 DAG.getIntPtrConstant(VA.getLocMemOffset() + 1, DL));
1371
1372 MemOpChains.push_back(
1373 DAG.getStore(Chain, DL, Arg, PtrOff,
1374 MachinePointerInfo::getStack(MF, VA.getLocMemOffset())));
1375 }
1376
1377 if (!MemOpChains.empty())
1378 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
1379 }
1380
1381 // Build a sequence of copy-to-reg nodes chained together with token chain and
1382 // flag operands which copy the outgoing args into registers. The InFlag in
1383 // necessary since all emited instructions must be stuck together.
1384 SDValue InFlag;
1385 for (auto Reg : RegsToPass) {
1386 Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, InFlag);
1387 InFlag = Chain.getValue(1);
1388 }
1389
1390 // Returns a chain & a flag for retval copy to use.
1391 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
1392 SmallVector<SDValue, 8> Ops;
1393 Ops.push_back(Chain);
1394 Ops.push_back(Callee);
1395
1396 // Add argument registers to the end of the list so that they are known live
1397 // into the call.
1398 for (auto Reg : RegsToPass) {
1399 Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
1400 }
1401
1402 // Add a register mask operand representing the call-preserved registers.
1403 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
1404 const uint32_t *Mask =
1405 TRI->getCallPreservedMask(DAG.getMachineFunction(), CallConv);
1406 assert(Mask && "Missing call preserved mask for calling convention")(static_cast <bool> (Mask && "Missing call preserved mask for calling convention"
) ? void (0) : __assert_fail ("Mask && \"Missing call preserved mask for calling convention\""
, "llvm/lib/Target/AVR/AVRISelLowering.cpp", 1406, __extension__
__PRETTY_FUNCTION__))
;
1407 Ops.push_back(DAG.getRegisterMask(Mask));
1408
1409 if (InFlag.getNode()) {
1410 Ops.push_back(InFlag);
1411 }
1412
1413 Chain = DAG.getNode(AVRISD::CALL, DL, NodeTys, Ops);
1414 InFlag = Chain.getValue(1);
1415
1416 // Create the CALLSEQ_END node.
1417 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, DL, true),
1418 DAG.getIntPtrConstant(0, DL, true), InFlag, DL);
1419
1420 if (!Ins.empty()) {
1421 InFlag = Chain.getValue(1);
1422 }
1423
1424 // Handle result values, copying them out of physregs into vregs that we
1425 // return.
1426 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, DL, DAG,
1427 InVals);
1428}
1429
1430/// Lower the result values of a call into the
1431/// appropriate copies out of appropriate physical registers.
1432///
1433SDValue AVRTargetLowering::LowerCallResult(
1434 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg,
1435 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
1436 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
1437
1438 // Assign locations to each value returned by this call.
1439 SmallVector<CCValAssign, 16> RVLocs;
1440 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1441 *DAG.getContext());
1442
1443 // Handle runtime calling convs.
1444 if (CallConv == CallingConv::AVR_BUILTIN) {
1445 CCInfo.AnalyzeCallResult(Ins, RetCC_AVR_BUILTIN);
1446 } else {
1447 analyzeReturnValues(Ins, CCInfo);
1448 }
1449
1450 // Copy all of the result registers out of their specified physreg.
1451 for (CCValAssign const &RVLoc : RVLocs) {
1452 Chain = DAG.getCopyFromReg(Chain, dl, RVLoc.getLocReg(), RVLoc.getValVT(),
1453 InFlag)
1454 .getValue(1);
1455 InFlag = Chain.getValue(2);
1456 InVals.push_back(Chain.getValue(0));
1457 }
1458
1459 return Chain;
1460}
1461
1462//===----------------------------------------------------------------------===//
1463// Return Value Calling Convention Implementation
1464//===----------------------------------------------------------------------===//
1465
1466bool AVRTargetLowering::CanLowerReturn(
1467 CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
1468 const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
1469 if (CallConv == CallingConv::AVR_BUILTIN) {
1470 SmallVector<CCValAssign, 16> RVLocs;
1471 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
1472 return CCInfo.CheckReturn(Outs, RetCC_AVR_BUILTIN);
1473 }
1474
1475 unsigned TotalBytes = getTotalArgumentsSizeInBytes(Outs);
1476 return TotalBytes <= 8;
1477}
1478
1479SDValue
1480AVRTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1481 bool isVarArg,
1482 const SmallVectorImpl<ISD::OutputArg> &Outs,
1483 const SmallVectorImpl<SDValue> &OutVals,
1484 const SDLoc &dl, SelectionDAG &DAG) const {
1485 // CCValAssign - represent the assignment of the return value to locations.
1486 SmallVector<CCValAssign, 16> RVLocs;
1487
1488 // CCState - Info about the registers and stack slot.
1489 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1490 *DAG.getContext());
1491
1492 MachineFunction &MF = DAG.getMachineFunction();
1493
1494 // Analyze return values.
1495 if (CallConv == CallingConv::AVR_BUILTIN) {
1
Assuming 'CallConv' is not equal to AVR_BUILTIN
2
Taking false branch
1496 CCInfo.AnalyzeReturn(Outs, RetCC_AVR_BUILTIN);
1497 } else {
1498 analyzeReturnValues(Outs, CCInfo);
3
Calling 'analyzeReturnValues<llvm::ISD::OutputArg>'
1499 }
1500
1501 SDValue Flag;
1502 SmallVector<SDValue, 4> RetOps(1, Chain);
1503 // Copy the result values into the output registers.
1504 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
1505 CCValAssign &VA = RVLocs[i];
1506 assert(VA.isRegLoc() && "Can only return in registers!")(static_cast <bool> (VA.isRegLoc() && "Can only return in registers!"
) ? void (0) : __assert_fail ("VA.isRegLoc() && \"Can only return in registers!\""
, "llvm/lib/Target/AVR/AVRISelLowering.cpp", 1506, __extension__
__PRETTY_FUNCTION__))
;
1507
1508 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
1509
1510 // Guarantee that all emitted copies are stuck together with flags.
1511 Flag = Chain.getValue(1);
1512 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1513 }
1514
1515 // Don't emit the ret/reti instruction when the naked attribute is present in
1516 // the function being compiled.
1517 if (MF.getFunction().getAttributes().hasFnAttr(Attribute::Naked)) {
1518 return Chain;
1519 }
1520
1521 const AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();
1522
1523 unsigned RetOpc =
1524 AFI->isInterruptOrSignalHandler() ? AVRISD::RETI_FLAG : AVRISD::RET_FLAG;
1525
1526 RetOps[0] = Chain; // Update chain.
1527
1528 if (Flag.getNode()) {
1529 RetOps.push_back(Flag);
1530 }
1531
1532 return DAG.getNode(RetOpc, dl, MVT::Other, RetOps);
1533}
1534
1535//===----------------------------------------------------------------------===//
1536// Custom Inserters
1537//===----------------------------------------------------------------------===//
1538
1539MachineBasicBlock *AVRTargetLowering::insertShift(MachineInstr &MI,
1540 MachineBasicBlock *BB) const {
1541 unsigned Opc;
1542 const TargetRegisterClass *RC;
1543 bool HasRepeatedOperand = false;
1544 MachineFunction *F = BB->getParent();
1545 MachineRegisterInfo &RI = F->getRegInfo();
1546 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1547 DebugLoc dl = MI.getDebugLoc();
1548
1549 switch (MI.getOpcode()) {
1550 default:
1551 llvm_unreachable("Invalid shift opcode!")::llvm::llvm_unreachable_internal("Invalid shift opcode!", "llvm/lib/Target/AVR/AVRISelLowering.cpp"
, 1551)
;
1552 case AVR::Lsl8:
1553 Opc = AVR::ADDRdRr; // LSL is an alias of ADD Rd, Rd
1554 RC = &AVR::GPR8RegClass;
1555 HasRepeatedOperand = true;
1556 break;
1557 case AVR::Lsl16:
1558 Opc = AVR::LSLWRd;
1559 RC = &AVR::DREGSRegClass;
1560 break;
1561 case AVR::Asr8:
1562 Opc = AVR::ASRRd;
1563 RC = &AVR::GPR8RegClass;
1564 break;
1565 case AVR::Asr16:
1566 Opc = AVR::ASRWRd;
1567 RC = &AVR::DREGSRegClass;
1568 break;
1569 case AVR::Lsr8:
1570 Opc = AVR::LSRRd;
1571 RC = &AVR::GPR8RegClass;
1572 break;
1573 case AVR::Lsr16:
1574 Opc = AVR::LSRWRd;
1575 RC = &AVR::DREGSRegClass;
1576 break;
1577 case AVR::Rol8:
1578 Opc = AVR::ROLBRd;
1579 RC = &AVR::GPR8RegClass;
1580 break;
1581 case AVR::Rol16:
1582 Opc = AVR::ROLWRd;
1583 RC = &AVR::DREGSRegClass;
1584 break;
1585 case AVR::Ror8:
1586 Opc = AVR::RORBRd;
1587 RC = &AVR::GPR8RegClass;
1588 break;
1589 case AVR::Ror16:
1590 Opc = AVR::RORWRd;
1591 RC = &AVR::DREGSRegClass;
1592 break;
1593 }
1594
1595 const BasicBlock *LLVM_BB = BB->getBasicBlock();
1596
1597 MachineFunction::iterator I;
1598 for (I = BB->getIterator(); I != F->end() && &(*I) != BB; ++I)
1599 ;
1600 if (I != F->end())
1601 ++I;
1602
1603 // Create loop block.
1604 MachineBasicBlock *LoopBB = F->CreateMachineBasicBlock(LLVM_BB);
1605 MachineBasicBlock *CheckBB = F->CreateMachineBasicBlock(LLVM_BB);
1606 MachineBasicBlock *RemBB = F->CreateMachineBasicBlock(LLVM_BB);
1607
1608 F->insert(I, LoopBB);
1609 F->insert(I, CheckBB);
1610 F->insert(I, RemBB);
1611
1612 // Update machine-CFG edges by transferring all successors of the current
1613 // block to the block containing instructions after shift.
1614 RemBB->splice(RemBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)),
1615 BB->end());
1616 RemBB->transferSuccessorsAndUpdatePHIs(BB);
1617
1618 // Add edges BB => LoopBB => CheckBB => RemBB, CheckBB => LoopBB.
1619 BB->addSuccessor(CheckBB);
1620 LoopBB->addSuccessor(CheckBB);
1621 CheckBB->addSuccessor(LoopBB);
1622 CheckBB->addSuccessor(RemBB);
1623
1624 Register ShiftAmtReg = RI.createVirtualRegister(&AVR::GPR8RegClass);
1625 Register ShiftAmtReg2 = RI.createVirtualRegister(&AVR::GPR8RegClass);
1626 Register ShiftReg = RI.createVirtualRegister(RC);
1627 Register ShiftReg2 = RI.createVirtualRegister(RC);
1628 Register ShiftAmtSrcReg = MI.getOperand(2).getReg();
1629 Register SrcReg = MI.getOperand(1).getReg();
1630 Register DstReg = MI.getOperand(0).getReg();
1631
1632 // BB:
1633 // rjmp CheckBB
1634 BuildMI(BB, dl, TII.get(AVR::RJMPk)).addMBB(CheckBB);
1635
1636 // LoopBB:
1637 // ShiftReg2 = shift ShiftReg
1638 auto ShiftMI = BuildMI(LoopBB, dl, TII.get(Opc), ShiftReg2).addReg(ShiftReg);
1639 if (HasRepeatedOperand)
1640 ShiftMI.addReg(ShiftReg);
1641
1642 // CheckBB:
1643 // ShiftReg = phi [%SrcReg, BB], [%ShiftReg2, LoopBB]
1644 // ShiftAmt = phi [%N, BB], [%ShiftAmt2, LoopBB]
1645 // DestReg = phi [%SrcReg, BB], [%ShiftReg, LoopBB]
1646 // ShiftAmt2 = ShiftAmt - 1;
1647 // if (ShiftAmt2 >= 0) goto LoopBB;
1648 BuildMI(CheckBB, dl, TII.get(AVR::PHI), ShiftReg)
1649 .addReg(SrcReg)
1650 .addMBB(BB)
1651 .addReg(ShiftReg2)
1652 .addMBB(LoopBB);
1653 BuildMI(CheckBB, dl, TII.get(AVR::PHI), ShiftAmtReg)
1654 .addReg(ShiftAmtSrcReg)
1655 .addMBB(BB)
1656 .addReg(ShiftAmtReg2)
1657 .addMBB(LoopBB);
1658 BuildMI(CheckBB, dl, TII.get(AVR::PHI), DstReg)
1659 .addReg(SrcReg)
1660 .addMBB(BB)
1661 .addReg(ShiftReg2)
1662 .addMBB(LoopBB);
1663
1664 BuildMI(CheckBB, dl, TII.get(AVR::DECRd), ShiftAmtReg2).addReg(ShiftAmtReg);
1665 BuildMI(CheckBB, dl, TII.get(AVR::BRPLk)).addMBB(LoopBB);
1666
1667 MI.eraseFromParent(); // The pseudo instruction is gone now.
1668 return RemBB;
1669}
1670
1671static bool isCopyMulResult(MachineBasicBlock::iterator const &I) {
1672 if (I->getOpcode() == AVR::COPY) {
1673 Register SrcReg = I->getOperand(1).getReg();
1674 return (SrcReg == AVR::R0 || SrcReg == AVR::R1);
1675 }
1676
1677 return false;
1678}
1679
1680// The mul instructions wreak havock on our zero_reg R1. We need to clear it
1681// after the result has been evacuated. This is probably not the best way to do
1682// it, but it works for now.
1683MachineBasicBlock *AVRTargetLowering::insertMul(MachineInstr &MI,
1684 MachineBasicBlock *BB) const {
1685 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1686 MachineBasicBlock::iterator I(MI);
1687 ++I; // in any case insert *after* the mul instruction
1688 if (isCopyMulResult(I))
1689 ++I;
1690 if (isCopyMulResult(I))
1691 ++I;
1692 BuildMI(*BB, I, MI.getDebugLoc(), TII.get(AVR::EORRdRr), AVR::R1)
1693 .addReg(AVR::R1)
1694 .addReg(AVR::R1);
1695 return BB;
1696}
1697
1698// Insert a read from R1, which almost always contains the value 0.
1699MachineBasicBlock *
1700AVRTargetLowering::insertCopyR1(MachineInstr &MI, MachineBasicBlock *BB) const {
1701 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1702 MachineBasicBlock::iterator I(MI);
1703 BuildMI(*BB, I, MI.getDebugLoc(), TII.get(AVR::COPY))
1704 .add(MI.getOperand(0))
1705 .addReg(AVR::R1);
1706 MI.eraseFromParent();
1707 return BB;
1708}
1709
1710// Lower atomicrmw operation to disable interrupts, do operation, and restore
1711// interrupts. This works because all AVR microcontrollers are single core.
1712MachineBasicBlock *AVRTargetLowering::insertAtomicArithmeticOp(
1713 MachineInstr &MI, MachineBasicBlock *BB, unsigned Opcode, int Width) const {
1714 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
1715 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
1716 MachineBasicBlock::iterator I(MI);
1717 const Register SCRATCH_REGISTER = AVR::R0;
1718 DebugLoc dl = MI.getDebugLoc();
1719
1720 // Example instruction sequence, for an atomic 8-bit add:
1721 // ldi r25, 5
1722 // in r0, SREG
1723 // cli
1724 // ld r24, X
1725 // add r25, r24
1726 // st X, r25
1727 // out SREG, r0
1728
1729 const TargetRegisterClass *RC =
1730 (Width == 8) ? &AVR::GPR8RegClass : &AVR::DREGSRegClass;
1731 unsigned LoadOpcode = (Width == 8) ? AVR::LDRdPtr : AVR::LDWRdPtr;
1732 unsigned StoreOpcode = (Width == 8) ? AVR::STPtrRr : AVR::STWPtrRr;
1733
1734 // Disable interrupts.
1735 BuildMI(*BB, I, dl, TII.get(AVR::INRdA), SCRATCH_REGISTER)
1736 .addImm(Subtarget.getIORegSREG());
1737 BuildMI(*BB, I, dl, TII.get(AVR::BCLRs)).addImm(7);
1738
1739 // Load the original value.
1740 BuildMI(*BB, I, dl, TII.get(LoadOpcode), MI.getOperand(0).getReg())
1741 .add(MI.getOperand(1));
1742
1743 // Do the arithmetic operation.
1744 Register Result = MRI.createVirtualRegister(RC);
1745 BuildMI(*BB, I, dl, TII.get(Opcode), Result)
1746 .addReg(MI.getOperand(0).getReg())
1747 .add(MI.getOperand(2));
1748
1749 // Store the result.
1750 BuildMI(*BB, I, dl, TII.get(StoreOpcode))
1751 .add(MI.getOperand(1))
1752 .addReg(Result);
1753
1754 // Restore interrupts.
1755 BuildMI(*BB, I, dl, TII.get(AVR::OUTARr))
1756 .addImm(Subtarget.getIORegSREG())
1757 .addReg(SCRATCH_REGISTER);
1758
1759 // Remove the pseudo instruction.
1760 MI.eraseFromParent();
1761 return BB;
1762}
1763
1764MachineBasicBlock *
1765AVRTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
1766 MachineBasicBlock *MBB) const {
1767 int Opc = MI.getOpcode();
1768
1769 // Pseudo shift instructions with a non constant shift amount are expanded
1770 // into a loop.
1771 switch (Opc) {
1772 case AVR::Lsl8:
1773 case AVR::Lsl16:
1774 case AVR::Lsr8:
1775 case AVR::Lsr16:
1776 case AVR::Rol8:
1777 case AVR::Rol16:
1778 case AVR::Ror8:
1779 case AVR::Ror16:
1780 case AVR::Asr8:
1781 case AVR::Asr16:
1782 return insertShift(MI, MBB);
1783 case AVR::MULRdRr:
1784 case AVR::MULSRdRr:
1785 return insertMul(MI, MBB);
1786 case AVR::CopyR1:
1787 return insertCopyR1(MI, MBB);
1788 case AVR::AtomicLoadAdd8:
1789 return insertAtomicArithmeticOp(MI, MBB, AVR::ADDRdRr, 8);
1790 case AVR::AtomicLoadAdd16:
1791 return insertAtomicArithmeticOp(MI, MBB, AVR::ADDWRdRr, 16);
1792 case AVR::AtomicLoadSub8:
1793 return insertAtomicArithmeticOp(MI, MBB, AVR::SUBRdRr, 8);
1794 case AVR::AtomicLoadSub16:
1795 return insertAtomicArithmeticOp(MI, MBB, AVR::SUBWRdRr, 16);
1796 case AVR::AtomicLoadAnd8:
1797 return insertAtomicArithmeticOp(MI, MBB, AVR::ANDRdRr, 8);
1798 case AVR::AtomicLoadAnd16:
1799 return insertAtomicArithmeticOp(MI, MBB, AVR::ANDWRdRr, 16);
1800 case AVR::AtomicLoadOr8:
1801 return insertAtomicArithmeticOp(MI, MBB, AVR::ORRdRr, 8);
1802 case AVR::AtomicLoadOr16:
1803 return insertAtomicArithmeticOp(MI, MBB, AVR::ORWRdRr, 16);
1804 case AVR::AtomicLoadXor8:
1805 return insertAtomicArithmeticOp(MI, MBB, AVR::EORRdRr, 8);
1806 case AVR::AtomicLoadXor16:
1807 return insertAtomicArithmeticOp(MI, MBB, AVR::EORWRdRr, 16);
1808 }
1809
1810 assert((Opc == AVR::Select16 || Opc == AVR::Select8) &&(static_cast <bool> ((Opc == AVR::Select16 || Opc == AVR
::Select8) && "Unexpected instr type to insert") ? void
(0) : __assert_fail ("(Opc == AVR::Select16 || Opc == AVR::Select8) && \"Unexpected instr type to insert\""
, "llvm/lib/Target/AVR/AVRISelLowering.cpp", 1811, __extension__
__PRETTY_FUNCTION__))
1811 "Unexpected instr type to insert")(static_cast <bool> ((Opc == AVR::Select16 || Opc == AVR
::Select8) && "Unexpected instr type to insert") ? void
(0) : __assert_fail ("(Opc == AVR::Select16 || Opc == AVR::Select8) && \"Unexpected instr type to insert\""
, "llvm/lib/Target/AVR/AVRISelLowering.cpp", 1811, __extension__
__PRETTY_FUNCTION__))
;
1812
1813 const AVRInstrInfo &TII = (const AVRInstrInfo &)*MI.getParent()
1814 ->getParent()
1815 ->getSubtarget()
1816 .getInstrInfo();
1817 DebugLoc dl = MI.getDebugLoc();
1818
1819 // To "insert" a SELECT instruction, we insert the diamond
1820 // control-flow pattern. The incoming instruction knows the
1821 // destination vreg to set, the condition code register to branch
1822 // on, the true/false values to select between, and a branch opcode
1823 // to use.
1824
1825 MachineFunction *MF = MBB->getParent();
1826 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
1827 MachineBasicBlock *FallThrough = MBB->getFallThrough();
1828
1829 // If the current basic block falls through to another basic block,
1830 // we must insert an unconditional branch to the fallthrough destination
1831 // if we are to insert basic blocks at the prior fallthrough point.
1832 if (FallThrough != nullptr) {
1833 BuildMI(MBB, dl, TII.get(AVR::RJMPk)).addMBB(FallThrough);
1834 }
1835
1836 MachineBasicBlock *trueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1837 MachineBasicBlock *falseMBB = MF->CreateMachineBasicBlock(LLVM_BB);
1838
1839 MachineFunction::iterator I;
1840 for (I = MF->begin(); I != MF->end() && &(*I) != MBB; ++I)
1841 ;
1842 if (I != MF->end())
1843 ++I;
1844 MF->insert(I, trueMBB);
1845 MF->insert(I, falseMBB);
1846
1847 // Transfer remaining instructions and all successors of the current
1848 // block to the block which will contain the Phi node for the
1849 // select.
1850 trueMBB->splice(trueMBB->begin(), MBB,
1851 std::next(MachineBasicBlock::iterator(MI)), MBB->end());
1852 trueMBB->transferSuccessorsAndUpdatePHIs(MBB);
1853
1854 AVRCC::CondCodes CC = (AVRCC::CondCodes)MI.getOperand(3).getImm();
1855 BuildMI(MBB, dl, TII.getBrCond(CC)).addMBB(trueMBB);
1856 BuildMI(MBB, dl, TII.get(AVR::RJMPk)).addMBB(falseMBB);
1857 MBB->addSuccessor(falseMBB);
1858 MBB->addSuccessor(trueMBB);
1859
1860 // Unconditionally flow back to the true block
1861 BuildMI(falseMBB, dl, TII.get(AVR::RJMPk)).addMBB(trueMBB);
1862 falseMBB->addSuccessor(trueMBB);
1863
1864 // Set up the Phi node to determine where we came from
1865 BuildMI(*trueMBB, trueMBB->begin(), dl, TII.get(AVR::PHI),
1866 MI.getOperand(0).getReg())
1867 .addReg(MI.getOperand(1).getReg())
1868 .addMBB(MBB)
1869 .addReg(MI.getOperand(2).getReg())
1870 .addMBB(falseMBB);
1871
1872 MI.eraseFromParent(); // The pseudo instruction is gone now.
1873 return trueMBB;
1874}
1875
1876//===----------------------------------------------------------------------===//
1877// Inline Asm Support
1878//===----------------------------------------------------------------------===//
1879
1880AVRTargetLowering::ConstraintType
1881AVRTargetLowering::getConstraintType(StringRef Constraint) const {
1882 if (Constraint.size() == 1) {
1883 // See http://www.nongnu.org/avr-libc/user-manual/inline_asm.html
1884 switch (Constraint[0]) {
1885 default:
1886 break;
1887 case 'a': // Simple upper registers
1888 case 'b': // Base pointer registers pairs
1889 case 'd': // Upper register
1890 case 'l': // Lower registers
1891 case 'e': // Pointer register pairs
1892 case 'q': // Stack pointer register
1893 case 'r': // Any register
1894 case 'w': // Special upper register pairs
1895 return C_RegisterClass;
1896 case 't': // Temporary register
1897 case 'x':
1898 case 'X': // Pointer register pair X
1899 case 'y':
1900 case 'Y': // Pointer register pair Y
1901 case 'z':
1902 case 'Z': // Pointer register pair Z
1903 return C_Register;
1904 case 'Q': // A memory address based on Y or Z pointer with displacement.
1905 return C_Memory;
1906 case 'G': // Floating point constant
1907 case 'I': // 6-bit positive integer constant
1908 case 'J': // 6-bit negative integer constant
1909 case 'K': // Integer constant (Range: 2)
1910 case 'L': // Integer constant (Range: 0)
1911 case 'M': // 8-bit integer constant
1912 case 'N': // Integer constant (Range: -1)
1913 case 'O': // Integer constant (Range: 8, 16, 24)
1914 case 'P': // Integer constant (Range: 1)
1915 case 'R': // Integer constant (Range: -6 to 5)x
1916 return C_Immediate;
1917 }
1918 }
1919
1920 return TargetLowering::getConstraintType(Constraint);
1921}
1922
1923unsigned
1924AVRTargetLowering::getInlineAsmMemConstraint(StringRef ConstraintCode) const {
1925 // Not sure if this is actually the right thing to do, but we got to do
1926 // *something* [agnat]
1927 switch (ConstraintCode[0]) {
1928 case 'Q':
1929 return InlineAsm::Constraint_Q;
1930 }
1931 return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
1932}
1933
1934AVRTargetLowering::ConstraintWeight
1935AVRTargetLowering::getSingleConstraintMatchWeight(
1936 AsmOperandInfo &info, const char *constraint) const {
1937 ConstraintWeight weight = CW_Invalid;
1938 Value *CallOperandVal = info.CallOperandVal;
1939
1940 // If we don't have a value, we can't do a match,
1941 // but allow it at the lowest weight.
1942 // (this behaviour has been copied from the ARM backend)
1943 if (!CallOperandVal) {
1944 return CW_Default;
1945 }
1946
1947 // Look at the constraint type.
1948 switch (*constraint) {
1949 default:
1950 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
1951 break;
1952 case 'd':
1953 case 'r':
1954 case 'l':
1955 weight = CW_Register;
1956 break;
1957 case 'a':
1958 case 'b':
1959 case 'e':
1960 case 'q':
1961 case 't':
1962 case 'w':
1963 case 'x':
1964 case 'X':
1965 case 'y':
1966 case 'Y':
1967 case 'z':
1968 case 'Z':
1969 weight = CW_SpecificReg;
1970 break;
1971 case 'G':
1972 if (const ConstantFP *C = dyn_cast<ConstantFP>(CallOperandVal)) {
1973 if (C->isZero()) {
1974 weight = CW_Constant;
1975 }
1976 }
1977 break;
1978 case 'I':
1979 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1980 if (isUInt<6>(C->getZExtValue())) {
1981 weight = CW_Constant;
1982 }
1983 }
1984 break;
1985 case 'J':
1986 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1987 if ((C->getSExtValue() >= -63) && (C->getSExtValue() <= 0)) {
1988 weight = CW_Constant;
1989 }
1990 }
1991 break;
1992 case 'K':
1993 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
1994 if (C->getZExtValue() == 2) {
1995 weight = CW_Constant;
1996 }
1997 }
1998 break;
1999 case 'L':
2000 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
2001 if (C->getZExtValue() == 0) {
2002 weight = CW_Constant;
2003 }
2004 }
2005 break;
2006 case 'M':
2007 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
2008 if (isUInt<8>(C->getZExtValue())) {
2009 weight = CW_Constant;
2010 }
2011 }
2012 break;
2013 case 'N':
2014 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
2015 if (C->getSExtValue() == -1) {
2016 weight = CW_Constant;
2017 }
2018 }
2019 break;
2020 case 'O':
2021 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
2022 if ((C->getZExtValue() == 8) || (C->getZExtValue() == 16) ||
2023 (C->getZExtValue() == 24)) {
2024 weight = CW_Constant;
2025 }
2026 }
2027 break;
2028 case 'P':
2029 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
2030 if (C->getZExtValue() == 1) {
2031 weight = CW_Constant;
2032 }
2033 }
2034 break;
2035 case 'R':
2036 if (const ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
2037 if ((C->getSExtValue() >= -6) && (C->getSExtValue() <= 5)) {
2038 weight = CW_Constant;
2039 }
2040 }
2041 break;
2042 case 'Q':
2043 weight = CW_Memory;
2044 break;
2045 }
2046
2047 return weight;
2048}
2049
2050std::pair<unsigned, const TargetRegisterClass *>
2051AVRTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
2052 StringRef Constraint,
2053 MVT VT) const {
2054 if (Constraint.size() == 1) {
2055 switch (Constraint[0]) {
2056 case 'a': // Simple upper registers r16..r23.
2057 if (VT == MVT::i8)
2058 return std::make_pair(0U, &AVR::LD8loRegClass);
2059 else if (VT == MVT::i16)
2060 return std::make_pair(0U, &AVR::DREGSLD8loRegClass);
2061 break;
2062 case 'b': // Base pointer registers: y, z.
2063 if (VT == MVT::i8 || VT == MVT::i16)
2064 return std::make_pair(0U, &AVR::PTRDISPREGSRegClass);
2065 break;
2066 case 'd': // Upper registers r16..r31.
2067 if (VT == MVT::i8)
2068 return std::make_pair(0U, &AVR::LD8RegClass);
2069 else if (VT == MVT::i16)
2070 return std::make_pair(0U, &AVR::DLDREGSRegClass);
2071 break;
2072 case 'l': // Lower registers r0..r15.
2073 if (VT == MVT::i8)
2074 return std::make_pair(0U, &AVR::GPR8loRegClass);
2075 else if (VT == MVT::i16)
2076 return std::make_pair(0U, &AVR::DREGSloRegClass);
2077 break;
2078 case 'e': // Pointer register pairs: x, y, z.
2079 if (VT == MVT::i8 || VT == MVT::i16)
2080 return std::make_pair(0U, &AVR::PTRREGSRegClass);
2081 break;
2082 case 'q': // Stack pointer register: SPH:SPL.
2083 return std::make_pair(0U, &AVR::GPRSPRegClass);
2084 case 'r': // Any register: r0..r31.
2085 if (VT == MVT::i8)
2086 return std::make_pair(0U, &AVR::GPR8RegClass);
2087 else if (VT == MVT::i16)
2088 return std::make_pair(0U, &AVR::DREGSRegClass);
2089 break;
2090 case 't': // Temporary register: r0.
2091 if (VT == MVT::i8)
2092 return std::make_pair(unsigned(AVR::R0), &AVR::GPR8RegClass);
2093 break;
2094 case 'w': // Special upper register pairs: r24, r26, r28, r30.
2095 if (VT == MVT::i8 || VT == MVT::i16)
2096 return std::make_pair(0U, &AVR::IWREGSRegClass);
2097 break;
2098 case 'x': // Pointer register pair X: r27:r26.
2099 case 'X':
2100 if (VT == MVT::i8 || VT == MVT::i16)
2101 return std::make_pair(unsigned(AVR::R27R26), &AVR::PTRREGSRegClass);
2102 break;
2103 case 'y': // Pointer register pair Y: r29:r28.
2104 case 'Y':
2105 if (VT == MVT::i8 || VT == MVT::i16)
2106 return std::make_pair(unsigned(AVR::R29R28), &AVR::PTRREGSRegClass);
2107 break;
2108 case 'z': // Pointer register pair Z: r31:r30.
2109 case 'Z':
2110 if (VT == MVT::i8 || VT == MVT::i16)
2111 return std::make_pair(unsigned(AVR::R31R30), &AVR::PTRREGSRegClass);
2112 break;
2113 default:
2114 break;
2115 }
2116 }
2117
2118 return TargetLowering::getRegForInlineAsmConstraint(
2119 Subtarget.getRegisterInfo(), Constraint, VT);
2120}
2121
2122void AVRTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2123 std::string &Constraint,
2124 std::vector<SDValue> &Ops,
2125 SelectionDAG &DAG) const {
2126 SDValue Result;
2127 SDLoc DL(Op);
2128 EVT Ty = Op.getValueType();
2129
2130 // Currently only support length 1 constraints.
2131 if (Constraint.length() != 1) {
2132 return;
2133 }
2134
2135 char ConstraintLetter = Constraint[0];
2136 switch (ConstraintLetter) {
2137 default:
2138 break;
2139 // Deal with integers first:
2140 case 'I':
2141 case 'J':
2142 case 'K':
2143 case 'L':
2144 case 'M':
2145 case 'N':
2146 case 'O':
2147 case 'P':
2148 case 'R': {
2149 const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2150 if (!C) {
2151 return;
2152 }
2153
2154 int64_t CVal64 = C->getSExtValue();
2155 uint64_t CUVal64 = C->getZExtValue();
2156 switch (ConstraintLetter) {
2157 case 'I': // 0..63
2158 if (!isUInt<6>(CUVal64))
2159 return;
2160 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
2161 break;
2162 case 'J': // -63..0
2163 if (CVal64 < -63 || CVal64 > 0)
2164 return;
2165 Result = DAG.getTargetConstant(CVal64, DL, Ty);
2166 break;
2167 case 'K': // 2
2168 if (CUVal64 != 2)
2169 return;
2170 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
2171 break;
2172 case 'L': // 0
2173 if (CUVal64 != 0)
2174 return;
2175 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
2176 break;
2177 case 'M': // 0..255
2178 if (!isUInt<8>(CUVal64))
2179 return;
2180 // i8 type may be printed as a negative number,
2181 // e.g. 254 would be printed as -2,
2182 // so we force it to i16 at least.
2183 if (Ty.getSimpleVT() == MVT::i8) {
2184 Ty = MVT::i16;
2185 }
2186 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
2187 break;
2188 case 'N': // -1
2189 if (CVal64 != -1)
2190 return;
2191 Result = DAG.getTargetConstant(CVal64, DL, Ty);
2192 break;
2193 case 'O': // 8, 16, 24
2194 if (CUVal64 != 8 && CUVal64 != 16 && CUVal64 != 24)
2195 return;
2196 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
2197 break;
2198 case 'P': // 1
2199 if (CUVal64 != 1)
2200 return;
2201 Result = DAG.getTargetConstant(CUVal64, DL, Ty);
2202 break;
2203 case 'R': // -6..5
2204 if (CVal64 < -6 || CVal64 > 5)
2205 return;
2206 Result = DAG.getTargetConstant(CVal64, DL, Ty);
2207 break;
2208 }
2209
2210 break;
2211 }
2212 case 'G':
2213 const ConstantFPSDNode *FC = dyn_cast<ConstantFPSDNode>(Op);
2214 if (!FC || !FC->isZero())
2215 return;
2216 // Soften float to i8 0
2217 Result = DAG.getTargetConstant(0, DL, MVT::i8);
2218 break;
2219 }
2220
2221 if (Result.getNode()) {
2222 Ops.push_back(Result);
2223 return;
2224 }
2225
2226 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
2227}
2228
2229Register AVRTargetLowering::getRegisterByName(const char *RegName, LLT VT,
2230 const MachineFunction &MF) const {
2231 Register Reg;
2232
2233 if (VT == LLT::scalar(8)) {
2234 Reg = StringSwitch<unsigned>(RegName)
2235 .Case("r0", AVR::R0)
2236 .Case("r1", AVR::R1)
2237 .Default(0);
2238 } else {
2239 Reg = StringSwitch<unsigned>(RegName)
2240 .Case("r0", AVR::R1R0)
2241 .Case("sp", AVR::SP)
2242 .Default(0);
2243 }
2244
2245 if (Reg)
2246 return Reg;
2247
2248 report_fatal_error(
2249 Twine("Invalid register name \"" + StringRef(RegName) + "\"."));
2250}
2251
2252} // end of namespace llvm

/build/llvm-toolchain-snapshot-15~++20220320100729+487629cc61b5/llvm/include/llvm/Support/MachineValueType.h

1//===- Support/MachineValueType.h - Machine-Level types ---------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the set of machine-level target independent types which
10// legal values in the code generator use.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_SUPPORT_MACHINEVALUETYPE_H
15#define LLVM_SUPPORT_MACHINEVALUETYPE_H
16
17#include "llvm/ADT/Sequence.h"
18#include "llvm/ADT/iterator_range.h"
19#include "llvm/Support/ErrorHandling.h"
20#include "llvm/Support/MathExtras.h"
21#include "llvm/Support/TypeSize.h"
22#include <cassert>
23
24namespace llvm {
25
26 class Type;
27
28 /// Machine Value Type. Every type that is supported natively by some
29 /// processor targeted by LLVM occurs here. This means that any legal value
30 /// type can be represented by an MVT.
31 class MVT {
32 public:
33 enum SimpleValueType : uint8_t {
34 // clang-format off
35
36 // Simple value types that aren't explicitly part of this enumeration
37 // are considered extended value types.
38 INVALID_SIMPLE_VALUE_TYPE = 0,
39
40 // If you change this numbering, you must change the values in
41 // ValueTypes.td as well!
42 Other = 1, // This is a non-standard value
43 i1 = 2, // This is a 1 bit integer value
44 i8 = 3, // This is an 8 bit integer value
45 i16 = 4, // This is a 16 bit integer value
46 i32 = 5, // This is a 32 bit integer value
47 i64 = 6, // This is a 64 bit integer value
48 i128 = 7, // This is a 128 bit integer value
49
50 FIRST_INTEGER_VALUETYPE = i1,
51 LAST_INTEGER_VALUETYPE = i128,
52
53 bf16 = 8, // This is a 16 bit brain floating point value
54 f16 = 9, // This is a 16 bit floating point value
55 f32 = 10, // This is a 32 bit floating point value
56 f64 = 11, // This is a 64 bit floating point value
57 f80 = 12, // This is a 80 bit floating point value
58 f128 = 13, // This is a 128 bit floating point value
59 ppcf128 = 14, // This is a PPC 128-bit floating point value
60
61 FIRST_FP_VALUETYPE = bf16,
62 LAST_FP_VALUETYPE = ppcf128,
63
64 v1i1 = 15, // 1 x i1
65 v2i1 = 16, // 2 x i1
66 v4i1 = 17, // 4 x i1
67 v8i1 = 18, // 8 x i1
68 v16i1 = 19, // 16 x i1
69 v32i1 = 20, // 32 x i1
70 v64i1 = 21, // 64 x i1
71 v128i1 = 22, // 128 x i1
72 v256i1 = 23, // 256 x i1
73 v512i1 = 24, // 512 x i1
74 v1024i1 = 25, // 1024 x i1
75
76 v1i8 = 26, // 1 x i8
77 v2i8 = 27, // 2 x i8
78 v4i8 = 28, // 4 x i8
79 v8i8 = 29, // 8 x i8
80 v16i8 = 30, // 16 x i8
81 v32i8 = 31, // 32 x i8
82 v64i8 = 32, // 64 x i8
83 v128i8 = 33, // 128 x i8
84 v256i8 = 34, // 256 x i8
85 v512i8 = 35, // 512 x i8
86 v1024i8 = 36, // 1024 x i8
87
88 v1i16 = 37, // 1 x i16
89 v2i16 = 38, // 2 x i16
90 v3i16 = 39, // 3 x i16
91 v4i16 = 40, // 4 x i16
92 v8i16 = 41, // 8 x i16
93 v16i16 = 42, // 16 x i16
94 v32i16 = 43, // 32 x i16
95 v64i16 = 44, // 64 x i16
96 v128i16 = 45, // 128 x i16
97 v256i16 = 46, // 256 x i16
98 v512i16 = 47, // 512 x i16
99
100 v1i32 = 48, // 1 x i32
101 v2i32 = 49, // 2 x i32
102 v3i32 = 50, // 3 x i32
103 v4i32 = 51, // 4 x i32
104 v5i32 = 52, // 5 x i32
105 v6i32 = 53, // 6 x i32
106 v7i32 = 54, // 7 x i32
107 v8i32 = 55, // 8 x i32
108 v16i32 = 56, // 16 x i32
109 v32i32 = 57, // 32 x i32
110 v64i32 = 58, // 64 x i32
111 v128i32 = 59, // 128 x i32
112 v256i32 = 60, // 256 x i32
113 v512i32 = 61, // 512 x i32
114 v1024i32 = 62, // 1024 x i32
115 v2048i32 = 63, // 2048 x i32
116
117 v1i64 = 64, // 1 x i64
118 v2i64 = 65, // 2 x i64
119 v3i64 = 66, // 3 x i64
120 v4i64 = 67, // 4 x i64
121 v8i64 = 68, // 8 x i64
122 v16i64 = 69, // 16 x i64
123 v32i64 = 70, // 32 x i64
124 v64i64 = 71, // 64 x i64
125 v128i64 = 72, // 128 x i64
126 v256i64 = 73, // 256 x i64
127
128 v1i128 = 74, // 1 x i128
129
130 FIRST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE = v1i1,
131 LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE = v1i128,
132
133 v1f16 = 75, // 1 x f16
134 v2f16 = 76, // 2 x f16
135 v3f16 = 77, // 3 x f16
136 v4f16 = 78, // 4 x f16
137 v8f16 = 79, // 8 x f16
138 v16f16 = 80, // 16 x f16
139 v32f16 = 81, // 32 x f16
140 v64f16 = 82, // 64 x f16
141 v128f16 = 83, // 128 x f16
142 v256f16 = 84, // 256 x f16
143 v512f16 = 85, // 256 x f16
144
145 v2bf16 = 86, // 2 x bf16
146 v3bf16 = 87, // 3 x bf16
147 v4bf16 = 88, // 4 x bf16
148 v8bf16 = 89, // 8 x bf16
149 v16bf16 = 90, // 16 x bf16
150 v32bf16 = 91, // 32 x bf16
151 v64bf16 = 92, // 64 x bf16
152 v128bf16 = 93, // 128 x bf16
153
154 v1f32 = 94, // 1 x f32
155 v2f32 = 95, // 2 x f32
156 v3f32 = 96, // 3 x f32
157 v4f32 = 97, // 4 x f32
158 v5f32 = 98, // 5 x f32
159 v6f32 = 99, // 6 x f32
160 v7f32 = 100, // 7 x f32
161 v8f32 = 101, // 8 x f32
162 v16f32 = 102, // 16 x f32
163 v32f32 = 103, // 32 x f32
164 v64f32 = 104, // 64 x f32
165 v128f32 = 105, // 128 x f32
166 v256f32 = 106, // 256 x f32
167 v512f32 = 107, // 512 x f32
168 v1024f32 = 108, // 1024 x f32
169 v2048f32 = 109, // 2048 x f32
170
171 v1f64 = 110, // 1 x f64
172 v2f64 = 111, // 2 x f64
173 v3f64 = 112, // 3 x f64
174 v4f64 = 113, // 4 x f64
175 v8f64 = 114, // 8 x f64
176 v16f64 = 115, // 16 x f64
177 v32f64 = 116, // 32 x f64
178 v64f64 = 117, // 64 x f64
179 v128f64 = 118, // 128 x f64
180 v256f64 = 119, // 256 x f64
181
182 FIRST_FP_FIXEDLEN_VECTOR_VALUETYPE = v1f16,
183 LAST_FP_FIXEDLEN_VECTOR_VALUETYPE = v256f64,
184
185 FIRST_FIXEDLEN_VECTOR_VALUETYPE = v1i1,
186 LAST_FIXEDLEN_VECTOR_VALUETYPE = v256f64,
187
188 nxv1i1 = 120, // n x 1 x i1
189 nxv2i1 = 121, // n x 2 x i1
190 nxv4i1 = 122, // n x 4 x i1
191 nxv8i1 = 123, // n x 8 x i1
192 nxv16i1 = 124, // n x 16 x i1
193 nxv32i1 = 125, // n x 32 x i1
194 nxv64i1 = 126, // n x 64 x i1
195
196 nxv1i8 = 127, // n x 1 x i8
197 nxv2i8 = 128, // n x 2 x i8
198 nxv4i8 = 129, // n x 4 x i8
199 nxv8i8 = 130, // n x 8 x i8
200 nxv16i8 = 131, // n x 16 x i8
201 nxv32i8 = 132, // n x 32 x i8
202 nxv64i8 = 133, // n x 64 x i8
203
204 nxv1i16 = 134, // n x 1 x i16
205 nxv2i16 = 135, // n x 2 x i16
206 nxv4i16 = 136, // n x 4 x i16
207 nxv8i16 = 137, // n x 8 x i16
208 nxv16i16 = 138, // n x 16 x i16
209 nxv32i16 = 139, // n x 32 x i16
210
211 nxv1i32 = 140, // n x 1 x i32
212 nxv2i32 = 141, // n x 2 x i32
213 nxv4i32 = 142, // n x 4 x i32
214 nxv8i32 = 143, // n x 8 x i32
215 nxv16i32 = 144, // n x 16 x i32
216 nxv32i32 = 145, // n x 32 x i32
217
218 nxv1i64 = 146, // n x 1 x i64
219 nxv2i64 = 147, // n x 2 x i64
220 nxv4i64 = 148, // n x 4 x i64
221 nxv8i64 = 149, // n x 8 x i64
222 nxv16i64 = 150, // n x 16 x i64
223 nxv32i64 = 151, // n x 32 x i64
224
225 FIRST_INTEGER_SCALABLE_VECTOR_VALUETYPE = nxv1i1,
226 LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE = nxv32i64,
227
228 nxv1f16 = 152, // n x 1 x f16
229 nxv2f16 = 153, // n x 2 x f16
230 nxv4f16 = 154, // n x 4 x f16
231 nxv8f16 = 155, // n x 8 x f16
232 nxv16f16 = 156, // n x 16 x f16
233 nxv32f16 = 157, // n x 32 x f16
234
235 nxv1bf16 = 158, // n x 1 x bf16
236 nxv2bf16 = 159, // n x 2 x bf16
237 nxv4bf16 = 160, // n x 4 x bf16
238 nxv8bf16 = 161, // n x 8 x bf16
239
240 nxv1f32 = 162, // n x 1 x f32
241 nxv2f32 = 163, // n x 2 x f32
242 nxv4f32 = 164, // n x 4 x f32
243 nxv8f32 = 165, // n x 8 x f32
244 nxv16f32 = 166, // n x 16 x f32
245
246 nxv1f64 = 167, // n x 1 x f64
247 nxv2f64 = 168, // n x 2 x f64
248 nxv4f64 = 169, // n x 4 x f64
249 nxv8f64 = 170, // n x 8 x f64
250
251 FIRST_FP_SCALABLE_VECTOR_VALUETYPE = nxv1f16,
252 LAST_FP_SCALABLE_VECTOR_VALUETYPE = nxv8f64,
253
254 FIRST_SCALABLE_VECTOR_VALUETYPE = nxv1i1,
255 LAST_SCALABLE_VECTOR_VALUETYPE = nxv8f64,
256
257 FIRST_VECTOR_VALUETYPE = v1i1,
258 LAST_VECTOR_VALUETYPE = nxv8f64,
259
260 x86mmx = 171, // This is an X86 MMX value
261
262 Glue = 172, // This glues nodes together during pre-RA sched
263
264 isVoid = 173, // This has no value
265
266 Untyped = 174, // This value takes a register, but has
267 // unspecified type. The register class
268 // will be determined by the opcode.
269
270 funcref = 175, // WebAssembly's funcref type
271 externref = 176, // WebAssembly's externref type
272 x86amx = 177, // This is an X86 AMX value
273 i64x8 = 178, // 8 Consecutive GPRs (AArch64)
274
275 FIRST_VALUETYPE = 1, // This is always the beginning of the list.
276 LAST_VALUETYPE = i64x8, // This always remains at the end of the list.
277 VALUETYPE_SIZE = LAST_VALUETYPE + 1,
278
279 // This is the current maximum for LAST_VALUETYPE.
280 // MVT::MAX_ALLOWED_VALUETYPE is used for asserts and to size bit vectors
281 // This value must be a multiple of 32.
282 MAX_ALLOWED_VALUETYPE = 192,
283
284 // A value of type llvm::TokenTy
285 token = 248,
286
287 // This is MDNode or MDString.
288 Metadata = 249,
289
290 // An int value the size of the pointer of the current
291 // target to any address space. This must only be used internal to
292 // tblgen. Other than for overloading, we treat iPTRAny the same as iPTR.
293 iPTRAny = 250,
294
295 // A vector with any length and element size. This is used
296 // for intrinsics that have overloadings based on vector types.
297 // This is only for tblgen's consumption!
298 vAny = 251,
299
300 // Any floating-point or vector floating-point value. This is used
301 // for intrinsics that have overloadings based on floating-point types.
302 // This is only for tblgen's consumption!
303 fAny = 252,
304
305 // An integer or vector integer value of any bit width. This is
306 // used for intrinsics that have overloadings based on integer bit widths.
307 // This is only for tblgen's consumption!
308 iAny = 253,
309
310 // An int value the size of the pointer of the current
311 // target. This should only be used internal to tblgen!
312 iPTR = 254,
313
314 // Any type. This is used for intrinsics that have overloadings.
315 // This is only for tblgen's consumption!
316 Any = 255
317
318 // clang-format on
319 };
320
321 SimpleValueType SimpleTy = INVALID_SIMPLE_VALUE_TYPE;
322
323 constexpr MVT() = default;
324 constexpr MVT(SimpleValueType SVT) : SimpleTy(SVT) {}
325
326 bool operator>(const MVT& S) const { return SimpleTy > S.SimpleTy; }
327 bool operator<(const MVT& S) const { return SimpleTy < S.SimpleTy; }
328 bool operator==(const MVT& S) const { return SimpleTy == S.SimpleTy; }
10
Assuming 'SimpleTy' is not equal to 'S.SimpleTy'
11
Returning zero, which participates in a condition later
329 bool operator!=(const MVT& S) const { return SimpleTy != S.SimpleTy; }
330 bool operator>=(const MVT& S) const { return SimpleTy >= S.SimpleTy; }
331 bool operator<=(const MVT& S) const { return SimpleTy <= S.SimpleTy; }
332
333 /// Return true if this is a valid simple valuetype.
334 bool isValid() const {
335 return (SimpleTy >= MVT::FIRST_VALUETYPE &&
336 SimpleTy <= MVT::LAST_VALUETYPE);
337 }
338
339 /// Return true if this is a FP or a vector FP type.
340 bool isFloatingPoint() const {
341 return ((SimpleTy >= MVT::FIRST_FP_VALUETYPE &&
342 SimpleTy <= MVT::LAST_FP_VALUETYPE) ||
343 (SimpleTy >= MVT::FIRST_FP_FIXEDLEN_VECTOR_VALUETYPE &&
344 SimpleTy <= MVT::LAST_FP_FIXEDLEN_VECTOR_VALUETYPE) ||
345 (SimpleTy >= MVT::FIRST_FP_SCALABLE_VECTOR_VALUETYPE &&
346 SimpleTy <= MVT::LAST_FP_SCALABLE_VECTOR_VALUETYPE));
347 }
348
349 /// Return true if this is an integer or a vector integer type.
350 bool isInteger() const {
351 return ((SimpleTy >= MVT::FIRST_INTEGER_VALUETYPE &&
352 SimpleTy <= MVT::LAST_INTEGER_VALUETYPE) ||
353 (SimpleTy >= MVT::FIRST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE &&
354 SimpleTy <= MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE) ||
355 (SimpleTy >= MVT::FIRST_INTEGER_SCALABLE_VECTOR_VALUETYPE &&
356 SimpleTy <= MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE));
357 }
358
359 /// Return true if this is an integer, not including vectors.
360 bool isScalarInteger() const {
361 return (SimpleTy >= MVT::FIRST_INTEGER_VALUETYPE &&
362 SimpleTy <= MVT::LAST_INTEGER_VALUETYPE);
363 }
364
365 /// Return true if this is a vector value type.
366 bool isVector() const {
367 return (SimpleTy >= MVT::FIRST_VECTOR_VALUETYPE &&
368 SimpleTy <= MVT::LAST_VECTOR_VALUETYPE);
369 }
370
371 /// Return true if this is a vector value type where the
372 /// runtime length is machine dependent
373 bool isScalableVector() const {
374 return (SimpleTy >= MVT::FIRST_SCALABLE_VECTOR_VALUETYPE &&
375 SimpleTy <= MVT::LAST_SCALABLE_VECTOR_VALUETYPE);
376 }
377
378 bool isFixedLengthVector() const {
379 return (SimpleTy >= MVT::FIRST_FIXEDLEN_VECTOR_VALUETYPE &&
380 SimpleTy <= MVT::LAST_FIXEDLEN_VECTOR_VALUETYPE);
381 }
382
383 /// Return true if this is a 16-bit vector type.
384 bool is16BitVector() const {
385 return (SimpleTy == MVT::v2i8 || SimpleTy == MVT::v1i16 ||
386 SimpleTy == MVT::v16i1 || SimpleTy == MVT::v1f16);
387 }
388
389 /// Return true if this is a 32-bit vector type.
390 bool is32BitVector() const {
391 return (SimpleTy == MVT::v32i1 || SimpleTy == MVT::v4i8 ||
392 SimpleTy == MVT::v2i16 || SimpleTy == MVT::v1i32 ||
393 SimpleTy == MVT::v2f16 || SimpleTy == MVT::v2bf16 ||
394 SimpleTy == MVT::v1f32);
395 }
396
397 /// Return true if this is a 64-bit vector type.
398 bool is64BitVector() const {
399 return (SimpleTy == MVT::v64i1 || SimpleTy == MVT::v8i8 ||
400 SimpleTy == MVT::v4i16 || SimpleTy == MVT::v2i32 ||
401 SimpleTy == MVT::v1i64 || SimpleTy == MVT::v4f16 ||
402 SimpleTy == MVT::v4bf16 ||SimpleTy == MVT::v2f32 ||
403 SimpleTy == MVT::v1f64);
404 }
405
406 /// Return true if this is a 128-bit vector type.
407 bool is128BitVector() const {
408 return (SimpleTy == MVT::v128i1 || SimpleTy == MVT::v16i8 ||
409 SimpleTy == MVT::v8i16 || SimpleTy == MVT::v4i32 ||
410 SimpleTy == MVT::v2i64 || SimpleTy == MVT::v1i128 ||
411 SimpleTy == MVT::v8f16 || SimpleTy == MVT::v8bf16 ||
412 SimpleTy == MVT::v4f32 || SimpleTy == MVT::v2f64);
413 }
414
415 /// Return true if this is a 256-bit vector type.
416 bool is256BitVector() const {
417 return (SimpleTy == MVT::v16f16 || SimpleTy == MVT::v16bf16 ||
418 SimpleTy == MVT::v8f32 || SimpleTy == MVT::v4f64 ||
419 SimpleTy == MVT::v32i8 || SimpleTy == MVT::v16i16 ||
420 SimpleTy == MVT::v8i32 || SimpleTy == MVT::v4i64 ||
421 SimpleTy == MVT::v256i1);
422 }
423
424 /// Return true if this is a 512-bit vector type.
425 bool is512BitVector() const {
426 return (SimpleTy == MVT::v32f16 || SimpleTy == MVT::v32bf16 ||
427 SimpleTy == MVT::v16f32 || SimpleTy == MVT::v8f64 ||
428 SimpleTy == MVT::v512i1 || SimpleTy == MVT::v64i8 ||
429 SimpleTy == MVT::v32i16 || SimpleTy == MVT::v16i32 ||
430 SimpleTy == MVT::v8i64);
431 }
432
433 /// Return true if this is a 1024-bit vector type.
434 bool is1024BitVector() const {
435 return (SimpleTy == MVT::v1024i1 || SimpleTy == MVT::v128i8 ||
436 SimpleTy == MVT::v64i16 || SimpleTy == MVT::v32i32 ||
437 SimpleTy == MVT::v16i64 || SimpleTy == MVT::v64f16 ||
438 SimpleTy == MVT::v32f32 || SimpleTy == MVT::v16f64 ||
439 SimpleTy == MVT::v64bf16);
440 }
441
442 /// Return true if this is a 2048-bit vector type.
443 bool is2048BitVector() const {
444 return (SimpleTy == MVT::v256i8 || SimpleTy == MVT::v128i16 ||
445 SimpleTy == MVT::v64i32 || SimpleTy == MVT::v32i64 ||
446 SimpleTy == MVT::v128f16 || SimpleTy == MVT::v64f32 ||
447 SimpleTy == MVT::v32f64 || SimpleTy == MVT::v128bf16);
448 }
449
450 /// Return true if this is an overloaded type for TableGen.
451 bool isOverloaded() const {
452 return (SimpleTy == MVT::Any || SimpleTy == MVT::iAny ||
453 SimpleTy == MVT::fAny || SimpleTy == MVT::vAny ||
454 SimpleTy == MVT::iPTRAny);
455 }
456
457 /// Return a vector with the same number of elements as this vector, but
458 /// with the element type converted to an integer type with the same
459 /// bitwidth.
460 MVT changeVectorElementTypeToInteger() const {
461 MVT EltTy = getVectorElementType();
462 MVT IntTy = MVT::getIntegerVT(EltTy.getSizeInBits());
463 MVT VecTy = MVT::getVectorVT(IntTy, getVectorElementCount());
464 assert(VecTy.SimpleTy != MVT::INVALID_SIMPLE_VALUE_TYPE &&(static_cast <bool> (VecTy.SimpleTy != MVT::INVALID_SIMPLE_VALUE_TYPE
&& "Simple vector VT not representable by simple integer vector VT!"
) ? void (0) : __assert_fail ("VecTy.SimpleTy != MVT::INVALID_SIMPLE_VALUE_TYPE && \"Simple vector VT not representable by simple integer vector VT!\""
, "llvm/include/llvm/Support/MachineValueType.h", 465, __extension__
__PRETTY_FUNCTION__))
465 "Simple vector VT not representable by simple integer vector VT!")(static_cast <bool> (VecTy.SimpleTy != MVT::INVALID_SIMPLE_VALUE_TYPE
&& "Simple vector VT not representable by simple integer vector VT!"
) ? void (0) : __assert_fail ("VecTy.SimpleTy != MVT::INVALID_SIMPLE_VALUE_TYPE && \"Simple vector VT not representable by simple integer vector VT!\""
, "llvm/include/llvm/Support/MachineValueType.h", 465, __extension__
__PRETTY_FUNCTION__))
;
466 return VecTy;
467 }
468
469 /// Return a VT for a vector type whose attributes match ourselves
470 /// with the exception of the element type that is chosen by the caller.
471 MVT changeVectorElementType(MVT EltVT) const {
472 MVT VecTy = MVT::getVectorVT(EltVT, getVectorElementCount());
473 assert(VecTy.SimpleTy != MVT::INVALID_SIMPLE_VALUE_TYPE &&(static_cast <bool> (VecTy.SimpleTy != MVT::INVALID_SIMPLE_VALUE_TYPE
&& "Simple vector VT not representable by simple integer vector VT!"
) ? void (0) : __assert_fail ("VecTy.SimpleTy != MVT::INVALID_SIMPLE_VALUE_TYPE && \"Simple vector VT not representable by simple integer vector VT!\""
, "llvm/include/llvm/Support/MachineValueType.h", 474, __extension__
__PRETTY_FUNCTION__))
474 "Simple vector VT not representable by simple integer vector VT!")(static_cast <bool> (VecTy.SimpleTy != MVT::INVALID_SIMPLE_VALUE_TYPE
&& "Simple vector VT not representable by simple integer vector VT!"
) ? void (0) : __assert_fail ("VecTy.SimpleTy != MVT::INVALID_SIMPLE_VALUE_TYPE && \"Simple vector VT not representable by simple integer vector VT!\""
, "llvm/include/llvm/Support/MachineValueType.h", 474, __extension__
__PRETTY_FUNCTION__))
;
475 return VecTy;
476 }
477
478 /// Return the type converted to an equivalently sized integer or vector
479 /// with integer element type. Similar to changeVectorElementTypeToInteger,
480 /// but also handles scalars.
481 MVT changeTypeToInteger() {
482 if (isVector())
483 return changeVectorElementTypeToInteger();
484 return MVT::getIntegerVT(getSizeInBits());
485 }
486
487 /// Return a VT for a vector type with the same element type but
488 /// half the number of elements.
489 MVT getHalfNumVectorElementsVT() const {
490 MVT EltVT = getVectorElementType();
491 auto EltCnt = getVectorElementCount();
492 assert(EltCnt.isKnownEven() && "Splitting vector, but not in half!")(static_cast <bool> (EltCnt.isKnownEven() && "Splitting vector, but not in half!"
) ? void (0) : __assert_fail ("EltCnt.isKnownEven() && \"Splitting vector, but not in half!\""
, "llvm/include/llvm/Support/MachineValueType.h", 492, __extension__
__PRETTY_FUNCTION__))
;
493 return getVectorVT(EltVT, EltCnt.divideCoefficientBy(2));
494 }
495
496 /// Returns true if the given vector is a power of 2.
497 bool isPow2VectorType() const {
498 unsigned NElts = getVectorMinNumElements();
499 return !(NElts & (NElts - 1));
500 }
501
502 /// Widens the length of the given vector MVT up to the nearest power of 2
503 /// and returns that type.
504 MVT getPow2VectorType() const {
505 if (isPow2VectorType())
506 return *this;
507
508 ElementCount NElts = getVectorElementCount();
509 unsigned NewMinCount = 1 << Log2_32_Ceil(NElts.getKnownMinValue());
510 NElts = ElementCount::get(NewMinCount, NElts.isScalable());
511 return MVT::getVectorVT(getVectorElementType(), NElts);
512 }
513
514 /// If this is a vector, return the element type, otherwise return this.
515 MVT getScalarType() const {
516 return isVector() ? getVectorElementType() : *this;
517 }
518
519 MVT getVectorElementType() const {
520 switch (SimpleTy) {
521 default:
522 llvm_unreachable("Not a vector MVT!")::llvm::llvm_unreachable_internal("Not a vector MVT!", "llvm/include/llvm/Support/MachineValueType.h"
, 522)
;
523 case v1i1:
524 case v2i1:
525 case v4i1:
526 case v8i1:
527 case v16i1:
528 case v32i1:
529 case v64i1:
530 case v128i1:
531 case v256i1:
532 case v512i1:
533 case v1024i1:
534 case nxv1i1:
535 case nxv2i1:
536 case nxv4i1:
537 case nxv8i1:
538 case nxv16i1:
539 case nxv32i1:
540 case nxv64i1: return i1;
541 case v1i8:
542 case v2i8:
543 case v4i8:
544 case v8i8:
545 case v16i8:
546 case v32i8:
547 case v64i8:
548 case v128i8:
549 case v256i8:
550 case v512i8:
551 case v1024i8:
552 case nxv1i8:
553 case nxv2i8:
554 case nxv4i8:
555 case nxv8i8:
556 case nxv16i8:
557 case nxv32i8:
558 case nxv64i8: return i8;
559 case v1i16:
560 case v2i16:
561 case v3i16:
562 case v4i16:
563 case v8i16:
564 case v16i16:
565 case v32i16:
566 case v64i16:
567 case v128i16:
568 case v256i16:
569 case v512i16:
570 case nxv1i16:
571 case nxv2i16:
572 case nxv4i16:
573 case nxv8i16:
574 case nxv16i16:
575 case nxv32i16: return i16;
576 case v1i32:
577 case v2i32:
578 case v3i32:
579 case v4i32:
580 case v5i32:
581 case v6i32:
582 case v7i32:
583 case v8i32:
584 case v16i32:
585 case v32i32:
586 case v64i32:
587 case v128i32:
588 case v256i32:
589 case v512i32:
590 case v1024i32:
591 case v2048i32:
592 case nxv1i32:
593 case nxv2i32:
594 case nxv4i32:
595 case nxv8i32:
596 case nxv16i32:
597 case nxv32i32: return i32;
598 case v1i64:
599 case v2i64:
600 case v3i64:
601 case v4i64:
602 case v8i64:
603 case v16i64:
604 case v32i64:
605 case v64i64:
606 case v128i64:
607 case v256i64:
608 case nxv1i64:
609 case nxv2i64:
610 case nxv4i64:
611 case nxv8i64:
612 case nxv16i64:
613 case nxv32i64: return i64;
614 case v1i128: return i128;
615 case v1f16:
616 case v2f16:
617 case v3f16:
618 case v4f16:
619 case v8f16:
620 case v16f16:
621 case v32f16:
622 case v64f16:
623 case v128f16:
624 case v256f16:
625 case v512f16:
626 case nxv1f16:
627 case nxv2f16:
628 case nxv4f16:
629 case nxv8f16:
630 case nxv16f16:
631 case nxv32f16: return f16;
632 case v2bf16:
633 case v3bf16:
634 case v4bf16:
635 case v8bf16:
636 case v16bf16:
637 case v32bf16:
638 case v64bf16:
639 case v128bf16:
640 case nxv1bf16:
641 case nxv2bf16:
642 case nxv4bf16:
643 case nxv8bf16: return bf16;
644 case v1f32:
645 case v2f32:
646 case v3f32:
647 case v4f32:
648 case v5f32:
649 case v6f32:
650 case v7f32:
651 case v8f32:
652 case v16f32:
653 case v32f32:
654 case v64f32:
655 case v128f32:
656 case v256f32:
657 case v512f32:
658 case v1024f32:
659 case v2048f32:
660 case nxv1f32:
661 case nxv2f32:
662 case nxv4f32:
663 case nxv8f32:
664 case nxv16f32: return f32;
665 case v1f64:
666 case v2f64:
667 case v3f64:
668 case v4f64:
669 case v8f64:
670 case v16f64:
671 case v32f64:
672 case v64f64:
673 case v128f64:
674 case v256f64:
675 case nxv1f64:
676 case nxv2f64:
677 case nxv4f64:
678 case nxv8f64: return f64;
679 }
680 }
681
682 /// Given a vector type, return the minimum number of elements it contains.
683 unsigned getVectorMinNumElements() const {
684 switch (SimpleTy) {
685 default:
686 llvm_unreachable("Not a vector MVT!")::llvm::llvm_unreachable_internal("Not a vector MVT!", "llvm/include/llvm/Support/MachineValueType.h"
, 686)
;
687 case v2048i32:
688 case v2048f32: return 2048;
689 case v1024i1:
690 case v1024i8:
691 case v1024i32:
692 case v1024f32: return 1024;
693 case v512i1:
694 case v512i8:
695 case v512i16:
696 case v512i32:
697 case v512f16:
698 case v512f32: return 512;
699 case v256i1:
700 case v256i8:
701 case v256i16:
702 case v256f16:
703 case v256i32:
704 case v256i64:
705 case v256f32:
706 case v256f64: return 256;
707 case v128i1:
708 case v128i8:
709 case v128i16:
710 case v128i32:
711 case v128i64:
712 case v128f16:
713 case v128bf16:
714 case v128f32:
715 case v128f64: return 128;
716 case v64i1:
717 case v64i8:
718 case v64i16:
719 case v64i32:
720 case v64i64:
721 case v64f16:
722 case v64bf16:
723 case v64f32:
724 case v64f64:
725 case nxv64i1:
726 case nxv64i8: return 64;
727 case v32i1:
728 case v32i8:
729 case v32i16:
730 case v32i32:
731 case v32i64:
732 case v32f16:
733 case v32bf16:
734 case v32f32:
735 case v32f64:
736 case nxv32i1:
737 case nxv32i8:
738 case nxv32i16:
739 case nxv32i32:
740 case nxv32i64:
741 case nxv32f16: return 32;
742 case v16i1:
743 case v16i8:
744 case v16i16:
745 case v16i32:
746 case v16i64:
747 case v16f16:
748 case v16bf16:
749 case v16f32:
750 case v16f64:
751 case nxv16i1:
752 case nxv16i8:
753 case nxv16i16:
754 case nxv16i32:
755 case nxv16i64:
756 case nxv16f16:
757 case nxv16f32: return 16;
758 case v8i1:
759 case v8i8:
760 case v8i16:
761 case v8i32:
762 case v8i64:
763 case v8f16:
764 case v8bf16:
765 case v8f32:
766 case v8f64:
767 case nxv8i1:
768 case nxv8i8:
769 case nxv8i16:
770 case nxv8i32:
771 case nxv8i64:
772 case nxv8f16:
773 case nxv8bf16:
774 case nxv8f32:
775 case nxv8f64: return 8;
776 case v7i32:
777 case v7f32: return 7;
778 case v6i32:
779 case v6f32: return 6;
780 case v5i32:
781 case v5f32: return 5;
782 case v4i1:
783 case v4i8:
784 case v4i16:
785 case v4i32:
786 case v4i64:
787 case v4f16:
788 case v4bf16:
789 case v4f32:
790 case v4f64:
791 case nxv4i1:
792 case nxv4i8:
793 case nxv4i16:
794 case nxv4i32:
795 case nxv4i64:
796 case nxv4f16:
797 case nxv4bf16:
798 case nxv4f32:
799 case nxv4f64: return 4;
800 case v3i16:
801 case v3i32:
802 case v3i64:
803 case v3f16:
804 case v3bf16:
805 case v3f32:
806 case v3f64: return 3;
807 case v2i1:
808 case v2i8:
809 case v2i16:
810 case v2i32:
811 case v2i64:
812 case v2f16:
813 case v2bf16:
814 case v2f32:
815 case v2f64:
816 case nxv2i1:
817 case nxv2i8:
818 case nxv2i16:
819 case nxv2i32:
820 case nxv2i64:
821 case nxv2f16:
822 case nxv2bf16:
823 case nxv2f32:
824 case nxv2f64: return 2;
825 case v1i1:
826 case v1i8:
827 case v1i16:
828 case v1i32:
829 case v1i64:
830 case v1i128:
831 case v1f16:
832 case v1f32:
833 case v1f64:
834 case nxv1i1:
835 case nxv1i8:
836 case nxv1i16:
837 case nxv1i32:
838 case nxv1i64:
839 case nxv1f16:
840 case nxv1bf16:
841 case nxv1f32:
842 case nxv1f64: return 1;
843 }
844 }
845
846 ElementCount getVectorElementCount() const {
847 return ElementCount::get(getVectorMinNumElements(), isScalableVector());
848 }
849
850 unsigned getVectorNumElements() const {
851 if (isScalableVector())
852 llvm::reportInvalidSizeRequest(
853 "Possible incorrect use of MVT::getVectorNumElements() for "
854 "scalable vector. Scalable flag may be dropped, use "
855 "MVT::getVectorElementCount() instead");
856 return getVectorMinNumElements();
857 }
858
859 /// Returns the size of the specified MVT in bits.
860 ///
861 /// If the value type is a scalable vector type, the scalable property will
862 /// be set and the runtime size will be a positive integer multiple of the
863 /// base size.
864 TypeSize getSizeInBits() const {
865 switch (SimpleTy) {
866 default:
867 llvm_unreachable("getSizeInBits called on extended MVT.")::llvm::llvm_unreachable_internal("getSizeInBits called on extended MVT."
, "llvm/include/llvm/Support/MachineValueType.h", 867)
;
868 case Other:
869 llvm_unreachable("Value type is non-standard value, Other.")::llvm::llvm_unreachable_internal("Value type is non-standard value, Other."
, "llvm/include/llvm/Support/MachineValueType.h", 869)
;
870 case iPTR:
871 llvm_unreachable("Value type size is target-dependent. Ask TLI.")::llvm::llvm_unreachable_internal("Value type size is target-dependent. Ask TLI."
, "llvm/include/llvm/Support/MachineValueType.h", 871)
;
872 case iPTRAny:
873 case iAny:
874 case fAny:
875 case vAny:
876 case Any:
877 llvm_unreachable("Value type is overloaded.")::llvm::llvm_unreachable_internal("Value type is overloaded."
, "llvm/include/llvm/Support/MachineValueType.h", 877)
;
878 case token:
879 llvm_unreachable("Token type is a sentinel that cannot be used "::llvm::llvm_unreachable_internal("Token type is a sentinel that cannot be used "
"in codegen and has no size", "llvm/include/llvm/Support/MachineValueType.h"
, 880)
880 "in codegen and has no size")::llvm::llvm_unreachable_internal("Token type is a sentinel that cannot be used "
"in codegen and has no size", "llvm/include/llvm/Support/MachineValueType.h"
, 880)
;
881 case Metadata:
882 llvm_unreachable("Value type is metadata.")::llvm::llvm_unreachable_internal("Value type is metadata.", "llvm/include/llvm/Support/MachineValueType.h"
, 882)
;
883 case i1:
884 case v1i1: return TypeSize::Fixed(1);
885 case nxv1i1: return TypeSize::Scalable(1);
886 case v2i1: return TypeSize::Fixed(2);
887 case nxv2i1: return TypeSize::Scalable(2);
888 case v4i1: return TypeSize::Fixed(4);
889 case nxv4i1: return TypeSize::Scalable(4);
890 case i8 :
891 case v1i8:
892 case v8i1: return TypeSize::Fixed(8);
893 case nxv1i8:
894 case nxv8i1: return TypeSize::Scalable(8);
895 case i16 :
896 case f16:
897 case bf16:
898 case v16i1:
899 case v2i8:
900 case v1i16:
901 case v1f16: return TypeSize::Fixed(16);
902 case nxv16i1:
903 case nxv2i8:
904 case nxv1i16:
905 case nxv1bf16:
906 case nxv1f16: return TypeSize::Scalable(16);
907 case f32 :
908 case i32 :
909 case v32i1:
910 case v4i8:
911 case v2i16:
912 case v2f16:
913 case v2bf16:
914 case v1f32:
915 case v1i32: return TypeSize::Fixed(32);
916 case nxv32i1:
917 case nxv4i8:
918 case nxv2i16:
919 case nxv1i32:
920 case nxv2f16:
921 case nxv2bf16:
922 case nxv1f32: return TypeSize::Scalable(32);
923 case v3i16:
924 case v3f16:
925 case v3bf16: return TypeSize::Fixed(48);
926 case x86mmx:
927 case f64 :
928 case i64 :
929 case v64i1:
930 case v8i8:
931 case v4i16:
932 case v2i32:
933 case v1i64:
934 case v4f16:
935 case v4bf16:
936 case v2f32:
937 case v1f64: return TypeSize::Fixed(64);
938 case nxv64i1:
939 case nxv8i8:
940 case nxv4i16:
941 case nxv2i32:
942 case nxv1i64:
943 case nxv4f16:
944 case nxv4bf16:
945 case nxv2f32:
946 case nxv1f64: return TypeSize::Scalable(64);
947 case f80 : return TypeSize::Fixed(80);
948 case v3i32:
949 case v3f32: return TypeSize::Fixed(96);
950 case f128:
951 case ppcf128:
952 case i128:
953 case v128i1:
954 case v16i8:
955 case v8i16:
956 case v4i32:
957 case v2i64:
958 case v1i128:
959 case v8f16:
960 case v8bf16:
961 case v4f32:
962 case v2f64: return TypeSize::Fixed(128);
963 case nxv16i8:
964 case nxv8i16:
965 case nxv4i32:
966 case nxv2i64:
967 case nxv8f16:
968 case nxv8bf16:
969 case nxv4f32:
970 case nxv2f64: return TypeSize::Scalable(128);
971 case v5i32:
972 case v5f32: return TypeSize::Fixed(160);
973 case v6i32:
974 case v3i64:
975 case v6f32:
976 case v3f64: return TypeSize::Fixed(192);
977 case v7i32:
978 case v7f32: return TypeSize::Fixed(224);
979 case v256i1:
980 case v32i8:
981 case v16i16:
982 case v8i32:
983 case v4i64:
984 case v16f16:
985 case v16bf16:
986 case v8f32:
987 case v4f64: return TypeSize::Fixed(256);
988 case nxv32i8:
989 case nxv16i16:
990 case nxv8i32:
991 case nxv4i64:
992 case nxv16f16:
993 case nxv8f32:
994 case nxv4f64: return TypeSize::Scalable(256);
995 case i64x8:
996 case v512i1:
997 case v64i8:
998 case v32i16:
999 case v16i32:
1000 case v8i64:
1001 case v32f16:
1002 case v32bf16:
1003 case v16f32:
1004 case v8f64: return TypeSize::Fixed(512);
1005 case nxv64i8:
1006 case nxv32i16:
1007 case nxv16i32:
1008 case nxv8i64:
1009 case nxv32f16:
1010 case nxv16f32:
1011 case nxv8f64: return TypeSize::Scalable(512);
1012 case v1024i1:
1013 case v128i8:
1014 case v64i16:
1015 case v32i32:
1016 case v16i64:
1017 case v64f16:
1018 case v64bf16:
1019 case v32f32:
1020 case v16f64: return TypeSize::Fixed(1024);
1021 case nxv32i32:
1022 case nxv16i64: return TypeSize::Scalable(1024);
1023 case v256i8:
1024 case v128i16:
1025 case v64i32:
1026 case v32i64:
1027 case v128f16:
1028 case v128bf16:
1029 case v64f32:
1030 case v32f64: return TypeSize::Fixed(2048);
1031 case nxv32i64: return TypeSize::Scalable(2048);
1032 case v512i8:
1033 case v256i16:
1034 case v128i32:
1035 case v64i64:
1036 case v256f16:
1037 case v128f32:
1038 case v64f64: return TypeSize::Fixed(4096);
1039 case v1024i8:
1040 case v512i16:
1041 case v256i32:
1042 case v128i64:
1043 case v512f16:
1044 case v256f32:
1045 case x86amx:
1046 case v128f64: return TypeSize::Fixed(8192);
1047 case v512i32:
1048 case v256i64:
1049 case v512f32:
1050 case v256f64: return TypeSize::Fixed(16384);
1051 case v1024i32:
1052 case v1024f32: return TypeSize::Fixed(32768);
1053 case v2048i32:
1054 case v2048f32: return TypeSize::Fixed(65536);
1055 case funcref:
1056 case externref: return TypeSize::Fixed(0); // opaque type
1057 }
1058 }
1059
1060 /// Return the size of the specified fixed width value type in bits. The
1061 /// function will assert if the type is scalable.
1062 uint64_t getFixedSizeInBits() const {
1063 return getSizeInBits().getFixedSize();
1064 }
1065
1066 uint64_t getScalarSizeInBits() const {
1067 return getScalarType().getSizeInBits().getFixedSize();
1068 }
1069
1070 /// Return the number of bytes overwritten by a store of the specified value
1071 /// type.
1072 ///
1073 /// If the value type is a scalable vector type, the scalable property will
1074 /// be set and the runtime size will be a positive integer multiple of the
1075 /// base size.
1076 TypeSize getStoreSize() const {
1077 TypeSize BaseSize = getSizeInBits();
1078 return {(BaseSize.getKnownMinSize() + 7) / 8, BaseSize.isScalable()};
1079 }
1080
1081 /// Return the number of bits overwritten by a store of the specified value
1082 /// type.
1083 ///
1084 /// If the value type is a scalable vector type, the scalable property will
1085 /// be set and the runtime size will be a positive integer multiple of the
1086 /// base size.
1087 TypeSize getStoreSizeInBits() const {
1088 return getStoreSize() * 8;
1089 }
1090
1091 /// Returns true if the number of bits for the type is a multiple of an
1092 /// 8-bit byte.
1093 bool isByteSized() const { return getSizeInBits().isKnownMultipleOf(8); }
1094
1095 /// Return true if we know at compile time this has more bits than VT.
1096 bool knownBitsGT(MVT VT) const {
1097 return TypeSize::isKnownGT(getSizeInBits(), VT.getSizeInBits());
1098 }
1099
1100 /// Return true if we know at compile time this has more than or the same
1101 /// bits as VT.
1102 bool knownBitsGE(MVT VT) const {
1103 return TypeSize::isKnownGE(getSizeInBits(), VT.getSizeInBits());
1104 }
1105
1106 /// Return true if we know at compile time this has fewer bits than VT.
1107 bool knownBitsLT(MVT VT) const {
1108 return TypeSize::isKnownLT(getSizeInBits(), VT.getSizeInBits());
1109 }
1110
1111 /// Return true if we know at compile time this has fewer than or the same
1112 /// bits as VT.
1113 bool knownBitsLE(MVT VT) const {
1114 return TypeSize::isKnownLE(getSizeInBits(), VT.getSizeInBits());
1115 }
1116
1117 /// Return true if this has more bits than VT.
1118 bool bitsGT(MVT VT) const {
1119 assert(isScalableVector() == VT.isScalableVector() &&(static_cast <bool> (isScalableVector() == VT.isScalableVector
() && "Comparison between scalable and fixed types") ?
void (0) : __assert_fail ("isScalableVector() == VT.isScalableVector() && \"Comparison between scalable and fixed types\""
, "llvm/include/llvm/Support/MachineValueType.h", 1120, __extension__
__PRETTY_FUNCTION__))
1120 "Comparison between scalable and fixed types")(static_cast <bool> (isScalableVector() == VT.isScalableVector
() && "Comparison between scalable and fixed types") ?
void (0) : __assert_fail ("isScalableVector() == VT.isScalableVector() && \"Comparison between scalable and fixed types\""
, "llvm/include/llvm/Support/MachineValueType.h", 1120, __extension__
__PRETTY_FUNCTION__))
;
1121 return knownBitsGT(VT);
1122 }
1123
1124 /// Return true if this has no less bits than VT.
1125 bool bitsGE(MVT VT) const {
1126 assert(isScalableVector() == VT.isScalableVector() &&(static_cast <bool> (isScalableVector() == VT.isScalableVector
() && "Comparison between scalable and fixed types") ?
void (0) : __assert_fail ("isScalableVector() == VT.isScalableVector() && \"Comparison between scalable and fixed types\""
, "llvm/include/llvm/Support/MachineValueType.h", 1127, __extension__
__PRETTY_FUNCTION__))
1127 "Comparison between scalable and fixed types")(static_cast <bool> (isScalableVector() == VT.isScalableVector
() && "Comparison between scalable and fixed types") ?
void (0) : __assert_fail ("isScalableVector() == VT.isScalableVector() && \"Comparison between scalable and fixed types\""
, "llvm/include/llvm/Support/MachineValueType.h", 1127, __extension__
__PRETTY_FUNCTION__))
;
1128 return knownBitsGE(VT);
1129 }
1130
1131 /// Return true if this has less bits than VT.
1132 bool bitsLT(MVT VT) const {
1133 assert(isScalableVector() == VT.isScalableVector() &&(static_cast <bool> (isScalableVector() == VT.isScalableVector
() && "Comparison between scalable and fixed types") ?
void (0) : __assert_fail ("isScalableVector() == VT.isScalableVector() && \"Comparison between scalable and fixed types\""
, "llvm/include/llvm/Support/MachineValueType.h", 1134, __extension__
__PRETTY_FUNCTION__))
1134 "Comparison between scalable and fixed types")(static_cast <bool> (isScalableVector() == VT.isScalableVector
() && "Comparison between scalable and fixed types") ?
void (0) : __assert_fail ("isScalableVector() == VT.isScalableVector() && \"Comparison between scalable and fixed types\""
, "llvm/include/llvm/Support/MachineValueType.h", 1134, __extension__
__PRETTY_FUNCTION__))
;
1135 return knownBitsLT(VT);
1136 }
1137
1138 /// Return true if this has no more bits than VT.
1139 bool bitsLE(MVT VT) const {
1140 assert(isScalableVector() == VT.isScalableVector() &&(static_cast <bool> (isScalableVector() == VT.isScalableVector
() && "Comparison between scalable and fixed types") ?
void (0) : __assert_fail ("isScalableVector() == VT.isScalableVector() && \"Comparison between scalable and fixed types\""
, "llvm/include/llvm/Support/MachineValueType.h", 1141, __extension__
__PRETTY_FUNCTION__))
1141 "Comparison between scalable and fixed types")(static_cast <bool> (isScalableVector() == VT.isScalableVector
() && "Comparison between scalable and fixed types") ?
void (0) : __assert_fail ("isScalableVector() == VT.isScalableVector() && \"Comparison between scalable and fixed types\""
, "llvm/include/llvm/Support/MachineValueType.h", 1141, __extension__
__PRETTY_FUNCTION__))
;
1142 return knownBitsLE(VT);
1143 }
1144
1145 static MVT getFloatingPointVT(unsigned BitWidth) {
1146 switch (BitWidth) {
1147 default:
1148 llvm_unreachable("Bad bit width!")::llvm::llvm_unreachable_internal("Bad bit width!", "llvm/include/llvm/Support/MachineValueType.h"
, 1148)
;
1149 case 16:
1150 return MVT::f16;
1151 case 32:
1152 return MVT::f32;
1153 case 64:
1154 return MVT::f64;
1155 case 80:
1156 return MVT::f80;
1157 case 128:
1158 return MVT::f128;
1159 }
1160 }
1161
1162 static MVT getIntegerVT(unsigned BitWidth) {
1163 switch (BitWidth) {
1164 default:
1165 return (MVT::SimpleValueType)(MVT::INVALID_SIMPLE_VALUE_TYPE);
1166 case 1:
1167 return MVT::i1;
1168 case 8:
1169 return MVT::i8;
1170 case 16:
1171 return MVT::i16;
1172 case 32:
1173 return MVT::i32;
1174 case 64:
1175 return MVT::i64;
1176 case 128:
1177 return MVT::i128;
1178 }
1179 }
1180
1181 static MVT getVectorVT(MVT VT, unsigned NumElements) {
1182 switch (VT.SimpleTy) {
1183 default:
1184 break;
1185 case MVT::i1:
1186 if (NumElements == 1) return MVT::v1i1;
1187 if (NumElements == 2) return MVT::v2i1;
1188 if (NumElements == 4) return MVT::v4i1;
1189 if (NumElements == 8) return MVT::v8i1;
1190 if (NumElements == 16) return MVT::v16i1;
1191 if (NumElements == 32) return MVT::v32i1;
1192 if (NumElements == 64) return MVT::v64i1;
1193 if (NumElements == 128) return MVT::v128i1;
1194 if (NumElements == 256) return MVT::v256i1;
1195 if (NumElements == 512) return MVT::v512i1;
1196 if (NumElements == 1024) return MVT::v1024i1;
1197 break;
1198 case MVT::i8:
1199 if (NumElements == 1) return MVT::v1i8;
1200 if (NumElements == 2) return MVT::v2i8;
1201 if (NumElements == 4) return MVT::v4i8;
1202 if (NumElements == 8) return MVT::v8i8;
1203 if (NumElements == 16) return MVT::v16i8;
1204 if (NumElements == 32) return MVT::v32i8;
1205 if (NumElements == 64) return MVT::v64i8;
1206 if (NumElements == 128) return MVT::v128i8;
1207 if (NumElements == 256) return MVT::v256i8;
1208 if (NumElements == 512) return MVT::v512i8;
1209 if (NumElements == 1024) return MVT::v1024i8;
1210 break;
1211 case MVT::i16:
1212 if (NumElements == 1) return MVT::v1i16;
1213 if (NumElements == 2) return MVT::v2i16;
1214 if (NumElements == 3) return MVT::v3i16;
1215 if (NumElements == 4) return MVT::v4i16;
1216 if (NumElements == 8) return MVT::v8i16;
1217 if (NumElements == 16) return MVT::v16i16;
1218 if (NumElements == 32) return MVT::v32i16;
1219 if (NumElements == 64) return MVT::v64i16;
1220 if (NumElements == 128) return MVT::v128i16;
1221 if (NumElements == 256) return MVT::v256i16;
1222 if (NumElements == 512) return MVT::v512i16;
1223 break;
1224 case MVT::i32:
1225 if (NumElements == 1) return MVT::v1i32;
1226 if (NumElements == 2) return MVT::v2i32;
1227 if (NumElements == 3) return MVT::v3i32;
1228 if (NumElements == 4) return MVT::v4i32;
1229 if (NumElements == 5) return MVT::v5i32;
1230 if (NumElements == 6) return MVT::v6i32;
1231 if (NumElements == 7) return MVT::v7i32;
1232 if (NumElements == 8) return MVT::v8i32;
1233 if (NumElements == 16) return MVT::v16i32;
1234 if (NumElements == 32) return MVT::v32i32;
1235 if (NumElements == 64) return MVT::v64i32;
1236 if (NumElements == 128) return MVT::v128i32;
1237 if (NumElements == 256) return MVT::v256i32;
1238 if (NumElements == 512) return MVT::v512i32;
1239 if (NumElements == 1024) return MVT::v1024i32;
1240 if (NumElements == 2048) return MVT::v2048i32;
1241 break;
1242 case MVT::i64:
1243 if (NumElements == 1) return MVT::v1i64;
1244 if (NumElements == 2) return MVT::v2i64;
1245 if (NumElements == 3) return MVT::v3i64;
1246 if (NumElements == 4) return MVT::v4i64;
1247 if (NumElements == 8) return MVT::v8i64;
1248 if (NumElements == 16) return MVT::v16i64;
1249 if (NumElements == 32) return MVT::v32i64;
1250 if (NumElements == 64) return MVT::v64i64;
1251 if (NumElements == 128) return MVT::v128i64;
1252 if (NumElements == 256) return MVT::v256i64;
1253 break;
1254 case MVT::i128:
1255 if (NumElements == 1) return MVT::v1i128;
1256 break;
1257 case MVT::f16:
1258 if (NumElements == 1) return MVT::v1f16;
1259 if (NumElements == 2) return MVT::v2f16;
1260 if (NumElements == 3) return MVT::v3f16;
1261 if (NumElements == 4) return MVT::v4f16;
1262 if (NumElements == 8) return MVT::v8f16;
1263 if (NumElements == 16) return MVT::v16f16;
1264 if (NumElements == 32) return MVT::v32f16;
1265 if (NumElements == 64) return MVT::v64f16;
1266 if (NumElements == 128) return MVT::v128f16;
1267 if (NumElements == 256) return MVT::v256f16;
1268 if (NumElements == 512) return MVT::v512f16;
1269 break;
1270 case MVT::bf16:
1271 if (NumElements == 2) return MVT::v2bf16;
1272 if (NumElements == 3) return MVT::v3bf16;
1273 if (NumElements == 4) return MVT::v4bf16;
1274 if (NumElements == 8) return MVT::v8bf16;
1275 if (NumElements == 16) return MVT::v16bf16;
1276 if (NumElements == 32) return MVT::v32bf16;
1277 if (NumElements == 64) return MVT::v64bf16;
1278 if (NumElements == 128) return MVT::v128bf16;
1279 break;
1280 case MVT::f32:
1281 if (NumElements == 1) return MVT::v1f32;
1282 if (NumElements == 2) return MVT::v2f32;
1283 if (NumElements == 3) return MVT::v3f32;
1284 if (NumElements == 4) return MVT::v4f32;
1285 if (NumElements == 5) return MVT::v5f32;
1286 if (NumElements == 6) return MVT::v6f32;
1287 if (NumElements == 7) return MVT::v7f32;
1288 if (NumElements == 8) return MVT::v8f32;
1289 if (NumElements == 16) return MVT::v16f32;
1290 if (NumElements == 32) return MVT::v32f32;
1291 if (NumElements == 64) return MVT::v64f32;
1292 if (NumElements == 128) return MVT::v128f32;
1293 if (NumElements == 256) return MVT::v256f32;
1294 if (NumElements == 512) return MVT::v512f32;
1295 if (NumElements == 1024) return MVT::v1024f32;
1296 if (NumElements == 2048) return MVT::v2048f32;
1297 break;
1298 case MVT::f64:
1299 if (NumElements == 1) return MVT::v1f64;
1300 if (NumElements == 2) return MVT::v2f64;
1301 if (NumElements == 3) return MVT::v3f64;
1302 if (NumElements == 4) return MVT::v4f64;
1303 if (NumElements == 8) return MVT::v8f64;
1304 if (NumElements == 16) return MVT::v16f64;
1305 if (NumElements == 32) return MVT::v32f64;
1306 if (NumElements == 64) return MVT::v64f64;
1307 if (NumElements == 128) return MVT::v128f64;
1308 if (NumElements == 256) return MVT::v256f64;
1309 break;
1310 }
1311 return (MVT::SimpleValueType)(MVT::INVALID_SIMPLE_VALUE_TYPE);
1312 }
1313
1314 static MVT getScalableVectorVT(MVT VT, unsigned NumElements) {
1315 switch(VT.SimpleTy) {
1316 default:
1317 break;
1318 case MVT::i1:
1319 if (NumElements == 1) return MVT::nxv1i1;
1320 if (NumElements == 2) return MVT::nxv2i1;
1321 if (NumElements == 4) return MVT::nxv4i1;
1322 if (NumElements == 8) return MVT::nxv8i1;
1323 if (NumElements == 16) return MVT::nxv16i1;
1324 if (NumElements == 32) return MVT::nxv32i1;
1325 if (NumElements == 64) return MVT::nxv64i1;
1326 break;
1327 case MVT::i8:
1328 if (NumElements == 1) return MVT::nxv1i8;
1329 if (NumElements == 2) return MVT::nxv2i8;
1330 if (NumElements == 4) return MVT::nxv4i8;
1331 if (NumElements == 8) return MVT::nxv8i8;
1332 if (NumElements == 16) return MVT::nxv16i8;
1333 if (NumElements == 32) return MVT::nxv32i8;
1334 if (NumElements == 64) return MVT::nxv64i8;
1335 break;
1336 case MVT::i16:
1337 if (NumElements == 1) return MVT::nxv1i16;
1338 if (NumElements == 2) return MVT::nxv2i16;
1339 if (NumElements == 4) return MVT::nxv4i16;
1340 if (NumElements == 8) return MVT::nxv8i16;
1341 if (NumElements == 16) return MVT::nxv16i16;
1342 if (NumElements == 32) return MVT::nxv32i16;
1343 break;
1344 case MVT::i32:
1345 if (NumElements == 1) return MVT::nxv1i32;
1346 if (NumElements == 2) return MVT::nxv2i32;
1347 if (NumElements == 4) return MVT::nxv4i32;
1348 if (NumElements == 8) return MVT::nxv8i32;
1349 if (NumElements == 16) return MVT::nxv16i32;
1350 if (NumElements == 32) return MVT::nxv32i32;
1351 break;
1352 case MVT::i64:
1353 if (NumElements == 1) return MVT::nxv1i64;
1354 if (NumElements == 2) return MVT::nxv2i64;
1355 if (NumElements == 4) return MVT::nxv4i64;
1356 if (NumElements == 8) return MVT::nxv8i64;
1357 if (NumElements == 16) return MVT::nxv16i64;
1358 if (NumElements == 32) return MVT::nxv32i64;
1359 break;
1360 case MVT::f16:
1361 if (NumElements == 1) return MVT::nxv1f16;
1362 if (NumElements == 2) return MVT::nxv2f16;
1363 if (NumElements == 4) return MVT::nxv4f16;
1364 if (NumElements == 8) return MVT::nxv8f16;
1365 if (NumElements == 16) return MVT::nxv16f16;
1366 if (NumElements == 32) return MVT::nxv32f16;
1367 break;
1368 case MVT::bf16:
1369 if (NumElements == 1) return MVT::nxv1bf16;
1370 if (NumElements == 2) return MVT::nxv2bf16;
1371 if (NumElements == 4) return MVT::nxv4bf16;
1372 if (NumElements == 8) return MVT::nxv8bf16;
1373 break;
1374 case MVT::f32:
1375 if (NumElements == 1) return MVT::nxv1f32;
1376 if (NumElements == 2) return MVT::nxv2f32;
1377 if (NumElements == 4) return MVT::nxv4f32;
1378 if (NumElements == 8) return MVT::nxv8f32;
1379 if (NumElements == 16) return MVT::nxv16f32;
1380 break;
1381 case MVT::f64:
1382 if (NumElements == 1) return MVT::nxv1f64;
1383 if (NumElements == 2) return MVT::nxv2f64;
1384 if (NumElements == 4) return MVT::nxv4f64;
1385 if (NumElements == 8) return MVT::nxv8f64;
1386 break;
1387 }
1388 return (MVT::SimpleValueType)(MVT::INVALID_SIMPLE_VALUE_TYPE);
1389 }
1390
1391 static MVT getVectorVT(MVT VT, unsigned NumElements, bool IsScalable) {
1392 if (IsScalable)
1393 return getScalableVectorVT(VT, NumElements);
1394 return getVectorVT(VT, NumElements);
1395 }
1396
1397 static MVT getVectorVT(MVT VT, ElementCount EC) {
1398 if (EC.isScalable())
1399 return getScalableVectorVT(VT, EC.getKnownMinValue());
1400 return getVectorVT(VT, EC.getKnownMinValue());
1401 }
1402
1403 /// Return the value type corresponding to the specified type. This returns
1404 /// all pointers as iPTR. If HandleUnknown is true, unknown types are
1405 /// returned as Other, otherwise they are invalid.
1406 static MVT getVT(Type *Ty, bool HandleUnknown = false);
1407
1408 public:
1409 /// SimpleValueType Iteration
1410 /// @{
1411 static auto all_valuetypes() {
1412 return enum_seq_inclusive(MVT::FIRST_VALUETYPE, MVT::LAST_VALUETYPE,
1413 force_iteration_on_noniterable_enum);
1414 }
1415
1416 static auto integer_valuetypes() {
1417 return enum_seq_inclusive(MVT::FIRST_INTEGER_VALUETYPE,
1418 MVT::LAST_INTEGER_VALUETYPE,
1419 force_iteration_on_noniterable_enum);
1420 }
1421
1422 static auto fp_valuetypes() {
1423 return enum_seq_inclusive(MVT::FIRST_FP_VALUETYPE, MVT::LAST_FP_VALUETYPE,
1424 force_iteration_on_noniterable_enum);
1425 }
1426
1427 static auto vector_valuetypes() {
1428 return enum_seq_inclusive(MVT::FIRST_VECTOR_VALUETYPE,
1429 MVT::LAST_VECTOR_VALUETYPE,
1430 force_iteration_on_noniterable_enum);
1431 }
1432
1433 static auto fixedlen_vector_valuetypes() {
1434 return enum_seq_inclusive(MVT::FIRST_FIXEDLEN_VECTOR_VALUETYPE,
1435 MVT::LAST_FIXEDLEN_VECTOR_VALUETYPE,
1436 force_iteration_on_noniterable_enum);
1437 }
1438
1439 static auto scalable_vector_valuetypes() {
1440 return enum_seq_inclusive(MVT::FIRST_SCALABLE_VECTOR_VALUETYPE,
1441 MVT::LAST_SCALABLE_VECTOR_VALUETYPE,
1442 force_iteration_on_noniterable_enum);
1443 }
1444
1445 static auto integer_fixedlen_vector_valuetypes() {
1446 return enum_seq_inclusive(MVT::FIRST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE,
1447 MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE,
1448 force_iteration_on_noniterable_enum);
1449 }
1450
1451 static auto fp_fixedlen_vector_valuetypes() {
1452 return enum_seq_inclusive(MVT::FIRST_FP_FIXEDLEN_VECTOR_VALUETYPE,
1453 MVT::LAST_FP_FIXEDLEN_VECTOR_VALUETYPE,
1454 force_iteration_on_noniterable_enum);
1455 }
1456
1457 static auto integer_scalable_vector_valuetypes() {
1458 return enum_seq_inclusive(MVT::FIRST_INTEGER_SCALABLE_VECTOR_VALUETYPE,
1459 MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE,
1460 force_iteration_on_noniterable_enum);
1461 }
1462
1463 static auto fp_scalable_vector_valuetypes() {
1464 return enum_seq_inclusive(MVT::FIRST_FP_SCALABLE_VECTOR_VALUETYPE,
1465 MVT::LAST_FP_SCALABLE_VECTOR_VALUETYPE,
1466 force_iteration_on_noniterable_enum);
1467 }
1468 /// @}
1469 };
1470
1471} // end namespace llvm
1472
1473#endif // LLVM_SUPPORT_MACHINEVALUETYPE_H