Bug Summary

File:llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp
Warning:line 678, column 19
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name AddressSanitizer.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/lib/Transforms/Instrumentation -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/lib/Transforms/Instrumentation -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/lib/Transforms/Instrumentation -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/include -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/include -D NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/lib/Transforms/Instrumentation -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-09-04-040900-46481-1 -x c++ /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp
1//===- AddressSanitizer.cpp - memory error detector -----------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file is a part of AddressSanitizer, an address sanity checker.
10// Details of the algorithm:
11// https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm
12//
13// FIXME: This sanitizer does not yet handle scalable vectors
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/DenseMap.h"
20#include "llvm/ADT/DepthFirstIterator.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/ADT/StringExtras.h"
25#include "llvm/ADT/StringRef.h"
26#include "llvm/ADT/Triple.h"
27#include "llvm/ADT/Twine.h"
28#include "llvm/Analysis/MemoryBuiltins.h"
29#include "llvm/Analysis/TargetLibraryInfo.h"
30#include "llvm/Analysis/ValueTracking.h"
31#include "llvm/BinaryFormat/MachO.h"
32#include "llvm/IR/Argument.h"
33#include "llvm/IR/Attributes.h"
34#include "llvm/IR/BasicBlock.h"
35#include "llvm/IR/Comdat.h"
36#include "llvm/IR/Constant.h"
37#include "llvm/IR/Constants.h"
38#include "llvm/IR/DIBuilder.h"
39#include "llvm/IR/DataLayout.h"
40#include "llvm/IR/DebugInfoMetadata.h"
41#include "llvm/IR/DebugLoc.h"
42#include "llvm/IR/DerivedTypes.h"
43#include "llvm/IR/Dominators.h"
44#include "llvm/IR/Function.h"
45#include "llvm/IR/GlobalAlias.h"
46#include "llvm/IR/GlobalValue.h"
47#include "llvm/IR/GlobalVariable.h"
48#include "llvm/IR/IRBuilder.h"
49#include "llvm/IR/InlineAsm.h"
50#include "llvm/IR/InstVisitor.h"
51#include "llvm/IR/InstrTypes.h"
52#include "llvm/IR/Instruction.h"
53#include "llvm/IR/Instructions.h"
54#include "llvm/IR/IntrinsicInst.h"
55#include "llvm/IR/Intrinsics.h"
56#include "llvm/IR/LLVMContext.h"
57#include "llvm/IR/MDBuilder.h"
58#include "llvm/IR/Metadata.h"
59#include "llvm/IR/Module.h"
60#include "llvm/IR/Type.h"
61#include "llvm/IR/Use.h"
62#include "llvm/IR/Value.h"
63#include "llvm/InitializePasses.h"
64#include "llvm/MC/MCSectionMachO.h"
65#include "llvm/Pass.h"
66#include "llvm/Support/Casting.h"
67#include "llvm/Support/CommandLine.h"
68#include "llvm/Support/Debug.h"
69#include "llvm/Support/ErrorHandling.h"
70#include "llvm/Support/MathExtras.h"
71#include "llvm/Support/ScopedPrinter.h"
72#include "llvm/Support/raw_ostream.h"
73#include "llvm/Transforms/Instrumentation.h"
74#include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h"
75#include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h"
76#include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
77#include "llvm/Transforms/Utils/BasicBlockUtils.h"
78#include "llvm/Transforms/Utils/Local.h"
79#include "llvm/Transforms/Utils/ModuleUtils.h"
80#include "llvm/Transforms/Utils/PromoteMemToReg.h"
81#include <algorithm>
82#include <cassert>
83#include <cstddef>
84#include <cstdint>
85#include <iomanip>
86#include <limits>
87#include <memory>
88#include <sstream>
89#include <string>
90#include <tuple>
91
92using namespace llvm;
93
94#define DEBUG_TYPE"asan" "asan"
95
96static const uint64_t kDefaultShadowScale = 3;
97static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
98static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
99static const uint64_t kDynamicShadowSentinel =
100 std::numeric_limits<uint64_t>::max();
101static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G.
102static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL;
103static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000;
104static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44;
105static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52;
106static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000;
107static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37;
108static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36;
109static const uint64_t kRISCV64_ShadowOffset64 = 0xd55550000;
110static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30;
111static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46;
112static const uint64_t kFreeBSDKasan_ShadowOffset64 = 0xdffff7c000000000;
113static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30;
114static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46;
115static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000;
116static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40;
117static const uint64_t kWindowsShadowOffset32 = 3ULL << 28;
118static const uint64_t kEmscriptenShadowOffset = 0;
119
120// The shadow memory space is dynamically allocated.
121static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel;
122
123static const size_t kMinStackMallocSize = 1 << 6; // 64B
124static const size_t kMaxStackMallocSize = 1 << 16; // 64K
125static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
126static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
127
128const char kAsanModuleCtorName[] = "asan.module_ctor";
129const char kAsanModuleDtorName[] = "asan.module_dtor";
130static const uint64_t kAsanCtorAndDtorPriority = 1;
131// On Emscripten, the system needs more than one priorities for constructors.
132static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50;
133const char kAsanReportErrorTemplate[] = "__asan_report_";
134const char kAsanRegisterGlobalsName[] = "__asan_register_globals";
135const char kAsanUnregisterGlobalsName[] = "__asan_unregister_globals";
136const char kAsanRegisterImageGlobalsName[] = "__asan_register_image_globals";
137const char kAsanUnregisterImageGlobalsName[] =
138 "__asan_unregister_image_globals";
139const char kAsanRegisterElfGlobalsName[] = "__asan_register_elf_globals";
140const char kAsanUnregisterElfGlobalsName[] = "__asan_unregister_elf_globals";
141const char kAsanPoisonGlobalsName[] = "__asan_before_dynamic_init";
142const char kAsanUnpoisonGlobalsName[] = "__asan_after_dynamic_init";
143const char kAsanInitName[] = "__asan_init";
144const char kAsanVersionCheckNamePrefix[] = "__asan_version_mismatch_check_v";
145const char kAsanPtrCmp[] = "__sanitizer_ptr_cmp";
146const char kAsanPtrSub[] = "__sanitizer_ptr_sub";
147const char kAsanHandleNoReturnName[] = "__asan_handle_no_return";
148static const int kMaxAsanStackMallocSizeClass = 10;
149const char kAsanStackMallocNameTemplate[] = "__asan_stack_malloc_";
150const char kAsanStackMallocAlwaysNameTemplate[] =
151 "__asan_stack_malloc_always_";
152const char kAsanStackFreeNameTemplate[] = "__asan_stack_free_";
153const char kAsanGenPrefix[] = "___asan_gen_";
154const char kODRGenPrefix[] = "__odr_asan_gen_";
155const char kSanCovGenPrefix[] = "__sancov_gen_";
156const char kAsanSetShadowPrefix[] = "__asan_set_shadow_";
157const char kAsanPoisonStackMemoryName[] = "__asan_poison_stack_memory";
158const char kAsanUnpoisonStackMemoryName[] = "__asan_unpoison_stack_memory";
159
160// ASan version script has __asan_* wildcard. Triple underscore prevents a
161// linker (gold) warning about attempting to export a local symbol.
162const char kAsanGlobalsRegisteredFlagName[] = "___asan_globals_registered";
163
164const char kAsanOptionDetectUseAfterReturn[] =
165 "__asan_option_detect_stack_use_after_return";
166
167const char kAsanShadowMemoryDynamicAddress[] =
168 "__asan_shadow_memory_dynamic_address";
169
170const char kAsanAllocaPoison[] = "__asan_alloca_poison";
171const char kAsanAllocasUnpoison[] = "__asan_allocas_unpoison";
172
173const char kAMDGPUAddressSharedName[] = "llvm.amdgcn.is.shared";
174const char kAMDGPUAddressPrivateName[] = "llvm.amdgcn.is.private";
175
176// Accesses sizes are powers of two: 1, 2, 4, 8, 16.
177static const size_t kNumberOfAccessSizes = 5;
178
179static const unsigned kAllocaRzSize = 32;
180
181// ASanAccessInfo implementation constants.
182constexpr size_t kCompileKernelShift = 0;
183constexpr size_t kCompileKernelMask = 0x1;
184constexpr size_t kAccessSizeIndexShift = 1;
185constexpr size_t kAccessSizeIndexMask = 0xf;
186constexpr size_t kIsWriteShift = 5;
187constexpr size_t kIsWriteMask = 0x1;
188
189// Command-line flags.
190
191static cl::opt<bool> ClEnableKasan(
192 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"),
193 cl::Hidden, cl::init(false));
194
195static cl::opt<bool> ClRecover(
196 "asan-recover",
197 cl::desc("Enable recovery mode (continue-after-error)."),
198 cl::Hidden, cl::init(false));
199
200static cl::opt<bool> ClInsertVersionCheck(
201 "asan-guard-against-version-mismatch",
202 cl::desc("Guard against compiler/runtime version mismatch."),
203 cl::Hidden, cl::init(true));
204
205// This flag may need to be replaced with -f[no-]asan-reads.
206static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
207 cl::desc("instrument read instructions"),
208 cl::Hidden, cl::init(true));
209
210static cl::opt<bool> ClInstrumentWrites(
211 "asan-instrument-writes", cl::desc("instrument write instructions"),
212 cl::Hidden, cl::init(true));
213
214static cl::opt<bool> ClInstrumentAtomics(
215 "asan-instrument-atomics",
216 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
217 cl::init(true));
218
219static cl::opt<bool>
220 ClInstrumentByval("asan-instrument-byval",
221 cl::desc("instrument byval call arguments"), cl::Hidden,
222 cl::init(true));
223
224static cl::opt<bool> ClAlwaysSlowPath(
225 "asan-always-slow-path",
226 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden,
227 cl::init(false));
228
229static cl::opt<bool> ClForceDynamicShadow(
230 "asan-force-dynamic-shadow",
231 cl::desc("Load shadow address into a local variable for each function"),
232 cl::Hidden, cl::init(false));
233
234static cl::opt<bool>
235 ClWithIfunc("asan-with-ifunc",
236 cl::desc("Access dynamic shadow through an ifunc global on "
237 "platforms that support this"),
238 cl::Hidden, cl::init(true));
239
240static cl::opt<bool> ClWithIfuncSuppressRemat(
241 "asan-with-ifunc-suppress-remat",
242 cl::desc("Suppress rematerialization of dynamic shadow address by passing "
243 "it through inline asm in prologue."),
244 cl::Hidden, cl::init(true));
245
246// This flag limits the number of instructions to be instrumented
247// in any given BB. Normally, this should be set to unlimited (INT_MAX),
248// but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
249// set it to 10000.
250static cl::opt<int> ClMaxInsnsToInstrumentPerBB(
251 "asan-max-ins-per-bb", cl::init(10000),
252 cl::desc("maximal number of instructions to instrument in any given BB"),
253 cl::Hidden);
254
255// This flag may need to be replaced with -f[no]asan-stack.
256static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"),
257 cl::Hidden, cl::init(true));
258static cl::opt<uint32_t> ClMaxInlinePoisoningSize(
259 "asan-max-inline-poisoning-size",
260 cl::desc(
261 "Inline shadow poisoning for blocks up to the given size in bytes."),
262 cl::Hidden, cl::init(64));
263
264static cl::opt<AsanDetectStackUseAfterReturnMode> ClUseAfterReturn(
265 "asan-use-after-return",
266 cl::desc("Sets the mode of detection for stack-use-after-return."),
267 cl::values(
268 clEnumValN(AsanDetectStackUseAfterReturnMode::Never, "never",llvm::cl::OptionEnumValue { "never", int(AsanDetectStackUseAfterReturnMode
::Never), "Never detect stack use after return." }
269 "Never detect stack use after return.")llvm::cl::OptionEnumValue { "never", int(AsanDetectStackUseAfterReturnMode
::Never), "Never detect stack use after return." }
,
270 clEnumValN(llvm::cl::OptionEnumValue { "runtime", int(AsanDetectStackUseAfterReturnMode
::Runtime), "Detect stack use after return if " "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set."
}
271 AsanDetectStackUseAfterReturnMode::Runtime, "runtime",llvm::cl::OptionEnumValue { "runtime", int(AsanDetectStackUseAfterReturnMode
::Runtime), "Detect stack use after return if " "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set."
}
272 "Detect stack use after return if "llvm::cl::OptionEnumValue { "runtime", int(AsanDetectStackUseAfterReturnMode
::Runtime), "Detect stack use after return if " "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set."
}
273 "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set.")llvm::cl::OptionEnumValue { "runtime", int(AsanDetectStackUseAfterReturnMode
::Runtime), "Detect stack use after return if " "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set."
}
,
274 clEnumValN(AsanDetectStackUseAfterReturnMode::Always, "always",llvm::cl::OptionEnumValue { "always", int(AsanDetectStackUseAfterReturnMode
::Always), "Always detect stack use after return." }
275 "Always detect stack use after return.")llvm::cl::OptionEnumValue { "always", int(AsanDetectStackUseAfterReturnMode
::Always), "Always detect stack use after return." }
),
276 cl::Hidden, cl::init(AsanDetectStackUseAfterReturnMode::Runtime));
277
278static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args",
279 cl::desc("Create redzones for byval "
280 "arguments (extra copy "
281 "required)"), cl::Hidden,
282 cl::init(true));
283
284static cl::opt<bool> ClUseAfterScope("asan-use-after-scope",
285 cl::desc("Check stack-use-after-scope"),
286 cl::Hidden, cl::init(false));
287
288// This flag may need to be replaced with -f[no]asan-globals.
289static cl::opt<bool> ClGlobals("asan-globals",
290 cl::desc("Handle global objects"), cl::Hidden,
291 cl::init(true));
292
293static cl::opt<bool> ClInitializers("asan-initialization-order",
294 cl::desc("Handle C++ initializer order"),
295 cl::Hidden, cl::init(true));
296
297static cl::opt<bool> ClInvalidPointerPairs(
298 "asan-detect-invalid-pointer-pair",
299 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden,
300 cl::init(false));
301
302static cl::opt<bool> ClInvalidPointerCmp(
303 "asan-detect-invalid-pointer-cmp",
304 cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden,
305 cl::init(false));
306
307static cl::opt<bool> ClInvalidPointerSub(
308 "asan-detect-invalid-pointer-sub",
309 cl::desc("Instrument - operations with pointer operands"), cl::Hidden,
310 cl::init(false));
311
312static cl::opt<unsigned> ClRealignStack(
313 "asan-realign-stack",
314 cl::desc("Realign stack to the value of this flag (power of two)"),
315 cl::Hidden, cl::init(32));
316
317static cl::opt<int> ClInstrumentationWithCallsThreshold(
318 "asan-instrumentation-with-call-threshold",
319 cl::desc(
320 "If the function being instrumented contains more than "
321 "this number of memory accesses, use callbacks instead of "
322 "inline checks (-1 means never use callbacks)."),
323 cl::Hidden, cl::init(7000));
324
325static cl::opt<std::string> ClMemoryAccessCallbackPrefix(
326 "asan-memory-access-callback-prefix",
327 cl::desc("Prefix for memory access callbacks"), cl::Hidden,
328 cl::init("__asan_"));
329
330static cl::opt<bool>
331 ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas",
332 cl::desc("instrument dynamic allocas"),
333 cl::Hidden, cl::init(true));
334
335static cl::opt<bool> ClSkipPromotableAllocas(
336 "asan-skip-promotable-allocas",
337 cl::desc("Do not instrument promotable allocas"), cl::Hidden,
338 cl::init(true));
339
340// These flags allow to change the shadow mapping.
341// The shadow mapping looks like
342// Shadow = (Mem >> scale) + offset
343
344static cl::opt<int> ClMappingScale("asan-mapping-scale",
345 cl::desc("scale of asan shadow mapping"),
346 cl::Hidden, cl::init(0));
347
348static cl::opt<uint64_t>
349 ClMappingOffset("asan-mapping-offset",
350 cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"),
351 cl::Hidden, cl::init(0));
352
353// Optimization flags. Not user visible, used mostly for testing
354// and benchmarking the tool.
355
356static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"),
357 cl::Hidden, cl::init(true));
358
359static cl::opt<bool> ClOptimizeCallbacks("asan-optimize-callbacks",
360 cl::desc("Optimize callbacks"),
361 cl::Hidden, cl::init(false));
362
363static cl::opt<bool> ClOptSameTemp(
364 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"),
365 cl::Hidden, cl::init(true));
366
367static cl::opt<bool> ClOptGlobals("asan-opt-globals",
368 cl::desc("Don't instrument scalar globals"),
369 cl::Hidden, cl::init(true));
370
371static cl::opt<bool> ClOptStack(
372 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"),
373 cl::Hidden, cl::init(false));
374
375static cl::opt<bool> ClDynamicAllocaStack(
376 "asan-stack-dynamic-alloca",
377 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden,
378 cl::init(true));
379
380static cl::opt<uint32_t> ClForceExperiment(
381 "asan-force-experiment",
382 cl::desc("Force optimization experiment (for testing)"), cl::Hidden,
383 cl::init(0));
384
385static cl::opt<bool>
386 ClUsePrivateAlias("asan-use-private-alias",
387 cl::desc("Use private aliases for global variables"),
388 cl::Hidden, cl::init(false));
389
390static cl::opt<bool>
391 ClUseOdrIndicator("asan-use-odr-indicator",
392 cl::desc("Use odr indicators to improve ODR reporting"),
393 cl::Hidden, cl::init(false));
394
395static cl::opt<bool>
396 ClUseGlobalsGC("asan-globals-live-support",
397 cl::desc("Use linker features to support dead "
398 "code stripping of globals"),
399 cl::Hidden, cl::init(true));
400
401// This is on by default even though there is a bug in gold:
402// https://sourceware.org/bugzilla/show_bug.cgi?id=19002
403static cl::opt<bool>
404 ClWithComdat("asan-with-comdat",
405 cl::desc("Place ASan constructors in comdat sections"),
406 cl::Hidden, cl::init(true));
407
408static cl::opt<AsanDtorKind> ClOverrideDestructorKind(
409 "asan-destructor-kind",
410 cl::desc("Sets the ASan destructor kind. The default is to use the value "
411 "provided to the pass constructor"),
412 cl::values(clEnumValN(AsanDtorKind::None, "none", "No destructors")llvm::cl::OptionEnumValue { "none", int(AsanDtorKind::None), "No destructors"
}
,
413 clEnumValN(AsanDtorKind::Global, "global",llvm::cl::OptionEnumValue { "global", int(AsanDtorKind::Global
), "Use global destructors" }
414 "Use global destructors")llvm::cl::OptionEnumValue { "global", int(AsanDtorKind::Global
), "Use global destructors" }
),
415 cl::init(AsanDtorKind::Invalid), cl::Hidden);
416
417// Debug flags.
418
419static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
420 cl::init(0));
421
422static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
423 cl::Hidden, cl::init(0));
424
425static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden,
426 cl::desc("Debug func"));
427
428static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
429 cl::Hidden, cl::init(-1));
430
431static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"),
432 cl::Hidden, cl::init(-1));
433
434STATISTIC(NumInstrumentedReads, "Number of instrumented reads")static llvm::Statistic NumInstrumentedReads = {"asan", "NumInstrumentedReads"
, "Number of instrumented reads"}
;
435STATISTIC(NumInstrumentedWrites, "Number of instrumented writes")static llvm::Statistic NumInstrumentedWrites = {"asan", "NumInstrumentedWrites"
, "Number of instrumented writes"}
;
436STATISTIC(NumOptimizedAccessesToGlobalVar,static llvm::Statistic NumOptimizedAccessesToGlobalVar = {"asan"
, "NumOptimizedAccessesToGlobalVar", "Number of optimized accesses to global vars"
}
437 "Number of optimized accesses to global vars")static llvm::Statistic NumOptimizedAccessesToGlobalVar = {"asan"
, "NumOptimizedAccessesToGlobalVar", "Number of optimized accesses to global vars"
}
;
438STATISTIC(NumOptimizedAccessesToStackVar,static llvm::Statistic NumOptimizedAccessesToStackVar = {"asan"
, "NumOptimizedAccessesToStackVar", "Number of optimized accesses to stack vars"
}
439 "Number of optimized accesses to stack vars")static llvm::Statistic NumOptimizedAccessesToStackVar = {"asan"
, "NumOptimizedAccessesToStackVar", "Number of optimized accesses to stack vars"
}
;
440
441namespace {
442
443/// This struct defines the shadow mapping using the rule:
444/// shadow = (mem >> Scale) ADD-or-OR Offset.
445/// If InGlobal is true, then
446/// extern char __asan_shadow[];
447/// shadow = (mem >> Scale) + &__asan_shadow
448struct ShadowMapping {
449 int Scale;
450 uint64_t Offset;
451 bool OrShadowOffset;
452 bool InGlobal;
453};
454
455} // end anonymous namespace
456
457static ShadowMapping getShadowMapping(const Triple &TargetTriple, int LongSize,
458 bool IsKasan) {
459 bool IsAndroid = TargetTriple.isAndroid();
460 bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS();
461 bool IsMacOS = TargetTriple.isMacOSX();
462 bool IsFreeBSD = TargetTriple.isOSFreeBSD();
463 bool IsNetBSD = TargetTriple.isOSNetBSD();
464 bool IsPS4CPU = TargetTriple.isPS4CPU();
465 bool IsLinux = TargetTriple.isOSLinux();
466 bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 ||
467 TargetTriple.getArch() == Triple::ppc64le;
468 bool IsSystemZ = TargetTriple.getArch() == Triple::systemz;
469 bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64;
470 bool IsMIPS32 = TargetTriple.isMIPS32();
471 bool IsMIPS64 = TargetTriple.isMIPS64();
472 bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb();
473 bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64;
474 bool IsRISCV64 = TargetTriple.getArch() == Triple::riscv64;
475 bool IsWindows = TargetTriple.isOSWindows();
476 bool IsFuchsia = TargetTriple.isOSFuchsia();
477 bool IsEmscripten = TargetTriple.isOSEmscripten();
478 bool IsAMDGPU = TargetTriple.isAMDGPU();
479
480 ShadowMapping Mapping;
481
482 Mapping.Scale = kDefaultShadowScale;
483 if (ClMappingScale.getNumOccurrences() > 0) {
484 Mapping.Scale = ClMappingScale;
485 }
486
487 if (LongSize == 32) {
488 if (IsAndroid)
489 Mapping.Offset = kDynamicShadowSentinel;
490 else if (IsMIPS32)
491 Mapping.Offset = kMIPS32_ShadowOffset32;
492 else if (IsFreeBSD)
493 Mapping.Offset = kFreeBSD_ShadowOffset32;
494 else if (IsNetBSD)
495 Mapping.Offset = kNetBSD_ShadowOffset32;
496 else if (IsIOS)
497 Mapping.Offset = kDynamicShadowSentinel;
498 else if (IsWindows)
499 Mapping.Offset = kWindowsShadowOffset32;
500 else if (IsEmscripten)
501 Mapping.Offset = kEmscriptenShadowOffset;
502 else
503 Mapping.Offset = kDefaultShadowOffset32;
504 } else { // LongSize == 64
505 // Fuchsia is always PIE, which means that the beginning of the address
506 // space is always available.
507 if (IsFuchsia)
508 Mapping.Offset = 0;
509 else if (IsPPC64)
510 Mapping.Offset = kPPC64_ShadowOffset64;
511 else if (IsSystemZ)
512 Mapping.Offset = kSystemZ_ShadowOffset64;
513 else if (IsFreeBSD && !IsMIPS64) {
514 if (IsKasan)
515 Mapping.Offset = kFreeBSDKasan_ShadowOffset64;
516 else
517 Mapping.Offset = kFreeBSD_ShadowOffset64;
518 } else if (IsNetBSD) {
519 if (IsKasan)
520 Mapping.Offset = kNetBSDKasan_ShadowOffset64;
521 else
522 Mapping.Offset = kNetBSD_ShadowOffset64;
523 } else if (IsPS4CPU)
524 Mapping.Offset = kPS4CPU_ShadowOffset64;
525 else if (IsLinux && IsX86_64) {
526 if (IsKasan)
527 Mapping.Offset = kLinuxKasan_ShadowOffset64;
528 else
529 Mapping.Offset = (kSmallX86_64ShadowOffsetBase &
530 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale));
531 } else if (IsWindows && IsX86_64) {
532 Mapping.Offset = kWindowsShadowOffset64;
533 } else if (IsMIPS64)
534 Mapping.Offset = kMIPS64_ShadowOffset64;
535 else if (IsIOS)
536 Mapping.Offset = kDynamicShadowSentinel;
537 else if (IsMacOS && IsAArch64)
538 Mapping.Offset = kDynamicShadowSentinel;
539 else if (IsAArch64)
540 Mapping.Offset = kAArch64_ShadowOffset64;
541 else if (IsRISCV64)
542 Mapping.Offset = kRISCV64_ShadowOffset64;
543 else if (IsAMDGPU)
544 Mapping.Offset = (kSmallX86_64ShadowOffsetBase &
545 (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale));
546 else
547 Mapping.Offset = kDefaultShadowOffset64;
548 }
549
550 if (ClForceDynamicShadow) {
551 Mapping.Offset = kDynamicShadowSentinel;
552 }
553
554 if (ClMappingOffset.getNumOccurrences() > 0) {
555 Mapping.Offset = ClMappingOffset;
556 }
557
558 // OR-ing shadow offset if more efficient (at least on x86) if the offset
559 // is a power of two, but on ppc64 we have to use add since the shadow
560 // offset is not necessary 1/8-th of the address space. On SystemZ,
561 // we could OR the constant in a single instruction, but it's more
562 // efficient to load it once and use indexed addressing.
563 Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU &&
564 !IsRISCV64 &&
565 !(Mapping.Offset & (Mapping.Offset - 1)) &&
566 Mapping.Offset != kDynamicShadowSentinel;
567 bool IsAndroidWithIfuncSupport =
568 IsAndroid && !TargetTriple.isAndroidVersionLT(21);
569 Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb;
570
571 return Mapping;
572}
573
574namespace llvm {
575void getAddressSanitizerParams(const Triple &TargetTriple, int LongSize,
576 bool IsKasan, uint64_t *ShadowBase,
577 int *MappingScale, bool *OrShadowOffset) {
578 auto Mapping = getShadowMapping(TargetTriple, LongSize, IsKasan);
579 *ShadowBase = Mapping.Offset;
580 *MappingScale = Mapping.Scale;
581 *OrShadowOffset = Mapping.OrShadowOffset;
582}
583
584ASanAccessInfo::ASanAccessInfo(int32_t Packed)
585 : Packed(Packed),
586 AccessSizeIndex((Packed >> kAccessSizeIndexShift) & kAccessSizeIndexMask),
587 IsWrite((Packed >> kIsWriteShift) & kIsWriteMask),
588 CompileKernel((Packed >> kCompileKernelShift) & kCompileKernelMask) {}
589
590ASanAccessInfo::ASanAccessInfo(bool IsWrite, bool CompileKernel,
591 uint8_t AccessSizeIndex)
592 : Packed((IsWrite << kIsWriteShift) +
593 (CompileKernel << kCompileKernelShift) +
594 (AccessSizeIndex << kAccessSizeIndexShift)),
595 AccessSizeIndex(AccessSizeIndex), IsWrite(IsWrite),
596 CompileKernel(CompileKernel) {}
597
598} // namespace llvm
599
600static uint64_t getRedzoneSizeForScale(int MappingScale) {
601 // Redzone used for stack and globals is at least 32 bytes.
602 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
603 return std::max(32U, 1U << MappingScale);
604}
605
606static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) {
607 if (TargetTriple.isOSEmscripten()) {
608 return kAsanEmscriptenCtorAndDtorPriority;
609 } else {
610 return kAsanCtorAndDtorPriority;
611 }
612}
613
614namespace {
615
616/// Module analysis for getting various metadata about the module.
617class ASanGlobalsMetadataWrapperPass : public ModulePass {
618public:
619 static char ID;
620
621 ASanGlobalsMetadataWrapperPass() : ModulePass(ID) {
622 initializeASanGlobalsMetadataWrapperPassPass(
623 *PassRegistry::getPassRegistry());
624 }
625
626 bool runOnModule(Module &M) override {
627 GlobalsMD = GlobalsMetadata(M);
628 return false;
629 }
630
631 StringRef getPassName() const override {
632 return "ASanGlobalsMetadataWrapperPass";
633 }
634
635 void getAnalysisUsage(AnalysisUsage &AU) const override {
636 AU.setPreservesAll();
637 }
638
639 GlobalsMetadata &getGlobalsMD() { return GlobalsMD; }
640
641private:
642 GlobalsMetadata GlobalsMD;
643};
644
645char ASanGlobalsMetadataWrapperPass::ID = 0;
646
647/// AddressSanitizer: instrument the code in module to find memory bugs.
648struct AddressSanitizer {
649 AddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD,
650 bool CompileKernel = false, bool Recover = false,
651 bool UseAfterScope = false,
652 AsanDetectStackUseAfterReturnMode UseAfterReturn =
653 AsanDetectStackUseAfterReturnMode::Runtime)
654 : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan
655 : CompileKernel),
656 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover),
657 UseAfterScope(UseAfterScope || ClUseAfterScope),
658 UseAfterReturn(ClUseAfterReturn.getNumOccurrences() ? ClUseAfterReturn
659 : UseAfterReturn),
660 GlobalsMD(*GlobalsMD) {
661 C = &(M.getContext());
662 LongSize = M.getDataLayout().getPointerSizeInBits();
663 IntptrTy = Type::getIntNTy(*C, LongSize);
664 Int8PtrTy = Type::getInt8PtrTy(*C);
665 Int32Ty = Type::getInt32Ty(*C);
666 TargetTriple = Triple(M.getTargetTriple());
667
668 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
669
670 assert(this->UseAfterReturn != AsanDetectStackUseAfterReturnMode::Invalid)(static_cast<void> (0));
671 }
672
673 uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const {
674 uint64_t ArraySize = 1;
675 if (AI.isArrayAllocation()) {
18
Assuming the condition is true
19
Taking true branch
676 const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize());
20
Assuming the object is not a 'ConstantInt'
21
'CI' initialized to a null pointer value
677 assert(CI && "non-constant array size")(static_cast<void> (0));
678 ArraySize = CI->getZExtValue();
22
Called C++ object pointer is null
679 }
680 Type *Ty = AI.getAllocatedType();
681 uint64_t SizeInBytes =
682 AI.getModule()->getDataLayout().getTypeAllocSize(Ty);
683 return SizeInBytes * ArraySize;
684 }
685
686 /// Check if we want (and can) handle this alloca.
687 bool isInterestingAlloca(const AllocaInst &AI);
688
689 bool ignoreAccess(Value *Ptr);
690 void getInterestingMemoryOperands(
691 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting);
692
693 void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
694 InterestingMemoryOperand &O, bool UseCalls,
695 const DataLayout &DL);
696 void instrumentPointerComparisonOrSubtraction(Instruction *I);
697 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
698 Value *Addr, uint32_t TypeSize, bool IsWrite,
699 Value *SizeArgument, bool UseCalls, uint32_t Exp);
700 Instruction *instrumentAMDGPUAddress(Instruction *OrigIns,
701 Instruction *InsertBefore, Value *Addr,
702 uint32_t TypeSize, bool IsWrite,
703 Value *SizeArgument);
704 void instrumentUnusualSizeOrAlignment(Instruction *I,
705 Instruction *InsertBefore, Value *Addr,
706 uint32_t TypeSize, bool IsWrite,
707 Value *SizeArgument, bool UseCalls,
708 uint32_t Exp);
709 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
710 Value *ShadowValue, uint32_t TypeSize);
711 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
712 bool IsWrite, size_t AccessSizeIndex,
713 Value *SizeArgument, uint32_t Exp);
714 void instrumentMemIntrinsic(MemIntrinsic *MI);
715 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
716 bool suppressInstrumentationSiteForDebug(int &Instrumented);
717 bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI);
718 bool maybeInsertAsanInitAtFunctionEntry(Function &F);
719 bool maybeInsertDynamicShadowAtFunctionEntry(Function &F);
720 void markEscapedLocalAllocas(Function &F);
721
722private:
723 friend struct FunctionStackPoisoner;
724
725 void initializeCallbacks(Module &M);
726
727 bool LooksLikeCodeInBug11395(Instruction *I);
728 bool GlobalIsLinkerInitialized(GlobalVariable *G);
729 bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr,
730 uint64_t TypeSize) const;
731
732 /// Helper to cleanup per-function state.
733 struct FunctionStateRAII {
734 AddressSanitizer *Pass;
735
736 FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) {
737 assert(Pass->ProcessedAllocas.empty() &&(static_cast<void> (0))
738 "last pass forgot to clear cache")(static_cast<void> (0));
739 assert(!Pass->LocalDynamicShadow)(static_cast<void> (0));
740 }
741
742 ~FunctionStateRAII() {
743 Pass->LocalDynamicShadow = nullptr;
744 Pass->ProcessedAllocas.clear();
745 }
746 };
747
748 LLVMContext *C;
749 Triple TargetTriple;
750 int LongSize;
751 bool CompileKernel;
752 bool Recover;
753 bool UseAfterScope;
754 AsanDetectStackUseAfterReturnMode UseAfterReturn;
755 Type *IntptrTy;
756 Type *Int8PtrTy;
757 Type *Int32Ty;
758 ShadowMapping Mapping;
759 FunctionCallee AsanHandleNoReturnFunc;
760 FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction;
761 Constant *AsanShadowGlobal;
762
763 // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize).
764 FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes];
765 FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes];
766
767 // These arrays is indexed by AccessIsWrite and Experiment.
768 FunctionCallee AsanErrorCallbackSized[2][2];
769 FunctionCallee AsanMemoryAccessCallbackSized[2][2];
770
771 FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset;
772 Value *LocalDynamicShadow = nullptr;
773 const GlobalsMetadata &GlobalsMD;
774 DenseMap<const AllocaInst *, bool> ProcessedAllocas;
775
776 FunctionCallee AMDGPUAddressShared;
777 FunctionCallee AMDGPUAddressPrivate;
778};
779
780class AddressSanitizerLegacyPass : public FunctionPass {
781public:
782 static char ID;
783
784 explicit AddressSanitizerLegacyPass(
785 bool CompileKernel = false, bool Recover = false,
786 bool UseAfterScope = false,
787 AsanDetectStackUseAfterReturnMode UseAfterReturn =
788 AsanDetectStackUseAfterReturnMode::Runtime)
789 : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover),
790 UseAfterScope(UseAfterScope), UseAfterReturn(UseAfterReturn) {
791 initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry());
792 }
793
794 StringRef getPassName() const override {
795 return "AddressSanitizerFunctionPass";
796 }
797
798 void getAnalysisUsage(AnalysisUsage &AU) const override {
799 AU.addRequired<ASanGlobalsMetadataWrapperPass>();
800 AU.addRequired<TargetLibraryInfoWrapperPass>();
801 }
802
803 bool runOnFunction(Function &F) override {
804 GlobalsMetadata &GlobalsMD =
805 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD();
806 const TargetLibraryInfo *TLI =
807 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
808 AddressSanitizer ASan(*F.getParent(), &GlobalsMD, CompileKernel, Recover,
809 UseAfterScope, UseAfterReturn);
810 return ASan.instrumentFunction(F, TLI);
811 }
812
813private:
814 bool CompileKernel;
815 bool Recover;
816 bool UseAfterScope;
817 AsanDetectStackUseAfterReturnMode UseAfterReturn;
818};
819
820class ModuleAddressSanitizer {
821public:
822 ModuleAddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD,
823 bool CompileKernel = false, bool Recover = false,
824 bool UseGlobalsGC = true, bool UseOdrIndicator = false,
825 AsanDtorKind DestructorKind = AsanDtorKind::Global)
826 : GlobalsMD(*GlobalsMD),
827 CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan
828 : CompileKernel),
829 Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover),
830 UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel),
831 // Enable aliases as they should have no downside with ODR indicators.
832 UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias),
833 UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator),
834 // Not a typo: ClWithComdat is almost completely pointless without
835 // ClUseGlobalsGC (because then it only works on modules without
836 // globals, which are rare); it is a prerequisite for ClUseGlobalsGC;
837 // and both suffer from gold PR19002 for which UseGlobalsGC constructor
838 // argument is designed as workaround. Therefore, disable both
839 // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to
840 // do globals-gc.
841 UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel),
842 DestructorKind(DestructorKind) {
843 C = &(M.getContext());
844 int LongSize = M.getDataLayout().getPointerSizeInBits();
845 IntptrTy = Type::getIntNTy(*C, LongSize);
846 TargetTriple = Triple(M.getTargetTriple());
847 Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel);
848
849 if (ClOverrideDestructorKind != AsanDtorKind::Invalid)
850 this->DestructorKind = ClOverrideDestructorKind;
851 assert(this->DestructorKind != AsanDtorKind::Invalid)(static_cast<void> (0));
852 }
853
854 bool instrumentModule(Module &);
855
856private:
857 void initializeCallbacks(Module &M);
858
859 bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat);
860 void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M,
861 ArrayRef<GlobalVariable *> ExtendedGlobals,
862 ArrayRef<Constant *> MetadataInitializers);
863 void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M,
864 ArrayRef<GlobalVariable *> ExtendedGlobals,
865 ArrayRef<Constant *> MetadataInitializers,
866 const std::string &UniqueModuleId);
867 void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M,
868 ArrayRef<GlobalVariable *> ExtendedGlobals,
869 ArrayRef<Constant *> MetadataInitializers);
870 void
871 InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M,
872 ArrayRef<GlobalVariable *> ExtendedGlobals,
873 ArrayRef<Constant *> MetadataInitializers);
874
875 GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer,
876 StringRef OriginalName);
877 void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata,
878 StringRef InternalSuffix);
879 Instruction *CreateAsanModuleDtor(Module &M);
880
881 const GlobalVariable *getExcludedAliasedGlobal(const GlobalAlias &GA) const;
882 bool shouldInstrumentGlobal(GlobalVariable *G) const;
883 bool ShouldUseMachOGlobalsSection() const;
884 StringRef getGlobalMetadataSection() const;
885 void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName);
886 void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName);
887 uint64_t getMinRedzoneSizeForGlobal() const {
888 return getRedzoneSizeForScale(Mapping.Scale);
889 }
890 uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const;
891 int GetAsanVersion(const Module &M) const;
892
893 const GlobalsMetadata &GlobalsMD;
894 bool CompileKernel;
895 bool Recover;
896 bool UseGlobalsGC;
897 bool UsePrivateAlias;
898 bool UseOdrIndicator;
899 bool UseCtorComdat;
900 AsanDtorKind DestructorKind;
901 Type *IntptrTy;
902 LLVMContext *C;
903 Triple TargetTriple;
904 ShadowMapping Mapping;
905 FunctionCallee AsanPoisonGlobals;
906 FunctionCallee AsanUnpoisonGlobals;
907 FunctionCallee AsanRegisterGlobals;
908 FunctionCallee AsanUnregisterGlobals;
909 FunctionCallee AsanRegisterImageGlobals;
910 FunctionCallee AsanUnregisterImageGlobals;
911 FunctionCallee AsanRegisterElfGlobals;
912 FunctionCallee AsanUnregisterElfGlobals;
913
914 Function *AsanCtorFunction = nullptr;
915 Function *AsanDtorFunction = nullptr;
916};
917
918class ModuleAddressSanitizerLegacyPass : public ModulePass {
919public:
920 static char ID;
921
922 explicit ModuleAddressSanitizerLegacyPass(
923 bool CompileKernel = false, bool Recover = false, bool UseGlobalGC = true,
924 bool UseOdrIndicator = false,
925 AsanDtorKind DestructorKind = AsanDtorKind::Global)
926 : ModulePass(ID), CompileKernel(CompileKernel), Recover(Recover),
927 UseGlobalGC(UseGlobalGC), UseOdrIndicator(UseOdrIndicator),
928 DestructorKind(DestructorKind) {
929 initializeModuleAddressSanitizerLegacyPassPass(
930 *PassRegistry::getPassRegistry());
931 }
932
933 StringRef getPassName() const override { return "ModuleAddressSanitizer"; }
934
935 void getAnalysisUsage(AnalysisUsage &AU) const override {
936 AU.addRequired<ASanGlobalsMetadataWrapperPass>();
937 }
938
939 bool runOnModule(Module &M) override {
940 GlobalsMetadata &GlobalsMD =
941 getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD();
942 ModuleAddressSanitizer ASanModule(M, &GlobalsMD, CompileKernel, Recover,
943 UseGlobalGC, UseOdrIndicator,
944 DestructorKind);
945 return ASanModule.instrumentModule(M);
946 }
947
948private:
949 bool CompileKernel;
950 bool Recover;
951 bool UseGlobalGC;
952 bool UseOdrIndicator;
953 AsanDtorKind DestructorKind;
954};
955
956// Stack poisoning does not play well with exception handling.
957// When an exception is thrown, we essentially bypass the code
958// that unpoisones the stack. This is why the run-time library has
959// to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
960// stack in the interceptor. This however does not work inside the
961// actual function which catches the exception. Most likely because the
962// compiler hoists the load of the shadow value somewhere too high.
963// This causes asan to report a non-existing bug on 453.povray.
964// It sounds like an LLVM bug.
965struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
966 Function &F;
967 AddressSanitizer &ASan;
968 DIBuilder DIB;
969 LLVMContext *C;
970 Type *IntptrTy;
971 Type *IntptrPtrTy;
972 ShadowMapping Mapping;
973
974 SmallVector<AllocaInst *, 16> AllocaVec;
975 SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp;
976 SmallVector<Instruction *, 8> RetVec;
977
978 FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1],
979 AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1];
980 FunctionCallee AsanSetShadowFunc[0x100] = {};
981 FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc;
982 FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc;
983
984 // Stores a place and arguments of poisoning/unpoisoning call for alloca.
985 struct AllocaPoisonCall {
986 IntrinsicInst *InsBefore;
987 AllocaInst *AI;
988 uint64_t Size;
989 bool DoPoison;
990 };
991 SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec;
992 SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec;
993 bool HasUntracedLifetimeIntrinsic = false;
994
995 SmallVector<AllocaInst *, 1> DynamicAllocaVec;
996 SmallVector<IntrinsicInst *, 1> StackRestoreVec;
997 AllocaInst *DynamicAllocaLayout = nullptr;
998 IntrinsicInst *LocalEscapeCall = nullptr;
999
1000 bool HasInlineAsm = false;
1001 bool HasReturnsTwiceCall = false;
1002 bool PoisonStack;
1003
1004 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan)
1005 : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false),
1006 C(ASan.C), IntptrTy(ASan.IntptrTy),
1007 IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping),
1008 PoisonStack(ClStack &&
1009 !Triple(F.getParent()->getTargetTriple()).isAMDGPU()) {}
1010
1011 bool runOnFunction() {
1012 if (!PoisonStack)
1013 return false;
1014
1015 if (ClRedzoneByvalArgs)
1016 copyArgsPassedByValToAllocas();
1017
1018 // Collect alloca, ret, lifetime instructions etc.
1019 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB);
1020
1021 if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false;
1022
1023 initializeCallbacks(*F.getParent());
1024
1025 if (HasUntracedLifetimeIntrinsic) {
1026 // If there are lifetime intrinsics which couldn't be traced back to an
1027 // alloca, we may not know exactly when a variable enters scope, and
1028 // therefore should "fail safe" by not poisoning them.
1029 StaticAllocaPoisonCallVec.clear();
1030 DynamicAllocaPoisonCallVec.clear();
1031 }
1032
1033 processDynamicAllocas();
1034 processStaticAllocas();
1035
1036 if (ClDebugStack) {
1037 LLVM_DEBUG(dbgs() << F)do { } while (false);
1038 }
1039 return true;
1040 }
1041
1042 // Arguments marked with the "byval" attribute are implicitly copied without
1043 // using an alloca instruction. To produce redzones for those arguments, we
1044 // copy them a second time into memory allocated with an alloca instruction.
1045 void copyArgsPassedByValToAllocas();
1046
1047 // Finds all Alloca instructions and puts
1048 // poisoned red zones around all of them.
1049 // Then unpoison everything back before the function returns.
1050 void processStaticAllocas();
1051 void processDynamicAllocas();
1052
1053 void createDynamicAllocasInitStorage();
1054
1055 // ----------------------- Visitors.
1056 /// Collect all Ret instructions, or the musttail call instruction if it
1057 /// precedes the return instruction.
1058 void visitReturnInst(ReturnInst &RI) {
1059 if (CallInst *CI = RI.getParent()->getTerminatingMustTailCall())
1060 RetVec.push_back(CI);
1061 else
1062 RetVec.push_back(&RI);
1063 }
1064
1065 /// Collect all Resume instructions.
1066 void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); }
1067
1068 /// Collect all CatchReturnInst instructions.
1069 void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); }
1070
1071 void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore,
1072 Value *SavedStack) {
1073 IRBuilder<> IRB(InstBefore);
1074 Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy);
1075 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we
1076 // need to adjust extracted SP to compute the address of the most recent
1077 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for
1078 // this purpose.
1079 if (!isa<ReturnInst>(InstBefore)) {
1080 Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration(
1081 InstBefore->getModule(), Intrinsic::get_dynamic_area_offset,
1082 {IntptrTy});
1083
1084 Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {});
1085
1086 DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy),
1087 DynamicAreaOffset);
1088 }
1089
1090 IRB.CreateCall(
1091 AsanAllocasUnpoisonFunc,
1092 {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr});
1093 }
1094
1095 // Unpoison dynamic allocas redzones.
1096 void unpoisonDynamicAllocas() {
1097 for (Instruction *Ret : RetVec)
1098 unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout);
1099
1100 for (Instruction *StackRestoreInst : StackRestoreVec)
1101 unpoisonDynamicAllocasBeforeInst(StackRestoreInst,
1102 StackRestoreInst->getOperand(0));
1103 }
1104
1105 // Deploy and poison redzones around dynamic alloca call. To do this, we
1106 // should replace this call with another one with changed parameters and
1107 // replace all its uses with new address, so
1108 // addr = alloca type, old_size, align
1109 // is replaced by
1110 // new_size = (old_size + additional_size) * sizeof(type)
1111 // tmp = alloca i8, new_size, max(align, 32)
1112 // addr = tmp + 32 (first 32 bytes are for the left redzone).
1113 // Additional_size is added to make new memory allocation contain not only
1114 // requested memory, but also left, partial and right redzones.
1115 void handleDynamicAllocaCall(AllocaInst *AI);
1116
1117 /// Collect Alloca instructions we want (and can) handle.
1118 void visitAllocaInst(AllocaInst &AI) {
1119 if (!ASan.isInterestingAlloca(AI)) {
1120 if (AI.isStaticAlloca()) {
1121 // Skip over allocas that are present *before* the first instrumented
1122 // alloca, we don't want to move those around.
1123 if (AllocaVec.empty())
1124 return;
1125
1126 StaticAllocasToMoveUp.push_back(&AI);
1127 }
1128 return;
1129 }
1130
1131 if (!AI.isStaticAlloca())
1132 DynamicAllocaVec.push_back(&AI);
1133 else
1134 AllocaVec.push_back(&AI);
1135 }
1136
1137 /// Collect lifetime intrinsic calls to check for use-after-scope
1138 /// errors.
1139 void visitIntrinsicInst(IntrinsicInst &II) {
1140 Intrinsic::ID ID = II.getIntrinsicID();
1141 if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II);
1
Assuming 'ID' is not equal to stackrestore
2
Taking false branch
1142 if (ID == Intrinsic::localescape) LocalEscapeCall = &II;
3
Assuming 'ID' is not equal to localescape
4
Taking false branch
1143 if (!ASan.UseAfterScope)
5
Assuming field 'UseAfterScope' is true
6
Taking false branch
1144 return;
1145 if (!II.isLifetimeStartOrEnd())
7
Assuming the condition is false
8
Taking false branch
1146 return;
1147 // Found lifetime intrinsic, add ASan instrumentation if necessary.
1148 auto *Size = cast<ConstantInt>(II.getArgOperand(0));
1149 // If size argument is undefined, don't do anything.
1150 if (Size->isMinusOne()) return;
9
Taking false branch
1151 // Check that size doesn't saturate uint64_t and can
1152 // be stored in IntptrTy.
1153 const uint64_t SizeValue = Size->getValue().getLimitedValue();
1154 if (SizeValue == ~0ULL ||
10
Assuming the condition is false
12
Taking false branch
1155 !ConstantInt::isValueValidForType(IntptrTy, SizeValue))
11
Assuming the condition is false
1156 return;
1157 // Find alloca instruction that corresponds to llvm.lifetime argument.
1158 // Currently we can only handle lifetime markers pointing to the
1159 // beginning of the alloca.
1160 AllocaInst *AI = findAllocaForValue(II.getArgOperand(1), true);
1161 if (!AI) {
13
Assuming 'AI' is non-null
14
Taking false branch
1162 HasUntracedLifetimeIntrinsic = true;
1163 return;
1164 }
1165 // We're interested only in allocas we can handle.
1166 if (!ASan.isInterestingAlloca(*AI))
15
Calling 'AddressSanitizer::isInterestingAlloca'
1167 return;
1168 bool DoPoison = (ID == Intrinsic::lifetime_end);
1169 AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison};
1170 if (AI->isStaticAlloca())
1171 StaticAllocaPoisonCallVec.push_back(APC);
1172 else if (ClInstrumentDynamicAllocas)
1173 DynamicAllocaPoisonCallVec.push_back(APC);
1174 }
1175
1176 void visitCallBase(CallBase &CB) {
1177 if (CallInst *CI = dyn_cast<CallInst>(&CB)) {
1178 HasInlineAsm |= CI->isInlineAsm() && &CB != ASan.LocalDynamicShadow;
1179 HasReturnsTwiceCall |= CI->canReturnTwice();
1180 }
1181 }
1182
1183 // ---------------------- Helpers.
1184 void initializeCallbacks(Module &M);
1185
1186 // Copies bytes from ShadowBytes into shadow memory for indexes where
1187 // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that
1188 // ShadowBytes[i] is constantly zero and doesn't need to be overwritten.
1189 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
1190 IRBuilder<> &IRB, Value *ShadowBase);
1191 void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes,
1192 size_t Begin, size_t End, IRBuilder<> &IRB,
1193 Value *ShadowBase);
1194 void copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
1195 ArrayRef<uint8_t> ShadowBytes, size_t Begin,
1196 size_t End, IRBuilder<> &IRB, Value *ShadowBase);
1197
1198 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison);
1199
1200 Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L,
1201 bool Dynamic);
1202 PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue,
1203 Instruction *ThenTerm, Value *ValueIfFalse);
1204};
1205
1206} // end anonymous namespace
1207
1208void LocationMetadata::parse(MDNode *MDN) {
1209 assert(MDN->getNumOperands() == 3)(static_cast<void> (0));
1210 MDString *DIFilename = cast<MDString>(MDN->getOperand(0));
1211 Filename = DIFilename->getString();
1212 LineNo = mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue();
1213 ColumnNo =
1214 mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue();
1215}
1216
1217// FIXME: It would be cleaner to instead attach relevant metadata to the globals
1218// we want to sanitize instead and reading this metadata on each pass over a
1219// function instead of reading module level metadata at first.
1220GlobalsMetadata::GlobalsMetadata(Module &M) {
1221 NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals");
1222 if (!Globals)
1223 return;
1224 for (auto MDN : Globals->operands()) {
1225 // Metadata node contains the global and the fields of "Entry".
1226 assert(MDN->getNumOperands() == 5)(static_cast<void> (0));
1227 auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0));
1228 // The optimizer may optimize away a global entirely.
1229 if (!V)
1230 continue;
1231 auto *StrippedV = V->stripPointerCasts();
1232 auto *GV = dyn_cast<GlobalVariable>(StrippedV);
1233 if (!GV)
1234 continue;
1235 // We can already have an entry for GV if it was merged with another
1236 // global.
1237 Entry &E = Entries[GV];
1238 if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1)))
1239 E.SourceLoc.parse(Loc);
1240 if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2)))
1241 E.Name = Name->getString();
1242 ConstantInt *IsDynInit = mdconst::extract<ConstantInt>(MDN->getOperand(3));
1243 E.IsDynInit |= IsDynInit->isOne();
1244 ConstantInt *IsExcluded =
1245 mdconst::extract<ConstantInt>(MDN->getOperand(4));
1246 E.IsExcluded |= IsExcluded->isOne();
1247 }
1248}
1249
1250AnalysisKey ASanGlobalsMetadataAnalysis::Key;
1251
1252GlobalsMetadata ASanGlobalsMetadataAnalysis::run(Module &M,
1253 ModuleAnalysisManager &AM) {
1254 return GlobalsMetadata(M);
1255}
1256
1257PreservedAnalyses AddressSanitizerPass::run(Function &F,
1258 AnalysisManager<Function> &AM) {
1259 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
1260 Module &M = *F.getParent();
1261 if (auto *R = MAMProxy.getCachedResult<ASanGlobalsMetadataAnalysis>(M)) {
1262 const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
1263 AddressSanitizer Sanitizer(M, R, Options.CompileKernel, Options.Recover,
1264 Options.UseAfterScope, Options.UseAfterReturn);
1265 if (Sanitizer.instrumentFunction(F, TLI))
1266 return PreservedAnalyses::none();
1267 return PreservedAnalyses::all();
1268 }
1269
1270 report_fatal_error(
1271 "The ASanGlobalsMetadataAnalysis is required to run before "
1272 "AddressSanitizer can run");
1273 return PreservedAnalyses::all();
1274}
1275
1276ModuleAddressSanitizerPass::ModuleAddressSanitizerPass(
1277 bool CompileKernel, bool Recover, bool UseGlobalGC, bool UseOdrIndicator,
1278 AsanDtorKind DestructorKind)
1279 : CompileKernel(CompileKernel), Recover(Recover), UseGlobalGC(UseGlobalGC),
1280 UseOdrIndicator(UseOdrIndicator), DestructorKind(DestructorKind) {}
1281
1282PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M,
1283 AnalysisManager<Module> &AM) {
1284 GlobalsMetadata &GlobalsMD = AM.getResult<ASanGlobalsMetadataAnalysis>(M);
1285 ModuleAddressSanitizer Sanitizer(M, &GlobalsMD, CompileKernel, Recover,
1286 UseGlobalGC, UseOdrIndicator,
1287 DestructorKind);
1288 if (Sanitizer.instrumentModule(M))
1289 return PreservedAnalyses::none();
1290 return PreservedAnalyses::all();
1291}
1292
1293INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass, "asan-globals-md",static void *initializeASanGlobalsMetadataWrapperPassPassOnce
(PassRegistry &Registry) { PassInfo *PI = new PassInfo( "Read metadata to mark which globals should be instrumented "
"when running ASan.", "asan-globals-md", &ASanGlobalsMetadataWrapperPass
::ID, PassInfo::NormalCtor_t(callDefaultCtor<ASanGlobalsMetadataWrapperPass
>), false, true); Registry.registerPass(*PI, true); return
PI; } static llvm::once_flag InitializeASanGlobalsMetadataWrapperPassPassFlag
; void llvm::initializeASanGlobalsMetadataWrapperPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeASanGlobalsMetadataWrapperPassPassFlag
, initializeASanGlobalsMetadataWrapperPassPassOnce, std::ref(
Registry)); }
1294 "Read metadata to mark which globals should be instrumented "static void *initializeASanGlobalsMetadataWrapperPassPassOnce
(PassRegistry &Registry) { PassInfo *PI = new PassInfo( "Read metadata to mark which globals should be instrumented "
"when running ASan.", "asan-globals-md", &ASanGlobalsMetadataWrapperPass
::ID, PassInfo::NormalCtor_t(callDefaultCtor<ASanGlobalsMetadataWrapperPass
>), false, true); Registry.registerPass(*PI, true); return
PI; } static llvm::once_flag InitializeASanGlobalsMetadataWrapperPassPassFlag
; void llvm::initializeASanGlobalsMetadataWrapperPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeASanGlobalsMetadataWrapperPassPassFlag
, initializeASanGlobalsMetadataWrapperPassPassOnce, std::ref(
Registry)); }
1295 "when running ASan.",static void *initializeASanGlobalsMetadataWrapperPassPassOnce
(PassRegistry &Registry) { PassInfo *PI = new PassInfo( "Read metadata to mark which globals should be instrumented "
"when running ASan.", "asan-globals-md", &ASanGlobalsMetadataWrapperPass
::ID, PassInfo::NormalCtor_t(callDefaultCtor<ASanGlobalsMetadataWrapperPass
>), false, true); Registry.registerPass(*PI, true); return
PI; } static llvm::once_flag InitializeASanGlobalsMetadataWrapperPassPassFlag
; void llvm::initializeASanGlobalsMetadataWrapperPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeASanGlobalsMetadataWrapperPassPassFlag
, initializeASanGlobalsMetadataWrapperPassPassOnce, std::ref(
Registry)); }
1296 false, true)static void *initializeASanGlobalsMetadataWrapperPassPassOnce
(PassRegistry &Registry) { PassInfo *PI = new PassInfo( "Read metadata to mark which globals should be instrumented "
"when running ASan.", "asan-globals-md", &ASanGlobalsMetadataWrapperPass
::ID, PassInfo::NormalCtor_t(callDefaultCtor<ASanGlobalsMetadataWrapperPass
>), false, true); Registry.registerPass(*PI, true); return
PI; } static llvm::once_flag InitializeASanGlobalsMetadataWrapperPassPassFlag
; void llvm::initializeASanGlobalsMetadataWrapperPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeASanGlobalsMetadataWrapperPassPassFlag
, initializeASanGlobalsMetadataWrapperPassPassOnce, std::ref(
Registry)); }
1297
1298char AddressSanitizerLegacyPass::ID = 0;
1299
1300INITIALIZE_PASS_BEGIN(static void *initializeAddressSanitizerLegacyPassPassOnce(PassRegistry
&Registry) {
1301 AddressSanitizerLegacyPass, "asan",static void *initializeAddressSanitizerLegacyPassPassOnce(PassRegistry
&Registry) {
1302 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,static void *initializeAddressSanitizerLegacyPassPassOnce(PassRegistry
&Registry) {
1303 false)static void *initializeAddressSanitizerLegacyPassPassOnce(PassRegistry
&Registry) {
1304INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass)initializeASanGlobalsMetadataWrapperPassPass(Registry);
1305INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)initializeTargetLibraryInfoWrapperPassPass(Registry);
1306INITIALIZE_PASS_END(PassInfo *PI = new PassInfo( "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
, "asan", &AddressSanitizerLegacyPass::ID, PassInfo::NormalCtor_t
(callDefaultCtor<AddressSanitizerLegacyPass>), false, false
); Registry.registerPass(*PI, true); return PI; } static llvm
::once_flag InitializeAddressSanitizerLegacyPassPassFlag; void
llvm::initializeAddressSanitizerLegacyPassPass(PassRegistry &
Registry) { llvm::call_once(InitializeAddressSanitizerLegacyPassPassFlag
, initializeAddressSanitizerLegacyPassPassOnce, std::ref(Registry
)); }
1307 AddressSanitizerLegacyPass, "asan",PassInfo *PI = new PassInfo( "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
, "asan", &AddressSanitizerLegacyPass::ID, PassInfo::NormalCtor_t
(callDefaultCtor<AddressSanitizerLegacyPass>), false, false
); Registry.registerPass(*PI, true); return PI; } static llvm
::once_flag InitializeAddressSanitizerLegacyPassPassFlag; void
llvm::initializeAddressSanitizerLegacyPassPass(PassRegistry &
Registry) { llvm::call_once(InitializeAddressSanitizerLegacyPassPassFlag
, initializeAddressSanitizerLegacyPassPassOnce, std::ref(Registry
)); }
1308 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,PassInfo *PI = new PassInfo( "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
, "asan", &AddressSanitizerLegacyPass::ID, PassInfo::NormalCtor_t
(callDefaultCtor<AddressSanitizerLegacyPass>), false, false
); Registry.registerPass(*PI, true); return PI; } static llvm
::once_flag InitializeAddressSanitizerLegacyPassPassFlag; void
llvm::initializeAddressSanitizerLegacyPassPass(PassRegistry &
Registry) { llvm::call_once(InitializeAddressSanitizerLegacyPassPassFlag
, initializeAddressSanitizerLegacyPassPassOnce, std::ref(Registry
)); }
1309 false)PassInfo *PI = new PassInfo( "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
, "asan", &AddressSanitizerLegacyPass::ID, PassInfo::NormalCtor_t
(callDefaultCtor<AddressSanitizerLegacyPass>), false, false
); Registry.registerPass(*PI, true); return PI; } static llvm
::once_flag InitializeAddressSanitizerLegacyPassPassFlag; void
llvm::initializeAddressSanitizerLegacyPassPass(PassRegistry &
Registry) { llvm::call_once(InitializeAddressSanitizerLegacyPassPassFlag
, initializeAddressSanitizerLegacyPassPassOnce, std::ref(Registry
)); }
1310
1311FunctionPass *llvm::createAddressSanitizerFunctionPass(
1312 bool CompileKernel, bool Recover, bool UseAfterScope,
1313 AsanDetectStackUseAfterReturnMode UseAfterReturn) {
1314 assert(!CompileKernel || Recover)(static_cast<void> (0));
1315 return new AddressSanitizerLegacyPass(CompileKernel, Recover, UseAfterScope,
1316 UseAfterReturn);
1317}
1318
1319char ModuleAddressSanitizerLegacyPass::ID = 0;
1320
1321INITIALIZE_PASS(static void *initializeModuleAddressSanitizerLegacyPassPassOnce
(PassRegistry &Registry) { PassInfo *PI = new PassInfo( "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
"ModulePass", "asan-module", &ModuleAddressSanitizerLegacyPass
::ID, PassInfo::NormalCtor_t(callDefaultCtor<ModuleAddressSanitizerLegacyPass
>), false, false); Registry.registerPass(*PI, true); return
PI; } static llvm::once_flag InitializeModuleAddressSanitizerLegacyPassPassFlag
; void llvm::initializeModuleAddressSanitizerLegacyPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeModuleAddressSanitizerLegacyPassPassFlag
, initializeModuleAddressSanitizerLegacyPassPassOnce, std::ref
(Registry)); }
1322 ModuleAddressSanitizerLegacyPass, "asan-module",static void *initializeModuleAddressSanitizerLegacyPassPassOnce
(PassRegistry &Registry) { PassInfo *PI = new PassInfo( "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
"ModulePass", "asan-module", &ModuleAddressSanitizerLegacyPass
::ID, PassInfo::NormalCtor_t(callDefaultCtor<ModuleAddressSanitizerLegacyPass
>), false, false); Registry.registerPass(*PI, true); return
PI; } static llvm::once_flag InitializeModuleAddressSanitizerLegacyPassPassFlag
; void llvm::initializeModuleAddressSanitizerLegacyPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeModuleAddressSanitizerLegacyPassPassFlag
, initializeModuleAddressSanitizerLegacyPassPassOnce, std::ref
(Registry)); }
1323 "AddressSanitizer: detects use-after-free and out-of-bounds bugs."static void *initializeModuleAddressSanitizerLegacyPassPassOnce
(PassRegistry &Registry) { PassInfo *PI = new PassInfo( "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
"ModulePass", "asan-module", &ModuleAddressSanitizerLegacyPass
::ID, PassInfo::NormalCtor_t(callDefaultCtor<ModuleAddressSanitizerLegacyPass
>), false, false); Registry.registerPass(*PI, true); return
PI; } static llvm::once_flag InitializeModuleAddressSanitizerLegacyPassPassFlag
; void llvm::initializeModuleAddressSanitizerLegacyPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeModuleAddressSanitizerLegacyPassPassFlag
, initializeModuleAddressSanitizerLegacyPassPassOnce, std::ref
(Registry)); }
1324 "ModulePass",static void *initializeModuleAddressSanitizerLegacyPassPassOnce
(PassRegistry &Registry) { PassInfo *PI = new PassInfo( "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
"ModulePass", "asan-module", &ModuleAddressSanitizerLegacyPass
::ID, PassInfo::NormalCtor_t(callDefaultCtor<ModuleAddressSanitizerLegacyPass
>), false, false); Registry.registerPass(*PI, true); return
PI; } static llvm::once_flag InitializeModuleAddressSanitizerLegacyPassPassFlag
; void llvm::initializeModuleAddressSanitizerLegacyPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeModuleAddressSanitizerLegacyPassPassFlag
, initializeModuleAddressSanitizerLegacyPassPassOnce, std::ref
(Registry)); }
1325 false, false)static void *initializeModuleAddressSanitizerLegacyPassPassOnce
(PassRegistry &Registry) { PassInfo *PI = new PassInfo( "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
"ModulePass", "asan-module", &ModuleAddressSanitizerLegacyPass
::ID, PassInfo::NormalCtor_t(callDefaultCtor<ModuleAddressSanitizerLegacyPass
>), false, false); Registry.registerPass(*PI, true); return
PI; } static llvm::once_flag InitializeModuleAddressSanitizerLegacyPassPassFlag
; void llvm::initializeModuleAddressSanitizerLegacyPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeModuleAddressSanitizerLegacyPassPassFlag
, initializeModuleAddressSanitizerLegacyPassPassOnce, std::ref
(Registry)); }
1326
1327ModulePass *llvm::createModuleAddressSanitizerLegacyPassPass(
1328 bool CompileKernel, bool Recover, bool UseGlobalsGC, bool UseOdrIndicator,
1329 AsanDtorKind Destructor) {
1330 assert(!CompileKernel || Recover)(static_cast<void> (0));
1331 return new ModuleAddressSanitizerLegacyPass(
1332 CompileKernel, Recover, UseGlobalsGC, UseOdrIndicator, Destructor);
1333}
1334
1335static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
1336 size_t Res = countTrailingZeros(TypeSize / 8);
1337 assert(Res < kNumberOfAccessSizes)(static_cast<void> (0));
1338 return Res;
1339}
1340
1341/// Create a global describing a source location.
1342static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M,
1343 LocationMetadata MD) {
1344 Constant *LocData[] = {
1345 createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix),
1346 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo),
1347 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo),
1348 };
1349 auto LocStruct = ConstantStruct::getAnon(LocData);
1350 auto GV = new GlobalVariable(M, LocStruct->getType(), true,
1351 GlobalValue::PrivateLinkage, LocStruct,
1352 kAsanGenPrefix);
1353 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
1354 return GV;
1355}
1356
1357/// Check if \p G has been created by a trusted compiler pass.
1358static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) {
1359 // Do not instrument @llvm.global_ctors, @llvm.used, etc.
1360 if (G->getName().startswith("llvm."))
1361 return true;
1362
1363 // Do not instrument asan globals.
1364 if (G->getName().startswith(kAsanGenPrefix) ||
1365 G->getName().startswith(kSanCovGenPrefix) ||
1366 G->getName().startswith(kODRGenPrefix))
1367 return true;
1368
1369 // Do not instrument gcov counter arrays.
1370 if (G->getName() == "__llvm_gcov_ctr")
1371 return true;
1372
1373 return false;
1374}
1375
1376static bool isUnsupportedAMDGPUAddrspace(Value *Addr) {
1377 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
1378 unsigned int AddrSpace = PtrTy->getPointerAddressSpace();
1379 if (AddrSpace == 3 || AddrSpace == 5)
1380 return true;
1381 return false;
1382}
1383
1384Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
1385 // Shadow >> scale
1386 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
1387 if (Mapping.Offset == 0) return Shadow;
1388 // (Shadow >> scale) | offset
1389 Value *ShadowBase;
1390 if (LocalDynamicShadow)
1391 ShadowBase = LocalDynamicShadow;
1392 else
1393 ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset);
1394 if (Mapping.OrShadowOffset)
1395 return IRB.CreateOr(Shadow, ShadowBase);
1396 else
1397 return IRB.CreateAdd(Shadow, ShadowBase);
1398}
1399
1400// Instrument memset/memmove/memcpy
1401void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
1402 IRBuilder<> IRB(MI);
1403 if (isa<MemTransferInst>(MI)) {
1404 IRB.CreateCall(
1405 isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy,
1406 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
1407 IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()),
1408 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
1409 } else if (isa<MemSetInst>(MI)) {
1410 IRB.CreateCall(
1411 AsanMemset,
1412 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
1413 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
1414 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
1415 }
1416 MI->eraseFromParent();
1417}
1418
1419/// Check if we want (and can) handle this alloca.
1420bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) {
1421 auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI);
1422
1423 if (PreviouslySeenAllocaInfo != ProcessedAllocas.end())
1424 return PreviouslySeenAllocaInfo->getSecond();
1425
1426 bool IsInteresting =
1427 (AI.getAllocatedType()->isSized() &&
1428 // alloca() may be called with 0 size, ignore it.
1429 ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) &&
16
Assuming the condition is false
17
Calling 'AddressSanitizer::getAllocaSizeInBytes'
1430 // We are only interested in allocas not promotable to registers.
1431 // Promotable allocas are common under -O0.
1432 (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) &&
1433 // inalloca allocas are not treated as static, and we don't want
1434 // dynamic alloca instrumentation for them as well.
1435 !AI.isUsedWithInAlloca() &&
1436 // swifterror allocas are register promoted by ISel
1437 !AI.isSwiftError());
1438
1439 ProcessedAllocas[&AI] = IsInteresting;
1440 return IsInteresting;
1441}
1442
1443bool AddressSanitizer::ignoreAccess(Value *Ptr) {
1444 // Instrument acesses from different address spaces only for AMDGPU.
1445 Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType());
1446 if (PtrTy->getPointerAddressSpace() != 0 &&
1447 !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(Ptr)))
1448 return true;
1449
1450 // Ignore swifterror addresses.
1451 // swifterror memory addresses are mem2reg promoted by instruction
1452 // selection. As such they cannot have regular uses like an instrumentation
1453 // function and it makes no sense to track them as memory.
1454 if (Ptr->isSwiftError())
1455 return true;
1456
1457 // Treat memory accesses to promotable allocas as non-interesting since they
1458 // will not cause memory violations. This greatly speeds up the instrumented
1459 // executable at -O0.
1460 if (auto AI = dyn_cast_or_null<AllocaInst>(Ptr))
1461 if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI))
1462 return true;
1463
1464 return false;
1465}
1466
1467void AddressSanitizer::getInterestingMemoryOperands(
1468 Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) {
1469 // Skip memory accesses inserted by another instrumentation.
1470 if (I->hasMetadata("nosanitize"))
1471 return;
1472
1473 // Do not instrument the load fetching the dynamic shadow address.
1474 if (LocalDynamicShadow == I)
1475 return;
1476
1477 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
1478 if (!ClInstrumentReads || ignoreAccess(LI->getPointerOperand()))
1479 return;
1480 Interesting.emplace_back(I, LI->getPointerOperandIndex(), false,
1481 LI->getType(), LI->getAlign());
1482 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
1483 if (!ClInstrumentWrites || ignoreAccess(SI->getPointerOperand()))
1484 return;
1485 Interesting.emplace_back(I, SI->getPointerOperandIndex(), true,
1486 SI->getValueOperand()->getType(), SI->getAlign());
1487 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
1488 if (!ClInstrumentAtomics || ignoreAccess(RMW->getPointerOperand()))
1489 return;
1490 Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true,
1491 RMW->getValOperand()->getType(), None);
1492 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
1493 if (!ClInstrumentAtomics || ignoreAccess(XCHG->getPointerOperand()))
1494 return;
1495 Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true,
1496 XCHG->getCompareOperand()->getType(), None);
1497 } else if (auto CI = dyn_cast<CallInst>(I)) {
1498 auto *F = CI->getCalledFunction();
1499 if (F && (F->getName().startswith("llvm.masked.load.") ||
1500 F->getName().startswith("llvm.masked.store."))) {
1501 bool IsWrite = F->getName().startswith("llvm.masked.store.");
1502 // Masked store has an initial operand for the value.
1503 unsigned OpOffset = IsWrite ? 1 : 0;
1504 if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads)
1505 return;
1506
1507 auto BasePtr = CI->getOperand(OpOffset);
1508 if (ignoreAccess(BasePtr))
1509 return;
1510 auto Ty = cast<PointerType>(BasePtr->getType())->getElementType();
1511 MaybeAlign Alignment = Align(1);
1512 // Otherwise no alignment guarantees. We probably got Undef.
1513 if (auto *Op = dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset)))
1514 Alignment = Op->getMaybeAlignValue();
1515 Value *Mask = CI->getOperand(2 + OpOffset);
1516 Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask);
1517 } else {
1518 for (unsigned ArgNo = 0; ArgNo < CI->getNumArgOperands(); ArgNo++) {
1519 if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) ||
1520 ignoreAccess(CI->getArgOperand(ArgNo)))
1521 continue;
1522 Type *Ty = CI->getParamByValType(ArgNo);
1523 Interesting.emplace_back(I, ArgNo, false, Ty, Align(1));
1524 }
1525 }
1526 }
1527}
1528
1529static bool isPointerOperand(Value *V) {
1530 return V->getType()->isPointerTy() || isa<PtrToIntInst>(V);
1531}
1532
1533// This is a rough heuristic; it may cause both false positives and
1534// false negatives. The proper implementation requires cooperation with
1535// the frontend.
1536static bool isInterestingPointerComparison(Instruction *I) {
1537 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) {
1538 if (!Cmp->isRelational())
1539 return false;
1540 } else {
1541 return false;
1542 }
1543 return isPointerOperand(I->getOperand(0)) &&
1544 isPointerOperand(I->getOperand(1));
1545}
1546
1547// This is a rough heuristic; it may cause both false positives and
1548// false negatives. The proper implementation requires cooperation with
1549// the frontend.
1550static bool isInterestingPointerSubtraction(Instruction *I) {
1551 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
1552 if (BO->getOpcode() != Instruction::Sub)
1553 return false;
1554 } else {
1555 return false;
1556 }
1557 return isPointerOperand(I->getOperand(0)) &&
1558 isPointerOperand(I->getOperand(1));
1559}
1560
1561bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) {
1562 // If a global variable does not have dynamic initialization we don't
1563 // have to instrument it. However, if a global does not have initializer
1564 // at all, we assume it has dynamic initializer (in other TU).
1565 //
1566 // FIXME: Metadata should be attched directly to the global directly instead
1567 // of being added to llvm.asan.globals.
1568 return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit;
1569}
1570
1571void AddressSanitizer::instrumentPointerComparisonOrSubtraction(
1572 Instruction *I) {
1573 IRBuilder<> IRB(I);
1574 FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction;
1575 Value *Param[2] = {I->getOperand(0), I->getOperand(1)};
1576 for (Value *&i : Param) {
1577 if (i->getType()->isPointerTy())
1578 i = IRB.CreatePointerCast(i, IntptrTy);
1579 }
1580 IRB.CreateCall(F, Param);
1581}
1582
1583static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I,
1584 Instruction *InsertBefore, Value *Addr,
1585 MaybeAlign Alignment, unsigned Granularity,
1586 uint32_t TypeSize, bool IsWrite,
1587 Value *SizeArgument, bool UseCalls,
1588 uint32_t Exp) {
1589 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check
1590 // if the data is properly aligned.
1591 if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 ||
1592 TypeSize == 128) &&
1593 (!Alignment || *Alignment >= Granularity || *Alignment >= TypeSize / 8))
1594 return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite,
1595 nullptr, UseCalls, Exp);
1596 Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize,
1597 IsWrite, nullptr, UseCalls, Exp);
1598}
1599
1600static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass,
1601 const DataLayout &DL, Type *IntptrTy,
1602 Value *Mask, Instruction *I,
1603 Value *Addr, MaybeAlign Alignment,
1604 unsigned Granularity, uint32_t TypeSize,
1605 bool IsWrite, Value *SizeArgument,
1606 bool UseCalls, uint32_t Exp) {
1607 auto *VTy = cast<FixedVectorType>(
1608 cast<PointerType>(Addr->getType())->getElementType());
1609 uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType());
1610 unsigned Num = VTy->getNumElements();
1611 auto Zero = ConstantInt::get(IntptrTy, 0);
1612 for (unsigned Idx = 0; Idx < Num; ++Idx) {
1613 Value *InstrumentedAddress = nullptr;
1614 Instruction *InsertBefore = I;
1615 if (auto *Vector = dyn_cast<ConstantVector>(Mask)) {
1616 // dyn_cast as we might get UndefValue
1617 if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) {
1618 if (Masked->isZero())
1619 // Mask is constant false, so no instrumentation needed.
1620 continue;
1621 // If we have a true or undef value, fall through to doInstrumentAddress
1622 // with InsertBefore == I
1623 }
1624 } else {
1625 IRBuilder<> IRB(I);
1626 Value *MaskElem = IRB.CreateExtractElement(Mask, Idx);
1627 Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false);
1628 InsertBefore = ThenTerm;
1629 }
1630
1631 IRBuilder<> IRB(InsertBefore);
1632 InstrumentedAddress =
1633 IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)});
1634 doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment,
1635 Granularity, ElemTypeSize, IsWrite, SizeArgument,
1636 UseCalls, Exp);
1637 }
1638}
1639
1640void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
1641 InterestingMemoryOperand &O, bool UseCalls,
1642 const DataLayout &DL) {
1643 Value *Addr = O.getPtr();
1644
1645 // Optimization experiments.
1646 // The experiments can be used to evaluate potential optimizations that remove
1647 // instrumentation (assess false negatives). Instead of completely removing
1648 // some instrumentation, you set Exp to a non-zero value (mask of optimization
1649 // experiments that want to remove instrumentation of this instruction).
1650 // If Exp is non-zero, this pass will emit special calls into runtime
1651 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls
1652 // make runtime terminate the program in a special way (with a different
1653 // exit status). Then you run the new compiler on a buggy corpus, collect
1654 // the special terminations (ideally, you don't see them at all -- no false
1655 // negatives) and make the decision on the optimization.
1656 uint32_t Exp = ClForceExperiment;
1657
1658 if (ClOpt && ClOptGlobals) {
1659 // If initialization order checking is disabled, a simple access to a
1660 // dynamically initialized global is always valid.
1661 GlobalVariable *G = dyn_cast<GlobalVariable>(getUnderlyingObject(Addr));
1662 if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) &&
1663 isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) {
1664 NumOptimizedAccessesToGlobalVar++;
1665 return;
1666 }
1667 }
1668
1669 if (ClOpt && ClOptStack) {
1670 // A direct inbounds access to a stack variable is always valid.
1671 if (isa<AllocaInst>(getUnderlyingObject(Addr)) &&
1672 isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) {
1673 NumOptimizedAccessesToStackVar++;
1674 return;
1675 }
1676 }
1677
1678 if (O.IsWrite)
1679 NumInstrumentedWrites++;
1680 else
1681 NumInstrumentedReads++;
1682
1683 unsigned Granularity = 1 << Mapping.Scale;
1684 if (O.MaybeMask) {
1685 instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.getInsn(),
1686 Addr, O.Alignment, Granularity, O.TypeSize,
1687 O.IsWrite, nullptr, UseCalls, Exp);
1688 } else {
1689 doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment,
1690 Granularity, O.TypeSize, O.IsWrite, nullptr, UseCalls,
1691 Exp);
1692 }
1693}
1694
1695Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore,
1696 Value *Addr, bool IsWrite,
1697 size_t AccessSizeIndex,
1698 Value *SizeArgument,
1699 uint32_t Exp) {
1700 IRBuilder<> IRB(InsertBefore);
1701 Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp);
1702 CallInst *Call = nullptr;
1703 if (SizeArgument) {
1704 if (Exp == 0)
1705 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0],
1706 {Addr, SizeArgument});
1707 else
1708 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1],
1709 {Addr, SizeArgument, ExpVal});
1710 } else {
1711 if (Exp == 0)
1712 Call =
1713 IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr);
1714 else
1715 Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex],
1716 {Addr, ExpVal});
1717 }
1718
1719 Call->setCannotMerge();
1720 return Call;
1721}
1722
1723Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
1724 Value *ShadowValue,
1725 uint32_t TypeSize) {
1726 size_t Granularity = static_cast<size_t>(1) << Mapping.Scale;
1727 // Addr & (Granularity - 1)
1728 Value *LastAccessedByte =
1729 IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
1730 // (Addr & (Granularity - 1)) + size - 1
1731 if (TypeSize / 8 > 1)
1732 LastAccessedByte = IRB.CreateAdd(
1733 LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1));
1734 // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
1735 LastAccessedByte =
1736 IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false);
1737 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
1738 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
1739}
1740
1741Instruction *AddressSanitizer::instrumentAMDGPUAddress(
1742 Instruction *OrigIns, Instruction *InsertBefore, Value *Addr,
1743 uint32_t TypeSize, bool IsWrite, Value *SizeArgument) {
1744 // Do not instrument unsupported addrspaces.
1745 if (isUnsupportedAMDGPUAddrspace(Addr))
1746 return nullptr;
1747 Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
1748 // Follow host instrumentation for global and constant addresses.
1749 if (PtrTy->getPointerAddressSpace() != 0)
1750 return InsertBefore;
1751 // Instrument generic addresses in supported addressspaces.
1752 IRBuilder<> IRB(InsertBefore);
1753 Value *AddrLong = IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy());
1754 Value *IsShared = IRB.CreateCall(AMDGPUAddressShared, {AddrLong});
1755 Value *IsPrivate = IRB.CreateCall(AMDGPUAddressPrivate, {AddrLong});
1756 Value *IsSharedOrPrivate = IRB.CreateOr(IsShared, IsPrivate);
1757 Value *Cmp = IRB.CreateICmpNE(IRB.getTrue(), IsSharedOrPrivate);
1758 Value *AddrSpaceZeroLanding =
1759 SplitBlockAndInsertIfThen(Cmp, InsertBefore, false);
1760 InsertBefore = cast<Instruction>(AddrSpaceZeroLanding);
1761 return InsertBefore;
1762}
1763
1764void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
1765 Instruction *InsertBefore, Value *Addr,
1766 uint32_t TypeSize, bool IsWrite,
1767 Value *SizeArgument, bool UseCalls,
1768 uint32_t Exp) {
1769 if (TargetTriple.isAMDGPU()) {
1770 InsertBefore = instrumentAMDGPUAddress(OrigIns, InsertBefore, Addr,
1771 TypeSize, IsWrite, SizeArgument);
1772 if (!InsertBefore)
1773 return;
1774 }
1775
1776 IRBuilder<> IRB(InsertBefore);
1777 size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);
1778 const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex);
1779
1780 if (UseCalls && ClOptimizeCallbacks) {
1781 const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex);
1782 Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1783 IRB.CreateCall(
1784 Intrinsic::getDeclaration(M, Intrinsic::asan_check_memaccess),
1785 {IRB.CreatePointerCast(Addr, Int8PtrTy),
1786 ConstantInt::get(Int32Ty, AccessInfo.Packed)});
1787 return;
1788 }
1789
1790 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1791 if (UseCalls) {
1792 if (Exp == 0)
1793 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex],
1794 AddrLong);
1795 else
1796 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex],
1797 {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1798 return;
1799 }
1800
1801 Type *ShadowTy =
1802 IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale));
1803 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
1804 Value *ShadowPtr = memToShadow(AddrLong, IRB);
1805 Value *CmpVal = Constant::getNullValue(ShadowTy);
1806 Value *ShadowValue =
1807 IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));
1808
1809 Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
1810 size_t Granularity = 1ULL << Mapping.Scale;
1811 Instruction *CrashTerm = nullptr;
1812
1813 if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) {
1814 // We use branch weights for the slow path check, to indicate that the slow
1815 // path is rarely taken. This seems to be the case for SPEC benchmarks.
1816 Instruction *CheckTerm = SplitBlockAndInsertIfThen(
1817 Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000));
1818 assert(cast<BranchInst>(CheckTerm)->isUnconditional())(static_cast<void> (0));
1819 BasicBlock *NextBB = CheckTerm->getSuccessor(0);
1820 IRB.SetInsertPoint(CheckTerm);
1821 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize);
1822 if (Recover) {
1823 CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false);
1824 } else {
1825 BasicBlock *CrashBlock =
1826 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
1827 CrashTerm = new UnreachableInst(*C, CrashBlock);
1828 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
1829 ReplaceInstWithInst(CheckTerm, NewTerm);
1830 }
1831 } else {
1832 CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover);
1833 }
1834
1835 Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite,
1836 AccessSizeIndex, SizeArgument, Exp);
1837 Crash->setDebugLoc(OrigIns->getDebugLoc());
1838}
1839
1840// Instrument unusual size or unusual alignment.
1841// We can not do it with a single check, so we do 1-byte check for the first
1842// and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
1843// to report the actual access size.
1844void AddressSanitizer::instrumentUnusualSizeOrAlignment(
1845 Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize,
1846 bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) {
1847 IRBuilder<> IRB(InsertBefore);
1848 Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8);
1849 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1850 if (UseCalls) {
1851 if (Exp == 0)
1852 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0],
1853 {AddrLong, Size});
1854 else
1855 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1],
1856 {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1857 } else {
1858 Value *LastByte = IRB.CreateIntToPtr(
1859 IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)),
1860 Addr->getType());
1861 instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp);
1862 instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp);
1863 }
1864}
1865
1866void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit,
1867 GlobalValue *ModuleName) {
1868 // Set up the arguments to our poison/unpoison functions.
1869 IRBuilder<> IRB(&GlobalInit.front(),
1870 GlobalInit.front().getFirstInsertionPt());
1871
1872 // Add a call to poison all external globals before the given function starts.
1873 Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy);
1874 IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr);
1875
1876 // Add calls to unpoison all globals before each return instruction.
1877 for (auto &BB : GlobalInit.getBasicBlockList())
1878 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
1879 CallInst::Create(AsanUnpoisonGlobals, "", RI);
1880}
1881
1882void ModuleAddressSanitizer::createInitializerPoisonCalls(
1883 Module &M, GlobalValue *ModuleName) {
1884 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
1885 if (!GV)
1886 return;
1887
1888 ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer());
1889 if (!CA)
1890 return;
1891
1892 for (Use &OP : CA->operands()) {
1893 if (isa<ConstantAggregateZero>(OP)) continue;
1894 ConstantStruct *CS = cast<ConstantStruct>(OP);
1895
1896 // Must have a function or null ptr.
1897 if (Function *F = dyn_cast<Function>(CS->getOperand(1))) {
1898 if (F->getName() == kAsanModuleCtorName) continue;
1899 auto *Priority = cast<ConstantInt>(CS->getOperand(0));
1900 // Don't instrument CTORs that will run before asan.module_ctor.
1901 if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple))
1902 continue;
1903 poisonOneInitializer(*F, ModuleName);
1904 }
1905 }
1906}
1907
1908const GlobalVariable *
1909ModuleAddressSanitizer::getExcludedAliasedGlobal(const GlobalAlias &GA) const {
1910 // In case this function should be expanded to include rules that do not just
1911 // apply when CompileKernel is true, either guard all existing rules with an
1912 // 'if (CompileKernel) { ... }' or be absolutely sure that all these rules
1913 // should also apply to user space.
1914 assert(CompileKernel && "Only expecting to be called when compiling kernel")(static_cast<void> (0));
1915
1916 const Constant *C = GA.getAliasee();
1917
1918 // When compiling the kernel, globals that are aliased by symbols prefixed
1919 // by "__" are special and cannot be padded with a redzone.
1920 if (GA.getName().startswith("__"))
1921 return dyn_cast<GlobalVariable>(C->stripPointerCastsAndAliases());
1922
1923 return nullptr;
1924}
1925
1926bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const {
1927 Type *Ty = G->getValueType();
1928 LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n")do { } while (false);
1929
1930 // FIXME: Metadata should be attched directly to the global directly instead
1931 // of being added to llvm.asan.globals.
1932 if (GlobalsMD.get(G).IsExcluded) return false;
1933 if (!Ty->isSized()) return false;
1934 if (!G->hasInitializer()) return false;
1935 // Globals in address space 1 and 4 are supported for AMDGPU.
1936 if (G->getAddressSpace() &&
1937 !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(G)))
1938 return false;
1939 if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals.
1940 // Two problems with thread-locals:
1941 // - The address of the main thread's copy can't be computed at link-time.
1942 // - Need to poison all copies, not just the main thread's one.
1943 if (G->isThreadLocal()) return false;
1944 // For now, just ignore this Global if the alignment is large.
1945 if (G->getAlignment() > getMinRedzoneSizeForGlobal()) return false;
1946
1947 // For non-COFF targets, only instrument globals known to be defined by this
1948 // TU.
1949 // FIXME: We can instrument comdat globals on ELF if we are using the
1950 // GC-friendly metadata scheme.
1951 if (!TargetTriple.isOSBinFormatCOFF()) {
1952 if (!G->hasExactDefinition() || G->hasComdat())
1953 return false;
1954 } else {
1955 // On COFF, don't instrument non-ODR linkages.
1956 if (G->isInterposable())
1957 return false;
1958 }
1959
1960 // If a comdat is present, it must have a selection kind that implies ODR
1961 // semantics: no duplicates, any, or exact match.
1962 if (Comdat *C = G->getComdat()) {
1963 switch (C->getSelectionKind()) {
1964 case Comdat::Any:
1965 case Comdat::ExactMatch:
1966 case Comdat::NoDeduplicate:
1967 break;
1968 case Comdat::Largest:
1969 case Comdat::SameSize:
1970 return false;
1971 }
1972 }
1973
1974 if (G->hasSection()) {
1975 // The kernel uses explicit sections for mostly special global variables
1976 // that we should not instrument. E.g. the kernel may rely on their layout
1977 // without redzones, or remove them at link time ("discard.*"), etc.
1978 if (CompileKernel)
1979 return false;
1980
1981 StringRef Section = G->getSection();
1982
1983 // Globals from llvm.metadata aren't emitted, do not instrument them.
1984 if (Section == "llvm.metadata") return false;
1985 // Do not instrument globals from special LLVM sections.
1986 if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false;
1987
1988 // Do not instrument function pointers to initialization and termination
1989 // routines: dynamic linker will not properly handle redzones.
1990 if (Section.startswith(".preinit_array") ||
1991 Section.startswith(".init_array") ||
1992 Section.startswith(".fini_array")) {
1993 return false;
1994 }
1995
1996 // Do not instrument user-defined sections (with names resembling
1997 // valid C identifiers)
1998 if (TargetTriple.isOSBinFormatELF()) {
1999 if (llvm::all_of(Section,
2000 [](char c) { return llvm::isAlnum(c) || c == '_'; }))
2001 return false;
2002 }
2003
2004 // On COFF, if the section name contains '$', it is highly likely that the
2005 // user is using section sorting to create an array of globals similar to
2006 // the way initialization callbacks are registered in .init_array and
2007 // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones
2008 // to such globals is counterproductive, because the intent is that they
2009 // will form an array, and out-of-bounds accesses are expected.
2010 // See https://github.com/google/sanitizers/issues/305
2011 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx
2012 if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) {
2013 LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): "do { } while (false)
2014 << *G << "\n")do { } while (false);
2015 return false;
2016 }
2017
2018 if (TargetTriple.isOSBinFormatMachO()) {
2019 StringRef ParsedSegment, ParsedSection;
2020 unsigned TAA = 0, StubSize = 0;
2021 bool TAAParsed;
2022 cantFail(MCSectionMachO::ParseSectionSpecifier(
2023 Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize));
2024
2025 // Ignore the globals from the __OBJC section. The ObjC runtime assumes
2026 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
2027 // them.
2028 if (ParsedSegment == "__OBJC" ||
2029 (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) {
2030 LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n")do { } while (false);
2031 return false;
2032 }
2033 // See https://github.com/google/sanitizers/issues/32
2034 // Constant CFString instances are compiled in the following way:
2035 // -- the string buffer is emitted into
2036 // __TEXT,__cstring,cstring_literals
2037 // -- the constant NSConstantString structure referencing that buffer
2038 // is placed into __DATA,__cfstring
2039 // Therefore there's no point in placing redzones into __DATA,__cfstring.
2040 // Moreover, it causes the linker to crash on OS X 10.7
2041 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") {
2042 LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n")do { } while (false);
2043 return false;
2044 }
2045 // The linker merges the contents of cstring_literals and removes the
2046 // trailing zeroes.
2047 if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) {
2048 LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n")do { } while (false);
2049 return false;
2050 }
2051 }
2052 }
2053
2054 if (CompileKernel) {
2055 // Globals that prefixed by "__" are special and cannot be padded with a
2056 // redzone.
2057 if (G->getName().startswith("__"))
2058 return false;
2059 }
2060
2061 return true;
2062}
2063
2064// On Mach-O platforms, we emit global metadata in a separate section of the
2065// binary in order to allow the linker to properly dead strip. This is only
2066// supported on recent versions of ld64.
2067bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const {
2068 if (!TargetTriple.isOSBinFormatMachO())
2069 return false;
2070
2071 if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11))
2072 return true;
2073 if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9))
2074 return true;
2075 if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2))
2076 return true;
2077
2078 return false;
2079}
2080
2081StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const {
2082 switch (TargetTriple.getObjectFormat()) {
2083 case Triple::COFF: return ".ASAN$GL";
2084 case Triple::ELF: return "asan_globals";
2085 case Triple::MachO: return "__DATA,__asan_globals,regular";
2086 case Triple::Wasm:
2087 case Triple::GOFF:
2088 case Triple::XCOFF:
2089 report_fatal_error(
2090 "ModuleAddressSanitizer not implemented for object file format");
2091 case Triple::UnknownObjectFormat:
2092 break;
2093 }
2094 llvm_unreachable("unsupported object format")__builtin_unreachable();
2095}
2096
2097void ModuleAddressSanitizer::initializeCallbacks(Module &M) {
2098 IRBuilder<> IRB(*C);
2099
2100 // Declare our poisoning and unpoisoning functions.
2101 AsanPoisonGlobals =
2102 M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy);
2103 AsanUnpoisonGlobals =
2104 M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy());
2105
2106 // Declare functions that register/unregister globals.
2107 AsanRegisterGlobals = M.getOrInsertFunction(
2108 kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2109 AsanUnregisterGlobals = M.getOrInsertFunction(
2110 kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2111
2112 // Declare the functions that find globals in a shared object and then invoke
2113 // the (un)register function on them.
2114 AsanRegisterImageGlobals = M.getOrInsertFunction(
2115 kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
2116 AsanUnregisterImageGlobals = M.getOrInsertFunction(
2117 kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy);
2118
2119 AsanRegisterElfGlobals =
2120 M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(),
2121 IntptrTy, IntptrTy, IntptrTy);
2122 AsanUnregisterElfGlobals =
2123 M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(),
2124 IntptrTy, IntptrTy, IntptrTy);
2125}
2126
2127// Put the metadata and the instrumented global in the same group. This ensures
2128// that the metadata is discarded if the instrumented global is discarded.
2129void ModuleAddressSanitizer::SetComdatForGlobalMetadata(
2130 GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) {
2131 Module &M = *G->getParent();
2132 Comdat *C = G->getComdat();
2133 if (!C) {
2134 if (!G->hasName()) {
2135 // If G is unnamed, it must be internal. Give it an artificial name
2136 // so we can put it in a comdat.
2137 assert(G->hasLocalLinkage())(static_cast<void> (0));
2138 G->setName(Twine(kAsanGenPrefix) + "_anon_global");
2139 }
2140
2141 if (!InternalSuffix.empty() && G->hasLocalLinkage()) {
2142 std::string Name = std::string(G->getName());
2143 Name += InternalSuffix;
2144 C = M.getOrInsertComdat(Name);
2145 } else {
2146 C = M.getOrInsertComdat(G->getName());
2147 }
2148
2149 // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private
2150 // linkage to internal linkage so that a symbol table entry is emitted. This
2151 // is necessary in order to create the comdat group.
2152 if (TargetTriple.isOSBinFormatCOFF()) {
2153 C->setSelectionKind(Comdat::NoDeduplicate);
2154 if (G->hasPrivateLinkage())
2155 G->setLinkage(GlobalValue::InternalLinkage);
2156 }
2157 G->setComdat(C);
2158 }
2159
2160 assert(G->hasComdat())(static_cast<void> (0));
2161 Metadata->setComdat(G->getComdat());
2162}
2163
2164// Create a separate metadata global and put it in the appropriate ASan
2165// global registration section.
2166GlobalVariable *
2167ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer,
2168 StringRef OriginalName) {
2169 auto Linkage = TargetTriple.isOSBinFormatMachO()
2170 ? GlobalVariable::InternalLinkage
2171 : GlobalVariable::PrivateLinkage;
2172 GlobalVariable *Metadata = new GlobalVariable(
2173 M, Initializer->getType(), false, Linkage, Initializer,
2174 Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName));
2175 Metadata->setSection(getGlobalMetadataSection());
2176 return Metadata;
2177}
2178
2179Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) {
2180 AsanDtorFunction = Function::createWithDefaultAttr(
2181 FunctionType::get(Type::getVoidTy(*C), false),
2182 GlobalValue::InternalLinkage, 0, kAsanModuleDtorName, &M);
2183 AsanDtorFunction->addFnAttr(Attribute::NoUnwind);
2184 // Ensure Dtor cannot be discarded, even if in a comdat.
2185 appendToUsed(M, {AsanDtorFunction});
2186 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
2187
2188 return ReturnInst::Create(*C, AsanDtorBB);
2189}
2190
2191void ModuleAddressSanitizer::InstrumentGlobalsCOFF(
2192 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2193 ArrayRef<Constant *> MetadataInitializers) {
2194 assert(ExtendedGlobals.size() == MetadataInitializers.size())(static_cast<void> (0));
2195 auto &DL = M.getDataLayout();
2196
2197 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size());
2198 for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2199 Constant *Initializer = MetadataInitializers[i];
2200 GlobalVariable *G = ExtendedGlobals[i];
2201 GlobalVariable *Metadata =
2202 CreateMetadataGlobal(M, Initializer, G->getName());
2203 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G));
2204 Metadata->setMetadata(LLVMContext::MD_associated, MD);
2205 MetadataGlobals[i] = Metadata;
2206
2207 // The MSVC linker always inserts padding when linking incrementally. We
2208 // cope with that by aligning each struct to its size, which must be a power
2209 // of two.
2210 unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType());
2211 assert(isPowerOf2_32(SizeOfGlobalStruct) &&(static_cast<void> (0))
2212 "global metadata will not be padded appropriately")(static_cast<void> (0));
2213 Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct));
2214
2215 SetComdatForGlobalMetadata(G, Metadata, "");
2216 }
2217
2218 // Update llvm.compiler.used, adding the new metadata globals. This is
2219 // needed so that during LTO these variables stay alive.
2220 if (!MetadataGlobals.empty())
2221 appendToCompilerUsed(M, MetadataGlobals);
2222}
2223
2224void ModuleAddressSanitizer::InstrumentGlobalsELF(
2225 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2226 ArrayRef<Constant *> MetadataInitializers,
2227 const std::string &UniqueModuleId) {
2228 assert(ExtendedGlobals.size() == MetadataInitializers.size())(static_cast<void> (0));
2229
2230 // Putting globals in a comdat changes the semantic and potentially cause
2231 // false negative odr violations at link time. If odr indicators are used, we
2232 // keep the comdat sections, as link time odr violations will be dectected on
2233 // the odr indicator symbols.
2234 bool UseComdatForGlobalsGC = UseOdrIndicator;
2235
2236 SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size());
2237 for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2238 GlobalVariable *G = ExtendedGlobals[i];
2239 GlobalVariable *Metadata =
2240 CreateMetadataGlobal(M, MetadataInitializers[i], G->getName());
2241 MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G));
2242 Metadata->setMetadata(LLVMContext::MD_associated, MD);
2243 MetadataGlobals[i] = Metadata;
2244
2245 if (UseComdatForGlobalsGC)
2246 SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId);
2247 }
2248
2249 // Update llvm.compiler.used, adding the new metadata globals. This is
2250 // needed so that during LTO these variables stay alive.
2251 if (!MetadataGlobals.empty())
2252 appendToCompilerUsed(M, MetadataGlobals);
2253
2254 // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2255 // to look up the loaded image that contains it. Second, we can store in it
2256 // whether registration has already occurred, to prevent duplicate
2257 // registration.
2258 //
2259 // Common linkage ensures that there is only one global per shared library.
2260 GlobalVariable *RegisteredFlag = new GlobalVariable(
2261 M, IntptrTy, false, GlobalVariable::CommonLinkage,
2262 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
2263 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
2264
2265 // Create start and stop symbols.
2266 GlobalVariable *StartELFMetadata = new GlobalVariable(
2267 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
2268 "__start_" + getGlobalMetadataSection());
2269 StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
2270 GlobalVariable *StopELFMetadata = new GlobalVariable(
2271 M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr,
2272 "__stop_" + getGlobalMetadataSection());
2273 StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility);
2274
2275 // Create a call to register the globals with the runtime.
2276 IRB.CreateCall(AsanRegisterElfGlobals,
2277 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
2278 IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
2279 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
2280
2281 // We also need to unregister globals at the end, e.g., when a shared library
2282 // gets closed.
2283 if (DestructorKind != AsanDtorKind::None) {
2284 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M));
2285 IrbDtor.CreateCall(AsanUnregisterElfGlobals,
2286 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy),
2287 IRB.CreatePointerCast(StartELFMetadata, IntptrTy),
2288 IRB.CreatePointerCast(StopELFMetadata, IntptrTy)});
2289 }
2290}
2291
2292void ModuleAddressSanitizer::InstrumentGlobalsMachO(
2293 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2294 ArrayRef<Constant *> MetadataInitializers) {
2295 assert(ExtendedGlobals.size() == MetadataInitializers.size())(static_cast<void> (0));
2296
2297 // On recent Mach-O platforms, use a structure which binds the liveness of
2298 // the global variable to the metadata struct. Keep the list of "Liveness" GV
2299 // created to be added to llvm.compiler.used
2300 StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy);
2301 SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size());
2302
2303 for (size_t i = 0; i < ExtendedGlobals.size(); i++) {
2304 Constant *Initializer = MetadataInitializers[i];
2305 GlobalVariable *G = ExtendedGlobals[i];
2306 GlobalVariable *Metadata =
2307 CreateMetadataGlobal(M, Initializer, G->getName());
2308
2309 // On recent Mach-O platforms, we emit the global metadata in a way that
2310 // allows the linker to properly strip dead globals.
2311 auto LivenessBinder =
2312 ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u),
2313 ConstantExpr::getPointerCast(Metadata, IntptrTy));
2314 GlobalVariable *Liveness = new GlobalVariable(
2315 M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder,
2316 Twine("__asan_binder_") + G->getName());
2317 Liveness->setSection("__DATA,__asan_liveness,regular,live_support");
2318 LivenessGlobals[i] = Liveness;
2319 }
2320
2321 // Update llvm.compiler.used, adding the new liveness globals. This is
2322 // needed so that during LTO these variables stay alive. The alternative
2323 // would be to have the linker handling the LTO symbols, but libLTO
2324 // current API does not expose access to the section for each symbol.
2325 if (!LivenessGlobals.empty())
2326 appendToCompilerUsed(M, LivenessGlobals);
2327
2328 // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
2329 // to look up the loaded image that contains it. Second, we can store in it
2330 // whether registration has already occurred, to prevent duplicate
2331 // registration.
2332 //
2333 // common linkage ensures that there is only one global per shared library.
2334 GlobalVariable *RegisteredFlag = new GlobalVariable(
2335 M, IntptrTy, false, GlobalVariable::CommonLinkage,
2336 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
2337 RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility);
2338
2339 IRB.CreateCall(AsanRegisterImageGlobals,
2340 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
2341
2342 // We also need to unregister globals at the end, e.g., when a shared library
2343 // gets closed.
2344 if (DestructorKind != AsanDtorKind::None) {
2345 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M));
2346 IrbDtor.CreateCall(AsanUnregisterImageGlobals,
2347 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
2348 }
2349}
2350
2351void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray(
2352 IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals,
2353 ArrayRef<Constant *> MetadataInitializers) {
2354 assert(ExtendedGlobals.size() == MetadataInitializers.size())(static_cast<void> (0));
2355 unsigned N = ExtendedGlobals.size();
2356 assert(N > 0)(static_cast<void> (0));
2357
2358 // On platforms that don't have a custom metadata section, we emit an array
2359 // of global metadata structures.
2360 ArrayType *ArrayOfGlobalStructTy =
2361 ArrayType::get(MetadataInitializers[0]->getType(), N);
2362 auto AllGlobals = new GlobalVariable(
2363 M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage,
2364 ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), "");
2365 if (Mapping.Scale > 3)
2366 AllGlobals->setAlignment(Align(1ULL << Mapping.Scale));
2367
2368 IRB.CreateCall(AsanRegisterGlobals,
2369 {IRB.CreatePointerCast(AllGlobals, IntptrTy),
2370 ConstantInt::get(IntptrTy, N)});
2371
2372 // We also need to unregister globals at the end, e.g., when a shared library
2373 // gets closed.
2374 if (DestructorKind != AsanDtorKind::None) {
2375 IRBuilder<> IrbDtor(CreateAsanModuleDtor(M));
2376 IrbDtor.CreateCall(AsanUnregisterGlobals,
2377 {IRB.CreatePointerCast(AllGlobals, IntptrTy),
2378 ConstantInt::get(IntptrTy, N)});
2379 }
2380}
2381
2382// This function replaces all global variables with new variables that have
2383// trailing redzones. It also creates a function that poisons
2384// redzones and inserts this function into llvm.global_ctors.
2385// Sets *CtorComdat to true if the global registration code emitted into the
2386// asan constructor is comdat-compatible.
2387bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M,
2388 bool *CtorComdat) {
2389 *CtorComdat = false;
2390
2391 // Build set of globals that are aliased by some GA, where
2392 // getExcludedAliasedGlobal(GA) returns the relevant GlobalVariable.
2393 SmallPtrSet<const GlobalVariable *, 16> AliasedGlobalExclusions;
2394 if (CompileKernel) {
2395 for (auto &GA : M.aliases()) {
2396 if (const GlobalVariable *GV = getExcludedAliasedGlobal(GA))
2397 AliasedGlobalExclusions.insert(GV);
2398 }
2399 }
2400
2401 SmallVector<GlobalVariable *, 16> GlobalsToChange;
2402 for (auto &G : M.globals()) {
2403 if (!AliasedGlobalExclusions.count(&G) && shouldInstrumentGlobal(&G))
2404 GlobalsToChange.push_back(&G);
2405 }
2406
2407 size_t n = GlobalsToChange.size();
2408 if (n == 0) {
2409 *CtorComdat = true;
2410 return false;
2411 }
2412
2413 auto &DL = M.getDataLayout();
2414
2415 // A global is described by a structure
2416 // size_t beg;
2417 // size_t size;
2418 // size_t size_with_redzone;
2419 // const char *name;
2420 // const char *module_name;
2421 // size_t has_dynamic_init;
2422 // void *source_location;
2423 // size_t odr_indicator;
2424 // We initialize an array of such structures and pass it to a run-time call.
2425 StructType *GlobalStructTy =
2426 StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy,
2427 IntptrTy, IntptrTy, IntptrTy);
2428 SmallVector<GlobalVariable *, 16> NewGlobals(n);
2429 SmallVector<Constant *, 16> Initializers(n);
2430
2431 bool HasDynamicallyInitializedGlobals = false;
2432
2433 // We shouldn't merge same module names, as this string serves as unique
2434 // module ID in runtime.
2435 GlobalVariable *ModuleName = createPrivateGlobalForString(
2436 M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix);
2437
2438 for (size_t i = 0; i < n; i++) {
2439 GlobalVariable *G = GlobalsToChange[i];
2440
2441 // FIXME: Metadata should be attched directly to the global directly instead
2442 // of being added to llvm.asan.globals.
2443 auto MD = GlobalsMD.get(G);
2444 StringRef NameForGlobal = G->getName();
2445 // Create string holding the global name (use global name from metadata
2446 // if it's available, otherwise just write the name of global variable).
2447 GlobalVariable *Name = createPrivateGlobalForString(
2448 M, MD.Name.empty() ? NameForGlobal : MD.Name,
2449 /*AllowMerging*/ true, kAsanGenPrefix);
2450
2451 Type *Ty = G->getValueType();
2452 const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty);
2453 const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes);
2454 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
2455
2456 StructType *NewTy = StructType::get(Ty, RightRedZoneTy);
2457 Constant *NewInitializer = ConstantStruct::get(
2458 NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy));
2459
2460 // Create a new global variable with enough space for a redzone.
2461 GlobalValue::LinkageTypes Linkage = G->getLinkage();
2462 if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage)
2463 Linkage = GlobalValue::InternalLinkage;
2464 GlobalVariable *NewGlobal = new GlobalVariable(
2465 M, NewTy, G->isConstant(), Linkage, NewInitializer, "", G,
2466 G->getThreadLocalMode(), G->getAddressSpace());
2467 NewGlobal->copyAttributesFrom(G);
2468 NewGlobal->setComdat(G->getComdat());
2469 NewGlobal->setAlignment(MaybeAlign(getMinRedzoneSizeForGlobal()));
2470 // Don't fold globals with redzones. ODR violation detector and redzone
2471 // poisoning implicitly creates a dependence on the global's address, so it
2472 // is no longer valid for it to be marked unnamed_addr.
2473 NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None);
2474
2475 // Move null-terminated C strings to "__asan_cstring" section on Darwin.
2476 if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() &&
2477 G->isConstant()) {
2478 auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer());
2479 if (Seq && Seq->isCString())
2480 NewGlobal->setSection("__TEXT,__asan_cstring,regular");
2481 }
2482
2483 // Transfer the debug info and type metadata. The payload starts at offset
2484 // zero so we can copy the metadata over as is.
2485 NewGlobal->copyMetadata(G, 0);
2486
2487 Value *Indices2[2];
2488 Indices2[0] = IRB.getInt32(0);
2489 Indices2[1] = IRB.getInt32(0);
2490
2491 G->replaceAllUsesWith(
2492 ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true));
2493 NewGlobal->takeName(G);
2494 G->eraseFromParent();
2495 NewGlobals[i] = NewGlobal;
2496
2497 Constant *SourceLoc;
2498 if (!MD.SourceLoc.empty()) {
2499 auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc);
2500 SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy);
2501 } else {
2502 SourceLoc = ConstantInt::get(IntptrTy, 0);
2503 }
2504
2505 Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy());
2506 GlobalValue *InstrumentedGlobal = NewGlobal;
2507
2508 bool CanUsePrivateAliases =
2509 TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() ||
2510 TargetTriple.isOSBinFormatWasm();
2511 if (CanUsePrivateAliases && UsePrivateAlias) {
2512 // Create local alias for NewGlobal to avoid crash on ODR between
2513 // instrumented and non-instrumented libraries.
2514 InstrumentedGlobal =
2515 GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal);
2516 }
2517
2518 // ODR should not happen for local linkage.
2519 if (NewGlobal->hasLocalLinkage()) {
2520 ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1),
2521 IRB.getInt8PtrTy());
2522 } else if (UseOdrIndicator) {
2523 // With local aliases, we need to provide another externally visible
2524 // symbol __odr_asan_XXX to detect ODR violation.
2525 auto *ODRIndicatorSym =
2526 new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage,
2527 Constant::getNullValue(IRB.getInt8Ty()),
2528 kODRGenPrefix + NameForGlobal, nullptr,
2529 NewGlobal->getThreadLocalMode());
2530
2531 // Set meaningful attributes for indicator symbol.
2532 ODRIndicatorSym->setVisibility(NewGlobal->getVisibility());
2533 ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass());
2534 ODRIndicatorSym->setAlignment(Align(1));
2535 ODRIndicator = ODRIndicatorSym;
2536 }
2537
2538 Constant *Initializer = ConstantStruct::get(
2539 GlobalStructTy,
2540 ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy),
2541 ConstantInt::get(IntptrTy, SizeInBytes),
2542 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
2543 ConstantExpr::getPointerCast(Name, IntptrTy),
2544 ConstantExpr::getPointerCast(ModuleName, IntptrTy),
2545 ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc,
2546 ConstantExpr::getPointerCast(ODRIndicator, IntptrTy));
2547
2548 if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true;
2549
2550 LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n")do { } while (false);
2551
2552 Initializers[i] = Initializer;
2553 }
2554
2555 // Add instrumented globals to llvm.compiler.used list to avoid LTO from
2556 // ConstantMerge'ing them.
2557 SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList;
2558 for (size_t i = 0; i < n; i++) {
2559 GlobalVariable *G = NewGlobals[i];
2560 if (G->getName().empty()) continue;
2561 GlobalsToAddToUsedList.push_back(G);
2562 }
2563 appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList));
2564
2565 std::string ELFUniqueModuleId =
2566 (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M)
2567 : "";
2568
2569 if (!ELFUniqueModuleId.empty()) {
2570 InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId);
2571 *CtorComdat = true;
2572 } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) {
2573 InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers);
2574 } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) {
2575 InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers);
2576 } else {
2577 InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers);
2578 }
2579
2580 // Create calls for poisoning before initializers run and unpoisoning after.
2581 if (HasDynamicallyInitializedGlobals)
2582 createInitializerPoisonCalls(M, ModuleName);
2583
2584 LLVM_DEBUG(dbgs() << M)do { } while (false);
2585 return true;
2586}
2587
2588uint64_t
2589ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes) const {
2590 constexpr uint64_t kMaxRZ = 1 << 18;
2591 const uint64_t MinRZ = getMinRedzoneSizeForGlobal();
2592
2593 uint64_t RZ = 0;
2594 if (SizeInBytes <= MinRZ / 2) {
2595 // Reduce redzone size for small size objects, e.g. int, char[1]. MinRZ is
2596 // at least 32 bytes, optimize when SizeInBytes is less than or equal to
2597 // half of MinRZ.
2598 RZ = MinRZ - SizeInBytes;
2599 } else {
2600 // Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes.
2601 RZ = std::max(MinRZ, std::min(kMaxRZ, (SizeInBytes / MinRZ / 4) * MinRZ));
2602
2603 // Round up to multiple of MinRZ.
2604 if (SizeInBytes % MinRZ)
2605 RZ += MinRZ - (SizeInBytes % MinRZ);
2606 }
2607
2608 assert((RZ + SizeInBytes) % MinRZ == 0)(static_cast<void> (0));
2609
2610 return RZ;
2611}
2612
2613int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const {
2614 int LongSize = M.getDataLayout().getPointerSizeInBits();
2615 bool isAndroid = Triple(M.getTargetTriple()).isAndroid();
2616 int Version = 8;
2617 // 32-bit Android is one version ahead because of the switch to dynamic
2618 // shadow.
2619 Version += (LongSize == 32 && isAndroid);
2620 return Version;
2621}
2622
2623bool ModuleAddressSanitizer::instrumentModule(Module &M) {
2624 initializeCallbacks(M);
2625
2626 // Create a module constructor. A destructor is created lazily because not all
2627 // platforms, and not all modules need it.
2628 if (CompileKernel) {
2629 // The kernel always builds with its own runtime, and therefore does not
2630 // need the init and version check calls.
2631 AsanCtorFunction = createSanitizerCtor(M, kAsanModuleCtorName);
2632 } else {
2633 std::string AsanVersion = std::to_string(GetAsanVersion(M));
2634 std::string VersionCheckName =
2635 ClInsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : "";
2636 std::tie(AsanCtorFunction, std::ignore) =
2637 createSanitizerCtorAndInitFunctions(M, kAsanModuleCtorName,
2638 kAsanInitName, /*InitArgTypes=*/{},
2639 /*InitArgs=*/{}, VersionCheckName);
2640 }
2641
2642 bool CtorComdat = true;
2643 if (ClGlobals) {
2644 IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator());
2645 InstrumentGlobals(IRB, M, &CtorComdat);
2646 }
2647
2648 const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple);
2649
2650 // Put the constructor and destructor in comdat if both
2651 // (1) global instrumentation is not TU-specific
2652 // (2) target is ELF.
2653 if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) {
2654 AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName));
2655 appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction);
2656 if (AsanDtorFunction) {
2657 AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName));
2658 appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction);
2659 }
2660 } else {
2661 appendToGlobalCtors(M, AsanCtorFunction, Priority);
2662 if (AsanDtorFunction)
2663 appendToGlobalDtors(M, AsanDtorFunction, Priority);
2664 }
2665
2666 return true;
2667}
2668
2669void AddressSanitizer::initializeCallbacks(Module &M) {
2670 IRBuilder<> IRB(*C);
2671 // Create __asan_report* callbacks.
2672 // IsWrite, TypeSize and Exp are encoded in the function name.
2673 for (int Exp = 0; Exp < 2; Exp++) {
2674 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
2675 const std::string TypeStr = AccessIsWrite ? "store" : "load";
2676 const std::string ExpStr = Exp ? "exp_" : "";
2677 const std::string EndingStr = Recover ? "_noabort" : "";
2678
2679 SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy};
2680 SmallVector<Type *, 2> Args1{1, IntptrTy};
2681 if (Exp) {
2682 Type *ExpType = Type::getInt32Ty(*C);
2683 Args2.push_back(ExpType);
2684 Args1.push_back(ExpType);
2685 }
2686 AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
2687 kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr,
2688 FunctionType::get(IRB.getVoidTy(), Args2, false));
2689
2690 AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction(
2691 ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr,
2692 FunctionType::get(IRB.getVoidTy(), Args2, false));
2693
2694 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
2695 AccessSizeIndex++) {
2696 const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex);
2697 AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] =
2698 M.getOrInsertFunction(
2699 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr,
2700 FunctionType::get(IRB.getVoidTy(), Args1, false));
2701
2702 AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] =
2703 M.getOrInsertFunction(
2704 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr,
2705 FunctionType::get(IRB.getVoidTy(), Args1, false));
2706 }
2707 }
2708 }
2709
2710 const std::string MemIntrinCallbackPrefix =
2711 CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix;
2712 AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove",
2713 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
2714 IRB.getInt8PtrTy(), IntptrTy);
2715 AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy",
2716 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
2717 IRB.getInt8PtrTy(), IntptrTy);
2718 AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset",
2719 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(),
2720 IRB.getInt32Ty(), IntptrTy);
2721
2722 AsanHandleNoReturnFunc =
2723 M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy());
2724
2725 AsanPtrCmpFunction =
2726 M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy);
2727 AsanPtrSubFunction =
2728 M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy);
2729 if (Mapping.InGlobal)
2730 AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow",
2731 ArrayType::get(IRB.getInt8Ty(), 0));
2732
2733 AMDGPUAddressShared = M.getOrInsertFunction(
2734 kAMDGPUAddressSharedName, IRB.getInt1Ty(), IRB.getInt8PtrTy());
2735 AMDGPUAddressPrivate = M.getOrInsertFunction(
2736 kAMDGPUAddressPrivateName, IRB.getInt1Ty(), IRB.getInt8PtrTy());
2737}
2738
2739bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
2740 // For each NSObject descendant having a +load method, this method is invoked
2741 // by the ObjC runtime before any of the static constructors is called.
2742 // Therefore we need to instrument such methods with a call to __asan_init
2743 // at the beginning in order to initialize our runtime before any access to
2744 // the shadow memory.
2745 // We cannot just ignore these methods, because they may call other
2746 // instrumented functions.
2747 if (F.getName().find(" load]") != std::string::npos) {
2748 FunctionCallee AsanInitFunction =
2749 declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {});
2750 IRBuilder<> IRB(&F.front(), F.front().begin());
2751 IRB.CreateCall(AsanInitFunction, {});
2752 return true;
2753 }
2754 return false;
2755}
2756
2757bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) {
2758 // Generate code only when dynamic addressing is needed.
2759 if (Mapping.Offset != kDynamicShadowSentinel)
2760 return false;
2761
2762 IRBuilder<> IRB(&F.front().front());
2763 if (Mapping.InGlobal) {
2764 if (ClWithIfuncSuppressRemat) {
2765 // An empty inline asm with input reg == output reg.
2766 // An opaque pointer-to-int cast, basically.
2767 InlineAsm *Asm = InlineAsm::get(
2768 FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false),
2769 StringRef(""), StringRef("=r,0"),
2770 /*hasSideEffects=*/false);
2771 LocalDynamicShadow =
2772 IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow");
2773 } else {
2774 LocalDynamicShadow =
2775 IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow");
2776 }
2777 } else {
2778 Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal(
2779 kAsanShadowMemoryDynamicAddress, IntptrTy);
2780 LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress);
2781 }
2782 return true;
2783}
2784
2785void AddressSanitizer::markEscapedLocalAllocas(Function &F) {
2786 // Find the one possible call to llvm.localescape and pre-mark allocas passed
2787 // to it as uninteresting. This assumes we haven't started processing allocas
2788 // yet. This check is done up front because iterating the use list in
2789 // isInterestingAlloca would be algorithmically slower.
2790 assert(ProcessedAllocas.empty() && "must process localescape before allocas")(static_cast<void> (0));
2791
2792 // Try to get the declaration of llvm.localescape. If it's not in the module,
2793 // we can exit early.
2794 if (!F.getParent()->getFunction("llvm.localescape")) return;
2795
2796 // Look for a call to llvm.localescape call in the entry block. It can't be in
2797 // any other block.
2798 for (Instruction &I : F.getEntryBlock()) {
2799 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
2800 if (II && II->getIntrinsicID() == Intrinsic::localescape) {
2801 // We found a call. Mark all the allocas passed in as uninteresting.
2802 for (Value *Arg : II->arg_operands()) {
2803 AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
2804 assert(AI && AI->isStaticAlloca() &&(static_cast<void> (0))
2805 "non-static alloca arg to localescape")(static_cast<void> (0));
2806 ProcessedAllocas[AI] = false;
2807 }
2808 break;
2809 }
2810 }
2811}
2812
2813bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) {
2814 bool ShouldInstrument =
2815 ClDebugMin < 0 || ClDebugMax < 0 ||
2816 (Instrumented >= ClDebugMin && Instrumented <= ClDebugMax);
2817 Instrumented++;
2818 return !ShouldInstrument;
2819}
2820
2821bool AddressSanitizer::instrumentFunction(Function &F,
2822 const TargetLibraryInfo *TLI) {
2823 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
2824 if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false;
2825 if (F.getName().startswith("__asan_")) return false;
2826
2827 bool FunctionModified = false;
2828
2829 // If needed, insert __asan_init before checking for SanitizeAddress attr.
2830 // This function needs to be called even if the function body is not
2831 // instrumented.
2832 if (maybeInsertAsanInitAtFunctionEntry(F))
2833 FunctionModified = true;
2834
2835 // Leave if the function doesn't need instrumentation.
2836 if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified;
2837
2838 LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n")do { } while (false);
2839
2840 initializeCallbacks(*F.getParent());
2841
2842 FunctionStateRAII CleanupObj(this);
2843
2844 FunctionModified |= maybeInsertDynamicShadowAtFunctionEntry(F);
2845
2846 // We can't instrument allocas used with llvm.localescape. Only static allocas
2847 // can be passed to that intrinsic.
2848 markEscapedLocalAllocas(F);
2849
2850 // We want to instrument every address only once per basic block (unless there
2851 // are calls between uses).
2852 SmallPtrSet<Value *, 16> TempsToInstrument;
2853 SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument;
2854 SmallVector<MemIntrinsic *, 16> IntrinToInstrument;
2855 SmallVector<Instruction *, 8> NoReturnCalls;
2856 SmallVector<BasicBlock *, 16> AllBlocks;
2857 SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts;
2858 int NumAllocas = 0;
2859
2860 // Fill the set of memory operations to instrument.
2861 for (auto &BB : F) {
2862 AllBlocks.push_back(&BB);
2863 TempsToInstrument.clear();
2864 int NumInsnsPerBB = 0;
2865 for (auto &Inst : BB) {
2866 if (LooksLikeCodeInBug11395(&Inst)) return false;
2867 SmallVector<InterestingMemoryOperand, 1> InterestingOperands;
2868 getInterestingMemoryOperands(&Inst, InterestingOperands);
2869
2870 if (!InterestingOperands.empty()) {
2871 for (auto &Operand : InterestingOperands) {
2872 if (ClOpt && ClOptSameTemp) {
2873 Value *Ptr = Operand.getPtr();
2874 // If we have a mask, skip instrumentation if we've already
2875 // instrumented the full object. But don't add to TempsToInstrument
2876 // because we might get another load/store with a different mask.
2877 if (Operand.MaybeMask) {
2878 if (TempsToInstrument.count(Ptr))
2879 continue; // We've seen this (whole) temp in the current BB.
2880 } else {
2881 if (!TempsToInstrument.insert(Ptr).second)
2882 continue; // We've seen this temp in the current BB.
2883 }
2884 }
2885 OperandsToInstrument.push_back(Operand);
2886 NumInsnsPerBB++;
2887 }
2888 } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) &&
2889 isInterestingPointerComparison(&Inst)) ||
2890 ((ClInvalidPointerPairs || ClInvalidPointerSub) &&
2891 isInterestingPointerSubtraction(&Inst))) {
2892 PointerComparisonsOrSubtracts.push_back(&Inst);
2893 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) {
2894 // ok, take it.
2895 IntrinToInstrument.push_back(MI);
2896 NumInsnsPerBB++;
2897 } else {
2898 if (isa<AllocaInst>(Inst)) NumAllocas++;
2899 if (auto *CB = dyn_cast<CallBase>(&Inst)) {
2900 // A call inside BB.
2901 TempsToInstrument.clear();
2902 if (CB->doesNotReturn() && !CB->hasMetadata("nosanitize"))
2903 NoReturnCalls.push_back(CB);
2904 }
2905 if (CallInst *CI = dyn_cast<CallInst>(&Inst))
2906 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI);
2907 }
2908 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break;
2909 }
2910 }
2911
2912 bool UseCalls = (ClInstrumentationWithCallsThreshold >= 0 &&
2913 OperandsToInstrument.size() + IntrinToInstrument.size() >
2914 (unsigned)ClInstrumentationWithCallsThreshold);
2915 const DataLayout &DL = F.getParent()->getDataLayout();
2916 ObjectSizeOpts ObjSizeOpts;
2917 ObjSizeOpts.RoundToAlign = true;
2918 ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts);
2919
2920 // Instrument.
2921 int NumInstrumented = 0;
2922 for (auto &Operand : OperandsToInstrument) {
2923 if (!suppressInstrumentationSiteForDebug(NumInstrumented))
2924 instrumentMop(ObjSizeVis, Operand, UseCalls,
2925 F.getParent()->getDataLayout());
2926 FunctionModified = true;
2927 }
2928 for (auto Inst : IntrinToInstrument) {
2929 if (!suppressInstrumentationSiteForDebug(NumInstrumented))
2930 instrumentMemIntrinsic(Inst);
2931 FunctionModified = true;
2932 }
2933
2934 FunctionStackPoisoner FSP(F, *this);
2935 bool ChangedStack = FSP.runOnFunction();
2936
2937 // We must unpoison the stack before NoReturn calls (throw, _exit, etc).
2938 // See e.g. https://github.com/google/sanitizers/issues/37
2939 for (auto CI : NoReturnCalls) {
2940 IRBuilder<> IRB(CI);
2941 IRB.CreateCall(AsanHandleNoReturnFunc, {});
2942 }
2943
2944 for (auto Inst : PointerComparisonsOrSubtracts) {
2945 instrumentPointerComparisonOrSubtraction(Inst);
2946 FunctionModified = true;
2947 }
2948
2949 if (ChangedStack || !NoReturnCalls.empty())
2950 FunctionModified = true;
2951
2952 LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " "do { } while (false)
2953 << F << "\n")do { } while (false);
2954
2955 return FunctionModified;
2956}
2957
2958// Workaround for bug 11395: we don't want to instrument stack in functions
2959// with large assembly blobs (32-bit only), otherwise reg alloc may crash.
2960// FIXME: remove once the bug 11395 is fixed.
2961bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
2962 if (LongSize != 32) return false;
2963 CallInst *CI = dyn_cast<CallInst>(I);
2964 if (!CI || !CI->isInlineAsm()) return false;
2965 if (CI->getNumArgOperands() <= 5) return false;
2966 // We have inline assembly with quite a few arguments.
2967 return true;
2968}
2969
2970void FunctionStackPoisoner::initializeCallbacks(Module &M) {
2971 IRBuilder<> IRB(*C);
2972 if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always ||
2973 ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) {
2974 const char *MallocNameTemplate =
2975 ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always
2976 ? kAsanStackMallocAlwaysNameTemplate
2977 : kAsanStackMallocNameTemplate;
2978 for (int Index = 0; Index <= kMaxAsanStackMallocSizeClass; Index++) {
2979 std::string Suffix = itostr(Index);
2980 AsanStackMallocFunc[Index] = M.getOrInsertFunction(
2981 MallocNameTemplate + Suffix, IntptrTy, IntptrTy);
2982 AsanStackFreeFunc[Index] =
2983 M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix,
2984 IRB.getVoidTy(), IntptrTy, IntptrTy);
2985 }
2986 }
2987 if (ASan.UseAfterScope) {
2988 AsanPoisonStackMemoryFunc = M.getOrInsertFunction(
2989 kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2990 AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction(
2991 kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy);
2992 }
2993
2994 for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) {
2995 std::ostringstream Name;
2996 Name << kAsanSetShadowPrefix;
2997 Name << std::setw(2) << std::setfill('0') << std::hex << Val;
2998 AsanSetShadowFunc[Val] =
2999 M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy);
3000 }
3001
3002 AsanAllocaPoisonFunc = M.getOrInsertFunction(
3003 kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
3004 AsanAllocasUnpoisonFunc = M.getOrInsertFunction(
3005 kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy);
3006}
3007
3008void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask,
3009 ArrayRef<uint8_t> ShadowBytes,
3010 size_t Begin, size_t End,
3011 IRBuilder<> &IRB,
3012 Value *ShadowBase) {
3013 if (Begin >= End)
3014 return;
3015
3016 const size_t LargestStoreSizeInBytes =
3017 std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8);
3018
3019 const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian();
3020
3021 // Poison given range in shadow using larges store size with out leading and
3022 // trailing zeros in ShadowMask. Zeros never change, so they need neither
3023 // poisoning nor up-poisoning. Still we don't mind if some of them get into a
3024 // middle of a store.
3025 for (size_t i = Begin; i < End;) {
3026 if (!ShadowMask[i]) {
3027 assert(!ShadowBytes[i])(static_cast<void> (0));
3028 ++i;
3029 continue;
3030 }
3031
3032 size_t StoreSizeInBytes = LargestStoreSizeInBytes;
3033 // Fit store size into the range.
3034 while (StoreSizeInBytes > End - i)
3035 StoreSizeInBytes /= 2;
3036
3037 // Minimize store size by trimming trailing zeros.
3038 for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) {
3039 while (j <= StoreSizeInBytes / 2)
3040 StoreSizeInBytes /= 2;
3041 }
3042
3043 uint64_t Val = 0;
3044 for (size_t j = 0; j < StoreSizeInBytes; j++) {
3045 if (IsLittleEndian)
3046 Val |= (uint64_t)ShadowBytes[i + j] << (8 * j);
3047 else
3048 Val = (Val << 8) | ShadowBytes[i + j];
3049 }
3050
3051 Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
3052 Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val);
3053 IRB.CreateAlignedStore(
3054 Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()),
3055 Align(1));
3056
3057 i += StoreSizeInBytes;
3058 }
3059}
3060
3061void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
3062 ArrayRef<uint8_t> ShadowBytes,
3063 IRBuilder<> &IRB, Value *ShadowBase) {
3064 copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase);
3065}
3066
3067void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask,
3068 ArrayRef<uint8_t> ShadowBytes,
3069 size_t Begin, size_t End,
3070 IRBuilder<> &IRB, Value *ShadowBase) {
3071 assert(ShadowMask.size() == ShadowBytes.size())(static_cast<void> (0));
3072 size_t Done = Begin;
3073 for (size_t i = Begin, j = Begin + 1; i < End; i = j++) {
3074 if (!ShadowMask[i]) {
3075 assert(!ShadowBytes[i])(static_cast<void> (0));
3076 continue;
3077 }
3078 uint8_t Val = ShadowBytes[i];
3079 if (!AsanSetShadowFunc[Val])
3080 continue;
3081
3082 // Skip same values.
3083 for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) {
3084 }
3085
3086 if (j - i >= ClMaxInlinePoisoningSize) {
3087 copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase);
3088 IRB.CreateCall(AsanSetShadowFunc[Val],
3089 {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)),
3090 ConstantInt::get(IntptrTy, j - i)});
3091 Done = j;
3092 }
3093 }
3094
3095 copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase);
3096}
3097
3098// Fake stack allocator (asan_fake_stack.h) has 11 size classes
3099// for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
3100static int StackMallocSizeClass(uint64_t LocalStackSize) {
3101 assert(LocalStackSize <= kMaxStackMallocSize)(static_cast<void> (0));
3102 uint64_t MaxSize = kMinStackMallocSize;
3103 for (int i = 0;; i++, MaxSize *= 2)
3104 if (LocalStackSize <= MaxSize) return i;
3105 llvm_unreachable("impossible LocalStackSize")__builtin_unreachable();
3106}
3107
3108void FunctionStackPoisoner::copyArgsPassedByValToAllocas() {
3109 Instruction *CopyInsertPoint = &F.front().front();
3110 if (CopyInsertPoint == ASan.LocalDynamicShadow) {
3111 // Insert after the dynamic shadow location is determined
3112 CopyInsertPoint = CopyInsertPoint->getNextNode();
3113 assert(CopyInsertPoint)(static_cast<void> (0));
3114 }
3115 IRBuilder<> IRB(CopyInsertPoint);
3116 const DataLayout &DL = F.getParent()->getDataLayout();
3117 for (Argument &Arg : F.args()) {
3118 if (Arg.hasByValAttr()) {
3119 Type *Ty = Arg.getParamByValType();
3120 const Align Alignment =
3121 DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty);
3122
3123 AllocaInst *AI = IRB.CreateAlloca(
3124 Ty, nullptr,
3125 (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) +
3126 ".byval");
3127 AI->setAlignment(Alignment);
3128 Arg.replaceAllUsesWith(AI);
3129
3130 uint64_t AllocSize = DL.getTypeAllocSize(Ty);
3131 IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize);
3132 }
3133 }
3134}
3135
3136PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond,
3137 Value *ValueIfTrue,
3138 Instruction *ThenTerm,
3139 Value *ValueIfFalse) {
3140 PHINode *PHI = IRB.CreatePHI(IntptrTy, 2);
3141 BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent();
3142 PHI->addIncoming(ValueIfFalse, CondBlock);
3143 BasicBlock *ThenBlock = ThenTerm->getParent();
3144 PHI->addIncoming(ValueIfTrue, ThenBlock);
3145 return PHI;
3146}
3147
3148Value *FunctionStackPoisoner::createAllocaForLayout(
3149 IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) {
3150 AllocaInst *Alloca;
3151 if (Dynamic) {
3152 Alloca = IRB.CreateAlloca(IRB.getInt8Ty(),
3153 ConstantInt::get(IRB.getInt64Ty(), L.FrameSize),
3154 "MyAlloca");
3155 } else {
3156 Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize),
3157 nullptr, "MyAlloca");
3158 assert(Alloca->isStaticAlloca())(static_cast<void> (0));
3159 }
3160 assert((ClRealignStack & (ClRealignStack - 1)) == 0)(static_cast<void> (0));
3161 size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack);
3162 Alloca->setAlignment(Align(FrameAlignment));
3163 return IRB.CreatePointerCast(Alloca, IntptrTy);
3164}
3165
3166void FunctionStackPoisoner::createDynamicAllocasInitStorage() {
3167 BasicBlock &FirstBB = *F.begin();
3168 IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin()));
3169 DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr);
3170 IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout);
3171 DynamicAllocaLayout->setAlignment(Align(32));
3172}
3173
3174void FunctionStackPoisoner::processDynamicAllocas() {
3175 if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) {
3176 assert(DynamicAllocaPoisonCallVec.empty())(static_cast<void> (0));
3177 return;
3178 }
3179
3180 // Insert poison calls for lifetime intrinsics for dynamic allocas.
3181 for (const auto &APC : DynamicAllocaPoisonCallVec) {
3182 assert(APC.InsBefore)(static_cast<void> (0));
3183 assert(APC.AI)(static_cast<void> (0));
3184 assert(ASan.isInterestingAlloca(*APC.AI))(static_cast<void> (0));
3185 assert(!APC.AI->isStaticAlloca())(static_cast<void> (0));
3186
3187 IRBuilder<> IRB(APC.InsBefore);
3188 poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison);
3189 // Dynamic allocas will be unpoisoned unconditionally below in
3190 // unpoisonDynamicAllocas.
3191 // Flag that we need unpoison static allocas.
3192 }
3193
3194 // Handle dynamic allocas.
3195 createDynamicAllocasInitStorage();
3196 for (auto &AI : DynamicAllocaVec)
3197 handleDynamicAllocaCall(AI);
3198 unpoisonDynamicAllocas();
3199}
3200
3201/// Collect instructions in the entry block after \p InsBefore which initialize
3202/// permanent storage for a function argument. These instructions must remain in
3203/// the entry block so that uninitialized values do not appear in backtraces. An
3204/// added benefit is that this conserves spill slots. This does not move stores
3205/// before instrumented / "interesting" allocas.
3206static void findStoresToUninstrumentedArgAllocas(
3207 AddressSanitizer &ASan, Instruction &InsBefore,
3208 SmallVectorImpl<Instruction *> &InitInsts) {
3209 Instruction *Start = InsBefore.getNextNonDebugInstruction();
3210 for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) {
3211 // Argument initialization looks like:
3212 // 1) store <Argument>, <Alloca> OR
3213 // 2) <CastArgument> = cast <Argument> to ...
3214 // store <CastArgument> to <Alloca>
3215 // Do not consider any other kind of instruction.
3216 //
3217 // Note: This covers all known cases, but may not be exhaustive. An
3218 // alternative to pattern-matching stores is to DFS over all Argument uses:
3219 // this might be more general, but is probably much more complicated.
3220 if (isa<AllocaInst>(It) || isa<CastInst>(It))
3221 continue;
3222 if (auto *Store = dyn_cast<StoreInst>(It)) {
3223 // The store destination must be an alloca that isn't interesting for
3224 // ASan to instrument. These are moved up before InsBefore, and they're
3225 // not interesting because allocas for arguments can be mem2reg'd.
3226 auto *Alloca = dyn_cast<AllocaInst>(Store->getPointerOperand());
3227 if (!Alloca || ASan.isInterestingAlloca(*Alloca))
3228 continue;
3229
3230 Value *Val = Store->getValueOperand();
3231 bool IsDirectArgInit = isa<Argument>(Val);
3232 bool IsArgInitViaCast =
3233 isa<CastInst>(Val) &&
3234 isa<Argument>(cast<CastInst>(Val)->getOperand(0)) &&
3235 // Check that the cast appears directly before the store. Otherwise
3236 // moving the cast before InsBefore may break the IR.
3237 Val == It->getPrevNonDebugInstruction();
3238 bool IsArgInit = IsDirectArgInit || IsArgInitViaCast;
3239 if (!IsArgInit)
3240 continue;
3241
3242 if (IsArgInitViaCast)
3243 InitInsts.push_back(cast<Instruction>(Val));
3244 InitInsts.push_back(Store);
3245 continue;
3246 }
3247
3248 // Do not reorder past unknown instructions: argument initialization should
3249 // only involve casts and stores.
3250 return;
3251 }
3252}
3253
3254void FunctionStackPoisoner::processStaticAllocas() {
3255 if (AllocaVec.empty()) {
3256 assert(StaticAllocaPoisonCallVec.empty())(static_cast<void> (0));
3257 return;
3258 }
3259
3260 int StackMallocIdx = -1;
3261 DebugLoc EntryDebugLocation;
3262 if (auto SP = F.getSubprogram())
3263 EntryDebugLocation =
3264 DILocation::get(SP->getContext(), SP->getScopeLine(), 0, SP);
3265
3266 Instruction *InsBefore = AllocaVec[0];
3267 IRBuilder<> IRB(InsBefore);
3268
3269 // Make sure non-instrumented allocas stay in the entry block. Otherwise,
3270 // debug info is broken, because only entry-block allocas are treated as
3271 // regular stack slots.
3272 auto InsBeforeB = InsBefore->getParent();
3273 assert(InsBeforeB == &F.getEntryBlock())(static_cast<void> (0));
3274 for (auto *AI : StaticAllocasToMoveUp)
3275 if (AI->getParent() == InsBeforeB)
3276 AI->moveBefore(InsBefore);
3277
3278 // Move stores of arguments into entry-block allocas as well. This prevents
3279 // extra stack slots from being generated (to house the argument values until
3280 // they can be stored into the allocas). This also prevents uninitialized
3281 // values from being shown in backtraces.
3282 SmallVector<Instruction *, 8> ArgInitInsts;
3283 findStoresToUninstrumentedArgAllocas(ASan, *InsBefore, ArgInitInsts);
3284 for (Instruction *ArgInitInst : ArgInitInsts)
3285 ArgInitInst->moveBefore(InsBefore);
3286
3287 // If we have a call to llvm.localescape, keep it in the entry block.
3288 if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore);
3289
3290 SmallVector<ASanStackVariableDescription, 16> SVD;
3291 SVD.reserve(AllocaVec.size());
3292 for (AllocaInst *AI : AllocaVec) {
3293 ASanStackVariableDescription D = {AI->getName().data(),
3294 ASan.getAllocaSizeInBytes(*AI),
3295 0,
3296 AI->getAlignment(),
3297 AI,
3298 0,
3299 0};
3300 SVD.push_back(D);
3301 }
3302
3303 // Minimal header size (left redzone) is 4 pointers,
3304 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms.
3305 size_t Granularity = 1ULL << Mapping.Scale;
3306 size_t MinHeaderSize = std::max((size_t)ASan.LongSize / 2, Granularity);
3307 const ASanStackFrameLayout &L =
3308 ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize);
3309
3310 // Build AllocaToSVDMap for ASanStackVariableDescription lookup.
3311 DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap;
3312 for (auto &Desc : SVD)
3313 AllocaToSVDMap[Desc.AI] = &Desc;
3314
3315 // Update SVD with information from lifetime intrinsics.
3316 for (const auto &APC : StaticAllocaPoisonCallVec) {
3317 assert(APC.InsBefore)(static_cast<void> (0));
3318 assert(APC.AI)(static_cast<void> (0));
3319 assert(ASan.isInterestingAlloca(*APC.AI))(static_cast<void> (0));
3320 assert(APC.AI->isStaticAlloca())(static_cast<void> (0));
3321
3322 ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
3323 Desc.LifetimeSize = Desc.Size;
3324 if (const DILocation *FnLoc = EntryDebugLocation.get()) {
3325 if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) {
3326 if (LifetimeLoc->getFile() == FnLoc->getFile())
3327 if (unsigned Line = LifetimeLoc->getLine())
3328 Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line);
3329 }
3330 }
3331 }
3332
3333 auto DescriptionString = ComputeASanStackFrameDescription(SVD);
3334 LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n")do { } while (false);
3335 uint64_t LocalStackSize = L.FrameSize;
3336 bool DoStackMalloc =
3337 ASan.UseAfterReturn != AsanDetectStackUseAfterReturnMode::Never &&
3338 !ASan.CompileKernel && LocalStackSize <= kMaxStackMallocSize;
3339 bool DoDynamicAlloca = ClDynamicAllocaStack;
3340 // Don't do dynamic alloca or stack malloc if:
3341 // 1) There is inline asm: too often it makes assumptions on which registers
3342 // are available.
3343 // 2) There is a returns_twice call (typically setjmp), which is
3344 // optimization-hostile, and doesn't play well with introduced indirect
3345 // register-relative calculation of local variable addresses.
3346 DoDynamicAlloca &= !HasInlineAsm && !HasReturnsTwiceCall;
3347 DoStackMalloc &= !HasInlineAsm && !HasReturnsTwiceCall;
3348
3349 Value *StaticAlloca =
3350 DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false);
3351
3352 Value *FakeStack;
3353 Value *LocalStackBase;
3354 Value *LocalStackBaseAlloca;
3355 uint8_t DIExprFlags = DIExpression::ApplyOffset;
3356
3357 if (DoStackMalloc) {
3358 LocalStackBaseAlloca =
3359 IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base");
3360 if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) {
3361 // void *FakeStack = __asan_option_detect_stack_use_after_return
3362 // ? __asan_stack_malloc_N(LocalStackSize)
3363 // : nullptr;
3364 // void *LocalStackBase = (FakeStack) ? FakeStack :
3365 // alloca(LocalStackSize);
3366 Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal(
3367 kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty());
3368 Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE(
3369 IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn),
3370 Constant::getNullValue(IRB.getInt32Ty()));
3371 Instruction *Term =
3372 SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false);
3373 IRBuilder<> IRBIf(Term);
3374 StackMallocIdx = StackMallocSizeClass(LocalStackSize);
3375 assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass)(static_cast<void> (0));
3376 Value *FakeStackValue =
3377 IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx],
3378 ConstantInt::get(IntptrTy, LocalStackSize));
3379 IRB.SetInsertPoint(InsBefore);
3380 FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term,
3381 ConstantInt::get(IntptrTy, 0));
3382 } else {
3383 // assert(ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode:Always)
3384 // void *FakeStack = __asan_stack_malloc_N(LocalStackSize);
3385 // void *LocalStackBase = (FakeStack) ? FakeStack :
3386 // alloca(LocalStackSize);
3387 StackMallocIdx = StackMallocSizeClass(LocalStackSize);
3388 FakeStack = IRB.CreateCall(AsanStackMallocFunc[StackMallocIdx],
3389 ConstantInt::get(IntptrTy, LocalStackSize));
3390 }
3391 Value *NoFakeStack =
3392 IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy));
3393 Instruction *Term =
3394 SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false);
3395 IRBuilder<> IRBIf(Term);
3396 Value *AllocaValue =
3397 DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca;
3398
3399 IRB.SetInsertPoint(InsBefore);
3400 LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack);
3401 IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca);
3402 DIExprFlags |= DIExpression::DerefBefore;
3403 } else {
3404 // void *FakeStack = nullptr;
3405 // void *LocalStackBase = alloca(LocalStackSize);
3406 FakeStack = ConstantInt::get(IntptrTy, 0);
3407 LocalStackBase =
3408 DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca;
3409 LocalStackBaseAlloca = LocalStackBase;
3410 }
3411
3412 // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the
3413 // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse
3414 // later passes and can result in dropped variable coverage in debug info.
3415 Value *LocalStackBaseAllocaPtr =
3416 isa<PtrToIntInst>(LocalStackBaseAlloca)
3417 ? cast<PtrToIntInst>(LocalStackBaseAlloca)->getPointerOperand()
3418 : LocalStackBaseAlloca;
3419 assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) &&(static_cast<void> (0))
3420 "Variable descriptions relative to ASan stack base will be dropped")(static_cast<void> (0));
3421
3422 // Replace Alloca instructions with base+offset.
3423 for (const auto &Desc : SVD) {
3424 AllocaInst *AI = Desc.AI;
3425 replaceDbgDeclare(AI, LocalStackBaseAllocaPtr, DIB, DIExprFlags,
3426 Desc.Offset);
3427 Value *NewAllocaPtr = IRB.CreateIntToPtr(
3428 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)),
3429 AI->getType());
3430 AI->replaceAllUsesWith(NewAllocaPtr);
3431 }
3432
3433 // The left-most redzone has enough space for at least 4 pointers.
3434 // Write the Magic value to redzone[0].
3435 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
3436 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
3437 BasePlus0);
3438 // Write the frame description constant to redzone[1].
3439 Value *BasePlus1 = IRB.CreateIntToPtr(
3440 IRB.CreateAdd(LocalStackBase,
3441 ConstantInt::get(IntptrTy, ASan.LongSize / 8)),
3442 IntptrPtrTy);
3443 GlobalVariable *StackDescriptionGlobal =
3444 createPrivateGlobalForString(*F.getParent(), DescriptionString,
3445 /*AllowMerging*/ true, kAsanGenPrefix);
3446 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy);
3447 IRB.CreateStore(Description, BasePlus1);
3448 // Write the PC to redzone[2].
3449 Value *BasePlus2 = IRB.CreateIntToPtr(
3450 IRB.CreateAdd(LocalStackBase,
3451 ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)),
3452 IntptrPtrTy);
3453 IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2);
3454
3455 const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L);
3456
3457 // Poison the stack red zones at the entry.
3458 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
3459 // As mask we must use most poisoned case: red zones and after scope.
3460 // As bytes we can use either the same or just red zones only.
3461 copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase);
3462
3463 if (!StaticAllocaPoisonCallVec.empty()) {
3464 const auto &ShadowInScope = GetShadowBytes(SVD, L);
3465
3466 // Poison static allocas near lifetime intrinsics.
3467 for (const auto &APC : StaticAllocaPoisonCallVec) {
3468 const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI];
3469 assert(Desc.Offset % L.Granularity == 0)(static_cast<void> (0));
3470 size_t Begin = Desc.Offset / L.Granularity;
3471 size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity;
3472
3473 IRBuilder<> IRB(APC.InsBefore);
3474 copyToShadow(ShadowAfterScope,
3475 APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End,
3476 IRB, ShadowBase);
3477 }
3478 }
3479
3480 SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0);
3481 SmallVector<uint8_t, 64> ShadowAfterReturn;
3482
3483 // (Un)poison the stack before all ret instructions.
3484 for (Instruction *Ret : RetVec) {
3485 IRBuilder<> IRBRet(Ret);
3486 // Mark the current frame as retired.
3487 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
3488 BasePlus0);
3489 if (DoStackMalloc) {
3490 assert(StackMallocIdx >= 0)(static_cast<void> (0));
3491 // if FakeStack != 0 // LocalStackBase == FakeStack
3492 // // In use-after-return mode, poison the whole stack frame.
3493 // if StackMallocIdx <= 4
3494 // // For small sizes inline the whole thing:
3495 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
3496 // **SavedFlagPtr(FakeStack) = 0
3497 // else
3498 // __asan_stack_free_N(FakeStack, LocalStackSize)
3499 // else
3500 // <This is not a fake stack; unpoison the redzones>
3501 Value *Cmp =
3502 IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy));
3503 Instruction *ThenTerm, *ElseTerm;
3504 SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm);
3505
3506 IRBuilder<> IRBPoison(ThenTerm);
3507 if (StackMallocIdx <= 4) {
3508 int ClassSize = kMinStackMallocSize << StackMallocIdx;
3509 ShadowAfterReturn.resize(ClassSize / L.Granularity,
3510 kAsanStackUseAfterReturnMagic);
3511 copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison,
3512 ShadowBase);
3513 Value *SavedFlagPtrPtr = IRBPoison.CreateAdd(
3514 FakeStack,
3515 ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8));
3516 Value *SavedFlagPtr = IRBPoison.CreateLoad(
3517 IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy));
3518 IRBPoison.CreateStore(
3519 Constant::getNullValue(IRBPoison.getInt8Ty()),
3520 IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy()));
3521 } else {
3522 // For larger frames call __asan_stack_free_*.
3523 IRBPoison.CreateCall(
3524 AsanStackFreeFunc[StackMallocIdx],
3525 {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)});
3526 }
3527
3528 IRBuilder<> IRBElse(ElseTerm);
3529 copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase);
3530 } else {
3531 copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase);
3532 }
3533 }
3534
3535 // We are done. Remove the old unused alloca instructions.
3536 for (auto AI : AllocaVec) AI->eraseFromParent();
3537}
3538
3539void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
3540 IRBuilder<> &IRB, bool DoPoison) {
3541 // For now just insert the call to ASan runtime.
3542 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
3543 Value *SizeArg = ConstantInt::get(IntptrTy, Size);
3544 IRB.CreateCall(
3545 DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc,
3546 {AddrArg, SizeArg});
3547}
3548
3549// Handling llvm.lifetime intrinsics for a given %alloca:
3550// (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
3551// (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
3552// invalid accesses) and unpoison it for llvm.lifetime.start (the memory
3553// could be poisoned by previous llvm.lifetime.end instruction, as the
3554// variable may go in and out of scope several times, e.g. in loops).
3555// (3) if we poisoned at least one %alloca in a function,
3556// unpoison the whole stack frame at function exit.
3557void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) {
3558 IRBuilder<> IRB(AI);
3559
3560 const unsigned Alignment = std::max(kAllocaRzSize, AI->getAlignment());
3561 const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1;
3562
3563 Value *Zero = Constant::getNullValue(IntptrTy);
3564 Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize);
3565 Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask);
3566
3567 // Since we need to extend alloca with additional memory to locate
3568 // redzones, and OldSize is number of allocated blocks with
3569 // ElementSize size, get allocated memory size in bytes by
3570 // OldSize * ElementSize.
3571 const unsigned ElementSize =
3572 F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType());
3573 Value *OldSize =
3574 IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false),
3575 ConstantInt::get(IntptrTy, ElementSize));
3576
3577 // PartialSize = OldSize % 32
3578 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask);
3579
3580 // Misalign = kAllocaRzSize - PartialSize;
3581 Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize);
3582
3583 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0;
3584 Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize);
3585 Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero);
3586
3587 // AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize
3588 // Alignment is added to locate left redzone, PartialPadding for possible
3589 // partial redzone and kAllocaRzSize for right redzone respectively.
3590 Value *AdditionalChunkSize = IRB.CreateAdd(
3591 ConstantInt::get(IntptrTy, Alignment + kAllocaRzSize), PartialPadding);
3592
3593 Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize);
3594
3595 // Insert new alloca with new NewSize and Alignment params.
3596 AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize);
3597 NewAlloca->setAlignment(Align(Alignment));
3598
3599 // NewAddress = Address + Alignment
3600 Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy),
3601 ConstantInt::get(IntptrTy, Alignment));
3602
3603 // Insert __asan_alloca_poison call for new created alloca.
3604 IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize});
3605
3606 // Store the last alloca's address to DynamicAllocaLayout. We'll need this
3607 // for unpoisoning stuff.
3608 IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout);
3609
3610 Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType());
3611
3612 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr.
3613 AI->replaceAllUsesWith(NewAddressPtr);
3614
3615 // We are done. Erase old alloca from parent.
3616 AI->eraseFromParent();
3617}
3618
3619// isSafeAccess returns true if Addr is always inbounds with respect to its
3620// base object. For example, it is a field access or an array access with
3621// constant inbounds index.
3622bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis,
3623 Value *Addr, uint64_t TypeSize) const {
3624 SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr);
3625 if (!ObjSizeVis.bothKnown(SizeOffset)) return false;
3626 uint64_t Size = SizeOffset.first.getZExtValue();
3627 int64_t Offset = SizeOffset.second.getSExtValue();
3628 // Three checks are required to ensure safety:
3629 // . Offset >= 0 (since the offset is given from the base ptr)
3630 // . Size >= Offset (unsigned)
3631 // . Size - Offset >= NeededSize (unsigned)
3632 return Offset >= 0 && Size >= uint64_t(Offset) &&
3633 Size - uint64_t(Offset) >= TypeSize / 8;
3634}