| File: | llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp |
| Warning: | line 1512, column 26 Forming reference to null pointer |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | //===- AddressSanitizer.cpp - memory error detector -----------------------===// | ||||
| 2 | // | ||||
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||||
| 4 | // See https://llvm.org/LICENSE.txt for license information. | ||||
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||||
| 6 | // | ||||
| 7 | //===----------------------------------------------------------------------===// | ||||
| 8 | // | ||||
| 9 | // This file is a part of AddressSanitizer, an address basic correctness | ||||
| 10 | // checker. | ||||
| 11 | // Details of the algorithm: | ||||
| 12 | // https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm | ||||
| 13 | // | ||||
| 14 | // FIXME: This sanitizer does not yet handle scalable vectors | ||||
| 15 | // | ||||
| 16 | //===----------------------------------------------------------------------===// | ||||
| 17 | |||||
| 18 | #include "llvm/Transforms/Instrumentation/AddressSanitizer.h" | ||||
| 19 | #include "llvm/ADT/ArrayRef.h" | ||||
| 20 | #include "llvm/ADT/DenseMap.h" | ||||
| 21 | #include "llvm/ADT/DepthFirstIterator.h" | ||||
| 22 | #include "llvm/ADT/SmallPtrSet.h" | ||||
| 23 | #include "llvm/ADT/SmallVector.h" | ||||
| 24 | #include "llvm/ADT/Statistic.h" | ||||
| 25 | #include "llvm/ADT/StringExtras.h" | ||||
| 26 | #include "llvm/ADT/StringRef.h" | ||||
| 27 | #include "llvm/ADT/Triple.h" | ||||
| 28 | #include "llvm/ADT/Twine.h" | ||||
| 29 | #include "llvm/Analysis/MemoryBuiltins.h" | ||||
| 30 | #include "llvm/Analysis/StackSafetyAnalysis.h" | ||||
| 31 | #include "llvm/Analysis/TargetLibraryInfo.h" | ||||
| 32 | #include "llvm/Analysis/ValueTracking.h" | ||||
| 33 | #include "llvm/BinaryFormat/MachO.h" | ||||
| 34 | #include "llvm/IR/Argument.h" | ||||
| 35 | #include "llvm/IR/Attributes.h" | ||||
| 36 | #include "llvm/IR/BasicBlock.h" | ||||
| 37 | #include "llvm/IR/Comdat.h" | ||||
| 38 | #include "llvm/IR/Constant.h" | ||||
| 39 | #include "llvm/IR/Constants.h" | ||||
| 40 | #include "llvm/IR/DIBuilder.h" | ||||
| 41 | #include "llvm/IR/DataLayout.h" | ||||
| 42 | #include "llvm/IR/DebugInfoMetadata.h" | ||||
| 43 | #include "llvm/IR/DebugLoc.h" | ||||
| 44 | #include "llvm/IR/DerivedTypes.h" | ||||
| 45 | #include "llvm/IR/Dominators.h" | ||||
| 46 | #include "llvm/IR/Function.h" | ||||
| 47 | #include "llvm/IR/GlobalAlias.h" | ||||
| 48 | #include "llvm/IR/GlobalValue.h" | ||||
| 49 | #include "llvm/IR/GlobalVariable.h" | ||||
| 50 | #include "llvm/IR/IRBuilder.h" | ||||
| 51 | #include "llvm/IR/InlineAsm.h" | ||||
| 52 | #include "llvm/IR/InstIterator.h" | ||||
| 53 | #include "llvm/IR/InstVisitor.h" | ||||
| 54 | #include "llvm/IR/InstrTypes.h" | ||||
| 55 | #include "llvm/IR/Instruction.h" | ||||
| 56 | #include "llvm/IR/Instructions.h" | ||||
| 57 | #include "llvm/IR/IntrinsicInst.h" | ||||
| 58 | #include "llvm/IR/Intrinsics.h" | ||||
| 59 | #include "llvm/IR/LLVMContext.h" | ||||
| 60 | #include "llvm/IR/MDBuilder.h" | ||||
| 61 | #include "llvm/IR/Metadata.h" | ||||
| 62 | #include "llvm/IR/Module.h" | ||||
| 63 | #include "llvm/IR/Type.h" | ||||
| 64 | #include "llvm/IR/Use.h" | ||||
| 65 | #include "llvm/IR/Value.h" | ||||
| 66 | #include "llvm/InitializePasses.h" | ||||
| 67 | #include "llvm/MC/MCSectionMachO.h" | ||||
| 68 | #include "llvm/Pass.h" | ||||
| 69 | #include "llvm/Support/Casting.h" | ||||
| 70 | #include "llvm/Support/CommandLine.h" | ||||
| 71 | #include "llvm/Support/Debug.h" | ||||
| 72 | #include "llvm/Support/ErrorHandling.h" | ||||
| 73 | #include "llvm/Support/MathExtras.h" | ||||
| 74 | #include "llvm/Support/ScopedPrinter.h" | ||||
| 75 | #include "llvm/Support/raw_ostream.h" | ||||
| 76 | #include "llvm/Transforms/Instrumentation.h" | ||||
| 77 | #include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h" | ||||
| 78 | #include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h" | ||||
| 79 | #include "llvm/Transforms/Utils/ASanStackFrameLayout.h" | ||||
| 80 | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | ||||
| 81 | #include "llvm/Transforms/Utils/Local.h" | ||||
| 82 | #include "llvm/Transforms/Utils/ModuleUtils.h" | ||||
| 83 | #include "llvm/Transforms/Utils/PromoteMemToReg.h" | ||||
| 84 | #include <algorithm> | ||||
| 85 | #include <cassert> | ||||
| 86 | #include <cstddef> | ||||
| 87 | #include <cstdint> | ||||
| 88 | #include <iomanip> | ||||
| 89 | #include <limits> | ||||
| 90 | #include <memory> | ||||
| 91 | #include <sstream> | ||||
| 92 | #include <string> | ||||
| 93 | #include <tuple> | ||||
| 94 | |||||
| 95 | using namespace llvm; | ||||
| 96 | |||||
| 97 | #define DEBUG_TYPE"asan" "asan" | ||||
| 98 | |||||
| 99 | static const uint64_t kDefaultShadowScale = 3; | ||||
| 100 | static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; | ||||
| 101 | static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; | ||||
| 102 | static const uint64_t kDynamicShadowSentinel = | ||||
| 103 | std::numeric_limits<uint64_t>::max(); | ||||
| 104 | static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G. | ||||
| 105 | static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL; | ||||
| 106 | static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000; | ||||
| 107 | static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44; | ||||
| 108 | static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52; | ||||
| 109 | static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; | ||||
| 110 | static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37; | ||||
| 111 | static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36; | ||||
| 112 | static const uint64_t kRISCV64_ShadowOffset64 = 0xd55550000; | ||||
| 113 | static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; | ||||
| 114 | static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; | ||||
| 115 | static const uint64_t kFreeBSDKasan_ShadowOffset64 = 0xdffff7c000000000; | ||||
| 116 | static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30; | ||||
| 117 | static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46; | ||||
| 118 | static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000; | ||||
| 119 | static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40; | ||||
| 120 | static const uint64_t kWindowsShadowOffset32 = 3ULL << 28; | ||||
| 121 | static const uint64_t kEmscriptenShadowOffset = 0; | ||||
| 122 | |||||
| 123 | // The shadow memory space is dynamically allocated. | ||||
| 124 | static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel; | ||||
| 125 | |||||
| 126 | static const size_t kMinStackMallocSize = 1 << 6; // 64B | ||||
| 127 | static const size_t kMaxStackMallocSize = 1 << 16; // 64K | ||||
| 128 | static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; | ||||
| 129 | static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; | ||||
| 130 | |||||
| 131 | const char kAsanModuleCtorName[] = "asan.module_ctor"; | ||||
| 132 | const char kAsanModuleDtorName[] = "asan.module_dtor"; | ||||
| 133 | static const uint64_t kAsanCtorAndDtorPriority = 1; | ||||
| 134 | // On Emscripten, the system needs more than one priorities for constructors. | ||||
| 135 | static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50; | ||||
| 136 | const char kAsanReportErrorTemplate[] = "__asan_report_"; | ||||
| 137 | const char kAsanRegisterGlobalsName[] = "__asan_register_globals"; | ||||
| 138 | const char kAsanUnregisterGlobalsName[] = "__asan_unregister_globals"; | ||||
| 139 | const char kAsanRegisterImageGlobalsName[] = "__asan_register_image_globals"; | ||||
| 140 | const char kAsanUnregisterImageGlobalsName[] = | ||||
| 141 | "__asan_unregister_image_globals"; | ||||
| 142 | const char kAsanRegisterElfGlobalsName[] = "__asan_register_elf_globals"; | ||||
| 143 | const char kAsanUnregisterElfGlobalsName[] = "__asan_unregister_elf_globals"; | ||||
| 144 | const char kAsanPoisonGlobalsName[] = "__asan_before_dynamic_init"; | ||||
| 145 | const char kAsanUnpoisonGlobalsName[] = "__asan_after_dynamic_init"; | ||||
| 146 | const char kAsanInitName[] = "__asan_init"; | ||||
| 147 | const char kAsanVersionCheckNamePrefix[] = "__asan_version_mismatch_check_v"; | ||||
| 148 | const char kAsanPtrCmp[] = "__sanitizer_ptr_cmp"; | ||||
| 149 | const char kAsanPtrSub[] = "__sanitizer_ptr_sub"; | ||||
| 150 | const char kAsanHandleNoReturnName[] = "__asan_handle_no_return"; | ||||
| 151 | static const int kMaxAsanStackMallocSizeClass = 10; | ||||
| 152 | const char kAsanStackMallocNameTemplate[] = "__asan_stack_malloc_"; | ||||
| 153 | const char kAsanStackMallocAlwaysNameTemplate[] = | ||||
| 154 | "__asan_stack_malloc_always_"; | ||||
| 155 | const char kAsanStackFreeNameTemplate[] = "__asan_stack_free_"; | ||||
| 156 | const char kAsanGenPrefix[] = "___asan_gen_"; | ||||
| 157 | const char kODRGenPrefix[] = "__odr_asan_gen_"; | ||||
| 158 | const char kSanCovGenPrefix[] = "__sancov_gen_"; | ||||
| 159 | const char kAsanSetShadowPrefix[] = "__asan_set_shadow_"; | ||||
| 160 | const char kAsanPoisonStackMemoryName[] = "__asan_poison_stack_memory"; | ||||
| 161 | const char kAsanUnpoisonStackMemoryName[] = "__asan_unpoison_stack_memory"; | ||||
| 162 | |||||
| 163 | // ASan version script has __asan_* wildcard. Triple underscore prevents a | ||||
| 164 | // linker (gold) warning about attempting to export a local symbol. | ||||
| 165 | const char kAsanGlobalsRegisteredFlagName[] = "___asan_globals_registered"; | ||||
| 166 | |||||
| 167 | const char kAsanOptionDetectUseAfterReturn[] = | ||||
| 168 | "__asan_option_detect_stack_use_after_return"; | ||||
| 169 | |||||
| 170 | const char kAsanShadowMemoryDynamicAddress[] = | ||||
| 171 | "__asan_shadow_memory_dynamic_address"; | ||||
| 172 | |||||
| 173 | const char kAsanAllocaPoison[] = "__asan_alloca_poison"; | ||||
| 174 | const char kAsanAllocasUnpoison[] = "__asan_allocas_unpoison"; | ||||
| 175 | |||||
| 176 | const char kAMDGPUAddressSharedName[] = "llvm.amdgcn.is.shared"; | ||||
| 177 | const char kAMDGPUAddressPrivateName[] = "llvm.amdgcn.is.private"; | ||||
| 178 | |||||
| 179 | // Accesses sizes are powers of two: 1, 2, 4, 8, 16. | ||||
| 180 | static const size_t kNumberOfAccessSizes = 5; | ||||
| 181 | |||||
| 182 | static const uint64_t kAllocaRzSize = 32; | ||||
| 183 | |||||
| 184 | // ASanAccessInfo implementation constants. | ||||
| 185 | constexpr size_t kCompileKernelShift = 0; | ||||
| 186 | constexpr size_t kCompileKernelMask = 0x1; | ||||
| 187 | constexpr size_t kAccessSizeIndexShift = 1; | ||||
| 188 | constexpr size_t kAccessSizeIndexMask = 0xf; | ||||
| 189 | constexpr size_t kIsWriteShift = 5; | ||||
| 190 | constexpr size_t kIsWriteMask = 0x1; | ||||
| 191 | |||||
| 192 | // Command-line flags. | ||||
| 193 | |||||
| 194 | static cl::opt<bool> ClEnableKasan( | ||||
| 195 | "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"), | ||||
| 196 | cl::Hidden, cl::init(false)); | ||||
| 197 | |||||
| 198 | static cl::opt<bool> ClRecover( | ||||
| 199 | "asan-recover", | ||||
| 200 | cl::desc("Enable recovery mode (continue-after-error)."), | ||||
| 201 | cl::Hidden, cl::init(false)); | ||||
| 202 | |||||
| 203 | static cl::opt<bool> ClInsertVersionCheck( | ||||
| 204 | "asan-guard-against-version-mismatch", | ||||
| 205 | cl::desc("Guard against compiler/runtime version mismatch."), | ||||
| 206 | cl::Hidden, cl::init(true)); | ||||
| 207 | |||||
| 208 | // This flag may need to be replaced with -f[no-]asan-reads. | ||||
| 209 | static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", | ||||
| 210 | cl::desc("instrument read instructions"), | ||||
| 211 | cl::Hidden, cl::init(true)); | ||||
| 212 | |||||
| 213 | static cl::opt<bool> ClInstrumentWrites( | ||||
| 214 | "asan-instrument-writes", cl::desc("instrument write instructions"), | ||||
| 215 | cl::Hidden, cl::init(true)); | ||||
| 216 | |||||
| 217 | static cl::opt<bool> | ||||
| 218 | ClUseStackSafety("asan-use-stack-safety", cl::Hidden, cl::init(false), | ||||
| 219 | cl::Hidden, cl::desc("Use Stack Safety analysis results"), | ||||
| 220 | cl::Optional); | ||||
| 221 | |||||
| 222 | static cl::opt<bool> ClInstrumentAtomics( | ||||
| 223 | "asan-instrument-atomics", | ||||
| 224 | cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, | ||||
| 225 | cl::init(true)); | ||||
| 226 | |||||
| 227 | static cl::opt<bool> | ||||
| 228 | ClInstrumentByval("asan-instrument-byval", | ||||
| 229 | cl::desc("instrument byval call arguments"), cl::Hidden, | ||||
| 230 | cl::init(true)); | ||||
| 231 | |||||
| 232 | static cl::opt<bool> ClAlwaysSlowPath( | ||||
| 233 | "asan-always-slow-path", | ||||
| 234 | cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, | ||||
| 235 | cl::init(false)); | ||||
| 236 | |||||
| 237 | static cl::opt<bool> ClForceDynamicShadow( | ||||
| 238 | "asan-force-dynamic-shadow", | ||||
| 239 | cl::desc("Load shadow address into a local variable for each function"), | ||||
| 240 | cl::Hidden, cl::init(false)); | ||||
| 241 | |||||
| 242 | static cl::opt<bool> | ||||
| 243 | ClWithIfunc("asan-with-ifunc", | ||||
| 244 | cl::desc("Access dynamic shadow through an ifunc global on " | ||||
| 245 | "platforms that support this"), | ||||
| 246 | cl::Hidden, cl::init(true)); | ||||
| 247 | |||||
| 248 | static cl::opt<bool> ClWithIfuncSuppressRemat( | ||||
| 249 | "asan-with-ifunc-suppress-remat", | ||||
| 250 | cl::desc("Suppress rematerialization of dynamic shadow address by passing " | ||||
| 251 | "it through inline asm in prologue."), | ||||
| 252 | cl::Hidden, cl::init(true)); | ||||
| 253 | |||||
| 254 | // This flag limits the number of instructions to be instrumented | ||||
| 255 | // in any given BB. Normally, this should be set to unlimited (INT_MAX), | ||||
| 256 | // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary | ||||
| 257 | // set it to 10000. | ||||
| 258 | static cl::opt<int> ClMaxInsnsToInstrumentPerBB( | ||||
| 259 | "asan-max-ins-per-bb", cl::init(10000), | ||||
| 260 | cl::desc("maximal number of instructions to instrument in any given BB"), | ||||
| 261 | cl::Hidden); | ||||
| 262 | |||||
| 263 | // This flag may need to be replaced with -f[no]asan-stack. | ||||
| 264 | static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"), | ||||
| 265 | cl::Hidden, cl::init(true)); | ||||
| 266 | static cl::opt<uint32_t> ClMaxInlinePoisoningSize( | ||||
| 267 | "asan-max-inline-poisoning-size", | ||||
| 268 | cl::desc( | ||||
| 269 | "Inline shadow poisoning for blocks up to the given size in bytes."), | ||||
| 270 | cl::Hidden, cl::init(64)); | ||||
| 271 | |||||
| 272 | static cl::opt<AsanDetectStackUseAfterReturnMode> ClUseAfterReturn( | ||||
| 273 | "asan-use-after-return", | ||||
| 274 | cl::desc("Sets the mode of detection for stack-use-after-return."), | ||||
| 275 | cl::values( | ||||
| 276 | clEnumValN(AsanDetectStackUseAfterReturnMode::Never, "never",llvm::cl::OptionEnumValue { "never", int(AsanDetectStackUseAfterReturnMode ::Never), "Never detect stack use after return." } | ||||
| 277 | "Never detect stack use after return.")llvm::cl::OptionEnumValue { "never", int(AsanDetectStackUseAfterReturnMode ::Never), "Never detect stack use after return." }, | ||||
| 278 | clEnumValN(llvm::cl::OptionEnumValue { "runtime", int(AsanDetectStackUseAfterReturnMode ::Runtime), "Detect stack use after return if " "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set." } | ||||
| 279 | AsanDetectStackUseAfterReturnMode::Runtime, "runtime",llvm::cl::OptionEnumValue { "runtime", int(AsanDetectStackUseAfterReturnMode ::Runtime), "Detect stack use after return if " "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set." } | ||||
| 280 | "Detect stack use after return if "llvm::cl::OptionEnumValue { "runtime", int(AsanDetectStackUseAfterReturnMode ::Runtime), "Detect stack use after return if " "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set." } | ||||
| 281 | "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set.")llvm::cl::OptionEnumValue { "runtime", int(AsanDetectStackUseAfterReturnMode ::Runtime), "Detect stack use after return if " "binary flag 'ASAN_OPTIONS=detect_stack_use_after_return' is set." }, | ||||
| 282 | clEnumValN(AsanDetectStackUseAfterReturnMode::Always, "always",llvm::cl::OptionEnumValue { "always", int(AsanDetectStackUseAfterReturnMode ::Always), "Always detect stack use after return." } | ||||
| 283 | "Always detect stack use after return.")llvm::cl::OptionEnumValue { "always", int(AsanDetectStackUseAfterReturnMode ::Always), "Always detect stack use after return." }), | ||||
| 284 | cl::Hidden, cl::init(AsanDetectStackUseAfterReturnMode::Runtime)); | ||||
| 285 | |||||
| 286 | static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args", | ||||
| 287 | cl::desc("Create redzones for byval " | ||||
| 288 | "arguments (extra copy " | ||||
| 289 | "required)"), cl::Hidden, | ||||
| 290 | cl::init(true)); | ||||
| 291 | |||||
| 292 | static cl::opt<bool> ClUseAfterScope("asan-use-after-scope", | ||||
| 293 | cl::desc("Check stack-use-after-scope"), | ||||
| 294 | cl::Hidden, cl::init(false)); | ||||
| 295 | |||||
| 296 | // This flag may need to be replaced with -f[no]asan-globals. | ||||
| 297 | static cl::opt<bool> ClGlobals("asan-globals", | ||||
| 298 | cl::desc("Handle global objects"), cl::Hidden, | ||||
| 299 | cl::init(true)); | ||||
| 300 | |||||
| 301 | static cl::opt<bool> ClInitializers("asan-initialization-order", | ||||
| 302 | cl::desc("Handle C++ initializer order"), | ||||
| 303 | cl::Hidden, cl::init(true)); | ||||
| 304 | |||||
| 305 | static cl::opt<bool> ClInvalidPointerPairs( | ||||
| 306 | "asan-detect-invalid-pointer-pair", | ||||
| 307 | cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden, | ||||
| 308 | cl::init(false)); | ||||
| 309 | |||||
| 310 | static cl::opt<bool> ClInvalidPointerCmp( | ||||
| 311 | "asan-detect-invalid-pointer-cmp", | ||||
| 312 | cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden, | ||||
| 313 | cl::init(false)); | ||||
| 314 | |||||
| 315 | static cl::opt<bool> ClInvalidPointerSub( | ||||
| 316 | "asan-detect-invalid-pointer-sub", | ||||
| 317 | cl::desc("Instrument - operations with pointer operands"), cl::Hidden, | ||||
| 318 | cl::init(false)); | ||||
| 319 | |||||
| 320 | static cl::opt<unsigned> ClRealignStack( | ||||
| 321 | "asan-realign-stack", | ||||
| 322 | cl::desc("Realign stack to the value of this flag (power of two)"), | ||||
| 323 | cl::Hidden, cl::init(32)); | ||||
| 324 | |||||
| 325 | static cl::opt<int> ClInstrumentationWithCallsThreshold( | ||||
| 326 | "asan-instrumentation-with-call-threshold", | ||||
| 327 | cl::desc( | ||||
| 328 | "If the function being instrumented contains more than " | ||||
| 329 | "this number of memory accesses, use callbacks instead of " | ||||
| 330 | "inline checks (-1 means never use callbacks)."), | ||||
| 331 | cl::Hidden, cl::init(7000)); | ||||
| 332 | |||||
| 333 | static cl::opt<std::string> ClMemoryAccessCallbackPrefix( | ||||
| 334 | "asan-memory-access-callback-prefix", | ||||
| 335 | cl::desc("Prefix for memory access callbacks"), cl::Hidden, | ||||
| 336 | cl::init("__asan_")); | ||||
| 337 | |||||
| 338 | static cl::opt<bool> | ||||
| 339 | ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas", | ||||
| 340 | cl::desc("instrument dynamic allocas"), | ||||
| 341 | cl::Hidden, cl::init(true)); | ||||
| 342 | |||||
| 343 | static cl::opt<bool> ClSkipPromotableAllocas( | ||||
| 344 | "asan-skip-promotable-allocas", | ||||
| 345 | cl::desc("Do not instrument promotable allocas"), cl::Hidden, | ||||
| 346 | cl::init(true)); | ||||
| 347 | |||||
| 348 | // These flags allow to change the shadow mapping. | ||||
| 349 | // The shadow mapping looks like | ||||
| 350 | // Shadow = (Mem >> scale) + offset | ||||
| 351 | |||||
| 352 | static cl::opt<int> ClMappingScale("asan-mapping-scale", | ||||
| 353 | cl::desc("scale of asan shadow mapping"), | ||||
| 354 | cl::Hidden, cl::init(0)); | ||||
| 355 | |||||
| 356 | static cl::opt<uint64_t> | ||||
| 357 | ClMappingOffset("asan-mapping-offset", | ||||
| 358 | cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), | ||||
| 359 | cl::Hidden, cl::init(0)); | ||||
| 360 | |||||
| 361 | // Optimization flags. Not user visible, used mostly for testing | ||||
| 362 | // and benchmarking the tool. | ||||
| 363 | |||||
| 364 | static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"), | ||||
| 365 | cl::Hidden, cl::init(true)); | ||||
| 366 | |||||
| 367 | static cl::opt<bool> ClOptimizeCallbacks("asan-optimize-callbacks", | ||||
| 368 | cl::desc("Optimize callbacks"), | ||||
| 369 | cl::Hidden, cl::init(false)); | ||||
| 370 | |||||
| 371 | static cl::opt<bool> ClOptSameTemp( | ||||
| 372 | "asan-opt-same-temp", cl::desc("Instrument the same temp just once"), | ||||
| 373 | cl::Hidden, cl::init(true)); | ||||
| 374 | |||||
| 375 | static cl::opt<bool> ClOptGlobals("asan-opt-globals", | ||||
| 376 | cl::desc("Don't instrument scalar globals"), | ||||
| 377 | cl::Hidden, cl::init(true)); | ||||
| 378 | |||||
| 379 | static cl::opt<bool> ClOptStack( | ||||
| 380 | "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"), | ||||
| 381 | cl::Hidden, cl::init(false)); | ||||
| 382 | |||||
| 383 | static cl::opt<bool> ClDynamicAllocaStack( | ||||
| 384 | "asan-stack-dynamic-alloca", | ||||
| 385 | cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden, | ||||
| 386 | cl::init(true)); | ||||
| 387 | |||||
| 388 | static cl::opt<uint32_t> ClForceExperiment( | ||||
| 389 | "asan-force-experiment", | ||||
| 390 | cl::desc("Force optimization experiment (for testing)"), cl::Hidden, | ||||
| 391 | cl::init(0)); | ||||
| 392 | |||||
| 393 | static cl::opt<bool> | ||||
| 394 | ClUsePrivateAlias("asan-use-private-alias", | ||||
| 395 | cl::desc("Use private aliases for global variables"), | ||||
| 396 | cl::Hidden, cl::init(false)); | ||||
| 397 | |||||
| 398 | static cl::opt<bool> | ||||
| 399 | ClUseOdrIndicator("asan-use-odr-indicator", | ||||
| 400 | cl::desc("Use odr indicators to improve ODR reporting"), | ||||
| 401 | cl::Hidden, cl::init(false)); | ||||
| 402 | |||||
| 403 | static cl::opt<bool> | ||||
| 404 | ClUseGlobalsGC("asan-globals-live-support", | ||||
| 405 | cl::desc("Use linker features to support dead " | ||||
| 406 | "code stripping of globals"), | ||||
| 407 | cl::Hidden, cl::init(true)); | ||||
| 408 | |||||
| 409 | // This is on by default even though there is a bug in gold: | ||||
| 410 | // https://sourceware.org/bugzilla/show_bug.cgi?id=19002 | ||||
| 411 | static cl::opt<bool> | ||||
| 412 | ClWithComdat("asan-with-comdat", | ||||
| 413 | cl::desc("Place ASan constructors in comdat sections"), | ||||
| 414 | cl::Hidden, cl::init(true)); | ||||
| 415 | |||||
| 416 | static cl::opt<AsanDtorKind> ClOverrideDestructorKind( | ||||
| 417 | "asan-destructor-kind", | ||||
| 418 | cl::desc("Sets the ASan destructor kind. The default is to use the value " | ||||
| 419 | "provided to the pass constructor"), | ||||
| 420 | cl::values(clEnumValN(AsanDtorKind::None, "none", "No destructors")llvm::cl::OptionEnumValue { "none", int(AsanDtorKind::None), "No destructors" }, | ||||
| 421 | clEnumValN(AsanDtorKind::Global, "global",llvm::cl::OptionEnumValue { "global", int(AsanDtorKind::Global ), "Use global destructors" } | ||||
| 422 | "Use global destructors")llvm::cl::OptionEnumValue { "global", int(AsanDtorKind::Global ), "Use global destructors" }), | ||||
| 423 | cl::init(AsanDtorKind::Invalid), cl::Hidden); | ||||
| 424 | |||||
| 425 | // Debug flags. | ||||
| 426 | |||||
| 427 | static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, | ||||
| 428 | cl::init(0)); | ||||
| 429 | |||||
| 430 | static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), | ||||
| 431 | cl::Hidden, cl::init(0)); | ||||
| 432 | |||||
| 433 | static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden, | ||||
| 434 | cl::desc("Debug func")); | ||||
| 435 | |||||
| 436 | static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), | ||||
| 437 | cl::Hidden, cl::init(-1)); | ||||
| 438 | |||||
| 439 | static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"), | ||||
| 440 | cl::Hidden, cl::init(-1)); | ||||
| 441 | |||||
| 442 | STATISTIC(NumInstrumentedReads, "Number of instrumented reads")static llvm::Statistic NumInstrumentedReads = {"asan", "NumInstrumentedReads" , "Number of instrumented reads"}; | ||||
| 443 | STATISTIC(NumInstrumentedWrites, "Number of instrumented writes")static llvm::Statistic NumInstrumentedWrites = {"asan", "NumInstrumentedWrites" , "Number of instrumented writes"}; | ||||
| 444 | STATISTIC(NumOptimizedAccessesToGlobalVar,static llvm::Statistic NumOptimizedAccessesToGlobalVar = {"asan" , "NumOptimizedAccessesToGlobalVar", "Number of optimized accesses to global vars" } | ||||
| 445 | "Number of optimized accesses to global vars")static llvm::Statistic NumOptimizedAccessesToGlobalVar = {"asan" , "NumOptimizedAccessesToGlobalVar", "Number of optimized accesses to global vars" }; | ||||
| 446 | STATISTIC(NumOptimizedAccessesToStackVar,static llvm::Statistic NumOptimizedAccessesToStackVar = {"asan" , "NumOptimizedAccessesToStackVar", "Number of optimized accesses to stack vars" } | ||||
| 447 | "Number of optimized accesses to stack vars")static llvm::Statistic NumOptimizedAccessesToStackVar = {"asan" , "NumOptimizedAccessesToStackVar", "Number of optimized accesses to stack vars" }; | ||||
| 448 | |||||
| 449 | namespace { | ||||
| 450 | |||||
| 451 | /// This struct defines the shadow mapping using the rule: | ||||
| 452 | /// shadow = (mem >> Scale) ADD-or-OR Offset. | ||||
| 453 | /// If InGlobal is true, then | ||||
| 454 | /// extern char __asan_shadow[]; | ||||
| 455 | /// shadow = (mem >> Scale) + &__asan_shadow | ||||
| 456 | struct ShadowMapping { | ||||
| 457 | int Scale; | ||||
| 458 | uint64_t Offset; | ||||
| 459 | bool OrShadowOffset; | ||||
| 460 | bool InGlobal; | ||||
| 461 | }; | ||||
| 462 | |||||
| 463 | } // end anonymous namespace | ||||
| 464 | |||||
| 465 | static ShadowMapping getShadowMapping(const Triple &TargetTriple, int LongSize, | ||||
| 466 | bool IsKasan) { | ||||
| 467 | bool IsAndroid = TargetTriple.isAndroid(); | ||||
| 468 | bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS(); | ||||
| 469 | bool IsMacOS = TargetTriple.isMacOSX(); | ||||
| 470 | bool IsFreeBSD = TargetTriple.isOSFreeBSD(); | ||||
| 471 | bool IsNetBSD = TargetTriple.isOSNetBSD(); | ||||
| 472 | bool IsPS4CPU = TargetTriple.isPS4CPU(); | ||||
| 473 | bool IsLinux = TargetTriple.isOSLinux(); | ||||
| 474 | bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 || | ||||
| 475 | TargetTriple.getArch() == Triple::ppc64le; | ||||
| 476 | bool IsSystemZ = TargetTriple.getArch() == Triple::systemz; | ||||
| 477 | bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; | ||||
| 478 | bool IsMIPS32 = TargetTriple.isMIPS32(); | ||||
| 479 | bool IsMIPS64 = TargetTriple.isMIPS64(); | ||||
| 480 | bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb(); | ||||
| 481 | bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64; | ||||
| 482 | bool IsRISCV64 = TargetTriple.getArch() == Triple::riscv64; | ||||
| 483 | bool IsWindows = TargetTriple.isOSWindows(); | ||||
| 484 | bool IsFuchsia = TargetTriple.isOSFuchsia(); | ||||
| 485 | bool IsEmscripten = TargetTriple.isOSEmscripten(); | ||||
| 486 | bool IsAMDGPU = TargetTriple.isAMDGPU(); | ||||
| 487 | |||||
| 488 | ShadowMapping Mapping; | ||||
| 489 | |||||
| 490 | Mapping.Scale = kDefaultShadowScale; | ||||
| 491 | if (ClMappingScale.getNumOccurrences() > 0) { | ||||
| 492 | Mapping.Scale = ClMappingScale; | ||||
| 493 | } | ||||
| 494 | |||||
| 495 | if (LongSize == 32) { | ||||
| 496 | if (IsAndroid) | ||||
| 497 | Mapping.Offset = kDynamicShadowSentinel; | ||||
| 498 | else if (IsMIPS32) | ||||
| 499 | Mapping.Offset = kMIPS32_ShadowOffset32; | ||||
| 500 | else if (IsFreeBSD) | ||||
| 501 | Mapping.Offset = kFreeBSD_ShadowOffset32; | ||||
| 502 | else if (IsNetBSD) | ||||
| 503 | Mapping.Offset = kNetBSD_ShadowOffset32; | ||||
| 504 | else if (IsIOS) | ||||
| 505 | Mapping.Offset = kDynamicShadowSentinel; | ||||
| 506 | else if (IsWindows) | ||||
| 507 | Mapping.Offset = kWindowsShadowOffset32; | ||||
| 508 | else if (IsEmscripten) | ||||
| 509 | Mapping.Offset = kEmscriptenShadowOffset; | ||||
| 510 | else | ||||
| 511 | Mapping.Offset = kDefaultShadowOffset32; | ||||
| 512 | } else { // LongSize == 64 | ||||
| 513 | // Fuchsia is always PIE, which means that the beginning of the address | ||||
| 514 | // space is always available. | ||||
| 515 | if (IsFuchsia) | ||||
| 516 | Mapping.Offset = 0; | ||||
| 517 | else if (IsPPC64) | ||||
| 518 | Mapping.Offset = kPPC64_ShadowOffset64; | ||||
| 519 | else if (IsSystemZ) | ||||
| 520 | Mapping.Offset = kSystemZ_ShadowOffset64; | ||||
| 521 | else if (IsFreeBSD && !IsMIPS64) { | ||||
| 522 | if (IsKasan) | ||||
| 523 | Mapping.Offset = kFreeBSDKasan_ShadowOffset64; | ||||
| 524 | else | ||||
| 525 | Mapping.Offset = kFreeBSD_ShadowOffset64; | ||||
| 526 | } else if (IsNetBSD) { | ||||
| 527 | if (IsKasan) | ||||
| 528 | Mapping.Offset = kNetBSDKasan_ShadowOffset64; | ||||
| 529 | else | ||||
| 530 | Mapping.Offset = kNetBSD_ShadowOffset64; | ||||
| 531 | } else if (IsPS4CPU) | ||||
| 532 | Mapping.Offset = kPS4CPU_ShadowOffset64; | ||||
| 533 | else if (IsLinux && IsX86_64) { | ||||
| 534 | if (IsKasan) | ||||
| 535 | Mapping.Offset = kLinuxKasan_ShadowOffset64; | ||||
| 536 | else | ||||
| 537 | Mapping.Offset = (kSmallX86_64ShadowOffsetBase & | ||||
| 538 | (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); | ||||
| 539 | } else if (IsWindows && IsX86_64) { | ||||
| 540 | Mapping.Offset = kWindowsShadowOffset64; | ||||
| 541 | } else if (IsMIPS64) | ||||
| 542 | Mapping.Offset = kMIPS64_ShadowOffset64; | ||||
| 543 | else if (IsIOS) | ||||
| 544 | Mapping.Offset = kDynamicShadowSentinel; | ||||
| 545 | else if (IsMacOS && IsAArch64) | ||||
| 546 | Mapping.Offset = kDynamicShadowSentinel; | ||||
| 547 | else if (IsAArch64) | ||||
| 548 | Mapping.Offset = kAArch64_ShadowOffset64; | ||||
| 549 | else if (IsRISCV64) | ||||
| 550 | Mapping.Offset = kRISCV64_ShadowOffset64; | ||||
| 551 | else if (IsAMDGPU) | ||||
| 552 | Mapping.Offset = (kSmallX86_64ShadowOffsetBase & | ||||
| 553 | (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); | ||||
| 554 | else | ||||
| 555 | Mapping.Offset = kDefaultShadowOffset64; | ||||
| 556 | } | ||||
| 557 | |||||
| 558 | if (ClForceDynamicShadow) { | ||||
| 559 | Mapping.Offset = kDynamicShadowSentinel; | ||||
| 560 | } | ||||
| 561 | |||||
| 562 | if (ClMappingOffset.getNumOccurrences() > 0) { | ||||
| 563 | Mapping.Offset = ClMappingOffset; | ||||
| 564 | } | ||||
| 565 | |||||
| 566 | // OR-ing shadow offset if more efficient (at least on x86) if the offset | ||||
| 567 | // is a power of two, but on ppc64 we have to use add since the shadow | ||||
| 568 | // offset is not necessary 1/8-th of the address space. On SystemZ, | ||||
| 569 | // we could OR the constant in a single instruction, but it's more | ||||
| 570 | // efficient to load it once and use indexed addressing. | ||||
| 571 | Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU && | ||||
| 572 | !IsRISCV64 && | ||||
| 573 | !(Mapping.Offset & (Mapping.Offset - 1)) && | ||||
| 574 | Mapping.Offset != kDynamicShadowSentinel; | ||||
| 575 | bool IsAndroidWithIfuncSupport = | ||||
| 576 | IsAndroid && !TargetTriple.isAndroidVersionLT(21); | ||||
| 577 | Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb; | ||||
| 578 | |||||
| 579 | return Mapping; | ||||
| 580 | } | ||||
| 581 | |||||
| 582 | namespace llvm { | ||||
| 583 | void getAddressSanitizerParams(const Triple &TargetTriple, int LongSize, | ||||
| 584 | bool IsKasan, uint64_t *ShadowBase, | ||||
| 585 | int *MappingScale, bool *OrShadowOffset) { | ||||
| 586 | auto Mapping = getShadowMapping(TargetTriple, LongSize, IsKasan); | ||||
| 587 | *ShadowBase = Mapping.Offset; | ||||
| 588 | *MappingScale = Mapping.Scale; | ||||
| 589 | *OrShadowOffset = Mapping.OrShadowOffset; | ||||
| 590 | } | ||||
| 591 | |||||
| 592 | ASanAccessInfo::ASanAccessInfo(int32_t Packed) | ||||
| 593 | : Packed(Packed), | ||||
| 594 | AccessSizeIndex((Packed >> kAccessSizeIndexShift) & kAccessSizeIndexMask), | ||||
| 595 | IsWrite((Packed >> kIsWriteShift) & kIsWriteMask), | ||||
| 596 | CompileKernel((Packed >> kCompileKernelShift) & kCompileKernelMask) {} | ||||
| 597 | |||||
| 598 | ASanAccessInfo::ASanAccessInfo(bool IsWrite, bool CompileKernel, | ||||
| 599 | uint8_t AccessSizeIndex) | ||||
| 600 | : Packed((IsWrite << kIsWriteShift) + | ||||
| 601 | (CompileKernel << kCompileKernelShift) + | ||||
| 602 | (AccessSizeIndex << kAccessSizeIndexShift)), | ||||
| 603 | AccessSizeIndex(AccessSizeIndex), IsWrite(IsWrite), | ||||
| 604 | CompileKernel(CompileKernel) {} | ||||
| 605 | |||||
| 606 | } // namespace llvm | ||||
| 607 | |||||
| 608 | static uint64_t getRedzoneSizeForScale(int MappingScale) { | ||||
| 609 | // Redzone used for stack and globals is at least 32 bytes. | ||||
| 610 | // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. | ||||
| 611 | return std::max(32U, 1U << MappingScale); | ||||
| 612 | } | ||||
| 613 | |||||
| 614 | static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) { | ||||
| 615 | if (TargetTriple.isOSEmscripten()) { | ||||
| 616 | return kAsanEmscriptenCtorAndDtorPriority; | ||||
| 617 | } else { | ||||
| 618 | return kAsanCtorAndDtorPriority; | ||||
| 619 | } | ||||
| 620 | } | ||||
| 621 | |||||
| 622 | namespace { | ||||
| 623 | |||||
| 624 | /// Module analysis for getting various metadata about the module. | ||||
| 625 | class ASanGlobalsMetadataWrapperPass : public ModulePass { | ||||
| 626 | public: | ||||
| 627 | static char ID; | ||||
| 628 | |||||
| 629 | ASanGlobalsMetadataWrapperPass() : ModulePass(ID) { | ||||
| 630 | initializeASanGlobalsMetadataWrapperPassPass( | ||||
| 631 | *PassRegistry::getPassRegistry()); | ||||
| 632 | } | ||||
| 633 | |||||
| 634 | bool runOnModule(Module &M) override { | ||||
| 635 | GlobalsMD = GlobalsMetadata(M); | ||||
| 636 | return false; | ||||
| 637 | } | ||||
| 638 | |||||
| 639 | StringRef getPassName() const override { | ||||
| 640 | return "ASanGlobalsMetadataWrapperPass"; | ||||
| 641 | } | ||||
| 642 | |||||
| 643 | void getAnalysisUsage(AnalysisUsage &AU) const override { | ||||
| 644 | AU.setPreservesAll(); | ||||
| 645 | } | ||||
| 646 | |||||
| 647 | GlobalsMetadata &getGlobalsMD() { return GlobalsMD; } | ||||
| 648 | |||||
| 649 | private: | ||||
| 650 | GlobalsMetadata GlobalsMD; | ||||
| 651 | }; | ||||
| 652 | |||||
| 653 | char ASanGlobalsMetadataWrapperPass::ID = 0; | ||||
| 654 | |||||
| 655 | /// AddressSanitizer: instrument the code in module to find memory bugs. | ||||
| 656 | struct AddressSanitizer { | ||||
| 657 | AddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD, | ||||
| 658 | const StackSafetyGlobalInfo *SSGI, | ||||
| 659 | bool CompileKernel = false, bool Recover = false, | ||||
| 660 | bool UseAfterScope = false, | ||||
| 661 | AsanDetectStackUseAfterReturnMode UseAfterReturn = | ||||
| 662 | AsanDetectStackUseAfterReturnMode::Runtime) | ||||
| 663 | : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan | ||||
| 664 | : CompileKernel), | ||||
| 665 | Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), | ||||
| 666 | UseAfterScope(UseAfterScope || ClUseAfterScope), | ||||
| 667 | UseAfterReturn(ClUseAfterReturn.getNumOccurrences() ? ClUseAfterReturn | ||||
| 668 | : UseAfterReturn), | ||||
| 669 | GlobalsMD(*GlobalsMD), SSGI(SSGI) { | ||||
| 670 | C = &(M.getContext()); | ||||
| 671 | LongSize = M.getDataLayout().getPointerSizeInBits(); | ||||
| 672 | IntptrTy = Type::getIntNTy(*C, LongSize); | ||||
| 673 | Int8PtrTy = Type::getInt8PtrTy(*C); | ||||
| 674 | Int32Ty = Type::getInt32Ty(*C); | ||||
| 675 | TargetTriple = Triple(M.getTargetTriple()); | ||||
| 676 | |||||
| 677 | Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); | ||||
| 678 | |||||
| 679 | assert(this->UseAfterReturn != AsanDetectStackUseAfterReturnMode::Invalid)(static_cast <bool> (this->UseAfterReturn != AsanDetectStackUseAfterReturnMode ::Invalid) ? void (0) : __assert_fail ("this->UseAfterReturn != AsanDetectStackUseAfterReturnMode::Invalid" , "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp", 679, __extension__ __PRETTY_FUNCTION__)); | ||||
| 680 | } | ||||
| 681 | |||||
| 682 | uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const { | ||||
| 683 | uint64_t ArraySize = 1; | ||||
| 684 | if (AI.isArrayAllocation()) { | ||||
| 685 | const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize()); | ||||
| 686 | assert(CI && "non-constant array size")(static_cast <bool> (CI && "non-constant array size" ) ? void (0) : __assert_fail ("CI && \"non-constant array size\"" , "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp", 686, __extension__ __PRETTY_FUNCTION__)); | ||||
| 687 | ArraySize = CI->getZExtValue(); | ||||
| 688 | } | ||||
| 689 | Type *Ty = AI.getAllocatedType(); | ||||
| 690 | uint64_t SizeInBytes = | ||||
| 691 | AI.getModule()->getDataLayout().getTypeAllocSize(Ty); | ||||
| 692 | return SizeInBytes * ArraySize; | ||||
| 693 | } | ||||
| 694 | |||||
| 695 | /// Check if we want (and can) handle this alloca. | ||||
| 696 | bool isInterestingAlloca(const AllocaInst &AI); | ||||
| 697 | |||||
| 698 | bool ignoreAccess(Instruction *Inst, Value *Ptr); | ||||
| 699 | void getInterestingMemoryOperands( | ||||
| 700 | Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting); | ||||
| 701 | |||||
| 702 | void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, | ||||
| 703 | InterestingMemoryOperand &O, bool UseCalls, | ||||
| 704 | const DataLayout &DL); | ||||
| 705 | void instrumentPointerComparisonOrSubtraction(Instruction *I); | ||||
| 706 | void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, | ||||
| 707 | Value *Addr, uint32_t TypeSize, bool IsWrite, | ||||
| 708 | Value *SizeArgument, bool UseCalls, uint32_t Exp); | ||||
| 709 | Instruction *instrumentAMDGPUAddress(Instruction *OrigIns, | ||||
| 710 | Instruction *InsertBefore, Value *Addr, | ||||
| 711 | uint32_t TypeSize, bool IsWrite, | ||||
| 712 | Value *SizeArgument); | ||||
| 713 | void instrumentUnusualSizeOrAlignment(Instruction *I, | ||||
| 714 | Instruction *InsertBefore, Value *Addr, | ||||
| 715 | uint32_t TypeSize, bool IsWrite, | ||||
| 716 | Value *SizeArgument, bool UseCalls, | ||||
| 717 | uint32_t Exp); | ||||
| 718 | Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, | ||||
| 719 | Value *ShadowValue, uint32_t TypeSize); | ||||
| 720 | Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, | ||||
| 721 | bool IsWrite, size_t AccessSizeIndex, | ||||
| 722 | Value *SizeArgument, uint32_t Exp); | ||||
| 723 | void instrumentMemIntrinsic(MemIntrinsic *MI); | ||||
| 724 | Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); | ||||
| 725 | bool suppressInstrumentationSiteForDebug(int &Instrumented); | ||||
| 726 | bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI); | ||||
| 727 | bool maybeInsertAsanInitAtFunctionEntry(Function &F); | ||||
| 728 | bool maybeInsertDynamicShadowAtFunctionEntry(Function &F); | ||||
| 729 | void markEscapedLocalAllocas(Function &F); | ||||
| 730 | |||||
| 731 | private: | ||||
| 732 | friend struct FunctionStackPoisoner; | ||||
| 733 | |||||
| 734 | void initializeCallbacks(Module &M); | ||||
| 735 | |||||
| 736 | bool LooksLikeCodeInBug11395(Instruction *I); | ||||
| 737 | bool GlobalIsLinkerInitialized(GlobalVariable *G); | ||||
| 738 | bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr, | ||||
| 739 | uint64_t TypeSize) const; | ||||
| 740 | |||||
| 741 | /// Helper to cleanup per-function state. | ||||
| 742 | struct FunctionStateRAII { | ||||
| 743 | AddressSanitizer *Pass; | ||||
| 744 | |||||
| 745 | FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) { | ||||
| 746 | assert(Pass->ProcessedAllocas.empty() &&(static_cast <bool> (Pass->ProcessedAllocas.empty() && "last pass forgot to clear cache") ? void (0) : __assert_fail ("Pass->ProcessedAllocas.empty() && \"last pass forgot to clear cache\"" , "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp", 747, __extension__ __PRETTY_FUNCTION__)) | ||||
| 747 | "last pass forgot to clear cache")(static_cast <bool> (Pass->ProcessedAllocas.empty() && "last pass forgot to clear cache") ? void (0) : __assert_fail ("Pass->ProcessedAllocas.empty() && \"last pass forgot to clear cache\"" , "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp", 747, __extension__ __PRETTY_FUNCTION__)); | ||||
| 748 | assert(!Pass->LocalDynamicShadow)(static_cast <bool> (!Pass->LocalDynamicShadow) ? void (0) : __assert_fail ("!Pass->LocalDynamicShadow", "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp" , 748, __extension__ __PRETTY_FUNCTION__)); | ||||
| 749 | } | ||||
| 750 | |||||
| 751 | ~FunctionStateRAII() { | ||||
| 752 | Pass->LocalDynamicShadow = nullptr; | ||||
| 753 | Pass->ProcessedAllocas.clear(); | ||||
| 754 | } | ||||
| 755 | }; | ||||
| 756 | |||||
| 757 | LLVMContext *C; | ||||
| 758 | Triple TargetTriple; | ||||
| 759 | int LongSize; | ||||
| 760 | bool CompileKernel; | ||||
| 761 | bool Recover; | ||||
| 762 | bool UseAfterScope; | ||||
| 763 | AsanDetectStackUseAfterReturnMode UseAfterReturn; | ||||
| 764 | Type *IntptrTy; | ||||
| 765 | Type *Int8PtrTy; | ||||
| 766 | Type *Int32Ty; | ||||
| 767 | ShadowMapping Mapping; | ||||
| 768 | FunctionCallee AsanHandleNoReturnFunc; | ||||
| 769 | FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction; | ||||
| 770 | Constant *AsanShadowGlobal; | ||||
| 771 | |||||
| 772 | // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize). | ||||
| 773 | FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes]; | ||||
| 774 | FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes]; | ||||
| 775 | |||||
| 776 | // These arrays is indexed by AccessIsWrite and Experiment. | ||||
| 777 | FunctionCallee AsanErrorCallbackSized[2][2]; | ||||
| 778 | FunctionCallee AsanMemoryAccessCallbackSized[2][2]; | ||||
| 779 | |||||
| 780 | FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset; | ||||
| 781 | Value *LocalDynamicShadow = nullptr; | ||||
| 782 | const GlobalsMetadata &GlobalsMD; | ||||
| 783 | const StackSafetyGlobalInfo *SSGI; | ||||
| 784 | DenseMap<const AllocaInst *, bool> ProcessedAllocas; | ||||
| 785 | |||||
| 786 | FunctionCallee AMDGPUAddressShared; | ||||
| 787 | FunctionCallee AMDGPUAddressPrivate; | ||||
| 788 | }; | ||||
| 789 | |||||
| 790 | class AddressSanitizerLegacyPass : public FunctionPass { | ||||
| 791 | public: | ||||
| 792 | static char ID; | ||||
| 793 | |||||
| 794 | explicit AddressSanitizerLegacyPass( | ||||
| 795 | bool CompileKernel = false, bool Recover = false, | ||||
| 796 | bool UseAfterScope = false, | ||||
| 797 | AsanDetectStackUseAfterReturnMode UseAfterReturn = | ||||
| 798 | AsanDetectStackUseAfterReturnMode::Runtime) | ||||
| 799 | : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover), | ||||
| 800 | UseAfterScope(UseAfterScope), UseAfterReturn(UseAfterReturn) { | ||||
| 801 | initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry()); | ||||
| 802 | } | ||||
| 803 | |||||
| 804 | StringRef getPassName() const override { | ||||
| 805 | return "AddressSanitizerFunctionPass"; | ||||
| 806 | } | ||||
| 807 | |||||
| 808 | void getAnalysisUsage(AnalysisUsage &AU) const override { | ||||
| 809 | AU.addRequired<ASanGlobalsMetadataWrapperPass>(); | ||||
| 810 | if (ClUseStackSafety) | ||||
| 811 | AU.addRequired<StackSafetyGlobalInfoWrapperPass>(); | ||||
| 812 | AU.addRequired<TargetLibraryInfoWrapperPass>(); | ||||
| 813 | } | ||||
| 814 | |||||
| 815 | bool runOnFunction(Function &F) override { | ||||
| 816 | GlobalsMetadata &GlobalsMD = | ||||
| 817 | getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); | ||||
| 818 | const StackSafetyGlobalInfo *const SSGI = | ||||
| 819 | ClUseStackSafety | ||||
| 820 | ? &getAnalysis<StackSafetyGlobalInfoWrapperPass>().getResult() | ||||
| 821 | : nullptr; | ||||
| 822 | const TargetLibraryInfo *TLI = | ||||
| 823 | &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); | ||||
| 824 | AddressSanitizer ASan(*F.getParent(), &GlobalsMD, SSGI, CompileKernel, | ||||
| 825 | Recover, UseAfterScope, UseAfterReturn); | ||||
| 826 | return ASan.instrumentFunction(F, TLI); | ||||
| 827 | } | ||||
| 828 | |||||
| 829 | private: | ||||
| 830 | bool CompileKernel; | ||||
| 831 | bool Recover; | ||||
| 832 | bool UseAfterScope; | ||||
| 833 | AsanDetectStackUseAfterReturnMode UseAfterReturn; | ||||
| 834 | }; | ||||
| 835 | |||||
| 836 | class ModuleAddressSanitizer { | ||||
| 837 | public: | ||||
| 838 | ModuleAddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD, | ||||
| 839 | bool CompileKernel = false, bool Recover = false, | ||||
| 840 | bool UseGlobalsGC = true, bool UseOdrIndicator = false, | ||||
| 841 | AsanDtorKind DestructorKind = AsanDtorKind::Global) | ||||
| 842 | : GlobalsMD(*GlobalsMD), | ||||
| 843 | CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan | ||||
| 844 | : CompileKernel), | ||||
| 845 | Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), | ||||
| 846 | UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel), | ||||
| 847 | // Enable aliases as they should have no downside with ODR indicators. | ||||
| 848 | UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias), | ||||
| 849 | UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator), | ||||
| 850 | // Not a typo: ClWithComdat is almost completely pointless without | ||||
| 851 | // ClUseGlobalsGC (because then it only works on modules without | ||||
| 852 | // globals, which are rare); it is a prerequisite for ClUseGlobalsGC; | ||||
| 853 | // and both suffer from gold PR19002 for which UseGlobalsGC constructor | ||||
| 854 | // argument is designed as workaround. Therefore, disable both | ||||
| 855 | // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to | ||||
| 856 | // do globals-gc. | ||||
| 857 | UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel), | ||||
| 858 | DestructorKind(DestructorKind) { | ||||
| 859 | C = &(M.getContext()); | ||||
| 860 | int LongSize = M.getDataLayout().getPointerSizeInBits(); | ||||
| 861 | IntptrTy = Type::getIntNTy(*C, LongSize); | ||||
| 862 | TargetTriple = Triple(M.getTargetTriple()); | ||||
| 863 | Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); | ||||
| 864 | |||||
| 865 | if (ClOverrideDestructorKind != AsanDtorKind::Invalid) | ||||
| 866 | this->DestructorKind = ClOverrideDestructorKind; | ||||
| 867 | assert(this->DestructorKind != AsanDtorKind::Invalid)(static_cast <bool> (this->DestructorKind != AsanDtorKind ::Invalid) ? void (0) : __assert_fail ("this->DestructorKind != AsanDtorKind::Invalid" , "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp", 867, __extension__ __PRETTY_FUNCTION__)); | ||||
| 868 | } | ||||
| 869 | |||||
| 870 | bool instrumentModule(Module &); | ||||
| 871 | |||||
| 872 | private: | ||||
| 873 | void initializeCallbacks(Module &M); | ||||
| 874 | |||||
| 875 | bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat); | ||||
| 876 | void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M, | ||||
| 877 | ArrayRef<GlobalVariable *> ExtendedGlobals, | ||||
| 878 | ArrayRef<Constant *> MetadataInitializers); | ||||
| 879 | void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M, | ||||
| 880 | ArrayRef<GlobalVariable *> ExtendedGlobals, | ||||
| 881 | ArrayRef<Constant *> MetadataInitializers, | ||||
| 882 | const std::string &UniqueModuleId); | ||||
| 883 | void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M, | ||||
| 884 | ArrayRef<GlobalVariable *> ExtendedGlobals, | ||||
| 885 | ArrayRef<Constant *> MetadataInitializers); | ||||
| 886 | void | ||||
| 887 | InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M, | ||||
| 888 | ArrayRef<GlobalVariable *> ExtendedGlobals, | ||||
| 889 | ArrayRef<Constant *> MetadataInitializers); | ||||
| 890 | |||||
| 891 | GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer, | ||||
| 892 | StringRef OriginalName); | ||||
| 893 | void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata, | ||||
| 894 | StringRef InternalSuffix); | ||||
| 895 | Instruction *CreateAsanModuleDtor(Module &M); | ||||
| 896 | |||||
| 897 | const GlobalVariable *getExcludedAliasedGlobal(const GlobalAlias &GA) const; | ||||
| 898 | bool shouldInstrumentGlobal(GlobalVariable *G) const; | ||||
| 899 | bool ShouldUseMachOGlobalsSection() const; | ||||
| 900 | StringRef getGlobalMetadataSection() const; | ||||
| 901 | void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName); | ||||
| 902 | void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); | ||||
| 903 | uint64_t getMinRedzoneSizeForGlobal() const { | ||||
| 904 | return getRedzoneSizeForScale(Mapping.Scale); | ||||
| 905 | } | ||||
| 906 | uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const; | ||||
| 907 | int GetAsanVersion(const Module &M) const; | ||||
| 908 | |||||
| 909 | const GlobalsMetadata &GlobalsMD; | ||||
| 910 | bool CompileKernel; | ||||
| 911 | bool Recover; | ||||
| 912 | bool UseGlobalsGC; | ||||
| 913 | bool UsePrivateAlias; | ||||
| 914 | bool UseOdrIndicator; | ||||
| 915 | bool UseCtorComdat; | ||||
| 916 | AsanDtorKind DestructorKind; | ||||
| 917 | Type *IntptrTy; | ||||
| 918 | LLVMContext *C; | ||||
| 919 | Triple TargetTriple; | ||||
| 920 | ShadowMapping Mapping; | ||||
| 921 | FunctionCallee AsanPoisonGlobals; | ||||
| 922 | FunctionCallee AsanUnpoisonGlobals; | ||||
| 923 | FunctionCallee AsanRegisterGlobals; | ||||
| 924 | FunctionCallee AsanUnregisterGlobals; | ||||
| 925 | FunctionCallee AsanRegisterImageGlobals; | ||||
| 926 | FunctionCallee AsanUnregisterImageGlobals; | ||||
| 927 | FunctionCallee AsanRegisterElfGlobals; | ||||
| 928 | FunctionCallee AsanUnregisterElfGlobals; | ||||
| 929 | |||||
| 930 | Function *AsanCtorFunction = nullptr; | ||||
| 931 | Function *AsanDtorFunction = nullptr; | ||||
| 932 | }; | ||||
| 933 | |||||
| 934 | class ModuleAddressSanitizerLegacyPass : public ModulePass { | ||||
| 935 | public: | ||||
| 936 | static char ID; | ||||
| 937 | |||||
| 938 | explicit ModuleAddressSanitizerLegacyPass( | ||||
| 939 | bool CompileKernel = false, bool Recover = false, bool UseGlobalGC = true, | ||||
| 940 | bool UseOdrIndicator = false, | ||||
| 941 | AsanDtorKind DestructorKind = AsanDtorKind::Global) | ||||
| 942 | : ModulePass(ID), CompileKernel(CompileKernel), Recover(Recover), | ||||
| 943 | UseGlobalGC(UseGlobalGC), UseOdrIndicator(UseOdrIndicator), | ||||
| 944 | DestructorKind(DestructorKind) { | ||||
| 945 | initializeModuleAddressSanitizerLegacyPassPass( | ||||
| 946 | *PassRegistry::getPassRegistry()); | ||||
| 947 | } | ||||
| 948 | |||||
| 949 | StringRef getPassName() const override { return "ModuleAddressSanitizer"; } | ||||
| 950 | |||||
| 951 | void getAnalysisUsage(AnalysisUsage &AU) const override { | ||||
| 952 | AU.addRequired<ASanGlobalsMetadataWrapperPass>(); | ||||
| 953 | } | ||||
| 954 | |||||
| 955 | bool runOnModule(Module &M) override { | ||||
| 956 | GlobalsMetadata &GlobalsMD = | ||||
| 957 | getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); | ||||
| 958 | ModuleAddressSanitizer ASanModule(M, &GlobalsMD, CompileKernel, Recover, | ||||
| 959 | UseGlobalGC, UseOdrIndicator, | ||||
| 960 | DestructorKind); | ||||
| 961 | return ASanModule.instrumentModule(M); | ||||
| 962 | } | ||||
| 963 | |||||
| 964 | private: | ||||
| 965 | bool CompileKernel; | ||||
| 966 | bool Recover; | ||||
| 967 | bool UseGlobalGC; | ||||
| 968 | bool UseOdrIndicator; | ||||
| 969 | AsanDtorKind DestructorKind; | ||||
| 970 | }; | ||||
| 971 | |||||
| 972 | // Stack poisoning does not play well with exception handling. | ||||
| 973 | // When an exception is thrown, we essentially bypass the code | ||||
| 974 | // that unpoisones the stack. This is why the run-time library has | ||||
| 975 | // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire | ||||
| 976 | // stack in the interceptor. This however does not work inside the | ||||
| 977 | // actual function which catches the exception. Most likely because the | ||||
| 978 | // compiler hoists the load of the shadow value somewhere too high. | ||||
| 979 | // This causes asan to report a non-existing bug on 453.povray. | ||||
| 980 | // It sounds like an LLVM bug. | ||||
| 981 | struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { | ||||
| 982 | Function &F; | ||||
| 983 | AddressSanitizer &ASan; | ||||
| 984 | DIBuilder DIB; | ||||
| 985 | LLVMContext *C; | ||||
| 986 | Type *IntptrTy; | ||||
| 987 | Type *IntptrPtrTy; | ||||
| 988 | ShadowMapping Mapping; | ||||
| 989 | |||||
| 990 | SmallVector<AllocaInst *, 16> AllocaVec; | ||||
| 991 | SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp; | ||||
| 992 | SmallVector<Instruction *, 8> RetVec; | ||||
| 993 | |||||
| 994 | FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], | ||||
| 995 | AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; | ||||
| 996 | FunctionCallee AsanSetShadowFunc[0x100] = {}; | ||||
| 997 | FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc; | ||||
| 998 | FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc; | ||||
| 999 | |||||
| 1000 | // Stores a place and arguments of poisoning/unpoisoning call for alloca. | ||||
| 1001 | struct AllocaPoisonCall { | ||||
| 1002 | IntrinsicInst *InsBefore; | ||||
| 1003 | AllocaInst *AI; | ||||
| 1004 | uint64_t Size; | ||||
| 1005 | bool DoPoison; | ||||
| 1006 | }; | ||||
| 1007 | SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec; | ||||
| 1008 | SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec; | ||||
| 1009 | bool HasUntracedLifetimeIntrinsic = false; | ||||
| 1010 | |||||
| 1011 | SmallVector<AllocaInst *, 1> DynamicAllocaVec; | ||||
| 1012 | SmallVector<IntrinsicInst *, 1> StackRestoreVec; | ||||
| 1013 | AllocaInst *DynamicAllocaLayout = nullptr; | ||||
| 1014 | IntrinsicInst *LocalEscapeCall = nullptr; | ||||
| 1015 | |||||
| 1016 | bool HasInlineAsm = false; | ||||
| 1017 | bool HasReturnsTwiceCall = false; | ||||
| 1018 | bool PoisonStack; | ||||
| 1019 | |||||
| 1020 | FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) | ||||
| 1021 | : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false), | ||||
| 1022 | C(ASan.C), IntptrTy(ASan.IntptrTy), | ||||
| 1023 | IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping), | ||||
| 1024 | PoisonStack(ClStack && | ||||
| 1025 | !Triple(F.getParent()->getTargetTriple()).isAMDGPU()) {} | ||||
| 1026 | |||||
| 1027 | bool runOnFunction() { | ||||
| 1028 | if (!PoisonStack) | ||||
| 1029 | return false; | ||||
| 1030 | |||||
| 1031 | if (ClRedzoneByvalArgs) | ||||
| 1032 | copyArgsPassedByValToAllocas(); | ||||
| 1033 | |||||
| 1034 | // Collect alloca, ret, lifetime instructions etc. | ||||
| 1035 | for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB); | ||||
| 1036 | |||||
| 1037 | if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; | ||||
| 1038 | |||||
| 1039 | initializeCallbacks(*F.getParent()); | ||||
| 1040 | |||||
| 1041 | if (HasUntracedLifetimeIntrinsic) { | ||||
| 1042 | // If there are lifetime intrinsics which couldn't be traced back to an | ||||
| 1043 | // alloca, we may not know exactly when a variable enters scope, and | ||||
| 1044 | // therefore should "fail safe" by not poisoning them. | ||||
| 1045 | StaticAllocaPoisonCallVec.clear(); | ||||
| 1046 | DynamicAllocaPoisonCallVec.clear(); | ||||
| 1047 | } | ||||
| 1048 | |||||
| 1049 | processDynamicAllocas(); | ||||
| 1050 | processStaticAllocas(); | ||||
| 1051 | |||||
| 1052 | if (ClDebugStack) { | ||||
| 1053 | LLVM_DEBUG(dbgs() << F)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("asan")) { dbgs() << F; } } while (false); | ||||
| 1054 | } | ||||
| 1055 | return true; | ||||
| 1056 | } | ||||
| 1057 | |||||
| 1058 | // Arguments marked with the "byval" attribute are implicitly copied without | ||||
| 1059 | // using an alloca instruction. To produce redzones for those arguments, we | ||||
| 1060 | // copy them a second time into memory allocated with an alloca instruction. | ||||
| 1061 | void copyArgsPassedByValToAllocas(); | ||||
| 1062 | |||||
| 1063 | // Finds all Alloca instructions and puts | ||||
| 1064 | // poisoned red zones around all of them. | ||||
| 1065 | // Then unpoison everything back before the function returns. | ||||
| 1066 | void processStaticAllocas(); | ||||
| 1067 | void processDynamicAllocas(); | ||||
| 1068 | |||||
| 1069 | void createDynamicAllocasInitStorage(); | ||||
| 1070 | |||||
| 1071 | // ----------------------- Visitors. | ||||
| 1072 | /// Collect all Ret instructions, or the musttail call instruction if it | ||||
| 1073 | /// precedes the return instruction. | ||||
| 1074 | void visitReturnInst(ReturnInst &RI) { | ||||
| 1075 | if (CallInst *CI = RI.getParent()->getTerminatingMustTailCall()) | ||||
| 1076 | RetVec.push_back(CI); | ||||
| 1077 | else | ||||
| 1078 | RetVec.push_back(&RI); | ||||
| 1079 | } | ||||
| 1080 | |||||
| 1081 | /// Collect all Resume instructions. | ||||
| 1082 | void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); } | ||||
| 1083 | |||||
| 1084 | /// Collect all CatchReturnInst instructions. | ||||
| 1085 | void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); } | ||||
| 1086 | |||||
| 1087 | void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore, | ||||
| 1088 | Value *SavedStack) { | ||||
| 1089 | IRBuilder<> IRB(InstBefore); | ||||
| 1090 | Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy); | ||||
| 1091 | // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we | ||||
| 1092 | // need to adjust extracted SP to compute the address of the most recent | ||||
| 1093 | // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for | ||||
| 1094 | // this purpose. | ||||
| 1095 | if (!isa<ReturnInst>(InstBefore)) { | ||||
| 1096 | Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration( | ||||
| 1097 | InstBefore->getModule(), Intrinsic::get_dynamic_area_offset, | ||||
| 1098 | {IntptrTy}); | ||||
| 1099 | |||||
| 1100 | Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {}); | ||||
| 1101 | |||||
| 1102 | DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy), | ||||
| 1103 | DynamicAreaOffset); | ||||
| 1104 | } | ||||
| 1105 | |||||
| 1106 | IRB.CreateCall( | ||||
| 1107 | AsanAllocasUnpoisonFunc, | ||||
| 1108 | {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr}); | ||||
| 1109 | } | ||||
| 1110 | |||||
| 1111 | // Unpoison dynamic allocas redzones. | ||||
| 1112 | void unpoisonDynamicAllocas() { | ||||
| 1113 | for (Instruction *Ret : RetVec) | ||||
| 1114 | unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout); | ||||
| 1115 | |||||
| 1116 | for (Instruction *StackRestoreInst : StackRestoreVec) | ||||
| 1117 | unpoisonDynamicAllocasBeforeInst(StackRestoreInst, | ||||
| 1118 | StackRestoreInst->getOperand(0)); | ||||
| 1119 | } | ||||
| 1120 | |||||
| 1121 | // Deploy and poison redzones around dynamic alloca call. To do this, we | ||||
| 1122 | // should replace this call with another one with changed parameters and | ||||
| 1123 | // replace all its uses with new address, so | ||||
| 1124 | // addr = alloca type, old_size, align | ||||
| 1125 | // is replaced by | ||||
| 1126 | // new_size = (old_size + additional_size) * sizeof(type) | ||||
| 1127 | // tmp = alloca i8, new_size, max(align, 32) | ||||
| 1128 | // addr = tmp + 32 (first 32 bytes are for the left redzone). | ||||
| 1129 | // Additional_size is added to make new memory allocation contain not only | ||||
| 1130 | // requested memory, but also left, partial and right redzones. | ||||
| 1131 | void handleDynamicAllocaCall(AllocaInst *AI); | ||||
| 1132 | |||||
| 1133 | /// Collect Alloca instructions we want (and can) handle. | ||||
| 1134 | void visitAllocaInst(AllocaInst &AI) { | ||||
| 1135 | if (!ASan.isInterestingAlloca(AI)) { | ||||
| 1136 | if (AI.isStaticAlloca()) { | ||||
| 1137 | // Skip over allocas that are present *before* the first instrumented | ||||
| 1138 | // alloca, we don't want to move those around. | ||||
| 1139 | if (AllocaVec.empty()) | ||||
| 1140 | return; | ||||
| 1141 | |||||
| 1142 | StaticAllocasToMoveUp.push_back(&AI); | ||||
| 1143 | } | ||||
| 1144 | return; | ||||
| 1145 | } | ||||
| 1146 | |||||
| 1147 | if (!AI.isStaticAlloca()) | ||||
| 1148 | DynamicAllocaVec.push_back(&AI); | ||||
| 1149 | else | ||||
| 1150 | AllocaVec.push_back(&AI); | ||||
| 1151 | } | ||||
| 1152 | |||||
| 1153 | /// Collect lifetime intrinsic calls to check for use-after-scope | ||||
| 1154 | /// errors. | ||||
| 1155 | void visitIntrinsicInst(IntrinsicInst &II) { | ||||
| 1156 | Intrinsic::ID ID = II.getIntrinsicID(); | ||||
| 1157 | if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II); | ||||
| 1158 | if (ID == Intrinsic::localescape) LocalEscapeCall = &II; | ||||
| 1159 | if (!ASan.UseAfterScope) | ||||
| 1160 | return; | ||||
| 1161 | if (!II.isLifetimeStartOrEnd()) | ||||
| 1162 | return; | ||||
| 1163 | // Found lifetime intrinsic, add ASan instrumentation if necessary. | ||||
| 1164 | auto *Size = cast<ConstantInt>(II.getArgOperand(0)); | ||||
| 1165 | // If size argument is undefined, don't do anything. | ||||
| 1166 | if (Size->isMinusOne()) return; | ||||
| 1167 | // Check that size doesn't saturate uint64_t and can | ||||
| 1168 | // be stored in IntptrTy. | ||||
| 1169 | const uint64_t SizeValue = Size->getValue().getLimitedValue(); | ||||
| 1170 | if (SizeValue == ~0ULL || | ||||
| 1171 | !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) | ||||
| 1172 | return; | ||||
| 1173 | // Find alloca instruction that corresponds to llvm.lifetime argument. | ||||
| 1174 | // Currently we can only handle lifetime markers pointing to the | ||||
| 1175 | // beginning of the alloca. | ||||
| 1176 | AllocaInst *AI = findAllocaForValue(II.getArgOperand(1), true); | ||||
| 1177 | if (!AI) { | ||||
| 1178 | HasUntracedLifetimeIntrinsic = true; | ||||
| 1179 | return; | ||||
| 1180 | } | ||||
| 1181 | // We're interested only in allocas we can handle. | ||||
| 1182 | if (!ASan.isInterestingAlloca(*AI)) | ||||
| 1183 | return; | ||||
| 1184 | bool DoPoison = (ID == Intrinsic::lifetime_end); | ||||
| 1185 | AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison}; | ||||
| 1186 | if (AI->isStaticAlloca()) | ||||
| 1187 | StaticAllocaPoisonCallVec.push_back(APC); | ||||
| 1188 | else if (ClInstrumentDynamicAllocas) | ||||
| 1189 | DynamicAllocaPoisonCallVec.push_back(APC); | ||||
| 1190 | } | ||||
| 1191 | |||||
| 1192 | void visitCallBase(CallBase &CB) { | ||||
| 1193 | if (CallInst *CI = dyn_cast<CallInst>(&CB)) { | ||||
| 1194 | HasInlineAsm |= CI->isInlineAsm() && &CB != ASan.LocalDynamicShadow; | ||||
| 1195 | HasReturnsTwiceCall |= CI->canReturnTwice(); | ||||
| 1196 | } | ||||
| 1197 | } | ||||
| 1198 | |||||
| 1199 | // ---------------------- Helpers. | ||||
| 1200 | void initializeCallbacks(Module &M); | ||||
| 1201 | |||||
| 1202 | // Copies bytes from ShadowBytes into shadow memory for indexes where | ||||
| 1203 | // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that | ||||
| 1204 | // ShadowBytes[i] is constantly zero and doesn't need to be overwritten. | ||||
| 1205 | void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, | ||||
| 1206 | IRBuilder<> &IRB, Value *ShadowBase); | ||||
| 1207 | void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, | ||||
| 1208 | size_t Begin, size_t End, IRBuilder<> &IRB, | ||||
| 1209 | Value *ShadowBase); | ||||
| 1210 | void copyToShadowInline(ArrayRef<uint8_t> ShadowMask, | ||||
| 1211 | ArrayRef<uint8_t> ShadowBytes, size_t Begin, | ||||
| 1212 | size_t End, IRBuilder<> &IRB, Value *ShadowBase); | ||||
| 1213 | |||||
| 1214 | void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); | ||||
| 1215 | |||||
| 1216 | Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L, | ||||
| 1217 | bool Dynamic); | ||||
| 1218 | PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, | ||||
| 1219 | Instruction *ThenTerm, Value *ValueIfFalse); | ||||
| 1220 | }; | ||||
| 1221 | |||||
| 1222 | } // end anonymous namespace | ||||
| 1223 | |||||
| 1224 | void LocationMetadata::parse(MDNode *MDN) { | ||||
| 1225 | assert(MDN->getNumOperands() == 3)(static_cast <bool> (MDN->getNumOperands() == 3) ? void (0) : __assert_fail ("MDN->getNumOperands() == 3", "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp" , 1225, __extension__ __PRETTY_FUNCTION__)); | ||||
| 1226 | MDString *DIFilename = cast<MDString>(MDN->getOperand(0)); | ||||
| 1227 | Filename = DIFilename->getString(); | ||||
| 1228 | LineNo = mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue(); | ||||
| 1229 | ColumnNo = | ||||
| 1230 | mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue(); | ||||
| 1231 | } | ||||
| 1232 | |||||
| 1233 | // FIXME: It would be cleaner to instead attach relevant metadata to the globals | ||||
| 1234 | // we want to sanitize instead and reading this metadata on each pass over a | ||||
| 1235 | // function instead of reading module level metadata at first. | ||||
| 1236 | GlobalsMetadata::GlobalsMetadata(Module &M) { | ||||
| 1237 | NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals"); | ||||
| 1238 | if (!Globals) | ||||
| 1239 | return; | ||||
| 1240 | for (auto MDN : Globals->operands()) { | ||||
| 1241 | // Metadata node contains the global and the fields of "Entry". | ||||
| 1242 | assert(MDN->getNumOperands() == 5)(static_cast <bool> (MDN->getNumOperands() == 5) ? void (0) : __assert_fail ("MDN->getNumOperands() == 5", "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp" , 1242, __extension__ __PRETTY_FUNCTION__)); | ||||
| 1243 | auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0)); | ||||
| 1244 | // The optimizer may optimize away a global entirely. | ||||
| 1245 | if (!V) | ||||
| 1246 | continue; | ||||
| 1247 | auto *StrippedV = V->stripPointerCasts(); | ||||
| 1248 | auto *GV = dyn_cast<GlobalVariable>(StrippedV); | ||||
| 1249 | if (!GV) | ||||
| 1250 | continue; | ||||
| 1251 | // We can already have an entry for GV if it was merged with another | ||||
| 1252 | // global. | ||||
| 1253 | Entry &E = Entries[GV]; | ||||
| 1254 | if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1))) | ||||
| 1255 | E.SourceLoc.parse(Loc); | ||||
| 1256 | if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2))) | ||||
| 1257 | E.Name = Name->getString(); | ||||
| 1258 | ConstantInt *IsDynInit = mdconst::extract<ConstantInt>(MDN->getOperand(3)); | ||||
| 1259 | E.IsDynInit |= IsDynInit->isOne(); | ||||
| 1260 | ConstantInt *IsExcluded = | ||||
| 1261 | mdconst::extract<ConstantInt>(MDN->getOperand(4)); | ||||
| 1262 | E.IsExcluded |= IsExcluded->isOne(); | ||||
| 1263 | } | ||||
| 1264 | } | ||||
| 1265 | |||||
| 1266 | AnalysisKey ASanGlobalsMetadataAnalysis::Key; | ||||
| 1267 | |||||
| 1268 | GlobalsMetadata ASanGlobalsMetadataAnalysis::run(Module &M, | ||||
| 1269 | ModuleAnalysisManager &AM) { | ||||
| 1270 | return GlobalsMetadata(M); | ||||
| 1271 | } | ||||
| 1272 | |||||
| 1273 | PreservedAnalyses AddressSanitizerPass::run(Function &F, | ||||
| 1274 | AnalysisManager<Function> &AM) { | ||||
| 1275 | auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); | ||||
| 1276 | Module &M = *F.getParent(); | ||||
| 1277 | if (auto *R
| ||||
| |||||
| 1278 | const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F); | ||||
| 1279 | AddressSanitizer Sanitizer(M, R, nullptr, Options.CompileKernel, | ||||
| 1280 | Options.Recover, Options.UseAfterScope, | ||||
| 1281 | Options.UseAfterReturn); | ||||
| 1282 | if (Sanitizer.instrumentFunction(F, TLI)) | ||||
| 1283 | return PreservedAnalyses::none(); | ||||
| 1284 | return PreservedAnalyses::all(); | ||||
| 1285 | } | ||||
| 1286 | |||||
| 1287 | report_fatal_error( | ||||
| 1288 | "The ASanGlobalsMetadataAnalysis is required to run before " | ||||
| 1289 | "AddressSanitizer can run"); | ||||
| 1290 | return PreservedAnalyses::all(); | ||||
| 1291 | } | ||||
| 1292 | |||||
| 1293 | void AddressSanitizerPass::printPipeline( | ||||
| 1294 | raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { | ||||
| 1295 | static_cast<PassInfoMixin<AddressSanitizerPass> *>(this)->printPipeline( | ||||
| 1296 | OS, MapClassName2PassName); | ||||
| 1297 | OS << "<"; | ||||
| 1298 | if (Options.CompileKernel) | ||||
| 1299 | OS << "kernel"; | ||||
| 1300 | OS << ">"; | ||||
| 1301 | } | ||||
| 1302 | |||||
| 1303 | void ModuleAddressSanitizerPass::printPipeline( | ||||
| 1304 | raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { | ||||
| 1305 | static_cast<PassInfoMixin<ModuleAddressSanitizerPass> *>(this)->printPipeline( | ||||
| 1306 | OS, MapClassName2PassName); | ||||
| 1307 | OS << "<"; | ||||
| 1308 | if (Options.CompileKernel) | ||||
| 1309 | OS << "kernel"; | ||||
| 1310 | OS << ">"; | ||||
| 1311 | } | ||||
| 1312 | |||||
| 1313 | ModuleAddressSanitizerPass::ModuleAddressSanitizerPass( | ||||
| 1314 | const AddressSanitizerOptions &Options, bool UseGlobalGC, | ||||
| 1315 | bool UseOdrIndicator, AsanDtorKind DestructorKind) | ||||
| 1316 | : Options(Options), UseGlobalGC(UseGlobalGC), | ||||
| 1317 | UseOdrIndicator(UseOdrIndicator), DestructorKind(DestructorKind) {} | ||||
| 1318 | |||||
| 1319 | PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M, | ||||
| 1320 | ModuleAnalysisManager &MAM) { | ||||
| 1321 | GlobalsMetadata &GlobalsMD = MAM.getResult<ASanGlobalsMetadataAnalysis>(M); | ||||
| 1322 | ModuleAddressSanitizer ModuleSanitizer(M, &GlobalsMD, Options.CompileKernel, | ||||
| 1323 | Options.Recover, UseGlobalGC, | ||||
| 1324 | UseOdrIndicator, DestructorKind); | ||||
| 1325 | bool Modified = false; | ||||
| 1326 | auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); | ||||
| 1327 | const StackSafetyGlobalInfo *const SSGI = | ||||
| 1328 | ClUseStackSafety ? &MAM.getResult<StackSafetyGlobalAnalysis>(M) : nullptr; | ||||
| 1329 | for (Function &F : M) { | ||||
| 1330 | AddressSanitizer FunctionSanitizer( | ||||
| 1331 | M, &GlobalsMD, SSGI, Options.CompileKernel, Options.Recover, | ||||
| 1332 | Options.UseAfterScope, Options.UseAfterReturn); | ||||
| 1333 | const TargetLibraryInfo &TLI = FAM.getResult<TargetLibraryAnalysis>(F); | ||||
| 1334 | Modified |= FunctionSanitizer.instrumentFunction(F, &TLI); | ||||
| 1335 | } | ||||
| 1336 | Modified |= ModuleSanitizer.instrumentModule(M); | ||||
| 1337 | return Modified ? PreservedAnalyses::none() : PreservedAnalyses::all(); | ||||
| 1338 | } | ||||
| 1339 | |||||
| 1340 | INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass, "asan-globals-md",static void *initializeASanGlobalsMetadataWrapperPassPassOnce (PassRegistry &Registry) { PassInfo *PI = new PassInfo( "Read metadata to mark which globals should be instrumented " "when running ASan.", "asan-globals-md", &ASanGlobalsMetadataWrapperPass ::ID, PassInfo::NormalCtor_t(callDefaultCtor<ASanGlobalsMetadataWrapperPass >), false, true); Registry.registerPass(*PI, true); return PI; } static llvm::once_flag InitializeASanGlobalsMetadataWrapperPassPassFlag ; void llvm::initializeASanGlobalsMetadataWrapperPassPass(PassRegistry &Registry) { llvm::call_once(InitializeASanGlobalsMetadataWrapperPassPassFlag , initializeASanGlobalsMetadataWrapperPassPassOnce, std::ref( Registry)); } | ||||
| 1341 | "Read metadata to mark which globals should be instrumented "static void *initializeASanGlobalsMetadataWrapperPassPassOnce (PassRegistry &Registry) { PassInfo *PI = new PassInfo( "Read metadata to mark which globals should be instrumented " "when running ASan.", "asan-globals-md", &ASanGlobalsMetadataWrapperPass ::ID, PassInfo::NormalCtor_t(callDefaultCtor<ASanGlobalsMetadataWrapperPass >), false, true); Registry.registerPass(*PI, true); return PI; } static llvm::once_flag InitializeASanGlobalsMetadataWrapperPassPassFlag ; void llvm::initializeASanGlobalsMetadataWrapperPassPass(PassRegistry &Registry) { llvm::call_once(InitializeASanGlobalsMetadataWrapperPassPassFlag , initializeASanGlobalsMetadataWrapperPassPassOnce, std::ref( Registry)); } | ||||
| 1342 | "when running ASan.",static void *initializeASanGlobalsMetadataWrapperPassPassOnce (PassRegistry &Registry) { PassInfo *PI = new PassInfo( "Read metadata to mark which globals should be instrumented " "when running ASan.", "asan-globals-md", &ASanGlobalsMetadataWrapperPass ::ID, PassInfo::NormalCtor_t(callDefaultCtor<ASanGlobalsMetadataWrapperPass >), false, true); Registry.registerPass(*PI, true); return PI; } static llvm::once_flag InitializeASanGlobalsMetadataWrapperPassPassFlag ; void llvm::initializeASanGlobalsMetadataWrapperPassPass(PassRegistry &Registry) { llvm::call_once(InitializeASanGlobalsMetadataWrapperPassPassFlag , initializeASanGlobalsMetadataWrapperPassPassOnce, std::ref( Registry)); } | ||||
| 1343 | false, true)static void *initializeASanGlobalsMetadataWrapperPassPassOnce (PassRegistry &Registry) { PassInfo *PI = new PassInfo( "Read metadata to mark which globals should be instrumented " "when running ASan.", "asan-globals-md", &ASanGlobalsMetadataWrapperPass ::ID, PassInfo::NormalCtor_t(callDefaultCtor<ASanGlobalsMetadataWrapperPass >), false, true); Registry.registerPass(*PI, true); return PI; } static llvm::once_flag InitializeASanGlobalsMetadataWrapperPassPassFlag ; void llvm::initializeASanGlobalsMetadataWrapperPassPass(PassRegistry &Registry) { llvm::call_once(InitializeASanGlobalsMetadataWrapperPassPassFlag , initializeASanGlobalsMetadataWrapperPassPassOnce, std::ref( Registry)); } | ||||
| 1344 | |||||
| 1345 | char AddressSanitizerLegacyPass::ID = 0; | ||||
| 1346 | |||||
| 1347 | INITIALIZE_PASS_BEGIN(static void *initializeAddressSanitizerLegacyPassPassOnce(PassRegistry &Registry) { | ||||
| 1348 | AddressSanitizerLegacyPass, "asan",static void *initializeAddressSanitizerLegacyPassPassOnce(PassRegistry &Registry) { | ||||
| 1349 | "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,static void *initializeAddressSanitizerLegacyPassPassOnce(PassRegistry &Registry) { | ||||
| 1350 | false)static void *initializeAddressSanitizerLegacyPassPassOnce(PassRegistry &Registry) { | ||||
| 1351 | INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass)initializeASanGlobalsMetadataWrapperPassPass(Registry); | ||||
| 1352 | INITIALIZE_PASS_DEPENDENCY(StackSafetyGlobalInfoWrapperPass)initializeStackSafetyGlobalInfoWrapperPassPass(Registry); | ||||
| 1353 | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)initializeTargetLibraryInfoWrapperPassPass(Registry); | ||||
| 1354 | INITIALIZE_PASS_END(PassInfo *PI = new PassInfo( "AddressSanitizer: detects use-after-free and out-of-bounds bugs." , "asan", &AddressSanitizerLegacyPass::ID, PassInfo::NormalCtor_t (callDefaultCtor<AddressSanitizerLegacyPass>), false, false ); Registry.registerPass(*PI, true); return PI; } static llvm ::once_flag InitializeAddressSanitizerLegacyPassPassFlag; void llvm::initializeAddressSanitizerLegacyPassPass(PassRegistry & Registry) { llvm::call_once(InitializeAddressSanitizerLegacyPassPassFlag , initializeAddressSanitizerLegacyPassPassOnce, std::ref(Registry )); } | ||||
| 1355 | AddressSanitizerLegacyPass, "asan",PassInfo *PI = new PassInfo( "AddressSanitizer: detects use-after-free and out-of-bounds bugs." , "asan", &AddressSanitizerLegacyPass::ID, PassInfo::NormalCtor_t (callDefaultCtor<AddressSanitizerLegacyPass>), false, false ); Registry.registerPass(*PI, true); return PI; } static llvm ::once_flag InitializeAddressSanitizerLegacyPassPassFlag; void llvm::initializeAddressSanitizerLegacyPassPass(PassRegistry & Registry) { llvm::call_once(InitializeAddressSanitizerLegacyPassPassFlag , initializeAddressSanitizerLegacyPassPassOnce, std::ref(Registry )); } | ||||
| 1356 | "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,PassInfo *PI = new PassInfo( "AddressSanitizer: detects use-after-free and out-of-bounds bugs." , "asan", &AddressSanitizerLegacyPass::ID, PassInfo::NormalCtor_t (callDefaultCtor<AddressSanitizerLegacyPass>), false, false ); Registry.registerPass(*PI, true); return PI; } static llvm ::once_flag InitializeAddressSanitizerLegacyPassPassFlag; void llvm::initializeAddressSanitizerLegacyPassPass(PassRegistry & Registry) { llvm::call_once(InitializeAddressSanitizerLegacyPassPassFlag , initializeAddressSanitizerLegacyPassPassOnce, std::ref(Registry )); } | ||||
| 1357 | false)PassInfo *PI = new PassInfo( "AddressSanitizer: detects use-after-free and out-of-bounds bugs." , "asan", &AddressSanitizerLegacyPass::ID, PassInfo::NormalCtor_t (callDefaultCtor<AddressSanitizerLegacyPass>), false, false ); Registry.registerPass(*PI, true); return PI; } static llvm ::once_flag InitializeAddressSanitizerLegacyPassPassFlag; void llvm::initializeAddressSanitizerLegacyPassPass(PassRegistry & Registry) { llvm::call_once(InitializeAddressSanitizerLegacyPassPassFlag , initializeAddressSanitizerLegacyPassPassOnce, std::ref(Registry )); } | ||||
| 1358 | |||||
| 1359 | FunctionPass *llvm::createAddressSanitizerFunctionPass( | ||||
| 1360 | bool CompileKernel, bool Recover, bool UseAfterScope, | ||||
| 1361 | AsanDetectStackUseAfterReturnMode UseAfterReturn) { | ||||
| 1362 | assert(!CompileKernel || Recover)(static_cast <bool> (!CompileKernel || Recover) ? void ( 0) : __assert_fail ("!CompileKernel || Recover", "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp" , 1362, __extension__ __PRETTY_FUNCTION__)); | ||||
| 1363 | return new AddressSanitizerLegacyPass(CompileKernel, Recover, UseAfterScope, | ||||
| 1364 | UseAfterReturn); | ||||
| 1365 | } | ||||
| 1366 | |||||
| 1367 | char ModuleAddressSanitizerLegacyPass::ID = 0; | ||||
| 1368 | |||||
| 1369 | INITIALIZE_PASS(static void *initializeModuleAddressSanitizerLegacyPassPassOnce (PassRegistry &Registry) { PassInfo *PI = new PassInfo( "AddressSanitizer: detects use-after-free and out-of-bounds bugs." "ModulePass", "asan-module", &ModuleAddressSanitizerLegacyPass ::ID, PassInfo::NormalCtor_t(callDefaultCtor<ModuleAddressSanitizerLegacyPass >), false, false); Registry.registerPass(*PI, true); return PI; } static llvm::once_flag InitializeModuleAddressSanitizerLegacyPassPassFlag ; void llvm::initializeModuleAddressSanitizerLegacyPassPass(PassRegistry &Registry) { llvm::call_once(InitializeModuleAddressSanitizerLegacyPassPassFlag , initializeModuleAddressSanitizerLegacyPassPassOnce, std::ref (Registry)); } | ||||
| 1370 | ModuleAddressSanitizerLegacyPass, "asan-module",static void *initializeModuleAddressSanitizerLegacyPassPassOnce (PassRegistry &Registry) { PassInfo *PI = new PassInfo( "AddressSanitizer: detects use-after-free and out-of-bounds bugs." "ModulePass", "asan-module", &ModuleAddressSanitizerLegacyPass ::ID, PassInfo::NormalCtor_t(callDefaultCtor<ModuleAddressSanitizerLegacyPass >), false, false); Registry.registerPass(*PI, true); return PI; } static llvm::once_flag InitializeModuleAddressSanitizerLegacyPassPassFlag ; void llvm::initializeModuleAddressSanitizerLegacyPassPass(PassRegistry &Registry) { llvm::call_once(InitializeModuleAddressSanitizerLegacyPassPassFlag , initializeModuleAddressSanitizerLegacyPassPassOnce, std::ref (Registry)); } | ||||
| 1371 | "AddressSanitizer: detects use-after-free and out-of-bounds bugs."static void *initializeModuleAddressSanitizerLegacyPassPassOnce (PassRegistry &Registry) { PassInfo *PI = new PassInfo( "AddressSanitizer: detects use-after-free and out-of-bounds bugs." "ModulePass", "asan-module", &ModuleAddressSanitizerLegacyPass ::ID, PassInfo::NormalCtor_t(callDefaultCtor<ModuleAddressSanitizerLegacyPass >), false, false); Registry.registerPass(*PI, true); return PI; } static llvm::once_flag InitializeModuleAddressSanitizerLegacyPassPassFlag ; void llvm::initializeModuleAddressSanitizerLegacyPassPass(PassRegistry &Registry) { llvm::call_once(InitializeModuleAddressSanitizerLegacyPassPassFlag , initializeModuleAddressSanitizerLegacyPassPassOnce, std::ref (Registry)); } | ||||
| 1372 | "ModulePass",static void *initializeModuleAddressSanitizerLegacyPassPassOnce (PassRegistry &Registry) { PassInfo *PI = new PassInfo( "AddressSanitizer: detects use-after-free and out-of-bounds bugs." "ModulePass", "asan-module", &ModuleAddressSanitizerLegacyPass ::ID, PassInfo::NormalCtor_t(callDefaultCtor<ModuleAddressSanitizerLegacyPass >), false, false); Registry.registerPass(*PI, true); return PI; } static llvm::once_flag InitializeModuleAddressSanitizerLegacyPassPassFlag ; void llvm::initializeModuleAddressSanitizerLegacyPassPass(PassRegistry &Registry) { llvm::call_once(InitializeModuleAddressSanitizerLegacyPassPassFlag , initializeModuleAddressSanitizerLegacyPassPassOnce, std::ref (Registry)); } | ||||
| 1373 | false, false)static void *initializeModuleAddressSanitizerLegacyPassPassOnce (PassRegistry &Registry) { PassInfo *PI = new PassInfo( "AddressSanitizer: detects use-after-free and out-of-bounds bugs." "ModulePass", "asan-module", &ModuleAddressSanitizerLegacyPass ::ID, PassInfo::NormalCtor_t(callDefaultCtor<ModuleAddressSanitizerLegacyPass >), false, false); Registry.registerPass(*PI, true); return PI; } static llvm::once_flag InitializeModuleAddressSanitizerLegacyPassPassFlag ; void llvm::initializeModuleAddressSanitizerLegacyPassPass(PassRegistry &Registry) { llvm::call_once(InitializeModuleAddressSanitizerLegacyPassPassFlag , initializeModuleAddressSanitizerLegacyPassPassOnce, std::ref (Registry)); } | ||||
| 1374 | |||||
| 1375 | ModulePass *llvm::createModuleAddressSanitizerLegacyPassPass( | ||||
| 1376 | bool CompileKernel, bool Recover, bool UseGlobalsGC, bool UseOdrIndicator, | ||||
| 1377 | AsanDtorKind Destructor) { | ||||
| 1378 | assert(!CompileKernel || Recover)(static_cast <bool> (!CompileKernel || Recover) ? void ( 0) : __assert_fail ("!CompileKernel || Recover", "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp" , 1378, __extension__ __PRETTY_FUNCTION__)); | ||||
| 1379 | return new ModuleAddressSanitizerLegacyPass( | ||||
| 1380 | CompileKernel, Recover, UseGlobalsGC, UseOdrIndicator, Destructor); | ||||
| 1381 | } | ||||
| 1382 | |||||
| 1383 | static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { | ||||
| 1384 | size_t Res = countTrailingZeros(TypeSize / 8); | ||||
| 1385 | assert(Res < kNumberOfAccessSizes)(static_cast <bool> (Res < kNumberOfAccessSizes) ? void (0) : __assert_fail ("Res < kNumberOfAccessSizes", "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp" , 1385, __extension__ __PRETTY_FUNCTION__)); | ||||
| 1386 | return Res; | ||||
| 1387 | } | ||||
| 1388 | |||||
| 1389 | /// Create a global describing a source location. | ||||
| 1390 | static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M, | ||||
| 1391 | LocationMetadata MD) { | ||||
| 1392 | Constant *LocData[] = { | ||||
| 1393 | createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix), | ||||
| 1394 | ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo), | ||||
| 1395 | ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo), | ||||
| 1396 | }; | ||||
| 1397 | auto LocStruct = ConstantStruct::getAnon(LocData); | ||||
| 1398 | auto GV = new GlobalVariable(M, LocStruct->getType(), true, | ||||
| 1399 | GlobalValue::PrivateLinkage, LocStruct, | ||||
| 1400 | kAsanGenPrefix); | ||||
| 1401 | GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); | ||||
| 1402 | return GV; | ||||
| 1403 | } | ||||
| 1404 | |||||
| 1405 | /// Check if \p G has been created by a trusted compiler pass. | ||||
| 1406 | static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) { | ||||
| 1407 | // Do not instrument @llvm.global_ctors, @llvm.used, etc. | ||||
| 1408 | if (G->getName().startswith("llvm.")) | ||||
| 1409 | return true; | ||||
| 1410 | |||||
| 1411 | // Do not instrument asan globals. | ||||
| 1412 | if (G->getName().startswith(kAsanGenPrefix) || | ||||
| 1413 | G->getName().startswith(kSanCovGenPrefix) || | ||||
| 1414 | G->getName().startswith(kODRGenPrefix)) | ||||
| 1415 | return true; | ||||
| 1416 | |||||
| 1417 | // Do not instrument gcov counter arrays. | ||||
| 1418 | if (G->getName() == "__llvm_gcov_ctr") | ||||
| 1419 | return true; | ||||
| 1420 | |||||
| 1421 | return false; | ||||
| 1422 | } | ||||
| 1423 | |||||
| 1424 | static bool isUnsupportedAMDGPUAddrspace(Value *Addr) { | ||||
| 1425 | Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); | ||||
| 1426 | unsigned int AddrSpace = PtrTy->getPointerAddressSpace(); | ||||
| 1427 | if (AddrSpace == 3 || AddrSpace == 5) | ||||
| 1428 | return true; | ||||
| 1429 | return false; | ||||
| 1430 | } | ||||
| 1431 | |||||
| 1432 | Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { | ||||
| 1433 | // Shadow >> scale | ||||
| 1434 | Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); | ||||
| 1435 | if (Mapping.Offset == 0) return Shadow; | ||||
| 1436 | // (Shadow >> scale) | offset | ||||
| 1437 | Value *ShadowBase; | ||||
| 1438 | if (LocalDynamicShadow) | ||||
| 1439 | ShadowBase = LocalDynamicShadow; | ||||
| 1440 | else | ||||
| 1441 | ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset); | ||||
| 1442 | if (Mapping.OrShadowOffset) | ||||
| 1443 | return IRB.CreateOr(Shadow, ShadowBase); | ||||
| 1444 | else | ||||
| 1445 | return IRB.CreateAdd(Shadow, ShadowBase); | ||||
| 1446 | } | ||||
| 1447 | |||||
| 1448 | // Instrument memset/memmove/memcpy | ||||
| 1449 | void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { | ||||
| 1450 | IRBuilder<> IRB(MI); | ||||
| 1451 | if (isa<MemTransferInst>(MI)) { | ||||
| 1452 | IRB.CreateCall( | ||||
| 1453 | isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy, | ||||
| 1454 | {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), | ||||
| 1455 | IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), | ||||
| 1456 | IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); | ||||
| 1457 | } else if (isa<MemSetInst>(MI)) { | ||||
| 1458 | IRB.CreateCall( | ||||
| 1459 | AsanMemset, | ||||
| 1460 | {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), | ||||
| 1461 | IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), | ||||
| 1462 | IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); | ||||
| 1463 | } | ||||
| 1464 | MI->eraseFromParent(); | ||||
| 1465 | } | ||||
| 1466 | |||||
| 1467 | /// Check if we want (and can) handle this alloca. | ||||
| 1468 | bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) { | ||||
| 1469 | auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI); | ||||
| 1470 | |||||
| 1471 | if (PreviouslySeenAllocaInfo != ProcessedAllocas.end()) | ||||
| 1472 | return PreviouslySeenAllocaInfo->getSecond(); | ||||
| 1473 | |||||
| 1474 | bool IsInteresting = | ||||
| 1475 | (AI.getAllocatedType()->isSized() && | ||||
| 1476 | // alloca() may be called with 0 size, ignore it. | ||||
| 1477 | ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) && | ||||
| 1478 | // We are only interested in allocas not promotable to registers. | ||||
| 1479 | // Promotable allocas are common under -O0. | ||||
| 1480 | (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) && | ||||
| 1481 | // inalloca allocas are not treated as static, and we don't want | ||||
| 1482 | // dynamic alloca instrumentation for them as well. | ||||
| 1483 | !AI.isUsedWithInAlloca() && | ||||
| 1484 | // swifterror allocas are register promoted by ISel | ||||
| 1485 | !AI.isSwiftError()); | ||||
| 1486 | |||||
| 1487 | ProcessedAllocas[&AI] = IsInteresting; | ||||
| 1488 | return IsInteresting; | ||||
| 1489 | } | ||||
| 1490 | |||||
| 1491 | bool AddressSanitizer::ignoreAccess(Instruction *Inst, Value *Ptr) { | ||||
| 1492 | // Instrument acesses from different address spaces only for AMDGPU. | ||||
| 1493 | Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType()); | ||||
| 1494 | if (PtrTy->getPointerAddressSpace() != 0 && | ||||
| 1495 | !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(Ptr))) | ||||
| 1496 | return true; | ||||
| 1497 | |||||
| 1498 | // Ignore swifterror addresses. | ||||
| 1499 | // swifterror memory addresses are mem2reg promoted by instruction | ||||
| 1500 | // selection. As such they cannot have regular uses like an instrumentation | ||||
| 1501 | // function and it makes no sense to track them as memory. | ||||
| 1502 | if (Ptr->isSwiftError()) | ||||
| 1503 | return true; | ||||
| 1504 | |||||
| 1505 | // Treat memory accesses to promotable allocas as non-interesting since they | ||||
| 1506 | // will not cause memory violations. This greatly speeds up the instrumented | ||||
| 1507 | // executable at -O0. | ||||
| 1508 | if (auto AI
| ||||
| 1509 | if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI)) | ||||
| 1510 | return true; | ||||
| 1511 | |||||
| 1512 | if (SSGI != nullptr && SSGI->stackAccessIsSafe(*Inst) && | ||||
| |||||
| 1513 | findAllocaForValue(Ptr)) | ||||
| 1514 | return true; | ||||
| 1515 | |||||
| 1516 | return false; | ||||
| 1517 | } | ||||
| 1518 | |||||
| 1519 | void AddressSanitizer::getInterestingMemoryOperands( | ||||
| 1520 | Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) { | ||||
| 1521 | // Skip memory accesses inserted by another instrumentation. | ||||
| 1522 | if (I->hasMetadata("nosanitize")) | ||||
| 1523 | return; | ||||
| 1524 | |||||
| 1525 | // Do not instrument the load fetching the dynamic shadow address. | ||||
| 1526 | if (LocalDynamicShadow == I
| ||||
| 1527 | return; | ||||
| 1528 | |||||
| 1529 | if (LoadInst *LI
| ||||
| 1530 | if (!ClInstrumentReads || ignoreAccess(LI, LI->getPointerOperand())) | ||||
| 1531 | return; | ||||
| 1532 | Interesting.emplace_back(I, LI->getPointerOperandIndex(), false, | ||||
| 1533 | LI->getType(), LI->getAlign()); | ||||
| 1534 | } else if (StoreInst *SI
| ||||
| 1535 | if (!ClInstrumentWrites || ignoreAccess(LI, SI->getPointerOperand())) | ||||
| 1536 | return; | ||||
| 1537 | Interesting.emplace_back(I, SI->getPointerOperandIndex(), true, | ||||
| 1538 | SI->getValueOperand()->getType(), SI->getAlign()); | ||||
| 1539 | } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { | ||||
| 1540 | if (!ClInstrumentAtomics || ignoreAccess(LI, RMW->getPointerOperand())) | ||||
| 1541 | return; | ||||
| 1542 | Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true, | ||||
| 1543 | RMW->getValOperand()->getType(), None); | ||||
| 1544 | } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { | ||||
| 1545 | if (!ClInstrumentAtomics || ignoreAccess(LI, XCHG->getPointerOperand())) | ||||
| 1546 | return; | ||||
| 1547 | Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true, | ||||
| 1548 | XCHG->getCompareOperand()->getType(), None); | ||||
| 1549 | } else if (auto CI = dyn_cast<CallInst>(I)) { | ||||
| 1550 | if (CI->getIntrinsicID() == Intrinsic::masked_load || | ||||
| 1551 | CI->getIntrinsicID() == Intrinsic::masked_store) { | ||||
| 1552 | bool IsWrite = CI->getIntrinsicID() == Intrinsic::masked_store; | ||||
| 1553 | // Masked store has an initial operand for the value. | ||||
| 1554 | unsigned OpOffset = IsWrite ? 1 : 0; | ||||
| 1555 | if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) | ||||
| 1556 | return; | ||||
| 1557 | |||||
| 1558 | auto BasePtr = CI->getOperand(OpOffset); | ||||
| 1559 | if (ignoreAccess(LI, BasePtr)) | ||||
| 1560 | return; | ||||
| 1561 | Type *Ty = IsWrite ? CI->getArgOperand(0)->getType() : CI->getType(); | ||||
| 1562 | MaybeAlign Alignment = Align(1); | ||||
| 1563 | // Otherwise no alignment guarantees. We probably got Undef. | ||||
| 1564 | if (auto *Op = dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset))) | ||||
| 1565 | Alignment = Op->getMaybeAlignValue(); | ||||
| 1566 | Value *Mask = CI->getOperand(2 + OpOffset); | ||||
| 1567 | Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask); | ||||
| 1568 | } else { | ||||
| 1569 | for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ArgNo++) { | ||||
| 1570 | if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) || | ||||
| 1571 | ignoreAccess(LI, CI->getArgOperand(ArgNo))) | ||||
| 1572 | continue; | ||||
| 1573 | Type *Ty = CI->getParamByValType(ArgNo); | ||||
| 1574 | Interesting.emplace_back(I, ArgNo, false, Ty, Align(1)); | ||||
| 1575 | } | ||||
| 1576 | } | ||||
| 1577 | } | ||||
| 1578 | } | ||||
| 1579 | |||||
| 1580 | static bool isPointerOperand(Value *V) { | ||||
| 1581 | return V->getType()->isPointerTy() || isa<PtrToIntInst>(V); | ||||
| 1582 | } | ||||
| 1583 | |||||
| 1584 | // This is a rough heuristic; it may cause both false positives and | ||||
| 1585 | // false negatives. The proper implementation requires cooperation with | ||||
| 1586 | // the frontend. | ||||
| 1587 | static bool isInterestingPointerComparison(Instruction *I) { | ||||
| 1588 | if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) { | ||||
| 1589 | if (!Cmp->isRelational()) | ||||
| 1590 | return false; | ||||
| 1591 | } else { | ||||
| 1592 | return false; | ||||
| 1593 | } | ||||
| 1594 | return isPointerOperand(I->getOperand(0)) && | ||||
| 1595 | isPointerOperand(I->getOperand(1)); | ||||
| 1596 | } | ||||
| 1597 | |||||
| 1598 | // This is a rough heuristic; it may cause both false positives and | ||||
| 1599 | // false negatives. The proper implementation requires cooperation with | ||||
| 1600 | // the frontend. | ||||
| 1601 | static bool isInterestingPointerSubtraction(Instruction *I) { | ||||
| 1602 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { | ||||
| 1603 | if (BO->getOpcode() != Instruction::Sub) | ||||
| 1604 | return false; | ||||
| 1605 | } else { | ||||
| 1606 | return false; | ||||
| 1607 | } | ||||
| 1608 | return isPointerOperand(I->getOperand(0)) && | ||||
| 1609 | isPointerOperand(I->getOperand(1)); | ||||
| 1610 | } | ||||
| 1611 | |||||
| 1612 | bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { | ||||
| 1613 | // If a global variable does not have dynamic initialization we don't | ||||
| 1614 | // have to instrument it. However, if a global does not have initializer | ||||
| 1615 | // at all, we assume it has dynamic initializer (in other TU). | ||||
| 1616 | // | ||||
| 1617 | // FIXME: Metadata should be attched directly to the global directly instead | ||||
| 1618 | // of being added to llvm.asan.globals. | ||||
| 1619 | return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit; | ||||
| 1620 | } | ||||
| 1621 | |||||
| 1622 | void AddressSanitizer::instrumentPointerComparisonOrSubtraction( | ||||
| 1623 | Instruction *I) { | ||||
| 1624 | IRBuilder<> IRB(I); | ||||
| 1625 | FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction; | ||||
| 1626 | Value *Param[2] = {I->getOperand(0), I->getOperand(1)}; | ||||
| 1627 | for (Value *&i : Param) { | ||||
| 1628 | if (i->getType()->isPointerTy()) | ||||
| 1629 | i = IRB.CreatePointerCast(i, IntptrTy); | ||||
| 1630 | } | ||||
| 1631 | IRB.CreateCall(F, Param); | ||||
| 1632 | } | ||||
| 1633 | |||||
| 1634 | static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I, | ||||
| 1635 | Instruction *InsertBefore, Value *Addr, | ||||
| 1636 | MaybeAlign Alignment, unsigned Granularity, | ||||
| 1637 | uint32_t TypeSize, bool IsWrite, | ||||
| 1638 | Value *SizeArgument, bool UseCalls, | ||||
| 1639 | uint32_t Exp) { | ||||
| 1640 | // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check | ||||
| 1641 | // if the data is properly aligned. | ||||
| 1642 | if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 || | ||||
| 1643 | TypeSize == 128) && | ||||
| 1644 | (!Alignment || *Alignment >= Granularity || *Alignment >= TypeSize / 8)) | ||||
| 1645 | return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite, | ||||
| 1646 | nullptr, UseCalls, Exp); | ||||
| 1647 | Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize, | ||||
| 1648 | IsWrite, nullptr, UseCalls, Exp); | ||||
| 1649 | } | ||||
| 1650 | |||||
| 1651 | static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, | ||||
| 1652 | const DataLayout &DL, Type *IntptrTy, | ||||
| 1653 | Value *Mask, Instruction *I, | ||||
| 1654 | Value *Addr, MaybeAlign Alignment, | ||||
| 1655 | unsigned Granularity, Type *OpType, | ||||
| 1656 | bool IsWrite, Value *SizeArgument, | ||||
| 1657 | bool UseCalls, uint32_t Exp) { | ||||
| 1658 | auto *VTy = cast<FixedVectorType>(OpType); | ||||
| 1659 | uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType()); | ||||
| 1660 | unsigned Num = VTy->getNumElements(); | ||||
| 1661 | auto Zero = ConstantInt::get(IntptrTy, 0); | ||||
| 1662 | for (unsigned Idx = 0; Idx < Num; ++Idx) { | ||||
| 1663 | Value *InstrumentedAddress = nullptr; | ||||
| 1664 | Instruction *InsertBefore = I; | ||||
| 1665 | if (auto *Vector = dyn_cast<ConstantVector>(Mask)) { | ||||
| 1666 | // dyn_cast as we might get UndefValue | ||||
| 1667 | if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) { | ||||
| 1668 | if (Masked->isZero()) | ||||
| 1669 | // Mask is constant false, so no instrumentation needed. | ||||
| 1670 | continue; | ||||
| 1671 | // If we have a true or undef value, fall through to doInstrumentAddress | ||||
| 1672 | // with InsertBefore == I | ||||
| 1673 | } | ||||
| 1674 | } else { | ||||
| 1675 | IRBuilder<> IRB(I); | ||||
| 1676 | Value *MaskElem = IRB.CreateExtractElement(Mask, Idx); | ||||
| 1677 | Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false); | ||||
| 1678 | InsertBefore = ThenTerm; | ||||
| 1679 | } | ||||
| 1680 | |||||
| 1681 | IRBuilder<> IRB(InsertBefore); | ||||
| 1682 | InstrumentedAddress = | ||||
| 1683 | IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)}); | ||||
| 1684 | doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment, | ||||
| 1685 | Granularity, ElemTypeSize, IsWrite, SizeArgument, | ||||
| 1686 | UseCalls, Exp); | ||||
| 1687 | } | ||||
| 1688 | } | ||||
| 1689 | |||||
| 1690 | void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, | ||||
| 1691 | InterestingMemoryOperand &O, bool UseCalls, | ||||
| 1692 | const DataLayout &DL) { | ||||
| 1693 | Value *Addr = O.getPtr(); | ||||
| 1694 | |||||
| 1695 | // Optimization experiments. | ||||
| 1696 | // The experiments can be used to evaluate potential optimizations that remove | ||||
| 1697 | // instrumentation (assess false negatives). Instead of completely removing | ||||
| 1698 | // some instrumentation, you set Exp to a non-zero value (mask of optimization | ||||
| 1699 | // experiments that want to remove instrumentation of this instruction). | ||||
| 1700 | // If Exp is non-zero, this pass will emit special calls into runtime | ||||
| 1701 | // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls | ||||
| 1702 | // make runtime terminate the program in a special way (with a different | ||||
| 1703 | // exit status). Then you run the new compiler on a buggy corpus, collect | ||||
| 1704 | // the special terminations (ideally, you don't see them at all -- no false | ||||
| 1705 | // negatives) and make the decision on the optimization. | ||||
| 1706 | uint32_t Exp = ClForceExperiment; | ||||
| 1707 | |||||
| 1708 | if (ClOpt && ClOptGlobals) { | ||||
| 1709 | // If initialization order checking is disabled, a simple access to a | ||||
| 1710 | // dynamically initialized global is always valid. | ||||
| 1711 | GlobalVariable *G = dyn_cast<GlobalVariable>(getUnderlyingObject(Addr)); | ||||
| 1712 | if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) && | ||||
| 1713 | isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { | ||||
| 1714 | NumOptimizedAccessesToGlobalVar++; | ||||
| 1715 | return; | ||||
| 1716 | } | ||||
| 1717 | } | ||||
| 1718 | |||||
| 1719 | if (ClOpt && ClOptStack) { | ||||
| 1720 | // A direct inbounds access to a stack variable is always valid. | ||||
| 1721 | if (isa<AllocaInst>(getUnderlyingObject(Addr)) && | ||||
| 1722 | isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { | ||||
| 1723 | NumOptimizedAccessesToStackVar++; | ||||
| 1724 | return; | ||||
| 1725 | } | ||||
| 1726 | } | ||||
| 1727 | |||||
| 1728 | if (O.IsWrite) | ||||
| 1729 | NumInstrumentedWrites++; | ||||
| 1730 | else | ||||
| 1731 | NumInstrumentedReads++; | ||||
| 1732 | |||||
| 1733 | unsigned Granularity = 1 << Mapping.Scale; | ||||
| 1734 | if (O.MaybeMask) { | ||||
| 1735 | instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.getInsn(), | ||||
| 1736 | Addr, O.Alignment, Granularity, O.OpType, | ||||
| 1737 | O.IsWrite, nullptr, UseCalls, Exp); | ||||
| 1738 | } else { | ||||
| 1739 | doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment, | ||||
| 1740 | Granularity, O.TypeSize, O.IsWrite, nullptr, UseCalls, | ||||
| 1741 | Exp); | ||||
| 1742 | } | ||||
| 1743 | } | ||||
| 1744 | |||||
| 1745 | Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore, | ||||
| 1746 | Value *Addr, bool IsWrite, | ||||
| 1747 | size_t AccessSizeIndex, | ||||
| 1748 | Value *SizeArgument, | ||||
| 1749 | uint32_t Exp) { | ||||
| 1750 | IRBuilder<> IRB(InsertBefore); | ||||
| 1751 | Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp); | ||||
| 1752 | CallInst *Call = nullptr; | ||||
| 1753 | if (SizeArgument) { | ||||
| 1754 | if (Exp == 0) | ||||
| 1755 | Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0], | ||||
| 1756 | {Addr, SizeArgument}); | ||||
| 1757 | else | ||||
| 1758 | Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1], | ||||
| 1759 | {Addr, SizeArgument, ExpVal}); | ||||
| 1760 | } else { | ||||
| 1761 | if (Exp == 0) | ||||
| 1762 | Call = | ||||
| 1763 | IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr); | ||||
| 1764 | else | ||||
| 1765 | Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex], | ||||
| 1766 | {Addr, ExpVal}); | ||||
| 1767 | } | ||||
| 1768 | |||||
| 1769 | Call->setCannotMerge(); | ||||
| 1770 | return Call; | ||||
| 1771 | } | ||||
| 1772 | |||||
| 1773 | Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, | ||||
| 1774 | Value *ShadowValue, | ||||
| 1775 | uint32_t TypeSize) { | ||||
| 1776 | size_t Granularity = static_cast<size_t>(1) << Mapping.Scale; | ||||
| 1777 | // Addr & (Granularity - 1) | ||||
| 1778 | Value *LastAccessedByte = | ||||
| 1779 | IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); | ||||
| 1780 | // (Addr & (Granularity - 1)) + size - 1 | ||||
| 1781 | if (TypeSize / 8 > 1) | ||||
| 1782 | LastAccessedByte = IRB.CreateAdd( | ||||
| 1783 | LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); | ||||
| 1784 | // (uint8_t) ((Addr & (Granularity-1)) + size - 1) | ||||
| 1785 | LastAccessedByte = | ||||
| 1786 | IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false); | ||||
| 1787 | // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue | ||||
| 1788 | return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); | ||||
| 1789 | } | ||||
| 1790 | |||||
| 1791 | Instruction *AddressSanitizer::instrumentAMDGPUAddress( | ||||
| 1792 | Instruction *OrigIns, Instruction *InsertBefore, Value *Addr, | ||||
| 1793 | uint32_t TypeSize, bool IsWrite, Value *SizeArgument) { | ||||
| 1794 | // Do not instrument unsupported addrspaces. | ||||
| 1795 | if (isUnsupportedAMDGPUAddrspace(Addr)) | ||||
| 1796 | return nullptr; | ||||
| 1797 | Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); | ||||
| 1798 | // Follow host instrumentation for global and constant addresses. | ||||
| 1799 | if (PtrTy->getPointerAddressSpace() != 0) | ||||
| 1800 | return InsertBefore; | ||||
| 1801 | // Instrument generic addresses in supported addressspaces. | ||||
| 1802 | IRBuilder<> IRB(InsertBefore); | ||||
| 1803 | Value *AddrLong = IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()); | ||||
| 1804 | Value *IsShared = IRB.CreateCall(AMDGPUAddressShared, {AddrLong}); | ||||
| 1805 | Value *IsPrivate = IRB.CreateCall(AMDGPUAddressPrivate, {AddrLong}); | ||||
| 1806 | Value *IsSharedOrPrivate = IRB.CreateOr(IsShared, IsPrivate); | ||||
| 1807 | Value *Cmp = IRB.CreateICmpNE(IRB.getTrue(), IsSharedOrPrivate); | ||||
| 1808 | Value *AddrSpaceZeroLanding = | ||||
| 1809 | SplitBlockAndInsertIfThen(Cmp, InsertBefore, false); | ||||
| 1810 | InsertBefore = cast<Instruction>(AddrSpaceZeroLanding); | ||||
| 1811 | return InsertBefore; | ||||
| 1812 | } | ||||
| 1813 | |||||
| 1814 | void AddressSanitizer::instrumentAddress(Instruction *OrigIns, | ||||
| 1815 | Instruction *InsertBefore, Value *Addr, | ||||
| 1816 | uint32_t TypeSize, bool IsWrite, | ||||
| 1817 | Value *SizeArgument, bool UseCalls, | ||||
| 1818 | uint32_t Exp) { | ||||
| 1819 | if (TargetTriple.isAMDGPU()) { | ||||
| 1820 | InsertBefore = instrumentAMDGPUAddress(OrigIns, InsertBefore, Addr, | ||||
| 1821 | TypeSize, IsWrite, SizeArgument); | ||||
| 1822 | if (!InsertBefore) | ||||
| 1823 | return; | ||||
| 1824 | } | ||||
| 1825 | |||||
| 1826 | IRBuilder<> IRB(InsertBefore); | ||||
| 1827 | size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); | ||||
| 1828 | const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex); | ||||
| 1829 | |||||
| 1830 | if (UseCalls && ClOptimizeCallbacks) { | ||||
| 1831 | const ASanAccessInfo AccessInfo(IsWrite, CompileKernel, AccessSizeIndex); | ||||
| 1832 | Module *M = IRB.GetInsertBlock()->getParent()->getParent(); | ||||
| 1833 | IRB.CreateCall( | ||||
| 1834 | Intrinsic::getDeclaration(M, Intrinsic::asan_check_memaccess), | ||||
| 1835 | {IRB.CreatePointerCast(Addr, Int8PtrTy), | ||||
| 1836 | ConstantInt::get(Int32Ty, AccessInfo.Packed)}); | ||||
| 1837 | return; | ||||
| 1838 | } | ||||
| 1839 | |||||
| 1840 | Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); | ||||
| 1841 | if (UseCalls) { | ||||
| 1842 | if (Exp == 0) | ||||
| 1843 | IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], | ||||
| 1844 | AddrLong); | ||||
| 1845 | else | ||||
| 1846 | IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex], | ||||
| 1847 | {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)}); | ||||
| 1848 | return; | ||||
| 1849 | } | ||||
| 1850 | |||||
| 1851 | Type *ShadowTy = | ||||
| 1852 | IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale)); | ||||
| 1853 | Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); | ||||
| 1854 | Value *ShadowPtr = memToShadow(AddrLong, IRB); | ||||
| 1855 | Value *CmpVal = Constant::getNullValue(ShadowTy); | ||||
| 1856 | Value *ShadowValue = | ||||
| 1857 | IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); | ||||
| 1858 | |||||
| 1859 | Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal); | ||||
| 1860 | size_t Granularity = 1ULL << Mapping.Scale; | ||||
| 1861 | Instruction *CrashTerm = nullptr; | ||||
| 1862 | |||||
| 1863 | if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) { | ||||
| 1864 | // We use branch weights for the slow path check, to indicate that the slow | ||||
| 1865 | // path is rarely taken. This seems to be the case for SPEC benchmarks. | ||||
| 1866 | Instruction *CheckTerm = SplitBlockAndInsertIfThen( | ||||
| 1867 | Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000)); | ||||
| 1868 | assert(cast<BranchInst>(CheckTerm)->isUnconditional())(static_cast <bool> (cast<BranchInst>(CheckTerm)-> isUnconditional()) ? void (0) : __assert_fail ("cast<BranchInst>(CheckTerm)->isUnconditional()" , "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp", 1868, __extension__ __PRETTY_FUNCTION__)); | ||||
| 1869 | BasicBlock *NextBB = CheckTerm->getSuccessor(0); | ||||
| 1870 | IRB.SetInsertPoint(CheckTerm); | ||||
| 1871 | Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize); | ||||
| 1872 | if (Recover) { | ||||
| 1873 | CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false); | ||||
| 1874 | } else { | ||||
| 1875 | BasicBlock *CrashBlock = | ||||
| 1876 | BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); | ||||
| 1877 | CrashTerm = new UnreachableInst(*C, CrashBlock); | ||||
| 1878 | BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); | ||||
| 1879 | ReplaceInstWithInst(CheckTerm, NewTerm); | ||||
| 1880 | } | ||||
| 1881 | } else { | ||||
| 1882 | CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover); | ||||
| 1883 | } | ||||
| 1884 | |||||
| 1885 | Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite, | ||||
| 1886 | AccessSizeIndex, SizeArgument, Exp); | ||||
| 1887 | Crash->setDebugLoc(OrigIns->getDebugLoc()); | ||||
| 1888 | } | ||||
| 1889 | |||||
| 1890 | // Instrument unusual size or unusual alignment. | ||||
| 1891 | // We can not do it with a single check, so we do 1-byte check for the first | ||||
| 1892 | // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able | ||||
| 1893 | // to report the actual access size. | ||||
| 1894 | void AddressSanitizer::instrumentUnusualSizeOrAlignment( | ||||
| 1895 | Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize, | ||||
| 1896 | bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) { | ||||
| 1897 | IRBuilder<> IRB(InsertBefore); | ||||
| 1898 | Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8); | ||||
| 1899 | Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); | ||||
| 1900 | if (UseCalls) { | ||||
| 1901 | if (Exp == 0) | ||||
| 1902 | IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0], | ||||
| 1903 | {AddrLong, Size}); | ||||
| 1904 | else | ||||
| 1905 | IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1], | ||||
| 1906 | {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)}); | ||||
| 1907 | } else { | ||||
| 1908 | Value *LastByte = IRB.CreateIntToPtr( | ||||
| 1909 | IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)), | ||||
| 1910 | Addr->getType()); | ||||
| 1911 | instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp); | ||||
| 1912 | instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp); | ||||
| 1913 | } | ||||
| 1914 | } | ||||
| 1915 | |||||
| 1916 | void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit, | ||||
| 1917 | GlobalValue *ModuleName) { | ||||
| 1918 | // Set up the arguments to our poison/unpoison functions. | ||||
| 1919 | IRBuilder<> IRB(&GlobalInit.front(), | ||||
| 1920 | GlobalInit.front().getFirstInsertionPt()); | ||||
| 1921 | |||||
| 1922 | // Add a call to poison all external globals before the given function starts. | ||||
| 1923 | Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy); | ||||
| 1924 | IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); | ||||
| 1925 | |||||
| 1926 | // Add calls to unpoison all globals before each return instruction. | ||||
| 1927 | for (auto &BB : GlobalInit.getBasicBlockList()) | ||||
| 1928 | if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) | ||||
| 1929 | CallInst::Create(AsanUnpoisonGlobals, "", RI); | ||||
| 1930 | } | ||||
| 1931 | |||||
| 1932 | void ModuleAddressSanitizer::createInitializerPoisonCalls( | ||||
| 1933 | Module &M, GlobalValue *ModuleName) { | ||||
| 1934 | GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); | ||||
| 1935 | if (!GV) | ||||
| 1936 | return; | ||||
| 1937 | |||||
| 1938 | ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer()); | ||||
| 1939 | if (!CA) | ||||
| 1940 | return; | ||||
| 1941 | |||||
| 1942 | for (Use &OP : CA->operands()) { | ||||
| 1943 | if (isa<ConstantAggregateZero>(OP)) continue; | ||||
| 1944 | ConstantStruct *CS = cast<ConstantStruct>(OP); | ||||
| 1945 | |||||
| 1946 | // Must have a function or null ptr. | ||||
| 1947 | if (Function *F = dyn_cast<Function>(CS->getOperand(1))) { | ||||
| 1948 | if (F->getName() == kAsanModuleCtorName) continue; | ||||
| 1949 | auto *Priority = cast<ConstantInt>(CS->getOperand(0)); | ||||
| 1950 | // Don't instrument CTORs that will run before asan.module_ctor. | ||||
| 1951 | if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple)) | ||||
| 1952 | continue; | ||||
| 1953 | poisonOneInitializer(*F, ModuleName); | ||||
| 1954 | } | ||||
| 1955 | } | ||||
| 1956 | } | ||||
| 1957 | |||||
| 1958 | const GlobalVariable * | ||||
| 1959 | ModuleAddressSanitizer::getExcludedAliasedGlobal(const GlobalAlias &GA) const { | ||||
| 1960 | // In case this function should be expanded to include rules that do not just | ||||
| 1961 | // apply when CompileKernel is true, either guard all existing rules with an | ||||
| 1962 | // 'if (CompileKernel) { ... }' or be absolutely sure that all these rules | ||||
| 1963 | // should also apply to user space. | ||||
| 1964 | assert(CompileKernel && "Only expecting to be called when compiling kernel")(static_cast <bool> (CompileKernel && "Only expecting to be called when compiling kernel" ) ? void (0) : __assert_fail ("CompileKernel && \"Only expecting to be called when compiling kernel\"" , "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp", 1964, __extension__ __PRETTY_FUNCTION__)); | ||||
| 1965 | |||||
| 1966 | const Constant *C = GA.getAliasee(); | ||||
| 1967 | |||||
| 1968 | // When compiling the kernel, globals that are aliased by symbols prefixed | ||||
| 1969 | // by "__" are special and cannot be padded with a redzone. | ||||
| 1970 | if (GA.getName().startswith("__")) | ||||
| 1971 | return dyn_cast<GlobalVariable>(C->stripPointerCastsAndAliases()); | ||||
| 1972 | |||||
| 1973 | return nullptr; | ||||
| 1974 | } | ||||
| 1975 | |||||
| 1976 | bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const { | ||||
| 1977 | Type *Ty = G->getValueType(); | ||||
| 1978 | LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("asan")) { dbgs() << "GLOBAL: " << *G << "\n" ; } } while (false); | ||||
| 1979 | |||||
| 1980 | // FIXME: Metadata should be attched directly to the global directly instead | ||||
| 1981 | // of being added to llvm.asan.globals. | ||||
| 1982 | if (GlobalsMD.get(G).IsExcluded) return false; | ||||
| 1983 | if (!Ty->isSized()) return false; | ||||
| 1984 | if (!G->hasInitializer()) return false; | ||||
| 1985 | // Globals in address space 1 and 4 are supported for AMDGPU. | ||||
| 1986 | if (G->getAddressSpace() && | ||||
| 1987 | !(TargetTriple.isAMDGPU() && !isUnsupportedAMDGPUAddrspace(G))) | ||||
| 1988 | return false; | ||||
| 1989 | if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals. | ||||
| 1990 | // Two problems with thread-locals: | ||||
| 1991 | // - The address of the main thread's copy can't be computed at link-time. | ||||
| 1992 | // - Need to poison all copies, not just the main thread's one. | ||||
| 1993 | if (G->isThreadLocal()) return false; | ||||
| 1994 | // For now, just ignore this Global if the alignment is large. | ||||
| 1995 | if (G->getAlignment() > getMinRedzoneSizeForGlobal()) return false; | ||||
| 1996 | |||||
| 1997 | // For non-COFF targets, only instrument globals known to be defined by this | ||||
| 1998 | // TU. | ||||
| 1999 | // FIXME: We can instrument comdat globals on ELF if we are using the | ||||
| 2000 | // GC-friendly metadata scheme. | ||||
| 2001 | if (!TargetTriple.isOSBinFormatCOFF()) { | ||||
| 2002 | if (!G->hasExactDefinition() || G->hasComdat()) | ||||
| 2003 | return false; | ||||
| 2004 | } else { | ||||
| 2005 | // On COFF, don't instrument non-ODR linkages. | ||||
| 2006 | if (G->isInterposable()) | ||||
| 2007 | return false; | ||||
| 2008 | } | ||||
| 2009 | |||||
| 2010 | // If a comdat is present, it must have a selection kind that implies ODR | ||||
| 2011 | // semantics: no duplicates, any, or exact match. | ||||
| 2012 | if (Comdat *C = G->getComdat()) { | ||||
| 2013 | switch (C->getSelectionKind()) { | ||||
| 2014 | case Comdat::Any: | ||||
| 2015 | case Comdat::ExactMatch: | ||||
| 2016 | case Comdat::NoDeduplicate: | ||||
| 2017 | break; | ||||
| 2018 | case Comdat::Largest: | ||||
| 2019 | case Comdat::SameSize: | ||||
| 2020 | return false; | ||||
| 2021 | } | ||||
| 2022 | } | ||||
| 2023 | |||||
| 2024 | if (G->hasSection()) { | ||||
| 2025 | // The kernel uses explicit sections for mostly special global variables | ||||
| 2026 | // that we should not instrument. E.g. the kernel may rely on their layout | ||||
| 2027 | // without redzones, or remove them at link time ("discard.*"), etc. | ||||
| 2028 | if (CompileKernel) | ||||
| 2029 | return false; | ||||
| 2030 | |||||
| 2031 | StringRef Section = G->getSection(); | ||||
| 2032 | |||||
| 2033 | // Globals from llvm.metadata aren't emitted, do not instrument them. | ||||
| 2034 | if (Section == "llvm.metadata") return false; | ||||
| 2035 | // Do not instrument globals from special LLVM sections. | ||||
| 2036 | if (Section.contains("__llvm") || Section.contains("__LLVM")) | ||||
| 2037 | return false; | ||||
| 2038 | |||||
| 2039 | // Do not instrument function pointers to initialization and termination | ||||
| 2040 | // routines: dynamic linker will not properly handle redzones. | ||||
| 2041 | if (Section.startswith(".preinit_array") || | ||||
| 2042 | Section.startswith(".init_array") || | ||||
| 2043 | Section.startswith(".fini_array")) { | ||||
| 2044 | return false; | ||||
| 2045 | } | ||||
| 2046 | |||||
| 2047 | // Do not instrument user-defined sections (with names resembling | ||||
| 2048 | // valid C identifiers) | ||||
| 2049 | if (TargetTriple.isOSBinFormatELF()) { | ||||
| 2050 | if (llvm::all_of(Section, | ||||
| 2051 | [](char c) { return llvm::isAlnum(c) || c == '_'; })) | ||||
| 2052 | return false; | ||||
| 2053 | } | ||||
| 2054 | |||||
| 2055 | // On COFF, if the section name contains '$', it is highly likely that the | ||||
| 2056 | // user is using section sorting to create an array of globals similar to | ||||
| 2057 | // the way initialization callbacks are registered in .init_array and | ||||
| 2058 | // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones | ||||
| 2059 | // to such globals is counterproductive, because the intent is that they | ||||
| 2060 | // will form an array, and out-of-bounds accesses are expected. | ||||
| 2061 | // See https://github.com/google/sanitizers/issues/305 | ||||
| 2062 | // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx | ||||
| 2063 | if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) { | ||||
| 2064 | LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("asan")) { dbgs() << "Ignoring global in sorted section (contains '$'): " << *G << "\n"; } } while (false) | ||||
| 2065 | << *G << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("asan")) { dbgs() << "Ignoring global in sorted section (contains '$'): " << *G << "\n"; } } while (false); | ||||
| 2066 | return false; | ||||
| 2067 | } | ||||
| 2068 | |||||
| 2069 | if (TargetTriple.isOSBinFormatMachO()) { | ||||
| 2070 | StringRef ParsedSegment, ParsedSection; | ||||
| 2071 | unsigned TAA = 0, StubSize = 0; | ||||
| 2072 | bool TAAParsed; | ||||
| 2073 | cantFail(MCSectionMachO::ParseSectionSpecifier( | ||||
| 2074 | Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize)); | ||||
| 2075 | |||||
| 2076 | // Ignore the globals from the __OBJC section. The ObjC runtime assumes | ||||
| 2077 | // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to | ||||
| 2078 | // them. | ||||
| 2079 | if (ParsedSegment == "__OBJC" || | ||||
| 2080 | (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) { | ||||
| 2081 | LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("asan")) { dbgs() << "Ignoring ObjC runtime global: " << *G << "\n"; } } while (false); | ||||
| 2082 | return false; | ||||
| 2083 | } | ||||
| 2084 | // See https://github.com/google/sanitizers/issues/32 | ||||
| 2085 | // Constant CFString instances are compiled in the following way: | ||||
| 2086 | // -- the string buffer is emitted into | ||||
| 2087 | // __TEXT,__cstring,cstring_literals | ||||
| 2088 | // -- the constant NSConstantString structure referencing that buffer | ||||
| 2089 | // is placed into __DATA,__cfstring | ||||
| 2090 | // Therefore there's no point in placing redzones into __DATA,__cfstring. | ||||
| 2091 | // Moreover, it causes the linker to crash on OS X 10.7 | ||||
| 2092 | if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") { | ||||
| 2093 | LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("asan")) { dbgs() << "Ignoring CFString: " << *G << "\n"; } } while (false); | ||||
| 2094 | return false; | ||||
| 2095 | } | ||||
| 2096 | // The linker merges the contents of cstring_literals and removes the | ||||
| 2097 | // trailing zeroes. | ||||
| 2098 | if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) { | ||||
| 2099 | LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("asan")) { dbgs() << "Ignoring a cstring literal: " << *G << "\n"; } } while (false); | ||||
| 2100 | return false; | ||||
| 2101 | } | ||||
| 2102 | } | ||||
| 2103 | } | ||||
| 2104 | |||||
| 2105 | if (CompileKernel) { | ||||
| 2106 | // Globals that prefixed by "__" are special and cannot be padded with a | ||||
| 2107 | // redzone. | ||||
| 2108 | if (G->getName().startswith("__")) | ||||
| 2109 | return false; | ||||
| 2110 | } | ||||
| 2111 | |||||
| 2112 | return true; | ||||
| 2113 | } | ||||
| 2114 | |||||
| 2115 | // On Mach-O platforms, we emit global metadata in a separate section of the | ||||
| 2116 | // binary in order to allow the linker to properly dead strip. This is only | ||||
| 2117 | // supported on recent versions of ld64. | ||||
| 2118 | bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const { | ||||
| 2119 | if (!TargetTriple.isOSBinFormatMachO()) | ||||
| 2120 | return false; | ||||
| 2121 | |||||
| 2122 | if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11)) | ||||
| 2123 | return true; | ||||
| 2124 | if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9)) | ||||
| 2125 | return true; | ||||
| 2126 | if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2)) | ||||
| 2127 | return true; | ||||
| 2128 | |||||
| 2129 | return false; | ||||
| 2130 | } | ||||
| 2131 | |||||
| 2132 | StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const { | ||||
| 2133 | switch (TargetTriple.getObjectFormat()) { | ||||
| 2134 | case Triple::COFF: return ".ASAN$GL"; | ||||
| 2135 | case Triple::ELF: return "asan_globals"; | ||||
| 2136 | case Triple::MachO: return "__DATA,__asan_globals,regular"; | ||||
| 2137 | case Triple::Wasm: | ||||
| 2138 | case Triple::GOFF: | ||||
| 2139 | case Triple::XCOFF: | ||||
| 2140 | report_fatal_error( | ||||
| 2141 | "ModuleAddressSanitizer not implemented for object file format"); | ||||
| 2142 | case Triple::UnknownObjectFormat: | ||||
| 2143 | break; | ||||
| 2144 | } | ||||
| 2145 | llvm_unreachable("unsupported object format")::llvm::llvm_unreachable_internal("unsupported object format" , "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp", 2145); | ||||
| 2146 | } | ||||
| 2147 | |||||
| 2148 | void ModuleAddressSanitizer::initializeCallbacks(Module &M) { | ||||
| 2149 | IRBuilder<> IRB(*C); | ||||
| 2150 | |||||
| 2151 | // Declare our poisoning and unpoisoning functions. | ||||
| 2152 | AsanPoisonGlobals = | ||||
| 2153 | M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy); | ||||
| 2154 | AsanUnpoisonGlobals = | ||||
| 2155 | M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy()); | ||||
| 2156 | |||||
| 2157 | // Declare functions that register/unregister globals. | ||||
| 2158 | AsanRegisterGlobals = M.getOrInsertFunction( | ||||
| 2159 | kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); | ||||
| 2160 | AsanUnregisterGlobals = M.getOrInsertFunction( | ||||
| 2161 | kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); | ||||
| 2162 | |||||
| 2163 | // Declare the functions that find globals in a shared object and then invoke | ||||
| 2164 | // the (un)register function on them. | ||||
| 2165 | AsanRegisterImageGlobals = M.getOrInsertFunction( | ||||
| 2166 | kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); | ||||
| 2167 | AsanUnregisterImageGlobals = M.getOrInsertFunction( | ||||
| 2168 | kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); | ||||
| 2169 | |||||
| 2170 | AsanRegisterElfGlobals = | ||||
| 2171 | M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(), | ||||
| 2172 | IntptrTy, IntptrTy, IntptrTy); | ||||
| 2173 | AsanUnregisterElfGlobals = | ||||
| 2174 | M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(), | ||||
| 2175 | IntptrTy, IntptrTy, IntptrTy); | ||||
| 2176 | } | ||||
| 2177 | |||||
| 2178 | // Put the metadata and the instrumented global in the same group. This ensures | ||||
| 2179 | // that the metadata is discarded if the instrumented global is discarded. | ||||
| 2180 | void ModuleAddressSanitizer::SetComdatForGlobalMetadata( | ||||
| 2181 | GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) { | ||||
| 2182 | Module &M = *G->getParent(); | ||||
| 2183 | Comdat *C = G->getComdat(); | ||||
| 2184 | if (!C) { | ||||
| 2185 | if (!G->hasName()) { | ||||
| 2186 | // If G is unnamed, it must be internal. Give it an artificial name | ||||
| 2187 | // so we can put it in a comdat. | ||||
| 2188 | assert(G->hasLocalLinkage())(static_cast <bool> (G->hasLocalLinkage()) ? void (0 ) : __assert_fail ("G->hasLocalLinkage()", "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp" , 2188, __extension__ __PRETTY_FUNCTION__)); | ||||
| 2189 | G->setName(Twine(kAsanGenPrefix) + "_anon_global"); | ||||
| 2190 | } | ||||
| 2191 | |||||
| 2192 | if (!InternalSuffix.empty() && G->hasLocalLinkage()) { | ||||
| 2193 | std::string Name = std::string(G->getName()); | ||||
| 2194 | Name += InternalSuffix; | ||||
| 2195 | C = M.getOrInsertComdat(Name); | ||||
| 2196 | } else { | ||||
| 2197 | C = M.getOrInsertComdat(G->getName()); | ||||
| 2198 | } | ||||
| 2199 | |||||
| 2200 | // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private | ||||
| 2201 | // linkage to internal linkage so that a symbol table entry is emitted. This | ||||
| 2202 | // is necessary in order to create the comdat group. | ||||
| 2203 | if (TargetTriple.isOSBinFormatCOFF()) { | ||||
| 2204 | C->setSelectionKind(Comdat::NoDeduplicate); | ||||
| 2205 | if (G->hasPrivateLinkage()) | ||||
| 2206 | G->setLinkage(GlobalValue::InternalLinkage); | ||||
| 2207 | } | ||||
| 2208 | G->setComdat(C); | ||||
| 2209 | } | ||||
| 2210 | |||||
| 2211 | assert(G->hasComdat())(static_cast <bool> (G->hasComdat()) ? void (0) : __assert_fail ("G->hasComdat()", "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp" , 2211, __extension__ __PRETTY_FUNCTION__)); | ||||
| 2212 | Metadata->setComdat(G->getComdat()); | ||||
| 2213 | } | ||||
| 2214 | |||||
| 2215 | // Create a separate metadata global and put it in the appropriate ASan | ||||
| 2216 | // global registration section. | ||||
| 2217 | GlobalVariable * | ||||
| 2218 | ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer, | ||||
| 2219 | StringRef OriginalName) { | ||||
| 2220 | auto Linkage = TargetTriple.isOSBinFormatMachO() | ||||
| 2221 | ? GlobalVariable::InternalLinkage | ||||
| 2222 | : GlobalVariable::PrivateLinkage; | ||||
| 2223 | GlobalVariable *Metadata = new GlobalVariable( | ||||
| 2224 | M, Initializer->getType(), false, Linkage, Initializer, | ||||
| 2225 | Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName)); | ||||
| 2226 | Metadata->setSection(getGlobalMetadataSection()); | ||||
| 2227 | return Metadata; | ||||
| 2228 | } | ||||
| 2229 | |||||
| 2230 | Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) { | ||||
| 2231 | AsanDtorFunction = Function::createWithDefaultAttr( | ||||
| 2232 | FunctionType::get(Type::getVoidTy(*C), false), | ||||
| 2233 | GlobalValue::InternalLinkage, 0, kAsanModuleDtorName, &M); | ||||
| 2234 | AsanDtorFunction->addFnAttr(Attribute::NoUnwind); | ||||
| 2235 | // Ensure Dtor cannot be discarded, even if in a comdat. | ||||
| 2236 | appendToUsed(M, {AsanDtorFunction}); | ||||
| 2237 | BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); | ||||
| 2238 | |||||
| 2239 | return ReturnInst::Create(*C, AsanDtorBB); | ||||
| 2240 | } | ||||
| 2241 | |||||
| 2242 | void ModuleAddressSanitizer::InstrumentGlobalsCOFF( | ||||
| 2243 | IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, | ||||
| 2244 | ArrayRef<Constant *> MetadataInitializers) { | ||||
| 2245 | assert(ExtendedGlobals.size() == MetadataInitializers.size())(static_cast <bool> (ExtendedGlobals.size() == MetadataInitializers .size()) ? void (0) : __assert_fail ("ExtendedGlobals.size() == MetadataInitializers.size()" , "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp", 2245, __extension__ __PRETTY_FUNCTION__)); | ||||
| 2246 | auto &DL = M.getDataLayout(); | ||||
| 2247 | |||||
| 2248 | SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); | ||||
| 2249 | for (size_t i = 0; i < ExtendedGlobals.size(); i++) { | ||||
| 2250 | Constant *Initializer = MetadataInitializers[i]; | ||||
| 2251 | GlobalVariable *G = ExtendedGlobals[i]; | ||||
| 2252 | GlobalVariable *Metadata = | ||||
| 2253 | CreateMetadataGlobal(M, Initializer, G->getName()); | ||||
| 2254 | MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); | ||||
| 2255 | Metadata->setMetadata(LLVMContext::MD_associated, MD); | ||||
| 2256 | MetadataGlobals[i] = Metadata; | ||||
| 2257 | |||||
| 2258 | // The MSVC linker always inserts padding when linking incrementally. We | ||||
| 2259 | // cope with that by aligning each struct to its size, which must be a power | ||||
| 2260 | // of two. | ||||
| 2261 | unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType()); | ||||
| 2262 | assert(isPowerOf2_32(SizeOfGlobalStruct) &&(static_cast <bool> (isPowerOf2_32(SizeOfGlobalStruct) && "global metadata will not be padded appropriately") ? void ( 0) : __assert_fail ("isPowerOf2_32(SizeOfGlobalStruct) && \"global metadata will not be padded appropriately\"" , "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp", 2263, __extension__ __PRETTY_FUNCTION__)) | ||||
| 2263 | "global metadata will not be padded appropriately")(static_cast <bool> (isPowerOf2_32(SizeOfGlobalStruct) && "global metadata will not be padded appropriately") ? void ( 0) : __assert_fail ("isPowerOf2_32(SizeOfGlobalStruct) && \"global metadata will not be padded appropriately\"" , "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp", 2263, __extension__ __PRETTY_FUNCTION__)); | ||||
| 2264 | Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct)); | ||||
| 2265 | |||||
| 2266 | SetComdatForGlobalMetadata(G, Metadata, ""); | ||||
| 2267 | } | ||||
| 2268 | |||||
| 2269 | // Update llvm.compiler.used, adding the new metadata globals. This is | ||||
| 2270 | // needed so that during LTO these variables stay alive. | ||||
| 2271 | if (!MetadataGlobals.empty()) | ||||
| 2272 | appendToCompilerUsed(M, MetadataGlobals); | ||||
| 2273 | } | ||||
| 2274 | |||||
| 2275 | void ModuleAddressSanitizer::InstrumentGlobalsELF( | ||||
| 2276 | IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, | ||||
| 2277 | ArrayRef<Constant *> MetadataInitializers, | ||||
| 2278 | const std::string &UniqueModuleId) { | ||||
| 2279 | assert(ExtendedGlobals.size() == MetadataInitializers.size())(static_cast <bool> (ExtendedGlobals.size() == MetadataInitializers .size()) ? void (0) : __assert_fail ("ExtendedGlobals.size() == MetadataInitializers.size()" , "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp", 2279, __extension__ __PRETTY_FUNCTION__)); | ||||
| 2280 | |||||
| 2281 | // Putting globals in a comdat changes the semantic and potentially cause | ||||
| 2282 | // false negative odr violations at link time. If odr indicators are used, we | ||||
| 2283 | // keep the comdat sections, as link time odr violations will be dectected on | ||||
| 2284 | // the odr indicator symbols. | ||||
| 2285 | bool UseComdatForGlobalsGC = UseOdrIndicator; | ||||
| 2286 | |||||
| 2287 | SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); | ||||
| 2288 | for (size_t i = 0; i < ExtendedGlobals.size(); i++) { | ||||
| 2289 | GlobalVariable *G = ExtendedGlobals[i]; | ||||
| 2290 | GlobalVariable *Metadata = | ||||
| 2291 | CreateMetadataGlobal(M, MetadataInitializers[i], G->getName()); | ||||
| 2292 | MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); | ||||
| 2293 | Metadata->setMetadata(LLVMContext::MD_associated, MD); | ||||
| 2294 | MetadataGlobals[i] = Metadata; | ||||
| 2295 | |||||
| 2296 | if (UseComdatForGlobalsGC) | ||||
| 2297 | SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId); | ||||
| 2298 | } | ||||
| 2299 | |||||
| 2300 | // Update llvm.compiler.used, adding the new metadata globals. This is | ||||
| 2301 | // needed so that during LTO these variables stay alive. | ||||
| 2302 | if (!MetadataGlobals.empty()) | ||||
| 2303 | appendToCompilerUsed(M, MetadataGlobals); | ||||
| 2304 | |||||
| 2305 | // RegisteredFlag serves two purposes. First, we can pass it to dladdr() | ||||
| 2306 | // to look up the loaded image that contains it. Second, we can store in it | ||||
| 2307 | // whether registration has already occurred, to prevent duplicate | ||||
| 2308 | // registration. | ||||
| 2309 | // | ||||
| 2310 | // Common linkage ensures that there is only one global per shared library. | ||||
| 2311 | GlobalVariable *RegisteredFlag = new GlobalVariable( | ||||
| 2312 | M, IntptrTy, false, GlobalVariable::CommonLinkage, | ||||
| 2313 | ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); | ||||
| 2314 | RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); | ||||
| 2315 | |||||
| 2316 | // Create start and stop symbols. | ||||
| 2317 | GlobalVariable *StartELFMetadata = new GlobalVariable( | ||||
| 2318 | M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, | ||||
| 2319 | "__start_" + getGlobalMetadataSection()); | ||||
| 2320 | StartELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); | ||||
| 2321 | GlobalVariable *StopELFMetadata = new GlobalVariable( | ||||
| 2322 | M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, | ||||
| 2323 | "__stop_" + getGlobalMetadataSection()); | ||||
| 2324 | StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); | ||||
| 2325 | |||||
| 2326 | // Create a call to register the globals with the runtime. | ||||
| 2327 | IRB.CreateCall(AsanRegisterElfGlobals, | ||||
| 2328 | {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), | ||||
| 2329 | IRB.CreatePointerCast(StartELFMetadata, IntptrTy), | ||||
| 2330 | IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); | ||||
| 2331 | |||||
| 2332 | // We also need to unregister globals at the end, e.g., when a shared library | ||||
| 2333 | // gets closed. | ||||
| 2334 | if (DestructorKind != AsanDtorKind::None) { | ||||
| 2335 | IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); | ||||
| 2336 | IrbDtor.CreateCall(AsanUnregisterElfGlobals, | ||||
| 2337 | {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), | ||||
| 2338 | IRB.CreatePointerCast(StartELFMetadata, IntptrTy), | ||||
| 2339 | IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); | ||||
| 2340 | } | ||||
| 2341 | } | ||||
| 2342 | |||||
| 2343 | void ModuleAddressSanitizer::InstrumentGlobalsMachO( | ||||
| 2344 | IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, | ||||
| 2345 | ArrayRef<Constant *> MetadataInitializers) { | ||||
| 2346 | assert(ExtendedGlobals.size() == MetadataInitializers.size())(static_cast <bool> (ExtendedGlobals.size() == MetadataInitializers .size()) ? void (0) : __assert_fail ("ExtendedGlobals.size() == MetadataInitializers.size()" , "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp", 2346, __extension__ __PRETTY_FUNCTION__)); | ||||
| 2347 | |||||
| 2348 | // On recent Mach-O platforms, use a structure which binds the liveness of | ||||
| 2349 | // the global variable to the metadata struct. Keep the list of "Liveness" GV | ||||
| 2350 | // created to be added to llvm.compiler.used | ||||
| 2351 | StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy); | ||||
| 2352 | SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size()); | ||||
| 2353 | |||||
| 2354 | for (size_t i = 0; i < ExtendedGlobals.size(); i++) { | ||||
| 2355 | Constant *Initializer = MetadataInitializers[i]; | ||||
| 2356 | GlobalVariable *G = ExtendedGlobals[i]; | ||||
| 2357 | GlobalVariable *Metadata = | ||||
| 2358 | CreateMetadataGlobal(M, Initializer, G->getName()); | ||||
| 2359 | |||||
| 2360 | // On recent Mach-O platforms, we emit the global metadata in a way that | ||||
| 2361 | // allows the linker to properly strip dead globals. | ||||
| 2362 | auto LivenessBinder = | ||||
| 2363 | ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u), | ||||
| 2364 | ConstantExpr::getPointerCast(Metadata, IntptrTy)); | ||||
| 2365 | GlobalVariable *Liveness = new GlobalVariable( | ||||
| 2366 | M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder, | ||||
| 2367 | Twine("__asan_binder_") + G->getName()); | ||||
| 2368 | Liveness->setSection("__DATA,__asan_liveness,regular,live_support"); | ||||
| 2369 | LivenessGlobals[i] = Liveness; | ||||
| 2370 | } | ||||
| 2371 | |||||
| 2372 | // Update llvm.compiler.used, adding the new liveness globals. This is | ||||
| 2373 | // needed so that during LTO these variables stay alive. The alternative | ||||
| 2374 | // would be to have the linker handling the LTO symbols, but libLTO | ||||
| 2375 | // current API does not expose access to the section for each symbol. | ||||
| 2376 | if (!LivenessGlobals.empty()) | ||||
| 2377 | appendToCompilerUsed(M, LivenessGlobals); | ||||
| 2378 | |||||
| 2379 | // RegisteredFlag serves two purposes. First, we can pass it to dladdr() | ||||
| 2380 | // to look up the loaded image that contains it. Second, we can store in it | ||||
| 2381 | // whether registration has already occurred, to prevent duplicate | ||||
| 2382 | // registration. | ||||
| 2383 | // | ||||
| 2384 | // common linkage ensures that there is only one global per shared library. | ||||
| 2385 | GlobalVariable *RegisteredFlag = new GlobalVariable( | ||||
| 2386 | M, IntptrTy, false, GlobalVariable::CommonLinkage, | ||||
| 2387 | ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); | ||||
| 2388 | RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); | ||||
| 2389 | |||||
| 2390 | IRB.CreateCall(AsanRegisterImageGlobals, | ||||
| 2391 | {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); | ||||
| 2392 | |||||
| 2393 | // We also need to unregister globals at the end, e.g., when a shared library | ||||
| 2394 | // gets closed. | ||||
| 2395 | if (DestructorKind != AsanDtorKind::None) { | ||||
| 2396 | IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); | ||||
| 2397 | IrbDtor.CreateCall(AsanUnregisterImageGlobals, | ||||
| 2398 | {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); | ||||
| 2399 | } | ||||
| 2400 | } | ||||
| 2401 | |||||
| 2402 | void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray( | ||||
| 2403 | IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, | ||||
| 2404 | ArrayRef<Constant *> MetadataInitializers) { | ||||
| 2405 | assert(ExtendedGlobals.size() == MetadataInitializers.size())(static_cast <bool> (ExtendedGlobals.size() == MetadataInitializers .size()) ? void (0) : __assert_fail ("ExtendedGlobals.size() == MetadataInitializers.size()" , "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp", 2405, __extension__ __PRETTY_FUNCTION__)); | ||||
| 2406 | unsigned N = ExtendedGlobals.size(); | ||||
| 2407 | assert(N > 0)(static_cast <bool> (N > 0) ? void (0) : __assert_fail ("N > 0", "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp" , 2407, __extension__ __PRETTY_FUNCTION__)); | ||||
| 2408 | |||||
| 2409 | // On platforms that don't have a custom metadata section, we emit an array | ||||
| 2410 | // of global metadata structures. | ||||
| 2411 | ArrayType *ArrayOfGlobalStructTy = | ||||
| 2412 | ArrayType::get(MetadataInitializers[0]->getType(), N); | ||||
| 2413 | auto AllGlobals = new GlobalVariable( | ||||
| 2414 | M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, | ||||
| 2415 | ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), ""); | ||||
| 2416 | if (Mapping.Scale > 3) | ||||
| 2417 | AllGlobals->setAlignment(Align(1ULL << Mapping.Scale)); | ||||
| 2418 | |||||
| 2419 | IRB.CreateCall(AsanRegisterGlobals, | ||||
| 2420 | {IRB.CreatePointerCast(AllGlobals, IntptrTy), | ||||
| 2421 | ConstantInt::get(IntptrTy, N)}); | ||||
| 2422 | |||||
| 2423 | // We also need to unregister globals at the end, e.g., when a shared library | ||||
| 2424 | // gets closed. | ||||
| 2425 | if (DestructorKind != AsanDtorKind::None) { | ||||
| 2426 | IRBuilder<> IrbDtor(CreateAsanModuleDtor(M)); | ||||
| 2427 | IrbDtor.CreateCall(AsanUnregisterGlobals, | ||||
| 2428 | {IRB.CreatePointerCast(AllGlobals, IntptrTy), | ||||
| 2429 | ConstantInt::get(IntptrTy, N)}); | ||||
| 2430 | } | ||||
| 2431 | } | ||||
| 2432 | |||||
| 2433 | // This function replaces all global variables with new variables that have | ||||
| 2434 | // trailing redzones. It also creates a function that poisons | ||||
| 2435 | // redzones and inserts this function into llvm.global_ctors. | ||||
| 2436 | // Sets *CtorComdat to true if the global registration code emitted into the | ||||
| 2437 | // asan constructor is comdat-compatible. | ||||
| 2438 | bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M, | ||||
| 2439 | bool *CtorComdat) { | ||||
| 2440 | *CtorComdat = false; | ||||
| 2441 | |||||
| 2442 | // Build set of globals that are aliased by some GA, where | ||||
| 2443 | // getExcludedAliasedGlobal(GA) returns the relevant GlobalVariable. | ||||
| 2444 | SmallPtrSet<const GlobalVariable *, 16> AliasedGlobalExclusions; | ||||
| 2445 | if (CompileKernel) { | ||||
| 2446 | for (auto &GA : M.aliases()) { | ||||
| 2447 | if (const GlobalVariable *GV = getExcludedAliasedGlobal(GA)) | ||||
| 2448 | AliasedGlobalExclusions.insert(GV); | ||||
| 2449 | } | ||||
| 2450 | } | ||||
| 2451 | |||||
| 2452 | SmallVector<GlobalVariable *, 16> GlobalsToChange; | ||||
| 2453 | for (auto &G : M.globals()) { | ||||
| 2454 | if (!AliasedGlobalExclusions.count(&G) && shouldInstrumentGlobal(&G)) | ||||
| 2455 | GlobalsToChange.push_back(&G); | ||||
| 2456 | } | ||||
| 2457 | |||||
| 2458 | size_t n = GlobalsToChange.size(); | ||||
| 2459 | if (n == 0) { | ||||
| 2460 | *CtorComdat = true; | ||||
| 2461 | return false; | ||||
| 2462 | } | ||||
| 2463 | |||||
| 2464 | auto &DL = M.getDataLayout(); | ||||
| 2465 | |||||
| 2466 | // A global is described by a structure | ||||
| 2467 | // size_t beg; | ||||
| 2468 | // size_t size; | ||||
| 2469 | // size_t size_with_redzone; | ||||
| 2470 | // const char *name; | ||||
| 2471 | // const char *module_name; | ||||
| 2472 | // size_t has_dynamic_init; | ||||
| 2473 | // void *source_location; | ||||
| 2474 | // size_t odr_indicator; | ||||
| 2475 | // We initialize an array of such structures and pass it to a run-time call. | ||||
| 2476 | StructType *GlobalStructTy = | ||||
| 2477 | StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, | ||||
| 2478 | IntptrTy, IntptrTy, IntptrTy); | ||||
| 2479 | SmallVector<GlobalVariable *, 16> NewGlobals(n); | ||||
| 2480 | SmallVector<Constant *, 16> Initializers(n); | ||||
| 2481 | |||||
| 2482 | bool HasDynamicallyInitializedGlobals = false; | ||||
| 2483 | |||||
| 2484 | // We shouldn't merge same module names, as this string serves as unique | ||||
| 2485 | // module ID in runtime. | ||||
| 2486 | GlobalVariable *ModuleName = createPrivateGlobalForString( | ||||
| 2487 | M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix); | ||||
| 2488 | |||||
| 2489 | for (size_t i = 0; i < n; i++) { | ||||
| 2490 | GlobalVariable *G = GlobalsToChange[i]; | ||||
| 2491 | |||||
| 2492 | // FIXME: Metadata should be attched directly to the global directly instead | ||||
| 2493 | // of being added to llvm.asan.globals. | ||||
| 2494 | auto MD = GlobalsMD.get(G); | ||||
| 2495 | StringRef NameForGlobal = G->getName(); | ||||
| 2496 | // Create string holding the global name (use global name from metadata | ||||
| 2497 | // if it's available, otherwise just write the name of global variable). | ||||
| 2498 | GlobalVariable *Name = createPrivateGlobalForString( | ||||
| 2499 | M, MD.Name.empty() ? NameForGlobal : MD.Name, | ||||
| 2500 | /*AllowMerging*/ true, kAsanGenPrefix); | ||||
| 2501 | |||||
| 2502 | Type *Ty = G->getValueType(); | ||||
| 2503 | const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty); | ||||
| 2504 | const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes); | ||||
| 2505 | Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); | ||||
| 2506 | |||||
| 2507 | StructType *NewTy = StructType::get(Ty, RightRedZoneTy); | ||||
| 2508 | Constant *NewInitializer = ConstantStruct::get( | ||||
| 2509 | NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy)); | ||||
| 2510 | |||||
| 2511 | // Create a new global variable with enough space for a redzone. | ||||
| 2512 | GlobalValue::LinkageTypes Linkage = G->getLinkage(); | ||||
| 2513 | if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) | ||||
| 2514 | Linkage = GlobalValue::InternalLinkage; | ||||
| 2515 | GlobalVariable *NewGlobal = new GlobalVariable( | ||||
| 2516 | M, NewTy, G->isConstant(), Linkage, NewInitializer, "", G, | ||||
| 2517 | G->getThreadLocalMode(), G->getAddressSpace()); | ||||
| 2518 | NewGlobal->copyAttributesFrom(G); | ||||
| 2519 | NewGlobal->setComdat(G->getComdat()); | ||||
| 2520 | NewGlobal->setAlignment(MaybeAlign(getMinRedzoneSizeForGlobal())); | ||||
| 2521 | // Don't fold globals with redzones. ODR violation detector and redzone | ||||
| 2522 | // poisoning implicitly creates a dependence on the global's address, so it | ||||
| 2523 | // is no longer valid for it to be marked unnamed_addr. | ||||
| 2524 | NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None); | ||||
| 2525 | |||||
| 2526 | // Move null-terminated C strings to "__asan_cstring" section on Darwin. | ||||
| 2527 | if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() && | ||||
| 2528 | G->isConstant()) { | ||||
| 2529 | auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer()); | ||||
| 2530 | if (Seq && Seq->isCString()) | ||||
| 2531 | NewGlobal->setSection("__TEXT,__asan_cstring,regular"); | ||||
| 2532 | } | ||||
| 2533 | |||||
| 2534 | // Transfer the debug info and type metadata. The payload starts at offset | ||||
| 2535 | // zero so we can copy the metadata over as is. | ||||
| 2536 | NewGlobal->copyMetadata(G, 0); | ||||
| 2537 | |||||
| 2538 | Value *Indices2[2]; | ||||
| 2539 | Indices2[0] = IRB.getInt32(0); | ||||
| 2540 | Indices2[1] = IRB.getInt32(0); | ||||
| 2541 | |||||
| 2542 | G->replaceAllUsesWith( | ||||
| 2543 | ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true)); | ||||
| 2544 | NewGlobal->takeName(G); | ||||
| 2545 | G->eraseFromParent(); | ||||
| 2546 | NewGlobals[i] = NewGlobal; | ||||
| 2547 | |||||
| 2548 | Constant *SourceLoc; | ||||
| 2549 | if (!MD.SourceLoc.empty()) { | ||||
| 2550 | auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc); | ||||
| 2551 | SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy); | ||||
| 2552 | } else { | ||||
| 2553 | SourceLoc = ConstantInt::get(IntptrTy, 0); | ||||
| 2554 | } | ||||
| 2555 | |||||
| 2556 | Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy()); | ||||
| 2557 | GlobalValue *InstrumentedGlobal = NewGlobal; | ||||
| 2558 | |||||
| 2559 | bool CanUsePrivateAliases = | ||||
| 2560 | TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() || | ||||
| 2561 | TargetTriple.isOSBinFormatWasm(); | ||||
| 2562 | if (CanUsePrivateAliases && UsePrivateAlias) { | ||||
| 2563 | // Create local alias for NewGlobal to avoid crash on ODR between | ||||
| 2564 | // instrumented and non-instrumented libraries. | ||||
| 2565 | InstrumentedGlobal = | ||||
| 2566 | GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal); | ||||
| 2567 | } | ||||
| 2568 | |||||
| 2569 | // ODR should not happen for local linkage. | ||||
| 2570 | if (NewGlobal->hasLocalLinkage()) { | ||||
| 2571 | ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1), | ||||
| 2572 | IRB.getInt8PtrTy()); | ||||
| 2573 | } else if (UseOdrIndicator) { | ||||
| 2574 | // With local aliases, we need to provide another externally visible | ||||
| 2575 | // symbol __odr_asan_XXX to detect ODR violation. | ||||
| 2576 | auto *ODRIndicatorSym = | ||||
| 2577 | new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage, | ||||
| 2578 | Constant::getNullValue(IRB.getInt8Ty()), | ||||
| 2579 | kODRGenPrefix + NameForGlobal, nullptr, | ||||
| 2580 | NewGlobal->getThreadLocalMode()); | ||||
| 2581 | |||||
| 2582 | // Set meaningful attributes for indicator symbol. | ||||
| 2583 | ODRIndicatorSym->setVisibility(NewGlobal->getVisibility()); | ||||
| 2584 | ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass()); | ||||
| 2585 | ODRIndicatorSym->setAlignment(Align(1)); | ||||
| 2586 | ODRIndicator = ODRIndicatorSym; | ||||
| 2587 | } | ||||
| 2588 | |||||
| 2589 | Constant *Initializer = ConstantStruct::get( | ||||
| 2590 | GlobalStructTy, | ||||
| 2591 | ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy), | ||||
| 2592 | ConstantInt::get(IntptrTy, SizeInBytes), | ||||
| 2593 | ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), | ||||
| 2594 | ConstantExpr::getPointerCast(Name, IntptrTy), | ||||
| 2595 | ConstantExpr::getPointerCast(ModuleName, IntptrTy), | ||||
| 2596 | ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc, | ||||
| 2597 | ConstantExpr::getPointerCast(ODRIndicator, IntptrTy)); | ||||
| 2598 | |||||
| 2599 | if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true; | ||||
| 2600 | |||||
| 2601 | LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("asan")) { dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"; } } while (false); | ||||
| 2602 | |||||
| 2603 | Initializers[i] = Initializer; | ||||
| 2604 | } | ||||
| 2605 | |||||
| 2606 | // Add instrumented globals to llvm.compiler.used list to avoid LTO from | ||||
| 2607 | // ConstantMerge'ing them. | ||||
| 2608 | SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList; | ||||
| 2609 | for (size_t i = 0; i < n; i++) { | ||||
| 2610 | GlobalVariable *G = NewGlobals[i]; | ||||
| 2611 | if (G->getName().empty()) continue; | ||||
| 2612 | GlobalsToAddToUsedList.push_back(G); | ||||
| 2613 | } | ||||
| 2614 | appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList)); | ||||
| 2615 | |||||
| 2616 | std::string ELFUniqueModuleId = | ||||
| 2617 | (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M) | ||||
| 2618 | : ""; | ||||
| 2619 | |||||
| 2620 | if (!ELFUniqueModuleId.empty()) { | ||||
| 2621 | InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId); | ||||
| 2622 | *CtorComdat = true; | ||||
| 2623 | } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) { | ||||
| 2624 | InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers); | ||||
| 2625 | } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) { | ||||
| 2626 | InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers); | ||||
| 2627 | } else { | ||||
| 2628 | InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers); | ||||
| 2629 | } | ||||
| 2630 | |||||
| 2631 | // Create calls for poisoning before initializers run and unpoisoning after. | ||||
| 2632 | if (HasDynamicallyInitializedGlobals) | ||||
| 2633 | createInitializerPoisonCalls(M, ModuleName); | ||||
| 2634 | |||||
| 2635 | LLVM_DEBUG(dbgs() << M)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("asan")) { dbgs() << M; } } while (false); | ||||
| 2636 | return true; | ||||
| 2637 | } | ||||
| 2638 | |||||
| 2639 | uint64_t | ||||
| 2640 | ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes) const { | ||||
| 2641 | constexpr uint64_t kMaxRZ = 1 << 18; | ||||
| 2642 | const uint64_t MinRZ = getMinRedzoneSizeForGlobal(); | ||||
| 2643 | |||||
| 2644 | uint64_t RZ = 0; | ||||
| 2645 | if (SizeInBytes <= MinRZ / 2) { | ||||
| 2646 | // Reduce redzone size for small size objects, e.g. int, char[1]. MinRZ is | ||||
| 2647 | // at least 32 bytes, optimize when SizeInBytes is less than or equal to | ||||
| 2648 | // half of MinRZ. | ||||
| 2649 | RZ = MinRZ - SizeInBytes; | ||||
| 2650 | } else { | ||||
| 2651 | // Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes. | ||||
| 2652 | RZ = std::max(MinRZ, std::min(kMaxRZ, (SizeInBytes / MinRZ / 4) * MinRZ)); | ||||
| 2653 | |||||
| 2654 | // Round up to multiple of MinRZ. | ||||
| 2655 | if (SizeInBytes % MinRZ) | ||||
| 2656 | RZ += MinRZ - (SizeInBytes % MinRZ); | ||||
| 2657 | } | ||||
| 2658 | |||||
| 2659 | assert((RZ + SizeInBytes) % MinRZ == 0)(static_cast <bool> ((RZ + SizeInBytes) % MinRZ == 0) ? void (0) : __assert_fail ("(RZ + SizeInBytes) % MinRZ == 0", "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp", 2659 , __extension__ __PRETTY_FUNCTION__)); | ||||
| 2660 | |||||
| 2661 | return RZ; | ||||
| 2662 | } | ||||
| 2663 | |||||
| 2664 | int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const { | ||||
| 2665 | int LongSize = M.getDataLayout().getPointerSizeInBits(); | ||||
| 2666 | bool isAndroid = Triple(M.getTargetTriple()).isAndroid(); | ||||
| 2667 | int Version = 8; | ||||
| 2668 | // 32-bit Android is one version ahead because of the switch to dynamic | ||||
| 2669 | // shadow. | ||||
| 2670 | Version += (LongSize == 32 && isAndroid); | ||||
| 2671 | return Version; | ||||
| 2672 | } | ||||
| 2673 | |||||
| 2674 | bool ModuleAddressSanitizer::instrumentModule(Module &M) { | ||||
| 2675 | initializeCallbacks(M); | ||||
| 2676 | |||||
| 2677 | // Create a module constructor. A destructor is created lazily because not all | ||||
| 2678 | // platforms, and not all modules need it. | ||||
| 2679 | if (CompileKernel) { | ||||
| 2680 | // The kernel always builds with its own runtime, and therefore does not | ||||
| 2681 | // need the init and version check calls. | ||||
| 2682 | AsanCtorFunction = createSanitizerCtor(M, kAsanModuleCtorName); | ||||
| 2683 | } else { | ||||
| 2684 | std::string AsanVersion = std::to_string(GetAsanVersion(M)); | ||||
| 2685 | std::string VersionCheckName = | ||||
| 2686 | ClInsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : ""; | ||||
| 2687 | std::tie(AsanCtorFunction, std::ignore) = | ||||
| 2688 | createSanitizerCtorAndInitFunctions(M, kAsanModuleCtorName, | ||||
| 2689 | kAsanInitName, /*InitArgTypes=*/{}, | ||||
| 2690 | /*InitArgs=*/{}, VersionCheckName); | ||||
| 2691 | } | ||||
| 2692 | |||||
| 2693 | bool CtorComdat = true; | ||||
| 2694 | if (ClGlobals) { | ||||
| 2695 | IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator()); | ||||
| 2696 | InstrumentGlobals(IRB, M, &CtorComdat); | ||||
| 2697 | } | ||||
| 2698 | |||||
| 2699 | const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple); | ||||
| 2700 | |||||
| 2701 | // Put the constructor and destructor in comdat if both | ||||
| 2702 | // (1) global instrumentation is not TU-specific | ||||
| 2703 | // (2) target is ELF. | ||||
| 2704 | if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) { | ||||
| 2705 | AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName)); | ||||
| 2706 | appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction); | ||||
| 2707 | if (AsanDtorFunction) { | ||||
| 2708 | AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName)); | ||||
| 2709 | appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction); | ||||
| 2710 | } | ||||
| 2711 | } else { | ||||
| 2712 | appendToGlobalCtors(M, AsanCtorFunction, Priority); | ||||
| 2713 | if (AsanDtorFunction) | ||||
| 2714 | appendToGlobalDtors(M, AsanDtorFunction, Priority); | ||||
| 2715 | } | ||||
| 2716 | |||||
| 2717 | return true; | ||||
| 2718 | } | ||||
| 2719 | |||||
| 2720 | void AddressSanitizer::initializeCallbacks(Module &M) { | ||||
| 2721 | IRBuilder<> IRB(*C); | ||||
| 2722 | // Create __asan_report* callbacks. | ||||
| 2723 | // IsWrite, TypeSize and Exp are encoded in the function name. | ||||
| 2724 | for (int Exp = 0; Exp < 2; Exp++) { | ||||
| 2725 | for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { | ||||
| 2726 | const std::string TypeStr = AccessIsWrite ? "store" : "load"; | ||||
| 2727 | const std::string ExpStr = Exp ? "exp_" : ""; | ||||
| 2728 | const std::string EndingStr = Recover ? "_noabort" : ""; | ||||
| 2729 | |||||
| 2730 | SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy}; | ||||
| 2731 | SmallVector<Type *, 2> Args1{1, IntptrTy}; | ||||
| 2732 | if (Exp) { | ||||
| 2733 | Type *ExpType = Type::getInt32Ty(*C); | ||||
| 2734 | Args2.push_back(ExpType); | ||||
| 2735 | Args1.push_back(ExpType); | ||||
| 2736 | } | ||||
| 2737 | AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( | ||||
| 2738 | kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr, | ||||
| 2739 | FunctionType::get(IRB.getVoidTy(), Args2, false)); | ||||
| 2740 | |||||
| 2741 | AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( | ||||
| 2742 | ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr, | ||||
| 2743 | FunctionType::get(IRB.getVoidTy(), Args2, false)); | ||||
| 2744 | |||||
| 2745 | for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; | ||||
| 2746 | AccessSizeIndex++) { | ||||
| 2747 | const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex); | ||||
| 2748 | AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] = | ||||
| 2749 | M.getOrInsertFunction( | ||||
| 2750 | kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr, | ||||
| 2751 | FunctionType::get(IRB.getVoidTy(), Args1, false)); | ||||
| 2752 | |||||
| 2753 | AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] = | ||||
| 2754 | M.getOrInsertFunction( | ||||
| 2755 | ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr, | ||||
| 2756 | FunctionType::get(IRB.getVoidTy(), Args1, false)); | ||||
| 2757 | } | ||||
| 2758 | } | ||||
| 2759 | } | ||||
| 2760 | |||||
| 2761 | const std::string MemIntrinCallbackPrefix = | ||||
| 2762 | CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix; | ||||
| 2763 | AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove", | ||||
| 2764 | IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), | ||||
| 2765 | IRB.getInt8PtrTy(), IntptrTy); | ||||
| 2766 | AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy", | ||||
| 2767 | IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), | ||||
| 2768 | IRB.getInt8PtrTy(), IntptrTy); | ||||
| 2769 | AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset", | ||||
| 2770 | IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), | ||||
| 2771 | IRB.getInt32Ty(), IntptrTy); | ||||
| 2772 | |||||
| 2773 | AsanHandleNoReturnFunc = | ||||
| 2774 | M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy()); | ||||
| 2775 | |||||
| 2776 | AsanPtrCmpFunction = | ||||
| 2777 | M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy); | ||||
| 2778 | AsanPtrSubFunction = | ||||
| 2779 | M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy); | ||||
| 2780 | if (Mapping.InGlobal) | ||||
| 2781 | AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow", | ||||
| 2782 | ArrayType::get(IRB.getInt8Ty(), 0)); | ||||
| 2783 | |||||
| 2784 | AMDGPUAddressShared = M.getOrInsertFunction( | ||||
| 2785 | kAMDGPUAddressSharedName, IRB.getInt1Ty(), IRB.getInt8PtrTy()); | ||||
| 2786 | AMDGPUAddressPrivate = M.getOrInsertFunction( | ||||
| 2787 | kAMDGPUAddressPrivateName, IRB.getInt1Ty(), IRB.getInt8PtrTy()); | ||||
| 2788 | } | ||||
| 2789 | |||||
| 2790 | bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { | ||||
| 2791 | // For each NSObject descendant having a +load method, this method is invoked | ||||
| 2792 | // by the ObjC runtime before any of the static constructors is called. | ||||
| 2793 | // Therefore we need to instrument such methods with a call to __asan_init | ||||
| 2794 | // at the beginning in order to initialize our runtime before any access to | ||||
| 2795 | // the shadow memory. | ||||
| 2796 | // We cannot just ignore these methods, because they may call other | ||||
| 2797 | // instrumented functions. | ||||
| 2798 | if (F.getName().find(" load]") != std::string::npos) { | ||||
| 2799 | FunctionCallee AsanInitFunction = | ||||
| 2800 | declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {}); | ||||
| 2801 | IRBuilder<> IRB(&F.front(), F.front().begin()); | ||||
| 2802 | IRB.CreateCall(AsanInitFunction, {}); | ||||
| 2803 | return true; | ||||
| 2804 | } | ||||
| 2805 | return false; | ||||
| 2806 | } | ||||
| 2807 | |||||
| 2808 | bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) { | ||||
| 2809 | // Generate code only when dynamic addressing is needed. | ||||
| 2810 | if (Mapping.Offset != kDynamicShadowSentinel) | ||||
| 2811 | return false; | ||||
| 2812 | |||||
| 2813 | IRBuilder<> IRB(&F.front().front()); | ||||
| 2814 | if (Mapping.InGlobal) { | ||||
| 2815 | if (ClWithIfuncSuppressRemat) { | ||||
| 2816 | // An empty inline asm with input reg == output reg. | ||||
| 2817 | // An opaque pointer-to-int cast, basically. | ||||
| 2818 | InlineAsm *Asm = InlineAsm::get( | ||||
| 2819 | FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false), | ||||
| 2820 | StringRef(""), StringRef("=r,0"), | ||||
| 2821 | /*hasSideEffects=*/false); | ||||
| 2822 | LocalDynamicShadow = | ||||
| 2823 | IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow"); | ||||
| 2824 | } else { | ||||
| 2825 | LocalDynamicShadow = | ||||
| 2826 | IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow"); | ||||
| 2827 | } | ||||
| 2828 | } else { | ||||
| 2829 | Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal( | ||||
| 2830 | kAsanShadowMemoryDynamicAddress, IntptrTy); | ||||
| 2831 | LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress); | ||||
| 2832 | } | ||||
| 2833 | return true; | ||||
| 2834 | } | ||||
| 2835 | |||||
| 2836 | void AddressSanitizer::markEscapedLocalAllocas(Function &F) { | ||||
| 2837 | // Find the one possible call to llvm.localescape and pre-mark allocas passed | ||||
| 2838 | // to it as uninteresting. This assumes we haven't started processing allocas | ||||
| 2839 | // yet. This check is done up front because iterating the use list in | ||||
| 2840 | // isInterestingAlloca would be algorithmically slower. | ||||
| 2841 | assert(ProcessedAllocas.empty() && "must process localescape before allocas")(static_cast <bool> (ProcessedAllocas.empty() && "must process localescape before allocas") ? void (0) : __assert_fail ("ProcessedAllocas.empty() && \"must process localescape before allocas\"" , "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp", 2841, __extension__ __PRETTY_FUNCTION__)); | ||||
| 2842 | |||||
| 2843 | // Try to get the declaration of llvm.localescape. If it's not in the module, | ||||
| 2844 | // we can exit early. | ||||
| 2845 | if (!F.getParent()->getFunction("llvm.localescape")) return; | ||||
| 2846 | |||||
| 2847 | // Look for a call to llvm.localescape call in the entry block. It can't be in | ||||
| 2848 | // any other block. | ||||
| 2849 | for (Instruction &I : F.getEntryBlock()) { | ||||
| 2850 | IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); | ||||
| 2851 | if (II && II->getIntrinsicID() == Intrinsic::localescape) { | ||||
| 2852 | // We found a call. Mark all the allocas passed in as uninteresting. | ||||
| 2853 | for (Value *Arg : II->args()) { | ||||
| 2854 | AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); | ||||
| 2855 | assert(AI && AI->isStaticAlloca() &&(static_cast <bool> (AI && AI->isStaticAlloca () && "non-static alloca arg to localescape") ? void ( 0) : __assert_fail ("AI && AI->isStaticAlloca() && \"non-static alloca arg to localescape\"" , "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp", 2856, __extension__ __PRETTY_FUNCTION__)) | ||||
| 2856 | "non-static alloca arg to localescape")(static_cast <bool> (AI && AI->isStaticAlloca () && "non-static alloca arg to localescape") ? void ( 0) : __assert_fail ("AI && AI->isStaticAlloca() && \"non-static alloca arg to localescape\"" , "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp", 2856, __extension__ __PRETTY_FUNCTION__)); | ||||
| 2857 | ProcessedAllocas[AI] = false; | ||||
| 2858 | } | ||||
| 2859 | break; | ||||
| 2860 | } | ||||
| 2861 | } | ||||
| 2862 | } | ||||
| 2863 | |||||
| 2864 | bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) { | ||||
| 2865 | bool ShouldInstrument = | ||||
| 2866 | ClDebugMin < 0 || ClDebugMax < 0 || | ||||
| 2867 | (Instrumented >= ClDebugMin && Instrumented <= ClDebugMax); | ||||
| 2868 | Instrumented++; | ||||
| 2869 | return !ShouldInstrument; | ||||
| 2870 | } | ||||
| 2871 | |||||
| 2872 | bool AddressSanitizer::instrumentFunction(Function &F, | ||||
| 2873 | const TargetLibraryInfo *TLI) { | ||||
| 2874 | if (F.empty()) | ||||
| 2875 | return false; | ||||
| 2876 | if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; | ||||
| 2877 | if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false; | ||||
| 2878 | if (F.getName().startswith("__asan_")) return false; | ||||
| 2879 | |||||
| 2880 | bool FunctionModified = false; | ||||
| 2881 | |||||
| 2882 | // If needed, insert __asan_init before checking for SanitizeAddress attr. | ||||
| 2883 | // This function needs to be called even if the function body is not | ||||
| 2884 | // instrumented. | ||||
| 2885 | if (maybeInsertAsanInitAtFunctionEntry(F)) | ||||
| 2886 | FunctionModified = true; | ||||
| 2887 | |||||
| 2888 | // Leave if the function doesn't need instrumentation. | ||||
| 2889 | if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified; | ||||
| 2890 | |||||
| 2891 | LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("asan")) { dbgs() << "ASAN instrumenting:\n" << F << "\n"; } } while (false); | ||||
| 2892 | |||||
| 2893 | initializeCallbacks(*F.getParent()); | ||||
| 2894 | |||||
| 2895 | FunctionStateRAII CleanupObj(this); | ||||
| 2896 | |||||
| 2897 | FunctionModified |= maybeInsertDynamicShadowAtFunctionEntry(F); | ||||
| 2898 | |||||
| 2899 | // We can't instrument allocas used with llvm.localescape. Only static allocas | ||||
| 2900 | // can be passed to that intrinsic. | ||||
| 2901 | markEscapedLocalAllocas(F); | ||||
| 2902 | |||||
| 2903 | // We want to instrument every address only once per basic block (unless there | ||||
| 2904 | // are calls between uses). | ||||
| 2905 | SmallPtrSet<Value *, 16> TempsToInstrument; | ||||
| 2906 | SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument; | ||||
| 2907 | SmallVector<MemIntrinsic *, 16> IntrinToInstrument; | ||||
| 2908 | SmallVector<Instruction *, 8> NoReturnCalls; | ||||
| 2909 | SmallVector<BasicBlock *, 16> AllBlocks; | ||||
| 2910 | SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts; | ||||
| 2911 | int NumAllocas = 0; | ||||
| 2912 | |||||
| 2913 | // Fill the set of memory operations to instrument. | ||||
| 2914 | for (auto &BB : F) { | ||||
| 2915 | AllBlocks.push_back(&BB); | ||||
| 2916 | TempsToInstrument.clear(); | ||||
| 2917 | int NumInsnsPerBB = 0; | ||||
| 2918 | for (auto &Inst : BB) { | ||||
| 2919 | if (LooksLikeCodeInBug11395(&Inst)) return false; | ||||
| 2920 | SmallVector<InterestingMemoryOperand, 1> InterestingOperands; | ||||
| 2921 | getInterestingMemoryOperands(&Inst, InterestingOperands); | ||||
| 2922 | |||||
| 2923 | if (!InterestingOperands.empty()) { | ||||
| 2924 | for (auto &Operand : InterestingOperands) { | ||||
| 2925 | if (ClOpt && ClOptSameTemp) { | ||||
| 2926 | Value *Ptr = Operand.getPtr(); | ||||
| 2927 | // If we have a mask, skip instrumentation if we've already | ||||
| 2928 | // instrumented the full object. But don't add to TempsToInstrument | ||||
| 2929 | // because we might get another load/store with a different mask. | ||||
| 2930 | if (Operand.MaybeMask) { | ||||
| 2931 | if (TempsToInstrument.count(Ptr)) | ||||
| 2932 | continue; // We've seen this (whole) temp in the current BB. | ||||
| 2933 | } else { | ||||
| 2934 | if (!TempsToInstrument.insert(Ptr).second) | ||||
| 2935 | continue; // We've seen this temp in the current BB. | ||||
| 2936 | } | ||||
| 2937 | } | ||||
| 2938 | OperandsToInstrument.push_back(Operand); | ||||
| 2939 | NumInsnsPerBB++; | ||||
| 2940 | } | ||||
| 2941 | } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) && | ||||
| 2942 | isInterestingPointerComparison(&Inst)) || | ||||
| 2943 | ((ClInvalidPointerPairs || ClInvalidPointerSub) && | ||||
| 2944 | isInterestingPointerSubtraction(&Inst))) { | ||||
| 2945 | PointerComparisonsOrSubtracts.push_back(&Inst); | ||||
| 2946 | } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) { | ||||
| 2947 | // ok, take it. | ||||
| 2948 | IntrinToInstrument.push_back(MI); | ||||
| 2949 | NumInsnsPerBB++; | ||||
| 2950 | } else { | ||||
| 2951 | if (isa<AllocaInst>(Inst)) NumAllocas++; | ||||
| 2952 | if (auto *CB = dyn_cast<CallBase>(&Inst)) { | ||||
| 2953 | // A call inside BB. | ||||
| 2954 | TempsToInstrument.clear(); | ||||
| 2955 | if (CB->doesNotReturn() && !CB->hasMetadata("nosanitize")) | ||||
| 2956 | NoReturnCalls.push_back(CB); | ||||
| 2957 | } | ||||
| 2958 | if (CallInst *CI = dyn_cast<CallInst>(&Inst)) | ||||
| 2959 | maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); | ||||
| 2960 | } | ||||
| 2961 | if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; | ||||
| 2962 | } | ||||
| 2963 | } | ||||
| 2964 | |||||
| 2965 | bool UseCalls = (ClInstrumentationWithCallsThreshold >= 0 && | ||||
| 2966 | OperandsToInstrument.size() + IntrinToInstrument.size() > | ||||
| 2967 | (unsigned)ClInstrumentationWithCallsThreshold); | ||||
| 2968 | const DataLayout &DL = F.getParent()->getDataLayout(); | ||||
| 2969 | ObjectSizeOpts ObjSizeOpts; | ||||
| 2970 | ObjSizeOpts.RoundToAlign = true; | ||||
| 2971 | ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts); | ||||
| 2972 | |||||
| 2973 | // Instrument. | ||||
| 2974 | int NumInstrumented = 0; | ||||
| 2975 | for (auto &Operand : OperandsToInstrument) { | ||||
| 2976 | if (!suppressInstrumentationSiteForDebug(NumInstrumented)) | ||||
| 2977 | instrumentMop(ObjSizeVis, Operand, UseCalls, | ||||
| 2978 | F.getParent()->getDataLayout()); | ||||
| 2979 | FunctionModified = true; | ||||
| 2980 | } | ||||
| 2981 | for (auto Inst : IntrinToInstrument) { | ||||
| 2982 | if (!suppressInstrumentationSiteForDebug(NumInstrumented)) | ||||
| 2983 | instrumentMemIntrinsic(Inst); | ||||
| 2984 | FunctionModified = true; | ||||
| 2985 | } | ||||
| 2986 | |||||
| 2987 | FunctionStackPoisoner FSP(F, *this); | ||||
| 2988 | bool ChangedStack = FSP.runOnFunction(); | ||||
| 2989 | |||||
| 2990 | // We must unpoison the stack before NoReturn calls (throw, _exit, etc). | ||||
| 2991 | // See e.g. https://github.com/google/sanitizers/issues/37 | ||||
| 2992 | for (auto CI : NoReturnCalls) { | ||||
| 2993 | IRBuilder<> IRB(CI); | ||||
| 2994 | IRB.CreateCall(AsanHandleNoReturnFunc, {}); | ||||
| 2995 | } | ||||
| 2996 | |||||
| 2997 | for (auto Inst : PointerComparisonsOrSubtracts) { | ||||
| 2998 | instrumentPointerComparisonOrSubtraction(Inst); | ||||
| 2999 | FunctionModified = true; | ||||
| 3000 | } | ||||
| 3001 | |||||
| 3002 | if (ChangedStack || !NoReturnCalls.empty()) | ||||
| 3003 | FunctionModified = true; | ||||
| 3004 | |||||
| 3005 | LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("asan")) { dbgs() << "ASAN done instrumenting: " << FunctionModified << " " << F << "\n"; } } while (false) | ||||
| 3006 | << F << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("asan")) { dbgs() << "ASAN done instrumenting: " << FunctionModified << " " << F << "\n"; } } while (false); | ||||
| 3007 | |||||
| 3008 | return FunctionModified; | ||||
| 3009 | } | ||||
| 3010 | |||||
| 3011 | // Workaround for bug 11395: we don't want to instrument stack in functions | ||||
| 3012 | // with large assembly blobs (32-bit only), otherwise reg alloc may crash. | ||||
| 3013 | // FIXME: remove once the bug 11395 is fixed. | ||||
| 3014 | bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { | ||||
| 3015 | if (LongSize != 32) return false; | ||||
| 3016 | CallInst *CI = dyn_cast<CallInst>(I); | ||||
| 3017 | if (!CI || !CI->isInlineAsm()) return false; | ||||
| 3018 | if (CI->arg_size() <= 5) | ||||
| 3019 | return false; | ||||
| 3020 | // We have inline assembly with quite a few arguments. | ||||
| 3021 | return true; | ||||
| 3022 | } | ||||
| 3023 | |||||
| 3024 | void FunctionStackPoisoner::initializeCallbacks(Module &M) { | ||||
| 3025 | IRBuilder<> IRB(*C); | ||||
| 3026 | if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always || | ||||
| 3027 | ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) { | ||||
| 3028 | const char *MallocNameTemplate = | ||||
| 3029 | ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Always | ||||
| 3030 | ? kAsanStackMallocAlwaysNameTemplate | ||||
| 3031 | : kAsanStackMallocNameTemplate; | ||||
| 3032 | for (int Index = 0; Index <= kMaxAsanStackMallocSizeClass; Index++) { | ||||
| 3033 | std::string Suffix = itostr(Index); | ||||
| 3034 | AsanStackMallocFunc[Index] = M.getOrInsertFunction( | ||||
| 3035 | MallocNameTemplate + Suffix, IntptrTy, IntptrTy); | ||||
| 3036 | AsanStackFreeFunc[Index] = | ||||
| 3037 | M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix, | ||||
| 3038 | IRB.getVoidTy(), IntptrTy, IntptrTy); | ||||
| 3039 | } | ||||
| 3040 | } | ||||
| 3041 | if (ASan.UseAfterScope) { | ||||
| 3042 | AsanPoisonStackMemoryFunc = M.getOrInsertFunction( | ||||
| 3043 | kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); | ||||
| 3044 | AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction( | ||||
| 3045 | kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); | ||||
| 3046 | } | ||||
| 3047 | |||||
| 3048 | for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) { | ||||
| 3049 | std::ostringstream Name; | ||||
| 3050 | Name << kAsanSetShadowPrefix; | ||||
| 3051 | Name << std::setw(2) << std::setfill('0') << std::hex << Val; | ||||
| 3052 | AsanSetShadowFunc[Val] = | ||||
| 3053 | M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy); | ||||
| 3054 | } | ||||
| 3055 | |||||
| 3056 | AsanAllocaPoisonFunc = M.getOrInsertFunction( | ||||
| 3057 | kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy); | ||||
| 3058 | AsanAllocasUnpoisonFunc = M.getOrInsertFunction( | ||||
| 3059 | kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy); | ||||
| 3060 | } | ||||
| 3061 | |||||
| 3062 | void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask, | ||||
| 3063 | ArrayRef<uint8_t> ShadowBytes, | ||||
| 3064 | size_t Begin, size_t End, | ||||
| 3065 | IRBuilder<> &IRB, | ||||
| 3066 | Value *ShadowBase) { | ||||
| 3067 | if (Begin >= End) | ||||
| 3068 | return; | ||||
| 3069 | |||||
| 3070 | const size_t LargestStoreSizeInBytes = | ||||
| 3071 | std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8); | ||||
| 3072 | |||||
| 3073 | const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian(); | ||||
| 3074 | |||||
| 3075 | // Poison given range in shadow using larges store size with out leading and | ||||
| 3076 | // trailing zeros in ShadowMask. Zeros never change, so they need neither | ||||
| 3077 | // poisoning nor up-poisoning. Still we don't mind if some of them get into a | ||||
| 3078 | // middle of a store. | ||||
| 3079 | for (size_t i = Begin; i < End;) { | ||||
| 3080 | if (!ShadowMask[i]) { | ||||
| 3081 | assert(!ShadowBytes[i])(static_cast <bool> (!ShadowBytes[i]) ? void (0) : __assert_fail ("!ShadowBytes[i]", "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp" , 3081, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3082 | ++i; | ||||
| 3083 | continue; | ||||
| 3084 | } | ||||
| 3085 | |||||
| 3086 | size_t StoreSizeInBytes = LargestStoreSizeInBytes; | ||||
| 3087 | // Fit store size into the range. | ||||
| 3088 | while (StoreSizeInBytes > End - i) | ||||
| 3089 | StoreSizeInBytes /= 2; | ||||
| 3090 | |||||
| 3091 | // Minimize store size by trimming trailing zeros. | ||||
| 3092 | for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) { | ||||
| 3093 | while (j <= StoreSizeInBytes / 2) | ||||
| 3094 | StoreSizeInBytes /= 2; | ||||
| 3095 | } | ||||
| 3096 | |||||
| 3097 | uint64_t Val = 0; | ||||
| 3098 | for (size_t j = 0; j < StoreSizeInBytes; j++) { | ||||
| 3099 | if (IsLittleEndian) | ||||
| 3100 | Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); | ||||
| 3101 | else | ||||
| 3102 | Val = (Val << 8) | ShadowBytes[i + j]; | ||||
| 3103 | } | ||||
| 3104 | |||||
| 3105 | Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); | ||||
| 3106 | Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val); | ||||
| 3107 | IRB.CreateAlignedStore( | ||||
| 3108 | Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), | ||||
| 3109 | Align(1)); | ||||
| 3110 | |||||
| 3111 | i += StoreSizeInBytes; | ||||
| 3112 | } | ||||
| 3113 | } | ||||
| 3114 | |||||
| 3115 | void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, | ||||
| 3116 | ArrayRef<uint8_t> ShadowBytes, | ||||
| 3117 | IRBuilder<> &IRB, Value *ShadowBase) { | ||||
| 3118 | copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase); | ||||
| 3119 | } | ||||
| 3120 | |||||
| 3121 | void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, | ||||
| 3122 | ArrayRef<uint8_t> ShadowBytes, | ||||
| 3123 | size_t Begin, size_t End, | ||||
| 3124 | IRBuilder<> &IRB, Value *ShadowBase) { | ||||
| 3125 | assert(ShadowMask.size() == ShadowBytes.size())(static_cast <bool> (ShadowMask.size() == ShadowBytes.size ()) ? void (0) : __assert_fail ("ShadowMask.size() == ShadowBytes.size()" , "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp", 3125, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3126 | size_t Done = Begin; | ||||
| 3127 | for (size_t i = Begin, j = Begin + 1; i < End; i = j++) { | ||||
| 3128 | if (!ShadowMask[i]) { | ||||
| 3129 | assert(!ShadowBytes[i])(static_cast <bool> (!ShadowBytes[i]) ? void (0) : __assert_fail ("!ShadowBytes[i]", "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp" , 3129, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3130 | continue; | ||||
| 3131 | } | ||||
| 3132 | uint8_t Val = ShadowBytes[i]; | ||||
| 3133 | if (!AsanSetShadowFunc[Val]) | ||||
| 3134 | continue; | ||||
| 3135 | |||||
| 3136 | // Skip same values. | ||||
| 3137 | for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) { | ||||
| 3138 | } | ||||
| 3139 | |||||
| 3140 | if (j - i >= ClMaxInlinePoisoningSize) { | ||||
| 3141 | copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase); | ||||
| 3142 | IRB.CreateCall(AsanSetShadowFunc[Val], | ||||
| 3143 | {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)), | ||||
| 3144 | ConstantInt::get(IntptrTy, j - i)}); | ||||
| 3145 | Done = j; | ||||
| 3146 | } | ||||
| 3147 | } | ||||
| 3148 | |||||
| 3149 | copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase); | ||||
| 3150 | } | ||||
| 3151 | |||||
| 3152 | // Fake stack allocator (asan_fake_stack.h) has 11 size classes | ||||
| 3153 | // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass | ||||
| 3154 | static int StackMallocSizeClass(uint64_t LocalStackSize) { | ||||
| 3155 | assert(LocalStackSize <= kMaxStackMallocSize)(static_cast <bool> (LocalStackSize <= kMaxStackMallocSize ) ? void (0) : __assert_fail ("LocalStackSize <= kMaxStackMallocSize" , "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp", 3155, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3156 | uint64_t MaxSize = kMinStackMallocSize; | ||||
| 3157 | for (int i = 0;; i++, MaxSize *= 2) | ||||
| 3158 | if (LocalStackSize <= MaxSize) return i; | ||||
| 3159 | llvm_unreachable("impossible LocalStackSize")::llvm::llvm_unreachable_internal("impossible LocalStackSize" , "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp", 3159); | ||||
| 3160 | } | ||||
| 3161 | |||||
| 3162 | void FunctionStackPoisoner::copyArgsPassedByValToAllocas() { | ||||
| 3163 | Instruction *CopyInsertPoint = &F.front().front(); | ||||
| 3164 | if (CopyInsertPoint == ASan.LocalDynamicShadow) { | ||||
| 3165 | // Insert after the dynamic shadow location is determined | ||||
| 3166 | CopyInsertPoint = CopyInsertPoint->getNextNode(); | ||||
| 3167 | assert(CopyInsertPoint)(static_cast <bool> (CopyInsertPoint) ? void (0) : __assert_fail ("CopyInsertPoint", "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp" , 3167, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3168 | } | ||||
| 3169 | IRBuilder<> IRB(CopyInsertPoint); | ||||
| 3170 | const DataLayout &DL = F.getParent()->getDataLayout(); | ||||
| 3171 | for (Argument &Arg : F.args()) { | ||||
| 3172 | if (Arg.hasByValAttr()) { | ||||
| 3173 | Type *Ty = Arg.getParamByValType(); | ||||
| 3174 | const Align Alignment = | ||||
| 3175 | DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty); | ||||
| 3176 | |||||
| 3177 | AllocaInst *AI = IRB.CreateAlloca( | ||||
| 3178 | Ty, nullptr, | ||||
| 3179 | (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) + | ||||
| 3180 | ".byval"); | ||||
| 3181 | AI->setAlignment(Alignment); | ||||
| 3182 | Arg.replaceAllUsesWith(AI); | ||||
| 3183 | |||||
| 3184 | uint64_t AllocSize = DL.getTypeAllocSize(Ty); | ||||
| 3185 | IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize); | ||||
| 3186 | } | ||||
| 3187 | } | ||||
| 3188 | } | ||||
| 3189 | |||||
| 3190 | PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond, | ||||
| 3191 | Value *ValueIfTrue, | ||||
| 3192 | Instruction *ThenTerm, | ||||
| 3193 | Value *ValueIfFalse) { | ||||
| 3194 | PHINode *PHI = IRB.CreatePHI(IntptrTy, 2); | ||||
| 3195 | BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent(); | ||||
| 3196 | PHI->addIncoming(ValueIfFalse, CondBlock); | ||||
| 3197 | BasicBlock *ThenBlock = ThenTerm->getParent(); | ||||
| 3198 | PHI->addIncoming(ValueIfTrue, ThenBlock); | ||||
| 3199 | return PHI; | ||||
| 3200 | } | ||||
| 3201 | |||||
| 3202 | Value *FunctionStackPoisoner::createAllocaForLayout( | ||||
| 3203 | IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) { | ||||
| 3204 | AllocaInst *Alloca; | ||||
| 3205 | if (Dynamic) { | ||||
| 3206 | Alloca = IRB.CreateAlloca(IRB.getInt8Ty(), | ||||
| 3207 | ConstantInt::get(IRB.getInt64Ty(), L.FrameSize), | ||||
| 3208 | "MyAlloca"); | ||||
| 3209 | } else { | ||||
| 3210 | Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize), | ||||
| 3211 | nullptr, "MyAlloca"); | ||||
| 3212 | assert(Alloca->isStaticAlloca())(static_cast <bool> (Alloca->isStaticAlloca()) ? void (0) : __assert_fail ("Alloca->isStaticAlloca()", "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp" , 3212, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3213 | } | ||||
| 3214 | assert((ClRealignStack & (ClRealignStack - 1)) == 0)(static_cast <bool> ((ClRealignStack & (ClRealignStack - 1)) == 0) ? void (0) : __assert_fail ("(ClRealignStack & (ClRealignStack - 1)) == 0" , "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp", 3214, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3215 | uint64_t FrameAlignment = std::max(L.FrameAlignment, uint64_t(ClRealignStack)); | ||||
| 3216 | Alloca->setAlignment(Align(FrameAlignment)); | ||||
| 3217 | return IRB.CreatePointerCast(Alloca, IntptrTy); | ||||
| 3218 | } | ||||
| 3219 | |||||
| 3220 | void FunctionStackPoisoner::createDynamicAllocasInitStorage() { | ||||
| 3221 | BasicBlock &FirstBB = *F.begin(); | ||||
| 3222 | IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin())); | ||||
| 3223 | DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr); | ||||
| 3224 | IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout); | ||||
| 3225 | DynamicAllocaLayout->setAlignment(Align(32)); | ||||
| 3226 | } | ||||
| 3227 | |||||
| 3228 | void FunctionStackPoisoner::processDynamicAllocas() { | ||||
| 3229 | if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) { | ||||
| 3230 | assert(DynamicAllocaPoisonCallVec.empty())(static_cast <bool> (DynamicAllocaPoisonCallVec.empty() ) ? void (0) : __assert_fail ("DynamicAllocaPoisonCallVec.empty()" , "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp", 3230, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3231 | return; | ||||
| 3232 | } | ||||
| 3233 | |||||
| 3234 | // Insert poison calls for lifetime intrinsics for dynamic allocas. | ||||
| 3235 | for (const auto &APC : DynamicAllocaPoisonCallVec) { | ||||
| 3236 | assert(APC.InsBefore)(static_cast <bool> (APC.InsBefore) ? void (0) : __assert_fail ("APC.InsBefore", "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp" , 3236, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3237 | assert(APC.AI)(static_cast <bool> (APC.AI) ? void (0) : __assert_fail ("APC.AI", "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp" , 3237, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3238 | assert(ASan.isInterestingAlloca(*APC.AI))(static_cast <bool> (ASan.isInterestingAlloca(*APC.AI)) ? void (0) : __assert_fail ("ASan.isInterestingAlloca(*APC.AI)" , "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp", 3238, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3239 | assert(!APC.AI->isStaticAlloca())(static_cast <bool> (!APC.AI->isStaticAlloca()) ? void (0) : __assert_fail ("!APC.AI->isStaticAlloca()", "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp" , 3239, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3240 | |||||
| 3241 | IRBuilder<> IRB(APC.InsBefore); | ||||
| 3242 | poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison); | ||||
| 3243 | // Dynamic allocas will be unpoisoned unconditionally below in | ||||
| 3244 | // unpoisonDynamicAllocas. | ||||
| 3245 | // Flag that we need unpoison static allocas. | ||||
| 3246 | } | ||||
| 3247 | |||||
| 3248 | // Handle dynamic allocas. | ||||
| 3249 | createDynamicAllocasInitStorage(); | ||||
| 3250 | for (auto &AI : DynamicAllocaVec) | ||||
| 3251 | handleDynamicAllocaCall(AI); | ||||
| 3252 | unpoisonDynamicAllocas(); | ||||
| 3253 | } | ||||
| 3254 | |||||
| 3255 | /// Collect instructions in the entry block after \p InsBefore which initialize | ||||
| 3256 | /// permanent storage for a function argument. These instructions must remain in | ||||
| 3257 | /// the entry block so that uninitialized values do not appear in backtraces. An | ||||
| 3258 | /// added benefit is that this conserves spill slots. This does not move stores | ||||
| 3259 | /// before instrumented / "interesting" allocas. | ||||
| 3260 | static void findStoresToUninstrumentedArgAllocas( | ||||
| 3261 | AddressSanitizer &ASan, Instruction &InsBefore, | ||||
| 3262 | SmallVectorImpl<Instruction *> &InitInsts) { | ||||
| 3263 | Instruction *Start = InsBefore.getNextNonDebugInstruction(); | ||||
| 3264 | for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) { | ||||
| 3265 | // Argument initialization looks like: | ||||
| 3266 | // 1) store <Argument>, <Alloca> OR | ||||
| 3267 | // 2) <CastArgument> = cast <Argument> to ... | ||||
| 3268 | // store <CastArgument> to <Alloca> | ||||
| 3269 | // Do not consider any other kind of instruction. | ||||
| 3270 | // | ||||
| 3271 | // Note: This covers all known cases, but may not be exhaustive. An | ||||
| 3272 | // alternative to pattern-matching stores is to DFS over all Argument uses: | ||||
| 3273 | // this might be more general, but is probably much more complicated. | ||||
| 3274 | if (isa<AllocaInst>(It) || isa<CastInst>(It)) | ||||
| 3275 | continue; | ||||
| 3276 | if (auto *Store = dyn_cast<StoreInst>(It)) { | ||||
| 3277 | // The store destination must be an alloca that isn't interesting for | ||||
| 3278 | // ASan to instrument. These are moved up before InsBefore, and they're | ||||
| 3279 | // not interesting because allocas for arguments can be mem2reg'd. | ||||
| 3280 | auto *Alloca = dyn_cast<AllocaInst>(Store->getPointerOperand()); | ||||
| 3281 | if (!Alloca || ASan.isInterestingAlloca(*Alloca)) | ||||
| 3282 | continue; | ||||
| 3283 | |||||
| 3284 | Value *Val = Store->getValueOperand(); | ||||
| 3285 | bool IsDirectArgInit = isa<Argument>(Val); | ||||
| 3286 | bool IsArgInitViaCast = | ||||
| 3287 | isa<CastInst>(Val) && | ||||
| 3288 | isa<Argument>(cast<CastInst>(Val)->getOperand(0)) && | ||||
| 3289 | // Check that the cast appears directly before the store. Otherwise | ||||
| 3290 | // moving the cast before InsBefore may break the IR. | ||||
| 3291 | Val == It->getPrevNonDebugInstruction(); | ||||
| 3292 | bool IsArgInit = IsDirectArgInit || IsArgInitViaCast; | ||||
| 3293 | if (!IsArgInit) | ||||
| 3294 | continue; | ||||
| 3295 | |||||
| 3296 | if (IsArgInitViaCast) | ||||
| 3297 | InitInsts.push_back(cast<Instruction>(Val)); | ||||
| 3298 | InitInsts.push_back(Store); | ||||
| 3299 | continue; | ||||
| 3300 | } | ||||
| 3301 | |||||
| 3302 | // Do not reorder past unknown instructions: argument initialization should | ||||
| 3303 | // only involve casts and stores. | ||||
| 3304 | return; | ||||
| 3305 | } | ||||
| 3306 | } | ||||
| 3307 | |||||
| 3308 | void FunctionStackPoisoner::processStaticAllocas() { | ||||
| 3309 | if (AllocaVec.empty()) { | ||||
| 3310 | assert(StaticAllocaPoisonCallVec.empty())(static_cast <bool> (StaticAllocaPoisonCallVec.empty()) ? void (0) : __assert_fail ("StaticAllocaPoisonCallVec.empty()" , "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp", 3310, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3311 | return; | ||||
| 3312 | } | ||||
| 3313 | |||||
| 3314 | int StackMallocIdx = -1; | ||||
| 3315 | DebugLoc EntryDebugLocation; | ||||
| 3316 | if (auto SP = F.getSubprogram()) | ||||
| 3317 | EntryDebugLocation = | ||||
| 3318 | DILocation::get(SP->getContext(), SP->getScopeLine(), 0, SP); | ||||
| 3319 | |||||
| 3320 | Instruction *InsBefore = AllocaVec[0]; | ||||
| 3321 | IRBuilder<> IRB(InsBefore); | ||||
| 3322 | |||||
| 3323 | // Make sure non-instrumented allocas stay in the entry block. Otherwise, | ||||
| 3324 | // debug info is broken, because only entry-block allocas are treated as | ||||
| 3325 | // regular stack slots. | ||||
| 3326 | auto InsBeforeB = InsBefore->getParent(); | ||||
| 3327 | assert(InsBeforeB == &F.getEntryBlock())(static_cast <bool> (InsBeforeB == &F.getEntryBlock ()) ? void (0) : __assert_fail ("InsBeforeB == &F.getEntryBlock()" , "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp", 3327, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3328 | for (auto *AI : StaticAllocasToMoveUp) | ||||
| 3329 | if (AI->getParent() == InsBeforeB) | ||||
| 3330 | AI->moveBefore(InsBefore); | ||||
| 3331 | |||||
| 3332 | // Move stores of arguments into entry-block allocas as well. This prevents | ||||
| 3333 | // extra stack slots from being generated (to house the argument values until | ||||
| 3334 | // they can be stored into the allocas). This also prevents uninitialized | ||||
| 3335 | // values from being shown in backtraces. | ||||
| 3336 | SmallVector<Instruction *, 8> ArgInitInsts; | ||||
| 3337 | findStoresToUninstrumentedArgAllocas(ASan, *InsBefore, ArgInitInsts); | ||||
| 3338 | for (Instruction *ArgInitInst : ArgInitInsts) | ||||
| 3339 | ArgInitInst->moveBefore(InsBefore); | ||||
| 3340 | |||||
| 3341 | // If we have a call to llvm.localescape, keep it in the entry block. | ||||
| 3342 | if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore); | ||||
| 3343 | |||||
| 3344 | SmallVector<ASanStackVariableDescription, 16> SVD; | ||||
| 3345 | SVD.reserve(AllocaVec.size()); | ||||
| 3346 | for (AllocaInst *AI : AllocaVec) { | ||||
| 3347 | ASanStackVariableDescription D = {AI->getName().data(), | ||||
| 3348 | ASan.getAllocaSizeInBytes(*AI), | ||||
| 3349 | 0, | ||||
| 3350 | AI->getAlignment(), | ||||
| 3351 | AI, | ||||
| 3352 | 0, | ||||
| 3353 | 0}; | ||||
| 3354 | SVD.push_back(D); | ||||
| 3355 | } | ||||
| 3356 | |||||
| 3357 | // Minimal header size (left redzone) is 4 pointers, | ||||
| 3358 | // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. | ||||
| 3359 | uint64_t Granularity = 1ULL << Mapping.Scale; | ||||
| 3360 | uint64_t MinHeaderSize = std::max((uint64_t)ASan.LongSize / 2, Granularity); | ||||
| 3361 | const ASanStackFrameLayout &L = | ||||
| 3362 | ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize); | ||||
| 3363 | |||||
| 3364 | // Build AllocaToSVDMap for ASanStackVariableDescription lookup. | ||||
| 3365 | DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap; | ||||
| 3366 | for (auto &Desc : SVD) | ||||
| 3367 | AllocaToSVDMap[Desc.AI] = &Desc; | ||||
| 3368 | |||||
| 3369 | // Update SVD with information from lifetime intrinsics. | ||||
| 3370 | for (const auto &APC : StaticAllocaPoisonCallVec) { | ||||
| 3371 | assert(APC.InsBefore)(static_cast <bool> (APC.InsBefore) ? void (0) : __assert_fail ("APC.InsBefore", "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp" , 3371, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3372 | assert(APC.AI)(static_cast <bool> (APC.AI) ? void (0) : __assert_fail ("APC.AI", "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp" , 3372, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3373 | assert(ASan.isInterestingAlloca(*APC.AI))(static_cast <bool> (ASan.isInterestingAlloca(*APC.AI)) ? void (0) : __assert_fail ("ASan.isInterestingAlloca(*APC.AI)" , "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp", 3373, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3374 | assert(APC.AI->isStaticAlloca())(static_cast <bool> (APC.AI->isStaticAlloca()) ? void (0) : __assert_fail ("APC.AI->isStaticAlloca()", "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp" , 3374, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3375 | |||||
| 3376 | ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; | ||||
| 3377 | Desc.LifetimeSize = Desc.Size; | ||||
| 3378 | if (const DILocation *FnLoc = EntryDebugLocation.get()) { | ||||
| 3379 | if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) { | ||||
| 3380 | if (LifetimeLoc->getFile() == FnLoc->getFile()) | ||||
| 3381 | if (unsigned Line = LifetimeLoc->getLine()) | ||||
| 3382 | Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line); | ||||
| 3383 | } | ||||
| 3384 | } | ||||
| 3385 | } | ||||
| 3386 | |||||
| 3387 | auto DescriptionString = ComputeASanStackFrameDescription(SVD); | ||||
| 3388 | LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType ("asan")) { dbgs() << DescriptionString << " --- " << L.FrameSize << "\n"; } } while (false); | ||||
| 3389 | uint64_t LocalStackSize = L.FrameSize; | ||||
| 3390 | bool DoStackMalloc = | ||||
| 3391 | ASan.UseAfterReturn != AsanDetectStackUseAfterReturnMode::Never && | ||||
| 3392 | !ASan.CompileKernel && LocalStackSize <= kMaxStackMallocSize; | ||||
| 3393 | bool DoDynamicAlloca = ClDynamicAllocaStack; | ||||
| 3394 | // Don't do dynamic alloca or stack malloc if: | ||||
| 3395 | // 1) There is inline asm: too often it makes assumptions on which registers | ||||
| 3396 | // are available. | ||||
| 3397 | // 2) There is a returns_twice call (typically setjmp), which is | ||||
| 3398 | // optimization-hostile, and doesn't play well with introduced indirect | ||||
| 3399 | // register-relative calculation of local variable addresses. | ||||
| 3400 | DoDynamicAlloca &= !HasInlineAsm && !HasReturnsTwiceCall; | ||||
| 3401 | DoStackMalloc &= !HasInlineAsm && !HasReturnsTwiceCall; | ||||
| 3402 | |||||
| 3403 | Value *StaticAlloca = | ||||
| 3404 | DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false); | ||||
| 3405 | |||||
| 3406 | Value *FakeStack; | ||||
| 3407 | Value *LocalStackBase; | ||||
| 3408 | Value *LocalStackBaseAlloca; | ||||
| 3409 | uint8_t DIExprFlags = DIExpression::ApplyOffset; | ||||
| 3410 | |||||
| 3411 | if (DoStackMalloc) { | ||||
| 3412 | LocalStackBaseAlloca = | ||||
| 3413 | IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base"); | ||||
| 3414 | if (ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode::Runtime) { | ||||
| 3415 | // void *FakeStack = __asan_option_detect_stack_use_after_return | ||||
| 3416 | // ? __asan_stack_malloc_N(LocalStackSize) | ||||
| 3417 | // : nullptr; | ||||
| 3418 | // void *LocalStackBase = (FakeStack) ? FakeStack : | ||||
| 3419 | // alloca(LocalStackSize); | ||||
| 3420 | Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal( | ||||
| 3421 | kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty()); | ||||
| 3422 | Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE( | ||||
| 3423 | IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn), | ||||
| 3424 | Constant::getNullValue(IRB.getInt32Ty())); | ||||
| 3425 | Instruction *Term = | ||||
| 3426 | SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false); | ||||
| 3427 | IRBuilder<> IRBIf(Term); | ||||
| 3428 | StackMallocIdx = StackMallocSizeClass(LocalStackSize); | ||||
| 3429 | assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass)(static_cast <bool> (StackMallocIdx <= kMaxAsanStackMallocSizeClass ) ? void (0) : __assert_fail ("StackMallocIdx <= kMaxAsanStackMallocSizeClass" , "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp", 3429, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3430 | Value *FakeStackValue = | ||||
| 3431 | IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx], | ||||
| 3432 | ConstantInt::get(IntptrTy, LocalStackSize)); | ||||
| 3433 | IRB.SetInsertPoint(InsBefore); | ||||
| 3434 | FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term, | ||||
| 3435 | ConstantInt::get(IntptrTy, 0)); | ||||
| 3436 | } else { | ||||
| 3437 | // assert(ASan.UseAfterReturn == AsanDetectStackUseAfterReturnMode:Always) | ||||
| 3438 | // void *FakeStack = __asan_stack_malloc_N(LocalStackSize); | ||||
| 3439 | // void *LocalStackBase = (FakeStack) ? FakeStack : | ||||
| 3440 | // alloca(LocalStackSize); | ||||
| 3441 | StackMallocIdx = StackMallocSizeClass(LocalStackSize); | ||||
| 3442 | FakeStack = IRB.CreateCall(AsanStackMallocFunc[StackMallocIdx], | ||||
| 3443 | ConstantInt::get(IntptrTy, LocalStackSize)); | ||||
| 3444 | } | ||||
| 3445 | Value *NoFakeStack = | ||||
| 3446 | IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy)); | ||||
| 3447 | Instruction *Term = | ||||
| 3448 | SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false); | ||||
| 3449 | IRBuilder<> IRBIf(Term); | ||||
| 3450 | Value *AllocaValue = | ||||
| 3451 | DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca; | ||||
| 3452 | |||||
| 3453 | IRB.SetInsertPoint(InsBefore); | ||||
| 3454 | LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack); | ||||
| 3455 | IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca); | ||||
| 3456 | DIExprFlags |= DIExpression::DerefBefore; | ||||
| 3457 | } else { | ||||
| 3458 | // void *FakeStack = nullptr; | ||||
| 3459 | // void *LocalStackBase = alloca(LocalStackSize); | ||||
| 3460 | FakeStack = ConstantInt::get(IntptrTy, 0); | ||||
| 3461 | LocalStackBase = | ||||
| 3462 | DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca; | ||||
| 3463 | LocalStackBaseAlloca = LocalStackBase; | ||||
| 3464 | } | ||||
| 3465 | |||||
| 3466 | // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the | ||||
| 3467 | // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse | ||||
| 3468 | // later passes and can result in dropped variable coverage in debug info. | ||||
| 3469 | Value *LocalStackBaseAllocaPtr = | ||||
| 3470 | isa<PtrToIntInst>(LocalStackBaseAlloca) | ||||
| 3471 | ? cast<PtrToIntInst>(LocalStackBaseAlloca)->getPointerOperand() | ||||
| 3472 | : LocalStackBaseAlloca; | ||||
| 3473 | assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) &&(static_cast <bool> (isa<AllocaInst>(LocalStackBaseAllocaPtr ) && "Variable descriptions relative to ASan stack base will be dropped" ) ? void (0) : __assert_fail ("isa<AllocaInst>(LocalStackBaseAllocaPtr) && \"Variable descriptions relative to ASan stack base will be dropped\"" , "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp", 3474, __extension__ __PRETTY_FUNCTION__)) | ||||
| 3474 | "Variable descriptions relative to ASan stack base will be dropped")(static_cast <bool> (isa<AllocaInst>(LocalStackBaseAllocaPtr ) && "Variable descriptions relative to ASan stack base will be dropped" ) ? void (0) : __assert_fail ("isa<AllocaInst>(LocalStackBaseAllocaPtr) && \"Variable descriptions relative to ASan stack base will be dropped\"" , "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp", 3474, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3475 | |||||
| 3476 | // Replace Alloca instructions with base+offset. | ||||
| 3477 | for (const auto &Desc : SVD) { | ||||
| 3478 | AllocaInst *AI = Desc.AI; | ||||
| 3479 | replaceDbgDeclare(AI, LocalStackBaseAllocaPtr, DIB, DIExprFlags, | ||||
| 3480 | Desc.Offset); | ||||
| 3481 | Value *NewAllocaPtr = IRB.CreateIntToPtr( | ||||
| 3482 | IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)), | ||||
| 3483 | AI->getType()); | ||||
| 3484 | AI->replaceAllUsesWith(NewAllocaPtr); | ||||
| 3485 | } | ||||
| 3486 | |||||
| 3487 | // The left-most redzone has enough space for at least 4 pointers. | ||||
| 3488 | // Write the Magic value to redzone[0]. | ||||
| 3489 | Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); | ||||
| 3490 | IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), | ||||
| 3491 | BasePlus0); | ||||
| 3492 | // Write the frame description constant to redzone[1]. | ||||
| 3493 | Value *BasePlus1 = IRB.CreateIntToPtr( | ||||
| 3494 | IRB.CreateAdd(LocalStackBase, | ||||
| 3495 | ConstantInt::get(IntptrTy, ASan.LongSize / 8)), | ||||
| 3496 | IntptrPtrTy); | ||||
| 3497 | GlobalVariable *StackDescriptionGlobal = | ||||
| 3498 | createPrivateGlobalForString(*F.getParent(), DescriptionString, | ||||
| 3499 | /*AllowMerging*/ true, kAsanGenPrefix); | ||||
| 3500 | Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy); | ||||
| 3501 | IRB.CreateStore(Description, BasePlus1); | ||||
| 3502 | // Write the PC to redzone[2]. | ||||
| 3503 | Value *BasePlus2 = IRB.CreateIntToPtr( | ||||
| 3504 | IRB.CreateAdd(LocalStackBase, | ||||
| 3505 | ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)), | ||||
| 3506 | IntptrPtrTy); | ||||
| 3507 | IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2); | ||||
| 3508 | |||||
| 3509 | const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L); | ||||
| 3510 | |||||
| 3511 | // Poison the stack red zones at the entry. | ||||
| 3512 | Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); | ||||
| 3513 | // As mask we must use most poisoned case: red zones and after scope. | ||||
| 3514 | // As bytes we can use either the same or just red zones only. | ||||
| 3515 | copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase); | ||||
| 3516 | |||||
| 3517 | if (!StaticAllocaPoisonCallVec.empty()) { | ||||
| 3518 | const auto &ShadowInScope = GetShadowBytes(SVD, L); | ||||
| 3519 | |||||
| 3520 | // Poison static allocas near lifetime intrinsics. | ||||
| 3521 | for (const auto &APC : StaticAllocaPoisonCallVec) { | ||||
| 3522 | const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; | ||||
| 3523 | assert(Desc.Offset % L.Granularity == 0)(static_cast <bool> (Desc.Offset % L.Granularity == 0) ? void (0) : __assert_fail ("Desc.Offset % L.Granularity == 0" , "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp", 3523, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3524 | size_t Begin = Desc.Offset / L.Granularity; | ||||
| 3525 | size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity; | ||||
| 3526 | |||||
| 3527 | IRBuilder<> IRB(APC.InsBefore); | ||||
| 3528 | copyToShadow(ShadowAfterScope, | ||||
| 3529 | APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End, | ||||
| 3530 | IRB, ShadowBase); | ||||
| 3531 | } | ||||
| 3532 | } | ||||
| 3533 | |||||
| 3534 | SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0); | ||||
| 3535 | SmallVector<uint8_t, 64> ShadowAfterReturn; | ||||
| 3536 | |||||
| 3537 | // (Un)poison the stack before all ret instructions. | ||||
| 3538 | for (Instruction *Ret : RetVec) { | ||||
| 3539 | IRBuilder<> IRBRet(Ret); | ||||
| 3540 | // Mark the current frame as retired. | ||||
| 3541 | IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), | ||||
| 3542 | BasePlus0); | ||||
| 3543 | if (DoStackMalloc) { | ||||
| 3544 | assert(StackMallocIdx >= 0)(static_cast <bool> (StackMallocIdx >= 0) ? void (0) : __assert_fail ("StackMallocIdx >= 0", "llvm/lib/Transforms/Instrumentation/AddressSanitizer.cpp" , 3544, __extension__ __PRETTY_FUNCTION__)); | ||||
| 3545 | // if FakeStack != 0 // LocalStackBase == FakeStack | ||||
| 3546 | // // In use-after-return mode, poison the whole stack frame. | ||||
| 3547 | // if StackMallocIdx <= 4 | ||||
| 3548 | // // For small sizes inline the whole thing: | ||||
| 3549 | // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); | ||||
| 3550 | // **SavedFlagPtr(FakeStack) = 0 | ||||
| 3551 | // else | ||||
| 3552 | // __asan_stack_free_N(FakeStack, LocalStackSize) | ||||
| 3553 | // else | ||||
| 3554 | // <This is not a fake stack; unpoison the redzones> | ||||
| 3555 | Value *Cmp = | ||||
| 3556 | IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy)); | ||||
| 3557 | Instruction *ThenTerm, *ElseTerm; | ||||
| 3558 | SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm); | ||||
| 3559 | |||||
| 3560 | IRBuilder<> IRBPoison(ThenTerm); | ||||
| 3561 | if (StackMallocIdx <= 4) { | ||||
| 3562 | int ClassSize = kMinStackMallocSize << StackMallocIdx; | ||||
| 3563 | ShadowAfterReturn.resize(ClassSize / L.Granularity, | ||||
| 3564 | kAsanStackUseAfterReturnMagic); | ||||
| 3565 | copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison, | ||||
| 3566 | ShadowBase); | ||||
| 3567 | Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( | ||||
| 3568 | FakeStack, | ||||
| 3569 | ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8)); | ||||
| 3570 | Value *SavedFlagPtr = IRBPoison.CreateLoad( | ||||
| 3571 | IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy)); | ||||
| 3572 | IRBPoison.CreateStore( | ||||
| 3573 | Constant::getNullValue(IRBPoison.getInt8Ty()), | ||||
| 3574 | IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy())); | ||||
| 3575 | } else { | ||||
| 3576 | // For larger frames call __asan_stack_free_*. | ||||
| 3577 | IRBPoison.CreateCall( | ||||
| 3578 | AsanStackFreeFunc[StackMallocIdx], | ||||
| 3579 | {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)}); | ||||
| 3580 | } | ||||
| 3581 | |||||
| 3582 | IRBuilder<> IRBElse(ElseTerm); | ||||
| 3583 | copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase); | ||||
| 3584 | } else { | ||||
| 3585 | copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase); | ||||
| 3586 | } | ||||
| 3587 | } | ||||
| 3588 | |||||
| 3589 | // We are done. Remove the old unused alloca instructions. | ||||
| 3590 | for (auto AI : AllocaVec) AI->eraseFromParent(); | ||||
| 3591 | } | ||||
| 3592 | |||||
| 3593 | void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, | ||||
| 3594 | IRBuilder<> &IRB, bool DoPoison) { | ||||
| 3595 | // For now just insert the call to ASan runtime. | ||||
| 3596 | Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); | ||||
| 3597 | Value *SizeArg = ConstantInt::get(IntptrTy, Size); | ||||
| 3598 | IRB.CreateCall( | ||||
| 3599 | DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc, | ||||
| 3600 | {AddrArg, SizeArg}); | ||||
| 3601 | } | ||||
| 3602 | |||||
| 3603 | // Handling llvm.lifetime intrinsics for a given %alloca: | ||||
| 3604 | // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. | ||||
| 3605 | // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect | ||||
| 3606 | // invalid accesses) and unpoison it for llvm.lifetime.start (the memory | ||||
| 3607 | // could be poisoned by previous llvm.lifetime.end instruction, as the | ||||
| 3608 | // variable may go in and out of scope several times, e.g. in loops). | ||||
| 3609 | // (3) if we poisoned at least one %alloca in a function, | ||||
| 3610 | // unpoison the whole stack frame at function exit. | ||||
| 3611 | void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) { | ||||
| 3612 | IRBuilder<> IRB(AI); | ||||
| 3613 | |||||
| 3614 | const uint64_t Alignment = std::max(kAllocaRzSize, AI->getAlignment()); | ||||
| 3615 | const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1; | ||||
| 3616 | |||||
| 3617 | Value *Zero = Constant::getNullValue(IntptrTy); | ||||
| 3618 | Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize); | ||||
| 3619 | Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask); | ||||
| 3620 | |||||
| 3621 | // Since we need to extend alloca with additional memory to locate | ||||
| 3622 | // redzones, and OldSize is number of allocated blocks with | ||||
| 3623 | // ElementSize size, get allocated memory size in bytes by | ||||
| 3624 | // OldSize * ElementSize. | ||||
| 3625 | const unsigned ElementSize = | ||||
| 3626 | F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType()); | ||||
| 3627 | Value *OldSize = | ||||
| 3628 | IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false), | ||||
| 3629 | ConstantInt::get(IntptrTy, ElementSize)); | ||||
| 3630 | |||||
| 3631 | // PartialSize = OldSize % 32 | ||||
| 3632 | Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask); | ||||
| 3633 | |||||
| 3634 | // Misalign = kAllocaRzSize - PartialSize; | ||||
| 3635 | Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize); | ||||
| 3636 | |||||
| 3637 | // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0; | ||||
| 3638 | Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize); | ||||
| 3639 | Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero); | ||||
| 3640 | |||||
| 3641 | // AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize | ||||
| 3642 | // Alignment is added to locate left redzone, PartialPadding for possible | ||||
| 3643 | // partial redzone and kAllocaRzSize for right redzone respectively. | ||||
| 3644 | Value *AdditionalChunkSize = IRB.CreateAdd( | ||||
| 3645 | ConstantInt::get(IntptrTy, Alignment + kAllocaRzSize), PartialPadding); | ||||
| 3646 | |||||
| 3647 | Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize); | ||||
| 3648 | |||||
| 3649 | // Insert new alloca with new NewSize and Alignment params. | ||||
| 3650 | AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize); | ||||
| 3651 | NewAlloca->setAlignment(Align(Alignment)); | ||||
| 3652 | |||||
| 3653 | // NewAddress = Address + Alignment | ||||
| 3654 | Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy), | ||||
| 3655 | ConstantInt::get(IntptrTy, Alignment)); | ||||
| 3656 | |||||
| 3657 | // Insert __asan_alloca_poison call for new created alloca. | ||||
| 3658 | IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize}); | ||||
| 3659 | |||||
| 3660 | // Store the last alloca's address to DynamicAllocaLayout. We'll need this | ||||
| 3661 | // for unpoisoning stuff. | ||||
| 3662 | IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout); | ||||
| 3663 | |||||
| 3664 | Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType()); | ||||
| 3665 | |||||
| 3666 | // Replace all uses of AddessReturnedByAlloca with NewAddressPtr. | ||||
| 3667 | AI->replaceAllUsesWith(NewAddressPtr); | ||||
| 3668 | |||||
| 3669 | // We are done. Erase old alloca from parent. | ||||
| 3670 | AI->eraseFromParent(); | ||||
| 3671 | } | ||||
| 3672 | |||||
| 3673 | // isSafeAccess returns true if Addr is always inbounds with respect to its | ||||
| 3674 | // base object. For example, it is a field access or an array access with | ||||
| 3675 | // constant inbounds index. | ||||
| 3676 | bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, | ||||
| 3677 | Value *Addr, uint64_t TypeSize) const { | ||||
| 3678 | SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr); | ||||
| 3679 | if (!ObjSizeVis.bothKnown(SizeOffset)) return false; | ||||
| 3680 | uint64_t Size = SizeOffset.first.getZExtValue(); | ||||
| 3681 | int64_t Offset = SizeOffset.second.getSExtValue(); | ||||
| 3682 | // Three checks are required to ensure safety: | ||||
| 3683 | // . Offset >= 0 (since the offset is given from the base ptr) | ||||
| 3684 | // . Size >= Offset (unsigned) | ||||
| 3685 | // . Size - Offset >= NeededSize (unsigned) | ||||
| 3686 | return Offset >= 0 && Size >= uint64_t(Offset) && | ||||
| 3687 | Size - uint64_t(Offset) >= TypeSize / 8; | ||||
| 3688 | } |
| 1 | //===-- llvm/Instruction.h - Instruction class definition -------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file contains the declaration of the Instruction class, which is the |
| 10 | // base class for all of the LLVM instructions. |
| 11 | // |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #ifndef LLVM_IR_INSTRUCTION_H |
| 15 | #define LLVM_IR_INSTRUCTION_H |
| 16 | |
| 17 | #include "llvm/ADT/ArrayRef.h" |
| 18 | #include "llvm/ADT/Bitfields.h" |
| 19 | #include "llvm/ADT/None.h" |
| 20 | #include "llvm/ADT/StringRef.h" |
| 21 | #include "llvm/ADT/ilist_node.h" |
| 22 | #include "llvm/IR/DebugLoc.h" |
| 23 | #include "llvm/IR/SymbolTableListTraits.h" |
| 24 | #include "llvm/IR/User.h" |
| 25 | #include "llvm/IR/Value.h" |
| 26 | #include "llvm/Support/AtomicOrdering.h" |
| 27 | #include "llvm/Support/Casting.h" |
| 28 | #include <algorithm> |
| 29 | #include <cassert> |
| 30 | #include <cstdint> |
| 31 | #include <utility> |
| 32 | |
| 33 | namespace llvm { |
| 34 | |
| 35 | class BasicBlock; |
| 36 | class FastMathFlags; |
| 37 | class MDNode; |
| 38 | class Module; |
| 39 | struct AAMDNodes; |
| 40 | |
| 41 | template <> struct ilist_alloc_traits<Instruction> { |
| 42 | static inline void deleteNode(Instruction *V); |
| 43 | }; |
| 44 | |
| 45 | class Instruction : public User, |
| 46 | public ilist_node_with_parent<Instruction, BasicBlock> { |
| 47 | BasicBlock *Parent; |
| 48 | DebugLoc DbgLoc; // 'dbg' Metadata cache. |
| 49 | |
| 50 | /// Relative order of this instruction in its parent basic block. Used for |
| 51 | /// O(1) local dominance checks between instructions. |
| 52 | mutable unsigned Order = 0; |
| 53 | |
| 54 | protected: |
| 55 | // The 15 first bits of `Value::SubclassData` are available for subclasses of |
| 56 | // `Instruction` to use. |
| 57 | using OpaqueField = Bitfield::Element<uint16_t, 0, 15>; |
| 58 | |
| 59 | // Template alias so that all Instruction storing alignment use the same |
| 60 | // definiton. |
| 61 | // Valid alignments are powers of two from 2^0 to 2^MaxAlignmentExponent = |
| 62 | // 2^32. We store them as Log2(Alignment), so we need 6 bits to encode the 33 |
| 63 | // possible values. |
| 64 | template <unsigned Offset> |
| 65 | using AlignmentBitfieldElementT = |
| 66 | typename Bitfield::Element<unsigned, Offset, 6, |
| 67 | Value::MaxAlignmentExponent>; |
| 68 | |
| 69 | template <unsigned Offset> |
| 70 | using BoolBitfieldElementT = typename Bitfield::Element<bool, Offset, 1>; |
| 71 | |
| 72 | template <unsigned Offset> |
| 73 | using AtomicOrderingBitfieldElementT = |
| 74 | typename Bitfield::Element<AtomicOrdering, Offset, 3, |
| 75 | AtomicOrdering::LAST>; |
| 76 | |
| 77 | private: |
| 78 | // The last bit is used to store whether the instruction has metadata attached |
| 79 | // or not. |
| 80 | using HasMetadataField = Bitfield::Element<bool, 15, 1>; |
| 81 | |
| 82 | protected: |
| 83 | ~Instruction(); // Use deleteValue() to delete a generic Instruction. |
| 84 | |
| 85 | public: |
| 86 | Instruction(const Instruction &) = delete; |
| 87 | Instruction &operator=(const Instruction &) = delete; |
| 88 | |
| 89 | /// Specialize the methods defined in Value, as we know that an instruction |
| 90 | /// can only be used by other instructions. |
| 91 | Instruction *user_back() { return cast<Instruction>(*user_begin());} |
| 92 | const Instruction *user_back() const { return cast<Instruction>(*user_begin());} |
| 93 | |
| 94 | inline const BasicBlock *getParent() const { return Parent; } |
| 95 | inline BasicBlock *getParent() { return Parent; } |
| 96 | |
| 97 | /// Return the module owning the function this instruction belongs to |
| 98 | /// or nullptr it the function does not have a module. |
| 99 | /// |
| 100 | /// Note: this is undefined behavior if the instruction does not have a |
| 101 | /// parent, or the parent basic block does not have a parent function. |
| 102 | const Module *getModule() const; |
| 103 | Module *getModule() { |
| 104 | return const_cast<Module *>( |
| 105 | static_cast<const Instruction *>(this)->getModule()); |
| 106 | } |
| 107 | |
| 108 | /// Return the function this instruction belongs to. |
| 109 | /// |
| 110 | /// Note: it is undefined behavior to call this on an instruction not |
| 111 | /// currently inserted into a function. |
| 112 | const Function *getFunction() const; |
| 113 | Function *getFunction() { |
| 114 | return const_cast<Function *>( |
| 115 | static_cast<const Instruction *>(this)->getFunction()); |
| 116 | } |
| 117 | |
| 118 | /// This method unlinks 'this' from the containing basic block, but does not |
| 119 | /// delete it. |
| 120 | void removeFromParent(); |
| 121 | |
| 122 | /// This method unlinks 'this' from the containing basic block and deletes it. |
| 123 | /// |
| 124 | /// \returns an iterator pointing to the element after the erased one |
| 125 | SymbolTableList<Instruction>::iterator eraseFromParent(); |
| 126 | |
| 127 | /// Insert an unlinked instruction into a basic block immediately before |
| 128 | /// the specified instruction. |
| 129 | void insertBefore(Instruction *InsertPos); |
| 130 | |
| 131 | /// Insert an unlinked instruction into a basic block immediately after the |
| 132 | /// specified instruction. |
| 133 | void insertAfter(Instruction *InsertPos); |
| 134 | |
| 135 | /// Unlink this instruction from its current basic block and insert it into |
| 136 | /// the basic block that MovePos lives in, right before MovePos. |
| 137 | void moveBefore(Instruction *MovePos); |
| 138 | |
| 139 | /// Unlink this instruction and insert into BB before I. |
| 140 | /// |
| 141 | /// \pre I is a valid iterator into BB. |
| 142 | void moveBefore(BasicBlock &BB, SymbolTableList<Instruction>::iterator I); |
| 143 | |
| 144 | /// Unlink this instruction from its current basic block and insert it into |
| 145 | /// the basic block that MovePos lives in, right after MovePos. |
| 146 | void moveAfter(Instruction *MovePos); |
| 147 | |
| 148 | /// Given an instruction Other in the same basic block as this instruction, |
| 149 | /// return true if this instruction comes before Other. In this worst case, |
| 150 | /// this takes linear time in the number of instructions in the block. The |
| 151 | /// results are cached, so in common cases when the block remains unmodified, |
| 152 | /// it takes constant time. |
| 153 | bool comesBefore(const Instruction *Other) const; |
| 154 | |
| 155 | //===--------------------------------------------------------------------===// |
| 156 | // Subclass classification. |
| 157 | //===--------------------------------------------------------------------===// |
| 158 | |
| 159 | /// Returns a member of one of the enums like Instruction::Add. |
| 160 | unsigned getOpcode() const { return getValueID() - InstructionVal; } |
| 161 | |
| 162 | const char *getOpcodeName() const { return getOpcodeName(getOpcode()); } |
| 163 | bool isTerminator() const { return isTerminator(getOpcode()); } |
| 164 | bool isUnaryOp() const { return isUnaryOp(getOpcode()); } |
| 165 | bool isBinaryOp() const { return isBinaryOp(getOpcode()); } |
| 166 | bool isIntDivRem() const { return isIntDivRem(getOpcode()); } |
| 167 | bool isShift() const { return isShift(getOpcode()); } |
| 168 | bool isCast() const { return isCast(getOpcode()); } |
| 169 | bool isFuncletPad() const { return isFuncletPad(getOpcode()); } |
| 170 | bool isExceptionalTerminator() const { |
| 171 | return isExceptionalTerminator(getOpcode()); |
| 172 | } |
| 173 | |
| 174 | /// It checks if this instruction is the only user of at least one of |
| 175 | /// its operands. |
| 176 | bool isOnlyUserOfAnyOperand(); |
| 177 | |
| 178 | bool isIndirectTerminator() const { |
| 179 | return isIndirectTerminator(getOpcode()); |
| 180 | } |
| 181 | |
| 182 | static const char* getOpcodeName(unsigned OpCode); |
| 183 | |
| 184 | static inline bool isTerminator(unsigned OpCode) { |
| 185 | return OpCode >= TermOpsBegin && OpCode < TermOpsEnd; |
| 186 | } |
| 187 | |
| 188 | static inline bool isUnaryOp(unsigned Opcode) { |
| 189 | return Opcode >= UnaryOpsBegin && Opcode < UnaryOpsEnd; |
| 190 | } |
| 191 | static inline bool isBinaryOp(unsigned Opcode) { |
| 192 | return Opcode >= BinaryOpsBegin && Opcode < BinaryOpsEnd; |
| 193 | } |
| 194 | |
| 195 | static inline bool isIntDivRem(unsigned Opcode) { |
| 196 | return Opcode == UDiv || Opcode == SDiv || Opcode == URem || Opcode == SRem; |
| 197 | } |
| 198 | |
| 199 | /// Determine if the Opcode is one of the shift instructions. |
| 200 | static inline bool isShift(unsigned Opcode) { |
| 201 | return Opcode >= Shl && Opcode <= AShr; |
| 202 | } |
| 203 | |
| 204 | /// Return true if this is a logical shift left or a logical shift right. |
| 205 | inline bool isLogicalShift() const { |
| 206 | return getOpcode() == Shl || getOpcode() == LShr; |
| 207 | } |
| 208 | |
| 209 | /// Return true if this is an arithmetic shift right. |
| 210 | inline bool isArithmeticShift() const { |
| 211 | return getOpcode() == AShr; |
| 212 | } |
| 213 | |
| 214 | /// Determine if the Opcode is and/or/xor. |
| 215 | static inline bool isBitwiseLogicOp(unsigned Opcode) { |
| 216 | return Opcode == And || Opcode == Or || Opcode == Xor; |
| 217 | } |
| 218 | |
| 219 | /// Return true if this is and/or/xor. |
| 220 | inline bool isBitwiseLogicOp() const { |
| 221 | return isBitwiseLogicOp(getOpcode()); |
| 222 | } |
| 223 | |
| 224 | /// Determine if the OpCode is one of the CastInst instructions. |
| 225 | static inline bool isCast(unsigned OpCode) { |
| 226 | return OpCode >= CastOpsBegin && OpCode < CastOpsEnd; |
| 227 | } |
| 228 | |
| 229 | /// Determine if the OpCode is one of the FuncletPadInst instructions. |
| 230 | static inline bool isFuncletPad(unsigned OpCode) { |
| 231 | return OpCode >= FuncletPadOpsBegin && OpCode < FuncletPadOpsEnd; |
| 232 | } |
| 233 | |
| 234 | /// Returns true if the OpCode is a terminator related to exception handling. |
| 235 | static inline bool isExceptionalTerminator(unsigned OpCode) { |
| 236 | switch (OpCode) { |
| 237 | case Instruction::CatchSwitch: |
| 238 | case Instruction::CatchRet: |
| 239 | case Instruction::CleanupRet: |
| 240 | case Instruction::Invoke: |
| 241 | case Instruction::Resume: |
| 242 | return true; |
| 243 | default: |
| 244 | return false; |
| 245 | } |
| 246 | } |
| 247 | |
| 248 | /// Returns true if the OpCode is a terminator with indirect targets. |
| 249 | static inline bool isIndirectTerminator(unsigned OpCode) { |
| 250 | switch (OpCode) { |
| 251 | case Instruction::IndirectBr: |
| 252 | case Instruction::CallBr: |
| 253 | return true; |
| 254 | default: |
| 255 | return false; |
| 256 | } |
| 257 | } |
| 258 | |
| 259 | //===--------------------------------------------------------------------===// |
| 260 | // Metadata manipulation. |
| 261 | //===--------------------------------------------------------------------===// |
| 262 | |
| 263 | /// Return true if this instruction has any metadata attached to it. |
| 264 | bool hasMetadata() const { return DbgLoc || Value::hasMetadata(); } |
| 265 | |
| 266 | /// Return true if this instruction has metadata attached to it other than a |
| 267 | /// debug location. |
| 268 | bool hasMetadataOtherThanDebugLoc() const { return Value::hasMetadata(); } |
| 269 | |
| 270 | /// Return true if this instruction has the given type of metadata attached. |
| 271 | bool hasMetadata(unsigned KindID) const { |
| 272 | return getMetadata(KindID) != nullptr; |
| 273 | } |
| 274 | |
| 275 | /// Return true if this instruction has the given type of metadata attached. |
| 276 | bool hasMetadata(StringRef Kind) const { |
| 277 | return getMetadata(Kind) != nullptr; |
| 278 | } |
| 279 | |
| 280 | /// Get the metadata of given kind attached to this Instruction. |
| 281 | /// If the metadata is not found then return null. |
| 282 | MDNode *getMetadata(unsigned KindID) const { |
| 283 | if (!hasMetadata()) return nullptr; |
| 284 | return getMetadataImpl(KindID); |
| 285 | } |
| 286 | |
| 287 | /// Get the metadata of given kind attached to this Instruction. |
| 288 | /// If the metadata is not found then return null. |
| 289 | MDNode *getMetadata(StringRef Kind) const { |
| 290 | if (!hasMetadata()) return nullptr; |
| 291 | return getMetadataImpl(Kind); |
| 292 | } |
| 293 | |
| 294 | /// Get all metadata attached to this Instruction. The first element of each |
| 295 | /// pair returned is the KindID, the second element is the metadata value. |
| 296 | /// This list is returned sorted by the KindID. |
| 297 | void |
| 298 | getAllMetadata(SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const { |
| 299 | if (hasMetadata()) |
| 300 | getAllMetadataImpl(MDs); |
| 301 | } |
| 302 | |
| 303 | /// This does the same thing as getAllMetadata, except that it filters out the |
| 304 | /// debug location. |
| 305 | void getAllMetadataOtherThanDebugLoc( |
| 306 | SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const { |
| 307 | Value::getAllMetadata(MDs); |
| 308 | } |
| 309 | |
| 310 | /// Set the metadata of the specified kind to the specified node. This updates |
| 311 | /// or replaces metadata if already present, or removes it if Node is null. |
| 312 | void setMetadata(unsigned KindID, MDNode *Node); |
| 313 | void setMetadata(StringRef Kind, MDNode *Node); |
| 314 | |
| 315 | /// Copy metadata from \p SrcInst to this instruction. \p WL, if not empty, |
| 316 | /// specifies the list of meta data that needs to be copied. If \p WL is |
| 317 | /// empty, all meta data will be copied. |
| 318 | void copyMetadata(const Instruction &SrcInst, |
| 319 | ArrayRef<unsigned> WL = ArrayRef<unsigned>()); |
| 320 | |
| 321 | /// If the instruction has "branch_weights" MD_prof metadata and the MDNode |
| 322 | /// has three operands (including name string), swap the order of the |
| 323 | /// metadata. |
| 324 | void swapProfMetadata(); |
| 325 | |
| 326 | /// Drop all unknown metadata except for debug locations. |
| 327 | /// @{ |
| 328 | /// Passes are required to drop metadata they don't understand. This is a |
| 329 | /// convenience method for passes to do so. |
| 330 | /// dropUndefImplyingAttrsAndUnknownMetadata should be used instead of |
| 331 | /// this API if the Instruction being modified is a call. |
| 332 | void dropUnknownNonDebugMetadata(ArrayRef<unsigned> KnownIDs); |
| 333 | void dropUnknownNonDebugMetadata() { |
| 334 | return dropUnknownNonDebugMetadata(None); |
| 335 | } |
| 336 | void dropUnknownNonDebugMetadata(unsigned ID1) { |
| 337 | return dropUnknownNonDebugMetadata(makeArrayRef(ID1)); |
| 338 | } |
| 339 | void dropUnknownNonDebugMetadata(unsigned ID1, unsigned ID2) { |
| 340 | unsigned IDs[] = {ID1, ID2}; |
| 341 | return dropUnknownNonDebugMetadata(IDs); |
| 342 | } |
| 343 | /// @} |
| 344 | |
| 345 | /// Adds an !annotation metadata node with \p Annotation to this instruction. |
| 346 | /// If this instruction already has !annotation metadata, append \p Annotation |
| 347 | /// to the existing node. |
| 348 | void addAnnotationMetadata(StringRef Annotation); |
| 349 | |
| 350 | /// Returns the AA metadata for this instruction. |
| 351 | AAMDNodes getAAMetadata() const; |
| 352 | |
| 353 | /// Sets the AA metadata on this instruction from the AAMDNodes structure. |
| 354 | void setAAMetadata(const AAMDNodes &N); |
| 355 | |
| 356 | /// Retrieve the raw weight values of a conditional branch or select. |
| 357 | /// Returns true on success with profile weights filled in. |
| 358 | /// Returns false if no metadata or invalid metadata was found. |
| 359 | bool extractProfMetadata(uint64_t &TrueVal, uint64_t &FalseVal) const; |
| 360 | |
| 361 | /// Retrieve total raw weight values of a branch. |
| 362 | /// Returns true on success with profile total weights filled in. |
| 363 | /// Returns false if no metadata was found. |
| 364 | bool extractProfTotalWeight(uint64_t &TotalVal) const; |
| 365 | |
| 366 | /// Set the debug location information for this instruction. |
| 367 | void setDebugLoc(DebugLoc Loc) { DbgLoc = std::move(Loc); } |
| 368 | |
| 369 | /// Return the debug location for this node as a DebugLoc. |
| 370 | const DebugLoc &getDebugLoc() const { return DbgLoc; } |
| 371 | |
| 372 | /// Set or clear the nuw flag on this instruction, which must be an operator |
| 373 | /// which supports this flag. See LangRef.html for the meaning of this flag. |
| 374 | void setHasNoUnsignedWrap(bool b = true); |
| 375 | |
| 376 | /// Set or clear the nsw flag on this instruction, which must be an operator |
| 377 | /// which supports this flag. See LangRef.html for the meaning of this flag. |
| 378 | void setHasNoSignedWrap(bool b = true); |
| 379 | |
| 380 | /// Set or clear the exact flag on this instruction, which must be an operator |
| 381 | /// which supports this flag. See LangRef.html for the meaning of this flag. |
| 382 | void setIsExact(bool b = true); |
| 383 | |
| 384 | /// Determine whether the no unsigned wrap flag is set. |
| 385 | bool hasNoUnsignedWrap() const; |
| 386 | |
| 387 | /// Determine whether the no signed wrap flag is set. |
| 388 | bool hasNoSignedWrap() const; |
| 389 | |
| 390 | /// Return true if this operator has flags which may cause this instruction |
| 391 | /// to evaluate to poison despite having non-poison inputs. |
| 392 | bool hasPoisonGeneratingFlags() const; |
| 393 | |
| 394 | /// Drops flags that may cause this instruction to evaluate to poison despite |
| 395 | /// having non-poison inputs. |
| 396 | void dropPoisonGeneratingFlags(); |
| 397 | |
| 398 | /// This function drops non-debug unknown metadata (through |
| 399 | /// dropUnknownNonDebugMetadata). For calls, it also drops parameter and |
| 400 | /// return attributes that can cause undefined behaviour. Both of these should |
| 401 | /// be done by passes which move instructions in IR. |
| 402 | void |
| 403 | dropUndefImplyingAttrsAndUnknownMetadata(ArrayRef<unsigned> KnownIDs = {}); |
| 404 | |
| 405 | /// Determine whether the exact flag is set. |
| 406 | bool isExact() const; |
| 407 | |
| 408 | /// Set or clear all fast-math-flags on this instruction, which must be an |
| 409 | /// operator which supports this flag. See LangRef.html for the meaning of |
| 410 | /// this flag. |
| 411 | void setFast(bool B); |
| 412 | |
| 413 | /// Set or clear the reassociation flag on this instruction, which must be |
| 414 | /// an operator which supports this flag. See LangRef.html for the meaning of |
| 415 | /// this flag. |
| 416 | void setHasAllowReassoc(bool B); |
| 417 | |
| 418 | /// Set or clear the no-nans flag on this instruction, which must be an |
| 419 | /// operator which supports this flag. See LangRef.html for the meaning of |
| 420 | /// this flag. |
| 421 | void setHasNoNaNs(bool B); |
| 422 | |
| 423 | /// Set or clear the no-infs flag on this instruction, which must be an |
| 424 | /// operator which supports this flag. See LangRef.html for the meaning of |
| 425 | /// this flag. |
| 426 | void setHasNoInfs(bool B); |
| 427 | |
| 428 | /// Set or clear the no-signed-zeros flag on this instruction, which must be |
| 429 | /// an operator which supports this flag. See LangRef.html for the meaning of |
| 430 | /// this flag. |
| 431 | void setHasNoSignedZeros(bool B); |
| 432 | |
| 433 | /// Set or clear the allow-reciprocal flag on this instruction, which must be |
| 434 | /// an operator which supports this flag. See LangRef.html for the meaning of |
| 435 | /// this flag. |
| 436 | void setHasAllowReciprocal(bool B); |
| 437 | |
| 438 | /// Set or clear the allow-contract flag on this instruction, which must be |
| 439 | /// an operator which supports this flag. See LangRef.html for the meaning of |
| 440 | /// this flag. |
| 441 | void setHasAllowContract(bool B); |
| 442 | |
| 443 | /// Set or clear the approximate-math-functions flag on this instruction, |
| 444 | /// which must be an operator which supports this flag. See LangRef.html for |
| 445 | /// the meaning of this flag. |
| 446 | void setHasApproxFunc(bool B); |
| 447 | |
| 448 | /// Convenience function for setting multiple fast-math flags on this |
| 449 | /// instruction, which must be an operator which supports these flags. See |
| 450 | /// LangRef.html for the meaning of these flags. |
| 451 | void setFastMathFlags(FastMathFlags FMF); |
| 452 | |
| 453 | /// Convenience function for transferring all fast-math flag values to this |
| 454 | /// instruction, which must be an operator which supports these flags. See |
| 455 | /// LangRef.html for the meaning of these flags. |
| 456 | void copyFastMathFlags(FastMathFlags FMF); |
| 457 | |
| 458 | /// Determine whether all fast-math-flags are set. |
| 459 | bool isFast() const; |
| 460 | |
| 461 | /// Determine whether the allow-reassociation flag is set. |
| 462 | bool hasAllowReassoc() const; |
| 463 | |
| 464 | /// Determine whether the no-NaNs flag is set. |
| 465 | bool hasNoNaNs() const; |
| 466 | |
| 467 | /// Determine whether the no-infs flag is set. |
| 468 | bool hasNoInfs() const; |
| 469 | |
| 470 | /// Determine whether the no-signed-zeros flag is set. |
| 471 | bool hasNoSignedZeros() const; |
| 472 | |
| 473 | /// Determine whether the allow-reciprocal flag is set. |
| 474 | bool hasAllowReciprocal() const; |
| 475 | |
| 476 | /// Determine whether the allow-contract flag is set. |
| 477 | bool hasAllowContract() const; |
| 478 | |
| 479 | /// Determine whether the approximate-math-functions flag is set. |
| 480 | bool hasApproxFunc() const; |
| 481 | |
| 482 | /// Convenience function for getting all the fast-math flags, which must be an |
| 483 | /// operator which supports these flags. See LangRef.html for the meaning of |
| 484 | /// these flags. |
| 485 | FastMathFlags getFastMathFlags() const; |
| 486 | |
| 487 | /// Copy I's fast-math flags |
| 488 | void copyFastMathFlags(const Instruction *I); |
| 489 | |
| 490 | /// Convenience method to copy supported exact, fast-math, and (optionally) |
| 491 | /// wrapping flags from V to this instruction. |
| 492 | void copyIRFlags(const Value *V, bool IncludeWrapFlags = true); |
| 493 | |
| 494 | /// Logical 'and' of any supported wrapping, exact, and fast-math flags of |
| 495 | /// V and this instruction. |
| 496 | void andIRFlags(const Value *V); |
| 497 | |
| 498 | /// Merge 2 debug locations and apply it to the Instruction. If the |
| 499 | /// instruction is a CallIns, we need to traverse the inline chain to find |
| 500 | /// the common scope. This is not efficient for N-way merging as each time |
| 501 | /// you merge 2 iterations, you need to rebuild the hashmap to find the |
| 502 | /// common scope. However, we still choose this API because: |
| 503 | /// 1) Simplicity: it takes 2 locations instead of a list of locations. |
| 504 | /// 2) In worst case, it increases the complexity from O(N*I) to |
| 505 | /// O(2*N*I), where N is # of Instructions to merge, and I is the |
| 506 | /// maximum level of inline stack. So it is still linear. |
| 507 | /// 3) Merging of call instructions should be extremely rare in real |
| 508 | /// applications, thus the N-way merging should be in code path. |
| 509 | /// The DebugLoc attached to this instruction will be overwritten by the |
| 510 | /// merged DebugLoc. |
| 511 | void applyMergedLocation(const DILocation *LocA, const DILocation *LocB); |
| 512 | |
| 513 | /// Updates the debug location given that the instruction has been hoisted |
| 514 | /// from a block to a predecessor of that block. |
| 515 | /// Note: it is undefined behavior to call this on an instruction not |
| 516 | /// currently inserted into a function. |
| 517 | void updateLocationAfterHoist(); |
| 518 | |
| 519 | /// Drop the instruction's debug location. This does not guarantee removal |
| 520 | /// of the !dbg source location attachment, as it must set a line 0 location |
| 521 | /// with scope information attached on call instructions. To guarantee |
| 522 | /// removal of the !dbg attachment, use the \ref setDebugLoc() API. |
| 523 | /// Note: it is undefined behavior to call this on an instruction not |
| 524 | /// currently inserted into a function. |
| 525 | void dropLocation(); |
| 526 | |
| 527 | private: |
| 528 | // These are all implemented in Metadata.cpp. |
| 529 | MDNode *getMetadataImpl(unsigned KindID) const; |
| 530 | MDNode *getMetadataImpl(StringRef Kind) const; |
| 531 | void |
| 532 | getAllMetadataImpl(SmallVectorImpl<std::pair<unsigned, MDNode *>> &) const; |
| 533 | |
| 534 | public: |
| 535 | //===--------------------------------------------------------------------===// |
| 536 | // Predicates and helper methods. |
| 537 | //===--------------------------------------------------------------------===// |
| 538 | |
| 539 | /// Return true if the instruction is associative: |
| 540 | /// |
| 541 | /// Associative operators satisfy: x op (y op z) === (x op y) op z |
| 542 | /// |
| 543 | /// In LLVM, the Add, Mul, And, Or, and Xor operators are associative. |
| 544 | /// |
| 545 | bool isAssociative() const LLVM_READONLY__attribute__((__pure__)); |
| 546 | static bool isAssociative(unsigned Opcode) { |
| 547 | return Opcode == And || Opcode == Or || Opcode == Xor || |
| 548 | Opcode == Add || Opcode == Mul; |
| 549 | } |
| 550 | |
| 551 | /// Return true if the instruction is commutative: |
| 552 | /// |
| 553 | /// Commutative operators satisfy: (x op y) === (y op x) |
| 554 | /// |
| 555 | /// In LLVM, these are the commutative operators, plus SetEQ and SetNE, when |
| 556 | /// applied to any type. |
| 557 | /// |
| 558 | bool isCommutative() const LLVM_READONLY__attribute__((__pure__)); |
| 559 | static bool isCommutative(unsigned Opcode) { |
| 560 | switch (Opcode) { |
| 561 | case Add: case FAdd: |
| 562 | case Mul: case FMul: |
| 563 | case And: case Or: case Xor: |
| 564 | return true; |
| 565 | default: |
| 566 | return false; |
| 567 | } |
| 568 | } |
| 569 | |
| 570 | /// Return true if the instruction is idempotent: |
| 571 | /// |
| 572 | /// Idempotent operators satisfy: x op x === x |
| 573 | /// |
| 574 | /// In LLVM, the And and Or operators are idempotent. |
| 575 | /// |
| 576 | bool isIdempotent() const { return isIdempotent(getOpcode()); } |
| 577 | static bool isIdempotent(unsigned Opcode) { |
| 578 | return Opcode == And || Opcode == Or; |
| 579 | } |
| 580 | |
| 581 | /// Return true if the instruction is nilpotent: |
| 582 | /// |
| 583 | /// Nilpotent operators satisfy: x op x === Id, |
| 584 | /// |
| 585 | /// where Id is the identity for the operator, i.e. a constant such that |
| 586 | /// x op Id === x and Id op x === x for all x. |
| 587 | /// |
| 588 | /// In LLVM, the Xor operator is nilpotent. |
| 589 | /// |
| 590 | bool isNilpotent() const { return isNilpotent(getOpcode()); } |
| 591 | static bool isNilpotent(unsigned Opcode) { |
| 592 | return Opcode == Xor; |
| 593 | } |
| 594 | |
| 595 | /// Return true if this instruction may modify memory. |
| 596 | bool mayWriteToMemory() const; |
| 597 | |
| 598 | /// Return true if this instruction may read memory. |
| 599 | bool mayReadFromMemory() const; |
| 600 | |
| 601 | /// Return true if this instruction may read or write memory. |
| 602 | bool mayReadOrWriteMemory() const { |
| 603 | return mayReadFromMemory() || mayWriteToMemory(); |
| 604 | } |
| 605 | |
| 606 | /// Return true if this instruction has an AtomicOrdering of unordered or |
| 607 | /// higher. |
| 608 | bool isAtomic() const; |
| 609 | |
| 610 | /// Return true if this atomic instruction loads from memory. |
| 611 | bool hasAtomicLoad() const; |
| 612 | |
| 613 | /// Return true if this atomic instruction stores to memory. |
| 614 | bool hasAtomicStore() const; |
| 615 | |
| 616 | /// Return true if this instruction has a volatile memory access. |
| 617 | bool isVolatile() const; |
| 618 | |
| 619 | /// Return true if this instruction may throw an exception. |
| 620 | bool mayThrow() const; |
| 621 | |
| 622 | /// Return true if this instruction behaves like a memory fence: it can load |
| 623 | /// or store to memory location without being given a memory location. |
| 624 | bool isFenceLike() const { |
| 625 | switch (getOpcode()) { |
| 626 | default: |
| 627 | return false; |
| 628 | // This list should be kept in sync with the list in mayWriteToMemory for |
| 629 | // all opcodes which don't have a memory location. |
| 630 | case Instruction::Fence: |
| 631 | case Instruction::CatchPad: |
| 632 | case Instruction::CatchRet: |
| 633 | case Instruction::Call: |
| 634 | case Instruction::Invoke: |
| 635 | return true; |
| 636 | } |
| 637 | } |
| 638 | |
| 639 | /// Return true if the instruction may have side effects. |
| 640 | /// |
| 641 | /// Side effects are: |
| 642 | /// * Writing to memory. |
| 643 | /// * Unwinding. |
| 644 | /// * Not returning (e.g. an infinite loop). |
| 645 | /// |
| 646 | /// Note that this does not consider malloc and alloca to have side |
| 647 | /// effects because the newly allocated memory is completely invisible to |
| 648 | /// instructions which don't use the returned value. For cases where this |
| 649 | /// matters, isSafeToSpeculativelyExecute may be more appropriate. |
| 650 | bool mayHaveSideEffects() const; |
| 651 | |
| 652 | /// Return true if the instruction can be removed if the result is unused. |
| 653 | /// |
| 654 | /// When constant folding some instructions cannot be removed even if their |
| 655 | /// results are unused. Specifically terminator instructions and calls that |
| 656 | /// may have side effects cannot be removed without semantically changing the |
| 657 | /// generated program. |
| 658 | bool isSafeToRemove() const; |
| 659 | |
| 660 | /// Return true if the instruction will return (unwinding is considered as |
| 661 | /// a form of returning control flow here). |
| 662 | bool willReturn() const; |
| 663 | |
| 664 | /// Return true if the instruction is a variety of EH-block. |
| 665 | bool isEHPad() const { |
| 666 | switch (getOpcode()) { |
| 667 | case Instruction::CatchSwitch: |
| 668 | case Instruction::CatchPad: |
| 669 | case Instruction::CleanupPad: |
| 670 | case Instruction::LandingPad: |
| 671 | return true; |
| 672 | default: |
| 673 | return false; |
| 674 | } |
| 675 | } |
| 676 | |
| 677 | /// Return true if the instruction is a llvm.lifetime.start or |
| 678 | /// llvm.lifetime.end marker. |
| 679 | bool isLifetimeStartOrEnd() const; |
| 680 | |
| 681 | /// Return true if the instruction is a llvm.launder.invariant.group or |
| 682 | /// llvm.strip.invariant.group. |
| 683 | bool isLaunderOrStripInvariantGroup() const; |
| 684 | |
| 685 | /// Return true if the instruction is a DbgInfoIntrinsic or PseudoProbeInst. |
| 686 | bool isDebugOrPseudoInst() const; |
| 687 | |
| 688 | /// Return a pointer to the next non-debug instruction in the same basic |
| 689 | /// block as 'this', or nullptr if no such instruction exists. Skip any pseudo |
| 690 | /// operations if \c SkipPseudoOp is true. |
| 691 | const Instruction * |
| 692 | getNextNonDebugInstruction(bool SkipPseudoOp = false) const; |
| 693 | Instruction *getNextNonDebugInstruction(bool SkipPseudoOp = false) { |
| 694 | return const_cast<Instruction *>( |
| 695 | static_cast<const Instruction *>(this)->getNextNonDebugInstruction( |
| 696 | SkipPseudoOp)); |
| 697 | } |
| 698 | |
| 699 | /// Return a pointer to the previous non-debug instruction in the same basic |
| 700 | /// block as 'this', or nullptr if no such instruction exists. Skip any pseudo |
| 701 | /// operations if \c SkipPseudoOp is true. |
| 702 | const Instruction * |
| 703 | getPrevNonDebugInstruction(bool SkipPseudoOp = false) const; |
| 704 | Instruction *getPrevNonDebugInstruction(bool SkipPseudoOp = false) { |
| 705 | return const_cast<Instruction *>( |
| 706 | static_cast<const Instruction *>(this)->getPrevNonDebugInstruction( |
| 707 | SkipPseudoOp)); |
| 708 | } |
| 709 | |
| 710 | /// Create a copy of 'this' instruction that is identical in all ways except |
| 711 | /// the following: |
| 712 | /// * The instruction has no parent |
| 713 | /// * The instruction has no name |
| 714 | /// |
| 715 | Instruction *clone() const; |
| 716 | |
| 717 | /// Return true if the specified instruction is exactly identical to the |
| 718 | /// current one. This means that all operands match and any extra information |
| 719 | /// (e.g. load is volatile) agree. |
| 720 | bool isIdenticalTo(const Instruction *I) const; |
| 721 | |
| 722 | /// This is like isIdenticalTo, except that it ignores the |
| 723 | /// SubclassOptionalData flags, which may specify conditions under which the |
| 724 | /// instruction's result is undefined. |
| 725 | bool isIdenticalToWhenDefined(const Instruction *I) const; |
| 726 | |
| 727 | /// When checking for operation equivalence (using isSameOperationAs) it is |
| 728 | /// sometimes useful to ignore certain attributes. |
| 729 | enum OperationEquivalenceFlags { |
| 730 | /// Check for equivalence ignoring load/store alignment. |
| 731 | CompareIgnoringAlignment = 1<<0, |
| 732 | /// Check for equivalence treating a type and a vector of that type |
| 733 | /// as equivalent. |
| 734 | CompareUsingScalarTypes = 1<<1 |
| 735 | }; |
| 736 | |
| 737 | /// This function determines if the specified instruction executes the same |
| 738 | /// operation as the current one. This means that the opcodes, type, operand |
| 739 | /// types and any other factors affecting the operation must be the same. This |
| 740 | /// is similar to isIdenticalTo except the operands themselves don't have to |
| 741 | /// be identical. |
| 742 | /// @returns true if the specified instruction is the same operation as |
| 743 | /// the current one. |
| 744 | /// Determine if one instruction is the same operation as another. |
| 745 | bool isSameOperationAs(const Instruction *I, unsigned flags = 0) const; |
| 746 | |
| 747 | /// Return true if there are any uses of this instruction in blocks other than |
| 748 | /// the specified block. Note that PHI nodes are considered to evaluate their |
| 749 | /// operands in the corresponding predecessor block. |
| 750 | bool isUsedOutsideOfBlock(const BasicBlock *BB) const; |
| 751 | |
| 752 | /// Return the number of successors that this instruction has. The instruction |
| 753 | /// must be a terminator. |
| 754 | unsigned getNumSuccessors() const; |
| 755 | |
| 756 | /// Return the specified successor. This instruction must be a terminator. |
| 757 | BasicBlock *getSuccessor(unsigned Idx) const; |
| 758 | |
| 759 | /// Update the specified successor to point at the provided block. This |
| 760 | /// instruction must be a terminator. |
| 761 | void setSuccessor(unsigned Idx, BasicBlock *BB); |
| 762 | |
| 763 | /// Replace specified successor OldBB to point at the provided block. |
| 764 | /// This instruction must be a terminator. |
| 765 | void replaceSuccessorWith(BasicBlock *OldBB, BasicBlock *NewBB); |
| 766 | |
| 767 | /// Methods for support type inquiry through isa, cast, and dyn_cast: |
| 768 | static bool classof(const Value *V) { |
| 769 | return V->getValueID() >= Value::InstructionVal; |
| 770 | } |
| 771 | |
| 772 | //---------------------------------------------------------------------- |
| 773 | // Exported enumerations. |
| 774 | // |
| 775 | enum TermOps { // These terminate basic blocks |
| 776 | #define FIRST_TERM_INST(N) TermOpsBegin = N, |
| 777 | #define HANDLE_TERM_INST(N, OPC, CLASS) OPC = N, |
| 778 | #define LAST_TERM_INST(N) TermOpsEnd = N+1 |
| 779 | #include "llvm/IR/Instruction.def" |
| 780 | }; |
| 781 | |
| 782 | enum UnaryOps { |
| 783 | #define FIRST_UNARY_INST(N) UnaryOpsBegin = N, |
| 784 | #define HANDLE_UNARY_INST(N, OPC, CLASS) OPC = N, |
| 785 | #define LAST_UNARY_INST(N) UnaryOpsEnd = N+1 |
| 786 | #include "llvm/IR/Instruction.def" |
| 787 | }; |
| 788 | |
| 789 | enum BinaryOps { |
| 790 | #define FIRST_BINARY_INST(N) BinaryOpsBegin = N, |
| 791 | #define HANDLE_BINARY_INST(N, OPC, CLASS) OPC = N, |
| 792 | #define LAST_BINARY_INST(N) BinaryOpsEnd = N+1 |
| 793 | #include "llvm/IR/Instruction.def" |
| 794 | }; |
| 795 | |
| 796 | enum MemoryOps { |
| 797 | #define FIRST_MEMORY_INST(N) MemoryOpsBegin = N, |
| 798 | #define HANDLE_MEMORY_INST(N, OPC, CLASS) OPC = N, |
| 799 | #define LAST_MEMORY_INST(N) MemoryOpsEnd = N+1 |
| 800 | #include "llvm/IR/Instruction.def" |
| 801 | }; |
| 802 | |
| 803 | enum CastOps { |
| 804 | #define FIRST_CAST_INST(N) CastOpsBegin = N, |
| 805 | #define HANDLE_CAST_INST(N, OPC, CLASS) OPC = N, |
| 806 | #define LAST_CAST_INST(N) CastOpsEnd = N+1 |
| 807 | #include "llvm/IR/Instruction.def" |
| 808 | }; |
| 809 | |
| 810 | enum FuncletPadOps { |
| 811 | #define FIRST_FUNCLETPAD_INST(N) FuncletPadOpsBegin = N, |
| 812 | #define HANDLE_FUNCLETPAD_INST(N, OPC, CLASS) OPC = N, |
| 813 | #define LAST_FUNCLETPAD_INST(N) FuncletPadOpsEnd = N+1 |
| 814 | #include "llvm/IR/Instruction.def" |
| 815 | }; |
| 816 | |
| 817 | enum OtherOps { |
| 818 | #define FIRST_OTHER_INST(N) OtherOpsBegin = N, |
| 819 | #define HANDLE_OTHER_INST(N, OPC, CLASS) OPC = N, |
| 820 | #define LAST_OTHER_INST(N) OtherOpsEnd = N+1 |
| 821 | #include "llvm/IR/Instruction.def" |
| 822 | }; |
| 823 | |
| 824 | private: |
| 825 | friend class SymbolTableListTraits<Instruction>; |
| 826 | friend class BasicBlock; // For renumbering. |
| 827 | |
| 828 | // Shadow Value::setValueSubclassData with a private forwarding method so that |
| 829 | // subclasses cannot accidentally use it. |
| 830 | void setValueSubclassData(unsigned short D) { |
| 831 | Value::setValueSubclassData(D); |
| 832 | } |
| 833 | |
| 834 | unsigned short getSubclassDataFromValue() const { |
| 835 | return Value::getSubclassDataFromValue(); |
| 836 | } |
| 837 | |
| 838 | void setParent(BasicBlock *P); |
| 839 | |
| 840 | protected: |
| 841 | // Instruction subclasses can stick up to 15 bits of stuff into the |
| 842 | // SubclassData field of instruction with these members. |
| 843 | |
| 844 | template <typename BitfieldElement> |
| 845 | typename BitfieldElement::Type getSubclassData() const { |
| 846 | static_assert( |
| 847 | std::is_same<BitfieldElement, HasMetadataField>::value || |
| 848 | !Bitfield::isOverlapping<BitfieldElement, HasMetadataField>(), |
| 849 | "Must not overlap with the metadata bit"); |
| 850 | return Bitfield::get<BitfieldElement>(getSubclassDataFromValue()); |
| 851 | } |
| 852 | |
| 853 | template <typename BitfieldElement> |
| 854 | void setSubclassData(typename BitfieldElement::Type Value) { |
| 855 | static_assert( |
| 856 | std::is_same<BitfieldElement, HasMetadataField>::value || |
| 857 | !Bitfield::isOverlapping<BitfieldElement, HasMetadataField>(), |
| 858 | "Must not overlap with the metadata bit"); |
| 859 | auto Storage = getSubclassDataFromValue(); |
| 860 | Bitfield::set<BitfieldElement>(Storage, Value); |
| 861 | setValueSubclassData(Storage); |
| 862 | } |
| 863 | |
| 864 | Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps, |
| 865 | Instruction *InsertBefore = nullptr); |
| 866 | Instruction(Type *Ty, unsigned iType, Use *Ops, unsigned NumOps, |
| 867 | BasicBlock *InsertAtEnd); |
| 868 | |
| 869 | private: |
| 870 | /// Create a copy of this instruction. |
| 871 | Instruction *cloneImpl() const; |
| 872 | }; |
| 873 | |
| 874 | inline void ilist_alloc_traits<Instruction>::deleteNode(Instruction *V) { |
| 875 | V->deleteValue(); |
| 876 | } |
| 877 | |
| 878 | } // end namespace llvm |
| 879 | |
| 880 | #endif // LLVM_IR_INSTRUCTION_H |