Bug Summary

File:tools/clang/lib/Sema/AnalysisBasedWarnings.cpp
Warning:line 1498, column 12
Potential memory leak

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name AnalysisBasedWarnings.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-eagerly-assume -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-7/lib/clang/7.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-7~svn337204/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-7~svn337204/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn337204/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn337204/build-llvm/include -I /build/llvm-toolchain-snapshot-7~svn337204/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0/backward -internal-isystem /usr/include/clang/7.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-7/lib/clang/7.0.0/include -internal-externc-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-7~svn337204/build-llvm/tools/clang/lib/Sema -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-07-17-043059-5239-1 -x c++ /build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/AnalysisBasedWarnings.cpp
1//=- AnalysisBasedWarnings.cpp - Sema warnings based on libAnalysis -*- C++ -*-=//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines analysis_warnings::[Policy,Executor].
11// Together they are used by Sema to issue warnings based on inexpensive
12// static analysis algorithms in libAnalysis.
13//
14//===----------------------------------------------------------------------===//
15
16#include "clang/Sema/AnalysisBasedWarnings.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/EvaluatedExprVisitor.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/ExprObjC.h"
22#include "clang/AST/ParentMap.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/StmtCXX.h"
25#include "clang/AST/StmtObjC.h"
26#include "clang/AST/StmtVisitor.h"
27#include "clang/Analysis/Analyses/CFGReachabilityAnalysis.h"
28#include "clang/Analysis/Analyses/Consumed.h"
29#include "clang/Analysis/Analyses/ReachableCode.h"
30#include "clang/Analysis/Analyses/ThreadSafety.h"
31#include "clang/Analysis/Analyses/UninitializedValues.h"
32#include "clang/Analysis/AnalysisDeclContext.h"
33#include "clang/Analysis/CFG.h"
34#include "clang/Analysis/CFGStmtMap.h"
35#include "clang/Basic/SourceLocation.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Lex/Preprocessor.h"
38#include "clang/Sema/ScopeInfo.h"
39#include "clang/Sema/SemaInternal.h"
40#include "llvm/ADT/BitVector.h"
41#include "llvm/ADT/MapVector.h"
42#include "llvm/ADT/SmallString.h"
43#include "llvm/ADT/SmallVector.h"
44#include "llvm/ADT/StringRef.h"
45#include "llvm/Support/Casting.h"
46#include <algorithm>
47#include <deque>
48#include <iterator>
49
50using namespace clang;
51
52//===----------------------------------------------------------------------===//
53// Unreachable code analysis.
54//===----------------------------------------------------------------------===//
55
56namespace {
57 class UnreachableCodeHandler : public reachable_code::Callback {
58 Sema &S;
59 SourceRange PreviousSilenceableCondVal;
60
61 public:
62 UnreachableCodeHandler(Sema &s) : S(s) {}
63
64 void HandleUnreachable(reachable_code::UnreachableKind UK,
65 SourceLocation L,
66 SourceRange SilenceableCondVal,
67 SourceRange R1,
68 SourceRange R2) override {
69 // Avoid reporting multiple unreachable code diagnostics that are
70 // triggered by the same conditional value.
71 if (PreviousSilenceableCondVal.isValid() &&
72 SilenceableCondVal.isValid() &&
73 PreviousSilenceableCondVal == SilenceableCondVal)
74 return;
75 PreviousSilenceableCondVal = SilenceableCondVal;
76
77 unsigned diag = diag::warn_unreachable;
78 switch (UK) {
79 case reachable_code::UK_Break:
80 diag = diag::warn_unreachable_break;
81 break;
82 case reachable_code::UK_Return:
83 diag = diag::warn_unreachable_return;
84 break;
85 case reachable_code::UK_Loop_Increment:
86 diag = diag::warn_unreachable_loop_increment;
87 break;
88 case reachable_code::UK_Other:
89 break;
90 }
91
92 S.Diag(L, diag) << R1 << R2;
93
94 SourceLocation Open = SilenceableCondVal.getBegin();
95 if (Open.isValid()) {
96 SourceLocation Close = SilenceableCondVal.getEnd();
97 Close = S.getLocForEndOfToken(Close);
98 if (Close.isValid()) {
99 S.Diag(Open, diag::note_unreachable_silence)
100 << FixItHint::CreateInsertion(Open, "/* DISABLES CODE */ (")
101 << FixItHint::CreateInsertion(Close, ")");
102 }
103 }
104 }
105 };
106} // anonymous namespace
107
108/// CheckUnreachable - Check for unreachable code.
109static void CheckUnreachable(Sema &S, AnalysisDeclContext &AC) {
110 // As a heuristic prune all diagnostics not in the main file. Currently
111 // the majority of warnings in headers are false positives. These
112 // are largely caused by configuration state, e.g. preprocessor
113 // defined code, etc.
114 //
115 // Note that this is also a performance optimization. Analyzing
116 // headers many times can be expensive.
117 if (!S.getSourceManager().isInMainFile(AC.getDecl()->getLocStart()))
118 return;
119
120 UnreachableCodeHandler UC(S);
121 reachable_code::FindUnreachableCode(AC, S.getPreprocessor(), UC);
122}
123
124namespace {
125/// Warn on logical operator errors in CFGBuilder
126class LogicalErrorHandler : public CFGCallback {
127 Sema &S;
128
129public:
130 LogicalErrorHandler(Sema &S) : CFGCallback(), S(S) {}
131
132 static bool HasMacroID(const Expr *E) {
133 if (E->getExprLoc().isMacroID())
134 return true;
135
136 // Recurse to children.
137 for (const Stmt *SubStmt : E->children())
138 if (const Expr *SubExpr = dyn_cast_or_null<Expr>(SubStmt))
139 if (HasMacroID(SubExpr))
140 return true;
141
142 return false;
143 }
144
145 void compareAlwaysTrue(const BinaryOperator *B, bool isAlwaysTrue) override {
146 if (HasMacroID(B))
147 return;
148
149 SourceRange DiagRange = B->getSourceRange();
150 S.Diag(B->getExprLoc(), diag::warn_tautological_overlap_comparison)
151 << DiagRange << isAlwaysTrue;
152 }
153
154 void compareBitwiseEquality(const BinaryOperator *B,
155 bool isAlwaysTrue) override {
156 if (HasMacroID(B))
157 return;
158
159 SourceRange DiagRange = B->getSourceRange();
160 S.Diag(B->getExprLoc(), diag::warn_comparison_bitwise_always)
161 << DiagRange << isAlwaysTrue;
162 }
163};
164} // anonymous namespace
165
166//===----------------------------------------------------------------------===//
167// Check for infinite self-recursion in functions
168//===----------------------------------------------------------------------===//
169
170// Returns true if the function is called anywhere within the CFGBlock.
171// For member functions, the additional condition of being call from the
172// this pointer is required.
173static bool hasRecursiveCallInPath(const FunctionDecl *FD, CFGBlock &Block) {
174 // Process all the Stmt's in this block to find any calls to FD.
175 for (const auto &B : Block) {
176 if (B.getKind() != CFGElement::Statement)
177 continue;
178
179 const CallExpr *CE = dyn_cast<CallExpr>(B.getAs<CFGStmt>()->getStmt());
180 if (!CE || !CE->getCalleeDecl() ||
181 CE->getCalleeDecl()->getCanonicalDecl() != FD)
182 continue;
183
184 // Skip function calls which are qualified with a templated class.
185 if (const DeclRefExpr *DRE =
186 dyn_cast<DeclRefExpr>(CE->getCallee()->IgnoreParenImpCasts())) {
187 if (NestedNameSpecifier *NNS = DRE->getQualifier()) {
188 if (NNS->getKind() == NestedNameSpecifier::TypeSpec &&
189 isa<TemplateSpecializationType>(NNS->getAsType())) {
190 continue;
191 }
192 }
193 }
194
195 const CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(CE);
196 if (!MCE || isa<CXXThisExpr>(MCE->getImplicitObjectArgument()) ||
197 !MCE->getMethodDecl()->isVirtual())
198 return true;
199 }
200 return false;
201}
202
203// Returns true if every path from the entry block passes through a call to FD.
204static bool checkForRecursiveFunctionCall(const FunctionDecl *FD, CFG *cfg) {
205 llvm::SmallPtrSet<CFGBlock *, 16> Visited;
206 llvm::SmallVector<CFGBlock *, 16> WorkList;
207 // Keep track of whether we found at least one recursive path.
208 bool foundRecursion = false;
209
210 const unsigned ExitID = cfg->getExit().getBlockID();
211
212 // Seed the work list with the entry block.
213 WorkList.push_back(&cfg->getEntry());
214
215 while (!WorkList.empty()) {
216 CFGBlock *Block = WorkList.pop_back_val();
217
218 for (auto I = Block->succ_begin(), E = Block->succ_end(); I != E; ++I) {
219 if (CFGBlock *SuccBlock = *I) {
220 if (!Visited.insert(SuccBlock).second)
221 continue;
222
223 // Found a path to the exit node without a recursive call.
224 if (ExitID == SuccBlock->getBlockID())
225 return false;
226
227 // If the successor block contains a recursive call, end analysis there.
228 if (hasRecursiveCallInPath(FD, *SuccBlock)) {
229 foundRecursion = true;
230 continue;
231 }
232
233 WorkList.push_back(SuccBlock);
234 }
235 }
236 }
237 return foundRecursion;
238}
239
240static void checkRecursiveFunction(Sema &S, const FunctionDecl *FD,
241 const Stmt *Body, AnalysisDeclContext &AC) {
242 FD = FD->getCanonicalDecl();
243
244 // Only run on non-templated functions and non-templated members of
245 // templated classes.
246 if (FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate &&
247 FD->getTemplatedKind() != FunctionDecl::TK_MemberSpecialization)
248 return;
249
250 CFG *cfg = AC.getCFG();
251 if (!cfg) return;
252
253 // Emit diagnostic if a recursive function call is detected for all paths.
254 if (checkForRecursiveFunctionCall(FD, cfg))
255 S.Diag(Body->getLocStart(), diag::warn_infinite_recursive_function);
256}
257
258//===----------------------------------------------------------------------===//
259// Check for throw in a non-throwing function.
260//===----------------------------------------------------------------------===//
261
262/// Determine whether an exception thrown by E, unwinding from ThrowBlock,
263/// can reach ExitBlock.
264static bool throwEscapes(Sema &S, const CXXThrowExpr *E, CFGBlock &ThrowBlock,
265 CFG *Body) {
266 SmallVector<CFGBlock *, 16> Stack;
267 llvm::BitVector Queued(Body->getNumBlockIDs());
268
269 Stack.push_back(&ThrowBlock);
270 Queued[ThrowBlock.getBlockID()] = true;
271
272 while (!Stack.empty()) {
273 CFGBlock &UnwindBlock = *Stack.back();
274 Stack.pop_back();
275
276 for (auto &Succ : UnwindBlock.succs()) {
277 if (!Succ.isReachable() || Queued[Succ->getBlockID()])
278 continue;
279
280 if (Succ->getBlockID() == Body->getExit().getBlockID())
281 return true;
282
283 if (auto *Catch =
284 dyn_cast_or_null<CXXCatchStmt>(Succ->getLabel())) {
285 QualType Caught = Catch->getCaughtType();
286 if (Caught.isNull() || // catch (...) catches everything
287 !E->getSubExpr() || // throw; is considered cuaght by any handler
288 S.handlerCanCatch(Caught, E->getSubExpr()->getType()))
289 // Exception doesn't escape via this path.
290 break;
291 } else {
292 Stack.push_back(Succ);
293 Queued[Succ->getBlockID()] = true;
294 }
295 }
296 }
297
298 return false;
299}
300
301static void visitReachableThrows(
302 CFG *BodyCFG,
303 llvm::function_ref<void(const CXXThrowExpr *, CFGBlock &)> Visit) {
304 llvm::BitVector Reachable(BodyCFG->getNumBlockIDs());
305 clang::reachable_code::ScanReachableFromBlock(&BodyCFG->getEntry(), Reachable);
306 for (CFGBlock *B : *BodyCFG) {
307 if (!Reachable[B->getBlockID()])
308 continue;
309 for (CFGElement &E : *B) {
310 Optional<CFGStmt> S = E.getAs<CFGStmt>();
311 if (!S)
312 continue;
313 if (auto *Throw = dyn_cast<CXXThrowExpr>(S->getStmt()))
314 Visit(Throw, *B);
315 }
316 }
317}
318
319static void EmitDiagForCXXThrowInNonThrowingFunc(Sema &S, SourceLocation OpLoc,
320 const FunctionDecl *FD) {
321 if (!S.getSourceManager().isInSystemHeader(OpLoc) &&
322 FD->getTypeSourceInfo()) {
323 S.Diag(OpLoc, diag::warn_throw_in_noexcept_func) << FD;
324 if (S.getLangOpts().CPlusPlus11 &&
325 (isa<CXXDestructorDecl>(FD) ||
326 FD->getDeclName().getCXXOverloadedOperator() == OO_Delete ||
327 FD->getDeclName().getCXXOverloadedOperator() == OO_Array_Delete)) {
328 if (const auto *Ty = FD->getTypeSourceInfo()->getType()->
329 getAs<FunctionProtoType>())
330 S.Diag(FD->getLocation(), diag::note_throw_in_dtor)
331 << !isa<CXXDestructorDecl>(FD) << !Ty->hasExceptionSpec()
332 << FD->getExceptionSpecSourceRange();
333 } else
334 S.Diag(FD->getLocation(), diag::note_throw_in_function)
335 << FD->getExceptionSpecSourceRange();
336 }
337}
338
339static void checkThrowInNonThrowingFunc(Sema &S, const FunctionDecl *FD,
340 AnalysisDeclContext &AC) {
341 CFG *BodyCFG = AC.getCFG();
342 if (!BodyCFG)
343 return;
344 if (BodyCFG->getExit().pred_empty())
345 return;
346 visitReachableThrows(BodyCFG, [&](const CXXThrowExpr *Throw, CFGBlock &Block) {
347 if (throwEscapes(S, Throw, Block, BodyCFG))
348 EmitDiagForCXXThrowInNonThrowingFunc(S, Throw->getThrowLoc(), FD);
349 });
350}
351
352static bool isNoexcept(const FunctionDecl *FD) {
353 const auto *FPT = FD->getType()->castAs<FunctionProtoType>();
354 if (FPT->isNothrow() || FD->hasAttr<NoThrowAttr>())
355 return true;
356 return false;
357}
358
359//===----------------------------------------------------------------------===//
360// Check for missing return value.
361//===----------------------------------------------------------------------===//
362
363enum ControlFlowKind {
364 UnknownFallThrough,
365 NeverFallThrough,
366 MaybeFallThrough,
367 AlwaysFallThrough,
368 NeverFallThroughOrReturn
369};
370
371/// CheckFallThrough - Check that we don't fall off the end of a
372/// Statement that should return a value.
373///
374/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
375/// MaybeFallThrough iff we might or might not fall off the end,
376/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
377/// return. We assume NeverFallThrough iff we never fall off the end of the
378/// statement but we may return. We assume that functions not marked noreturn
379/// will return.
380static ControlFlowKind CheckFallThrough(AnalysisDeclContext &AC) {
381 CFG *cfg = AC.getCFG();
382 if (!cfg) return UnknownFallThrough;
383
384 // The CFG leaves in dead things, and we don't want the dead code paths to
385 // confuse us, so we mark all live things first.
386 llvm::BitVector live(cfg->getNumBlockIDs());
387 unsigned count = reachable_code::ScanReachableFromBlock(&cfg->getEntry(),
388 live);
389
390 bool AddEHEdges = AC.getAddEHEdges();
391 if (!AddEHEdges && count != cfg->getNumBlockIDs())
392 // When there are things remaining dead, and we didn't add EH edges
393 // from CallExprs to the catch clauses, we have to go back and
394 // mark them as live.
395 for (const auto *B : *cfg) {
396 if (!live[B->getBlockID()]) {
397 if (B->pred_begin() == B->pred_end()) {
398 if (B->getTerminator() && isa<CXXTryStmt>(B->getTerminator()))
399 // When not adding EH edges from calls, catch clauses
400 // can otherwise seem dead. Avoid noting them as dead.
401 count += reachable_code::ScanReachableFromBlock(B, live);
402 continue;
403 }
404 }
405 }
406
407 // Now we know what is live, we check the live precessors of the exit block
408 // and look for fall through paths, being careful to ignore normal returns,
409 // and exceptional paths.
410 bool HasLiveReturn = false;
411 bool HasFakeEdge = false;
412 bool HasPlainEdge = false;
413 bool HasAbnormalEdge = false;
414
415 // Ignore default cases that aren't likely to be reachable because all
416 // enums in a switch(X) have explicit case statements.
417 CFGBlock::FilterOptions FO;
418 FO.IgnoreDefaultsWithCoveredEnums = 1;
419
420 for (CFGBlock::filtered_pred_iterator
421 I = cfg->getExit().filtered_pred_start_end(FO); I.hasMore(); ++I) {
422 const CFGBlock& B = **I;
423 if (!live[B.getBlockID()])
424 continue;
425
426 // Skip blocks which contain an element marked as no-return. They don't
427 // represent actually viable edges into the exit block, so mark them as
428 // abnormal.
429 if (B.hasNoReturnElement()) {
430 HasAbnormalEdge = true;
431 continue;
432 }
433
434 // Destructors can appear after the 'return' in the CFG. This is
435 // normal. We need to look pass the destructors for the return
436 // statement (if it exists).
437 CFGBlock::const_reverse_iterator ri = B.rbegin(), re = B.rend();
438
439 for ( ; ri != re ; ++ri)
440 if (ri->getAs<CFGStmt>())
441 break;
442
443 // No more CFGElements in the block?
444 if (ri == re) {
445 if (B.getTerminator() && isa<CXXTryStmt>(B.getTerminator())) {
446 HasAbnormalEdge = true;
447 continue;
448 }
449 // A labeled empty statement, or the entry block...
450 HasPlainEdge = true;
451 continue;
452 }
453
454 CFGStmt CS = ri->castAs<CFGStmt>();
455 const Stmt *S = CS.getStmt();
456 if (isa<ReturnStmt>(S) || isa<CoreturnStmt>(S)) {
457 HasLiveReturn = true;
458 continue;
459 }
460 if (isa<ObjCAtThrowStmt>(S)) {
461 HasFakeEdge = true;
462 continue;
463 }
464 if (isa<CXXThrowExpr>(S)) {
465 HasFakeEdge = true;
466 continue;
467 }
468 if (isa<MSAsmStmt>(S)) {
469 // TODO: Verify this is correct.
470 HasFakeEdge = true;
471 HasLiveReturn = true;
472 continue;
473 }
474 if (isa<CXXTryStmt>(S)) {
475 HasAbnormalEdge = true;
476 continue;
477 }
478 if (std::find(B.succ_begin(), B.succ_end(), &cfg->getExit())
479 == B.succ_end()) {
480 HasAbnormalEdge = true;
481 continue;
482 }
483
484 HasPlainEdge = true;
485 }
486 if (!HasPlainEdge) {
487 if (HasLiveReturn)
488 return NeverFallThrough;
489 return NeverFallThroughOrReturn;
490 }
491 if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn)
492 return MaybeFallThrough;
493 // This says AlwaysFallThrough for calls to functions that are not marked
494 // noreturn, that don't return. If people would like this warning to be more
495 // accurate, such functions should be marked as noreturn.
496 return AlwaysFallThrough;
497}
498
499namespace {
500
501struct CheckFallThroughDiagnostics {
502 unsigned diag_MaybeFallThrough_HasNoReturn;
503 unsigned diag_MaybeFallThrough_ReturnsNonVoid;
504 unsigned diag_AlwaysFallThrough_HasNoReturn;
505 unsigned diag_AlwaysFallThrough_ReturnsNonVoid;
506 unsigned diag_NeverFallThroughOrReturn;
507 enum { Function, Block, Lambda, Coroutine } funMode;
508 SourceLocation FuncLoc;
509
510 static CheckFallThroughDiagnostics MakeForFunction(const Decl *Func) {
511 CheckFallThroughDiagnostics D;
512 D.FuncLoc = Func->getLocation();
513 D.diag_MaybeFallThrough_HasNoReturn =
514 diag::warn_falloff_noreturn_function;
515 D.diag_MaybeFallThrough_ReturnsNonVoid =
516 diag::warn_maybe_falloff_nonvoid_function;
517 D.diag_AlwaysFallThrough_HasNoReturn =
518 diag::warn_falloff_noreturn_function;
519 D.diag_AlwaysFallThrough_ReturnsNonVoid =
520 diag::warn_falloff_nonvoid_function;
521
522 // Don't suggest that virtual functions be marked "noreturn", since they
523 // might be overridden by non-noreturn functions.
524 bool isVirtualMethod = false;
525 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Func))
526 isVirtualMethod = Method->isVirtual();
527
528 // Don't suggest that template instantiations be marked "noreturn"
529 bool isTemplateInstantiation = false;
530 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(Func))
531 isTemplateInstantiation = Function->isTemplateInstantiation();
532
533 if (!isVirtualMethod && !isTemplateInstantiation)
534 D.diag_NeverFallThroughOrReturn =
535 diag::warn_suggest_noreturn_function;
536 else
537 D.diag_NeverFallThroughOrReturn = 0;
538
539 D.funMode = Function;
540 return D;
541 }
542
543 static CheckFallThroughDiagnostics MakeForCoroutine(const Decl *Func) {
544 CheckFallThroughDiagnostics D;
545 D.FuncLoc = Func->getLocation();
546 D.diag_MaybeFallThrough_HasNoReturn = 0;
547 D.diag_MaybeFallThrough_ReturnsNonVoid =
548 diag::warn_maybe_falloff_nonvoid_coroutine;
549 D.diag_AlwaysFallThrough_HasNoReturn = 0;
550 D.diag_AlwaysFallThrough_ReturnsNonVoid =
551 diag::warn_falloff_nonvoid_coroutine;
552 D.funMode = Coroutine;
553 return D;
554 }
555
556 static CheckFallThroughDiagnostics MakeForBlock() {
557 CheckFallThroughDiagnostics D;
558 D.diag_MaybeFallThrough_HasNoReturn =
559 diag::err_noreturn_block_has_return_expr;
560 D.diag_MaybeFallThrough_ReturnsNonVoid =
561 diag::err_maybe_falloff_nonvoid_block;
562 D.diag_AlwaysFallThrough_HasNoReturn =
563 diag::err_noreturn_block_has_return_expr;
564 D.diag_AlwaysFallThrough_ReturnsNonVoid =
565 diag::err_falloff_nonvoid_block;
566 D.diag_NeverFallThroughOrReturn = 0;
567 D.funMode = Block;
568 return D;
569 }
570
571 static CheckFallThroughDiagnostics MakeForLambda() {
572 CheckFallThroughDiagnostics D;
573 D.diag_MaybeFallThrough_HasNoReturn =
574 diag::err_noreturn_lambda_has_return_expr;
575 D.diag_MaybeFallThrough_ReturnsNonVoid =
576 diag::warn_maybe_falloff_nonvoid_lambda;
577 D.diag_AlwaysFallThrough_HasNoReturn =
578 diag::err_noreturn_lambda_has_return_expr;
579 D.diag_AlwaysFallThrough_ReturnsNonVoid =
580 diag::warn_falloff_nonvoid_lambda;
581 D.diag_NeverFallThroughOrReturn = 0;
582 D.funMode = Lambda;
583 return D;
584 }
585
586 bool checkDiagnostics(DiagnosticsEngine &D, bool ReturnsVoid,
587 bool HasNoReturn) const {
588 if (funMode == Function) {
589 return (ReturnsVoid ||
590 D.isIgnored(diag::warn_maybe_falloff_nonvoid_function,
591 FuncLoc)) &&
592 (!HasNoReturn ||
593 D.isIgnored(diag::warn_noreturn_function_has_return_expr,
594 FuncLoc)) &&
595 (!ReturnsVoid ||
596 D.isIgnored(diag::warn_suggest_noreturn_block, FuncLoc));
597 }
598 if (funMode == Coroutine) {
599 return (ReturnsVoid ||
600 D.isIgnored(diag::warn_maybe_falloff_nonvoid_function, FuncLoc) ||
601 D.isIgnored(diag::warn_maybe_falloff_nonvoid_coroutine,
602 FuncLoc)) &&
603 (!HasNoReturn);
604 }
605 // For blocks / lambdas.
606 return ReturnsVoid && !HasNoReturn;
607 }
608};
609
610} // anonymous namespace
611
612/// CheckFallThroughForBody - Check that we don't fall off the end of a
613/// function that should return a value. Check that we don't fall off the end
614/// of a noreturn function. We assume that functions and blocks not marked
615/// noreturn will return.
616static void CheckFallThroughForBody(Sema &S, const Decl *D, const Stmt *Body,
617 const BlockExpr *blkExpr,
618 const CheckFallThroughDiagnostics &CD,
619 AnalysisDeclContext &AC,
620 sema::FunctionScopeInfo *FSI) {
621
622 bool ReturnsVoid = false;
623 bool HasNoReturn = false;
624 bool IsCoroutine = FSI->isCoroutine();
625
626 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
627 if (const auto *CBody = dyn_cast<CoroutineBodyStmt>(Body))
628 ReturnsVoid = CBody->getFallthroughHandler() != nullptr;
629 else
630 ReturnsVoid = FD->getReturnType()->isVoidType();
631 HasNoReturn = FD->isNoReturn();
632 }
633 else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
634 ReturnsVoid = MD->getReturnType()->isVoidType();
635 HasNoReturn = MD->hasAttr<NoReturnAttr>();
636 }
637 else if (isa<BlockDecl>(D)) {
638 QualType BlockTy = blkExpr->getType();
639 if (const FunctionType *FT =
640 BlockTy->getPointeeType()->getAs<FunctionType>()) {
641 if (FT->getReturnType()->isVoidType())
642 ReturnsVoid = true;
643 if (FT->getNoReturnAttr())
644 HasNoReturn = true;
645 }
646 }
647
648 DiagnosticsEngine &Diags = S.getDiagnostics();
649
650 // Short circuit for compilation speed.
651 if (CD.checkDiagnostics(Diags, ReturnsVoid, HasNoReturn))
652 return;
653 SourceLocation LBrace = Body->getLocStart(), RBrace = Body->getLocEnd();
654 auto EmitDiag = [&](SourceLocation Loc, unsigned DiagID) {
655 if (IsCoroutine)
656 S.Diag(Loc, DiagID) << FSI->CoroutinePromise->getType();
657 else
658 S.Diag(Loc, DiagID);
659 };
660 // Either in a function body compound statement, or a function-try-block.
661 switch (CheckFallThrough(AC)) {
662 case UnknownFallThrough:
663 break;
664
665 case MaybeFallThrough:
666 if (HasNoReturn)
667 EmitDiag(RBrace, CD.diag_MaybeFallThrough_HasNoReturn);
668 else if (!ReturnsVoid)
669 EmitDiag(RBrace, CD.diag_MaybeFallThrough_ReturnsNonVoid);
670 break;
671 case AlwaysFallThrough:
672 if (HasNoReturn)
673 EmitDiag(RBrace, CD.diag_AlwaysFallThrough_HasNoReturn);
674 else if (!ReturnsVoid)
675 EmitDiag(RBrace, CD.diag_AlwaysFallThrough_ReturnsNonVoid);
676 break;
677 case NeverFallThroughOrReturn:
678 if (ReturnsVoid && !HasNoReturn && CD.diag_NeverFallThroughOrReturn) {
679 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
680 S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn) << 0 << FD;
681 } else if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
682 S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn) << 1 << MD;
683 } else {
684 S.Diag(LBrace, CD.diag_NeverFallThroughOrReturn);
685 }
686 }
687 break;
688 case NeverFallThrough:
689 break;
690 }
691}
692
693//===----------------------------------------------------------------------===//
694// -Wuninitialized
695//===----------------------------------------------------------------------===//
696
697namespace {
698/// ContainsReference - A visitor class to search for references to
699/// a particular declaration (the needle) within any evaluated component of an
700/// expression (recursively).
701class ContainsReference : public ConstEvaluatedExprVisitor<ContainsReference> {
702 bool FoundReference;
703 const DeclRefExpr *Needle;
704
705public:
706 typedef ConstEvaluatedExprVisitor<ContainsReference> Inherited;
707
708 ContainsReference(ASTContext &Context, const DeclRefExpr *Needle)
709 : Inherited(Context), FoundReference(false), Needle(Needle) {}
710
711 void VisitExpr(const Expr *E) {
712 // Stop evaluating if we already have a reference.
713 if (FoundReference)
714 return;
715
716 Inherited::VisitExpr(E);
717 }
718
719 void VisitDeclRefExpr(const DeclRefExpr *E) {
720 if (E == Needle)
721 FoundReference = true;
722 else
723 Inherited::VisitDeclRefExpr(E);
724 }
725
726 bool doesContainReference() const { return FoundReference; }
727};
728} // anonymous namespace
729
730static bool SuggestInitializationFixit(Sema &S, const VarDecl *VD) {
731 QualType VariableTy = VD->getType().getCanonicalType();
732 if (VariableTy->isBlockPointerType() &&
733 !VD->hasAttr<BlocksAttr>()) {
734 S.Diag(VD->getLocation(), diag::note_block_var_fixit_add_initialization)
735 << VD->getDeclName()
736 << FixItHint::CreateInsertion(VD->getLocation(), "__block ");
737 return true;
738 }
739
740 // Don't issue a fixit if there is already an initializer.
741 if (VD->getInit())
742 return false;
743
744 // Don't suggest a fixit inside macros.
745 if (VD->getLocEnd().isMacroID())
746 return false;
747
748 SourceLocation Loc = S.getLocForEndOfToken(VD->getLocEnd());
749
750 // Suggest possible initialization (if any).
751 std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
752 if (Init.empty())
753 return false;
754
755 S.Diag(Loc, diag::note_var_fixit_add_initialization) << VD->getDeclName()
756 << FixItHint::CreateInsertion(Loc, Init);
757 return true;
758}
759
760/// Create a fixit to remove an if-like statement, on the assumption that its
761/// condition is CondVal.
762static void CreateIfFixit(Sema &S, const Stmt *If, const Stmt *Then,
763 const Stmt *Else, bool CondVal,
764 FixItHint &Fixit1, FixItHint &Fixit2) {
765 if (CondVal) {
766 // If condition is always true, remove all but the 'then'.
767 Fixit1 = FixItHint::CreateRemoval(
768 CharSourceRange::getCharRange(If->getLocStart(),
769 Then->getLocStart()));
770 if (Else) {
771 SourceLocation ElseKwLoc = S.getLocForEndOfToken(Then->getLocEnd());
772 Fixit2 = FixItHint::CreateRemoval(
773 SourceRange(ElseKwLoc, Else->getLocEnd()));
774 }
775 } else {
776 // If condition is always false, remove all but the 'else'.
777 if (Else)
778 Fixit1 = FixItHint::CreateRemoval(
779 CharSourceRange::getCharRange(If->getLocStart(),
780 Else->getLocStart()));
781 else
782 Fixit1 = FixItHint::CreateRemoval(If->getSourceRange());
783 }
784}
785
786/// DiagUninitUse -- Helper function to produce a diagnostic for an
787/// uninitialized use of a variable.
788static void DiagUninitUse(Sema &S, const VarDecl *VD, const UninitUse &Use,
789 bool IsCapturedByBlock) {
790 bool Diagnosed = false;
791
792 switch (Use.getKind()) {
793 case UninitUse::Always:
794 S.Diag(Use.getUser()->getLocStart(), diag::warn_uninit_var)
795 << VD->getDeclName() << IsCapturedByBlock
796 << Use.getUser()->getSourceRange();
797 return;
798
799 case UninitUse::AfterDecl:
800 case UninitUse::AfterCall:
801 S.Diag(VD->getLocation(), diag::warn_sometimes_uninit_var)
802 << VD->getDeclName() << IsCapturedByBlock
803 << (Use.getKind() == UninitUse::AfterDecl ? 4 : 5)
804 << const_cast<DeclContext*>(VD->getLexicalDeclContext())
805 << VD->getSourceRange();
806 S.Diag(Use.getUser()->getLocStart(), diag::note_uninit_var_use)
807 << IsCapturedByBlock << Use.getUser()->getSourceRange();
808 return;
809
810 case UninitUse::Maybe:
811 case UninitUse::Sometimes:
812 // Carry on to report sometimes-uninitialized branches, if possible,
813 // or a 'may be used uninitialized' diagnostic otherwise.
814 break;
815 }
816
817 // Diagnose each branch which leads to a sometimes-uninitialized use.
818 for (UninitUse::branch_iterator I = Use.branch_begin(), E = Use.branch_end();
819 I != E; ++I) {
820 assert(Use.getKind() == UninitUse::Sometimes)(static_cast <bool> (Use.getKind() == UninitUse::Sometimes
) ? void (0) : __assert_fail ("Use.getKind() == UninitUse::Sometimes"
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/AnalysisBasedWarnings.cpp"
, 820, __extension__ __PRETTY_FUNCTION__))
;
821
822 const Expr *User = Use.getUser();
823 const Stmt *Term = I->Terminator;
824
825 // Information used when building the diagnostic.
826 unsigned DiagKind;
827 StringRef Str;
828 SourceRange Range;
829
830 // FixIts to suppress the diagnostic by removing the dead condition.
831 // For all binary terminators, branch 0 is taken if the condition is true,
832 // and branch 1 is taken if the condition is false.
833 int RemoveDiagKind = -1;
834 const char *FixitStr =
835 S.getLangOpts().CPlusPlus ? (I->Output ? "true" : "false")
836 : (I->Output ? "1" : "0");
837 FixItHint Fixit1, Fixit2;
838
839 switch (Term ? Term->getStmtClass() : Stmt::DeclStmtClass) {
840 default:
841 // Don't know how to report this. Just fall back to 'may be used
842 // uninitialized'. FIXME: Can this happen?
843 continue;
844
845 // "condition is true / condition is false".
846 case Stmt::IfStmtClass: {
847 const IfStmt *IS = cast<IfStmt>(Term);
848 DiagKind = 0;
849 Str = "if";
850 Range = IS->getCond()->getSourceRange();
851 RemoveDiagKind = 0;
852 CreateIfFixit(S, IS, IS->getThen(), IS->getElse(),
853 I->Output, Fixit1, Fixit2);
854 break;
855 }
856 case Stmt::ConditionalOperatorClass: {
857 const ConditionalOperator *CO = cast<ConditionalOperator>(Term);
858 DiagKind = 0;
859 Str = "?:";
860 Range = CO->getCond()->getSourceRange();
861 RemoveDiagKind = 0;
862 CreateIfFixit(S, CO, CO->getTrueExpr(), CO->getFalseExpr(),
863 I->Output, Fixit1, Fixit2);
864 break;
865 }
866 case Stmt::BinaryOperatorClass: {
867 const BinaryOperator *BO = cast<BinaryOperator>(Term);
868 if (!BO->isLogicalOp())
869 continue;
870 DiagKind = 0;
871 Str = BO->getOpcodeStr();
872 Range = BO->getLHS()->getSourceRange();
873 RemoveDiagKind = 0;
874 if ((BO->getOpcode() == BO_LAnd && I->Output) ||
875 (BO->getOpcode() == BO_LOr && !I->Output))
876 // true && y -> y, false || y -> y.
877 Fixit1 = FixItHint::CreateRemoval(SourceRange(BO->getLocStart(),
878 BO->getOperatorLoc()));
879 else
880 // false && y -> false, true || y -> true.
881 Fixit1 = FixItHint::CreateReplacement(BO->getSourceRange(), FixitStr);
882 break;
883 }
884
885 // "loop is entered / loop is exited".
886 case Stmt::WhileStmtClass:
887 DiagKind = 1;
888 Str = "while";
889 Range = cast<WhileStmt>(Term)->getCond()->getSourceRange();
890 RemoveDiagKind = 1;
891 Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
892 break;
893 case Stmt::ForStmtClass:
894 DiagKind = 1;
895 Str = "for";
896 Range = cast<ForStmt>(Term)->getCond()->getSourceRange();
897 RemoveDiagKind = 1;
898 if (I->Output)
899 Fixit1 = FixItHint::CreateRemoval(Range);
900 else
901 Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
902 break;
903 case Stmt::CXXForRangeStmtClass:
904 if (I->Output == 1) {
905 // The use occurs if a range-based for loop's body never executes.
906 // That may be impossible, and there's no syntactic fix for this,
907 // so treat it as a 'may be uninitialized' case.
908 continue;
909 }
910 DiagKind = 1;
911 Str = "for";
912 Range = cast<CXXForRangeStmt>(Term)->getRangeInit()->getSourceRange();
913 break;
914
915 // "condition is true / loop is exited".
916 case Stmt::DoStmtClass:
917 DiagKind = 2;
918 Str = "do";
919 Range = cast<DoStmt>(Term)->getCond()->getSourceRange();
920 RemoveDiagKind = 1;
921 Fixit1 = FixItHint::CreateReplacement(Range, FixitStr);
922 break;
923
924 // "switch case is taken".
925 case Stmt::CaseStmtClass:
926 DiagKind = 3;
927 Str = "case";
928 Range = cast<CaseStmt>(Term)->getLHS()->getSourceRange();
929 break;
930 case Stmt::DefaultStmtClass:
931 DiagKind = 3;
932 Str = "default";
933 Range = cast<DefaultStmt>(Term)->getDefaultLoc();
934 break;
935 }
936
937 S.Diag(Range.getBegin(), diag::warn_sometimes_uninit_var)
938 << VD->getDeclName() << IsCapturedByBlock << DiagKind
939 << Str << I->Output << Range;
940 S.Diag(User->getLocStart(), diag::note_uninit_var_use)
941 << IsCapturedByBlock << User->getSourceRange();
942 if (RemoveDiagKind != -1)
943 S.Diag(Fixit1.RemoveRange.getBegin(), diag::note_uninit_fixit_remove_cond)
944 << RemoveDiagKind << Str << I->Output << Fixit1 << Fixit2;
945
946 Diagnosed = true;
947 }
948
949 if (!Diagnosed)
950 S.Diag(Use.getUser()->getLocStart(), diag::warn_maybe_uninit_var)
951 << VD->getDeclName() << IsCapturedByBlock
952 << Use.getUser()->getSourceRange();
953}
954
955/// DiagnoseUninitializedUse -- Helper function for diagnosing uses of an
956/// uninitialized variable. This manages the different forms of diagnostic
957/// emitted for particular types of uses. Returns true if the use was diagnosed
958/// as a warning. If a particular use is one we omit warnings for, returns
959/// false.
960static bool DiagnoseUninitializedUse(Sema &S, const VarDecl *VD,
961 const UninitUse &Use,
962 bool alwaysReportSelfInit = false) {
963 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Use.getUser())) {
964 // Inspect the initializer of the variable declaration which is
965 // being referenced prior to its initialization. We emit
966 // specialized diagnostics for self-initialization, and we
967 // specifically avoid warning about self references which take the
968 // form of:
969 //
970 // int x = x;
971 //
972 // This is used to indicate to GCC that 'x' is intentionally left
973 // uninitialized. Proven code paths which access 'x' in
974 // an uninitialized state after this will still warn.
975 if (const Expr *Initializer = VD->getInit()) {
976 if (!alwaysReportSelfInit && DRE == Initializer->IgnoreParenImpCasts())
977 return false;
978
979 ContainsReference CR(S.Context, DRE);
980 CR.Visit(Initializer);
981 if (CR.doesContainReference()) {
982 S.Diag(DRE->getLocStart(),
983 diag::warn_uninit_self_reference_in_init)
984 << VD->getDeclName() << VD->getLocation() << DRE->getSourceRange();
985 return true;
986 }
987 }
988
989 DiagUninitUse(S, VD, Use, false);
990 } else {
991 const BlockExpr *BE = cast<BlockExpr>(Use.getUser());
992 if (VD->getType()->isBlockPointerType() && !VD->hasAttr<BlocksAttr>())
993 S.Diag(BE->getLocStart(),
994 diag::warn_uninit_byref_blockvar_captured_by_block)
995 << VD->getDeclName();
996 else
997 DiagUninitUse(S, VD, Use, true);
998 }
999
1000 // Report where the variable was declared when the use wasn't within
1001 // the initializer of that declaration & we didn't already suggest
1002 // an initialization fixit.
1003 if (!SuggestInitializationFixit(S, VD))
1004 S.Diag(VD->getLocStart(), diag::note_var_declared_here)
1005 << VD->getDeclName();
1006
1007 return true;
1008}
1009
1010namespace {
1011 class FallthroughMapper : public RecursiveASTVisitor<FallthroughMapper> {
1012 public:
1013 FallthroughMapper(Sema &S)
1014 : FoundSwitchStatements(false),
1015 S(S) {
1016 }
1017
1018 bool foundSwitchStatements() const { return FoundSwitchStatements; }
1019
1020 void markFallthroughVisited(const AttributedStmt *Stmt) {
1021 bool Found = FallthroughStmts.erase(Stmt);
1022 assert(Found)(static_cast <bool> (Found) ? void (0) : __assert_fail (
"Found", "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/AnalysisBasedWarnings.cpp"
, 1022, __extension__ __PRETTY_FUNCTION__))
;
1023 (void)Found;
1024 }
1025
1026 typedef llvm::SmallPtrSet<const AttributedStmt*, 8> AttrStmts;
1027
1028 const AttrStmts &getFallthroughStmts() const {
1029 return FallthroughStmts;
1030 }
1031
1032 void fillReachableBlocks(CFG *Cfg) {
1033 assert(ReachableBlocks.empty() && "ReachableBlocks already filled")(static_cast <bool> (ReachableBlocks.empty() &&
"ReachableBlocks already filled") ? void (0) : __assert_fail
("ReachableBlocks.empty() && \"ReachableBlocks already filled\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/AnalysisBasedWarnings.cpp"
, 1033, __extension__ __PRETTY_FUNCTION__))
;
1034 std::deque<const CFGBlock *> BlockQueue;
1035
1036 ReachableBlocks.insert(&Cfg->getEntry());
1037 BlockQueue.push_back(&Cfg->getEntry());
1038 // Mark all case blocks reachable to avoid problems with switching on
1039 // constants, covered enums, etc.
1040 // These blocks can contain fall-through annotations, and we don't want to
1041 // issue a warn_fallthrough_attr_unreachable for them.
1042 for (const auto *B : *Cfg) {
1043 const Stmt *L = B->getLabel();
1044 if (L && isa<SwitchCase>(L) && ReachableBlocks.insert(B).second)
1045 BlockQueue.push_back(B);
1046 }
1047
1048 while (!BlockQueue.empty()) {
1049 const CFGBlock *P = BlockQueue.front();
1050 BlockQueue.pop_front();
1051 for (CFGBlock::const_succ_iterator I = P->succ_begin(),
1052 E = P->succ_end();
1053 I != E; ++I) {
1054 if (*I && ReachableBlocks.insert(*I).second)
1055 BlockQueue.push_back(*I);
1056 }
1057 }
1058 }
1059
1060 bool checkFallThroughIntoBlock(const CFGBlock &B, int &AnnotatedCnt,
1061 bool IsTemplateInstantiation) {
1062 assert(!ReachableBlocks.empty() && "ReachableBlocks empty")(static_cast <bool> (!ReachableBlocks.empty() &&
"ReachableBlocks empty") ? void (0) : __assert_fail ("!ReachableBlocks.empty() && \"ReachableBlocks empty\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/AnalysisBasedWarnings.cpp"
, 1062, __extension__ __PRETTY_FUNCTION__))
;
1063
1064 int UnannotatedCnt = 0;
1065 AnnotatedCnt = 0;
1066
1067 std::deque<const CFGBlock*> BlockQueue(B.pred_begin(), B.pred_end());
1068 while (!BlockQueue.empty()) {
1069 const CFGBlock *P = BlockQueue.front();
1070 BlockQueue.pop_front();
1071 if (!P) continue;
1072
1073 const Stmt *Term = P->getTerminator();
1074 if (Term && isa<SwitchStmt>(Term))
1075 continue; // Switch statement, good.
1076
1077 const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(P->getLabel());
1078 if (SW && SW->getSubStmt() == B.getLabel() && P->begin() == P->end())
1079 continue; // Previous case label has no statements, good.
1080
1081 const LabelStmt *L = dyn_cast_or_null<LabelStmt>(P->getLabel());
1082 if (L && L->getSubStmt() == B.getLabel() && P->begin() == P->end())
1083 continue; // Case label is preceded with a normal label, good.
1084
1085 if (!ReachableBlocks.count(P)) {
1086 for (CFGBlock::const_reverse_iterator ElemIt = P->rbegin(),
1087 ElemEnd = P->rend();
1088 ElemIt != ElemEnd; ++ElemIt) {
1089 if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>()) {
1090 if (const AttributedStmt *AS = asFallThroughAttr(CS->getStmt())) {
1091 // Don't issue a warning for an unreachable fallthrough
1092 // attribute in template instantiations as it may not be
1093 // unreachable in all instantiations of the template.
1094 if (!IsTemplateInstantiation)
1095 S.Diag(AS->getLocStart(),
1096 diag::warn_fallthrough_attr_unreachable);
1097 markFallthroughVisited(AS);
1098 ++AnnotatedCnt;
1099 break;
1100 }
1101 // Don't care about other unreachable statements.
1102 }
1103 }
1104 // If there are no unreachable statements, this may be a special
1105 // case in CFG:
1106 // case X: {
1107 // A a; // A has a destructor.
1108 // break;
1109 // }
1110 // // <<<< This place is represented by a 'hanging' CFG block.
1111 // case Y:
1112 continue;
1113 }
1114
1115 const Stmt *LastStmt = getLastStmt(*P);
1116 if (const AttributedStmt *AS = asFallThroughAttr(LastStmt)) {
1117 markFallthroughVisited(AS);
1118 ++AnnotatedCnt;
1119 continue; // Fallthrough annotation, good.
1120 }
1121
1122 if (!LastStmt) { // This block contains no executable statements.
1123 // Traverse its predecessors.
1124 std::copy(P->pred_begin(), P->pred_end(),
1125 std::back_inserter(BlockQueue));
1126 continue;
1127 }
1128
1129 ++UnannotatedCnt;
1130 }
1131 return !!UnannotatedCnt;
1132 }
1133
1134 // RecursiveASTVisitor setup.
1135 bool shouldWalkTypesOfTypeLocs() const { return false; }
1136
1137 bool VisitAttributedStmt(AttributedStmt *S) {
1138 if (asFallThroughAttr(S))
1139 FallthroughStmts.insert(S);
1140 return true;
1141 }
1142
1143 bool VisitSwitchStmt(SwitchStmt *S) {
1144 FoundSwitchStatements = true;
1145 return true;
1146 }
1147
1148 // We don't want to traverse local type declarations. We analyze their
1149 // methods separately.
1150 bool TraverseDecl(Decl *D) { return true; }
1151
1152 // We analyze lambda bodies separately. Skip them here.
1153 bool TraverseLambdaBody(LambdaExpr *LE) { return true; }
1154
1155 private:
1156
1157 static const AttributedStmt *asFallThroughAttr(const Stmt *S) {
1158 if (const AttributedStmt *AS = dyn_cast_or_null<AttributedStmt>(S)) {
1159 if (hasSpecificAttr<FallThroughAttr>(AS->getAttrs()))
1160 return AS;
1161 }
1162 return nullptr;
1163 }
1164
1165 static const Stmt *getLastStmt(const CFGBlock &B) {
1166 if (const Stmt *Term = B.getTerminator())
1167 return Term;
1168 for (CFGBlock::const_reverse_iterator ElemIt = B.rbegin(),
1169 ElemEnd = B.rend();
1170 ElemIt != ElemEnd; ++ElemIt) {
1171 if (Optional<CFGStmt> CS = ElemIt->getAs<CFGStmt>())
1172 return CS->getStmt();
1173 }
1174 // Workaround to detect a statement thrown out by CFGBuilder:
1175 // case X: {} case Y:
1176 // case X: ; case Y:
1177 if (const SwitchCase *SW = dyn_cast_or_null<SwitchCase>(B.getLabel()))
1178 if (!isa<SwitchCase>(SW->getSubStmt()))
1179 return SW->getSubStmt();
1180
1181 return nullptr;
1182 }
1183
1184 bool FoundSwitchStatements;
1185 AttrStmts FallthroughStmts;
1186 Sema &S;
1187 llvm::SmallPtrSet<const CFGBlock *, 16> ReachableBlocks;
1188 };
1189} // anonymous namespace
1190
1191static StringRef getFallthroughAttrSpelling(Preprocessor &PP,
1192 SourceLocation Loc) {
1193 TokenValue FallthroughTokens[] = {
1194 tok::l_square, tok::l_square,
1195 PP.getIdentifierInfo("fallthrough"),
1196 tok::r_square, tok::r_square
1197 };
1198
1199 TokenValue ClangFallthroughTokens[] = {
1200 tok::l_square, tok::l_square, PP.getIdentifierInfo("clang"),
1201 tok::coloncolon, PP.getIdentifierInfo("fallthrough"),
1202 tok::r_square, tok::r_square
1203 };
1204
1205 bool PreferClangAttr = !PP.getLangOpts().CPlusPlus17;
1206
1207 StringRef MacroName;
1208 if (PreferClangAttr)
1209 MacroName = PP.getLastMacroWithSpelling(Loc, ClangFallthroughTokens);
1210 if (MacroName.empty())
1211 MacroName = PP.getLastMacroWithSpelling(Loc, FallthroughTokens);
1212 if (MacroName.empty() && !PreferClangAttr)
1213 MacroName = PP.getLastMacroWithSpelling(Loc, ClangFallthroughTokens);
1214 if (MacroName.empty())
1215 MacroName = PreferClangAttr ? "[[clang::fallthrough]]" : "[[fallthrough]]";
1216 return MacroName;
1217}
1218
1219static void DiagnoseSwitchLabelsFallthrough(Sema &S, AnalysisDeclContext &AC,
1220 bool PerFunction) {
1221 // Only perform this analysis when using [[]] attributes. There is no good
1222 // workflow for this warning when not using C++11. There is no good way to
1223 // silence the warning (no attribute is available) unless we are using
1224 // [[]] attributes. One could use pragmas to silence the warning, but as a
1225 // general solution that is gross and not in the spirit of this warning.
1226 //
1227 // NOTE: This an intermediate solution. There are on-going discussions on
1228 // how to properly support this warning outside of C++11 with an annotation.
1229 if (!AC.getASTContext().getLangOpts().DoubleSquareBracketAttributes)
1230 return;
1231
1232 FallthroughMapper FM(S);
1233 FM.TraverseStmt(AC.getBody());
1234
1235 if (!FM.foundSwitchStatements())
1236 return;
1237
1238 if (PerFunction && FM.getFallthroughStmts().empty())
1239 return;
1240
1241 CFG *Cfg = AC.getCFG();
1242
1243 if (!Cfg)
1244 return;
1245
1246 FM.fillReachableBlocks(Cfg);
1247
1248 for (const CFGBlock *B : llvm::reverse(*Cfg)) {
1249 const Stmt *Label = B->getLabel();
1250
1251 if (!Label || !isa<SwitchCase>(Label))
1252 continue;
1253
1254 int AnnotatedCnt;
1255
1256 bool IsTemplateInstantiation = false;
1257 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(AC.getDecl()))
1258 IsTemplateInstantiation = Function->isTemplateInstantiation();
1259 if (!FM.checkFallThroughIntoBlock(*B, AnnotatedCnt,
1260 IsTemplateInstantiation))
1261 continue;
1262
1263 S.Diag(Label->getLocStart(),
1264 PerFunction ? diag::warn_unannotated_fallthrough_per_function
1265 : diag::warn_unannotated_fallthrough);
1266
1267 if (!AnnotatedCnt) {
1268 SourceLocation L = Label->getLocStart();
1269 if (L.isMacroID())
1270 continue;
1271 if (S.getLangOpts().CPlusPlus11) {
1272 const Stmt *Term = B->getTerminator();
1273 // Skip empty cases.
1274 while (B->empty() && !Term && B->succ_size() == 1) {
1275 B = *B->succ_begin();
1276 Term = B->getTerminator();
1277 }
1278 if (!(B->empty() && Term && isa<BreakStmt>(Term))) {
1279 Preprocessor &PP = S.getPreprocessor();
1280 StringRef AnnotationSpelling = getFallthroughAttrSpelling(PP, L);
1281 SmallString<64> TextToInsert(AnnotationSpelling);
1282 TextToInsert += "; ";
1283 S.Diag(L, diag::note_insert_fallthrough_fixit) <<
1284 AnnotationSpelling <<
1285 FixItHint::CreateInsertion(L, TextToInsert);
1286 }
1287 }
1288 S.Diag(L, diag::note_insert_break_fixit) <<
1289 FixItHint::CreateInsertion(L, "break; ");
1290 }
1291 }
1292
1293 for (const auto *F : FM.getFallthroughStmts())
1294 S.Diag(F->getLocStart(), diag::err_fallthrough_attr_invalid_placement);
1295}
1296
1297static bool isInLoop(const ASTContext &Ctx, const ParentMap &PM,
1298 const Stmt *S) {
1299 assert(S)(static_cast <bool> (S) ? void (0) : __assert_fail ("S"
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/AnalysisBasedWarnings.cpp"
, 1299, __extension__ __PRETTY_FUNCTION__))
;
1300
1301 do {
1302 switch (S->getStmtClass()) {
1303 case Stmt::ForStmtClass:
1304 case Stmt::WhileStmtClass:
1305 case Stmt::CXXForRangeStmtClass:
1306 case Stmt::ObjCForCollectionStmtClass:
1307 return true;
1308 case Stmt::DoStmtClass: {
1309 const Expr *Cond = cast<DoStmt>(S)->getCond();
1310 llvm::APSInt Val;
1311 if (!Cond->EvaluateAsInt(Val, Ctx))
1312 return true;
1313 return Val.getBoolValue();
1314 }
1315 default:
1316 break;
1317 }
1318 } while ((S = PM.getParent(S)));
1319
1320 return false;
1321}
1322
1323static void diagnoseRepeatedUseOfWeak(Sema &S,
1324 const sema::FunctionScopeInfo *CurFn,
1325 const Decl *D,
1326 const ParentMap &PM) {
1327 typedef sema::FunctionScopeInfo::WeakObjectProfileTy WeakObjectProfileTy;
1328 typedef sema::FunctionScopeInfo::WeakObjectUseMap WeakObjectUseMap;
1329 typedef sema::FunctionScopeInfo::WeakUseVector WeakUseVector;
1330 typedef std::pair<const Stmt *, WeakObjectUseMap::const_iterator>
1331 StmtUsesPair;
1332
1333 ASTContext &Ctx = S.getASTContext();
1334
1335 const WeakObjectUseMap &WeakMap = CurFn->getWeakObjectUses();
1336
1337 // Extract all weak objects that are referenced more than once.
1338 SmallVector<StmtUsesPair, 8> UsesByStmt;
1339 for (WeakObjectUseMap::const_iterator I = WeakMap.begin(), E = WeakMap.end();
1340 I != E; ++I) {
1341 const WeakUseVector &Uses = I->second;
1342
1343 // Find the first read of the weak object.
1344 WeakUseVector::const_iterator UI = Uses.begin(), UE = Uses.end();
1345 for ( ; UI != UE; ++UI) {
1346 if (UI->isUnsafe())
1347 break;
1348 }
1349
1350 // If there were only writes to this object, don't warn.
1351 if (UI == UE)
1352 continue;
1353
1354 // If there was only one read, followed by any number of writes, and the
1355 // read is not within a loop, don't warn. Additionally, don't warn in a
1356 // loop if the base object is a local variable -- local variables are often
1357 // changed in loops.
1358 if (UI == Uses.begin()) {
1359 WeakUseVector::const_iterator UI2 = UI;
1360 for (++UI2; UI2 != UE; ++UI2)
1361 if (UI2->isUnsafe())
1362 break;
1363
1364 if (UI2 == UE) {
1365 if (!isInLoop(Ctx, PM, UI->getUseExpr()))
1366 continue;
1367
1368 const WeakObjectProfileTy &Profile = I->first;
1369 if (!Profile.isExactProfile())
1370 continue;
1371
1372 const NamedDecl *Base = Profile.getBase();
1373 if (!Base)
1374 Base = Profile.getProperty();
1375 assert(Base && "A profile always has a base or property.")(static_cast <bool> (Base && "A profile always has a base or property."
) ? void (0) : __assert_fail ("Base && \"A profile always has a base or property.\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/AnalysisBasedWarnings.cpp"
, 1375, __extension__ __PRETTY_FUNCTION__))
;
1376
1377 if (const VarDecl *BaseVar = dyn_cast<VarDecl>(Base))
1378 if (BaseVar->hasLocalStorage() && !isa<ParmVarDecl>(Base))
1379 continue;
1380 }
1381 }
1382
1383 UsesByStmt.push_back(StmtUsesPair(UI->getUseExpr(), I));
1384 }
1385
1386 if (UsesByStmt.empty())
1387 return;
1388
1389 // Sort by first use so that we emit the warnings in a deterministic order.
1390 SourceManager &SM = S.getSourceManager();
1391 llvm::sort(UsesByStmt.begin(), UsesByStmt.end(),
1392 [&SM](const StmtUsesPair &LHS, const StmtUsesPair &RHS) {
1393 return SM.isBeforeInTranslationUnit(LHS.first->getLocStart(),
1394 RHS.first->getLocStart());
1395 });
1396
1397 // Classify the current code body for better warning text.
1398 // This enum should stay in sync with the cases in
1399 // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
1400 // FIXME: Should we use a common classification enum and the same set of
1401 // possibilities all throughout Sema?
1402 enum {
1403 Function,
1404 Method,
1405 Block,
1406 Lambda
1407 } FunctionKind;
1408
1409 if (isa<sema::BlockScopeInfo>(CurFn))
1410 FunctionKind = Block;
1411 else if (isa<sema::LambdaScopeInfo>(CurFn))
1412 FunctionKind = Lambda;
1413 else if (isa<ObjCMethodDecl>(D))
1414 FunctionKind = Method;
1415 else
1416 FunctionKind = Function;
1417
1418 // Iterate through the sorted problems and emit warnings for each.
1419 for (const auto &P : UsesByStmt) {
1420 const Stmt *FirstRead = P.first;
1421 const WeakObjectProfileTy &Key = P.second->first;
1422 const WeakUseVector &Uses = P.second->second;
1423
1424 // For complicated expressions like 'a.b.c' and 'x.b.c', WeakObjectProfileTy
1425 // may not contain enough information to determine that these are different
1426 // properties. We can only be 100% sure of a repeated use in certain cases,
1427 // and we adjust the diagnostic kind accordingly so that the less certain
1428 // case can be turned off if it is too noisy.
1429 unsigned DiagKind;
1430 if (Key.isExactProfile())
1431 DiagKind = diag::warn_arc_repeated_use_of_weak;
1432 else
1433 DiagKind = diag::warn_arc_possible_repeated_use_of_weak;
1434
1435 // Classify the weak object being accessed for better warning text.
1436 // This enum should stay in sync with the cases in
1437 // warn_arc_repeated_use_of_weak and warn_arc_possible_repeated_use_of_weak.
1438 enum {
1439 Variable,
1440 Property,
1441 ImplicitProperty,
1442 Ivar
1443 } ObjectKind;
1444
1445 const NamedDecl *KeyProp = Key.getProperty();
1446 if (isa<VarDecl>(KeyProp))
1447 ObjectKind = Variable;
1448 else if (isa<ObjCPropertyDecl>(KeyProp))
1449 ObjectKind = Property;
1450 else if (isa<ObjCMethodDecl>(KeyProp))
1451 ObjectKind = ImplicitProperty;
1452 else if (isa<ObjCIvarDecl>(KeyProp))
1453 ObjectKind = Ivar;
1454 else
1455 llvm_unreachable("Unexpected weak object kind!")::llvm::llvm_unreachable_internal("Unexpected weak object kind!"
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/AnalysisBasedWarnings.cpp"
, 1455)
;
1456
1457 // Do not warn about IBOutlet weak property receivers being set to null
1458 // since they are typically only used from the main thread.
1459 if (const ObjCPropertyDecl *Prop = dyn_cast<ObjCPropertyDecl>(KeyProp))
1460 if (Prop->hasAttr<IBOutletAttr>())
1461 continue;
1462
1463 // Show the first time the object was read.
1464 S.Diag(FirstRead->getLocStart(), DiagKind)
1465 << int(ObjectKind) << KeyProp << int(FunctionKind)
1466 << FirstRead->getSourceRange();
1467
1468 // Print all the other accesses as notes.
1469 for (const auto &Use : Uses) {
1470 if (Use.getUseExpr() == FirstRead)
1471 continue;
1472 S.Diag(Use.getUseExpr()->getLocStart(),
1473 diag::note_arc_weak_also_accessed_here)
1474 << Use.getUseExpr()->getSourceRange();
1475 }
1476 }
1477}
1478
1479namespace {
1480class UninitValsDiagReporter : public UninitVariablesHandler {
1481 Sema &S;
1482 typedef SmallVector<UninitUse, 2> UsesVec;
1483 typedef llvm::PointerIntPair<UsesVec *, 1, bool> MappedType;
1484 // Prefer using MapVector to DenseMap, so that iteration order will be
1485 // the same as insertion order. This is needed to obtain a deterministic
1486 // order of diagnostics when calling flushDiagnostics().
1487 typedef llvm::MapVector<const VarDecl *, MappedType> UsesMap;
1488 UsesMap uses;
1489
1490public:
1491 UninitValsDiagReporter(Sema &S) : S(S) {}
1492 ~UninitValsDiagReporter() override { flushDiagnostics(); }
1493
1494 MappedType &getUses(const VarDecl *vd) {
1495 MappedType &V = uses[vd];
1496 if (!V.getPointer())
2
Assuming the condition is true
3
Taking true branch
1497 V.setPointer(new UsesVec());
4
Memory is allocated
1498 return V;
5
Potential memory leak
1499 }
1500
1501 void handleUseOfUninitVariable(const VarDecl *vd,
1502 const UninitUse &use) override {
1503 getUses(vd).getPointer()->push_back(use);
1504 }
1505
1506 void handleSelfInit(const VarDecl *vd) override {
1507 getUses(vd).setInt(true);
1
Calling 'UninitValsDiagReporter::getUses'
1508 }
1509
1510 void flushDiagnostics() {
1511 for (const auto &P : uses) {
1512 const VarDecl *vd = P.first;
1513 const MappedType &V = P.second;
1514
1515 UsesVec *vec = V.getPointer();
1516 bool hasSelfInit = V.getInt();
1517
1518 // Specially handle the case where we have uses of an uninitialized
1519 // variable, but the root cause is an idiomatic self-init. We want
1520 // to report the diagnostic at the self-init since that is the root cause.
1521 if (!vec->empty() && hasSelfInit && hasAlwaysUninitializedUse(vec))
1522 DiagnoseUninitializedUse(S, vd,
1523 UninitUse(vd->getInit()->IgnoreParenCasts(),
1524 /* isAlwaysUninit */ true),
1525 /* alwaysReportSelfInit */ true);
1526 else {
1527 // Sort the uses by their SourceLocations. While not strictly
1528 // guaranteed to produce them in line/column order, this will provide
1529 // a stable ordering.
1530 llvm::sort(vec->begin(), vec->end(),
1531 [](const UninitUse &a, const UninitUse &b) {
1532 // Prefer a more confident report over a less confident one.
1533 if (a.getKind() != b.getKind())
1534 return a.getKind() > b.getKind();
1535 return a.getUser()->getLocStart() < b.getUser()->getLocStart();
1536 });
1537
1538 for (const auto &U : *vec) {
1539 // If we have self-init, downgrade all uses to 'may be uninitialized'.
1540 UninitUse Use = hasSelfInit ? UninitUse(U.getUser(), false) : U;
1541
1542 if (DiagnoseUninitializedUse(S, vd, Use))
1543 // Skip further diagnostics for this variable. We try to warn only
1544 // on the first point at which a variable is used uninitialized.
1545 break;
1546 }
1547 }
1548
1549 // Release the uses vector.
1550 delete vec;
1551 }
1552
1553 uses.clear();
1554 }
1555
1556private:
1557 static bool hasAlwaysUninitializedUse(const UsesVec* vec) {
1558 return std::any_of(vec->begin(), vec->end(), [](const UninitUse &U) {
1559 return U.getKind() == UninitUse::Always ||
1560 U.getKind() == UninitUse::AfterCall ||
1561 U.getKind() == UninitUse::AfterDecl;
1562 });
1563 }
1564};
1565} // anonymous namespace
1566
1567namespace clang {
1568namespace {
1569typedef SmallVector<PartialDiagnosticAt, 1> OptionalNotes;
1570typedef std::pair<PartialDiagnosticAt, OptionalNotes> DelayedDiag;
1571typedef std::list<DelayedDiag> DiagList;
1572
1573struct SortDiagBySourceLocation {
1574 SourceManager &SM;
1575 SortDiagBySourceLocation(SourceManager &SM) : SM(SM) {}
1576
1577 bool operator()(const DelayedDiag &left, const DelayedDiag &right) {
1578 // Although this call will be slow, this is only called when outputting
1579 // multiple warnings.
1580 return SM.isBeforeInTranslationUnit(left.first.first, right.first.first);
1581 }
1582};
1583} // anonymous namespace
1584} // namespace clang
1585
1586//===----------------------------------------------------------------------===//
1587// -Wthread-safety
1588//===----------------------------------------------------------------------===//
1589namespace clang {
1590namespace threadSafety {
1591namespace {
1592class ThreadSafetyReporter : public clang::threadSafety::ThreadSafetyHandler {
1593 Sema &S;
1594 DiagList Warnings;
1595 SourceLocation FunLocation, FunEndLocation;
1596
1597 const FunctionDecl *CurrentFunction;
1598 bool Verbose;
1599
1600 OptionalNotes getNotes() const {
1601 if (Verbose && CurrentFunction) {
1602 PartialDiagnosticAt FNote(CurrentFunction->getBody()->getLocStart(),
1603 S.PDiag(diag::note_thread_warning_in_fun)
1604 << CurrentFunction);
1605 return OptionalNotes(1, FNote);
1606 }
1607 return OptionalNotes();
1608 }
1609
1610 OptionalNotes getNotes(const PartialDiagnosticAt &Note) const {
1611 OptionalNotes ONS(1, Note);
1612 if (Verbose && CurrentFunction) {
1613 PartialDiagnosticAt FNote(CurrentFunction->getBody()->getLocStart(),
1614 S.PDiag(diag::note_thread_warning_in_fun)
1615 << CurrentFunction);
1616 ONS.push_back(std::move(FNote));
1617 }
1618 return ONS;
1619 }
1620
1621 OptionalNotes getNotes(const PartialDiagnosticAt &Note1,
1622 const PartialDiagnosticAt &Note2) const {
1623 OptionalNotes ONS;
1624 ONS.push_back(Note1);
1625 ONS.push_back(Note2);
1626 if (Verbose && CurrentFunction) {
1627 PartialDiagnosticAt FNote(CurrentFunction->getBody()->getLocStart(),
1628 S.PDiag(diag::note_thread_warning_in_fun)
1629 << CurrentFunction);
1630 ONS.push_back(std::move(FNote));
1631 }
1632 return ONS;
1633 }
1634
1635 // Helper functions
1636 void warnLockMismatch(unsigned DiagID, StringRef Kind, Name LockName,
1637 SourceLocation Loc) {
1638 // Gracefully handle rare cases when the analysis can't get a more
1639 // precise source location.
1640 if (!Loc.isValid())
1641 Loc = FunLocation;
1642 PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind << LockName);
1643 Warnings.emplace_back(std::move(Warning), getNotes());
1644 }
1645
1646 public:
1647 ThreadSafetyReporter(Sema &S, SourceLocation FL, SourceLocation FEL)
1648 : S(S), FunLocation(FL), FunEndLocation(FEL),
1649 CurrentFunction(nullptr), Verbose(false) {}
1650
1651 void setVerbose(bool b) { Verbose = b; }
1652
1653 /// Emit all buffered diagnostics in order of sourcelocation.
1654 /// We need to output diagnostics produced while iterating through
1655 /// the lockset in deterministic order, so this function orders diagnostics
1656 /// and outputs them.
1657 void emitDiagnostics() {
1658 Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
1659 for (const auto &Diag : Warnings) {
1660 S.Diag(Diag.first.first, Diag.first.second);
1661 for (const auto &Note : Diag.second)
1662 S.Diag(Note.first, Note.second);
1663 }
1664 }
1665
1666 void handleInvalidLockExp(StringRef Kind, SourceLocation Loc) override {
1667 PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_cannot_resolve_lock)
1668 << Loc);
1669 Warnings.emplace_back(std::move(Warning), getNotes());
1670 }
1671
1672 void handleUnmatchedUnlock(StringRef Kind, Name LockName,
1673 SourceLocation Loc) override {
1674 warnLockMismatch(diag::warn_unlock_but_no_lock, Kind, LockName, Loc);
1675 }
1676
1677 void handleIncorrectUnlockKind(StringRef Kind, Name LockName,
1678 LockKind Expected, LockKind Received,
1679 SourceLocation Loc) override {
1680 if (Loc.isInvalid())
1681 Loc = FunLocation;
1682 PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_unlock_kind_mismatch)
1683 << Kind << LockName << Received
1684 << Expected);
1685 Warnings.emplace_back(std::move(Warning), getNotes());
1686 }
1687
1688 void handleDoubleLock(StringRef Kind, Name LockName, SourceLocation Loc) override {
1689 warnLockMismatch(diag::warn_double_lock, Kind, LockName, Loc);
1690 }
1691
1692 void handleMutexHeldEndOfScope(StringRef Kind, Name LockName,
1693 SourceLocation LocLocked,
1694 SourceLocation LocEndOfScope,
1695 LockErrorKind LEK) override {
1696 unsigned DiagID = 0;
1697 switch (LEK) {
1698 case LEK_LockedSomePredecessors:
1699 DiagID = diag::warn_lock_some_predecessors;
1700 break;
1701 case LEK_LockedSomeLoopIterations:
1702 DiagID = diag::warn_expecting_lock_held_on_loop;
1703 break;
1704 case LEK_LockedAtEndOfFunction:
1705 DiagID = diag::warn_no_unlock;
1706 break;
1707 case LEK_NotLockedAtEndOfFunction:
1708 DiagID = diag::warn_expecting_locked;
1709 break;
1710 }
1711 if (LocEndOfScope.isInvalid())
1712 LocEndOfScope = FunEndLocation;
1713
1714 PartialDiagnosticAt Warning(LocEndOfScope, S.PDiag(DiagID) << Kind
1715 << LockName);
1716 if (LocLocked.isValid()) {
1717 PartialDiagnosticAt Note(LocLocked, S.PDiag(diag::note_locked_here)
1718 << Kind);
1719 Warnings.emplace_back(std::move(Warning), getNotes(Note));
1720 return;
1721 }
1722 Warnings.emplace_back(std::move(Warning), getNotes());
1723 }
1724
1725 void handleExclusiveAndShared(StringRef Kind, Name LockName,
1726 SourceLocation Loc1,
1727 SourceLocation Loc2) override {
1728 PartialDiagnosticAt Warning(Loc1,
1729 S.PDiag(diag::warn_lock_exclusive_and_shared)
1730 << Kind << LockName);
1731 PartialDiagnosticAt Note(Loc2, S.PDiag(diag::note_lock_exclusive_and_shared)
1732 << Kind << LockName);
1733 Warnings.emplace_back(std::move(Warning), getNotes(Note));
1734 }
1735
1736 void handleNoMutexHeld(StringRef Kind, const NamedDecl *D,
1737 ProtectedOperationKind POK, AccessKind AK,
1738 SourceLocation Loc) override {
1739 assert((POK == POK_VarAccess || POK == POK_VarDereference) &&(static_cast <bool> ((POK == POK_VarAccess || POK == POK_VarDereference
) && "Only works for variables") ? void (0) : __assert_fail
("(POK == POK_VarAccess || POK == POK_VarDereference) && \"Only works for variables\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/AnalysisBasedWarnings.cpp"
, 1740, __extension__ __PRETTY_FUNCTION__))
1740 "Only works for variables")(static_cast <bool> ((POK == POK_VarAccess || POK == POK_VarDereference
) && "Only works for variables") ? void (0) : __assert_fail
("(POK == POK_VarAccess || POK == POK_VarDereference) && \"Only works for variables\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/AnalysisBasedWarnings.cpp"
, 1740, __extension__ __PRETTY_FUNCTION__))
;
1741 unsigned DiagID = POK == POK_VarAccess?
1742 diag::warn_variable_requires_any_lock:
1743 diag::warn_var_deref_requires_any_lock;
1744 PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID)
1745 << D << getLockKindFromAccessKind(AK));
1746 Warnings.emplace_back(std::move(Warning), getNotes());
1747 }
1748
1749 void handleMutexNotHeld(StringRef Kind, const NamedDecl *D,
1750 ProtectedOperationKind POK, Name LockName,
1751 LockKind LK, SourceLocation Loc,
1752 Name *PossibleMatch) override {
1753 unsigned DiagID = 0;
1754 if (PossibleMatch) {
1755 switch (POK) {
1756 case POK_VarAccess:
1757 DiagID = diag::warn_variable_requires_lock_precise;
1758 break;
1759 case POK_VarDereference:
1760 DiagID = diag::warn_var_deref_requires_lock_precise;
1761 break;
1762 case POK_FunctionCall:
1763 DiagID = diag::warn_fun_requires_lock_precise;
1764 break;
1765 case POK_PassByRef:
1766 DiagID = diag::warn_guarded_pass_by_reference;
1767 break;
1768 case POK_PtPassByRef:
1769 DiagID = diag::warn_pt_guarded_pass_by_reference;
1770 break;
1771 }
1772 PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind
1773 << D
1774 << LockName << LK);
1775 PartialDiagnosticAt Note(Loc, S.PDiag(diag::note_found_mutex_near_match)
1776 << *PossibleMatch);
1777 if (Verbose && POK == POK_VarAccess) {
1778 PartialDiagnosticAt VNote(D->getLocation(),
1779 S.PDiag(diag::note_guarded_by_declared_here)
1780 << D->getNameAsString());
1781 Warnings.emplace_back(std::move(Warning), getNotes(Note, VNote));
1782 } else
1783 Warnings.emplace_back(std::move(Warning), getNotes(Note));
1784 } else {
1785 switch (POK) {
1786 case POK_VarAccess:
1787 DiagID = diag::warn_variable_requires_lock;
1788 break;
1789 case POK_VarDereference:
1790 DiagID = diag::warn_var_deref_requires_lock;
1791 break;
1792 case POK_FunctionCall:
1793 DiagID = diag::warn_fun_requires_lock;
1794 break;
1795 case POK_PassByRef:
1796 DiagID = diag::warn_guarded_pass_by_reference;
1797 break;
1798 case POK_PtPassByRef:
1799 DiagID = diag::warn_pt_guarded_pass_by_reference;
1800 break;
1801 }
1802 PartialDiagnosticAt Warning(Loc, S.PDiag(DiagID) << Kind
1803 << D
1804 << LockName << LK);
1805 if (Verbose && POK == POK_VarAccess) {
1806 PartialDiagnosticAt Note(D->getLocation(),
1807 S.PDiag(diag::note_guarded_by_declared_here));
1808 Warnings.emplace_back(std::move(Warning), getNotes(Note));
1809 } else
1810 Warnings.emplace_back(std::move(Warning), getNotes());
1811 }
1812 }
1813
1814 void handleNegativeNotHeld(StringRef Kind, Name LockName, Name Neg,
1815 SourceLocation Loc) override {
1816 PartialDiagnosticAt Warning(Loc,
1817 S.PDiag(diag::warn_acquire_requires_negative_cap)
1818 << Kind << LockName << Neg);
1819 Warnings.emplace_back(std::move(Warning), getNotes());
1820 }
1821
1822 void handleFunExcludesLock(StringRef Kind, Name FunName, Name LockName,
1823 SourceLocation Loc) override {
1824 PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_fun_excludes_mutex)
1825 << Kind << FunName << LockName);
1826 Warnings.emplace_back(std::move(Warning), getNotes());
1827 }
1828
1829 void handleLockAcquiredBefore(StringRef Kind, Name L1Name, Name L2Name,
1830 SourceLocation Loc) override {
1831 PartialDiagnosticAt Warning(Loc,
1832 S.PDiag(diag::warn_acquired_before) << Kind << L1Name << L2Name);
1833 Warnings.emplace_back(std::move(Warning), getNotes());
1834 }
1835
1836 void handleBeforeAfterCycle(Name L1Name, SourceLocation Loc) override {
1837 PartialDiagnosticAt Warning(Loc,
1838 S.PDiag(diag::warn_acquired_before_after_cycle) << L1Name);
1839 Warnings.emplace_back(std::move(Warning), getNotes());
1840 }
1841
1842 void enterFunction(const FunctionDecl* FD) override {
1843 CurrentFunction = FD;
1844 }
1845
1846 void leaveFunction(const FunctionDecl* FD) override {
1847 CurrentFunction = nullptr;
1848 }
1849};
1850} // anonymous namespace
1851} // namespace threadSafety
1852} // namespace clang
1853
1854//===----------------------------------------------------------------------===//
1855// -Wconsumed
1856//===----------------------------------------------------------------------===//
1857
1858namespace clang {
1859namespace consumed {
1860namespace {
1861class ConsumedWarningsHandler : public ConsumedWarningsHandlerBase {
1862
1863 Sema &S;
1864 DiagList Warnings;
1865
1866public:
1867
1868 ConsumedWarningsHandler(Sema &S) : S(S) {}
1869
1870 void emitDiagnostics() override {
1871 Warnings.sort(SortDiagBySourceLocation(S.getSourceManager()));
1872 for (const auto &Diag : Warnings) {
1873 S.Diag(Diag.first.first, Diag.first.second);
1874 for (const auto &Note : Diag.second)
1875 S.Diag(Note.first, Note.second);
1876 }
1877 }
1878
1879 void warnLoopStateMismatch(SourceLocation Loc,
1880 StringRef VariableName) override {
1881 PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_loop_state_mismatch) <<
1882 VariableName);
1883
1884 Warnings.emplace_back(std::move(Warning), OptionalNotes());
1885 }
1886
1887 void warnParamReturnTypestateMismatch(SourceLocation Loc,
1888 StringRef VariableName,
1889 StringRef ExpectedState,
1890 StringRef ObservedState) override {
1891
1892 PartialDiagnosticAt Warning(Loc, S.PDiag(
1893 diag::warn_param_return_typestate_mismatch) << VariableName <<
1894 ExpectedState << ObservedState);
1895
1896 Warnings.emplace_back(std::move(Warning), OptionalNotes());
1897 }
1898
1899 void warnParamTypestateMismatch(SourceLocation Loc, StringRef ExpectedState,
1900 StringRef ObservedState) override {
1901
1902 PartialDiagnosticAt Warning(Loc, S.PDiag(
1903 diag::warn_param_typestate_mismatch) << ExpectedState << ObservedState);
1904
1905 Warnings.emplace_back(std::move(Warning), OptionalNotes());
1906 }
1907
1908 void warnReturnTypestateForUnconsumableType(SourceLocation Loc,
1909 StringRef TypeName) override {
1910 PartialDiagnosticAt Warning(Loc, S.PDiag(
1911 diag::warn_return_typestate_for_unconsumable_type) << TypeName);
1912
1913 Warnings.emplace_back(std::move(Warning), OptionalNotes());
1914 }
1915
1916 void warnReturnTypestateMismatch(SourceLocation Loc, StringRef ExpectedState,
1917 StringRef ObservedState) override {
1918
1919 PartialDiagnosticAt Warning(Loc, S.PDiag(
1920 diag::warn_return_typestate_mismatch) << ExpectedState << ObservedState);
1921
1922 Warnings.emplace_back(std::move(Warning), OptionalNotes());
1923 }
1924
1925 void warnUseOfTempInInvalidState(StringRef MethodName, StringRef State,
1926 SourceLocation Loc) override {
1927
1928 PartialDiagnosticAt Warning(Loc, S.PDiag(
1929 diag::warn_use_of_temp_in_invalid_state) << MethodName << State);
1930
1931 Warnings.emplace_back(std::move(Warning), OptionalNotes());
1932 }
1933
1934 void warnUseInInvalidState(StringRef MethodName, StringRef VariableName,
1935 StringRef State, SourceLocation Loc) override {
1936
1937 PartialDiagnosticAt Warning(Loc, S.PDiag(diag::warn_use_in_invalid_state) <<
1938 MethodName << VariableName << State);
1939
1940 Warnings.emplace_back(std::move(Warning), OptionalNotes());
1941 }
1942};
1943} // anonymous namespace
1944} // namespace consumed
1945} // namespace clang
1946
1947//===----------------------------------------------------------------------===//
1948// AnalysisBasedWarnings - Worker object used by Sema to execute analysis-based
1949// warnings on a function, method, or block.
1950//===----------------------------------------------------------------------===//
1951
1952clang::sema::AnalysisBasedWarnings::Policy::Policy() {
1953 enableCheckFallThrough = 1;
1954 enableCheckUnreachable = 0;
1955 enableThreadSafetyAnalysis = 0;
1956 enableConsumedAnalysis = 0;
1957}
1958
1959static unsigned isEnabled(DiagnosticsEngine &D, unsigned diag) {
1960 return (unsigned)!D.isIgnored(diag, SourceLocation());
1961}
1962
1963clang::sema::AnalysisBasedWarnings::AnalysisBasedWarnings(Sema &s)
1964 : S(s),
1965 NumFunctionsAnalyzed(0),
1966 NumFunctionsWithBadCFGs(0),
1967 NumCFGBlocks(0),
1968 MaxCFGBlocksPerFunction(0),
1969 NumUninitAnalysisFunctions(0),
1970 NumUninitAnalysisVariables(0),
1971 MaxUninitAnalysisVariablesPerFunction(0),
1972 NumUninitAnalysisBlockVisits(0),
1973 MaxUninitAnalysisBlockVisitsPerFunction(0) {
1974
1975 using namespace diag;
1976 DiagnosticsEngine &D = S.getDiagnostics();
1977
1978 DefaultPolicy.enableCheckUnreachable =
1979 isEnabled(D, warn_unreachable) ||
1980 isEnabled(D, warn_unreachable_break) ||
1981 isEnabled(D, warn_unreachable_return) ||
1982 isEnabled(D, warn_unreachable_loop_increment);
1983
1984 DefaultPolicy.enableThreadSafetyAnalysis =
1985 isEnabled(D, warn_double_lock);
1986
1987 DefaultPolicy.enableConsumedAnalysis =
1988 isEnabled(D, warn_use_in_invalid_state);
1989}
1990
1991static void flushDiagnostics(Sema &S, const sema::FunctionScopeInfo *fscope) {
1992 for (const auto &D : fscope->PossiblyUnreachableDiags)
1993 S.Diag(D.Loc, D.PD);
1994}
1995
1996void clang::sema::
1997AnalysisBasedWarnings::IssueWarnings(sema::AnalysisBasedWarnings::Policy P,
1998 sema::FunctionScopeInfo *fscope,
1999 const Decl *D, const BlockExpr *blkExpr) {
2000
2001 // We avoid doing analysis-based warnings when there are errors for
2002 // two reasons:
2003 // (1) The CFGs often can't be constructed (if the body is invalid), so
2004 // don't bother trying.
2005 // (2) The code already has problems; running the analysis just takes more
2006 // time.
2007 DiagnosticsEngine &Diags = S.getDiagnostics();
2008
2009 // Do not do any analysis if we are going to just ignore them.
2010 if (Diags.getIgnoreAllWarnings() ||
2011 (Diags.getSuppressSystemWarnings() &&
2012 S.SourceMgr.isInSystemHeader(D->getLocation())))
2013 return;
2014
2015 // For code in dependent contexts, we'll do this at instantiation time.
2016 if (cast<DeclContext>(D)->isDependentContext())
2017 return;
2018
2019 if (Diags.hasUncompilableErrorOccurred()) {
2020 // Flush out any possibly unreachable diagnostics.
2021 flushDiagnostics(S, fscope);
2022 return;
2023 }
2024
2025 const Stmt *Body = D->getBody();
2026 assert(Body)(static_cast <bool> (Body) ? void (0) : __assert_fail (
"Body", "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/AnalysisBasedWarnings.cpp"
, 2026, __extension__ __PRETTY_FUNCTION__))
;
2027
2028 // Construct the analysis context with the specified CFG build options.
2029 AnalysisDeclContext AC(/* AnalysisDeclContextManager */ nullptr, D);
2030
2031 // Don't generate EH edges for CallExprs as we'd like to avoid the n^2
2032 // explosion for destructors that can result and the compile time hit.
2033 AC.getCFGBuildOptions().PruneTriviallyFalseEdges = true;
2034 AC.getCFGBuildOptions().AddEHEdges = false;
2035 AC.getCFGBuildOptions().AddInitializers = true;
2036 AC.getCFGBuildOptions().AddImplicitDtors = true;
2037 AC.getCFGBuildOptions().AddTemporaryDtors = true;
2038 AC.getCFGBuildOptions().AddCXXNewAllocator = false;
2039 AC.getCFGBuildOptions().AddCXXDefaultInitExprInCtors = true;
2040
2041 // Force that certain expressions appear as CFGElements in the CFG. This
2042 // is used to speed up various analyses.
2043 // FIXME: This isn't the right factoring. This is here for initial
2044 // prototyping, but we need a way for analyses to say what expressions they
2045 // expect to always be CFGElements and then fill in the BuildOptions
2046 // appropriately. This is essentially a layering violation.
2047 if (P.enableCheckUnreachable || P.enableThreadSafetyAnalysis ||
2048 P.enableConsumedAnalysis) {
2049 // Unreachable code analysis and thread safety require a linearized CFG.
2050 AC.getCFGBuildOptions().setAllAlwaysAdd();
2051 }
2052 else {
2053 AC.getCFGBuildOptions()
2054 .setAlwaysAdd(Stmt::BinaryOperatorClass)
2055 .setAlwaysAdd(Stmt::CompoundAssignOperatorClass)
2056 .setAlwaysAdd(Stmt::BlockExprClass)
2057 .setAlwaysAdd(Stmt::CStyleCastExprClass)
2058 .setAlwaysAdd(Stmt::DeclRefExprClass)
2059 .setAlwaysAdd(Stmt::ImplicitCastExprClass)
2060 .setAlwaysAdd(Stmt::UnaryOperatorClass)
2061 .setAlwaysAdd(Stmt::AttributedStmtClass);
2062 }
2063
2064 // Install the logical handler for -Wtautological-overlap-compare
2065 std::unique_ptr<LogicalErrorHandler> LEH;
2066 if (!Diags.isIgnored(diag::warn_tautological_overlap_comparison,
2067 D->getLocStart())) {
2068 LEH.reset(new LogicalErrorHandler(S));
2069 AC.getCFGBuildOptions().Observer = LEH.get();
2070 }
2071
2072 // Emit delayed diagnostics.
2073 if (!fscope->PossiblyUnreachableDiags.empty()) {
2074 bool analyzed = false;
2075
2076 // Register the expressions with the CFGBuilder.
2077 for (const auto &D : fscope->PossiblyUnreachableDiags) {
2078 if (D.stmt)
2079 AC.registerForcedBlockExpression(D.stmt);
2080 }
2081
2082 if (AC.getCFG()) {
2083 analyzed = true;
2084 for (const auto &D : fscope->PossiblyUnreachableDiags) {
2085 bool processed = false;
2086 if (D.stmt) {
2087 const CFGBlock *block = AC.getBlockForRegisteredExpression(D.stmt);
2088 CFGReverseBlockReachabilityAnalysis *cra =
2089 AC.getCFGReachablityAnalysis();
2090 // FIXME: We should be able to assert that block is non-null, but
2091 // the CFG analysis can skip potentially-evaluated expressions in
2092 // edge cases; see test/Sema/vla-2.c.
2093 if (block && cra) {
2094 // Can this block be reached from the entrance?
2095 if (cra->isReachable(&AC.getCFG()->getEntry(), block))
2096 S.Diag(D.Loc, D.PD);
2097 processed = true;
2098 }
2099 }
2100 if (!processed) {
2101 // Emit the warning anyway if we cannot map to a basic block.
2102 S.Diag(D.Loc, D.PD);
2103 }
2104 }
2105 }
2106
2107 if (!analyzed)
2108 flushDiagnostics(S, fscope);
2109 }
2110
2111 // Warning: check missing 'return'
2112 if (P.enableCheckFallThrough) {
2113 const CheckFallThroughDiagnostics &CD =
2114 (isa<BlockDecl>(D)
2115 ? CheckFallThroughDiagnostics::MakeForBlock()
2116 : (isa<CXXMethodDecl>(D) &&
2117 cast<CXXMethodDecl>(D)->getOverloadedOperator() == OO_Call &&
2118 cast<CXXMethodDecl>(D)->getParent()->isLambda())
2119 ? CheckFallThroughDiagnostics::MakeForLambda()
2120 : (fscope->isCoroutine()
2121 ? CheckFallThroughDiagnostics::MakeForCoroutine(D)
2122 : CheckFallThroughDiagnostics::MakeForFunction(D)));
2123 CheckFallThroughForBody(S, D, Body, blkExpr, CD, AC, fscope);
2124 }
2125
2126 // Warning: check for unreachable code
2127 if (P.enableCheckUnreachable) {
2128 // Only check for unreachable code on non-template instantiations.
2129 // Different template instantiations can effectively change the control-flow
2130 // and it is very difficult to prove that a snippet of code in a template
2131 // is unreachable for all instantiations.
2132 bool isTemplateInstantiation = false;
2133 if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
2134 isTemplateInstantiation = Function->isTemplateInstantiation();
2135 if (!isTemplateInstantiation)
2136 CheckUnreachable(S, AC);
2137 }
2138
2139 // Check for thread safety violations
2140 if (P.enableThreadSafetyAnalysis) {
2141 SourceLocation FL = AC.getDecl()->getLocation();
2142 SourceLocation FEL = AC.getDecl()->getLocEnd();
2143 threadSafety::ThreadSafetyReporter Reporter(S, FL, FEL);
2144 if (!Diags.isIgnored(diag::warn_thread_safety_beta, D->getLocStart()))
2145 Reporter.setIssueBetaWarnings(true);
2146 if (!Diags.isIgnored(diag::warn_thread_safety_verbose, D->getLocStart()))
2147 Reporter.setVerbose(true);
2148
2149 threadSafety::runThreadSafetyAnalysis(AC, Reporter,
2150 &S.ThreadSafetyDeclCache);
2151 Reporter.emitDiagnostics();
2152 }
2153
2154 // Check for violations of consumed properties.
2155 if (P.enableConsumedAnalysis) {
2156 consumed::ConsumedWarningsHandler WarningHandler(S);
2157 consumed::ConsumedAnalyzer Analyzer(WarningHandler);
2158 Analyzer.run(AC);
2159 }
2160
2161 if (!Diags.isIgnored(diag::warn_uninit_var, D->getLocStart()) ||
2162 !Diags.isIgnored(diag::warn_sometimes_uninit_var, D->getLocStart()) ||
2163 !Diags.isIgnored(diag::warn_maybe_uninit_var, D->getLocStart())) {
2164 if (CFG *cfg = AC.getCFG()) {
2165 UninitValsDiagReporter reporter(S);
2166 UninitVariablesAnalysisStats stats;
2167 std::memset(&stats, 0, sizeof(UninitVariablesAnalysisStats));
2168 runUninitializedVariablesAnalysis(*cast<DeclContext>(D), *cfg, AC,
2169 reporter, stats);
2170
2171 if (S.CollectStats && stats.NumVariablesAnalyzed > 0) {
2172 ++NumUninitAnalysisFunctions;
2173 NumUninitAnalysisVariables += stats.NumVariablesAnalyzed;
2174 NumUninitAnalysisBlockVisits += stats.NumBlockVisits;
2175 MaxUninitAnalysisVariablesPerFunction =
2176 std::max(MaxUninitAnalysisVariablesPerFunction,
2177 stats.NumVariablesAnalyzed);
2178 MaxUninitAnalysisBlockVisitsPerFunction =
2179 std::max(MaxUninitAnalysisBlockVisitsPerFunction,
2180 stats.NumBlockVisits);
2181 }
2182 }
2183 }
2184
2185 bool FallThroughDiagFull =
2186 !Diags.isIgnored(diag::warn_unannotated_fallthrough, D->getLocStart());
2187 bool FallThroughDiagPerFunction = !Diags.isIgnored(
2188 diag::warn_unannotated_fallthrough_per_function, D->getLocStart());
2189 if (FallThroughDiagFull || FallThroughDiagPerFunction ||
2190 fscope->HasFallthroughStmt) {
2191 DiagnoseSwitchLabelsFallthrough(S, AC, !FallThroughDiagFull);
2192 }
2193
2194 if (S.getLangOpts().ObjCWeak &&
2195 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, D->getLocStart()))
2196 diagnoseRepeatedUseOfWeak(S, fscope, D, AC.getParentMap());
2197
2198
2199 // Check for infinite self-recursion in functions
2200 if (!Diags.isIgnored(diag::warn_infinite_recursive_function,
2201 D->getLocStart())) {
2202 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2203 checkRecursiveFunction(S, FD, Body, AC);
2204 }
2205 }
2206
2207 // Check for throw out of non-throwing function.
2208 if (!Diags.isIgnored(diag::warn_throw_in_noexcept_func, D->getLocStart()))
2209 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
2210 if (S.getLangOpts().CPlusPlus && isNoexcept(FD))
2211 checkThrowInNonThrowingFunc(S, FD, AC);
2212
2213 // If none of the previous checks caused a CFG build, trigger one here
2214 // for -Wtautological-overlap-compare
2215 if (!Diags.isIgnored(diag::warn_tautological_overlap_comparison,
2216 D->getLocStart())) {
2217 AC.getCFG();
2218 }
2219
2220 // Collect statistics about the CFG if it was built.
2221 if (S.CollectStats && AC.isCFGBuilt()) {
2222 ++NumFunctionsAnalyzed;
2223 if (CFG *cfg = AC.getCFG()) {
2224 // If we successfully built a CFG for this context, record some more
2225 // detail information about it.
2226 NumCFGBlocks += cfg->getNumBlockIDs();
2227 MaxCFGBlocksPerFunction = std::max(MaxCFGBlocksPerFunction,
2228 cfg->getNumBlockIDs());
2229 } else {
2230 ++NumFunctionsWithBadCFGs;
2231 }
2232 }
2233}
2234
2235void clang::sema::AnalysisBasedWarnings::PrintStats() const {
2236 llvm::errs() << "\n*** Analysis Based Warnings Stats:\n";
2237
2238 unsigned NumCFGsBuilt = NumFunctionsAnalyzed - NumFunctionsWithBadCFGs;
2239 unsigned AvgCFGBlocksPerFunction =
2240 !NumCFGsBuilt ? 0 : NumCFGBlocks/NumCFGsBuilt;
2241 llvm::errs() << NumFunctionsAnalyzed << " functions analyzed ("
2242 << NumFunctionsWithBadCFGs << " w/o CFGs).\n"
2243 << " " << NumCFGBlocks << " CFG blocks built.\n"
2244 << " " << AvgCFGBlocksPerFunction
2245 << " average CFG blocks per function.\n"
2246 << " " << MaxCFGBlocksPerFunction
2247 << " max CFG blocks per function.\n";
2248
2249 unsigned AvgUninitVariablesPerFunction = !NumUninitAnalysisFunctions ? 0
2250 : NumUninitAnalysisVariables/NumUninitAnalysisFunctions;
2251 unsigned AvgUninitBlockVisitsPerFunction = !NumUninitAnalysisFunctions ? 0
2252 : NumUninitAnalysisBlockVisits/NumUninitAnalysisFunctions;
2253 llvm::errs() << NumUninitAnalysisFunctions
2254 << " functions analyzed for uninitialiazed variables\n"
2255 << " " << NumUninitAnalysisVariables << " variables analyzed.\n"
2256 << " " << AvgUninitVariablesPerFunction
2257 << " average variables per function.\n"
2258 << " " << MaxUninitAnalysisVariablesPerFunction
2259 << " max variables per function.\n"
2260 << " " << NumUninitAnalysisBlockVisits << " block visits.\n"
2261 << " " << AvgUninitBlockVisitsPerFunction
2262 << " average block visits per function.\n"
2263 << " " << MaxUninitAnalysisBlockVisitsPerFunction
2264 << " max block visits per function.\n";
2265}