Bug Summary

File:llvm/lib/Analysis/AssumeBundleQueries.cpp
Warning:line 149, column 11
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name AssumeBundleQueries.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -fhalf-no-semantic-interposition -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-12/lib/clang/12.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/build-llvm/lib/Analysis -I /build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis -I /build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/build-llvm/include -I /build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-12/lib/clang/12.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/build-llvm/lib/Analysis -fdebug-prefix-map=/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2021-01-24-223304-31662-1 -x c++ /build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/AssumeBundleQueries.cpp

/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/AssumeBundleQueries.cpp

1//===- AssumeBundleQueries.cpp - tool to query assume bundles ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#define DEBUG_TYPE"assume-queries" "assume-queries"
10
11#include "llvm/Analysis/AssumeBundleQueries.h"
12#include "llvm/ADT/Statistic.h"
13#include "llvm/Analysis/AssumptionCache.h"
14#include "llvm/Analysis/ValueTracking.h"
15#include "llvm/IR/Function.h"
16#include "llvm/IR/InstIterator.h"
17#include "llvm/IR/IntrinsicInst.h"
18#include "llvm/IR/PatternMatch.h"
19#include "llvm/Support/DebugCounter.h"
20
21using namespace llvm;
22using namespace llvm::PatternMatch;
23
24STATISTIC(NumAssumeQueries, "Number of Queries into an assume assume bundles")static llvm::Statistic NumAssumeQueries = {"assume-queries", "NumAssumeQueries"
, "Number of Queries into an assume assume bundles"}
;
25STATISTIC(static llvm::Statistic NumUsefullAssumeQueries = {"assume-queries"
, "NumUsefullAssumeQueries", "Number of Queries into an assume assume bundles that were satisfied"
}
26 NumUsefullAssumeQueries,static llvm::Statistic NumUsefullAssumeQueries = {"assume-queries"
, "NumUsefullAssumeQueries", "Number of Queries into an assume assume bundles that were satisfied"
}
27 "Number of Queries into an assume assume bundles that were satisfied")static llvm::Statistic NumUsefullAssumeQueries = {"assume-queries"
, "NumUsefullAssumeQueries", "Number of Queries into an assume assume bundles that were satisfied"
}
;
28
29DEBUG_COUNTER(AssumeQueryCounter, "assume-queries-counter",static const unsigned AssumeQueryCounter = DebugCounter::registerCounter
("assume-queries-counter", "Controls which assumes gets created"
)
30 "Controls which assumes gets created")static const unsigned AssumeQueryCounter = DebugCounter::registerCounter
("assume-queries-counter", "Controls which assumes gets created"
)
;
31
32static bool bundleHasArgument(const CallBase::BundleOpInfo &BOI, unsigned Idx) {
33 return BOI.End - BOI.Begin > Idx;
34}
35
36static Value *getValueFromBundleOpInfo(CallInst &Assume,
37 const CallBase::BundleOpInfo &BOI,
38 unsigned Idx) {
39 assert(bundleHasArgument(BOI, Idx) && "index out of range")((bundleHasArgument(BOI, Idx) && "index out of range"
) ? static_cast<void> (0) : __assert_fail ("bundleHasArgument(BOI, Idx) && \"index out of range\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/AssumeBundleQueries.cpp"
, 39, __PRETTY_FUNCTION__))
;
40 return (Assume.op_begin() + BOI.Begin + Idx)->get();
41}
42
43bool llvm::hasAttributeInAssume(CallInst &AssumeCI, Value *IsOn,
44 StringRef AttrName, uint64_t *ArgVal) {
45 assert(isa<IntrinsicInst>(AssumeCI) &&((isa<IntrinsicInst>(AssumeCI) && "this function is intended to be used on llvm.assume"
) ? static_cast<void> (0) : __assert_fail ("isa<IntrinsicInst>(AssumeCI) && \"this function is intended to be used on llvm.assume\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/AssumeBundleQueries.cpp"
, 46, __PRETTY_FUNCTION__))
46 "this function is intended to be used on llvm.assume")((isa<IntrinsicInst>(AssumeCI) && "this function is intended to be used on llvm.assume"
) ? static_cast<void> (0) : __assert_fail ("isa<IntrinsicInst>(AssumeCI) && \"this function is intended to be used on llvm.assume\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/AssumeBundleQueries.cpp"
, 46, __PRETTY_FUNCTION__))
;
47 IntrinsicInst &Assume = cast<IntrinsicInst>(AssumeCI);
48 assert(Assume.getIntrinsicID() == Intrinsic::assume &&((Assume.getIntrinsicID() == Intrinsic::assume && "this function is intended to be used on llvm.assume"
) ? static_cast<void> (0) : __assert_fail ("Assume.getIntrinsicID() == Intrinsic::assume && \"this function is intended to be used on llvm.assume\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/AssumeBundleQueries.cpp"
, 49, __PRETTY_FUNCTION__))
49 "this function is intended to be used on llvm.assume")((Assume.getIntrinsicID() == Intrinsic::assume && "this function is intended to be used on llvm.assume"
) ? static_cast<void> (0) : __assert_fail ("Assume.getIntrinsicID() == Intrinsic::assume && \"this function is intended to be used on llvm.assume\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/AssumeBundleQueries.cpp"
, 49, __PRETTY_FUNCTION__))
;
50 assert(Attribute::isExistingAttribute(AttrName) &&((Attribute::isExistingAttribute(AttrName) && "this attribute doesn't exist"
) ? static_cast<void> (0) : __assert_fail ("Attribute::isExistingAttribute(AttrName) && \"this attribute doesn't exist\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/AssumeBundleQueries.cpp"
, 51, __PRETTY_FUNCTION__))
51 "this attribute doesn't exist")((Attribute::isExistingAttribute(AttrName) && "this attribute doesn't exist"
) ? static_cast<void> (0) : __assert_fail ("Attribute::isExistingAttribute(AttrName) && \"this attribute doesn't exist\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/AssumeBundleQueries.cpp"
, 51, __PRETTY_FUNCTION__))
;
52 assert((ArgVal == nullptr || Attribute::doesAttrKindHaveArgument((((ArgVal == nullptr || Attribute::doesAttrKindHaveArgument( Attribute
::getAttrKindFromName(AttrName))) && "requested value for an attribute that has no argument"
) ? static_cast<void> (0) : __assert_fail ("(ArgVal == nullptr || Attribute::doesAttrKindHaveArgument( Attribute::getAttrKindFromName(AttrName))) && \"requested value for an attribute that has no argument\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/AssumeBundleQueries.cpp"
, 54, __PRETTY_FUNCTION__))
53 Attribute::getAttrKindFromName(AttrName))) &&(((ArgVal == nullptr || Attribute::doesAttrKindHaveArgument( Attribute
::getAttrKindFromName(AttrName))) && "requested value for an attribute that has no argument"
) ? static_cast<void> (0) : __assert_fail ("(ArgVal == nullptr || Attribute::doesAttrKindHaveArgument( Attribute::getAttrKindFromName(AttrName))) && \"requested value for an attribute that has no argument\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/AssumeBundleQueries.cpp"
, 54, __PRETTY_FUNCTION__))
54 "requested value for an attribute that has no argument")(((ArgVal == nullptr || Attribute::doesAttrKindHaveArgument( Attribute
::getAttrKindFromName(AttrName))) && "requested value for an attribute that has no argument"
) ? static_cast<void> (0) : __assert_fail ("(ArgVal == nullptr || Attribute::doesAttrKindHaveArgument( Attribute::getAttrKindFromName(AttrName))) && \"requested value for an attribute that has no argument\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/AssumeBundleQueries.cpp"
, 54, __PRETTY_FUNCTION__))
;
55 if (Assume.bundle_op_infos().empty())
56 return false;
57
58 for (auto &BOI : Assume.bundle_op_infos()) {
59 if (BOI.Tag->getKey() != AttrName)
60 continue;
61 if (IsOn && (BOI.End - BOI.Begin <= ABA_WasOn ||
62 IsOn != getValueFromBundleOpInfo(Assume, BOI, ABA_WasOn)))
63 continue;
64 if (ArgVal) {
65 assert(BOI.End - BOI.Begin > ABA_Argument)((BOI.End - BOI.Begin > ABA_Argument) ? static_cast<void
> (0) : __assert_fail ("BOI.End - BOI.Begin > ABA_Argument"
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/AssumeBundleQueries.cpp"
, 65, __PRETTY_FUNCTION__))
;
66 *ArgVal =
67 cast<ConstantInt>(getValueFromBundleOpInfo(Assume, BOI, ABA_Argument))
68 ->getZExtValue();
69 }
70 return true;
71 }
72 return false;
73}
74
75void llvm::fillMapFromAssume(CallInst &AssumeCI, RetainedKnowledgeMap &Result) {
76 IntrinsicInst &Assume = cast<IntrinsicInst>(AssumeCI);
77 assert(Assume.getIntrinsicID() == Intrinsic::assume &&((Assume.getIntrinsicID() == Intrinsic::assume && "this function is intended to be used on llvm.assume"
) ? static_cast<void> (0) : __assert_fail ("Assume.getIntrinsicID() == Intrinsic::assume && \"this function is intended to be used on llvm.assume\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/AssumeBundleQueries.cpp"
, 78, __PRETTY_FUNCTION__))
78 "this function is intended to be used on llvm.assume")((Assume.getIntrinsicID() == Intrinsic::assume && "this function is intended to be used on llvm.assume"
) ? static_cast<void> (0) : __assert_fail ("Assume.getIntrinsicID() == Intrinsic::assume && \"this function is intended to be used on llvm.assume\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/AssumeBundleQueries.cpp"
, 78, __PRETTY_FUNCTION__))
;
79 for (auto &Bundles : Assume.bundle_op_infos()) {
80 std::pair<Value *, Attribute::AttrKind> Key{
81 nullptr, Attribute::getAttrKindFromName(Bundles.Tag->getKey())};
82 if (bundleHasArgument(Bundles, ABA_WasOn))
83 Key.first = getValueFromBundleOpInfo(Assume, Bundles, ABA_WasOn);
84
85 if (Key.first == nullptr && Key.second == Attribute::None)
86 continue;
87 if (!bundleHasArgument(Bundles, ABA_Argument)) {
88 Result[Key][&Assume] = {0, 0};
89 continue;
90 }
91 unsigned Val = cast<ConstantInt>(
92 getValueFromBundleOpInfo(Assume, Bundles, ABA_Argument))
93 ->getZExtValue();
94 auto Lookup = Result.find(Key);
95 if (Lookup == Result.end() || !Lookup->second.count(&Assume)) {
96 Result[Key][&Assume] = {Val, Val};
97 continue;
98 }
99 Lookup->second[&Assume].Min = std::min(Val, Lookup->second[&Assume].Min);
100 Lookup->second[&Assume].Max = std::max(Val, Lookup->second[&Assume].Max);
101 }
102}
103
104RetainedKnowledge
105llvm::getKnowledgeFromBundle(CallInst &Assume,
106 const CallBase::BundleOpInfo &BOI) {
107 RetainedKnowledge Result;
108 Result.AttrKind = Attribute::getAttrKindFromName(BOI.Tag->getKey());
109 if (bundleHasArgument(BOI, ABA_WasOn))
110 Result.WasOn = getValueFromBundleOpInfo(Assume, BOI, ABA_WasOn);
111 auto GetArgOr1 = [&](unsigned Idx) -> unsigned {
112 if (auto *ConstInt = dyn_cast<ConstantInt>(
113 getValueFromBundleOpInfo(Assume, BOI, ABA_Argument + Idx)))
114 return ConstInt->getZExtValue();
115 return 1;
116 };
117 if (BOI.End - BOI.Begin > ABA_Argument)
118 Result.ArgValue = GetArgOr1(0);
119 if (Result.AttrKind == Attribute::Alignment)
120 if (BOI.End - BOI.Begin > ABA_Argument + 1)
121 Result.ArgValue = MinAlign(Result.ArgValue, GetArgOr1(1));
122 return Result;
123}
124
125RetainedKnowledge llvm::getKnowledgeFromOperandInAssume(CallInst &AssumeCI,
126 unsigned Idx) {
127 IntrinsicInst &Assume = cast<IntrinsicInst>(AssumeCI);
128 assert(Assume.getIntrinsicID() == Intrinsic::assume &&((Assume.getIntrinsicID() == Intrinsic::assume && "this function is intended to be used on llvm.assume"
) ? static_cast<void> (0) : __assert_fail ("Assume.getIntrinsicID() == Intrinsic::assume && \"this function is intended to be used on llvm.assume\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/AssumeBundleQueries.cpp"
, 129, __PRETTY_FUNCTION__))
129 "this function is intended to be used on llvm.assume")((Assume.getIntrinsicID() == Intrinsic::assume && "this function is intended to be used on llvm.assume"
) ? static_cast<void> (0) : __assert_fail ("Assume.getIntrinsicID() == Intrinsic::assume && \"this function is intended to be used on llvm.assume\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/AssumeBundleQueries.cpp"
, 129, __PRETTY_FUNCTION__))
;
130 CallBase::BundleOpInfo BOI = Assume.getBundleOpInfoForOperand(Idx);
131 return getKnowledgeFromBundle(AssumeCI, BOI);
132}
133
134bool llvm::isAssumeWithEmptyBundle(CallInst &CI) {
135 IntrinsicInst &Assume = cast<IntrinsicInst>(CI);
136 assert(Assume.getIntrinsicID() == Intrinsic::assume &&((Assume.getIntrinsicID() == Intrinsic::assume && "this function is intended to be used on llvm.assume"
) ? static_cast<void> (0) : __assert_fail ("Assume.getIntrinsicID() == Intrinsic::assume && \"this function is intended to be used on llvm.assume\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/AssumeBundleQueries.cpp"
, 137, __PRETTY_FUNCTION__))
137 "this function is intended to be used on llvm.assume")((Assume.getIntrinsicID() == Intrinsic::assume && "this function is intended to be used on llvm.assume"
) ? static_cast<void> (0) : __assert_fail ("Assume.getIntrinsicID() == Intrinsic::assume && \"this function is intended to be used on llvm.assume\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/lib/Analysis/AssumeBundleQueries.cpp"
, 137, __PRETTY_FUNCTION__))
;
138 return none_of(Assume.bundle_op_infos(),
139 [](const CallBase::BundleOpInfo &BOI) {
140 return BOI.Tag->getKey() != IgnoreBundleTag;
141 });
142}
143
144static CallInst::BundleOpInfo *getBundleFromUse(const Use *U) {
145 auto *Intr = dyn_cast<IntrinsicInst>(U->getUser());
2
Assuming the object is not a 'IntrinsicInst'
3
'Intr' initialized to a null pointer value
146 if (!match(U->getUser(),
4
Calling 'match<llvm::User, llvm::PatternMatch::match_combine_and<llvm::PatternMatch::IntrinsicID_match, llvm::PatternMatch::Argument_match<llvm::PatternMatch::match_unless<llvm::PatternMatch::specificval_ty>>>>'
30
Returning from 'match<llvm::User, llvm::PatternMatch::match_combine_and<llvm::PatternMatch::IntrinsicID_match, llvm::PatternMatch::Argument_match<llvm::PatternMatch::match_unless<llvm::PatternMatch::specificval_ty>>>>'
31
Taking false branch
147 m_Intrinsic<Intrinsic::assume>(m_Unless(m_Specific(U->get())))))
148 return nullptr;
149 return &Intr->getBundleOpInfoForOperand(U->getOperandNo());
32
Called C++ object pointer is null
150}
151
152RetainedKnowledge
153llvm::getKnowledgeFromUse(const Use *U,
154 ArrayRef<Attribute::AttrKind> AttrKinds) {
155 CallInst::BundleOpInfo* Bundle = getBundleFromUse(U);
1
Calling 'getBundleFromUse'
156 if (!Bundle)
157 return RetainedKnowledge::none();
158 RetainedKnowledge RK =
159 getKnowledgeFromBundle(*cast<CallInst>(U->getUser()), *Bundle);
160 for (auto Attr : AttrKinds)
161 if (Attr == RK.AttrKind)
162 return RK;
163 return RetainedKnowledge::none();
164}
165
166RetainedKnowledge
167llvm::getKnowledgeForValue(const Value *V,
168 ArrayRef<Attribute::AttrKind> AttrKinds,
169 AssumptionCache *AC,
170 function_ref<bool(RetainedKnowledge, Instruction *,
171 const CallBase::BundleOpInfo *)>
172 Filter) {
173 NumAssumeQueries++;
174 if (!DebugCounter::shouldExecute(AssumeQueryCounter))
175 return RetainedKnowledge::none();
176 if (AC) {
177 for (AssumptionCache::ResultElem &Elem : AC->assumptionsFor(V)) {
178 IntrinsicInst *II = cast_or_null<IntrinsicInst>(Elem.Assume);
179 if (!II || Elem.Index == AssumptionCache::ExprResultIdx)
180 continue;
181 if (RetainedKnowledge RK = getKnowledgeFromBundle(
182 *II, II->bundle_op_info_begin()[Elem.Index])) {
183 if (V != RK.WasOn)
184 continue;
185 if (is_contained(AttrKinds, RK.AttrKind) &&
186 Filter(RK, II, &II->bundle_op_info_begin()[Elem.Index])) {
187 NumUsefullAssumeQueries++;
188 return RK;
189 }
190 }
191 }
192 return RetainedKnowledge::none();
193 }
194 for (const auto &U : V->uses()) {
195 CallInst::BundleOpInfo* Bundle = getBundleFromUse(&U);
196 if (!Bundle)
197 continue;
198 if (RetainedKnowledge RK =
199 getKnowledgeFromBundle(*cast<CallInst>(U.getUser()), *Bundle))
200 if (is_contained(AttrKinds, RK.AttrKind) &&
201 Filter(RK, cast<Instruction>(U.getUser()), Bundle)) {
202 NumUsefullAssumeQueries++;
203 return RK;
204 }
205 }
206 return RetainedKnowledge::none();
207}
208
209RetainedKnowledge llvm::getKnowledgeValidInContext(
210 const Value *V, ArrayRef<Attribute::AttrKind> AttrKinds,
211 const Instruction *CtxI, const DominatorTree *DT, AssumptionCache *AC) {
212 return getKnowledgeForValue(V, AttrKinds, AC,
213 [&](auto, Instruction *I, auto) {
214 return isValidAssumeForContext(I, CtxI, DT);
215 });
216}

/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/PatternMatch.h

1//===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file provides a simple and efficient mechanism for performing general
10// tree-based pattern matches on the LLVM IR. The power of these routines is
11// that it allows you to write concise patterns that are expressive and easy to
12// understand. The other major advantage of this is that it allows you to
13// trivially capture/bind elements in the pattern to variables. For example,
14// you can do something like this:
15//
16// Value *Exp = ...
17// Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2)
18// if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
19// m_And(m_Value(Y), m_ConstantInt(C2))))) {
20// ... Pattern is matched and variables are bound ...
21// }
22//
23// This is primarily useful to things like the instruction combiner, but can
24// also be useful for static analysis tools or code generators.
25//
26//===----------------------------------------------------------------------===//
27
28#ifndef LLVM_IR_PATTERNMATCH_H
29#define LLVM_IR_PATTERNMATCH_H
30
31#include "llvm/ADT/APFloat.h"
32#include "llvm/ADT/APInt.h"
33#include "llvm/IR/Constant.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DataLayout.h"
36#include "llvm/IR/InstrTypes.h"
37#include "llvm/IR/Instruction.h"
38#include "llvm/IR/Instructions.h"
39#include "llvm/IR/IntrinsicInst.h"
40#include "llvm/IR/Intrinsics.h"
41#include "llvm/IR/Operator.h"
42#include "llvm/IR/Value.h"
43#include "llvm/Support/Casting.h"
44#include <cstdint>
45
46namespace llvm {
47namespace PatternMatch {
48
49template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
50 return const_cast<Pattern &>(P).match(V);
5
Calling 'match_combine_and::match'
28
Returning from 'match_combine_and::match'
29
Returning the value 1, which participates in a condition later
51}
52
53template <typename Pattern> bool match(ArrayRef<int> Mask, const Pattern &P) {
54 return const_cast<Pattern &>(P).match(Mask);
55}
56
57template <typename SubPattern_t> struct OneUse_match {
58 SubPattern_t SubPattern;
59
60 OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
61
62 template <typename OpTy> bool match(OpTy *V) {
63 return V->hasOneUse() && SubPattern.match(V);
64 }
65};
66
67template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) {
68 return SubPattern;
69}
70
71template <typename Class> struct class_match {
72 template <typename ITy> bool match(ITy *V) { return isa<Class>(V); }
73};
74
75/// Match an arbitrary value and ignore it.
76inline class_match<Value> m_Value() { return class_match<Value>(); }
77
78/// Match an arbitrary unary operation and ignore it.
79inline class_match<UnaryOperator> m_UnOp() {
80 return class_match<UnaryOperator>();
81}
82
83/// Match an arbitrary binary operation and ignore it.
84inline class_match<BinaryOperator> m_BinOp() {
85 return class_match<BinaryOperator>();
86}
87
88/// Matches any compare instruction and ignore it.
89inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); }
90
91/// Match an arbitrary undef constant.
92inline class_match<UndefValue> m_Undef() { return class_match<UndefValue>(); }
93
94/// Match an arbitrary poison constant.
95inline class_match<PoisonValue> m_Poison() { return class_match<PoisonValue>(); }
96
97/// Match an arbitrary Constant and ignore it.
98inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
99
100/// Match an arbitrary ConstantInt and ignore it.
101inline class_match<ConstantInt> m_ConstantInt() {
102 return class_match<ConstantInt>();
103}
104
105/// Match an arbitrary ConstantFP and ignore it.
106inline class_match<ConstantFP> m_ConstantFP() {
107 return class_match<ConstantFP>();
108}
109
110/// Match an arbitrary ConstantExpr and ignore it.
111inline class_match<ConstantExpr> m_ConstantExpr() {
112 return class_match<ConstantExpr>();
113}
114
115/// Match an arbitrary basic block value and ignore it.
116inline class_match<BasicBlock> m_BasicBlock() {
117 return class_match<BasicBlock>();
118}
119
120/// Inverting matcher
121template <typename Ty> struct match_unless {
122 Ty M;
123
124 match_unless(const Ty &Matcher) : M(Matcher) {}
125
126 template <typename ITy> bool match(ITy *V) { return !M.match(V); }
18
Calling 'specificval_ty::match'
21
Returning from 'specificval_ty::match'
22
Returning the value 1, which participates in a condition later
127};
128
129/// Match if the inner matcher does *NOT* match.
130template <typename Ty> inline match_unless<Ty> m_Unless(const Ty &M) {
131 return match_unless<Ty>(M);
132}
133
134/// Matching combinators
135template <typename LTy, typename RTy> struct match_combine_or {
136 LTy L;
137 RTy R;
138
139 match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
140
141 template <typename ITy> bool match(ITy *V) {
142 if (L.match(V))
143 return true;
144 if (R.match(V))
145 return true;
146 return false;
147 }
148};
149
150template <typename LTy, typename RTy> struct match_combine_and {
151 LTy L;
152 RTy R;
153
154 match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
155
156 template <typename ITy> bool match(ITy *V) {
157 if (L.match(V))
6
Calling 'IntrinsicID_match::match'
12
Returning from 'IntrinsicID_match::match'
13
Taking true branch
158 if (R.match(V))
14
Calling 'Argument_match::match'
25
Returning from 'Argument_match::match'
26
Taking true branch
159 return true;
27
Returning the value 1, which participates in a condition later
160 return false;
161 }
162};
163
164/// Combine two pattern matchers matching L || R
165template <typename LTy, typename RTy>
166inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
167 return match_combine_or<LTy, RTy>(L, R);
168}
169
170/// Combine two pattern matchers matching L && R
171template <typename LTy, typename RTy>
172inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
173 return match_combine_and<LTy, RTy>(L, R);
174}
175
176struct apint_match {
177 const APInt *&Res;
178 bool AllowUndef;
179
180 apint_match(const APInt *&Res, bool AllowUndef)
181 : Res(Res), AllowUndef(AllowUndef) {}
182
183 template <typename ITy> bool match(ITy *V) {
184 if (auto *CI = dyn_cast<ConstantInt>(V)) {
185 Res = &CI->getValue();
186 return true;
187 }
188 if (V->getType()->isVectorTy())
189 if (const auto *C = dyn_cast<Constant>(V))
190 if (auto *CI = dyn_cast_or_null<ConstantInt>(
191 C->getSplatValue(AllowUndef))) {
192 Res = &CI->getValue();
193 return true;
194 }
195 return false;
196 }
197};
198// Either constexpr if or renaming ConstantFP::getValueAPF to
199// ConstantFP::getValue is needed to do it via single template
200// function for both apint/apfloat.
201struct apfloat_match {
202 const APFloat *&Res;
203 bool AllowUndef;
204
205 apfloat_match(const APFloat *&Res, bool AllowUndef)
206 : Res(Res), AllowUndef(AllowUndef) {}
207
208 template <typename ITy> bool match(ITy *V) {
209 if (auto *CI = dyn_cast<ConstantFP>(V)) {
210 Res = &CI->getValueAPF();
211 return true;
212 }
213 if (V->getType()->isVectorTy())
214 if (const auto *C = dyn_cast<Constant>(V))
215 if (auto *CI = dyn_cast_or_null<ConstantFP>(
216 C->getSplatValue(AllowUndef))) {
217 Res = &CI->getValueAPF();
218 return true;
219 }
220 return false;
221 }
222};
223
224/// Match a ConstantInt or splatted ConstantVector, binding the
225/// specified pointer to the contained APInt.
226inline apint_match m_APInt(const APInt *&Res) {
227 // Forbid undefs by default to maintain previous behavior.
228 return apint_match(Res, /* AllowUndef */ false);
229}
230
231/// Match APInt while allowing undefs in splat vector constants.
232inline apint_match m_APIntAllowUndef(const APInt *&Res) {
233 return apint_match(Res, /* AllowUndef */ true);
234}
235
236/// Match APInt while forbidding undefs in splat vector constants.
237inline apint_match m_APIntForbidUndef(const APInt *&Res) {
238 return apint_match(Res, /* AllowUndef */ false);
239}
240
241/// Match a ConstantFP or splatted ConstantVector, binding the
242/// specified pointer to the contained APFloat.
243inline apfloat_match m_APFloat(const APFloat *&Res) {
244 // Forbid undefs by default to maintain previous behavior.
245 return apfloat_match(Res, /* AllowUndef */ false);
246}
247
248/// Match APFloat while allowing undefs in splat vector constants.
249inline apfloat_match m_APFloatAllowUndef(const APFloat *&Res) {
250 return apfloat_match(Res, /* AllowUndef */ true);
251}
252
253/// Match APFloat while forbidding undefs in splat vector constants.
254inline apfloat_match m_APFloatForbidUndef(const APFloat *&Res) {
255 return apfloat_match(Res, /* AllowUndef */ false);
256}
257
258template <int64_t Val> struct constantint_match {
259 template <typename ITy> bool match(ITy *V) {
260 if (const auto *CI = dyn_cast<ConstantInt>(V)) {
261 const APInt &CIV = CI->getValue();
262 if (Val >= 0)
263 return CIV == static_cast<uint64_t>(Val);
264 // If Val is negative, and CI is shorter than it, truncate to the right
265 // number of bits. If it is larger, then we have to sign extend. Just
266 // compare their negated values.
267 return -CIV == -Val;
268 }
269 return false;
270 }
271};
272
273/// Match a ConstantInt with a specific value.
274template <int64_t Val> inline constantint_match<Val> m_ConstantInt() {
275 return constantint_match<Val>();
276}
277
278/// This helper class is used to match constant scalars, vector splats,
279/// and fixed width vectors that satisfy a specified predicate.
280/// For fixed width vector constants, undefined elements are ignored.
281template <typename Predicate, typename ConstantVal>
282struct cstval_pred_ty : public Predicate {
283 template <typename ITy> bool match(ITy *V) {
284 if (const auto *CV = dyn_cast<ConstantVal>(V))
285 return this->isValue(CV->getValue());
286 if (const auto *VTy = dyn_cast<VectorType>(V->getType())) {
287 if (const auto *C = dyn_cast<Constant>(V)) {
288 if (const auto *CV = dyn_cast_or_null<ConstantVal>(C->getSplatValue()))
289 return this->isValue(CV->getValue());
290
291 // Number of elements of a scalable vector unknown at compile time
292 auto *FVTy = dyn_cast<FixedVectorType>(VTy);
293 if (!FVTy)
294 return false;
295
296 // Non-splat vector constant: check each element for a match.
297 unsigned NumElts = FVTy->getNumElements();
298 assert(NumElts != 0 && "Constant vector with no elements?")((NumElts != 0 && "Constant vector with no elements?"
) ? static_cast<void> (0) : __assert_fail ("NumElts != 0 && \"Constant vector with no elements?\""
, "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/PatternMatch.h"
, 298, __PRETTY_FUNCTION__))
;
299 bool HasNonUndefElements = false;
300 for (unsigned i = 0; i != NumElts; ++i) {
301 Constant *Elt = C->getAggregateElement(i);
302 if (!Elt)
303 return false;
304 if (isa<UndefValue>(Elt))
305 continue;
306 auto *CV = dyn_cast<ConstantVal>(Elt);
307 if (!CV || !this->isValue(CV->getValue()))
308 return false;
309 HasNonUndefElements = true;
310 }
311 return HasNonUndefElements;
312 }
313 }
314 return false;
315 }
316};
317
318/// specialization of cstval_pred_ty for ConstantInt
319template <typename Predicate>
320using cst_pred_ty = cstval_pred_ty<Predicate, ConstantInt>;
321
322/// specialization of cstval_pred_ty for ConstantFP
323template <typename Predicate>
324using cstfp_pred_ty = cstval_pred_ty<Predicate, ConstantFP>;
325
326/// This helper class is used to match scalar and vector constants that
327/// satisfy a specified predicate, and bind them to an APInt.
328template <typename Predicate> struct api_pred_ty : public Predicate {
329 const APInt *&Res;
330
331 api_pred_ty(const APInt *&R) : Res(R) {}
332
333 template <typename ITy> bool match(ITy *V) {
334 if (const auto *CI = dyn_cast<ConstantInt>(V))
335 if (this->isValue(CI->getValue())) {
336 Res = &CI->getValue();
337 return true;
338 }
339 if (V->getType()->isVectorTy())
340 if (const auto *C = dyn_cast<Constant>(V))
341 if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
342 if (this->isValue(CI->getValue())) {
343 Res = &CI->getValue();
344 return true;
345 }
346
347 return false;
348 }
349};
350
351/// This helper class is used to match scalar and vector constants that
352/// satisfy a specified predicate, and bind them to an APFloat.
353/// Undefs are allowed in splat vector constants.
354template <typename Predicate> struct apf_pred_ty : public Predicate {
355 const APFloat *&Res;
356
357 apf_pred_ty(const APFloat *&R) : Res(R) {}
358
359 template <typename ITy> bool match(ITy *V) {
360 if (const auto *CI = dyn_cast<ConstantFP>(V))
361 if (this->isValue(CI->getValue())) {
362 Res = &CI->getValue();
363 return true;
364 }
365 if (V->getType()->isVectorTy())
366 if (const auto *C = dyn_cast<Constant>(V))
367 if (auto *CI = dyn_cast_or_null<ConstantFP>(
368 C->getSplatValue(/* AllowUndef */ true)))
369 if (this->isValue(CI->getValue())) {
370 Res = &CI->getValue();
371 return true;
372 }
373
374 return false;
375 }
376};
377
378///////////////////////////////////////////////////////////////////////////////
379//
380// Encapsulate constant value queries for use in templated predicate matchers.
381// This allows checking if constants match using compound predicates and works
382// with vector constants, possibly with relaxed constraints. For example, ignore
383// undef values.
384//
385///////////////////////////////////////////////////////////////////////////////
386
387struct is_any_apint {
388 bool isValue(const APInt &C) { return true; }
389};
390/// Match an integer or vector with any integral constant.
391/// For vectors, this includes constants with undefined elements.
392inline cst_pred_ty<is_any_apint> m_AnyIntegralConstant() {
393 return cst_pred_ty<is_any_apint>();
394}
395
396struct is_all_ones {
397 bool isValue(const APInt &C) { return C.isAllOnesValue(); }
398};
399/// Match an integer or vector with all bits set.
400/// For vectors, this includes constants with undefined elements.
401inline cst_pred_ty<is_all_ones> m_AllOnes() {
402 return cst_pred_ty<is_all_ones>();
403}
404
405struct is_maxsignedvalue {
406 bool isValue(const APInt &C) { return C.isMaxSignedValue(); }
407};
408/// Match an integer or vector with values having all bits except for the high
409/// bit set (0x7f...).
410/// For vectors, this includes constants with undefined elements.
411inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() {
412 return cst_pred_ty<is_maxsignedvalue>();
413}
414inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) {
415 return V;
416}
417
418struct is_negative {
419 bool isValue(const APInt &C) { return C.isNegative(); }
420};
421/// Match an integer or vector of negative values.
422/// For vectors, this includes constants with undefined elements.
423inline cst_pred_ty<is_negative> m_Negative() {
424 return cst_pred_ty<is_negative>();
425}
426inline api_pred_ty<is_negative> m_Negative(const APInt *&V) {
427 return V;
428}
429
430struct is_nonnegative {
431 bool isValue(const APInt &C) { return C.isNonNegative(); }
432};
433/// Match an integer or vector of non-negative values.
434/// For vectors, this includes constants with undefined elements.
435inline cst_pred_ty<is_nonnegative> m_NonNegative() {
436 return cst_pred_ty<is_nonnegative>();
437}
438inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) {
439 return V;
440}
441
442struct is_strictlypositive {
443 bool isValue(const APInt &C) { return C.isStrictlyPositive(); }
444};
445/// Match an integer or vector of strictly positive values.
446/// For vectors, this includes constants with undefined elements.
447inline cst_pred_ty<is_strictlypositive> m_StrictlyPositive() {
448 return cst_pred_ty<is_strictlypositive>();
449}
450inline api_pred_ty<is_strictlypositive> m_StrictlyPositive(const APInt *&V) {
451 return V;
452}
453
454struct is_nonpositive {
455 bool isValue(const APInt &C) { return C.isNonPositive(); }
456};
457/// Match an integer or vector of non-positive values.
458/// For vectors, this includes constants with undefined elements.
459inline cst_pred_ty<is_nonpositive> m_NonPositive() {
460 return cst_pred_ty<is_nonpositive>();
461}
462inline api_pred_ty<is_nonpositive> m_NonPositive(const APInt *&V) { return V; }
463
464struct is_one {
465 bool isValue(const APInt &C) { return C.isOneValue(); }
466};
467/// Match an integer 1 or a vector with all elements equal to 1.
468/// For vectors, this includes constants with undefined elements.
469inline cst_pred_ty<is_one> m_One() {
470 return cst_pred_ty<is_one>();
471}
472
473struct is_zero_int {
474 bool isValue(const APInt &C) { return C.isNullValue(); }
475};
476/// Match an integer 0 or a vector with all elements equal to 0.
477/// For vectors, this includes constants with undefined elements.
478inline cst_pred_ty<is_zero_int> m_ZeroInt() {
479 return cst_pred_ty<is_zero_int>();
480}
481
482struct is_zero {
483 template <typename ITy> bool match(ITy *V) {
484 auto *C = dyn_cast<Constant>(V);
485 // FIXME: this should be able to do something for scalable vectors
486 return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C));
487 }
488};
489/// Match any null constant or a vector with all elements equal to 0.
490/// For vectors, this includes constants with undefined elements.
491inline is_zero m_Zero() {
492 return is_zero();
493}
494
495struct is_power2 {
496 bool isValue(const APInt &C) { return C.isPowerOf2(); }
497};
498/// Match an integer or vector power-of-2.
499/// For vectors, this includes constants with undefined elements.
500inline cst_pred_ty<is_power2> m_Power2() {
501 return cst_pred_ty<is_power2>();
502}
503inline api_pred_ty<is_power2> m_Power2(const APInt *&V) {
504 return V;
505}
506
507struct is_negated_power2 {
508 bool isValue(const APInt &C) { return (-C).isPowerOf2(); }
509};
510/// Match a integer or vector negated power-of-2.
511/// For vectors, this includes constants with undefined elements.
512inline cst_pred_ty<is_negated_power2> m_NegatedPower2() {
513 return cst_pred_ty<is_negated_power2>();
514}
515inline api_pred_ty<is_negated_power2> m_NegatedPower2(const APInt *&V) {
516 return V;
517}
518
519struct is_power2_or_zero {
520 bool isValue(const APInt &C) { return !C || C.isPowerOf2(); }
521};
522/// Match an integer or vector of 0 or power-of-2 values.
523/// For vectors, this includes constants with undefined elements.
524inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() {
525 return cst_pred_ty<is_power2_or_zero>();
526}
527inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) {
528 return V;
529}
530
531struct is_sign_mask {
532 bool isValue(const APInt &C) { return C.isSignMask(); }
533};
534/// Match an integer or vector with only the sign bit(s) set.
535/// For vectors, this includes constants with undefined elements.
536inline cst_pred_ty<is_sign_mask> m_SignMask() {
537 return cst_pred_ty<is_sign_mask>();
538}
539
540struct is_lowbit_mask {
541 bool isValue(const APInt &C) { return C.isMask(); }
542};
543/// Match an integer or vector with only the low bit(s) set.
544/// For vectors, this includes constants with undefined elements.
545inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() {
546 return cst_pred_ty<is_lowbit_mask>();
547}
548
549struct icmp_pred_with_threshold {
550 ICmpInst::Predicate Pred;
551 const APInt *Thr;
552 bool isValue(const APInt &C) {
553 switch (Pred) {
554 case ICmpInst::Predicate::ICMP_EQ:
555 return C.eq(*Thr);
556 case ICmpInst::Predicate::ICMP_NE:
557 return C.ne(*Thr);
558 case ICmpInst::Predicate::ICMP_UGT:
559 return C.ugt(*Thr);
560 case ICmpInst::Predicate::ICMP_UGE:
561 return C.uge(*Thr);
562 case ICmpInst::Predicate::ICMP_ULT:
563 return C.ult(*Thr);
564 case ICmpInst::Predicate::ICMP_ULE:
565 return C.ule(*Thr);
566 case ICmpInst::Predicate::ICMP_SGT:
567 return C.sgt(*Thr);
568 case ICmpInst::Predicate::ICMP_SGE:
569 return C.sge(*Thr);
570 case ICmpInst::Predicate::ICMP_SLT:
571 return C.slt(*Thr);
572 case ICmpInst::Predicate::ICMP_SLE:
573 return C.sle(*Thr);
574 default:
575 llvm_unreachable("Unhandled ICmp predicate")::llvm::llvm_unreachable_internal("Unhandled ICmp predicate",
"/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/PatternMatch.h"
, 575)
;
576 }
577 }
578};
579/// Match an integer or vector with every element comparing 'pred' (eg/ne/...)
580/// to Threshold. For vectors, this includes constants with undefined elements.
581inline cst_pred_ty<icmp_pred_with_threshold>
582m_SpecificInt_ICMP(ICmpInst::Predicate Predicate, const APInt &Threshold) {
583 cst_pred_ty<icmp_pred_with_threshold> P;
584 P.Pred = Predicate;
585 P.Thr = &Threshold;
586 return P;
587}
588
589struct is_nan {
590 bool isValue(const APFloat &C) { return C.isNaN(); }
591};
592/// Match an arbitrary NaN constant. This includes quiet and signalling nans.
593/// For vectors, this includes constants with undefined elements.
594inline cstfp_pred_ty<is_nan> m_NaN() {
595 return cstfp_pred_ty<is_nan>();
596}
597
598struct is_nonnan {
599 bool isValue(const APFloat &C) { return !C.isNaN(); }
600};
601/// Match a non-NaN FP constant.
602/// For vectors, this includes constants with undefined elements.
603inline cstfp_pred_ty<is_nonnan> m_NonNaN() {
604 return cstfp_pred_ty<is_nonnan>();
605}
606
607struct is_inf {
608 bool isValue(const APFloat &C) { return C.isInfinity(); }
609};
610/// Match a positive or negative infinity FP constant.
611/// For vectors, this includes constants with undefined elements.
612inline cstfp_pred_ty<is_inf> m_Inf() {
613 return cstfp_pred_ty<is_inf>();
614}
615
616struct is_noninf {
617 bool isValue(const APFloat &C) { return !C.isInfinity(); }
618};
619/// Match a non-infinity FP constant, i.e. finite or NaN.
620/// For vectors, this includes constants with undefined elements.
621inline cstfp_pred_ty<is_noninf> m_NonInf() {
622 return cstfp_pred_ty<is_noninf>();
623}
624
625struct is_finite {
626 bool isValue(const APFloat &C) { return C.isFinite(); }
627};
628/// Match a finite FP constant, i.e. not infinity or NaN.
629/// For vectors, this includes constants with undefined elements.
630inline cstfp_pred_ty<is_finite> m_Finite() {
631 return cstfp_pred_ty<is_finite>();
632}
633inline apf_pred_ty<is_finite> m_Finite(const APFloat *&V) { return V; }
634
635struct is_finitenonzero {
636 bool isValue(const APFloat &C) { return C.isFiniteNonZero(); }
637};
638/// Match a finite non-zero FP constant.
639/// For vectors, this includes constants with undefined elements.
640inline cstfp_pred_ty<is_finitenonzero> m_FiniteNonZero() {
641 return cstfp_pred_ty<is_finitenonzero>();
642}
643inline apf_pred_ty<is_finitenonzero> m_FiniteNonZero(const APFloat *&V) {
644 return V;
645}
646
647struct is_any_zero_fp {
648 bool isValue(const APFloat &C) { return C.isZero(); }
649};
650/// Match a floating-point negative zero or positive zero.
651/// For vectors, this includes constants with undefined elements.
652inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() {
653 return cstfp_pred_ty<is_any_zero_fp>();
654}
655
656struct is_pos_zero_fp {
657 bool isValue(const APFloat &C) { return C.isPosZero(); }
658};
659/// Match a floating-point positive zero.
660/// For vectors, this includes constants with undefined elements.
661inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() {
662 return cstfp_pred_ty<is_pos_zero_fp>();
663}
664
665struct is_neg_zero_fp {
666 bool isValue(const APFloat &C) { return C.isNegZero(); }
667};
668/// Match a floating-point negative zero.
669/// For vectors, this includes constants with undefined elements.
670inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() {
671 return cstfp_pred_ty<is_neg_zero_fp>();
672}
673
674struct is_non_zero_fp {
675 bool isValue(const APFloat &C) { return C.isNonZero(); }
676};
677/// Match a floating-point non-zero.
678/// For vectors, this includes constants with undefined elements.
679inline cstfp_pred_ty<is_non_zero_fp> m_NonZeroFP() {
680 return cstfp_pred_ty<is_non_zero_fp>();
681}
682
683///////////////////////////////////////////////////////////////////////////////
684
685template <typename Class> struct bind_ty {
686 Class *&VR;
687
688 bind_ty(Class *&V) : VR(V) {}
689
690 template <typename ITy> bool match(ITy *V) {
691 if (auto *CV = dyn_cast<Class>(V)) {
692 VR = CV;
693 return true;
694 }
695 return false;
696 }
697};
698
699/// Match a value, capturing it if we match.
700inline bind_ty<Value> m_Value(Value *&V) { return V; }
701inline bind_ty<const Value> m_Value(const Value *&V) { return V; }
702
703/// Match an instruction, capturing it if we match.
704inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; }
705/// Match a unary operator, capturing it if we match.
706inline bind_ty<UnaryOperator> m_UnOp(UnaryOperator *&I) { return I; }
707/// Match a binary operator, capturing it if we match.
708inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; }
709/// Match a with overflow intrinsic, capturing it if we match.
710inline bind_ty<WithOverflowInst> m_WithOverflowInst(WithOverflowInst *&I) { return I; }
711
712/// Match a Constant, capturing the value if we match.
713inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
714
715/// Match a ConstantInt, capturing the value if we match.
716inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
717
718/// Match a ConstantFP, capturing the value if we match.
719inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
720
721/// Match a ConstantExpr, capturing the value if we match.
722inline bind_ty<ConstantExpr> m_ConstantExpr(ConstantExpr *&C) { return C; }
723
724/// Match a basic block value, capturing it if we match.
725inline bind_ty<BasicBlock> m_BasicBlock(BasicBlock *&V) { return V; }
726inline bind_ty<const BasicBlock> m_BasicBlock(const BasicBlock *&V) {
727 return V;
728}
729
730/// Match an arbitrary immediate Constant and ignore it.
731inline match_combine_and<class_match<Constant>,
732 match_unless<class_match<ConstantExpr>>>
733m_ImmConstant() {
734 return m_CombineAnd(m_Constant(), m_Unless(m_ConstantExpr()));
735}
736
737/// Match an immediate Constant, capturing the value if we match.
738inline match_combine_and<bind_ty<Constant>,
739 match_unless<class_match<ConstantExpr>>>
740m_ImmConstant(Constant *&C) {
741 return m_CombineAnd(m_Constant(C), m_Unless(m_ConstantExpr()));
742}
743
744/// Match a specified Value*.
745struct specificval_ty {
746 const Value *Val;
747
748 specificval_ty(const Value *V) : Val(V) {}
749
750 template <typename ITy> bool match(ITy *V) { return V == Val; }
19
Assuming 'V' is not equal to field 'Val'
20
Returning zero, which participates in a condition later
751};
752
753/// Match if we have a specific specified value.
754inline specificval_ty m_Specific(const Value *V) { return V; }
755
756/// Stores a reference to the Value *, not the Value * itself,
757/// thus can be used in commutative matchers.
758template <typename Class> struct deferredval_ty {
759 Class *const &Val;
760
761 deferredval_ty(Class *const &V) : Val(V) {}
762
763 template <typename ITy> bool match(ITy *const V) { return V == Val; }
764};
765
766/// A commutative-friendly version of m_Specific().
767inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; }
768inline deferredval_ty<const Value> m_Deferred(const Value *const &V) {
769 return V;
770}
771
772/// Match a specified floating point value or vector of all elements of
773/// that value.
774struct specific_fpval {
775 double Val;
776
777 specific_fpval(double V) : Val(V) {}
778
779 template <typename ITy> bool match(ITy *V) {
780 if (const auto *CFP = dyn_cast<ConstantFP>(V))
781 return CFP->isExactlyValue(Val);
782 if (V->getType()->isVectorTy())
783 if (const auto *C = dyn_cast<Constant>(V))
784 if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
785 return CFP->isExactlyValue(Val);
786 return false;
787 }
788};
789
790/// Match a specific floating point value or vector with all elements
791/// equal to the value.
792inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
793
794/// Match a float 1.0 or vector with all elements equal to 1.0.
795inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
796
797struct bind_const_intval_ty {
798 uint64_t &VR;
799
800 bind_const_intval_ty(uint64_t &V) : VR(V) {}
801
802 template <typename ITy> bool match(ITy *V) {
803 if (const auto *CV = dyn_cast<ConstantInt>(V))
804 if (CV->getValue().ule(UINT64_MAX(18446744073709551615UL))) {
805 VR = CV->getZExtValue();
806 return true;
807 }
808 return false;
809 }
810};
811
812/// Match a specified integer value or vector of all elements of that
813/// value.
814template <bool AllowUndefs>
815struct specific_intval {
816 APInt Val;
817
818 specific_intval(APInt V) : Val(std::move(V)) {}
819
820 template <typename ITy> bool match(ITy *V) {
821 const auto *CI = dyn_cast<ConstantInt>(V);
822 if (!CI && V->getType()->isVectorTy())
823 if (const auto *C = dyn_cast<Constant>(V))
824 CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue(AllowUndefs));
825
826 return CI && APInt::isSameValue(CI->getValue(), Val);
827 }
828};
829
830/// Match a specific integer value or vector with all elements equal to
831/// the value.
832inline specific_intval<false> m_SpecificInt(APInt V) {
833 return specific_intval<false>(std::move(V));
834}
835
836inline specific_intval<false> m_SpecificInt(uint64_t V) {
837 return m_SpecificInt(APInt(64, V));
838}
839
840inline specific_intval<true> m_SpecificIntAllowUndef(APInt V) {
841 return specific_intval<true>(std::move(V));
842}
843
844inline specific_intval<true> m_SpecificIntAllowUndef(uint64_t V) {
845 return m_SpecificIntAllowUndef(APInt(64, V));
846}
847
848/// Match a ConstantInt and bind to its value. This does not match
849/// ConstantInts wider than 64-bits.
850inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
851
852/// Match a specified basic block value.
853struct specific_bbval {
854 BasicBlock *Val;
855
856 specific_bbval(BasicBlock *Val) : Val(Val) {}
857
858 template <typename ITy> bool match(ITy *V) {
859 const auto *BB = dyn_cast<BasicBlock>(V);
860 return BB && BB == Val;
861 }
862};
863
864/// Match a specific basic block value.
865inline specific_bbval m_SpecificBB(BasicBlock *BB) {
866 return specific_bbval(BB);
867}
868
869/// A commutative-friendly version of m_Specific().
870inline deferredval_ty<BasicBlock> m_Deferred(BasicBlock *const &BB) {
871 return BB;
872}
873inline deferredval_ty<const BasicBlock>
874m_Deferred(const BasicBlock *const &BB) {
875 return BB;
876}
877
878//===----------------------------------------------------------------------===//
879// Matcher for any binary operator.
880//
881template <typename LHS_t, typename RHS_t, bool Commutable = false>
882struct AnyBinaryOp_match {
883 LHS_t L;
884 RHS_t R;
885
886 // The evaluation order is always stable, regardless of Commutability.
887 // The LHS is always matched first.
888 AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
889
890 template <typename OpTy> bool match(OpTy *V) {
891 if (auto *I = dyn_cast<BinaryOperator>(V))
892 return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
893 (Commutable && L.match(I->getOperand(1)) &&
894 R.match(I->getOperand(0)));
895 return false;
896 }
897};
898
899template <typename LHS, typename RHS>
900inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) {
901 return AnyBinaryOp_match<LHS, RHS>(L, R);
902}
903
904//===----------------------------------------------------------------------===//
905// Matcher for any unary operator.
906// TODO fuse unary, binary matcher into n-ary matcher
907//
908template <typename OP_t> struct AnyUnaryOp_match {
909 OP_t X;
910
911 AnyUnaryOp_match(const OP_t &X) : X(X) {}
912
913 template <typename OpTy> bool match(OpTy *V) {
914 if (auto *I = dyn_cast<UnaryOperator>(V))
915 return X.match(I->getOperand(0));
916 return false;
917 }
918};
919
920template <typename OP_t> inline AnyUnaryOp_match<OP_t> m_UnOp(const OP_t &X) {
921 return AnyUnaryOp_match<OP_t>(X);
922}
923
924//===----------------------------------------------------------------------===//
925// Matchers for specific binary operators.
926//
927
928template <typename LHS_t, typename RHS_t, unsigned Opcode,
929 bool Commutable = false>
930struct BinaryOp_match {
931 LHS_t L;
932 RHS_t R;
933
934 // The evaluation order is always stable, regardless of Commutability.
935 // The LHS is always matched first.
936 BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
937
938 template <typename OpTy> bool match(OpTy *V) {
939 if (V->getValueID() == Value::InstructionVal + Opcode) {
940 auto *I = cast<BinaryOperator>(V);
941 return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
942 (Commutable && L.match(I->getOperand(1)) &&
943 R.match(I->getOperand(0)));
944 }
945 if (auto *CE = dyn_cast<ConstantExpr>(V))
946 return CE->getOpcode() == Opcode &&
947 ((L.match(CE->getOperand(0)) && R.match(CE->getOperand(1))) ||
948 (Commutable && L.match(CE->getOperand(1)) &&
949 R.match(CE->getOperand(0))));
950 return false;
951 }
952};
953
954template <typename LHS, typename RHS>
955inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L,
956 const RHS &R) {
957 return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
958}
959
960template <typename LHS, typename RHS>
961inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L,
962 const RHS &R) {
963 return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
964}
965
966template <typename LHS, typename RHS>
967inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L,
968 const RHS &R) {
969 return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
970}
971
972template <typename LHS, typename RHS>
973inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L,
974 const RHS &R) {
975 return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
976}
977
978template <typename Op_t> struct FNeg_match {
979 Op_t X;
980
981 FNeg_match(const Op_t &Op) : X(Op) {}
982 template <typename OpTy> bool match(OpTy *V) {
983 auto *FPMO = dyn_cast<FPMathOperator>(V);
984 if (!FPMO) return false;
985
986 if (FPMO->getOpcode() == Instruction::FNeg)
987 return X.match(FPMO->getOperand(0));
988
989 if (FPMO->getOpcode() == Instruction::FSub) {
990 if (FPMO->hasNoSignedZeros()) {
991 // With 'nsz', any zero goes.
992 if (!cstfp_pred_ty<is_any_zero_fp>().match(FPMO->getOperand(0)))
993 return false;
994 } else {
995 // Without 'nsz', we need fsub -0.0, X exactly.
996 if (!cstfp_pred_ty<is_neg_zero_fp>().match(FPMO->getOperand(0)))
997 return false;
998 }
999
1000 return X.match(FPMO->getOperand(1));
1001 }
1002
1003 return false;
1004 }
1005};
1006
1007/// Match 'fneg X' as 'fsub -0.0, X'.
1008template <typename OpTy>
1009inline FNeg_match<OpTy>
1010m_FNeg(const OpTy &X) {
1011 return FNeg_match<OpTy>(X);
1012}
1013
1014/// Match 'fneg X' as 'fsub +-0.0, X'.
1015template <typename RHS>
1016inline BinaryOp_match<cstfp_pred_ty<is_any_zero_fp>, RHS, Instruction::FSub>
1017m_FNegNSZ(const RHS &X) {
1018 return m_FSub(m_AnyZeroFP(), X);
1019}
1020
1021template <typename LHS, typename RHS>
1022inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L,
1023 const RHS &R) {
1024 return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
1025}
1026
1027template <typename LHS, typename RHS>
1028inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L,
1029 const RHS &R) {
1030 return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
1031}
1032
1033template <typename LHS, typename RHS>
1034inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L,
1035 const RHS &R) {
1036 return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
1037}
1038
1039template <typename LHS, typename RHS>
1040inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L,
1041 const RHS &R) {
1042 return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
1043}
1044
1045template <typename LHS, typename RHS>
1046inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L,
1047 const RHS &R) {
1048 return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
1049}
1050
1051template <typename LHS, typename RHS>
1052inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L,
1053 const RHS &R) {
1054 return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
1055}
1056
1057template <typename LHS, typename RHS>
1058inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L,
1059 const RHS &R) {
1060 return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
1061}
1062
1063template <typename LHS, typename RHS>
1064inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L,
1065 const RHS &R) {
1066 return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
1067}
1068
1069template <typename LHS, typename RHS>
1070inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L,
1071 const RHS &R) {
1072 return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
1073}
1074
1075template <typename LHS, typename RHS>
1076inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L,
1077 const RHS &R) {
1078 return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
1079}
1080
1081template <typename LHS, typename RHS>
1082inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L,
1083 const RHS &R) {
1084 return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
1085}
1086
1087template <typename LHS, typename RHS>
1088inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L,
1089 const RHS &R) {
1090 return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
1091}
1092
1093template <typename LHS, typename RHS>
1094inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L,
1095 const RHS &R) {
1096 return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
1097}
1098
1099template <typename LHS, typename RHS>
1100inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L,
1101 const RHS &R) {
1102 return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
1103}
1104
1105template <typename LHS_t, typename RHS_t, unsigned Opcode,
1106 unsigned WrapFlags = 0>
1107struct OverflowingBinaryOp_match {
1108 LHS_t L;
1109 RHS_t R;
1110
1111 OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
1112 : L(LHS), R(RHS) {}
1113
1114 template <typename OpTy> bool match(OpTy *V) {
1115 if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
1116 if (Op->getOpcode() != Opcode)
1117 return false;
1118 if (WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap &&
1119 !Op->hasNoUnsignedWrap())
1120 return false;
1121 if (WrapFlags & OverflowingBinaryOperator::NoSignedWrap &&
1122 !Op->hasNoSignedWrap())
1123 return false;
1124 return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1));
1125 }
1126 return false;
1127 }
1128};
1129
1130template <typename LHS, typename RHS>
1131inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1132 OverflowingBinaryOperator::NoSignedWrap>
1133m_NSWAdd(const LHS &L, const RHS &R) {
1134 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1135 OverflowingBinaryOperator::NoSignedWrap>(
1136 L, R);
1137}
1138template <typename LHS, typename RHS>
1139inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1140 OverflowingBinaryOperator::NoSignedWrap>
1141m_NSWSub(const LHS &L, const RHS &R) {
1142 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1143 OverflowingBinaryOperator::NoSignedWrap>(
1144 L, R);
1145}
1146template <typename LHS, typename RHS>
1147inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1148 OverflowingBinaryOperator::NoSignedWrap>
1149m_NSWMul(const LHS &L, const RHS &R) {
1150 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1151 OverflowingBinaryOperator::NoSignedWrap>(
1152 L, R);
1153}
1154template <typename LHS, typename RHS>
1155inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1156 OverflowingBinaryOperator::NoSignedWrap>
1157m_NSWShl(const LHS &L, const RHS &R) {
1158 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1159 OverflowingBinaryOperator::NoSignedWrap>(
1160 L, R);
1161}
1162
1163template <typename LHS, typename RHS>
1164inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1165 OverflowingBinaryOperator::NoUnsignedWrap>
1166m_NUWAdd(const LHS &L, const RHS &R) {
1167 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
1168 OverflowingBinaryOperator::NoUnsignedWrap>(
1169 L, R);
1170}
1171template <typename LHS, typename RHS>
1172inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1173 OverflowingBinaryOperator::NoUnsignedWrap>
1174m_NUWSub(const LHS &L, const RHS &R) {
1175 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
1176 OverflowingBinaryOperator::NoUnsignedWrap>(
1177 L, R);
1178}
1179template <typename LHS, typename RHS>
1180inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1181 OverflowingBinaryOperator::NoUnsignedWrap>
1182m_NUWMul(const LHS &L, const RHS &R) {
1183 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
1184 OverflowingBinaryOperator::NoUnsignedWrap>(
1185 L, R);
1186}
1187template <typename LHS, typename RHS>
1188inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1189 OverflowingBinaryOperator::NoUnsignedWrap>
1190m_NUWShl(const LHS &L, const RHS &R) {
1191 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
1192 OverflowingBinaryOperator::NoUnsignedWrap>(
1193 L, R);
1194}
1195
1196//===----------------------------------------------------------------------===//
1197// Class that matches a group of binary opcodes.
1198//
1199template <typename LHS_t, typename RHS_t, typename Predicate>
1200struct BinOpPred_match : Predicate {
1201 LHS_t L;
1202 RHS_t R;
1203
1204 BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1205
1206 template <typename OpTy> bool match(OpTy *V) {
1207 if (auto *I = dyn_cast<Instruction>(V))
1208 return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) &&
1209 R.match(I->getOperand(1));
1210 if (auto *CE = dyn_cast<ConstantExpr>(V))
1211 return this->isOpType(CE->getOpcode()) && L.match(CE->getOperand(0)) &&
1212 R.match(CE->getOperand(1));
1213 return false;
1214 }
1215};
1216
1217struct is_shift_op {
1218 bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); }
1219};
1220
1221struct is_right_shift_op {
1222 bool isOpType(unsigned Opcode) {
1223 return Opcode == Instruction::LShr || Opcode == Instruction::AShr;
1224 }
1225};
1226
1227struct is_logical_shift_op {
1228 bool isOpType(unsigned Opcode) {
1229 return Opcode == Instruction::LShr || Opcode == Instruction::Shl;
1230 }
1231};
1232
1233struct is_bitwiselogic_op {
1234 bool isOpType(unsigned Opcode) {
1235 return Instruction::isBitwiseLogicOp(Opcode);
1236 }
1237};
1238
1239struct is_idiv_op {
1240 bool isOpType(unsigned Opcode) {
1241 return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv;
1242 }
1243};
1244
1245struct is_irem_op {
1246 bool isOpType(unsigned Opcode) {
1247 return Opcode == Instruction::SRem || Opcode == Instruction::URem;
1248 }
1249};
1250
1251/// Matches shift operations.
1252template <typename LHS, typename RHS>
1253inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L,
1254 const RHS &R) {
1255 return BinOpPred_match<LHS, RHS, is_shift_op>(L, R);
1256}
1257
1258/// Matches logical shift operations.
1259template <typename LHS, typename RHS>
1260inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L,
1261 const RHS &R) {
1262 return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R);
1263}
1264
1265/// Matches logical shift operations.
1266template <typename LHS, typename RHS>
1267inline BinOpPred_match<LHS, RHS, is_logical_shift_op>
1268m_LogicalShift(const LHS &L, const RHS &R) {
1269 return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R);
1270}
1271
1272/// Matches bitwise logic operations.
1273template <typename LHS, typename RHS>
1274inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op>
1275m_BitwiseLogic(const LHS &L, const RHS &R) {
1276 return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R);
1277}
1278
1279/// Matches integer division operations.
1280template <typename LHS, typename RHS>
1281inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L,
1282 const RHS &R) {
1283 return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R);
1284}
1285
1286/// Matches integer remainder operations.
1287template <typename LHS, typename RHS>
1288inline BinOpPred_match<LHS, RHS, is_irem_op> m_IRem(const LHS &L,
1289 const RHS &R) {
1290 return BinOpPred_match<LHS, RHS, is_irem_op>(L, R);
1291}
1292
1293//===----------------------------------------------------------------------===//
1294// Class that matches exact binary ops.
1295//
1296template <typename SubPattern_t> struct Exact_match {
1297 SubPattern_t SubPattern;
1298
1299 Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
1300
1301 template <typename OpTy> bool match(OpTy *V) {
1302 if (auto *PEO = dyn_cast<PossiblyExactOperator>(V))
1303 return PEO->isExact() && SubPattern.match(V);
1304 return false;
1305 }
1306};
1307
1308template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) {
1309 return SubPattern;
1310}
1311
1312//===----------------------------------------------------------------------===//
1313// Matchers for CmpInst classes
1314//
1315
1316template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy,
1317 bool Commutable = false>
1318struct CmpClass_match {
1319 PredicateTy &Predicate;
1320 LHS_t L;
1321 RHS_t R;
1322
1323 // The evaluation order is always stable, regardless of Commutability.
1324 // The LHS is always matched first.
1325 CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
1326 : Predicate(Pred), L(LHS), R(RHS) {}
1327
1328 template <typename OpTy> bool match(OpTy *V) {
1329 if (auto *I = dyn_cast<Class>(V)) {
1330 if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) {
1331 Predicate = I->getPredicate();
1332 return true;
1333 } else if (Commutable && L.match(I->getOperand(1)) &&
1334 R.match(I->getOperand(0))) {
1335 Predicate = I->getSwappedPredicate();
1336 return true;
1337 }
1338 }
1339 return false;
1340 }
1341};
1342
1343template <typename LHS, typename RHS>
1344inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>
1345m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1346 return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R);
1347}
1348
1349template <typename LHS, typename RHS>
1350inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
1351m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1352 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R);
1353}
1354
1355template <typename LHS, typename RHS>
1356inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
1357m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1358 return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R);
1359}
1360
1361//===----------------------------------------------------------------------===//
1362// Matchers for instructions with a given opcode and number of operands.
1363//
1364
1365/// Matches instructions with Opcode and three operands.
1366template <typename T0, unsigned Opcode> struct OneOps_match {
1367 T0 Op1;
1368
1369 OneOps_match(const T0 &Op1) : Op1(Op1) {}
1370
1371 template <typename OpTy> bool match(OpTy *V) {
1372 if (V->getValueID() == Value::InstructionVal + Opcode) {
1373 auto *I = cast<Instruction>(V);
1374 return Op1.match(I->getOperand(0));
1375 }
1376 return false;
1377 }
1378};
1379
1380/// Matches instructions with Opcode and three operands.
1381template <typename T0, typename T1, unsigned Opcode> struct TwoOps_match {
1382 T0 Op1;
1383 T1 Op2;
1384
1385 TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {}
1386
1387 template <typename OpTy> bool match(OpTy *V) {
1388 if (V->getValueID() == Value::InstructionVal + Opcode) {
1389 auto *I = cast<Instruction>(V);
1390 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1));
1391 }
1392 return false;
1393 }
1394};
1395
1396/// Matches instructions with Opcode and three operands.
1397template <typename T0, typename T1, typename T2, unsigned Opcode>
1398struct ThreeOps_match {
1399 T0 Op1;
1400 T1 Op2;
1401 T2 Op3;
1402
1403 ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3)
1404 : Op1(Op1), Op2(Op2), Op3(Op3) {}
1405
1406 template <typename OpTy> bool match(OpTy *V) {
1407 if (V->getValueID() == Value::InstructionVal + Opcode) {
1408 auto *I = cast<Instruction>(V);
1409 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1410 Op3.match(I->getOperand(2));
1411 }
1412 return false;
1413 }
1414};
1415
1416/// Matches SelectInst.
1417template <typename Cond, typename LHS, typename RHS>
1418inline ThreeOps_match<Cond, LHS, RHS, Instruction::Select>
1419m_Select(const Cond &C, const LHS &L, const RHS &R) {
1420 return ThreeOps_match<Cond, LHS, RHS, Instruction::Select>(C, L, R);
1421}
1422
1423/// This matches a select of two constants, e.g.:
1424/// m_SelectCst<-1, 0>(m_Value(V))
1425template <int64_t L, int64_t R, typename Cond>
1426inline ThreeOps_match<Cond, constantint_match<L>, constantint_match<R>,
1427 Instruction::Select>
1428m_SelectCst(const Cond &C) {
1429 return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
1430}
1431
1432/// Matches FreezeInst.
1433template <typename OpTy>
1434inline OneOps_match<OpTy, Instruction::Freeze> m_Freeze(const OpTy &Op) {
1435 return OneOps_match<OpTy, Instruction::Freeze>(Op);
1436}
1437
1438/// Matches InsertElementInst.
1439template <typename Val_t, typename Elt_t, typename Idx_t>
1440inline ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>
1441m_InsertElt(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) {
1442 return ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>(
1443 Val, Elt, Idx);
1444}
1445
1446/// Matches ExtractElementInst.
1447template <typename Val_t, typename Idx_t>
1448inline TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>
1449m_ExtractElt(const Val_t &Val, const Idx_t &Idx) {
1450 return TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>(Val, Idx);
1451}
1452
1453/// Matches shuffle.
1454template <typename T0, typename T1, typename T2> struct Shuffle_match {
1455 T0 Op1;
1456 T1 Op2;
1457 T2 Mask;
1458
1459 Shuffle_match(const T0 &Op1, const T1 &Op2, const T2 &Mask)
1460 : Op1(Op1), Op2(Op2), Mask(Mask) {}
1461
1462 template <typename OpTy> bool match(OpTy *V) {
1463 if (auto *I = dyn_cast<ShuffleVectorInst>(V)) {
1464 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1465 Mask.match(I->getShuffleMask());
1466 }
1467 return false;
1468 }
1469};
1470
1471struct m_Mask {
1472 ArrayRef<int> &MaskRef;
1473 m_Mask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {}
1474 bool match(ArrayRef<int> Mask) {
1475 MaskRef = Mask;
1476 return true;
1477 }
1478};
1479
1480struct m_ZeroMask {
1481 bool match(ArrayRef<int> Mask) {
1482 return all_of(Mask, [](int Elem) { return Elem == 0 || Elem == -1; });
1483 }
1484};
1485
1486struct m_SpecificMask {
1487 ArrayRef<int> &MaskRef;
1488 m_SpecificMask(ArrayRef<int> &MaskRef) : MaskRef(MaskRef) {}
1489 bool match(ArrayRef<int> Mask) { return MaskRef == Mask; }
1490};
1491
1492struct m_SplatOrUndefMask {
1493 int &SplatIndex;
1494 m_SplatOrUndefMask(int &SplatIndex) : SplatIndex(SplatIndex) {}
1495 bool match(ArrayRef<int> Mask) {
1496 auto First = find_if(Mask, [](int Elem) { return Elem != -1; });
1497 if (First == Mask.end())
1498 return false;
1499 SplatIndex = *First;
1500 return all_of(Mask,
1501 [First](int Elem) { return Elem == *First || Elem == -1; });
1502 }
1503};
1504
1505/// Matches ShuffleVectorInst independently of mask value.
1506template <typename V1_t, typename V2_t>
1507inline TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>
1508m_Shuffle(const V1_t &v1, const V2_t &v2) {
1509 return TwoOps_match<V1_t, V2_t, Instruction::ShuffleVector>(v1, v2);
1510}
1511
1512template <typename V1_t, typename V2_t, typename Mask_t>
1513inline Shuffle_match<V1_t, V2_t, Mask_t>
1514m_Shuffle(const V1_t &v1, const V2_t &v2, const Mask_t &mask) {
1515 return Shuffle_match<V1_t, V2_t, Mask_t>(v1, v2, mask);
1516}
1517
1518/// Matches LoadInst.
1519template <typename OpTy>
1520inline OneOps_match<OpTy, Instruction::Load> m_Load(const OpTy &Op) {
1521 return OneOps_match<OpTy, Instruction::Load>(Op);
1522}
1523
1524/// Matches StoreInst.
1525template <typename ValueOpTy, typename PointerOpTy>
1526inline TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>
1527m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) {
1528 return TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>(ValueOp,
1529 PointerOp);
1530}
1531
1532//===----------------------------------------------------------------------===//
1533// Matchers for CastInst classes
1534//
1535
1536template <typename Op_t, unsigned Opcode> struct CastClass_match {
1537 Op_t Op;
1538
1539 CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
1540
1541 template <typename OpTy> bool match(OpTy *V) {
1542 if (auto *O = dyn_cast<Operator>(V))
1543 return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
1544 return false;
1545 }
1546};
1547
1548/// Matches BitCast.
1549template <typename OpTy>
1550inline CastClass_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) {
1551 return CastClass_match<OpTy, Instruction::BitCast>(Op);
1552}
1553
1554/// Matches PtrToInt.
1555template <typename OpTy>
1556inline CastClass_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) {
1557 return CastClass_match<OpTy, Instruction::PtrToInt>(Op);
1558}
1559
1560/// Matches IntToPtr.
1561template <typename OpTy>
1562inline CastClass_match<OpTy, Instruction::IntToPtr> m_IntToPtr(const OpTy &Op) {
1563 return CastClass_match<OpTy, Instruction::IntToPtr>(Op);
1564}
1565
1566/// Matches Trunc.
1567template <typename OpTy>
1568inline CastClass_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) {
1569 return CastClass_match<OpTy, Instruction::Trunc>(Op);
1570}
1571
1572template <typename OpTy>
1573inline match_combine_or<CastClass_match<OpTy, Instruction::Trunc>, OpTy>
1574m_TruncOrSelf(const OpTy &Op) {
1575 return m_CombineOr(m_Trunc(Op), Op);
1576}
1577
1578/// Matches SExt.
1579template <typename OpTy>
1580inline CastClass_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) {
1581 return CastClass_match<OpTy, Instruction::SExt>(Op);
1582}
1583
1584/// Matches ZExt.
1585template <typename OpTy>
1586inline CastClass_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) {
1587 return CastClass_match<OpTy, Instruction::ZExt>(Op);
1588}
1589
1590template <typename OpTy>
1591inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>, OpTy>
1592m_ZExtOrSelf(const OpTy &Op) {
1593 return m_CombineOr(m_ZExt(Op), Op);
1594}
1595
1596template <typename OpTy>
1597inline match_combine_or<CastClass_match<OpTy, Instruction::SExt>, OpTy>
1598m_SExtOrSelf(const OpTy &Op) {
1599 return m_CombineOr(m_SExt(Op), Op);
1600}
1601
1602template <typename OpTy>
1603inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
1604 CastClass_match<OpTy, Instruction::SExt>>
1605m_ZExtOrSExt(const OpTy &Op) {
1606 return m_CombineOr(m_ZExt(Op), m_SExt(Op));
1607}
1608
1609template <typename OpTy>
1610inline match_combine_or<
1611 match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
1612 CastClass_match<OpTy, Instruction::SExt>>,
1613 OpTy>
1614m_ZExtOrSExtOrSelf(const OpTy &Op) {
1615 return m_CombineOr(m_ZExtOrSExt(Op), Op);
1616}
1617
1618template <typename OpTy>
1619inline CastClass_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) {
1620 return CastClass_match<OpTy, Instruction::UIToFP>(Op);
1621}
1622
1623template <typename OpTy>
1624inline CastClass_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) {
1625 return CastClass_match<OpTy, Instruction::SIToFP>(Op);
1626}
1627
1628template <typename OpTy>
1629inline CastClass_match<OpTy, Instruction::FPToUI> m_FPToUI(const OpTy &Op) {
1630 return CastClass_match<OpTy, Instruction::FPToUI>(Op);
1631}
1632
1633template <typename OpTy>
1634inline CastClass_match<OpTy, Instruction::FPToSI> m_FPToSI(const OpTy &Op) {
1635 return CastClass_match<OpTy, Instruction::FPToSI>(Op);
1636}
1637
1638template <typename OpTy>
1639inline CastClass_match<OpTy, Instruction::FPTrunc> m_FPTrunc(const OpTy &Op) {
1640 return CastClass_match<OpTy, Instruction::FPTrunc>(Op);
1641}
1642
1643template <typename OpTy>
1644inline CastClass_match<OpTy, Instruction::FPExt> m_FPExt(const OpTy &Op) {
1645 return CastClass_match<OpTy, Instruction::FPExt>(Op);
1646}
1647
1648//===----------------------------------------------------------------------===//
1649// Matchers for control flow.
1650//
1651
1652struct br_match {
1653 BasicBlock *&Succ;
1654
1655 br_match(BasicBlock *&Succ) : Succ(Succ) {}
1656
1657 template <typename OpTy> bool match(OpTy *V) {
1658 if (auto *BI = dyn_cast<BranchInst>(V))
1659 if (BI->isUnconditional()) {
1660 Succ = BI->getSuccessor(0);
1661 return true;
1662 }
1663 return false;
1664 }
1665};
1666
1667inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
1668
1669template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
1670struct brc_match {
1671 Cond_t Cond;
1672 TrueBlock_t T;
1673 FalseBlock_t F;
1674
1675 brc_match(const Cond_t &C, const TrueBlock_t &t, const FalseBlock_t &f)
1676 : Cond(C), T(t), F(f) {}
1677
1678 template <typename OpTy> bool match(OpTy *V) {
1679 if (auto *BI = dyn_cast<BranchInst>(V))
1680 if (BI->isConditional() && Cond.match(BI->getCondition()))
1681 return T.match(BI->getSuccessor(0)) && F.match(BI->getSuccessor(1));
1682 return false;
1683 }
1684};
1685
1686template <typename Cond_t>
1687inline brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>
1688m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
1689 return brc_match<Cond_t, bind_ty<BasicBlock>, bind_ty<BasicBlock>>(
1690 C, m_BasicBlock(T), m_BasicBlock(F));
1691}
1692
1693template <typename Cond_t, typename TrueBlock_t, typename FalseBlock_t>
1694inline brc_match<Cond_t, TrueBlock_t, FalseBlock_t>
1695m_Br(const Cond_t &C, const TrueBlock_t &T, const FalseBlock_t &F) {
1696 return brc_match<Cond_t, TrueBlock_t, FalseBlock_t>(C, T, F);
1697}
1698
1699//===----------------------------------------------------------------------===//
1700// Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
1701//
1702
1703template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t,
1704 bool Commutable = false>
1705struct MaxMin_match {
1706 LHS_t L;
1707 RHS_t R;
1708
1709 // The evaluation order is always stable, regardless of Commutability.
1710 // The LHS is always matched first.
1711 MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1712
1713 template <typename OpTy> bool match(OpTy *V) {
1714 if (auto *II = dyn_cast<IntrinsicInst>(V)) {
1715 Intrinsic::ID IID = II->getIntrinsicID();
1716 if ((IID == Intrinsic::smax && Pred_t::match(ICmpInst::ICMP_SGT)) ||
1717 (IID == Intrinsic::smin && Pred_t::match(ICmpInst::ICMP_SLT)) ||
1718 (IID == Intrinsic::umax && Pred_t::match(ICmpInst::ICMP_UGT)) ||
1719 (IID == Intrinsic::umin && Pred_t::match(ICmpInst::ICMP_ULT))) {
1720 Value *LHS = II->getOperand(0), *RHS = II->getOperand(1);
1721 return (L.match(LHS) && R.match(RHS)) ||
1722 (Commutable && L.match(RHS) && R.match(LHS));
1723 }
1724 }
1725 // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
1726 auto *SI = dyn_cast<SelectInst>(V);
1727 if (!SI)
1728 return false;
1729 auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
1730 if (!Cmp)
1731 return false;
1732 // At this point we have a select conditioned on a comparison. Check that
1733 // it is the values returned by the select that are being compared.
1734 Value *TrueVal = SI->getTrueValue();
1735 Value *FalseVal = SI->getFalseValue();
1736 Value *LHS = Cmp->getOperand(0);
1737 Value *RHS = Cmp->getOperand(1);
1738 if ((TrueVal != LHS || FalseVal != RHS) &&
1739 (TrueVal != RHS || FalseVal != LHS))
1740 return false;
1741 typename CmpInst_t::Predicate Pred =
1742 LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate();
1743 // Does "(x pred y) ? x : y" represent the desired max/min operation?
1744 if (!Pred_t::match(Pred))
1745 return false;
1746 // It does! Bind the operands.
1747 return (L.match(LHS) && R.match(RHS)) ||
1748 (Commutable && L.match(RHS) && R.match(LHS));
1749 }
1750};
1751
1752/// Helper class for identifying signed max predicates.
1753struct smax_pred_ty {
1754 static bool match(ICmpInst::Predicate Pred) {
1755 return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
1756 }
1757};
1758
1759/// Helper class for identifying signed min predicates.
1760struct smin_pred_ty {
1761 static bool match(ICmpInst::Predicate Pred) {
1762 return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
1763 }
1764};
1765
1766/// Helper class for identifying unsigned max predicates.
1767struct umax_pred_ty {
1768 static bool match(ICmpInst::Predicate Pred) {
1769 return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
1770 }
1771};
1772
1773/// Helper class for identifying unsigned min predicates.
1774struct umin_pred_ty {
1775 static bool match(ICmpInst::Predicate Pred) {
1776 return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
1777 }
1778};
1779
1780/// Helper class for identifying ordered max predicates.
1781struct ofmax_pred_ty {
1782 static bool match(FCmpInst::Predicate Pred) {
1783 return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
1784 }
1785};
1786
1787/// Helper class for identifying ordered min predicates.
1788struct ofmin_pred_ty {
1789 static bool match(FCmpInst::Predicate Pred) {
1790 return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
1791 }
1792};
1793
1794/// Helper class for identifying unordered max predicates.
1795struct ufmax_pred_ty {
1796 static bool match(FCmpInst::Predicate Pred) {
1797 return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
1798 }
1799};
1800
1801/// Helper class for identifying unordered min predicates.
1802struct ufmin_pred_ty {
1803 static bool match(FCmpInst::Predicate Pred) {
1804 return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
1805 }
1806};
1807
1808template <typename LHS, typename RHS>
1809inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L,
1810 const RHS &R) {
1811 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R);
1812}
1813
1814template <typename LHS, typename RHS>
1815inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L,
1816 const RHS &R) {
1817 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R);
1818}
1819
1820template <typename LHS, typename RHS>
1821inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L,
1822 const RHS &R) {
1823 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R);
1824}
1825
1826template <typename LHS, typename RHS>
1827inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L,
1828 const RHS &R) {
1829 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R);
1830}
1831
1832template <typename LHS, typename RHS>
1833inline match_combine_or<
1834 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>,
1835 MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>>,
1836 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>,
1837 MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>>>
1838m_MaxOrMin(const LHS &L, const RHS &R) {
1839 return m_CombineOr(m_CombineOr(m_SMax(L, R), m_SMin(L, R)),
1840 m_CombineOr(m_UMax(L, R), m_UMin(L, R)));
1841}
1842
1843/// Match an 'ordered' floating point maximum function.
1844/// Floating point has one special value 'NaN'. Therefore, there is no total
1845/// order. However, if we can ignore the 'NaN' value (for example, because of a
1846/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1847/// semantics. In the presence of 'NaN' we have to preserve the original
1848/// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
1849///
1850/// max(L, R) iff L and R are not NaN
1851/// m_OrdFMax(L, R) = R iff L or R are NaN
1852template <typename LHS, typename RHS>
1853inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L,
1854 const RHS &R) {
1855 return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R);
1856}
1857
1858/// Match an 'ordered' floating point minimum function.
1859/// Floating point has one special value 'NaN'. Therefore, there is no total
1860/// order. However, if we can ignore the 'NaN' value (for example, because of a
1861/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1862/// semantics. In the presence of 'NaN' we have to preserve the original
1863/// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
1864///
1865/// min(L, R) iff L and R are not NaN
1866/// m_OrdFMin(L, R) = R iff L or R are NaN
1867template <typename LHS, typename RHS>
1868inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L,
1869 const RHS &R) {
1870 return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R);
1871}
1872
1873/// Match an 'unordered' floating point maximum function.
1874/// Floating point has one special value 'NaN'. Therefore, there is no total
1875/// order. However, if we can ignore the 'NaN' value (for example, because of a
1876/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1877/// semantics. In the presence of 'NaN' we have to preserve the original
1878/// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
1879///
1880/// max(L, R) iff L and R are not NaN
1881/// m_UnordFMax(L, R) = L iff L or R are NaN
1882template <typename LHS, typename RHS>
1883inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>
1884m_UnordFMax(const LHS &L, const RHS &R) {
1885 return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R);
1886}
1887
1888/// Match an 'unordered' floating point minimum function.
1889/// Floating point has one special value 'NaN'. Therefore, there is no total
1890/// order. However, if we can ignore the 'NaN' value (for example, because of a
1891/// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1892/// semantics. In the presence of 'NaN' we have to preserve the original
1893/// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
1894///
1895/// min(L, R) iff L and R are not NaN
1896/// m_UnordFMin(L, R) = L iff L or R are NaN
1897template <typename LHS, typename RHS>
1898inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>
1899m_UnordFMin(const LHS &L, const RHS &R) {
1900 return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R);
1901}
1902
1903//===----------------------------------------------------------------------===//
1904// Matchers for overflow check patterns: e.g. (a + b) u< a, (a ^ -1) <u b
1905// Note that S might be matched to other instructions than AddInst.
1906//
1907
1908template <typename LHS_t, typename RHS_t, typename Sum_t>
1909struct UAddWithOverflow_match {
1910 LHS_t L;
1911 RHS_t R;
1912 Sum_t S;
1913
1914 UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S)
1915 : L(L), R(R), S(S) {}
1916
1917 template <typename OpTy> bool match(OpTy *V) {
1918 Value *ICmpLHS, *ICmpRHS;
1919 ICmpInst::Predicate Pred;
1920 if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V))
1921 return false;
1922
1923 Value *AddLHS, *AddRHS;
1924 auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS));
1925
1926 // (a + b) u< a, (a + b) u< b
1927 if (Pred == ICmpInst::ICMP_ULT)
1928 if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS))
1929 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
1930
1931 // a >u (a + b), b >u (a + b)
1932 if (Pred == ICmpInst::ICMP_UGT)
1933 if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS))
1934 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
1935
1936 Value *Op1;
1937 auto XorExpr = m_OneUse(m_Xor(m_Value(Op1), m_AllOnes()));
1938 // (a ^ -1) <u b
1939 if (Pred == ICmpInst::ICMP_ULT) {
1940 if (XorExpr.match(ICmpLHS))
1941 return L.match(Op1) && R.match(ICmpRHS) && S.match(ICmpLHS);
1942 }
1943 // b > u (a ^ -1)
1944 if (Pred == ICmpInst::ICMP_UGT) {
1945 if (XorExpr.match(ICmpRHS))
1946 return L.match(Op1) && R.match(ICmpLHS) && S.match(ICmpRHS);
1947 }
1948
1949 // Match special-case for increment-by-1.
1950 if (Pred == ICmpInst::ICMP_EQ) {
1951 // (a + 1) == 0
1952 // (1 + a) == 0
1953 if (AddExpr.match(ICmpLHS) && m_ZeroInt().match(ICmpRHS) &&
1954 (m_One().match(AddLHS) || m_One().match(AddRHS)))
1955 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
1956 // 0 == (a + 1)
1957 // 0 == (1 + a)
1958 if (m_ZeroInt().match(ICmpLHS) && AddExpr.match(ICmpRHS) &&
1959 (m_One().match(AddLHS) || m_One().match(AddRHS)))
1960 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
1961 }
1962
1963 return false;
1964 }
1965};
1966
1967/// Match an icmp instruction checking for unsigned overflow on addition.
1968///
1969/// S is matched to the addition whose result is being checked for overflow, and
1970/// L and R are matched to the LHS and RHS of S.
1971template <typename LHS_t, typename RHS_t, typename Sum_t>
1972UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>
1973m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) {
1974 return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S);
1975}
1976
1977template <typename Opnd_t> struct Argument_match {
1978 unsigned OpI;
1979 Opnd_t Val;
1980
1981 Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}
1982
1983 template <typename OpTy> bool match(OpTy *V) {
1984 // FIXME: Should likely be switched to use `CallBase`.
1985 if (const auto *CI
15.1
'CI' is non-null
15.1
'CI' is non-null
= dyn_cast<CallInst>(V))
15
'V' is a 'CallInst'
16
Taking true branch
1986 return Val.match(CI->getArgOperand(OpI));
17
Calling 'match_unless::match'
23
Returning from 'match_unless::match'
24
Returning the value 1, which participates in a condition later
1987 return false;
1988 }
1989};
1990
1991/// Match an argument.
1992template <unsigned OpI, typename Opnd_t>
1993inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
1994 return Argument_match<Opnd_t>(OpI, Op);
1995}
1996
1997/// Intrinsic matchers.
1998struct IntrinsicID_match {
1999 unsigned ID;
2000
2001 IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {}
2002
2003 template <typename OpTy> bool match(OpTy *V) {
2004 if (const auto *CI
7.1
'CI' is non-null, which participates in a condition later
7.1
'CI' is non-null, which participates in a condition later
= dyn_cast<CallInst>(V))
7
Assuming 'V' is a 'CallInst'
8
Taking true branch
2005 if (const auto *F
8.1
'F' is non-null
8.1
'F' is non-null
= CI->getCalledFunction())
9
Taking true branch
2006 return F->getIntrinsicID() == ID;
10
Assuming the condition is true
11
Returning the value 1, which participates in a condition later
2007 return false;
2008 }
2009};
2010
2011/// Intrinsic matches are combinations of ID matchers, and argument
2012/// matchers. Higher arity matcher are defined recursively in terms of and-ing
2013/// them with lower arity matchers. Here's some convenient typedefs for up to
2014/// several arguments, and more can be added as needed
2015template <typename T0 = void, typename T1 = void, typename T2 = void,
2016 typename T3 = void, typename T4 = void, typename T5 = void,
2017 typename T6 = void, typename T7 = void, typename T8 = void,
2018 typename T9 = void, typename T10 = void>
2019struct m_Intrinsic_Ty;
2020template <typename T0> struct m_Intrinsic_Ty<T0> {
2021 using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>;
2022};
2023template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> {
2024 using Ty =
2025 match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>;
2026};
2027template <typename T0, typename T1, typename T2>
2028struct m_Intrinsic_Ty<T0, T1, T2> {
2029 using Ty =
2030 match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
2031 Argument_match<T2>>;
2032};
2033template <typename T0, typename T1, typename T2, typename T3>
2034struct m_Intrinsic_Ty<T0, T1, T2, T3> {
2035 using Ty =
2036 match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
2037 Argument_match<T3>>;
2038};
2039
2040template <typename T0, typename T1, typename T2, typename T3, typename T4>
2041struct m_Intrinsic_Ty<T0, T1, T2, T3, T4> {
2042 using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty,
2043 Argument_match<T4>>;
2044};
2045
2046template <typename T0, typename T1, typename T2, typename T3, typename T4, typename T5>
2047struct m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5> {
2048 using Ty = match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty,
2049 Argument_match<T5>>;
2050};
2051
2052/// Match intrinsic calls like this:
2053/// m_Intrinsic<Intrinsic::fabs>(m_Value(X))
2054template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() {
2055 return IntrinsicID_match(IntrID);
2056}
2057
2058template <Intrinsic::ID IntrID, typename T0>
2059inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) {
2060 return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
2061}
2062
2063template <Intrinsic::ID IntrID, typename T0, typename T1>
2064inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0,
2065 const T1 &Op1) {
2066 return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
2067}
2068
2069template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
2070inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
2071m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
2072 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
2073}
2074
2075template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2076 typename T3>
2077inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
2078m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
2079 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
2080}
2081
2082template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2083 typename T3, typename T4>
2084inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4>::Ty
2085m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3,
2086 const T4 &Op4) {
2087 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3),
2088 m_Argument<4>(Op4));
2089}
2090
2091template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
2092 typename T3, typename T4, typename T5>
2093inline typename m_Intrinsic_Ty<T0, T1, T2, T3, T4, T5>::Ty
2094m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3,
2095 const T4 &Op4, const T5 &Op5) {
2096 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2, Op3, Op4),
2097 m_Argument<5>(Op5));
2098}
2099
2100// Helper intrinsic matching specializations.
2101template <typename Opnd0>
2102inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) {
2103 return m_Intrinsic<Intrinsic::bitreverse>(Op0);
2104}
2105
2106template <typename Opnd0>
2107inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) {
2108 return m_Intrinsic<Intrinsic::bswap>(Op0);
2109}
2110
2111template <typename Opnd0>
2112inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) {
2113 return m_Intrinsic<Intrinsic::fabs>(Op0);
2114}
2115
2116template <typename Opnd0>
2117inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) {
2118 return m_Intrinsic<Intrinsic::canonicalize>(Op0);
2119}
2120
2121template <typename Opnd0, typename Opnd1>
2122inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0,
2123 const Opnd1 &Op1) {
2124 return m_Intrinsic<Intrinsic::minnum>(Op0, Op1);
2125}
2126
2127template <typename Opnd0, typename Opnd1>
2128inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0,
2129 const Opnd1 &Op1) {
2130 return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1);
2131}
2132
2133template <typename Opnd0, typename Opnd1, typename Opnd2>
2134inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty
2135m_FShl(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) {
2136 return m_Intrinsic<Intrinsic::fshl>(Op0, Op1, Op2);
2137}
2138
2139template <typename Opnd0, typename Opnd1, typename Opnd2>
2140inline typename m_Intrinsic_Ty<Opnd0, Opnd1, Opnd2>::Ty
2141m_FShr(const Opnd0 &Op0, const Opnd1 &Op1, const Opnd2 &Op2) {
2142 return m_Intrinsic<Intrinsic::fshr>(Op0, Op1, Op2);
2143}
2144
2145//===----------------------------------------------------------------------===//
2146// Matchers for two-operands operators with the operators in either order
2147//
2148
2149/// Matches a BinaryOperator with LHS and RHS in either order.
2150template <typename LHS, typename RHS>
2151inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) {
2152 return AnyBinaryOp_match<LHS, RHS, true>(L, R);
2153}
2154
2155/// Matches an ICmp with a predicate over LHS and RHS in either order.
2156/// Swaps the predicate if operands are commuted.
2157template <typename LHS, typename RHS>
2158inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>
2159m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
2160 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L,
2161 R);
2162}
2163
2164/// Matches a Add with LHS and RHS in either order.
2165template <typename LHS, typename RHS>
2166inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L,
2167 const RHS &R) {
2168 return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R);
2169}
2170
2171/// Matches a Mul with LHS and RHS in either order.
2172template <typename LHS, typename RHS>
2173inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L,
2174 const RHS &R) {
2175 return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R);
2176}
2177
2178/// Matches an And with LHS and RHS in either order.
2179template <typename LHS, typename RHS>
2180inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L,
2181 const RHS &R) {
2182 return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R);
2183}
2184
2185/// Matches an Or with LHS and RHS in either order.
2186template <typename LHS, typename RHS>
2187inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L,
2188 const RHS &R) {
2189 return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R);
2190}
2191
2192/// Matches an Xor with LHS and RHS in either order.
2193template <typename LHS, typename RHS>
2194inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L,
2195 const RHS &R) {
2196 return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R);
2197}
2198
2199/// Matches a 'Neg' as 'sub 0, V'.
2200template <typename ValTy>
2201inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub>
2202m_Neg(const ValTy &V) {
2203 return m_Sub(m_ZeroInt(), V);
2204}
2205
2206/// Matches a 'Neg' as 'sub nsw 0, V'.
2207template <typename ValTy>
2208inline OverflowingBinaryOp_match<cst_pred_ty<is_zero_int>, ValTy,
2209 Instruction::Sub,
2210 OverflowingBinaryOperator::NoSignedWrap>
2211m_NSWNeg(const ValTy &V) {
2212 return m_NSWSub(m_ZeroInt(), V);
2213}
2214
2215/// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
2216template <typename ValTy>
2217inline BinaryOp_match<ValTy, cst_pred_ty<is_all_ones>, Instruction::Xor, true>
2218m_Not(const ValTy &V) {
2219 return m_c_Xor(V, m_AllOnes());
2220}
2221
2222/// Matches an SMin with LHS and RHS in either order.
2223template <typename LHS, typename RHS>
2224inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>
2225m_c_SMin(const LHS &L, const RHS &R) {
2226 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R);
2227}
2228/// Matches an SMax with LHS and RHS in either order.
2229template <typename LHS, typename RHS>
2230inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>
2231m_c_SMax(const LHS &L, const RHS &R) {
2232 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R);
2233}
2234/// Matches a UMin with LHS and RHS in either order.
2235template <typename LHS, typename RHS>
2236inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>
2237m_c_UMin(const LHS &L, const RHS &R) {
2238 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R);
2239}
2240/// Matches a UMax with LHS and RHS in either order.
2241template <typename LHS, typename RHS>
2242inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>
2243m_c_UMax(const LHS &L, const RHS &R) {
2244 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R);
2245}
2246
2247template <typename LHS, typename RHS>
2248inline match_combine_or<
2249 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>,
2250 MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>>,
2251 match_combine_or<MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>,
2252 MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>>>
2253m_c_MaxOrMin(const LHS &L, const RHS &R) {
2254 return m_CombineOr(m_CombineOr(m_c_SMax(L, R), m_c_SMin(L, R)),
2255 m_CombineOr(m_c_UMax(L, R), m_c_UMin(L, R)));
2256}
2257
2258/// Matches FAdd with LHS and RHS in either order.
2259template <typename LHS, typename RHS>
2260inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true>
2261m_c_FAdd(const LHS &L, const RHS &R) {
2262 return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R);
2263}
2264
2265/// Matches FMul with LHS and RHS in either order.
2266template <typename LHS, typename RHS>
2267inline BinaryOp_match<LHS, RHS, Instruction::FMul, true>
2268m_c_FMul(const LHS &L, const RHS &R) {
2269 return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R);
2270}
2271
2272template <typename Opnd_t> struct Signum_match {
2273 Opnd_t Val;
2274 Signum_match(const Opnd_t &V) : Val(V) {}
2275
2276 template <typename OpTy> bool match(OpTy *V) {
2277 unsigned TypeSize = V->getType()->getScalarSizeInBits();
2278 if (TypeSize == 0)
2279 return false;
2280
2281 unsigned ShiftWidth = TypeSize - 1;
2282 Value *OpL = nullptr, *OpR = nullptr;
2283
2284 // This is the representation of signum we match:
2285 //
2286 // signum(x) == (x >> 63) | (-x >>u 63)
2287 //
2288 // An i1 value is its own signum, so it's correct to match
2289 //
2290 // signum(x) == (x >> 0) | (-x >>u 0)
2291 //
2292 // for i1 values.
2293
2294 auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth));
2295 auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth));
2296 auto Signum = m_Or(LHS, RHS);
2297
2298 return Signum.match(V) && OpL == OpR && Val.match(OpL);
2299 }
2300};
2301
2302/// Matches a signum pattern.
2303///
2304/// signum(x) =
2305/// x > 0 -> 1
2306/// x == 0 -> 0
2307/// x < 0 -> -1
2308template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) {
2309 return Signum_match<Val_t>(V);
2310}
2311
2312template <int Ind, typename Opnd_t> struct ExtractValue_match {
2313 Opnd_t Val;
2314 ExtractValue_match(const Opnd_t &V) : Val(V) {}
2315
2316 template <typename OpTy> bool match(OpTy *V) {
2317 if (auto *I = dyn_cast<ExtractValueInst>(V))
2318 return I->getNumIndices() == 1 && I->getIndices()[0] == Ind &&
2319 Val.match(I->getAggregateOperand());
2320 return false;
2321 }
2322};
2323
2324/// Match a single index ExtractValue instruction.
2325/// For example m_ExtractValue<1>(...)
2326template <int Ind, typename Val_t>
2327inline ExtractValue_match<Ind, Val_t> m_ExtractValue(const Val_t &V) {
2328 return ExtractValue_match<Ind, Val_t>(V);
2329}
2330
2331/// Matcher for a single index InsertValue instruction.
2332template <int Ind, typename T0, typename T1> struct InsertValue_match {
2333 T0 Op0;
2334 T1 Op1;
2335
2336 InsertValue_match(const T0 &Op0, const T1 &Op1) : Op0(Op0), Op1(Op1) {}
2337
2338 template <typename OpTy> bool match(OpTy *V) {
2339 if (auto *I = dyn_cast<InsertValueInst>(V)) {
2340 return Op0.match(I->getOperand(0)) && Op1.match(I->getOperand(1)) &&
2341 I->getNumIndices() == 1 && Ind == I->getIndices()[0];
2342 }
2343 return false;
2344 }
2345};
2346
2347/// Matches a single index InsertValue instruction.
2348template <int Ind, typename Val_t, typename Elt_t>
2349inline InsertValue_match<Ind, Val_t, Elt_t> m_InsertValue(const Val_t &Val,
2350 const Elt_t &Elt) {
2351 return InsertValue_match<Ind, Val_t, Elt_t>(Val, Elt);
2352}
2353
2354/// Matches patterns for `vscale`. This can either be a call to `llvm.vscale` or
2355/// the constant expression
2356/// `ptrtoint(gep <vscale x 1 x i8>, <vscale x 1 x i8>* null, i32 1>`
2357/// under the right conditions determined by DataLayout.
2358struct VScaleVal_match {
2359private:
2360 template <typename Base, typename Offset>
2361 inline BinaryOp_match<Base, Offset, Instruction::GetElementPtr>
2362 m_OffsetGep(const Base &B, const Offset &O) {
2363 return BinaryOp_match<Base, Offset, Instruction::GetElementPtr>(B, O);
2364 }
2365
2366public:
2367 const DataLayout &DL;
2368 VScaleVal_match(const DataLayout &DL) : DL(DL) {}
2369
2370 template <typename ITy> bool match(ITy *V) {
2371 if (m_Intrinsic<Intrinsic::vscale>().match(V))
2372 return true;
2373
2374 if (m_PtrToInt(m_OffsetGep(m_Zero(), m_SpecificInt(1))).match(V)) {
2375 Type *PtrTy = cast<Operator>(V)->getOperand(0)->getType();
2376 auto *DerefTy = PtrTy->getPointerElementType();
2377 if (isa<ScalableVectorType>(DerefTy) &&
2378 DL.getTypeAllocSizeInBits(DerefTy).getKnownMinSize() == 8)
2379 return true;
2380 }
2381
2382 return false;
2383 }
2384};
2385
2386inline VScaleVal_match m_VScale(const DataLayout &DL) {
2387 return VScaleVal_match(DL);
2388}
2389
2390template <typename LHS, typename RHS, unsigned Opcode>
2391struct LogicalOp_match {
2392 LHS L;
2393 RHS R;
2394
2395 LogicalOp_match(const LHS &L, const RHS &R) : L(L), R(R) {}
2396
2397 template <typename T> bool match(T *V) {
2398 if (auto *I = dyn_cast<Instruction>(V)) {
2399 if (!I->getType()->isIntOrIntVectorTy(1))
2400 return false;
2401
2402 if (I->getOpcode() == Opcode && L.match(I->getOperand(0)) &&
2403 R.match(I->getOperand(1)))
2404 return true;
2405
2406 if (auto *SI = dyn_cast<SelectInst>(I)) {
2407 if (Opcode == Instruction::And) {
2408 if (const auto *C = dyn_cast<Constant>(SI->getFalseValue()))
2409 if (C->isNullValue() && L.match(SI->getCondition()) &&
2410 R.match(SI->getTrueValue()))
2411 return true;
2412 } else {
2413 assert(Opcode == Instruction::Or)((Opcode == Instruction::Or) ? static_cast<void> (0) : __assert_fail
("Opcode == Instruction::Or", "/build/llvm-toolchain-snapshot-12~++20210124100612+2afaf072f5c1/llvm/include/llvm/IR/PatternMatch.h"
, 2413, __PRETTY_FUNCTION__))
;
2414 if (const auto *C = dyn_cast<Constant>(SI->getTrueValue()))
2415 if (C->isOneValue() && L.match(SI->getCondition()) &&
2416 R.match(SI->getFalseValue()))
2417 return true;
2418 }
2419 }
2420 }
2421
2422 return false;
2423 }
2424};
2425
2426/// Matches L && R either in the form of L & R or L ? R : false.
2427/// Note that the latter form is poison-blocking.
2428template <typename LHS, typename RHS>
2429inline LogicalOp_match<LHS, RHS, Instruction::And>
2430m_LogicalAnd(const LHS &L, const RHS &R) {
2431 return LogicalOp_match<LHS, RHS, Instruction::And>(L, R);
2432}
2433
2434/// Matches L || R either in the form of L | R or L ? true : R.
2435/// Note that the latter form is poison-blocking.
2436template <typename LHS, typename RHS>
2437inline LogicalOp_match<LHS, RHS, Instruction::Or>
2438m_LogicalOr(const LHS &L, const RHS &R) {
2439 return LogicalOp_match<LHS, RHS, Instruction::Or>(L, R);
2440}
2441
2442} // end namespace PatternMatch
2443} // end namespace llvm
2444
2445#endif // LLVM_IR_PATTERNMATCH_H