Bug Summary

File:llvm/lib/Transforms/IPO/Attributor.cpp
Warning:line 571, column 10
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name Attributor.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/lib/Transforms/IPO -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/lib/Transforms/IPO -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/lib/Transforms/IPO -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/include -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/include -D NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/lib/Transforms/IPO -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-09-04-040900-46481-1 -x c++ /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/lib/Transforms/IPO/Attributor.cpp
1//===- Attributor.cpp - Module-wide attribute deduction -------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements an interprocedural pass that deduces and/or propagates
10// attributes. This is done in an abstract interpretation style fixpoint
11// iteration. See the Attributor.h file comment and the class descriptions in
12// that file for more information.
13//
14//===----------------------------------------------------------------------===//
15
16#include "llvm/Transforms/IPO/Attributor.h"
17
18#include "llvm/ADT/GraphTraits.h"
19#include "llvm/ADT/PointerIntPair.h"
20#include "llvm/ADT/STLExtras.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/ADT/TinyPtrVector.h"
23#include "llvm/Analysis/InlineCost.h"
24#include "llvm/Analysis/LazyValueInfo.h"
25#include "llvm/Analysis/MemorySSAUpdater.h"
26#include "llvm/Analysis/MustExecute.h"
27#include "llvm/Analysis/ValueTracking.h"
28#include "llvm/IR/Attributes.h"
29#include "llvm/IR/Constant.h"
30#include "llvm/IR/Constants.h"
31#include "llvm/IR/GlobalValue.h"
32#include "llvm/IR/GlobalVariable.h"
33#include "llvm/IR/IRBuilder.h"
34#include "llvm/IR/Instruction.h"
35#include "llvm/IR/Instructions.h"
36#include "llvm/IR/IntrinsicInst.h"
37#include "llvm/IR/NoFolder.h"
38#include "llvm/IR/ValueHandle.h"
39#include "llvm/IR/Verifier.h"
40#include "llvm/InitializePasses.h"
41#include "llvm/Support/Casting.h"
42#include "llvm/Support/CommandLine.h"
43#include "llvm/Support/Debug.h"
44#include "llvm/Support/DebugCounter.h"
45#include "llvm/Support/FileSystem.h"
46#include "llvm/Support/GraphWriter.h"
47#include "llvm/Support/raw_ostream.h"
48#include "llvm/Transforms/Utils/BasicBlockUtils.h"
49#include "llvm/Transforms/Utils/Cloning.h"
50#include "llvm/Transforms/Utils/Local.h"
51
52#include <cassert>
53#include <string>
54
55using namespace llvm;
56
57#define DEBUG_TYPE"attributor" "attributor"
58
59DEBUG_COUNTER(ManifestDBGCounter, "attributor-manifest",static const unsigned ManifestDBGCounter = DebugCounter::registerCounter
("attributor-manifest", "Determine what attributes are manifested in the IR"
)
60 "Determine what attributes are manifested in the IR")static const unsigned ManifestDBGCounter = DebugCounter::registerCounter
("attributor-manifest", "Determine what attributes are manifested in the IR"
)
;
61
62STATISTIC(NumFnDeleted, "Number of function deleted")static llvm::Statistic NumFnDeleted = {"attributor", "NumFnDeleted"
, "Number of function deleted"}
;
63STATISTIC(NumFnWithExactDefinition,static llvm::Statistic NumFnWithExactDefinition = {"attributor"
, "NumFnWithExactDefinition", "Number of functions with exact definitions"
}
64 "Number of functions with exact definitions")static llvm::Statistic NumFnWithExactDefinition = {"attributor"
, "NumFnWithExactDefinition", "Number of functions with exact definitions"
}
;
65STATISTIC(NumFnWithoutExactDefinition,static llvm::Statistic NumFnWithoutExactDefinition = {"attributor"
, "NumFnWithoutExactDefinition", "Number of functions without exact definitions"
}
66 "Number of functions without exact definitions")static llvm::Statistic NumFnWithoutExactDefinition = {"attributor"
, "NumFnWithoutExactDefinition", "Number of functions without exact definitions"
}
;
67STATISTIC(NumFnShallowWrappersCreated, "Number of shallow wrappers created")static llvm::Statistic NumFnShallowWrappersCreated = {"attributor"
, "NumFnShallowWrappersCreated", "Number of shallow wrappers created"
}
;
68STATISTIC(NumAttributesTimedOut,static llvm::Statistic NumAttributesTimedOut = {"attributor",
"NumAttributesTimedOut", "Number of abstract attributes timed out before fixpoint"
}
69 "Number of abstract attributes timed out before fixpoint")static llvm::Statistic NumAttributesTimedOut = {"attributor",
"NumAttributesTimedOut", "Number of abstract attributes timed out before fixpoint"
}
;
70STATISTIC(NumAttributesValidFixpoint,static llvm::Statistic NumAttributesValidFixpoint = {"attributor"
, "NumAttributesValidFixpoint", "Number of abstract attributes in a valid fixpoint state"
}
71 "Number of abstract attributes in a valid fixpoint state")static llvm::Statistic NumAttributesValidFixpoint = {"attributor"
, "NumAttributesValidFixpoint", "Number of abstract attributes in a valid fixpoint state"
}
;
72STATISTIC(NumAttributesManifested,static llvm::Statistic NumAttributesManifested = {"attributor"
, "NumAttributesManifested", "Number of abstract attributes manifested in IR"
}
73 "Number of abstract attributes manifested in IR")static llvm::Statistic NumAttributesManifested = {"attributor"
, "NumAttributesManifested", "Number of abstract attributes manifested in IR"
}
;
74
75// TODO: Determine a good default value.
76//
77// In the LLVM-TS and SPEC2006, 32 seems to not induce compile time overheads
78// (when run with the first 5 abstract attributes). The results also indicate
79// that we never reach 32 iterations but always find a fixpoint sooner.
80//
81// This will become more evolved once we perform two interleaved fixpoint
82// iterations: bottom-up and top-down.
83static cl::opt<unsigned>
84 SetFixpointIterations("attributor-max-iterations", cl::Hidden,
85 cl::desc("Maximal number of fixpoint iterations."),
86 cl::init(32));
87
88static cl::opt<unsigned, true> MaxInitializationChainLengthX(
89 "attributor-max-initialization-chain-length", cl::Hidden,
90 cl::desc(
91 "Maximal number of chained initializations (to avoid stack overflows)"),
92 cl::location(MaxInitializationChainLength), cl::init(1024));
93unsigned llvm::MaxInitializationChainLength;
94
95static cl::opt<bool> VerifyMaxFixpointIterations(
96 "attributor-max-iterations-verify", cl::Hidden,
97 cl::desc("Verify that max-iterations is a tight bound for a fixpoint"),
98 cl::init(false));
99
100static cl::opt<bool> AnnotateDeclarationCallSites(
101 "attributor-annotate-decl-cs", cl::Hidden,
102 cl::desc("Annotate call sites of function declarations."), cl::init(false));
103
104static cl::opt<bool> EnableHeapToStack("enable-heap-to-stack-conversion",
105 cl::init(true), cl::Hidden);
106
107static cl::opt<bool>
108 AllowShallowWrappers("attributor-allow-shallow-wrappers", cl::Hidden,
109 cl::desc("Allow the Attributor to create shallow "
110 "wrappers for non-exact definitions."),
111 cl::init(false));
112
113static cl::opt<bool>
114 AllowDeepWrapper("attributor-allow-deep-wrappers", cl::Hidden,
115 cl::desc("Allow the Attributor to use IP information "
116 "derived from non-exact functions via cloning"),
117 cl::init(false));
118
119// These options can only used for debug builds.
120#ifndef NDEBUG1
121static cl::list<std::string>
122 SeedAllowList("attributor-seed-allow-list", cl::Hidden,
123 cl::desc("Comma seperated list of attribute names that are "
124 "allowed to be seeded."),
125 cl::ZeroOrMore, cl::CommaSeparated);
126
127static cl::list<std::string> FunctionSeedAllowList(
128 "attributor-function-seed-allow-list", cl::Hidden,
129 cl::desc("Comma seperated list of function names that are "
130 "allowed to be seeded."),
131 cl::ZeroOrMore, cl::CommaSeparated);
132#endif
133
134static cl::opt<bool>
135 DumpDepGraph("attributor-dump-dep-graph", cl::Hidden,
136 cl::desc("Dump the dependency graph to dot files."),
137 cl::init(false));
138
139static cl::opt<std::string> DepGraphDotFileNamePrefix(
140 "attributor-depgraph-dot-filename-prefix", cl::Hidden,
141 cl::desc("The prefix used for the CallGraph dot file names."));
142
143static cl::opt<bool> ViewDepGraph("attributor-view-dep-graph", cl::Hidden,
144 cl::desc("View the dependency graph."),
145 cl::init(false));
146
147static cl::opt<bool> PrintDependencies("attributor-print-dep", cl::Hidden,
148 cl::desc("Print attribute dependencies"),
149 cl::init(false));
150
151static cl::opt<bool> EnableCallSiteSpecific(
152 "attributor-enable-call-site-specific-deduction", cl::Hidden,
153 cl::desc("Allow the Attributor to do call site specific analysis"),
154 cl::init(false));
155
156static cl::opt<bool>
157 PrintCallGraph("attributor-print-call-graph", cl::Hidden,
158 cl::desc("Print Attributor's internal call graph"),
159 cl::init(false));
160
161static cl::opt<bool> SimplifyAllLoads("attributor-simplify-all-loads",
162 cl::Hidden,
163 cl::desc("Try to simplify all loads."),
164 cl::init(true));
165
166/// Logic operators for the change status enum class.
167///
168///{
169ChangeStatus llvm::operator|(ChangeStatus L, ChangeStatus R) {
170 return L == ChangeStatus::CHANGED ? L : R;
171}
172ChangeStatus &llvm::operator|=(ChangeStatus &L, ChangeStatus R) {
173 L = L | R;
174 return L;
175}
176ChangeStatus llvm::operator&(ChangeStatus L, ChangeStatus R) {
177 return L == ChangeStatus::UNCHANGED ? L : R;
178}
179ChangeStatus &llvm::operator&=(ChangeStatus &L, ChangeStatus R) {
180 L = L & R;
181 return L;
182}
183///}
184
185bool AA::isDynamicallyUnique(Attributor &A, const AbstractAttribute &QueryingAA,
186 const Value &V) {
187 if (auto *C = dyn_cast<Constant>(&V))
188 return !C->isThreadDependent();
189 // TODO: Inspect and cache more complex instructions.
190 if (auto *CB = dyn_cast<CallBase>(&V))
191 return CB->getNumOperands() == 0 && !CB->mayHaveSideEffects() &&
192 !CB->mayReadFromMemory();
193 const Function *Scope = nullptr;
194 if (auto *I = dyn_cast<Instruction>(&V))
195 Scope = I->getFunction();
196 if (auto *A = dyn_cast<Argument>(&V))
197 Scope = A->getParent();
198 if (!Scope)
199 return false;
200 auto &NoRecurseAA = A.getAAFor<AANoRecurse>(
201 QueryingAA, IRPosition::function(*Scope), DepClassTy::OPTIONAL);
202 return NoRecurseAA.isAssumedNoRecurse();
203}
204
205Constant *AA::getInitialValueForObj(Value &Obj, Type &Ty) {
206 if (isa<AllocaInst>(Obj))
207 return UndefValue::get(&Ty);
208 auto *GV = dyn_cast<GlobalVariable>(&Obj);
209 if (!GV || !GV->hasLocalLinkage())
210 return nullptr;
211 if (!GV->hasInitializer())
212 return UndefValue::get(&Ty);
213 return dyn_cast_or_null<Constant>(getWithType(*GV->getInitializer(), Ty));
214}
215
216bool AA::isValidInScope(const Value &V, const Function *Scope) {
217 if (isa<Constant>(V))
218 return true;
219 if (auto *I = dyn_cast<Instruction>(&V))
220 return I->getFunction() == Scope;
221 if (auto *A = dyn_cast<Argument>(&V))
222 return A->getParent() == Scope;
223 return false;
224}
225
226bool AA::isValidAtPosition(const Value &V, const Instruction &CtxI,
227 InformationCache &InfoCache) {
228 if (isa<Constant>(V))
229 return true;
230 const Function *Scope = CtxI.getFunction();
231 if (auto *A = dyn_cast<Argument>(&V))
232 return A->getParent() == Scope;
233 if (auto *I = dyn_cast<Instruction>(&V))
234 if (I->getFunction() == Scope) {
235 const DominatorTree *DT =
236 InfoCache.getAnalysisResultForFunction<DominatorTreeAnalysis>(*Scope);
237 return DT && DT->dominates(I, &CtxI);
238 }
239 return false;
240}
241
242Value *AA::getWithType(Value &V, Type &Ty) {
243 if (V.getType() == &Ty)
244 return &V;
245 if (isa<PoisonValue>(V))
246 return PoisonValue::get(&Ty);
247 if (isa<UndefValue>(V))
248 return UndefValue::get(&Ty);
249 if (auto *C = dyn_cast<Constant>(&V)) {
250 if (C->isNullValue())
251 return Constant::getNullValue(&Ty);
252 if (C->getType()->isPointerTy() && Ty.isPointerTy())
253 return ConstantExpr::getPointerCast(C, &Ty);
254 if (C->getType()->getPrimitiveSizeInBits() >= Ty.getPrimitiveSizeInBits()) {
255 if (C->getType()->isIntegerTy() && Ty.isIntegerTy())
256 return ConstantExpr::getTrunc(C, &Ty, /* OnlyIfReduced */ true);
257 if (C->getType()->isFloatingPointTy() && Ty.isFloatingPointTy())
258 return ConstantExpr::getFPTrunc(C, &Ty, /* OnlyIfReduced */ true);
259 }
260 }
261 return nullptr;
262}
263
264Optional<Value *>
265AA::combineOptionalValuesInAAValueLatice(const Optional<Value *> &A,
266 const Optional<Value *> &B, Type *Ty) {
267 if (A == B)
268 return A;
269 if (!B.hasValue())
270 return A;
271 if (*B == nullptr)
272 return nullptr;
273 if (!A.hasValue())
274 return Ty ? getWithType(**B, *Ty) : nullptr;
275 if (*A == nullptr)
276 return nullptr;
277 if (!Ty)
278 Ty = (*A)->getType();
279 if (isa_and_nonnull<UndefValue>(*A))
280 return getWithType(**B, *Ty);
281 if (isa<UndefValue>(*B))
282 return A;
283 if (*A && *B && *A == getWithType(**B, *Ty))
284 return A;
285 return nullptr;
286}
287
288bool AA::getPotentialCopiesOfStoredValue(
289 Attributor &A, StoreInst &SI, SmallSetVector<Value *, 4> &PotentialCopies,
290 const AbstractAttribute &QueryingAA, bool &UsedAssumedInformation) {
291
292 Value &Ptr = *SI.getPointerOperand();
293 SmallVector<Value *, 8> Objects;
294 if (!AA::getAssumedUnderlyingObjects(A, Ptr, Objects, QueryingAA, &SI)) {
295 LLVM_DEBUG(do { } while (false)
296 dbgs() << "Underlying objects stored into could not be determined\n";)do { } while (false);
297 return false;
298 }
299
300 SmallVector<const AAPointerInfo *> PIs;
301 SmallVector<Value *> NewCopies;
302
303 for (Value *Obj : Objects) {
304 LLVM_DEBUG(dbgs() << "Visit underlying object " << *Obj << "\n")do { } while (false);
305 if (isa<UndefValue>(Obj))
306 continue;
307 if (isa<ConstantPointerNull>(Obj)) {
308 // A null pointer access can be undefined but any offset from null may
309 // be OK. We do not try to optimize the latter.
310 if (!NullPointerIsDefined(SI.getFunction(),
311 Ptr.getType()->getPointerAddressSpace()) &&
312 A.getAssumedSimplified(Ptr, QueryingAA, UsedAssumedInformation) ==
313 Obj)
314 continue;
315 LLVM_DEBUG(do { } while (false)
316 dbgs() << "Underlying object is a valid nullptr, giving up.\n";)do { } while (false);
317 return false;
318 }
319 if (!isa<AllocaInst>(Obj) && !isa<GlobalVariable>(Obj)) {
320 LLVM_DEBUG(dbgs() << "Underlying object is not supported yet: " << *Objdo { } while (false)
321 << "\n";)do { } while (false);
322 return false;
323 }
324 if (auto *GV = dyn_cast<GlobalVariable>(Obj))
325 if (!GV->hasLocalLinkage()) {
326 LLVM_DEBUG(dbgs() << "Underlying object is global with external "do { } while (false)
327 "linkage, not supported yet: "do { } while (false)
328 << *Obj << "\n";)do { } while (false);
329 return false;
330 }
331
332 auto CheckAccess = [&](const AAPointerInfo::Access &Acc, bool IsExact) {
333 if (!Acc.isRead())
334 return true;
335 auto *LI = dyn_cast<LoadInst>(Acc.getRemoteInst());
336 if (!LI) {
337 LLVM_DEBUG(dbgs() << "Underlying object read through a non-load "do { } while (false)
338 "instruction not supported yet: "do { } while (false)
339 << *Acc.getRemoteInst() << "\n";)do { } while (false);
340 return false;
341 }
342 NewCopies.push_back(LI);
343 return true;
344 };
345
346 auto &PI = A.getAAFor<AAPointerInfo>(QueryingAA, IRPosition::value(*Obj),
347 DepClassTy::NONE);
348 if (!PI.forallInterferingAccesses(SI, CheckAccess)) {
349 LLVM_DEBUG(do { } while (false)
350 dbgs()do { } while (false)
351 << "Failed to verify all interfering accesses for underlying object: "do { } while (false)
352 << *Obj << "\n")do { } while (false);
353 return false;
354 }
355 PIs.push_back(&PI);
356 }
357
358 for (auto *PI : PIs) {
359 if (!PI->getState().isAtFixpoint())
360 UsedAssumedInformation = true;
361 A.recordDependence(*PI, QueryingAA, DepClassTy::OPTIONAL);
362 }
363 PotentialCopies.insert(NewCopies.begin(), NewCopies.end());
364
365 return true;
366}
367
368/// Return true if \p New is equal or worse than \p Old.
369static bool isEqualOrWorse(const Attribute &New, const Attribute &Old) {
370 if (!Old.isIntAttribute())
371 return true;
372
373 return Old.getValueAsInt() >= New.getValueAsInt();
374}
375
376/// Return true if the information provided by \p Attr was added to the
377/// attribute list \p Attrs. This is only the case if it was not already present
378/// in \p Attrs at the position describe by \p PK and \p AttrIdx.
379static bool addIfNotExistent(LLVMContext &Ctx, const Attribute &Attr,
380 AttributeList &Attrs, int AttrIdx,
381 bool ForceReplace = false) {
382
383 if (Attr.isEnumAttribute()) {
384 Attribute::AttrKind Kind = Attr.getKindAsEnum();
385 if (Attrs.hasAttributeAtIndex(AttrIdx, Kind))
386 if (!ForceReplace &&
387 isEqualOrWorse(Attr, Attrs.getAttributeAtIndex(AttrIdx, Kind)))
388 return false;
389 Attrs = Attrs.addAttributeAtIndex(Ctx, AttrIdx, Attr);
390 return true;
391 }
392 if (Attr.isStringAttribute()) {
393 StringRef Kind = Attr.getKindAsString();
394 if (Attrs.hasAttributeAtIndex(AttrIdx, Kind))
395 if (!ForceReplace &&
396 isEqualOrWorse(Attr, Attrs.getAttributeAtIndex(AttrIdx, Kind)))
397 return false;
398 Attrs = Attrs.addAttributeAtIndex(Ctx, AttrIdx, Attr);
399 return true;
400 }
401 if (Attr.isIntAttribute()) {
402 Attribute::AttrKind Kind = Attr.getKindAsEnum();
403 if (Attrs.hasAttributeAtIndex(AttrIdx, Kind))
404 if (!ForceReplace &&
405 isEqualOrWorse(Attr, Attrs.getAttributeAtIndex(AttrIdx, Kind)))
406 return false;
407 Attrs = Attrs.removeAttributeAtIndex(Ctx, AttrIdx, Kind);
408 Attrs = Attrs.addAttributeAtIndex(Ctx, AttrIdx, Attr);
409 return true;
410 }
411
412 llvm_unreachable("Expected enum or string attribute!")__builtin_unreachable();
413}
414
415Argument *IRPosition::getAssociatedArgument() const {
416 if (getPositionKind() == IRP_ARGUMENT)
417 return cast<Argument>(&getAnchorValue());
418
419 // Not an Argument and no argument number means this is not a call site
420 // argument, thus we cannot find a callback argument to return.
421 int ArgNo = getCallSiteArgNo();
422 if (ArgNo < 0)
423 return nullptr;
424
425 // Use abstract call sites to make the connection between the call site
426 // values and the ones in callbacks. If a callback was found that makes use
427 // of the underlying call site operand, we want the corresponding callback
428 // callee argument and not the direct callee argument.
429 Optional<Argument *> CBCandidateArg;
430 SmallVector<const Use *, 4> CallbackUses;
431 const auto &CB = cast<CallBase>(getAnchorValue());
432 AbstractCallSite::getCallbackUses(CB, CallbackUses);
433 for (const Use *U : CallbackUses) {
434 AbstractCallSite ACS(U);
435 assert(ACS && ACS.isCallbackCall())(static_cast<void> (0));
436 if (!ACS.getCalledFunction())
437 continue;
438
439 for (unsigned u = 0, e = ACS.getNumArgOperands(); u < e; u++) {
440
441 // Test if the underlying call site operand is argument number u of the
442 // callback callee.
443 if (ACS.getCallArgOperandNo(u) != ArgNo)
444 continue;
445
446 assert(ACS.getCalledFunction()->arg_size() > u &&(static_cast<void> (0))
447 "ACS mapped into var-args arguments!")(static_cast<void> (0));
448 if (CBCandidateArg.hasValue()) {
449 CBCandidateArg = nullptr;
450 break;
451 }
452 CBCandidateArg = ACS.getCalledFunction()->getArg(u);
453 }
454 }
455
456 // If we found a unique callback candidate argument, return it.
457 if (CBCandidateArg.hasValue() && CBCandidateArg.getValue())
458 return CBCandidateArg.getValue();
459
460 // If no callbacks were found, or none used the underlying call site operand
461 // exclusively, use the direct callee argument if available.
462 const Function *Callee = CB.getCalledFunction();
463 if (Callee && Callee->arg_size() > unsigned(ArgNo))
464 return Callee->getArg(ArgNo);
465
466 return nullptr;
467}
468
469ChangeStatus AbstractAttribute::update(Attributor &A) {
470 ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
471 if (getState().isAtFixpoint())
472 return HasChanged;
473
474 LLVM_DEBUG(dbgs() << "[Attributor] Update: " << *this << "\n")do { } while (false);
475
476 HasChanged = updateImpl(A);
477
478 LLVM_DEBUG(dbgs() << "[Attributor] Update " << HasChanged << " " << *thisdo { } while (false)
479 << "\n")do { } while (false);
480
481 return HasChanged;
482}
483
484ChangeStatus
485IRAttributeManifest::manifestAttrs(Attributor &A, const IRPosition &IRP,
486 const ArrayRef<Attribute> &DeducedAttrs,
487 bool ForceReplace) {
488 Function *ScopeFn = IRP.getAnchorScope();
489 IRPosition::Kind PK = IRP.getPositionKind();
490
491 // In the following some generic code that will manifest attributes in
492 // DeducedAttrs if they improve the current IR. Due to the different
493 // annotation positions we use the underlying AttributeList interface.
494
495 AttributeList Attrs;
496 switch (PK) {
497 case IRPosition::IRP_INVALID:
498 case IRPosition::IRP_FLOAT:
499 return ChangeStatus::UNCHANGED;
500 case IRPosition::IRP_ARGUMENT:
501 case IRPosition::IRP_FUNCTION:
502 case IRPosition::IRP_RETURNED:
503 Attrs = ScopeFn->getAttributes();
504 break;
505 case IRPosition::IRP_CALL_SITE:
506 case IRPosition::IRP_CALL_SITE_RETURNED:
507 case IRPosition::IRP_CALL_SITE_ARGUMENT:
508 Attrs = cast<CallBase>(IRP.getAnchorValue()).getAttributes();
509 break;
510 }
511
512 ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
513 LLVMContext &Ctx = IRP.getAnchorValue().getContext();
514 for (const Attribute &Attr : DeducedAttrs) {
515 if (!addIfNotExistent(Ctx, Attr, Attrs, IRP.getAttrIdx(), ForceReplace))
516 continue;
517
518 HasChanged = ChangeStatus::CHANGED;
519 }
520
521 if (HasChanged == ChangeStatus::UNCHANGED)
522 return HasChanged;
523
524 switch (PK) {
525 case IRPosition::IRP_ARGUMENT:
526 case IRPosition::IRP_FUNCTION:
527 case IRPosition::IRP_RETURNED:
528 ScopeFn->setAttributes(Attrs);
529 break;
530 case IRPosition::IRP_CALL_SITE:
531 case IRPosition::IRP_CALL_SITE_RETURNED:
532 case IRPosition::IRP_CALL_SITE_ARGUMENT:
533 cast<CallBase>(IRP.getAnchorValue()).setAttributes(Attrs);
534 break;
535 case IRPosition::IRP_INVALID:
536 case IRPosition::IRP_FLOAT:
537 break;
538 }
539
540 return HasChanged;
541}
542
543const IRPosition IRPosition::EmptyKey(DenseMapInfo<void *>::getEmptyKey());
544const IRPosition
545 IRPosition::TombstoneKey(DenseMapInfo<void *>::getTombstoneKey());
546
547SubsumingPositionIterator::SubsumingPositionIterator(const IRPosition &IRP) {
548 IRPositions.emplace_back(IRP);
549
550 // Helper to determine if operand bundles on a call site are benin or
551 // potentially problematic. We handle only llvm.assume for now.
552 auto CanIgnoreOperandBundles = [](const CallBase &CB) {
553 return (isa<IntrinsicInst>(CB) &&
554 cast<IntrinsicInst>(CB).getIntrinsicID() == Intrinsic ::assume);
555 };
556
557 const auto *CB = dyn_cast<CallBase>(&IRP.getAnchorValue());
2
Assuming the object is not a 'CallBase'
3
'CB' initialized to a null pointer value
558 switch (IRP.getPositionKind()) {
4
Control jumps to 'case IRP_CALL_SITE:' at line 567
559 case IRPosition::IRP_INVALID:
560 case IRPosition::IRP_FLOAT:
561 case IRPosition::IRP_FUNCTION:
562 return;
563 case IRPosition::IRP_ARGUMENT:
564 case IRPosition::IRP_RETURNED:
565 IRPositions.emplace_back(IRPosition::function(*IRP.getAnchorScope()));
566 return;
567 case IRPosition::IRP_CALL_SITE:
568 assert(CB && "Expected call site!")(static_cast<void> (0));
569 // TODO: We need to look at the operand bundles similar to the redirection
570 // in CallBase.
571 if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB))
5
Called C++ object pointer is null
572 if (const Function *Callee = CB->getCalledFunction())
573 IRPositions.emplace_back(IRPosition::function(*Callee));
574 return;
575 case IRPosition::IRP_CALL_SITE_RETURNED:
576 assert(CB && "Expected call site!")(static_cast<void> (0));
577 // TODO: We need to look at the operand bundles similar to the redirection
578 // in CallBase.
579 if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB)) {
580 if (const Function *Callee = CB->getCalledFunction()) {
581 IRPositions.emplace_back(IRPosition::returned(*Callee));
582 IRPositions.emplace_back(IRPosition::function(*Callee));
583 for (const Argument &Arg : Callee->args())
584 if (Arg.hasReturnedAttr()) {
585 IRPositions.emplace_back(
586 IRPosition::callsite_argument(*CB, Arg.getArgNo()));
587 IRPositions.emplace_back(
588 IRPosition::value(*CB->getArgOperand(Arg.getArgNo())));
589 IRPositions.emplace_back(IRPosition::argument(Arg));
590 }
591 }
592 }
593 IRPositions.emplace_back(IRPosition::callsite_function(*CB));
594 return;
595 case IRPosition::IRP_CALL_SITE_ARGUMENT: {
596 assert(CB && "Expected call site!")(static_cast<void> (0));
597 // TODO: We need to look at the operand bundles similar to the redirection
598 // in CallBase.
599 if (!CB->hasOperandBundles() || CanIgnoreOperandBundles(*CB)) {
600 const Function *Callee = CB->getCalledFunction();
601 if (Callee) {
602 if (Argument *Arg = IRP.getAssociatedArgument())
603 IRPositions.emplace_back(IRPosition::argument(*Arg));
604 IRPositions.emplace_back(IRPosition::function(*Callee));
605 }
606 }
607 IRPositions.emplace_back(IRPosition::value(IRP.getAssociatedValue()));
608 return;
609 }
610 }
611}
612
613bool IRPosition::hasAttr(ArrayRef<Attribute::AttrKind> AKs,
614 bool IgnoreSubsumingPositions, Attributor *A) const {
615 SmallVector<Attribute, 4> Attrs;
616 for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) {
617 for (Attribute::AttrKind AK : AKs)
618 if (EquivIRP.getAttrsFromIRAttr(AK, Attrs))
619 return true;
620 // The first position returned by the SubsumingPositionIterator is
621 // always the position itself. If we ignore subsuming positions we
622 // are done after the first iteration.
623 if (IgnoreSubsumingPositions)
624 break;
625 }
626 if (A)
627 for (Attribute::AttrKind AK : AKs)
628 if (getAttrsFromAssumes(AK, Attrs, *A))
629 return true;
630 return false;
631}
632
633void IRPosition::getAttrs(ArrayRef<Attribute::AttrKind> AKs,
634 SmallVectorImpl<Attribute> &Attrs,
635 bool IgnoreSubsumingPositions, Attributor *A) const {
636 for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this)) {
1
Calling constructor for 'SubsumingPositionIterator'
637 for (Attribute::AttrKind AK : AKs)
638 EquivIRP.getAttrsFromIRAttr(AK, Attrs);
639 // The first position returned by the SubsumingPositionIterator is
640 // always the position itself. If we ignore subsuming positions we
641 // are done after the first iteration.
642 if (IgnoreSubsumingPositions)
643 break;
644 }
645 if (A)
646 for (Attribute::AttrKind AK : AKs)
647 getAttrsFromAssumes(AK, Attrs, *A);
648}
649
650bool IRPosition::getAttrsFromIRAttr(Attribute::AttrKind AK,
651 SmallVectorImpl<Attribute> &Attrs) const {
652 if (getPositionKind() == IRP_INVALID || getPositionKind() == IRP_FLOAT)
653 return false;
654
655 AttributeList AttrList;
656 if (const auto *CB = dyn_cast<CallBase>(&getAnchorValue()))
657 AttrList = CB->getAttributes();
658 else
659 AttrList = getAssociatedFunction()->getAttributes();
660
661 bool HasAttr = AttrList.hasAttributeAtIndex(getAttrIdx(), AK);
662 if (HasAttr)
663 Attrs.push_back(AttrList.getAttributeAtIndex(getAttrIdx(), AK));
664 return HasAttr;
665}
666
667bool IRPosition::getAttrsFromAssumes(Attribute::AttrKind AK,
668 SmallVectorImpl<Attribute> &Attrs,
669 Attributor &A) const {
670 assert(getPositionKind() != IRP_INVALID && "Did expect a valid position!")(static_cast<void> (0));
671 Value &AssociatedValue = getAssociatedValue();
672
673 const Assume2KnowledgeMap &A2K =
674 A.getInfoCache().getKnowledgeMap().lookup({&AssociatedValue, AK});
675
676 // Check if we found any potential assume use, if not we don't need to create
677 // explorer iterators.
678 if (A2K.empty())
679 return false;
680
681 LLVMContext &Ctx = AssociatedValue.getContext();
682 unsigned AttrsSize = Attrs.size();
683 MustBeExecutedContextExplorer &Explorer =
684 A.getInfoCache().getMustBeExecutedContextExplorer();
685 auto EIt = Explorer.begin(getCtxI()), EEnd = Explorer.end(getCtxI());
686 for (auto &It : A2K)
687 if (Explorer.findInContextOf(It.first, EIt, EEnd))
688 Attrs.push_back(Attribute::get(Ctx, AK, It.second.Max));
689 return AttrsSize != Attrs.size();
690}
691
692void IRPosition::verify() {
693#ifdef EXPENSIVE_CHECKS
694 switch (getPositionKind()) {
695 case IRP_INVALID:
696 assert((CBContext == nullptr) &&(static_cast<void> (0))
697 "Invalid position must not have CallBaseContext!")(static_cast<void> (0));
698 assert(!Enc.getOpaqueValue() &&(static_cast<void> (0))
699 "Expected a nullptr for an invalid position!")(static_cast<void> (0));
700 return;
701 case IRP_FLOAT:
702 assert((!isa<CallBase>(&getAssociatedValue()) &&(static_cast<void> (0))
703 !isa<Argument>(&getAssociatedValue())) &&(static_cast<void> (0))
704 "Expected specialized kind for call base and argument values!")(static_cast<void> (0));
705 return;
706 case IRP_RETURNED:
707 assert(isa<Function>(getAsValuePtr()) &&(static_cast<void> (0))
708 "Expected function for a 'returned' position!")(static_cast<void> (0));
709 assert(getAsValuePtr() == &getAssociatedValue() &&(static_cast<void> (0))
710 "Associated value mismatch!")(static_cast<void> (0));
711 return;
712 case IRP_CALL_SITE_RETURNED:
713 assert((CBContext == nullptr) &&(static_cast<void> (0))
714 "'call site returned' position must not have CallBaseContext!")(static_cast<void> (0));
715 assert((isa<CallBase>(getAsValuePtr())) &&(static_cast<void> (0))
716 "Expected call base for 'call site returned' position!")(static_cast<void> (0));
717 assert(getAsValuePtr() == &getAssociatedValue() &&(static_cast<void> (0))
718 "Associated value mismatch!")(static_cast<void> (0));
719 return;
720 case IRP_CALL_SITE:
721 assert((CBContext == nullptr) &&(static_cast<void> (0))
722 "'call site function' position must not have CallBaseContext!")(static_cast<void> (0));
723 assert((isa<CallBase>(getAsValuePtr())) &&(static_cast<void> (0))
724 "Expected call base for 'call site function' position!")(static_cast<void> (0));
725 assert(getAsValuePtr() == &getAssociatedValue() &&(static_cast<void> (0))
726 "Associated value mismatch!")(static_cast<void> (0));
727 return;
728 case IRP_FUNCTION:
729 assert(isa<Function>(getAsValuePtr()) &&(static_cast<void> (0))
730 "Expected function for a 'function' position!")(static_cast<void> (0));
731 assert(getAsValuePtr() == &getAssociatedValue() &&(static_cast<void> (0))
732 "Associated value mismatch!")(static_cast<void> (0));
733 return;
734 case IRP_ARGUMENT:
735 assert(isa<Argument>(getAsValuePtr()) &&(static_cast<void> (0))
736 "Expected argument for a 'argument' position!")(static_cast<void> (0));
737 assert(getAsValuePtr() == &getAssociatedValue() &&(static_cast<void> (0))
738 "Associated value mismatch!")(static_cast<void> (0));
739 return;
740 case IRP_CALL_SITE_ARGUMENT: {
741 assert((CBContext == nullptr) &&(static_cast<void> (0))
742 "'call site argument' position must not have CallBaseContext!")(static_cast<void> (0));
743 Use *U = getAsUsePtr();
744 assert(U && "Expected use for a 'call site argument' position!")(static_cast<void> (0));
745 assert(isa<CallBase>(U->getUser()) &&(static_cast<void> (0))
746 "Expected call base user for a 'call site argument' position!")(static_cast<void> (0));
747 assert(cast<CallBase>(U->getUser())->isArgOperand(U) &&(static_cast<void> (0))
748 "Expected call base argument operand for a 'call site argument' "(static_cast<void> (0))
749 "position")(static_cast<void> (0));
750 assert(cast<CallBase>(U->getUser())->getArgOperandNo(U) ==(static_cast<void> (0))
751 unsigned(getCallSiteArgNo()) &&(static_cast<void> (0))
752 "Argument number mismatch!")(static_cast<void> (0));
753 assert(U->get() == &getAssociatedValue() && "Associated value mismatch!")(static_cast<void> (0));
754 return;
755 }
756 }
757#endif
758}
759
760Optional<Constant *>
761Attributor::getAssumedConstant(const IRPosition &IRP,
762 const AbstractAttribute &AA,
763 bool &UsedAssumedInformation) {
764 // First check all callbacks provided by outside AAs. If any of them returns
765 // a non-null value that is different from the associated value, or None, we
766 // assume it's simpliied.
767 for (auto &CB : SimplificationCallbacks.lookup(IRP)) {
768 Optional<Value *> SimplifiedV = CB(IRP, &AA, UsedAssumedInformation);
769 if (!SimplifiedV.hasValue())
770 return llvm::None;
771 if (isa_and_nonnull<Constant>(*SimplifiedV))
772 return cast<Constant>(*SimplifiedV);
773 return nullptr;
774 }
775 const auto &ValueSimplifyAA =
776 getAAFor<AAValueSimplify>(AA, IRP, DepClassTy::NONE);
777 Optional<Value *> SimplifiedV =
778 ValueSimplifyAA.getAssumedSimplifiedValue(*this);
779 bool IsKnown = ValueSimplifyAA.isAtFixpoint();
780 UsedAssumedInformation |= !IsKnown;
781 if (!SimplifiedV.hasValue()) {
782 recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
783 return llvm::None;
784 }
785 if (isa_and_nonnull<UndefValue>(SimplifiedV.getValue())) {
786 recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
787 return UndefValue::get(IRP.getAssociatedType());
788 }
789 Constant *CI = dyn_cast_or_null<Constant>(SimplifiedV.getValue());
790 if (CI)
791 CI = dyn_cast_or_null<Constant>(
792 AA::getWithType(*CI, *IRP.getAssociatedType()));
793 if (CI)
794 recordDependence(ValueSimplifyAA, AA, DepClassTy::OPTIONAL);
795 return CI;
796}
797
798Optional<Value *>
799Attributor::getAssumedSimplified(const IRPosition &IRP,
800 const AbstractAttribute *AA,
801 bool &UsedAssumedInformation) {
802 // First check all callbacks provided by outside AAs. If any of them returns
803 // a non-null value that is different from the associated value, or None, we
804 // assume it's simpliied.
805 for (auto &CB : SimplificationCallbacks.lookup(IRP))
806 return CB(IRP, AA, UsedAssumedInformation);
807
808 // If no high-level/outside simplification occured, use AAValueSimplify.
809 const auto &ValueSimplifyAA =
810 getOrCreateAAFor<AAValueSimplify>(IRP, AA, DepClassTy::NONE);
811 Optional<Value *> SimplifiedV =
812 ValueSimplifyAA.getAssumedSimplifiedValue(*this);
813 bool IsKnown = ValueSimplifyAA.isAtFixpoint();
814 UsedAssumedInformation |= !IsKnown;
815 if (!SimplifiedV.hasValue()) {
816 if (AA)
817 recordDependence(ValueSimplifyAA, *AA, DepClassTy::OPTIONAL);
818 return llvm::None;
819 }
820 if (*SimplifiedV == nullptr)
821 return const_cast<Value *>(&IRP.getAssociatedValue());
822 if (Value *SimpleV =
823 AA::getWithType(**SimplifiedV, *IRP.getAssociatedType())) {
824 if (AA)
825 recordDependence(ValueSimplifyAA, *AA, DepClassTy::OPTIONAL);
826 return SimpleV;
827 }
828 return const_cast<Value *>(&IRP.getAssociatedValue());
829}
830
831Optional<Value *> Attributor::translateArgumentToCallSiteContent(
832 Optional<Value *> V, CallBase &CB, const AbstractAttribute &AA,
833 bool &UsedAssumedInformation) {
834 if (!V.hasValue())
835 return V;
836 if (*V == nullptr || isa<Constant>(*V))
837 return V;
838 if (auto *Arg = dyn_cast<Argument>(*V))
839 if (CB.getCalledFunction() == Arg->getParent())
840 if (!Arg->hasPointeeInMemoryValueAttr())
841 return getAssumedSimplified(
842 IRPosition::callsite_argument(CB, Arg->getArgNo()), AA,
843 UsedAssumedInformation);
844 return nullptr;
845}
846
847Attributor::~Attributor() {
848 // The abstract attributes are allocated via the BumpPtrAllocator Allocator,
849 // thus we cannot delete them. We can, and want to, destruct them though.
850 for (auto &DepAA : DG.SyntheticRoot.Deps) {
851 AbstractAttribute *AA = cast<AbstractAttribute>(DepAA.getPointer());
852 AA->~AbstractAttribute();
853 }
854}
855
856bool Attributor::isAssumedDead(const AbstractAttribute &AA,
857 const AAIsDead *FnLivenessAA,
858 bool &UsedAssumedInformation,
859 bool CheckBBLivenessOnly, DepClassTy DepClass) {
860 const IRPosition &IRP = AA.getIRPosition();
861 if (!Functions.count(IRP.getAnchorScope()))
862 return false;
863 return isAssumedDead(IRP, &AA, FnLivenessAA, UsedAssumedInformation,
864 CheckBBLivenessOnly, DepClass);
865}
866
867bool Attributor::isAssumedDead(const Use &U,
868 const AbstractAttribute *QueryingAA,
869 const AAIsDead *FnLivenessAA,
870 bool &UsedAssumedInformation,
871 bool CheckBBLivenessOnly, DepClassTy DepClass) {
872 Instruction *UserI = dyn_cast<Instruction>(U.getUser());
873 if (!UserI)
874 return isAssumedDead(IRPosition::value(*U.get()), QueryingAA, FnLivenessAA,
875 UsedAssumedInformation, CheckBBLivenessOnly, DepClass);
876
877 if (auto *CB = dyn_cast<CallBase>(UserI)) {
878 // For call site argument uses we can check if the argument is
879 // unused/dead.
880 if (CB->isArgOperand(&U)) {
881 const IRPosition &CSArgPos =
882 IRPosition::callsite_argument(*CB, CB->getArgOperandNo(&U));
883 return isAssumedDead(CSArgPos, QueryingAA, FnLivenessAA,
884 UsedAssumedInformation, CheckBBLivenessOnly,
885 DepClass);
886 }
887 } else if (ReturnInst *RI = dyn_cast<ReturnInst>(UserI)) {
888 const IRPosition &RetPos = IRPosition::returned(*RI->getFunction());
889 return isAssumedDead(RetPos, QueryingAA, FnLivenessAA,
890 UsedAssumedInformation, CheckBBLivenessOnly, DepClass);
891 } else if (PHINode *PHI = dyn_cast<PHINode>(UserI)) {
892 BasicBlock *IncomingBB = PHI->getIncomingBlock(U);
893 return isAssumedDead(*IncomingBB->getTerminator(), QueryingAA, FnLivenessAA,
894 UsedAssumedInformation, CheckBBLivenessOnly, DepClass);
895 }
896
897 return isAssumedDead(IRPosition::value(*UserI), QueryingAA, FnLivenessAA,
898 UsedAssumedInformation, CheckBBLivenessOnly, DepClass);
899}
900
901bool Attributor::isAssumedDead(const Instruction &I,
902 const AbstractAttribute *QueryingAA,
903 const AAIsDead *FnLivenessAA,
904 bool &UsedAssumedInformation,
905 bool CheckBBLivenessOnly, DepClassTy DepClass) {
906 const IRPosition::CallBaseContext *CBCtx =
907 QueryingAA ? QueryingAA->getCallBaseContext() : nullptr;
908
909 if (ManifestAddedBlocks.contains(I.getParent()))
910 return false;
911
912 if (!FnLivenessAA)
913 FnLivenessAA =
914 lookupAAFor<AAIsDead>(IRPosition::function(*I.getFunction(), CBCtx),
915 QueryingAA, DepClassTy::NONE);
916
917 // If we have a context instruction and a liveness AA we use it.
918 if (FnLivenessAA &&
919 FnLivenessAA->getIRPosition().getAnchorScope() == I.getFunction() &&
920 FnLivenessAA->isAssumedDead(&I)) {
921 if (QueryingAA)
922 recordDependence(*FnLivenessAA, *QueryingAA, DepClass);
923 if (!FnLivenessAA->isKnownDead(&I))
924 UsedAssumedInformation = true;
925 return true;
926 }
927
928 if (CheckBBLivenessOnly)
929 return false;
930
931 const AAIsDead &IsDeadAA = getOrCreateAAFor<AAIsDead>(
932 IRPosition::value(I, CBCtx), QueryingAA, DepClassTy::NONE);
933 // Don't check liveness for AAIsDead.
934 if (QueryingAA == &IsDeadAA)
935 return false;
936
937 if (IsDeadAA.isAssumedDead()) {
938 if (QueryingAA)
939 recordDependence(IsDeadAA, *QueryingAA, DepClass);
940 if (!IsDeadAA.isKnownDead())
941 UsedAssumedInformation = true;
942 return true;
943 }
944
945 return false;
946}
947
948bool Attributor::isAssumedDead(const IRPosition &IRP,
949 const AbstractAttribute *QueryingAA,
950 const AAIsDead *FnLivenessAA,
951 bool &UsedAssumedInformation,
952 bool CheckBBLivenessOnly, DepClassTy DepClass) {
953 Instruction *CtxI = IRP.getCtxI();
954 if (CtxI &&
955 isAssumedDead(*CtxI, QueryingAA, FnLivenessAA, UsedAssumedInformation,
956 /* CheckBBLivenessOnly */ true,
957 CheckBBLivenessOnly ? DepClass : DepClassTy::OPTIONAL))
958 return true;
959
960 if (CheckBBLivenessOnly)
961 return false;
962
963 // If we haven't succeeded we query the specific liveness info for the IRP.
964 const AAIsDead *IsDeadAA;
965 if (IRP.getPositionKind() == IRPosition::IRP_CALL_SITE)
966 IsDeadAA = &getOrCreateAAFor<AAIsDead>(
967 IRPosition::callsite_returned(cast<CallBase>(IRP.getAssociatedValue())),
968 QueryingAA, DepClassTy::NONE);
969 else
970 IsDeadAA = &getOrCreateAAFor<AAIsDead>(IRP, QueryingAA, DepClassTy::NONE);
971 // Don't check liveness for AAIsDead.
972 if (QueryingAA == IsDeadAA)
973 return false;
974
975 if (IsDeadAA->isAssumedDead()) {
976 if (QueryingAA)
977 recordDependence(*IsDeadAA, *QueryingAA, DepClass);
978 if (!IsDeadAA->isKnownDead())
979 UsedAssumedInformation = true;
980 return true;
981 }
982
983 return false;
984}
985
986bool Attributor::isAssumedDead(const BasicBlock &BB,
987 const AbstractAttribute *QueryingAA,
988 const AAIsDead *FnLivenessAA,
989 DepClassTy DepClass) {
990 if (!FnLivenessAA)
991 FnLivenessAA = lookupAAFor<AAIsDead>(IRPosition::function(*BB.getParent()),
992 QueryingAA, DepClassTy::NONE);
993 if (FnLivenessAA->isAssumedDead(&BB)) {
994 if (QueryingAA)
995 recordDependence(*FnLivenessAA, *QueryingAA, DepClass);
996 return true;
997 }
998
999 return false;
1000}
1001
1002bool Attributor::checkForAllUses(function_ref<bool(const Use &, bool &)> Pred,
1003 const AbstractAttribute &QueryingAA,
1004 const Value &V, bool CheckBBLivenessOnly,
1005 DepClassTy LivenessDepClass) {
1006
1007 // Check the trivial case first as it catches void values.
1008 if (V.use_empty())
1009 return true;
1010
1011 const IRPosition &IRP = QueryingAA.getIRPosition();
1012 SmallVector<const Use *, 16> Worklist;
1013 SmallPtrSet<const Use *, 16> Visited;
1014
1015 for (const Use &U : V.uses())
1016 Worklist.push_back(&U);
1017
1018 LLVM_DEBUG(dbgs() << "[Attributor] Got " << Worklist.size()do { } while (false)
1019 << " initial uses to check\n")do { } while (false);
1020
1021 const Function *ScopeFn = IRP.getAnchorScope();
1022 const auto *LivenessAA =
1023 ScopeFn ? &getAAFor<AAIsDead>(QueryingAA, IRPosition::function(*ScopeFn),
1024 DepClassTy::NONE)
1025 : nullptr;
1026
1027 while (!Worklist.empty()) {
1028 const Use *U = Worklist.pop_back_val();
1029 if (isa<PHINode>(U->getUser()) && !Visited.insert(U).second)
1030 continue;
1031 LLVM_DEBUG(dbgs() << "[Attributor] Check use: " << **U << " in "do { } while (false)
1032 << *U->getUser() << "\n")do { } while (false);
1033 bool UsedAssumedInformation = false;
1034 if (isAssumedDead(*U, &QueryingAA, LivenessAA, UsedAssumedInformation,
1035 CheckBBLivenessOnly, LivenessDepClass)) {
1036 LLVM_DEBUG(dbgs() << "[Attributor] Dead use, skip!\n")do { } while (false);
1037 continue;
1038 }
1039 if (U->getUser()->isDroppable()) {
1040 LLVM_DEBUG(dbgs() << "[Attributor] Droppable user, skip!\n")do { } while (false);
1041 continue;
1042 }
1043
1044 if (auto *SI = dyn_cast<StoreInst>(U->getUser())) {
1045 if (&SI->getOperandUse(0) == U) {
1046 if (!Visited.insert(U).second)
1047 continue;
1048 SmallSetVector<Value *, 4> PotentialCopies;
1049 if (AA::getPotentialCopiesOfStoredValue(*this, *SI, PotentialCopies,
1050 QueryingAA,
1051 UsedAssumedInformation)) {
1052 LLVM_DEBUG(dbgs() << "[Attributor] Value is stored, continue with "do { } while (false)
1053 << PotentialCopies.size()do { } while (false)
1054 << " potential copies instead!\n")do { } while (false);
1055 for (Value *PotentialCopy : PotentialCopies)
1056 for (const Use &U : PotentialCopy->uses())
1057 Worklist.push_back(&U);
1058 continue;
1059 }
1060 }
1061 }
1062
1063 bool Follow = false;
1064 if (!Pred(*U, Follow))
1065 return false;
1066 if (!Follow)
1067 continue;
1068 for (const Use &UU : U->getUser()->uses())
1069 Worklist.push_back(&UU);
1070 }
1071
1072 return true;
1073}
1074
1075bool Attributor::checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
1076 const AbstractAttribute &QueryingAA,
1077 bool RequireAllCallSites,
1078 bool &AllCallSitesKnown) {
1079 // We can try to determine information from
1080 // the call sites. However, this is only possible all call sites are known,
1081 // hence the function has internal linkage.
1082 const IRPosition &IRP = QueryingAA.getIRPosition();
1083 const Function *AssociatedFunction = IRP.getAssociatedFunction();
1084 if (!AssociatedFunction) {
1085 LLVM_DEBUG(dbgs() << "[Attributor] No function associated with " << IRPdo { } while (false)
1086 << "\n")do { } while (false);
1087 AllCallSitesKnown = false;
1088 return false;
1089 }
1090
1091 return checkForAllCallSites(Pred, *AssociatedFunction, RequireAllCallSites,
1092 &QueryingAA, AllCallSitesKnown);
1093}
1094
1095bool Attributor::checkForAllCallSites(function_ref<bool(AbstractCallSite)> Pred,
1096 const Function &Fn,
1097 bool RequireAllCallSites,
1098 const AbstractAttribute *QueryingAA,
1099 bool &AllCallSitesKnown) {
1100 if (RequireAllCallSites && !Fn.hasLocalLinkage()) {
1101 LLVM_DEBUG(do { } while (false)
1102 dbgs()do { } while (false)
1103 << "[Attributor] Function " << Fn.getName()do { } while (false)
1104 << " has no internal linkage, hence not all call sites are known\n")do { } while (false);
1105 AllCallSitesKnown = false;
1106 return false;
1107 }
1108
1109 // If we do not require all call sites we might not see all.
1110 AllCallSitesKnown = RequireAllCallSites;
1111
1112 SmallVector<const Use *, 8> Uses(make_pointer_range(Fn.uses()));
1113 for (unsigned u = 0; u < Uses.size(); ++u) {
1114 const Use &U = *Uses[u];
1115 LLVM_DEBUG(dbgs() << "[Attributor] Check use: " << *U << " in "do { } while (false)
1116 << *U.getUser() << "\n")do { } while (false);
1117 bool UsedAssumedInformation = false;
1118 if (isAssumedDead(U, QueryingAA, nullptr, UsedAssumedInformation,
1119 /* CheckBBLivenessOnly */ true)) {
1120 LLVM_DEBUG(dbgs() << "[Attributor] Dead use, skip!\n")do { } while (false);
1121 continue;
1122 }
1123 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U.getUser())) {
1124 if (CE->isCast() && CE->getType()->isPointerTy() &&
1125 CE->getType()->getPointerElementType()->isFunctionTy()) {
1126 for (const Use &CEU : CE->uses())
1127 Uses.push_back(&CEU);
1128 continue;
1129 }
1130 }
1131
1132 AbstractCallSite ACS(&U);
1133 if (!ACS) {
1134 LLVM_DEBUG(dbgs() << "[Attributor] Function " << Fn.getName()do { } while (false)
1135 << " has non call site use " << *U.get() << " in "do { } while (false)
1136 << *U.getUser() << "\n")do { } while (false);
1137 // BlockAddress users are allowed.
1138 if (isa<BlockAddress>(U.getUser()))
1139 continue;
1140 return false;
1141 }
1142
1143 const Use *EffectiveUse =
1144 ACS.isCallbackCall() ? &ACS.getCalleeUseForCallback() : &U;
1145 if (!ACS.isCallee(EffectiveUse)) {
1146 if (!RequireAllCallSites)
1147 continue;
1148 LLVM_DEBUG(dbgs() << "[Attributor] User " << EffectiveUse->getUser()do { } while (false)
1149 << " is an invalid use of " << Fn.getName() << "\n")do { } while (false);
1150 return false;
1151 }
1152
1153 // Make sure the arguments that can be matched between the call site and the
1154 // callee argee on their type. It is unlikely they do not and it doesn't
1155 // make sense for all attributes to know/care about this.
1156 assert(&Fn == ACS.getCalledFunction() && "Expected known callee")(static_cast<void> (0));
1157 unsigned MinArgsParams =
1158 std::min(size_t(ACS.getNumArgOperands()), Fn.arg_size());
1159 for (unsigned u = 0; u < MinArgsParams; ++u) {
1160 Value *CSArgOp = ACS.getCallArgOperand(u);
1161 if (CSArgOp && Fn.getArg(u)->getType() != CSArgOp->getType()) {
1162 LLVM_DEBUG(do { } while (false)
1163 dbgs() << "[Attributor] Call site / callee argument type mismatch ["do { } while (false)
1164 << u << "@" << Fn.getName() << ": "do { } while (false)
1165 << *Fn.getArg(u)->getType() << " vs. "do { } while (false)
1166 << *ACS.getCallArgOperand(u)->getType() << "\n")do { } while (false);
1167 return false;
1168 }
1169 }
1170
1171 if (Pred(ACS))
1172 continue;
1173
1174 LLVM_DEBUG(dbgs() << "[Attributor] Call site callback failed for "do { } while (false)
1175 << *ACS.getInstruction() << "\n")do { } while (false);
1176 return false;
1177 }
1178
1179 return true;
1180}
1181
1182bool Attributor::shouldPropagateCallBaseContext(const IRPosition &IRP) {
1183 // TODO: Maintain a cache of Values that are
1184 // on the pathway from a Argument to a Instruction that would effect the
1185 // liveness/return state etc.
1186 return EnableCallSiteSpecific;
1187}
1188
1189bool Attributor::checkForAllReturnedValuesAndReturnInsts(
1190 function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> Pred,
1191 const AbstractAttribute &QueryingAA) {
1192
1193 const IRPosition &IRP = QueryingAA.getIRPosition();
1194 // Since we need to provide return instructions we have to have an exact
1195 // definition.
1196 const Function *AssociatedFunction = IRP.getAssociatedFunction();
1197 if (!AssociatedFunction)
1198 return false;
1199
1200 // If this is a call site query we use the call site specific return values
1201 // and liveness information.
1202 // TODO: use the function scope once we have call site AAReturnedValues.
1203 const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
1204 const auto &AARetVal =
1205 getAAFor<AAReturnedValues>(QueryingAA, QueryIRP, DepClassTy::REQUIRED);
1206 if (!AARetVal.getState().isValidState())
1207 return false;
1208
1209 return AARetVal.checkForAllReturnedValuesAndReturnInsts(Pred);
1210}
1211
1212bool Attributor::checkForAllReturnedValues(
1213 function_ref<bool(Value &)> Pred, const AbstractAttribute &QueryingAA) {
1214
1215 const IRPosition &IRP = QueryingAA.getIRPosition();
1216 const Function *AssociatedFunction = IRP.getAssociatedFunction();
1217 if (!AssociatedFunction)
1218 return false;
1219
1220 // TODO: use the function scope once we have call site AAReturnedValues.
1221 const IRPosition &QueryIRP = IRPosition::function(
1222 *AssociatedFunction, QueryingAA.getCallBaseContext());
1223 const auto &AARetVal =
1224 getAAFor<AAReturnedValues>(QueryingAA, QueryIRP, DepClassTy::REQUIRED);
1225 if (!AARetVal.getState().isValidState())
1226 return false;
1227
1228 return AARetVal.checkForAllReturnedValuesAndReturnInsts(
1229 [&](Value &RV, const SmallSetVector<ReturnInst *, 4> &) {
1230 return Pred(RV);
1231 });
1232}
1233
1234static bool checkForAllInstructionsImpl(
1235 Attributor *A, InformationCache::OpcodeInstMapTy &OpcodeInstMap,
1236 function_ref<bool(Instruction &)> Pred, const AbstractAttribute *QueryingAA,
1237 const AAIsDead *LivenessAA, const ArrayRef<unsigned> &Opcodes,
1238 bool &UsedAssumedInformation, bool CheckBBLivenessOnly = false,
1239 bool CheckPotentiallyDead = false) {
1240 for (unsigned Opcode : Opcodes) {
1241 // Check if we have instructions with this opcode at all first.
1242 auto *Insts = OpcodeInstMap.lookup(Opcode);
1243 if (!Insts)
1244 continue;
1245
1246 for (Instruction *I : *Insts) {
1247 // Skip dead instructions.
1248 if (A && !CheckPotentiallyDead &&
1249 A->isAssumedDead(IRPosition::value(*I), QueryingAA, LivenessAA,
1250 UsedAssumedInformation, CheckBBLivenessOnly))
1251 continue;
1252
1253 if (!Pred(*I))
1254 return false;
1255 }
1256 }
1257 return true;
1258}
1259
1260bool Attributor::checkForAllInstructions(function_ref<bool(Instruction &)> Pred,
1261 const AbstractAttribute &QueryingAA,
1262 const ArrayRef<unsigned> &Opcodes,
1263 bool &UsedAssumedInformation,
1264 bool CheckBBLivenessOnly,
1265 bool CheckPotentiallyDead) {
1266
1267 const IRPosition &IRP = QueryingAA.getIRPosition();
1268 // Since we need to provide instructions we have to have an exact definition.
1269 const Function *AssociatedFunction = IRP.getAssociatedFunction();
1270 if (!AssociatedFunction)
1271 return false;
1272
1273 if (AssociatedFunction->isDeclaration())
1274 return false;
1275
1276 // TODO: use the function scope once we have call site AAReturnedValues.
1277 const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
1278 const auto *LivenessAA =
1279 (CheckBBLivenessOnly || CheckPotentiallyDead)
1280 ? nullptr
1281 : &(getAAFor<AAIsDead>(QueryingAA, QueryIRP, DepClassTy::NONE));
1282
1283 auto &OpcodeInstMap =
1284 InfoCache.getOpcodeInstMapForFunction(*AssociatedFunction);
1285 if (!checkForAllInstructionsImpl(this, OpcodeInstMap, Pred, &QueryingAA,
1286 LivenessAA, Opcodes, UsedAssumedInformation,
1287 CheckBBLivenessOnly, CheckPotentiallyDead))
1288 return false;
1289
1290 return true;
1291}
1292
1293bool Attributor::checkForAllReadWriteInstructions(
1294 function_ref<bool(Instruction &)> Pred, AbstractAttribute &QueryingAA,
1295 bool &UsedAssumedInformation) {
1296
1297 const Function *AssociatedFunction =
1298 QueryingAA.getIRPosition().getAssociatedFunction();
1299 if (!AssociatedFunction)
1300 return false;
1301
1302 // TODO: use the function scope once we have call site AAReturnedValues.
1303 const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
1304 const auto &LivenessAA =
1305 getAAFor<AAIsDead>(QueryingAA, QueryIRP, DepClassTy::NONE);
1306
1307 for (Instruction *I :
1308 InfoCache.getReadOrWriteInstsForFunction(*AssociatedFunction)) {
1309 // Skip dead instructions.
1310 if (isAssumedDead(IRPosition::value(*I), &QueryingAA, &LivenessAA,
1311 UsedAssumedInformation))
1312 continue;
1313
1314 if (!Pred(*I))
1315 return false;
1316 }
1317
1318 return true;
1319}
1320
1321void Attributor::runTillFixpoint() {
1322 TimeTraceScope TimeScope("Attributor::runTillFixpoint");
1323 LLVM_DEBUG(dbgs() << "[Attributor] Identified and initialized "do { } while (false)
1324 << DG.SyntheticRoot.Deps.size()do { } while (false)
1325 << " abstract attributes.\n")do { } while (false);
1326
1327 // Now that all abstract attributes are collected and initialized we start
1328 // the abstract analysis.
1329
1330 unsigned IterationCounter = 1;
1331 unsigned MaxFixedPointIterations;
1332 if (MaxFixpointIterations)
1333 MaxFixedPointIterations = MaxFixpointIterations.getValue();
1334 else
1335 MaxFixedPointIterations = SetFixpointIterations;
1336
1337 SmallVector<AbstractAttribute *, 32> ChangedAAs;
1338 SetVector<AbstractAttribute *> Worklist, InvalidAAs;
1339 Worklist.insert(DG.SyntheticRoot.begin(), DG.SyntheticRoot.end());
1340
1341 do {
1342 // Remember the size to determine new attributes.
1343 size_t NumAAs = DG.SyntheticRoot.Deps.size();
1344 LLVM_DEBUG(dbgs() << "\n\n[Attributor] #Iteration: " << IterationCounterdo { } while (false)
1345 << ", Worklist size: " << Worklist.size() << "\n")do { } while (false);
1346
1347 // For invalid AAs we can fix dependent AAs that have a required dependence,
1348 // thereby folding long dependence chains in a single step without the need
1349 // to run updates.
1350 for (unsigned u = 0; u < InvalidAAs.size(); ++u) {
1351 AbstractAttribute *InvalidAA = InvalidAAs[u];
1352
1353 // Check the dependences to fast track invalidation.
1354 LLVM_DEBUG(dbgs() << "[Attributor] InvalidAA: " << *InvalidAA << " has "do { } while (false)
1355 << InvalidAA->Deps.size()do { } while (false)
1356 << " required & optional dependences\n")do { } while (false);
1357 while (!InvalidAA->Deps.empty()) {
1358 const auto &Dep = InvalidAA->Deps.back();
1359 InvalidAA->Deps.pop_back();
1360 AbstractAttribute *DepAA = cast<AbstractAttribute>(Dep.getPointer());
1361 if (Dep.getInt() == unsigned(DepClassTy::OPTIONAL)) {
1362 Worklist.insert(DepAA);
1363 continue;
1364 }
1365 DepAA->getState().indicatePessimisticFixpoint();
1366 assert(DepAA->getState().isAtFixpoint() && "Expected fixpoint state!")(static_cast<void> (0));
1367 if (!DepAA->getState().isValidState())
1368 InvalidAAs.insert(DepAA);
1369 else
1370 ChangedAAs.push_back(DepAA);
1371 }
1372 }
1373
1374 // Add all abstract attributes that are potentially dependent on one that
1375 // changed to the work list.
1376 for (AbstractAttribute *ChangedAA : ChangedAAs)
1377 while (!ChangedAA->Deps.empty()) {
1378 Worklist.insert(
1379 cast<AbstractAttribute>(ChangedAA->Deps.back().getPointer()));
1380 ChangedAA->Deps.pop_back();
1381 }
1382
1383 LLVM_DEBUG(dbgs() << "[Attributor] #Iteration: " << IterationCounterdo { } while (false)
1384 << ", Worklist+Dependent size: " << Worklist.size()do { } while (false)
1385 << "\n")do { } while (false);
1386
1387 // Reset the changed and invalid set.
1388 ChangedAAs.clear();
1389 InvalidAAs.clear();
1390
1391 // Update all abstract attribute in the work list and record the ones that
1392 // changed.
1393 for (AbstractAttribute *AA : Worklist) {
1394 const auto &AAState = AA->getState();
1395 if (!AAState.isAtFixpoint())
1396 if (updateAA(*AA) == ChangeStatus::CHANGED)
1397 ChangedAAs.push_back(AA);
1398
1399 // Use the InvalidAAs vector to propagate invalid states fast transitively
1400 // without requiring updates.
1401 if (!AAState.isValidState())
1402 InvalidAAs.insert(AA);
1403 }
1404
1405 // Add attributes to the changed set if they have been created in the last
1406 // iteration.
1407 ChangedAAs.append(DG.SyntheticRoot.begin() + NumAAs,
1408 DG.SyntheticRoot.end());
1409
1410 // Reset the work list and repopulate with the changed abstract attributes.
1411 // Note that dependent ones are added above.
1412 Worklist.clear();
1413 Worklist.insert(ChangedAAs.begin(), ChangedAAs.end());
1414
1415 } while (!Worklist.empty() && (IterationCounter++ < MaxFixedPointIterations ||
1416 VerifyMaxFixpointIterations));
1417
1418 LLVM_DEBUG(dbgs() << "\n[Attributor] Fixpoint iteration done after: "do { } while (false)
1419 << IterationCounter << "/" << MaxFixpointIterationsdo { } while (false)
1420 << " iterations\n")do { } while (false);
1421
1422 // Reset abstract arguments not settled in a sound fixpoint by now. This
1423 // happens when we stopped the fixpoint iteration early. Note that only the
1424 // ones marked as "changed" *and* the ones transitively depending on them
1425 // need to be reverted to a pessimistic state. Others might not be in a
1426 // fixpoint state but we can use the optimistic results for them anyway.
1427 SmallPtrSet<AbstractAttribute *, 32> Visited;
1428 for (unsigned u = 0; u < ChangedAAs.size(); u++) {
1429 AbstractAttribute *ChangedAA = ChangedAAs[u];
1430 if (!Visited.insert(ChangedAA).second)
1431 continue;
1432
1433 AbstractState &State = ChangedAA->getState();
1434 if (!State.isAtFixpoint()) {
1435 State.indicatePessimisticFixpoint();
1436
1437 NumAttributesTimedOut++;
1438 }
1439
1440 while (!ChangedAA->Deps.empty()) {
1441 ChangedAAs.push_back(
1442 cast<AbstractAttribute>(ChangedAA->Deps.back().getPointer()));
1443 ChangedAA->Deps.pop_back();
1444 }
1445 }
1446
1447 LLVM_DEBUG({do { } while (false)
1448 if (!Visited.empty())do { } while (false)
1449 dbgs() << "\n[Attributor] Finalized " << Visited.size()do { } while (false)
1450 << " abstract attributes.\n";do { } while (false)
1451 })do { } while (false);
1452
1453 if (VerifyMaxFixpointIterations &&
1454 IterationCounter != MaxFixedPointIterations) {
1455 errs() << "\n[Attributor] Fixpoint iteration done after: "
1456 << IterationCounter << "/" << MaxFixedPointIterations
1457 << " iterations\n";
1458 llvm_unreachable("The fixpoint was not reached with exactly the number of "__builtin_unreachable()
1459 "specified iterations!")__builtin_unreachable();
1460 }
1461}
1462
1463ChangeStatus Attributor::manifestAttributes() {
1464 TimeTraceScope TimeScope("Attributor::manifestAttributes");
1465 size_t NumFinalAAs = DG.SyntheticRoot.Deps.size();
1466
1467 unsigned NumManifested = 0;
1468 unsigned NumAtFixpoint = 0;
1469 ChangeStatus ManifestChange = ChangeStatus::UNCHANGED;
1470 for (auto &DepAA : DG.SyntheticRoot.Deps) {
1471 AbstractAttribute *AA = cast<AbstractAttribute>(DepAA.getPointer());
1472 AbstractState &State = AA->getState();
1473
1474 // If there is not already a fixpoint reached, we can now take the
1475 // optimistic state. This is correct because we enforced a pessimistic one
1476 // on abstract attributes that were transitively dependent on a changed one
1477 // already above.
1478 if (!State.isAtFixpoint())
1479 State.indicateOptimisticFixpoint();
1480
1481 // We must not manifest Attributes that use Callbase info.
1482 if (AA->hasCallBaseContext())
1483 continue;
1484 // If the state is invalid, we do not try to manifest it.
1485 if (!State.isValidState())
1486 continue;
1487
1488 // Skip dead code.
1489 bool UsedAssumedInformation = false;
1490 if (isAssumedDead(*AA, nullptr, UsedAssumedInformation,
1491 /* CheckBBLivenessOnly */ true))
1492 continue;
1493 // Check if the manifest debug counter that allows skipping manifestation of
1494 // AAs
1495 if (!DebugCounter::shouldExecute(ManifestDBGCounter))
1496 continue;
1497 // Manifest the state and record if we changed the IR.
1498 ChangeStatus LocalChange = AA->manifest(*this);
1499 if (LocalChange == ChangeStatus::CHANGED && AreStatisticsEnabled())
1500 AA->trackStatistics();
1501 LLVM_DEBUG(dbgs() << "[Attributor] Manifest " << LocalChange << " : " << *AAdo { } while (false)
1502 << "\n")do { } while (false);
1503
1504 ManifestChange = ManifestChange | LocalChange;
1505
1506 NumAtFixpoint++;
1507 NumManifested += (LocalChange == ChangeStatus::CHANGED);
1508 }
1509
1510 (void)NumManifested;
1511 (void)NumAtFixpoint;
1512 LLVM_DEBUG(dbgs() << "\n[Attributor] Manifested " << NumManifesteddo { } while (false)
1513 << " arguments while " << NumAtFixpointdo { } while (false)
1514 << " were in a valid fixpoint state\n")do { } while (false);
1515
1516 NumAttributesManifested += NumManifested;
1517 NumAttributesValidFixpoint += NumAtFixpoint;
1518
1519 (void)NumFinalAAs;
1520 if (NumFinalAAs != DG.SyntheticRoot.Deps.size()) {
1521 for (unsigned u = NumFinalAAs; u < DG.SyntheticRoot.Deps.size(); ++u)
1522 errs() << "Unexpected abstract attribute: "
1523 << cast<AbstractAttribute>(DG.SyntheticRoot.Deps[u].getPointer())
1524 << " :: "
1525 << cast<AbstractAttribute>(DG.SyntheticRoot.Deps[u].getPointer())
1526 ->getIRPosition()
1527 .getAssociatedValue()
1528 << "\n";
1529 llvm_unreachable("Expected the final number of abstract attributes to "__builtin_unreachable()
1530 "remain unchanged!")__builtin_unreachable();
1531 }
1532 return ManifestChange;
1533}
1534
1535void Attributor::identifyDeadInternalFunctions() {
1536 // Early exit if we don't intend to delete functions.
1537 if (!DeleteFns)
1538 return;
1539
1540 // Identify dead internal functions and delete them. This happens outside
1541 // the other fixpoint analysis as we might treat potentially dead functions
1542 // as live to lower the number of iterations. If they happen to be dead, the
1543 // below fixpoint loop will identify and eliminate them.
1544 SmallVector<Function *, 8> InternalFns;
1545 for (Function *F : Functions)
1546 if (F->hasLocalLinkage())
1547 InternalFns.push_back(F);
1548
1549 SmallPtrSet<Function *, 8> LiveInternalFns;
1550 bool FoundLiveInternal = true;
1551 while (FoundLiveInternal) {
1552 FoundLiveInternal = false;
1553 for (unsigned u = 0, e = InternalFns.size(); u < e; ++u) {
1554 Function *F = InternalFns[u];
1555 if (!F)
1556 continue;
1557
1558 bool AllCallSitesKnown;
1559 if (checkForAllCallSites(
1560 [&](AbstractCallSite ACS) {
1561 Function *Callee = ACS.getInstruction()->getFunction();
1562 return ToBeDeletedFunctions.count(Callee) ||
1563 (Functions.count(Callee) && Callee->hasLocalLinkage() &&
1564 !LiveInternalFns.count(Callee));
1565 },
1566 *F, true, nullptr, AllCallSitesKnown)) {
1567 continue;
1568 }
1569
1570 LiveInternalFns.insert(F);
1571 InternalFns[u] = nullptr;
1572 FoundLiveInternal = true;
1573 }
1574 }
1575
1576 for (unsigned u = 0, e = InternalFns.size(); u < e; ++u)
1577 if (Function *F = InternalFns[u])
1578 ToBeDeletedFunctions.insert(F);
1579}
1580
1581ChangeStatus Attributor::cleanupIR() {
1582 TimeTraceScope TimeScope("Attributor::cleanupIR");
1583 // Delete stuff at the end to avoid invalid references and a nice order.
1584 LLVM_DEBUG(dbgs() << "\n[Attributor] Delete/replace at least "do { } while (false)
1585 << ToBeDeletedFunctions.size() << " functions and "do { } while (false)
1586 << ToBeDeletedBlocks.size() << " blocks and "do { } while (false)
1587 << ToBeDeletedInsts.size() << " instructions and "do { } while (false)
1588 << ToBeChangedValues.size() << " values and "do { } while (false)
1589 << ToBeChangedUses.size() << " uses. "do { } while (false)
1590 << "Preserve manifest added " << ManifestAddedBlocks.size()do { } while (false)
1591 << " blocks\n")do { } while (false);
1592
1593 SmallVector<WeakTrackingVH, 32> DeadInsts;
1594 SmallVector<Instruction *, 32> TerminatorsToFold;
1595
1596 auto ReplaceUse = [&](Use *U, Value *NewV) {
1597 Value *OldV = U->get();
1598
1599 // If we plan to replace NewV we need to update it at this point.
1600 do {
1601 const auto &Entry = ToBeChangedValues.lookup(NewV);
1602 if (!Entry.first)
1603 break;
1604 NewV = Entry.first;
1605 } while (true);
1606
1607 // Do not replace uses in returns if the value is a must-tail call we will
1608 // not delete.
1609 if (auto *RI = dyn_cast<ReturnInst>(U->getUser())) {
1610 if (auto *CI = dyn_cast<CallInst>(OldV->stripPointerCasts()))
1611 if (CI->isMustTailCall() &&
1612 (!ToBeDeletedInsts.count(CI) || !isRunOn(*CI->getCaller())))
1613 return;
1614 // If we rewrite a return and the new value is not an argument, strip the
1615 // `returned` attribute as it is wrong now.
1616 if (!isa<Argument>(NewV))
1617 for (auto &Arg : RI->getFunction()->args())
1618 Arg.removeAttr(Attribute::Returned);
1619 }
1620
1621 // Do not perform call graph altering changes outside the SCC.
1622 if (auto *CB = dyn_cast<CallBase>(U->getUser()))
1623 if (CB->isCallee(U) && !isRunOn(*CB->getCaller()))
1624 return;
1625
1626 LLVM_DEBUG(dbgs() << "Use " << *NewV << " in " << *U->getUser()do { } while (false)
1627 << " instead of " << *OldV << "\n")do { } while (false);
1628 U->set(NewV);
1629
1630 if (Instruction *I = dyn_cast<Instruction>(OldV)) {
1631 CGModifiedFunctions.insert(I->getFunction());
1632 if (!isa<PHINode>(I) && !ToBeDeletedInsts.count(I) &&
1633 isInstructionTriviallyDead(I))
1634 DeadInsts.push_back(I);
1635 }
1636 if (isa<UndefValue>(NewV) && isa<CallBase>(U->getUser())) {
1637 auto *CB = cast<CallBase>(U->getUser());
1638 if (CB->isArgOperand(U)) {
1639 unsigned Idx = CB->getArgOperandNo(U);
1640 CB->removeParamAttr(Idx, Attribute::NoUndef);
1641 Function *Fn = CB->getCalledFunction();
1642 if (Fn && Fn->arg_size() > Idx)
1643 Fn->removeParamAttr(Idx, Attribute::NoUndef);
1644 }
1645 }
1646 if (isa<Constant>(NewV) && isa<BranchInst>(U->getUser())) {
1647 Instruction *UserI = cast<Instruction>(U->getUser());
1648 if (isa<UndefValue>(NewV)) {
1649 ToBeChangedToUnreachableInsts.insert(UserI);
1650 } else {
1651 TerminatorsToFold.push_back(UserI);
1652 }
1653 }
1654 };
1655
1656 for (auto &It : ToBeChangedUses) {
1657 Use *U = It.first;
1658 Value *NewV = It.second;
1659 ReplaceUse(U, NewV);
1660 }
1661
1662 SmallVector<Use *, 4> Uses;
1663 for (auto &It : ToBeChangedValues) {
1664 Value *OldV = It.first;
1665 auto &Entry = It.second;
1666 Value *NewV = Entry.first;
1667 Uses.clear();
1668 for (auto &U : OldV->uses())
1669 if (Entry.second || !U.getUser()->isDroppable())
1670 Uses.push_back(&U);
1671 for (Use *U : Uses)
1672 ReplaceUse(U, NewV);
1673 }
1674
1675 for (auto &V : InvokeWithDeadSuccessor)
1676 if (InvokeInst *II = dyn_cast_or_null<InvokeInst>(V)) {
1677 assert(isRunOn(*II->getFunction()) &&(static_cast<void> (0))
1678 "Cannot replace an invoke outside the current SCC!")(static_cast<void> (0));
1679 bool UnwindBBIsDead = II->hasFnAttr(Attribute::NoUnwind);
1680 bool NormalBBIsDead = II->hasFnAttr(Attribute::NoReturn);
1681 bool Invoke2CallAllowed =
1682 !AAIsDead::mayCatchAsynchronousExceptions(*II->getFunction());
1683 assert((UnwindBBIsDead || NormalBBIsDead) &&(static_cast<void> (0))
1684 "Invoke does not have dead successors!")(static_cast<void> (0));
1685 BasicBlock *BB = II->getParent();
1686 BasicBlock *NormalDestBB = II->getNormalDest();
1687 if (UnwindBBIsDead) {
1688 Instruction *NormalNextIP = &NormalDestBB->front();
1689 if (Invoke2CallAllowed) {
1690 changeToCall(II);
1691 NormalNextIP = BB->getTerminator();
1692 }
1693 if (NormalBBIsDead)
1694 ToBeChangedToUnreachableInsts.insert(NormalNextIP);
1695 } else {
1696 assert(NormalBBIsDead && "Broken invariant!")(static_cast<void> (0));
1697 if (!NormalDestBB->getUniquePredecessor())
1698 NormalDestBB = SplitBlockPredecessors(NormalDestBB, {BB}, ".dead");
1699 ToBeChangedToUnreachableInsts.insert(&NormalDestBB->front());
1700 }
1701 }
1702 for (Instruction *I : TerminatorsToFold) {
1703 if (!isRunOn(*I->getFunction()))
1704 continue;
1705 CGModifiedFunctions.insert(I->getFunction());
1706 ConstantFoldTerminator(I->getParent());
1707 }
1708 for (auto &V : ToBeChangedToUnreachableInsts)
1709 if (Instruction *I = dyn_cast_or_null<Instruction>(V)) {
1710 if (!isRunOn(*I->getFunction()))
1711 continue;
1712 CGModifiedFunctions.insert(I->getFunction());
1713 changeToUnreachable(I);
1714 }
1715
1716 for (auto &V : ToBeDeletedInsts) {
1717 if (Instruction *I = dyn_cast_or_null<Instruction>(V)) {
1718 if (auto *CB = dyn_cast<CallBase>(I)) {
1719 if (!isRunOn(*I->getFunction()))
1720 continue;
1721 if (!isa<IntrinsicInst>(CB))
1722 CGUpdater.removeCallSite(*CB);
1723 }
1724 I->dropDroppableUses();
1725 CGModifiedFunctions.insert(I->getFunction());
1726 if (!I->getType()->isVoidTy())
1727 I->replaceAllUsesWith(UndefValue::get(I->getType()));
1728 if (!isa<PHINode>(I) && isInstructionTriviallyDead(I))
1729 DeadInsts.push_back(I);
1730 else
1731 I->eraseFromParent();
1732 }
1733 }
1734
1735 llvm::erase_if(DeadInsts, [&](WeakTrackingVH I) {
1736 return !I || !isRunOn(*cast<Instruction>(I)->getFunction());
1737 });
1738
1739 LLVM_DEBUG({do { } while (false)
1740 dbgs() << "[Attributor] DeadInsts size: " << DeadInsts.size() << "\n";do { } while (false)
1741 for (auto &I : DeadInsts)do { } while (false)
1742 if (I)do { } while (false)
1743 dbgs() << " - " << *I << "\n";do { } while (false)
1744 })do { } while (false);
1745
1746 RecursivelyDeleteTriviallyDeadInstructions(DeadInsts);
1747
1748 if (unsigned NumDeadBlocks = ToBeDeletedBlocks.size()) {
1749 SmallVector<BasicBlock *, 8> ToBeDeletedBBs;
1750 ToBeDeletedBBs.reserve(NumDeadBlocks);
1751 for (BasicBlock *BB : ToBeDeletedBlocks) {
1752 assert(isRunOn(*BB->getParent()) &&(static_cast<void> (0))
1753 "Cannot delete a block outside the current SCC!")(static_cast<void> (0));
1754 CGModifiedFunctions.insert(BB->getParent());
1755 // Do not delete BBs added during manifests of AAs.
1756 if (ManifestAddedBlocks.contains(BB))
1757 continue;
1758 ToBeDeletedBBs.push_back(BB);
1759 }
1760 // Actually we do not delete the blocks but squash them into a single
1761 // unreachable but untangling branches that jump here is something we need
1762 // to do in a more generic way.
1763 DetatchDeadBlocks(ToBeDeletedBBs, nullptr);
1764 }
1765
1766 identifyDeadInternalFunctions();
1767
1768 // Rewrite the functions as requested during manifest.
1769 ChangeStatus ManifestChange = rewriteFunctionSignatures(CGModifiedFunctions);
1770
1771 for (Function *Fn : CGModifiedFunctions)
1772 if (!ToBeDeletedFunctions.count(Fn) && Functions.count(Fn))
1773 CGUpdater.reanalyzeFunction(*Fn);
1774
1775 for (Function *Fn : ToBeDeletedFunctions) {
1776 if (!Functions.count(Fn))
1777 continue;
1778 CGUpdater.removeFunction(*Fn);
1779 }
1780
1781 if (!ToBeChangedUses.empty())
1782 ManifestChange = ChangeStatus::CHANGED;
1783
1784 if (!ToBeChangedToUnreachableInsts.empty())
1785 ManifestChange = ChangeStatus::CHANGED;
1786
1787 if (!ToBeDeletedFunctions.empty())
1788 ManifestChange = ChangeStatus::CHANGED;
1789
1790 if (!ToBeDeletedBlocks.empty())
1791 ManifestChange = ChangeStatus::CHANGED;
1792
1793 if (!ToBeDeletedInsts.empty())
1794 ManifestChange = ChangeStatus::CHANGED;
1795
1796 if (!InvokeWithDeadSuccessor.empty())
1797 ManifestChange = ChangeStatus::CHANGED;
1798
1799 if (!DeadInsts.empty())
1800 ManifestChange = ChangeStatus::CHANGED;
1801
1802 NumFnDeleted += ToBeDeletedFunctions.size();
1803
1804 LLVM_DEBUG(dbgs() << "[Attributor] Deleted " << ToBeDeletedFunctions.size()do { } while (false)
1805 << " functions after manifest.\n")do { } while (false);
1806
1807#ifdef EXPENSIVE_CHECKS
1808 for (Function *F : Functions) {
1809 if (ToBeDeletedFunctions.count(F))
1810 continue;
1811 assert(!verifyFunction(*F, &errs()) && "Module verification failed!")(static_cast<void> (0));
1812 }
1813#endif
1814
1815 return ManifestChange;
1816}
1817
1818ChangeStatus Attributor::run() {
1819 TimeTraceScope TimeScope("Attributor::run");
1820 AttributorCallGraph ACallGraph(*this);
1821
1822 if (PrintCallGraph)
1823 ACallGraph.populateAll();
1824
1825 Phase = AttributorPhase::UPDATE;
1826 runTillFixpoint();
1827
1828 // dump graphs on demand
1829 if (DumpDepGraph)
1830 DG.dumpGraph();
1831
1832 if (ViewDepGraph)
1833 DG.viewGraph();
1834
1835 if (PrintDependencies)
1836 DG.print();
1837
1838 Phase = AttributorPhase::MANIFEST;
1839 ChangeStatus ManifestChange = manifestAttributes();
1840
1841 Phase = AttributorPhase::CLEANUP;
1842 ChangeStatus CleanupChange = cleanupIR();
1843
1844 if (PrintCallGraph)
1845 ACallGraph.print();
1846
1847 return ManifestChange | CleanupChange;
1848}
1849
1850ChangeStatus Attributor::updateAA(AbstractAttribute &AA) {
1851 TimeTraceScope TimeScope(
1852 AA.getName() + std::to_string(AA.getIRPosition().getPositionKind()) +
1853 "::updateAA");
1854 assert(Phase == AttributorPhase::UPDATE &&(static_cast<void> (0))
1855 "We can update AA only in the update stage!")(static_cast<void> (0));
1856
1857 // Use a new dependence vector for this update.
1858 DependenceVector DV;
1859 DependenceStack.push_back(&DV);
1860
1861 auto &AAState = AA.getState();
1862 ChangeStatus CS = ChangeStatus::UNCHANGED;
1863 bool UsedAssumedInformation = false;
1864 if (!isAssumedDead(AA, nullptr, UsedAssumedInformation,
1865 /* CheckBBLivenessOnly */ true))
1866 CS = AA.update(*this);
1867
1868 if (DV.empty()) {
1869 // If the attribute did not query any non-fix information, the state
1870 // will not change and we can indicate that right away.
1871 AAState.indicateOptimisticFixpoint();
1872 }
1873
1874 if (!AAState.isAtFixpoint())
1875 rememberDependences();
1876
1877 // Verify the stack was used properly, that is we pop the dependence vector we
1878 // put there earlier.
1879 DependenceVector *PoppedDV = DependenceStack.pop_back_val();
1880 (void)PoppedDV;
1881 assert(PoppedDV == &DV && "Inconsistent usage of the dependence stack!")(static_cast<void> (0));
1882
1883 return CS;
1884}
1885
1886void Attributor::createShallowWrapper(Function &F) {
1887 assert(!F.isDeclaration() && "Cannot create a wrapper around a declaration!")(static_cast<void> (0));
1888
1889 Module &M = *F.getParent();
1890 LLVMContext &Ctx = M.getContext();
1891 FunctionType *FnTy = F.getFunctionType();
1892
1893 Function *Wrapper =
1894 Function::Create(FnTy, F.getLinkage(), F.getAddressSpace(), F.getName());
1895 F.setName(""); // set the inside function anonymous
1896 M.getFunctionList().insert(F.getIterator(), Wrapper);
1897
1898 F.setLinkage(GlobalValue::InternalLinkage);
1899
1900 F.replaceAllUsesWith(Wrapper);
1901 assert(F.use_empty() && "Uses remained after wrapper was created!")(static_cast<void> (0));
1902
1903 // Move the COMDAT section to the wrapper.
1904 // TODO: Check if we need to keep it for F as well.
1905 Wrapper->setComdat(F.getComdat());
1906 F.setComdat(nullptr);
1907
1908 // Copy all metadata and attributes but keep them on F as well.
1909 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
1910 F.getAllMetadata(MDs);
1911 for (auto MDIt : MDs)
1912 Wrapper->addMetadata(MDIt.first, *MDIt.second);
1913 Wrapper->setAttributes(F.getAttributes());
1914
1915 // Create the call in the wrapper.
1916 BasicBlock *EntryBB = BasicBlock::Create(Ctx, "entry", Wrapper);
1917
1918 SmallVector<Value *, 8> Args;
1919 Argument *FArgIt = F.arg_begin();
1920 for (Argument &Arg : Wrapper->args()) {
1921 Args.push_back(&Arg);
1922 Arg.setName((FArgIt++)->getName());
1923 }
1924
1925 CallInst *CI = CallInst::Create(&F, Args, "", EntryBB);
1926 CI->setTailCall(true);
1927 CI->addFnAttr(Attribute::NoInline);
1928 ReturnInst::Create(Ctx, CI->getType()->isVoidTy() ? nullptr : CI, EntryBB);
1929
1930 NumFnShallowWrappersCreated++;
1931}
1932
1933bool Attributor::isInternalizable(Function &F) {
1934 if (F.isDeclaration() || F.hasLocalLinkage() ||
1935 GlobalValue::isInterposableLinkage(F.getLinkage()))
1936 return false;
1937 return true;
1938}
1939
1940Function *Attributor::internalizeFunction(Function &F, bool Force) {
1941 if (!AllowDeepWrapper && !Force)
1942 return nullptr;
1943 if (!isInternalizable(F))
1944 return nullptr;
1945
1946 SmallPtrSet<Function *, 2> FnSet = {&F};
1947 DenseMap<Function *, Function *> InternalizedFns;
1948 internalizeFunctions(FnSet, InternalizedFns);
1949
1950 return InternalizedFns[&F];
1951}
1952
1953bool Attributor::internalizeFunctions(SmallPtrSetImpl<Function *> &FnSet,
1954 DenseMap<Function *, Function *> &FnMap) {
1955 for (Function *F : FnSet)
1956 if (!Attributor::isInternalizable(*F))
1957 return false;
1958
1959 FnMap.clear();
1960 // Generate the internalized version of each function.
1961 for (Function *F : FnSet) {
1962 Module &M = *F->getParent();
1963 FunctionType *FnTy = F->getFunctionType();
1964
1965 // Create a copy of the current function
1966 Function *Copied =
1967 Function::Create(FnTy, F->getLinkage(), F->getAddressSpace(),
1968 F->getName() + ".internalized");
1969 ValueToValueMapTy VMap;
1970 auto *NewFArgIt = Copied->arg_begin();
1971 for (auto &Arg : F->args()) {
1972 auto ArgName = Arg.getName();
1973 NewFArgIt->setName(ArgName);
1974 VMap[&Arg] = &(*NewFArgIt++);
1975 }
1976 SmallVector<ReturnInst *, 8> Returns;
1977
1978 // Copy the body of the original function to the new one
1979 CloneFunctionInto(Copied, F, VMap,
1980 CloneFunctionChangeType::LocalChangesOnly, Returns);
1981
1982 // Set the linakage and visibility late as CloneFunctionInto has some
1983 // implicit requirements.
1984 Copied->setVisibility(GlobalValue::DefaultVisibility);
1985 Copied->setLinkage(GlobalValue::PrivateLinkage);
1986
1987 // Copy metadata
1988 SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
1989 F->getAllMetadata(MDs);
1990 for (auto MDIt : MDs)
1991 if (!Copied->hasMetadata())
1992 Copied->addMetadata(MDIt.first, *MDIt.second);
1993
1994 M.getFunctionList().insert(F->getIterator(), Copied);
1995 Copied->setDSOLocal(true);
1996 FnMap[F] = Copied;
1997 }
1998
1999 // Replace all uses of the old function with the new internalized function
2000 // unless the caller is a function that was just internalized.
2001 for (Function *F : FnSet) {
2002 auto &InternalizedFn = FnMap[F];
2003 auto IsNotInternalized = [&](Use &U) -> bool {
2004 if (auto *CB = dyn_cast<CallBase>(U.getUser()))
2005 return !FnMap.lookup(CB->getCaller());
2006 return false;
2007 };
2008 F->replaceUsesWithIf(InternalizedFn, IsNotInternalized);
2009 }
2010
2011 return true;
2012}
2013
2014bool Attributor::isValidFunctionSignatureRewrite(
2015 Argument &Arg, ArrayRef<Type *> ReplacementTypes) {
2016
2017 if (!RewriteSignatures)
2018 return false;
2019
2020 Function *Fn = Arg.getParent();
2021 auto CallSiteCanBeChanged = [Fn](AbstractCallSite ACS) {
2022 // Forbid the call site to cast the function return type. If we need to
2023 // rewrite these functions we need to re-create a cast for the new call site
2024 // (if the old had uses).
2025 if (!ACS.getCalledFunction() ||
2026 ACS.getInstruction()->getType() !=
2027 ACS.getCalledFunction()->getReturnType())
2028 return false;
2029 if (ACS.getCalledOperand()->getType() != Fn->getType())
2030 return false;
2031 // Forbid must-tail calls for now.
2032 return !ACS.isCallbackCall() && !ACS.getInstruction()->isMustTailCall();
2033 };
2034
2035 // Avoid var-arg functions for now.
2036 if (Fn->isVarArg()) {
2037 LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite var-args functions\n")do { } while (false);
2038 return false;
2039 }
2040
2041 // Avoid functions with complicated argument passing semantics.
2042 AttributeList FnAttributeList = Fn->getAttributes();
2043 if (FnAttributeList.hasAttrSomewhere(Attribute::Nest) ||
2044 FnAttributeList.hasAttrSomewhere(Attribute::StructRet) ||
2045 FnAttributeList.hasAttrSomewhere(Attribute::InAlloca) ||
2046 FnAttributeList.hasAttrSomewhere(Attribute::Preallocated)) {
2047 LLVM_DEBUG(do { } while (false)
2048 dbgs() << "[Attributor] Cannot rewrite due to complex attribute\n")do { } while (false);
2049 return false;
2050 }
2051
2052 // Avoid callbacks for now.
2053 bool AllCallSitesKnown;
2054 if (!checkForAllCallSites(CallSiteCanBeChanged, *Fn, true, nullptr,
2055 AllCallSitesKnown)) {
2056 LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite all call sites\n")do { } while (false);
2057 return false;
2058 }
2059
2060 auto InstPred = [](Instruction &I) {
2061 if (auto *CI = dyn_cast<CallInst>(&I))
2062 return !CI->isMustTailCall();
2063 return true;
2064 };
2065
2066 // Forbid must-tail calls for now.
2067 // TODO:
2068 bool UsedAssumedInformation = false;
2069 auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(*Fn);
2070 if (!checkForAllInstructionsImpl(nullptr, OpcodeInstMap, InstPred, nullptr,
2071 nullptr, {Instruction::Call},
2072 UsedAssumedInformation)) {
2073 LLVM_DEBUG(dbgs() << "[Attributor] Cannot rewrite due to instructions\n")do { } while (false);
2074 return false;
2075 }
2076
2077 return true;
2078}
2079
2080bool Attributor::registerFunctionSignatureRewrite(
2081 Argument &Arg, ArrayRef<Type *> ReplacementTypes,
2082 ArgumentReplacementInfo::CalleeRepairCBTy &&CalleeRepairCB,
2083 ArgumentReplacementInfo::ACSRepairCBTy &&ACSRepairCB) {
2084 LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in "do { } while (false)
2085 << Arg.getParent()->getName() << " with "do { } while (false)
2086 << ReplacementTypes.size() << " replacements\n")do { } while (false);
2087 assert(isValidFunctionSignatureRewrite(Arg, ReplacementTypes) &&(static_cast<void> (0))
2088 "Cannot register an invalid rewrite")(static_cast<void> (0));
2089
2090 Function *Fn = Arg.getParent();
2091 SmallVectorImpl<std::unique_ptr<ArgumentReplacementInfo>> &ARIs =
2092 ArgumentReplacementMap[Fn];
2093 if (ARIs.empty())
2094 ARIs.resize(Fn->arg_size());
2095
2096 // If we have a replacement already with less than or equal new arguments,
2097 // ignore this request.
2098 std::unique_ptr<ArgumentReplacementInfo> &ARI = ARIs[Arg.getArgNo()];
2099 if (ARI && ARI->getNumReplacementArgs() <= ReplacementTypes.size()) {
2100 LLVM_DEBUG(dbgs() << "[Attributor] Existing rewrite is preferred\n")do { } while (false);
2101 return false;
2102 }
2103
2104 // If we have a replacement already but we like the new one better, delete
2105 // the old.
2106 ARI.reset();
2107
2108 LLVM_DEBUG(dbgs() << "[Attributor] Register new rewrite of " << Arg << " in "do { } while (false)
2109 << Arg.getParent()->getName() << " with "do { } while (false)
2110 << ReplacementTypes.size() << " replacements\n")do { } while (false);
2111
2112 // Remember the replacement.
2113 ARI.reset(new ArgumentReplacementInfo(*this, Arg, ReplacementTypes,
2114 std::move(CalleeRepairCB),
2115 std::move(ACSRepairCB)));
2116
2117 return true;
2118}
2119
2120bool Attributor::shouldSeedAttribute(AbstractAttribute &AA) {
2121 bool Result = true;
2122#ifndef NDEBUG1
2123 if (SeedAllowList.size() != 0)
2124 Result =
2125 std::count(SeedAllowList.begin(), SeedAllowList.end(), AA.getName());
2126 Function *Fn = AA.getAnchorScope();
2127 if (FunctionSeedAllowList.size() != 0 && Fn)
2128 Result &= std::count(FunctionSeedAllowList.begin(),
2129 FunctionSeedAllowList.end(), Fn->getName());
2130#endif
2131 return Result;
2132}
2133
2134ChangeStatus Attributor::rewriteFunctionSignatures(
2135 SmallPtrSetImpl<Function *> &ModifiedFns) {
2136 ChangeStatus Changed = ChangeStatus::UNCHANGED;
2137
2138 for (auto &It : ArgumentReplacementMap) {
2139 Function *OldFn = It.getFirst();
2140
2141 // Deleted functions do not require rewrites.
2142 if (!Functions.count(OldFn) || ToBeDeletedFunctions.count(OldFn))
2143 continue;
2144
2145 const SmallVectorImpl<std::unique_ptr<ArgumentReplacementInfo>> &ARIs =
2146 It.getSecond();
2147 assert(ARIs.size() == OldFn->arg_size() && "Inconsistent state!")(static_cast<void> (0));
2148
2149 SmallVector<Type *, 16> NewArgumentTypes;
2150 SmallVector<AttributeSet, 16> NewArgumentAttributes;
2151
2152 // Collect replacement argument types and copy over existing attributes.
2153 AttributeList OldFnAttributeList = OldFn->getAttributes();
2154 for (Argument &Arg : OldFn->args()) {
2155 if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
2156 ARIs[Arg.getArgNo()]) {
2157 NewArgumentTypes.append(ARI->ReplacementTypes.begin(),
2158 ARI->ReplacementTypes.end());
2159 NewArgumentAttributes.append(ARI->getNumReplacementArgs(),
2160 AttributeSet());
2161 } else {
2162 NewArgumentTypes.push_back(Arg.getType());
2163 NewArgumentAttributes.push_back(
2164 OldFnAttributeList.getParamAttrs(Arg.getArgNo()));
2165 }
2166 }
2167
2168 FunctionType *OldFnTy = OldFn->getFunctionType();
2169 Type *RetTy = OldFnTy->getReturnType();
2170
2171 // Construct the new function type using the new arguments types.
2172 FunctionType *NewFnTy =
2173 FunctionType::get(RetTy, NewArgumentTypes, OldFnTy->isVarArg());
2174
2175 LLVM_DEBUG(dbgs() << "[Attributor] Function rewrite '" << OldFn->getName()do { } while (false)
2176 << "' from " << *OldFn->getFunctionType() << " to "do { } while (false)
2177 << *NewFnTy << "\n")do { } while (false);
2178
2179 // Create the new function body and insert it into the module.
2180 Function *NewFn = Function::Create(NewFnTy, OldFn->getLinkage(),
2181 OldFn->getAddressSpace(), "");
2182 Functions.insert(NewFn);
2183 OldFn->getParent()->getFunctionList().insert(OldFn->getIterator(), NewFn);
2184 NewFn->takeName(OldFn);
2185 NewFn->copyAttributesFrom(OldFn);
2186
2187 // Patch the pointer to LLVM function in debug info descriptor.
2188 NewFn->setSubprogram(OldFn->getSubprogram());
2189 OldFn->setSubprogram(nullptr);
2190
2191 // Recompute the parameter attributes list based on the new arguments for
2192 // the function.
2193 LLVMContext &Ctx = OldFn->getContext();
2194 NewFn->setAttributes(AttributeList::get(
2195 Ctx, OldFnAttributeList.getFnAttrs(), OldFnAttributeList.getRetAttrs(),
2196 NewArgumentAttributes));
2197
2198 // Since we have now created the new function, splice the body of the old
2199 // function right into the new function, leaving the old rotting hulk of the
2200 // function empty.
2201 NewFn->getBasicBlockList().splice(NewFn->begin(),
2202 OldFn->getBasicBlockList());
2203
2204 // Fixup block addresses to reference new function.
2205 SmallVector<BlockAddress *, 8u> BlockAddresses;
2206 for (User *U : OldFn->users())
2207 if (auto *BA = dyn_cast<BlockAddress>(U))
2208 BlockAddresses.push_back(BA);
2209 for (auto *BA : BlockAddresses)
2210 BA->replaceAllUsesWith(BlockAddress::get(NewFn, BA->getBasicBlock()));
2211
2212 // Set of all "call-like" instructions that invoke the old function mapped
2213 // to their new replacements.
2214 SmallVector<std::pair<CallBase *, CallBase *>, 8> CallSitePairs;
2215
2216 // Callback to create a new "call-like" instruction for a given one.
2217 auto CallSiteReplacementCreator = [&](AbstractCallSite ACS) {
2218 CallBase *OldCB = cast<CallBase>(ACS.getInstruction());
2219 const AttributeList &OldCallAttributeList = OldCB->getAttributes();
2220
2221 // Collect the new argument operands for the replacement call site.
2222 SmallVector<Value *, 16> NewArgOperands;
2223 SmallVector<AttributeSet, 16> NewArgOperandAttributes;
2224 for (unsigned OldArgNum = 0; OldArgNum < ARIs.size(); ++OldArgNum) {
2225 unsigned NewFirstArgNum = NewArgOperands.size();
2226 (void)NewFirstArgNum; // only used inside assert.
2227 if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
2228 ARIs[OldArgNum]) {
2229 if (ARI->ACSRepairCB)
2230 ARI->ACSRepairCB(*ARI, ACS, NewArgOperands);
2231 assert(ARI->getNumReplacementArgs() + NewFirstArgNum ==(static_cast<void> (0))
2232 NewArgOperands.size() &&(static_cast<void> (0))
2233 "ACS repair callback did not provide as many operand as new "(static_cast<void> (0))
2234 "types were registered!")(static_cast<void> (0));
2235 // TODO: Exose the attribute set to the ACS repair callback
2236 NewArgOperandAttributes.append(ARI->ReplacementTypes.size(),
2237 AttributeSet());
2238 } else {
2239 NewArgOperands.push_back(ACS.getCallArgOperand(OldArgNum));
2240 NewArgOperandAttributes.push_back(
2241 OldCallAttributeList.getParamAttrs(OldArgNum));
2242 }
2243 }
2244
2245 assert(NewArgOperands.size() == NewArgOperandAttributes.size() &&(static_cast<void> (0))
2246 "Mismatch # argument operands vs. # argument operand attributes!")(static_cast<void> (0));
2247 assert(NewArgOperands.size() == NewFn->arg_size() &&(static_cast<void> (0))
2248 "Mismatch # argument operands vs. # function arguments!")(static_cast<void> (0));
2249
2250 SmallVector<OperandBundleDef, 4> OperandBundleDefs;
2251 OldCB->getOperandBundlesAsDefs(OperandBundleDefs);
2252
2253 // Create a new call or invoke instruction to replace the old one.
2254 CallBase *NewCB;
2255 if (InvokeInst *II = dyn_cast<InvokeInst>(OldCB)) {
2256 NewCB =
2257 InvokeInst::Create(NewFn, II->getNormalDest(), II->getUnwindDest(),
2258 NewArgOperands, OperandBundleDefs, "", OldCB);
2259 } else {
2260 auto *NewCI = CallInst::Create(NewFn, NewArgOperands, OperandBundleDefs,
2261 "", OldCB);
2262 NewCI->setTailCallKind(cast<CallInst>(OldCB)->getTailCallKind());
2263 NewCB = NewCI;
2264 }
2265
2266 // Copy over various properties and the new attributes.
2267 NewCB->copyMetadata(*OldCB, {LLVMContext::MD_prof, LLVMContext::MD_dbg});
2268 NewCB->setCallingConv(OldCB->getCallingConv());
2269 NewCB->takeName(OldCB);
2270 NewCB->setAttributes(AttributeList::get(
2271 Ctx, OldCallAttributeList.getFnAttrs(),
2272 OldCallAttributeList.getRetAttrs(), NewArgOperandAttributes));
2273
2274 CallSitePairs.push_back({OldCB, NewCB});
2275 return true;
2276 };
2277
2278 // Use the CallSiteReplacementCreator to create replacement call sites.
2279 bool AllCallSitesKnown;
2280 bool Success = checkForAllCallSites(CallSiteReplacementCreator, *OldFn,
2281 true, nullptr, AllCallSitesKnown);
2282 (void)Success;
2283 assert(Success && "Assumed call site replacement to succeed!")(static_cast<void> (0));
2284
2285 // Rewire the arguments.
2286 Argument *OldFnArgIt = OldFn->arg_begin();
2287 Argument *NewFnArgIt = NewFn->arg_begin();
2288 for (unsigned OldArgNum = 0; OldArgNum < ARIs.size();
2289 ++OldArgNum, ++OldFnArgIt) {
2290 if (const std::unique_ptr<ArgumentReplacementInfo> &ARI =
2291 ARIs[OldArgNum]) {
2292 if (ARI->CalleeRepairCB)
2293 ARI->CalleeRepairCB(*ARI, *NewFn, NewFnArgIt);
2294 NewFnArgIt += ARI->ReplacementTypes.size();
2295 } else {
2296 NewFnArgIt->takeName(&*OldFnArgIt);
2297 OldFnArgIt->replaceAllUsesWith(&*NewFnArgIt);
2298 ++NewFnArgIt;
2299 }
2300 }
2301
2302 // Eliminate the instructions *after* we visited all of them.
2303 for (auto &CallSitePair : CallSitePairs) {
2304 CallBase &OldCB = *CallSitePair.first;
2305 CallBase &NewCB = *CallSitePair.second;
2306 assert(OldCB.getType() == NewCB.getType() &&(static_cast<void> (0))
2307 "Cannot handle call sites with different types!")(static_cast<void> (0));
2308 ModifiedFns.insert(OldCB.getFunction());
2309 CGUpdater.replaceCallSite(OldCB, NewCB);
2310 OldCB.replaceAllUsesWith(&NewCB);
2311 OldCB.eraseFromParent();
2312 }
2313
2314 // Replace the function in the call graph (if any).
2315 CGUpdater.replaceFunctionWith(*OldFn, *NewFn);
2316
2317 // If the old function was modified and needed to be reanalyzed, the new one
2318 // does now.
2319 if (ModifiedFns.erase(OldFn))
2320 ModifiedFns.insert(NewFn);
2321
2322 Changed = ChangeStatus::CHANGED;
2323 }
2324
2325 return Changed;
2326}
2327
2328void InformationCache::initializeInformationCache(const Function &CF,
2329 FunctionInfo &FI) {
2330 // As we do not modify the function here we can remove the const
2331 // withouth breaking implicit assumptions. At the end of the day, we could
2332 // initialize the cache eagerly which would look the same to the users.
2333 Function &F = const_cast<Function &>(CF);
2334
2335 // Walk all instructions to find interesting instructions that might be
2336 // queried by abstract attributes during their initialization or update.
2337 // This has to happen before we create attributes.
2338
2339 for (Instruction &I : instructions(&F)) {
2340 bool IsInterestingOpcode = false;
2341
2342 // To allow easy access to all instructions in a function with a given
2343 // opcode we store them in the InfoCache. As not all opcodes are interesting
2344 // to concrete attributes we only cache the ones that are as identified in
2345 // the following switch.
2346 // Note: There are no concrete attributes now so this is initially empty.
2347 switch (I.getOpcode()) {
2348 default:
2349 assert(!isa<CallBase>(&I) &&(static_cast<void> (0))
2350 "New call base instruction type needs to be known in the "(static_cast<void> (0))
2351 "Attributor.")(static_cast<void> (0));
2352 break;
2353 case Instruction::Call:
2354 // Calls are interesting on their own, additionally:
2355 // For `llvm.assume` calls we also fill the KnowledgeMap as we find them.
2356 // For `must-tail` calls we remember the caller and callee.
2357 if (auto *Assume = dyn_cast<AssumeInst>(&I)) {
2358 fillMapFromAssume(*Assume, KnowledgeMap);
2359 } else if (cast<CallInst>(I).isMustTailCall()) {
2360 FI.ContainsMustTailCall = true;
2361 if (const Function *Callee = cast<CallInst>(I).getCalledFunction())
2362 getFunctionInfo(*Callee).CalledViaMustTail = true;
2363 }
2364 LLVM_FALLTHROUGH[[gnu::fallthrough]];
2365 case Instruction::CallBr:
2366 case Instruction::Invoke:
2367 case Instruction::CleanupRet:
2368 case Instruction::CatchSwitch:
2369 case Instruction::AtomicRMW:
2370 case Instruction::AtomicCmpXchg:
2371 case Instruction::Br:
2372 case Instruction::Resume:
2373 case Instruction::Ret:
2374 case Instruction::Load:
2375 // The alignment of a pointer is interesting for loads.
2376 case Instruction::Store:
2377 // The alignment of a pointer is interesting for stores.
2378 case Instruction::Alloca:
2379 case Instruction::AddrSpaceCast:
2380 IsInterestingOpcode = true;
2381 }
2382 if (IsInterestingOpcode) {
2383 auto *&Insts = FI.OpcodeInstMap[I.getOpcode()];
2384 if (!Insts)
2385 Insts = new (Allocator) InstructionVectorTy();
2386 Insts->push_back(&I);
2387 }
2388 if (I.mayReadOrWriteMemory())
2389 FI.RWInsts.push_back(&I);
2390 }
2391
2392 if (F.hasFnAttribute(Attribute::AlwaysInline) &&
2393 isInlineViable(F).isSuccess())
2394 InlineableFunctions.insert(&F);
2395}
2396
2397AAResults *InformationCache::getAAResultsForFunction(const Function &F) {
2398 return AG.getAnalysis<AAManager>(F);
2399}
2400
2401InformationCache::FunctionInfo::~FunctionInfo() {
2402 // The instruction vectors are allocated using a BumpPtrAllocator, we need to
2403 // manually destroy them.
2404 for (auto &It : OpcodeInstMap)
2405 It.getSecond()->~InstructionVectorTy();
2406}
2407
2408void Attributor::recordDependence(const AbstractAttribute &FromAA,
2409 const AbstractAttribute &ToAA,
2410 DepClassTy DepClass) {
2411 if (DepClass == DepClassTy::NONE)
2412 return;
2413 // If we are outside of an update, thus before the actual fixpoint iteration
2414 // started (= when we create AAs), we do not track dependences because we will
2415 // put all AAs into the initial worklist anyway.
2416 if (DependenceStack.empty())
2417 return;
2418 if (FromAA.getState().isAtFixpoint())
2419 return;
2420 DependenceStack.back()->push_back({&FromAA, &ToAA, DepClass});
2421}
2422
2423void Attributor::rememberDependences() {
2424 assert(!DependenceStack.empty() && "No dependences to remember!")(static_cast<void> (0));
2425
2426 for (DepInfo &DI : *DependenceStack.back()) {
2427 assert((DI.DepClass == DepClassTy::REQUIRED ||(static_cast<void> (0))
2428 DI.DepClass == DepClassTy::OPTIONAL) &&(static_cast<void> (0))
2429 "Expected required or optional dependence (1 bit)!")(static_cast<void> (0));
2430 auto &DepAAs = const_cast<AbstractAttribute &>(*DI.FromAA).Deps;
2431 DepAAs.push_back(AbstractAttribute::DepTy(
2432 const_cast<AbstractAttribute *>(DI.ToAA), unsigned(DI.DepClass)));
2433 }
2434}
2435
2436void Attributor::identifyDefaultAbstractAttributes(Function &F) {
2437 if (!VisitedFunctions.insert(&F).second)
2438 return;
2439 if (F.isDeclaration())
2440 return;
2441
2442 // In non-module runs we need to look at the call sites of a function to
2443 // determine if it is part of a must-tail call edge. This will influence what
2444 // attributes we can derive.
2445 InformationCache::FunctionInfo &FI = InfoCache.getFunctionInfo(F);
2446 if (!isModulePass() && !FI.CalledViaMustTail) {
2447 for (const Use &U : F.uses())
2448 if (const auto *CB = dyn_cast<CallBase>(U.getUser()))
2449 if (CB->isCallee(&U) && CB->isMustTailCall())
2450 FI.CalledViaMustTail = true;
2451 }
2452
2453 IRPosition FPos = IRPosition::function(F);
2454
2455 // Check for dead BasicBlocks in every function.
2456 // We need dead instruction detection because we do not want to deal with
2457 // broken IR in which SSA rules do not apply.
2458 getOrCreateAAFor<AAIsDead>(FPos);
2459
2460 // Every function might be "will-return".
2461 getOrCreateAAFor<AAWillReturn>(FPos);
2462
2463 // Every function might contain instructions that cause "undefined behavior".
2464 getOrCreateAAFor<AAUndefinedBehavior>(FPos);
2465
2466 // Every function can be nounwind.
2467 getOrCreateAAFor<AANoUnwind>(FPos);
2468
2469 // Every function might be marked "nosync"
2470 getOrCreateAAFor<AANoSync>(FPos);
2471
2472 // Every function might be "no-free".
2473 getOrCreateAAFor<AANoFree>(FPos);
2474
2475 // Every function might be "no-return".
2476 getOrCreateAAFor<AANoReturn>(FPos);
2477
2478 // Every function might be "no-recurse".
2479 getOrCreateAAFor<AANoRecurse>(FPos);
2480
2481 // Every function might be "readnone/readonly/writeonly/...".
2482 getOrCreateAAFor<AAMemoryBehavior>(FPos);
2483
2484 // Every function can be "readnone/argmemonly/inaccessiblememonly/...".
2485 getOrCreateAAFor<AAMemoryLocation>(FPos);
2486
2487 // Every function might be applicable for Heap-To-Stack conversion.
2488 if (EnableHeapToStack)
2489 getOrCreateAAFor<AAHeapToStack>(FPos);
2490
2491 // Return attributes are only appropriate if the return type is non void.
2492 Type *ReturnType = F.getReturnType();
2493 if (!ReturnType->isVoidTy()) {
2494 // Argument attribute "returned" --- Create only one per function even
2495 // though it is an argument attribute.
2496 getOrCreateAAFor<AAReturnedValues>(FPos);
2497
2498 IRPosition RetPos = IRPosition::returned(F);
2499
2500 // Every returned value might be dead.
2501 getOrCreateAAFor<AAIsDead>(RetPos);
2502
2503 // Every function might be simplified.
2504 getOrCreateAAFor<AAValueSimplify>(RetPos);
2505
2506 // Every returned value might be marked noundef.
2507 getOrCreateAAFor<AANoUndef>(RetPos);
2508
2509 if (ReturnType->isPointerTy()) {
2510
2511 // Every function with pointer return type might be marked align.
2512 getOrCreateAAFor<AAAlign>(RetPos);
2513
2514 // Every function with pointer return type might be marked nonnull.
2515 getOrCreateAAFor<AANonNull>(RetPos);
2516
2517 // Every function with pointer return type might be marked noalias.
2518 getOrCreateAAFor<AANoAlias>(RetPos);
2519
2520 // Every function with pointer return type might be marked
2521 // dereferenceable.
2522 getOrCreateAAFor<AADereferenceable>(RetPos);
2523 }
2524 }
2525
2526 for (Argument &Arg : F.args()) {
2527 IRPosition ArgPos = IRPosition::argument(Arg);
2528
2529 // Every argument might be simplified. We have to go through the Attributor
2530 // interface though as outside AAs can register custom simplification
2531 // callbacks.
2532 bool UsedAssumedInformation = false;
2533 getAssumedSimplified(ArgPos, /* AA */ nullptr, UsedAssumedInformation);
2534
2535 // Every argument might be dead.
2536 getOrCreateAAFor<AAIsDead>(ArgPos);
2537
2538 // Every argument might be marked noundef.
2539 getOrCreateAAFor<AANoUndef>(ArgPos);
2540
2541 if (Arg.getType()->isPointerTy()) {
2542 // Every argument with pointer type might be marked nonnull.
2543 getOrCreateAAFor<AANonNull>(ArgPos);
2544
2545 // Every argument with pointer type might be marked noalias.
2546 getOrCreateAAFor<AANoAlias>(ArgPos);
2547
2548 // Every argument with pointer type might be marked dereferenceable.
2549 getOrCreateAAFor<AADereferenceable>(ArgPos);
2550
2551 // Every argument with pointer type might be marked align.
2552 getOrCreateAAFor<AAAlign>(ArgPos);
2553
2554 // Every argument with pointer type might be marked nocapture.
2555 getOrCreateAAFor<AANoCapture>(ArgPos);
2556
2557 // Every argument with pointer type might be marked
2558 // "readnone/readonly/writeonly/..."
2559 getOrCreateAAFor<AAMemoryBehavior>(ArgPos);
2560
2561 // Every argument with pointer type might be marked nofree.
2562 getOrCreateAAFor<AANoFree>(ArgPos);
2563
2564 // Every argument with pointer type might be privatizable (or promotable)
2565 getOrCreateAAFor<AAPrivatizablePtr>(ArgPos);
2566 }
2567 }
2568
2569 auto CallSitePred = [&](Instruction &I) -> bool {
2570 auto &CB = cast<CallBase>(I);
2571 IRPosition CBRetPos = IRPosition::callsite_returned(CB);
2572
2573 // Call sites might be dead if they do not have side effects and no live
2574 // users. The return value might be dead if there are no live users.
2575 getOrCreateAAFor<AAIsDead>(CBRetPos);
2576
2577 Function *Callee = CB.getCalledFunction();
2578 // TODO: Even if the callee is not known now we might be able to simplify
2579 // the call/callee.
2580 if (!Callee)
2581 return true;
2582
2583 // Skip declarations except if annotations on their call sites were
2584 // explicitly requested.
2585 if (!AnnotateDeclarationCallSites && Callee->isDeclaration() &&
2586 !Callee->hasMetadata(LLVMContext::MD_callback))
2587 return true;
2588
2589 if (!Callee->getReturnType()->isVoidTy() && !CB.use_empty()) {
2590
2591 IRPosition CBRetPos = IRPosition::callsite_returned(CB);
2592 getOrCreateAAFor<AAValueSimplify>(CBRetPos);
2593 }
2594
2595 for (int I = 0, E = CB.getNumArgOperands(); I < E; ++I) {
2596
2597 IRPosition CBArgPos = IRPosition::callsite_argument(CB, I);
2598
2599 // Every call site argument might be dead.
2600 getOrCreateAAFor<AAIsDead>(CBArgPos);
2601
2602 // Call site argument might be simplified. We have to go through the
2603 // Attributor interface though as outside AAs can register custom
2604 // simplification callbacks.
2605 bool UsedAssumedInformation = false;
2606 getAssumedSimplified(CBArgPos, /* AA */ nullptr, UsedAssumedInformation);
2607
2608 // Every call site argument might be marked "noundef".
2609 getOrCreateAAFor<AANoUndef>(CBArgPos);
2610
2611 if (!CB.getArgOperand(I)->getType()->isPointerTy())
2612 continue;
2613
2614 // Call site argument attribute "non-null".
2615 getOrCreateAAFor<AANonNull>(CBArgPos);
2616
2617 // Call site argument attribute "nocapture".
2618 getOrCreateAAFor<AANoCapture>(CBArgPos);
2619
2620 // Call site argument attribute "no-alias".
2621 getOrCreateAAFor<AANoAlias>(CBArgPos);
2622
2623 // Call site argument attribute "dereferenceable".
2624 getOrCreateAAFor<AADereferenceable>(CBArgPos);
2625
2626 // Call site argument attribute "align".
2627 getOrCreateAAFor<AAAlign>(CBArgPos);
2628
2629 // Call site argument attribute
2630 // "readnone/readonly/writeonly/..."
2631 getOrCreateAAFor<AAMemoryBehavior>(CBArgPos);
2632
2633 // Call site argument attribute "nofree".
2634 getOrCreateAAFor<AANoFree>(CBArgPos);
2635 }
2636 return true;
2637 };
2638
2639 auto &OpcodeInstMap = InfoCache.getOpcodeInstMapForFunction(F);
2640 bool Success;
2641 bool UsedAssumedInformation = false;
2642 Success = checkForAllInstructionsImpl(
2643 nullptr, OpcodeInstMap, CallSitePred, nullptr, nullptr,
2644 {(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr,
2645 (unsigned)Instruction::Call},
2646 UsedAssumedInformation);
2647 (void)Success;
2648 assert(Success && "Expected the check call to be successful!")(static_cast<void> (0));
2649
2650 auto LoadStorePred = [&](Instruction &I) -> bool {
2651 if (isa<LoadInst>(I)) {
2652 getOrCreateAAFor<AAAlign>(
2653 IRPosition::value(*cast<LoadInst>(I).getPointerOperand()));
2654 if (SimplifyAllLoads)
2655 getOrCreateAAFor<AAValueSimplify>(IRPosition::value(I));
2656 } else
2657 getOrCreateAAFor<AAAlign>(
2658 IRPosition::value(*cast<StoreInst>(I).getPointerOperand()));
2659 return true;
2660 };
2661 Success = checkForAllInstructionsImpl(
2662 nullptr, OpcodeInstMap, LoadStorePred, nullptr, nullptr,
2663 {(unsigned)Instruction::Load, (unsigned)Instruction::Store},
2664 UsedAssumedInformation);
2665 (void)Success;
2666 assert(Success && "Expected the check call to be successful!")(static_cast<void> (0));
2667}
2668
2669/// Helpers to ease debugging through output streams and print calls.
2670///
2671///{
2672raw_ostream &llvm::operator<<(raw_ostream &OS, ChangeStatus S) {
2673 return OS << (S == ChangeStatus::CHANGED ? "changed" : "unchanged");
2674}
2675
2676raw_ostream &llvm::operator<<(raw_ostream &OS, IRPosition::Kind AP) {
2677 switch (AP) {
2678 case IRPosition::IRP_INVALID:
2679 return OS << "inv";
2680 case IRPosition::IRP_FLOAT:
2681 return OS << "flt";
2682 case IRPosition::IRP_RETURNED:
2683 return OS << "fn_ret";
2684 case IRPosition::IRP_CALL_SITE_RETURNED:
2685 return OS << "cs_ret";
2686 case IRPosition::IRP_FUNCTION:
2687 return OS << "fn";
2688 case IRPosition::IRP_CALL_SITE:
2689 return OS << "cs";
2690 case IRPosition::IRP_ARGUMENT:
2691 return OS << "arg";
2692 case IRPosition::IRP_CALL_SITE_ARGUMENT:
2693 return OS << "cs_arg";
2694 }
2695 llvm_unreachable("Unknown attribute position!")__builtin_unreachable();
2696}
2697
2698raw_ostream &llvm::operator<<(raw_ostream &OS, const IRPosition &Pos) {
2699 const Value &AV = Pos.getAssociatedValue();
2700 OS << "{" << Pos.getPositionKind() << ":" << AV.getName() << " ["
2701 << Pos.getAnchorValue().getName() << "@" << Pos.getCallSiteArgNo() << "]";
2702
2703 if (Pos.hasCallBaseContext())
2704 OS << "[cb_context:" << *Pos.getCallBaseContext() << "]";
2705 return OS << "}";
2706}
2707
2708raw_ostream &llvm::operator<<(raw_ostream &OS, const IntegerRangeState &S) {
2709 OS << "range-state(" << S.getBitWidth() << ")<";
2710 S.getKnown().print(OS);
2711 OS << " / ";
2712 S.getAssumed().print(OS);
2713 OS << ">";
2714
2715 return OS << static_cast<const AbstractState &>(S);
2716}
2717
2718raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractState &S) {
2719 return OS << (!S.isValidState() ? "top" : (S.isAtFixpoint() ? "fix" : ""));
2720}
2721
2722raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractAttribute &AA) {
2723 AA.print(OS);
2724 return OS;
2725}
2726
2727raw_ostream &llvm::operator<<(raw_ostream &OS,
2728 const PotentialConstantIntValuesState &S) {
2729 OS << "set-state(< {";
2730 if (!S.isValidState())
2731 OS << "full-set";
2732 else {
2733 for (auto &it : S.getAssumedSet())
2734 OS << it << ", ";
2735 if (S.undefIsContained())
2736 OS << "undef ";
2737 }
2738 OS << "} >)";
2739
2740 return OS;
2741}
2742
2743void AbstractAttribute::print(raw_ostream &OS) const {
2744 OS << "[";
2745 OS << getName();
2746 OS << "] for CtxI ";
2747
2748 if (auto *I = getCtxI()) {
2749 OS << "'";
2750 I->print(OS);
2751 OS << "'";
2752 } else
2753 OS << "<<null inst>>";
2754
2755 OS << " at position " << getIRPosition() << " with state " << getAsStr()
2756 << '\n';
2757}
2758
2759void AbstractAttribute::printWithDeps(raw_ostream &OS) const {
2760 print(OS);
2761
2762 for (const auto &DepAA : Deps) {
2763 auto *AA = DepAA.getPointer();
2764 OS << " updates ";
2765 AA->print(OS);
2766 }
2767
2768 OS << '\n';
2769}
2770
2771raw_ostream &llvm::operator<<(raw_ostream &OS,
2772 const AAPointerInfo::Access &Acc) {
2773 OS << " [" << Acc.getKind() << "] " << *Acc.getRemoteInst();
2774 if (Acc.getLocalInst() != Acc.getRemoteInst())
2775 OS << " via " << *Acc.getLocalInst();
2776 if (Acc.getContent().hasValue())
2777 OS << " [" << *Acc.getContent() << "]";
2778 return OS;
2779}
2780///}
2781
2782/// ----------------------------------------------------------------------------
2783/// Pass (Manager) Boilerplate
2784/// ----------------------------------------------------------------------------
2785
2786static bool runAttributorOnFunctions(InformationCache &InfoCache,
2787 SetVector<Function *> &Functions,
2788 AnalysisGetter &AG,
2789 CallGraphUpdater &CGUpdater,
2790 bool DeleteFns) {
2791 if (Functions.empty())
2792 return false;
2793
2794 LLVM_DEBUG({do { } while (false)
2795 dbgs() << "[Attributor] Run on module with " << Functions.size()do { } while (false)
2796 << " functions:\n";do { } while (false)
2797 for (Function *Fn : Functions)do { } while (false)
2798 dbgs() << " - " << Fn->getName() << "\n";do { } while (false)
2799 })do { } while (false);
2800
2801 // Create an Attributor and initially empty information cache that is filled
2802 // while we identify default attribute opportunities.
2803 Attributor A(Functions, InfoCache, CGUpdater, /* Allowed */ nullptr,
2804 DeleteFns);
2805
2806 // Create shallow wrappers for all functions that are not IPO amendable
2807 if (AllowShallowWrappers)
2808 for (Function *F : Functions)
2809 if (!A.isFunctionIPOAmendable(*F))
2810 Attributor::createShallowWrapper(*F);
2811
2812 // Internalize non-exact functions
2813 // TODO: for now we eagerly internalize functions without calculating the
2814 // cost, we need a cost interface to determine whether internalizing
2815 // a function is "benefitial"
2816 if (AllowDeepWrapper) {
2817 unsigned FunSize = Functions.size();
2818 for (unsigned u = 0; u < FunSize; u++) {
2819 Function *F = Functions[u];
2820 if (!F->isDeclaration() && !F->isDefinitionExact() && F->getNumUses() &&
2821 !GlobalValue::isInterposableLinkage(F->getLinkage())) {
2822 Function *NewF = Attributor::internalizeFunction(*F);
2823 assert(NewF && "Could not internalize function.")(static_cast<void> (0));
2824 Functions.insert(NewF);
2825
2826 // Update call graph
2827 CGUpdater.replaceFunctionWith(*F, *NewF);
2828 for (const Use &U : NewF->uses())
2829 if (CallBase *CB = dyn_cast<CallBase>(U.getUser())) {
2830 auto *CallerF = CB->getCaller();
2831 CGUpdater.reanalyzeFunction(*CallerF);
2832 }
2833 }
2834 }
2835 }
2836
2837 for (Function *F : Functions) {
2838 if (F->hasExactDefinition())
2839 NumFnWithExactDefinition++;
2840 else
2841 NumFnWithoutExactDefinition++;
2842
2843 // We look at internal functions only on-demand but if any use is not a
2844 // direct call or outside the current set of analyzed functions, we have
2845 // to do it eagerly.
2846 if (F->hasLocalLinkage()) {
2847 if (llvm::all_of(F->uses(), [&Functions](const Use &U) {
2848 const auto *CB = dyn_cast<CallBase>(U.getUser());
2849 return CB && CB->isCallee(&U) &&
2850 Functions.count(const_cast<Function *>(CB->getCaller()));
2851 }))
2852 continue;
2853 }
2854
2855 // Populate the Attributor with abstract attribute opportunities in the
2856 // function and the information cache with IR information.
2857 A.identifyDefaultAbstractAttributes(*F);
2858 }
2859
2860 ChangeStatus Changed = A.run();
2861
2862 LLVM_DEBUG(dbgs() << "[Attributor] Done with " << Functions.size()do { } while (false)
2863 << " functions, result: " << Changed << ".\n")do { } while (false);
2864 return Changed == ChangeStatus::CHANGED;
2865}
2866
2867void AADepGraph::viewGraph() { llvm::ViewGraph(this, "Dependency Graph"); }
2868
2869void AADepGraph::dumpGraph() {
2870 static std::atomic<int> CallTimes;
2871 std::string Prefix;
2872
2873 if (!DepGraphDotFileNamePrefix.empty())
2874 Prefix = DepGraphDotFileNamePrefix;
2875 else
2876 Prefix = "dep_graph";
2877 std::string Filename =
2878 Prefix + "_" + std::to_string(CallTimes.load()) + ".dot";
2879
2880 outs() << "Dependency graph dump to " << Filename << ".\n";
2881
2882 std::error_code EC;
2883
2884 raw_fd_ostream File(Filename, EC, sys::fs::OF_TextWithCRLF);
2885 if (!EC)
2886 llvm::WriteGraph(File, this);
2887
2888 CallTimes++;
2889}
2890
2891void AADepGraph::print() {
2892 for (auto DepAA : SyntheticRoot.Deps)
2893 cast<AbstractAttribute>(DepAA.getPointer())->printWithDeps(outs());
2894}
2895
2896PreservedAnalyses AttributorPass::run(Module &M, ModuleAnalysisManager &AM) {
2897 FunctionAnalysisManager &FAM =
2898 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
2899 AnalysisGetter AG(FAM);
2900
2901 SetVector<Function *> Functions;
2902 for (Function &F : M)
2903 Functions.insert(&F);
2904
2905 CallGraphUpdater CGUpdater;
2906 BumpPtrAllocator Allocator;
2907 InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ nullptr);
2908 if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
2909 /* DeleteFns */ true)) {
2910 // FIXME: Think about passes we will preserve and add them here.
2911 return PreservedAnalyses::none();
2912 }
2913 return PreservedAnalyses::all();
2914}
2915
2916PreservedAnalyses AttributorCGSCCPass::run(LazyCallGraph::SCC &C,
2917 CGSCCAnalysisManager &AM,
2918 LazyCallGraph &CG,
2919 CGSCCUpdateResult &UR) {
2920 FunctionAnalysisManager &FAM =
2921 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
2922 AnalysisGetter AG(FAM);
2923
2924 SetVector<Function *> Functions;
2925 for (LazyCallGraph::Node &N : C)
2926 Functions.insert(&N.getFunction());
2927
2928 if (Functions.empty())
2929 return PreservedAnalyses::all();
2930
2931 Module &M = *Functions.back()->getParent();
2932 CallGraphUpdater CGUpdater;
2933 CGUpdater.initialize(CG, C, AM, UR);
2934 BumpPtrAllocator Allocator;
2935 InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ &Functions);
2936 if (runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
2937 /* DeleteFns */ false)) {
2938 // FIXME: Think about passes we will preserve and add them here.
2939 PreservedAnalyses PA;
2940 PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
2941 return PA;
2942 }
2943 return PreservedAnalyses::all();
2944}
2945
2946namespace llvm {
2947
2948template <> struct GraphTraits<AADepGraphNode *> {
2949 using NodeRef = AADepGraphNode *;
2950 using DepTy = PointerIntPair<AADepGraphNode *, 1>;
2951 using EdgeRef = PointerIntPair<AADepGraphNode *, 1>;
2952
2953 static NodeRef getEntryNode(AADepGraphNode *DGN) { return DGN; }
2954 static NodeRef DepGetVal(DepTy &DT) { return DT.getPointer(); }
2955
2956 using ChildIteratorType =
2957 mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetVal)>;
2958 using ChildEdgeIteratorType = TinyPtrVector<DepTy>::iterator;
2959
2960 static ChildIteratorType child_begin(NodeRef N) { return N->child_begin(); }
2961
2962 static ChildIteratorType child_end(NodeRef N) { return N->child_end(); }
2963};
2964
2965template <>
2966struct GraphTraits<AADepGraph *> : public GraphTraits<AADepGraphNode *> {
2967 static NodeRef getEntryNode(AADepGraph *DG) { return DG->GetEntryNode(); }
2968
2969 using nodes_iterator =
2970 mapped_iterator<TinyPtrVector<DepTy>::iterator, decltype(&DepGetVal)>;
2971
2972 static nodes_iterator nodes_begin(AADepGraph *DG) { return DG->begin(); }
2973
2974 static nodes_iterator nodes_end(AADepGraph *DG) { return DG->end(); }
2975};
2976
2977template <> struct DOTGraphTraits<AADepGraph *> : public DefaultDOTGraphTraits {
2978 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
2979
2980 static std::string getNodeLabel(const AADepGraphNode *Node,
2981 const AADepGraph *DG) {
2982 std::string AAString;
2983 raw_string_ostream O(AAString);
2984 Node->print(O);
2985 return AAString;
2986 }
2987};
2988
2989} // end namespace llvm
2990
2991namespace {
2992
2993struct AttributorLegacyPass : public ModulePass {
2994 static char ID;
2995
2996 AttributorLegacyPass() : ModulePass(ID) {
2997 initializeAttributorLegacyPassPass(*PassRegistry::getPassRegistry());
2998 }
2999
3000 bool runOnModule(Module &M) override {
3001 if (skipModule(M))
3002 return false;
3003
3004 AnalysisGetter AG;
3005 SetVector<Function *> Functions;
3006 for (Function &F : M)
3007 Functions.insert(&F);
3008
3009 CallGraphUpdater CGUpdater;
3010 BumpPtrAllocator Allocator;
3011 InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ nullptr);
3012 return runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
3013 /* DeleteFns*/ true);
3014 }
3015
3016 void getAnalysisUsage(AnalysisUsage &AU) const override {
3017 // FIXME: Think about passes we will preserve and add them here.
3018 AU.addRequired<TargetLibraryInfoWrapperPass>();
3019 }
3020};
3021
3022struct AttributorCGSCCLegacyPass : public CallGraphSCCPass {
3023 static char ID;
3024
3025 AttributorCGSCCLegacyPass() : CallGraphSCCPass(ID) {
3026 initializeAttributorCGSCCLegacyPassPass(*PassRegistry::getPassRegistry());
3027 }
3028
3029 bool runOnSCC(CallGraphSCC &SCC) override {
3030 if (skipSCC(SCC))
3031 return false;
3032
3033 SetVector<Function *> Functions;
3034 for (CallGraphNode *CGN : SCC)
3035 if (Function *Fn = CGN->getFunction())
3036 if (!Fn->isDeclaration())
3037 Functions.insert(Fn);
3038
3039 if (Functions.empty())
3040 return false;
3041
3042 AnalysisGetter AG;
3043 CallGraph &CG = const_cast<CallGraph &>(SCC.getCallGraph());
3044 CallGraphUpdater CGUpdater;
3045 CGUpdater.initialize(CG, SCC);
3046 Module &M = *Functions.back()->getParent();
3047 BumpPtrAllocator Allocator;
3048 InformationCache InfoCache(M, AG, Allocator, /* CGSCC */ &Functions);
3049 return runAttributorOnFunctions(InfoCache, Functions, AG, CGUpdater,
3050 /* DeleteFns */ false);
3051 }
3052
3053 void getAnalysisUsage(AnalysisUsage &AU) const override {
3054 // FIXME: Think about passes we will preserve and add them here.
3055 AU.addRequired<TargetLibraryInfoWrapperPass>();
3056 CallGraphSCCPass::getAnalysisUsage(AU);
3057 }
3058};
3059
3060} // end anonymous namespace
3061
3062Pass *llvm::createAttributorLegacyPass() { return new AttributorLegacyPass(); }
3063Pass *llvm::createAttributorCGSCCLegacyPass() {
3064 return new AttributorCGSCCLegacyPass();
3065}
3066
3067char AttributorLegacyPass::ID = 0;
3068char AttributorCGSCCLegacyPass::ID = 0;
3069
3070INITIALIZE_PASS_BEGIN(AttributorLegacyPass, "attributor",static void *initializeAttributorLegacyPassPassOnce(PassRegistry
&Registry) {
3071 "Deduce and propagate attributes", false, false)static void *initializeAttributorLegacyPassPassOnce(PassRegistry
&Registry) {
3072INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)initializeTargetLibraryInfoWrapperPassPass(Registry);
3073INITIALIZE_PASS_END(AttributorLegacyPass, "attributor",PassInfo *PI = new PassInfo( "Deduce and propagate attributes"
, "attributor", &AttributorLegacyPass::ID, PassInfo::NormalCtor_t
(callDefaultCtor<AttributorLegacyPass>), false, false);
Registry.registerPass(*PI, true); return PI; } static llvm::
once_flag InitializeAttributorLegacyPassPassFlag; void llvm::
initializeAttributorLegacyPassPass(PassRegistry &Registry
) { llvm::call_once(InitializeAttributorLegacyPassPassFlag, initializeAttributorLegacyPassPassOnce
, std::ref(Registry)); }
3074 "Deduce and propagate attributes", false, false)PassInfo *PI = new PassInfo( "Deduce and propagate attributes"
, "attributor", &AttributorLegacyPass::ID, PassInfo::NormalCtor_t
(callDefaultCtor<AttributorLegacyPass>), false, false);
Registry.registerPass(*PI, true); return PI; } static llvm::
once_flag InitializeAttributorLegacyPassPassFlag; void llvm::
initializeAttributorLegacyPassPass(PassRegistry &Registry
) { llvm::call_once(InitializeAttributorLegacyPassPassFlag, initializeAttributorLegacyPassPassOnce
, std::ref(Registry)); }
3075INITIALIZE_PASS_BEGIN(AttributorCGSCCLegacyPass, "attributor-cgscc",static void *initializeAttributorCGSCCLegacyPassPassOnce(PassRegistry
&Registry) {
3076 "Deduce and propagate attributes (CGSCC pass)", false,static void *initializeAttributorCGSCCLegacyPassPassOnce(PassRegistry
&Registry) {
3077 false)static void *initializeAttributorCGSCCLegacyPassPassOnce(PassRegistry
&Registry) {
3078INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)initializeTargetLibraryInfoWrapperPassPass(Registry);
3079INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)initializeCallGraphWrapperPassPass(Registry);
3080INITIALIZE_PASS_END(AttributorCGSCCLegacyPass, "attributor-cgscc",PassInfo *PI = new PassInfo( "Deduce and propagate attributes (CGSCC pass)"
, "attributor-cgscc", &AttributorCGSCCLegacyPass::ID, PassInfo
::NormalCtor_t(callDefaultCtor<AttributorCGSCCLegacyPass>
), false, false); Registry.registerPass(*PI, true); return PI
; } static llvm::once_flag InitializeAttributorCGSCCLegacyPassPassFlag
; void llvm::initializeAttributorCGSCCLegacyPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeAttributorCGSCCLegacyPassPassFlag
, initializeAttributorCGSCCLegacyPassPassOnce, std::ref(Registry
)); }
3081 "Deduce and propagate attributes (CGSCC pass)", false,PassInfo *PI = new PassInfo( "Deduce and propagate attributes (CGSCC pass)"
, "attributor-cgscc", &AttributorCGSCCLegacyPass::ID, PassInfo
::NormalCtor_t(callDefaultCtor<AttributorCGSCCLegacyPass>
), false, false); Registry.registerPass(*PI, true); return PI
; } static llvm::once_flag InitializeAttributorCGSCCLegacyPassPassFlag
; void llvm::initializeAttributorCGSCCLegacyPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeAttributorCGSCCLegacyPassPassFlag
, initializeAttributorCGSCCLegacyPassPassOnce, std::ref(Registry
)); }
3082 false)PassInfo *PI = new PassInfo( "Deduce and propagate attributes (CGSCC pass)"
, "attributor-cgscc", &AttributorCGSCCLegacyPass::ID, PassInfo
::NormalCtor_t(callDefaultCtor<AttributorCGSCCLegacyPass>
), false, false); Registry.registerPass(*PI, true); return PI
; } static llvm::once_flag InitializeAttributorCGSCCLegacyPassPassFlag
; void llvm::initializeAttributorCGSCCLegacyPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeAttributorCGSCCLegacyPassPassFlag
, initializeAttributorCGSCCLegacyPassPassOnce, std::ref(Registry
)); }