Bug Summary

File:build/source/llvm/lib/Target/BPF/BPFAbstractMemberAccess.cpp
Warning:line 882, column 5
Value stored to 'Call' is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name BPFAbstractMemberAccess.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/source/build-llvm/tools/clang/stage2-bins -resource-dir /usr/lib/llvm-17/lib/clang/17 -D _DEBUG -D _GLIBCXX_ASSERTIONS -D _GNU_SOURCE -D _LIBCPP_ENABLE_ASSERTIONS -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I lib/Target/BPF -I /build/source/llvm/lib/Target/BPF -I include -I /build/source/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-17/lib/clang/17/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fmacro-prefix-map=/build/source/= -fcoverage-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fcoverage-prefix-map=/build/source/= -source-date-epoch 1683717183 -O2 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/source/build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/source/build-llvm/tools/clang/stage2-bins=build-llvm/tools/clang/stage2-bins -fdebug-prefix-map=/build/source/= -ferror-limit 19 -fvisibility=hidden -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2023-05-10-133810-16478-1 -x c++ /build/source/llvm/lib/Target/BPF/BPFAbstractMemberAccess.cpp
1//===------ BPFAbstractMemberAccess.cpp - Abstracting Member Accesses -----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This pass abstracted struct/union member accesses in order to support
10// compile-once run-everywhere (CO-RE). The CO-RE intends to compile the program
11// which can run on different kernels. In particular, if bpf program tries to
12// access a particular kernel data structure member, the details of the
13// intermediate member access will be remembered so bpf loader can do
14// necessary adjustment right before program loading.
15//
16// For example,
17//
18// struct s {
19// int a;
20// int b;
21// };
22// struct t {
23// struct s c;
24// int d;
25// };
26// struct t e;
27//
28// For the member access e.c.b, the compiler will generate code
29// &e + 4
30//
31// The compile-once run-everywhere instead generates the following code
32// r = 4
33// &e + r
34// The "4" in "r = 4" can be changed based on a particular kernel version.
35// For example, on a particular kernel version, if struct s is changed to
36//
37// struct s {
38// int new_field;
39// int a;
40// int b;
41// }
42//
43// By repeating the member access on the host, the bpf loader can
44// adjust "r = 4" as "r = 8".
45//
46// This feature relies on the following three intrinsic calls:
47// addr = preserve_array_access_index(base, dimension, index)
48// addr = preserve_union_access_index(base, di_index)
49// !llvm.preserve.access.index <union_ditype>
50// addr = preserve_struct_access_index(base, gep_index, di_index)
51// !llvm.preserve.access.index <struct_ditype>
52//
53// Bitfield member access needs special attention. User cannot take the
54// address of a bitfield acceess. To facilitate kernel verifier
55// for easy bitfield code optimization, a new clang intrinsic is introduced:
56// uint32_t __builtin_preserve_field_info(member_access, info_kind)
57// In IR, a chain with two (or more) intrinsic calls will be generated:
58// ...
59// addr = preserve_struct_access_index(base, 1, 1) !struct s
60// uint32_t result = bpf_preserve_field_info(addr, info_kind)
61//
62// Suppose the info_kind is FIELD_SIGNEDNESS,
63// The above two IR intrinsics will be replaced with
64// a relocatable insn:
65// signness = /* signness of member_access */
66// and signness can be changed by bpf loader based on the
67// types on the host.
68//
69// User can also test whether a field exists or not with
70// uint32_t result = bpf_preserve_field_info(member_access, FIELD_EXISTENCE)
71// The field will be always available (result = 1) during initial
72// compilation, but bpf loader can patch with the correct value
73// on the target host where the member_access may or may not be available
74//
75//===----------------------------------------------------------------------===//
76
77#include "BPF.h"
78#include "BPFCORE.h"
79#include "BPFTargetMachine.h"
80#include "llvm/BinaryFormat/Dwarf.h"
81#include "llvm/IR/DebugInfoMetadata.h"
82#include "llvm/IR/GlobalVariable.h"
83#include "llvm/IR/Instruction.h"
84#include "llvm/IR/Instructions.h"
85#include "llvm/IR/IntrinsicsBPF.h"
86#include "llvm/IR/Module.h"
87#include "llvm/IR/PassManager.h"
88#include "llvm/IR/Type.h"
89#include "llvm/IR/User.h"
90#include "llvm/IR/Value.h"
91#include "llvm/Pass.h"
92#include "llvm/Transforms/Utils/BasicBlockUtils.h"
93#include <stack>
94
95#define DEBUG_TYPE"bpf-abstract-member-access" "bpf-abstract-member-access"
96
97namespace llvm {
98constexpr StringRef BPFCoreSharedInfo::AmaAttr;
99uint32_t BPFCoreSharedInfo::SeqNum;
100
101Instruction *BPFCoreSharedInfo::insertPassThrough(Module *M, BasicBlock *BB,
102 Instruction *Input,
103 Instruction *Before) {
104 Function *Fn = Intrinsic::getDeclaration(
105 M, Intrinsic::bpf_passthrough, {Input->getType(), Input->getType()});
106 Constant *SeqNumVal = ConstantInt::get(Type::getInt32Ty(BB->getContext()),
107 BPFCoreSharedInfo::SeqNum++);
108
109 auto *NewInst = CallInst::Create(Fn, {SeqNumVal, Input});
110 NewInst->insertBefore(Before);
111 return NewInst;
112}
113} // namespace llvm
114
115using namespace llvm;
116
117namespace {
118class BPFAbstractMemberAccess final {
119public:
120 BPFAbstractMemberAccess(BPFTargetMachine *TM) : TM(TM) {}
121
122 bool run(Function &F);
123
124 struct CallInfo {
125 uint32_t Kind;
126 uint32_t AccessIndex;
127 MaybeAlign RecordAlignment;
128 MDNode *Metadata;
129 WeakTrackingVH Base;
130 };
131 typedef std::stack<std::pair<CallInst *, CallInfo>> CallInfoStack;
132
133private:
134 enum : uint32_t {
135 BPFPreserveArrayAI = 1,
136 BPFPreserveUnionAI = 2,
137 BPFPreserveStructAI = 3,
138 BPFPreserveFieldInfoAI = 4,
139 };
140
141 TargetMachine *TM;
142 const DataLayout *DL = nullptr;
143 Module *M = nullptr;
144
145 static std::map<std::string, GlobalVariable *> GEPGlobals;
146 // A map to link preserve_*_access_index intrinsic calls.
147 std::map<CallInst *, std::pair<CallInst *, CallInfo>> AIChain;
148 // A map to hold all the base preserve_*_access_index intrinsic calls.
149 // The base call is not an input of any other preserve_*
150 // intrinsics.
151 std::map<CallInst *, CallInfo> BaseAICalls;
152 // A map to hold <AnonRecord, TypeDef> relationships
153 std::map<DICompositeType *, DIDerivedType *> AnonRecords;
154
155 void CheckAnonRecordType(DIDerivedType *ParentTy, DIType *Ty);
156 void CheckCompositeType(DIDerivedType *ParentTy, DICompositeType *CTy);
157 void CheckDerivedType(DIDerivedType *ParentTy, DIDerivedType *DTy);
158 void ResetMetadata(struct CallInfo &CInfo);
159
160 bool doTransformation(Function &F);
161
162 void traceAICall(CallInst *Call, CallInfo &ParentInfo);
163 void traceBitCast(BitCastInst *BitCast, CallInst *Parent,
164 CallInfo &ParentInfo);
165 void traceGEP(GetElementPtrInst *GEP, CallInst *Parent,
166 CallInfo &ParentInfo);
167 void collectAICallChains(Function &F);
168
169 bool IsPreserveDIAccessIndexCall(const CallInst *Call, CallInfo &Cinfo);
170 bool IsValidAIChain(const MDNode *ParentMeta, uint32_t ParentAI,
171 const MDNode *ChildMeta);
172 bool removePreserveAccessIndexIntrinsic(Function &F);
173 void replaceWithGEP(std::vector<CallInst *> &CallList,
174 uint32_t NumOfZerosIndex, uint32_t DIIndex);
175 bool HasPreserveFieldInfoCall(CallInfoStack &CallStack);
176 void GetStorageBitRange(DIDerivedType *MemberTy, Align RecordAlignment,
177 uint32_t &StartBitOffset, uint32_t &EndBitOffset);
178 uint32_t GetFieldInfo(uint32_t InfoKind, DICompositeType *CTy,
179 uint32_t AccessIndex, uint32_t PatchImm,
180 MaybeAlign RecordAlignment);
181
182 Value *computeBaseAndAccessKey(CallInst *Call, CallInfo &CInfo,
183 std::string &AccessKey, MDNode *&BaseMeta);
184 MDNode *computeAccessKey(CallInst *Call, CallInfo &CInfo,
185 std::string &AccessKey, bool &IsInt32Ret);
186 uint64_t getConstant(const Value *IndexValue);
187 bool transformGEPChain(CallInst *Call, CallInfo &CInfo);
188};
189
190std::map<std::string, GlobalVariable *> BPFAbstractMemberAccess::GEPGlobals;
191
192class BPFAbstractMemberAccessLegacyPass final : public FunctionPass {
193 BPFTargetMachine *TM;
194
195 bool runOnFunction(Function &F) override {
196 return BPFAbstractMemberAccess(TM).run(F);
197 }
198
199public:
200 static char ID;
201
202 // Add optional BPFTargetMachine parameter so that BPF backend can add the
203 // phase with target machine to find out the endianness. The default
204 // constructor (without parameters) is used by the pass manager for managing
205 // purposes.
206 BPFAbstractMemberAccessLegacyPass(BPFTargetMachine *TM = nullptr)
207 : FunctionPass(ID), TM(TM) {}
208};
209
210} // End anonymous namespace
211
212char BPFAbstractMemberAccessLegacyPass::ID = 0;
213INITIALIZE_PASS(BPFAbstractMemberAccessLegacyPass, DEBUG_TYPE,static void *initializeBPFAbstractMemberAccessLegacyPassPassOnce
(PassRegistry &Registry) { PassInfo *PI = new PassInfo( "BPF Abstract Member Access"
, "bpf-abstract-member-access", &BPFAbstractMemberAccessLegacyPass
::ID, PassInfo::NormalCtor_t(callDefaultCtor<BPFAbstractMemberAccessLegacyPass
>), false, false); Registry.registerPass(*PI, true); return
PI; } static llvm::once_flag InitializeBPFAbstractMemberAccessLegacyPassPassFlag
; void llvm::initializeBPFAbstractMemberAccessLegacyPassPass(
PassRegistry &Registry) { llvm::call_once(InitializeBPFAbstractMemberAccessLegacyPassPassFlag
, initializeBPFAbstractMemberAccessLegacyPassPassOnce, std::ref
(Registry)); }
214 "BPF Abstract Member Access", false, false)static void *initializeBPFAbstractMemberAccessLegacyPassPassOnce
(PassRegistry &Registry) { PassInfo *PI = new PassInfo( "BPF Abstract Member Access"
, "bpf-abstract-member-access", &BPFAbstractMemberAccessLegacyPass
::ID, PassInfo::NormalCtor_t(callDefaultCtor<BPFAbstractMemberAccessLegacyPass
>), false, false); Registry.registerPass(*PI, true); return
PI; } static llvm::once_flag InitializeBPFAbstractMemberAccessLegacyPassPassFlag
; void llvm::initializeBPFAbstractMemberAccessLegacyPassPass(
PassRegistry &Registry) { llvm::call_once(InitializeBPFAbstractMemberAccessLegacyPassPassFlag
, initializeBPFAbstractMemberAccessLegacyPassPassOnce, std::ref
(Registry)); }
215
216FunctionPass *llvm::createBPFAbstractMemberAccess(BPFTargetMachine *TM) {
217 return new BPFAbstractMemberAccessLegacyPass(TM);
218}
219
220bool BPFAbstractMemberAccess::run(Function &F) {
221 LLVM_DEBUG(dbgs() << "********** Abstract Member Accesses **********\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("bpf-abstract-member-access")) { dbgs() << "********** Abstract Member Accesses **********\n"
; } } while (false)
;
222
223 M = F.getParent();
224 if (!M)
225 return false;
226
227 // Bail out if no debug info.
228 if (M->debug_compile_units().empty())
229 return false;
230
231 // For each argument/return/local_variable type, trace the type
232 // pattern like '[derived_type]* [composite_type]' to check
233 // and remember (anon record -> typedef) relations where the
234 // anon record is defined as
235 // typedef [const/volatile/restrict]* [anon record]
236 DISubprogram *SP = F.getSubprogram();
237 if (SP && SP->isDefinition()) {
238 for (DIType *Ty: SP->getType()->getTypeArray())
239 CheckAnonRecordType(nullptr, Ty);
240 for (const DINode *DN : SP->getRetainedNodes()) {
241 if (const auto *DV = dyn_cast<DILocalVariable>(DN))
242 CheckAnonRecordType(nullptr, DV->getType());
243 }
244 }
245
246 DL = &M->getDataLayout();
247 return doTransformation(F);
248}
249
250void BPFAbstractMemberAccess::ResetMetadata(struct CallInfo &CInfo) {
251 if (auto Ty = dyn_cast<DICompositeType>(CInfo.Metadata)) {
252 if (AnonRecords.find(Ty) != AnonRecords.end()) {
253 if (AnonRecords[Ty] != nullptr)
254 CInfo.Metadata = AnonRecords[Ty];
255 }
256 }
257}
258
259void BPFAbstractMemberAccess::CheckCompositeType(DIDerivedType *ParentTy,
260 DICompositeType *CTy) {
261 if (!CTy->getName().empty() || !ParentTy ||
262 ParentTy->getTag() != dwarf::DW_TAG_typedef)
263 return;
264
265 if (AnonRecords.find(CTy) == AnonRecords.end()) {
266 AnonRecords[CTy] = ParentTy;
267 return;
268 }
269
270 // Two or more typedef's may point to the same anon record.
271 // If this is the case, set the typedef DIType to be nullptr
272 // to indicate the duplication case.
273 DIDerivedType *CurrTy = AnonRecords[CTy];
274 if (CurrTy == ParentTy)
275 return;
276 AnonRecords[CTy] = nullptr;
277}
278
279void BPFAbstractMemberAccess::CheckDerivedType(DIDerivedType *ParentTy,
280 DIDerivedType *DTy) {
281 DIType *BaseType = DTy->getBaseType();
282 if (!BaseType)
283 return;
284
285 unsigned Tag = DTy->getTag();
286 if (Tag == dwarf::DW_TAG_pointer_type)
287 CheckAnonRecordType(nullptr, BaseType);
288 else if (Tag == dwarf::DW_TAG_typedef)
289 CheckAnonRecordType(DTy, BaseType);
290 else
291 CheckAnonRecordType(ParentTy, BaseType);
292}
293
294void BPFAbstractMemberAccess::CheckAnonRecordType(DIDerivedType *ParentTy,
295 DIType *Ty) {
296 if (!Ty)
297 return;
298
299 if (auto *CTy = dyn_cast<DICompositeType>(Ty))
300 return CheckCompositeType(ParentTy, CTy);
301 else if (auto *DTy = dyn_cast<DIDerivedType>(Ty))
302 return CheckDerivedType(ParentTy, DTy);
303}
304
305static bool SkipDIDerivedTag(unsigned Tag, bool skipTypedef) {
306 if (Tag != dwarf::DW_TAG_typedef && Tag != dwarf::DW_TAG_const_type &&
307 Tag != dwarf::DW_TAG_volatile_type &&
308 Tag != dwarf::DW_TAG_restrict_type &&
309 Tag != dwarf::DW_TAG_member)
310 return false;
311 if (Tag == dwarf::DW_TAG_typedef && !skipTypedef)
312 return false;
313 return true;
314}
315
316static DIType * stripQualifiers(DIType *Ty, bool skipTypedef = true) {
317 while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
318 if (!SkipDIDerivedTag(DTy->getTag(), skipTypedef))
319 break;
320 Ty = DTy->getBaseType();
321 }
322 return Ty;
323}
324
325static const DIType * stripQualifiers(const DIType *Ty) {
326 while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
327 if (!SkipDIDerivedTag(DTy->getTag(), true))
328 break;
329 Ty = DTy->getBaseType();
330 }
331 return Ty;
332}
333
334static uint32_t calcArraySize(const DICompositeType *CTy, uint32_t StartDim) {
335 DINodeArray Elements = CTy->getElements();
336 uint32_t DimSize = 1;
337 for (uint32_t I = StartDim; I < Elements.size(); ++I) {
338 if (auto *Element = dyn_cast_or_null<DINode>(Elements[I]))
339 if (Element->getTag() == dwarf::DW_TAG_subrange_type) {
340 const DISubrange *SR = cast<DISubrange>(Element);
341 auto *CI = SR->getCount().dyn_cast<ConstantInt *>();
342 DimSize *= CI->getSExtValue();
343 }
344 }
345
346 return DimSize;
347}
348
349static Type *getBaseElementType(const CallInst *Call) {
350 // Element type is stored in an elementtype() attribute on the first param.
351 return Call->getParamElementType(0);
352}
353
354/// Check whether a call is a preserve_*_access_index intrinsic call or not.
355bool BPFAbstractMemberAccess::IsPreserveDIAccessIndexCall(const CallInst *Call,
356 CallInfo &CInfo) {
357 if (!Call)
358 return false;
359
360 const auto *GV = dyn_cast<GlobalValue>(Call->getCalledOperand());
361 if (!GV)
362 return false;
363 if (GV->getName().startswith("llvm.preserve.array.access.index")) {
364 CInfo.Kind = BPFPreserveArrayAI;
365 CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
366 if (!CInfo.Metadata)
367 report_fatal_error("Missing metadata for llvm.preserve.array.access.index intrinsic");
368 CInfo.AccessIndex = getConstant(Call->getArgOperand(2));
369 CInfo.Base = Call->getArgOperand(0);
370 CInfo.RecordAlignment = DL->getABITypeAlign(getBaseElementType(Call));
371 return true;
372 }
373 if (GV->getName().startswith("llvm.preserve.union.access.index")) {
374 CInfo.Kind = BPFPreserveUnionAI;
375 CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
376 if (!CInfo.Metadata)
377 report_fatal_error("Missing metadata for llvm.preserve.union.access.index intrinsic");
378 ResetMetadata(CInfo);
379 CInfo.AccessIndex = getConstant(Call->getArgOperand(1));
380 CInfo.Base = Call->getArgOperand(0);
381 return true;
382 }
383 if (GV->getName().startswith("llvm.preserve.struct.access.index")) {
384 CInfo.Kind = BPFPreserveStructAI;
385 CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
386 if (!CInfo.Metadata)
387 report_fatal_error("Missing metadata for llvm.preserve.struct.access.index intrinsic");
388 ResetMetadata(CInfo);
389 CInfo.AccessIndex = getConstant(Call->getArgOperand(2));
390 CInfo.Base = Call->getArgOperand(0);
391 CInfo.RecordAlignment = DL->getABITypeAlign(getBaseElementType(Call));
392 return true;
393 }
394 if (GV->getName().startswith("llvm.bpf.preserve.field.info")) {
395 CInfo.Kind = BPFPreserveFieldInfoAI;
396 CInfo.Metadata = nullptr;
397 // Check validity of info_kind as clang did not check this.
398 uint64_t InfoKind = getConstant(Call->getArgOperand(1));
399 if (InfoKind >= BPFCoreSharedInfo::MAX_FIELD_RELOC_KIND)
400 report_fatal_error("Incorrect info_kind for llvm.bpf.preserve.field.info intrinsic");
401 CInfo.AccessIndex = InfoKind;
402 return true;
403 }
404 if (GV->getName().startswith("llvm.bpf.preserve.type.info")) {
405 CInfo.Kind = BPFPreserveFieldInfoAI;
406 CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
407 if (!CInfo.Metadata)
408 report_fatal_error("Missing metadata for llvm.preserve.type.info intrinsic");
409 uint64_t Flag = getConstant(Call->getArgOperand(1));
410 if (Flag >= BPFCoreSharedInfo::MAX_PRESERVE_TYPE_INFO_FLAG)
411 report_fatal_error("Incorrect flag for llvm.bpf.preserve.type.info intrinsic");
412 if (Flag == BPFCoreSharedInfo::PRESERVE_TYPE_INFO_EXISTENCE)
413 CInfo.AccessIndex = BPFCoreSharedInfo::TYPE_EXISTENCE;
414 else if (Flag == BPFCoreSharedInfo::PRESERVE_TYPE_INFO_MATCH)
415 CInfo.AccessIndex = BPFCoreSharedInfo::TYPE_MATCH;
416 else
417 CInfo.AccessIndex = BPFCoreSharedInfo::TYPE_SIZE;
418 return true;
419 }
420 if (GV->getName().startswith("llvm.bpf.preserve.enum.value")) {
421 CInfo.Kind = BPFPreserveFieldInfoAI;
422 CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
423 if (!CInfo.Metadata)
424 report_fatal_error("Missing metadata for llvm.preserve.enum.value intrinsic");
425 uint64_t Flag = getConstant(Call->getArgOperand(2));
426 if (Flag >= BPFCoreSharedInfo::MAX_PRESERVE_ENUM_VALUE_FLAG)
427 report_fatal_error("Incorrect flag for llvm.bpf.preserve.enum.value intrinsic");
428 if (Flag == BPFCoreSharedInfo::PRESERVE_ENUM_VALUE_EXISTENCE)
429 CInfo.AccessIndex = BPFCoreSharedInfo::ENUM_VALUE_EXISTENCE;
430 else
431 CInfo.AccessIndex = BPFCoreSharedInfo::ENUM_VALUE;
432 return true;
433 }
434
435 return false;
436}
437
438void BPFAbstractMemberAccess::replaceWithGEP(std::vector<CallInst *> &CallList,
439 uint32_t DimensionIndex,
440 uint32_t GEPIndex) {
441 for (auto *Call : CallList) {
442 uint32_t Dimension = 1;
443 if (DimensionIndex > 0)
444 Dimension = getConstant(Call->getArgOperand(DimensionIndex));
445
446 Constant *Zero =
447 ConstantInt::get(Type::getInt32Ty(Call->getParent()->getContext()), 0);
448 SmallVector<Value *, 4> IdxList;
449 for (unsigned I = 0; I < Dimension; ++I)
450 IdxList.push_back(Zero);
451 IdxList.push_back(Call->getArgOperand(GEPIndex));
452
453 auto *GEP = GetElementPtrInst::CreateInBounds(
454 getBaseElementType(Call), Call->getArgOperand(0), IdxList, "", Call);
455 Call->replaceAllUsesWith(GEP);
456 Call->eraseFromParent();
457 }
458}
459
460bool BPFAbstractMemberAccess::removePreserveAccessIndexIntrinsic(Function &F) {
461 std::vector<CallInst *> PreserveArrayIndexCalls;
462 std::vector<CallInst *> PreserveUnionIndexCalls;
463 std::vector<CallInst *> PreserveStructIndexCalls;
464 bool Found = false;
465
466 for (auto &BB : F)
467 for (auto &I : BB) {
468 auto *Call = dyn_cast<CallInst>(&I);
469 CallInfo CInfo;
470 if (!IsPreserveDIAccessIndexCall(Call, CInfo))
471 continue;
472
473 Found = true;
474 if (CInfo.Kind == BPFPreserveArrayAI)
475 PreserveArrayIndexCalls.push_back(Call);
476 else if (CInfo.Kind == BPFPreserveUnionAI)
477 PreserveUnionIndexCalls.push_back(Call);
478 else
479 PreserveStructIndexCalls.push_back(Call);
480 }
481
482 // do the following transformation:
483 // . addr = preserve_array_access_index(base, dimension, index)
484 // is transformed to
485 // addr = GEP(base, dimenion's zero's, index)
486 // . addr = preserve_union_access_index(base, di_index)
487 // is transformed to
488 // addr = base, i.e., all usages of "addr" are replaced by "base".
489 // . addr = preserve_struct_access_index(base, gep_index, di_index)
490 // is transformed to
491 // addr = GEP(base, 0, gep_index)
492 replaceWithGEP(PreserveArrayIndexCalls, 1, 2);
493 replaceWithGEP(PreserveStructIndexCalls, 0, 1);
494 for (auto *Call : PreserveUnionIndexCalls) {
495 Call->replaceAllUsesWith(Call->getArgOperand(0));
496 Call->eraseFromParent();
497 }
498
499 return Found;
500}
501
502/// Check whether the access index chain is valid. We check
503/// here because there may be type casts between two
504/// access indexes. We want to ensure memory access still valid.
505bool BPFAbstractMemberAccess::IsValidAIChain(const MDNode *ParentType,
506 uint32_t ParentAI,
507 const MDNode *ChildType) {
508 if (!ChildType)
509 return true; // preserve_field_info, no type comparison needed.
510
511 const DIType *PType = stripQualifiers(cast<DIType>(ParentType));
512 const DIType *CType = stripQualifiers(cast<DIType>(ChildType));
513
514 // Child is a derived/pointer type, which is due to type casting.
515 // Pointer type cannot be in the middle of chain.
516 if (isa<DIDerivedType>(CType))
517 return false;
518
519 // Parent is a pointer type.
520 if (const auto *PtrTy = dyn_cast<DIDerivedType>(PType)) {
521 if (PtrTy->getTag() != dwarf::DW_TAG_pointer_type)
522 return false;
523 return stripQualifiers(PtrTy->getBaseType()) == CType;
524 }
525
526 // Otherwise, struct/union/array types
527 const auto *PTy = dyn_cast<DICompositeType>(PType);
528 const auto *CTy = dyn_cast<DICompositeType>(CType);
529 assert(PTy && CTy && "ParentType or ChildType is null or not composite")(static_cast <bool> (PTy && CTy && "ParentType or ChildType is null or not composite"
) ? void (0) : __assert_fail ("PTy && CTy && \"ParentType or ChildType is null or not composite\""
, "llvm/lib/Target/BPF/BPFAbstractMemberAccess.cpp", 529, __extension__
__PRETTY_FUNCTION__))
;
530
531 uint32_t PTyTag = PTy->getTag();
532 assert(PTyTag == dwarf::DW_TAG_array_type ||(static_cast <bool> (PTyTag == dwarf::DW_TAG_array_type
|| PTyTag == dwarf::DW_TAG_structure_type || PTyTag == dwarf
::DW_TAG_union_type) ? void (0) : __assert_fail ("PTyTag == dwarf::DW_TAG_array_type || PTyTag == dwarf::DW_TAG_structure_type || PTyTag == dwarf::DW_TAG_union_type"
, "llvm/lib/Target/BPF/BPFAbstractMemberAccess.cpp", 534, __extension__
__PRETTY_FUNCTION__))
533 PTyTag == dwarf::DW_TAG_structure_type ||(static_cast <bool> (PTyTag == dwarf::DW_TAG_array_type
|| PTyTag == dwarf::DW_TAG_structure_type || PTyTag == dwarf
::DW_TAG_union_type) ? void (0) : __assert_fail ("PTyTag == dwarf::DW_TAG_array_type || PTyTag == dwarf::DW_TAG_structure_type || PTyTag == dwarf::DW_TAG_union_type"
, "llvm/lib/Target/BPF/BPFAbstractMemberAccess.cpp", 534, __extension__
__PRETTY_FUNCTION__))
534 PTyTag == dwarf::DW_TAG_union_type)(static_cast <bool> (PTyTag == dwarf::DW_TAG_array_type
|| PTyTag == dwarf::DW_TAG_structure_type || PTyTag == dwarf
::DW_TAG_union_type) ? void (0) : __assert_fail ("PTyTag == dwarf::DW_TAG_array_type || PTyTag == dwarf::DW_TAG_structure_type || PTyTag == dwarf::DW_TAG_union_type"
, "llvm/lib/Target/BPF/BPFAbstractMemberAccess.cpp", 534, __extension__
__PRETTY_FUNCTION__))
;
535
536 uint32_t CTyTag = CTy->getTag();
537 assert(CTyTag == dwarf::DW_TAG_array_type ||(static_cast <bool> (CTyTag == dwarf::DW_TAG_array_type
|| CTyTag == dwarf::DW_TAG_structure_type || CTyTag == dwarf
::DW_TAG_union_type) ? void (0) : __assert_fail ("CTyTag == dwarf::DW_TAG_array_type || CTyTag == dwarf::DW_TAG_structure_type || CTyTag == dwarf::DW_TAG_union_type"
, "llvm/lib/Target/BPF/BPFAbstractMemberAccess.cpp", 539, __extension__
__PRETTY_FUNCTION__))
538 CTyTag == dwarf::DW_TAG_structure_type ||(static_cast <bool> (CTyTag == dwarf::DW_TAG_array_type
|| CTyTag == dwarf::DW_TAG_structure_type || CTyTag == dwarf
::DW_TAG_union_type) ? void (0) : __assert_fail ("CTyTag == dwarf::DW_TAG_array_type || CTyTag == dwarf::DW_TAG_structure_type || CTyTag == dwarf::DW_TAG_union_type"
, "llvm/lib/Target/BPF/BPFAbstractMemberAccess.cpp", 539, __extension__
__PRETTY_FUNCTION__))
539 CTyTag == dwarf::DW_TAG_union_type)(static_cast <bool> (CTyTag == dwarf::DW_TAG_array_type
|| CTyTag == dwarf::DW_TAG_structure_type || CTyTag == dwarf
::DW_TAG_union_type) ? void (0) : __assert_fail ("CTyTag == dwarf::DW_TAG_array_type || CTyTag == dwarf::DW_TAG_structure_type || CTyTag == dwarf::DW_TAG_union_type"
, "llvm/lib/Target/BPF/BPFAbstractMemberAccess.cpp", 539, __extension__
__PRETTY_FUNCTION__))
;
540
541 // Multi dimensional arrays, base element should be the same
542 if (PTyTag == dwarf::DW_TAG_array_type && PTyTag == CTyTag)
543 return PTy->getBaseType() == CTy->getBaseType();
544
545 DIType *Ty;
546 if (PTyTag == dwarf::DW_TAG_array_type)
547 Ty = PTy->getBaseType();
548 else
549 Ty = dyn_cast<DIType>(PTy->getElements()[ParentAI]);
550
551 return dyn_cast<DICompositeType>(stripQualifiers(Ty)) == CTy;
552}
553
554void BPFAbstractMemberAccess::traceAICall(CallInst *Call,
555 CallInfo &ParentInfo) {
556 for (User *U : Call->users()) {
557 Instruction *Inst = dyn_cast<Instruction>(U);
558 if (!Inst)
559 continue;
560
561 if (auto *BI = dyn_cast<BitCastInst>(Inst)) {
562 traceBitCast(BI, Call, ParentInfo);
563 } else if (auto *CI = dyn_cast<CallInst>(Inst)) {
564 CallInfo ChildInfo;
565
566 if (IsPreserveDIAccessIndexCall(CI, ChildInfo) &&
567 IsValidAIChain(ParentInfo.Metadata, ParentInfo.AccessIndex,
568 ChildInfo.Metadata)) {
569 AIChain[CI] = std::make_pair(Call, ParentInfo);
570 traceAICall(CI, ChildInfo);
571 } else {
572 BaseAICalls[Call] = ParentInfo;
573 }
574 } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
575 if (GI->hasAllZeroIndices())
576 traceGEP(GI, Call, ParentInfo);
577 else
578 BaseAICalls[Call] = ParentInfo;
579 } else {
580 BaseAICalls[Call] = ParentInfo;
581 }
582 }
583}
584
585void BPFAbstractMemberAccess::traceBitCast(BitCastInst *BitCast,
586 CallInst *Parent,
587 CallInfo &ParentInfo) {
588 for (User *U : BitCast->users()) {
589 Instruction *Inst = dyn_cast<Instruction>(U);
590 if (!Inst)
591 continue;
592
593 if (auto *BI = dyn_cast<BitCastInst>(Inst)) {
594 traceBitCast(BI, Parent, ParentInfo);
595 } else if (auto *CI = dyn_cast<CallInst>(Inst)) {
596 CallInfo ChildInfo;
597 if (IsPreserveDIAccessIndexCall(CI, ChildInfo) &&
598 IsValidAIChain(ParentInfo.Metadata, ParentInfo.AccessIndex,
599 ChildInfo.Metadata)) {
600 AIChain[CI] = std::make_pair(Parent, ParentInfo);
601 traceAICall(CI, ChildInfo);
602 } else {
603 BaseAICalls[Parent] = ParentInfo;
604 }
605 } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
606 if (GI->hasAllZeroIndices())
607 traceGEP(GI, Parent, ParentInfo);
608 else
609 BaseAICalls[Parent] = ParentInfo;
610 } else {
611 BaseAICalls[Parent] = ParentInfo;
612 }
613 }
614}
615
616void BPFAbstractMemberAccess::traceGEP(GetElementPtrInst *GEP, CallInst *Parent,
617 CallInfo &ParentInfo) {
618 for (User *U : GEP->users()) {
619 Instruction *Inst = dyn_cast<Instruction>(U);
620 if (!Inst)
621 continue;
622
623 if (auto *BI = dyn_cast<BitCastInst>(Inst)) {
624 traceBitCast(BI, Parent, ParentInfo);
625 } else if (auto *CI = dyn_cast<CallInst>(Inst)) {
626 CallInfo ChildInfo;
627 if (IsPreserveDIAccessIndexCall(CI, ChildInfo) &&
628 IsValidAIChain(ParentInfo.Metadata, ParentInfo.AccessIndex,
629 ChildInfo.Metadata)) {
630 AIChain[CI] = std::make_pair(Parent, ParentInfo);
631 traceAICall(CI, ChildInfo);
632 } else {
633 BaseAICalls[Parent] = ParentInfo;
634 }
635 } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
636 if (GI->hasAllZeroIndices())
637 traceGEP(GI, Parent, ParentInfo);
638 else
639 BaseAICalls[Parent] = ParentInfo;
640 } else {
641 BaseAICalls[Parent] = ParentInfo;
642 }
643 }
644}
645
646void BPFAbstractMemberAccess::collectAICallChains(Function &F) {
647 AIChain.clear();
648 BaseAICalls.clear();
649
650 for (auto &BB : F)
651 for (auto &I : BB) {
652 CallInfo CInfo;
653 auto *Call = dyn_cast<CallInst>(&I);
654 if (!IsPreserveDIAccessIndexCall(Call, CInfo) ||
655 AIChain.find(Call) != AIChain.end())
656 continue;
657
658 traceAICall(Call, CInfo);
659 }
660}
661
662uint64_t BPFAbstractMemberAccess::getConstant(const Value *IndexValue) {
663 const ConstantInt *CV = dyn_cast<ConstantInt>(IndexValue);
664 assert(CV)(static_cast <bool> (CV) ? void (0) : __assert_fail ("CV"
, "llvm/lib/Target/BPF/BPFAbstractMemberAccess.cpp", 664, __extension__
__PRETTY_FUNCTION__))
;
665 return CV->getValue().getZExtValue();
666}
667
668/// Get the start and the end of storage offset for \p MemberTy.
669void BPFAbstractMemberAccess::GetStorageBitRange(DIDerivedType *MemberTy,
670 Align RecordAlignment,
671 uint32_t &StartBitOffset,
672 uint32_t &EndBitOffset) {
673 uint32_t MemberBitSize = MemberTy->getSizeInBits();
674 uint32_t MemberBitOffset = MemberTy->getOffsetInBits();
675
676 if (RecordAlignment > 8) {
677 // If the Bits are within an aligned 8-byte, set the RecordAlignment
678 // to 8, other report the fatal error.
679 if (MemberBitOffset / 64 != (MemberBitOffset + MemberBitSize) / 64)
680 report_fatal_error("Unsupported field expression for llvm.bpf.preserve.field.info, "
681 "requiring too big alignment");
682 RecordAlignment = Align(8);
683 }
684
685 uint32_t AlignBits = RecordAlignment.value() * 8;
686 if (MemberBitSize > AlignBits)
687 report_fatal_error("Unsupported field expression for llvm.bpf.preserve.field.info, "
688 "bitfield size greater than record alignment");
689
690 StartBitOffset = MemberBitOffset & ~(AlignBits - 1);
691 if ((StartBitOffset + AlignBits) < (MemberBitOffset + MemberBitSize))
692 report_fatal_error("Unsupported field expression for llvm.bpf.preserve.field.info, "
693 "cross alignment boundary");
694 EndBitOffset = StartBitOffset + AlignBits;
695}
696
697uint32_t BPFAbstractMemberAccess::GetFieldInfo(uint32_t InfoKind,
698 DICompositeType *CTy,
699 uint32_t AccessIndex,
700 uint32_t PatchImm,
701 MaybeAlign RecordAlignment) {
702 if (InfoKind == BPFCoreSharedInfo::FIELD_EXISTENCE)
703 return 1;
704
705 uint32_t Tag = CTy->getTag();
706 if (InfoKind == BPFCoreSharedInfo::FIELD_BYTE_OFFSET) {
707 if (Tag == dwarf::DW_TAG_array_type) {
708 auto *EltTy = stripQualifiers(CTy->getBaseType());
709 PatchImm += AccessIndex * calcArraySize(CTy, 1) *
710 (EltTy->getSizeInBits() >> 3);
711 } else if (Tag == dwarf::DW_TAG_structure_type) {
712 auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
713 if (!MemberTy->isBitField()) {
714 PatchImm += MemberTy->getOffsetInBits() >> 3;
715 } else {
716 unsigned SBitOffset, NextSBitOffset;
717 GetStorageBitRange(MemberTy, *RecordAlignment, SBitOffset,
718 NextSBitOffset);
719 PatchImm += SBitOffset >> 3;
720 }
721 }
722 return PatchImm;
723 }
724
725 if (InfoKind == BPFCoreSharedInfo::FIELD_BYTE_SIZE) {
726 if (Tag == dwarf::DW_TAG_array_type) {
727 auto *EltTy = stripQualifiers(CTy->getBaseType());
728 return calcArraySize(CTy, 1) * (EltTy->getSizeInBits() >> 3);
729 } else {
730 auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
731 uint32_t SizeInBits = MemberTy->getSizeInBits();
732 if (!MemberTy->isBitField())
733 return SizeInBits >> 3;
734
735 unsigned SBitOffset, NextSBitOffset;
736 GetStorageBitRange(MemberTy, *RecordAlignment, SBitOffset,
737 NextSBitOffset);
738 SizeInBits = NextSBitOffset - SBitOffset;
739 if (SizeInBits & (SizeInBits - 1))
740 report_fatal_error("Unsupported field expression for llvm.bpf.preserve.field.info");
741 return SizeInBits >> 3;
742 }
743 }
744
745 if (InfoKind == BPFCoreSharedInfo::FIELD_SIGNEDNESS) {
746 const DIType *BaseTy;
747 if (Tag == dwarf::DW_TAG_array_type) {
748 // Signedness only checked when final array elements are accessed.
749 if (CTy->getElements().size() != 1)
750 report_fatal_error("Invalid array expression for llvm.bpf.preserve.field.info");
751 BaseTy = stripQualifiers(CTy->getBaseType());
752 } else {
753 auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
754 BaseTy = stripQualifiers(MemberTy->getBaseType());
755 }
756
757 // Only basic types and enum types have signedness.
758 const auto *BTy = dyn_cast<DIBasicType>(BaseTy);
759 while (!BTy) {
760 const auto *CompTy = dyn_cast<DICompositeType>(BaseTy);
761 // Report an error if the field expression does not have signedness.
762 if (!CompTy || CompTy->getTag() != dwarf::DW_TAG_enumeration_type)
763 report_fatal_error("Invalid field expression for llvm.bpf.preserve.field.info");
764 BaseTy = stripQualifiers(CompTy->getBaseType());
765 BTy = dyn_cast<DIBasicType>(BaseTy);
766 }
767 uint32_t Encoding = BTy->getEncoding();
768 return (Encoding == dwarf::DW_ATE_signed || Encoding == dwarf::DW_ATE_signed_char);
769 }
770
771 if (InfoKind == BPFCoreSharedInfo::FIELD_LSHIFT_U64) {
772 // The value is loaded into a value with FIELD_BYTE_SIZE size,
773 // and then zero or sign extended to U64.
774 // FIELD_LSHIFT_U64 and FIELD_RSHIFT_U64 are operations
775 // to extract the original value.
776 const Triple &Triple = TM->getTargetTriple();
777 DIDerivedType *MemberTy = nullptr;
778 bool IsBitField = false;
779 uint32_t SizeInBits;
780
781 if (Tag == dwarf::DW_TAG_array_type) {
782 auto *EltTy = stripQualifiers(CTy->getBaseType());
783 SizeInBits = calcArraySize(CTy, 1) * EltTy->getSizeInBits();
784 } else {
785 MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
786 SizeInBits = MemberTy->getSizeInBits();
787 IsBitField = MemberTy->isBitField();
788 }
789
790 if (!IsBitField) {
791 if (SizeInBits > 64)
792 report_fatal_error("too big field size for llvm.bpf.preserve.field.info");
793 return 64 - SizeInBits;
794 }
795
796 unsigned SBitOffset, NextSBitOffset;
797 GetStorageBitRange(MemberTy, *RecordAlignment, SBitOffset, NextSBitOffset);
798 if (NextSBitOffset - SBitOffset > 64)
799 report_fatal_error("too big field size for llvm.bpf.preserve.field.info");
800
801 unsigned OffsetInBits = MemberTy->getOffsetInBits();
802 if (Triple.getArch() == Triple::bpfel)
803 return SBitOffset + 64 - OffsetInBits - SizeInBits;
804 else
805 return OffsetInBits + 64 - NextSBitOffset;
806 }
807
808 if (InfoKind == BPFCoreSharedInfo::FIELD_RSHIFT_U64) {
809 DIDerivedType *MemberTy = nullptr;
810 bool IsBitField = false;
811 uint32_t SizeInBits;
812 if (Tag == dwarf::DW_TAG_array_type) {
813 auto *EltTy = stripQualifiers(CTy->getBaseType());
814 SizeInBits = calcArraySize(CTy, 1) * EltTy->getSizeInBits();
815 } else {
816 MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
817 SizeInBits = MemberTy->getSizeInBits();
818 IsBitField = MemberTy->isBitField();
819 }
820
821 if (!IsBitField) {
822 if (SizeInBits > 64)
823 report_fatal_error("too big field size for llvm.bpf.preserve.field.info");
824 return 64 - SizeInBits;
825 }
826
827 unsigned SBitOffset, NextSBitOffset;
828 GetStorageBitRange(MemberTy, *RecordAlignment, SBitOffset, NextSBitOffset);
829 if (NextSBitOffset - SBitOffset > 64)
830 report_fatal_error("too big field size for llvm.bpf.preserve.field.info");
831
832 return 64 - SizeInBits;
833 }
834
835 llvm_unreachable("Unknown llvm.bpf.preserve.field.info info kind")::llvm::llvm_unreachable_internal("Unknown llvm.bpf.preserve.field.info info kind"
, "llvm/lib/Target/BPF/BPFAbstractMemberAccess.cpp", 835)
;
836}
837
838bool BPFAbstractMemberAccess::HasPreserveFieldInfoCall(CallInfoStack &CallStack) {
839 // This is called in error return path, no need to maintain CallStack.
840 while (CallStack.size()) {
841 auto StackElem = CallStack.top();
842 if (StackElem.second.Kind == BPFPreserveFieldInfoAI)
843 return true;
844 CallStack.pop();
845 }
846 return false;
847}
848
849/// Compute the base of the whole preserve_* intrinsics chains, i.e., the base
850/// pointer of the first preserve_*_access_index call, and construct the access
851/// string, which will be the name of a global variable.
852Value *BPFAbstractMemberAccess::computeBaseAndAccessKey(CallInst *Call,
853 CallInfo &CInfo,
854 std::string &AccessKey,
855 MDNode *&TypeMeta) {
856 Value *Base = nullptr;
857 std::string TypeName;
858 CallInfoStack CallStack;
859
860 // Put the access chain into a stack with the top as the head of the chain.
861 while (Call) {
862 CallStack.push(std::make_pair(Call, CInfo));
863 CInfo = AIChain[Call].second;
864 Call = AIChain[Call].first;
865 }
866
867 // The access offset from the base of the head of chain is also
868 // calculated here as all debuginfo types are available.
869
870 // Get type name and calculate the first index.
871 // We only want to get type name from typedef, structure or union.
872 // If user wants a relocation like
873 // int *p; ... __builtin_preserve_access_index(&p[4]) ...
874 // or
875 // int a[10][20]; ... __builtin_preserve_access_index(&a[2][3]) ...
876 // we will skip them.
877 uint32_t FirstIndex = 0;
878 uint32_t PatchImm = 0; // AccessOffset or the requested field info
879 uint32_t InfoKind = BPFCoreSharedInfo::FIELD_BYTE_OFFSET;
880 while (CallStack.size()) {
881 auto StackElem = CallStack.top();
882 Call = StackElem.first;
Value stored to 'Call' is never read
883 CInfo = StackElem.second;
884
885 if (!Base)
886 Base = CInfo.Base;
887
888 DIType *PossibleTypeDef = stripQualifiers(cast<DIType>(CInfo.Metadata),
889 false);
890 DIType *Ty = stripQualifiers(PossibleTypeDef);
891 if (CInfo.Kind == BPFPreserveUnionAI ||
892 CInfo.Kind == BPFPreserveStructAI) {
893 // struct or union type. If the typedef is in the metadata, always
894 // use the typedef.
895 TypeName = std::string(PossibleTypeDef->getName());
896 TypeMeta = PossibleTypeDef;
897 PatchImm += FirstIndex * (Ty->getSizeInBits() >> 3);
898 break;
899 }
900
901 assert(CInfo.Kind == BPFPreserveArrayAI)(static_cast <bool> (CInfo.Kind == BPFPreserveArrayAI) ?
void (0) : __assert_fail ("CInfo.Kind == BPFPreserveArrayAI"
, "llvm/lib/Target/BPF/BPFAbstractMemberAccess.cpp", 901, __extension__
__PRETTY_FUNCTION__))
;
902
903 // Array entries will always be consumed for accumulative initial index.
904 CallStack.pop();
905
906 // BPFPreserveArrayAI
907 uint64_t AccessIndex = CInfo.AccessIndex;
908
909 DIType *BaseTy = nullptr;
910 bool CheckElemType = false;
911 if (const auto *CTy = dyn_cast<DICompositeType>(Ty)) {
912 // array type
913 assert(CTy->getTag() == dwarf::DW_TAG_array_type)(static_cast <bool> (CTy->getTag() == dwarf::DW_TAG_array_type
) ? void (0) : __assert_fail ("CTy->getTag() == dwarf::DW_TAG_array_type"
, "llvm/lib/Target/BPF/BPFAbstractMemberAccess.cpp", 913, __extension__
__PRETTY_FUNCTION__))
;
914
915
916 FirstIndex += AccessIndex * calcArraySize(CTy, 1);
917 BaseTy = stripQualifiers(CTy->getBaseType());
918 CheckElemType = CTy->getElements().size() == 1;
919 } else {
920 // pointer type
921 auto *DTy = cast<DIDerivedType>(Ty);
922 assert(DTy->getTag() == dwarf::DW_TAG_pointer_type)(static_cast <bool> (DTy->getTag() == dwarf::DW_TAG_pointer_type
) ? void (0) : __assert_fail ("DTy->getTag() == dwarf::DW_TAG_pointer_type"
, "llvm/lib/Target/BPF/BPFAbstractMemberAccess.cpp", 922, __extension__
__PRETTY_FUNCTION__))
;
923
924 BaseTy = stripQualifiers(DTy->getBaseType());
925 CTy = dyn_cast<DICompositeType>(BaseTy);
926 if (!CTy) {
927 CheckElemType = true;
928 } else if (CTy->getTag() != dwarf::DW_TAG_array_type) {
929 FirstIndex += AccessIndex;
930 CheckElemType = true;
931 } else {
932 FirstIndex += AccessIndex * calcArraySize(CTy, 0);
933 }
934 }
935
936 if (CheckElemType) {
937 auto *CTy = dyn_cast<DICompositeType>(BaseTy);
938 if (!CTy) {
939 if (HasPreserveFieldInfoCall(CallStack))
940 report_fatal_error("Invalid field access for llvm.preserve.field.info intrinsic");
941 return nullptr;
942 }
943
944 unsigned CTag = CTy->getTag();
945 if (CTag == dwarf::DW_TAG_structure_type || CTag == dwarf::DW_TAG_union_type) {
946 TypeName = std::string(CTy->getName());
947 } else {
948 if (HasPreserveFieldInfoCall(CallStack))
949 report_fatal_error("Invalid field access for llvm.preserve.field.info intrinsic");
950 return nullptr;
951 }
952 TypeMeta = CTy;
953 PatchImm += FirstIndex * (CTy->getSizeInBits() >> 3);
954 break;
955 }
956 }
957 assert(TypeName.size())(static_cast <bool> (TypeName.size()) ? void (0) : __assert_fail
("TypeName.size()", "llvm/lib/Target/BPF/BPFAbstractMemberAccess.cpp"
, 957, __extension__ __PRETTY_FUNCTION__))
;
958 AccessKey += std::to_string(FirstIndex);
959
960 // Traverse the rest of access chain to complete offset calculation
961 // and access key construction.
962 while (CallStack.size()) {
963 auto StackElem = CallStack.top();
964 CInfo = StackElem.second;
965 CallStack.pop();
966
967 if (CInfo.Kind == BPFPreserveFieldInfoAI) {
968 InfoKind = CInfo.AccessIndex;
969 if (InfoKind == BPFCoreSharedInfo::FIELD_EXISTENCE)
970 PatchImm = 1;
971 break;
972 }
973
974 // If the next Call (the top of the stack) is a BPFPreserveFieldInfoAI,
975 // the action will be extracting field info.
976 if (CallStack.size()) {
977 auto StackElem2 = CallStack.top();
978 CallInfo CInfo2 = StackElem2.second;
979 if (CInfo2.Kind == BPFPreserveFieldInfoAI) {
980 InfoKind = CInfo2.AccessIndex;
981 assert(CallStack.size() == 1)(static_cast <bool> (CallStack.size() == 1) ? void (0) :
__assert_fail ("CallStack.size() == 1", "llvm/lib/Target/BPF/BPFAbstractMemberAccess.cpp"
, 981, __extension__ __PRETTY_FUNCTION__))
;
982 }
983 }
984
985 // Access Index
986 uint64_t AccessIndex = CInfo.AccessIndex;
987 AccessKey += ":" + std::to_string(AccessIndex);
988
989 MDNode *MDN = CInfo.Metadata;
990 // At this stage, it cannot be pointer type.
991 auto *CTy = cast<DICompositeType>(stripQualifiers(cast<DIType>(MDN)));
992 PatchImm = GetFieldInfo(InfoKind, CTy, AccessIndex, PatchImm,
993 CInfo.RecordAlignment);
994 }
995
996 // Access key is the
997 // "llvm." + type name + ":" + reloc type + ":" + patched imm + "$" +
998 // access string,
999 // uniquely identifying one relocation.
1000 // The prefix "llvm." indicates this is a temporary global, which should
1001 // not be emitted to ELF file.
1002 AccessKey = "llvm." + TypeName + ":" + std::to_string(InfoKind) + ":" +
1003 std::to_string(PatchImm) + "$" + AccessKey;
1004
1005 return Base;
1006}
1007
1008MDNode *BPFAbstractMemberAccess::computeAccessKey(CallInst *Call,
1009 CallInfo &CInfo,
1010 std::string &AccessKey,
1011 bool &IsInt32Ret) {
1012 DIType *Ty = stripQualifiers(cast<DIType>(CInfo.Metadata), false);
1013 assert(!Ty->getName().empty())(static_cast <bool> (!Ty->getName().empty()) ? void (
0) : __assert_fail ("!Ty->getName().empty()", "llvm/lib/Target/BPF/BPFAbstractMemberAccess.cpp"
, 1013, __extension__ __PRETTY_FUNCTION__))
;
1014
1015 int64_t PatchImm;
1016 std::string AccessStr("0");
1017 if (CInfo.AccessIndex == BPFCoreSharedInfo::TYPE_EXISTENCE ||
1018 CInfo.AccessIndex == BPFCoreSharedInfo::TYPE_MATCH) {
1019 PatchImm = 1;
1020 } else if (CInfo.AccessIndex == BPFCoreSharedInfo::TYPE_SIZE) {
1021 // typedef debuginfo type has size 0, get the eventual base type.
1022 DIType *BaseTy = stripQualifiers(Ty, true);
1023 PatchImm = BaseTy->getSizeInBits() / 8;
1024 } else {
1025 // ENUM_VALUE_EXISTENCE and ENUM_VALUE
1026 IsInt32Ret = false;
1027
1028 // The argument could be a global variable or a getelementptr with base to
1029 // a global variable depending on whether the clang option `opaque-options`
1030 // is set or not.
1031 const GlobalVariable *GV =
1032 cast<GlobalVariable>(Call->getArgOperand(1)->stripPointerCasts());
1033 assert(GV->hasInitializer())(static_cast <bool> (GV->hasInitializer()) ? void (0
) : __assert_fail ("GV->hasInitializer()", "llvm/lib/Target/BPF/BPFAbstractMemberAccess.cpp"
, 1033, __extension__ __PRETTY_FUNCTION__))
;
1034 const ConstantDataArray *DA = cast<ConstantDataArray>(GV->getInitializer());
1035 assert(DA->isString())(static_cast <bool> (DA->isString()) ? void (0) : __assert_fail
("DA->isString()", "llvm/lib/Target/BPF/BPFAbstractMemberAccess.cpp"
, 1035, __extension__ __PRETTY_FUNCTION__))
;
1036 StringRef ValueStr = DA->getAsString();
1037
1038 // ValueStr format: <EnumeratorStr>:<Value>
1039 size_t Separator = ValueStr.find_first_of(':');
1040 StringRef EnumeratorStr = ValueStr.substr(0, Separator);
1041
1042 // Find enumerator index in the debuginfo
1043 DIType *BaseTy = stripQualifiers(Ty, true);
1044 const auto *CTy = cast<DICompositeType>(BaseTy);
1045 assert(CTy->getTag() == dwarf::DW_TAG_enumeration_type)(static_cast <bool> (CTy->getTag() == dwarf::DW_TAG_enumeration_type
) ? void (0) : __assert_fail ("CTy->getTag() == dwarf::DW_TAG_enumeration_type"
, "llvm/lib/Target/BPF/BPFAbstractMemberAccess.cpp", 1045, __extension__
__PRETTY_FUNCTION__))
;
1046 int EnumIndex = 0;
1047 for (const auto Element : CTy->getElements()) {
1048 const auto *Enum = cast<DIEnumerator>(Element);
1049 if (Enum->getName() == EnumeratorStr) {
1050 AccessStr = std::to_string(EnumIndex);
1051 break;
1052 }
1053 EnumIndex++;
1054 }
1055
1056 if (CInfo.AccessIndex == BPFCoreSharedInfo::ENUM_VALUE) {
1057 StringRef EValueStr = ValueStr.substr(Separator + 1);
1058 PatchImm = std::stoll(std::string(EValueStr));
1059 } else {
1060 PatchImm = 1;
1061 }
1062 }
1063
1064 AccessKey = "llvm." + Ty->getName().str() + ":" +
1065 std::to_string(CInfo.AccessIndex) + std::string(":") +
1066 std::to_string(PatchImm) + std::string("$") + AccessStr;
1067
1068 return Ty;
1069}
1070
1071/// Call/Kind is the base preserve_*_access_index() call. Attempts to do
1072/// transformation to a chain of relocable GEPs.
1073bool BPFAbstractMemberAccess::transformGEPChain(CallInst *Call,
1074 CallInfo &CInfo) {
1075 std::string AccessKey;
1076 MDNode *TypeMeta;
1077 Value *Base = nullptr;
1078 bool IsInt32Ret;
1079
1080 IsInt32Ret = CInfo.Kind == BPFPreserveFieldInfoAI;
1081 if (CInfo.Kind == BPFPreserveFieldInfoAI && CInfo.Metadata) {
1082 TypeMeta = computeAccessKey(Call, CInfo, AccessKey, IsInt32Ret);
1083 } else {
1084 Base = computeBaseAndAccessKey(Call, CInfo, AccessKey, TypeMeta);
1085 if (!Base)
1086 return false;
1087 }
1088
1089 BasicBlock *BB = Call->getParent();
1090 GlobalVariable *GV;
1091
1092 if (GEPGlobals.find(AccessKey) == GEPGlobals.end()) {
1093 IntegerType *VarType;
1094 if (IsInt32Ret)
1095 VarType = Type::getInt32Ty(BB->getContext()); // 32bit return value
1096 else
1097 VarType = Type::getInt64Ty(BB->getContext()); // 64bit ptr or enum value
1098
1099 GV = new GlobalVariable(*M, VarType, false, GlobalVariable::ExternalLinkage,
1100 nullptr, AccessKey);
1101 GV->addAttribute(BPFCoreSharedInfo::AmaAttr);
1102 GV->setMetadata(LLVMContext::MD_preserve_access_index, TypeMeta);
1103 GEPGlobals[AccessKey] = GV;
1104 } else {
1105 GV = GEPGlobals[AccessKey];
1106 }
1107
1108 if (CInfo.Kind == BPFPreserveFieldInfoAI) {
1109 // Load the global variable which represents the returned field info.
1110 LoadInst *LDInst;
1111 if (IsInt32Ret)
1112 LDInst = new LoadInst(Type::getInt32Ty(BB->getContext()), GV, "", Call);
1113 else
1114 LDInst = new LoadInst(Type::getInt64Ty(BB->getContext()), GV, "", Call);
1115
1116 Instruction *PassThroughInst =
1117 BPFCoreSharedInfo::insertPassThrough(M, BB, LDInst, Call);
1118 Call->replaceAllUsesWith(PassThroughInst);
1119 Call->eraseFromParent();
1120 return true;
1121 }
1122
1123 // For any original GEP Call and Base %2 like
1124 // %4 = bitcast %struct.net_device** %dev1 to i64*
1125 // it is transformed to:
1126 // %6 = load llvm.sk_buff:0:50$0:0:0:2:0
1127 // %7 = bitcast %struct.sk_buff* %2 to i8*
1128 // %8 = getelementptr i8, i8* %7, %6
1129 // %9 = bitcast i8* %8 to i64*
1130 // using %9 instead of %4
1131 // The original Call inst is removed.
1132
1133 // Load the global variable.
1134 auto *LDInst = new LoadInst(Type::getInt64Ty(BB->getContext()), GV, "", Call);
1135
1136 // Generate a BitCast
1137 auto *BCInst = new BitCastInst(Base, Type::getInt8PtrTy(BB->getContext()));
1138 BCInst->insertBefore(Call);
1139
1140 // Generate a GetElementPtr
1141 auto *GEP = GetElementPtrInst::Create(Type::getInt8Ty(BB->getContext()),
1142 BCInst, LDInst);
1143 GEP->insertBefore(Call);
1144
1145 // Generate a BitCast
1146 auto *BCInst2 = new BitCastInst(GEP, Call->getType());
1147 BCInst2->insertBefore(Call);
1148
1149 // For the following code,
1150 // Block0:
1151 // ...
1152 // if (...) goto Block1 else ...
1153 // Block1:
1154 // %6 = load llvm.sk_buff:0:50$0:0:0:2:0
1155 // %7 = bitcast %struct.sk_buff* %2 to i8*
1156 // %8 = getelementptr i8, i8* %7, %6
1157 // ...
1158 // goto CommonExit
1159 // Block2:
1160 // ...
1161 // if (...) goto Block3 else ...
1162 // Block3:
1163 // %6 = load llvm.bpf_map:0:40$0:0:0:2:0
1164 // %7 = bitcast %struct.sk_buff* %2 to i8*
1165 // %8 = getelementptr i8, i8* %7, %6
1166 // ...
1167 // goto CommonExit
1168 // CommonExit
1169 // SimplifyCFG may generate:
1170 // Block0:
1171 // ...
1172 // if (...) goto Block_Common else ...
1173 // Block2:
1174 // ...
1175 // if (...) goto Block_Common else ...
1176 // Block_Common:
1177 // PHI = [llvm.sk_buff:0:50$0:0:0:2:0, llvm.bpf_map:0:40$0:0:0:2:0]
1178 // %6 = load PHI
1179 // %7 = bitcast %struct.sk_buff* %2 to i8*
1180 // %8 = getelementptr i8, i8* %7, %6
1181 // ...
1182 // goto CommonExit
1183 // For the above code, we cannot perform proper relocation since
1184 // "load PHI" has two possible relocations.
1185 //
1186 // To prevent above tail merging, we use __builtin_bpf_passthrough()
1187 // where one of its parameters is a seq_num. Since two
1188 // __builtin_bpf_passthrough() funcs will always have different seq_num,
1189 // tail merging cannot happen. The __builtin_bpf_passthrough() will be
1190 // removed in the beginning of Target IR passes.
1191 //
1192 // This approach is also used in other places when global var
1193 // representing a relocation is used.
1194 Instruction *PassThroughInst =
1195 BPFCoreSharedInfo::insertPassThrough(M, BB, BCInst2, Call);
1196 Call->replaceAllUsesWith(PassThroughInst);
1197 Call->eraseFromParent();
1198
1199 return true;
1200}
1201
1202bool BPFAbstractMemberAccess::doTransformation(Function &F) {
1203 bool Transformed = false;
1204
1205 // Collect PreserveDIAccessIndex Intrinsic call chains.
1206 // The call chains will be used to generate the access
1207 // patterns similar to GEP.
1208 collectAICallChains(F);
1209
1210 for (auto &C : BaseAICalls)
1211 Transformed = transformGEPChain(C.first, C.second) || Transformed;
1212
1213 return removePreserveAccessIndexIntrinsic(F) || Transformed;
1214}
1215
1216PreservedAnalyses
1217BPFAbstractMemberAccessPass::run(Function &F, FunctionAnalysisManager &AM) {
1218 return BPFAbstractMemberAccess(TM).run(F) ? PreservedAnalyses::none()
1219 : PreservedAnalyses::all();
1220}