File: | build/source/llvm/lib/Analysis/BasicAliasAnalysis.cpp |
Warning: | line 372, column 9 Value stored to 'NUW' is never read |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file defines the primary stateless implementation of the |
10 | // Alias Analysis interface that implements identities (two different |
11 | // globals cannot alias, etc), but does no stateful analysis. |
12 | // |
13 | //===----------------------------------------------------------------------===// |
14 | |
15 | #include "llvm/Analysis/BasicAliasAnalysis.h" |
16 | #include "llvm/ADT/APInt.h" |
17 | #include "llvm/ADT/ScopeExit.h" |
18 | #include "llvm/ADT/SmallPtrSet.h" |
19 | #include "llvm/ADT/SmallVector.h" |
20 | #include "llvm/ADT/Statistic.h" |
21 | #include "llvm/Analysis/AliasAnalysis.h" |
22 | #include "llvm/Analysis/AssumptionCache.h" |
23 | #include "llvm/Analysis/CFG.h" |
24 | #include "llvm/Analysis/CaptureTracking.h" |
25 | #include "llvm/Analysis/MemoryBuiltins.h" |
26 | #include "llvm/Analysis/MemoryLocation.h" |
27 | #include "llvm/Analysis/TargetLibraryInfo.h" |
28 | #include "llvm/Analysis/ValueTracking.h" |
29 | #include "llvm/IR/Argument.h" |
30 | #include "llvm/IR/Attributes.h" |
31 | #include "llvm/IR/Constant.h" |
32 | #include "llvm/IR/ConstantRange.h" |
33 | #include "llvm/IR/Constants.h" |
34 | #include "llvm/IR/DataLayout.h" |
35 | #include "llvm/IR/DerivedTypes.h" |
36 | #include "llvm/IR/Dominators.h" |
37 | #include "llvm/IR/Function.h" |
38 | #include "llvm/IR/GetElementPtrTypeIterator.h" |
39 | #include "llvm/IR/GlobalAlias.h" |
40 | #include "llvm/IR/GlobalVariable.h" |
41 | #include "llvm/IR/InstrTypes.h" |
42 | #include "llvm/IR/Instruction.h" |
43 | #include "llvm/IR/Instructions.h" |
44 | #include "llvm/IR/IntrinsicInst.h" |
45 | #include "llvm/IR/Intrinsics.h" |
46 | #include "llvm/IR/Operator.h" |
47 | #include "llvm/IR/Type.h" |
48 | #include "llvm/IR/User.h" |
49 | #include "llvm/IR/Value.h" |
50 | #include "llvm/InitializePasses.h" |
51 | #include "llvm/Pass.h" |
52 | #include "llvm/Support/Casting.h" |
53 | #include "llvm/Support/CommandLine.h" |
54 | #include "llvm/Support/Compiler.h" |
55 | #include "llvm/Support/KnownBits.h" |
56 | #include "llvm/Support/SaveAndRestore.h" |
57 | #include <cassert> |
58 | #include <cstdint> |
59 | #include <cstdlib> |
60 | #include <optional> |
61 | #include <utility> |
62 | |
63 | #define DEBUG_TYPE"basicaa" "basicaa" |
64 | |
65 | using namespace llvm; |
66 | |
67 | /// Enable analysis of recursive PHI nodes. |
68 | static cl::opt<bool> EnableRecPhiAnalysis("basic-aa-recphi", cl::Hidden, |
69 | cl::init(true)); |
70 | |
71 | static cl::opt<bool> EnableSeparateStorageAnalysis("basic-aa-separate-storage", |
72 | cl::Hidden, cl::init(false)); |
73 | |
74 | /// SearchLimitReached / SearchTimes shows how often the limit of |
75 | /// to decompose GEPs is reached. It will affect the precision |
76 | /// of basic alias analysis. |
77 | STATISTIC(SearchLimitReached, "Number of times the limit to "static llvm::Statistic SearchLimitReached = {"basicaa", "SearchLimitReached" , "Number of times the limit to " "decompose GEPs is reached" } |
78 | "decompose GEPs is reached")static llvm::Statistic SearchLimitReached = {"basicaa", "SearchLimitReached" , "Number of times the limit to " "decompose GEPs is reached" }; |
79 | STATISTIC(SearchTimes, "Number of times a GEP is decomposed")static llvm::Statistic SearchTimes = {"basicaa", "SearchTimes" , "Number of times a GEP is decomposed"}; |
80 | |
81 | // The max limit of the search depth in DecomposeGEPExpression() and |
82 | // getUnderlyingObject(). |
83 | static const unsigned MaxLookupSearchDepth = 6; |
84 | |
85 | bool BasicAAResult::invalidate(Function &Fn, const PreservedAnalyses &PA, |
86 | FunctionAnalysisManager::Invalidator &Inv) { |
87 | // We don't care if this analysis itself is preserved, it has no state. But |
88 | // we need to check that the analyses it depends on have been. Note that we |
89 | // may be created without handles to some analyses and in that case don't |
90 | // depend on them. |
91 | if (Inv.invalidate<AssumptionAnalysis>(Fn, PA) || |
92 | (DT && Inv.invalidate<DominatorTreeAnalysis>(Fn, PA))) |
93 | return true; |
94 | |
95 | // Otherwise this analysis result remains valid. |
96 | return false; |
97 | } |
98 | |
99 | //===----------------------------------------------------------------------===// |
100 | // Useful predicates |
101 | //===----------------------------------------------------------------------===// |
102 | |
103 | /// Returns the size of the object specified by V or UnknownSize if unknown. |
104 | static uint64_t getObjectSize(const Value *V, const DataLayout &DL, |
105 | const TargetLibraryInfo &TLI, |
106 | bool NullIsValidLoc, |
107 | bool RoundToAlign = false) { |
108 | uint64_t Size; |
109 | ObjectSizeOpts Opts; |
110 | Opts.RoundToAlign = RoundToAlign; |
111 | Opts.NullIsUnknownSize = NullIsValidLoc; |
112 | if (getObjectSize(V, Size, DL, &TLI, Opts)) |
113 | return Size; |
114 | return MemoryLocation::UnknownSize; |
115 | } |
116 | |
117 | /// Returns true if we can prove that the object specified by V is smaller than |
118 | /// Size. |
119 | static bool isObjectSmallerThan(const Value *V, uint64_t Size, |
120 | const DataLayout &DL, |
121 | const TargetLibraryInfo &TLI, |
122 | bool NullIsValidLoc) { |
123 | // Note that the meanings of the "object" are slightly different in the |
124 | // following contexts: |
125 | // c1: llvm::getObjectSize() |
126 | // c2: llvm.objectsize() intrinsic |
127 | // c3: isObjectSmallerThan() |
128 | // c1 and c2 share the same meaning; however, the meaning of "object" in c3 |
129 | // refers to the "entire object". |
130 | // |
131 | // Consider this example: |
132 | // char *p = (char*)malloc(100) |
133 | // char *q = p+80; |
134 | // |
135 | // In the context of c1 and c2, the "object" pointed by q refers to the |
136 | // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20. |
137 | // |
138 | // However, in the context of c3, the "object" refers to the chunk of memory |
139 | // being allocated. So, the "object" has 100 bytes, and q points to the middle |
140 | // the "object". In case q is passed to isObjectSmallerThan() as the 1st |
141 | // parameter, before the llvm::getObjectSize() is called to get the size of |
142 | // entire object, we should: |
143 | // - either rewind the pointer q to the base-address of the object in |
144 | // question (in this case rewind to p), or |
145 | // - just give up. It is up to caller to make sure the pointer is pointing |
146 | // to the base address the object. |
147 | // |
148 | // We go for 2nd option for simplicity. |
149 | if (!isIdentifiedObject(V)) |
150 | return false; |
151 | |
152 | // This function needs to use the aligned object size because we allow |
153 | // reads a bit past the end given sufficient alignment. |
154 | uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc, |
155 | /*RoundToAlign*/ true); |
156 | |
157 | return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size; |
158 | } |
159 | |
160 | /// Return the minimal extent from \p V to the end of the underlying object, |
161 | /// assuming the result is used in an aliasing query. E.g., we do use the query |
162 | /// location size and the fact that null pointers cannot alias here. |
163 | static uint64_t getMinimalExtentFrom(const Value &V, |
164 | const LocationSize &LocSize, |
165 | const DataLayout &DL, |
166 | bool NullIsValidLoc) { |
167 | // If we have dereferenceability information we know a lower bound for the |
168 | // extent as accesses for a lower offset would be valid. We need to exclude |
169 | // the "or null" part if null is a valid pointer. We can ignore frees, as an |
170 | // access after free would be undefined behavior. |
171 | bool CanBeNull, CanBeFreed; |
172 | uint64_t DerefBytes = |
173 | V.getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed); |
174 | DerefBytes = (CanBeNull && NullIsValidLoc) ? 0 : DerefBytes; |
175 | // If queried with a precise location size, we assume that location size to be |
176 | // accessed, thus valid. |
177 | if (LocSize.isPrecise()) |
178 | DerefBytes = std::max(DerefBytes, LocSize.getValue()); |
179 | return DerefBytes; |
180 | } |
181 | |
182 | /// Returns true if we can prove that the object specified by V has size Size. |
183 | static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL, |
184 | const TargetLibraryInfo &TLI, bool NullIsValidLoc) { |
185 | uint64_t ObjectSize = getObjectSize(V, DL, TLI, NullIsValidLoc); |
186 | return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size; |
187 | } |
188 | |
189 | //===----------------------------------------------------------------------===// |
190 | // CaptureInfo implementations |
191 | //===----------------------------------------------------------------------===// |
192 | |
193 | CaptureInfo::~CaptureInfo() = default; |
194 | |
195 | bool SimpleCaptureInfo::isNotCapturedBeforeOrAt(const Value *Object, |
196 | const Instruction *I) { |
197 | return isNonEscapingLocalObject(Object, &IsCapturedCache); |
198 | } |
199 | |
200 | bool EarliestEscapeInfo::isNotCapturedBeforeOrAt(const Value *Object, |
201 | const Instruction *I) { |
202 | if (!isIdentifiedFunctionLocal(Object)) |
203 | return false; |
204 | |
205 | auto Iter = EarliestEscapes.insert({Object, nullptr}); |
206 | if (Iter.second) { |
207 | Instruction *EarliestCapture = FindEarliestCapture( |
208 | Object, *const_cast<Function *>(I->getFunction()), |
209 | /*ReturnCaptures=*/false, /*StoreCaptures=*/true, DT, EphValues); |
210 | if (EarliestCapture) { |
211 | auto Ins = Inst2Obj.insert({EarliestCapture, {}}); |
212 | Ins.first->second.push_back(Object); |
213 | } |
214 | Iter.first->second = EarliestCapture; |
215 | } |
216 | |
217 | // No capturing instruction. |
218 | if (!Iter.first->second) |
219 | return true; |
220 | |
221 | return I != Iter.first->second && |
222 | !isPotentiallyReachable(Iter.first->second, I, nullptr, &DT, &LI); |
223 | } |
224 | |
225 | void EarliestEscapeInfo::removeInstruction(Instruction *I) { |
226 | auto Iter = Inst2Obj.find(I); |
227 | if (Iter != Inst2Obj.end()) { |
228 | for (const Value *Obj : Iter->second) |
229 | EarliestEscapes.erase(Obj); |
230 | Inst2Obj.erase(I); |
231 | } |
232 | } |
233 | |
234 | //===----------------------------------------------------------------------===// |
235 | // GetElementPtr Instruction Decomposition and Analysis |
236 | //===----------------------------------------------------------------------===// |
237 | |
238 | namespace { |
239 | /// Represents zext(sext(trunc(V))). |
240 | struct CastedValue { |
241 | const Value *V; |
242 | unsigned ZExtBits = 0; |
243 | unsigned SExtBits = 0; |
244 | unsigned TruncBits = 0; |
245 | |
246 | explicit CastedValue(const Value *V) : V(V) {} |
247 | explicit CastedValue(const Value *V, unsigned ZExtBits, unsigned SExtBits, |
248 | unsigned TruncBits) |
249 | : V(V), ZExtBits(ZExtBits), SExtBits(SExtBits), TruncBits(TruncBits) {} |
250 | |
251 | unsigned getBitWidth() const { |
252 | return V->getType()->getPrimitiveSizeInBits() - TruncBits + ZExtBits + |
253 | SExtBits; |
254 | } |
255 | |
256 | CastedValue withValue(const Value *NewV) const { |
257 | return CastedValue(NewV, ZExtBits, SExtBits, TruncBits); |
258 | } |
259 | |
260 | /// Replace V with zext(NewV) |
261 | CastedValue withZExtOfValue(const Value *NewV) const { |
262 | unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() - |
263 | NewV->getType()->getPrimitiveSizeInBits(); |
264 | if (ExtendBy <= TruncBits) |
265 | return CastedValue(NewV, ZExtBits, SExtBits, TruncBits - ExtendBy); |
266 | |
267 | // zext(sext(zext(NewV))) == zext(zext(zext(NewV))) |
268 | ExtendBy -= TruncBits; |
269 | return CastedValue(NewV, ZExtBits + SExtBits + ExtendBy, 0, 0); |
270 | } |
271 | |
272 | /// Replace V with sext(NewV) |
273 | CastedValue withSExtOfValue(const Value *NewV) const { |
274 | unsigned ExtendBy = V->getType()->getPrimitiveSizeInBits() - |
275 | NewV->getType()->getPrimitiveSizeInBits(); |
276 | if (ExtendBy <= TruncBits) |
277 | return CastedValue(NewV, ZExtBits, SExtBits, TruncBits - ExtendBy); |
278 | |
279 | // zext(sext(sext(NewV))) |
280 | ExtendBy -= TruncBits; |
281 | return CastedValue(NewV, ZExtBits, SExtBits + ExtendBy, 0); |
282 | } |
283 | |
284 | APInt evaluateWith(APInt N) const { |
285 | assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() &&(static_cast <bool> (N.getBitWidth() == V->getType() ->getPrimitiveSizeInBits() && "Incompatible bit width" ) ? void (0) : __assert_fail ("N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() && \"Incompatible bit width\"" , "llvm/lib/Analysis/BasicAliasAnalysis.cpp", 286, __extension__ __PRETTY_FUNCTION__)) |
286 | "Incompatible bit width")(static_cast <bool> (N.getBitWidth() == V->getType() ->getPrimitiveSizeInBits() && "Incompatible bit width" ) ? void (0) : __assert_fail ("N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() && \"Incompatible bit width\"" , "llvm/lib/Analysis/BasicAliasAnalysis.cpp", 286, __extension__ __PRETTY_FUNCTION__)); |
287 | if (TruncBits) N = N.trunc(N.getBitWidth() - TruncBits); |
288 | if (SExtBits) N = N.sext(N.getBitWidth() + SExtBits); |
289 | if (ZExtBits) N = N.zext(N.getBitWidth() + ZExtBits); |
290 | return N; |
291 | } |
292 | |
293 | ConstantRange evaluateWith(ConstantRange N) const { |
294 | assert(N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() &&(static_cast <bool> (N.getBitWidth() == V->getType() ->getPrimitiveSizeInBits() && "Incompatible bit width" ) ? void (0) : __assert_fail ("N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() && \"Incompatible bit width\"" , "llvm/lib/Analysis/BasicAliasAnalysis.cpp", 295, __extension__ __PRETTY_FUNCTION__)) |
295 | "Incompatible bit width")(static_cast <bool> (N.getBitWidth() == V->getType() ->getPrimitiveSizeInBits() && "Incompatible bit width" ) ? void (0) : __assert_fail ("N.getBitWidth() == V->getType()->getPrimitiveSizeInBits() && \"Incompatible bit width\"" , "llvm/lib/Analysis/BasicAliasAnalysis.cpp", 295, __extension__ __PRETTY_FUNCTION__)); |
296 | if (TruncBits) N = N.truncate(N.getBitWidth() - TruncBits); |
297 | if (SExtBits) N = N.signExtend(N.getBitWidth() + SExtBits); |
298 | if (ZExtBits) N = N.zeroExtend(N.getBitWidth() + ZExtBits); |
299 | return N; |
300 | } |
301 | |
302 | bool canDistributeOver(bool NUW, bool NSW) const { |
303 | // zext(x op<nuw> y) == zext(x) op<nuw> zext(y) |
304 | // sext(x op<nsw> y) == sext(x) op<nsw> sext(y) |
305 | // trunc(x op y) == trunc(x) op trunc(y) |
306 | return (!ZExtBits || NUW) && (!SExtBits || NSW); |
307 | } |
308 | |
309 | bool hasSameCastsAs(const CastedValue &Other) const { |
310 | return ZExtBits == Other.ZExtBits && SExtBits == Other.SExtBits && |
311 | TruncBits == Other.TruncBits; |
312 | } |
313 | }; |
314 | |
315 | /// Represents zext(sext(trunc(V))) * Scale + Offset. |
316 | struct LinearExpression { |
317 | CastedValue Val; |
318 | APInt Scale; |
319 | APInt Offset; |
320 | |
321 | /// True if all operations in this expression are NSW. |
322 | bool IsNSW; |
323 | |
324 | LinearExpression(const CastedValue &Val, const APInt &Scale, |
325 | const APInt &Offset, bool IsNSW) |
326 | : Val(Val), Scale(Scale), Offset(Offset), IsNSW(IsNSW) {} |
327 | |
328 | LinearExpression(const CastedValue &Val) : Val(Val), IsNSW(true) { |
329 | unsigned BitWidth = Val.getBitWidth(); |
330 | Scale = APInt(BitWidth, 1); |
331 | Offset = APInt(BitWidth, 0); |
332 | } |
333 | |
334 | LinearExpression mul(const APInt &Other, bool MulIsNSW) const { |
335 | // The check for zero offset is necessary, because generally |
336 | // (X +nsw Y) *nsw Z does not imply (X *nsw Z) +nsw (Y *nsw Z). |
337 | bool NSW = IsNSW && (Other.isOne() || (MulIsNSW && Offset.isZero())); |
338 | return LinearExpression(Val, Scale * Other, Offset * Other, NSW); |
339 | } |
340 | }; |
341 | } |
342 | |
343 | /// Analyzes the specified value as a linear expression: "A*V + B", where A and |
344 | /// B are constant integers. |
345 | static LinearExpression GetLinearExpression( |
346 | const CastedValue &Val, const DataLayout &DL, unsigned Depth, |
347 | AssumptionCache *AC, DominatorTree *DT) { |
348 | // Limit our recursion depth. |
349 | if (Depth == 6) |
350 | return Val; |
351 | |
352 | if (const ConstantInt *Const = dyn_cast<ConstantInt>(Val.V)) |
353 | return LinearExpression(Val, APInt(Val.getBitWidth(), 0), |
354 | Val.evaluateWith(Const->getValue()), true); |
355 | |
356 | if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(Val.V)) { |
357 | if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) { |
358 | APInt RHS = Val.evaluateWith(RHSC->getValue()); |
359 | // The only non-OBO case we deal with is or, and only limited to the |
360 | // case where it is both nuw and nsw. |
361 | bool NUW = true, NSW = true; |
362 | if (isa<OverflowingBinaryOperator>(BOp)) { |
363 | NUW &= BOp->hasNoUnsignedWrap(); |
364 | NSW &= BOp->hasNoSignedWrap(); |
365 | } |
366 | if (!Val.canDistributeOver(NUW, NSW)) |
367 | return Val; |
368 | |
369 | // While we can distribute over trunc, we cannot preserve nowrap flags |
370 | // in that case. |
371 | if (Val.TruncBits) |
372 | NUW = NSW = false; |
Value stored to 'NUW' is never read | |
373 | |
374 | LinearExpression E(Val); |
375 | switch (BOp->getOpcode()) { |
376 | default: |
377 | // We don't understand this instruction, so we can't decompose it any |
378 | // further. |
379 | return Val; |
380 | case Instruction::Or: |
381 | // X|C == X+C if all the bits in C are unset in X. Otherwise we can't |
382 | // analyze it. |
383 | if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC, |
384 | BOp, DT)) |
385 | return Val; |
386 | |
387 | [[fallthrough]]; |
388 | case Instruction::Add: { |
389 | E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL, |
390 | Depth + 1, AC, DT); |
391 | E.Offset += RHS; |
392 | E.IsNSW &= NSW; |
393 | break; |
394 | } |
395 | case Instruction::Sub: { |
396 | E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL, |
397 | Depth + 1, AC, DT); |
398 | E.Offset -= RHS; |
399 | E.IsNSW &= NSW; |
400 | break; |
401 | } |
402 | case Instruction::Mul: |
403 | E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL, |
404 | Depth + 1, AC, DT) |
405 | .mul(RHS, NSW); |
406 | break; |
407 | case Instruction::Shl: |
408 | // We're trying to linearize an expression of the kind: |
409 | // shl i8 -128, 36 |
410 | // where the shift count exceeds the bitwidth of the type. |
411 | // We can't decompose this further (the expression would return |
412 | // a poison value). |
413 | if (RHS.getLimitedValue() > Val.getBitWidth()) |
414 | return Val; |
415 | |
416 | E = GetLinearExpression(Val.withValue(BOp->getOperand(0)), DL, |
417 | Depth + 1, AC, DT); |
418 | E.Offset <<= RHS.getLimitedValue(); |
419 | E.Scale <<= RHS.getLimitedValue(); |
420 | E.IsNSW &= NSW; |
421 | break; |
422 | } |
423 | return E; |
424 | } |
425 | } |
426 | |
427 | if (isa<ZExtInst>(Val.V)) |
428 | return GetLinearExpression( |
429 | Val.withZExtOfValue(cast<CastInst>(Val.V)->getOperand(0)), |
430 | DL, Depth + 1, AC, DT); |
431 | |
432 | if (isa<SExtInst>(Val.V)) |
433 | return GetLinearExpression( |
434 | Val.withSExtOfValue(cast<CastInst>(Val.V)->getOperand(0)), |
435 | DL, Depth + 1, AC, DT); |
436 | |
437 | return Val; |
438 | } |
439 | |
440 | /// To ensure a pointer offset fits in an integer of size IndexSize |
441 | /// (in bits) when that size is smaller than the maximum index size. This is |
442 | /// an issue, for example, in particular for 32b pointers with negative indices |
443 | /// that rely on two's complement wrap-arounds for precise alias information |
444 | /// where the maximum index size is 64b. |
445 | static APInt adjustToIndexSize(const APInt &Offset, unsigned IndexSize) { |
446 | assert(IndexSize <= Offset.getBitWidth() && "Invalid IndexSize!")(static_cast <bool> (IndexSize <= Offset.getBitWidth () && "Invalid IndexSize!") ? void (0) : __assert_fail ("IndexSize <= Offset.getBitWidth() && \"Invalid IndexSize!\"" , "llvm/lib/Analysis/BasicAliasAnalysis.cpp", 446, __extension__ __PRETTY_FUNCTION__)); |
447 | unsigned ShiftBits = Offset.getBitWidth() - IndexSize; |
448 | return (Offset << ShiftBits).ashr(ShiftBits); |
449 | } |
450 | |
451 | namespace { |
452 | // A linear transformation of a Value; this class represents |
453 | // ZExt(SExt(Trunc(V, TruncBits), SExtBits), ZExtBits) * Scale. |
454 | struct VariableGEPIndex { |
455 | CastedValue Val; |
456 | APInt Scale; |
457 | |
458 | // Context instruction to use when querying information about this index. |
459 | const Instruction *CxtI; |
460 | |
461 | /// True if all operations in this expression are NSW. |
462 | bool IsNSW; |
463 | |
464 | void dump() const { |
465 | print(dbgs()); |
466 | dbgs() << "\n"; |
467 | } |
468 | void print(raw_ostream &OS) const { |
469 | OS << "(V=" << Val.V->getName() |
470 | << ", zextbits=" << Val.ZExtBits |
471 | << ", sextbits=" << Val.SExtBits |
472 | << ", truncbits=" << Val.TruncBits |
473 | << ", scale=" << Scale << ")"; |
474 | } |
475 | }; |
476 | } |
477 | |
478 | // Represents the internal structure of a GEP, decomposed into a base pointer, |
479 | // constant offsets, and variable scaled indices. |
480 | struct BasicAAResult::DecomposedGEP { |
481 | // Base pointer of the GEP |
482 | const Value *Base; |
483 | // Total constant offset from base. |
484 | APInt Offset; |
485 | // Scaled variable (non-constant) indices. |
486 | SmallVector<VariableGEPIndex, 4> VarIndices; |
487 | // Are all operations inbounds GEPs or non-indexing operations? |
488 | // (std::nullopt iff expression doesn't involve any geps) |
489 | std::optional<bool> InBounds; |
490 | |
491 | void dump() const { |
492 | print(dbgs()); |
493 | dbgs() << "\n"; |
494 | } |
495 | void print(raw_ostream &OS) const { |
496 | OS << "(DecomposedGEP Base=" << Base->getName() |
497 | << ", Offset=" << Offset |
498 | << ", VarIndices=["; |
499 | for (size_t i = 0; i < VarIndices.size(); i++) { |
500 | if (i != 0) |
501 | OS << ", "; |
502 | VarIndices[i].print(OS); |
503 | } |
504 | OS << "])"; |
505 | } |
506 | }; |
507 | |
508 | |
509 | /// If V is a symbolic pointer expression, decompose it into a base pointer |
510 | /// with a constant offset and a number of scaled symbolic offsets. |
511 | /// |
512 | /// The scaled symbolic offsets (represented by pairs of a Value* and a scale |
513 | /// in the VarIndices vector) are Value*'s that are known to be scaled by the |
514 | /// specified amount, but which may have other unrepresented high bits. As |
515 | /// such, the gep cannot necessarily be reconstructed from its decomposed form. |
516 | BasicAAResult::DecomposedGEP |
517 | BasicAAResult::DecomposeGEPExpression(const Value *V, const DataLayout &DL, |
518 | AssumptionCache *AC, DominatorTree *DT) { |
519 | // Limit recursion depth to limit compile time in crazy cases. |
520 | unsigned MaxLookup = MaxLookupSearchDepth; |
521 | SearchTimes++; |
522 | const Instruction *CxtI = dyn_cast<Instruction>(V); |
523 | |
524 | unsigned MaxIndexSize = DL.getMaxIndexSizeInBits(); |
525 | DecomposedGEP Decomposed; |
526 | Decomposed.Offset = APInt(MaxIndexSize, 0); |
527 | do { |
528 | // See if this is a bitcast or GEP. |
529 | const Operator *Op = dyn_cast<Operator>(V); |
530 | if (!Op) { |
531 | // The only non-operator case we can handle are GlobalAliases. |
532 | if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { |
533 | if (!GA->isInterposable()) { |
534 | V = GA->getAliasee(); |
535 | continue; |
536 | } |
537 | } |
538 | Decomposed.Base = V; |
539 | return Decomposed; |
540 | } |
541 | |
542 | if (Op->getOpcode() == Instruction::BitCast || |
543 | Op->getOpcode() == Instruction::AddrSpaceCast) { |
544 | V = Op->getOperand(0); |
545 | continue; |
546 | } |
547 | |
548 | const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op); |
549 | if (!GEPOp) { |
550 | if (const auto *PHI = dyn_cast<PHINode>(V)) { |
551 | // Look through single-arg phi nodes created by LCSSA. |
552 | if (PHI->getNumIncomingValues() == 1) { |
553 | V = PHI->getIncomingValue(0); |
554 | continue; |
555 | } |
556 | } else if (const auto *Call = dyn_cast<CallBase>(V)) { |
557 | // CaptureTracking can know about special capturing properties of some |
558 | // intrinsics like launder.invariant.group, that can't be expressed with |
559 | // the attributes, but have properties like returning aliasing pointer. |
560 | // Because some analysis may assume that nocaptured pointer is not |
561 | // returned from some special intrinsic (because function would have to |
562 | // be marked with returns attribute), it is crucial to use this function |
563 | // because it should be in sync with CaptureTracking. Not using it may |
564 | // cause weird miscompilations where 2 aliasing pointers are assumed to |
565 | // noalias. |
566 | if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { |
567 | V = RP; |
568 | continue; |
569 | } |
570 | } |
571 | |
572 | Decomposed.Base = V; |
573 | return Decomposed; |
574 | } |
575 | |
576 | // Track whether we've seen at least one in bounds gep, and if so, whether |
577 | // all geps parsed were in bounds. |
578 | if (Decomposed.InBounds == std::nullopt) |
579 | Decomposed.InBounds = GEPOp->isInBounds(); |
580 | else if (!GEPOp->isInBounds()) |
581 | Decomposed.InBounds = false; |
582 | |
583 | assert(GEPOp->getSourceElementType()->isSized() && "GEP must be sized")(static_cast <bool> (GEPOp->getSourceElementType()-> isSized() && "GEP must be sized") ? void (0) : __assert_fail ("GEPOp->getSourceElementType()->isSized() && \"GEP must be sized\"" , "llvm/lib/Analysis/BasicAliasAnalysis.cpp", 583, __extension__ __PRETTY_FUNCTION__)); |
584 | |
585 | unsigned AS = GEPOp->getPointerAddressSpace(); |
586 | // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices. |
587 | gep_type_iterator GTI = gep_type_begin(GEPOp); |
588 | unsigned IndexSize = DL.getIndexSizeInBits(AS); |
589 | // Assume all GEP operands are constants until proven otherwise. |
590 | bool GepHasConstantOffset = true; |
591 | for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end(); |
592 | I != E; ++I, ++GTI) { |
593 | const Value *Index = *I; |
594 | // Compute the (potentially symbolic) offset in bytes for this index. |
595 | if (StructType *STy = GTI.getStructTypeOrNull()) { |
596 | // For a struct, add the member offset. |
597 | unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue(); |
598 | if (FieldNo == 0) |
599 | continue; |
600 | |
601 | Decomposed.Offset += DL.getStructLayout(STy)->getElementOffset(FieldNo); |
602 | continue; |
603 | } |
604 | |
605 | // For an array/pointer, add the element offset, explicitly scaled. |
606 | if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) { |
607 | if (CIdx->isZero()) |
608 | continue; |
609 | |
610 | // Don't attempt to analyze GEPs if the scalable index is not zero. |
611 | TypeSize AllocTypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); |
612 | if (AllocTypeSize.isScalable()) { |
613 | Decomposed.Base = V; |
614 | return Decomposed; |
615 | } |
616 | |
617 | Decomposed.Offset += AllocTypeSize.getFixedValue() * |
618 | CIdx->getValue().sextOrTrunc(MaxIndexSize); |
619 | continue; |
620 | } |
621 | |
622 | TypeSize AllocTypeSize = DL.getTypeAllocSize(GTI.getIndexedType()); |
623 | if (AllocTypeSize.isScalable()) { |
624 | Decomposed.Base = V; |
625 | return Decomposed; |
626 | } |
627 | |
628 | GepHasConstantOffset = false; |
629 | |
630 | // If the integer type is smaller than the index size, it is implicitly |
631 | // sign extended or truncated to index size. |
632 | unsigned Width = Index->getType()->getIntegerBitWidth(); |
633 | unsigned SExtBits = IndexSize > Width ? IndexSize - Width : 0; |
634 | unsigned TruncBits = IndexSize < Width ? Width - IndexSize : 0; |
635 | LinearExpression LE = GetLinearExpression( |
636 | CastedValue(Index, 0, SExtBits, TruncBits), DL, 0, AC, DT); |
637 | |
638 | // Scale by the type size. |
639 | unsigned TypeSize = AllocTypeSize.getFixedValue(); |
640 | LE = LE.mul(APInt(IndexSize, TypeSize), GEPOp->isInBounds()); |
641 | Decomposed.Offset += LE.Offset.sext(MaxIndexSize); |
642 | APInt Scale = LE.Scale.sext(MaxIndexSize); |
643 | |
644 | // If we already had an occurrence of this index variable, merge this |
645 | // scale into it. For example, we want to handle: |
646 | // A[x][x] -> x*16 + x*4 -> x*20 |
647 | // This also ensures that 'x' only appears in the index list once. |
648 | for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) { |
649 | if (Decomposed.VarIndices[i].Val.V == LE.Val.V && |
650 | Decomposed.VarIndices[i].Val.hasSameCastsAs(LE.Val)) { |
651 | Scale += Decomposed.VarIndices[i].Scale; |
652 | Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i); |
653 | break; |
654 | } |
655 | } |
656 | |
657 | // Make sure that we have a scale that makes sense for this target's |
658 | // index size. |
659 | Scale = adjustToIndexSize(Scale, IndexSize); |
660 | |
661 | if (!!Scale) { |
662 | VariableGEPIndex Entry = {LE.Val, Scale, CxtI, LE.IsNSW}; |
663 | Decomposed.VarIndices.push_back(Entry); |
664 | } |
665 | } |
666 | |
667 | // Take care of wrap-arounds |
668 | if (GepHasConstantOffset) |
669 | Decomposed.Offset = adjustToIndexSize(Decomposed.Offset, IndexSize); |
670 | |
671 | // Analyze the base pointer next. |
672 | V = GEPOp->getOperand(0); |
673 | } while (--MaxLookup); |
674 | |
675 | // If the chain of expressions is too deep, just return early. |
676 | Decomposed.Base = V; |
677 | SearchLimitReached++; |
678 | return Decomposed; |
679 | } |
680 | |
681 | ModRefInfo BasicAAResult::getModRefInfoMask(const MemoryLocation &Loc, |
682 | AAQueryInfo &AAQI, |
683 | bool IgnoreLocals) { |
684 | assert(Visited.empty() && "Visited must be cleared after use!")(static_cast <bool> (Visited.empty() && "Visited must be cleared after use!" ) ? void (0) : __assert_fail ("Visited.empty() && \"Visited must be cleared after use!\"" , "llvm/lib/Analysis/BasicAliasAnalysis.cpp", 684, __extension__ __PRETTY_FUNCTION__)); |
685 | auto _ = make_scope_exit([&] { Visited.clear(); }); |
686 | |
687 | unsigned MaxLookup = 8; |
688 | SmallVector<const Value *, 16> Worklist; |
689 | Worklist.push_back(Loc.Ptr); |
690 | ModRefInfo Result = ModRefInfo::NoModRef; |
691 | |
692 | do { |
693 | const Value *V = getUnderlyingObject(Worklist.pop_back_val()); |
694 | if (!Visited.insert(V).second) |
695 | continue; |
696 | |
697 | // Ignore allocas if we were instructed to do so. |
698 | if (IgnoreLocals && isa<AllocaInst>(V)) |
699 | continue; |
700 | |
701 | // If the location points to memory that is known to be invariant for |
702 | // the life of the underlying SSA value, then we can exclude Mod from |
703 | // the set of valid memory effects. |
704 | // |
705 | // An argument that is marked readonly and noalias is known to be |
706 | // invariant while that function is executing. |
707 | if (const Argument *Arg = dyn_cast<Argument>(V)) { |
708 | if (Arg->hasNoAliasAttr() && Arg->onlyReadsMemory()) { |
709 | Result |= ModRefInfo::Ref; |
710 | continue; |
711 | } |
712 | } |
713 | |
714 | // A global constant can't be mutated. |
715 | if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) { |
716 | // Note: this doesn't require GV to be "ODR" because it isn't legal for a |
717 | // global to be marked constant in some modules and non-constant in |
718 | // others. GV may even be a declaration, not a definition. |
719 | if (!GV->isConstant()) |
720 | return AAResultBase::getModRefInfoMask(Loc, AAQI, IgnoreLocals); |
721 | continue; |
722 | } |
723 | |
724 | // If both select values point to local memory, then so does the select. |
725 | if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { |
726 | Worklist.push_back(SI->getTrueValue()); |
727 | Worklist.push_back(SI->getFalseValue()); |
728 | continue; |
729 | } |
730 | |
731 | // If all values incoming to a phi node point to local memory, then so does |
732 | // the phi. |
733 | if (const PHINode *PN = dyn_cast<PHINode>(V)) { |
734 | // Don't bother inspecting phi nodes with many operands. |
735 | if (PN->getNumIncomingValues() > MaxLookup) |
736 | return AAResultBase::getModRefInfoMask(Loc, AAQI, IgnoreLocals); |
737 | append_range(Worklist, PN->incoming_values()); |
738 | continue; |
739 | } |
740 | |
741 | // Otherwise be conservative. |
742 | return AAResultBase::getModRefInfoMask(Loc, AAQI, IgnoreLocals); |
743 | } while (!Worklist.empty() && --MaxLookup); |
744 | |
745 | // If we hit the maximum number of instructions to examine, be conservative. |
746 | if (!Worklist.empty()) |
747 | return AAResultBase::getModRefInfoMask(Loc, AAQI, IgnoreLocals); |
748 | |
749 | return Result; |
750 | } |
751 | |
752 | static bool isIntrinsicCall(const CallBase *Call, Intrinsic::ID IID) { |
753 | const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call); |
754 | return II && II->getIntrinsicID() == IID; |
755 | } |
756 | |
757 | /// Returns the behavior when calling the given call site. |
758 | MemoryEffects BasicAAResult::getMemoryEffects(const CallBase *Call, |
759 | AAQueryInfo &AAQI) { |
760 | MemoryEffects Min = Call->getAttributes().getMemoryEffects(); |
761 | |
762 | if (const Function *F = dyn_cast<Function>(Call->getCalledOperand())) { |
763 | MemoryEffects FuncME = AAQI.AAR.getMemoryEffects(F); |
764 | // Operand bundles on the call may also read or write memory, in addition |
765 | // to the behavior of the called function. |
766 | if (Call->hasReadingOperandBundles()) |
767 | FuncME |= MemoryEffects::readOnly(); |
768 | if (Call->hasClobberingOperandBundles()) |
769 | FuncME |= MemoryEffects::writeOnly(); |
770 | Min &= FuncME; |
771 | } |
772 | |
773 | return Min; |
774 | } |
775 | |
776 | /// Returns the behavior when calling the given function. For use when the call |
777 | /// site is not known. |
778 | MemoryEffects BasicAAResult::getMemoryEffects(const Function *F) { |
779 | switch (F->getIntrinsicID()) { |
780 | case Intrinsic::experimental_guard: |
781 | case Intrinsic::experimental_deoptimize: |
782 | // These intrinsics can read arbitrary memory, and additionally modref |
783 | // inaccessible memory to model control dependence. |
784 | return MemoryEffects::readOnly() | |
785 | MemoryEffects::inaccessibleMemOnly(ModRefInfo::ModRef); |
786 | } |
787 | |
788 | return F->getMemoryEffects(); |
789 | } |
790 | |
791 | ModRefInfo BasicAAResult::getArgModRefInfo(const CallBase *Call, |
792 | unsigned ArgIdx) { |
793 | if (Call->paramHasAttr(ArgIdx, Attribute::WriteOnly)) |
794 | return ModRefInfo::Mod; |
795 | |
796 | if (Call->paramHasAttr(ArgIdx, Attribute::ReadOnly)) |
797 | return ModRefInfo::Ref; |
798 | |
799 | if (Call->paramHasAttr(ArgIdx, Attribute::ReadNone)) |
800 | return ModRefInfo::NoModRef; |
801 | |
802 | return AAResultBase::getArgModRefInfo(Call, ArgIdx); |
803 | } |
804 | |
805 | #ifndef NDEBUG |
806 | static const Function *getParent(const Value *V) { |
807 | if (const Instruction *inst = dyn_cast<Instruction>(V)) { |
808 | if (!inst->getParent()) |
809 | return nullptr; |
810 | return inst->getParent()->getParent(); |
811 | } |
812 | |
813 | if (const Argument *arg = dyn_cast<Argument>(V)) |
814 | return arg->getParent(); |
815 | |
816 | return nullptr; |
817 | } |
818 | |
819 | static bool notDifferentParent(const Value *O1, const Value *O2) { |
820 | |
821 | const Function *F1 = getParent(O1); |
822 | const Function *F2 = getParent(O2); |
823 | |
824 | return !F1 || !F2 || F1 == F2; |
825 | } |
826 | #endif |
827 | |
828 | AliasResult BasicAAResult::alias(const MemoryLocation &LocA, |
829 | const MemoryLocation &LocB, AAQueryInfo &AAQI, |
830 | const Instruction *CtxI) { |
831 | assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&(static_cast <bool> (notDifferentParent(LocA.Ptr, LocB. Ptr) && "BasicAliasAnalysis doesn't support interprocedural queries." ) ? void (0) : __assert_fail ("notDifferentParent(LocA.Ptr, LocB.Ptr) && \"BasicAliasAnalysis doesn't support interprocedural queries.\"" , "llvm/lib/Analysis/BasicAliasAnalysis.cpp", 832, __extension__ __PRETTY_FUNCTION__)) |
832 | "BasicAliasAnalysis doesn't support interprocedural queries.")(static_cast <bool> (notDifferentParent(LocA.Ptr, LocB. Ptr) && "BasicAliasAnalysis doesn't support interprocedural queries." ) ? void (0) : __assert_fail ("notDifferentParent(LocA.Ptr, LocB.Ptr) && \"BasicAliasAnalysis doesn't support interprocedural queries.\"" , "llvm/lib/Analysis/BasicAliasAnalysis.cpp", 832, __extension__ __PRETTY_FUNCTION__)); |
833 | return aliasCheck(LocA.Ptr, LocA.Size, LocB.Ptr, LocB.Size, AAQI, CtxI); |
834 | } |
835 | |
836 | /// Checks to see if the specified callsite can clobber the specified memory |
837 | /// object. |
838 | /// |
839 | /// Since we only look at local properties of this function, we really can't |
840 | /// say much about this query. We do, however, use simple "address taken" |
841 | /// analysis on local objects. |
842 | ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call, |
843 | const MemoryLocation &Loc, |
844 | AAQueryInfo &AAQI) { |
845 | assert(notDifferentParent(Call, Loc.Ptr) &&(static_cast <bool> (notDifferentParent(Call, Loc.Ptr) && "AliasAnalysis query involving multiple functions!") ? void ( 0) : __assert_fail ("notDifferentParent(Call, Loc.Ptr) && \"AliasAnalysis query involving multiple functions!\"" , "llvm/lib/Analysis/BasicAliasAnalysis.cpp", 846, __extension__ __PRETTY_FUNCTION__)) |
846 | "AliasAnalysis query involving multiple functions!")(static_cast <bool> (notDifferentParent(Call, Loc.Ptr) && "AliasAnalysis query involving multiple functions!") ? void ( 0) : __assert_fail ("notDifferentParent(Call, Loc.Ptr) && \"AliasAnalysis query involving multiple functions!\"" , "llvm/lib/Analysis/BasicAliasAnalysis.cpp", 846, __extension__ __PRETTY_FUNCTION__)); |
847 | |
848 | const Value *Object = getUnderlyingObject(Loc.Ptr); |
849 | |
850 | // Calls marked 'tail' cannot read or write allocas from the current frame |
851 | // because the current frame might be destroyed by the time they run. However, |
852 | // a tail call may use an alloca with byval. Calling with byval copies the |
853 | // contents of the alloca into argument registers or stack slots, so there is |
854 | // no lifetime issue. |
855 | if (isa<AllocaInst>(Object)) |
856 | if (const CallInst *CI = dyn_cast<CallInst>(Call)) |
857 | if (CI->isTailCall() && |
858 | !CI->getAttributes().hasAttrSomewhere(Attribute::ByVal)) |
859 | return ModRefInfo::NoModRef; |
860 | |
861 | // Stack restore is able to modify unescaped dynamic allocas. Assume it may |
862 | // modify them even though the alloca is not escaped. |
863 | if (auto *AI = dyn_cast<AllocaInst>(Object)) |
864 | if (!AI->isStaticAlloca() && isIntrinsicCall(Call, Intrinsic::stackrestore)) |
865 | return ModRefInfo::Mod; |
866 | |
867 | // If the pointer is to a locally allocated object that does not escape, |
868 | // then the call can not mod/ref the pointer unless the call takes the pointer |
869 | // as an argument, and itself doesn't capture it. |
870 | if (!isa<Constant>(Object) && Call != Object && |
871 | AAQI.CI->isNotCapturedBeforeOrAt(Object, Call)) { |
872 | |
873 | // Optimistically assume that call doesn't touch Object and check this |
874 | // assumption in the following loop. |
875 | ModRefInfo Result = ModRefInfo::NoModRef; |
876 | |
877 | unsigned OperandNo = 0; |
878 | for (auto CI = Call->data_operands_begin(), CE = Call->data_operands_end(); |
879 | CI != CE; ++CI, ++OperandNo) { |
880 | // Only look at the no-capture or byval pointer arguments. If this |
881 | // pointer were passed to arguments that were neither of these, then it |
882 | // couldn't be no-capture. |
883 | if (!(*CI)->getType()->isPointerTy() || |
884 | (!Call->doesNotCapture(OperandNo) && OperandNo < Call->arg_size() && |
885 | !Call->isByValArgument(OperandNo))) |
886 | continue; |
887 | |
888 | // Call doesn't access memory through this operand, so we don't care |
889 | // if it aliases with Object. |
890 | if (Call->doesNotAccessMemory(OperandNo)) |
891 | continue; |
892 | |
893 | // If this is a no-capture pointer argument, see if we can tell that it |
894 | // is impossible to alias the pointer we're checking. |
895 | AliasResult AR = |
896 | AAQI.AAR.alias(MemoryLocation::getBeforeOrAfter(*CI), |
897 | MemoryLocation::getBeforeOrAfter(Object), AAQI); |
898 | // Operand doesn't alias 'Object', continue looking for other aliases |
899 | if (AR == AliasResult::NoAlias) |
900 | continue; |
901 | // Operand aliases 'Object', but call doesn't modify it. Strengthen |
902 | // initial assumption and keep looking in case if there are more aliases. |
903 | if (Call->onlyReadsMemory(OperandNo)) { |
904 | Result |= ModRefInfo::Ref; |
905 | continue; |
906 | } |
907 | // Operand aliases 'Object' but call only writes into it. |
908 | if (Call->onlyWritesMemory(OperandNo)) { |
909 | Result |= ModRefInfo::Mod; |
910 | continue; |
911 | } |
912 | // This operand aliases 'Object' and call reads and writes into it. |
913 | // Setting ModRef will not yield an early return below, MustAlias is not |
914 | // used further. |
915 | Result = ModRefInfo::ModRef; |
916 | break; |
917 | } |
918 | |
919 | // Early return if we improved mod ref information |
920 | if (!isModAndRefSet(Result)) |
921 | return Result; |
922 | } |
923 | |
924 | // If the call is malloc/calloc like, we can assume that it doesn't |
925 | // modify any IR visible value. This is only valid because we assume these |
926 | // routines do not read values visible in the IR. TODO: Consider special |
927 | // casing realloc and strdup routines which access only their arguments as |
928 | // well. Or alternatively, replace all of this with inaccessiblememonly once |
929 | // that's implemented fully. |
930 | if (isMallocOrCallocLikeFn(Call, &TLI)) { |
931 | // Be conservative if the accessed pointer may alias the allocation - |
932 | // fallback to the generic handling below. |
933 | if (AAQI.AAR.alias(MemoryLocation::getBeforeOrAfter(Call), Loc, AAQI) == |
934 | AliasResult::NoAlias) |
935 | return ModRefInfo::NoModRef; |
936 | } |
937 | |
938 | // Like assumes, invariant.start intrinsics were also marked as arbitrarily |
939 | // writing so that proper control dependencies are maintained but they never |
940 | // mod any particular memory location visible to the IR. |
941 | // *Unlike* assumes (which are now modeled as NoModRef), invariant.start |
942 | // intrinsic is now modeled as reading memory. This prevents hoisting the |
943 | // invariant.start intrinsic over stores. Consider: |
944 | // *ptr = 40; |
945 | // *ptr = 50; |
946 | // invariant_start(ptr) |
947 | // int val = *ptr; |
948 | // print(val); |
949 | // |
950 | // This cannot be transformed to: |
951 | // |
952 | // *ptr = 40; |
953 | // invariant_start(ptr) |
954 | // *ptr = 50; |
955 | // int val = *ptr; |
956 | // print(val); |
957 | // |
958 | // The transformation will cause the second store to be ignored (based on |
959 | // rules of invariant.start) and print 40, while the first program always |
960 | // prints 50. |
961 | if (isIntrinsicCall(Call, Intrinsic::invariant_start)) |
962 | return ModRefInfo::Ref; |
963 | |
964 | // The AAResultBase base class has some smarts, lets use them. |
965 | return AAResultBase::getModRefInfo(Call, Loc, AAQI); |
966 | } |
967 | |
968 | ModRefInfo BasicAAResult::getModRefInfo(const CallBase *Call1, |
969 | const CallBase *Call2, |
970 | AAQueryInfo &AAQI) { |
971 | // Guard intrinsics are marked as arbitrarily writing so that proper control |
972 | // dependencies are maintained but they never mods any particular memory |
973 | // location. |
974 | // |
975 | // *Unlike* assumes, guard intrinsics are modeled as reading memory since the |
976 | // heap state at the point the guard is issued needs to be consistent in case |
977 | // the guard invokes the "deopt" continuation. |
978 | |
979 | // NB! This function is *not* commutative, so we special case two |
980 | // possibilities for guard intrinsics. |
981 | |
982 | if (isIntrinsicCall(Call1, Intrinsic::experimental_guard)) |
983 | return isModSet(getMemoryEffects(Call2, AAQI).getModRef()) |
984 | ? ModRefInfo::Ref |
985 | : ModRefInfo::NoModRef; |
986 | |
987 | if (isIntrinsicCall(Call2, Intrinsic::experimental_guard)) |
988 | return isModSet(getMemoryEffects(Call1, AAQI).getModRef()) |
989 | ? ModRefInfo::Mod |
990 | : ModRefInfo::NoModRef; |
991 | |
992 | // The AAResultBase base class has some smarts, lets use them. |
993 | return AAResultBase::getModRefInfo(Call1, Call2, AAQI); |
994 | } |
995 | |
996 | /// Return true if we know V to the base address of the corresponding memory |
997 | /// object. This implies that any address less than V must be out of bounds |
998 | /// for the underlying object. Note that just being isIdentifiedObject() is |
999 | /// not enough - For example, a negative offset from a noalias argument or call |
1000 | /// can be inbounds w.r.t the actual underlying object. |
1001 | static bool isBaseOfObject(const Value *V) { |
1002 | // TODO: We can handle other cases here |
1003 | // 1) For GC languages, arguments to functions are often required to be |
1004 | // base pointers. |
1005 | // 2) Result of allocation routines are often base pointers. Leverage TLI. |
1006 | return (isa<AllocaInst>(V) || isa<GlobalVariable>(V)); |
1007 | } |
1008 | |
1009 | /// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against |
1010 | /// another pointer. |
1011 | /// |
1012 | /// We know that V1 is a GEP, but we don't know anything about V2. |
1013 | /// UnderlyingV1 is getUnderlyingObject(GEP1), UnderlyingV2 is the same for |
1014 | /// V2. |
1015 | AliasResult BasicAAResult::aliasGEP( |
1016 | const GEPOperator *GEP1, LocationSize V1Size, |
1017 | const Value *V2, LocationSize V2Size, |
1018 | const Value *UnderlyingV1, const Value *UnderlyingV2, AAQueryInfo &AAQI) { |
1019 | if (!V1Size.hasValue() && !V2Size.hasValue()) { |
1020 | // TODO: This limitation exists for compile-time reasons. Relax it if we |
1021 | // can avoid exponential pathological cases. |
1022 | if (!isa<GEPOperator>(V2)) |
1023 | return AliasResult::MayAlias; |
1024 | |
1025 | // If both accesses have unknown size, we can only check whether the base |
1026 | // objects don't alias. |
1027 | AliasResult BaseAlias = |
1028 | AAQI.AAR.alias(MemoryLocation::getBeforeOrAfter(UnderlyingV1), |
1029 | MemoryLocation::getBeforeOrAfter(UnderlyingV2), AAQI); |
1030 | return BaseAlias == AliasResult::NoAlias ? AliasResult::NoAlias |
1031 | : AliasResult::MayAlias; |
1032 | } |
1033 | |
1034 | DecomposedGEP DecompGEP1 = DecomposeGEPExpression(GEP1, DL, &AC, DT); |
1035 | DecomposedGEP DecompGEP2 = DecomposeGEPExpression(V2, DL, &AC, DT); |
1036 | |
1037 | // Bail if we were not able to decompose anything. |
1038 | if (DecompGEP1.Base == GEP1 && DecompGEP2.Base == V2) |
1039 | return AliasResult::MayAlias; |
1040 | |
1041 | // Subtract the GEP2 pointer from the GEP1 pointer to find out their |
1042 | // symbolic difference. |
1043 | subtractDecomposedGEPs(DecompGEP1, DecompGEP2, AAQI); |
1044 | |
1045 | // If an inbounds GEP would have to start from an out of bounds address |
1046 | // for the two to alias, then we can assume noalias. |
1047 | if (*DecompGEP1.InBounds && DecompGEP1.VarIndices.empty() && |
1048 | V2Size.hasValue() && DecompGEP1.Offset.sge(V2Size.getValue()) && |
1049 | isBaseOfObject(DecompGEP2.Base)) |
1050 | return AliasResult::NoAlias; |
1051 | |
1052 | if (isa<GEPOperator>(V2)) { |
1053 | // Symmetric case to above. |
1054 | if (*DecompGEP2.InBounds && DecompGEP1.VarIndices.empty() && |
1055 | V1Size.hasValue() && DecompGEP1.Offset.sle(-V1Size.getValue()) && |
1056 | isBaseOfObject(DecompGEP1.Base)) |
1057 | return AliasResult::NoAlias; |
1058 | } |
1059 | |
1060 | // For GEPs with identical offsets, we can preserve the size and AAInfo |
1061 | // when performing the alias check on the underlying objects. |
1062 | if (DecompGEP1.Offset == 0 && DecompGEP1.VarIndices.empty()) |
1063 | return AAQI.AAR.alias(MemoryLocation(DecompGEP1.Base, V1Size), |
1064 | MemoryLocation(DecompGEP2.Base, V2Size), AAQI); |
1065 | |
1066 | // Do the base pointers alias? |
1067 | AliasResult BaseAlias = |
1068 | AAQI.AAR.alias(MemoryLocation::getBeforeOrAfter(DecompGEP1.Base), |
1069 | MemoryLocation::getBeforeOrAfter(DecompGEP2.Base), AAQI); |
1070 | |
1071 | // If we get a No or May, then return it immediately, no amount of analysis |
1072 | // will improve this situation. |
1073 | if (BaseAlias != AliasResult::MustAlias) { |
1074 | assert(BaseAlias == AliasResult::NoAlias ||(static_cast <bool> (BaseAlias == AliasResult::NoAlias || BaseAlias == AliasResult::MayAlias) ? void (0) : __assert_fail ("BaseAlias == AliasResult::NoAlias || BaseAlias == AliasResult::MayAlias" , "llvm/lib/Analysis/BasicAliasAnalysis.cpp", 1075, __extension__ __PRETTY_FUNCTION__)) |
1075 | BaseAlias == AliasResult::MayAlias)(static_cast <bool> (BaseAlias == AliasResult::NoAlias || BaseAlias == AliasResult::MayAlias) ? void (0) : __assert_fail ("BaseAlias == AliasResult::NoAlias || BaseAlias == AliasResult::MayAlias" , "llvm/lib/Analysis/BasicAliasAnalysis.cpp", 1075, __extension__ __PRETTY_FUNCTION__)); |
1076 | return BaseAlias; |
1077 | } |
1078 | |
1079 | // If there is a constant difference between the pointers, but the difference |
1080 | // is less than the size of the associated memory object, then we know |
1081 | // that the objects are partially overlapping. If the difference is |
1082 | // greater, we know they do not overlap. |
1083 | if (DecompGEP1.VarIndices.empty()) { |
1084 | APInt &Off = DecompGEP1.Offset; |
1085 | |
1086 | // Initialize for Off >= 0 (V2 <= GEP1) case. |
1087 | const Value *LeftPtr = V2; |
1088 | const Value *RightPtr = GEP1; |
1089 | LocationSize VLeftSize = V2Size; |
1090 | LocationSize VRightSize = V1Size; |
1091 | const bool Swapped = Off.isNegative(); |
1092 | |
1093 | if (Swapped) { |
1094 | // Swap if we have the situation where: |
1095 | // + + |
1096 | // | BaseOffset | |
1097 | // ---------------->| |
1098 | // |-->V1Size |-------> V2Size |
1099 | // GEP1 V2 |
1100 | std::swap(LeftPtr, RightPtr); |
1101 | std::swap(VLeftSize, VRightSize); |
1102 | Off = -Off; |
1103 | } |
1104 | |
1105 | if (!VLeftSize.hasValue()) |
1106 | return AliasResult::MayAlias; |
1107 | |
1108 | const uint64_t LSize = VLeftSize.getValue(); |
1109 | if (Off.ult(LSize)) { |
1110 | // Conservatively drop processing if a phi was visited and/or offset is |
1111 | // too big. |
1112 | AliasResult AR = AliasResult::PartialAlias; |
1113 | if (VRightSize.hasValue() && Off.ule(INT32_MAX(2147483647)) && |
1114 | (Off + VRightSize.getValue()).ule(LSize)) { |
1115 | // Memory referenced by right pointer is nested. Save the offset in |
1116 | // cache. Note that originally offset estimated as GEP1-V2, but |
1117 | // AliasResult contains the shift that represents GEP1+Offset=V2. |
1118 | AR.setOffset(-Off.getSExtValue()); |
1119 | AR.swap(Swapped); |
1120 | } |
1121 | return AR; |
1122 | } |
1123 | return AliasResult::NoAlias; |
1124 | } |
1125 | |
1126 | // We need to know both acess sizes for all the following heuristics. |
1127 | if (!V1Size.hasValue() || !V2Size.hasValue()) |
1128 | return AliasResult::MayAlias; |
1129 | |
1130 | APInt GCD; |
1131 | ConstantRange OffsetRange = ConstantRange(DecompGEP1.Offset); |
1132 | for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) { |
1133 | const VariableGEPIndex &Index = DecompGEP1.VarIndices[i]; |
1134 | const APInt &Scale = Index.Scale; |
1135 | APInt ScaleForGCD = Scale; |
1136 | if (!Index.IsNSW) |
1137 | ScaleForGCD = |
1138 | APInt::getOneBitSet(Scale.getBitWidth(), Scale.countr_zero()); |
1139 | |
1140 | if (i == 0) |
1141 | GCD = ScaleForGCD.abs(); |
1142 | else |
1143 | GCD = APIntOps::GreatestCommonDivisor(GCD, ScaleForGCD.abs()); |
1144 | |
1145 | ConstantRange CR = computeConstantRange(Index.Val.V, /* ForSigned */ false, |
1146 | true, &AC, Index.CxtI); |
1147 | KnownBits Known = |
1148 | computeKnownBits(Index.Val.V, DL, 0, &AC, Index.CxtI, DT); |
1149 | CR = CR.intersectWith( |
1150 | ConstantRange::fromKnownBits(Known, /* Signed */ true), |
1151 | ConstantRange::Signed); |
1152 | CR = Index.Val.evaluateWith(CR).sextOrTrunc(OffsetRange.getBitWidth()); |
1153 | |
1154 | assert(OffsetRange.getBitWidth() == Scale.getBitWidth() &&(static_cast <bool> (OffsetRange.getBitWidth() == Scale .getBitWidth() && "Bit widths are normalized to MaxIndexSize" ) ? void (0) : __assert_fail ("OffsetRange.getBitWidth() == Scale.getBitWidth() && \"Bit widths are normalized to MaxIndexSize\"" , "llvm/lib/Analysis/BasicAliasAnalysis.cpp", 1155, __extension__ __PRETTY_FUNCTION__)) |
1155 | "Bit widths are normalized to MaxIndexSize")(static_cast <bool> (OffsetRange.getBitWidth() == Scale .getBitWidth() && "Bit widths are normalized to MaxIndexSize" ) ? void (0) : __assert_fail ("OffsetRange.getBitWidth() == Scale.getBitWidth() && \"Bit widths are normalized to MaxIndexSize\"" , "llvm/lib/Analysis/BasicAliasAnalysis.cpp", 1155, __extension__ __PRETTY_FUNCTION__)); |
1156 | if (Index.IsNSW) |
1157 | OffsetRange = OffsetRange.add(CR.smul_sat(ConstantRange(Scale))); |
1158 | else |
1159 | OffsetRange = OffsetRange.add(CR.smul_fast(ConstantRange(Scale))); |
1160 | } |
1161 | |
1162 | // We now have accesses at two offsets from the same base: |
1163 | // 1. (...)*GCD + DecompGEP1.Offset with size V1Size |
1164 | // 2. 0 with size V2Size |
1165 | // Using arithmetic modulo GCD, the accesses are at |
1166 | // [ModOffset..ModOffset+V1Size) and [0..V2Size). If the first access fits |
1167 | // into the range [V2Size..GCD), then we know they cannot overlap. |
1168 | APInt ModOffset = DecompGEP1.Offset.srem(GCD); |
1169 | if (ModOffset.isNegative()) |
1170 | ModOffset += GCD; // We want mod, not rem. |
1171 | if (ModOffset.uge(V2Size.getValue()) && |
1172 | (GCD - ModOffset).uge(V1Size.getValue())) |
1173 | return AliasResult::NoAlias; |
1174 | |
1175 | // Compute ranges of potentially accessed bytes for both accesses. If the |
1176 | // interseciton is empty, there can be no overlap. |
1177 | unsigned BW = OffsetRange.getBitWidth(); |
1178 | ConstantRange Range1 = OffsetRange.add( |
1179 | ConstantRange(APInt(BW, 0), APInt(BW, V1Size.getValue()))); |
1180 | ConstantRange Range2 = |
1181 | ConstantRange(APInt(BW, 0), APInt(BW, V2Size.getValue())); |
1182 | if (Range1.intersectWith(Range2).isEmptySet()) |
1183 | return AliasResult::NoAlias; |
1184 | |
1185 | // Try to determine the range of values for VarIndex such that |
1186 | // VarIndex <= -MinAbsVarIndex || MinAbsVarIndex <= VarIndex. |
1187 | std::optional<APInt> MinAbsVarIndex; |
1188 | if (DecompGEP1.VarIndices.size() == 1) { |
1189 | // VarIndex = Scale*V. |
1190 | const VariableGEPIndex &Var = DecompGEP1.VarIndices[0]; |
1191 | if (Var.Val.TruncBits == 0 && |
1192 | isKnownNonZero(Var.Val.V, DL, 0, &AC, Var.CxtI, DT)) { |
1193 | // If V != 0, then abs(VarIndex) > 0. |
1194 | MinAbsVarIndex = APInt(Var.Scale.getBitWidth(), 1); |
1195 | |
1196 | // Check if abs(V*Scale) >= abs(Scale) holds in the presence of |
1197 | // potentially wrapping math. |
1198 | auto MultiplyByScaleNoWrap = [](const VariableGEPIndex &Var) { |
1199 | if (Var.IsNSW) |
1200 | return true; |
1201 | |
1202 | int ValOrigBW = Var.Val.V->getType()->getPrimitiveSizeInBits(); |
1203 | // If Scale is small enough so that abs(V*Scale) >= abs(Scale) holds. |
1204 | // The max value of abs(V) is 2^ValOrigBW - 1. Multiplying with a |
1205 | // constant smaller than 2^(bitwidth(Val) - ValOrigBW) won't wrap. |
1206 | int MaxScaleValueBW = Var.Val.getBitWidth() - ValOrigBW; |
1207 | if (MaxScaleValueBW <= 0) |
1208 | return false; |
1209 | return Var.Scale.ule( |
1210 | APInt::getMaxValue(MaxScaleValueBW).zext(Var.Scale.getBitWidth())); |
1211 | }; |
1212 | // Refine MinAbsVarIndex, if abs(Scale*V) >= abs(Scale) holds in the |
1213 | // presence of potentially wrapping math. |
1214 | if (MultiplyByScaleNoWrap(Var)) { |
1215 | // If V != 0 then abs(VarIndex) >= abs(Scale). |
1216 | MinAbsVarIndex = Var.Scale.abs(); |
1217 | } |
1218 | } |
1219 | } else if (DecompGEP1.VarIndices.size() == 2) { |
1220 | // VarIndex = Scale*V0 + (-Scale)*V1. |
1221 | // If V0 != V1 then abs(VarIndex) >= abs(Scale). |
1222 | // Check that MayBeCrossIteration is false, to avoid reasoning about |
1223 | // inequality of values across loop iterations. |
1224 | const VariableGEPIndex &Var0 = DecompGEP1.VarIndices[0]; |
1225 | const VariableGEPIndex &Var1 = DecompGEP1.VarIndices[1]; |
1226 | if (Var0.Scale == -Var1.Scale && Var0.Val.TruncBits == 0 && |
1227 | Var0.Val.hasSameCastsAs(Var1.Val) && !AAQI.MayBeCrossIteration && |
1228 | isKnownNonEqual(Var0.Val.V, Var1.Val.V, DL, &AC, /* CxtI */ nullptr, |
1229 | DT)) |
1230 | MinAbsVarIndex = Var0.Scale.abs(); |
1231 | } |
1232 | |
1233 | if (MinAbsVarIndex) { |
1234 | // The constant offset will have added at least +/-MinAbsVarIndex to it. |
1235 | APInt OffsetLo = DecompGEP1.Offset - *MinAbsVarIndex; |
1236 | APInt OffsetHi = DecompGEP1.Offset + *MinAbsVarIndex; |
1237 | // We know that Offset <= OffsetLo || Offset >= OffsetHi |
1238 | if (OffsetLo.isNegative() && (-OffsetLo).uge(V1Size.getValue()) && |
1239 | OffsetHi.isNonNegative() && OffsetHi.uge(V2Size.getValue())) |
1240 | return AliasResult::NoAlias; |
1241 | } |
1242 | |
1243 | if (constantOffsetHeuristic(DecompGEP1, V1Size, V2Size, &AC, DT, AAQI)) |
1244 | return AliasResult::NoAlias; |
1245 | |
1246 | // Statically, we can see that the base objects are the same, but the |
1247 | // pointers have dynamic offsets which we can't resolve. And none of our |
1248 | // little tricks above worked. |
1249 | return AliasResult::MayAlias; |
1250 | } |
1251 | |
1252 | static AliasResult MergeAliasResults(AliasResult A, AliasResult B) { |
1253 | // If the results agree, take it. |
1254 | if (A == B) |
1255 | return A; |
1256 | // A mix of PartialAlias and MustAlias is PartialAlias. |
1257 | if ((A == AliasResult::PartialAlias && B == AliasResult::MustAlias) || |
1258 | (B == AliasResult::PartialAlias && A == AliasResult::MustAlias)) |
1259 | return AliasResult::PartialAlias; |
1260 | // Otherwise, we don't know anything. |
1261 | return AliasResult::MayAlias; |
1262 | } |
1263 | |
1264 | /// Provides a bunch of ad-hoc rules to disambiguate a Select instruction |
1265 | /// against another. |
1266 | AliasResult |
1267 | BasicAAResult::aliasSelect(const SelectInst *SI, LocationSize SISize, |
1268 | const Value *V2, LocationSize V2Size, |
1269 | AAQueryInfo &AAQI) { |
1270 | // If the values are Selects with the same condition, we can do a more precise |
1271 | // check: just check for aliases between the values on corresponding arms. |
1272 | if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2)) |
1273 | if (isValueEqualInPotentialCycles(SI->getCondition(), SI2->getCondition(), |
1274 | AAQI)) { |
1275 | AliasResult Alias = |
1276 | AAQI.AAR.alias(MemoryLocation(SI->getTrueValue(), SISize), |
1277 | MemoryLocation(SI2->getTrueValue(), V2Size), AAQI); |
1278 | if (Alias == AliasResult::MayAlias) |
1279 | return AliasResult::MayAlias; |
1280 | AliasResult ThisAlias = |
1281 | AAQI.AAR.alias(MemoryLocation(SI->getFalseValue(), SISize), |
1282 | MemoryLocation(SI2->getFalseValue(), V2Size), AAQI); |
1283 | return MergeAliasResults(ThisAlias, Alias); |
1284 | } |
1285 | |
1286 | // If both arms of the Select node NoAlias or MustAlias V2, then returns |
1287 | // NoAlias / MustAlias. Otherwise, returns MayAlias. |
1288 | AliasResult Alias = AAQI.AAR.alias(MemoryLocation(SI->getTrueValue(), SISize), |
1289 | MemoryLocation(V2, V2Size), AAQI); |
1290 | if (Alias == AliasResult::MayAlias) |
1291 | return AliasResult::MayAlias; |
1292 | |
1293 | AliasResult ThisAlias = |
1294 | AAQI.AAR.alias(MemoryLocation(SI->getFalseValue(), SISize), |
1295 | MemoryLocation(V2, V2Size), AAQI); |
1296 | return MergeAliasResults(ThisAlias, Alias); |
1297 | } |
1298 | |
1299 | /// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against |
1300 | /// another. |
1301 | AliasResult BasicAAResult::aliasPHI(const PHINode *PN, LocationSize PNSize, |
1302 | const Value *V2, LocationSize V2Size, |
1303 | AAQueryInfo &AAQI) { |
1304 | if (!PN->getNumIncomingValues()) |
1305 | return AliasResult::NoAlias; |
1306 | // If the values are PHIs in the same block, we can do a more precise |
1307 | // as well as efficient check: just check for aliases between the values |
1308 | // on corresponding edges. |
1309 | if (const PHINode *PN2 = dyn_cast<PHINode>(V2)) |
1310 | if (PN2->getParent() == PN->getParent()) { |
1311 | std::optional<AliasResult> Alias; |
1312 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
1313 | AliasResult ThisAlias = AAQI.AAR.alias( |
1314 | MemoryLocation(PN->getIncomingValue(i), PNSize), |
1315 | MemoryLocation( |
1316 | PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)), V2Size), |
1317 | AAQI); |
1318 | if (Alias) |
1319 | *Alias = MergeAliasResults(*Alias, ThisAlias); |
1320 | else |
1321 | Alias = ThisAlias; |
1322 | if (*Alias == AliasResult::MayAlias) |
1323 | break; |
1324 | } |
1325 | return *Alias; |
1326 | } |
1327 | |
1328 | SmallVector<Value *, 4> V1Srcs; |
1329 | // If a phi operand recurses back to the phi, we can still determine NoAlias |
1330 | // if we don't alias the underlying objects of the other phi operands, as we |
1331 | // know that the recursive phi needs to be based on them in some way. |
1332 | bool isRecursive = false; |
1333 | auto CheckForRecPhi = [&](Value *PV) { |
1334 | if (!EnableRecPhiAnalysis) |
1335 | return false; |
1336 | if (getUnderlyingObject(PV) == PN) { |
1337 | isRecursive = true; |
1338 | return true; |
1339 | } |
1340 | return false; |
1341 | }; |
1342 | |
1343 | SmallPtrSet<Value *, 4> UniqueSrc; |
1344 | Value *OnePhi = nullptr; |
1345 | for (Value *PV1 : PN->incoming_values()) { |
1346 | // Skip the phi itself being the incoming value. |
1347 | if (PV1 == PN) |
1348 | continue; |
1349 | |
1350 | if (isa<PHINode>(PV1)) { |
1351 | if (OnePhi && OnePhi != PV1) { |
1352 | // To control potential compile time explosion, we choose to be |
1353 | // conserviate when we have more than one Phi input. It is important |
1354 | // that we handle the single phi case as that lets us handle LCSSA |
1355 | // phi nodes and (combined with the recursive phi handling) simple |
1356 | // pointer induction variable patterns. |
1357 | return AliasResult::MayAlias; |
1358 | } |
1359 | OnePhi = PV1; |
1360 | } |
1361 | |
1362 | if (CheckForRecPhi(PV1)) |
1363 | continue; |
1364 | |
1365 | if (UniqueSrc.insert(PV1).second) |
1366 | V1Srcs.push_back(PV1); |
1367 | } |
1368 | |
1369 | if (OnePhi && UniqueSrc.size() > 1) |
1370 | // Out of an abundance of caution, allow only the trivial lcssa and |
1371 | // recursive phi cases. |
1372 | return AliasResult::MayAlias; |
1373 | |
1374 | // If V1Srcs is empty then that means that the phi has no underlying non-phi |
1375 | // value. This should only be possible in blocks unreachable from the entry |
1376 | // block, but return MayAlias just in case. |
1377 | if (V1Srcs.empty()) |
1378 | return AliasResult::MayAlias; |
1379 | |
1380 | // If this PHI node is recursive, indicate that the pointer may be moved |
1381 | // across iterations. We can only prove NoAlias if different underlying |
1382 | // objects are involved. |
1383 | if (isRecursive) |
1384 | PNSize = LocationSize::beforeOrAfterPointer(); |
1385 | |
1386 | // In the recursive alias queries below, we may compare values from two |
1387 | // different loop iterations. |
1388 | SaveAndRestore SavedMayBeCrossIteration(AAQI.MayBeCrossIteration, true); |
1389 | |
1390 | AliasResult Alias = AAQI.AAR.alias(MemoryLocation(V1Srcs[0], PNSize), |
1391 | MemoryLocation(V2, V2Size), AAQI); |
1392 | |
1393 | // Early exit if the check of the first PHI source against V2 is MayAlias. |
1394 | // Other results are not possible. |
1395 | if (Alias == AliasResult::MayAlias) |
1396 | return AliasResult::MayAlias; |
1397 | // With recursive phis we cannot guarantee that MustAlias/PartialAlias will |
1398 | // remain valid to all elements and needs to conservatively return MayAlias. |
1399 | if (isRecursive && Alias != AliasResult::NoAlias) |
1400 | return AliasResult::MayAlias; |
1401 | |
1402 | // If all sources of the PHI node NoAlias or MustAlias V2, then returns |
1403 | // NoAlias / MustAlias. Otherwise, returns MayAlias. |
1404 | for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) { |
1405 | Value *V = V1Srcs[i]; |
1406 | |
1407 | AliasResult ThisAlias = AAQI.AAR.alias( |
1408 | MemoryLocation(V, PNSize), MemoryLocation(V2, V2Size), AAQI); |
1409 | Alias = MergeAliasResults(ThisAlias, Alias); |
1410 | if (Alias == AliasResult::MayAlias) |
1411 | break; |
1412 | } |
1413 | |
1414 | return Alias; |
1415 | } |
1416 | |
1417 | /// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as |
1418 | /// array references. |
1419 | AliasResult BasicAAResult::aliasCheck(const Value *V1, LocationSize V1Size, |
1420 | const Value *V2, LocationSize V2Size, |
1421 | AAQueryInfo &AAQI, |
1422 | const Instruction *CtxI) { |
1423 | // If either of the memory references is empty, it doesn't matter what the |
1424 | // pointer values are. |
1425 | if (V1Size.isZero() || V2Size.isZero()) |
1426 | return AliasResult::NoAlias; |
1427 | |
1428 | // Strip off any casts if they exist. |
1429 | V1 = V1->stripPointerCastsForAliasAnalysis(); |
1430 | V2 = V2->stripPointerCastsForAliasAnalysis(); |
1431 | |
1432 | // If V1 or V2 is undef, the result is NoAlias because we can always pick a |
1433 | // value for undef that aliases nothing in the program. |
1434 | if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) |
1435 | return AliasResult::NoAlias; |
1436 | |
1437 | // Are we checking for alias of the same value? |
1438 | // Because we look 'through' phi nodes, we could look at "Value" pointers from |
1439 | // different iterations. We must therefore make sure that this is not the |
1440 | // case. The function isValueEqualInPotentialCycles ensures that this cannot |
1441 | // happen by looking at the visited phi nodes and making sure they cannot |
1442 | // reach the value. |
1443 | if (isValueEqualInPotentialCycles(V1, V2, AAQI)) |
1444 | return AliasResult::MustAlias; |
1445 | |
1446 | if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy()) |
1447 | return AliasResult::NoAlias; // Scalars cannot alias each other |
1448 | |
1449 | // Figure out what objects these things are pointing to if we can. |
1450 | const Value *O1 = getUnderlyingObject(V1, MaxLookupSearchDepth); |
1451 | const Value *O2 = getUnderlyingObject(V2, MaxLookupSearchDepth); |
1452 | |
1453 | // Null values in the default address space don't point to any object, so they |
1454 | // don't alias any other pointer. |
1455 | if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1)) |
1456 | if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) |
1457 | return AliasResult::NoAlias; |
1458 | if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2)) |
1459 | if (!NullPointerIsDefined(&F, CPN->getType()->getAddressSpace())) |
1460 | return AliasResult::NoAlias; |
1461 | |
1462 | if (O1 != O2) { |
1463 | // If V1/V2 point to two different objects, we know that we have no alias. |
1464 | if (isIdentifiedObject(O1) && isIdentifiedObject(O2)) |
1465 | return AliasResult::NoAlias; |
1466 | |
1467 | // Constant pointers can't alias with non-const isIdentifiedObject objects. |
1468 | if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) || |
1469 | (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1))) |
1470 | return AliasResult::NoAlias; |
1471 | |
1472 | // Function arguments can't alias with things that are known to be |
1473 | // unambigously identified at the function level. |
1474 | if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) || |
1475 | (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1))) |
1476 | return AliasResult::NoAlias; |
1477 | |
1478 | // If one pointer is the result of a call/invoke or load and the other is a |
1479 | // non-escaping local object within the same function, then we know the |
1480 | // object couldn't escape to a point where the call could return it. |
1481 | // |
1482 | // Note that if the pointers are in different functions, there are a |
1483 | // variety of complications. A call with a nocapture argument may still |
1484 | // temporary store the nocapture argument's value in a temporary memory |
1485 | // location if that memory location doesn't escape. Or it may pass a |
1486 | // nocapture value to other functions as long as they don't capture it. |
1487 | if (isEscapeSource(O1) && |
1488 | AAQI.CI->isNotCapturedBeforeOrAt(O2, cast<Instruction>(O1))) |
1489 | return AliasResult::NoAlias; |
1490 | if (isEscapeSource(O2) && |
1491 | AAQI.CI->isNotCapturedBeforeOrAt(O1, cast<Instruction>(O2))) |
1492 | return AliasResult::NoAlias; |
1493 | } |
1494 | |
1495 | // If the size of one access is larger than the entire object on the other |
1496 | // side, then we know such behavior is undefined and can assume no alias. |
1497 | bool NullIsValidLocation = NullPointerIsDefined(&F); |
1498 | if ((isObjectSmallerThan( |
1499 | O2, getMinimalExtentFrom(*V1, V1Size, DL, NullIsValidLocation), DL, |
1500 | TLI, NullIsValidLocation)) || |
1501 | (isObjectSmallerThan( |
1502 | O1, getMinimalExtentFrom(*V2, V2Size, DL, NullIsValidLocation), DL, |
1503 | TLI, NullIsValidLocation))) |
1504 | return AliasResult::NoAlias; |
1505 | |
1506 | if (CtxI && EnableSeparateStorageAnalysis) { |
1507 | for (auto &AssumeVH : AC.assumptions()) { |
1508 | if (!AssumeVH) |
1509 | continue; |
1510 | |
1511 | AssumeInst *Assume = cast<AssumeInst>(AssumeVH); |
1512 | |
1513 | for (unsigned Idx = 0; Idx < Assume->getNumOperandBundles(); Idx++) { |
1514 | OperandBundleUse OBU = Assume->getOperandBundleAt(Idx); |
1515 | if (OBU.getTagName() == "separate_storage") { |
1516 | assert(OBU.Inputs.size() == 2)(static_cast <bool> (OBU.Inputs.size() == 2) ? void (0) : __assert_fail ("OBU.Inputs.size() == 2", "llvm/lib/Analysis/BasicAliasAnalysis.cpp" , 1516, __extension__ __PRETTY_FUNCTION__)); |
1517 | const Value *Hint1 = OBU.Inputs[0].get(); |
1518 | const Value *Hint2 = OBU.Inputs[1].get(); |
1519 | // This is often a no-op; instcombine rewrites this for us. No-op |
1520 | // getUnderlyingObject calls are fast, though. |
1521 | const Value *HintO1 = getUnderlyingObject(Hint1); |
1522 | const Value *HintO2 = getUnderlyingObject(Hint2); |
1523 | |
1524 | if (((O1 == HintO1 && O2 == HintO2) || |
1525 | (O1 == HintO2 && O2 == HintO1)) && |
1526 | isValidAssumeForContext(Assume, CtxI, DT)) |
1527 | return AliasResult::NoAlias; |
1528 | } |
1529 | } |
1530 | } |
1531 | } |
1532 | |
1533 | // If one the accesses may be before the accessed pointer, canonicalize this |
1534 | // by using unknown after-pointer sizes for both accesses. This is |
1535 | // equivalent, because regardless of which pointer is lower, one of them |
1536 | // will always came after the other, as long as the underlying objects aren't |
1537 | // disjoint. We do this so that the rest of BasicAA does not have to deal |
1538 | // with accesses before the base pointer, and to improve cache utilization by |
1539 | // merging equivalent states. |
1540 | if (V1Size.mayBeBeforePointer() || V2Size.mayBeBeforePointer()) { |
1541 | V1Size = LocationSize::afterPointer(); |
1542 | V2Size = LocationSize::afterPointer(); |
1543 | } |
1544 | |
1545 | // FIXME: If this depth limit is hit, then we may cache sub-optimal results |
1546 | // for recursive queries. For this reason, this limit is chosen to be large |
1547 | // enough to be very rarely hit, while still being small enough to avoid |
1548 | // stack overflows. |
1549 | if (AAQI.Depth >= 512) |
1550 | return AliasResult::MayAlias; |
1551 | |
1552 | // Check the cache before climbing up use-def chains. This also terminates |
1553 | // otherwise infinitely recursive queries. Include MayBeCrossIteration in the |
1554 | // cache key, because some cases where MayBeCrossIteration==false returns |
1555 | // MustAlias or NoAlias may become MayAlias under MayBeCrossIteration==true. |
1556 | AAQueryInfo::LocPair Locs({V1, V1Size, AAQI.MayBeCrossIteration}, |
1557 | {V2, V2Size, AAQI.MayBeCrossIteration}); |
1558 | const bool Swapped = V1 > V2; |
1559 | if (Swapped) |
1560 | std::swap(Locs.first, Locs.second); |
1561 | const auto &Pair = AAQI.AliasCache.try_emplace( |
1562 | Locs, AAQueryInfo::CacheEntry{AliasResult::NoAlias, 0}); |
1563 | if (!Pair.second) { |
1564 | auto &Entry = Pair.first->second; |
1565 | if (!Entry.isDefinitive()) { |
1566 | // Remember that we used an assumption. |
1567 | ++Entry.NumAssumptionUses; |
1568 | ++AAQI.NumAssumptionUses; |
1569 | } |
1570 | // Cache contains sorted {V1,V2} pairs but we should return original order. |
1571 | auto Result = Entry.Result; |
1572 | Result.swap(Swapped); |
1573 | return Result; |
1574 | } |
1575 | |
1576 | int OrigNumAssumptionUses = AAQI.NumAssumptionUses; |
1577 | unsigned OrigNumAssumptionBasedResults = AAQI.AssumptionBasedResults.size(); |
1578 | AliasResult Result = |
1579 | aliasCheckRecursive(V1, V1Size, V2, V2Size, AAQI, O1, O2); |
1580 | |
1581 | auto It = AAQI.AliasCache.find(Locs); |
1582 | assert(It != AAQI.AliasCache.end() && "Must be in cache")(static_cast <bool> (It != AAQI.AliasCache.end() && "Must be in cache") ? void (0) : __assert_fail ("It != AAQI.AliasCache.end() && \"Must be in cache\"" , "llvm/lib/Analysis/BasicAliasAnalysis.cpp", 1582, __extension__ __PRETTY_FUNCTION__)); |
1583 | auto &Entry = It->second; |
1584 | |
1585 | // Check whether a NoAlias assumption has been used, but disproven. |
1586 | bool AssumptionDisproven = |
1587 | Entry.NumAssumptionUses > 0 && Result != AliasResult::NoAlias; |
1588 | if (AssumptionDisproven) |
1589 | Result = AliasResult::MayAlias; |
1590 | |
1591 | // This is a definitive result now, when considered as a root query. |
1592 | AAQI.NumAssumptionUses -= Entry.NumAssumptionUses; |
1593 | Entry.Result = Result; |
1594 | // Cache contains sorted {V1,V2} pairs. |
1595 | Entry.Result.swap(Swapped); |
1596 | Entry.NumAssumptionUses = -1; |
1597 | |
1598 | // If the assumption has been disproven, remove any results that may have |
1599 | // been based on this assumption. Do this after the Entry updates above to |
1600 | // avoid iterator invalidation. |
1601 | if (AssumptionDisproven) |
1602 | while (AAQI.AssumptionBasedResults.size() > OrigNumAssumptionBasedResults) |
1603 | AAQI.AliasCache.erase(AAQI.AssumptionBasedResults.pop_back_val()); |
1604 | |
1605 | // The result may still be based on assumptions higher up in the chain. |
1606 | // Remember it, so it can be purged from the cache later. |
1607 | if (OrigNumAssumptionUses != AAQI.NumAssumptionUses && |
1608 | Result != AliasResult::MayAlias) |
1609 | AAQI.AssumptionBasedResults.push_back(Locs); |
1610 | return Result; |
1611 | } |
1612 | |
1613 | AliasResult BasicAAResult::aliasCheckRecursive( |
1614 | const Value *V1, LocationSize V1Size, |
1615 | const Value *V2, LocationSize V2Size, |
1616 | AAQueryInfo &AAQI, const Value *O1, const Value *O2) { |
1617 | if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) { |
1618 | AliasResult Result = aliasGEP(GV1, V1Size, V2, V2Size, O1, O2, AAQI); |
1619 | if (Result != AliasResult::MayAlias) |
1620 | return Result; |
1621 | } else if (const GEPOperator *GV2 = dyn_cast<GEPOperator>(V2)) { |
1622 | AliasResult Result = aliasGEP(GV2, V2Size, V1, V1Size, O2, O1, AAQI); |
1623 | Result.swap(); |
1624 | if (Result != AliasResult::MayAlias) |
1625 | return Result; |
1626 | } |
1627 | |
1628 | if (const PHINode *PN = dyn_cast<PHINode>(V1)) { |
1629 | AliasResult Result = aliasPHI(PN, V1Size, V2, V2Size, AAQI); |
1630 | if (Result != AliasResult::MayAlias) |
1631 | return Result; |
1632 | } else if (const PHINode *PN = dyn_cast<PHINode>(V2)) { |
1633 | AliasResult Result = aliasPHI(PN, V2Size, V1, V1Size, AAQI); |
1634 | Result.swap(); |
1635 | if (Result != AliasResult::MayAlias) |
1636 | return Result; |
1637 | } |
1638 | |
1639 | if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) { |
1640 | AliasResult Result = aliasSelect(S1, V1Size, V2, V2Size, AAQI); |
1641 | if (Result != AliasResult::MayAlias) |
1642 | return Result; |
1643 | } else if (const SelectInst *S2 = dyn_cast<SelectInst>(V2)) { |
1644 | AliasResult Result = aliasSelect(S2, V2Size, V1, V1Size, AAQI); |
1645 | Result.swap(); |
1646 | if (Result != AliasResult::MayAlias) |
1647 | return Result; |
1648 | } |
1649 | |
1650 | // If both pointers are pointing into the same object and one of them |
1651 | // accesses the entire object, then the accesses must overlap in some way. |
1652 | if (O1 == O2) { |
1653 | bool NullIsValidLocation = NullPointerIsDefined(&F); |
1654 | if (V1Size.isPrecise() && V2Size.isPrecise() && |
1655 | (isObjectSize(O1, V1Size.getValue(), DL, TLI, NullIsValidLocation) || |
1656 | isObjectSize(O2, V2Size.getValue(), DL, TLI, NullIsValidLocation))) |
1657 | return AliasResult::PartialAlias; |
1658 | } |
1659 | |
1660 | return AliasResult::MayAlias; |
1661 | } |
1662 | |
1663 | /// Check whether two Values can be considered equivalent. |
1664 | /// |
1665 | /// If the values may come from different cycle iterations, this will also |
1666 | /// check that the values are not part of cycle. We have to do this because we |
1667 | /// are looking through phi nodes, that is we say |
1668 | /// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB). |
1669 | bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V, |
1670 | const Value *V2, |
1671 | const AAQueryInfo &AAQI) { |
1672 | if (V != V2) |
1673 | return false; |
1674 | |
1675 | if (!AAQI.MayBeCrossIteration) |
1676 | return true; |
1677 | |
1678 | // Non-instructions and instructions in the entry block cannot be part of |
1679 | // a loop. |
1680 | const Instruction *Inst = dyn_cast<Instruction>(V); |
1681 | if (!Inst || Inst->getParent()->isEntryBlock()) |
1682 | return true; |
1683 | |
1684 | // Check whether the instruction is part of a cycle, by checking whether the |
1685 | // block can (non-trivially) reach itself. |
1686 | BasicBlock *BB = const_cast<BasicBlock *>(Inst->getParent()); |
1687 | SmallVector<BasicBlock *> Succs(successors(BB)); |
1688 | return !Succs.empty() && |
1689 | !isPotentiallyReachableFromMany(Succs, BB, nullptr, DT); |
1690 | } |
1691 | |
1692 | /// Computes the symbolic difference between two de-composed GEPs. |
1693 | void BasicAAResult::subtractDecomposedGEPs(DecomposedGEP &DestGEP, |
1694 | const DecomposedGEP &SrcGEP, |
1695 | const AAQueryInfo &AAQI) { |
1696 | DestGEP.Offset -= SrcGEP.Offset; |
1697 | for (const VariableGEPIndex &Src : SrcGEP.VarIndices) { |
1698 | // Find V in Dest. This is N^2, but pointer indices almost never have more |
1699 | // than a few variable indexes. |
1700 | bool Found = false; |
1701 | for (auto I : enumerate(DestGEP.VarIndices)) { |
1702 | VariableGEPIndex &Dest = I.value(); |
1703 | if (!isValueEqualInPotentialCycles(Dest.Val.V, Src.Val.V, AAQI) || |
1704 | !Dest.Val.hasSameCastsAs(Src.Val)) |
1705 | continue; |
1706 | |
1707 | // If we found it, subtract off Scale V's from the entry in Dest. If it |
1708 | // goes to zero, remove the entry. |
1709 | if (Dest.Scale != Src.Scale) { |
1710 | Dest.Scale -= Src.Scale; |
1711 | Dest.IsNSW = false; |
1712 | } else { |
1713 | DestGEP.VarIndices.erase(DestGEP.VarIndices.begin() + I.index()); |
1714 | } |
1715 | Found = true; |
1716 | break; |
1717 | } |
1718 | |
1719 | // If we didn't consume this entry, add it to the end of the Dest list. |
1720 | if (!Found) { |
1721 | VariableGEPIndex Entry = {Src.Val, -Src.Scale, Src.CxtI, Src.IsNSW}; |
1722 | DestGEP.VarIndices.push_back(Entry); |
1723 | } |
1724 | } |
1725 | } |
1726 | |
1727 | bool BasicAAResult::constantOffsetHeuristic(const DecomposedGEP &GEP, |
1728 | LocationSize MaybeV1Size, |
1729 | LocationSize MaybeV2Size, |
1730 | AssumptionCache *AC, |
1731 | DominatorTree *DT, |
1732 | const AAQueryInfo &AAQI) { |
1733 | if (GEP.VarIndices.size() != 2 || !MaybeV1Size.hasValue() || |
1734 | !MaybeV2Size.hasValue()) |
1735 | return false; |
1736 | |
1737 | const uint64_t V1Size = MaybeV1Size.getValue(); |
1738 | const uint64_t V2Size = MaybeV2Size.getValue(); |
1739 | |
1740 | const VariableGEPIndex &Var0 = GEP.VarIndices[0], &Var1 = GEP.VarIndices[1]; |
1741 | |
1742 | if (Var0.Val.TruncBits != 0 || !Var0.Val.hasSameCastsAs(Var1.Val) || |
1743 | Var0.Scale != -Var1.Scale || |
1744 | Var0.Val.V->getType() != Var1.Val.V->getType()) |
1745 | return false; |
1746 | |
1747 | // We'll strip off the Extensions of Var0 and Var1 and do another round |
1748 | // of GetLinearExpression decomposition. In the example above, if Var0 |
1749 | // is zext(%x + 1) we should get V1 == %x and V1Offset == 1. |
1750 | |
1751 | LinearExpression E0 = |
1752 | GetLinearExpression(CastedValue(Var0.Val.V), DL, 0, AC, DT); |
1753 | LinearExpression E1 = |
1754 | GetLinearExpression(CastedValue(Var1.Val.V), DL, 0, AC, DT); |
1755 | if (E0.Scale != E1.Scale || !E0.Val.hasSameCastsAs(E1.Val) || |
1756 | !isValueEqualInPotentialCycles(E0.Val.V, E1.Val.V, AAQI)) |
1757 | return false; |
1758 | |
1759 | // We have a hit - Var0 and Var1 only differ by a constant offset! |
1760 | |
1761 | // If we've been sext'ed then zext'd the maximum difference between Var0 and |
1762 | // Var1 is possible to calculate, but we're just interested in the absolute |
1763 | // minimum difference between the two. The minimum distance may occur due to |
1764 | // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so |
1765 | // the minimum distance between %i and %i + 5 is 3. |
1766 | APInt MinDiff = E0.Offset - E1.Offset, Wrapped = -MinDiff; |
1767 | MinDiff = APIntOps::umin(MinDiff, Wrapped); |
1768 | APInt MinDiffBytes = |
1769 | MinDiff.zextOrTrunc(Var0.Scale.getBitWidth()) * Var0.Scale.abs(); |
1770 | |
1771 | // We can't definitely say whether GEP1 is before or after V2 due to wrapping |
1772 | // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other |
1773 | // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and |
1774 | // V2Size can fit in the MinDiffBytes gap. |
1775 | return MinDiffBytes.uge(V1Size + GEP.Offset.abs()) && |
1776 | MinDiffBytes.uge(V2Size + GEP.Offset.abs()); |
1777 | } |
1778 | |
1779 | //===----------------------------------------------------------------------===// |
1780 | // BasicAliasAnalysis Pass |
1781 | //===----------------------------------------------------------------------===// |
1782 | |
1783 | AnalysisKey BasicAA::Key; |
1784 | |
1785 | BasicAAResult BasicAA::run(Function &F, FunctionAnalysisManager &AM) { |
1786 | auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); |
1787 | auto &AC = AM.getResult<AssumptionAnalysis>(F); |
1788 | auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); |
1789 | return BasicAAResult(F.getParent()->getDataLayout(), F, TLI, AC, DT); |
1790 | } |
1791 | |
1792 | BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) { |
1793 | initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry()); |
1794 | } |
1795 | |
1796 | char BasicAAWrapperPass::ID = 0; |
1797 | |
1798 | void BasicAAWrapperPass::anchor() {} |
1799 | |
1800 | INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basic-aa",static void *initializeBasicAAWrapperPassPassOnce(PassRegistry &Registry) { |
1801 | "Basic Alias Analysis (stateless AA impl)", true, true)static void *initializeBasicAAWrapperPassPassOnce(PassRegistry &Registry) { |
1802 | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)initializeAssumptionCacheTrackerPass(Registry); |
1803 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)initializeDominatorTreeWrapperPassPass(Registry); |
1804 | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)initializeTargetLibraryInfoWrapperPassPass(Registry); |
1805 | INITIALIZE_PASS_END(BasicAAWrapperPass, "basic-aa",PassInfo *PI = new PassInfo( "Basic Alias Analysis (stateless AA impl)" , "basic-aa", &BasicAAWrapperPass::ID, PassInfo::NormalCtor_t (callDefaultCtor<BasicAAWrapperPass>), true, true); Registry .registerPass(*PI, true); return PI; } static llvm::once_flag InitializeBasicAAWrapperPassPassFlag; void llvm::initializeBasicAAWrapperPassPass (PassRegistry &Registry) { llvm::call_once(InitializeBasicAAWrapperPassPassFlag , initializeBasicAAWrapperPassPassOnce, std::ref(Registry)); } |
1806 | "Basic Alias Analysis (stateless AA impl)", true, true)PassInfo *PI = new PassInfo( "Basic Alias Analysis (stateless AA impl)" , "basic-aa", &BasicAAWrapperPass::ID, PassInfo::NormalCtor_t (callDefaultCtor<BasicAAWrapperPass>), true, true); Registry .registerPass(*PI, true); return PI; } static llvm::once_flag InitializeBasicAAWrapperPassPassFlag; void llvm::initializeBasicAAWrapperPassPass (PassRegistry &Registry) { llvm::call_once(InitializeBasicAAWrapperPassPassFlag , initializeBasicAAWrapperPassPassOnce, std::ref(Registry)); } |
1807 | |
1808 | FunctionPass *llvm::createBasicAAWrapperPass() { |
1809 | return new BasicAAWrapperPass(); |
1810 | } |
1811 | |
1812 | bool BasicAAWrapperPass::runOnFunction(Function &F) { |
1813 | auto &ACT = getAnalysis<AssumptionCacheTracker>(); |
1814 | auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>(); |
1815 | auto &DTWP = getAnalysis<DominatorTreeWrapperPass>(); |
1816 | |
1817 | Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), F, |
1818 | TLIWP.getTLI(F), ACT.getAssumptionCache(F), |
1819 | &DTWP.getDomTree())); |
1820 | |
1821 | return false; |
1822 | } |
1823 | |
1824 | void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { |
1825 | AU.setPreservesAll(); |
1826 | AU.addRequiredTransitive<AssumptionCacheTracker>(); |
1827 | AU.addRequiredTransitive<DominatorTreeWrapperPass>(); |
1828 | AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); |
1829 | } |
1830 | |
1831 | BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) { |
1832 | return BasicAAResult( |
1833 | F.getParent()->getDataLayout(), F, |
1834 | P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), |
1835 | P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F)); |
1836 | } |