Bug Summary

File:llvm/lib/Bitcode/Reader/BitcodeReader.cpp
Warning:line 2672, column 50
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name BitcodeReader.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/lib/Bitcode/Reader -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/lib/Bitcode/Reader -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/lib/Bitcode/Reader -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/include -I /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/include -D NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/build-llvm/lib/Bitcode/Reader -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-09-04-040900-46481-1 -x c++ /build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/lib/Bitcode/Reader/BitcodeReader.cpp

/build/llvm-toolchain-snapshot-14~++20210903100615+fd66b44ec19e/llvm/lib/Bitcode/Reader/BitcodeReader.cpp

1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "llvm/Bitcode/BitcodeReader.h"
10#include "MetadataLoader.h"
11#include "ValueList.h"
12#include "llvm/ADT/APFloat.h"
13#include "llvm/ADT/APInt.h"
14#include "llvm/ADT/ArrayRef.h"
15#include "llvm/ADT/DenseMap.h"
16#include "llvm/ADT/Optional.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SmallString.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/ADT/StringRef.h"
21#include "llvm/ADT/Triple.h"
22#include "llvm/ADT/Twine.h"
23#include "llvm/Bitcode/BitcodeCommon.h"
24#include "llvm/Bitcode/LLVMBitCodes.h"
25#include "llvm/Bitstream/BitstreamReader.h"
26#include "llvm/Config/llvm-config.h"
27#include "llvm/IR/Argument.h"
28#include "llvm/IR/Attributes.h"
29#include "llvm/IR/AutoUpgrade.h"
30#include "llvm/IR/BasicBlock.h"
31#include "llvm/IR/CallingConv.h"
32#include "llvm/IR/Comdat.h"
33#include "llvm/IR/Constant.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DataLayout.h"
36#include "llvm/IR/DebugInfo.h"
37#include "llvm/IR/DebugInfoMetadata.h"
38#include "llvm/IR/DebugLoc.h"
39#include "llvm/IR/DerivedTypes.h"
40#include "llvm/IR/Function.h"
41#include "llvm/IR/GVMaterializer.h"
42#include "llvm/IR/GlobalAlias.h"
43#include "llvm/IR/GlobalIFunc.h"
44#include "llvm/IR/GlobalIndirectSymbol.h"
45#include "llvm/IR/GlobalObject.h"
46#include "llvm/IR/GlobalValue.h"
47#include "llvm/IR/GlobalVariable.h"
48#include "llvm/IR/InlineAsm.h"
49#include "llvm/IR/InstIterator.h"
50#include "llvm/IR/InstrTypes.h"
51#include "llvm/IR/Instruction.h"
52#include "llvm/IR/Instructions.h"
53#include "llvm/IR/Intrinsics.h"
54#include "llvm/IR/LLVMContext.h"
55#include "llvm/IR/Metadata.h"
56#include "llvm/IR/Module.h"
57#include "llvm/IR/ModuleSummaryIndex.h"
58#include "llvm/IR/Operator.h"
59#include "llvm/IR/Type.h"
60#include "llvm/IR/Value.h"
61#include "llvm/IR/Verifier.h"
62#include "llvm/Support/AtomicOrdering.h"
63#include "llvm/Support/Casting.h"
64#include "llvm/Support/CommandLine.h"
65#include "llvm/Support/Compiler.h"
66#include "llvm/Support/Debug.h"
67#include "llvm/Support/Error.h"
68#include "llvm/Support/ErrorHandling.h"
69#include "llvm/Support/ErrorOr.h"
70#include "llvm/Support/ManagedStatic.h"
71#include "llvm/Support/MathExtras.h"
72#include "llvm/Support/MemoryBuffer.h"
73#include "llvm/Support/raw_ostream.h"
74#include <algorithm>
75#include <cassert>
76#include <cstddef>
77#include <cstdint>
78#include <deque>
79#include <map>
80#include <memory>
81#include <set>
82#include <string>
83#include <system_error>
84#include <tuple>
85#include <utility>
86#include <vector>
87
88using namespace llvm;
89
90static cl::opt<bool> PrintSummaryGUIDs(
91 "print-summary-global-ids", cl::init(false), cl::Hidden,
92 cl::desc(
93 "Print the global id for each value when reading the module summary"));
94
95namespace {
96
97enum {
98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
99};
100
101} // end anonymous namespace
102
103static Error error(const Twine &Message) {
104 return make_error<StringError>(
105 Message, make_error_code(BitcodeError::CorruptedBitcode));
106}
107
108static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
109 if (!Stream.canSkipToPos(4))
110 return createStringError(std::errc::illegal_byte_sequence,
111 "file too small to contain bitcode header");
112 for (unsigned C : {'B', 'C'})
113 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
114 if (Res.get() != C)
115 return createStringError(std::errc::illegal_byte_sequence,
116 "file doesn't start with bitcode header");
117 } else
118 return Res.takeError();
119 for (unsigned C : {0x0, 0xC, 0xE, 0xD})
120 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
121 if (Res.get() != C)
122 return createStringError(std::errc::illegal_byte_sequence,
123 "file doesn't start with bitcode header");
124 } else
125 return Res.takeError();
126 return Error::success();
127}
128
129static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
130 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
131 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
132
133 if (Buffer.getBufferSize() & 3)
134 return error("Invalid bitcode signature");
135
136 // If we have a wrapper header, parse it and ignore the non-bc file contents.
137 // The magic number is 0x0B17C0DE stored in little endian.
138 if (isBitcodeWrapper(BufPtr, BufEnd))
139 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
140 return error("Invalid bitcode wrapper header");
141
142 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
143 if (Error Err = hasInvalidBitcodeHeader(Stream))
144 return std::move(Err);
145
146 return std::move(Stream);
147}
148
149/// Convert a string from a record into an std::string, return true on failure.
150template <typename StrTy>
151static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
152 StrTy &Result) {
153 if (Idx > Record.size())
154 return true;
155
156 Result.append(Record.begin() + Idx, Record.end());
157 return false;
158}
159
160// Strip all the TBAA attachment for the module.
161static void stripTBAA(Module *M) {
162 for (auto &F : *M) {
163 if (F.isMaterializable())
164 continue;
165 for (auto &I : instructions(F))
166 I.setMetadata(LLVMContext::MD_tbaa, nullptr);
167 }
168}
169
170/// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
171/// "epoch" encoded in the bitcode, and return the producer name if any.
172static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
173 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
174 return std::move(Err);
175
176 // Read all the records.
177 SmallVector<uint64_t, 64> Record;
178
179 std::string ProducerIdentification;
180
181 while (true) {
182 BitstreamEntry Entry;
183 if (Expected<BitstreamEntry> Res = Stream.advance())
184 Entry = Res.get();
185 else
186 return Res.takeError();
187
188 switch (Entry.Kind) {
189 default:
190 case BitstreamEntry::Error:
191 return error("Malformed block");
192 case BitstreamEntry::EndBlock:
193 return ProducerIdentification;
194 case BitstreamEntry::Record:
195 // The interesting case.
196 break;
197 }
198
199 // Read a record.
200 Record.clear();
201 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
202 if (!MaybeBitCode)
203 return MaybeBitCode.takeError();
204 switch (MaybeBitCode.get()) {
205 default: // Default behavior: reject
206 return error("Invalid value");
207 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
208 convertToString(Record, 0, ProducerIdentification);
209 break;
210 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
211 unsigned epoch = (unsigned)Record[0];
212 if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
213 return error(
214 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
215 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
216 }
217 }
218 }
219 }
220}
221
222static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
223 // We expect a number of well-defined blocks, though we don't necessarily
224 // need to understand them all.
225 while (true) {
226 if (Stream.AtEndOfStream())
227 return "";
228
229 BitstreamEntry Entry;
230 if (Expected<BitstreamEntry> Res = Stream.advance())
231 Entry = std::move(Res.get());
232 else
233 return Res.takeError();
234
235 switch (Entry.Kind) {
236 case BitstreamEntry::EndBlock:
237 case BitstreamEntry::Error:
238 return error("Malformed block");
239
240 case BitstreamEntry::SubBlock:
241 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
242 return readIdentificationBlock(Stream);
243
244 // Ignore other sub-blocks.
245 if (Error Err = Stream.SkipBlock())
246 return std::move(Err);
247 continue;
248 case BitstreamEntry::Record:
249 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
250 continue;
251 else
252 return Skipped.takeError();
253 }
254 }
255}
256
257static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
258 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
259 return std::move(Err);
260
261 SmallVector<uint64_t, 64> Record;
262 // Read all the records for this module.
263
264 while (true) {
265 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
266 if (!MaybeEntry)
267 return MaybeEntry.takeError();
268 BitstreamEntry Entry = MaybeEntry.get();
269
270 switch (Entry.Kind) {
271 case BitstreamEntry::SubBlock: // Handled for us already.
272 case BitstreamEntry::Error:
273 return error("Malformed block");
274 case BitstreamEntry::EndBlock:
275 return false;
276 case BitstreamEntry::Record:
277 // The interesting case.
278 break;
279 }
280
281 // Read a record.
282 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
283 if (!MaybeRecord)
284 return MaybeRecord.takeError();
285 switch (MaybeRecord.get()) {
286 default:
287 break; // Default behavior, ignore unknown content.
288 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
289 std::string S;
290 if (convertToString(Record, 0, S))
291 return error("Invalid record");
292 // Check for the i386 and other (x86_64, ARM) conventions
293 if (S.find("__DATA,__objc_catlist") != std::string::npos ||
294 S.find("__OBJC,__category") != std::string::npos)
295 return true;
296 break;
297 }
298 }
299 Record.clear();
300 }
301 llvm_unreachable("Exit infinite loop")__builtin_unreachable();
302}
303
304static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
305 // We expect a number of well-defined blocks, though we don't necessarily
306 // need to understand them all.
307 while (true) {
308 BitstreamEntry Entry;
309 if (Expected<BitstreamEntry> Res = Stream.advance())
310 Entry = std::move(Res.get());
311 else
312 return Res.takeError();
313
314 switch (Entry.Kind) {
315 case BitstreamEntry::Error:
316 return error("Malformed block");
317 case BitstreamEntry::EndBlock:
318 return false;
319
320 case BitstreamEntry::SubBlock:
321 if (Entry.ID == bitc::MODULE_BLOCK_ID)
322 return hasObjCCategoryInModule(Stream);
323
324 // Ignore other sub-blocks.
325 if (Error Err = Stream.SkipBlock())
326 return std::move(Err);
327 continue;
328
329 case BitstreamEntry::Record:
330 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
331 continue;
332 else
333 return Skipped.takeError();
334 }
335 }
336}
337
338static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
339 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
340 return std::move(Err);
341
342 SmallVector<uint64_t, 64> Record;
343
344 std::string Triple;
345
346 // Read all the records for this module.
347 while (true) {
348 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
349 if (!MaybeEntry)
350 return MaybeEntry.takeError();
351 BitstreamEntry Entry = MaybeEntry.get();
352
353 switch (Entry.Kind) {
354 case BitstreamEntry::SubBlock: // Handled for us already.
355 case BitstreamEntry::Error:
356 return error("Malformed block");
357 case BitstreamEntry::EndBlock:
358 return Triple;
359 case BitstreamEntry::Record:
360 // The interesting case.
361 break;
362 }
363
364 // Read a record.
365 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
366 if (!MaybeRecord)
367 return MaybeRecord.takeError();
368 switch (MaybeRecord.get()) {
369 default: break; // Default behavior, ignore unknown content.
370 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
371 std::string S;
372 if (convertToString(Record, 0, S))
373 return error("Invalid record");
374 Triple = S;
375 break;
376 }
377 }
378 Record.clear();
379 }
380 llvm_unreachable("Exit infinite loop")__builtin_unreachable();
381}
382
383static Expected<std::string> readTriple(BitstreamCursor &Stream) {
384 // We expect a number of well-defined blocks, though we don't necessarily
385 // need to understand them all.
386 while (true) {
387 Expected<BitstreamEntry> MaybeEntry = Stream.advance();
388 if (!MaybeEntry)
389 return MaybeEntry.takeError();
390 BitstreamEntry Entry = MaybeEntry.get();
391
392 switch (Entry.Kind) {
393 case BitstreamEntry::Error:
394 return error("Malformed block");
395 case BitstreamEntry::EndBlock:
396 return "";
397
398 case BitstreamEntry::SubBlock:
399 if (Entry.ID == bitc::MODULE_BLOCK_ID)
400 return readModuleTriple(Stream);
401
402 // Ignore other sub-blocks.
403 if (Error Err = Stream.SkipBlock())
404 return std::move(Err);
405 continue;
406
407 case BitstreamEntry::Record:
408 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
409 continue;
410 else
411 return Skipped.takeError();
412 }
413 }
414}
415
416namespace {
417
418class BitcodeReaderBase {
419protected:
420 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
421 : Stream(std::move(Stream)), Strtab(Strtab) {
422 this->Stream.setBlockInfo(&BlockInfo);
423 }
424
425 BitstreamBlockInfo BlockInfo;
426 BitstreamCursor Stream;
427 StringRef Strtab;
428
429 /// In version 2 of the bitcode we store names of global values and comdats in
430 /// a string table rather than in the VST.
431 bool UseStrtab = false;
432
433 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
434
435 /// If this module uses a string table, pop the reference to the string table
436 /// and return the referenced string and the rest of the record. Otherwise
437 /// just return the record itself.
438 std::pair<StringRef, ArrayRef<uint64_t>>
439 readNameFromStrtab(ArrayRef<uint64_t> Record);
440
441 bool readBlockInfo();
442
443 // Contains an arbitrary and optional string identifying the bitcode producer
444 std::string ProducerIdentification;
445
446 Error error(const Twine &Message);
447};
448
449} // end anonymous namespace
450
451Error BitcodeReaderBase::error(const Twine &Message) {
452 std::string FullMsg = Message.str();
453 if (!ProducerIdentification.empty())
454 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
455 LLVM_VERSION_STRING"14.0.0" "')";
456 return ::error(FullMsg);
457}
458
459Expected<unsigned>
460BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
461 if (Record.empty())
462 return error("Invalid record");
463 unsigned ModuleVersion = Record[0];
464 if (ModuleVersion > 2)
465 return error("Invalid value");
466 UseStrtab = ModuleVersion >= 2;
467 return ModuleVersion;
468}
469
470std::pair<StringRef, ArrayRef<uint64_t>>
471BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
472 if (!UseStrtab)
473 return {"", Record};
474 // Invalid reference. Let the caller complain about the record being empty.
475 if (Record[0] + Record[1] > Strtab.size())
476 return {"", {}};
477 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
478}
479
480namespace {
481
482class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
483 LLVMContext &Context;
484 Module *TheModule = nullptr;
485 // Next offset to start scanning for lazy parsing of function bodies.
486 uint64_t NextUnreadBit = 0;
487 // Last function offset found in the VST.
488 uint64_t LastFunctionBlockBit = 0;
489 bool SeenValueSymbolTable = false;
490 uint64_t VSTOffset = 0;
491
492 std::vector<std::string> SectionTable;
493 std::vector<std::string> GCTable;
494
495 std::vector<Type*> TypeList;
496 DenseMap<Function *, FunctionType *> FunctionTypes;
497 BitcodeReaderValueList ValueList;
498 Optional<MetadataLoader> MDLoader;
499 std::vector<Comdat *> ComdatList;
500 SmallVector<Instruction *, 64> InstructionList;
501
502 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
503 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
504 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
505 std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
506 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
507
508 /// The set of attributes by index. Index zero in the file is for null, and
509 /// is thus not represented here. As such all indices are off by one.
510 std::vector<AttributeList> MAttributes;
511
512 /// The set of attribute groups.
513 std::map<unsigned, AttributeList> MAttributeGroups;
514
515 /// While parsing a function body, this is a list of the basic blocks for the
516 /// function.
517 std::vector<BasicBlock*> FunctionBBs;
518
519 // When reading the module header, this list is populated with functions that
520 // have bodies later in the file.
521 std::vector<Function*> FunctionsWithBodies;
522
523 // When intrinsic functions are encountered which require upgrading they are
524 // stored here with their replacement function.
525 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
526 UpdatedIntrinsicMap UpgradedIntrinsics;
527 // Intrinsics which were remangled because of types rename
528 UpdatedIntrinsicMap RemangledIntrinsics;
529
530 // Several operations happen after the module header has been read, but
531 // before function bodies are processed. This keeps track of whether
532 // we've done this yet.
533 bool SeenFirstFunctionBody = false;
534
535 /// When function bodies are initially scanned, this map contains info about
536 /// where to find deferred function body in the stream.
537 DenseMap<Function*, uint64_t> DeferredFunctionInfo;
538
539 /// When Metadata block is initially scanned when parsing the module, we may
540 /// choose to defer parsing of the metadata. This vector contains info about
541 /// which Metadata blocks are deferred.
542 std::vector<uint64_t> DeferredMetadataInfo;
543
544 /// These are basic blocks forward-referenced by block addresses. They are
545 /// inserted lazily into functions when they're loaded. The basic block ID is
546 /// its index into the vector.
547 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
548 std::deque<Function *> BasicBlockFwdRefQueue;
549
550 /// Indicates that we are using a new encoding for instruction operands where
551 /// most operands in the current FUNCTION_BLOCK are encoded relative to the
552 /// instruction number, for a more compact encoding. Some instruction
553 /// operands are not relative to the instruction ID: basic block numbers, and
554 /// types. Once the old style function blocks have been phased out, we would
555 /// not need this flag.
556 bool UseRelativeIDs = false;
557
558 /// True if all functions will be materialized, negating the need to process
559 /// (e.g.) blockaddress forward references.
560 bool WillMaterializeAllForwardRefs = false;
561
562 bool StripDebugInfo = false;
563 TBAAVerifier TBAAVerifyHelper;
564
565 std::vector<std::string> BundleTags;
566 SmallVector<SyncScope::ID, 8> SSIDs;
567
568public:
569 BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
570 StringRef ProducerIdentification, LLVMContext &Context);
571
572 Error materializeForwardReferencedFunctions();
573
574 Error materialize(GlobalValue *GV) override;
575 Error materializeModule() override;
576 std::vector<StructType *> getIdentifiedStructTypes() const override;
577
578 /// Main interface to parsing a bitcode buffer.
579 /// \returns true if an error occurred.
580 Error parseBitcodeInto(
581 Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false,
582 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
583
584 static uint64_t decodeSignRotatedValue(uint64_t V);
585
586 /// Materialize any deferred Metadata block.
587 Error materializeMetadata() override;
588
589 void setStripDebugInfo() override;
590
591private:
592 std::vector<StructType *> IdentifiedStructTypes;
593 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
594 StructType *createIdentifiedStructType(LLVMContext &Context);
595
596 Type *getTypeByID(unsigned ID);
597
598 Value *getFnValueByID(unsigned ID, Type *Ty) {
599 if (Ty && Ty->isMetadataTy())
600 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
601 return ValueList.getValueFwdRef(ID, Ty);
602 }
603
604 Metadata *getFnMetadataByID(unsigned ID) {
605 return MDLoader->getMetadataFwdRefOrLoad(ID);
606 }
607
608 BasicBlock *getBasicBlock(unsigned ID) const {
609 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
610 return FunctionBBs[ID];
611 }
612
613 AttributeList getAttributes(unsigned i) const {
614 if (i-1 < MAttributes.size())
615 return MAttributes[i-1];
616 return AttributeList();
617 }
618
619 /// Read a value/type pair out of the specified record from slot 'Slot'.
620 /// Increment Slot past the number of slots used in the record. Return true on
621 /// failure.
622 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
623 unsigned InstNum, Value *&ResVal) {
624 if (Slot == Record.size()) return true;
625 unsigned ValNo = (unsigned)Record[Slot++];
626 // Adjust the ValNo, if it was encoded relative to the InstNum.
627 if (UseRelativeIDs)
628 ValNo = InstNum - ValNo;
629 if (ValNo < InstNum) {
630 // If this is not a forward reference, just return the value we already
631 // have.
632 ResVal = getFnValueByID(ValNo, nullptr);
633 return ResVal == nullptr;
634 }
635 if (Slot == Record.size())
636 return true;
637
638 unsigned TypeNo = (unsigned)Record[Slot++];
639 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
640 return ResVal == nullptr;
641 }
642
643 /// Read a value out of the specified record from slot 'Slot'. Increment Slot
644 /// past the number of slots used by the value in the record. Return true if
645 /// there is an error.
646 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
647 unsigned InstNum, Type *Ty, Value *&ResVal) {
648 if (getValue(Record, Slot, InstNum, Ty, ResVal))
649 return true;
650 // All values currently take a single record slot.
651 ++Slot;
652 return false;
653 }
654
655 /// Like popValue, but does not increment the Slot number.
656 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
657 unsigned InstNum, Type *Ty, Value *&ResVal) {
658 ResVal = getValue(Record, Slot, InstNum, Ty);
659 return ResVal == nullptr;
660 }
661
662 /// Version of getValue that returns ResVal directly, or 0 if there is an
663 /// error.
664 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
665 unsigned InstNum, Type *Ty) {
666 if (Slot == Record.size()) return nullptr;
667 unsigned ValNo = (unsigned)Record[Slot];
668 // Adjust the ValNo, if it was encoded relative to the InstNum.
669 if (UseRelativeIDs)
670 ValNo = InstNum - ValNo;
671 return getFnValueByID(ValNo, Ty);
672 }
673
674 /// Like getValue, but decodes signed VBRs.
675 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
676 unsigned InstNum, Type *Ty) {
677 if (Slot == Record.size()) return nullptr;
678 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
679 // Adjust the ValNo, if it was encoded relative to the InstNum.
680 if (UseRelativeIDs)
681 ValNo = InstNum - ValNo;
682 return getFnValueByID(ValNo, Ty);
683 }
684
685 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
686 /// corresponding argument's pointee type. Also upgrades intrinsics that now
687 /// require an elementtype attribute.
688 void propagateAttributeTypes(CallBase *CB, ArrayRef<Type *> ArgsTys);
689
690 /// Converts alignment exponent (i.e. power of two (or zero)) to the
691 /// corresponding alignment to use. If alignment is too large, returns
692 /// a corresponding error code.
693 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
694 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
695 Error parseModule(
696 uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
697 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
698
699 Error parseComdatRecord(ArrayRef<uint64_t> Record);
700 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
701 Error parseFunctionRecord(ArrayRef<uint64_t> Record);
702 Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
703 ArrayRef<uint64_t> Record);
704
705 Error parseAttributeBlock();
706 Error parseAttributeGroupBlock();
707 Error parseTypeTable();
708 Error parseTypeTableBody();
709 Error parseOperandBundleTags();
710 Error parseSyncScopeNames();
711
712 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
713 unsigned NameIndex, Triple &TT);
714 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
715 ArrayRef<uint64_t> Record);
716 Error parseValueSymbolTable(uint64_t Offset = 0);
717 Error parseGlobalValueSymbolTable();
718 Error parseConstants();
719 Error rememberAndSkipFunctionBodies();
720 Error rememberAndSkipFunctionBody();
721 /// Save the positions of the Metadata blocks and skip parsing the blocks.
722 Error rememberAndSkipMetadata();
723 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
724 Error parseFunctionBody(Function *F);
725 Error globalCleanup();
726 Error resolveGlobalAndIndirectSymbolInits();
727 Error parseUseLists();
728 Error findFunctionInStream(
729 Function *F,
730 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
731
732 SyncScope::ID getDecodedSyncScopeID(unsigned Val);
733};
734
735/// Class to manage reading and parsing function summary index bitcode
736/// files/sections.
737class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
738 /// The module index built during parsing.
739 ModuleSummaryIndex &TheIndex;
740
741 /// Indicates whether we have encountered a global value summary section
742 /// yet during parsing.
743 bool SeenGlobalValSummary = false;
744
745 /// Indicates whether we have already parsed the VST, used for error checking.
746 bool SeenValueSymbolTable = false;
747
748 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
749 /// Used to enable on-demand parsing of the VST.
750 uint64_t VSTOffset = 0;
751
752 // Map to save ValueId to ValueInfo association that was recorded in the
753 // ValueSymbolTable. It is used after the VST is parsed to convert
754 // call graph edges read from the function summary from referencing
755 // callees by their ValueId to using the ValueInfo instead, which is how
756 // they are recorded in the summary index being built.
757 // We save a GUID which refers to the same global as the ValueInfo, but
758 // ignoring the linkage, i.e. for values other than local linkage they are
759 // identical.
760 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
761 ValueIdToValueInfoMap;
762
763 /// Map populated during module path string table parsing, from the
764 /// module ID to a string reference owned by the index's module
765 /// path string table, used to correlate with combined index
766 /// summary records.
767 DenseMap<uint64_t, StringRef> ModuleIdMap;
768
769 /// Original source file name recorded in a bitcode record.
770 std::string SourceFileName;
771
772 /// The string identifier given to this module by the client, normally the
773 /// path to the bitcode file.
774 StringRef ModulePath;
775
776 /// For per-module summary indexes, the unique numerical identifier given to
777 /// this module by the client.
778 unsigned ModuleId;
779
780public:
781 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
782 ModuleSummaryIndex &TheIndex,
783 StringRef ModulePath, unsigned ModuleId);
784
785 Error parseModule();
786
787private:
788 void setValueGUID(uint64_t ValueID, StringRef ValueName,
789 GlobalValue::LinkageTypes Linkage,
790 StringRef SourceFileName);
791 Error parseValueSymbolTable(
792 uint64_t Offset,
793 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
794 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
795 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
796 bool IsOldProfileFormat,
797 bool HasProfile,
798 bool HasRelBF);
799 Error parseEntireSummary(unsigned ID);
800 Error parseModuleStringTable();
801 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
802 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
803 TypeIdCompatibleVtableInfo &TypeId);
804 std::vector<FunctionSummary::ParamAccess>
805 parseParamAccesses(ArrayRef<uint64_t> Record);
806
807 std::pair<ValueInfo, GlobalValue::GUID>
808 getValueInfoFromValueId(unsigned ValueId);
809
810 void addThisModule();
811 ModuleSummaryIndex::ModuleInfo *getThisModule();
812};
813
814} // end anonymous namespace
815
816std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
817 Error Err) {
818 if (Err) {
819 std::error_code EC;
820 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
821 EC = EIB.convertToErrorCode();
822 Ctx.emitError(EIB.message());
823 });
824 return EC;
825 }
826 return std::error_code();
827}
828
829BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
830 StringRef ProducerIdentification,
831 LLVMContext &Context)
832 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
833 ValueList(Context, Stream.SizeInBytes()) {
834 this->ProducerIdentification = std::string(ProducerIdentification);
835}
836
837Error BitcodeReader::materializeForwardReferencedFunctions() {
838 if (WillMaterializeAllForwardRefs)
839 return Error::success();
840
841 // Prevent recursion.
842 WillMaterializeAllForwardRefs = true;
843
844 while (!BasicBlockFwdRefQueue.empty()) {
845 Function *F = BasicBlockFwdRefQueue.front();
846 BasicBlockFwdRefQueue.pop_front();
847 assert(F && "Expected valid function")(static_cast<void> (0));
848 if (!BasicBlockFwdRefs.count(F))
849 // Already materialized.
850 continue;
851
852 // Check for a function that isn't materializable to prevent an infinite
853 // loop. When parsing a blockaddress stored in a global variable, there
854 // isn't a trivial way to check if a function will have a body without a
855 // linear search through FunctionsWithBodies, so just check it here.
856 if (!F->isMaterializable())
857 return error("Never resolved function from blockaddress");
858
859 // Try to materialize F.
860 if (Error Err = materialize(F))
861 return Err;
862 }
863 assert(BasicBlockFwdRefs.empty() && "Function missing from queue")(static_cast<void> (0));
864
865 // Reset state.
866 WillMaterializeAllForwardRefs = false;
867 return Error::success();
868}
869
870//===----------------------------------------------------------------------===//
871// Helper functions to implement forward reference resolution, etc.
872//===----------------------------------------------------------------------===//
873
874static bool hasImplicitComdat(size_t Val) {
875 switch (Val) {
876 default:
877 return false;
878 case 1: // Old WeakAnyLinkage
879 case 4: // Old LinkOnceAnyLinkage
880 case 10: // Old WeakODRLinkage
881 case 11: // Old LinkOnceODRLinkage
882 return true;
883 }
884}
885
886static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
887 switch (Val) {
888 default: // Map unknown/new linkages to external
889 case 0:
890 return GlobalValue::ExternalLinkage;
891 case 2:
892 return GlobalValue::AppendingLinkage;
893 case 3:
894 return GlobalValue::InternalLinkage;
895 case 5:
896 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
897 case 6:
898 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
899 case 7:
900 return GlobalValue::ExternalWeakLinkage;
901 case 8:
902 return GlobalValue::CommonLinkage;
903 case 9:
904 return GlobalValue::PrivateLinkage;
905 case 12:
906 return GlobalValue::AvailableExternallyLinkage;
907 case 13:
908 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
909 case 14:
910 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
911 case 15:
912 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
913 case 1: // Old value with implicit comdat.
914 case 16:
915 return GlobalValue::WeakAnyLinkage;
916 case 10: // Old value with implicit comdat.
917 case 17:
918 return GlobalValue::WeakODRLinkage;
919 case 4: // Old value with implicit comdat.
920 case 18:
921 return GlobalValue::LinkOnceAnyLinkage;
922 case 11: // Old value with implicit comdat.
923 case 19:
924 return GlobalValue::LinkOnceODRLinkage;
925 }
926}
927
928static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
929 FunctionSummary::FFlags Flags;
930 Flags.ReadNone = RawFlags & 0x1;
931 Flags.ReadOnly = (RawFlags >> 1) & 0x1;
932 Flags.NoRecurse = (RawFlags >> 2) & 0x1;
933 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
934 Flags.NoInline = (RawFlags >> 4) & 0x1;
935 Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
936 return Flags;
937}
938
939// Decode the flags for GlobalValue in the summary. The bits for each attribute:
940//
941// linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
942// visibility: [8, 10).
943static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
944 uint64_t Version) {
945 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
946 // like getDecodedLinkage() above. Any future change to the linkage enum and
947 // to getDecodedLinkage() will need to be taken into account here as above.
948 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
949 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
950 RawFlags = RawFlags >> 4;
951 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
952 // The Live flag wasn't introduced until version 3. For dead stripping
953 // to work correctly on earlier versions, we must conservatively treat all
954 // values as live.
955 bool Live = (RawFlags & 0x2) || Version < 3;
956 bool Local = (RawFlags & 0x4);
957 bool AutoHide = (RawFlags & 0x8);
958
959 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
960 Live, Local, AutoHide);
961}
962
963// Decode the flags for GlobalVariable in the summary
964static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
965 return GlobalVarSummary::GVarFlags(
966 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
967 (RawFlags & 0x4) ? true : false,
968 (GlobalObject::VCallVisibility)(RawFlags >> 3));
969}
970
971static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
972 switch (Val) {
973 default: // Map unknown visibilities to default.
974 case 0: return GlobalValue::DefaultVisibility;
975 case 1: return GlobalValue::HiddenVisibility;
976 case 2: return GlobalValue::ProtectedVisibility;
977 }
978}
979
980static GlobalValue::DLLStorageClassTypes
981getDecodedDLLStorageClass(unsigned Val) {
982 switch (Val) {
983 default: // Map unknown values to default.
984 case 0: return GlobalValue::DefaultStorageClass;
985 case 1: return GlobalValue::DLLImportStorageClass;
986 case 2: return GlobalValue::DLLExportStorageClass;
987 }
988}
989
990static bool getDecodedDSOLocal(unsigned Val) {
991 switch(Val) {
992 default: // Map unknown values to preemptable.
993 case 0: return false;
994 case 1: return true;
995 }
996}
997
998static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
999 switch (Val) {
1000 case 0: return GlobalVariable::NotThreadLocal;
1001 default: // Map unknown non-zero value to general dynamic.
1002 case 1: return GlobalVariable::GeneralDynamicTLSModel;
1003 case 2: return GlobalVariable::LocalDynamicTLSModel;
1004 case 3: return GlobalVariable::InitialExecTLSModel;
1005 case 4: return GlobalVariable::LocalExecTLSModel;
1006 }
1007}
1008
1009static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1010 switch (Val) {
1011 default: // Map unknown to UnnamedAddr::None.
1012 case 0: return GlobalVariable::UnnamedAddr::None;
1013 case 1: return GlobalVariable::UnnamedAddr::Global;
1014 case 2: return GlobalVariable::UnnamedAddr::Local;
1015 }
1016}
1017
1018static int getDecodedCastOpcode(unsigned Val) {
1019 switch (Val) {
1020 default: return -1;
1021 case bitc::CAST_TRUNC : return Instruction::Trunc;
1022 case bitc::CAST_ZEXT : return Instruction::ZExt;
1023 case bitc::CAST_SEXT : return Instruction::SExt;
1024 case bitc::CAST_FPTOUI : return Instruction::FPToUI;
1025 case bitc::CAST_FPTOSI : return Instruction::FPToSI;
1026 case bitc::CAST_UITOFP : return Instruction::UIToFP;
1027 case bitc::CAST_SITOFP : return Instruction::SIToFP;
1028 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1029 case bitc::CAST_FPEXT : return Instruction::FPExt;
1030 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1031 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1032 case bitc::CAST_BITCAST : return Instruction::BitCast;
1033 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1034 }
1035}
1036
1037static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1038 bool IsFP = Ty->isFPOrFPVectorTy();
1039 // UnOps are only valid for int/fp or vector of int/fp types
1040 if (!IsFP && !Ty->isIntOrIntVectorTy())
1041 return -1;
1042
1043 switch (Val) {
1044 default:
1045 return -1;
1046 case bitc::UNOP_FNEG:
1047 return IsFP ? Instruction::FNeg : -1;
1048 }
1049}
1050
1051static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1052 bool IsFP = Ty->isFPOrFPVectorTy();
1053 // BinOps are only valid for int/fp or vector of int/fp types
1054 if (!IsFP && !Ty->isIntOrIntVectorTy())
1055 return -1;
1056
1057 switch (Val) {
1058 default:
1059 return -1;
1060 case bitc::BINOP_ADD:
1061 return IsFP ? Instruction::FAdd : Instruction::Add;
1062 case bitc::BINOP_SUB:
1063 return IsFP ? Instruction::FSub : Instruction::Sub;
1064 case bitc::BINOP_MUL:
1065 return IsFP ? Instruction::FMul : Instruction::Mul;
1066 case bitc::BINOP_UDIV:
1067 return IsFP ? -1 : Instruction::UDiv;
1068 case bitc::BINOP_SDIV:
1069 return IsFP ? Instruction::FDiv : Instruction::SDiv;
1070 case bitc::BINOP_UREM:
1071 return IsFP ? -1 : Instruction::URem;
1072 case bitc::BINOP_SREM:
1073 return IsFP ? Instruction::FRem : Instruction::SRem;
1074 case bitc::BINOP_SHL:
1075 return IsFP ? -1 : Instruction::Shl;
1076 case bitc::BINOP_LSHR:
1077 return IsFP ? -1 : Instruction::LShr;
1078 case bitc::BINOP_ASHR:
1079 return IsFP ? -1 : Instruction::AShr;
1080 case bitc::BINOP_AND:
1081 return IsFP ? -1 : Instruction::And;
1082 case bitc::BINOP_OR:
1083 return IsFP ? -1 : Instruction::Or;
1084 case bitc::BINOP_XOR:
1085 return IsFP ? -1 : Instruction::Xor;
1086 }
1087}
1088
1089static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1090 switch (Val) {
1091 default: return AtomicRMWInst::BAD_BINOP;
1092 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1093 case bitc::RMW_ADD: return AtomicRMWInst::Add;
1094 case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1095 case bitc::RMW_AND: return AtomicRMWInst::And;
1096 case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1097 case bitc::RMW_OR: return AtomicRMWInst::Or;
1098 case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1099 case bitc::RMW_MAX: return AtomicRMWInst::Max;
1100 case bitc::RMW_MIN: return AtomicRMWInst::Min;
1101 case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1102 case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1103 case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1104 case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1105 }
1106}
1107
1108static AtomicOrdering getDecodedOrdering(unsigned Val) {
1109 switch (Val) {
1110 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1111 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1112 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1113 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1114 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1115 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1116 default: // Map unknown orderings to sequentially-consistent.
1117 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1118 }
1119}
1120
1121static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1122 switch (Val) {
1123 default: // Map unknown selection kinds to any.
1124 case bitc::COMDAT_SELECTION_KIND_ANY:
1125 return Comdat::Any;
1126 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1127 return Comdat::ExactMatch;
1128 case bitc::COMDAT_SELECTION_KIND_LARGEST:
1129 return Comdat::Largest;
1130 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1131 return Comdat::NoDeduplicate;
1132 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1133 return Comdat::SameSize;
1134 }
1135}
1136
1137static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1138 FastMathFlags FMF;
1139 if (0 != (Val & bitc::UnsafeAlgebra))
1140 FMF.setFast();
1141 if (0 != (Val & bitc::AllowReassoc))
1142 FMF.setAllowReassoc();
1143 if (0 != (Val & bitc::NoNaNs))
1144 FMF.setNoNaNs();
1145 if (0 != (Val & bitc::NoInfs))
1146 FMF.setNoInfs();
1147 if (0 != (Val & bitc::NoSignedZeros))
1148 FMF.setNoSignedZeros();
1149 if (0 != (Val & bitc::AllowReciprocal))
1150 FMF.setAllowReciprocal();
1151 if (0 != (Val & bitc::AllowContract))
1152 FMF.setAllowContract(true);
1153 if (0 != (Val & bitc::ApproxFunc))
1154 FMF.setApproxFunc();
1155 return FMF;
1156}
1157
1158static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1159 switch (Val) {
1160 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1161 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1162 }
1163}
1164
1165Type *BitcodeReader::getTypeByID(unsigned ID) {
1166 // The type table size is always specified correctly.
1167 if (ID >= TypeList.size())
1168 return nullptr;
1169
1170 if (Type *Ty = TypeList[ID])
1171 return Ty;
1172
1173 // If we have a forward reference, the only possible case is when it is to a
1174 // named struct. Just create a placeholder for now.
1175 return TypeList[ID] = createIdentifiedStructType(Context);
1176}
1177
1178StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1179 StringRef Name) {
1180 auto *Ret = StructType::create(Context, Name);
1181 IdentifiedStructTypes.push_back(Ret);
1182 return Ret;
1183}
1184
1185StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1186 auto *Ret = StructType::create(Context);
1187 IdentifiedStructTypes.push_back(Ret);
1188 return Ret;
1189}
1190
1191//===----------------------------------------------------------------------===//
1192// Functions for parsing blocks from the bitcode file
1193//===----------------------------------------------------------------------===//
1194
1195static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1196 switch (Val) {
1197 case Attribute::EndAttrKinds:
1198 case Attribute::EmptyKey:
1199 case Attribute::TombstoneKey:
1200 llvm_unreachable("Synthetic enumerators which should never get here")__builtin_unreachable();
1201
1202 case Attribute::None: return 0;
1203 case Attribute::ZExt: return 1 << 0;
1204 case Attribute::SExt: return 1 << 1;
1205 case Attribute::NoReturn: return 1 << 2;
1206 case Attribute::InReg: return 1 << 3;
1207 case Attribute::StructRet: return 1 << 4;
1208 case Attribute::NoUnwind: return 1 << 5;
1209 case Attribute::NoAlias: return 1 << 6;
1210 case Attribute::ByVal: return 1 << 7;
1211 case Attribute::Nest: return 1 << 8;
1212 case Attribute::ReadNone: return 1 << 9;
1213 case Attribute::ReadOnly: return 1 << 10;
1214 case Attribute::NoInline: return 1 << 11;
1215 case Attribute::AlwaysInline: return 1 << 12;
1216 case Attribute::OptimizeForSize: return 1 << 13;
1217 case Attribute::StackProtect: return 1 << 14;
1218 case Attribute::StackProtectReq: return 1 << 15;
1219 case Attribute::Alignment: return 31 << 16;
1220 case Attribute::NoCapture: return 1 << 21;
1221 case Attribute::NoRedZone: return 1 << 22;
1222 case Attribute::NoImplicitFloat: return 1 << 23;
1223 case Attribute::Naked: return 1 << 24;
1224 case Attribute::InlineHint: return 1 << 25;
1225 case Attribute::StackAlignment: return 7 << 26;
1226 case Attribute::ReturnsTwice: return 1 << 29;
1227 case Attribute::UWTable: return 1 << 30;
1228 case Attribute::NonLazyBind: return 1U << 31;
1229 case Attribute::SanitizeAddress: return 1ULL << 32;
1230 case Attribute::MinSize: return 1ULL << 33;
1231 case Attribute::NoDuplicate: return 1ULL << 34;
1232 case Attribute::StackProtectStrong: return 1ULL << 35;
1233 case Attribute::SanitizeThread: return 1ULL << 36;
1234 case Attribute::SanitizeMemory: return 1ULL << 37;
1235 case Attribute::NoBuiltin: return 1ULL << 38;
1236 case Attribute::Returned: return 1ULL << 39;
1237 case Attribute::Cold: return 1ULL << 40;
1238 case Attribute::Builtin: return 1ULL << 41;
1239 case Attribute::OptimizeNone: return 1ULL << 42;
1240 case Attribute::InAlloca: return 1ULL << 43;
1241 case Attribute::NonNull: return 1ULL << 44;
1242 case Attribute::JumpTable: return 1ULL << 45;
1243 case Attribute::Convergent: return 1ULL << 46;
1244 case Attribute::SafeStack: return 1ULL << 47;
1245 case Attribute::NoRecurse: return 1ULL << 48;
1246 case Attribute::InaccessibleMemOnly: return 1ULL << 49;
1247 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1248 case Attribute::SwiftSelf: return 1ULL << 51;
1249 case Attribute::SwiftError: return 1ULL << 52;
1250 case Attribute::WriteOnly: return 1ULL << 53;
1251 case Attribute::Speculatable: return 1ULL << 54;
1252 case Attribute::StrictFP: return 1ULL << 55;
1253 case Attribute::SanitizeHWAddress: return 1ULL << 56;
1254 case Attribute::NoCfCheck: return 1ULL << 57;
1255 case Attribute::OptForFuzzing: return 1ULL << 58;
1256 case Attribute::ShadowCallStack: return 1ULL << 59;
1257 case Attribute::SpeculativeLoadHardening:
1258 return 1ULL << 60;
1259 case Attribute::ImmArg:
1260 return 1ULL << 61;
1261 case Attribute::WillReturn:
1262 return 1ULL << 62;
1263 case Attribute::NoFree:
1264 return 1ULL << 63;
1265 default:
1266 // Other attributes are not supported in the raw format,
1267 // as we ran out of space.
1268 return 0;
1269 }
1270 llvm_unreachable("Unsupported attribute type")__builtin_unreachable();
1271}
1272
1273static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1274 if (!Val) return;
1275
1276 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1277 I = Attribute::AttrKind(I + 1)) {
1278 if (uint64_t A = (Val & getRawAttributeMask(I))) {
1279 if (I == Attribute::Alignment)
1280 B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1281 else if (I == Attribute::StackAlignment)
1282 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1283 else if (Attribute::isTypeAttrKind(I))
1284 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1285 else
1286 B.addAttribute(I);
1287 }
1288 }
1289}
1290
1291/// This fills an AttrBuilder object with the LLVM attributes that have
1292/// been decoded from the given integer. This function must stay in sync with
1293/// 'encodeLLVMAttributesForBitcode'.
1294static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1295 uint64_t EncodedAttrs) {
1296 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift
1297 // the bits above 31 down by 11 bits.
1298 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1299 assert((!Alignment || isPowerOf2_32(Alignment)) &&(static_cast<void> (0))
1300 "Alignment must be a power of two.")(static_cast<void> (0));
1301
1302 if (Alignment)
1303 B.addAlignmentAttr(Alignment);
1304 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1305 (EncodedAttrs & 0xffff));
1306}
1307
1308Error BitcodeReader::parseAttributeBlock() {
1309 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1310 return Err;
1311
1312 if (!MAttributes.empty())
1313 return error("Invalid multiple blocks");
1314
1315 SmallVector<uint64_t, 64> Record;
1316
1317 SmallVector<AttributeList, 8> Attrs;
1318
1319 // Read all the records.
1320 while (true) {
1321 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1322 if (!MaybeEntry)
1323 return MaybeEntry.takeError();
1324 BitstreamEntry Entry = MaybeEntry.get();
1325
1326 switch (Entry.Kind) {
1327 case BitstreamEntry::SubBlock: // Handled for us already.
1328 case BitstreamEntry::Error:
1329 return error("Malformed block");
1330 case BitstreamEntry::EndBlock:
1331 return Error::success();
1332 case BitstreamEntry::Record:
1333 // The interesting case.
1334 break;
1335 }
1336
1337 // Read a record.
1338 Record.clear();
1339 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1340 if (!MaybeRecord)
1341 return MaybeRecord.takeError();
1342 switch (MaybeRecord.get()) {
1343 default: // Default behavior: ignore.
1344 break;
1345 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1346 // Deprecated, but still needed to read old bitcode files.
1347 if (Record.size() & 1)
1348 return error("Invalid record");
1349
1350 for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1351 AttrBuilder B;
1352 decodeLLVMAttributesForBitcode(B, Record[i+1]);
1353 Attrs.push_back(AttributeList::get(Context, Record[i], B));
1354 }
1355
1356 MAttributes.push_back(AttributeList::get(Context, Attrs));
1357 Attrs.clear();
1358 break;
1359 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1360 for (unsigned i = 0, e = Record.size(); i != e; ++i)
1361 Attrs.push_back(MAttributeGroups[Record[i]]);
1362
1363 MAttributes.push_back(AttributeList::get(Context, Attrs));
1364 Attrs.clear();
1365 break;
1366 }
1367 }
1368}
1369
1370// Returns Attribute::None on unrecognized codes.
1371static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1372 switch (Code) {
1373 default:
1374 return Attribute::None;
1375 case bitc::ATTR_KIND_ALIGNMENT:
1376 return Attribute::Alignment;
1377 case bitc::ATTR_KIND_ALWAYS_INLINE:
1378 return Attribute::AlwaysInline;
1379 case bitc::ATTR_KIND_ARGMEMONLY:
1380 return Attribute::ArgMemOnly;
1381 case bitc::ATTR_KIND_BUILTIN:
1382 return Attribute::Builtin;
1383 case bitc::ATTR_KIND_BY_VAL:
1384 return Attribute::ByVal;
1385 case bitc::ATTR_KIND_IN_ALLOCA:
1386 return Attribute::InAlloca;
1387 case bitc::ATTR_KIND_COLD:
1388 return Attribute::Cold;
1389 case bitc::ATTR_KIND_CONVERGENT:
1390 return Attribute::Convergent;
1391 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
1392 return Attribute::DisableSanitizerInstrumentation;
1393 case bitc::ATTR_KIND_ELEMENTTYPE:
1394 return Attribute::ElementType;
1395 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1396 return Attribute::InaccessibleMemOnly;
1397 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1398 return Attribute::InaccessibleMemOrArgMemOnly;
1399 case bitc::ATTR_KIND_INLINE_HINT:
1400 return Attribute::InlineHint;
1401 case bitc::ATTR_KIND_IN_REG:
1402 return Attribute::InReg;
1403 case bitc::ATTR_KIND_JUMP_TABLE:
1404 return Attribute::JumpTable;
1405 case bitc::ATTR_KIND_MIN_SIZE:
1406 return Attribute::MinSize;
1407 case bitc::ATTR_KIND_NAKED:
1408 return Attribute::Naked;
1409 case bitc::ATTR_KIND_NEST:
1410 return Attribute::Nest;
1411 case bitc::ATTR_KIND_NO_ALIAS:
1412 return Attribute::NoAlias;
1413 case bitc::ATTR_KIND_NO_BUILTIN:
1414 return Attribute::NoBuiltin;
1415 case bitc::ATTR_KIND_NO_CALLBACK:
1416 return Attribute::NoCallback;
1417 case bitc::ATTR_KIND_NO_CAPTURE:
1418 return Attribute::NoCapture;
1419 case bitc::ATTR_KIND_NO_DUPLICATE:
1420 return Attribute::NoDuplicate;
1421 case bitc::ATTR_KIND_NOFREE:
1422 return Attribute::NoFree;
1423 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1424 return Attribute::NoImplicitFloat;
1425 case bitc::ATTR_KIND_NO_INLINE:
1426 return Attribute::NoInline;
1427 case bitc::ATTR_KIND_NO_RECURSE:
1428 return Attribute::NoRecurse;
1429 case bitc::ATTR_KIND_NO_MERGE:
1430 return Attribute::NoMerge;
1431 case bitc::ATTR_KIND_NON_LAZY_BIND:
1432 return Attribute::NonLazyBind;
1433 case bitc::ATTR_KIND_NON_NULL:
1434 return Attribute::NonNull;
1435 case bitc::ATTR_KIND_DEREFERENCEABLE:
1436 return Attribute::Dereferenceable;
1437 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1438 return Attribute::DereferenceableOrNull;
1439 case bitc::ATTR_KIND_ALLOC_SIZE:
1440 return Attribute::AllocSize;
1441 case bitc::ATTR_KIND_NO_RED_ZONE:
1442 return Attribute::NoRedZone;
1443 case bitc::ATTR_KIND_NO_RETURN:
1444 return Attribute::NoReturn;
1445 case bitc::ATTR_KIND_NOSYNC:
1446 return Attribute::NoSync;
1447 case bitc::ATTR_KIND_NOCF_CHECK:
1448 return Attribute::NoCfCheck;
1449 case bitc::ATTR_KIND_NO_PROFILE:
1450 return Attribute::NoProfile;
1451 case bitc::ATTR_KIND_NO_UNWIND:
1452 return Attribute::NoUnwind;
1453 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
1454 return Attribute::NoSanitizeCoverage;
1455 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
1456 return Attribute::NullPointerIsValid;
1457 case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1458 return Attribute::OptForFuzzing;
1459 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1460 return Attribute::OptimizeForSize;
1461 case bitc::ATTR_KIND_OPTIMIZE_NONE:
1462 return Attribute::OptimizeNone;
1463 case bitc::ATTR_KIND_READ_NONE:
1464 return Attribute::ReadNone;
1465 case bitc::ATTR_KIND_READ_ONLY:
1466 return Attribute::ReadOnly;
1467 case bitc::ATTR_KIND_RETURNED:
1468 return Attribute::Returned;
1469 case bitc::ATTR_KIND_RETURNS_TWICE:
1470 return Attribute::ReturnsTwice;
1471 case bitc::ATTR_KIND_S_EXT:
1472 return Attribute::SExt;
1473 case bitc::ATTR_KIND_SPECULATABLE:
1474 return Attribute::Speculatable;
1475 case bitc::ATTR_KIND_STACK_ALIGNMENT:
1476 return Attribute::StackAlignment;
1477 case bitc::ATTR_KIND_STACK_PROTECT:
1478 return Attribute::StackProtect;
1479 case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1480 return Attribute::StackProtectReq;
1481 case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1482 return Attribute::StackProtectStrong;
1483 case bitc::ATTR_KIND_SAFESTACK:
1484 return Attribute::SafeStack;
1485 case bitc::ATTR_KIND_SHADOWCALLSTACK:
1486 return Attribute::ShadowCallStack;
1487 case bitc::ATTR_KIND_STRICT_FP:
1488 return Attribute::StrictFP;
1489 case bitc::ATTR_KIND_STRUCT_RET:
1490 return Attribute::StructRet;
1491 case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1492 return Attribute::SanitizeAddress;
1493 case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1494 return Attribute::SanitizeHWAddress;
1495 case bitc::ATTR_KIND_SANITIZE_THREAD:
1496 return Attribute::SanitizeThread;
1497 case bitc::ATTR_KIND_SANITIZE_MEMORY:
1498 return Attribute::SanitizeMemory;
1499 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1500 return Attribute::SpeculativeLoadHardening;
1501 case bitc::ATTR_KIND_SWIFT_ERROR:
1502 return Attribute::SwiftError;
1503 case bitc::ATTR_KIND_SWIFT_SELF:
1504 return Attribute::SwiftSelf;
1505 case bitc::ATTR_KIND_SWIFT_ASYNC:
1506 return Attribute::SwiftAsync;
1507 case bitc::ATTR_KIND_UW_TABLE:
1508 return Attribute::UWTable;
1509 case bitc::ATTR_KIND_VSCALE_RANGE:
1510 return Attribute::VScaleRange;
1511 case bitc::ATTR_KIND_WILLRETURN:
1512 return Attribute::WillReturn;
1513 case bitc::ATTR_KIND_WRITEONLY:
1514 return Attribute::WriteOnly;
1515 case bitc::ATTR_KIND_Z_EXT:
1516 return Attribute::ZExt;
1517 case bitc::ATTR_KIND_IMMARG:
1518 return Attribute::ImmArg;
1519 case bitc::ATTR_KIND_SANITIZE_MEMTAG:
1520 return Attribute::SanitizeMemTag;
1521 case bitc::ATTR_KIND_PREALLOCATED:
1522 return Attribute::Preallocated;
1523 case bitc::ATTR_KIND_NOUNDEF:
1524 return Attribute::NoUndef;
1525 case bitc::ATTR_KIND_BYREF:
1526 return Attribute::ByRef;
1527 case bitc::ATTR_KIND_MUSTPROGRESS:
1528 return Attribute::MustProgress;
1529 case bitc::ATTR_KIND_HOT:
1530 return Attribute::Hot;
1531 }
1532}
1533
1534Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1535 MaybeAlign &Alignment) {
1536 // Note: Alignment in bitcode files is incremented by 1, so that zero
1537 // can be used for default alignment.
1538 if (Exponent > Value::MaxAlignmentExponent + 1)
1539 return error("Invalid alignment value");
1540 Alignment = decodeMaybeAlign(Exponent);
1541 return Error::success();
1542}
1543
1544Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1545 *Kind = getAttrFromCode(Code);
1546 if (*Kind == Attribute::None)
1547 return error("Unknown attribute kind (" + Twine(Code) + ")");
1548 return Error::success();
1549}
1550
1551Error BitcodeReader::parseAttributeGroupBlock() {
1552 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1553 return Err;
1554
1555 if (!MAttributeGroups.empty())
1556 return error("Invalid multiple blocks");
1557
1558 SmallVector<uint64_t, 64> Record;
1559
1560 // Read all the records.
1561 while (true) {
1562 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1563 if (!MaybeEntry)
1564 return MaybeEntry.takeError();
1565 BitstreamEntry Entry = MaybeEntry.get();
1566
1567 switch (Entry.Kind) {
1568 case BitstreamEntry::SubBlock: // Handled for us already.
1569 case BitstreamEntry::Error:
1570 return error("Malformed block");
1571 case BitstreamEntry::EndBlock:
1572 return Error::success();
1573 case BitstreamEntry::Record:
1574 // The interesting case.
1575 break;
1576 }
1577
1578 // Read a record.
1579 Record.clear();
1580 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1581 if (!MaybeRecord)
1582 return MaybeRecord.takeError();
1583 switch (MaybeRecord.get()) {
1584 default: // Default behavior: ignore.
1585 break;
1586 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1587 if (Record.size() < 3)
1588 return error("Invalid record");
1589
1590 uint64_t GrpID = Record[0];
1591 uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1592
1593 AttrBuilder B;
1594 for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1595 if (Record[i] == 0) { // Enum attribute
1596 Attribute::AttrKind Kind;
1597 if (Error Err = parseAttrKind(Record[++i], &Kind))
1598 return Err;
1599
1600 // Upgrade old-style byval attribute to one with a type, even if it's
1601 // nullptr. We will have to insert the real type when we associate
1602 // this AttributeList with a function.
1603 if (Kind == Attribute::ByVal)
1604 B.addByValAttr(nullptr);
1605 else if (Kind == Attribute::StructRet)
1606 B.addStructRetAttr(nullptr);
1607 else if (Kind == Attribute::InAlloca)
1608 B.addInAllocaAttr(nullptr);
1609 else if (Attribute::isEnumAttrKind(Kind))
1610 B.addAttribute(Kind);
1611 else
1612 return error("Not an enum attribute");
1613 } else if (Record[i] == 1) { // Integer attribute
1614 Attribute::AttrKind Kind;
1615 if (Error Err = parseAttrKind(Record[++i], &Kind))
1616 return Err;
1617 if (!Attribute::isIntAttrKind(Kind))
1618 return error("Not an int attribute");
1619 if (Kind == Attribute::Alignment)
1620 B.addAlignmentAttr(Record[++i]);
1621 else if (Kind == Attribute::StackAlignment)
1622 B.addStackAlignmentAttr(Record[++i]);
1623 else if (Kind == Attribute::Dereferenceable)
1624 B.addDereferenceableAttr(Record[++i]);
1625 else if (Kind == Attribute::DereferenceableOrNull)
1626 B.addDereferenceableOrNullAttr(Record[++i]);
1627 else if (Kind == Attribute::AllocSize)
1628 B.addAllocSizeAttrFromRawRepr(Record[++i]);
1629 else if (Kind == Attribute::VScaleRange)
1630 B.addVScaleRangeAttrFromRawRepr(Record[++i]);
1631 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1632 bool HasValue = (Record[i++] == 4);
1633 SmallString<64> KindStr;
1634 SmallString<64> ValStr;
1635
1636 while (Record[i] != 0 && i != e)
1637 KindStr += Record[i++];
1638 assert(Record[i] == 0 && "Kind string not null terminated")(static_cast<void> (0));
1639
1640 if (HasValue) {
1641 // Has a value associated with it.
1642 ++i; // Skip the '0' that terminates the "kind" string.
1643 while (Record[i] != 0 && i != e)
1644 ValStr += Record[i++];
1645 assert(Record[i] == 0 && "Value string not null terminated")(static_cast<void> (0));
1646 }
1647
1648 B.addAttribute(KindStr.str(), ValStr.str());
1649 } else {
1650 assert((Record[i] == 5 || Record[i] == 6) &&(static_cast<void> (0))
1651 "Invalid attribute group entry")(static_cast<void> (0));
1652 bool HasType = Record[i] == 6;
1653 Attribute::AttrKind Kind;
1654 if (Error Err = parseAttrKind(Record[++i], &Kind))
1655 return Err;
1656 if (!Attribute::isTypeAttrKind(Kind))
1657 return error("Not a type attribute");
1658
1659 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
1660 }
1661 }
1662
1663 UpgradeAttributes(B);
1664 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1665 break;
1666 }
1667 }
1668 }
1669}
1670
1671Error BitcodeReader::parseTypeTable() {
1672 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1673 return Err;
1674
1675 return parseTypeTableBody();
1676}
1677
1678Error BitcodeReader::parseTypeTableBody() {
1679 if (!TypeList.empty())
1680 return error("Invalid multiple blocks");
1681
1682 SmallVector<uint64_t, 64> Record;
1683 unsigned NumRecords = 0;
1684
1685 SmallString<64> TypeName;
1686
1687 // Read all the records for this type table.
1688 while (true) {
1689 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1690 if (!MaybeEntry)
1691 return MaybeEntry.takeError();
1692 BitstreamEntry Entry = MaybeEntry.get();
1693
1694 switch (Entry.Kind) {
1695 case BitstreamEntry::SubBlock: // Handled for us already.
1696 case BitstreamEntry::Error:
1697 return error("Malformed block");
1698 case BitstreamEntry::EndBlock:
1699 if (NumRecords != TypeList.size())
1700 return error("Malformed block");
1701 return Error::success();
1702 case BitstreamEntry::Record:
1703 // The interesting case.
1704 break;
1705 }
1706
1707 // Read a record.
1708 Record.clear();
1709 Type *ResultTy = nullptr;
1710 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1711 if (!MaybeRecord)
1712 return MaybeRecord.takeError();
1713 switch (MaybeRecord.get()) {
1714 default:
1715 return error("Invalid value");
1716 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1717 // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1718 // type list. This allows us to reserve space.
1719 if (Record.empty())
1720 return error("Invalid record");
1721 TypeList.resize(Record[0]);
1722 continue;
1723 case bitc::TYPE_CODE_VOID: // VOID
1724 ResultTy = Type::getVoidTy(Context);
1725 break;
1726 case bitc::TYPE_CODE_HALF: // HALF
1727 ResultTy = Type::getHalfTy(Context);
1728 break;
1729 case bitc::TYPE_CODE_BFLOAT: // BFLOAT
1730 ResultTy = Type::getBFloatTy(Context);
1731 break;
1732 case bitc::TYPE_CODE_FLOAT: // FLOAT
1733 ResultTy = Type::getFloatTy(Context);
1734 break;
1735 case bitc::TYPE_CODE_DOUBLE: // DOUBLE
1736 ResultTy = Type::getDoubleTy(Context);
1737 break;
1738 case bitc::TYPE_CODE_X86_FP80: // X86_FP80
1739 ResultTy = Type::getX86_FP80Ty(Context);
1740 break;
1741 case bitc::TYPE_CODE_FP128: // FP128
1742 ResultTy = Type::getFP128Ty(Context);
1743 break;
1744 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1745 ResultTy = Type::getPPC_FP128Ty(Context);
1746 break;
1747 case bitc::TYPE_CODE_LABEL: // LABEL
1748 ResultTy = Type::getLabelTy(Context);
1749 break;
1750 case bitc::TYPE_CODE_METADATA: // METADATA
1751 ResultTy = Type::getMetadataTy(Context);
1752 break;
1753 case bitc::TYPE_CODE_X86_MMX: // X86_MMX
1754 ResultTy = Type::getX86_MMXTy(Context);
1755 break;
1756 case bitc::TYPE_CODE_X86_AMX: // X86_AMX
1757 ResultTy = Type::getX86_AMXTy(Context);
1758 break;
1759 case bitc::TYPE_CODE_TOKEN: // TOKEN
1760 ResultTy = Type::getTokenTy(Context);
1761 break;
1762 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1763 if (Record.empty())
1764 return error("Invalid record");
1765
1766 uint64_t NumBits = Record[0];
1767 if (NumBits < IntegerType::MIN_INT_BITS ||
1768 NumBits > IntegerType::MAX_INT_BITS)
1769 return error("Bitwidth for integer type out of range");
1770 ResultTy = IntegerType::get(Context, NumBits);
1771 break;
1772 }
1773 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1774 // [pointee type, address space]
1775 if (Record.empty())
1776 return error("Invalid record");
1777 unsigned AddressSpace = 0;
1778 if (Record.size() == 2)
1779 AddressSpace = Record[1];
1780 ResultTy = getTypeByID(Record[0]);
1781 if (!ResultTy ||
1782 !PointerType::isValidElementType(ResultTy))
1783 return error("Invalid type");
1784 ResultTy = PointerType::get(ResultTy, AddressSpace);
1785 break;
1786 }
1787 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
1788 if (Record.size() != 1)
1789 return error("Invalid record");
1790 unsigned AddressSpace = Record[0];
1791 ResultTy = PointerType::get(Context, AddressSpace);
1792 break;
1793 }
1794 case bitc::TYPE_CODE_FUNCTION_OLD: {
1795 // Deprecated, but still needed to read old bitcode files.
1796 // FUNCTION: [vararg, attrid, retty, paramty x N]
1797 if (Record.size() < 3)
1798 return error("Invalid record");
1799 SmallVector<Type*, 8> ArgTys;
1800 for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1801 if (Type *T = getTypeByID(Record[i]))
1802 ArgTys.push_back(T);
1803 else
1804 break;
1805 }
1806
1807 ResultTy = getTypeByID(Record[2]);
1808 if (!ResultTy || ArgTys.size() < Record.size()-3)
1809 return error("Invalid type");
1810
1811 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1812 break;
1813 }
1814 case bitc::TYPE_CODE_FUNCTION: {
1815 // FUNCTION: [vararg, retty, paramty x N]
1816 if (Record.size() < 2)
1817 return error("Invalid record");
1818 SmallVector<Type*, 8> ArgTys;
1819 for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1820 if (Type *T = getTypeByID(Record[i])) {
1821 if (!FunctionType::isValidArgumentType(T))
1822 return error("Invalid function argument type");
1823 ArgTys.push_back(T);
1824 }
1825 else
1826 break;
1827 }
1828
1829 ResultTy = getTypeByID(Record[1]);
1830 if (!ResultTy || ArgTys.size() < Record.size()-2)
1831 return error("Invalid type");
1832
1833 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1834 break;
1835 }
1836 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N]
1837 if (Record.empty())
1838 return error("Invalid record");
1839 SmallVector<Type*, 8> EltTys;
1840 for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1841 if (Type *T = getTypeByID(Record[i]))
1842 EltTys.push_back(T);
1843 else
1844 break;
1845 }
1846 if (EltTys.size() != Record.size()-1)
1847 return error("Invalid type");
1848 ResultTy = StructType::get(Context, EltTys, Record[0]);
1849 break;
1850 }
1851 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N]
1852 if (convertToString(Record, 0, TypeName))
1853 return error("Invalid record");
1854 continue;
1855
1856 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1857 if (Record.empty())
1858 return error("Invalid record");
1859
1860 if (NumRecords >= TypeList.size())
1861 return error("Invalid TYPE table");
1862
1863 // Check to see if this was forward referenced, if so fill in the temp.
1864 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1865 if (Res) {
1866 Res->setName(TypeName);
1867 TypeList[NumRecords] = nullptr;
1868 } else // Otherwise, create a new struct.
1869 Res = createIdentifiedStructType(Context, TypeName);
1870 TypeName.clear();
1871
1872 SmallVector<Type*, 8> EltTys;
1873 for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1874 if (Type *T = getTypeByID(Record[i]))
1875 EltTys.push_back(T);
1876 else
1877 break;
1878 }
1879 if (EltTys.size() != Record.size()-1)
1880 return error("Invalid record");
1881 Res->setBody(EltTys, Record[0]);
1882 ResultTy = Res;
1883 break;
1884 }
1885 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: []
1886 if (Record.size() != 1)
1887 return error("Invalid record");
1888
1889 if (NumRecords >= TypeList.size())
1890 return error("Invalid TYPE table");
1891
1892 // Check to see if this was forward referenced, if so fill in the temp.
1893 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1894 if (Res) {
1895 Res->setName(TypeName);
1896 TypeList[NumRecords] = nullptr;
1897 } else // Otherwise, create a new struct with no body.
1898 Res = createIdentifiedStructType(Context, TypeName);
1899 TypeName.clear();
1900 ResultTy = Res;
1901 break;
1902 }
1903 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
1904 if (Record.size() < 2)
1905 return error("Invalid record");
1906 ResultTy = getTypeByID(Record[1]);
1907 if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1908 return error("Invalid type");
1909 ResultTy = ArrayType::get(ResultTy, Record[0]);
1910 break;
1911 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or
1912 // [numelts, eltty, scalable]
1913 if (Record.size() < 2)
1914 return error("Invalid record");
1915 if (Record[0] == 0)
1916 return error("Invalid vector length");
1917 ResultTy = getTypeByID(Record[1]);
1918 if (!ResultTy || !StructType::isValidElementType(ResultTy))
1919 return error("Invalid type");
1920 bool Scalable = Record.size() > 2 ? Record[2] : false;
1921 ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
1922 break;
1923 }
1924
1925 if (NumRecords >= TypeList.size())
1926 return error("Invalid TYPE table");
1927 if (TypeList[NumRecords])
1928 return error(
1929 "Invalid TYPE table: Only named structs can be forward referenced");
1930 assert(ResultTy && "Didn't read a type?")(static_cast<void> (0));
1931 TypeList[NumRecords++] = ResultTy;
1932 }
1933}
1934
1935Error BitcodeReader::parseOperandBundleTags() {
1936 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1937 return Err;
1938
1939 if (!BundleTags.empty())
1940 return error("Invalid multiple blocks");
1941
1942 SmallVector<uint64_t, 64> Record;
1943
1944 while (true) {
1945 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1946 if (!MaybeEntry)
1947 return MaybeEntry.takeError();
1948 BitstreamEntry Entry = MaybeEntry.get();
1949
1950 switch (Entry.Kind) {
1951 case BitstreamEntry::SubBlock: // Handled for us already.
1952 case BitstreamEntry::Error:
1953 return error("Malformed block");
1954 case BitstreamEntry::EndBlock:
1955 return Error::success();
1956 case BitstreamEntry::Record:
1957 // The interesting case.
1958 break;
1959 }
1960
1961 // Tags are implicitly mapped to integers by their order.
1962
1963 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1964 if (!MaybeRecord)
1965 return MaybeRecord.takeError();
1966 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
1967 return error("Invalid record");
1968
1969 // OPERAND_BUNDLE_TAG: [strchr x N]
1970 BundleTags.emplace_back();
1971 if (convertToString(Record, 0, BundleTags.back()))
1972 return error("Invalid record");
1973 Record.clear();
1974 }
1975}
1976
1977Error BitcodeReader::parseSyncScopeNames() {
1978 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1979 return Err;
1980
1981 if (!SSIDs.empty())
1982 return error("Invalid multiple synchronization scope names blocks");
1983
1984 SmallVector<uint64_t, 64> Record;
1985 while (true) {
1986 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1987 if (!MaybeEntry)
1988 return MaybeEntry.takeError();
1989 BitstreamEntry Entry = MaybeEntry.get();
1990
1991 switch (Entry.Kind) {
1992 case BitstreamEntry::SubBlock: // Handled for us already.
1993 case BitstreamEntry::Error:
1994 return error("Malformed block");
1995 case BitstreamEntry::EndBlock:
1996 if (SSIDs.empty())
1997 return error("Invalid empty synchronization scope names block");
1998 return Error::success();
1999 case BitstreamEntry::Record:
2000 // The interesting case.
2001 break;
2002 }
2003
2004 // Synchronization scope names are implicitly mapped to synchronization
2005 // scope IDs by their order.
2006
2007 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2008 if (!MaybeRecord)
2009 return MaybeRecord.takeError();
2010 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2011 return error("Invalid record");
2012
2013 SmallString<16> SSN;
2014 if (convertToString(Record, 0, SSN))
2015 return error("Invalid record");
2016
2017 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2018 Record.clear();
2019 }
2020}
2021
2022/// Associate a value with its name from the given index in the provided record.
2023Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2024 unsigned NameIndex, Triple &TT) {
2025 SmallString<128> ValueName;
2026 if (convertToString(Record, NameIndex, ValueName))
2027 return error("Invalid record");
2028 unsigned ValueID = Record[0];
2029 if (ValueID >= ValueList.size() || !ValueList[ValueID])
2030 return error("Invalid record");
2031 Value *V = ValueList[ValueID];
2032
2033 StringRef NameStr(ValueName.data(), ValueName.size());
2034 if (NameStr.find_first_of(0) != StringRef::npos)
2035 return error("Invalid value name");
2036 V->setName(NameStr);
2037 auto *GO = dyn_cast<GlobalObject>(V);
2038 if (GO) {
2039 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
2040 if (TT.supportsCOMDAT())
2041 GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2042 else
2043 GO->setComdat(nullptr);
2044 }
2045 }
2046 return V;
2047}
2048
2049/// Helper to note and return the current location, and jump to the given
2050/// offset.
2051static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2052 BitstreamCursor &Stream) {
2053 // Save the current parsing location so we can jump back at the end
2054 // of the VST read.
2055 uint64_t CurrentBit = Stream.GetCurrentBitNo();
2056 if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2057 return std::move(JumpFailed);
2058 Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2059 if (!MaybeEntry)
2060 return MaybeEntry.takeError();
2061 assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock)(static_cast<void> (0));
2062 assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID)(static_cast<void> (0));
2063 return CurrentBit;
2064}
2065
2066void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2067 Function *F,
2068 ArrayRef<uint64_t> Record) {
2069 // Note that we subtract 1 here because the offset is relative to one word
2070 // before the start of the identification or module block, which was
2071 // historically always the start of the regular bitcode header.
2072 uint64_t FuncWordOffset = Record[1] - 1;
2073 uint64_t FuncBitOffset = FuncWordOffset * 32;
2074 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2075 // Set the LastFunctionBlockBit to point to the last function block.
2076 // Later when parsing is resumed after function materialization,
2077 // we can simply skip that last function block.
2078 if (FuncBitOffset > LastFunctionBlockBit)
2079 LastFunctionBlockBit = FuncBitOffset;
2080}
2081
2082/// Read a new-style GlobalValue symbol table.
2083Error BitcodeReader::parseGlobalValueSymbolTable() {
2084 unsigned FuncBitcodeOffsetDelta =
2085 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2086
2087 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2088 return Err;
2089
2090 SmallVector<uint64_t, 64> Record;
2091 while (true) {
2092 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2093 if (!MaybeEntry)
2094 return MaybeEntry.takeError();
2095 BitstreamEntry Entry = MaybeEntry.get();
2096
2097 switch (Entry.Kind) {
2098 case BitstreamEntry::SubBlock:
2099 case BitstreamEntry::Error:
2100 return error("Malformed block");
2101 case BitstreamEntry::EndBlock:
2102 return Error::success();
2103 case BitstreamEntry::Record:
2104 break;
2105 }
2106
2107 Record.clear();
2108 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2109 if (!MaybeRecord)
2110 return MaybeRecord.takeError();
2111 switch (MaybeRecord.get()) {
2112 case bitc::VST_CODE_FNENTRY: // [valueid, offset]
2113 setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2114 cast<Function>(ValueList[Record[0]]), Record);
2115 break;
2116 }
2117 }
2118}
2119
2120/// Parse the value symbol table at either the current parsing location or
2121/// at the given bit offset if provided.
2122Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2123 uint64_t CurrentBit;
2124 // Pass in the Offset to distinguish between calling for the module-level
2125 // VST (where we want to jump to the VST offset) and the function-level
2126 // VST (where we don't).
2127 if (Offset > 0) {
2128 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2129 if (!MaybeCurrentBit)
2130 return MaybeCurrentBit.takeError();
2131 CurrentBit = MaybeCurrentBit.get();
2132 // If this module uses a string table, read this as a module-level VST.
2133 if (UseStrtab) {
2134 if (Error Err = parseGlobalValueSymbolTable())
2135 return Err;
2136 if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2137 return JumpFailed;
2138 return Error::success();
2139 }
2140 // Otherwise, the VST will be in a similar format to a function-level VST,
2141 // and will contain symbol names.
2142 }
2143
2144 // Compute the delta between the bitcode indices in the VST (the word offset
2145 // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2146 // expected by the lazy reader. The reader's EnterSubBlock expects to have
2147 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2148 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2149 // just before entering the VST subblock because: 1) the EnterSubBlock
2150 // changes the AbbrevID width; 2) the VST block is nested within the same
2151 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2152 // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2153 // jump to the FUNCTION_BLOCK using this offset later, we don't want
2154 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2155 unsigned FuncBitcodeOffsetDelta =
2156 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2157
2158 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2159 return Err;
2160
2161 SmallVector<uint64_t, 64> Record;
2162
2163 Triple TT(TheModule->getTargetTriple());
2164
2165 // Read all the records for this value table.
2166 SmallString<128> ValueName;
2167
2168 while (true) {
2169 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2170 if (!MaybeEntry)
2171 return MaybeEntry.takeError();
2172 BitstreamEntry Entry = MaybeEntry.get();
2173
2174 switch (Entry.Kind) {
2175 case BitstreamEntry::SubBlock: // Handled for us already.
2176 case BitstreamEntry::Error:
2177 return error("Malformed block");
2178 case BitstreamEntry::EndBlock:
2179 if (Offset > 0)
2180 if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2181 return JumpFailed;
2182 return Error::success();
2183 case BitstreamEntry::Record:
2184 // The interesting case.
2185 break;
2186 }
2187
2188 // Read a record.
2189 Record.clear();
2190 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2191 if (!MaybeRecord)
2192 return MaybeRecord.takeError();
2193 switch (MaybeRecord.get()) {
2194 default: // Default behavior: unknown type.
2195 break;
2196 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
2197 Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2198 if (Error Err = ValOrErr.takeError())
2199 return Err;
2200 ValOrErr.get();
2201 break;
2202 }
2203 case bitc::VST_CODE_FNENTRY: {
2204 // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2205 Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2206 if (Error Err = ValOrErr.takeError())
2207 return Err;
2208 Value *V = ValOrErr.get();
2209
2210 // Ignore function offsets emitted for aliases of functions in older
2211 // versions of LLVM.
2212 if (auto *F = dyn_cast<Function>(V))
2213 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2214 break;
2215 }
2216 case bitc::VST_CODE_BBENTRY: {
2217 if (convertToString(Record, 1, ValueName))
2218 return error("Invalid record");
2219 BasicBlock *BB = getBasicBlock(Record[0]);
2220 if (!BB)
2221 return error("Invalid record");
2222
2223 BB->setName(StringRef(ValueName.data(), ValueName.size()));
2224 ValueName.clear();
2225 break;
2226 }
2227 }
2228 }
2229}
2230
2231/// Decode a signed value stored with the sign bit in the LSB for dense VBR
2232/// encoding.
2233uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2234 if ((V & 1) == 0)
2235 return V >> 1;
2236 if (V != 1)
2237 return -(V >> 1);
2238 // There is no such thing as -0 with integers. "-0" really means MININT.
2239 return 1ULL << 63;
2240}
2241
2242/// Resolve all of the initializers for global values and aliases that we can.
2243Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2244 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2245 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2246 IndirectSymbolInitWorklist;
2247 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2248 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2249 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2250
2251 GlobalInitWorklist.swap(GlobalInits);
2252 IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2253 FunctionPrefixWorklist.swap(FunctionPrefixes);
2254 FunctionPrologueWorklist.swap(FunctionPrologues);
2255 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2256
2257 while (!GlobalInitWorklist.empty()) {
2258 unsigned ValID = GlobalInitWorklist.back().second;
2259 if (ValID >= ValueList.size()) {
2260 // Not ready to resolve this yet, it requires something later in the file.
2261 GlobalInits.push_back(GlobalInitWorklist.back());
2262 } else {
2263 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2264 GlobalInitWorklist.back().first->setInitializer(C);
2265 else
2266 return error("Expected a constant");
2267 }
2268 GlobalInitWorklist.pop_back();
2269 }
2270
2271 while (!IndirectSymbolInitWorklist.empty()) {
2272 unsigned ValID = IndirectSymbolInitWorklist.back().second;
2273 if (ValID >= ValueList.size()) {
2274 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2275 } else {
2276 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2277 if (!C)
2278 return error("Expected a constant");
2279 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2280 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2281 return error("Alias and aliasee types don't match");
2282 GIS->setIndirectSymbol(C);
2283 }
2284 IndirectSymbolInitWorklist.pop_back();
2285 }
2286
2287 while (!FunctionPrefixWorklist.empty()) {
2288 unsigned ValID = FunctionPrefixWorklist.back().second;
2289 if (ValID >= ValueList.size()) {
2290 FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2291 } else {
2292 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2293 FunctionPrefixWorklist.back().first->setPrefixData(C);
2294 else
2295 return error("Expected a constant");
2296 }
2297 FunctionPrefixWorklist.pop_back();
2298 }
2299
2300 while (!FunctionPrologueWorklist.empty()) {
2301 unsigned ValID = FunctionPrologueWorklist.back().second;
2302 if (ValID >= ValueList.size()) {
2303 FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2304 } else {
2305 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2306 FunctionPrologueWorklist.back().first->setPrologueData(C);
2307 else
2308 return error("Expected a constant");
2309 }
2310 FunctionPrologueWorklist.pop_back();
2311 }
2312
2313 while (!FunctionPersonalityFnWorklist.empty()) {
2314 unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2315 if (ValID >= ValueList.size()) {
2316 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2317 } else {
2318 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2319 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2320 else
2321 return error("Expected a constant");
2322 }
2323 FunctionPersonalityFnWorklist.pop_back();
2324 }
2325
2326 return Error::success();
2327}
2328
2329APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2330 SmallVector<uint64_t, 8> Words(Vals.size());
2331 transform(Vals, Words.begin(),
2332 BitcodeReader::decodeSignRotatedValue);
2333
2334 return APInt(TypeBits, Words);
2335}
2336
2337Error BitcodeReader::parseConstants() {
2338 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
1
Calling 'Error::operator bool'
4
Returning from 'Error::operator bool'
5
Taking false branch
2339 return Err;
2340
2341 SmallVector<uint64_t, 64> Record;
2342
2343 // Read all the records for this value table.
2344 Type *CurTy = Type::getInt32Ty(Context);
2345 unsigned NextCstNo = ValueList.size();
2346
2347 struct DelayedShufTy {
2348 VectorType *OpTy;
2349 VectorType *RTy;
2350 uint64_t Op0Idx;
2351 uint64_t Op1Idx;
2352 uint64_t Op2Idx;
2353 unsigned CstNo;
2354 };
2355 std::vector<DelayedShufTy> DelayedShuffles;
2356 while (true) {
6
Loop condition is true. Entering loop body
2357 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2358 if (!MaybeEntry)
7
Calling 'Expected::operator bool'
10
Returning from 'Expected::operator bool'
11
Taking false branch
2359 return MaybeEntry.takeError();
2360 BitstreamEntry Entry = MaybeEntry.get();
2361
2362 switch (Entry.Kind) {
12
Control jumps to 'case Record:' at line 2398
2363 case BitstreamEntry::SubBlock: // Handled for us already.
2364 case BitstreamEntry::Error:
2365 return error("Malformed block");
2366 case BitstreamEntry::EndBlock:
2367 // Once all the constants have been read, go through and resolve forward
2368 // references.
2369 //
2370 // We have to treat shuffles specially because they don't have three
2371 // operands anymore. We need to convert the shuffle mask into an array,
2372 // and we can't convert a forward reference.
2373 for (auto &DelayedShuffle : DelayedShuffles) {
2374 VectorType *OpTy = DelayedShuffle.OpTy;
2375 VectorType *RTy = DelayedShuffle.RTy;
2376 uint64_t Op0Idx = DelayedShuffle.Op0Idx;
2377 uint64_t Op1Idx = DelayedShuffle.Op1Idx;
2378 uint64_t Op2Idx = DelayedShuffle.Op2Idx;
2379 uint64_t CstNo = DelayedShuffle.CstNo;
2380 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy);
2381 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy);
2382 Type *ShufTy =
2383 VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount());
2384 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy);
2385 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2386 return error("Invalid shufflevector operands");
2387 SmallVector<int, 16> Mask;
2388 ShuffleVectorInst::getShuffleMask(Op2, Mask);
2389 Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask);
2390 ValueList.assignValue(V, CstNo);
2391 }
2392
2393 if (NextCstNo != ValueList.size())
2394 return error("Invalid constant reference");
2395
2396 ValueList.resolveConstantForwardRefs();
2397 return Error::success();
2398 case BitstreamEntry::Record:
2399 // The interesting case.
2400 break;
13
Execution continues on line 2404
2401 }
2402
2403 // Read a record.
2404 Record.clear();
2405 Type *VoidType = Type::getVoidTy(Context);
2406 Value *V = nullptr;
2407 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2408 if (!MaybeBitCode)
14
Calling 'Expected::operator bool'
17
Returning from 'Expected::operator bool'
18
Taking false branch
2409 return MaybeBitCode.takeError();
2410 switch (unsigned BitCode = MaybeBitCode.get()) {
19
Control jumps to 'case CST_CODE_CE_INBOUNDS_GEP:' at line 2639
2411 default: // Default behavior: unknown constant
2412 case bitc::CST_CODE_UNDEF: // UNDEF
2413 V = UndefValue::get(CurTy);
2414 break;
2415 case bitc::CST_CODE_POISON: // POISON
2416 V = PoisonValue::get(CurTy);
2417 break;
2418 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid]
2419 if (Record.empty())
2420 return error("Invalid record");
2421 if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2422 return error("Invalid record");
2423 if (TypeList[Record[0]] == VoidType)
2424 return error("Invalid constant type");
2425 CurTy = TypeList[Record[0]];
2426 continue; // Skip the ValueList manipulation.
2427 case bitc::CST_CODE_NULL: // NULL
2428 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
2429 return error("Invalid type for a constant null value");
2430 V = Constant::getNullValue(CurTy);
2431 break;
2432 case bitc::CST_CODE_INTEGER: // INTEGER: [intval]
2433 if (!CurTy->isIntegerTy() || Record.empty())
2434 return error("Invalid record");
2435 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2436 break;
2437 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2438 if (!CurTy->isIntegerTy() || Record.empty())
2439 return error("Invalid record");
2440
2441 APInt VInt =
2442 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2443 V = ConstantInt::get(Context, VInt);
2444
2445 break;
2446 }
2447 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval]
2448 if (Record.empty())
2449 return error("Invalid record");
2450 if (CurTy->isHalfTy())
2451 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2452 APInt(16, (uint16_t)Record[0])));
2453 else if (CurTy->isBFloatTy())
2454 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
2455 APInt(16, (uint32_t)Record[0])));
2456 else if (CurTy->isFloatTy())
2457 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2458 APInt(32, (uint32_t)Record[0])));
2459 else if (CurTy->isDoubleTy())
2460 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2461 APInt(64, Record[0])));
2462 else if (CurTy->isX86_FP80Ty()) {
2463 // Bits are not stored the same way as a normal i80 APInt, compensate.
2464 uint64_t Rearrange[2];
2465 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2466 Rearrange[1] = Record[0] >> 48;
2467 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2468 APInt(80, Rearrange)));
2469 } else if (CurTy->isFP128Ty())
2470 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2471 APInt(128, Record)));
2472 else if (CurTy->isPPC_FP128Ty())
2473 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2474 APInt(128, Record)));
2475 else
2476 V = UndefValue::get(CurTy);
2477 break;
2478 }
2479
2480 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2481 if (Record.empty())
2482 return error("Invalid record");
2483
2484 unsigned Size = Record.size();
2485 SmallVector<Constant*, 16> Elts;
2486
2487 if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2488 for (unsigned i = 0; i != Size; ++i)
2489 Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2490 STy->getElementType(i)));
2491 V = ConstantStruct::get(STy, Elts);
2492 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2493 Type *EltTy = ATy->getElementType();
2494 for (unsigned i = 0; i != Size; ++i)
2495 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2496 V = ConstantArray::get(ATy, Elts);
2497 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2498 Type *EltTy = VTy->getElementType();
2499 for (unsigned i = 0; i != Size; ++i)
2500 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2501 V = ConstantVector::get(Elts);
2502 } else {
2503 V = UndefValue::get(CurTy);
2504 }
2505 break;
2506 }
2507 case bitc::CST_CODE_STRING: // STRING: [values]
2508 case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2509 if (Record.empty())
2510 return error("Invalid record");
2511
2512 SmallString<16> Elts(Record.begin(), Record.end());
2513 V = ConstantDataArray::getString(Context, Elts,
2514 BitCode == bitc::CST_CODE_CSTRING);
2515 break;
2516 }
2517 case bitc::CST_CODE_DATA: {// DATA: [n x value]
2518 if (Record.empty())
2519 return error("Invalid record");
2520
2521 Type *EltTy;
2522 if (auto *Array = dyn_cast<ArrayType>(CurTy))
2523 EltTy = Array->getElementType();
2524 else
2525 EltTy = cast<VectorType>(CurTy)->getElementType();
2526 if (EltTy->isIntegerTy(8)) {
2527 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2528 if (isa<VectorType>(CurTy))
2529 V = ConstantDataVector::get(Context, Elts);
2530 else
2531 V = ConstantDataArray::get(Context, Elts);
2532 } else if (EltTy->isIntegerTy(16)) {
2533 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2534 if (isa<VectorType>(CurTy))
2535 V = ConstantDataVector::get(Context, Elts);
2536 else
2537 V = ConstantDataArray::get(Context, Elts);
2538 } else if (EltTy->isIntegerTy(32)) {
2539 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2540 if (isa<VectorType>(CurTy))
2541 V = ConstantDataVector::get(Context, Elts);
2542 else
2543 V = ConstantDataArray::get(Context, Elts);
2544 } else if (EltTy->isIntegerTy(64)) {
2545 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2546 if (isa<VectorType>(CurTy))
2547 V = ConstantDataVector::get(Context, Elts);
2548 else
2549 V = ConstantDataArray::get(Context, Elts);
2550 } else if (EltTy->isHalfTy()) {
2551 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2552 if (isa<VectorType>(CurTy))
2553 V = ConstantDataVector::getFP(EltTy, Elts);
2554 else
2555 V = ConstantDataArray::getFP(EltTy, Elts);
2556 } else if (EltTy->isBFloatTy()) {
2557 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2558 if (isa<VectorType>(CurTy))
2559 V = ConstantDataVector::getFP(EltTy, Elts);
2560 else
2561 V = ConstantDataArray::getFP(EltTy, Elts);
2562 } else if (EltTy->isFloatTy()) {
2563 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2564 if (isa<VectorType>(CurTy))
2565 V = ConstantDataVector::getFP(EltTy, Elts);
2566 else
2567 V = ConstantDataArray::getFP(EltTy, Elts);
2568 } else if (EltTy->isDoubleTy()) {
2569 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2570 if (isa<VectorType>(CurTy))
2571 V = ConstantDataVector::getFP(EltTy, Elts);
2572 else
2573 V = ConstantDataArray::getFP(EltTy, Elts);
2574 } else {
2575 return error("Invalid type for value");
2576 }
2577 break;
2578 }
2579 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval]
2580 if (Record.size() < 2)
2581 return error("Invalid record");
2582 int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2583 if (Opc < 0) {
2584 V = UndefValue::get(CurTy); // Unknown unop.
2585 } else {
2586 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2587 unsigned Flags = 0;
2588 V = ConstantExpr::get(Opc, LHS, Flags);
2589 }
2590 break;
2591 }
2592 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval]
2593 if (Record.size() < 3)
2594 return error("Invalid record");
2595 int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2596 if (Opc < 0) {
2597 V = UndefValue::get(CurTy); // Unknown binop.
2598 } else {
2599 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2600 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2601 unsigned Flags = 0;
2602 if (Record.size() >= 4) {
2603 if (Opc == Instruction::Add ||
2604 Opc == Instruction::Sub ||
2605 Opc == Instruction::Mul ||
2606 Opc == Instruction::Shl) {
2607 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2608 Flags |= OverflowingBinaryOperator::NoSignedWrap;
2609 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2610 Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2611 } else if (Opc == Instruction::SDiv ||
2612 Opc == Instruction::UDiv ||
2613 Opc == Instruction::LShr ||
2614 Opc == Instruction::AShr) {
2615 if (Record[3] & (1 << bitc::PEO_EXACT))
2616 Flags |= SDivOperator::IsExact;
2617 }
2618 }
2619 V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2620 }
2621 break;
2622 }
2623 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
2624 if (Record.size() < 3)
2625 return error("Invalid record");
2626 int Opc = getDecodedCastOpcode(Record[0]);
2627 if (Opc < 0) {
2628 V = UndefValue::get(CurTy); // Unknown cast.
2629 } else {
2630 Type *OpTy = getTypeByID(Record[1]);
2631 if (!OpTy)
2632 return error("Invalid record");
2633 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2634 V = UpgradeBitCastExpr(Opc, Op, CurTy);
2635 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2636 }
2637 break;
2638 }
2639 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2640 case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2641 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2642 // operands]
2643 unsigned OpNum = 0;
2644 Type *PointeeType = nullptr;
2645 if (BitCode
19.1
'BitCode' is not equal to CST_CODE_CE_GEP_WITH_INRANGE_INDEX
19.1
'BitCode' is not equal to CST_CODE_CE_GEP_WITH_INRANGE_INDEX
== bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
21
Taking false branch
2646 Record.size() % 2)
20
Assuming the condition is false
2647 PointeeType = getTypeByID(Record[OpNum++]);
2648
2649 bool InBounds = false;
2650 Optional<unsigned> InRangeIndex;
2651 if (BitCode
21.1
'BitCode' is not equal to CST_CODE_CE_GEP_WITH_INRANGE_INDEX
21.1
'BitCode' is not equal to CST_CODE_CE_GEP_WITH_INRANGE_INDEX
== bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
22
Taking false branch
2652 uint64_t Op = Record[OpNum++];
2653 InBounds = Op & 1;
2654 InRangeIndex = Op >> 1;
2655 } else if (BitCode
22.1
'BitCode' is equal to CST_CODE_CE_INBOUNDS_GEP
22.1
'BitCode' is equal to CST_CODE_CE_INBOUNDS_GEP
== bitc::CST_CODE_CE_INBOUNDS_GEP)
23
Taking true branch
2656 InBounds = true;
2657
2658 SmallVector<Constant*, 16> Elts;
2659 Type *Elt0FullTy = nullptr;
24
'Elt0FullTy' initialized to a null pointer value
2660 while (OpNum != Record.size()) {
25
Assuming the condition is false
26
Loop condition is false. Execution continues on line 2669
2661 if (!Elt0FullTy)
2662 Elt0FullTy = getTypeByID(Record[OpNum]);
2663 Type *ElTy = getTypeByID(Record[OpNum++]);
2664 if (!ElTy)
2665 return error("Invalid record");
2666 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2667 }
2668
2669 if (Elts.size() < 1)
27
Assuming the condition is false
28
Taking false branch
2670 return error("Invalid gep with no operands");
2671
2672 PointerType *OrigPtrTy = cast<PointerType>(Elt0FullTy->getScalarType());
29
Called C++ object pointer is null
2673 if (!PointeeType)
2674 PointeeType = OrigPtrTy->getElementType();
2675 else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType))
2676 return error("Explicit gep operator type does not match pointee type "
2677 "of pointer operand");
2678
2679 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2680 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2681 InBounds, InRangeIndex);
2682 break;
2683 }
2684 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#]
2685 if (Record.size() < 3)
2686 return error("Invalid record");
2687
2688 Type *SelectorTy = Type::getInt1Ty(Context);
2689
2690 // The selector might be an i1, an <n x i1>, or a <vscale x n x i1>
2691 // Get the type from the ValueList before getting a forward ref.
2692 if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2693 if (Value *V = ValueList[Record[0]])
2694 if (SelectorTy != V->getType())
2695 SelectorTy = VectorType::get(SelectorTy,
2696 VTy->getElementCount());
2697
2698 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2699 SelectorTy),
2700 ValueList.getConstantFwdRef(Record[1],CurTy),
2701 ValueList.getConstantFwdRef(Record[2],CurTy));
2702 break;
2703 }
2704 case bitc::CST_CODE_CE_EXTRACTELT
2705 : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2706 if (Record.size() < 3)
2707 return error("Invalid record");
2708 VectorType *OpTy =
2709 dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2710 if (!OpTy)
2711 return error("Invalid record");
2712 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2713 Constant *Op1 = nullptr;
2714 if (Record.size() == 4) {
2715 Type *IdxTy = getTypeByID(Record[2]);
2716 if (!IdxTy)
2717 return error("Invalid record");
2718 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2719 } else {
2720 // Deprecated, but still needed to read old bitcode files.
2721 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2722 }
2723 if (!Op1)
2724 return error("Invalid record");
2725 V = ConstantExpr::getExtractElement(Op0, Op1);
2726 break;
2727 }
2728 case bitc::CST_CODE_CE_INSERTELT
2729 : { // CE_INSERTELT: [opval, opval, opty, opval]
2730 VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2731 if (Record.size() < 3 || !OpTy)
2732 return error("Invalid record");
2733 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2734 Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2735 OpTy->getElementType());
2736 Constant *Op2 = nullptr;
2737 if (Record.size() == 4) {
2738 Type *IdxTy = getTypeByID(Record[2]);
2739 if (!IdxTy)
2740 return error("Invalid record");
2741 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2742 } else {
2743 // Deprecated, but still needed to read old bitcode files.
2744 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2745 }
2746 if (!Op2)
2747 return error("Invalid record");
2748 V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2749 break;
2750 }
2751 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2752 VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2753 if (Record.size() < 3 || !OpTy)
2754 return error("Invalid record");
2755 DelayedShuffles.push_back(
2756 {OpTy, OpTy, Record[0], Record[1], Record[2], NextCstNo});
2757 ++NextCstNo;
2758 continue;
2759 }
2760 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2761 VectorType *RTy = dyn_cast<VectorType>(CurTy);
2762 VectorType *OpTy =
2763 dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2764 if (Record.size() < 4 || !RTy || !OpTy)
2765 return error("Invalid record");
2766 DelayedShuffles.push_back(
2767 {OpTy, RTy, Record[1], Record[2], Record[3], NextCstNo});
2768 ++NextCstNo;
2769 continue;
2770 }
2771 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred]
2772 if (Record.size() < 4)
2773 return error("Invalid record");
2774 Type *OpTy = getTypeByID(Record[0]);
2775 if (!OpTy)
2776 return error("Invalid record");
2777 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2778 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2779
2780 if (OpTy->isFPOrFPVectorTy())
2781 V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2782 else
2783 V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2784 break;
2785 }
2786 // This maintains backward compatibility, pre-asm dialect keywords.
2787 // Deprecated, but still needed to read old bitcode files.
2788 case bitc::CST_CODE_INLINEASM_OLD: {
2789 if (Record.size() < 2)
2790 return error("Invalid record");
2791 std::string AsmStr, ConstrStr;
2792 bool HasSideEffects = Record[0] & 1;
2793 bool IsAlignStack = Record[0] >> 1;
2794 unsigned AsmStrSize = Record[1];
2795 if (2+AsmStrSize >= Record.size())
2796 return error("Invalid record");
2797 unsigned ConstStrSize = Record[2+AsmStrSize];
2798 if (3+AsmStrSize+ConstStrSize > Record.size())
2799 return error("Invalid record");
2800
2801 for (unsigned i = 0; i != AsmStrSize; ++i)
2802 AsmStr += (char)Record[2+i];
2803 for (unsigned i = 0; i != ConstStrSize; ++i)
2804 ConstrStr += (char)Record[3+AsmStrSize+i];
2805 UpgradeInlineAsmString(&AsmStr);
2806 V = InlineAsm::get(
2807 cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()),
2808 AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2809 break;
2810 }
2811 // This version adds support for the asm dialect keywords (e.g.,
2812 // inteldialect).
2813 case bitc::CST_CODE_INLINEASM_OLD2: {
2814 if (Record.size() < 2)
2815 return error("Invalid record");
2816 std::string AsmStr, ConstrStr;
2817 bool HasSideEffects = Record[0] & 1;
2818 bool IsAlignStack = (Record[0] >> 1) & 1;
2819 unsigned AsmDialect = Record[0] >> 2;
2820 unsigned AsmStrSize = Record[1];
2821 if (2+AsmStrSize >= Record.size())
2822 return error("Invalid record");
2823 unsigned ConstStrSize = Record[2+AsmStrSize];
2824 if (3+AsmStrSize+ConstStrSize > Record.size())
2825 return error("Invalid record");
2826
2827 for (unsigned i = 0; i != AsmStrSize; ++i)
2828 AsmStr += (char)Record[2+i];
2829 for (unsigned i = 0; i != ConstStrSize; ++i)
2830 ConstrStr += (char)Record[3+AsmStrSize+i];
2831 UpgradeInlineAsmString(&AsmStr);
2832 V = InlineAsm::get(
2833 cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()),
2834 AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2835 InlineAsm::AsmDialect(AsmDialect));
2836 break;
2837 }
2838 // This version adds support for the unwind keyword.
2839 case bitc::CST_CODE_INLINEASM: {
2840 if (Record.size() < 2)
2841 return error("Invalid record");
2842 std::string AsmStr, ConstrStr;
2843 bool HasSideEffects = Record[0] & 1;
2844 bool IsAlignStack = (Record[0] >> 1) & 1;
2845 unsigned AsmDialect = (Record[0] >> 2) & 1;
2846 bool CanThrow = (Record[0] >> 3) & 1;
2847 unsigned AsmStrSize = Record[1];
2848 if (2 + AsmStrSize >= Record.size())
2849 return error("Invalid record");
2850 unsigned ConstStrSize = Record[2 + AsmStrSize];
2851 if (3 + AsmStrSize + ConstStrSize > Record.size())
2852 return error("Invalid record");
2853
2854 for (unsigned i = 0; i != AsmStrSize; ++i)
2855 AsmStr += (char)Record[2 + i];
2856 for (unsigned i = 0; i != ConstStrSize; ++i)
2857 ConstrStr += (char)Record[3 + AsmStrSize + i];
2858 UpgradeInlineAsmString(&AsmStr);
2859 V = InlineAsm::get(
2860 cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()),
2861 AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2862 InlineAsm::AsmDialect(AsmDialect), CanThrow);
2863 break;
2864 }
2865 case bitc::CST_CODE_BLOCKADDRESS:{
2866 if (Record.size() < 3)
2867 return error("Invalid record");
2868 Type *FnTy = getTypeByID(Record[0]);
2869 if (!FnTy)
2870 return error("Invalid record");
2871 Function *Fn =
2872 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2873 if (!Fn)
2874 return error("Invalid record");
2875
2876 // If the function is already parsed we can insert the block address right
2877 // away.
2878 BasicBlock *BB;
2879 unsigned BBID = Record[2];
2880 if (!BBID)
2881 // Invalid reference to entry block.
2882 return error("Invalid ID");
2883 if (!Fn->empty()) {
2884 Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2885 for (size_t I = 0, E = BBID; I != E; ++I) {
2886 if (BBI == BBE)
2887 return error("Invalid ID");
2888 ++BBI;
2889 }
2890 BB = &*BBI;
2891 } else {
2892 // Otherwise insert a placeholder and remember it so it can be inserted
2893 // when the function is parsed.
2894 auto &FwdBBs = BasicBlockFwdRefs[Fn];
2895 if (FwdBBs.empty())
2896 BasicBlockFwdRefQueue.push_back(Fn);
2897 if (FwdBBs.size() < BBID + 1)
2898 FwdBBs.resize(BBID + 1);
2899 if (!FwdBBs[BBID])
2900 FwdBBs[BBID] = BasicBlock::Create(Context);
2901 BB = FwdBBs[BBID];
2902 }
2903 V = BlockAddress::get(Fn, BB);
2904 break;
2905 }
2906 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
2907 if (Record.size() < 2)
2908 return error("Invalid record");
2909 Type *GVTy = getTypeByID(Record[0]);
2910 if (!GVTy)
2911 return error("Invalid record");
2912 GlobalValue *GV = dyn_cast_or_null<GlobalValue>(
2913 ValueList.getConstantFwdRef(Record[1], GVTy));
2914 if (!GV)
2915 return error("Invalid record");
2916
2917 V = DSOLocalEquivalent::get(GV);
2918 break;
2919 }
2920 }
2921
2922 ValueList.assignValue(V, NextCstNo);
2923 ++NextCstNo;
2924 }
2925}
2926
2927Error BitcodeReader::parseUseLists() {
2928 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2929 return Err;
2930
2931 // Read all the records.
2932 SmallVector<uint64_t, 64> Record;
2933
2934 while (true) {
2935 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2936 if (!MaybeEntry)
2937 return MaybeEntry.takeError();
2938 BitstreamEntry Entry = MaybeEntry.get();
2939
2940 switch (Entry.Kind) {
2941 case BitstreamEntry::SubBlock: // Handled for us already.
2942 case BitstreamEntry::Error:
2943 return error("Malformed block");
2944 case BitstreamEntry::EndBlock:
2945 return Error::success();
2946 case BitstreamEntry::Record:
2947 // The interesting case.
2948 break;
2949 }
2950
2951 // Read a use list record.
2952 Record.clear();
2953 bool IsBB = false;
2954 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2955 if (!MaybeRecord)
2956 return MaybeRecord.takeError();
2957 switch (MaybeRecord.get()) {
2958 default: // Default behavior: unknown type.
2959 break;
2960 case bitc::USELIST_CODE_BB:
2961 IsBB = true;
2962 LLVM_FALLTHROUGH[[gnu::fallthrough]];
2963 case bitc::USELIST_CODE_DEFAULT: {
2964 unsigned RecordLength = Record.size();
2965 if (RecordLength < 3)
2966 // Records should have at least an ID and two indexes.
2967 return error("Invalid record");
2968 unsigned ID = Record.pop_back_val();
2969
2970 Value *V;
2971 if (IsBB) {
2972 assert(ID < FunctionBBs.size() && "Basic block not found")(static_cast<void> (0));
2973 V = FunctionBBs[ID];
2974 } else
2975 V = ValueList[ID];
2976 unsigned NumUses = 0;
2977 SmallDenseMap<const Use *, unsigned, 16> Order;
2978 for (const Use &U : V->materialized_uses()) {
2979 if (++NumUses > Record.size())
2980 break;
2981 Order[&U] = Record[NumUses - 1];
2982 }
2983 if (Order.size() != Record.size() || NumUses > Record.size())
2984 // Mismatches can happen if the functions are being materialized lazily
2985 // (out-of-order), or a value has been upgraded.
2986 break;
2987
2988 V->sortUseList([&](const Use &L, const Use &R) {
2989 return Order.lookup(&L) < Order.lookup(&R);
2990 });
2991 break;
2992 }
2993 }
2994 }
2995}
2996
2997/// When we see the block for metadata, remember where it is and then skip it.
2998/// This lets us lazily deserialize the metadata.
2999Error BitcodeReader::rememberAndSkipMetadata() {
3000 // Save the current stream state.
3001 uint64_t CurBit = Stream.GetCurrentBitNo();
3002 DeferredMetadataInfo.push_back(CurBit);
3003
3004 // Skip over the block for now.
3005 if (Error Err = Stream.SkipBlock())
3006 return Err;
3007 return Error::success();
3008}
3009
3010Error BitcodeReader::materializeMetadata() {
3011 for (uint64_t BitPos : DeferredMetadataInfo) {
3012 // Move the bit stream to the saved position.
3013 if (Error JumpFailed = Stream.JumpToBit(BitPos))
3014 return JumpFailed;
3015 if (Error Err = MDLoader->parseModuleMetadata())
3016 return Err;
3017 }
3018
3019 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3020 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3021 // multiple times.
3022 if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3023 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3024 NamedMDNode *LinkerOpts =
3025 TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3026 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3027 LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3028 }
3029 }
3030
3031 DeferredMetadataInfo.clear();
3032 return Error::success();
3033}
3034
3035void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3036
3037/// When we see the block for a function body, remember where it is and then
3038/// skip it. This lets us lazily deserialize the functions.
3039Error BitcodeReader::rememberAndSkipFunctionBody() {
3040 // Get the function we are talking about.
3041 if (FunctionsWithBodies.empty())
3042 return error("Insufficient function protos");
3043
3044 Function *Fn = FunctionsWithBodies.back();
3045 FunctionsWithBodies.pop_back();
3046
3047 // Save the current stream state.
3048 uint64_t CurBit = Stream.GetCurrentBitNo();
3049 assert((static_cast<void> (0))
3050 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&(static_cast<void> (0))
3051 "Mismatch between VST and scanned function offsets")(static_cast<void> (0));
3052 DeferredFunctionInfo[Fn] = CurBit;
3053
3054 // Skip over the function block for now.
3055 if (Error Err = Stream.SkipBlock())
3056 return Err;
3057 return Error::success();
3058}
3059
3060Error BitcodeReader::globalCleanup() {
3061 // Patch the initializers for globals and aliases up.
3062 if (Error Err = resolveGlobalAndIndirectSymbolInits())
3063 return Err;
3064 if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3065 return error("Malformed global initializer set");
3066
3067 // Look for intrinsic functions which need to be upgraded at some point
3068 // and functions that need to have their function attributes upgraded.
3069 for (Function &F : *TheModule) {
3070 MDLoader->upgradeDebugIntrinsics(F);
3071 Function *NewFn;
3072 if (UpgradeIntrinsicFunction(&F, NewFn))
3073 UpgradedIntrinsics[&F] = NewFn;
3074 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3075 // Some types could be renamed during loading if several modules are
3076 // loaded in the same LLVMContext (LTO scenario). In this case we should
3077 // remangle intrinsics names as well.
3078 RemangledIntrinsics[&F] = Remangled.getValue();
3079 // Look for functions that rely on old function attribute behavior.
3080 UpgradeFunctionAttributes(F);
3081 }
3082
3083 // Look for global variables which need to be renamed.
3084 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3085 for (GlobalVariable &GV : TheModule->globals())
3086 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3087 UpgradedVariables.emplace_back(&GV, Upgraded);
3088 for (auto &Pair : UpgradedVariables) {
3089 Pair.first->eraseFromParent();
3090 TheModule->getGlobalList().push_back(Pair.second);
3091 }
3092
3093 // Force deallocation of memory for these vectors to favor the client that
3094 // want lazy deserialization.
3095 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3096 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
3097 IndirectSymbolInits);
3098 return Error::success();
3099}
3100
3101/// Support for lazy parsing of function bodies. This is required if we
3102/// either have an old bitcode file without a VST forward declaration record,
3103/// or if we have an anonymous function being materialized, since anonymous
3104/// functions do not have a name and are therefore not in the VST.
3105Error BitcodeReader::rememberAndSkipFunctionBodies() {
3106 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3107 return JumpFailed;
3108
3109 if (Stream.AtEndOfStream())
3110 return error("Could not find function in stream");
3111
3112 if (!SeenFirstFunctionBody)
3113 return error("Trying to materialize functions before seeing function blocks");
3114
3115 // An old bitcode file with the symbol table at the end would have
3116 // finished the parse greedily.
3117 assert(SeenValueSymbolTable)(static_cast<void> (0));
3118
3119 SmallVector<uint64_t, 64> Record;
3120
3121 while (true) {
3122 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3123 if (!MaybeEntry)
3124 return MaybeEntry.takeError();
3125 llvm::BitstreamEntry Entry = MaybeEntry.get();
3126
3127 switch (Entry.Kind) {
3128 default:
3129 return error("Expect SubBlock");
3130 case BitstreamEntry::SubBlock:
3131 switch (Entry.ID) {
3132 default:
3133 return error("Expect function block");
3134 case bitc::FUNCTION_BLOCK_ID:
3135 if (Error Err = rememberAndSkipFunctionBody())
3136 return Err;
3137 NextUnreadBit = Stream.GetCurrentBitNo();
3138 return Error::success();
3139 }
3140 }
3141 }
3142}
3143
3144bool BitcodeReaderBase::readBlockInfo() {
3145 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3146 Stream.ReadBlockInfoBlock();
3147 if (!MaybeNewBlockInfo)
3148 return true; // FIXME Handle the error.
3149 Optional<BitstreamBlockInfo> NewBlockInfo =
3150 std::move(MaybeNewBlockInfo.get());
3151 if (!NewBlockInfo)
3152 return true;
3153 BlockInfo = std::move(*NewBlockInfo);
3154 return false;
3155}
3156
3157Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3158 // v1: [selection_kind, name]
3159 // v2: [strtab_offset, strtab_size, selection_kind]
3160 StringRef Name;
3161 std::tie(Name, Record) = readNameFromStrtab(Record);
3162
3163 if (Record.empty())
3164 return error("Invalid record");
3165 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3166 std::string OldFormatName;
3167 if (!UseStrtab) {
3168 if (Record.size() < 2)
3169 return error("Invalid record");
3170 unsigned ComdatNameSize = Record[1];
3171 OldFormatName.reserve(ComdatNameSize);
3172 for (unsigned i = 0; i != ComdatNameSize; ++i)
3173 OldFormatName += (char)Record[2 + i];
3174 Name = OldFormatName;
3175 }
3176 Comdat *C = TheModule->getOrInsertComdat(Name);
3177 C->setSelectionKind(SK);
3178 ComdatList.push_back(C);
3179 return Error::success();
3180}
3181
3182static void inferDSOLocal(GlobalValue *GV) {
3183 // infer dso_local from linkage and visibility if it is not encoded.
3184 if (GV->hasLocalLinkage() ||
3185 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3186 GV->setDSOLocal(true);
3187}
3188
3189Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3190 // v1: [pointer type, isconst, initid, linkage, alignment, section,
3191 // visibility, threadlocal, unnamed_addr, externally_initialized,
3192 // dllstorageclass, comdat, attributes, preemption specifier,
3193 // partition strtab offset, partition strtab size] (name in VST)
3194 // v2: [strtab_offset, strtab_size, v1]
3195 StringRef Name;
3196 std::tie(Name, Record) = readNameFromStrtab(Record);
3197
3198 if (Record.size() < 6)
3199 return error("Invalid record");
3200 Type *Ty = getTypeByID(Record[0]);
3201 if (!Ty)
3202 return error("Invalid record");
3203 bool isConstant = Record[1] & 1;
3204 bool explicitType = Record[1] & 2;
3205 unsigned AddressSpace;
3206 if (explicitType) {
3207 AddressSpace = Record[1] >> 2;
3208 } else {
3209 if (!Ty->isPointerTy())
3210 return error("Invalid type for value");
3211 AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3212 Ty = cast<PointerType>(Ty)->getElementType();
3213 }
3214
3215 uint64_t RawLinkage = Record[3];
3216 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3217 MaybeAlign Alignment;
3218 if (Error Err = parseAlignmentValue(Record[4], Alignment))
3219 return Err;
3220 std::string Section;
3221 if (Record[5]) {
3222 if (Record[5] - 1 >= SectionTable.size())
3223 return error("Invalid ID");
3224 Section = SectionTable[Record[5] - 1];
3225 }
3226 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3227 // Local linkage must have default visibility.
3228 // auto-upgrade `hidden` and `protected` for old bitcode.
3229 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3230 Visibility = getDecodedVisibility(Record[6]);
3231
3232 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3233 if (Record.size() > 7)
3234 TLM = getDecodedThreadLocalMode(Record[7]);
3235
3236 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3237 if (Record.size() > 8)
3238 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3239
3240 bool ExternallyInitialized = false;
3241 if (Record.size() > 9)
3242 ExternallyInitialized = Record[9];
3243
3244 GlobalVariable *NewGV =
3245 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3246 nullptr, TLM, AddressSpace, ExternallyInitialized);
3247 NewGV->setAlignment(Alignment);
3248 if (!Section.empty())
3249 NewGV->setSection(Section);
3250 NewGV->setVisibility(Visibility);
3251 NewGV->setUnnamedAddr(UnnamedAddr);
3252
3253 if (Record.size() > 10)
3254 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3255 else
3256 upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3257
3258 ValueList.push_back(NewGV);
3259
3260 // Remember which value to use for the global initializer.
3261 if (unsigned InitID = Record[2])
3262 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3263
3264 if (Record.size() > 11) {
3265 if (unsigned ComdatID = Record[11]) {
3266 if (ComdatID > ComdatList.size())
3267 return error("Invalid global variable comdat ID");
3268 NewGV->setComdat(ComdatList[ComdatID - 1]);
3269 }
3270 } else if (hasImplicitComdat(RawLinkage)) {
3271 NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3272 }
3273
3274 if (Record.size() > 12) {
3275 auto AS = getAttributes(Record[12]).getFnAttrs();
3276 NewGV->setAttributes(AS);
3277 }
3278
3279 if (Record.size() > 13) {
3280 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3281 }
3282 inferDSOLocal(NewGV);
3283
3284 // Check whether we have enough values to read a partition name.
3285 if (Record.size() > 15)
3286 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3287
3288 return Error::success();
3289}
3290
3291Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3292 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3293 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3294 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST)
3295 // v2: [strtab_offset, strtab_size, v1]
3296 StringRef Name;
3297 std::tie(Name, Record) = readNameFromStrtab(Record);
3298
3299 if (Record.size() < 8)
3300 return error("Invalid record");
3301 Type *FTy = getTypeByID(Record[0]);
3302 if (!FTy)
3303 return error("Invalid record");
3304 if (auto *PTy = dyn_cast<PointerType>(FTy))
3305 FTy = PTy->getElementType();
3306
3307 if (!isa<FunctionType>(FTy))
3308 return error("Invalid type for value");
3309 auto CC = static_cast<CallingConv::ID>(Record[1]);
3310 if (CC & ~CallingConv::MaxID)
3311 return error("Invalid calling convention ID");
3312
3313 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3314 if (Record.size() > 16)
3315 AddrSpace = Record[16];
3316
3317 Function *Func =
3318 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3319 AddrSpace, Name, TheModule);
3320
3321 assert(Func->getFunctionType() == FTy &&(static_cast<void> (0))
3322 "Incorrect fully specified type provided for function")(static_cast<void> (0));
3323 FunctionTypes[Func] = cast<FunctionType>(FTy);
3324
3325 Func->setCallingConv(CC);
3326 bool isProto = Record[2];
3327 uint64_t RawLinkage = Record[3];
3328 Func->setLinkage(getDecodedLinkage(RawLinkage));
3329 Func->setAttributes(getAttributes(Record[4]));
3330
3331 // Upgrade any old-style byval or sret without a type by propagating the
3332 // argument's pointee type. There should be no opaque pointers where the byval
3333 // type is implicit.
3334 for (unsigned i = 0; i != Func->arg_size(); ++i) {
3335 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3336 Attribute::InAlloca}) {
3337 if (!Func->hasParamAttribute(i, Kind))
3338 continue;
3339
3340 if (Func->getParamAttribute(i, Kind).getValueAsType())
3341 continue;
3342
3343 Func->removeParamAttr(i, Kind);
3344
3345 Type *PTy = cast<FunctionType>(FTy)->getParamType(i);
3346 Type *PtrEltTy = cast<PointerType>(PTy)->getElementType();
3347 Attribute NewAttr;
3348 switch (Kind) {
3349 case Attribute::ByVal:
3350 NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3351 break;
3352 case Attribute::StructRet:
3353 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3354 break;
3355 case Attribute::InAlloca:
3356 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3357 break;
3358 default:
3359 llvm_unreachable("not an upgraded type attribute")__builtin_unreachable();
3360 }
3361
3362 Func->addParamAttr(i, NewAttr);
3363 }
3364 }
3365
3366 MaybeAlign Alignment;
3367 if (Error Err = parseAlignmentValue(Record[5], Alignment))
3368 return Err;
3369 Func->setAlignment(Alignment);
3370 if (Record[6]) {
3371 if (Record[6] - 1 >= SectionTable.size())
3372 return error("Invalid ID");
3373 Func->setSection(SectionTable[Record[6] - 1]);
3374 }
3375 // Local linkage must have default visibility.
3376 // auto-upgrade `hidden` and `protected` for old bitcode.
3377 if (!Func->hasLocalLinkage())
3378 Func->setVisibility(getDecodedVisibility(Record[7]));
3379 if (Record.size() > 8 && Record[8]) {
3380 if (Record[8] - 1 >= GCTable.size())
3381 return error("Invalid ID");
3382 Func->setGC(GCTable[Record[8] - 1]);
3383 }
3384 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3385 if (Record.size() > 9)
3386 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3387 Func->setUnnamedAddr(UnnamedAddr);
3388 if (Record.size() > 10 && Record[10] != 0)
3389 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
3390
3391 if (Record.size() > 11)
3392 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3393 else
3394 upgradeDLLImportExportLinkage(Func, RawLinkage);
3395
3396 if (Record.size() > 12) {
3397 if (unsigned ComdatID = Record[12]) {
3398 if (ComdatID > ComdatList.size())
3399 return error("Invalid function comdat ID");
3400 Func->setComdat(ComdatList[ComdatID - 1]);
3401 }
3402 } else if (hasImplicitComdat(RawLinkage)) {
3403 Func->setComdat(reinterpret_cast<Comdat *>(1));
3404 }
3405
3406 if (Record.size() > 13 && Record[13] != 0)
3407 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
3408
3409 if (Record.size() > 14 && Record[14] != 0)
3410 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3411
3412 if (Record.size() > 15) {
3413 Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3414 }
3415 inferDSOLocal(Func);
3416
3417 // Record[16] is the address space number.
3418
3419 // Check whether we have enough values to read a partition name. Also make
3420 // sure Strtab has enough values.
3421 if (Record.size() > 18 && Strtab.data() &&
3422 Record[17] + Record[18] <= Strtab.size()) {
3423 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3424 }
3425
3426 ValueList.push_back(Func);
3427
3428 // If this is a function with a body, remember the prototype we are
3429 // creating now, so that we can match up the body with them later.
3430 if (!isProto) {
3431 Func->setIsMaterializable(true);
3432 FunctionsWithBodies.push_back(Func);
3433 DeferredFunctionInfo[Func] = 0;
3434 }
3435 return Error::success();
3436}
3437
3438Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3439 unsigned BitCode, ArrayRef<uint64_t> Record) {
3440 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3441 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3442 // dllstorageclass, threadlocal, unnamed_addr,
3443 // preemption specifier] (name in VST)
3444 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3445 // visibility, dllstorageclass, threadlocal, unnamed_addr,
3446 // preemption specifier] (name in VST)
3447 // v2: [strtab_offset, strtab_size, v1]
3448 StringRef Name;
3449 std::tie(Name, Record) = readNameFromStrtab(Record);
3450
3451 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3452 if (Record.size() < (3 + (unsigned)NewRecord))
3453 return error("Invalid record");
3454 unsigned OpNum = 0;
3455 Type *Ty = getTypeByID(Record[OpNum++]);
3456 if (!Ty)
3457 return error("Invalid record");
3458
3459 unsigned AddrSpace;
3460 if (!NewRecord) {
3461 auto *PTy = dyn_cast<PointerType>(Ty);
3462 if (!PTy)
3463 return error("Invalid type for value");
3464 Ty = PTy->getElementType();
3465 AddrSpace = PTy->getAddressSpace();
3466 } else {
3467 AddrSpace = Record[OpNum++];
3468 }
3469
3470 auto Val = Record[OpNum++];
3471 auto Linkage = Record[OpNum++];
3472 GlobalIndirectSymbol *NewGA;
3473 if (BitCode == bitc::MODULE_CODE_ALIAS ||
3474 BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3475 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3476 TheModule);
3477 else
3478 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3479 nullptr, TheModule);
3480
3481 // Local linkage must have default visibility.
3482 // auto-upgrade `hidden` and `protected` for old bitcode.
3483 if (OpNum != Record.size()) {
3484 auto VisInd = OpNum++;
3485 if (!NewGA->hasLocalLinkage())
3486 NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3487 }
3488 if (BitCode == bitc::MODULE_CODE_ALIAS ||
3489 BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3490 if (OpNum != Record.size())
3491 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3492 else
3493 upgradeDLLImportExportLinkage(NewGA, Linkage);
3494 if (OpNum != Record.size())
3495 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3496 if (OpNum != Record.size())
3497 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3498 }
3499 if (OpNum != Record.size())
3500 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3501 inferDSOLocal(NewGA);
3502
3503 // Check whether we have enough values to read a partition name.
3504 if (OpNum + 1 < Record.size()) {
3505 NewGA->setPartition(
3506 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3507 OpNum += 2;
3508 }
3509
3510 ValueList.push_back(NewGA);
3511 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3512 return Error::success();
3513}
3514
3515Error BitcodeReader::parseModule(uint64_t ResumeBit,
3516 bool ShouldLazyLoadMetadata,
3517 DataLayoutCallbackTy DataLayoutCallback) {
3518 if (ResumeBit) {
3519 if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3520 return JumpFailed;
3521 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3522 return Err;
3523
3524 SmallVector<uint64_t, 64> Record;
3525
3526 // Parts of bitcode parsing depend on the datalayout. Make sure we
3527 // finalize the datalayout before we run any of that code.
3528 bool ResolvedDataLayout = false;
3529 auto ResolveDataLayout = [&] {
3530 if (ResolvedDataLayout)
3531 return;
3532
3533 // datalayout and triple can't be parsed after this point.
3534 ResolvedDataLayout = true;
3535
3536 // Upgrade data layout string.
3537 std::string DL = llvm::UpgradeDataLayoutString(
3538 TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
3539 TheModule->setDataLayout(DL);
3540
3541 if (auto LayoutOverride =
3542 DataLayoutCallback(TheModule->getTargetTriple()))
3543 TheModule->setDataLayout(*LayoutOverride);
3544 };
3545
3546 // Read all the records for this module.
3547 while (true) {
3548 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3549 if (!MaybeEntry)
3550 return MaybeEntry.takeError();
3551 llvm::BitstreamEntry Entry = MaybeEntry.get();
3552
3553 switch (Entry.Kind) {
3554 case BitstreamEntry::Error:
3555 return error("Malformed block");
3556 case BitstreamEntry::EndBlock:
3557 ResolveDataLayout();
3558 return globalCleanup();
3559
3560 case BitstreamEntry::SubBlock:
3561 switch (Entry.ID) {
3562 default: // Skip unknown content.
3563 if (Error Err = Stream.SkipBlock())
3564 return Err;
3565 break;
3566 case bitc::BLOCKINFO_BLOCK_ID:
3567 if (readBlockInfo())
3568 return error("Malformed block");
3569 break;
3570 case bitc::PARAMATTR_BLOCK_ID:
3571 if (Error Err = parseAttributeBlock())
3572 return Err;
3573 break;
3574 case bitc::PARAMATTR_GROUP_BLOCK_ID:
3575 if (Error Err = parseAttributeGroupBlock())
3576 return Err;
3577 break;
3578 case bitc::TYPE_BLOCK_ID_NEW:
3579 if (Error Err = parseTypeTable())
3580 return Err;
3581 break;
3582 case bitc::VALUE_SYMTAB_BLOCK_ID:
3583 if (!SeenValueSymbolTable) {
3584 // Either this is an old form VST without function index and an
3585 // associated VST forward declaration record (which would have caused
3586 // the VST to be jumped to and parsed before it was encountered
3587 // normally in the stream), or there were no function blocks to
3588 // trigger an earlier parsing of the VST.
3589 assert(VSTOffset == 0 || FunctionsWithBodies.empty())(static_cast<void> (0));
3590 if (Error Err = parseValueSymbolTable())
3591 return Err;
3592 SeenValueSymbolTable = true;
3593 } else {
3594 // We must have had a VST forward declaration record, which caused
3595 // the parser to jump to and parse the VST earlier.
3596 assert(VSTOffset > 0)(static_cast<void> (0));
3597 if (Error Err = Stream.SkipBlock())
3598 return Err;
3599 }
3600 break;
3601 case bitc::CONSTANTS_BLOCK_ID:
3602 if (Error Err = parseConstants())
3603 return Err;
3604 if (Error Err = resolveGlobalAndIndirectSymbolInits())
3605 return Err;
3606 break;
3607 case bitc::METADATA_BLOCK_ID:
3608 if (ShouldLazyLoadMetadata) {
3609 if (Error Err = rememberAndSkipMetadata())
3610 return Err;
3611 break;
3612 }
3613 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata")(static_cast<void> (0));
3614 if (Error Err = MDLoader->parseModuleMetadata())
3615 return Err;
3616 break;
3617 case bitc::METADATA_KIND_BLOCK_ID:
3618 if (Error Err = MDLoader->parseMetadataKinds())
3619 return Err;
3620 break;
3621 case bitc::FUNCTION_BLOCK_ID:
3622 ResolveDataLayout();
3623
3624 // If this is the first function body we've seen, reverse the
3625 // FunctionsWithBodies list.
3626 if (!SeenFirstFunctionBody) {
3627 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3628 if (Error Err = globalCleanup())
3629 return Err;
3630 SeenFirstFunctionBody = true;
3631 }
3632
3633 if (VSTOffset > 0) {
3634 // If we have a VST forward declaration record, make sure we
3635 // parse the VST now if we haven't already. It is needed to
3636 // set up the DeferredFunctionInfo vector for lazy reading.
3637 if (!SeenValueSymbolTable) {
3638 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3639 return Err;
3640 SeenValueSymbolTable = true;
3641 // Fall through so that we record the NextUnreadBit below.
3642 // This is necessary in case we have an anonymous function that
3643 // is later materialized. Since it will not have a VST entry we
3644 // need to fall back to the lazy parse to find its offset.
3645 } else {
3646 // If we have a VST forward declaration record, but have already
3647 // parsed the VST (just above, when the first function body was
3648 // encountered here), then we are resuming the parse after
3649 // materializing functions. The ResumeBit points to the
3650 // start of the last function block recorded in the
3651 // DeferredFunctionInfo map. Skip it.
3652 if (Error Err = Stream.SkipBlock())
3653 return Err;
3654 continue;
3655 }
3656 }
3657
3658 // Support older bitcode files that did not have the function
3659 // index in the VST, nor a VST forward declaration record, as
3660 // well as anonymous functions that do not have VST entries.
3661 // Build the DeferredFunctionInfo vector on the fly.
3662 if (Error Err = rememberAndSkipFunctionBody())
3663 return Err;
3664
3665 // Suspend parsing when we reach the function bodies. Subsequent
3666 // materialization calls will resume it when necessary. If the bitcode
3667 // file is old, the symbol table will be at the end instead and will not
3668 // have been seen yet. In this case, just finish the parse now.
3669 if (SeenValueSymbolTable) {
3670 NextUnreadBit = Stream.GetCurrentBitNo();
3671 // After the VST has been parsed, we need to make sure intrinsic name
3672 // are auto-upgraded.
3673 return globalCleanup();
3674 }
3675 break;
3676 case bitc::USELIST_BLOCK_ID:
3677 if (Error Err = parseUseLists())
3678 return Err;
3679 break;
3680 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3681 if (Error Err = parseOperandBundleTags())
3682 return Err;
3683 break;
3684 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3685 if (Error Err = parseSyncScopeNames())
3686 return Err;
3687 break;
3688 }
3689 continue;
3690
3691 case BitstreamEntry::Record:
3692 // The interesting case.
3693 break;
3694 }
3695
3696 // Read a record.
3697 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3698 if (!MaybeBitCode)
3699 return MaybeBitCode.takeError();
3700 switch (unsigned BitCode = MaybeBitCode.get()) {
3701 default: break; // Default behavior, ignore unknown content.
3702 case bitc::MODULE_CODE_VERSION: {
3703 Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3704 if (!VersionOrErr)
3705 return VersionOrErr.takeError();
3706 UseRelativeIDs = *VersionOrErr >= 1;
3707 break;
3708 }
3709 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
3710 if (ResolvedDataLayout)
3711 return error("target triple too late in module");
3712 std::string S;
3713 if (convertToString(Record, 0, S))
3714 return error("Invalid record");
3715 TheModule->setTargetTriple(S);
3716 break;
3717 }
3718 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N]
3719 if (ResolvedDataLayout)
3720 return error("datalayout too late in module");
3721 std::string S;
3722 if (convertToString(Record, 0, S))
3723 return error("Invalid record");
3724 TheModule->setDataLayout(S);
3725 break;
3726 }
3727 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N]
3728 std::string S;
3729 if (convertToString(Record, 0, S))
3730 return error("Invalid record");
3731 TheModule->setModuleInlineAsm(S);
3732 break;
3733 }
3734 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N]
3735 // Deprecated, but still needed to read old bitcode files.
3736 std::string S;
3737 if (convertToString(Record, 0, S))
3738 return error("Invalid record");
3739 // Ignore value.
3740 break;
3741 }
3742 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
3743 std::string S;
3744 if (convertToString(Record, 0, S))
3745 return error("Invalid record");
3746 SectionTable.push_back(S);
3747 break;
3748 }
3749 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N]
3750 std::string S;
3751 if (convertToString(Record, 0, S))
3752 return error("Invalid record");
3753 GCTable.push_back(S);
3754 break;
3755 }
3756 case bitc::MODULE_CODE_COMDAT:
3757 if (Error Err = parseComdatRecord(Record))
3758 return Err;
3759 break;
3760 case bitc::MODULE_CODE_GLOBALVAR:
3761 if (Error Err = parseGlobalVarRecord(Record))
3762 return Err;
3763 break;
3764 case bitc::MODULE_CODE_FUNCTION:
3765 ResolveDataLayout();
3766 if (Error Err = parseFunctionRecord(Record))
3767 return Err;
3768 break;
3769 case bitc::MODULE_CODE_IFUNC:
3770 case bitc::MODULE_CODE_ALIAS:
3771 case bitc::MODULE_CODE_ALIAS_OLD:
3772 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3773 return Err;
3774 break;
3775 /// MODULE_CODE_VSTOFFSET: [offset]
3776 case bitc::MODULE_CODE_VSTOFFSET:
3777 if (Record.empty())
3778 return error("Invalid record");
3779 // Note that we subtract 1 here because the offset is relative to one word
3780 // before the start of the identification or module block, which was
3781 // historically always the start of the regular bitcode header.
3782 VSTOffset = Record[0] - 1;
3783 break;
3784 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3785 case bitc::MODULE_CODE_SOURCE_FILENAME:
3786 SmallString<128> ValueName;
3787 if (convertToString(Record, 0, ValueName))
3788 return error("Invalid record");
3789 TheModule->setSourceFileName(ValueName);
3790 break;
3791 }
3792 Record.clear();
3793 }
3794}
3795
3796Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3797 bool IsImporting,
3798 DataLayoutCallbackTy DataLayoutCallback) {
3799 TheModule = M;
3800 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3801 [&](unsigned ID) { return getTypeByID(ID); });
3802 return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback);
3803}
3804
3805Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3806 if (!isa<PointerType>(PtrType))
3807 return error("Load/Store operand is not a pointer type");
3808
3809 if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType))
3810 return error("Explicit load/store type does not match pointee "
3811 "type of pointer operand");
3812 if (!PointerType::isLoadableOrStorableType(ValType))
3813 return error("Cannot load/store from pointer");
3814 return Error::success();
3815}
3816
3817void BitcodeReader::propagateAttributeTypes(CallBase *CB,
3818 ArrayRef<Type *> ArgsTys) {
3819 for (unsigned i = 0; i != CB->arg_size(); ++i) {
3820 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3821 Attribute::InAlloca}) {
3822 if (!CB->paramHasAttr(i, Kind))
3823 continue;
3824
3825 CB->removeParamAttr(i, Kind);
3826
3827 Type *PtrEltTy = cast<PointerType>(ArgsTys[i])->getElementType();
3828 Attribute NewAttr;
3829 switch (Kind) {
3830 case Attribute::ByVal:
3831 NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3832 break;
3833 case Attribute::StructRet:
3834 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3835 break;
3836 case Attribute::InAlloca:
3837 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3838 break;
3839 default:
3840 llvm_unreachable("not an upgraded type attribute")__builtin_unreachable();
3841 }
3842
3843 CB->addParamAttr(i, NewAttr);
3844 }
3845 }
3846
3847 switch (CB->getIntrinsicID()) {
3848 case Intrinsic::preserve_array_access_index:
3849 case Intrinsic::preserve_struct_access_index:
3850 if (!CB->getAttributes().getParamElementType(0)) {
3851 Type *ElTy = cast<PointerType>(ArgsTys[0])->getElementType();
3852 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
3853 CB->addParamAttr(0, NewAttr);
3854 }
3855 break;
3856 default:
3857 break;
3858 }
3859}
3860
3861/// Lazily parse the specified function body block.
3862Error BitcodeReader::parseFunctionBody(Function *F) {
3863 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3864 return Err;
3865
3866 // Unexpected unresolved metadata when parsing function.
3867 if (MDLoader->hasFwdRefs())
3868 return error("Invalid function metadata: incoming forward references");
3869
3870 InstructionList.clear();
3871 unsigned ModuleValueListSize = ValueList.size();
3872 unsigned ModuleMDLoaderSize = MDLoader->size();
3873
3874 // Add all the function arguments to the value table.
3875#ifndef NDEBUG1
3876 unsigned ArgNo = 0;
3877 FunctionType *FTy = FunctionTypes[F];
3878#endif
3879 for (Argument &I : F->args()) {
3880 assert(I.getType() == FTy->getParamType(ArgNo++) &&(static_cast<void> (0))
3881 "Incorrect fully specified type for Function Argument")(static_cast<void> (0));
3882 ValueList.push_back(&I);
3883 }
3884 unsigned NextValueNo = ValueList.size();
3885 BasicBlock *CurBB = nullptr;
3886 unsigned CurBBNo = 0;
3887
3888 DebugLoc LastLoc;
3889 auto getLastInstruction = [&]() -> Instruction * {
3890 if (CurBB && !CurBB->empty())
3891 return &CurBB->back();
3892 else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3893 !FunctionBBs[CurBBNo - 1]->empty())
3894 return &FunctionBBs[CurBBNo - 1]->back();
3895 return nullptr;
3896 };
3897
3898 std::vector<OperandBundleDef> OperandBundles;
3899
3900 // Read all the records.
3901 SmallVector<uint64_t, 64> Record;
3902
3903 while (true) {
3904 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3905 if (!MaybeEntry)
3906 return MaybeEntry.takeError();
3907 llvm::BitstreamEntry Entry = MaybeEntry.get();
3908
3909 switch (Entry.Kind) {
3910 case BitstreamEntry::Error:
3911 return error("Malformed block");
3912 case BitstreamEntry::EndBlock:
3913 goto OutOfRecordLoop;
3914
3915 case BitstreamEntry::SubBlock:
3916 switch (Entry.ID) {
3917 default: // Skip unknown content.
3918 if (Error Err = Stream.SkipBlock())
3919 return Err;
3920 break;
3921 case bitc::CONSTANTS_BLOCK_ID:
3922 if (Error Err = parseConstants())
3923 return Err;
3924 NextValueNo = ValueList.size();
3925 break;
3926 case bitc::VALUE_SYMTAB_BLOCK_ID:
3927 if (Error Err = parseValueSymbolTable())
3928 return Err;
3929 break;
3930 case bitc::METADATA_ATTACHMENT_ID:
3931 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3932 return Err;
3933 break;
3934 case bitc::METADATA_BLOCK_ID:
3935 assert(DeferredMetadataInfo.empty() &&(static_cast<void> (0))
3936 "Must read all module-level metadata before function-level")(static_cast<void> (0));
3937 if (Error Err = MDLoader->parseFunctionMetadata())
3938 return Err;
3939 break;
3940 case bitc::USELIST_BLOCK_ID:
3941 if (Error Err = parseUseLists())
3942 return Err;
3943 break;
3944 }
3945 continue;
3946
3947 case BitstreamEntry::Record:
3948 // The interesting case.
3949 break;
3950 }
3951
3952 // Read a record.
3953 Record.clear();
3954 Instruction *I = nullptr;
3955 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3956 if (!MaybeBitCode)
3957 return MaybeBitCode.takeError();
3958 switch (unsigned BitCode = MaybeBitCode.get()) {
3959 default: // Default behavior: reject
3960 return error("Invalid value");
3961 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks]
3962 if (Record.empty() || Record[0] == 0)
3963 return error("Invalid record");
3964 // Create all the basic blocks for the function.
3965 FunctionBBs.resize(Record[0]);
3966
3967 // See if anything took the address of blocks in this function.
3968 auto BBFRI = BasicBlockFwdRefs.find(F);
3969 if (BBFRI == BasicBlockFwdRefs.end()) {
3970 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3971 FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3972 } else {
3973 auto &BBRefs = BBFRI->second;
3974 // Check for invalid basic block references.
3975 if (BBRefs.size() > FunctionBBs.size())
3976 return error("Invalid ID");
3977 assert(!BBRefs.empty() && "Unexpected empty array")(static_cast<void> (0));
3978 assert(!BBRefs.front() && "Invalid reference to entry block")(static_cast<void> (0));
3979 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3980 ++I)
3981 if (I < RE && BBRefs[I]) {
3982 BBRefs[I]->insertInto(F);
3983 FunctionBBs[I] = BBRefs[I];
3984 } else {
3985 FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3986 }
3987
3988 // Erase from the table.
3989 BasicBlockFwdRefs.erase(BBFRI);
3990 }
3991
3992 CurBB = FunctionBBs[0];
3993 continue;
3994 }
3995
3996 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN
3997 // This record indicates that the last instruction is at the same
3998 // location as the previous instruction with a location.
3999 I = getLastInstruction();
4000
4001 if (!I)
4002 return error("Invalid record");
4003 I->setDebugLoc(LastLoc);
4004 I = nullptr;
4005 continue;
4006
4007 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia]
4008 I = getLastInstruction();
4009 if (!I || Record.size() < 4)
4010 return error("Invalid record");
4011
4012 unsigned Line = Record[0], Col = Record[1];
4013 unsigned ScopeID = Record[2], IAID = Record[3];
4014 bool isImplicitCode = Record.size() == 5 && Record[4];
4015
4016 MDNode *Scope = nullptr, *IA = nullptr;
4017 if (ScopeID) {
4018 Scope = dyn_cast_or_null<MDNode>(
4019 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
4020 if (!Scope)
4021 return error("Invalid record");
4022 }
4023 if (IAID) {
4024 IA = dyn_cast_or_null<MDNode>(
4025 MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
4026 if (!IA)
4027 return error("Invalid record");
4028 }
4029 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
4030 isImplicitCode);
4031 I->setDebugLoc(LastLoc);
4032 I = nullptr;
4033 continue;
4034 }
4035 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode]
4036 unsigned OpNum = 0;
4037 Value *LHS;
4038 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4039 OpNum+1 > Record.size())
4040 return error("Invalid record");
4041
4042 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4043 if (Opc == -1)
4044 return error("Invalid record");
4045 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
4046 InstructionList.push_back(I);
4047 if (OpNum < Record.size()) {
4048 if (isa<FPMathOperator>(I)) {
4049 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4050 if (FMF.any())
4051 I->setFastMathFlags(FMF);
4052 }
4053 }
4054 break;
4055 }
4056 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode]
4057 unsigned OpNum = 0;
4058 Value *LHS, *RHS;
4059 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4060 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
4061 OpNum+1 > Record.size())
4062 return error("Invalid record");
4063
4064 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4065 if (Opc == -1)
4066 return error("Invalid record");
4067 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4068 InstructionList.push_back(I);
4069 if (OpNum < Record.size()) {
4070 if (Opc == Instruction::Add ||
4071 Opc == Instruction::Sub ||
4072 Opc == Instruction::Mul ||
4073 Opc == Instruction::Shl) {
4074 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4075 cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4076 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4077 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4078 } else if (Opc == Instruction::SDiv ||
4079 Opc == Instruction::UDiv ||
4080 Opc == Instruction::LShr ||
4081 Opc == Instruction::AShr) {
4082 if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4083 cast<BinaryOperator>(I)->setIsExact(true);
4084 } else if (isa<FPMathOperator>(I)) {
4085 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4086 if (FMF.any())
4087 I->setFastMathFlags(FMF);
4088 }
4089
4090 }
4091 break;
4092 }
4093 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc]
4094 unsigned OpNum = 0;
4095 Value *Op;
4096 if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4097 OpNum+2 != Record.size())
4098 return error("Invalid record");
4099
4100 Type *ResTy = getTypeByID(Record[OpNum]);
4101 int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4102 if (Opc == -1 || !ResTy)
4103 return error("Invalid record");
4104 Instruction *Temp = nullptr;
4105 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4106 if (Temp) {
4107 InstructionList.push_back(Temp);
4108 assert(CurBB && "No current BB?")(static_cast<void> (0));
4109 CurBB->getInstList().push_back(Temp);
4110 }
4111 } else {
4112 auto CastOp = (Instruction::CastOps)Opc;
4113 if (!CastInst::castIsValid(CastOp, Op, ResTy))
4114 return error("Invalid cast");
4115 I = CastInst::Create(CastOp, Op, ResTy);
4116 }
4117 InstructionList.push_back(I);
4118 break;
4119 }
4120 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4121 case bitc::FUNC_CODE_INST_GEP_OLD:
4122 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4123 unsigned OpNum = 0;
4124
4125 Type *Ty;
4126 bool InBounds;
4127
4128 if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4129 InBounds = Record[OpNum++];
4130 Ty = getTypeByID(Record[OpNum++]);
4131 } else {
4132 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4133 Ty = nullptr;
4134 }
4135
4136 Value *BasePtr;
4137 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
4138 return error("Invalid record");
4139
4140 if (!Ty) {
4141 Ty = cast<PointerType>(BasePtr->getType()->getScalarType())
4142 ->getElementType();
4143 } else if (!cast<PointerType>(BasePtr->getType()->getScalarType())
4144 ->isOpaqueOrPointeeTypeMatches(Ty)) {
4145 return error(
4146 "Explicit gep type does not match pointee type of pointer operand");
4147 }
4148
4149 SmallVector<Value*, 16> GEPIdx;
4150 while (OpNum != Record.size()) {
4151 Value *Op;
4152 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4153 return error("Invalid record");
4154 GEPIdx.push_back(Op);
4155 }
4156
4157 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4158
4159 InstructionList.push_back(I);
4160 if (InBounds)
4161 cast<GetElementPtrInst>(I)->setIsInBounds(true);
4162 break;
4163 }
4164
4165 case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4166 // EXTRACTVAL: [opty, opval, n x indices]
4167 unsigned OpNum = 0;
4168 Value *Agg;
4169 if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4170 return error("Invalid record");
4171 Type *Ty = Agg->getType();
4172
4173 unsigned RecSize = Record.size();
4174 if (OpNum == RecSize)
4175 return error("EXTRACTVAL: Invalid instruction with 0 indices");
4176
4177 SmallVector<unsigned, 4> EXTRACTVALIdx;
4178 for (; OpNum != RecSize; ++OpNum) {
4179 bool IsArray = Ty->isArrayTy();
4180 bool IsStruct = Ty->isStructTy();
4181 uint64_t Index = Record[OpNum];
4182
4183 if (!IsStruct && !IsArray)
4184 return error("EXTRACTVAL: Invalid type");
4185 if ((unsigned)Index != Index)
4186 return error("Invalid value");
4187 if (IsStruct && Index >= Ty->getStructNumElements())
4188 return error("EXTRACTVAL: Invalid struct index");
4189 if (IsArray && Index >= Ty->getArrayNumElements())
4190 return error("EXTRACTVAL: Invalid array index");
4191 EXTRACTVALIdx.push_back((unsigned)Index);
4192
4193 if (IsStruct)
4194 Ty = Ty->getStructElementType(Index);
4195 else
4196 Ty = Ty->getArrayElementType();
4197 }
4198
4199 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4200 InstructionList.push_back(I);
4201 break;
4202 }
4203
4204 case bitc::FUNC_CODE_INST_INSERTVAL: {
4205 // INSERTVAL: [opty, opval, opty, opval, n x indices]
4206 unsigned OpNum = 0;
4207 Value *Agg;
4208 if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4209 return error("Invalid record");
4210 Value *Val;
4211 if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4212 return error("Invalid record");
4213
4214 unsigned RecSize = Record.size();
4215 if (OpNum == RecSize)
4216 return error("INSERTVAL: Invalid instruction with 0 indices");
4217
4218 SmallVector<unsigned, 4> INSERTVALIdx;
4219 Type *CurTy = Agg->getType();
4220 for (; OpNum != RecSize; ++OpNum) {
4221 bool IsArray = CurTy->isArrayTy();
4222 bool IsStruct = CurTy->isStructTy();
4223 uint64_t Index = Record[OpNum];
4224
4225 if (!IsStruct && !IsArray)
4226 return error("INSERTVAL: Invalid type");
4227 if ((unsigned)Index != Index)
4228 return error("Invalid value");
4229 if (IsStruct && Index >= CurTy->getStructNumElements())
4230 return error("INSERTVAL: Invalid struct index");
4231 if (IsArray && Index >= CurTy->getArrayNumElements())
4232 return error("INSERTVAL: Invalid array index");
4233
4234 INSERTVALIdx.push_back((unsigned)Index);
4235 if (IsStruct)
4236 CurTy = CurTy->getStructElementType(Index);
4237 else
4238 CurTy = CurTy->getArrayElementType();
4239 }
4240
4241 if (CurTy != Val->getType())
4242 return error("Inserted value type doesn't match aggregate type");
4243
4244 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4245 InstructionList.push_back(I);
4246 break;
4247 }
4248
4249 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4250 // obsolete form of select
4251 // handles select i1 ... in old bitcode
4252 unsigned OpNum = 0;
4253 Value *TrueVal, *FalseVal, *Cond;
4254 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4255 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4256 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4257 return error("Invalid record");
4258
4259 I = SelectInst::Create(Cond, TrueVal, FalseVal);
4260 InstructionList.push_back(I);
4261 break;
4262 }
4263
4264 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4265 // new form of select
4266 // handles select i1 or select [N x i1]
4267 unsigned OpNum = 0;
4268 Value *TrueVal, *FalseVal, *Cond;
4269 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4270 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4271 getValueTypePair(Record, OpNum, NextValueNo, Cond))
4272 return error("Invalid record");
4273
4274 // select condition can be either i1 or [N x i1]
4275 if (VectorType* vector_type =
4276 dyn_cast<VectorType>(Cond->getType())) {
4277 // expect <n x i1>
4278 if (vector_type->getElementType() != Type::getInt1Ty(Context))
4279 return error("Invalid type for value");
4280 } else {
4281 // expect i1
4282 if (Cond->getType() != Type::getInt1Ty(Context))
4283 return error("Invalid type for value");
4284 }
4285
4286 I = SelectInst::Create(Cond, TrueVal, FalseVal);
4287 InstructionList.push_back(I);
4288 if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4289 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4290 if (FMF.any())
4291 I->setFastMathFlags(FMF);
4292 }
4293 break;
4294 }
4295
4296 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4297 unsigned OpNum = 0;
4298 Value *Vec, *Idx;
4299 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
4300 getValueTypePair(Record, OpNum, NextValueNo, Idx))
4301 return error("Invalid record");
4302 if (!Vec->getType()->isVectorTy())
4303 return error("Invalid type for value");
4304 I = ExtractElementInst::Create(Vec, Idx);
4305 InstructionList.push_back(I);
4306 break;
4307 }
4308
4309 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4310 unsigned OpNum = 0;
4311 Value *Vec, *Elt, *Idx;
4312 if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
4313 return error("Invalid record");
4314 if (!Vec->getType()->isVectorTy())
4315 return error("Invalid type for value");
4316 if (popValue(Record, OpNum, NextValueNo,
4317 cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4318 getValueTypePair(Record, OpNum, NextValueNo, Idx))
4319 return error("Invalid record");
4320 I = InsertElementInst::Create(Vec, Elt, Idx);
4321 InstructionList.push_back(I);
4322 break;
4323 }
4324
4325 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4326 unsigned OpNum = 0;
4327 Value *Vec1, *Vec2, *Mask;
4328 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
4329 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4330 return error("Invalid record");
4331
4332 if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4333 return error("Invalid record");
4334 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4335 return error("Invalid type for value");
4336
4337 I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4338 InstructionList.push_back(I);
4339 break;
4340 }
4341
4342 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred]
4343 // Old form of ICmp/FCmp returning bool
4344 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4345 // both legal on vectors but had different behaviour.
4346 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4347 // FCmp/ICmp returning bool or vector of bool
4348
4349 unsigned OpNum = 0;
4350 Value *LHS, *RHS;
4351 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4352 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4353 return error("Invalid record");
4354
4355 if (OpNum >= Record.size())
4356 return error(
4357 "Invalid record: operand number exceeded available operands");
4358
4359 unsigned PredVal = Record[OpNum];
4360 bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4361 FastMathFlags FMF;
4362 if (IsFP && Record.size() > OpNum+1)
4363 FMF = getDecodedFastMathFlags(Record[++OpNum]);
4364
4365 if (OpNum+1 != Record.size())
4366 return error("Invalid record");
4367
4368 if (LHS->getType()->isFPOrFPVectorTy())
4369 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4370 else
4371 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4372
4373 if (FMF.any())
4374 I->setFastMathFlags(FMF);
4375 InstructionList.push_back(I);
4376 break;
4377 }
4378
4379 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4380 {
4381 unsigned Size = Record.size();
4382 if (Size == 0) {
4383 I = ReturnInst::Create(Context);
4384 InstructionList.push_back(I);
4385 break;
4386 }
4387
4388 unsigned OpNum = 0;
4389 Value *Op = nullptr;
4390 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4391 return error("Invalid record");
4392 if (OpNum != Record.size())
4393 return error("Invalid record");
4394
4395 I = ReturnInst::Create(Context, Op);
4396 InstructionList.push_back(I);
4397 break;
4398 }
4399 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4400 if (Record.size() != 1 && Record.size() != 3)
4401 return error("Invalid record");
4402 BasicBlock *TrueDest = getBasicBlock(Record[0]);
4403 if (!TrueDest)
4404 return error("Invalid record");
4405
4406 if (Record.size() == 1) {
4407 I = BranchInst::Create(TrueDest);
4408 InstructionList.push_back(I);
4409 }
4410 else {
4411 BasicBlock *FalseDest = getBasicBlock(Record[1]);
4412 Value *Cond = getValue(Record, 2, NextValueNo,
4413 Type::getInt1Ty(Context));
4414 if (!FalseDest || !Cond)
4415 return error("Invalid record");
4416 I = BranchInst::Create(TrueDest, FalseDest, Cond);
4417 InstructionList.push_back(I);
4418 }
4419 break;
4420 }
4421 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4422 if (Record.size() != 1 && Record.size() != 2)
4423 return error("Invalid record");
4424 unsigned Idx = 0;
4425 Value *CleanupPad =
4426 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4427 if (!CleanupPad)
4428 return error("Invalid record");
4429 BasicBlock *UnwindDest = nullptr;
4430 if (Record.size() == 2) {
4431 UnwindDest = getBasicBlock(Record[Idx++]);
4432 if (!UnwindDest)
4433 return error("Invalid record");
4434 }
4435
4436 I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4437 InstructionList.push_back(I);
4438 break;
4439 }
4440 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4441 if (Record.size() != 2)
4442 return error("Invalid record");
4443 unsigned Idx = 0;
4444 Value *CatchPad =
4445 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4446 if (!CatchPad)
4447 return error("Invalid record");
4448 BasicBlock *BB = getBasicBlock(Record[Idx++]);
4449 if (!BB)
4450 return error("Invalid record");
4451
4452 I = CatchReturnInst::Create(CatchPad, BB);
4453 InstructionList.push_back(I);
4454 break;
4455 }
4456 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4457 // We must have, at minimum, the outer scope and the number of arguments.
4458 if (Record.size() < 2)
4459 return error("Invalid record");
4460
4461 unsigned Idx = 0;
4462
4463 Value *ParentPad =
4464 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4465
4466 unsigned NumHandlers = Record[Idx++];
4467
4468 SmallVector<BasicBlock *, 2> Handlers;
4469 for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4470 BasicBlock *BB = getBasicBlock(Record[Idx++]);
4471 if (!BB)
4472 return error("Invalid record");
4473 Handlers.push_back(BB);
4474 }
4475
4476 BasicBlock *UnwindDest = nullptr;
4477 if (Idx + 1 == Record.size()) {
4478 UnwindDest = getBasicBlock(Record[Idx++]);
4479 if (!UnwindDest)
4480 return error("Invalid record");
4481 }
4482
4483 if (Record.size() != Idx)
4484 return error("Invalid record");
4485
4486 auto *CatchSwitch =
4487 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4488 for (BasicBlock *Handler : Handlers)
4489 CatchSwitch->addHandler(Handler);
4490 I = CatchSwitch;
4491 InstructionList.push_back(I);
4492 break;
4493 }
4494 case bitc::FUNC_CODE_INST_CATCHPAD:
4495 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4496 // We must have, at minimum, the outer scope and the number of arguments.
4497 if (Record.size() < 2)
4498 return error("Invalid record");
4499
4500 unsigned Idx = 0;
4501
4502 Value *ParentPad =
4503 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4504
4505 unsigned NumArgOperands = Record[Idx++];
4506
4507 SmallVector<Value *, 2> Args;
4508 for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4509 Value *Val;
4510 if (getValueTypePair(Record, Idx, NextValueNo, Val))
4511 return error("Invalid record");
4512 Args.push_back(Val);
4513 }
4514
4515 if (Record.size() != Idx)
4516 return error("Invalid record");
4517
4518 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4519 I = CleanupPadInst::Create(ParentPad, Args);
4520 else
4521 I = CatchPadInst::Create(ParentPad, Args);
4522 InstructionList.push_back(I);
4523 break;
4524 }
4525 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4526 // Check magic
4527 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4528 // "New" SwitchInst format with case ranges. The changes to write this
4529 // format were reverted but we still recognize bitcode that uses it.
4530 // Hopefully someday we will have support for case ranges and can use
4531 // this format again.
4532
4533 Type *OpTy = getTypeByID(Record[1]);
4534 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4535
4536 Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4537 BasicBlock *Default = getBasicBlock(Record[3]);
4538 if (!OpTy || !Cond || !Default)
4539 return error("Invalid record");
4540
4541 unsigned NumCases = Record[4];
4542
4543 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4544 InstructionList.push_back(SI);
4545
4546 unsigned CurIdx = 5;
4547 for (unsigned i = 0; i != NumCases; ++i) {
4548 SmallVector<ConstantInt*, 1> CaseVals;
4549 unsigned NumItems = Record[CurIdx++];
4550 for (unsigned ci = 0; ci != NumItems; ++ci) {
4551 bool isSingleNumber = Record[CurIdx++];
4552
4553 APInt Low;
4554 unsigned ActiveWords = 1;
4555 if (ValueBitWidth > 64)
4556 ActiveWords = Record[CurIdx++];
4557 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4558 ValueBitWidth);
4559 CurIdx += ActiveWords;
4560
4561 if (!isSingleNumber) {
4562 ActiveWords = 1;
4563 if (ValueBitWidth > 64)
4564 ActiveWords = Record[CurIdx++];
4565 APInt High = readWideAPInt(
4566 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4567 CurIdx += ActiveWords;
4568
4569 // FIXME: It is not clear whether values in the range should be
4570 // compared as signed or unsigned values. The partially
4571 // implemented changes that used this format in the past used
4572 // unsigned comparisons.
4573 for ( ; Low.ule(High); ++Low)
4574 CaseVals.push_back(ConstantInt::get(Context, Low));
4575 } else
4576 CaseVals.push_back(ConstantInt::get(Context, Low));
4577 }
4578 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4579 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4580 cve = CaseVals.end(); cvi != cve; ++cvi)
4581 SI->addCase(*cvi, DestBB);
4582 }
4583 I = SI;
4584 break;
4585 }
4586
4587 // Old SwitchInst format without case ranges.
4588
4589 if (Record.size() < 3 || (Record.size() & 1) == 0)
4590 return error("Invalid record");
4591 Type *OpTy = getTypeByID(Record[0]);
4592 Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4593 BasicBlock *Default = getBasicBlock(Record[2]);
4594 if (!OpTy || !Cond || !Default)
4595 return error("Invalid record");
4596 unsigned NumCases = (Record.size()-3)/2;
4597 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4598 InstructionList.push_back(SI);
4599 for (unsigned i = 0, e = NumCases; i != e; ++i) {
4600 ConstantInt *CaseVal =
4601 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4602 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4603 if (!CaseVal || !DestBB) {
4604 delete SI;
4605 return error("Invalid record");
4606 }
4607 SI->addCase(CaseVal, DestBB);
4608 }
4609 I = SI;
4610 break;
4611 }
4612 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4613 if (Record.size() < 2)
4614 return error("Invalid record");
4615 Type *OpTy = getTypeByID(Record[0]);
4616 Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4617 if (!OpTy || !Address)
4618 return error("Invalid record");
4619 unsigned NumDests = Record.size()-2;
4620 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4621 InstructionList.push_back(IBI);
4622 for (unsigned i = 0, e = NumDests; i != e; ++i) {
4623 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4624 IBI->addDestination(DestBB);
4625 } else {
4626 delete IBI;
4627 return error("Invalid record");
4628 }
4629 }
4630 I = IBI;
4631 break;
4632 }
4633
4634 case bitc::FUNC_CODE_INST_INVOKE: {
4635 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4636 if (Record.size() < 4)
4637 return error("Invalid record");
4638 unsigned OpNum = 0;
4639 AttributeList PAL = getAttributes(Record[OpNum++]);
4640 unsigned CCInfo = Record[OpNum++];
4641 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4642 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4643
4644 FunctionType *FTy = nullptr;
4645 if ((CCInfo >> 13) & 1) {
4646 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]));
4647 if (!FTy)
4648 return error("Explicit invoke type is not a function type");
4649 }
4650
4651 Value *Callee;
4652 if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4653 return error("Invalid record");
4654
4655 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4656 if (!CalleeTy)
4657 return error("Callee is not a pointer");
4658 if (!FTy) {
4659 FTy = dyn_cast<FunctionType>(
4660 cast<PointerType>(Callee->getType())->getElementType());
4661 if (!FTy)
4662 return error("Callee is not of pointer to function type");
4663 } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy))
4664 return error("Explicit invoke type does not match pointee type of "
4665 "callee operand");
4666 if (Record.size() < FTy->getNumParams() + OpNum)
4667 return error("Insufficient operands to call");
4668
4669 SmallVector<Value*, 16> Ops;
4670 SmallVector<Type *, 16> ArgsTys;
4671 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4672 Ops.push_back(getValue(Record, OpNum, NextValueNo,
4673 FTy->getParamType(i)));
4674 ArgsTys.push_back(FTy->getParamType(i));
4675 if (!Ops.back())
4676 return error("Invalid record");
4677 }
4678
4679 if (!FTy->isVarArg()) {
4680 if (Record.size() != OpNum)
4681 return error("Invalid record");
4682 } else {
4683 // Read type/value pairs for varargs params.
4684 while (OpNum != Record.size()) {
4685 Value *Op;
4686 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4687 return error("Invalid record");
4688 Ops.push_back(Op);
4689 ArgsTys.push_back(Op->getType());
4690 }
4691 }
4692
4693 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4694 OperandBundles);
4695 OperandBundles.clear();
4696 InstructionList.push_back(I);
4697 cast<InvokeInst>(I)->setCallingConv(
4698 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4699 cast<InvokeInst>(I)->setAttributes(PAL);
4700 propagateAttributeTypes(cast<CallBase>(I), ArgsTys);
4701
4702 break;
4703 }
4704 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4705 unsigned Idx = 0;
4706 Value *Val = nullptr;
4707 if (getValueTypePair(Record, Idx, NextValueNo, Val))
4708 return error("Invalid record");
4709 I = ResumeInst::Create(Val);
4710 InstructionList.push_back(I);
4711 break;
4712 }
4713 case bitc::FUNC_CODE_INST_CALLBR: {
4714 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4715 unsigned OpNum = 0;
4716 AttributeList PAL = getAttributes(Record[OpNum++]);
4717 unsigned CCInfo = Record[OpNum++];
4718
4719 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4720 unsigned NumIndirectDests = Record[OpNum++];
4721 SmallVector<BasicBlock *, 16> IndirectDests;
4722 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4723 IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4724
4725 FunctionType *FTy = nullptr;
4726 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4727 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]));
4728 if (!FTy)
4729 return error("Explicit call type is not a function type");
4730 }
4731
4732 Value *Callee;
4733 if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4734 return error("Invalid record");
4735
4736 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4737 if (!OpTy)
4738 return error("Callee is not a pointer type");
4739 if (!FTy) {
4740 FTy = dyn_cast<FunctionType>(
4741 cast<PointerType>(Callee->getType())->getElementType());
4742 if (!FTy)
4743 return error("Callee is not of pointer to function type");
4744 } else if (cast<PointerType>(Callee->getType())->getElementType() != FTy)
4745 return error("Explicit call type does not match pointee type of "
4746 "callee operand");
4747 if (Record.size() < FTy->getNumParams() + OpNum)
4748 return error("Insufficient operands to call");
4749
4750 SmallVector<Value*, 16> Args;
4751 // Read the fixed params.
4752 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4753 if (FTy->getParamType(i)->isLabelTy())
4754 Args.push_back(getBasicBlock(Record[OpNum]));
4755 else
4756 Args.push_back(getValue(Record, OpNum, NextValueNo,
4757 FTy->getParamType(i)));
4758 if (!Args.back())
4759 return error("Invalid record");
4760 }
4761
4762 // Read type/value pairs for varargs params.
4763 if (!FTy->isVarArg()) {
4764 if (OpNum != Record.size())
4765 return error("Invalid record");
4766 } else {
4767 while (OpNum != Record.size()) {
4768 Value *Op;
4769 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4770 return error("Invalid record");
4771 Args.push_back(Op);
4772 }
4773 }
4774
4775 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4776 OperandBundles);
4777 OperandBundles.clear();
4778 InstructionList.push_back(I);
4779 cast<CallBrInst>(I)->setCallingConv(
4780 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4781 cast<CallBrInst>(I)->setAttributes(PAL);
4782 break;
4783 }
4784 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4785 I = new UnreachableInst(Context);
4786 InstructionList.push_back(I);
4787 break;
4788 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4789 if (Record.empty())
4790 return error("Invalid record");
4791 // The first record specifies the type.
4792 Type *Ty = getTypeByID(Record[0]);
4793 if (!Ty)
4794 return error("Invalid record");
4795
4796 // Phi arguments are pairs of records of [value, basic block].
4797 // There is an optional final record for fast-math-flags if this phi has a
4798 // floating-point type.
4799 size_t NumArgs = (Record.size() - 1) / 2;
4800 PHINode *PN = PHINode::Create(Ty, NumArgs);
4801 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN))
4802 return error("Invalid record");
4803 InstructionList.push_back(PN);
4804
4805 for (unsigned i = 0; i != NumArgs; i++) {
4806 Value *V;
4807 // With the new function encoding, it is possible that operands have
4808 // negative IDs (for forward references). Use a signed VBR
4809 // representation to keep the encoding small.
4810 if (UseRelativeIDs)
4811 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty);
4812 else
4813 V = getValue(Record, i * 2 + 1, NextValueNo, Ty);
4814 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
4815 if (!V || !BB)
4816 return error("Invalid record");
4817 PN->addIncoming(V, BB);
4818 }
4819 I = PN;
4820
4821 // If there are an even number of records, the final record must be FMF.
4822 if (Record.size() % 2 == 0) {
4823 assert(isa<FPMathOperator>(I) && "Unexpected phi type")(static_cast<void> (0));
4824 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
4825 if (FMF.any())
4826 I->setFastMathFlags(FMF);
4827 }
4828
4829 break;
4830 }
4831
4832 case bitc::FUNC_CODE_INST_LANDINGPAD:
4833 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4834 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4835 unsigned Idx = 0;
4836 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4837 if (Record.size() < 3)
4838 return error("Invalid record");
4839 } else {
4840 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD)(static_cast<void> (0));
4841 if (Record.size() < 4)
4842 return error("Invalid record");
4843 }
4844 Type *Ty = getTypeByID(Record[Idx++]);
4845 if (!Ty)
4846 return error("Invalid record");
4847 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4848 Value *PersFn = nullptr;
4849 if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4850 return error("Invalid record");
4851
4852 if (!F->hasPersonalityFn())
4853 F->setPersonalityFn(cast<Constant>(PersFn));
4854 else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4855 return error("Personality function mismatch");
4856 }
4857
4858 bool IsCleanup = !!Record[Idx++];
4859 unsigned NumClauses = Record[Idx++];
4860 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4861 LP->setCleanup(IsCleanup);
4862 for (unsigned J = 0; J != NumClauses; ++J) {
4863 LandingPadInst::ClauseType CT =
4864 LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4865 Value *Val;
4866
4867 if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4868 delete LP;
4869 return error("Invalid record");
4870 }
4871
4872 assert((CT != LandingPadInst::Catch ||(static_cast<void> (0))
4873 !isa<ArrayType>(Val->getType())) &&(static_cast<void> (0))
4874 "Catch clause has a invalid type!")(static_cast<void> (0));
4875 assert((CT != LandingPadInst::Filter ||(static_cast<void> (0))
4876 isa<ArrayType>(Val->getType())) &&(static_cast<void> (0))
4877 "Filter clause has invalid type!")(static_cast<void> (0));
4878 LP->addClause(cast<Constant>(Val));
4879 }
4880
4881 I = LP;
4882 InstructionList.push_back(I);
4883 break;
4884 }
4885
4886 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4887 if (Record.size() != 4)
4888 return error("Invalid record");
4889 using APV = AllocaPackedValues;
4890 const uint64_t Rec = Record[3];
4891 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
4892 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
4893 Type *Ty = getTypeByID(Record[0]);
4894 if (!Bitfield::get<APV::ExplicitType>(Rec)) {
4895 auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4896 if (!PTy)
4897 return error("Old-style alloca with a non-pointer type");
4898 Ty = PTy->getElementType();
4899 }
4900 Type *OpTy = getTypeByID(Record[1]);
4901 Value *Size = getFnValueByID(Record[2], OpTy);
4902 MaybeAlign Align;
4903 if (Error Err =
4904 parseAlignmentValue(Bitfield::get<APV::Align>(Rec), Align)) {
4905 return Err;
4906 }
4907 if (!Ty || !Size)
4908 return error("Invalid record");
4909
4910 // FIXME: Make this an optional field.
4911 const DataLayout &DL = TheModule->getDataLayout();
4912 unsigned AS = DL.getAllocaAddrSpace();
4913
4914 SmallPtrSet<Type *, 4> Visited;
4915 if (!Align && !Ty->isSized(&Visited))
4916 return error("alloca of unsized type");
4917 if (!Align)
4918 Align = DL.getPrefTypeAlign(Ty);
4919
4920 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
4921 AI->setUsedWithInAlloca(InAlloca);
4922 AI->setSwiftError(SwiftError);
4923 I = AI;
4924 InstructionList.push_back(I);
4925 break;
4926 }
4927 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4928 unsigned OpNum = 0;
4929 Value *Op;
4930 if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4931 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4932 return error("Invalid record");
4933
4934 if (!isa<PointerType>(Op->getType()))
4935 return error("Load operand is not a pointer type");
4936
4937 Type *Ty = nullptr;
4938 if (OpNum + 3 == Record.size()) {
4939 Ty = getTypeByID(Record[OpNum++]);
4940 } else {
4941 Ty = cast<PointerType>(Op->getType())->getElementType();
4942 }
4943
4944 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4945 return Err;
4946
4947 MaybeAlign Align;
4948 if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4949 return Err;
4950 SmallPtrSet<Type *, 4> Visited;
4951 if (!Align && !Ty->isSized(&Visited))
4952 return error("load of unsized type");
4953 if (!Align)
4954 Align = TheModule->getDataLayout().getABITypeAlign(Ty);
4955 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
4956 InstructionList.push_back(I);
4957 break;
4958 }
4959 case bitc::FUNC_CODE_INST_LOADATOMIC: {
4960 // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4961 unsigned OpNum = 0;
4962 Value *Op;
4963 if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4964 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4965 return error("Invalid record");
4966
4967 if (!isa<PointerType>(Op->getType()))
4968 return error("Load operand is not a pointer type");
4969
4970 Type *Ty = nullptr;
4971 if (OpNum + 5 == Record.size()) {
4972 Ty = getTypeByID(Record[OpNum++]);
4973 } else {
4974 Ty = cast<PointerType>(Op->getType())->getElementType();
4975 }
4976
4977 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4978 return Err;
4979
4980 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4981 if (Ordering == AtomicOrdering::NotAtomic ||
4982 Ordering == AtomicOrdering::Release ||
4983 Ordering == AtomicOrdering::AcquireRelease)
4984 return error("Invalid record");
4985 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4986 return error("Invalid record");
4987 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4988
4989 MaybeAlign Align;
4990 if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4991 return Err;
4992 if (!Align)
4993 return error("Alignment missing from atomic load");
4994 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
4995 InstructionList.push_back(I);
4996 break;
4997 }
4998 case bitc::FUNC_CODE_INST_STORE:
4999 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
5000 unsigned OpNum = 0;
5001 Value *Val, *Ptr;
5002 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5003 (BitCode == bitc::FUNC_CODE_INST_STORE
5004 ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5005 : popValue(Record, OpNum, NextValueNo,
5006 cast<PointerType>(Ptr->getType())->getElementType(),
5007 Val)) ||
5008 OpNum + 2 != Record.size())
5009 return error("Invalid record");
5010
5011 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5012 return Err;
5013 MaybeAlign Align;
5014 if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5015 return Err;
5016 SmallPtrSet<Type *, 4> Visited;
5017 if (!Align && !Val->getType()->isSized(&Visited))
5018 return error("store of unsized type");
5019 if (!Align)
5020 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
5021 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
5022 InstructionList.push_back(I);
5023 break;
5024 }
5025 case bitc::FUNC_CODE_INST_STOREATOMIC:
5026 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
5027 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
5028 unsigned OpNum = 0;
5029 Value *Val, *Ptr;
5030 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5031 !isa<PointerType>(Ptr->getType()) ||
5032 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
5033 ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5034 : popValue(Record, OpNum, NextValueNo,
5035 cast<PointerType>(Ptr->getType())->getElementType(),
5036 Val)) ||
5037 OpNum + 4 != Record.size())
5038 return error("Invalid record");
5039
5040 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5041 return Err;
5042 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5043 if (Ordering == AtomicOrdering::NotAtomic ||
5044 Ordering == AtomicOrdering::Acquire ||
5045 Ordering == AtomicOrdering::AcquireRelease)
5046 return error("Invalid record");
5047 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5048 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5049 return error("Invalid record");
5050
5051 MaybeAlign Align;
5052 if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5053 return Err;
5054 if (!Align)
5055 return error("Alignment missing from atomic store");
5056 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
5057 InstructionList.push_back(I);
5058 break;
5059 }
5060 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
5061 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
5062 // failure_ordering?, weak?]
5063 const size_t NumRecords = Record.size();
5064 unsigned OpNum = 0;
5065 Value *Ptr = nullptr;
5066 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr))
5067 return error("Invalid record");
5068
5069 if (!isa<PointerType>(Ptr->getType()))
5070 return error("Cmpxchg operand is not a pointer type");
5071
5072 Value *Cmp = nullptr;
5073 if (popValue(Record, OpNum, NextValueNo,
5074 cast<PointerType>(Ptr->getType())->getPointerElementType(),
5075 Cmp))
5076 return error("Invalid record");
5077
5078 Value *New = nullptr;
5079 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5080 NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
5081 return error("Invalid record");
5082
5083 const AtomicOrdering SuccessOrdering =
5084 getDecodedOrdering(Record[OpNum + 1]);
5085 if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5086 SuccessOrdering == AtomicOrdering::Unordered)
5087 return error("Invalid record");
5088
5089 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5090
5091 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5092 return Err;
5093
5094 const AtomicOrdering FailureOrdering =
5095 NumRecords < 7
5096 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
5097 : getDecodedOrdering(Record[OpNum + 3]);
5098
5099 if (FailureOrdering == AtomicOrdering::NotAtomic ||
5100 FailureOrdering == AtomicOrdering::Unordered)
5101 return error("Invalid record");
5102
5103 const Align Alignment(
5104 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5105
5106 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
5107 FailureOrdering, SSID);
5108 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5109
5110 if (NumRecords < 8) {
5111 // Before weak cmpxchgs existed, the instruction simply returned the
5112 // value loaded from memory, so bitcode files from that era will be
5113 // expecting the first component of a modern cmpxchg.
5114 CurBB->getInstList().push_back(I);
5115 I = ExtractValueInst::Create(I, 0);
5116 } else {
5117 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
5118 }
5119
5120 InstructionList.push_back(I);
5121 break;
5122 }
5123 case bitc::FUNC_CODE_INST_CMPXCHG: {
5124 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
5125 // failure_ordering, weak, align?]
5126 const size_t NumRecords = Record.size();
5127 unsigned OpNum = 0;
5128 Value *Ptr = nullptr;
5129 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr))
5130 return error("Invalid record");
5131
5132 if (!isa<PointerType>(Ptr->getType()))
5133 return error("Cmpxchg operand is not a pointer type");
5134
5135 Value *Cmp = nullptr;
5136 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp))
5137 return error("Invalid record");
5138
5139 Value *Val = nullptr;
5140 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val))
5141 return error("Invalid record");
5142
5143 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
5144 return error("Invalid record");
5145
5146 const bool IsVol = Record[OpNum];
5147
5148 const AtomicOrdering SuccessOrdering =
5149 getDecodedOrdering(Record[OpNum + 1]);
5150 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
5151 return error("Invalid cmpxchg success ordering");
5152
5153 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5154
5155 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5156 return Err;
5157
5158 const AtomicOrdering FailureOrdering =
5159 getDecodedOrdering(Record[OpNum + 3]);
5160 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
5161 return error("Invalid cmpxchg failure ordering");
5162
5163 const bool IsWeak = Record[OpNum + 4];
5164
5165 MaybeAlign Alignment;
5166
5167 if (NumRecords == (OpNum + 6)) {
5168 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
5169 return Err;
5170 }
5171 if (!Alignment)
5172 Alignment =
5173 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5174
5175 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
5176 FailureOrdering, SSID);
5177 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
5178 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
5179
5180 InstructionList.push_back(I);
5181 break;
5182 }
5183 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
5184 case bitc::FUNC_CODE_INST_ATOMICRMW: {
5185 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
5186 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
5187 const size_t NumRecords = Record.size();
5188 unsigned OpNum = 0;
5189
5190 Value *Ptr = nullptr;
5191 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr))
5192 return error("Invalid record");
5193
5194 if (!isa<PointerType>(Ptr->getType()))
5195 return error("Invalid record");
5196
5197 Value *Val = nullptr;
5198 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
5199 if (popValue(Record, OpNum, NextValueNo,
5200 cast<PointerType>(Ptr->getType())->getPointerElementType(),
5201 Val))
5202 return error("Invalid record");
5203 } else {
5204 if (getValueTypePair(Record, OpNum, NextValueNo, Val))
5205 return error("Invalid record");
5206 }
5207
5208 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
5209 return error("Invalid record");
5210
5211 const AtomicRMWInst::BinOp Operation =
5212 getDecodedRMWOperation(Record[OpNum]);
5213 if (Operation < AtomicRMWInst::FIRST_BINOP ||
5214 Operation > AtomicRMWInst::LAST_BINOP)
5215 return error("Invalid record");
5216
5217 const bool IsVol = Record[OpNum + 1];
5218
5219 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5220 if (Ordering == AtomicOrdering::NotAtomic ||
5221 Ordering == AtomicOrdering::Unordered)
5222 return error("Invalid record");
5223
5224 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5225
5226 MaybeAlign Alignment;
5227
5228 if (NumRecords == (OpNum + 5)) {
5229 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
5230 return Err;
5231 }
5232
5233 if (!Alignment)
5234 Alignment =
5235 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
5236
5237 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
5238 cast<AtomicRMWInst>(I)->setVolatile(IsVol);
5239
5240 InstructionList.push_back(I);
5241 break;
5242 }
5243 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
5244 if (2 != Record.size())
5245 return error("Invalid record");
5246 AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5247 if (Ordering == AtomicOrdering::NotAtomic ||
5248 Ordering == AtomicOrdering::Unordered ||
5249 Ordering == AtomicOrdering::Monotonic)
5250 return error("Invalid record");
5251 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
5252 I = new FenceInst(Context, Ordering, SSID);
5253 InstructionList.push_back(I);
5254 break;
5255 }
5256 case bitc::FUNC_CODE_INST_CALL: {
5257 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5258 if (Record.size() < 3)
5259 return error("Invalid record");
5260
5261 unsigned OpNum = 0;
5262 AttributeList PAL = getAttributes(Record[OpNum++]);
5263 unsigned CCInfo = Record[OpNum++];
5264
5265 FastMathFlags FMF;
5266 if ((CCInfo >> bitc::CALL_FMF) & 1) {
5267 FMF = getDecodedFastMathFlags(Record[OpNum++]);
5268 if (!FMF.any())
5269 return error("Fast math flags indicator set for call with no FMF");
5270 }
5271
5272 FunctionType *FTy = nullptr;
5273 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5274 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]));
5275 if (!FTy)
5276 return error("Explicit call type is not a function type");
5277 }
5278
5279 Value *Callee;
5280 if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5281 return error("Invalid record");
5282
5283 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5284 if (!OpTy)
5285 return error("Callee is not a pointer type");
5286 if (!FTy) {
5287 FTy = dyn_cast<FunctionType>(
5288 cast<PointerType>(Callee->getType())->getElementType());
5289 if (!FTy)
5290 return error("Callee is not of pointer to function type");
5291 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
5292 return error("Explicit call type does not match pointee type of "
5293 "callee operand");
5294 if (Record.size() < FTy->getNumParams() + OpNum)
5295 return error("Insufficient operands to call");
5296
5297 SmallVector<Value*, 16> Args;
5298 SmallVector<Type *, 16> ArgsTys;
5299 // Read the fixed params.
5300 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5301 if (FTy->getParamType(i)->isLabelTy())
5302 Args.push_back(getBasicBlock(Record[OpNum]));
5303 else
5304 Args.push_back(getValue(Record, OpNum, NextValueNo,
5305 FTy->getParamType(i)));
5306 ArgsTys.push_back(FTy->getParamType(i));
5307 if (!Args.back())
5308 return error("Invalid record");
5309 }
5310
5311 // Read type/value pairs for varargs params.
5312 if (!FTy->isVarArg()) {
5313 if (OpNum != Record.size())
5314 return error("Invalid record");
5315 } else {
5316 while (OpNum != Record.size()) {
5317 Value *Op;
5318 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5319 return error("Invalid record");
5320 Args.push_back(Op);
5321 ArgsTys.push_back(Op->getType());
5322 }
5323 }
5324
5325 I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5326 OperandBundles.clear();
5327 InstructionList.push_back(I);
5328 cast<CallInst>(I)->setCallingConv(
5329 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5330 CallInst::TailCallKind TCK = CallInst::TCK_None;
5331 if (CCInfo & 1 << bitc::CALL_TAIL)
5332 TCK = CallInst::TCK_Tail;
5333 if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5334 TCK = CallInst::TCK_MustTail;
5335 if (CCInfo & (1 << bitc::CALL_NOTAIL))
5336 TCK = CallInst::TCK_NoTail;
5337 cast<CallInst>(I)->setTailCallKind(TCK);
5338 cast<CallInst>(I)->setAttributes(PAL);
5339 propagateAttributeTypes(cast<CallBase>(I), ArgsTys);
5340 if (FMF.any()) {
5341 if (!isa<FPMathOperator>(I))
5342 return error("Fast-math-flags specified for call without "
5343 "floating-point scalar or vector return type");
5344 I->setFastMathFlags(FMF);
5345 }
5346 break;
5347 }
5348 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5349 if (Record.size() < 3)
5350 return error("Invalid record");
5351 Type *OpTy = getTypeByID(Record[0]);
5352 Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5353 Type *ResTy = getTypeByID(Record[2]);
5354 if (!OpTy || !Op || !ResTy)
5355 return error("Invalid record");
5356 I = new VAArgInst(Op, ResTy);
5357 InstructionList.push_back(I);
5358 break;
5359 }
5360
5361 case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5362 // A call or an invoke can be optionally prefixed with some variable
5363 // number of operand bundle blocks. These blocks are read into
5364 // OperandBundles and consumed at the next call or invoke instruction.
5365
5366 if (Record.empty() || Record[0] >= BundleTags.size())
5367 return error("Invalid record");
5368
5369 std::vector<Value *> Inputs;
5370
5371 unsigned OpNum = 1;
5372 while (OpNum != Record.size()) {
5373 Value *Op;
5374 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5375 return error("Invalid record");
5376 Inputs.push_back(Op);
5377 }
5378
5379 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5380 continue;
5381 }
5382
5383 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
5384 unsigned OpNum = 0;
5385 Value *Op = nullptr;
5386 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5387 return error("Invalid record");
5388 if (OpNum != Record.size())
5389 return error("Invalid record");
5390
5391 I = new FreezeInst(Op);
5392 InstructionList.push_back(I);
5393 break;
5394 }
5395 }
5396
5397 // Add instruction to end of current BB. If there is no current BB, reject
5398 // this file.
5399 if (!CurBB) {
5400 I->deleteValue();
5401 return error("Invalid instruction with no BB");
5402 }
5403 if (!OperandBundles.empty()) {
5404 I->deleteValue();
5405 return error("Operand bundles found with no consumer");
5406 }
5407 CurBB->getInstList().push_back(I);
5408
5409 // If this was a terminator instruction, move to the next block.
5410 if (I->isTerminator()) {
5411 ++CurBBNo;
5412 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5413 }
5414
5415 // Non-void values get registered in the value table for future use.
5416 if (!I->getType()->isVoidTy())
5417 ValueList.assignValue(I, NextValueNo++);
5418 }
5419
5420OutOfRecordLoop:
5421
5422 if (!OperandBundles.empty())
5423 return error("Operand bundles found with no consumer");
5424
5425 // Check the function list for unresolved values.
5426 if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5427 if (!A->getParent()) {
5428 // We found at least one unresolved value. Nuke them all to avoid leaks.
5429 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5430 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5431 A->replaceAllUsesWith(UndefValue::get(A->getType()));
5432 delete A;
5433 }
5434 }
5435 return error("Never resolved value found in function");
5436 }
5437 }
5438
5439 // Unexpected unresolved metadata about to be dropped.
5440 if (MDLoader->hasFwdRefs())
5441 return error("Invalid function metadata: outgoing forward refs");
5442
5443 // Trim the value list down to the size it was before we parsed this function.
5444 ValueList.shrinkTo(ModuleValueListSize);
5445 MDLoader->shrinkTo(ModuleMDLoaderSize);
5446 std::vector<BasicBlock*>().swap(FunctionBBs);
5447 return Error::success();
5448}
5449
5450/// Find the function body in the bitcode stream
5451Error BitcodeReader::findFunctionInStream(
5452 Function *F,
5453 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5454 while (DeferredFunctionInfoIterator->second == 0) {
5455 // This is the fallback handling for the old format bitcode that
5456 // didn't contain the function index in the VST, or when we have
5457 // an anonymous function which would not have a VST entry.
5458 // Assert that we have one of those two cases.
5459 assert(VSTOffset == 0 || !F->hasName())(static_cast<void> (0));
5460 // Parse the next body in the stream and set its position in the
5461 // DeferredFunctionInfo map.
5462 if (Error Err = rememberAndSkipFunctionBodies())
5463 return Err;
5464 }
5465 return Error::success();
5466}
5467
5468SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
5469 if (Val == SyncScope::SingleThread || Val == SyncScope::System)
5470 return SyncScope::ID(Val);
5471 if (Val >= SSIDs.size())
5472 return SyncScope::System; // Map unknown synchronization scopes to system.
5473 return SSIDs[Val];
5474}
5475
5476//===----------------------------------------------------------------------===//
5477// GVMaterializer implementation
5478//===----------------------------------------------------------------------===//
5479
5480Error BitcodeReader::materialize(GlobalValue *GV) {
5481 Function *F = dyn_cast<Function>(GV);
5482 // If it's not a function or is already material, ignore the request.
5483 if (!F || !F->isMaterializable())
5484 return Error::success();
5485
5486 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5487 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!")(static_cast<void> (0));
5488 // If its position is recorded as 0, its body is somewhere in the stream
5489 // but we haven't seen it yet.
5490 if (DFII->second == 0)
5491 if (Error Err = findFunctionInStream(F, DFII))
5492 return Err;
5493
5494 // Materialize metadata before parsing any function bodies.
5495 if (Error Err = materializeMetadata())
5496 return Err;
5497
5498 // Move the bit stream to the saved position of the deferred function body.
5499 if (Error JumpFailed = Stream.JumpToBit(DFII->second))
5500 return JumpFailed;
5501 if (Error Err = parseFunctionBody(F))
5502 return Err;
5503 F->setIsMaterializable(false);
5504
5505 if (StripDebugInfo)
5506 stripDebugInfo(*F);
5507
5508 // Upgrade any old intrinsic calls in the function.
5509 for (auto &I : UpgradedIntrinsics) {
5510 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5511 UI != UE;) {
5512 User *U = *UI;
5513 ++UI;
5514 if (CallInst *CI = dyn_cast<CallInst>(U))
5515 UpgradeIntrinsicCall(CI, I.second);
5516 }
5517 }
5518
5519 // Update calls to the remangled intrinsics
5520 for (auto &I : RemangledIntrinsics)
5521 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5522 UI != UE;)
5523 // Don't expect any other users than call sites
5524 cast<CallBase>(*UI++)->setCalledFunction(I.second);
5525
5526 // Finish fn->subprogram upgrade for materialized functions.
5527 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
5528 F->setSubprogram(SP);
5529
5530 // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
5531 if (!MDLoader->isStrippingTBAA()) {
5532 for (auto &I : instructions(F)) {
5533 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
5534 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
5535 continue;
5536 MDLoader->setStripTBAA(true);
5537 stripTBAA(F->getParent());
5538 }
5539 }
5540
5541 for (auto &I : instructions(F)) {
5542 // "Upgrade" older incorrect branch weights by dropping them.
5543 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
5544 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
5545 MDString *MDS = cast<MDString>(MD->getOperand(0));
5546 StringRef ProfName = MDS->getString();
5547 // Check consistency of !prof branch_weights metadata.
5548 if (!ProfName.equals("branch_weights"))
5549 continue;
5550 unsigned ExpectedNumOperands = 0;
5551 if (BranchInst *BI = dyn_cast<BranchInst>(&I))
5552 ExpectedNumOperands = BI->getNumSuccessors();
5553 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
5554 ExpectedNumOperands = SI->getNumSuccessors();
5555 else if (isa<CallInst>(&I))
5556 ExpectedNumOperands = 1;
5557 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
5558 ExpectedNumOperands = IBI->getNumDestinations();
5559 else if (isa<SelectInst>(&I))
5560 ExpectedNumOperands = 2;
5561 else
5562 continue; // ignore and continue.
5563
5564 // If branch weight doesn't match, just strip branch weight.
5565 if (MD->getNumOperands() != 1 + ExpectedNumOperands)
5566 I.setMetadata(LLVMContext::MD_prof, nullptr);
5567 }
5568 }
5569
5570 // Remove incompatible attributes on function calls.
5571 if (auto *CI = dyn_cast<CallBase>(&I)) {
5572 CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
5573 CI->getFunctionType()->getReturnType()));
5574
5575 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
5576 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
5577 CI->getArgOperand(ArgNo)->getType()));
5578 }
5579 }
5580
5581 // Look for functions that rely on old function attribute behavior.
5582 UpgradeFunctionAttributes(*F);
5583
5584 // Bring in any functions that this function forward-referenced via
5585 // blockaddresses.
5586 return materializeForwardReferencedFunctions();
5587}
5588
5589Error BitcodeReader::materializeModule() {
5590 if (Error Err = materializeMetadata())
5591 return Err;
5592
5593 // Promise to materialize all forward references.
5594 WillMaterializeAllForwardRefs = true;
5595
5596 // Iterate over the module, deserializing any functions that are still on
5597 // disk.
5598 for (Function &F : *TheModule) {
5599 if (Error Err = materialize(&F))
5600 return Err;
5601 }
5602 // At this point, if there are any function bodies, parse the rest of
5603 // the bits in the module past the last function block we have recorded
5604 // through either lazy scanning or the VST.
5605 if (LastFunctionBlockBit || NextUnreadBit)
5606 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
5607 ? LastFunctionBlockBit
5608 : NextUnreadBit))
5609 return Err;
5610
5611 // Check that all block address forward references got resolved (as we
5612 // promised above).
5613 if (!BasicBlockFwdRefs.empty())
5614 return error("Never resolved function from blockaddress");
5615
5616 // Upgrade any intrinsic calls that slipped through (should not happen!) and
5617 // delete the old functions to clean up. We can't do this unless the entire
5618 // module is materialized because there could always be another function body
5619 // with calls to the old function.
5620 for (auto &I : UpgradedIntrinsics) {
5621 for (auto *U : I.first->users()) {
5622 if (CallInst *CI = dyn_cast<CallInst>(U))
5623 UpgradeIntrinsicCall(CI, I.second);
5624 }
5625 if (!I.first->use_empty())
5626 I.first->replaceAllUsesWith(I.second);
5627 I.first->eraseFromParent();
5628 }
5629 UpgradedIntrinsics.clear();
5630 // Do the same for remangled intrinsics
5631 for (auto &I : RemangledIntrinsics) {
5632 I.first->replaceAllUsesWith(I.second);
5633 I.first->eraseFromParent();
5634 }
5635 RemangledIntrinsics.clear();
5636
5637 UpgradeDebugInfo(*TheModule);
5638
5639 UpgradeModuleFlags(*TheModule);
5640
5641 UpgradeARCRuntime(*TheModule);
5642
5643 return Error::success();
5644}
5645
5646std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5647 return IdentifiedStructTypes;
5648}
5649
5650ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5651 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
5652 StringRef ModulePath, unsigned ModuleId)
5653 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
5654 ModulePath(ModulePath), ModuleId(ModuleId) {}
5655
5656void ModuleSummaryIndexBitcodeReader::addThisModule() {
5657 TheIndex.addModule(ModulePath, ModuleId);
5658}
5659
5660ModuleSummaryIndex::ModuleInfo *
5661ModuleSummaryIndexBitcodeReader::getThisModule() {
5662 return TheIndex.getModule(ModulePath);
5663}
5664
5665std::pair<ValueInfo, GlobalValue::GUID>
5666ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
5667 auto VGI = ValueIdToValueInfoMap[ValueId];
5668 assert(VGI.first)(static_cast<void> (0));
5669 return VGI;
5670}
5671
5672void ModuleSummaryIndexBitcodeReader::setValueGUID(
5673 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
5674 StringRef SourceFileName) {
5675 std::string GlobalId =
5676 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5677 auto ValueGUID = GlobalValue::getGUID(GlobalId);
5678 auto OriginalNameID = ValueGUID;
5679 if (GlobalValue::isLocalLinkage(Linkage))
5680 OriginalNameID = GlobalValue::getGUID(ValueName);
5681 if (PrintSummaryGUIDs)
5682 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5683 << ValueName << "\n";
5684
5685 // UseStrtab is false for legacy summary formats and value names are
5686 // created on stack. In that case we save the name in a string saver in
5687 // the index so that the value name can be recorded.
5688 ValueIdToValueInfoMap[ValueID] = std::make_pair(
5689 TheIndex.getOrInsertValueInfo(
5690 ValueGUID,
5691 UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
5692 OriginalNameID);
5693}
5694
5695// Specialized value symbol table parser used when reading module index
5696// blocks where we don't actually create global values. The parsed information
5697// is saved in the bitcode reader for use when later parsing summaries.
5698Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5699 uint64_t Offset,
5700 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5701 // With a strtab the VST is not required to parse the summary.
5702 if (UseStrtab)
5703 return Error::success();
5704
5705 assert(Offset > 0 && "Expected non-zero VST offset")(static_cast<void> (0));
5706 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
5707 if (!MaybeCurrentBit)
5708 return MaybeCurrentBit.takeError();
5709 uint64_t CurrentBit = MaybeCurrentBit.get();
5710
5711 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5712 return Err;
5713
5714 SmallVector<uint64_t, 64> Record;
5715
5716 // Read all the records for this value table.
5717 SmallString<128> ValueName;
5718
5719 while (true) {
5720 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5721 if (!MaybeEntry)
5722 return MaybeEntry.takeError();
5723 BitstreamEntry Entry = MaybeEntry.get();
5724
5725 switch (Entry.Kind) {
5726 case BitstreamEntry::SubBlock: // Handled for us already.
5727 case BitstreamEntry::Error:
5728 return error("Malformed block");
5729 case BitstreamEntry::EndBlock:
5730 // Done parsing VST, jump back to wherever we came from.
5731 if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
5732 return JumpFailed;
5733 return Error::success();
5734 case BitstreamEntry::Record:
5735 // The interesting case.
5736 break;
5737 }
5738
5739 // Read a record.
5740 Record.clear();
5741 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5742 if (!MaybeRecord)
5743 return MaybeRecord.takeError();
5744 switch (MaybeRecord.get()) {
5745 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5746 break;
5747 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5748 if (convertToString(Record, 1, ValueName))
5749 return error("Invalid record");
5750 unsigned ValueID = Record[0];
5751 assert(!SourceFileName.empty())(static_cast<void> (0));
5752 auto VLI = ValueIdToLinkageMap.find(ValueID);
5753 assert(VLI != ValueIdToLinkageMap.end() &&(static_cast<void> (0))
5754 "No linkage found for VST entry?")(static_cast<void> (0));
5755 auto Linkage = VLI->second;
5756 setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5757 ValueName.clear();
5758 break;
5759 }
5760 case bitc::VST_CODE_FNENTRY: {
5761 // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5762 if (convertToString(Record, 2, ValueName))
5763 return error("Invalid record");
5764 unsigned ValueID = Record[0];
5765 assert(!SourceFileName.empty())(static_cast<void> (0));
5766 auto VLI = ValueIdToLinkageMap.find(ValueID);
5767 assert(VLI != ValueIdToLinkageMap.end() &&(static_cast<void> (0))
5768 "No linkage found for VST entry?")(static_cast<void> (0));
5769 auto Linkage = VLI->second;
5770 setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5771 ValueName.clear();
5772 break;
5773 }
5774 case bitc::VST_CODE_COMBINED_ENTRY: {
5775 // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5776 unsigned ValueID = Record[0];
5777 GlobalValue::GUID RefGUID = Record[1];
5778 // The "original name", which is the second value of the pair will be
5779 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5780 ValueIdToValueInfoMap[ValueID] =
5781 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5782 break;
5783 }
5784 }
5785 }
5786}
5787
5788// Parse just the blocks needed for building the index out of the module.
5789// At the end of this routine the module Index is populated with a map
5790// from global value id to GlobalValueSummary objects.
5791Error ModuleSummaryIndexBitcodeReader::parseModule() {
5792 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5793 return Err;
5794
5795 SmallVector<uint64_t, 64> Record;
5796 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5797 unsigned ValueId = 0;
5798
5799 // Read the index for this module.
5800 while (true) {
5801 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
5802 if (!MaybeEntry)
5803 return MaybeEntry.takeError();
5804 llvm::BitstreamEntry Entry = MaybeEntry.get();
5805
5806 switch (Entry.Kind) {
5807 case BitstreamEntry::Error:
5808 return error("Malformed block");
5809 case BitstreamEntry::EndBlock:
5810 return Error::success();
5811
5812 case BitstreamEntry::SubBlock:
5813 switch (Entry.ID) {
5814 default: // Skip unknown content.
5815 if (Error Err = Stream.SkipBlock())
5816 return Err;
5817 break;
5818 case bitc::BLOCKINFO_BLOCK_ID:
5819 // Need to parse these to get abbrev ids (e.g. for VST)
5820 if (readBlockInfo())
5821 return error("Malformed block");
5822 break;
5823 case bitc::VALUE_SYMTAB_BLOCK_ID:
5824 // Should have been parsed earlier via VSTOffset, unless there
5825 // is no summary section.
5826 assert(((SeenValueSymbolTable && VSTOffset > 0) ||(static_cast<void> (0))
5827 !SeenGlobalValSummary) &&(static_cast<void> (0))
5828 "Expected early VST parse via VSTOffset record")(static_cast<void> (0));
5829 if (Error Err = Stream.SkipBlock())
5830 return Err;
5831 break;
5832 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5833 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5834 // Add the module if it is a per-module index (has a source file name).
5835 if (!SourceFileName.empty())
5836 addThisModule();
5837 assert(!SeenValueSymbolTable &&(static_cast<void> (0))
5838 "Already read VST when parsing summary block?")(static_cast<void> (0));
5839 // We might not have a VST if there were no values in the
5840 // summary. An empty summary block generated when we are
5841 // performing ThinLTO compiles so we don't later invoke
5842 // the regular LTO process on them.
5843 if (VSTOffset > 0) {
5844 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5845 return Err;
5846 SeenValueSymbolTable = true;
5847 }
5848 SeenGlobalValSummary = true;
5849 if (Error Err = parseEntireSummary(Entry.ID))
5850 return Err;
5851 break;
5852 case bitc::MODULE_STRTAB_BLOCK_ID:
5853 if (Error Err = parseModuleStringTable())
5854 return Err;
5855 break;
5856 }
5857 continue;
5858
5859 case BitstreamEntry::Record: {
5860 Record.clear();
5861 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5862 if (!MaybeBitCode)
5863 return MaybeBitCode.takeError();
5864 switch (MaybeBitCode.get()) {
5865 default:
5866 break; // Default behavior, ignore unknown content.
5867 case bitc::MODULE_CODE_VERSION: {
5868 if (Error Err = parseVersionRecord(Record).takeError())
5869 return Err;
5870 break;
5871 }
5872 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5873 case bitc::MODULE_CODE_SOURCE_FILENAME: {
5874 SmallString<128> ValueName;
5875 if (convertToString(Record, 0, ValueName))
5876 return error("Invalid record");
5877 SourceFileName = ValueName.c_str();
5878 break;
5879 }
5880 /// MODULE_CODE_HASH: [5*i32]
5881 case bitc::MODULE_CODE_HASH: {
5882 if (Record.size() != 5)
5883 return error("Invalid hash length " + Twine(Record.size()).str());
5884 auto &Hash = getThisModule()->second.second;
5885 int Pos = 0;
5886 for (auto &Val : Record) {
5887 assert(!(Val >> 32) && "Unexpected high bits set")(static_cast<void> (0));
5888 Hash[Pos++] = Val;
5889 }
5890 break;
5891 }
5892 /// MODULE_CODE_VSTOFFSET: [offset]
5893 case bitc::MODULE_CODE_VSTOFFSET:
5894 if (Record.empty())
5895 return error("Invalid record");
5896 // Note that we subtract 1 here because the offset is relative to one
5897 // word before the start of the identification or module block, which
5898 // was historically always the start of the regular bitcode header.
5899 VSTOffset = Record[0] - 1;
5900 break;
5901 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...]
5902 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...]
5903 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...]
5904 // v2: [strtab offset, strtab size, v1]
5905 case bitc::MODULE_CODE_GLOBALVAR:
5906 case bitc::MODULE_CODE_FUNCTION:
5907 case bitc::MODULE_CODE_ALIAS: {
5908 StringRef Name;
5909 ArrayRef<uint64_t> GVRecord;
5910 std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5911 if (GVRecord.size() <= 3)
5912 return error("Invalid record");
5913 uint64_t RawLinkage = GVRecord[3];
5914 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5915 if (!UseStrtab) {
5916 ValueIdToLinkageMap[ValueId++] = Linkage;
5917 break;
5918 }
5919
5920 setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5921 break;
5922 }
5923 }
5924 }
5925 continue;
5926 }
5927 }
5928}
5929
5930std::vector<ValueInfo>
5931ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5932 std::vector<ValueInfo> Ret;
5933 Ret.reserve(Record.size());
5934 for (uint64_t RefValueId : Record)
5935 Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5936 return Ret;
5937}
5938
5939std::vector<FunctionSummary::EdgeTy>
5940ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
5941 bool IsOldProfileFormat,
5942 bool HasProfile, bool HasRelBF) {
5943 std::vector<FunctionSummary::EdgeTy> Ret;
5944 Ret.reserve(Record.size());
5945 for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5946 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5947 uint64_t RelBF = 0;
5948 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5949 if (IsOldProfileFormat) {
5950 I += 1; // Skip old callsitecount field
5951 if (HasProfile)
5952 I += 1; // Skip old profilecount field
5953 } else if (HasProfile)
5954 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5955 else if (HasRelBF)
5956 RelBF = Record[++I];
5957 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
5958 }
5959 return Ret;
5960}
5961
5962static void
5963parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
5964 WholeProgramDevirtResolution &Wpd) {
5965 uint64_t ArgNum = Record[Slot++];
5966 WholeProgramDevirtResolution::ByArg &B =
5967 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
5968 Slot += ArgNum;
5969
5970 B.TheKind =
5971 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
5972 B.Info = Record[Slot++];
5973 B.Byte = Record[Slot++];
5974 B.Bit = Record[Slot++];
5975}
5976
5977static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
5978 StringRef Strtab, size_t &Slot,
5979 TypeIdSummary &TypeId) {
5980 uint64_t Id = Record[Slot++];
5981 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
5982
5983 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
5984 Wpd.SingleImplName = {Strtab.data() + Record[Slot],
5985 static_cast<size_t>(Record[Slot + 1])};
5986 Slot += 2;
5987
5988 uint64_t ResByArgNum = Record[Slot++];
5989 for (uint64_t I = 0; I != ResByArgNum; ++I)
5990 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
5991}
5992
5993static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
5994 StringRef Strtab,
5995 ModuleSummaryIndex &TheIndex) {
5996 size_t Slot = 0;
5997 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
5998 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
5999 Slot += 2;
6000
6001 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
6002 TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
6003 TypeId.TTRes.AlignLog2 = Record[Slot++];
6004 TypeId.TTRes.SizeM1 = Record[Slot++];
6005 TypeId.TTRes.BitMask = Record[Slot++];
6006 TypeId.TTRes.InlineBits = Record[Slot++];
6007
6008 while (Slot < Record.size())
6009 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
6010}
6011