Bug Summary

File:llvm/lib/Bitcode/Reader/BitcodeReader.cpp
Warning:line 2708, column 50
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name BitcodeReader.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220208102626+b9f1e1c36c2e/build-llvm -resource-dir /usr/lib/llvm-15/lib/clang/15.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I lib/Bitcode/Reader -I /build/llvm-toolchain-snapshot-15~++20220208102626+b9f1e1c36c2e/llvm/lib/Bitcode/Reader -I include -I /build/llvm-toolchain-snapshot-15~++20220208102626+b9f1e1c36c2e/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-15/lib/clang/15.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220208102626+b9f1e1c36c2e/build-llvm=build-llvm -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220208102626+b9f1e1c36c2e/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220208102626+b9f1e1c36c2e/build-llvm=build-llvm -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220208102626+b9f1e1c36c2e/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220208102626+b9f1e1c36c2e/build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220208102626+b9f1e1c36c2e/build-llvm=build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220208102626+b9f1e1c36c2e/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-02-09-075911-15377-1 -x c++ /build/llvm-toolchain-snapshot-15~++20220208102626+b9f1e1c36c2e/llvm/lib/Bitcode/Reader/BitcodeReader.cpp

/build/llvm-toolchain-snapshot-15~++20220208102626+b9f1e1c36c2e/llvm/lib/Bitcode/Reader/BitcodeReader.cpp

1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "llvm/Bitcode/BitcodeReader.h"
10#include "MetadataLoader.h"
11#include "ValueList.h"
12#include "llvm/ADT/APFloat.h"
13#include "llvm/ADT/APInt.h"
14#include "llvm/ADT/ArrayRef.h"
15#include "llvm/ADT/DenseMap.h"
16#include "llvm/ADT/Optional.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SmallString.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/ADT/StringRef.h"
21#include "llvm/ADT/Triple.h"
22#include "llvm/ADT/Twine.h"
23#include "llvm/Bitcode/BitcodeCommon.h"
24#include "llvm/Bitcode/LLVMBitCodes.h"
25#include "llvm/Bitstream/BitstreamReader.h"
26#include "llvm/Config/llvm-config.h"
27#include "llvm/IR/Argument.h"
28#include "llvm/IR/Attributes.h"
29#include "llvm/IR/AutoUpgrade.h"
30#include "llvm/IR/BasicBlock.h"
31#include "llvm/IR/CallingConv.h"
32#include "llvm/IR/Comdat.h"
33#include "llvm/IR/Constant.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DataLayout.h"
36#include "llvm/IR/DebugInfo.h"
37#include "llvm/IR/DebugInfoMetadata.h"
38#include "llvm/IR/DebugLoc.h"
39#include "llvm/IR/DerivedTypes.h"
40#include "llvm/IR/Function.h"
41#include "llvm/IR/GVMaterializer.h"
42#include "llvm/IR/GlobalAlias.h"
43#include "llvm/IR/GlobalIFunc.h"
44#include "llvm/IR/GlobalObject.h"
45#include "llvm/IR/GlobalValue.h"
46#include "llvm/IR/GlobalVariable.h"
47#include "llvm/IR/InlineAsm.h"
48#include "llvm/IR/InstIterator.h"
49#include "llvm/IR/InstrTypes.h"
50#include "llvm/IR/Instruction.h"
51#include "llvm/IR/Instructions.h"
52#include "llvm/IR/Intrinsics.h"
53#include "llvm/IR/LLVMContext.h"
54#include "llvm/IR/Metadata.h"
55#include "llvm/IR/Module.h"
56#include "llvm/IR/ModuleSummaryIndex.h"
57#include "llvm/IR/Operator.h"
58#include "llvm/IR/Type.h"
59#include "llvm/IR/Value.h"
60#include "llvm/IR/Verifier.h"
61#include "llvm/Support/AtomicOrdering.h"
62#include "llvm/Support/Casting.h"
63#include "llvm/Support/CommandLine.h"
64#include "llvm/Support/Compiler.h"
65#include "llvm/Support/Debug.h"
66#include "llvm/Support/Error.h"
67#include "llvm/Support/ErrorHandling.h"
68#include "llvm/Support/ErrorOr.h"
69#include "llvm/Support/ManagedStatic.h"
70#include "llvm/Support/MathExtras.h"
71#include "llvm/Support/MemoryBuffer.h"
72#include "llvm/Support/raw_ostream.h"
73#include <algorithm>
74#include <cassert>
75#include <cstddef>
76#include <cstdint>
77#include <deque>
78#include <map>
79#include <memory>
80#include <set>
81#include <string>
82#include <system_error>
83#include <tuple>
84#include <utility>
85#include <vector>
86
87using namespace llvm;
88
89static cl::opt<bool> PrintSummaryGUIDs(
90 "print-summary-global-ids", cl::init(false), cl::Hidden,
91 cl::desc(
92 "Print the global id for each value when reading the module summary"));
93
94namespace {
95
96enum {
97 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
98};
99
100} // end anonymous namespace
101
102static Error error(const Twine &Message) {
103 return make_error<StringError>(
104 Message, make_error_code(BitcodeError::CorruptedBitcode));
105}
106
107static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
108 if (!Stream.canSkipToPos(4))
109 return createStringError(std::errc::illegal_byte_sequence,
110 "file too small to contain bitcode header");
111 for (unsigned C : {'B', 'C'})
112 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
113 if (Res.get() != C)
114 return createStringError(std::errc::illegal_byte_sequence,
115 "file doesn't start with bitcode header");
116 } else
117 return Res.takeError();
118 for (unsigned C : {0x0, 0xC, 0xE, 0xD})
119 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
120 if (Res.get() != C)
121 return createStringError(std::errc::illegal_byte_sequence,
122 "file doesn't start with bitcode header");
123 } else
124 return Res.takeError();
125 return Error::success();
126}
127
128static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
129 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
130 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
131
132 if (Buffer.getBufferSize() & 3)
133 return error("Invalid bitcode signature");
134
135 // If we have a wrapper header, parse it and ignore the non-bc file contents.
136 // The magic number is 0x0B17C0DE stored in little endian.
137 if (isBitcodeWrapper(BufPtr, BufEnd))
138 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
139 return error("Invalid bitcode wrapper header");
140
141 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
142 if (Error Err = hasInvalidBitcodeHeader(Stream))
143 return std::move(Err);
144
145 return std::move(Stream);
146}
147
148/// Convert a string from a record into an std::string, return true on failure.
149template <typename StrTy>
150static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
151 StrTy &Result) {
152 if (Idx > Record.size())
153 return true;
154
155 Result.append(Record.begin() + Idx, Record.end());
156 return false;
157}
158
159// Strip all the TBAA attachment for the module.
160static void stripTBAA(Module *M) {
161 for (auto &F : *M) {
162 if (F.isMaterializable())
163 continue;
164 for (auto &I : instructions(F))
165 I.setMetadata(LLVMContext::MD_tbaa, nullptr);
166 }
167}
168
169/// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
170/// "epoch" encoded in the bitcode, and return the producer name if any.
171static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
172 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
173 return std::move(Err);
174
175 // Read all the records.
176 SmallVector<uint64_t, 64> Record;
177
178 std::string ProducerIdentification;
179
180 while (true) {
181 BitstreamEntry Entry;
182 if (Error E = Stream.advance().moveInto(Entry))
183 return std::move(E);
184
185 switch (Entry.Kind) {
186 default:
187 case BitstreamEntry::Error:
188 return error("Malformed block");
189 case BitstreamEntry::EndBlock:
190 return ProducerIdentification;
191 case BitstreamEntry::Record:
192 // The interesting case.
193 break;
194 }
195
196 // Read a record.
197 Record.clear();
198 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
199 if (!MaybeBitCode)
200 return MaybeBitCode.takeError();
201 switch (MaybeBitCode.get()) {
202 default: // Default behavior: reject
203 return error("Invalid value");
204 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
205 convertToString(Record, 0, ProducerIdentification);
206 break;
207 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
208 unsigned epoch = (unsigned)Record[0];
209 if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
210 return error(
211 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
212 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
213 }
214 }
215 }
216 }
217}
218
219static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
220 // We expect a number of well-defined blocks, though we don't necessarily
221 // need to understand them all.
222 while (true) {
223 if (Stream.AtEndOfStream())
224 return "";
225
226 BitstreamEntry Entry;
227 if (Error E = Stream.advance().moveInto(Entry))
228 return std::move(E);
229
230 switch (Entry.Kind) {
231 case BitstreamEntry::EndBlock:
232 case BitstreamEntry::Error:
233 return error("Malformed block");
234
235 case BitstreamEntry::SubBlock:
236 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
237 return readIdentificationBlock(Stream);
238
239 // Ignore other sub-blocks.
240 if (Error Err = Stream.SkipBlock())
241 return std::move(Err);
242 continue;
243 case BitstreamEntry::Record:
244 if (Error E = Stream.skipRecord(Entry.ID).takeError())
245 return std::move(E);
246 continue;
247 }
248 }
249}
250
251static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
252 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
253 return std::move(Err);
254
255 SmallVector<uint64_t, 64> Record;
256 // Read all the records for this module.
257
258 while (true) {
259 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
260 if (!MaybeEntry)
261 return MaybeEntry.takeError();
262 BitstreamEntry Entry = MaybeEntry.get();
263
264 switch (Entry.Kind) {
265 case BitstreamEntry::SubBlock: // Handled for us already.
266 case BitstreamEntry::Error:
267 return error("Malformed block");
268 case BitstreamEntry::EndBlock:
269 return false;
270 case BitstreamEntry::Record:
271 // The interesting case.
272 break;
273 }
274
275 // Read a record.
276 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
277 if (!MaybeRecord)
278 return MaybeRecord.takeError();
279 switch (MaybeRecord.get()) {
280 default:
281 break; // Default behavior, ignore unknown content.
282 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
283 std::string S;
284 if (convertToString(Record, 0, S))
285 return error("Invalid record");
286 // Check for the i386 and other (x86_64, ARM) conventions
287 if (S.find("__DATA,__objc_catlist") != std::string::npos ||
288 S.find("__OBJC,__category") != std::string::npos)
289 return true;
290 break;
291 }
292 }
293 Record.clear();
294 }
295 llvm_unreachable("Exit infinite loop")::llvm::llvm_unreachable_internal("Exit infinite loop", "llvm/lib/Bitcode/Reader/BitcodeReader.cpp"
, 295)
;
296}
297
298static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
299 // We expect a number of well-defined blocks, though we don't necessarily
300 // need to understand them all.
301 while (true) {
302 BitstreamEntry Entry;
303 if (Error E = Stream.advance().moveInto(Entry))
304 return std::move(E);
305
306 switch (Entry.Kind) {
307 case BitstreamEntry::Error:
308 return error("Malformed block");
309 case BitstreamEntry::EndBlock:
310 return false;
311
312 case BitstreamEntry::SubBlock:
313 if (Entry.ID == bitc::MODULE_BLOCK_ID)
314 return hasObjCCategoryInModule(Stream);
315
316 // Ignore other sub-blocks.
317 if (Error Err = Stream.SkipBlock())
318 return std::move(Err);
319 continue;
320
321 case BitstreamEntry::Record:
322 if (Error E = Stream.skipRecord(Entry.ID).takeError())
323 return std::move(E);
324 continue;
325 }
326 }
327}
328
329static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
330 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
331 return std::move(Err);
332
333 SmallVector<uint64_t, 64> Record;
334
335 std::string Triple;
336
337 // Read all the records for this module.
338 while (true) {
339 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
340 if (!MaybeEntry)
341 return MaybeEntry.takeError();
342 BitstreamEntry Entry = MaybeEntry.get();
343
344 switch (Entry.Kind) {
345 case BitstreamEntry::SubBlock: // Handled for us already.
346 case BitstreamEntry::Error:
347 return error("Malformed block");
348 case BitstreamEntry::EndBlock:
349 return Triple;
350 case BitstreamEntry::Record:
351 // The interesting case.
352 break;
353 }
354
355 // Read a record.
356 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
357 if (!MaybeRecord)
358 return MaybeRecord.takeError();
359 switch (MaybeRecord.get()) {
360 default: break; // Default behavior, ignore unknown content.
361 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
362 std::string S;
363 if (convertToString(Record, 0, S))
364 return error("Invalid record");
365 Triple = S;
366 break;
367 }
368 }
369 Record.clear();
370 }
371 llvm_unreachable("Exit infinite loop")::llvm::llvm_unreachable_internal("Exit infinite loop", "llvm/lib/Bitcode/Reader/BitcodeReader.cpp"
, 371)
;
372}
373
374static Expected<std::string> readTriple(BitstreamCursor &Stream) {
375 // We expect a number of well-defined blocks, though we don't necessarily
376 // need to understand them all.
377 while (true) {
378 Expected<BitstreamEntry> MaybeEntry = Stream.advance();
379 if (!MaybeEntry)
380 return MaybeEntry.takeError();
381 BitstreamEntry Entry = MaybeEntry.get();
382
383 switch (Entry.Kind) {
384 case BitstreamEntry::Error:
385 return error("Malformed block");
386 case BitstreamEntry::EndBlock:
387 return "";
388
389 case BitstreamEntry::SubBlock:
390 if (Entry.ID == bitc::MODULE_BLOCK_ID)
391 return readModuleTriple(Stream);
392
393 // Ignore other sub-blocks.
394 if (Error Err = Stream.SkipBlock())
395 return std::move(Err);
396 continue;
397
398 case BitstreamEntry::Record:
399 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
400 continue;
401 else
402 return Skipped.takeError();
403 }
404 }
405}
406
407namespace {
408
409class BitcodeReaderBase {
410protected:
411 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
412 : Stream(std::move(Stream)), Strtab(Strtab) {
413 this->Stream.setBlockInfo(&BlockInfo);
414 }
415
416 BitstreamBlockInfo BlockInfo;
417 BitstreamCursor Stream;
418 StringRef Strtab;
419
420 /// In version 2 of the bitcode we store names of global values and comdats in
421 /// a string table rather than in the VST.
422 bool UseStrtab = false;
423
424 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
425
426 /// If this module uses a string table, pop the reference to the string table
427 /// and return the referenced string and the rest of the record. Otherwise
428 /// just return the record itself.
429 std::pair<StringRef, ArrayRef<uint64_t>>
430 readNameFromStrtab(ArrayRef<uint64_t> Record);
431
432 Error readBlockInfo();
433
434 // Contains an arbitrary and optional string identifying the bitcode producer
435 std::string ProducerIdentification;
436
437 Error error(const Twine &Message);
438};
439
440} // end anonymous namespace
441
442Error BitcodeReaderBase::error(const Twine &Message) {
443 std::string FullMsg = Message.str();
444 if (!ProducerIdentification.empty())
445 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
446 LLVM_VERSION_STRING"15.0.0" "')";
447 return ::error(FullMsg);
448}
449
450Expected<unsigned>
451BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
452 if (Record.empty())
453 return error("Invalid record");
454 unsigned ModuleVersion = Record[0];
455 if (ModuleVersion > 2)
456 return error("Invalid value");
457 UseStrtab = ModuleVersion >= 2;
458 return ModuleVersion;
459}
460
461std::pair<StringRef, ArrayRef<uint64_t>>
462BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
463 if (!UseStrtab)
464 return {"", Record};
465 // Invalid reference. Let the caller complain about the record being empty.
466 if (Record[0] + Record[1] > Strtab.size())
467 return {"", {}};
468 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
469}
470
471namespace {
472
473class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
474 LLVMContext &Context;
475 Module *TheModule = nullptr;
476 // Next offset to start scanning for lazy parsing of function bodies.
477 uint64_t NextUnreadBit = 0;
478 // Last function offset found in the VST.
479 uint64_t LastFunctionBlockBit = 0;
480 bool SeenValueSymbolTable = false;
481 uint64_t VSTOffset = 0;
482
483 std::vector<std::string> SectionTable;
484 std::vector<std::string> GCTable;
485
486 std::vector<Type*> TypeList;
487 DenseMap<Function *, FunctionType *> FunctionTypes;
488 BitcodeReaderValueList ValueList;
489 Optional<MetadataLoader> MDLoader;
490 std::vector<Comdat *> ComdatList;
491 DenseSet<GlobalObject *> ImplicitComdatObjects;
492 SmallVector<Instruction *, 64> InstructionList;
493
494 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
495 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
496
497 struct FunctionOperandInfo {
498 Function *F;
499 unsigned PersonalityFn;
500 unsigned Prefix;
501 unsigned Prologue;
502 };
503 std::vector<FunctionOperandInfo> FunctionOperands;
504
505 /// The set of attributes by index. Index zero in the file is for null, and
506 /// is thus not represented here. As such all indices are off by one.
507 std::vector<AttributeList> MAttributes;
508
509 /// The set of attribute groups.
510 std::map<unsigned, AttributeList> MAttributeGroups;
511
512 /// While parsing a function body, this is a list of the basic blocks for the
513 /// function.
514 std::vector<BasicBlock*> FunctionBBs;
515
516 // When reading the module header, this list is populated with functions that
517 // have bodies later in the file.
518 std::vector<Function*> FunctionsWithBodies;
519
520 // When intrinsic functions are encountered which require upgrading they are
521 // stored here with their replacement function.
522 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
523 UpdatedIntrinsicMap UpgradedIntrinsics;
524 // Intrinsics which were remangled because of types rename
525 UpdatedIntrinsicMap RemangledIntrinsics;
526
527 // Several operations happen after the module header has been read, but
528 // before function bodies are processed. This keeps track of whether
529 // we've done this yet.
530 bool SeenFirstFunctionBody = false;
531
532 /// When function bodies are initially scanned, this map contains info about
533 /// where to find deferred function body in the stream.
534 DenseMap<Function*, uint64_t> DeferredFunctionInfo;
535
536 /// When Metadata block is initially scanned when parsing the module, we may
537 /// choose to defer parsing of the metadata. This vector contains info about
538 /// which Metadata blocks are deferred.
539 std::vector<uint64_t> DeferredMetadataInfo;
540
541 /// These are basic blocks forward-referenced by block addresses. They are
542 /// inserted lazily into functions when they're loaded. The basic block ID is
543 /// its index into the vector.
544 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
545 std::deque<Function *> BasicBlockFwdRefQueue;
546
547 /// Indicates that we are using a new encoding for instruction operands where
548 /// most operands in the current FUNCTION_BLOCK are encoded relative to the
549 /// instruction number, for a more compact encoding. Some instruction
550 /// operands are not relative to the instruction ID: basic block numbers, and
551 /// types. Once the old style function blocks have been phased out, we would
552 /// not need this flag.
553 bool UseRelativeIDs = false;
554
555 /// True if all functions will be materialized, negating the need to process
556 /// (e.g.) blockaddress forward references.
557 bool WillMaterializeAllForwardRefs = false;
558
559 bool StripDebugInfo = false;
560 TBAAVerifier TBAAVerifyHelper;
561
562 std::vector<std::string> BundleTags;
563 SmallVector<SyncScope::ID, 8> SSIDs;
564
565public:
566 BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
567 StringRef ProducerIdentification, LLVMContext &Context);
568
569 Error materializeForwardReferencedFunctions();
570
571 Error materialize(GlobalValue *GV) override;
572 Error materializeModule() override;
573 std::vector<StructType *> getIdentifiedStructTypes() const override;
574
575 /// Main interface to parsing a bitcode buffer.
576 /// \returns true if an error occurred.
577 Error parseBitcodeInto(
578 Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false,
579 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
580
581 static uint64_t decodeSignRotatedValue(uint64_t V);
582
583 /// Materialize any deferred Metadata block.
584 Error materializeMetadata() override;
585
586 void setStripDebugInfo() override;
587
588private:
589 std::vector<StructType *> IdentifiedStructTypes;
590 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
591 StructType *createIdentifiedStructType(LLVMContext &Context);
592
593 Type *getTypeByID(unsigned ID);
594
595 Value *getFnValueByID(unsigned ID, Type *Ty) {
596 if (Ty && Ty->isMetadataTy())
597 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
598 return ValueList.getValueFwdRef(ID, Ty);
599 }
600
601 Metadata *getFnMetadataByID(unsigned ID) {
602 return MDLoader->getMetadataFwdRefOrLoad(ID);
603 }
604
605 BasicBlock *getBasicBlock(unsigned ID) const {
606 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
607 return FunctionBBs[ID];
608 }
609
610 AttributeList getAttributes(unsigned i) const {
611 if (i-1 < MAttributes.size())
612 return MAttributes[i-1];
613 return AttributeList();
614 }
615
616 /// Read a value/type pair out of the specified record from slot 'Slot'.
617 /// Increment Slot past the number of slots used in the record. Return true on
618 /// failure.
619 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
620 unsigned InstNum, Value *&ResVal) {
621 if (Slot == Record.size()) return true;
622 unsigned ValNo = (unsigned)Record[Slot++];
623 // Adjust the ValNo, if it was encoded relative to the InstNum.
624 if (UseRelativeIDs)
625 ValNo = InstNum - ValNo;
626 if (ValNo < InstNum) {
627 // If this is not a forward reference, just return the value we already
628 // have.
629 ResVal = getFnValueByID(ValNo, nullptr);
630 return ResVal == nullptr;
631 }
632 if (Slot == Record.size())
633 return true;
634
635 unsigned TypeNo = (unsigned)Record[Slot++];
636 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
637 return ResVal == nullptr;
638 }
639
640 /// Read a value out of the specified record from slot 'Slot'. Increment Slot
641 /// past the number of slots used by the value in the record. Return true if
642 /// there is an error.
643 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
644 unsigned InstNum, Type *Ty, Value *&ResVal) {
645 if (getValue(Record, Slot, InstNum, Ty, ResVal))
646 return true;
647 // All values currently take a single record slot.
648 ++Slot;
649 return false;
650 }
651
652 /// Like popValue, but does not increment the Slot number.
653 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
654 unsigned InstNum, Type *Ty, Value *&ResVal) {
655 ResVal = getValue(Record, Slot, InstNum, Ty);
656 return ResVal == nullptr;
657 }
658
659 /// Version of getValue that returns ResVal directly, or 0 if there is an
660 /// error.
661 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
662 unsigned InstNum, Type *Ty) {
663 if (Slot == Record.size()) return nullptr;
664 unsigned ValNo = (unsigned)Record[Slot];
665 // Adjust the ValNo, if it was encoded relative to the InstNum.
666 if (UseRelativeIDs)
667 ValNo = InstNum - ValNo;
668 return getFnValueByID(ValNo, Ty);
669 }
670
671 /// Like getValue, but decodes signed VBRs.
672 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
673 unsigned InstNum, Type *Ty) {
674 if (Slot == Record.size()) return nullptr;
675 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
676 // Adjust the ValNo, if it was encoded relative to the InstNum.
677 if (UseRelativeIDs)
678 ValNo = InstNum - ValNo;
679 return getFnValueByID(ValNo, Ty);
680 }
681
682 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
683 /// corresponding argument's pointee type. Also upgrades intrinsics that now
684 /// require an elementtype attribute.
685 void propagateAttributeTypes(CallBase *CB, ArrayRef<Type *> ArgsTys);
686
687 /// Converts alignment exponent (i.e. power of two (or zero)) to the
688 /// corresponding alignment to use. If alignment is too large, returns
689 /// a corresponding error code.
690 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
691 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
692 Error parseModule(
693 uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
694 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
695
696 Error parseComdatRecord(ArrayRef<uint64_t> Record);
697 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
698 Error parseFunctionRecord(ArrayRef<uint64_t> Record);
699 Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
700 ArrayRef<uint64_t> Record);
701
702 Error parseAttributeBlock();
703 Error parseAttributeGroupBlock();
704 Error parseTypeTable();
705 Error parseTypeTableBody();
706 Error parseOperandBundleTags();
707 Error parseSyncScopeNames();
708
709 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
710 unsigned NameIndex, Triple &TT);
711 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
712 ArrayRef<uint64_t> Record);
713 Error parseValueSymbolTable(uint64_t Offset = 0);
714 Error parseGlobalValueSymbolTable();
715 Error parseConstants();
716 Error rememberAndSkipFunctionBodies();
717 Error rememberAndSkipFunctionBody();
718 /// Save the positions of the Metadata blocks and skip parsing the blocks.
719 Error rememberAndSkipMetadata();
720 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
721 Error parseFunctionBody(Function *F);
722 Error globalCleanup();
723 Error resolveGlobalAndIndirectSymbolInits();
724 Error parseUseLists();
725 Error findFunctionInStream(
726 Function *F,
727 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
728
729 SyncScope::ID getDecodedSyncScopeID(unsigned Val);
730};
731
732/// Class to manage reading and parsing function summary index bitcode
733/// files/sections.
734class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
735 /// The module index built during parsing.
736 ModuleSummaryIndex &TheIndex;
737
738 /// Indicates whether we have encountered a global value summary section
739 /// yet during parsing.
740 bool SeenGlobalValSummary = false;
741
742 /// Indicates whether we have already parsed the VST, used for error checking.
743 bool SeenValueSymbolTable = false;
744
745 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
746 /// Used to enable on-demand parsing of the VST.
747 uint64_t VSTOffset = 0;
748
749 // Map to save ValueId to ValueInfo association that was recorded in the
750 // ValueSymbolTable. It is used after the VST is parsed to convert
751 // call graph edges read from the function summary from referencing
752 // callees by their ValueId to using the ValueInfo instead, which is how
753 // they are recorded in the summary index being built.
754 // We save a GUID which refers to the same global as the ValueInfo, but
755 // ignoring the linkage, i.e. for values other than local linkage they are
756 // identical.
757 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
758 ValueIdToValueInfoMap;
759
760 /// Map populated during module path string table parsing, from the
761 /// module ID to a string reference owned by the index's module
762 /// path string table, used to correlate with combined index
763 /// summary records.
764 DenseMap<uint64_t, StringRef> ModuleIdMap;
765
766 /// Original source file name recorded in a bitcode record.
767 std::string SourceFileName;
768
769 /// The string identifier given to this module by the client, normally the
770 /// path to the bitcode file.
771 StringRef ModulePath;
772
773 /// For per-module summary indexes, the unique numerical identifier given to
774 /// this module by the client.
775 unsigned ModuleId;
776
777public:
778 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
779 ModuleSummaryIndex &TheIndex,
780 StringRef ModulePath, unsigned ModuleId);
781
782 Error parseModule();
783
784private:
785 void setValueGUID(uint64_t ValueID, StringRef ValueName,
786 GlobalValue::LinkageTypes Linkage,
787 StringRef SourceFileName);
788 Error parseValueSymbolTable(
789 uint64_t Offset,
790 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
791 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
792 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
793 bool IsOldProfileFormat,
794 bool HasProfile,
795 bool HasRelBF);
796 Error parseEntireSummary(unsigned ID);
797 Error parseModuleStringTable();
798 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
799 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
800 TypeIdCompatibleVtableInfo &TypeId);
801 std::vector<FunctionSummary::ParamAccess>
802 parseParamAccesses(ArrayRef<uint64_t> Record);
803
804 std::pair<ValueInfo, GlobalValue::GUID>
805 getValueInfoFromValueId(unsigned ValueId);
806
807 void addThisModule();
808 ModuleSummaryIndex::ModuleInfo *getThisModule();
809};
810
811} // end anonymous namespace
812
813std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
814 Error Err) {
815 if (Err) {
816 std::error_code EC;
817 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
818 EC = EIB.convertToErrorCode();
819 Ctx.emitError(EIB.message());
820 });
821 return EC;
822 }
823 return std::error_code();
824}
825
826BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
827 StringRef ProducerIdentification,
828 LLVMContext &Context)
829 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
830 ValueList(Context, Stream.SizeInBytes()) {
831 this->ProducerIdentification = std::string(ProducerIdentification);
832}
833
834Error BitcodeReader::materializeForwardReferencedFunctions() {
835 if (WillMaterializeAllForwardRefs)
836 return Error::success();
837
838 // Prevent recursion.
839 WillMaterializeAllForwardRefs = true;
840
841 while (!BasicBlockFwdRefQueue.empty()) {
842 Function *F = BasicBlockFwdRefQueue.front();
843 BasicBlockFwdRefQueue.pop_front();
844 assert(F && "Expected valid function")(static_cast <bool> (F && "Expected valid function"
) ? void (0) : __assert_fail ("F && \"Expected valid function\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 844, __extension__
__PRETTY_FUNCTION__))
;
845 if (!BasicBlockFwdRefs.count(F))
846 // Already materialized.
847 continue;
848
849 // Check for a function that isn't materializable to prevent an infinite
850 // loop. When parsing a blockaddress stored in a global variable, there
851 // isn't a trivial way to check if a function will have a body without a
852 // linear search through FunctionsWithBodies, so just check it here.
853 if (!F->isMaterializable())
854 return error("Never resolved function from blockaddress");
855
856 // Try to materialize F.
857 if (Error Err = materialize(F))
858 return Err;
859 }
860 assert(BasicBlockFwdRefs.empty() && "Function missing from queue")(static_cast <bool> (BasicBlockFwdRefs.empty() &&
"Function missing from queue") ? void (0) : __assert_fail ("BasicBlockFwdRefs.empty() && \"Function missing from queue\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 860, __extension__
__PRETTY_FUNCTION__))
;
861
862 // Reset state.
863 WillMaterializeAllForwardRefs = false;
864 return Error::success();
865}
866
867//===----------------------------------------------------------------------===//
868// Helper functions to implement forward reference resolution, etc.
869//===----------------------------------------------------------------------===//
870
871static bool hasImplicitComdat(size_t Val) {
872 switch (Val) {
873 default:
874 return false;
875 case 1: // Old WeakAnyLinkage
876 case 4: // Old LinkOnceAnyLinkage
877 case 10: // Old WeakODRLinkage
878 case 11: // Old LinkOnceODRLinkage
879 return true;
880 }
881}
882
883static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
884 switch (Val) {
885 default: // Map unknown/new linkages to external
886 case 0:
887 return GlobalValue::ExternalLinkage;
888 case 2:
889 return GlobalValue::AppendingLinkage;
890 case 3:
891 return GlobalValue::InternalLinkage;
892 case 5:
893 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
894 case 6:
895 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
896 case 7:
897 return GlobalValue::ExternalWeakLinkage;
898 case 8:
899 return GlobalValue::CommonLinkage;
900 case 9:
901 return GlobalValue::PrivateLinkage;
902 case 12:
903 return GlobalValue::AvailableExternallyLinkage;
904 case 13:
905 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
906 case 14:
907 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
908 case 15:
909 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
910 case 1: // Old value with implicit comdat.
911 case 16:
912 return GlobalValue::WeakAnyLinkage;
913 case 10: // Old value with implicit comdat.
914 case 17:
915 return GlobalValue::WeakODRLinkage;
916 case 4: // Old value with implicit comdat.
917 case 18:
918 return GlobalValue::LinkOnceAnyLinkage;
919 case 11: // Old value with implicit comdat.
920 case 19:
921 return GlobalValue::LinkOnceODRLinkage;
922 }
923}
924
925static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
926 FunctionSummary::FFlags Flags;
927 Flags.ReadNone = RawFlags & 0x1;
928 Flags.ReadOnly = (RawFlags >> 1) & 0x1;
929 Flags.NoRecurse = (RawFlags >> 2) & 0x1;
930 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
931 Flags.NoInline = (RawFlags >> 4) & 0x1;
932 Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
933 Flags.NoUnwind = (RawFlags >> 6) & 0x1;
934 Flags.MayThrow = (RawFlags >> 7) & 0x1;
935 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
936 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
937 return Flags;
938}
939
940// Decode the flags for GlobalValue in the summary. The bits for each attribute:
941//
942// linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
943// visibility: [8, 10).
944static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
945 uint64_t Version) {
946 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
947 // like getDecodedLinkage() above. Any future change to the linkage enum and
948 // to getDecodedLinkage() will need to be taken into account here as above.
949 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
950 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
951 RawFlags = RawFlags >> 4;
952 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
953 // The Live flag wasn't introduced until version 3. For dead stripping
954 // to work correctly on earlier versions, we must conservatively treat all
955 // values as live.
956 bool Live = (RawFlags & 0x2) || Version < 3;
957 bool Local = (RawFlags & 0x4);
958 bool AutoHide = (RawFlags & 0x8);
959
960 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
961 Live, Local, AutoHide);
962}
963
964// Decode the flags for GlobalVariable in the summary
965static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
966 return GlobalVarSummary::GVarFlags(
967 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
968 (RawFlags & 0x4) ? true : false,
969 (GlobalObject::VCallVisibility)(RawFlags >> 3));
970}
971
972static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
973 switch (Val) {
974 default: // Map unknown visibilities to default.
975 case 0: return GlobalValue::DefaultVisibility;
976 case 1: return GlobalValue::HiddenVisibility;
977 case 2: return GlobalValue::ProtectedVisibility;
978 }
979}
980
981static GlobalValue::DLLStorageClassTypes
982getDecodedDLLStorageClass(unsigned Val) {
983 switch (Val) {
984 default: // Map unknown values to default.
985 case 0: return GlobalValue::DefaultStorageClass;
986 case 1: return GlobalValue::DLLImportStorageClass;
987 case 2: return GlobalValue::DLLExportStorageClass;
988 }
989}
990
991static bool getDecodedDSOLocal(unsigned Val) {
992 switch(Val) {
993 default: // Map unknown values to preemptable.
994 case 0: return false;
995 case 1: return true;
996 }
997}
998
999static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1000 switch (Val) {
1001 case 0: return GlobalVariable::NotThreadLocal;
1002 default: // Map unknown non-zero value to general dynamic.
1003 case 1: return GlobalVariable::GeneralDynamicTLSModel;
1004 case 2: return GlobalVariable::LocalDynamicTLSModel;
1005 case 3: return GlobalVariable::InitialExecTLSModel;
1006 case 4: return GlobalVariable::LocalExecTLSModel;
1007 }
1008}
1009
1010static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1011 switch (Val) {
1012 default: // Map unknown to UnnamedAddr::None.
1013 case 0: return GlobalVariable::UnnamedAddr::None;
1014 case 1: return GlobalVariable::UnnamedAddr::Global;
1015 case 2: return GlobalVariable::UnnamedAddr::Local;
1016 }
1017}
1018
1019static int getDecodedCastOpcode(unsigned Val) {
1020 switch (Val) {
1021 default: return -1;
1022 case bitc::CAST_TRUNC : return Instruction::Trunc;
1023 case bitc::CAST_ZEXT : return Instruction::ZExt;
1024 case bitc::CAST_SEXT : return Instruction::SExt;
1025 case bitc::CAST_FPTOUI : return Instruction::FPToUI;
1026 case bitc::CAST_FPTOSI : return Instruction::FPToSI;
1027 case bitc::CAST_UITOFP : return Instruction::UIToFP;
1028 case bitc::CAST_SITOFP : return Instruction::SIToFP;
1029 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1030 case bitc::CAST_FPEXT : return Instruction::FPExt;
1031 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1032 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1033 case bitc::CAST_BITCAST : return Instruction::BitCast;
1034 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1035 }
1036}
1037
1038static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1039 bool IsFP = Ty->isFPOrFPVectorTy();
1040 // UnOps are only valid for int/fp or vector of int/fp types
1041 if (!IsFP && !Ty->isIntOrIntVectorTy())
1042 return -1;
1043
1044 switch (Val) {
1045 default:
1046 return -1;
1047 case bitc::UNOP_FNEG:
1048 return IsFP ? Instruction::FNeg : -1;
1049 }
1050}
1051
1052static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1053 bool IsFP = Ty->isFPOrFPVectorTy();
1054 // BinOps are only valid for int/fp or vector of int/fp types
1055 if (!IsFP && !Ty->isIntOrIntVectorTy())
1056 return -1;
1057
1058 switch (Val) {
1059 default:
1060 return -1;
1061 case bitc::BINOP_ADD:
1062 return IsFP ? Instruction::FAdd : Instruction::Add;
1063 case bitc::BINOP_SUB:
1064 return IsFP ? Instruction::FSub : Instruction::Sub;
1065 case bitc::BINOP_MUL:
1066 return IsFP ? Instruction::FMul : Instruction::Mul;
1067 case bitc::BINOP_UDIV:
1068 return IsFP ? -1 : Instruction::UDiv;
1069 case bitc::BINOP_SDIV:
1070 return IsFP ? Instruction::FDiv : Instruction::SDiv;
1071 case bitc::BINOP_UREM:
1072 return IsFP ? -1 : Instruction::URem;
1073 case bitc::BINOP_SREM:
1074 return IsFP ? Instruction::FRem : Instruction::SRem;
1075 case bitc::BINOP_SHL:
1076 return IsFP ? -1 : Instruction::Shl;
1077 case bitc::BINOP_LSHR:
1078 return IsFP ? -1 : Instruction::LShr;
1079 case bitc::BINOP_ASHR:
1080 return IsFP ? -1 : Instruction::AShr;
1081 case bitc::BINOP_AND:
1082 return IsFP ? -1 : Instruction::And;
1083 case bitc::BINOP_OR:
1084 return IsFP ? -1 : Instruction::Or;
1085 case bitc::BINOP_XOR:
1086 return IsFP ? -1 : Instruction::Xor;
1087 }
1088}
1089
1090static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1091 switch (Val) {
1092 default: return AtomicRMWInst::BAD_BINOP;
1093 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1094 case bitc::RMW_ADD: return AtomicRMWInst::Add;
1095 case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1096 case bitc::RMW_AND: return AtomicRMWInst::And;
1097 case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1098 case bitc::RMW_OR: return AtomicRMWInst::Or;
1099 case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1100 case bitc::RMW_MAX: return AtomicRMWInst::Max;
1101 case bitc::RMW_MIN: return AtomicRMWInst::Min;
1102 case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1103 case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1104 case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1105 case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1106 }
1107}
1108
1109static AtomicOrdering getDecodedOrdering(unsigned Val) {
1110 switch (Val) {
1111 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1112 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1113 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1114 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1115 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1116 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1117 default: // Map unknown orderings to sequentially-consistent.
1118 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1119 }
1120}
1121
1122static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1123 switch (Val) {
1124 default: // Map unknown selection kinds to any.
1125 case bitc::COMDAT_SELECTION_KIND_ANY:
1126 return Comdat::Any;
1127 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1128 return Comdat::ExactMatch;
1129 case bitc::COMDAT_SELECTION_KIND_LARGEST:
1130 return Comdat::Largest;
1131 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1132 return Comdat::NoDeduplicate;
1133 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1134 return Comdat::SameSize;
1135 }
1136}
1137
1138static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1139 FastMathFlags FMF;
1140 if (0 != (Val & bitc::UnsafeAlgebra))
1141 FMF.setFast();
1142 if (0 != (Val & bitc::AllowReassoc))
1143 FMF.setAllowReassoc();
1144 if (0 != (Val & bitc::NoNaNs))
1145 FMF.setNoNaNs();
1146 if (0 != (Val & bitc::NoInfs))
1147 FMF.setNoInfs();
1148 if (0 != (Val & bitc::NoSignedZeros))
1149 FMF.setNoSignedZeros();
1150 if (0 != (Val & bitc::AllowReciprocal))
1151 FMF.setAllowReciprocal();
1152 if (0 != (Val & bitc::AllowContract))
1153 FMF.setAllowContract(true);
1154 if (0 != (Val & bitc::ApproxFunc))
1155 FMF.setApproxFunc();
1156 return FMF;
1157}
1158
1159static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1160 switch (Val) {
1161 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1162 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1163 }
1164}
1165
1166Type *BitcodeReader::getTypeByID(unsigned ID) {
1167 // The type table size is always specified correctly.
1168 if (ID >= TypeList.size())
1169 return nullptr;
1170
1171 if (Type *Ty = TypeList[ID])
1172 return Ty;
1173
1174 // If we have a forward reference, the only possible case is when it is to a
1175 // named struct. Just create a placeholder for now.
1176 return TypeList[ID] = createIdentifiedStructType(Context);
1177}
1178
1179StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1180 StringRef Name) {
1181 auto *Ret = StructType::create(Context, Name);
1182 IdentifiedStructTypes.push_back(Ret);
1183 return Ret;
1184}
1185
1186StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1187 auto *Ret = StructType::create(Context);
1188 IdentifiedStructTypes.push_back(Ret);
1189 return Ret;
1190}
1191
1192//===----------------------------------------------------------------------===//
1193// Functions for parsing blocks from the bitcode file
1194//===----------------------------------------------------------------------===//
1195
1196static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1197 switch (Val) {
1198 case Attribute::EndAttrKinds:
1199 case Attribute::EmptyKey:
1200 case Attribute::TombstoneKey:
1201 llvm_unreachable("Synthetic enumerators which should never get here")::llvm::llvm_unreachable_internal("Synthetic enumerators which should never get here"
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 1201)
;
1202
1203 case Attribute::None: return 0;
1204 case Attribute::ZExt: return 1 << 0;
1205 case Attribute::SExt: return 1 << 1;
1206 case Attribute::NoReturn: return 1 << 2;
1207 case Attribute::InReg: return 1 << 3;
1208 case Attribute::StructRet: return 1 << 4;
1209 case Attribute::NoUnwind: return 1 << 5;
1210 case Attribute::NoAlias: return 1 << 6;
1211 case Attribute::ByVal: return 1 << 7;
1212 case Attribute::Nest: return 1 << 8;
1213 case Attribute::ReadNone: return 1 << 9;
1214 case Attribute::ReadOnly: return 1 << 10;
1215 case Attribute::NoInline: return 1 << 11;
1216 case Attribute::AlwaysInline: return 1 << 12;
1217 case Attribute::OptimizeForSize: return 1 << 13;
1218 case Attribute::StackProtect: return 1 << 14;
1219 case Attribute::StackProtectReq: return 1 << 15;
1220 case Attribute::Alignment: return 31 << 16;
1221 case Attribute::NoCapture: return 1 << 21;
1222 case Attribute::NoRedZone: return 1 << 22;
1223 case Attribute::NoImplicitFloat: return 1 << 23;
1224 case Attribute::Naked: return 1 << 24;
1225 case Attribute::InlineHint: return 1 << 25;
1226 case Attribute::StackAlignment: return 7 << 26;
1227 case Attribute::ReturnsTwice: return 1 << 29;
1228 case Attribute::UWTable: return 1 << 30;
1229 case Attribute::NonLazyBind: return 1U << 31;
1230 case Attribute::SanitizeAddress: return 1ULL << 32;
1231 case Attribute::MinSize: return 1ULL << 33;
1232 case Attribute::NoDuplicate: return 1ULL << 34;
1233 case Attribute::StackProtectStrong: return 1ULL << 35;
1234 case Attribute::SanitizeThread: return 1ULL << 36;
1235 case Attribute::SanitizeMemory: return 1ULL << 37;
1236 case Attribute::NoBuiltin: return 1ULL << 38;
1237 case Attribute::Returned: return 1ULL << 39;
1238 case Attribute::Cold: return 1ULL << 40;
1239 case Attribute::Builtin: return 1ULL << 41;
1240 case Attribute::OptimizeNone: return 1ULL << 42;
1241 case Attribute::InAlloca: return 1ULL << 43;
1242 case Attribute::NonNull: return 1ULL << 44;
1243 case Attribute::JumpTable: return 1ULL << 45;
1244 case Attribute::Convergent: return 1ULL << 46;
1245 case Attribute::SafeStack: return 1ULL << 47;
1246 case Attribute::NoRecurse: return 1ULL << 48;
1247 case Attribute::InaccessibleMemOnly: return 1ULL << 49;
1248 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1249 case Attribute::SwiftSelf: return 1ULL << 51;
1250 case Attribute::SwiftError: return 1ULL << 52;
1251 case Attribute::WriteOnly: return 1ULL << 53;
1252 case Attribute::Speculatable: return 1ULL << 54;
1253 case Attribute::StrictFP: return 1ULL << 55;
1254 case Attribute::SanitizeHWAddress: return 1ULL << 56;
1255 case Attribute::NoCfCheck: return 1ULL << 57;
1256 case Attribute::OptForFuzzing: return 1ULL << 58;
1257 case Attribute::ShadowCallStack: return 1ULL << 59;
1258 case Attribute::SpeculativeLoadHardening:
1259 return 1ULL << 60;
1260 case Attribute::ImmArg:
1261 return 1ULL << 61;
1262 case Attribute::WillReturn:
1263 return 1ULL << 62;
1264 case Attribute::NoFree:
1265 return 1ULL << 63;
1266 default:
1267 // Other attributes are not supported in the raw format,
1268 // as we ran out of space.
1269 return 0;
1270 }
1271 llvm_unreachable("Unsupported attribute type")::llvm::llvm_unreachable_internal("Unsupported attribute type"
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 1271)
;
1272}
1273
1274static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1275 if (!Val) return;
1276
1277 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1278 I = Attribute::AttrKind(I + 1)) {
1279 if (uint64_t A = (Val & getRawAttributeMask(I))) {
1280 if (I == Attribute::Alignment)
1281 B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1282 else if (I == Attribute::StackAlignment)
1283 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1284 else if (Attribute::isTypeAttrKind(I))
1285 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1286 else
1287 B.addAttribute(I);
1288 }
1289 }
1290}
1291
1292/// This fills an AttrBuilder object with the LLVM attributes that have
1293/// been decoded from the given integer. This function must stay in sync with
1294/// 'encodeLLVMAttributesForBitcode'.
1295static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1296 uint64_t EncodedAttrs) {
1297 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift
1298 // the bits above 31 down by 11 bits.
1299 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1300 assert((!Alignment || isPowerOf2_32(Alignment)) &&(static_cast <bool> ((!Alignment || isPowerOf2_32(Alignment
)) && "Alignment must be a power of two.") ? void (0)
: __assert_fail ("(!Alignment || isPowerOf2_32(Alignment)) && \"Alignment must be a power of two.\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 1301, __extension__
__PRETTY_FUNCTION__))
1301 "Alignment must be a power of two.")(static_cast <bool> ((!Alignment || isPowerOf2_32(Alignment
)) && "Alignment must be a power of two.") ? void (0)
: __assert_fail ("(!Alignment || isPowerOf2_32(Alignment)) && \"Alignment must be a power of two.\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 1301, __extension__
__PRETTY_FUNCTION__))
;
1302
1303 if (Alignment)
1304 B.addAlignmentAttr(Alignment);
1305 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1306 (EncodedAttrs & 0xffff));
1307}
1308
1309Error BitcodeReader::parseAttributeBlock() {
1310 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1311 return Err;
1312
1313 if (!MAttributes.empty())
1314 return error("Invalid multiple blocks");
1315
1316 SmallVector<uint64_t, 64> Record;
1317
1318 SmallVector<AttributeList, 8> Attrs;
1319
1320 // Read all the records.
1321 while (true) {
1322 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1323 if (!MaybeEntry)
1324 return MaybeEntry.takeError();
1325 BitstreamEntry Entry = MaybeEntry.get();
1326
1327 switch (Entry.Kind) {
1328 case BitstreamEntry::SubBlock: // Handled for us already.
1329 case BitstreamEntry::Error:
1330 return error("Malformed block");
1331 case BitstreamEntry::EndBlock:
1332 return Error::success();
1333 case BitstreamEntry::Record:
1334 // The interesting case.
1335 break;
1336 }
1337
1338 // Read a record.
1339 Record.clear();
1340 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1341 if (!MaybeRecord)
1342 return MaybeRecord.takeError();
1343 switch (MaybeRecord.get()) {
1344 default: // Default behavior: ignore.
1345 break;
1346 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1347 // Deprecated, but still needed to read old bitcode files.
1348 if (Record.size() & 1)
1349 return error("Invalid record");
1350
1351 for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1352 AttrBuilder B(Context);
1353 decodeLLVMAttributesForBitcode(B, Record[i+1]);
1354 Attrs.push_back(AttributeList::get(Context, Record[i], B));
1355 }
1356
1357 MAttributes.push_back(AttributeList::get(Context, Attrs));
1358 Attrs.clear();
1359 break;
1360 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1361 for (unsigned i = 0, e = Record.size(); i != e; ++i)
1362 Attrs.push_back(MAttributeGroups[Record[i]]);
1363
1364 MAttributes.push_back(AttributeList::get(Context, Attrs));
1365 Attrs.clear();
1366 break;
1367 }
1368 }
1369}
1370
1371// Returns Attribute::None on unrecognized codes.
1372static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1373 switch (Code) {
1374 default:
1375 return Attribute::None;
1376 case bitc::ATTR_KIND_ALIGNMENT:
1377 return Attribute::Alignment;
1378 case bitc::ATTR_KIND_ALWAYS_INLINE:
1379 return Attribute::AlwaysInline;
1380 case bitc::ATTR_KIND_ARGMEMONLY:
1381 return Attribute::ArgMemOnly;
1382 case bitc::ATTR_KIND_BUILTIN:
1383 return Attribute::Builtin;
1384 case bitc::ATTR_KIND_BY_VAL:
1385 return Attribute::ByVal;
1386 case bitc::ATTR_KIND_IN_ALLOCA:
1387 return Attribute::InAlloca;
1388 case bitc::ATTR_KIND_COLD:
1389 return Attribute::Cold;
1390 case bitc::ATTR_KIND_CONVERGENT:
1391 return Attribute::Convergent;
1392 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
1393 return Attribute::DisableSanitizerInstrumentation;
1394 case bitc::ATTR_KIND_ELEMENTTYPE:
1395 return Attribute::ElementType;
1396 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1397 return Attribute::InaccessibleMemOnly;
1398 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1399 return Attribute::InaccessibleMemOrArgMemOnly;
1400 case bitc::ATTR_KIND_INLINE_HINT:
1401 return Attribute::InlineHint;
1402 case bitc::ATTR_KIND_IN_REG:
1403 return Attribute::InReg;
1404 case bitc::ATTR_KIND_JUMP_TABLE:
1405 return Attribute::JumpTable;
1406 case bitc::ATTR_KIND_MIN_SIZE:
1407 return Attribute::MinSize;
1408 case bitc::ATTR_KIND_NAKED:
1409 return Attribute::Naked;
1410 case bitc::ATTR_KIND_NEST:
1411 return Attribute::Nest;
1412 case bitc::ATTR_KIND_NO_ALIAS:
1413 return Attribute::NoAlias;
1414 case bitc::ATTR_KIND_NO_BUILTIN:
1415 return Attribute::NoBuiltin;
1416 case bitc::ATTR_KIND_NO_CALLBACK:
1417 return Attribute::NoCallback;
1418 case bitc::ATTR_KIND_NO_CAPTURE:
1419 return Attribute::NoCapture;
1420 case bitc::ATTR_KIND_NO_DUPLICATE:
1421 return Attribute::NoDuplicate;
1422 case bitc::ATTR_KIND_NOFREE:
1423 return Attribute::NoFree;
1424 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1425 return Attribute::NoImplicitFloat;
1426 case bitc::ATTR_KIND_NO_INLINE:
1427 return Attribute::NoInline;
1428 case bitc::ATTR_KIND_NO_RECURSE:
1429 return Attribute::NoRecurse;
1430 case bitc::ATTR_KIND_NO_MERGE:
1431 return Attribute::NoMerge;
1432 case bitc::ATTR_KIND_NON_LAZY_BIND:
1433 return Attribute::NonLazyBind;
1434 case bitc::ATTR_KIND_NON_NULL:
1435 return Attribute::NonNull;
1436 case bitc::ATTR_KIND_DEREFERENCEABLE:
1437 return Attribute::Dereferenceable;
1438 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1439 return Attribute::DereferenceableOrNull;
1440 case bitc::ATTR_KIND_ALLOC_SIZE:
1441 return Attribute::AllocSize;
1442 case bitc::ATTR_KIND_NO_RED_ZONE:
1443 return Attribute::NoRedZone;
1444 case bitc::ATTR_KIND_NO_RETURN:
1445 return Attribute::NoReturn;
1446 case bitc::ATTR_KIND_NOSYNC:
1447 return Attribute::NoSync;
1448 case bitc::ATTR_KIND_NOCF_CHECK:
1449 return Attribute::NoCfCheck;
1450 case bitc::ATTR_KIND_NO_PROFILE:
1451 return Attribute::NoProfile;
1452 case bitc::ATTR_KIND_NO_UNWIND:
1453 return Attribute::NoUnwind;
1454 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
1455 return Attribute::NoSanitizeCoverage;
1456 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
1457 return Attribute::NullPointerIsValid;
1458 case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1459 return Attribute::OptForFuzzing;
1460 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1461 return Attribute::OptimizeForSize;
1462 case bitc::ATTR_KIND_OPTIMIZE_NONE:
1463 return Attribute::OptimizeNone;
1464 case bitc::ATTR_KIND_READ_NONE:
1465 return Attribute::ReadNone;
1466 case bitc::ATTR_KIND_READ_ONLY:
1467 return Attribute::ReadOnly;
1468 case bitc::ATTR_KIND_RETURNED:
1469 return Attribute::Returned;
1470 case bitc::ATTR_KIND_RETURNS_TWICE:
1471 return Attribute::ReturnsTwice;
1472 case bitc::ATTR_KIND_S_EXT:
1473 return Attribute::SExt;
1474 case bitc::ATTR_KIND_SPECULATABLE:
1475 return Attribute::Speculatable;
1476 case bitc::ATTR_KIND_STACK_ALIGNMENT:
1477 return Attribute::StackAlignment;
1478 case bitc::ATTR_KIND_STACK_PROTECT:
1479 return Attribute::StackProtect;
1480 case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1481 return Attribute::StackProtectReq;
1482 case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1483 return Attribute::StackProtectStrong;
1484 case bitc::ATTR_KIND_SAFESTACK:
1485 return Attribute::SafeStack;
1486 case bitc::ATTR_KIND_SHADOWCALLSTACK:
1487 return Attribute::ShadowCallStack;
1488 case bitc::ATTR_KIND_STRICT_FP:
1489 return Attribute::StrictFP;
1490 case bitc::ATTR_KIND_STRUCT_RET:
1491 return Attribute::StructRet;
1492 case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1493 return Attribute::SanitizeAddress;
1494 case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1495 return Attribute::SanitizeHWAddress;
1496 case bitc::ATTR_KIND_SANITIZE_THREAD:
1497 return Attribute::SanitizeThread;
1498 case bitc::ATTR_KIND_SANITIZE_MEMORY:
1499 return Attribute::SanitizeMemory;
1500 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1501 return Attribute::SpeculativeLoadHardening;
1502 case bitc::ATTR_KIND_SWIFT_ERROR:
1503 return Attribute::SwiftError;
1504 case bitc::ATTR_KIND_SWIFT_SELF:
1505 return Attribute::SwiftSelf;
1506 case bitc::ATTR_KIND_SWIFT_ASYNC:
1507 return Attribute::SwiftAsync;
1508 case bitc::ATTR_KIND_UW_TABLE:
1509 return Attribute::UWTable;
1510 case bitc::ATTR_KIND_VSCALE_RANGE:
1511 return Attribute::VScaleRange;
1512 case bitc::ATTR_KIND_WILLRETURN:
1513 return Attribute::WillReturn;
1514 case bitc::ATTR_KIND_WRITEONLY:
1515 return Attribute::WriteOnly;
1516 case bitc::ATTR_KIND_Z_EXT:
1517 return Attribute::ZExt;
1518 case bitc::ATTR_KIND_IMMARG:
1519 return Attribute::ImmArg;
1520 case bitc::ATTR_KIND_SANITIZE_MEMTAG:
1521 return Attribute::SanitizeMemTag;
1522 case bitc::ATTR_KIND_PREALLOCATED:
1523 return Attribute::Preallocated;
1524 case bitc::ATTR_KIND_NOUNDEF:
1525 return Attribute::NoUndef;
1526 case bitc::ATTR_KIND_BYREF:
1527 return Attribute::ByRef;
1528 case bitc::ATTR_KIND_MUSTPROGRESS:
1529 return Attribute::MustProgress;
1530 case bitc::ATTR_KIND_HOT:
1531 return Attribute::Hot;
1532 }
1533}
1534
1535Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1536 MaybeAlign &Alignment) {
1537 // Note: Alignment in bitcode files is incremented by 1, so that zero
1538 // can be used for default alignment.
1539 if (Exponent > Value::MaxAlignmentExponent + 1)
1540 return error("Invalid alignment value");
1541 Alignment = decodeMaybeAlign(Exponent);
1542 return Error::success();
1543}
1544
1545Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1546 *Kind = getAttrFromCode(Code);
1547 if (*Kind == Attribute::None)
1548 return error("Unknown attribute kind (" + Twine(Code) + ")");
1549 return Error::success();
1550}
1551
1552Error BitcodeReader::parseAttributeGroupBlock() {
1553 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1554 return Err;
1555
1556 if (!MAttributeGroups.empty())
1557 return error("Invalid multiple blocks");
1558
1559 SmallVector<uint64_t, 64> Record;
1560
1561 // Read all the records.
1562 while (true) {
1563 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1564 if (!MaybeEntry)
1565 return MaybeEntry.takeError();
1566 BitstreamEntry Entry = MaybeEntry.get();
1567
1568 switch (Entry.Kind) {
1569 case BitstreamEntry::SubBlock: // Handled for us already.
1570 case BitstreamEntry::Error:
1571 return error("Malformed block");
1572 case BitstreamEntry::EndBlock:
1573 return Error::success();
1574 case BitstreamEntry::Record:
1575 // The interesting case.
1576 break;
1577 }
1578
1579 // Read a record.
1580 Record.clear();
1581 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1582 if (!MaybeRecord)
1583 return MaybeRecord.takeError();
1584 switch (MaybeRecord.get()) {
1585 default: // Default behavior: ignore.
1586 break;
1587 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1588 if (Record.size() < 3)
1589 return error("Invalid record");
1590
1591 uint64_t GrpID = Record[0];
1592 uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1593
1594 AttrBuilder B(Context);
1595 for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1596 if (Record[i] == 0) { // Enum attribute
1597 Attribute::AttrKind Kind;
1598 if (Error Err = parseAttrKind(Record[++i], &Kind))
1599 return Err;
1600
1601 // Upgrade old-style byval attribute to one with a type, even if it's
1602 // nullptr. We will have to insert the real type when we associate
1603 // this AttributeList with a function.
1604 if (Kind == Attribute::ByVal)
1605 B.addByValAttr(nullptr);
1606 else if (Kind == Attribute::StructRet)
1607 B.addStructRetAttr(nullptr);
1608 else if (Kind == Attribute::InAlloca)
1609 B.addInAllocaAttr(nullptr);
1610 else if (Attribute::isEnumAttrKind(Kind))
1611 B.addAttribute(Kind);
1612 else
1613 return error("Not an enum attribute");
1614 } else if (Record[i] == 1) { // Integer attribute
1615 Attribute::AttrKind Kind;
1616 if (Error Err = parseAttrKind(Record[++i], &Kind))
1617 return Err;
1618 if (!Attribute::isIntAttrKind(Kind))
1619 return error("Not an int attribute");
1620 if (Kind == Attribute::Alignment)
1621 B.addAlignmentAttr(Record[++i]);
1622 else if (Kind == Attribute::StackAlignment)
1623 B.addStackAlignmentAttr(Record[++i]);
1624 else if (Kind == Attribute::Dereferenceable)
1625 B.addDereferenceableAttr(Record[++i]);
1626 else if (Kind == Attribute::DereferenceableOrNull)
1627 B.addDereferenceableOrNullAttr(Record[++i]);
1628 else if (Kind == Attribute::AllocSize)
1629 B.addAllocSizeAttrFromRawRepr(Record[++i]);
1630 else if (Kind == Attribute::VScaleRange)
1631 B.addVScaleRangeAttrFromRawRepr(Record[++i]);
1632 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1633 bool HasValue = (Record[i++] == 4);
1634 SmallString<64> KindStr;
1635 SmallString<64> ValStr;
1636
1637 while (Record[i] != 0 && i != e)
1638 KindStr += Record[i++];
1639 assert(Record[i] == 0 && "Kind string not null terminated")(static_cast <bool> (Record[i] == 0 && "Kind string not null terminated"
) ? void (0) : __assert_fail ("Record[i] == 0 && \"Kind string not null terminated\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 1639, __extension__
__PRETTY_FUNCTION__))
;
1640
1641 if (HasValue) {
1642 // Has a value associated with it.
1643 ++i; // Skip the '0' that terminates the "kind" string.
1644 while (Record[i] != 0 && i != e)
1645 ValStr += Record[i++];
1646 assert(Record[i] == 0 && "Value string not null terminated")(static_cast <bool> (Record[i] == 0 && "Value string not null terminated"
) ? void (0) : __assert_fail ("Record[i] == 0 && \"Value string not null terminated\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 1646, __extension__
__PRETTY_FUNCTION__))
;
1647 }
1648
1649 B.addAttribute(KindStr.str(), ValStr.str());
1650 } else if (Record[i] == 5 || Record[i] == 6) {
1651 bool HasType = Record[i] == 6;
1652 Attribute::AttrKind Kind;
1653 if (Error Err = parseAttrKind(Record[++i], &Kind))
1654 return Err;
1655 if (!Attribute::isTypeAttrKind(Kind))
1656 return error("Not a type attribute");
1657
1658 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
1659 } else {
1660 return error("Invalid attribute group entry");
1661 }
1662 }
1663
1664 UpgradeAttributes(B);
1665 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1666 break;
1667 }
1668 }
1669 }
1670}
1671
1672Error BitcodeReader::parseTypeTable() {
1673 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1674 return Err;
1675
1676 return parseTypeTableBody();
1677}
1678
1679Error BitcodeReader::parseTypeTableBody() {
1680 if (!TypeList.empty())
1681 return error("Invalid multiple blocks");
1682
1683 SmallVector<uint64_t, 64> Record;
1684 unsigned NumRecords = 0;
1685
1686 SmallString<64> TypeName;
1687
1688 // Read all the records for this type table.
1689 while (true) {
1690 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1691 if (!MaybeEntry)
1692 return MaybeEntry.takeError();
1693 BitstreamEntry Entry = MaybeEntry.get();
1694
1695 switch (Entry.Kind) {
1696 case BitstreamEntry::SubBlock: // Handled for us already.
1697 case BitstreamEntry::Error:
1698 return error("Malformed block");
1699 case BitstreamEntry::EndBlock:
1700 if (NumRecords != TypeList.size())
1701 return error("Malformed block");
1702 return Error::success();
1703 case BitstreamEntry::Record:
1704 // The interesting case.
1705 break;
1706 }
1707
1708 // Read a record.
1709 Record.clear();
1710 Type *ResultTy = nullptr;
1711 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1712 if (!MaybeRecord)
1713 return MaybeRecord.takeError();
1714 switch (MaybeRecord.get()) {
1715 default:
1716 return error("Invalid value");
1717 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1718 // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1719 // type list. This allows us to reserve space.
1720 if (Record.empty())
1721 return error("Invalid record");
1722 TypeList.resize(Record[0]);
1723 continue;
1724 case bitc::TYPE_CODE_VOID: // VOID
1725 ResultTy = Type::getVoidTy(Context);
1726 break;
1727 case bitc::TYPE_CODE_HALF: // HALF
1728 ResultTy = Type::getHalfTy(Context);
1729 break;
1730 case bitc::TYPE_CODE_BFLOAT: // BFLOAT
1731 ResultTy = Type::getBFloatTy(Context);
1732 break;
1733 case bitc::TYPE_CODE_FLOAT: // FLOAT
1734 ResultTy = Type::getFloatTy(Context);
1735 break;
1736 case bitc::TYPE_CODE_DOUBLE: // DOUBLE
1737 ResultTy = Type::getDoubleTy(Context);
1738 break;
1739 case bitc::TYPE_CODE_X86_FP80: // X86_FP80
1740 ResultTy = Type::getX86_FP80Ty(Context);
1741 break;
1742 case bitc::TYPE_CODE_FP128: // FP128
1743 ResultTy = Type::getFP128Ty(Context);
1744 break;
1745 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1746 ResultTy = Type::getPPC_FP128Ty(Context);
1747 break;
1748 case bitc::TYPE_CODE_LABEL: // LABEL
1749 ResultTy = Type::getLabelTy(Context);
1750 break;
1751 case bitc::TYPE_CODE_METADATA: // METADATA
1752 ResultTy = Type::getMetadataTy(Context);
1753 break;
1754 case bitc::TYPE_CODE_X86_MMX: // X86_MMX
1755 ResultTy = Type::getX86_MMXTy(Context);
1756 break;
1757 case bitc::TYPE_CODE_X86_AMX: // X86_AMX
1758 ResultTy = Type::getX86_AMXTy(Context);
1759 break;
1760 case bitc::TYPE_CODE_TOKEN: // TOKEN
1761 ResultTy = Type::getTokenTy(Context);
1762 break;
1763 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1764 if (Record.empty())
1765 return error("Invalid record");
1766
1767 uint64_t NumBits = Record[0];
1768 if (NumBits < IntegerType::MIN_INT_BITS ||
1769 NumBits > IntegerType::MAX_INT_BITS)
1770 return error("Bitwidth for integer type out of range");
1771 ResultTy = IntegerType::get(Context, NumBits);
1772 break;
1773 }
1774 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1775 // [pointee type, address space]
1776 if (Record.empty())
1777 return error("Invalid record");
1778 unsigned AddressSpace = 0;
1779 if (Record.size() == 2)
1780 AddressSpace = Record[1];
1781 ResultTy = getTypeByID(Record[0]);
1782 if (!ResultTy ||
1783 !PointerType::isValidElementType(ResultTy))
1784 return error("Invalid type");
1785 ResultTy = PointerType::get(ResultTy, AddressSpace);
1786 break;
1787 }
1788 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
1789 if (Record.size() != 1)
1790 return error("Invalid record");
1791 if (Context.supportsTypedPointers())
1792 return error(
1793 "Opaque pointers are only supported in -opaque-pointers mode");
1794 unsigned AddressSpace = Record[0];
1795 ResultTy = PointerType::get(Context, AddressSpace);
1796 break;
1797 }
1798 case bitc::TYPE_CODE_FUNCTION_OLD: {
1799 // Deprecated, but still needed to read old bitcode files.
1800 // FUNCTION: [vararg, attrid, retty, paramty x N]
1801 if (Record.size() < 3)
1802 return error("Invalid record");
1803 SmallVector<Type*, 8> ArgTys;
1804 for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1805 if (Type *T = getTypeByID(Record[i]))
1806 ArgTys.push_back(T);
1807 else
1808 break;
1809 }
1810
1811 ResultTy = getTypeByID(Record[2]);
1812 if (!ResultTy || ArgTys.size() < Record.size()-3)
1813 return error("Invalid type");
1814
1815 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1816 break;
1817 }
1818 case bitc::TYPE_CODE_FUNCTION: {
1819 // FUNCTION: [vararg, retty, paramty x N]
1820 if (Record.size() < 2)
1821 return error("Invalid record");
1822 SmallVector<Type*, 8> ArgTys;
1823 for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1824 if (Type *T = getTypeByID(Record[i])) {
1825 if (!FunctionType::isValidArgumentType(T))
1826 return error("Invalid function argument type");
1827 ArgTys.push_back(T);
1828 }
1829 else
1830 break;
1831 }
1832
1833 ResultTy = getTypeByID(Record[1]);
1834 if (!ResultTy || ArgTys.size() < Record.size()-2)
1835 return error("Invalid type");
1836
1837 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1838 break;
1839 }
1840 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N]
1841 if (Record.empty())
1842 return error("Invalid record");
1843 SmallVector<Type*, 8> EltTys;
1844 for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1845 if (Type *T = getTypeByID(Record[i]))
1846 EltTys.push_back(T);
1847 else
1848 break;
1849 }
1850 if (EltTys.size() != Record.size()-1)
1851 return error("Invalid type");
1852 ResultTy = StructType::get(Context, EltTys, Record[0]);
1853 break;
1854 }
1855 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N]
1856 if (convertToString(Record, 0, TypeName))
1857 return error("Invalid record");
1858 continue;
1859
1860 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1861 if (Record.empty())
1862 return error("Invalid record");
1863
1864 if (NumRecords >= TypeList.size())
1865 return error("Invalid TYPE table");
1866
1867 // Check to see if this was forward referenced, if so fill in the temp.
1868 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1869 if (Res) {
1870 Res->setName(TypeName);
1871 TypeList[NumRecords] = nullptr;
1872 } else // Otherwise, create a new struct.
1873 Res = createIdentifiedStructType(Context, TypeName);
1874 TypeName.clear();
1875
1876 SmallVector<Type*, 8> EltTys;
1877 for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1878 if (Type *T = getTypeByID(Record[i]))
1879 EltTys.push_back(T);
1880 else
1881 break;
1882 }
1883 if (EltTys.size() != Record.size()-1)
1884 return error("Invalid record");
1885 Res->setBody(EltTys, Record[0]);
1886 ResultTy = Res;
1887 break;
1888 }
1889 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: []
1890 if (Record.size() != 1)
1891 return error("Invalid record");
1892
1893 if (NumRecords >= TypeList.size())
1894 return error("Invalid TYPE table");
1895
1896 // Check to see if this was forward referenced, if so fill in the temp.
1897 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1898 if (Res) {
1899 Res->setName(TypeName);
1900 TypeList[NumRecords] = nullptr;
1901 } else // Otherwise, create a new struct with no body.
1902 Res = createIdentifiedStructType(Context, TypeName);
1903 TypeName.clear();
1904 ResultTy = Res;
1905 break;
1906 }
1907 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
1908 if (Record.size() < 2)
1909 return error("Invalid record");
1910 ResultTy = getTypeByID(Record[1]);
1911 if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1912 return error("Invalid type");
1913 ResultTy = ArrayType::get(ResultTy, Record[0]);
1914 break;
1915 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or
1916 // [numelts, eltty, scalable]
1917 if (Record.size() < 2)
1918 return error("Invalid record");
1919 if (Record[0] == 0)
1920 return error("Invalid vector length");
1921 ResultTy = getTypeByID(Record[1]);
1922 if (!ResultTy || !VectorType::isValidElementType(ResultTy))
1923 return error("Invalid type");
1924 bool Scalable = Record.size() > 2 ? Record[2] : false;
1925 ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
1926 break;
1927 }
1928
1929 if (NumRecords >= TypeList.size())
1930 return error("Invalid TYPE table");
1931 if (TypeList[NumRecords])
1932 return error(
1933 "Invalid TYPE table: Only named structs can be forward referenced");
1934 assert(ResultTy && "Didn't read a type?")(static_cast <bool> (ResultTy && "Didn't read a type?"
) ? void (0) : __assert_fail ("ResultTy && \"Didn't read a type?\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 1934, __extension__
__PRETTY_FUNCTION__))
;
1935 TypeList[NumRecords++] = ResultTy;
1936 }
1937}
1938
1939Error BitcodeReader::parseOperandBundleTags() {
1940 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1941 return Err;
1942
1943 if (!BundleTags.empty())
1944 return error("Invalid multiple blocks");
1945
1946 SmallVector<uint64_t, 64> Record;
1947
1948 while (true) {
1949 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1950 if (!MaybeEntry)
1951 return MaybeEntry.takeError();
1952 BitstreamEntry Entry = MaybeEntry.get();
1953
1954 switch (Entry.Kind) {
1955 case BitstreamEntry::SubBlock: // Handled for us already.
1956 case BitstreamEntry::Error:
1957 return error("Malformed block");
1958 case BitstreamEntry::EndBlock:
1959 return Error::success();
1960 case BitstreamEntry::Record:
1961 // The interesting case.
1962 break;
1963 }
1964
1965 // Tags are implicitly mapped to integers by their order.
1966
1967 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1968 if (!MaybeRecord)
1969 return MaybeRecord.takeError();
1970 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
1971 return error("Invalid record");
1972
1973 // OPERAND_BUNDLE_TAG: [strchr x N]
1974 BundleTags.emplace_back();
1975 if (convertToString(Record, 0, BundleTags.back()))
1976 return error("Invalid record");
1977 Record.clear();
1978 }
1979}
1980
1981Error BitcodeReader::parseSyncScopeNames() {
1982 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1983 return Err;
1984
1985 if (!SSIDs.empty())
1986 return error("Invalid multiple synchronization scope names blocks");
1987
1988 SmallVector<uint64_t, 64> Record;
1989 while (true) {
1990 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1991 if (!MaybeEntry)
1992 return MaybeEntry.takeError();
1993 BitstreamEntry Entry = MaybeEntry.get();
1994
1995 switch (Entry.Kind) {
1996 case BitstreamEntry::SubBlock: // Handled for us already.
1997 case BitstreamEntry::Error:
1998 return error("Malformed block");
1999 case BitstreamEntry::EndBlock:
2000 if (SSIDs.empty())
2001 return error("Invalid empty synchronization scope names block");
2002 return Error::success();
2003 case BitstreamEntry::Record:
2004 // The interesting case.
2005 break;
2006 }
2007
2008 // Synchronization scope names are implicitly mapped to synchronization
2009 // scope IDs by their order.
2010
2011 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2012 if (!MaybeRecord)
2013 return MaybeRecord.takeError();
2014 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2015 return error("Invalid record");
2016
2017 SmallString<16> SSN;
2018 if (convertToString(Record, 0, SSN))
2019 return error("Invalid record");
2020
2021 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2022 Record.clear();
2023 }
2024}
2025
2026/// Associate a value with its name from the given index in the provided record.
2027Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2028 unsigned NameIndex, Triple &TT) {
2029 SmallString<128> ValueName;
2030 if (convertToString(Record, NameIndex, ValueName))
2031 return error("Invalid record");
2032 unsigned ValueID = Record[0];
2033 if (ValueID >= ValueList.size() || !ValueList[ValueID])
2034 return error("Invalid record");
2035 Value *V = ValueList[ValueID];
2036
2037 StringRef NameStr(ValueName.data(), ValueName.size());
2038 if (NameStr.find_first_of(0) != StringRef::npos)
2039 return error("Invalid value name");
2040 V->setName(NameStr);
2041 auto *GO = dyn_cast<GlobalObject>(V);
2042 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT())
2043 GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2044 return V;
2045}
2046
2047/// Helper to note and return the current location, and jump to the given
2048/// offset.
2049static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2050 BitstreamCursor &Stream) {
2051 // Save the current parsing location so we can jump back at the end
2052 // of the VST read.
2053 uint64_t CurrentBit = Stream.GetCurrentBitNo();
2054 if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2055 return std::move(JumpFailed);
2056 Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2057 if (!MaybeEntry)
2058 return MaybeEntry.takeError();
2059 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock ||
2060 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID)
2061 return error("Expected value symbol table subblock");
2062 return CurrentBit;
2063}
2064
2065void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2066 Function *F,
2067 ArrayRef<uint64_t> Record) {
2068 // Note that we subtract 1 here because the offset is relative to one word
2069 // before the start of the identification or module block, which was
2070 // historically always the start of the regular bitcode header.
2071 uint64_t FuncWordOffset = Record[1] - 1;
2072 uint64_t FuncBitOffset = FuncWordOffset * 32;
2073 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2074 // Set the LastFunctionBlockBit to point to the last function block.
2075 // Later when parsing is resumed after function materialization,
2076 // we can simply skip that last function block.
2077 if (FuncBitOffset > LastFunctionBlockBit)
2078 LastFunctionBlockBit = FuncBitOffset;
2079}
2080
2081/// Read a new-style GlobalValue symbol table.
2082Error BitcodeReader::parseGlobalValueSymbolTable() {
2083 unsigned FuncBitcodeOffsetDelta =
2084 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2085
2086 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2087 return Err;
2088
2089 SmallVector<uint64_t, 64> Record;
2090 while (true) {
2091 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2092 if (!MaybeEntry)
2093 return MaybeEntry.takeError();
2094 BitstreamEntry Entry = MaybeEntry.get();
2095
2096 switch (Entry.Kind) {
2097 case BitstreamEntry::SubBlock:
2098 case BitstreamEntry::Error:
2099 return error("Malformed block");
2100 case BitstreamEntry::EndBlock:
2101 return Error::success();
2102 case BitstreamEntry::Record:
2103 break;
2104 }
2105
2106 Record.clear();
2107 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2108 if (!MaybeRecord)
2109 return MaybeRecord.takeError();
2110 switch (MaybeRecord.get()) {
2111 case bitc::VST_CODE_FNENTRY: { // [valueid, offset]
2112 unsigned ValueID = Record[0];
2113 if (ValueID >= ValueList.size() || !ValueList[ValueID])
2114 return error("Invalid value reference in symbol table");
2115 setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2116 cast<Function>(ValueList[ValueID]), Record);
2117 break;
2118 }
2119 }
2120 }
2121}
2122
2123/// Parse the value symbol table at either the current parsing location or
2124/// at the given bit offset if provided.
2125Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2126 uint64_t CurrentBit;
2127 // Pass in the Offset to distinguish between calling for the module-level
2128 // VST (where we want to jump to the VST offset) and the function-level
2129 // VST (where we don't).
2130 if (Offset > 0) {
2131 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2132 if (!MaybeCurrentBit)
2133 return MaybeCurrentBit.takeError();
2134 CurrentBit = MaybeCurrentBit.get();
2135 // If this module uses a string table, read this as a module-level VST.
2136 if (UseStrtab) {
2137 if (Error Err = parseGlobalValueSymbolTable())
2138 return Err;
2139 if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2140 return JumpFailed;
2141 return Error::success();
2142 }
2143 // Otherwise, the VST will be in a similar format to a function-level VST,
2144 // and will contain symbol names.
2145 }
2146
2147 // Compute the delta between the bitcode indices in the VST (the word offset
2148 // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2149 // expected by the lazy reader. The reader's EnterSubBlock expects to have
2150 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2151 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2152 // just before entering the VST subblock because: 1) the EnterSubBlock
2153 // changes the AbbrevID width; 2) the VST block is nested within the same
2154 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2155 // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2156 // jump to the FUNCTION_BLOCK using this offset later, we don't want
2157 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2158 unsigned FuncBitcodeOffsetDelta =
2159 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2160
2161 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2162 return Err;
2163
2164 SmallVector<uint64_t, 64> Record;
2165
2166 Triple TT(TheModule->getTargetTriple());
2167
2168 // Read all the records for this value table.
2169 SmallString<128> ValueName;
2170
2171 while (true) {
2172 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2173 if (!MaybeEntry)
2174 return MaybeEntry.takeError();
2175 BitstreamEntry Entry = MaybeEntry.get();
2176
2177 switch (Entry.Kind) {
2178 case BitstreamEntry::SubBlock: // Handled for us already.
2179 case BitstreamEntry::Error:
2180 return error("Malformed block");
2181 case BitstreamEntry::EndBlock:
2182 if (Offset > 0)
2183 if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2184 return JumpFailed;
2185 return Error::success();
2186 case BitstreamEntry::Record:
2187 // The interesting case.
2188 break;
2189 }
2190
2191 // Read a record.
2192 Record.clear();
2193 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2194 if (!MaybeRecord)
2195 return MaybeRecord.takeError();
2196 switch (MaybeRecord.get()) {
2197 default: // Default behavior: unknown type.
2198 break;
2199 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
2200 Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2201 if (Error Err = ValOrErr.takeError())
2202 return Err;
2203 ValOrErr.get();
2204 break;
2205 }
2206 case bitc::VST_CODE_FNENTRY: {
2207 // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2208 Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2209 if (Error Err = ValOrErr.takeError())
2210 return Err;
2211 Value *V = ValOrErr.get();
2212
2213 // Ignore function offsets emitted for aliases of functions in older
2214 // versions of LLVM.
2215 if (auto *F = dyn_cast<Function>(V))
2216 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2217 break;
2218 }
2219 case bitc::VST_CODE_BBENTRY: {
2220 if (convertToString(Record, 1, ValueName))
2221 return error("Invalid record");
2222 BasicBlock *BB = getBasicBlock(Record[0]);
2223 if (!BB)
2224 return error("Invalid record");
2225
2226 BB->setName(StringRef(ValueName.data(), ValueName.size()));
2227 ValueName.clear();
2228 break;
2229 }
2230 }
2231 }
2232}
2233
2234/// Decode a signed value stored with the sign bit in the LSB for dense VBR
2235/// encoding.
2236uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2237 if ((V & 1) == 0)
2238 return V >> 1;
2239 if (V != 1)
2240 return -(V >> 1);
2241 // There is no such thing as -0 with integers. "-0" really means MININT.
2242 return 1ULL << 63;
2243}
2244
2245/// Resolve all of the initializers for global values and aliases that we can.
2246Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2247 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2248 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
2249 std::vector<FunctionOperandInfo> FunctionOperandWorklist;
2250
2251 GlobalInitWorklist.swap(GlobalInits);
2252 IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2253 FunctionOperandWorklist.swap(FunctionOperands);
2254
2255 while (!GlobalInitWorklist.empty()) {
2256 unsigned ValID = GlobalInitWorklist.back().second;
2257 if (ValID >= ValueList.size()) {
2258 // Not ready to resolve this yet, it requires something later in the file.
2259 GlobalInits.push_back(GlobalInitWorklist.back());
2260 } else {
2261 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2262 GlobalInitWorklist.back().first->setInitializer(C);
2263 else
2264 return error("Expected a constant");
2265 }
2266 GlobalInitWorklist.pop_back();
2267 }
2268
2269 while (!IndirectSymbolInitWorklist.empty()) {
2270 unsigned ValID = IndirectSymbolInitWorklist.back().second;
2271 if (ValID >= ValueList.size()) {
2272 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2273 } else {
2274 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2275 if (!C)
2276 return error("Expected a constant");
2277 GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
2278 if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
2279 if (C->getType() != GV->getType())
2280 return error("Alias and aliasee types don't match");
2281 GA->setAliasee(C);
2282 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
2283 Type *ResolverFTy =
2284 GlobalIFunc::getResolverFunctionType(GI->getValueType());
2285 // Transparently fix up the type for compatiblity with older bitcode
2286 GI->setResolver(
2287 ConstantExpr::getBitCast(C, ResolverFTy->getPointerTo()));
2288 } else {
2289 return error("Expected an alias or an ifunc");
2290 }
2291 }
2292 IndirectSymbolInitWorklist.pop_back();
2293 }
2294
2295 while (!FunctionOperandWorklist.empty()) {
2296 FunctionOperandInfo &Info = FunctionOperandWorklist.back();
2297 if (Info.PersonalityFn) {
2298 unsigned ValID = Info.PersonalityFn - 1;
2299 if (ValID < ValueList.size()) {
2300 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2301 Info.F->setPersonalityFn(C);
2302 else
2303 return error("Expected a constant");
2304 Info.PersonalityFn = 0;
2305 }
2306 }
2307 if (Info.Prefix) {
2308 unsigned ValID = Info.Prefix - 1;
2309 if (ValID < ValueList.size()) {
2310 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2311 Info.F->setPrefixData(C);
2312 else
2313 return error("Expected a constant");
2314 Info.Prefix = 0;
2315 }
2316 }
2317 if (Info.Prologue) {
2318 unsigned ValID = Info.Prologue - 1;
2319 if (ValID < ValueList.size()) {
2320 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2321 Info.F->setPrologueData(C);
2322 else
2323 return error("Expected a constant");
2324 Info.Prologue = 0;
2325 }
2326 }
2327 if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
2328 FunctionOperands.push_back(Info);
2329 FunctionOperandWorklist.pop_back();
2330 }
2331
2332 return Error::success();
2333}
2334
2335APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2336 SmallVector<uint64_t, 8> Words(Vals.size());
2337 transform(Vals, Words.begin(),
2338 BitcodeReader::decodeSignRotatedValue);
2339
2340 return APInt(TypeBits, Words);
2341}
2342
2343Error BitcodeReader::parseConstants() {
2344 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
1
Assuming the condition is false
2
Taking false branch
2345 return Err;
2346
2347 SmallVector<uint64_t, 64> Record;
2348
2349 // Read all the records for this value table.
2350 Type *CurTy = Type::getInt32Ty(Context);
2351 unsigned NextCstNo = ValueList.size();
2352
2353 struct DelayedShufTy {
2354 VectorType *OpTy;
2355 VectorType *RTy;
2356 uint64_t Op0Idx;
2357 uint64_t Op1Idx;
2358 uint64_t Op2Idx;
2359 unsigned CstNo;
2360 };
2361 std::vector<DelayedShufTy> DelayedShuffles;
2362 struct DelayedSelTy {
2363 Type *OpTy;
2364 uint64_t Op0Idx;
2365 uint64_t Op1Idx;
2366 uint64_t Op2Idx;
2367 unsigned CstNo;
2368 };
2369 std::vector<DelayedSelTy> DelayedSelectors;
2370
2371 while (true) {
3
Loop condition is true. Entering loop body
2372 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2373 if (!MaybeEntry)
4
Calling 'Expected::operator bool'
7
Returning from 'Expected::operator bool'
8
Taking false branch
2374 return MaybeEntry.takeError();
2375 BitstreamEntry Entry = MaybeEntry.get();
2376
2377 switch (Entry.Kind) {
9
Control jumps to 'case Record:' at line 2434
2378 case BitstreamEntry::SubBlock: // Handled for us already.
2379 case BitstreamEntry::Error:
2380 return error("Malformed block");
2381 case BitstreamEntry::EndBlock:
2382 // Once all the constants have been read, go through and resolve forward
2383 // references.
2384 //
2385 // We have to treat shuffles specially because they don't have three
2386 // operands anymore. We need to convert the shuffle mask into an array,
2387 // and we can't convert a forward reference.
2388 for (auto &DelayedShuffle : DelayedShuffles) {
2389 VectorType *OpTy = DelayedShuffle.OpTy;
2390 VectorType *RTy = DelayedShuffle.RTy;
2391 uint64_t Op0Idx = DelayedShuffle.Op0Idx;
2392 uint64_t Op1Idx = DelayedShuffle.Op1Idx;
2393 uint64_t Op2Idx = DelayedShuffle.Op2Idx;
2394 uint64_t CstNo = DelayedShuffle.CstNo;
2395 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy);
2396 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy);
2397 Type *ShufTy =
2398 VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount());
2399 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy);
2400 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2401 return error("Invalid shufflevector operands");
2402 SmallVector<int, 16> Mask;
2403 ShuffleVectorInst::getShuffleMask(Op2, Mask);
2404 Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask);
2405 ValueList.assignValue(V, CstNo);
2406 }
2407 for (auto &DelayedSelector : DelayedSelectors) {
2408 Type *OpTy = DelayedSelector.OpTy;
2409 Type *SelectorTy = Type::getInt1Ty(Context);
2410 uint64_t Op0Idx = DelayedSelector.Op0Idx;
2411 uint64_t Op1Idx = DelayedSelector.Op1Idx;
2412 uint64_t Op2Idx = DelayedSelector.Op2Idx;
2413 uint64_t CstNo = DelayedSelector.CstNo;
2414 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy);
2415 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, OpTy);
2416 // The selector might be an i1 or an <n x i1>
2417 // Get the type from the ValueList before getting a forward ref.
2418 if (VectorType *VTy = dyn_cast<VectorType>(OpTy)) {
2419 Value *V = ValueList[Op0Idx];
2420 assert(V)(static_cast <bool> (V) ? void (0) : __assert_fail ("V"
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 2420, __extension__
__PRETTY_FUNCTION__))
;
2421 if (SelectorTy != V->getType())
2422 SelectorTy = VectorType::get(SelectorTy, VTy->getElementCount());
2423 }
2424 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, SelectorTy);
2425 Value *V = ConstantExpr::getSelect(Op0, Op1, Op2);
2426 ValueList.assignValue(V, CstNo);
2427 }
2428
2429 if (NextCstNo != ValueList.size())
2430 return error("Invalid constant reference");
2431
2432 ValueList.resolveConstantForwardRefs();
2433 return Error::success();
2434 case BitstreamEntry::Record:
2435 // The interesting case.
2436 break;
10
Execution continues on line 2440
2437 }
2438
2439 // Read a record.
2440 Record.clear();
2441 Type *VoidType = Type::getVoidTy(Context);
2442 Value *V = nullptr;
2443 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2444 if (!MaybeBitCode)
11
Calling 'Expected::operator bool'
14
Returning from 'Expected::operator bool'
15
Taking false branch
2445 return MaybeBitCode.takeError();
2446 switch (unsigned BitCode = MaybeBitCode.get()) {
16
Control jumps to 'case CST_CODE_CE_INBOUNDS_GEP:' at line 2675
2447 default: // Default behavior: unknown constant
2448 case bitc::CST_CODE_UNDEF: // UNDEF
2449 V = UndefValue::get(CurTy);
2450 break;
2451 case bitc::CST_CODE_POISON: // POISON
2452 V = PoisonValue::get(CurTy);
2453 break;
2454 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid]
2455 if (Record.empty())
2456 return error("Invalid record");
2457 if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2458 return error("Invalid record");
2459 if (TypeList[Record[0]] == VoidType)
2460 return error("Invalid constant type");
2461 CurTy = TypeList[Record[0]];
2462 continue; // Skip the ValueList manipulation.
2463 case bitc::CST_CODE_NULL: // NULL
2464 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
2465 return error("Invalid type for a constant null value");
2466 V = Constant::getNullValue(CurTy);
2467 break;
2468 case bitc::CST_CODE_INTEGER: // INTEGER: [intval]
2469 if (!CurTy->isIntegerTy() || Record.empty())
2470 return error("Invalid record");
2471 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2472 break;
2473 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2474 if (!CurTy->isIntegerTy() || Record.empty())
2475 return error("Invalid record");
2476
2477 APInt VInt =
2478 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2479 V = ConstantInt::get(Context, VInt);
2480
2481 break;
2482 }
2483 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval]
2484 if (Record.empty())
2485 return error("Invalid record");
2486 if (CurTy->isHalfTy())
2487 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2488 APInt(16, (uint16_t)Record[0])));
2489 else if (CurTy->isBFloatTy())
2490 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
2491 APInt(16, (uint32_t)Record[0])));
2492 else if (CurTy->isFloatTy())
2493 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2494 APInt(32, (uint32_t)Record[0])));
2495 else if (CurTy->isDoubleTy())
2496 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2497 APInt(64, Record[0])));
2498 else if (CurTy->isX86_FP80Ty()) {
2499 // Bits are not stored the same way as a normal i80 APInt, compensate.
2500 uint64_t Rearrange[2];
2501 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2502 Rearrange[1] = Record[0] >> 48;
2503 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2504 APInt(80, Rearrange)));
2505 } else if (CurTy->isFP128Ty())
2506 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2507 APInt(128, Record)));
2508 else if (CurTy->isPPC_FP128Ty())
2509 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2510 APInt(128, Record)));
2511 else
2512 V = UndefValue::get(CurTy);
2513 break;
2514 }
2515
2516 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2517 if (Record.empty())
2518 return error("Invalid record");
2519
2520 unsigned Size = Record.size();
2521 SmallVector<Constant*, 16> Elts;
2522
2523 if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2524 for (unsigned i = 0; i != Size; ++i)
2525 Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2526 STy->getElementType(i)));
2527 V = ConstantStruct::get(STy, Elts);
2528 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2529 Type *EltTy = ATy->getElementType();
2530 for (unsigned i = 0; i != Size; ++i)
2531 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2532 V = ConstantArray::get(ATy, Elts);
2533 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2534 Type *EltTy = VTy->getElementType();
2535 for (unsigned i = 0; i != Size; ++i)
2536 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2537 V = ConstantVector::get(Elts);
2538 } else {
2539 V = UndefValue::get(CurTy);
2540 }
2541 break;
2542 }
2543 case bitc::CST_CODE_STRING: // STRING: [values]
2544 case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2545 if (Record.empty())
2546 return error("Invalid record");
2547
2548 SmallString<16> Elts(Record.begin(), Record.end());
2549 V = ConstantDataArray::getString(Context, Elts,
2550 BitCode == bitc::CST_CODE_CSTRING);
2551 break;
2552 }
2553 case bitc::CST_CODE_DATA: {// DATA: [n x value]
2554 if (Record.empty())
2555 return error("Invalid record");
2556
2557 Type *EltTy;
2558 if (auto *Array = dyn_cast<ArrayType>(CurTy))
2559 EltTy = Array->getElementType();
2560 else
2561 EltTy = cast<VectorType>(CurTy)->getElementType();
2562 if (EltTy->isIntegerTy(8)) {
2563 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2564 if (isa<VectorType>(CurTy))
2565 V = ConstantDataVector::get(Context, Elts);
2566 else
2567 V = ConstantDataArray::get(Context, Elts);
2568 } else if (EltTy->isIntegerTy(16)) {
2569 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2570 if (isa<VectorType>(CurTy))
2571 V = ConstantDataVector::get(Context, Elts);
2572 else
2573 V = ConstantDataArray::get(Context, Elts);
2574 } else if (EltTy->isIntegerTy(32)) {
2575 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2576 if (isa<VectorType>(CurTy))
2577 V = ConstantDataVector::get(Context, Elts);
2578 else
2579 V = ConstantDataArray::get(Context, Elts);
2580 } else if (EltTy->isIntegerTy(64)) {
2581 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2582 if (isa<VectorType>(CurTy))
2583 V = ConstantDataVector::get(Context, Elts);
2584 else
2585 V = ConstantDataArray::get(Context, Elts);
2586 } else if (EltTy->isHalfTy()) {
2587 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2588 if (isa<VectorType>(CurTy))
2589 V = ConstantDataVector::getFP(EltTy, Elts);
2590 else
2591 V = ConstantDataArray::getFP(EltTy, Elts);
2592 } else if (EltTy->isBFloatTy()) {
2593 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2594 if (isa<VectorType>(CurTy))
2595 V = ConstantDataVector::getFP(EltTy, Elts);
2596 else
2597 V = ConstantDataArray::getFP(EltTy, Elts);
2598 } else if (EltTy->isFloatTy()) {
2599 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2600 if (isa<VectorType>(CurTy))
2601 V = ConstantDataVector::getFP(EltTy, Elts);
2602 else
2603 V = ConstantDataArray::getFP(EltTy, Elts);
2604 } else if (EltTy->isDoubleTy()) {
2605 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2606 if (isa<VectorType>(CurTy))
2607 V = ConstantDataVector::getFP(EltTy, Elts);
2608 else
2609 V = ConstantDataArray::getFP(EltTy, Elts);
2610 } else {
2611 return error("Invalid type for value");
2612 }
2613 break;
2614 }
2615 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval]
2616 if (Record.size() < 2)
2617 return error("Invalid record");
2618 int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2619 if (Opc < 0) {
2620 V = UndefValue::get(CurTy); // Unknown unop.
2621 } else {
2622 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2623 unsigned Flags = 0;
2624 V = ConstantExpr::get(Opc, LHS, Flags);
2625 }
2626 break;
2627 }
2628 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval]
2629 if (Record.size() < 3)
2630 return error("Invalid record");
2631 int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2632 if (Opc < 0) {
2633 V = UndefValue::get(CurTy); // Unknown binop.
2634 } else {
2635 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2636 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2637 unsigned Flags = 0;
2638 if (Record.size() >= 4) {
2639 if (Opc == Instruction::Add ||
2640 Opc == Instruction::Sub ||
2641 Opc == Instruction::Mul ||
2642 Opc == Instruction::Shl) {
2643 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2644 Flags |= OverflowingBinaryOperator::NoSignedWrap;
2645 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2646 Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2647 } else if (Opc == Instruction::SDiv ||
2648 Opc == Instruction::UDiv ||
2649 Opc == Instruction::LShr ||
2650 Opc == Instruction::AShr) {
2651 if (Record[3] & (1 << bitc::PEO_EXACT))
2652 Flags |= SDivOperator::IsExact;
2653 }
2654 }
2655 V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2656 }
2657 break;
2658 }
2659 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
2660 if (Record.size() < 3)
2661 return error("Invalid record");
2662 int Opc = getDecodedCastOpcode(Record[0]);
2663 if (Opc < 0) {
2664 V = UndefValue::get(CurTy); // Unknown cast.
2665 } else {
2666 Type *OpTy = getTypeByID(Record[1]);
2667 if (!OpTy)
2668 return error("Invalid record");
2669 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2670 V = UpgradeBitCastExpr(Opc, Op, CurTy);
2671 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2672 }
2673 break;
2674 }
2675 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2676 case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2677 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2678 // operands]
2679 unsigned OpNum = 0;
2680 Type *PointeeType = nullptr;
2681 if (BitCode
16.1
'BitCode' is not equal to CST_CODE_CE_GEP_WITH_INRANGE_INDEX
16.1
'BitCode' is not equal to CST_CODE_CE_GEP_WITH_INRANGE_INDEX
== bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
18
Taking false branch
2682 Record.size() % 2)
17
Assuming the condition is false
2683 PointeeType = getTypeByID(Record[OpNum++]);
2684
2685 bool InBounds = false;
2686 Optional<unsigned> InRangeIndex;
2687 if (BitCode
18.1
'BitCode' is not equal to CST_CODE_CE_GEP_WITH_INRANGE_INDEX
18.1
'BitCode' is not equal to CST_CODE_CE_GEP_WITH_INRANGE_INDEX
== bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
19
Taking false branch
2688 uint64_t Op = Record[OpNum++];
2689 InBounds = Op & 1;
2690 InRangeIndex = Op >> 1;
2691 } else if (BitCode
19.1
'BitCode' is equal to CST_CODE_CE_INBOUNDS_GEP
19.1
'BitCode' is equal to CST_CODE_CE_INBOUNDS_GEP
== bitc::CST_CODE_CE_INBOUNDS_GEP)
20
Taking true branch
2692 InBounds = true;
2693
2694 SmallVector<Constant*, 16> Elts;
2695 Type *Elt0FullTy = nullptr;
21
'Elt0FullTy' initialized to a null pointer value
2696 while (OpNum != Record.size()) {
22
Assuming the condition is false
23
Loop condition is false. Execution continues on line 2705
2697 if (!Elt0FullTy)
2698 Elt0FullTy = getTypeByID(Record[OpNum]);
2699 Type *ElTy = getTypeByID(Record[OpNum++]);
2700 if (!ElTy)
2701 return error("Invalid record");
2702 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2703 }
2704
2705 if (Elts.size() < 1)
24
Assuming the condition is false
25
Taking false branch
2706 return error("Invalid gep with no operands");
2707
2708 PointerType *OrigPtrTy = cast<PointerType>(Elt0FullTy->getScalarType());
26
Called C++ object pointer is null
2709 if (!PointeeType)
2710 PointeeType = OrigPtrTy->getPointerElementType();
2711 else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType))
2712 return error("Explicit gep operator type does not match pointee type "
2713 "of pointer operand");
2714
2715 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2716 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2717 InBounds, InRangeIndex);
2718 break;
2719 }
2720 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#]
2721 if (Record.size() < 3)
2722 return error("Invalid record");
2723
2724 DelayedSelectors.push_back(
2725 {CurTy, Record[0], Record[1], Record[2], NextCstNo});
2726 (void)ValueList.getConstantFwdRef(NextCstNo, CurTy);
2727 ++NextCstNo;
2728 continue;
2729 }
2730 case bitc::CST_CODE_CE_EXTRACTELT
2731 : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2732 if (Record.size() < 3)
2733 return error("Invalid record");
2734 VectorType *OpTy =
2735 dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2736 if (!OpTy)
2737 return error("Invalid record");
2738 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2739 Constant *Op1 = nullptr;
2740 if (Record.size() == 4) {
2741 Type *IdxTy = getTypeByID(Record[2]);
2742 if (!IdxTy)
2743 return error("Invalid record");
2744 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2745 } else {
2746 // Deprecated, but still needed to read old bitcode files.
2747 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2748 }
2749 if (!Op1)
2750 return error("Invalid record");
2751 V = ConstantExpr::getExtractElement(Op0, Op1);
2752 break;
2753 }
2754 case bitc::CST_CODE_CE_INSERTELT
2755 : { // CE_INSERTELT: [opval, opval, opty, opval]
2756 VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2757 if (Record.size() < 3 || !OpTy)
2758 return error("Invalid record");
2759 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2760 Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2761 OpTy->getElementType());
2762 Constant *Op2 = nullptr;
2763 if (Record.size() == 4) {
2764 Type *IdxTy = getTypeByID(Record[2]);
2765 if (!IdxTy)
2766 return error("Invalid record");
2767 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2768 } else {
2769 // Deprecated, but still needed to read old bitcode files.
2770 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2771 }
2772 if (!Op2)
2773 return error("Invalid record");
2774 V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2775 break;
2776 }
2777 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2778 VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2779 if (Record.size() < 3 || !OpTy)
2780 return error("Invalid record");
2781 DelayedShuffles.push_back(
2782 {OpTy, OpTy, Record[0], Record[1], Record[2], NextCstNo});
2783 ++NextCstNo;
2784 continue;
2785 }
2786 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2787 VectorType *RTy = dyn_cast<VectorType>(CurTy);
2788 VectorType *OpTy =
2789 dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2790 if (Record.size() < 4 || !RTy || !OpTy)
2791 return error("Invalid record");
2792 DelayedShuffles.push_back(
2793 {OpTy, RTy, Record[1], Record[2], Record[3], NextCstNo});
2794 ++NextCstNo;
2795 continue;
2796 }
2797 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred]
2798 if (Record.size() < 4)
2799 return error("Invalid record");
2800 Type *OpTy = getTypeByID(Record[0]);
2801 if (!OpTy)
2802 return error("Invalid record");
2803 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2804 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2805
2806 if (OpTy->isFPOrFPVectorTy())
2807 V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2808 else
2809 V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2810 break;
2811 }
2812 // This maintains backward compatibility, pre-asm dialect keywords.
2813 // Deprecated, but still needed to read old bitcode files.
2814 case bitc::CST_CODE_INLINEASM_OLD: {
2815 if (Record.size() < 2)
2816 return error("Invalid record");
2817 std::string AsmStr, ConstrStr;
2818 bool HasSideEffects = Record[0] & 1;
2819 bool IsAlignStack = Record[0] >> 1;
2820 unsigned AsmStrSize = Record[1];
2821 if (2+AsmStrSize >= Record.size())
2822 return error("Invalid record");
2823 unsigned ConstStrSize = Record[2+AsmStrSize];
2824 if (3+AsmStrSize+ConstStrSize > Record.size())
2825 return error("Invalid record");
2826
2827 for (unsigned i = 0; i != AsmStrSize; ++i)
2828 AsmStr += (char)Record[2+i];
2829 for (unsigned i = 0; i != ConstStrSize; ++i)
2830 ConstrStr += (char)Record[3+AsmStrSize+i];
2831 UpgradeInlineAsmString(&AsmStr);
2832 // FIXME: support upgrading in opaque pointers mode.
2833 V = InlineAsm::get(cast<FunctionType>(CurTy->getPointerElementType()),
2834 AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2835 break;
2836 }
2837 // This version adds support for the asm dialect keywords (e.g.,
2838 // inteldialect).
2839 case bitc::CST_CODE_INLINEASM_OLD2: {
2840 if (Record.size() < 2)
2841 return error("Invalid record");
2842 std::string AsmStr, ConstrStr;
2843 bool HasSideEffects = Record[0] & 1;
2844 bool IsAlignStack = (Record[0] >> 1) & 1;
2845 unsigned AsmDialect = Record[0] >> 2;
2846 unsigned AsmStrSize = Record[1];
2847 if (2+AsmStrSize >= Record.size())
2848 return error("Invalid record");
2849 unsigned ConstStrSize = Record[2+AsmStrSize];
2850 if (3+AsmStrSize+ConstStrSize > Record.size())
2851 return error("Invalid record");
2852
2853 for (unsigned i = 0; i != AsmStrSize; ++i)
2854 AsmStr += (char)Record[2+i];
2855 for (unsigned i = 0; i != ConstStrSize; ++i)
2856 ConstrStr += (char)Record[3+AsmStrSize+i];
2857 UpgradeInlineAsmString(&AsmStr);
2858 // FIXME: support upgrading in opaque pointers mode.
2859 V = InlineAsm::get(cast<FunctionType>(CurTy->getPointerElementType()),
2860 AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2861 InlineAsm::AsmDialect(AsmDialect));
2862 break;
2863 }
2864 // This version adds support for the unwind keyword.
2865 case bitc::CST_CODE_INLINEASM_OLD3: {
2866 if (Record.size() < 2)
2867 return error("Invalid record");
2868 unsigned OpNum = 0;
2869 std::string AsmStr, ConstrStr;
2870 bool HasSideEffects = Record[OpNum] & 1;
2871 bool IsAlignStack = (Record[OpNum] >> 1) & 1;
2872 unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
2873 bool CanThrow = (Record[OpNum] >> 3) & 1;
2874 ++OpNum;
2875 unsigned AsmStrSize = Record[OpNum];
2876 ++OpNum;
2877 if (OpNum + AsmStrSize >= Record.size())
2878 return error("Invalid record");
2879 unsigned ConstStrSize = Record[OpNum + AsmStrSize];
2880 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
2881 return error("Invalid record");
2882
2883 for (unsigned i = 0; i != AsmStrSize; ++i)
2884 AsmStr += (char)Record[OpNum + i];
2885 ++OpNum;
2886 for (unsigned i = 0; i != ConstStrSize; ++i)
2887 ConstrStr += (char)Record[OpNum + AsmStrSize + i];
2888 UpgradeInlineAsmString(&AsmStr);
2889 // FIXME: support upgrading in opaque pointers mode.
2890 V = InlineAsm::get(cast<FunctionType>(CurTy->getPointerElementType()),
2891 AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2892 InlineAsm::AsmDialect(AsmDialect), CanThrow);
2893 break;
2894 }
2895 // This version adds explicit function type.
2896 case bitc::CST_CODE_INLINEASM: {
2897 if (Record.size() < 3)
2898 return error("Invalid record");
2899 unsigned OpNum = 0;
2900 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum]));
2901 ++OpNum;
2902 if (!FnTy)
2903 return error("Invalid record");
2904 std::string AsmStr, ConstrStr;
2905 bool HasSideEffects = Record[OpNum] & 1;
2906 bool IsAlignStack = (Record[OpNum] >> 1) & 1;
2907 unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
2908 bool CanThrow = (Record[OpNum] >> 3) & 1;
2909 ++OpNum;
2910 unsigned AsmStrSize = Record[OpNum];
2911 ++OpNum;
2912 if (OpNum + AsmStrSize >= Record.size())
2913 return error("Invalid record");
2914 unsigned ConstStrSize = Record[OpNum + AsmStrSize];
2915 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
2916 return error("Invalid record");
2917
2918 for (unsigned i = 0; i != AsmStrSize; ++i)
2919 AsmStr += (char)Record[OpNum + i];
2920 ++OpNum;
2921 for (unsigned i = 0; i != ConstStrSize; ++i)
2922 ConstrStr += (char)Record[OpNum + AsmStrSize + i];
2923 UpgradeInlineAsmString(&AsmStr);
2924 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2925 InlineAsm::AsmDialect(AsmDialect), CanThrow);
2926 break;
2927 }
2928 case bitc::CST_CODE_BLOCKADDRESS:{
2929 if (Record.size() < 3)
2930 return error("Invalid record");
2931 Type *FnTy = getTypeByID(Record[0]);
2932 if (!FnTy)
2933 return error("Invalid record");
2934 Function *Fn =
2935 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2936 if (!Fn)
2937 return error("Invalid record");
2938
2939 // If the function is already parsed we can insert the block address right
2940 // away.
2941 BasicBlock *BB;
2942 unsigned BBID = Record[2];
2943 if (!BBID)
2944 // Invalid reference to entry block.
2945 return error("Invalid ID");
2946 if (!Fn->empty()) {
2947 Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2948 for (size_t I = 0, E = BBID; I != E; ++I) {
2949 if (BBI == BBE)
2950 return error("Invalid ID");
2951 ++BBI;
2952 }
2953 BB = &*BBI;
2954 } else {
2955 // Otherwise insert a placeholder and remember it so it can be inserted
2956 // when the function is parsed.
2957 auto &FwdBBs = BasicBlockFwdRefs[Fn];
2958 if (FwdBBs.empty())
2959 BasicBlockFwdRefQueue.push_back(Fn);
2960 if (FwdBBs.size() < BBID + 1)
2961 FwdBBs.resize(BBID + 1);
2962 if (!FwdBBs[BBID])
2963 FwdBBs[BBID] = BasicBlock::Create(Context);
2964 BB = FwdBBs[BBID];
2965 }
2966 V = BlockAddress::get(Fn, BB);
2967 break;
2968 }
2969 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
2970 if (Record.size() < 2)
2971 return error("Invalid record");
2972 Type *GVTy = getTypeByID(Record[0]);
2973 if (!GVTy)
2974 return error("Invalid record");
2975 GlobalValue *GV = dyn_cast_or_null<GlobalValue>(
2976 ValueList.getConstantFwdRef(Record[1], GVTy));
2977 if (!GV)
2978 return error("Invalid record");
2979
2980 V = DSOLocalEquivalent::get(GV);
2981 break;
2982 }
2983 case bitc::CST_CODE_NO_CFI_VALUE: {
2984 if (Record.size() < 2)
2985 return error("Invalid record");
2986 Type *GVTy = getTypeByID(Record[0]);
2987 if (!GVTy)
2988 return error("Invalid record");
2989 GlobalValue *GV = dyn_cast_or_null<GlobalValue>(
2990 ValueList.getConstantFwdRef(Record[1], GVTy));
2991 if (!GV)
2992 return error("Invalid record");
2993 V = NoCFIValue::get(GV);
2994 break;
2995 }
2996 }
2997
2998 ValueList.assignValue(V, NextCstNo);
2999 ++NextCstNo;
3000 }
3001}
3002
3003Error BitcodeReader::parseUseLists() {
3004 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3005 return Err;
3006
3007 // Read all the records.
3008 SmallVector<uint64_t, 64> Record;
3009
3010 while (true) {
3011 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3012 if (!MaybeEntry)
3013 return MaybeEntry.takeError();
3014 BitstreamEntry Entry = MaybeEntry.get();
3015
3016 switch (Entry.Kind) {
3017 case BitstreamEntry::SubBlock: // Handled for us already.
3018 case BitstreamEntry::Error:
3019 return error("Malformed block");
3020 case BitstreamEntry::EndBlock:
3021 return Error::success();
3022 case BitstreamEntry::Record:
3023 // The interesting case.
3024 break;
3025 }
3026
3027 // Read a use list record.
3028 Record.clear();
3029 bool IsBB = false;
3030 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
3031 if (!MaybeRecord)
3032 return MaybeRecord.takeError();
3033 switch (MaybeRecord.get()) {
3034 default: // Default behavior: unknown type.
3035 break;
3036 case bitc::USELIST_CODE_BB:
3037 IsBB = true;
3038 LLVM_FALLTHROUGH[[gnu::fallthrough]];
3039 case bitc::USELIST_CODE_DEFAULT: {
3040 unsigned RecordLength = Record.size();
3041 if (RecordLength < 3)
3042 // Records should have at least an ID and two indexes.
3043 return error("Invalid record");
3044 unsigned ID = Record.pop_back_val();
3045
3046 Value *V;
3047 if (IsBB) {
3048 assert(ID < FunctionBBs.size() && "Basic block not found")(static_cast <bool> (ID < FunctionBBs.size() &&
"Basic block not found") ? void (0) : __assert_fail ("ID < FunctionBBs.size() && \"Basic block not found\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 3048, __extension__
__PRETTY_FUNCTION__))
;
3049 V = FunctionBBs[ID];
3050 } else
3051 V = ValueList[ID];
3052 unsigned NumUses = 0;
3053 SmallDenseMap<const Use *, unsigned, 16> Order;
3054 for (const Use &U : V->materialized_uses()) {
3055 if (++NumUses > Record.size())
3056 break;
3057 Order[&U] = Record[NumUses - 1];
3058 }
3059 if (Order.size() != Record.size() || NumUses > Record.size())
3060 // Mismatches can happen if the functions are being materialized lazily
3061 // (out-of-order), or a value has been upgraded.
3062 break;
3063
3064 V->sortUseList([&](const Use &L, const Use &R) {
3065 return Order.lookup(&L) < Order.lookup(&R);
3066 });
3067 break;
3068 }
3069 }
3070 }
3071}
3072
3073/// When we see the block for metadata, remember where it is and then skip it.
3074/// This lets us lazily deserialize the metadata.
3075Error BitcodeReader::rememberAndSkipMetadata() {
3076 // Save the current stream state.
3077 uint64_t CurBit = Stream.GetCurrentBitNo();
3078 DeferredMetadataInfo.push_back(CurBit);
3079
3080 // Skip over the block for now.
3081 if (Error Err = Stream.SkipBlock())
3082 return Err;
3083 return Error::success();
3084}
3085
3086Error BitcodeReader::materializeMetadata() {
3087 for (uint64_t BitPos : DeferredMetadataInfo) {
3088 // Move the bit stream to the saved position.
3089 if (Error JumpFailed = Stream.JumpToBit(BitPos))
3090 return JumpFailed;
3091 if (Error Err = MDLoader->parseModuleMetadata())
3092 return Err;
3093 }
3094
3095 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3096 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3097 // multiple times.
3098 if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3099 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3100 NamedMDNode *LinkerOpts =
3101 TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3102 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3103 LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3104 }
3105 }
3106
3107 DeferredMetadataInfo.clear();
3108 return Error::success();
3109}
3110
3111void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3112
3113/// When we see the block for a function body, remember where it is and then
3114/// skip it. This lets us lazily deserialize the functions.
3115Error BitcodeReader::rememberAndSkipFunctionBody() {
3116 // Get the function we are talking about.
3117 if (FunctionsWithBodies.empty())
3118 return error("Insufficient function protos");
3119
3120 Function *Fn = FunctionsWithBodies.back();
3121 FunctionsWithBodies.pop_back();
3122
3123 // Save the current stream state.
3124 uint64_t CurBit = Stream.GetCurrentBitNo();
3125 assert((static_cast <bool> ((DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo
[Fn] == CurBit) && "Mismatch between VST and scanned function offsets"
) ? void (0) : __assert_fail ("(DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && \"Mismatch between VST and scanned function offsets\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 3127, __extension__
__PRETTY_FUNCTION__))
3126 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&(static_cast <bool> ((DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo
[Fn] == CurBit) && "Mismatch between VST and scanned function offsets"
) ? void (0) : __assert_fail ("(DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && \"Mismatch between VST and scanned function offsets\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 3127, __extension__
__PRETTY_FUNCTION__))
3127 "Mismatch between VST and scanned function offsets")(static_cast <bool> ((DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo
[Fn] == CurBit) && "Mismatch between VST and scanned function offsets"
) ? void (0) : __assert_fail ("(DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && \"Mismatch between VST and scanned function offsets\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 3127, __extension__
__PRETTY_FUNCTION__))
;
3128 DeferredFunctionInfo[Fn] = CurBit;
3129
3130 // Skip over the function block for now.
3131 if (Error Err = Stream.SkipBlock())
3132 return Err;
3133 return Error::success();
3134}
3135
3136Error BitcodeReader::globalCleanup() {
3137 // Patch the initializers for globals and aliases up.
3138 if (Error Err = resolveGlobalAndIndirectSymbolInits())
3139 return Err;
3140 if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3141 return error("Malformed global initializer set");
3142
3143 // Look for intrinsic functions which need to be upgraded at some point
3144 // and functions that need to have their function attributes upgraded.
3145 for (Function &F : *TheModule) {
3146 MDLoader->upgradeDebugIntrinsics(F);
3147 Function *NewFn;
3148 if (UpgradeIntrinsicFunction(&F, NewFn))
3149 UpgradedIntrinsics[&F] = NewFn;
3150 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3151 // Some types could be renamed during loading if several modules are
3152 // loaded in the same LLVMContext (LTO scenario). In this case we should
3153 // remangle intrinsics names as well.
3154 RemangledIntrinsics[&F] = Remangled.getValue();
3155 // Look for functions that rely on old function attribute behavior.
3156 UpgradeFunctionAttributes(F);
3157 }
3158
3159 // Look for global variables which need to be renamed.
3160 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3161 for (GlobalVariable &GV : TheModule->globals())
3162 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3163 UpgradedVariables.emplace_back(&GV, Upgraded);
3164 for (auto &Pair : UpgradedVariables) {
3165 Pair.first->eraseFromParent();
3166 TheModule->getGlobalList().push_back(Pair.second);
3167 }
3168
3169 // Force deallocation of memory for these vectors to favor the client that
3170 // want lazy deserialization.
3171 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3172 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
3173 return Error::success();
3174}
3175
3176/// Support for lazy parsing of function bodies. This is required if we
3177/// either have an old bitcode file without a VST forward declaration record,
3178/// or if we have an anonymous function being materialized, since anonymous
3179/// functions do not have a name and are therefore not in the VST.
3180Error BitcodeReader::rememberAndSkipFunctionBodies() {
3181 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3182 return JumpFailed;
3183
3184 if (Stream.AtEndOfStream())
3185 return error("Could not find function in stream");
3186
3187 if (!SeenFirstFunctionBody)
3188 return error("Trying to materialize functions before seeing function blocks");
3189
3190 // An old bitcode file with the symbol table at the end would have
3191 // finished the parse greedily.
3192 assert(SeenValueSymbolTable)(static_cast <bool> (SeenValueSymbolTable) ? void (0) :
__assert_fail ("SeenValueSymbolTable", "llvm/lib/Bitcode/Reader/BitcodeReader.cpp"
, 3192, __extension__ __PRETTY_FUNCTION__))
;
3193
3194 SmallVector<uint64_t, 64> Record;
3195
3196 while (true) {
3197 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3198 if (!MaybeEntry)
3199 return MaybeEntry.takeError();
3200 llvm::BitstreamEntry Entry = MaybeEntry.get();
3201
3202 switch (Entry.Kind) {
3203 default:
3204 return error("Expect SubBlock");
3205 case BitstreamEntry::SubBlock:
3206 switch (Entry.ID) {
3207 default:
3208 return error("Expect function block");
3209 case bitc::FUNCTION_BLOCK_ID:
3210 if (Error Err = rememberAndSkipFunctionBody())
3211 return Err;
3212 NextUnreadBit = Stream.GetCurrentBitNo();
3213 return Error::success();
3214 }
3215 }
3216 }
3217}
3218
3219Error BitcodeReaderBase::readBlockInfo() {
3220 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3221 Stream.ReadBlockInfoBlock();
3222 if (!MaybeNewBlockInfo)
3223 return MaybeNewBlockInfo.takeError();
3224 Optional<BitstreamBlockInfo> NewBlockInfo =
3225 std::move(MaybeNewBlockInfo.get());
3226 if (!NewBlockInfo)
3227 return error("Malformed block");
3228 BlockInfo = std::move(*NewBlockInfo);
3229 return Error::success();
3230}
3231
3232Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3233 // v1: [selection_kind, name]
3234 // v2: [strtab_offset, strtab_size, selection_kind]
3235 StringRef Name;
3236 std::tie(Name, Record) = readNameFromStrtab(Record);
3237
3238 if (Record.empty())
3239 return error("Invalid record");
3240 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3241 std::string OldFormatName;
3242 if (!UseStrtab) {
3243 if (Record.size() < 2)
3244 return error("Invalid record");
3245 unsigned ComdatNameSize = Record[1];
3246 if (ComdatNameSize > Record.size() - 2)
3247 return error("Comdat name size too large");
3248 OldFormatName.reserve(ComdatNameSize);
3249 for (unsigned i = 0; i != ComdatNameSize; ++i)
3250 OldFormatName += (char)Record[2 + i];
3251 Name = OldFormatName;
3252 }
3253 Comdat *C = TheModule->getOrInsertComdat(Name);
3254 C->setSelectionKind(SK);
3255 ComdatList.push_back(C);
3256 return Error::success();
3257}
3258
3259static void inferDSOLocal(GlobalValue *GV) {
3260 // infer dso_local from linkage and visibility if it is not encoded.
3261 if (GV->hasLocalLinkage() ||
3262 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3263 GV->setDSOLocal(true);
3264}
3265
3266Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3267 // v1: [pointer type, isconst, initid, linkage, alignment, section,
3268 // visibility, threadlocal, unnamed_addr, externally_initialized,
3269 // dllstorageclass, comdat, attributes, preemption specifier,
3270 // partition strtab offset, partition strtab size] (name in VST)
3271 // v2: [strtab_offset, strtab_size, v1]
3272 StringRef Name;
3273 std::tie(Name, Record) = readNameFromStrtab(Record);
3274
3275 if (Record.size() < 6)
3276 return error("Invalid record");
3277 Type *Ty = getTypeByID(Record[0]);
3278 if (!Ty)
3279 return error("Invalid record");
3280 bool isConstant = Record[1] & 1;
3281 bool explicitType = Record[1] & 2;
3282 unsigned AddressSpace;
3283 if (explicitType) {
3284 AddressSpace = Record[1] >> 2;
3285 } else {
3286 if (!Ty->isPointerTy())
3287 return error("Invalid type for value");
3288 AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3289 Ty = Ty->getPointerElementType();
3290 }
3291
3292 uint64_t RawLinkage = Record[3];
3293 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3294 MaybeAlign Alignment;
3295 if (Error Err = parseAlignmentValue(Record[4], Alignment))
3296 return Err;
3297 std::string Section;
3298 if (Record[5]) {
3299 if (Record[5] - 1 >= SectionTable.size())
3300 return error("Invalid ID");
3301 Section = SectionTable[Record[5] - 1];
3302 }
3303 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3304 // Local linkage must have default visibility.
3305 // auto-upgrade `hidden` and `protected` for old bitcode.
3306 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3307 Visibility = getDecodedVisibility(Record[6]);
3308
3309 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3310 if (Record.size() > 7)
3311 TLM = getDecodedThreadLocalMode(Record[7]);
3312
3313 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3314 if (Record.size() > 8)
3315 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3316
3317 bool ExternallyInitialized = false;
3318 if (Record.size() > 9)
3319 ExternallyInitialized = Record[9];
3320
3321 GlobalVariable *NewGV =
3322 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3323 nullptr, TLM, AddressSpace, ExternallyInitialized);
3324 NewGV->setAlignment(Alignment);
3325 if (!Section.empty())
3326 NewGV->setSection(Section);
3327 NewGV->setVisibility(Visibility);
3328 NewGV->setUnnamedAddr(UnnamedAddr);
3329
3330 if (Record.size() > 10)
3331 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3332 else
3333 upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3334
3335 ValueList.push_back(NewGV);
3336
3337 // Remember which value to use for the global initializer.
3338 if (unsigned InitID = Record[2])
3339 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3340
3341 if (Record.size() > 11) {
3342 if (unsigned ComdatID = Record[11]) {
3343 if (ComdatID > ComdatList.size())
3344 return error("Invalid global variable comdat ID");
3345 NewGV->setComdat(ComdatList[ComdatID - 1]);
3346 }
3347 } else if (hasImplicitComdat(RawLinkage)) {
3348 ImplicitComdatObjects.insert(NewGV);
3349 }
3350
3351 if (Record.size() > 12) {
3352 auto AS = getAttributes(Record[12]).getFnAttrs();
3353 NewGV->setAttributes(AS);
3354 }
3355
3356 if (Record.size() > 13) {
3357 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3358 }
3359 inferDSOLocal(NewGV);
3360
3361 // Check whether we have enough values to read a partition name.
3362 if (Record.size() > 15)
3363 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3364
3365 return Error::success();
3366}
3367
3368Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3369 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3370 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3371 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST)
3372 // v2: [strtab_offset, strtab_size, v1]
3373 StringRef Name;
3374 std::tie(Name, Record) = readNameFromStrtab(Record);
3375
3376 if (Record.size() < 8)
3377 return error("Invalid record");
3378 Type *FTy = getTypeByID(Record[0]);
3379 if (!FTy)
3380 return error("Invalid record");
3381 if (auto *PTy = dyn_cast<PointerType>(FTy))
3382 FTy = PTy->getPointerElementType();
3383
3384 if (!isa<FunctionType>(FTy))
3385 return error("Invalid type for value");
3386 auto CC = static_cast<CallingConv::ID>(Record[1]);
3387 if (CC & ~CallingConv::MaxID)
3388 return error("Invalid calling convention ID");
3389
3390 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3391 if (Record.size() > 16)
3392 AddrSpace = Record[16];
3393
3394 Function *Func =
3395 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3396 AddrSpace, Name, TheModule);
3397
3398 assert(Func->getFunctionType() == FTy &&(static_cast <bool> (Func->getFunctionType() == FTy &&
"Incorrect fully specified type provided for function") ? void
(0) : __assert_fail ("Func->getFunctionType() == FTy && \"Incorrect fully specified type provided for function\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 3399, __extension__
__PRETTY_FUNCTION__))
3399 "Incorrect fully specified type provided for function")(static_cast <bool> (Func->getFunctionType() == FTy &&
"Incorrect fully specified type provided for function") ? void
(0) : __assert_fail ("Func->getFunctionType() == FTy && \"Incorrect fully specified type provided for function\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 3399, __extension__
__PRETTY_FUNCTION__))
;
3400 FunctionTypes[Func] = cast<FunctionType>(FTy);
3401
3402 Func->setCallingConv(CC);
3403 bool isProto = Record[2];
3404 uint64_t RawLinkage = Record[3];
3405 Func->setLinkage(getDecodedLinkage(RawLinkage));
3406 Func->setAttributes(getAttributes(Record[4]));
3407
3408 // Upgrade any old-style byval or sret without a type by propagating the
3409 // argument's pointee type. There should be no opaque pointers where the byval
3410 // type is implicit.
3411 for (unsigned i = 0; i != Func->arg_size(); ++i) {
3412 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3413 Attribute::InAlloca}) {
3414 if (!Func->hasParamAttribute(i, Kind))
3415 continue;
3416
3417 if (Func->getParamAttribute(i, Kind).getValueAsType())
3418 continue;
3419
3420 Func->removeParamAttr(i, Kind);
3421
3422 Type *PTy = cast<FunctionType>(FTy)->getParamType(i);
3423 Type *PtrEltTy = PTy->getPointerElementType();
3424 Attribute NewAttr;
3425 switch (Kind) {
3426 case Attribute::ByVal:
3427 NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3428 break;
3429 case Attribute::StructRet:
3430 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3431 break;
3432 case Attribute::InAlloca:
3433 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3434 break;
3435 default:
3436 llvm_unreachable("not an upgraded type attribute")::llvm::llvm_unreachable_internal("not an upgraded type attribute"
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 3436)
;
3437 }
3438
3439 Func->addParamAttr(i, NewAttr);
3440 }
3441 }
3442
3443 MaybeAlign Alignment;
3444 if (Error Err = parseAlignmentValue(Record[5], Alignment))
3445 return Err;
3446 Func->setAlignment(Alignment);
3447 if (Record[6]) {
3448 if (Record[6] - 1 >= SectionTable.size())
3449 return error("Invalid ID");
3450 Func->setSection(SectionTable[Record[6] - 1]);
3451 }
3452 // Local linkage must have default visibility.
3453 // auto-upgrade `hidden` and `protected` for old bitcode.
3454 if (!Func->hasLocalLinkage())
3455 Func->setVisibility(getDecodedVisibility(Record[7]));
3456 if (Record.size() > 8 && Record[8]) {
3457 if (Record[8] - 1 >= GCTable.size())
3458 return error("Invalid ID");
3459 Func->setGC(GCTable[Record[8] - 1]);
3460 }
3461 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3462 if (Record.size() > 9)
3463 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3464 Func->setUnnamedAddr(UnnamedAddr);
3465
3466 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
3467 if (Record.size() > 10)
3468 OperandInfo.Prologue = Record[10];
3469
3470 if (Record.size() > 11)
3471 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3472 else
3473 upgradeDLLImportExportLinkage(Func, RawLinkage);
3474
3475 if (Record.size() > 12) {
3476 if (unsigned ComdatID = Record[12]) {
3477 if (ComdatID > ComdatList.size())
3478 return error("Invalid function comdat ID");
3479 Func->setComdat(ComdatList[ComdatID - 1]);
3480 }
3481 } else if (hasImplicitComdat(RawLinkage)) {
3482 ImplicitComdatObjects.insert(Func);
3483 }
3484
3485 if (Record.size() > 13)
3486 OperandInfo.Prefix = Record[13];
3487
3488 if (Record.size() > 14)
3489 OperandInfo.PersonalityFn = Record[14];
3490
3491 if (Record.size() > 15) {
3492 Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3493 }
3494 inferDSOLocal(Func);
3495
3496 // Record[16] is the address space number.
3497
3498 // Check whether we have enough values to read a partition name. Also make
3499 // sure Strtab has enough values.
3500 if (Record.size() > 18 && Strtab.data() &&
3501 Record[17] + Record[18] <= Strtab.size()) {
3502 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3503 }
3504
3505 ValueList.push_back(Func);
3506
3507 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
3508 FunctionOperands.push_back(OperandInfo);
3509
3510 // If this is a function with a body, remember the prototype we are
3511 // creating now, so that we can match up the body with them later.
3512 if (!isProto) {
3513 Func->setIsMaterializable(true);
3514 FunctionsWithBodies.push_back(Func);
3515 DeferredFunctionInfo[Func] = 0;
3516 }
3517 return Error::success();
3518}
3519
3520Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3521 unsigned BitCode, ArrayRef<uint64_t> Record) {
3522 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3523 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3524 // dllstorageclass, threadlocal, unnamed_addr,
3525 // preemption specifier] (name in VST)
3526 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3527 // visibility, dllstorageclass, threadlocal, unnamed_addr,
3528 // preemption specifier] (name in VST)
3529 // v2: [strtab_offset, strtab_size, v1]
3530 StringRef Name;
3531 std::tie(Name, Record) = readNameFromStrtab(Record);
3532
3533 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3534 if (Record.size() < (3 + (unsigned)NewRecord))
3535 return error("Invalid record");
3536 unsigned OpNum = 0;
3537 Type *Ty = getTypeByID(Record[OpNum++]);
3538 if (!Ty)
3539 return error("Invalid record");
3540
3541 unsigned AddrSpace;
3542 if (!NewRecord) {
3543 auto *PTy = dyn_cast<PointerType>(Ty);
3544 if (!PTy)
3545 return error("Invalid type for value");
3546 Ty = PTy->getPointerElementType();
3547 AddrSpace = PTy->getAddressSpace();
3548 } else {
3549 AddrSpace = Record[OpNum++];
3550 }
3551
3552 auto Val = Record[OpNum++];
3553 auto Linkage = Record[OpNum++];
3554 GlobalValue *NewGA;
3555 if (BitCode == bitc::MODULE_CODE_ALIAS ||
3556 BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3557 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3558 TheModule);
3559 else
3560 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3561 nullptr, TheModule);
3562
3563 // Local linkage must have default visibility.
3564 // auto-upgrade `hidden` and `protected` for old bitcode.
3565 if (OpNum != Record.size()) {
3566 auto VisInd = OpNum++;
3567 if (!NewGA->hasLocalLinkage())
3568 NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3569 }
3570 if (BitCode == bitc::MODULE_CODE_ALIAS ||
3571 BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3572 if (OpNum != Record.size())
3573 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3574 else
3575 upgradeDLLImportExportLinkage(NewGA, Linkage);
3576 if (OpNum != Record.size())
3577 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3578 if (OpNum != Record.size())
3579 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3580 }
3581 if (OpNum != Record.size())
3582 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3583 inferDSOLocal(NewGA);
3584
3585 // Check whether we have enough values to read a partition name.
3586 if (OpNum + 1 < Record.size()) {
3587 NewGA->setPartition(
3588 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3589 OpNum += 2;
3590 }
3591
3592 ValueList.push_back(NewGA);
3593 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3594 return Error::success();
3595}
3596
3597Error BitcodeReader::parseModule(uint64_t ResumeBit,
3598 bool ShouldLazyLoadMetadata,
3599 DataLayoutCallbackTy DataLayoutCallback) {
3600 if (ResumeBit) {
3601 if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3602 return JumpFailed;
3603 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3604 return Err;
3605
3606 SmallVector<uint64_t, 64> Record;
3607
3608 // Parts of bitcode parsing depend on the datalayout. Make sure we
3609 // finalize the datalayout before we run any of that code.
3610 bool ResolvedDataLayout = false;
3611 auto ResolveDataLayout = [&] {
3612 if (ResolvedDataLayout)
3613 return;
3614
3615 // datalayout and triple can't be parsed after this point.
3616 ResolvedDataLayout = true;
3617
3618 // Upgrade data layout string.
3619 std::string DL = llvm::UpgradeDataLayoutString(
3620 TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
3621 TheModule->setDataLayout(DL);
3622
3623 if (auto LayoutOverride =
3624 DataLayoutCallback(TheModule->getTargetTriple()))
3625 TheModule->setDataLayout(*LayoutOverride);
3626 };
3627
3628 // Read all the records for this module.
3629 while (true) {
3630 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3631 if (!MaybeEntry)
3632 return MaybeEntry.takeError();
3633 llvm::BitstreamEntry Entry = MaybeEntry.get();
3634
3635 switch (Entry.Kind) {
3636 case BitstreamEntry::Error:
3637 return error("Malformed block");
3638 case BitstreamEntry::EndBlock:
3639 ResolveDataLayout();
3640 return globalCleanup();
3641
3642 case BitstreamEntry::SubBlock:
3643 switch (Entry.ID) {
3644 default: // Skip unknown content.
3645 if (Error Err = Stream.SkipBlock())
3646 return Err;
3647 break;
3648 case bitc::BLOCKINFO_BLOCK_ID:
3649 if (Error Err = readBlockInfo())
3650 return Err;
3651 break;
3652 case bitc::PARAMATTR_BLOCK_ID:
3653 if (Error Err = parseAttributeBlock())
3654 return Err;
3655 break;
3656 case bitc::PARAMATTR_GROUP_BLOCK_ID:
3657 if (Error Err = parseAttributeGroupBlock())
3658 return Err;
3659 break;
3660 case bitc::TYPE_BLOCK_ID_NEW:
3661 if (Error Err = parseTypeTable())
3662 return Err;
3663 break;
3664 case bitc::VALUE_SYMTAB_BLOCK_ID:
3665 if (!SeenValueSymbolTable) {
3666 // Either this is an old form VST without function index and an
3667 // associated VST forward declaration record (which would have caused
3668 // the VST to be jumped to and parsed before it was encountered
3669 // normally in the stream), or there were no function blocks to
3670 // trigger an earlier parsing of the VST.
3671 assert(VSTOffset == 0 || FunctionsWithBodies.empty())(static_cast <bool> (VSTOffset == 0 || FunctionsWithBodies
.empty()) ? void (0) : __assert_fail ("VSTOffset == 0 || FunctionsWithBodies.empty()"
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 3671, __extension__
__PRETTY_FUNCTION__))
;
3672 if (Error Err = parseValueSymbolTable())
3673 return Err;
3674 SeenValueSymbolTable = true;
3675 } else {
3676 // We must have had a VST forward declaration record, which caused
3677 // the parser to jump to and parse the VST earlier.
3678 assert(VSTOffset > 0)(static_cast <bool> (VSTOffset > 0) ? void (0) : __assert_fail
("VSTOffset > 0", "llvm/lib/Bitcode/Reader/BitcodeReader.cpp"
, 3678, __extension__ __PRETTY_FUNCTION__))
;
3679 if (Error Err = Stream.SkipBlock())
3680 return Err;
3681 }
3682 break;
3683 case bitc::CONSTANTS_BLOCK_ID:
3684 if (Error Err = parseConstants())
3685 return Err;
3686 if (Error Err = resolveGlobalAndIndirectSymbolInits())
3687 return Err;
3688 break;
3689 case bitc::METADATA_BLOCK_ID:
3690 if (ShouldLazyLoadMetadata) {
3691 if (Error Err = rememberAndSkipMetadata())
3692 return Err;
3693 break;
3694 }
3695 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata")(static_cast <bool> (DeferredMetadataInfo.empty() &&
"Unexpected deferred metadata") ? void (0) : __assert_fail (
"DeferredMetadataInfo.empty() && \"Unexpected deferred metadata\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 3695, __extension__
__PRETTY_FUNCTION__))
;
3696 if (Error Err = MDLoader->parseModuleMetadata())
3697 return Err;
3698 break;
3699 case bitc::METADATA_KIND_BLOCK_ID:
3700 if (Error Err = MDLoader->parseMetadataKinds())
3701 return Err;
3702 break;
3703 case bitc::FUNCTION_BLOCK_ID:
3704 ResolveDataLayout();
3705
3706 // If this is the first function body we've seen, reverse the
3707 // FunctionsWithBodies list.
3708 if (!SeenFirstFunctionBody) {
3709 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3710 if (Error Err = globalCleanup())
3711 return Err;
3712 SeenFirstFunctionBody = true;
3713 }
3714
3715 if (VSTOffset > 0) {
3716 // If we have a VST forward declaration record, make sure we
3717 // parse the VST now if we haven't already. It is needed to
3718 // set up the DeferredFunctionInfo vector for lazy reading.
3719 if (!SeenValueSymbolTable) {
3720 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3721 return Err;
3722 SeenValueSymbolTable = true;
3723 // Fall through so that we record the NextUnreadBit below.
3724 // This is necessary in case we have an anonymous function that
3725 // is later materialized. Since it will not have a VST entry we
3726 // need to fall back to the lazy parse to find its offset.
3727 } else {
3728 // If we have a VST forward declaration record, but have already
3729 // parsed the VST (just above, when the first function body was
3730 // encountered here), then we are resuming the parse after
3731 // materializing functions. The ResumeBit points to the
3732 // start of the last function block recorded in the
3733 // DeferredFunctionInfo map. Skip it.
3734 if (Error Err = Stream.SkipBlock())
3735 return Err;
3736 continue;
3737 }
3738 }
3739
3740 // Support older bitcode files that did not have the function
3741 // index in the VST, nor a VST forward declaration record, as
3742 // well as anonymous functions that do not have VST entries.
3743 // Build the DeferredFunctionInfo vector on the fly.
3744 if (Error Err = rememberAndSkipFunctionBody())
3745 return Err;
3746
3747 // Suspend parsing when we reach the function bodies. Subsequent
3748 // materialization calls will resume it when necessary. If the bitcode
3749 // file is old, the symbol table will be at the end instead and will not
3750 // have been seen yet. In this case, just finish the parse now.
3751 if (SeenValueSymbolTable) {
3752 NextUnreadBit = Stream.GetCurrentBitNo();
3753 // After the VST has been parsed, we need to make sure intrinsic name
3754 // are auto-upgraded.
3755 return globalCleanup();
3756 }
3757 break;
3758 case bitc::USELIST_BLOCK_ID:
3759 if (Error Err = parseUseLists())
3760 return Err;
3761 break;
3762 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3763 if (Error Err = parseOperandBundleTags())
3764 return Err;
3765 break;
3766 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3767 if (Error Err = parseSyncScopeNames())
3768 return Err;
3769 break;
3770 }
3771 continue;
3772
3773 case BitstreamEntry::Record:
3774 // The interesting case.
3775 break;
3776 }
3777
3778 // Read a record.
3779 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3780 if (!MaybeBitCode)
3781 return MaybeBitCode.takeError();
3782 switch (unsigned BitCode = MaybeBitCode.get()) {
3783 default: break; // Default behavior, ignore unknown content.
3784 case bitc::MODULE_CODE_VERSION: {
3785 Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3786 if (!VersionOrErr)
3787 return VersionOrErr.takeError();
3788 UseRelativeIDs = *VersionOrErr >= 1;
3789 break;
3790 }
3791 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
3792 if (ResolvedDataLayout)
3793 return error("target triple too late in module");
3794 std::string S;
3795 if (convertToString(Record, 0, S))
3796 return error("Invalid record");
3797 TheModule->setTargetTriple(S);
3798 break;
3799 }
3800 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N]
3801 if (ResolvedDataLayout)
3802 return error("datalayout too late in module");
3803 std::string S;
3804 if (convertToString(Record, 0, S))
3805 return error("Invalid record");
3806 Expected<DataLayout> MaybeDL = DataLayout::parse(S);
3807 if (!MaybeDL)
3808 return MaybeDL.takeError();
3809 TheModule->setDataLayout(MaybeDL.get());
3810 break;
3811 }
3812 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N]
3813 std::string S;
3814 if (convertToString(Record, 0, S))
3815 return error("Invalid record");
3816 TheModule->setModuleInlineAsm(S);
3817 break;
3818 }
3819 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N]
3820 // Deprecated, but still needed to read old bitcode files.
3821 std::string S;
3822 if (convertToString(Record, 0, S))
3823 return error("Invalid record");
3824 // Ignore value.
3825 break;
3826 }
3827 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
3828 std::string S;
3829 if (convertToString(Record, 0, S))
3830 return error("Invalid record");
3831 SectionTable.push_back(S);
3832 break;
3833 }
3834 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N]
3835 std::string S;
3836 if (convertToString(Record, 0, S))
3837 return error("Invalid record");
3838 GCTable.push_back(S);
3839 break;
3840 }
3841 case bitc::MODULE_CODE_COMDAT:
3842 if (Error Err = parseComdatRecord(Record))
3843 return Err;
3844 break;
3845 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC}
3846 // written by ThinLinkBitcodeWriter. See
3847 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each
3848 // record
3849 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714)
3850 case bitc::MODULE_CODE_GLOBALVAR:
3851 if (Error Err = parseGlobalVarRecord(Record))
3852 return Err;
3853 break;
3854 case bitc::MODULE_CODE_FUNCTION:
3855 ResolveDataLayout();
3856 if (Error Err = parseFunctionRecord(Record))
3857 return Err;
3858 break;
3859 case bitc::MODULE_CODE_IFUNC:
3860 case bitc::MODULE_CODE_ALIAS:
3861 case bitc::MODULE_CODE_ALIAS_OLD:
3862 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3863 return Err;
3864 break;
3865 /// MODULE_CODE_VSTOFFSET: [offset]
3866 case bitc::MODULE_CODE_VSTOFFSET:
3867 if (Record.empty())
3868 return error("Invalid record");
3869 // Note that we subtract 1 here because the offset is relative to one word
3870 // before the start of the identification or module block, which was
3871 // historically always the start of the regular bitcode header.
3872 VSTOffset = Record[0] - 1;
3873 break;
3874 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3875 case bitc::MODULE_CODE_SOURCE_FILENAME:
3876 SmallString<128> ValueName;
3877 if (convertToString(Record, 0, ValueName))
3878 return error("Invalid record");
3879 TheModule->setSourceFileName(ValueName);
3880 break;
3881 }
3882 Record.clear();
3883 }
3884}
3885
3886Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3887 bool IsImporting,
3888 DataLayoutCallbackTy DataLayoutCallback) {
3889 TheModule = M;
3890 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3891 [&](unsigned ID) { return getTypeByID(ID); });
3892 return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback);
3893}
3894
3895Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3896 if (!isa<PointerType>(PtrType))
3897 return error("Load/Store operand is not a pointer type");
3898
3899 if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType))
3900 return error("Explicit load/store type does not match pointee "
3901 "type of pointer operand");
3902 if (!PointerType::isLoadableOrStorableType(ValType))
3903 return error("Cannot load/store from pointer");
3904 return Error::success();
3905}
3906
3907void BitcodeReader::propagateAttributeTypes(CallBase *CB,
3908 ArrayRef<Type *> ArgsTys) {
3909 for (unsigned i = 0; i != CB->arg_size(); ++i) {
3910 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3911 Attribute::InAlloca}) {
3912 if (!CB->paramHasAttr(i, Kind) ||
3913 CB->getParamAttr(i, Kind).getValueAsType())
3914 continue;
3915
3916 CB->removeParamAttr(i, Kind);
3917
3918 Type *PtrEltTy = ArgsTys[i]->getPointerElementType();
3919 Attribute NewAttr;
3920 switch (Kind) {
3921 case Attribute::ByVal:
3922 NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3923 break;
3924 case Attribute::StructRet:
3925 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3926 break;
3927 case Attribute::InAlloca:
3928 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3929 break;
3930 default:
3931 llvm_unreachable("not an upgraded type attribute")::llvm::llvm_unreachable_internal("not an upgraded type attribute"
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 3931)
;
3932 }
3933
3934 CB->addParamAttr(i, NewAttr);
3935 }
3936 }
3937
3938 if (CB->isInlineAsm()) {
3939 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
3940 unsigned ArgNo = 0;
3941 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
3942 if (!CI.hasArg())
3943 continue;
3944
3945 if (CI.isIndirect && !CB->getAttributes().getParamElementType(ArgNo)) {
3946 Type *ElemTy = ArgsTys[ArgNo]->getPointerElementType();
3947 CB->addParamAttr(
3948 ArgNo, Attribute::get(Context, Attribute::ElementType, ElemTy));
3949 }
3950
3951 ArgNo++;
3952 }
3953 }
3954
3955 switch (CB->getIntrinsicID()) {
3956 case Intrinsic::preserve_array_access_index:
3957 case Intrinsic::preserve_struct_access_index:
3958 if (!CB->getAttributes().getParamElementType(0)) {
3959 Type *ElTy = ArgsTys[0]->getPointerElementType();
3960 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
3961 CB->addParamAttr(0, NewAttr);
3962 }
3963 break;
3964 default:
3965 break;
3966 }
3967}
3968
3969/// Lazily parse the specified function body block.
3970Error BitcodeReader::parseFunctionBody(Function *F) {
3971 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3972 return Err;
3973
3974 // Unexpected unresolved metadata when parsing function.
3975 if (MDLoader->hasFwdRefs())
3976 return error("Invalid function metadata: incoming forward references");
3977
3978 InstructionList.clear();
3979 unsigned ModuleValueListSize = ValueList.size();
3980 unsigned ModuleMDLoaderSize = MDLoader->size();
3981
3982 // Add all the function arguments to the value table.
3983#ifndef NDEBUG
3984 unsigned ArgNo = 0;
3985 FunctionType *FTy = FunctionTypes[F];
3986#endif
3987 for (Argument &I : F->args()) {
3988 assert(I.getType() == FTy->getParamType(ArgNo++) &&(static_cast <bool> (I.getType() == FTy->getParamType
(ArgNo++) && "Incorrect fully specified type for Function Argument"
) ? void (0) : __assert_fail ("I.getType() == FTy->getParamType(ArgNo++) && \"Incorrect fully specified type for Function Argument\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 3989, __extension__
__PRETTY_FUNCTION__))
3989 "Incorrect fully specified type for Function Argument")(static_cast <bool> (I.getType() == FTy->getParamType
(ArgNo++) && "Incorrect fully specified type for Function Argument"
) ? void (0) : __assert_fail ("I.getType() == FTy->getParamType(ArgNo++) && \"Incorrect fully specified type for Function Argument\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 3989, __extension__
__PRETTY_FUNCTION__))
;
3990 ValueList.push_back(&I);
3991 }
3992 unsigned NextValueNo = ValueList.size();
3993 BasicBlock *CurBB = nullptr;
3994 unsigned CurBBNo = 0;
3995
3996 DebugLoc LastLoc;
3997 auto getLastInstruction = [&]() -> Instruction * {
3998 if (CurBB && !CurBB->empty())
3999 return &CurBB->back();
4000 else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4001 !FunctionBBs[CurBBNo - 1]->empty())
4002 return &FunctionBBs[CurBBNo - 1]->back();
4003 return nullptr;
4004 };
4005
4006 std::vector<OperandBundleDef> OperandBundles;
4007
4008 // Read all the records.
4009 SmallVector<uint64_t, 64> Record;
4010
4011 while (true) {
4012 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4013 if (!MaybeEntry)
4014 return MaybeEntry.takeError();
4015 llvm::BitstreamEntry Entry = MaybeEntry.get();
4016
4017 switch (Entry.Kind) {
4018 case BitstreamEntry::Error:
4019 return error("Malformed block");
4020 case BitstreamEntry::EndBlock:
4021 goto OutOfRecordLoop;
4022
4023 case BitstreamEntry::SubBlock:
4024 switch (Entry.ID) {
4025 default: // Skip unknown content.
4026 if (Error Err = Stream.SkipBlock())
4027 return Err;
4028 break;
4029 case bitc::CONSTANTS_BLOCK_ID:
4030 if (Error Err = parseConstants())
4031 return Err;
4032 NextValueNo = ValueList.size();
4033 break;
4034 case bitc::VALUE_SYMTAB_BLOCK_ID:
4035 if (Error Err = parseValueSymbolTable())
4036 return Err;
4037 break;
4038 case bitc::METADATA_ATTACHMENT_ID:
4039 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
4040 return Err;
4041 break;
4042 case bitc::METADATA_BLOCK_ID:
4043 assert(DeferredMetadataInfo.empty() &&(static_cast <bool> (DeferredMetadataInfo.empty() &&
"Must read all module-level metadata before function-level")
? void (0) : __assert_fail ("DeferredMetadataInfo.empty() && \"Must read all module-level metadata before function-level\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 4044, __extension__
__PRETTY_FUNCTION__))
4044 "Must read all module-level metadata before function-level")(static_cast <bool> (DeferredMetadataInfo.empty() &&
"Must read all module-level metadata before function-level")
? void (0) : __assert_fail ("DeferredMetadataInfo.empty() && \"Must read all module-level metadata before function-level\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 4044, __extension__
__PRETTY_FUNCTION__))
;
4045 if (Error Err = MDLoader->parseFunctionMetadata())
4046 return Err;
4047 break;
4048 case bitc::USELIST_BLOCK_ID:
4049 if (Error Err = parseUseLists())
4050 return Err;
4051 break;
4052 }
4053 continue;
4054
4055 case BitstreamEntry::Record:
4056 // The interesting case.
4057 break;
4058 }
4059
4060 // Read a record.
4061 Record.clear();
4062 Instruction *I = nullptr;
4063 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4064 if (!MaybeBitCode)
4065 return MaybeBitCode.takeError();
4066 switch (unsigned BitCode = MaybeBitCode.get()) {
4067 default: // Default behavior: reject
4068 return error("Invalid value");
4069 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks]
4070 if (Record.empty() || Record[0] == 0)
4071 return error("Invalid record");
4072 // Create all the basic blocks for the function.
4073 FunctionBBs.resize(Record[0]);
4074
4075 // See if anything took the address of blocks in this function.
4076 auto BBFRI = BasicBlockFwdRefs.find(F);
4077 if (BBFRI == BasicBlockFwdRefs.end()) {
4078 for (BasicBlock *&BB : FunctionBBs)
4079 BB = BasicBlock::Create(Context, "", F);
4080 } else {
4081 auto &BBRefs = BBFRI->second;
4082 // Check for invalid basic block references.
4083 if (BBRefs.size() > FunctionBBs.size())
4084 return error("Invalid ID");
4085 assert(!BBRefs.empty() && "Unexpected empty array")(static_cast <bool> (!BBRefs.empty() && "Unexpected empty array"
) ? void (0) : __assert_fail ("!BBRefs.empty() && \"Unexpected empty array\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 4085, __extension__
__PRETTY_FUNCTION__))
;
4086 assert(!BBRefs.front() && "Invalid reference to entry block")(static_cast <bool> (!BBRefs.front() && "Invalid reference to entry block"
) ? void (0) : __assert_fail ("!BBRefs.front() && \"Invalid reference to entry block\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 4086, __extension__
__PRETTY_FUNCTION__))
;
4087 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4088 ++I)
4089 if (I < RE && BBRefs[I]) {
4090 BBRefs[I]->insertInto(F);
4091 FunctionBBs[I] = BBRefs[I];
4092 } else {
4093 FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4094 }
4095
4096 // Erase from the table.
4097 BasicBlockFwdRefs.erase(BBFRI);
4098 }
4099
4100 CurBB = FunctionBBs[0];
4101 continue;
4102 }
4103
4104 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN
4105 // This record indicates that the last instruction is at the same
4106 // location as the previous instruction with a location.
4107 I = getLastInstruction();
4108
4109 if (!I)
4110 return error("Invalid record");
4111 I->setDebugLoc(LastLoc);
4112 I = nullptr;
4113 continue;
4114
4115 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia]
4116 I = getLastInstruction();
4117 if (!I || Record.size() < 4)
4118 return error("Invalid record");
4119
4120 unsigned Line = Record[0], Col = Record[1];
4121 unsigned ScopeID = Record[2], IAID = Record[3];
4122 bool isImplicitCode = Record.size() == 5 && Record[4];
4123
4124 MDNode *Scope = nullptr, *IA = nullptr;
4125 if (ScopeID) {
4126 Scope = dyn_cast_or_null<MDNode>(
4127 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
4128 if (!Scope)
4129 return error("Invalid record");
4130 }
4131 if (IAID) {
4132 IA = dyn_cast_or_null<MDNode>(
4133 MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
4134 if (!IA)
4135 return error("Invalid record");
4136 }
4137 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
4138 isImplicitCode);
4139 I->setDebugLoc(LastLoc);
4140 I = nullptr;
4141 continue;
4142 }
4143 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode]
4144 unsigned OpNum = 0;
4145 Value *LHS;
4146 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4147 OpNum+1 > Record.size())
4148 return error("Invalid record");
4149
4150 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4151 if (Opc == -1)
4152 return error("Invalid record");
4153 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
4154 InstructionList.push_back(I);
4155 if (OpNum < Record.size()) {
4156 if (isa<FPMathOperator>(I)) {
4157 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4158 if (FMF.any())
4159 I->setFastMathFlags(FMF);
4160 }
4161 }
4162 break;
4163 }
4164 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode]
4165 unsigned OpNum = 0;
4166 Value *LHS, *RHS;
4167 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4168 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
4169 OpNum+1 > Record.size())
4170 return error("Invalid record");
4171
4172 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4173 if (Opc == -1)
4174 return error("Invalid record");
4175 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4176 InstructionList.push_back(I);
4177 if (OpNum < Record.size()) {
4178 if (Opc == Instruction::Add ||
4179 Opc == Instruction::Sub ||
4180 Opc == Instruction::Mul ||
4181 Opc == Instruction::Shl) {
4182 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4183 cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4184 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4185 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4186 } else if (Opc == Instruction::SDiv ||
4187 Opc == Instruction::UDiv ||
4188 Opc == Instruction::LShr ||
4189 Opc == Instruction::AShr) {
4190 if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4191 cast<BinaryOperator>(I)->setIsExact(true);
4192 } else if (isa<FPMathOperator>(I)) {
4193 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4194 if (FMF.any())
4195 I->setFastMathFlags(FMF);
4196 }
4197
4198 }
4199 break;
4200 }
4201 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc]
4202 unsigned OpNum = 0;
4203 Value *Op;
4204 if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4205 OpNum+2 != Record.size())
4206 return error("Invalid record");
4207
4208 Type *ResTy = getTypeByID(Record[OpNum]);
4209 int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4210 if (Opc == -1 || !ResTy)
4211 return error("Invalid record");
4212 Instruction *Temp = nullptr;
4213 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4214 if (Temp) {
4215 InstructionList.push_back(Temp);
4216 assert(CurBB && "No current BB?")(static_cast <bool> (CurBB && "No current BB?")
? void (0) : __assert_fail ("CurBB && \"No current BB?\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 4216, __extension__
__PRETTY_FUNCTION__))
;
4217 CurBB->getInstList().push_back(Temp);
4218 }
4219 } else {
4220 auto CastOp = (Instruction::CastOps)Opc;
4221 if (!CastInst::castIsValid(CastOp, Op, ResTy))
4222 return error("Invalid cast");
4223 I = CastInst::Create(CastOp, Op, ResTy);
4224 }
4225 InstructionList.push_back(I);
4226 break;
4227 }
4228 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4229 case bitc::FUNC_CODE_INST_GEP_OLD:
4230 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4231 unsigned OpNum = 0;
4232
4233 Type *Ty;
4234 bool InBounds;
4235
4236 if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4237 InBounds = Record[OpNum++];
4238 Ty = getTypeByID(Record[OpNum++]);
4239 } else {
4240 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4241 Ty = nullptr;
4242 }
4243
4244 Value *BasePtr;
4245 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
4246 return error("Invalid record");
4247
4248 if (!Ty) {
4249 Ty = BasePtr->getType()->getScalarType()->getPointerElementType();
4250 } else if (!cast<PointerType>(BasePtr->getType()->getScalarType())
4251 ->isOpaqueOrPointeeTypeMatches(Ty)) {
4252 return error(
4253 "Explicit gep type does not match pointee type of pointer operand");
4254 }
4255
4256 SmallVector<Value*, 16> GEPIdx;
4257 while (OpNum != Record.size()) {
4258 Value *Op;
4259 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4260 return error("Invalid record");
4261 GEPIdx.push_back(Op);
4262 }
4263
4264 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4265
4266 InstructionList.push_back(I);
4267 if (InBounds)
4268 cast<GetElementPtrInst>(I)->setIsInBounds(true);
4269 break;
4270 }
4271
4272 case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4273 // EXTRACTVAL: [opty, opval, n x indices]
4274 unsigned OpNum = 0;
4275 Value *Agg;
4276 if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4277 return error("Invalid record");
4278 Type *Ty = Agg->getType();
4279
4280 unsigned RecSize = Record.size();
4281 if (OpNum == RecSize)
4282 return error("EXTRACTVAL: Invalid instruction with 0 indices");
4283
4284 SmallVector<unsigned, 4> EXTRACTVALIdx;
4285 for (; OpNum != RecSize; ++OpNum) {
4286 bool IsArray = Ty->isArrayTy();
4287 bool IsStruct = Ty->isStructTy();
4288 uint64_t Index = Record[OpNum];
4289
4290 if (!IsStruct && !IsArray)
4291 return error("EXTRACTVAL: Invalid type");
4292 if ((unsigned)Index != Index)
4293 return error("Invalid value");
4294 if (IsStruct && Index >= Ty->getStructNumElements())
4295 return error("EXTRACTVAL: Invalid struct index");
4296 if (IsArray && Index >= Ty->getArrayNumElements())
4297 return error("EXTRACTVAL: Invalid array index");
4298 EXTRACTVALIdx.push_back((unsigned)Index);
4299
4300 if (IsStruct)
4301 Ty = Ty->getStructElementType(Index);
4302 else
4303 Ty = Ty->getArrayElementType();
4304 }
4305
4306 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4307 InstructionList.push_back(I);
4308 break;
4309 }
4310
4311 case bitc::FUNC_CODE_INST_INSERTVAL: {
4312 // INSERTVAL: [opty, opval, opty, opval, n x indices]
4313 unsigned OpNum = 0;
4314 Value *Agg;
4315 if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4316 return error("Invalid record");
4317 Value *Val;
4318 if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4319 return error("Invalid record");
4320
4321 unsigned RecSize = Record.size();
4322 if (OpNum == RecSize)
4323 return error("INSERTVAL: Invalid instruction with 0 indices");
4324
4325 SmallVector<unsigned, 4> INSERTVALIdx;
4326 Type *CurTy = Agg->getType();
4327 for (; OpNum != RecSize; ++OpNum) {
4328 bool IsArray = CurTy->isArrayTy();
4329 bool IsStruct = CurTy->isStructTy();
4330 uint64_t Index = Record[OpNum];
4331
4332 if (!IsStruct && !IsArray)
4333 return error("INSERTVAL: Invalid type");
4334 if ((unsigned)Index != Index)
4335 return error("Invalid value");
4336 if (IsStruct && Index >= CurTy->getStructNumElements())
4337 return error("INSERTVAL: Invalid struct index");
4338 if (IsArray && Index >= CurTy->getArrayNumElements())
4339 return error("INSERTVAL: Invalid array index");
4340
4341 INSERTVALIdx.push_back((unsigned)Index);
4342 if (IsStruct)
4343 CurTy = CurTy->getStructElementType(Index);
4344 else
4345 CurTy = CurTy->getArrayElementType();
4346 }
4347
4348 if (CurTy != Val->getType())
4349 return error("Inserted value type doesn't match aggregate type");
4350
4351 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4352 InstructionList.push_back(I);
4353 break;
4354 }
4355
4356 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4357 // obsolete form of select
4358 // handles select i1 ... in old bitcode
4359 unsigned OpNum = 0;
4360 Value *TrueVal, *FalseVal, *Cond;
4361 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4362 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4363 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4364 return error("Invalid record");
4365
4366 I = SelectInst::Create(Cond, TrueVal, FalseVal);
4367 InstructionList.push_back(I);
4368 break;
4369 }
4370
4371 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4372 // new form of select
4373 // handles select i1 or select [N x i1]
4374 unsigned OpNum = 0;
4375 Value *TrueVal, *FalseVal, *Cond;
4376 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4377 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4378 getValueTypePair(Record, OpNum, NextValueNo, Cond))
4379 return error("Invalid record");
4380
4381 // select condition can be either i1 or [N x i1]
4382 if (VectorType* vector_type =
4383 dyn_cast<VectorType>(Cond->getType())) {
4384 // expect <n x i1>
4385 if (vector_type->getElementType() != Type::getInt1Ty(Context))
4386 return error("Invalid type for value");
4387 } else {
4388 // expect i1
4389 if (Cond->getType() != Type::getInt1Ty(Context))
4390 return error("Invalid type for value");
4391 }
4392
4393 I = SelectInst::Create(Cond, TrueVal, FalseVal);
4394 InstructionList.push_back(I);
4395 if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4396 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4397 if (FMF.any())
4398 I->setFastMathFlags(FMF);
4399 }
4400 break;
4401 }
4402
4403 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4404 unsigned OpNum = 0;
4405 Value *Vec, *Idx;
4406 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
4407 getValueTypePair(Record, OpNum, NextValueNo, Idx))
4408 return error("Invalid record");
4409 if (!Vec->getType()->isVectorTy())
4410 return error("Invalid type for value");
4411 I = ExtractElementInst::Create(Vec, Idx);
4412 InstructionList.push_back(I);
4413 break;
4414 }
4415
4416 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4417 unsigned OpNum = 0;
4418 Value *Vec, *Elt, *Idx;
4419 if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
4420 return error("Invalid record");
4421 if (!Vec->getType()->isVectorTy())
4422 return error("Invalid type for value");
4423 if (popValue(Record, OpNum, NextValueNo,
4424 cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4425 getValueTypePair(Record, OpNum, NextValueNo, Idx))
4426 return error("Invalid record");
4427 I = InsertElementInst::Create(Vec, Elt, Idx);
4428 InstructionList.push_back(I);
4429 break;
4430 }
4431
4432 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4433 unsigned OpNum = 0;
4434 Value *Vec1, *Vec2, *Mask;
4435 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
4436 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4437 return error("Invalid record");
4438
4439 if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4440 return error("Invalid record");
4441 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4442 return error("Invalid type for value");
4443
4444 I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4445 InstructionList.push_back(I);
4446 break;
4447 }
4448
4449 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred]
4450 // Old form of ICmp/FCmp returning bool
4451 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4452 // both legal on vectors but had different behaviour.
4453 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4454 // FCmp/ICmp returning bool or vector of bool
4455
4456 unsigned OpNum = 0;
4457 Value *LHS, *RHS;
4458 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4459 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4460 return error("Invalid record");
4461
4462 if (OpNum >= Record.size())
4463 return error(
4464 "Invalid record: operand number exceeded available operands");
4465
4466 unsigned PredVal = Record[OpNum];
4467 bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4468 FastMathFlags FMF;
4469 if (IsFP && Record.size() > OpNum+1)
4470 FMF = getDecodedFastMathFlags(Record[++OpNum]);
4471
4472 if (OpNum+1 != Record.size())
4473 return error("Invalid record");
4474
4475 if (LHS->getType()->isFPOrFPVectorTy())
4476 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4477 else
4478 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4479
4480 if (FMF.any())
4481 I->setFastMathFlags(FMF);
4482 InstructionList.push_back(I);
4483 break;
4484 }
4485
4486 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4487 {
4488 unsigned Size = Record.size();
4489 if (Size == 0) {
4490 I = ReturnInst::Create(Context);
4491 InstructionList.push_back(I);
4492 break;
4493 }
4494
4495 unsigned OpNum = 0;
4496 Value *Op = nullptr;
4497 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4498 return error("Invalid record");
4499 if (OpNum != Record.size())
4500 return error("Invalid record");
4501
4502 I = ReturnInst::Create(Context, Op);
4503 InstructionList.push_back(I);
4504 break;
4505 }
4506 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4507 if (Record.size() != 1 && Record.size() != 3)
4508 return error("Invalid record");
4509 BasicBlock *TrueDest = getBasicBlock(Record[0]);
4510 if (!TrueDest)
4511 return error("Invalid record");
4512
4513 if (Record.size() == 1) {
4514 I = BranchInst::Create(TrueDest);
4515 InstructionList.push_back(I);
4516 }
4517 else {
4518 BasicBlock *FalseDest = getBasicBlock(Record[1]);
4519 Value *Cond = getValue(Record, 2, NextValueNo,
4520 Type::getInt1Ty(Context));
4521 if (!FalseDest || !Cond)
4522 return error("Invalid record");
4523 I = BranchInst::Create(TrueDest, FalseDest, Cond);
4524 InstructionList.push_back(I);
4525 }
4526 break;
4527 }
4528 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4529 if (Record.size() != 1 && Record.size() != 2)
4530 return error("Invalid record");
4531 unsigned Idx = 0;
4532 Value *CleanupPad =
4533 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4534 if (!CleanupPad)
4535 return error("Invalid record");
4536 BasicBlock *UnwindDest = nullptr;
4537 if (Record.size() == 2) {
4538 UnwindDest = getBasicBlock(Record[Idx++]);
4539 if (!UnwindDest)
4540 return error("Invalid record");
4541 }
4542
4543 I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4544 InstructionList.push_back(I);
4545 break;
4546 }
4547 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4548 if (Record.size() != 2)
4549 return error("Invalid record");
4550 unsigned Idx = 0;
4551 Value *CatchPad =
4552 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4553 if (!CatchPad)
4554 return error("Invalid record");
4555 BasicBlock *BB = getBasicBlock(Record[Idx++]);
4556 if (!BB)
4557 return error("Invalid record");
4558
4559 I = CatchReturnInst::Create(CatchPad, BB);
4560 InstructionList.push_back(I);
4561 break;
4562 }
4563 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4564 // We must have, at minimum, the outer scope and the number of arguments.
4565 if (Record.size() < 2)
4566 return error("Invalid record");
4567
4568 unsigned Idx = 0;
4569
4570 Value *ParentPad =
4571 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4572
4573 unsigned NumHandlers = Record[Idx++];
4574
4575 SmallVector<BasicBlock *, 2> Handlers;
4576 for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4577 BasicBlock *BB = getBasicBlock(Record[Idx++]);
4578 if (!BB)
4579 return error("Invalid record");
4580 Handlers.push_back(BB);
4581 }
4582
4583 BasicBlock *UnwindDest = nullptr;
4584 if (Idx + 1 == Record.size()) {
4585 UnwindDest = getBasicBlock(Record[Idx++]);
4586 if (!UnwindDest)
4587 return error("Invalid record");
4588 }
4589
4590 if (Record.size() != Idx)
4591 return error("Invalid record");
4592
4593 auto *CatchSwitch =
4594 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4595 for (BasicBlock *Handler : Handlers)
4596 CatchSwitch->addHandler(Handler);
4597 I = CatchSwitch;
4598 InstructionList.push_back(I);
4599 break;
4600 }
4601 case bitc::FUNC_CODE_INST_CATCHPAD:
4602 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4603 // We must have, at minimum, the outer scope and the number of arguments.
4604 if (Record.size() < 2)
4605 return error("Invalid record");
4606
4607 unsigned Idx = 0;
4608
4609 Value *ParentPad =
4610 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4611
4612 unsigned NumArgOperands = Record[Idx++];
4613
4614 SmallVector<Value *, 2> Args;
4615 for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4616 Value *Val;
4617 if (getValueTypePair(Record, Idx, NextValueNo, Val))
4618 return error("Invalid record");
4619 Args.push_back(Val);
4620 }
4621
4622 if (Record.size() != Idx)
4623 return error("Invalid record");
4624
4625 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4626 I = CleanupPadInst::Create(ParentPad, Args);
4627 else
4628 I = CatchPadInst::Create(ParentPad, Args);
4629 InstructionList.push_back(I);
4630 break;
4631 }
4632 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4633 // Check magic
4634 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4635 // "New" SwitchInst format with case ranges. The changes to write this
4636 // format were reverted but we still recognize bitcode that uses it.
4637 // Hopefully someday we will have support for case ranges and can use
4638 // this format again.
4639
4640 Type *OpTy = getTypeByID(Record[1]);
4641 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4642
4643 Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4644 BasicBlock *Default = getBasicBlock(Record[3]);
4645 if (!OpTy || !Cond || !Default)
4646 return error("Invalid record");
4647
4648 unsigned NumCases = Record[4];
4649
4650 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4651 InstructionList.push_back(SI);
4652
4653 unsigned CurIdx = 5;
4654 for (unsigned i = 0; i != NumCases; ++i) {
4655 SmallVector<ConstantInt*, 1> CaseVals;
4656 unsigned NumItems = Record[CurIdx++];
4657 for (unsigned ci = 0; ci != NumItems; ++ci) {
4658 bool isSingleNumber = Record[CurIdx++];
4659
4660 APInt Low;
4661 unsigned ActiveWords = 1;
4662 if (ValueBitWidth > 64)
4663 ActiveWords = Record[CurIdx++];
4664 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4665 ValueBitWidth);
4666 CurIdx += ActiveWords;
4667
4668 if (!isSingleNumber) {
4669 ActiveWords = 1;
4670 if (ValueBitWidth > 64)
4671 ActiveWords = Record[CurIdx++];
4672 APInt High = readWideAPInt(
4673 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4674 CurIdx += ActiveWords;
4675
4676 // FIXME: It is not clear whether values in the range should be
4677 // compared as signed or unsigned values. The partially
4678 // implemented changes that used this format in the past used
4679 // unsigned comparisons.
4680 for ( ; Low.ule(High); ++Low)
4681 CaseVals.push_back(ConstantInt::get(Context, Low));
4682 } else
4683 CaseVals.push_back(ConstantInt::get(Context, Low));
4684 }
4685 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4686 for (ConstantInt *Cst : CaseVals)
4687 SI->addCase(Cst, DestBB);
4688 }
4689 I = SI;
4690 break;
4691 }
4692
4693 // Old SwitchInst format without case ranges.
4694
4695 if (Record.size() < 3 || (Record.size() & 1) == 0)
4696 return error("Invalid record");
4697 Type *OpTy = getTypeByID(Record[0]);
4698 Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4699 BasicBlock *Default = getBasicBlock(Record[2]);
4700 if (!OpTy || !Cond || !Default)
4701 return error("Invalid record");
4702 unsigned NumCases = (Record.size()-3)/2;
4703 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4704 InstructionList.push_back(SI);
4705 for (unsigned i = 0, e = NumCases; i != e; ++i) {
4706 ConstantInt *CaseVal =
4707 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4708 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4709 if (!CaseVal || !DestBB) {
4710 delete SI;
4711 return error("Invalid record");
4712 }
4713 SI->addCase(CaseVal, DestBB);
4714 }
4715 I = SI;
4716 break;
4717 }
4718 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4719 if (Record.size() < 2)
4720 return error("Invalid record");
4721 Type *OpTy = getTypeByID(Record[0]);
4722 Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4723 if (!OpTy || !Address)
4724 return error("Invalid record");
4725 unsigned NumDests = Record.size()-2;
4726 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4727 InstructionList.push_back(IBI);
4728 for (unsigned i = 0, e = NumDests; i != e; ++i) {
4729 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4730 IBI->addDestination(DestBB);
4731 } else {
4732 delete IBI;
4733 return error("Invalid record");
4734 }
4735 }
4736 I = IBI;
4737 break;
4738 }
4739
4740 case bitc::FUNC_CODE_INST_INVOKE: {
4741 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4742 if (Record.size() < 4)
4743 return error("Invalid record");
4744 unsigned OpNum = 0;
4745 AttributeList PAL = getAttributes(Record[OpNum++]);
4746 unsigned CCInfo = Record[OpNum++];
4747 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4748 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4749
4750 FunctionType *FTy = nullptr;
4751 if ((CCInfo >> 13) & 1) {
4752 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]));
4753 if (!FTy)
4754 return error("Explicit invoke type is not a function type");
4755 }
4756
4757 Value *Callee;
4758 if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4759 return error("Invalid record");
4760
4761 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4762 if (!CalleeTy)
4763 return error("Callee is not a pointer");
4764 if (!FTy) {
4765 FTy =
4766 dyn_cast<FunctionType>(Callee->getType()->getPointerElementType());
4767 if (!FTy)
4768 return error("Callee is not of pointer to function type");
4769 } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy))
4770 return error("Explicit invoke type does not match pointee type of "
4771 "callee operand");
4772 if (Record.size() < FTy->getNumParams() + OpNum)
4773 return error("Insufficient operands to call");
4774
4775 SmallVector<Value*, 16> Ops;
4776 SmallVector<Type *, 16> ArgsTys;
4777 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4778 Ops.push_back(getValue(Record, OpNum, NextValueNo,
4779 FTy->getParamType(i)));
4780 ArgsTys.push_back(FTy->getParamType(i));
4781 if (!Ops.back())
4782 return error("Invalid record");
4783 }
4784
4785 if (!FTy->isVarArg()) {
4786 if (Record.size() != OpNum)
4787 return error("Invalid record");
4788 } else {
4789 // Read type/value pairs for varargs params.
4790 while (OpNum != Record.size()) {
4791 Value *Op;
4792 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4793 return error("Invalid record");
4794 Ops.push_back(Op);
4795 ArgsTys.push_back(Op->getType());
4796 }
4797 }
4798
4799 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4800 OperandBundles);
4801 OperandBundles.clear();
4802 InstructionList.push_back(I);
4803 cast<InvokeInst>(I)->setCallingConv(
4804 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4805 cast<InvokeInst>(I)->setAttributes(PAL);
4806 propagateAttributeTypes(cast<CallBase>(I), ArgsTys);
4807
4808 break;
4809 }
4810 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4811 unsigned Idx = 0;
4812 Value *Val = nullptr;
4813 if (getValueTypePair(Record, Idx, NextValueNo, Val))
4814 return error("Invalid record");
4815 I = ResumeInst::Create(Val);
4816 InstructionList.push_back(I);
4817 break;
4818 }
4819 case bitc::FUNC_CODE_INST_CALLBR: {
4820 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4821 unsigned OpNum = 0;
4822 AttributeList PAL = getAttributes(Record[OpNum++]);
4823 unsigned CCInfo = Record[OpNum++];
4824
4825 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4826 unsigned NumIndirectDests = Record[OpNum++];
4827 SmallVector<BasicBlock *, 16> IndirectDests;
4828 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4829 IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4830
4831 FunctionType *FTy = nullptr;
4832 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4833 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]));
4834 if (!FTy)
4835 return error("Explicit call type is not a function type");
4836 }
4837
4838 Value *Callee;
4839 if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4840 return error("Invalid record");
4841
4842 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4843 if (!OpTy)
4844 return error("Callee is not a pointer type");
4845 if (!FTy) {
4846 FTy =
4847 dyn_cast<FunctionType>(Callee->getType()->getPointerElementType());
4848 if (!FTy)
4849 return error("Callee is not of pointer to function type");
4850 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
4851 return error("Explicit call type does not match pointee type of "
4852 "callee operand");
4853 if (Record.size() < FTy->getNumParams() + OpNum)
4854 return error("Insufficient operands to call");
4855
4856 SmallVector<Value*, 16> Args;
4857 SmallVector<Type *, 16> ArgsTys;
4858 // Read the fixed params.
4859 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4860 Value *Arg;
4861 if (FTy->getParamType(i)->isLabelTy())
4862 Arg = getBasicBlock(Record[OpNum]);
4863 else
4864 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i));
4865 if (!Arg)
4866 return error("Invalid record");
4867 Args.push_back(Arg);
4868 ArgsTys.push_back(Arg->getType());
4869 }
4870
4871 // Read type/value pairs for varargs params.
4872 if (!FTy->isVarArg()) {
4873 if (OpNum != Record.size())
4874 return error("Invalid record");
4875 } else {
4876 while (OpNum != Record.size()) {
4877 Value *Op;
4878 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4879 return error("Invalid record");
4880 Args.push_back(Op);
4881 ArgsTys.push_back(Op->getType());
4882 }
4883 }
4884
4885 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4886 OperandBundles);
4887 OperandBundles.clear();
4888 InstructionList.push_back(I);
4889 cast<CallBrInst>(I)->setCallingConv(
4890 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4891 cast<CallBrInst>(I)->setAttributes(PAL);
4892 propagateAttributeTypes(cast<CallBase>(I), ArgsTys);
4893 break;
4894 }
4895 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4896 I = new UnreachableInst(Context);
4897 InstructionList.push_back(I);
4898 break;
4899 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4900 if (Record.empty())
4901 return error("Invalid record");
4902 // The first record specifies the type.
4903 Type *Ty = getTypeByID(Record[0]);
4904 if (!Ty)
4905 return error("Invalid record");
4906
4907 // Phi arguments are pairs of records of [value, basic block].
4908 // There is an optional final record for fast-math-flags if this phi has a
4909 // floating-point type.
4910 size_t NumArgs = (Record.size() - 1) / 2;
4911 PHINode *PN = PHINode::Create(Ty, NumArgs);
4912 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN))
4913 return error("Invalid record");
4914 InstructionList.push_back(PN);
4915
4916 for (unsigned i = 0; i != NumArgs; i++) {
4917 Value *V;
4918 // With the new function encoding, it is possible that operands have
4919 // negative IDs (for forward references). Use a signed VBR
4920 // representation to keep the encoding small.
4921 if (UseRelativeIDs)
4922 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty);
4923 else
4924 V = getValue(Record, i * 2 + 1, NextValueNo, Ty);
4925 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
4926 if (!V || !BB)
4927 return error("Invalid record");
4928 PN->addIncoming(V, BB);
4929 }
4930 I = PN;
4931
4932 // If there are an even number of records, the final record must be FMF.
4933 if (Record.size() % 2 == 0) {
4934 assert(isa<FPMathOperator>(I) && "Unexpected phi type")(static_cast <bool> (isa<FPMathOperator>(I) &&
"Unexpected phi type") ? void (0) : __assert_fail ("isa<FPMathOperator>(I) && \"Unexpected phi type\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 4934, __extension__
__PRETTY_FUNCTION__))
;
4935 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
4936 if (FMF.any())
4937 I->setFastMathFlags(FMF);
4938 }
4939
4940 break;
4941 }
4942
4943 case bitc::FUNC_CODE_INST_LANDINGPAD:
4944 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4945 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4946 unsigned Idx = 0;
4947 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4948 if (Record.size() < 3)
4949 return error("Invalid record");
4950 } else {
4951 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD)(static_cast <bool> (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD
) ? void (0) : __assert_fail ("BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD"
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 4951, __extension__
__PRETTY_FUNCTION__))
;
4952 if (Record.size() < 4)
4953 return error("Invalid record");
4954 }
4955 Type *Ty = getTypeByID(Record[Idx++]);
4956 if (!Ty)
4957 return error("Invalid record");
4958 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4959 Value *PersFn = nullptr;
4960 if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4961 return error("Invalid record");
4962
4963 if (!F->hasPersonalityFn())
4964 F->setPersonalityFn(cast<Constant>(PersFn));
4965 else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4966 return error("Personality function mismatch");
4967 }
4968
4969 bool IsCleanup = !!Record[Idx++];
4970 unsigned NumClauses = Record[Idx++];
4971 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4972 LP->setCleanup(IsCleanup);
4973 for (unsigned J = 0; J != NumClauses; ++J) {
4974 LandingPadInst::ClauseType CT =
4975 LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4976 Value *Val;
4977
4978 if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4979 delete LP;
4980 return error("Invalid record");
4981 }
4982
4983 assert((CT != LandingPadInst::Catch ||(static_cast <bool> ((CT != LandingPadInst::Catch || !isa
<ArrayType>(Val->getType())) && "Catch clause has a invalid type!"
) ? void (0) : __assert_fail ("(CT != LandingPadInst::Catch || !isa<ArrayType>(Val->getType())) && \"Catch clause has a invalid type!\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 4985, __extension__
__PRETTY_FUNCTION__))
4984 !isa<ArrayType>(Val->getType())) &&(static_cast <bool> ((CT != LandingPadInst::Catch || !isa
<ArrayType>(Val->getType())) && "Catch clause has a invalid type!"
) ? void (0) : __assert_fail ("(CT != LandingPadInst::Catch || !isa<ArrayType>(Val->getType())) && \"Catch clause has a invalid type!\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 4985, __extension__
__PRETTY_FUNCTION__))
4985 "Catch clause has a invalid type!")(static_cast <bool> ((CT != LandingPadInst::Catch || !isa
<ArrayType>(Val->getType())) && "Catch clause has a invalid type!"
) ? void (0) : __assert_fail ("(CT != LandingPadInst::Catch || !isa<ArrayType>(Val->getType())) && \"Catch clause has a invalid type!\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 4985, __extension__
__PRETTY_FUNCTION__))
;
4986 assert((CT != LandingPadInst::Filter ||(static_cast <bool> ((CT != LandingPadInst::Filter || isa
<ArrayType>(Val->getType())) && "Filter clause has invalid type!"
) ? void (0) : __assert_fail ("(CT != LandingPadInst::Filter || isa<ArrayType>(Val->getType())) && \"Filter clause has invalid type!\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 4988, __extension__
__PRETTY_FUNCTION__))
4987 isa<ArrayType>(Val->getType())) &&(static_cast <bool> ((CT != LandingPadInst::Filter || isa
<ArrayType>(Val->getType())) && "Filter clause has invalid type!"
) ? void (0) : __assert_fail ("(CT != LandingPadInst::Filter || isa<ArrayType>(Val->getType())) && \"Filter clause has invalid type!\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 4988, __extension__
__PRETTY_FUNCTION__))
4988 "Filter clause has invalid type!")(static_cast <bool> ((CT != LandingPadInst::Filter || isa
<ArrayType>(Val->getType())) && "Filter clause has invalid type!"
) ? void (0) : __assert_fail ("(CT != LandingPadInst::Filter || isa<ArrayType>(Val->getType())) && \"Filter clause has invalid type!\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 4988, __extension__
__PRETTY_FUNCTION__))
;
4989 LP->addClause(cast<Constant>(Val));
4990 }
4991
4992 I = LP;
4993 InstructionList.push_back(I);
4994 break;
4995 }
4996
4997 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4998 if (Record.size() != 4)
4999 return error("Invalid record");
5000 using APV = AllocaPackedValues;
5001 const uint64_t Rec = Record[3];
5002 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
5003 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
5004 Type *Ty = getTypeByID(Record[0]);
5005 if (!Bitfield::get<APV::ExplicitType>(Rec)) {
5006 auto *PTy = dyn_cast_or_null<PointerType>(Ty);
5007 if (!PTy)
5008 return error("Old-style alloca with a non-pointer type");
5009 Ty = PTy->getPointerElementType();
5010 }
5011 Type *OpTy = getTypeByID(Record[1]);
5012 Value *Size = getFnValueByID(Record[2], OpTy);
5013 MaybeAlign Align;
5014 uint64_t AlignExp =
5015 Bitfield::get<APV::AlignLower>(Rec) |
5016 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
5017 if (Error Err = parseAlignmentValue(AlignExp, Align)) {
5018 return Err;
5019 }
5020 if (!Ty || !Size)
5021 return error("Invalid record");
5022
5023 // FIXME: Make this an optional field.
5024 const DataLayout &DL = TheModule->getDataLayout();
5025 unsigned AS = DL.getAllocaAddrSpace();
5026
5027 SmallPtrSet<Type *, 4> Visited;
5028 if (!Align && !Ty->isSized(&Visited))
5029 return error("alloca of unsized type");
5030 if (!Align)
5031 Align = DL.getPrefTypeAlign(Ty);
5032
5033 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
5034 AI->setUsedWithInAlloca(InAlloca);
5035 AI->setSwiftError(SwiftError);
5036 I = AI;
5037 InstructionList.push_back(I);
5038 break;
5039 }
5040 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
5041 unsigned OpNum = 0;
5042 Value *Op;
5043 if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
5044 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
5045 return error("Invalid record");
5046
5047 if (!isa<PointerType>(Op->getType()))
5048 return error("Load operand is not a pointer type");
5049
5050 Type *Ty = nullptr;
5051 if (OpNum + 3 == Record.size()) {
5052 Ty = getTypeByID(Record[OpNum++]);
5053 } else {
5054 Ty = Op->getType()->getPointerElementType();
5055 }
5056
5057 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5058 return Err;
5059
5060 MaybeAlign Align;
5061 if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5062 return Err;
5063 SmallPtrSet<Type *, 4> Visited;
5064 if (!Align && !Ty->isSized(&Visited))
5065 return error("load of unsized type");
5066 if (!Align)
5067 Align = TheModule->getDataLayout().getABITypeAlign(Ty);
5068 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
5069 InstructionList.push_back(I);
5070 break;
5071 }
5072 case bitc::FUNC_CODE_INST_LOADATOMIC: {
5073 // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
5074 unsigned OpNum = 0;
5075 Value *Op;
5076 if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
5077 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
5078 return error("Invalid record");
5079
5080 if (!isa<PointerType>(Op->getType()))
5081 return error("Load operand is not a pointer type");
5082
5083 Type *Ty = nullptr;
5084 if (OpNum + 5 == Record.size()) {
5085 Ty = getTypeByID(Record[OpNum++]);
5086 } else {
5087 Ty = Op->getType()->getPointerElementType();
5088 }
5089
5090 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5091 return Err;
5092
5093 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5094 if (Ordering == AtomicOrdering::NotAtomic ||
5095 Ordering == AtomicOrdering::Release ||
5096 Ordering == AtomicOrdering::AcquireRelease)
5097 return error("Invalid record");
5098 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5099 return error("Invalid record");
5100 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5101
5102 MaybeAlign Align;
5103 if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5104 return Err;
5105 if (!Align)
5106 return error("Alignment missing from atomic load");
5107 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
5108 InstructionList.push_back(I);
5109 break;
5110 }
5111 case bitc::FUNC_CODE_INST_STORE:
5112 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
5113 unsigned OpNum = 0;
5114 Value *Val, *Ptr;
5115 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5116 (BitCode == bitc::FUNC_CODE_INST_STORE
5117 ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5118 : popValue(Record, OpNum, NextValueNo,
5119 Ptr->getType()->getPointerElementType(), Val)) ||
5120 OpNum + 2 != Record.size())
5121 return error("Invalid record");
5122
5123 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5124 return Err;
5125 MaybeAlign Align;
5126 if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5127 return Err;
5128 SmallPtrSet<Type *, 4> Visited;
5129 if (!Align && !Val->getType()->isSized(&Visited))
5130 return error("store of unsized type");
5131 if (!Align)
5132 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
5133 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
5134 InstructionList.push_back(I);
5135 break;
5136 }
5137 case bitc::FUNC_CODE_INST_STOREATOMIC:
5138 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
5139 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
5140 unsigned OpNum = 0;
5141 Value *Val, *Ptr;
5142 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5143 !isa<PointerType>(Ptr->getType()) ||
5144 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
5145 ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5146 : popValue(Record, OpNum, NextValueNo,
5147 Ptr->getType()->getPointerElementType(), Val)) ||
5148 OpNum + 4 != Record.size())
5149 return error("Invalid record");
5150
5151 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5152 return Err;
5153 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5154 if (Ordering == AtomicOrdering::NotAtomic ||
5155 Ordering == AtomicOrdering::Acquire ||
5156 Ordering == AtomicOrdering::AcquireRelease)
5157 return error("Invalid record");
5158 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5159 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5160 return error("Invalid record");
5161
5162 MaybeAlign Align;
5163 if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5164 return Err;
5165 if (!Align)
5166 return error("Alignment missing from atomic store");
5167 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
5168 InstructionList.push_back(I);
5169 break;
5170 }
5171 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
5172 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
5173 // failure_ordering?, weak?]
5174 const size_t NumRecords = Record.size();
5175 unsigned OpNum = 0;
5176 Value *Ptr = nullptr;
5177 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr))
5178 return error("Invalid record");
5179
5180 if (!isa<PointerType>(Ptr->getType()))
5181 return error("Cmpxchg operand is not a pointer type");
5182
5183 Value *Cmp = nullptr;
5184 if (popValue(Record, OpNum, NextValueNo,
5185 cast<PointerType>(Ptr->getType())->getPointerElementType(),
5186 Cmp))
5187 return error("Invalid record");
5188
5189 Value *New = nullptr;
5190 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5191 NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
5192 return error("Invalid record");
5193
5194 const AtomicOrdering SuccessOrdering =
5195 getDecodedOrdering(Record[OpNum + 1]);
5196 if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5197 SuccessOrdering == AtomicOrdering::Unordered)
5198 return error("Invalid record");
5199
5200 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5201
5202 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5203 return Err;
5204
5205 const AtomicOrdering FailureOrdering =
5206 NumRecords < 7
5207 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
5208 : getDecodedOrdering(Record[OpNum + 3]);
5209
5210 if (FailureOrdering == AtomicOrdering::NotAtomic ||
5211 FailureOrdering == AtomicOrdering::Unordered)
5212 return error("Invalid record");
5213
5214 const Align Alignment(
5215 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5216
5217 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
5218 FailureOrdering, SSID);
5219 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5220
5221 if (NumRecords < 8) {
5222 // Before weak cmpxchgs existed, the instruction simply returned the
5223 // value loaded from memory, so bitcode files from that era will be
5224 // expecting the first component of a modern cmpxchg.
5225 CurBB->getInstList().push_back(I);
5226 I = ExtractValueInst::Create(I, 0);
5227 } else {
5228 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
5229 }
5230
5231 InstructionList.push_back(I);
5232 break;
5233 }
5234 case bitc::FUNC_CODE_INST_CMPXCHG: {
5235 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
5236 // failure_ordering, weak, align?]
5237 const size_t NumRecords = Record.size();
5238 unsigned OpNum = 0;
5239 Value *Ptr = nullptr;
5240 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr))
5241 return error("Invalid record");
5242
5243 if (!isa<PointerType>(Ptr->getType()))
5244 return error("Cmpxchg operand is not a pointer type");
5245
5246 Value *Cmp = nullptr;
5247 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp))
5248 return error("Invalid record");
5249
5250 Value *Val = nullptr;
5251 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val))
5252 return error("Invalid record");
5253
5254 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
5255 return error("Invalid record");
5256
5257 const bool IsVol = Record[OpNum];
5258
5259 const AtomicOrdering SuccessOrdering =
5260 getDecodedOrdering(Record[OpNum + 1]);
5261 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
5262 return error("Invalid cmpxchg success ordering");
5263
5264 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5265
5266 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5267 return Err;
5268
5269 const AtomicOrdering FailureOrdering =
5270 getDecodedOrdering(Record[OpNum + 3]);
5271 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
5272 return error("Invalid cmpxchg failure ordering");
5273
5274 const bool IsWeak = Record[OpNum + 4];
5275
5276 MaybeAlign Alignment;
5277
5278 if (NumRecords == (OpNum + 6)) {
5279 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
5280 return Err;
5281 }
5282 if (!Alignment)
5283 Alignment =
5284 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5285
5286 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
5287 FailureOrdering, SSID);
5288 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
5289 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
5290
5291 InstructionList.push_back(I);
5292 break;
5293 }
5294 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
5295 case bitc::FUNC_CODE_INST_ATOMICRMW: {
5296 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
5297 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
5298 const size_t NumRecords = Record.size();
5299 unsigned OpNum = 0;
5300
5301 Value *Ptr = nullptr;
5302 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr))
5303 return error("Invalid record");
5304
5305 if (!isa<PointerType>(Ptr->getType()))
5306 return error("Invalid record");
5307
5308 Value *Val = nullptr;
5309 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
5310 if (popValue(Record, OpNum, NextValueNo,
5311 cast<PointerType>(Ptr->getType())->getPointerElementType(),
5312 Val))
5313 return error("Invalid record");
5314 } else {
5315 if (getValueTypePair(Record, OpNum, NextValueNo, Val))
5316 return error("Invalid record");
5317 }
5318
5319 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
5320 return error("Invalid record");
5321
5322 const AtomicRMWInst::BinOp Operation =
5323 getDecodedRMWOperation(Record[OpNum]);
5324 if (Operation < AtomicRMWInst::FIRST_BINOP ||
5325 Operation > AtomicRMWInst::LAST_BINOP)
5326 return error("Invalid record");
5327
5328 const bool IsVol = Record[OpNum + 1];
5329
5330 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5331 if (Ordering == AtomicOrdering::NotAtomic ||
5332 Ordering == AtomicOrdering::Unordered)
5333 return error("Invalid record");
5334
5335 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5336
5337 MaybeAlign Alignment;
5338
5339 if (NumRecords == (OpNum + 5)) {
5340 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
5341 return Err;
5342 }
5343
5344 if (!Alignment)
5345 Alignment =
5346 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
5347
5348 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
5349 cast<AtomicRMWInst>(I)->setVolatile(IsVol);
5350
5351 InstructionList.push_back(I);
5352 break;
5353 }
5354 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
5355 if (2 != Record.size())
5356 return error("Invalid record");
5357 AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5358 if (Ordering == AtomicOrdering::NotAtomic ||
5359 Ordering == AtomicOrdering::Unordered ||
5360 Ordering == AtomicOrdering::Monotonic)
5361 return error("Invalid record");
5362 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
5363 I = new FenceInst(Context, Ordering, SSID);
5364 InstructionList.push_back(I);
5365 break;
5366 }
5367 case bitc::FUNC_CODE_INST_CALL: {
5368 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5369 if (Record.size() < 3)
5370 return error("Invalid record");
5371
5372 unsigned OpNum = 0;
5373 AttributeList PAL = getAttributes(Record[OpNum++]);
5374 unsigned CCInfo = Record[OpNum++];
5375
5376 FastMathFlags FMF;
5377 if ((CCInfo >> bitc::CALL_FMF) & 1) {
5378 FMF = getDecodedFastMathFlags(Record[OpNum++]);
5379 if (!FMF.any())
5380 return error("Fast math flags indicator set for call with no FMF");
5381 }
5382
5383 FunctionType *FTy = nullptr;
5384 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5385 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]));
5386 if (!FTy)
5387 return error("Explicit call type is not a function type");
5388 }
5389
5390 Value *Callee;
5391 if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5392 return error("Invalid record");
5393
5394 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5395 if (!OpTy)
5396 return error("Callee is not a pointer type");
5397 if (!FTy) {
5398 FTy =
5399 dyn_cast<FunctionType>(Callee->getType()->getPointerElementType());
5400 if (!FTy)
5401 return error("Callee is not of pointer to function type");
5402 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
5403 return error("Explicit call type does not match pointee type of "
5404 "callee operand");
5405 if (Record.size() < FTy->getNumParams() + OpNum)
5406 return error("Insufficient operands to call");
5407
5408 SmallVector<Value*, 16> Args;
5409 SmallVector<Type *, 16> ArgsTys;
5410 // Read the fixed params.
5411 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5412 if (FTy->getParamType(i)->isLabelTy())
5413 Args.push_back(getBasicBlock(Record[OpNum]));
5414 else
5415 Args.push_back(getValue(Record, OpNum, NextValueNo,
5416 FTy->getParamType(i)));
5417 ArgsTys.push_back(FTy->getParamType(i));
5418 if (!Args.back())
5419 return error("Invalid record");
5420 }
5421
5422 // Read type/value pairs for varargs params.
5423 if (!FTy->isVarArg()) {
5424 if (OpNum != Record.size())
5425 return error("Invalid record");
5426 } else {
5427 while (OpNum != Record.size()) {
5428 Value *Op;
5429 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5430 return error("Invalid record");
5431 Args.push_back(Op);
5432 ArgsTys.push_back(Op->getType());
5433 }
5434 }
5435
5436 I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5437 OperandBundles.clear();
5438 InstructionList.push_back(I);
5439 cast<CallInst>(I)->setCallingConv(
5440 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5441 CallInst::TailCallKind TCK = CallInst::TCK_None;
5442 if (CCInfo & 1 << bitc::CALL_TAIL)
5443 TCK = CallInst::TCK_Tail;
5444 if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5445 TCK = CallInst::TCK_MustTail;
5446 if (CCInfo & (1 << bitc::CALL_NOTAIL))
5447 TCK = CallInst::TCK_NoTail;
5448 cast<CallInst>(I)->setTailCallKind(TCK);
5449 cast<CallInst>(I)->setAttributes(PAL);
5450 propagateAttributeTypes(cast<CallBase>(I), ArgsTys);
5451 if (FMF.any()) {
5452 if (!isa<FPMathOperator>(I))
5453 return error("Fast-math-flags specified for call without "
5454 "floating-point scalar or vector return type");
5455 I->setFastMathFlags(FMF);
5456 }
5457 break;
5458 }
5459 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5460 if (Record.size() < 3)
5461 return error("Invalid record");
5462 Type *OpTy = getTypeByID(Record[0]);
5463 Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5464 Type *ResTy = getTypeByID(Record[2]);
5465 if (!OpTy || !Op || !ResTy)
5466 return error("Invalid record");
5467 I = new VAArgInst(Op, ResTy);
5468 InstructionList.push_back(I);
5469 break;
5470 }
5471
5472 case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5473 // A call or an invoke can be optionally prefixed with some variable
5474 // number of operand bundle blocks. These blocks are read into
5475 // OperandBundles and consumed at the next call or invoke instruction.
5476
5477 if (Record.empty() || Record[0] >= BundleTags.size())
5478 return error("Invalid record");
5479
5480 std::vector<Value *> Inputs;
5481
5482 unsigned OpNum = 1;
5483 while (OpNum != Record.size()) {
5484 Value *Op;
5485 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5486 return error("Invalid record");
5487 Inputs.push_back(Op);
5488 }
5489
5490 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5491 continue;
5492 }
5493
5494 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
5495 unsigned OpNum = 0;
5496 Value *Op = nullptr;
5497 if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5498 return error("Invalid record");
5499 if (OpNum != Record.size())
5500 return error("Invalid record");
5501
5502 I = new FreezeInst(Op);
5503 InstructionList.push_back(I);
5504 break;
5505 }
5506 }
5507
5508 // Add instruction to end of current BB. If there is no current BB, reject
5509 // this file.
5510 if (!CurBB) {
5511 I->deleteValue();
5512 return error("Invalid instruction with no BB");
5513 }
5514 if (!OperandBundles.empty()) {
5515 I->deleteValue();
5516 return error("Operand bundles found with no consumer");
5517 }
5518 CurBB->getInstList().push_back(I);
5519
5520 // If this was a terminator instruction, move to the next block.
5521 if (I->isTerminator()) {
5522 ++CurBBNo;
5523 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5524 }
5525
5526 // Non-void values get registered in the value table for future use.
5527 if (!I->getType()->isVoidTy())
5528 ValueList.assignValue(I, NextValueNo++);
5529 }
5530
5531OutOfRecordLoop:
5532
5533 if (!OperandBundles.empty())
5534 return error("Operand bundles found with no consumer");
5535
5536 // Check the function list for unresolved values.
5537 if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5538 if (!A->getParent()) {
5539 // We found at least one unresolved value. Nuke them all to avoid leaks.
5540 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5541 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5542 A->replaceAllUsesWith(UndefValue::get(A->getType()));
5543 delete A;
5544 }
5545 }
5546 return error("Never resolved value found in function");
5547 }
5548 }
5549
5550 // Unexpected unresolved metadata about to be dropped.
5551 if (MDLoader->hasFwdRefs())
5552 return error("Invalid function metadata: outgoing forward refs");
5553
5554 // Trim the value list down to the size it was before we parsed this function.
5555 ValueList.shrinkTo(ModuleValueListSize);
5556 MDLoader->shrinkTo(ModuleMDLoaderSize);
5557 std::vector<BasicBlock*>().swap(FunctionBBs);
5558 return Error::success();
5559}
5560
5561/// Find the function body in the bitcode stream
5562Error BitcodeReader::findFunctionInStream(
5563 Function *F,
5564 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5565 while (DeferredFunctionInfoIterator->second == 0) {
5566 // This is the fallback handling for the old format bitcode that
5567 // didn't contain the function index in the VST, or when we have
5568 // an anonymous function which would not have a VST entry.
5569 // Assert that we have one of those two cases.
5570 assert(VSTOffset == 0 || !F->hasName())(static_cast <bool> (VSTOffset == 0 || !F->hasName()
) ? void (0) : __assert_fail ("VSTOffset == 0 || !F->hasName()"
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 5570, __extension__
__PRETTY_FUNCTION__))
;
5571 // Parse the next body in the stream and set its position in the
5572 // DeferredFunctionInfo map.
5573 if (Error Err = rememberAndSkipFunctionBodies())
5574 return Err;
5575 }
5576 return Error::success();
5577}
5578
5579SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
5580 if (Val == SyncScope::SingleThread || Val == SyncScope::System)
5581 return SyncScope::ID(Val);
5582 if (Val >= SSIDs.size())
5583 return SyncScope::System; // Map unknown synchronization scopes to system.
5584 return SSIDs[Val];
5585}
5586
5587//===----------------------------------------------------------------------===//
5588// GVMaterializer implementation
5589//===----------------------------------------------------------------------===//
5590
5591Error BitcodeReader::materialize(GlobalValue *GV) {
5592 Function *F = dyn_cast<Function>(GV);
5593 // If it's not a function or is already material, ignore the request.
5594 if (!F || !F->isMaterializable())
5595 return Error::success();
5596
5597 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5598 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!")(static_cast <bool> (DFII != DeferredFunctionInfo.end()
&& "Deferred function not found!") ? void (0) : __assert_fail
("DFII != DeferredFunctionInfo.end() && \"Deferred function not found!\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 5598, __extension__
__PRETTY_FUNCTION__))
;
5599 // If its position is recorded as 0, its body is somewhere in the stream
5600 // but we haven't seen it yet.
5601 if (DFII->second == 0)
5602 if (Error Err = findFunctionInStream(F, DFII))
5603 return Err;
5604
5605 // Materialize metadata before parsing any function bodies.
5606 if (Error Err = materializeMetadata())
5607 return Err;
5608
5609 // Move the bit stream to the saved position of the deferred function body.
5610 if (Error JumpFailed = Stream.JumpToBit(DFII->second))
5611 return JumpFailed;
5612 if (Error Err = parseFunctionBody(F))
5613 return Err;
5614 F->setIsMaterializable(false);
5615
5616 if (StripDebugInfo)
5617 stripDebugInfo(*F);
5618
5619 // Upgrade any old intrinsic calls in the function.
5620 for (auto &I : UpgradedIntrinsics) {
5621 for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
5622 if (CallInst *CI = dyn_cast<CallInst>(U))
5623 UpgradeIntrinsicCall(CI, I.second);
5624 }
5625
5626 // Update calls to the remangled intrinsics
5627 for (auto &I : RemangledIntrinsics)
5628 for (User *U : llvm::make_early_inc_range(I.first->materialized_users()))
5629 // Don't expect any other users than call sites
5630 cast<CallBase>(U)->setCalledFunction(I.second);
5631
5632 // Finish fn->subprogram upgrade for materialized functions.
5633 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
5634 F->setSubprogram(SP);
5635
5636 // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
5637 if (!MDLoader->isStrippingTBAA()) {
5638 for (auto &I : instructions(F)) {
5639 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
5640 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
5641 continue;
5642 MDLoader->setStripTBAA(true);
5643 stripTBAA(F->getParent());
5644 }
5645 }
5646
5647 for (auto &I : instructions(F)) {
5648 // "Upgrade" older incorrect branch weights by dropping them.
5649 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
5650 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
5651 MDString *MDS = cast<MDString>(MD->getOperand(0));
5652 StringRef ProfName = MDS->getString();
5653 // Check consistency of !prof branch_weights metadata.
5654 if (!ProfName.equals("branch_weights"))
5655 continue;
5656 unsigned ExpectedNumOperands = 0;
5657 if (BranchInst *BI = dyn_cast<BranchInst>(&I))
5658 ExpectedNumOperands = BI->getNumSuccessors();
5659 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
5660 ExpectedNumOperands = SI->getNumSuccessors();
5661 else if (isa<CallInst>(&I))
5662 ExpectedNumOperands = 1;
5663 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
5664 ExpectedNumOperands = IBI->getNumDestinations();
5665 else if (isa<SelectInst>(&I))
5666 ExpectedNumOperands = 2;
5667 else
5668 continue; // ignore and continue.
5669
5670 // If branch weight doesn't match, just strip branch weight.
5671 if (MD->getNumOperands() != 1 + ExpectedNumOperands)
5672 I.setMetadata(LLVMContext::MD_prof, nullptr);
5673 }
5674 }
5675
5676 // Remove incompatible attributes on function calls.
5677 if (auto *CI = dyn_cast<CallBase>(&I)) {
5678 CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
5679 CI->getFunctionType()->getReturnType()));
5680
5681 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
5682 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
5683 CI->getArgOperand(ArgNo)->getType()));
5684 }
5685 }
5686
5687 // Look for functions that rely on old function attribute behavior.
5688 UpgradeFunctionAttributes(*F);
5689
5690 // Bring in any functions that this function forward-referenced via
5691 // blockaddresses.
5692 return materializeForwardReferencedFunctions();
5693}
5694
5695Error BitcodeReader::materializeModule() {
5696 if (Error Err = materializeMetadata())
5697 return Err;
5698
5699 // Promise to materialize all forward references.
5700 WillMaterializeAllForwardRefs = true;
5701
5702 // Iterate over the module, deserializing any functions that are still on
5703 // disk.
5704 for (Function &F : *TheModule) {
5705 if (Error Err = materialize(&F))
5706 return Err;
5707 }
5708 // At this point, if there are any function bodies, parse the rest of
5709 // the bits in the module past the last function block we have recorded
5710 // through either lazy scanning or the VST.
5711 if (LastFunctionBlockBit || NextUnreadBit)
5712 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
5713 ? LastFunctionBlockBit
5714 : NextUnreadBit))
5715 return Err;
5716
5717 // Check that all block address forward references got resolved (as we
5718 // promised above).
5719 if (!BasicBlockFwdRefs.empty())
5720 return error("Never resolved function from blockaddress");
5721
5722 // Upgrade any intrinsic calls that slipped through (should not happen!) and
5723 // delete the old functions to clean up. We can't do this unless the entire
5724 // module is materialized because there could always be another function body
5725 // with calls to the old function.
5726 for (auto &I : UpgradedIntrinsics) {
5727 for (auto *U : I.first->users()) {
5728 if (CallInst *CI = dyn_cast<CallInst>(U))
5729 UpgradeIntrinsicCall(CI, I.second);
5730 }
5731 if (!I.first->use_empty())
5732 I.first->replaceAllUsesWith(I.second);
5733 I.first->eraseFromParent();
5734 }
5735 UpgradedIntrinsics.clear();
5736 // Do the same for remangled intrinsics
5737 for (auto &I : RemangledIntrinsics) {
5738 I.first->replaceAllUsesWith(I.second);
5739 I.first->eraseFromParent();
5740 }
5741 RemangledIntrinsics.clear();
5742
5743 UpgradeDebugInfo(*TheModule);
5744
5745 UpgradeModuleFlags(*TheModule);
5746
5747 UpgradeARCRuntime(*TheModule);
5748
5749 return Error::success();
5750}
5751
5752std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5753 return IdentifiedStructTypes;
5754}
5755
5756ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5757 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
5758 StringRef ModulePath, unsigned ModuleId)
5759 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
5760 ModulePath(ModulePath), ModuleId(ModuleId) {}
5761
5762void ModuleSummaryIndexBitcodeReader::addThisModule() {
5763 TheIndex.addModule(ModulePath, ModuleId);
5764}
5765
5766ModuleSummaryIndex::ModuleInfo *
5767ModuleSummaryIndexBitcodeReader::getThisModule() {
5768 return TheIndex.getModule(ModulePath);
5769}
5770
5771std::pair<ValueInfo, GlobalValue::GUID>
5772ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
5773 auto VGI = ValueIdToValueInfoMap[ValueId];
5774 assert(VGI.first)(static_cast <bool> (VGI.first) ? void (0) : __assert_fail
("VGI.first", "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 5774
, __extension__ __PRETTY_FUNCTION__))
;
5775 return VGI;
5776}
5777
5778void ModuleSummaryIndexBitcodeReader::setValueGUID(
5779 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
5780 StringRef SourceFileName) {
5781 std::string GlobalId =
5782 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5783 auto ValueGUID = GlobalValue::getGUID(GlobalId);
5784 auto OriginalNameID = ValueGUID;
5785 if (GlobalValue::isLocalLinkage(Linkage))
5786 OriginalNameID = GlobalValue::getGUID(ValueName);
5787 if (PrintSummaryGUIDs)
5788 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5789 << ValueName << "\n";
5790
5791 // UseStrtab is false for legacy summary formats and value names are
5792 // created on stack. In that case we save the name in a string saver in
5793 // the index so that the value name can be recorded.
5794 ValueIdToValueInfoMap[ValueID] = std::make_pair(
5795 TheIndex.getOrInsertValueInfo(
5796 ValueGUID,
5797 UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
5798 OriginalNameID);
5799}
5800
5801// Specialized value symbol table parser used when reading module index
5802// blocks where we don't actually create global values. The parsed information
5803// is saved in the bitcode reader for use when later parsing summaries.
5804Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5805 uint64_t Offset,
5806 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5807 // With a strtab the VST is not required to parse the summary.
5808 if (UseStrtab)
5809 return Error::success();
5810
5811 assert(Offset > 0 && "Expected non-zero VST offset")(static_cast <bool> (Offset > 0 && "Expected non-zero VST offset"
) ? void (0) : __assert_fail ("Offset > 0 && \"Expected non-zero VST offset\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 5811, __extension__
__PRETTY_FUNCTION__))
;
5812 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
5813 if (!MaybeCurrentBit)
5814 return MaybeCurrentBit.takeError();
5815 uint64_t CurrentBit = MaybeCurrentBit.get();
5816
5817 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5818 return Err;
5819
5820 SmallVector<uint64_t, 64> Record;
5821
5822 // Read all the records for this value table.
5823 SmallString<128> ValueName;
5824
5825 while (true) {
5826 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5827 if (!MaybeEntry)
5828 return MaybeEntry.takeError();
5829 BitstreamEntry Entry = MaybeEntry.get();
5830
5831 switch (Entry.Kind) {
5832 case BitstreamEntry::SubBlock: // Handled for us already.
5833 case BitstreamEntry::Error:
5834 return error("Malformed block");
5835 case BitstreamEntry::EndBlock:
5836 // Done parsing VST, jump back to wherever we came from.
5837 if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
5838 return JumpFailed;
5839 return Error::success();
5840 case BitstreamEntry::Record:
5841 // The interesting case.
5842 break;
5843 }
5844
5845 // Read a record.
5846 Record.clear();
5847 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5848 if (!MaybeRecord)
5849 return MaybeRecord.takeError();
5850 switch (MaybeRecord.get()) {
5851 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5852 break;
5853 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5854 if (convertToString(Record, 1, ValueName))
5855 return error("Invalid record");
5856 unsigned ValueID = Record[0];
5857 assert(!SourceFileName.empty())(static_cast <bool> (!SourceFileName.empty()) ? void (0
) : __assert_fail ("!SourceFileName.empty()", "llvm/lib/Bitcode/Reader/BitcodeReader.cpp"
, 5857, __extension__ __PRETTY_FUNCTION__))
;
5858 auto VLI = ValueIdToLinkageMap.find(ValueID);
5859 assert(VLI != ValueIdToLinkageMap.end() &&(static_cast <bool> (VLI != ValueIdToLinkageMap.end() &&
"No linkage found for VST entry?") ? void (0) : __assert_fail
("VLI != ValueIdToLinkageMap.end() && \"No linkage found for VST entry?\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 5860, __extension__
__PRETTY_FUNCTION__))
5860 "No linkage found for VST entry?")(static_cast <bool> (VLI != ValueIdToLinkageMap.end() &&
"No linkage found for VST entry?") ? void (0) : __assert_fail
("VLI != ValueIdToLinkageMap.end() && \"No linkage found for VST entry?\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 5860, __extension__
__PRETTY_FUNCTION__))
;
5861 auto Linkage = VLI->second;
5862 setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5863 ValueName.clear();
5864 break;
5865 }
5866 case bitc::VST_CODE_FNENTRY: {
5867 // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5868 if (convertToString(Record, 2, ValueName))
5869 return error("Invalid record");
5870 unsigned ValueID = Record[0];
5871 assert(!SourceFileName.empty())(static_cast <bool> (!SourceFileName.empty()) ? void (0
) : __assert_fail ("!SourceFileName.empty()", "llvm/lib/Bitcode/Reader/BitcodeReader.cpp"
, 5871, __extension__ __PRETTY_FUNCTION__))
;
5872 auto VLI = ValueIdToLinkageMap.find(ValueID);
5873 assert(VLI != ValueIdToLinkageMap.end() &&(static_cast <bool> (VLI != ValueIdToLinkageMap.end() &&
"No linkage found for VST entry?") ? void (0) : __assert_fail
("VLI != ValueIdToLinkageMap.end() && \"No linkage found for VST entry?\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 5874, __extension__
__PRETTY_FUNCTION__))
5874 "No linkage found for VST entry?")(static_cast <bool> (VLI != ValueIdToLinkageMap.end() &&
"No linkage found for VST entry?") ? void (0) : __assert_fail
("VLI != ValueIdToLinkageMap.end() && \"No linkage found for VST entry?\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 5874, __extension__
__PRETTY_FUNCTION__))
;
5875 auto Linkage = VLI->second;
5876 setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5877 ValueName.clear();
5878 break;
5879 }
5880 case bitc::VST_CODE_COMBINED_ENTRY: {
5881 // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5882 unsigned ValueID = Record[0];
5883 GlobalValue::GUID RefGUID = Record[1];
5884 // The "original name", which is the second value of the pair will be
5885 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5886 ValueIdToValueInfoMap[ValueID] =
5887 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5888 break;
5889 }
5890 }
5891 }
5892}
5893
5894// Parse just the blocks needed for building the index out of the module.
5895// At the end of this routine the module Index is populated with a map
5896// from global value id to GlobalValueSummary objects.
5897Error ModuleSummaryIndexBitcodeReader::parseModule() {
5898 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5899 return Err;
5900
5901 SmallVector<uint64_t, 64> Record;
5902 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5903 unsigned ValueId = 0;
5904
5905 // Read the index for this module.
5906 while (true) {
5907 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
5908 if (!MaybeEntry)
5909 return MaybeEntry.takeError();
5910 llvm::BitstreamEntry Entry = MaybeEntry.get();
5911
5912 switch (Entry.Kind) {
5913 case BitstreamEntry::Error:
5914 return error("Malformed block");
5915 case BitstreamEntry::EndBlock:
5916 return Error::success();
5917
5918 case BitstreamEntry::SubBlock:
5919 switch (Entry.ID) {
5920 default: // Skip unknown content.
5921 if (Error Err = Stream.SkipBlock())
5922 return Err;
5923 break;
5924 case bitc::BLOCKINFO_BLOCK_ID:
5925 // Need to parse these to get abbrev ids (e.g. for VST)
5926 if (Error Err = readBlockInfo())
5927 return Err;
5928 break;
5929 case bitc::VALUE_SYMTAB_BLOCK_ID:
5930 // Should have been parsed earlier via VSTOffset, unless there
5931 // is no summary section.
5932 assert(((SeenValueSymbolTable && VSTOffset > 0) ||(static_cast <bool> (((SeenValueSymbolTable && VSTOffset
> 0) || !SeenGlobalValSummary) && "Expected early VST parse via VSTOffset record"
) ? void (0) : __assert_fail ("((SeenValueSymbolTable && VSTOffset > 0) || !SeenGlobalValSummary) && \"Expected early VST parse via VSTOffset record\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 5934, __extension__
__PRETTY_FUNCTION__))
5933 !SeenGlobalValSummary) &&(static_cast <bool> (((SeenValueSymbolTable && VSTOffset
> 0) || !SeenGlobalValSummary) && "Expected early VST parse via VSTOffset record"
) ? void (0) : __assert_fail ("((SeenValueSymbolTable && VSTOffset > 0) || !SeenGlobalValSummary) && \"Expected early VST parse via VSTOffset record\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 5934, __extension__
__PRETTY_FUNCTION__))
5934 "Expected early VST parse via VSTOffset record")(static_cast <bool> (((SeenValueSymbolTable && VSTOffset
> 0) || !SeenGlobalValSummary) && "Expected early VST parse via VSTOffset record"
) ? void (0) : __assert_fail ("((SeenValueSymbolTable && VSTOffset > 0) || !SeenGlobalValSummary) && \"Expected early VST parse via VSTOffset record\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 5934, __extension__
__PRETTY_FUNCTION__))
;
5935 if (Error Err = Stream.SkipBlock())
5936 return Err;
5937 break;
5938 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5939 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5940 // Add the module if it is a per-module index (has a source file name).
5941 if (!SourceFileName.empty())
5942 addThisModule();
5943 assert(!SeenValueSymbolTable &&(static_cast <bool> (!SeenValueSymbolTable && "Already read VST when parsing summary block?"
) ? void (0) : __assert_fail ("!SeenValueSymbolTable && \"Already read VST when parsing summary block?\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 5944, __extension__
__PRETTY_FUNCTION__))
5944 "Already read VST when parsing summary block?")(static_cast <bool> (!SeenValueSymbolTable && "Already read VST when parsing summary block?"
) ? void (0) : __assert_fail ("!SeenValueSymbolTable && \"Already read VST when parsing summary block?\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 5944, __extension__
__PRETTY_FUNCTION__))
;
5945 // We might not have a VST if there were no values in the
5946 // summary. An empty summary block generated when we are
5947 // performing ThinLTO compiles so we don't later invoke
5948 // the regular LTO process on them.
5949 if (VSTOffset > 0) {
5950 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5951 return Err;
5952 SeenValueSymbolTable = true;
5953 }
5954 SeenGlobalValSummary = true;
5955 if (Error Err = parseEntireSummary(Entry.ID))
5956 return Err;
5957 break;
5958 case bitc::MODULE_STRTAB_BLOCK_ID:
5959 if (Error Err = parseModuleStringTable())
5960 return Err;
5961 break;
5962 }
5963 continue;
5964
5965 case BitstreamEntry::Record: {
5966 Record.clear();
5967 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5968 if (!MaybeBitCode)
5969 return MaybeBitCode.takeError();
5970 switch (MaybeBitCode.get()) {
5971 default:
5972 break; // Default behavior, ignore unknown content.
5973 case bitc::MODULE_CODE_VERSION: {
5974 if (Error Err = parseVersionRecord(Record).takeError())
5975 return Err;
5976 break;
5977 }
5978 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5979 case bitc::MODULE_CODE_SOURCE_FILENAME: {
5980 SmallString<128> ValueName;
5981 if (convertToString(Record, 0, ValueName))
5982 return error("Invalid record");
5983 SourceFileName = ValueName.c_str();
5984 break;
5985 }
5986 /// MODULE_CODE_HASH: [5*i32]
5987 case bitc::MODULE_CODE_HASH: {
5988 if (Record.size() != 5)
5989 return error("Invalid hash length " + Twine(Record.size()).str());
5990 auto &Hash = getThisModule()->second.second;
5991 int Pos = 0;
5992 for (auto &Val : Record) {
5993 assert(!(Val >> 32) && "Unexpected high bits set")(static_cast <bool> (!(Val >> 32) && "Unexpected high bits set"
) ? void (0) : __assert_fail ("!(Val >> 32) && \"Unexpected high bits set\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 5993, __extension__
__PRETTY_FUNCTION__))
;
5994 Hash[Pos++] = Val;
5995 }
5996 break;
5997 }
5998 /// MODULE_CODE_VSTOFFSET: [offset]
5999 case bitc::MODULE_CODE_VSTOFFSET:
6000 if (Record.empty())
6001 return error("Invalid record");
6002 // Note that we subtract 1 here because the offset is relative to one
6003 // word before the start of the identification or module block, which
6004 // was historically always the start of the regular bitcode header.
6005 VSTOffset = Record[0] - 1;
6006 break;
6007 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...]
6008 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...]
6009 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...]
6010 // v2: [strtab offset, strtab size, v1]
6011 case bitc::MODULE_CODE_GLOBALVAR:
6012 case bitc::MODULE_CODE_FUNCTION:
6013 case bitc::MODULE_CODE_ALIAS: {
6014 StringRef Name;
6015 ArrayRef<uint64_t> GVRecord;
6016 std::tie(Name, GVRecord) = readNameFromStrtab(Record);
6017 if (GVRecord.size() <= 3)
6018 return error("Invalid record");
6019 uint64_t RawLinkage = GVRecord[3];
6020 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6021 if (!UseStrtab) {
6022 ValueIdToLinkageMap[ValueId++] = Linkage;
6023 break;
6024 }
6025
6026 setValueGUID(ValueId++, Name, Linkage, SourceFileName);
6027 break;
6028 }
6029 }
6030 }
6031 continue;
6032 }
6033 }
6034}
6035
6036std::vector<ValueInfo>
6037ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
6038 std::vector<ValueInfo> Ret;
6039 Ret.reserve(Record.size());
6040 for (uint64_t RefValueId : Record)
6041 Ret.push_back(getValueInfoFromValueId(RefValueId).first);
6042 return Ret;
6043}
6044
6045std::vector<FunctionSummary::EdgeTy>
6046ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
6047 bool IsOldProfileFormat,
6048 bool HasProfile, bool HasRelBF) {
6049 std::vector<FunctionSummary::EdgeTy> Ret;
6050 Ret.reserve(Record.size());
6051 for (unsigned I = 0, E = Record.size(); I != E; ++I) {
6052 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
6053 uint64_t RelBF = 0;
6054 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6055 if (IsOldProfileFormat) {
6056 I += 1; // Skip old callsitecount field
6057 if (HasProfile)
6058 I += 1; // Skip old profilecount field
6059 } else if (HasProfile)
6060 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
6061 else if (HasRelBF)
6062 RelBF = Record[++I];
6063 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
6064 }
6065 return Ret;
6066}
6067
6068static void
6069parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
6070 WholeProgramDevirtResolution &Wpd) {
6071 uint64_t ArgNum = Record[Slot++];
6072 WholeProgramDevirtResolution::ByArg &B =
6073 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
6074 Slot += ArgNum;
6075
6076 B.TheKind =
6077 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
6078 B.Info = Record[Slot++];
6079 B.Byte = Record[Slot++];
6080 B.Bit = Record[Slot++];
6081}
6082
6083static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
6084 StringRef Strtab, size_t &Slot,
6085 TypeIdSummary &TypeId) {
6086 uint64_t Id = Record[Slot++];
6087 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
6088
6089 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
6090 Wpd.SingleImplName = {Strtab.data() + Record[Slot],
6091 static_cast<size_t>(Record[Slot + 1])};
6092 Slot += 2;
6093
6094 uint64_t ResByArgNum = Record[Slot++];
6095 for (uint64_t I = 0; I != ResByArgNum; ++I)
6096 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
6097}
6098
6099static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
6100 StringRef Strtab,
6101 ModuleSummaryIndex &TheIndex) {
6102 size_t Slot = 0;
6103 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
6104 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
6105 Slot += 2;
6106
6107 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
6108 TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
6109 TypeId.TTRes.AlignLog2 = Record[Slot++];
6110 TypeId.TTRes.SizeM1 = Record[Slot++];
6111 TypeId.TTRes.BitMask = Record[Slot++];
6112 TypeId.TTRes.InlineBits = Record[Slot++];
6113
6114 while (Slot < Record.size())
6115 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
6116}
6117
6118std::vector<FunctionSummary::ParamAccess>
6119ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
6120 auto ReadRange = [&]() {
6121 APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
6122 BitcodeReader::decodeSignRotatedValue(Record.front()));
6123 Record = Record.drop_front();
6124 APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
6125 BitcodeReader::decodeSignRotatedValue(Record.front()));
6126 Record = Record.drop_front();
6127 ConstantRange Range{Lower, Upper};
6128 assert(!Range.isFullSet())(static_cast <bool> (!Range.isFullSet()) ? void (0) : __assert_fail
("!Range.isFullSet()", "llvm/lib/Bitcode/Reader/BitcodeReader.cpp"
, 6128, __extension__ __PRETTY_FUNCTION__))
;
6129 assert(!Range.isUpperSignWrapped())(static_cast <bool> (!Range.isUpperSignWrapped()) ? void
(0) : __assert_fail ("!Range.isUpperSignWrapped()", "llvm/lib/Bitcode/Reader/BitcodeReader.cpp"
, 6129, __extension__ __PRETTY_FUNCTION__))
;
6130 return Range;
6131 };
6132
6133 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6134 while (!Record.empty()) {
6135 PendingParamAccesses.emplace_back();
6136 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
6137 ParamAccess.ParamNo = Record.front();
6138 Record = Record.drop_front();
6139 ParamAccess.Use = ReadRange();
6140 ParamAccess.Calls.resize(Record.front());
6141 Record = Record.drop_front();
6142 for (auto &Call : ParamAccess.Calls) {
6143 Call.ParamNo = Record.front();
6144 Record = Record.drop_front();
6145 Call.Callee = getValueInfoFromValueId(Record.front()).first;
6146 Record = Record.drop_front();
6147 Call.Offsets = ReadRange();
6148 }
6149 }
6150 return PendingParamAccesses;
6151}
6152
6153void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
6154 ArrayRef<uint64_t> Record, size_t &Slot,
6155 TypeIdCompatibleVtableInfo &TypeId) {
6156 uint64_t Offset = Record[Slot++];
6157 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
6158 TypeId.push_back({Offset, Callee});
6159}
6160
6161void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
6162 ArrayRef<uint64_t> Record) {
6163 size_t Slot = 0;
6164 TypeIdCompatibleVtableInfo &TypeId =
6165 TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
6166 {Strtab.data() + Record[Slot],
6167 static_cast<size_t>(Record[Slot + 1])});
6168 Slot += 2;
6169
6170 while (Slot < Record.size())
6171 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
6172}
6173
6174static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
6175 unsigned WOCnt) {
6176 // Readonly and writeonly refs are in the end of the refs list.
6177 assert(ROCnt + WOCnt <= Refs.size())(static_cast <bool> (ROCnt + WOCnt <= Refs.size()) ?
void (0) : __assert_fail ("ROCnt + WOCnt <= Refs.size()",
"llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 6177, __extension__
__PRETTY_FUNCTION__))
;
6178 unsigned FirstWORef = Refs.size() - WOCnt;
6179 unsigned RefNo = FirstWORef - ROCnt;
6180 for (; RefNo < FirstWORef; ++RefNo)
6181 Refs[RefNo].setReadOnly();
6182 for (; RefNo < Refs.size(); ++RefNo)
6183 Refs[RefNo].setWriteOnly();
6184}
6185
6186// Eagerly parse the entire summary block. This populates the GlobalValueSummary
6187// objects in the index.
6188Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
6189 if (Error Err = Stream.EnterSubBlock(ID))
6190 return Err;
6191 SmallVector<uint64_t, 64> Record;
6192
6193 // Parse version
6194 {
6195 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6196 if (!MaybeEntry)
6197 return MaybeEntry.takeError();
6198 BitstreamEntry Entry = MaybeEntry.get();
6199
6200 if (Entry.Kind != BitstreamEntry::Record)
6201 return error("Invalid Summary Block: record for version expected");
6202 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6203 if (!MaybeRecord)
6204 return MaybeRecord.takeError();
6205 if (MaybeRecord.get() != bitc::FS_VERSION)
6206 return error("Invalid Summary Block: version expected");
6207 }
6208 const uint64_t Version = Record[0];
6209 const bool IsOldProfileFormat = Version == 1;
6210 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
6211 return error("Invalid summary version " + Twine(Version) +
6212 ". Version should be in the range [1-" +
6213 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
6214 "].");
6215 Record.clear();
6216
6217 // Keep around the last seen summary to be used when we see an optional
6218 // "OriginalName" attachement.
6219 GlobalValueSummary *LastSeenSummary = nullptr;
6220 GlobalValue::GUID LastSeenGUID = 0;
6221
6222 // We can expect to see any number of type ID information records before
6223 // each function summary records; these variables store the information
6224 // collected so far so that it can be used to create the summary object.
6225 std::vector<GlobalValue::GUID> PendingTypeTests;
6226 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
6227 PendingTypeCheckedLoadVCalls;
6228 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
6229 PendingTypeCheckedLoadConstVCalls;
6230 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6231
6232 while (true) {
6233 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6234 if (!MaybeEntry)
6235 return MaybeEntry.takeError();
6236 BitstreamEntry Entry = MaybeEntry.get();
6237
6238 switch (Entry.Kind) {
6239 case BitstreamEntry::SubBlock: // Handled for us already.
6240 case BitstreamEntry::Error:
6241 return error("Malformed block");
6242 case BitstreamEntry::EndBlock:
6243 return Error::success();
6244 case BitstreamEntry::Record:
6245 // The interesting case.
6246 break;
6247 }
6248
6249 // Read a record. The record format depends on whether this
6250 // is a per-module index or a combined index file. In the per-module
6251 // case the records contain the associated value's ID for correlation
6252 // with VST entries. In the combined index the correlation is done
6253 // via the bitcode offset of the summary records (which were saved
6254 // in the combined index VST entries). The records also contain
6255 // information used for ThinLTO renaming and importing.
6256 Record.clear();
6257 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6258 if (!MaybeBitCode)
6259 return MaybeBitCode.takeError();
6260 switch (unsigned BitCode = MaybeBitCode.get()) {
6261 default: // Default behavior: ignore.
6262 break;
6263 case bitc::FS_FLAGS: { // [flags]
6264 TheIndex.setFlags(Record[0]);
6265 break;
6266 }
6267 case bitc::FS_VALUE_GUID: { // [valueid, refguid]
6268 uint64_t ValueID = Record[0];
6269 GlobalValue::GUID RefGUID = Record[1];
6270 ValueIdToValueInfoMap[ValueID] =
6271 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
6272 break;
6273 }
6274 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
6275 // numrefs x valueid, n x (valueid)]
6276 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
6277 // numrefs x valueid,
6278 // n x (valueid, hotness)]
6279 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
6280 // numrefs x valueid,
6281 // n x (valueid, relblockfreq)]
6282 case bitc::FS_PERMODULE:
6283 case bitc::FS_PERMODULE_RELBF:
6284 case bitc::FS_PERMODULE_PROFILE: {
6285 unsigned ValueID = Record[0];
6286 uint64_t RawFlags = Record[1];
6287 unsigned InstCount = Record[2];
6288 uint64_t RawFunFlags = 0;
6289 unsigned NumRefs = Record[3];
6290 unsigned NumRORefs = 0, NumWORefs = 0;
6291 int RefListStartIndex = 4;
6292 if (Version >= 4) {
6293 RawFunFlags = Record[3];
6294 NumRefs = Record[4];
6295 RefListStartIndex = 5;
6296 if (Version >= 5) {
6297 NumRORefs = Record[5];
6298 RefListStartIndex = 6;
6299 if (Version >= 7) {
6300 NumWORefs = Record[6];
6301 RefListStartIndex = 7;
6302 }
6303 }
6304 }
6305
6306 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6307 // The module path string ref set in the summary must be owned by the
6308 // index's module string table. Since we don't have a module path
6309 // string table section in the per-module index, we create a single
6310 // module path string table entry with an empty (0) ID to take
6311 // ownership.
6312 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6313 assert(Record.size() >= RefListStartIndex + NumRefs &&(static_cast <bool> (Record.size() >= RefListStartIndex
+ NumRefs && "Record size inconsistent with number of references"
) ? void (0) : __assert_fail ("Record.size() >= RefListStartIndex + NumRefs && \"Record size inconsistent with number of references\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 6314, __extension__
__PRETTY_FUNCTION__))
6314 "Record size inconsistent with number of references")(static_cast <bool> (Record.size() >= RefListStartIndex
+ NumRefs && "Record size inconsistent with number of references"
) ? void (0) : __assert_fail ("Record.size() >= RefListStartIndex + NumRefs && \"Record size inconsistent with number of references\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 6314, __extension__
__PRETTY_FUNCTION__))
;
6315 std::vector<ValueInfo> Refs = makeRefList(
6316 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6317 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
6318 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
6319 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
6320 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6321 IsOldProfileFormat, HasProfile, HasRelBF);
6322 setSpecialRefs(Refs, NumRORefs, NumWORefs);
6323 auto FS = std::make_unique<FunctionSummary>(
6324 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
6325 std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
6326 std::move(PendingTypeTestAssumeVCalls),
6327 std::move(PendingTypeCheckedLoadVCalls),
6328 std::move(PendingTypeTestAssumeConstVCalls),
6329 std::move(PendingTypeCheckedLoadConstVCalls),
6330 std::move(PendingParamAccesses));
6331 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
6332 FS->setModulePath(getThisModule()->first());
6333 FS->setOriginalName(VIAndOriginalGUID.second);
6334 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
6335 break;
6336 }
6337 // FS_ALIAS: [valueid, flags, valueid]
6338 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
6339 // they expect all aliasee summaries to be available.
6340 case bitc::FS_ALIAS: {
6341 unsigned ValueID = Record[0];
6342 uint64_t RawFlags = Record[1];
6343 unsigned AliaseeID = Record[2];
6344 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6345 auto AS = std::make_unique<AliasSummary>(Flags);
6346 // The module path string ref set in the summary must be owned by the
6347 // index's module string table. Since we don't have a module path
6348 // string table section in the per-module index, we create a single
6349 // module path string table entry with an empty (0) ID to take
6350 // ownership.
6351 AS->setModulePath(getThisModule()->first());
6352
6353 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
6354 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
6355 if (!AliaseeInModule)
6356 return error("Alias expects aliasee summary to be parsed");
6357 AS->setAliasee(AliaseeVI, AliaseeInModule);
6358
6359 auto GUID = getValueInfoFromValueId(ValueID);
6360 AS->setOriginalName(GUID.second);
6361 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
6362 break;
6363 }
6364 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
6365 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
6366 unsigned ValueID = Record[0];
6367 uint64_t RawFlags = Record[1];
6368 unsigned RefArrayStart = 2;
6369 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6370 /* WriteOnly */ false,
6371 /* Constant */ false,
6372 GlobalObject::VCallVisibilityPublic);
6373 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6374 if (Version >= 5) {
6375 GVF = getDecodedGVarFlags(Record[2]);
6376 RefArrayStart = 3;
6377 }
6378 std::vector<ValueInfo> Refs =
6379 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6380 auto FS =
6381 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6382 FS->setModulePath(getThisModule()->first());
6383 auto GUID = getValueInfoFromValueId(ValueID);
6384 FS->setOriginalName(GUID.second);
6385 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
6386 break;
6387 }
6388 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
6389 // numrefs, numrefs x valueid,
6390 // n x (valueid, offset)]
6391 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
6392 unsigned ValueID = Record[0];
6393 uint64_t RawFlags = Record[1];
6394 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
6395 unsigned NumRefs = Record[3];
6396 unsigned RefListStartIndex = 4;
6397 unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
6398 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6399 std::vector<ValueInfo> Refs = makeRefList(
6400 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6401 VTableFuncList VTableFuncs;
6402 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
6403 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6404 uint64_t Offset = Record[++I];
6405 VTableFuncs.push_back({Callee, Offset});
6406 }
6407 auto VS =
6408 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6409 VS->setModulePath(getThisModule()->first());
6410 VS->setVTableFuncs(VTableFuncs);
6411 auto GUID = getValueInfoFromValueId(ValueID);
6412 VS->setOriginalName(GUID.second);
6413 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
6414 break;
6415 }
6416 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
6417 // numrefs x valueid, n x (valueid)]
6418 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
6419 // numrefs x valueid, n x (valueid, hotness)]
6420 case bitc::FS_COMBINED:
6421 case bitc::FS_COMBINED_PROFILE: {
6422 unsigned ValueID = Record[0];
6423 uint64_t ModuleId = Record[1];
6424 uint64_t RawFlags = Record[2];
6425 unsigned InstCount = Record[3];
6426 uint64_t RawFunFlags = 0;
6427 uint64_t EntryCount = 0;
6428 unsigned NumRefs = Record[4];
6429 unsigned NumRORefs = 0, NumWORefs = 0;
6430 int RefListStartIndex = 5;
6431
6432 if (Version >= 4) {
6433 RawFunFlags = Record[4];
6434 RefListStartIndex = 6;
6435 size_t NumRefsIndex = 5;
6436 if (Version >= 5) {
6437 unsigned NumRORefsOffset = 1;
6438 RefListStartIndex = 7;
6439 if (Version >= 6) {
6440 NumRefsIndex = 6;
6441 EntryCount = Record[5];
6442 RefListStartIndex = 8;
6443 if (Version >= 7) {
6444 RefListStartIndex = 9;
6445 NumWORefs = Record[8];
6446 NumRORefsOffset = 2;
6447 }
6448 }
6449 NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
6450 }
6451 NumRefs = Record[NumRefsIndex];
6452 }
6453
6454 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6455 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6456 assert(Record.size() >= RefListStartIndex + NumRefs &&(static_cast <bool> (Record.size() >= RefListStartIndex
+ NumRefs && "Record size inconsistent with number of references"
) ? void (0) : __assert_fail ("Record.size() >= RefListStartIndex + NumRefs && \"Record size inconsistent with number of references\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 6457, __extension__
__PRETTY_FUNCTION__))
6457 "Record size inconsistent with number of references")(static_cast <bool> (Record.size() >= RefListStartIndex
+ NumRefs && "Record size inconsistent with number of references"
) ? void (0) : __assert_fail ("Record.size() >= RefListStartIndex + NumRefs && \"Record size inconsistent with number of references\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 6457, __extension__
__PRETTY_FUNCTION__))
;
6458 std::vector<ValueInfo> Refs = makeRefList(
6459 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6460 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6461 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
6462 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6463 IsOldProfileFormat, HasProfile, false);
6464 ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6465 setSpecialRefs(Refs, NumRORefs, NumWORefs);
6466 auto FS = std::make_unique<FunctionSummary>(
6467 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
6468 std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
6469 std::move(PendingTypeTestAssumeVCalls),
6470 std::move(PendingTypeCheckedLoadVCalls),
6471 std::move(PendingTypeTestAssumeConstVCalls),
6472 std::move(PendingTypeCheckedLoadConstVCalls),
6473 std::move(PendingParamAccesses));
6474 LastSeenSummary = FS.get();
6475 LastSeenGUID = VI.getGUID();
6476 FS->setModulePath(ModuleIdMap[ModuleId]);
6477 TheIndex.addGlobalValueSummary(VI, std::move(FS));
6478 break;
6479 }
6480 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6481 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6482 // they expect all aliasee summaries to be available.
6483 case bitc::FS_COMBINED_ALIAS: {
6484 unsigned ValueID = Record[0];
6485 uint64_t ModuleId = Record[1];
6486 uint64_t RawFlags = Record[2];
6487 unsigned AliaseeValueId = Record[3];
6488 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6489 auto AS = std::make_unique<AliasSummary>(Flags);
6490 LastSeenSummary = AS.get();
6491 AS->setModulePath(ModuleIdMap[ModuleId]);
6492
6493 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
6494 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
6495 AS->setAliasee(AliaseeVI, AliaseeInModule);
6496
6497 ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6498 LastSeenGUID = VI.getGUID();
6499 TheIndex.addGlobalValueSummary(VI, std::move(AS));
6500 break;
6501 }
6502 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6503 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6504 unsigned ValueID = Record[0];
6505 uint64_t ModuleId = Record[1];
6506 uint64_t RawFlags = Record[2];
6507 unsigned RefArrayStart = 3;
6508 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6509 /* WriteOnly */ false,
6510 /* Constant */ false,
6511 GlobalObject::VCallVisibilityPublic);
6512 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6513 if (Version >= 5) {
6514 GVF = getDecodedGVarFlags(Record[3]);
6515 RefArrayStart = 4;
6516 }
6517 std::vector<ValueInfo> Refs =
6518 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6519 auto FS =
6520 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6521 LastSeenSummary = FS.get();
6522 FS->setModulePath(ModuleIdMap[ModuleId]);
6523 ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6524 LastSeenGUID = VI.getGUID();
6525 TheIndex.addGlobalValueSummary(VI, std::move(FS));
6526 break;
6527 }
6528 // FS_COMBINED_ORIGINAL_NAME: [original_name]
6529 case bitc::FS_COMBINED_ORIGINAL_NAME: {
6530 uint64_t OriginalName = Record[0];
6531 if (!LastSeenSummary)
6532 return error("Name attachment that does not follow a combined record");
6533 LastSeenSummary->setOriginalName(OriginalName);
6534 TheIndex.addOriginalName(LastSeenGUID, OriginalName);
6535 // Reset the LastSeenSummary
6536 LastSeenSummary = nullptr;
6537 LastSeenGUID = 0;
6538 break;
6539 }
6540 case bitc::FS_TYPE_TESTS:
6541 assert(PendingTypeTests.empty())(static_cast <bool> (PendingTypeTests.empty()) ? void (
0) : __assert_fail ("PendingTypeTests.empty()", "llvm/lib/Bitcode/Reader/BitcodeReader.cpp"
, 6541, __extension__ __PRETTY_FUNCTION__))
;
6542 llvm::append_range(PendingTypeTests, Record);
6543 break;
6544
6545 case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
6546 assert(PendingTypeTestAssumeVCalls.empty())(static_cast <bool> (PendingTypeTestAssumeVCalls.empty(
)) ? void (0) : __assert_fail ("PendingTypeTestAssumeVCalls.empty()"
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 6546, __extension__
__PRETTY_FUNCTION__))
;
6547 for (unsigned I = 0; I != Record.size(); I += 2)
6548 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
6549 break;
6550
6551 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
6552 assert(PendingTypeCheckedLoadVCalls.empty())(static_cast <bool> (PendingTypeCheckedLoadVCalls.empty
()) ? void (0) : __assert_fail ("PendingTypeCheckedLoadVCalls.empty()"
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 6552, __extension__
__PRETTY_FUNCTION__))
;
6553 for (unsigned I = 0; I != Record.size(); I += 2)
6554 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
6555 break;
6556
6557 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
6558 PendingTypeTestAssumeConstVCalls.push_back(
6559 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6560 break;
6561
6562 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
6563 PendingTypeCheckedLoadConstVCalls.push_back(
6564 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6565 break;
6566
6567 case bitc::FS_CFI_FUNCTION_DEFS: {
6568 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
6569 for (unsigned I = 0; I != Record.size(); I += 2)
6570 CfiFunctionDefs.insert(
6571 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6572 break;
6573 }
6574
6575 case bitc::FS_CFI_FUNCTION_DECLS: {
6576 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
6577 for (unsigned I = 0; I != Record.size(); I += 2)
6578 CfiFunctionDecls.insert(
6579 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6580 break;
6581 }
6582
6583 case bitc::FS_TYPE_ID:
6584 parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
6585 break;
6586
6587 case bitc::FS_TYPE_ID_METADATA:
6588 parseTypeIdCompatibleVtableSummaryRecord(Record);
6589 break;
6590
6591 case bitc::FS_BLOCK_COUNT:
6592 TheIndex.addBlockCount(Record[0]);
6593 break;
6594
6595 case bitc::FS_PARAM_ACCESS: {
6596 PendingParamAccesses = parseParamAccesses(Record);
6597 break;
6598 }
6599 }
6600 }
6601 llvm_unreachable("Exit infinite loop")::llvm::llvm_unreachable_internal("Exit infinite loop", "llvm/lib/Bitcode/Reader/BitcodeReader.cpp"
, 6601)
;
6602}
6603
6604// Parse the module string table block into the Index.
6605// This populates the ModulePathStringTable map in the index.
6606Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6607 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6608 return Err;
6609
6610 SmallVector<uint64_t, 64> Record;
6611
6612 SmallString<128> ModulePath;
6613 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
6614
6615 while (true) {
6616 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6617 if (!MaybeEntry)
6618 return MaybeEntry.takeError();
6619 BitstreamEntry Entry = MaybeEntry.get();
6620
6621 switch (Entry.Kind) {
6622 case BitstreamEntry::SubBlock: // Handled for us already.
6623 case BitstreamEntry::Error:
6624 return error("Malformed block");
6625 case BitstreamEntry::EndBlock:
6626 return Error::success();
6627 case BitstreamEntry::Record:
6628 // The interesting case.
6629 break;
6630 }
6631
6632 Record.clear();
6633 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6634 if (!MaybeRecord)
6635 return MaybeRecord.takeError();
6636 switch (MaybeRecord.get()) {
6637 default: // Default behavior: ignore.
6638 break;
6639 case bitc::MST_CODE_ENTRY: {
6640 // MST_ENTRY: [modid, namechar x N]
6641 uint64_t ModuleId = Record[0];
6642
6643 if (convertToString(Record, 1, ModulePath))
6644 return error("Invalid record");
6645
6646 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
6647 ModuleIdMap[ModuleId] = LastSeenModule->first();
6648
6649 ModulePath.clear();
6650 break;
6651 }
6652 /// MST_CODE_HASH: [5*i32]
6653 case bitc::MST_CODE_HASH: {
6654 if (Record.size() != 5)
6655 return error("Invalid hash length " + Twine(Record.size()).str());
6656 if (!LastSeenModule)
6657 return error("Invalid hash that does not follow a module path");
6658 int Pos = 0;
6659 for (auto &Val : Record) {
6660 assert(!(Val >> 32) && "Unexpected high bits set")(static_cast <bool> (!(Val >> 32) && "Unexpected high bits set"
) ? void (0) : __assert_fail ("!(Val >> 32) && \"Unexpected high bits set\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 6660, __extension__
__PRETTY_FUNCTION__))
;
6661 LastSeenModule->second.second[Pos++] = Val;
6662 }
6663 // Reset LastSeenModule to avoid overriding the hash unexpectedly.
6664 LastSeenModule = nullptr;
6665 break;
6666 }
6667 }
6668 }
6669 llvm_unreachable("Exit infinite loop")::llvm::llvm_unreachable_internal("Exit infinite loop", "llvm/lib/Bitcode/Reader/BitcodeReader.cpp"
, 6669)
;
6670}
6671
6672namespace {
6673
6674// FIXME: This class is only here to support the transition to llvm::Error. It
6675// will be removed once this transition is complete. Clients should prefer to
6676// deal with the Error value directly, rather than converting to error_code.
6677class BitcodeErrorCategoryType : public std::error_category {
6678 const char *name() const noexcept override {
6679 return "llvm.bitcode";
6680 }
6681
6682 std::string message(int IE) const override {
6683 BitcodeError E = static_cast<BitcodeError>(IE);
6684 switch (E) {
6685 case BitcodeError::CorruptedBitcode:
6686 return "Corrupted bitcode";
6687 }
6688 llvm_unreachable("Unknown error type!")::llvm::llvm_unreachable_internal("Unknown error type!", "llvm/lib/Bitcode/Reader/BitcodeReader.cpp"
, 6688)
;
6689 }
6690};
6691
6692} // end anonymous namespace
6693
6694static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6695
6696const std::error_category &llvm::BitcodeErrorCategory() {
6697 return *ErrorCategory;
6698}
6699
6700static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
6701 unsigned Block, unsigned RecordID) {
6702 if (Error Err = Stream.EnterSubBlock(Block))
6703 return std::move(Err);
6704
6705 StringRef Strtab;
6706 while (true) {
6707 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6708 if (!MaybeEntry)
6709 return MaybeEntry.takeError();
6710 llvm::BitstreamEntry Entry = MaybeEntry.get();
6711
6712 switch (Entry.Kind) {
6713 case BitstreamEntry::EndBlock:
6714 return Strtab;
6715
6716 case BitstreamEntry::Error:
6717 return error("Malformed block");
6718
6719 case BitstreamEntry::SubBlock:
6720 if (Error Err = Stream.SkipBlock())
6721 return std::move(Err);
6722 break;
6723
6724 case BitstreamEntry::Record:
6725 StringRef Blob;
6726 SmallVector<uint64_t, 1> Record;
6727 Expected<unsigned> MaybeRecord =
6728 Stream.readRecord(Entry.ID, Record, &Blob);
6729 if (!MaybeRecord)
6730 return MaybeRecord.takeError();
6731 if (MaybeRecord.get() == RecordID)
6732 Strtab = Blob;
6733 break;
6734 }
6735 }
6736}
6737
6738//===----------------------------------------------------------------------===//
6739// External interface
6740//===----------------------------------------------------------------------===//
6741
6742Expected<std::vector<BitcodeModule>>
6743llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
6744 auto FOrErr = getBitcodeFileContents(Buffer);
6745 if (!FOrErr)
6746 return FOrErr.takeError();
6747 return std::move(FOrErr->Mods);
6748}
6749
6750Expected<BitcodeFileContents>
6751llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
6752 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6753 if (!StreamOrErr)
6754 return StreamOrErr.takeError();
6755 BitstreamCursor &Stream = *StreamOrErr;
6756
6757 BitcodeFileContents F;
6758 while (true) {
6759 uint64_t BCBegin = Stream.getCurrentByteNo();
6760
6761 // We may be consuming bitcode from a client that leaves garbage at the end
6762 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
6763 // the end that there cannot possibly be another module, stop looking.
6764 if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
6765 return F;
6766
6767 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6768 if (!MaybeEntry)
6769 return MaybeEntry.takeError();
6770 llvm::BitstreamEntry Entry = MaybeEntry.get();
6771
6772 switch (Entry.Kind) {
6773 case BitstreamEntry::EndBlock:
6774 case BitstreamEntry::Error:
6775 return error("Malformed block");
6776
6777 case BitstreamEntry::SubBlock: {
6778 uint64_t IdentificationBit = -1ull;
6779 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
6780 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6781 if (Error Err = Stream.SkipBlock())
6782 return std::move(Err);
6783
6784 {
6785 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6786 if (!MaybeEntry)
6787 return MaybeEntry.takeError();
6788 Entry = MaybeEntry.get();
6789 }
6790
6791 if (Entry.Kind != BitstreamEntry::SubBlock ||
6792 Entry.ID != bitc::MODULE_BLOCK_ID)
6793 return error("Malformed block");
6794 }
6795
6796 if (Entry.ID == bitc::MODULE_BLOCK_ID) {
6797 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6798 if (Error Err = Stream.SkipBlock())
6799 return std::move(Err);
6800
6801 F.Mods.push_back({Stream.getBitcodeBytes().slice(
6802 BCBegin, Stream.getCurrentByteNo() - BCBegin),
6803 Buffer.getBufferIdentifier(), IdentificationBit,
6804 ModuleBit});
6805 continue;
6806 }
6807
6808 if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
6809 Expected<StringRef> Strtab =
6810 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
6811 if (!Strtab)
6812 return Strtab.takeError();
6813 // This string table is used by every preceding bitcode module that does
6814 // not have its own string table. A bitcode file may have multiple
6815 // string tables if it was created by binary concatenation, for example
6816 // with "llvm-cat -b".
6817 for (BitcodeModule &I : llvm::reverse(F.Mods)) {
6818 if (!I.Strtab.empty())
6819 break;
6820 I.Strtab = *Strtab;
6821 }
6822 // Similarly, the string table is used by every preceding symbol table;
6823 // normally there will be just one unless the bitcode file was created
6824 // by binary concatenation.
6825 if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
6826 F.StrtabForSymtab = *Strtab;
6827 continue;
6828 }
6829
6830 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
6831 Expected<StringRef> SymtabOrErr =
6832 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
6833 if (!SymtabOrErr)
6834 return SymtabOrErr.takeError();
6835
6836 // We can expect the bitcode file to have multiple symbol tables if it
6837 // was created by binary concatenation. In that case we silently
6838 // ignore any subsequent symbol tables, which is fine because this is a
6839 // low level function. The client is expected to notice that the number
6840 // of modules in the symbol table does not match the number of modules
6841 // in the input file and regenerate the symbol table.
6842 if (F.Symtab.empty())
6843 F.Symtab = *SymtabOrErr;
6844 continue;
6845 }
6846
6847 if (Error Err = Stream.SkipBlock())
6848 return std::move(Err);
6849 continue;
6850 }
6851 case BitstreamEntry::Record:
6852 if (Error E = Stream.skipRecord(Entry.ID).takeError())
6853 return std::move(E);
6854 continue;
6855 }
6856 }
6857}
6858
6859/// Get a lazy one-at-time loading module from bitcode.
6860///
6861/// This isn't always used in a lazy context. In particular, it's also used by
6862/// \a parseModule(). If this is truly lazy, then we need to eagerly pull
6863/// in forward-referenced functions from block address references.
6864///
6865/// \param[in] MaterializeAll Set to \c true if we should materialize
6866/// everything.
6867Expected<std::unique_ptr<Module>>
6868BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
6869 bool ShouldLazyLoadMetadata, bool IsImporting,
6870 DataLayoutCallbackTy DataLayoutCallback) {
6871 BitstreamCursor Stream(Buffer);
6872
6873 std::string ProducerIdentification;
6874 if (IdentificationBit != -1ull) {
6875 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
6876 return std::move(JumpFailed);
6877 if (Error E =
6878 readIdentificationBlock(Stream).moveInto(ProducerIdentification))
6879 return std::move(E);
6880 }
6881
6882 if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6883 return std::move(JumpFailed);
6884 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
6885 Context);
6886
6887 std::unique_ptr<Module> M =
6888 std::make_unique<Module>(ModuleIdentifier, Context);
6889 M->setMaterializer(R);
6890
6891 // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6892 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
6893 IsImporting, DataLayoutCallback))
6894 return std::move(Err);
6895
6896 if (MaterializeAll) {
6897 // Read in the entire module, and destroy the BitcodeReader.
6898 if (Error Err = M->materializeAll())
6899 return std::move(Err);
6900 } else {
6901 // Resolve forward references from blockaddresses.
6902 if (Error Err = R->materializeForwardReferencedFunctions())
6903 return std::move(Err);
6904 }
6905 return std::move(M);
6906}
6907
6908Expected<std::unique_ptr<Module>>
6909BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
6910 bool IsImporting) {
6911 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
6912 [](StringRef) { return None; });
6913}
6914
6915// Parse the specified bitcode buffer and merge the index into CombinedIndex.
6916// We don't use ModuleIdentifier here because the client may need to control the
6917// module path used in the combined summary (e.g. when reading summaries for
6918// regular LTO modules).
6919Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
6920 StringRef ModulePath, uint64_t ModuleId) {
6921 BitstreamCursor Stream(Buffer);
6922 if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6923 return JumpFailed;
6924
6925 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
6926 ModulePath, ModuleId);
6927 return R.parseModule();
6928}
6929
6930// Parse the specified bitcode buffer, returning the function info index.
6931Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
6932 BitstreamCursor Stream(Buffer);
6933 if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6934 return std::move(JumpFailed);
6935
6936 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
6937 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
6938 ModuleIdentifier, 0);
6939
6940 if (Error Err = R.parseModule())
6941 return std::move(Err);
6942
6943 return std::move(Index);
6944}
6945
6946static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
6947 unsigned ID) {
6948 if (Error Err = Stream.EnterSubBlock(ID))
6949 return std::move(Err);
6950 SmallVector<uint64_t, 64> Record;
6951
6952 while (true) {
6953 BitstreamEntry Entry;
6954 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry))
6955 return std::move(E);
6956
6957 switch (Entry.Kind) {
6958 case BitstreamEntry::SubBlock: // Handled for us already.
6959 case BitstreamEntry::Error:
6960 return error("Malformed block");
6961 case BitstreamEntry::EndBlock:
6962 // If no flags record found, conservatively return true to mimic
6963 // behavior before this flag was added.
6964 return true;
6965 case BitstreamEntry::Record:
6966 // The interesting case.
6967 break;
6968 }
6969
6970 // Look for the FS_FLAGS record.
6971 Record.clear();
6972 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6973 if (!MaybeBitCode)
6974 return MaybeBitCode.takeError();
6975 switch (MaybeBitCode.get()) {
6976 default: // Default behavior: ignore.
6977 break;
6978 case bitc::FS_FLAGS: { // [flags]
6979 uint64_t Flags = Record[0];
6980 // Scan flags.
6981 assert(Flags <= 0x7f && "Unexpected bits in flag")(static_cast <bool> (Flags <= 0x7f && "Unexpected bits in flag"
) ? void (0) : __assert_fail ("Flags <= 0x7f && \"Unexpected bits in flag\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 6981, __extension__
__PRETTY_FUNCTION__))
;
6982
6983 return Flags & 0x8;
6984 }
6985 }
6986 }
6987 llvm_unreachable("Exit infinite loop")::llvm::llvm_unreachable_internal("Exit infinite loop", "llvm/lib/Bitcode/Reader/BitcodeReader.cpp"
, 6987)
;
6988}
6989
6990// Check if the given bitcode buffer contains a global value summary block.
6991Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
6992 BitstreamCursor Stream(Buffer);
6993 if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6994 return std::move(JumpFailed);
6995
6996 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6997 return std::move(Err);
6998
6999 while (true) {
7000 llvm::BitstreamEntry Entry;
7001 if (Error E = Stream.advance().moveInto(Entry))
7002 return std::move(E);
7003
7004 switch (Entry.Kind) {
7005 case BitstreamEntry::Error:
7006 return error("Malformed block");
7007 case BitstreamEntry::EndBlock:
7008 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
7009 /*EnableSplitLTOUnit=*/false};
7010
7011 case BitstreamEntry::SubBlock:
7012 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
7013 Expected<bool> EnableSplitLTOUnit =
7014 getEnableSplitLTOUnitFlag(Stream, Entry.ID);
7015 if (!EnableSplitLTOUnit)
7016 return EnableSplitLTOUnit.takeError();
7017 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
7018 *EnableSplitLTOUnit};
7019 }
7020
7021 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
7022 Expected<bool> EnableSplitLTOUnit =
7023 getEnableSplitLTOUnitFlag(Stream, Entry.ID);
7024 if (!EnableSplitLTOUnit)
7025 return EnableSplitLTOUnit.takeError();
7026 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
7027 *EnableSplitLTOUnit};
7028 }
7029
7030 // Ignore other sub-blocks.
7031 if (Error Err = Stream.SkipBlock())
7032 return std::move(Err);
7033 continue;
7034
7035 case BitstreamEntry::Record:
7036 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
7037 continue;
7038 else
7039 return StreamFailed.takeError();
7040 }
7041 }
7042}
7043
7044static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
7045 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
7046 if (!MsOrErr)
7047 return MsOrErr.takeError();
7048
7049 if (MsOrErr->size() != 1)
7050 return error("Expected a single module");
7051
7052 return (*MsOrErr)[0];
7053}
7054
7055Expected<std::unique_ptr<Module>>
7056llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
7057 bool ShouldLazyLoadMetadata, bool IsImporting) {
7058 Expected<BitcodeModule> BM = getSingleModule(Buffer);
7059 if (!BM)
7060 return BM.takeError();
7061
7062 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
7063}
7064
7065Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
7066 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
7067 bool ShouldLazyLoadMetadata, bool IsImporting) {
7068 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
7069 IsImporting);
7070 if (MOrErr)
7071 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
7072 return MOrErr;
7073}
7074
7075Expected<std::unique_ptr<Module>>
7076BitcodeModule::parseModule(LLVMContext &Context,
7077 DataLayoutCallbackTy DataLayoutCallback) {
7078 return getModuleImpl(Context, true, false, false, DataLayoutCallback);
7079 // TODO: Restore the use-lists to the in-memory state when the bitcode was
7080 // written. We must defer until the Module has been fully materialized.
7081}
7082
7083Expected<std::unique_ptr<Module>>
7084llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
7085 DataLayoutCallbackTy DataLayoutCallback) {
7086 Expected<BitcodeModule> BM = getSingleModule(Buffer);
7087 if (!BM)
7088 return BM.takeError();
7089
7090 return BM->parseModule(Context, DataLayoutCallback);
7091}
7092
7093Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
7094 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7095 if (!StreamOrErr)
7096 return StreamOrErr.takeError();
7097
7098 return readTriple(*StreamOrErr);
7099}
7100
7101Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
7102 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7103 if (!StreamOrErr)
7104 return StreamOrErr.takeError();
7105
7106 return hasObjCCategory(*StreamOrErr);
7107}
7108
7109Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
7110 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7111 if (!StreamOrErr)
7112 return StreamOrErr.takeError();
7113
7114 return readIdentificationCode(*StreamOrErr);
7115}
7116
7117Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
7118 ModuleSummaryIndex &CombinedIndex,
7119 uint64_t ModuleId) {
7120 Expected<BitcodeModule> BM = getSingleModule(Buffer);
7121 if (!BM)
7122 return BM.takeError();
7123
7124 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
7125}
7126
7127Expected<std::unique_ptr<ModuleSummaryIndex>>
7128llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
7129 Expected<BitcodeModule> BM = getSingleModule(Buffer);
7130 if (!BM)
7131 return BM.takeError();
7132
7133 return BM->getSummary();
7134}
7135
7136Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
7137 Expected<BitcodeModule> BM = getSingleModule(Buffer);
7138 if (!BM)
7139 return BM.takeError();
7140
7141 return BM->getLTOInfo();
7142}
7143
7144Expected<std::unique_ptr<ModuleSummaryIndex>>
7145llvm::getModuleSummaryIndexForFile(StringRef Path,
7146 bool IgnoreEmptyThinLTOIndexFile) {
7147 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
7148 MemoryBuffer::getFileOrSTDIN(Path);
7149 if (!FileOrErr)
7150 return errorCodeToError(FileOrErr.getError());
7151 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
7152 return nullptr;
7153 return getModuleSummaryIndex(**FileOrErr);
7154}

/build/llvm-toolchain-snapshot-15~++20220208102626+b9f1e1c36c2e/llvm/include/llvm/Support/Error.h

1//===- llvm/Support/Error.h - Recoverable error handling --------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines an API used to report recoverable errors.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_SUPPORT_ERROR_H
14#define LLVM_SUPPORT_ERROR_H
15
16#include "llvm-c/Error.h"
17#include "llvm/ADT/SmallVector.h"
18#include "llvm/ADT/StringExtras.h"
19#include "llvm/ADT/Twine.h"
20#include "llvm/Config/abi-breaking.h"
21#include "llvm/Support/AlignOf.h"
22#include "llvm/Support/Compiler.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/ErrorHandling.h"
25#include "llvm/Support/ErrorOr.h"
26#include "llvm/Support/Format.h"
27#include "llvm/Support/raw_ostream.h"
28#include <cassert>
29#include <cstdint>
30#include <cstdlib>
31#include <functional>
32#include <memory>
33#include <new>
34#include <string>
35#include <system_error>
36#include <type_traits>
37#include <utility>
38#include <vector>
39
40namespace llvm {
41
42class ErrorSuccess;
43
44/// Base class for error info classes. Do not extend this directly: Extend
45/// the ErrorInfo template subclass instead.
46class ErrorInfoBase {
47public:
48 virtual ~ErrorInfoBase() = default;
49
50 /// Print an error message to an output stream.
51 virtual void log(raw_ostream &OS) const = 0;
52
53 /// Return the error message as a string.
54 virtual std::string message() const {
55 std::string Msg;
56 raw_string_ostream OS(Msg);
57 log(OS);
58 return OS.str();
59 }
60
61 /// Convert this error to a std::error_code.
62 ///
63 /// This is a temporary crutch to enable interaction with code still
64 /// using std::error_code. It will be removed in the future.
65 virtual std::error_code convertToErrorCode() const = 0;
66
67 // Returns the class ID for this type.
68 static const void *classID() { return &ID; }
69
70 // Returns the class ID for the dynamic type of this ErrorInfoBase instance.
71 virtual const void *dynamicClassID() const = 0;
72
73 // Check whether this instance is a subclass of the class identified by
74 // ClassID.
75 virtual bool isA(const void *const ClassID) const {
76 return ClassID == classID();
77 }
78
79 // Check whether this instance is a subclass of ErrorInfoT.
80 template <typename ErrorInfoT> bool isA() const {
81 return isA(ErrorInfoT::classID());
82 }
83
84private:
85 virtual void anchor();
86
87 static char ID;
88};
89
90/// Lightweight error class with error context and mandatory checking.
91///
92/// Instances of this class wrap a ErrorInfoBase pointer. Failure states
93/// are represented by setting the pointer to a ErrorInfoBase subclass
94/// instance containing information describing the failure. Success is
95/// represented by a null pointer value.
96///
97/// Instances of Error also contains a 'Checked' flag, which must be set
98/// before the destructor is called, otherwise the destructor will trigger a
99/// runtime error. This enforces at runtime the requirement that all Error
100/// instances be checked or returned to the caller.
101///
102/// There are two ways to set the checked flag, depending on what state the
103/// Error instance is in. For Error instances indicating success, it
104/// is sufficient to invoke the boolean conversion operator. E.g.:
105///
106/// @code{.cpp}
107/// Error foo(<...>);
108///
109/// if (auto E = foo(<...>))
110/// return E; // <- Return E if it is in the error state.
111/// // We have verified that E was in the success state. It can now be safely
112/// // destroyed.
113/// @endcode
114///
115/// A success value *can not* be dropped. For example, just calling 'foo(<...>)'
116/// without testing the return value will raise a runtime error, even if foo
117/// returns success.
118///
119/// For Error instances representing failure, you must use either the
120/// handleErrors or handleAllErrors function with a typed handler. E.g.:
121///
122/// @code{.cpp}
123/// class MyErrorInfo : public ErrorInfo<MyErrorInfo> {
124/// // Custom error info.
125/// };
126///
127/// Error foo(<...>) { return make_error<MyErrorInfo>(...); }
128///
129/// auto E = foo(<...>); // <- foo returns failure with MyErrorInfo.
130/// auto NewE =
131/// handleErrors(E,
132/// [](const MyErrorInfo &M) {
133/// // Deal with the error.
134/// },
135/// [](std::unique_ptr<OtherError> M) -> Error {
136/// if (canHandle(*M)) {
137/// // handle error.
138/// return Error::success();
139/// }
140/// // Couldn't handle this error instance. Pass it up the stack.
141/// return Error(std::move(M));
142/// );
143/// // Note - we must check or return NewE in case any of the handlers
144/// // returned a new error.
145/// @endcode
146///
147/// The handleAllErrors function is identical to handleErrors, except
148/// that it has a void return type, and requires all errors to be handled and
149/// no new errors be returned. It prevents errors (assuming they can all be
150/// handled) from having to be bubbled all the way to the top-level.
151///
152/// *All* Error instances must be checked before destruction, even if
153/// they're moved-assigned or constructed from Success values that have already
154/// been checked. This enforces checking through all levels of the call stack.
155class LLVM_NODISCARD[[clang::warn_unused_result]] Error {
156 // ErrorList needs to be able to yank ErrorInfoBase pointers out of Errors
157 // to add to the error list. It can't rely on handleErrors for this, since
158 // handleErrors does not support ErrorList handlers.
159 friend class ErrorList;
160
161 // handleErrors needs to be able to set the Checked flag.
162 template <typename... HandlerTs>
163 friend Error handleErrors(Error E, HandlerTs &&... Handlers);
164
165 // Expected<T> needs to be able to steal the payload when constructed from an
166 // error.
167 template <typename T> friend class Expected;
168
169 // wrap needs to be able to steal the payload.
170 friend LLVMErrorRef wrap(Error);
171
172protected:
173 /// Create a success value. Prefer using 'Error::success()' for readability
174 Error() {
175 setPtr(nullptr);
176 setChecked(false);
177 }
178
179public:
180 /// Create a success value.
181 static ErrorSuccess success();
182
183 // Errors are not copy-constructable.
184 Error(const Error &Other) = delete;
185
186 /// Move-construct an error value. The newly constructed error is considered
187 /// unchecked, even if the source error had been checked. The original error
188 /// becomes a checked Success value, regardless of its original state.
189 Error(Error &&Other) {
190 setChecked(true);
191 *this = std::move(Other);
192 }
193
194 /// Create an error value. Prefer using the 'make_error' function, but
195 /// this constructor can be useful when "re-throwing" errors from handlers.
196 Error(std::unique_ptr<ErrorInfoBase> Payload) {
197 setPtr(Payload.release());
198 setChecked(false);
199 }
200
201 // Errors are not copy-assignable.
202 Error &operator=(const Error &Other) = delete;
203
204 /// Move-assign an error value. The current error must represent success, you
205 /// you cannot overwrite an unhandled error. The current error is then
206 /// considered unchecked. The source error becomes a checked success value,
207 /// regardless of its original state.
208 Error &operator=(Error &&Other) {
209 // Don't allow overwriting of unchecked values.
210 assertIsChecked();
211 setPtr(Other.getPtr());
212
213 // This Error is unchecked, even if the source error was checked.
214 setChecked(false);
215
216 // Null out Other's payload and set its checked bit.
217 Other.setPtr(nullptr);
218 Other.setChecked(true);
219
220 return *this;
221 }
222
223 /// Destroy a Error. Fails with a call to abort() if the error is
224 /// unchecked.
225 ~Error() {
226 assertIsChecked();
227 delete getPtr();
228 }
229
230 /// Bool conversion. Returns true if this Error is in a failure state,
231 /// and false if it is in an accept state. If the error is in a Success state
232 /// it will be considered checked.
233 explicit operator bool() {
234 setChecked(getPtr() == nullptr);
235 return getPtr() != nullptr;
236 }
237
238 /// Check whether one error is a subclass of another.
239 template <typename ErrT> bool isA() const {
240 return getPtr() && getPtr()->isA(ErrT::classID());
241 }
242
243 /// Returns the dynamic class id of this error, or null if this is a success
244 /// value.
245 const void* dynamicClassID() const {
246 if (!getPtr())
247 return nullptr;
248 return getPtr()->dynamicClassID();
249 }
250
251private:
252#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
253 // assertIsChecked() happens very frequently, but under normal circumstances
254 // is supposed to be a no-op. So we want it to be inlined, but having a bunch
255 // of debug prints can cause the function to be too large for inlining. So
256 // it's important that we define this function out of line so that it can't be
257 // inlined.
258 [[noreturn]] void fatalUncheckedError() const;
259#endif
260
261 void assertIsChecked() {
262#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
263 if (LLVM_UNLIKELY(!getChecked() || getPtr())__builtin_expect((bool)(!getChecked() || getPtr()), false))
264 fatalUncheckedError();
265#endif
266 }
267
268 ErrorInfoBase *getPtr() const {
269#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
270 return reinterpret_cast<ErrorInfoBase*>(
271 reinterpret_cast<uintptr_t>(Payload) &
272 ~static_cast<uintptr_t>(0x1));
273#else
274 return Payload;
275#endif
276 }
277
278 void setPtr(ErrorInfoBase *EI) {
279#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
280 Payload = reinterpret_cast<ErrorInfoBase*>(
281 (reinterpret_cast<uintptr_t>(EI) &
282 ~static_cast<uintptr_t>(0x1)) |
283 (reinterpret_cast<uintptr_t>(Payload) & 0x1));
284#else
285 Payload = EI;
286#endif
287 }
288
289 bool getChecked() const {
290#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
291 return (reinterpret_cast<uintptr_t>(Payload) & 0x1) == 0;
292#else
293 return true;
294#endif
295 }
296
297 void setChecked(bool V) {
298#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
299 Payload = reinterpret_cast<ErrorInfoBase*>(
300 (reinterpret_cast<uintptr_t>(Payload) &
301 ~static_cast<uintptr_t>(0x1)) |
302 (V ? 0 : 1));
303#endif
304 }
305
306 std::unique_ptr<ErrorInfoBase> takePayload() {
307 std::unique_ptr<ErrorInfoBase> Tmp(getPtr());
308 setPtr(nullptr);
309 setChecked(true);
310 return Tmp;
311 }
312
313 friend raw_ostream &operator<<(raw_ostream &OS, const Error &E) {
314 if (auto *P = E.getPtr())
315 P->log(OS);
316 else
317 OS << "success";
318 return OS;
319 }
320
321 ErrorInfoBase *Payload = nullptr;
322};
323
324/// Subclass of Error for the sole purpose of identifying the success path in
325/// the type system. This allows to catch invalid conversion to Expected<T> at
326/// compile time.
327class ErrorSuccess final : public Error {};
328
329inline ErrorSuccess Error::success() { return ErrorSuccess(); }
330
331/// Make a Error instance representing failure using the given error info
332/// type.
333template <typename ErrT, typename... ArgTs> Error make_error(ArgTs &&... Args) {
334 return Error(std::make_unique<ErrT>(std::forward<ArgTs>(Args)...));
335}
336
337/// Base class for user error types. Users should declare their error types
338/// like:
339///
340/// class MyError : public ErrorInfo<MyError> {
341/// ....
342/// };
343///
344/// This class provides an implementation of the ErrorInfoBase::kind
345/// method, which is used by the Error RTTI system.
346template <typename ThisErrT, typename ParentErrT = ErrorInfoBase>
347class ErrorInfo : public ParentErrT {
348public:
349 using ParentErrT::ParentErrT; // inherit constructors
350
351 static const void *classID() { return &ThisErrT::ID; }
352
353 const void *dynamicClassID() const override { return &ThisErrT::ID; }
354
355 bool isA(const void *const ClassID) const override {
356 return ClassID == classID() || ParentErrT::isA(ClassID);
357 }
358};
359
360/// Special ErrorInfo subclass representing a list of ErrorInfos.
361/// Instances of this class are constructed by joinError.
362class ErrorList final : public ErrorInfo<ErrorList> {
363 // handleErrors needs to be able to iterate the payload list of an
364 // ErrorList.
365 template <typename... HandlerTs>
366 friend Error handleErrors(Error E, HandlerTs &&... Handlers);
367
368 // joinErrors is implemented in terms of join.
369 friend Error joinErrors(Error, Error);
370
371public:
372 void log(raw_ostream &OS) const override {
373 OS << "Multiple errors:\n";
374 for (const auto &ErrPayload : Payloads) {
375 ErrPayload->log(OS);
376 OS << "\n";
377 }
378 }
379
380 std::error_code convertToErrorCode() const override;
381
382 // Used by ErrorInfo::classID.
383 static char ID;
384
385private:
386 ErrorList(std::unique_ptr<ErrorInfoBase> Payload1,
387 std::unique_ptr<ErrorInfoBase> Payload2) {
388 assert(!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() &&(static_cast <bool> (!Payload1->isA<ErrorList>
() && !Payload2->isA<ErrorList>() &&
"ErrorList constructor payloads should be singleton errors")
? void (0) : __assert_fail ("!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() && \"ErrorList constructor payloads should be singleton errors\""
, "llvm/include/llvm/Support/Error.h", 389, __extension__ __PRETTY_FUNCTION__
))
389 "ErrorList constructor payloads should be singleton errors")(static_cast <bool> (!Payload1->isA<ErrorList>
() && !Payload2->isA<ErrorList>() &&
"ErrorList constructor payloads should be singleton errors")
? void (0) : __assert_fail ("!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() && \"ErrorList constructor payloads should be singleton errors\""
, "llvm/include/llvm/Support/Error.h", 389, __extension__ __PRETTY_FUNCTION__
))
;
390 Payloads.push_back(std::move(Payload1));
391 Payloads.push_back(std::move(Payload2));
392 }
393
394 static Error join(Error E1, Error E2) {
395 if (!E1)
396 return E2;
397 if (!E2)
398 return E1;
399 if (E1.isA<ErrorList>()) {
400 auto &E1List = static_cast<ErrorList &>(*E1.getPtr());
401 if (E2.isA<ErrorList>()) {
402 auto E2Payload = E2.takePayload();
403 auto &E2List = static_cast<ErrorList &>(*E2Payload);
404 for (auto &Payload : E2List.Payloads)
405 E1List.Payloads.push_back(std::move(Payload));
406 } else
407 E1List.Payloads.push_back(E2.takePayload());
408
409 return E1;
410 }
411 if (E2.isA<ErrorList>()) {
412 auto &E2List = static_cast<ErrorList &>(*E2.getPtr());
413 E2List.Payloads.insert(E2List.Payloads.begin(), E1.takePayload());
414 return E2;
415 }
416 return Error(std::unique_ptr<ErrorList>(
417 new ErrorList(E1.takePayload(), E2.takePayload())));
418 }
419
420 std::vector<std::unique_ptr<ErrorInfoBase>> Payloads;
421};
422
423/// Concatenate errors. The resulting Error is unchecked, and contains the
424/// ErrorInfo(s), if any, contained in E1, followed by the
425/// ErrorInfo(s), if any, contained in E2.
426inline Error joinErrors(Error E1, Error E2) {
427 return ErrorList::join(std::move(E1), std::move(E2));
428}
429
430/// Tagged union holding either a T or a Error.
431///
432/// This class parallels ErrorOr, but replaces error_code with Error. Since
433/// Error cannot be copied, this class replaces getError() with
434/// takeError(). It also adds an bool errorIsA<ErrT>() method for testing the
435/// error class type.
436///
437/// Example usage of 'Expected<T>' as a function return type:
438///
439/// @code{.cpp}
440/// Expected<int> myDivide(int A, int B) {
441/// if (B == 0) {
442/// // return an Error
443/// return createStringError(inconvertibleErrorCode(),
444/// "B must not be zero!");
445/// }
446/// // return an integer
447/// return A / B;
448/// }
449/// @endcode
450///
451/// Checking the results of to a function returning 'Expected<T>':
452/// @code{.cpp}
453/// if (auto E = Result.takeError()) {
454/// // We must consume the error. Typically one of:
455/// // - return the error to our caller
456/// // - toString(), when logging
457/// // - consumeError(), to silently swallow the error
458/// // - handleErrors(), to distinguish error types
459/// errs() << "Problem with division " << toString(std::move(E)) << "\n";
460/// return;
461/// }
462/// // use the result
463/// outs() << "The answer is " << *Result << "\n";
464/// @endcode
465///
466/// For unit-testing a function returning an 'Expceted<T>', see the
467/// 'EXPECT_THAT_EXPECTED' macros in llvm/Testing/Support/Error.h
468
469template <class T> class LLVM_NODISCARD[[clang::warn_unused_result]] Expected {
470 template <class T1> friend class ExpectedAsOutParameter;
471 template <class OtherT> friend class Expected;
472
473 static constexpr bool isRef = std::is_reference<T>::value;
474
475 using wrap = std::reference_wrapper<std::remove_reference_t<T>>;
476
477 using error_type = std::unique_ptr<ErrorInfoBase>;
478
479public:
480 using storage_type = std::conditional_t<isRef, wrap, T>;
481 using value_type = T;
482
483private:
484 using reference = std::remove_reference_t<T> &;
485 using const_reference = const std::remove_reference_t<T> &;
486 using pointer = std::remove_reference_t<T> *;
487 using const_pointer = const std::remove_reference_t<T> *;
488
489public:
490 /// Create an Expected<T> error value from the given Error.
491 Expected(Error Err)
492 : HasError(true)
493#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
494 // Expected is unchecked upon construction in Debug builds.
495 , Unchecked(true)
496#endif
497 {
498 assert(Err && "Cannot create Expected<T> from Error success value.")(static_cast <bool> (Err && "Cannot create Expected<T> from Error success value."
) ? void (0) : __assert_fail ("Err && \"Cannot create Expected<T> from Error success value.\""
, "llvm/include/llvm/Support/Error.h", 498, __extension__ __PRETTY_FUNCTION__
))
;
499 new (getErrorStorage()) error_type(Err.takePayload());
500 }
501
502 /// Forbid to convert from Error::success() implicitly, this avoids having
503 /// Expected<T> foo() { return Error::success(); } which compiles otherwise
504 /// but triggers the assertion above.
505 Expected(ErrorSuccess) = delete;
506
507 /// Create an Expected<T> success value from the given OtherT value, which
508 /// must be convertible to T.
509 template <typename OtherT>
510 Expected(OtherT &&Val,
511 std::enable_if_t<std::is_convertible<OtherT, T>::value> * = nullptr)
512 : HasError(false)
513#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
514 // Expected is unchecked upon construction in Debug builds.
515 ,
516 Unchecked(true)
517#endif
518 {
519 new (getStorage()) storage_type(std::forward<OtherT>(Val));
520 }
521
522 /// Move construct an Expected<T> value.
523 Expected(Expected &&Other) { moveConstruct(std::move(Other)); }
524
525 /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
526 /// must be convertible to T.
527 template <class OtherT>
528 Expected(
529 Expected<OtherT> &&Other,
530 std::enable_if_t<std::is_convertible<OtherT, T>::value> * = nullptr) {
531 moveConstruct(std::move(Other));
532 }
533
534 /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
535 /// isn't convertible to T.
536 template <class OtherT>
537 explicit Expected(
538 Expected<OtherT> &&Other,
539 std::enable_if_t<!std::is_convertible<OtherT, T>::value> * = nullptr) {
540 moveConstruct(std::move(Other));
541 }
542
543 /// Move-assign from another Expected<T>.
544 Expected &operator=(Expected &&Other) {
545 moveAssign(std::move(Other));
546 return *this;
547 }
548
549 /// Destroy an Expected<T>.
550 ~Expected() {
551 assertIsChecked();
552 if (!HasError)
553 getStorage()->~storage_type();
554 else
555 getErrorStorage()->~error_type();
556 }
557
558 /// Return false if there is an error.
559 explicit operator bool() {
560#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
561 Unchecked = HasError;
562#endif
563 return !HasError;
5
Assuming field 'HasError' is false, which participates in a condition later
6
Returning the value 1, which participates in a condition later
12
Assuming field 'HasError' is false, which participates in a condition later
13
Returning the value 1, which participates in a condition later
564 }
565
566 /// Returns a reference to the stored T value.
567 reference get() {
568 assertIsChecked();
569 return *getStorage();
570 }
571
572 /// Returns a const reference to the stored T value.
573 const_reference get() const {
574 assertIsChecked();
575 return const_cast<Expected<T> *>(this)->get();
576 }
577
578 /// Returns \a takeError() after moving the held T (if any) into \p V.
579 template <class OtherT>
580 Error moveInto(OtherT &Value,
581 std::enable_if_t<std::is_assignable<OtherT &, T &&>::value> * =
582 nullptr) && {
583 if (*this)
584 Value = std::move(get());
585 return takeError();
586 }
587
588 /// Check that this Expected<T> is an error of type ErrT.
589 template <typename ErrT> bool errorIsA() const {
590 return HasError && (*getErrorStorage())->template isA<ErrT>();
591 }
592
593 /// Take ownership of the stored error.
594 /// After calling this the Expected<T> is in an indeterminate state that can
595 /// only be safely destructed. No further calls (beside the destructor) should
596 /// be made on the Expected<T> value.
597 Error takeError() {
598#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
599 Unchecked = false;
600#endif
601 return HasError ? Error(std::move(*getErrorStorage())) : Error::success();
602 }
603
604 /// Returns a pointer to the stored T value.
605 pointer operator->() {
606 assertIsChecked();
607 return toPointer(getStorage());
608 }
609
610 /// Returns a const pointer to the stored T value.
611 const_pointer operator->() const {
612 assertIsChecked();
613 return toPointer(getStorage());
614 }
615
616 /// Returns a reference to the stored T value.
617 reference operator*() {
618 assertIsChecked();
619 return *getStorage();
620 }
621
622 /// Returns a const reference to the stored T value.
623 const_reference operator*() const {
624 assertIsChecked();
625 return *getStorage();
626 }
627
628private:
629 template <class T1>
630 static bool compareThisIfSameType(const T1 &a, const T1 &b) {
631 return &a == &b;
632 }
633
634 template <class T1, class T2>
635 static bool compareThisIfSameType(const T1 &, const T2 &) {
636 return false;
637 }
638
639 template <class OtherT> void moveConstruct(Expected<OtherT> &&Other) {
640 HasError = Other.HasError;
641#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
642 Unchecked = true;
643 Other.Unchecked = false;
644#endif
645
646 if (!HasError)
647 new (getStorage()) storage_type(std::move(*Other.getStorage()));
648 else
649 new (getErrorStorage()) error_type(std::move(*Other.getErrorStorage()));
650 }
651
652 template <class OtherT> void moveAssign(Expected<OtherT> &&Other) {
653 assertIsChecked();
654
655 if (compareThisIfSameType(*this, Other))
656 return;
657
658 this->~Expected();
659 new (this) Expected(std::move(Other));
660 }
661
662 pointer toPointer(pointer Val) { return Val; }
663
664 const_pointer toPointer(const_pointer Val) const { return Val; }
665
666 pointer toPointer(wrap *Val) { return &Val->get(); }
667
668 const_pointer toPointer(const wrap *Val) const { return &Val->get(); }
669
670 storage_type *getStorage() {
671 assert(!HasError && "Cannot get value when an error exists!")(static_cast <bool> (!HasError && "Cannot get value when an error exists!"
) ? void (0) : __assert_fail ("!HasError && \"Cannot get value when an error exists!\""
, "llvm/include/llvm/Support/Error.h", 671, __extension__ __PRETTY_FUNCTION__
))
;
672 return reinterpret_cast<storage_type *>(&TStorage);
673 }
674
675 const storage_type *getStorage() const {
676 assert(!HasError && "Cannot get value when an error exists!")(static_cast <bool> (!HasError && "Cannot get value when an error exists!"
) ? void (0) : __assert_fail ("!HasError && \"Cannot get value when an error exists!\""
, "llvm/include/llvm/Support/Error.h", 676, __extension__ __PRETTY_FUNCTION__
))
;
677 return reinterpret_cast<const storage_type *>(&TStorage);
678 }
679
680 error_type *getErrorStorage() {
681 assert(HasError && "Cannot get error when a value exists!")(static_cast <bool> (HasError && "Cannot get error when a value exists!"
) ? void (0) : __assert_fail ("HasError && \"Cannot get error when a value exists!\""
, "llvm/include/llvm/Support/Error.h", 681, __extension__ __PRETTY_FUNCTION__
))
;
682 return reinterpret_cast<error_type *>(&ErrorStorage);
683 }
684
685 const error_type *getErrorStorage() const {
686 assert(HasError && "Cannot get error when a value exists!")(static_cast <bool> (HasError && "Cannot get error when a value exists!"
) ? void (0) : __assert_fail ("HasError && \"Cannot get error when a value exists!\""
, "llvm/include/llvm/Support/Error.h", 686, __extension__ __PRETTY_FUNCTION__
))
;
687 return reinterpret_cast<const error_type *>(&ErrorStorage);
688 }
689
690 // Used by ExpectedAsOutParameter to reset the checked flag.
691 void setUnchecked() {
692#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
693 Unchecked = true;
694#endif
695 }
696
697#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
698 [[noreturn]] LLVM_ATTRIBUTE_NOINLINE__attribute__((noinline)) void fatalUncheckedExpected() const {
699 dbgs() << "Expected<T> must be checked before access or destruction.\n";
700 if (HasError) {
701 dbgs() << "Unchecked Expected<T> contained error:\n";
702 (*getErrorStorage())->log(dbgs());
703 } else
704 dbgs() << "Expected<T> value was in success state. (Note: Expected<T> "
705 "values in success mode must still be checked prior to being "
706 "destroyed).\n";
707 abort();
708 }
709#endif
710
711 void assertIsChecked() const {
712#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
713 if (LLVM_UNLIKELY(Unchecked)__builtin_expect((bool)(Unchecked), false))
714 fatalUncheckedExpected();
715#endif
716 }
717
718 union {
719 AlignedCharArrayUnion<storage_type> TStorage;
720 AlignedCharArrayUnion<error_type> ErrorStorage;
721 };
722 bool HasError : 1;
723#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
724 bool Unchecked : 1;
725#endif
726};
727
728/// Report a serious error, calling any installed error handler. See
729/// ErrorHandling.h.
730[[noreturn]] void report_fatal_error(Error Err, bool gen_crash_diag = true);
731
732/// Report a fatal error if Err is a failure value.
733///
734/// This function can be used to wrap calls to fallible functions ONLY when it
735/// is known that the Error will always be a success value. E.g.
736///
737/// @code{.cpp}
738/// // foo only attempts the fallible operation if DoFallibleOperation is
739/// // true. If DoFallibleOperation is false then foo always returns
740/// // Error::success().
741/// Error foo(bool DoFallibleOperation);
742///
743/// cantFail(foo(false));
744/// @endcode
745inline void cantFail(Error Err, const char *Msg = nullptr) {
746 if (Err) {
747 if (!Msg)
748 Msg = "Failure value returned from cantFail wrapped call";
749#ifndef NDEBUG
750 std::string Str;
751 raw_string_ostream OS(Str);
752 OS << Msg << "\n" << Err;
753 Msg = OS.str().c_str();
754#endif
755 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "llvm/include/llvm/Support/Error.h"
, 755)
;
756 }
757}
758
759/// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and
760/// returns the contained value.
761///
762/// This function can be used to wrap calls to fallible functions ONLY when it
763/// is known that the Error will always be a success value. E.g.
764///
765/// @code{.cpp}
766/// // foo only attempts the fallible operation if DoFallibleOperation is
767/// // true. If DoFallibleOperation is false then foo always returns an int.
768/// Expected<int> foo(bool DoFallibleOperation);
769///
770/// int X = cantFail(foo(false));
771/// @endcode
772template <typename T>
773T cantFail(Expected<T> ValOrErr, const char *Msg = nullptr) {
774 if (ValOrErr)
775 return std::move(*ValOrErr);
776 else {
777 if (!Msg)
778 Msg = "Failure value returned from cantFail wrapped call";
779#ifndef NDEBUG
780 std::string Str;
781 raw_string_ostream OS(Str);
782 auto E = ValOrErr.takeError();
783 OS << Msg << "\n" << E;
784 Msg = OS.str().c_str();
785#endif
786 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "llvm/include/llvm/Support/Error.h"
, 786)
;
787 }
788}
789
790/// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and
791/// returns the contained reference.
792///
793/// This function can be used to wrap calls to fallible functions ONLY when it
794/// is known that the Error will always be a success value. E.g.
795///
796/// @code{.cpp}
797/// // foo only attempts the fallible operation if DoFallibleOperation is
798/// // true. If DoFallibleOperation is false then foo always returns a Bar&.
799/// Expected<Bar&> foo(bool DoFallibleOperation);
800///
801/// Bar &X = cantFail(foo(false));
802/// @endcode
803template <typename T>
804T& cantFail(Expected<T&> ValOrErr, const char *Msg = nullptr) {
805 if (ValOrErr)
806 return *ValOrErr;
807 else {
808 if (!Msg)
809 Msg = "Failure value returned from cantFail wrapped call";
810#ifndef NDEBUG
811 std::string Str;
812 raw_string_ostream OS(Str);
813 auto E = ValOrErr.takeError();
814 OS << Msg << "\n" << E;
815 Msg = OS.str().c_str();
816#endif
817 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "llvm/include/llvm/Support/Error.h"
, 817)
;
818 }
819}
820
821/// Helper for testing applicability of, and applying, handlers for
822/// ErrorInfo types.
823template <typename HandlerT>
824class ErrorHandlerTraits
825 : public ErrorHandlerTraits<decltype(
826 &std::remove_reference<HandlerT>::type::operator())> {};
827
828// Specialization functions of the form 'Error (const ErrT&)'.
829template <typename ErrT> class ErrorHandlerTraits<Error (&)(ErrT &)> {
830public:
831 static bool appliesTo(const ErrorInfoBase &E) {
832 return E.template isA<ErrT>();
833 }
834
835 template <typename HandlerT>
836 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
837 assert(appliesTo(*E) && "Applying incorrect handler")(static_cast <bool> (appliesTo(*E) && "Applying incorrect handler"
) ? void (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "llvm/include/llvm/Support/Error.h", 837, __extension__ __PRETTY_FUNCTION__
))
;
838 return H(static_cast<ErrT &>(*E));
839 }
840};
841
842// Specialization functions of the form 'void (const ErrT&)'.
843template <typename ErrT> class ErrorHandlerTraits<void (&)(ErrT &)> {
844public:
845 static bool appliesTo(const ErrorInfoBase &E) {
846 return E.template isA<ErrT>();
847 }
848
849 template <typename HandlerT>
850 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
851 assert(appliesTo(*E) && "Applying incorrect handler")(static_cast <bool> (appliesTo(*E) && "Applying incorrect handler"
) ? void (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "llvm/include/llvm/Support/Error.h", 851, __extension__ __PRETTY_FUNCTION__
))
;
852 H(static_cast<ErrT &>(*E));
853 return Error::success();
854 }
855};
856
857/// Specialization for functions of the form 'Error (std::unique_ptr<ErrT>)'.
858template <typename ErrT>
859class ErrorHandlerTraits<Error (&)(std::unique_ptr<ErrT>)> {
860public:
861 static bool appliesTo(const ErrorInfoBase &E) {
862 return E.template isA<ErrT>();
863 }
864
865 template <typename HandlerT>
866 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
867 assert(appliesTo(*E) && "Applying incorrect handler")(static_cast <bool> (appliesTo(*E) && "Applying incorrect handler"
) ? void (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "llvm/include/llvm/Support/Error.h", 867, __extension__ __PRETTY_FUNCTION__
))
;
868 std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release()));
869 return H(std::move(SubE));
870 }
871};
872
873/// Specialization for functions of the form 'void (std::unique_ptr<ErrT>)'.
874template <typename ErrT>
875class ErrorHandlerTraits<void (&)(std::unique_ptr<ErrT>)> {
876public:
877 static bool appliesTo(const ErrorInfoBase &E) {
878 return E.template isA<ErrT>();
879 }
880
881 template <typename HandlerT>
882 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
883 assert(appliesTo(*E) && "Applying incorrect handler")(static_cast <bool> (appliesTo(*E) && "Applying incorrect handler"
) ? void (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "llvm/include/llvm/Support/Error.h", 883, __extension__ __PRETTY_FUNCTION__
))
;
884 std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release()));
885 H(std::move(SubE));
886 return Error::success();
887 }
888};
889
890// Specialization for member functions of the form 'RetT (const ErrT&)'.
891template <typename C, typename RetT, typename ErrT>
892class ErrorHandlerTraits<RetT (C::*)(ErrT &)>
893 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
894
895// Specialization for member functions of the form 'RetT (const ErrT&) const'.
896template <typename C, typename RetT, typename ErrT>
897class ErrorHandlerTraits<RetT (C::*)(ErrT &) const>
898 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
899
900// Specialization for member functions of the form 'RetT (const ErrT&)'.
901template <typename C, typename RetT, typename ErrT>
902class ErrorHandlerTraits<RetT (C::*)(const ErrT &)>
903 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
904
905// Specialization for member functions of the form 'RetT (const ErrT&) const'.
906template <typename C, typename RetT, typename ErrT>
907class ErrorHandlerTraits<RetT (C::*)(const ErrT &) const>
908 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
909
910/// Specialization for member functions of the form
911/// 'RetT (std::unique_ptr<ErrT>)'.
912template <typename C, typename RetT, typename ErrT>
913class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>)>
914 : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {};
915
916/// Specialization for member functions of the form
917/// 'RetT (std::unique_ptr<ErrT>) const'.
918template <typename C, typename RetT, typename ErrT>
919class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>) const>
920 : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {};
921
922inline Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload) {
923 return Error(std::move(Payload));
924}
925
926template <typename HandlerT, typename... HandlerTs>
927Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload,
928 HandlerT &&Handler, HandlerTs &&... Handlers) {
929 if (ErrorHandlerTraits<HandlerT>::appliesTo(*Payload))
930 return ErrorHandlerTraits<HandlerT>::apply(std::forward<HandlerT>(Handler),
931 std::move(Payload));
932 return handleErrorImpl(std::move(Payload),
933 std::forward<HandlerTs>(Handlers)...);
934}
935
936/// Pass the ErrorInfo(s) contained in E to their respective handlers. Any
937/// unhandled errors (or Errors returned by handlers) are re-concatenated and
938/// returned.
939/// Because this function returns an error, its result must also be checked
940/// or returned. If you intend to handle all errors use handleAllErrors
941/// (which returns void, and will abort() on unhandled errors) instead.
942template <typename... HandlerTs>
943Error handleErrors(Error E, HandlerTs &&... Hs) {
944 if (!E)
945 return Error::success();
946
947 std::unique_ptr<ErrorInfoBase> Payload = E.takePayload();
948
949 if (Payload->isA<ErrorList>()) {
950 ErrorList &List = static_cast<ErrorList &>(*Payload);
951 Error R;
952 for (auto &P : List.Payloads)
953 R = ErrorList::join(
954 std::move(R),
955 handleErrorImpl(std::move(P), std::forward<HandlerTs>(Hs)...));
956 return R;
957 }
958
959 return handleErrorImpl(std::move(Payload), std::forward<HandlerTs>(Hs)...);
960}
961
962/// Behaves the same as handleErrors, except that by contract all errors
963/// *must* be handled by the given handlers (i.e. there must be no remaining
964/// errors after running the handlers, or llvm_unreachable is called).
965template <typename... HandlerTs>
966void handleAllErrors(Error E, HandlerTs &&... Handlers) {
967 cantFail(handleErrors(std::move(E), std::forward<HandlerTs>(Handlers)...));
968}
969
970/// Check that E is a non-error, then drop it.
971/// If E is an error, llvm_unreachable will be called.
972inline void handleAllErrors(Error E) {
973 cantFail(std::move(E));
974}
975
976/// Handle any errors (if present) in an Expected<T>, then try a recovery path.
977///
978/// If the incoming value is a success value it is returned unmodified. If it
979/// is a failure value then it the contained error is passed to handleErrors.
980/// If handleErrors is able to handle the error then the RecoveryPath functor
981/// is called to supply the final result. If handleErrors is not able to
982/// handle all errors then the unhandled errors are returned.
983///
984/// This utility enables the follow pattern:
985///
986/// @code{.cpp}
987/// enum FooStrategy { Aggressive, Conservative };
988/// Expected<Foo> foo(FooStrategy S);
989///
990/// auto ResultOrErr =
991/// handleExpected(
992/// foo(Aggressive),
993/// []() { return foo(Conservative); },
994/// [](AggressiveStrategyError&) {
995/// // Implicitly conusme this - we'll recover by using a conservative
996/// // strategy.
997/// });
998///
999/// @endcode
1000template <typename T, typename RecoveryFtor, typename... HandlerTs>
1001Expected<T> handleExpected(Expected<T> ValOrErr, RecoveryFtor &&RecoveryPath,
1002 HandlerTs &&... Handlers) {
1003 if (ValOrErr)
1004 return ValOrErr;
1005
1006 if (auto Err = handleErrors(ValOrErr.takeError(),
1007 std::forward<HandlerTs>(Handlers)...))
1008 return std::move(Err);
1009
1010 return RecoveryPath();
1011}
1012
1013/// Log all errors (if any) in E to OS. If there are any errors, ErrorBanner
1014/// will be printed before the first one is logged. A newline will be printed
1015/// after each error.
1016///
1017/// This function is compatible with the helpers from Support/WithColor.h. You
1018/// can pass any of them as the OS. Please consider using them instead of
1019/// including 'error: ' in the ErrorBanner.
1020///
1021/// This is useful in the base level of your program to allow clean termination
1022/// (allowing clean deallocation of resources, etc.), while reporting error
1023/// information to the user.
1024void logAllUnhandledErrors(Error E, raw_ostream &OS, Twine ErrorBanner = {});
1025
1026/// Write all error messages (if any) in E to a string. The newline character
1027/// is used to separate error messages.
1028inline std::string toString(Error E) {
1029 SmallVector<std::string, 2> Errors;
1030 handleAllErrors(std::move(E), [&Errors](const ErrorInfoBase &EI) {
1031 Errors.push_back(EI.message());
1032 });
1033 return join(Errors.begin(), Errors.end(), "\n");
1034}
1035
1036/// Consume a Error without doing anything. This method should be used
1037/// only where an error can be considered a reasonable and expected return
1038/// value.
1039///
1040/// Uses of this method are potentially indicative of design problems: If it's
1041/// legitimate to do nothing while processing an "error", the error-producer
1042/// might be more clearly refactored to return an Optional<T>.
1043inline void consumeError(Error Err) {
1044 handleAllErrors(std::move(Err), [](const ErrorInfoBase &) {});
1045}
1046
1047/// Convert an Expected to an Optional without doing anything. This method
1048/// should be used only where an error can be considered a reasonable and
1049/// expected return value.
1050///
1051/// Uses of this method are potentially indicative of problems: perhaps the
1052/// error should be propagated further, or the error-producer should just
1053/// return an Optional in the first place.
1054template <typename T> Optional<T> expectedToOptional(Expected<T> &&E) {
1055 if (E)
1056 return std::move(*E);
1057 consumeError(E.takeError());
1058 return None;
1059}
1060
1061/// Helper for converting an Error to a bool.
1062///
1063/// This method returns true if Err is in an error state, or false if it is
1064/// in a success state. Puts Err in a checked state in both cases (unlike
1065/// Error::operator bool(), which only does this for success states).
1066inline bool errorToBool(Error Err) {
1067 bool IsError = static_cast<bool>(Err);
1068 if (IsError)
1069 consumeError(std::move(Err));
1070 return IsError;
1071}
1072
1073/// Helper for Errors used as out-parameters.
1074///
1075/// This helper is for use with the Error-as-out-parameter idiom, where an error
1076/// is passed to a function or method by reference, rather than being returned.
1077/// In such cases it is helpful to set the checked bit on entry to the function
1078/// so that the error can be written to (unchecked Errors abort on assignment)
1079/// and clear the checked bit on exit so that clients cannot accidentally forget
1080/// to check the result. This helper performs these actions automatically using
1081/// RAII:
1082///
1083/// @code{.cpp}
1084/// Result foo(Error &Err) {
1085/// ErrorAsOutParameter ErrAsOutParam(&Err); // 'Checked' flag set
1086/// // <body of foo>
1087/// // <- 'Checked' flag auto-cleared when ErrAsOutParam is destructed.
1088/// }
1089/// @endcode
1090///
1091/// ErrorAsOutParameter takes an Error* rather than Error& so that it can be
1092/// used with optional Errors (Error pointers that are allowed to be null). If
1093/// ErrorAsOutParameter took an Error reference, an instance would have to be
1094/// created inside every condition that verified that Error was non-null. By
1095/// taking an Error pointer we can just create one instance at the top of the
1096/// function.
1097class ErrorAsOutParameter {
1098public:
1099 ErrorAsOutParameter(Error *Err) : Err(Err) {
1100 // Raise the checked bit if Err is success.
1101 if (Err)
1102 (void)!!*Err;
1103 }
1104
1105 ~ErrorAsOutParameter() {
1106 // Clear the checked bit.
1107 if (Err && !*Err)
1108 *Err = Error::success();
1109 }
1110
1111private:
1112 Error *Err;
1113};
1114
1115/// Helper for Expected<T>s used as out-parameters.
1116///
1117/// See ErrorAsOutParameter.
1118template <typename T>
1119class ExpectedAsOutParameter {
1120public:
1121 ExpectedAsOutParameter(Expected<T> *ValOrErr)
1122 : ValOrErr(ValOrErr) {
1123 if (ValOrErr)
1124 (void)!!*ValOrErr;
1125 }
1126
1127 ~ExpectedAsOutParameter() {
1128 if (ValOrErr)
1129 ValOrErr->setUnchecked();
1130 }
1131
1132private:
1133 Expected<T> *ValOrErr;
1134};
1135
1136/// This class wraps a std::error_code in a Error.
1137///
1138/// This is useful if you're writing an interface that returns a Error
1139/// (or Expected) and you want to call code that still returns
1140/// std::error_codes.
1141class ECError : public ErrorInfo<ECError> {
1142 friend Error errorCodeToError(std::error_code);
1143
1144 virtual void anchor() override;
1145
1146public:
1147 void setErrorCode(std::error_code EC) { this->EC = EC; }
1148 std::error_code convertToErrorCode() const override { return EC; }
1149 void log(raw_ostream &OS) const override { OS << EC.message(); }
1150
1151 // Used by ErrorInfo::classID.
1152 static char ID;
1153
1154protected:
1155 ECError() = default;
1156 ECError(std::error_code EC) : EC(EC) {}
1157
1158 std::error_code EC;
1159};
1160
1161/// The value returned by this function can be returned from convertToErrorCode
1162/// for Error values where no sensible translation to std::error_code exists.
1163/// It should only be used in this situation, and should never be used where a
1164/// sensible conversion to std::error_code is available, as attempts to convert
1165/// to/from this error will result in a fatal error. (i.e. it is a programmatic
1166/// error to try to convert such a value).
1167std::error_code inconvertibleErrorCode();
1168
1169/// Helper for converting an std::error_code to a Error.
1170Error errorCodeToError(std::error_code EC);
1171
1172/// Helper for converting an ECError to a std::error_code.
1173///
1174/// This method requires that Err be Error() or an ECError, otherwise it
1175/// will trigger a call to abort().
1176std::error_code errorToErrorCode(Error Err);
1177
1178/// Convert an ErrorOr<T> to an Expected<T>.
1179template <typename T> Expected<T> errorOrToExpected(ErrorOr<T> &&EO) {
1180 if (auto EC = EO.getError())
1181 return errorCodeToError(EC);
1182 return std::move(*EO);
1183}
1184
1185/// Convert an Expected<T> to an ErrorOr<T>.
1186template <typename T> ErrorOr<T> expectedToErrorOr(Expected<T> &&E) {
1187 if (auto Err = E.takeError())
1188 return errorToErrorCode(std::move(Err));
1189 return std::move(*E);
1190}
1191
1192/// This class wraps a string in an Error.
1193///
1194/// StringError is useful in cases where the client is not expected to be able
1195/// to consume the specific error message programmatically (for example, if the
1196/// error message is to be presented to the user).
1197///
1198/// StringError can also be used when additional information is to be printed
1199/// along with a error_code message. Depending on the constructor called, this
1200/// class can either display:
1201/// 1. the error_code message (ECError behavior)
1202/// 2. a string
1203/// 3. the error_code message and a string
1204///
1205/// These behaviors are useful when subtyping is required; for example, when a
1206/// specific library needs an explicit error type. In the example below,
1207/// PDBError is derived from StringError:
1208///
1209/// @code{.cpp}
1210/// Expected<int> foo() {
1211/// return llvm::make_error<PDBError>(pdb_error_code::dia_failed_loading,
1212/// "Additional information");
1213/// }
1214/// @endcode
1215///
1216class StringError : public ErrorInfo<StringError> {
1217public:
1218 static char ID;
1219
1220 // Prints EC + S and converts to EC
1221 StringError(std::error_code EC, const Twine &S = Twine());
1222
1223 // Prints S and converts to EC
1224 StringError(const Twine &S, std::error_code EC);
1225
1226 void log(raw_ostream &OS) const override;
1227 std::error_code convertToErrorCode() const override;
1228
1229 const std::string &getMessage() const { return Msg; }
1230
1231private:
1232 std::string Msg;
1233 std::error_code EC;
1234 const bool PrintMsgOnly = false;
1235};
1236
1237/// Create formatted StringError object.
1238template <typename... Ts>
1239inline Error createStringError(std::error_code EC, char const *Fmt,
1240 const Ts &... Vals) {
1241 std::string Buffer;
1242 raw_string_ostream Stream(Buffer);
1243 Stream << format(Fmt, Vals...);
1244 return make_error<StringError>(Stream.str(), EC);
1245}
1246
1247Error createStringError(std::error_code EC, char const *Msg);
1248
1249inline Error createStringError(std::error_code EC, const Twine &S) {
1250 return createStringError(EC, S.str().c_str());
1251}
1252
1253template <typename... Ts>
1254inline Error createStringError(std::errc EC, char const *Fmt,
1255 const Ts &... Vals) {
1256 return createStringError(std::make_error_code(EC), Fmt, Vals...);
1257}
1258
1259/// This class wraps a filename and another Error.
1260///
1261/// In some cases, an error needs to live along a 'source' name, in order to
1262/// show more detailed information to the user.
1263class FileError final : public ErrorInfo<FileError> {
1264
1265 friend Error createFileError(const Twine &, Error);
1266 friend Error createFileError(const Twine &, size_t, Error);
1267
1268public:
1269 void log(raw_ostream &OS) const override {
1270 assert(Err && "Trying to log after takeError().")(static_cast <bool> (Err && "Trying to log after takeError()."
) ? void (0) : __assert_fail ("Err && \"Trying to log after takeError().\""
, "llvm/include/llvm/Support/Error.h", 1270, __extension__ __PRETTY_FUNCTION__
))
;
1271 OS << "'" << FileName << "': ";
1272 if (Line.hasValue())
1273 OS << "line " << Line.getValue() << ": ";
1274 Err->log(OS);
1275 }
1276
1277 std::string messageWithoutFileInfo() const {
1278 std::string Msg;
1279 raw_string_ostream OS(Msg);
1280 Err->log(OS);
1281 return OS.str();
1282 }
1283
1284 StringRef getFileName() { return FileName; }
1285
1286 Error takeError() { return Error(std::move(Err)); }
1287
1288 std::error_code convertToErrorCode() const override;
1289
1290 // Used by ErrorInfo::classID.
1291 static char ID;
1292
1293private:
1294 FileError(const Twine &F, Optional<size_t> LineNum,
1295 std::unique_ptr<ErrorInfoBase> E) {
1296 assert(E && "Cannot create FileError from Error success value.")(static_cast <bool> (E && "Cannot create FileError from Error success value."
) ? void (0) : __assert_fail ("E && \"Cannot create FileError from Error success value.\""
, "llvm/include/llvm/Support/Error.h", 1296, __extension__ __PRETTY_FUNCTION__
))
;
1297 FileName = F.str();
1298 Err = std::move(E);
1299 Line = std::move(LineNum);
1300 }
1301
1302 static Error build(const Twine &F, Optional<size_t> Line, Error E) {
1303 std::unique_ptr<ErrorInfoBase> Payload;
1304 handleAllErrors(std::move(E),
1305 [&](std::unique_ptr<ErrorInfoBase> EIB) -> Error {
1306 Payload = std::move(EIB);
1307 return Error::success();
1308 });
1309 return Error(
1310 std::unique_ptr<FileError>(new FileError(F, Line, std::move(Payload))));
1311 }
1312
1313 std::string FileName;
1314 Optional<size_t> Line;
1315 std::unique_ptr<ErrorInfoBase> Err;
1316};
1317
1318/// Concatenate a source file path and/or name with an Error. The resulting
1319/// Error is unchecked.
1320inline Error createFileError(const Twine &F, Error E) {
1321 return FileError::build(F, Optional<size_t>(), std::move(E));
1322}
1323
1324/// Concatenate a source file path and/or name with line number and an Error.
1325/// The resulting Error is unchecked.
1326inline Error createFileError(const Twine &F, size_t Line, Error E) {
1327 return FileError::build(F, Optional<size_t>(Line), std::move(E));
1328}
1329
1330/// Concatenate a source file path and/or name with a std::error_code
1331/// to form an Error object.
1332inline Error createFileError(const Twine &F, std::error_code EC) {
1333 return createFileError(F, errorCodeToError(EC));
1334}
1335
1336/// Concatenate a source file path and/or name with line number and
1337/// std::error_code to form an Error object.
1338inline Error createFileError(const Twine &F, size_t Line, std::error_code EC) {
1339 return createFileError(F, Line, errorCodeToError(EC));
1340}
1341
1342Error createFileError(const Twine &F, ErrorSuccess) = delete;
1343
1344/// Helper for check-and-exit error handling.
1345///
1346/// For tool use only. NOT FOR USE IN LIBRARY CODE.
1347///
1348class ExitOnError {
1349public:
1350 /// Create an error on exit helper.
1351 ExitOnError(std::string Banner = "", int DefaultErrorExitCode = 1)
1352 : Banner(std::move(Banner)),
1353 GetExitCode([=](const Error &) { return DefaultErrorExitCode; }) {}
1354
1355 /// Set the banner string for any errors caught by operator().
1356 void setBanner(std::string Banner) { this->Banner = std::move(Banner); }
1357
1358 /// Set the exit-code mapper function.
1359 void setExitCodeMapper(std::function<int(const Error &)> GetExitCode) {
1360 this->GetExitCode = std::move(GetExitCode);
1361 }
1362
1363 /// Check Err. If it's in a failure state log the error(s) and exit.
1364 void operator()(Error Err) const { checkError(std::move(Err)); }
1365
1366 /// Check E. If it's in a success state then return the contained value. If
1367 /// it's in a failure state log the error(s) and exit.
1368 template <typename T> T operator()(Expected<T> &&E) const {
1369 checkError(E.takeError());
1370 return std::move(*E);
1371 }
1372
1373 /// Check E. If it's in a success state then return the contained reference. If
1374 /// it's in a failure state log the error(s) and exit.
1375 template <typename T> T& operator()(Expected<T&> &&E) const {
1376 checkError(E.takeError());
1377 return *E;
1378 }
1379
1380private:
1381 void checkError(Error Err) const {
1382 if (Err) {
1383 int ExitCode = GetExitCode(Err);
1384 logAllUnhandledErrors(std::move(Err), errs(), Banner);
1385 exit(ExitCode);
1386 }
1387 }
1388
1389 std::string Banner;
1390 std::function<int(const Error &)> GetExitCode;
1391};
1392
1393/// Conversion from Error to LLVMErrorRef for C error bindings.
1394inline LLVMErrorRef wrap(Error Err) {
1395 return reinterpret_cast<LLVMErrorRef>(Err.takePayload().release());
1396}
1397
1398/// Conversion from LLVMErrorRef to Error for C error bindings.
1399inline Error unwrap(LLVMErrorRef ErrRef) {
1400 return Error(std::unique_ptr<ErrorInfoBase>(
1401 reinterpret_cast<ErrorInfoBase *>(ErrRef)));
1402}
1403
1404} // end namespace llvm
1405
1406#endif // LLVM_SUPPORT_ERROR_H