Bug Summary

File:build/llvm-toolchain-snapshot-16~++20220929111209+ac2e2d659819/llvm/lib/Bitcode/Reader/BitcodeReader.cpp
Warning:line 4054, column 5
Value stored to 'OpNum' is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name BitcodeReader.cpp -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-16~++20220929111209+ac2e2d659819/build-llvm -resource-dir /usr/lib/llvm-16/lib/clang/16.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I lib/Bitcode/Reader -I /build/llvm-toolchain-snapshot-16~++20220929111209+ac2e2d659819/llvm/lib/Bitcode/Reader -I include -I /build/llvm-toolchain-snapshot-16~++20220929111209+ac2e2d659819/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-16/lib/clang/16.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-16~++20220929111209+ac2e2d659819/build-llvm=build-llvm -fmacro-prefix-map=/build/llvm-toolchain-snapshot-16~++20220929111209+ac2e2d659819/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-16~++20220929111209+ac2e2d659819/build-llvm=build-llvm -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-16~++20220929111209+ac2e2d659819/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -Wno-misleading-indentation -std=c++17 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-16~++20220929111209+ac2e2d659819/build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-16~++20220929111209+ac2e2d659819/build-llvm=build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-16~++20220929111209+ac2e2d659819/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-09-29-125212-15910-1 -x c++ /build/llvm-toolchain-snapshot-16~++20220929111209+ac2e2d659819/llvm/lib/Bitcode/Reader/BitcodeReader.cpp
1//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "llvm/Bitcode/BitcodeReader.h"
10#include "MetadataLoader.h"
11#include "ValueList.h"
12#include "llvm/ADT/APFloat.h"
13#include "llvm/ADT/APInt.h"
14#include "llvm/ADT/ArrayRef.h"
15#include "llvm/ADT/DenseMap.h"
16#include "llvm/ADT/Optional.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SmallString.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/ADT/StringRef.h"
21#include "llvm/ADT/Triple.h"
22#include "llvm/ADT/Twine.h"
23#include "llvm/Bitcode/BitcodeCommon.h"
24#include "llvm/Bitcode/LLVMBitCodes.h"
25#include "llvm/Bitstream/BitstreamReader.h"
26#include "llvm/Config/llvm-config.h"
27#include "llvm/IR/Argument.h"
28#include "llvm/IR/Attributes.h"
29#include "llvm/IR/AutoUpgrade.h"
30#include "llvm/IR/BasicBlock.h"
31#include "llvm/IR/CallingConv.h"
32#include "llvm/IR/Comdat.h"
33#include "llvm/IR/Constant.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DataLayout.h"
36#include "llvm/IR/DebugInfo.h"
37#include "llvm/IR/DebugInfoMetadata.h"
38#include "llvm/IR/DebugLoc.h"
39#include "llvm/IR/DerivedTypes.h"
40#include "llvm/IR/Function.h"
41#include "llvm/IR/GVMaterializer.h"
42#include "llvm/IR/GetElementPtrTypeIterator.h"
43#include "llvm/IR/GlobalAlias.h"
44#include "llvm/IR/GlobalIFunc.h"
45#include "llvm/IR/GlobalObject.h"
46#include "llvm/IR/GlobalValue.h"
47#include "llvm/IR/GlobalVariable.h"
48#include "llvm/IR/InlineAsm.h"
49#include "llvm/IR/InstIterator.h"
50#include "llvm/IR/InstrTypes.h"
51#include "llvm/IR/Instruction.h"
52#include "llvm/IR/Instructions.h"
53#include "llvm/IR/Intrinsics.h"
54#include "llvm/IR/IntrinsicsAArch64.h"
55#include "llvm/IR/IntrinsicsARM.h"
56#include "llvm/IR/LLVMContext.h"
57#include "llvm/IR/Metadata.h"
58#include "llvm/IR/Module.h"
59#include "llvm/IR/ModuleSummaryIndex.h"
60#include "llvm/IR/Operator.h"
61#include "llvm/IR/Type.h"
62#include "llvm/IR/Value.h"
63#include "llvm/IR/Verifier.h"
64#include "llvm/Support/AtomicOrdering.h"
65#include "llvm/Support/Casting.h"
66#include "llvm/Support/CommandLine.h"
67#include "llvm/Support/Compiler.h"
68#include "llvm/Support/Debug.h"
69#include "llvm/Support/Error.h"
70#include "llvm/Support/ErrorHandling.h"
71#include "llvm/Support/ErrorOr.h"
72#include "llvm/Support/MathExtras.h"
73#include "llvm/Support/MemoryBuffer.h"
74#include "llvm/Support/raw_ostream.h"
75#include <algorithm>
76#include <cassert>
77#include <cstddef>
78#include <cstdint>
79#include <deque>
80#include <map>
81#include <memory>
82#include <set>
83#include <string>
84#include <system_error>
85#include <tuple>
86#include <utility>
87#include <vector>
88
89using namespace llvm;
90
91static cl::opt<bool> PrintSummaryGUIDs(
92 "print-summary-global-ids", cl::init(false), cl::Hidden,
93 cl::desc(
94 "Print the global id for each value when reading the module summary"));
95
96static cl::opt<bool> ExpandConstantExprs(
97 "expand-constant-exprs", cl::Hidden,
98 cl::desc(
99 "Expand constant expressions to instructions for testing purposes"));
100
101namespace {
102
103enum {
104 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
105};
106
107} // end anonymous namespace
108
109static Error error(const Twine &Message) {
110 return make_error<StringError>(
111 Message, make_error_code(BitcodeError::CorruptedBitcode));
112}
113
114static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
115 if (!Stream.canSkipToPos(4))
116 return createStringError(std::errc::illegal_byte_sequence,
117 "file too small to contain bitcode header");
118 for (unsigned C : {'B', 'C'})
119 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
120 if (Res.get() != C)
121 return createStringError(std::errc::illegal_byte_sequence,
122 "file doesn't start with bitcode header");
123 } else
124 return Res.takeError();
125 for (unsigned C : {0x0, 0xC, 0xE, 0xD})
126 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
127 if (Res.get() != C)
128 return createStringError(std::errc::illegal_byte_sequence,
129 "file doesn't start with bitcode header");
130 } else
131 return Res.takeError();
132 return Error::success();
133}
134
135static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
136 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
137 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
138
139 if (Buffer.getBufferSize() & 3)
140 return error("Invalid bitcode signature");
141
142 // If we have a wrapper header, parse it and ignore the non-bc file contents.
143 // The magic number is 0x0B17C0DE stored in little endian.
144 if (isBitcodeWrapper(BufPtr, BufEnd))
145 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
146 return error("Invalid bitcode wrapper header");
147
148 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
149 if (Error Err = hasInvalidBitcodeHeader(Stream))
150 return std::move(Err);
151
152 return std::move(Stream);
153}
154
155/// Convert a string from a record into an std::string, return true on failure.
156template <typename StrTy>
157static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
158 StrTy &Result) {
159 if (Idx > Record.size())
160 return true;
161
162 Result.append(Record.begin() + Idx, Record.end());
163 return false;
164}
165
166// Strip all the TBAA attachment for the module.
167static void stripTBAA(Module *M) {
168 for (auto &F : *M) {
169 if (F.isMaterializable())
170 continue;
171 for (auto &I : instructions(F))
172 I.setMetadata(LLVMContext::MD_tbaa, nullptr);
173 }
174}
175
176/// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
177/// "epoch" encoded in the bitcode, and return the producer name if any.
178static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
179 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
180 return std::move(Err);
181
182 // Read all the records.
183 SmallVector<uint64_t, 64> Record;
184
185 std::string ProducerIdentification;
186
187 while (true) {
188 BitstreamEntry Entry;
189 if (Error E = Stream.advance().moveInto(Entry))
190 return std::move(E);
191
192 switch (Entry.Kind) {
193 default:
194 case BitstreamEntry::Error:
195 return error("Malformed block");
196 case BitstreamEntry::EndBlock:
197 return ProducerIdentification;
198 case BitstreamEntry::Record:
199 // The interesting case.
200 break;
201 }
202
203 // Read a record.
204 Record.clear();
205 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
206 if (!MaybeBitCode)
207 return MaybeBitCode.takeError();
208 switch (MaybeBitCode.get()) {
209 default: // Default behavior: reject
210 return error("Invalid value");
211 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
212 convertToString(Record, 0, ProducerIdentification);
213 break;
214 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
215 unsigned epoch = (unsigned)Record[0];
216 if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
217 return error(
218 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
219 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
220 }
221 }
222 }
223 }
224}
225
226static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
227 // We expect a number of well-defined blocks, though we don't necessarily
228 // need to understand them all.
229 while (true) {
230 if (Stream.AtEndOfStream())
231 return "";
232
233 BitstreamEntry Entry;
234 if (Error E = Stream.advance().moveInto(Entry))
235 return std::move(E);
236
237 switch (Entry.Kind) {
238 case BitstreamEntry::EndBlock:
239 case BitstreamEntry::Error:
240 return error("Malformed block");
241
242 case BitstreamEntry::SubBlock:
243 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
244 return readIdentificationBlock(Stream);
245
246 // Ignore other sub-blocks.
247 if (Error Err = Stream.SkipBlock())
248 return std::move(Err);
249 continue;
250 case BitstreamEntry::Record:
251 if (Error E = Stream.skipRecord(Entry.ID).takeError())
252 return std::move(E);
253 continue;
254 }
255 }
256}
257
258static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
259 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
260 return std::move(Err);
261
262 SmallVector<uint64_t, 64> Record;
263 // Read all the records for this module.
264
265 while (true) {
266 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
267 if (!MaybeEntry)
268 return MaybeEntry.takeError();
269 BitstreamEntry Entry = MaybeEntry.get();
270
271 switch (Entry.Kind) {
272 case BitstreamEntry::SubBlock: // Handled for us already.
273 case BitstreamEntry::Error:
274 return error("Malformed block");
275 case BitstreamEntry::EndBlock:
276 return false;
277 case BitstreamEntry::Record:
278 // The interesting case.
279 break;
280 }
281
282 // Read a record.
283 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
284 if (!MaybeRecord)
285 return MaybeRecord.takeError();
286 switch (MaybeRecord.get()) {
287 default:
288 break; // Default behavior, ignore unknown content.
289 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
290 std::string S;
291 if (convertToString(Record, 0, S))
292 return error("Invalid section name record");
293 // Check for the i386 and other (x86_64, ARM) conventions
294 if (S.find("__DATA,__objc_catlist") != std::string::npos ||
295 S.find("__OBJC,__category") != std::string::npos)
296 return true;
297 break;
298 }
299 }
300 Record.clear();
301 }
302 llvm_unreachable("Exit infinite loop")::llvm::llvm_unreachable_internal("Exit infinite loop", "llvm/lib/Bitcode/Reader/BitcodeReader.cpp"
, 302)
;
303}
304
305static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
306 // We expect a number of well-defined blocks, though we don't necessarily
307 // need to understand them all.
308 while (true) {
309 BitstreamEntry Entry;
310 if (Error E = Stream.advance().moveInto(Entry))
311 return std::move(E);
312
313 switch (Entry.Kind) {
314 case BitstreamEntry::Error:
315 return error("Malformed block");
316 case BitstreamEntry::EndBlock:
317 return false;
318
319 case BitstreamEntry::SubBlock:
320 if (Entry.ID == bitc::MODULE_BLOCK_ID)
321 return hasObjCCategoryInModule(Stream);
322
323 // Ignore other sub-blocks.
324 if (Error Err = Stream.SkipBlock())
325 return std::move(Err);
326 continue;
327
328 case BitstreamEntry::Record:
329 if (Error E = Stream.skipRecord(Entry.ID).takeError())
330 return std::move(E);
331 continue;
332 }
333 }
334}
335
336static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
337 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
338 return std::move(Err);
339
340 SmallVector<uint64_t, 64> Record;
341
342 std::string Triple;
343
344 // Read all the records for this module.
345 while (true) {
346 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
347 if (!MaybeEntry)
348 return MaybeEntry.takeError();
349 BitstreamEntry Entry = MaybeEntry.get();
350
351 switch (Entry.Kind) {
352 case BitstreamEntry::SubBlock: // Handled for us already.
353 case BitstreamEntry::Error:
354 return error("Malformed block");
355 case BitstreamEntry::EndBlock:
356 return Triple;
357 case BitstreamEntry::Record:
358 // The interesting case.
359 break;
360 }
361
362 // Read a record.
363 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
364 if (!MaybeRecord)
365 return MaybeRecord.takeError();
366 switch (MaybeRecord.get()) {
367 default: break; // Default behavior, ignore unknown content.
368 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
369 std::string S;
370 if (convertToString(Record, 0, S))
371 return error("Invalid triple record");
372 Triple = S;
373 break;
374 }
375 }
376 Record.clear();
377 }
378 llvm_unreachable("Exit infinite loop")::llvm::llvm_unreachable_internal("Exit infinite loop", "llvm/lib/Bitcode/Reader/BitcodeReader.cpp"
, 378)
;
379}
380
381static Expected<std::string> readTriple(BitstreamCursor &Stream) {
382 // We expect a number of well-defined blocks, though we don't necessarily
383 // need to understand them all.
384 while (true) {
385 Expected<BitstreamEntry> MaybeEntry = Stream.advance();
386 if (!MaybeEntry)
387 return MaybeEntry.takeError();
388 BitstreamEntry Entry = MaybeEntry.get();
389
390 switch (Entry.Kind) {
391 case BitstreamEntry::Error:
392 return error("Malformed block");
393 case BitstreamEntry::EndBlock:
394 return "";
395
396 case BitstreamEntry::SubBlock:
397 if (Entry.ID == bitc::MODULE_BLOCK_ID)
398 return readModuleTriple(Stream);
399
400 // Ignore other sub-blocks.
401 if (Error Err = Stream.SkipBlock())
402 return std::move(Err);
403 continue;
404
405 case BitstreamEntry::Record:
406 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
407 continue;
408 else
409 return Skipped.takeError();
410 }
411 }
412}
413
414namespace {
415
416class BitcodeReaderBase {
417protected:
418 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
419 : Stream(std::move(Stream)), Strtab(Strtab) {
420 this->Stream.setBlockInfo(&BlockInfo);
421 }
422
423 BitstreamBlockInfo BlockInfo;
424 BitstreamCursor Stream;
425 StringRef Strtab;
426
427 /// In version 2 of the bitcode we store names of global values and comdats in
428 /// a string table rather than in the VST.
429 bool UseStrtab = false;
430
431 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
432
433 /// If this module uses a string table, pop the reference to the string table
434 /// and return the referenced string and the rest of the record. Otherwise
435 /// just return the record itself.
436 std::pair<StringRef, ArrayRef<uint64_t>>
437 readNameFromStrtab(ArrayRef<uint64_t> Record);
438
439 Error readBlockInfo();
440
441 // Contains an arbitrary and optional string identifying the bitcode producer
442 std::string ProducerIdentification;
443
444 Error error(const Twine &Message);
445};
446
447} // end anonymous namespace
448
449Error BitcodeReaderBase::error(const Twine &Message) {
450 std::string FullMsg = Message.str();
451 if (!ProducerIdentification.empty())
452 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
453 LLVM_VERSION_STRING"16.0.0" "')";
454 return ::error(FullMsg);
455}
456
457Expected<unsigned>
458BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
459 if (Record.empty())
460 return error("Invalid version record");
461 unsigned ModuleVersion = Record[0];
462 if (ModuleVersion > 2)
463 return error("Invalid value");
464 UseStrtab = ModuleVersion >= 2;
465 return ModuleVersion;
466}
467
468std::pair<StringRef, ArrayRef<uint64_t>>
469BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
470 if (!UseStrtab)
471 return {"", Record};
472 // Invalid reference. Let the caller complain about the record being empty.
473 if (Record[0] + Record[1] > Strtab.size())
474 return {"", {}};
475 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
476}
477
478namespace {
479
480/// This represents a constant expression or constant aggregate using a custom
481/// structure internal to the bitcode reader. Later, this structure will be
482/// expanded by materializeValue() either into a constant expression/aggregate,
483/// or into an instruction sequence at the point of use. This allows us to
484/// upgrade bitcode using constant expressions even if this kind of constant
485/// expression is no longer supported.
486class BitcodeConstant final : public Value,
487 TrailingObjects<BitcodeConstant, unsigned> {
488 friend TrailingObjects;
489
490 // Value subclass ID: Pick largest possible value to avoid any clashes.
491 static constexpr uint8_t SubclassID = 255;
492
493public:
494 // Opcodes used for non-expressions. This includes constant aggregates
495 // (struct, array, vector) that might need expansion, as well as non-leaf
496 // constants that don't need expansion (no_cfi, dso_local, blockaddress),
497 // but still go through BitcodeConstant to avoid different uselist orders
498 // between the two cases.
499 static constexpr uint8_t ConstantStructOpcode = 255;
500 static constexpr uint8_t ConstantArrayOpcode = 254;
501 static constexpr uint8_t ConstantVectorOpcode = 253;
502 static constexpr uint8_t NoCFIOpcode = 252;
503 static constexpr uint8_t DSOLocalEquivalentOpcode = 251;
504 static constexpr uint8_t BlockAddressOpcode = 250;
505 static constexpr uint8_t FirstSpecialOpcode = BlockAddressOpcode;
506
507 // Separate struct to make passing different number of parameters to
508 // BitcodeConstant::create() more convenient.
509 struct ExtraInfo {
510 uint8_t Opcode;
511 uint8_t Flags;
512 unsigned Extra;
513 Type *SrcElemTy;
514
515 ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, unsigned Extra = 0,
516 Type *SrcElemTy = nullptr)
517 : Opcode(Opcode), Flags(Flags), Extra(Extra), SrcElemTy(SrcElemTy) {}
518 };
519
520 uint8_t Opcode;
521 uint8_t Flags;
522 unsigned NumOperands;
523 unsigned Extra; // GEP inrange index or blockaddress BB id.
524 Type *SrcElemTy; // GEP source element type.
525
526private:
527 BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs)
528 : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags),
529 NumOperands(OpIDs.size()), Extra(Info.Extra),
530 SrcElemTy(Info.SrcElemTy) {
531 std::uninitialized_copy(OpIDs.begin(), OpIDs.end(),
532 getTrailingObjects<unsigned>());
533 }
534
535 BitcodeConstant &operator=(const BitcodeConstant &) = delete;
536
537public:
538 static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty,
539 const ExtraInfo &Info,
540 ArrayRef<unsigned> OpIDs) {
541 void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()),
542 alignof(BitcodeConstant));
543 return new (Mem) BitcodeConstant(Ty, Info, OpIDs);
544 }
545
546 static bool classof(const Value *V) { return V->getValueID() == SubclassID; }
547
548 ArrayRef<unsigned> getOperandIDs() const {
549 return makeArrayRef(getTrailingObjects<unsigned>(), NumOperands);
550 }
551
552 Optional<unsigned> getInRangeIndex() const {
553 assert(Opcode == Instruction::GetElementPtr)(static_cast <bool> (Opcode == Instruction::GetElementPtr
) ? void (0) : __assert_fail ("Opcode == Instruction::GetElementPtr"
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 553, __extension__
__PRETTY_FUNCTION__))
;
554 if (Extra == (unsigned)-1)
555 return None;
556 return Extra;
557 }
558
559 const char *getOpcodeName() const {
560 return Instruction::getOpcodeName(Opcode);
561 }
562};
563
564class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
565 LLVMContext &Context;
566 Module *TheModule = nullptr;
567 // Next offset to start scanning for lazy parsing of function bodies.
568 uint64_t NextUnreadBit = 0;
569 // Last function offset found in the VST.
570 uint64_t LastFunctionBlockBit = 0;
571 bool SeenValueSymbolTable = false;
572 uint64_t VSTOffset = 0;
573
574 std::vector<std::string> SectionTable;
575 std::vector<std::string> GCTable;
576
577 std::vector<Type *> TypeList;
578 /// Track type IDs of contained types. Order is the same as the contained
579 /// types of a Type*. This is used during upgrades of typed pointer IR in
580 /// opaque pointer mode.
581 DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs;
582 /// In some cases, we need to create a type ID for a type that was not
583 /// explicitly encoded in the bitcode, or we don't know about at the current
584 /// point. For example, a global may explicitly encode the value type ID, but
585 /// not have a type ID for the pointer to value type, for which we create a
586 /// virtual type ID instead. This map stores the new type ID that was created
587 /// for the given pair of Type and contained type ID.
588 DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs;
589 DenseMap<Function *, unsigned> FunctionTypeIDs;
590 /// Allocator for BitcodeConstants. This should come before ValueList,
591 /// because the ValueList might hold ValueHandles to these constants, so
592 /// ValueList must be destroyed before Alloc.
593 BumpPtrAllocator Alloc;
594 BitcodeReaderValueList ValueList;
595 Optional<MetadataLoader> MDLoader;
596 std::vector<Comdat *> ComdatList;
597 DenseSet<GlobalObject *> ImplicitComdatObjects;
598 SmallVector<Instruction *, 64> InstructionList;
599
600 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
601 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits;
602
603 struct FunctionOperandInfo {
604 Function *F;
605 unsigned PersonalityFn;
606 unsigned Prefix;
607 unsigned Prologue;
608 };
609 std::vector<FunctionOperandInfo> FunctionOperands;
610
611 /// The set of attributes by index. Index zero in the file is for null, and
612 /// is thus not represented here. As such all indices are off by one.
613 std::vector<AttributeList> MAttributes;
614
615 /// The set of attribute groups.
616 std::map<unsigned, AttributeList> MAttributeGroups;
617
618 /// While parsing a function body, this is a list of the basic blocks for the
619 /// function.
620 std::vector<BasicBlock*> FunctionBBs;
621
622 // When reading the module header, this list is populated with functions that
623 // have bodies later in the file.
624 std::vector<Function*> FunctionsWithBodies;
625
626 // When intrinsic functions are encountered which require upgrading they are
627 // stored here with their replacement function.
628 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
629 UpdatedIntrinsicMap UpgradedIntrinsics;
630 // Intrinsics which were remangled because of types rename
631 UpdatedIntrinsicMap RemangledIntrinsics;
632
633 // Several operations happen after the module header has been read, but
634 // before function bodies are processed. This keeps track of whether
635 // we've done this yet.
636 bool SeenFirstFunctionBody = false;
637
638 /// When function bodies are initially scanned, this map contains info about
639 /// where to find deferred function body in the stream.
640 DenseMap<Function*, uint64_t> DeferredFunctionInfo;
641
642 /// When Metadata block is initially scanned when parsing the module, we may
643 /// choose to defer parsing of the metadata. This vector contains info about
644 /// which Metadata blocks are deferred.
645 std::vector<uint64_t> DeferredMetadataInfo;
646
647 /// These are basic blocks forward-referenced by block addresses. They are
648 /// inserted lazily into functions when they're loaded. The basic block ID is
649 /// its index into the vector.
650 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
651 std::deque<Function *> BasicBlockFwdRefQueue;
652
653 /// These are Functions that contain BlockAddresses which refer a different
654 /// Function. When parsing the different Function, queue Functions that refer
655 /// to the different Function. Those Functions must be materialized in order
656 /// to resolve their BlockAddress constants before the different Function
657 /// gets moved into another Module.
658 std::vector<Function *> BackwardRefFunctions;
659
660 /// Indicates that we are using a new encoding for instruction operands where
661 /// most operands in the current FUNCTION_BLOCK are encoded relative to the
662 /// instruction number, for a more compact encoding. Some instruction
663 /// operands are not relative to the instruction ID: basic block numbers, and
664 /// types. Once the old style function blocks have been phased out, we would
665 /// not need this flag.
666 bool UseRelativeIDs = false;
667
668 /// True if all functions will be materialized, negating the need to process
669 /// (e.g.) blockaddress forward references.
670 bool WillMaterializeAllForwardRefs = false;
671
672 bool StripDebugInfo = false;
673 TBAAVerifier TBAAVerifyHelper;
674
675 std::vector<std::string> BundleTags;
676 SmallVector<SyncScope::ID, 8> SSIDs;
677
678public:
679 BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
680 StringRef ProducerIdentification, LLVMContext &Context);
681
682 Error materializeForwardReferencedFunctions();
683
684 Error materialize(GlobalValue *GV) override;
685 Error materializeModule() override;
686 std::vector<StructType *> getIdentifiedStructTypes() const override;
687
688 /// Main interface to parsing a bitcode buffer.
689 /// \returns true if an error occurred.
690 Error parseBitcodeInto(
691 Module *M, bool ShouldLazyLoadMetadata, bool IsImporting,
692 DataLayoutCallbackTy DataLayoutCallback);
693
694 static uint64_t decodeSignRotatedValue(uint64_t V);
695
696 /// Materialize any deferred Metadata block.
697 Error materializeMetadata() override;
698
699 void setStripDebugInfo() override;
700
701private:
702 std::vector<StructType *> IdentifiedStructTypes;
703 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
704 StructType *createIdentifiedStructType(LLVMContext &Context);
705
706 static constexpr unsigned InvalidTypeID = ~0u;
707
708 Type *getTypeByID(unsigned ID);
709 Type *getPtrElementTypeByID(unsigned ID);
710 unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0);
711 unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {});
712
713 Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB);
714 Expected<Constant *> getValueForInitializer(unsigned ID);
715
716 Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID,
717 BasicBlock *ConstExprInsertBB) {
718 if (Ty && Ty->isMetadataTy())
719 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
720 return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB);
721 }
722
723 Metadata *getFnMetadataByID(unsigned ID) {
724 return MDLoader->getMetadataFwdRefOrLoad(ID);
725 }
726
727 BasicBlock *getBasicBlock(unsigned ID) const {
728 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
729 return FunctionBBs[ID];
730 }
731
732 AttributeList getAttributes(unsigned i) const {
733 if (i-1 < MAttributes.size())
734 return MAttributes[i-1];
735 return AttributeList();
736 }
737
738 /// Read a value/type pair out of the specified record from slot 'Slot'.
739 /// Increment Slot past the number of slots used in the record. Return true on
740 /// failure.
741 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
742 unsigned InstNum, Value *&ResVal, unsigned &TypeID,
743 BasicBlock *ConstExprInsertBB) {
744 if (Slot == Record.size()) return true;
745 unsigned ValNo = (unsigned)Record[Slot++];
746 // Adjust the ValNo, if it was encoded relative to the InstNum.
747 if (UseRelativeIDs)
748 ValNo = InstNum - ValNo;
749 if (ValNo < InstNum) {
750 // If this is not a forward reference, just return the value we already
751 // have.
752 TypeID = ValueList.getTypeID(ValNo);
753 ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB);
754 assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) &&(static_cast <bool> ((!ResVal || ResVal->getType() ==
getTypeByID(TypeID)) && "Incorrect type ID stored for value"
) ? void (0) : __assert_fail ("(!ResVal || ResVal->getType() == getTypeByID(TypeID)) && \"Incorrect type ID stored for value\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 755, __extension__
__PRETTY_FUNCTION__))
755 "Incorrect type ID stored for value")(static_cast <bool> ((!ResVal || ResVal->getType() ==
getTypeByID(TypeID)) && "Incorrect type ID stored for value"
) ? void (0) : __assert_fail ("(!ResVal || ResVal->getType() == getTypeByID(TypeID)) && \"Incorrect type ID stored for value\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 755, __extension__
__PRETTY_FUNCTION__))
;
756 return ResVal == nullptr;
757 }
758 if (Slot == Record.size())
759 return true;
760
761 TypeID = (unsigned)Record[Slot++];
762 ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID,
763 ConstExprInsertBB);
764 return ResVal == nullptr;
765 }
766
767 /// Read a value out of the specified record from slot 'Slot'. Increment Slot
768 /// past the number of slots used by the value in the record. Return true if
769 /// there is an error.
770 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
771 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
772 BasicBlock *ConstExprInsertBB) {
773 if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB))
774 return true;
775 // All values currently take a single record slot.
776 ++Slot;
777 return false;
778 }
779
780 /// Like popValue, but does not increment the Slot number.
781 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
782 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal,
783 BasicBlock *ConstExprInsertBB) {
784 ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB);
785 return ResVal == nullptr;
786 }
787
788 /// Version of getValue that returns ResVal directly, or 0 if there is an
789 /// error.
790 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
791 unsigned InstNum, Type *Ty, unsigned TyID,
792 BasicBlock *ConstExprInsertBB) {
793 if (Slot == Record.size()) return nullptr;
794 unsigned ValNo = (unsigned)Record[Slot];
795 // Adjust the ValNo, if it was encoded relative to the InstNum.
796 if (UseRelativeIDs)
797 ValNo = InstNum - ValNo;
798 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
799 }
800
801 /// Like getValue, but decodes signed VBRs.
802 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
803 unsigned InstNum, Type *Ty, unsigned TyID,
804 BasicBlock *ConstExprInsertBB) {
805 if (Slot == Record.size()) return nullptr;
806 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
807 // Adjust the ValNo, if it was encoded relative to the InstNum.
808 if (UseRelativeIDs)
809 ValNo = InstNum - ValNo;
810 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB);
811 }
812
813 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
814 /// corresponding argument's pointee type. Also upgrades intrinsics that now
815 /// require an elementtype attribute.
816 Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys);
817
818 /// Converts alignment exponent (i.e. power of two (or zero)) to the
819 /// corresponding alignment to use. If alignment is too large, returns
820 /// a corresponding error code.
821 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
822 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
823 Error parseModule(
824 uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
825 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
826
827 Error parseComdatRecord(ArrayRef<uint64_t> Record);
828 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
829 Error parseFunctionRecord(ArrayRef<uint64_t> Record);
830 Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
831 ArrayRef<uint64_t> Record);
832
833 Error parseAttributeBlock();
834 Error parseAttributeGroupBlock();
835 Error parseTypeTable();
836 Error parseTypeTableBody();
837 Error parseOperandBundleTags();
838 Error parseSyncScopeNames();
839
840 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
841 unsigned NameIndex, Triple &TT);
842 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
843 ArrayRef<uint64_t> Record);
844 Error parseValueSymbolTable(uint64_t Offset = 0);
845 Error parseGlobalValueSymbolTable();
846 Error parseConstants();
847 Error rememberAndSkipFunctionBodies();
848 Error rememberAndSkipFunctionBody();
849 /// Save the positions of the Metadata blocks and skip parsing the blocks.
850 Error rememberAndSkipMetadata();
851 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
852 Error parseFunctionBody(Function *F);
853 Error globalCleanup();
854 Error resolveGlobalAndIndirectSymbolInits();
855 Error parseUseLists();
856 Error findFunctionInStream(
857 Function *F,
858 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
859
860 SyncScope::ID getDecodedSyncScopeID(unsigned Val);
861};
862
863/// Class to manage reading and parsing function summary index bitcode
864/// files/sections.
865class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
866 /// The module index built during parsing.
867 ModuleSummaryIndex &TheIndex;
868
869 /// Indicates whether we have encountered a global value summary section
870 /// yet during parsing.
871 bool SeenGlobalValSummary = false;
872
873 /// Indicates whether we have already parsed the VST, used for error checking.
874 bool SeenValueSymbolTable = false;
875
876 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
877 /// Used to enable on-demand parsing of the VST.
878 uint64_t VSTOffset = 0;
879
880 // Map to save ValueId to ValueInfo association that was recorded in the
881 // ValueSymbolTable. It is used after the VST is parsed to convert
882 // call graph edges read from the function summary from referencing
883 // callees by their ValueId to using the ValueInfo instead, which is how
884 // they are recorded in the summary index being built.
885 // We save a GUID which refers to the same global as the ValueInfo, but
886 // ignoring the linkage, i.e. for values other than local linkage they are
887 // identical.
888 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
889 ValueIdToValueInfoMap;
890
891 /// Map populated during module path string table parsing, from the
892 /// module ID to a string reference owned by the index's module
893 /// path string table, used to correlate with combined index
894 /// summary records.
895 DenseMap<uint64_t, StringRef> ModuleIdMap;
896
897 /// Original source file name recorded in a bitcode record.
898 std::string SourceFileName;
899
900 /// The string identifier given to this module by the client, normally the
901 /// path to the bitcode file.
902 StringRef ModulePath;
903
904 /// For per-module summary indexes, the unique numerical identifier given to
905 /// this module by the client.
906 unsigned ModuleId;
907
908public:
909 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
910 ModuleSummaryIndex &TheIndex,
911 StringRef ModulePath, unsigned ModuleId);
912
913 Error parseModule();
914
915private:
916 void setValueGUID(uint64_t ValueID, StringRef ValueName,
917 GlobalValue::LinkageTypes Linkage,
918 StringRef SourceFileName);
919 Error parseValueSymbolTable(
920 uint64_t Offset,
921 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
922 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
923 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
924 bool IsOldProfileFormat,
925 bool HasProfile,
926 bool HasRelBF);
927 Error parseEntireSummary(unsigned ID);
928 Error parseModuleStringTable();
929 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
930 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
931 TypeIdCompatibleVtableInfo &TypeId);
932 std::vector<FunctionSummary::ParamAccess>
933 parseParamAccesses(ArrayRef<uint64_t> Record);
934
935 std::pair<ValueInfo, GlobalValue::GUID>
936 getValueInfoFromValueId(unsigned ValueId);
937
938 void addThisModule();
939 ModuleSummaryIndex::ModuleInfo *getThisModule();
940};
941
942} // end anonymous namespace
943
944std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
945 Error Err) {
946 if (Err) {
947 std::error_code EC;
948 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
949 EC = EIB.convertToErrorCode();
950 Ctx.emitError(EIB.message());
951 });
952 return EC;
953 }
954 return std::error_code();
955}
956
957BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
958 StringRef ProducerIdentification,
959 LLVMContext &Context)
960 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
961 ValueList(this->Stream.SizeInBytes(),
962 [this](unsigned ValID, BasicBlock *InsertBB) {
963 return materializeValue(ValID, InsertBB);
964 }) {
965 this->ProducerIdentification = std::string(ProducerIdentification);
966}
967
968Error BitcodeReader::materializeForwardReferencedFunctions() {
969 if (WillMaterializeAllForwardRefs)
970 return Error::success();
971
972 // Prevent recursion.
973 WillMaterializeAllForwardRefs = true;
974
975 while (!BasicBlockFwdRefQueue.empty()) {
976 Function *F = BasicBlockFwdRefQueue.front();
977 BasicBlockFwdRefQueue.pop_front();
978 assert(F && "Expected valid function")(static_cast <bool> (F && "Expected valid function"
) ? void (0) : __assert_fail ("F && \"Expected valid function\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 978, __extension__
__PRETTY_FUNCTION__))
;
979 if (!BasicBlockFwdRefs.count(F))
980 // Already materialized.
981 continue;
982
983 // Check for a function that isn't materializable to prevent an infinite
984 // loop. When parsing a blockaddress stored in a global variable, there
985 // isn't a trivial way to check if a function will have a body without a
986 // linear search through FunctionsWithBodies, so just check it here.
987 if (!F->isMaterializable())
988 return error("Never resolved function from blockaddress");
989
990 // Try to materialize F.
991 if (Error Err = materialize(F))
992 return Err;
993 }
994 assert(BasicBlockFwdRefs.empty() && "Function missing from queue")(static_cast <bool> (BasicBlockFwdRefs.empty() &&
"Function missing from queue") ? void (0) : __assert_fail ("BasicBlockFwdRefs.empty() && \"Function missing from queue\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 994, __extension__
__PRETTY_FUNCTION__))
;
995
996 for (Function *F : BackwardRefFunctions)
997 if (Error Err = materialize(F))
998 return Err;
999 BackwardRefFunctions.clear();
1000
1001 // Reset state.
1002 WillMaterializeAllForwardRefs = false;
1003 return Error::success();
1004}
1005
1006//===----------------------------------------------------------------------===//
1007// Helper functions to implement forward reference resolution, etc.
1008//===----------------------------------------------------------------------===//
1009
1010static bool hasImplicitComdat(size_t Val) {
1011 switch (Val) {
1012 default:
1013 return false;
1014 case 1: // Old WeakAnyLinkage
1015 case 4: // Old LinkOnceAnyLinkage
1016 case 10: // Old WeakODRLinkage
1017 case 11: // Old LinkOnceODRLinkage
1018 return true;
1019 }
1020}
1021
1022static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
1023 switch (Val) {
1024 default: // Map unknown/new linkages to external
1025 case 0:
1026 return GlobalValue::ExternalLinkage;
1027 case 2:
1028 return GlobalValue::AppendingLinkage;
1029 case 3:
1030 return GlobalValue::InternalLinkage;
1031 case 5:
1032 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
1033 case 6:
1034 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
1035 case 7:
1036 return GlobalValue::ExternalWeakLinkage;
1037 case 8:
1038 return GlobalValue::CommonLinkage;
1039 case 9:
1040 return GlobalValue::PrivateLinkage;
1041 case 12:
1042 return GlobalValue::AvailableExternallyLinkage;
1043 case 13:
1044 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
1045 case 14:
1046 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
1047 case 15:
1048 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
1049 case 1: // Old value with implicit comdat.
1050 case 16:
1051 return GlobalValue::WeakAnyLinkage;
1052 case 10: // Old value with implicit comdat.
1053 case 17:
1054 return GlobalValue::WeakODRLinkage;
1055 case 4: // Old value with implicit comdat.
1056 case 18:
1057 return GlobalValue::LinkOnceAnyLinkage;
1058 case 11: // Old value with implicit comdat.
1059 case 19:
1060 return GlobalValue::LinkOnceODRLinkage;
1061 }
1062}
1063
1064static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
1065 FunctionSummary::FFlags Flags;
1066 Flags.ReadNone = RawFlags & 0x1;
1067 Flags.ReadOnly = (RawFlags >> 1) & 0x1;
1068 Flags.NoRecurse = (RawFlags >> 2) & 0x1;
1069 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
1070 Flags.NoInline = (RawFlags >> 4) & 0x1;
1071 Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
1072 Flags.NoUnwind = (RawFlags >> 6) & 0x1;
1073 Flags.MayThrow = (RawFlags >> 7) & 0x1;
1074 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1;
1075 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1;
1076 return Flags;
1077}
1078
1079// Decode the flags for GlobalValue in the summary. The bits for each attribute:
1080//
1081// linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
1082// visibility: [8, 10).
1083static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
1084 uint64_t Version) {
1085 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
1086 // like getDecodedLinkage() above. Any future change to the linkage enum and
1087 // to getDecodedLinkage() will need to be taken into account here as above.
1088 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
1089 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
1090 RawFlags = RawFlags >> 4;
1091 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
1092 // The Live flag wasn't introduced until version 3. For dead stripping
1093 // to work correctly on earlier versions, we must conservatively treat all
1094 // values as live.
1095 bool Live = (RawFlags & 0x2) || Version < 3;
1096 bool Local = (RawFlags & 0x4);
1097 bool AutoHide = (RawFlags & 0x8);
1098
1099 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
1100 Live, Local, AutoHide);
1101}
1102
1103// Decode the flags for GlobalVariable in the summary
1104static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
1105 return GlobalVarSummary::GVarFlags(
1106 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
1107 (RawFlags & 0x4) ? true : false,
1108 (GlobalObject::VCallVisibility)(RawFlags >> 3));
1109}
1110
1111static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
1112 switch (Val) {
1113 default: // Map unknown visibilities to default.
1114 case 0: return GlobalValue::DefaultVisibility;
1115 case 1: return GlobalValue::HiddenVisibility;
1116 case 2: return GlobalValue::ProtectedVisibility;
1117 }
1118}
1119
1120static GlobalValue::DLLStorageClassTypes
1121getDecodedDLLStorageClass(unsigned Val) {
1122 switch (Val) {
1123 default: // Map unknown values to default.
1124 case 0: return GlobalValue::DefaultStorageClass;
1125 case 1: return GlobalValue::DLLImportStorageClass;
1126 case 2: return GlobalValue::DLLExportStorageClass;
1127 }
1128}
1129
1130static bool getDecodedDSOLocal(unsigned Val) {
1131 switch(Val) {
1132 default: // Map unknown values to preemptable.
1133 case 0: return false;
1134 case 1: return true;
1135 }
1136}
1137
1138static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1139 switch (Val) {
1140 case 0: return GlobalVariable::NotThreadLocal;
1141 default: // Map unknown non-zero value to general dynamic.
1142 case 1: return GlobalVariable::GeneralDynamicTLSModel;
1143 case 2: return GlobalVariable::LocalDynamicTLSModel;
1144 case 3: return GlobalVariable::InitialExecTLSModel;
1145 case 4: return GlobalVariable::LocalExecTLSModel;
1146 }
1147}
1148
1149static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1150 switch (Val) {
1151 default: // Map unknown to UnnamedAddr::None.
1152 case 0: return GlobalVariable::UnnamedAddr::None;
1153 case 1: return GlobalVariable::UnnamedAddr::Global;
1154 case 2: return GlobalVariable::UnnamedAddr::Local;
1155 }
1156}
1157
1158static int getDecodedCastOpcode(unsigned Val) {
1159 switch (Val) {
1160 default: return -1;
1161 case bitc::CAST_TRUNC : return Instruction::Trunc;
1162 case bitc::CAST_ZEXT : return Instruction::ZExt;
1163 case bitc::CAST_SEXT : return Instruction::SExt;
1164 case bitc::CAST_FPTOUI : return Instruction::FPToUI;
1165 case bitc::CAST_FPTOSI : return Instruction::FPToSI;
1166 case bitc::CAST_UITOFP : return Instruction::UIToFP;
1167 case bitc::CAST_SITOFP : return Instruction::SIToFP;
1168 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1169 case bitc::CAST_FPEXT : return Instruction::FPExt;
1170 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1171 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1172 case bitc::CAST_BITCAST : return Instruction::BitCast;
1173 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1174 }
1175}
1176
1177static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1178 bool IsFP = Ty->isFPOrFPVectorTy();
1179 // UnOps are only valid for int/fp or vector of int/fp types
1180 if (!IsFP && !Ty->isIntOrIntVectorTy())
1181 return -1;
1182
1183 switch (Val) {
1184 default:
1185 return -1;
1186 case bitc::UNOP_FNEG:
1187 return IsFP ? Instruction::FNeg : -1;
1188 }
1189}
1190
1191static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1192 bool IsFP = Ty->isFPOrFPVectorTy();
1193 // BinOps are only valid for int/fp or vector of int/fp types
1194 if (!IsFP && !Ty->isIntOrIntVectorTy())
1195 return -1;
1196
1197 switch (Val) {
1198 default:
1199 return -1;
1200 case bitc::BINOP_ADD:
1201 return IsFP ? Instruction::FAdd : Instruction::Add;
1202 case bitc::BINOP_SUB:
1203 return IsFP ? Instruction::FSub : Instruction::Sub;
1204 case bitc::BINOP_MUL:
1205 return IsFP ? Instruction::FMul : Instruction::Mul;
1206 case bitc::BINOP_UDIV:
1207 return IsFP ? -1 : Instruction::UDiv;
1208 case bitc::BINOP_SDIV:
1209 return IsFP ? Instruction::FDiv : Instruction::SDiv;
1210 case bitc::BINOP_UREM:
1211 return IsFP ? -1 : Instruction::URem;
1212 case bitc::BINOP_SREM:
1213 return IsFP ? Instruction::FRem : Instruction::SRem;
1214 case bitc::BINOP_SHL:
1215 return IsFP ? -1 : Instruction::Shl;
1216 case bitc::BINOP_LSHR:
1217 return IsFP ? -1 : Instruction::LShr;
1218 case bitc::BINOP_ASHR:
1219 return IsFP ? -1 : Instruction::AShr;
1220 case bitc::BINOP_AND:
1221 return IsFP ? -1 : Instruction::And;
1222 case bitc::BINOP_OR:
1223 return IsFP ? -1 : Instruction::Or;
1224 case bitc::BINOP_XOR:
1225 return IsFP ? -1 : Instruction::Xor;
1226 }
1227}
1228
1229static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1230 switch (Val) {
1231 default: return AtomicRMWInst::BAD_BINOP;
1232 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1233 case bitc::RMW_ADD: return AtomicRMWInst::Add;
1234 case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1235 case bitc::RMW_AND: return AtomicRMWInst::And;
1236 case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1237 case bitc::RMW_OR: return AtomicRMWInst::Or;
1238 case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1239 case bitc::RMW_MAX: return AtomicRMWInst::Max;
1240 case bitc::RMW_MIN: return AtomicRMWInst::Min;
1241 case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1242 case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1243 case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1244 case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1245 case bitc::RMW_FMAX: return AtomicRMWInst::FMax;
1246 case bitc::RMW_FMIN: return AtomicRMWInst::FMin;
1247 }
1248}
1249
1250static AtomicOrdering getDecodedOrdering(unsigned Val) {
1251 switch (Val) {
1252 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1253 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1254 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1255 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1256 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1257 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1258 default: // Map unknown orderings to sequentially-consistent.
1259 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1260 }
1261}
1262
1263static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1264 switch (Val) {
1265 default: // Map unknown selection kinds to any.
1266 case bitc::COMDAT_SELECTION_KIND_ANY:
1267 return Comdat::Any;
1268 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1269 return Comdat::ExactMatch;
1270 case bitc::COMDAT_SELECTION_KIND_LARGEST:
1271 return Comdat::Largest;
1272 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1273 return Comdat::NoDeduplicate;
1274 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1275 return Comdat::SameSize;
1276 }
1277}
1278
1279static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1280 FastMathFlags FMF;
1281 if (0 != (Val & bitc::UnsafeAlgebra))
1282 FMF.setFast();
1283 if (0 != (Val & bitc::AllowReassoc))
1284 FMF.setAllowReassoc();
1285 if (0 != (Val & bitc::NoNaNs))
1286 FMF.setNoNaNs();
1287 if (0 != (Val & bitc::NoInfs))
1288 FMF.setNoInfs();
1289 if (0 != (Val & bitc::NoSignedZeros))
1290 FMF.setNoSignedZeros();
1291 if (0 != (Val & bitc::AllowReciprocal))
1292 FMF.setAllowReciprocal();
1293 if (0 != (Val & bitc::AllowContract))
1294 FMF.setAllowContract(true);
1295 if (0 != (Val & bitc::ApproxFunc))
1296 FMF.setApproxFunc();
1297 return FMF;
1298}
1299
1300static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1301 switch (Val) {
1302 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1303 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1304 }
1305}
1306
1307Type *BitcodeReader::getTypeByID(unsigned ID) {
1308 // The type table size is always specified correctly.
1309 if (ID >= TypeList.size())
1310 return nullptr;
1311
1312 if (Type *Ty = TypeList[ID])
1313 return Ty;
1314
1315 // If we have a forward reference, the only possible case is when it is to a
1316 // named struct. Just create a placeholder for now.
1317 return TypeList[ID] = createIdentifiedStructType(Context);
1318}
1319
1320unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) {
1321 auto It = ContainedTypeIDs.find(ID);
1322 if (It == ContainedTypeIDs.end())
1323 return InvalidTypeID;
1324
1325 if (Idx >= It->second.size())
1326 return InvalidTypeID;
1327
1328 return It->second[Idx];
1329}
1330
1331Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) {
1332 if (ID >= TypeList.size())
1333 return nullptr;
1334
1335 Type *Ty = TypeList[ID];
1336 if (!Ty->isPointerTy())
1337 return nullptr;
1338
1339 Type *ElemTy = getTypeByID(getContainedTypeID(ID, 0));
1340 if (!ElemTy)
1341 return nullptr;
1342
1343 assert(cast<PointerType>(Ty)->isOpaqueOrPointeeTypeMatches(ElemTy) &&(static_cast <bool> (cast<PointerType>(Ty)->isOpaqueOrPointeeTypeMatches
(ElemTy) && "Incorrect element type") ? void (0) : __assert_fail
("cast<PointerType>(Ty)->isOpaqueOrPointeeTypeMatches(ElemTy) && \"Incorrect element type\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 1344, __extension__
__PRETTY_FUNCTION__))
1344 "Incorrect element type")(static_cast <bool> (cast<PointerType>(Ty)->isOpaqueOrPointeeTypeMatches
(ElemTy) && "Incorrect element type") ? void (0) : __assert_fail
("cast<PointerType>(Ty)->isOpaqueOrPointeeTypeMatches(ElemTy) && \"Incorrect element type\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 1344, __extension__
__PRETTY_FUNCTION__))
;
1345 return ElemTy;
1346}
1347
1348unsigned BitcodeReader::getVirtualTypeID(Type *Ty,
1349 ArrayRef<unsigned> ChildTypeIDs) {
1350 unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0];
1351 auto CacheKey = std::make_pair(Ty, ChildTypeID);
1352 auto It = VirtualTypeIDs.find(CacheKey);
1353 if (It != VirtualTypeIDs.end()) {
1354 // The cmpxchg return value is the only place we need more than one
1355 // contained type ID, however the second one will always be the same (i1),
1356 // so we don't need to include it in the cache key. This asserts that the
1357 // contained types are indeed as expected and there are no collisions.
1358 assert((ChildTypeIDs.empty() ||(static_cast <bool> ((ChildTypeIDs.empty() || ContainedTypeIDs
[It->second] == ChildTypeIDs) && "Incorrect cached contained type IDs"
) ? void (0) : __assert_fail ("(ChildTypeIDs.empty() || ContainedTypeIDs[It->second] == ChildTypeIDs) && \"Incorrect cached contained type IDs\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 1360, __extension__
__PRETTY_FUNCTION__))
1359 ContainedTypeIDs[It->second] == ChildTypeIDs) &&(static_cast <bool> ((ChildTypeIDs.empty() || ContainedTypeIDs
[It->second] == ChildTypeIDs) && "Incorrect cached contained type IDs"
) ? void (0) : __assert_fail ("(ChildTypeIDs.empty() || ContainedTypeIDs[It->second] == ChildTypeIDs) && \"Incorrect cached contained type IDs\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 1360, __extension__
__PRETTY_FUNCTION__))
1360 "Incorrect cached contained type IDs")(static_cast <bool> ((ChildTypeIDs.empty() || ContainedTypeIDs
[It->second] == ChildTypeIDs) && "Incorrect cached contained type IDs"
) ? void (0) : __assert_fail ("(ChildTypeIDs.empty() || ContainedTypeIDs[It->second] == ChildTypeIDs) && \"Incorrect cached contained type IDs\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 1360, __extension__
__PRETTY_FUNCTION__))
;
1361 return It->second;
1362 }
1363
1364#ifndef NDEBUG
1365 if (!Ty->isOpaquePointerTy()) {
1366 assert(Ty->getNumContainedTypes() == ChildTypeIDs.size() &&(static_cast <bool> (Ty->getNumContainedTypes() == ChildTypeIDs
.size() && "Wrong number of contained types") ? void (
0) : __assert_fail ("Ty->getNumContainedTypes() == ChildTypeIDs.size() && \"Wrong number of contained types\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 1367, __extension__
__PRETTY_FUNCTION__))
1367 "Wrong number of contained types")(static_cast <bool> (Ty->getNumContainedTypes() == ChildTypeIDs
.size() && "Wrong number of contained types") ? void (
0) : __assert_fail ("Ty->getNumContainedTypes() == ChildTypeIDs.size() && \"Wrong number of contained types\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 1367, __extension__
__PRETTY_FUNCTION__))
;
1368 for (auto Pair : zip(Ty->subtypes(), ChildTypeIDs)) {
1369 assert(std::get<0>(Pair) == getTypeByID(std::get<1>(Pair)) &&(static_cast <bool> (std::get<0>(Pair) == getTypeByID
(std::get<1>(Pair)) && "Incorrect contained type ID"
) ? void (0) : __assert_fail ("std::get<0>(Pair) == getTypeByID(std::get<1>(Pair)) && \"Incorrect contained type ID\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 1370, __extension__
__PRETTY_FUNCTION__))
1370 "Incorrect contained type ID")(static_cast <bool> (std::get<0>(Pair) == getTypeByID
(std::get<1>(Pair)) && "Incorrect contained type ID"
) ? void (0) : __assert_fail ("std::get<0>(Pair) == getTypeByID(std::get<1>(Pair)) && \"Incorrect contained type ID\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 1370, __extension__
__PRETTY_FUNCTION__))
;
1371 }
1372 }
1373#endif
1374
1375 unsigned TypeID = TypeList.size();
1376 TypeList.push_back(Ty);
1377 if (!ChildTypeIDs.empty())
1378 append_range(ContainedTypeIDs[TypeID], ChildTypeIDs);
1379 VirtualTypeIDs.insert({CacheKey, TypeID});
1380 return TypeID;
1381}
1382
1383static bool isConstExprSupported(uint8_t Opcode) {
1384 // These are not real constant expressions, always consider them supported.
1385 if (Opcode >= BitcodeConstant::FirstSpecialOpcode)
1386 return true;
1387
1388 // If -expand-constant-exprs is set, we want to consider all expressions
1389 // as unsupported.
1390 if (ExpandConstantExprs)
1391 return false;
1392
1393 if (Instruction::isBinaryOp(Opcode))
1394 return ConstantExpr::isSupportedBinOp(Opcode);
1395
1396 return Opcode != Instruction::FNeg;
1397}
1398
1399Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID,
1400 BasicBlock *InsertBB) {
1401 // Quickly handle the case where there is no BitcodeConstant to resolve.
1402 if (StartValID < ValueList.size() && ValueList[StartValID] &&
1403 !isa<BitcodeConstant>(ValueList[StartValID]))
1404 return ValueList[StartValID];
1405
1406 SmallDenseMap<unsigned, Value *> MaterializedValues;
1407 SmallVector<unsigned> Worklist;
1408 Worklist.push_back(StartValID);
1409 while (!Worklist.empty()) {
1410 unsigned ValID = Worklist.back();
1411 if (MaterializedValues.count(ValID)) {
1412 // Duplicate expression that was already handled.
1413 Worklist.pop_back();
1414 continue;
1415 }
1416
1417 if (ValID >= ValueList.size() || !ValueList[ValID])
1418 return error("Invalid value ID");
1419
1420 Value *V = ValueList[ValID];
1421 auto *BC = dyn_cast<BitcodeConstant>(V);
1422 if (!BC) {
1423 MaterializedValues.insert({ValID, V});
1424 Worklist.pop_back();
1425 continue;
1426 }
1427
1428 // Iterate in reverse, so values will get popped from the worklist in
1429 // expected order.
1430 SmallVector<Value *> Ops;
1431 for (unsigned OpID : reverse(BC->getOperandIDs())) {
1432 auto It = MaterializedValues.find(OpID);
1433 if (It != MaterializedValues.end())
1434 Ops.push_back(It->second);
1435 else
1436 Worklist.push_back(OpID);
1437 }
1438
1439 // Some expressions have not been resolved yet, handle them first and then
1440 // revisit this one.
1441 if (Ops.size() != BC->getOperandIDs().size())
1442 continue;
1443 std::reverse(Ops.begin(), Ops.end());
1444
1445 SmallVector<Constant *> ConstOps;
1446 for (Value *Op : Ops)
1447 if (auto *C = dyn_cast<Constant>(Op))
1448 ConstOps.push_back(C);
1449
1450 // Materialize as constant expression if possible.
1451 if (isConstExprSupported(BC->Opcode) && ConstOps.size() == Ops.size()) {
1452 Constant *C;
1453 if (Instruction::isCast(BC->Opcode)) {
1454 C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType());
1455 if (!C)
1456 C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType());
1457 } else if (Instruction::isBinaryOp(BC->Opcode)) {
1458 C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags);
1459 } else {
1460 switch (BC->Opcode) {
1461 case BitcodeConstant::NoCFIOpcode: {
1462 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1463 if (!GV)
1464 return error("no_cfi operand must be GlobalValue");
1465 C = NoCFIValue::get(GV);
1466 break;
1467 }
1468 case BitcodeConstant::DSOLocalEquivalentOpcode: {
1469 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]);
1470 if (!GV)
1471 return error("dso_local operand must be GlobalValue");
1472 C = DSOLocalEquivalent::get(GV);
1473 break;
1474 }
1475 case BitcodeConstant::BlockAddressOpcode: {
1476 Function *Fn = dyn_cast<Function>(ConstOps[0]);
1477 if (!Fn)
1478 return error("blockaddress operand must be a function");
1479
1480 // If the function is already parsed we can insert the block address
1481 // right away.
1482 BasicBlock *BB;
1483 unsigned BBID = BC->Extra;
1484 if (!BBID)
1485 // Invalid reference to entry block.
1486 return error("Invalid ID");
1487 if (!Fn->empty()) {
1488 Function::iterator BBI = Fn->begin(), BBE = Fn->end();
1489 for (size_t I = 0, E = BBID; I != E; ++I) {
1490 if (BBI == BBE)
1491 return error("Invalid ID");
1492 ++BBI;
1493 }
1494 BB = &*BBI;
1495 } else {
1496 // Otherwise insert a placeholder and remember it so it can be
1497 // inserted when the function is parsed.
1498 auto &FwdBBs = BasicBlockFwdRefs[Fn];
1499 if (FwdBBs.empty())
1500 BasicBlockFwdRefQueue.push_back(Fn);
1501 if (FwdBBs.size() < BBID + 1)
1502 FwdBBs.resize(BBID + 1);
1503 if (!FwdBBs[BBID])
1504 FwdBBs[BBID] = BasicBlock::Create(Context);
1505 BB = FwdBBs[BBID];
1506 }
1507 C = BlockAddress::get(Fn, BB);
1508 break;
1509 }
1510 case BitcodeConstant::ConstantStructOpcode:
1511 C = ConstantStruct::get(cast<StructType>(BC->getType()), ConstOps);
1512 break;
1513 case BitcodeConstant::ConstantArrayOpcode:
1514 C = ConstantArray::get(cast<ArrayType>(BC->getType()), ConstOps);
1515 break;
1516 case BitcodeConstant::ConstantVectorOpcode:
1517 C = ConstantVector::get(ConstOps);
1518 break;
1519 case Instruction::ICmp:
1520 case Instruction::FCmp:
1521 C = ConstantExpr::getCompare(BC->Flags, ConstOps[0], ConstOps[1]);
1522 break;
1523 case Instruction::GetElementPtr:
1524 C = ConstantExpr::getGetElementPtr(
1525 BC->SrcElemTy, ConstOps[0], makeArrayRef(ConstOps).drop_front(),
1526 BC->Flags, BC->getInRangeIndex());
1527 break;
1528 case Instruction::Select:
1529 C = ConstantExpr::getSelect(ConstOps[0], ConstOps[1], ConstOps[2]);
1530 break;
1531 case Instruction::ExtractElement:
1532 C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]);
1533 break;
1534 case Instruction::InsertElement:
1535 C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1],
1536 ConstOps[2]);
1537 break;
1538 case Instruction::ShuffleVector: {
1539 SmallVector<int, 16> Mask;
1540 ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask);
1541 C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask);
1542 break;
1543 }
1544 default:
1545 llvm_unreachable("Unhandled bitcode constant")::llvm::llvm_unreachable_internal("Unhandled bitcode constant"
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 1545)
;
1546 }
1547 }
1548
1549 // Cache resolved constant.
1550 ValueList.replaceValueWithoutRAUW(ValID, C);
1551 MaterializedValues.insert({ValID, C});
1552 Worklist.pop_back();
1553 continue;
1554 }
1555
1556 if (!InsertBB)
1557 return error(Twine("Value referenced by initializer is an unsupported "
1558 "constant expression of type ") +
1559 BC->getOpcodeName());
1560
1561 // Materialize as instructions if necessary.
1562 Instruction *I;
1563 if (Instruction::isCast(BC->Opcode)) {
1564 I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0],
1565 BC->getType(), "constexpr", InsertBB);
1566 } else if (Instruction::isUnaryOp(BC->Opcode)) {
1567 I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0],
1568 "constexpr", InsertBB);
1569 } else if (Instruction::isBinaryOp(BC->Opcode)) {
1570 I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0],
1571 Ops[1], "constexpr", InsertBB);
1572 if (isa<OverflowingBinaryOperator>(I)) {
1573 if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap)
1574 I->setHasNoSignedWrap();
1575 if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap)
1576 I->setHasNoUnsignedWrap();
1577 }
1578 if (isa<PossiblyExactOperator>(I) &&
1579 (BC->Flags & PossiblyExactOperator::IsExact))
1580 I->setIsExact();
1581 } else {
1582 switch (BC->Opcode) {
1583 case BitcodeConstant::ConstantVectorOpcode: {
1584 Type *IdxTy = Type::getInt32Ty(BC->getContext());
1585 Value *V = PoisonValue::get(BC->getType());
1586 for (auto Pair : enumerate(Ops)) {
1587 Value *Idx = ConstantInt::get(IdxTy, Pair.index());
1588 V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins",
1589 InsertBB);
1590 }
1591 I = cast<Instruction>(V);
1592 break;
1593 }
1594 case BitcodeConstant::ConstantStructOpcode:
1595 case BitcodeConstant::ConstantArrayOpcode: {
1596 Value *V = PoisonValue::get(BC->getType());
1597 for (auto Pair : enumerate(Ops))
1598 V = InsertValueInst::Create(V, Pair.value(), Pair.index(),
1599 "constexpr.ins", InsertBB);
1600 I = cast<Instruction>(V);
1601 break;
1602 }
1603 case Instruction::ICmp:
1604 case Instruction::FCmp:
1605 I = CmpInst::Create((Instruction::OtherOps)BC->Opcode,
1606 (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1],
1607 "constexpr", InsertBB);
1608 break;
1609 case Instruction::GetElementPtr:
1610 I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0],
1611 makeArrayRef(Ops).drop_front(),
1612 "constexpr", InsertBB);
1613 if (BC->Flags)
1614 cast<GetElementPtrInst>(I)->setIsInBounds();
1615 break;
1616 case Instruction::Select:
1617 I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB);
1618 break;
1619 case Instruction::ExtractElement:
1620 I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB);
1621 break;
1622 case Instruction::InsertElement:
1623 I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr",
1624 InsertBB);
1625 break;
1626 case Instruction::ShuffleVector:
1627 I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr",
1628 InsertBB);
1629 break;
1630 default:
1631 llvm_unreachable("Unhandled bitcode constant")::llvm::llvm_unreachable_internal("Unhandled bitcode constant"
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 1631)
;
1632 }
1633 }
1634
1635 MaterializedValues.insert({ValID, I});
1636 Worklist.pop_back();
1637 }
1638
1639 return MaterializedValues[StartValID];
1640}
1641
1642Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) {
1643 Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr);
1644 if (!MaybeV)
1645 return MaybeV.takeError();
1646
1647 // Result must be Constant if InsertBB is nullptr.
1648 return cast<Constant>(MaybeV.get());
1649}
1650
1651StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1652 StringRef Name) {
1653 auto *Ret = StructType::create(Context, Name);
1654 IdentifiedStructTypes.push_back(Ret);
1655 return Ret;
1656}
1657
1658StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1659 auto *Ret = StructType::create(Context);
1660 IdentifiedStructTypes.push_back(Ret);
1661 return Ret;
1662}
1663
1664//===----------------------------------------------------------------------===//
1665// Functions for parsing blocks from the bitcode file
1666//===----------------------------------------------------------------------===//
1667
1668static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1669 switch (Val) {
1670 case Attribute::EndAttrKinds:
1671 case Attribute::EmptyKey:
1672 case Attribute::TombstoneKey:
1673 llvm_unreachable("Synthetic enumerators which should never get here")::llvm::llvm_unreachable_internal("Synthetic enumerators which should never get here"
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 1673)
;
1674
1675 case Attribute::None: return 0;
1676 case Attribute::ZExt: return 1 << 0;
1677 case Attribute::SExt: return 1 << 1;
1678 case Attribute::NoReturn: return 1 << 2;
1679 case Attribute::InReg: return 1 << 3;
1680 case Attribute::StructRet: return 1 << 4;
1681 case Attribute::NoUnwind: return 1 << 5;
1682 case Attribute::NoAlias: return 1 << 6;
1683 case Attribute::ByVal: return 1 << 7;
1684 case Attribute::Nest: return 1 << 8;
1685 case Attribute::ReadNone: return 1 << 9;
1686 case Attribute::ReadOnly: return 1 << 10;
1687 case Attribute::NoInline: return 1 << 11;
1688 case Attribute::AlwaysInline: return 1 << 12;
1689 case Attribute::OptimizeForSize: return 1 << 13;
1690 case Attribute::StackProtect: return 1 << 14;
1691 case Attribute::StackProtectReq: return 1 << 15;
1692 case Attribute::Alignment: return 31 << 16;
1693 case Attribute::NoCapture: return 1 << 21;
1694 case Attribute::NoRedZone: return 1 << 22;
1695 case Attribute::NoImplicitFloat: return 1 << 23;
1696 case Attribute::Naked: return 1 << 24;
1697 case Attribute::InlineHint: return 1 << 25;
1698 case Attribute::StackAlignment: return 7 << 26;
1699 case Attribute::ReturnsTwice: return 1 << 29;
1700 case Attribute::UWTable: return 1 << 30;
1701 case Attribute::NonLazyBind: return 1U << 31;
1702 case Attribute::SanitizeAddress: return 1ULL << 32;
1703 case Attribute::MinSize: return 1ULL << 33;
1704 case Attribute::NoDuplicate: return 1ULL << 34;
1705 case Attribute::StackProtectStrong: return 1ULL << 35;
1706 case Attribute::SanitizeThread: return 1ULL << 36;
1707 case Attribute::SanitizeMemory: return 1ULL << 37;
1708 case Attribute::NoBuiltin: return 1ULL << 38;
1709 case Attribute::Returned: return 1ULL << 39;
1710 case Attribute::Cold: return 1ULL << 40;
1711 case Attribute::Builtin: return 1ULL << 41;
1712 case Attribute::OptimizeNone: return 1ULL << 42;
1713 case Attribute::InAlloca: return 1ULL << 43;
1714 case Attribute::NonNull: return 1ULL << 44;
1715 case Attribute::JumpTable: return 1ULL << 45;
1716 case Attribute::Convergent: return 1ULL << 46;
1717 case Attribute::SafeStack: return 1ULL << 47;
1718 case Attribute::NoRecurse: return 1ULL << 48;
1719 case Attribute::InaccessibleMemOnly: return 1ULL << 49;
1720 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1721 case Attribute::SwiftSelf: return 1ULL << 51;
1722 case Attribute::SwiftError: return 1ULL << 52;
1723 case Attribute::WriteOnly: return 1ULL << 53;
1724 case Attribute::Speculatable: return 1ULL << 54;
1725 case Attribute::StrictFP: return 1ULL << 55;
1726 case Attribute::SanitizeHWAddress: return 1ULL << 56;
1727 case Attribute::NoCfCheck: return 1ULL << 57;
1728 case Attribute::OptForFuzzing: return 1ULL << 58;
1729 case Attribute::ShadowCallStack: return 1ULL << 59;
1730 case Attribute::SpeculativeLoadHardening:
1731 return 1ULL << 60;
1732 case Attribute::ImmArg:
1733 return 1ULL << 61;
1734 case Attribute::WillReturn:
1735 return 1ULL << 62;
1736 case Attribute::NoFree:
1737 return 1ULL << 63;
1738 default:
1739 // Other attributes are not supported in the raw format,
1740 // as we ran out of space.
1741 return 0;
1742 }
1743 llvm_unreachable("Unsupported attribute type")::llvm::llvm_unreachable_internal("Unsupported attribute type"
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 1743)
;
1744}
1745
1746static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1747 if (!Val) return;
1748
1749 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1750 I = Attribute::AttrKind(I + 1)) {
1751 if (uint64_t A = (Val & getRawAttributeMask(I))) {
1752 if (I == Attribute::Alignment)
1753 B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1754 else if (I == Attribute::StackAlignment)
1755 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1756 else if (Attribute::isTypeAttrKind(I))
1757 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1758 else
1759 B.addAttribute(I);
1760 }
1761 }
1762}
1763
1764/// This fills an AttrBuilder object with the LLVM attributes that have
1765/// been decoded from the given integer. This function must stay in sync with
1766/// 'encodeLLVMAttributesForBitcode'.
1767static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1768 uint64_t EncodedAttrs) {
1769 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift
1770 // the bits above 31 down by 11 bits.
1771 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1772 assert((!Alignment || isPowerOf2_32(Alignment)) &&(static_cast <bool> ((!Alignment || isPowerOf2_32(Alignment
)) && "Alignment must be a power of two.") ? void (0)
: __assert_fail ("(!Alignment || isPowerOf2_32(Alignment)) && \"Alignment must be a power of two.\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 1773, __extension__
__PRETTY_FUNCTION__))
1773 "Alignment must be a power of two.")(static_cast <bool> ((!Alignment || isPowerOf2_32(Alignment
)) && "Alignment must be a power of two.") ? void (0)
: __assert_fail ("(!Alignment || isPowerOf2_32(Alignment)) && \"Alignment must be a power of two.\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 1773, __extension__
__PRETTY_FUNCTION__))
;
1774
1775 if (Alignment)
1776 B.addAlignmentAttr(Alignment);
1777 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1778 (EncodedAttrs & 0xffff));
1779}
1780
1781Error BitcodeReader::parseAttributeBlock() {
1782 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1783 return Err;
1784
1785 if (!MAttributes.empty())
1786 return error("Invalid multiple blocks");
1787
1788 SmallVector<uint64_t, 64> Record;
1789
1790 SmallVector<AttributeList, 8> Attrs;
1791
1792 // Read all the records.
1793 while (true) {
1794 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1795 if (!MaybeEntry)
1796 return MaybeEntry.takeError();
1797 BitstreamEntry Entry = MaybeEntry.get();
1798
1799 switch (Entry.Kind) {
1800 case BitstreamEntry::SubBlock: // Handled for us already.
1801 case BitstreamEntry::Error:
1802 return error("Malformed block");
1803 case BitstreamEntry::EndBlock:
1804 return Error::success();
1805 case BitstreamEntry::Record:
1806 // The interesting case.
1807 break;
1808 }
1809
1810 // Read a record.
1811 Record.clear();
1812 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1813 if (!MaybeRecord)
1814 return MaybeRecord.takeError();
1815 switch (MaybeRecord.get()) {
1816 default: // Default behavior: ignore.
1817 break;
1818 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1819 // Deprecated, but still needed to read old bitcode files.
1820 if (Record.size() & 1)
1821 return error("Invalid parameter attribute record");
1822
1823 for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1824 AttrBuilder B(Context);
1825 decodeLLVMAttributesForBitcode(B, Record[i+1]);
1826 Attrs.push_back(AttributeList::get(Context, Record[i], B));
1827 }
1828
1829 MAttributes.push_back(AttributeList::get(Context, Attrs));
1830 Attrs.clear();
1831 break;
1832 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1833 for (unsigned i = 0, e = Record.size(); i != e; ++i)
1834 Attrs.push_back(MAttributeGroups[Record[i]]);
1835
1836 MAttributes.push_back(AttributeList::get(Context, Attrs));
1837 Attrs.clear();
1838 break;
1839 }
1840 }
1841}
1842
1843// Returns Attribute::None on unrecognized codes.
1844static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1845 switch (Code) {
1846 default:
1847 return Attribute::None;
1848 case bitc::ATTR_KIND_ALIGNMENT:
1849 return Attribute::Alignment;
1850 case bitc::ATTR_KIND_ALWAYS_INLINE:
1851 return Attribute::AlwaysInline;
1852 case bitc::ATTR_KIND_ARGMEMONLY:
1853 return Attribute::ArgMemOnly;
1854 case bitc::ATTR_KIND_BUILTIN:
1855 return Attribute::Builtin;
1856 case bitc::ATTR_KIND_BY_VAL:
1857 return Attribute::ByVal;
1858 case bitc::ATTR_KIND_IN_ALLOCA:
1859 return Attribute::InAlloca;
1860 case bitc::ATTR_KIND_COLD:
1861 return Attribute::Cold;
1862 case bitc::ATTR_KIND_CONVERGENT:
1863 return Attribute::Convergent;
1864 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
1865 return Attribute::DisableSanitizerInstrumentation;
1866 case bitc::ATTR_KIND_ELEMENTTYPE:
1867 return Attribute::ElementType;
1868 case bitc::ATTR_KIND_FNRETTHUNK_EXTERN:
1869 return Attribute::FnRetThunkExtern;
1870 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1871 return Attribute::InaccessibleMemOnly;
1872 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1873 return Attribute::InaccessibleMemOrArgMemOnly;
1874 case bitc::ATTR_KIND_INLINE_HINT:
1875 return Attribute::InlineHint;
1876 case bitc::ATTR_KIND_IN_REG:
1877 return Attribute::InReg;
1878 case bitc::ATTR_KIND_JUMP_TABLE:
1879 return Attribute::JumpTable;
1880 case bitc::ATTR_KIND_MIN_SIZE:
1881 return Attribute::MinSize;
1882 case bitc::ATTR_KIND_NAKED:
1883 return Attribute::Naked;
1884 case bitc::ATTR_KIND_NEST:
1885 return Attribute::Nest;
1886 case bitc::ATTR_KIND_NO_ALIAS:
1887 return Attribute::NoAlias;
1888 case bitc::ATTR_KIND_NO_BUILTIN:
1889 return Attribute::NoBuiltin;
1890 case bitc::ATTR_KIND_NO_CALLBACK:
1891 return Attribute::NoCallback;
1892 case bitc::ATTR_KIND_NO_CAPTURE:
1893 return Attribute::NoCapture;
1894 case bitc::ATTR_KIND_NO_DUPLICATE:
1895 return Attribute::NoDuplicate;
1896 case bitc::ATTR_KIND_NOFREE:
1897 return Attribute::NoFree;
1898 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1899 return Attribute::NoImplicitFloat;
1900 case bitc::ATTR_KIND_NO_INLINE:
1901 return Attribute::NoInline;
1902 case bitc::ATTR_KIND_NO_RECURSE:
1903 return Attribute::NoRecurse;
1904 case bitc::ATTR_KIND_NO_MERGE:
1905 return Attribute::NoMerge;
1906 case bitc::ATTR_KIND_NON_LAZY_BIND:
1907 return Attribute::NonLazyBind;
1908 case bitc::ATTR_KIND_NON_NULL:
1909 return Attribute::NonNull;
1910 case bitc::ATTR_KIND_DEREFERENCEABLE:
1911 return Attribute::Dereferenceable;
1912 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1913 return Attribute::DereferenceableOrNull;
1914 case bitc::ATTR_KIND_ALLOC_ALIGN:
1915 return Attribute::AllocAlign;
1916 case bitc::ATTR_KIND_ALLOC_KIND:
1917 return Attribute::AllocKind;
1918 case bitc::ATTR_KIND_ALLOC_SIZE:
1919 return Attribute::AllocSize;
1920 case bitc::ATTR_KIND_ALLOCATED_POINTER:
1921 return Attribute::AllocatedPointer;
1922 case bitc::ATTR_KIND_NO_RED_ZONE:
1923 return Attribute::NoRedZone;
1924 case bitc::ATTR_KIND_NO_RETURN:
1925 return Attribute::NoReturn;
1926 case bitc::ATTR_KIND_NOSYNC:
1927 return Attribute::NoSync;
1928 case bitc::ATTR_KIND_NOCF_CHECK:
1929 return Attribute::NoCfCheck;
1930 case bitc::ATTR_KIND_NO_PROFILE:
1931 return Attribute::NoProfile;
1932 case bitc::ATTR_KIND_SKIP_PROFILE:
1933 return Attribute::SkipProfile;
1934 case bitc::ATTR_KIND_NO_UNWIND:
1935 return Attribute::NoUnwind;
1936 case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS:
1937 return Attribute::NoSanitizeBounds;
1938 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
1939 return Attribute::NoSanitizeCoverage;
1940 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
1941 return Attribute::NullPointerIsValid;
1942 case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1943 return Attribute::OptForFuzzing;
1944 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1945 return Attribute::OptimizeForSize;
1946 case bitc::ATTR_KIND_OPTIMIZE_NONE:
1947 return Attribute::OptimizeNone;
1948 case bitc::ATTR_KIND_READ_NONE:
1949 return Attribute::ReadNone;
1950 case bitc::ATTR_KIND_READ_ONLY:
1951 return Attribute::ReadOnly;
1952 case bitc::ATTR_KIND_RETURNED:
1953 return Attribute::Returned;
1954 case bitc::ATTR_KIND_RETURNS_TWICE:
1955 return Attribute::ReturnsTwice;
1956 case bitc::ATTR_KIND_S_EXT:
1957 return Attribute::SExt;
1958 case bitc::ATTR_KIND_SPECULATABLE:
1959 return Attribute::Speculatable;
1960 case bitc::ATTR_KIND_STACK_ALIGNMENT:
1961 return Attribute::StackAlignment;
1962 case bitc::ATTR_KIND_STACK_PROTECT:
1963 return Attribute::StackProtect;
1964 case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1965 return Attribute::StackProtectReq;
1966 case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1967 return Attribute::StackProtectStrong;
1968 case bitc::ATTR_KIND_SAFESTACK:
1969 return Attribute::SafeStack;
1970 case bitc::ATTR_KIND_SHADOWCALLSTACK:
1971 return Attribute::ShadowCallStack;
1972 case bitc::ATTR_KIND_STRICT_FP:
1973 return Attribute::StrictFP;
1974 case bitc::ATTR_KIND_STRUCT_RET:
1975 return Attribute::StructRet;
1976 case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1977 return Attribute::SanitizeAddress;
1978 case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1979 return Attribute::SanitizeHWAddress;
1980 case bitc::ATTR_KIND_SANITIZE_THREAD:
1981 return Attribute::SanitizeThread;
1982 case bitc::ATTR_KIND_SANITIZE_MEMORY:
1983 return Attribute::SanitizeMemory;
1984 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1985 return Attribute::SpeculativeLoadHardening;
1986 case bitc::ATTR_KIND_SWIFT_ERROR:
1987 return Attribute::SwiftError;
1988 case bitc::ATTR_KIND_SWIFT_SELF:
1989 return Attribute::SwiftSelf;
1990 case bitc::ATTR_KIND_SWIFT_ASYNC:
1991 return Attribute::SwiftAsync;
1992 case bitc::ATTR_KIND_UW_TABLE:
1993 return Attribute::UWTable;
1994 case bitc::ATTR_KIND_VSCALE_RANGE:
1995 return Attribute::VScaleRange;
1996 case bitc::ATTR_KIND_WILLRETURN:
1997 return Attribute::WillReturn;
1998 case bitc::ATTR_KIND_WRITEONLY:
1999 return Attribute::WriteOnly;
2000 case bitc::ATTR_KIND_Z_EXT:
2001 return Attribute::ZExt;
2002 case bitc::ATTR_KIND_IMMARG:
2003 return Attribute::ImmArg;
2004 case bitc::ATTR_KIND_SANITIZE_MEMTAG:
2005 return Attribute::SanitizeMemTag;
2006 case bitc::ATTR_KIND_PREALLOCATED:
2007 return Attribute::Preallocated;
2008 case bitc::ATTR_KIND_NOUNDEF:
2009 return Attribute::NoUndef;
2010 case bitc::ATTR_KIND_BYREF:
2011 return Attribute::ByRef;
2012 case bitc::ATTR_KIND_MUSTPROGRESS:
2013 return Attribute::MustProgress;
2014 case bitc::ATTR_KIND_HOT:
2015 return Attribute::Hot;
2016 case bitc::ATTR_KIND_PRESPLIT_COROUTINE:
2017 return Attribute::PresplitCoroutine;
2018 }
2019}
2020
2021Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
2022 MaybeAlign &Alignment) {
2023 // Note: Alignment in bitcode files is incremented by 1, so that zero
2024 // can be used for default alignment.
2025 if (Exponent > Value::MaxAlignmentExponent + 1)
2026 return error("Invalid alignment value");
2027 Alignment = decodeMaybeAlign(Exponent);
2028 return Error::success();
2029}
2030
2031Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
2032 *Kind = getAttrFromCode(Code);
2033 if (*Kind == Attribute::None)
2034 return error("Unknown attribute kind (" + Twine(Code) + ")");
2035 return Error::success();
2036}
2037
2038Error BitcodeReader::parseAttributeGroupBlock() {
2039 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
2040 return Err;
2041
2042 if (!MAttributeGroups.empty())
2043 return error("Invalid multiple blocks");
2044
2045 SmallVector<uint64_t, 64> Record;
2046
2047 // Read all the records.
2048 while (true) {
2049 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2050 if (!MaybeEntry)
2051 return MaybeEntry.takeError();
2052 BitstreamEntry Entry = MaybeEntry.get();
2053
2054 switch (Entry.Kind) {
2055 case BitstreamEntry::SubBlock: // Handled for us already.
2056 case BitstreamEntry::Error:
2057 return error("Malformed block");
2058 case BitstreamEntry::EndBlock:
2059 return Error::success();
2060 case BitstreamEntry::Record:
2061 // The interesting case.
2062 break;
2063 }
2064
2065 // Read a record.
2066 Record.clear();
2067 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2068 if (!MaybeRecord)
2069 return MaybeRecord.takeError();
2070 switch (MaybeRecord.get()) {
2071 default: // Default behavior: ignore.
2072 break;
2073 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
2074 if (Record.size() < 3)
2075 return error("Invalid grp record");
2076
2077 uint64_t GrpID = Record[0];
2078 uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
2079
2080 AttrBuilder B(Context);
2081 for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2082 if (Record[i] == 0) { // Enum attribute
2083 Attribute::AttrKind Kind;
2084 if (Error Err = parseAttrKind(Record[++i], &Kind))
2085 return Err;
2086
2087 // Upgrade old-style byval attribute to one with a type, even if it's
2088 // nullptr. We will have to insert the real type when we associate
2089 // this AttributeList with a function.
2090 if (Kind == Attribute::ByVal)
2091 B.addByValAttr(nullptr);
2092 else if (Kind == Attribute::StructRet)
2093 B.addStructRetAttr(nullptr);
2094 else if (Kind == Attribute::InAlloca)
2095 B.addInAllocaAttr(nullptr);
2096 else if (Kind == Attribute::UWTable)
2097 B.addUWTableAttr(UWTableKind::Default);
2098 else if (Attribute::isEnumAttrKind(Kind))
2099 B.addAttribute(Kind);
2100 else
2101 return error("Not an enum attribute");
2102 } else if (Record[i] == 1) { // Integer attribute
2103 Attribute::AttrKind Kind;
2104 if (Error Err = parseAttrKind(Record[++i], &Kind))
2105 return Err;
2106 if (!Attribute::isIntAttrKind(Kind))
2107 return error("Not an int attribute");
2108 if (Kind == Attribute::Alignment)
2109 B.addAlignmentAttr(Record[++i]);
2110 else if (Kind == Attribute::StackAlignment)
2111 B.addStackAlignmentAttr(Record[++i]);
2112 else if (Kind == Attribute::Dereferenceable)
2113 B.addDereferenceableAttr(Record[++i]);
2114 else if (Kind == Attribute::DereferenceableOrNull)
2115 B.addDereferenceableOrNullAttr(Record[++i]);
2116 else if (Kind == Attribute::AllocSize)
2117 B.addAllocSizeAttrFromRawRepr(Record[++i]);
2118 else if (Kind == Attribute::VScaleRange)
2119 B.addVScaleRangeAttrFromRawRepr(Record[++i]);
2120 else if (Kind == Attribute::UWTable)
2121 B.addUWTableAttr(UWTableKind(Record[++i]));
2122 else if (Kind == Attribute::AllocKind)
2123 B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i]));
2124 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
2125 bool HasValue = (Record[i++] == 4);
2126 SmallString<64> KindStr;
2127 SmallString<64> ValStr;
2128
2129 while (Record[i] != 0 && i != e)
2130 KindStr += Record[i++];
2131 assert(Record[i] == 0 && "Kind string not null terminated")(static_cast <bool> (Record[i] == 0 && "Kind string not null terminated"
) ? void (0) : __assert_fail ("Record[i] == 0 && \"Kind string not null terminated\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 2131, __extension__
__PRETTY_FUNCTION__))
;
2132
2133 if (HasValue) {
2134 // Has a value associated with it.
2135 ++i; // Skip the '0' that terminates the "kind" string.
2136 while (Record[i] != 0 && i != e)
2137 ValStr += Record[i++];
2138 assert(Record[i] == 0 && "Value string not null terminated")(static_cast <bool> (Record[i] == 0 && "Value string not null terminated"
) ? void (0) : __assert_fail ("Record[i] == 0 && \"Value string not null terminated\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 2138, __extension__
__PRETTY_FUNCTION__))
;
2139 }
2140
2141 B.addAttribute(KindStr.str(), ValStr.str());
2142 } else if (Record[i] == 5 || Record[i] == 6) {
2143 bool HasType = Record[i] == 6;
2144 Attribute::AttrKind Kind;
2145 if (Error Err = parseAttrKind(Record[++i], &Kind))
2146 return Err;
2147 if (!Attribute::isTypeAttrKind(Kind))
2148 return error("Not a type attribute");
2149
2150 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
2151 } else {
2152 return error("Invalid attribute group entry");
2153 }
2154 }
2155
2156 UpgradeAttributes(B);
2157 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
2158 break;
2159 }
2160 }
2161 }
2162}
2163
2164Error BitcodeReader::parseTypeTable() {
2165 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
2166 return Err;
2167
2168 return parseTypeTableBody();
2169}
2170
2171Error BitcodeReader::parseTypeTableBody() {
2172 if (!TypeList.empty())
2173 return error("Invalid multiple blocks");
2174
2175 SmallVector<uint64_t, 64> Record;
2176 unsigned NumRecords = 0;
2177
2178 SmallString<64> TypeName;
2179
2180 // Read all the records for this type table.
2181 while (true) {
2182 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2183 if (!MaybeEntry)
2184 return MaybeEntry.takeError();
2185 BitstreamEntry Entry = MaybeEntry.get();
2186
2187 switch (Entry.Kind) {
2188 case BitstreamEntry::SubBlock: // Handled for us already.
2189 case BitstreamEntry::Error:
2190 return error("Malformed block");
2191 case BitstreamEntry::EndBlock:
2192 if (NumRecords != TypeList.size())
2193 return error("Malformed block");
2194 return Error::success();
2195 case BitstreamEntry::Record:
2196 // The interesting case.
2197 break;
2198 }
2199
2200 // Read a record.
2201 Record.clear();
2202 Type *ResultTy = nullptr;
2203 SmallVector<unsigned> ContainedIDs;
2204 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2205 if (!MaybeRecord)
2206 return MaybeRecord.takeError();
2207 switch (MaybeRecord.get()) {
2208 default:
2209 return error("Invalid value");
2210 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
2211 // TYPE_CODE_NUMENTRY contains a count of the number of types in the
2212 // type list. This allows us to reserve space.
2213 if (Record.empty())
2214 return error("Invalid numentry record");
2215 TypeList.resize(Record[0]);
2216 continue;
2217 case bitc::TYPE_CODE_VOID: // VOID
2218 ResultTy = Type::getVoidTy(Context);
2219 break;
2220 case bitc::TYPE_CODE_HALF: // HALF
2221 ResultTy = Type::getHalfTy(Context);
2222 break;
2223 case bitc::TYPE_CODE_BFLOAT: // BFLOAT
2224 ResultTy = Type::getBFloatTy(Context);
2225 break;
2226 case bitc::TYPE_CODE_FLOAT: // FLOAT
2227 ResultTy = Type::getFloatTy(Context);
2228 break;
2229 case bitc::TYPE_CODE_DOUBLE: // DOUBLE
2230 ResultTy = Type::getDoubleTy(Context);
2231 break;
2232 case bitc::TYPE_CODE_X86_FP80: // X86_FP80
2233 ResultTy = Type::getX86_FP80Ty(Context);
2234 break;
2235 case bitc::TYPE_CODE_FP128: // FP128
2236 ResultTy = Type::getFP128Ty(Context);
2237 break;
2238 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
2239 ResultTy = Type::getPPC_FP128Ty(Context);
2240 break;
2241 case bitc::TYPE_CODE_LABEL: // LABEL
2242 ResultTy = Type::getLabelTy(Context);
2243 break;
2244 case bitc::TYPE_CODE_METADATA: // METADATA
2245 ResultTy = Type::getMetadataTy(Context);
2246 break;
2247 case bitc::TYPE_CODE_X86_MMX: // X86_MMX
2248 ResultTy = Type::getX86_MMXTy(Context);
2249 break;
2250 case bitc::TYPE_CODE_X86_AMX: // X86_AMX
2251 ResultTy = Type::getX86_AMXTy(Context);
2252 break;
2253 case bitc::TYPE_CODE_TOKEN: // TOKEN
2254 ResultTy = Type::getTokenTy(Context);
2255 break;
2256 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
2257 if (Record.empty())
2258 return error("Invalid integer record");
2259
2260 uint64_t NumBits = Record[0];
2261 if (NumBits < IntegerType::MIN_INT_BITS ||
2262 NumBits > IntegerType::MAX_INT_BITS)
2263 return error("Bitwidth for integer type out of range");
2264 ResultTy = IntegerType::get(Context, NumBits);
2265 break;
2266 }
2267 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
2268 // [pointee type, address space]
2269 if (Record.empty())
2270 return error("Invalid pointer record");
2271 unsigned AddressSpace = 0;
2272 if (Record.size() == 2)
2273 AddressSpace = Record[1];
2274 ResultTy = getTypeByID(Record[0]);
2275 if (!ResultTy ||
2276 !PointerType::isValidElementType(ResultTy))
2277 return error("Invalid type");
2278 if (LLVM_UNLIKELY(!Context.hasSetOpaquePointersValue())__builtin_expect((bool)(!Context.hasSetOpaquePointersValue())
, false)
)
2279 Context.setOpaquePointers(false);
2280 ContainedIDs.push_back(Record[0]);
2281 ResultTy = PointerType::get(ResultTy, AddressSpace);
2282 break;
2283 }
2284 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
2285 if (Record.size() != 1)
2286 return error("Invalid opaque pointer record");
2287 if (LLVM_UNLIKELY(!Context.hasSetOpaquePointersValue())__builtin_expect((bool)(!Context.hasSetOpaquePointersValue())
, false)
) {
2288 Context.setOpaquePointers(true);
2289 } else if (Context.supportsTypedPointers())
2290 return error(
2291 "Opaque pointers are only supported in -opaque-pointers mode");
2292 unsigned AddressSpace = Record[0];
2293 ResultTy = PointerType::get(Context, AddressSpace);
2294 break;
2295 }
2296 case bitc::TYPE_CODE_FUNCTION_OLD: {
2297 // Deprecated, but still needed to read old bitcode files.
2298 // FUNCTION: [vararg, attrid, retty, paramty x N]
2299 if (Record.size() < 3)
2300 return error("Invalid function record");
2301 SmallVector<Type*, 8> ArgTys;
2302 for (unsigned i = 3, e = Record.size(); i != e; ++i) {
2303 if (Type *T = getTypeByID(Record[i]))
2304 ArgTys.push_back(T);
2305 else
2306 break;
2307 }
2308
2309 ResultTy = getTypeByID(Record[2]);
2310 if (!ResultTy || ArgTys.size() < Record.size()-3)
2311 return error("Invalid type");
2312
2313 ContainedIDs.append(Record.begin() + 2, Record.end());
2314 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2315 break;
2316 }
2317 case bitc::TYPE_CODE_FUNCTION: {
2318 // FUNCTION: [vararg, retty, paramty x N]
2319 if (Record.size() < 2)
2320 return error("Invalid function record");
2321 SmallVector<Type*, 8> ArgTys;
2322 for (unsigned i = 2, e = Record.size(); i != e; ++i) {
2323 if (Type *T = getTypeByID(Record[i])) {
2324 if (!FunctionType::isValidArgumentType(T))
2325 return error("Invalid function argument type");
2326 ArgTys.push_back(T);
2327 }
2328 else
2329 break;
2330 }
2331
2332 ResultTy = getTypeByID(Record[1]);
2333 if (!ResultTy || ArgTys.size() < Record.size()-2)
2334 return error("Invalid type");
2335
2336 ContainedIDs.append(Record.begin() + 1, Record.end());
2337 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
2338 break;
2339 }
2340 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N]
2341 if (Record.empty())
2342 return error("Invalid anon struct record");
2343 SmallVector<Type*, 8> EltTys;
2344 for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2345 if (Type *T = getTypeByID(Record[i]))
2346 EltTys.push_back(T);
2347 else
2348 break;
2349 }
2350 if (EltTys.size() != Record.size()-1)
2351 return error("Invalid type");
2352 ContainedIDs.append(Record.begin() + 1, Record.end());
2353 ResultTy = StructType::get(Context, EltTys, Record[0]);
2354 break;
2355 }
2356 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N]
2357 if (convertToString(Record, 0, TypeName))
2358 return error("Invalid struct name record");
2359 continue;
2360
2361 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
2362 if (Record.empty())
2363 return error("Invalid named struct record");
2364
2365 if (NumRecords >= TypeList.size())
2366 return error("Invalid TYPE table");
2367
2368 // Check to see if this was forward referenced, if so fill in the temp.
2369 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2370 if (Res) {
2371 Res->setName(TypeName);
2372 TypeList[NumRecords] = nullptr;
2373 } else // Otherwise, create a new struct.
2374 Res = createIdentifiedStructType(Context, TypeName);
2375 TypeName.clear();
2376
2377 SmallVector<Type*, 8> EltTys;
2378 for (unsigned i = 1, e = Record.size(); i != e; ++i) {
2379 if (Type *T = getTypeByID(Record[i]))
2380 EltTys.push_back(T);
2381 else
2382 break;
2383 }
2384 if (EltTys.size() != Record.size()-1)
2385 return error("Invalid named struct record");
2386 Res->setBody(EltTys, Record[0]);
2387 ContainedIDs.append(Record.begin() + 1, Record.end());
2388 ResultTy = Res;
2389 break;
2390 }
2391 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: []
2392 if (Record.size() != 1)
2393 return error("Invalid opaque type record");
2394
2395 if (NumRecords >= TypeList.size())
2396 return error("Invalid TYPE table");
2397
2398 // Check to see if this was forward referenced, if so fill in the temp.
2399 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
2400 if (Res) {
2401 Res->setName(TypeName);
2402 TypeList[NumRecords] = nullptr;
2403 } else // Otherwise, create a new struct with no body.
2404 Res = createIdentifiedStructType(Context, TypeName);
2405 TypeName.clear();
2406 ResultTy = Res;
2407 break;
2408 }
2409 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
2410 if (Record.size() < 2)
2411 return error("Invalid array type record");
2412 ResultTy = getTypeByID(Record[1]);
2413 if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
2414 return error("Invalid type");
2415 ContainedIDs.push_back(Record[1]);
2416 ResultTy = ArrayType::get(ResultTy, Record[0]);
2417 break;
2418 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or
2419 // [numelts, eltty, scalable]
2420 if (Record.size() < 2)
2421 return error("Invalid vector type record");
2422 if (Record[0] == 0)
2423 return error("Invalid vector length");
2424 ResultTy = getTypeByID(Record[1]);
2425 if (!ResultTy || !VectorType::isValidElementType(ResultTy))
2426 return error("Invalid type");
2427 bool Scalable = Record.size() > 2 ? Record[2] : false;
2428 ContainedIDs.push_back(Record[1]);
2429 ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
2430 break;
2431 }
2432
2433 if (NumRecords >= TypeList.size())
2434 return error("Invalid TYPE table");
2435 if (TypeList[NumRecords])
2436 return error(
2437 "Invalid TYPE table: Only named structs can be forward referenced");
2438 assert(ResultTy && "Didn't read a type?")(static_cast <bool> (ResultTy && "Didn't read a type?"
) ? void (0) : __assert_fail ("ResultTy && \"Didn't read a type?\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 2438, __extension__
__PRETTY_FUNCTION__))
;
2439 TypeList[NumRecords] = ResultTy;
2440 if (!ContainedIDs.empty())
2441 ContainedTypeIDs[NumRecords] = std::move(ContainedIDs);
2442 ++NumRecords;
2443 }
2444}
2445
2446Error BitcodeReader::parseOperandBundleTags() {
2447 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
2448 return Err;
2449
2450 if (!BundleTags.empty())
2451 return error("Invalid multiple blocks");
2452
2453 SmallVector<uint64_t, 64> Record;
2454
2455 while (true) {
2456 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2457 if (!MaybeEntry)
2458 return MaybeEntry.takeError();
2459 BitstreamEntry Entry = MaybeEntry.get();
2460
2461 switch (Entry.Kind) {
2462 case BitstreamEntry::SubBlock: // Handled for us already.
2463 case BitstreamEntry::Error:
2464 return error("Malformed block");
2465 case BitstreamEntry::EndBlock:
2466 return Error::success();
2467 case BitstreamEntry::Record:
2468 // The interesting case.
2469 break;
2470 }
2471
2472 // Tags are implicitly mapped to integers by their order.
2473
2474 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2475 if (!MaybeRecord)
2476 return MaybeRecord.takeError();
2477 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
2478 return error("Invalid operand bundle record");
2479
2480 // OPERAND_BUNDLE_TAG: [strchr x N]
2481 BundleTags.emplace_back();
2482 if (convertToString(Record, 0, BundleTags.back()))
2483 return error("Invalid operand bundle record");
2484 Record.clear();
2485 }
2486}
2487
2488Error BitcodeReader::parseSyncScopeNames() {
2489 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
2490 return Err;
2491
2492 if (!SSIDs.empty())
2493 return error("Invalid multiple synchronization scope names blocks");
2494
2495 SmallVector<uint64_t, 64> Record;
2496 while (true) {
2497 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2498 if (!MaybeEntry)
2499 return MaybeEntry.takeError();
2500 BitstreamEntry Entry = MaybeEntry.get();
2501
2502 switch (Entry.Kind) {
2503 case BitstreamEntry::SubBlock: // Handled for us already.
2504 case BitstreamEntry::Error:
2505 return error("Malformed block");
2506 case BitstreamEntry::EndBlock:
2507 if (SSIDs.empty())
2508 return error("Invalid empty synchronization scope names block");
2509 return Error::success();
2510 case BitstreamEntry::Record:
2511 // The interesting case.
2512 break;
2513 }
2514
2515 // Synchronization scope names are implicitly mapped to synchronization
2516 // scope IDs by their order.
2517
2518 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2519 if (!MaybeRecord)
2520 return MaybeRecord.takeError();
2521 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2522 return error("Invalid sync scope record");
2523
2524 SmallString<16> SSN;
2525 if (convertToString(Record, 0, SSN))
2526 return error("Invalid sync scope record");
2527
2528 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2529 Record.clear();
2530 }
2531}
2532
2533/// Associate a value with its name from the given index in the provided record.
2534Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2535 unsigned NameIndex, Triple &TT) {
2536 SmallString<128> ValueName;
2537 if (convertToString(Record, NameIndex, ValueName))
2538 return error("Invalid record");
2539 unsigned ValueID = Record[0];
2540 if (ValueID >= ValueList.size() || !ValueList[ValueID])
2541 return error("Invalid record");
2542 Value *V = ValueList[ValueID];
2543
2544 StringRef NameStr(ValueName.data(), ValueName.size());
2545 if (NameStr.find_first_of(0) != StringRef::npos)
2546 return error("Invalid value name");
2547 V->setName(NameStr);
2548 auto *GO = dyn_cast<GlobalObject>(V);
2549 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT())
2550 GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2551 return V;
2552}
2553
2554/// Helper to note and return the current location, and jump to the given
2555/// offset.
2556static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2557 BitstreamCursor &Stream) {
2558 // Save the current parsing location so we can jump back at the end
2559 // of the VST read.
2560 uint64_t CurrentBit = Stream.GetCurrentBitNo();
2561 if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2562 return std::move(JumpFailed);
2563 Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2564 if (!MaybeEntry)
2565 return MaybeEntry.takeError();
2566 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock ||
2567 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID)
2568 return error("Expected value symbol table subblock");
2569 return CurrentBit;
2570}
2571
2572void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2573 Function *F,
2574 ArrayRef<uint64_t> Record) {
2575 // Note that we subtract 1 here because the offset is relative to one word
2576 // before the start of the identification or module block, which was
2577 // historically always the start of the regular bitcode header.
2578 uint64_t FuncWordOffset = Record[1] - 1;
2579 uint64_t FuncBitOffset = FuncWordOffset * 32;
2580 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2581 // Set the LastFunctionBlockBit to point to the last function block.
2582 // Later when parsing is resumed after function materialization,
2583 // we can simply skip that last function block.
2584 if (FuncBitOffset > LastFunctionBlockBit)
2585 LastFunctionBlockBit = FuncBitOffset;
2586}
2587
2588/// Read a new-style GlobalValue symbol table.
2589Error BitcodeReader::parseGlobalValueSymbolTable() {
2590 unsigned FuncBitcodeOffsetDelta =
2591 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2592
2593 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2594 return Err;
2595
2596 SmallVector<uint64_t, 64> Record;
2597 while (true) {
2598 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2599 if (!MaybeEntry)
2600 return MaybeEntry.takeError();
2601 BitstreamEntry Entry = MaybeEntry.get();
2602
2603 switch (Entry.Kind) {
2604 case BitstreamEntry::SubBlock:
2605 case BitstreamEntry::Error:
2606 return error("Malformed block");
2607 case BitstreamEntry::EndBlock:
2608 return Error::success();
2609 case BitstreamEntry::Record:
2610 break;
2611 }
2612
2613 Record.clear();
2614 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2615 if (!MaybeRecord)
2616 return MaybeRecord.takeError();
2617 switch (MaybeRecord.get()) {
2618 case bitc::VST_CODE_FNENTRY: { // [valueid, offset]
2619 unsigned ValueID = Record[0];
2620 if (ValueID >= ValueList.size() || !ValueList[ValueID])
2621 return error("Invalid value reference in symbol table");
2622 setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2623 cast<Function>(ValueList[ValueID]), Record);
2624 break;
2625 }
2626 }
2627 }
2628}
2629
2630/// Parse the value symbol table at either the current parsing location or
2631/// at the given bit offset if provided.
2632Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2633 uint64_t CurrentBit;
2634 // Pass in the Offset to distinguish between calling for the module-level
2635 // VST (where we want to jump to the VST offset) and the function-level
2636 // VST (where we don't).
2637 if (Offset > 0) {
2638 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2639 if (!MaybeCurrentBit)
2640 return MaybeCurrentBit.takeError();
2641 CurrentBit = MaybeCurrentBit.get();
2642 // If this module uses a string table, read this as a module-level VST.
2643 if (UseStrtab) {
2644 if (Error Err = parseGlobalValueSymbolTable())
2645 return Err;
2646 if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2647 return JumpFailed;
2648 return Error::success();
2649 }
2650 // Otherwise, the VST will be in a similar format to a function-level VST,
2651 // and will contain symbol names.
2652 }
2653
2654 // Compute the delta between the bitcode indices in the VST (the word offset
2655 // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2656 // expected by the lazy reader. The reader's EnterSubBlock expects to have
2657 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2658 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2659 // just before entering the VST subblock because: 1) the EnterSubBlock
2660 // changes the AbbrevID width; 2) the VST block is nested within the same
2661 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2662 // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2663 // jump to the FUNCTION_BLOCK using this offset later, we don't want
2664 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2665 unsigned FuncBitcodeOffsetDelta =
2666 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2667
2668 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2669 return Err;
2670
2671 SmallVector<uint64_t, 64> Record;
2672
2673 Triple TT(TheModule->getTargetTriple());
2674
2675 // Read all the records for this value table.
2676 SmallString<128> ValueName;
2677
2678 while (true) {
2679 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2680 if (!MaybeEntry)
2681 return MaybeEntry.takeError();
2682 BitstreamEntry Entry = MaybeEntry.get();
2683
2684 switch (Entry.Kind) {
2685 case BitstreamEntry::SubBlock: // Handled for us already.
2686 case BitstreamEntry::Error:
2687 return error("Malformed block");
2688 case BitstreamEntry::EndBlock:
2689 if (Offset > 0)
2690 if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2691 return JumpFailed;
2692 return Error::success();
2693 case BitstreamEntry::Record:
2694 // The interesting case.
2695 break;
2696 }
2697
2698 // Read a record.
2699 Record.clear();
2700 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2701 if (!MaybeRecord)
2702 return MaybeRecord.takeError();
2703 switch (MaybeRecord.get()) {
2704 default: // Default behavior: unknown type.
2705 break;
2706 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
2707 Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2708 if (Error Err = ValOrErr.takeError())
2709 return Err;
2710 ValOrErr.get();
2711 break;
2712 }
2713 case bitc::VST_CODE_FNENTRY: {
2714 // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2715 Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2716 if (Error Err = ValOrErr.takeError())
2717 return Err;
2718 Value *V = ValOrErr.get();
2719
2720 // Ignore function offsets emitted for aliases of functions in older
2721 // versions of LLVM.
2722 if (auto *F = dyn_cast<Function>(V))
2723 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2724 break;
2725 }
2726 case bitc::VST_CODE_BBENTRY: {
2727 if (convertToString(Record, 1, ValueName))
2728 return error("Invalid bbentry record");
2729 BasicBlock *BB = getBasicBlock(Record[0]);
2730 if (!BB)
2731 return error("Invalid bbentry record");
2732
2733 BB->setName(StringRef(ValueName.data(), ValueName.size()));
2734 ValueName.clear();
2735 break;
2736 }
2737 }
2738 }
2739}
2740
2741/// Decode a signed value stored with the sign bit in the LSB for dense VBR
2742/// encoding.
2743uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2744 if ((V & 1) == 0)
2745 return V >> 1;
2746 if (V != 1)
2747 return -(V >> 1);
2748 // There is no such thing as -0 with integers. "-0" really means MININT.
2749 return 1ULL << 63;
2750}
2751
2752/// Resolve all of the initializers for global values and aliases that we can.
2753Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2754 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2755 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist;
2756 std::vector<FunctionOperandInfo> FunctionOperandWorklist;
2757
2758 GlobalInitWorklist.swap(GlobalInits);
2759 IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2760 FunctionOperandWorklist.swap(FunctionOperands);
2761
2762 while (!GlobalInitWorklist.empty()) {
2763 unsigned ValID = GlobalInitWorklist.back().second;
2764 if (ValID >= ValueList.size()) {
2765 // Not ready to resolve this yet, it requires something later in the file.
2766 GlobalInits.push_back(GlobalInitWorklist.back());
2767 } else {
2768 Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2769 if (!MaybeC)
2770 return MaybeC.takeError();
2771 GlobalInitWorklist.back().first->setInitializer(MaybeC.get());
2772 }
2773 GlobalInitWorklist.pop_back();
2774 }
2775
2776 while (!IndirectSymbolInitWorklist.empty()) {
2777 unsigned ValID = IndirectSymbolInitWorklist.back().second;
2778 if (ValID >= ValueList.size()) {
2779 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2780 } else {
2781 Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2782 if (!MaybeC)
2783 return MaybeC.takeError();
2784 Constant *C = MaybeC.get();
2785 GlobalValue *GV = IndirectSymbolInitWorklist.back().first;
2786 if (auto *GA = dyn_cast<GlobalAlias>(GV)) {
2787 if (C->getType() != GV->getType())
2788 return error("Alias and aliasee types don't match");
2789 GA->setAliasee(C);
2790 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) {
2791 Type *ResolverFTy =
2792 GlobalIFunc::getResolverFunctionType(GI->getValueType());
2793 // Transparently fix up the type for compatibility with older bitcode
2794 GI->setResolver(
2795 ConstantExpr::getBitCast(C, ResolverFTy->getPointerTo()));
2796 } else {
2797 return error("Expected an alias or an ifunc");
2798 }
2799 }
2800 IndirectSymbolInitWorklist.pop_back();
2801 }
2802
2803 while (!FunctionOperandWorklist.empty()) {
2804 FunctionOperandInfo &Info = FunctionOperandWorklist.back();
2805 if (Info.PersonalityFn) {
2806 unsigned ValID = Info.PersonalityFn - 1;
2807 if (ValID < ValueList.size()) {
2808 Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2809 if (!MaybeC)
2810 return MaybeC.takeError();
2811 Info.F->setPersonalityFn(MaybeC.get());
2812 Info.PersonalityFn = 0;
2813 }
2814 }
2815 if (Info.Prefix) {
2816 unsigned ValID = Info.Prefix - 1;
2817 if (ValID < ValueList.size()) {
2818 Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2819 if (!MaybeC)
2820 return MaybeC.takeError();
2821 Info.F->setPrefixData(MaybeC.get());
2822 Info.Prefix = 0;
2823 }
2824 }
2825 if (Info.Prologue) {
2826 unsigned ValID = Info.Prologue - 1;
2827 if (ValID < ValueList.size()) {
2828 Expected<Constant *> MaybeC = getValueForInitializer(ValID);
2829 if (!MaybeC)
2830 return MaybeC.takeError();
2831 Info.F->setPrologueData(MaybeC.get());
2832 Info.Prologue = 0;
2833 }
2834 }
2835 if (Info.PersonalityFn || Info.Prefix || Info.Prologue)
2836 FunctionOperands.push_back(Info);
2837 FunctionOperandWorklist.pop_back();
2838 }
2839
2840 return Error::success();
2841}
2842
2843APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2844 SmallVector<uint64_t, 8> Words(Vals.size());
2845 transform(Vals, Words.begin(),
2846 BitcodeReader::decodeSignRotatedValue);
2847
2848 return APInt(TypeBits, Words);
2849}
2850
2851Error BitcodeReader::parseConstants() {
2852 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2853 return Err;
2854
2855 SmallVector<uint64_t, 64> Record;
2856
2857 // Read all the records for this value table.
2858 Type *CurTy = Type::getInt32Ty(Context);
2859 unsigned Int32TyID = getVirtualTypeID(CurTy);
2860 unsigned CurTyID = Int32TyID;
2861 Type *CurElemTy = nullptr;
2862 unsigned NextCstNo = ValueList.size();
2863
2864 while (true) {
2865 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2866 if (!MaybeEntry)
2867 return MaybeEntry.takeError();
2868 BitstreamEntry Entry = MaybeEntry.get();
2869
2870 switch (Entry.Kind) {
2871 case BitstreamEntry::SubBlock: // Handled for us already.
2872 case BitstreamEntry::Error:
2873 return error("Malformed block");
2874 case BitstreamEntry::EndBlock:
2875 if (NextCstNo != ValueList.size())
2876 return error("Invalid constant reference");
2877 return Error::success();
2878 case BitstreamEntry::Record:
2879 // The interesting case.
2880 break;
2881 }
2882
2883 // Read a record.
2884 Record.clear();
2885 Type *VoidType = Type::getVoidTy(Context);
2886 Value *V = nullptr;
2887 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2888 if (!MaybeBitCode)
2889 return MaybeBitCode.takeError();
2890 switch (unsigned BitCode = MaybeBitCode.get()) {
2891 default: // Default behavior: unknown constant
2892 case bitc::CST_CODE_UNDEF: // UNDEF
2893 V = UndefValue::get(CurTy);
2894 break;
2895 case bitc::CST_CODE_POISON: // POISON
2896 V = PoisonValue::get(CurTy);
2897 break;
2898 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid]
2899 if (Record.empty())
2900 return error("Invalid settype record");
2901 if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2902 return error("Invalid settype record");
2903 if (TypeList[Record[0]] == VoidType)
2904 return error("Invalid constant type");
2905 CurTyID = Record[0];
2906 CurTy = TypeList[CurTyID];
2907 CurElemTy = getPtrElementTypeByID(CurTyID);
2908 continue; // Skip the ValueList manipulation.
2909 case bitc::CST_CODE_NULL: // NULL
2910 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
2911 return error("Invalid type for a constant null value");
2912 V = Constant::getNullValue(CurTy);
2913 break;
2914 case bitc::CST_CODE_INTEGER: // INTEGER: [intval]
2915 if (!CurTy->isIntegerTy() || Record.empty())
2916 return error("Invalid integer const record");
2917 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2918 break;
2919 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2920 if (!CurTy->isIntegerTy() || Record.empty())
2921 return error("Invalid wide integer const record");
2922
2923 APInt VInt =
2924 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2925 V = ConstantInt::get(Context, VInt);
2926
2927 break;
2928 }
2929 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval]
2930 if (Record.empty())
2931 return error("Invalid float const record");
2932 if (CurTy->isHalfTy())
2933 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2934 APInt(16, (uint16_t)Record[0])));
2935 else if (CurTy->isBFloatTy())
2936 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
2937 APInt(16, (uint32_t)Record[0])));
2938 else if (CurTy->isFloatTy())
2939 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2940 APInt(32, (uint32_t)Record[0])));
2941 else if (CurTy->isDoubleTy())
2942 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2943 APInt(64, Record[0])));
2944 else if (CurTy->isX86_FP80Ty()) {
2945 // Bits are not stored the same way as a normal i80 APInt, compensate.
2946 uint64_t Rearrange[2];
2947 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2948 Rearrange[1] = Record[0] >> 48;
2949 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2950 APInt(80, Rearrange)));
2951 } else if (CurTy->isFP128Ty())
2952 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2953 APInt(128, Record)));
2954 else if (CurTy->isPPC_FP128Ty())
2955 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2956 APInt(128, Record)));
2957 else
2958 V = UndefValue::get(CurTy);
2959 break;
2960 }
2961
2962 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2963 if (Record.empty())
2964 return error("Invalid aggregate record");
2965
2966 unsigned Size = Record.size();
2967 SmallVector<unsigned, 16> Elts;
2968 for (unsigned i = 0; i != Size; ++i)
2969 Elts.push_back(Record[i]);
2970
2971 if (isa<StructType>(CurTy)) {
2972 V = BitcodeConstant::create(
2973 Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts);
2974 } else if (isa<ArrayType>(CurTy)) {
2975 V = BitcodeConstant::create(Alloc, CurTy,
2976 BitcodeConstant::ConstantArrayOpcode, Elts);
2977 } else if (isa<VectorType>(CurTy)) {
2978 V = BitcodeConstant::create(
2979 Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts);
2980 } else {
2981 V = UndefValue::get(CurTy);
2982 }
2983 break;
2984 }
2985 case bitc::CST_CODE_STRING: // STRING: [values]
2986 case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2987 if (Record.empty())
2988 return error("Invalid string record");
2989
2990 SmallString<16> Elts(Record.begin(), Record.end());
2991 V = ConstantDataArray::getString(Context, Elts,
2992 BitCode == bitc::CST_CODE_CSTRING);
2993 break;
2994 }
2995 case bitc::CST_CODE_DATA: {// DATA: [n x value]
2996 if (Record.empty())
2997 return error("Invalid data record");
2998
2999 Type *EltTy;
3000 if (auto *Array = dyn_cast<ArrayType>(CurTy))
3001 EltTy = Array->getElementType();
3002 else
3003 EltTy = cast<VectorType>(CurTy)->getElementType();
3004 if (EltTy->isIntegerTy(8)) {
3005 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
3006 if (isa<VectorType>(CurTy))
3007 V = ConstantDataVector::get(Context, Elts);
3008 else
3009 V = ConstantDataArray::get(Context, Elts);
3010 } else if (EltTy->isIntegerTy(16)) {
3011 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3012 if (isa<VectorType>(CurTy))
3013 V = ConstantDataVector::get(Context, Elts);
3014 else
3015 V = ConstantDataArray::get(Context, Elts);
3016 } else if (EltTy->isIntegerTy(32)) {
3017 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3018 if (isa<VectorType>(CurTy))
3019 V = ConstantDataVector::get(Context, Elts);
3020 else
3021 V = ConstantDataArray::get(Context, Elts);
3022 } else if (EltTy->isIntegerTy(64)) {
3023 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3024 if (isa<VectorType>(CurTy))
3025 V = ConstantDataVector::get(Context, Elts);
3026 else
3027 V = ConstantDataArray::get(Context, Elts);
3028 } else if (EltTy->isHalfTy()) {
3029 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3030 if (isa<VectorType>(CurTy))
3031 V = ConstantDataVector::getFP(EltTy, Elts);
3032 else
3033 V = ConstantDataArray::getFP(EltTy, Elts);
3034 } else if (EltTy->isBFloatTy()) {
3035 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3036 if (isa<VectorType>(CurTy))
3037 V = ConstantDataVector::getFP(EltTy, Elts);
3038 else
3039 V = ConstantDataArray::getFP(EltTy, Elts);
3040 } else if (EltTy->isFloatTy()) {
3041 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3042 if (isa<VectorType>(CurTy))
3043 V = ConstantDataVector::getFP(EltTy, Elts);
3044 else
3045 V = ConstantDataArray::getFP(EltTy, Elts);
3046 } else if (EltTy->isDoubleTy()) {
3047 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3048 if (isa<VectorType>(CurTy))
3049 V = ConstantDataVector::getFP(EltTy, Elts);
3050 else
3051 V = ConstantDataArray::getFP(EltTy, Elts);
3052 } else {
3053 return error("Invalid type for value");
3054 }
3055 break;
3056 }
3057 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval]
3058 if (Record.size() < 2)
3059 return error("Invalid unary op constexpr record");
3060 int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
3061 if (Opc < 0) {
3062 V = UndefValue::get(CurTy); // Unknown unop.
3063 } else {
3064 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]);
3065 }
3066 break;
3067 }
3068 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval]
3069 if (Record.size() < 3)
3070 return error("Invalid binary op constexpr record");
3071 int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
3072 if (Opc < 0) {
3073 V = UndefValue::get(CurTy); // Unknown binop.
3074 } else {
3075 uint8_t Flags = 0;
3076 if (Record.size() >= 4) {
3077 if (Opc == Instruction::Add ||
3078 Opc == Instruction::Sub ||
3079 Opc == Instruction::Mul ||
3080 Opc == Instruction::Shl) {
3081 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3082 Flags |= OverflowingBinaryOperator::NoSignedWrap;
3083 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3084 Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3085 } else if (Opc == Instruction::SDiv ||
3086 Opc == Instruction::UDiv ||
3087 Opc == Instruction::LShr ||
3088 Opc == Instruction::AShr) {
3089 if (Record[3] & (1 << bitc::PEO_EXACT))
3090 Flags |= SDivOperator::IsExact;
3091 }
3092 }
3093 V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags},
3094 {(unsigned)Record[1], (unsigned)Record[2]});
3095 }
3096 break;
3097 }
3098 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
3099 if (Record.size() < 3)
3100 return error("Invalid cast constexpr record");
3101 int Opc = getDecodedCastOpcode(Record[0]);
3102 if (Opc < 0) {
3103 V = UndefValue::get(CurTy); // Unknown cast.
3104 } else {
3105 unsigned OpTyID = Record[1];
3106 Type *OpTy = getTypeByID(OpTyID);
3107 if (!OpTy)
3108 return error("Invalid cast constexpr record");
3109 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]);
3110 }
3111 break;
3112 }
3113 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
3114 case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
3115 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
3116 // operands]
3117 if (Record.size() < 2)
3118 return error("Constant GEP record must have at least two elements");
3119 unsigned OpNum = 0;
3120 Type *PointeeType = nullptr;
3121 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
3122 Record.size() % 2)
3123 PointeeType = getTypeByID(Record[OpNum++]);
3124
3125 bool InBounds = false;
3126 Optional<unsigned> InRangeIndex;
3127 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
3128 uint64_t Op = Record[OpNum++];
3129 InBounds = Op & 1;
3130 InRangeIndex = Op >> 1;
3131 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
3132 InBounds = true;
3133
3134 SmallVector<unsigned, 16> Elts;
3135 unsigned BaseTypeID = Record[OpNum];
3136 while (OpNum != Record.size()) {
3137 unsigned ElTyID = Record[OpNum++];
3138 Type *ElTy = getTypeByID(ElTyID);
3139 if (!ElTy)
3140 return error("Invalid getelementptr constexpr record");
3141 Elts.push_back(Record[OpNum++]);
3142 }
3143
3144 if (Elts.size() < 1)
3145 return error("Invalid gep with no operands");
3146
3147 Type *BaseType = getTypeByID(BaseTypeID);
3148 if (isa<VectorType>(BaseType)) {
3149 BaseTypeID = getContainedTypeID(BaseTypeID, 0);
3150 BaseType = getTypeByID(BaseTypeID);
3151 }
3152
3153 PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType);
3154 if (!OrigPtrTy)
3155 return error("GEP base operand must be pointer or vector of pointer");
3156
3157 if (!PointeeType) {
3158 PointeeType = getPtrElementTypeByID(BaseTypeID);
3159 if (!PointeeType)
3160 return error("Missing element type for old-style constant GEP");
3161 } else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType))
3162 return error("Explicit gep operator type does not match pointee type "
3163 "of pointer operand");
3164
3165 V = BitcodeConstant::create(Alloc, CurTy,
3166 {Instruction::GetElementPtr, InBounds,
3167 InRangeIndex.value_or(-1), PointeeType},
3168 Elts);
3169 break;
3170 }
3171 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#]
3172 if (Record.size() < 3)
3173 return error("Invalid select constexpr record");
3174
3175 V = BitcodeConstant::create(
3176 Alloc, CurTy, Instruction::Select,
3177 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3178 break;
3179 }
3180 case bitc::CST_CODE_CE_EXTRACTELT
3181 : { // CE_EXTRACTELT: [opty, opval, opty, opval]
3182 if (Record.size() < 3)
3183 return error("Invalid extractelement constexpr record");
3184 unsigned OpTyID = Record[0];
3185 VectorType *OpTy =
3186 dyn_cast_or_null<VectorType>(getTypeByID(OpTyID));
3187 if (!OpTy)
3188 return error("Invalid extractelement constexpr record");
3189 unsigned IdxRecord;
3190 if (Record.size() == 4) {
3191 unsigned IdxTyID = Record[2];
3192 Type *IdxTy = getTypeByID(IdxTyID);
3193 if (!IdxTy)
3194 return error("Invalid extractelement constexpr record");
3195 IdxRecord = Record[3];
3196 } else {
3197 // Deprecated, but still needed to read old bitcode files.
3198 IdxRecord = Record[2];
3199 }
3200 V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement,
3201 {(unsigned)Record[1], IdxRecord});
3202 break;
3203 }
3204 case bitc::CST_CODE_CE_INSERTELT
3205 : { // CE_INSERTELT: [opval, opval, opty, opval]
3206 VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3207 if (Record.size() < 3 || !OpTy)
3208 return error("Invalid insertelement constexpr record");
3209 unsigned IdxRecord;
3210 if (Record.size() == 4) {
3211 unsigned IdxTyID = Record[2];
3212 Type *IdxTy = getTypeByID(IdxTyID);
3213 if (!IdxTy)
3214 return error("Invalid insertelement constexpr record");
3215 IdxRecord = Record[3];
3216 } else {
3217 // Deprecated, but still needed to read old bitcode files.
3218 IdxRecord = Record[2];
3219 }
3220 V = BitcodeConstant::create(
3221 Alloc, CurTy, Instruction::InsertElement,
3222 {(unsigned)Record[0], (unsigned)Record[1], IdxRecord});
3223 break;
3224 }
3225 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
3226 VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3227 if (Record.size() < 3 || !OpTy)
3228 return error("Invalid shufflevector constexpr record");
3229 V = BitcodeConstant::create(
3230 Alloc, CurTy, Instruction::ShuffleVector,
3231 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]});
3232 break;
3233 }
3234 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
3235 VectorType *RTy = dyn_cast<VectorType>(CurTy);
3236 VectorType *OpTy =
3237 dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3238 if (Record.size() < 4 || !RTy || !OpTy)
3239 return error("Invalid shufflevector constexpr record");
3240 V = BitcodeConstant::create(
3241 Alloc, CurTy, Instruction::ShuffleVector,
3242 {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]});
3243 break;
3244 }
3245 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred]
3246 if (Record.size() < 4)
3247 return error("Invalid cmp constexpt record");
3248 unsigned OpTyID = Record[0];
3249 Type *OpTy = getTypeByID(OpTyID);
3250 if (!OpTy)
3251 return error("Invalid cmp constexpr record");
3252 V = BitcodeConstant::create(
3253 Alloc, CurTy,
3254 {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp
3255 : Instruction::ICmp),
3256 (uint8_t)Record[3]},
3257 {(unsigned)Record[1], (unsigned)Record[2]});
3258 break;
3259 }
3260 // This maintains backward compatibility, pre-asm dialect keywords.
3261 // Deprecated, but still needed to read old bitcode files.
3262 case bitc::CST_CODE_INLINEASM_OLD: {
3263 if (Record.size() < 2)
3264 return error("Invalid inlineasm record");
3265 std::string AsmStr, ConstrStr;
3266 bool HasSideEffects = Record[0] & 1;
3267 bool IsAlignStack = Record[0] >> 1;
3268 unsigned AsmStrSize = Record[1];
3269 if (2+AsmStrSize >= Record.size())
3270 return error("Invalid inlineasm record");
3271 unsigned ConstStrSize = Record[2+AsmStrSize];
3272 if (3+AsmStrSize+ConstStrSize > Record.size())
3273 return error("Invalid inlineasm record");
3274
3275 for (unsigned i = 0; i != AsmStrSize; ++i)
3276 AsmStr += (char)Record[2+i];
3277 for (unsigned i = 0; i != ConstStrSize; ++i)
3278 ConstrStr += (char)Record[3+AsmStrSize+i];
3279 UpgradeInlineAsmString(&AsmStr);
3280 if (!CurElemTy)
3281 return error("Missing element type for old-style inlineasm");
3282 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3283 HasSideEffects, IsAlignStack);
3284 break;
3285 }
3286 // This version adds support for the asm dialect keywords (e.g.,
3287 // inteldialect).
3288 case bitc::CST_CODE_INLINEASM_OLD2: {
3289 if (Record.size() < 2)
3290 return error("Invalid inlineasm record");
3291 std::string AsmStr, ConstrStr;
3292 bool HasSideEffects = Record[0] & 1;
3293 bool IsAlignStack = (Record[0] >> 1) & 1;
3294 unsigned AsmDialect = Record[0] >> 2;
3295 unsigned AsmStrSize = Record[1];
3296 if (2+AsmStrSize >= Record.size())
3297 return error("Invalid inlineasm record");
3298 unsigned ConstStrSize = Record[2+AsmStrSize];
3299 if (3+AsmStrSize+ConstStrSize > Record.size())
3300 return error("Invalid inlineasm record");
3301
3302 for (unsigned i = 0; i != AsmStrSize; ++i)
3303 AsmStr += (char)Record[2+i];
3304 for (unsigned i = 0; i != ConstStrSize; ++i)
3305 ConstrStr += (char)Record[3+AsmStrSize+i];
3306 UpgradeInlineAsmString(&AsmStr);
3307 if (!CurElemTy)
3308 return error("Missing element type for old-style inlineasm");
3309 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3310 HasSideEffects, IsAlignStack,
3311 InlineAsm::AsmDialect(AsmDialect));
3312 break;
3313 }
3314 // This version adds support for the unwind keyword.
3315 case bitc::CST_CODE_INLINEASM_OLD3: {
3316 if (Record.size() < 2)
3317 return error("Invalid inlineasm record");
3318 unsigned OpNum = 0;
3319 std::string AsmStr, ConstrStr;
3320 bool HasSideEffects = Record[OpNum] & 1;
3321 bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3322 unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3323 bool CanThrow = (Record[OpNum] >> 3) & 1;
3324 ++OpNum;
3325 unsigned AsmStrSize = Record[OpNum];
3326 ++OpNum;
3327 if (OpNum + AsmStrSize >= Record.size())
3328 return error("Invalid inlineasm record");
3329 unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3330 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3331 return error("Invalid inlineasm record");
3332
3333 for (unsigned i = 0; i != AsmStrSize; ++i)
3334 AsmStr += (char)Record[OpNum + i];
3335 ++OpNum;
3336 for (unsigned i = 0; i != ConstStrSize; ++i)
3337 ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3338 UpgradeInlineAsmString(&AsmStr);
3339 if (!CurElemTy)
3340 return error("Missing element type for old-style inlineasm");
3341 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr,
3342 HasSideEffects, IsAlignStack,
3343 InlineAsm::AsmDialect(AsmDialect), CanThrow);
3344 break;
3345 }
3346 // This version adds explicit function type.
3347 case bitc::CST_CODE_INLINEASM: {
3348 if (Record.size() < 3)
3349 return error("Invalid inlineasm record");
3350 unsigned OpNum = 0;
3351 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum]));
3352 ++OpNum;
3353 if (!FnTy)
3354 return error("Invalid inlineasm record");
3355 std::string AsmStr, ConstrStr;
3356 bool HasSideEffects = Record[OpNum] & 1;
3357 bool IsAlignStack = (Record[OpNum] >> 1) & 1;
3358 unsigned AsmDialect = (Record[OpNum] >> 2) & 1;
3359 bool CanThrow = (Record[OpNum] >> 3) & 1;
3360 ++OpNum;
3361 unsigned AsmStrSize = Record[OpNum];
3362 ++OpNum;
3363 if (OpNum + AsmStrSize >= Record.size())
3364 return error("Invalid inlineasm record");
3365 unsigned ConstStrSize = Record[OpNum + AsmStrSize];
3366 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size())
3367 return error("Invalid inlineasm record");
3368
3369 for (unsigned i = 0; i != AsmStrSize; ++i)
3370 AsmStr += (char)Record[OpNum + i];
3371 ++OpNum;
3372 for (unsigned i = 0; i != ConstStrSize; ++i)
3373 ConstrStr += (char)Record[OpNum + AsmStrSize + i];
3374 UpgradeInlineAsmString(&AsmStr);
3375 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3376 InlineAsm::AsmDialect(AsmDialect), CanThrow);
3377 break;
3378 }
3379 case bitc::CST_CODE_BLOCKADDRESS:{
3380 if (Record.size() < 3)
3381 return error("Invalid blockaddress record");
3382 unsigned FnTyID = Record[0];
3383 Type *FnTy = getTypeByID(FnTyID);
3384 if (!FnTy)
3385 return error("Invalid blockaddress record");
3386 V = BitcodeConstant::create(
3387 Alloc, CurTy,
3388 {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]},
3389 Record[1]);
3390 break;
3391 }
3392 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
3393 if (Record.size() < 2)
3394 return error("Invalid dso_local record");
3395 unsigned GVTyID = Record[0];
3396 Type *GVTy = getTypeByID(GVTyID);
3397 if (!GVTy)
3398 return error("Invalid dso_local record");
3399 V = BitcodeConstant::create(
3400 Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]);
3401 break;
3402 }
3403 case bitc::CST_CODE_NO_CFI_VALUE: {
3404 if (Record.size() < 2)
3405 return error("Invalid no_cfi record");
3406 unsigned GVTyID = Record[0];
3407 Type *GVTy = getTypeByID(GVTyID);
3408 if (!GVTy)
3409 return error("Invalid no_cfi record");
3410 V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode,
3411 Record[1]);
3412 break;
3413 }
3414 }
3415
3416 assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID")(static_cast <bool> (V->getType() == getTypeByID(CurTyID
) && "Incorrect result type ID") ? void (0) : __assert_fail
("V->getType() == getTypeByID(CurTyID) && \"Incorrect result type ID\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 3416, __extension__
__PRETTY_FUNCTION__))
;
3417 if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID))
3418 return Err;
3419 ++NextCstNo;
3420 }
3421}
3422
3423Error BitcodeReader::parseUseLists() {
3424 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3425 return Err;
3426
3427 // Read all the records.
3428 SmallVector<uint64_t, 64> Record;
3429
3430 while (true) {
3431 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
3432 if (!MaybeEntry)
3433 return MaybeEntry.takeError();
3434 BitstreamEntry Entry = MaybeEntry.get();
3435
3436 switch (Entry.Kind) {
3437 case BitstreamEntry::SubBlock: // Handled for us already.
3438 case BitstreamEntry::Error:
3439 return error("Malformed block");
3440 case BitstreamEntry::EndBlock:
3441 return Error::success();
3442 case BitstreamEntry::Record:
3443 // The interesting case.
3444 break;
3445 }
3446
3447 // Read a use list record.
3448 Record.clear();
3449 bool IsBB = false;
3450 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
3451 if (!MaybeRecord)
3452 return MaybeRecord.takeError();
3453 switch (MaybeRecord.get()) {
3454 default: // Default behavior: unknown type.
3455 break;
3456 case bitc::USELIST_CODE_BB:
3457 IsBB = true;
3458 [[fallthrough]];
3459 case bitc::USELIST_CODE_DEFAULT: {
3460 unsigned RecordLength = Record.size();
3461 if (RecordLength < 3)
3462 // Records should have at least an ID and two indexes.
3463 return error("Invalid record");
3464 unsigned ID = Record.pop_back_val();
3465
3466 Value *V;
3467 if (IsBB) {
3468 assert(ID < FunctionBBs.size() && "Basic block not found")(static_cast <bool> (ID < FunctionBBs.size() &&
"Basic block not found") ? void (0) : __assert_fail ("ID < FunctionBBs.size() && \"Basic block not found\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 3468, __extension__
__PRETTY_FUNCTION__))
;
3469 V = FunctionBBs[ID];
3470 } else
3471 V = ValueList[ID];
3472 unsigned NumUses = 0;
3473 SmallDenseMap<const Use *, unsigned, 16> Order;
3474 for (const Use &U : V->materialized_uses()) {
3475 if (++NumUses > Record.size())
3476 break;
3477 Order[&U] = Record[NumUses - 1];
3478 }
3479 if (Order.size() != Record.size() || NumUses > Record.size())
3480 // Mismatches can happen if the functions are being materialized lazily
3481 // (out-of-order), or a value has been upgraded.
3482 break;
3483
3484 V->sortUseList([&](const Use &L, const Use &R) {
3485 return Order.lookup(&L) < Order.lookup(&R);
3486 });
3487 break;
3488 }
3489 }
3490 }
3491}
3492
3493/// When we see the block for metadata, remember where it is and then skip it.
3494/// This lets us lazily deserialize the metadata.
3495Error BitcodeReader::rememberAndSkipMetadata() {
3496 // Save the current stream state.
3497 uint64_t CurBit = Stream.GetCurrentBitNo();
3498 DeferredMetadataInfo.push_back(CurBit);
3499
3500 // Skip over the block for now.
3501 if (Error Err = Stream.SkipBlock())
3502 return Err;
3503 return Error::success();
3504}
3505
3506Error BitcodeReader::materializeMetadata() {
3507 for (uint64_t BitPos : DeferredMetadataInfo) {
3508 // Move the bit stream to the saved position.
3509 if (Error JumpFailed = Stream.JumpToBit(BitPos))
3510 return JumpFailed;
3511 if (Error Err = MDLoader->parseModuleMetadata())
3512 return Err;
3513 }
3514
3515 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3516 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3517 // multiple times.
3518 if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3519 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3520 NamedMDNode *LinkerOpts =
3521 TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3522 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3523 LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3524 }
3525 }
3526
3527 DeferredMetadataInfo.clear();
3528 return Error::success();
3529}
3530
3531void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3532
3533/// When we see the block for a function body, remember where it is and then
3534/// skip it. This lets us lazily deserialize the functions.
3535Error BitcodeReader::rememberAndSkipFunctionBody() {
3536 // Get the function we are talking about.
3537 if (FunctionsWithBodies.empty())
3538 return error("Insufficient function protos");
3539
3540 Function *Fn = FunctionsWithBodies.back();
3541 FunctionsWithBodies.pop_back();
3542
3543 // Save the current stream state.
3544 uint64_t CurBit = Stream.GetCurrentBitNo();
3545 assert((static_cast <bool> ((DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo
[Fn] == CurBit) && "Mismatch between VST and scanned function offsets"
) ? void (0) : __assert_fail ("(DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && \"Mismatch between VST and scanned function offsets\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 3547, __extension__
__PRETTY_FUNCTION__))
3546 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&(static_cast <bool> ((DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo
[Fn] == CurBit) && "Mismatch between VST and scanned function offsets"
) ? void (0) : __assert_fail ("(DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && \"Mismatch between VST and scanned function offsets\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 3547, __extension__
__PRETTY_FUNCTION__))
3547 "Mismatch between VST and scanned function offsets")(static_cast <bool> ((DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo
[Fn] == CurBit) && "Mismatch between VST and scanned function offsets"
) ? void (0) : __assert_fail ("(DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && \"Mismatch between VST and scanned function offsets\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 3547, __extension__
__PRETTY_FUNCTION__))
;
3548 DeferredFunctionInfo[Fn] = CurBit;
3549
3550 // Skip over the function block for now.
3551 if (Error Err = Stream.SkipBlock())
3552 return Err;
3553 return Error::success();
3554}
3555
3556Error BitcodeReader::globalCleanup() {
3557 // Patch the initializers for globals and aliases up.
3558 if (Error Err = resolveGlobalAndIndirectSymbolInits())
3559 return Err;
3560 if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3561 return error("Malformed global initializer set");
3562
3563 // Look for intrinsic functions which need to be upgraded at some point
3564 // and functions that need to have their function attributes upgraded.
3565 for (Function &F : *TheModule) {
3566 MDLoader->upgradeDebugIntrinsics(F);
3567 Function *NewFn;
3568 if (UpgradeIntrinsicFunction(&F, NewFn))
3569 UpgradedIntrinsics[&F] = NewFn;
3570 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3571 // Some types could be renamed during loading if several modules are
3572 // loaded in the same LLVMContext (LTO scenario). In this case we should
3573 // remangle intrinsics names as well.
3574 RemangledIntrinsics[&F] = *Remangled;
3575 // Look for functions that rely on old function attribute behavior.
3576 UpgradeFunctionAttributes(F);
3577 }
3578
3579 // Look for global variables which need to be renamed.
3580 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3581 for (GlobalVariable &GV : TheModule->globals())
3582 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3583 UpgradedVariables.emplace_back(&GV, Upgraded);
3584 for (auto &Pair : UpgradedVariables) {
3585 Pair.first->eraseFromParent();
3586 TheModule->getGlobalList().push_back(Pair.second);
3587 }
3588
3589 // Force deallocation of memory for these vectors to favor the client that
3590 // want lazy deserialization.
3591 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3592 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits);
3593 return Error::success();
3594}
3595
3596/// Support for lazy parsing of function bodies. This is required if we
3597/// either have an old bitcode file without a VST forward declaration record,
3598/// or if we have an anonymous function being materialized, since anonymous
3599/// functions do not have a name and are therefore not in the VST.
3600Error BitcodeReader::rememberAndSkipFunctionBodies() {
3601 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3602 return JumpFailed;
3603
3604 if (Stream.AtEndOfStream())
3605 return error("Could not find function in stream");
3606
3607 if (!SeenFirstFunctionBody)
3608 return error("Trying to materialize functions before seeing function blocks");
3609
3610 // An old bitcode file with the symbol table at the end would have
3611 // finished the parse greedily.
3612 assert(SeenValueSymbolTable)(static_cast <bool> (SeenValueSymbolTable) ? void (0) :
__assert_fail ("SeenValueSymbolTable", "llvm/lib/Bitcode/Reader/BitcodeReader.cpp"
, 3612, __extension__ __PRETTY_FUNCTION__))
;
3613
3614 SmallVector<uint64_t, 64> Record;
3615
3616 while (true) {
3617 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3618 if (!MaybeEntry)
3619 return MaybeEntry.takeError();
3620 llvm::BitstreamEntry Entry = MaybeEntry.get();
3621
3622 switch (Entry.Kind) {
3623 default:
3624 return error("Expect SubBlock");
3625 case BitstreamEntry::SubBlock:
3626 switch (Entry.ID) {
3627 default:
3628 return error("Expect function block");
3629 case bitc::FUNCTION_BLOCK_ID:
3630 if (Error Err = rememberAndSkipFunctionBody())
3631 return Err;
3632 NextUnreadBit = Stream.GetCurrentBitNo();
3633 return Error::success();
3634 }
3635 }
3636 }
3637}
3638
3639Error BitcodeReaderBase::readBlockInfo() {
3640 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3641 Stream.ReadBlockInfoBlock();
3642 if (!MaybeNewBlockInfo)
3643 return MaybeNewBlockInfo.takeError();
3644 Optional<BitstreamBlockInfo> NewBlockInfo =
3645 std::move(MaybeNewBlockInfo.get());
3646 if (!NewBlockInfo)
3647 return error("Malformed block");
3648 BlockInfo = std::move(*NewBlockInfo);
3649 return Error::success();
3650}
3651
3652Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3653 // v1: [selection_kind, name]
3654 // v2: [strtab_offset, strtab_size, selection_kind]
3655 StringRef Name;
3656 std::tie(Name, Record) = readNameFromStrtab(Record);
3657
3658 if (Record.empty())
3659 return error("Invalid record");
3660 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3661 std::string OldFormatName;
3662 if (!UseStrtab) {
3663 if (Record.size() < 2)
3664 return error("Invalid record");
3665 unsigned ComdatNameSize = Record[1];
3666 if (ComdatNameSize > Record.size() - 2)
3667 return error("Comdat name size too large");
3668 OldFormatName.reserve(ComdatNameSize);
3669 for (unsigned i = 0; i != ComdatNameSize; ++i)
3670 OldFormatName += (char)Record[2 + i];
3671 Name = OldFormatName;
3672 }
3673 Comdat *C = TheModule->getOrInsertComdat(Name);
3674 C->setSelectionKind(SK);
3675 ComdatList.push_back(C);
3676 return Error::success();
3677}
3678
3679static void inferDSOLocal(GlobalValue *GV) {
3680 // infer dso_local from linkage and visibility if it is not encoded.
3681 if (GV->hasLocalLinkage() ||
3682 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3683 GV->setDSOLocal(true);
3684}
3685
3686GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) {
3687 GlobalValue::SanitizerMetadata Meta;
3688 if (V & (1 << 0))
3689 Meta.NoAddress = true;
3690 if (V & (1 << 1))
3691 Meta.NoHWAddress = true;
3692 if (V & (1 << 2))
3693 Meta.Memtag = true;
3694 if (V & (1 << 3))
3695 Meta.IsDynInit = true;
3696 return Meta;
3697}
3698
3699Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3700 // v1: [pointer type, isconst, initid, linkage, alignment, section,
3701 // visibility, threadlocal, unnamed_addr, externally_initialized,
3702 // dllstorageclass, comdat, attributes, preemption specifier,
3703 // partition strtab offset, partition strtab size] (name in VST)
3704 // v2: [strtab_offset, strtab_size, v1]
3705 StringRef Name;
3706 std::tie(Name, Record) = readNameFromStrtab(Record);
3707
3708 if (Record.size() < 6)
3709 return error("Invalid record");
3710 unsigned TyID = Record[0];
3711 Type *Ty = getTypeByID(TyID);
3712 if (!Ty)
3713 return error("Invalid record");
3714 bool isConstant = Record[1] & 1;
3715 bool explicitType = Record[1] & 2;
3716 unsigned AddressSpace;
3717 if (explicitType) {
3718 AddressSpace = Record[1] >> 2;
3719 } else {
3720 if (!Ty->isPointerTy())
3721 return error("Invalid type for value");
3722 AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3723 TyID = getContainedTypeID(TyID);
3724 Ty = getTypeByID(TyID);
3725 if (!Ty)
3726 return error("Missing element type for old-style global");
3727 }
3728
3729 uint64_t RawLinkage = Record[3];
3730 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3731 MaybeAlign Alignment;
3732 if (Error Err = parseAlignmentValue(Record[4], Alignment))
3733 return Err;
3734 std::string Section;
3735 if (Record[5]) {
3736 if (Record[5] - 1 >= SectionTable.size())
3737 return error("Invalid ID");
3738 Section = SectionTable[Record[5] - 1];
3739 }
3740 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3741 // Local linkage must have default visibility.
3742 // auto-upgrade `hidden` and `protected` for old bitcode.
3743 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3744 Visibility = getDecodedVisibility(Record[6]);
3745
3746 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3747 if (Record.size() > 7)
3748 TLM = getDecodedThreadLocalMode(Record[7]);
3749
3750 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3751 if (Record.size() > 8)
3752 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3753
3754 bool ExternallyInitialized = false;
3755 if (Record.size() > 9)
3756 ExternallyInitialized = Record[9];
3757
3758 GlobalVariable *NewGV =
3759 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3760 nullptr, TLM, AddressSpace, ExternallyInitialized);
3761 NewGV->setAlignment(Alignment);
3762 if (!Section.empty())
3763 NewGV->setSection(Section);
3764 NewGV->setVisibility(Visibility);
3765 NewGV->setUnnamedAddr(UnnamedAddr);
3766
3767 if (Record.size() > 10)
3768 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3769 else
3770 upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3771
3772 ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID));
3773
3774 // Remember which value to use for the global initializer.
3775 if (unsigned InitID = Record[2])
3776 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3777
3778 if (Record.size() > 11) {
3779 if (unsigned ComdatID = Record[11]) {
3780 if (ComdatID > ComdatList.size())
3781 return error("Invalid global variable comdat ID");
3782 NewGV->setComdat(ComdatList[ComdatID - 1]);
3783 }
3784 } else if (hasImplicitComdat(RawLinkage)) {
3785 ImplicitComdatObjects.insert(NewGV);
3786 }
3787
3788 if (Record.size() > 12) {
3789 auto AS = getAttributes(Record[12]).getFnAttrs();
3790 NewGV->setAttributes(AS);
3791 }
3792
3793 if (Record.size() > 13) {
3794 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3795 }
3796 inferDSOLocal(NewGV);
3797
3798 // Check whether we have enough values to read a partition name.
3799 if (Record.size() > 15)
3800 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3801
3802 if (Record.size() > 16 && Record[16]) {
3803 llvm::GlobalValue::SanitizerMetadata Meta =
3804 deserializeSanitizerMetadata(Record[16]);
3805 NewGV->setSanitizerMetadata(Meta);
3806 }
3807
3808 return Error::success();
3809}
3810
3811Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3812 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3813 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3814 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST)
3815 // v2: [strtab_offset, strtab_size, v1]
3816 StringRef Name;
3817 std::tie(Name, Record) = readNameFromStrtab(Record);
3818
3819 if (Record.size() < 8)
3820 return error("Invalid record");
3821 unsigned FTyID = Record[0];
3822 Type *FTy = getTypeByID(FTyID);
3823 if (!FTy)
3824 return error("Invalid record");
3825 if (isa<PointerType>(FTy)) {
3826 FTyID = getContainedTypeID(FTyID, 0);
3827 FTy = getTypeByID(FTyID);
3828 if (!FTy)
3829 return error("Missing element type for old-style function");
3830 }
3831
3832 if (!isa<FunctionType>(FTy))
3833 return error("Invalid type for value");
3834 auto CC = static_cast<CallingConv::ID>(Record[1]);
3835 if (CC & ~CallingConv::MaxID)
3836 return error("Invalid calling convention ID");
3837
3838 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3839 if (Record.size() > 16)
3840 AddrSpace = Record[16];
3841
3842 Function *Func =
3843 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3844 AddrSpace, Name, TheModule);
3845
3846 assert(Func->getFunctionType() == FTy &&(static_cast <bool> (Func->getFunctionType() == FTy &&
"Incorrect fully specified type provided for function") ? void
(0) : __assert_fail ("Func->getFunctionType() == FTy && \"Incorrect fully specified type provided for function\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 3847, __extension__
__PRETTY_FUNCTION__))
3847 "Incorrect fully specified type provided for function")(static_cast <bool> (Func->getFunctionType() == FTy &&
"Incorrect fully specified type provided for function") ? void
(0) : __assert_fail ("Func->getFunctionType() == FTy && \"Incorrect fully specified type provided for function\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 3847, __extension__
__PRETTY_FUNCTION__))
;
3848 FunctionTypeIDs[Func] = FTyID;
3849
3850 Func->setCallingConv(CC);
3851 bool isProto = Record[2];
3852 uint64_t RawLinkage = Record[3];
3853 Func->setLinkage(getDecodedLinkage(RawLinkage));
3854 Func->setAttributes(getAttributes(Record[4]));
3855
3856 // Upgrade any old-style byval or sret without a type by propagating the
3857 // argument's pointee type. There should be no opaque pointers where the byval
3858 // type is implicit.
3859 for (unsigned i = 0; i != Func->arg_size(); ++i) {
3860 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3861 Attribute::InAlloca}) {
3862 if (!Func->hasParamAttribute(i, Kind))
3863 continue;
3864
3865 if (Func->getParamAttribute(i, Kind).getValueAsType())
3866 continue;
3867
3868 Func->removeParamAttr(i, Kind);
3869
3870 unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1);
3871 Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID);
3872 if (!PtrEltTy)
3873 return error("Missing param element type for attribute upgrade");
3874
3875 Attribute NewAttr;
3876 switch (Kind) {
3877 case Attribute::ByVal:
3878 NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3879 break;
3880 case Attribute::StructRet:
3881 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3882 break;
3883 case Attribute::InAlloca:
3884 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3885 break;
3886 default:
3887 llvm_unreachable("not an upgraded type attribute")::llvm::llvm_unreachable_internal("not an upgraded type attribute"
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 3887)
;
3888 }
3889
3890 Func->addParamAttr(i, NewAttr);
3891 }
3892 }
3893
3894 if (Func->getCallingConv() == CallingConv::X86_INTR &&
3895 !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) {
3896 unsigned ParamTypeID = getContainedTypeID(FTyID, 1);
3897 Type *ByValTy = getPtrElementTypeByID(ParamTypeID);
3898 if (!ByValTy)
3899 return error("Missing param element type for x86_intrcc upgrade");
3900 Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy);
3901 Func->addParamAttr(0, NewAttr);
3902 }
3903
3904 MaybeAlign Alignment;
3905 if (Error Err = parseAlignmentValue(Record[5], Alignment))
3906 return Err;
3907 Func->setAlignment(Alignment);
3908 if (Record[6]) {
3909 if (Record[6] - 1 >= SectionTable.size())
3910 return error("Invalid ID");
3911 Func->setSection(SectionTable[Record[6] - 1]);
3912 }
3913 // Local linkage must have default visibility.
3914 // auto-upgrade `hidden` and `protected` for old bitcode.
3915 if (!Func->hasLocalLinkage())
3916 Func->setVisibility(getDecodedVisibility(Record[7]));
3917 if (Record.size() > 8 && Record[8]) {
3918 if (Record[8] - 1 >= GCTable.size())
3919 return error("Invalid ID");
3920 Func->setGC(GCTable[Record[8] - 1]);
3921 }
3922 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3923 if (Record.size() > 9)
3924 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3925 Func->setUnnamedAddr(UnnamedAddr);
3926
3927 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0};
3928 if (Record.size() > 10)
3929 OperandInfo.Prologue = Record[10];
3930
3931 if (Record.size() > 11)
3932 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3933 else
3934 upgradeDLLImportExportLinkage(Func, RawLinkage);
3935
3936 if (Record.size() > 12) {
3937 if (unsigned ComdatID = Record[12]) {
3938 if (ComdatID > ComdatList.size())
3939 return error("Invalid function comdat ID");
3940 Func->setComdat(ComdatList[ComdatID - 1]);
3941 }
3942 } else if (hasImplicitComdat(RawLinkage)) {
3943 ImplicitComdatObjects.insert(Func);
3944 }
3945
3946 if (Record.size() > 13)
3947 OperandInfo.Prefix = Record[13];
3948
3949 if (Record.size() > 14)
3950 OperandInfo.PersonalityFn = Record[14];
3951
3952 if (Record.size() > 15) {
3953 Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3954 }
3955 inferDSOLocal(Func);
3956
3957 // Record[16] is the address space number.
3958
3959 // Check whether we have enough values to read a partition name. Also make
3960 // sure Strtab has enough values.
3961 if (Record.size() > 18 && Strtab.data() &&
3962 Record[17] + Record[18] <= Strtab.size()) {
3963 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3964 }
3965
3966 ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID));
3967
3968 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue)
3969 FunctionOperands.push_back(OperandInfo);
3970
3971 // If this is a function with a body, remember the prototype we are
3972 // creating now, so that we can match up the body with them later.
3973 if (!isProto) {
3974 Func->setIsMaterializable(true);
3975 FunctionsWithBodies.push_back(Func);
3976 DeferredFunctionInfo[Func] = 0;
3977 }
3978 return Error::success();
3979}
3980
3981Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3982 unsigned BitCode, ArrayRef<uint64_t> Record) {
3983 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3984 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3985 // dllstorageclass, threadlocal, unnamed_addr,
3986 // preemption specifier] (name in VST)
3987 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3988 // visibility, dllstorageclass, threadlocal, unnamed_addr,
3989 // preemption specifier] (name in VST)
3990 // v2: [strtab_offset, strtab_size, v1]
3991 StringRef Name;
3992 std::tie(Name, Record) = readNameFromStrtab(Record);
3993
3994 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3995 if (Record.size() < (3 + (unsigned)NewRecord))
3996 return error("Invalid record");
3997 unsigned OpNum = 0;
3998 unsigned TypeID = Record[OpNum++];
3999 Type *Ty = getTypeByID(TypeID);
4000 if (!Ty)
4001 return error("Invalid record");
4002
4003 unsigned AddrSpace;
4004 if (!NewRecord) {
4005 auto *PTy = dyn_cast<PointerType>(Ty);
4006 if (!PTy)
4007 return error("Invalid type for value");
4008 AddrSpace = PTy->getAddressSpace();
4009 TypeID = getContainedTypeID(TypeID);
4010 Ty = getTypeByID(TypeID);
4011 if (!Ty)
4012 return error("Missing element type for old-style indirect symbol");
4013 } else {
4014 AddrSpace = Record[OpNum++];
4015 }
4016
4017 auto Val = Record[OpNum++];
4018 auto Linkage = Record[OpNum++];
4019 GlobalValue *NewGA;
4020 if (BitCode == bitc::MODULE_CODE_ALIAS ||
4021 BitCode == bitc::MODULE_CODE_ALIAS_OLD)
4022 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4023 TheModule);
4024 else
4025 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
4026 nullptr, TheModule);
4027
4028 // Local linkage must have default visibility.
4029 // auto-upgrade `hidden` and `protected` for old bitcode.
4030 if (OpNum != Record.size()) {
4031 auto VisInd = OpNum++;
4032 if (!NewGA->hasLocalLinkage())
4033 NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
4034 }
4035 if (BitCode == bitc::MODULE_CODE_ALIAS ||
4036 BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
4037 if (OpNum != Record.size())
4038 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
4039 else
4040 upgradeDLLImportExportLinkage(NewGA, Linkage);
4041 if (OpNum != Record.size())
4042 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
4043 if (OpNum != Record.size())
4044 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
4045 }
4046 if (OpNum != Record.size())
4047 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
4048 inferDSOLocal(NewGA);
4049
4050 // Check whether we have enough values to read a partition name.
4051 if (OpNum + 1 < Record.size()) {
4052 NewGA->setPartition(
4053 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
4054 OpNum += 2;
Value stored to 'OpNum' is never read
4055 }
4056
4057 ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID));
4058 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
4059 return Error::success();
4060}
4061
4062Error BitcodeReader::parseModule(uint64_t ResumeBit,
4063 bool ShouldLazyLoadMetadata,
4064 DataLayoutCallbackTy DataLayoutCallback) {
4065 if (ResumeBit) {
4066 if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
4067 return JumpFailed;
4068 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4069 return Err;
4070
4071 SmallVector<uint64_t, 64> Record;
4072
4073 // Parts of bitcode parsing depend on the datalayout. Make sure we
4074 // finalize the datalayout before we run any of that code.
4075 bool ResolvedDataLayout = false;
4076 auto ResolveDataLayout = [&] {
4077 if (ResolvedDataLayout)
4078 return;
4079
4080 // datalayout and triple can't be parsed after this point.
4081 ResolvedDataLayout = true;
4082
4083 // Upgrade data layout string.
4084 std::string DL = llvm::UpgradeDataLayoutString(
4085 TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
4086 TheModule->setDataLayout(DL);
4087
4088 if (auto LayoutOverride =
4089 DataLayoutCallback(TheModule->getTargetTriple()))
4090 TheModule->setDataLayout(*LayoutOverride);
4091 };
4092
4093 // Read all the records for this module.
4094 while (true) {
4095 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4096 if (!MaybeEntry)
4097 return MaybeEntry.takeError();
4098 llvm::BitstreamEntry Entry = MaybeEntry.get();
4099
4100 switch (Entry.Kind) {
4101 case BitstreamEntry::Error:
4102 return error("Malformed block");
4103 case BitstreamEntry::EndBlock:
4104 ResolveDataLayout();
4105 return globalCleanup();
4106
4107 case BitstreamEntry::SubBlock:
4108 switch (Entry.ID) {
4109 default: // Skip unknown content.
4110 if (Error Err = Stream.SkipBlock())
4111 return Err;
4112 break;
4113 case bitc::BLOCKINFO_BLOCK_ID:
4114 if (Error Err = readBlockInfo())
4115 return Err;
4116 break;
4117 case bitc::PARAMATTR_BLOCK_ID:
4118 if (Error Err = parseAttributeBlock())
4119 return Err;
4120 break;
4121 case bitc::PARAMATTR_GROUP_BLOCK_ID:
4122 if (Error Err = parseAttributeGroupBlock())
4123 return Err;
4124 break;
4125 case bitc::TYPE_BLOCK_ID_NEW:
4126 if (Error Err = parseTypeTable())
4127 return Err;
4128 break;
4129 case bitc::VALUE_SYMTAB_BLOCK_ID:
4130 if (!SeenValueSymbolTable) {
4131 // Either this is an old form VST without function index and an
4132 // associated VST forward declaration record (which would have caused
4133 // the VST to be jumped to and parsed before it was encountered
4134 // normally in the stream), or there were no function blocks to
4135 // trigger an earlier parsing of the VST.
4136 assert(VSTOffset == 0 || FunctionsWithBodies.empty())(static_cast <bool> (VSTOffset == 0 || FunctionsWithBodies
.empty()) ? void (0) : __assert_fail ("VSTOffset == 0 || FunctionsWithBodies.empty()"
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 4136, __extension__
__PRETTY_FUNCTION__))
;
4137 if (Error Err = parseValueSymbolTable())
4138 return Err;
4139 SeenValueSymbolTable = true;
4140 } else {
4141 // We must have had a VST forward declaration record, which caused
4142 // the parser to jump to and parse the VST earlier.
4143 assert(VSTOffset > 0)(static_cast <bool> (VSTOffset > 0) ? void (0) : __assert_fail
("VSTOffset > 0", "llvm/lib/Bitcode/Reader/BitcodeReader.cpp"
, 4143, __extension__ __PRETTY_FUNCTION__))
;
4144 if (Error Err = Stream.SkipBlock())
4145 return Err;
4146 }
4147 break;
4148 case bitc::CONSTANTS_BLOCK_ID:
4149 if (Error Err = parseConstants())
4150 return Err;
4151 if (Error Err = resolveGlobalAndIndirectSymbolInits())
4152 return Err;
4153 break;
4154 case bitc::METADATA_BLOCK_ID:
4155 if (ShouldLazyLoadMetadata) {
4156 if (Error Err = rememberAndSkipMetadata())
4157 return Err;
4158 break;
4159 }
4160 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata")(static_cast <bool> (DeferredMetadataInfo.empty() &&
"Unexpected deferred metadata") ? void (0) : __assert_fail (
"DeferredMetadataInfo.empty() && \"Unexpected deferred metadata\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 4160, __extension__
__PRETTY_FUNCTION__))
;
4161 if (Error Err = MDLoader->parseModuleMetadata())
4162 return Err;
4163 break;
4164 case bitc::METADATA_KIND_BLOCK_ID:
4165 if (Error Err = MDLoader->parseMetadataKinds())
4166 return Err;
4167 break;
4168 case bitc::FUNCTION_BLOCK_ID:
4169 ResolveDataLayout();
4170
4171 // If this is the first function body we've seen, reverse the
4172 // FunctionsWithBodies list.
4173 if (!SeenFirstFunctionBody) {
4174 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
4175 if (Error Err = globalCleanup())
4176 return Err;
4177 SeenFirstFunctionBody = true;
4178 }
4179
4180 if (VSTOffset > 0) {
4181 // If we have a VST forward declaration record, make sure we
4182 // parse the VST now if we haven't already. It is needed to
4183 // set up the DeferredFunctionInfo vector for lazy reading.
4184 if (!SeenValueSymbolTable) {
4185 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
4186 return Err;
4187 SeenValueSymbolTable = true;
4188 // Fall through so that we record the NextUnreadBit below.
4189 // This is necessary in case we have an anonymous function that
4190 // is later materialized. Since it will not have a VST entry we
4191 // need to fall back to the lazy parse to find its offset.
4192 } else {
4193 // If we have a VST forward declaration record, but have already
4194 // parsed the VST (just above, when the first function body was
4195 // encountered here), then we are resuming the parse after
4196 // materializing functions. The ResumeBit points to the
4197 // start of the last function block recorded in the
4198 // DeferredFunctionInfo map. Skip it.
4199 if (Error Err = Stream.SkipBlock())
4200 return Err;
4201 continue;
4202 }
4203 }
4204
4205 // Support older bitcode files that did not have the function
4206 // index in the VST, nor a VST forward declaration record, as
4207 // well as anonymous functions that do not have VST entries.
4208 // Build the DeferredFunctionInfo vector on the fly.
4209 if (Error Err = rememberAndSkipFunctionBody())
4210 return Err;
4211
4212 // Suspend parsing when we reach the function bodies. Subsequent
4213 // materialization calls will resume it when necessary. If the bitcode
4214 // file is old, the symbol table will be at the end instead and will not
4215 // have been seen yet. In this case, just finish the parse now.
4216 if (SeenValueSymbolTable) {
4217 NextUnreadBit = Stream.GetCurrentBitNo();
4218 // After the VST has been parsed, we need to make sure intrinsic name
4219 // are auto-upgraded.
4220 return globalCleanup();
4221 }
4222 break;
4223 case bitc::USELIST_BLOCK_ID:
4224 if (Error Err = parseUseLists())
4225 return Err;
4226 break;
4227 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
4228 if (Error Err = parseOperandBundleTags())
4229 return Err;
4230 break;
4231 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
4232 if (Error Err = parseSyncScopeNames())
4233 return Err;
4234 break;
4235 }
4236 continue;
4237
4238 case BitstreamEntry::Record:
4239 // The interesting case.
4240 break;
4241 }
4242
4243 // Read a record.
4244 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4245 if (!MaybeBitCode)
4246 return MaybeBitCode.takeError();
4247 switch (unsigned BitCode = MaybeBitCode.get()) {
4248 default: break; // Default behavior, ignore unknown content.
4249 case bitc::MODULE_CODE_VERSION: {
4250 Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
4251 if (!VersionOrErr)
4252 return VersionOrErr.takeError();
4253 UseRelativeIDs = *VersionOrErr >= 1;
4254 break;
4255 }
4256 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
4257 if (ResolvedDataLayout)
4258 return error("target triple too late in module");
4259 std::string S;
4260 if (convertToString(Record, 0, S))
4261 return error("Invalid record");
4262 TheModule->setTargetTriple(S);
4263 break;
4264 }
4265 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N]
4266 if (ResolvedDataLayout)
4267 return error("datalayout too late in module");
4268 std::string S;
4269 if (convertToString(Record, 0, S))
4270 return error("Invalid record");
4271 Expected<DataLayout> MaybeDL = DataLayout::parse(S);
4272 if (!MaybeDL)
4273 return MaybeDL.takeError();
4274 TheModule->setDataLayout(MaybeDL.get());
4275 break;
4276 }
4277 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N]
4278 std::string S;
4279 if (convertToString(Record, 0, S))
4280 return error("Invalid record");
4281 TheModule->setModuleInlineAsm(S);
4282 break;
4283 }
4284 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N]
4285 // Deprecated, but still needed to read old bitcode files.
4286 std::string S;
4287 if (convertToString(Record, 0, S))
4288 return error("Invalid record");
4289 // Ignore value.
4290 break;
4291 }
4292 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
4293 std::string S;
4294 if (convertToString(Record, 0, S))
4295 return error("Invalid record");
4296 SectionTable.push_back(S);
4297 break;
4298 }
4299 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N]
4300 std::string S;
4301 if (convertToString(Record, 0, S))
4302 return error("Invalid record");
4303 GCTable.push_back(S);
4304 break;
4305 }
4306 case bitc::MODULE_CODE_COMDAT:
4307 if (Error Err = parseComdatRecord(Record))
4308 return Err;
4309 break;
4310 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC}
4311 // written by ThinLinkBitcodeWriter. See
4312 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each
4313 // record
4314 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714)
4315 case bitc::MODULE_CODE_GLOBALVAR:
4316 if (Error Err = parseGlobalVarRecord(Record))
4317 return Err;
4318 break;
4319 case bitc::MODULE_CODE_FUNCTION:
4320 ResolveDataLayout();
4321 if (Error Err = parseFunctionRecord(Record))
4322 return Err;
4323 break;
4324 case bitc::MODULE_CODE_IFUNC:
4325 case bitc::MODULE_CODE_ALIAS:
4326 case bitc::MODULE_CODE_ALIAS_OLD:
4327 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
4328 return Err;
4329 break;
4330 /// MODULE_CODE_VSTOFFSET: [offset]
4331 case bitc::MODULE_CODE_VSTOFFSET:
4332 if (Record.empty())
4333 return error("Invalid record");
4334 // Note that we subtract 1 here because the offset is relative to one word
4335 // before the start of the identification or module block, which was
4336 // historically always the start of the regular bitcode header.
4337 VSTOffset = Record[0] - 1;
4338 break;
4339 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4340 case bitc::MODULE_CODE_SOURCE_FILENAME:
4341 SmallString<128> ValueName;
4342 if (convertToString(Record, 0, ValueName))
4343 return error("Invalid record");
4344 TheModule->setSourceFileName(ValueName);
4345 break;
4346 }
4347 Record.clear();
4348 }
4349}
4350
4351Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
4352 bool IsImporting,
4353 DataLayoutCallbackTy DataLayoutCallback) {
4354 TheModule = M;
4355 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
4356 [&](unsigned ID) { return getTypeByID(ID); });
4357 return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback);
4358}
4359
4360Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4361 if (!isa<PointerType>(PtrType))
4362 return error("Load/Store operand is not a pointer type");
4363
4364 if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType))
4365 return error("Explicit load/store type does not match pointee "
4366 "type of pointer operand");
4367 if (!PointerType::isLoadableOrStorableType(ValType))
4368 return error("Cannot load/store from pointer");
4369 return Error::success();
4370}
4371
4372Error BitcodeReader::propagateAttributeTypes(CallBase *CB,
4373 ArrayRef<unsigned> ArgTyIDs) {
4374 AttributeList Attrs = CB->getAttributes();
4375 for (unsigned i = 0; i != CB->arg_size(); ++i) {
4376 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
4377 Attribute::InAlloca}) {
4378 if (!Attrs.hasParamAttr(i, Kind) ||
4379 Attrs.getParamAttr(i, Kind).getValueAsType())
4380 continue;
4381
4382 Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]);
4383 if (!PtrEltTy)
4384 return error("Missing element type for typed attribute upgrade");
4385
4386 Attribute NewAttr;
4387 switch (Kind) {
4388 case Attribute::ByVal:
4389 NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
4390 break;
4391 case Attribute::StructRet:
4392 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
4393 break;
4394 case Attribute::InAlloca:
4395 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
4396 break;
4397 default:
4398 llvm_unreachable("not an upgraded type attribute")::llvm::llvm_unreachable_internal("not an upgraded type attribute"
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 4398)
;
4399 }
4400
4401 Attrs = Attrs.addParamAttribute(Context, i, NewAttr);
4402 }
4403 }
4404
4405 if (CB->isInlineAsm()) {
4406 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand());
4407 unsigned ArgNo = 0;
4408 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4409 if (!CI.hasArg())
4410 continue;
4411
4412 if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) {
4413 Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4414 if (!ElemTy)
4415 return error("Missing element type for inline asm upgrade");
4416 Attrs = Attrs.addParamAttribute(
4417 Context, ArgNo,
4418 Attribute::get(Context, Attribute::ElementType, ElemTy));
4419 }
4420
4421 ArgNo++;
4422 }
4423 }
4424
4425 switch (CB->getIntrinsicID()) {
4426 case Intrinsic::preserve_array_access_index:
4427 case Intrinsic::preserve_struct_access_index:
4428 case Intrinsic::aarch64_ldaxr:
4429 case Intrinsic::aarch64_ldxr:
4430 case Intrinsic::aarch64_stlxr:
4431 case Intrinsic::aarch64_stxr:
4432 case Intrinsic::arm_ldaex:
4433 case Intrinsic::arm_ldrex:
4434 case Intrinsic::arm_stlex:
4435 case Intrinsic::arm_strex: {
4436 unsigned ArgNo;
4437 switch (CB->getIntrinsicID()) {
4438 case Intrinsic::aarch64_stlxr:
4439 case Intrinsic::aarch64_stxr:
4440 case Intrinsic::arm_stlex:
4441 case Intrinsic::arm_strex:
4442 ArgNo = 1;
4443 break;
4444 default:
4445 ArgNo = 0;
4446 break;
4447 }
4448 if (!Attrs.getParamElementType(ArgNo)) {
4449 Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]);
4450 if (!ElTy)
4451 return error("Missing element type for elementtype upgrade");
4452 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
4453 Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr);
4454 }
4455 break;
4456 }
4457 default:
4458 break;
4459 }
4460
4461 CB->setAttributes(Attrs);
4462 return Error::success();
4463}
4464
4465/// Lazily parse the specified function body block.
4466Error BitcodeReader::parseFunctionBody(Function *F) {
4467 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4468 return Err;
4469
4470 // Unexpected unresolved metadata when parsing function.
4471 if (MDLoader->hasFwdRefs())
4472 return error("Invalid function metadata: incoming forward references");
4473
4474 InstructionList.clear();
4475 unsigned ModuleValueListSize = ValueList.size();
4476 unsigned ModuleMDLoaderSize = MDLoader->size();
4477
4478 // Add all the function arguments to the value table.
4479 unsigned ArgNo = 0;
4480 unsigned FTyID = FunctionTypeIDs[F];
4481 for (Argument &I : F->args()) {
4482 unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1);
4483 assert(I.getType() == getTypeByID(ArgTyID) &&(static_cast <bool> (I.getType() == getTypeByID(ArgTyID
) && "Incorrect fully specified type for Function Argument"
) ? void (0) : __assert_fail ("I.getType() == getTypeByID(ArgTyID) && \"Incorrect fully specified type for Function Argument\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 4484, __extension__
__PRETTY_FUNCTION__))
4484 "Incorrect fully specified type for Function Argument")(static_cast <bool> (I.getType() == getTypeByID(ArgTyID
) && "Incorrect fully specified type for Function Argument"
) ? void (0) : __assert_fail ("I.getType() == getTypeByID(ArgTyID) && \"Incorrect fully specified type for Function Argument\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 4484, __extension__
__PRETTY_FUNCTION__))
;
4485 ValueList.push_back(&I, ArgTyID);
4486 ++ArgNo;
4487 }
4488 unsigned NextValueNo = ValueList.size();
4489 BasicBlock *CurBB = nullptr;
4490 unsigned CurBBNo = 0;
4491 // Block into which constant expressions from phi nodes are materialized.
4492 BasicBlock *PhiConstExprBB = nullptr;
4493 // Edge blocks for phi nodes into which constant expressions have been
4494 // expanded.
4495 SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4>
4496 ConstExprEdgeBBs;
4497
4498 DebugLoc LastLoc;
4499 auto getLastInstruction = [&]() -> Instruction * {
4500 if (CurBB && !CurBB->empty())
4501 return &CurBB->back();
4502 else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4503 !FunctionBBs[CurBBNo - 1]->empty())
4504 return &FunctionBBs[CurBBNo - 1]->back();
4505 return nullptr;
4506 };
4507
4508 std::vector<OperandBundleDef> OperandBundles;
4509
4510 // Read all the records.
4511 SmallVector<uint64_t, 64> Record;
4512
4513 while (true) {
4514 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
4515 if (!MaybeEntry)
4516 return MaybeEntry.takeError();
4517 llvm::BitstreamEntry Entry = MaybeEntry.get();
4518
4519 switch (Entry.Kind) {
4520 case BitstreamEntry::Error:
4521 return error("Malformed block");
4522 case BitstreamEntry::EndBlock:
4523 goto OutOfRecordLoop;
4524
4525 case BitstreamEntry::SubBlock:
4526 switch (Entry.ID) {
4527 default: // Skip unknown content.
4528 if (Error Err = Stream.SkipBlock())
4529 return Err;
4530 break;
4531 case bitc::CONSTANTS_BLOCK_ID:
4532 if (Error Err = parseConstants())
4533 return Err;
4534 NextValueNo = ValueList.size();
4535 break;
4536 case bitc::VALUE_SYMTAB_BLOCK_ID:
4537 if (Error Err = parseValueSymbolTable())
4538 return Err;
4539 break;
4540 case bitc::METADATA_ATTACHMENT_ID:
4541 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
4542 return Err;
4543 break;
4544 case bitc::METADATA_BLOCK_ID:
4545 assert(DeferredMetadataInfo.empty() &&(static_cast <bool> (DeferredMetadataInfo.empty() &&
"Must read all module-level metadata before function-level")
? void (0) : __assert_fail ("DeferredMetadataInfo.empty() && \"Must read all module-level metadata before function-level\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 4546, __extension__
__PRETTY_FUNCTION__))
4546 "Must read all module-level metadata before function-level")(static_cast <bool> (DeferredMetadataInfo.empty() &&
"Must read all module-level metadata before function-level")
? void (0) : __assert_fail ("DeferredMetadataInfo.empty() && \"Must read all module-level metadata before function-level\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 4546, __extension__
__PRETTY_FUNCTION__))
;
4547 if (Error Err = MDLoader->parseFunctionMetadata())
4548 return Err;
4549 break;
4550 case bitc::USELIST_BLOCK_ID:
4551 if (Error Err = parseUseLists())
4552 return Err;
4553 break;
4554 }
4555 continue;
4556
4557 case BitstreamEntry::Record:
4558 // The interesting case.
4559 break;
4560 }
4561
4562 // Read a record.
4563 Record.clear();
4564 Instruction *I = nullptr;
4565 unsigned ResTypeID = InvalidTypeID;
4566 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
4567 if (!MaybeBitCode)
4568 return MaybeBitCode.takeError();
4569 switch (unsigned BitCode = MaybeBitCode.get()) {
4570 default: // Default behavior: reject
4571 return error("Invalid value");
4572 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks]
4573 if (Record.empty() || Record[0] == 0)
4574 return error("Invalid record");
4575 // Create all the basic blocks for the function.
4576 FunctionBBs.resize(Record[0]);
4577
4578 // See if anything took the address of blocks in this function.
4579 auto BBFRI = BasicBlockFwdRefs.find(F);
4580 if (BBFRI == BasicBlockFwdRefs.end()) {
4581 for (BasicBlock *&BB : FunctionBBs)
4582 BB = BasicBlock::Create(Context, "", F);
4583 } else {
4584 auto &BBRefs = BBFRI->second;
4585 // Check for invalid basic block references.
4586 if (BBRefs.size() > FunctionBBs.size())
4587 return error("Invalid ID");
4588 assert(!BBRefs.empty() && "Unexpected empty array")(static_cast <bool> (!BBRefs.empty() && "Unexpected empty array"
) ? void (0) : __assert_fail ("!BBRefs.empty() && \"Unexpected empty array\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 4588, __extension__
__PRETTY_FUNCTION__))
;
4589 assert(!BBRefs.front() && "Invalid reference to entry block")(static_cast <bool> (!BBRefs.front() && "Invalid reference to entry block"
) ? void (0) : __assert_fail ("!BBRefs.front() && \"Invalid reference to entry block\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 4589, __extension__
__PRETTY_FUNCTION__))
;
4590 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4591 ++I)
4592 if (I < RE && BBRefs[I]) {
4593 BBRefs[I]->insertInto(F);
4594 FunctionBBs[I] = BBRefs[I];
4595 } else {
4596 FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4597 }
4598
4599 // Erase from the table.
4600 BasicBlockFwdRefs.erase(BBFRI);
4601 }
4602
4603 CurBB = FunctionBBs[0];
4604 continue;
4605 }
4606
4607 case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...]
4608 // The record should not be emitted if it's an empty list.
4609 if (Record.empty())
4610 return error("Invalid record");
4611 // When we have the RARE case of a BlockAddress Constant that is not
4612 // scoped to the Function it refers to, we need to conservatively
4613 // materialize the referred to Function, regardless of whether or not
4614 // that Function will ultimately be linked, otherwise users of
4615 // BitcodeReader might start splicing out Function bodies such that we
4616 // might no longer be able to materialize the BlockAddress since the
4617 // BasicBlock (and entire body of the Function) the BlockAddress refers
4618 // to may have been moved. In the case that the user of BitcodeReader
4619 // decides ultimately not to link the Function body, materializing here
4620 // could be considered wasteful, but it's better than a deserialization
4621 // failure as described. This keeps BitcodeReader unaware of complex
4622 // linkage policy decisions such as those use by LTO, leaving those
4623 // decisions "one layer up."
4624 for (uint64_t ValID : Record)
4625 if (auto *F = dyn_cast<Function>(ValueList[ValID]))
4626 BackwardRefFunctions.push_back(F);
4627 else
4628 return error("Invalid record");
4629
4630 continue;
4631
4632 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN
4633 // This record indicates that the last instruction is at the same
4634 // location as the previous instruction with a location.
4635 I = getLastInstruction();
4636
4637 if (!I)
4638 return error("Invalid record");
4639 I->setDebugLoc(LastLoc);
4640 I = nullptr;
4641 continue;
4642
4643 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia]
4644 I = getLastInstruction();
4645 if (!I || Record.size() < 4)
4646 return error("Invalid record");
4647
4648 unsigned Line = Record[0], Col = Record[1];
4649 unsigned ScopeID = Record[2], IAID = Record[3];
4650 bool isImplicitCode = Record.size() == 5 && Record[4];
4651
4652 MDNode *Scope = nullptr, *IA = nullptr;
4653 if (ScopeID) {
4654 Scope = dyn_cast_or_null<MDNode>(
4655 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
4656 if (!Scope)
4657 return error("Invalid record");
4658 }
4659 if (IAID) {
4660 IA = dyn_cast_or_null<MDNode>(
4661 MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
4662 if (!IA)
4663 return error("Invalid record");
4664 }
4665 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
4666 isImplicitCode);
4667 I->setDebugLoc(LastLoc);
4668 I = nullptr;
4669 continue;
4670 }
4671 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode]
4672 unsigned OpNum = 0;
4673 Value *LHS;
4674 unsigned TypeID;
4675 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
4676 OpNum+1 > Record.size())
4677 return error("Invalid record");
4678
4679 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4680 if (Opc == -1)
4681 return error("Invalid record");
4682 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
4683 ResTypeID = TypeID;
4684 InstructionList.push_back(I);
4685 if (OpNum < Record.size()) {
4686 if (isa<FPMathOperator>(I)) {
4687 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4688 if (FMF.any())
4689 I->setFastMathFlags(FMF);
4690 }
4691 }
4692 break;
4693 }
4694 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode]
4695 unsigned OpNum = 0;
4696 Value *LHS, *RHS;
4697 unsigned TypeID;
4698 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) ||
4699 popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS,
4700 CurBB) ||
4701 OpNum+1 > Record.size())
4702 return error("Invalid record");
4703
4704 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4705 if (Opc == -1)
4706 return error("Invalid record");
4707 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4708 ResTypeID = TypeID;
4709 InstructionList.push_back(I);
4710 if (OpNum < Record.size()) {
4711 if (Opc == Instruction::Add ||
4712 Opc == Instruction::Sub ||
4713 Opc == Instruction::Mul ||
4714 Opc == Instruction::Shl) {
4715 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4716 cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4717 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4718 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4719 } else if (Opc == Instruction::SDiv ||
4720 Opc == Instruction::UDiv ||
4721 Opc == Instruction::LShr ||
4722 Opc == Instruction::AShr) {
4723 if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4724 cast<BinaryOperator>(I)->setIsExact(true);
4725 } else if (isa<FPMathOperator>(I)) {
4726 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4727 if (FMF.any())
4728 I->setFastMathFlags(FMF);
4729 }
4730
4731 }
4732 break;
4733 }
4734 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc]
4735 unsigned OpNum = 0;
4736 Value *Op;
4737 unsigned OpTypeID;
4738 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
4739 OpNum+2 != Record.size())
4740 return error("Invalid record");
4741
4742 ResTypeID = Record[OpNum];
4743 Type *ResTy = getTypeByID(ResTypeID);
4744 int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4745 if (Opc == -1 || !ResTy)
4746 return error("Invalid record");
4747 Instruction *Temp = nullptr;
4748 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4749 if (Temp) {
4750 InstructionList.push_back(Temp);
4751 assert(CurBB && "No current BB?")(static_cast <bool> (CurBB && "No current BB?")
? void (0) : __assert_fail ("CurBB && \"No current BB?\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 4751, __extension__
__PRETTY_FUNCTION__))
;
4752 CurBB->getInstList().push_back(Temp);
4753 }
4754 } else {
4755 auto CastOp = (Instruction::CastOps)Opc;
4756 if (!CastInst::castIsValid(CastOp, Op, ResTy))
4757 return error("Invalid cast");
4758 I = CastInst::Create(CastOp, Op, ResTy);
4759 }
4760 InstructionList.push_back(I);
4761 break;
4762 }
4763 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4764 case bitc::FUNC_CODE_INST_GEP_OLD:
4765 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4766 unsigned OpNum = 0;
4767
4768 unsigned TyID;
4769 Type *Ty;
4770 bool InBounds;
4771
4772 if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4773 InBounds = Record[OpNum++];
4774 TyID = Record[OpNum++];
4775 Ty = getTypeByID(TyID);
4776 } else {
4777 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4778 TyID = InvalidTypeID;
4779 Ty = nullptr;
4780 }
4781
4782 Value *BasePtr;
4783 unsigned BasePtrTypeID;
4784 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID,
4785 CurBB))
4786 return error("Invalid record");
4787
4788 if (!Ty) {
4789 TyID = getContainedTypeID(BasePtrTypeID);
4790 if (BasePtr->getType()->isVectorTy())
4791 TyID = getContainedTypeID(TyID);
4792 Ty = getTypeByID(TyID);
4793 } else if (!cast<PointerType>(BasePtr->getType()->getScalarType())
4794 ->isOpaqueOrPointeeTypeMatches(Ty)) {
4795 return error(
4796 "Explicit gep type does not match pointee type of pointer operand");
4797 }
4798
4799 SmallVector<Value*, 16> GEPIdx;
4800 while (OpNum != Record.size()) {
4801 Value *Op;
4802 unsigned OpTypeID;
4803 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
4804 return error("Invalid record");
4805 GEPIdx.push_back(Op);
4806 }
4807
4808 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4809
4810 ResTypeID = TyID;
4811 if (cast<GEPOperator>(I)->getNumIndices() != 0) {
4812 auto GTI = std::next(gep_type_begin(I));
4813 for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) {
4814 unsigned SubType = 0;
4815 if (GTI.isStruct()) {
4816 ConstantInt *IdxC =
4817 Idx->getType()->isVectorTy()
4818 ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue())
4819 : cast<ConstantInt>(Idx);
4820 SubType = IdxC->getZExtValue();
4821 }
4822 ResTypeID = getContainedTypeID(ResTypeID, SubType);
4823 ++GTI;
4824 }
4825 }
4826
4827 // At this point ResTypeID is the result element type. We need a pointer
4828 // or vector of pointer to it.
4829 ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID);
4830 if (I->getType()->isVectorTy())
4831 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
4832
4833 InstructionList.push_back(I);
4834 if (InBounds)
4835 cast<GetElementPtrInst>(I)->setIsInBounds(true);
4836 break;
4837 }
4838
4839 case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4840 // EXTRACTVAL: [opty, opval, n x indices]
4841 unsigned OpNum = 0;
4842 Value *Agg;
4843 unsigned AggTypeID;
4844 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
4845 return error("Invalid record");
4846 Type *Ty = Agg->getType();
4847
4848 unsigned RecSize = Record.size();
4849 if (OpNum == RecSize)
4850 return error("EXTRACTVAL: Invalid instruction with 0 indices");
4851
4852 SmallVector<unsigned, 4> EXTRACTVALIdx;
4853 ResTypeID = AggTypeID;
4854 for (; OpNum != RecSize; ++OpNum) {
4855 bool IsArray = Ty->isArrayTy();
4856 bool IsStruct = Ty->isStructTy();
4857 uint64_t Index = Record[OpNum];
4858
4859 if (!IsStruct && !IsArray)
4860 return error("EXTRACTVAL: Invalid type");
4861 if ((unsigned)Index != Index)
4862 return error("Invalid value");
4863 if (IsStruct && Index >= Ty->getStructNumElements())
4864 return error("EXTRACTVAL: Invalid struct index");
4865 if (IsArray && Index >= Ty->getArrayNumElements())
4866 return error("EXTRACTVAL: Invalid array index");
4867 EXTRACTVALIdx.push_back((unsigned)Index);
4868
4869 if (IsStruct) {
4870 Ty = Ty->getStructElementType(Index);
4871 ResTypeID = getContainedTypeID(ResTypeID, Index);
4872 } else {
4873 Ty = Ty->getArrayElementType();
4874 ResTypeID = getContainedTypeID(ResTypeID);
4875 }
4876 }
4877
4878 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4879 InstructionList.push_back(I);
4880 break;
4881 }
4882
4883 case bitc::FUNC_CODE_INST_INSERTVAL: {
4884 // INSERTVAL: [opty, opval, opty, opval, n x indices]
4885 unsigned OpNum = 0;
4886 Value *Agg;
4887 unsigned AggTypeID;
4888 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB))
4889 return error("Invalid record");
4890 Value *Val;
4891 unsigned ValTypeID;
4892 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
4893 return error("Invalid record");
4894
4895 unsigned RecSize = Record.size();
4896 if (OpNum == RecSize)
4897 return error("INSERTVAL: Invalid instruction with 0 indices");
4898
4899 SmallVector<unsigned, 4> INSERTVALIdx;
4900 Type *CurTy = Agg->getType();
4901 for (; OpNum != RecSize; ++OpNum) {
4902 bool IsArray = CurTy->isArrayTy();
4903 bool IsStruct = CurTy->isStructTy();
4904 uint64_t Index = Record[OpNum];
4905
4906 if (!IsStruct && !IsArray)
4907 return error("INSERTVAL: Invalid type");
4908 if ((unsigned)Index != Index)
4909 return error("Invalid value");
4910 if (IsStruct && Index >= CurTy->getStructNumElements())
4911 return error("INSERTVAL: Invalid struct index");
4912 if (IsArray && Index >= CurTy->getArrayNumElements())
4913 return error("INSERTVAL: Invalid array index");
4914
4915 INSERTVALIdx.push_back((unsigned)Index);
4916 if (IsStruct)
4917 CurTy = CurTy->getStructElementType(Index);
4918 else
4919 CurTy = CurTy->getArrayElementType();
4920 }
4921
4922 if (CurTy != Val->getType())
4923 return error("Inserted value type doesn't match aggregate type");
4924
4925 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4926 ResTypeID = AggTypeID;
4927 InstructionList.push_back(I);
4928 break;
4929 }
4930
4931 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4932 // obsolete form of select
4933 // handles select i1 ... in old bitcode
4934 unsigned OpNum = 0;
4935 Value *TrueVal, *FalseVal, *Cond;
4936 unsigned TypeID;
4937 Type *CondType = Type::getInt1Ty(Context);
4938 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID,
4939 CurBB) ||
4940 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID,
4941 FalseVal, CurBB) ||
4942 popValue(Record, OpNum, NextValueNo, CondType,
4943 getVirtualTypeID(CondType), Cond, CurBB))
4944 return error("Invalid record");
4945
4946 I = SelectInst::Create(Cond, TrueVal, FalseVal);
4947 ResTypeID = TypeID;
4948 InstructionList.push_back(I);
4949 break;
4950 }
4951
4952 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4953 // new form of select
4954 // handles select i1 or select [N x i1]
4955 unsigned OpNum = 0;
4956 Value *TrueVal, *FalseVal, *Cond;
4957 unsigned ValTypeID, CondTypeID;
4958 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID,
4959 CurBB) ||
4960 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID,
4961 FalseVal, CurBB) ||
4962 getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB))
4963 return error("Invalid record");
4964
4965 // select condition can be either i1 or [N x i1]
4966 if (VectorType* vector_type =
4967 dyn_cast<VectorType>(Cond->getType())) {
4968 // expect <n x i1>
4969 if (vector_type->getElementType() != Type::getInt1Ty(Context))
4970 return error("Invalid type for value");
4971 } else {
4972 // expect i1
4973 if (Cond->getType() != Type::getInt1Ty(Context))
4974 return error("Invalid type for value");
4975 }
4976
4977 I = SelectInst::Create(Cond, TrueVal, FalseVal);
4978 ResTypeID = ValTypeID;
4979 InstructionList.push_back(I);
4980 if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4981 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4982 if (FMF.any())
4983 I->setFastMathFlags(FMF);
4984 }
4985 break;
4986 }
4987
4988 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4989 unsigned OpNum = 0;
4990 Value *Vec, *Idx;
4991 unsigned VecTypeID, IdxTypeID;
4992 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) ||
4993 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
4994 return error("Invalid record");
4995 if (!Vec->getType()->isVectorTy())
4996 return error("Invalid type for value");
4997 I = ExtractElementInst::Create(Vec, Idx);
4998 ResTypeID = getContainedTypeID(VecTypeID);
4999 InstructionList.push_back(I);
5000 break;
5001 }
5002
5003 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
5004 unsigned OpNum = 0;
5005 Value *Vec, *Elt, *Idx;
5006 unsigned VecTypeID, IdxTypeID;
5007 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB))
5008 return error("Invalid record");
5009 if (!Vec->getType()->isVectorTy())
5010 return error("Invalid type for value");
5011 if (popValue(Record, OpNum, NextValueNo,
5012 cast<VectorType>(Vec->getType())->getElementType(),
5013 getContainedTypeID(VecTypeID), Elt, CurBB) ||
5014 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB))
5015 return error("Invalid record");
5016 I = InsertElementInst::Create(Vec, Elt, Idx);
5017 ResTypeID = VecTypeID;
5018 InstructionList.push_back(I);
5019 break;
5020 }
5021
5022 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
5023 unsigned OpNum = 0;
5024 Value *Vec1, *Vec2, *Mask;
5025 unsigned Vec1TypeID;
5026 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID,
5027 CurBB) ||
5028 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID,
5029 Vec2, CurBB))
5030 return error("Invalid record");
5031
5032 unsigned MaskTypeID;
5033 if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB))
5034 return error("Invalid record");
5035 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
5036 return error("Invalid type for value");
5037
5038 I = new ShuffleVectorInst(Vec1, Vec2, Mask);
5039 ResTypeID =
5040 getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID));
5041 InstructionList.push_back(I);
5042 break;
5043 }
5044
5045 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred]
5046 // Old form of ICmp/FCmp returning bool
5047 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
5048 // both legal on vectors but had different behaviour.
5049 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
5050 // FCmp/ICmp returning bool or vector of bool
5051
5052 unsigned OpNum = 0;
5053 Value *LHS, *RHS;
5054 unsigned LHSTypeID;
5055 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) ||
5056 popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS,
5057 CurBB))
5058 return error("Invalid record");
5059
5060 if (OpNum >= Record.size())
5061 return error(
5062 "Invalid record: operand number exceeded available operands");
5063
5064 unsigned PredVal = Record[OpNum];
5065 bool IsFP = LHS->getType()->isFPOrFPVectorTy();
5066 FastMathFlags FMF;
5067 if (IsFP && Record.size() > OpNum+1)
5068 FMF = getDecodedFastMathFlags(Record[++OpNum]);
5069
5070 if (OpNum+1 != Record.size())
5071 return error("Invalid record");
5072
5073 if (LHS->getType()->isFPOrFPVectorTy())
5074 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
5075 else
5076 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
5077
5078 ResTypeID = getVirtualTypeID(I->getType()->getScalarType());
5079 if (LHS->getType()->isVectorTy())
5080 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID);
5081
5082 if (FMF.any())
5083 I->setFastMathFlags(FMF);
5084 InstructionList.push_back(I);
5085 break;
5086 }
5087
5088 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
5089 {
5090 unsigned Size = Record.size();
5091 if (Size == 0) {
5092 I = ReturnInst::Create(Context);
5093 InstructionList.push_back(I);
5094 break;
5095 }
5096
5097 unsigned OpNum = 0;
5098 Value *Op = nullptr;
5099 unsigned OpTypeID;
5100 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5101 return error("Invalid record");
5102 if (OpNum != Record.size())
5103 return error("Invalid record");
5104
5105 I = ReturnInst::Create(Context, Op);
5106 InstructionList.push_back(I);
5107 break;
5108 }
5109 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
5110 if (Record.size() != 1 && Record.size() != 3)
5111 return error("Invalid record");
5112 BasicBlock *TrueDest = getBasicBlock(Record[0]);
5113 if (!TrueDest)
5114 return error("Invalid record");
5115
5116 if (Record.size() == 1) {
5117 I = BranchInst::Create(TrueDest);
5118 InstructionList.push_back(I);
5119 }
5120 else {
5121 BasicBlock *FalseDest = getBasicBlock(Record[1]);
5122 Type *CondType = Type::getInt1Ty(Context);
5123 Value *Cond = getValue(Record, 2, NextValueNo, CondType,
5124 getVirtualTypeID(CondType), CurBB);
5125 if (!FalseDest || !Cond)
5126 return error("Invalid record");
5127 I = BranchInst::Create(TrueDest, FalseDest, Cond);
5128 InstructionList.push_back(I);
5129 }
5130 break;
5131 }
5132 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
5133 if (Record.size() != 1 && Record.size() != 2)
5134 return error("Invalid record");
5135 unsigned Idx = 0;
5136 Type *TokenTy = Type::getTokenTy(Context);
5137 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5138 getVirtualTypeID(TokenTy), CurBB);
5139 if (!CleanupPad)
5140 return error("Invalid record");
5141 BasicBlock *UnwindDest = nullptr;
5142 if (Record.size() == 2) {
5143 UnwindDest = getBasicBlock(Record[Idx++]);
5144 if (!UnwindDest)
5145 return error("Invalid record");
5146 }
5147
5148 I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
5149 InstructionList.push_back(I);
5150 break;
5151 }
5152 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
5153 if (Record.size() != 2)
5154 return error("Invalid record");
5155 unsigned Idx = 0;
5156 Type *TokenTy = Type::getTokenTy(Context);
5157 Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5158 getVirtualTypeID(TokenTy), CurBB);
5159 if (!CatchPad)
5160 return error("Invalid record");
5161 BasicBlock *BB = getBasicBlock(Record[Idx++]);
5162 if (!BB)
5163 return error("Invalid record");
5164
5165 I = CatchReturnInst::Create(CatchPad, BB);
5166 InstructionList.push_back(I);
5167 break;
5168 }
5169 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
5170 // We must have, at minimum, the outer scope and the number of arguments.
5171 if (Record.size() < 2)
5172 return error("Invalid record");
5173
5174 unsigned Idx = 0;
5175
5176 Type *TokenTy = Type::getTokenTy(Context);
5177 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5178 getVirtualTypeID(TokenTy), CurBB);
5179
5180 unsigned NumHandlers = Record[Idx++];
5181
5182 SmallVector<BasicBlock *, 2> Handlers;
5183 for (unsigned Op = 0; Op != NumHandlers; ++Op) {
5184 BasicBlock *BB = getBasicBlock(Record[Idx++]);
5185 if (!BB)
5186 return error("Invalid record");
5187 Handlers.push_back(BB);
5188 }
5189
5190 BasicBlock *UnwindDest = nullptr;
5191 if (Idx + 1 == Record.size()) {
5192 UnwindDest = getBasicBlock(Record[Idx++]);
5193 if (!UnwindDest)
5194 return error("Invalid record");
5195 }
5196
5197 if (Record.size() != Idx)
5198 return error("Invalid record");
5199
5200 auto *CatchSwitch =
5201 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
5202 for (BasicBlock *Handler : Handlers)
5203 CatchSwitch->addHandler(Handler);
5204 I = CatchSwitch;
5205 ResTypeID = getVirtualTypeID(I->getType());
5206 InstructionList.push_back(I);
5207 break;
5208 }
5209 case bitc::FUNC_CODE_INST_CATCHPAD:
5210 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
5211 // We must have, at minimum, the outer scope and the number of arguments.
5212 if (Record.size() < 2)
5213 return error("Invalid record");
5214
5215 unsigned Idx = 0;
5216
5217 Type *TokenTy = Type::getTokenTy(Context);
5218 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy,
5219 getVirtualTypeID(TokenTy), CurBB);
5220
5221 unsigned NumArgOperands = Record[Idx++];
5222
5223 SmallVector<Value *, 2> Args;
5224 for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
5225 Value *Val;
5226 unsigned ValTypeID;
5227 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr))
5228 return error("Invalid record");
5229 Args.push_back(Val);
5230 }
5231
5232 if (Record.size() != Idx)
5233 return error("Invalid record");
5234
5235 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
5236 I = CleanupPadInst::Create(ParentPad, Args);
5237 else
5238 I = CatchPadInst::Create(ParentPad, Args);
5239 ResTypeID = getVirtualTypeID(I->getType());
5240 InstructionList.push_back(I);
5241 break;
5242 }
5243 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
5244 // Check magic
5245 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
5246 // "New" SwitchInst format with case ranges. The changes to write this
5247 // format were reverted but we still recognize bitcode that uses it.
5248 // Hopefully someday we will have support for case ranges and can use
5249 // this format again.
5250
5251 unsigned OpTyID = Record[1];
5252 Type *OpTy = getTypeByID(OpTyID);
5253 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
5254
5255 Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB);
5256 BasicBlock *Default = getBasicBlock(Record[3]);
5257 if (!OpTy || !Cond || !Default)
5258 return error("Invalid record");
5259
5260 unsigned NumCases = Record[4];
5261
5262 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5263 InstructionList.push_back(SI);
5264
5265 unsigned CurIdx = 5;
5266 for (unsigned i = 0; i != NumCases; ++i) {
5267 SmallVector<ConstantInt*, 1> CaseVals;
5268 unsigned NumItems = Record[CurIdx++];
5269 for (unsigned ci = 0; ci != NumItems; ++ci) {
5270 bool isSingleNumber = Record[CurIdx++];
5271
5272 APInt Low;
5273 unsigned ActiveWords = 1;
5274 if (ValueBitWidth > 64)
5275 ActiveWords = Record[CurIdx++];
5276 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
5277 ValueBitWidth);
5278 CurIdx += ActiveWords;
5279
5280 if (!isSingleNumber) {
5281 ActiveWords = 1;
5282 if (ValueBitWidth > 64)
5283 ActiveWords = Record[CurIdx++];
5284 APInt High = readWideAPInt(
5285 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
5286 CurIdx += ActiveWords;
5287
5288 // FIXME: It is not clear whether values in the range should be
5289 // compared as signed or unsigned values. The partially
5290 // implemented changes that used this format in the past used
5291 // unsigned comparisons.
5292 for ( ; Low.ule(High); ++Low)
5293 CaseVals.push_back(ConstantInt::get(Context, Low));
5294 } else
5295 CaseVals.push_back(ConstantInt::get(Context, Low));
5296 }
5297 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
5298 for (ConstantInt *Cst : CaseVals)
5299 SI->addCase(Cst, DestBB);
5300 }
5301 I = SI;
5302 break;
5303 }
5304
5305 // Old SwitchInst format without case ranges.
5306
5307 if (Record.size() < 3 || (Record.size() & 1) == 0)
5308 return error("Invalid record");
5309 unsigned OpTyID = Record[0];
5310 Type *OpTy = getTypeByID(OpTyID);
5311 Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5312 BasicBlock *Default = getBasicBlock(Record[2]);
5313 if (!OpTy || !Cond || !Default)
5314 return error("Invalid record");
5315 unsigned NumCases = (Record.size()-3)/2;
5316 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5317 InstructionList.push_back(SI);
5318 for (unsigned i = 0, e = NumCases; i != e; ++i) {
5319 ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>(
5320 getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr));
5321 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
5322 if (!CaseVal || !DestBB) {
5323 delete SI;
5324 return error("Invalid record");
5325 }
5326 SI->addCase(CaseVal, DestBB);
5327 }
5328 I = SI;
5329 break;
5330 }
5331 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
5332 if (Record.size() < 2)
5333 return error("Invalid record");
5334 unsigned OpTyID = Record[0];
5335 Type *OpTy = getTypeByID(OpTyID);
5336 Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB);
5337 if (!OpTy || !Address)
5338 return error("Invalid record");
5339 unsigned NumDests = Record.size()-2;
5340 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
5341 InstructionList.push_back(IBI);
5342 for (unsigned i = 0, e = NumDests; i != e; ++i) {
5343 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
5344 IBI->addDestination(DestBB);
5345 } else {
5346 delete IBI;
5347 return error("Invalid record");
5348 }
5349 }
5350 I = IBI;
5351 break;
5352 }
5353
5354 case bitc::FUNC_CODE_INST_INVOKE: {
5355 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5356 if (Record.size() < 4)
5357 return error("Invalid record");
5358 unsigned OpNum = 0;
5359 AttributeList PAL = getAttributes(Record[OpNum++]);
5360 unsigned CCInfo = Record[OpNum++];
5361 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
5362 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
5363
5364 unsigned FTyID = InvalidTypeID;
5365 FunctionType *FTy = nullptr;
5366 if ((CCInfo >> 13) & 1) {
5367 FTyID = Record[OpNum++];
5368 FTy = dyn_cast<FunctionType>(getTypeByID(FTyID));
5369 if (!FTy)
5370 return error("Explicit invoke type is not a function type");
5371 }
5372
5373 Value *Callee;
5374 unsigned CalleeTypeID;
5375 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5376 CurBB))
5377 return error("Invalid record");
5378
5379 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5380 if (!CalleeTy)
5381 return error("Callee is not a pointer");
5382 if (!FTy) {
5383 FTyID = getContainedTypeID(CalleeTypeID);
5384 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5385 if (!FTy)
5386 return error("Callee is not of pointer to function type");
5387 } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy))
5388 return error("Explicit invoke type does not match pointee type of "
5389 "callee operand");
5390 if (Record.size() < FTy->getNumParams() + OpNum)
5391 return error("Insufficient operands to call");
5392
5393 SmallVector<Value*, 16> Ops;
5394 SmallVector<unsigned, 16> ArgTyIDs;
5395 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5396 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5397 Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5398 ArgTyID, CurBB));
5399 ArgTyIDs.push_back(ArgTyID);
5400 if (!Ops.back())
5401 return error("Invalid record");
5402 }
5403
5404 if (!FTy->isVarArg()) {
5405 if (Record.size() != OpNum)
5406 return error("Invalid record");
5407 } else {
5408 // Read type/value pairs for varargs params.
5409 while (OpNum != Record.size()) {
5410 Value *Op;
5411 unsigned OpTypeID;
5412 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5413 return error("Invalid record");
5414 Ops.push_back(Op);
5415 ArgTyIDs.push_back(OpTypeID);
5416 }
5417 }
5418
5419 // Upgrade the bundles if needed.
5420 if (!OperandBundles.empty())
5421 UpgradeOperandBundles(OperandBundles);
5422
5423 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
5424 OperandBundles);
5425 ResTypeID = getContainedTypeID(FTyID);
5426 OperandBundles.clear();
5427 InstructionList.push_back(I);
5428 cast<InvokeInst>(I)->setCallingConv(
5429 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5430 cast<InvokeInst>(I)->setAttributes(PAL);
5431 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5432 I->deleteValue();
5433 return Err;
5434 }
5435
5436 break;
5437 }
5438 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5439 unsigned Idx = 0;
5440 Value *Val = nullptr;
5441 unsigned ValTypeID;
5442 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB))
5443 return error("Invalid record");
5444 I = ResumeInst::Create(Val);
5445 InstructionList.push_back(I);
5446 break;
5447 }
5448 case bitc::FUNC_CODE_INST_CALLBR: {
5449 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
5450 unsigned OpNum = 0;
5451 AttributeList PAL = getAttributes(Record[OpNum++]);
5452 unsigned CCInfo = Record[OpNum++];
5453
5454 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
5455 unsigned NumIndirectDests = Record[OpNum++];
5456 SmallVector<BasicBlock *, 16> IndirectDests;
5457 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
5458 IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
5459
5460 unsigned FTyID = InvalidTypeID;
5461 FunctionType *FTy = nullptr;
5462 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5463 FTyID = Record[OpNum++];
5464 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5465 if (!FTy)
5466 return error("Explicit call type is not a function type");
5467 }
5468
5469 Value *Callee;
5470 unsigned CalleeTypeID;
5471 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID,
5472 CurBB))
5473 return error("Invalid record");
5474
5475 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5476 if (!OpTy)
5477 return error("Callee is not a pointer type");
5478 if (!FTy) {
5479 FTyID = getContainedTypeID(CalleeTypeID);
5480 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID));
5481 if (!FTy)
5482 return error("Callee is not of pointer to function type");
5483 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
5484 return error("Explicit call type does not match pointee type of "
5485 "callee operand");
5486 if (Record.size() < FTy->getNumParams() + OpNum)
5487 return error("Insufficient operands to call");
5488
5489 SmallVector<Value*, 16> Args;
5490 SmallVector<unsigned, 16> ArgTyIDs;
5491 // Read the fixed params.
5492 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5493 Value *Arg;
5494 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1);
5495 if (FTy->getParamType(i)->isLabelTy())
5496 Arg = getBasicBlock(Record[OpNum]);
5497 else
5498 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i),
5499 ArgTyID, CurBB);
5500 if (!Arg)
5501 return error("Invalid record");
5502 Args.push_back(Arg);
5503 ArgTyIDs.push_back(ArgTyID);
5504 }
5505
5506 // Read type/value pairs for varargs params.
5507 if (!FTy->isVarArg()) {
5508 if (OpNum != Record.size())
5509 return error("Invalid record");
5510 } else {
5511 while (OpNum != Record.size()) {
5512 Value *Op;
5513 unsigned OpTypeID;
5514 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB))
5515 return error("Invalid record");
5516 Args.push_back(Op);
5517 ArgTyIDs.push_back(OpTypeID);
5518 }
5519 }
5520
5521 // Upgrade the bundles if needed.
5522 if (!OperandBundles.empty())
5523 UpgradeOperandBundles(OperandBundles);
5524
5525 if (auto *IA = dyn_cast<InlineAsm>(Callee)) {
5526 InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints();
5527 auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) {
5528 return CI.Type == InlineAsm::isLabel;
5529 };
5530 if (none_of(ConstraintInfo, IsLabelConstraint)) {
5531 // Upgrade explicit blockaddress arguments to label constraints.
5532 // Verify that the last arguments are blockaddress arguments that
5533 // match the indirect destinations. Clang always generates callbr
5534 // in this form. We could support reordering with more effort.
5535 unsigned FirstBlockArg = Args.size() - IndirectDests.size();
5536 for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) {
5537 unsigned LabelNo = ArgNo - FirstBlockArg;
5538 auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]);
5539 if (!BA || BA->getFunction() != F ||
5540 LabelNo > IndirectDests.size() ||
5541 BA->getBasicBlock() != IndirectDests[LabelNo])
5542 return error("callbr argument does not match indirect dest");
5543 }
5544
5545 // Remove blockaddress arguments.
5546 Args.erase(Args.begin() + FirstBlockArg, Args.end());
5547 ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end());
5548
5549 // Recreate the function type with less arguments.
5550 SmallVector<Type *> ArgTys;
5551 for (Value *Arg : Args)
5552 ArgTys.push_back(Arg->getType());
5553 FTy =
5554 FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg());
5555
5556 // Update constraint string to use label constraints.
5557 std::string Constraints = IA->getConstraintString();
5558 unsigned ArgNo = 0;
5559 size_t Pos = 0;
5560 for (const auto &CI : ConstraintInfo) {
5561 if (CI.hasArg()) {
5562 if (ArgNo >= FirstBlockArg)
5563 Constraints.insert(Pos, "!");
5564 ++ArgNo;
5565 }
5566
5567 // Go to next constraint in string.
5568 Pos = Constraints.find(',', Pos);
5569 if (Pos == std::string::npos)
5570 break;
5571 ++Pos;
5572 }
5573
5574 Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints,
5575 IA->hasSideEffects(), IA->isAlignStack(),
5576 IA->getDialect(), IA->canThrow());
5577 }
5578 }
5579
5580 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
5581 OperandBundles);
5582 ResTypeID = getContainedTypeID(FTyID);
5583 OperandBundles.clear();
5584 InstructionList.push_back(I);
5585 cast<CallBrInst>(I)->setCallingConv(
5586 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5587 cast<CallBrInst>(I)->setAttributes(PAL);
5588 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) {
5589 I->deleteValue();
5590 return Err;
5591 }
5592 break;
5593 }
5594 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
5595 I = new UnreachableInst(Context);
5596 InstructionList.push_back(I);
5597 break;
5598 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
5599 if (Record.empty())
5600 return error("Invalid phi record");
5601 // The first record specifies the type.
5602 unsigned TyID = Record[0];
5603 Type *Ty = getTypeByID(TyID);
5604 if (!Ty)
5605 return error("Invalid phi record");
5606
5607 // Phi arguments are pairs of records of [value, basic block].
5608 // There is an optional final record for fast-math-flags if this phi has a
5609 // floating-point type.
5610 size_t NumArgs = (Record.size() - 1) / 2;
5611 PHINode *PN = PHINode::Create(Ty, NumArgs);
5612 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) {
5613 PN->deleteValue();
5614 return error("Invalid phi record");
5615 }
5616 InstructionList.push_back(PN);
5617
5618 SmallDenseMap<BasicBlock *, Value *> Args;
5619 for (unsigned i = 0; i != NumArgs; i++) {
5620 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
5621 if (!BB) {
5622 PN->deleteValue();
5623 return error("Invalid phi BB");
5624 }
5625
5626 // Phi nodes may contain the same predecessor multiple times, in which
5627 // case the incoming value must be identical. Directly reuse the already
5628 // seen value here, to avoid expanding a constant expression multiple
5629 // times.
5630 auto It = Args.find(BB);
5631 if (It != Args.end()) {
5632 PN->addIncoming(It->second, BB);
5633 continue;
5634 }
5635
5636 // If there already is a block for this edge (from a different phi),
5637 // use it.
5638 BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB});
5639 if (!EdgeBB) {
5640 // Otherwise, use a temporary block (that we will discard if it
5641 // turns out to be unnecessary).
5642 if (!PhiConstExprBB)
5643 PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F);
5644 EdgeBB = PhiConstExprBB;
5645 }
5646
5647 // With the new function encoding, it is possible that operands have
5648 // negative IDs (for forward references). Use a signed VBR
5649 // representation to keep the encoding small.
5650 Value *V;
5651 if (UseRelativeIDs)
5652 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
5653 else
5654 V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB);
5655 if (!V) {
5656 PN->deleteValue();
5657 PhiConstExprBB->eraseFromParent();
5658 return error("Invalid phi record");
5659 }
5660
5661 if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) {
5662 ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB});
5663 PhiConstExprBB = nullptr;
5664 }
5665 PN->addIncoming(V, BB);
5666 Args.insert({BB, V});
5667 }
5668 I = PN;
5669 ResTypeID = TyID;
5670
5671 // If there are an even number of records, the final record must be FMF.
5672 if (Record.size() % 2 == 0) {
5673 assert(isa<FPMathOperator>(I) && "Unexpected phi type")(static_cast <bool> (isa<FPMathOperator>(I) &&
"Unexpected phi type") ? void (0) : __assert_fail ("isa<FPMathOperator>(I) && \"Unexpected phi type\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 5673, __extension__
__PRETTY_FUNCTION__))
;
5674 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
5675 if (FMF.any())
5676 I->setFastMathFlags(FMF);
5677 }
5678
5679 break;
5680 }
5681
5682 case bitc::FUNC_CODE_INST_LANDINGPAD:
5683 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
5684 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
5685 unsigned Idx = 0;
5686 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
5687 if (Record.size() < 3)
5688 return error("Invalid record");
5689 } else {
5690 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD)(static_cast <bool> (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD
) ? void (0) : __assert_fail ("BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD"
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 5690, __extension__
__PRETTY_FUNCTION__))
;
5691 if (Record.size() < 4)
5692 return error("Invalid record");
5693 }
5694 ResTypeID = Record[Idx++];
5695 Type *Ty = getTypeByID(ResTypeID);
5696 if (!Ty)
5697 return error("Invalid record");
5698 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
5699 Value *PersFn = nullptr;
5700 unsigned PersFnTypeID;
5701 if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID,
5702 nullptr))
5703 return error("Invalid record");
5704
5705 if (!F->hasPersonalityFn())
5706 F->setPersonalityFn(cast<Constant>(PersFn));
5707 else if (F->getPersonalityFn() != cast<Constant>(PersFn))
5708 return error("Personality function mismatch");
5709 }
5710
5711 bool IsCleanup = !!Record[Idx++];
5712 unsigned NumClauses = Record[Idx++];
5713 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
5714 LP->setCleanup(IsCleanup);
5715 for (unsigned J = 0; J != NumClauses; ++J) {
5716 LandingPadInst::ClauseType CT =
5717 LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
5718 Value *Val;
5719 unsigned ValTypeID;
5720
5721 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID,
5722 nullptr)) {
5723 delete LP;
5724 return error("Invalid record");
5725 }
5726
5727 assert((CT != LandingPadInst::Catch ||(static_cast <bool> ((CT != LandingPadInst::Catch || !isa
<ArrayType>(Val->getType())) && "Catch clause has a invalid type!"
) ? void (0) : __assert_fail ("(CT != LandingPadInst::Catch || !isa<ArrayType>(Val->getType())) && \"Catch clause has a invalid type!\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 5729, __extension__
__PRETTY_FUNCTION__))
5728 !isa<ArrayType>(Val->getType())) &&(static_cast <bool> ((CT != LandingPadInst::Catch || !isa
<ArrayType>(Val->getType())) && "Catch clause has a invalid type!"
) ? void (0) : __assert_fail ("(CT != LandingPadInst::Catch || !isa<ArrayType>(Val->getType())) && \"Catch clause has a invalid type!\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 5729, __extension__
__PRETTY_FUNCTION__))
5729 "Catch clause has a invalid type!")(static_cast <bool> ((CT != LandingPadInst::Catch || !isa
<ArrayType>(Val->getType())) && "Catch clause has a invalid type!"
) ? void (0) : __assert_fail ("(CT != LandingPadInst::Catch || !isa<ArrayType>(Val->getType())) && \"Catch clause has a invalid type!\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 5729, __extension__
__PRETTY_FUNCTION__))
;
5730 assert((CT != LandingPadInst::Filter ||(static_cast <bool> ((CT != LandingPadInst::Filter || isa
<ArrayType>(Val->getType())) && "Filter clause has invalid type!"
) ? void (0) : __assert_fail ("(CT != LandingPadInst::Filter || isa<ArrayType>(Val->getType())) && \"Filter clause has invalid type!\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 5732, __extension__
__PRETTY_FUNCTION__))
5731 isa<ArrayType>(Val->getType())) &&(static_cast <bool> ((CT != LandingPadInst::Filter || isa
<ArrayType>(Val->getType())) && "Filter clause has invalid type!"
) ? void (0) : __assert_fail ("(CT != LandingPadInst::Filter || isa<ArrayType>(Val->getType())) && \"Filter clause has invalid type!\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 5732, __extension__
__PRETTY_FUNCTION__))
5732 "Filter clause has invalid type!")(static_cast <bool> ((CT != LandingPadInst::Filter || isa
<ArrayType>(Val->getType())) && "Filter clause has invalid type!"
) ? void (0) : __assert_fail ("(CT != LandingPadInst::Filter || isa<ArrayType>(Val->getType())) && \"Filter clause has invalid type!\""
, "llvm/lib/Bitcode/Reader/BitcodeReader.cpp", 5732, __extension__
__PRETTY_FUNCTION__))
;
5733 LP->addClause(cast<Constant>(Val));
5734 }
5735
5736 I = LP;
5737 InstructionList.push_back(I);
5738 break;
5739 }
5740
5741 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
5742 if (Record.size() != 4 && Record.size() != 5)
5743 return error("Invalid record");
5744 using APV = AllocaPackedValues;
5745 const uint64_t Rec = Record[3];
5746 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
5747 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
5748 unsigned TyID = Record[0];
5749 Type *Ty = getTypeByID(TyID);
5750 if (!Bitfield::get<APV::ExplicitType>(Rec)) {
5751 TyID = getContainedTypeID(TyID);
5752 Ty = getTypeByID(TyID);
5753 if (!Ty)
5754 return error("Missing element type for old-style alloca");
5755 }
5756 unsigned OpTyID = Record[1];
5757 Type *OpTy = getTypeByID(OpTyID);
5758 Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB);
5759 MaybeAlign Align;
5760 uint64_t AlignExp =
5761 Bitfield::get<APV::AlignLower>(Rec) |
5762 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits);
5763 if (Error Err = parseAlignmentValue(AlignExp, Align)) {
5764 return Err;
5765 }
5766 if (!Ty || !Size)
5767 return error("Invalid record");
5768
5769 const DataLayout &DL = TheModule->getDataLayout();
5770 unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace();
5771
5772 SmallPtrSet<Type *, 4> Visited;
5773 if (!Align && !Ty->isSized(&Visited))
5774 return error("alloca of unsized type");
5775 if (!Align)
5776 Align = DL.getPrefTypeAlign(Ty);
5777
5778 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
5779 AI->setUsedWithInAlloca(InAlloca);
5780 AI->setSwiftError(SwiftError);
5781 I = AI;
5782 ResTypeID = getVirtualTypeID(AI->getType(), TyID);
5783 InstructionList.push_back(I);
5784 break;
5785 }
5786 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
5787 unsigned OpNum = 0;
5788 Value *Op;
5789 unsigned OpTypeID;
5790 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
5791 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
5792 return error("Invalid record");
5793
5794 if (!isa<PointerType>(Op->getType()))
5795 return error("Load operand is not a pointer type");
5796
5797 Type *Ty = nullptr;
5798 if (OpNum + 3 == Record.size()) {
5799 ResTypeID = Record[OpNum++];
5800 Ty = getTypeByID(ResTypeID);
5801 } else {
5802 ResTypeID = getContainedTypeID(OpTypeID);
5803 Ty = getTypeByID(ResTypeID);
5804 if (!Ty)
5805 return error("Missing element type for old-style load");
5806 }
5807
5808 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5809 return Err;
5810
5811 MaybeAlign Align;
5812 if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5813 return Err;
5814 SmallPtrSet<Type *, 4> Visited;
5815 if (!Align && !Ty->isSized(&Visited))
5816 return error("load of unsized type");
5817 if (!Align)
5818 Align = TheModule->getDataLayout().getABITypeAlign(Ty);
5819 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
5820 InstructionList.push_back(I);
5821 break;
5822 }
5823 case bitc::FUNC_CODE_INST_LOADATOMIC: {
5824 // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
5825 unsigned OpNum = 0;
5826 Value *Op;
5827 unsigned OpTypeID;
5828 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) ||
5829 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
5830 return error("Invalid record");
5831
5832 if (!isa<PointerType>(Op->getType()))
5833 return error("Load operand is not a pointer type");
5834
5835 Type *Ty = nullptr;
5836 if (OpNum + 5 == Record.size()) {
5837 ResTypeID = Record[OpNum++];
5838 Ty = getTypeByID(ResTypeID);
5839 } else {
5840 ResTypeID = getContainedTypeID(OpTypeID);
5841 Ty = getTypeByID(ResTypeID);
5842 if (!Ty)
5843 return error("Missing element type for old style atomic load");
5844 }
5845
5846 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
5847 return Err;
5848
5849 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5850 if (Ordering == AtomicOrdering::NotAtomic ||
5851 Ordering == AtomicOrdering::Release ||
5852 Ordering == AtomicOrdering::AcquireRelease)
5853 return error("Invalid record");
5854 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5855 return error("Invalid record");
5856 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5857
5858 MaybeAlign Align;
5859 if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5860 return Err;
5861 if (!Align)
5862 return error("Alignment missing from atomic load");
5863 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
5864 InstructionList.push_back(I);
5865 break;
5866 }
5867 case bitc::FUNC_CODE_INST_STORE:
5868 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
5869 unsigned OpNum = 0;
5870 Value *Val, *Ptr;
5871 unsigned PtrTypeID, ValTypeID;
5872 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
5873 return error("Invalid record");
5874
5875 if (BitCode == bitc::FUNC_CODE_INST_STORE) {
5876 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
5877 return error("Invalid record");
5878 } else {
5879 ValTypeID = getContainedTypeID(PtrTypeID);
5880 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
5881 ValTypeID, Val, CurBB))
5882 return error("Invalid record");
5883 }
5884
5885 if (OpNum + 2 != Record.size())
5886 return error("Invalid record");
5887
5888 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5889 return Err;
5890 MaybeAlign Align;
5891 if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5892 return Err;
5893 SmallPtrSet<Type *, 4> Visited;
5894 if (!Align && !Val->getType()->isSized(&Visited))
5895 return error("store of unsized type");
5896 if (!Align)
5897 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
5898 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
5899 InstructionList.push_back(I);
5900 break;
5901 }
5902 case bitc::FUNC_CODE_INST_STOREATOMIC:
5903 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
5904 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
5905 unsigned OpNum = 0;
5906 Value *Val, *Ptr;
5907 unsigned PtrTypeID, ValTypeID;
5908 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) ||
5909 !isa<PointerType>(Ptr->getType()))
5910 return error("Invalid record");
5911 if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) {
5912 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB))
5913 return error("Invalid record");
5914 } else {
5915 ValTypeID = getContainedTypeID(PtrTypeID);
5916 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID),
5917 ValTypeID, Val, CurBB))
5918 return error("Invalid record");
5919 }
5920
5921 if (OpNum + 4 != Record.size())
5922 return error("Invalid record");
5923
5924 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5925 return Err;
5926 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5927 if (Ordering == AtomicOrdering::NotAtomic ||
5928 Ordering == AtomicOrdering::Acquire ||
5929 Ordering == AtomicOrdering::AcquireRelease)
5930 return error("Invalid record");
5931 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5932 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5933 return error("Invalid record");
5934
5935 MaybeAlign Align;
5936 if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5937 return Err;
5938 if (!Align)
5939 return error("Alignment missing from atomic store");
5940 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
5941 InstructionList.push_back(I);
5942 break;
5943 }
5944 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
5945 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
5946 // failure_ordering?, weak?]
5947 const size_t NumRecords = Record.size();
5948 unsigned OpNum = 0;
5949 Value *Ptr = nullptr;
5950 unsigned PtrTypeID;
5951 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB))
5952 return error("Invalid record");
5953
5954 if (!isa<PointerType>(Ptr->getType()))
5955 return error("Cmpxchg operand is not a pointer type");
5956
5957 Value *Cmp = nullptr;
5958 unsigned CmpTypeID = getContainedTypeID(PtrTypeID);
5959 if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID),
5960 CmpTypeID, Cmp, CurBB))
5961 return error("Invalid record");
5962
5963 Value *New = nullptr;
5964 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID,
5965 New, CurBB) ||
5966 NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
5967 return error("Invalid record");
5968
5969 const AtomicOrdering SuccessOrdering =
5970 getDecodedOrdering(Record[OpNum + 1]);
5971 if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5972 SuccessOrdering == AtomicOrdering::Unordered)
5973 return error("Invalid record");
5974
5975 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5976
5977 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5978 return Err;
5979
5980 const AtomicOrdering FailureOrdering =
5981 NumRecords < 7
5982 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
5983 : getDecodedOrdering(Record[OpNum + 3]);
5984
5985 if (FailureOrdering == AtomicOrdering::NotAtomic ||
5986 FailureOrdering == AtomicOrdering::Unordered)
5987 return error("Invalid record");
5988
5989 const Align Alignment(
5990 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5991
5992 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
5993 FailureOrdering, SSID);
5994 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5995
5996 if (