Bug Summary

File:clang/lib/CodeGen/CGBlocks.cpp
Warning:line 597, column 19
Forming reference to null pointer

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CGBlocks.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/build-llvm/tools/clang/lib/CodeGen -resource-dir /usr/lib/llvm-13/lib/clang/13.0.0 -D CLANG_ROUND_TRIP_CC1_ARGS=ON -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/build-llvm/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/include -I /build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/build-llvm/include -I /build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/llvm/include -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-13/lib/clang/13.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/build-llvm/tools/clang/lib/CodeGen -fdebug-prefix-map=/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-06-21-164211-33944-1 -x c++ /build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp

/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp

1//===--- CGBlocks.cpp - Emit LLVM Code for declarations ---------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit blocks.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGBlocks.h"
14#include "CGCXXABI.h"
15#include "CGDebugInfo.h"
16#include "CGObjCRuntime.h"
17#include "CGOpenCLRuntime.h"
18#include "CodeGenFunction.h"
19#include "CodeGenModule.h"
20#include "ConstantEmitter.h"
21#include "TargetInfo.h"
22#include "clang/AST/Attr.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/CodeGen/ConstantInitBuilder.h"
25#include "llvm/ADT/SmallSet.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/Module.h"
28#include "llvm/Support/ScopedPrinter.h"
29#include <algorithm>
30#include <cstdio>
31
32using namespace clang;
33using namespace CodeGen;
34
35CGBlockInfo::CGBlockInfo(const BlockDecl *block, StringRef name)
36 : Name(name), CXXThisIndex(0), CanBeGlobal(false), NeedsCopyDispose(false),
37 HasCXXObject(false), UsesStret(false), HasCapturedVariableLayout(false),
38 CapturesNonExternalType(false), LocalAddress(Address::invalid()),
39 StructureType(nullptr), Block(block) {
40
41 // Skip asm prefix, if any. 'name' is usually taken directly from
42 // the mangled name of the enclosing function.
43 if (!name.empty() && name[0] == '\01')
44 name = name.substr(1);
45}
46
47// Anchor the vtable to this translation unit.
48BlockByrefHelpers::~BlockByrefHelpers() {}
49
50/// Build the given block as a global block.
51static llvm::Constant *buildGlobalBlock(CodeGenModule &CGM,
52 const CGBlockInfo &blockInfo,
53 llvm::Constant *blockFn);
54
55/// Build the helper function to copy a block.
56static llvm::Constant *buildCopyHelper(CodeGenModule &CGM,
57 const CGBlockInfo &blockInfo) {
58 return CodeGenFunction(CGM).GenerateCopyHelperFunction(blockInfo);
59}
60
61/// Build the helper function to dispose of a block.
62static llvm::Constant *buildDisposeHelper(CodeGenModule &CGM,
63 const CGBlockInfo &blockInfo) {
64 return CodeGenFunction(CGM).GenerateDestroyHelperFunction(blockInfo);
65}
66
67namespace {
68
69/// Represents a type of copy/destroy operation that should be performed for an
70/// entity that's captured by a block.
71enum class BlockCaptureEntityKind {
72 CXXRecord, // Copy or destroy
73 ARCWeak,
74 ARCStrong,
75 NonTrivialCStruct,
76 BlockObject, // Assign or release
77 None
78};
79
80/// Represents a captured entity that requires extra operations in order for
81/// this entity to be copied or destroyed correctly.
82struct BlockCaptureManagedEntity {
83 BlockCaptureEntityKind CopyKind, DisposeKind;
84 BlockFieldFlags CopyFlags, DisposeFlags;
85 const BlockDecl::Capture *CI;
86 const CGBlockInfo::Capture *Capture;
87
88 BlockCaptureManagedEntity(BlockCaptureEntityKind CopyType,
89 BlockCaptureEntityKind DisposeType,
90 BlockFieldFlags CopyFlags,
91 BlockFieldFlags DisposeFlags,
92 const BlockDecl::Capture &CI,
93 const CGBlockInfo::Capture &Capture)
94 : CopyKind(CopyType), DisposeKind(DisposeType), CopyFlags(CopyFlags),
95 DisposeFlags(DisposeFlags), CI(&CI), Capture(&Capture) {}
96
97 bool operator<(const BlockCaptureManagedEntity &Other) const {
98 return Capture->getOffset() < Other.Capture->getOffset();
99 }
100};
101
102enum class CaptureStrKind {
103 // String for the copy helper.
104 CopyHelper,
105 // String for the dispose helper.
106 DisposeHelper,
107 // Merge the strings for the copy helper and dispose helper.
108 Merged
109};
110
111} // end anonymous namespace
112
113static void findBlockCapturedManagedEntities(
114 const CGBlockInfo &BlockInfo, const LangOptions &LangOpts,
115 SmallVectorImpl<BlockCaptureManagedEntity> &ManagedCaptures);
116
117static std::string getBlockCaptureStr(const BlockCaptureManagedEntity &E,
118 CaptureStrKind StrKind,
119 CharUnits BlockAlignment,
120 CodeGenModule &CGM);
121
122static std::string getBlockDescriptorName(const CGBlockInfo &BlockInfo,
123 CodeGenModule &CGM) {
124 std::string Name = "__block_descriptor_";
125 Name += llvm::to_string(BlockInfo.BlockSize.getQuantity()) + "_";
126
127 if (BlockInfo.needsCopyDisposeHelpers()) {
128 if (CGM.getLangOpts().Exceptions)
129 Name += "e";
130 if (CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
131 Name += "a";
132 Name += llvm::to_string(BlockInfo.BlockAlign.getQuantity()) + "_";
133
134 SmallVector<BlockCaptureManagedEntity, 4> ManagedCaptures;
135 findBlockCapturedManagedEntities(BlockInfo, CGM.getContext().getLangOpts(),
136 ManagedCaptures);
137
138 for (const BlockCaptureManagedEntity &E : ManagedCaptures) {
139 Name += llvm::to_string(E.Capture->getOffset().getQuantity());
140
141 if (E.CopyKind == E.DisposeKind) {
142 // If CopyKind and DisposeKind are the same, merge the capture
143 // information.
144 assert(E.CopyKind != BlockCaptureEntityKind::None &&(static_cast <bool> (E.CopyKind != BlockCaptureEntityKind
::None && "shouldn't see BlockCaptureManagedEntity that is None"
) ? void (0) : __assert_fail ("E.CopyKind != BlockCaptureEntityKind::None && \"shouldn't see BlockCaptureManagedEntity that is None\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 145, __extension__ __PRETTY_FUNCTION__))
145 "shouldn't see BlockCaptureManagedEntity that is None")(static_cast <bool> (E.CopyKind != BlockCaptureEntityKind
::None && "shouldn't see BlockCaptureManagedEntity that is None"
) ? void (0) : __assert_fail ("E.CopyKind != BlockCaptureEntityKind::None && \"shouldn't see BlockCaptureManagedEntity that is None\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 145, __extension__ __PRETTY_FUNCTION__))
;
146 Name += getBlockCaptureStr(E, CaptureStrKind::Merged,
147 BlockInfo.BlockAlign, CGM);
148 } else {
149 // If CopyKind and DisposeKind are not the same, which can happen when
150 // either Kind is None or the captured object is a __strong block,
151 // concatenate the copy and dispose strings.
152 Name += getBlockCaptureStr(E, CaptureStrKind::CopyHelper,
153 BlockInfo.BlockAlign, CGM);
154 Name += getBlockCaptureStr(E, CaptureStrKind::DisposeHelper,
155 BlockInfo.BlockAlign, CGM);
156 }
157 }
158 Name += "_";
159 }
160
161 std::string TypeAtEncoding =
162 CGM.getContext().getObjCEncodingForBlock(BlockInfo.getBlockExpr());
163 /// Replace occurrences of '@' with '\1'. '@' is reserved on ELF platforms as
164 /// a separator between symbol name and symbol version.
165 std::replace(TypeAtEncoding.begin(), TypeAtEncoding.end(), '@', '\1');
166 Name += "e" + llvm::to_string(TypeAtEncoding.size()) + "_" + TypeAtEncoding;
167 Name += "l" + CGM.getObjCRuntime().getRCBlockLayoutStr(CGM, BlockInfo);
168 return Name;
169}
170
171/// buildBlockDescriptor - Build the block descriptor meta-data for a block.
172/// buildBlockDescriptor is accessed from 5th field of the Block_literal
173/// meta-data and contains stationary information about the block literal.
174/// Its definition will have 4 (or optionally 6) words.
175/// \code
176/// struct Block_descriptor {
177/// unsigned long reserved;
178/// unsigned long size; // size of Block_literal metadata in bytes.
179/// void *copy_func_helper_decl; // optional copy helper.
180/// void *destroy_func_decl; // optional destructor helper.
181/// void *block_method_encoding_address; // @encode for block literal signature.
182/// void *block_layout_info; // encoding of captured block variables.
183/// };
184/// \endcode
185static llvm::Constant *buildBlockDescriptor(CodeGenModule &CGM,
186 const CGBlockInfo &blockInfo) {
187 ASTContext &C = CGM.getContext();
188
189 llvm::IntegerType *ulong =
190 cast<llvm::IntegerType>(CGM.getTypes().ConvertType(C.UnsignedLongTy));
191 llvm::PointerType *i8p = nullptr;
192 if (CGM.getLangOpts().OpenCL)
193 i8p =
194 llvm::Type::getInt8PtrTy(
195 CGM.getLLVMContext(), C.getTargetAddressSpace(LangAS::opencl_constant));
196 else
197 i8p = CGM.VoidPtrTy;
198
199 std::string descName;
200
201 // If an equivalent block descriptor global variable exists, return it.
202 if (C.getLangOpts().ObjC &&
203 CGM.getLangOpts().getGC() == LangOptions::NonGC) {
204 descName = getBlockDescriptorName(blockInfo, CGM);
205 if (llvm::GlobalValue *desc = CGM.getModule().getNamedValue(descName))
206 return llvm::ConstantExpr::getBitCast(desc,
207 CGM.getBlockDescriptorType());
208 }
209
210 // If there isn't an equivalent block descriptor global variable, create a new
211 // one.
212 ConstantInitBuilder builder(CGM);
213 auto elements = builder.beginStruct();
214
215 // reserved
216 elements.addInt(ulong, 0);
217
218 // Size
219 // FIXME: What is the right way to say this doesn't fit? We should give
220 // a user diagnostic in that case. Better fix would be to change the
221 // API to size_t.
222 elements.addInt(ulong, blockInfo.BlockSize.getQuantity());
223
224 // Optional copy/dispose helpers.
225 bool hasInternalHelper = false;
226 if (blockInfo.needsCopyDisposeHelpers()) {
227 // copy_func_helper_decl
228 llvm::Constant *copyHelper = buildCopyHelper(CGM, blockInfo);
229 elements.add(copyHelper);
230
231 // destroy_func_decl
232 llvm::Constant *disposeHelper = buildDisposeHelper(CGM, blockInfo);
233 elements.add(disposeHelper);
234
235 if (cast<llvm::Function>(copyHelper->getOperand(0))->hasInternalLinkage() ||
236 cast<llvm::Function>(disposeHelper->getOperand(0))
237 ->hasInternalLinkage())
238 hasInternalHelper = true;
239 }
240
241 // Signature. Mandatory ObjC-style method descriptor @encode sequence.
242 std::string typeAtEncoding =
243 CGM.getContext().getObjCEncodingForBlock(blockInfo.getBlockExpr());
244 elements.add(llvm::ConstantExpr::getBitCast(
245 CGM.GetAddrOfConstantCString(typeAtEncoding).getPointer(), i8p));
246
247 // GC layout.
248 if (C.getLangOpts().ObjC) {
249 if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
250 elements.add(CGM.getObjCRuntime().BuildGCBlockLayout(CGM, blockInfo));
251 else
252 elements.add(CGM.getObjCRuntime().BuildRCBlockLayout(CGM, blockInfo));
253 }
254 else
255 elements.addNullPointer(i8p);
256
257 unsigned AddrSpace = 0;
258 if (C.getLangOpts().OpenCL)
259 AddrSpace = C.getTargetAddressSpace(LangAS::opencl_constant);
260
261 llvm::GlobalValue::LinkageTypes linkage;
262 if (descName.empty()) {
263 linkage = llvm::GlobalValue::InternalLinkage;
264 descName = "__block_descriptor_tmp";
265 } else if (hasInternalHelper) {
266 // If either the copy helper or the dispose helper has internal linkage,
267 // the block descriptor must have internal linkage too.
268 linkage = llvm::GlobalValue::InternalLinkage;
269 } else {
270 linkage = llvm::GlobalValue::LinkOnceODRLinkage;
271 }
272
273 llvm::GlobalVariable *global =
274 elements.finishAndCreateGlobal(descName, CGM.getPointerAlign(),
275 /*constant*/ true, linkage, AddrSpace);
276
277 if (linkage == llvm::GlobalValue::LinkOnceODRLinkage) {
278 if (CGM.supportsCOMDAT())
279 global->setComdat(CGM.getModule().getOrInsertComdat(descName));
280 global->setVisibility(llvm::GlobalValue::HiddenVisibility);
281 global->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
282 }
283
284 return llvm::ConstantExpr::getBitCast(global, CGM.getBlockDescriptorType());
285}
286
287/*
288 Purely notional variadic template describing the layout of a block.
289
290 template <class _ResultType, class... _ParamTypes, class... _CaptureTypes>
291 struct Block_literal {
292 /// Initialized to one of:
293 /// extern void *_NSConcreteStackBlock[];
294 /// extern void *_NSConcreteGlobalBlock[];
295 ///
296 /// In theory, we could start one off malloc'ed by setting
297 /// BLOCK_NEEDS_FREE, giving it a refcount of 1, and using
298 /// this isa:
299 /// extern void *_NSConcreteMallocBlock[];
300 struct objc_class *isa;
301
302 /// These are the flags (with corresponding bit number) that the
303 /// compiler is actually supposed to know about.
304 /// 23. BLOCK_IS_NOESCAPE - indicates that the block is non-escaping
305 /// 25. BLOCK_HAS_COPY_DISPOSE - indicates that the block
306 /// descriptor provides copy and dispose helper functions
307 /// 26. BLOCK_HAS_CXX_OBJ - indicates that there's a captured
308 /// object with a nontrivial destructor or copy constructor
309 /// 28. BLOCK_IS_GLOBAL - indicates that the block is allocated
310 /// as global memory
311 /// 29. BLOCK_USE_STRET - indicates that the block function
312 /// uses stret, which objc_msgSend needs to know about
313 /// 30. BLOCK_HAS_SIGNATURE - indicates that the block has an
314 /// @encoded signature string
315 /// And we're not supposed to manipulate these:
316 /// 24. BLOCK_NEEDS_FREE - indicates that the block has been moved
317 /// to malloc'ed memory
318 /// 27. BLOCK_IS_GC - indicates that the block has been moved to
319 /// to GC-allocated memory
320 /// Additionally, the bottom 16 bits are a reference count which
321 /// should be zero on the stack.
322 int flags;
323
324 /// Reserved; should be zero-initialized.
325 int reserved;
326
327 /// Function pointer generated from block literal.
328 _ResultType (*invoke)(Block_literal *, _ParamTypes...);
329
330 /// Block description metadata generated from block literal.
331 struct Block_descriptor *block_descriptor;
332
333 /// Captured values follow.
334 _CapturesTypes captures...;
335 };
336 */
337
338namespace {
339 /// A chunk of data that we actually have to capture in the block.
340 struct BlockLayoutChunk {
341 CharUnits Alignment;
342 CharUnits Size;
343 Qualifiers::ObjCLifetime Lifetime;
344 const BlockDecl::Capture *Capture; // null for 'this'
345 llvm::Type *Type;
346 QualType FieldType;
347
348 BlockLayoutChunk(CharUnits align, CharUnits size,
349 Qualifiers::ObjCLifetime lifetime,
350 const BlockDecl::Capture *capture,
351 llvm::Type *type, QualType fieldType)
352 : Alignment(align), Size(size), Lifetime(lifetime),
353 Capture(capture), Type(type), FieldType(fieldType) {}
354
355 /// Tell the block info that this chunk has the given field index.
356 void setIndex(CGBlockInfo &info, unsigned index, CharUnits offset) {
357 if (!Capture) {
358 info.CXXThisIndex = index;
359 info.CXXThisOffset = offset;
360 } else {
361 auto C = CGBlockInfo::Capture::makeIndex(index, offset, FieldType);
362 info.Captures.insert({Capture->getVariable(), C});
363 }
364 }
365 };
366
367 /// Order by 1) all __strong together 2) next, all byfref together 3) next,
368 /// all __weak together. Preserve descending alignment in all situations.
369 bool operator<(const BlockLayoutChunk &left, const BlockLayoutChunk &right) {
370 if (left.Alignment != right.Alignment)
371 return left.Alignment > right.Alignment;
372
373 auto getPrefOrder = [](const BlockLayoutChunk &chunk) {
374 if (chunk.Capture && chunk.Capture->isByRef())
375 return 1;
376 if (chunk.Lifetime == Qualifiers::OCL_Strong)
377 return 0;
378 if (chunk.Lifetime == Qualifiers::OCL_Weak)
379 return 2;
380 return 3;
381 };
382
383 return getPrefOrder(left) < getPrefOrder(right);
384 }
385} // end anonymous namespace
386
387/// Determines if the given type is safe for constant capture in C++.
388static bool isSafeForCXXConstantCapture(QualType type) {
389 const RecordType *recordType =
390 type->getBaseElementTypeUnsafe()->getAs<RecordType>();
391
392 // Only records can be unsafe.
393 if (!recordType) return true;
394
395 const auto *record = cast<CXXRecordDecl>(recordType->getDecl());
396
397 // Maintain semantics for classes with non-trivial dtors or copy ctors.
398 if (!record->hasTrivialDestructor()) return false;
399 if (record->hasNonTrivialCopyConstructor()) return false;
400
401 // Otherwise, we just have to make sure there aren't any mutable
402 // fields that might have changed since initialization.
403 return !record->hasMutableFields();
404}
405
406/// It is illegal to modify a const object after initialization.
407/// Therefore, if a const object has a constant initializer, we don't
408/// actually need to keep storage for it in the block; we'll just
409/// rematerialize it at the start of the block function. This is
410/// acceptable because we make no promises about address stability of
411/// captured variables.
412static llvm::Constant *tryCaptureAsConstant(CodeGenModule &CGM,
413 CodeGenFunction *CGF,
414 const VarDecl *var) {
415 // Return if this is a function parameter. We shouldn't try to
416 // rematerialize default arguments of function parameters.
417 if (isa<ParmVarDecl>(var))
18
Assuming 'var' is a 'ParmVarDecl'
19
Taking true branch
418 return nullptr;
20
Returning null pointer, which participates in a condition later
419
420 QualType type = var->getType();
421
422 // We can only do this if the variable is const.
423 if (!type.isConstQualified()) return nullptr;
424
425 // Furthermore, in C++ we have to worry about mutable fields:
426 // C++ [dcl.type.cv]p4:
427 // Except that any class member declared mutable can be
428 // modified, any attempt to modify a const object during its
429 // lifetime results in undefined behavior.
430 if (CGM.getLangOpts().CPlusPlus && !isSafeForCXXConstantCapture(type))
431 return nullptr;
432
433 // If the variable doesn't have any initializer (shouldn't this be
434 // invalid?), it's not clear what we should do. Maybe capture as
435 // zero?
436 const Expr *init = var->getInit();
437 if (!init) return nullptr;
438
439 return ConstantEmitter(CGM, CGF).tryEmitAbstractForInitializer(*var);
440}
441
442/// Get the low bit of a nonzero character count. This is the
443/// alignment of the nth byte if the 0th byte is universally aligned.
444static CharUnits getLowBit(CharUnits v) {
445 return CharUnits::fromQuantity(v.getQuantity() & (~v.getQuantity() + 1));
446}
447
448static void initializeForBlockHeader(CodeGenModule &CGM, CGBlockInfo &info,
449 SmallVectorImpl<llvm::Type*> &elementTypes) {
450
451 assert(elementTypes.empty())(static_cast <bool> (elementTypes.empty()) ? void (0) :
__assert_fail ("elementTypes.empty()", "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 451, __extension__ __PRETTY_FUNCTION__))
;
452 if (CGM.getLangOpts().OpenCL) {
453 // The header is basically 'struct { int; int; generic void *;
454 // custom_fields; }'. Assert that struct is packed.
455 auto GenericAS =
456 CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic);
457 auto GenPtrAlign =
458 CharUnits::fromQuantity(CGM.getTarget().getPointerAlign(GenericAS) / 8);
459 auto GenPtrSize =
460 CharUnits::fromQuantity(CGM.getTarget().getPointerWidth(GenericAS) / 8);
461 assert(CGM.getIntSize() <= GenPtrSize)(static_cast <bool> (CGM.getIntSize() <= GenPtrSize)
? void (0) : __assert_fail ("CGM.getIntSize() <= GenPtrSize"
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 461, __extension__ __PRETTY_FUNCTION__))
;
462 assert(CGM.getIntAlign() <= GenPtrAlign)(static_cast <bool> (CGM.getIntAlign() <= GenPtrAlign
) ? void (0) : __assert_fail ("CGM.getIntAlign() <= GenPtrAlign"
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 462, __extension__ __PRETTY_FUNCTION__))
;
463 assert((2 * CGM.getIntSize()).isMultipleOf(GenPtrAlign))(static_cast <bool> ((2 * CGM.getIntSize()).isMultipleOf
(GenPtrAlign)) ? void (0) : __assert_fail ("(2 * CGM.getIntSize()).isMultipleOf(GenPtrAlign)"
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 463, __extension__ __PRETTY_FUNCTION__))
;
464 elementTypes.push_back(CGM.IntTy); /* total size */
465 elementTypes.push_back(CGM.IntTy); /* align */
466 elementTypes.push_back(
467 CGM.getOpenCLRuntime()
468 .getGenericVoidPointerType()); /* invoke function */
469 unsigned Offset =
470 2 * CGM.getIntSize().getQuantity() + GenPtrSize.getQuantity();
471 unsigned BlockAlign = GenPtrAlign.getQuantity();
472 if (auto *Helper =
473 CGM.getTargetCodeGenInfo().getTargetOpenCLBlockHelper()) {
474 for (auto I : Helper->getCustomFieldTypes()) /* custom fields */ {
475 // TargetOpenCLBlockHelp needs to make sure the struct is packed.
476 // If necessary, add padding fields to the custom fields.
477 unsigned Align = CGM.getDataLayout().getABITypeAlignment(I);
478 if (BlockAlign < Align)
479 BlockAlign = Align;
480 assert(Offset % Align == 0)(static_cast <bool> (Offset % Align == 0) ? void (0) : __assert_fail
("Offset % Align == 0", "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 480, __extension__ __PRETTY_FUNCTION__))
;
481 Offset += CGM.getDataLayout().getTypeAllocSize(I);
482 elementTypes.push_back(I);
483 }
484 }
485 info.BlockAlign = CharUnits::fromQuantity(BlockAlign);
486 info.BlockSize = CharUnits::fromQuantity(Offset);
487 } else {
488 // The header is basically 'struct { void *; int; int; void *; void *; }'.
489 // Assert that the struct is packed.
490 assert(CGM.getIntSize() <= CGM.getPointerSize())(static_cast <bool> (CGM.getIntSize() <= CGM.getPointerSize
()) ? void (0) : __assert_fail ("CGM.getIntSize() <= CGM.getPointerSize()"
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 490, __extension__ __PRETTY_FUNCTION__))
;
491 assert(CGM.getIntAlign() <= CGM.getPointerAlign())(static_cast <bool> (CGM.getIntAlign() <= CGM.getPointerAlign
()) ? void (0) : __assert_fail ("CGM.getIntAlign() <= CGM.getPointerAlign()"
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 491, __extension__ __PRETTY_FUNCTION__))
;
492 assert((2 * CGM.getIntSize()).isMultipleOf(CGM.getPointerAlign()))(static_cast <bool> ((2 * CGM.getIntSize()).isMultipleOf
(CGM.getPointerAlign())) ? void (0) : __assert_fail ("(2 * CGM.getIntSize()).isMultipleOf(CGM.getPointerAlign())"
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 492, __extension__ __PRETTY_FUNCTION__))
;
493 info.BlockAlign = CGM.getPointerAlign();
494 info.BlockSize = 3 * CGM.getPointerSize() + 2 * CGM.getIntSize();
495 elementTypes.push_back(CGM.VoidPtrTy);
496 elementTypes.push_back(CGM.IntTy);
497 elementTypes.push_back(CGM.IntTy);
498 elementTypes.push_back(CGM.VoidPtrTy);
499 elementTypes.push_back(CGM.getBlockDescriptorType());
500 }
501}
502
503static QualType getCaptureFieldType(const CodeGenFunction &CGF,
504 const BlockDecl::Capture &CI) {
505 const VarDecl *VD = CI.getVariable();
506
507 // If the variable is captured by an enclosing block or lambda expression,
508 // use the type of the capture field.
509 if (CGF.BlockInfo && CI.isNested())
510 return CGF.BlockInfo->getCapture(VD).fieldType();
511 if (auto *FD = CGF.LambdaCaptureFields.lookup(VD))
512 return FD->getType();
513 // If the captured variable is a non-escaping __block variable, the field
514 // type is the reference type. If the variable is a __block variable that
515 // already has a reference type, the field type is the variable's type.
516 return VD->isNonEscapingByref() ?
517 CGF.getContext().getLValueReferenceType(VD->getType()) : VD->getType();
518}
519
520/// Compute the layout of the given block. Attempts to lay the block
521/// out with minimal space requirements.
522static void computeBlockInfo(CodeGenModule &CGM, CodeGenFunction *CGF,
523 CGBlockInfo &info) {
524 ASTContext &C = CGM.getContext();
525 const BlockDecl *block = info.getBlockDecl();
526
527 SmallVector<llvm::Type*, 8> elementTypes;
528 initializeForBlockHeader(CGM, info, elementTypes);
529 bool hasNonConstantCustomFields = false;
530 if (auto *OpenCLHelper =
5
Assuming 'OpenCLHelper' is null
6
Taking false branch
531 CGM.getTargetCodeGenInfo().getTargetOpenCLBlockHelper())
532 hasNonConstantCustomFields =
533 !OpenCLHelper->areAllCustomFieldValuesConstant(info);
534 if (!block->hasCaptures() && !hasNonConstantCustomFields) {
7
Calling 'BlockDecl::hasCaptures'
10
Returning from 'BlockDecl::hasCaptures'
535 info.StructureType =
536 llvm::StructType::get(CGM.getLLVMContext(), elementTypes, true);
537 info.CanBeGlobal = true;
538 return;
539 }
540 else if (C.getLangOpts().ObjC &&
11
Assuming field 'ObjC' is 0
541 CGM.getLangOpts().getGC() == LangOptions::NonGC)
542 info.HasCapturedVariableLayout = true;
543
544 // Collect the layout chunks.
545 SmallVector<BlockLayoutChunk, 16> layout;
546 layout.reserve(block->capturesCXXThis() +
547 (block->capture_end() - block->capture_begin()));
548
549 CharUnits maxFieldAlign;
550
551 // First, 'this'.
552 if (block->capturesCXXThis()) {
12
Assuming the condition is false
13
Taking false branch
553 assert(CGF && CGF->CurFuncDecl && isa<CXXMethodDecl>(CGF->CurFuncDecl) &&(static_cast <bool> (CGF && CGF->CurFuncDecl
&& isa<CXXMethodDecl>(CGF->CurFuncDecl) &&
"Can't capture 'this' outside a method") ? void (0) : __assert_fail
("CGF && CGF->CurFuncDecl && isa<CXXMethodDecl>(CGF->CurFuncDecl) && \"Can't capture 'this' outside a method\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 554, __extension__ __PRETTY_FUNCTION__))
554 "Can't capture 'this' outside a method")(static_cast <bool> (CGF && CGF->CurFuncDecl
&& isa<CXXMethodDecl>(CGF->CurFuncDecl) &&
"Can't capture 'this' outside a method") ? void (0) : __assert_fail
("CGF && CGF->CurFuncDecl && isa<CXXMethodDecl>(CGF->CurFuncDecl) && \"Can't capture 'this' outside a method\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 554, __extension__ __PRETTY_FUNCTION__))
;
555 QualType thisType = cast<CXXMethodDecl>(CGF->CurFuncDecl)->getThisType();
556
557 // Theoretically, this could be in a different address space, so
558 // don't assume standard pointer size/align.
559 llvm::Type *llvmType = CGM.getTypes().ConvertType(thisType);
560 auto TInfo = CGM.getContext().getTypeInfoInChars(thisType);
561 maxFieldAlign = std::max(maxFieldAlign, TInfo.Align);
562
563 layout.push_back(BlockLayoutChunk(TInfo.Align, TInfo.Width,
564 Qualifiers::OCL_None,
565 nullptr, llvmType, thisType));
566 }
567
568 // Next, all the block captures.
569 for (const auto &CI : block->captures()) {
14
Assuming '__begin1' is not equal to '__end1'
570 const VarDecl *variable = CI.getVariable();
571
572 if (CI.isEscapingByref()) {
15
Assuming the condition is false
16
Taking false branch
573 // We have to copy/dispose of the __block reference.
574 info.NeedsCopyDispose = true;
575
576 // Just use void* instead of a pointer to the byref type.
577 CharUnits align = CGM.getPointerAlign();
578 maxFieldAlign = std::max(maxFieldAlign, align);
579
580 // Since a __block variable cannot be captured by lambdas, its type and
581 // the capture field type should always match.
582 assert(CGF && getCaptureFieldType(*CGF, CI) == variable->getType() &&(static_cast <bool> (CGF && getCaptureFieldType
(*CGF, CI) == variable->getType() && "capture type differs from the variable type"
) ? void (0) : __assert_fail ("CGF && getCaptureFieldType(*CGF, CI) == variable->getType() && \"capture type differs from the variable type\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 583, __extension__ __PRETTY_FUNCTION__))
583 "capture type differs from the variable type")(static_cast <bool> (CGF && getCaptureFieldType
(*CGF, CI) == variable->getType() && "capture type differs from the variable type"
) ? void (0) : __assert_fail ("CGF && getCaptureFieldType(*CGF, CI) == variable->getType() && \"capture type differs from the variable type\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 583, __extension__ __PRETTY_FUNCTION__))
;
584 layout.push_back(BlockLayoutChunk(align, CGM.getPointerSize(),
585 Qualifiers::OCL_None, &CI,
586 CGM.VoidPtrTy, variable->getType()));
587 continue;
588 }
589
590 // Otherwise, build a layout chunk with the size and alignment of
591 // the declaration.
592 if (llvm::Constant *constant
21.1
'constant' is null
21.1
'constant' is null
= tryCaptureAsConstant(CGM, CGF, variable)) {
17
Calling 'tryCaptureAsConstant'
21
Returning from 'tryCaptureAsConstant'
22
Taking false branch
593 info.Captures[variable] = CGBlockInfo::Capture::makeConstant(constant);
594 continue;
595 }
596
597 QualType VT = getCaptureFieldType(*CGF, CI);
23
Forming reference to null pointer
598
599 // If we have a lifetime qualifier, honor it for capture purposes.
600 // That includes *not* copying it if it's __unsafe_unretained.
601 Qualifiers::ObjCLifetime lifetime = VT.getObjCLifetime();
602 if (lifetime) {
603 switch (lifetime) {
604 case Qualifiers::OCL_None: llvm_unreachable("impossible")::llvm::llvm_unreachable_internal("impossible", "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 604)
;
605 case Qualifiers::OCL_ExplicitNone:
606 case Qualifiers::OCL_Autoreleasing:
607 break;
608
609 case Qualifiers::OCL_Strong:
610 case Qualifiers::OCL_Weak:
611 info.NeedsCopyDispose = true;
612 }
613
614 // Block pointers require copy/dispose. So do Objective-C pointers.
615 } else if (VT->isObjCRetainableType()) {
616 // But honor the inert __unsafe_unretained qualifier, which doesn't
617 // actually make it into the type system.
618 if (VT->isObjCInertUnsafeUnretainedType()) {
619 lifetime = Qualifiers::OCL_ExplicitNone;
620 } else {
621 info.NeedsCopyDispose = true;
622 // used for mrr below.
623 lifetime = Qualifiers::OCL_Strong;
624 }
625
626 // So do types that require non-trivial copy construction.
627 } else if (CI.hasCopyExpr()) {
628 info.NeedsCopyDispose = true;
629 info.HasCXXObject = true;
630 if (!VT->getAsCXXRecordDecl()->isExternallyVisible())
631 info.CapturesNonExternalType = true;
632
633 // So do C structs that require non-trivial copy construction or
634 // destruction.
635 } else if (VT.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct ||
636 VT.isDestructedType() == QualType::DK_nontrivial_c_struct) {
637 info.NeedsCopyDispose = true;
638
639 // And so do types with destructors.
640 } else if (CGM.getLangOpts().CPlusPlus) {
641 if (const CXXRecordDecl *record = VT->getAsCXXRecordDecl()) {
642 if (!record->hasTrivialDestructor()) {
643 info.HasCXXObject = true;
644 info.NeedsCopyDispose = true;
645 if (!record->isExternallyVisible())
646 info.CapturesNonExternalType = true;
647 }
648 }
649 }
650
651 CharUnits size = C.getTypeSizeInChars(VT);
652 CharUnits align = C.getDeclAlign(variable);
653
654 maxFieldAlign = std::max(maxFieldAlign, align);
655
656 llvm::Type *llvmType =
657 CGM.getTypes().ConvertTypeForMem(VT);
658
659 layout.push_back(
660 BlockLayoutChunk(align, size, lifetime, &CI, llvmType, VT));
661 }
662
663 // If that was everything, we're done here.
664 if (layout.empty()) {
665 info.StructureType =
666 llvm::StructType::get(CGM.getLLVMContext(), elementTypes, true);
667 info.CanBeGlobal = true;
668 return;
669 }
670
671 // Sort the layout by alignment. We have to use a stable sort here
672 // to get reproducible results. There should probably be an
673 // llvm::array_pod_stable_sort.
674 llvm::stable_sort(layout);
675
676 // Needed for blocks layout info.
677 info.BlockHeaderForcedGapOffset = info.BlockSize;
678 info.BlockHeaderForcedGapSize = CharUnits::Zero();
679
680 CharUnits &blockSize = info.BlockSize;
681 info.BlockAlign = std::max(maxFieldAlign, info.BlockAlign);
682
683 // Assuming that the first byte in the header is maximally aligned,
684 // get the alignment of the first byte following the header.
685 CharUnits endAlign = getLowBit(blockSize);
686
687 // If the end of the header isn't satisfactorily aligned for the
688 // maximum thing, look for things that are okay with the header-end
689 // alignment, and keep appending them until we get something that's
690 // aligned right. This algorithm is only guaranteed optimal if
691 // that condition is satisfied at some point; otherwise we can get
692 // things like:
693 // header // next byte has alignment 4
694 // something_with_size_5; // next byte has alignment 1
695 // something_with_alignment_8;
696 // which has 7 bytes of padding, as opposed to the naive solution
697 // which might have less (?).
698 if (endAlign < maxFieldAlign) {
699 SmallVectorImpl<BlockLayoutChunk>::iterator
700 li = layout.begin() + 1, le = layout.end();
701
702 // Look for something that the header end is already
703 // satisfactorily aligned for.
704 for (; li != le && endAlign < li->Alignment; ++li)
705 ;
706
707 // If we found something that's naturally aligned for the end of
708 // the header, keep adding things...
709 if (li != le) {
710 SmallVectorImpl<BlockLayoutChunk>::iterator first = li;
711 for (; li != le; ++li) {
712 assert(endAlign >= li->Alignment)(static_cast <bool> (endAlign >= li->Alignment) ?
void (0) : __assert_fail ("endAlign >= li->Alignment",
"/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 712, __extension__ __PRETTY_FUNCTION__))
;
713
714 li->setIndex(info, elementTypes.size(), blockSize);
715 elementTypes.push_back(li->Type);
716 blockSize += li->Size;
717 endAlign = getLowBit(blockSize);
718
719 // ...until we get to the alignment of the maximum field.
720 if (endAlign >= maxFieldAlign) {
721 break;
722 }
723 }
724 // Don't re-append everything we just appended.
725 layout.erase(first, li);
726 }
727 }
728
729 assert(endAlign == getLowBit(blockSize))(static_cast <bool> (endAlign == getLowBit(blockSize)) ?
void (0) : __assert_fail ("endAlign == getLowBit(blockSize)"
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 729, __extension__ __PRETTY_FUNCTION__))
;
730
731 // At this point, we just have to add padding if the end align still
732 // isn't aligned right.
733 if (endAlign < maxFieldAlign) {
734 CharUnits newBlockSize = blockSize.alignTo(maxFieldAlign);
735 CharUnits padding = newBlockSize - blockSize;
736
737 // If we haven't yet added any fields, remember that there was an
738 // initial gap; this need to go into the block layout bit map.
739 if (blockSize == info.BlockHeaderForcedGapOffset) {
740 info.BlockHeaderForcedGapSize = padding;
741 }
742
743 elementTypes.push_back(llvm::ArrayType::get(CGM.Int8Ty,
744 padding.getQuantity()));
745 blockSize = newBlockSize;
746 endAlign = getLowBit(blockSize); // might be > maxFieldAlign
747 }
748
749 assert(endAlign >= maxFieldAlign)(static_cast <bool> (endAlign >= maxFieldAlign) ? void
(0) : __assert_fail ("endAlign >= maxFieldAlign", "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 749, __extension__ __PRETTY_FUNCTION__))
;
750 assert(endAlign == getLowBit(blockSize))(static_cast <bool> (endAlign == getLowBit(blockSize)) ?
void (0) : __assert_fail ("endAlign == getLowBit(blockSize)"
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 750, __extension__ __PRETTY_FUNCTION__))
;
751 // Slam everything else on now. This works because they have
752 // strictly decreasing alignment and we expect that size is always a
753 // multiple of alignment.
754 for (SmallVectorImpl<BlockLayoutChunk>::iterator
755 li = layout.begin(), le = layout.end(); li != le; ++li) {
756 if (endAlign < li->Alignment) {
757 // size may not be multiple of alignment. This can only happen with
758 // an over-aligned variable. We will be adding a padding field to
759 // make the size be multiple of alignment.
760 CharUnits padding = li->Alignment - endAlign;
761 elementTypes.push_back(llvm::ArrayType::get(CGM.Int8Ty,
762 padding.getQuantity()));
763 blockSize += padding;
764 endAlign = getLowBit(blockSize);
765 }
766 assert(endAlign >= li->Alignment)(static_cast <bool> (endAlign >= li->Alignment) ?
void (0) : __assert_fail ("endAlign >= li->Alignment",
"/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 766, __extension__ __PRETTY_FUNCTION__))
;
767 li->setIndex(info, elementTypes.size(), blockSize);
768 elementTypes.push_back(li->Type);
769 blockSize += li->Size;
770 endAlign = getLowBit(blockSize);
771 }
772
773 info.StructureType =
774 llvm::StructType::get(CGM.getLLVMContext(), elementTypes, true);
775}
776
777/// Emit a block literal expression in the current function.
778llvm::Value *CodeGenFunction::EmitBlockLiteral(const BlockExpr *blockExpr) {
779 // If the block has no captures, we won't have a pre-computed
780 // layout for it.
781 if (!blockExpr->getBlockDecl()->hasCaptures())
782 // The block literal is emitted as a global variable, and the block invoke
783 // function has to be extracted from its initializer.
784 if (llvm::Constant *Block = CGM.getAddrOfGlobalBlockIfEmitted(blockExpr))
785 return Block;
786
787 CGBlockInfo blockInfo(blockExpr->getBlockDecl(), CurFn->getName());
788 computeBlockInfo(CGM, this, blockInfo);
789 blockInfo.BlockExpression = blockExpr;
790 if (!blockInfo.CanBeGlobal)
791 blockInfo.LocalAddress = CreateTempAlloca(blockInfo.StructureType,
792 blockInfo.BlockAlign, "block");
793 return EmitBlockLiteral(blockInfo);
794}
795
796llvm::Value *CodeGenFunction::EmitBlockLiteral(const CGBlockInfo &blockInfo) {
797 bool IsOpenCL = CGM.getContext().getLangOpts().OpenCL;
798 auto GenVoidPtrTy =
799 IsOpenCL ? CGM.getOpenCLRuntime().getGenericVoidPointerType() : VoidPtrTy;
800 LangAS GenVoidPtrAddr = IsOpenCL ? LangAS::opencl_generic : LangAS::Default;
801 auto GenVoidPtrSize = CharUnits::fromQuantity(
802 CGM.getTarget().getPointerWidth(
803 CGM.getContext().getTargetAddressSpace(GenVoidPtrAddr)) /
804 8);
805 // Using the computed layout, generate the actual block function.
806 bool isLambdaConv = blockInfo.getBlockDecl()->isConversionFromLambda();
807 CodeGenFunction BlockCGF{CGM, true};
808 BlockCGF.SanOpts = SanOpts;
809 auto *InvokeFn = BlockCGF.GenerateBlockFunction(
810 CurGD, blockInfo, LocalDeclMap, isLambdaConv, blockInfo.CanBeGlobal);
811 auto *blockFn = llvm::ConstantExpr::getPointerCast(InvokeFn, GenVoidPtrTy);
812
813 // If there is nothing to capture, we can emit this as a global block.
814 if (blockInfo.CanBeGlobal)
815 return CGM.getAddrOfGlobalBlockIfEmitted(blockInfo.BlockExpression);
816
817 // Otherwise, we have to emit this as a local block.
818
819 Address blockAddr = blockInfo.LocalAddress;
820 assert(blockAddr.isValid() && "block has no address!")(static_cast <bool> (blockAddr.isValid() && "block has no address!"
) ? void (0) : __assert_fail ("blockAddr.isValid() && \"block has no address!\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 820, __extension__ __PRETTY_FUNCTION__))
;
821
822 llvm::Constant *isa;
823 llvm::Constant *descriptor;
824 BlockFlags flags;
825 if (!IsOpenCL) {
826 // If the block is non-escaping, set field 'isa 'to NSConcreteGlobalBlock
827 // and set the BLOCK_IS_GLOBAL bit of field 'flags'. Copying a non-escaping
828 // block just returns the original block and releasing it is a no-op.
829 llvm::Constant *blockISA = blockInfo.getBlockDecl()->doesNotEscape()
830 ? CGM.getNSConcreteGlobalBlock()
831 : CGM.getNSConcreteStackBlock();
832 isa = llvm::ConstantExpr::getBitCast(blockISA, VoidPtrTy);
833
834 // Build the block descriptor.
835 descriptor = buildBlockDescriptor(CGM, blockInfo);
836
837 // Compute the initial on-stack block flags.
838 flags = BLOCK_HAS_SIGNATURE;
839 if (blockInfo.HasCapturedVariableLayout)
840 flags |= BLOCK_HAS_EXTENDED_LAYOUT;
841 if (blockInfo.needsCopyDisposeHelpers())
842 flags |= BLOCK_HAS_COPY_DISPOSE;
843 if (blockInfo.HasCXXObject)
844 flags |= BLOCK_HAS_CXX_OBJ;
845 if (blockInfo.UsesStret)
846 flags |= BLOCK_USE_STRET;
847 if (blockInfo.getBlockDecl()->doesNotEscape())
848 flags |= BLOCK_IS_NOESCAPE | BLOCK_IS_GLOBAL;
849 }
850
851 auto projectField = [&](unsigned index, const Twine &name) -> Address {
852 return Builder.CreateStructGEP(blockAddr, index, name);
853 };
854 auto storeField = [&](llvm::Value *value, unsigned index, const Twine &name) {
855 Builder.CreateStore(value, projectField(index, name));
856 };
857
858 // Initialize the block header.
859 {
860 // We assume all the header fields are densely packed.
861 unsigned index = 0;
862 CharUnits offset;
863 auto addHeaderField = [&](llvm::Value *value, CharUnits size,
864 const Twine &name) {
865 storeField(value, index, name);
866 offset += size;
867 index++;
868 };
869
870 if (!IsOpenCL) {
871 addHeaderField(isa, getPointerSize(), "block.isa");
872 addHeaderField(llvm::ConstantInt::get(IntTy, flags.getBitMask()),
873 getIntSize(), "block.flags");
874 addHeaderField(llvm::ConstantInt::get(IntTy, 0), getIntSize(),
875 "block.reserved");
876 } else {
877 addHeaderField(
878 llvm::ConstantInt::get(IntTy, blockInfo.BlockSize.getQuantity()),
879 getIntSize(), "block.size");
880 addHeaderField(
881 llvm::ConstantInt::get(IntTy, blockInfo.BlockAlign.getQuantity()),
882 getIntSize(), "block.align");
883 }
884 addHeaderField(blockFn, GenVoidPtrSize, "block.invoke");
885 if (!IsOpenCL)
886 addHeaderField(descriptor, getPointerSize(), "block.descriptor");
887 else if (auto *Helper =
888 CGM.getTargetCodeGenInfo().getTargetOpenCLBlockHelper()) {
889 for (auto I : Helper->getCustomFieldValues(*this, blockInfo)) {
890 addHeaderField(
891 I.first,
892 CharUnits::fromQuantity(
893 CGM.getDataLayout().getTypeAllocSize(I.first->getType())),
894 I.second);
895 }
896 }
897 }
898
899 // Finally, capture all the values into the block.
900 const BlockDecl *blockDecl = blockInfo.getBlockDecl();
901
902 // First, 'this'.
903 if (blockDecl->capturesCXXThis()) {
904 Address addr =
905 projectField(blockInfo.CXXThisIndex, "block.captured-this.addr");
906 Builder.CreateStore(LoadCXXThis(), addr);
907 }
908
909 // Next, captured variables.
910 for (const auto &CI : blockDecl->captures()) {
911 const VarDecl *variable = CI.getVariable();
912 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable);
913
914 // Ignore constant captures.
915 if (capture.isConstant()) continue;
916
917 QualType type = capture.fieldType();
918
919 // This will be a [[type]]*, except that a byref entry will just be
920 // an i8**.
921 Address blockField = projectField(capture.getIndex(), "block.captured");
922
923 // Compute the address of the thing we're going to move into the
924 // block literal.
925 Address src = Address::invalid();
926
927 if (blockDecl->isConversionFromLambda()) {
928 // The lambda capture in a lambda's conversion-to-block-pointer is
929 // special; we'll simply emit it directly.
930 src = Address::invalid();
931 } else if (CI.isEscapingByref()) {
932 if (BlockInfo && CI.isNested()) {
933 // We need to use the capture from the enclosing block.
934 const CGBlockInfo::Capture &enclosingCapture =
935 BlockInfo->getCapture(variable);
936
937 // This is a [[type]]*, except that a byref entry will just be an i8**.
938 src = Builder.CreateStructGEP(LoadBlockStruct(),
939 enclosingCapture.getIndex(),
940 "block.capture.addr");
941 } else {
942 auto I = LocalDeclMap.find(variable);
943 assert(I != LocalDeclMap.end())(static_cast <bool> (I != LocalDeclMap.end()) ? void (0
) : __assert_fail ("I != LocalDeclMap.end()", "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 943, __extension__ __PRETTY_FUNCTION__))
;
944 src = I->second;
945 }
946 } else {
947 DeclRefExpr declRef(getContext(), const_cast<VarDecl *>(variable),
948 /*RefersToEnclosingVariableOrCapture*/ CI.isNested(),
949 type.getNonReferenceType(), VK_LValue,
950 SourceLocation());
951 src = EmitDeclRefLValue(&declRef).getAddress(*this);
952 };
953
954 // For byrefs, we just write the pointer to the byref struct into
955 // the block field. There's no need to chase the forwarding
956 // pointer at this point, since we're building something that will
957 // live a shorter life than the stack byref anyway.
958 if (CI.isEscapingByref()) {
959 // Get a void* that points to the byref struct.
960 llvm::Value *byrefPointer;
961 if (CI.isNested())
962 byrefPointer = Builder.CreateLoad(src, "byref.capture");
963 else
964 byrefPointer = Builder.CreateBitCast(src.getPointer(), VoidPtrTy);
965
966 // Write that void* into the capture field.
967 Builder.CreateStore(byrefPointer, blockField);
968
969 // If we have a copy constructor, evaluate that into the block field.
970 } else if (const Expr *copyExpr = CI.getCopyExpr()) {
971 if (blockDecl->isConversionFromLambda()) {
972 // If we have a lambda conversion, emit the expression
973 // directly into the block instead.
974 AggValueSlot Slot =
975 AggValueSlot::forAddr(blockField, Qualifiers(),
976 AggValueSlot::IsDestructed,
977 AggValueSlot::DoesNotNeedGCBarriers,
978 AggValueSlot::IsNotAliased,
979 AggValueSlot::DoesNotOverlap);
980 EmitAggExpr(copyExpr, Slot);
981 } else {
982 EmitSynthesizedCXXCopyCtor(blockField, src, copyExpr);
983 }
984
985 // If it's a reference variable, copy the reference into the block field.
986 } else if (type->isReferenceType()) {
987 Builder.CreateStore(src.getPointer(), blockField);
988
989 // If type is const-qualified, copy the value into the block field.
990 } else if (type.isConstQualified() &&
991 type.getObjCLifetime() == Qualifiers::OCL_Strong &&
992 CGM.getCodeGenOpts().OptimizationLevel != 0) {
993 llvm::Value *value = Builder.CreateLoad(src, "captured");
994 Builder.CreateStore(value, blockField);
995
996 // If this is an ARC __strong block-pointer variable, don't do a
997 // block copy.
998 //
999 // TODO: this can be generalized into the normal initialization logic:
1000 // we should never need to do a block-copy when initializing a local
1001 // variable, because the local variable's lifetime should be strictly
1002 // contained within the stack block's.
1003 } else if (type.getObjCLifetime() == Qualifiers::OCL_Strong &&
1004 type->isBlockPointerType()) {
1005 // Load the block and do a simple retain.
1006 llvm::Value *value = Builder.CreateLoad(src, "block.captured_block");
1007 value = EmitARCRetainNonBlock(value);
1008
1009 // Do a primitive store to the block field.
1010 Builder.CreateStore(value, blockField);
1011
1012 // Otherwise, fake up a POD copy into the block field.
1013 } else {
1014 // Fake up a new variable so that EmitScalarInit doesn't think
1015 // we're referring to the variable in its own initializer.
1016 ImplicitParamDecl BlockFieldPseudoVar(getContext(), type,
1017 ImplicitParamDecl::Other);
1018
1019 // We use one of these or the other depending on whether the
1020 // reference is nested.
1021 DeclRefExpr declRef(getContext(), const_cast<VarDecl *>(variable),
1022 /*RefersToEnclosingVariableOrCapture*/ CI.isNested(),
1023 type, VK_LValue, SourceLocation());
1024
1025 ImplicitCastExpr l2r(ImplicitCastExpr::OnStack, type, CK_LValueToRValue,
1026 &declRef, VK_PRValue, FPOptionsOverride());
1027 // FIXME: Pass a specific location for the expr init so that the store is
1028 // attributed to a reasonable location - otherwise it may be attributed to
1029 // locations of subexpressions in the initialization.
1030 EmitExprAsInit(&l2r, &BlockFieldPseudoVar,
1031 MakeAddrLValue(blockField, type, AlignmentSource::Decl),
1032 /*captured by init*/ false);
1033 }
1034
1035 // Push a cleanup for the capture if necessary.
1036 if (!blockInfo.NeedsCopyDispose)
1037 continue;
1038
1039 // Ignore __block captures; there's nothing special in the on-stack block
1040 // that we need to do for them.
1041 if (CI.isByRef())
1042 continue;
1043
1044 // Ignore objects that aren't destructed.
1045 QualType::DestructionKind dtorKind = type.isDestructedType();
1046 if (dtorKind == QualType::DK_none)
1047 continue;
1048
1049 CodeGenFunction::Destroyer *destroyer;
1050
1051 // Block captures count as local values and have imprecise semantics.
1052 // They also can't be arrays, so need to worry about that.
1053 //
1054 // For const-qualified captures, emit clang.arc.use to ensure the captured
1055 // object doesn't get released while we are still depending on its validity
1056 // within the block.
1057 if (type.isConstQualified() &&
1058 type.getObjCLifetime() == Qualifiers::OCL_Strong &&
1059 CGM.getCodeGenOpts().OptimizationLevel != 0) {
1060 assert(CGM.getLangOpts().ObjCAutoRefCount &&(static_cast <bool> (CGM.getLangOpts().ObjCAutoRefCount
&& "expected ObjC ARC to be enabled") ? void (0) : __assert_fail
("CGM.getLangOpts().ObjCAutoRefCount && \"expected ObjC ARC to be enabled\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 1061, __extension__ __PRETTY_FUNCTION__))
1061 "expected ObjC ARC to be enabled")(static_cast <bool> (CGM.getLangOpts().ObjCAutoRefCount
&& "expected ObjC ARC to be enabled") ? void (0) : __assert_fail
("CGM.getLangOpts().ObjCAutoRefCount && \"expected ObjC ARC to be enabled\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 1061, __extension__ __PRETTY_FUNCTION__))
;
1062 destroyer = emitARCIntrinsicUse;
1063 } else if (dtorKind == QualType::DK_objc_strong_lifetime) {
1064 destroyer = destroyARCStrongImprecise;
1065 } else {
1066 destroyer = getDestroyer(dtorKind);
1067 }
1068
1069 CleanupKind cleanupKind = NormalCleanup;
1070 bool useArrayEHCleanup = needsEHCleanup(dtorKind);
1071 if (useArrayEHCleanup)
1072 cleanupKind = NormalAndEHCleanup;
1073
1074 // Extend the lifetime of the capture to the end of the scope enclosing the
1075 // block expression except when the block decl is in the list of RetExpr's
1076 // cleanup objects, in which case its lifetime ends after the full
1077 // expression.
1078 auto IsBlockDeclInRetExpr = [&]() {
1079 auto *EWC = llvm::dyn_cast_or_null<ExprWithCleanups>(RetExpr);
1080 if (EWC)
1081 for (auto &C : EWC->getObjects())
1082 if (auto *BD = C.dyn_cast<BlockDecl *>())
1083 if (BD == blockDecl)
1084 return true;
1085 return false;
1086 };
1087
1088 if (IsBlockDeclInRetExpr())
1089 pushDestroy(cleanupKind, blockField, type, destroyer, useArrayEHCleanup);
1090 else
1091 pushLifetimeExtendedDestroy(cleanupKind, blockField, type, destroyer,
1092 useArrayEHCleanup);
1093 }
1094
1095 // Cast to the converted block-pointer type, which happens (somewhat
1096 // unfortunately) to be a pointer to function type.
1097 llvm::Value *result = Builder.CreatePointerCast(
1098 blockAddr.getPointer(), ConvertType(blockInfo.getBlockExpr()->getType()));
1099
1100 if (IsOpenCL) {
1101 CGM.getOpenCLRuntime().recordBlockInfo(blockInfo.BlockExpression, InvokeFn,
1102 result);
1103 }
1104
1105 return result;
1106}
1107
1108
1109llvm::Type *CodeGenModule::getBlockDescriptorType() {
1110 if (BlockDescriptorType)
1111 return BlockDescriptorType;
1112
1113 llvm::Type *UnsignedLongTy =
1114 getTypes().ConvertType(getContext().UnsignedLongTy);
1115
1116 // struct __block_descriptor {
1117 // unsigned long reserved;
1118 // unsigned long block_size;
1119 //
1120 // // later, the following will be added
1121 //
1122 // struct {
1123 // void (*copyHelper)();
1124 // void (*copyHelper)();
1125 // } helpers; // !!! optional
1126 //
1127 // const char *signature; // the block signature
1128 // const char *layout; // reserved
1129 // };
1130 BlockDescriptorType = llvm::StructType::create(
1131 "struct.__block_descriptor", UnsignedLongTy, UnsignedLongTy);
1132
1133 // Now form a pointer to that.
1134 unsigned AddrSpace = 0;
1135 if (getLangOpts().OpenCL)
1136 AddrSpace = getContext().getTargetAddressSpace(LangAS::opencl_constant);
1137 BlockDescriptorType = llvm::PointerType::get(BlockDescriptorType, AddrSpace);
1138 return BlockDescriptorType;
1139}
1140
1141llvm::Type *CodeGenModule::getGenericBlockLiteralType() {
1142 if (GenericBlockLiteralType)
1143 return GenericBlockLiteralType;
1144
1145 llvm::Type *BlockDescPtrTy = getBlockDescriptorType();
1146
1147 if (getLangOpts().OpenCL) {
1148 // struct __opencl_block_literal_generic {
1149 // int __size;
1150 // int __align;
1151 // __generic void *__invoke;
1152 // /* custom fields */
1153 // };
1154 SmallVector<llvm::Type *, 8> StructFields(
1155 {IntTy, IntTy, getOpenCLRuntime().getGenericVoidPointerType()});
1156 if (auto *Helper = getTargetCodeGenInfo().getTargetOpenCLBlockHelper()) {
1157 for (auto I : Helper->getCustomFieldTypes())
1158 StructFields.push_back(I);
1159 }
1160 GenericBlockLiteralType = llvm::StructType::create(
1161 StructFields, "struct.__opencl_block_literal_generic");
1162 } else {
1163 // struct __block_literal_generic {
1164 // void *__isa;
1165 // int __flags;
1166 // int __reserved;
1167 // void (*__invoke)(void *);
1168 // struct __block_descriptor *__descriptor;
1169 // };
1170 GenericBlockLiteralType =
1171 llvm::StructType::create("struct.__block_literal_generic", VoidPtrTy,
1172 IntTy, IntTy, VoidPtrTy, BlockDescPtrTy);
1173 }
1174
1175 return GenericBlockLiteralType;
1176}
1177
1178RValue CodeGenFunction::EmitBlockCallExpr(const CallExpr *E,
1179 ReturnValueSlot ReturnValue) {
1180 const auto *BPT = E->getCallee()->getType()->castAs<BlockPointerType>();
1181 llvm::Value *BlockPtr = EmitScalarExpr(E->getCallee());
1182 llvm::Type *GenBlockTy = CGM.getGenericBlockLiteralType();
1183 llvm::Value *Func = nullptr;
1184 QualType FnType = BPT->getPointeeType();
1185 ASTContext &Ctx = getContext();
1186 CallArgList Args;
1187
1188 if (getLangOpts().OpenCL) {
1189 // For OpenCL, BlockPtr is already casted to generic block literal.
1190
1191 // First argument of a block call is a generic block literal casted to
1192 // generic void pointer, i.e. i8 addrspace(4)*
1193 llvm::Type *GenericVoidPtrTy =
1194 CGM.getOpenCLRuntime().getGenericVoidPointerType();
1195 llvm::Value *BlockDescriptor = Builder.CreatePointerCast(
1196 BlockPtr, GenericVoidPtrTy);
1197 QualType VoidPtrQualTy = Ctx.getPointerType(
1198 Ctx.getAddrSpaceQualType(Ctx.VoidTy, LangAS::opencl_generic));
1199 Args.add(RValue::get(BlockDescriptor), VoidPtrQualTy);
1200 // And the rest of the arguments.
1201 EmitCallArgs(Args, FnType->getAs<FunctionProtoType>(), E->arguments());
1202
1203 // We *can* call the block directly unless it is a function argument.
1204 if (!isa<ParmVarDecl>(E->getCalleeDecl()))
1205 Func = CGM.getOpenCLRuntime().getInvokeFunction(E->getCallee());
1206 else {
1207 llvm::Value *FuncPtr = Builder.CreateStructGEP(GenBlockTy, BlockPtr, 2);
1208 Func = Builder.CreateAlignedLoad(GenericVoidPtrTy, FuncPtr,
1209 getPointerAlign());
1210 }
1211 } else {
1212 // Bitcast the block literal to a generic block literal.
1213 BlockPtr = Builder.CreatePointerCast(
1214 BlockPtr, llvm::PointerType::get(GenBlockTy, 0), "block.literal");
1215 // Get pointer to the block invoke function
1216 llvm::Value *FuncPtr = Builder.CreateStructGEP(GenBlockTy, BlockPtr, 3);
1217
1218 // First argument is a block literal casted to a void pointer
1219 BlockPtr = Builder.CreatePointerCast(BlockPtr, VoidPtrTy);
1220 Args.add(RValue::get(BlockPtr), Ctx.VoidPtrTy);
1221 // And the rest of the arguments.
1222 EmitCallArgs(Args, FnType->getAs<FunctionProtoType>(), E->arguments());
1223
1224 // Load the function.
1225 Func = Builder.CreateAlignedLoad(VoidPtrTy, FuncPtr, getPointerAlign());
1226 }
1227
1228 const FunctionType *FuncTy = FnType->castAs<FunctionType>();
1229 const CGFunctionInfo &FnInfo =
1230 CGM.getTypes().arrangeBlockFunctionCall(Args, FuncTy);
1231
1232 // Cast the function pointer to the right type.
1233 llvm::Type *BlockFTy = CGM.getTypes().GetFunctionType(FnInfo);
1234
1235 llvm::Type *BlockFTyPtr = llvm::PointerType::getUnqual(BlockFTy);
1236 Func = Builder.CreatePointerCast(Func, BlockFTyPtr);
1237
1238 // Prepare the callee.
1239 CGCallee Callee(CGCalleeInfo(), Func);
1240
1241 // And call the block.
1242 return EmitCall(FnInfo, Callee, ReturnValue, Args);
1243}
1244
1245Address CodeGenFunction::GetAddrOfBlockDecl(const VarDecl *variable) {
1246 assert(BlockInfo && "evaluating block ref without block information?")(static_cast <bool> (BlockInfo && "evaluating block ref without block information?"
) ? void (0) : __assert_fail ("BlockInfo && \"evaluating block ref without block information?\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 1246, __extension__ __PRETTY_FUNCTION__))
;
1247 const CGBlockInfo::Capture &capture = BlockInfo->getCapture(variable);
1248
1249 // Handle constant captures.
1250 if (capture.isConstant()) return LocalDeclMap.find(variable)->second;
1251
1252 Address addr = Builder.CreateStructGEP(LoadBlockStruct(), capture.getIndex(),
1253 "block.capture.addr");
1254
1255 if (variable->isEscapingByref()) {
1256 // addr should be a void** right now. Load, then cast the result
1257 // to byref*.
1258
1259 auto &byrefInfo = getBlockByrefInfo(variable);
1260 addr = Address(Builder.CreateLoad(addr), byrefInfo.ByrefAlignment);
1261
1262 auto byrefPointerType = llvm::PointerType::get(byrefInfo.Type, 0);
1263 addr = Builder.CreateBitCast(addr, byrefPointerType, "byref.addr");
1264
1265 addr = emitBlockByrefAddress(addr, byrefInfo, /*follow*/ true,
1266 variable->getName());
1267 }
1268
1269 assert((!variable->isNonEscapingByref() ||(static_cast <bool> ((!variable->isNonEscapingByref(
) || capture.fieldType()->isReferenceType()) && "the capture field of a non-escaping variable should have a "
"reference type") ? void (0) : __assert_fail ("(!variable->isNonEscapingByref() || capture.fieldType()->isReferenceType()) && \"the capture field of a non-escaping variable should have a \" \"reference type\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 1272, __extension__ __PRETTY_FUNCTION__))
1270 capture.fieldType()->isReferenceType()) &&(static_cast <bool> ((!variable->isNonEscapingByref(
) || capture.fieldType()->isReferenceType()) && "the capture field of a non-escaping variable should have a "
"reference type") ? void (0) : __assert_fail ("(!variable->isNonEscapingByref() || capture.fieldType()->isReferenceType()) && \"the capture field of a non-escaping variable should have a \" \"reference type\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 1272, __extension__ __PRETTY_FUNCTION__))
1271 "the capture field of a non-escaping variable should have a "(static_cast <bool> ((!variable->isNonEscapingByref(
) || capture.fieldType()->isReferenceType()) && "the capture field of a non-escaping variable should have a "
"reference type") ? void (0) : __assert_fail ("(!variable->isNonEscapingByref() || capture.fieldType()->isReferenceType()) && \"the capture field of a non-escaping variable should have a \" \"reference type\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 1272, __extension__ __PRETTY_FUNCTION__))
1272 "reference type")(static_cast <bool> ((!variable->isNonEscapingByref(
) || capture.fieldType()->isReferenceType()) && "the capture field of a non-escaping variable should have a "
"reference type") ? void (0) : __assert_fail ("(!variable->isNonEscapingByref() || capture.fieldType()->isReferenceType()) && \"the capture field of a non-escaping variable should have a \" \"reference type\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 1272, __extension__ __PRETTY_FUNCTION__))
;
1273 if (capture.fieldType()->isReferenceType())
1274 addr = EmitLoadOfReference(MakeAddrLValue(addr, capture.fieldType()));
1275
1276 return addr;
1277}
1278
1279void CodeGenModule::setAddrOfGlobalBlock(const BlockExpr *BE,
1280 llvm::Constant *Addr) {
1281 bool Ok = EmittedGlobalBlocks.insert(std::make_pair(BE, Addr)).second;
1282 (void)Ok;
1283 assert(Ok && "Trying to replace an already-existing global block!")(static_cast <bool> (Ok && "Trying to replace an already-existing global block!"
) ? void (0) : __assert_fail ("Ok && \"Trying to replace an already-existing global block!\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 1283, __extension__ __PRETTY_FUNCTION__))
;
1284}
1285
1286llvm::Constant *
1287CodeGenModule::GetAddrOfGlobalBlock(const BlockExpr *BE,
1288 StringRef Name) {
1289 if (llvm::Constant *Block = getAddrOfGlobalBlockIfEmitted(BE))
1
Assuming 'Block' is null
2
Taking false branch
1290 return Block;
1291
1292 CGBlockInfo blockInfo(BE->getBlockDecl(), Name);
1293 blockInfo.BlockExpression = BE;
1294
1295 // Compute information about the layout, etc., of this block.
1296 computeBlockInfo(*this, nullptr, blockInfo);
3
Passing null pointer value via 2nd parameter 'CGF'
4
Calling 'computeBlockInfo'
1297
1298 // Using that metadata, generate the actual block function.
1299 {
1300 CodeGenFunction::DeclMapTy LocalDeclMap;
1301 CodeGenFunction(*this).GenerateBlockFunction(
1302 GlobalDecl(), blockInfo, LocalDeclMap,
1303 /*IsLambdaConversionToBlock*/ false, /*BuildGlobalBlock*/ true);
1304 }
1305
1306 return getAddrOfGlobalBlockIfEmitted(BE);
1307}
1308
1309static llvm::Constant *buildGlobalBlock(CodeGenModule &CGM,
1310 const CGBlockInfo &blockInfo,
1311 llvm::Constant *blockFn) {
1312 assert(blockInfo.CanBeGlobal)(static_cast <bool> (blockInfo.CanBeGlobal) ? void (0) :
__assert_fail ("blockInfo.CanBeGlobal", "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 1312, __extension__ __PRETTY_FUNCTION__))
;
1313 // Callers should detect this case on their own: calling this function
1314 // generally requires computing layout information, which is a waste of time
1315 // if we've already emitted this block.
1316 assert(!CGM.getAddrOfGlobalBlockIfEmitted(blockInfo.BlockExpression) &&(static_cast <bool> (!CGM.getAddrOfGlobalBlockIfEmitted
(blockInfo.BlockExpression) && "Refusing to re-emit a global block."
) ? void (0) : __assert_fail ("!CGM.getAddrOfGlobalBlockIfEmitted(blockInfo.BlockExpression) && \"Refusing to re-emit a global block.\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 1317, __extension__ __PRETTY_FUNCTION__))
1317 "Refusing to re-emit a global block.")(static_cast <bool> (!CGM.getAddrOfGlobalBlockIfEmitted
(blockInfo.BlockExpression) && "Refusing to re-emit a global block."
) ? void (0) : __assert_fail ("!CGM.getAddrOfGlobalBlockIfEmitted(blockInfo.BlockExpression) && \"Refusing to re-emit a global block.\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 1317, __extension__ __PRETTY_FUNCTION__))
;
1318
1319 // Generate the constants for the block literal initializer.
1320 ConstantInitBuilder builder(CGM);
1321 auto fields = builder.beginStruct();
1322
1323 bool IsOpenCL = CGM.getLangOpts().OpenCL;
1324 bool IsWindows = CGM.getTarget().getTriple().isOSWindows();
1325 if (!IsOpenCL) {
1326 // isa
1327 if (IsWindows)
1328 fields.addNullPointer(CGM.Int8PtrPtrTy);
1329 else
1330 fields.add(CGM.getNSConcreteGlobalBlock());
1331
1332 // __flags
1333 BlockFlags flags = BLOCK_IS_GLOBAL | BLOCK_HAS_SIGNATURE;
1334 if (blockInfo.UsesStret)
1335 flags |= BLOCK_USE_STRET;
1336
1337 fields.addInt(CGM.IntTy, flags.getBitMask());
1338
1339 // Reserved
1340 fields.addInt(CGM.IntTy, 0);
1341 } else {
1342 fields.addInt(CGM.IntTy, blockInfo.BlockSize.getQuantity());
1343 fields.addInt(CGM.IntTy, blockInfo.BlockAlign.getQuantity());
1344 }
1345
1346 // Function
1347 fields.add(blockFn);
1348
1349 if (!IsOpenCL) {
1350 // Descriptor
1351 fields.add(buildBlockDescriptor(CGM, blockInfo));
1352 } else if (auto *Helper =
1353 CGM.getTargetCodeGenInfo().getTargetOpenCLBlockHelper()) {
1354 for (auto I : Helper->getCustomFieldValues(CGM, blockInfo)) {
1355 fields.add(I);
1356 }
1357 }
1358
1359 unsigned AddrSpace = 0;
1360 if (CGM.getContext().getLangOpts().OpenCL)
1361 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_global);
1362
1363 llvm::GlobalVariable *literal = fields.finishAndCreateGlobal(
1364 "__block_literal_global", blockInfo.BlockAlign,
1365 /*constant*/ !IsWindows, llvm::GlobalVariable::InternalLinkage, AddrSpace);
1366
1367 literal->addAttribute("objc_arc_inert");
1368
1369 // Windows does not allow globals to be initialised to point to globals in
1370 // different DLLs. Any such variables must run code to initialise them.
1371 if (IsWindows) {
1372 auto *Init = llvm::Function::Create(llvm::FunctionType::get(CGM.VoidTy,
1373 {}), llvm::GlobalValue::InternalLinkage, ".block_isa_init",
1374 &CGM.getModule());
1375 llvm::IRBuilder<> b(llvm::BasicBlock::Create(CGM.getLLVMContext(), "entry",
1376 Init));
1377 b.CreateAlignedStore(CGM.getNSConcreteGlobalBlock(),
1378 b.CreateStructGEP(literal, 0),
1379 CGM.getPointerAlign().getAsAlign());
1380 b.CreateRetVoid();
1381 // We can't use the normal LLVM global initialisation array, because we
1382 // need to specify that this runs early in library initialisation.
1383 auto *InitVar = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
1384 /*isConstant*/true, llvm::GlobalValue::InternalLinkage,
1385 Init, ".block_isa_init_ptr");
1386 InitVar->setSection(".CRT$XCLa");
1387 CGM.addUsedGlobal(InitVar);
1388 }
1389
1390 // Return a constant of the appropriately-casted type.
1391 llvm::Type *RequiredType =
1392 CGM.getTypes().ConvertType(blockInfo.getBlockExpr()->getType());
1393 llvm::Constant *Result =
1394 llvm::ConstantExpr::getPointerCast(literal, RequiredType);
1395 CGM.setAddrOfGlobalBlock(blockInfo.BlockExpression, Result);
1396 if (CGM.getContext().getLangOpts().OpenCL)
1397 CGM.getOpenCLRuntime().recordBlockInfo(
1398 blockInfo.BlockExpression,
1399 cast<llvm::Function>(blockFn->stripPointerCasts()), Result);
1400 return Result;
1401}
1402
1403void CodeGenFunction::setBlockContextParameter(const ImplicitParamDecl *D,
1404 unsigned argNum,
1405 llvm::Value *arg) {
1406 assert(BlockInfo && "not emitting prologue of block invocation function?!")(static_cast <bool> (BlockInfo && "not emitting prologue of block invocation function?!"
) ? void (0) : __assert_fail ("BlockInfo && \"not emitting prologue of block invocation function?!\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 1406, __extension__ __PRETTY_FUNCTION__))
;
1407
1408 // Allocate a stack slot like for any local variable to guarantee optimal
1409 // debug info at -O0. The mem2reg pass will eliminate it when optimizing.
1410 Address alloc = CreateMemTemp(D->getType(), D->getName() + ".addr");
1411 Builder.CreateStore(arg, alloc);
1412 if (CGDebugInfo *DI = getDebugInfo()) {
1413 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) {
1414 DI->setLocation(D->getLocation());
1415 DI->EmitDeclareOfBlockLiteralArgVariable(
1416 *BlockInfo, D->getName(), argNum,
1417 cast<llvm::AllocaInst>(alloc.getPointer()), Builder);
1418 }
1419 }
1420
1421 SourceLocation StartLoc = BlockInfo->getBlockExpr()->getBody()->getBeginLoc();
1422 ApplyDebugLocation Scope(*this, StartLoc);
1423
1424 // Instead of messing around with LocalDeclMap, just set the value
1425 // directly as BlockPointer.
1426 BlockPointer = Builder.CreatePointerCast(
1427 arg,
1428 BlockInfo->StructureType->getPointerTo(
1429 getContext().getLangOpts().OpenCL
1430 ? getContext().getTargetAddressSpace(LangAS::opencl_generic)
1431 : 0),
1432 "block");
1433}
1434
1435Address CodeGenFunction::LoadBlockStruct() {
1436 assert(BlockInfo && "not in a block invocation function!")(static_cast <bool> (BlockInfo && "not in a block invocation function!"
) ? void (0) : __assert_fail ("BlockInfo && \"not in a block invocation function!\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 1436, __extension__ __PRETTY_FUNCTION__))
;
1437 assert(BlockPointer && "no block pointer set!")(static_cast <bool> (BlockPointer && "no block pointer set!"
) ? void (0) : __assert_fail ("BlockPointer && \"no block pointer set!\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 1437, __extension__ __PRETTY_FUNCTION__))
;
1438 return Address(BlockPointer, BlockInfo->BlockAlign);
1439}
1440
1441llvm::Function *
1442CodeGenFunction::GenerateBlockFunction(GlobalDecl GD,
1443 const CGBlockInfo &blockInfo,
1444 const DeclMapTy &ldm,
1445 bool IsLambdaConversionToBlock,
1446 bool BuildGlobalBlock) {
1447 const BlockDecl *blockDecl = blockInfo.getBlockDecl();
1448
1449 CurGD = GD;
1450
1451 CurEHLocation = blockInfo.getBlockExpr()->getEndLoc();
1452
1453 BlockInfo = &blockInfo;
1454
1455 // Arrange for local static and local extern declarations to appear
1456 // to be local to this function as well, in case they're directly
1457 // referenced in a block.
1458 for (DeclMapTy::const_iterator i = ldm.begin(), e = ldm.end(); i != e; ++i) {
1459 const auto *var = dyn_cast<VarDecl>(i->first);
1460 if (var && !var->hasLocalStorage())
1461 setAddrOfLocalVar(var, i->second);
1462 }
1463
1464 // Begin building the function declaration.
1465
1466 // Build the argument list.
1467 FunctionArgList args;
1468
1469 // The first argument is the block pointer. Just take it as a void*
1470 // and cast it later.
1471 QualType selfTy = getContext().VoidPtrTy;
1472
1473 // For OpenCL passed block pointer can be private AS local variable or
1474 // global AS program scope variable (for the case with and without captures).
1475 // Generic AS is used therefore to be able to accommodate both private and
1476 // generic AS in one implementation.
1477 if (getLangOpts().OpenCL)
1478 selfTy = getContext().getPointerType(getContext().getAddrSpaceQualType(
1479 getContext().VoidTy, LangAS::opencl_generic));
1480
1481 IdentifierInfo *II = &CGM.getContext().Idents.get(".block_descriptor");
1482
1483 ImplicitParamDecl SelfDecl(getContext(), const_cast<BlockDecl *>(blockDecl),
1484 SourceLocation(), II, selfTy,
1485 ImplicitParamDecl::ObjCSelf);
1486 args.push_back(&SelfDecl);
1487
1488 // Now add the rest of the parameters.
1489 args.append(blockDecl->param_begin(), blockDecl->param_end());
1490
1491 // Create the function declaration.
1492 const FunctionProtoType *fnType = blockInfo.getBlockExpr()->getFunctionType();
1493 const CGFunctionInfo &fnInfo =
1494 CGM.getTypes().arrangeBlockFunctionDeclaration(fnType, args);
1495 if (CGM.ReturnSlotInterferesWithArgs(fnInfo))
1496 blockInfo.UsesStret = true;
1497
1498 llvm::FunctionType *fnLLVMType = CGM.getTypes().GetFunctionType(fnInfo);
1499
1500 StringRef name = CGM.getBlockMangledName(GD, blockDecl);
1501 llvm::Function *fn = llvm::Function::Create(
1502 fnLLVMType, llvm::GlobalValue::InternalLinkage, name, &CGM.getModule());
1503 CGM.SetInternalFunctionAttributes(blockDecl, fn, fnInfo);
1504
1505 if (BuildGlobalBlock) {
1506 auto GenVoidPtrTy = getContext().getLangOpts().OpenCL
1507 ? CGM.getOpenCLRuntime().getGenericVoidPointerType()
1508 : VoidPtrTy;
1509 buildGlobalBlock(CGM, blockInfo,
1510 llvm::ConstantExpr::getPointerCast(fn, GenVoidPtrTy));
1511 }
1512
1513 // Begin generating the function.
1514 StartFunction(blockDecl, fnType->getReturnType(), fn, fnInfo, args,
1515 blockDecl->getLocation(),
1516 blockInfo.getBlockExpr()->getBody()->getBeginLoc());
1517
1518 // Okay. Undo some of what StartFunction did.
1519
1520 // At -O0 we generate an explicit alloca for the BlockPointer, so the RA
1521 // won't delete the dbg.declare intrinsics for captured variables.
1522 llvm::Value *BlockPointerDbgLoc = BlockPointer;
1523 if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1524 // Allocate a stack slot for it, so we can point the debugger to it
1525 Address Alloca = CreateTempAlloca(BlockPointer->getType(),
1526 getPointerAlign(),
1527 "block.addr");
1528 // Set the DebugLocation to empty, so the store is recognized as a
1529 // frame setup instruction by llvm::DwarfDebug::beginFunction().
1530 auto NL = ApplyDebugLocation::CreateEmpty(*this);
1531 Builder.CreateStore(BlockPointer, Alloca);
1532 BlockPointerDbgLoc = Alloca.getPointer();
1533 }
1534
1535 // If we have a C++ 'this' reference, go ahead and force it into
1536 // existence now.
1537 if (blockDecl->capturesCXXThis()) {
1538 Address addr = Builder.CreateStructGEP(
1539 LoadBlockStruct(), blockInfo.CXXThisIndex, "block.captured-this");
1540 CXXThisValue = Builder.CreateLoad(addr, "this");
1541 }
1542
1543 // Also force all the constant captures.
1544 for (const auto &CI : blockDecl->captures()) {
1545 const VarDecl *variable = CI.getVariable();
1546 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable);
1547 if (!capture.isConstant()) continue;
1548
1549 CharUnits align = getContext().getDeclAlign(variable);
1550 Address alloca =
1551 CreateMemTemp(variable->getType(), align, "block.captured-const");
1552
1553 Builder.CreateStore(capture.getConstant(), alloca);
1554
1555 setAddrOfLocalVar(variable, alloca);
1556 }
1557
1558 // Save a spot to insert the debug information for all the DeclRefExprs.
1559 llvm::BasicBlock *entry = Builder.GetInsertBlock();
1560 llvm::BasicBlock::iterator entry_ptr = Builder.GetInsertPoint();
1561 --entry_ptr;
1562
1563 if (IsLambdaConversionToBlock)
1564 EmitLambdaBlockInvokeBody();
1565 else {
1566 PGO.assignRegionCounters(GlobalDecl(blockDecl), fn);
1567 incrementProfileCounter(blockDecl->getBody());
1568 EmitStmt(blockDecl->getBody());
1569 }
1570
1571 // Remember where we were...
1572 llvm::BasicBlock *resume = Builder.GetInsertBlock();
1573
1574 // Go back to the entry.
1575 ++entry_ptr;
1576 Builder.SetInsertPoint(entry, entry_ptr);
1577
1578 // Emit debug information for all the DeclRefExprs.
1579 // FIXME: also for 'this'
1580 if (CGDebugInfo *DI = getDebugInfo()) {
1581 for (const auto &CI : blockDecl->captures()) {
1582 const VarDecl *variable = CI.getVariable();
1583 DI->EmitLocation(Builder, variable->getLocation());
1584
1585 if (CGM.getCodeGenOpts().hasReducedDebugInfo()) {
1586 const CGBlockInfo::Capture &capture = blockInfo.getCapture(variable);
1587 if (capture.isConstant()) {
1588 auto addr = LocalDeclMap.find(variable)->second;
1589 (void)DI->EmitDeclareOfAutoVariable(variable, addr.getPointer(),
1590 Builder);
1591 continue;
1592 }
1593
1594 DI->EmitDeclareOfBlockDeclRefVariable(
1595 variable, BlockPointerDbgLoc, Builder, blockInfo,
1596 entry_ptr == entry->end() ? nullptr : &*entry_ptr);
1597 }
1598 }
1599 // Recover location if it was changed in the above loop.
1600 DI->EmitLocation(Builder,
1601 cast<CompoundStmt>(blockDecl->getBody())->getRBracLoc());
1602 }
1603
1604 // And resume where we left off.
1605 if (resume == nullptr)
1606 Builder.ClearInsertionPoint();
1607 else
1608 Builder.SetInsertPoint(resume);
1609
1610 FinishFunction(cast<CompoundStmt>(blockDecl->getBody())->getRBracLoc());
1611
1612 return fn;
1613}
1614
1615static std::pair<BlockCaptureEntityKind, BlockFieldFlags>
1616computeCopyInfoForBlockCapture(const BlockDecl::Capture &CI, QualType T,
1617 const LangOptions &LangOpts) {
1618 if (CI.getCopyExpr()) {
1619 assert(!CI.isByRef())(static_cast <bool> (!CI.isByRef()) ? void (0) : __assert_fail
("!CI.isByRef()", "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 1619, __extension__ __PRETTY_FUNCTION__))
;
1620 // don't bother computing flags
1621 return std::make_pair(BlockCaptureEntityKind::CXXRecord, BlockFieldFlags());
1622 }
1623 BlockFieldFlags Flags;
1624 if (CI.isEscapingByref()) {
1625 Flags = BLOCK_FIELD_IS_BYREF;
1626 if (T.isObjCGCWeak())
1627 Flags |= BLOCK_FIELD_IS_WEAK;
1628 return std::make_pair(BlockCaptureEntityKind::BlockObject, Flags);
1629 }
1630
1631 Flags = BLOCK_FIELD_IS_OBJECT;
1632 bool isBlockPointer = T->isBlockPointerType();
1633 if (isBlockPointer)
1634 Flags = BLOCK_FIELD_IS_BLOCK;
1635
1636 switch (T.isNonTrivialToPrimitiveCopy()) {
1637 case QualType::PCK_Struct:
1638 return std::make_pair(BlockCaptureEntityKind::NonTrivialCStruct,
1639 BlockFieldFlags());
1640 case QualType::PCK_ARCWeak:
1641 // We need to register __weak direct captures with the runtime.
1642 return std::make_pair(BlockCaptureEntityKind::ARCWeak, Flags);
1643 case QualType::PCK_ARCStrong:
1644 // We need to retain the copied value for __strong direct captures.
1645 // If it's a block pointer, we have to copy the block and assign that to
1646 // the destination pointer, so we might as well use _Block_object_assign.
1647 // Otherwise we can avoid that.
1648 return std::make_pair(!isBlockPointer ? BlockCaptureEntityKind::ARCStrong
1649 : BlockCaptureEntityKind::BlockObject,
1650 Flags);
1651 case QualType::PCK_Trivial:
1652 case QualType::PCK_VolatileTrivial: {
1653 if (!T->isObjCRetainableType())
1654 // For all other types, the memcpy is fine.
1655 return std::make_pair(BlockCaptureEntityKind::None, BlockFieldFlags());
1656
1657 // Special rules for ARC captures:
1658 Qualifiers QS = T.getQualifiers();
1659
1660 // Non-ARC captures of retainable pointers are strong and
1661 // therefore require a call to _Block_object_assign.
1662 if (!QS.getObjCLifetime() && !LangOpts.ObjCAutoRefCount)
1663 return std::make_pair(BlockCaptureEntityKind::BlockObject, Flags);
1664
1665 // Otherwise the memcpy is fine.
1666 return std::make_pair(BlockCaptureEntityKind::None, BlockFieldFlags());
1667 }
1668 }
1669 llvm_unreachable("after exhaustive PrimitiveCopyKind switch")::llvm::llvm_unreachable_internal("after exhaustive PrimitiveCopyKind switch"
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 1669)
;
1670}
1671
1672static std::pair<BlockCaptureEntityKind, BlockFieldFlags>
1673computeDestroyInfoForBlockCapture(const BlockDecl::Capture &CI, QualType T,
1674 const LangOptions &LangOpts);
1675
1676/// Find the set of block captures that need to be explicitly copied or destroy.
1677static void findBlockCapturedManagedEntities(
1678 const CGBlockInfo &BlockInfo, const LangOptions &LangOpts,
1679 SmallVectorImpl<BlockCaptureManagedEntity> &ManagedCaptures) {
1680 for (const auto &CI : BlockInfo.getBlockDecl()->captures()) {
1681 const VarDecl *Variable = CI.getVariable();
1682 const CGBlockInfo::Capture &Capture = BlockInfo.getCapture(Variable);
1683 if (Capture.isConstant())
1684 continue;
1685
1686 QualType VT = Capture.fieldType();
1687 auto CopyInfo = computeCopyInfoForBlockCapture(CI, VT, LangOpts);
1688 auto DisposeInfo = computeDestroyInfoForBlockCapture(CI, VT, LangOpts);
1689 if (CopyInfo.first != BlockCaptureEntityKind::None ||
1690 DisposeInfo.first != BlockCaptureEntityKind::None)
1691 ManagedCaptures.emplace_back(CopyInfo.first, DisposeInfo.first,
1692 CopyInfo.second, DisposeInfo.second, CI,
1693 Capture);
1694 }
1695
1696 // Sort the captures by offset.
1697 llvm::sort(ManagedCaptures);
1698}
1699
1700namespace {
1701/// Release a __block variable.
1702struct CallBlockRelease final : EHScopeStack::Cleanup {
1703 Address Addr;
1704 BlockFieldFlags FieldFlags;
1705 bool LoadBlockVarAddr, CanThrow;
1706
1707 CallBlockRelease(Address Addr, BlockFieldFlags Flags, bool LoadValue,
1708 bool CT)
1709 : Addr(Addr), FieldFlags(Flags), LoadBlockVarAddr(LoadValue),
1710 CanThrow(CT) {}
1711
1712 void Emit(CodeGenFunction &CGF, Flags flags) override {
1713 llvm::Value *BlockVarAddr;
1714 if (LoadBlockVarAddr) {
1715 BlockVarAddr = CGF.Builder.CreateLoad(Addr);
1716 BlockVarAddr = CGF.Builder.CreateBitCast(BlockVarAddr, CGF.VoidPtrTy);
1717 } else {
1718 BlockVarAddr = Addr.getPointer();
1719 }
1720
1721 CGF.BuildBlockRelease(BlockVarAddr, FieldFlags, CanThrow);
1722 }
1723};
1724} // end anonymous namespace
1725
1726/// Check if \p T is a C++ class that has a destructor that can throw.
1727bool CodeGenFunction::cxxDestructorCanThrow(QualType T) {
1728 if (const auto *RD = T->getAsCXXRecordDecl())
1729 if (const CXXDestructorDecl *DD = RD->getDestructor())
1730 return DD->getType()->castAs<FunctionProtoType>()->canThrow();
1731 return false;
1732}
1733
1734// Return a string that has the information about a capture.
1735static std::string getBlockCaptureStr(const BlockCaptureManagedEntity &E,
1736 CaptureStrKind StrKind,
1737 CharUnits BlockAlignment,
1738 CodeGenModule &CGM) {
1739 std::string Str;
1740 ASTContext &Ctx = CGM.getContext();
1741 const BlockDecl::Capture &CI = *E.CI;
1742 QualType CaptureTy = CI.getVariable()->getType();
1743
1744 BlockCaptureEntityKind Kind;
1745 BlockFieldFlags Flags;
1746
1747 // CaptureStrKind::Merged should be passed only when the operations and the
1748 // flags are the same for copy and dispose.
1749 assert((StrKind != CaptureStrKind::Merged ||(static_cast <bool> ((StrKind != CaptureStrKind::Merged
|| (E.CopyKind == E.DisposeKind && E.CopyFlags == E.
DisposeFlags)) && "different operations and flags") ?
void (0) : __assert_fail ("(StrKind != CaptureStrKind::Merged || (E.CopyKind == E.DisposeKind && E.CopyFlags == E.DisposeFlags)) && \"different operations and flags\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 1751, __extension__ __PRETTY_FUNCTION__))
1750 (E.CopyKind == E.DisposeKind && E.CopyFlags == E.DisposeFlags)) &&(static_cast <bool> ((StrKind != CaptureStrKind::Merged
|| (E.CopyKind == E.DisposeKind && E.CopyFlags == E.
DisposeFlags)) && "different operations and flags") ?
void (0) : __assert_fail ("(StrKind != CaptureStrKind::Merged || (E.CopyKind == E.DisposeKind && E.CopyFlags == E.DisposeFlags)) && \"different operations and flags\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 1751, __extension__ __PRETTY_FUNCTION__))
1751 "different operations and flags")(static_cast <bool> ((StrKind != CaptureStrKind::Merged
|| (E.CopyKind == E.DisposeKind && E.CopyFlags == E.
DisposeFlags)) && "different operations and flags") ?
void (0) : __assert_fail ("(StrKind != CaptureStrKind::Merged || (E.CopyKind == E.DisposeKind && E.CopyFlags == E.DisposeFlags)) && \"different operations and flags\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 1751, __extension__ __PRETTY_FUNCTION__))
;
1752
1753 if (StrKind == CaptureStrKind::DisposeHelper) {
1754 Kind = E.DisposeKind;
1755 Flags = E.DisposeFlags;
1756 } else {
1757 Kind = E.CopyKind;
1758 Flags = E.CopyFlags;
1759 }
1760
1761 switch (Kind) {
1762 case BlockCaptureEntityKind::CXXRecord: {
1763 Str += "c";
1764 SmallString<256> TyStr;
1765 llvm::raw_svector_ostream Out(TyStr);
1766 CGM.getCXXABI().getMangleContext().mangleTypeName(CaptureTy, Out);
1767 Str += llvm::to_string(TyStr.size()) + TyStr.c_str();
1768 break;
1769 }
1770 case BlockCaptureEntityKind::ARCWeak:
1771 Str += "w";
1772 break;
1773 case BlockCaptureEntityKind::ARCStrong:
1774 Str += "s";
1775 break;
1776 case BlockCaptureEntityKind::BlockObject: {
1777 const VarDecl *Var = CI.getVariable();
1778 unsigned F = Flags.getBitMask();
1779 if (F & BLOCK_FIELD_IS_BYREF) {
1780 Str += "r";
1781 if (F & BLOCK_FIELD_IS_WEAK)
1782 Str += "w";
1783 else {
1784 // If CaptureStrKind::Merged is passed, check both the copy expression
1785 // and the destructor.
1786 if (StrKind != CaptureStrKind::DisposeHelper) {
1787 if (Ctx.getBlockVarCopyInit(Var).canThrow())
1788 Str += "c";
1789 }
1790 if (StrKind != CaptureStrKind::CopyHelper) {
1791 if (CodeGenFunction::cxxDestructorCanThrow(CaptureTy))
1792 Str += "d";
1793 }
1794 }
1795 } else {
1796 assert((F & BLOCK_FIELD_IS_OBJECT) && "unexpected flag value")(static_cast <bool> ((F & BLOCK_FIELD_IS_OBJECT) &&
"unexpected flag value") ? void (0) : __assert_fail ("(F & BLOCK_FIELD_IS_OBJECT) && \"unexpected flag value\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 1796, __extension__ __PRETTY_FUNCTION__))
;
1797 if (F == BLOCK_FIELD_IS_BLOCK)
1798 Str += "b";
1799 else
1800 Str += "o";
1801 }
1802 break;
1803 }
1804 case BlockCaptureEntityKind::NonTrivialCStruct: {
1805 bool IsVolatile = CaptureTy.isVolatileQualified();
1806 CharUnits Alignment =
1807 BlockAlignment.alignmentAtOffset(E.Capture->getOffset());
1808
1809 Str += "n";
1810 std::string FuncStr;
1811 if (StrKind == CaptureStrKind::DisposeHelper)
1812 FuncStr = CodeGenFunction::getNonTrivialDestructorStr(
1813 CaptureTy, Alignment, IsVolatile, Ctx);
1814 else
1815 // If CaptureStrKind::Merged is passed, use the copy constructor string.
1816 // It has all the information that the destructor string has.
1817 FuncStr = CodeGenFunction::getNonTrivialCopyConstructorStr(
1818 CaptureTy, Alignment, IsVolatile, Ctx);
1819 // The underscore is necessary here because non-trivial copy constructor
1820 // and destructor strings can start with a number.
1821 Str += llvm::to_string(FuncStr.size()) + "_" + FuncStr;
1822 break;
1823 }
1824 case BlockCaptureEntityKind::None:
1825 break;
1826 }
1827
1828 return Str;
1829}
1830
1831static std::string getCopyDestroyHelperFuncName(
1832 const SmallVectorImpl<BlockCaptureManagedEntity> &Captures,
1833 CharUnits BlockAlignment, CaptureStrKind StrKind, CodeGenModule &CGM) {
1834 assert((StrKind == CaptureStrKind::CopyHelper ||(static_cast <bool> ((StrKind == CaptureStrKind::CopyHelper
|| StrKind == CaptureStrKind::DisposeHelper) && "unexpected CaptureStrKind"
) ? void (0) : __assert_fail ("(StrKind == CaptureStrKind::CopyHelper || StrKind == CaptureStrKind::DisposeHelper) && \"unexpected CaptureStrKind\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 1836, __extension__ __PRETTY_FUNCTION__))
1835 StrKind == CaptureStrKind::DisposeHelper) &&(static_cast <bool> ((StrKind == CaptureStrKind::CopyHelper
|| StrKind == CaptureStrKind::DisposeHelper) && "unexpected CaptureStrKind"
) ? void (0) : __assert_fail ("(StrKind == CaptureStrKind::CopyHelper || StrKind == CaptureStrKind::DisposeHelper) && \"unexpected CaptureStrKind\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 1836, __extension__ __PRETTY_FUNCTION__))
1836 "unexpected CaptureStrKind")(static_cast <bool> ((StrKind == CaptureStrKind::CopyHelper
|| StrKind == CaptureStrKind::DisposeHelper) && "unexpected CaptureStrKind"
) ? void (0) : __assert_fail ("(StrKind == CaptureStrKind::CopyHelper || StrKind == CaptureStrKind::DisposeHelper) && \"unexpected CaptureStrKind\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 1836, __extension__ __PRETTY_FUNCTION__))
;
1837 std::string Name = StrKind == CaptureStrKind::CopyHelper
1838 ? "__copy_helper_block_"
1839 : "__destroy_helper_block_";
1840 if (CGM.getLangOpts().Exceptions)
1841 Name += "e";
1842 if (CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
1843 Name += "a";
1844 Name += llvm::to_string(BlockAlignment.getQuantity()) + "_";
1845
1846 for (const BlockCaptureManagedEntity &E : Captures) {
1847 Name += llvm::to_string(E.Capture->getOffset().getQuantity());
1848 Name += getBlockCaptureStr(E, StrKind, BlockAlignment, CGM);
1849 }
1850
1851 return Name;
1852}
1853
1854static void pushCaptureCleanup(BlockCaptureEntityKind CaptureKind,
1855 Address Field, QualType CaptureType,
1856 BlockFieldFlags Flags, bool ForCopyHelper,
1857 VarDecl *Var, CodeGenFunction &CGF) {
1858 bool EHOnly = ForCopyHelper;
1859
1860 switch (CaptureKind) {
1861 case BlockCaptureEntityKind::CXXRecord:
1862 case BlockCaptureEntityKind::ARCWeak:
1863 case BlockCaptureEntityKind::NonTrivialCStruct:
1864 case BlockCaptureEntityKind::ARCStrong: {
1865 if (CaptureType.isDestructedType() &&
1866 (!EHOnly || CGF.needsEHCleanup(CaptureType.isDestructedType()))) {
1867 CodeGenFunction::Destroyer *Destroyer =
1868 CaptureKind == BlockCaptureEntityKind::ARCStrong
1869 ? CodeGenFunction::destroyARCStrongImprecise
1870 : CGF.getDestroyer(CaptureType.isDestructedType());
1871 CleanupKind Kind =
1872 EHOnly ? EHCleanup
1873 : CGF.getCleanupKind(CaptureType.isDestructedType());
1874 CGF.pushDestroy(Kind, Field, CaptureType, Destroyer, Kind & EHCleanup);
1875 }
1876 break;
1877 }
1878 case BlockCaptureEntityKind::BlockObject: {
1879 if (!EHOnly || CGF.getLangOpts().Exceptions) {
1880 CleanupKind Kind = EHOnly ? EHCleanup : NormalAndEHCleanup;
1881 // Calls to _Block_object_dispose along the EH path in the copy helper
1882 // function don't throw as newly-copied __block variables always have a
1883 // reference count of 2.
1884 bool CanThrow =
1885 !ForCopyHelper && CGF.cxxDestructorCanThrow(CaptureType);
1886 CGF.enterByrefCleanup(Kind, Field, Flags, /*LoadBlockVarAddr*/ true,
1887 CanThrow);
1888 }
1889 break;
1890 }
1891 case BlockCaptureEntityKind::None:
1892 break;
1893 }
1894}
1895
1896static void setBlockHelperAttributesVisibility(bool CapturesNonExternalType,
1897 llvm::Function *Fn,
1898 const CGFunctionInfo &FI,
1899 CodeGenModule &CGM) {
1900 if (CapturesNonExternalType) {
1901 CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
1902 } else {
1903 Fn->setVisibility(llvm::GlobalValue::HiddenVisibility);
1904 Fn->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1905 CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn, /*IsThunk=*/false);
1906 CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn);
1907 }
1908}
1909/// Generate the copy-helper function for a block closure object:
1910/// static void block_copy_helper(block_t *dst, block_t *src);
1911/// The runtime will have previously initialized 'dst' by doing a
1912/// bit-copy of 'src'.
1913///
1914/// Note that this copies an entire block closure object to the heap;
1915/// it should not be confused with a 'byref copy helper', which moves
1916/// the contents of an individual __block variable to the heap.
1917llvm::Constant *
1918CodeGenFunction::GenerateCopyHelperFunction(const CGBlockInfo &blockInfo) {
1919 SmallVector<BlockCaptureManagedEntity, 4> CopiedCaptures;
1920 findBlockCapturedManagedEntities(blockInfo, getLangOpts(), CopiedCaptures);
1921 std::string FuncName =
1922 getCopyDestroyHelperFuncName(CopiedCaptures, blockInfo.BlockAlign,
1923 CaptureStrKind::CopyHelper, CGM);
1924
1925 if (llvm::GlobalValue *Func = CGM.getModule().getNamedValue(FuncName))
1926 return llvm::ConstantExpr::getBitCast(Func, VoidPtrTy);
1927
1928 ASTContext &C = getContext();
1929
1930 QualType ReturnTy = C.VoidTy;
1931
1932 FunctionArgList args;
1933 ImplicitParamDecl DstDecl(C, C.VoidPtrTy, ImplicitParamDecl::Other);
1934 args.push_back(&DstDecl);
1935 ImplicitParamDecl SrcDecl(C, C.VoidPtrTy, ImplicitParamDecl::Other);
1936 args.push_back(&SrcDecl);
1937
1938 const CGFunctionInfo &FI =
1939 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
1940
1941 // FIXME: it would be nice if these were mergeable with things with
1942 // identical semantics.
1943 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
1944
1945 llvm::Function *Fn =
1946 llvm::Function::Create(LTy, llvm::GlobalValue::LinkOnceODRLinkage,
1947 FuncName, &CGM.getModule());
1948 if (CGM.supportsCOMDAT())
1949 Fn->setComdat(CGM.getModule().getOrInsertComdat(FuncName));
1950
1951 IdentifierInfo *II = &C.Idents.get(FuncName);
1952
1953 SmallVector<QualType, 2> ArgTys;
1954 ArgTys.push_back(C.VoidPtrTy);
1955 ArgTys.push_back(C.VoidPtrTy);
1956 QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
1957
1958 FunctionDecl *FD = FunctionDecl::Create(
1959 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
1960 FunctionTy, nullptr, SC_Static, false, false);
1961 setBlockHelperAttributesVisibility(blockInfo.CapturesNonExternalType, Fn, FI,
1962 CGM);
1963 // This is necessary to avoid inheriting the previous line number.
1964 FD->setImplicit();
1965 StartFunction(FD, ReturnTy, Fn, FI, args);
1966 auto AL = ApplyDebugLocation::CreateArtificial(*this);
1967
1968 llvm::Type *structPtrTy = blockInfo.StructureType->getPointerTo();
1969
1970 Address src = GetAddrOfLocalVar(&SrcDecl);
1971 src = Address(Builder.CreateLoad(src), blockInfo.BlockAlign);
1972 src = Builder.CreateBitCast(src, structPtrTy, "block.source");
1973
1974 Address dst = GetAddrOfLocalVar(&DstDecl);
1975 dst = Address(Builder.CreateLoad(dst), blockInfo.BlockAlign);
1976 dst = Builder.CreateBitCast(dst, structPtrTy, "block.dest");
1977
1978 for (const auto &CopiedCapture : CopiedCaptures) {
1979 const BlockDecl::Capture &CI = *CopiedCapture.CI;
1980 const CGBlockInfo::Capture &capture = *CopiedCapture.Capture;
1981 QualType captureType = CI.getVariable()->getType();
1982 BlockFieldFlags flags = CopiedCapture.CopyFlags;
1983
1984 unsigned index = capture.getIndex();
1985 Address srcField = Builder.CreateStructGEP(src, index);
1986 Address dstField = Builder.CreateStructGEP(dst, index);
1987
1988 switch (CopiedCapture.CopyKind) {
1989 case BlockCaptureEntityKind::CXXRecord:
1990 // If there's an explicit copy expression, we do that.
1991 assert(CI.getCopyExpr() && "copy expression for variable is missing")(static_cast <bool> (CI.getCopyExpr() && "copy expression for variable is missing"
) ? void (0) : __assert_fail ("CI.getCopyExpr() && \"copy expression for variable is missing\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 1991, __extension__ __PRETTY_FUNCTION__))
;
1992 EmitSynthesizedCXXCopyCtor(dstField, srcField, CI.getCopyExpr());
1993 break;
1994 case BlockCaptureEntityKind::ARCWeak:
1995 EmitARCCopyWeak(dstField, srcField);
1996 break;
1997 case BlockCaptureEntityKind::NonTrivialCStruct: {
1998 // If this is a C struct that requires non-trivial copy construction,
1999 // emit a call to its copy constructor.
2000 QualType varType = CI.getVariable()->getType();
2001 callCStructCopyConstructor(MakeAddrLValue(dstField, varType),
2002 MakeAddrLValue(srcField, varType));
2003 break;
2004 }
2005 case BlockCaptureEntityKind::ARCStrong: {
2006 llvm::Value *srcValue = Builder.CreateLoad(srcField, "blockcopy.src");
2007 // At -O0, store null into the destination field (so that the
2008 // storeStrong doesn't over-release) and then call storeStrong.
2009 // This is a workaround to not having an initStrong call.
2010 if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
2011 auto *ty = cast<llvm::PointerType>(srcValue->getType());
2012 llvm::Value *null = llvm::ConstantPointerNull::get(ty);
2013 Builder.CreateStore(null, dstField);
2014 EmitARCStoreStrongCall(dstField, srcValue, true);
2015
2016 // With optimization enabled, take advantage of the fact that
2017 // the blocks runtime guarantees a memcpy of the block data, and
2018 // just emit a retain of the src field.
2019 } else {
2020 EmitARCRetainNonBlock(srcValue);
2021
2022 // Unless EH cleanup is required, we don't need this anymore, so kill
2023 // it. It's not quite worth the annoyance to avoid creating it in the
2024 // first place.
2025 if (!needsEHCleanup(captureType.isDestructedType()))
2026 cast<llvm::Instruction>(dstField.getPointer())->eraseFromParent();
2027 }
2028 break;
2029 }
2030 case BlockCaptureEntityKind::BlockObject: {
2031 llvm::Value *srcValue = Builder.CreateLoad(srcField, "blockcopy.src");
2032 srcValue = Builder.CreateBitCast(srcValue, VoidPtrTy);
2033 llvm::Value *dstAddr =
2034 Builder.CreateBitCast(dstField.getPointer(), VoidPtrTy);
2035 llvm::Value *args[] = {
2036 dstAddr, srcValue, llvm::ConstantInt::get(Int32Ty, flags.getBitMask())
2037 };
2038
2039 if (CI.isByRef() && C.getBlockVarCopyInit(CI.getVariable()).canThrow())
2040 EmitRuntimeCallOrInvoke(CGM.getBlockObjectAssign(), args);
2041 else
2042 EmitNounwindRuntimeCall(CGM.getBlockObjectAssign(), args);
2043 break;
2044 }
2045 case BlockCaptureEntityKind::None:
2046 continue;
2047 }
2048
2049 // Ensure that we destroy the copied object if an exception is thrown later
2050 // in the helper function.
2051 pushCaptureCleanup(CopiedCapture.CopyKind, dstField, captureType, flags,
2052 /*ForCopyHelper*/ true, CI.getVariable(), *this);
2053 }
2054
2055 FinishFunction();
2056
2057 return llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
2058}
2059
2060static BlockFieldFlags
2061getBlockFieldFlagsForObjCObjectPointer(const BlockDecl::Capture &CI,
2062 QualType T) {
2063 BlockFieldFlags Flags = BLOCK_FIELD_IS_OBJECT;
2064 if (T->isBlockPointerType())
2065 Flags = BLOCK_FIELD_IS_BLOCK;
2066 return Flags;
2067}
2068
2069static std::pair<BlockCaptureEntityKind, BlockFieldFlags>
2070computeDestroyInfoForBlockCapture(const BlockDecl::Capture &CI, QualType T,
2071 const LangOptions &LangOpts) {
2072 if (CI.isEscapingByref()) {
2073 BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF;
2074 if (T.isObjCGCWeak())
2075 Flags |= BLOCK_FIELD_IS_WEAK;
2076 return std::make_pair(BlockCaptureEntityKind::BlockObject, Flags);
2077 }
2078
2079 switch (T.isDestructedType()) {
2080 case QualType::DK_cxx_destructor:
2081 return std::make_pair(BlockCaptureEntityKind::CXXRecord, BlockFieldFlags());
2082 case QualType::DK_objc_strong_lifetime:
2083 // Use objc_storeStrong for __strong direct captures; the
2084 // dynamic tools really like it when we do this.
2085 return std::make_pair(BlockCaptureEntityKind::ARCStrong,
2086 getBlockFieldFlagsForObjCObjectPointer(CI, T));
2087 case QualType::DK_objc_weak_lifetime:
2088 // Support __weak direct captures.
2089 return std::make_pair(BlockCaptureEntityKind::ARCWeak,
2090 getBlockFieldFlagsForObjCObjectPointer(CI, T));
2091 case QualType::DK_nontrivial_c_struct:
2092 return std::make_pair(BlockCaptureEntityKind::NonTrivialCStruct,
2093 BlockFieldFlags());
2094 case QualType::DK_none: {
2095 // Non-ARC captures are strong, and we need to use _Block_object_dispose.
2096 if (T->isObjCRetainableType() && !T.getQualifiers().hasObjCLifetime() &&
2097 !LangOpts.ObjCAutoRefCount)
2098 return std::make_pair(BlockCaptureEntityKind::BlockObject,
2099 getBlockFieldFlagsForObjCObjectPointer(CI, T));
2100 // Otherwise, we have nothing to do.
2101 return std::make_pair(BlockCaptureEntityKind::None, BlockFieldFlags());
2102 }
2103 }
2104 llvm_unreachable("after exhaustive DestructionKind switch")::llvm::llvm_unreachable_internal("after exhaustive DestructionKind switch"
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 2104)
;
2105}
2106
2107/// Generate the destroy-helper function for a block closure object:
2108/// static void block_destroy_helper(block_t *theBlock);
2109///
2110/// Note that this destroys a heap-allocated block closure object;
2111/// it should not be confused with a 'byref destroy helper', which
2112/// destroys the heap-allocated contents of an individual __block
2113/// variable.
2114llvm::Constant *
2115CodeGenFunction::GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo) {
2116 SmallVector<BlockCaptureManagedEntity, 4> DestroyedCaptures;
2117 findBlockCapturedManagedEntities(blockInfo, getLangOpts(), DestroyedCaptures);
2118 std::string FuncName =
2119 getCopyDestroyHelperFuncName(DestroyedCaptures, blockInfo.BlockAlign,
2120 CaptureStrKind::DisposeHelper, CGM);
2121
2122 if (llvm::GlobalValue *Func = CGM.getModule().getNamedValue(FuncName))
2123 return llvm::ConstantExpr::getBitCast(Func, VoidPtrTy);
2124
2125 ASTContext &C = getContext();
2126
2127 QualType ReturnTy = C.VoidTy;
2128
2129 FunctionArgList args;
2130 ImplicitParamDecl SrcDecl(C, C.VoidPtrTy, ImplicitParamDecl::Other);
2131 args.push_back(&SrcDecl);
2132
2133 const CGFunctionInfo &FI =
2134 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
2135
2136 // FIXME: We'd like to put these into a mergable by content, with
2137 // internal linkage.
2138 llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
2139
2140 llvm::Function *Fn =
2141 llvm::Function::Create(LTy, llvm::GlobalValue::LinkOnceODRLinkage,
2142 FuncName, &CGM.getModule());
2143 if (CGM.supportsCOMDAT())
2144 Fn->setComdat(CGM.getModule().getOrInsertComdat(FuncName));
2145
2146 IdentifierInfo *II = &C.Idents.get(FuncName);
2147
2148 SmallVector<QualType, 1> ArgTys;
2149 ArgTys.push_back(C.VoidPtrTy);
2150 QualType FunctionTy = C.getFunctionType(ReturnTy, ArgTys, {});
2151
2152 FunctionDecl *FD = FunctionDecl::Create(
2153 C, C.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
2154 FunctionTy, nullptr, SC_Static, false, false);
2155
2156 setBlockHelperAttributesVisibility(blockInfo.CapturesNonExternalType, Fn, FI,
2157 CGM);
2158 // This is necessary to avoid inheriting the previous line number.
2159 FD->setImplicit();
2160 StartFunction(FD, ReturnTy, Fn, FI, args);
2161 markAsIgnoreThreadCheckingAtRuntime(Fn);
2162
2163 auto AL = ApplyDebugLocation::CreateArtificial(*this);
2164
2165 llvm::Type *structPtrTy = blockInfo.StructureType->getPointerTo();
2166
2167 Address src = GetAddrOfLocalVar(&SrcDecl);
2168 src = Address(Builder.CreateLoad(src), blockInfo.BlockAlign);
2169 src = Builder.CreateBitCast(src, structPtrTy, "block");
2170
2171 CodeGenFunction::RunCleanupsScope cleanups(*this);
2172
2173 for (const auto &DestroyedCapture : DestroyedCaptures) {
2174 const BlockDecl::Capture &CI = *DestroyedCapture.CI;
2175 const CGBlockInfo::Capture &capture = *DestroyedCapture.Capture;
2176 BlockFieldFlags flags = DestroyedCapture.DisposeFlags;
2177
2178 Address srcField = Builder.CreateStructGEP(src, capture.getIndex());
2179
2180 pushCaptureCleanup(DestroyedCapture.DisposeKind, srcField,
2181 CI.getVariable()->getType(), flags,
2182 /*ForCopyHelper*/ false, CI.getVariable(), *this);
2183 }
2184
2185 cleanups.ForceCleanup();
2186
2187 FinishFunction();
2188
2189 return llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
2190}
2191
2192namespace {
2193
2194/// Emits the copy/dispose helper functions for a __block object of id type.
2195class ObjectByrefHelpers final : public BlockByrefHelpers {
2196 BlockFieldFlags Flags;
2197
2198public:
2199 ObjectByrefHelpers(CharUnits alignment, BlockFieldFlags flags)
2200 : BlockByrefHelpers(alignment), Flags(flags) {}
2201
2202 void emitCopy(CodeGenFunction &CGF, Address destField,
2203 Address srcField) override {
2204 destField = CGF.Builder.CreateBitCast(destField, CGF.VoidPtrTy);
2205
2206 srcField = CGF.Builder.CreateBitCast(srcField, CGF.VoidPtrPtrTy);
2207 llvm::Value *srcValue = CGF.Builder.CreateLoad(srcField);
2208
2209 unsigned flags = (Flags | BLOCK_BYREF_CALLER).getBitMask();
2210
2211 llvm::Value *flagsVal = llvm::ConstantInt::get(CGF.Int32Ty, flags);
2212 llvm::FunctionCallee fn = CGF.CGM.getBlockObjectAssign();
2213
2214 llvm::Value *args[] = { destField.getPointer(), srcValue, flagsVal };
2215 CGF.EmitNounwindRuntimeCall(fn, args);
2216 }
2217
2218 void emitDispose(CodeGenFunction &CGF, Address field) override {
2219 field = CGF.Builder.CreateBitCast(field, CGF.Int8PtrTy->getPointerTo(0));
2220 llvm::Value *value = CGF.Builder.CreateLoad(field);
2221
2222 CGF.BuildBlockRelease(value, Flags | BLOCK_BYREF_CALLER, false);
2223 }
2224
2225 void profileImpl(llvm::FoldingSetNodeID &id) const override {
2226 id.AddInteger(Flags.getBitMask());
2227 }
2228};
2229
2230/// Emits the copy/dispose helpers for an ARC __block __weak variable.
2231class ARCWeakByrefHelpers final : public BlockByrefHelpers {
2232public:
2233 ARCWeakByrefHelpers(CharUnits alignment) : BlockByrefHelpers(alignment) {}
2234
2235 void emitCopy(CodeGenFunction &CGF, Address destField,
2236 Address srcField) override {
2237 CGF.EmitARCMoveWeak(destField, srcField);
2238 }
2239
2240 void emitDispose(CodeGenFunction &CGF, Address field) override {
2241 CGF.EmitARCDestroyWeak(field);
2242 }
2243
2244 void profileImpl(llvm::FoldingSetNodeID &id) const override {
2245 // 0 is distinguishable from all pointers and byref flags
2246 id.AddInteger(0);
2247 }
2248};
2249
2250/// Emits the copy/dispose helpers for an ARC __block __strong variable
2251/// that's not of block-pointer type.
2252class ARCStrongByrefHelpers final : public BlockByrefHelpers {
2253public:
2254 ARCStrongByrefHelpers(CharUnits alignment) : BlockByrefHelpers(alignment) {}
2255
2256 void emitCopy(CodeGenFunction &CGF, Address destField,
2257 Address srcField) override {
2258 // Do a "move" by copying the value and then zeroing out the old
2259 // variable.
2260
2261 llvm::Value *value = CGF.Builder.CreateLoad(srcField);
2262
2263 llvm::Value *null =
2264 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(value->getType()));
2265
2266 if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0) {
2267 CGF.Builder.CreateStore(null, destField);
2268 CGF.EmitARCStoreStrongCall(destField, value, /*ignored*/ true);
2269 CGF.EmitARCStoreStrongCall(srcField, null, /*ignored*/ true);
2270 return;
2271 }
2272 CGF.Builder.CreateStore(value, destField);
2273 CGF.Builder.CreateStore(null, srcField);
2274 }
2275
2276 void emitDispose(CodeGenFunction &CGF, Address field) override {
2277 CGF.EmitARCDestroyStrong(field, ARCImpreciseLifetime);
2278 }
2279
2280 void profileImpl(llvm::FoldingSetNodeID &id) const override {
2281 // 1 is distinguishable from all pointers and byref flags
2282 id.AddInteger(1);
2283 }
2284};
2285
2286/// Emits the copy/dispose helpers for an ARC __block __strong
2287/// variable that's of block-pointer type.
2288class ARCStrongBlockByrefHelpers final : public BlockByrefHelpers {
2289public:
2290 ARCStrongBlockByrefHelpers(CharUnits alignment)
2291 : BlockByrefHelpers(alignment) {}
2292
2293 void emitCopy(CodeGenFunction &CGF, Address destField,
2294 Address srcField) override {
2295 // Do the copy with objc_retainBlock; that's all that
2296 // _Block_object_assign would do anyway, and we'd have to pass the
2297 // right arguments to make sure it doesn't get no-op'ed.
2298 llvm::Value *oldValue = CGF.Builder.CreateLoad(srcField);
2299 llvm::Value *copy = CGF.EmitARCRetainBlock(oldValue, /*mandatory*/ true);
2300 CGF.Builder.CreateStore(copy, destField);
2301 }
2302
2303 void emitDispose(CodeGenFunction &CGF, Address field) override {
2304 CGF.EmitARCDestroyStrong(field, ARCImpreciseLifetime);
2305 }
2306
2307 void profileImpl(llvm::FoldingSetNodeID &id) const override {
2308 // 2 is distinguishable from all pointers and byref flags
2309 id.AddInteger(2);
2310 }
2311};
2312
2313/// Emits the copy/dispose helpers for a __block variable with a
2314/// nontrivial copy constructor or destructor.
2315class CXXByrefHelpers final : public BlockByrefHelpers {
2316 QualType VarType;
2317 const Expr *CopyExpr;
2318
2319public:
2320 CXXByrefHelpers(CharUnits alignment, QualType type,
2321 const Expr *copyExpr)
2322 : BlockByrefHelpers(alignment), VarType(type), CopyExpr(copyExpr) {}
2323
2324 bool needsCopy() const override { return CopyExpr != nullptr; }
2325 void emitCopy(CodeGenFunction &CGF, Address destField,
2326 Address srcField) override {
2327 if (!CopyExpr) return;
2328 CGF.EmitSynthesizedCXXCopyCtor(destField, srcField, CopyExpr);
2329 }
2330
2331 void emitDispose(CodeGenFunction &CGF, Address field) override {
2332 EHScopeStack::stable_iterator cleanupDepth = CGF.EHStack.stable_begin();
2333 CGF.PushDestructorCleanup(VarType, field);
2334 CGF.PopCleanupBlocks(cleanupDepth);
2335 }
2336
2337 void profileImpl(llvm::FoldingSetNodeID &id) const override {
2338 id.AddPointer(VarType.getCanonicalType().getAsOpaquePtr());
2339 }
2340};
2341
2342/// Emits the copy/dispose helpers for a __block variable that is a non-trivial
2343/// C struct.
2344class NonTrivialCStructByrefHelpers final : public BlockByrefHelpers {
2345 QualType VarType;
2346
2347public:
2348 NonTrivialCStructByrefHelpers(CharUnits alignment, QualType type)
2349 : BlockByrefHelpers(alignment), VarType(type) {}
2350
2351 void emitCopy(CodeGenFunction &CGF, Address destField,
2352 Address srcField) override {
2353 CGF.callCStructMoveConstructor(CGF.MakeAddrLValue(destField, VarType),
2354 CGF.MakeAddrLValue(srcField, VarType));
2355 }
2356
2357 bool needsDispose() const override {
2358 return VarType.isDestructedType();
2359 }
2360
2361 void emitDispose(CodeGenFunction &CGF, Address field) override {
2362 EHScopeStack::stable_iterator cleanupDepth = CGF.EHStack.stable_begin();
2363 CGF.pushDestroy(VarType.isDestructedType(), field, VarType);
2364 CGF.PopCleanupBlocks(cleanupDepth);
2365 }
2366
2367 void profileImpl(llvm::FoldingSetNodeID &id) const override {
2368 id.AddPointer(VarType.getCanonicalType().getAsOpaquePtr());
2369 }
2370};
2371} // end anonymous namespace
2372
2373static llvm::Constant *
2374generateByrefCopyHelper(CodeGenFunction &CGF, const BlockByrefInfo &byrefInfo,
2375 BlockByrefHelpers &generator) {
2376 ASTContext &Context = CGF.getContext();
2377
2378 QualType ReturnTy = Context.VoidTy;
2379
2380 FunctionArgList args;
2381 ImplicitParamDecl Dst(Context, Context.VoidPtrTy, ImplicitParamDecl::Other);
2382 args.push_back(&Dst);
2383
2384 ImplicitParamDecl Src(Context, Context.VoidPtrTy, ImplicitParamDecl::Other);
2385 args.push_back(&Src);
2386
2387 const CGFunctionInfo &FI =
2388 CGF.CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, args);
2389
2390 llvm::FunctionType *LTy = CGF.CGM.getTypes().GetFunctionType(FI);
2391
2392 // FIXME: We'd like to put these into a mergable by content, with
2393 // internal linkage.
2394 llvm::Function *Fn =
2395 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
2396 "__Block_byref_object_copy_", &CGF.CGM.getModule());
2397
2398 IdentifierInfo *II
2399 = &Context.Idents.get("__Block_byref_object_copy_");
2400
2401 SmallVector<QualType, 2> ArgTys;
2402 ArgTys.push_back(Context.VoidPtrTy);
2403 ArgTys.push_back(Context.VoidPtrTy);
2404 QualType FunctionTy = Context.getFunctionType(ReturnTy, ArgTys, {});
2405
2406 FunctionDecl *FD = FunctionDecl::Create(
2407 Context, Context.getTranslationUnitDecl(), SourceLocation(),
2408 SourceLocation(), II, FunctionTy, nullptr, SC_Static, false, false);
2409
2410 CGF.CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
2411
2412 CGF.StartFunction(FD, ReturnTy, Fn, FI, args);
2413
2414 if (generator.needsCopy()) {
2415 llvm::Type *byrefPtrType = byrefInfo.Type->getPointerTo(0);
2416
2417 // dst->x
2418 Address destField = CGF.GetAddrOfLocalVar(&Dst);
2419 destField = Address(CGF.Builder.CreateLoad(destField),
2420 byrefInfo.ByrefAlignment);
2421 destField = CGF.Builder.CreateBitCast(destField, byrefPtrType);
2422 destField = CGF.emitBlockByrefAddress(destField, byrefInfo, false,
2423 "dest-object");
2424
2425 // src->x
2426 Address srcField = CGF.GetAddrOfLocalVar(&Src);
2427 srcField = Address(CGF.Builder.CreateLoad(srcField),
2428 byrefInfo.ByrefAlignment);
2429 srcField = CGF.Builder.CreateBitCast(srcField, byrefPtrType);
2430 srcField = CGF.emitBlockByrefAddress(srcField, byrefInfo, false,
2431 "src-object");
2432
2433 generator.emitCopy(CGF, destField, srcField);
2434 }
2435
2436 CGF.FinishFunction();
2437
2438 return llvm::ConstantExpr::getBitCast(Fn, CGF.Int8PtrTy);
2439}
2440
2441/// Build the copy helper for a __block variable.
2442static llvm::Constant *buildByrefCopyHelper(CodeGenModule &CGM,
2443 const BlockByrefInfo &byrefInfo,
2444 BlockByrefHelpers &generator) {
2445 CodeGenFunction CGF(CGM);
2446 return generateByrefCopyHelper(CGF, byrefInfo, generator);
2447}
2448
2449/// Generate code for a __block variable's dispose helper.
2450static llvm::Constant *
2451generateByrefDisposeHelper(CodeGenFunction &CGF,
2452 const BlockByrefInfo &byrefInfo,
2453 BlockByrefHelpers &generator) {
2454 ASTContext &Context = CGF.getContext();
2455 QualType R = Context.VoidTy;
2456
2457 FunctionArgList args;
2458 ImplicitParamDecl Src(CGF.getContext(), Context.VoidPtrTy,
2459 ImplicitParamDecl::Other);
2460 args.push_back(&Src);
2461
2462 const CGFunctionInfo &FI =
2463 CGF.CGM.getTypes().arrangeBuiltinFunctionDeclaration(R, args);
2464
2465 llvm::FunctionType *LTy = CGF.CGM.getTypes().GetFunctionType(FI);
2466
2467 // FIXME: We'd like to put these into a mergable by content, with
2468 // internal linkage.
2469 llvm::Function *Fn =
2470 llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
2471 "__Block_byref_object_dispose_",
2472 &CGF.CGM.getModule());
2473
2474 IdentifierInfo *II
2475 = &Context.Idents.get("__Block_byref_object_dispose_");
2476
2477 SmallVector<QualType, 1> ArgTys;
2478 ArgTys.push_back(Context.VoidPtrTy);
2479 QualType FunctionTy = Context.getFunctionType(R, ArgTys, {});
2480
2481 FunctionDecl *FD = FunctionDecl::Create(
2482 Context, Context.getTranslationUnitDecl(), SourceLocation(),
2483 SourceLocation(), II, FunctionTy, nullptr, SC_Static, false, false);
2484
2485 CGF.CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FI);
2486
2487 CGF.StartFunction(FD, R, Fn, FI, args);
2488
2489 if (generator.needsDispose()) {
2490 Address addr = CGF.GetAddrOfLocalVar(&Src);
2491 addr = Address(CGF.Builder.CreateLoad(addr), byrefInfo.ByrefAlignment);
2492 auto byrefPtrType = byrefInfo.Type->getPointerTo(0);
2493 addr = CGF.Builder.CreateBitCast(addr, byrefPtrType);
2494 addr = CGF.emitBlockByrefAddress(addr, byrefInfo, false, "object");
2495
2496 generator.emitDispose(CGF, addr);
2497 }
2498
2499 CGF.FinishFunction();
2500
2501 return llvm::ConstantExpr::getBitCast(Fn, CGF.Int8PtrTy);
2502}
2503
2504/// Build the dispose helper for a __block variable.
2505static llvm::Constant *buildByrefDisposeHelper(CodeGenModule &CGM,
2506 const BlockByrefInfo &byrefInfo,
2507 BlockByrefHelpers &generator) {
2508 CodeGenFunction CGF(CGM);
2509 return generateByrefDisposeHelper(CGF, byrefInfo, generator);
2510}
2511
2512/// Lazily build the copy and dispose helpers for a __block variable
2513/// with the given information.
2514template <class T>
2515static T *buildByrefHelpers(CodeGenModule &CGM, const BlockByrefInfo &byrefInfo,
2516 T &&generator) {
2517 llvm::FoldingSetNodeID id;
2518 generator.Profile(id);
2519
2520 void *insertPos;
2521 BlockByrefHelpers *node
2522 = CGM.ByrefHelpersCache.FindNodeOrInsertPos(id, insertPos);
2523 if (node) return static_cast<T*>(node);
2524
2525 generator.CopyHelper = buildByrefCopyHelper(CGM, byrefInfo, generator);
2526 generator.DisposeHelper = buildByrefDisposeHelper(CGM, byrefInfo, generator);
2527
2528 T *copy = new (CGM.getContext()) T(std::forward<T>(generator));
2529 CGM.ByrefHelpersCache.InsertNode(copy, insertPos);
2530 return copy;
2531}
2532
2533/// Build the copy and dispose helpers for the given __block variable
2534/// emission. Places the helpers in the global cache. Returns null
2535/// if no helpers are required.
2536BlockByrefHelpers *
2537CodeGenFunction::buildByrefHelpers(llvm::StructType &byrefType,
2538 const AutoVarEmission &emission) {
2539 const VarDecl &var = *emission.Variable;
2540 assert(var.isEscapingByref() &&(static_cast <bool> (var.isEscapingByref() && "only escaping __block variables need byref helpers"
) ? void (0) : __assert_fail ("var.isEscapingByref() && \"only escaping __block variables need byref helpers\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 2541, __extension__ __PRETTY_FUNCTION__))
2541 "only escaping __block variables need byref helpers")(static_cast <bool> (var.isEscapingByref() && "only escaping __block variables need byref helpers"
) ? void (0) : __assert_fail ("var.isEscapingByref() && \"only escaping __block variables need byref helpers\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 2541, __extension__ __PRETTY_FUNCTION__))
;
2542
2543 QualType type = var.getType();
2544
2545 auto &byrefInfo = getBlockByrefInfo(&var);
2546
2547 // The alignment we care about for the purposes of uniquing byref
2548 // helpers is the alignment of the actual byref value field.
2549 CharUnits valueAlignment =
2550 byrefInfo.ByrefAlignment.alignmentAtOffset(byrefInfo.FieldOffset);
2551
2552 if (const CXXRecordDecl *record = type->getAsCXXRecordDecl()) {
2553 const Expr *copyExpr =
2554 CGM.getContext().getBlockVarCopyInit(&var).getCopyExpr();
2555 if (!copyExpr && record->hasTrivialDestructor()) return nullptr;
2556
2557 return ::buildByrefHelpers(
2558 CGM, byrefInfo, CXXByrefHelpers(valueAlignment, type, copyExpr));
2559 }
2560
2561 // If type is a non-trivial C struct type that is non-trivial to
2562 // destructly move or destroy, build the copy and dispose helpers.
2563 if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct ||
2564 type.isDestructedType() == QualType::DK_nontrivial_c_struct)
2565 return ::buildByrefHelpers(
2566 CGM, byrefInfo, NonTrivialCStructByrefHelpers(valueAlignment, type));
2567
2568 // Otherwise, if we don't have a retainable type, there's nothing to do.
2569 // that the runtime does extra copies.
2570 if (!type->isObjCRetainableType()) return nullptr;
2571
2572 Qualifiers qs = type.getQualifiers();
2573
2574 // If we have lifetime, that dominates.
2575 if (Qualifiers::ObjCLifetime lifetime = qs.getObjCLifetime()) {
2576 switch (lifetime) {
2577 case Qualifiers::OCL_None: llvm_unreachable("impossible")::llvm::llvm_unreachable_internal("impossible", "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 2577)
;
2578
2579 // These are just bits as far as the runtime is concerned.
2580 case Qualifiers::OCL_ExplicitNone:
2581 case Qualifiers::OCL_Autoreleasing:
2582 return nullptr;
2583
2584 // Tell the runtime that this is ARC __weak, called by the
2585 // byref routines.
2586 case Qualifiers::OCL_Weak:
2587 return ::buildByrefHelpers(CGM, byrefInfo,
2588 ARCWeakByrefHelpers(valueAlignment));
2589
2590 // ARC __strong __block variables need to be retained.
2591 case Qualifiers::OCL_Strong:
2592 // Block pointers need to be copied, and there's no direct
2593 // transfer possible.
2594 if (type->isBlockPointerType()) {
2595 return ::buildByrefHelpers(CGM, byrefInfo,
2596 ARCStrongBlockByrefHelpers(valueAlignment));
2597
2598 // Otherwise, we transfer ownership of the retain from the stack
2599 // to the heap.
2600 } else {
2601 return ::buildByrefHelpers(CGM, byrefInfo,
2602 ARCStrongByrefHelpers(valueAlignment));
2603 }
2604 }
2605 llvm_unreachable("fell out of lifetime switch!")::llvm::llvm_unreachable_internal("fell out of lifetime switch!"
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 2605)
;
2606 }
2607
2608 BlockFieldFlags flags;
2609 if (type->isBlockPointerType()) {
2610 flags |= BLOCK_FIELD_IS_BLOCK;
2611 } else if (CGM.getContext().isObjCNSObjectType(type) ||
2612 type->isObjCObjectPointerType()) {
2613 flags |= BLOCK_FIELD_IS_OBJECT;
2614 } else {
2615 return nullptr;
2616 }
2617
2618 if (type.isObjCGCWeak())
2619 flags |= BLOCK_FIELD_IS_WEAK;
2620
2621 return ::buildByrefHelpers(CGM, byrefInfo,
2622 ObjectByrefHelpers(valueAlignment, flags));
2623}
2624
2625Address CodeGenFunction::emitBlockByrefAddress(Address baseAddr,
2626 const VarDecl *var,
2627 bool followForward) {
2628 auto &info = getBlockByrefInfo(var);
2629 return emitBlockByrefAddress(baseAddr, info, followForward, var->getName());
2630}
2631
2632Address CodeGenFunction::emitBlockByrefAddress(Address baseAddr,
2633 const BlockByrefInfo &info,
2634 bool followForward,
2635 const llvm::Twine &name) {
2636 // Chase the forwarding address if requested.
2637 if (followForward) {
2638 Address forwardingAddr = Builder.CreateStructGEP(baseAddr, 1, "forwarding");
2639 baseAddr = Address(Builder.CreateLoad(forwardingAddr), info.ByrefAlignment);
2640 }
2641
2642 return Builder.CreateStructGEP(baseAddr, info.FieldIndex, name);
2643}
2644
2645/// BuildByrefInfo - This routine changes a __block variable declared as T x
2646/// into:
2647///
2648/// struct {
2649/// void *__isa;
2650/// void *__forwarding;
2651/// int32_t __flags;
2652/// int32_t __size;
2653/// void *__copy_helper; // only if needed
2654/// void *__destroy_helper; // only if needed
2655/// void *__byref_variable_layout;// only if needed
2656/// char padding[X]; // only if needed
2657/// T x;
2658/// } x
2659///
2660const BlockByrefInfo &CodeGenFunction::getBlockByrefInfo(const VarDecl *D) {
2661 auto it = BlockByrefInfos.find(D);
2662 if (it != BlockByrefInfos.end())
2663 return it->second;
2664
2665 llvm::StructType *byrefType =
2666 llvm::StructType::create(getLLVMContext(),
2667 "struct.__block_byref_" + D->getNameAsString());
2668
2669 QualType Ty = D->getType();
2670
2671 CharUnits size;
2672 SmallVector<llvm::Type *, 8> types;
2673
2674 // void *__isa;
2675 types.push_back(Int8PtrTy);
2676 size += getPointerSize();
2677
2678 // void *__forwarding;
2679 types.push_back(llvm::PointerType::getUnqual(byrefType));
2680 size += getPointerSize();
2681
2682 // int32_t __flags;
2683 types.push_back(Int32Ty);
2684 size += CharUnits::fromQuantity(4);
2685
2686 // int32_t __size;
2687 types.push_back(Int32Ty);
2688 size += CharUnits::fromQuantity(4);
2689
2690 // Note that this must match *exactly* the logic in buildByrefHelpers.
2691 bool hasCopyAndDispose = getContext().BlockRequiresCopying(Ty, D);
2692 if (hasCopyAndDispose) {
2693 /// void *__copy_helper;
2694 types.push_back(Int8PtrTy);
2695 size += getPointerSize();
2696
2697 /// void *__destroy_helper;
2698 types.push_back(Int8PtrTy);
2699 size += getPointerSize();
2700 }
2701
2702 bool HasByrefExtendedLayout = false;
2703 Qualifiers::ObjCLifetime Lifetime = Qualifiers::OCL_None;
2704 if (getContext().getByrefLifetime(Ty, Lifetime, HasByrefExtendedLayout) &&
2705 HasByrefExtendedLayout) {
2706 /// void *__byref_variable_layout;
2707 types.push_back(Int8PtrTy);
2708 size += CharUnits::fromQuantity(PointerSizeInBytes);
2709 }
2710
2711 // T x;
2712 llvm::Type *varTy = ConvertTypeForMem(Ty);
2713
2714 bool packed = false;
2715 CharUnits varAlign = getContext().getDeclAlign(D);
2716 CharUnits varOffset = size.alignTo(varAlign);
2717
2718 // We may have to insert padding.
2719 if (varOffset != size) {
2720 llvm::Type *paddingTy =
2721 llvm::ArrayType::get(Int8Ty, (varOffset - size).getQuantity());
2722
2723 types.push_back(paddingTy);
2724 size = varOffset;
2725
2726 // Conversely, we might have to prevent LLVM from inserting padding.
2727 } else if (CGM.getDataLayout().getABITypeAlignment(varTy)
2728 > varAlign.getQuantity()) {
2729 packed = true;
2730 }
2731 types.push_back(varTy);
2732
2733 byrefType->setBody(types, packed);
2734
2735 BlockByrefInfo info;
2736 info.Type = byrefType;
2737 info.FieldIndex = types.size() - 1;
2738 info.FieldOffset = varOffset;
2739 info.ByrefAlignment = std::max(varAlign, getPointerAlign());
2740
2741 auto pair = BlockByrefInfos.insert({D, info});
2742 assert(pair.second && "info was inserted recursively?")(static_cast <bool> (pair.second && "info was inserted recursively?"
) ? void (0) : __assert_fail ("pair.second && \"info was inserted recursively?\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 2742, __extension__ __PRETTY_FUNCTION__))
;
2743 return pair.first->second;
2744}
2745
2746/// Initialize the structural components of a __block variable, i.e.
2747/// everything but the actual object.
2748void CodeGenFunction::emitByrefStructureInit(const AutoVarEmission &emission) {
2749 // Find the address of the local.
2750 Address addr = emission.Addr;
2751
2752 // That's an alloca of the byref structure type.
2753 llvm::StructType *byrefType = cast<llvm::StructType>(
2754 cast<llvm::PointerType>(addr.getPointer()->getType())->getElementType());
2755
2756 unsigned nextHeaderIndex = 0;
2757 CharUnits nextHeaderOffset;
2758 auto storeHeaderField = [&](llvm::Value *value, CharUnits fieldSize,
2759 const Twine &name) {
2760 auto fieldAddr = Builder.CreateStructGEP(addr, nextHeaderIndex, name);
2761 Builder.CreateStore(value, fieldAddr);
2762
2763 nextHeaderIndex++;
2764 nextHeaderOffset += fieldSize;
2765 };
2766
2767 // Build the byref helpers if necessary. This is null if we don't need any.
2768 BlockByrefHelpers *helpers = buildByrefHelpers(*byrefType, emission);
2769
2770 const VarDecl &D = *emission.Variable;
2771 QualType type = D.getType();
2772
2773 bool HasByrefExtendedLayout = false;
2774 Qualifiers::ObjCLifetime ByrefLifetime = Qualifiers::OCL_None;
2775 bool ByRefHasLifetime =
2776 getContext().getByrefLifetime(type, ByrefLifetime, HasByrefExtendedLayout);
2777
2778 llvm::Value *V;
2779
2780 // Initialize the 'isa', which is just 0 or 1.
2781 int isa = 0;
2782 if (type.isObjCGCWeak())
2783 isa = 1;
2784 V = Builder.CreateIntToPtr(Builder.getInt32(isa), Int8PtrTy, "isa");
2785 storeHeaderField(V, getPointerSize(), "byref.isa");
2786
2787 // Store the address of the variable into its own forwarding pointer.
2788 storeHeaderField(addr.getPointer(), getPointerSize(), "byref.forwarding");
2789
2790 // Blocks ABI:
2791 // c) the flags field is set to either 0 if no helper functions are
2792 // needed or BLOCK_BYREF_HAS_COPY_DISPOSE if they are,
2793 BlockFlags flags;
2794 if (helpers) flags |= BLOCK_BYREF_HAS_COPY_DISPOSE;
2795 if (ByRefHasLifetime) {
2796 if (HasByrefExtendedLayout) flags |= BLOCK_BYREF_LAYOUT_EXTENDED;
2797 else switch (ByrefLifetime) {
2798 case Qualifiers::OCL_Strong:
2799 flags |= BLOCK_BYREF_LAYOUT_STRONG;
2800 break;
2801 case Qualifiers::OCL_Weak:
2802 flags |= BLOCK_BYREF_LAYOUT_WEAK;
2803 break;
2804 case Qualifiers::OCL_ExplicitNone:
2805 flags |= BLOCK_BYREF_LAYOUT_UNRETAINED;
2806 break;
2807 case Qualifiers::OCL_None:
2808 if (!type->isObjCObjectPointerType() && !type->isBlockPointerType())
2809 flags |= BLOCK_BYREF_LAYOUT_NON_OBJECT;
2810 break;
2811 default:
2812 break;
2813 }
2814 if (CGM.getLangOpts().ObjCGCBitmapPrint) {
2815 printf("\n Inline flag for BYREF variable layout (%d):", flags.getBitMask());
2816 if (flags & BLOCK_BYREF_HAS_COPY_DISPOSE)
2817 printf(" BLOCK_BYREF_HAS_COPY_DISPOSE");
2818 if (flags & BLOCK_BYREF_LAYOUT_MASK) {
2819 BlockFlags ThisFlag(flags.getBitMask() & BLOCK_BYREF_LAYOUT_MASK);
2820 if (ThisFlag == BLOCK_BYREF_LAYOUT_EXTENDED)
2821 printf(" BLOCK_BYREF_LAYOUT_EXTENDED");
2822 if (ThisFlag == BLOCK_BYREF_LAYOUT_STRONG)
2823 printf(" BLOCK_BYREF_LAYOUT_STRONG");
2824 if (ThisFlag == BLOCK_BYREF_LAYOUT_WEAK)
2825 printf(" BLOCK_BYREF_LAYOUT_WEAK");
2826 if (ThisFlag == BLOCK_BYREF_LAYOUT_UNRETAINED)
2827 printf(" BLOCK_BYREF_LAYOUT_UNRETAINED");
2828 if (ThisFlag == BLOCK_BYREF_LAYOUT_NON_OBJECT)
2829 printf(" BLOCK_BYREF_LAYOUT_NON_OBJECT");
2830 }
2831 printf("\n");
2832 }
2833 }
2834 storeHeaderField(llvm::ConstantInt::get(IntTy, flags.getBitMask()),
2835 getIntSize(), "byref.flags");
2836
2837 CharUnits byrefSize = CGM.GetTargetTypeStoreSize(byrefType);
2838 V = llvm::ConstantInt::get(IntTy, byrefSize.getQuantity());
2839 storeHeaderField(V, getIntSize(), "byref.size");
2840
2841 if (helpers) {
2842 storeHeaderField(helpers->CopyHelper, getPointerSize(),
2843 "byref.copyHelper");
2844 storeHeaderField(helpers->DisposeHelper, getPointerSize(),
2845 "byref.disposeHelper");
2846 }
2847
2848 if (ByRefHasLifetime && HasByrefExtendedLayout) {
2849 auto layoutInfo = CGM.getObjCRuntime().BuildByrefLayout(CGM, type);
2850 storeHeaderField(layoutInfo, getPointerSize(), "byref.layout");
2851 }
2852}
2853
2854void CodeGenFunction::BuildBlockRelease(llvm::Value *V, BlockFieldFlags flags,
2855 bool CanThrow) {
2856 llvm::FunctionCallee F = CGM.getBlockObjectDispose();
2857 llvm::Value *args[] = {
2858 Builder.CreateBitCast(V, Int8PtrTy),
2859 llvm::ConstantInt::get(Int32Ty, flags.getBitMask())
2860 };
2861
2862 if (CanThrow)
2863 EmitRuntimeCallOrInvoke(F, args);
2864 else
2865 EmitNounwindRuntimeCall(F, args);
2866}
2867
2868void CodeGenFunction::enterByrefCleanup(CleanupKind Kind, Address Addr,
2869 BlockFieldFlags Flags,
2870 bool LoadBlockVarAddr, bool CanThrow) {
2871 EHStack.pushCleanup<CallBlockRelease>(Kind, Addr, Flags, LoadBlockVarAddr,
2872 CanThrow);
2873}
2874
2875/// Adjust the declaration of something from the blocks API.
2876static void configureBlocksRuntimeObject(CodeGenModule &CGM,
2877 llvm::Constant *C) {
2878 auto *GV = cast<llvm::GlobalValue>(C->stripPointerCasts());
2879
2880 if (CGM.getTarget().getTriple().isOSBinFormatCOFF()) {
2881 IdentifierInfo &II = CGM.getContext().Idents.get(C->getName());
2882 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl();
2883 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
2884
2885 assert((isa<llvm::Function>(C->stripPointerCasts()) ||(static_cast <bool> ((isa<llvm::Function>(C->stripPointerCasts
()) || isa<llvm::GlobalVariable>(C->stripPointerCasts
())) && "expected Function or GlobalVariable") ? void
(0) : __assert_fail ("(isa<llvm::Function>(C->stripPointerCasts()) || isa<llvm::GlobalVariable>(C->stripPointerCasts())) && \"expected Function or GlobalVariable\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 2887, __extension__ __PRETTY_FUNCTION__))
2886 isa<llvm::GlobalVariable>(C->stripPointerCasts())) &&(static_cast <bool> ((isa<llvm::Function>(C->stripPointerCasts
()) || isa<llvm::GlobalVariable>(C->stripPointerCasts
())) && "expected Function or GlobalVariable") ? void
(0) : __assert_fail ("(isa<llvm::Function>(C->stripPointerCasts()) || isa<llvm::GlobalVariable>(C->stripPointerCasts())) && \"expected Function or GlobalVariable\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 2887, __extension__ __PRETTY_FUNCTION__))
2887 "expected Function or GlobalVariable")(static_cast <bool> ((isa<llvm::Function>(C->stripPointerCasts
()) || isa<llvm::GlobalVariable>(C->stripPointerCasts
())) && "expected Function or GlobalVariable") ? void
(0) : __assert_fail ("(isa<llvm::Function>(C->stripPointerCasts()) || isa<llvm::GlobalVariable>(C->stripPointerCasts())) && \"expected Function or GlobalVariable\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/lib/CodeGen/CGBlocks.cpp"
, 2887, __extension__ __PRETTY_FUNCTION__))
;
2888
2889 const NamedDecl *ND = nullptr;
2890 for (const auto *Result : DC->lookup(&II))
2891 if ((ND = dyn_cast<FunctionDecl>(Result)) ||
2892 (ND = dyn_cast<VarDecl>(Result)))
2893 break;
2894
2895 // TODO: support static blocks runtime
2896 if (GV->isDeclaration() && (!ND || !ND->hasAttr<DLLExportAttr>())) {
2897 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2898 GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
2899 } else {
2900 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2901 GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
2902 }
2903 }
2904
2905 if (CGM.getLangOpts().BlocksRuntimeOptional && GV->isDeclaration() &&
2906 GV->hasExternalLinkage())
2907 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2908
2909 CGM.setDSOLocal(GV);
2910}
2911
2912llvm::FunctionCallee CodeGenModule::getBlockObjectDispose() {
2913 if (BlockObjectDispose)
2914 return BlockObjectDispose;
2915
2916 llvm::Type *args[] = { Int8PtrTy, Int32Ty };
2917 llvm::FunctionType *fty
2918 = llvm::FunctionType::get(VoidTy, args, false);
2919 BlockObjectDispose = CreateRuntimeFunction(fty, "_Block_object_dispose");
2920 configureBlocksRuntimeObject(
2921 *this, cast<llvm::Constant>(BlockObjectDispose.getCallee()));
2922 return BlockObjectDispose;
2923}
2924
2925llvm::FunctionCallee CodeGenModule::getBlockObjectAssign() {
2926 if (BlockObjectAssign)
2927 return BlockObjectAssign;
2928
2929 llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, Int32Ty };
2930 llvm::FunctionType *fty
2931 = llvm::FunctionType::get(VoidTy, args, false);
2932 BlockObjectAssign = CreateRuntimeFunction(fty, "_Block_object_assign");
2933 configureBlocksRuntimeObject(
2934 *this, cast<llvm::Constant>(BlockObjectAssign.getCallee()));
2935 return BlockObjectAssign;
2936}
2937
2938llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
2939 if (NSConcreteGlobalBlock)
2940 return NSConcreteGlobalBlock;
2941
2942 NSConcreteGlobalBlock =
2943 GetOrCreateLLVMGlobal("_NSConcreteGlobalBlock", Int8PtrTy, 0, nullptr);
2944 configureBlocksRuntimeObject(*this, NSConcreteGlobalBlock);
2945 return NSConcreteGlobalBlock;
2946}
2947
2948llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
2949 if (NSConcreteStackBlock)
2950 return NSConcreteStackBlock;
2951
2952 NSConcreteStackBlock =
2953 GetOrCreateLLVMGlobal("_NSConcreteStackBlock", Int8PtrTy, 0, nullptr);
2954 configureBlocksRuntimeObject(*this, NSConcreteStackBlock);
2955 return NSConcreteStackBlock;
2956}

/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/include/clang/AST/Decl.h

1//===- Decl.h - Classes for representing declarations -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the Decl subclasses.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_CLANG_AST_DECL_H
14#define LLVM_CLANG_AST_DECL_H
15
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTContextAllocate.h"
18#include "clang/AST/DeclAccessPair.h"
19#include "clang/AST/DeclBase.h"
20#include "clang/AST/DeclarationName.h"
21#include "clang/AST/ExternalASTSource.h"
22#include "clang/AST/NestedNameSpecifier.h"
23#include "clang/AST/Redeclarable.h"
24#include "clang/AST/Type.h"
25#include "clang/Basic/AddressSpaces.h"
26#include "clang/Basic/Diagnostic.h"
27#include "clang/Basic/IdentifierTable.h"
28#include "clang/Basic/LLVM.h"
29#include "clang/Basic/Linkage.h"
30#include "clang/Basic/OperatorKinds.h"
31#include "clang/Basic/PartialDiagnostic.h"
32#include "clang/Basic/PragmaKinds.h"
33#include "clang/Basic/SourceLocation.h"
34#include "clang/Basic/Specifiers.h"
35#include "clang/Basic/Visibility.h"
36#include "llvm/ADT/APSInt.h"
37#include "llvm/ADT/ArrayRef.h"
38#include "llvm/ADT/Optional.h"
39#include "llvm/ADT/PointerIntPair.h"
40#include "llvm/ADT/PointerUnion.h"
41#include "llvm/ADT/StringRef.h"
42#include "llvm/ADT/iterator_range.h"
43#include "llvm/Support/Casting.h"
44#include "llvm/Support/Compiler.h"
45#include "llvm/Support/TrailingObjects.h"
46#include <cassert>
47#include <cstddef>
48#include <cstdint>
49#include <string>
50#include <utility>
51
52namespace clang {
53
54class ASTContext;
55struct ASTTemplateArgumentListInfo;
56class Attr;
57class CompoundStmt;
58class DependentFunctionTemplateSpecializationInfo;
59class EnumDecl;
60class Expr;
61class FunctionTemplateDecl;
62class FunctionTemplateSpecializationInfo;
63class FunctionTypeLoc;
64class LabelStmt;
65class MemberSpecializationInfo;
66class Module;
67class NamespaceDecl;
68class ParmVarDecl;
69class RecordDecl;
70class Stmt;
71class StringLiteral;
72class TagDecl;
73class TemplateArgumentList;
74class TemplateArgumentListInfo;
75class TemplateParameterList;
76class TypeAliasTemplateDecl;
77class TypeLoc;
78class UnresolvedSetImpl;
79class VarTemplateDecl;
80
81/// The top declaration context.
82class TranslationUnitDecl : public Decl, public DeclContext {
83 ASTContext &Ctx;
84
85 /// The (most recently entered) anonymous namespace for this
86 /// translation unit, if one has been created.
87 NamespaceDecl *AnonymousNamespace = nullptr;
88
89 explicit TranslationUnitDecl(ASTContext &ctx);
90
91 virtual void anchor();
92
93public:
94 ASTContext &getASTContext() const { return Ctx; }
95
96 NamespaceDecl *getAnonymousNamespace() const { return AnonymousNamespace; }
97 void setAnonymousNamespace(NamespaceDecl *D) { AnonymousNamespace = D; }
98
99 static TranslationUnitDecl *Create(ASTContext &C);
100
101 // Implement isa/cast/dyncast/etc.
102 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
103 static bool classofKind(Kind K) { return K == TranslationUnit; }
104 static DeclContext *castToDeclContext(const TranslationUnitDecl *D) {
105 return static_cast<DeclContext *>(const_cast<TranslationUnitDecl*>(D));
106 }
107 static TranslationUnitDecl *castFromDeclContext(const DeclContext *DC) {
108 return static_cast<TranslationUnitDecl *>(const_cast<DeclContext*>(DC));
109 }
110};
111
112/// Represents a `#pragma comment` line. Always a child of
113/// TranslationUnitDecl.
114class PragmaCommentDecl final
115 : public Decl,
116 private llvm::TrailingObjects<PragmaCommentDecl, char> {
117 friend class ASTDeclReader;
118 friend class ASTDeclWriter;
119 friend TrailingObjects;
120
121 PragmaMSCommentKind CommentKind;
122
123 PragmaCommentDecl(TranslationUnitDecl *TU, SourceLocation CommentLoc,
124 PragmaMSCommentKind CommentKind)
125 : Decl(PragmaComment, TU, CommentLoc), CommentKind(CommentKind) {}
126
127 virtual void anchor();
128
129public:
130 static PragmaCommentDecl *Create(const ASTContext &C, TranslationUnitDecl *DC,
131 SourceLocation CommentLoc,
132 PragmaMSCommentKind CommentKind,
133 StringRef Arg);
134 static PragmaCommentDecl *CreateDeserialized(ASTContext &C, unsigned ID,
135 unsigned ArgSize);
136
137 PragmaMSCommentKind getCommentKind() const { return CommentKind; }
138
139 StringRef getArg() const { return getTrailingObjects<char>(); }
140
141 // Implement isa/cast/dyncast/etc.
142 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
143 static bool classofKind(Kind K) { return K == PragmaComment; }
144};
145
146/// Represents a `#pragma detect_mismatch` line. Always a child of
147/// TranslationUnitDecl.
148class PragmaDetectMismatchDecl final
149 : public Decl,
150 private llvm::TrailingObjects<PragmaDetectMismatchDecl, char> {
151 friend class ASTDeclReader;
152 friend class ASTDeclWriter;
153 friend TrailingObjects;
154
155 size_t ValueStart;
156
157 PragmaDetectMismatchDecl(TranslationUnitDecl *TU, SourceLocation Loc,
158 size_t ValueStart)
159 : Decl(PragmaDetectMismatch, TU, Loc), ValueStart(ValueStart) {}
160
161 virtual void anchor();
162
163public:
164 static PragmaDetectMismatchDecl *Create(const ASTContext &C,
165 TranslationUnitDecl *DC,
166 SourceLocation Loc, StringRef Name,
167 StringRef Value);
168 static PragmaDetectMismatchDecl *
169 CreateDeserialized(ASTContext &C, unsigned ID, unsigned NameValueSize);
170
171 StringRef getName() const { return getTrailingObjects<char>(); }
172 StringRef getValue() const { return getTrailingObjects<char>() + ValueStart; }
173
174 // Implement isa/cast/dyncast/etc.
175 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
176 static bool classofKind(Kind K) { return K == PragmaDetectMismatch; }
177};
178
179/// Declaration context for names declared as extern "C" in C++. This
180/// is neither the semantic nor lexical context for such declarations, but is
181/// used to check for conflicts with other extern "C" declarations. Example:
182///
183/// \code
184/// namespace N { extern "C" void f(); } // #1
185/// void N::f() {} // #2
186/// namespace M { extern "C" void f(); } // #3
187/// \endcode
188///
189/// The semantic context of #1 is namespace N and its lexical context is the
190/// LinkageSpecDecl; the semantic context of #2 is namespace N and its lexical
191/// context is the TU. However, both declarations are also visible in the
192/// extern "C" context.
193///
194/// The declaration at #3 finds it is a redeclaration of \c N::f through
195/// lookup in the extern "C" context.
196class ExternCContextDecl : public Decl, public DeclContext {
197 explicit ExternCContextDecl(TranslationUnitDecl *TU)
198 : Decl(ExternCContext, TU, SourceLocation()),
199 DeclContext(ExternCContext) {}
200
201 virtual void anchor();
202
203public:
204 static ExternCContextDecl *Create(const ASTContext &C,
205 TranslationUnitDecl *TU);
206
207 // Implement isa/cast/dyncast/etc.
208 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
209 static bool classofKind(Kind K) { return K == ExternCContext; }
210 static DeclContext *castToDeclContext(const ExternCContextDecl *D) {
211 return static_cast<DeclContext *>(const_cast<ExternCContextDecl*>(D));
212 }
213 static ExternCContextDecl *castFromDeclContext(const DeclContext *DC) {
214 return static_cast<ExternCContextDecl *>(const_cast<DeclContext*>(DC));
215 }
216};
217
218/// This represents a decl that may have a name. Many decls have names such
219/// as ObjCMethodDecl, but not \@class, etc.
220///
221/// Note that not every NamedDecl is actually named (e.g., a struct might
222/// be anonymous), and not every name is an identifier.
223class NamedDecl : public Decl {
224 /// The name of this declaration, which is typically a normal
225 /// identifier but may also be a special kind of name (C++
226 /// constructor, Objective-C selector, etc.)
227 DeclarationName Name;
228
229 virtual void anchor();
230
231private:
232 NamedDecl *getUnderlyingDeclImpl() LLVM_READONLY__attribute__((__pure__));
233
234protected:
235 NamedDecl(Kind DK, DeclContext *DC, SourceLocation L, DeclarationName N)
236 : Decl(DK, DC, L), Name(N) {}
237
238public:
239 /// Get the identifier that names this declaration, if there is one.
240 ///
241 /// This will return NULL if this declaration has no name (e.g., for
242 /// an unnamed class) or if the name is a special name (C++ constructor,
243 /// Objective-C selector, etc.).
244 IdentifierInfo *getIdentifier() const { return Name.getAsIdentifierInfo(); }
245
246 /// Get the name of identifier for this declaration as a StringRef.
247 ///
248 /// This requires that the declaration have a name and that it be a simple
249 /// identifier.
250 StringRef getName() const {
251 assert(Name.isIdentifier() && "Name is not a simple identifier")(static_cast <bool> (Name.isIdentifier() && "Name is not a simple identifier"
) ? void (0) : __assert_fail ("Name.isIdentifier() && \"Name is not a simple identifier\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/include/clang/AST/Decl.h"
, 251, __extension__ __PRETTY_FUNCTION__))
;
252 return getIdentifier() ? getIdentifier()->getName() : "";
253 }
254
255 /// Get a human-readable name for the declaration, even if it is one of the
256 /// special kinds of names (C++ constructor, Objective-C selector, etc).
257 ///
258 /// Creating this name requires expensive string manipulation, so it should
259 /// be called only when performance doesn't matter. For simple declarations,
260 /// getNameAsCString() should suffice.
261 //
262 // FIXME: This function should be renamed to indicate that it is not just an
263 // alternate form of getName(), and clients should move as appropriate.
264 //
265 // FIXME: Deprecated, move clients to getName().
266 std::string getNameAsString() const { return Name.getAsString(); }
267
268 /// Pretty-print the unqualified name of this declaration. Can be overloaded
269 /// by derived classes to provide a more user-friendly name when appropriate.
270 virtual void printName(raw_ostream &os) const;
271
272 /// Get the actual, stored name of the declaration, which may be a special
273 /// name.
274 ///
275 /// Note that generally in diagnostics, the non-null \p NamedDecl* itself
276 /// should be sent into the diagnostic instead of using the result of
277 /// \p getDeclName().
278 ///
279 /// A \p DeclarationName in a diagnostic will just be streamed to the output,
280 /// which will directly result in a call to \p DeclarationName::print.
281 ///
282 /// A \p NamedDecl* in a diagnostic will also ultimately result in a call to
283 /// \p DeclarationName::print, but with two customisation points along the
284 /// way (\p getNameForDiagnostic and \p printName). These are used to print
285 /// the template arguments if any, and to provide a user-friendly name for
286 /// some entities (such as unnamed variables and anonymous records).
287 DeclarationName getDeclName() const { return Name; }
288
289 /// Set the name of this declaration.
290 void setDeclName(DeclarationName N) { Name = N; }
291
292 /// Returns a human-readable qualified name for this declaration, like
293 /// A::B::i, for i being member of namespace A::B.
294 ///
295 /// If the declaration is not a member of context which can be named (record,
296 /// namespace), it will return the same result as printName().
297 ///
298 /// Creating this name is expensive, so it should be called only when
299 /// performance doesn't matter.
300 void printQualifiedName(raw_ostream &OS) const;
301 void printQualifiedName(raw_ostream &OS, const PrintingPolicy &Policy) const;
302
303 /// Print only the nested name specifier part of a fully-qualified name,
304 /// including the '::' at the end. E.g.
305 /// when `printQualifiedName(D)` prints "A::B::i",
306 /// this function prints "A::B::".
307 void printNestedNameSpecifier(raw_ostream &OS) const;
308 void printNestedNameSpecifier(raw_ostream &OS,
309 const PrintingPolicy &Policy) const;
310
311 // FIXME: Remove string version.
312 std::string getQualifiedNameAsString() const;
313
314 /// Appends a human-readable name for this declaration into the given stream.
315 ///
316 /// This is the method invoked by Sema when displaying a NamedDecl
317 /// in a diagnostic. It does not necessarily produce the same
318 /// result as printName(); for example, class template
319 /// specializations are printed with their template arguments.
320 virtual void getNameForDiagnostic(raw_ostream &OS,
321 const PrintingPolicy &Policy,
322 bool Qualified) const;
323
324 /// Determine whether this declaration, if known to be well-formed within
325 /// its context, will replace the declaration OldD if introduced into scope.
326 ///
327 /// A declaration will replace another declaration if, for example, it is
328 /// a redeclaration of the same variable or function, but not if it is a
329 /// declaration of a different kind (function vs. class) or an overloaded
330 /// function.
331 ///
332 /// \param IsKnownNewer \c true if this declaration is known to be newer
333 /// than \p OldD (for instance, if this declaration is newly-created).
334 bool declarationReplaces(NamedDecl *OldD, bool IsKnownNewer = true) const;
335
336 /// Determine whether this declaration has linkage.
337 bool hasLinkage() const;
338
339 using Decl::isModulePrivate;
340 using Decl::setModulePrivate;
341
342 /// Determine whether this declaration is a C++ class member.
343 bool isCXXClassMember() const {
344 const DeclContext *DC = getDeclContext();
345
346 // C++0x [class.mem]p1:
347 // The enumerators of an unscoped enumeration defined in
348 // the class are members of the class.
349 if (isa<EnumDecl>(DC))
350 DC = DC->getRedeclContext();
351
352 return DC->isRecord();
353 }
354
355 /// Determine whether the given declaration is an instance member of
356 /// a C++ class.
357 bool isCXXInstanceMember() const;
358
359 /// Determine if the declaration obeys the reserved identifier rules of the
360 /// given language.
361 ReservedIdentifierStatus isReserved(const LangOptions &LangOpts) const;
362
363 /// Determine what kind of linkage this entity has.
364 ///
365 /// This is not the linkage as defined by the standard or the codegen notion
366 /// of linkage. It is just an implementation detail that is used to compute
367 /// those.
368 Linkage getLinkageInternal() const;
369
370 /// Get the linkage from a semantic point of view. Entities in
371 /// anonymous namespaces are external (in c++98).
372 Linkage getFormalLinkage() const {
373 return clang::getFormalLinkage(getLinkageInternal());
374 }
375
376 /// True if this decl has external linkage.
377 bool hasExternalFormalLinkage() const {
378 return isExternalFormalLinkage(getLinkageInternal());
379 }
380
381 bool isExternallyVisible() const {
382 return clang::isExternallyVisible(getLinkageInternal());
383 }
384
385 /// Determine whether this declaration can be redeclared in a
386 /// different translation unit.
387 bool isExternallyDeclarable() const {
388 return isExternallyVisible() && !getOwningModuleForLinkage();
389 }
390
391 /// Determines the visibility of this entity.
392 Visibility getVisibility() const {
393 return getLinkageAndVisibility().getVisibility();
394 }
395
396 /// Determines the linkage and visibility of this entity.
397 LinkageInfo getLinkageAndVisibility() const;
398
399 /// Kinds of explicit visibility.
400 enum ExplicitVisibilityKind {
401 /// Do an LV computation for, ultimately, a type.
402 /// Visibility may be restricted by type visibility settings and
403 /// the visibility of template arguments.
404 VisibilityForType,
405
406 /// Do an LV computation for, ultimately, a non-type declaration.
407 /// Visibility may be restricted by value visibility settings and
408 /// the visibility of template arguments.
409 VisibilityForValue
410 };
411
412 /// If visibility was explicitly specified for this
413 /// declaration, return that visibility.
414 Optional<Visibility>
415 getExplicitVisibility(ExplicitVisibilityKind kind) const;
416
417 /// True if the computed linkage is valid. Used for consistency
418 /// checking. Should always return true.
419 bool isLinkageValid() const;
420
421 /// True if something has required us to compute the linkage
422 /// of this declaration.
423 ///
424 /// Language features which can retroactively change linkage (like a
425 /// typedef name for linkage purposes) may need to consider this,
426 /// but hopefully only in transitory ways during parsing.
427 bool hasLinkageBeenComputed() const {
428 return hasCachedLinkage();
429 }
430
431 /// Looks through UsingDecls and ObjCCompatibleAliasDecls for
432 /// the underlying named decl.
433 NamedDecl *getUnderlyingDecl() {
434 // Fast-path the common case.
435 if (this->getKind() != UsingShadow &&
436 this->getKind() != ConstructorUsingShadow &&
437 this->getKind() != ObjCCompatibleAlias &&
438 this->getKind() != NamespaceAlias)
439 return this;
440
441 return getUnderlyingDeclImpl();
442 }
443 const NamedDecl *getUnderlyingDecl() const {
444 return const_cast<NamedDecl*>(this)->getUnderlyingDecl();
445 }
446
447 NamedDecl *getMostRecentDecl() {
448 return cast<NamedDecl>(static_cast<Decl *>(this)->getMostRecentDecl());
449 }
450 const NamedDecl *getMostRecentDecl() const {
451 return const_cast<NamedDecl*>(this)->getMostRecentDecl();
452 }
453
454 ObjCStringFormatFamily getObjCFStringFormattingFamily() const;
455
456 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
457 static bool classofKind(Kind K) { return K >= firstNamed && K <= lastNamed; }
458};
459
460inline raw_ostream &operator<<(raw_ostream &OS, const NamedDecl &ND) {
461 ND.printName(OS);
462 return OS;
463}
464
465/// Represents the declaration of a label. Labels also have a
466/// corresponding LabelStmt, which indicates the position that the label was
467/// defined at. For normal labels, the location of the decl is the same as the
468/// location of the statement. For GNU local labels (__label__), the decl
469/// location is where the __label__ is.
470class LabelDecl : public NamedDecl {
471 LabelStmt *TheStmt;
472 StringRef MSAsmName;
473 bool MSAsmNameResolved = false;
474
475 /// For normal labels, this is the same as the main declaration
476 /// label, i.e., the location of the identifier; for GNU local labels,
477 /// this is the location of the __label__ keyword.
478 SourceLocation LocStart;
479
480 LabelDecl(DeclContext *DC, SourceLocation IdentL, IdentifierInfo *II,
481 LabelStmt *S, SourceLocation StartL)
482 : NamedDecl(Label, DC, IdentL, II), TheStmt(S), LocStart(StartL) {}
483
484 void anchor() override;
485
486public:
487 static LabelDecl *Create(ASTContext &C, DeclContext *DC,
488 SourceLocation IdentL, IdentifierInfo *II);
489 static LabelDecl *Create(ASTContext &C, DeclContext *DC,
490 SourceLocation IdentL, IdentifierInfo *II,
491 SourceLocation GnuLabelL);
492 static LabelDecl *CreateDeserialized(ASTContext &C, unsigned ID);
493
494 LabelStmt *getStmt() const { return TheStmt; }
495 void setStmt(LabelStmt *T) { TheStmt = T; }
496
497 bool isGnuLocal() const { return LocStart != getLocation(); }
498 void setLocStart(SourceLocation L) { LocStart = L; }
499
500 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__)) {
501 return SourceRange(LocStart, getLocation());
502 }
503
504 bool isMSAsmLabel() const { return !MSAsmName.empty(); }
505 bool isResolvedMSAsmLabel() const { return isMSAsmLabel() && MSAsmNameResolved; }
506 void setMSAsmLabel(StringRef Name);
507 StringRef getMSAsmLabel() const { return MSAsmName; }
508 void setMSAsmLabelResolved() { MSAsmNameResolved = true; }
509
510 // Implement isa/cast/dyncast/etc.
511 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
512 static bool classofKind(Kind K) { return K == Label; }
513};
514
515/// Represent a C++ namespace.
516class NamespaceDecl : public NamedDecl, public DeclContext,
517 public Redeclarable<NamespaceDecl>
518{
519 /// The starting location of the source range, pointing
520 /// to either the namespace or the inline keyword.
521 SourceLocation LocStart;
522
523 /// The ending location of the source range.
524 SourceLocation RBraceLoc;
525
526 /// A pointer to either the anonymous namespace that lives just inside
527 /// this namespace or to the first namespace in the chain (the latter case
528 /// only when this is not the first in the chain), along with a
529 /// boolean value indicating whether this is an inline namespace.
530 llvm::PointerIntPair<NamespaceDecl *, 1, bool> AnonOrFirstNamespaceAndInline;
531
532 NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline,
533 SourceLocation StartLoc, SourceLocation IdLoc,
534 IdentifierInfo *Id, NamespaceDecl *PrevDecl);
535
536 using redeclarable_base = Redeclarable<NamespaceDecl>;
537
538 NamespaceDecl *getNextRedeclarationImpl() override;
539 NamespaceDecl *getPreviousDeclImpl() override;
540 NamespaceDecl *getMostRecentDeclImpl() override;
541
542public:
543 friend class ASTDeclReader;
544 friend class ASTDeclWriter;
545
546 static NamespaceDecl *Create(ASTContext &C, DeclContext *DC,
547 bool Inline, SourceLocation StartLoc,
548 SourceLocation IdLoc, IdentifierInfo *Id,
549 NamespaceDecl *PrevDecl);
550
551 static NamespaceDecl *CreateDeserialized(ASTContext &C, unsigned ID);
552
553 using redecl_range = redeclarable_base::redecl_range;
554 using redecl_iterator = redeclarable_base::redecl_iterator;
555
556 using redeclarable_base::redecls_begin;
557 using redeclarable_base::redecls_end;
558 using redeclarable_base::redecls;
559 using redeclarable_base::getPreviousDecl;
560 using redeclarable_base::getMostRecentDecl;
561 using redeclarable_base::isFirstDecl;
562
563 /// Returns true if this is an anonymous namespace declaration.
564 ///
565 /// For example:
566 /// \code
567 /// namespace {
568 /// ...
569 /// };
570 /// \endcode
571 /// q.v. C++ [namespace.unnamed]
572 bool isAnonymousNamespace() const {
573 return !getIdentifier();
574 }
575
576 /// Returns true if this is an inline namespace declaration.
577 bool isInline() const {
578 return AnonOrFirstNamespaceAndInline.getInt();
579 }
580
581 /// Set whether this is an inline namespace declaration.
582 void setInline(bool Inline) {
583 AnonOrFirstNamespaceAndInline.setInt(Inline);
584 }
585
586 /// Returns true if the inline qualifier for \c Name is redundant.
587 bool isRedundantInlineQualifierFor(DeclarationName Name) const {
588 if (!isInline())
589 return false;
590 auto X = lookup(Name);
591 auto Y = getParent()->lookup(Name);
592 return std::distance(X.begin(), X.end()) ==
593 std::distance(Y.begin(), Y.end());
594 }
595
596 /// Get the original (first) namespace declaration.
597 NamespaceDecl *getOriginalNamespace();
598
599 /// Get the original (first) namespace declaration.
600 const NamespaceDecl *getOriginalNamespace() const;
601
602 /// Return true if this declaration is an original (first) declaration
603 /// of the namespace. This is false for non-original (subsequent) namespace
604 /// declarations and anonymous namespaces.
605 bool isOriginalNamespace() const;
606
607 /// Retrieve the anonymous namespace nested inside this namespace,
608 /// if any.
609 NamespaceDecl *getAnonymousNamespace() const {
610 return getOriginalNamespace()->AnonOrFirstNamespaceAndInline.getPointer();
611 }
612
613 void setAnonymousNamespace(NamespaceDecl *D) {
614 getOriginalNamespace()->AnonOrFirstNamespaceAndInline.setPointer(D);
615 }
616
617 /// Retrieves the canonical declaration of this namespace.
618 NamespaceDecl *getCanonicalDecl() override {
619 return getOriginalNamespace();
620 }
621 const NamespaceDecl *getCanonicalDecl() const {
622 return getOriginalNamespace();
623 }
624
625 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__)) {
626 return SourceRange(LocStart, RBraceLoc);
627 }
628
629 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) { return LocStart; }
630 SourceLocation getRBraceLoc() const { return RBraceLoc; }
631 void setLocStart(SourceLocation L) { LocStart = L; }
632 void setRBraceLoc(SourceLocation L) { RBraceLoc = L; }
633
634 // Implement isa/cast/dyncast/etc.
635 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
636 static bool classofKind(Kind K) { return K == Namespace; }
637 static DeclContext *castToDeclContext(const NamespaceDecl *D) {
638 return static_cast<DeclContext *>(const_cast<NamespaceDecl*>(D));
639 }
640 static NamespaceDecl *castFromDeclContext(const DeclContext *DC) {
641 return static_cast<NamespaceDecl *>(const_cast<DeclContext*>(DC));
642 }
643};
644
645/// Represent the declaration of a variable (in which case it is
646/// an lvalue) a function (in which case it is a function designator) or
647/// an enum constant.
648class ValueDecl : public NamedDecl {
649 QualType DeclType;
650
651 void anchor() override;
652
653protected:
654 ValueDecl(Kind DK, DeclContext *DC, SourceLocation L,
655 DeclarationName N, QualType T)
656 : NamedDecl(DK, DC, L, N), DeclType(T) {}
657
658public:
659 QualType getType() const { return DeclType; }
660 void setType(QualType newType) { DeclType = newType; }
661
662 /// Determine whether this symbol is weakly-imported,
663 /// or declared with the weak or weak-ref attr.
664 bool isWeak() const;
665
666 // Implement isa/cast/dyncast/etc.
667 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
668 static bool classofKind(Kind K) { return K >= firstValue && K <= lastValue; }
669};
670
671/// A struct with extended info about a syntactic
672/// name qualifier, to be used for the case of out-of-line declarations.
673struct QualifierInfo {
674 NestedNameSpecifierLoc QualifierLoc;
675
676 /// The number of "outer" template parameter lists.
677 /// The count includes all of the template parameter lists that were matched
678 /// against the template-ids occurring into the NNS and possibly (in the
679 /// case of an explicit specialization) a final "template <>".
680 unsigned NumTemplParamLists = 0;
681
682 /// A new-allocated array of size NumTemplParamLists,
683 /// containing pointers to the "outer" template parameter lists.
684 /// It includes all of the template parameter lists that were matched
685 /// against the template-ids occurring into the NNS and possibly (in the
686 /// case of an explicit specialization) a final "template <>".
687 TemplateParameterList** TemplParamLists = nullptr;
688
689 QualifierInfo() = default;
690 QualifierInfo(const QualifierInfo &) = delete;
691 QualifierInfo& operator=(const QualifierInfo &) = delete;
692
693 /// Sets info about "outer" template parameter lists.
694 void setTemplateParameterListsInfo(ASTContext &Context,
695 ArrayRef<TemplateParameterList *> TPLists);
696};
697
698/// Represents a ValueDecl that came out of a declarator.
699/// Contains type source information through TypeSourceInfo.
700class DeclaratorDecl : public ValueDecl {
701 // A struct representing a TInfo, a trailing requires-clause and a syntactic
702 // qualifier, to be used for the (uncommon) case of out-of-line declarations
703 // and constrained function decls.
704 struct ExtInfo : public QualifierInfo {
705 TypeSourceInfo *TInfo;
706 Expr *TrailingRequiresClause = nullptr;
707 };
708
709 llvm::PointerUnion<TypeSourceInfo *, ExtInfo *> DeclInfo;
710
711 /// The start of the source range for this declaration,
712 /// ignoring outer template declarations.
713 SourceLocation InnerLocStart;
714
715 bool hasExtInfo() const { return DeclInfo.is<ExtInfo*>(); }
716 ExtInfo *getExtInfo() { return DeclInfo.get<ExtInfo*>(); }
717 const ExtInfo *getExtInfo() const { return DeclInfo.get<ExtInfo*>(); }
718
719protected:
720 DeclaratorDecl(Kind DK, DeclContext *DC, SourceLocation L,
721 DeclarationName N, QualType T, TypeSourceInfo *TInfo,
722 SourceLocation StartL)
723 : ValueDecl(DK, DC, L, N, T), DeclInfo(TInfo), InnerLocStart(StartL) {}
724
725public:
726 friend class ASTDeclReader;
727 friend class ASTDeclWriter;
728
729 TypeSourceInfo *getTypeSourceInfo() const {
730 return hasExtInfo()
731 ? getExtInfo()->TInfo
732 : DeclInfo.get<TypeSourceInfo*>();
733 }
734
735 void setTypeSourceInfo(TypeSourceInfo *TI) {
736 if (hasExtInfo())
737 getExtInfo()->TInfo = TI;
738 else
739 DeclInfo = TI;
740 }
741
742 /// Return start of source range ignoring outer template declarations.
743 SourceLocation getInnerLocStart() const { return InnerLocStart; }
744 void setInnerLocStart(SourceLocation L) { InnerLocStart = L; }
745
746 /// Return start of source range taking into account any outer template
747 /// declarations.
748 SourceLocation getOuterLocStart() const;
749
750 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
751
752 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) {
753 return getOuterLocStart();
754 }
755
756 /// Retrieve the nested-name-specifier that qualifies the name of this
757 /// declaration, if it was present in the source.
758 NestedNameSpecifier *getQualifier() const {
759 return hasExtInfo() ? getExtInfo()->QualifierLoc.getNestedNameSpecifier()
760 : nullptr;
761 }
762
763 /// Retrieve the nested-name-specifier (with source-location
764 /// information) that qualifies the name of this declaration, if it was
765 /// present in the source.
766 NestedNameSpecifierLoc getQualifierLoc() const {
767 return hasExtInfo() ? getExtInfo()->QualifierLoc
768 : NestedNameSpecifierLoc();
769 }
770
771 void setQualifierInfo(NestedNameSpecifierLoc QualifierLoc);
772
773 /// \brief Get the constraint-expression introduced by the trailing
774 /// requires-clause in the function/member declaration, or null if no
775 /// requires-clause was provided.
776 Expr *getTrailingRequiresClause() {
777 return hasExtInfo() ? getExtInfo()->TrailingRequiresClause
778 : nullptr;
779 }
780
781 const Expr *getTrailingRequiresClause() const {
782 return hasExtInfo() ? getExtInfo()->TrailingRequiresClause
783 : nullptr;
784 }
785
786 void setTrailingRequiresClause(Expr *TrailingRequiresClause);
787
788 unsigned getNumTemplateParameterLists() const {
789 return hasExtInfo() ? getExtInfo()->NumTemplParamLists : 0;
790 }
791
792 TemplateParameterList *getTemplateParameterList(unsigned index) const {
793 assert(index < getNumTemplateParameterLists())(static_cast <bool> (index < getNumTemplateParameterLists
()) ? void (0) : __assert_fail ("index < getNumTemplateParameterLists()"
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/include/clang/AST/Decl.h"
, 793, __extension__ __PRETTY_FUNCTION__))
;
794 return getExtInfo()->TemplParamLists[index];
795 }
796
797 void setTemplateParameterListsInfo(ASTContext &Context,
798 ArrayRef<TemplateParameterList *> TPLists);
799
800 SourceLocation getTypeSpecStartLoc() const;
801 SourceLocation getTypeSpecEndLoc() const;
802
803 // Implement isa/cast/dyncast/etc.
804 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
805 static bool classofKind(Kind K) {
806 return K >= firstDeclarator && K <= lastDeclarator;
807 }
808};
809
810/// Structure used to store a statement, the constant value to
811/// which it was evaluated (if any), and whether or not the statement
812/// is an integral constant expression (if known).
813struct EvaluatedStmt {
814 /// Whether this statement was already evaluated.
815 bool WasEvaluated : 1;
816
817 /// Whether this statement is being evaluated.
818 bool IsEvaluating : 1;
819
820 /// Whether this variable is known to have constant initialization. This is
821 /// currently only computed in C++, for static / thread storage duration
822 /// variables that might have constant initialization and for variables that
823 /// are usable in constant expressions.
824 bool HasConstantInitialization : 1;
825
826 /// Whether this variable is known to have constant destruction. That is,
827 /// whether running the destructor on the initial value is a side-effect
828 /// (and doesn't inspect any state that might have changed during program
829 /// execution). This is currently only computed if the destructor is
830 /// non-trivial.
831 bool HasConstantDestruction : 1;
832
833 /// In C++98, whether the initializer is an ICE. This affects whether the
834 /// variable is usable in constant expressions.
835 bool HasICEInit : 1;
836 bool CheckedForICEInit : 1;
837
838 Stmt *Value;
839 APValue Evaluated;
840
841 EvaluatedStmt()
842 : WasEvaluated(false), IsEvaluating(false),
843 HasConstantInitialization(false), HasConstantDestruction(false),
844 HasICEInit(false), CheckedForICEInit(false) {}
845};
846
847/// Represents a variable declaration or definition.
848class VarDecl : public DeclaratorDecl, public Redeclarable<VarDecl> {
849public:
850 /// Initialization styles.
851 enum InitializationStyle {
852 /// C-style initialization with assignment
853 CInit,
854
855 /// Call-style initialization (C++98)
856 CallInit,
857
858 /// Direct list-initialization (C++11)
859 ListInit
860 };
861
862 /// Kinds of thread-local storage.
863 enum TLSKind {
864 /// Not a TLS variable.
865 TLS_None,
866
867 /// TLS with a known-constant initializer.
868 TLS_Static,
869
870 /// TLS with a dynamic initializer.
871 TLS_Dynamic
872 };
873
874 /// Return the string used to specify the storage class \p SC.
875 ///
876 /// It is illegal to call this function with SC == None.
877 static const char *getStorageClassSpecifierString(StorageClass SC);
878
879protected:
880 // A pointer union of Stmt * and EvaluatedStmt *. When an EvaluatedStmt, we
881 // have allocated the auxiliary struct of information there.
882 //
883 // TODO: It is a bit unfortunate to use a PointerUnion inside the VarDecl for
884 // this as *many* VarDecls are ParmVarDecls that don't have default
885 // arguments. We could save some space by moving this pointer union to be
886 // allocated in trailing space when necessary.
887 using InitType = llvm::PointerUnion<Stmt *, EvaluatedStmt *>;
888
889 /// The initializer for this variable or, for a ParmVarDecl, the
890 /// C++ default argument.
891 mutable InitType Init;
892
893private:
894 friend class ASTDeclReader;
895 friend class ASTNodeImporter;
896 friend class StmtIteratorBase;
897
898 class VarDeclBitfields {
899 friend class ASTDeclReader;
900 friend class VarDecl;
901
902 unsigned SClass : 3;
903 unsigned TSCSpec : 2;
904 unsigned InitStyle : 2;
905
906 /// Whether this variable is an ARC pseudo-__strong variable; see
907 /// isARCPseudoStrong() for details.
908 unsigned ARCPseudoStrong : 1;
909 };
910 enum { NumVarDeclBits = 8 };
911
912protected:
913 enum { NumParameterIndexBits = 8 };
914
915 enum DefaultArgKind {
916 DAK_None,
917 DAK_Unparsed,
918 DAK_Uninstantiated,
919 DAK_Normal
920 };
921
922 enum { NumScopeDepthOrObjCQualsBits = 7 };
923
924 class ParmVarDeclBitfields {
925 friend class ASTDeclReader;
926 friend class ParmVarDecl;
927
928 unsigned : NumVarDeclBits;
929
930 /// Whether this parameter inherits a default argument from a
931 /// prior declaration.
932 unsigned HasInheritedDefaultArg : 1;
933
934 /// Describes the kind of default argument for this parameter. By default
935 /// this is none. If this is normal, then the default argument is stored in
936 /// the \c VarDecl initializer expression unless we were unable to parse
937 /// (even an invalid) expression for the default argument.
938 unsigned DefaultArgKind : 2;
939
940 /// Whether this parameter undergoes K&R argument promotion.
941 unsigned IsKNRPromoted : 1;
942
943 /// Whether this parameter is an ObjC method parameter or not.
944 unsigned IsObjCMethodParam : 1;
945
946 /// If IsObjCMethodParam, a Decl::ObjCDeclQualifier.
947 /// Otherwise, the number of function parameter scopes enclosing
948 /// the function parameter scope in which this parameter was
949 /// declared.
950 unsigned ScopeDepthOrObjCQuals : NumScopeDepthOrObjCQualsBits;
951
952 /// The number of parameters preceding this parameter in the
953 /// function parameter scope in which it was declared.
954 unsigned ParameterIndex : NumParameterIndexBits;
955 };
956
957 class NonParmVarDeclBitfields {
958 friend class ASTDeclReader;
959 friend class ImplicitParamDecl;
960 friend class VarDecl;
961
962 unsigned : NumVarDeclBits;
963
964 // FIXME: We need something similar to CXXRecordDecl::DefinitionData.
965 /// Whether this variable is a definition which was demoted due to
966 /// module merge.
967 unsigned IsThisDeclarationADemotedDefinition : 1;
968
969 /// Whether this variable is the exception variable in a C++ catch
970 /// or an Objective-C @catch statement.
971 unsigned ExceptionVar : 1;
972
973 /// Whether this local variable could be allocated in the return
974 /// slot of its function, enabling the named return value optimization
975 /// (NRVO).
976 unsigned NRVOVariable : 1;
977
978 /// Whether this variable is the for-range-declaration in a C++0x
979 /// for-range statement.
980 unsigned CXXForRangeDecl : 1;
981
982 /// Whether this variable is the for-in loop declaration in Objective-C.
983 unsigned ObjCForDecl : 1;
984
985 /// Whether this variable is (C++1z) inline.
986 unsigned IsInline : 1;
987
988 /// Whether this variable has (C++1z) inline explicitly specified.
989 unsigned IsInlineSpecified : 1;
990
991 /// Whether this variable is (C++0x) constexpr.
992 unsigned IsConstexpr : 1;
993
994 /// Whether this variable is the implicit variable for a lambda
995 /// init-capture.
996 unsigned IsInitCapture : 1;
997
998 /// Whether this local extern variable's previous declaration was
999 /// declared in the same block scope. This controls whether we should merge
1000 /// the type of this declaration with its previous declaration.
1001 unsigned PreviousDeclInSameBlockScope : 1;
1002
1003 /// Defines kind of the ImplicitParamDecl: 'this', 'self', 'vtt', '_cmd' or
1004 /// something else.
1005 unsigned ImplicitParamKind : 3;
1006
1007 unsigned EscapingByref : 1;
1008 };
1009
1010 union {
1011 unsigned AllBits;
1012 VarDeclBitfields VarDeclBits;
1013 ParmVarDeclBitfields ParmVarDeclBits;
1014 NonParmVarDeclBitfields NonParmVarDeclBits;
1015 };
1016
1017 VarDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1018 SourceLocation IdLoc, IdentifierInfo *Id, QualType T,
1019 TypeSourceInfo *TInfo, StorageClass SC);
1020
1021 using redeclarable_base = Redeclarable<VarDecl>;
1022
1023 VarDecl *getNextRedeclarationImpl() override {
1024 return getNextRedeclaration();
1025 }
1026
1027 VarDecl *getPreviousDeclImpl() override {
1028 return getPreviousDecl();
1029 }
1030
1031 VarDecl *getMostRecentDeclImpl() override {
1032 return getMostRecentDecl();
1033 }
1034
1035public:
1036 using redecl_range = redeclarable_base::redecl_range;
1037 using redecl_iterator = redeclarable_base::redecl_iterator;
1038
1039 using redeclarable_base::redecls_begin;
1040 using redeclarable_base::redecls_end;
1041 using redeclarable_base::redecls;
1042 using redeclarable_base::getPreviousDecl;
1043 using redeclarable_base::getMostRecentDecl;
1044 using redeclarable_base::isFirstDecl;
1045
1046 static VarDecl *Create(ASTContext &C, DeclContext *DC,
1047 SourceLocation StartLoc, SourceLocation IdLoc,
1048 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1049 StorageClass S);
1050
1051 static VarDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1052
1053 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
1054
1055 /// Returns the storage class as written in the source. For the
1056 /// computed linkage of symbol, see getLinkage.
1057 StorageClass getStorageClass() const {
1058 return (StorageClass) VarDeclBits.SClass;
1059 }
1060 void setStorageClass(StorageClass SC);
1061
1062 void setTSCSpec(ThreadStorageClassSpecifier TSC) {
1063 VarDeclBits.TSCSpec = TSC;
1064 assert(VarDeclBits.TSCSpec == TSC && "truncation")(static_cast <bool> (VarDeclBits.TSCSpec == TSC &&
"truncation") ? void (0) : __assert_fail ("VarDeclBits.TSCSpec == TSC && \"truncation\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/include/clang/AST/Decl.h"
, 1064, __extension__ __PRETTY_FUNCTION__))
;
1065 }
1066 ThreadStorageClassSpecifier getTSCSpec() const {
1067 return static_cast<ThreadStorageClassSpecifier>(VarDeclBits.TSCSpec);
1068 }
1069 TLSKind getTLSKind() const;
1070
1071 /// Returns true if a variable with function scope is a non-static local
1072 /// variable.
1073 bool hasLocalStorage() const {
1074 if (getStorageClass() == SC_None) {
1075 // OpenCL v1.2 s6.5.3: The __constant or constant address space name is
1076 // used to describe variables allocated in global memory and which are
1077 // accessed inside a kernel(s) as read-only variables. As such, variables
1078 // in constant address space cannot have local storage.
1079 if (getType().getAddressSpace() == LangAS::opencl_constant)
1080 return false;
1081 // Second check is for C++11 [dcl.stc]p4.
1082 return !isFileVarDecl() && getTSCSpec() == TSCS_unspecified;
1083 }
1084
1085 // Global Named Register (GNU extension)
1086 if (getStorageClass() == SC_Register && !isLocalVarDeclOrParm())
1087 return false;
1088
1089 // Return true for: Auto, Register.
1090 // Return false for: Extern, Static, PrivateExtern, OpenCLWorkGroupLocal.
1091
1092 return getStorageClass() >= SC_Auto;
1093 }
1094
1095 /// Returns true if a variable with function scope is a static local
1096 /// variable.
1097 bool isStaticLocal() const {
1098 return (getStorageClass() == SC_Static ||
1099 // C++11 [dcl.stc]p4
1100 (getStorageClass() == SC_None && getTSCSpec() == TSCS_thread_local))
1101 && !isFileVarDecl();
1102 }
1103
1104 /// Returns true if a variable has extern or __private_extern__
1105 /// storage.
1106 bool hasExternalStorage() const {
1107 return getStorageClass() == SC_Extern ||
1108 getStorageClass() == SC_PrivateExtern;
1109 }
1110
1111 /// Returns true for all variables that do not have local storage.
1112 ///
1113 /// This includes all global variables as well as static variables declared
1114 /// within a function.
1115 bool hasGlobalStorage() const { return !hasLocalStorage(); }
1116
1117 /// Get the storage duration of this variable, per C++ [basic.stc].
1118 StorageDuration getStorageDuration() const {
1119 return hasLocalStorage() ? SD_Automatic :
1120 getTSCSpec() ? SD_Thread : SD_Static;
1121 }
1122
1123 /// Compute the language linkage.
1124 LanguageLinkage getLanguageLinkage() const;
1125
1126 /// Determines whether this variable is a variable with external, C linkage.
1127 bool isExternC() const;
1128
1129 /// Determines whether this variable's context is, or is nested within,
1130 /// a C++ extern "C" linkage spec.
1131 bool isInExternCContext() const;
1132
1133 /// Determines whether this variable's context is, or is nested within,
1134 /// a C++ extern "C++" linkage spec.
1135 bool isInExternCXXContext() const;
1136
1137 /// Returns true for local variable declarations other than parameters.
1138 /// Note that this includes static variables inside of functions. It also
1139 /// includes variables inside blocks.
1140 ///
1141 /// void foo() { int x; static int y; extern int z; }
1142 bool isLocalVarDecl() const {
1143 if (getKind() != Decl::Var && getKind() != Decl::Decomposition)
1144 return false;
1145 if (const DeclContext *DC = getLexicalDeclContext())
1146 return DC->getRedeclContext()->isFunctionOrMethod();
1147 return false;
1148 }
1149
1150 /// Similar to isLocalVarDecl but also includes parameters.
1151 bool isLocalVarDeclOrParm() const {
1152 return isLocalVarDecl() || getKind() == Decl::ParmVar;
1153 }
1154
1155 /// Similar to isLocalVarDecl, but excludes variables declared in blocks.
1156 bool isFunctionOrMethodVarDecl() const {
1157 if (getKind() != Decl::Var && getKind() != Decl::Decomposition)
1158 return false;
1159 const DeclContext *DC = getLexicalDeclContext()->getRedeclContext();
1160 return DC->isFunctionOrMethod() && DC->getDeclKind() != Decl::Block;
1161 }
1162
1163 /// Determines whether this is a static data member.
1164 ///
1165 /// This will only be true in C++, and applies to, e.g., the
1166 /// variable 'x' in:
1167 /// \code
1168 /// struct S {
1169 /// static int x;
1170 /// };
1171 /// \endcode
1172 bool isStaticDataMember() const {
1173 // If it wasn't static, it would be a FieldDecl.
1174 return getKind() != Decl::ParmVar && getDeclContext()->isRecord();
1175 }
1176
1177 VarDecl *getCanonicalDecl() override;
1178 const VarDecl *getCanonicalDecl() const {
1179 return const_cast<VarDecl*>(this)->getCanonicalDecl();
1180 }
1181
1182 enum DefinitionKind {
1183 /// This declaration is only a declaration.
1184 DeclarationOnly,
1185
1186 /// This declaration is a tentative definition.
1187 TentativeDefinition,
1188
1189 /// This declaration is definitely a definition.
1190 Definition
1191 };
1192
1193 /// Check whether this declaration is a definition. If this could be
1194 /// a tentative definition (in C), don't check whether there's an overriding
1195 /// definition.
1196 DefinitionKind isThisDeclarationADefinition(ASTContext &) const;
1197 DefinitionKind isThisDeclarationADefinition() const {
1198 return isThisDeclarationADefinition(getASTContext());
1199 }
1200
1201 /// Check whether this variable is defined in this translation unit.
1202 DefinitionKind hasDefinition(ASTContext &) const;
1203 DefinitionKind hasDefinition() const {
1204 return hasDefinition(getASTContext());
1205 }
1206
1207 /// Get the tentative definition that acts as the real definition in a TU.
1208 /// Returns null if there is a proper definition available.
1209 VarDecl *getActingDefinition();
1210 const VarDecl *getActingDefinition() const {
1211 return const_cast<VarDecl*>(this)->getActingDefinition();
1212 }
1213
1214 /// Get the real (not just tentative) definition for this declaration.
1215 VarDecl *getDefinition(ASTContext &);
1216 const VarDecl *getDefinition(ASTContext &C) const {
1217 return const_cast<VarDecl*>(this)->getDefinition(C);
1218 }
1219 VarDecl *getDefinition() {
1220 return getDefinition(getASTContext());
1221 }
1222 const VarDecl *getDefinition() const {
1223 return const_cast<VarDecl*>(this)->getDefinition();
1224 }
1225
1226 /// Determine whether this is or was instantiated from an out-of-line
1227 /// definition of a static data member.
1228 bool isOutOfLine() const override;
1229
1230 /// Returns true for file scoped variable declaration.
1231 bool isFileVarDecl() const {
1232 Kind K = getKind();
1233 if (K == ParmVar || K == ImplicitParam)
1234 return false;
1235
1236 if (getLexicalDeclContext()->getRedeclContext()->isFileContext())
1237 return true;
1238
1239 if (isStaticDataMember())
1240 return true;
1241
1242 return false;
1243 }
1244
1245 /// Get the initializer for this variable, no matter which
1246 /// declaration it is attached to.
1247 const Expr *getAnyInitializer() const {
1248 const VarDecl *D;
1249 return getAnyInitializer(D);
1250 }
1251
1252 /// Get the initializer for this variable, no matter which
1253 /// declaration it is attached to. Also get that declaration.
1254 const Expr *getAnyInitializer(const VarDecl *&D) const;
1255
1256 bool hasInit() const;
1257 const Expr *getInit() const {
1258 return const_cast<VarDecl *>(this)->getInit();
1259 }
1260 Expr *getInit();
1261
1262 /// Retrieve the address of the initializer expression.
1263 Stmt **getInitAddress();
1264
1265 void setInit(Expr *I);
1266
1267 /// Get the initializing declaration of this variable, if any. This is
1268 /// usually the definition, except that for a static data member it can be
1269 /// the in-class declaration.
1270 VarDecl *getInitializingDeclaration();
1271 const VarDecl *getInitializingDeclaration() const {
1272 return const_cast<VarDecl *>(this)->getInitializingDeclaration();
1273 }
1274
1275 /// Determine whether this variable's value might be usable in a
1276 /// constant expression, according to the relevant language standard.
1277 /// This only checks properties of the declaration, and does not check
1278 /// whether the initializer is in fact a constant expression.
1279 ///
1280 /// This corresponds to C++20 [expr.const]p3's notion of a
1281 /// "potentially-constant" variable.
1282 bool mightBeUsableInConstantExpressions(const ASTContext &C) const;
1283
1284 /// Determine whether this variable's value can be used in a
1285 /// constant expression, according to the relevant language standard,
1286 /// including checking whether it was initialized by a constant expression.
1287 bool isUsableInConstantExpressions(const ASTContext &C) const;
1288
1289 EvaluatedStmt *ensureEvaluatedStmt() const;
1290 EvaluatedStmt *getEvaluatedStmt() const;
1291
1292 /// Attempt to evaluate the value of the initializer attached to this
1293 /// declaration, and produce notes explaining why it cannot be evaluated.
1294 /// Returns a pointer to the value if evaluation succeeded, 0 otherwise.
1295 APValue *evaluateValue() const;
1296
1297private:
1298 APValue *evaluateValueImpl(SmallVectorImpl<PartialDiagnosticAt> &Notes,
1299 bool IsConstantInitialization) const;
1300
1301public:
1302 /// Return the already-evaluated value of this variable's
1303 /// initializer, or NULL if the value is not yet known. Returns pointer
1304 /// to untyped APValue if the value could not be evaluated.
1305 APValue *getEvaluatedValue() const;
1306
1307 /// Evaluate the destruction of this variable to determine if it constitutes
1308 /// constant destruction.
1309 ///
1310 /// \pre hasConstantInitialization()
1311 /// \return \c true if this variable has constant destruction, \c false if
1312 /// not.
1313 bool evaluateDestruction(SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
1314
1315 /// Determine whether this variable has constant initialization.
1316 ///
1317 /// This is only set in two cases: when the language semantics require
1318 /// constant initialization (globals in C and some globals in C++), and when
1319 /// the variable is usable in constant expressions (constexpr, const int, and
1320 /// reference variables in C++).
1321 bool hasConstantInitialization() const;
1322
1323 /// Determine whether the initializer of this variable is an integer constant
1324 /// expression. For use in C++98, where this affects whether the variable is
1325 /// usable in constant expressions.
1326 bool hasICEInitializer(const ASTContext &Context) const;
1327
1328 /// Evaluate the initializer of this variable to determine whether it's a
1329 /// constant initializer. Should only be called once, after completing the
1330 /// definition of the variable.
1331 bool checkForConstantInitialization(
1332 SmallVectorImpl<PartialDiagnosticAt> &Notes) const;
1333
1334 void setInitStyle(InitializationStyle Style) {
1335 VarDeclBits.InitStyle = Style;
1336 }
1337
1338 /// The style of initialization for this declaration.
1339 ///
1340 /// C-style initialization is "int x = 1;". Call-style initialization is
1341 /// a C++98 direct-initializer, e.g. "int x(1);". The Init expression will be
1342 /// the expression inside the parens or a "ClassType(a,b,c)" class constructor
1343 /// expression for class types. List-style initialization is C++11 syntax,
1344 /// e.g. "int x{1};". Clients can distinguish between different forms of
1345 /// initialization by checking this value. In particular, "int x = {1};" is
1346 /// C-style, "int x({1})" is call-style, and "int x{1};" is list-style; the
1347 /// Init expression in all three cases is an InitListExpr.
1348 InitializationStyle getInitStyle() const {
1349 return static_cast<InitializationStyle>(VarDeclBits.InitStyle);
1350 }
1351
1352 /// Whether the initializer is a direct-initializer (list or call).
1353 bool isDirectInit() const {
1354 return getInitStyle() != CInit;
1355 }
1356
1357 /// If this definition should pretend to be a declaration.
1358 bool isThisDeclarationADemotedDefinition() const {
1359 return isa<ParmVarDecl>(this) ? false :
1360 NonParmVarDeclBits.IsThisDeclarationADemotedDefinition;
1361 }
1362
1363 /// This is a definition which should be demoted to a declaration.
1364 ///
1365 /// In some cases (mostly module merging) we can end up with two visible
1366 /// definitions one of which needs to be demoted to a declaration to keep
1367 /// the AST invariants.
1368 void demoteThisDefinitionToDeclaration() {
1369 assert(isThisDeclarationADefinition() && "Not a definition!")(static_cast <bool> (isThisDeclarationADefinition() &&
"Not a definition!") ? void (0) : __assert_fail ("isThisDeclarationADefinition() && \"Not a definition!\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/include/clang/AST/Decl.h"
, 1369, __extension__ __PRETTY_FUNCTION__))
;
1370 assert(!isa<ParmVarDecl>(this) && "Cannot demote ParmVarDecls!")(static_cast <bool> (!isa<ParmVarDecl>(this) &&
"Cannot demote ParmVarDecls!") ? void (0) : __assert_fail ("!isa<ParmVarDecl>(this) && \"Cannot demote ParmVarDecls!\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/include/clang/AST/Decl.h"
, 1370, __extension__ __PRETTY_FUNCTION__))
;
1371 NonParmVarDeclBits.IsThisDeclarationADemotedDefinition = 1;
1372 }
1373
1374 /// Determine whether this variable is the exception variable in a
1375 /// C++ catch statememt or an Objective-C \@catch statement.
1376 bool isExceptionVariable() const {
1377 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.ExceptionVar;
1378 }
1379 void setExceptionVariable(bool EV) {
1380 assert(!isa<ParmVarDecl>(this))(static_cast <bool> (!isa<ParmVarDecl>(this)) ? void
(0) : __assert_fail ("!isa<ParmVarDecl>(this)", "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/include/clang/AST/Decl.h"
, 1380, __extension__ __PRETTY_FUNCTION__))
;
1381 NonParmVarDeclBits.ExceptionVar = EV;
1382 }
1383
1384 /// Determine whether this local variable can be used with the named
1385 /// return value optimization (NRVO).
1386 ///
1387 /// The named return value optimization (NRVO) works by marking certain
1388 /// non-volatile local variables of class type as NRVO objects. These
1389 /// locals can be allocated within the return slot of their containing
1390 /// function, in which case there is no need to copy the object to the
1391 /// return slot when returning from the function. Within the function body,
1392 /// each return that returns the NRVO object will have this variable as its
1393 /// NRVO candidate.
1394 bool isNRVOVariable() const {
1395 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.NRVOVariable;
1396 }
1397 void setNRVOVariable(bool NRVO) {
1398 assert(!isa<ParmVarDecl>(this))(static_cast <bool> (!isa<ParmVarDecl>(this)) ? void
(0) : __assert_fail ("!isa<ParmVarDecl>(this)", "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/include/clang/AST/Decl.h"
, 1398, __extension__ __PRETTY_FUNCTION__))
;
1399 NonParmVarDeclBits.NRVOVariable = NRVO;
1400 }
1401
1402 /// Determine whether this variable is the for-range-declaration in
1403 /// a C++0x for-range statement.
1404 bool isCXXForRangeDecl() const {
1405 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.CXXForRangeDecl;
1406 }
1407 void setCXXForRangeDecl(bool FRD) {
1408 assert(!isa<ParmVarDecl>(this))(static_cast <bool> (!isa<ParmVarDecl>(this)) ? void
(0) : __assert_fail ("!isa<ParmVarDecl>(this)", "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/include/clang/AST/Decl.h"
, 1408, __extension__ __PRETTY_FUNCTION__))
;
1409 NonParmVarDeclBits.CXXForRangeDecl = FRD;
1410 }
1411
1412 /// Determine whether this variable is a for-loop declaration for a
1413 /// for-in statement in Objective-C.
1414 bool isObjCForDecl() const {
1415 return NonParmVarDeclBits.ObjCForDecl;
1416 }
1417
1418 void setObjCForDecl(bool FRD) {
1419 NonParmVarDeclBits.ObjCForDecl = FRD;
1420 }
1421
1422 /// Determine whether this variable is an ARC pseudo-__strong variable. A
1423 /// pseudo-__strong variable has a __strong-qualified type but does not
1424 /// actually retain the object written into it. Generally such variables are
1425 /// also 'const' for safety. There are 3 cases where this will be set, 1) if
1426 /// the variable is annotated with the objc_externally_retained attribute, 2)
1427 /// if its 'self' in a non-init method, or 3) if its the variable in an for-in
1428 /// loop.
1429 bool isARCPseudoStrong() const { return VarDeclBits.ARCPseudoStrong; }
1430 void setARCPseudoStrong(bool PS) { VarDeclBits.ARCPseudoStrong = PS; }
1431
1432 /// Whether this variable is (C++1z) inline.
1433 bool isInline() const {
1434 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsInline;
1435 }
1436 bool isInlineSpecified() const {
1437 return isa<ParmVarDecl>(this) ? false
1438 : NonParmVarDeclBits.IsInlineSpecified;
1439 }
1440 void setInlineSpecified() {
1441 assert(!isa<ParmVarDecl>(this))(static_cast <bool> (!isa<ParmVarDecl>(this)) ? void
(0) : __assert_fail ("!isa<ParmVarDecl>(this)", "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/include/clang/AST/Decl.h"
, 1441, __extension__ __PRETTY_FUNCTION__))
;
1442 NonParmVarDeclBits.IsInline = true;
1443 NonParmVarDeclBits.IsInlineSpecified = true;
1444 }
1445 void setImplicitlyInline() {
1446 assert(!isa<ParmVarDecl>(this))(static_cast <bool> (!isa<ParmVarDecl>(this)) ? void
(0) : __assert_fail ("!isa<ParmVarDecl>(this)", "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/include/clang/AST/Decl.h"
, 1446, __extension__ __PRETTY_FUNCTION__))
;
1447 NonParmVarDeclBits.IsInline = true;
1448 }
1449
1450 /// Whether this variable is (C++11) constexpr.
1451 bool isConstexpr() const {
1452 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsConstexpr;
1453 }
1454 void setConstexpr(bool IC) {
1455 assert(!isa<ParmVarDecl>(this))(static_cast <bool> (!isa<ParmVarDecl>(this)) ? void
(0) : __assert_fail ("!isa<ParmVarDecl>(this)", "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/include/clang/AST/Decl.h"
, 1455, __extension__ __PRETTY_FUNCTION__))
;
1456 NonParmVarDeclBits.IsConstexpr = IC;
1457 }
1458
1459 /// Whether this variable is the implicit variable for a lambda init-capture.
1460 bool isInitCapture() const {
1461 return isa<ParmVarDecl>(this) ? false : NonParmVarDeclBits.IsInitCapture;
1462 }
1463 void setInitCapture(bool IC) {
1464 assert(!isa<ParmVarDecl>(this))(static_cast <bool> (!isa<ParmVarDecl>(this)) ? void
(0) : __assert_fail ("!isa<ParmVarDecl>(this)", "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/include/clang/AST/Decl.h"
, 1464, __extension__ __PRETTY_FUNCTION__))
;
1465 NonParmVarDeclBits.IsInitCapture = IC;
1466 }
1467
1468 /// Determine whether this variable is actually a function parameter pack or
1469 /// init-capture pack.
1470 bool isParameterPack() const;
1471
1472 /// Whether this local extern variable declaration's previous declaration
1473 /// was declared in the same block scope. Only correct in C++.
1474 bool isPreviousDeclInSameBlockScope() const {
1475 return isa<ParmVarDecl>(this)
1476 ? false
1477 : NonParmVarDeclBits.PreviousDeclInSameBlockScope;
1478 }
1479 void setPreviousDeclInSameBlockScope(bool Same) {
1480 assert(!isa<ParmVarDecl>(this))(static_cast <bool> (!isa<ParmVarDecl>(this)) ? void
(0) : __assert_fail ("!isa<ParmVarDecl>(this)", "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/include/clang/AST/Decl.h"
, 1480, __extension__ __PRETTY_FUNCTION__))
;
1481 NonParmVarDeclBits.PreviousDeclInSameBlockScope = Same;
1482 }
1483
1484 /// Indicates the capture is a __block variable that is captured by a block
1485 /// that can potentially escape (a block for which BlockDecl::doesNotEscape
1486 /// returns false).
1487 bool isEscapingByref() const;
1488
1489 /// Indicates the capture is a __block variable that is never captured by an
1490 /// escaping block.
1491 bool isNonEscapingByref() const;
1492
1493 void setEscapingByref() {
1494 NonParmVarDeclBits.EscapingByref = true;
1495 }
1496
1497 /// Retrieve the variable declaration from which this variable could
1498 /// be instantiated, if it is an instantiation (rather than a non-template).
1499 VarDecl *getTemplateInstantiationPattern() const;
1500
1501 /// If this variable is an instantiated static data member of a
1502 /// class template specialization, returns the templated static data member
1503 /// from which it was instantiated.
1504 VarDecl *getInstantiatedFromStaticDataMember() const;
1505
1506 /// If this variable is an instantiation of a variable template or a
1507 /// static data member of a class template, determine what kind of
1508 /// template specialization or instantiation this is.
1509 TemplateSpecializationKind getTemplateSpecializationKind() const;
1510
1511 /// Get the template specialization kind of this variable for the purposes of
1512 /// template instantiation. This differs from getTemplateSpecializationKind()
1513 /// for an instantiation of a class-scope explicit specialization.
1514 TemplateSpecializationKind
1515 getTemplateSpecializationKindForInstantiation() const;
1516
1517 /// If this variable is an instantiation of a variable template or a
1518 /// static data member of a class template, determine its point of
1519 /// instantiation.
1520 SourceLocation getPointOfInstantiation() const;
1521
1522 /// If this variable is an instantiation of a static data member of a
1523 /// class template specialization, retrieves the member specialization
1524 /// information.
1525 MemberSpecializationInfo *getMemberSpecializationInfo() const;
1526
1527 /// For a static data member that was instantiated from a static
1528 /// data member of a class template, set the template specialiation kind.
1529 void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
1530 SourceLocation PointOfInstantiation = SourceLocation());
1531
1532 /// Specify that this variable is an instantiation of the
1533 /// static data member VD.
1534 void setInstantiationOfStaticDataMember(VarDecl *VD,
1535 TemplateSpecializationKind TSK);
1536
1537 /// Retrieves the variable template that is described by this
1538 /// variable declaration.
1539 ///
1540 /// Every variable template is represented as a VarTemplateDecl and a
1541 /// VarDecl. The former contains template properties (such as
1542 /// the template parameter lists) while the latter contains the
1543 /// actual description of the template's
1544 /// contents. VarTemplateDecl::getTemplatedDecl() retrieves the
1545 /// VarDecl that from a VarTemplateDecl, while
1546 /// getDescribedVarTemplate() retrieves the VarTemplateDecl from
1547 /// a VarDecl.
1548 VarTemplateDecl *getDescribedVarTemplate() const;
1549
1550 void setDescribedVarTemplate(VarTemplateDecl *Template);
1551
1552 // Is this variable known to have a definition somewhere in the complete
1553 // program? This may be true even if the declaration has internal linkage and
1554 // has no definition within this source file.
1555 bool isKnownToBeDefined() const;
1556
1557 /// Is destruction of this variable entirely suppressed? If so, the variable
1558 /// need not have a usable destructor at all.
1559 bool isNoDestroy(const ASTContext &) const;
1560
1561 /// Would the destruction of this variable have any effect, and if so, what
1562 /// kind?
1563 QualType::DestructionKind needsDestruction(const ASTContext &Ctx) const;
1564
1565 // Implement isa/cast/dyncast/etc.
1566 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1567 static bool classofKind(Kind K) { return K >= firstVar && K <= lastVar; }
1568};
1569
1570class ImplicitParamDecl : public VarDecl {
1571 void anchor() override;
1572
1573public:
1574 /// Defines the kind of the implicit parameter: is this an implicit parameter
1575 /// with pointer to 'this', 'self', '_cmd', virtual table pointers, captured
1576 /// context or something else.
1577 enum ImplicitParamKind : unsigned {
1578 /// Parameter for Objective-C 'self' argument
1579 ObjCSelf,
1580
1581 /// Parameter for Objective-C '_cmd' argument
1582 ObjCCmd,
1583
1584 /// Parameter for C++ 'this' argument
1585 CXXThis,
1586
1587 /// Parameter for C++ virtual table pointers
1588 CXXVTT,
1589
1590 /// Parameter for captured context
1591 CapturedContext,
1592
1593 /// Other implicit parameter
1594 Other,
1595 };
1596
1597 /// Create implicit parameter.
1598 static ImplicitParamDecl *Create(ASTContext &C, DeclContext *DC,
1599 SourceLocation IdLoc, IdentifierInfo *Id,
1600 QualType T, ImplicitParamKind ParamKind);
1601 static ImplicitParamDecl *Create(ASTContext &C, QualType T,
1602 ImplicitParamKind ParamKind);
1603
1604 static ImplicitParamDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1605
1606 ImplicitParamDecl(ASTContext &C, DeclContext *DC, SourceLocation IdLoc,
1607 IdentifierInfo *Id, QualType Type,
1608 ImplicitParamKind ParamKind)
1609 : VarDecl(ImplicitParam, C, DC, IdLoc, IdLoc, Id, Type,
1610 /*TInfo=*/nullptr, SC_None) {
1611 NonParmVarDeclBits.ImplicitParamKind = ParamKind;
1612 setImplicit();
1613 }
1614
1615 ImplicitParamDecl(ASTContext &C, QualType Type, ImplicitParamKind ParamKind)
1616 : VarDecl(ImplicitParam, C, /*DC=*/nullptr, SourceLocation(),
1617 SourceLocation(), /*Id=*/nullptr, Type,
1618 /*TInfo=*/nullptr, SC_None) {
1619 NonParmVarDeclBits.ImplicitParamKind = ParamKind;
1620 setImplicit();
1621 }
1622
1623 /// Returns the implicit parameter kind.
1624 ImplicitParamKind getParameterKind() const {
1625 return static_cast<ImplicitParamKind>(NonParmVarDeclBits.ImplicitParamKind);
1626 }
1627
1628 // Implement isa/cast/dyncast/etc.
1629 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1630 static bool classofKind(Kind K) { return K == ImplicitParam; }
1631};
1632
1633/// Represents a parameter to a function.
1634class ParmVarDecl : public VarDecl {
1635public:
1636 enum { MaxFunctionScopeDepth = 255 };
1637 enum { MaxFunctionScopeIndex = 255 };
1638
1639protected:
1640 ParmVarDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1641 SourceLocation IdLoc, IdentifierInfo *Id, QualType T,
1642 TypeSourceInfo *TInfo, StorageClass S, Expr *DefArg)
1643 : VarDecl(DK, C, DC, StartLoc, IdLoc, Id, T, TInfo, S) {
1644 assert(ParmVarDeclBits.HasInheritedDefaultArg == false)(static_cast <bool> (ParmVarDeclBits.HasInheritedDefaultArg
== false) ? void (0) : __assert_fail ("ParmVarDeclBits.HasInheritedDefaultArg == false"
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/include/clang/AST/Decl.h"
, 1644, __extension__ __PRETTY_FUNCTION__))
;
1645 assert(ParmVarDeclBits.DefaultArgKind == DAK_None)(static_cast <bool> (ParmVarDeclBits.DefaultArgKind == DAK_None
) ? void (0) : __assert_fail ("ParmVarDeclBits.DefaultArgKind == DAK_None"
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/include/clang/AST/Decl.h"
, 1645, __extension__ __PRETTY_FUNCTION__))
;
1646 assert(ParmVarDeclBits.IsKNRPromoted == false)(static_cast <bool> (ParmVarDeclBits.IsKNRPromoted == false
) ? void (0) : __assert_fail ("ParmVarDeclBits.IsKNRPromoted == false"
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/include/clang/AST/Decl.h"
, 1646, __extension__ __PRETTY_FUNCTION__))
;
1647 assert(ParmVarDeclBits.IsObjCMethodParam == false)(static_cast <bool> (ParmVarDeclBits.IsObjCMethodParam ==
false) ? void (0) : __assert_fail ("ParmVarDeclBits.IsObjCMethodParam == false"
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/include/clang/AST/Decl.h"
, 1647, __extension__ __PRETTY_FUNCTION__))
;
1648 setDefaultArg(DefArg);
1649 }
1650
1651public:
1652 static ParmVarDecl *Create(ASTContext &C, DeclContext *DC,
1653 SourceLocation StartLoc,
1654 SourceLocation IdLoc, IdentifierInfo *Id,
1655 QualType T, TypeSourceInfo *TInfo,
1656 StorageClass S, Expr *DefArg);
1657
1658 static ParmVarDecl *CreateDeserialized(ASTContext &C, unsigned ID);
1659
1660 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
1661
1662 void setObjCMethodScopeInfo(unsigned parameterIndex) {
1663 ParmVarDeclBits.IsObjCMethodParam = true;
1664 setParameterIndex(parameterIndex);
1665 }
1666
1667 void setScopeInfo(unsigned scopeDepth, unsigned parameterIndex) {
1668 assert(!ParmVarDeclBits.IsObjCMethodParam)(static_cast <bool> (!ParmVarDeclBits.IsObjCMethodParam
) ? void (0) : __assert_fail ("!ParmVarDeclBits.IsObjCMethodParam"
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/include/clang/AST/Decl.h"
, 1668, __extension__ __PRETTY_FUNCTION__))
;
1669
1670 ParmVarDeclBits.ScopeDepthOrObjCQuals = scopeDepth;
1671 assert(ParmVarDeclBits.ScopeDepthOrObjCQuals == scopeDepth(static_cast <bool> (ParmVarDeclBits.ScopeDepthOrObjCQuals
== scopeDepth && "truncation!") ? void (0) : __assert_fail
("ParmVarDeclBits.ScopeDepthOrObjCQuals == scopeDepth && \"truncation!\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/include/clang/AST/Decl.h"
, 1672, __extension__ __PRETTY_FUNCTION__))
1672 && "truncation!")(static_cast <bool> (ParmVarDeclBits.ScopeDepthOrObjCQuals
== scopeDepth && "truncation!") ? void (0) : __assert_fail
("ParmVarDeclBits.ScopeDepthOrObjCQuals == scopeDepth && \"truncation!\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/include/clang/AST/Decl.h"
, 1672, __extension__ __PRETTY_FUNCTION__))
;
1673
1674 setParameterIndex(parameterIndex);
1675 }
1676
1677 bool isObjCMethodParameter() const {
1678 return ParmVarDeclBits.IsObjCMethodParam;
1679 }
1680
1681 /// Determines whether this parameter is destroyed in the callee function.
1682 bool isDestroyedInCallee() const;
1683
1684 unsigned getFunctionScopeDepth() const {
1685 if (ParmVarDeclBits.IsObjCMethodParam) return 0;
1686 return ParmVarDeclBits.ScopeDepthOrObjCQuals;
1687 }
1688
1689 static constexpr unsigned getMaxFunctionScopeDepth() {
1690 return (1u << NumScopeDepthOrObjCQualsBits) - 1;
1691 }
1692
1693 /// Returns the index of this parameter in its prototype or method scope.
1694 unsigned getFunctionScopeIndex() const {
1695 return getParameterIndex();
1696 }
1697
1698 ObjCDeclQualifier getObjCDeclQualifier() const {
1699 if (!ParmVarDeclBits.IsObjCMethodParam) return OBJC_TQ_None;
1700 return ObjCDeclQualifier(ParmVarDeclBits.ScopeDepthOrObjCQuals);
1701 }
1702 void setObjCDeclQualifier(ObjCDeclQualifier QTVal) {
1703 assert(ParmVarDeclBits.IsObjCMethodParam)(static_cast <bool> (ParmVarDeclBits.IsObjCMethodParam)
? void (0) : __assert_fail ("ParmVarDeclBits.IsObjCMethodParam"
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/include/clang/AST/Decl.h"
, 1703, __extension__ __PRETTY_FUNCTION__))
;
1704 ParmVarDeclBits.ScopeDepthOrObjCQuals = QTVal;
1705 }
1706
1707 /// True if the value passed to this parameter must undergo
1708 /// K&R-style default argument promotion:
1709 ///
1710 /// C99 6.5.2.2.
1711 /// If the expression that denotes the called function has a type
1712 /// that does not include a prototype, the integer promotions are
1713 /// performed on each argument, and arguments that have type float
1714 /// are promoted to double.
1715 bool isKNRPromoted() const {
1716 return ParmVarDeclBits.IsKNRPromoted;
1717 }
1718 void setKNRPromoted(bool promoted) {
1719 ParmVarDeclBits.IsKNRPromoted = promoted;
1720 }
1721
1722 Expr *getDefaultArg();
1723 const Expr *getDefaultArg() const {
1724 return const_cast<ParmVarDecl *>(this)->getDefaultArg();
1725 }
1726
1727 void setDefaultArg(Expr *defarg);
1728
1729 /// Retrieve the source range that covers the entire default
1730 /// argument.
1731 SourceRange getDefaultArgRange() const;
1732 void setUninstantiatedDefaultArg(Expr *arg);
1733 Expr *getUninstantiatedDefaultArg();
1734 const Expr *getUninstantiatedDefaultArg() const {
1735 return const_cast<ParmVarDecl *>(this)->getUninstantiatedDefaultArg();
1736 }
1737
1738 /// Determines whether this parameter has a default argument,
1739 /// either parsed or not.
1740 bool hasDefaultArg() const;
1741
1742 /// Determines whether this parameter has a default argument that has not
1743 /// yet been parsed. This will occur during the processing of a C++ class
1744 /// whose member functions have default arguments, e.g.,
1745 /// @code
1746 /// class X {
1747 /// public:
1748 /// void f(int x = 17); // x has an unparsed default argument now
1749 /// }; // x has a regular default argument now
1750 /// @endcode
1751 bool hasUnparsedDefaultArg() const {
1752 return ParmVarDeclBits.DefaultArgKind == DAK_Unparsed;
1753 }
1754
1755 bool hasUninstantiatedDefaultArg() const {
1756 return ParmVarDeclBits.DefaultArgKind == DAK_Uninstantiated;
1757 }
1758
1759 /// Specify that this parameter has an unparsed default argument.
1760 /// The argument will be replaced with a real default argument via
1761 /// setDefaultArg when the class definition enclosing the function
1762 /// declaration that owns this default argument is completed.
1763 void setUnparsedDefaultArg() {
1764 ParmVarDeclBits.DefaultArgKind = DAK_Unparsed;
1765 }
1766
1767 bool hasInheritedDefaultArg() const {
1768 return ParmVarDeclBits.HasInheritedDefaultArg;
1769 }
1770
1771 void setHasInheritedDefaultArg(bool I = true) {
1772 ParmVarDeclBits.HasInheritedDefaultArg = I;
1773 }
1774
1775 QualType getOriginalType() const;
1776
1777 /// Sets the function declaration that owns this
1778 /// ParmVarDecl. Since ParmVarDecls are often created before the
1779 /// FunctionDecls that own them, this routine is required to update
1780 /// the DeclContext appropriately.
1781 void setOwningFunction(DeclContext *FD) { setDeclContext(FD); }
1782
1783 // Implement isa/cast/dyncast/etc.
1784 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
1785 static bool classofKind(Kind K) { return K == ParmVar; }
1786
1787private:
1788 enum { ParameterIndexSentinel = (1 << NumParameterIndexBits) - 1 };
1789
1790 void setParameterIndex(unsigned parameterIndex) {
1791 if (parameterIndex >= ParameterIndexSentinel) {
1792 setParameterIndexLarge(parameterIndex);
1793 return;
1794 }
1795
1796 ParmVarDeclBits.ParameterIndex = parameterIndex;
1797 assert(ParmVarDeclBits.ParameterIndex == parameterIndex && "truncation!")(static_cast <bool> (ParmVarDeclBits.ParameterIndex == parameterIndex
&& "truncation!") ? void (0) : __assert_fail ("ParmVarDeclBits.ParameterIndex == parameterIndex && \"truncation!\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/include/clang/AST/Decl.h"
, 1797, __extension__ __PRETTY_FUNCTION__))
;
1798 }
1799 unsigned getParameterIndex() const {
1800 unsigned d = ParmVarDeclBits.ParameterIndex;
1801 return d == ParameterIndexSentinel ? getParameterIndexLarge() : d;
1802 }
1803
1804 void setParameterIndexLarge(unsigned parameterIndex);
1805 unsigned getParameterIndexLarge() const;
1806};
1807
1808enum class MultiVersionKind {
1809 None,
1810 Target,
1811 CPUSpecific,
1812 CPUDispatch
1813};
1814
1815/// Represents a function declaration or definition.
1816///
1817/// Since a given function can be declared several times in a program,
1818/// there may be several FunctionDecls that correspond to that
1819/// function. Only one of those FunctionDecls will be found when
1820/// traversing the list of declarations in the context of the
1821/// FunctionDecl (e.g., the translation unit); this FunctionDecl
1822/// contains all of the information known about the function. Other,
1823/// previous declarations of the function are available via the
1824/// getPreviousDecl() chain.
1825class FunctionDecl : public DeclaratorDecl,
1826 public DeclContext,
1827 public Redeclarable<FunctionDecl> {
1828 // This class stores some data in DeclContext::FunctionDeclBits
1829 // to save some space. Use the provided accessors to access it.
1830public:
1831 /// The kind of templated function a FunctionDecl can be.
1832 enum TemplatedKind {
1833 // Not templated.
1834 TK_NonTemplate,
1835 // The pattern in a function template declaration.
1836 TK_FunctionTemplate,
1837 // A non-template function that is an instantiation or explicit
1838 // specialization of a member of a templated class.
1839 TK_MemberSpecialization,
1840 // An instantiation or explicit specialization of a function template.
1841 // Note: this might have been instantiated from a templated class if it
1842 // is a class-scope explicit specialization.
1843 TK_FunctionTemplateSpecialization,
1844 // A function template specialization that hasn't yet been resolved to a
1845 // particular specialized function template.
1846 TK_DependentFunctionTemplateSpecialization
1847 };
1848
1849 /// Stashed information about a defaulted function definition whose body has
1850 /// not yet been lazily generated.
1851 class DefaultedFunctionInfo final
1852 : llvm::TrailingObjects<DefaultedFunctionInfo, DeclAccessPair> {
1853 friend TrailingObjects;
1854 unsigned NumLookups;
1855
1856 public:
1857 static DefaultedFunctionInfo *Create(ASTContext &Context,
1858 ArrayRef<DeclAccessPair> Lookups);
1859 /// Get the unqualified lookup results that should be used in this
1860 /// defaulted function definition.
1861 ArrayRef<DeclAccessPair> getUnqualifiedLookups() const {
1862 return {getTrailingObjects<DeclAccessPair>(), NumLookups};
1863 }
1864 };
1865
1866private:
1867 /// A new[]'d array of pointers to VarDecls for the formal
1868 /// parameters of this function. This is null if a prototype or if there are
1869 /// no formals.
1870 ParmVarDecl **ParamInfo = nullptr;
1871
1872 /// The active member of this union is determined by
1873 /// FunctionDeclBits.HasDefaultedFunctionInfo.
1874 union {
1875 /// The body of the function.
1876 LazyDeclStmtPtr Body;
1877 /// Information about a future defaulted function definition.
1878 DefaultedFunctionInfo *DefaultedInfo;
1879 };
1880
1881 unsigned ODRHash;
1882
1883 /// End part of this FunctionDecl's source range.
1884 ///
1885 /// We could compute the full range in getSourceRange(). However, when we're
1886 /// dealing with a function definition deserialized from a PCH/AST file,
1887 /// we can only compute the full range once the function body has been
1888 /// de-serialized, so it's far better to have the (sometimes-redundant)
1889 /// EndRangeLoc.
1890 SourceLocation EndRangeLoc;
1891
1892 /// The template or declaration that this declaration
1893 /// describes or was instantiated from, respectively.
1894 ///
1895 /// For non-templates, this value will be NULL. For function
1896 /// declarations that describe a function template, this will be a
1897 /// pointer to a FunctionTemplateDecl. For member functions
1898 /// of class template specializations, this will be a MemberSpecializationInfo
1899 /// pointer containing information about the specialization.
1900 /// For function template specializations, this will be a
1901 /// FunctionTemplateSpecializationInfo, which contains information about
1902 /// the template being specialized and the template arguments involved in
1903 /// that specialization.
1904 llvm::PointerUnion<FunctionTemplateDecl *,
1905 MemberSpecializationInfo *,
1906 FunctionTemplateSpecializationInfo *,
1907 DependentFunctionTemplateSpecializationInfo *>
1908 TemplateOrSpecialization;
1909
1910 /// Provides source/type location info for the declaration name embedded in
1911 /// the DeclaratorDecl base class.
1912 DeclarationNameLoc DNLoc;
1913
1914 /// Specify that this function declaration is actually a function
1915 /// template specialization.
1916 ///
1917 /// \param C the ASTContext.
1918 ///
1919 /// \param Template the function template that this function template
1920 /// specialization specializes.
1921 ///
1922 /// \param TemplateArgs the template arguments that produced this
1923 /// function template specialization from the template.
1924 ///
1925 /// \param InsertPos If non-NULL, the position in the function template
1926 /// specialization set where the function template specialization data will
1927 /// be inserted.
1928 ///
1929 /// \param TSK the kind of template specialization this is.
1930 ///
1931 /// \param TemplateArgsAsWritten location info of template arguments.
1932 ///
1933 /// \param PointOfInstantiation point at which the function template
1934 /// specialization was first instantiated.
1935 void setFunctionTemplateSpecialization(ASTContext &C,
1936 FunctionTemplateDecl *Template,
1937 const TemplateArgumentList *TemplateArgs,
1938 void *InsertPos,
1939 TemplateSpecializationKind TSK,
1940 const TemplateArgumentListInfo *TemplateArgsAsWritten,
1941 SourceLocation PointOfInstantiation);
1942
1943 /// Specify that this record is an instantiation of the
1944 /// member function FD.
1945 void setInstantiationOfMemberFunction(ASTContext &C, FunctionDecl *FD,
1946 TemplateSpecializationKind TSK);
1947
1948 void setParams(ASTContext &C, ArrayRef<ParmVarDecl *> NewParamInfo);
1949
1950 // This is unfortunately needed because ASTDeclWriter::VisitFunctionDecl
1951 // need to access this bit but we want to avoid making ASTDeclWriter
1952 // a friend of FunctionDeclBitfields just for this.
1953 bool isDeletedBit() const { return FunctionDeclBits.IsDeleted; }
1954
1955 /// Whether an ODRHash has been stored.
1956 bool hasODRHash() const { return FunctionDeclBits.HasODRHash; }
1957
1958 /// State that an ODRHash has been stored.
1959 void setHasODRHash(bool B = true) { FunctionDeclBits.HasODRHash = B; }
1960
1961protected:
1962 FunctionDecl(Kind DK, ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1963 const DeclarationNameInfo &NameInfo, QualType T,
1964 TypeSourceInfo *TInfo, StorageClass S, bool isInlineSpecified,
1965 ConstexprSpecKind ConstexprKind,
1966 Expr *TrailingRequiresClause = nullptr);
1967
1968 using redeclarable_base = Redeclarable<FunctionDecl>;
1969
1970 FunctionDecl *getNextRedeclarationImpl() override {
1971 return getNextRedeclaration();
1972 }
1973
1974 FunctionDecl *getPreviousDeclImpl() override {
1975 return getPreviousDecl();
1976 }
1977
1978 FunctionDecl *getMostRecentDeclImpl() override {
1979 return getMostRecentDecl();
1980 }
1981
1982public:
1983 friend class ASTDeclReader;
1984 friend class ASTDeclWriter;
1985
1986 using redecl_range = redeclarable_base::redecl_range;
1987 using redecl_iterator = redeclarable_base::redecl_iterator;
1988
1989 using redeclarable_base::redecls_begin;
1990 using redeclarable_base::redecls_end;
1991 using redeclarable_base::redecls;
1992 using redeclarable_base::getPreviousDecl;
1993 using redeclarable_base::getMostRecentDecl;
1994 using redeclarable_base::isFirstDecl;
1995
1996 static FunctionDecl *
1997 Create(ASTContext &C, DeclContext *DC, SourceLocation StartLoc,
1998 SourceLocation NLoc, DeclarationName N, QualType T,
1999 TypeSourceInfo *TInfo, StorageClass SC, bool isInlineSpecified = false,
2000 bool hasWrittenPrototype = true,
2001 ConstexprSpecKind ConstexprKind = ConstexprSpecKind::Unspecified,
2002 Expr *TrailingRequiresClause = nullptr) {
2003 DeclarationNameInfo NameInfo(N, NLoc);
2004 return FunctionDecl::Create(C, DC, StartLoc, NameInfo, T, TInfo, SC,
2005 isInlineSpecified, hasWrittenPrototype,
2006 ConstexprKind, TrailingRequiresClause);
2007 }
2008
2009 static FunctionDecl *Create(ASTContext &C, DeclContext *DC,
2010 SourceLocation StartLoc,
2011 const DeclarationNameInfo &NameInfo, QualType T,
2012 TypeSourceInfo *TInfo, StorageClass SC,
2013 bool isInlineSpecified, bool hasWrittenPrototype,
2014 ConstexprSpecKind ConstexprKind,
2015 Expr *TrailingRequiresClause);
2016
2017 static FunctionDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2018
2019 DeclarationNameInfo getNameInfo() const {
2020 return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
2021 }
2022
2023 void getNameForDiagnostic(raw_ostream &OS, const PrintingPolicy &Policy,
2024 bool Qualified) const override;
2025
2026 void setRangeEnd(SourceLocation E) { EndRangeLoc = E; }
2027
2028 /// Returns the location of the ellipsis of a variadic function.
2029 SourceLocation getEllipsisLoc() const {
2030 const auto *FPT = getType()->getAs<FunctionProtoType>();
2031 if (FPT && FPT->isVariadic())
2032 return FPT->getEllipsisLoc();
2033 return SourceLocation();
2034 }
2035
2036 SourceRange getSourceRange() const override LLVM_READONLY__attribute__((__pure__));
2037
2038 // Function definitions.
2039 //
2040 // A function declaration may be:
2041 // - a non defining declaration,
2042 // - a definition. A function may be defined because:
2043 // - it has a body, or will have it in the case of late parsing.
2044 // - it has an uninstantiated body. The body does not exist because the
2045 // function is not used yet, but the declaration is considered a
2046 // definition and does not allow other definition of this function.
2047 // - it does not have a user specified body, but it does not allow
2048 // redefinition, because it is deleted/defaulted or is defined through
2049 // some other mechanism (alias, ifunc).
2050
2051 /// Returns true if the function has a body.
2052 ///
2053 /// The function body might be in any of the (re-)declarations of this
2054 /// function. The variant that accepts a FunctionDecl pointer will set that
2055 /// function declaration to the actual declaration containing the body (if
2056 /// there is one).
2057 bool hasBody(const FunctionDecl *&Definition) const;
2058
2059 bool hasBody() const override {
2060 const FunctionDecl* Definition;
2061 return hasBody(Definition);
2062 }
2063
2064 /// Returns whether the function has a trivial body that does not require any
2065 /// specific codegen.
2066 bool hasTrivialBody() const;
2067
2068 /// Returns true if the function has a definition that does not need to be
2069 /// instantiated.
2070 ///
2071 /// The variant that accepts a FunctionDecl pointer will set that function
2072 /// declaration to the declaration that is a definition (if there is one).
2073 ///
2074 /// \param CheckForPendingFriendDefinition If \c true, also check for friend
2075 /// declarations that were instantiataed from function definitions.
2076 /// Such a declaration behaves as if it is a definition for the
2077 /// purpose of redefinition checking, but isn't actually a "real"
2078 /// definition until its body is instantiated.
2079 bool isDefined(const FunctionDecl *&Definition,
2080 bool CheckForPendingFriendDefinition = false) const;
2081
2082 bool isDefined() const {
2083 const FunctionDecl* Definition;
2084 return isDefined(Definition);
2085 }
2086
2087 /// Get the definition for this declaration.
2088 FunctionDecl *getDefinition() {
2089 const FunctionDecl *Definition;
2090 if (isDefined(Definition))
2091 return const_cast<FunctionDecl *>(Definition);
2092 return nullptr;
2093 }
2094 const FunctionDecl *getDefinition() const {
2095 return const_cast<FunctionDecl *>(this)->getDefinition();
2096 }
2097
2098 /// Retrieve the body (definition) of the function. The function body might be
2099 /// in any of the (re-)declarations of this function. The variant that accepts
2100 /// a FunctionDecl pointer will set that function declaration to the actual
2101 /// declaration containing the body (if there is one).
2102 /// NOTE: For checking if there is a body, use hasBody() instead, to avoid
2103 /// unnecessary AST de-serialization of the body.
2104 Stmt *getBody(const FunctionDecl *&Definition) const;
2105
2106 Stmt *getBody() const override {
2107 const FunctionDecl* Definition;
2108 return getBody(Definition);
2109 }
2110
2111 /// Returns whether this specific declaration of the function is also a
2112 /// definition that does not contain uninstantiated body.
2113 ///
2114 /// This does not determine whether the function has been defined (e.g., in a
2115 /// previous definition); for that information, use isDefined.
2116 ///
2117 /// Note: the function declaration does not become a definition until the
2118 /// parser reaches the definition, if called before, this function will return
2119 /// `false`.
2120 bool isThisDeclarationADefinition() const {
2121 return isDeletedAsWritten() || isDefaulted() ||
2122 doesThisDeclarationHaveABody() || hasSkippedBody() ||
2123 willHaveBody() || hasDefiningAttr();
2124 }
2125
2126 /// Determine whether this specific declaration of the function is a friend
2127 /// declaration that was instantiated from a function definition. Such
2128 /// declarations behave like definitions in some contexts.
2129 bool isThisDeclarationInstantiatedFromAFriendDefinition() const;
2130
2131 /// Returns whether this specific declaration of the function has a body.
2132 bool doesThisDeclarationHaveABody() const {
2133 return (!FunctionDeclBits.HasDefaultedFunctionInfo && Body) ||
2134 isLateTemplateParsed();
2135 }
2136
2137 void setBody(Stmt *B);
2138 void setLazyBody(uint64_t Offset) {
2139 FunctionDeclBits.HasDefaultedFunctionInfo = false;
2140 Body = LazyDeclStmtPtr(Offset);
2141 }
2142
2143 void setDefaultedFunctionInfo(DefaultedFunctionInfo *Info);
2144 DefaultedFunctionInfo *getDefaultedFunctionInfo() const;
2145
2146 /// Whether this function is variadic.
2147 bool isVariadic() const;
2148
2149 /// Whether this function is marked as virtual explicitly.
2150 bool isVirtualAsWritten() const {
2151 return FunctionDeclBits.IsVirtualAsWritten;
2152 }
2153
2154 /// State that this function is marked as virtual explicitly.
2155 void setVirtualAsWritten(bool V) { FunctionDeclBits.IsVirtualAsWritten = V; }
2156
2157 /// Whether this virtual function is pure, i.e. makes the containing class
2158 /// abstract.
2159 bool isPure() const { return FunctionDeclBits.IsPure; }
2160 void setPure(bool P = true);
2161
2162 /// Whether this templated function will be late parsed.
2163 bool isLateTemplateParsed() const {
2164 return FunctionDeclBits.IsLateTemplateParsed;
2165 }
2166
2167 /// State that this templated function will be late parsed.
2168 void setLateTemplateParsed(bool ILT = true) {
2169 FunctionDeclBits.IsLateTemplateParsed = ILT;
2170 }
2171
2172 /// Whether this function is "trivial" in some specialized C++ senses.
2173 /// Can only be true for default constructors, copy constructors,
2174 /// copy assignment operators, and destructors. Not meaningful until
2175 /// the class has been fully built by Sema.
2176 bool isTrivial() const { return FunctionDeclBits.IsTrivial; }
2177 void setTrivial(bool IT) { FunctionDeclBits.IsTrivial = IT; }
2178
2179 bool isTrivialForCall() const { return FunctionDeclBits.IsTrivialForCall; }
2180 void setTrivialForCall(bool IT) { FunctionDeclBits.IsTrivialForCall = IT; }
2181
2182 /// Whether this function is defaulted. Valid for e.g.
2183 /// special member functions, defaulted comparisions (not methods!).
2184 bool isDefaulted() const { return FunctionDeclBits.IsDefaulted; }
2185 void setDefaulted(bool D = true) { FunctionDeclBits.IsDefaulted = D; }
2186
2187 /// Whether this function is explicitly defaulted.
2188 bool isExplicitlyDefaulted() const {
2189 return FunctionDeclBits.IsExplicitlyDefaulted;
2190 }
2191
2192 /// State that this function is explicitly defaulted.
2193 void setExplicitlyDefaulted(bool ED = true) {
2194 FunctionDeclBits.IsExplicitlyDefaulted = ED;
2195 }
2196
2197 /// True if this method is user-declared and was not
2198 /// deleted or defaulted on its first declaration.
2199 bool isUserProvided() const {
2200 auto *DeclAsWritten = this;
2201 if (FunctionDecl *Pattern = getTemplateInstantiationPattern())
2202 DeclAsWritten = Pattern;
2203 return !(DeclAsWritten->isDeleted() ||
2204 DeclAsWritten->getCanonicalDecl()->isDefaulted());
2205 }
2206
2207 /// Whether falling off this function implicitly returns null/zero.
2208 /// If a more specific implicit return value is required, front-ends
2209 /// should synthesize the appropriate return statements.
2210 bool hasImplicitReturnZero() const {
2211 return FunctionDeclBits.HasImplicitReturnZero;
2212 }
2213
2214 /// State that falling off this function implicitly returns null/zero.
2215 /// If a more specific implicit return value is required, front-ends
2216 /// should synthesize the appropriate return statements.
2217 void setHasImplicitReturnZero(bool IRZ) {
2218 FunctionDeclBits.HasImplicitReturnZero = IRZ;
2219 }
2220
2221 /// Whether this function has a prototype, either because one
2222 /// was explicitly written or because it was "inherited" by merging
2223 /// a declaration without a prototype with a declaration that has a
2224 /// prototype.
2225 bool hasPrototype() const {
2226 return hasWrittenPrototype() || hasInheritedPrototype();
2227 }
2228
2229 /// Whether this function has a written prototype.
2230 bool hasWrittenPrototype() const {
2231 return FunctionDeclBits.HasWrittenPrototype;
2232 }
2233
2234 /// State that this function has a written prototype.
2235 void setHasWrittenPrototype(bool P = true) {
2236 FunctionDeclBits.HasWrittenPrototype = P;
2237 }
2238
2239 /// Whether this function inherited its prototype from a
2240 /// previous declaration.
2241 bool hasInheritedPrototype() const {
2242 return FunctionDeclBits.HasInheritedPrototype;
2243 }
2244
2245 /// State that this function inherited its prototype from a
2246 /// previous declaration.
2247 void setHasInheritedPrototype(bool P = true) {
2248 FunctionDeclBits.HasInheritedPrototype = P;
2249 }
2250
2251 /// Whether this is a (C++11) constexpr function or constexpr constructor.
2252 bool isConstexpr() const {
2253 return getConstexprKind() != ConstexprSpecKind::Unspecified;
2254 }
2255 void setConstexprKind(ConstexprSpecKind CSK) {
2256 FunctionDeclBits.ConstexprKind = static_cast<uint64_t>(CSK);
2257 }
2258 ConstexprSpecKind getConstexprKind() const {
2259 return static_cast<ConstexprSpecKind>(FunctionDeclBits.ConstexprKind);
2260 }
2261 bool isConstexprSpecified() const {
2262 return getConstexprKind() == ConstexprSpecKind::Constexpr;
2263 }
2264 bool isConsteval() const {
2265 return getConstexprKind() == ConstexprSpecKind::Consteval;
2266 }
2267
2268 /// Whether the instantiation of this function is pending.
2269 /// This bit is set when the decision to instantiate this function is made
2270 /// and unset if and when the function body is created. That leaves out
2271 /// cases where instantiation did not happen because the template definition
2272 /// was not seen in this TU. This bit remains set in those cases, under the
2273 /// assumption that the instantiation will happen in some other TU.
2274 bool instantiationIsPending() const {
2275 return FunctionDeclBits.InstantiationIsPending;
2276 }
2277
2278 /// State that the instantiation of this function is pending.
2279 /// (see instantiationIsPending)
2280 void setInstantiationIsPending(bool IC) {
2281 FunctionDeclBits.InstantiationIsPending = IC;
2282 }
2283
2284 /// Indicates the function uses __try.
2285 bool usesSEHTry() const { return FunctionDeclBits.UsesSEHTry; }
2286 void setUsesSEHTry(bool UST) { FunctionDeclBits.UsesSEHTry = UST; }
2287
2288 /// Whether this function has been deleted.
2289 ///
2290 /// A function that is "deleted" (via the C++0x "= delete" syntax)
2291 /// acts like a normal function, except that it cannot actually be
2292 /// called or have its address taken. Deleted functions are
2293 /// typically used in C++ overload resolution to attract arguments
2294 /// whose type or lvalue/rvalue-ness would permit the use of a
2295 /// different overload that would behave incorrectly. For example,
2296 /// one might use deleted functions to ban implicit conversion from
2297 /// a floating-point number to an Integer type:
2298 ///
2299 /// @code
2300 /// struct Integer {
2301 /// Integer(long); // construct from a long
2302 /// Integer(double) = delete; // no construction from float or double
2303 /// Integer(long double) = delete; // no construction from long double
2304 /// };
2305 /// @endcode
2306 // If a function is deleted, its first declaration must be.
2307 bool isDeleted() const {
2308 return getCanonicalDecl()->FunctionDeclBits.IsDeleted;
2309 }
2310
2311 bool isDeletedAsWritten() const {
2312 return FunctionDeclBits.IsDeleted && !isDefaulted();
2313 }
2314
2315 void setDeletedAsWritten(bool D = true) { FunctionDeclBits.IsDeleted = D; }
2316
2317 /// Determines whether this function is "main", which is the
2318 /// entry point into an executable program.
2319 bool isMain() const;
2320
2321 /// Determines whether this function is a MSVCRT user defined entry
2322 /// point.
2323 bool isMSVCRTEntryPoint() const;
2324
2325 /// Determines whether this operator new or delete is one
2326 /// of the reserved global placement operators:
2327 /// void *operator new(size_t, void *);
2328 /// void *operator new[](size_t, void *);
2329 /// void operator delete(void *, void *);
2330 /// void operator delete[](void *, void *);
2331 /// These functions have special behavior under [new.delete.placement]:
2332 /// These functions are reserved, a C++ program may not define
2333 /// functions that displace the versions in the Standard C++ library.
2334 /// The provisions of [basic.stc.dynamic] do not apply to these
2335 /// reserved placement forms of operator new and operator delete.
2336 ///
2337 /// This function must be an allocation or deallocation function.
2338 bool isReservedGlobalPlacementOperator() const;
2339
2340 /// Determines whether this function is one of the replaceable
2341 /// global allocation functions:
2342 /// void *operator new(size_t);
2343 /// void *operator new(size_t, const std::nothrow_t &) noexcept;
2344 /// void *operator new[](size_t);
2345 /// void *operator new[](size_t, const std::nothrow_t &) noexcept;
2346 /// void operator delete(void *) noexcept;
2347 /// void operator delete(void *, std::size_t) noexcept; [C++1y]
2348 /// void operator delete(void *, const std::nothrow_t &) noexcept;
2349 /// void operator delete[](void *) noexcept;
2350 /// void operator delete[](void *, std::size_t) noexcept; [C++1y]
2351 /// void operator delete[](void *, const std::nothrow_t &) noexcept;
2352 /// These functions have special behavior under C++1y [expr.new]:
2353 /// An implementation is allowed to omit a call to a replaceable global
2354 /// allocation function. [...]
2355 ///
2356 /// If this function is an aligned allocation/deallocation function, return
2357 /// the parameter number of the requested alignment through AlignmentParam.
2358 ///
2359 /// If this function is an allocation/deallocation function that takes
2360 /// the `std::nothrow_t` tag, return true through IsNothrow,
2361 bool isReplaceableGlobalAllocationFunction(
2362 Optional<unsigned> *AlignmentParam = nullptr,
2363 bool *IsNothrow = nullptr) const;
2364
2365 /// Determine if this function provides an inline implementation of a builtin.
2366 bool isInlineBuiltinDeclaration() const;
2367
2368 /// Determine whether this is a destroying operator delete.
2369 bool isDestroyingOperatorDelete() const;
2370
2371 /// Compute the language linkage.
2372 LanguageLinkage getLanguageLinkage() const;
2373
2374 /// Determines whether this function is a function with
2375 /// external, C linkage.
2376 bool isExternC() const;
2377
2378 /// Determines whether this function's context is, or is nested within,
2379 /// a C++ extern "C" linkage spec.
2380 bool isInExternCContext() const;
2381
2382 /// Determines whether this function's context is, or is nested within,
2383 /// a C++ extern "C++" linkage spec.
2384 bool isInExternCXXContext() const;
2385
2386 /// Determines whether this is a global function.
2387 bool isGlobal() const;
2388
2389 /// Determines whether this function is known to be 'noreturn', through
2390 /// an attribute on its declaration or its type.
2391 bool isNoReturn() const;
2392
2393 /// True if the function was a definition but its body was skipped.
2394 bool hasSkippedBody() const { return FunctionDeclBits.HasSkippedBody; }
2395 void setHasSkippedBody(bool Skipped = true) {
2396 FunctionDeclBits.HasSkippedBody = Skipped;
2397 }
2398
2399 /// True if this function will eventually have a body, once it's fully parsed.
2400 bool willHaveBody() const { return FunctionDeclBits.WillHaveBody; }
2401 void setWillHaveBody(bool V = true) { FunctionDeclBits.WillHaveBody = V; }
2402
2403 /// True if this function is considered a multiversioned function.
2404 bool isMultiVersion() const {
2405 return getCanonicalDecl()->FunctionDeclBits.IsMultiVersion;
2406 }
2407
2408 /// Sets the multiversion state for this declaration and all of its
2409 /// redeclarations.
2410 void setIsMultiVersion(bool V = true) {
2411 getCanonicalDecl()->FunctionDeclBits.IsMultiVersion = V;
2412 }
2413
2414 /// Gets the kind of multiversioning attribute this declaration has. Note that
2415 /// this can return a value even if the function is not multiversion, such as
2416 /// the case of 'target'.
2417 MultiVersionKind getMultiVersionKind() const;
2418
2419
2420 /// True if this function is a multiversioned dispatch function as a part of
2421 /// the cpu_specific/cpu_dispatch functionality.
2422 bool isCPUDispatchMultiVersion() const;
2423 /// True if this function is a multiversioned processor specific function as a
2424 /// part of the cpu_specific/cpu_dispatch functionality.
2425 bool isCPUSpecificMultiVersion() const;
2426
2427 /// True if this function is a multiversioned dispatch function as a part of
2428 /// the target functionality.
2429 bool isTargetMultiVersion() const;
2430
2431 /// \brief Get the associated-constraints of this function declaration.
2432 /// Currently, this will either be a vector of size 1 containing the
2433 /// trailing-requires-clause or an empty vector.
2434 ///
2435 /// Use this instead of getTrailingRequiresClause for concepts APIs that
2436 /// accept an ArrayRef of constraint expressions.
2437 void getAssociatedConstraints(SmallVectorImpl<const Expr *> &AC) const {
2438 if (auto *TRC = getTrailingRequiresClause())
2439 AC.push_back(TRC);
2440 }
2441
2442 void setPreviousDeclaration(FunctionDecl * PrevDecl);
2443
2444 FunctionDecl *getCanonicalDecl() override;
2445 const FunctionDecl *getCanonicalDecl() const {
2446 return const_cast<FunctionDecl*>(this)->getCanonicalDecl();
2447 }
2448
2449 unsigned getBuiltinID(bool ConsiderWrapperFunctions = false) const;
2450
2451 // ArrayRef interface to parameters.
2452 ArrayRef<ParmVarDecl *> parameters() const {
2453 return {ParamInfo, getNumParams()};
2454 }
2455 MutableArrayRef<ParmVarDecl *> parameters() {
2456 return {ParamInfo, getNumParams()};
2457 }
2458
2459 // Iterator access to formal parameters.
2460 using param_iterator = MutableArrayRef<ParmVarDecl *>::iterator;
2461 using param_const_iterator = ArrayRef<ParmVarDecl *>::const_iterator;
2462
2463 bool param_empty() const { return parameters().empty(); }
2464 param_iterator param_begin() { return parameters().begin(); }
2465 param_iterator param_end() { return parameters().end(); }
2466 param_const_iterator param_begin() const { return parameters().begin(); }
2467 param_const_iterator param_end() const { return parameters().end(); }
2468 size_t param_size() const { return parameters().size(); }
2469
2470 /// Return the number of parameters this function must have based on its
2471 /// FunctionType. This is the length of the ParamInfo array after it has been
2472 /// created.
2473 unsigned getNumParams() const;
2474
2475 const ParmVarDecl *getParamDecl(unsigned i) const {
2476 assert(i < getNumParams() && "Illegal param #")(static_cast <bool> (i < getNumParams() && "Illegal param #"
) ? void (0) : __assert_fail ("i < getNumParams() && \"Illegal param #\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/include/clang/AST/Decl.h"
, 2476, __extension__ __PRETTY_FUNCTION__))
;
2477 return ParamInfo[i];
2478 }
2479 ParmVarDecl *getParamDecl(unsigned i) {
2480 assert(i < getNumParams() && "Illegal param #")(static_cast <bool> (i < getNumParams() && "Illegal param #"
) ? void (0) : __assert_fail ("i < getNumParams() && \"Illegal param #\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/include/clang/AST/Decl.h"
, 2480, __extension__ __PRETTY_FUNCTION__))
;
2481 return ParamInfo[i];
2482 }
2483 void setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
2484 setParams(getASTContext(), NewParamInfo);
2485 }
2486
2487 /// Returns the minimum number of arguments needed to call this function. This
2488 /// may be fewer than the number of function parameters, if some of the
2489 /// parameters have default arguments (in C++).
2490 unsigned getMinRequiredArguments() const;
2491
2492 /// Determine whether this function has a single parameter, or multiple
2493 /// parameters where all but the first have default arguments.
2494 ///
2495 /// This notion is used in the definition of copy/move constructors and
2496 /// initializer list constructors. Note that, unlike getMinRequiredArguments,
2497 /// parameter packs are not treated specially here.
2498 bool hasOneParamOrDefaultArgs() const;
2499
2500 /// Find the source location information for how the type of this function
2501 /// was written. May be absent (for example if the function was declared via
2502 /// a typedef) and may contain a different type from that of the function
2503 /// (for example if the function type was adjusted by an attribute).
2504 FunctionTypeLoc getFunctionTypeLoc() const;
2505
2506 QualType getReturnType() const {
2507 return getType()->castAs<FunctionType>()->getReturnType();
2508 }
2509
2510 /// Attempt to compute an informative source range covering the
2511 /// function return type. This may omit qualifiers and other information with
2512 /// limited representation in the AST.
2513 SourceRange getReturnTypeSourceRange() const;
2514
2515 /// Attempt to compute an informative source range covering the
2516 /// function parameters, including the ellipsis of a variadic function.
2517 /// The source range excludes the parentheses, and is invalid if there are
2518 /// no parameters and no ellipsis.
2519 SourceRange getParametersSourceRange() const;
2520
2521 /// Get the declared return type, which may differ from the actual return
2522 /// type if the return type is deduced.
2523 QualType getDeclaredReturnType() const {
2524 auto *TSI = getTypeSourceInfo();
2525 QualType T = TSI ? TSI->getType() : getType();
2526 return T->castAs<FunctionType>()->getReturnType();
2527 }
2528
2529 /// Gets the ExceptionSpecificationType as declared.
2530 ExceptionSpecificationType getExceptionSpecType() const {
2531 auto *TSI = getTypeSourceInfo();
2532 QualType T = TSI ? TSI->getType() : getType();
2533 const auto *FPT = T->getAs<FunctionProtoType>();
2534 return FPT ? FPT->getExceptionSpecType() : EST_None;
2535 }
2536
2537 /// Attempt to compute an informative source range covering the
2538 /// function exception specification, if any.
2539 SourceRange getExceptionSpecSourceRange() const;
2540
2541 /// Determine the type of an expression that calls this function.
2542 QualType getCallResultType() const {
2543 return getType()->castAs<FunctionType>()->getCallResultType(
2544 getASTContext());
2545 }
2546
2547 /// Returns the storage class as written in the source. For the
2548 /// computed linkage of symbol, see getLinkage.
2549 StorageClass getStorageClass() const {
2550 return static_cast<StorageClass>(FunctionDeclBits.SClass);
2551 }
2552
2553 /// Sets the storage class as written in the source.
2554 void setStorageClass(StorageClass SClass) {
2555 FunctionDeclBits.SClass = SClass;
2556 }
2557
2558 /// Determine whether the "inline" keyword was specified for this
2559 /// function.
2560 bool isInlineSpecified() const { return FunctionDeclBits.IsInlineSpecified; }
2561
2562 /// Set whether the "inline" keyword was specified for this function.
2563 void setInlineSpecified(bool I) {
2564 FunctionDeclBits.IsInlineSpecified = I;
2565 FunctionDeclBits.IsInline = I;
2566 }
2567
2568 /// Flag that this function is implicitly inline.
2569 void setImplicitlyInline(bool I = true) { FunctionDeclBits.IsInline = I; }
2570
2571 /// Determine whether this function should be inlined, because it is
2572 /// either marked "inline" or "constexpr" or is a member function of a class
2573 /// that was defined in the class body.
2574 bool isInlined() const { return FunctionDeclBits.IsInline; }
2575
2576 bool isInlineDefinitionExternallyVisible() const;
2577
2578 bool isMSExternInline() const;
2579
2580 bool doesDeclarationForceExternallyVisibleDefinition() const;
2581
2582 bool isStatic() const { return getStorageClass() == SC_Static; }
2583
2584 /// Whether this function declaration represents an C++ overloaded
2585 /// operator, e.g., "operator+".
2586 bool isOverloadedOperator() const {
2587 return getOverloadedOperator() != OO_None;
2588 }
2589
2590 OverloadedOperatorKind getOverloadedOperator() const;
2591
2592 const IdentifierInfo *getLiteralIdentifier() const;
2593
2594 /// If this function is an instantiation of a member function
2595 /// of a class template specialization, retrieves the function from
2596 /// which it was instantiated.
2597 ///
2598 /// This routine will return non-NULL for (non-templated) member
2599 /// functions of class templates and for instantiations of function
2600 /// templates. For example, given:
2601 ///
2602 /// \code
2603 /// template<typename T>
2604 /// struct X {
2605 /// void f(T);
2606 /// };
2607 /// \endcode
2608 ///
2609 /// The declaration for X<int>::f is a (non-templated) FunctionDecl
2610 /// whose parent is the class template specialization X<int>. For
2611 /// this declaration, getInstantiatedFromFunction() will return
2612 /// the FunctionDecl X<T>::A. When a complete definition of
2613 /// X<int>::A is required, it will be instantiated from the
2614 /// declaration returned by getInstantiatedFromMemberFunction().
2615 FunctionDecl *getInstantiatedFromMemberFunction() const;
2616
2617 /// What kind of templated function this is.
2618 TemplatedKind getTemplatedKind() const;
2619
2620 /// If this function is an instantiation of a member function of a
2621 /// class template specialization, retrieves the member specialization
2622 /// information.
2623 MemberSpecializationInfo *getMemberSpecializationInfo() const;
2624
2625 /// Specify that this record is an instantiation of the
2626 /// member function FD.
2627 void setInstantiationOfMemberFunction(FunctionDecl *FD,
2628 TemplateSpecializationKind TSK) {
2629 setInstantiationOfMemberFunction(getASTContext(), FD, TSK);
2630 }
2631
2632 /// Retrieves the function template that is described by this
2633 /// function declaration.
2634 ///
2635 /// Every function template is represented as a FunctionTemplateDecl
2636 /// and a FunctionDecl (or something derived from FunctionDecl). The
2637 /// former contains template properties (such as the template
2638 /// parameter lists) while the latter contains the actual
2639 /// description of the template's
2640 /// contents. FunctionTemplateDecl::getTemplatedDecl() retrieves the
2641 /// FunctionDecl that describes the function template,
2642 /// getDescribedFunctionTemplate() retrieves the
2643 /// FunctionTemplateDecl from a FunctionDecl.
2644 FunctionTemplateDecl *getDescribedFunctionTemplate() const;
2645
2646 void setDescribedFunctionTemplate(FunctionTemplateDecl *Template);
2647
2648 /// Determine whether this function is a function template
2649 /// specialization.
2650 bool isFunctionTemplateSpecialization() const {
2651 return getPrimaryTemplate() != nullptr;
2652 }
2653
2654 /// If this function is actually a function template specialization,
2655 /// retrieve information about this function template specialization.
2656 /// Otherwise, returns NULL.
2657 FunctionTemplateSpecializationInfo *getTemplateSpecializationInfo() const;
2658
2659 /// Determines whether this function is a function template
2660 /// specialization or a member of a class template specialization that can
2661 /// be implicitly instantiated.
2662 bool isImplicitlyInstantiable() const;
2663
2664 /// Determines if the given function was instantiated from a
2665 /// function template.
2666 bool isTemplateInstantiation() const;
2667
2668 /// Retrieve the function declaration from which this function could
2669 /// be instantiated, if it is an instantiation (rather than a non-template
2670 /// or a specialization, for example).
2671 ///
2672 /// If \p ForDefinition is \c false, explicit specializations will be treated
2673 /// as if they were implicit instantiations. This will then find the pattern
2674 /// corresponding to non-definition portions of the declaration, such as
2675 /// default arguments and the exception specification.
2676 FunctionDecl *
2677 getTemplateInstantiationPattern(bool ForDefinition = true) const;
2678
2679 /// Retrieve the primary template that this function template
2680 /// specialization either specializes or was instantiated from.
2681 ///
2682 /// If this function declaration is not a function template specialization,
2683 /// returns NULL.
2684 FunctionTemplateDecl *getPrimaryTemplate() const;
2685
2686 /// Retrieve the template arguments used to produce this function
2687 /// template specialization from the primary template.
2688 ///
2689 /// If this function declaration is not a function template specialization,
2690 /// returns NULL.
2691 const TemplateArgumentList *getTemplateSpecializationArgs() const;
2692
2693 /// Retrieve the template argument list as written in the sources,
2694 /// if any.
2695 ///
2696 /// If this function declaration is not a function template specialization
2697 /// or if it had no explicit template argument list, returns NULL.
2698 /// Note that it an explicit template argument list may be written empty,
2699 /// e.g., template<> void foo<>(char* s);
2700 const ASTTemplateArgumentListInfo*
2701 getTemplateSpecializationArgsAsWritten() const;
2702
2703 /// Specify that this function declaration is actually a function
2704 /// template specialization.
2705 ///
2706 /// \param Template the function template that this function template
2707 /// specialization specializes.
2708 ///
2709 /// \param TemplateArgs the template arguments that produced this
2710 /// function template specialization from the template.
2711 ///
2712 /// \param InsertPos If non-NULL, the position in the function template
2713 /// specialization set where the function template specialization data will
2714 /// be inserted.
2715 ///
2716 /// \param TSK the kind of template specialization this is.
2717 ///
2718 /// \param TemplateArgsAsWritten location info of template arguments.
2719 ///
2720 /// \param PointOfInstantiation point at which the function template
2721 /// specialization was first instantiated.
2722 void setFunctionTemplateSpecialization(FunctionTemplateDecl *Template,
2723 const TemplateArgumentList *TemplateArgs,
2724 void *InsertPos,
2725 TemplateSpecializationKind TSK = TSK_ImplicitInstantiation,
2726 const TemplateArgumentListInfo *TemplateArgsAsWritten = nullptr,
2727 SourceLocation PointOfInstantiation = SourceLocation()) {
2728 setFunctionTemplateSpecialization(getASTContext(), Template, TemplateArgs,
2729 InsertPos, TSK, TemplateArgsAsWritten,
2730 PointOfInstantiation);
2731 }
2732
2733 /// Specifies that this function declaration is actually a
2734 /// dependent function template specialization.
2735 void setDependentTemplateSpecialization(ASTContext &Context,
2736 const UnresolvedSetImpl &Templates,
2737 const TemplateArgumentListInfo &TemplateArgs);
2738
2739 DependentFunctionTemplateSpecializationInfo *
2740 getDependentSpecializationInfo() const;
2741
2742 /// Determine what kind of template instantiation this function
2743 /// represents.
2744 TemplateSpecializationKind getTemplateSpecializationKind() const;
2745
2746 /// Determine the kind of template specialization this function represents
2747 /// for the purpose of template instantiation.
2748 TemplateSpecializationKind
2749 getTemplateSpecializationKindForInstantiation() const;
2750
2751 /// Determine what kind of template instantiation this function
2752 /// represents.
2753 void setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2754 SourceLocation PointOfInstantiation = SourceLocation());
2755
2756 /// Retrieve the (first) point of instantiation of a function template
2757 /// specialization or a member of a class template specialization.
2758 ///
2759 /// \returns the first point of instantiation, if this function was
2760 /// instantiated from a template; otherwise, returns an invalid source
2761 /// location.
2762 SourceLocation getPointOfInstantiation() const;
2763
2764 /// Determine whether this is or was instantiated from an out-of-line
2765 /// definition of a member function.
2766 bool isOutOfLine() const override;
2767
2768 /// Identify a memory copying or setting function.
2769 /// If the given function is a memory copy or setting function, returns
2770 /// the corresponding Builtin ID. If the function is not a memory function,
2771 /// returns 0.
2772 unsigned getMemoryFunctionKind() const;
2773
2774 /// Returns ODRHash of the function. This value is calculated and
2775 /// stored on first call, then the stored value returned on the other calls.
2776 unsigned getODRHash();
2777
2778 /// Returns cached ODRHash of the function. This must have been previously
2779 /// computed and stored.
2780 unsigned getODRHash() const;
2781
2782 // Implement isa/cast/dyncast/etc.
2783 static bool classof(const Decl *D) { return classofKind(D->getKind()); }
2784 static bool classofKind(Kind K) {
2785 return K >= firstFunction && K <= lastFunction;
2786 }
2787 static DeclContext *castToDeclContext(const FunctionDecl *D) {
2788 return static_cast<DeclContext *>(const_cast<FunctionDecl*>(D));
2789 }
2790 static FunctionDecl *castFromDeclContext(const DeclContext *DC) {
2791 return static_cast<FunctionDecl *>(const_cast<DeclContext*>(DC));
2792 }
2793};
2794
2795/// Represents a member of a struct/union/class.
2796class FieldDecl : public DeclaratorDecl, public Mergeable<FieldDecl> {
2797 unsigned BitField : 1;
2798 unsigned Mutable : 1;
2799 mutable unsigned CachedFieldIndex : 30;
2800
2801 /// The kinds of value we can store in InitializerOrBitWidth.
2802 ///
2803 /// Note that this is compatible with InClassInitStyle except for
2804 /// ISK_CapturedVLAType.
2805 enum InitStorageKind {
2806 /// If the pointer is null, there's nothing special. Otherwise,
2807 /// this is a bitfield and the pointer is the Expr* storing the
2808 /// bit-width.
2809 ISK_NoInit = (unsigned) ICIS_NoInit,
2810
2811 /// The pointer is an (optional due to delayed parsing) Expr*
2812 /// holding the copy-initializer.
2813 ISK_InClassCopyInit = (unsigned) ICIS_CopyInit,
2814
2815 /// The pointer is an (optional due to delayed parsing) Expr*
2816 /// holding the list-initializer.
2817 ISK_InClassListInit = (unsigned) ICIS_ListInit,
2818
2819 /// The pointer is a VariableArrayType* that's been captured;
2820 /// the enclosing context is a lambda or captured statement.
2821 ISK_CapturedVLAType,
2822 };
2823
2824 /// If this is a bitfield with a default member initializer, this
2825 /// structure is used to represent the two expressions.
2826 struct InitAndBitWidth {
2827 Expr *Init;
2828 Expr *BitWidth;
2829 };
2830
2831 /// Storage for either the bit-width, the in-class initializer, or
2832 /// both (via InitAndBitWidth), or the captured variable length array bound.
2833 ///
2834 /// If the storage kind is ISK_InClassCopyInit or
2835 /// ISK_InClassListInit, but the initializer is null, then this
2836 /// field has an in-class initializer that has not yet been parsed
2837 /// and attached.
2838 // FIXME: Tail-allocate this to reduce the size of FieldDecl in the
2839 // overwhelmingly common case that we have none of these things.
2840 llvm::PointerIntPair<void *, 2, InitStorageKind> InitStorage;
2841
2842protected:
2843 FieldDecl(Kind DK, DeclContext *DC, SourceLocation StartLoc,
2844 SourceLocation IdLoc, IdentifierInfo *Id,
2845 QualType T, TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
2846 InClassInitStyle InitStyle)
2847 : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
2848 BitField(false), Mutable(Mutable), CachedFieldIndex(0),
2849 InitStorage(nullptr, (InitStorageKind) InitStyle) {
2850 if (BW)
2851 setBitWidth(BW);
2852 }
2853
2854public:
2855 friend class ASTDeclReader;
2856 friend class ASTDeclWriter;
2857
2858 static FieldDecl *Create(const ASTContext &C, DeclContext *DC,
2859 SourceLocation StartLoc, SourceLocation IdLoc,
2860 IdentifierInfo *Id, QualType T,
2861 TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
2862 InClassInitStyle InitStyle);
2863
2864 static FieldDecl *CreateDeserialized(ASTContext &C, unsigned ID);
2865
2866 /// Returns the index of this field within its record,
2867 /// as appropriate for passing to ASTRecordLayout::getFieldOffset.
2868 unsigned getFieldIndex() const;
2869
2870 /// Determines whether this field is mutable (C++ only).
2871 bool isMutable() const { return Mutable; }
2872
2873 /// Determines whether this field is a bitfield.
2874 bool isBitField() const { return BitField; }
2875
2876 /// Determines whether this is an unnamed bitfield.
2877 bool isUnnamedBitfield() const { return isBitField() && !getDeclName(); }
2878
2879 /// Determines whether this field is a
2880 /// representative for an anonymous struct or union. Such fields are
2881 /// unnamed and are implicitly generated by the implementation to
2882 /// store the data for the anonymous union or struct.
2883 bool isAnonymousStructOrUnion() const;
2884
2885 Expr *getBitWidth() const {
2886 if (!BitField)
2887 return nullptr;
2888 void *Ptr = InitStorage.getPointer();
2889 if (getInClassInitStyle())
2890 return static_cast<InitAndBitWidth*>(Ptr)->BitWidth;
2891 return static_cast<Expr*>(Ptr);
2892 }
2893
2894 unsigned getBitWidthValue(const ASTContext &Ctx) const;
2895
2896 /// Set the bit-field width for this member.
2897 // Note: used by some clients (i.e., do not remove it).
2898 void setBitWidth(Expr *Width) {
2899 assert(!hasCapturedVLAType() && !BitField &&(static_cast <bool> (!hasCapturedVLAType() && !
BitField && "bit width or captured type already set")
? void (0) : __assert_fail ("!hasCapturedVLAType() && !BitField && \"bit width or captured type already set\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/include/clang/AST/Decl.h"
, 2900, __extension__ __PRETTY_FUNCTION__))
2900 "bit width or captured type already set")(static_cast <bool> (!hasCapturedVLAType() && !
BitField && "bit width or captured type already set")
? void (0) : __assert_fail ("!hasCapturedVLAType() && !BitField && \"bit width or captured type already set\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/include/clang/AST/Decl.h"
, 2900, __extension__ __PRETTY_FUNCTION__))
;
2901 assert(Width && "no bit width specified")(static_cast <bool> (Width && "no bit width specified"
) ? void (0) : __assert_fail ("Width && \"no bit width specified\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/include/clang/AST/Decl.h"
, 2901, __extension__ __PRETTY_FUNCTION__))
;
2902 InitStorage.setPointer(
2903 InitStorage.getInt()
2904 ? new (getASTContext())
2905 InitAndBitWidth{getInClassInitializer(), Width}
2906 : static_cast<void*>(Width));
2907 BitField = true;
2908 }
2909
2910 /// Remove the bit-field width from this member.
2911 // Note: used by some clients (i.e., do not remove it).
2912 void removeBitWidth() {
2913 assert(isBitField() && "no bitfield width to remove")(static_cast <bool> (isBitField() && "no bitfield width to remove"
) ? void (0) : __assert_fail ("isBitField() && \"no bitfield width to remove\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/include/clang/AST/Decl.h"
, 2913, __extension__ __PRETTY_FUNCTION__))
;
2914 InitStorage.setPointer(getInClassInitializer());
2915 BitField = false;
2916 }
2917
2918 /// Is this a zero-length bit-field? Such bit-fields aren't really bit-fields
2919 /// at all and instead act as a separator between contiguous runs of other
2920 /// bit-fields.
2921 bool isZeroLengthBitField(const ASTContext &Ctx) const;
2922
2923 /// Determine if this field is a subobject of zero size, that is, either a
2924 /// zero-length bit-field or a field of empty class type with the
2925 /// [[no_unique_address]] attribute.
2926 bool isZeroSize(const ASTContext &Ctx) const;
2927
2928 /// Get the kind of (C++11) default member initializer that this field has.
2929 InClassInitStyle getInClassInitStyle() const {
2930 InitStorageKind storageKind = InitStorage.getInt();
2931 return (storageKind == ISK_CapturedVLAType
2932 ? ICIS_NoInit : (InClassInitStyle) storageKind);
2933 }
2934
2935 /// Determine whether this member has a C++11 default member initializer.
2936 bool hasInClassInitializer() const {
2937 return getInClassInitStyle() != ICIS_NoInit;
2938 }
2939
2940 /// Get the C++11 default member initializer for this member, or null if one
2941 /// has not been set. If a valid declaration has a default member initializer,
2942 /// but this returns null, then we have not parsed and attached it yet.
2943 Expr *getInClassInitializer() const {
2944 if (!hasInClassInitializer())
2945 return nullptr;
2946 void *Ptr = InitStorage.getPointer();
2947 if (BitField)
2948 return static_cast<InitAndBitWidth*>(Ptr)->Init;
2949 return static_cast<Expr*>(Ptr);
2950 }
2951
2952 /// Set the C++11 in-class initializer for this member.
2953 void setInClassInitializer(Expr *Init) {
2954 assert(hasInClassInitializer() && !getInClassInitializer())(static_cast <bool> (hasInClassInitializer() &&
!getInClassInitializer()) ? void (0) : __assert_fail ("hasInClassInitializer() && !getInClassInitializer()"
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/include/clang/AST/Decl.h"
, 2954, __extension__ __PRETTY_FUNCTION__))
;
2955 if (BitField)
2956 static_cast<InitAndBitWidth*>(InitStorage.getPointer())->Init = Init;
2957 else
2958 InitStorage.setPointer(Init);
2959 }
2960
2961 /// Remove the C++11 in-class initializer from this member.
2962 void removeInClassInitializer() {
2963 assert(hasInClassInitializer() && "no initializer to remove")(static_cast <bool> (hasInClassInitializer() &&
"no initializer to remove") ? void (0) : __assert_fail ("hasInClassInitializer() && \"no initializer to remove\""
, "/build/llvm-toolchain-snapshot-13~++20210621111111+acefe0eaaf82/clang/include/clang/AST/Decl.h"
, 2963, __extension__ __PRETTY_FUNCTION__))
;
2964 InitStorage.setPointerAndInt(getBitWidth(), ISK_NoInit);
2965 }
2966
2967 /// Determine whether this member captures the variable length array
2968 /// type.
2969 bool hasCapturedVLAType() const {
2970 return InitStorage.getInt() == ISK_CapturedVLAType;
2971 }
2972
2973 /// Get the captured variable length array type.
2974 const VariableArrayType *getCapturedVLAType() const {
2975 return hasCapturedVLAType() ? static_cast<const VariableArrayType *>(
2976 InitStorage.getPointer())
2977 : nullptr;
2978 }
2979
2980 /// Set the captured variable length array type for this field.
2981 void setCapturedVLAType(const VariableArrayType *VLAType);