Bug Summary

File:clang/lib/CodeGen/CGBuiltin.cpp
Warning:line 15901, column 9
1st function call argument is an uninitialized value

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name CGBuiltin.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/build-llvm/tools/clang/lib/CodeGen -resource-dir /usr/lib/llvm-13/lib/clang/13.0.0 -D CLANG_ROUND_TRIP_CC1_ARGS=ON -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/build-llvm/tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/include -I /build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/build-llvm/include -I /build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/llvm/include -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-13/lib/clang/13.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/build-llvm/tools/clang/lib/CodeGen -fdebug-prefix-map=/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-06-29-232427-34167-1 -x c++ /build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp
1//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit Builtin calls as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGCUDARuntime.h"
14#include "CGCXXABI.h"
15#include "CGObjCRuntime.h"
16#include "CGOpenCLRuntime.h"
17#include "CGRecordLayout.h"
18#include "CodeGenFunction.h"
19#include "CodeGenModule.h"
20#include "ConstantEmitter.h"
21#include "PatternInit.h"
22#include "TargetInfo.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/Attr.h"
25#include "clang/AST/Decl.h"
26#include "clang/AST/OSLog.h"
27#include "clang/Basic/TargetBuiltins.h"
28#include "clang/Basic/TargetInfo.h"
29#include "clang/CodeGen/CGFunctionInfo.h"
30#include "llvm/ADT/APFloat.h"
31#include "llvm/ADT/APInt.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/StringExtras.h"
34#include "llvm/Analysis/ValueTracking.h"
35#include "llvm/IR/DataLayout.h"
36#include "llvm/IR/InlineAsm.h"
37#include "llvm/IR/Intrinsics.h"
38#include "llvm/IR/IntrinsicsAArch64.h"
39#include "llvm/IR/IntrinsicsAMDGPU.h"
40#include "llvm/IR/IntrinsicsARM.h"
41#include "llvm/IR/IntrinsicsBPF.h"
42#include "llvm/IR/IntrinsicsHexagon.h"
43#include "llvm/IR/IntrinsicsNVPTX.h"
44#include "llvm/IR/IntrinsicsPowerPC.h"
45#include "llvm/IR/IntrinsicsR600.h"
46#include "llvm/IR/IntrinsicsRISCV.h"
47#include "llvm/IR/IntrinsicsS390.h"
48#include "llvm/IR/IntrinsicsWebAssembly.h"
49#include "llvm/IR/IntrinsicsX86.h"
50#include "llvm/IR/MDBuilder.h"
51#include "llvm/IR/MatrixBuilder.h"
52#include "llvm/Support/ConvertUTF.h"
53#include "llvm/Support/ScopedPrinter.h"
54#include "llvm/Support/X86TargetParser.h"
55#include <sstream>
56
57using namespace clang;
58using namespace CodeGen;
59using namespace llvm;
60
61static
62int64_t clamp(int64_t Value, int64_t Low, int64_t High) {
63 return std::min(High, std::max(Low, Value));
64}
65
66static void initializeAlloca(CodeGenFunction &CGF, AllocaInst *AI, Value *Size,
67 Align AlignmentInBytes) {
68 ConstantInt *Byte;
69 switch (CGF.getLangOpts().getTrivialAutoVarInit()) {
70 case LangOptions::TrivialAutoVarInitKind::Uninitialized:
71 // Nothing to initialize.
72 return;
73 case LangOptions::TrivialAutoVarInitKind::Zero:
74 Byte = CGF.Builder.getInt8(0x00);
75 break;
76 case LangOptions::TrivialAutoVarInitKind::Pattern: {
77 llvm::Type *Int8 = llvm::IntegerType::getInt8Ty(CGF.CGM.getLLVMContext());
78 Byte = llvm::dyn_cast<llvm::ConstantInt>(
79 initializationPatternFor(CGF.CGM, Int8));
80 break;
81 }
82 }
83 if (CGF.CGM.stopAutoInit())
84 return;
85 auto *I = CGF.Builder.CreateMemSet(AI, Byte, Size, AlignmentInBytes);
86 I->addAnnotationMetadata("auto-init");
87}
88
89/// getBuiltinLibFunction - Given a builtin id for a function like
90/// "__builtin_fabsf", return a Function* for "fabsf".
91llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
92 unsigned BuiltinID) {
93 assert(Context.BuiltinInfo.isLibFunction(BuiltinID))(static_cast <bool> (Context.BuiltinInfo.isLibFunction(
BuiltinID)) ? void (0) : __assert_fail ("Context.BuiltinInfo.isLibFunction(BuiltinID)"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 93, __extension__ __PRETTY_FUNCTION__))
;
94
95 // Get the name, skip over the __builtin_ prefix (if necessary).
96 StringRef Name;
97 GlobalDecl D(FD);
98
99 // If the builtin has been declared explicitly with an assembler label,
100 // use the mangled name. This differs from the plain label on platforms
101 // that prefix labels.
102 if (FD->hasAttr<AsmLabelAttr>())
103 Name = getMangledName(D);
104 else
105 Name = Context.BuiltinInfo.getName(BuiltinID) + 10;
106
107 llvm::FunctionType *Ty =
108 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
109
110 return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
111}
112
113/// Emit the conversions required to turn the given value into an
114/// integer of the given size.
115static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
116 QualType T, llvm::IntegerType *IntType) {
117 V = CGF.EmitToMemory(V, T);
118
119 if (V->getType()->isPointerTy())
120 return CGF.Builder.CreatePtrToInt(V, IntType);
121
122 assert(V->getType() == IntType)(static_cast <bool> (V->getType() == IntType) ? void
(0) : __assert_fail ("V->getType() == IntType", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 122, __extension__ __PRETTY_FUNCTION__))
;
123 return V;
124}
125
126static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
127 QualType T, llvm::Type *ResultType) {
128 V = CGF.EmitFromMemory(V, T);
129
130 if (ResultType->isPointerTy())
131 return CGF.Builder.CreateIntToPtr(V, ResultType);
132
133 assert(V->getType() == ResultType)(static_cast <bool> (V->getType() == ResultType) ? void
(0) : __assert_fail ("V->getType() == ResultType", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 133, __extension__ __PRETTY_FUNCTION__))
;
134 return V;
135}
136
137/// Utility to insert an atomic instruction based on Intrinsic::ID
138/// and the expression node.
139static Value *MakeBinaryAtomicValue(
140 CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E,
141 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
142 QualType T = E->getType();
143 assert(E->getArg(0)->getType()->isPointerType())(static_cast <bool> (E->getArg(0)->getType()->
isPointerType()) ? void (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 143, __extension__ __PRETTY_FUNCTION__))
;
144 assert(CGF.getContext().hasSameUnqualifiedType(T,(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(0)->getType()->getPointeeType())) ? void
(0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 145, __extension__ __PRETTY_FUNCTION__))
145 E->getArg(0)->getType()->getPointeeType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(0)->getType()->getPointeeType())) ? void
(0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 145, __extension__ __PRETTY_FUNCTION__))
;
146 assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(1)->getType())) ? void (0) : __assert_fail
("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 146, __extension__ __PRETTY_FUNCTION__))
;
147
148 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
149 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
150
151 llvm::IntegerType *IntType =
152 llvm::IntegerType::get(CGF.getLLVMContext(),
153 CGF.getContext().getTypeSize(T));
154 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
155
156 llvm::Value *Args[2];
157 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
158 Args[1] = CGF.EmitScalarExpr(E->getArg(1));
159 llvm::Type *ValueType = Args[1]->getType();
160 Args[1] = EmitToInt(CGF, Args[1], T, IntType);
161
162 llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
163 Kind, Args[0], Args[1], Ordering);
164 return EmitFromInt(CGF, Result, T, ValueType);
165}
166
167static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) {
168 Value *Val = CGF.EmitScalarExpr(E->getArg(0));
169 Value *Address = CGF.EmitScalarExpr(E->getArg(1));
170
171 // Convert the type of the pointer to a pointer to the stored type.
172 Val = CGF.EmitToMemory(Val, E->getArg(0)->getType());
173 Value *BC = CGF.Builder.CreateBitCast(
174 Address, llvm::PointerType::getUnqual(Val->getType()), "cast");
175 LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType());
176 LV.setNontemporal(true);
177 CGF.EmitStoreOfScalar(Val, LV, false);
178 return nullptr;
179}
180
181static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) {
182 Value *Address = CGF.EmitScalarExpr(E->getArg(0));
183
184 LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType());
185 LV.setNontemporal(true);
186 return CGF.EmitLoadOfScalar(LV, E->getExprLoc());
187}
188
189static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
190 llvm::AtomicRMWInst::BinOp Kind,
191 const CallExpr *E) {
192 return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E));
193}
194
195/// Utility to insert an atomic instruction based Intrinsic::ID and
196/// the expression node, where the return value is the result of the
197/// operation.
198static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
199 llvm::AtomicRMWInst::BinOp Kind,
200 const CallExpr *E,
201 Instruction::BinaryOps Op,
202 bool Invert = false) {
203 QualType T = E->getType();
204 assert(E->getArg(0)->getType()->isPointerType())(static_cast <bool> (E->getArg(0)->getType()->
isPointerType()) ? void (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 204, __extension__ __PRETTY_FUNCTION__))
;
205 assert(CGF.getContext().hasSameUnqualifiedType(T,(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(0)->getType()->getPointeeType())) ? void
(0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 206, __extension__ __PRETTY_FUNCTION__))
206 E->getArg(0)->getType()->getPointeeType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(0)->getType()->getPointeeType())) ? void
(0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 206, __extension__ __PRETTY_FUNCTION__))
;
207 assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(1)->getType())) ? void (0) : __assert_fail
("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 207, __extension__ __PRETTY_FUNCTION__))
;
208
209 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
210 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
211
212 llvm::IntegerType *IntType =
213 llvm::IntegerType::get(CGF.getLLVMContext(),
214 CGF.getContext().getTypeSize(T));
215 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
216
217 llvm::Value *Args[2];
218 Args[1] = CGF.EmitScalarExpr(E->getArg(1));
219 llvm::Type *ValueType = Args[1]->getType();
220 Args[1] = EmitToInt(CGF, Args[1], T, IntType);
221 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
222
223 llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
224 Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent);
225 Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
226 if (Invert)
227 Result =
228 CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result,
229 llvm::ConstantInt::getAllOnesValue(IntType));
230 Result = EmitFromInt(CGF, Result, T, ValueType);
231 return RValue::get(Result);
232}
233
234/// Utility to insert an atomic cmpxchg instruction.
235///
236/// @param CGF The current codegen function.
237/// @param E Builtin call expression to convert to cmpxchg.
238/// arg0 - address to operate on
239/// arg1 - value to compare with
240/// arg2 - new value
241/// @param ReturnBool Specifies whether to return success flag of
242/// cmpxchg result or the old value.
243///
244/// @returns result of cmpxchg, according to ReturnBool
245///
246/// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics
247/// invoke the function EmitAtomicCmpXchgForMSIntrin.
248static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E,
249 bool ReturnBool) {
250 QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType();
251 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
252 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
253
254 llvm::IntegerType *IntType = llvm::IntegerType::get(
255 CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
256 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
257
258 Value *Args[3];
259 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
260 Args[1] = CGF.EmitScalarExpr(E->getArg(1));
261 llvm::Type *ValueType = Args[1]->getType();
262 Args[1] = EmitToInt(CGF, Args[1], T, IntType);
263 Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType);
264
265 Value *Pair = CGF.Builder.CreateAtomicCmpXchg(
266 Args[0], Args[1], Args[2], llvm::AtomicOrdering::SequentiallyConsistent,
267 llvm::AtomicOrdering::SequentiallyConsistent);
268 if (ReturnBool)
269 // Extract boolean success flag and zext it to int.
270 return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1),
271 CGF.ConvertType(E->getType()));
272 else
273 // Extract old value and emit it using the same type as compare value.
274 return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T,
275 ValueType);
276}
277
278/// This function should be invoked to emit atomic cmpxchg for Microsoft's
279/// _InterlockedCompareExchange* intrinsics which have the following signature:
280/// T _InterlockedCompareExchange(T volatile *Destination,
281/// T Exchange,
282/// T Comparand);
283///
284/// Whereas the llvm 'cmpxchg' instruction has the following syntax:
285/// cmpxchg *Destination, Comparand, Exchange.
286/// So we need to swap Comparand and Exchange when invoking
287/// CreateAtomicCmpXchg. That is the reason we could not use the above utility
288/// function MakeAtomicCmpXchgValue since it expects the arguments to be
289/// already swapped.
290
291static
292Value *EmitAtomicCmpXchgForMSIntrin(CodeGenFunction &CGF, const CallExpr *E,
293 AtomicOrdering SuccessOrdering = AtomicOrdering::SequentiallyConsistent) {
294 assert(E->getArg(0)->getType()->isPointerType())(static_cast <bool> (E->getArg(0)->getType()->
isPointerType()) ? void (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 294, __extension__ __PRETTY_FUNCTION__))
;
295 assert(CGF.getContext().hasSameUnqualifiedType((static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
( E->getType(), E->getArg(0)->getType()->getPointeeType
())) ? void (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType( E->getType(), E->getArg(0)->getType()->getPointeeType())"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 296, __extension__ __PRETTY_FUNCTION__))
296 E->getType(), E->getArg(0)->getType()->getPointeeType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
( E->getType(), E->getArg(0)->getType()->getPointeeType
())) ? void (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType( E->getType(), E->getArg(0)->getType()->getPointeeType())"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 296, __extension__ __PRETTY_FUNCTION__))
;
297 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(E->getType(), E->getArg(1)->getType())) ? void (0) :
__assert_fail ("CGF.getContext().hasSameUnqualifiedType(E->getType(), E->getArg(1)->getType())"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 298, __extension__ __PRETTY_FUNCTION__))
298 E->getArg(1)->getType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(E->getType(), E->getArg(1)->getType())) ? void (0) :
__assert_fail ("CGF.getContext().hasSameUnqualifiedType(E->getType(), E->getArg(1)->getType())"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 298, __extension__ __PRETTY_FUNCTION__))
;
299 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(E->getType(), E->getArg(2)->getType())) ? void (0) :
__assert_fail ("CGF.getContext().hasSameUnqualifiedType(E->getType(), E->getArg(2)->getType())"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 300, __extension__ __PRETTY_FUNCTION__))
300 E->getArg(2)->getType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(E->getType(), E->getArg(2)->getType())) ? void (0) :
__assert_fail ("CGF.getContext().hasSameUnqualifiedType(E->getType(), E->getArg(2)->getType())"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 300, __extension__ __PRETTY_FUNCTION__))
;
301
302 auto *Destination = CGF.EmitScalarExpr(E->getArg(0));
303 auto *Comparand = CGF.EmitScalarExpr(E->getArg(2));
304 auto *Exchange = CGF.EmitScalarExpr(E->getArg(1));
305
306 // For Release ordering, the failure ordering should be Monotonic.
307 auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release ?
308 AtomicOrdering::Monotonic :
309 SuccessOrdering;
310
311 // The atomic instruction is marked volatile for consistency with MSVC. This
312 // blocks the few atomics optimizations that LLVM has. If we want to optimize
313 // _Interlocked* operations in the future, we will have to remove the volatile
314 // marker.
315 auto *Result = CGF.Builder.CreateAtomicCmpXchg(
316 Destination, Comparand, Exchange,
317 SuccessOrdering, FailureOrdering);
318 Result->setVolatile(true);
319 return CGF.Builder.CreateExtractValue(Result, 0);
320}
321
322// 64-bit Microsoft platforms support 128 bit cmpxchg operations. They are
323// prototyped like this:
324//
325// unsigned char _InterlockedCompareExchange128...(
326// __int64 volatile * _Destination,
327// __int64 _ExchangeHigh,
328// __int64 _ExchangeLow,
329// __int64 * _ComparandResult);
330static Value *EmitAtomicCmpXchg128ForMSIntrin(CodeGenFunction &CGF,
331 const CallExpr *E,
332 AtomicOrdering SuccessOrdering) {
333 assert(E->getNumArgs() == 4)(static_cast <bool> (E->getNumArgs() == 4) ? void (0
) : __assert_fail ("E->getNumArgs() == 4", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 333, __extension__ __PRETTY_FUNCTION__))
;
334 llvm::Value *Destination = CGF.EmitScalarExpr(E->getArg(0));
335 llvm::Value *ExchangeHigh = CGF.EmitScalarExpr(E->getArg(1));
336 llvm::Value *ExchangeLow = CGF.EmitScalarExpr(E->getArg(2));
337 llvm::Value *ComparandPtr = CGF.EmitScalarExpr(E->getArg(3));
338
339 assert(Destination->getType()->isPointerTy())(static_cast <bool> (Destination->getType()->isPointerTy
()) ? void (0) : __assert_fail ("Destination->getType()->isPointerTy()"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 339, __extension__ __PRETTY_FUNCTION__))
;
340 assert(!ExchangeHigh->getType()->isPointerTy())(static_cast <bool> (!ExchangeHigh->getType()->isPointerTy
()) ? void (0) : __assert_fail ("!ExchangeHigh->getType()->isPointerTy()"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 340, __extension__ __PRETTY_FUNCTION__))
;
341 assert(!ExchangeLow->getType()->isPointerTy())(static_cast <bool> (!ExchangeLow->getType()->isPointerTy
()) ? void (0) : __assert_fail ("!ExchangeLow->getType()->isPointerTy()"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 341, __extension__ __PRETTY_FUNCTION__))
;
342 assert(ComparandPtr->getType()->isPointerTy())(static_cast <bool> (ComparandPtr->getType()->isPointerTy
()) ? void (0) : __assert_fail ("ComparandPtr->getType()->isPointerTy()"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 342, __extension__ __PRETTY_FUNCTION__))
;
343
344 // For Release ordering, the failure ordering should be Monotonic.
345 auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release
346 ? AtomicOrdering::Monotonic
347 : SuccessOrdering;
348
349 // Convert to i128 pointers and values.
350 llvm::Type *Int128Ty = llvm::IntegerType::get(CGF.getLLVMContext(), 128);
351 llvm::Type *Int128PtrTy = Int128Ty->getPointerTo();
352 Destination = CGF.Builder.CreateBitCast(Destination, Int128PtrTy);
353 Address ComparandResult(CGF.Builder.CreateBitCast(ComparandPtr, Int128PtrTy),
354 CGF.getContext().toCharUnitsFromBits(128));
355
356 // (((i128)hi) << 64) | ((i128)lo)
357 ExchangeHigh = CGF.Builder.CreateZExt(ExchangeHigh, Int128Ty);
358 ExchangeLow = CGF.Builder.CreateZExt(ExchangeLow, Int128Ty);
359 ExchangeHigh =
360 CGF.Builder.CreateShl(ExchangeHigh, llvm::ConstantInt::get(Int128Ty, 64));
361 llvm::Value *Exchange = CGF.Builder.CreateOr(ExchangeHigh, ExchangeLow);
362
363 // Load the comparand for the instruction.
364 llvm::Value *Comparand = CGF.Builder.CreateLoad(ComparandResult);
365
366 auto *CXI = CGF.Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
367 SuccessOrdering, FailureOrdering);
368
369 // The atomic instruction is marked volatile for consistency with MSVC. This
370 // blocks the few atomics optimizations that LLVM has. If we want to optimize
371 // _Interlocked* operations in the future, we will have to remove the volatile
372 // marker.
373 CXI->setVolatile(true);
374
375 // Store the result as an outparameter.
376 CGF.Builder.CreateStore(CGF.Builder.CreateExtractValue(CXI, 0),
377 ComparandResult);
378
379 // Get the success boolean and zero extend it to i8.
380 Value *Success = CGF.Builder.CreateExtractValue(CXI, 1);
381 return CGF.Builder.CreateZExt(Success, CGF.Int8Ty);
382}
383
384static Value *EmitAtomicIncrementValue(CodeGenFunction &CGF, const CallExpr *E,
385 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
386 assert(E->getArg(0)->getType()->isPointerType())(static_cast <bool> (E->getArg(0)->getType()->
isPointerType()) ? void (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 386, __extension__ __PRETTY_FUNCTION__))
;
387
388 auto *IntTy = CGF.ConvertType(E->getType());
389 auto *Result = CGF.Builder.CreateAtomicRMW(
390 AtomicRMWInst::Add,
391 CGF.EmitScalarExpr(E->getArg(0)),
392 ConstantInt::get(IntTy, 1),
393 Ordering);
394 return CGF.Builder.CreateAdd(Result, ConstantInt::get(IntTy, 1));
395}
396
397static Value *EmitAtomicDecrementValue(CodeGenFunction &CGF, const CallExpr *E,
398 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
399 assert(E->getArg(0)->getType()->isPointerType())(static_cast <bool> (E->getArg(0)->getType()->
isPointerType()) ? void (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 399, __extension__ __PRETTY_FUNCTION__))
;
400
401 auto *IntTy = CGF.ConvertType(E->getType());
402 auto *Result = CGF.Builder.CreateAtomicRMW(
403 AtomicRMWInst::Sub,
404 CGF.EmitScalarExpr(E->getArg(0)),
405 ConstantInt::get(IntTy, 1),
406 Ordering);
407 return CGF.Builder.CreateSub(Result, ConstantInt::get(IntTy, 1));
408}
409
410// Build a plain volatile load.
411static Value *EmitISOVolatileLoad(CodeGenFunction &CGF, const CallExpr *E) {
412 Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
413 QualType ElTy = E->getArg(0)->getType()->getPointeeType();
414 CharUnits LoadSize = CGF.getContext().getTypeSizeInChars(ElTy);
415 llvm::Type *ITy =
416 llvm::IntegerType::get(CGF.getLLVMContext(), LoadSize.getQuantity() * 8);
417 Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
418 llvm::LoadInst *Load = CGF.Builder.CreateAlignedLoad(ITy, Ptr, LoadSize);
419 Load->setVolatile(true);
420 return Load;
421}
422
423// Build a plain volatile store.
424static Value *EmitISOVolatileStore(CodeGenFunction &CGF, const CallExpr *E) {
425 Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
426 Value *Value = CGF.EmitScalarExpr(E->getArg(1));
427 QualType ElTy = E->getArg(0)->getType()->getPointeeType();
428 CharUnits StoreSize = CGF.getContext().getTypeSizeInChars(ElTy);
429 llvm::Type *ITy =
430 llvm::IntegerType::get(CGF.getLLVMContext(), StoreSize.getQuantity() * 8);
431 Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
432 llvm::StoreInst *Store =
433 CGF.Builder.CreateAlignedStore(Value, Ptr, StoreSize);
434 Store->setVolatile(true);
435 return Store;
436}
437
438// Emit a simple mangled intrinsic that has 1 argument and a return type
439// matching the argument type. Depending on mode, this may be a constrained
440// floating-point intrinsic.
441static Value *emitUnaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
442 const CallExpr *E, unsigned IntrinsicID,
443 unsigned ConstrainedIntrinsicID) {
444 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
445
446 if (CGF.Builder.getIsFPConstrained()) {
447 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
448 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
449 return CGF.Builder.CreateConstrainedFPCall(F, { Src0 });
450 } else {
451 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
452 return CGF.Builder.CreateCall(F, Src0);
453 }
454}
455
456// Emit an intrinsic that has 2 operands of the same type as its result.
457// Depending on mode, this may be a constrained floating-point intrinsic.
458static Value *emitBinaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
459 const CallExpr *E, unsigned IntrinsicID,
460 unsigned ConstrainedIntrinsicID) {
461 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
462 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
463
464 if (CGF.Builder.getIsFPConstrained()) {
465 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
466 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
467 return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1 });
468 } else {
469 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
470 return CGF.Builder.CreateCall(F, { Src0, Src1 });
471 }
472}
473
474// Emit an intrinsic that has 3 operands of the same type as its result.
475// Depending on mode, this may be a constrained floating-point intrinsic.
476static Value *emitTernaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
477 const CallExpr *E, unsigned IntrinsicID,
478 unsigned ConstrainedIntrinsicID) {
479 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
480 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
481 llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
482
483 if (CGF.Builder.getIsFPConstrained()) {
484 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
485 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
486 return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1, Src2 });
487 } else {
488 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
489 return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
490 }
491}
492
493// Emit an intrinsic where all operands are of the same type as the result.
494// Depending on mode, this may be a constrained floating-point intrinsic.
495static Value *emitCallMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
496 unsigned IntrinsicID,
497 unsigned ConstrainedIntrinsicID,
498 llvm::Type *Ty,
499 ArrayRef<Value *> Args) {
500 Function *F;
501 if (CGF.Builder.getIsFPConstrained())
502 F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Ty);
503 else
504 F = CGF.CGM.getIntrinsic(IntrinsicID, Ty);
505
506 if (CGF.Builder.getIsFPConstrained())
507 return CGF.Builder.CreateConstrainedFPCall(F, Args);
508 else
509 return CGF.Builder.CreateCall(F, Args);
510}
511
512// Emit a simple mangled intrinsic that has 1 argument and a return type
513// matching the argument type.
514static Value *emitUnaryBuiltin(CodeGenFunction &CGF,
515 const CallExpr *E,
516 unsigned IntrinsicID) {
517 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
518
519 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
520 return CGF.Builder.CreateCall(F, Src0);
521}
522
523// Emit an intrinsic that has 2 operands of the same type as its result.
524static Value *emitBinaryBuiltin(CodeGenFunction &CGF,
525 const CallExpr *E,
526 unsigned IntrinsicID) {
527 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
528 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
529
530 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
531 return CGF.Builder.CreateCall(F, { Src0, Src1 });
532}
533
534// Emit an intrinsic that has 3 operands of the same type as its result.
535static Value *emitTernaryBuiltin(CodeGenFunction &CGF,
536 const CallExpr *E,
537 unsigned IntrinsicID) {
538 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
539 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
540 llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
541
542 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
543 return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
544}
545
546// Emit an intrinsic that has 1 float or double operand, and 1 integer.
547static Value *emitFPIntBuiltin(CodeGenFunction &CGF,
548 const CallExpr *E,
549 unsigned IntrinsicID) {
550 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
551 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
552
553 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
554 return CGF.Builder.CreateCall(F, {Src0, Src1});
555}
556
557// Emit an intrinsic that has overloaded integer result and fp operand.
558static Value *
559emitMaybeConstrainedFPToIntRoundBuiltin(CodeGenFunction &CGF, const CallExpr *E,
560 unsigned IntrinsicID,
561 unsigned ConstrainedIntrinsicID) {
562 llvm::Type *ResultType = CGF.ConvertType(E->getType());
563 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
564
565 if (CGF.Builder.getIsFPConstrained()) {
566 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
567 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID,
568 {ResultType, Src0->getType()});
569 return CGF.Builder.CreateConstrainedFPCall(F, {Src0});
570 } else {
571 Function *F =
572 CGF.CGM.getIntrinsic(IntrinsicID, {ResultType, Src0->getType()});
573 return CGF.Builder.CreateCall(F, Src0);
574 }
575}
576
577/// EmitFAbs - Emit a call to @llvm.fabs().
578static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) {
579 Function *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType());
580 llvm::CallInst *Call = CGF.Builder.CreateCall(F, V);
581 Call->setDoesNotAccessMemory();
582 return Call;
583}
584
585/// Emit the computation of the sign bit for a floating point value. Returns
586/// the i1 sign bit value.
587static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) {
588 LLVMContext &C = CGF.CGM.getLLVMContext();
589
590 llvm::Type *Ty = V->getType();
591 int Width = Ty->getPrimitiveSizeInBits();
592 llvm::Type *IntTy = llvm::IntegerType::get(C, Width);
593 V = CGF.Builder.CreateBitCast(V, IntTy);
594 if (Ty->isPPC_FP128Ty()) {
595 // We want the sign bit of the higher-order double. The bitcast we just
596 // did works as if the double-double was stored to memory and then
597 // read as an i128. The "store" will put the higher-order double in the
598 // lower address in both little- and big-Endian modes, but the "load"
599 // will treat those bits as a different part of the i128: the low bits in
600 // little-Endian, the high bits in big-Endian. Therefore, on big-Endian
601 // we need to shift the high bits down to the low before truncating.
602 Width >>= 1;
603 if (CGF.getTarget().isBigEndian()) {
604 Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width);
605 V = CGF.Builder.CreateLShr(V, ShiftCst);
606 }
607 // We are truncating value in order to extract the higher-order
608 // double, which we will be using to extract the sign from.
609 IntTy = llvm::IntegerType::get(C, Width);
610 V = CGF.Builder.CreateTrunc(V, IntTy);
611 }
612 Value *Zero = llvm::Constant::getNullValue(IntTy);
613 return CGF.Builder.CreateICmpSLT(V, Zero);
614}
615
616static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD,
617 const CallExpr *E, llvm::Constant *calleeValue) {
618 CGCallee callee = CGCallee::forDirect(calleeValue, GlobalDecl(FD));
619 return CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot());
620}
621
622/// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
623/// depending on IntrinsicID.
624///
625/// \arg CGF The current codegen function.
626/// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
627/// \arg X The first argument to the llvm.*.with.overflow.*.
628/// \arg Y The second argument to the llvm.*.with.overflow.*.
629/// \arg Carry The carry returned by the llvm.*.with.overflow.*.
630/// \returns The result (i.e. sum/product) returned by the intrinsic.
631static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
632 const llvm::Intrinsic::ID IntrinsicID,
633 llvm::Value *X, llvm::Value *Y,
634 llvm::Value *&Carry) {
635 // Make sure we have integers of the same width.
636 assert(X->getType() == Y->getType() &&(static_cast <bool> (X->getType() == Y->getType()
&& "Arguments must be the same type. (Did you forget to make sure both "
"arguments have the same integer width?)") ? void (0) : __assert_fail
("X->getType() == Y->getType() && \"Arguments must be the same type. (Did you forget to make sure both \" \"arguments have the same integer width?)\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 638, __extension__ __PRETTY_FUNCTION__))
637 "Arguments must be the same type. (Did you forget to make sure both "(static_cast <bool> (X->getType() == Y->getType()
&& "Arguments must be the same type. (Did you forget to make sure both "
"arguments have the same integer width?)") ? void (0) : __assert_fail
("X->getType() == Y->getType() && \"Arguments must be the same type. (Did you forget to make sure both \" \"arguments have the same integer width?)\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 638, __extension__ __PRETTY_FUNCTION__))
638 "arguments have the same integer width?)")(static_cast <bool> (X->getType() == Y->getType()
&& "Arguments must be the same type. (Did you forget to make sure both "
"arguments have the same integer width?)") ? void (0) : __assert_fail
("X->getType() == Y->getType() && \"Arguments must be the same type. (Did you forget to make sure both \" \"arguments have the same integer width?)\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 638, __extension__ __PRETTY_FUNCTION__))
;
639
640 Function *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
641 llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y});
642 Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
643 return CGF.Builder.CreateExtractValue(Tmp, 0);
644}
645
646static Value *emitRangedBuiltin(CodeGenFunction &CGF,
647 unsigned IntrinsicID,
648 int low, int high) {
649 llvm::MDBuilder MDHelper(CGF.getLLVMContext());
650 llvm::MDNode *RNode = MDHelper.createRange(APInt(32, low), APInt(32, high));
651 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, {});
652 llvm::Instruction *Call = CGF.Builder.CreateCall(F);
653 Call->setMetadata(llvm::LLVMContext::MD_range, RNode);
654 return Call;
655}
656
657namespace {
658 struct WidthAndSignedness {
659 unsigned Width;
660 bool Signed;
661 };
662}
663
664static WidthAndSignedness
665getIntegerWidthAndSignedness(const clang::ASTContext &context,
666 const clang::QualType Type) {
667 assert(Type->isIntegerType() && "Given type is not an integer.")(static_cast <bool> (Type->isIntegerType() &&
"Given type is not an integer.") ? void (0) : __assert_fail (
"Type->isIntegerType() && \"Given type is not an integer.\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 667, __extension__ __PRETTY_FUNCTION__))
;
668 unsigned Width = Type->isBooleanType() ? 1
669 : Type->isExtIntType() ? context.getIntWidth(Type)
670 : context.getTypeInfo(Type).Width;
671 bool Signed = Type->isSignedIntegerType();
672 return {Width, Signed};
673}
674
675// Given one or more integer types, this function produces an integer type that
676// encompasses them: any value in one of the given types could be expressed in
677// the encompassing type.
678static struct WidthAndSignedness
679EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) {
680 assert(Types.size() > 0 && "Empty list of types.")(static_cast <bool> (Types.size() > 0 && "Empty list of types."
) ? void (0) : __assert_fail ("Types.size() > 0 && \"Empty list of types.\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 680, __extension__ __PRETTY_FUNCTION__))
;
681
682 // If any of the given types is signed, we must return a signed type.
683 bool Signed = false;
684 for (const auto &Type : Types) {
685 Signed |= Type.Signed;
686 }
687
688 // The encompassing type must have a width greater than or equal to the width
689 // of the specified types. Additionally, if the encompassing type is signed,
690 // its width must be strictly greater than the width of any unsigned types
691 // given.
692 unsigned Width = 0;
693 for (const auto &Type : Types) {
694 unsigned MinWidth = Type.Width + (Signed && !Type.Signed);
695 if (Width < MinWidth) {
696 Width = MinWidth;
697 }
698 }
699
700 return {Width, Signed};
701}
702
703Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) {
704 llvm::Type *DestType = Int8PtrTy;
705 if (ArgValue->getType() != DestType)
706 ArgValue =
707 Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data());
708
709 Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend;
710 return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue);
711}
712
713/// Checks if using the result of __builtin_object_size(p, @p From) in place of
714/// __builtin_object_size(p, @p To) is correct
715static bool areBOSTypesCompatible(int From, int To) {
716 // Note: Our __builtin_object_size implementation currently treats Type=0 and
717 // Type=2 identically. Encoding this implementation detail here may make
718 // improving __builtin_object_size difficult in the future, so it's omitted.
719 return From == To || (From == 0 && To == 1) || (From == 3 && To == 2);
720}
721
722static llvm::Value *
723getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) {
724 return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true);
725}
726
727llvm::Value *
728CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
729 llvm::IntegerType *ResType,
730 llvm::Value *EmittedE,
731 bool IsDynamic) {
732 uint64_t ObjectSize;
733 if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type))
734 return emitBuiltinObjectSize(E, Type, ResType, EmittedE, IsDynamic);
735 return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true);
736}
737
738/// Returns a Value corresponding to the size of the given expression.
739/// This Value may be either of the following:
740/// - A llvm::Argument (if E is a param with the pass_object_size attribute on
741/// it)
742/// - A call to the @llvm.objectsize intrinsic
743///
744/// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null
745/// and we wouldn't otherwise try to reference a pass_object_size parameter,
746/// we'll call @llvm.objectsize on EmittedE, rather than emitting E.
747llvm::Value *
748CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type,
749 llvm::IntegerType *ResType,
750 llvm::Value *EmittedE, bool IsDynamic) {
751 // We need to reference an argument if the pointer is a parameter with the
752 // pass_object_size attribute.
753 if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) {
754 auto *Param = dyn_cast<ParmVarDecl>(D->getDecl());
755 auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>();
756 if (Param != nullptr && PS != nullptr &&
757 areBOSTypesCompatible(PS->getType(), Type)) {
758 auto Iter = SizeArguments.find(Param);
759 assert(Iter != SizeArguments.end())(static_cast <bool> (Iter != SizeArguments.end()) ? void
(0) : __assert_fail ("Iter != SizeArguments.end()", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 759, __extension__ __PRETTY_FUNCTION__))
;
760
761 const ImplicitParamDecl *D = Iter->second;
762 auto DIter = LocalDeclMap.find(D);
763 assert(DIter != LocalDeclMap.end())(static_cast <bool> (DIter != LocalDeclMap.end()) ? void
(0) : __assert_fail ("DIter != LocalDeclMap.end()", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 763, __extension__ __PRETTY_FUNCTION__))
;
764
765 return EmitLoadOfScalar(DIter->second, /*Volatile=*/false,
766 getContext().getSizeType(), E->getBeginLoc());
767 }
768 }
769
770 // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't
771 // evaluate E for side-effects. In either case, we shouldn't lower to
772 // @llvm.objectsize.
773 if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext())))
774 return getDefaultBuiltinObjectSizeResult(Type, ResType);
775
776 Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E);
777 assert(Ptr->getType()->isPointerTy() &&(static_cast <bool> (Ptr->getType()->isPointerTy(
) && "Non-pointer passed to __builtin_object_size?") ?
void (0) : __assert_fail ("Ptr->getType()->isPointerTy() && \"Non-pointer passed to __builtin_object_size?\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 778, __extension__ __PRETTY_FUNCTION__))
778 "Non-pointer passed to __builtin_object_size?")(static_cast <bool> (Ptr->getType()->isPointerTy(
) && "Non-pointer passed to __builtin_object_size?") ?
void (0) : __assert_fail ("Ptr->getType()->isPointerTy() && \"Non-pointer passed to __builtin_object_size?\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 778, __extension__ __PRETTY_FUNCTION__))
;
779
780 Function *F =
781 CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()});
782
783 // LLVM only supports 0 and 2, make sure that we pass along that as a boolean.
784 Value *Min = Builder.getInt1((Type & 2) != 0);
785 // For GCC compatibility, __builtin_object_size treat NULL as unknown size.
786 Value *NullIsUnknown = Builder.getTrue();
787 Value *Dynamic = Builder.getInt1(IsDynamic);
788 return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic});
789}
790
791namespace {
792/// A struct to generically describe a bit test intrinsic.
793struct BitTest {
794 enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set };
795 enum InterlockingKind : uint8_t {
796 Unlocked,
797 Sequential,
798 Acquire,
799 Release,
800 NoFence
801 };
802
803 ActionKind Action;
804 InterlockingKind Interlocking;
805 bool Is64Bit;
806
807 static BitTest decodeBitTestBuiltin(unsigned BuiltinID);
808};
809} // namespace
810
811BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) {
812 switch (BuiltinID) {
813 // Main portable variants.
814 case Builtin::BI_bittest:
815 return {TestOnly, Unlocked, false};
816 case Builtin::BI_bittestandcomplement:
817 return {Complement, Unlocked, false};
818 case Builtin::BI_bittestandreset:
819 return {Reset, Unlocked, false};
820 case Builtin::BI_bittestandset:
821 return {Set, Unlocked, false};
822 case Builtin::BI_interlockedbittestandreset:
823 return {Reset, Sequential, false};
824 case Builtin::BI_interlockedbittestandset:
825 return {Set, Sequential, false};
826
827 // X86-specific 64-bit variants.
828 case Builtin::BI_bittest64:
829 return {TestOnly, Unlocked, true};
830 case Builtin::BI_bittestandcomplement64:
831 return {Complement, Unlocked, true};
832 case Builtin::BI_bittestandreset64:
833 return {Reset, Unlocked, true};
834 case Builtin::BI_bittestandset64:
835 return {Set, Unlocked, true};
836 case Builtin::BI_interlockedbittestandreset64:
837 return {Reset, Sequential, true};
838 case Builtin::BI_interlockedbittestandset64:
839 return {Set, Sequential, true};
840
841 // ARM/AArch64-specific ordering variants.
842 case Builtin::BI_interlockedbittestandset_acq:
843 return {Set, Acquire, false};
844 case Builtin::BI_interlockedbittestandset_rel:
845 return {Set, Release, false};
846 case Builtin::BI_interlockedbittestandset_nf:
847 return {Set, NoFence, false};
848 case Builtin::BI_interlockedbittestandreset_acq:
849 return {Reset, Acquire, false};
850 case Builtin::BI_interlockedbittestandreset_rel:
851 return {Reset, Release, false};
852 case Builtin::BI_interlockedbittestandreset_nf:
853 return {Reset, NoFence, false};
854 }
855 llvm_unreachable("expected only bittest intrinsics")::llvm::llvm_unreachable_internal("expected only bittest intrinsics"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 855)
;
856}
857
858static char bitActionToX86BTCode(BitTest::ActionKind A) {
859 switch (A) {
860 case BitTest::TestOnly: return '\0';
861 case BitTest::Complement: return 'c';
862 case BitTest::Reset: return 'r';
863 case BitTest::Set: return 's';
864 }
865 llvm_unreachable("invalid action")::llvm::llvm_unreachable_internal("invalid action", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 865)
;
866}
867
868static llvm::Value *EmitX86BitTestIntrinsic(CodeGenFunction &CGF,
869 BitTest BT,
870 const CallExpr *E, Value *BitBase,
871 Value *BitPos) {
872 char Action = bitActionToX86BTCode(BT.Action);
873 char SizeSuffix = BT.Is64Bit ? 'q' : 'l';
874
875 // Build the assembly.
876 SmallString<64> Asm;
877 raw_svector_ostream AsmOS(Asm);
878 if (BT.Interlocking != BitTest::Unlocked)
879 AsmOS << "lock ";
880 AsmOS << "bt";
881 if (Action)
882 AsmOS << Action;
883 AsmOS << SizeSuffix << " $2, ($1)";
884
885 // Build the constraints. FIXME: We should support immediates when possible.
886 std::string Constraints = "={@ccc},r,r,~{cc},~{memory}";
887 std::string MachineClobbers = CGF.getTarget().getClobbers();
888 if (!MachineClobbers.empty()) {
889 Constraints += ',';
890 Constraints += MachineClobbers;
891 }
892 llvm::IntegerType *IntType = llvm::IntegerType::get(
893 CGF.getLLVMContext(),
894 CGF.getContext().getTypeSize(E->getArg(1)->getType()));
895 llvm::Type *IntPtrType = IntType->getPointerTo();
896 llvm::FunctionType *FTy =
897 llvm::FunctionType::get(CGF.Int8Ty, {IntPtrType, IntType}, false);
898
899 llvm::InlineAsm *IA =
900 llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
901 return CGF.Builder.CreateCall(IA, {BitBase, BitPos});
902}
903
904static llvm::AtomicOrdering
905getBitTestAtomicOrdering(BitTest::InterlockingKind I) {
906 switch (I) {
907 case BitTest::Unlocked: return llvm::AtomicOrdering::NotAtomic;
908 case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent;
909 case BitTest::Acquire: return llvm::AtomicOrdering::Acquire;
910 case BitTest::Release: return llvm::AtomicOrdering::Release;
911 case BitTest::NoFence: return llvm::AtomicOrdering::Monotonic;
912 }
913 llvm_unreachable("invalid interlocking")::llvm::llvm_unreachable_internal("invalid interlocking", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 913)
;
914}
915
916/// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of
917/// bits and a bit position and read and optionally modify the bit at that
918/// position. The position index can be arbitrarily large, i.e. it can be larger
919/// than 31 or 63, so we need an indexed load in the general case.
920static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF,
921 unsigned BuiltinID,
922 const CallExpr *E) {
923 Value *BitBase = CGF.EmitScalarExpr(E->getArg(0));
924 Value *BitPos = CGF.EmitScalarExpr(E->getArg(1));
925
926 BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID);
927
928 // X86 has special BT, BTC, BTR, and BTS instructions that handle the array
929 // indexing operation internally. Use them if possible.
930 if (CGF.getTarget().getTriple().isX86())
931 return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos);
932
933 // Otherwise, use generic code to load one byte and test the bit. Use all but
934 // the bottom three bits as the array index, and the bottom three bits to form
935 // a mask.
936 // Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0;
937 Value *ByteIndex = CGF.Builder.CreateAShr(
938 BitPos, llvm::ConstantInt::get(BitPos->getType(), 3), "bittest.byteidx");
939 Value *BitBaseI8 = CGF.Builder.CreatePointerCast(BitBase, CGF.Int8PtrTy);
940 Address ByteAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, BitBaseI8,
941 ByteIndex, "bittest.byteaddr"),
942 CharUnits::One());
943 Value *PosLow =
944 CGF.Builder.CreateAnd(CGF.Builder.CreateTrunc(BitPos, CGF.Int8Ty),
945 llvm::ConstantInt::get(CGF.Int8Ty, 0x7));
946
947 // The updating instructions will need a mask.
948 Value *Mask = nullptr;
949 if (BT.Action != BitTest::TestOnly) {
950 Mask = CGF.Builder.CreateShl(llvm::ConstantInt::get(CGF.Int8Ty, 1), PosLow,
951 "bittest.mask");
952 }
953
954 // Check the action and ordering of the interlocked intrinsics.
955 llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(BT.Interlocking);
956
957 Value *OldByte = nullptr;
958 if (Ordering != llvm::AtomicOrdering::NotAtomic) {
959 // Emit a combined atomicrmw load/store operation for the interlocked
960 // intrinsics.
961 llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or;
962 if (BT.Action == BitTest::Reset) {
963 Mask = CGF.Builder.CreateNot(Mask);
964 RMWOp = llvm::AtomicRMWInst::And;
965 }
966 OldByte = CGF.Builder.CreateAtomicRMW(RMWOp, ByteAddr.getPointer(), Mask,
967 Ordering);
968 } else {
969 // Emit a plain load for the non-interlocked intrinsics.
970 OldByte = CGF.Builder.CreateLoad(ByteAddr, "bittest.byte");
971 Value *NewByte = nullptr;
972 switch (BT.Action) {
973 case BitTest::TestOnly:
974 // Don't store anything.
975 break;
976 case BitTest::Complement:
977 NewByte = CGF.Builder.CreateXor(OldByte, Mask);
978 break;
979 case BitTest::Reset:
980 NewByte = CGF.Builder.CreateAnd(OldByte, CGF.Builder.CreateNot(Mask));
981 break;
982 case BitTest::Set:
983 NewByte = CGF.Builder.CreateOr(OldByte, Mask);
984 break;
985 }
986 if (NewByte)
987 CGF.Builder.CreateStore(NewByte, ByteAddr);
988 }
989
990 // However we loaded the old byte, either by plain load or atomicrmw, shift
991 // the bit into the low position and mask it to 0 or 1.
992 Value *ShiftedByte = CGF.Builder.CreateLShr(OldByte, PosLow, "bittest.shr");
993 return CGF.Builder.CreateAnd(
994 ShiftedByte, llvm::ConstantInt::get(CGF.Int8Ty, 1), "bittest.res");
995}
996
997namespace {
998enum class MSVCSetJmpKind {
999 _setjmpex,
1000 _setjmp3,
1001 _setjmp
1002};
1003}
1004
1005/// MSVC handles setjmp a bit differently on different platforms. On every
1006/// architecture except 32-bit x86, the frame address is passed. On x86, extra
1007/// parameters can be passed as variadic arguments, but we always pass none.
1008static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind,
1009 const CallExpr *E) {
1010 llvm::Value *Arg1 = nullptr;
1011 llvm::Type *Arg1Ty = nullptr;
1012 StringRef Name;
1013 bool IsVarArg = false;
1014 if (SJKind == MSVCSetJmpKind::_setjmp3) {
1015 Name = "_setjmp3";
1016 Arg1Ty = CGF.Int32Ty;
1017 Arg1 = llvm::ConstantInt::get(CGF.IntTy, 0);
1018 IsVarArg = true;
1019 } else {
1020 Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp" : "_setjmpex";
1021 Arg1Ty = CGF.Int8PtrTy;
1022 if (CGF.getTarget().getTriple().getArch() == llvm::Triple::aarch64) {
1023 Arg1 = CGF.Builder.CreateCall(
1024 CGF.CGM.getIntrinsic(Intrinsic::sponentry, CGF.AllocaInt8PtrTy));
1025 } else
1026 Arg1 = CGF.Builder.CreateCall(
1027 CGF.CGM.getIntrinsic(Intrinsic::frameaddress, CGF.AllocaInt8PtrTy),
1028 llvm::ConstantInt::get(CGF.Int32Ty, 0));
1029 }
1030
1031 // Mark the call site and declaration with ReturnsTwice.
1032 llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty};
1033 llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get(
1034 CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex,
1035 llvm::Attribute::ReturnsTwice);
1036 llvm::FunctionCallee SetJmpFn = CGF.CGM.CreateRuntimeFunction(
1037 llvm::FunctionType::get(CGF.IntTy, ArgTypes, IsVarArg), Name,
1038 ReturnsTwiceAttr, /*Local=*/true);
1039
1040 llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast(
1041 CGF.EmitScalarExpr(E->getArg(0)), CGF.Int8PtrTy);
1042 llvm::Value *Args[] = {Buf, Arg1};
1043 llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(SetJmpFn, Args);
1044 CB->setAttributes(ReturnsTwiceAttr);
1045 return RValue::get(CB);
1046}
1047
1048// Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code,
1049// we handle them here.
1050enum class CodeGenFunction::MSVCIntrin {
1051 _BitScanForward,
1052 _BitScanReverse,
1053 _InterlockedAnd,
1054 _InterlockedDecrement,
1055 _InterlockedExchange,
1056 _InterlockedExchangeAdd,
1057 _InterlockedExchangeSub,
1058 _InterlockedIncrement,
1059 _InterlockedOr,
1060 _InterlockedXor,
1061 _InterlockedExchangeAdd_acq,
1062 _InterlockedExchangeAdd_rel,
1063 _InterlockedExchangeAdd_nf,
1064 _InterlockedExchange_acq,
1065 _InterlockedExchange_rel,
1066 _InterlockedExchange_nf,
1067 _InterlockedCompareExchange_acq,
1068 _InterlockedCompareExchange_rel,
1069 _InterlockedCompareExchange_nf,
1070 _InterlockedCompareExchange128,
1071 _InterlockedCompareExchange128_acq,
1072 _InterlockedCompareExchange128_rel,
1073 _InterlockedCompareExchange128_nf,
1074 _InterlockedOr_acq,
1075 _InterlockedOr_rel,
1076 _InterlockedOr_nf,
1077 _InterlockedXor_acq,
1078 _InterlockedXor_rel,
1079 _InterlockedXor_nf,
1080 _InterlockedAnd_acq,
1081 _InterlockedAnd_rel,
1082 _InterlockedAnd_nf,
1083 _InterlockedIncrement_acq,
1084 _InterlockedIncrement_rel,
1085 _InterlockedIncrement_nf,
1086 _InterlockedDecrement_acq,
1087 _InterlockedDecrement_rel,
1088 _InterlockedDecrement_nf,
1089 __fastfail,
1090};
1091
1092static Optional<CodeGenFunction::MSVCIntrin>
1093translateArmToMsvcIntrin(unsigned BuiltinID) {
1094 using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1095 switch (BuiltinID) {
1096 default:
1097 return None;
1098 case ARM::BI_BitScanForward:
1099 case ARM::BI_BitScanForward64:
1100 return MSVCIntrin::_BitScanForward;
1101 case ARM::BI_BitScanReverse:
1102 case ARM::BI_BitScanReverse64:
1103 return MSVCIntrin::_BitScanReverse;
1104 case ARM::BI_InterlockedAnd64:
1105 return MSVCIntrin::_InterlockedAnd;
1106 case ARM::BI_InterlockedExchange64:
1107 return MSVCIntrin::_InterlockedExchange;
1108 case ARM::BI_InterlockedExchangeAdd64:
1109 return MSVCIntrin::_InterlockedExchangeAdd;
1110 case ARM::BI_InterlockedExchangeSub64:
1111 return MSVCIntrin::_InterlockedExchangeSub;
1112 case ARM::BI_InterlockedOr64:
1113 return MSVCIntrin::_InterlockedOr;
1114 case ARM::BI_InterlockedXor64:
1115 return MSVCIntrin::_InterlockedXor;
1116 case ARM::BI_InterlockedDecrement64:
1117 return MSVCIntrin::_InterlockedDecrement;
1118 case ARM::BI_InterlockedIncrement64:
1119 return MSVCIntrin::_InterlockedIncrement;
1120 case ARM::BI_InterlockedExchangeAdd8_acq:
1121 case ARM::BI_InterlockedExchangeAdd16_acq:
1122 case ARM::BI_InterlockedExchangeAdd_acq:
1123 case ARM::BI_InterlockedExchangeAdd64_acq:
1124 return MSVCIntrin::_InterlockedExchangeAdd_acq;
1125 case ARM::BI_InterlockedExchangeAdd8_rel:
1126 case ARM::BI_InterlockedExchangeAdd16_rel:
1127 case ARM::BI_InterlockedExchangeAdd_rel:
1128 case ARM::BI_InterlockedExchangeAdd64_rel:
1129 return MSVCIntrin::_InterlockedExchangeAdd_rel;
1130 case ARM::BI_InterlockedExchangeAdd8_nf:
1131 case ARM::BI_InterlockedExchangeAdd16_nf:
1132 case ARM::BI_InterlockedExchangeAdd_nf:
1133 case ARM::BI_InterlockedExchangeAdd64_nf:
1134 return MSVCIntrin::_InterlockedExchangeAdd_nf;
1135 case ARM::BI_InterlockedExchange8_acq:
1136 case ARM::BI_InterlockedExchange16_acq:
1137 case ARM::BI_InterlockedExchange_acq:
1138 case ARM::BI_InterlockedExchange64_acq:
1139 return MSVCIntrin::_InterlockedExchange_acq;
1140 case ARM::BI_InterlockedExchange8_rel:
1141 case ARM::BI_InterlockedExchange16_rel:
1142 case ARM::BI_InterlockedExchange_rel:
1143 case ARM::BI_InterlockedExchange64_rel:
1144 return MSVCIntrin::_InterlockedExchange_rel;
1145 case ARM::BI_InterlockedExchange8_nf:
1146 case ARM::BI_InterlockedExchange16_nf:
1147 case ARM::BI_InterlockedExchange_nf:
1148 case ARM::BI_InterlockedExchange64_nf:
1149 return MSVCIntrin::_InterlockedExchange_nf;
1150 case ARM::BI_InterlockedCompareExchange8_acq:
1151 case ARM::BI_InterlockedCompareExchange16_acq:
1152 case ARM::BI_InterlockedCompareExchange_acq:
1153 case ARM::BI_InterlockedCompareExchange64_acq:
1154 return MSVCIntrin::_InterlockedCompareExchange_acq;
1155 case ARM::BI_InterlockedCompareExchange8_rel:
1156 case ARM::BI_InterlockedCompareExchange16_rel:
1157 case ARM::BI_InterlockedCompareExchange_rel:
1158 case ARM::BI_InterlockedCompareExchange64_rel:
1159 return MSVCIntrin::_InterlockedCompareExchange_rel;
1160 case ARM::BI_InterlockedCompareExchange8_nf:
1161 case ARM::BI_InterlockedCompareExchange16_nf:
1162 case ARM::BI_InterlockedCompareExchange_nf:
1163 case ARM::BI_InterlockedCompareExchange64_nf:
1164 return MSVCIntrin::_InterlockedCompareExchange_nf;
1165 case ARM::BI_InterlockedOr8_acq:
1166 case ARM::BI_InterlockedOr16_acq:
1167 case ARM::BI_InterlockedOr_acq:
1168 case ARM::BI_InterlockedOr64_acq:
1169 return MSVCIntrin::_InterlockedOr_acq;
1170 case ARM::BI_InterlockedOr8_rel:
1171 case ARM::BI_InterlockedOr16_rel:
1172 case ARM::BI_InterlockedOr_rel:
1173 case ARM::BI_InterlockedOr64_rel:
1174 return MSVCIntrin::_InterlockedOr_rel;
1175 case ARM::BI_InterlockedOr8_nf:
1176 case ARM::BI_InterlockedOr16_nf:
1177 case ARM::BI_InterlockedOr_nf:
1178 case ARM::BI_InterlockedOr64_nf:
1179 return MSVCIntrin::_InterlockedOr_nf;
1180 case ARM::BI_InterlockedXor8_acq:
1181 case ARM::BI_InterlockedXor16_acq:
1182 case ARM::BI_InterlockedXor_acq:
1183 case ARM::BI_InterlockedXor64_acq:
1184 return MSVCIntrin::_InterlockedXor_acq;
1185 case ARM::BI_InterlockedXor8_rel:
1186 case ARM::BI_InterlockedXor16_rel:
1187 case ARM::BI_InterlockedXor_rel:
1188 case ARM::BI_InterlockedXor64_rel:
1189 return MSVCIntrin::_InterlockedXor_rel;
1190 case ARM::BI_InterlockedXor8_nf:
1191 case ARM::BI_InterlockedXor16_nf:
1192 case ARM::BI_InterlockedXor_nf:
1193 case ARM::BI_InterlockedXor64_nf:
1194 return MSVCIntrin::_InterlockedXor_nf;
1195 case ARM::BI_InterlockedAnd8_acq:
1196 case ARM::BI_InterlockedAnd16_acq:
1197 case ARM::BI_InterlockedAnd_acq:
1198 case ARM::BI_InterlockedAnd64_acq:
1199 return MSVCIntrin::_InterlockedAnd_acq;
1200 case ARM::BI_InterlockedAnd8_rel:
1201 case ARM::BI_InterlockedAnd16_rel:
1202 case ARM::BI_InterlockedAnd_rel:
1203 case ARM::BI_InterlockedAnd64_rel:
1204 return MSVCIntrin::_InterlockedAnd_rel;
1205 case ARM::BI_InterlockedAnd8_nf:
1206 case ARM::BI_InterlockedAnd16_nf:
1207 case ARM::BI_InterlockedAnd_nf:
1208 case ARM::BI_InterlockedAnd64_nf:
1209 return MSVCIntrin::_InterlockedAnd_nf;
1210 case ARM::BI_InterlockedIncrement16_acq:
1211 case ARM::BI_InterlockedIncrement_acq:
1212 case ARM::BI_InterlockedIncrement64_acq:
1213 return MSVCIntrin::_InterlockedIncrement_acq;
1214 case ARM::BI_InterlockedIncrement16_rel:
1215 case ARM::BI_InterlockedIncrement_rel:
1216 case ARM::BI_InterlockedIncrement64_rel:
1217 return MSVCIntrin::_InterlockedIncrement_rel;
1218 case ARM::BI_InterlockedIncrement16_nf:
1219 case ARM::BI_InterlockedIncrement_nf:
1220 case ARM::BI_InterlockedIncrement64_nf:
1221 return MSVCIntrin::_InterlockedIncrement_nf;
1222 case ARM::BI_InterlockedDecrement16_acq:
1223 case ARM::BI_InterlockedDecrement_acq:
1224 case ARM::BI_InterlockedDecrement64_acq:
1225 return MSVCIntrin::_InterlockedDecrement_acq;
1226 case ARM::BI_InterlockedDecrement16_rel:
1227 case ARM::BI_InterlockedDecrement_rel:
1228 case ARM::BI_InterlockedDecrement64_rel:
1229 return MSVCIntrin::_InterlockedDecrement_rel;
1230 case ARM::BI_InterlockedDecrement16_nf:
1231 case ARM::BI_InterlockedDecrement_nf:
1232 case ARM::BI_InterlockedDecrement64_nf:
1233 return MSVCIntrin::_InterlockedDecrement_nf;
1234 }
1235 llvm_unreachable("must return from switch")::llvm::llvm_unreachable_internal("must return from switch", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 1235)
;
1236}
1237
1238static Optional<CodeGenFunction::MSVCIntrin>
1239translateAarch64ToMsvcIntrin(unsigned BuiltinID) {
1240 using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1241 switch (BuiltinID) {
1242 default:
1243 return None;
1244 case AArch64::BI_BitScanForward:
1245 case AArch64::BI_BitScanForward64:
1246 return MSVCIntrin::_BitScanForward;
1247 case AArch64::BI_BitScanReverse:
1248 case AArch64::BI_BitScanReverse64:
1249 return MSVCIntrin::_BitScanReverse;
1250 case AArch64::BI_InterlockedAnd64:
1251 return MSVCIntrin::_InterlockedAnd;
1252 case AArch64::BI_InterlockedExchange64:
1253 return MSVCIntrin::_InterlockedExchange;
1254 case AArch64::BI_InterlockedExchangeAdd64:
1255 return MSVCIntrin::_InterlockedExchangeAdd;
1256 case AArch64::BI_InterlockedExchangeSub64:
1257 return MSVCIntrin::_InterlockedExchangeSub;
1258 case AArch64::BI_InterlockedOr64:
1259 return MSVCIntrin::_InterlockedOr;
1260 case AArch64::BI_InterlockedXor64:
1261 return MSVCIntrin::_InterlockedXor;
1262 case AArch64::BI_InterlockedDecrement64:
1263 return MSVCIntrin::_InterlockedDecrement;
1264 case AArch64::BI_InterlockedIncrement64:
1265 return MSVCIntrin::_InterlockedIncrement;
1266 case AArch64::BI_InterlockedExchangeAdd8_acq:
1267 case AArch64::BI_InterlockedExchangeAdd16_acq:
1268 case AArch64::BI_InterlockedExchangeAdd_acq:
1269 case AArch64::BI_InterlockedExchangeAdd64_acq:
1270 return MSVCIntrin::_InterlockedExchangeAdd_acq;
1271 case AArch64::BI_InterlockedExchangeAdd8_rel:
1272 case AArch64::BI_InterlockedExchangeAdd16_rel:
1273 case AArch64::BI_InterlockedExchangeAdd_rel:
1274 case AArch64::BI_InterlockedExchangeAdd64_rel:
1275 return MSVCIntrin::_InterlockedExchangeAdd_rel;
1276 case AArch64::BI_InterlockedExchangeAdd8_nf:
1277 case AArch64::BI_InterlockedExchangeAdd16_nf:
1278 case AArch64::BI_InterlockedExchangeAdd_nf:
1279 case AArch64::BI_InterlockedExchangeAdd64_nf:
1280 return MSVCIntrin::_InterlockedExchangeAdd_nf;
1281 case AArch64::BI_InterlockedExchange8_acq:
1282 case AArch64::BI_InterlockedExchange16_acq:
1283 case AArch64::BI_InterlockedExchange_acq:
1284 case AArch64::BI_InterlockedExchange64_acq:
1285 return MSVCIntrin::_InterlockedExchange_acq;
1286 case AArch64::BI_InterlockedExchange8_rel:
1287 case AArch64::BI_InterlockedExchange16_rel:
1288 case AArch64::BI_InterlockedExchange_rel:
1289 case AArch64::BI_InterlockedExchange64_rel:
1290 return MSVCIntrin::_InterlockedExchange_rel;
1291 case AArch64::BI_InterlockedExchange8_nf:
1292 case AArch64::BI_InterlockedExchange16_nf:
1293 case AArch64::BI_InterlockedExchange_nf:
1294 case AArch64::BI_InterlockedExchange64_nf:
1295 return MSVCIntrin::_InterlockedExchange_nf;
1296 case AArch64::BI_InterlockedCompareExchange8_acq:
1297 case AArch64::BI_InterlockedCompareExchange16_acq:
1298 case AArch64::BI_InterlockedCompareExchange_acq:
1299 case AArch64::BI_InterlockedCompareExchange64_acq:
1300 return MSVCIntrin::_InterlockedCompareExchange_acq;
1301 case AArch64::BI_InterlockedCompareExchange8_rel:
1302 case AArch64::BI_InterlockedCompareExchange16_rel:
1303 case AArch64::BI_InterlockedCompareExchange_rel:
1304 case AArch64::BI_InterlockedCompareExchange64_rel:
1305 return MSVCIntrin::_InterlockedCompareExchange_rel;
1306 case AArch64::BI_InterlockedCompareExchange8_nf:
1307 case AArch64::BI_InterlockedCompareExchange16_nf:
1308 case AArch64::BI_InterlockedCompareExchange_nf:
1309 case AArch64::BI_InterlockedCompareExchange64_nf:
1310 return MSVCIntrin::_InterlockedCompareExchange_nf;
1311 case AArch64::BI_InterlockedCompareExchange128:
1312 return MSVCIntrin::_InterlockedCompareExchange128;
1313 case AArch64::BI_InterlockedCompareExchange128_acq:
1314 return MSVCIntrin::_InterlockedCompareExchange128_acq;
1315 case AArch64::BI_InterlockedCompareExchange128_nf:
1316 return MSVCIntrin::_InterlockedCompareExchange128_nf;
1317 case AArch64::BI_InterlockedCompareExchange128_rel:
1318 return MSVCIntrin::_InterlockedCompareExchange128_rel;
1319 case AArch64::BI_InterlockedOr8_acq:
1320 case AArch64::BI_InterlockedOr16_acq:
1321 case AArch64::BI_InterlockedOr_acq:
1322 case AArch64::BI_InterlockedOr64_acq:
1323 return MSVCIntrin::_InterlockedOr_acq;
1324 case AArch64::BI_InterlockedOr8_rel:
1325 case AArch64::BI_InterlockedOr16_rel:
1326 case AArch64::BI_InterlockedOr_rel:
1327 case AArch64::BI_InterlockedOr64_rel:
1328 return MSVCIntrin::_InterlockedOr_rel;
1329 case AArch64::BI_InterlockedOr8_nf:
1330 case AArch64::BI_InterlockedOr16_nf:
1331 case AArch64::BI_InterlockedOr_nf:
1332 case AArch64::BI_InterlockedOr64_nf:
1333 return MSVCIntrin::_InterlockedOr_nf;
1334 case AArch64::BI_InterlockedXor8_acq:
1335 case AArch64::BI_InterlockedXor16_acq:
1336 case AArch64::BI_InterlockedXor_acq:
1337 case AArch64::BI_InterlockedXor64_acq:
1338 return MSVCIntrin::_InterlockedXor_acq;
1339 case AArch64::BI_InterlockedXor8_rel:
1340 case AArch64::BI_InterlockedXor16_rel:
1341 case AArch64::BI_InterlockedXor_rel:
1342 case AArch64::BI_InterlockedXor64_rel:
1343 return MSVCIntrin::_InterlockedXor_rel;
1344 case AArch64::BI_InterlockedXor8_nf:
1345 case AArch64::BI_InterlockedXor16_nf:
1346 case AArch64::BI_InterlockedXor_nf:
1347 case AArch64::BI_InterlockedXor64_nf:
1348 return MSVCIntrin::_InterlockedXor_nf;
1349 case AArch64::BI_InterlockedAnd8_acq:
1350 case AArch64::BI_InterlockedAnd16_acq:
1351 case AArch64::BI_InterlockedAnd_acq:
1352 case AArch64::BI_InterlockedAnd64_acq:
1353 return MSVCIntrin::_InterlockedAnd_acq;
1354 case AArch64::BI_InterlockedAnd8_rel:
1355 case AArch64::BI_InterlockedAnd16_rel:
1356 case AArch64::BI_InterlockedAnd_rel:
1357 case AArch64::BI_InterlockedAnd64_rel:
1358 return MSVCIntrin::_InterlockedAnd_rel;
1359 case AArch64::BI_InterlockedAnd8_nf:
1360 case AArch64::BI_InterlockedAnd16_nf:
1361 case AArch64::BI_InterlockedAnd_nf:
1362 case AArch64::BI_InterlockedAnd64_nf:
1363 return MSVCIntrin::_InterlockedAnd_nf;
1364 case AArch64::BI_InterlockedIncrement16_acq:
1365 case AArch64::BI_InterlockedIncrement_acq:
1366 case AArch64::BI_InterlockedIncrement64_acq:
1367 return MSVCIntrin::_InterlockedIncrement_acq;
1368 case AArch64::BI_InterlockedIncrement16_rel:
1369 case AArch64::BI_InterlockedIncrement_rel:
1370 case AArch64::BI_InterlockedIncrement64_rel:
1371 return MSVCIntrin::_InterlockedIncrement_rel;
1372 case AArch64::BI_InterlockedIncrement16_nf:
1373 case AArch64::BI_InterlockedIncrement_nf:
1374 case AArch64::BI_InterlockedIncrement64_nf:
1375 return MSVCIntrin::_InterlockedIncrement_nf;
1376 case AArch64::BI_InterlockedDecrement16_acq:
1377 case AArch64::BI_InterlockedDecrement_acq:
1378 case AArch64::BI_InterlockedDecrement64_acq:
1379 return MSVCIntrin::_InterlockedDecrement_acq;
1380 case AArch64::BI_InterlockedDecrement16_rel:
1381 case AArch64::BI_InterlockedDecrement_rel:
1382 case AArch64::BI_InterlockedDecrement64_rel:
1383 return MSVCIntrin::_InterlockedDecrement_rel;
1384 case AArch64::BI_InterlockedDecrement16_nf:
1385 case AArch64::BI_InterlockedDecrement_nf:
1386 case AArch64::BI_InterlockedDecrement64_nf:
1387 return MSVCIntrin::_InterlockedDecrement_nf;
1388 }
1389 llvm_unreachable("must return from switch")::llvm::llvm_unreachable_internal("must return from switch", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 1389)
;
1390}
1391
1392static Optional<CodeGenFunction::MSVCIntrin>
1393translateX86ToMsvcIntrin(unsigned BuiltinID) {
1394 using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1395 switch (BuiltinID) {
1396 default:
1397 return None;
1398 case clang::X86::BI_BitScanForward:
1399 case clang::X86::BI_BitScanForward64:
1400 return MSVCIntrin::_BitScanForward;
1401 case clang::X86::BI_BitScanReverse:
1402 case clang::X86::BI_BitScanReverse64:
1403 return MSVCIntrin::_BitScanReverse;
1404 case clang::X86::BI_InterlockedAnd64:
1405 return MSVCIntrin::_InterlockedAnd;
1406 case clang::X86::BI_InterlockedCompareExchange128:
1407 return MSVCIntrin::_InterlockedCompareExchange128;
1408 case clang::X86::BI_InterlockedExchange64:
1409 return MSVCIntrin::_InterlockedExchange;
1410 case clang::X86::BI_InterlockedExchangeAdd64:
1411 return MSVCIntrin::_InterlockedExchangeAdd;
1412 case clang::X86::BI_InterlockedExchangeSub64:
1413 return MSVCIntrin::_InterlockedExchangeSub;
1414 case clang::X86::BI_InterlockedOr64:
1415 return MSVCIntrin::_InterlockedOr;
1416 case clang::X86::BI_InterlockedXor64:
1417 return MSVCIntrin::_InterlockedXor;
1418 case clang::X86::BI_InterlockedDecrement64:
1419 return MSVCIntrin::_InterlockedDecrement;
1420 case clang::X86::BI_InterlockedIncrement64:
1421 return MSVCIntrin::_InterlockedIncrement;
1422 }
1423 llvm_unreachable("must return from switch")::llvm::llvm_unreachable_internal("must return from switch", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 1423)
;
1424}
1425
1426// Emit an MSVC intrinsic. Assumes that arguments have *not* been evaluated.
1427Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID,
1428 const CallExpr *E) {
1429 switch (BuiltinID) {
1430 case MSVCIntrin::_BitScanForward:
1431 case MSVCIntrin::_BitScanReverse: {
1432 Address IndexAddress(EmitPointerWithAlignment(E->getArg(0)));
1433 Value *ArgValue = EmitScalarExpr(E->getArg(1));
1434
1435 llvm::Type *ArgType = ArgValue->getType();
1436 llvm::Type *IndexType =
1437 IndexAddress.getPointer()->getType()->getPointerElementType();
1438 llvm::Type *ResultType = ConvertType(E->getType());
1439
1440 Value *ArgZero = llvm::Constant::getNullValue(ArgType);
1441 Value *ResZero = llvm::Constant::getNullValue(ResultType);
1442 Value *ResOne = llvm::ConstantInt::get(ResultType, 1);
1443
1444 BasicBlock *Begin = Builder.GetInsertBlock();
1445 BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn);
1446 Builder.SetInsertPoint(End);
1447 PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result");
1448
1449 Builder.SetInsertPoint(Begin);
1450 Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero);
1451 BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn);
1452 Builder.CreateCondBr(IsZero, End, NotZero);
1453 Result->addIncoming(ResZero, Begin);
1454
1455 Builder.SetInsertPoint(NotZero);
1456
1457 if (BuiltinID == MSVCIntrin::_BitScanForward) {
1458 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
1459 Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
1460 ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
1461 Builder.CreateStore(ZeroCount, IndexAddress, false);
1462 } else {
1463 unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth();
1464 Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1);
1465
1466 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
1467 Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
1468 ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
1469 Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount);
1470 Builder.CreateStore(Index, IndexAddress, false);
1471 }
1472 Builder.CreateBr(End);
1473 Result->addIncoming(ResOne, NotZero);
1474
1475 Builder.SetInsertPoint(End);
1476 return Result;
1477 }
1478 case MSVCIntrin::_InterlockedAnd:
1479 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E);
1480 case MSVCIntrin::_InterlockedExchange:
1481 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E);
1482 case MSVCIntrin::_InterlockedExchangeAdd:
1483 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E);
1484 case MSVCIntrin::_InterlockedExchangeSub:
1485 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E);
1486 case MSVCIntrin::_InterlockedOr:
1487 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E);
1488 case MSVCIntrin::_InterlockedXor:
1489 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E);
1490 case MSVCIntrin::_InterlockedExchangeAdd_acq:
1491 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1492 AtomicOrdering::Acquire);
1493 case MSVCIntrin::_InterlockedExchangeAdd_rel:
1494 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1495 AtomicOrdering::Release);
1496 case MSVCIntrin::_InterlockedExchangeAdd_nf:
1497 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1498 AtomicOrdering::Monotonic);
1499 case MSVCIntrin::_InterlockedExchange_acq:
1500 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1501 AtomicOrdering::Acquire);
1502 case MSVCIntrin::_InterlockedExchange_rel:
1503 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1504 AtomicOrdering::Release);
1505 case MSVCIntrin::_InterlockedExchange_nf:
1506 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1507 AtomicOrdering::Monotonic);
1508 case MSVCIntrin::_InterlockedCompareExchange_acq:
1509 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Acquire);
1510 case MSVCIntrin::_InterlockedCompareExchange_rel:
1511 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Release);
1512 case MSVCIntrin::_InterlockedCompareExchange_nf:
1513 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Monotonic);
1514 case MSVCIntrin::_InterlockedCompareExchange128:
1515 return EmitAtomicCmpXchg128ForMSIntrin(
1516 *this, E, AtomicOrdering::SequentiallyConsistent);
1517 case MSVCIntrin::_InterlockedCompareExchange128_acq:
1518 return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Acquire);
1519 case MSVCIntrin::_InterlockedCompareExchange128_rel:
1520 return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Release);
1521 case MSVCIntrin::_InterlockedCompareExchange128_nf:
1522 return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Monotonic);
1523 case MSVCIntrin::_InterlockedOr_acq:
1524 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1525 AtomicOrdering::Acquire);
1526 case MSVCIntrin::_InterlockedOr_rel:
1527 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1528 AtomicOrdering::Release);
1529 case MSVCIntrin::_InterlockedOr_nf:
1530 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1531 AtomicOrdering::Monotonic);
1532 case MSVCIntrin::_InterlockedXor_acq:
1533 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1534 AtomicOrdering::Acquire);
1535 case MSVCIntrin::_InterlockedXor_rel:
1536 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1537 AtomicOrdering::Release);
1538 case MSVCIntrin::_InterlockedXor_nf:
1539 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1540 AtomicOrdering::Monotonic);
1541 case MSVCIntrin::_InterlockedAnd_acq:
1542 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1543 AtomicOrdering::Acquire);
1544 case MSVCIntrin::_InterlockedAnd_rel:
1545 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1546 AtomicOrdering::Release);
1547 case MSVCIntrin::_InterlockedAnd_nf:
1548 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1549 AtomicOrdering::Monotonic);
1550 case MSVCIntrin::_InterlockedIncrement_acq:
1551 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Acquire);
1552 case MSVCIntrin::_InterlockedIncrement_rel:
1553 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Release);
1554 case MSVCIntrin::_InterlockedIncrement_nf:
1555 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Monotonic);
1556 case MSVCIntrin::_InterlockedDecrement_acq:
1557 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Acquire);
1558 case MSVCIntrin::_InterlockedDecrement_rel:
1559 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Release);
1560 case MSVCIntrin::_InterlockedDecrement_nf:
1561 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Monotonic);
1562
1563 case MSVCIntrin::_InterlockedDecrement:
1564 return EmitAtomicDecrementValue(*this, E);
1565 case MSVCIntrin::_InterlockedIncrement:
1566 return EmitAtomicIncrementValue(*this, E);
1567
1568 case MSVCIntrin::__fastfail: {
1569 // Request immediate process termination from the kernel. The instruction
1570 // sequences to do this are documented on MSDN:
1571 // https://msdn.microsoft.com/en-us/library/dn774154.aspx
1572 llvm::Triple::ArchType ISA = getTarget().getTriple().getArch();
1573 StringRef Asm, Constraints;
1574 switch (ISA) {
1575 default:
1576 ErrorUnsupported(E, "__fastfail call for this architecture");
1577 break;
1578 case llvm::Triple::x86:
1579 case llvm::Triple::x86_64:
1580 Asm = "int $$0x29";
1581 Constraints = "{cx}";
1582 break;
1583 case llvm::Triple::thumb:
1584 Asm = "udf #251";
1585 Constraints = "{r0}";
1586 break;
1587 case llvm::Triple::aarch64:
1588 Asm = "brk #0xF003";
1589 Constraints = "{w0}";
1590 }
1591 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false);
1592 llvm::InlineAsm *IA =
1593 llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
1594 llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
1595 getLLVMContext(), llvm::AttributeList::FunctionIndex,
1596 llvm::Attribute::NoReturn);
1597 llvm::CallInst *CI = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0)));
1598 CI->setAttributes(NoReturnAttr);
1599 return CI;
1600 }
1601 }
1602 llvm_unreachable("Incorrect MSVC intrinsic!")::llvm::llvm_unreachable_internal("Incorrect MSVC intrinsic!"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 1602)
;
1603}
1604
1605namespace {
1606// ARC cleanup for __builtin_os_log_format
1607struct CallObjCArcUse final : EHScopeStack::Cleanup {
1608 CallObjCArcUse(llvm::Value *object) : object(object) {}
1609 llvm::Value *object;
1610
1611 void Emit(CodeGenFunction &CGF, Flags flags) override {
1612 CGF.EmitARCIntrinsicUse(object);
1613 }
1614};
1615}
1616
1617Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E,
1618 BuiltinCheckKind Kind) {
1619 assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero)(static_cast <bool> ((Kind == BCK_CLZPassedZero || Kind
== BCK_CTZPassedZero) && "Unsupported builtin check kind"
) ? void (0) : __assert_fail ("(Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero) && \"Unsupported builtin check kind\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 1620, __extension__ __PRETTY_FUNCTION__))
1620 && "Unsupported builtin check kind")(static_cast <bool> ((Kind == BCK_CLZPassedZero || Kind
== BCK_CTZPassedZero) && "Unsupported builtin check kind"
) ? void (0) : __assert_fail ("(Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero) && \"Unsupported builtin check kind\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 1620, __extension__ __PRETTY_FUNCTION__))
;
1621
1622 Value *ArgValue = EmitScalarExpr(E);
1623 if (!SanOpts.has(SanitizerKind::Builtin) || !getTarget().isCLZForZeroUndef())
1624 return ArgValue;
1625
1626 SanitizerScope SanScope(this);
1627 Value *Cond = Builder.CreateICmpNE(
1628 ArgValue, llvm::Constant::getNullValue(ArgValue->getType()));
1629 EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin),
1630 SanitizerHandler::InvalidBuiltin,
1631 {EmitCheckSourceLocation(E->getExprLoc()),
1632 llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)},
1633 None);
1634 return ArgValue;
1635}
1636
1637/// Get the argument type for arguments to os_log_helper.
1638static CanQualType getOSLogArgType(ASTContext &C, int Size) {
1639 QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false);
1640 return C.getCanonicalType(UnsignedTy);
1641}
1642
1643llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction(
1644 const analyze_os_log::OSLogBufferLayout &Layout,
1645 CharUnits BufferAlignment) {
1646 ASTContext &Ctx = getContext();
1647
1648 llvm::SmallString<64> Name;
1649 {
1650 raw_svector_ostream OS(Name);
1651 OS << "__os_log_helper";
1652 OS << "_" << BufferAlignment.getQuantity();
1653 OS << "_" << int(Layout.getSummaryByte());
1654 OS << "_" << int(Layout.getNumArgsByte());
1655 for (const auto &Item : Layout.Items)
1656 OS << "_" << int(Item.getSizeByte()) << "_"
1657 << int(Item.getDescriptorByte());
1658 }
1659
1660 if (llvm::Function *F = CGM.getModule().getFunction(Name))
1661 return F;
1662
1663 llvm::SmallVector<QualType, 4> ArgTys;
1664 FunctionArgList Args;
1665 Args.push_back(ImplicitParamDecl::Create(
1666 Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"), Ctx.VoidPtrTy,
1667 ImplicitParamDecl::Other));
1668 ArgTys.emplace_back(Ctx.VoidPtrTy);
1669
1670 for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) {
1671 char Size = Layout.Items[I].getSizeByte();
1672 if (!Size)
1673 continue;
1674
1675 QualType ArgTy = getOSLogArgType(Ctx, Size);
1676 Args.push_back(ImplicitParamDecl::Create(
1677 Ctx, nullptr, SourceLocation(),
1678 &Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), ArgTy,
1679 ImplicitParamDecl::Other));
1680 ArgTys.emplace_back(ArgTy);
1681 }
1682
1683 QualType ReturnTy = Ctx.VoidTy;
1684 QualType FuncionTy = Ctx.getFunctionType(ReturnTy, ArgTys, {});
1685
1686 // The helper function has linkonce_odr linkage to enable the linker to merge
1687 // identical functions. To ensure the merging always happens, 'noinline' is
1688 // attached to the function when compiling with -Oz.
1689 const CGFunctionInfo &FI =
1690 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, Args);
1691 llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI);
1692 llvm::Function *Fn = llvm::Function::Create(
1693 FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule());
1694 Fn->setVisibility(llvm::GlobalValue::HiddenVisibility);
1695 CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn, /*IsThunk=*/false);
1696 CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn);
1697 Fn->setDoesNotThrow();
1698
1699 // Attach 'noinline' at -Oz.
1700 if (CGM.getCodeGenOpts().OptimizeSize == 2)
1701 Fn->addFnAttr(llvm::Attribute::NoInline);
1702
1703 auto NL = ApplyDebugLocation::CreateEmpty(*this);
1704 IdentifierInfo *II = &Ctx.Idents.get(Name);
1705 FunctionDecl *FD = FunctionDecl::Create(
1706 Ctx, Ctx.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
1707 FuncionTy, nullptr, SC_PrivateExtern, false, false);
1708 // Avoid generating debug location info for the function.
1709 FD->setImplicit();
1710
1711 StartFunction(FD, ReturnTy, Fn, FI, Args);
1712
1713 // Create a scope with an artificial location for the body of this function.
1714 auto AL = ApplyDebugLocation::CreateArtificial(*this);
1715
1716 CharUnits Offset;
1717 Address BufAddr(Builder.CreateLoad(GetAddrOfLocalVar(Args[0]), "buf"),
1718 BufferAlignment);
1719 Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()),
1720 Builder.CreateConstByteGEP(BufAddr, Offset++, "summary"));
1721 Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()),
1722 Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs"));
1723
1724 unsigned I = 1;
1725 for (const auto &Item : Layout.Items) {
1726 Builder.CreateStore(
1727 Builder.getInt8(Item.getDescriptorByte()),
1728 Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor"));
1729 Builder.CreateStore(
1730 Builder.getInt8(Item.getSizeByte()),
1731 Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize"));
1732
1733 CharUnits Size = Item.size();
1734 if (!Size.getQuantity())
1735 continue;
1736
1737 Address Arg = GetAddrOfLocalVar(Args[I]);
1738 Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData");
1739 Addr = Builder.CreateBitCast(Addr, Arg.getPointer()->getType(),
1740 "argDataCast");
1741 Builder.CreateStore(Builder.CreateLoad(Arg), Addr);
1742 Offset += Size;
1743 ++I;
1744 }
1745
1746 FinishFunction();
1747
1748 return Fn;
1749}
1750
1751RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) {
1752 assert(E.getNumArgs() >= 2 &&(static_cast <bool> (E.getNumArgs() >= 2 && "__builtin_os_log_format takes at least 2 arguments"
) ? void (0) : __assert_fail ("E.getNumArgs() >= 2 && \"__builtin_os_log_format takes at least 2 arguments\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 1753, __extension__ __PRETTY_FUNCTION__))
1753 "__builtin_os_log_format takes at least 2 arguments")(static_cast <bool> (E.getNumArgs() >= 2 && "__builtin_os_log_format takes at least 2 arguments"
) ? void (0) : __assert_fail ("E.getNumArgs() >= 2 && \"__builtin_os_log_format takes at least 2 arguments\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 1753, __extension__ __PRETTY_FUNCTION__))
;
1754 ASTContext &Ctx = getContext();
1755 analyze_os_log::OSLogBufferLayout Layout;
1756 analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout);
1757 Address BufAddr = EmitPointerWithAlignment(E.getArg(0));
1758 llvm::SmallVector<llvm::Value *, 4> RetainableOperands;
1759
1760 // Ignore argument 1, the format string. It is not currently used.
1761 CallArgList Args;
1762 Args.add(RValue::get(BufAddr.getPointer()), Ctx.VoidPtrTy);
1763
1764 for (const auto &Item : Layout.Items) {
1765 int Size = Item.getSizeByte();
1766 if (!Size)
1767 continue;
1768
1769 llvm::Value *ArgVal;
1770
1771 if (Item.getKind() == analyze_os_log::OSLogBufferItem::MaskKind) {
1772 uint64_t Val = 0;
1773 for (unsigned I = 0, E = Item.getMaskType().size(); I < E; ++I)
1774 Val |= ((uint64_t)Item.getMaskType()[I]) << I * 8;
1775 ArgVal = llvm::Constant::getIntegerValue(Int64Ty, llvm::APInt(64, Val));
1776 } else if (const Expr *TheExpr = Item.getExpr()) {
1777 ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false);
1778
1779 // If a temporary object that requires destruction after the full
1780 // expression is passed, push a lifetime-extended cleanup to extend its
1781 // lifetime to the end of the enclosing block scope.
1782 auto LifetimeExtendObject = [&](const Expr *E) {
1783 E = E->IgnoreParenCasts();
1784 // Extend lifetimes of objects returned by function calls and message
1785 // sends.
1786
1787 // FIXME: We should do this in other cases in which temporaries are
1788 // created including arguments of non-ARC types (e.g., C++
1789 // temporaries).
1790 if (isa<CallExpr>(E) || isa<ObjCMessageExpr>(E))
1791 return true;
1792 return false;
1793 };
1794
1795 if (TheExpr->getType()->isObjCRetainableType() &&
1796 getLangOpts().ObjCAutoRefCount && LifetimeExtendObject(TheExpr)) {
1797 assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar &&(static_cast <bool> (getEvaluationKind(TheExpr->getType
()) == TEK_Scalar && "Only scalar can be a ObjC retainable type"
) ? void (0) : __assert_fail ("getEvaluationKind(TheExpr->getType()) == TEK_Scalar && \"Only scalar can be a ObjC retainable type\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 1798, __extension__ __PRETTY_FUNCTION__))
1798 "Only scalar can be a ObjC retainable type")(static_cast <bool> (getEvaluationKind(TheExpr->getType
()) == TEK_Scalar && "Only scalar can be a ObjC retainable type"
) ? void (0) : __assert_fail ("getEvaluationKind(TheExpr->getType()) == TEK_Scalar && \"Only scalar can be a ObjC retainable type\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 1798, __extension__ __PRETTY_FUNCTION__))
;
1799 if (!isa<Constant>(ArgVal)) {
1800 CleanupKind Cleanup = getARCCleanupKind();
1801 QualType Ty = TheExpr->getType();
1802 Address Alloca = Address::invalid();
1803 Address Addr = CreateMemTemp(Ty, "os.log.arg", &Alloca);
1804 ArgVal = EmitARCRetain(Ty, ArgVal);
1805 Builder.CreateStore(ArgVal, Addr);
1806 pushLifetimeExtendedDestroy(Cleanup, Alloca, Ty,
1807 CodeGenFunction::destroyARCStrongPrecise,
1808 Cleanup & EHCleanup);
1809
1810 // Push a clang.arc.use call to ensure ARC optimizer knows that the
1811 // argument has to be alive.
1812 if (CGM.getCodeGenOpts().OptimizationLevel != 0)
1813 pushCleanupAfterFullExpr<CallObjCArcUse>(Cleanup, ArgVal);
1814 }
1815 }
1816 } else {
1817 ArgVal = Builder.getInt32(Item.getConstValue().getQuantity());
1818 }
1819
1820 unsigned ArgValSize =
1821 CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType());
1822 llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(),
1823 ArgValSize);
1824 ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy);
1825 CanQualType ArgTy = getOSLogArgType(Ctx, Size);
1826 // If ArgVal has type x86_fp80, zero-extend ArgVal.
1827 ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy));
1828 Args.add(RValue::get(ArgVal), ArgTy);
1829 }
1830
1831 const CGFunctionInfo &FI =
1832 CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args);
1833 llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction(
1834 Layout, BufAddr.getAlignment());
1835 EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args);
1836 return RValue::get(BufAddr.getPointer());
1837}
1838
1839static bool isSpecialUnsignedMultiplySignedResult(
1840 unsigned BuiltinID, WidthAndSignedness Op1Info, WidthAndSignedness Op2Info,
1841 WidthAndSignedness ResultInfo) {
1842 return BuiltinID == Builtin::BI__builtin_mul_overflow &&
1843 Op1Info.Width == Op2Info.Width && Op2Info.Width == ResultInfo.Width &&
1844 !Op1Info.Signed && !Op2Info.Signed && ResultInfo.Signed;
1845}
1846
1847static RValue EmitCheckedUnsignedMultiplySignedResult(
1848 CodeGenFunction &CGF, const clang::Expr *Op1, WidthAndSignedness Op1Info,
1849 const clang::Expr *Op2, WidthAndSignedness Op2Info,
1850 const clang::Expr *ResultArg, QualType ResultQTy,
1851 WidthAndSignedness ResultInfo) {
1852 assert(isSpecialUnsignedMultiplySignedResult((static_cast <bool> (isSpecialUnsignedMultiplySignedResult
( Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo
) && "Cannot specialize this multiply") ? void (0) : __assert_fail
("isSpecialUnsignedMultiplySignedResult( Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Cannot specialize this multiply\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 1854, __extension__ __PRETTY_FUNCTION__))
1853 Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) &&(static_cast <bool> (isSpecialUnsignedMultiplySignedResult
( Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo
) && "Cannot specialize this multiply") ? void (0) : __assert_fail
("isSpecialUnsignedMultiplySignedResult( Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Cannot specialize this multiply\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 1854, __extension__ __PRETTY_FUNCTION__))
1854 "Cannot specialize this multiply")(static_cast <bool> (isSpecialUnsignedMultiplySignedResult
( Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo
) && "Cannot specialize this multiply") ? void (0) : __assert_fail
("isSpecialUnsignedMultiplySignedResult( Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Cannot specialize this multiply\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 1854, __extension__ __PRETTY_FUNCTION__))
;
1855
1856 llvm::Value *V1 = CGF.EmitScalarExpr(Op1);
1857 llvm::Value *V2 = CGF.EmitScalarExpr(Op2);
1858
1859 llvm::Value *HasOverflow;
1860 llvm::Value *Result = EmitOverflowIntrinsic(
1861 CGF, llvm::Intrinsic::umul_with_overflow, V1, V2, HasOverflow);
1862
1863 // The intrinsic call will detect overflow when the value is > UINT_MAX,
1864 // however, since the original builtin had a signed result, we need to report
1865 // an overflow when the result is greater than INT_MAX.
1866 auto IntMax = llvm::APInt::getSignedMaxValue(ResultInfo.Width);
1867 llvm::Value *IntMaxValue = llvm::ConstantInt::get(Result->getType(), IntMax);
1868
1869 llvm::Value *IntMaxOverflow = CGF.Builder.CreateICmpUGT(Result, IntMaxValue);
1870 HasOverflow = CGF.Builder.CreateOr(HasOverflow, IntMaxOverflow);
1871
1872 bool isVolatile =
1873 ResultArg->getType()->getPointeeType().isVolatileQualified();
1874 Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
1875 CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
1876 isVolatile);
1877 return RValue::get(HasOverflow);
1878}
1879
1880/// Determine if a binop is a checked mixed-sign multiply we can specialize.
1881static bool isSpecialMixedSignMultiply(unsigned BuiltinID,
1882 WidthAndSignedness Op1Info,
1883 WidthAndSignedness Op2Info,
1884 WidthAndSignedness ResultInfo) {
1885 return BuiltinID == Builtin::BI__builtin_mul_overflow &&
1886 std::max(Op1Info.Width, Op2Info.Width) >= ResultInfo.Width &&
1887 Op1Info.Signed != Op2Info.Signed;
1888}
1889
1890/// Emit a checked mixed-sign multiply. This is a cheaper specialization of
1891/// the generic checked-binop irgen.
1892static RValue
1893EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1,
1894 WidthAndSignedness Op1Info, const clang::Expr *Op2,
1895 WidthAndSignedness Op2Info,
1896 const clang::Expr *ResultArg, QualType ResultQTy,
1897 WidthAndSignedness ResultInfo) {
1898 assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info,(static_cast <bool> (isSpecialMixedSignMultiply(Builtin
::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) &&
"Not a mixed-sign multipliction we can specialize") ? void (
0) : __assert_fail ("isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Not a mixed-sign multipliction we can specialize\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 1900, __extension__ __PRETTY_FUNCTION__))
1899 Op2Info, ResultInfo) &&(static_cast <bool> (isSpecialMixedSignMultiply(Builtin
::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) &&
"Not a mixed-sign multipliction we can specialize") ? void (
0) : __assert_fail ("isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Not a mixed-sign multipliction we can specialize\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 1900, __extension__ __PRETTY_FUNCTION__))
1900 "Not a mixed-sign multipliction we can specialize")(static_cast <bool> (isSpecialMixedSignMultiply(Builtin
::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) &&
"Not a mixed-sign multipliction we can specialize") ? void (
0) : __assert_fail ("isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Not a mixed-sign multipliction we can specialize\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 1900, __extension__ __PRETTY_FUNCTION__))
;
1901
1902 // Emit the signed and unsigned operands.
1903 const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2;
1904 const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1;
1905 llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp);
1906 llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp);
1907 unsigned SignedOpWidth = Op1Info.Signed ? Op1Info.Width : Op2Info.Width;
1908 unsigned UnsignedOpWidth = Op1Info.Signed ? Op2Info.Width : Op1Info.Width;
1909
1910 // One of the operands may be smaller than the other. If so, [s|z]ext it.
1911 if (SignedOpWidth < UnsignedOpWidth)
1912 Signed = CGF.Builder.CreateSExt(Signed, Unsigned->getType(), "op.sext");
1913 if (UnsignedOpWidth < SignedOpWidth)
1914 Unsigned = CGF.Builder.CreateZExt(Unsigned, Signed->getType(), "op.zext");
1915
1916 llvm::Type *OpTy = Signed->getType();
1917 llvm::Value *Zero = llvm::Constant::getNullValue(OpTy);
1918 Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
1919 llvm::Type *ResTy = ResultPtr.getElementType();
1920 unsigned OpWidth = std::max(Op1Info.Width, Op2Info.Width);
1921
1922 // Take the absolute value of the signed operand.
1923 llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero);
1924 llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed);
1925 llvm::Value *AbsSigned =
1926 CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed);
1927
1928 // Perform a checked unsigned multiplication.
1929 llvm::Value *UnsignedOverflow;
1930 llvm::Value *UnsignedResult =
1931 EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned,
1932 Unsigned, UnsignedOverflow);
1933
1934 llvm::Value *Overflow, *Result;
1935 if (ResultInfo.Signed) {
1936 // Signed overflow occurs if the result is greater than INT_MAX or lesser
1937 // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative).
1938 auto IntMax =
1939 llvm::APInt::getSignedMaxValue(ResultInfo.Width).zextOrSelf(OpWidth);
1940 llvm::Value *MaxResult =
1941 CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax),
1942 CGF.Builder.CreateZExt(IsNegative, OpTy));
1943 llvm::Value *SignedOverflow =
1944 CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult);
1945 Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow);
1946
1947 // Prepare the signed result (possibly by negating it).
1948 llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult);
1949 llvm::Value *SignedResult =
1950 CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult);
1951 Result = CGF.Builder.CreateTrunc(SignedResult, ResTy);
1952 } else {
1953 // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX.
1954 llvm::Value *Underflow = CGF.Builder.CreateAnd(
1955 IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult));
1956 Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow);
1957 if (ResultInfo.Width < OpWidth) {
1958 auto IntMax =
1959 llvm::APInt::getMaxValue(ResultInfo.Width).zext(OpWidth);
1960 llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT(
1961 UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax));
1962 Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow);
1963 }
1964
1965 // Negate the product if it would be negative in infinite precision.
1966 Result = CGF.Builder.CreateSelect(
1967 IsNegative, CGF.Builder.CreateNeg(UnsignedResult), UnsignedResult);
1968
1969 Result = CGF.Builder.CreateTrunc(Result, ResTy);
1970 }
1971 assert(Overflow && Result && "Missing overflow or result")(static_cast <bool> (Overflow && Result &&
"Missing overflow or result") ? void (0) : __assert_fail ("Overflow && Result && \"Missing overflow or result\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 1971, __extension__ __PRETTY_FUNCTION__))
;
1972
1973 bool isVolatile =
1974 ResultArg->getType()->getPointeeType().isVolatileQualified();
1975 CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
1976 isVolatile);
1977 return RValue::get(Overflow);
1978}
1979
1980static llvm::Value *dumpRecord(CodeGenFunction &CGF, QualType RType,
1981 Value *&RecordPtr, CharUnits Align,
1982 llvm::FunctionCallee Func, int Lvl) {
1983 ASTContext &Context = CGF.getContext();
1984 RecordDecl *RD = RType->castAs<RecordType>()->getDecl()->getDefinition();
1985 std::string Pad = std::string(Lvl * 4, ' ');
1986
1987 Value *GString =
1988 CGF.Builder.CreateGlobalStringPtr(RType.getAsString() + " {\n");
1989 Value *Res = CGF.Builder.CreateCall(Func, {GString});
1990
1991 static llvm::DenseMap<QualType, const char *> Types;
1992 if (Types.empty()) {
1993 Types[Context.CharTy] = "%c";
1994 Types[Context.BoolTy] = "%d";
1995 Types[Context.SignedCharTy] = "%hhd";
1996 Types[Context.UnsignedCharTy] = "%hhu";
1997 Types[Context.IntTy] = "%d";
1998 Types[Context.UnsignedIntTy] = "%u";
1999 Types[Context.LongTy] = "%ld";
2000 Types[Context.UnsignedLongTy] = "%lu";
2001 Types[Context.LongLongTy] = "%lld";
2002 Types[Context.UnsignedLongLongTy] = "%llu";
2003 Types[Context.ShortTy] = "%hd";
2004 Types[Context.UnsignedShortTy] = "%hu";
2005 Types[Context.VoidPtrTy] = "%p";
2006 Types[Context.FloatTy] = "%f";
2007 Types[Context.DoubleTy] = "%f";
2008 Types[Context.LongDoubleTy] = "%Lf";
2009 Types[Context.getPointerType(Context.CharTy)] = "%s";
2010 Types[Context.getPointerType(Context.getConstType(Context.CharTy))] = "%s";
2011 }
2012
2013 for (const auto *FD : RD->fields()) {
2014 Value *FieldPtr = RecordPtr;
2015 if (RD->isUnion())
2016 FieldPtr = CGF.Builder.CreatePointerCast(
2017 FieldPtr, CGF.ConvertType(Context.getPointerType(FD->getType())));
2018 else
2019 FieldPtr = CGF.Builder.CreateStructGEP(CGF.ConvertType(RType), FieldPtr,
2020 FD->getFieldIndex());
2021
2022 GString = CGF.Builder.CreateGlobalStringPtr(
2023 llvm::Twine(Pad)
2024 .concat(FD->getType().getAsString())
2025 .concat(llvm::Twine(' '))
2026 .concat(FD->getNameAsString())
2027 .concat(" : ")
2028 .str());
2029 Value *TmpRes = CGF.Builder.CreateCall(Func, {GString});
2030 Res = CGF.Builder.CreateAdd(Res, TmpRes);
2031
2032 QualType CanonicalType =
2033 FD->getType().getUnqualifiedType().getCanonicalType();
2034
2035 // We check whether we are in a recursive type
2036 if (CanonicalType->isRecordType()) {
2037 TmpRes = dumpRecord(CGF, CanonicalType, FieldPtr, Align, Func, Lvl + 1);
2038 Res = CGF.Builder.CreateAdd(TmpRes, Res);
2039 continue;
2040 }
2041
2042 // We try to determine the best format to print the current field
2043 llvm::Twine Format = Types.find(CanonicalType) == Types.end()
2044 ? Types[Context.VoidPtrTy]
2045 : Types[CanonicalType];
2046
2047 Address FieldAddress = Address(FieldPtr, Align);
2048 FieldPtr = CGF.Builder.CreateLoad(FieldAddress);
2049
2050 // FIXME Need to handle bitfield here
2051 GString = CGF.Builder.CreateGlobalStringPtr(
2052 Format.concat(llvm::Twine('\n')).str());
2053 TmpRes = CGF.Builder.CreateCall(Func, {GString, FieldPtr});
2054 Res = CGF.Builder.CreateAdd(Res, TmpRes);
2055 }
2056
2057 GString = CGF.Builder.CreateGlobalStringPtr(Pad + "}\n");
2058 Value *TmpRes = CGF.Builder.CreateCall(Func, {GString});
2059 Res = CGF.Builder.CreateAdd(Res, TmpRes);
2060 return Res;
2061}
2062
2063static bool
2064TypeRequiresBuiltinLaunderImp(const ASTContext &Ctx, QualType Ty,
2065 llvm::SmallPtrSetImpl<const Decl *> &Seen) {
2066 if (const auto *Arr = Ctx.getAsArrayType(Ty))
2067 Ty = Ctx.getBaseElementType(Arr);
2068
2069 const auto *Record = Ty->getAsCXXRecordDecl();
2070 if (!Record)
2071 return false;
2072
2073 // We've already checked this type, or are in the process of checking it.
2074 if (!Seen.insert(Record).second)
2075 return false;
2076
2077 assert(Record->hasDefinition() &&(static_cast <bool> (Record->hasDefinition() &&
"Incomplete types should already be diagnosed") ? void (0) :
__assert_fail ("Record->hasDefinition() && \"Incomplete types should already be diagnosed\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 2078, __extension__ __PRETTY_FUNCTION__))
2078 "Incomplete types should already be diagnosed")(static_cast <bool> (Record->hasDefinition() &&
"Incomplete types should already be diagnosed") ? void (0) :
__assert_fail ("Record->hasDefinition() && \"Incomplete types should already be diagnosed\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 2078, __extension__ __PRETTY_FUNCTION__))
;
2079
2080 if (Record->isDynamicClass())
2081 return true;
2082
2083 for (FieldDecl *F : Record->fields()) {
2084 if (TypeRequiresBuiltinLaunderImp(Ctx, F->getType(), Seen))
2085 return true;
2086 }
2087 return false;
2088}
2089
2090/// Determine if the specified type requires laundering by checking if it is a
2091/// dynamic class type or contains a subobject which is a dynamic class type.
2092static bool TypeRequiresBuiltinLaunder(CodeGenModule &CGM, QualType Ty) {
2093 if (!CGM.getCodeGenOpts().StrictVTablePointers)
2094 return false;
2095 llvm::SmallPtrSet<const Decl *, 16> Seen;
2096 return TypeRequiresBuiltinLaunderImp(CGM.getContext(), Ty, Seen);
2097}
2098
2099RValue CodeGenFunction::emitRotate(const CallExpr *E, bool IsRotateRight) {
2100 llvm::Value *Src = EmitScalarExpr(E->getArg(0));
2101 llvm::Value *ShiftAmt = EmitScalarExpr(E->getArg(1));
2102
2103 // The builtin's shift arg may have a different type than the source arg and
2104 // result, but the LLVM intrinsic uses the same type for all values.
2105 llvm::Type *Ty = Src->getType();
2106 ShiftAmt = Builder.CreateIntCast(ShiftAmt, Ty, false);
2107
2108 // Rotate is a special case of LLVM funnel shift - 1st 2 args are the same.
2109 unsigned IID = IsRotateRight ? Intrinsic::fshr : Intrinsic::fshl;
2110 Function *F = CGM.getIntrinsic(IID, Ty);
2111 return RValue::get(Builder.CreateCall(F, { Src, Src, ShiftAmt }));
2112}
2113
2114// Map math builtins for long-double to f128 version.
2115static unsigned mutateLongDoubleBuiltin(unsigned BuiltinID) {
2116 switch (BuiltinID) {
2117#define MUTATE_LDBL(func) \
2118 case Builtin::BI__builtin_##func##l: \
2119 return Builtin::BI__builtin_##func##f128;
2120 MUTATE_LDBL(sqrt)
2121 MUTATE_LDBL(cbrt)
2122 MUTATE_LDBL(fabs)
2123 MUTATE_LDBL(log)
2124 MUTATE_LDBL(log2)
2125 MUTATE_LDBL(log10)
2126 MUTATE_LDBL(log1p)
2127 MUTATE_LDBL(logb)
2128 MUTATE_LDBL(exp)
2129 MUTATE_LDBL(exp2)
2130 MUTATE_LDBL(expm1)
2131 MUTATE_LDBL(fdim)
2132 MUTATE_LDBL(hypot)
2133 MUTATE_LDBL(ilogb)
2134 MUTATE_LDBL(pow)
2135 MUTATE_LDBL(fmin)
2136 MUTATE_LDBL(fmax)
2137 MUTATE_LDBL(ceil)
2138 MUTATE_LDBL(trunc)
2139 MUTATE_LDBL(rint)
2140 MUTATE_LDBL(nearbyint)
2141 MUTATE_LDBL(round)
2142 MUTATE_LDBL(floor)
2143 MUTATE_LDBL(lround)
2144 MUTATE_LDBL(llround)
2145 MUTATE_LDBL(lrint)
2146 MUTATE_LDBL(llrint)
2147 MUTATE_LDBL(fmod)
2148 MUTATE_LDBL(modf)
2149 MUTATE_LDBL(nan)
2150 MUTATE_LDBL(nans)
2151 MUTATE_LDBL(inf)
2152 MUTATE_LDBL(fma)
2153 MUTATE_LDBL(sin)
2154 MUTATE_LDBL(cos)
2155 MUTATE_LDBL(tan)
2156 MUTATE_LDBL(sinh)
2157 MUTATE_LDBL(cosh)
2158 MUTATE_LDBL(tanh)
2159 MUTATE_LDBL(asin)
2160 MUTATE_LDBL(acos)
2161 MUTATE_LDBL(atan)
2162 MUTATE_LDBL(asinh)
2163 MUTATE_LDBL(acosh)
2164 MUTATE_LDBL(atanh)
2165 MUTATE_LDBL(atan2)
2166 MUTATE_LDBL(erf)
2167 MUTATE_LDBL(erfc)
2168 MUTATE_LDBL(ldexp)
2169 MUTATE_LDBL(frexp)
2170 MUTATE_LDBL(huge_val)
2171 MUTATE_LDBL(copysign)
2172 MUTATE_LDBL(nextafter)
2173 MUTATE_LDBL(nexttoward)
2174 MUTATE_LDBL(remainder)
2175 MUTATE_LDBL(remquo)
2176 MUTATE_LDBL(scalbln)
2177 MUTATE_LDBL(scalbn)
2178 MUTATE_LDBL(tgamma)
2179 MUTATE_LDBL(lgamma)
2180#undef MUTATE_LDBL
2181 default:
2182 return BuiltinID;
2183 }
2184}
2185
2186RValue CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
2187 const CallExpr *E,
2188 ReturnValueSlot ReturnValue) {
2189 const FunctionDecl *FD = GD.getDecl()->getAsFunction();
2190 // See if we can constant fold this builtin. If so, don't emit it at all.
2191 Expr::EvalResult Result;
2192 if (E->EvaluateAsRValue(Result, CGM.getContext()) &&
2193 !Result.hasSideEffects()) {
2194 if (Result.Val.isInt())
2195 return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
2196 Result.Val.getInt()));
2197 if (Result.Val.isFloat())
2198 return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
2199 Result.Val.getFloat()));
2200 }
2201
2202 // If current long-double semantics is IEEE 128-bit, replace math builtins
2203 // of long-double with f128 equivalent.
2204 // TODO: This mutation should also be applied to other targets other than PPC,
2205 // after backend supports IEEE 128-bit style libcalls.
2206 if (getTarget().getTriple().isPPC64() &&
2207 &getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad())
2208 BuiltinID = mutateLongDoubleBuiltin(BuiltinID);
2209
2210 // If the builtin has been declared explicitly with an assembler label,
2211 // disable the specialized emitting below. Ideally we should communicate the
2212 // rename in IR, or at least avoid generating the intrinsic calls that are
2213 // likely to get lowered to the renamed library functions.
2214 const unsigned BuiltinIDIfNoAsmLabel =
2215 FD->hasAttr<AsmLabelAttr>() ? 0 : BuiltinID;
2216
2217 // There are LLVM math intrinsics/instructions corresponding to math library
2218 // functions except the LLVM op will never set errno while the math library
2219 // might. Also, math builtins have the same semantics as their math library
2220 // twins. Thus, we can transform math library and builtin calls to their
2221 // LLVM counterparts if the call is marked 'const' (known to never set errno).
2222 if (FD->hasAttr<ConstAttr>()) {
2223 switch (BuiltinIDIfNoAsmLabel) {
2224 case Builtin::BIceil:
2225 case Builtin::BIceilf:
2226 case Builtin::BIceill:
2227 case Builtin::BI__builtin_ceil:
2228 case Builtin::BI__builtin_ceilf:
2229 case Builtin::BI__builtin_ceilf16:
2230 case Builtin::BI__builtin_ceill:
2231 case Builtin::BI__builtin_ceilf128:
2232 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2233 Intrinsic::ceil,
2234 Intrinsic::experimental_constrained_ceil));
2235
2236 case Builtin::BIcopysign:
2237 case Builtin::BIcopysignf:
2238 case Builtin::BIcopysignl:
2239 case Builtin::BI__builtin_copysign:
2240 case Builtin::BI__builtin_copysignf:
2241 case Builtin::BI__builtin_copysignf16:
2242 case Builtin::BI__builtin_copysignl:
2243 case Builtin::BI__builtin_copysignf128:
2244 return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::copysign));
2245
2246 case Builtin::BIcos:
2247 case Builtin::BIcosf:
2248 case Builtin::BIcosl:
2249 case Builtin::BI__builtin_cos:
2250 case Builtin::BI__builtin_cosf:
2251 case Builtin::BI__builtin_cosf16:
2252 case Builtin::BI__builtin_cosl:
2253 case Builtin::BI__builtin_cosf128:
2254 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2255 Intrinsic::cos,
2256 Intrinsic::experimental_constrained_cos));
2257
2258 case Builtin::BIexp:
2259 case Builtin::BIexpf:
2260 case Builtin::BIexpl:
2261 case Builtin::BI__builtin_exp:
2262 case Builtin::BI__builtin_expf:
2263 case Builtin::BI__builtin_expf16:
2264 case Builtin::BI__builtin_expl:
2265 case Builtin::BI__builtin_expf128:
2266 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2267 Intrinsic::exp,
2268 Intrinsic::experimental_constrained_exp));
2269
2270 case Builtin::BIexp2:
2271 case Builtin::BIexp2f:
2272 case Builtin::BIexp2l:
2273 case Builtin::BI__builtin_exp2:
2274 case Builtin::BI__builtin_exp2f:
2275 case Builtin::BI__builtin_exp2f16:
2276 case Builtin::BI__builtin_exp2l:
2277 case Builtin::BI__builtin_exp2f128:
2278 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2279 Intrinsic::exp2,
2280 Intrinsic::experimental_constrained_exp2));
2281
2282 case Builtin::BIfabs:
2283 case Builtin::BIfabsf:
2284 case Builtin::BIfabsl:
2285 case Builtin::BI__builtin_fabs:
2286 case Builtin::BI__builtin_fabsf:
2287 case Builtin::BI__builtin_fabsf16:
2288 case Builtin::BI__builtin_fabsl:
2289 case Builtin::BI__builtin_fabsf128:
2290 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::fabs));
2291
2292 case Builtin::BIfloor:
2293 case Builtin::BIfloorf:
2294 case Builtin::BIfloorl:
2295 case Builtin::BI__builtin_floor:
2296 case Builtin::BI__builtin_floorf:
2297 case Builtin::BI__builtin_floorf16:
2298 case Builtin::BI__builtin_floorl:
2299 case Builtin::BI__builtin_floorf128:
2300 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2301 Intrinsic::floor,
2302 Intrinsic::experimental_constrained_floor));
2303
2304 case Builtin::BIfma:
2305 case Builtin::BIfmaf:
2306 case Builtin::BIfmal:
2307 case Builtin::BI__builtin_fma:
2308 case Builtin::BI__builtin_fmaf:
2309 case Builtin::BI__builtin_fmaf16:
2310 case Builtin::BI__builtin_fmal:
2311 case Builtin::BI__builtin_fmaf128:
2312 return RValue::get(emitTernaryMaybeConstrainedFPBuiltin(*this, E,
2313 Intrinsic::fma,
2314 Intrinsic::experimental_constrained_fma));
2315
2316 case Builtin::BIfmax:
2317 case Builtin::BIfmaxf:
2318 case Builtin::BIfmaxl:
2319 case Builtin::BI__builtin_fmax:
2320 case Builtin::BI__builtin_fmaxf:
2321 case Builtin::BI__builtin_fmaxf16:
2322 case Builtin::BI__builtin_fmaxl:
2323 case Builtin::BI__builtin_fmaxf128:
2324 return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2325 Intrinsic::maxnum,
2326 Intrinsic::experimental_constrained_maxnum));
2327
2328 case Builtin::BIfmin:
2329 case Builtin::BIfminf:
2330 case Builtin::BIfminl:
2331 case Builtin::BI__builtin_fmin:
2332 case Builtin::BI__builtin_fminf:
2333 case Builtin::BI__builtin_fminf16:
2334 case Builtin::BI__builtin_fminl:
2335 case Builtin::BI__builtin_fminf128:
2336 return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2337 Intrinsic::minnum,
2338 Intrinsic::experimental_constrained_minnum));
2339
2340 // fmod() is a special-case. It maps to the frem instruction rather than an
2341 // LLVM intrinsic.
2342 case Builtin::BIfmod:
2343 case Builtin::BIfmodf:
2344 case Builtin::BIfmodl:
2345 case Builtin::BI__builtin_fmod:
2346 case Builtin::BI__builtin_fmodf:
2347 case Builtin::BI__builtin_fmodf16:
2348 case Builtin::BI__builtin_fmodl:
2349 case Builtin::BI__builtin_fmodf128: {
2350 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2351 Value *Arg1 = EmitScalarExpr(E->getArg(0));
2352 Value *Arg2 = EmitScalarExpr(E->getArg(1));
2353 return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod"));
2354 }
2355
2356 case Builtin::BIlog:
2357 case Builtin::BIlogf:
2358 case Builtin::BIlogl:
2359 case Builtin::BI__builtin_log:
2360 case Builtin::BI__builtin_logf:
2361 case Builtin::BI__builtin_logf16:
2362 case Builtin::BI__builtin_logl:
2363 case Builtin::BI__builtin_logf128:
2364 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2365 Intrinsic::log,
2366 Intrinsic::experimental_constrained_log));
2367
2368 case Builtin::BIlog10:
2369 case Builtin::BIlog10f:
2370 case Builtin::BIlog10l:
2371 case Builtin::BI__builtin_log10:
2372 case Builtin::BI__builtin_log10f:
2373 case Builtin::BI__builtin_log10f16:
2374 case Builtin::BI__builtin_log10l:
2375 case Builtin::BI__builtin_log10f128:
2376 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2377 Intrinsic::log10,
2378 Intrinsic::experimental_constrained_log10));
2379
2380 case Builtin::BIlog2:
2381 case Builtin::BIlog2f:
2382 case Builtin::BIlog2l:
2383 case Builtin::BI__builtin_log2:
2384 case Builtin::BI__builtin_log2f:
2385 case Builtin::BI__builtin_log2f16:
2386 case Builtin::BI__builtin_log2l:
2387 case Builtin::BI__builtin_log2f128:
2388 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2389 Intrinsic::log2,
2390 Intrinsic::experimental_constrained_log2));
2391
2392 case Builtin::BInearbyint:
2393 case Builtin::BInearbyintf:
2394 case Builtin::BInearbyintl:
2395 case Builtin::BI__builtin_nearbyint:
2396 case Builtin::BI__builtin_nearbyintf:
2397 case Builtin::BI__builtin_nearbyintl:
2398 case Builtin::BI__builtin_nearbyintf128:
2399 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2400 Intrinsic::nearbyint,
2401 Intrinsic::experimental_constrained_nearbyint));
2402
2403 case Builtin::BIpow:
2404 case Builtin::BIpowf:
2405 case Builtin::BIpowl:
2406 case Builtin::BI__builtin_pow:
2407 case Builtin::BI__builtin_powf:
2408 case Builtin::BI__builtin_powf16:
2409 case Builtin::BI__builtin_powl:
2410 case Builtin::BI__builtin_powf128:
2411 return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2412 Intrinsic::pow,
2413 Intrinsic::experimental_constrained_pow));
2414
2415 case Builtin::BIrint:
2416 case Builtin::BIrintf:
2417 case Builtin::BIrintl:
2418 case Builtin::BI__builtin_rint:
2419 case Builtin::BI__builtin_rintf:
2420 case Builtin::BI__builtin_rintf16:
2421 case Builtin::BI__builtin_rintl:
2422 case Builtin::BI__builtin_rintf128:
2423 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2424 Intrinsic::rint,
2425 Intrinsic::experimental_constrained_rint));
2426
2427 case Builtin::BIround:
2428 case Builtin::BIroundf:
2429 case Builtin::BIroundl:
2430 case Builtin::BI__builtin_round:
2431 case Builtin::BI__builtin_roundf:
2432 case Builtin::BI__builtin_roundf16:
2433 case Builtin::BI__builtin_roundl:
2434 case Builtin::BI__builtin_roundf128:
2435 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2436 Intrinsic::round,
2437 Intrinsic::experimental_constrained_round));
2438
2439 case Builtin::BIsin:
2440 case Builtin::BIsinf:
2441 case Builtin::BIsinl:
2442 case Builtin::BI__builtin_sin:
2443 case Builtin::BI__builtin_sinf:
2444 case Builtin::BI__builtin_sinf16:
2445 case Builtin::BI__builtin_sinl:
2446 case Builtin::BI__builtin_sinf128:
2447 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2448 Intrinsic::sin,
2449 Intrinsic::experimental_constrained_sin));
2450
2451 case Builtin::BIsqrt:
2452 case Builtin::BIsqrtf:
2453 case Builtin::BIsqrtl:
2454 case Builtin::BI__builtin_sqrt:
2455 case Builtin::BI__builtin_sqrtf:
2456 case Builtin::BI__builtin_sqrtf16:
2457 case Builtin::BI__builtin_sqrtl:
2458 case Builtin::BI__builtin_sqrtf128:
2459 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2460 Intrinsic::sqrt,
2461 Intrinsic::experimental_constrained_sqrt));
2462
2463 case Builtin::BItrunc:
2464 case Builtin::BItruncf:
2465 case Builtin::BItruncl:
2466 case Builtin::BI__builtin_trunc:
2467 case Builtin::BI__builtin_truncf:
2468 case Builtin::BI__builtin_truncf16:
2469 case Builtin::BI__builtin_truncl:
2470 case Builtin::BI__builtin_truncf128:
2471 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2472 Intrinsic::trunc,
2473 Intrinsic::experimental_constrained_trunc));
2474
2475 case Builtin::BIlround:
2476 case Builtin::BIlroundf:
2477 case Builtin::BIlroundl:
2478 case Builtin::BI__builtin_lround:
2479 case Builtin::BI__builtin_lroundf:
2480 case Builtin::BI__builtin_lroundl:
2481 case Builtin::BI__builtin_lroundf128:
2482 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2483 *this, E, Intrinsic::lround,
2484 Intrinsic::experimental_constrained_lround));
2485
2486 case Builtin::BIllround:
2487 case Builtin::BIllroundf:
2488 case Builtin::BIllroundl:
2489 case Builtin::BI__builtin_llround:
2490 case Builtin::BI__builtin_llroundf:
2491 case Builtin::BI__builtin_llroundl:
2492 case Builtin::BI__builtin_llroundf128:
2493 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2494 *this, E, Intrinsic::llround,
2495 Intrinsic::experimental_constrained_llround));
2496
2497 case Builtin::BIlrint:
2498 case Builtin::BIlrintf:
2499 case Builtin::BIlrintl:
2500 case Builtin::BI__builtin_lrint:
2501 case Builtin::BI__builtin_lrintf:
2502 case Builtin::BI__builtin_lrintl:
2503 case Builtin::BI__builtin_lrintf128:
2504 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2505 *this, E, Intrinsic::lrint,
2506 Intrinsic::experimental_constrained_lrint));
2507
2508 case Builtin::BIllrint:
2509 case Builtin::BIllrintf:
2510 case Builtin::BIllrintl:
2511 case Builtin::BI__builtin_llrint:
2512 case Builtin::BI__builtin_llrintf:
2513 case Builtin::BI__builtin_llrintl:
2514 case Builtin::BI__builtin_llrintf128:
2515 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2516 *this, E, Intrinsic::llrint,
2517 Intrinsic::experimental_constrained_llrint));
2518
2519 default:
2520 break;
2521 }
2522 }
2523
2524 switch (BuiltinIDIfNoAsmLabel) {
2525 default: break;
2526 case Builtin::BI__builtin___CFStringMakeConstantString:
2527 case Builtin::BI__builtin___NSStringMakeConstantString:
2528 return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType()));
2529 case Builtin::BI__builtin_stdarg_start:
2530 case Builtin::BI__builtin_va_start:
2531 case Builtin::BI__va_start:
2532 case Builtin::BI__builtin_va_end:
2533 return RValue::get(
2534 EmitVAStartEnd(BuiltinID == Builtin::BI__va_start
2535 ? EmitScalarExpr(E->getArg(0))
2536 : EmitVAListRef(E->getArg(0)).getPointer(),
2537 BuiltinID != Builtin::BI__builtin_va_end));
2538 case Builtin::BI__builtin_va_copy: {
2539 Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer();
2540 Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer();
2541
2542 llvm::Type *Type = Int8PtrTy;
2543
2544 DstPtr = Builder.CreateBitCast(DstPtr, Type);
2545 SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
2546 return RValue::get(Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy),
2547 {DstPtr, SrcPtr}));
2548 }
2549 case Builtin::BI__builtin_abs:
2550 case Builtin::BI__builtin_labs:
2551 case Builtin::BI__builtin_llabs: {
2552 // X < 0 ? -X : X
2553 // The negation has 'nsw' because abs of INT_MIN is undefined.
2554 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2555 Value *NegOp = Builder.CreateNSWNeg(ArgValue, "neg");
2556 Constant *Zero = llvm::Constant::getNullValue(ArgValue->getType());
2557 Value *CmpResult = Builder.CreateICmpSLT(ArgValue, Zero, "abscond");
2558 Value *Result = Builder.CreateSelect(CmpResult, NegOp, ArgValue, "abs");
2559 return RValue::get(Result);
2560 }
2561 case Builtin::BI__builtin_complex: {
2562 Value *Real = EmitScalarExpr(E->getArg(0));
2563 Value *Imag = EmitScalarExpr(E->getArg(1));
2564 return RValue::getComplex({Real, Imag});
2565 }
2566 case Builtin::BI__builtin_conj:
2567 case Builtin::BI__builtin_conjf:
2568 case Builtin::BI__builtin_conjl:
2569 case Builtin::BIconj:
2570 case Builtin::BIconjf:
2571 case Builtin::BIconjl: {
2572 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2573 Value *Real = ComplexVal.first;
2574 Value *Imag = ComplexVal.second;
2575 Imag = Builder.CreateFNeg(Imag, "neg");
2576 return RValue::getComplex(std::make_pair(Real, Imag));
2577 }
2578 case Builtin::BI__builtin_creal:
2579 case Builtin::BI__builtin_crealf:
2580 case Builtin::BI__builtin_creall:
2581 case Builtin::BIcreal:
2582 case Builtin::BIcrealf:
2583 case Builtin::BIcreall: {
2584 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2585 return RValue::get(ComplexVal.first);
2586 }
2587
2588 case Builtin::BI__builtin_dump_struct: {
2589 llvm::Type *LLVMIntTy = getTypes().ConvertType(getContext().IntTy);
2590 llvm::FunctionType *LLVMFuncType = llvm::FunctionType::get(
2591 LLVMIntTy, {llvm::Type::getInt8PtrTy(getLLVMContext())}, true);
2592
2593 Value *Func = EmitScalarExpr(E->getArg(1)->IgnoreImpCasts());
2594 CharUnits Arg0Align = EmitPointerWithAlignment(E->getArg(0)).getAlignment();
2595
2596 const Expr *Arg0 = E->getArg(0)->IgnoreImpCasts();
2597 QualType Arg0Type = Arg0->getType()->getPointeeType();
2598
2599 Value *RecordPtr = EmitScalarExpr(Arg0);
2600 Value *Res = dumpRecord(*this, Arg0Type, RecordPtr, Arg0Align,
2601 {LLVMFuncType, Func}, 0);
2602 return RValue::get(Res);
2603 }
2604
2605 case Builtin::BI__builtin_preserve_access_index: {
2606 // Only enabled preserved access index region when debuginfo
2607 // is available as debuginfo is needed to preserve user-level
2608 // access pattern.
2609 if (!getDebugInfo()) {
2610 CGM.Error(E->getExprLoc(), "using builtin_preserve_access_index() without -g");
2611 return RValue::get(EmitScalarExpr(E->getArg(0)));
2612 }
2613
2614 // Nested builtin_preserve_access_index() not supported
2615 if (IsInPreservedAIRegion) {
2616 CGM.Error(E->getExprLoc(), "nested builtin_preserve_access_index() not supported");
2617 return RValue::get(EmitScalarExpr(E->getArg(0)));
2618 }
2619
2620 IsInPreservedAIRegion = true;
2621 Value *Res = EmitScalarExpr(E->getArg(0));
2622 IsInPreservedAIRegion = false;
2623 return RValue::get(Res);
2624 }
2625
2626 case Builtin::BI__builtin_cimag:
2627 case Builtin::BI__builtin_cimagf:
2628 case Builtin::BI__builtin_cimagl:
2629 case Builtin::BIcimag:
2630 case Builtin::BIcimagf:
2631 case Builtin::BIcimagl: {
2632 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2633 return RValue::get(ComplexVal.second);
2634 }
2635
2636 case Builtin::BI__builtin_clrsb:
2637 case Builtin::BI__builtin_clrsbl:
2638 case Builtin::BI__builtin_clrsbll: {
2639 // clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or
2640 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2641
2642 llvm::Type *ArgType = ArgValue->getType();
2643 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2644
2645 llvm::Type *ResultType = ConvertType(E->getType());
2646 Value *Zero = llvm::Constant::getNullValue(ArgType);
2647 Value *IsNeg = Builder.CreateICmpSLT(ArgValue, Zero, "isneg");
2648 Value *Inverse = Builder.CreateNot(ArgValue, "not");
2649 Value *Tmp = Builder.CreateSelect(IsNeg, Inverse, ArgValue);
2650 Value *Ctlz = Builder.CreateCall(F, {Tmp, Builder.getFalse()});
2651 Value *Result = Builder.CreateSub(Ctlz, llvm::ConstantInt::get(ArgType, 1));
2652 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2653 "cast");
2654 return RValue::get(Result);
2655 }
2656 case Builtin::BI__builtin_ctzs:
2657 case Builtin::BI__builtin_ctz:
2658 case Builtin::BI__builtin_ctzl:
2659 case Builtin::BI__builtin_ctzll: {
2660 Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero);
2661
2662 llvm::Type *ArgType = ArgValue->getType();
2663 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
2664
2665 llvm::Type *ResultType = ConvertType(E->getType());
2666 Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
2667 Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
2668 if (Result->getType() != ResultType)
2669 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2670 "cast");
2671 return RValue::get(Result);
2672 }
2673 case Builtin::BI__builtin_clzs:
2674 case Builtin::BI__builtin_clz:
2675 case Builtin::BI__builtin_clzl:
2676 case Builtin::BI__builtin_clzll: {
2677 Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero);
2678
2679 llvm::Type *ArgType = ArgValue->getType();
2680 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2681
2682 llvm::Type *ResultType = ConvertType(E->getType());
2683 Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
2684 Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
2685 if (Result->getType() != ResultType)
2686 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2687 "cast");
2688 return RValue::get(Result);
2689 }
2690 case Builtin::BI__builtin_ffs:
2691 case Builtin::BI__builtin_ffsl:
2692 case Builtin::BI__builtin_ffsll: {
2693 // ffs(x) -> x ? cttz(x) + 1 : 0
2694 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2695
2696 llvm::Type *ArgType = ArgValue->getType();
2697 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
2698
2699 llvm::Type *ResultType = ConvertType(E->getType());
2700 Value *Tmp =
2701 Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}),
2702 llvm::ConstantInt::get(ArgType, 1));
2703 Value *Zero = llvm::Constant::getNullValue(ArgType);
2704 Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
2705 Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
2706 if (Result->getType() != ResultType)
2707 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2708 "cast");
2709 return RValue::get(Result);
2710 }
2711 case Builtin::BI__builtin_parity:
2712 case Builtin::BI__builtin_parityl:
2713 case Builtin::BI__builtin_parityll: {
2714 // parity(x) -> ctpop(x) & 1
2715 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2716
2717 llvm::Type *ArgType = ArgValue->getType();
2718 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
2719
2720 llvm::Type *ResultType = ConvertType(E->getType());
2721 Value *Tmp = Builder.CreateCall(F, ArgValue);
2722 Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
2723 if (Result->getType() != ResultType)
2724 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2725 "cast");
2726 return RValue::get(Result);
2727 }
2728 case Builtin::BI__lzcnt16:
2729 case Builtin::BI__lzcnt:
2730 case Builtin::BI__lzcnt64: {
2731 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2732
2733 llvm::Type *ArgType = ArgValue->getType();
2734 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2735
2736 llvm::Type *ResultType = ConvertType(E->getType());
2737 Value *Result = Builder.CreateCall(F, {ArgValue, Builder.getFalse()});
2738 if (Result->getType() != ResultType)
2739 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2740 "cast");
2741 return RValue::get(Result);
2742 }
2743 case Builtin::BI__popcnt16:
2744 case Builtin::BI__popcnt:
2745 case Builtin::BI__popcnt64:
2746 case Builtin::BI__builtin_popcount:
2747 case Builtin::BI__builtin_popcountl:
2748 case Builtin::BI__builtin_popcountll: {
2749 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2750
2751 llvm::Type *ArgType = ArgValue->getType();
2752 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
2753
2754 llvm::Type *ResultType = ConvertType(E->getType());
2755 Value *Result = Builder.CreateCall(F, ArgValue);
2756 if (Result->getType() != ResultType)
2757 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2758 "cast");
2759 return RValue::get(Result);
2760 }
2761 case Builtin::BI__builtin_unpredictable: {
2762 // Always return the argument of __builtin_unpredictable. LLVM does not
2763 // handle this builtin. Metadata for this builtin should be added directly
2764 // to instructions such as branches or switches that use it.
2765 return RValue::get(EmitScalarExpr(E->getArg(0)));
2766 }
2767 case Builtin::BI__builtin_expect: {
2768 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2769 llvm::Type *ArgType = ArgValue->getType();
2770
2771 Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
2772 // Don't generate llvm.expect on -O0 as the backend won't use it for
2773 // anything.
2774 // Note, we still IRGen ExpectedValue because it could have side-effects.
2775 if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2776 return RValue::get(ArgValue);
2777
2778 Function *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
2779 Value *Result =
2780 Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval");
2781 return RValue::get(Result);
2782 }
2783 case Builtin::BI__builtin_expect_with_probability: {
2784 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2785 llvm::Type *ArgType = ArgValue->getType();
2786
2787 Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
2788 llvm::APFloat Probability(0.0);
2789 const Expr *ProbArg = E->getArg(2);
2790 bool EvalSucceed = ProbArg->EvaluateAsFloat(Probability, CGM.getContext());
2791 assert(EvalSucceed && "probability should be able to evaluate as float")(static_cast <bool> (EvalSucceed && "probability should be able to evaluate as float"
) ? void (0) : __assert_fail ("EvalSucceed && \"probability should be able to evaluate as float\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 2791, __extension__ __PRETTY_FUNCTION__))
;
2792 (void)EvalSucceed;
2793 bool LoseInfo = false;
2794 Probability.convert(llvm::APFloat::IEEEdouble(),
2795 llvm::RoundingMode::Dynamic, &LoseInfo);
2796 llvm::Type *Ty = ConvertType(ProbArg->getType());
2797 Constant *Confidence = ConstantFP::get(Ty, Probability);
2798 // Don't generate llvm.expect.with.probability on -O0 as the backend
2799 // won't use it for anything.
2800 // Note, we still IRGen ExpectedValue because it could have side-effects.
2801 if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2802 return RValue::get(ArgValue);
2803
2804 Function *FnExpect =
2805 CGM.getIntrinsic(Intrinsic::expect_with_probability, ArgType);
2806 Value *Result = Builder.CreateCall(
2807 FnExpect, {ArgValue, ExpectedValue, Confidence}, "expval");
2808 return RValue::get(Result);
2809 }
2810 case Builtin::BI__builtin_assume_aligned: {
2811 const Expr *Ptr = E->getArg(0);
2812 Value *PtrValue = EmitScalarExpr(Ptr);
2813 Value *OffsetValue =
2814 (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr;
2815
2816 Value *AlignmentValue = EmitScalarExpr(E->getArg(1));
2817 ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue);
2818 if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment))
2819 AlignmentCI = ConstantInt::get(AlignmentCI->getType(),
2820 llvm::Value::MaximumAlignment);
2821
2822 emitAlignmentAssumption(PtrValue, Ptr,
2823 /*The expr loc is sufficient.*/ SourceLocation(),
2824 AlignmentCI, OffsetValue);
2825 return RValue::get(PtrValue);
2826 }
2827 case Builtin::BI__assume:
2828 case Builtin::BI__builtin_assume: {
2829 if (E->getArg(0)->HasSideEffects(getContext()))
2830 return RValue::get(nullptr);
2831
2832 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2833 Function *FnAssume = CGM.getIntrinsic(Intrinsic::assume);
2834 return RValue::get(Builder.CreateCall(FnAssume, ArgValue));
2835 }
2836 case Builtin::BI__builtin_bswap16:
2837 case Builtin::BI__builtin_bswap32:
2838 case Builtin::BI__builtin_bswap64: {
2839 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bswap));
2840 }
2841 case Builtin::BI__builtin_bitreverse8:
2842 case Builtin::BI__builtin_bitreverse16:
2843 case Builtin::BI__builtin_bitreverse32:
2844 case Builtin::BI__builtin_bitreverse64: {
2845 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bitreverse));
2846 }
2847 case Builtin::BI__builtin_rotateleft8:
2848 case Builtin::BI__builtin_rotateleft16:
2849 case Builtin::BI__builtin_rotateleft32:
2850 case Builtin::BI__builtin_rotateleft64:
2851 case Builtin::BI_rotl8: // Microsoft variants of rotate left
2852 case Builtin::BI_rotl16:
2853 case Builtin::BI_rotl:
2854 case Builtin::BI_lrotl:
2855 case Builtin::BI_rotl64:
2856 return emitRotate(E, false);
2857
2858 case Builtin::BI__builtin_rotateright8:
2859 case Builtin::BI__builtin_rotateright16:
2860 case Builtin::BI__builtin_rotateright32:
2861 case Builtin::BI__builtin_rotateright64:
2862 case Builtin::BI_rotr8: // Microsoft variants of rotate right
2863 case Builtin::BI_rotr16:
2864 case Builtin::BI_rotr:
2865 case Builtin::BI_lrotr:
2866 case Builtin::BI_rotr64:
2867 return emitRotate(E, true);
2868
2869 case Builtin::BI__builtin_constant_p: {
2870 llvm::Type *ResultType = ConvertType(E->getType());
2871
2872 const Expr *Arg = E->getArg(0);
2873 QualType ArgType = Arg->getType();
2874 // FIXME: The allowance for Obj-C pointers and block pointers is historical
2875 // and likely a mistake.
2876 if (!ArgType->isIntegralOrEnumerationType() && !ArgType->isFloatingType() &&
2877 !ArgType->isObjCObjectPointerType() && !ArgType->isBlockPointerType())
2878 // Per the GCC documentation, only numeric constants are recognized after
2879 // inlining.
2880 return RValue::get(ConstantInt::get(ResultType, 0));
2881
2882 if (Arg->HasSideEffects(getContext()))
2883 // The argument is unevaluated, so be conservative if it might have
2884 // side-effects.
2885 return RValue::get(ConstantInt::get(ResultType, 0));
2886
2887 Value *ArgValue = EmitScalarExpr(Arg);
2888 if (ArgType->isObjCObjectPointerType()) {
2889 // Convert Objective-C objects to id because we cannot distinguish between
2890 // LLVM types for Obj-C classes as they are opaque.
2891 ArgType = CGM.getContext().getObjCIdType();
2892 ArgValue = Builder.CreateBitCast(ArgValue, ConvertType(ArgType));
2893 }
2894 Function *F =
2895 CGM.getIntrinsic(Intrinsic::is_constant, ConvertType(ArgType));
2896 Value *Result = Builder.CreateCall(F, ArgValue);
2897 if (Result->getType() != ResultType)
2898 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/false);
2899 return RValue::get(Result);
2900 }
2901 case Builtin::BI__builtin_dynamic_object_size:
2902 case Builtin::BI__builtin_object_size: {
2903 unsigned Type =
2904 E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue();
2905 auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType()));
2906
2907 // We pass this builtin onto the optimizer so that it can figure out the
2908 // object size in more complex cases.
2909 bool IsDynamic = BuiltinID == Builtin::BI__builtin_dynamic_object_size;
2910 return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType,
2911 /*EmittedE=*/nullptr, IsDynamic));
2912 }
2913 case Builtin::BI__builtin_prefetch: {
2914 Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
2915 // FIXME: Technically these constants should of type 'int', yes?
2916 RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
2917 llvm::ConstantInt::get(Int32Ty, 0);
2918 Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
2919 llvm::ConstantInt::get(Int32Ty, 3);
2920 Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
2921 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
2922 return RValue::get(Builder.CreateCall(F, {Address, RW, Locality, Data}));
2923 }
2924 case Builtin::BI__builtin_readcyclecounter: {
2925 Function *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
2926 return RValue::get(Builder.CreateCall(F));
2927 }
2928 case Builtin::BI__builtin___clear_cache: {
2929 Value *Begin = EmitScalarExpr(E->getArg(0));
2930 Value *End = EmitScalarExpr(E->getArg(1));
2931 Function *F = CGM.getIntrinsic(Intrinsic::clear_cache);
2932 return RValue::get(Builder.CreateCall(F, {Begin, End}));
2933 }
2934 case Builtin::BI__builtin_trap:
2935 return RValue::get(EmitTrapCall(Intrinsic::trap));
2936 case Builtin::BI__debugbreak:
2937 return RValue::get(EmitTrapCall(Intrinsic::debugtrap));
2938 case Builtin::BI__builtin_unreachable: {
2939 EmitUnreachable(E->getExprLoc());
2940
2941 // We do need to preserve an insertion point.
2942 EmitBlock(createBasicBlock("unreachable.cont"));
2943
2944 return RValue::get(nullptr);
2945 }
2946
2947 case Builtin::BI__builtin_powi:
2948 case Builtin::BI__builtin_powif:
2949 case Builtin::BI__builtin_powil: {
2950 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
2951 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
2952
2953 if (Builder.getIsFPConstrained()) {
2954 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2955 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_powi,
2956 Src0->getType());
2957 return RValue::get(Builder.CreateConstrainedFPCall(F, { Src0, Src1 }));
2958 }
2959
2960 Function *F = CGM.getIntrinsic(Intrinsic::powi,
2961 { Src0->getType(), Src1->getType() });
2962 return RValue::get(Builder.CreateCall(F, { Src0, Src1 }));
2963 }
2964 case Builtin::BI__builtin_isgreater:
2965 case Builtin::BI__builtin_isgreaterequal:
2966 case Builtin::BI__builtin_isless:
2967 case Builtin::BI__builtin_islessequal:
2968 case Builtin::BI__builtin_islessgreater:
2969 case Builtin::BI__builtin_isunordered: {
2970 // Ordered comparisons: we know the arguments to these are matching scalar
2971 // floating point values.
2972 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2973 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
2974 Value *LHS = EmitScalarExpr(E->getArg(0));
2975 Value *RHS = EmitScalarExpr(E->getArg(1));
2976
2977 switch (BuiltinID) {
2978 default: llvm_unreachable("Unknown ordered comparison")::llvm::llvm_unreachable_internal("Unknown ordered comparison"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 2978)
;
2979 case Builtin::BI__builtin_isgreater:
2980 LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
2981 break;
2982 case Builtin::BI__builtin_isgreaterequal:
2983 LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
2984 break;
2985 case Builtin::BI__builtin_isless:
2986 LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
2987 break;
2988 case Builtin::BI__builtin_islessequal:
2989 LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
2990 break;
2991 case Builtin::BI__builtin_islessgreater:
2992 LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
2993 break;
2994 case Builtin::BI__builtin_isunordered:
2995 LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
2996 break;
2997 }
2998 // ZExt bool to int type.
2999 return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
3000 }
3001 case Builtin::BI__builtin_isnan: {
3002 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3003 Value *V = EmitScalarExpr(E->getArg(0));
3004 llvm::Type *Ty = V->getType();
3005 const llvm::fltSemantics &Semantics = Ty->getFltSemantics();
3006 if (!Builder.getIsFPConstrained() ||
3007 Builder.getDefaultConstrainedExcept() == fp::ebIgnore ||
3008 !Ty->isIEEE()) {
3009 V = Builder.CreateFCmpUNO(V, V, "cmp");
3010 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
3011 }
3012
3013 if (Value *Result = getTargetHooks().testFPKind(V, BuiltinID, Builder, CGM))
3014 return RValue::get(Result);
3015
3016 // NaN has all exp bits set and a non zero significand. Therefore:
3017 // isnan(V) == ((exp mask - (abs(V) & exp mask)) < 0)
3018 unsigned bitsize = Ty->getScalarSizeInBits();
3019 llvm::IntegerType *IntTy = Builder.getIntNTy(bitsize);
3020 Value *IntV = Builder.CreateBitCast(V, IntTy);
3021 APInt AndMask = APInt::getSignedMaxValue(bitsize);
3022 Value *AbsV =
3023 Builder.CreateAnd(IntV, llvm::ConstantInt::get(IntTy, AndMask));
3024 APInt ExpMask = APFloat::getInf(Semantics).bitcastToAPInt();
3025 Value *Sub =
3026 Builder.CreateSub(llvm::ConstantInt::get(IntTy, ExpMask), AbsV);
3027 // V = sign bit (Sub) <=> V = (Sub < 0)
3028 V = Builder.CreateLShr(Sub, llvm::ConstantInt::get(IntTy, bitsize - 1));
3029 if (bitsize > 32)
3030 V = Builder.CreateTrunc(V, ConvertType(E->getType()));
3031 return RValue::get(V);
3032 }
3033
3034 case Builtin::BI__builtin_matrix_transpose: {
3035 const auto *MatrixTy = E->getArg(0)->getType()->getAs<ConstantMatrixType>();
3036 Value *MatValue = EmitScalarExpr(E->getArg(0));
3037 MatrixBuilder<CGBuilderTy> MB(Builder);
3038 Value *Result = MB.CreateMatrixTranspose(MatValue, MatrixTy->getNumRows(),
3039 MatrixTy->getNumColumns());
3040 return RValue::get(Result);
3041 }
3042
3043 case Builtin::BI__builtin_matrix_column_major_load: {
3044 MatrixBuilder<CGBuilderTy> MB(Builder);
3045 // Emit everything that isn't dependent on the first parameter type
3046 Value *Stride = EmitScalarExpr(E->getArg(3));
3047 const auto *ResultTy = E->getType()->getAs<ConstantMatrixType>();
3048 auto *PtrTy = E->getArg(0)->getType()->getAs<PointerType>();
3049 assert(PtrTy && "arg0 must be of pointer type")(static_cast <bool> (PtrTy && "arg0 must be of pointer type"
) ? void (0) : __assert_fail ("PtrTy && \"arg0 must be of pointer type\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 3049, __extension__ __PRETTY_FUNCTION__))
;
3050 bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified();
3051
3052 Address Src = EmitPointerWithAlignment(E->getArg(0));
3053 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(0)->getType(),
3054 E->getArg(0)->getExprLoc(), FD, 0);
3055 Value *Result = MB.CreateColumnMajorLoad(
3056 Src.getPointer(), Align(Src.getAlignment().getQuantity()), Stride,
3057 IsVolatile, ResultTy->getNumRows(), ResultTy->getNumColumns(),
3058 "matrix");
3059 return RValue::get(Result);
3060 }
3061
3062 case Builtin::BI__builtin_matrix_column_major_store: {
3063 MatrixBuilder<CGBuilderTy> MB(Builder);
3064 Value *Matrix = EmitScalarExpr(E->getArg(0));
3065 Address Dst = EmitPointerWithAlignment(E->getArg(1));
3066 Value *Stride = EmitScalarExpr(E->getArg(2));
3067
3068 const auto *MatrixTy = E->getArg(0)->getType()->getAs<ConstantMatrixType>();
3069 auto *PtrTy = E->getArg(1)->getType()->getAs<PointerType>();
3070 assert(PtrTy && "arg1 must be of pointer type")(static_cast <bool> (PtrTy && "arg1 must be of pointer type"
) ? void (0) : __assert_fail ("PtrTy && \"arg1 must be of pointer type\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 3070, __extension__ __PRETTY_FUNCTION__))
;
3071 bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified();
3072
3073 EmitNonNullArgCheck(RValue::get(Dst.getPointer()), E->getArg(1)->getType(),
3074 E->getArg(1)->getExprLoc(), FD, 0);
3075 Value *Result = MB.CreateColumnMajorStore(
3076 Matrix, Dst.getPointer(), Align(Dst.getAlignment().getQuantity()),
3077 Stride, IsVolatile, MatrixTy->getNumRows(), MatrixTy->getNumColumns());
3078 return RValue::get(Result);
3079 }
3080
3081 case Builtin::BIfinite:
3082 case Builtin::BI__finite:
3083 case Builtin::BIfinitef:
3084 case Builtin::BI__finitef:
3085 case Builtin::BIfinitel:
3086 case Builtin::BI__finitel:
3087 case Builtin::BI__builtin_isinf:
3088 case Builtin::BI__builtin_isfinite: {
3089 // isinf(x) --> fabs(x) == infinity
3090 // isfinite(x) --> fabs(x) != infinity
3091 // x != NaN via the ordered compare in either case.
3092 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3093 Value *V = EmitScalarExpr(E->getArg(0));
3094 llvm::Type *Ty = V->getType();
3095 if (!Builder.getIsFPConstrained() ||
3096 Builder.getDefaultConstrainedExcept() == fp::ebIgnore ||
3097 !Ty->isIEEE()) {
3098 Value *Fabs = EmitFAbs(*this, V);
3099 Constant *Infinity = ConstantFP::getInfinity(V->getType());
3100 CmpInst::Predicate Pred = (BuiltinID == Builtin::BI__builtin_isinf)
3101 ? CmpInst::FCMP_OEQ
3102 : CmpInst::FCMP_ONE;
3103 Value *FCmp = Builder.CreateFCmp(Pred, Fabs, Infinity, "cmpinf");
3104 return RValue::get(Builder.CreateZExt(FCmp, ConvertType(E->getType())));
3105 }
3106
3107 if (Value *Result = getTargetHooks().testFPKind(V, BuiltinID, Builder, CGM))
3108 return RValue::get(Result);
3109
3110 // Inf values have all exp bits set and a zero significand. Therefore:
3111 // isinf(V) == ((V << 1) == ((exp mask) << 1))
3112 // isfinite(V) == ((V << 1) < ((exp mask) << 1)) using unsigned comparison
3113 unsigned bitsize = Ty->getScalarSizeInBits();
3114 llvm::IntegerType *IntTy = Builder.getIntNTy(bitsize);
3115 Value *IntV = Builder.CreateBitCast(V, IntTy);
3116 Value *Shl1 = Builder.CreateShl(IntV, 1);
3117 const llvm::fltSemantics &Semantics = Ty->getFltSemantics();
3118 APInt ExpMask = APFloat::getInf(Semantics).bitcastToAPInt();
3119 Value *ExpMaskShl1 = llvm::ConstantInt::get(IntTy, ExpMask.shl(1));
3120 if (BuiltinID == Builtin::BI__builtin_isinf)
3121 V = Builder.CreateICmpEQ(Shl1, ExpMaskShl1);
3122 else
3123 V = Builder.CreateICmpULT(Shl1, ExpMaskShl1);
3124 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
3125 }
3126
3127 case Builtin::BI__builtin_isinf_sign: {
3128 // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0
3129 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3130 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3131 Value *Arg = EmitScalarExpr(E->getArg(0));
3132 Value *AbsArg = EmitFAbs(*this, Arg);
3133 Value *IsInf = Builder.CreateFCmpOEQ(
3134 AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf");
3135 Value *IsNeg = EmitSignBit(*this, Arg);
3136
3137 llvm::Type *IntTy = ConvertType(E->getType());
3138 Value *Zero = Constant::getNullValue(IntTy);
3139 Value *One = ConstantInt::get(IntTy, 1);
3140 Value *NegativeOne = ConstantInt::get(IntTy, -1);
3141 Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One);
3142 Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero);
3143 return RValue::get(Result);
3144 }
3145
3146 case Builtin::BI__builtin_isnormal: {
3147 // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
3148 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3149 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3150 Value *V = EmitScalarExpr(E->getArg(0));
3151 Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
3152
3153 Value *Abs = EmitFAbs(*this, V);
3154 Value *IsLessThanInf =
3155 Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
3156 APFloat Smallest = APFloat::getSmallestNormalized(
3157 getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
3158 Value *IsNormal =
3159 Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
3160 "isnormal");
3161 V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
3162 V = Builder.CreateAnd(V, IsNormal, "and");
3163 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
3164 }
3165
3166 case Builtin::BI__builtin_flt_rounds: {
3167 Function *F = CGM.getIntrinsic(Intrinsic::flt_rounds);
3168
3169 llvm::Type *ResultType = ConvertType(E->getType());
3170 Value *Result = Builder.CreateCall(F);
3171 if (Result->getType() != ResultType)
3172 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
3173 "cast");
3174 return RValue::get(Result);
3175 }
3176
3177 case Builtin::BI__builtin_fpclassify: {
3178 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3179 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3180 Value *V = EmitScalarExpr(E->getArg(5));
3181 llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
3182
3183 // Create Result
3184 BasicBlock *Begin = Builder.GetInsertBlock();
3185 BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
3186 Builder.SetInsertPoint(End);
3187 PHINode *Result =
3188 Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
3189 "fpclassify_result");
3190
3191 // if (V==0) return FP_ZERO
3192 Builder.SetInsertPoint(Begin);
3193 Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
3194 "iszero");
3195 Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
3196 BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
3197 Builder.CreateCondBr(IsZero, End, NotZero);
3198 Result->addIncoming(ZeroLiteral, Begin);
3199
3200 // if (V != V) return FP_NAN
3201 Builder.SetInsertPoint(NotZero);
3202 Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
3203 Value *NanLiteral = EmitScalarExpr(E->getArg(0));
3204 BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
3205 Builder.CreateCondBr(IsNan, End, NotNan);
3206 Result->addIncoming(NanLiteral, NotZero);
3207
3208 // if (fabs(V) == infinity) return FP_INFINITY
3209 Builder.SetInsertPoint(NotNan);
3210 Value *VAbs = EmitFAbs(*this, V);
3211 Value *IsInf =
3212 Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
3213 "isinf");
3214 Value *InfLiteral = EmitScalarExpr(E->getArg(1));
3215 BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
3216 Builder.CreateCondBr(IsInf, End, NotInf);
3217 Result->addIncoming(InfLiteral, NotNan);
3218
3219 // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
3220 Builder.SetInsertPoint(NotInf);
3221 APFloat Smallest = APFloat::getSmallestNormalized(
3222 getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
3223 Value *IsNormal =
3224 Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
3225 "isnormal");
3226 Value *NormalResult =
3227 Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
3228 EmitScalarExpr(E->getArg(3)));
3229 Builder.CreateBr(End);
3230 Result->addIncoming(NormalResult, NotInf);
3231
3232 // return Result
3233 Builder.SetInsertPoint(End);
3234 return RValue::get(Result);
3235 }
3236
3237 case Builtin::BIalloca:
3238 case Builtin::BI_alloca:
3239 case Builtin::BI__builtin_alloca: {
3240 Value *Size = EmitScalarExpr(E->getArg(0));
3241 const TargetInfo &TI = getContext().getTargetInfo();
3242 // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__.
3243 const Align SuitableAlignmentInBytes =
3244 CGM.getContext()
3245 .toCharUnitsFromBits(TI.getSuitableAlign())
3246 .getAsAlign();
3247 AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
3248 AI->setAlignment(SuitableAlignmentInBytes);
3249 initializeAlloca(*this, AI, Size, SuitableAlignmentInBytes);
3250 return RValue::get(AI);
3251 }
3252
3253 case Builtin::BI__builtin_alloca_with_align: {
3254 Value *Size = EmitScalarExpr(E->getArg(0));
3255 Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1));
3256 auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue);
3257 unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue();
3258 const Align AlignmentInBytes =
3259 CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getAsAlign();
3260 AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
3261 AI->setAlignment(AlignmentInBytes);
3262 initializeAlloca(*this, AI, Size, AlignmentInBytes);
3263 return RValue::get(AI);
3264 }
3265
3266 case Builtin::BIbzero:
3267 case Builtin::BI__builtin_bzero: {
3268 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3269 Value *SizeVal = EmitScalarExpr(E->getArg(1));
3270 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3271 E->getArg(0)->getExprLoc(), FD, 0);
3272 Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false);
3273 return RValue::get(nullptr);
3274 }
3275 case Builtin::BImemcpy:
3276 case Builtin::BI__builtin_memcpy:
3277 case Builtin::BImempcpy:
3278 case Builtin::BI__builtin_mempcpy: {
3279 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3280 Address Src = EmitPointerWithAlignment(E->getArg(1));
3281 Value *SizeVal = EmitScalarExpr(E->getArg(2));
3282 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3283 E->getArg(0)->getExprLoc(), FD, 0);
3284 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
3285 E->getArg(1)->getExprLoc(), FD, 1);
3286 Builder.CreateMemCpy(Dest, Src, SizeVal, false);
3287 if (BuiltinID == Builtin::BImempcpy ||
3288 BuiltinID == Builtin::BI__builtin_mempcpy)
3289 return RValue::get(Builder.CreateInBoundsGEP(Dest.getElementType(),
3290 Dest.getPointer(), SizeVal));
3291 else
3292 return RValue::get(Dest.getPointer());
3293 }
3294
3295 case Builtin::BI__builtin_memcpy_inline: {
3296 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3297 Address Src = EmitPointerWithAlignment(E->getArg(1));
3298 uint64_t Size =
3299 E->getArg(2)->EvaluateKnownConstInt(getContext()).getZExtValue();
3300 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3301 E->getArg(0)->getExprLoc(), FD, 0);
3302 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
3303 E->getArg(1)->getExprLoc(), FD, 1);
3304 Builder.CreateMemCpyInline(Dest, Src, Size);
3305 return RValue::get(nullptr);
3306 }
3307
3308 case Builtin::BI__builtin_char_memchr:
3309 BuiltinID = Builtin::BI__builtin_memchr;
3310 break;
3311
3312 case Builtin::BI__builtin___memcpy_chk: {
3313 // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
3314 Expr::EvalResult SizeResult, DstSizeResult;
3315 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
3316 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
3317 break;
3318 llvm::APSInt Size = SizeResult.Val.getInt();
3319 llvm::APSInt DstSize = DstSizeResult.Val.getInt();
3320 if (Size.ugt(DstSize))
3321 break;
3322 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3323 Address Src = EmitPointerWithAlignment(E->getArg(1));
3324 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
3325 Builder.CreateMemCpy(Dest, Src, SizeVal, false);
3326 return RValue::get(Dest.getPointer());
3327 }
3328
3329 case Builtin::BI__builtin_objc_memmove_collectable: {
3330 Address DestAddr = EmitPointerWithAlignment(E->getArg(0));
3331 Address SrcAddr = EmitPointerWithAlignment(E->getArg(1));
3332 Value *SizeVal = EmitScalarExpr(E->getArg(2));
3333 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
3334 DestAddr, SrcAddr, SizeVal);
3335 return RValue::get(DestAddr.getPointer());
3336 }
3337
3338 case Builtin::BI__builtin___memmove_chk: {
3339 // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
3340 Expr::EvalResult SizeResult, DstSizeResult;
3341 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
3342 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
3343 break;
3344 llvm::APSInt Size = SizeResult.Val.getInt();
3345 llvm::APSInt DstSize = DstSizeResult.Val.getInt();
3346 if (Size.ugt(DstSize))
3347 break;
3348 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3349 Address Src = EmitPointerWithAlignment(E->getArg(1));
3350 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
3351 Builder.CreateMemMove(Dest, Src, SizeVal, false);
3352 return RValue::get(Dest.getPointer());
3353 }
3354
3355 case Builtin::BImemmove:
3356 case Builtin::BI__builtin_memmove: {
3357 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3358 Address Src = EmitPointerWithAlignment(E->getArg(1));
3359 Value *SizeVal = EmitScalarExpr(E->getArg(2));
3360 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3361 E->getArg(0)->getExprLoc(), FD, 0);
3362 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
3363 E->getArg(1)->getExprLoc(), FD, 1);
3364 Builder.CreateMemMove(Dest, Src, SizeVal, false);
3365 return RValue::get(Dest.getPointer());
3366 }
3367 case Builtin::BImemset:
3368 case Builtin::BI__builtin_memset: {
3369 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3370 Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
3371 Builder.getInt8Ty());
3372 Value *SizeVal = EmitScalarExpr(E->getArg(2));
3373 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3374 E->getArg(0)->getExprLoc(), FD, 0);
3375 Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
3376 return RValue::get(Dest.getPointer());
3377 }
3378 case Builtin::BI__builtin___memset_chk: {
3379 // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
3380 Expr::EvalResult SizeResult, DstSizeResult;
3381 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
3382 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
3383 break;
3384 llvm::APSInt Size = SizeResult.Val.getInt();
3385 llvm::APSInt DstSize = DstSizeResult.Val.getInt();
3386 if (Size.ugt(DstSize))
3387 break;
3388 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3389 Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
3390 Builder.getInt8Ty());
3391 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
3392 Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
3393 return RValue::get(Dest.getPointer());
3394 }
3395 case Builtin::BI__builtin_wmemchr: {
3396 // The MSVC runtime library does not provide a definition of wmemchr, so we
3397 // need an inline implementation.
3398 if (!getTarget().getTriple().isOSMSVCRT())
3399 break;
3400
3401 llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
3402 Value *Str = EmitScalarExpr(E->getArg(0));
3403 Value *Chr = EmitScalarExpr(E->getArg(1));
3404 Value *Size = EmitScalarExpr(E->getArg(2));
3405
3406 BasicBlock *Entry = Builder.GetInsertBlock();
3407 BasicBlock *CmpEq = createBasicBlock("wmemchr.eq");
3408 BasicBlock *Next = createBasicBlock("wmemchr.next");
3409 BasicBlock *Exit = createBasicBlock("wmemchr.exit");
3410 Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
3411 Builder.CreateCondBr(SizeEq0, Exit, CmpEq);
3412
3413 EmitBlock(CmpEq);
3414 PHINode *StrPhi = Builder.CreatePHI(Str->getType(), 2);
3415 StrPhi->addIncoming(Str, Entry);
3416 PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
3417 SizePhi->addIncoming(Size, Entry);
3418 CharUnits WCharAlign =
3419 getContext().getTypeAlignInChars(getContext().WCharTy);
3420 Value *StrCh = Builder.CreateAlignedLoad(WCharTy, StrPhi, WCharAlign);
3421 Value *FoundChr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 0);
3422 Value *StrEqChr = Builder.CreateICmpEQ(StrCh, Chr);
3423 Builder.CreateCondBr(StrEqChr, Exit, Next);
3424
3425 EmitBlock(Next);
3426 Value *NextStr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 1);
3427 Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
3428 Value *NextSizeEq0 =
3429 Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
3430 Builder.CreateCondBr(NextSizeEq0, Exit, CmpEq);
3431 StrPhi->addIncoming(NextStr, Next);
3432 SizePhi->addIncoming(NextSize, Next);
3433
3434 EmitBlock(Exit);
3435 PHINode *Ret = Builder.CreatePHI(Str->getType(), 3);
3436 Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Entry);
3437 Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Next);
3438 Ret->addIncoming(FoundChr, CmpEq);
3439 return RValue::get(Ret);
3440 }
3441 case Builtin::BI__builtin_wmemcmp: {
3442 // The MSVC runtime library does not provide a definition of wmemcmp, so we
3443 // need an inline implementation.
3444 if (!getTarget().getTriple().isOSMSVCRT())
3445 break;
3446
3447 llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
3448
3449 Value *Dst = EmitScalarExpr(E->getArg(0));
3450 Value *Src = EmitScalarExpr(E->getArg(1));
3451 Value *Size = EmitScalarExpr(E->getArg(2));
3452
3453 BasicBlock *Entry = Builder.GetInsertBlock();
3454 BasicBlock *CmpGT = createBasicBlock("wmemcmp.gt");
3455 BasicBlock *CmpLT = createBasicBlock("wmemcmp.lt");
3456 BasicBlock *Next = createBasicBlock("wmemcmp.next");
3457 BasicBlock *Exit = createBasicBlock("wmemcmp.exit");
3458 Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
3459 Builder.CreateCondBr(SizeEq0, Exit, CmpGT);
3460
3461 EmitBlock(CmpGT);
3462 PHINode *DstPhi = Builder.CreatePHI(Dst->getType(), 2);
3463 DstPhi->addIncoming(Dst, Entry);
3464 PHINode *SrcPhi = Builder.CreatePHI(Src->getType(), 2);
3465 SrcPhi->addIncoming(Src, Entry);
3466 PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
3467 SizePhi->addIncoming(Size, Entry);
3468 CharUnits WCharAlign =
3469 getContext().getTypeAlignInChars(getContext().WCharTy);
3470 Value *DstCh = Builder.CreateAlignedLoad(WCharTy, DstPhi, WCharAlign);
3471 Value *SrcCh = Builder.CreateAlignedLoad(WCharTy, SrcPhi, WCharAlign);
3472 Value *DstGtSrc = Builder.CreateICmpUGT(DstCh, SrcCh);
3473 Builder.CreateCondBr(DstGtSrc, Exit, CmpLT);
3474
3475 EmitBlock(CmpLT);
3476 Value *DstLtSrc = Builder.CreateICmpULT(DstCh, SrcCh);
3477 Builder.CreateCondBr(DstLtSrc, Exit, Next);
3478
3479 EmitBlock(Next);
3480 Value *NextDst = Builder.CreateConstInBoundsGEP1_32(WCharTy, DstPhi, 1);
3481 Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(WCharTy, SrcPhi, 1);
3482 Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
3483 Value *NextSizeEq0 =
3484 Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
3485 Builder.CreateCondBr(NextSizeEq0, Exit, CmpGT);
3486 DstPhi->addIncoming(NextDst, Next);
3487 SrcPhi->addIncoming(NextSrc, Next);
3488 SizePhi->addIncoming(NextSize, Next);
3489
3490 EmitBlock(Exit);
3491 PHINode *Ret = Builder.CreatePHI(IntTy, 4);
3492 Ret->addIncoming(ConstantInt::get(IntTy, 0), Entry);
3493 Ret->addIncoming(ConstantInt::get(IntTy, 1), CmpGT);
3494 Ret->addIncoming(ConstantInt::get(IntTy, -1), CmpLT);
3495 Ret->addIncoming(ConstantInt::get(IntTy, 0), Next);
3496 return RValue::get(Ret);
3497 }
3498 case Builtin::BI__builtin_dwarf_cfa: {
3499 // The offset in bytes from the first argument to the CFA.
3500 //
3501 // Why on earth is this in the frontend? Is there any reason at
3502 // all that the backend can't reasonably determine this while
3503 // lowering llvm.eh.dwarf.cfa()?
3504 //
3505 // TODO: If there's a satisfactory reason, add a target hook for
3506 // this instead of hard-coding 0, which is correct for most targets.
3507 int32_t Offset = 0;
3508
3509 Function *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
3510 return RValue::get(Builder.CreateCall(F,
3511 llvm::ConstantInt::get(Int32Ty, Offset)));
3512 }
3513 case Builtin::BI__builtin_return_address: {
3514 Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
3515 getContext().UnsignedIntTy);
3516 Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
3517 return RValue::get(Builder.CreateCall(F, Depth));
3518 }
3519 case Builtin::BI_ReturnAddress: {
3520 Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
3521 return RValue::get(Builder.CreateCall(F, Builder.getInt32(0)));
3522 }
3523 case Builtin::BI__builtin_frame_address: {
3524 Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
3525 getContext().UnsignedIntTy);
3526 Function *F = CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy);
3527 return RValue::get(Builder.CreateCall(F, Depth));
3528 }
3529 case Builtin::BI__builtin_extract_return_addr: {
3530 Value *Address = EmitScalarExpr(E->getArg(0));
3531 Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
3532 return RValue::get(Result);
3533 }
3534 case Builtin::BI__builtin_frob_return_addr: {
3535 Value *Address = EmitScalarExpr(E->getArg(0));
3536 Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
3537 return RValue::get(Result);
3538 }
3539 case Builtin::BI__builtin_dwarf_sp_column: {
3540 llvm::IntegerType *Ty
3541 = cast<llvm::IntegerType>(ConvertType(E->getType()));
3542 int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
3543 if (Column == -1) {
3544 CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
3545 return RValue::get(llvm::UndefValue::get(Ty));
3546 }
3547 return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
3548 }
3549 case Builtin::BI__builtin_init_dwarf_reg_size_table: {
3550 Value *Address = EmitScalarExpr(E->getArg(0));
3551 if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
3552 CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
3553 return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
3554 }
3555 case Builtin::BI__builtin_eh_return: {
3556 Value *Int = EmitScalarExpr(E->getArg(0));
3557 Value *Ptr = EmitScalarExpr(E->getArg(1));
3558
3559 llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
3560 assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&(static_cast <bool> ((IntTy->getBitWidth() == 32 || IntTy
->getBitWidth() == 64) && "LLVM's __builtin_eh_return only supports 32- and 64-bit variants"
) ? void (0) : __assert_fail ("(IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) && \"LLVM's __builtin_eh_return only supports 32- and 64-bit variants\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 3561, __extension__ __PRETTY_FUNCTION__))
3561 "LLVM's __builtin_eh_return only supports 32- and 64-bit variants")(static_cast <bool> ((IntTy->getBitWidth() == 32 || IntTy
->getBitWidth() == 64) && "LLVM's __builtin_eh_return only supports 32- and 64-bit variants"
) ? void (0) : __assert_fail ("(IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) && \"LLVM's __builtin_eh_return only supports 32- and 64-bit variants\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 3561, __extension__ __PRETTY_FUNCTION__))
;
3562 Function *F =
3563 CGM.getIntrinsic(IntTy->getBitWidth() == 32 ? Intrinsic::eh_return_i32
3564 : Intrinsic::eh_return_i64);
3565 Builder.CreateCall(F, {Int, Ptr});
3566 Builder.CreateUnreachable();
3567
3568 // We do need to preserve an insertion point.
3569 EmitBlock(createBasicBlock("builtin_eh_return.cont"));
3570
3571 return RValue::get(nullptr);
3572 }
3573 case Builtin::BI__builtin_unwind_init: {
3574 Function *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
3575 return RValue::get(Builder.CreateCall(F));
3576 }
3577 case Builtin::BI__builtin_extend_pointer: {
3578 // Extends a pointer to the size of an _Unwind_Word, which is
3579 // uint64_t on all platforms. Generally this gets poked into a
3580 // register and eventually used as an address, so if the
3581 // addressing registers are wider than pointers and the platform
3582 // doesn't implicitly ignore high-order bits when doing
3583 // addressing, we need to make sure we zext / sext based on
3584 // the platform's expectations.
3585 //
3586 // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
3587
3588 // Cast the pointer to intptr_t.
3589 Value *Ptr = EmitScalarExpr(E->getArg(0));
3590 Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
3591
3592 // If that's 64 bits, we're done.
3593 if (IntPtrTy->getBitWidth() == 64)
3594 return RValue::get(Result);
3595
3596 // Otherwise, ask the codegen data what to do.
3597 if (getTargetHooks().extendPointerWithSExt())
3598 return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
3599 else
3600 return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
3601 }
3602 case Builtin::BI__builtin_setjmp: {
3603 // Buffer is a void**.
3604 Address Buf = EmitPointerWithAlignment(E->getArg(0));
3605
3606 // Store the frame pointer to the setjmp buffer.
3607 Value *FrameAddr = Builder.CreateCall(
3608 CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy),
3609 ConstantInt::get(Int32Ty, 0));
3610 Builder.CreateStore(FrameAddr, Buf);
3611
3612 // Store the stack pointer to the setjmp buffer.
3613 Value *StackAddr =
3614 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
3615 Address StackSaveSlot = Builder.CreateConstInBoundsGEP(Buf, 2);
3616 Builder.CreateStore(StackAddr, StackSaveSlot);
3617
3618 // Call LLVM's EH setjmp, which is lightweight.
3619 Function *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
3620 Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
3621 return RValue::get(Builder.CreateCall(F, Buf.getPointer()));
3622 }
3623 case Builtin::BI__builtin_longjmp: {
3624 Value *Buf = EmitScalarExpr(E->getArg(0));
3625 Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
3626
3627 // Call LLVM's EH longjmp, which is lightweight.
3628 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
3629
3630 // longjmp doesn't return; mark this as unreachable.
3631 Builder.CreateUnreachable();
3632
3633 // We do need to preserve an insertion point.
3634 EmitBlock(createBasicBlock("longjmp.cont"));
3635
3636 return RValue::get(nullptr);
3637 }
3638 case Builtin::BI__builtin_launder: {
3639 const Expr *Arg = E->getArg(0);
3640 QualType ArgTy = Arg->getType()->getPointeeType();
3641 Value *Ptr = EmitScalarExpr(Arg);
3642 if (TypeRequiresBuiltinLaunder(CGM, ArgTy))
3643 Ptr = Builder.CreateLaunderInvariantGroup(Ptr);
3644
3645 return RValue::get(Ptr);
3646 }
3647 case Builtin::BI__sync_fetch_and_add:
3648 case Builtin::BI__sync_fetch_and_sub:
3649 case Builtin::BI__sync_fetch_and_or:
3650 case Builtin::BI__sync_fetch_and_and:
3651 case Builtin::BI__sync_fetch_and_xor:
3652 case Builtin::BI__sync_fetch_and_nand:
3653 case Builtin::BI__sync_add_and_fetch:
3654 case Builtin::BI__sync_sub_and_fetch:
3655 case Builtin::BI__sync_and_and_fetch:
3656 case Builtin::BI__sync_or_and_fetch:
3657 case Builtin::BI__sync_xor_and_fetch:
3658 case Builtin::BI__sync_nand_and_fetch:
3659 case Builtin::BI__sync_val_compare_and_swap:
3660 case Builtin::BI__sync_bool_compare_and_swap:
3661 case Builtin::BI__sync_lock_test_and_set:
3662 case Builtin::BI__sync_lock_release:
3663 case Builtin::BI__sync_swap:
3664 llvm_unreachable("Shouldn't make it through sema")::llvm::llvm_unreachable_internal("Shouldn't make it through sema"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 3664)
;
3665 case Builtin::BI__sync_fetch_and_add_1:
3666 case Builtin::BI__sync_fetch_and_add_2:
3667 case Builtin::BI__sync_fetch_and_add_4:
3668 case Builtin::BI__sync_fetch_and_add_8:
3669 case Builtin::BI__sync_fetch_and_add_16:
3670 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
3671 case Builtin::BI__sync_fetch_and_sub_1:
3672 case Builtin::BI__sync_fetch_and_sub_2:
3673 case Builtin::BI__sync_fetch_and_sub_4:
3674 case Builtin::BI__sync_fetch_and_sub_8:
3675 case Builtin::BI__sync_fetch_and_sub_16:
3676 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
3677 case Builtin::BI__sync_fetch_and_or_1:
3678 case Builtin::BI__sync_fetch_and_or_2:
3679 case Builtin::BI__sync_fetch_and_or_4:
3680 case Builtin::BI__sync_fetch_and_or_8:
3681 case Builtin::BI__sync_fetch_and_or_16:
3682 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
3683 case Builtin::BI__sync_fetch_and_and_1:
3684 case Builtin::BI__sync_fetch_and_and_2:
3685 case Builtin::BI__sync_fetch_and_and_4:
3686 case Builtin::BI__sync_fetch_and_and_8:
3687 case Builtin::BI__sync_fetch_and_and_16:
3688 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
3689 case Builtin::BI__sync_fetch_and_xor_1:
3690 case Builtin::BI__sync_fetch_and_xor_2:
3691 case Builtin::BI__sync_fetch_and_xor_4:
3692 case Builtin::BI__sync_fetch_and_xor_8:
3693 case Builtin::BI__sync_fetch_and_xor_16:
3694 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
3695 case Builtin::BI__sync_fetch_and_nand_1:
3696 case Builtin::BI__sync_fetch_and_nand_2:
3697 case Builtin::BI__sync_fetch_and_nand_4:
3698 case Builtin::BI__sync_fetch_and_nand_8:
3699 case Builtin::BI__sync_fetch_and_nand_16:
3700 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E);
3701
3702 // Clang extensions: not overloaded yet.
3703 case Builtin::BI__sync_fetch_and_min:
3704 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
3705 case Builtin::BI__sync_fetch_and_max:
3706 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
3707 case Builtin::BI__sync_fetch_and_umin:
3708 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
3709 case Builtin::BI__sync_fetch_and_umax:
3710 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
3711
3712 case Builtin::BI__sync_add_and_fetch_1:
3713 case Builtin::BI__sync_add_and_fetch_2:
3714 case Builtin::BI__sync_add_and_fetch_4:
3715 case Builtin::BI__sync_add_and_fetch_8:
3716 case Builtin::BI__sync_add_and_fetch_16:
3717 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
3718 llvm::Instruction::Add);
3719 case Builtin::BI__sync_sub_and_fetch_1:
3720 case Builtin::BI__sync_sub_and_fetch_2:
3721 case Builtin::BI__sync_sub_and_fetch_4:
3722 case Builtin::BI__sync_sub_and_fetch_8:
3723 case Builtin::BI__sync_sub_and_fetch_16:
3724 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
3725 llvm::Instruction::Sub);
3726 case Builtin::BI__sync_and_and_fetch_1:
3727 case Builtin::BI__sync_and_and_fetch_2:
3728 case Builtin::BI__sync_and_and_fetch_4:
3729 case Builtin::BI__sync_and_and_fetch_8:
3730 case Builtin::BI__sync_and_and_fetch_16:
3731 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
3732 llvm::Instruction::And);
3733 case Builtin::BI__sync_or_and_fetch_1:
3734 case Builtin::BI__sync_or_and_fetch_2:
3735 case Builtin::BI__sync_or_and_fetch_4:
3736 case Builtin::BI__sync_or_and_fetch_8:
3737 case Builtin::BI__sync_or_and_fetch_16:
3738 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
3739 llvm::Instruction::Or);
3740 case Builtin::BI__sync_xor_and_fetch_1:
3741 case Builtin::BI__sync_xor_and_fetch_2:
3742 case Builtin::BI__sync_xor_and_fetch_4:
3743 case Builtin::BI__sync_xor_and_fetch_8:
3744 case Builtin::BI__sync_xor_and_fetch_16:
3745 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
3746 llvm::Instruction::Xor);
3747 case Builtin::BI__sync_nand_and_fetch_1:
3748 case Builtin::BI__sync_nand_and_fetch_2:
3749 case Builtin::BI__sync_nand_and_fetch_4:
3750 case Builtin::BI__sync_nand_and_fetch_8:
3751 case Builtin::BI__sync_nand_and_fetch_16:
3752 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E,
3753 llvm::Instruction::And, true);
3754
3755 case Builtin::BI__sync_val_compare_and_swap_1:
3756 case Builtin::BI__sync_val_compare_and_swap_2:
3757 case Builtin::BI__sync_val_compare_and_swap_4:
3758 case Builtin::BI__sync_val_compare_and_swap_8:
3759 case Builtin::BI__sync_val_compare_and_swap_16:
3760 return RValue::get(MakeAtomicCmpXchgValue(*this, E, false));
3761
3762 case Builtin::BI__sync_bool_compare_and_swap_1:
3763 case Builtin::BI__sync_bool_compare_and_swap_2:
3764 case Builtin::BI__sync_bool_compare_and_swap_4:
3765 case Builtin::BI__sync_bool_compare_and_swap_8:
3766 case Builtin::BI__sync_bool_compare_and_swap_16:
3767 return RValue::get(MakeAtomicCmpXchgValue(*this, E, true));
3768
3769 case Builtin::BI__sync_swap_1:
3770 case Builtin::BI__sync_swap_2:
3771 case Builtin::BI__sync_swap_4:
3772 case Builtin::BI__sync_swap_8:
3773 case Builtin::BI__sync_swap_16:
3774 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
3775
3776 case Builtin::BI__sync_lock_test_and_set_1:
3777 case Builtin::BI__sync_lock_test_and_set_2:
3778 case Builtin::BI__sync_lock_test_and_set_4:
3779 case Builtin::BI__sync_lock_test_and_set_8:
3780 case Builtin::BI__sync_lock_test_and_set_16:
3781 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
3782
3783 case Builtin::BI__sync_lock_release_1:
3784 case Builtin::BI__sync_lock_release_2:
3785 case Builtin::BI__sync_lock_release_4:
3786 case Builtin::BI__sync_lock_release_8:
3787 case Builtin::BI__sync_lock_release_16: {
3788 Value *Ptr = EmitScalarExpr(E->getArg(0));
3789 QualType ElTy = E->getArg(0)->getType()->getPointeeType();
3790 CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
3791 llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
3792 StoreSize.getQuantity() * 8);
3793 Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
3794 llvm::StoreInst *Store =
3795 Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr,
3796 StoreSize);
3797 Store->setAtomic(llvm::AtomicOrdering::Release);
3798 return RValue::get(nullptr);
3799 }
3800
3801 case Builtin::BI__sync_synchronize: {
3802 // We assume this is supposed to correspond to a C++0x-style
3803 // sequentially-consistent fence (i.e. this is only usable for
3804 // synchronization, not device I/O or anything like that). This intrinsic
3805 // is really badly designed in the sense that in theory, there isn't
3806 // any way to safely use it... but in practice, it mostly works
3807 // to use it with non-atomic loads and stores to get acquire/release
3808 // semantics.
3809 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent);
3810 return RValue::get(nullptr);
3811 }
3812
3813 case Builtin::BI__builtin_nontemporal_load:
3814 return RValue::get(EmitNontemporalLoad(*this, E));
3815 case Builtin::BI__builtin_nontemporal_store:
3816 return RValue::get(EmitNontemporalStore(*this, E));
3817 case Builtin::BI__c11_atomic_is_lock_free:
3818 case Builtin::BI__atomic_is_lock_free: {
3819 // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
3820 // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
3821 // _Atomic(T) is always properly-aligned.
3822 const char *LibCallName = "__atomic_is_lock_free";
3823 CallArgList Args;
3824 Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
3825 getContext().getSizeType());
3826 if (BuiltinID == Builtin::BI__atomic_is_lock_free)
3827 Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
3828 getContext().VoidPtrTy);
3829 else
3830 Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
3831 getContext().VoidPtrTy);
3832 const CGFunctionInfo &FuncInfo =
3833 CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args);
3834 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
3835 llvm::FunctionCallee Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
3836 return EmitCall(FuncInfo, CGCallee::forDirect(Func),
3837 ReturnValueSlot(), Args);
3838 }
3839
3840 case Builtin::BI__atomic_test_and_set: {
3841 // Look at the argument type to determine whether this is a volatile
3842 // operation. The parameter type is always volatile.
3843 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
3844 bool Volatile =
3845 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
3846
3847 Value *Ptr = EmitScalarExpr(E->getArg(0));
3848 unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
3849 Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
3850 Value *NewVal = Builder.getInt8(1);
3851 Value *Order = EmitScalarExpr(E->getArg(1));
3852 if (isa<llvm::ConstantInt>(Order)) {
3853 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
3854 AtomicRMWInst *Result = nullptr;
3855 switch (ord) {
3856 case 0: // memory_order_relaxed
3857 default: // invalid order
3858 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3859 llvm::AtomicOrdering::Monotonic);
3860 break;
3861 case 1: // memory_order_consume
3862 case 2: // memory_order_acquire
3863 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3864 llvm::AtomicOrdering::Acquire);
3865 break;
3866 case 3: // memory_order_release
3867 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3868 llvm::AtomicOrdering::Release);
3869 break;
3870 case 4: // memory_order_acq_rel
3871
3872 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3873 llvm::AtomicOrdering::AcquireRelease);
3874 break;
3875 case 5: // memory_order_seq_cst
3876 Result = Builder.CreateAtomicRMW(
3877 llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3878 llvm::AtomicOrdering::SequentiallyConsistent);
3879 break;
3880 }
3881 Result->setVolatile(Volatile);
3882 return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
3883 }
3884
3885 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
3886
3887 llvm::BasicBlock *BBs[5] = {
3888 createBasicBlock("monotonic", CurFn),
3889 createBasicBlock("acquire", CurFn),
3890 createBasicBlock("release", CurFn),
3891 createBasicBlock("acqrel", CurFn),
3892 createBasicBlock("seqcst", CurFn)
3893 };
3894 llvm::AtomicOrdering Orders[5] = {
3895 llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire,
3896 llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease,
3897 llvm::AtomicOrdering::SequentiallyConsistent};
3898
3899 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
3900 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
3901
3902 Builder.SetInsertPoint(ContBB);
3903 PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
3904
3905 for (unsigned i = 0; i < 5; ++i) {
3906 Builder.SetInsertPoint(BBs[i]);
3907 AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
3908 Ptr, NewVal, Orders[i]);
3909 RMW->setVolatile(Volatile);
3910 Result->addIncoming(RMW, BBs[i]);
3911 Builder.CreateBr(ContBB);
3912 }
3913
3914 SI->addCase(Builder.getInt32(0), BBs[0]);
3915 SI->addCase(Builder.getInt32(1), BBs[1]);
3916 SI->addCase(Builder.getInt32(2), BBs[1]);
3917 SI->addCase(Builder.getInt32(3), BBs[2]);
3918 SI->addCase(Builder.getInt32(4), BBs[3]);
3919 SI->addCase(Builder.getInt32(5), BBs[4]);
3920
3921 Builder.SetInsertPoint(ContBB);
3922 return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
3923 }
3924
3925 case Builtin::BI__atomic_clear: {
3926 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
3927 bool Volatile =
3928 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
3929
3930 Address Ptr = EmitPointerWithAlignment(E->getArg(0));
3931 unsigned AddrSpace = Ptr.getPointer()->getType()->getPointerAddressSpace();
3932 Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
3933 Value *NewVal = Builder.getInt8(0);
3934 Value *Order = EmitScalarExpr(E->getArg(1));
3935 if (isa<llvm::ConstantInt>(Order)) {
3936 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
3937 StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
3938 switch (ord) {
3939 case 0: // memory_order_relaxed
3940 default: // invalid order
3941 Store->setOrdering(llvm::AtomicOrdering::Monotonic);
3942 break;
3943 case 3: // memory_order_release
3944 Store->setOrdering(llvm::AtomicOrdering::Release);
3945 break;
3946 case 5: // memory_order_seq_cst
3947 Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent);
3948 break;
3949 }
3950 return RValue::get(nullptr);
3951 }
3952
3953 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
3954
3955 llvm::BasicBlock *BBs[3] = {
3956 createBasicBlock("monotonic", CurFn),
3957 createBasicBlock("release", CurFn),
3958 createBasicBlock("seqcst", CurFn)
3959 };
3960 llvm::AtomicOrdering Orders[3] = {
3961 llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release,
3962 llvm::AtomicOrdering::SequentiallyConsistent};
3963
3964 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
3965 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
3966
3967 for (unsigned i = 0; i < 3; ++i) {
3968 Builder.SetInsertPoint(BBs[i]);
3969 StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
3970 Store->setOrdering(Orders[i]);
3971 Builder.CreateBr(ContBB);
3972 }
3973
3974 SI->addCase(Builder.getInt32(0), BBs[0]);
3975 SI->addCase(Builder.getInt32(3), BBs[1]);
3976 SI->addCase(Builder.getInt32(5), BBs[2]);
3977
3978 Builder.SetInsertPoint(ContBB);
3979 return RValue::get(nullptr);
3980 }
3981
3982 case Builtin::BI__atomic_thread_fence:
3983 case Builtin::BI__atomic_signal_fence:
3984 case Builtin::BI__c11_atomic_thread_fence:
3985 case Builtin::BI__c11_atomic_signal_fence: {
3986 llvm::SyncScope::ID SSID;
3987 if (BuiltinID == Builtin::BI__atomic_signal_fence ||
3988 BuiltinID == Builtin::BI__c11_atomic_signal_fence)
3989 SSID = llvm::SyncScope::SingleThread;
3990 else
3991 SSID = llvm::SyncScope::System;
3992 Value *Order = EmitScalarExpr(E->getArg(0));
3993 if (isa<llvm::ConstantInt>(Order)) {
3994 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
3995 switch (ord) {
3996 case 0: // memory_order_relaxed
3997 default: // invalid order
3998 break;
3999 case 1: // memory_order_consume
4000 case 2: // memory_order_acquire
4001 Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
4002 break;
4003 case 3: // memory_order_release
4004 Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
4005 break;
4006 case 4: // memory_order_acq_rel
4007 Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
4008 break;
4009 case 5: // memory_order_seq_cst
4010 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
4011 break;
4012 }
4013 return RValue::get(nullptr);
4014 }
4015
4016 llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
4017 AcquireBB = createBasicBlock("acquire", CurFn);
4018 ReleaseBB = createBasicBlock("release", CurFn);
4019 AcqRelBB = createBasicBlock("acqrel", CurFn);
4020 SeqCstBB = createBasicBlock("seqcst", CurFn);
4021 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
4022
4023 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
4024 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
4025
4026 Builder.SetInsertPoint(AcquireBB);
4027 Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
4028 Builder.CreateBr(ContBB);
4029 SI->addCase(Builder.getInt32(1), AcquireBB);
4030 SI->addCase(Builder.getInt32(2), AcquireBB);
4031
4032 Builder.SetInsertPoint(ReleaseBB);
4033 Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
4034 Builder.CreateBr(ContBB);
4035 SI->addCase(Builder.getInt32(3), ReleaseBB);
4036
4037 Builder.SetInsertPoint(AcqRelBB);
4038 Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
4039 Builder.CreateBr(ContBB);
4040 SI->addCase(Builder.getInt32(4), AcqRelBB);
4041
4042 Builder.SetInsertPoint(SeqCstBB);
4043 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
4044 Builder.CreateBr(ContBB);
4045 SI->addCase(Builder.getInt32(5), SeqCstBB);
4046
4047 Builder.SetInsertPoint(ContBB);
4048 return RValue::get(nullptr);
4049 }
4050
4051 case Builtin::BI__builtin_signbit:
4052 case Builtin::BI__builtin_signbitf:
4053 case Builtin::BI__builtin_signbitl: {
4054 return RValue::get(
4055 Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))),
4056 ConvertType(E->getType())));
4057 }
4058 case Builtin::BI__warn_memset_zero_len:
4059 return RValue::getIgnored();
4060 case Builtin::BI__annotation: {
4061 // Re-encode each wide string to UTF8 and make an MDString.
4062 SmallVector<Metadata *, 1> Strings;
4063 for (const Expr *Arg : E->arguments()) {
4064 const auto *Str = cast<StringLiteral>(Arg->IgnoreParenCasts());
4065 assert(Str->getCharByteWidth() == 2)(static_cast <bool> (Str->getCharByteWidth() == 2) ?
void (0) : __assert_fail ("Str->getCharByteWidth() == 2",
"/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 4065, __extension__ __PRETTY_FUNCTION__))
;
4066 StringRef WideBytes = Str->getBytes();
4067 std::string StrUtf8;
4068 if (!convertUTF16ToUTF8String(
4069 makeArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) {
4070 CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument");
4071 continue;
4072 }
4073 Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8));
4074 }
4075
4076 // Build and MDTuple of MDStrings and emit the intrinsic call.
4077 llvm::Function *F =
4078 CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {});
4079 MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings);
4080 Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple));
4081 return RValue::getIgnored();
4082 }
4083 case Builtin::BI__builtin_annotation: {
4084 llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
4085 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::annotation,
4086 AnnVal->getType());
4087
4088 // Get the annotation string, go through casts. Sema requires this to be a
4089 // non-wide string literal, potentially casted, so the cast<> is safe.
4090 const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
4091 StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
4092 return RValue::get(
4093 EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc(), nullptr));
4094 }
4095 case Builtin::BI__builtin_addcb:
4096 case Builtin::BI__builtin_addcs:
4097 case Builtin::BI__builtin_addc:
4098 case Builtin::BI__builtin_addcl:
4099 case Builtin::BI__builtin_addcll:
4100 case Builtin::BI__builtin_subcb:
4101 case Builtin::BI__builtin_subcs:
4102 case Builtin::BI__builtin_subc:
4103 case Builtin::BI__builtin_subcl:
4104 case Builtin::BI__builtin_subcll: {
4105
4106 // We translate all of these builtins from expressions of the form:
4107 // int x = ..., y = ..., carryin = ..., carryout, result;
4108 // result = __builtin_addc(x, y, carryin, &carryout);
4109 //
4110 // to LLVM IR of the form:
4111 //
4112 // %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
4113 // %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
4114 // %carry1 = extractvalue {i32, i1} %tmp1, 1
4115 // %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
4116 // i32 %carryin)
4117 // %result = extractvalue {i32, i1} %tmp2, 0
4118 // %carry2 = extractvalue {i32, i1} %tmp2, 1
4119 // %tmp3 = or i1 %carry1, %carry2
4120 // %tmp4 = zext i1 %tmp3 to i32
4121 // store i32 %tmp4, i32* %carryout
4122
4123 // Scalarize our inputs.
4124 llvm::Value *X = EmitScalarExpr(E->getArg(0));
4125 llvm::Value *Y = EmitScalarExpr(E->getArg(1));
4126 llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
4127 Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3));
4128
4129 // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
4130 llvm::Intrinsic::ID IntrinsicId;
4131 switch (BuiltinID) {
4132 default: llvm_unreachable("Unknown multiprecision builtin id.")::llvm::llvm_unreachable_internal("Unknown multiprecision builtin id."
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 4132)
;
4133 case Builtin::BI__builtin_addcb:
4134 case Builtin::BI__builtin_addcs:
4135 case Builtin::BI__builtin_addc:
4136 case Builtin::BI__builtin_addcl:
4137 case Builtin::BI__builtin_addcll:
4138 IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
4139 break;
4140 case Builtin::BI__builtin_subcb:
4141 case Builtin::BI__builtin_subcs:
4142 case Builtin::BI__builtin_subc:
4143 case Builtin::BI__builtin_subcl:
4144 case Builtin::BI__builtin_subcll:
4145 IntrinsicId = llvm::Intrinsic::usub_with_overflow;
4146 break;
4147 }
4148
4149 // Construct our resulting LLVM IR expression.
4150 llvm::Value *Carry1;
4151 llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
4152 X, Y, Carry1);
4153 llvm::Value *Carry2;
4154 llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
4155 Sum1, Carryin, Carry2);
4156 llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
4157 X->getType());
4158 Builder.CreateStore(CarryOut, CarryOutPtr);
4159 return RValue::get(Sum2);
4160 }
4161
4162 case Builtin::BI__builtin_add_overflow:
4163 case Builtin::BI__builtin_sub_overflow:
4164 case Builtin::BI__builtin_mul_overflow: {
4165 const clang::Expr *LeftArg = E->getArg(0);
4166 const clang::Expr *RightArg = E->getArg(1);
4167 const clang::Expr *ResultArg = E->getArg(2);
4168
4169 clang::QualType ResultQTy =
4170 ResultArg->getType()->castAs<PointerType>()->getPointeeType();
4171
4172 WidthAndSignedness LeftInfo =
4173 getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType());
4174 WidthAndSignedness RightInfo =
4175 getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType());
4176 WidthAndSignedness ResultInfo =
4177 getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy);
4178
4179 // Handle mixed-sign multiplication as a special case, because adding
4180 // runtime or backend support for our generic irgen would be too expensive.
4181 if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo))
4182 return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg,
4183 RightInfo, ResultArg, ResultQTy,
4184 ResultInfo);
4185
4186 if (isSpecialUnsignedMultiplySignedResult(BuiltinID, LeftInfo, RightInfo,
4187 ResultInfo))
4188 return EmitCheckedUnsignedMultiplySignedResult(
4189 *this, LeftArg, LeftInfo, RightArg, RightInfo, ResultArg, ResultQTy,
4190 ResultInfo);
4191
4192 WidthAndSignedness EncompassingInfo =
4193 EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo});
4194
4195 llvm::Type *EncompassingLLVMTy =
4196 llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width);
4197
4198 llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy);
4199
4200 llvm::Intrinsic::ID IntrinsicId;
4201 switch (BuiltinID) {
4202 default:
4203 llvm_unreachable("Unknown overflow builtin id.")::llvm::llvm_unreachable_internal("Unknown overflow builtin id."
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 4203)
;
4204 case Builtin::BI__builtin_add_overflow:
4205 IntrinsicId = EncompassingInfo.Signed
4206 ? llvm::Intrinsic::sadd_with_overflow
4207 : llvm::Intrinsic::uadd_with_overflow;
4208 break;
4209 case Builtin::BI__builtin_sub_overflow:
4210 IntrinsicId = EncompassingInfo.Signed
4211 ? llvm::Intrinsic::ssub_with_overflow
4212 : llvm::Intrinsic::usub_with_overflow;
4213 break;
4214 case Builtin::BI__builtin_mul_overflow:
4215 IntrinsicId = EncompassingInfo.Signed
4216 ? llvm::Intrinsic::smul_with_overflow
4217 : llvm::Intrinsic::umul_with_overflow;
4218 break;
4219 }
4220
4221 llvm::Value *Left = EmitScalarExpr(LeftArg);
4222 llvm::Value *Right = EmitScalarExpr(RightArg);
4223 Address ResultPtr = EmitPointerWithAlignment(ResultArg);
4224
4225 // Extend each operand to the encompassing type.
4226 Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed);
4227 Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed);
4228
4229 // Perform the operation on the extended values.
4230 llvm::Value *Overflow, *Result;
4231 Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow);
4232
4233 if (EncompassingInfo.Width > ResultInfo.Width) {
4234 // The encompassing type is wider than the result type, so we need to
4235 // truncate it.
4236 llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy);
4237
4238 // To see if the truncation caused an overflow, we will extend
4239 // the result and then compare it to the original result.
4240 llvm::Value *ResultTruncExt = Builder.CreateIntCast(
4241 ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed);
4242 llvm::Value *TruncationOverflow =
4243 Builder.CreateICmpNE(Result, ResultTruncExt);
4244
4245 Overflow = Builder.CreateOr(Overflow, TruncationOverflow);
4246 Result = ResultTrunc;
4247 }
4248
4249 // Finally, store the result using the pointer.
4250 bool isVolatile =
4251 ResultArg->getType()->getPointeeType().isVolatileQualified();
4252 Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile);
4253
4254 return RValue::get(Overflow);
4255 }
4256
4257 case Builtin::BI__builtin_uadd_overflow:
4258 case Builtin::BI__builtin_uaddl_overflow:
4259 case Builtin::BI__builtin_uaddll_overflow:
4260 case Builtin::BI__builtin_usub_overflow:
4261 case Builtin::BI__builtin_usubl_overflow:
4262 case Builtin::BI__builtin_usubll_overflow:
4263 case Builtin::BI__builtin_umul_overflow:
4264 case Builtin::BI__builtin_umull_overflow:
4265 case Builtin::BI__builtin_umulll_overflow:
4266 case Builtin::BI__builtin_sadd_overflow:
4267 case Builtin::BI__builtin_saddl_overflow:
4268 case Builtin::BI__builtin_saddll_overflow:
4269 case Builtin::BI__builtin_ssub_overflow:
4270 case Builtin::BI__builtin_ssubl_overflow:
4271 case Builtin::BI__builtin_ssubll_overflow:
4272 case Builtin::BI__builtin_smul_overflow:
4273 case Builtin::BI__builtin_smull_overflow:
4274 case Builtin::BI__builtin_smulll_overflow: {
4275
4276 // We translate all of these builtins directly to the relevant llvm IR node.
4277
4278 // Scalarize our inputs.
4279 llvm::Value *X = EmitScalarExpr(E->getArg(0));
4280 llvm::Value *Y = EmitScalarExpr(E->getArg(1));
4281 Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2));
4282
4283 // Decide which of the overflow intrinsics we are lowering to:
4284 llvm::Intrinsic::ID IntrinsicId;
4285 switch (BuiltinID) {
4286 default: llvm_unreachable("Unknown overflow builtin id.")::llvm::llvm_unreachable_internal("Unknown overflow builtin id."
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 4286)
;
4287 case Builtin::BI__builtin_uadd_overflow:
4288 case Builtin::BI__builtin_uaddl_overflow:
4289 case Builtin::BI__builtin_uaddll_overflow:
4290 IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
4291 break;
4292 case Builtin::BI__builtin_usub_overflow:
4293 case Builtin::BI__builtin_usubl_overflow:
4294 case Builtin::BI__builtin_usubll_overflow:
4295 IntrinsicId = llvm::Intrinsic::usub_with_overflow;
4296 break;
4297 case Builtin::BI__builtin_umul_overflow:
4298 case Builtin::BI__builtin_umull_overflow:
4299 case Builtin::BI__builtin_umulll_overflow:
4300 IntrinsicId = llvm::Intrinsic::umul_with_overflow;
4301 break;
4302 case Builtin::BI__builtin_sadd_overflow:
4303 case Builtin::BI__builtin_saddl_overflow:
4304 case Builtin::BI__builtin_saddll_overflow:
4305 IntrinsicId = llvm::Intrinsic::sadd_with_overflow;
4306 break;
4307 case Builtin::BI__builtin_ssub_overflow:
4308 case Builtin::BI__builtin_ssubl_overflow:
4309 case Builtin::BI__builtin_ssubll_overflow:
4310 IntrinsicId = llvm::Intrinsic::ssub_with_overflow;
4311 break;
4312 case Builtin::BI__builtin_smul_overflow:
4313 case Builtin::BI__builtin_smull_overflow:
4314 case Builtin::BI__builtin_smulll_overflow:
4315 IntrinsicId = llvm::Intrinsic::smul_with_overflow;
4316 break;
4317 }
4318
4319
4320 llvm::Value *Carry;
4321 llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry);
4322 Builder.CreateStore(Sum, SumOutPtr);
4323
4324 return RValue::get(Carry);
4325 }
4326 case Builtin::BI__builtin_addressof:
4327 return RValue::get(EmitLValue(E->getArg(0)).getPointer(*this));
4328 case Builtin::BI__builtin_operator_new:
4329 return EmitBuiltinNewDeleteCall(
4330 E->getCallee()->getType()->castAs<FunctionProtoType>(), E, false);
4331 case Builtin::BI__builtin_operator_delete:
4332 return EmitBuiltinNewDeleteCall(
4333 E->getCallee()->getType()->castAs<FunctionProtoType>(), E, true);
4334
4335 case Builtin::BI__builtin_is_aligned:
4336 return EmitBuiltinIsAligned(E);
4337 case Builtin::BI__builtin_align_up:
4338 return EmitBuiltinAlignTo(E, true);
4339 case Builtin::BI__builtin_align_down:
4340 return EmitBuiltinAlignTo(E, false);
4341
4342 case Builtin::BI__noop:
4343 // __noop always evaluates to an integer literal zero.
4344 return RValue::get(ConstantInt::get(IntTy, 0));
4345 case Builtin::BI__builtin_call_with_static_chain: {
4346 const CallExpr *Call = cast<CallExpr>(E->getArg(0));
4347 const Expr *Chain = E->getArg(1);
4348 return EmitCall(Call->getCallee()->getType(),
4349 EmitCallee(Call->getCallee()), Call, ReturnValue,
4350 EmitScalarExpr(Chain));
4351 }
4352 case Builtin::BI_InterlockedExchange8:
4353 case Builtin::BI_InterlockedExchange16:
4354 case Builtin::BI_InterlockedExchange:
4355 case Builtin::BI_InterlockedExchangePointer:
4356 return RValue::get(
4357 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E));
4358 case Builtin::BI_InterlockedCompareExchangePointer:
4359 case Builtin::BI_InterlockedCompareExchangePointer_nf: {
4360 llvm::Type *RTy;
4361 llvm::IntegerType *IntType =
4362 IntegerType::get(getLLVMContext(),
4363 getContext().getTypeSize(E->getType()));
4364 llvm::Type *IntPtrType = IntType->getPointerTo();
4365
4366 llvm::Value *Destination =
4367 Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType);
4368
4369 llvm::Value *Exchange = EmitScalarExpr(E->getArg(1));
4370 RTy = Exchange->getType();
4371 Exchange = Builder.CreatePtrToInt(Exchange, IntType);
4372
4373 llvm::Value *Comparand =
4374 Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType);
4375
4376 auto Ordering =
4377 BuiltinID == Builtin::BI_InterlockedCompareExchangePointer_nf ?
4378 AtomicOrdering::Monotonic : AtomicOrdering::SequentiallyConsistent;
4379
4380 auto Result = Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
4381 Ordering, Ordering);
4382 Result->setVolatile(true);
4383
4384 return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result,
4385 0),
4386 RTy));
4387 }
4388 case Builtin::BI_InterlockedCompareExchange8:
4389 case Builtin::BI_InterlockedCompareExchange16:
4390 case Builtin::BI_InterlockedCompareExchange:
4391 case Builtin::BI_InterlockedCompareExchange64:
4392 return RValue::get(EmitAtomicCmpXchgForMSIntrin(*this, E));
4393 case Builtin::BI_InterlockedIncrement16:
4394 case Builtin::BI_InterlockedIncrement:
4395 return RValue::get(
4396 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E));
4397 case Builtin::BI_InterlockedDecrement16:
4398 case Builtin::BI_InterlockedDecrement:
4399 return RValue::get(
4400 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E));
4401 case Builtin::BI_InterlockedAnd8:
4402 case Builtin::BI_InterlockedAnd16:
4403 case Builtin::BI_InterlockedAnd:
4404 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E));
4405 case Builtin::BI_InterlockedExchangeAdd8:
4406 case Builtin::BI_InterlockedExchangeAdd16:
4407 case Builtin::BI_InterlockedExchangeAdd:
4408 return RValue::get(
4409 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E));
4410 case Builtin::BI_InterlockedExchangeSub8:
4411 case Builtin::BI_InterlockedExchangeSub16:
4412 case Builtin::BI_InterlockedExchangeSub:
4413 return RValue::get(
4414 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E));
4415 case Builtin::BI_InterlockedOr8:
4416 case Builtin::BI_InterlockedOr16:
4417 case Builtin::BI_InterlockedOr:
4418 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E));
4419 case Builtin::BI_InterlockedXor8:
4420 case Builtin::BI_InterlockedXor16:
4421 case Builtin::BI_InterlockedXor:
4422 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E));
4423
4424 case Builtin::BI_bittest64:
4425 case Builtin::BI_bittest:
4426 case Builtin::BI_bittestandcomplement64:
4427 case Builtin::BI_bittestandcomplement:
4428 case Builtin::BI_bittestandreset64:
4429 case Builtin::BI_bittestandreset:
4430 case Builtin::BI_bittestandset64:
4431 case Builtin::BI_bittestandset:
4432 case Builtin::BI_interlockedbittestandreset:
4433 case Builtin::BI_interlockedbittestandreset64:
4434 case Builtin::BI_interlockedbittestandset64:
4435 case Builtin::BI_interlockedbittestandset:
4436 case Builtin::BI_interlockedbittestandset_acq:
4437 case Builtin::BI_interlockedbittestandset_rel:
4438 case Builtin::BI_interlockedbittestandset_nf:
4439 case Builtin::BI_interlockedbittestandreset_acq:
4440 case Builtin::BI_interlockedbittestandreset_rel:
4441 case Builtin::BI_interlockedbittestandreset_nf:
4442 return RValue::get(EmitBitTestIntrinsic(*this, BuiltinID, E));
4443
4444 // These builtins exist to emit regular volatile loads and stores not
4445 // affected by the -fms-volatile setting.
4446 case Builtin::BI__iso_volatile_load8:
4447 case Builtin::BI__iso_volatile_load16:
4448 case Builtin::BI__iso_volatile_load32:
4449 case Builtin::BI__iso_volatile_load64:
4450 return RValue::get(EmitISOVolatileLoad(*this, E));
4451 case Builtin::BI__iso_volatile_store8:
4452 case Builtin::BI__iso_volatile_store16:
4453 case Builtin::BI__iso_volatile_store32:
4454 case Builtin::BI__iso_volatile_store64:
4455 return RValue::get(EmitISOVolatileStore(*this, E));
4456
4457 case Builtin::BI__exception_code:
4458 case Builtin::BI_exception_code:
4459 return RValue::get(EmitSEHExceptionCode());
4460 case Builtin::BI__exception_info:
4461 case Builtin::BI_exception_info:
4462 return RValue::get(EmitSEHExceptionInfo());
4463 case Builtin::BI__abnormal_termination:
4464 case Builtin::BI_abnormal_termination:
4465 return RValue::get(EmitSEHAbnormalTermination());
4466 case Builtin::BI_setjmpex:
4467 if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 &&
4468 E->getArg(0)->getType()->isPointerType())
4469 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
4470 break;
4471 case Builtin::BI_setjmp:
4472 if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 &&
4473 E->getArg(0)->getType()->isPointerType()) {
4474 if (getTarget().getTriple().getArch() == llvm::Triple::x86)
4475 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp3, E);
4476 else if (getTarget().getTriple().getArch() == llvm::Triple::aarch64)
4477 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
4478 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp, E);
4479 }
4480 break;
4481
4482 case Builtin::BI__GetExceptionInfo: {
4483 if (llvm::GlobalVariable *GV =
4484 CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType()))
4485 return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy));
4486 break;
4487 }
4488
4489 case Builtin::BI__fastfail:
4490 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E));
4491
4492 case Builtin::BI__builtin_coro_size: {
4493 auto & Context = getContext();
4494 auto SizeTy = Context.getSizeType();
4495 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
4496 Function *F = CGM.getIntrinsic(Intrinsic::coro_size, T);
4497 return RValue::get(Builder.CreateCall(F));
4498 }
4499
4500 case Builtin::BI__builtin_coro_id:
4501 return EmitCoroutineIntrinsic(E, Intrinsic::coro_id);
4502 case Builtin::BI__builtin_coro_promise:
4503 return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise);
4504 case Builtin::BI__builtin_coro_resume:
4505 return EmitCoroutineIntrinsic(E, Intrinsic::coro_resume);
4506 case Builtin::BI__builtin_coro_frame:
4507 return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame);
4508 case Builtin::BI__builtin_coro_noop:
4509 return EmitCoroutineIntrinsic(E, Intrinsic::coro_noop);
4510 case Builtin::BI__builtin_coro_free:
4511 return EmitCoroutineIntrinsic(E, Intrinsic::coro_free);
4512 case Builtin::BI__builtin_coro_destroy:
4513 return EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy);
4514 case Builtin::BI__builtin_coro_done:
4515 return EmitCoroutineIntrinsic(E, Intrinsic::coro_done);
4516 case Builtin::BI__builtin_coro_alloc:
4517 return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc);
4518 case Builtin::BI__builtin_coro_begin:
4519 return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin);
4520 case Builtin::BI__builtin_coro_end:
4521 return EmitCoroutineIntrinsic(E, Intrinsic::coro_end);
4522 case Builtin::BI__builtin_coro_suspend:
4523 return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend);
4524 case Builtin::BI__builtin_coro_param:
4525 return EmitCoroutineIntrinsic(E, Intrinsic::coro_param);
4526
4527 // OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions
4528 case Builtin::BIread_pipe:
4529 case Builtin::BIwrite_pipe: {
4530 Value *Arg0 = EmitScalarExpr(E->getArg(0)),
4531 *Arg1 = EmitScalarExpr(E->getArg(1));
4532 CGOpenCLRuntime OpenCLRT(CGM);
4533 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4534 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4535
4536 // Type of the generic packet parameter.
4537 unsigned GenericAS =
4538 getContext().getTargetAddressSpace(LangAS::opencl_generic);
4539 llvm::Type *I8PTy = llvm::PointerType::get(
4540 llvm::Type::getInt8Ty(getLLVMContext()), GenericAS);
4541
4542 // Testing which overloaded version we should generate the call for.
4543 if (2U == E->getNumArgs()) {
4544 const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2"
4545 : "__write_pipe_2";
4546 // Creating a generic function type to be able to call with any builtin or
4547 // user defined type.
4548 llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty};
4549 llvm::FunctionType *FTy = llvm::FunctionType::get(
4550 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4551 Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy);
4552 return RValue::get(
4553 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4554 {Arg0, BCast, PacketSize, PacketAlign}));
4555 } else {
4556 assert(4 == E->getNumArgs() &&(static_cast <bool> (4 == E->getNumArgs() &&
"Illegal number of parameters to pipe function") ? void (0) :
__assert_fail ("4 == E->getNumArgs() && \"Illegal number of parameters to pipe function\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 4557, __extension__ __PRETTY_FUNCTION__))
4557 "Illegal number of parameters to pipe function")(static_cast <bool> (4 == E->getNumArgs() &&
"Illegal number of parameters to pipe function") ? void (0) :
__assert_fail ("4 == E->getNumArgs() && \"Illegal number of parameters to pipe function\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 4557, __extension__ __PRETTY_FUNCTION__))
;
4558 const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4"
4559 : "__write_pipe_4";
4560
4561 llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy,
4562 Int32Ty, Int32Ty};
4563 Value *Arg2 = EmitScalarExpr(E->getArg(2)),
4564 *Arg3 = EmitScalarExpr(E->getArg(3));
4565 llvm::FunctionType *FTy = llvm::FunctionType::get(
4566 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4567 Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy);
4568 // We know the third argument is an integer type, but we may need to cast
4569 // it to i32.
4570 if (Arg2->getType() != Int32Ty)
4571 Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty);
4572 return RValue::get(
4573 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4574 {Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign}));
4575 }
4576 }
4577 // OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write
4578 // functions
4579 case Builtin::BIreserve_read_pipe:
4580 case Builtin::BIreserve_write_pipe:
4581 case Builtin::BIwork_group_reserve_read_pipe:
4582 case Builtin::BIwork_group_reserve_write_pipe:
4583 case Builtin::BIsub_group_reserve_read_pipe:
4584 case Builtin::BIsub_group_reserve_write_pipe: {
4585 // Composing the mangled name for the function.
4586 const char *Name;
4587 if (BuiltinID == Builtin::BIreserve_read_pipe)
4588 Name = "__reserve_read_pipe";
4589 else if (BuiltinID == Builtin::BIreserve_write_pipe)
4590 Name = "__reserve_write_pipe";
4591 else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe)
4592 Name = "__work_group_reserve_read_pipe";
4593 else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe)
4594 Name = "__work_group_reserve_write_pipe";
4595 else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe)
4596 Name = "__sub_group_reserve_read_pipe";
4597 else
4598 Name = "__sub_group_reserve_write_pipe";
4599
4600 Value *Arg0 = EmitScalarExpr(E->getArg(0)),
4601 *Arg1 = EmitScalarExpr(E->getArg(1));
4602 llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy);
4603 CGOpenCLRuntime OpenCLRT(CGM);
4604 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4605 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4606
4607 // Building the generic function prototype.
4608 llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty};
4609 llvm::FunctionType *FTy = llvm::FunctionType::get(
4610 ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4611 // We know the second argument is an integer type, but we may need to cast
4612 // it to i32.
4613 if (Arg1->getType() != Int32Ty)
4614 Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty);
4615 return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4616 {Arg0, Arg1, PacketSize, PacketAlign}));
4617 }
4618 // OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write
4619 // functions
4620 case Builtin::BIcommit_read_pipe:
4621 case Builtin::BIcommit_write_pipe:
4622 case Builtin::BIwork_group_commit_read_pipe:
4623 case Builtin::BIwork_group_commit_write_pipe:
4624 case Builtin::BIsub_group_commit_read_pipe:
4625 case Builtin::BIsub_group_commit_write_pipe: {
4626 const char *Name;
4627 if (BuiltinID == Builtin::BIcommit_read_pipe)
4628 Name = "__commit_read_pipe";
4629 else if (BuiltinID == Builtin::BIcommit_write_pipe)
4630 Name = "__commit_write_pipe";
4631 else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe)
4632 Name = "__work_group_commit_read_pipe";
4633 else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe)
4634 Name = "__work_group_commit_write_pipe";
4635 else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe)
4636 Name = "__sub_group_commit_read_pipe";
4637 else
4638 Name = "__sub_group_commit_write_pipe";
4639
4640 Value *Arg0 = EmitScalarExpr(E->getArg(0)),
4641 *Arg1 = EmitScalarExpr(E->getArg(1));
4642 CGOpenCLRuntime OpenCLRT(CGM);
4643 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4644 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4645
4646 // Building the generic function prototype.
4647 llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty};
4648 llvm::FunctionType *FTy =
4649 llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()),
4650 llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4651
4652 return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4653 {Arg0, Arg1, PacketSize, PacketAlign}));
4654 }
4655 // OpenCL v2.0 s6.13.16.4 Built-in pipe query functions
4656 case Builtin::BIget_pipe_num_packets:
4657 case Builtin::BIget_pipe_max_packets: {
4658 const char *BaseName;
4659 const auto *PipeTy = E->getArg(0)->getType()->castAs<PipeType>();
4660 if (BuiltinID == Builtin::BIget_pipe_num_packets)
4661 BaseName = "__get_pipe_num_packets";
4662 else
4663 BaseName = "__get_pipe_max_packets";
4664 std::string Name = std::string(BaseName) +
4665 std::string(PipeTy->isReadOnly() ? "_ro" : "_wo");
4666
4667 // Building the generic function prototype.
4668 Value *Arg0 = EmitScalarExpr(E->getArg(0));
4669 CGOpenCLRuntime OpenCLRT(CGM);
4670 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4671 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4672 llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty};
4673 llvm::FunctionType *FTy = llvm::FunctionType::get(
4674 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4675
4676 return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4677 {Arg0, PacketSize, PacketAlign}));
4678 }
4679
4680 // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
4681 case Builtin::BIto_global:
4682 case Builtin::BIto_local:
4683 case Builtin::BIto_private: {
4684 auto Arg0 = EmitScalarExpr(E->getArg(0));
4685 auto NewArgT = llvm::PointerType::get(Int8Ty,
4686 CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
4687 auto NewRetT = llvm::PointerType::get(Int8Ty,
4688 CGM.getContext().getTargetAddressSpace(
4689 E->getType()->getPointeeType().getAddressSpace()));
4690 auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false);
4691 llvm::Value *NewArg;
4692 if (Arg0->getType()->getPointerAddressSpace() !=
4693 NewArgT->getPointerAddressSpace())
4694 NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT);
4695 else
4696 NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT);
4697 auto NewName = std::string("__") + E->getDirectCallee()->getName().str();
4698 auto NewCall =
4699 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg});
4700 return RValue::get(Builder.CreateBitOrPointerCast(NewCall,
4701 ConvertType(E->getType())));
4702 }
4703
4704 // OpenCL v2.0, s6.13.17 - Enqueue kernel function.
4705 // It contains four different overload formats specified in Table 6.13.17.1.
4706 case Builtin::BIenqueue_kernel: {
4707 StringRef Name; // Generated function call name
4708 unsigned NumArgs = E->getNumArgs();
4709
4710 llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy);
4711 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4712 getContext().getTargetAddressSpace(LangAS::opencl_generic));
4713
4714 llvm::Value *Queue = EmitScalarExpr(E->getArg(0));
4715 llvm::Value *Flags = EmitScalarExpr(E->getArg(1));
4716 LValue NDRangeL = EmitAggExprToLValue(E->getArg(2));
4717 llvm::Value *Range = NDRangeL.getAddress(*this).getPointer();
4718 llvm::Type *RangeTy = NDRangeL.getAddress(*this).getType();
4719
4720 if (NumArgs == 4) {
4721 // The most basic form of the call with parameters:
4722 // queue_t, kernel_enqueue_flags_t, ndrange_t, block(void)
4723 Name = "__enqueue_kernel_basic";
4724 llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy,
4725 GenericVoidPtrTy};
4726 llvm::FunctionType *FTy = llvm::FunctionType::get(
4727 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4728
4729 auto Info =
4730 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
4731 llvm::Value *Kernel =
4732 Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4733 llvm::Value *Block =
4734 Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4735
4736 AttrBuilder B;
4737 B.addByValAttr(NDRangeL.getAddress(*this).getElementType());
4738 llvm::AttributeList ByValAttrSet =
4739 llvm::AttributeList::get(CGM.getModule().getContext(), 3U, B);
4740
4741 auto RTCall =
4742 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name, ByValAttrSet),
4743 {Queue, Flags, Range, Kernel, Block});
4744 RTCall->setAttributes(ByValAttrSet);
4745 return RValue::get(RTCall);
4746 }
4747 assert(NumArgs >= 5 && "Invalid enqueue_kernel signature")(static_cast <bool> (NumArgs >= 5 && "Invalid enqueue_kernel signature"
) ? void (0) : __assert_fail ("NumArgs >= 5 && \"Invalid enqueue_kernel signature\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 4747, __extension__ __PRETTY_FUNCTION__))
;
4748
4749 // Create a temporary array to hold the sizes of local pointer arguments
4750 // for the block. \p First is the position of the first size argument.
4751 auto CreateArrayForSizeVar = [=](unsigned First)
4752 -> std::tuple<llvm::Value *, llvm::Value *, llvm::Value *> {
4753 llvm::APInt ArraySize(32, NumArgs - First);
4754 QualType SizeArrayTy = getContext().getConstantArrayType(
4755 getContext().getSizeType(), ArraySize, nullptr, ArrayType::Normal,
4756 /*IndexTypeQuals=*/0);
4757 auto Tmp = CreateMemTemp(SizeArrayTy, "block_sizes");
4758 llvm::Value *TmpPtr = Tmp.getPointer();
4759 llvm::Value *TmpSize = EmitLifetimeStart(
4760 CGM.getDataLayout().getTypeAllocSize(Tmp.getElementType()), TmpPtr);
4761 llvm::Value *ElemPtr;
4762 // Each of the following arguments specifies the size of the corresponding
4763 // argument passed to the enqueued block.
4764 auto *Zero = llvm::ConstantInt::get(IntTy, 0);
4765 for (unsigned I = First; I < NumArgs; ++I) {
4766 auto *Index = llvm::ConstantInt::get(IntTy, I - First);
4767 auto *GEP = Builder.CreateGEP(Tmp.getElementType(), TmpPtr,
4768 {Zero, Index});
4769 if (I == First)
4770 ElemPtr = GEP;
4771 auto *V =
4772 Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy);
4773 Builder.CreateAlignedStore(
4774 V, GEP, CGM.getDataLayout().getPrefTypeAlign(SizeTy));
4775 }
4776 return std::tie(ElemPtr, TmpSize, TmpPtr);
4777 };
4778
4779 // Could have events and/or varargs.
4780 if (E->getArg(3)->getType()->isBlockPointerType()) {
4781 // No events passed, but has variadic arguments.
4782 Name = "__enqueue_kernel_varargs";
4783 auto Info =
4784 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
4785 llvm::Value *Kernel =
4786 Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4787 auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4788 llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
4789 std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(4);
4790
4791 // Create a vector of the arguments, as well as a constant value to
4792 // express to the runtime the number of variadic arguments.
4793 llvm::Value *const Args[] = {Queue, Flags,
4794 Range, Kernel,
4795 Block, ConstantInt::get(IntTy, NumArgs - 4),
4796 ElemPtr};
4797 llvm::Type *const ArgTys[] = {
4798 QueueTy, IntTy, RangeTy, GenericVoidPtrTy,
4799 GenericVoidPtrTy, IntTy, ElemPtr->getType()};
4800
4801 llvm::FunctionType *FTy = llvm::FunctionType::get(Int32Ty, ArgTys, false);
4802 auto Call = RValue::get(
4803 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Args));
4804 if (TmpSize)
4805 EmitLifetimeEnd(TmpSize, TmpPtr);
4806 return Call;
4807 }
4808 // Any calls now have event arguments passed.
4809 if (NumArgs >= 7) {
4810 llvm::Type *EventTy = ConvertType(getContext().OCLClkEventTy);
4811 llvm::PointerType *EventPtrTy = EventTy->getPointerTo(
4812 CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
4813
4814 llvm::Value *NumEvents =
4815 Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty);
4816
4817 // Since SemaOpenCLBuiltinEnqueueKernel allows fifth and sixth arguments
4818 // to be a null pointer constant (including `0` literal), we can take it
4819 // into account and emit null pointer directly.
4820 llvm::Value *EventWaitList = nullptr;
4821 if (E->getArg(4)->isNullPointerConstant(
4822 getContext(), Expr::NPC_ValueDependentIsNotNull)) {
4823 EventWaitList = llvm::ConstantPointerNull::get(EventPtrTy);
4824 } else {
4825 EventWaitList = E->getArg(4)->getType()->isArrayType()
4826 ? EmitArrayToPointerDecay(E->getArg(4)).getPointer()
4827 : EmitScalarExpr(E->getArg(4));
4828 // Convert to generic address space.
4829 EventWaitList = Builder.CreatePointerCast(EventWaitList, EventPtrTy);
4830 }
4831 llvm::Value *EventRet = nullptr;
4832 if (E->getArg(5)->isNullPointerConstant(
4833 getContext(), Expr::NPC_ValueDependentIsNotNull)) {
4834 EventRet = llvm::ConstantPointerNull::get(EventPtrTy);
4835 } else {
4836 EventRet =
4837 Builder.CreatePointerCast(EmitScalarExpr(E->getArg(5)), EventPtrTy);
4838 }
4839
4840 auto Info =
4841 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6));
4842 llvm::Value *Kernel =
4843 Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4844 llvm::Value *Block =
4845 Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4846
4847 std::vector<llvm::Type *> ArgTys = {
4848 QueueTy, Int32Ty, RangeTy, Int32Ty,
4849 EventPtrTy, EventPtrTy, GenericVoidPtrTy, GenericVoidPtrTy};
4850
4851 std::vector<llvm::Value *> Args = {Queue, Flags, Range,
4852 NumEvents, EventWaitList, EventRet,
4853 Kernel, Block};
4854
4855 if (NumArgs == 7) {
4856 // Has events but no variadics.
4857 Name = "__enqueue_kernel_basic_events";
4858 llvm::FunctionType *FTy = llvm::FunctionType::get(
4859 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4860 return RValue::get(
4861 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4862 llvm::ArrayRef<llvm::Value *>(Args)));
4863 }
4864 // Has event info and variadics
4865 // Pass the number of variadics to the runtime function too.
4866 Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7));
4867 ArgTys.push_back(Int32Ty);
4868 Name = "__enqueue_kernel_events_varargs";
4869
4870 llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
4871 std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(7);
4872 Args.push_back(ElemPtr);
4873 ArgTys.push_back(ElemPtr->getType());
4874
4875 llvm::FunctionType *FTy = llvm::FunctionType::get(
4876 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4877 auto Call =
4878 RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4879 llvm::ArrayRef<llvm::Value *>(Args)));
4880 if (TmpSize)
4881 EmitLifetimeEnd(TmpSize, TmpPtr);
4882 return Call;
4883 }
4884 LLVM_FALLTHROUGH[[gnu::fallthrough]];
4885 }
4886 // OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block
4887 // parameter.
4888 case Builtin::BIget_kernel_work_group_size: {
4889 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4890 getContext().getTargetAddressSpace(LangAS::opencl_generic));
4891 auto Info =
4892 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
4893 Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4894 Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4895 return RValue::get(EmitRuntimeCall(
4896 CGM.CreateRuntimeFunction(
4897 llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
4898 false),
4899 "__get_kernel_work_group_size_impl"),
4900 {Kernel, Arg}));
4901 }
4902 case Builtin::BIget_kernel_preferred_work_group_size_multiple: {
4903 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4904 getContext().getTargetAddressSpace(LangAS::opencl_generic));
4905 auto Info =
4906 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
4907 Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4908 Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4909 return RValue::get(EmitRuntimeCall(
4910 CGM.CreateRuntimeFunction(
4911 llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
4912 false),
4913 "__get_kernel_preferred_work_group_size_multiple_impl"),
4914 {Kernel, Arg}));
4915 }
4916 case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
4917 case Builtin::BIget_kernel_sub_group_count_for_ndrange: {
4918 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4919 getContext().getTargetAddressSpace(LangAS::opencl_generic));
4920 LValue NDRangeL = EmitAggExprToLValue(E->getArg(0));
4921 llvm::Value *NDRange = NDRangeL.getAddress(*this).getPointer();
4922 auto Info =
4923 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(1));
4924 Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4925 Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4926 const char *Name =
4927 BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange
4928 ? "__get_kernel_max_sub_group_size_for_ndrange_impl"
4929 : "__get_kernel_sub_group_count_for_ndrange_impl";
4930 return RValue::get(EmitRuntimeCall(
4931 CGM.CreateRuntimeFunction(
4932 llvm::FunctionType::get(
4933 IntTy, {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy},
4934 false),
4935 Name),
4936 {NDRange, Kernel, Block}));
4937 }
4938
4939 case Builtin::BI__builtin_store_half:
4940 case Builtin::BI__builtin_store_halff: {
4941 Value *Val = EmitScalarExpr(E->getArg(0));
4942 Address Address = EmitPointerWithAlignment(E->getArg(1));
4943 Value *HalfVal = Builder.CreateFPTrunc(Val, Builder.getHalfTy());
4944 return RValue::get(Builder.CreateStore(HalfVal, Address));
4945 }
4946 case Builtin::BI__builtin_load_half: {
4947 Address Address = EmitPointerWithAlignment(E->getArg(0));
4948 Value *HalfVal = Builder.CreateLoad(Address);
4949 return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getDoubleTy()));
4950 }
4951 case Builtin::BI__builtin_load_halff: {
4952 Address Address = EmitPointerWithAlignment(E->getArg(0));
4953 Value *HalfVal = Builder.CreateLoad(Address);
4954 return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getFloatTy()));
4955 }
4956 case Builtin::BIprintf:
4957 if (getTarget().getTriple().isNVPTX())
4958 return EmitNVPTXDevicePrintfCallExpr(E, ReturnValue);
4959 if (getTarget().getTriple().getArch() == Triple::amdgcn &&
4960 getLangOpts().HIP)
4961 return EmitAMDGPUDevicePrintfCallExpr(E, ReturnValue);
4962 break;
4963 case Builtin::BI__builtin_canonicalize:
4964 case Builtin::BI__builtin_canonicalizef:
4965 case Builtin::BI__builtin_canonicalizef16:
4966 case Builtin::BI__builtin_canonicalizel:
4967 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::canonicalize));
4968
4969 case Builtin::BI__builtin_thread_pointer: {
4970 if (!getContext().getTargetInfo().isTLSSupported())
4971 CGM.ErrorUnsupported(E, "__builtin_thread_pointer");
4972 // Fall through - it's already mapped to the intrinsic by GCCBuiltin.
4973 break;
4974 }
4975 case Builtin::BI__builtin_os_log_format:
4976 return emitBuiltinOSLogFormat(*E);
4977
4978 case Builtin::BI__xray_customevent: {
4979 if (!ShouldXRayInstrumentFunction())
4980 return RValue::getIgnored();
4981
4982 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
4983 XRayInstrKind::Custom))
4984 return RValue::getIgnored();
4985
4986 if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
4987 if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents())
4988 return RValue::getIgnored();
4989
4990 Function *F = CGM.getIntrinsic(Intrinsic::xray_customevent);
4991 auto FTy = F->getFunctionType();
4992 auto Arg0 = E->getArg(0);
4993 auto Arg0Val = EmitScalarExpr(Arg0);
4994 auto Arg0Ty = Arg0->getType();
4995 auto PTy0 = FTy->getParamType(0);
4996 if (PTy0 != Arg0Val->getType()) {
4997 if (Arg0Ty->isArrayType())
4998 Arg0Val = EmitArrayToPointerDecay(Arg0).getPointer();
4999 else
5000 Arg0Val = Builder.CreatePointerCast(Arg0Val, PTy0);
5001 }
5002 auto Arg1 = EmitScalarExpr(E->getArg(1));
5003 auto PTy1 = FTy->getParamType(1);
5004 if (PTy1 != Arg1->getType())
5005 Arg1 = Builder.CreateTruncOrBitCast(Arg1, PTy1);
5006 return RValue::get(Builder.CreateCall(F, {Arg0Val, Arg1}));
5007 }
5008
5009 case Builtin::BI__xray_typedevent: {
5010 // TODO: There should be a way to always emit events even if the current
5011 // function is not instrumented. Losing events in a stream can cripple
5012 // a trace.
5013 if (!ShouldXRayInstrumentFunction())
5014 return RValue::getIgnored();
5015
5016 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
5017 XRayInstrKind::Typed))
5018 return RValue::getIgnored();
5019
5020 if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
5021 if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayTypedEvents())
5022 return RValue::getIgnored();
5023
5024 Function *F = CGM.getIntrinsic(Intrinsic::xray_typedevent);
5025 auto FTy = F->getFunctionType();
5026 auto Arg0 = EmitScalarExpr(E->getArg(0));
5027 auto PTy0 = FTy->getParamType(0);
5028 if (PTy0 != Arg0->getType())
5029 Arg0 = Builder.CreateTruncOrBitCast(Arg0, PTy0);
5030 auto Arg1 = E->getArg(1);
5031 auto Arg1Val = EmitScalarExpr(Arg1);
5032 auto Arg1Ty = Arg1->getType();
5033 auto PTy1 = FTy->getParamType(1);
5034 if (PTy1 != Arg1Val->getType()) {
5035 if (Arg1Ty->isArrayType())
5036 Arg1Val = EmitArrayToPointerDecay(Arg1).getPointer();
5037 else
5038 Arg1Val = Builder.CreatePointerCast(Arg1Val, PTy1);
5039 }
5040 auto Arg2 = EmitScalarExpr(E->getArg(2));
5041 auto PTy2 = FTy->getParamType(2);
5042 if (PTy2 != Arg2->getType())
5043 Arg2 = Builder.CreateTruncOrBitCast(Arg2, PTy2);
5044 return RValue::get(Builder.CreateCall(F, {Arg0, Arg1Val, Arg2}));
5045 }
5046
5047 case Builtin::BI__builtin_ms_va_start:
5048 case Builtin::BI__builtin_ms_va_end:
5049 return RValue::get(
5050 EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).getPointer(),
5051 BuiltinID == Builtin::BI__builtin_ms_va_start));
5052
5053 case Builtin::BI__builtin_ms_va_copy: {
5054 // Lower this manually. We can't reliably determine whether or not any
5055 // given va_copy() is for a Win64 va_list from the calling convention
5056 // alone, because it's legal to do this from a System V ABI function.
5057 // With opaque pointer types, we won't have enough information in LLVM
5058 // IR to determine this from the argument types, either. Best to do it
5059 // now, while we have enough information.
5060 Address DestAddr = EmitMSVAListRef(E->getArg(0));
5061 Address SrcAddr = EmitMSVAListRef(E->getArg(1));
5062
5063 llvm::Type *BPP = Int8PtrPtrTy;
5064
5065 DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), BPP, "cp"),
5066 DestAddr.getAlignment());
5067 SrcAddr = Address(Builder.CreateBitCast(SrcAddr.getPointer(), BPP, "ap"),
5068 SrcAddr.getAlignment());
5069
5070 Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val");
5071 return RValue::get(Builder.CreateStore(ArgPtr, DestAddr));
5072 }
5073
5074 case Builtin::BI__builtin_get_device_side_mangled_name: {
5075 auto Name = CGM.getCUDARuntime().getDeviceSideName(
5076 cast<DeclRefExpr>(E->getArg(0)->IgnoreImpCasts())->getDecl());
5077 auto Str = CGM.GetAddrOfConstantCString(Name, "");
5078 llvm::Constant *Zeros[] = {llvm::ConstantInt::get(SizeTy, 0),
5079 llvm::ConstantInt::get(SizeTy, 0)};
5080 auto *Ptr = llvm::ConstantExpr::getGetElementPtr(Str.getElementType(),
5081 Str.getPointer(), Zeros);
5082 return RValue::get(Ptr);
5083 }
5084 }
5085
5086 // If this is an alias for a lib function (e.g. __builtin_sin), emit
5087 // the call using the normal call path, but using the unmangled
5088 // version of the function name.
5089 if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
5090 return emitLibraryCall(*this, FD, E,
5091 CGM.getBuiltinLibFunction(FD, BuiltinID));
5092
5093 // If this is a predefined lib function (e.g. malloc), emit the call
5094 // using exactly the normal call path.
5095 if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
5096 return emitLibraryCall(*this, FD, E,
5097 cast<llvm::Constant>(EmitScalarExpr(E->getCallee())));
5098
5099 // Check that a call to a target specific builtin has the correct target
5100 // features.
5101 // This is down here to avoid non-target specific builtins, however, if
5102 // generic builtins start to require generic target features then we
5103 // can move this up to the beginning of the function.
5104 checkTargetFeatures(E, FD);
5105
5106 if (unsigned VectorWidth = getContext().BuiltinInfo.getRequiredVectorWidth(BuiltinID))
5107 LargestVectorWidth = std::max(LargestVectorWidth, VectorWidth);
5108
5109 // See if we have a target specific intrinsic.
5110 const char *Name = getContext().BuiltinInfo.getName(BuiltinID);
5111 Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
5112 StringRef Prefix =
5113 llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch());
5114 if (!Prefix.empty()) {
5115 IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix.data(), Name);
5116 // NOTE we don't need to perform a compatibility flag check here since the
5117 // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the
5118 // MS builtins via ALL_MS_LANGUAGES and are filtered earlier.
5119 if (IntrinsicID == Intrinsic::not_intrinsic)
5120 IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name);
5121 }
5122
5123 if (IntrinsicID != Intrinsic::not_intrinsic) {
5124 SmallVector<Value*, 16> Args;
5125
5126 // Find out if any arguments are required to be integer constant
5127 // expressions.
5128 unsigned ICEArguments = 0;
5129 ASTContext::GetBuiltinTypeError Error;
5130 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
5131 assert(Error == ASTContext::GE_None && "Should not codegen an error")(static_cast <bool> (Error == ASTContext::GE_None &&
"Should not codegen an error") ? void (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 5131, __extension__ __PRETTY_FUNCTION__))
;
5132
5133 Function *F = CGM.getIntrinsic(IntrinsicID);
5134 llvm::FunctionType *FTy = F->getFunctionType();
5135
5136 for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
5137 Value *ArgValue;
5138 // If this is a normal argument, just emit it as a scalar.
5139 if ((ICEArguments & (1 << i)) == 0) {
5140 ArgValue = EmitScalarExpr(E->getArg(i));
5141 } else {
5142 // If this is required to be a constant, constant fold it so that we
5143 // know that the generated intrinsic gets a ConstantInt.
5144 ArgValue = llvm::ConstantInt::get(
5145 getLLVMContext(),
5146 *E->getArg(i)->getIntegerConstantExpr(getContext()));
5147 }
5148
5149 // If the intrinsic arg type is different from the builtin arg type
5150 // we need to do a bit cast.
5151 llvm::Type *PTy = FTy->getParamType(i);
5152 if (PTy != ArgValue->getType()) {
5153 // XXX - vector of pointers?
5154 if (auto *PtrTy = dyn_cast<llvm::PointerType>(PTy)) {
5155 if (PtrTy->getAddressSpace() !=
5156 ArgValue->getType()->getPointerAddressSpace()) {
5157 ArgValue = Builder.CreateAddrSpaceCast(
5158 ArgValue,
5159 ArgValue->getType()->getPointerTo(PtrTy->getAddressSpace()));
5160 }
5161 }
5162
5163 assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&(static_cast <bool> (PTy->canLosslesslyBitCastTo(FTy
->getParamType(i)) && "Must be able to losslessly bit cast to param"
) ? void (0) : __assert_fail ("PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) && \"Must be able to losslessly bit cast to param\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 5164, __extension__ __PRETTY_FUNCTION__))
5164 "Must be able to losslessly bit cast to param")(static_cast <bool> (PTy->canLosslesslyBitCastTo(FTy
->getParamType(i)) && "Must be able to losslessly bit cast to param"
) ? void (0) : __assert_fail ("PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) && \"Must be able to losslessly bit cast to param\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 5164, __extension__ __PRETTY_FUNCTION__))
;
5165 ArgValue = Builder.CreateBitCast(ArgValue, PTy);
5166 }
5167
5168 Args.push_back(ArgValue);
5169 }
5170
5171 Value *V = Builder.CreateCall(F, Args);
5172 QualType BuiltinRetType = E->getType();
5173
5174 llvm::Type *RetTy = VoidTy;
5175 if (!BuiltinRetType->isVoidType())
5176 RetTy = ConvertType(BuiltinRetType);
5177
5178 if (RetTy != V->getType()) {
5179 // XXX - vector of pointers?
5180 if (auto *PtrTy = dyn_cast<llvm::PointerType>(RetTy)) {
5181 if (PtrTy->getAddressSpace() != V->getType()->getPointerAddressSpace()) {
5182 V = Builder.CreateAddrSpaceCast(
5183 V, V->getType()->getPointerTo(PtrTy->getAddressSpace()));
5184 }
5185 }
5186
5187 assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&(static_cast <bool> (V->getType()->canLosslesslyBitCastTo
(RetTy) && "Must be able to losslessly bit cast result type"
) ? void (0) : __assert_fail ("V->getType()->canLosslesslyBitCastTo(RetTy) && \"Must be able to losslessly bit cast result type\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 5188, __extension__ __PRETTY_FUNCTION__))
5188 "Must be able to losslessly bit cast result type")(static_cast <bool> (V->getType()->canLosslesslyBitCastTo
(RetTy) && "Must be able to losslessly bit cast result type"
) ? void (0) : __assert_fail ("V->getType()->canLosslesslyBitCastTo(RetTy) && \"Must be able to losslessly bit cast result type\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 5188, __extension__ __PRETTY_FUNCTION__))
;
5189 V = Builder.CreateBitCast(V, RetTy);
5190 }
5191
5192 return RValue::get(V);
5193 }
5194
5195 // Some target-specific builtins can have aggregate return values, e.g.
5196 // __builtin_arm_mve_vld2q_u32. So if the result is an aggregate, force
5197 // ReturnValue to be non-null, so that the target-specific emission code can
5198 // always just emit into it.
5199 TypeEvaluationKind EvalKind = getEvaluationKind(E->getType());
5200 if (EvalKind == TEK_Aggregate && ReturnValue.isNull()) {
5201 Address DestPtr = CreateMemTemp(E->getType(), "agg.tmp");
5202 ReturnValue = ReturnValueSlot(DestPtr, false);
5203 }
5204
5205 // Now see if we can emit a target-specific builtin.
5206 if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E, ReturnValue)) {
5207 switch (EvalKind) {
5208 case TEK_Scalar:
5209 return RValue::get(V);
5210 case TEK_Aggregate:
5211 return RValue::getAggregate(ReturnValue.getValue(),
5212 ReturnValue.isVolatile());
5213 case TEK_Complex:
5214 llvm_unreachable("No current target builtin returns complex")::llvm::llvm_unreachable_internal("No current target builtin returns complex"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 5214)
;
5215 }
5216 llvm_unreachable("Bad evaluation kind in EmitBuiltinExpr")::llvm::llvm_unreachable_internal("Bad evaluation kind in EmitBuiltinExpr"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 5216)
;
5217 }
5218
5219 ErrorUnsupported(E, "builtin function");
5220
5221 // Unknown builtin, for now just dump it out and return undef.
5222 return GetUndefRValue(E->getType());
5223}
5224
5225static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF,
5226 unsigned BuiltinID, const CallExpr *E,
5227 ReturnValueSlot ReturnValue,
5228 llvm::Triple::ArchType Arch) {
5229 switch (Arch) {
5230 case llvm::Triple::arm:
5231 case llvm::Triple::armeb:
5232 case llvm::Triple::thumb:
5233 case llvm::Triple::thumbeb:
5234 return CGF->EmitARMBuiltinExpr(BuiltinID, E, ReturnValue, Arch);
5235 case llvm::Triple::aarch64:
5236 case llvm::Triple::aarch64_32:
5237 case llvm::Triple::aarch64_be:
5238 return CGF->EmitAArch64BuiltinExpr(BuiltinID, E, Arch);
5239 case llvm::Triple::bpfeb:
5240 case llvm::Triple::bpfel:
5241 return CGF->EmitBPFBuiltinExpr(BuiltinID, E);
5242 case llvm::Triple::x86:
5243 case llvm::Triple::x86_64:
5244 return CGF->EmitX86BuiltinExpr(BuiltinID, E);
5245 case llvm::Triple::ppc:
5246 case llvm::Triple::ppcle:
5247 case llvm::Triple::ppc64:
5248 case llvm::Triple::ppc64le:
5249 return CGF->EmitPPCBuiltinExpr(BuiltinID, E);
5250 case llvm::Triple::r600:
5251 case llvm::Triple::amdgcn:
5252 return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E);
5253 case llvm::Triple::systemz:
5254 return CGF->EmitSystemZBuiltinExpr(BuiltinID, E);
5255 case llvm::Triple::nvptx:
5256 case llvm::Triple::nvptx64:
5257 return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E);
5258 case llvm::Triple::wasm32:
5259 case llvm::Triple::wasm64:
5260 return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E);
5261 case llvm::Triple::hexagon:
5262 return CGF->EmitHexagonBuiltinExpr(BuiltinID, E);
5263 case llvm::Triple::riscv32:
5264 case llvm::Triple::riscv64:
5265 return CGF->EmitRISCVBuiltinExpr(BuiltinID, E, ReturnValue);
5266 default:
5267 return nullptr;
5268 }
5269}
5270
5271Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
5272 const CallExpr *E,
5273 ReturnValueSlot ReturnValue) {
5274 if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
5275 assert(getContext().getAuxTargetInfo() && "Missing aux target info")(static_cast <bool> (getContext().getAuxTargetInfo() &&
"Missing aux target info") ? void (0) : __assert_fail ("getContext().getAuxTargetInfo() && \"Missing aux target info\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 5275, __extension__ __PRETTY_FUNCTION__))
;
5276 return EmitTargetArchBuiltinExpr(
5277 this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E,
5278 ReturnValue, getContext().getAuxTargetInfo()->getTriple().getArch());
5279 }
5280
5281 return EmitTargetArchBuiltinExpr(this, BuiltinID, E, ReturnValue,
5282 getTarget().getTriple().getArch());
5283}
5284
5285static llvm::FixedVectorType *GetNeonType(CodeGenFunction *CGF,
5286 NeonTypeFlags TypeFlags,
5287 bool HasLegalHalfType = true,
5288 bool V1Ty = false,
5289 bool AllowBFloatArgsAndRet = true) {
5290 int IsQuad = TypeFlags.isQuad();
5291 switch (TypeFlags.getEltType()) {
5292 case NeonTypeFlags::Int8:
5293 case NeonTypeFlags::Poly8:
5294 return llvm::FixedVectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad));
5295 case NeonTypeFlags::Int16:
5296 case NeonTypeFlags::Poly16:
5297 return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
5298 case NeonTypeFlags::BFloat16:
5299 if (AllowBFloatArgsAndRet)
5300 return llvm::FixedVectorType::get(CGF->BFloatTy, V1Ty ? 1 : (4 << IsQuad));
5301 else
5302 return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
5303 case NeonTypeFlags::Float16:
5304 if (HasLegalHalfType)
5305 return llvm::FixedVectorType::get(CGF->HalfTy, V1Ty ? 1 : (4 << IsQuad));
5306 else
5307 return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
5308 case NeonTypeFlags::Int32:
5309 return llvm::FixedVectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad));
5310 case NeonTypeFlags::Int64:
5311 case NeonTypeFlags::Poly64:
5312 return llvm::FixedVectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad));
5313 case NeonTypeFlags::Poly128:
5314 // FIXME: i128 and f128 doesn't get fully support in Clang and llvm.
5315 // There is a lot of i128 and f128 API missing.
5316 // so we use v16i8 to represent poly128 and get pattern matched.
5317 return llvm::FixedVectorType::get(CGF->Int8Ty, 16);
5318 case NeonTypeFlags::Float32:
5319 return llvm::FixedVectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad));
5320 case NeonTypeFlags::Float64:
5321 return llvm::FixedVectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad));
5322 }
5323 llvm_unreachable("Unknown vector element type!")::llvm::llvm_unreachable_internal("Unknown vector element type!"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 5323)
;
5324}
5325
5326static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF,
5327 NeonTypeFlags IntTypeFlags) {
5328 int IsQuad = IntTypeFlags.isQuad();
5329 switch (IntTypeFlags.getEltType()) {
5330 case NeonTypeFlags::Int16:
5331 return llvm::FixedVectorType::get(CGF->HalfTy, (4 << IsQuad));
5332 case NeonTypeFlags::Int32:
5333 return llvm::FixedVectorType::get(CGF->FloatTy, (2 << IsQuad));
5334 case NeonTypeFlags::Int64:
5335 return llvm::FixedVectorType::get(CGF->DoubleTy, (1 << IsQuad));
5336 default:
5337 llvm_unreachable("Type can't be converted to floating-point!")::llvm::llvm_unreachable_internal("Type can't be converted to floating-point!"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 5337)
;
5338 }
5339}
5340
5341Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C,
5342 const ElementCount &Count) {
5343 Value *SV = llvm::ConstantVector::getSplat(Count, C);
5344 return Builder.CreateShuffleVector(V, V, SV, "lane");
5345}
5346
5347Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
5348 ElementCount EC = cast<llvm::VectorType>(V->getType())->getElementCount();
5349 return EmitNeonSplat(V, C, EC);
5350}
5351
5352Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
5353 const char *name,
5354 unsigned shift, bool rightshift) {
5355 unsigned j = 0;
5356 for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
5357 ai != ae; ++ai, ++j) {
5358 if (F->isConstrainedFPIntrinsic())
5359 if (ai->getType()->isMetadataTy())
5360 continue;
5361 if (shift > 0 && shift == j)
5362 Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
5363 else
5364 Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
5365 }
5366
5367 if (F->isConstrainedFPIntrinsic())
5368 return Builder.CreateConstrainedFPCall(F, Ops, name);
5369 else
5370 return Builder.CreateCall(F, Ops, name);
5371}
5372
5373Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
5374 bool neg) {
5375 int SV = cast<ConstantInt>(V)->getSExtValue();
5376 return ConstantInt::get(Ty, neg ? -SV : SV);
5377}
5378
5379// Right-shift a vector by a constant.
5380Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift,
5381 llvm::Type *Ty, bool usgn,
5382 const char *name) {
5383 llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
5384
5385 int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue();
5386 int EltSize = VTy->getScalarSizeInBits();
5387
5388 Vec = Builder.CreateBitCast(Vec, Ty);
5389
5390 // lshr/ashr are undefined when the shift amount is equal to the vector
5391 // element size.
5392 if (ShiftAmt == EltSize) {
5393 if (usgn) {
5394 // Right-shifting an unsigned value by its size yields 0.
5395 return llvm::ConstantAggregateZero::get(VTy);
5396 } else {
5397 // Right-shifting a signed value by its size is equivalent
5398 // to a shift of size-1.
5399 --ShiftAmt;
5400 Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt);
5401 }
5402 }
5403
5404 Shift = EmitNeonShiftVector(Shift, Ty, false);
5405 if (usgn)
5406 return Builder.CreateLShr(Vec, Shift, name);
5407 else
5408 return Builder.CreateAShr(Vec, Shift, name);
5409}
5410
5411enum {
5412 AddRetType = (1 << 0),
5413 Add1ArgType = (1 << 1),
5414 Add2ArgTypes = (1 << 2),
5415
5416 VectorizeRetType = (1 << 3),
5417 VectorizeArgTypes = (1 << 4),
5418
5419 InventFloatType = (1 << 5),
5420 UnsignedAlts = (1 << 6),
5421
5422 Use64BitVectors = (1 << 7),
5423 Use128BitVectors = (1 << 8),
5424
5425 Vectorize1ArgType = Add1ArgType | VectorizeArgTypes,
5426 VectorRet = AddRetType | VectorizeRetType,
5427 VectorRetGetArgs01 =
5428 AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes,
5429 FpCmpzModifiers =
5430 AddRetType | VectorizeRetType | Add1ArgType | InventFloatType
5431};
5432
5433namespace {
5434struct ARMVectorIntrinsicInfo {
5435 const char *NameHint;
5436 unsigned BuiltinID;
5437 unsigned LLVMIntrinsic;
5438 unsigned AltLLVMIntrinsic;
5439 uint64_t TypeModifier;
5440
5441 bool operator<(unsigned RHSBuiltinID) const {
5442 return BuiltinID < RHSBuiltinID;
5443 }
5444 bool operator<(const ARMVectorIntrinsicInfo &TE) const {
5445 return BuiltinID < TE.BuiltinID;
5446 }
5447};
5448} // end anonymous namespace
5449
5450#define NEONMAP0(NameBase) \
5451 { #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 }
5452
5453#define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
5454 { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
5455 Intrinsic::LLVMIntrinsic, 0, TypeModifier }
5456
5457#define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \
5458 { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
5459 Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \
5460 TypeModifier }
5461
5462static const ARMVectorIntrinsicInfo ARMSIMDIntrinsicMap [] = {
5463 NEONMAP1(__a32_vcvt_bf16_v, arm_neon_vcvtfp2bf, 0),
5464 NEONMAP0(splat_lane_v),
5465 NEONMAP0(splat_laneq_v),
5466 NEONMAP0(splatq_lane_v),
5467 NEONMAP0(splatq_laneq_v),
5468 NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
5469 NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
5470 NEONMAP1(vabs_v, arm_neon_vabs, 0),
5471 NEONMAP1(vabsq_v, arm_neon_vabs, 0),
5472 NEONMAP0(vadd_v),
5473 NEONMAP0(vaddhn_v),
5474 NEONMAP0(vaddq_v),
5475 NEONMAP1(vaesdq_v, arm_neon_aesd, 0),
5476 NEONMAP1(vaeseq_v, arm_neon_aese, 0),
5477 NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0),
5478 NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0),
5479 NEONMAP1(vbfdot_v, arm_neon_bfdot, 0),
5480 NEONMAP1(vbfdotq_v, arm_neon_bfdot, 0),
5481 NEONMAP1(vbfmlalbq_v, arm_neon_bfmlalb, 0),
5482 NEONMAP1(vbfmlaltq_v, arm_neon_bfmlalt, 0),
5483 NEONMAP1(vbfmmlaq_v, arm_neon_bfmmla, 0),
5484 NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType),
5485 NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType),
5486 NEONMAP1(vcadd_rot270_v, arm_neon_vcadd_rot270, Add1ArgType),
5487 NEONMAP1(vcadd_rot90_v, arm_neon_vcadd_rot90, Add1ArgType),
5488 NEONMAP1(vcaddq_rot270_v, arm_neon_vcadd_rot270, Add1ArgType),
5489 NEONMAP1(vcaddq_rot90_v, arm_neon_vcadd_rot90, Add1ArgType),
5490 NEONMAP1(vcage_v, arm_neon_vacge, 0),
5491 NEONMAP1(vcageq_v, arm_neon_vacge, 0),
5492 NEONMAP1(vcagt_v, arm_neon_vacgt, 0),
5493 NEONMAP1(vcagtq_v, arm_neon_vacgt, 0),
5494 NEONMAP1(vcale_v, arm_neon_vacge, 0),
5495 NEONMAP1(vcaleq_v, arm_neon_vacge, 0),
5496 NEONMAP1(vcalt_v, arm_neon_vacgt, 0),
5497 NEONMAP1(vcaltq_v, arm_neon_vacgt, 0),
5498 NEONMAP0(vceqz_v),
5499 NEONMAP0(vceqzq_v),
5500 NEONMAP0(vcgez_v),
5501 NEONMAP0(vcgezq_v),
5502 NEONMAP0(vcgtz_v),
5503 NEONMAP0(vcgtzq_v),
5504 NEONMAP0(vclez_v),
5505 NEONMAP0(vclezq_v),
5506 NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType),
5507 NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType),
5508 NEONMAP0(vcltz_v),
5509 NEONMAP0(vcltzq_v),
5510 NEONMAP1(vclz_v, ctlz, Add1ArgType),
5511 NEONMAP1(vclzq_v, ctlz, Add1ArgType),
5512 NEONMAP1(vcnt_v, ctpop, Add1ArgType),
5513 NEONMAP1(vcntq_v, ctpop, Add1ArgType),
5514 NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0),
5515 NEONMAP0(vcvt_f16_v),
5516 NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0),
5517 NEONMAP0(vcvt_f32_v),
5518 NEONMAP2(vcvt_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5519 NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5520 NEONMAP1(vcvt_n_s16_v, arm_neon_vcvtfp2fxs, 0),
5521 NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0),
5522 NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0),
5523 NEONMAP1(vcvt_n_u16_v, arm_neon_vcvtfp2fxu, 0),
5524 NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0),
5525 NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0),
5526 NEONMAP0(vcvt_s16_v),
5527 NEONMAP0(vcvt_s32_v),
5528 NEONMAP0(vcvt_s64_v),
5529 NEONMAP0(vcvt_u16_v),
5530 NEONMAP0(vcvt_u32_v),
5531 NEONMAP0(vcvt_u64_v),
5532 NEONMAP1(vcvta_s16_v, arm_neon_vcvtas, 0),
5533 NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0),
5534 NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0),
5535 NEONMAP1(vcvta_u16_v, arm_neon_vcvtau, 0),
5536 NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0),
5537 NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0),
5538 NEONMAP1(vcvtaq_s16_v, arm_neon_vcvtas, 0),
5539 NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0),
5540 NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0),
5541 NEONMAP1(vcvtaq_u16_v, arm_neon_vcvtau, 0),
5542 NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0),
5543 NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0),
5544 NEONMAP1(vcvth_bf16_f32, arm_neon_vcvtbfp2bf, 0),
5545 NEONMAP1(vcvtm_s16_v, arm_neon_vcvtms, 0),
5546 NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0),
5547 NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0),
5548 NEONMAP1(vcvtm_u16_v, arm_neon_vcvtmu, 0),
5549 NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0),
5550 NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0),
5551 NEONMAP1(vcvtmq_s16_v, arm_neon_vcvtms, 0),
5552 NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0),
5553 NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0),
5554 NEONMAP1(vcvtmq_u16_v, arm_neon_vcvtmu, 0),
5555 NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0),
5556 NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0),
5557 NEONMAP1(vcvtn_s16_v, arm_neon_vcvtns, 0),
5558 NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0),
5559 NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0),
5560 NEONMAP1(vcvtn_u16_v, arm_neon_vcvtnu, 0),
5561 NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0),
5562 NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0),
5563 NEONMAP1(vcvtnq_s16_v, arm_neon_vcvtns, 0),
5564 NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0),
5565 NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0),
5566 NEONMAP1(vcvtnq_u16_v, arm_neon_vcvtnu, 0),
5567 NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0),
5568 NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0),
5569 NEONMAP1(vcvtp_s16_v, arm_neon_vcvtps, 0),
5570 NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0),
5571 NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0),
5572 NEONMAP1(vcvtp_u16_v, arm_neon_vcvtpu, 0),
5573 NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0),
5574 NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0),
5575 NEONMAP1(vcvtpq_s16_v, arm_neon_vcvtps, 0),
5576 NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0),
5577 NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0),
5578 NEONMAP1(vcvtpq_u16_v, arm_neon_vcvtpu, 0),
5579 NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0),
5580 NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0),
5581 NEONMAP0(vcvtq_f16_v),
5582 NEONMAP0(vcvtq_f32_v),
5583 NEONMAP2(vcvtq_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5584 NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5585 NEONMAP1(vcvtq_n_s16_v, arm_neon_vcvtfp2fxs, 0),
5586 NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0),
5587 NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0),
5588 NEONMAP1(vcvtq_n_u16_v, arm_neon_vcvtfp2fxu, 0),
5589 NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0),
5590 NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0),
5591 NEONMAP0(vcvtq_s16_v),
5592 NEONMAP0(vcvtq_s32_v),
5593 NEONMAP0(vcvtq_s64_v),
5594 NEONMAP0(vcvtq_u16_v),
5595 NEONMAP0(vcvtq_u32_v),
5596 NEONMAP0(vcvtq_u64_v),
5597 NEONMAP2(vdot_v, arm_neon_udot, arm_neon_sdot, 0),
5598 NEONMAP2(vdotq_v, arm_neon_udot, arm_neon_sdot, 0),
5599 NEONMAP0(vext_v),
5600 NEONMAP0(vextq_v),
5601 NEONMAP0(vfma_v),
5602 NEONMAP0(vfmaq_v),
5603 NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
5604 NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
5605 NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
5606 NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
5607 NEONMAP0(vld1_dup_v),
5608 NEONMAP1(vld1_v, arm_neon_vld1, 0),
5609 NEONMAP1(vld1_x2_v, arm_neon_vld1x2, 0),
5610 NEONMAP1(vld1_x3_v, arm_neon_vld1x3, 0),
5611 NEONMAP1(vld1_x4_v, arm_neon_vld1x4, 0),
5612 NEONMAP0(vld1q_dup_v),
5613 NEONMAP1(vld1q_v, arm_neon_vld1, 0),
5614 NEONMAP1(vld1q_x2_v, arm_neon_vld1x2, 0),
5615 NEONMAP1(vld1q_x3_v, arm_neon_vld1x3, 0),
5616 NEONMAP1(vld1q_x4_v, arm_neon_vld1x4, 0),
5617 NEONMAP1(vld2_dup_v, arm_neon_vld2dup, 0),
5618 NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0),
5619 NEONMAP1(vld2_v, arm_neon_vld2, 0),
5620 NEONMAP1(vld2q_dup_v, arm_neon_vld2dup, 0),
5621 NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0),
5622 NEONMAP1(vld2q_v, arm_neon_vld2, 0),
5623 NEONMAP1(vld3_dup_v, arm_neon_vld3dup, 0),
5624 NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0),
5625 NEONMAP1(vld3_v, arm_neon_vld3, 0),
5626 NEONMAP1(vld3q_dup_v, arm_neon_vld3dup, 0),
5627 NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0),
5628 NEONMAP1(vld3q_v, arm_neon_vld3, 0),
5629 NEONMAP1(vld4_dup_v, arm_neon_vld4dup, 0),
5630 NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0),
5631 NEONMAP1(vld4_v, arm_neon_vld4, 0),
5632 NEONMAP1(vld4q_dup_v, arm_neon_vld4dup, 0),
5633 NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0),
5634 NEONMAP1(vld4q_v, arm_neon_vld4, 0),
5635 NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
5636 NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType),
5637 NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType),
5638 NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
5639 NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
5640 NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType),
5641 NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType),
5642 NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
5643 NEONMAP2(vmmlaq_v, arm_neon_ummla, arm_neon_smmla, 0),
5644 NEONMAP0(vmovl_v),
5645 NEONMAP0(vmovn_v),
5646 NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType),
5647 NEONMAP0(vmull_v),
5648 NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType),
5649 NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
5650 NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
5651 NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType),
5652 NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
5653 NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
5654 NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType),
5655 NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts),
5656 NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts),
5657 NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType),
5658 NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType),
5659 NEONMAP2(vqadd_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts),
5660 NEONMAP2(vqaddq_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts),
5661 NEONMAP2(vqdmlal_v, arm_neon_vqdmull, sadd_sat, 0),
5662 NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, ssub_sat, 0),
5663 NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType),
5664 NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType),
5665 NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType),
5666 NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts),
5667 NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType),
5668 NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType),
5669 NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType),
5670 NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType),
5671 NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType),
5672 NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
5673 NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
5674 NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
5675 NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
5676 NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
5677 NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
5678 NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0),
5679 NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0),
5680 NEONMAP2(vqsub_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts),
5681 NEONMAP2(vqsubq_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts),
5682 NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType),
5683 NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
5684 NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
5685 NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType),
5686 NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType),
5687 NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
5688 NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
5689 NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType),
5690 NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType),
5691 NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType),
5692 NEONMAP0(vrndi_v),
5693 NEONMAP0(vrndiq_v),
5694 NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType),
5695 NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType),
5696 NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType),
5697 NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType),
5698 NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType),
5699 NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType),
5700 NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType),
5701 NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType),
5702 NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType),
5703 NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
5704 NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
5705 NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
5706 NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
5707 NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
5708 NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
5709 NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType),
5710 NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType),
5711 NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType),
5712 NEONMAP1(vsha1su0q_v, arm_neon_sha1su0, 0),
5713 NEONMAP1(vsha1su1q_v, arm_neon_sha1su1, 0),
5714 NEONMAP1(vsha256h2q_v, arm_neon_sha256h2, 0),
5715 NEONMAP1(vsha256hq_v, arm_neon_sha256h, 0),
5716 NEONMAP1(vsha256su0q_v, arm_neon_sha256su0, 0),
5717 NEONMAP1(vsha256su1q_v, arm_neon_sha256su1, 0),
5718 NEONMAP0(vshl_n_v),
5719 NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
5720 NEONMAP0(vshll_n_v),
5721 NEONMAP0(vshlq_n_v),
5722 NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
5723 NEONMAP0(vshr_n_v),
5724 NEONMAP0(vshrn_n_v),
5725 NEONMAP0(vshrq_n_v),
5726 NEONMAP1(vst1_v, arm_neon_vst1, 0),
5727 NEONMAP1(vst1_x2_v, arm_neon_vst1x2, 0),
5728 NEONMAP1(vst1_x3_v, arm_neon_vst1x3, 0),
5729 NEONMAP1(vst1_x4_v, arm_neon_vst1x4, 0),
5730 NEONMAP1(vst1q_v, arm_neon_vst1, 0),
5731 NEONMAP1(vst1q_x2_v, arm_neon_vst1x2, 0),
5732 NEONMAP1(vst1q_x3_v, arm_neon_vst1x3, 0),
5733 NEONMAP1(vst1q_x4_v, arm_neon_vst1x4, 0),
5734 NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0),
5735 NEONMAP1(vst2_v, arm_neon_vst2, 0),
5736 NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0),
5737 NEONMAP1(vst2q_v, arm_neon_vst2, 0),
5738 NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0),
5739 NEONMAP1(vst3_v, arm_neon_vst3, 0),
5740 NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0),
5741 NEONMAP1(vst3q_v, arm_neon_vst3, 0),
5742 NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0),
5743 NEONMAP1(vst4_v, arm_neon_vst4, 0),
5744 NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0),
5745 NEONMAP1(vst4q_v, arm_neon_vst4, 0),
5746 NEONMAP0(vsubhn_v),
5747 NEONMAP0(vtrn_v),
5748 NEONMAP0(vtrnq_v),
5749 NEONMAP0(vtst_v),
5750 NEONMAP0(vtstq_v),
5751 NEONMAP1(vusdot_v, arm_neon_usdot, 0),
5752 NEONMAP1(vusdotq_v, arm_neon_usdot, 0),
5753 NEONMAP1(vusmmlaq_v, arm_neon_usmmla, 0),
5754 NEONMAP0(vuzp_v),
5755 NEONMAP0(vuzpq_v),
5756 NEONMAP0(vzip_v),
5757 NEONMAP0(vzipq_v)
5758};
5759
5760static const ARMVectorIntrinsicInfo AArch64SIMDIntrinsicMap[] = {
5761 NEONMAP1(__a64_vcvtq_low_bf16_v, aarch64_neon_bfcvtn, 0),
5762 NEONMAP0(splat_lane_v),
5763 NEONMAP0(splat_laneq_v),
5764 NEONMAP0(splatq_lane_v),
5765 NEONMAP0(splatq_laneq_v),
5766 NEONMAP1(vabs_v, aarch64_neon_abs, 0),
5767 NEONMAP1(vabsq_v, aarch64_neon_abs, 0),
5768 NEONMAP0(vadd_v),
5769 NEONMAP0(vaddhn_v),
5770 NEONMAP0(vaddq_p128),
5771 NEONMAP0(vaddq_v),
5772 NEONMAP1(vaesdq_v, aarch64_crypto_aesd, 0),
5773 NEONMAP1(vaeseq_v, aarch64_crypto_aese, 0),
5774 NEONMAP1(vaesimcq_v, aarch64_crypto_aesimc, 0),
5775 NEONMAP1(vaesmcq_v, aarch64_crypto_aesmc, 0),
5776 NEONMAP2(vbcaxq_v, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
5777 NEONMAP1(vbfdot_v, aarch64_neon_bfdot, 0),
5778 NEONMAP1(vbfdotq_v, aarch64_neon_bfdot, 0),
5779 NEONMAP1(vbfmlalbq_v, aarch64_neon_bfmlalb, 0),
5780 NEONMAP1(vbfmlaltq_v, aarch64_neon_bfmlalt, 0),
5781 NEONMAP1(vbfmmlaq_v, aarch64_neon_bfmmla, 0),
5782 NEONMAP1(vcadd_rot270_v, aarch64_neon_vcadd_rot270, Add1ArgType),
5783 NEONMAP1(vcadd_rot90_v, aarch64_neon_vcadd_rot90, Add1ArgType),
5784 NEONMAP1(vcaddq_rot270_v, aarch64_neon_vcadd_rot270, Add1ArgType),
5785 NEONMAP1(vcaddq_rot90_v, aarch64_neon_vcadd_rot90, Add1ArgType),
5786 NEONMAP1(vcage_v, aarch64_neon_facge, 0),
5787 NEONMAP1(vcageq_v, aarch64_neon_facge, 0),
5788 NEONMAP1(vcagt_v, aarch64_neon_facgt, 0),
5789 NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0),
5790 NEONMAP1(vcale_v, aarch64_neon_facge, 0),
5791 NEONMAP1(vcaleq_v, aarch64_neon_facge, 0),
5792 NEONMAP1(vcalt_v, aarch64_neon_facgt, 0),
5793 NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0),
5794 NEONMAP0(vceqz_v),
5795 NEONMAP0(vceqzq_v),
5796 NEONMAP0(vcgez_v),
5797 NEONMAP0(vcgezq_v),
5798 NEONMAP0(vcgtz_v),
5799 NEONMAP0(vcgtzq_v),
5800 NEONMAP0(vclez_v),
5801 NEONMAP0(vclezq_v),
5802 NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType),
5803 NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType),
5804 NEONMAP0(vcltz_v),
5805 NEONMAP0(vcltzq_v),
5806 NEONMAP1(vclz_v, ctlz, Add1ArgType),
5807 NEONMAP1(vclzq_v, ctlz, Add1ArgType),
5808 NEONMAP1(vcmla_rot180_v, aarch64_neon_vcmla_rot180, Add1ArgType),
5809 NEONMAP1(vcmla_rot270_v, aarch64_neon_vcmla_rot270, Add1ArgType),
5810 NEONMAP1(vcmla_rot90_v, aarch64_neon_vcmla_rot90, Add1ArgType),
5811 NEONMAP1(vcmla_v, aarch64_neon_vcmla_rot0, Add1ArgType),
5812 NEONMAP1(vcmlaq_rot180_v, aarch64_neon_vcmla_rot180, Add1ArgType),
5813 NEONMAP1(vcmlaq_rot270_v, aarch64_neon_vcmla_rot270, Add1ArgType),
5814 NEONMAP1(vcmlaq_rot90_v, aarch64_neon_vcmla_rot90, Add1ArgType),
5815 NEONMAP1(vcmlaq_v, aarch64_neon_vcmla_rot0, Add1ArgType),
5816 NEONMAP1(vcnt_v, ctpop, Add1ArgType),
5817 NEONMAP1(vcntq_v, ctpop, Add1ArgType),
5818 NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0),
5819 NEONMAP0(vcvt_f16_v),
5820 NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0),
5821 NEONMAP0(vcvt_f32_v),
5822 NEONMAP2(vcvt_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5823 NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5824 NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5825 NEONMAP1(vcvt_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
5826 NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
5827 NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
5828 NEONMAP1(vcvt_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
5829 NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
5830 NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
5831 NEONMAP0(vcvtq_f16_v),
5832 NEONMAP0(vcvtq_f32_v),
5833 NEONMAP1(vcvtq_high_bf16_v, aarch64_neon_bfcvtn2, 0),
5834 NEONMAP2(vcvtq_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5835 NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5836 NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5837 NEONMAP1(vcvtq_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
5838 NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
5839 NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
5840 NEONMAP1(vcvtq_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
5841 NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
5842 NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
5843 NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType),
5844 NEONMAP2(vdot_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
5845 NEONMAP2(vdotq_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
5846 NEONMAP2(veor3q_v, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
5847 NEONMAP0(vext_v),
5848 NEONMAP0(vextq_v),
5849 NEONMAP0(vfma_v),
5850 NEONMAP0(vfmaq_v),
5851 NEONMAP1(vfmlal_high_v, aarch64_neon_fmlal2, 0),
5852 NEONMAP1(vfmlal_low_v, aarch64_neon_fmlal, 0),
5853 NEONMAP1(vfmlalq_high_v, aarch64_neon_fmlal2, 0),
5854 NEONMAP1(vfmlalq_low_v, aarch64_neon_fmlal, 0),
5855 NEONMAP1(vfmlsl_high_v, aarch64_neon_fmlsl2, 0),
5856 NEONMAP1(vfmlsl_low_v, aarch64_neon_fmlsl, 0),
5857 NEONMAP1(vfmlslq_high_v, aarch64_neon_fmlsl2, 0),
5858 NEONMAP1(vfmlslq_low_v, aarch64_neon_fmlsl, 0),
5859 NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
5860 NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
5861 NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
5862 NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
5863 NEONMAP1(vld1_x2_v, aarch64_neon_ld1x2, 0),
5864 NEONMAP1(vld1_x3_v, aarch64_neon_ld1x3, 0),
5865 NEONMAP1(vld1_x4_v, aarch64_neon_ld1x4, 0),
5866 NEONMAP1(vld1q_x2_v, aarch64_neon_ld1x2, 0),
5867 NEONMAP1(vld1q_x3_v, aarch64_neon_ld1x3, 0),
5868 NEONMAP1(vld1q_x4_v, aarch64_neon_ld1x4, 0),
5869 NEONMAP2(vmmlaq_v, aarch64_neon_ummla, aarch64_neon_smmla, 0),
5870 NEONMAP0(vmovl_v),
5871 NEONMAP0(vmovn_v),
5872 NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType),
5873 NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType),
5874 NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType),
5875 NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
5876 NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
5877 NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType),
5878 NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType),
5879 NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType),
5880 NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
5881 NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
5882 NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0),
5883 NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0),
5884 NEONMAP1(vqdmulh_lane_v, aarch64_neon_sqdmulh_lane, 0),
5885 NEONMAP1(vqdmulh_laneq_v, aarch64_neon_sqdmulh_laneq, 0),
5886 NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType),
5887 NEONMAP1(vqdmulhq_lane_v, aarch64_neon_sqdmulh_lane, 0),
5888 NEONMAP1(vqdmulhq_laneq_v, aarch64_neon_sqdmulh_laneq, 0),
5889 NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType),
5890 NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType),
5891 NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts),
5892 NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType),
5893 NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType),
5894 NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType),
5895 NEONMAP1(vqrdmulh_lane_v, aarch64_neon_sqrdmulh_lane, 0),
5896 NEONMAP1(vqrdmulh_laneq_v, aarch64_neon_sqrdmulh_laneq, 0),
5897 NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType),
5898 NEONMAP1(vqrdmulhq_lane_v, aarch64_neon_sqrdmulh_lane, 0),
5899 NEONMAP1(vqrdmulhq_laneq_v, aarch64_neon_sqrdmulh_laneq, 0),
5900 NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType),
5901 NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
5902 NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
5903 NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts),
5904 NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
5905 NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts),
5906 NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
5907 NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0),
5908 NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0),
5909 NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
5910 NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
5911 NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType),
5912 NEONMAP1(vrax1q_v, aarch64_crypto_rax1, 0),
5913 NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
5914 NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
5915 NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType),
5916 NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType),
5917 NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
5918 NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
5919 NEONMAP1(vrnd32x_v, aarch64_neon_frint32x, Add1ArgType),
5920 NEONMAP1(vrnd32xq_v, aarch64_neon_frint32x, Add1ArgType),
5921 NEONMAP1(vrnd32z_v, aarch64_neon_frint32z, Add1ArgType),
5922 NEONMAP1(vrnd32zq_v, aarch64_neon_frint32z, Add1ArgType),
5923 NEONMAP1(vrnd64x_v, aarch64_neon_frint64x, Add1ArgType),
5924 NEONMAP1(vrnd64xq_v, aarch64_neon_frint64x, Add1ArgType),
5925 NEONMAP1(vrnd64z_v, aarch64_neon_frint64z, Add1ArgType),
5926 NEONMAP1(vrnd64zq_v, aarch64_neon_frint64z, Add1ArgType),
5927 NEONMAP0(vrndi_v),
5928 NEONMAP0(vrndiq_v),
5929 NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
5930 NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
5931 NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
5932 NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
5933 NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
5934 NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
5935 NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType),
5936 NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType),
5937 NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType),
5938 NEONMAP1(vsha1su0q_v, aarch64_crypto_sha1su0, 0),
5939 NEONMAP1(vsha1su1q_v, aarch64_crypto_sha1su1, 0),
5940 NEONMAP1(vsha256h2q_v, aarch64_crypto_sha256h2, 0),
5941 NEONMAP1(vsha256hq_v, aarch64_crypto_sha256h, 0),
5942 NEONMAP1(vsha256su0q_v, aarch64_crypto_sha256su0, 0),
5943 NEONMAP1(vsha256su1q_v, aarch64_crypto_sha256su1, 0),
5944 NEONMAP1(vsha512h2q_v, aarch64_crypto_sha512h2, 0),
5945 NEONMAP1(vsha512hq_v, aarch64_crypto_sha512h, 0),
5946 NEONMAP1(vsha512su0q_v, aarch64_crypto_sha512su0, 0),
5947 NEONMAP1(vsha512su1q_v, aarch64_crypto_sha512su1, 0),
5948 NEONMAP0(vshl_n_v),
5949 NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
5950 NEONMAP0(vshll_n_v),
5951 NEONMAP0(vshlq_n_v),
5952 NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
5953 NEONMAP0(vshr_n_v),
5954 NEONMAP0(vshrn_n_v),
5955 NEONMAP0(vshrq_n_v),
5956 NEONMAP1(vsm3partw1q_v, aarch64_crypto_sm3partw1, 0),
5957 NEONMAP1(vsm3partw2q_v, aarch64_crypto_sm3partw2, 0),
5958 NEONMAP1(vsm3ss1q_v, aarch64_crypto_sm3ss1, 0),
5959 NEONMAP1(vsm3tt1aq_v, aarch64_crypto_sm3tt1a, 0),
5960 NEONMAP1(vsm3tt1bq_v, aarch64_crypto_sm3tt1b, 0),
5961 NEONMAP1(vsm3tt2aq_v, aarch64_crypto_sm3tt2a, 0),
5962 NEONMAP1(vsm3tt2bq_v, aarch64_crypto_sm3tt2b, 0),
5963 NEONMAP1(vsm4ekeyq_v, aarch64_crypto_sm4ekey, 0),
5964 NEONMAP1(vsm4eq_v, aarch64_crypto_sm4e, 0),
5965 NEONMAP1(vst1_x2_v, aarch64_neon_st1x2, 0),
5966 NEONMAP1(vst1_x3_v, aarch64_neon_st1x3, 0),
5967 NEONMAP1(vst1_x4_v, aarch64_neon_st1x4, 0),
5968 NEONMAP1(vst1q_x2_v, aarch64_neon_st1x2, 0),
5969 NEONMAP1(vst1q_x3_v, aarch64_neon_st1x3, 0),
5970 NEONMAP1(vst1q_x4_v, aarch64_neon_st1x4, 0),
5971 NEONMAP0(vsubhn_v),
5972 NEONMAP0(vtst_v),
5973 NEONMAP0(vtstq_v),
5974 NEONMAP1(vusdot_v, aarch64_neon_usdot, 0),
5975 NEONMAP1(vusdotq_v, aarch64_neon_usdot, 0),
5976 NEONMAP1(vusmmlaq_v, aarch64_neon_usmmla, 0),
5977 NEONMAP1(vxarq_v, aarch64_crypto_xar, 0),
5978};
5979
5980static const ARMVectorIntrinsicInfo AArch64SISDIntrinsicMap[] = {
5981 NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType),
5982 NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType),
5983 NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType),
5984 NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
5985 NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
5986 NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
5987 NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
5988 NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
5989 NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
5990 NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
5991 NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
5992 NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType),
5993 NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
5994 NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType),
5995 NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
5996 NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
5997 NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
5998 NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
5999 NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
6000 NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
6001 NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
6002 NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
6003 NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
6004 NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
6005 NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
6006 NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
6007 NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
6008 NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
6009 NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
6010 NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6011 NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6012 NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6013 NEONMAP1(vcvtd_s64_f64, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6014 NEONMAP1(vcvtd_u64_f64, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6015 NEONMAP1(vcvth_bf16_f32, aarch64_neon_bfcvt, 0),
6016 NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6017 NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6018 NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6019 NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6020 NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6021 NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6022 NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6023 NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6024 NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6025 NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6026 NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6027 NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6028 NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
6029 NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6030 NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6031 NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6032 NEONMAP1(vcvts_s32_f32, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6033 NEONMAP1(vcvts_u32_f32, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6034 NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0),
6035 NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6036 NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6037 NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6038 NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6039 NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
6040 NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
6041 NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6042 NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6043 NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
6044 NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
6045 NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6046 NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6047 NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6048 NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
6049 NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
6050 NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
6051 NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
6052 NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
6053 NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
6054 NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
6055 NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0),
6056 NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType),
6057 NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType),
6058 NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6059 NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6060 NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6061 NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6062 NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6063 NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6064 NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6065 NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6066 NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
6067 NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
6068 NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
6069 NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType),
6070 NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
6071 NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType),
6072 NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
6073 NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
6074 NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType),
6075 NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType),
6076 NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
6077 NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
6078 NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType),
6079 NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType),
6080 NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors),
6081 NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType),
6082 NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors),
6083 NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0),
6084 NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType),
6085 NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType),
6086 NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
6087 NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
6088 NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
6089 NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
6090 NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType),
6091 NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
6092 NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
6093 NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
6094 NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType),
6095 NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
6096 NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType),
6097 NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors),
6098 NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType),
6099 NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
6100 NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
6101 NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType),
6102 NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType),
6103 NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
6104 NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
6105 NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType),
6106 NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType),
6107 NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType),
6108 NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType),
6109 NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
6110 NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
6111 NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
6112 NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
6113 NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType),
6114 NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
6115 NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
6116 NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6117 NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6118 NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6119 NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6120 NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType),
6121 NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType),
6122 NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6123 NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6124 NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6125 NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6126 NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType),
6127 NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType),
6128 NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType),
6129 NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType),
6130 NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
6131 NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
6132 NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType),
6133 NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType),
6134 NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType),
6135 NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
6136 NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
6137 NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
6138 NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
6139 NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType),
6140 NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
6141 NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
6142 NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
6143 NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
6144 NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType),
6145 NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType),
6146 NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
6147 NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
6148 NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType),
6149 NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType),
6150 NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType),
6151 NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType),
6152 NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType),
6153 NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType),
6154 NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType),
6155 NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType),
6156 NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType),
6157 NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType),
6158 NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType),
6159 NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType),
6160 NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0),
6161 NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0),
6162 NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0),
6163 NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0),
6164 NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType),
6165 NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType),
6166 NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType),
6167 NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType),
6168 NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
6169 NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType),
6170 NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
6171 NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType),
6172 NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType),
6173 NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType),
6174 NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
6175 NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType),
6176 NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
6177 NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType),
6178 // FP16 scalar intrinisics go here.
6179 NEONMAP1(vabdh_f16, aarch64_sisd_fabd, Add1ArgType),
6180 NEONMAP1(vcvtah_s32_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
6181 NEONMAP1(vcvtah_s64_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
6182 NEONMAP1(vcvtah_u32_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
6183 NEONMAP1(vcvtah_u64_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
6184 NEONMAP1(vcvth_n_f16_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
6185 NEONMAP1(vcvth_n_f16_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
6186 NEONMAP1(vcvth_n_f16_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6187 NEONMAP1(vcvth_n_f16_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6188 NEONMAP1(vcvth_n_s32_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6189 NEONMAP1(vcvth_n_s64_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6190 NEONMAP1(vcvth_n_u32_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6191 NEONMAP1(vcvth_n_u64_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6192 NEONMAP1(vcvth_s32_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6193 NEONMAP1(vcvth_s64_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6194 NEONMAP1(vcvth_u32_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6195 NEONMAP1(vcvth_u64_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6196 NEONMAP1(vcvtmh_s32_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6197 NEONMAP1(vcvtmh_s64_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6198 NEONMAP1(vcvtmh_u32_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6199 NEONMAP1(vcvtmh_u64_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6200 NEONMAP1(vcvtnh_s32_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6201 NEONMAP1(vcvtnh_s64_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6202 NEONMAP1(vcvtnh_u32_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6203 NEONMAP1(vcvtnh_u64_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6204 NEONMAP1(vcvtph_s32_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6205 NEONMAP1(vcvtph_s64_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6206 NEONMAP1(vcvtph_u32_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6207 NEONMAP1(vcvtph_u64_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6208 NEONMAP1(vmulxh_f16, aarch64_neon_fmulx, Add1ArgType),
6209 NEONMAP1(vrecpeh_f16, aarch64_neon_frecpe, Add1ArgType),
6210 NEONMAP1(vrecpxh_f16, aarch64_neon_frecpx, Add1ArgType),
6211 NEONMAP1(vrsqrteh_f16, aarch64_neon_frsqrte, Add1ArgType),
6212 NEONMAP1(vrsqrtsh_f16, aarch64_neon_frsqrts, Add1ArgType),
6213};
6214
6215#undef NEONMAP0
6216#undef NEONMAP1
6217#undef NEONMAP2
6218
6219#define SVEMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
6220 { \
6221 #NameBase, SVE::BI__builtin_sve_##NameBase, Intrinsic::LLVMIntrinsic, 0, \
6222 TypeModifier \
6223 }
6224
6225#define SVEMAP2(NameBase, TypeModifier) \
6226 { #NameBase, SVE::BI__builtin_sve_##NameBase, 0, 0, TypeModifier }
6227static const ARMVectorIntrinsicInfo AArch64SVEIntrinsicMap[] = {
6228#define GET_SVE_LLVM_INTRINSIC_MAP
6229#include "clang/Basic/arm_sve_builtin_cg.inc"
6230#undef GET_SVE_LLVM_INTRINSIC_MAP
6231};
6232
6233#undef SVEMAP1
6234#undef SVEMAP2
6235
6236static bool NEONSIMDIntrinsicsProvenSorted = false;
6237
6238static bool AArch64SIMDIntrinsicsProvenSorted = false;
6239static bool AArch64SISDIntrinsicsProvenSorted = false;
6240static bool AArch64SVEIntrinsicsProvenSorted = false;
6241
6242static const ARMVectorIntrinsicInfo *
6243findARMVectorIntrinsicInMap(ArrayRef<ARMVectorIntrinsicInfo> IntrinsicMap,
6244 unsigned BuiltinID, bool &MapProvenSorted) {
6245
6246#ifndef NDEBUG
6247 if (!MapProvenSorted) {
6248 assert(llvm::is_sorted(IntrinsicMap))(static_cast <bool> (llvm::is_sorted(IntrinsicMap)) ? void
(0) : __assert_fail ("llvm::is_sorted(IntrinsicMap)", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 6248, __extension__ __PRETTY_FUNCTION__))
;
6249 MapProvenSorted = true;
6250 }
6251#endif
6252
6253 const ARMVectorIntrinsicInfo *Builtin =
6254 llvm::lower_bound(IntrinsicMap, BuiltinID);
6255
6256 if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID)
6257 return Builtin;
6258
6259 return nullptr;
6260}
6261
6262Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
6263 unsigned Modifier,
6264 llvm::Type *ArgType,
6265 const CallExpr *E) {
6266 int VectorSize = 0;
6267 if (Modifier & Use64BitVectors)
6268 VectorSize = 64;
6269 else if (Modifier & Use128BitVectors)
6270 VectorSize = 128;
6271
6272 // Return type.
6273 SmallVector<llvm::Type *, 3> Tys;
6274 if (Modifier & AddRetType) {
6275 llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
6276 if (Modifier & VectorizeRetType)
6277 Ty = llvm::FixedVectorType::get(
6278 Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1);
6279
6280 Tys.push_back(Ty);
6281 }
6282
6283 // Arguments.
6284 if (Modifier & VectorizeArgTypes) {
6285 int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1;
6286 ArgType = llvm::FixedVectorType::get(ArgType, Elts);
6287 }
6288
6289 if (Modifier & (Add1ArgType | Add2ArgTypes))
6290 Tys.push_back(ArgType);
6291
6292 if (Modifier & Add2ArgTypes)
6293 Tys.push_back(ArgType);
6294
6295 if (Modifier & InventFloatType)
6296 Tys.push_back(FloatTy);
6297
6298 return CGM.getIntrinsic(IntrinsicID, Tys);
6299}
6300
6301static Value *EmitCommonNeonSISDBuiltinExpr(
6302 CodeGenFunction &CGF, const ARMVectorIntrinsicInfo &SISDInfo,
6303 SmallVectorImpl<Value *> &Ops, const CallExpr *E) {
6304 unsigned BuiltinID = SISDInfo.BuiltinID;
6305 unsigned int Int = SISDInfo.LLVMIntrinsic;
6306 unsigned Modifier = SISDInfo.TypeModifier;
6307 const char *s = SISDInfo.NameHint;
6308
6309 switch (BuiltinID) {
6310 case NEON::BI__builtin_neon_vcled_s64:
6311 case NEON::BI__builtin_neon_vcled_u64:
6312 case NEON::BI__builtin_neon_vcles_f32:
6313 case NEON::BI__builtin_neon_vcled_f64:
6314 case NEON::BI__builtin_neon_vcltd_s64:
6315 case NEON::BI__builtin_neon_vcltd_u64:
6316 case NEON::BI__builtin_neon_vclts_f32:
6317 case NEON::BI__builtin_neon_vcltd_f64:
6318 case NEON::BI__builtin_neon_vcales_f32:
6319 case NEON::BI__builtin_neon_vcaled_f64:
6320 case NEON::BI__builtin_neon_vcalts_f32:
6321 case NEON::BI__builtin_neon_vcaltd_f64:
6322 // Only one direction of comparisons actually exist, cmle is actually a cmge
6323 // with swapped operands. The table gives us the right intrinsic but we
6324 // still need to do the swap.
6325 std::swap(Ops[0], Ops[1]);
6326 break;
6327 }
6328
6329 assert(Int && "Generic code assumes a valid intrinsic")(static_cast <bool> (Int && "Generic code assumes a valid intrinsic"
) ? void (0) : __assert_fail ("Int && \"Generic code assumes a valid intrinsic\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 6329, __extension__ __PRETTY_FUNCTION__))
;
6330
6331 // Determine the type(s) of this overloaded AArch64 intrinsic.
6332 const Expr *Arg = E->getArg(0);
6333 llvm::Type *ArgTy = CGF.ConvertType(Arg->getType());
6334 Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E);
6335
6336 int j = 0;
6337 ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0);
6338 for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
6339 ai != ae; ++ai, ++j) {
6340 llvm::Type *ArgTy = ai->getType();
6341 if (Ops[j]->getType()->getPrimitiveSizeInBits() ==
6342 ArgTy->getPrimitiveSizeInBits())
6343 continue;
6344
6345 assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy())(static_cast <bool> (ArgTy->isVectorTy() && !
Ops[j]->getType()->isVectorTy()) ? void (0) : __assert_fail
("ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy()"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 6345, __extension__ __PRETTY_FUNCTION__))
;
6346 // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate
6347 // it before inserting.
6348 Ops[j] = CGF.Builder.CreateTruncOrBitCast(
6349 Ops[j], cast<llvm::VectorType>(ArgTy)->getElementType());
6350 Ops[j] =
6351 CGF.Builder.CreateInsertElement(UndefValue::get(ArgTy), Ops[j], C0);
6352 }
6353
6354 Value *Result = CGF.EmitNeonCall(F, Ops, s);
6355 llvm::Type *ResultType = CGF.ConvertType(E->getType());
6356 if (ResultType->getPrimitiveSizeInBits().getFixedSize() <
6357 Result->getType()->getPrimitiveSizeInBits().getFixedSize())
6358 return CGF.Builder.CreateExtractElement(Result, C0);
6359
6360 return CGF.Builder.CreateBitCast(Result, ResultType, s);
6361}
6362
6363Value *CodeGenFunction::EmitCommonNeonBuiltinExpr(
6364 unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic,
6365 const char *NameHint, unsigned Modifier, const CallExpr *E,
6366 SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, Address PtrOp1,
6367 llvm::Triple::ArchType Arch) {
6368 // Get the last argument, which specifies the vector type.
6369 const Expr *Arg = E->getArg(E->getNumArgs() - 1);
6370 Optional<llvm::APSInt> NeonTypeConst =
6371 Arg->getIntegerConstantExpr(getContext());
6372 if (!NeonTypeConst)
6373 return nullptr;
6374
6375 // Determine the type of this overloaded NEON intrinsic.
6376 NeonTypeFlags Type(NeonTypeConst->getZExtValue());
6377 bool Usgn = Type.isUnsigned();
6378 bool Quad = Type.isQuad();
6379 const bool HasLegalHalfType = getTarget().hasLegalHalfType();
6380 const bool AllowBFloatArgsAndRet =
6381 getTargetHooks().getABIInfo().allowBFloatArgsAndRet();
6382
6383 llvm::FixedVectorType *VTy =
6384 GetNeonType(this, Type, HasLegalHalfType, false, AllowBFloatArgsAndRet);
6385 llvm::Type *Ty = VTy;
6386 if (!Ty)
6387 return nullptr;
6388
6389 auto getAlignmentValue32 = [&](Address addr) -> Value* {
6390 return Builder.getInt32(addr.getAlignment().getQuantity());
6391 };
6392
6393 unsigned Int = LLVMIntrinsic;
6394 if ((Modifier & UnsignedAlts) && !Usgn)
6395 Int = AltLLVMIntrinsic;
6396
6397 switch (BuiltinID) {
6398 default: break;
6399 case NEON::BI__builtin_neon_splat_lane_v:
6400 case NEON::BI__builtin_neon_splat_laneq_v:
6401 case NEON::BI__builtin_neon_splatq_lane_v:
6402 case NEON::BI__builtin_neon_splatq_laneq_v: {
6403 auto NumElements = VTy->getElementCount();
6404 if (BuiltinID == NEON::BI__builtin_neon_splatq_lane_v)
6405 NumElements = NumElements * 2;
6406 if (BuiltinID == NEON::BI__builtin_neon_splat_laneq_v)
6407 NumElements = NumElements.divideCoefficientBy(2);
6408
6409 Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
6410 return EmitNeonSplat(Ops[0], cast<ConstantInt>(Ops[1]), NumElements);
6411 }
6412 case NEON::BI__builtin_neon_vpadd_v:
6413 case NEON::BI__builtin_neon_vpaddq_v:
6414 // We don't allow fp/int overloading of intrinsics.
6415 if (VTy->getElementType()->isFloatingPointTy() &&
6416 Int == Intrinsic::aarch64_neon_addp)
6417 Int = Intrinsic::aarch64_neon_faddp;
6418 break;
6419 case NEON::BI__builtin_neon_vabs_v:
6420 case NEON::BI__builtin_neon_vabsq_v:
6421 if (VTy->getElementType()->isFloatingPointTy())
6422 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs");
6423 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs");
6424 case NEON::BI__builtin_neon_vadd_v:
6425 case NEON::BI__builtin_neon_vaddq_v: {
6426 llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, Quad ? 16 : 8);
6427 Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
6428 Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
6429 Ops[0] = Builder.CreateXor(Ops[0], Ops[1]);
6430 return Builder.CreateBitCast(Ops[0], Ty);
6431 }
6432 case NEON::BI__builtin_neon_vaddhn_v: {
6433 llvm::FixedVectorType *SrcTy =
6434 llvm::FixedVectorType::getExtendedElementVectorType(VTy);
6435
6436 // %sum = add <4 x i32> %lhs, %rhs
6437 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
6438 Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
6439 Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn");
6440
6441 // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
6442 Constant *ShiftAmt =
6443 ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
6444 Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn");
6445
6446 // %res = trunc <4 x i32> %high to <4 x i16>
6447 return Builder.CreateTrunc(Ops[0], VTy, "vaddhn");
6448 }
6449 case NEON::BI__builtin_neon_vcale_v:
6450 case NEON::BI__builtin_neon_vcaleq_v:
6451 case NEON::BI__builtin_neon_vcalt_v:
6452 case NEON::BI__builtin_neon_vcaltq_v:
6453 std::swap(Ops[0], Ops[1]);
6454 LLVM_FALLTHROUGH[[gnu::fallthrough]];
6455 case NEON::BI__builtin_neon_vcage_v:
6456 case NEON::BI__builtin_neon_vcageq_v:
6457 case NEON::BI__builtin_neon_vcagt_v:
6458 case NEON::BI__builtin_neon_vcagtq_v: {
6459 llvm::Type *Ty;
6460 switch (VTy->getScalarSizeInBits()) {
6461 default: llvm_unreachable("unexpected type")::llvm::llvm_unreachable_internal("unexpected type", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 6461)
;
6462 case 32:
6463 Ty = FloatTy;
6464 break;
6465 case 64:
6466 Ty = DoubleTy;
6467 break;
6468 case 16:
6469 Ty = HalfTy;
6470 break;
6471 }
6472 auto *VecFlt = llvm::FixedVectorType::get(Ty, VTy->getNumElements());
6473 llvm::Type *Tys[] = { VTy, VecFlt };
6474 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6475 return EmitNeonCall(F, Ops, NameHint);
6476 }
6477 case NEON::BI__builtin_neon_vceqz_v:
6478 case NEON::BI__builtin_neon_vceqzq_v:
6479 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ,
6480 ICmpInst::ICMP_EQ, "vceqz");
6481 case NEON::BI__builtin_neon_vcgez_v:
6482 case NEON::BI__builtin_neon_vcgezq_v:
6483 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE,
6484 ICmpInst::ICMP_SGE, "vcgez");
6485 case NEON::BI__builtin_neon_vclez_v:
6486 case NEON::BI__builtin_neon_vclezq_v:
6487 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE,
6488 ICmpInst::ICMP_SLE, "vclez");
6489 case NEON::BI__builtin_neon_vcgtz_v:
6490 case NEON::BI__builtin_neon_vcgtzq_v:
6491 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT,
6492 ICmpInst::ICMP_SGT, "vcgtz");
6493 case NEON::BI__builtin_neon_vcltz_v:
6494 case NEON::BI__builtin_neon_vcltzq_v:
6495 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT,
6496 ICmpInst::ICMP_SLT, "vcltz");
6497 case NEON::BI__builtin_neon_vclz_v:
6498 case NEON::BI__builtin_neon_vclzq_v:
6499 // We generate target-independent intrinsic, which needs a second argument
6500 // for whether or not clz of zero is undefined; on ARM it isn't.
6501 Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
6502 break;
6503 case NEON::BI__builtin_neon_vcvt_f32_v:
6504 case NEON::BI__builtin_neon_vcvtq_f32_v:
6505 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6506 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad),
6507 HasLegalHalfType);
6508 return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
6509 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
6510 case NEON::BI__builtin_neon_vcvt_f16_v:
6511 case NEON::BI__builtin_neon_vcvtq_f16_v:
6512 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6513 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float16, false, Quad),
6514 HasLegalHalfType);
6515 return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
6516 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
6517 case NEON::BI__builtin_neon_vcvt_n_f16_v:
6518 case NEON::BI__builtin_neon_vcvt_n_f32_v:
6519 case NEON::BI__builtin_neon_vcvt_n_f64_v:
6520 case NEON::BI__builtin_neon_vcvtq_n_f16_v:
6521 case NEON::BI__builtin_neon_vcvtq_n_f32_v:
6522 case NEON::BI__builtin_neon_vcvtq_n_f64_v: {
6523 llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty };
6524 Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
6525 Function *F = CGM.getIntrinsic(Int, Tys);
6526 return EmitNeonCall(F, Ops, "vcvt_n");
6527 }
6528 case NEON::BI__builtin_neon_vcvt_n_s16_v:
6529 case NEON::BI__builtin_neon_vcvt_n_s32_v:
6530 case NEON::BI__builtin_neon_vcvt_n_u16_v:
6531 case NEON::BI__builtin_neon_vcvt_n_u32_v:
6532 case NEON::BI__builtin_neon_vcvt_n_s64_v:
6533 case NEON::BI__builtin_neon_vcvt_n_u64_v:
6534 case NEON::BI__builtin_neon_vcvtq_n_s16_v:
6535 case NEON::BI__builtin_neon_vcvtq_n_s32_v:
6536 case NEON::BI__builtin_neon_vcvtq_n_u16_v:
6537 case NEON::BI__builtin_neon_vcvtq_n_u32_v:
6538 case NEON::BI__builtin_neon_vcvtq_n_s64_v:
6539 case NEON::BI__builtin_neon_vcvtq_n_u64_v: {
6540 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
6541 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6542 return EmitNeonCall(F, Ops, "vcvt_n");
6543 }
6544 case NEON::BI__builtin_neon_vcvt_s32_v:
6545 case NEON::BI__builtin_neon_vcvt_u32_v:
6546 case NEON::BI__builtin_neon_vcvt_s64_v:
6547 case NEON::BI__builtin_neon_vcvt_u64_v:
6548 case NEON::BI__builtin_neon_vcvt_s16_v:
6549 case NEON::BI__builtin_neon_vcvt_u16_v:
6550 case NEON::BI__builtin_neon_vcvtq_s32_v:
6551 case NEON::BI__builtin_neon_vcvtq_u32_v:
6552 case NEON::BI__builtin_neon_vcvtq_s64_v:
6553 case NEON::BI__builtin_neon_vcvtq_u64_v:
6554 case NEON::BI__builtin_neon_vcvtq_s16_v:
6555 case NEON::BI__builtin_neon_vcvtq_u16_v: {
6556 Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
6557 return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
6558 : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
6559 }
6560 case NEON::BI__builtin_neon_vcvta_s16_v:
6561 case NEON::BI__builtin_neon_vcvta_s32_v:
6562 case NEON::BI__builtin_neon_vcvta_s64_v:
6563 case NEON::BI__builtin_neon_vcvta_u16_v:
6564 case NEON::BI__builtin_neon_vcvta_u32_v:
6565 case NEON::BI__builtin_neon_vcvta_u64_v:
6566 case NEON::BI__builtin_neon_vcvtaq_s16_v:
6567 case NEON::BI__builtin_neon_vcvtaq_s32_v:
6568 case NEON::BI__builtin_neon_vcvtaq_s64_v:
6569 case NEON::BI__builtin_neon_vcvtaq_u16_v:
6570 case NEON::BI__builtin_neon_vcvtaq_u32_v:
6571 case NEON::BI__builtin_neon_vcvtaq_u64_v:
6572 case NEON::BI__builtin_neon_vcvtn_s16_v:
6573 case NEON::BI__builtin_neon_vcvtn_s32_v:
6574 case NEON::BI__builtin_neon_vcvtn_s64_v:
6575 case NEON::BI__builtin_neon_vcvtn_u16_v:
6576 case NEON::BI__builtin_neon_vcvtn_u32_v:
6577 case NEON::BI__builtin_neon_vcvtn_u64_v:
6578 case NEON::BI__builtin_neon_vcvtnq_s16_v:
6579 case NEON::BI__builtin_neon_vcvtnq_s32_v:
6580 case NEON::BI__builtin_neon_vcvtnq_s64_v:
6581 case NEON::BI__builtin_neon_vcvtnq_u16_v:
6582 case NEON::BI__builtin_neon_vcvtnq_u32_v:
6583 case NEON::BI__builtin_neon_vcvtnq_u64_v:
6584 case NEON::BI__builtin_neon_vcvtp_s16_v:
6585 case NEON::BI__builtin_neon_vcvtp_s32_v:
6586 case NEON::BI__builtin_neon_vcvtp_s64_v:
6587 case NEON::BI__builtin_neon_vcvtp_u16_v:
6588 case NEON::BI__builtin_neon_vcvtp_u32_v:
6589 case NEON::BI__builtin_neon_vcvtp_u64_v:
6590 case NEON::BI__builtin_neon_vcvtpq_s16_v:
6591 case NEON::BI__builtin_neon_vcvtpq_s32_v:
6592 case NEON::BI__builtin_neon_vcvtpq_s64_v:
6593 case NEON::BI__builtin_neon_vcvtpq_u16_v:
6594 case NEON::BI__builtin_neon_vcvtpq_u32_v:
6595 case NEON::BI__builtin_neon_vcvtpq_u64_v:
6596 case NEON::BI__builtin_neon_vcvtm_s16_v:
6597 case NEON::BI__builtin_neon_vcvtm_s32_v:
6598 case NEON::BI__builtin_neon_vcvtm_s64_v:
6599 case NEON::BI__builtin_neon_vcvtm_u16_v:
6600 case NEON::BI__builtin_neon_vcvtm_u32_v:
6601 case NEON::BI__builtin_neon_vcvtm_u64_v:
6602 case NEON::BI__builtin_neon_vcvtmq_s16_v:
6603 case NEON::BI__builtin_neon_vcvtmq_s32_v:
6604 case NEON::BI__builtin_neon_vcvtmq_s64_v:
6605 case NEON::BI__builtin_neon_vcvtmq_u16_v:
6606 case NEON::BI__builtin_neon_vcvtmq_u32_v:
6607 case NEON::BI__builtin_neon_vcvtmq_u64_v: {
6608 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
6609 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
6610 }
6611 case NEON::BI__builtin_neon_vcvtx_f32_v: {
6612 llvm::Type *Tys[2] = { VTy->getTruncatedElementVectorType(VTy), Ty};
6613 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
6614
6615 }
6616 case NEON::BI__builtin_neon_vext_v:
6617 case NEON::BI__builtin_neon_vextq_v: {
6618 int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
6619 SmallVector<int, 16> Indices;
6620 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
6621 Indices.push_back(i+CV);
6622
6623 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6624 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6625 return Builder.CreateShuffleVector(Ops[0], Ops[1], Indices, "vext");
6626 }
6627 case NEON::BI__builtin_neon_vfma_v:
6628 case NEON::BI__builtin_neon_vfmaq_v: {
6629 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6630 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6631 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
6632
6633 // NEON intrinsic puts accumulator first, unlike the LLVM fma.
6634 return emitCallMaybeConstrainedFPBuiltin(
6635 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
6636 {Ops[1], Ops[2], Ops[0]});
6637 }
6638 case NEON::BI__builtin_neon_vld1_v:
6639 case NEON::BI__builtin_neon_vld1q_v: {
6640 llvm::Type *Tys[] = {Ty, Int8PtrTy};
6641 Ops.push_back(getAlignmentValue32(PtrOp0));
6642 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1");
6643 }
6644 case NEON::BI__builtin_neon_vld1_x2_v:
6645 case NEON::BI__builtin_neon_vld1q_x2_v:
6646 case NEON::BI__builtin_neon_vld1_x3_v:
6647 case NEON::BI__builtin_neon_vld1q_x3_v:
6648 case NEON::BI__builtin_neon_vld1_x4_v:
6649 case NEON::BI__builtin_neon_vld1q_x4_v: {
6650 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType());
6651 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
6652 llvm::Type *Tys[2] = { VTy, PTy };
6653 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6654 Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN");
6655 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
6656 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6657 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
6658 }
6659 case NEON::BI__builtin_neon_vld2_v:
6660 case NEON::BI__builtin_neon_vld2q_v:
6661 case NEON::BI__builtin_neon_vld3_v:
6662 case NEON::BI__builtin_neon_vld3q_v:
6663 case NEON::BI__builtin_neon_vld4_v:
6664 case NEON::BI__builtin_neon_vld4q_v:
6665 case NEON::BI__builtin_neon_vld2_dup_v:
6666 case NEON::BI__builtin_neon_vld2q_dup_v:
6667 case NEON::BI__builtin_neon_vld3_dup_v:
6668 case NEON::BI__builtin_neon_vld3q_dup_v:
6669 case NEON::BI__builtin_neon_vld4_dup_v:
6670 case NEON::BI__builtin_neon_vld4q_dup_v: {
6671 llvm::Type *Tys[] = {Ty, Int8PtrTy};
6672 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6673 Value *Align = getAlignmentValue32(PtrOp1);
6674 Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint);
6675 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
6676 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6677 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
6678 }
6679 case NEON::BI__builtin_neon_vld1_dup_v:
6680 case NEON::BI__builtin_neon_vld1q_dup_v: {
6681 Value *V = UndefValue::get(Ty);
6682 Ty = llvm::PointerType::getUnqual(VTy->getElementType());
6683 PtrOp0 = Builder.CreateBitCast(PtrOp0, Ty);
6684 LoadInst *Ld = Builder.CreateLoad(PtrOp0);
6685 llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
6686 Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
6687 return EmitNeonSplat(Ops[0], CI);
6688 }
6689 case NEON::BI__builtin_neon_vld2_lane_v:
6690 case NEON::BI__builtin_neon_vld2q_lane_v:
6691 case NEON::BI__builtin_neon_vld3_lane_v:
6692 case NEON::BI__builtin_neon_vld3q_lane_v:
6693 case NEON::BI__builtin_neon_vld4_lane_v:
6694 case NEON::BI__builtin_neon_vld4q_lane_v: {
6695 llvm::Type *Tys[] = {Ty, Int8PtrTy};
6696 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6697 for (unsigned I = 2; I < Ops.size() - 1; ++I)
6698 Ops[I] = Builder.CreateBitCast(Ops[I], Ty);
6699 Ops.push_back(getAlignmentValue32(PtrOp1));
6700 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), NameHint);
6701 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
6702 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6703 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
6704 }
6705 case NEON::BI__builtin_neon_vmovl_v: {
6706 llvm::FixedVectorType *DTy =
6707 llvm::FixedVectorType::getTruncatedElementVectorType(VTy);
6708 Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
6709 if (Usgn)
6710 return Builder.CreateZExt(Ops[0], Ty, "vmovl");
6711 return Builder.CreateSExt(Ops[0], Ty, "vmovl");
6712 }
6713 case NEON::BI__builtin_neon_vmovn_v: {
6714 llvm::FixedVectorType *QTy =
6715 llvm::FixedVectorType::getExtendedElementVectorType(VTy);
6716 Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
6717 return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
6718 }
6719 case NEON::BI__builtin_neon_vmull_v:
6720 // FIXME: the integer vmull operations could be emitted in terms of pure
6721 // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of
6722 // hoisting the exts outside loops. Until global ISel comes along that can
6723 // see through such movement this leads to bad CodeGen. So we need an
6724 // intrinsic for now.
6725 Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
6726 Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
6727 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
6728 case NEON::BI__builtin_neon_vpadal_v:
6729 case NEON::BI__builtin_neon_vpadalq_v: {
6730 // The source operand type has twice as many elements of half the size.
6731 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
6732 llvm::Type *EltTy =
6733 llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
6734 auto *NarrowTy =
6735 llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2);
6736 llvm::Type *Tys[2] = { Ty, NarrowTy };
6737 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
6738 }
6739 case NEON::BI__builtin_neon_vpaddl_v:
6740 case NEON::BI__builtin_neon_vpaddlq_v: {
6741 // The source operand type has twice as many elements of half the size.
6742 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
6743 llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
6744 auto *NarrowTy =
6745 llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2);
6746 llvm::Type *Tys[2] = { Ty, NarrowTy };
6747 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
6748 }
6749 case NEON::BI__builtin_neon_vqdmlal_v:
6750 case NEON::BI__builtin_neon_vqdmlsl_v: {
6751 SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
6752 Ops[1] =
6753 EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal");
6754 Ops.resize(2);
6755 return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint);
6756 }
6757 case NEON::BI__builtin_neon_vqdmulhq_lane_v:
6758 case NEON::BI__builtin_neon_vqdmulh_lane_v:
6759 case NEON::BI__builtin_neon_vqrdmulhq_lane_v:
6760 case NEON::BI__builtin_neon_vqrdmulh_lane_v: {
6761 auto *RTy = cast<llvm::FixedVectorType>(Ty);
6762 if (BuiltinID == NEON::BI__builtin_neon_vqdmulhq_lane_v ||
6763 BuiltinID == NEON::BI__builtin_neon_vqrdmulhq_lane_v)
6764 RTy = llvm::FixedVectorType::get(RTy->getElementType(),
6765 RTy->getNumElements() * 2);
6766 llvm::Type *Tys[2] = {
6767 RTy, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false,
6768 /*isQuad*/ false))};
6769 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
6770 }
6771 case NEON::BI__builtin_neon_vqdmulhq_laneq_v:
6772 case NEON::BI__builtin_neon_vqdmulh_laneq_v:
6773 case NEON::BI__builtin_neon_vqrdmulhq_laneq_v:
6774 case NEON::BI__builtin_neon_vqrdmulh_laneq_v: {
6775 llvm::Type *Tys[2] = {
6776 Ty, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false,
6777 /*isQuad*/ true))};
6778 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
6779 }
6780 case NEON::BI__builtin_neon_vqshl_n_v:
6781 case NEON::BI__builtin_neon_vqshlq_n_v:
6782 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
6783 1, false);
6784 case NEON::BI__builtin_neon_vqshlu_n_v:
6785 case NEON::BI__builtin_neon_vqshluq_n_v:
6786 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n",
6787 1, false);
6788 case NEON::BI__builtin_neon_vrecpe_v:
6789 case NEON::BI__builtin_neon_vrecpeq_v:
6790 case NEON::BI__builtin_neon_vrsqrte_v:
6791 case NEON::BI__builtin_neon_vrsqrteq_v:
6792 Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic;
6793 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
6794 case NEON::BI__builtin_neon_vrndi_v:
6795 case NEON::BI__builtin_neon_vrndiq_v:
6796 Int = Builder.getIsFPConstrained()
6797 ? Intrinsic::experimental_constrained_nearbyint
6798 : Intrinsic::nearbyint;
6799 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
6800 case NEON::BI__builtin_neon_vrshr_n_v:
6801 case NEON::BI__builtin_neon_vrshrq_n_v:
6802 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n",
6803 1, true);
6804 case NEON::BI__builtin_neon_vsha512hq_v:
6805 case NEON::BI__builtin_neon_vsha512h2q_v:
6806 case NEON::BI__builtin_neon_vsha512su0q_v:
6807 case NEON::BI__builtin_neon_vsha512su1q_v: {
6808 Function *F = CGM.getIntrinsic(Int);
6809 return EmitNeonCall(F, Ops, "");
6810 }
6811 case NEON::BI__builtin_neon_vshl_n_v:
6812 case NEON::BI__builtin_neon_vshlq_n_v:
6813 Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
6814 return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
6815 "vshl_n");
6816 case NEON::BI__builtin_neon_vshll_n_v: {
6817 llvm::FixedVectorType *SrcTy =
6818 llvm::FixedVectorType::getTruncatedElementVectorType(VTy);
6819 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
6820 if (Usgn)
6821 Ops[0] = Builder.CreateZExt(Ops[0], VTy);
6822 else
6823 Ops[0] = Builder.CreateSExt(Ops[0], VTy);
6824 Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false);
6825 return Builder.CreateShl(Ops[0], Ops[1], "vshll_n");
6826 }
6827 case NEON::BI__builtin_neon_vshrn_n_v: {
6828 llvm::FixedVectorType *SrcTy =
6829 llvm::FixedVectorType::getExtendedElementVectorType(VTy);
6830 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
6831 Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false);
6832 if (Usgn)
6833 Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]);
6834 else
6835 Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]);
6836 return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n");
6837 }
6838 case NEON::BI__builtin_neon_vshr_n_v:
6839 case NEON::BI__builtin_neon_vshrq_n_v:
6840 return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n");
6841 case NEON::BI__builtin_neon_vst1_v:
6842 case NEON::BI__builtin_neon_vst1q_v:
6843 case NEON::BI__builtin_neon_vst2_v:
6844 case NEON::BI__builtin_neon_vst2q_v:
6845 case NEON::BI__builtin_neon_vst3_v:
6846 case NEON::BI__builtin_neon_vst3q_v:
6847 case NEON::BI__builtin_neon_vst4_v:
6848 case NEON::BI__builtin_neon_vst4q_v:
6849 case NEON::BI__builtin_neon_vst2_lane_v:
6850 case NEON::BI__builtin_neon_vst2q_lane_v:
6851 case NEON::BI__builtin_neon_vst3_lane_v:
6852 case NEON::BI__builtin_neon_vst3q_lane_v:
6853 case NEON::BI__builtin_neon_vst4_lane_v:
6854 case NEON::BI__builtin_neon_vst4q_lane_v: {
6855 llvm::Type *Tys[] = {Int8PtrTy, Ty};
6856 Ops.push_back(getAlignmentValue32(PtrOp0));
6857 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "");
6858 }
6859 case NEON::BI__builtin_neon_vsm3partw1q_v:
6860 case NEON::BI__builtin_neon_vsm3partw2q_v:
6861 case NEON::BI__builtin_neon_vsm3ss1q_v:
6862 case NEON::BI__builtin_neon_vsm4ekeyq_v:
6863 case NEON::BI__builtin_neon_vsm4eq_v: {
6864 Function *F = CGM.getIntrinsic(Int);
6865 return EmitNeonCall(F, Ops, "");
6866 }
6867 case NEON::BI__builtin_neon_vsm3tt1aq_v:
6868 case NEON::BI__builtin_neon_vsm3tt1bq_v:
6869 case NEON::BI__builtin_neon_vsm3tt2aq_v:
6870 case NEON::BI__builtin_neon_vsm3tt2bq_v: {
6871 Function *F = CGM.getIntrinsic(Int);
6872 Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
6873 return EmitNeonCall(F, Ops, "");
6874 }
6875 case NEON::BI__builtin_neon_vst1_x2_v:
6876 case NEON::BI__builtin_neon_vst1q_x2_v:
6877 case NEON::BI__builtin_neon_vst1_x3_v:
6878 case NEON::BI__builtin_neon_vst1q_x3_v:
6879 case NEON::BI__builtin_neon_vst1_x4_v:
6880 case NEON::BI__builtin_neon_vst1q_x4_v: {
6881 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType());
6882 // TODO: Currently in AArch32 mode the pointer operand comes first, whereas
6883 // in AArch64 it comes last. We may want to stick to one or another.
6884 if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be ||
6885 Arch == llvm::Triple::aarch64_32) {
6886 llvm::Type *Tys[2] = { VTy, PTy };
6887 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
6888 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
6889 }
6890 llvm::Type *Tys[2] = { PTy, VTy };
6891 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
6892 }
6893 case NEON::BI__builtin_neon_vsubhn_v: {
6894 llvm::FixedVectorType *SrcTy =
6895 llvm::FixedVectorType::getExtendedElementVectorType(VTy);
6896
6897 // %sum = add <4 x i32> %lhs, %rhs
6898 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
6899 Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
6900 Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn");
6901
6902 // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
6903 Constant *ShiftAmt =
6904 ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
6905 Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn");
6906
6907 // %res = trunc <4 x i32> %high to <4 x i16>
6908 return Builder.CreateTrunc(Ops[0], VTy, "vsubhn");
6909 }
6910 case NEON::BI__builtin_neon_vtrn_v:
6911 case NEON::BI__builtin_neon_vtrnq_v: {
6912 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
6913 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6914 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
6915 Value *SV = nullptr;
6916
6917 for (unsigned vi = 0; vi != 2; ++vi) {
6918 SmallVector<int, 16> Indices;
6919 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
6920 Indices.push_back(i+vi);
6921 Indices.push_back(i+e+vi);
6922 }
6923 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
6924 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
6925 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
6926 }
6927 return SV;
6928 }
6929 case NEON::BI__builtin_neon_vtst_v:
6930 case NEON::BI__builtin_neon_vtstq_v: {
6931 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6932 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6933 Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
6934 Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
6935 ConstantAggregateZero::get(Ty));
6936 return Builder.CreateSExt(Ops[0], Ty, "vtst");
6937 }
6938 case NEON::BI__builtin_neon_vuzp_v:
6939 case NEON::BI__builtin_neon_vuzpq_v: {
6940 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
6941 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6942 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
6943 Value *SV = nullptr;
6944
6945 for (unsigned vi = 0; vi != 2; ++vi) {
6946 SmallVector<int, 16> Indices;
6947 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
6948 Indices.push_back(2*i+vi);
6949
6950 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
6951 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
6952 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
6953 }
6954 return SV;
6955 }
6956 case NEON::BI__builtin_neon_vxarq_v: {
6957 Function *F = CGM.getIntrinsic(Int);
6958 Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
6959 return EmitNeonCall(F, Ops, "");
6960 }
6961 case NEON::BI__builtin_neon_vzip_v:
6962 case NEON::BI__builtin_neon_vzipq_v: {
6963 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
6964 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6965 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
6966 Value *SV = nullptr;
6967
6968 for (unsigned vi = 0; vi != 2; ++vi) {
6969 SmallVector<int, 16> Indices;
6970 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
6971 Indices.push_back((i + vi*e) >> 1);
6972 Indices.push_back(((i + vi*e) >> 1)+e);
6973 }
6974 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
6975 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
6976 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
6977 }
6978 return SV;
6979 }
6980 case NEON::BI__builtin_neon_vdot_v:
6981 case NEON::BI__builtin_neon_vdotq_v: {
6982 auto *InputTy =
6983 llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
6984 llvm::Type *Tys[2] = { Ty, InputTy };
6985 Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
6986 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vdot");
6987 }
6988 case NEON::BI__builtin_neon_vfmlal_low_v:
6989 case NEON::BI__builtin_neon_vfmlalq_low_v: {
6990 auto *InputTy =
6991 llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
6992 llvm::Type *Tys[2] = { Ty, InputTy };
6993 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_low");
6994 }
6995 case NEON::BI__builtin_neon_vfmlsl_low_v:
6996 case NEON::BI__builtin_neon_vfmlslq_low_v: {
6997 auto *InputTy =
6998 llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
6999 llvm::Type *Tys[2] = { Ty, InputTy };
7000 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_low");
7001 }
7002 case NEON::BI__builtin_neon_vfmlal_high_v:
7003 case NEON::BI__builtin_neon_vfmlalq_high_v: {
7004 auto *InputTy =
7005 llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
7006 llvm::Type *Tys[2] = { Ty, InputTy };
7007 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_high");
7008 }
7009 case NEON::BI__builtin_neon_vfmlsl_high_v:
7010 case NEON::BI__builtin_neon_vfmlslq_high_v: {
7011 auto *InputTy =
7012 llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
7013 llvm::Type *Tys[2] = { Ty, InputTy };
7014 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_high");
7015 }
7016 case NEON::BI__builtin_neon_vmmlaq_v: {
7017 auto *InputTy =
7018 llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
7019 llvm::Type *Tys[2] = { Ty, InputTy };
7020 Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
7021 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmmla");
7022 }
7023 case NEON::BI__builtin_neon_vusmmlaq_v: {
7024 auto *InputTy =
7025 llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
7026 llvm::Type *Tys[2] = { Ty, InputTy };
7027 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusmmla");
7028 }
7029 case NEON::BI__builtin_neon_vusdot_v:
7030 case NEON::BI__builtin_neon_vusdotq_v: {
7031 auto *InputTy =
7032 llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
7033 llvm::Type *Tys[2] = { Ty, InputTy };
7034 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusdot");
7035 }
7036 case NEON::BI__builtin_neon_vbfdot_v:
7037 case NEON::BI__builtin_neon_vbfdotq_v: {
7038 llvm::Type *InputTy =
7039 llvm::FixedVectorType::get(BFloatTy, Ty->getPrimitiveSizeInBits() / 16);
7040 llvm::Type *Tys[2] = { Ty, InputTy };
7041 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vbfdot");
7042 }
7043 case NEON::BI__builtin_neon___a32_vcvt_bf16_v: {
7044 llvm::Type *Tys[1] = { Ty };
7045 Function *F = CGM.getIntrinsic(Int, Tys);
7046 return EmitNeonCall(F, Ops, "vcvtfp2bf");
7047 }
7048
7049 }
7050
7051 assert(Int && "Expected valid intrinsic number")(static_cast <bool> (Int && "Expected valid intrinsic number"
) ? void (0) : __assert_fail ("Int && \"Expected valid intrinsic number\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 7051, __extension__ __PRETTY_FUNCTION__))
;
7052
7053 // Determine the type(s) of this overloaded AArch64 intrinsic.
7054 Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E);
7055
7056 Value *Result = EmitNeonCall(F, Ops, NameHint);
7057 llvm::Type *ResultType = ConvertType(E->getType());
7058 // AArch64 intrinsic one-element vector type cast to
7059 // scalar type expected by the builtin
7060 return Builder.CreateBitCast(Result, ResultType, NameHint);
7061}
7062
7063Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr(
7064 Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp,
7065 const CmpInst::Predicate Ip, const Twine &Name) {
7066 llvm::Type *OTy = Op->getType();
7067
7068 // FIXME: this is utterly horrific. We should not be looking at previous
7069 // codegen context to find out what needs doing. Unfortunately TableGen
7070 // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32
7071 // (etc).
7072 if (BitCastInst *BI = dyn_cast<BitCastInst>(Op))
7073 OTy = BI->getOperand(0)->getType();
7074
7075 Op = Builder.CreateBitCast(Op, OTy);
7076 if (OTy->getScalarType()->isFloatingPointTy()) {
7077 Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy));
7078 } else {
7079 Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy));
7080 }
7081 return Builder.CreateSExt(Op, Ty, Name);
7082}
7083
7084static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
7085 Value *ExtOp, Value *IndexOp,
7086 llvm::Type *ResTy, unsigned IntID,
7087 const char *Name) {
7088 SmallVector<Value *, 2> TblOps;
7089 if (ExtOp)
7090 TblOps.push_back(ExtOp);
7091
7092 // Build a vector containing sequential number like (0, 1, 2, ..., 15)
7093 SmallVector<int, 16> Indices;
7094 auto *TblTy = cast<llvm::FixedVectorType>(Ops[0]->getType());
7095 for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) {
7096 Indices.push_back(2*i);
7097 Indices.push_back(2*i+1);
7098 }
7099
7100 int PairPos = 0, End = Ops.size() - 1;
7101 while (PairPos < End) {
7102 TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
7103 Ops[PairPos+1], Indices,
7104 Name));
7105 PairPos += 2;
7106 }
7107
7108 // If there's an odd number of 64-bit lookup table, fill the high 64-bit
7109 // of the 128-bit lookup table with zero.
7110 if (PairPos == End) {
7111 Value *ZeroTbl = ConstantAggregateZero::get(TblTy);
7112 TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
7113 ZeroTbl, Indices, Name));
7114 }
7115
7116 Function *TblF;
7117 TblOps.push_back(IndexOp);
7118 TblF = CGF.CGM.getIntrinsic(IntID, ResTy);
7119
7120 return CGF.EmitNeonCall(TblF, TblOps, Name);
7121}
7122
7123Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) {
7124 unsigned Value;
7125 switch (BuiltinID) {
7126 default:
7127 return nullptr;
7128 case ARM::BI__builtin_arm_nop:
7129 Value = 0;
7130 break;
7131 case ARM::BI__builtin_arm_yield:
7132 case ARM::BI__yield:
7133 Value = 1;
7134 break;
7135 case ARM::BI__builtin_arm_wfe:
7136 case ARM::BI__wfe:
7137 Value = 2;
7138 break;
7139 case ARM::BI__builtin_arm_wfi:
7140 case ARM::BI__wfi:
7141 Value = 3;
7142 break;
7143 case ARM::BI__builtin_arm_sev:
7144 case ARM::BI__sev:
7145 Value = 4;
7146 break;
7147 case ARM::BI__builtin_arm_sevl:
7148 case ARM::BI__sevl:
7149 Value = 5;
7150 break;
7151 }
7152
7153 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
7154 llvm::ConstantInt::get(Int32Ty, Value));
7155}
7156
7157enum SpecialRegisterAccessKind {
7158 NormalRead,
7159 VolatileRead,
7160 Write,
7161};
7162
7163// Generates the IR for the read/write special register builtin,
7164// ValueType is the type of the value that is to be written or read,
7165// RegisterType is the type of the register being written to or read from.
7166static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF,
7167 const CallExpr *E,
7168 llvm::Type *RegisterType,
7169 llvm::Type *ValueType,
7170 SpecialRegisterAccessKind AccessKind,
7171 StringRef SysReg = "") {
7172 // write and register intrinsics only support 32 and 64 bit operations.
7173 assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64))(static_cast <bool> ((RegisterType->isIntegerTy(32) ||
RegisterType->isIntegerTy(64)) && "Unsupported size for register."
) ? void (0) : __assert_fail ("(RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64)) && \"Unsupported size for register.\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 7174, __extension__ __PRETTY_FUNCTION__))
7174 && "Unsupported size for register.")(static_cast <bool> ((RegisterType->isIntegerTy(32) ||
RegisterType->isIntegerTy(64)) && "Unsupported size for register."
) ? void (0) : __assert_fail ("(RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64)) && \"Unsupported size for register.\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 7174, __extension__ __PRETTY_FUNCTION__))
;
7175
7176 CodeGen::CGBuilderTy &Builder = CGF.Builder;
7177 CodeGen::CodeGenModule &CGM = CGF.CGM;
7178 LLVMContext &Context = CGM.getLLVMContext();
7179
7180 if (SysReg.empty()) {
7181 const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts();
7182 SysReg = cast<clang::StringLiteral>(SysRegStrExpr)->getString();
7183 }
7184
7185 llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) };
7186 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
7187 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
7188
7189 llvm::Type *Types[] = { RegisterType };
7190
7191 bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32);
7192 assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64))(static_cast <bool> (!(RegisterType->isIntegerTy(32)
&& ValueType->isIntegerTy(64)) && "Can't fit 64-bit value in 32-bit register"
) ? void (0) : __assert_fail ("!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64)) && \"Can't fit 64-bit value in 32-bit register\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 7193, __extension__ __PRETTY_FUNCTION__))
7193 && "Can't fit 64-bit value in 32-bit register")(static_cast <bool> (!(RegisterType->isIntegerTy(32)
&& ValueType->isIntegerTy(64)) && "Can't fit 64-bit value in 32-bit register"
) ? void (0) : __assert_fail ("!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64)) && \"Can't fit 64-bit value in 32-bit register\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 7193, __extension__ __PRETTY_FUNCTION__))
;
7194
7195 if (AccessKind != Write) {
7196 assert(AccessKind == NormalRead || AccessKind == VolatileRead)(static_cast <bool> (AccessKind == NormalRead || AccessKind
== VolatileRead) ? void (0) : __assert_fail ("AccessKind == NormalRead || AccessKind == VolatileRead"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 7196, __extension__ __PRETTY_FUNCTION__))
;
7197 llvm::Function *F = CGM.getIntrinsic(
7198 AccessKind == VolatileRead ? llvm::Intrinsic::read_volatile_register
7199 : llvm::Intrinsic::read_register,
7200 Types);
7201 llvm::Value *Call = Builder.CreateCall(F, Metadata);
7202
7203 if (MixedTypes)
7204 // Read into 64 bit register and then truncate result to 32 bit.
7205 return Builder.CreateTrunc(Call, ValueType);
7206
7207 if (ValueType->isPointerTy())
7208 // Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*).
7209 return Builder.CreateIntToPtr(Call, ValueType);
7210
7211 return Call;
7212 }
7213
7214 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
7215 llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1));
7216 if (MixedTypes) {
7217 // Extend 32 bit write value to 64 bit to pass to write.
7218 ArgValue = Builder.CreateZExt(ArgValue, RegisterType);
7219 return Builder.CreateCall(F, { Metadata, ArgValue });
7220 }
7221
7222 if (ValueType->isPointerTy()) {
7223 // Have VoidPtrTy ArgValue but want to return an i32/i64.
7224 ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType);
7225 return Builder.CreateCall(F, { Metadata, ArgValue });
7226 }
7227
7228 return Builder.CreateCall(F, { Metadata, ArgValue });
7229}
7230
7231/// Return true if BuiltinID is an overloaded Neon intrinsic with an extra
7232/// argument that specifies the vector type.
7233static bool HasExtraNeonArgument(unsigned BuiltinID) {
7234 switch (BuiltinID) {
7235 default: break;
7236 case NEON::BI__builtin_neon_vget_lane_i8:
7237 case NEON::BI__builtin_neon_vget_lane_i16:
7238 case NEON::BI__builtin_neon_vget_lane_bf16:
7239 case NEON::BI__builtin_neon_vget_lane_i32:
7240 case NEON::BI__builtin_neon_vget_lane_i64:
7241 case NEON::BI__builtin_neon_vget_lane_f32:
7242 case NEON::BI__builtin_neon_vgetq_lane_i8:
7243 case NEON::BI__builtin_neon_vgetq_lane_i16:
7244 case NEON::BI__builtin_neon_vgetq_lane_bf16:
7245 case NEON::BI__builtin_neon_vgetq_lane_i32:
7246 case NEON::BI__builtin_neon_vgetq_lane_i64:
7247 case NEON::BI__builtin_neon_vgetq_lane_f32:
7248 case NEON::BI__builtin_neon_vduph_lane_bf16:
7249 case NEON::BI__builtin_neon_vduph_laneq_bf16:
7250 case NEON::BI__builtin_neon_vset_lane_i8:
7251 case NEON::BI__builtin_neon_vset_lane_i16:
7252 case NEON::BI__builtin_neon_vset_lane_bf16:
7253 case NEON::BI__builtin_neon_vset_lane_i32:
7254 case NEON::BI__builtin_neon_vset_lane_i64:
7255 case NEON::BI__builtin_neon_vset_lane_f32:
7256 case NEON::BI__builtin_neon_vsetq_lane_i8:
7257 case NEON::BI__builtin_neon_vsetq_lane_i16:
7258 case NEON::BI__builtin_neon_vsetq_lane_bf16:
7259 case NEON::BI__builtin_neon_vsetq_lane_i32:
7260 case NEON::BI__builtin_neon_vsetq_lane_i64:
7261 case NEON::BI__builtin_neon_vsetq_lane_f32:
7262 case NEON::BI__builtin_neon_vsha1h_u32:
7263 case NEON::BI__builtin_neon_vsha1cq_u32:
7264 case NEON::BI__builtin_neon_vsha1pq_u32:
7265 case NEON::BI__builtin_neon_vsha1mq_u32:
7266 case NEON::BI__builtin_neon_vcvth_bf16_f32:
7267 case clang::ARM::BI_MoveToCoprocessor:
7268 case clang::ARM::BI_MoveToCoprocessor2:
7269 return false;
7270 }
7271 return true;
7272}
7273
7274Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
7275 const CallExpr *E,
7276 ReturnValueSlot ReturnValue,
7277 llvm::Triple::ArchType Arch) {
7278 if (auto Hint = GetValueForARMHint(BuiltinID))
7279 return Hint;
7280
7281 if (BuiltinID == ARM::BI__emit) {
7282 bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb;
7283 llvm::FunctionType *FTy =
7284 llvm::FunctionType::get(VoidTy, /*Variadic=*/false);
7285
7286 Expr::EvalResult Result;
7287 if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
7288 llvm_unreachable("Sema will ensure that the parameter is constant")::llvm::llvm_unreachable_internal("Sema will ensure that the parameter is constant"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 7288)
;
7289
7290 llvm::APSInt Value = Result.Val.getInt();
7291 uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue();
7292
7293 llvm::InlineAsm *Emit =
7294 IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "",
7295 /*hasSideEffects=*/true)
7296 : InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "",
7297 /*hasSideEffects=*/true);
7298
7299 return Builder.CreateCall(Emit);
7300 }
7301
7302 if (BuiltinID == ARM::BI__builtin_arm_dbg) {
7303 Value *Option = EmitScalarExpr(E->getArg(0));
7304 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option);
7305 }
7306
7307 if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
7308 Value *Address = EmitScalarExpr(E->getArg(0));
7309 Value *RW = EmitScalarExpr(E->getArg(1));
7310 Value *IsData = EmitScalarExpr(E->getArg(2));
7311
7312 // Locality is not supported on ARM target
7313 Value *Locality = llvm::ConstantInt::get(Int32Ty, 3);
7314
7315 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
7316 return Builder.CreateCall(F, {Address, RW, Locality, IsData});
7317 }
7318
7319 if (BuiltinID == ARM::BI__builtin_arm_rbit) {
7320 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7321 return Builder.CreateCall(
7322 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
7323 }
7324
7325 if (BuiltinID == ARM::BI__builtin_arm_cls) {
7326 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7327 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls), Arg, "cls");
7328 }
7329 if (BuiltinID == ARM::BI__builtin_arm_cls64) {
7330 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7331 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls64), Arg,
7332 "cls");
7333 }
7334
7335 if (BuiltinID == ARM::BI__clear_cache) {
7336 assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments")(static_cast <bool> (E->getNumArgs() == 2 &&
"__clear_cache takes 2 arguments") ? void (0) : __assert_fail
("E->getNumArgs() == 2 && \"__clear_cache takes 2 arguments\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 7336, __extension__ __PRETTY_FUNCTION__))
;
7337 const FunctionDecl *FD = E->getDirectCallee();
7338 Value *Ops[2];
7339 for (unsigned i = 0; i < 2; i++)
7340 Ops[i] = EmitScalarExpr(E->getArg(i));
7341 llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
7342 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
7343 StringRef Name = FD->getName();
7344 return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
7345 }
7346
7347 if (BuiltinID == ARM::BI__builtin_arm_mcrr ||
7348 BuiltinID == ARM::BI__builtin_arm_mcrr2) {
7349 Function *F;
7350
7351 switch (BuiltinID) {
7352 default: llvm_unreachable("unexpected builtin")::llvm::llvm_unreachable_internal("unexpected builtin", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 7352)
;
7353 case ARM::BI__builtin_arm_mcrr:
7354 F = CGM.getIntrinsic(Intrinsic::arm_mcrr);
7355 break;
7356 case ARM::BI__builtin_arm_mcrr2:
7357 F = CGM.getIntrinsic(Intrinsic::arm_mcrr2);
7358 break;
7359 }
7360
7361 // MCRR{2} instruction has 5 operands but
7362 // the intrinsic has 4 because Rt and Rt2
7363 // are represented as a single unsigned 64
7364 // bit integer in the intrinsic definition
7365 // but internally it's represented as 2 32
7366 // bit integers.
7367
7368 Value *Coproc = EmitScalarExpr(E->getArg(0));
7369 Value *Opc1 = EmitScalarExpr(E->getArg(1));
7370 Value *RtAndRt2 = EmitScalarExpr(E->getArg(2));
7371 Value *CRm = EmitScalarExpr(E->getArg(3));
7372
7373 Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
7374 Value *Rt = Builder.CreateTruncOrBitCast(RtAndRt2, Int32Ty);
7375 Value *Rt2 = Builder.CreateLShr(RtAndRt2, C1);
7376 Rt2 = Builder.CreateTruncOrBitCast(Rt2, Int32Ty);
7377
7378 return Builder.CreateCall(F, {Coproc, Opc1, Rt, Rt2, CRm});
7379 }
7380
7381 if (BuiltinID == ARM::BI__builtin_arm_mrrc ||
7382 BuiltinID == ARM::BI__builtin_arm_mrrc2) {
7383 Function *F;
7384
7385 switch (BuiltinID) {
7386 default: llvm_unreachable("unexpected builtin")::llvm::llvm_unreachable_internal("unexpected builtin", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 7386)
;
7387 case ARM::BI__builtin_arm_mrrc:
7388 F = CGM.getIntrinsic(Intrinsic::arm_mrrc);
7389 break;
7390 case ARM::BI__builtin_arm_mrrc2:
7391 F = CGM.getIntrinsic(Intrinsic::arm_mrrc2);
7392 break;
7393 }
7394
7395 Value *Coproc = EmitScalarExpr(E->getArg(0));
7396 Value *Opc1 = EmitScalarExpr(E->getArg(1));
7397 Value *CRm = EmitScalarExpr(E->getArg(2));
7398 Value *RtAndRt2 = Builder.CreateCall(F, {Coproc, Opc1, CRm});
7399
7400 // Returns an unsigned 64 bit integer, represented
7401 // as two 32 bit integers.
7402
7403 Value *Rt = Builder.CreateExtractValue(RtAndRt2, 1);
7404 Value *Rt1 = Builder.CreateExtractValue(RtAndRt2, 0);
7405 Rt = Builder.CreateZExt(Rt, Int64Ty);
7406 Rt1 = Builder.CreateZExt(Rt1, Int64Ty);
7407
7408 Value *ShiftCast = llvm::ConstantInt::get(Int64Ty, 32);
7409 RtAndRt2 = Builder.CreateShl(Rt, ShiftCast, "shl", true);
7410 RtAndRt2 = Builder.CreateOr(RtAndRt2, Rt1);
7411
7412 return Builder.CreateBitCast(RtAndRt2, ConvertType(E->getType()));
7413 }
7414
7415 if (BuiltinID == ARM::BI__builtin_arm_ldrexd ||
7416 ((BuiltinID == ARM::BI__builtin_arm_ldrex ||
7417 BuiltinID == ARM::BI__builtin_arm_ldaex) &&
7418 getContext().getTypeSize(E->getType()) == 64) ||
7419 BuiltinID == ARM::BI__ldrexd) {
7420 Function *F;
7421
7422 switch (BuiltinID) {
7423 default: llvm_unreachable("unexpected builtin")::llvm::llvm_unreachable_internal("unexpected builtin", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 7423)
;
7424 case ARM::BI__builtin_arm_ldaex:
7425 F = CGM.getIntrinsic(Intrinsic::arm_ldaexd);
7426 break;
7427 case ARM::BI__builtin_arm_ldrexd:
7428 case ARM::BI__builtin_arm_ldrex:
7429 case ARM::BI__ldrexd:
7430 F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
7431 break;
7432 }
7433
7434 Value *LdPtr = EmitScalarExpr(E->getArg(0));
7435 Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
7436 "ldrexd");
7437
7438 Value *Val0 = Builder.CreateExtractValue(Val, 1);
7439 Value *Val1 = Builder.CreateExtractValue(Val, 0);
7440 Val0 = Builder.CreateZExt(Val0, Int64Ty);
7441 Val1 = Builder.CreateZExt(Val1, Int64Ty);
7442
7443 Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
7444 Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
7445 Val = Builder.CreateOr(Val, Val1);
7446 return Builder.CreateBitCast(Val, ConvertType(E->getType()));
7447 }
7448
7449 if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
7450 BuiltinID == ARM::BI__builtin_arm_ldaex) {
7451 Value *LoadAddr = EmitScalarExpr(E->getArg(0));
7452
7453 QualType Ty = E->getType();
7454 llvm::Type *RealResTy = ConvertType(Ty);
7455 llvm::Type *PtrTy = llvm::IntegerType::get(
7456 getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
7457 LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
7458
7459 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_ldaex
7460 ? Intrinsic::arm_ldaex
7461 : Intrinsic::arm_ldrex,
7462 PtrTy);
7463 Value *Val = Builder.CreateCall(F, LoadAddr, "ldrex");
7464
7465 if (RealResTy->isPointerTy())
7466 return Builder.CreateIntToPtr(Val, RealResTy);
7467 else {
7468 llvm::Type *IntResTy = llvm::IntegerType::get(
7469 getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
7470 Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
7471 return Builder.CreateBitCast(Val, RealResTy);
7472 }
7473 }
7474
7475 if (BuiltinID == ARM::BI__builtin_arm_strexd ||
7476 ((BuiltinID == ARM::BI__builtin_arm_stlex ||
7477 BuiltinID == ARM::BI__builtin_arm_strex) &&
7478 getContext().getTypeSize(E->getArg(0)->getType()) == 64)) {
7479 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
7480 ? Intrinsic::arm_stlexd
7481 : Intrinsic::arm_strexd);
7482 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty);
7483
7484 Address Tmp = CreateMemTemp(E->getArg(0)->getType());
7485 Value *Val = EmitScalarExpr(E->getArg(0));
7486 Builder.CreateStore(Val, Tmp);
7487
7488 Address LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy));
7489 Val = Builder.CreateLoad(LdPtr);
7490
7491 Value *Arg0 = Builder.CreateExtractValue(Val, 0);
7492 Value *Arg1 = Builder.CreateExtractValue(Val, 1);
7493 Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy);
7494 return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd");
7495 }
7496
7497 if (BuiltinID == ARM::BI__builtin_arm_strex ||
7498 BuiltinID == ARM::BI__builtin_arm_stlex) {
7499 Value *StoreVal = EmitScalarExpr(E->getArg(0));
7500 Value *StoreAddr = EmitScalarExpr(E->getArg(1));
7501
7502 QualType Ty = E->getArg(0)->getType();
7503 llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
7504 getContext().getTypeSize(Ty));
7505 StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
7506
7507 if (StoreVal->getType()->isPointerTy())
7508 StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty);
7509 else {
7510 llvm::Type *IntTy = llvm::IntegerType::get(
7511 getLLVMContext(),
7512 CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
7513 StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
7514 StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty);
7515 }
7516
7517 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
7518 ? Intrinsic::arm_stlex
7519 : Intrinsic::arm_strex,
7520 StoreAddr->getType());
7521 return Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex");
7522 }
7523
7524 if (BuiltinID == ARM::BI__builtin_arm_clrex) {
7525 Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex);
7526 return Builder.CreateCall(F);
7527 }
7528
7529 // CRC32
7530 Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
7531 switch (BuiltinID) {
7532 case ARM::BI__builtin_arm_crc32b:
7533 CRCIntrinsicID = Intrinsic::arm_crc32b; break;
7534 case ARM::BI__builtin_arm_crc32cb:
7535 CRCIntrinsicID = Intrinsic::arm_crc32cb; break;
7536 case ARM::BI__builtin_arm_crc32h:
7537 CRCIntrinsicID = Intrinsic::arm_crc32h; break;
7538 case ARM::BI__builtin_arm_crc32ch:
7539 CRCIntrinsicID = Intrinsic::arm_crc32ch; break;
7540 case ARM::BI__builtin_arm_crc32w:
7541 case ARM::BI__builtin_arm_crc32d:
7542 CRCIntrinsicID = Intrinsic::arm_crc32w; break;
7543 case ARM::BI__builtin_arm_crc32cw:
7544 case ARM::BI__builtin_arm_crc32cd:
7545 CRCIntrinsicID = Intrinsic::arm_crc32cw; break;
7546 }
7547
7548 if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
7549 Value *Arg0 = EmitScalarExpr(E->getArg(0));
7550 Value *Arg1 = EmitScalarExpr(E->getArg(1));
7551
7552 // crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w
7553 // intrinsics, hence we need different codegen for these cases.
7554 if (BuiltinID == ARM::BI__builtin_arm_crc32d ||
7555 BuiltinID == ARM::BI__builtin_arm_crc32cd) {
7556 Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
7557 Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty);
7558 Value *Arg1b = Builder.CreateLShr(Arg1, C1);
7559 Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty);
7560
7561 Function *F = CGM.getIntrinsic(CRCIntrinsicID);
7562 Value *Res = Builder.CreateCall(F, {Arg0, Arg1a});
7563 return Builder.CreateCall(F, {Res, Arg1b});
7564 } else {
7565 Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty);
7566
7567 Function *F = CGM.getIntrinsic(CRCIntrinsicID);
7568 return Builder.CreateCall(F, {Arg0, Arg1});
7569 }
7570 }
7571
7572 if (BuiltinID == ARM::BI__builtin_arm_rsr ||
7573 BuiltinID == ARM::BI__builtin_arm_rsr64 ||
7574 BuiltinID == ARM::BI__builtin_arm_rsrp ||
7575 BuiltinID == ARM::BI__builtin_arm_wsr ||
7576 BuiltinID == ARM::BI__builtin_arm_wsr64 ||
7577 BuiltinID == ARM::BI__builtin_arm_wsrp) {
7578
7579 SpecialRegisterAccessKind AccessKind = Write;
7580 if (BuiltinID == ARM::BI__builtin_arm_rsr ||
7581 BuiltinID == ARM::BI__builtin_arm_rsr64 ||
7582 BuiltinID == ARM::BI__builtin_arm_rsrp)
7583 AccessKind = VolatileRead;
7584
7585 bool IsPointerBuiltin = BuiltinID == ARM::BI__builtin_arm_rsrp ||
7586 BuiltinID == ARM::BI__builtin_arm_wsrp;
7587
7588 bool Is64Bit = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
7589 BuiltinID == ARM::BI__builtin_arm_wsr64;
7590
7591 llvm::Type *ValueType;
7592 llvm::Type *RegisterType;
7593 if (IsPointerBuiltin) {
7594 ValueType = VoidPtrTy;
7595 RegisterType = Int32Ty;
7596 } else if (Is64Bit) {
7597 ValueType = RegisterType = Int64Ty;
7598 } else {
7599 ValueType = RegisterType = Int32Ty;
7600 }
7601
7602 return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType,
7603 AccessKind);
7604 }
7605
7606 // Handle MSVC intrinsics before argument evaluation to prevent double
7607 // evaluation.
7608 if (Optional<MSVCIntrin> MsvcIntId = translateArmToMsvcIntrin(BuiltinID))
7609 return EmitMSVCBuiltinExpr(*MsvcIntId, E);
7610
7611 // Deal with MVE builtins
7612 if (Value *Result = EmitARMMVEBuiltinExpr(BuiltinID, E, ReturnValue, Arch))
7613 return Result;
7614 // Handle CDE builtins
7615 if (Value *Result = EmitARMCDEBuiltinExpr(BuiltinID, E, ReturnValue, Arch))
7616 return Result;
7617
7618 // Find out if any arguments are required to be integer constant
7619 // expressions.
7620 unsigned ICEArguments = 0;
7621 ASTContext::GetBuiltinTypeError Error;
7622 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
7623 assert(Error == ASTContext::GE_None && "Should not codegen an error")(static_cast <bool> (Error == ASTContext::GE_None &&
"Should not codegen an error") ? void (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 7623, __extension__ __PRETTY_FUNCTION__))
;
7624
7625 auto getAlignmentValue32 = [&](Address addr) -> Value* {
7626 return Builder.getInt32(addr.getAlignment().getQuantity());
7627 };
7628
7629 Address PtrOp0 = Address::invalid();
7630 Address PtrOp1 = Address::invalid();
7631 SmallVector<Value*, 4> Ops;
7632 bool HasExtraArg = HasExtraNeonArgument(BuiltinID);
7633 unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0);
7634 for (unsigned i = 0, e = NumArgs; i != e; i++) {
7635 if (i == 0) {
7636 switch (BuiltinID) {
7637 case NEON::BI__builtin_neon_vld1_v:
7638 case NEON::BI__builtin_neon_vld1q_v:
7639 case NEON::BI__builtin_neon_vld1q_lane_v:
7640 case NEON::BI__builtin_neon_vld1_lane_v:
7641 case NEON::BI__builtin_neon_vld1_dup_v:
7642 case NEON::BI__builtin_neon_vld1q_dup_v:
7643 case NEON::BI__builtin_neon_vst1_v:
7644 case NEON::BI__builtin_neon_vst1q_v:
7645 case NEON::BI__builtin_neon_vst1q_lane_v:
7646 case NEON::BI__builtin_neon_vst1_lane_v:
7647 case NEON::BI__builtin_neon_vst2_v:
7648 case NEON::BI__builtin_neon_vst2q_v:
7649 case NEON::BI__builtin_neon_vst2_lane_v:
7650 case NEON::BI__builtin_neon_vst2q_lane_v:
7651 case NEON::BI__builtin_neon_vst3_v:
7652 case NEON::BI__builtin_neon_vst3q_v:
7653 case NEON::BI__builtin_neon_vst3_lane_v:
7654 case NEON::BI__builtin_neon_vst3q_lane_v:
7655 case NEON::BI__builtin_neon_vst4_v:
7656 case NEON::BI__builtin_neon_vst4q_v:
7657 case NEON::BI__builtin_neon_vst4_lane_v:
7658 case NEON::BI__builtin_neon_vst4q_lane_v:
7659 // Get the alignment for the argument in addition to the value;
7660 // we'll use it later.
7661 PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
7662 Ops.push_back(PtrOp0.getPointer());
7663 continue;
7664 }
7665 }
7666 if (i == 1) {
7667 switch (BuiltinID) {
7668 case NEON::BI__builtin_neon_vld2_v:
7669 case NEON::BI__builtin_neon_vld2q_v:
7670 case NEON::BI__builtin_neon_vld3_v:
7671 case NEON::BI__builtin_neon_vld3q_v:
7672 case NEON::BI__builtin_neon_vld4_v:
7673 case NEON::BI__builtin_neon_vld4q_v:
7674 case NEON::BI__builtin_neon_vld2_lane_v:
7675 case NEON::BI__builtin_neon_vld2q_lane_v:
7676 case NEON::BI__builtin_neon_vld3_lane_v:
7677 case NEON::BI__builtin_neon_vld3q_lane_v:
7678 case NEON::BI__builtin_neon_vld4_lane_v:
7679 case NEON::BI__builtin_neon_vld4q_lane_v:
7680 case NEON::BI__builtin_neon_vld2_dup_v:
7681 case NEON::BI__builtin_neon_vld2q_dup_v:
7682 case NEON::BI__builtin_neon_vld3_dup_v:
7683 case NEON::BI__builtin_neon_vld3q_dup_v:
7684 case NEON::BI__builtin_neon_vld4_dup_v:
7685 case NEON::BI__builtin_neon_vld4q_dup_v:
7686 // Get the alignment for the argument in addition to the value;
7687 // we'll use it later.
7688 PtrOp1 = EmitPointerWithAlignment(E->getArg(1));
7689 Ops.push_back(PtrOp1.getPointer());
7690 continue;
7691 }
7692 }
7693
7694 if ((ICEArguments & (1 << i)) == 0) {
7695 Ops.push_back(EmitScalarExpr(E->getArg(i)));
7696 } else {
7697 // If this is required to be a constant, constant fold it so that we know
7698 // that the generated intrinsic gets a ConstantInt.
7699 Ops.push_back(llvm::ConstantInt::get(
7700 getLLVMContext(),
7701 *E->getArg(i)->getIntegerConstantExpr(getContext())));
7702 }
7703 }
7704
7705 switch (BuiltinID) {
7706 default: break;
7707
7708 case NEON::BI__builtin_neon_vget_lane_i8:
7709 case NEON::BI__builtin_neon_vget_lane_i16:
7710 case NEON::BI__builtin_neon_vget_lane_i32:
7711 case NEON::BI__builtin_neon_vget_lane_i64:
7712 case NEON::BI__builtin_neon_vget_lane_bf16:
7713 case NEON::BI__builtin_neon_vget_lane_f32:
7714 case NEON::BI__builtin_neon_vgetq_lane_i8:
7715 case NEON::BI__builtin_neon_vgetq_lane_i16:
7716 case NEON::BI__builtin_neon_vgetq_lane_i32:
7717 case NEON::BI__builtin_neon_vgetq_lane_i64:
7718 case NEON::BI__builtin_neon_vgetq_lane_bf16:
7719 case NEON::BI__builtin_neon_vgetq_lane_f32:
7720 case NEON::BI__builtin_neon_vduph_lane_bf16:
7721 case NEON::BI__builtin_neon_vduph_laneq_bf16:
7722 return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane");
7723
7724 case NEON::BI__builtin_neon_vrndns_f32: {
7725 Value *Arg = EmitScalarExpr(E->getArg(0));
7726 llvm::Type *Tys[] = {Arg->getType()};
7727 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vrintn, Tys);
7728 return Builder.CreateCall(F, {Arg}, "vrndn"); }
7729
7730 case NEON::BI__builtin_neon_vset_lane_i8:
7731 case NEON::BI__builtin_neon_vset_lane_i16:
7732 case NEON::BI__builtin_neon_vset_lane_i32:
7733 case NEON::BI__builtin_neon_vset_lane_i64:
7734 case NEON::BI__builtin_neon_vset_lane_bf16:
7735 case NEON::BI__builtin_neon_vset_lane_f32:
7736 case NEON::BI__builtin_neon_vsetq_lane_i8:
7737 case NEON::BI__builtin_neon_vsetq_lane_i16:
7738 case NEON::BI__builtin_neon_vsetq_lane_i32:
7739 case NEON::BI__builtin_neon_vsetq_lane_i64:
7740 case NEON::BI__builtin_neon_vsetq_lane_bf16:
7741 case NEON::BI__builtin_neon_vsetq_lane_f32:
7742 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
7743
7744 case NEON::BI__builtin_neon_vsha1h_u32:
7745 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops,
7746 "vsha1h");
7747 case NEON::BI__builtin_neon_vsha1cq_u32:
7748 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops,
7749 "vsha1h");
7750 case NEON::BI__builtin_neon_vsha1pq_u32:
7751 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops,
7752 "vsha1h");
7753 case NEON::BI__builtin_neon_vsha1mq_u32:
7754 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops,
7755 "vsha1h");
7756
7757 case NEON::BI__builtin_neon_vcvth_bf16_f32: {
7758 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vcvtbfp2bf), Ops,
7759 "vcvtbfp2bf");
7760 }
7761
7762 // The ARM _MoveToCoprocessor builtins put the input register value as
7763 // the first argument, but the LLVM intrinsic expects it as the third one.
7764 case ARM::BI_MoveToCoprocessor:
7765 case ARM::BI_MoveToCoprocessor2: {
7766 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI_MoveToCoprocessor ?
7767 Intrinsic::arm_mcr : Intrinsic::arm_mcr2);
7768 return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0],
7769 Ops[3], Ops[4], Ops[5]});
7770 }
7771 }
7772
7773 // Get the last argument, which specifies the vector type.
7774 assert(HasExtraArg)(static_cast <bool> (HasExtraArg) ? void (0) : __assert_fail
("HasExtraArg", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 7774, __extension__ __PRETTY_FUNCTION__))
;
7775 const Expr *Arg = E->getArg(E->getNumArgs()-1);
7776 Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(getContext());
7777 if (!Result)
7778 return nullptr;
7779
7780 if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
7781 BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
7782 // Determine the overloaded type of this builtin.
7783 llvm::Type *Ty;
7784 if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
7785 Ty = FloatTy;
7786 else
7787 Ty = DoubleTy;
7788
7789 // Determine whether this is an unsigned conversion or not.
7790 bool usgn = Result->getZExtValue() == 1;
7791 unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
7792
7793 // Call the appropriate intrinsic.
7794 Function *F = CGM.getIntrinsic(Int, Ty);
7795 return Builder.CreateCall(F, Ops, "vcvtr");
7796 }
7797
7798 // Determine the type of this overloaded NEON intrinsic.
7799 NeonTypeFlags Type = Result->getZExtValue();
7800 bool usgn = Type.isUnsigned();
7801 bool rightShift = false;
7802
7803 llvm::FixedVectorType *VTy =
7804 GetNeonType(this, Type, getTarget().hasLegalHalfType(), false,
7805 getTarget().hasBFloat16Type());
7806 llvm::Type *Ty = VTy;
7807 if (!Ty)
7808 return nullptr;
7809
7810 // Many NEON builtins have identical semantics and uses in ARM and
7811 // AArch64. Emit these in a single function.
7812 auto IntrinsicMap = makeArrayRef(ARMSIMDIntrinsicMap);
7813 const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap(
7814 IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted);
7815 if (Builtin)
7816 return EmitCommonNeonBuiltinExpr(
7817 Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
7818 Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1, Arch);
7819
7820 unsigned Int;
7821 switch (BuiltinID) {
7822 default: return nullptr;
7823 case NEON::BI__builtin_neon_vld1q_lane_v:
7824 // Handle 64-bit integer elements as a special case. Use shuffles of
7825 // one-element vectors to avoid poor code for i64 in the backend.
7826 if (VTy->getElementType()->isIntegerTy(64)) {
7827 // Extract the other lane.
7828 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7829 int Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
7830 Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
7831 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
7832 // Load the value as a one-element vector.
7833 Ty = llvm::FixedVectorType::get(VTy->getElementType(), 1);
7834 llvm::Type *Tys[] = {Ty, Int8PtrTy};
7835 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys);
7836 Value *Align = getAlignmentValue32(PtrOp0);
7837 Value *Ld = Builder.CreateCall(F, {Ops[0], Align});
7838 // Combine them.
7839 int Indices[] = {1 - Lane, Lane};
7840 return Builder.CreateShuffleVector(Ops[1], Ld, Indices, "vld1q_lane");
7841 }
7842 LLVM_FALLTHROUGH[[gnu::fallthrough]];
7843 case NEON::BI__builtin_neon_vld1_lane_v: {
7844 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7845 PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType());
7846 Value *Ld = Builder.CreateLoad(PtrOp0);
7847 return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
7848 }
7849 case NEON::BI__builtin_neon_vqrshrn_n_v:
7850 Int =
7851 usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
7852 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
7853 1, true);
7854 case NEON::BI__builtin_neon_vqrshrun_n_v:
7855 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
7856 Ops, "vqrshrun_n", 1, true);
7857 case NEON::BI__builtin_neon_vqshrn_n_v:
7858 Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
7859 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
7860 1, true);
7861 case NEON::BI__builtin_neon_vqshrun_n_v:
7862 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
7863 Ops, "vqshrun_n", 1, true);
7864 case NEON::BI__builtin_neon_vrecpe_v:
7865 case NEON::BI__builtin_neon_vrecpeq_v:
7866 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
7867 Ops, "vrecpe");
7868 case NEON::BI__builtin_neon_vrshrn_n_v:
7869 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
7870 Ops, "vrshrn_n", 1, true);
7871 case NEON::BI__builtin_neon_vrsra_n_v:
7872 case NEON::BI__builtin_neon_vrsraq_n_v:
7873 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7874 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7875 Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
7876 Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
7877 Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]});
7878 return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
7879 case NEON::BI__builtin_neon_vsri_n_v:
7880 case NEON::BI__builtin_neon_vsriq_n_v:
7881 rightShift = true;
7882 LLVM_FALLTHROUGH[[gnu::fallthrough]];
7883 case NEON::BI__builtin_neon_vsli_n_v:
7884 case NEON::BI__builtin_neon_vsliq_n_v:
7885 Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
7886 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
7887 Ops, "vsli_n");
7888 case NEON::BI__builtin_neon_vsra_n_v:
7889 case NEON::BI__builtin_neon_vsraq_n_v:
7890 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7891 Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
7892 return Builder.CreateAdd(Ops[0], Ops[1]);
7893 case NEON::BI__builtin_neon_vst1q_lane_v:
7894 // Handle 64-bit integer elements as a special case. Use a shuffle to get
7895 // a one-element vector and avoid poor code for i64 in the backend.
7896 if (VTy->getElementType()->isIntegerTy(64)) {
7897 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7898 Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
7899 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
7900 Ops[2] = getAlignmentValue32(PtrOp0);
7901 llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()};
7902 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
7903 Tys), Ops);
7904 }
7905 LLVM_FALLTHROUGH[[gnu::fallthrough]];
7906 case NEON::BI__builtin_neon_vst1_lane_v: {
7907 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7908 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
7909 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
7910 auto St = Builder.CreateStore(Ops[1], Builder.CreateBitCast(PtrOp0, Ty));
7911 return St;
7912 }
7913 case NEON::BI__builtin_neon_vtbl1_v:
7914 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
7915 Ops, "vtbl1");
7916 case NEON::BI__builtin_neon_vtbl2_v:
7917 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
7918 Ops, "vtbl2");
7919 case NEON::BI__builtin_neon_vtbl3_v:
7920 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
7921 Ops, "vtbl3");
7922 case NEON::BI__builtin_neon_vtbl4_v:
7923 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
7924 Ops, "vtbl4");
7925 case NEON::BI__builtin_neon_vtbx1_v:
7926 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
7927 Ops, "vtbx1");
7928 case NEON::BI__builtin_neon_vtbx2_v:
7929 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
7930 Ops, "vtbx2");
7931 case NEON::BI__builtin_neon_vtbx3_v:
7932 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
7933 Ops, "vtbx3");
7934 case NEON::BI__builtin_neon_vtbx4_v:
7935 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
7936 Ops, "vtbx4");
7937 }
7938}
7939
7940template<typename Integer>
7941static Integer GetIntegerConstantValue(const Expr *E, ASTContext &Context) {
7942 return E->getIntegerConstantExpr(Context)->getExtValue();
7943}
7944
7945static llvm::Value *SignOrZeroExtend(CGBuilderTy &Builder, llvm::Value *V,
7946 llvm::Type *T, bool Unsigned) {
7947 // Helper function called by Tablegen-constructed ARM MVE builtin codegen,
7948 // which finds it convenient to specify signed/unsigned as a boolean flag.
7949 return Unsigned ? Builder.CreateZExt(V, T) : Builder.CreateSExt(V, T);
7950}
7951
7952static llvm::Value *MVEImmediateShr(CGBuilderTy &Builder, llvm::Value *V,
7953 uint32_t Shift, bool Unsigned) {
7954 // MVE helper function for integer shift right. This must handle signed vs
7955 // unsigned, and also deal specially with the case where the shift count is
7956 // equal to the lane size. In LLVM IR, an LShr with that parameter would be
7957 // undefined behavior, but in MVE it's legal, so we must convert it to code
7958 // that is not undefined in IR.
7959 unsigned LaneBits = cast<llvm::VectorType>(V->getType())
7960 ->getElementType()
7961 ->getPrimitiveSizeInBits();
7962 if (Shift == LaneBits) {
7963 // An unsigned shift of the full lane size always generates zero, so we can
7964 // simply emit a zero vector. A signed shift of the full lane size does the
7965 // same thing as shifting by one bit fewer.
7966 if (Unsigned)
7967 return llvm::Constant::getNullValue(V->getType());
7968 else
7969 --Shift;
7970 }
7971 return Unsigned ? Builder.CreateLShr(V, Shift) : Builder.CreateAShr(V, Shift);
7972}
7973
7974static llvm::Value *ARMMVEVectorSplat(CGBuilderTy &Builder, llvm::Value *V) {
7975 // MVE-specific helper function for a vector splat, which infers the element
7976 // count of the output vector by knowing that MVE vectors are all 128 bits
7977 // wide.
7978 unsigned Elements = 128 / V->getType()->getPrimitiveSizeInBits();
7979 return Builder.CreateVectorSplat(Elements, V);
7980}
7981
7982static llvm::Value *ARMMVEVectorReinterpret(CGBuilderTy &Builder,
7983 CodeGenFunction *CGF,
7984 llvm::Value *V,
7985 llvm::Type *DestType) {
7986 // Convert one MVE vector type into another by reinterpreting its in-register
7987 // format.
7988 //
7989 // Little-endian, this is identical to a bitcast (which reinterprets the
7990 // memory format). But big-endian, they're not necessarily the same, because
7991 // the register and memory formats map to each other differently depending on
7992 // the lane size.
7993 //
7994 // We generate a bitcast whenever we can (if we're little-endian, or if the
7995 // lane sizes are the same anyway). Otherwise we fall back to an IR intrinsic
7996 // that performs the different kind of reinterpretation.
7997 if (CGF->getTarget().isBigEndian() &&
7998 V->getType()->getScalarSizeInBits() != DestType->getScalarSizeInBits()) {
7999 return Builder.CreateCall(
8000 CGF->CGM.getIntrinsic(Intrinsic::arm_mve_vreinterpretq,
8001 {DestType, V->getType()}),
8002 V);
8003 } else {
8004 return Builder.CreateBitCast(V, DestType);
8005 }
8006}
8007
8008static llvm::Value *VectorUnzip(CGBuilderTy &Builder, llvm::Value *V, bool Odd) {
8009 // Make a shufflevector that extracts every other element of a vector (evens
8010 // or odds, as desired).
8011 SmallVector<int, 16> Indices;
8012 unsigned InputElements =
8013 cast<llvm::FixedVectorType>(V->getType())->getNumElements();
8014 for (unsigned i = 0; i < InputElements; i += 2)
8015 Indices.push_back(i + Odd);
8016 return Builder.CreateShuffleVector(V, Indices);
8017}
8018
8019static llvm::Value *VectorZip(CGBuilderTy &Builder, llvm::Value *V0,
8020 llvm::Value *V1) {
8021 // Make a shufflevector that interleaves two vectors element by element.
8022 assert(V0->getType() == V1->getType() && "Can't zip different vector types")(static_cast <bool> (V0->getType() == V1->getType
() && "Can't zip different vector types") ? void (0) :
__assert_fail ("V0->getType() == V1->getType() && \"Can't zip different vector types\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 8022, __extension__ __PRETTY_FUNCTION__))
;
8023 SmallVector<int, 16> Indices;
8024 unsigned InputElements =
8025 cast<llvm::FixedVectorType>(V0->getType())->getNumElements();
8026 for (unsigned i = 0; i < InputElements; i++) {
8027 Indices.push_back(i);
8028 Indices.push_back(i + InputElements);
8029 }
8030 return Builder.CreateShuffleVector(V0, V1, Indices);
8031}
8032
8033template<unsigned HighBit, unsigned OtherBits>
8034static llvm::Value *ARMMVEConstantSplat(CGBuilderTy &Builder, llvm::Type *VT) {
8035 // MVE-specific helper function to make a vector splat of a constant such as
8036 // UINT_MAX or INT_MIN, in which all bits below the highest one are equal.
8037 llvm::Type *T = cast<llvm::VectorType>(VT)->getElementType();
8038 unsigned LaneBits = T->getPrimitiveSizeInBits();
8039 uint32_t Value = HighBit << (LaneBits - 1);
8040 if (OtherBits)
8041 Value |= (1UL << (LaneBits - 1)) - 1;
8042 llvm::Value *Lane = llvm::ConstantInt::get(T, Value);
8043 return ARMMVEVectorSplat(Builder, Lane);
8044}
8045
8046static llvm::Value *ARMMVEVectorElementReverse(CGBuilderTy &Builder,
8047 llvm::Value *V,
8048 unsigned ReverseWidth) {
8049 // MVE-specific helper function which reverses the elements of a
8050 // vector within every (ReverseWidth)-bit collection of lanes.
8051 SmallVector<int, 16> Indices;
8052 unsigned LaneSize = V->getType()->getScalarSizeInBits();
8053 unsigned Elements = 128 / LaneSize;
8054 unsigned Mask = ReverseWidth / LaneSize - 1;
8055 for (unsigned i = 0; i < Elements; i++)
8056 Indices.push_back(i ^ Mask);
8057 return Builder.CreateShuffleVector(V, Indices);
8058}
8059
8060Value *CodeGenFunction::EmitARMMVEBuiltinExpr(unsigned BuiltinID,
8061 const CallExpr *E,
8062 ReturnValueSlot ReturnValue,
8063 llvm::Triple::ArchType Arch) {
8064 enum class CustomCodeGen { VLD24, VST24 } CustomCodeGenType;
8065 Intrinsic::ID IRIntr;
8066 unsigned NumVectors;
8067
8068 // Code autogenerated by Tablegen will handle all the simple builtins.
8069 switch (BuiltinID) {
8070 #include "clang/Basic/arm_mve_builtin_cg.inc"
8071
8072 // If we didn't match an MVE builtin id at all, go back to the
8073 // main EmitARMBuiltinExpr.
8074 default:
8075 return nullptr;
8076 }
8077
8078 // Anything that breaks from that switch is an MVE builtin that
8079 // needs handwritten code to generate.
8080
8081 switch (CustomCodeGenType) {
8082
8083 case CustomCodeGen::VLD24: {
8084 llvm::SmallVector<Value *, 4> Ops;
8085 llvm::SmallVector<llvm::Type *, 4> Tys;
8086
8087 auto MvecCType = E->getType();
8088 auto MvecLType = ConvertType(MvecCType);
8089 assert(MvecLType->isStructTy() &&(static_cast <bool> (MvecLType->isStructTy() &&
"Return type for vld[24]q should be a struct") ? void (0) : __assert_fail
("MvecLType->isStructTy() && \"Return type for vld[24]q should be a struct\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 8090, __extension__ __PRETTY_FUNCTION__))
8090 "Return type for vld[24]q should be a struct")(static_cast <bool> (MvecLType->isStructTy() &&
"Return type for vld[24]q should be a struct") ? void (0) : __assert_fail
("MvecLType->isStructTy() && \"Return type for vld[24]q should be a struct\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 8090, __extension__ __PRETTY_FUNCTION__))
;
8091 assert(MvecLType->getStructNumElements() == 1 &&(static_cast <bool> (MvecLType->getStructNumElements
() == 1 && "Return-type struct for vld[24]q should have one element"
) ? void (0) : __assert_fail ("MvecLType->getStructNumElements() == 1 && \"Return-type struct for vld[24]q should have one element\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 8092, __extension__ __PRETTY_FUNCTION__))
8092 "Return-type struct for vld[24]q should have one element")(static_cast <bool> (MvecLType->getStructNumElements
() == 1 && "Return-type struct for vld[24]q should have one element"
) ? void (0) : __assert_fail ("MvecLType->getStructNumElements() == 1 && \"Return-type struct for vld[24]q should have one element\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 8092, __extension__ __PRETTY_FUNCTION__))
;
8093 auto MvecLTypeInner = MvecLType->getStructElementType(0);
8094 assert(MvecLTypeInner->isArrayTy() &&(static_cast <bool> (MvecLTypeInner->isArrayTy() &&
"Return-type struct for vld[24]q should contain an array") ?
void (0) : __assert_fail ("MvecLTypeInner->isArrayTy() && \"Return-type struct for vld[24]q should contain an array\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 8095, __extension__ __PRETTY_FUNCTION__))
8095 "Return-type struct for vld[24]q should contain an array")(static_cast <bool> (MvecLTypeInner->isArrayTy() &&
"Return-type struct for vld[24]q should contain an array") ?
void (0) : __assert_fail ("MvecLTypeInner->isArrayTy() && \"Return-type struct for vld[24]q should contain an array\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 8095, __extension__ __PRETTY_FUNCTION__))
;
8096 assert(MvecLTypeInner->getArrayNumElements() == NumVectors &&(static_cast <bool> (MvecLTypeInner->getArrayNumElements
() == NumVectors && "Array member of return-type struct vld[24]q has wrong length"
) ? void (0) : __assert_fail ("MvecLTypeInner->getArrayNumElements() == NumVectors && \"Array member of return-type struct vld[24]q has wrong length\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 8097, __extension__ __PRETTY_FUNCTION__))
8097 "Array member of return-type struct vld[24]q has wrong length")(static_cast <bool> (MvecLTypeInner->getArrayNumElements
() == NumVectors && "Array member of return-type struct vld[24]q has wrong length"
) ? void (0) : __assert_fail ("MvecLTypeInner->getArrayNumElements() == NumVectors && \"Array member of return-type struct vld[24]q has wrong length\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 8097, __extension__ __PRETTY_FUNCTION__))
;
8098 auto VecLType = MvecLTypeInner->getArrayElementType();
8099
8100 Tys.push_back(VecLType);
8101
8102 auto Addr = E->getArg(0);
8103 Ops.push_back(EmitScalarExpr(Addr));
8104 Tys.push_back(ConvertType(Addr->getType()));
8105
8106 Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys));
8107 Value *LoadResult = Builder.CreateCall(F, Ops);
8108 Value *MvecOut = UndefValue::get(MvecLType);
8109 for (unsigned i = 0; i < NumVectors; ++i) {
8110 Value *Vec = Builder.CreateExtractValue(LoadResult, i);
8111 MvecOut = Builder.CreateInsertValue(MvecOut, Vec, {0, i});
8112 }
8113
8114 if (ReturnValue.isNull())
8115 return MvecOut;
8116 else
8117 return Builder.CreateStore(MvecOut, ReturnValue.getValue());
8118 }
8119
8120 case CustomCodeGen::VST24: {
8121 llvm::SmallVector<Value *, 4> Ops;
8122 llvm::SmallVector<llvm::Type *, 4> Tys;
8123
8124 auto Addr = E->getArg(0);
8125 Ops.push_back(EmitScalarExpr(Addr));
8126 Tys.push_back(ConvertType(Addr->getType()));
8127
8128 auto MvecCType = E->getArg(1)->getType();
8129 auto MvecLType = ConvertType(MvecCType);
8130 assert(MvecLType->isStructTy() && "Data type for vst2q should be a struct")(static_cast <bool> (MvecLType->isStructTy() &&
"Data type for vst2q should be a struct") ? void (0) : __assert_fail
("MvecLType->isStructTy() && \"Data type for vst2q should be a struct\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 8130, __extension__ __PRETTY_FUNCTION__))
;
8131 assert(MvecLType->getStructNumElements() == 1 &&(static_cast <bool> (MvecLType->getStructNumElements
() == 1 && "Data-type struct for vst2q should have one element"
) ? void (0) : __assert_fail ("MvecLType->getStructNumElements() == 1 && \"Data-type struct for vst2q should have one element\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 8132, __extension__ __PRETTY_FUNCTION__))
8132 "Data-type struct for vst2q should have one element")(static_cast <bool> (MvecLType->getStructNumElements
() == 1 && "Data-type struct for vst2q should have one element"
) ? void (0) : __assert_fail ("MvecLType->getStructNumElements() == 1 && \"Data-type struct for vst2q should have one element\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 8132, __extension__ __PRETTY_FUNCTION__))
;
8133 auto MvecLTypeInner = MvecLType->getStructElementType(0);
8134 assert(MvecLTypeInner->isArrayTy() &&(static_cast <bool> (MvecLTypeInner->isArrayTy() &&
"Data-type struct for vst2q should contain an array") ? void
(0) : __assert_fail ("MvecLTypeInner->isArrayTy() && \"Data-type struct for vst2q should contain an array\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 8135, __extension__ __PRETTY_FUNCTION__))
8135 "Data-type struct for vst2q should contain an array")(static_cast <bool> (MvecLTypeInner->isArrayTy() &&
"Data-type struct for vst2q should contain an array") ? void
(0) : __assert_fail ("MvecLTypeInner->isArrayTy() && \"Data-type struct for vst2q should contain an array\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 8135, __extension__ __PRETTY_FUNCTION__))
;
8136 assert(MvecLTypeInner->getArrayNumElements() == NumVectors &&(static_cast <bool> (MvecLTypeInner->getArrayNumElements
() == NumVectors && "Array member of return-type struct vld[24]q has wrong length"
) ? void (0) : __assert_fail ("MvecLTypeInner->getArrayNumElements() == NumVectors && \"Array member of return-type struct vld[24]q has wrong length\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 8137, __extension__ __PRETTY_FUNCTION__))
8137 "Array member of return-type struct vld[24]q has wrong length")(static_cast <bool> (MvecLTypeInner->getArrayNumElements
() == NumVectors && "Array member of return-type struct vld[24]q has wrong length"
) ? void (0) : __assert_fail ("MvecLTypeInner->getArrayNumElements() == NumVectors && \"Array member of return-type struct vld[24]q has wrong length\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 8137, __extension__ __PRETTY_FUNCTION__))
;
8138 auto VecLType = MvecLTypeInner->getArrayElementType();
8139
8140 Tys.push_back(VecLType);
8141
8142 AggValueSlot MvecSlot = CreateAggTemp(MvecCType);
8143 EmitAggExpr(E->getArg(1), MvecSlot);
8144 auto Mvec = Builder.CreateLoad(MvecSlot.getAddress());
8145 for (unsigned i = 0; i < NumVectors; i++)
8146 Ops.push_back(Builder.CreateExtractValue(Mvec, {0, i}));
8147
8148 Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys));
8149 Value *ToReturn = nullptr;
8150 for (unsigned i = 0; i < NumVectors; i++) {
8151 Ops.push_back(llvm::ConstantInt::get(Int32Ty, i));
8152 ToReturn = Builder.CreateCall(F, Ops);
8153 Ops.pop_back();
8154 }
8155 return ToReturn;
8156 }
8157 }
8158 llvm_unreachable("unknown custom codegen type.")::llvm::llvm_unreachable_internal("unknown custom codegen type."
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 8158)
;
8159}
8160
8161Value *CodeGenFunction::EmitARMCDEBuiltinExpr(unsigned BuiltinID,
8162 const CallExpr *E,
8163 ReturnValueSlot ReturnValue,
8164 llvm::Triple::ArchType Arch) {
8165 switch (BuiltinID) {
8166 default:
8167 return nullptr;
8168#include "clang/Basic/arm_cde_builtin_cg.inc"
8169 }
8170}
8171
8172static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID,
8173 const CallExpr *E,
8174 SmallVectorImpl<Value *> &Ops,
8175 llvm::Triple::ArchType Arch) {
8176 unsigned int Int = 0;
8177 const char *s = nullptr;
8178
8179 switch (BuiltinID) {
8180 default:
8181 return nullptr;
8182 case NEON::BI__builtin_neon_vtbl1_v:
8183 case NEON::BI__builtin_neon_vqtbl1_v:
8184 case NEON::BI__builtin_neon_vqtbl1q_v:
8185 case NEON::BI__builtin_neon_vtbl2_v:
8186 case NEON::BI__builtin_neon_vqtbl2_v:
8187 case NEON::BI__builtin_neon_vqtbl2q_v:
8188 case NEON::BI__builtin_neon_vtbl3_v:
8189 case NEON::BI__builtin_neon_vqtbl3_v:
8190 case NEON::BI__builtin_neon_vqtbl3q_v:
8191 case NEON::BI__builtin_neon_vtbl4_v:
8192 case NEON::BI__builtin_neon_vqtbl4_v:
8193 case NEON::BI__builtin_neon_vqtbl4q_v:
8194 break;
8195 case NEON::BI__builtin_neon_vtbx1_v:
8196 case NEON::BI__builtin_neon_vqtbx1_v:
8197 case NEON::BI__builtin_neon_vqtbx1q_v:
8198 case NEON::BI__builtin_neon_vtbx2_v:
8199 case NEON::BI__builtin_neon_vqtbx2_v:
8200 case NEON::BI__builtin_neon_vqtbx2q_v:
8201 case NEON::BI__builtin_neon_vtbx3_v:
8202 case NEON::BI__builtin_neon_vqtbx3_v:
8203 case NEON::BI__builtin_neon_vqtbx3q_v:
8204 case NEON::BI__builtin_neon_vtbx4_v:
8205 case NEON::BI__builtin_neon_vqtbx4_v:
8206 case NEON::BI__builtin_neon_vqtbx4q_v:
8207 break;
8208 }
8209
8210 assert(E->getNumArgs() >= 3)(static_cast <bool> (E->getNumArgs() >= 3) ? void
(0) : __assert_fail ("E->getNumArgs() >= 3", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 8210, __extension__ __PRETTY_FUNCTION__))
;
8211
8212 // Get the last argument, which specifies the vector type.
8213 const Expr *Arg = E->getArg(E->getNumArgs() - 1);
8214 Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(CGF.getContext());
8215 if (!Result)
8216 return nullptr;
8217
8218 // Determine the type of this overloaded NEON intrinsic.
8219 NeonTypeFlags Type = Result->getZExtValue();
8220 llvm::FixedVectorType *Ty = GetNeonType(&CGF, Type);
8221 if (!Ty)
8222 return nullptr;
8223
8224 CodeGen::CGBuilderTy &Builder = CGF.Builder;
8225
8226 // AArch64 scalar builtins are not overloaded, they do not have an extra
8227 // argument that specifies the vector type, need to handle each case.
8228 switch (BuiltinID) {
8229 case NEON::BI__builtin_neon_vtbl1_v: {
8230 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 1), nullptr,
8231 Ops[1], Ty, Intrinsic::aarch64_neon_tbl1,
8232 "vtbl1");
8233 }
8234 case NEON::BI__builtin_neon_vtbl2_v: {
8235 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 2), nullptr,
8236 Ops[2], Ty, Intrinsic::aarch64_neon_tbl1,
8237 "vtbl1");
8238 }
8239 case NEON::BI__builtin_neon_vtbl3_v: {
8240 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 3), nullptr,
8241 Ops[3], Ty, Intrinsic::aarch64_neon_tbl2,
8242 "vtbl2");
8243 }
8244 case NEON::BI__builtin_neon_vtbl4_v: {
8245 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 4), nullptr,
8246 Ops[4], Ty, Intrinsic::aarch64_neon_tbl2,
8247 "vtbl2");
8248 }
8249 case NEON::BI__builtin_neon_vtbx1_v: {
8250 Value *TblRes =
8251 packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 1), nullptr, Ops[2],
8252 Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1");
8253
8254 llvm::Constant *EightV = ConstantInt::get(Ty, 8);
8255 Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV);
8256 CmpRes = Builder.CreateSExt(CmpRes, Ty);
8257
8258 Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
8259 Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
8260 return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
8261 }
8262 case NEON::BI__builtin_neon_vtbx2_v: {
8263 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 2), Ops[0],
8264 Ops[3], Ty, Intrinsic::aarch64_neon_tbx1,
8265 "vtbx1");
8266 }
8267 case NEON::BI__builtin_neon_vtbx3_v: {
8268 Value *TblRes =
8269 packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 3), nullptr, Ops[4],
8270 Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2");
8271
8272 llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24);
8273 Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4],
8274 TwentyFourV);
8275 CmpRes = Builder.CreateSExt(CmpRes, Ty);
8276
8277 Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
8278 Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
8279 return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
8280 }
8281 case NEON::BI__builtin_neon_vtbx4_v: {
8282 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 4), Ops[0],
8283 Ops[5], Ty, Intrinsic::aarch64_neon_tbx2,
8284 "vtbx2");
8285 }
8286 case NEON::BI__builtin_neon_vqtbl1_v:
8287 case NEON::BI__builtin_neon_vqtbl1q_v:
8288 Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break;
8289 case NEON::BI__builtin_neon_vqtbl2_v:
8290 case NEON::BI__builtin_neon_vqtbl2q_v: {
8291 Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break;
8292 case NEON::BI__builtin_neon_vqtbl3_v:
8293 case NEON::BI__builtin_neon_vqtbl3q_v:
8294 Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break;
8295 case NEON::BI__builtin_neon_vqtbl4_v:
8296 case NEON::BI__builtin_neon_vqtbl4q_v:
8297 Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break;
8298 case NEON::BI__builtin_neon_vqtbx1_v:
8299 case NEON::BI__builtin_neon_vqtbx1q_v:
8300 Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break;
8301 case NEON::BI__builtin_neon_vqtbx2_v:
8302 case NEON::BI__builtin_neon_vqtbx2q_v:
8303 Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break;
8304 case NEON::BI__builtin_neon_vqtbx3_v:
8305 case NEON::BI__builtin_neon_vqtbx3q_v:
8306 Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break;
8307 case NEON::BI__builtin_neon_vqtbx4_v:
8308 case NEON::BI__builtin_neon_vqtbx4q_v:
8309 Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break;
8310 }
8311 }
8312
8313 if (!Int)
8314 return nullptr;
8315
8316 Function *F = CGF.CGM.getIntrinsic(Int, Ty);
8317 return CGF.EmitNeonCall(F, Ops, s);
8318}
8319
8320Value *CodeGenFunction::vectorWrapScalar16(Value *Op) {
8321 auto *VTy = llvm::FixedVectorType::get(Int16Ty, 4);
8322 Op = Builder.CreateBitCast(Op, Int16Ty);
8323 Value *V = UndefValue::get(VTy);
8324 llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
8325 Op = Builder.CreateInsertElement(V, Op, CI);
8326 return Op;
8327}
8328
8329/// SVEBuiltinMemEltTy - Returns the memory element type for this memory
8330/// access builtin. Only required if it can't be inferred from the base pointer
8331/// operand.
8332llvm::Type *CodeGenFunction::SVEBuiltinMemEltTy(SVETypeFlags TypeFlags) {
8333 switch (TypeFlags.getMemEltType()) {
8334 case SVETypeFlags::MemEltTyDefault:
8335 return getEltType(TypeFlags);
8336 case SVETypeFlags::MemEltTyInt8:
8337 return Builder.getInt8Ty();
8338 case SVETypeFlags::MemEltTyInt16:
8339 return Builder.getInt16Ty();
8340 case SVETypeFlags::MemEltTyInt32:
8341 return Builder.getInt32Ty();
8342 case SVETypeFlags::MemEltTyInt64:
8343 return Builder.getInt64Ty();
8344 }
8345 llvm_unreachable("Unknown MemEltType")::llvm::llvm_unreachable_internal("Unknown MemEltType", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 8345)
;
8346}
8347
8348llvm::Type *CodeGenFunction::getEltType(SVETypeFlags TypeFlags) {
8349 switch (TypeFlags.getEltType()) {
8350 default:
8351 llvm_unreachable("Invalid SVETypeFlag!")::llvm::llvm_unreachable_internal("Invalid SVETypeFlag!", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 8351)
;
8352
8353 case SVETypeFlags::EltTyInt8:
8354 return Builder.getInt8Ty();
8355 case SVETypeFlags::EltTyInt16:
8356 return Builder.getInt16Ty();
8357 case SVETypeFlags::EltTyInt32:
8358 return Builder.getInt32Ty();
8359 case SVETypeFlags::EltTyInt64:
8360 return Builder.getInt64Ty();
8361
8362 case SVETypeFlags::EltTyFloat16:
8363 return Builder.getHalfTy();
8364 case SVETypeFlags::EltTyFloat32:
8365 return Builder.getFloatTy();
8366 case SVETypeFlags::EltTyFloat64:
8367 return Builder.getDoubleTy();
8368
8369 case SVETypeFlags::EltTyBFloat16:
8370 return Builder.getBFloatTy();
8371
8372 case SVETypeFlags::EltTyBool8:
8373 case SVETypeFlags::EltTyBool16:
8374 case SVETypeFlags::EltTyBool32:
8375 case SVETypeFlags::EltTyBool64:
8376 return Builder.getInt1Ty();
8377 }
8378}
8379
8380// Return the llvm predicate vector type corresponding to the specified element
8381// TypeFlags.
8382llvm::ScalableVectorType *
8383CodeGenFunction::getSVEPredType(SVETypeFlags TypeFlags) {
8384 switch (TypeFlags.getEltType()) {
8385 default: llvm_unreachable("Unhandled SVETypeFlag!")::llvm::llvm_unreachable_internal("Unhandled SVETypeFlag!", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 8385)
;
8386
8387 case SVETypeFlags::EltTyInt8:
8388 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
8389 case SVETypeFlags::EltTyInt16:
8390 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8391 case SVETypeFlags::EltTyInt32:
8392 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8393 case SVETypeFlags::EltTyInt64:
8394 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8395
8396 case SVETypeFlags::EltTyBFloat16:
8397 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8398 case SVETypeFlags::EltTyFloat16:
8399 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8400 case SVETypeFlags::EltTyFloat32:
8401 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8402 case SVETypeFlags::EltTyFloat64:
8403 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8404
8405 case SVETypeFlags::EltTyBool8:
8406 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
8407 case SVETypeFlags::EltTyBool16:
8408 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8409 case SVETypeFlags::EltTyBool32:
8410 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8411 case SVETypeFlags::EltTyBool64:
8412 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8413 }
8414}
8415
8416// Return the llvm vector type corresponding to the specified element TypeFlags.
8417llvm::ScalableVectorType *
8418CodeGenFunction::getSVEType(const SVETypeFlags &TypeFlags) {
8419 switch (TypeFlags.getEltType()) {
8420 default:
8421 llvm_unreachable("Invalid SVETypeFlag!")::llvm::llvm_unreachable_internal("Invalid SVETypeFlag!", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 8421)
;
8422
8423 case SVETypeFlags::EltTyInt8:
8424 return llvm::ScalableVectorType::get(Builder.getInt8Ty(), 16);
8425 case SVETypeFlags::EltTyInt16:
8426 return llvm::ScalableVectorType::get(Builder.getInt16Ty(), 8);
8427 case SVETypeFlags::EltTyInt32:
8428 return llvm::ScalableVectorType::get(Builder.getInt32Ty(), 4);
8429 case SVETypeFlags::EltTyInt64:
8430 return llvm::ScalableVectorType::get(Builder.getInt64Ty(), 2);
8431
8432 case SVETypeFlags::EltTyFloat16:
8433 return llvm::ScalableVectorType::get(Builder.getHalfTy(), 8);
8434 case SVETypeFlags::EltTyBFloat16:
8435 return llvm::ScalableVectorType::get(Builder.getBFloatTy(), 8);
8436 case SVETypeFlags::EltTyFloat32:
8437 return llvm::ScalableVectorType::get(Builder.getFloatTy(), 4);
8438 case SVETypeFlags::EltTyFloat64:
8439 return llvm::ScalableVectorType::get(Builder.getDoubleTy(), 2);
8440
8441 case SVETypeFlags::EltTyBool8:
8442 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
8443 case SVETypeFlags::EltTyBool16:
8444 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8445 case SVETypeFlags::EltTyBool32:
8446 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8447 case SVETypeFlags::EltTyBool64:
8448 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8449 }
8450}
8451
8452llvm::Value *CodeGenFunction::EmitSVEAllTruePred(SVETypeFlags TypeFlags) {
8453 Function *Ptrue =
8454 CGM.getIntrinsic(Intrinsic::aarch64_sve_ptrue, getSVEPredType(TypeFlags));
8455 return Builder.CreateCall(Ptrue, {Builder.getInt32(/*SV_ALL*/ 31)});
8456}
8457
8458constexpr unsigned SVEBitsPerBlock = 128;
8459
8460static llvm::ScalableVectorType *getSVEVectorForElementType(llvm::Type *EltTy) {
8461 unsigned NumElts = SVEBitsPerBlock / EltTy->getScalarSizeInBits();
8462 return llvm::ScalableVectorType::get(EltTy, NumElts);
8463}
8464
8465// Reinterpret the input predicate so that it can be used to correctly isolate
8466// the elements of the specified datatype.
8467Value *CodeGenFunction::EmitSVEPredicateCast(Value *Pred,
8468 llvm::ScalableVectorType *VTy) {
8469 auto *RTy = llvm::VectorType::get(IntegerType::get(getLLVMContext(), 1), VTy);
8470 if (Pred->getType() == RTy)
8471 return Pred;
8472
8473 unsigned IntID;
8474 llvm::Type *IntrinsicTy;
8475 switch (VTy->getMinNumElements()) {
8476 default:
8477 llvm_unreachable("unsupported element count!")::llvm::llvm_unreachable_internal("unsupported element count!"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 8477)
;
8478 case 2:
8479 case 4:
8480 case 8:
8481 IntID = Intrinsic::aarch64_sve_convert_from_svbool;
8482 IntrinsicTy = RTy;
8483 break;
8484 case 16:
8485 IntID = Intrinsic::aarch64_sve_convert_to_svbool;
8486 IntrinsicTy = Pred->getType();
8487 break;
8488 }
8489
8490 Function *F = CGM.getIntrinsic(IntID, IntrinsicTy);
8491 Value *C = Builder.CreateCall(F, Pred);
8492 assert(C->getType() == RTy && "Unexpected return type!")(static_cast <bool> (C->getType() == RTy && "Unexpected return type!"
) ? void (0) : __assert_fail ("C->getType() == RTy && \"Unexpected return type!\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 8492, __extension__ __PRETTY_FUNCTION__))
;
8493 return C;
8494}
8495
8496Value *CodeGenFunction::EmitSVEGatherLoad(SVETypeFlags TypeFlags,
8497 SmallVectorImpl<Value *> &Ops,
8498 unsigned IntID) {
8499 auto *ResultTy = getSVEType(TypeFlags);
8500 auto *OverloadedTy =
8501 llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), ResultTy);
8502
8503 // At the ACLE level there's only one predicate type, svbool_t, which is
8504 // mapped to <n x 16 x i1>. However, this might be incompatible with the
8505 // actual type being loaded. For example, when loading doubles (i64) the
8506 // predicated should be <n x 2 x i1> instead. At the IR level the type of
8507 // the predicate and the data being loaded must match. Cast accordingly.
8508 Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy);
8509
8510 Function *F = nullptr;
8511 if (Ops[1]->getType()->isVectorTy())
8512 // This is the "vector base, scalar offset" case. In order to uniquely
8513 // map this built-in to an LLVM IR intrinsic, we need both the return type
8514 // and the type of the vector base.
8515 F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[1]->getType()});
8516 else
8517 // This is the "scalar base, vector offset case". The type of the offset
8518 // is encoded in the name of the intrinsic. We only need to specify the
8519 // return type in order to uniquely map this built-in to an LLVM IR
8520 // intrinsic.
8521 F = CGM.getIntrinsic(IntID, OverloadedTy);
8522
8523 // Pass 0 when the offset is missing. This can only be applied when using
8524 // the "vector base" addressing mode for which ACLE allows no offset. The
8525 // corresponding LLVM IR always requires an offset.
8526 if (Ops.size() == 2) {
8527 assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset")(static_cast <bool> (Ops[1]->getType()->isVectorTy
() && "Scalar base requires an offset") ? void (0) : __assert_fail
("Ops[1]->getType()->isVectorTy() && \"Scalar base requires an offset\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 8527, __extension__ __PRETTY_FUNCTION__))
;
8528 Ops.push_back(ConstantInt::get(Int64Ty, 0));
8529 }
8530
8531 // For "vector base, scalar index" scale the index so that it becomes a
8532 // scalar offset.
8533 if (!TypeFlags.isByteIndexed() && Ops[1]->getType()->isVectorTy()) {
8534 unsigned BytesPerElt =
8535 OverloadedTy->getElementType()->getScalarSizeInBits() / 8;
8536 Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt);
8537 Ops[2] = Builder.CreateMul(Ops[2], Scale);
8538 }
8539
8540 Value *Call = Builder.CreateCall(F, Ops);
8541
8542 // The following sext/zext is only needed when ResultTy != OverloadedTy. In
8543 // other cases it's folded into a nop.
8544 return TypeFlags.isZExtReturn() ? Builder.CreateZExt(Call, ResultTy)
8545 : Builder.CreateSExt(Call, ResultTy);
8546}
8547
8548Value *CodeGenFunction::EmitSVEScatterStore(SVETypeFlags TypeFlags,
8549 SmallVectorImpl<Value *> &Ops,
8550 unsigned IntID) {
8551 auto *SrcDataTy = getSVEType(TypeFlags);
8552 auto *OverloadedTy =
8553 llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), SrcDataTy);
8554
8555 // In ACLE the source data is passed in the last argument, whereas in LLVM IR
8556 // it's the first argument. Move it accordingly.
8557 Ops.insert(Ops.begin(), Ops.pop_back_val());
8558
8559 Function *F = nullptr;
8560 if (Ops[2]->getType()->isVectorTy())
8561 // This is the "vector base, scalar offset" case. In order to uniquely
8562 // map this built-in to an LLVM IR intrinsic, we need both the return type
8563 // and the type of the vector base.
8564 F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[2]->getType()});
8565 else
8566 // This is the "scalar base, vector offset case". The type of the offset
8567 // is encoded in the name of the intrinsic. We only need to specify the
8568 // return type in order to uniquely map this built-in to an LLVM IR
8569 // intrinsic.
8570 F = CGM.getIntrinsic(IntID, OverloadedTy);
8571
8572 // Pass 0 when the offset is missing. This can only be applied when using
8573 // the "vector base" addressing mode for which ACLE allows no offset. The
8574 // corresponding LLVM IR always requires an offset.
8575 if (Ops.size() == 3) {
8576 assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset")(static_cast <bool> (Ops[1]->getType()->isVectorTy
() && "Scalar base requires an offset") ? void (0) : __assert_fail
("Ops[1]->getType()->isVectorTy() && \"Scalar base requires an offset\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 8576, __extension__ __PRETTY_FUNCTION__))
;
8577 Ops.push_back(ConstantInt::get(Int64Ty, 0));
8578 }
8579
8580 // Truncation is needed when SrcDataTy != OverloadedTy. In other cases it's
8581 // folded into a nop.
8582 Ops[0] = Builder.CreateTrunc(Ops[0], OverloadedTy);
8583
8584 // At the ACLE level there's only one predicate type, svbool_t, which is
8585 // mapped to <n x 16 x i1>. However, this might be incompatible with the
8586 // actual type being stored. For example, when storing doubles (i64) the
8587 // predicated should be <n x 2 x i1> instead. At the IR level the type of
8588 // the predicate and the data being stored must match. Cast accordingly.
8589 Ops[1] = EmitSVEPredicateCast(Ops[1], OverloadedTy);
8590
8591 // For "vector base, scalar index" scale the index so that it becomes a
8592 // scalar offset.
8593 if (!TypeFlags.isByteIndexed() && Ops[2]->getType()->isVectorTy()) {
8594 unsigned BytesPerElt =
8595 OverloadedTy->getElementType()->getScalarSizeInBits() / 8;
8596 Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt);
8597 Ops[3] = Builder.CreateMul(Ops[3], Scale);
8598 }
8599
8600 return Builder.CreateCall(F, Ops);
8601}
8602
8603Value *CodeGenFunction::EmitSVEGatherPrefetch(SVETypeFlags TypeFlags,
8604 SmallVectorImpl<Value *> &Ops,
8605 unsigned IntID) {
8606 // The gather prefetches are overloaded on the vector input - this can either
8607 // be the vector of base addresses or vector of offsets.
8608 auto *OverloadedTy = dyn_cast<llvm::ScalableVectorType>(Ops[1]->getType());
8609 if (!OverloadedTy)
8610 OverloadedTy = cast<llvm::ScalableVectorType>(Ops[2]->getType());
8611
8612 // Cast the predicate from svbool_t to the right number of elements.
8613 Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy);
8614
8615 // vector + imm addressing modes
8616 if (Ops[1]->getType()->isVectorTy()) {
8617 if (Ops.size() == 3) {
8618 // Pass 0 for 'vector+imm' when the index is omitted.
8619 Ops.push_back(ConstantInt::get(Int64Ty, 0));
8620
8621 // The sv_prfop is the last operand in the builtin and IR intrinsic.
8622 std::swap(Ops[2], Ops[3]);
8623 } else {
8624 // Index needs to be passed as scaled offset.
8625 llvm::Type *MemEltTy = SVEBuiltinMemEltTy(TypeFlags);
8626 unsigned BytesPerElt = MemEltTy->getPrimitiveSizeInBits() / 8;
8627 Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt);
8628 Ops[2] = Builder.CreateMul(Ops[2], Scale);
8629 }
8630 }
8631
8632 Function *F = CGM.getIntrinsic(IntID, OverloadedTy);
8633 return Builder.CreateCall(F, Ops);
8634}
8635
8636Value *CodeGenFunction::EmitSVEStructLoad(SVETypeFlags TypeFlags,
8637 SmallVectorImpl<Value*> &Ops,
8638 unsigned IntID) {
8639 llvm::ScalableVectorType *VTy = getSVEType(TypeFlags);
8640 auto VecPtrTy = llvm::PointerType::getUnqual(VTy);
8641 auto EltPtrTy = llvm::PointerType::getUnqual(VTy->getElementType());
8642
8643 unsigned N;
8644 switch (IntID) {
8645 case Intrinsic::aarch64_sve_ld2:
8646 N = 2;
8647 break;
8648 case Intrinsic::aarch64_sve_ld3:
8649 N = 3;
8650 break;
8651 case Intrinsic::aarch64_sve_ld4:
8652 N = 4;
8653 break;
8654 default:
8655 llvm_unreachable("unknown intrinsic!")::llvm::llvm_unreachable_internal("unknown intrinsic!", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 8655)
;
8656 }
8657 auto RetTy = llvm::VectorType::get(VTy->getElementType(),
8658 VTy->getElementCount() * N);
8659
8660 Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy);
8661 Value *BasePtr= Builder.CreateBitCast(Ops[1], VecPtrTy);
8662 Value *Offset = Ops.size() > 2 ? Ops[2] : Builder.getInt32(0);
8663 BasePtr = Builder.CreateGEP(VTy, BasePtr, Offset);
8664 BasePtr = Builder.CreateBitCast(BasePtr, EltPtrTy);
8665
8666 Function *F = CGM.getIntrinsic(IntID, {RetTy, Predicate->getType()});
8667 return Builder.CreateCall(F, { Predicate, BasePtr });
8668}
8669
8670Value *CodeGenFunction::EmitSVEStructStore(SVETypeFlags TypeFlags,
8671 SmallVectorImpl<Value*> &Ops,
8672 unsigned IntID) {
8673 llvm::ScalableVectorType *VTy = getSVEType(TypeFlags);
8674 auto VecPtrTy = llvm::PointerType::getUnqual(VTy);
8675 auto EltPtrTy = llvm::PointerType::getUnqual(VTy->getElementType());
8676
8677 unsigned N;
8678 switch (IntID) {
8679 case Intrinsic::aarch64_sve_st2:
8680 N = 2;
8681 break;
8682 case Intrinsic::aarch64_sve_st3:
8683 N = 3;
8684 break;
8685 case Intrinsic::aarch64_sve_st4:
8686 N = 4;
8687 break;
8688 default:
8689 llvm_unreachable("unknown intrinsic!")::llvm::llvm_unreachable_internal("unknown intrinsic!", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 8689)
;
8690 }
8691 auto TupleTy =
8692 llvm::VectorType::get(VTy->getElementType(), VTy->getElementCount() * N);
8693
8694 Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy);
8695 Value *BasePtr = Builder.CreateBitCast(Ops[1], VecPtrTy);
8696 Value *Offset = Ops.size() > 3 ? Ops[2] : Builder.getInt32(0);
8697 Value *Val = Ops.back();
8698 BasePtr = Builder.CreateGEP(VTy, BasePtr, Offset);
8699 BasePtr = Builder.CreateBitCast(BasePtr, EltPtrTy);
8700
8701 // The llvm.aarch64.sve.st2/3/4 intrinsics take legal part vectors, so we
8702 // need to break up the tuple vector.
8703 SmallVector<llvm::Value*, 5> Operands;
8704 Function *FExtr =
8705 CGM.getIntrinsic(Intrinsic::aarch64_sve_tuple_get, {VTy, TupleTy});
8706 for (unsigned I = 0; I < N; ++I)
8707 Operands.push_back(Builder.CreateCall(FExtr, {Val, Builder.getInt32(I)}));
8708 Operands.append({Predicate, BasePtr});
8709
8710 Function *F = CGM.getIntrinsic(IntID, { VTy });
8711 return Builder.CreateCall(F, Operands);
8712}
8713
8714// SVE2's svpmullb and svpmullt builtins are similar to the svpmullb_pair and
8715// svpmullt_pair intrinsics, with the exception that their results are bitcast
8716// to a wider type.
8717Value *CodeGenFunction::EmitSVEPMull(SVETypeFlags TypeFlags,
8718 SmallVectorImpl<Value *> &Ops,
8719 unsigned BuiltinID) {
8720 // Splat scalar operand to vector (intrinsics with _n infix)
8721 if (TypeFlags.hasSplatOperand()) {
8722 unsigned OpNo = TypeFlags.getSplatOperand();
8723 Ops[OpNo] = EmitSVEDupX(Ops[OpNo]);
8724 }
8725
8726 // The pair-wise function has a narrower overloaded type.
8727 Function *F = CGM.getIntrinsic(BuiltinID, Ops[0]->getType());
8728 Value *Call = Builder.CreateCall(F, {Ops[0], Ops[1]});
8729
8730 // Now bitcast to the wider result type.
8731 llvm::ScalableVectorType *Ty = getSVEType(TypeFlags);
8732 return EmitSVEReinterpret(Call, Ty);
8733}
8734
8735Value *CodeGenFunction::EmitSVEMovl(SVETypeFlags TypeFlags,
8736 ArrayRef<Value *> Ops, unsigned BuiltinID) {
8737 llvm::Type *OverloadedTy = getSVEType(TypeFlags);
8738 Function *F = CGM.getIntrinsic(BuiltinID, OverloadedTy);
8739 return Builder.CreateCall(F, {Ops[0], Builder.getInt32(0)});
8740}
8741
8742Value *CodeGenFunction::EmitSVEPrefetchLoad(SVETypeFlags TypeFlags,
8743 SmallVectorImpl<Value *> &Ops,
8744 unsigned BuiltinID) {
8745 auto *MemEltTy = SVEBuiltinMemEltTy(TypeFlags);
8746 auto *VectorTy = getSVEVectorForElementType(MemEltTy);
8747 auto *MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
8748
8749 Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
8750 Value *BasePtr = Ops[1];
8751
8752 // Implement the index operand if not omitted.
8753 if (Ops.size() > 3) {
8754 BasePtr = Builder.CreateBitCast(BasePtr, MemoryTy->getPointerTo());
8755 BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Ops[2]);
8756 }
8757
8758 // Prefetch intriniscs always expect an i8*
8759 BasePtr = Builder.CreateBitCast(BasePtr, llvm::PointerType::getUnqual(Int8Ty));
8760 Value *PrfOp = Ops.back();
8761
8762 Function *F = CGM.getIntrinsic(BuiltinID, Predicate->getType());
8763 return Builder.CreateCall(F, {Predicate, BasePtr, PrfOp});
8764}
8765
8766Value *CodeGenFunction::EmitSVEMaskedLoad(const CallExpr *E,
8767 llvm::Type *ReturnTy,
8768 SmallVectorImpl<Value *> &Ops,
8769 unsigned BuiltinID,
8770 bool IsZExtReturn) {
8771 QualType LangPTy = E->getArg(1)->getType();
8772 llvm::Type *MemEltTy = CGM.getTypes().ConvertType(
8773 LangPTy->castAs<PointerType>()->getPointeeType());
8774
8775 // The vector type that is returned may be different from the
8776 // eventual type loaded from memory.
8777 auto VectorTy = cast<llvm::ScalableVectorType>(ReturnTy);
8778 auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
8779
8780 Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
8781 Value *BasePtr = Builder.CreateBitCast(Ops[1], MemoryTy->getPointerTo());
8782 Value *Offset = Ops.size() > 2 ? Ops[2] : Builder.getInt32(0);
8783 BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Offset);
8784
8785 BasePtr = Builder.CreateBitCast(BasePtr, MemEltTy->getPointerTo());
8786 Function *F = CGM.getIntrinsic(BuiltinID, MemoryTy);
8787 Value *Load = Builder.CreateCall(F, {Predicate, BasePtr});
8788
8789 return IsZExtReturn ? Builder.CreateZExt(Load, VectorTy)
8790 : Builder.CreateSExt(Load, VectorTy);
8791}
8792
8793Value *CodeGenFunction::EmitSVEMaskedStore(const CallExpr *E,
8794 SmallVectorImpl<Value *> &Ops,
8795 unsigned BuiltinID) {
8796 QualType LangPTy = E->getArg(1)->getType();
8797 llvm::Type *MemEltTy = CGM.getTypes().ConvertType(
8798 LangPTy->castAs<PointerType>()->getPointeeType());
8799
8800 // The vector type that is stored may be different from the
8801 // eventual type stored to memory.
8802 auto VectorTy = cast<llvm::ScalableVectorType>(Ops.back()->getType());
8803 auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
8804
8805 Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
8806 Value *BasePtr = Builder.CreateBitCast(Ops[1], MemoryTy->getPointerTo());
8807 Value *Offset = Ops.size() == 4 ? Ops[2] : Builder.getInt32(0);
8808 BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Offset);
8809
8810 // Last value is always the data
8811 llvm::Value *Val = Builder.CreateTrunc(Ops.back(), MemoryTy);
8812
8813 BasePtr = Builder.CreateBitCast(BasePtr, MemEltTy->getPointerTo());
8814 Function *F = CGM.getIntrinsic(BuiltinID, MemoryTy);
8815 return Builder.CreateCall(F, {Val, Predicate, BasePtr});
8816}
8817
8818// Limit the usage of scalable llvm IR generated by the ACLE by using the
8819// sve dup.x intrinsic instead of IRBuilder::CreateVectorSplat.
8820Value *CodeGenFunction::EmitSVEDupX(Value *Scalar, llvm::Type *Ty) {
8821 auto F = CGM.getIntrinsic(Intrinsic::aarch64_sve_dup_x, Ty);
8822 return Builder.CreateCall(F, Scalar);
8823}
8824
8825Value *CodeGenFunction::EmitSVEDupX(Value* Scalar) {
8826 return EmitSVEDupX(Scalar, getSVEVectorForElementType(Scalar->getType()));
8827}
8828
8829Value *CodeGenFunction::EmitSVEReinterpret(Value *Val, llvm::Type *Ty) {
8830 // FIXME: For big endian this needs an additional REV, or needs a separate
8831 // intrinsic that is code-generated as a no-op, because the LLVM bitcast
8832 // instruction is defined as 'bitwise' equivalent from memory point of
8833 // view (when storing/reloading), whereas the svreinterpret builtin
8834 // implements bitwise equivalent cast from register point of view.
8835 // LLVM CodeGen for a bitcast must add an explicit REV for big-endian.
8836 return Builder.CreateBitCast(Val, Ty);
8837}
8838
8839static void InsertExplicitZeroOperand(CGBuilderTy &Builder, llvm::Type *Ty,
8840 SmallVectorImpl<Value *> &Ops) {
8841 auto *SplatZero = Constant::getNullValue(Ty);
8842 Ops.insert(Ops.begin(), SplatZero);
8843}
8844
8845static void InsertExplicitUndefOperand(CGBuilderTy &Builder, llvm::Type *Ty,
8846 SmallVectorImpl<Value *> &Ops) {
8847 auto *SplatUndef = UndefValue::get(Ty);
8848 Ops.insert(Ops.begin(), SplatUndef);
8849}
8850
8851SmallVector<llvm::Type *, 2> CodeGenFunction::getSVEOverloadTypes(
8852 SVETypeFlags TypeFlags, llvm::Type *ResultType, ArrayRef<Value *> Ops) {
8853 if (TypeFlags.isOverloadNone())
8854 return {};
8855
8856 llvm::Type *DefaultType = getSVEType(TypeFlags);
8857
8858 if (TypeFlags.isOverloadWhile())
8859 return {DefaultType, Ops[1]->getType()};
8860
8861 if (TypeFlags.isOverloadWhileRW())
8862 return {getSVEPredType(TypeFlags), Ops[0]->getType()};
8863
8864 if (TypeFlags.isOverloadCvt() || TypeFlags.isTupleSet())
8865 return {Ops[0]->getType(), Ops.back()->getType()};
8866
8867 if (TypeFlags.isTupleCreate() || TypeFlags.isTupleGet())
8868 return {ResultType, Ops[0]->getType()};
8869
8870 assert(TypeFlags.isOverloadDefault() && "Unexpected value for overloads")(static_cast <bool> (TypeFlags.isOverloadDefault() &&
"Unexpected value for overloads") ? void (0) : __assert_fail
("TypeFlags.isOverloadDefault() && \"Unexpected value for overloads\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 8870, __extension__ __PRETTY_FUNCTION__))
;
8871 return {DefaultType};
8872}
8873
8874Value *CodeGenFunction::EmitAArch64SVEBuiltinExpr(unsigned BuiltinID,
8875 const CallExpr *E) {
8876 // Find out if any arguments are required to be integer constant expressions.
8877 unsigned ICEArguments = 0;
8878 ASTContext::GetBuiltinTypeError Error;
8879 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
8880 assert(Error == ASTContext::GE_None && "Should not codegen an error")(static_cast <bool> (Error == ASTContext::GE_None &&
"Should not codegen an error") ? void (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 8880, __extension__ __PRETTY_FUNCTION__))
;
8881
8882 llvm::Type *Ty = ConvertType(E->getType());
8883 if (BuiltinID >= SVE::BI__builtin_sve_reinterpret_s8_s8 &&
8884 BuiltinID <= SVE::BI__builtin_sve_reinterpret_f64_f64) {
8885 Value *Val = EmitScalarExpr(E->getArg(0));
8886 return EmitSVEReinterpret(Val, Ty);
8887 }
8888
8889 llvm::SmallVector<Value *, 4> Ops;
8890 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
8891 if ((ICEArguments & (1 << i)) == 0)
8892 Ops.push_back(EmitScalarExpr(E->getArg(i)));
8893 else {
8894 // If this is required to be a constant, constant fold it so that we know
8895 // that the generated intrinsic gets a ConstantInt.
8896 Optional<llvm::APSInt> Result =
8897 E->getArg(i)->getIntegerConstantExpr(getContext());
8898 assert(Result && "Expected argument to be a constant")(static_cast <bool> (Result && "Expected argument to be a constant"
) ? void (0) : __assert_fail ("Result && \"Expected argument to be a constant\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 8898, __extension__ __PRETTY_FUNCTION__))
;
8899
8900 // Immediates for SVE llvm intrinsics are always 32bit. We can safely
8901 // truncate because the immediate has been range checked and no valid
8902 // immediate requires more than a handful of bits.
8903 *Result = Result->extOrTrunc(32);
8904 Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), *Result));
8905 }
8906 }
8907
8908 auto *Builtin = findARMVectorIntrinsicInMap(AArch64SVEIntrinsicMap, BuiltinID,
8909 AArch64SVEIntrinsicsProvenSorted);
8910 SVETypeFlags TypeFlags(Builtin->TypeModifier);
8911 if (TypeFlags.isLoad())
8912 return EmitSVEMaskedLoad(E, Ty, Ops, Builtin->LLVMIntrinsic,
8913 TypeFlags.isZExtReturn());
8914 else if (TypeFlags.isStore())
8915 return EmitSVEMaskedStore(E, Ops, Builtin->LLVMIntrinsic);
8916 else if (TypeFlags.isGatherLoad())
8917 return EmitSVEGatherLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8918 else if (TypeFlags.isScatterStore())
8919 return EmitSVEScatterStore(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8920 else if (TypeFlags.isPrefetch())
8921 return EmitSVEPrefetchLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8922 else if (TypeFlags.isGatherPrefetch())
8923 return EmitSVEGatherPrefetch(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8924 else if (TypeFlags.isStructLoad())
8925 return EmitSVEStructLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8926 else if (TypeFlags.isStructStore())
8927 return EmitSVEStructStore(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8928 else if (TypeFlags.isUndef())
8929 return UndefValue::get(Ty);
8930 else if (Builtin->LLVMIntrinsic != 0) {
8931 if (TypeFlags.getMergeType() == SVETypeFlags::MergeZeroExp)
8932 InsertExplicitZeroOperand(Builder, Ty, Ops);
8933
8934 if (TypeFlags.getMergeType() == SVETypeFlags::MergeAnyExp)
8935 InsertExplicitUndefOperand(Builder, Ty, Ops);
8936
8937 // Some ACLE builtins leave out the argument to specify the predicate
8938 // pattern, which is expected to be expanded to an SV_ALL pattern.
8939 if (TypeFlags.isAppendSVALL())
8940 Ops.push_back(Builder.getInt32(/*SV_ALL*/ 31));
8941 if (TypeFlags.isInsertOp1SVALL())
8942 Ops.insert(&Ops[1], Builder.getInt32(/*SV_ALL*/ 31));
8943
8944 // Predicates must match the main datatype.
8945 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
8946 if (auto PredTy = dyn_cast<llvm::VectorType>(Ops[i]->getType()))
8947 if (PredTy->getElementType()->isIntegerTy(1))
8948 Ops[i] = EmitSVEPredicateCast(Ops[i], getSVEType(TypeFlags));
8949
8950 // Splat scalar operand to vector (intrinsics with _n infix)
8951 if (TypeFlags.hasSplatOperand()) {
8952 unsigned OpNo = TypeFlags.getSplatOperand();
8953 Ops[OpNo] = EmitSVEDupX(Ops[OpNo]);
8954 }
8955
8956 if (TypeFlags.isReverseCompare())
8957 std::swap(Ops[1], Ops[2]);
8958
8959 if (TypeFlags.isReverseUSDOT())
8960 std::swap(Ops[1], Ops[2]);
8961
8962 // Predicated intrinsics with _z suffix need a select w/ zeroinitializer.
8963 if (TypeFlags.getMergeType() == SVETypeFlags::MergeZero) {
8964 llvm::Type *OpndTy = Ops[1]->getType();
8965 auto *SplatZero = Constant::getNullValue(OpndTy);
8966 Function *Sel = CGM.getIntrinsic(Intrinsic::aarch64_sve_sel, OpndTy);
8967 Ops[1] = Builder.CreateCall(Sel, {Ops[0], Ops[1], SplatZero});
8968 }
8969
8970 Function *F = CGM.getIntrinsic(Builtin->LLVMIntrinsic,
8971 getSVEOverloadTypes(TypeFlags, Ty, Ops));
8972 Value *Call = Builder.CreateCall(F, Ops);
8973
8974 // Predicate results must be converted to svbool_t.
8975 if (auto PredTy = dyn_cast<llvm::VectorType>(Call->getType()))
8976 if (PredTy->getScalarType()->isIntegerTy(1))
8977 Call = EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty));
8978
8979 return Call;
8980 }
8981
8982 switch (BuiltinID) {
8983 default:
8984 return nullptr;
8985
8986 case SVE::BI__builtin_sve_svmov_b_z: {
8987 // svmov_b_z(pg, op) <=> svand_b_z(pg, op, op)
8988 SVETypeFlags TypeFlags(Builtin->TypeModifier);
8989 llvm::Type* OverloadedTy = getSVEType(TypeFlags);
8990 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_and_z, OverloadedTy);
8991 return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[1]});
8992 }
8993
8994 case SVE::BI__builtin_sve_svnot_b_z: {
8995 // svnot_b_z(pg, op) <=> sveor_b_z(pg, op, pg)
8996 SVETypeFlags TypeFlags(Builtin->TypeModifier);
8997 llvm::Type* OverloadedTy = getSVEType(TypeFlags);
8998 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_eor_z, OverloadedTy);
8999 return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[0]});
9000 }
9001
9002 case SVE::BI__builtin_sve_svmovlb_u16:
9003 case SVE::BI__builtin_sve_svmovlb_u32:
9004 case SVE::BI__builtin_sve_svmovlb_u64:
9005 return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllb);
9006
9007 case SVE::BI__builtin_sve_svmovlb_s16:
9008 case SVE::BI__builtin_sve_svmovlb_s32:
9009 case SVE::BI__builtin_sve_svmovlb_s64:
9010 return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllb);
9011
9012 case SVE::BI__builtin_sve_svmovlt_u16:
9013 case SVE::BI__builtin_sve_svmovlt_u32:
9014 case SVE::BI__builtin_sve_svmovlt_u64:
9015 return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllt);
9016
9017 case SVE::BI__builtin_sve_svmovlt_s16:
9018 case SVE::BI__builtin_sve_svmovlt_s32:
9019 case SVE::BI__builtin_sve_svmovlt_s64:
9020 return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllt);
9021
9022 case SVE::BI__builtin_sve_svpmullt_u16:
9023 case SVE::BI__builtin_sve_svpmullt_u64:
9024 case SVE::BI__builtin_sve_svpmullt_n_u16:
9025 case SVE::BI__builtin_sve_svpmullt_n_u64:
9026 return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullt_pair);
9027
9028 case SVE::BI__builtin_sve_svpmullb_u16:
9029 case SVE::BI__builtin_sve_svpmullb_u64:
9030 case SVE::BI__builtin_sve_svpmullb_n_u16:
9031 case SVE::BI__builtin_sve_svpmullb_n_u64:
9032 return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullb_pair);
9033
9034 case SVE::BI__builtin_sve_svdup_n_b8:
9035 case SVE::BI__builtin_sve_svdup_n_b16:
9036 case SVE::BI__builtin_sve_svdup_n_b32:
9037 case SVE::BI__builtin_sve_svdup_n_b64: {
9038 Value *CmpNE =
9039 Builder.CreateICmpNE(Ops[0], Constant::getNullValue(Ops[0]->getType()));
9040 llvm::ScalableVectorType *OverloadedTy = getSVEType(TypeFlags);
9041 Value *Dup = EmitSVEDupX(CmpNE, OverloadedTy);
9042 return EmitSVEPredicateCast(Dup, cast<llvm::ScalableVectorType>(Ty));
9043 }
9044
9045 case SVE::BI__builtin_sve_svdupq_n_b8:
9046 case SVE::BI__builtin_sve_svdupq_n_b16:
9047 case SVE::BI__builtin_sve_svdupq_n_b32:
9048 case SVE::BI__builtin_sve_svdupq_n_b64:
9049 case SVE::BI__builtin_sve_svdupq_n_u8:
9050 case SVE::BI__builtin_sve_svdupq_n_s8:
9051 case SVE::BI__builtin_sve_svdupq_n_u64:
9052 case SVE::BI__builtin_sve_svdupq_n_f64:
9053 case SVE::BI__builtin_sve_svdupq_n_s64:
9054 case SVE::BI__builtin_sve_svdupq_n_u16:
9055 case SVE::BI__builtin_sve_svdupq_n_f16:
9056 case SVE::BI__builtin_sve_svdupq_n_bf16:
9057 case SVE::BI__builtin_sve_svdupq_n_s16:
9058 case SVE::BI__builtin_sve_svdupq_n_u32:
9059 case SVE::BI__builtin_sve_svdupq_n_f32:
9060 case SVE::BI__builtin_sve_svdupq_n_s32: {
9061 // These builtins are implemented by storing each element to an array and using
9062 // ld1rq to materialize a vector.
9063 unsigned NumOpnds = Ops.size();
9064
9065 bool IsBoolTy =
9066 cast<llvm::VectorType>(Ty)->getElementType()->isIntegerTy(1);
9067
9068 // For svdupq_n_b* the element type of is an integer of type 128/numelts,
9069 // so that the compare can use the width that is natural for the expected
9070 // number of predicate lanes.
9071 llvm::Type *EltTy = Ops[0]->getType();
9072 if (IsBoolTy)
9073 EltTy = IntegerType::get(getLLVMContext(), SVEBitsPerBlock / NumOpnds);
9074
9075 SmallVector<llvm::Value *, 16> VecOps;
9076 for (unsigned I = 0; I < NumOpnds; ++I)
9077 VecOps.push_back(Builder.CreateZExt(Ops[I], EltTy));
9078 Value *Vec = BuildVector(VecOps);
9079
9080 SVETypeFlags TypeFlags(Builtin->TypeModifier);
9081 Value *Pred = EmitSVEAllTruePred(TypeFlags);
9082
9083 llvm::Type *OverloadedTy = getSVEVectorForElementType(EltTy);
9084 Value *InsertSubVec = Builder.CreateInsertVector(
9085 OverloadedTy, UndefValue::get(OverloadedTy), Vec, Builder.getInt64(0));
9086
9087 Function *F =
9088 CGM.getIntrinsic(Intrinsic::aarch64_sve_dupq_lane, OverloadedTy);
9089 Value *DupQLane =
9090 Builder.CreateCall(F, {InsertSubVec, Builder.getInt64(0)});
9091
9092 if (!IsBoolTy)
9093 return DupQLane;
9094
9095 // For svdupq_n_b* we need to add an additional 'cmpne' with '0'.
9096 F = CGM.getIntrinsic(NumOpnds == 2 ? Intrinsic::aarch64_sve_cmpne
9097 : Intrinsic::aarch64_sve_cmpne_wide,
9098 OverloadedTy);
9099 Value *Call = Builder.CreateCall(
9100 F, {Pred, DupQLane, EmitSVEDupX(Builder.getInt64(0))});
9101 return EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty));
9102 }
9103
9104 case SVE::BI__builtin_sve_svpfalse_b:
9105 return ConstantInt::getFalse(Ty);
9106
9107 case SVE::BI__builtin_sve_svlen_bf16:
9108 case SVE::BI__builtin_sve_svlen_f16:
9109 case SVE::BI__builtin_sve_svlen_f32:
9110 case SVE::BI__builtin_sve_svlen_f64:
9111 case SVE::BI__builtin_sve_svlen_s8:
9112 case SVE::BI__builtin_sve_svlen_s16:
9113 case SVE::BI__builtin_sve_svlen_s32:
9114 case SVE::BI__builtin_sve_svlen_s64:
9115 case SVE::BI__builtin_sve_svlen_u8:
9116 case SVE::BI__builtin_sve_svlen_u16:
9117 case SVE::BI__builtin_sve_svlen_u32:
9118 case SVE::BI__builtin_sve_svlen_u64: {
9119 SVETypeFlags TF(Builtin->TypeModifier);
9120 auto VTy = cast<llvm::VectorType>(getSVEType(TF));
9121 auto *NumEls =
9122 llvm::ConstantInt::get(Ty, VTy->getElementCount().getKnownMinValue());
9123
9124 Function *F = CGM.getIntrinsic(Intrinsic::vscale, Ty);
9125 return Builder.CreateMul(NumEls, Builder.CreateCall(F));
9126 }
9127
9128 case SVE::BI__builtin_sve_svtbl2_u8:
9129 case SVE::BI__builtin_sve_svtbl2_s8:
9130 case SVE::BI__builtin_sve_svtbl2_u16:
9131 case SVE::BI__builtin_sve_svtbl2_s16:
9132 case SVE::BI__builtin_sve_svtbl2_u32:
9133 case SVE::BI__builtin_sve_svtbl2_s32:
9134 case SVE::BI__builtin_sve_svtbl2_u64:
9135 case SVE::BI__builtin_sve_svtbl2_s64:
9136 case SVE::BI__builtin_sve_svtbl2_f16:
9137 case SVE::BI__builtin_sve_svtbl2_bf16:
9138 case SVE::BI__builtin_sve_svtbl2_f32:
9139 case SVE::BI__builtin_sve_svtbl2_f64: {
9140 SVETypeFlags TF(Builtin->TypeModifier);
9141 auto VTy = cast<llvm::VectorType>(getSVEType(TF));
9142 auto TupleTy = llvm::VectorType::getDoubleElementsVectorType(VTy);
9143 Function *FExtr =
9144 CGM.getIntrinsic(Intrinsic::aarch64_sve_tuple_get, {VTy, TupleTy});
9145 Value *V0 = Builder.CreateCall(FExtr, {Ops[0], Builder.getInt32(0)});
9146 Value *V1 = Builder.CreateCall(FExtr, {Ops[0], Builder.getInt32(1)});
9147 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_tbl2, VTy);
9148 return Builder.CreateCall(F, {V0, V1, Ops[1]});
9149 }
9150 }
9151
9152 /// Should not happen
9153 return nullptr;
9154}
9155
9156Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
9157 const CallExpr *E,
9158 llvm::Triple::ArchType Arch) {
9159 if (BuiltinID >= AArch64::FirstSVEBuiltin &&
9160 BuiltinID <= AArch64::LastSVEBuiltin)
9161 return EmitAArch64SVEBuiltinExpr(BuiltinID, E);
9162
9163 unsigned HintID = static_cast<unsigned>(-1);
9164 switch (BuiltinID) {
9165 default: break;
9166 case AArch64::BI__builtin_arm_nop:
9167 HintID = 0;
9168 break;
9169 case AArch64::BI__builtin_arm_yield:
9170 case AArch64::BI__yield:
9171 HintID = 1;
9172 break;
9173 case AArch64::BI__builtin_arm_wfe:
9174 case AArch64::BI__wfe:
9175 HintID = 2;
9176 break;
9177 case AArch64::BI__builtin_arm_wfi:
9178 case AArch64::BI__wfi:
9179 HintID = 3;
9180 break;
9181 case AArch64::BI__builtin_arm_sev:
9182 case AArch64::BI__sev:
9183 HintID = 4;
9184 break;
9185 case AArch64::BI__builtin_arm_sevl:
9186 case AArch64::BI__sevl:
9187 HintID = 5;
9188 break;
9189 }
9190
9191 if (HintID != static_cast<unsigned>(-1)) {
9192 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint);
9193 return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID));
9194 }
9195
9196 if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
9197 Value *Address = EmitScalarExpr(E->getArg(0));
9198 Value *RW = EmitScalarExpr(E->getArg(1));
9199 Value *CacheLevel = EmitScalarExpr(E->getArg(2));
9200 Value *RetentionPolicy = EmitScalarExpr(E->getArg(3));
9201 Value *IsData = EmitScalarExpr(E->getArg(4));
9202
9203 Value *Locality = nullptr;
9204 if (cast<llvm::ConstantInt>(RetentionPolicy)->isZero()) {
9205 // Temporal fetch, needs to convert cache level to locality.
9206 Locality = llvm::ConstantInt::get(Int32Ty,
9207 -cast<llvm::ConstantInt>(CacheLevel)->getValue() + 3);
9208 } else {
9209 // Streaming fetch.
9210 Locality = llvm::ConstantInt::get(Int32Ty, 0);
9211 }
9212
9213 // FIXME: We need AArch64 specific LLVM intrinsic if we want to specify
9214 // PLDL3STRM or PLDL2STRM.
9215 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
9216 return Builder.CreateCall(F, {Address, RW, Locality, IsData});
9217 }
9218
9219 if (BuiltinID == AArch64::BI__builtin_arm_rbit) {
9220 assert((getContext().getTypeSize(E->getType()) == 32) &&(static_cast <bool> ((getContext().getTypeSize(E->getType
()) == 32) && "rbit of unusual size!") ? void (0) : __assert_fail
("(getContext().getTypeSize(E->getType()) == 32) && \"rbit of unusual size!\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 9221, __extension__ __PRETTY_FUNCTION__))
9221 "rbit of unusual size!")(static_cast <bool> ((getContext().getTypeSize(E->getType
()) == 32) && "rbit of unusual size!") ? void (0) : __assert_fail
("(getContext().getTypeSize(E->getType()) == 32) && \"rbit of unusual size!\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 9221, __extension__ __PRETTY_FUNCTION__))
;
9222 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9223 return Builder.CreateCall(
9224 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
9225 }
9226 if (BuiltinID == AArch64::BI__builtin_arm_rbit64) {
9227 assert((getContext().getTypeSize(E->getType()) == 64) &&(static_cast <bool> ((getContext().getTypeSize(E->getType
()) == 64) && "rbit of unusual size!") ? void (0) : __assert_fail
("(getContext().getTypeSize(E->getType()) == 64) && \"rbit of unusual size!\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 9228, __extension__ __PRETTY_FUNCTION__))
9228 "rbit of unusual size!")(static_cast <bool> ((getContext().getTypeSize(E->getType
()) == 64) && "rbit of unusual size!") ? void (0) : __assert_fail
("(getContext().getTypeSize(E->getType()) == 64) && \"rbit of unusual size!\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 9228, __extension__ __PRETTY_FUNCTION__))
;
9229 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9230 return Builder.CreateCall(
9231 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
9232 }
9233
9234 if (BuiltinID == AArch64::BI__builtin_arm_cls) {
9235 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9236 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls), Arg,
9237 "cls");
9238 }
9239 if (BuiltinID == AArch64::BI__builtin_arm_cls64) {
9240 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9241 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls64), Arg,
9242 "cls");
9243 }
9244
9245 if (BuiltinID == AArch64::BI__builtin_arm_frint32zf ||
9246 BuiltinID == AArch64::BI__builtin_arm_frint32z) {
9247 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9248 llvm::Type *Ty = Arg->getType();
9249 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint32z, Ty),
9250 Arg, "frint32z");
9251 }
9252
9253 if (BuiltinID == AArch64::BI__builtin_arm_frint64zf ||
9254 BuiltinID == AArch64::BI__builtin_arm_frint64z) {
9255 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9256 llvm::Type *Ty = Arg->getType();
9257 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint64z, Ty),
9258 Arg, "frint64z");
9259 }
9260
9261 if (BuiltinID == AArch64::BI__builtin_arm_frint32xf ||
9262 BuiltinID == AArch64::BI__builtin_arm_frint32x) {
9263 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9264 llvm::Type *Ty = Arg->getType();
9265 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint32x, Ty),
9266 Arg, "frint32x");
9267 }
9268
9269 if (BuiltinID == AArch64::BI__builtin_arm_frint64xf ||
9270 BuiltinID == AArch64::BI__builtin_arm_frint64x) {
9271 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9272 llvm::Type *Ty = Arg->getType();
9273 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint64x, Ty),
9274 Arg, "frint64x");
9275 }
9276
9277 if (BuiltinID == AArch64::BI__builtin_arm_jcvt) {
9278 assert((getContext().getTypeSize(E->getType()) == 32) &&(static_cast <bool> ((getContext().getTypeSize(E->getType
()) == 32) && "__jcvt of unusual size!") ? void (0) :
__assert_fail ("(getContext().getTypeSize(E->getType()) == 32) && \"__jcvt of unusual size!\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 9279, __extension__ __PRETTY_FUNCTION__))
9279 "__jcvt of unusual size!")(static_cast <bool> ((getContext().getTypeSize(E->getType
()) == 32) && "__jcvt of unusual size!") ? void (0) :
__assert_fail ("(getContext().getTypeSize(E->getType()) == 32) && \"__jcvt of unusual size!\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 9279, __extension__ __PRETTY_FUNCTION__))
;
9280 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9281 return Builder.CreateCall(
9282 CGM.getIntrinsic(Intrinsic::aarch64_fjcvtzs), Arg);
9283 }
9284
9285 if (BuiltinID == AArch64::BI__builtin_arm_ld64b ||
9286 BuiltinID == AArch64::BI__builtin_arm_st64b ||
9287 BuiltinID == AArch64::BI__builtin_arm_st64bv ||
9288 BuiltinID == AArch64::BI__builtin_arm_st64bv0) {
9289 llvm::Value *MemAddr = EmitScalarExpr(E->getArg(0));
9290 llvm::Value *ValPtr = EmitScalarExpr(E->getArg(1));
9291
9292 if (BuiltinID == AArch64::BI__builtin_arm_ld64b) {
9293 // Load from the address via an LLVM intrinsic, receiving a
9294 // tuple of 8 i64 words, and store each one to ValPtr.
9295 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_ld64b);
9296 llvm::Value *Val = Builder.CreateCall(F, MemAddr);
9297 llvm::Value *ToRet;
9298 for (size_t i = 0; i < 8; i++) {
9299 llvm::Value *ValOffsetPtr = Builder.CreateGEP(ValPtr, Builder.getInt32(i));
9300 Address Addr(ValOffsetPtr, CharUnits::fromQuantity(8));
9301 ToRet = Builder.CreateStore(Builder.CreateExtractValue(Val, i), Addr);
9302 }
9303 return ToRet;
9304 } else {
9305 // Load 8 i64 words from ValPtr, and store them to the address
9306 // via an LLVM intrinsic.
9307 SmallVector<llvm::Value *, 9> Args;
9308 Args.push_back(MemAddr);
9309 for (size_t i = 0; i < 8; i++) {
9310 llvm::Value *ValOffsetPtr = Builder.CreateGEP(ValPtr, Builder.getInt32(i));
9311 Address Addr(ValOffsetPtr, CharUnits::fromQuantity(8));
9312 Args.push_back(Builder.CreateLoad(Addr));
9313 }
9314
9315 auto Intr = (BuiltinID == AArch64::BI__builtin_arm_st64b
9316 ? Intrinsic::aarch64_st64b
9317 : BuiltinID == AArch64::BI__builtin_arm_st64bv
9318 ? Intrinsic::aarch64_st64bv
9319 : Intrinsic::aarch64_st64bv0);
9320 Function *F = CGM.getIntrinsic(Intr);
9321 return Builder.CreateCall(F, Args);
9322 }
9323 }
9324
9325 if (BuiltinID == AArch64::BI__builtin_arm_rndr ||
9326 BuiltinID == AArch64::BI__builtin_arm_rndrrs) {
9327
9328 auto Intr = (BuiltinID == AArch64::BI__builtin_arm_rndr
9329 ? Intrinsic::aarch64_rndr
9330 : Intrinsic::aarch64_rndrrs);
9331 Function *F = CGM.getIntrinsic(Intr);
9332 llvm::Value *Val = Builder.CreateCall(F);
9333 Value *RandomValue = Builder.CreateExtractValue(Val, 0);
9334 Value *Status = Builder.CreateExtractValue(Val, 1);
9335
9336 Address MemAddress = EmitPointerWithAlignment(E->getArg(0));
9337 Builder.CreateStore(RandomValue, MemAddress);
9338 Status = Builder.CreateZExt(Status, Int32Ty);
9339 return Status;
9340 }
9341
9342 if (BuiltinID == AArch64::BI__clear_cache) {
9343 assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments")(static_cast <bool> (E->getNumArgs() == 2 &&
"__clear_cache takes 2 arguments") ? void (0) : __assert_fail
("E->getNumArgs() == 2 && \"__clear_cache takes 2 arguments\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 9343, __extension__ __PRETTY_FUNCTION__))
;
9344 const FunctionDecl *FD = E->getDirectCallee();
9345 Value *Ops[2];
9346 for (unsigned i = 0; i < 2; i++)
9347 Ops[i] = EmitScalarExpr(E->getArg(i));
9348 llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
9349 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
9350 StringRef Name = FD->getName();
9351 return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
9352 }
9353
9354 if ((BuiltinID == AArch64::BI__builtin_arm_ldrex ||
9355 BuiltinID == AArch64::BI__builtin_arm_ldaex) &&
9356 getContext().getTypeSize(E->getType()) == 128) {
9357 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
9358 ? Intrinsic::aarch64_ldaxp
9359 : Intrinsic::aarch64_ldxp);
9360
9361 Value *LdPtr = EmitScalarExpr(E->getArg(0));
9362 Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
9363 "ldxp");
9364
9365 Value *Val0 = Builder.CreateExtractValue(Val, 1);
9366 Value *Val1 = Builder.CreateExtractValue(Val, 0);
9367 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
9368 Val0 = Builder.CreateZExt(Val0, Int128Ty);
9369 Val1 = Builder.CreateZExt(Val1, Int128Ty);
9370
9371 Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64);
9372 Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
9373 Val = Builder.CreateOr(Val, Val1);
9374 return Builder.CreateBitCast(Val, ConvertType(E->getType()));
9375 } else if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
9376 BuiltinID == AArch64::BI__builtin_arm_ldaex) {
9377 Value *LoadAddr = EmitScalarExpr(E->getArg(0));
9378
9379 QualType Ty = E->getType();
9380 llvm::Type *RealResTy = ConvertType(Ty);
9381 llvm::Type *PtrTy = llvm::IntegerType::get(
9382 getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
9383 LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
9384
9385 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
9386 ? Intrinsic::aarch64_ldaxr
9387 : Intrinsic::aarch64_ldxr,
9388 PtrTy);
9389 Value *Val = Builder.CreateCall(F, LoadAddr, "ldxr");
9390
9391 if (RealResTy->isPointerTy())
9392 return Builder.CreateIntToPtr(Val, RealResTy);
9393
9394 llvm::Type *IntResTy = llvm::IntegerType::get(
9395 getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
9396 Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
9397 return Builder.CreateBitCast(Val, RealResTy);
9398 }
9399
9400 if ((BuiltinID == AArch64::BI__builtin_arm_strex ||
9401 BuiltinID == AArch64::BI__builtin_arm_stlex) &&
9402 getContext().getTypeSize(E->getArg(0)->getType()) == 128) {
9403 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
9404 ? Intrinsic::aarch64_stlxp
9405 : Intrinsic::aarch64_stxp);
9406 llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty);
9407
9408 Address Tmp = CreateMemTemp(E->getArg(0)->getType());
9409 EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true);
9410
9411 Tmp = Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(STy));
9412 llvm::Value *Val = Builder.CreateLoad(Tmp);
9413
9414 Value *Arg0 = Builder.CreateExtractValue(Val, 0);
9415 Value *Arg1 = Builder.CreateExtractValue(Val, 1);
9416 Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)),
9417 Int8PtrTy);
9418 return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp");
9419 }
9420
9421 if (BuiltinID == AArch64::BI__builtin_arm_strex ||
9422 BuiltinID == AArch64::BI__builtin_arm_stlex) {
9423 Value *StoreVal = EmitScalarExpr(E->getArg(0));
9424 Value *StoreAddr = EmitScalarExpr(E->getArg(1));
9425
9426 QualType Ty = E->getArg(0)->getType();
9427 llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
9428 getContext().getTypeSize(Ty));
9429 StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
9430
9431 if (StoreVal->getType()->isPointerTy())
9432 StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty);
9433 else {
9434 llvm::Type *IntTy = llvm::IntegerType::get(
9435 getLLVMContext(),
9436 CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
9437 StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
9438 StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty);
9439 }
9440
9441 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
9442 ? Intrinsic::aarch64_stlxr
9443 : Intrinsic::aarch64_stxr,
9444 StoreAddr->getType());
9445 return Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr");
9446 }
9447
9448 if (BuiltinID == AArch64::BI__getReg) {
9449 Expr::EvalResult Result;
9450 if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
9451 llvm_unreachable("Sema will ensure that the parameter is constant")::llvm::llvm_unreachable_internal("Sema will ensure that the parameter is constant"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 9451)
;
9452
9453 llvm::APSInt Value = Result.Val.getInt();
9454 LLVMContext &Context = CGM.getLLVMContext();
9455 std::string Reg = Value == 31 ? "sp" : "x" + toString(Value, 10);
9456
9457 llvm::Metadata *Ops[] = {llvm::MDString::get(Context, Reg)};
9458 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
9459 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
9460
9461 llvm::Function *F =
9462 CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty});
9463 return Builder.CreateCall(F, Metadata);
9464 }
9465
9466 if (BuiltinID == AArch64::BI__builtin_arm_clrex) {
9467 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex);
9468 return Builder.CreateCall(F);
9469 }
9470
9471 if (BuiltinID == AArch64::BI_ReadWriteBarrier)
9472 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
9473 llvm::SyncScope::SingleThread);
9474
9475 // CRC32
9476 Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
9477 switch (BuiltinID) {
9478 case AArch64::BI__builtin_arm_crc32b:
9479 CRCIntrinsicID = Intrinsic::aarch64_crc32b; break;
9480 case AArch64::BI__builtin_arm_crc32cb:
9481 CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break;
9482 case AArch64::BI__builtin_arm_crc32h:
9483 CRCIntrinsicID = Intrinsic::aarch64_crc32h; break;
9484 case AArch64::BI__builtin_arm_crc32ch:
9485 CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break;
9486 case AArch64::BI__builtin_arm_crc32w:
9487 CRCIntrinsicID = Intrinsic::aarch64_crc32w; break;
9488 case AArch64::BI__builtin_arm_crc32cw:
9489 CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break;
9490 case AArch64::BI__builtin_arm_crc32d:
9491 CRCIntrinsicID = Intrinsic::aarch64_crc32x; break;
9492 case AArch64::BI__builtin_arm_crc32cd:
9493 CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break;
9494 }
9495
9496 if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
9497 Value *Arg0 = EmitScalarExpr(E->getArg(0));
9498 Value *Arg1 = EmitScalarExpr(E->getArg(1));
9499 Function *F = CGM.getIntrinsic(CRCIntrinsicID);
9500
9501 llvm::Type *DataTy = F->getFunctionType()->getParamType(1);
9502 Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy);
9503
9504 return Builder.CreateCall(F, {Arg0, Arg1});
9505 }
9506
9507 // Memory Tagging Extensions (MTE) Intrinsics
9508 Intrinsic::ID MTEIntrinsicID = Intrinsic::not_intrinsic;
9509 switch (BuiltinID) {
9510 case AArch64::BI__builtin_arm_irg:
9511 MTEIntrinsicID = Intrinsic::aarch64_irg; break;
9512 case AArch64::BI__builtin_arm_addg:
9513 MTEIntrinsicID = Intrinsic::aarch64_addg; break;
9514 case AArch64::BI__builtin_arm_gmi:
9515 MTEIntrinsicID = Intrinsic::aarch64_gmi; break;
9516 case AArch64::BI__builtin_arm_ldg:
9517 MTEIntrinsicID = Intrinsic::aarch64_ldg; break;
9518 case AArch64::BI__builtin_arm_stg:
9519 MTEIntrinsicID = Intrinsic::aarch64_stg; break;
9520 case AArch64::BI__builtin_arm_subp:
9521 MTEIntrinsicID = Intrinsic::aarch64_subp; break;
9522 }
9523
9524 if (MTEIntrinsicID != Intrinsic::not_intrinsic) {
9525 llvm::Type *T = ConvertType(E->getType());
9526
9527 if (MTEIntrinsicID == Intrinsic::aarch64_irg) {
9528 Value *Pointer = EmitScalarExpr(E->getArg(0));
9529 Value *Mask = EmitScalarExpr(E->getArg(1));
9530
9531 Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
9532 Mask = Builder.CreateZExt(Mask, Int64Ty);
9533 Value *RV = Builder.CreateCall(
9534 CGM.getIntrinsic(MTEIntrinsicID), {Pointer, Mask});
9535 return Builder.CreatePointerCast(RV, T);
9536 }
9537 if (MTEIntrinsicID == Intrinsic::aarch64_addg) {
9538 Value *Pointer = EmitScalarExpr(E->getArg(0));
9539 Value *TagOffset = EmitScalarExpr(E->getArg(1));
9540
9541 Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
9542 TagOffset = Builder.CreateZExt(TagOffset, Int64Ty);
9543 Value *RV = Builder.CreateCall(
9544 CGM.getIntrinsic(MTEIntrinsicID), {Pointer, TagOffset});
9545 return Builder.CreatePointerCast(RV, T);
9546 }
9547 if (MTEIntrinsicID == Intrinsic::aarch64_gmi) {
9548 Value *Pointer = EmitScalarExpr(E->getArg(0));
9549 Value *ExcludedMask = EmitScalarExpr(E->getArg(1));
9550
9551 ExcludedMask = Builder.CreateZExt(ExcludedMask, Int64Ty);
9552 Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
9553 return Builder.CreateCall(
9554 CGM.getIntrinsic(MTEIntrinsicID), {Pointer, ExcludedMask});
9555 }
9556 // Although it is possible to supply a different return
9557 // address (first arg) to this intrinsic, for now we set
9558 // return address same as input address.
9559 if (MTEIntrinsicID == Intrinsic::aarch64_ldg) {
9560 Value *TagAddress = EmitScalarExpr(E->getArg(0));
9561 TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
9562 Value *RV = Builder.CreateCall(
9563 CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
9564 return Builder.CreatePointerCast(RV, T);
9565 }
9566 // Although it is possible to supply a different tag (to set)
9567 // to this intrinsic (as first arg), for now we supply
9568 // the tag that is in input address arg (common use case).
9569 if (MTEIntrinsicID == Intrinsic::aarch64_stg) {
9570 Value *TagAddress = EmitScalarExpr(E->getArg(0));
9571 TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
9572 return Builder.CreateCall(
9573 CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
9574 }
9575 if (MTEIntrinsicID == Intrinsic::aarch64_subp) {
9576 Value *PointerA = EmitScalarExpr(E->getArg(0));
9577 Value *PointerB = EmitScalarExpr(E->getArg(1));
9578 PointerA = Builder.CreatePointerCast(PointerA, Int8PtrTy);
9579 PointerB = Builder.CreatePointerCast(PointerB, Int8PtrTy);
9580 return Builder.CreateCall(
9581 CGM.getIntrinsic(MTEIntrinsicID), {PointerA, PointerB});
9582 }
9583 }
9584
9585 if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
9586 BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
9587 BuiltinID == AArch64::BI__builtin_arm_rsrp ||
9588 BuiltinID == AArch64::BI__builtin_arm_wsr ||
9589 BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
9590 BuiltinID == AArch64::BI__builtin_arm_wsrp) {
9591
9592 SpecialRegisterAccessKind AccessKind = Write;
9593 if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
9594 BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
9595 BuiltinID == AArch64::BI__builtin_arm_rsrp)
9596 AccessKind = VolatileRead;
9597
9598 bool IsPointerBuiltin = BuiltinID == AArch64::BI__builtin_arm_rsrp ||
9599 BuiltinID == AArch64::BI__builtin_arm_wsrp;
9600
9601 bool Is64Bit = BuiltinID != AArch64::BI__builtin_arm_rsr &&
9602 BuiltinID != AArch64::BI__builtin_arm_wsr;
9603
9604 llvm::Type *ValueType;
9605 llvm::Type *RegisterType = Int64Ty;
9606 if (IsPointerBuiltin) {
9607 ValueType = VoidPtrTy;
9608 } else if (Is64Bit) {
9609 ValueType = Int64Ty;
9610 } else {
9611 ValueType = Int32Ty;
9612 }
9613
9614 return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType,
9615 AccessKind);
9616 }
9617
9618 if (BuiltinID == AArch64::BI_ReadStatusReg ||
9619 BuiltinID == AArch64::BI_WriteStatusReg) {
9620 LLVMContext &Context = CGM.getLLVMContext();
9621
9622 unsigned SysReg =
9623 E->getArg(0)->EvaluateKnownConstInt(getContext()).getZExtValue();
9624
9625 std::string SysRegStr;
9626 llvm::raw_string_ostream(SysRegStr) <<
9627 ((1 << 1) | ((SysReg >> 14) & 1)) << ":" <<
9628 ((SysReg >> 11) & 7) << ":" <<
9629 ((SysReg >> 7) & 15) << ":" <<
9630 ((SysReg >> 3) & 15) << ":" <<
9631 ( SysReg & 7);
9632
9633 llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysRegStr) };
9634 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
9635 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
9636
9637 llvm::Type *RegisterType = Int64Ty;
9638 llvm::Type *Types[] = { RegisterType };
9639
9640 if (BuiltinID == AArch64::BI_ReadStatusReg) {
9641 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
9642
9643 return Builder.CreateCall(F, Metadata);
9644 }
9645
9646 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
9647 llvm::Value *ArgValue = EmitScalarExpr(E->getArg(1));
9648
9649 return Builder.CreateCall(F, { Metadata, ArgValue });
9650 }
9651
9652 if (BuiltinID == AArch64::BI_AddressOfReturnAddress) {
9653 llvm::Function *F =
9654 CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
9655 return Builder.CreateCall(F);
9656 }
9657
9658 if (BuiltinID == AArch64::BI__builtin_sponentry) {
9659 llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry, AllocaInt8PtrTy);
9660 return Builder.CreateCall(F);
9661 }
9662
9663 // Handle MSVC intrinsics before argument evaluation to prevent double
9664 // evaluation.
9665 if (Optional<MSVCIntrin> MsvcIntId = translateAarch64ToMsvcIntrin(BuiltinID))
9666 return EmitMSVCBuiltinExpr(*MsvcIntId, E);
9667
9668 // Find out if any arguments are required to be integer constant
9669 // expressions.
9670 unsigned ICEArguments = 0;
9671 ASTContext::GetBuiltinTypeError Error;
9672 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
9673 assert(Error == ASTContext::GE_None && "Should not codegen an error")(static_cast <bool> (Error == ASTContext::GE_None &&
"Should not codegen an error") ? void (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 9673, __extension__ __PRETTY_FUNCTION__))
;
9674
9675 llvm::SmallVector<Value*, 4> Ops;
9676 Address PtrOp0 = Address::invalid();
9677 for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
9678 if (i == 0) {
9679 switch (BuiltinID) {
9680 case NEON::BI__builtin_neon_vld1_v:
9681 case NEON::BI__builtin_neon_vld1q_v:
9682 case NEON::BI__builtin_neon_vld1_dup_v:
9683 case NEON::BI__builtin_neon_vld1q_dup_v:
9684 case NEON::BI__builtin_neon_vld1_lane_v:
9685 case NEON::BI__builtin_neon_vld1q_lane_v:
9686 case NEON::BI__builtin_neon_vst1_v:
9687 case NEON::BI__builtin_neon_vst1q_v:
9688 case NEON::BI__builtin_neon_vst1_lane_v:
9689 case NEON::BI__builtin_neon_vst1q_lane_v:
9690 // Get the alignment for the argument in addition to the value;
9691 // we'll use it later.
9692 PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
9693 Ops.push_back(PtrOp0.getPointer());
9694 continue;
9695 }
9696 }
9697 if ((ICEArguments & (1 << i)) == 0) {
9698 Ops.push_back(EmitScalarExpr(E->getArg(i)));
9699 } else {
9700 // If this is required to be a constant, constant fold it so that we know
9701 // that the generated intrinsic gets a ConstantInt.
9702 Ops.push_back(llvm::ConstantInt::get(
9703 getLLVMContext(),
9704 *E->getArg(i)->getIntegerConstantExpr(getContext())));
9705 }
9706 }
9707
9708 auto SISDMap = makeArrayRef(AArch64SISDIntrinsicMap);
9709 const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap(
9710 SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted);
9711
9712 if (Builtin) {
9713 Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1)));
9714 Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E);
9715 assert(Result && "SISD intrinsic should have been handled")(static_cast <bool> (Result && "SISD intrinsic should have been handled"
) ? void (0) : __assert_fail ("Result && \"SISD intrinsic should have been handled\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 9715, __extension__ __PRETTY_FUNCTION__))
;
9716 return Result;
9717 }
9718
9719 const Expr *Arg = E->getArg(E->getNumArgs()-1);
9720 NeonTypeFlags Type(0);
9721 if (Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(getContext()))
9722 // Determine the type of this overloaded NEON intrinsic.
9723 Type = NeonTypeFlags(Result->getZExtValue());
9724
9725 bool usgn = Type.isUnsigned();
9726 bool quad = Type.isQuad();
9727
9728 // Handle non-overloaded intrinsics first.
9729 switch (BuiltinID) {
9730 default: break;
9731 case NEON::BI__builtin_neon_vabsh_f16:
9732 Ops.push_back(EmitScalarExpr(E->getArg(0)));
9733 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, HalfTy), Ops, "vabs");
9734 case NEON::BI__builtin_neon_vaddq_p128: {
9735 llvm::Type *Ty = GetNeonType(this, NeonTypeFlags::Poly128);
9736 Ops.push_back(EmitScalarExpr(E->getArg(1)));
9737 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
9738 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9739 Ops[0] = Builder.CreateXor(Ops[0], Ops[1]);
9740 llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
9741 return Builder.CreateBitCast(Ops[0], Int128Ty);
9742 }
9743 case NEON::BI__builtin_neon_vldrq_p128: {
9744 llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
9745 llvm::Type *Int128PTy = llvm::PointerType::get(Int128Ty, 0);
9746 Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy);
9747 return Builder.CreateAlignedLoad(Int128Ty, Ptr,
9748 CharUnits::fromQuantity(16));
9749 }
9750 case NEON::BI__builtin_neon_vstrq_p128: {
9751 llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128);
9752 Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy);
9753 return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr);
9754 }
9755 case NEON::BI__builtin_neon_vcvts_f32_u32:
9756 case NEON::BI__builtin_neon_vcvtd_f64_u64:
9757 usgn = true;
9758 LLVM_FALLTHROUGH[[gnu::fallthrough]];
9759 case NEON::BI__builtin_neon_vcvts_f32_s32:
9760 case NEON::BI__builtin_neon_vcvtd_f64_s64: {
9761 Ops.push_back(EmitScalarExpr(E->getArg(0)));
9762 bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
9763 llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
9764 llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
9765 Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
9766 if (usgn)
9767 return Builder.CreateUIToFP(Ops[0], FTy);
9768 return Builder.CreateSIToFP(Ops[0], FTy);
9769 }
9770 case NEON::BI__builtin_neon_vcvth_f16_u16:
9771 case NEON::BI__builtin_neon_vcvth_f16_u32:
9772 case NEON::BI__builtin_neon_vcvth_f16_u64:
9773 usgn = true;
9774 LLVM_FALLTHROUGH[[gnu::fallthrough]];
9775 case NEON::BI__builtin_neon_vcvth_f16_s16:
9776 case NEON::BI__builtin_neon_vcvth_f16_s32:
9777 case NEON::BI__builtin_neon_vcvth_f16_s64: {
9778 Ops.push_back(EmitScalarExpr(E->getArg(0)));
9779 llvm::Type *FTy = HalfTy;
9780 llvm::Type *InTy;
9781 if (Ops[0]->getType()->getPrimitiveSizeInBits() == 64)
9782 InTy = Int64Ty;
9783 else if (Ops[0]->getType()->getPrimitiveSizeInBits() == 32)
9784 InTy = Int32Ty;
9785 else
9786 InTy = Int16Ty;
9787 Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
9788 if (usgn)
9789 return Builder.CreateUIToFP(Ops[0], FTy);
9790 return Builder.CreateSIToFP(Ops[0], FTy);
9791 }
9792 case NEON::BI__builtin_neon_vcvtah_u16_f16:
9793 case NEON::BI__builtin_neon_vcvtmh_u16_f16:
9794 case NEON::BI__builtin_neon_vcvtnh_u16_f16:
9795 case NEON::BI__builtin_neon_vcvtph_u16_f16:
9796 case NEON::BI__builtin_neon_vcvth_u16_f16:
9797 case NEON::BI__builtin_neon_vcvtah_s16_f16:
9798 case NEON::BI__builtin_neon_vcvtmh_s16_f16:
9799 case NEON::BI__builtin_neon_vcvtnh_s16_f16:
9800 case NEON::BI__builtin_neon_vcvtph_s16_f16:
9801 case NEON::BI__builtin_neon_vcvth_s16_f16: {
9802 unsigned Int;
9803 llvm::Type* InTy = Int32Ty;
9804 llvm::Type* FTy = HalfTy;
9805 llvm::Type *Tys[2] = {InTy, FTy};
9806 Ops.push_back(EmitScalarExpr(E->getArg(0)));
9807 switch (BuiltinID) {
9808 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 9808)
;
9809 case NEON::BI__builtin_neon_vcvtah_u16_f16:
9810 Int = Intrinsic::aarch64_neon_fcvtau; break;
9811 case NEON::BI__builtin_neon_vcvtmh_u16_f16:
9812 Int = Intrinsic::aarch64_neon_fcvtmu; break;
9813 case NEON::BI__builtin_neon_vcvtnh_u16_f16:
9814 Int = Intrinsic::aarch64_neon_fcvtnu; break;
9815 case NEON::BI__builtin_neon_vcvtph_u16_f16:
9816 Int = Intrinsic::aarch64_neon_fcvtpu; break;
9817 case NEON::BI__builtin_neon_vcvth_u16_f16:
9818 Int = Intrinsic::aarch64_neon_fcvtzu; break;
9819 case NEON::BI__builtin_neon_vcvtah_s16_f16:
9820 Int = Intrinsic::aarch64_neon_fcvtas; break;
9821 case NEON::BI__builtin_neon_vcvtmh_s16_f16:
9822 Int = Intrinsic::aarch64_neon_fcvtms; break;
9823 case NEON::BI__builtin_neon_vcvtnh_s16_f16:
9824 Int = Intrinsic::aarch64_neon_fcvtns; break;
9825 case NEON::BI__builtin_neon_vcvtph_s16_f16:
9826 Int = Intrinsic::aarch64_neon_fcvtps; break;
9827 case NEON::BI__builtin_neon_vcvth_s16_f16:
9828 Int = Intrinsic::aarch64_neon_fcvtzs; break;
9829 }
9830 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvt");
9831 return Builder.CreateTrunc(Ops[0], Int16Ty);
9832 }
9833 case NEON::BI__builtin_neon_vcaleh_f16:
9834 case NEON::BI__builtin_neon_vcalth_f16:
9835 case NEON::BI__builtin_neon_vcageh_f16:
9836 case NEON::BI__builtin_neon_vcagth_f16: {
9837 unsigned Int;
9838 llvm::Type* InTy = Int32Ty;
9839 llvm::Type* FTy = HalfTy;
9840 llvm::Type *Tys[2] = {InTy, FTy};
9841 Ops.push_back(EmitScalarExpr(E->getArg(1)));
9842 switch (BuiltinID) {
9843 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 9843)
;
9844 case NEON::BI__builtin_neon_vcageh_f16:
9845 Int = Intrinsic::aarch64_neon_facge; break;
9846 case NEON::BI__builtin_neon_vcagth_f16:
9847 Int = Intrinsic::aarch64_neon_facgt; break;
9848 case NEON::BI__builtin_neon_vcaleh_f16:
9849 Int = Intrinsic::aarch64_neon_facge; std::swap(Ops[0], Ops[1]); break;
9850 case NEON::BI__builtin_neon_vcalth_f16:
9851 Int = Intrinsic::aarch64_neon_facgt; std::swap(Ops[0], Ops[1]); break;
9852 }
9853 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "facg");
9854 return Builder.CreateTrunc(Ops[0], Int16Ty);
9855 }
9856 case NEON::BI__builtin_neon_vcvth_n_s16_f16:
9857 case NEON::BI__builtin_neon_vcvth_n_u16_f16: {
9858 unsigned Int;
9859 llvm::Type* InTy = Int32Ty;
9860 llvm::Type* FTy = HalfTy;
9861 llvm::Type *Tys[2] = {InTy, FTy};
9862 Ops.push_back(EmitScalarExpr(E->getArg(1)));
9863 switch (BuiltinID) {
9864 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 9864)
;
9865 case NEON::BI__builtin_neon_vcvth_n_s16_f16:
9866 Int = Intrinsic::aarch64_neon_vcvtfp2fxs; break;
9867 case NEON::BI__builtin_neon_vcvth_n_u16_f16:
9868 Int = Intrinsic::aarch64_neon_vcvtfp2fxu; break;
9869 }
9870 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
9871 return Builder.CreateTrunc(Ops[0], Int16Ty);
9872 }
9873 case NEON::BI__builtin_neon_vcvth_n_f16_s16:
9874 case NEON::BI__builtin_neon_vcvth_n_f16_u16: {
9875 unsigned Int;
9876 llvm::Type* FTy = HalfTy;
9877 llvm::Type* InTy = Int32Ty;
9878 llvm::Type *Tys[2] = {FTy, InTy};
9879 Ops.push_back(EmitScalarExpr(E->getArg(1)));
9880 switch (BuiltinID) {
9881 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 9881)
;
9882 case NEON::BI__builtin_neon_vcvth_n_f16_s16:
9883 Int = Intrinsic::aarch64_neon_vcvtfxs2fp;
9884 Ops[0] = Builder.CreateSExt(Ops[0], InTy, "sext");
9885 break;
9886 case NEON::BI__builtin_neon_vcvth_n_f16_u16:
9887 Int = Intrinsic::aarch64_neon_vcvtfxu2fp;
9888 Ops[0] = Builder.CreateZExt(Ops[0], InTy);
9889 break;
9890 }
9891 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
9892 }
9893 case NEON::BI__builtin_neon_vpaddd_s64: {
9894 auto *Ty = llvm::FixedVectorType::get(Int64Ty, 2);
9895 Value *Vec = EmitScalarExpr(E->getArg(0));
9896 // The vector is v2f64, so make sure it's bitcast to that.
9897 Vec = Builder.CreateBitCast(Vec, Ty, "v2i64");
9898 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
9899 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
9900 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
9901 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
9902 // Pairwise addition of a v2f64 into a scalar f64.
9903 return Builder.CreateAdd(Op0, Op1, "vpaddd");
9904 }
9905 case NEON::BI__builtin_neon_vpaddd_f64: {
9906 auto *Ty = llvm::FixedVectorType::get(DoubleTy, 2);
9907 Value *Vec = EmitScalarExpr(E->getArg(0));
9908 // The vector is v2f64, so make sure it's bitcast to that.
9909 Vec = Builder.CreateBitCast(Vec, Ty, "v2f64");
9910 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
9911 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
9912 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
9913 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
9914 // Pairwise addition of a v2f64 into a scalar f64.
9915 return Builder.CreateFAdd(Op0, Op1, "vpaddd");
9916 }
9917 case NEON::BI__builtin_neon_vpadds_f32: {
9918 auto *Ty = llvm::FixedVectorType::get(FloatTy, 2);
9919 Value *Vec = EmitScalarExpr(E->getArg(0));
9920 // The vector is v2f32, so make sure it's bitcast to that.
9921 Vec = Builder.CreateBitCast(Vec, Ty, "v2f32");
9922 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
9923 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
9924 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
9925 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
9926 // Pairwise addition of a v2f32 into a scalar f32.
9927 return Builder.CreateFAdd(Op0, Op1, "vpaddd");
9928 }
9929 case NEON::BI__builtin_neon_vceqzd_s64:
9930 case NEON::BI__builtin_neon_vceqzd_f64:
9931 case NEON::BI__builtin_neon_vceqzs_f32:
9932 case NEON::BI__builtin_neon_vceqzh_f16:
9933 Ops.push_back(EmitScalarExpr(E->getArg(0)));
9934 return EmitAArch64CompareBuiltinExpr(
9935 Ops[0], ConvertType(E->getCallReturnType(getContext())),
9936 ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz");
9937 case NEON::BI__builtin_neon_vcgezd_s64:
9938 case NEON::BI__builtin_neon_vcgezd_f64:
9939 case NEON::BI__builtin_neon_vcgezs_f32:
9940 case NEON::BI__builtin_neon_vcgezh_f16:
9941 Ops.push_back(EmitScalarExpr(E->getArg(0)));
9942 return EmitAArch64CompareBuiltinExpr(
9943 Ops[0], ConvertType(E->getCallReturnType(getContext())),
9944 ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez");
9945 case NEON::BI__builtin_neon_vclezd_s64:
9946 case NEON::BI__builtin_neon_vclezd_f64:
9947 case NEON::BI__builtin_neon_vclezs_f32:
9948 case NEON::BI__builtin_neon_vclezh_f16:
9949 Ops.push_back(EmitScalarExpr(E->getArg(0)));
9950 return EmitAArch64CompareBuiltinExpr(
9951 Ops[0], ConvertType(E->getCallReturnType(getContext())),
9952 ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez");
9953 case NEON::BI__builtin_neon_vcgtzd_s64:
9954 case NEON::BI__builtin_neon_vcgtzd_f64:
9955 case NEON::BI__builtin_neon_vcgtzs_f32:
9956 case NEON::BI__builtin_neon_vcgtzh_f16:
9957 Ops.push_back(EmitScalarExpr(E->getArg(0)));
9958 return EmitAArch64CompareBuiltinExpr(
9959 Ops[0], ConvertType(E->getCallReturnType(getContext())),
9960 ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz");
9961 case NEON::BI__builtin_neon_vcltzd_s64:
9962 case NEON::BI__builtin_neon_vcltzd_f64:
9963 case NEON::BI__builtin_neon_vcltzs_f32:
9964 case NEON::BI__builtin_neon_vcltzh_f16:
9965 Ops.push_back(EmitScalarExpr(E->getArg(0)));
9966 return EmitAArch64CompareBuiltinExpr(
9967 Ops[0], ConvertType(E->getCallReturnType(getContext())),
9968 ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz");
9969
9970 case NEON::BI__builtin_neon_vceqzd_u64: {
9971 Ops.push_back(EmitScalarExpr(E->getArg(0)));
9972 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
9973 Ops[0] =
9974 Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty));
9975 return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd");
9976 }
9977 case NEON::BI__builtin_neon_vceqd_f64:
9978 case NEON::BI__builtin_neon_vcled_f64:
9979 case NEON::BI__builtin_neon_vcltd_f64:
9980 case NEON::BI__builtin_neon_vcged_f64:
9981 case NEON::BI__builtin_neon_vcgtd_f64: {
9982 llvm::CmpInst::Predicate P;
9983 switch (BuiltinID) {
9984 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 9984)
;
9985 case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break;
9986 case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break;
9987 case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break;
9988 case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break;
9989 case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break;
9990 }
9991 Ops.push_back(EmitScalarExpr(E->getArg(1)));
9992 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
9993 Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
9994 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
9995 return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd");
9996 }
9997 case NEON::BI__builtin_neon_vceqs_f32:
9998 case NEON::BI__builtin_neon_vcles_f32:
9999 case NEON::BI__builtin_neon_vclts_f32:
10000 case NEON::BI__builtin_neon_vcges_f32:
10001 case NEON::BI__builtin_neon_vcgts_f32: {
10002 llvm::CmpInst::Predicate P;
10003 switch (BuiltinID) {
10004 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 10004)
;
10005 case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break;
10006 case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break;
10007 case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break;
10008 case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break;
10009 case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break;
10010 }
10011 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10012 Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
10013 Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy);
10014 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
10015 return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd");
10016 }
10017 case NEON::BI__builtin_neon_vceqh_f16:
10018 case NEON::BI__builtin_neon_vcleh_f16:
10019 case NEON::BI__builtin_neon_vclth_f16:
10020 case NEON::BI__builtin_neon_vcgeh_f16:
10021 case NEON::BI__builtin_neon_vcgth_f16: {
10022 llvm::CmpInst::Predicate P;
10023 switch (BuiltinID) {
10024 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 10024)
;
10025 case NEON::BI__builtin_neon_vceqh_f16: P = llvm::FCmpInst::FCMP_OEQ; break;
10026 case NEON::BI__builtin_neon_vcleh_f16: P = llvm::FCmpInst::FCMP_OLE; break;
10027 case NEON::BI__builtin_neon_vclth_f16: P = llvm::FCmpInst::FCMP_OLT; break;
10028 case NEON::BI__builtin_neon_vcgeh_f16: P = llvm::FCmpInst::FCMP_OGE; break;
10029 case NEON::BI__builtin_neon_vcgth_f16: P = llvm::FCmpInst::FCMP_OGT; break;
10030 }
10031 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10032 Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
10033 Ops[1] = Builder.CreateBitCast(Ops[1], HalfTy);
10034 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
10035 return Builder.CreateSExt(Ops[0], Int16Ty, "vcmpd");
10036 }
10037 case NEON::BI__builtin_neon_vceqd_s64:
10038 case NEON::BI__builtin_neon_vceqd_u64:
10039 case NEON::BI__builtin_neon_vcgtd_s64:
10040 case NEON::BI__builtin_neon_vcgtd_u64:
10041 case NEON::BI__builtin_neon_vcltd_s64:
10042 case NEON::BI__builtin_neon_vcltd_u64:
10043 case NEON::BI__builtin_neon_vcged_u64:
10044 case NEON::BI__builtin_neon_vcged_s64:
10045 case NEON::BI__builtin_neon_vcled_u64:
10046 case NEON::BI__builtin_neon_vcled_s64: {
10047 llvm::CmpInst::Predicate P;
10048 switch (BuiltinID) {
10049 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 10049)
;
10050 case NEON::BI__builtin_neon_vceqd_s64:
10051 case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break;
10052 case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break;
10053 case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break;
10054 case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break;
10055 case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break;
10056 case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break;
10057 case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break;
10058 case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break;
10059 case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break;
10060 }
10061 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10062 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
10063 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
10064 Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]);
10065 return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd");
10066 }
10067 case NEON::BI__builtin_neon_vtstd_s64:
10068 case NEON::BI__builtin_neon_vtstd_u64: {
10069 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10070 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
10071 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
10072 Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
10073 Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
10074 llvm::Constant::getNullValue(Int64Ty));
10075 return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd");
10076 }
10077 case NEON::BI__builtin_neon_vset_lane_i8:
10078 case NEON::BI__builtin_neon_vset_lane_i16:
10079 case NEON::BI__builtin_neon_vset_lane_i32:
10080 case NEON::BI__builtin_neon_vset_lane_i64:
10081 case NEON::BI__builtin_neon_vset_lane_bf16:
10082 case NEON::BI__builtin_neon_vset_lane_f32:
10083 case NEON::BI__builtin_neon_vsetq_lane_i8:
10084 case NEON::BI__builtin_neon_vsetq_lane_i16:
10085 case NEON::BI__builtin_neon_vsetq_lane_i32:
10086 case NEON::BI__builtin_neon_vsetq_lane_i64:
10087 case NEON::BI__builtin_neon_vsetq_lane_bf16:
10088 case NEON::BI__builtin_neon_vsetq_lane_f32:
10089 Ops.push_back(EmitScalarExpr(E->getArg(2)));
10090 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
10091 case NEON::BI__builtin_neon_vset_lane_f64:
10092 // The vector type needs a cast for the v1f64 variant.
10093 Ops[1] =
10094 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 1));
10095 Ops.push_back(EmitScalarExpr(E->getArg(2)));
10096 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
10097 case NEON::BI__builtin_neon_vsetq_lane_f64:
10098 // The vector type needs a cast for the v2f64 variant.
10099 Ops[1] =
10100 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 2));
10101 Ops.push_back(EmitScalarExpr(E->getArg(2)));
10102 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
10103
10104 case NEON::BI__builtin_neon_vget_lane_i8:
10105 case NEON::BI__builtin_neon_vdupb_lane_i8:
10106 Ops[0] =
10107 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 8));
10108 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10109 "vget_lane");
10110 case NEON::BI__builtin_neon_vgetq_lane_i8:
10111 case NEON::BI__builtin_neon_vdupb_laneq_i8:
10112 Ops[0] =
10113 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 16));
10114 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10115 "vgetq_lane");
10116 case NEON::BI__builtin_neon_vget_lane_i16:
10117 case NEON::BI__builtin_neon_vduph_lane_i16:
10118 Ops[0] =
10119 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 4));
10120 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10121 "vget_lane");
10122 case NEON::BI__builtin_neon_vgetq_lane_i16:
10123 case NEON::BI__builtin_neon_vduph_laneq_i16:
10124 Ops[0] =
10125 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 8));
10126 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10127 "vgetq_lane");
10128 case NEON::BI__builtin_neon_vget_lane_i32:
10129 case NEON::BI__builtin_neon_vdups_lane_i32:
10130 Ops[0] =
10131 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 2));
10132 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10133 "vget_lane");
10134 case NEON::BI__builtin_neon_vdups_lane_f32:
10135 Ops[0] =
10136 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2));
10137 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10138 "vdups_lane");
10139 case NEON::BI__builtin_neon_vgetq_lane_i32:
10140 case NEON::BI__builtin_neon_vdups_laneq_i32:
10141 Ops[0] =
10142 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4));
10143 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10144 "vgetq_lane");
10145 case NEON::BI__builtin_neon_vget_lane_i64:
10146 case NEON::BI__builtin_neon_vdupd_lane_i64:
10147 Ops[0] =
10148 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 1));
10149 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10150 "vget_lane");
10151 case NEON::BI__builtin_neon_vdupd_lane_f64:
10152 Ops[0] =
10153 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1));
10154 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10155 "vdupd_lane");
10156 case NEON::BI__builtin_neon_vgetq_lane_i64:
10157 case NEON::BI__builtin_neon_vdupd_laneq_i64:
10158 Ops[0] =
10159 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
10160 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10161 "vgetq_lane");
10162 case NEON::BI__builtin_neon_vget_lane_f32:
10163 Ops[0] =
10164 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2));
10165 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10166 "vget_lane");
10167 case NEON::BI__builtin_neon_vget_lane_f64:
10168 Ops[0] =
10169 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1));
10170 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10171 "vget_lane");
10172 case NEON::BI__builtin_neon_vgetq_lane_f32:
10173 case NEON::BI__builtin_neon_vdups_laneq_f32:
10174 Ops[0] =
10175 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 4));
10176 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10177 "vgetq_lane");
10178 case NEON::BI__builtin_neon_vgetq_lane_f64:
10179 case NEON::BI__builtin_neon_vdupd_laneq_f64:
10180 Ops[0] =
10181 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 2));
10182 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10183 "vgetq_lane");
10184 case NEON::BI__builtin_neon_vaddh_f16:
10185 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10186 return Builder.CreateFAdd(Ops[0], Ops[1], "vaddh");
10187 case NEON::BI__builtin_neon_vsubh_f16:
10188 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10189 return Builder.CreateFSub(Ops[0], Ops[1], "vsubh");
10190 case NEON::BI__builtin_neon_vmulh_f16:
10191 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10192 return Builder.CreateFMul(Ops[0], Ops[1], "vmulh");
10193 case NEON::BI__builtin_neon_vdivh_f16:
10194 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10195 return Builder.CreateFDiv(Ops[0], Ops[1], "vdivh");
10196 case NEON::BI__builtin_neon_vfmah_f16:
10197 // NEON intrinsic puts accumulator first, unlike the LLVM fma.
10198 return emitCallMaybeConstrainedFPBuiltin(
10199 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy,
10200 {EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), Ops[0]});
10201 case NEON::BI__builtin_neon_vfmsh_f16: {
10202 // FIXME: This should be an fneg instruction:
10203 Value *Zero = llvm::ConstantFP::getZeroValueForNegation(HalfTy);
10204 Value* Sub = Builder.CreateFSub(Zero, EmitScalarExpr(E->getArg(1)), "vsubh");
10205
10206 // NEON intrinsic puts accumulator first, unlike the LLVM fma.
10207 return emitCallMaybeConstrainedFPBuiltin(
10208 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy,
10209 {Sub, EmitScalarExpr(E->getArg(2)), Ops[0]});
10210 }
10211 case NEON::BI__builtin_neon_vaddd_s64:
10212 case NEON::BI__builtin_neon_vaddd_u64:
10213 return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd");
10214 case NEON::BI__builtin_neon_vsubd_s64:
10215 case NEON::BI__builtin_neon_vsubd_u64:
10216 return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd");
10217 case NEON::BI__builtin_neon_vqdmlalh_s16:
10218 case NEON::BI__builtin_neon_vqdmlslh_s16: {
10219 SmallVector<Value *, 2> ProductOps;
10220 ProductOps.push_back(vectorWrapScalar16(Ops[1]));
10221 ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2))));
10222 auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4);
10223 Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
10224 ProductOps, "vqdmlXl");
10225 Constant *CI = ConstantInt::get(SizeTy, 0);
10226 Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
10227
10228 unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16
10229 ? Intrinsic::aarch64_neon_sqadd
10230 : Intrinsic::aarch64_neon_sqsub;
10231 return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl");
10232 }
10233 case NEON::BI__builtin_neon_vqshlud_n_s64: {
10234 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10235 Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
10236 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty),
10237 Ops, "vqshlu_n");
10238 }
10239 case NEON::BI__builtin_neon_vqshld_n_u64:
10240 case NEON::BI__builtin_neon_vqshld_n_s64: {
10241 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64
10242 ? Intrinsic::aarch64_neon_uqshl
10243 : Intrinsic::aarch64_neon_sqshl;
10244 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10245 Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
10246 return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n");
10247 }
10248 case NEON::BI__builtin_neon_vrshrd_n_u64:
10249 case NEON::BI__builtin_neon_vrshrd_n_s64: {
10250 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64
10251 ? Intrinsic::aarch64_neon_urshl
10252 : Intrinsic::aarch64_neon_srshl;
10253 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10254 int SV = cast<ConstantInt>(Ops[1])->getSExtValue();
10255 Ops[1] = ConstantInt::get(Int64Ty, -SV);
10256 return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n");
10257 }
10258 case NEON::BI__builtin_neon_vrsrad_n_u64:
10259 case NEON::BI__builtin_neon_vrsrad_n_s64: {
10260 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64
10261 ? Intrinsic::aarch64_neon_urshl
10262 : Intrinsic::aarch64_neon_srshl;
10263 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
10264 Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2))));
10265 Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty),
10266 {Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)});
10267 return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty));
10268 }
10269 case NEON::BI__builtin_neon_vshld_n_s64:
10270 case NEON::BI__builtin_neon_vshld_n_u64: {
10271 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
10272 return Builder.CreateShl(
10273 Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n");
10274 }
10275 case NEON::BI__builtin_neon_vshrd_n_s64: {
10276 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
10277 return Builder.CreateAShr(
10278 Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
10279 Amt->getZExtValue())),
10280 "shrd_n");
10281 }
10282 case NEON::BI__builtin_neon_vshrd_n_u64: {
10283 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
10284 uint64_t ShiftAmt = Amt->getZExtValue();
10285 // Right-shifting an unsigned value by its size yields 0.
10286 if (ShiftAmt == 64)
10287 return ConstantInt::get(Int64Ty, 0);
10288 return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt),
10289 "shrd_n");
10290 }
10291 case NEON::BI__builtin_neon_vsrad_n_s64: {
10292 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
10293 Ops[1] = Builder.CreateAShr(
10294 Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
10295 Amt->getZExtValue())),
10296 "shrd_n");
10297 return Builder.CreateAdd(Ops[0], Ops[1]);
10298 }
10299 case NEON::BI__builtin_neon_vsrad_n_u64: {
10300 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
10301 uint64_t ShiftAmt = Amt->getZExtValue();
10302 // Right-shifting an unsigned value by its size yields 0.
10303 // As Op + 0 = Op, return Ops[0] directly.
10304 if (ShiftAmt == 64)
10305 return Ops[0];
10306 Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt),
10307 "shrd_n");
10308 return Builder.CreateAdd(Ops[0], Ops[1]);
10309 }
10310 case NEON::BI__builtin_neon_vqdmlalh_lane_s16:
10311 case NEON::BI__builtin_neon_vqdmlalh_laneq_s16:
10312 case NEON::BI__builtin_neon_vqdmlslh_lane_s16:
10313 case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: {
10314 Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
10315 "lane");
10316 SmallVector<Value *, 2> ProductOps;
10317 ProductOps.push_back(vectorWrapScalar16(Ops[1]));
10318 ProductOps.push_back(vectorWrapScalar16(Ops[2]));
10319 auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4);
10320 Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
10321 ProductOps, "vqdmlXl");
10322 Constant *CI = ConstantInt::get(SizeTy, 0);
10323 Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
10324 Ops.pop_back();
10325
10326 unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 ||
10327 BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16)
10328 ? Intrinsic::aarch64_neon_sqadd
10329 : Intrinsic::aarch64_neon_sqsub;
10330 return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl");
10331 }
10332 case NEON::BI__builtin_neon_vqdmlals_s32:
10333 case NEON::BI__builtin_neon_vqdmlsls_s32: {
10334 SmallVector<Value *, 2> ProductOps;
10335 ProductOps.push_back(Ops[1]);
10336 ProductOps.push_back(EmitScalarExpr(E->getArg(2)));
10337 Ops[1] =
10338 EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
10339 ProductOps, "vqdmlXl");
10340
10341 unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32
10342 ? Intrinsic::aarch64_neon_sqadd
10343 : Intrinsic::aarch64_neon_sqsub;
10344 return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl");
10345 }
10346 case NEON::BI__builtin_neon_vqdmlals_lane_s32:
10347 case NEON::BI__builtin_neon_vqdmlals_laneq_s32:
10348 case NEON::BI__builtin_neon_vqdmlsls_lane_s32:
10349 case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: {
10350 Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
10351 "lane");
10352 SmallVector<Value *, 2> ProductOps;
10353 ProductOps.push_back(Ops[1]);
10354 ProductOps.push_back(Ops[2]);
10355 Ops[1] =
10356 EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
10357 ProductOps, "vqdmlXl");
10358 Ops.pop_back();
10359
10360 unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 ||
10361 BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32)
10362 ? Intrinsic::aarch64_neon_sqadd
10363 : Intrinsic::aarch64_neon_sqsub;
10364 return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl");
10365 }
10366 case NEON::BI__builtin_neon_vget_lane_bf16:
10367 case NEON::BI__builtin_neon_vduph_lane_bf16:
10368 case NEON::BI__builtin_neon_vduph_lane_f16: {
10369 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10370 "vget_lane");
10371 }
10372 case NEON::BI__builtin_neon_vgetq_lane_bf16:
10373 case NEON::BI__builtin_neon_vduph_laneq_bf16:
10374 case NEON::BI__builtin_neon_vduph_laneq_f16: {
10375 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10376 "vgetq_lane");
10377 }
10378
10379 case AArch64::BI_InterlockedAdd: {
10380 Value *Arg0 = EmitScalarExpr(E->getArg(0));
10381 Value *Arg1 = EmitScalarExpr(E->getArg(1));
10382 AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
10383 AtomicRMWInst::Add, Arg0, Arg1,
10384 llvm::AtomicOrdering::SequentiallyConsistent);
10385 return Builder.CreateAdd(RMWI, Arg1);
10386 }
10387 }
10388
10389 llvm::FixedVectorType *VTy = GetNeonType(this, Type);
10390 llvm::Type *Ty = VTy;
10391 if (!Ty)
10392 return nullptr;
10393
10394 // Not all intrinsics handled by the common case work for AArch64 yet, so only
10395 // defer to common code if it's been added to our special map.
10396 Builtin = findARMVectorIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID,
10397 AArch64SIMDIntrinsicsProvenSorted);
10398
10399 if (Builtin)
10400 return EmitCommonNeonBuiltinExpr(
10401 Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
10402 Builtin->NameHint, Builtin->TypeModifier, E, Ops,
10403 /*never use addresses*/ Address::invalid(), Address::invalid(), Arch);
10404
10405 if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops, Arch))
10406 return V;
10407
10408 unsigned Int;
10409 switch (BuiltinID) {
10410 default: return nullptr;
10411 case NEON::BI__builtin_neon_vbsl_v:
10412 case NEON::BI__builtin_neon_vbslq_v: {
10413 llvm::Type *BitTy = llvm::VectorType::getInteger(VTy);
10414 Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl");
10415 Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl");
10416 Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl");
10417
10418 Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl");
10419 Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl");
10420 Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl");
10421 return Builder.CreateBitCast(Ops[0], Ty);
10422 }
10423 case NEON::BI__builtin_neon_vfma_lane_v:
10424 case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types
10425 // The ARM builtins (and instructions) have the addend as the first
10426 // operand, but the 'fma' intrinsics have it last. Swap it around here.
10427 Value *Addend = Ops[0];
10428 Value *Multiplicand = Ops[1];
10429 Value *LaneSource = Ops[2];
10430 Ops[0] = Multiplicand;
10431 Ops[1] = LaneSource;
10432 Ops[2] = Addend;
10433
10434 // Now adjust things to handle the lane access.
10435 auto *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v
10436 ? llvm::FixedVectorType::get(VTy->getElementType(),
10437 VTy->getNumElements() / 2)
10438 : VTy;
10439 llvm::Constant *cst = cast<Constant>(Ops[3]);
10440 Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(), cst);
10441 Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy);
10442 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane");
10443
10444 Ops.pop_back();
10445 Int = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_fma
10446 : Intrinsic::fma;
10447 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla");
10448 }
10449 case NEON::BI__builtin_neon_vfma_laneq_v: {
10450 auto *VTy = cast<llvm::FixedVectorType>(Ty);
10451 // v1f64 fma should be mapped to Neon scalar f64 fma
10452 if (VTy && VTy->getElementType() == DoubleTy) {
10453 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
10454 Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
10455 llvm::FixedVectorType *VTy =
10456 GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, true));
10457 Ops[2] = Builder.CreateBitCast(Ops[2], VTy);
10458 Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
10459 Value *Result;
10460 Result = emitCallMaybeConstrainedFPBuiltin(
10461 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma,
10462 DoubleTy, {Ops[1], Ops[2], Ops[0]});
10463 return Builder.CreateBitCast(Result, Ty);
10464 }
10465 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10466 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10467
10468 auto *STy = llvm::FixedVectorType::get(VTy->getElementType(),
10469 VTy->getNumElements() * 2);
10470 Ops[2] = Builder.CreateBitCast(Ops[2], STy);
10471 Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(),
10472 cast<ConstantInt>(Ops[3]));
10473 Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
10474
10475 return emitCallMaybeConstrainedFPBuiltin(
10476 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
10477 {Ops[2], Ops[1], Ops[0]});
10478 }
10479 case NEON::BI__builtin_neon_vfmaq_laneq_v: {
10480 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10481 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10482
10483 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
10484 Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
10485 return emitCallMaybeConstrainedFPBuiltin(
10486 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
10487 {Ops[2], Ops[1], Ops[0]});
10488 }
10489 case NEON::BI__builtin_neon_vfmah_lane_f16:
10490 case NEON::BI__builtin_neon_vfmas_lane_f32:
10491 case NEON::BI__builtin_neon_vfmah_laneq_f16:
10492 case NEON::BI__builtin_neon_vfmas_laneq_f32:
10493 case NEON::BI__builtin_neon_vfmad_lane_f64:
10494 case NEON::BI__builtin_neon_vfmad_laneq_f64: {
10495 Ops.push_back(EmitScalarExpr(E->getArg(3)));
10496 llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
10497 Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
10498 return emitCallMaybeConstrainedFPBuiltin(
10499 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
10500 {Ops[1], Ops[2], Ops[0]});
10501 }
10502 case NEON::BI__builtin_neon_vmull_v:
10503 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10504 Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull;
10505 if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull;
10506 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
10507 case NEON::BI__builtin_neon_vmax_v:
10508 case NEON::BI__builtin_neon_vmaxq_v:
10509 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10510 Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax;
10511 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax;
10512 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
10513 case NEON::BI__builtin_neon_vmaxh_f16: {
10514 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10515 Int = Intrinsic::aarch64_neon_fmax;
10516 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmax");
10517 }
10518 case NEON::BI__builtin_neon_vmin_v:
10519 case NEON::BI__builtin_neon_vminq_v:
10520 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10521 Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin;
10522 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin;
10523 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
10524 case NEON::BI__builtin_neon_vminh_f16: {
10525 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10526 Int = Intrinsic::aarch64_neon_fmin;
10527 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmin");
10528 }
10529 case NEON::BI__builtin_neon_vabd_v:
10530 case NEON::BI__builtin_neon_vabdq_v:
10531 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10532 Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd;
10533 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd;
10534 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
10535 case NEON::BI__builtin_neon_vpadal_v:
10536 case NEON::BI__builtin_neon_vpadalq_v: {
10537 unsigned ArgElts = VTy->getNumElements();
10538 llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType());
10539 unsigned BitWidth = EltTy->getBitWidth();
10540 auto *ArgTy = llvm::FixedVectorType::get(
10541 llvm::IntegerType::get(getLLVMContext(), BitWidth / 2), 2 * ArgElts);
10542 llvm::Type* Tys[2] = { VTy, ArgTy };
10543 Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp;
10544 SmallVector<llvm::Value*, 1> TmpOps;
10545 TmpOps.push_back(Ops[1]);
10546 Function *F = CGM.getIntrinsic(Int, Tys);
10547 llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal");
10548 llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType());
10549 return Builder.CreateAdd(tmp, addend);
10550 }
10551 case NEON::BI__builtin_neon_vpmin_v:
10552 case NEON::BI__builtin_neon_vpminq_v:
10553 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10554 Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp;
10555 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp;
10556 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
10557 case NEON::BI__builtin_neon_vpmax_v:
10558 case NEON::BI__builtin_neon_vpmaxq_v:
10559 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10560 Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp;
10561 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp;
10562 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
10563 case NEON::BI__builtin_neon_vminnm_v:
10564 case NEON::BI__builtin_neon_vminnmq_v:
10565 Int = Intrinsic::aarch64_neon_fminnm;
10566 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm");
10567 case NEON::BI__builtin_neon_vminnmh_f16:
10568 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10569 Int = Intrinsic::aarch64_neon_fminnm;
10570 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vminnm");
10571 case NEON::BI__builtin_neon_vmaxnm_v:
10572 case NEON::BI__builtin_neon_vmaxnmq_v:
10573 Int = Intrinsic::aarch64_neon_fmaxnm;
10574 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm");
10575 case NEON::BI__builtin_neon_vmaxnmh_f16:
10576 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10577 Int = Intrinsic::aarch64_neon_fmaxnm;
10578 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmaxnm");
10579 case NEON::BI__builtin_neon_vrecpss_f32: {
10580 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10581 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy),
10582 Ops, "vrecps");
10583 }
10584 case NEON::BI__builtin_neon_vrecpsd_f64:
10585 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10586 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy),
10587 Ops, "vrecps");
10588 case NEON::BI__builtin_neon_vrecpsh_f16:
10589 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10590 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, HalfTy),
10591 Ops, "vrecps");
10592 case NEON::BI__builtin_neon_vqshrun_n_v:
10593 Int = Intrinsic::aarch64_neon_sqshrun;
10594 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n");
10595 case NEON::BI__builtin_neon_vqrshrun_n_v:
10596 Int = Intrinsic::aarch64_neon_sqrshrun;
10597 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n");
10598 case NEON::BI__builtin_neon_vqshrn_n_v:
10599 Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn;
10600 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n");
10601 case NEON::BI__builtin_neon_vrshrn_n_v:
10602 Int = Intrinsic::aarch64_neon_rshrn;
10603 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n");
10604 case NEON::BI__builtin_neon_vqrshrn_n_v:
10605 Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn;
10606 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n");
10607 case NEON::BI__builtin_neon_vrndah_f16: {
10608 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10609 Int = Builder.getIsFPConstrained()
10610 ? Intrinsic::experimental_constrained_round
10611 : Intrinsic::round;
10612 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrnda");
10613 }
10614 case NEON::BI__builtin_neon_vrnda_v:
10615 case NEON::BI__builtin_neon_vrndaq_v: {
10616 Int = Builder.getIsFPConstrained()
10617 ? Intrinsic::experimental_constrained_round
10618 : Intrinsic::round;
10619 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda");
10620 }
10621 case NEON::BI__builtin_neon_vrndih_f16: {
10622 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10623 Int = Builder.getIsFPConstrained()
10624 ? Intrinsic::experimental_constrained_nearbyint
10625 : Intrinsic::nearbyint;
10626 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndi");
10627 }
10628 case NEON::BI__builtin_neon_vrndmh_f16: {
10629 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10630 Int = Builder.getIsFPConstrained()
10631 ? Intrinsic::experimental_constrained_floor
10632 : Intrinsic::floor;
10633 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndm");
10634 }
10635 case NEON::BI__builtin_neon_vrndm_v:
10636 case NEON::BI__builtin_neon_vrndmq_v: {
10637 Int = Builder.getIsFPConstrained()
10638 ? Intrinsic::experimental_constrained_floor
10639 : Intrinsic::floor;
10640 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm");
10641 }
10642 case NEON::BI__builtin_neon_vrndnh_f16: {
10643 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10644 Int = Builder.getIsFPConstrained()
10645 ? Intrinsic::experimental_constrained_roundeven
10646 : Intrinsic::roundeven;
10647 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndn");
10648 }
10649 case NEON::BI__builtin_neon_vrndn_v:
10650 case NEON::BI__builtin_neon_vrndnq_v: {
10651 Int = Builder.getIsFPConstrained()
10652 ? Intrinsic::experimental_constrained_roundeven
10653 : Intrinsic::roundeven;
10654 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn");
10655 }
10656 case NEON::BI__builtin_neon_vrndns_f32: {
10657 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10658 Int = Builder.getIsFPConstrained()
10659 ? Intrinsic::experimental_constrained_roundeven
10660 : Intrinsic::roundeven;
10661 return EmitNeonCall(CGM.getIntrinsic(Int, FloatTy), Ops, "vrndn");
10662 }
10663 case NEON::BI__builtin_neon_vrndph_f16: {
10664 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10665 Int = Builder.getIsFPConstrained()
10666 ? Intrinsic::experimental_constrained_ceil
10667 : Intrinsic::ceil;
10668 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndp");
10669 }
10670 case NEON::BI__builtin_neon_vrndp_v:
10671 case NEON::BI__builtin_neon_vrndpq_v: {
10672 Int = Builder.getIsFPConstrained()
10673 ? Intrinsic::experimental_constrained_ceil
10674 : Intrinsic::ceil;
10675 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp");
10676 }
10677 case NEON::BI__builtin_neon_vrndxh_f16: {
10678 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10679 Int = Builder.getIsFPConstrained()
10680 ? Intrinsic::experimental_constrained_rint
10681 : Intrinsic::rint;
10682 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndx");
10683 }
10684 case NEON::BI__builtin_neon_vrndx_v:
10685 case NEON::BI__builtin_neon_vrndxq_v: {
10686 Int = Builder.getIsFPConstrained()
10687 ? Intrinsic::experimental_constrained_rint
10688 : Intrinsic::rint;
10689 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx");
10690 }
10691 case NEON::BI__builtin_neon_vrndh_f16: {
10692 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10693 Int = Builder.getIsFPConstrained()
10694 ? Intrinsic::experimental_constrained_trunc
10695 : Intrinsic::trunc;
10696 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndz");
10697 }
10698 case NEON::BI__builtin_neon_vrnd32x_v:
10699 case NEON::BI__builtin_neon_vrnd32xq_v: {
10700 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10701 Int = Intrinsic::aarch64_neon_frint32x;
10702 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd32x");
10703 }
10704 case NEON::BI__builtin_neon_vrnd32z_v:
10705 case NEON::BI__builtin_neon_vrnd32zq_v: {
10706 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10707 Int = Intrinsic::aarch64_neon_frint32z;
10708 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd32z");
10709 }
10710 case NEON::BI__builtin_neon_vrnd64x_v:
10711 case NEON::BI__builtin_neon_vrnd64xq_v: {
10712 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10713 Int = Intrinsic::aarch64_neon_frint64x;
10714 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd64x");
10715 }
10716 case NEON::BI__builtin_neon_vrnd64z_v:
10717 case NEON::BI__builtin_neon_vrnd64zq_v: {
10718 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10719 Int = Intrinsic::aarch64_neon_frint64z;
10720 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd64z");
10721 }
10722 case NEON::BI__builtin_neon_vrnd_v:
10723 case NEON::BI__builtin_neon_vrndq_v: {
10724 Int = Builder.getIsFPConstrained()
10725 ? Intrinsic::experimental_constrained_trunc
10726 : Intrinsic::trunc;
10727 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz");
10728 }
10729 case NEON::BI__builtin_neon_vcvt_f64_v:
10730 case NEON::BI__builtin_neon_vcvtq_f64_v:
10731 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10732 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad));
10733 return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
10734 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
10735 case NEON::BI__builtin_neon_vcvt_f64_f32: {
10736 assert(Type.getEltType() == NeonTypeFlags::Float64 && quad &&(static_cast <bool> (Type.getEltType() == NeonTypeFlags
::Float64 && quad && "unexpected vcvt_f64_f32 builtin"
) ? void (0) : __assert_fail ("Type.getEltType() == NeonTypeFlags::Float64 && quad && \"unexpected vcvt_f64_f32 builtin\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 10737, __extension__ __PRETTY_FUNCTION__))
10737 "unexpected vcvt_f64_f32 builtin")(static_cast <bool> (Type.getEltType() == NeonTypeFlags
::Float64 && quad && "unexpected vcvt_f64_f32 builtin"
) ? void (0) : __assert_fail ("Type.getEltType() == NeonTypeFlags::Float64 && quad && \"unexpected vcvt_f64_f32 builtin\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 10737, __extension__ __PRETTY_FUNCTION__))
;
10738 NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false);
10739 Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
10740
10741 return Builder.CreateFPExt(Ops[0], Ty, "vcvt");
10742 }
10743 case NEON::BI__builtin_neon_vcvt_f32_f64: {
10744 assert(Type.getEltType() == NeonTypeFlags::Float32 &&(static_cast <bool> (Type.getEltType() == NeonTypeFlags
::Float32 && "unexpected vcvt_f32_f64 builtin") ? void
(0) : __assert_fail ("Type.getEltType() == NeonTypeFlags::Float32 && \"unexpected vcvt_f32_f64 builtin\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 10745, __extension__ __PRETTY_FUNCTION__))
10745 "unexpected vcvt_f32_f64 builtin")(static_cast <bool> (Type.getEltType() == NeonTypeFlags
::Float32 && "unexpected vcvt_f32_f64 builtin") ? void
(0) : __assert_fail ("Type.getEltType() == NeonTypeFlags::Float32 && \"unexpected vcvt_f32_f64 builtin\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 10745, __extension__ __PRETTY_FUNCTION__))
;
10746 NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true);
10747 Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
10748
10749 return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt");
10750 }
10751 case NEON::BI__builtin_neon_vcvt_s32_v:
10752 case NEON::BI__builtin_neon_vcvt_u32_v:
10753 case NEON::BI__builtin_neon_vcvt_s64_v:
10754 case NEON::BI__builtin_neon_vcvt_u64_v:
10755 case NEON::BI__builtin_neon_vcvt_s16_v:
10756 case NEON::BI__builtin_neon_vcvt_u16_v:
10757 case NEON::BI__builtin_neon_vcvtq_s32_v:
10758 case NEON::BI__builtin_neon_vcvtq_u32_v:
10759 case NEON::BI__builtin_neon_vcvtq_s64_v:
10760 case NEON::BI__builtin_neon_vcvtq_u64_v:
10761 case NEON::BI__builtin_neon_vcvtq_s16_v:
10762 case NEON::BI__builtin_neon_vcvtq_u16_v: {
10763 Int =
10764 usgn ? Intrinsic::aarch64_neon_fcvtzu : Intrinsic::aarch64_neon_fcvtzs;
10765 llvm::Type *Tys[2] = {Ty, GetFloatNeonType(this, Type)};
10766 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtz");
10767 }
10768 case NEON::BI__builtin_neon_vcvta_s16_v:
10769 case NEON::BI__builtin_neon_vcvta_u16_v:
10770 case NEON::BI__builtin_neon_vcvta_s32_v:
10771 case NEON::BI__builtin_neon_vcvtaq_s16_v:
10772 case NEON::BI__builtin_neon_vcvtaq_s32_v:
10773 case NEON::BI__builtin_neon_vcvta_u32_v:
10774 case NEON::BI__builtin_neon_vcvtaq_u16_v:
10775 case NEON::BI__builtin_neon_vcvtaq_u32_v:
10776 case NEON::BI__builtin_neon_vcvta_s64_v:
10777 case NEON::BI__builtin_neon_vcvtaq_s64_v:
10778 case NEON::BI__builtin_neon_vcvta_u64_v:
10779 case NEON::BI__builtin_neon_vcvtaq_u64_v: {
10780 Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas;
10781 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
10782 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta");
10783 }
10784 case NEON::BI__builtin_neon_vcvtm_s16_v:
10785 case NEON::BI__builtin_neon_vcvtm_s32_v:
10786 case NEON::BI__builtin_neon_vcvtmq_s16_v:
10787 case NEON::BI__builtin_neon_vcvtmq_s32_v:
10788 case NEON::BI__builtin_neon_vcvtm_u16_v:
10789 case NEON::BI__builtin_neon_vcvtm_u32_v:
10790 case NEON::BI__builtin_neon_vcvtmq_u16_v:
10791 case NEON::BI__builtin_neon_vcvtmq_u32_v:
10792 case NEON::BI__builtin_neon_vcvtm_s64_v:
10793 case NEON::BI__builtin_neon_vcvtmq_s64_v:
10794 case NEON::BI__builtin_neon_vcvtm_u64_v:
10795 case NEON::BI__builtin_neon_vcvtmq_u64_v: {
10796 Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms;
10797 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
10798 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm");
10799 }
10800 case NEON::BI__builtin_neon_vcvtn_s16_v:
10801 case NEON::BI__builtin_neon_vcvtn_s32_v:
10802 case NEON::BI__builtin_neon_vcvtnq_s16_v:
10803 case NEON::BI__builtin_neon_vcvtnq_s32_v:
10804 case NEON::BI__builtin_neon_vcvtn_u16_v:
10805 case NEON::BI__builtin_neon_vcvtn_u32_v:
10806 case NEON::BI__builtin_neon_vcvtnq_u16_v:
10807 case NEON::BI__builtin_neon_vcvtnq_u32_v:
10808 case NEON::BI__builtin_neon_vcvtn_s64_v:
10809 case NEON::BI__builtin_neon_vcvtnq_s64_v:
10810 case NEON::BI__builtin_neon_vcvtn_u64_v:
10811 case NEON::BI__builtin_neon_vcvtnq_u64_v: {
10812 Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns;
10813 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
10814 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn");
10815 }
10816 case NEON::BI__builtin_neon_vcvtp_s16_v:
10817 case NEON::BI__builtin_neon_vcvtp_s32_v:
10818 case NEON::BI__builtin_neon_vcvtpq_s16_v:
10819 case NEON::BI__builtin_neon_vcvtpq_s32_v:
10820 case NEON::BI__builtin_neon_vcvtp_u16_v:
10821 case NEON::BI__builtin_neon_vcvtp_u32_v:
10822 case NEON::BI__builtin_neon_vcvtpq_u16_v:
10823 case NEON::BI__builtin_neon_vcvtpq_u32_v:
10824 case NEON::BI__builtin_neon_vcvtp_s64_v:
10825 case NEON::BI__builtin_neon_vcvtpq_s64_v:
10826 case NEON::BI__builtin_neon_vcvtp_u64_v:
10827 case NEON::BI__builtin_neon_vcvtpq_u64_v: {
10828 Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps;
10829 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
10830 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp");
10831 }
10832 case NEON::BI__builtin_neon_vmulx_v:
10833 case NEON::BI__builtin_neon_vmulxq_v: {
10834 Int = Intrinsic::aarch64_neon_fmulx;
10835 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
10836 }
10837 case NEON::BI__builtin_neon_vmulxh_lane_f16:
10838 case NEON::BI__builtin_neon_vmulxh_laneq_f16: {
10839 // vmulx_lane should be mapped to Neon scalar mulx after
10840 // extracting the scalar element
10841 Ops.push_back(EmitScalarExpr(E->getArg(2)));
10842 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
10843 Ops.pop_back();
10844 Int = Intrinsic::aarch64_neon_fmulx;
10845 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmulx");
10846 }
10847 case NEON::BI__builtin_neon_vmul_lane_v:
10848 case NEON::BI__builtin_neon_vmul_laneq_v: {
10849 // v1f64 vmul_lane should be mapped to Neon scalar mul lane
10850 bool Quad = false;
10851 if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v)
10852 Quad = true;
10853 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
10854 llvm::FixedVectorType *VTy =
10855 GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, Quad));
10856 Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
10857 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
10858 Value *Result = Builder.CreateFMul(Ops[0], Ops[1]);
10859 return Builder.CreateBitCast(Result, Ty);
10860 }
10861 case NEON::BI__builtin_neon_vnegd_s64:
10862 return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd");
10863 case NEON::BI__builtin_neon_vnegh_f16:
10864 return Builder.CreateFNeg(EmitScalarExpr(E->getArg(0)), "vnegh");
10865 case NEON::BI__builtin_neon_vpmaxnm_v:
10866 case NEON::BI__builtin_neon_vpmaxnmq_v: {
10867 Int = Intrinsic::aarch64_neon_fmaxnmp;
10868 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm");
10869 }
10870 case NEON::BI__builtin_neon_vpminnm_v:
10871 case NEON::BI__builtin_neon_vpminnmq_v: {
10872 Int = Intrinsic::aarch64_neon_fminnmp;
10873 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm");
10874 }
10875 case NEON::BI__builtin_neon_vsqrth_f16: {
10876 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10877 Int = Builder.getIsFPConstrained()
10878 ? Intrinsic::experimental_constrained_sqrt
10879 : Intrinsic::sqrt;
10880 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vsqrt");
10881 }
10882 case NEON::BI__builtin_neon_vsqrt_v:
10883 case NEON::BI__builtin_neon_vsqrtq_v: {
10884 Int = Builder.getIsFPConstrained()
10885 ? Intrinsic::experimental_constrained_sqrt
10886 : Intrinsic::sqrt;
10887 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10888 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt");
10889 }
10890 case NEON::BI__builtin_neon_vrbit_v:
10891 case NEON::BI__builtin_neon_vrbitq_v: {
10892 Int = Intrinsic::bitreverse;
10893 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit");
10894 }
10895 case NEON::BI__builtin_neon_vaddv_u8:
10896 // FIXME: These are handled by the AArch64 scalar code.
10897 usgn = true;
10898 LLVM_FALLTHROUGH[[gnu::fallthrough]];
10899 case NEON::BI__builtin_neon_vaddv_s8: {
10900 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
10901 Ty = Int32Ty;
10902 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
10903 llvm::Type *Tys[2] = { Ty, VTy };
10904 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10905 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
10906 return Builder.CreateTrunc(Ops[0], Int8Ty);
10907 }
10908 case NEON::BI__builtin_neon_vaddv_u16:
10909 usgn = true;
10910 LLVM_FALLTHROUGH[[gnu::fallthrough]];
10911 case NEON::BI__builtin_neon_vaddv_s16: {
10912 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
10913 Ty = Int32Ty;
10914 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
10915 llvm::Type *Tys[2] = { Ty, VTy };
10916 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10917 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
10918 return Builder.CreateTrunc(Ops[0], Int16Ty);
10919 }
10920 case NEON::BI__builtin_neon_vaddvq_u8:
10921 usgn = true;
10922 LLVM_FALLTHROUGH[[gnu::fallthrough]];
10923 case NEON::BI__builtin_neon_vaddvq_s8: {
10924 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
10925 Ty = Int32Ty;
10926 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
10927 llvm::Type *Tys[2] = { Ty, VTy };
10928 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10929 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
10930 return Builder.CreateTrunc(Ops[0], Int8Ty);
10931 }
10932 case NEON::BI__builtin_neon_vaddvq_u16:
10933 usgn = true;
10934 LLVM_FALLTHROUGH[[gnu::fallthrough]];
10935 case NEON::BI__builtin_neon_vaddvq_s16: {
10936 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
10937 Ty = Int32Ty;
10938 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
10939 llvm::Type *Tys[2] = { Ty, VTy };
10940 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10941 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
10942 return Builder.CreateTrunc(Ops[0], Int16Ty);
10943 }
10944 case NEON::BI__builtin_neon_vmaxv_u8: {
10945 Int = Intrinsic::aarch64_neon_umaxv;
10946 Ty = Int32Ty;
10947 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
10948 llvm::Type *Tys[2] = { Ty, VTy };
10949 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10950 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10951 return Builder.CreateTrunc(Ops[0], Int8Ty);
10952 }
10953 case NEON::BI__builtin_neon_vmaxv_u16: {
10954 Int = Intrinsic::aarch64_neon_umaxv;
10955 Ty = Int32Ty;
10956 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
10957 llvm::Type *Tys[2] = { Ty, VTy };
10958 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10959 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10960 return Builder.CreateTrunc(Ops[0], Int16Ty);
10961 }
10962 case NEON::BI__builtin_neon_vmaxvq_u8: {
10963 Int = Intrinsic::aarch64_neon_umaxv;
10964 Ty = Int32Ty;
10965 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
10966 llvm::Type *Tys[2] = { Ty, VTy };
10967 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10968 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10969 return Builder.CreateTrunc(Ops[0], Int8Ty);
10970 }
10971 case NEON::BI__builtin_neon_vmaxvq_u16: {
10972 Int = Intrinsic::aarch64_neon_umaxv;
10973 Ty = Int32Ty;
10974 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
10975 llvm::Type *Tys[2] = { Ty, VTy };
10976 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10977 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10978 return Builder.CreateTrunc(Ops[0], Int16Ty);
10979 }
10980 case NEON::BI__builtin_neon_vmaxv_s8: {
10981 Int = Intrinsic::aarch64_neon_smaxv;
10982 Ty = Int32Ty;
10983 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
10984 llvm::Type *Tys[2] = { Ty, VTy };
10985 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10986 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10987 return Builder.CreateTrunc(Ops[0], Int8Ty);
10988 }
10989 case NEON::BI__builtin_neon_vmaxv_s16: {
10990 Int = Intrinsic::aarch64_neon_smaxv;
10991 Ty = Int32Ty;
10992 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
10993 llvm::Type *Tys[2] = { Ty, VTy };
10994 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10995 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
10996 return Builder.CreateTrunc(Ops[0], Int16Ty);
10997 }
10998 case NEON::BI__builtin_neon_vmaxvq_s8: {
10999 Int = Intrinsic::aarch64_neon_smaxv;
11000 Ty = Int32Ty;
11001 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11002 llvm::Type *Tys[2] = { Ty, VTy };
11003 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11004 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11005 return Builder.CreateTrunc(Ops[0], Int8Ty);
11006 }
11007 case NEON::BI__builtin_neon_vmaxvq_s16: {
11008 Int = Intrinsic::aarch64_neon_smaxv;
11009 Ty = Int32Ty;
11010 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11011 llvm::Type *Tys[2] = { Ty, VTy };
11012 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11013 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11014 return Builder.CreateTrunc(Ops[0], Int16Ty);
11015 }
11016 case NEON::BI__builtin_neon_vmaxv_f16: {
11017 Int = Intrinsic::aarch64_neon_fmaxv;
11018 Ty = HalfTy;
11019 VTy = llvm::FixedVectorType::get(HalfTy, 4);
11020 llvm::Type *Tys[2] = { Ty, VTy };
11021 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11022 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11023 return Builder.CreateTrunc(Ops[0], HalfTy);
11024 }
11025 case NEON::BI__builtin_neon_vmaxvq_f16: {
11026 Int = Intrinsic::aarch64_neon_fmaxv;
11027 Ty = HalfTy;
11028 VTy = llvm::FixedVectorType::get(HalfTy, 8);
11029 llvm::Type *Tys[2] = { Ty, VTy };
11030 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11031 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11032 return Builder.CreateTrunc(Ops[0], HalfTy);
11033 }
11034 case NEON::BI__builtin_neon_vminv_u8: {
11035 Int = Intrinsic::aarch64_neon_uminv;
11036 Ty = Int32Ty;
11037 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11038 llvm::Type *Tys[2] = { Ty, VTy };
11039 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11040 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11041 return Builder.CreateTrunc(Ops[0], Int8Ty);
11042 }
11043 case NEON::BI__builtin_neon_vminv_u16: {
11044 Int = Intrinsic::aarch64_neon_uminv;
11045 Ty = Int32Ty;
11046 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11047 llvm::Type *Tys[2] = { Ty, VTy };
11048 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11049 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11050 return Builder.CreateTrunc(Ops[0], Int16Ty);
11051 }
11052 case NEON::BI__builtin_neon_vminvq_u8: {
11053 Int = Intrinsic::aarch64_neon_uminv;
11054 Ty = Int32Ty;
11055 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11056 llvm::Type *Tys[2] = { Ty, VTy };
11057 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11058 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11059 return Builder.CreateTrunc(Ops[0], Int8Ty);
11060 }
11061 case NEON::BI__builtin_neon_vminvq_u16: {
11062 Int = Intrinsic::aarch64_neon_uminv;
11063 Ty = Int32Ty;
11064 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11065 llvm::Type *Tys[2] = { Ty, VTy };
11066 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11067 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11068 return Builder.CreateTrunc(Ops[0], Int16Ty);
11069 }
11070 case NEON::BI__builtin_neon_vminv_s8: {
11071 Int = Intrinsic::aarch64_neon_sminv;
11072 Ty = Int32Ty;
11073 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11074 llvm::Type *Tys[2] = { Ty, VTy };
11075 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11076 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11077 return Builder.CreateTrunc(Ops[0], Int8Ty);
11078 }
11079 case NEON::BI__builtin_neon_vminv_s16: {
11080 Int = Intrinsic::aarch64_neon_sminv;
11081 Ty = Int32Ty;
11082 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11083 llvm::Type *Tys[2] = { Ty, VTy };
11084 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11085 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11086 return Builder.CreateTrunc(Ops[0], Int16Ty);
11087 }
11088 case NEON::BI__builtin_neon_vminvq_s8: {
11089 Int = Intrinsic::aarch64_neon_sminv;
11090 Ty = Int32Ty;
11091 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11092 llvm::Type *Tys[2] = { Ty, VTy };
11093 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11094 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11095 return Builder.CreateTrunc(Ops[0], Int8Ty);
11096 }
11097 case NEON::BI__builtin_neon_vminvq_s16: {
11098 Int = Intrinsic::aarch64_neon_sminv;
11099 Ty = Int32Ty;
11100 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11101 llvm::Type *Tys[2] = { Ty, VTy };
11102 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11103 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11104 return Builder.CreateTrunc(Ops[0], Int16Ty);
11105 }
11106 case NEON::BI__builtin_neon_vminv_f16: {
11107 Int = Intrinsic::aarch64_neon_fminv;
11108 Ty = HalfTy;
11109 VTy = llvm::FixedVectorType::get(HalfTy, 4);
11110 llvm::Type *Tys[2] = { Ty, VTy };
11111 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11112 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11113 return Builder.CreateTrunc(Ops[0], HalfTy);
11114 }
11115 case NEON::BI__builtin_neon_vminvq_f16: {
11116 Int = Intrinsic::aarch64_neon_fminv;
11117 Ty = HalfTy;
11118 VTy = llvm::FixedVectorType::get(HalfTy, 8);
11119 llvm::Type *Tys[2] = { Ty, VTy };
11120 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11121 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11122 return Builder.CreateTrunc(Ops[0], HalfTy);
11123 }
11124 case NEON::BI__builtin_neon_vmaxnmv_f16: {
11125 Int = Intrinsic::aarch64_neon_fmaxnmv;
11126 Ty = HalfTy;
11127 VTy = llvm::FixedVectorType::get(HalfTy, 4);
11128 llvm::Type *Tys[2] = { Ty, VTy };
11129 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11130 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
11131 return Builder.CreateTrunc(Ops[0], HalfTy);
11132 }
11133 case NEON::BI__builtin_neon_vmaxnmvq_f16: {
11134 Int = Intrinsic::aarch64_neon_fmaxnmv;
11135 Ty = HalfTy;
11136 VTy = llvm::FixedVectorType::get(HalfTy, 8);
11137 llvm::Type *Tys[2] = { Ty, VTy };
11138 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11139 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
11140 return Builder.CreateTrunc(Ops[0], HalfTy);
11141 }
11142 case NEON::BI__builtin_neon_vminnmv_f16: {
11143 Int = Intrinsic::aarch64_neon_fminnmv;
11144 Ty = HalfTy;
11145 VTy = llvm::FixedVectorType::get(HalfTy, 4);
11146 llvm::Type *Tys[2] = { Ty, VTy };
11147 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11148 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
11149 return Builder.CreateTrunc(Ops[0], HalfTy);
11150 }
11151 case NEON::BI__builtin_neon_vminnmvq_f16: {
11152 Int = Intrinsic::aarch64_neon_fminnmv;
11153 Ty = HalfTy;
11154 VTy = llvm::FixedVectorType::get(HalfTy, 8);
11155 llvm::Type *Tys[2] = { Ty, VTy };
11156 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11157 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
11158 return Builder.CreateTrunc(Ops[0], HalfTy);
11159 }
11160 case NEON::BI__builtin_neon_vmul_n_f64: {
11161 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
11162 Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy);
11163 return Builder.CreateFMul(Ops[0], RHS);
11164 }
11165 case NEON::BI__builtin_neon_vaddlv_u8: {
11166 Int = Intrinsic::aarch64_neon_uaddlv;
11167 Ty = Int32Ty;
11168 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11169 llvm::Type *Tys[2] = { Ty, VTy };
11170 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11171 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11172 return Builder.CreateTrunc(Ops[0], Int16Ty);
11173 }
11174 case NEON::BI__builtin_neon_vaddlv_u16: {
11175 Int = Intrinsic::aarch64_neon_uaddlv;
11176 Ty = Int32Ty;
11177 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11178 llvm::Type *Tys[2] = { Ty, VTy };
11179 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11180 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11181 }
11182 case NEON::BI__builtin_neon_vaddlvq_u8: {
11183 Int = Intrinsic::aarch64_neon_uaddlv;
11184 Ty = Int32Ty;
11185 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11186 llvm::Type *Tys[2] = { Ty, VTy };
11187 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11188 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11189 return Builder.CreateTrunc(Ops[0], Int16Ty);
11190 }
11191 case NEON::BI__builtin_neon_vaddlvq_u16: {
11192 Int = Intrinsic::aarch64_neon_uaddlv;
11193 Ty = Int32Ty;
11194 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11195 llvm::Type *Tys[2] = { Ty, VTy };
11196 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11197 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11198 }
11199 case NEON::BI__builtin_neon_vaddlv_s8: {
11200 Int = Intrinsic::aarch64_neon_saddlv;
11201 Ty = Int32Ty;
11202 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11203 llvm::Type *Tys[2] = { Ty, VTy };
11204 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11205 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11206 return Builder.CreateTrunc(Ops[0], Int16Ty);
11207 }
11208 case NEON::BI__builtin_neon_vaddlv_s16: {
11209 Int = Intrinsic::aarch64_neon_saddlv;
11210 Ty = Int32Ty;
11211 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11212 llvm::Type *Tys[2] = { Ty, VTy };
11213 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11214 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11215 }
11216 case NEON::BI__builtin_neon_vaddlvq_s8: {
11217 Int = Intrinsic::aarch64_neon_saddlv;
11218 Ty = Int32Ty;
11219 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11220 llvm::Type *Tys[2] = { Ty, VTy };
11221 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11222 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11223 return Builder.CreateTrunc(Ops[0], Int16Ty);
11224 }
11225 case NEON::BI__builtin_neon_vaddlvq_s16: {
11226 Int = Intrinsic::aarch64_neon_saddlv;
11227 Ty = Int32Ty;
11228 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11229 llvm::Type *Tys[2] = { Ty, VTy };
11230 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11231 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11232 }
11233 case NEON::BI__builtin_neon_vsri_n_v:
11234 case NEON::BI__builtin_neon_vsriq_n_v: {
11235 Int = Intrinsic::aarch64_neon_vsri;
11236 llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
11237 return EmitNeonCall(Intrin, Ops, "vsri_n");
11238 }
11239 case NEON::BI__builtin_neon_vsli_n_v:
11240 case NEON::BI__builtin_neon_vsliq_n_v: {
11241 Int = Intrinsic::aarch64_neon_vsli;
11242 llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
11243 return EmitNeonCall(Intrin, Ops, "vsli_n");
11244 }
11245 case NEON::BI__builtin_neon_vsra_n_v:
11246 case NEON::BI__builtin_neon_vsraq_n_v:
11247 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11248 Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
11249 return Builder.CreateAdd(Ops[0], Ops[1]);
11250 case NEON::BI__builtin_neon_vrsra_n_v:
11251 case NEON::BI__builtin_neon_vrsraq_n_v: {
11252 Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl;
11253 SmallVector<llvm::Value*,2> TmpOps;
11254 TmpOps.push_back(Ops[1]);
11255 TmpOps.push_back(Ops[2]);
11256 Function* F = CGM.getIntrinsic(Int, Ty);
11257 llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true);
11258 Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
11259 return Builder.CreateAdd(Ops[0], tmp);
11260 }
11261 case NEON::BI__builtin_neon_vld1_v:
11262 case NEON::BI__builtin_neon_vld1q_v: {
11263 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
11264 return Builder.CreateAlignedLoad(VTy, Ops[0], PtrOp0.getAlignment());
11265 }
11266 case NEON::BI__builtin_neon_vst1_v:
11267 case NEON::BI__builtin_neon_vst1q_v:
11268 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
11269 Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
11270 return Builder.CreateAlignedStore(Ops[1], Ops[0], PtrOp0.getAlignment());
11271 case NEON::BI__builtin_neon_vld1_lane_v:
11272 case NEON::BI__builtin_neon_vld1q_lane_v: {
11273 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11274 Ty = llvm::PointerType::getUnqual(VTy->getElementType());
11275 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11276 Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0],
11277 PtrOp0.getAlignment());
11278 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
11279 }
11280 case NEON::BI__builtin_neon_vld1_dup_v:
11281 case NEON::BI__builtin_neon_vld1q_dup_v: {
11282 Value *V = UndefValue::get(Ty);
11283 Ty = llvm::PointerType::getUnqual(VTy->getElementType());
11284 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11285 Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0],
11286 PtrOp0.getAlignment());
11287 llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
11288 Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
11289 return EmitNeonSplat(Ops[0], CI);
11290 }
11291 case NEON::BI__builtin_neon_vst1_lane_v:
11292 case NEON::BI__builtin_neon_vst1q_lane_v:
11293 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11294 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
11295 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
11296 return Builder.CreateAlignedStore(Ops[1], Builder.CreateBitCast(Ops[0], Ty),
11297 PtrOp0.getAlignment());
11298 case NEON::BI__builtin_neon_vld2_v:
11299 case NEON::BI__builtin_neon_vld2q_v: {
11300 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
11301 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11302 llvm::Type *Tys[2] = { VTy, PTy };
11303 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys);
11304 Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
11305 Ops[0] = Builder.CreateBitCast(Ops[0],
11306 llvm::PointerType::getUnqual(Ops[1]->getType()));
11307 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11308 }
11309 case NEON::BI__builtin_neon_vld3_v:
11310 case NEON::BI__builtin_neon_vld3q_v: {
11311 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
11312 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11313 llvm::Type *Tys[2] = { VTy, PTy };
11314 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys);
11315 Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
11316 Ops[0] = Builder.CreateBitCast(Ops[0],
11317 llvm::PointerType::getUnqual(Ops[1]->getType()));
11318 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11319 }
11320 case NEON::BI__builtin_neon_vld4_v:
11321 case NEON::BI__builtin_neon_vld4q_v: {
11322 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
11323 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11324 llvm::Type *Tys[2] = { VTy, PTy };
11325 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys);
11326 Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
11327 Ops[0] = Builder.CreateBitCast(Ops[0],
11328 llvm::PointerType::getUnqual(Ops[1]->getType()));
11329 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11330 }
11331 case NEON::BI__builtin_neon_vld2_dup_v:
11332 case NEON::BI__builtin_neon_vld2q_dup_v: {
11333 llvm::Type *PTy =
11334 llvm::PointerType::getUnqual(VTy->getElementType());
11335 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11336 llvm::Type *Tys[2] = { VTy, PTy };
11337 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys);
11338 Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
11339 Ops[0] = Builder.CreateBitCast(Ops[0],
11340 llvm::PointerType::getUnqual(Ops[1]->getType()));
11341 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11342 }
11343 case NEON::BI__builtin_neon_vld3_dup_v:
11344 case NEON::BI__builtin_neon_vld3q_dup_v: {
11345 llvm::Type *PTy =
11346 llvm::PointerType::getUnqual(VTy->getElementType());
11347 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11348 llvm::Type *Tys[2] = { VTy, PTy };
11349 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys);
11350 Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
11351 Ops[0] = Builder.CreateBitCast(Ops[0],
11352 llvm::PointerType::getUnqual(Ops[1]->getType()));
11353 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11354 }
11355 case NEON::BI__builtin_neon_vld4_dup_v:
11356 case NEON::BI__builtin_neon_vld4q_dup_v: {
11357 llvm::Type *PTy =
11358 llvm::PointerType::getUnqual(VTy->getElementType());
11359 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11360 llvm::Type *Tys[2] = { VTy, PTy };
11361 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys);
11362 Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
11363 Ops[0] = Builder.CreateBitCast(Ops[0],
11364 llvm::PointerType::getUnqual(Ops[1]->getType()));
11365 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11366 }
11367 case NEON::BI__builtin_neon_vld2_lane_v:
11368 case NEON::BI__builtin_neon_vld2q_lane_v: {
11369 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
11370 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys);
11371 std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
11372 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11373 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11374 Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
11375 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane");
11376 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
11377 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11378 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11379 }
11380 case NEON::BI__builtin_neon_vld3_lane_v:
11381 case NEON::BI__builtin_neon_vld3q_lane_v: {
11382 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
11383 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys);
11384 std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
11385 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11386 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11387 Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
11388 Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
11389 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
11390 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
11391 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11392 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11393 }
11394 case NEON::BI__builtin_neon_vld4_lane_v:
11395 case NEON::BI__builtin_neon_vld4q_lane_v: {
11396 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
11397 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys);
11398 std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
11399 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11400 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11401 Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
11402 Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
11403 Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty);
11404 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld4_lane");
11405 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
11406 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11407 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11408 }
11409 case NEON::BI__builtin_neon_vst2_v:
11410 case NEON::BI__builtin_neon_vst2q_v: {
11411 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11412 llvm::Type *Tys[2] = { VTy, Ops[2]->getType() };
11413 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys),
11414 Ops, "");
11415 }
11416 case NEON::BI__builtin_neon_vst2_lane_v:
11417 case NEON::BI__builtin_neon_vst2q_lane_v: {
11418 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11419 Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
11420 llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
11421 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys),
11422 Ops, "");
11423 }
11424 case NEON::BI__builtin_neon_vst3_v:
11425 case NEON::BI__builtin_neon_vst3q_v: {
11426 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11427 llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
11428 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys),
11429 Ops, "");
11430 }
11431 case NEON::BI__builtin_neon_vst3_lane_v:
11432 case NEON::BI__builtin_neon_vst3q_lane_v: {
11433 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11434 Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
11435 llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
11436 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys),
11437 Ops, "");
11438 }
11439 case NEON::BI__builtin_neon_vst4_v:
11440 case NEON::BI__builtin_neon_vst4q_v: {
11441 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11442 llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
11443 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys),
11444 Ops, "");
11445 }
11446 case NEON::BI__builtin_neon_vst4_lane_v:
11447 case NEON::BI__builtin_neon_vst4q_lane_v: {
11448 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11449 Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
11450 llvm::Type *Tys[2] = { VTy, Ops[5]->getType() };
11451 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys),
11452 Ops, "");
11453 }
11454 case NEON::BI__builtin_neon_vtrn_v:
11455 case NEON::BI__builtin_neon_vtrnq_v: {
11456 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
11457 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11458 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11459 Value *SV = nullptr;
11460
11461 for (unsigned vi = 0; vi != 2; ++vi) {
11462 SmallVector<int, 16> Indices;
11463 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
11464 Indices.push_back(i+vi);
11465 Indices.push_back(i+e+vi);
11466 }
11467 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
11468 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
11469 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
11470 }
11471 return SV;
11472 }
11473 case NEON::BI__builtin_neon_vuzp_v:
11474 case NEON::BI__builtin_neon_vuzpq_v: {
11475 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
11476 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11477 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11478 Value *SV = nullptr;
11479
11480 for (unsigned vi = 0; vi != 2; ++vi) {
11481 SmallVector<int, 16> Indices;
11482 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
11483 Indices.push_back(2*i+vi);
11484
11485 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
11486 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
11487 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
11488 }
11489 return SV;
11490 }
11491 case NEON::BI__builtin_neon_vzip_v:
11492 case NEON::BI__builtin_neon_vzipq_v: {
11493 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
11494 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11495 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11496 Value *SV = nullptr;
11497
11498 for (unsigned vi = 0; vi != 2; ++vi) {
11499 SmallVector<int, 16> Indices;
11500 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
11501 Indices.push_back((i + vi*e) >> 1);
11502 Indices.push_back(((i + vi*e) >> 1)+e);
11503 }
11504 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
11505 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
11506 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
11507 }
11508 return SV;
11509 }
11510 case NEON::BI__builtin_neon_vqtbl1q_v: {
11511 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty),
11512 Ops, "vtbl1");
11513 }
11514 case NEON::BI__builtin_neon_vqtbl2q_v: {
11515 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty),
11516 Ops, "vtbl2");
11517 }
11518 case NEON::BI__builtin_neon_vqtbl3q_v: {
11519 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty),
11520 Ops, "vtbl3");
11521 }
11522 case NEON::BI__builtin_neon_vqtbl4q_v: {
11523 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty),
11524 Ops, "vtbl4");
11525 }
11526 case NEON::BI__builtin_neon_vqtbx1q_v: {
11527 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty),
11528 Ops, "vtbx1");
11529 }
11530 case NEON::BI__builtin_neon_vqtbx2q_v: {
11531 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty),
11532 Ops, "vtbx2");
11533 }
11534 case NEON::BI__builtin_neon_vqtbx3q_v: {
11535 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty),
11536 Ops, "vtbx3");
11537 }
11538 case NEON::BI__builtin_neon_vqtbx4q_v: {
11539 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty),
11540 Ops, "vtbx4");
11541 }
11542 case NEON::BI__builtin_neon_vsqadd_v:
11543 case NEON::BI__builtin_neon_vsqaddq_v: {
11544 Int = Intrinsic::aarch64_neon_usqadd;
11545 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd");
11546 }
11547 case NEON::BI__builtin_neon_vuqadd_v:
11548 case NEON::BI__builtin_neon_vuqaddq_v: {
11549 Int = Intrinsic::aarch64_neon_suqadd;
11550 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd");
11551 }
11552 }
11553}
11554
11555Value *CodeGenFunction::EmitBPFBuiltinExpr(unsigned BuiltinID,
11556 const CallExpr *E) {
11557 assert((BuiltinID == BPF::BI__builtin_preserve_field_info ||(static_cast <bool> ((BuiltinID == BPF::BI__builtin_preserve_field_info
|| BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID ==
BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value
) && "unexpected BPF builtin") ? void (0) : __assert_fail
("(BuiltinID == BPF::BI__builtin_preserve_field_info || BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID == BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value) && \"unexpected BPF builtin\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 11561, __extension__ __PRETTY_FUNCTION__))
11558 BuiltinID == BPF::BI__builtin_btf_type_id ||(static_cast <bool> ((BuiltinID == BPF::BI__builtin_preserve_field_info
|| BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID ==
BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value
) && "unexpected BPF builtin") ? void (0) : __assert_fail
("(BuiltinID == BPF::BI__builtin_preserve_field_info || BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID == BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value) && \"unexpected BPF builtin\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 11561, __extension__ __PRETTY_FUNCTION__))
11559 BuiltinID == BPF::BI__builtin_preserve_type_info ||(static_cast <bool> ((BuiltinID == BPF::BI__builtin_preserve_field_info
|| BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID ==
BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value
) && "unexpected BPF builtin") ? void (0) : __assert_fail
("(BuiltinID == BPF::BI__builtin_preserve_field_info || BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID == BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value) && \"unexpected BPF builtin\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 11561, __extension__ __PRETTY_FUNCTION__))
11560 BuiltinID == BPF::BI__builtin_preserve_enum_value) &&(static_cast <bool> ((BuiltinID == BPF::BI__builtin_preserve_field_info
|| BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID ==
BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value
) && "unexpected BPF builtin") ? void (0) : __assert_fail
("(BuiltinID == BPF::BI__builtin_preserve_field_info || BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID == BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value) && \"unexpected BPF builtin\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 11561, __extension__ __PRETTY_FUNCTION__))
11561 "unexpected BPF builtin")(static_cast <bool> ((BuiltinID == BPF::BI__builtin_preserve_field_info
|| BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID ==
BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value
) && "unexpected BPF builtin") ? void (0) : __assert_fail
("(BuiltinID == BPF::BI__builtin_preserve_field_info || BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID == BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value) && \"unexpected BPF builtin\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 11561, __extension__ __PRETTY_FUNCTION__))
;
11562
11563 // A sequence number, injected into IR builtin functions, to
11564 // prevent CSE given the only difference of the funciton
11565 // may just be the debuginfo metadata.
11566 static uint32_t BuiltinSeqNum;
11567
11568 switch (BuiltinID) {
11569 default:
11570 llvm_unreachable("Unexpected BPF builtin")::llvm::llvm_unreachable_internal("Unexpected BPF builtin", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 11570)
;
11571 case BPF::BI__builtin_preserve_field_info: {
11572 const Expr *Arg = E->getArg(0);
11573 bool IsBitField = Arg->IgnoreParens()->getObjectKind() == OK_BitField;
11574
11575 if (!getDebugInfo()) {
11576 CGM.Error(E->getExprLoc(),
11577 "using __builtin_preserve_field_info() without -g");
11578 return IsBitField ? EmitLValue(Arg).getBitFieldPointer()
11579 : EmitLValue(Arg).getPointer(*this);
11580 }
11581
11582 // Enable underlying preserve_*_access_index() generation.
11583 bool OldIsInPreservedAIRegion = IsInPreservedAIRegion;
11584 IsInPreservedAIRegion = true;
11585 Value *FieldAddr = IsBitField ? EmitLValue(Arg).getBitFieldPointer()
11586 : EmitLValue(Arg).getPointer(*this);
11587 IsInPreservedAIRegion = OldIsInPreservedAIRegion;
11588
11589 ConstantInt *C = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
11590 Value *InfoKind = ConstantInt::get(Int64Ty, C->getSExtValue());
11591
11592 // Built the IR for the preserve_field_info intrinsic.
11593 llvm::Function *FnGetFieldInfo = llvm::Intrinsic::getDeclaration(
11594 &CGM.getModule(), llvm::Intrinsic::bpf_preserve_field_info,
11595 {FieldAddr->getType()});
11596 return Builder.CreateCall(FnGetFieldInfo, {FieldAddr, InfoKind});
11597 }
11598 case BPF::BI__builtin_btf_type_id:
11599 case BPF::BI__builtin_preserve_type_info: {
11600 if (!getDebugInfo()) {
11601 CGM.Error(E->getExprLoc(), "using builtin function without -g");
11602 return nullptr;
11603 }
11604
11605 const Expr *Arg0 = E->getArg(0);
11606 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(
11607 Arg0->getType(), Arg0->getExprLoc());
11608
11609 ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
11610 Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue());
11611 Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++);
11612
11613 llvm::Function *FnDecl;
11614 if (BuiltinID == BPF::BI__builtin_btf_type_id)
11615 FnDecl = llvm::Intrinsic::getDeclaration(
11616 &CGM.getModule(), llvm::Intrinsic::bpf_btf_type_id, {});
11617 else
11618 FnDecl = llvm::Intrinsic::getDeclaration(
11619 &CGM.getModule(), llvm::Intrinsic::bpf_preserve_type_info, {});
11620 CallInst *Fn = Builder.CreateCall(FnDecl, {SeqNumVal, FlagValue});
11621 Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
11622 return Fn;
11623 }
11624 case BPF::BI__builtin_preserve_enum_value: {
11625 if (!getDebugInfo()) {
11626 CGM.Error(E->getExprLoc(), "using builtin function without -g");
11627 return nullptr;
11628 }
11629
11630 const Expr *Arg0 = E->getArg(0);
11631 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(
11632 Arg0->getType(), Arg0->getExprLoc());
11633
11634 // Find enumerator
11635 const auto *UO = cast<UnaryOperator>(Arg0->IgnoreParens());
11636 const auto *CE = cast<CStyleCastExpr>(UO->getSubExpr());
11637 const auto *DR = cast<DeclRefExpr>(CE->getSubExpr());
11638 const auto *Enumerator = cast<EnumConstantDecl>(DR->getDecl());
11639
11640 auto &InitVal = Enumerator->getInitVal();
11641 std::string InitValStr;
11642 if (InitVal.isNegative() || InitVal > uint64_t(INT64_MAX(9223372036854775807L)))
11643 InitValStr = std::to_string(InitVal.getSExtValue());
11644 else
11645 InitValStr = std::to_string(InitVal.getZExtValue());
11646 std::string EnumStr = Enumerator->getNameAsString() + ":" + InitValStr;
11647 Value *EnumStrVal = Builder.CreateGlobalStringPtr(EnumStr);
11648
11649 ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
11650 Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue());
11651 Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++);
11652
11653 llvm::Function *IntrinsicFn = llvm::Intrinsic::getDeclaration(
11654 &CGM.getModule(), llvm::Intrinsic::bpf_preserve_enum_value, {});
11655 CallInst *Fn =
11656 Builder.CreateCall(IntrinsicFn, {SeqNumVal, EnumStrVal, FlagValue});
11657 Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
11658 return Fn;
11659 }
11660 }
11661}
11662
11663llvm::Value *CodeGenFunction::
11664BuildVector(ArrayRef<llvm::Value*> Ops) {
11665 assert((Ops.size() & (Ops.size() - 1)) == 0 &&(static_cast <bool> ((Ops.size() & (Ops.size() - 1)
) == 0 && "Not a power-of-two sized vector!") ? void (
0) : __assert_fail ("(Ops.size() & (Ops.size() - 1)) == 0 && \"Not a power-of-two sized vector!\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 11666, __extension__ __PRETTY_FUNCTION__))
11666 "Not a power-of-two sized vector!")(static_cast <bool> ((Ops.size() & (Ops.size() - 1)
) == 0 && "Not a power-of-two sized vector!") ? void (
0) : __assert_fail ("(Ops.size() & (Ops.size() - 1)) == 0 && \"Not a power-of-two sized vector!\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 11666, __extension__ __PRETTY_FUNCTION__))
;
11667 bool AllConstants = true;
11668 for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
11669 AllConstants &= isa<Constant>(Ops[i]);
11670
11671 // If this is a constant vector, create a ConstantVector.
11672 if (AllConstants) {
11673 SmallVector<llvm::Constant*, 16> CstOps;
11674 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
11675 CstOps.push_back(cast<Constant>(Ops[i]));
11676 return llvm::ConstantVector::get(CstOps);
11677 }
11678
11679 // Otherwise, insertelement the values to build the vector.
11680 Value *Result = llvm::UndefValue::get(
11681 llvm::FixedVectorType::get(Ops[0]->getType(), Ops.size()));
11682
11683 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
11684 Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i));
11685
11686 return Result;
11687}
11688
11689// Convert the mask from an integer type to a vector of i1.
11690static Value *getMaskVecValue(CodeGenFunction &CGF, Value *Mask,
11691 unsigned NumElts) {
11692
11693 auto *MaskTy = llvm::FixedVectorType::get(
11694 CGF.Builder.getInt1Ty(),
11695 cast<IntegerType>(Mask->getType())->getBitWidth());
11696 Value *MaskVec = CGF.Builder.CreateBitCast(Mask, MaskTy);
11697
11698 // If we have less than 8 elements, then the starting mask was an i8 and
11699 // we need to extract down to the right number of elements.
11700 if (NumElts < 8) {
11701 int Indices[4];
11702 for (unsigned i = 0; i != NumElts; ++i)
11703 Indices[i] = i;
11704 MaskVec = CGF.Builder.CreateShuffleVector(MaskVec, MaskVec,
11705 makeArrayRef(Indices, NumElts),
11706 "extract");
11707 }
11708 return MaskVec;
11709}
11710
11711static Value *EmitX86MaskedStore(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
11712 Align Alignment) {
11713 // Cast the pointer to right type.
11714 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
11715 llvm::PointerType::getUnqual(Ops[1]->getType()));
11716
11717 Value *MaskVec = getMaskVecValue(
11718 CGF, Ops[2],
11719 cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements());
11720
11721 return CGF.Builder.CreateMaskedStore(Ops[1], Ptr, Alignment, MaskVec);
11722}
11723
11724static Value *EmitX86MaskedLoad(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
11725 Align Alignment) {
11726 // Cast the pointer to right type.
11727 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
11728 llvm::PointerType::getUnqual(Ops[1]->getType()));
11729
11730 Value *MaskVec = getMaskVecValue(
11731 CGF, Ops[2],
11732 cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements());
11733
11734 return CGF.Builder.CreateMaskedLoad(Ptr, Alignment, MaskVec, Ops[1]);
11735}
11736
11737static Value *EmitX86ExpandLoad(CodeGenFunction &CGF,
11738 ArrayRef<Value *> Ops) {
11739 auto *ResultTy = cast<llvm::VectorType>(Ops[1]->getType());
11740 llvm::Type *PtrTy = ResultTy->getElementType();
11741
11742 // Cast the pointer to element type.
11743 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
11744 llvm::PointerType::getUnqual(PtrTy));
11745
11746 Value *MaskVec = getMaskVecValue(
11747 CGF, Ops[2], cast<FixedVectorType>(ResultTy)->getNumElements());
11748
11749 llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_expandload,
11750 ResultTy);
11751 return CGF.Builder.CreateCall(F, { Ptr, MaskVec, Ops[1] });
11752}
11753
11754static Value *EmitX86CompressExpand(CodeGenFunction &CGF,
11755 ArrayRef<Value *> Ops,
11756 bool IsCompress) {
11757 auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType());
11758
11759 Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements());
11760
11761 Intrinsic::ID IID = IsCompress ? Intrinsic::x86_avx512_mask_compress
11762 : Intrinsic::x86_avx512_mask_expand;
11763 llvm::Function *F = CGF.CGM.getIntrinsic(IID, ResultTy);
11764 return CGF.Builder.CreateCall(F, { Ops[0], Ops[1], MaskVec });
11765}
11766
11767static Value *EmitX86CompressStore(CodeGenFunction &CGF,
11768 ArrayRef<Value *> Ops) {
11769 auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType());
11770 llvm::Type *PtrTy = ResultTy->getElementType();
11771
11772 // Cast the pointer to element type.
11773 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
11774 llvm::PointerType::getUnqual(PtrTy));
11775
11776 Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements());
11777
11778 llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_compressstore,
11779 ResultTy);
11780 return CGF.Builder.CreateCall(F, { Ops[1], Ptr, MaskVec });
11781}
11782
11783static Value *EmitX86MaskLogic(CodeGenFunction &CGF, Instruction::BinaryOps Opc,
11784 ArrayRef<Value *> Ops,
11785 bool InvertLHS = false) {
11786 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11787 Value *LHS = getMaskVecValue(CGF, Ops[0], NumElts);
11788 Value *RHS = getMaskVecValue(CGF, Ops[1], NumElts);
11789
11790 if (InvertLHS)
11791 LHS = CGF.Builder.CreateNot(LHS);
11792
11793 return CGF.Builder.CreateBitCast(CGF.Builder.CreateBinOp(Opc, LHS, RHS),
11794 Ops[0]->getType());
11795}
11796
11797static Value *EmitX86FunnelShift(CodeGenFunction &CGF, Value *Op0, Value *Op1,
11798 Value *Amt, bool IsRight) {
11799 llvm::Type *Ty = Op0->getType();
11800
11801 // Amount may be scalar immediate, in which case create a splat vector.
11802 // Funnel shifts amounts are treated as modulo and types are all power-of-2 so
11803 // we only care about the lowest log2 bits anyway.
11804 if (Amt->getType() != Ty) {
11805 unsigned NumElts = cast<llvm::FixedVectorType>(Ty)->getNumElements();
11806 Amt = CGF.Builder.CreateIntCast(Amt, Ty->getScalarType(), false);
11807 Amt = CGF.Builder.CreateVectorSplat(NumElts, Amt);
11808 }
11809
11810 unsigned IID = IsRight ? Intrinsic::fshr : Intrinsic::fshl;
11811 Function *F = CGF.CGM.getIntrinsic(IID, Ty);
11812 return CGF.Builder.CreateCall(F, {Op0, Op1, Amt});
11813}
11814
11815static Value *EmitX86vpcom(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
11816 bool IsSigned) {
11817 Value *Op0 = Ops[0];
11818 Value *Op1 = Ops[1];
11819 llvm::Type *Ty = Op0->getType();
11820 uint64_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
11821
11822 CmpInst::Predicate Pred;
11823 switch (Imm) {
11824 case 0x0:
11825 Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
11826 break;
11827 case 0x1:
11828 Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
11829 break;
11830 case 0x2:
11831 Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
11832 break;
11833 case 0x3:
11834 Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
11835 break;
11836 case 0x4:
11837 Pred = ICmpInst::ICMP_EQ;
11838 break;
11839 case 0x5:
11840 Pred = ICmpInst::ICMP_NE;
11841 break;
11842 case 0x6:
11843 return llvm::Constant::getNullValue(Ty); // FALSE
11844 case 0x7:
11845 return llvm::Constant::getAllOnesValue(Ty); // TRUE
11846 default:
11847 llvm_unreachable("Unexpected XOP vpcom/vpcomu predicate")::llvm::llvm_unreachable_internal("Unexpected XOP vpcom/vpcomu predicate"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 11847)
;
11848 }
11849
11850 Value *Cmp = CGF.Builder.CreateICmp(Pred, Op0, Op1);
11851 Value *Res = CGF.Builder.CreateSExt(Cmp, Ty);
11852 return Res;
11853}
11854
11855static Value *EmitX86Select(CodeGenFunction &CGF,
11856 Value *Mask, Value *Op0, Value *Op1) {
11857
11858 // If the mask is all ones just return first argument.
11859 if (const auto *C = dyn_cast<Constant>(Mask))
11860 if (C->isAllOnesValue())
11861 return Op0;
11862
11863 Mask = getMaskVecValue(
11864 CGF, Mask, cast<llvm::FixedVectorType>(Op0->getType())->getNumElements());
11865
11866 return CGF.Builder.CreateSelect(Mask, Op0, Op1);
11867}
11868
11869static Value *EmitX86ScalarSelect(CodeGenFunction &CGF,
11870 Value *Mask, Value *Op0, Value *Op1) {
11871 // If the mask is all ones just return first argument.
11872 if (const auto *C = dyn_cast<Constant>(Mask))
11873 if (C->isAllOnesValue())
11874 return Op0;
11875
11876 auto *MaskTy = llvm::FixedVectorType::get(
11877 CGF.Builder.getInt1Ty(), Mask->getType()->getIntegerBitWidth());
11878 Mask = CGF.Builder.CreateBitCast(Mask, MaskTy);
11879 Mask = CGF.Builder.CreateExtractElement(Mask, (uint64_t)0);
11880 return CGF.Builder.CreateSelect(Mask, Op0, Op1);
11881}
11882
11883static Value *EmitX86MaskedCompareResult(CodeGenFunction &CGF, Value *Cmp,
11884 unsigned NumElts, Value *MaskIn) {
11885 if (MaskIn) {
11886 const auto *C = dyn_cast<Constant>(MaskIn);
11887 if (!C || !C->isAllOnesValue())
11888 Cmp = CGF.Builder.CreateAnd(Cmp, getMaskVecValue(CGF, MaskIn, NumElts));
11889 }
11890
11891 if (NumElts < 8) {
11892 int Indices[8];
11893 for (unsigned i = 0; i != NumElts; ++i)
11894 Indices[i] = i;
11895 for (unsigned i = NumElts; i != 8; ++i)
11896 Indices[i] = i % NumElts + NumElts;
11897 Cmp = CGF.Builder.CreateShuffleVector(
11898 Cmp, llvm::Constant::getNullValue(Cmp->getType()), Indices);
11899 }
11900
11901 return CGF.Builder.CreateBitCast(Cmp,
11902 IntegerType::get(CGF.getLLVMContext(),
11903 std::max(NumElts, 8U)));
11904}
11905
11906static Value *EmitX86MaskedCompare(CodeGenFunction &CGF, unsigned CC,
11907 bool Signed, ArrayRef<Value *> Ops) {
11908 assert((Ops.size() == 2 || Ops.size() == 4) &&(static_cast <bool> ((Ops.size() == 2 || Ops.size() == 4
) && "Unexpected number of arguments") ? void (0) : __assert_fail
("(Ops.size() == 2 || Ops.size() == 4) && \"Unexpected number of arguments\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 11909, __extension__ __PRETTY_FUNCTION__))
11909 "Unexpected number of arguments")(static_cast <bool> ((Ops.size() == 2 || Ops.size() == 4
) && "Unexpected number of arguments") ? void (0) : __assert_fail
("(Ops.size() == 2 || Ops.size() == 4) && \"Unexpected number of arguments\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 11909, __extension__ __PRETTY_FUNCTION__))
;
11910 unsigned NumElts =
11911 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
11912 Value *Cmp;
11913
11914 if (CC == 3) {
11915 Cmp = Constant::getNullValue(
11916 llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts));
11917 } else if (CC == 7) {
11918 Cmp = Constant::getAllOnesValue(
11919 llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts));
11920 } else {
11921 ICmpInst::Predicate Pred;
11922 switch (CC) {
11923 default: llvm_unreachable("Unknown condition code")::llvm::llvm_unreachable_internal("Unknown condition code", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 11923)
;
11924 case 0: Pred = ICmpInst::ICMP_EQ; break;
11925 case 1: Pred = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break;
11926 case 2: Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break;
11927 case 4: Pred = ICmpInst::ICMP_NE; break;
11928 case 5: Pred = Signed ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break;
11929 case 6: Pred = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break;
11930 }
11931 Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
11932 }
11933
11934 Value *MaskIn = nullptr;
11935 if (Ops.size() == 4)
11936 MaskIn = Ops[3];
11937
11938 return EmitX86MaskedCompareResult(CGF, Cmp, NumElts, MaskIn);
11939}
11940
11941static Value *EmitX86ConvertToMask(CodeGenFunction &CGF, Value *In) {
11942 Value *Zero = Constant::getNullValue(In->getType());
11943 return EmitX86MaskedCompare(CGF, 1, true, { In, Zero });
11944}
11945
11946static Value *EmitX86ConvertIntToFp(CodeGenFunction &CGF, const CallExpr *E,
11947 ArrayRef<Value *> Ops, bool IsSigned) {
11948 unsigned Rnd = cast<llvm::ConstantInt>(Ops[3])->getZExtValue();
11949 llvm::Type *Ty = Ops[1]->getType();
11950
11951 Value *Res;
11952 if (Rnd != 4) {
11953 Intrinsic::ID IID = IsSigned ? Intrinsic::x86_avx512_sitofp_round
11954 : Intrinsic::x86_avx512_uitofp_round;
11955 Function *F = CGF.CGM.getIntrinsic(IID, { Ty, Ops[0]->getType() });
11956 Res = CGF.Builder.CreateCall(F, { Ops[0], Ops[3] });
11957 } else {
11958 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
11959 Res = IsSigned ? CGF.Builder.CreateSIToFP(Ops[0], Ty)
11960 : CGF.Builder.CreateUIToFP(Ops[0], Ty);
11961 }
11962
11963 return EmitX86Select(CGF, Ops[2], Res, Ops[1]);
11964}
11965
11966// Lowers X86 FMA intrinsics to IR.
11967static Value *EmitX86FMAExpr(CodeGenFunction &CGF, const CallExpr *E,
11968 ArrayRef<Value *> Ops, unsigned BuiltinID,
11969 bool IsAddSub) {
11970
11971 bool Subtract = false;
11972 Intrinsic::ID IID = Intrinsic::not_intrinsic;
11973 switch (BuiltinID) {
11974 default: break;
11975 case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
11976 Subtract = true;
11977 LLVM_FALLTHROUGH[[gnu::fallthrough]];
11978 case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
11979 case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
11980 case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
11981 IID = llvm::Intrinsic::x86_avx512_vfmadd_ps_512; break;
11982 case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
11983 Subtract = true;
11984 LLVM_FALLTHROUGH[[gnu::fallthrough]];
11985 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
11986 case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
11987 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
11988 IID = llvm::Intrinsic::x86_avx512_vfmadd_pd_512; break;
11989 case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
11990 Subtract = true;
11991 LLVM_FALLTHROUGH[[gnu::fallthrough]];
11992 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
11993 case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
11994 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
11995 IID = llvm::Intrinsic::x86_avx512_vfmaddsub_ps_512;
11996 break;
11997 case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
11998 Subtract = true;
11999 LLVM_FALLTHROUGH[[gnu::fallthrough]];
12000 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
12001 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
12002 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
12003 IID = llvm::Intrinsic::x86_avx512_vfmaddsub_pd_512;
12004 break;
12005 }
12006
12007 Value *A = Ops[0];
12008 Value *B = Ops[1];
12009 Value *C = Ops[2];
12010
12011 if (Subtract)
12012 C = CGF.Builder.CreateFNeg(C);
12013
12014 Value *Res;
12015
12016 // Only handle in case of _MM_FROUND_CUR_DIRECTION/4 (no rounding).
12017 if (IID != Intrinsic::not_intrinsic &&
12018 (cast<llvm::ConstantInt>(Ops.back())->getZExtValue() != (uint64_t)4 ||
12019 IsAddSub)) {
12020 Function *Intr = CGF.CGM.getIntrinsic(IID);
12021 Res = CGF.Builder.CreateCall(Intr, {A, B, C, Ops.back() });
12022 } else {
12023 llvm::Type *Ty = A->getType();
12024 Function *FMA;
12025 if (CGF.Builder.getIsFPConstrained()) {
12026 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
12027 FMA = CGF.CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, Ty);
12028 Res = CGF.Builder.CreateConstrainedFPCall(FMA, {A, B, C});
12029 } else {
12030 FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ty);
12031 Res = CGF.Builder.CreateCall(FMA, {A, B, C});
12032 }
12033 }
12034
12035 // Handle any required masking.
12036 Value *MaskFalseVal = nullptr;
12037 switch (BuiltinID) {
12038 case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
12039 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
12040 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
12041 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
12042 MaskFalseVal = Ops[0];
12043 break;
12044 case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
12045 case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
12046 case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
12047 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
12048 MaskFalseVal = Constant::getNullValue(Ops[0]->getType());
12049 break;
12050 case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
12051 case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
12052 case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
12053 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
12054 case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
12055 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
12056 case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
12057 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
12058 MaskFalseVal = Ops[2];
12059 break;
12060 }
12061
12062 if (MaskFalseVal)
12063 return EmitX86Select(CGF, Ops[3], Res, MaskFalseVal);
12064
12065 return Res;
12066}
12067
12068static Value *EmitScalarFMAExpr(CodeGenFunction &CGF, const CallExpr *E,
12069 MutableArrayRef<Value *> Ops, Value *Upper,
12070 bool ZeroMask = false, unsigned PTIdx = 0,
12071 bool NegAcc = false) {
12072 unsigned Rnd = 4;
12073 if (Ops.size() > 4)
12074 Rnd = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
12075
12076 if (NegAcc)
12077 Ops[2] = CGF.Builder.CreateFNeg(Ops[2]);
12078
12079 Ops[0] = CGF.Builder.CreateExtractElement(Ops[0], (uint64_t)0);
12080 Ops[1] = CGF.Builder.CreateExtractElement(Ops[1], (uint64_t)0);
12081 Ops[2] = CGF.Builder.CreateExtractElement(Ops[2], (uint64_t)0);
12082 Value *Res;
12083 if (Rnd != 4) {
12084 Intrinsic::ID IID = Ops[0]->getType()->getPrimitiveSizeInBits() == 32 ?
12085 Intrinsic::x86_avx512_vfmadd_f32 :
12086 Intrinsic::x86_avx512_vfmadd_f64;
12087 Res = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
12088 {Ops[0], Ops[1], Ops[2], Ops[4]});
12089 } else if (CGF.Builder.getIsFPConstrained()) {
12090 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
12091 Function *FMA = CGF.CGM.getIntrinsic(
12092 Intrinsic::experimental_constrained_fma, Ops[0]->getType());
12093 Res = CGF.Builder.CreateConstrainedFPCall(FMA, Ops.slice(0, 3));
12094 } else {
12095 Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ops[0]->getType());
12096 Res = CGF.Builder.CreateCall(FMA, Ops.slice(0, 3));
12097 }
12098 // If we have more than 3 arguments, we need to do masking.
12099 if (Ops.size() > 3) {
12100 Value *PassThru = ZeroMask ? Constant::getNullValue(Res->getType())
12101 : Ops[PTIdx];
12102
12103 // If we negated the accumulator and the its the PassThru value we need to
12104 // bypass the negate. Conveniently Upper should be the same thing in this
12105 // case.
12106 if (NegAcc && PTIdx == 2)
12107 PassThru = CGF.Builder.CreateExtractElement(Upper, (uint64_t)0);
12108
12109 Res = EmitX86ScalarSelect(CGF, Ops[3], Res, PassThru);
12110 }
12111 return CGF.Builder.CreateInsertElement(Upper, Res, (uint64_t)0);
12112}
12113
12114static Value *EmitX86Muldq(CodeGenFunction &CGF, bool IsSigned,
12115 ArrayRef<Value *> Ops) {
12116 llvm::Type *Ty = Ops[0]->getType();
12117 // Arguments have a vXi32 type so cast to vXi64.
12118 Ty = llvm::FixedVectorType::get(CGF.Int64Ty,
12119 Ty->getPrimitiveSizeInBits() / 64);
12120 Value *LHS = CGF.Builder.CreateBitCast(Ops[0], Ty);
12121 Value *RHS = CGF.Builder.CreateBitCast(Ops[1], Ty);
12122
12123 if (IsSigned) {
12124 // Shift left then arithmetic shift right.
12125 Constant *ShiftAmt = ConstantInt::get(Ty, 32);
12126 LHS = CGF.Builder.CreateShl(LHS, ShiftAmt);
12127 LHS = CGF.Builder.CreateAShr(LHS, ShiftAmt);
12128 RHS = CGF.Builder.CreateShl(RHS, ShiftAmt);
12129 RHS = CGF.Builder.CreateAShr(RHS, ShiftAmt);
12130 } else {
12131 // Clear the upper bits.
12132 Constant *Mask = ConstantInt::get(Ty, 0xffffffff);
12133 LHS = CGF.Builder.CreateAnd(LHS, Mask);
12134 RHS = CGF.Builder.CreateAnd(RHS, Mask);
12135 }
12136
12137 return CGF.Builder.CreateMul(LHS, RHS);
12138}
12139
12140// Emit a masked pternlog intrinsic. This only exists because the header has to
12141// use a macro and we aren't able to pass the input argument to a pternlog
12142// builtin and a select builtin without evaluating it twice.
12143static Value *EmitX86Ternlog(CodeGenFunction &CGF, bool ZeroMask,
12144 ArrayRef<Value *> Ops) {
12145 llvm::Type *Ty = Ops[0]->getType();
12146
12147 unsigned VecWidth = Ty->getPrimitiveSizeInBits();
12148 unsigned EltWidth = Ty->getScalarSizeInBits();
12149 Intrinsic::ID IID;
12150 if (VecWidth == 128 && EltWidth == 32)
12151 IID = Intrinsic::x86_avx512_pternlog_d_128;
12152 else if (VecWidth == 256 && EltWidth == 32)
12153 IID = Intrinsic::x86_avx512_pternlog_d_256;
12154 else if (VecWidth == 512 && EltWidth == 32)
12155 IID = Intrinsic::x86_avx512_pternlog_d_512;
12156 else if (VecWidth == 128 && EltWidth == 64)
12157 IID = Intrinsic::x86_avx512_pternlog_q_128;
12158 else if (VecWidth == 256 && EltWidth == 64)
12159 IID = Intrinsic::x86_avx512_pternlog_q_256;
12160 else if (VecWidth == 512 && EltWidth == 64)
12161 IID = Intrinsic::x86_avx512_pternlog_q_512;
12162 else
12163 llvm_unreachable("Unexpected intrinsic")::llvm::llvm_unreachable_internal("Unexpected intrinsic", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 12163)
;
12164
12165 Value *Ternlog = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
12166 Ops.drop_back());
12167 Value *PassThru = ZeroMask ? ConstantAggregateZero::get(Ty) : Ops[0];
12168 return EmitX86Select(CGF, Ops[4], Ternlog, PassThru);
12169}
12170
12171static Value *EmitX86SExtMask(CodeGenFunction &CGF, Value *Op,
12172 llvm::Type *DstTy) {
12173 unsigned NumberOfElements =
12174 cast<llvm::FixedVectorType>(DstTy)->getNumElements();
12175 Value *Mask = getMaskVecValue(CGF, Op, NumberOfElements);
12176 return CGF.Builder.CreateSExt(Mask, DstTy, "vpmovm2");
12177}
12178
12179// Emit binary intrinsic with the same type used in result/args.
12180static Value *EmitX86BinaryIntrinsic(CodeGenFunction &CGF,
12181 ArrayRef<Value *> Ops, Intrinsic::ID IID) {
12182 llvm::Function *F = CGF.CGM.getIntrinsic(IID, Ops[0]->getType());
12183 return CGF.Builder.CreateCall(F, {Ops[0], Ops[1]});
12184}
12185
12186Value *CodeGenFunction::EmitX86CpuIs(const CallExpr *E) {
12187 const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts();
12188 StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString();
12189 return EmitX86CpuIs(CPUStr);
12190}
12191
12192// Convert F16 halfs to floats.
12193static Value *EmitX86CvtF16ToFloatExpr(CodeGenFunction &CGF,
12194 ArrayRef<Value *> Ops,
12195 llvm::Type *DstTy) {
12196 assert((Ops.size() == 1 || Ops.size() == 3 || Ops.size() == 4) &&(static_cast <bool> ((Ops.size() == 1 || Ops.size() == 3
|| Ops.size() == 4) && "Unknown cvtph2ps intrinsic")
? void (0) : __assert_fail ("(Ops.size() == 1 || Ops.size() == 3 || Ops.size() == 4) && \"Unknown cvtph2ps intrinsic\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 12197, __extension__ __PRETTY_FUNCTION__))
12197 "Unknown cvtph2ps intrinsic")(static_cast <bool> ((Ops.size() == 1 || Ops.size() == 3
|| Ops.size() == 4) && "Unknown cvtph2ps intrinsic")
? void (0) : __assert_fail ("(Ops.size() == 1 || Ops.size() == 3 || Ops.size() == 4) && \"Unknown cvtph2ps intrinsic\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 12197, __extension__ __PRETTY_FUNCTION__))
;
12198
12199 // If the SAE intrinsic doesn't use default rounding then we can't upgrade.
12200 if (Ops.size() == 4 && cast<llvm::ConstantInt>(Ops[3])->getZExtValue() != 4) {
12201 Function *F =
12202 CGF.CGM.getIntrinsic(Intrinsic::x86_avx512_mask_vcvtph2ps_512);
12203 return CGF.Builder.CreateCall(F, {Ops[0], Ops[1], Ops[2], Ops[3]});
12204 }
12205
12206 unsigned NumDstElts = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
12207 Value *Src = Ops[0];
12208
12209 // Extract the subvector.
12210 if (NumDstElts !=
12211 cast<llvm::FixedVectorType>(Src->getType())->getNumElements()) {
12212 assert(NumDstElts == 4 && "Unexpected vector size")(static_cast <bool> (NumDstElts == 4 && "Unexpected vector size"
) ? void (0) : __assert_fail ("NumDstElts == 4 && \"Unexpected vector size\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 12212, __extension__ __PRETTY_FUNCTION__))
;
12213 Src = CGF.Builder.CreateShuffleVector(Src, ArrayRef<int>{0, 1, 2, 3});
12214 }
12215
12216 // Bitcast from vXi16 to vXf16.
12217 auto *HalfTy = llvm::FixedVectorType::get(
12218 llvm::Type::getHalfTy(CGF.getLLVMContext()), NumDstElts);
12219 Src = CGF.Builder.CreateBitCast(Src, HalfTy);
12220
12221 // Perform the fp-extension.
12222 Value *Res = CGF.Builder.CreateFPExt(Src, DstTy, "cvtph2ps");
12223
12224 if (Ops.size() >= 3)
12225 Res = EmitX86Select(CGF, Ops[2], Res, Ops[1]);
12226 return Res;
12227}
12228
12229// Convert a BF16 to a float.
12230static Value *EmitX86CvtBF16ToFloatExpr(CodeGenFunction &CGF,
12231 const CallExpr *E,
12232 ArrayRef<Value *> Ops) {
12233 llvm::Type *Int32Ty = CGF.Builder.getInt32Ty();
12234 Value *ZeroExt = CGF.Builder.CreateZExt(Ops[0], Int32Ty);
12235 Value *Shl = CGF.Builder.CreateShl(ZeroExt, 16);
12236 llvm::Type *ResultType = CGF.ConvertType(E->getType());
12237 Value *BitCast = CGF.Builder.CreateBitCast(Shl, ResultType);
12238 return BitCast;
12239}
12240
12241Value *CodeGenFunction::EmitX86CpuIs(StringRef CPUStr) {
12242
12243 llvm::Type *Int32Ty = Builder.getInt32Ty();
12244
12245 // Matching the struct layout from the compiler-rt/libgcc structure that is
12246 // filled in:
12247 // unsigned int __cpu_vendor;
12248 // unsigned int __cpu_type;
12249 // unsigned int __cpu_subtype;
12250 // unsigned int __cpu_features[1];
12251 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
12252 llvm::ArrayType::get(Int32Ty, 1));
12253
12254 // Grab the global __cpu_model.
12255 llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
12256 cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
12257
12258 // Calculate the index needed to access the correct field based on the
12259 // range. Also adjust the expected value.
12260 unsigned Index;
12261 unsigned Value;
12262 std::tie(Index, Value) = StringSwitch<std::pair<unsigned, unsigned>>(CPUStr)
12263#define X86_VENDOR(ENUM, STRING) \
12264 .Case(STRING, {0u, static_cast<unsigned>(llvm::X86::ENUM)})
12265#define X86_CPU_TYPE_ALIAS(ENUM, ALIAS) \
12266 .Case(ALIAS, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
12267#define X86_CPU_TYPE(ENUM, STR) \
12268 .Case(STR, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
12269#define X86_CPU_SUBTYPE(ENUM, STR) \
12270 .Case(STR, {2u, static_cast<unsigned>(llvm::X86::ENUM)})
12271#include "llvm/Support/X86TargetParser.def"
12272 .Default({0, 0});
12273 assert(Value != 0 && "Invalid CPUStr passed to CpuIs")(static_cast <bool> (Value != 0 && "Invalid CPUStr passed to CpuIs"
) ? void (0) : __assert_fail ("Value != 0 && \"Invalid CPUStr passed to CpuIs\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 12273, __extension__ __PRETTY_FUNCTION__))
;
12274
12275 // Grab the appropriate field from __cpu_model.
12276 llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0),
12277 ConstantInt::get(Int32Ty, Index)};
12278 llvm::Value *CpuValue = Builder.CreateGEP(STy, CpuModel, Idxs);
12279 CpuValue = Builder.CreateAlignedLoad(Int32Ty, CpuValue,
12280 CharUnits::fromQuantity(4));
12281
12282 // Check the value of the field against the requested value.
12283 return Builder.CreateICmpEQ(CpuValue,
12284 llvm::ConstantInt::get(Int32Ty, Value));
12285}
12286
12287Value *CodeGenFunction::EmitX86CpuSupports(const CallExpr *E) {
12288 const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts();
12289 StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString();
12290 return EmitX86CpuSupports(FeatureStr);
12291}
12292
12293uint64_t
12294CodeGenFunction::GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs) {
12295 // Processor features and mapping to processor feature value.
12296 uint64_t FeaturesMask = 0;
12297 for (const StringRef &FeatureStr : FeatureStrs) {
12298 unsigned Feature =
12299 StringSwitch<unsigned>(FeatureStr)
12300#define X86_FEATURE_COMPAT(ENUM, STR) .Case(STR, llvm::X86::FEATURE_##ENUM)
12301#include "llvm/Support/X86TargetParser.def"
12302 ;
12303 FeaturesMask |= (1ULL << Feature);
12304 }
12305 return FeaturesMask;
12306}
12307
12308Value *CodeGenFunction::EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs) {
12309 return EmitX86CpuSupports(GetX86CpuSupportsMask(FeatureStrs));
12310}
12311
12312llvm::Value *CodeGenFunction::EmitX86CpuSupports(uint64_t FeaturesMask) {
12313 uint32_t Features1 = Lo_32(FeaturesMask);
12314 uint32_t Features2 = Hi_32(FeaturesMask);
12315
12316 Value *Result = Builder.getTrue();
12317
12318 if (Features1 != 0) {
12319 // Matching the struct layout from the compiler-rt/libgcc structure that is
12320 // filled in:
12321 // unsigned int __cpu_vendor;
12322 // unsigned int __cpu_type;
12323 // unsigned int __cpu_subtype;
12324 // unsigned int __cpu_features[1];
12325 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
12326 llvm::ArrayType::get(Int32Ty, 1));
12327
12328 // Grab the global __cpu_model.
12329 llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
12330 cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
12331
12332 // Grab the first (0th) element from the field __cpu_features off of the
12333 // global in the struct STy.
12334 Value *Idxs[] = {Builder.getInt32(0), Builder.getInt32(3),
12335 Builder.getInt32(0)};
12336 Value *CpuFeatures = Builder.CreateGEP(STy, CpuModel, Idxs);
12337 Value *Features = Builder.CreateAlignedLoad(Int32Ty, CpuFeatures,
12338 CharUnits::fromQuantity(4));
12339
12340 // Check the value of the bit corresponding to the feature requested.
12341 Value *Mask = Builder.getInt32(Features1);
12342 Value *Bitset = Builder.CreateAnd(Features, Mask);
12343 Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
12344 Result = Builder.CreateAnd(Result, Cmp);
12345 }
12346
12347 if (Features2 != 0) {
12348 llvm::Constant *CpuFeatures2 = CGM.CreateRuntimeVariable(Int32Ty,
12349 "__cpu_features2");
12350 cast<llvm::GlobalValue>(CpuFeatures2)->setDSOLocal(true);
12351
12352 Value *Features = Builder.CreateAlignedLoad(Int32Ty, CpuFeatures2,
12353 CharUnits::fromQuantity(4));
12354
12355 // Check the value of the bit corresponding to the feature requested.
12356 Value *Mask = Builder.getInt32(Features2);
12357 Value *Bitset = Builder.CreateAnd(Features, Mask);
12358 Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
12359 Result = Builder.CreateAnd(Result, Cmp);
12360 }
12361
12362 return Result;
12363}
12364
12365Value *CodeGenFunction::EmitX86CpuInit() {
12366 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy,
12367 /*Variadic*/ false);
12368 llvm::FunctionCallee Func =
12369 CGM.CreateRuntimeFunction(FTy, "__cpu_indicator_init");
12370 cast<llvm::GlobalValue>(Func.getCallee())->setDSOLocal(true);
12371 cast<llvm::GlobalValue>(Func.getCallee())
12372 ->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
12373 return Builder.CreateCall(Func);
12374}
12375
12376Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
12377 const CallExpr *E) {
12378 if (BuiltinID == X86::BI__builtin_cpu_is)
12379 return EmitX86CpuIs(E);
12380 if (BuiltinID == X86::BI__builtin_cpu_supports)
12381 return EmitX86CpuSupports(E);
12382 if (BuiltinID == X86::BI__builtin_cpu_init)
12383 return EmitX86CpuInit();
12384
12385 // Handle MSVC intrinsics before argument evaluation to prevent double
12386 // evaluation.
12387 if (Optional<MSVCIntrin> MsvcIntId = translateX86ToMsvcIntrin(BuiltinID))
12388 return EmitMSVCBuiltinExpr(*MsvcIntId, E);
12389
12390 SmallVector<Value*, 4> Ops;
12391 bool IsMaskFCmp = false;
12392
12393 // Find out if any arguments are required to be integer constant expressions.
12394 unsigned ICEArguments = 0;
12395 ASTContext::GetBuiltinTypeError Error;
12396 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
12397 assert(Error == ASTContext::GE_None && "Should not codegen an error")(static_cast <bool> (Error == ASTContext::GE_None &&
"Should not codegen an error") ? void (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 12397, __extension__ __PRETTY_FUNCTION__))
;
12398
12399 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
12400 // If this is a normal argument, just emit it as a scalar.
12401 if ((ICEArguments & (1 << i)) == 0) {
12402 Ops.push_back(EmitScalarExpr(E->getArg(i)));
12403 continue;
12404 }
12405
12406 // If this is required to be a constant, constant fold it so that we know
12407 // that the generated intrinsic gets a ConstantInt.
12408 Ops.push_back(llvm::ConstantInt::get(
12409 getLLVMContext(), *E->getArg(i)->getIntegerConstantExpr(getContext())));
12410 }
12411
12412 // These exist so that the builtin that takes an immediate can be bounds
12413 // checked by clang to avoid passing bad immediates to the backend. Since
12414 // AVX has a larger immediate than SSE we would need separate builtins to
12415 // do the different bounds checking. Rather than create a clang specific
12416 // SSE only builtin, this implements eight separate builtins to match gcc
12417 // implementation.
12418 auto getCmpIntrinsicCall = [this, &Ops](Intrinsic::ID ID, unsigned Imm) {
12419 Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm));
12420 llvm::Function *F = CGM.getIntrinsic(ID);
12421 return Builder.CreateCall(F, Ops);
12422 };
12423
12424 // For the vector forms of FP comparisons, translate the builtins directly to
12425 // IR.
12426 // TODO: The builtins could be removed if the SSE header files used vector
12427 // extension comparisons directly (vector ordered/unordered may need
12428 // additional support via __builtin_isnan()).
12429 auto getVectorFCmpIR = [this, &Ops, E](CmpInst::Predicate Pred,
12430 bool IsSignaling) {
12431 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
12432 Value *Cmp;
12433 if (IsSignaling)
12434 Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]);
12435 else
12436 Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
12437 llvm::VectorType *FPVecTy = cast<llvm::VectorType>(Ops[0]->getType());
12438 llvm::VectorType *IntVecTy = llvm::VectorType::getInteger(FPVecTy);
12439 Value *Sext = Builder.CreateSExt(Cmp, IntVecTy);
12440 return Builder.CreateBitCast(Sext, FPVecTy);
12441 };
12442
12443 switch (BuiltinID) {
12444 default: return nullptr;
12445 case X86::BI_mm_prefetch: {
12446 Value *Address = Ops[0];
12447 ConstantInt *C = cast<ConstantInt>(Ops[1]);
12448 Value *RW = ConstantInt::get(Int32Ty, (C->getZExtValue() >> 2) & 0x1);
12449 Value *Locality = ConstantInt::get(Int32Ty, C->getZExtValue() & 0x3);
12450 Value *Data = ConstantInt::get(Int32Ty, 1);
12451 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
12452 return Builder.CreateCall(F, {Address, RW, Locality, Data});
12453 }
12454 case X86::BI_mm_clflush: {
12455 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_clflush),
12456 Ops[0]);
12457 }
12458 case X86::BI_mm_lfence: {
12459 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_lfence));
12460 }
12461 case X86::BI_mm_mfence: {
12462 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_mfence));
12463 }
12464 case X86::BI_mm_sfence: {
12465 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_sfence));
12466 }
12467 case X86::BI_mm_pause: {
12468 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_pause));
12469 }
12470 case X86::BI__rdtsc: {
12471 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtsc));
12472 }
12473 case X86::BI__builtin_ia32_rdtscp: {
12474 Value *Call = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtscp));
12475 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
12476 Ops[0]);
12477 return Builder.CreateExtractValue(Call, 0);
12478 }
12479 case X86::BI__builtin_ia32_lzcnt_u16:
12480 case X86::BI__builtin_ia32_lzcnt_u32:
12481 case X86::BI__builtin_ia32_lzcnt_u64: {
12482 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
12483 return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
12484 }
12485 case X86::BI__builtin_ia32_tzcnt_u16:
12486 case X86::BI__builtin_ia32_tzcnt_u32:
12487 case X86::BI__builtin_ia32_tzcnt_u64: {
12488 Function *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType());
12489 return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
12490 }
12491 case X86::BI__builtin_ia32_undef128:
12492 case X86::BI__builtin_ia32_undef256:
12493 case X86::BI__builtin_ia32_undef512:
12494 // The x86 definition of "undef" is not the same as the LLVM definition
12495 // (PR32176). We leave optimizing away an unnecessary zero constant to the
12496 // IR optimizer and backend.
12497 // TODO: If we had a "freeze" IR instruction to generate a fixed undef
12498 // value, we should use that here instead of a zero.
12499 return llvm::Constant::getNullValue(ConvertType(E->getType()));
12500 case X86::BI__builtin_ia32_vec_init_v8qi:
12501 case X86::BI__builtin_ia32_vec_init_v4hi:
12502 case X86::BI__builtin_ia32_vec_init_v2si:
12503 return Builder.CreateBitCast(BuildVector(Ops),
12504 llvm::Type::getX86_MMXTy(getLLVMContext()));
12505 case X86::BI__builtin_ia32_vec_ext_v2si:
12506 case X86::BI__builtin_ia32_vec_ext_v16qi:
12507 case X86::BI__builtin_ia32_vec_ext_v8hi:
12508 case X86::BI__builtin_ia32_vec_ext_v4si:
12509 case X86::BI__builtin_ia32_vec_ext_v4sf:
12510 case X86::BI__builtin_ia32_vec_ext_v2di:
12511 case X86::BI__builtin_ia32_vec_ext_v32qi:
12512 case X86::BI__builtin_ia32_vec_ext_v16hi:
12513 case X86::BI__builtin_ia32_vec_ext_v8si:
12514 case X86::BI__builtin_ia32_vec_ext_v4di: {
12515 unsigned NumElts =
12516 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
12517 uint64_t Index = cast<ConstantInt>(Ops[1])->getZExtValue();
12518 Index &= NumElts - 1;
12519 // These builtins exist so we can ensure the index is an ICE and in range.
12520 // Otherwise we could just do this in the header file.
12521 return Builder.CreateExtractElement(Ops[0], Index);
12522 }
12523 case X86::BI__builtin_ia32_vec_set_v16qi:
12524 case X86::BI__builtin_ia32_vec_set_v8hi:
12525 case X86::BI__builtin_ia32_vec_set_v4si:
12526 case X86::BI__builtin_ia32_vec_set_v2di:
12527 case X86::BI__builtin_ia32_vec_set_v32qi:
12528 case X86::BI__builtin_ia32_vec_set_v16hi:
12529 case X86::BI__builtin_ia32_vec_set_v8si:
12530 case X86::BI__builtin_ia32_vec_set_v4di: {
12531 unsigned NumElts =
12532 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
12533 unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
12534 Index &= NumElts - 1;
12535 // These builtins exist so we can ensure the index is an ICE and in range.
12536 // Otherwise we could just do this in the header file.
12537 return Builder.CreateInsertElement(Ops[0], Ops[1], Index);
12538 }
12539 case X86::BI_mm_setcsr:
12540 case X86::BI__builtin_ia32_ldmxcsr: {
12541 Address Tmp = CreateMemTemp(E->getArg(0)->getType());
12542 Builder.CreateStore(Ops[0], Tmp);
12543 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
12544 Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
12545 }
12546 case X86::BI_mm_getcsr:
12547 case X86::BI__builtin_ia32_stmxcsr: {
12548 Address Tmp = CreateMemTemp(E->getType());
12549 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
12550 Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
12551 return Builder.CreateLoad(Tmp, "stmxcsr");
12552 }
12553 case X86::BI__builtin_ia32_xsave:
12554 case X86::BI__builtin_ia32_xsave64:
12555 case X86::BI__builtin_ia32_xrstor:
12556 case X86::BI__builtin_ia32_xrstor64:
12557 case X86::BI__builtin_ia32_xsaveopt:
12558 case X86::BI__builtin_ia32_xsaveopt64:
12559 case X86::BI__builtin_ia32_xrstors:
12560 case X86::BI__builtin_ia32_xrstors64:
12561 case X86::BI__builtin_ia32_xsavec:
12562 case X86::BI__builtin_ia32_xsavec64:
12563 case X86::BI__builtin_ia32_xsaves:
12564 case X86::BI__builtin_ia32_xsaves64:
12565 case X86::BI__builtin_ia32_xsetbv:
12566 case X86::BI_xsetbv: {
12567 Intrinsic::ID ID;
12568#define INTRINSIC_X86_XSAVE_ID(NAME) \
12569 case X86::BI__builtin_ia32_##NAME: \
12570 ID = Intrinsic::x86_##NAME; \
12571 break
12572 switch (BuiltinID) {
12573 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 12573)
;
12574 INTRINSIC_X86_XSAVE_ID(xsave);
12575 INTRINSIC_X86_XSAVE_ID(xsave64);
12576 INTRINSIC_X86_XSAVE_ID(xrstor);
12577 INTRINSIC_X86_XSAVE_ID(xrstor64);
12578 INTRINSIC_X86_XSAVE_ID(xsaveopt);
12579 INTRINSIC_X86_XSAVE_ID(xsaveopt64);
12580 INTRINSIC_X86_XSAVE_ID(xrstors);
12581 INTRINSIC_X86_XSAVE_ID(xrstors64);
12582 INTRINSIC_X86_XSAVE_ID(xsavec);
12583 INTRINSIC_X86_XSAVE_ID(xsavec64);
12584 INTRINSIC_X86_XSAVE_ID(xsaves);
12585 INTRINSIC_X86_XSAVE_ID(xsaves64);
12586 INTRINSIC_X86_XSAVE_ID(xsetbv);
12587 case X86::BI_xsetbv:
12588 ID = Intrinsic::x86_xsetbv;
12589 break;
12590 }
12591#undef INTRINSIC_X86_XSAVE_ID
12592 Value *Mhi = Builder.CreateTrunc(
12593 Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty);
12594 Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty);
12595 Ops[1] = Mhi;
12596 Ops.push_back(Mlo);
12597 return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
12598 }
12599 case X86::BI__builtin_ia32_xgetbv:
12600 case X86::BI_xgetbv:
12601 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_xgetbv), Ops);
12602 case X86::BI__builtin_ia32_storedqudi128_mask:
12603 case X86::BI__builtin_ia32_storedqusi128_mask:
12604 case X86::BI__builtin_ia32_storedquhi128_mask:
12605 case X86::BI__builtin_ia32_storedquqi128_mask:
12606 case X86::BI__builtin_ia32_storeupd128_mask:
12607 case X86::BI__builtin_ia32_storeups128_mask:
12608 case X86::BI__builtin_ia32_storedqudi256_mask:
12609 case X86::BI__builtin_ia32_storedqusi256_mask:
12610 case X86::BI__builtin_ia32_storedquhi256_mask:
12611 case X86::BI__builtin_ia32_storedquqi256_mask:
12612 case X86::BI__builtin_ia32_storeupd256_mask:
12613 case X86::BI__builtin_ia32_storeups256_mask:
12614 case X86::BI__builtin_ia32_storedqudi512_mask:
12615 case X86::BI__builtin_ia32_storedqusi512_mask:
12616 case X86::BI__builtin_ia32_storedquhi512_mask:
12617 case X86::BI__builtin_ia32_storedquqi512_mask:
12618 case X86::BI__builtin_ia32_storeupd512_mask:
12619 case X86::BI__builtin_ia32_storeups512_mask:
12620 return EmitX86MaskedStore(*this, Ops, Align(1));
12621
12622 case X86::BI__builtin_ia32_storess128_mask:
12623 case X86::BI__builtin_ia32_storesd128_mask:
12624 return EmitX86MaskedStore(*this, Ops, Align(1));
12625
12626 case X86::BI__builtin_ia32_vpopcntb_128:
12627 case X86::BI__builtin_ia32_vpopcntd_128:
12628 case X86::BI__builtin_ia32_vpopcntq_128:
12629 case X86::BI__builtin_ia32_vpopcntw_128:
12630 case X86::BI__builtin_ia32_vpopcntb_256:
12631 case X86::BI__builtin_ia32_vpopcntd_256:
12632 case X86::BI__builtin_ia32_vpopcntq_256:
12633 case X86::BI__builtin_ia32_vpopcntw_256:
12634 case X86::BI__builtin_ia32_vpopcntb_512:
12635 case X86::BI__builtin_ia32_vpopcntd_512:
12636 case X86::BI__builtin_ia32_vpopcntq_512:
12637 case X86::BI__builtin_ia32_vpopcntw_512: {
12638 llvm::Type *ResultType = ConvertType(E->getType());
12639 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
12640 return Builder.CreateCall(F, Ops);
12641 }
12642 case X86::BI__builtin_ia32_cvtmask2b128:
12643 case X86::BI__builtin_ia32_cvtmask2b256:
12644 case X86::BI__builtin_ia32_cvtmask2b512:
12645 case X86::BI__builtin_ia32_cvtmask2w128:
12646 case X86::BI__builtin_ia32_cvtmask2w256:
12647 case X86::BI__builtin_ia32_cvtmask2w512:
12648 case X86::BI__builtin_ia32_cvtmask2d128:
12649 case X86::BI__builtin_ia32_cvtmask2d256:
12650 case X86::BI__builtin_ia32_cvtmask2d512:
12651 case X86::BI__builtin_ia32_cvtmask2q128:
12652 case X86::BI__builtin_ia32_cvtmask2q256:
12653 case X86::BI__builtin_ia32_cvtmask2q512:
12654 return EmitX86SExtMask(*this, Ops[0], ConvertType(E->getType()));
12655
12656 case X86::BI__builtin_ia32_cvtb2mask128:
12657 case X86::BI__builtin_ia32_cvtb2mask256:
12658 case X86::BI__builtin_ia32_cvtb2mask512:
12659 case X86::BI__builtin_ia32_cvtw2mask128:
12660 case X86::BI__builtin_ia32_cvtw2mask256:
12661 case X86::BI__builtin_ia32_cvtw2mask512:
12662 case X86::BI__builtin_ia32_cvtd2mask128:
12663 case X86::BI__builtin_ia32_cvtd2mask256:
12664 case X86::BI__builtin_ia32_cvtd2mask512:
12665 case X86::BI__builtin_ia32_cvtq2mask128:
12666 case X86::BI__builtin_ia32_cvtq2mask256:
12667 case X86::BI__builtin_ia32_cvtq2mask512:
12668 return EmitX86ConvertToMask(*this, Ops[0]);
12669
12670 case X86::BI__builtin_ia32_cvtdq2ps512_mask:
12671 case X86::BI__builtin_ia32_cvtqq2ps512_mask:
12672 case X86::BI__builtin_ia32_cvtqq2pd512_mask:
12673 return EmitX86ConvertIntToFp(*this, E, Ops, /*IsSigned*/ true);
12674 case X86::BI__builtin_ia32_cvtudq2ps512_mask:
12675 case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
12676 case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
12677 return EmitX86ConvertIntToFp(*this, E, Ops, /*IsSigned*/ false);
12678
12679 case X86::BI__builtin_ia32_vfmaddss3:
12680 case X86::BI__builtin_ia32_vfmaddsd3:
12681 case X86::BI__builtin_ia32_vfmaddss3_mask:
12682 case X86::BI__builtin_ia32_vfmaddsd3_mask:
12683 return EmitScalarFMAExpr(*this, E, Ops, Ops[0]);
12684 case X86::BI__builtin_ia32_vfmaddss:
12685 case X86::BI__builtin_ia32_vfmaddsd:
12686 return EmitScalarFMAExpr(*this, E, Ops,
12687 Constant::getNullValue(Ops[0]->getType()));
12688 case X86::BI__builtin_ia32_vfmaddss3_maskz:
12689 case X86::BI__builtin_ia32_vfmaddsd3_maskz:
12690 return EmitScalarFMAExpr(*this, E, Ops, Ops[0], /*ZeroMask*/ true);
12691 case X86::BI__builtin_ia32_vfmaddss3_mask3:
12692 case X86::BI__builtin_ia32_vfmaddsd3_mask3:
12693 return EmitScalarFMAExpr(*this, E, Ops, Ops[2], /*ZeroMask*/ false, 2);
12694 case X86::BI__builtin_ia32_vfmsubss3_mask3:
12695 case X86::BI__builtin_ia32_vfmsubsd3_mask3:
12696 return EmitScalarFMAExpr(*this, E, Ops, Ops[2], /*ZeroMask*/ false, 2,
12697 /*NegAcc*/ true);
12698 case X86::BI__builtin_ia32_vfmaddps:
12699 case X86::BI__builtin_ia32_vfmaddpd:
12700 case X86::BI__builtin_ia32_vfmaddps256:
12701 case X86::BI__builtin_ia32_vfmaddpd256:
12702 case X86::BI__builtin_ia32_vfmaddps512_mask:
12703 case X86::BI__builtin_ia32_vfmaddps512_maskz:
12704 case X86::BI__builtin_ia32_vfmaddps512_mask3:
12705 case X86::BI__builtin_ia32_vfmsubps512_mask3:
12706 case X86::BI__builtin_ia32_vfmaddpd512_mask:
12707 case X86::BI__builtin_ia32_vfmaddpd512_maskz:
12708 case X86::BI__builtin_ia32_vfmaddpd512_mask3:
12709 case X86::BI__builtin_ia32_vfmsubpd512_mask3:
12710 return EmitX86FMAExpr(*this, E, Ops, BuiltinID, /*IsAddSub*/ false);
12711 case X86::BI__builtin_ia32_vfmaddsubps512_mask:
12712 case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
12713 case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
12714 case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
12715 case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
12716 case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
12717 case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
12718 case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
12719 return EmitX86FMAExpr(*this, E, Ops, BuiltinID, /*IsAddSub*/ true);
12720
12721 case X86::BI__builtin_ia32_movdqa32store128_mask:
12722 case X86::BI__builtin_ia32_movdqa64store128_mask:
12723 case X86::BI__builtin_ia32_storeaps128_mask:
12724 case X86::BI__builtin_ia32_storeapd128_mask:
12725 case X86::BI__builtin_ia32_movdqa32store256_mask:
12726 case X86::BI__builtin_ia32_movdqa64store256_mask:
12727 case X86::BI__builtin_ia32_storeaps256_mask:
12728 case X86::BI__builtin_ia32_storeapd256_mask:
12729 case X86::BI__builtin_ia32_movdqa32store512_mask:
12730 case X86::BI__builtin_ia32_movdqa64store512_mask:
12731 case X86::BI__builtin_ia32_storeaps512_mask:
12732 case X86::BI__builtin_ia32_storeapd512_mask:
12733 return EmitX86MaskedStore(
12734 *this, Ops,
12735 getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign());
12736
12737 case X86::BI__builtin_ia32_loadups128_mask:
12738 case X86::BI__builtin_ia32_loadups256_mask:
12739 case X86::BI__builtin_ia32_loadups512_mask:
12740 case X86::BI__builtin_ia32_loadupd128_mask:
12741 case X86::BI__builtin_ia32_loadupd256_mask:
12742 case X86::BI__builtin_ia32_loadupd512_mask:
12743 case X86::BI__builtin_ia32_loaddquqi128_mask:
12744 case X86::BI__builtin_ia32_loaddquqi256_mask:
12745 case X86::BI__builtin_ia32_loaddquqi512_mask:
12746 case X86::BI__builtin_ia32_loaddquhi128_mask:
12747 case X86::BI__builtin_ia32_loaddquhi256_mask:
12748 case X86::BI__builtin_ia32_loaddquhi512_mask:
12749 case X86::BI__builtin_ia32_loaddqusi128_mask:
12750 case X86::BI__builtin_ia32_loaddqusi256_mask:
12751 case X86::BI__builtin_ia32_loaddqusi512_mask:
12752 case X86::BI__builtin_ia32_loaddqudi128_mask:
12753 case X86::BI__builtin_ia32_loaddqudi256_mask:
12754 case X86::BI__builtin_ia32_loaddqudi512_mask:
12755 return EmitX86MaskedLoad(*this, Ops, Align(1));
12756
12757 case X86::BI__builtin_ia32_loadss128_mask:
12758 case X86::BI__builtin_ia32_loadsd128_mask:
12759 return EmitX86MaskedLoad(*this, Ops, Align(1));
12760
12761 case X86::BI__builtin_ia32_loadaps128_mask:
12762 case X86::BI__builtin_ia32_loadaps256_mask:
12763 case X86::BI__builtin_ia32_loadaps512_mask:
12764 case X86::BI__builtin_ia32_loadapd128_mask:
12765 case X86::BI__builtin_ia32_loadapd256_mask:
12766 case X86::BI__builtin_ia32_loadapd512_mask:
12767 case X86::BI__builtin_ia32_movdqa32load128_mask:
12768 case X86::BI__builtin_ia32_movdqa32load256_mask:
12769 case X86::BI__builtin_ia32_movdqa32load512_mask:
12770 case X86::BI__builtin_ia32_movdqa64load128_mask:
12771 case X86::BI__builtin_ia32_movdqa64load256_mask:
12772 case X86::BI__builtin_ia32_movdqa64load512_mask:
12773 return EmitX86MaskedLoad(
12774 *this, Ops,
12775 getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign());
12776
12777 case X86::BI__builtin_ia32_expandloaddf128_mask:
12778 case X86::BI__builtin_ia32_expandloaddf256_mask:
12779 case X86::BI__builtin_ia32_expandloaddf512_mask:
12780 case X86::BI__builtin_ia32_expandloadsf128_mask:
12781 case X86::BI__builtin_ia32_expandloadsf256_mask:
12782 case X86::BI__builtin_ia32_expandloadsf512_mask:
12783 case X86::BI__builtin_ia32_expandloaddi128_mask:
12784 case X86::BI__builtin_ia32_expandloaddi256_mask:
12785 case X86::BI__builtin_ia32_expandloaddi512_mask:
12786 case X86::BI__builtin_ia32_expandloadsi128_mask:
12787 case X86::BI__builtin_ia32_expandloadsi256_mask:
12788 case X86::BI__builtin_ia32_expandloadsi512_mask:
12789 case X86::BI__builtin_ia32_expandloadhi128_mask:
12790 case X86::BI__builtin_ia32_expandloadhi256_mask:
12791 case X86::BI__builtin_ia32_expandloadhi512_mask:
12792 case X86::BI__builtin_ia32_expandloadqi128_mask:
12793 case X86::BI__builtin_ia32_expandloadqi256_mask:
12794 case X86::BI__builtin_ia32_expandloadqi512_mask:
12795 return EmitX86ExpandLoad(*this, Ops);
12796
12797 case X86::BI__builtin_ia32_compressstoredf128_mask:
12798 case X86::BI__builtin_ia32_compressstoredf256_mask:
12799 case X86::BI__builtin_ia32_compressstoredf512_mask:
12800 case X86::BI__builtin_ia32_compressstoresf128_mask:
12801 case X86::BI__builtin_ia32_compressstoresf256_mask:
12802 case X86::BI__builtin_ia32_compressstoresf512_mask:
12803 case X86::BI__builtin_ia32_compressstoredi128_mask:
12804 case X86::BI__builtin_ia32_compressstoredi256_mask:
12805 case X86::BI__builtin_ia32_compressstoredi512_mask:
12806 case X86::BI__builtin_ia32_compressstoresi128_mask:
12807 case X86::BI__builtin_ia32_compressstoresi256_mask:
12808 case X86::BI__builtin_ia32_compressstoresi512_mask:
12809 case X86::BI__builtin_ia32_compressstorehi128_mask:
12810 case X86::BI__builtin_ia32_compressstorehi256_mask:
12811 case X86::BI__builtin_ia32_compressstorehi512_mask:
12812 case X86::BI__builtin_ia32_compressstoreqi128_mask:
12813 case X86::BI__builtin_ia32_compressstoreqi256_mask:
12814 case X86::BI__builtin_ia32_compressstoreqi512_mask:
12815 return EmitX86CompressStore(*this, Ops);
12816
12817 case X86::BI__builtin_ia32_expanddf128_mask:
12818 case X86::BI__builtin_ia32_expanddf256_mask:
12819 case X86::BI__builtin_ia32_expanddf512_mask:
12820 case X86::BI__builtin_ia32_expandsf128_mask:
12821 case X86::BI__builtin_ia32_expandsf256_mask:
12822 case X86::BI__builtin_ia32_expandsf512_mask:
12823 case X86::BI__builtin_ia32_expanddi128_mask:
12824 case X86::BI__builtin_ia32_expanddi256_mask:
12825 case X86::BI__builtin_ia32_expanddi512_mask:
12826 case X86::BI__builtin_ia32_expandsi128_mask:
12827 case X86::BI__builtin_ia32_expandsi256_mask:
12828 case X86::BI__builtin_ia32_expandsi512_mask:
12829 case X86::BI__builtin_ia32_expandhi128_mask:
12830 case X86::BI__builtin_ia32_expandhi256_mask:
12831 case X86::BI__builtin_ia32_expandhi512_mask:
12832 case X86::BI__builtin_ia32_expandqi128_mask:
12833 case X86::BI__builtin_ia32_expandqi256_mask:
12834 case X86::BI__builtin_ia32_expandqi512_mask:
12835 return EmitX86CompressExpand(*this, Ops, /*IsCompress*/false);
12836
12837 case X86::BI__builtin_ia32_compressdf128_mask:
12838 case X86::BI__builtin_ia32_compressdf256_mask:
12839 case X86::BI__builtin_ia32_compressdf512_mask:
12840 case X86::BI__builtin_ia32_compresssf128_mask:
12841 case X86::BI__builtin_ia32_compresssf256_mask:
12842 case X86::BI__builtin_ia32_compresssf512_mask:
12843 case X86::BI__builtin_ia32_compressdi128_mask:
12844 case X86::BI__builtin_ia32_compressdi256_mask:
12845 case X86::BI__builtin_ia32_compressdi512_mask:
12846 case X86::BI__builtin_ia32_compresssi128_mask:
12847 case X86::BI__builtin_ia32_compresssi256_mask:
12848 case X86::BI__builtin_ia32_compresssi512_mask:
12849 case X86::BI__builtin_ia32_compresshi128_mask:
12850 case X86::BI__builtin_ia32_compresshi256_mask:
12851 case X86::BI__builtin_ia32_compresshi512_mask:
12852 case X86::BI__builtin_ia32_compressqi128_mask:
12853 case X86::BI__builtin_ia32_compressqi256_mask:
12854 case X86::BI__builtin_ia32_compressqi512_mask:
12855 return EmitX86CompressExpand(*this, Ops, /*IsCompress*/true);
12856
12857 case X86::BI__builtin_ia32_gather3div2df:
12858 case X86::BI__builtin_ia32_gather3div2di:
12859 case X86::BI__builtin_ia32_gather3div4df:
12860 case X86::BI__builtin_ia32_gather3div4di:
12861 case X86::BI__builtin_ia32_gather3div4sf:
12862 case X86::BI__builtin_ia32_gather3div4si:
12863 case X86::BI__builtin_ia32_gather3div8sf:
12864 case X86::BI__builtin_ia32_gather3div8si:
12865 case X86::BI__builtin_ia32_gather3siv2df:
12866 case X86::BI__builtin_ia32_gather3siv2di:
12867 case X86::BI__builtin_ia32_gather3siv4df:
12868 case X86::BI__builtin_ia32_gather3siv4di:
12869 case X86::BI__builtin_ia32_gather3siv4sf:
12870 case X86::BI__builtin_ia32_gather3siv4si:
12871 case X86::BI__builtin_ia32_gather3siv8sf:
12872 case X86::BI__builtin_ia32_gather3siv8si:
12873 case X86::BI__builtin_ia32_gathersiv8df:
12874 case X86::BI__builtin_ia32_gathersiv16sf:
12875 case X86::BI__builtin_ia32_gatherdiv8df:
12876 case X86::BI__builtin_ia32_gatherdiv16sf:
12877 case X86::BI__builtin_ia32_gathersiv8di:
12878 case X86::BI__builtin_ia32_gathersiv16si:
12879 case X86::BI__builtin_ia32_gatherdiv8di:
12880 case X86::BI__builtin_ia32_gatherdiv16si: {
12881 Intrinsic::ID IID;
12882 switch (BuiltinID) {
12883 default: llvm_unreachable("Unexpected builtin")::llvm::llvm_unreachable_internal("Unexpected builtin", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 12883)
;
12884 case X86::BI__builtin_ia32_gather3div2df:
12885 IID = Intrinsic::x86_avx512_mask_gather3div2_df;
12886 break;
12887 case X86::BI__builtin_ia32_gather3div2di:
12888 IID = Intrinsic::x86_avx512_mask_gather3div2_di;
12889 break;
12890 case X86::BI__builtin_ia32_gather3div4df:
12891 IID = Intrinsic::x86_avx512_mask_gather3div4_df;
12892 break;
12893 case X86::BI__builtin_ia32_gather3div4di:
12894 IID = Intrinsic::x86_avx512_mask_gather3div4_di;
12895 break;
12896 case X86::BI__builtin_ia32_gather3div4sf:
12897 IID = Intrinsic::x86_avx512_mask_gather3div4_sf;
12898 break;
12899 case X86::BI__builtin_ia32_gather3div4si:
12900 IID = Intrinsic::x86_avx512_mask_gather3div4_si;
12901 break;
12902 case X86::BI__builtin_ia32_gather3div8sf:
12903 IID = Intrinsic::x86_avx512_mask_gather3div8_sf;
12904 break;
12905 case X86::BI__builtin_ia32_gather3div8si:
12906 IID = Intrinsic::x86_avx512_mask_gather3div8_si;
12907 break;
12908 case X86::BI__builtin_ia32_gather3siv2df:
12909 IID = Intrinsic::x86_avx512_mask_gather3siv2_df;
12910 break;
12911 case X86::BI__builtin_ia32_gather3siv2di:
12912 IID = Intrinsic::x86_avx512_mask_gather3siv2_di;
12913 break;
12914 case X86::BI__builtin_ia32_gather3siv4df:
12915 IID = Intrinsic::x86_avx512_mask_gather3siv4_df;
12916 break;
12917 case X86::BI__builtin_ia32_gather3siv4di:
12918 IID = Intrinsic::x86_avx512_mask_gather3siv4_di;
12919 break;
12920 case X86::BI__builtin_ia32_gather3siv4sf:
12921 IID = Intrinsic::x86_avx512_mask_gather3siv4_sf;
12922 break;
12923 case X86::BI__builtin_ia32_gather3siv4si:
12924 IID = Intrinsic::x86_avx512_mask_gather3siv4_si;
12925 break;
12926 case X86::BI__builtin_ia32_gather3siv8sf:
12927 IID = Intrinsic::x86_avx512_mask_gather3siv8_sf;
12928 break;
12929 case X86::BI__builtin_ia32_gather3siv8si:
12930 IID = Intrinsic::x86_avx512_mask_gather3siv8_si;
12931 break;
12932 case X86::BI__builtin_ia32_gathersiv8df:
12933 IID = Intrinsic::x86_avx512_mask_gather_dpd_512;
12934 break;
12935 case X86::BI__builtin_ia32_gathersiv16sf:
12936 IID = Intrinsic::x86_avx512_mask_gather_dps_512;
12937 break;
12938 case X86::BI__builtin_ia32_gatherdiv8df:
12939 IID = Intrinsic::x86_avx512_mask_gather_qpd_512;
12940 break;
12941 case X86::BI__builtin_ia32_gatherdiv16sf:
12942 IID = Intrinsic::x86_avx512_mask_gather_qps_512;
12943 break;
12944 case X86::BI__builtin_ia32_gathersiv8di:
12945 IID = Intrinsic::x86_avx512_mask_gather_dpq_512;
12946 break;
12947 case X86::BI__builtin_ia32_gathersiv16si:
12948 IID = Intrinsic::x86_avx512_mask_gather_dpi_512;
12949 break;
12950 case X86::BI__builtin_ia32_gatherdiv8di:
12951 IID = Intrinsic::x86_avx512_mask_gather_qpq_512;
12952 break;
12953 case X86::BI__builtin_ia32_gatherdiv16si:
12954 IID = Intrinsic::x86_avx512_mask_gather_qpi_512;
12955 break;
12956 }
12957
12958 unsigned MinElts = std::min(
12959 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(),
12960 cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements());
12961 Ops[3] = getMaskVecValue(*this, Ops[3], MinElts);
12962 Function *Intr = CGM.getIntrinsic(IID);
12963 return Builder.CreateCall(Intr, Ops);
12964 }
12965
12966 case X86::BI__builtin_ia32_scattersiv8df:
12967 case X86::BI__builtin_ia32_scattersiv16sf:
12968 case X86::BI__builtin_ia32_scatterdiv8df:
12969 case X86::BI__builtin_ia32_scatterdiv16sf:
12970 case X86::BI__builtin_ia32_scattersiv8di:
12971 case X86::BI__builtin_ia32_scattersiv16si:
12972 case X86::BI__builtin_ia32_scatterdiv8di:
12973 case X86::BI__builtin_ia32_scatterdiv16si:
12974 case X86::BI__builtin_ia32_scatterdiv2df:
12975 case X86::BI__builtin_ia32_scatterdiv2di:
12976 case X86::BI__builtin_ia32_scatterdiv4df:
12977 case X86::BI__builtin_ia32_scatterdiv4di:
12978 case X86::BI__builtin_ia32_scatterdiv4sf:
12979 case X86::BI__builtin_ia32_scatterdiv4si:
12980 case X86::BI__builtin_ia32_scatterdiv8sf:
12981 case X86::BI__builtin_ia32_scatterdiv8si:
12982 case X86::BI__builtin_ia32_scattersiv2df:
12983 case X86::BI__builtin_ia32_scattersiv2di:
12984 case X86::BI__builtin_ia32_scattersiv4df:
12985 case X86::BI__builtin_ia32_scattersiv4di:
12986 case X86::BI__builtin_ia32_scattersiv4sf:
12987 case X86::BI__builtin_ia32_scattersiv4si:
12988 case X86::BI__builtin_ia32_scattersiv8sf:
12989 case X86::BI__builtin_ia32_scattersiv8si: {
12990 Intrinsic::ID IID;
12991 switch (BuiltinID) {
12992 default: llvm_unreachable("Unexpected builtin")::llvm::llvm_unreachable_internal("Unexpected builtin", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 12992)
;
12993 case X86::BI__builtin_ia32_scattersiv8df:
12994 IID = Intrinsic::x86_avx512_mask_scatter_dpd_512;
12995 break;
12996 case X86::BI__builtin_ia32_scattersiv16sf:
12997 IID = Intrinsic::x86_avx512_mask_scatter_dps_512;
12998 break;
12999 case X86::BI__builtin_ia32_scatterdiv8df:
13000 IID = Intrinsic::x86_avx512_mask_scatter_qpd_512;
13001 break;
13002 case X86::BI__builtin_ia32_scatterdiv16sf:
13003 IID = Intrinsic::x86_avx512_mask_scatter_qps_512;
13004 break;
13005 case X86::BI__builtin_ia32_scattersiv8di:
13006 IID = Intrinsic::x86_avx512_mask_scatter_dpq_512;
13007 break;
13008 case X86::BI__builtin_ia32_scattersiv16si:
13009 IID = Intrinsic::x86_avx512_mask_scatter_dpi_512;
13010 break;
13011 case X86::BI__builtin_ia32_scatterdiv8di:
13012 IID = Intrinsic::x86_avx512_mask_scatter_qpq_512;
13013 break;
13014 case X86::BI__builtin_ia32_scatterdiv16si:
13015 IID = Intrinsic::x86_avx512_mask_scatter_qpi_512;
13016 break;
13017 case X86::BI__builtin_ia32_scatterdiv2df:
13018 IID = Intrinsic::x86_avx512_mask_scatterdiv2_df;
13019 break;
13020 case X86::BI__builtin_ia32_scatterdiv2di:
13021 IID = Intrinsic::x86_avx512_mask_scatterdiv2_di;
13022 break;
13023 case X86::BI__builtin_ia32_scatterdiv4df:
13024 IID = Intrinsic::x86_avx512_mask_scatterdiv4_df;
13025 break;
13026 case X86::BI__builtin_ia32_scatterdiv4di:
13027 IID = Intrinsic::x86_avx512_mask_scatterdiv4_di;
13028 break;
13029 case X86::BI__builtin_ia32_scatterdiv4sf:
13030 IID = Intrinsic::x86_avx512_mask_scatterdiv4_sf;
13031 break;
13032 case X86::BI__builtin_ia32_scatterdiv4si:
13033 IID = Intrinsic::x86_avx512_mask_scatterdiv4_si;
13034 break;
13035 case X86::BI__builtin_ia32_scatterdiv8sf:
13036 IID = Intrinsic::x86_avx512_mask_scatterdiv8_sf;
13037 break;
13038 case X86::BI__builtin_ia32_scatterdiv8si:
13039 IID = Intrinsic::x86_avx512_mask_scatterdiv8_si;
13040 break;
13041 case X86::BI__builtin_ia32_scattersiv2df:
13042 IID = Intrinsic::x86_avx512_mask_scattersiv2_df;
13043 break;
13044 case X86::BI__builtin_ia32_scattersiv2di:
13045 IID = Intrinsic::x86_avx512_mask_scattersiv2_di;
13046 break;
13047 case X86::BI__builtin_ia32_scattersiv4df:
13048 IID = Intrinsic::x86_avx512_mask_scattersiv4_df;
13049 break;
13050 case X86::BI__builtin_ia32_scattersiv4di:
13051 IID = Intrinsic::x86_avx512_mask_scattersiv4_di;
13052 break;
13053 case X86::BI__builtin_ia32_scattersiv4sf:
13054 IID = Intrinsic::x86_avx512_mask_scattersiv4_sf;
13055 break;
13056 case X86::BI__builtin_ia32_scattersiv4si:
13057 IID = Intrinsic::x86_avx512_mask_scattersiv4_si;
13058 break;
13059 case X86::BI__builtin_ia32_scattersiv8sf:
13060 IID = Intrinsic::x86_avx512_mask_scattersiv8_sf;
13061 break;
13062 case X86::BI__builtin_ia32_scattersiv8si:
13063 IID = Intrinsic::x86_avx512_mask_scattersiv8_si;
13064 break;
13065 }
13066
13067 unsigned MinElts = std::min(
13068 cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements(),
13069 cast<llvm::FixedVectorType>(Ops[3]->getType())->getNumElements());
13070 Ops[1] = getMaskVecValue(*this, Ops[1], MinElts);
13071 Function *Intr = CGM.getIntrinsic(IID);
13072 return Builder.CreateCall(Intr, Ops);
13073 }
13074
13075 case X86::BI__builtin_ia32_vextractf128_pd256:
13076 case X86::BI__builtin_ia32_vextractf128_ps256:
13077 case X86::BI__builtin_ia32_vextractf128_si256:
13078 case X86::BI__builtin_ia32_extract128i256:
13079 case X86::BI__builtin_ia32_extractf64x4_mask:
13080 case X86::BI__builtin_ia32_extractf32x4_mask:
13081 case X86::BI__builtin_ia32_extracti64x4_mask:
13082 case X86::BI__builtin_ia32_extracti32x4_mask:
13083 case X86::BI__builtin_ia32_extractf32x8_mask:
13084 case X86::BI__builtin_ia32_extracti32x8_mask:
13085 case X86::BI__builtin_ia32_extractf32x4_256_mask:
13086 case X86::BI__builtin_ia32_extracti32x4_256_mask:
13087 case X86::BI__builtin_ia32_extractf64x2_256_mask:
13088 case X86::BI__builtin_ia32_extracti64x2_256_mask:
13089 case X86::BI__builtin_ia32_extractf64x2_512_mask:
13090 case X86::BI__builtin_ia32_extracti64x2_512_mask: {
13091 auto *DstTy = cast<llvm::FixedVectorType>(ConvertType(E->getType()));
13092 unsigned NumElts = DstTy->getNumElements();
13093 unsigned SrcNumElts =
13094 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13095 unsigned SubVectors = SrcNumElts / NumElts;
13096 unsigned Index = cast<ConstantInt>(Ops[1])->getZExtValue();
13097 assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors")(static_cast <bool> (llvm::isPowerOf2_32(SubVectors) &&
"Expected power of 2 subvectors") ? void (0) : __assert_fail
("llvm::isPowerOf2_32(SubVectors) && \"Expected power of 2 subvectors\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 13097, __extension__ __PRETTY_FUNCTION__))
;
13098 Index &= SubVectors - 1; // Remove any extra bits.
13099 Index *= NumElts;
13100
13101 int Indices[16];
13102 for (unsigned i = 0; i != NumElts; ++i)
13103 Indices[i] = i + Index;
13104
13105 Value *Res = Builder.CreateShuffleVector(Ops[0],
13106 makeArrayRef(Indices, NumElts),
13107 "extract");
13108
13109 if (Ops.size() == 4)
13110 Res = EmitX86Select(*this, Ops[3], Res, Ops[2]);
13111
13112 return Res;
13113 }
13114 case X86::BI__builtin_ia32_vinsertf128_pd256:
13115 case X86::BI__builtin_ia32_vinsertf128_ps256:
13116 case X86::BI__builtin_ia32_vinsertf128_si256:
13117 case X86::BI__builtin_ia32_insert128i256:
13118 case X86::BI__builtin_ia32_insertf64x4:
13119 case X86::BI__builtin_ia32_insertf32x4:
13120 case X86::BI__builtin_ia32_inserti64x4:
13121 case X86::BI__builtin_ia32_inserti32x4:
13122 case X86::BI__builtin_ia32_insertf32x8:
13123 case X86::BI__builtin_ia32_inserti32x8:
13124 case X86::BI__builtin_ia32_insertf32x4_256:
13125 case X86::BI__builtin_ia32_inserti32x4_256:
13126 case X86::BI__builtin_ia32_insertf64x2_256:
13127 case X86::BI__builtin_ia32_inserti64x2_256:
13128 case X86::BI__builtin_ia32_insertf64x2_512:
13129 case X86::BI__builtin_ia32_inserti64x2_512: {
13130 unsigned DstNumElts =
13131 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13132 unsigned SrcNumElts =
13133 cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements();
13134 unsigned SubVectors = DstNumElts / SrcNumElts;
13135 unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
13136 assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors")(static_cast <bool> (llvm::isPowerOf2_32(SubVectors) &&
"Expected power of 2 subvectors") ? void (0) : __assert_fail
("llvm::isPowerOf2_32(SubVectors) && \"Expected power of 2 subvectors\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 13136, __extension__ __PRETTY_FUNCTION__))
;
13137 Index &= SubVectors - 1; // Remove any extra bits.
13138 Index *= SrcNumElts;
13139
13140 int Indices[16];
13141 for (unsigned i = 0; i != DstNumElts; ++i)
13142 Indices[i] = (i >= SrcNumElts) ? SrcNumElts + (i % SrcNumElts) : i;
13143
13144 Value *Op1 = Builder.CreateShuffleVector(Ops[1],
13145 makeArrayRef(Indices, DstNumElts),
13146 "widen");
13147
13148 for (unsigned i = 0; i != DstNumElts; ++i) {
13149 if (i >= Index && i < (Index + SrcNumElts))
13150 Indices[i] = (i - Index) + DstNumElts;
13151 else
13152 Indices[i] = i;
13153 }
13154
13155 return Builder.CreateShuffleVector(Ops[0], Op1,
13156 makeArrayRef(Indices, DstNumElts),
13157 "insert");
13158 }
13159 case X86::BI__builtin_ia32_pmovqd512_mask:
13160 case X86::BI__builtin_ia32_pmovwb512_mask: {
13161 Value *Res = Builder.CreateTrunc(Ops[0], Ops[1]->getType());
13162 return EmitX86Select(*this, Ops[2], Res, Ops[1]);
13163 }
13164 case X86::BI__builtin_ia32_pmovdb512_mask:
13165 case X86::BI__builtin_ia32_pmovdw512_mask:
13166 case X86::BI__builtin_ia32_pmovqw512_mask: {
13167 if (const auto *C = dyn_cast<Constant>(Ops[2]))
13168 if (C->isAllOnesValue())
13169 return Builder.CreateTrunc(Ops[0], Ops[1]->getType());
13170
13171 Intrinsic::ID IID;
13172 switch (BuiltinID) {
13173 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 13173)
;
13174 case X86::BI__builtin_ia32_pmovdb512_mask:
13175 IID = Intrinsic::x86_avx512_mask_pmov_db_512;
13176 break;
13177 case X86::BI__builtin_ia32_pmovdw512_mask:
13178 IID = Intrinsic::x86_avx512_mask_pmov_dw_512;
13179 break;
13180 case X86::BI__builtin_ia32_pmovqw512_mask:
13181 IID = Intrinsic::x86_avx512_mask_pmov_qw_512;
13182 break;
13183 }
13184
13185 Function *Intr = CGM.getIntrinsic(IID);
13186 return Builder.CreateCall(Intr, Ops);
13187 }
13188 case X86::BI__builtin_ia32_pblendw128:
13189 case X86::BI__builtin_ia32_blendpd:
13190 case X86::BI__builtin_ia32_blendps:
13191 case X86::BI__builtin_ia32_blendpd256:
13192 case X86::BI__builtin_ia32_blendps256:
13193 case X86::BI__builtin_ia32_pblendw256:
13194 case X86::BI__builtin_ia32_pblendd128:
13195 case X86::BI__builtin_ia32_pblendd256: {
13196 unsigned NumElts =
13197 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13198 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
13199
13200 int Indices[16];
13201 // If there are more than 8 elements, the immediate is used twice so make
13202 // sure we handle that.
13203 for (unsigned i = 0; i != NumElts; ++i)
13204 Indices[i] = ((Imm >> (i % 8)) & 0x1) ? NumElts + i : i;
13205
13206 return Builder.CreateShuffleVector(Ops[0], Ops[1],
13207 makeArrayRef(Indices, NumElts),
13208 "blend");
13209 }
13210 case X86::BI__builtin_ia32_pshuflw:
13211 case X86::BI__builtin_ia32_pshuflw256:
13212 case X86::BI__builtin_ia32_pshuflw512: {
13213 uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13214 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13215 unsigned NumElts = Ty->getNumElements();
13216
13217 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
13218 Imm = (Imm & 0xff) * 0x01010101;
13219
13220 int Indices[32];
13221 for (unsigned l = 0; l != NumElts; l += 8) {
13222 for (unsigned i = 0; i != 4; ++i) {
13223 Indices[l + i] = l + (Imm & 3);
13224 Imm >>= 2;
13225 }
13226 for (unsigned i = 4; i != 8; ++i)
13227 Indices[l + i] = l + i;
13228 }
13229
13230 return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts),
13231 "pshuflw");
13232 }
13233 case X86::BI__builtin_ia32_pshufhw:
13234 case X86::BI__builtin_ia32_pshufhw256:
13235 case X86::BI__builtin_ia32_pshufhw512: {
13236 uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13237 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13238 unsigned NumElts = Ty->getNumElements();
13239
13240 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
13241 Imm = (Imm & 0xff) * 0x01010101;
13242
13243 int Indices[32];
13244 for (unsigned l = 0; l != NumElts; l += 8) {
13245 for (unsigned i = 0; i != 4; ++i)
13246 Indices[l + i] = l + i;
13247 for (unsigned i = 4; i != 8; ++i) {
13248 Indices[l + i] = l + 4 + (Imm & 3);
13249 Imm >>= 2;
13250 }
13251 }
13252
13253 return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts),
13254 "pshufhw");
13255 }
13256 case X86::BI__builtin_ia32_pshufd:
13257 case X86::BI__builtin_ia32_pshufd256:
13258 case X86::BI__builtin_ia32_pshufd512:
13259 case X86::BI__builtin_ia32_vpermilpd:
13260 case X86::BI__builtin_ia32_vpermilps:
13261 case X86::BI__builtin_ia32_vpermilpd256:
13262 case X86::BI__builtin_ia32_vpermilps256:
13263 case X86::BI__builtin_ia32_vpermilpd512:
13264 case X86::BI__builtin_ia32_vpermilps512: {
13265 uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13266 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13267 unsigned NumElts = Ty->getNumElements();
13268 unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
13269 unsigned NumLaneElts = NumElts / NumLanes;
13270
13271 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
13272 Imm = (Imm & 0xff) * 0x01010101;
13273
13274 int Indices[16];
13275 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
13276 for (unsigned i = 0; i != NumLaneElts; ++i) {
13277 Indices[i + l] = (Imm % NumLaneElts) + l;
13278 Imm /= NumLaneElts;
13279 }
13280 }
13281
13282 return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts),
13283 "permil");
13284 }
13285 case X86::BI__builtin_ia32_shufpd:
13286 case X86::BI__builtin_ia32_shufpd256:
13287 case X86::BI__builtin_ia32_shufpd512:
13288 case X86::BI__builtin_ia32_shufps:
13289 case X86::BI__builtin_ia32_shufps256:
13290 case X86::BI__builtin_ia32_shufps512: {
13291 uint32_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
13292 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13293 unsigned NumElts = Ty->getNumElements();
13294 unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
13295 unsigned NumLaneElts = NumElts / NumLanes;
13296
13297 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
13298 Imm = (Imm & 0xff) * 0x01010101;
13299
13300 int Indices[16];
13301 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
13302 for (unsigned i = 0; i != NumLaneElts; ++i) {
13303 unsigned Index = Imm % NumLaneElts;
13304 Imm /= NumLaneElts;
13305 if (i >= (NumLaneElts / 2))
13306 Index += NumElts;
13307 Indices[l + i] = l + Index;
13308 }
13309 }
13310
13311 return Builder.CreateShuffleVector(Ops[0], Ops[1],
13312 makeArrayRef(Indices, NumElts),
13313 "shufp");
13314 }
13315 case X86::BI__builtin_ia32_permdi256:
13316 case X86::BI__builtin_ia32_permdf256:
13317 case X86::BI__builtin_ia32_permdi512:
13318 case X86::BI__builtin_ia32_permdf512: {
13319 unsigned Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13320 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13321 unsigned NumElts = Ty->getNumElements();
13322
13323 // These intrinsics operate on 256-bit lanes of four 64-bit elements.
13324 int Indices[8];
13325 for (unsigned l = 0; l != NumElts; l += 4)
13326 for (unsigned i = 0; i != 4; ++i)
13327 Indices[l + i] = l + ((Imm >> (2 * i)) & 0x3);
13328
13329 return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts),
13330 "perm");
13331 }
13332 case X86::BI__builtin_ia32_palignr128:
13333 case X86::BI__builtin_ia32_palignr256:
13334 case X86::BI__builtin_ia32_palignr512: {
13335 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
13336
13337 unsigned NumElts =
13338 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13339 assert(NumElts % 16 == 0)(static_cast <bool> (NumElts % 16 == 0) ? void (0) : __assert_fail
("NumElts % 16 == 0", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 13339, __extension__ __PRETTY_FUNCTION__))
;
13340
13341 // If palignr is shifting the pair of vectors more than the size of two
13342 // lanes, emit zero.
13343 if (ShiftVal >= 32)
13344 return llvm::Constant::getNullValue(ConvertType(E->getType()));
13345
13346 // If palignr is shifting the pair of input vectors more than one lane,
13347 // but less than two lanes, convert to shifting in zeroes.
13348 if (ShiftVal > 16) {
13349 ShiftVal -= 16;
13350 Ops[1] = Ops[0];
13351 Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType());
13352 }
13353
13354 int Indices[64];
13355 // 256-bit palignr operates on 128-bit lanes so we need to handle that
13356 for (unsigned l = 0; l != NumElts; l += 16) {
13357 for (unsigned i = 0; i != 16; ++i) {
13358 unsigned Idx = ShiftVal + i;
13359 if (Idx >= 16)
13360 Idx += NumElts - 16; // End of lane, switch operand.
13361 Indices[l + i] = Idx + l;
13362 }
13363 }
13364
13365 return Builder.CreateShuffleVector(Ops[1], Ops[0],
13366 makeArrayRef(Indices, NumElts),
13367 "palignr");
13368 }
13369 case X86::BI__builtin_ia32_alignd128:
13370 case X86::BI__builtin_ia32_alignd256:
13371 case X86::BI__builtin_ia32_alignd512:
13372 case X86::BI__builtin_ia32_alignq128:
13373 case X86::BI__builtin_ia32_alignq256:
13374 case X86::BI__builtin_ia32_alignq512: {
13375 unsigned NumElts =
13376 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13377 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
13378
13379 // Mask the shift amount to width of a vector.
13380 ShiftVal &= NumElts - 1;
13381
13382 int Indices[16];
13383 for (unsigned i = 0; i != NumElts; ++i)
13384 Indices[i] = i + ShiftVal;
13385
13386 return Builder.CreateShuffleVector(Ops[1], Ops[0],
13387 makeArrayRef(Indices, NumElts),
13388 "valign");
13389 }
13390 case X86::BI__builtin_ia32_shuf_f32x4_256:
13391 case X86::BI__builtin_ia32_shuf_f64x2_256:
13392 case X86::BI__builtin_ia32_shuf_i32x4_256:
13393 case X86::BI__builtin_ia32_shuf_i64x2_256:
13394 case X86::BI__builtin_ia32_shuf_f32x4:
13395 case X86::BI__builtin_ia32_shuf_f64x2:
13396 case X86::BI__builtin_ia32_shuf_i32x4:
13397 case X86::BI__builtin_ia32_shuf_i64x2: {
13398 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
13399 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13400 unsigned NumElts = Ty->getNumElements();
13401 unsigned NumLanes = Ty->getPrimitiveSizeInBits() == 512 ? 4 : 2;
13402 unsigned NumLaneElts = NumElts / NumLanes;
13403
13404 int Indices[16];
13405 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
13406 unsigned Index = (Imm % NumLanes) * NumLaneElts;
13407 Imm /= NumLanes; // Discard the bits we just used.
13408 if (l >= (NumElts / 2))
13409 Index += NumElts; // Switch to other source.
13410 for (unsigned i = 0; i != NumLaneElts; ++i) {
13411 Indices[l + i] = Index + i;
13412 }
13413 }
13414
13415 return Builder.CreateShuffleVector(Ops[0], Ops[1],
13416 makeArrayRef(Indices, NumElts),
13417 "shuf");
13418 }
13419
13420 case X86::BI__builtin_ia32_vperm2f128_pd256:
13421 case X86::BI__builtin_ia32_vperm2f128_ps256:
13422 case X86::BI__builtin_ia32_vperm2f128_si256:
13423 case X86::BI__builtin_ia32_permti256: {
13424 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
13425 unsigned NumElts =
13426 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13427
13428 // This takes a very simple approach since there are two lanes and a
13429 // shuffle can have 2 inputs. So we reserve the first input for the first
13430 // lane and the second input for the second lane. This may result in
13431 // duplicate sources, but this can be dealt with in the backend.
13432
13433 Value *OutOps[2];
13434 int Indices[8];
13435 for (unsigned l = 0; l != 2; ++l) {
13436 // Determine the source for this lane.
13437 if (Imm & (1 << ((l * 4) + 3)))
13438 OutOps[l] = llvm::ConstantAggregateZero::get(Ops[0]->getType());
13439 else if (Imm & (1 << ((l * 4) + 1)))
13440 OutOps[l] = Ops[1];
13441 else
13442 OutOps[l] = Ops[0];
13443
13444 for (unsigned i = 0; i != NumElts/2; ++i) {
13445 // Start with ith element of the source for this lane.
13446 unsigned Idx = (l * NumElts) + i;
13447 // If bit 0 of the immediate half is set, switch to the high half of
13448 // the source.
13449 if (Imm & (1 << (l * 4)))
13450 Idx += NumElts/2;
13451 Indices[(l * (NumElts/2)) + i] = Idx;
13452 }
13453 }
13454
13455 return Builder.CreateShuffleVector(OutOps[0], OutOps[1],
13456 makeArrayRef(Indices, NumElts),
13457 "vperm");
13458 }
13459
13460 case X86::BI__builtin_ia32_pslldqi128_byteshift:
13461 case X86::BI__builtin_ia32_pslldqi256_byteshift:
13462 case X86::BI__builtin_ia32_pslldqi512_byteshift: {
13463 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
13464 auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType());
13465 // Builtin type is vXi64 so multiply by 8 to get bytes.
13466 unsigned NumElts = ResultType->getNumElements() * 8;
13467
13468 // If pslldq is shifting the vector more than 15 bytes, emit zero.
13469 if (ShiftVal >= 16)
13470 return llvm::Constant::getNullValue(ResultType);
13471
13472 int Indices[64];
13473 // 256/512-bit pslldq operates on 128-bit lanes so we need to handle that
13474 for (unsigned l = 0; l != NumElts; l += 16) {
13475 for (unsigned i = 0; i != 16; ++i) {
13476 unsigned Idx = NumElts + i - ShiftVal;
13477 if (Idx < NumElts) Idx -= NumElts - 16; // end of lane, switch operand.
13478 Indices[l + i] = Idx + l;
13479 }
13480 }
13481
13482 auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts);
13483 Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
13484 Value *Zero = llvm::Constant::getNullValue(VecTy);
13485 Value *SV = Builder.CreateShuffleVector(Zero, Cast,
13486 makeArrayRef(Indices, NumElts),
13487 "pslldq");
13488 return Builder.CreateBitCast(SV, Ops[0]->getType(), "cast");
13489 }
13490 case X86::BI__builtin_ia32_psrldqi128_byteshift:
13491 case X86::BI__builtin_ia32_psrldqi256_byteshift:
13492 case X86::BI__builtin_ia32_psrldqi512_byteshift: {
13493 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
13494 auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType());
13495 // Builtin type is vXi64 so multiply by 8 to get bytes.
13496 unsigned NumElts = ResultType->getNumElements() * 8;
13497
13498 // If psrldq is shifting the vector more than 15 bytes, emit zero.
13499 if (ShiftVal >= 16)
13500 return llvm::Constant::getNullValue(ResultType);
13501
13502 int Indices[64];
13503 // 256/512-bit psrldq operates on 128-bit lanes so we need to handle that
13504 for (unsigned l = 0; l != NumElts; l += 16) {
13505 for (unsigned i = 0; i != 16; ++i) {
13506 unsigned Idx = i + ShiftVal;
13507 if (Idx >= 16) Idx += NumElts - 16; // end of lane, switch operand.
13508 Indices[l + i] = Idx + l;
13509 }
13510 }
13511
13512 auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts);
13513 Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
13514 Value *Zero = llvm::Constant::getNullValue(VecTy);
13515 Value *SV = Builder.CreateShuffleVector(Cast, Zero,
13516 makeArrayRef(Indices, NumElts),
13517 "psrldq");
13518 return Builder.CreateBitCast(SV, ResultType, "cast");
13519 }
13520 case X86::BI__builtin_ia32_kshiftliqi:
13521 case X86::BI__builtin_ia32_kshiftlihi:
13522 case X86::BI__builtin_ia32_kshiftlisi:
13523 case X86::BI__builtin_ia32_kshiftlidi: {
13524 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
13525 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13526
13527 if (ShiftVal >= NumElts)
13528 return llvm::Constant::getNullValue(Ops[0]->getType());
13529
13530 Value *In = getMaskVecValue(*this, Ops[0], NumElts);
13531
13532 int Indices[64];
13533 for (unsigned i = 0; i != NumElts; ++i)
13534 Indices[i] = NumElts + i - ShiftVal;
13535
13536 Value *Zero = llvm::Constant::getNullValue(In->getType());
13537 Value *SV = Builder.CreateShuffleVector(Zero, In,
13538 makeArrayRef(Indices, NumElts),
13539 "kshiftl");
13540 return Builder.CreateBitCast(SV, Ops[0]->getType());
13541 }
13542 case X86::BI__builtin_ia32_kshiftriqi:
13543 case X86::BI__builtin_ia32_kshiftrihi:
13544 case X86::BI__builtin_ia32_kshiftrisi:
13545 case X86::BI__builtin_ia32_kshiftridi: {
13546 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
13547 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13548
13549 if (ShiftVal >= NumElts)
13550 return llvm::Constant::getNullValue(Ops[0]->getType());
13551
13552 Value *In = getMaskVecValue(*this, Ops[0], NumElts);
13553
13554 int Indices[64];
13555 for (unsigned i = 0; i != NumElts; ++i)
13556 Indices[i] = i + ShiftVal;
13557
13558 Value *Zero = llvm::Constant::getNullValue(In->getType());
13559 Value *SV = Builder.CreateShuffleVector(In, Zero,
13560 makeArrayRef(Indices, NumElts),
13561 "kshiftr");
13562 return Builder.CreateBitCast(SV, Ops[0]->getType());
13563 }
13564 case X86::BI__builtin_ia32_movnti:
13565 case X86::BI__builtin_ia32_movnti64:
13566 case X86::BI__builtin_ia32_movntsd:
13567 case X86::BI__builtin_ia32_movntss: {
13568 llvm::MDNode *Node = llvm::MDNode::get(
13569 getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
13570
13571 Value *Ptr = Ops[0];
13572 Value *Src = Ops[1];
13573
13574 // Extract the 0'th element of the source vector.
13575 if (BuiltinID == X86::BI__builtin_ia32_movntsd ||
13576 BuiltinID == X86::BI__builtin_ia32_movntss)
13577 Src = Builder.CreateExtractElement(Src, (uint64_t)0, "extract");
13578
13579 // Convert the type of the pointer to a pointer to the stored type.
13580 Value *BC = Builder.CreateBitCast(
13581 Ptr, llvm::PointerType::getUnqual(Src->getType()), "cast");
13582
13583 // Unaligned nontemporal store of the scalar value.
13584 StoreInst *SI = Builder.CreateDefaultAlignedStore(Src, BC);
13585 SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
13586 SI->setAlignment(llvm::Align(1));
13587 return SI;
13588 }
13589 // Rotate is a special case of funnel shift - 1st 2 args are the same.
13590 case X86::BI__builtin_ia32_vprotb:
13591 case X86::BI__builtin_ia32_vprotw:
13592 case X86::BI__builtin_ia32_vprotd:
13593 case X86::BI__builtin_ia32_vprotq:
13594 case X86::BI__builtin_ia32_vprotbi:
13595 case X86::BI__builtin_ia32_vprotwi:
13596 case X86::BI__builtin_ia32_vprotdi:
13597 case X86::BI__builtin_ia32_vprotqi:
13598 case X86::BI__builtin_ia32_prold128:
13599 case X86::BI__builtin_ia32_prold256:
13600 case X86::BI__builtin_ia32_prold512:
13601 case X86::BI__builtin_ia32_prolq128:
13602 case X86::BI__builtin_ia32_prolq256:
13603 case X86::BI__builtin_ia32_prolq512:
13604 case X86::BI__builtin_ia32_prolvd128:
13605 case X86::BI__builtin_ia32_prolvd256:
13606 case X86::BI__builtin_ia32_prolvd512:
13607 case X86::BI__builtin_ia32_prolvq128:
13608 case X86::BI__builtin_ia32_prolvq256:
13609 case X86::BI__builtin_ia32_prolvq512:
13610 return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], false);
13611 case X86::BI__builtin_ia32_prord128:
13612 case X86::BI__builtin_ia32_prord256:
13613 case X86::BI__builtin_ia32_prord512:
13614 case X86::BI__builtin_ia32_prorq128:
13615 case X86::BI__builtin_ia32_prorq256:
13616 case X86::BI__builtin_ia32_prorq512:
13617 case X86::BI__builtin_ia32_prorvd128:
13618 case X86::BI__builtin_ia32_prorvd256:
13619 case X86::BI__builtin_ia32_prorvd512:
13620 case X86::BI__builtin_ia32_prorvq128:
13621 case X86::BI__builtin_ia32_prorvq256:
13622 case X86::BI__builtin_ia32_prorvq512:
13623 return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], true);
13624 case X86::BI__builtin_ia32_selectb_128:
13625 case X86::BI__builtin_ia32_selectb_256:
13626 case X86::BI__builtin_ia32_selectb_512:
13627 case X86::BI__builtin_ia32_selectw_128:
13628 case X86::BI__builtin_ia32_selectw_256:
13629 case X86::BI__builtin_ia32_selectw_512:
13630 case X86::BI__builtin_ia32_selectd_128:
13631 case X86::BI__builtin_ia32_selectd_256:
13632 case X86::BI__builtin_ia32_selectd_512:
13633 case X86::BI__builtin_ia32_selectq_128:
13634 case X86::BI__builtin_ia32_selectq_256:
13635 case X86::BI__builtin_ia32_selectq_512:
13636 case X86::BI__builtin_ia32_selectps_128:
13637 case X86::BI__builtin_ia32_selectps_256:
13638 case X86::BI__builtin_ia32_selectps_512:
13639 case X86::BI__builtin_ia32_selectpd_128:
13640 case X86::BI__builtin_ia32_selectpd_256:
13641 case X86::BI__builtin_ia32_selectpd_512:
13642 return EmitX86Select(*this, Ops[0], Ops[1], Ops[2]);
13643 case X86::BI__builtin_ia32_selectss_128:
13644 case X86::BI__builtin_ia32_selectsd_128: {
13645 Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
13646 Value *B = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
13647 A = EmitX86ScalarSelect(*this, Ops[0], A, B);
13648 return Builder.CreateInsertElement(Ops[1], A, (uint64_t)0);
13649 }
13650 case X86::BI__builtin_ia32_cmpb128_mask:
13651 case X86::BI__builtin_ia32_cmpb256_mask:
13652 case X86::BI__builtin_ia32_cmpb512_mask:
13653 case X86::BI__builtin_ia32_cmpw128_mask:
13654 case X86::BI__builtin_ia32_cmpw256_mask:
13655 case X86::BI__builtin_ia32_cmpw512_mask:
13656 case X86::BI__builtin_ia32_cmpd128_mask:
13657 case X86::BI__builtin_ia32_cmpd256_mask:
13658 case X86::BI__builtin_ia32_cmpd512_mask:
13659 case X86::BI__builtin_ia32_cmpq128_mask:
13660 case X86::BI__builtin_ia32_cmpq256_mask:
13661 case X86::BI__builtin_ia32_cmpq512_mask: {
13662 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
13663 return EmitX86MaskedCompare(*this, CC, true, Ops);
13664 }
13665 case X86::BI__builtin_ia32_ucmpb128_mask:
13666 case X86::BI__builtin_ia32_ucmpb256_mask:
13667 case X86::BI__builtin_ia32_ucmpb512_mask:
13668 case X86::BI__builtin_ia32_ucmpw128_mask:
13669 case X86::BI__builtin_ia32_ucmpw256_mask:
13670 case X86::BI__builtin_ia32_ucmpw512_mask:
13671 case X86::BI__builtin_ia32_ucmpd128_mask:
13672 case X86::BI__builtin_ia32_ucmpd256_mask:
13673 case X86::BI__builtin_ia32_ucmpd512_mask:
13674 case X86::BI__builtin_ia32_ucmpq128_mask:
13675 case X86::BI__builtin_ia32_ucmpq256_mask:
13676 case X86::BI__builtin_ia32_ucmpq512_mask: {
13677 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
13678 return EmitX86MaskedCompare(*this, CC, false, Ops);
13679 }
13680 case X86::BI__builtin_ia32_vpcomb:
13681 case X86::BI__builtin_ia32_vpcomw:
13682 case X86::BI__builtin_ia32_vpcomd:
13683 case X86::BI__builtin_ia32_vpcomq:
13684 return EmitX86vpcom(*this, Ops, true);
13685 case X86::BI__builtin_ia32_vpcomub:
13686 case X86::BI__builtin_ia32_vpcomuw:
13687 case X86::BI__builtin_ia32_vpcomud:
13688 case X86::BI__builtin_ia32_vpcomuq:
13689 return EmitX86vpcom(*this, Ops, false);
13690
13691 case X86::BI__builtin_ia32_kortestcqi:
13692 case X86::BI__builtin_ia32_kortestchi:
13693 case X86::BI__builtin_ia32_kortestcsi:
13694 case X86::BI__builtin_ia32_kortestcdi: {
13695 Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
13696 Value *C = llvm::Constant::getAllOnesValue(Ops[0]->getType());
13697 Value *Cmp = Builder.CreateICmpEQ(Or, C);
13698 return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
13699 }
13700 case X86::BI__builtin_ia32_kortestzqi:
13701 case X86::BI__builtin_ia32_kortestzhi:
13702 case X86::BI__builtin_ia32_kortestzsi:
13703 case X86::BI__builtin_ia32_kortestzdi: {
13704 Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
13705 Value *C = llvm::Constant::getNullValue(Ops[0]->getType());
13706 Value *Cmp = Builder.CreateICmpEQ(Or, C);
13707 return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
13708 }
13709
13710 case X86::BI__builtin_ia32_ktestcqi:
13711 case X86::BI__builtin_ia32_ktestzqi:
13712 case X86::BI__builtin_ia32_ktestchi:
13713 case X86::BI__builtin_ia32_ktestzhi:
13714 case X86::BI__builtin_ia32_ktestcsi:
13715 case X86::BI__builtin_ia32_ktestzsi:
13716 case X86::BI__builtin_ia32_ktestcdi:
13717 case X86::BI__builtin_ia32_ktestzdi: {
13718 Intrinsic::ID IID;
13719 switch (BuiltinID) {
13720 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 13720)
;
13721 case X86::BI__builtin_ia32_ktestcqi:
13722 IID = Intrinsic::x86_avx512_ktestc_b;
13723 break;
13724 case X86::BI__builtin_ia32_ktestzqi:
13725 IID = Intrinsic::x86_avx512_ktestz_b;
13726 break;
13727 case X86::BI__builtin_ia32_ktestchi:
13728 IID = Intrinsic::x86_avx512_ktestc_w;
13729 break;
13730 case X86::BI__builtin_ia32_ktestzhi:
13731 IID = Intrinsic::x86_avx512_ktestz_w;
13732 break;
13733 case X86::BI__builtin_ia32_ktestcsi:
13734 IID = Intrinsic::x86_avx512_ktestc_d;
13735 break;
13736 case X86::BI__builtin_ia32_ktestzsi:
13737 IID = Intrinsic::x86_avx512_ktestz_d;
13738 break;
13739 case X86::BI__builtin_ia32_ktestcdi:
13740 IID = Intrinsic::x86_avx512_ktestc_q;
13741 break;
13742 case X86::BI__builtin_ia32_ktestzdi:
13743 IID = Intrinsic::x86_avx512_ktestz_q;
13744 break;
13745 }
13746
13747 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13748 Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
13749 Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
13750 Function *Intr = CGM.getIntrinsic(IID);
13751 return Builder.CreateCall(Intr, {LHS, RHS});
13752 }
13753
13754 case X86::BI__builtin_ia32_kaddqi:
13755 case X86::BI__builtin_ia32_kaddhi:
13756 case X86::BI__builtin_ia32_kaddsi:
13757 case X86::BI__builtin_ia32_kadddi: {
13758 Intrinsic::ID IID;
13759 switch (BuiltinID) {
13760 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 13760)
;
13761 case X86::BI__builtin_ia32_kaddqi:
13762 IID = Intrinsic::x86_avx512_kadd_b;
13763 break;
13764 case X86::BI__builtin_ia32_kaddhi:
13765 IID = Intrinsic::x86_avx512_kadd_w;
13766 break;
13767 case X86::BI__builtin_ia32_kaddsi:
13768 IID = Intrinsic::x86_avx512_kadd_d;
13769 break;
13770 case X86::BI__builtin_ia32_kadddi:
13771 IID = Intrinsic::x86_avx512_kadd_q;
13772 break;
13773 }
13774
13775 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13776 Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
13777 Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
13778 Function *Intr = CGM.getIntrinsic(IID);
13779 Value *Res = Builder.CreateCall(Intr, {LHS, RHS});
13780 return Builder.CreateBitCast(Res, Ops[0]->getType());
13781 }
13782 case X86::BI__builtin_ia32_kandqi:
13783 case X86::BI__builtin_ia32_kandhi:
13784 case X86::BI__builtin_ia32_kandsi:
13785 case X86::BI__builtin_ia32_kanddi:
13786 return EmitX86MaskLogic(*this, Instruction::And, Ops);
13787 case X86::BI__builtin_ia32_kandnqi:
13788 case X86::BI__builtin_ia32_kandnhi:
13789 case X86::BI__builtin_ia32_kandnsi:
13790 case X86::BI__builtin_ia32_kandndi:
13791 return EmitX86MaskLogic(*this, Instruction::And, Ops, true);
13792 case X86::BI__builtin_ia32_korqi:
13793 case X86::BI__builtin_ia32_korhi:
13794 case X86::BI__builtin_ia32_korsi:
13795 case X86::BI__builtin_ia32_kordi:
13796 return EmitX86MaskLogic(*this, Instruction::Or, Ops);
13797 case X86::BI__builtin_ia32_kxnorqi:
13798 case X86::BI__builtin_ia32_kxnorhi:
13799 case X86::BI__builtin_ia32_kxnorsi:
13800 case X86::BI__builtin_ia32_kxnordi:
13801 return EmitX86MaskLogic(*this, Instruction::Xor, Ops, true);
13802 case X86::BI__builtin_ia32_kxorqi:
13803 case X86::BI__builtin_ia32_kxorhi:
13804 case X86::BI__builtin_ia32_kxorsi:
13805 case X86::BI__builtin_ia32_kxordi:
13806 return EmitX86MaskLogic(*this, Instruction::Xor, Ops);
13807 case X86::BI__builtin_ia32_knotqi:
13808 case X86::BI__builtin_ia32_knothi:
13809 case X86::BI__builtin_ia32_knotsi:
13810 case X86::BI__builtin_ia32_knotdi: {
13811 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13812 Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
13813 return Builder.CreateBitCast(Builder.CreateNot(Res),
13814 Ops[0]->getType());
13815 }
13816 case X86::BI__builtin_ia32_kmovb:
13817 case X86::BI__builtin_ia32_kmovw:
13818 case X86::BI__builtin_ia32_kmovd:
13819 case X86::BI__builtin_ia32_kmovq: {
13820 // Bitcast to vXi1 type and then back to integer. This gets the mask
13821 // register type into the IR, but might be optimized out depending on
13822 // what's around it.
13823 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13824 Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
13825 return Builder.CreateBitCast(Res, Ops[0]->getType());
13826 }
13827
13828 case X86::BI__builtin_ia32_kunpckdi:
13829 case X86::BI__builtin_ia32_kunpcksi:
13830 case X86::BI__builtin_ia32_kunpckhi: {
13831 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13832 Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
13833 Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
13834 int Indices[64];
13835 for (unsigned i = 0; i != NumElts; ++i)
13836 Indices[i] = i;
13837
13838 // First extract half of each vector. This gives better codegen than
13839 // doing it in a single shuffle.
13840 LHS = Builder.CreateShuffleVector(LHS, LHS,
13841 makeArrayRef(Indices, NumElts / 2));
13842 RHS = Builder.CreateShuffleVector(RHS, RHS,
13843 makeArrayRef(Indices, NumElts / 2));
13844 // Concat the vectors.
13845 // NOTE: Operands are swapped to match the intrinsic definition.
13846 Value *Res = Builder.CreateShuffleVector(RHS, LHS,
13847 makeArrayRef(Indices, NumElts));
13848 return Builder.CreateBitCast(Res, Ops[0]->getType());
13849 }
13850
13851 case X86::BI__builtin_ia32_vplzcntd_128:
13852 case X86::BI__builtin_ia32_vplzcntd_256:
13853 case X86::BI__builtin_ia32_vplzcntd_512:
13854 case X86::BI__builtin_ia32_vplzcntq_128:
13855 case X86::BI__builtin_ia32_vplzcntq_256:
13856 case X86::BI__builtin_ia32_vplzcntq_512: {
13857 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
13858 return Builder.CreateCall(F, {Ops[0],Builder.getInt1(false)});
13859 }
13860 case X86::BI__builtin_ia32_sqrtss:
13861 case X86::BI__builtin_ia32_sqrtsd: {
13862 Value *A = Builder.CreateExtractElement(Ops[0], (uint64_t)0);
13863 Function *F;
13864 if (Builder.getIsFPConstrained()) {
13865 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
13866 F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
13867 A->getType());
13868 A = Builder.CreateConstrainedFPCall(F, {A});
13869 } else {
13870 F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
13871 A = Builder.CreateCall(F, {A});
13872 }
13873 return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
13874 }
13875 case X86::BI__builtin_ia32_sqrtsd_round_mask:
13876 case X86::BI__builtin_ia32_sqrtss_round_mask: {
13877 unsigned CC = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
13878 // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
13879 // otherwise keep the intrinsic.
13880 if (CC != 4) {
13881 Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtsd_round_mask ?
13882 Intrinsic::x86_avx512_mask_sqrt_sd :
13883 Intrinsic::x86_avx512_mask_sqrt_ss;
13884 return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
13885 }
13886 Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
13887 Function *F;
13888 if (Builder.getIsFPConstrained()) {
13889 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
13890 F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
13891 A->getType());
13892 A = Builder.CreateConstrainedFPCall(F, A);
13893 } else {
13894 F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
13895 A = Builder.CreateCall(F, A);
13896 }
13897 Value *Src = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
13898 A = EmitX86ScalarSelect(*this, Ops[3], A, Src);
13899 return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
13900 }
13901 case X86::BI__builtin_ia32_sqrtpd256:
13902 case X86::BI__builtin_ia32_sqrtpd:
13903 case X86::BI__builtin_ia32_sqrtps256:
13904 case X86::BI__builtin_ia32_sqrtps:
13905 case X86::BI__builtin_ia32_sqrtps512:
13906 case X86::BI__builtin_ia32_sqrtpd512: {
13907 if (Ops.size() == 2) {
13908 unsigned CC = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13909 // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
13910 // otherwise keep the intrinsic.
13911 if (CC != 4) {
13912 Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtps512 ?
13913 Intrinsic::x86_avx512_sqrt_ps_512 :
13914 Intrinsic::x86_avx512_sqrt_pd_512;
13915 return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
13916 }
13917 }
13918 if (Builder.getIsFPConstrained()) {
13919 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
13920 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
13921 Ops[0]->getType());
13922 return Builder.CreateConstrainedFPCall(F, Ops[0]);
13923 } else {
13924 Function *F = CGM.getIntrinsic(Intrinsic::sqrt, Ops[0]->getType());
13925 return Builder.CreateCall(F, Ops[0]);
13926 }
13927 }
13928 case X86::BI__builtin_ia32_pabsb128:
13929 case X86::BI__builtin_ia32_pabsw128:
13930 case X86::BI__builtin_ia32_pabsd128:
13931 case X86::BI__builtin_ia32_pabsb256:
13932 case X86::BI__builtin_ia32_pabsw256:
13933 case X86::BI__builtin_ia32_pabsd256:
13934 case X86::BI__builtin_ia32_pabsq128:
13935 case X86::BI__builtin_ia32_pabsq256:
13936 case X86::BI__builtin_ia32_pabsb512:
13937 case X86::BI__builtin_ia32_pabsw512:
13938 case X86::BI__builtin_ia32_pabsd512:
13939 case X86::BI__builtin_ia32_pabsq512: {
13940 Function *F = CGM.getIntrinsic(Intrinsic::abs, Ops[0]->getType());
13941 return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
13942 }
13943 case X86::BI__builtin_ia32_pmaxsb128:
13944 case X86::BI__builtin_ia32_pmaxsw128:
13945 case X86::BI__builtin_ia32_pmaxsd128:
13946 case X86::BI__builtin_ia32_pmaxsq128:
13947 case X86::BI__builtin_ia32_pmaxsb256:
13948 case X86::BI__builtin_ia32_pmaxsw256:
13949 case X86::BI__builtin_ia32_pmaxsd256:
13950 case X86::BI__builtin_ia32_pmaxsq256:
13951 case X86::BI__builtin_ia32_pmaxsb512:
13952 case X86::BI__builtin_ia32_pmaxsw512:
13953 case X86::BI__builtin_ia32_pmaxsd512:
13954 case X86::BI__builtin_ia32_pmaxsq512:
13955 return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::smax);
13956 case X86::BI__builtin_ia32_pmaxub128:
13957 case X86::BI__builtin_ia32_pmaxuw128:
13958 case X86::BI__builtin_ia32_pmaxud128:
13959 case X86::BI__builtin_ia32_pmaxuq128:
13960 case X86::BI__builtin_ia32_pmaxub256:
13961 case X86::BI__builtin_ia32_pmaxuw256:
13962 case X86::BI__builtin_ia32_pmaxud256:
13963 case X86::BI__builtin_ia32_pmaxuq256:
13964 case X86::BI__builtin_ia32_pmaxub512:
13965 case X86::BI__builtin_ia32_pmaxuw512:
13966 case X86::BI__builtin_ia32_pmaxud512:
13967 case X86::BI__builtin_ia32_pmaxuq512:
13968 return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::umax);
13969 case X86::BI__builtin_ia32_pminsb128:
13970 case X86::BI__builtin_ia32_pminsw128:
13971 case X86::BI__builtin_ia32_pminsd128:
13972 case X86::BI__builtin_ia32_pminsq128:
13973 case X86::BI__builtin_ia32_pminsb256:
13974 case X86::BI__builtin_ia32_pminsw256:
13975 case X86::BI__builtin_ia32_pminsd256:
13976 case X86::BI__builtin_ia32_pminsq256:
13977 case X86::BI__builtin_ia32_pminsb512:
13978 case X86::BI__builtin_ia32_pminsw512:
13979 case X86::BI__builtin_ia32_pminsd512:
13980 case X86::BI__builtin_ia32_pminsq512:
13981 return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::smin);
13982 case X86::BI__builtin_ia32_pminub128:
13983 case X86::BI__builtin_ia32_pminuw128:
13984 case X86::BI__builtin_ia32_pminud128:
13985 case X86::BI__builtin_ia32_pminuq128:
13986 case X86::BI__builtin_ia32_pminub256:
13987 case X86::BI__builtin_ia32_pminuw256:
13988 case X86::BI__builtin_ia32_pminud256:
13989 case X86::BI__builtin_ia32_pminuq256:
13990 case X86::BI__builtin_ia32_pminub512:
13991 case X86::BI__builtin_ia32_pminuw512:
13992 case X86::BI__builtin_ia32_pminud512:
13993 case X86::BI__builtin_ia32_pminuq512:
13994 return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::umin);
13995
13996 case X86::BI__builtin_ia32_pmuludq128:
13997 case X86::BI__builtin_ia32_pmuludq256:
13998 case X86::BI__builtin_ia32_pmuludq512:
13999 return EmitX86Muldq(*this, /*IsSigned*/false, Ops);
14000
14001 case X86::BI__builtin_ia32_pmuldq128:
14002 case X86::BI__builtin_ia32_pmuldq256:
14003 case X86::BI__builtin_ia32_pmuldq512:
14004 return EmitX86Muldq(*this, /*IsSigned*/true, Ops);
14005
14006 case X86::BI__builtin_ia32_pternlogd512_mask:
14007 case X86::BI__builtin_ia32_pternlogq512_mask:
14008 case X86::BI__builtin_ia32_pternlogd128_mask:
14009 case X86::BI__builtin_ia32_pternlogd256_mask:
14010 case X86::BI__builtin_ia32_pternlogq128_mask:
14011 case X86::BI__builtin_ia32_pternlogq256_mask:
14012 return EmitX86Ternlog(*this, /*ZeroMask*/false, Ops);
14013
14014 case X86::BI__builtin_ia32_pternlogd512_maskz:
14015 case X86::BI__builtin_ia32_pternlogq512_maskz:
14016 case X86::BI__builtin_ia32_pternlogd128_maskz:
14017 case X86::BI__builtin_ia32_pternlogd256_maskz:
14018 case X86::BI__builtin_ia32_pternlogq128_maskz:
14019 case X86::BI__builtin_ia32_pternlogq256_maskz:
14020 return EmitX86Ternlog(*this, /*ZeroMask*/true, Ops);
14021
14022 case X86::BI__builtin_ia32_vpshldd128:
14023 case X86::BI__builtin_ia32_vpshldd256:
14024 case X86::BI__builtin_ia32_vpshldd512:
14025 case X86::BI__builtin_ia32_vpshldq128:
14026 case X86::BI__builtin_ia32_vpshldq256:
14027 case X86::BI__builtin_ia32_vpshldq512:
14028 case X86::BI__builtin_ia32_vpshldw128:
14029 case X86::BI__builtin_ia32_vpshldw256:
14030 case X86::BI__builtin_ia32_vpshldw512:
14031 return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
14032
14033 case X86::BI__builtin_ia32_vpshrdd128:
14034 case X86::BI__builtin_ia32_vpshrdd256:
14035 case X86::BI__builtin_ia32_vpshrdd512:
14036 case X86::BI__builtin_ia32_vpshrdq128:
14037 case X86::BI__builtin_ia32_vpshrdq256:
14038 case X86::BI__builtin_ia32_vpshrdq512:
14039 case X86::BI__builtin_ia32_vpshrdw128:
14040 case X86::BI__builtin_ia32_vpshrdw256:
14041 case X86::BI__builtin_ia32_vpshrdw512:
14042 // Ops 0 and 1 are swapped.
14043 return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
14044
14045 case X86::BI__builtin_ia32_vpshldvd128:
14046 case X86::BI__builtin_ia32_vpshldvd256:
14047 case X86::BI__builtin_ia32_vpshldvd512:
14048 case X86::BI__builtin_ia32_vpshldvq128:
14049 case X86::BI__builtin_ia32_vpshldvq256:
14050 case X86::BI__builtin_ia32_vpshldvq512:
14051 case X86::BI__builtin_ia32_vpshldvw128:
14052 case X86::BI__builtin_ia32_vpshldvw256:
14053 case X86::BI__builtin_ia32_vpshldvw512:
14054 return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
14055
14056 case X86::BI__builtin_ia32_vpshrdvd128:
14057 case X86::BI__builtin_ia32_vpshrdvd256:
14058 case X86::BI__builtin_ia32_vpshrdvd512:
14059 case X86::BI__builtin_ia32_vpshrdvq128:
14060 case X86::BI__builtin_ia32_vpshrdvq256:
14061 case X86::BI__builtin_ia32_vpshrdvq512:
14062 case X86::BI__builtin_ia32_vpshrdvw128:
14063 case X86::BI__builtin_ia32_vpshrdvw256:
14064 case X86::BI__builtin_ia32_vpshrdvw512:
14065 // Ops 0 and 1 are swapped.
14066 return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
14067
14068 // Reductions
14069 case X86::BI__builtin_ia32_reduce_add_d512:
14070 case X86::BI__builtin_ia32_reduce_add_q512: {
14071 Function *F =
14072 CGM.getIntrinsic(Intrinsic::vector_reduce_add, Ops[0]->getType());
14073 return Builder.CreateCall(F, {Ops[0]});
14074 }
14075 case X86::BI__builtin_ia32_reduce_and_d512:
14076 case X86::BI__builtin_ia32_reduce_and_q512: {
14077 Function *F =
14078 CGM.getIntrinsic(Intrinsic::vector_reduce_and, Ops[0]->getType());
14079 return Builder.CreateCall(F, {Ops[0]});
14080 }
14081 case X86::BI__builtin_ia32_reduce_fadd_pd512:
14082 case X86::BI__builtin_ia32_reduce_fadd_ps512: {
14083 Function *F =
14084 CGM.getIntrinsic(Intrinsic::vector_reduce_fadd, Ops[1]->getType());
14085 Builder.getFastMathFlags().setAllowReassoc();
14086 return Builder.CreateCall(F, {Ops[0], Ops[1]});
14087 }
14088 case X86::BI__builtin_ia32_reduce_fmul_pd512:
14089 case X86::BI__builtin_ia32_reduce_fmul_ps512: {
14090 Function *F =
14091 CGM.getIntrinsic(Intrinsic::vector_reduce_fmul, Ops[1]->getType());
14092 Builder.getFastMathFlags().setAllowReassoc();
14093 return Builder.CreateCall(F, {Ops[0], Ops[1]});
14094 }
14095 case X86::BI__builtin_ia32_reduce_fmax_pd512:
14096 case X86::BI__builtin_ia32_reduce_fmax_ps512: {
14097 Function *F =
14098 CGM.getIntrinsic(Intrinsic::vector_reduce_fmax, Ops[0]->getType());
14099 Builder.getFastMathFlags().setNoNaNs();
14100 return Builder.CreateCall(F, {Ops[0]});
14101 }
14102 case X86::BI__builtin_ia32_reduce_fmin_pd512:
14103 case X86::BI__builtin_ia32_reduce_fmin_ps512: {
14104 Function *F =
14105 CGM.getIntrinsic(Intrinsic::vector_reduce_fmin, Ops[0]->getType());
14106 Builder.getFastMathFlags().setNoNaNs();
14107 return Builder.CreateCall(F, {Ops[0]});
14108 }
14109 case X86::BI__builtin_ia32_reduce_mul_d512:
14110 case X86::BI__builtin_ia32_reduce_mul_q512: {
14111 Function *F =
14112 CGM.getIntrinsic(Intrinsic::vector_reduce_mul, Ops[0]->getType());
14113 return Builder.CreateCall(F, {Ops[0]});
14114 }
14115 case X86::BI__builtin_ia32_reduce_or_d512:
14116 case X86::BI__builtin_ia32_reduce_or_q512: {
14117 Function *F =
14118 CGM.getIntrinsic(Intrinsic::vector_reduce_or, Ops[0]->getType());
14119 return Builder.CreateCall(F, {Ops[0]});
14120 }
14121 case X86::BI__builtin_ia32_reduce_smax_d512:
14122 case X86::BI__builtin_ia32_reduce_smax_q512: {
14123 Function *F =
14124 CGM.getIntrinsic(Intrinsic::vector_reduce_smax, Ops[0]->getType());
14125 return Builder.CreateCall(F, {Ops[0]});
14126 }
14127 case X86::BI__builtin_ia32_reduce_smin_d512:
14128 case X86::BI__builtin_ia32_reduce_smin_q512: {
14129 Function *F =
14130 CGM.getIntrinsic(Intrinsic::vector_reduce_smin, Ops[0]->getType());
14131 return Builder.CreateCall(F, {Ops[0]});
14132 }
14133 case X86::BI__builtin_ia32_reduce_umax_d512:
14134 case X86::BI__builtin_ia32_reduce_umax_q512: {
14135 Function *F =
14136 CGM.getIntrinsic(Intrinsic::vector_reduce_umax, Ops[0]->getType());
14137 return Builder.CreateCall(F, {Ops[0]});
14138 }
14139 case X86::BI__builtin_ia32_reduce_umin_d512:
14140 case X86::BI__builtin_ia32_reduce_umin_q512: {
14141 Function *F =
14142 CGM.getIntrinsic(Intrinsic::vector_reduce_umin, Ops[0]->getType());
14143 return Builder.CreateCall(F, {Ops[0]});
14144 }
14145
14146 // 3DNow!
14147 case X86::BI__builtin_ia32_pswapdsf:
14148 case X86::BI__builtin_ia32_pswapdsi: {
14149 llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext());
14150 Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast");
14151 llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_3dnowa_pswapd);
14152 return Builder.CreateCall(F, Ops, "pswapd");
14153 }
14154 case X86::BI__builtin_ia32_rdrand16_step:
14155 case X86::BI__builtin_ia32_rdrand32_step:
14156 case X86::BI__builtin_ia32_rdrand64_step:
14157 case X86::BI__builtin_ia32_rdseed16_step:
14158 case X86::BI__builtin_ia32_rdseed32_step:
14159 case X86::BI__builtin_ia32_rdseed64_step: {
14160 Intrinsic::ID ID;
14161 switch (BuiltinID) {
14162 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 14162)
;
14163 case X86::BI__builtin_ia32_rdrand16_step:
14164 ID = Intrinsic::x86_rdrand_16;
14165 break;
14166 case X86::BI__builtin_ia32_rdrand32_step:
14167 ID = Intrinsic::x86_rdrand_32;
14168 break;
14169 case X86::BI__builtin_ia32_rdrand64_step:
14170 ID = Intrinsic::x86_rdrand_64;
14171 break;
14172 case X86::BI__builtin_ia32_rdseed16_step:
14173 ID = Intrinsic::x86_rdseed_16;
14174 break;
14175 case X86::BI__builtin_ia32_rdseed32_step:
14176 ID = Intrinsic::x86_rdseed_32;
14177 break;
14178 case X86::BI__builtin_ia32_rdseed64_step:
14179 ID = Intrinsic::x86_rdseed_64;
14180 break;
14181 }
14182
14183 Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
14184 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0),
14185 Ops[0]);
14186 return Builder.CreateExtractValue(Call, 1);
14187 }
14188 case X86::BI__builtin_ia32_addcarryx_u32:
14189 case X86::BI__builtin_ia32_addcarryx_u64:
14190 case X86::BI__builtin_ia32_subborrow_u32:
14191 case X86::BI__builtin_ia32_subborrow_u64: {
14192 Intrinsic::ID IID;
14193 switch (BuiltinID) {
14194 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 14194)
;
14195 case X86::BI__builtin_ia32_addcarryx_u32:
14196 IID = Intrinsic::x86_addcarry_32;
14197 break;
14198 case X86::BI__builtin_ia32_addcarryx_u64:
14199 IID = Intrinsic::x86_addcarry_64;
14200 break;
14201 case X86::BI__builtin_ia32_subborrow_u32:
14202 IID = Intrinsic::x86_subborrow_32;
14203 break;
14204 case X86::BI__builtin_ia32_subborrow_u64:
14205 IID = Intrinsic::x86_subborrow_64;
14206 break;
14207 }
14208
14209 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID),
14210 { Ops[0], Ops[1], Ops[2] });
14211 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
14212 Ops[3]);
14213 return Builder.CreateExtractValue(Call, 0);
14214 }
14215
14216 case X86::BI__builtin_ia32_fpclassps128_mask:
14217 case X86::BI__builtin_ia32_fpclassps256_mask:
14218 case X86::BI__builtin_ia32_fpclassps512_mask:
14219 case X86::BI__builtin_ia32_fpclasspd128_mask:
14220 case X86::BI__builtin_ia32_fpclasspd256_mask:
14221 case X86::BI__builtin_ia32_fpclasspd512_mask: {
14222 unsigned NumElts =
14223 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14224 Value *MaskIn = Ops[2];
14225 Ops.erase(&Ops[2]);
14226
14227 Intrinsic::ID ID;
14228 switch (BuiltinID) {
14229 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 14229)
;
14230 case X86::BI__builtin_ia32_fpclassps128_mask:
14231 ID = Intrinsic::x86_avx512_fpclass_ps_128;
14232 break;
14233 case X86::BI__builtin_ia32_fpclassps256_mask:
14234 ID = Intrinsic::x86_avx512_fpclass_ps_256;
14235 break;
14236 case X86::BI__builtin_ia32_fpclassps512_mask:
14237 ID = Intrinsic::x86_avx512_fpclass_ps_512;
14238 break;
14239 case X86::BI__builtin_ia32_fpclasspd128_mask:
14240 ID = Intrinsic::x86_avx512_fpclass_pd_128;
14241 break;
14242 case X86::BI__builtin_ia32_fpclasspd256_mask:
14243 ID = Intrinsic::x86_avx512_fpclass_pd_256;
14244 break;
14245 case X86::BI__builtin_ia32_fpclasspd512_mask:
14246 ID = Intrinsic::x86_avx512_fpclass_pd_512;
14247 break;
14248 }
14249
14250 Value *Fpclass = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14251 return EmitX86MaskedCompareResult(*this, Fpclass, NumElts, MaskIn);
14252 }
14253
14254 case X86::BI__builtin_ia32_vp2intersect_q_512:
14255 case X86::BI__builtin_ia32_vp2intersect_q_256:
14256 case X86::BI__builtin_ia32_vp2intersect_q_128:
14257 case X86::BI__builtin_ia32_vp2intersect_d_512:
14258 case X86::BI__builtin_ia32_vp2intersect_d_256:
14259 case X86::BI__builtin_ia32_vp2intersect_d_128: {
14260 unsigned NumElts =
14261 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14262 Intrinsic::ID ID;
14263
14264 switch (BuiltinID) {
14265 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 14265)
;
14266 case X86::BI__builtin_ia32_vp2intersect_q_512:
14267 ID = Intrinsic::x86_avx512_vp2intersect_q_512;
14268 break;
14269 case X86::BI__builtin_ia32_vp2intersect_q_256:
14270 ID = Intrinsic::x86_avx512_vp2intersect_q_256;
14271 break;
14272 case X86::BI__builtin_ia32_vp2intersect_q_128:
14273 ID = Intrinsic::x86_avx512_vp2intersect_q_128;
14274 break;
14275 case X86::BI__builtin_ia32_vp2intersect_d_512:
14276 ID = Intrinsic::x86_avx512_vp2intersect_d_512;
14277 break;
14278 case X86::BI__builtin_ia32_vp2intersect_d_256:
14279 ID = Intrinsic::x86_avx512_vp2intersect_d_256;
14280 break;
14281 case X86::BI__builtin_ia32_vp2intersect_d_128:
14282 ID = Intrinsic::x86_avx512_vp2intersect_d_128;
14283 break;
14284 }
14285
14286 Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID), {Ops[0], Ops[1]});
14287 Value *Result = Builder.CreateExtractValue(Call, 0);
14288 Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
14289 Builder.CreateDefaultAlignedStore(Result, Ops[2]);
14290
14291 Result = Builder.CreateExtractValue(Call, 1);
14292 Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
14293 return Builder.CreateDefaultAlignedStore(Result, Ops[3]);
14294 }
14295
14296 case X86::BI__builtin_ia32_vpmultishiftqb128:
14297 case X86::BI__builtin_ia32_vpmultishiftqb256:
14298 case X86::BI__builtin_ia32_vpmultishiftqb512: {
14299 Intrinsic::ID ID;
14300 switch (BuiltinID) {
14301 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 14301)
;
14302 case X86::BI__builtin_ia32_vpmultishiftqb128:
14303 ID = Intrinsic::x86_avx512_pmultishift_qb_128;
14304 break;
14305 case X86::BI__builtin_ia32_vpmultishiftqb256:
14306 ID = Intrinsic::x86_avx512_pmultishift_qb_256;
14307 break;
14308 case X86::BI__builtin_ia32_vpmultishiftqb512:
14309 ID = Intrinsic::x86_avx512_pmultishift_qb_512;
14310 break;
14311 }
14312
14313 return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14314 }
14315
14316 case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
14317 case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
14318 case X86::BI__builtin_ia32_vpshufbitqmb512_mask: {
14319 unsigned NumElts =
14320 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14321 Value *MaskIn = Ops[2];
14322 Ops.erase(&Ops[2]);
14323
14324 Intrinsic::ID ID;
14325 switch (BuiltinID) {
14326 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 14326)
;
14327 case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
14328 ID = Intrinsic::x86_avx512_vpshufbitqmb_128;
14329 break;
14330 case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
14331 ID = Intrinsic::x86_avx512_vpshufbitqmb_256;
14332 break;
14333 case X86::BI__builtin_ia32_vpshufbitqmb512_mask:
14334 ID = Intrinsic::x86_avx512_vpshufbitqmb_512;
14335 break;
14336 }
14337
14338 Value *Shufbit = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14339 return EmitX86MaskedCompareResult(*this, Shufbit, NumElts, MaskIn);
14340 }
14341
14342 // packed comparison intrinsics
14343 case X86::BI__builtin_ia32_cmpeqps:
14344 case X86::BI__builtin_ia32_cmpeqpd:
14345 return getVectorFCmpIR(CmpInst::FCMP_OEQ, /*IsSignaling*/false);
14346 case X86::BI__builtin_ia32_cmpltps:
14347 case X86::BI__builtin_ia32_cmpltpd:
14348 return getVectorFCmpIR(CmpInst::FCMP_OLT, /*IsSignaling*/true);
14349 case X86::BI__builtin_ia32_cmpleps:
14350 case X86::BI__builtin_ia32_cmplepd:
14351 return getVectorFCmpIR(CmpInst::FCMP_OLE, /*IsSignaling*/true);
14352 case X86::BI__builtin_ia32_cmpunordps:
14353 case X86::BI__builtin_ia32_cmpunordpd:
14354 return getVectorFCmpIR(CmpInst::FCMP_UNO, /*IsSignaling*/false);
14355 case X86::BI__builtin_ia32_cmpneqps:
14356 case X86::BI__builtin_ia32_cmpneqpd:
14357 return getVectorFCmpIR(CmpInst::FCMP_UNE, /*IsSignaling*/false);
14358 case X86::BI__builtin_ia32_cmpnltps:
14359 case X86::BI__builtin_ia32_cmpnltpd:
14360 return getVectorFCmpIR(CmpInst::FCMP_UGE, /*IsSignaling*/true);
14361 case X86::BI__builtin_ia32_cmpnleps:
14362 case X86::BI__builtin_ia32_cmpnlepd:
14363 return getVectorFCmpIR(CmpInst::FCMP_UGT, /*IsSignaling*/true);
14364 case X86::BI__builtin_ia32_cmpordps:
14365 case X86::BI__builtin_ia32_cmpordpd:
14366 return getVectorFCmpIR(CmpInst::FCMP_ORD, /*IsSignaling*/false);
14367 case X86::BI__builtin_ia32_cmpps128_mask:
14368 case X86::BI__builtin_ia32_cmpps256_mask:
14369 case X86::BI__builtin_ia32_cmpps512_mask:
14370 case X86::BI__builtin_ia32_cmppd128_mask:
14371 case X86::BI__builtin_ia32_cmppd256_mask:
14372 case X86::BI__builtin_ia32_cmppd512_mask:
14373 IsMaskFCmp = true;
14374 LLVM_FALLTHROUGH[[gnu::fallthrough]];
14375 case X86::BI__builtin_ia32_cmpps:
14376 case X86::BI__builtin_ia32_cmpps256:
14377 case X86::BI__builtin_ia32_cmppd:
14378 case X86::BI__builtin_ia32_cmppd256: {
14379 // Lowering vector comparisons to fcmp instructions, while
14380 // ignoring signalling behaviour requested
14381 // ignoring rounding mode requested
14382 // This is only possible if fp-model is not strict and FENV_ACCESS is off.
14383
14384 // The third argument is the comparison condition, and integer in the
14385 // range [0, 31]
14386 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x1f;
14387
14388 // Lowering to IR fcmp instruction.
14389 // Ignoring requested signaling behaviour,
14390 // e.g. both _CMP_GT_OS & _CMP_GT_OQ are translated to FCMP_OGT.
14391 FCmpInst::Predicate Pred;
14392 bool IsSignaling;
14393 // Predicates for 16-31 repeat the 0-15 predicates. Only the signalling
14394 // behavior is inverted. We'll handle that after the switch.
14395 switch (CC & 0xf) {
14396 case 0x00: Pred = FCmpInst::FCMP_OEQ; IsSignaling = false; break;
14397 case 0x01: Pred = FCmpInst::FCMP_OLT; IsSignaling = true; break;
14398 case 0x02: Pred = FCmpInst::FCMP_OLE; IsSignaling = true; break;
14399 case 0x03: Pred = FCmpInst::FCMP_UNO; IsSignaling = false; break;
14400 case 0x04: Pred = FCmpInst::FCMP_UNE; IsSignaling = false; break;
14401 case 0x05: Pred = FCmpInst::FCMP_UGE; IsSignaling = true; break;
14402 case 0x06: Pred = FCmpInst::FCMP_UGT; IsSignaling = true; break;
14403 case 0x07: Pred = FCmpInst::FCMP_ORD; IsSignaling = false; break;
14404 case 0x08: Pred = FCmpInst::FCMP_UEQ; IsSignaling = false; break;
14405 case 0x09: Pred = FCmpInst::FCMP_ULT; IsSignaling = true; break;
14406 case 0x0a: Pred = FCmpInst::FCMP_ULE; IsSignaling = true; break;
14407 case 0x0b: Pred = FCmpInst::FCMP_FALSE; IsSignaling = false; break;
14408 case 0x0c: Pred = FCmpInst::FCMP_ONE; IsSignaling = false; break;
14409 case 0x0d: Pred = FCmpInst::FCMP_OGE; IsSignaling = true; break;
14410 case 0x0e: Pred = FCmpInst::FCMP_OGT; IsSignaling = true; break;
14411 case 0x0f: Pred = FCmpInst::FCMP_TRUE; IsSignaling = false; break;
14412 default: llvm_unreachable("Unhandled CC")::llvm::llvm_unreachable_internal("Unhandled CC", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 14412)
;
14413 }
14414
14415 // Invert the signalling behavior for 16-31.
14416 if (CC & 0x10)
14417 IsSignaling = !IsSignaling;
14418
14419 // If the predicate is true or false and we're using constrained intrinsics,
14420 // we don't have a compare intrinsic we can use. Just use the legacy X86
14421 // specific intrinsic.
14422 // If the intrinsic is mask enabled and we're using constrained intrinsics,
14423 // use the legacy X86 specific intrinsic.
14424 if (Builder.getIsFPConstrained() &&
14425 (Pred == FCmpInst::FCMP_TRUE || Pred == FCmpInst::FCMP_FALSE ||
14426 IsMaskFCmp)) {
14427
14428 Intrinsic::ID IID;
14429 switch (BuiltinID) {
14430 default: llvm_unreachable("Unexpected builtin")::llvm::llvm_unreachable_internal("Unexpected builtin", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 14430)
;
14431 case X86::BI__builtin_ia32_cmpps:
14432 IID = Intrinsic::x86_sse_cmp_ps;
14433 break;
14434 case X86::BI__builtin_ia32_cmpps256:
14435 IID = Intrinsic::x86_avx_cmp_ps_256;
14436 break;
14437 case X86::BI__builtin_ia32_cmppd:
14438 IID = Intrinsic::x86_sse2_cmp_pd;
14439 break;
14440 case X86::BI__builtin_ia32_cmppd256:
14441 IID = Intrinsic::x86_avx_cmp_pd_256;
14442 break;
14443 case X86::BI__builtin_ia32_cmpps512_mask:
14444 IID = Intrinsic::x86_avx512_mask_cmp_ps_512;
14445 break;
14446 case X86::BI__builtin_ia32_cmppd512_mask:
14447 IID = Intrinsic::x86_avx512_mask_cmp_pd_512;
14448 break;
14449 case X86::BI__builtin_ia32_cmpps128_mask:
14450 IID = Intrinsic::x86_avx512_mask_cmp_ps_128;
14451 break;
14452 case X86::BI__builtin_ia32_cmpps256_mask:
14453 IID = Intrinsic::x86_avx512_mask_cmp_ps_256;
14454 break;
14455 case X86::BI__builtin_ia32_cmppd128_mask:
14456 IID = Intrinsic::x86_avx512_mask_cmp_pd_128;
14457 break;
14458 case X86::BI__builtin_ia32_cmppd256_mask:
14459 IID = Intrinsic::x86_avx512_mask_cmp_pd_256;
14460 break;
14461 }
14462
14463 Function *Intr = CGM.getIntrinsic(IID);
14464 if (IsMaskFCmp) {
14465 unsigned NumElts =
14466 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14467 Ops[3] = getMaskVecValue(*this, Ops[3], NumElts);
14468 Value *Cmp = Builder.CreateCall(Intr, Ops);
14469 return EmitX86MaskedCompareResult(*this, Cmp, NumElts, nullptr);
14470 }
14471
14472 return Builder.CreateCall(Intr, Ops);
14473 }
14474
14475 // Builtins without the _mask suffix return a vector of integers
14476 // of the same width as the input vectors
14477 if (IsMaskFCmp) {
14478 // We ignore SAE if strict FP is disabled. We only keep precise
14479 // exception behavior under strict FP.
14480 // NOTE: If strict FP does ever go through here a CGFPOptionsRAII
14481 // object will be required.
14482 unsigned NumElts =
14483 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14484 Value *Cmp;
14485 if (IsSignaling)
14486 Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]);
14487 else
14488 Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
14489 return EmitX86MaskedCompareResult(*this, Cmp, NumElts, Ops[3]);
14490 }
14491
14492 return getVectorFCmpIR(Pred, IsSignaling);
14493 }
14494
14495 // SSE scalar comparison intrinsics
14496 case X86::BI__builtin_ia32_cmpeqss:
14497 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 0);
14498 case X86::BI__builtin_ia32_cmpltss:
14499 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 1);
14500 case X86::BI__builtin_ia32_cmpless:
14501 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 2);
14502 case X86::BI__builtin_ia32_cmpunordss:
14503 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 3);
14504 case X86::BI__builtin_ia32_cmpneqss:
14505 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 4);
14506 case X86::BI__builtin_ia32_cmpnltss:
14507 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 5);
14508 case X86::BI__builtin_ia32_cmpnless:
14509 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 6);
14510 case X86::BI__builtin_ia32_cmpordss:
14511 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 7);
14512 case X86::BI__builtin_ia32_cmpeqsd:
14513 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 0);
14514 case X86::BI__builtin_ia32_cmpltsd:
14515 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 1);
14516 case X86::BI__builtin_ia32_cmplesd:
14517 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 2);
14518 case X86::BI__builtin_ia32_cmpunordsd:
14519 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 3);
14520 case X86::BI__builtin_ia32_cmpneqsd:
14521 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 4);
14522 case X86::BI__builtin_ia32_cmpnltsd:
14523 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 5);
14524 case X86::BI__builtin_ia32_cmpnlesd:
14525 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 6);
14526 case X86::BI__builtin_ia32_cmpordsd:
14527 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 7);
14528
14529 // f16c half2float intrinsics
14530 case X86::BI__builtin_ia32_vcvtph2ps:
14531 case X86::BI__builtin_ia32_vcvtph2ps256:
14532 case X86::BI__builtin_ia32_vcvtph2ps_mask:
14533 case X86::BI__builtin_ia32_vcvtph2ps256_mask:
14534 case X86::BI__builtin_ia32_vcvtph2ps512_mask: {
14535 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
14536 return EmitX86CvtF16ToFloatExpr(*this, Ops, ConvertType(E->getType()));
14537 }
14538
14539// AVX512 bf16 intrinsics
14540 case X86::BI__builtin_ia32_cvtneps2bf16_128_mask: {
14541 Ops[2] = getMaskVecValue(
14542 *this, Ops[2],
14543 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements());
14544 Intrinsic::ID IID = Intrinsic::x86_avx512bf16_mask_cvtneps2bf16_128;
14545 return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
14546 }
14547 case X86::BI__builtin_ia32_cvtsbf162ss_32:
14548 return EmitX86CvtBF16ToFloatExpr(*this, E, Ops);
14549
14550 case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
14551 case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: {
14552 Intrinsic::ID IID;
14553 switch (BuiltinID) {
14554 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 14554)
;
14555 case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
14556 IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_256;
14557 break;
14558 case X86::BI__builtin_ia32_cvtneps2bf16_512_mask:
14559 IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_512;
14560 break;
14561 }
14562 Value *Res = Builder.CreateCall(CGM.getIntrinsic(IID), Ops[0]);
14563 return EmitX86Select(*this, Ops[2], Res, Ops[1]);
14564 }
14565
14566 case X86::BI__emul:
14567 case X86::BI__emulu: {
14568 llvm::Type *Int64Ty = llvm::IntegerType::get(getLLVMContext(), 64);
14569 bool isSigned = (BuiltinID == X86::BI__emul);
14570 Value *LHS = Builder.CreateIntCast(Ops[0], Int64Ty, isSigned);
14571 Value *RHS = Builder.CreateIntCast(Ops[1], Int64Ty, isSigned);
14572 return Builder.CreateMul(LHS, RHS, "", !isSigned, isSigned);
14573 }
14574 case X86::BI__mulh:
14575 case X86::BI__umulh:
14576 case X86::BI_mul128:
14577 case X86::BI_umul128: {
14578 llvm::Type *ResType = ConvertType(E->getType());
14579 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
14580
14581 bool IsSigned = (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI_mul128);
14582 Value *LHS = Builder.CreateIntCast(Ops[0], Int128Ty, IsSigned);
14583 Value *RHS = Builder.CreateIntCast(Ops[1], Int128Ty, IsSigned);
14584
14585 Value *MulResult, *HigherBits;
14586 if (IsSigned) {
14587 MulResult = Builder.CreateNSWMul(LHS, RHS);
14588 HigherBits = Builder.CreateAShr(MulResult, 64);
14589 } else {
14590 MulResult = Builder.CreateNUWMul(LHS, RHS);
14591 HigherBits = Builder.CreateLShr(MulResult, 64);
14592 }
14593 HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
14594
14595 if (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI__umulh)
14596 return HigherBits;
14597
14598 Address HighBitsAddress = EmitPointerWithAlignment(E->getArg(2));
14599 Builder.CreateStore(HigherBits, HighBitsAddress);
14600 return Builder.CreateIntCast(MulResult, ResType, IsSigned);
14601 }
14602
14603 case X86::BI__faststorefence: {
14604 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
14605 llvm::SyncScope::System);
14606 }
14607 case X86::BI__shiftleft128:
14608 case X86::BI__shiftright128: {
14609 llvm::Function *F = CGM.getIntrinsic(
14610 BuiltinID == X86::BI__shiftleft128 ? Intrinsic::fshl : Intrinsic::fshr,
14611 Int64Ty);
14612 // Flip low/high ops and zero-extend amount to matching type.
14613 // shiftleft128(Low, High, Amt) -> fshl(High, Low, Amt)
14614 // shiftright128(Low, High, Amt) -> fshr(High, Low, Amt)
14615 std::swap(Ops[0], Ops[1]);
14616 Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
14617 return Builder.CreateCall(F, Ops);
14618 }
14619 case X86::BI_ReadWriteBarrier:
14620 case X86::BI_ReadBarrier:
14621 case X86::BI_WriteBarrier: {
14622 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
14623 llvm::SyncScope::SingleThread);
14624 }
14625
14626 case X86::BI_AddressOfReturnAddress: {
14627 Function *F =
14628 CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
14629 return Builder.CreateCall(F);
14630 }
14631 case X86::BI__stosb: {
14632 // We treat __stosb as a volatile memset - it may not generate "rep stosb"
14633 // instruction, but it will create a memset that won't be optimized away.
14634 return Builder.CreateMemSet(Ops[0], Ops[1], Ops[2], Align(1), true);
14635 }
14636 case X86::BI__ud2:
14637 // llvm.trap makes a ud2a instruction on x86.
14638 return EmitTrapCall(Intrinsic::trap);
14639 case X86::BI__int2c: {
14640 // This syscall signals a driver assertion failure in x86 NT kernels.
14641 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
14642 llvm::InlineAsm *IA =
14643 llvm::InlineAsm::get(FTy, "int $$0x2c", "", /*hasSideEffects=*/true);
14644 llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
14645 getLLVMContext(), llvm::AttributeList::FunctionIndex,
14646 llvm::Attribute::NoReturn);
14647 llvm::CallInst *CI = Builder.CreateCall(IA);
14648 CI->setAttributes(NoReturnAttr);
14649 return CI;
14650 }
14651 case X86::BI__readfsbyte:
14652 case X86::BI__readfsword:
14653 case X86::BI__readfsdword:
14654 case X86::BI__readfsqword: {
14655 llvm::Type *IntTy = ConvertType(E->getType());
14656 Value *Ptr =
14657 Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 257));
14658 LoadInst *Load = Builder.CreateAlignedLoad(
14659 IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
14660 Load->setVolatile(true);
14661 return Load;
14662 }
14663 case X86::BI__readgsbyte:
14664 case X86::BI__readgsword:
14665 case X86::BI__readgsdword:
14666 case X86::BI__readgsqword: {
14667 llvm::Type *IntTy = ConvertType(E->getType());
14668 Value *Ptr =
14669 Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 256));
14670 LoadInst *Load = Builder.CreateAlignedLoad(
14671 IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
14672 Load->setVolatile(true);
14673 return Load;
14674 }
14675 case X86::BI__builtin_ia32_paddsb512:
14676 case X86::BI__builtin_ia32_paddsw512:
14677 case X86::BI__builtin_ia32_paddsb256:
14678 case X86::BI__builtin_ia32_paddsw256:
14679 case X86::BI__builtin_ia32_paddsb128:
14680 case X86::BI__builtin_ia32_paddsw128:
14681 return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::sadd_sat);
14682 case X86::BI__builtin_ia32_paddusb512:
14683 case X86::BI__builtin_ia32_paddusw512:
14684 case X86::BI__builtin_ia32_paddusb256:
14685 case X86::BI__builtin_ia32_paddusw256:
14686 case X86::BI__builtin_ia32_paddusb128:
14687 case X86::BI__builtin_ia32_paddusw128:
14688 return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::uadd_sat);
14689 case X86::BI__builtin_ia32_psubsb512:
14690 case X86::BI__builtin_ia32_psubsw512:
14691 case X86::BI__builtin_ia32_psubsb256:
14692 case X86::BI__builtin_ia32_psubsw256:
14693 case X86::BI__builtin_ia32_psubsb128:
14694 case X86::BI__builtin_ia32_psubsw128:
14695 return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::ssub_sat);
14696 case X86::BI__builtin_ia32_psubusb512:
14697 case X86::BI__builtin_ia32_psubusw512:
14698 case X86::BI__builtin_ia32_psubusb256:
14699 case X86::BI__builtin_ia32_psubusw256:
14700 case X86::BI__builtin_ia32_psubusb128:
14701 case X86::BI__builtin_ia32_psubusw128:
14702 return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::usub_sat);
14703 case X86::BI__builtin_ia32_encodekey128_u32: {
14704 Intrinsic::ID IID = Intrinsic::x86_encodekey128;
14705
14706 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1]});
14707
14708 for (int i = 0; i < 6; ++i) {
14709 Value *Extract = Builder.CreateExtractValue(Call, i + 1);
14710 Value *Ptr = Builder.CreateConstGEP1_32(Ops[2], i * 16);
14711 Ptr = Builder.CreateBitCast(
14712 Ptr, llvm::PointerType::getUnqual(Extract->getType()));
14713 Builder.CreateAlignedStore(Extract, Ptr, Align(1));
14714 }
14715
14716 return Builder.CreateExtractValue(Call, 0);
14717 }
14718 case X86::BI__builtin_ia32_encodekey256_u32: {
14719 Intrinsic::ID IID = Intrinsic::x86_encodekey256;
14720
14721 Value *Call =
14722 Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1], Ops[2]});
14723
14724 for (int i = 0; i < 7; ++i) {
14725 Value *Extract = Builder.CreateExtractValue(Call, i + 1);
14726 Value *Ptr = Builder.CreateConstGEP1_32(Ops[3], i * 16);
14727 Ptr = Builder.CreateBitCast(
14728 Ptr, llvm::PointerType::getUnqual(Extract->getType()));
14729 Builder.CreateAlignedStore(Extract, Ptr, Align(1));
14730 }
14731
14732 return Builder.CreateExtractValue(Call, 0);
14733 }
14734 case X86::BI__builtin_ia32_aesenc128kl_u8:
14735 case X86::BI__builtin_ia32_aesdec128kl_u8:
14736 case X86::BI__builtin_ia32_aesenc256kl_u8:
14737 case X86::BI__builtin_ia32_aesdec256kl_u8: {
14738 Intrinsic::ID IID;
14739 StringRef StrNoErr, StrErr, StrEnd;
14740 switch (BuiltinID) {
14741 default: llvm_unreachable("Unexpected builtin")::llvm::llvm_unreachable_internal("Unexpected builtin", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 14741)
;
14742 case X86::BI__builtin_ia32_aesenc128kl_u8:
14743 IID = Intrinsic::x86_aesenc128kl;
14744 StrNoErr = "aesenc128kl_no_error";
14745 StrErr = "aesenc128kl_error";
14746 StrEnd = "aesenc128kl_end";
14747 break;
14748 case X86::BI__builtin_ia32_aesdec128kl_u8:
14749 IID = Intrinsic::x86_aesdec128kl;
14750 StrNoErr = "aesdec128kl_no_error";
14751 StrErr = "aesdec128kl_error";
14752 StrEnd = "aesdec128kl_end";
14753 break;
14754 case X86::BI__builtin_ia32_aesenc256kl_u8:
14755 IID = Intrinsic::x86_aesenc256kl;
14756 StrNoErr = "aesenc256kl_no_error";
14757 StrErr = "aesenc256kl_error";
14758 StrEnd = "aesenc256kl_end";
14759 break;
14760 case X86::BI__builtin_ia32_aesdec256kl_u8:
14761 IID = Intrinsic::x86_aesdec256kl;
14762 StrNoErr = "aesdec256kl_no_error";
14763 StrErr = "aesdec256kl_error";
14764 StrEnd = "aesdec256kl_end";
14765 break;
14766 }
14767
14768 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[1], Ops[2]});
14769
14770 BasicBlock *NoError = createBasicBlock(StrNoErr, this->CurFn);
14771 BasicBlock *Error = createBasicBlock(StrErr, this->CurFn);
14772 BasicBlock *End = createBasicBlock(StrEnd, this->CurFn);
14773
14774 Value *Ret = Builder.CreateExtractValue(Call, 0);
14775 Value *Succ = Builder.CreateTrunc(Ret, Builder.getInt1Ty());
14776 Value *Out = Builder.CreateExtractValue(Call, 1);
14777 Builder.CreateCondBr(Succ, NoError, Error);
14778
14779 Builder.SetInsertPoint(NoError);
14780 Builder.CreateDefaultAlignedStore(Out, Ops[0]);
14781 Builder.CreateBr(End);
14782
14783 Builder.SetInsertPoint(Error);
14784 Constant *Zero = llvm::Constant::getNullValue(Out->getType());
14785 Builder.CreateDefaultAlignedStore(Zero, Ops[0]);
14786 Builder.CreateBr(End);
14787
14788 Builder.SetInsertPoint(End);
14789 return Builder.CreateExtractValue(Call, 0);
14790 }
14791 case X86::BI__builtin_ia32_aesencwide128kl_u8:
14792 case X86::BI__builtin_ia32_aesdecwide128kl_u8:
14793 case X86::BI__builtin_ia32_aesencwide256kl_u8:
14794 case X86::BI__builtin_ia32_aesdecwide256kl_u8: {
14795 Intrinsic::ID IID;
14796 StringRef StrNoErr, StrErr, StrEnd;
14797 switch (BuiltinID) {
14798 case X86::BI__builtin_ia32_aesencwide128kl_u8:
14799 IID = Intrinsic::x86_aesencwide128kl;
14800 StrNoErr = "aesencwide128kl_no_error";
14801 StrErr = "aesencwide128kl_error";
14802 StrEnd = "aesencwide128kl_end";
14803 break;
14804 case X86::BI__builtin_ia32_aesdecwide128kl_u8:
14805 IID = Intrinsic::x86_aesdecwide128kl;
14806 StrNoErr = "aesdecwide128kl_no_error";
14807 StrErr = "aesdecwide128kl_error";
14808 StrEnd = "aesdecwide128kl_end";
14809 break;
14810 case X86::BI__builtin_ia32_aesencwide256kl_u8:
14811 IID = Intrinsic::x86_aesencwide256kl;
14812 StrNoErr = "aesencwide256kl_no_error";
14813 StrErr = "aesencwide256kl_error";
14814 StrEnd = "aesencwide256kl_end";
14815 break;
14816 case X86::BI__builtin_ia32_aesdecwide256kl_u8:
14817 IID = Intrinsic::x86_aesdecwide256kl;
14818 StrNoErr = "aesdecwide256kl_no_error";
14819 StrErr = "aesdecwide256kl_error";
14820 StrEnd = "aesdecwide256kl_end";
14821 break;
14822 }
14823
14824 llvm::Type *Ty = FixedVectorType::get(Builder.getInt64Ty(), 2);
14825 Value *InOps[9];
14826 InOps[0] = Ops[2];
14827 for (int i = 0; i != 8; ++i) {
14828 Value *Ptr = Builder.CreateConstGEP1_32(Ops[1], i);
14829 InOps[i + 1] = Builder.CreateAlignedLoad(Ty, Ptr, Align(16));
14830 }
14831
14832 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), InOps);
14833
14834 BasicBlock *NoError = createBasicBlock(StrNoErr, this->CurFn);
14835 BasicBlock *Error = createBasicBlock(StrErr, this->CurFn);
14836 BasicBlock *End = createBasicBlock(StrEnd, this->CurFn);
14837
14838 Value *Ret = Builder.CreateExtractValue(Call, 0);
14839 Value *Succ = Builder.CreateTrunc(Ret, Builder.getInt1Ty());
14840 Builder.CreateCondBr(Succ, NoError, Error);
14841
14842 Builder.SetInsertPoint(NoError);
14843 for (int i = 0; i != 8; ++i) {
14844 Value *Extract = Builder.CreateExtractValue(Call, i + 1);
14845 Value *Ptr = Builder.CreateConstGEP1_32(Ops[0], i);
14846 Builder.CreateAlignedStore(Extract, Ptr, Align(16));
14847 }
14848 Builder.CreateBr(End);
14849
14850 Builder.SetInsertPoint(Error);
14851 for (int i = 0; i != 8; ++i) {
14852 Value *Out = Builder.CreateExtractValue(Call, i + 1);
14853 Constant *Zero = llvm::Constant::getNullValue(Out->getType());
14854 Value *Ptr = Builder.CreateConstGEP1_32(Ops[0], i);
14855 Builder.CreateAlignedStore(Zero, Ptr, Align(16));
14856 }
14857 Builder.CreateBr(End);
14858
14859 Builder.SetInsertPoint(End);
14860 return Builder.CreateExtractValue(Call, 0);
14861 }
14862 }
14863}
14864
14865Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
14866 const CallExpr *E) {
14867 SmallVector<Value*, 4> Ops;
14868
14869 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
14870 Ops.push_back(EmitScalarExpr(E->getArg(i)));
14871
14872 Intrinsic::ID ID = Intrinsic::not_intrinsic;
14873
14874 switch (BuiltinID) {
14875 default: return nullptr;
14876
14877 // __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we
14878 // call __builtin_readcyclecounter.
14879 case PPC::BI__builtin_ppc_get_timebase:
14880 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter));
14881
14882 // vec_ld, vec_xl_be, vec_lvsl, vec_lvsr
14883 case PPC::BI__builtin_altivec_lvx:
14884 case PPC::BI__builtin_altivec_lvxl:
14885 case PPC::BI__builtin_altivec_lvebx:
14886 case PPC::BI__builtin_altivec_lvehx:
14887 case PPC::BI__builtin_altivec_lvewx:
14888 case PPC::BI__builtin_altivec_lvsl:
14889 case PPC::BI__builtin_altivec_lvsr:
14890 case PPC::BI__builtin_vsx_lxvd2x:
14891 case PPC::BI__builtin_vsx_lxvw4x:
14892 case PPC::BI__builtin_vsx_lxvd2x_be:
14893 case PPC::BI__builtin_vsx_lxvw4x_be:
14894 case PPC::BI__builtin_vsx_lxvl:
14895 case PPC::BI__builtin_vsx_lxvll:
14896 {
14897 if(BuiltinID == PPC::BI__builtin_vsx_lxvl ||
14898 BuiltinID == PPC::BI__builtin_vsx_lxvll){
14899 Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy);
14900 }else {
14901 Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
14902 Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]);
14903 Ops.pop_back();
14904 }
14905
14906 switch (BuiltinID) {
14907 default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!")::llvm::llvm_unreachable_internal("Unsupported ld/lvsl/lvsr intrinsic!"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 14907)
;
14908 case PPC::BI__builtin_altivec_lvx:
14909 ID = Intrinsic::ppc_altivec_lvx;
14910 break;
14911 case PPC::BI__builtin_altivec_lvxl:
14912 ID = Intrinsic::ppc_altivec_lvxl;
14913 break;
14914 case PPC::BI__builtin_altivec_lvebx:
14915 ID = Intrinsic::ppc_altivec_lvebx;
14916 break;
14917 case PPC::BI__builtin_altivec_lvehx:
14918 ID = Intrinsic::ppc_altivec_lvehx;
14919 break;
14920 case PPC::BI__builtin_altivec_lvewx:
14921 ID = Intrinsic::ppc_altivec_lvewx;
14922 break;
14923 case PPC::BI__builtin_altivec_lvsl:
14924 ID = Intrinsic::ppc_altivec_lvsl;
14925 break;
14926 case PPC::BI__builtin_altivec_lvsr:
14927 ID = Intrinsic::ppc_altivec_lvsr;
14928 break;
14929 case PPC::BI__builtin_vsx_lxvd2x:
14930 ID = Intrinsic::ppc_vsx_lxvd2x;
14931 break;
14932 case PPC::BI__builtin_vsx_lxvw4x:
14933 ID = Intrinsic::ppc_vsx_lxvw4x;
14934 break;
14935 case PPC::BI__builtin_vsx_lxvd2x_be:
14936 ID = Intrinsic::ppc_vsx_lxvd2x_be;
14937 break;
14938 case PPC::BI__builtin_vsx_lxvw4x_be:
14939 ID = Intrinsic::ppc_vsx_lxvw4x_be;
14940 break;
14941 case PPC::BI__builtin_vsx_lxvl:
14942 ID = Intrinsic::ppc_vsx_lxvl;
14943 break;
14944 case PPC::BI__builtin_vsx_lxvll:
14945 ID = Intrinsic::ppc_vsx_lxvll;
14946 break;
14947 }
14948 llvm::Function *F = CGM.getIntrinsic(ID);
14949 return Builder.CreateCall(F, Ops, "");
14950 }
14951
14952 // vec_st, vec_xst_be
14953 case PPC::BI__builtin_altivec_stvx:
14954 case PPC::BI__builtin_altivec_stvxl:
14955 case PPC::BI__builtin_altivec_stvebx:
14956 case PPC::BI__builtin_altivec_stvehx:
14957 case PPC::BI__builtin_altivec_stvewx:
14958 case PPC::BI__builtin_vsx_stxvd2x:
14959 case PPC::BI__builtin_vsx_stxvw4x:
14960 case PPC::BI__builtin_vsx_stxvd2x_be:
14961 case PPC::BI__builtin_vsx_stxvw4x_be:
14962 case PPC::BI__builtin_vsx_stxvl:
14963 case PPC::BI__builtin_vsx_stxvll:
14964 {
14965 if(BuiltinID == PPC::BI__builtin_vsx_stxvl ||
14966 BuiltinID == PPC::BI__builtin_vsx_stxvll ){
14967 Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
14968 }else {
14969 Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
14970 Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]);
14971 Ops.pop_back();
14972 }
14973
14974 switch (BuiltinID) {
14975 default: llvm_unreachable("Unsupported st intrinsic!")::llvm::llvm_unreachable_internal("Unsupported st intrinsic!"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 14975)
;
14976 case PPC::BI__builtin_altivec_stvx:
14977 ID = Intrinsic::ppc_altivec_stvx;
14978 break;
14979 case PPC::BI__builtin_altivec_stvxl:
14980 ID = Intrinsic::ppc_altivec_stvxl;
14981 break;
14982 case PPC::BI__builtin_altivec_stvebx:
14983 ID = Intrinsic::ppc_altivec_stvebx;
14984 break;
14985 case PPC::BI__builtin_altivec_stvehx:
14986 ID = Intrinsic::ppc_altivec_stvehx;
14987 break;
14988 case PPC::BI__builtin_altivec_stvewx:
14989 ID = Intrinsic::ppc_altivec_stvewx;
14990 break;
14991 case PPC::BI__builtin_vsx_stxvd2x:
14992 ID = Intrinsic::ppc_vsx_stxvd2x;
14993 break;
14994 case PPC::BI__builtin_vsx_stxvw4x:
14995 ID = Intrinsic::ppc_vsx_stxvw4x;
14996 break;
14997 case PPC::BI__builtin_vsx_stxvd2x_be:
14998 ID = Intrinsic::ppc_vsx_stxvd2x_be;
14999 break;
15000 case PPC::BI__builtin_vsx_stxvw4x_be:
15001 ID = Intrinsic::ppc_vsx_stxvw4x_be;
15002 break;
15003 case PPC::BI__builtin_vsx_stxvl:
15004 ID = Intrinsic::ppc_vsx_stxvl;
15005 break;
15006 case PPC::BI__builtin_vsx_stxvll:
15007 ID = Intrinsic::ppc_vsx_stxvll;
15008 break;
15009 }
15010 llvm::Function *F = CGM.getIntrinsic(ID);
15011 return Builder.CreateCall(F, Ops, "");
15012 }
15013 // Square root
15014 case PPC::BI__builtin_vsx_xvsqrtsp:
15015 case PPC::BI__builtin_vsx_xvsqrtdp: {
15016 llvm::Type *ResultType = ConvertType(E->getType());
15017 Value *X = EmitScalarExpr(E->getArg(0));
15018 if (Builder.getIsFPConstrained()) {
15019 llvm::Function *F = CGM.getIntrinsic(
15020 Intrinsic::experimental_constrained_sqrt, ResultType);
15021 return Builder.CreateConstrainedFPCall(F, X);
15022 } else {
15023 llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
15024 return Builder.CreateCall(F, X);
15025 }
15026 }
15027 // Count leading zeros
15028 case PPC::BI__builtin_altivec_vclzb:
15029 case PPC::BI__builtin_altivec_vclzh:
15030 case PPC::BI__builtin_altivec_vclzw:
15031 case PPC::BI__builtin_altivec_vclzd: {
15032 llvm::Type *ResultType = ConvertType(E->getType());
15033 Value *X = EmitScalarExpr(E->getArg(0));
15034 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
15035 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
15036 return Builder.CreateCall(F, {X, Undef});
15037 }
15038 case PPC::BI__builtin_altivec_vctzb:
15039 case PPC::BI__builtin_altivec_vctzh:
15040 case PPC::BI__builtin_altivec_vctzw:
15041 case PPC::BI__builtin_altivec_vctzd: {
15042 llvm::Type *ResultType = ConvertType(E->getType());
15043 Value *X = EmitScalarExpr(E->getArg(0));
15044 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
15045 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
15046 return Builder.CreateCall(F, {X, Undef});
15047 }
15048 case PPC::BI__builtin_altivec_vec_replace_elt:
15049 case PPC::BI__builtin_altivec_vec_replace_unaligned: {
15050 // The third argument of vec_replace_elt and vec_replace_unaligned must
15051 // be a compile time constant and will be emitted either to the vinsw
15052 // or vinsd instruction.
15053 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
15054 assert(ArgCI &&(static_cast <bool> (ArgCI && "Third Arg to vinsw/vinsd intrinsic must be a constant integer!"
) ? void (0) : __assert_fail ("ArgCI && \"Third Arg to vinsw/vinsd intrinsic must be a constant integer!\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 15055, __extension__ __PRETTY_FUNCTION__))
15055 "Third Arg to vinsw/vinsd intrinsic must be a constant integer!")(static_cast <bool> (ArgCI && "Third Arg to vinsw/vinsd intrinsic must be a constant integer!"
) ? void (0) : __assert_fail ("ArgCI && \"Third Arg to vinsw/vinsd intrinsic must be a constant integer!\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 15055, __extension__ __PRETTY_FUNCTION__))
;
15056 llvm::Type *ResultType = ConvertType(E->getType());
15057 llvm::Function *F = nullptr;
15058 Value *Call = nullptr;
15059 int64_t ConstArg = ArgCI->getSExtValue();
15060 unsigned ArgWidth = Ops[1]->getType()->getPrimitiveSizeInBits();
15061 bool Is32Bit = false;
15062 assert((ArgWidth == 32 || ArgWidth == 64) && "Invalid argument width")(static_cast <bool> ((ArgWidth == 32 || ArgWidth == 64)
&& "Invalid argument width") ? void (0) : __assert_fail
("(ArgWidth == 32 || ArgWidth == 64) && \"Invalid argument width\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 15062, __extension__ __PRETTY_FUNCTION__))
;
15063 // The input to vec_replace_elt is an element index, not a byte index.
15064 if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt)
15065 ConstArg *= ArgWidth / 8;
15066 if (ArgWidth == 32) {
15067 Is32Bit = true;
15068 // When the second argument is 32 bits, it can either be an integer or
15069 // a float. The vinsw intrinsic is used in this case.
15070 F = CGM.getIntrinsic(Intrinsic::ppc_altivec_vinsw);
15071 // Fix the constant according to endianess.
15072 if (getTarget().isLittleEndian())
15073 ConstArg = 12 - ConstArg;
15074 } else {
15075 // When the second argument is 64 bits, it can either be a long long or
15076 // a double. The vinsd intrinsic is used in this case.
15077 F = CGM.getIntrinsic(Intrinsic::ppc_altivec_vinsd);
15078 // Fix the constant for little endian.
15079 if (getTarget().isLittleEndian())
15080 ConstArg = 8 - ConstArg;
15081 }
15082 Ops[2] = ConstantInt::getSigned(Int32Ty, ConstArg);
15083 // Depending on ArgWidth, the input vector could be a float or a double.
15084 // If the input vector is a float type, bitcast the inputs to integers. Or,
15085 // if the input vector is a double, bitcast the inputs to 64-bit integers.
15086 if (!Ops[1]->getType()->isIntegerTy(ArgWidth)) {
15087 Ops[0] = Builder.CreateBitCast(
15088 Ops[0], Is32Bit ? llvm::FixedVectorType::get(Int32Ty, 4)
15089 : llvm::FixedVectorType::get(Int64Ty, 2));
15090 Ops[1] = Builder.CreateBitCast(Ops[1], Is32Bit ? Int32Ty : Int64Ty);
15091 }
15092 // Emit the call to vinsw or vinsd.
15093 Call = Builder.CreateCall(F, Ops);
15094 // Depending on the builtin, bitcast to the approriate result type.
15095 if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt &&
15096 !Ops[1]->getType()->isIntegerTy())
15097 return Builder.CreateBitCast(Call, ResultType);
15098 else if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt &&
15099 Ops[1]->getType()->isIntegerTy())
15100 return Call;
15101 else
15102 return Builder.CreateBitCast(Call,
15103 llvm::FixedVectorType::get(Int8Ty, 16));
15104 }
15105 case PPC::BI__builtin_altivec_vpopcntb:
15106 case PPC::BI__builtin_altivec_vpopcnth:
15107 case PPC::BI__builtin_altivec_vpopcntw:
15108 case PPC::BI__builtin_altivec_vpopcntd: {
15109 llvm::Type *ResultType = ConvertType(E->getType());
15110 Value *X = EmitScalarExpr(E->getArg(0));
15111 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
15112 return Builder.CreateCall(F, X);
15113 }
15114 case PPC::BI__builtin_altivec_vadduqm:
15115 case PPC::BI__builtin_altivec_vsubuqm: {
15116 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
15117 Ops[0] =
15118 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int128Ty, 1));
15119 Ops[1] =
15120 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int128Ty, 1));
15121 if (BuiltinID == PPC::BI__builtin_altivec_vadduqm)
15122 return Builder.CreateAdd(Ops[0], Ops[1], "vadduqm");
15123 else
15124 return Builder.CreateSub(Ops[0], Ops[1], "vsubuqm");
15125 }
15126 // Copy sign
15127 case PPC::BI__builtin_vsx_xvcpsgnsp:
15128 case PPC::BI__builtin_vsx_xvcpsgndp: {
15129 llvm::Type *ResultType = ConvertType(E->getType());
15130 Value *X = EmitScalarExpr(E->getArg(0));
15131 Value *Y = EmitScalarExpr(E->getArg(1));
15132 ID = Intrinsic::copysign;
15133 llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
15134 return Builder.CreateCall(F, {X, Y});
15135 }
15136 // Rounding/truncation
15137 case PPC::BI__builtin_vsx_xvrspip:
15138 case PPC::BI__builtin_vsx_xvrdpip:
15139 case PPC::BI__builtin_vsx_xvrdpim:
15140 case PPC::BI__builtin_vsx_xvrspim:
15141 case PPC::BI__builtin_vsx_xvrdpi:
15142 case PPC::BI__builtin_vsx_xvrspi:
15143 case PPC::BI__builtin_vsx_xvrdpic:
15144 case PPC::BI__builtin_vsx_xvrspic:
15145 case PPC::BI__builtin_vsx_xvrdpiz:
15146 case PPC::BI__builtin_vsx_xvrspiz: {
15147 llvm::Type *ResultType = ConvertType(E->getType());
15148 Value *X = EmitScalarExpr(E->getArg(0));
15149 if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim ||
15150 BuiltinID == PPC::BI__builtin_vsx_xvrspim)
15151 ID = Builder.getIsFPConstrained()
15152 ? Intrinsic::experimental_constrained_floor
15153 : Intrinsic::floor;
15154 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi ||
15155 BuiltinID == PPC::BI__builtin_vsx_xvrspi)
15156 ID = Builder.getIsFPConstrained()
15157 ? Intrinsic::experimental_constrained_round
15158 : Intrinsic::round;
15159 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic ||
15160 BuiltinID == PPC::BI__builtin_vsx_xvrspic)
15161 ID = Builder.getIsFPConstrained()
15162 ? Intrinsic::experimental_constrained_rint
15163 : Intrinsic::rint;
15164 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip ||
15165 BuiltinID == PPC::BI__builtin_vsx_xvrspip)
15166 ID = Builder.getIsFPConstrained()
15167 ? Intrinsic::experimental_constrained_ceil
15168 : Intrinsic::ceil;
15169 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz ||
15170 BuiltinID == PPC::BI__builtin_vsx_xvrspiz)
15171 ID = Builder.getIsFPConstrained()
15172 ? Intrinsic::experimental_constrained_trunc
15173 : Intrinsic::trunc;
15174 llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
15175 return Builder.getIsFPConstrained() ? Builder.CreateConstrainedFPCall(F, X)
15176 : Builder.CreateCall(F, X);
15177 }
15178
15179 // Absolute value
15180 case PPC::BI__builtin_vsx_xvabsdp:
15181 case PPC::BI__builtin_vsx_xvabssp: {
15182 llvm::Type *ResultType = ConvertType(E->getType());
15183 Value *X = EmitScalarExpr(E->getArg(0));
15184 llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
15185 return Builder.CreateCall(F, X);
15186 }
15187
15188 // Fastmath by default
15189 case PPC::BI__builtin_ppc_recipdivf:
15190 case PPC::BI__builtin_ppc_recipdivd:
15191 case PPC::BI__builtin_ppc_rsqrtf:
15192 case PPC::BI__builtin_ppc_rsqrtd: {
15193 Builder.getFastMathFlags().setFast();
15194 llvm::Type *ResultType = ConvertType(E->getType());
15195 Value *X = EmitScalarExpr(E->getArg(0));
15196
15197 if (BuiltinID == PPC::BI__builtin_ppc_recipdivf ||
15198 BuiltinID == PPC::BI__builtin_ppc_recipdivd) {
15199 Value *Y = EmitScalarExpr(E->getArg(1));
15200 return Builder.CreateFDiv(X, Y, "recipdiv");
15201 }
15202 auto *One = ConstantFP::get(ResultType, 1.0);
15203 llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
15204 return Builder.CreateFDiv(One, Builder.CreateCall(F, X), "rsqrt");
15205 }
15206
15207 // FMA variations
15208 case PPC::BI__builtin_vsx_xvmaddadp:
15209 case PPC::BI__builtin_vsx_xvmaddasp:
15210 case PPC::BI__builtin_vsx_xvnmaddadp:
15211 case PPC::BI__builtin_vsx_xvnmaddasp:
15212 case PPC::BI__builtin_vsx_xvmsubadp:
15213 case PPC::BI__builtin_vsx_xvmsubasp:
15214 case PPC::BI__builtin_vsx_xvnmsubadp:
15215 case PPC::BI__builtin_vsx_xvnmsubasp: {
15216 llvm::Type *ResultType = ConvertType(E->getType());
15217 Value *X = EmitScalarExpr(E->getArg(0));
15218 Value *Y = EmitScalarExpr(E->getArg(1));
15219 Value *Z = EmitScalarExpr(E->getArg(2));
15220 llvm::Function *F;
15221 if (Builder.getIsFPConstrained())
15222 F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
15223 else
15224 F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
15225 switch (BuiltinID) {
15226 case PPC::BI__builtin_vsx_xvmaddadp:
15227 case PPC::BI__builtin_vsx_xvmaddasp:
15228 if (Builder.getIsFPConstrained())
15229 return Builder.CreateConstrainedFPCall(F, {X, Y, Z});
15230 else
15231 return Builder.CreateCall(F, {X, Y, Z});
15232 case PPC::BI__builtin_vsx_xvnmaddadp:
15233 case PPC::BI__builtin_vsx_xvnmaddasp:
15234 if (Builder.getIsFPConstrained())
15235 return Builder.CreateFNeg(
15236 Builder.CreateConstrainedFPCall(F, {X, Y, Z}), "neg");
15237 else
15238 return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg");
15239 case PPC::BI__builtin_vsx_xvmsubadp:
15240 case PPC::BI__builtin_vsx_xvmsubasp:
15241 if (Builder.getIsFPConstrained())
15242 return Builder.CreateConstrainedFPCall(
15243 F, {X, Y, Builder.CreateFNeg(Z, "neg")});
15244 else
15245 return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
15246 case PPC::BI__builtin_vsx_xvnmsubadp:
15247 case PPC::BI__builtin_vsx_xvnmsubasp:
15248 if (Builder.getIsFPConstrained())
15249 return Builder.CreateFNeg(
15250 Builder.CreateConstrainedFPCall(
15251 F, {X, Y, Builder.CreateFNeg(Z, "neg")}),
15252 "neg");
15253 else
15254 return Builder.CreateFNeg(
15255 Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")}),
15256 "neg");
15257 }
15258 llvm_unreachable("Unknown FMA operation")::llvm::llvm_unreachable_internal("Unknown FMA operation", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 15258)
;
15259 return nullptr; // Suppress no-return warning
15260 }
15261
15262 case PPC::BI__builtin_vsx_insertword: {
15263 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw);
15264
15265 // Third argument is a compile time constant int. It must be clamped to
15266 // to the range [0, 12].
15267 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
15268 assert(ArgCI &&(static_cast <bool> (ArgCI && "Third arg to xxinsertw intrinsic must be constant integer"
) ? void (0) : __assert_fail ("ArgCI && \"Third arg to xxinsertw intrinsic must be constant integer\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 15269, __extension__ __PRETTY_FUNCTION__))
15269 "Third arg to xxinsertw intrinsic must be constant integer")(static_cast <bool> (ArgCI && "Third arg to xxinsertw intrinsic must be constant integer"
) ? void (0) : __assert_fail ("ArgCI && \"Third arg to xxinsertw intrinsic must be constant integer\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 15269, __extension__ __PRETTY_FUNCTION__))
;
15270 const int64_t MaxIndex = 12;
15271 int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
15272
15273 // The builtin semantics don't exactly match the xxinsertw instructions
15274 // semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the
15275 // word from the first argument, and inserts it in the second argument. The
15276 // instruction extracts the word from its second input register and inserts
15277 // it into its first input register, so swap the first and second arguments.
15278 std::swap(Ops[0], Ops[1]);
15279
15280 // Need to cast the second argument from a vector of unsigned int to a
15281 // vector of long long.
15282 Ops[1] =
15283 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int64Ty, 2));
15284
15285 if (getTarget().isLittleEndian()) {
15286 // Reverse the double words in the vector we will extract from.
15287 Ops[0] =
15288 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
15289 Ops[0] = Builder.CreateShuffleVector(Ops[0], Ops[0], ArrayRef<int>{1, 0});
15290
15291 // Reverse the index.
15292 Index = MaxIndex - Index;
15293 }
15294
15295 // Intrinsic expects the first arg to be a vector of int.
15296 Ops[0] =
15297 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4));
15298 Ops[2] = ConstantInt::getSigned(Int32Ty, Index);
15299 return Builder.CreateCall(F, Ops);
15300 }
15301
15302 case PPC::BI__builtin_vsx_extractuword: {
15303 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw);
15304
15305 // Intrinsic expects the first argument to be a vector of doublewords.
15306 Ops[0] =
15307 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
15308
15309 // The second argument is a compile time constant int that needs to
15310 // be clamped to the range [0, 12].
15311 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[1]);
15312 assert(ArgCI &&(static_cast <bool> (ArgCI && "Second Arg to xxextractuw intrinsic must be a constant integer!"
) ? void (0) : __assert_fail ("ArgCI && \"Second Arg to xxextractuw intrinsic must be a constant integer!\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 15313, __extension__ __PRETTY_FUNCTION__))
15313 "Second Arg to xxextractuw intrinsic must be a constant integer!")(static_cast <bool> (ArgCI && "Second Arg to xxextractuw intrinsic must be a constant integer!"
) ? void (0) : __assert_fail ("ArgCI && \"Second Arg to xxextractuw intrinsic must be a constant integer!\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 15313, __extension__ __PRETTY_FUNCTION__))
;
15314 const int64_t MaxIndex = 12;
15315 int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
15316
15317 if (getTarget().isLittleEndian()) {
15318 // Reverse the index.
15319 Index = MaxIndex - Index;
15320 Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
15321
15322 // Emit the call, then reverse the double words of the results vector.
15323 Value *Call = Builder.CreateCall(F, Ops);
15324
15325 Value *ShuffleCall =
15326 Builder.CreateShuffleVector(Call, Call, ArrayRef<int>{1, 0});
15327 return ShuffleCall;
15328 } else {
15329 Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
15330 return Builder.CreateCall(F, Ops);
15331 }
15332 }
15333
15334 case PPC::BI__builtin_vsx_xxpermdi: {
15335 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
15336 assert(ArgCI && "Third arg must be constant integer!")(static_cast <bool> (ArgCI && "Third arg must be constant integer!"
) ? void (0) : __assert_fail ("ArgCI && \"Third arg must be constant integer!\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 15336, __extension__ __PRETTY_FUNCTION__))
;
15337
15338 unsigned Index = ArgCI->getZExtValue();
15339 Ops[0] =
15340 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
15341 Ops[1] =
15342 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int64Ty, 2));
15343
15344 // Account for endianness by treating this as just a shuffle. So we use the
15345 // same indices for both LE and BE in order to produce expected results in
15346 // both cases.
15347 int ElemIdx0 = (Index & 2) >> 1;
15348 int ElemIdx1 = 2 + (Index & 1);
15349
15350 int ShuffleElts[2] = {ElemIdx0, ElemIdx1};
15351 Value *ShuffleCall =
15352 Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleElts);
15353 QualType BIRetType = E->getType();
15354 auto RetTy = ConvertType(BIRetType);
15355 return Builder.CreateBitCast(ShuffleCall, RetTy);
15356 }
15357
15358 case PPC::BI__builtin_vsx_xxsldwi: {
15359 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
15360 assert(ArgCI && "Third argument must be a compile time constant")(static_cast <bool> (ArgCI && "Third argument must be a compile time constant"
) ? void (0) : __assert_fail ("ArgCI && \"Third argument must be a compile time constant\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 15360, __extension__ __PRETTY_FUNCTION__))
;
15361 unsigned Index = ArgCI->getZExtValue() & 0x3;
15362 Ops[0] =
15363 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4));
15364 Ops[1] =
15365 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int32Ty, 4));
15366
15367 // Create a shuffle mask
15368 int ElemIdx0;
15369 int ElemIdx1;
15370 int ElemIdx2;
15371 int ElemIdx3;
15372 if (getTarget().isLittleEndian()) {
15373 // Little endian element N comes from element 8+N-Index of the
15374 // concatenated wide vector (of course, using modulo arithmetic on
15375 // the total number of elements).
15376 ElemIdx0 = (8 - Index) % 8;
15377 ElemIdx1 = (9 - Index) % 8;
15378 ElemIdx2 = (10 - Index) % 8;
15379 ElemIdx3 = (11 - Index) % 8;
15380 } else {
15381 // Big endian ElemIdx<N> = Index + N
15382 ElemIdx0 = Index;
15383 ElemIdx1 = Index + 1;
15384 ElemIdx2 = Index + 2;
15385 ElemIdx3 = Index + 3;
15386 }
15387
15388 int ShuffleElts[4] = {ElemIdx0, ElemIdx1, ElemIdx2, ElemIdx3};
15389 Value *ShuffleCall =
15390 Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleElts);
15391 QualType BIRetType = E->getType();
15392 auto RetTy = ConvertType(BIRetType);
15393 return Builder.CreateBitCast(ShuffleCall, RetTy);
15394 }
15395
15396 case PPC::BI__builtin_pack_vector_int128: {
15397 bool isLittleEndian = getTarget().isLittleEndian();
15398 Value *UndefValue =
15399 llvm::UndefValue::get(llvm::FixedVectorType::get(Ops[0]->getType(), 2));
15400 Value *Res = Builder.CreateInsertElement(
15401 UndefValue, Ops[0], (uint64_t)(isLittleEndian ? 1 : 0));
15402 Res = Builder.CreateInsertElement(Res, Ops[1],
15403 (uint64_t)(isLittleEndian ? 0 : 1));
15404 return Builder.CreateBitCast(Res, ConvertType(E->getType()));
15405 }
15406
15407 case PPC::BI__builtin_unpack_vector_int128: {
15408 ConstantInt *Index = cast<ConstantInt>(Ops[1]);
15409 Value *Unpacked = Builder.CreateBitCast(
15410 Ops[0], llvm::FixedVectorType::get(ConvertType(E->getType()), 2));
15411
15412 if (getTarget().isLittleEndian())
15413 Index = ConstantInt::get(Index->getType(), 1 - Index->getZExtValue());
15414
15415 return Builder.CreateExtractElement(Unpacked, Index);
15416 }
15417
15418 // The PPC MMA builtins take a pointer to a __vector_quad as an argument.
15419 // Some of the MMA instructions accumulate their result into an existing
15420 // accumulator whereas the others generate a new accumulator. So we need to
15421 // use custom code generation to expand a builtin call with a pointer to a
15422 // load (if the corresponding instruction accumulates its result) followed by
15423 // the call to the intrinsic and a store of the result.
15424#define CUSTOM_BUILTIN(Name, Intr, Types, Accumulate) \
15425 case PPC::BI__builtin_##Name:
15426#include "clang/Basic/BuiltinsPPC.def"
15427 {
15428 // The first argument of these two builtins is a pointer used to store their
15429 // result. However, the llvm intrinsics return their result in multiple
15430 // return values. So, here we emit code extracting these values from the
15431 // intrinsic results and storing them using that pointer.
15432 if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc ||
15433 BuiltinID == PPC::BI__builtin_vsx_disassemble_pair ||
15434 BuiltinID == PPC::BI__builtin_mma_disassemble_pair) {
15435 unsigned NumVecs = 2;
15436 auto Intrinsic = Intrinsic::ppc_vsx_disassemble_pair;
15437 if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc) {
15438 NumVecs = 4;
15439 Intrinsic = Intrinsic::ppc_mma_disassemble_acc;
15440 }
15441 llvm::Function *F = CGM.getIntrinsic(Intrinsic);
15442 Address Addr = EmitPointerWithAlignment(E->getArg(1));
15443 Value *Vec = Builder.CreateLoad(Addr);
15444 Value *Call = Builder.CreateCall(F, {Vec});
15445 llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, 16);
15446 Value *Ptr = Builder.CreateBitCast(Ops[0], VTy->getPointerTo());
15447 for (unsigned i=0; i<NumVecs; i++) {
15448 Value *Vec = Builder.CreateExtractValue(Call, i);
15449 llvm::ConstantInt* Index = llvm::ConstantInt::get(IntTy, i);
15450 Value *GEP = Builder.CreateInBoundsGEP(VTy, Ptr, Index);
15451 Builder.CreateAlignedStore(Vec, GEP, MaybeAlign(16));
15452 }
15453 return Call;
15454 }
15455 bool Accumulate;
15456 switch (BuiltinID) {
15457 #define CUSTOM_BUILTIN(Name, Intr, Types, Acc) \
15458 case PPC::BI__builtin_##Name: \
15459 ID = Intrinsic::ppc_##Intr; \
15460 Accumulate = Acc; \
15461 break;
15462 #include "clang/Basic/BuiltinsPPC.def"
15463 }
15464 if (BuiltinID == PPC::BI__builtin_vsx_lxvp ||
15465 BuiltinID == PPC::BI__builtin_vsx_stxvp ||
15466 BuiltinID == PPC::BI__builtin_mma_lxvp ||
15467 BuiltinID == PPC::BI__builtin_mma_stxvp) {
15468 if (BuiltinID == PPC::BI__builtin_vsx_lxvp ||
15469 BuiltinID == PPC::BI__builtin_mma_lxvp) {
15470 Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
15471 Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]);
15472 } else {
15473 Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
15474 Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]);
15475 }
15476 Ops.pop_back();
15477 llvm::Function *F = CGM.getIntrinsic(ID);
15478 return Builder.CreateCall(F, Ops, "");
15479 }
15480 SmallVector<Value*, 4> CallOps;
15481 if (Accumulate) {
15482 Address Addr = EmitPointerWithAlignment(E->getArg(0));
15483 Value *Acc = Builder.CreateLoad(Addr);
15484 CallOps.push_back(Acc);
15485 }
15486 for (unsigned i=1; i<Ops.size(); i++)
15487 CallOps.push_back(Ops[i]);
15488 llvm::Function *F = CGM.getIntrinsic(ID);
15489 Value *Call = Builder.CreateCall(F, CallOps);
15490 return Builder.CreateAlignedStore(Call, Ops[0], MaybeAlign(64));
15491 }
15492
15493 case PPC::BI__builtin_ppc_compare_and_swap:
15494 case PPC::BI__builtin_ppc_compare_and_swaplp: {
15495 Address Addr = EmitPointerWithAlignment(E->getArg(0));
15496 Address OldValAddr = EmitPointerWithAlignment(E->getArg(1));
15497 Value *OldVal = Builder.CreateLoad(OldValAddr);
15498 QualType AtomicTy = E->getArg(0)->getType()->getPointeeType();
15499 LValue LV = MakeAddrLValue(Addr, AtomicTy);
15500 auto Pair = EmitAtomicCompareExchange(
15501 LV, RValue::get(OldVal), RValue::get(Ops[2]), E->getExprLoc(),
15502 llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Monotonic, true);
15503 return Pair.second;
15504 }
15505 case PPC::BI__builtin_ppc_fetch_and_add:
15506 case PPC::BI__builtin_ppc_fetch_and_addlp: {
15507 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
15508 llvm::AtomicOrdering::Monotonic);
15509 }
15510 case PPC::BI__builtin_ppc_fetch_and_and:
15511 case PPC::BI__builtin_ppc_fetch_and_andlp: {
15512 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
15513 llvm::AtomicOrdering::Monotonic);
15514 }
15515
15516 case PPC::BI__builtin_ppc_fetch_and_or:
15517 case PPC::BI__builtin_ppc_fetch_and_orlp: {
15518 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
15519 llvm::AtomicOrdering::Monotonic);
15520 }
15521 case PPC::BI__builtin_ppc_fetch_and_swap:
15522 case PPC::BI__builtin_ppc_fetch_and_swaplp: {
15523 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
15524 llvm::AtomicOrdering::Monotonic);
15525 }
15526 }
15527}
15528
15529namespace {
15530// If \p E is not null pointer, insert address space cast to match return
15531// type of \p E if necessary.
15532Value *EmitAMDGPUDispatchPtr(CodeGenFunction &CGF,
15533 const CallExpr *E = nullptr) {
15534 auto *F = CGF.CGM.getIntrinsic(Intrinsic::amdgcn_dispatch_ptr);
15535 auto *Call = CGF.Builder.CreateCall(F);
15536 Call->addAttribute(
15537 AttributeList::ReturnIndex,
15538 Attribute::getWithDereferenceableBytes(Call->getContext(), 64));
15539 Call->addAttribute(AttributeList::ReturnIndex,
15540 Attribute::getWithAlignment(Call->getContext(), Align(4)));
15541 if (!E)
15542 return Call;
15543 QualType BuiltinRetType = E->getType();
15544 auto *RetTy = cast<llvm::PointerType>(CGF.ConvertType(BuiltinRetType));
15545 if (RetTy == Call->getType())
15546 return Call;
15547 return CGF.Builder.CreateAddrSpaceCast(Call, RetTy);
15548}
15549
15550// \p Index is 0, 1, and 2 for x, y, and z dimension, respectively.
15551Value *EmitAMDGPUWorkGroupSize(CodeGenFunction &CGF, unsigned Index) {
15552 const unsigned XOffset = 4;
15553 auto *DP = EmitAMDGPUDispatchPtr(CGF);
15554 // Indexing the HSA kernel_dispatch_packet struct.
15555 auto *Offset = llvm::ConstantInt::get(CGF.Int32Ty, XOffset + Index * 2);
15556 auto *GEP = CGF.Builder.CreateGEP(DP, Offset);
15557 auto *DstTy =
15558 CGF.Int16Ty->getPointerTo(GEP->getType()->getPointerAddressSpace());
15559 auto *Cast = CGF.Builder.CreateBitCast(GEP, DstTy);
15560 auto *LD = CGF.Builder.CreateLoad(Address(Cast, CharUnits::fromQuantity(2)));
15561 llvm::MDBuilder MDHelper(CGF.getLLVMContext());
15562 llvm::MDNode *RNode = MDHelper.createRange(APInt(16, 1),
15563 APInt(16, CGF.getTarget().getMaxOpenCLWorkGroupSize() + 1));
15564 LD->setMetadata(llvm::LLVMContext::MD_range, RNode);
15565 LD->setMetadata(llvm::LLVMContext::MD_invariant_load,
15566 llvm::MDNode::get(CGF.getLLVMContext(), None));
15567 return LD;
15568}
15569
15570// \p Index is 0, 1, and 2 for x, y, and z dimension, respectively.
15571Value *EmitAMDGPUGridSize(CodeGenFunction &CGF, unsigned Index) {
15572 const unsigned XOffset = 12;
15573 auto *DP = EmitAMDGPUDispatchPtr(CGF);
15574 // Indexing the HSA kernel_dispatch_packet struct.
15575 auto *Offset = llvm::ConstantInt::get(CGF.Int32Ty, XOffset + Index * 4);
15576 auto *GEP = CGF.Builder.CreateGEP(DP, Offset);
15577 auto *DstTy =
15578 CGF.Int32Ty->getPointerTo(GEP->getType()->getPointerAddressSpace());
15579 auto *Cast = CGF.Builder.CreateBitCast(GEP, DstTy);
15580 auto *LD = CGF.Builder.CreateLoad(Address(Cast, CharUnits::fromQuantity(4)));
15581 LD->setMetadata(llvm::LLVMContext::MD_invariant_load,
15582 llvm::MDNode::get(CGF.getLLVMContext(), None));
15583 return LD;
15584}
15585} // namespace
15586
15587// For processing memory ordering and memory scope arguments of various
15588// amdgcn builtins.
15589// \p Order takes a C++11 comptabile memory-ordering specifier and converts
15590// it into LLVM's memory ordering specifier using atomic C ABI, and writes
15591// to \p AO. \p Scope takes a const char * and converts it into AMDGCN
15592// specific SyncScopeID and writes it to \p SSID.
15593bool CodeGenFunction::ProcessOrderScopeAMDGCN(Value *Order, Value *Scope,
15594 llvm::AtomicOrdering &AO,
15595 llvm::SyncScope::ID &SSID) {
15596 if (isa<llvm::ConstantInt>(Order)) {
3
Assuming 'Order' is not a 'ConstantInt'
4
Taking false branch
15597 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
15598
15599 // Map C11/C++11 memory ordering to LLVM memory ordering
15600 assert(llvm::isValidAtomicOrderingCABI(ord))(static_cast <bool> (llvm::isValidAtomicOrderingCABI(ord
)) ? void (0) : __assert_fail ("llvm::isValidAtomicOrderingCABI(ord)"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 15600, __extension__ __PRETTY_FUNCTION__))
;
15601 switch (static_cast<llvm::AtomicOrderingCABI>(ord)) {
15602 case llvm::AtomicOrderingCABI::acquire:
15603 case llvm::AtomicOrderingCABI::consume:
15604 AO = llvm::AtomicOrdering::Acquire;
15605 break;
15606 case llvm::AtomicOrderingCABI::release:
15607 AO = llvm::AtomicOrdering::Release;
15608 break;
15609 case llvm::AtomicOrderingCABI::acq_rel:
15610 AO = llvm::AtomicOrdering::AcquireRelease;
15611 break;
15612 case llvm::AtomicOrderingCABI::seq_cst:
15613 AO = llvm::AtomicOrdering::SequentiallyConsistent;
15614 break;
15615 case llvm::AtomicOrderingCABI::relaxed:
15616 AO = llvm::AtomicOrdering::Monotonic;
15617 break;
15618 }
15619
15620 StringRef scp;
15621 llvm::getConstantStringInfo(Scope, scp);
15622 SSID = getLLVMContext().getOrInsertSyncScopeID(scp);
15623 return true;
15624 }
15625 return false;
5
Returning zero, which participates in a condition later
15626}
15627
15628Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID,
15629 const CallExpr *E) {
15630 llvm::AtomicOrdering AO = llvm::AtomicOrdering::SequentiallyConsistent;
15631 llvm::SyncScope::ID SSID;
15632 switch (BuiltinID) {
1
Control jumps to 'case BI__builtin_amdgcn_fence:' at line 15873
15633 case AMDGPU::BI__builtin_amdgcn_div_scale:
15634 case AMDGPU::BI__builtin_amdgcn_div_scalef: {
15635 // Translate from the intrinsics's struct return to the builtin's out
15636 // argument.
15637
15638 Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3));
15639
15640 llvm::Value *X = EmitScalarExpr(E->getArg(0));
15641 llvm::Value *Y = EmitScalarExpr(E->getArg(1));
15642 llvm::Value *Z = EmitScalarExpr(E->getArg(2));
15643
15644 llvm::Function *Callee = CGM.getIntrinsic(Intrinsic::amdgcn_div_scale,
15645 X->getType());
15646
15647 llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z});
15648
15649 llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0);
15650 llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1);
15651
15652 llvm::Type *RealFlagType
15653 = FlagOutPtr.getPointer()->getType()->getPointerElementType();
15654
15655 llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType);
15656 Builder.CreateStore(FlagExt, FlagOutPtr);
15657 return Result;
15658 }
15659 case AMDGPU::BI__builtin_amdgcn_div_fmas:
15660 case AMDGPU::BI__builtin_amdgcn_div_fmasf: {
15661 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
15662 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
15663 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
15664 llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
15665
15666 llvm::Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_div_fmas,
15667 Src0->getType());
15668 llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3);
15669 return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool});
15670 }
15671
15672 case AMDGPU::BI__builtin_amdgcn_ds_swizzle:
15673 return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_ds_swizzle);
15674 case AMDGPU::BI__builtin_amdgcn_mov_dpp8:
15675 return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_mov_dpp8);
15676 case AMDGPU::BI__builtin_amdgcn_mov_dpp:
15677 case AMDGPU::BI__builtin_amdgcn_update_dpp: {
15678 llvm::SmallVector<llvm::Value *, 6> Args;
15679 for (unsigned I = 0; I != E->getNumArgs(); ++I)
15680 Args.push_back(EmitScalarExpr(E->getArg(I)));
15681 assert(Args.size() == 5 || Args.size() == 6)(static_cast <bool> (Args.size() == 5 || Args.size() ==
6) ? void (0) : __assert_fail ("Args.size() == 5 || Args.size() == 6"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 15681, __extension__ __PRETTY_FUNCTION__))
;
15682 if (Args.size() == 5)
15683 Args.insert(Args.begin(), llvm::UndefValue::get(Args[0]->getType()));
15684 Function *F =
15685 CGM.getIntrinsic(Intrinsic::amdgcn_update_dpp, Args[0]->getType());
15686 return Builder.CreateCall(F, Args);
15687 }
15688 case AMDGPU::BI__builtin_amdgcn_div_fixup:
15689 case AMDGPU::BI__builtin_amdgcn_div_fixupf:
15690 case AMDGPU::BI__builtin_amdgcn_div_fixuph:
15691 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_div_fixup);
15692 case AMDGPU::BI__builtin_amdgcn_trig_preop:
15693 case AMDGPU::BI__builtin_amdgcn_trig_preopf:
15694 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_trig_preop);
15695 case AMDGPU::BI__builtin_amdgcn_rcp:
15696 case AMDGPU::BI__builtin_amdgcn_rcpf:
15697 case AMDGPU::BI__builtin_amdgcn_rcph:
15698 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rcp);
15699 case AMDGPU::BI__builtin_amdgcn_sqrt:
15700 case AMDGPU::BI__builtin_amdgcn_sqrtf:
15701 case AMDGPU::BI__builtin_amdgcn_sqrth:
15702 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sqrt);
15703 case AMDGPU::BI__builtin_amdgcn_rsq:
15704 case AMDGPU::BI__builtin_amdgcn_rsqf:
15705 case AMDGPU::BI__builtin_amdgcn_rsqh:
15706 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq);
15707 case AMDGPU::BI__builtin_amdgcn_rsq_clamp:
15708 case AMDGPU::BI__builtin_amdgcn_rsq_clampf:
15709 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq_clamp);
15710 case AMDGPU::BI__builtin_amdgcn_sinf:
15711 case AMDGPU::BI__builtin_amdgcn_sinh:
15712 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sin);
15713 case AMDGPU::BI__builtin_amdgcn_cosf:
15714 case AMDGPU::BI__builtin_amdgcn_cosh:
15715 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_cos);
15716 case AMDGPU::BI__builtin_amdgcn_dispatch_ptr:
15717 return EmitAMDGPUDispatchPtr(*this, E);
15718 case AMDGPU::BI__builtin_amdgcn_log_clampf:
15719 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_log_clamp);
15720 case AMDGPU::BI__builtin_amdgcn_ldexp:
15721 case AMDGPU::BI__builtin_amdgcn_ldexpf:
15722 case AMDGPU::BI__builtin_amdgcn_ldexph:
15723 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_ldexp);
15724 case AMDGPU::BI__builtin_amdgcn_frexp_mant:
15725 case AMDGPU::BI__builtin_amdgcn_frexp_mantf:
15726 case AMDGPU::BI__builtin_amdgcn_frexp_manth:
15727 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_frexp_mant);
15728 case AMDGPU::BI__builtin_amdgcn_frexp_exp:
15729 case AMDGPU::BI__builtin_amdgcn_frexp_expf: {
15730 Value *Src0 = EmitScalarExpr(E->getArg(0));
15731 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
15732 { Builder.getInt32Ty(), Src0->getType() });
15733 return Builder.CreateCall(F, Src0);
15734 }
15735 case AMDGPU::BI__builtin_amdgcn_frexp_exph: {
15736 Value *Src0 = EmitScalarExpr(E->getArg(0));
15737 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
15738 { Builder.getInt16Ty(), Src0->getType() });
15739 return Builder.CreateCall(F, Src0);
15740 }
15741 case AMDGPU::BI__builtin_amdgcn_fract:
15742 case AMDGPU::BI__builtin_amdgcn_fractf:
15743 case AMDGPU::BI__builtin_amdgcn_fracth:
15744 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_fract);
15745 case AMDGPU::BI__builtin_amdgcn_lerp:
15746 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_lerp);
15747 case AMDGPU::BI__builtin_amdgcn_ubfe:
15748 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_ubfe);
15749 case AMDGPU::BI__builtin_amdgcn_sbfe:
15750 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_sbfe);
15751 case AMDGPU::BI__builtin_amdgcn_uicmp:
15752 case AMDGPU::BI__builtin_amdgcn_uicmpl:
15753 case AMDGPU::BI__builtin_amdgcn_sicmp:
15754 case AMDGPU::BI__builtin_amdgcn_sicmpl: {
15755 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
15756 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
15757 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
15758
15759 // FIXME-GFX10: How should 32 bit mask be handled?
15760 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_icmp,
15761 { Builder.getInt64Ty(), Src0->getType() });
15762 return Builder.CreateCall(F, { Src0, Src1, Src2 });
15763 }
15764 case AMDGPU::BI__builtin_amdgcn_fcmp:
15765 case AMDGPU::BI__builtin_amdgcn_fcmpf: {
15766 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
15767 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
15768 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
15769
15770 // FIXME-GFX10: How should 32 bit mask be handled?
15771 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_fcmp,
15772 { Builder.getInt64Ty(), Src0->getType() });
15773 return Builder.CreateCall(F, { Src0, Src1, Src2 });
15774 }
15775 case AMDGPU::BI__builtin_amdgcn_class:
15776 case AMDGPU::BI__builtin_amdgcn_classf:
15777 case AMDGPU::BI__builtin_amdgcn_classh:
15778 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_class);
15779 case AMDGPU::BI__builtin_amdgcn_fmed3f:
15780 case AMDGPU::BI__builtin_amdgcn_fmed3h:
15781 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fmed3);
15782 case AMDGPU::BI__builtin_amdgcn_ds_append:
15783 case AMDGPU::BI__builtin_amdgcn_ds_consume: {
15784 Intrinsic::ID Intrin = BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_append ?
15785 Intrinsic::amdgcn_ds_append : Intrinsic::amdgcn_ds_consume;
15786 Value *Src0 = EmitScalarExpr(E->getArg(0));
15787 Function *F = CGM.getIntrinsic(Intrin, { Src0->getType() });
15788 return Builder.CreateCall(F, { Src0, Builder.getFalse() });
15789 }
15790 case AMDGPU::BI__builtin_amdgcn_ds_faddf:
15791 case AMDGPU::BI__builtin_amdgcn_ds_fminf:
15792 case AMDGPU::BI__builtin_amdgcn_ds_fmaxf: {
15793 Intrinsic::ID Intrin;
15794 switch (BuiltinID) {
15795 case AMDGPU::BI__builtin_amdgcn_ds_faddf:
15796 Intrin = Intrinsic::amdgcn_ds_fadd;
15797 break;
15798 case AMDGPU::BI__builtin_amdgcn_ds_fminf:
15799 Intrin = Intrinsic::amdgcn_ds_fmin;
15800 break;
15801 case AMDGPU::BI__builtin_amdgcn_ds_fmaxf:
15802 Intrin = Intrinsic::amdgcn_ds_fmax;
15803 break;
15804 }
15805 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
15806 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
15807 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
15808 llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
15809 llvm::Value *Src4 = EmitScalarExpr(E->getArg(4));
15810 llvm::Function *F = CGM.getIntrinsic(Intrin, { Src1->getType() });
15811 llvm::FunctionType *FTy = F->getFunctionType();
15812 llvm::Type *PTy = FTy->getParamType(0);
15813 Src0 = Builder.CreatePointerBitCastOrAddrSpaceCast(Src0, PTy);
15814 return Builder.CreateCall(F, { Src0, Src1, Src2, Src3, Src4 });
15815 }
15816 case AMDGPU::BI__builtin_amdgcn_read_exec: {
15817 CallInst *CI = cast<CallInst>(
15818 EmitSpecialRegisterBuiltin(*this, E, Int64Ty, Int64Ty, NormalRead, "exec"));
15819 CI->setConvergent();
15820 return CI;
15821 }
15822 case AMDGPU::BI__builtin_amdgcn_read_exec_lo:
15823 case AMDGPU::BI__builtin_amdgcn_read_exec_hi: {
15824 StringRef RegName = BuiltinID == AMDGPU::BI__builtin_amdgcn_read_exec_lo ?
15825 "exec_lo" : "exec_hi";
15826 CallInst *CI = cast<CallInst>(
15827 EmitSpecialRegisterBuiltin(*this, E, Int32Ty, Int32Ty, NormalRead, RegName));
15828 CI->setConvergent();
15829 return CI;
15830 }
15831 // amdgcn workitem
15832 case AMDGPU::BI__builtin_amdgcn_workitem_id_x:
15833 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_x, 0, 1024);
15834 case AMDGPU::BI__builtin_amdgcn_workitem_id_y:
15835 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_y, 0, 1024);
15836 case AMDGPU::BI__builtin_amdgcn_workitem_id_z:
15837 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_z, 0, 1024);
15838
15839 // amdgcn workgroup size
15840 case AMDGPU::BI__builtin_amdgcn_workgroup_size_x:
15841 return EmitAMDGPUWorkGroupSize(*this, 0);
15842 case AMDGPU::BI__builtin_amdgcn_workgroup_size_y:
15843 return EmitAMDGPUWorkGroupSize(*this, 1);
15844 case AMDGPU::BI__builtin_amdgcn_workgroup_size_z:
15845 return EmitAMDGPUWorkGroupSize(*this, 2);
15846
15847 // amdgcn grid size
15848 case AMDGPU::BI__builtin_amdgcn_grid_size_x:
15849 return EmitAMDGPUGridSize(*this, 0);
15850 case AMDGPU::BI__builtin_amdgcn_grid_size_y:
15851 return EmitAMDGPUGridSize(*this, 1);
15852 case AMDGPU::BI__builtin_amdgcn_grid_size_z:
15853 return EmitAMDGPUGridSize(*this, 2);
15854
15855 // r600 intrinsics
15856 case AMDGPU::BI__builtin_r600_recipsqrt_ieee:
15857 case AMDGPU::BI__builtin_r600_recipsqrt_ieeef:
15858 return emitUnaryBuiltin(*this, E, Intrinsic::r600_recipsqrt_ieee);
15859 case AMDGPU::BI__builtin_r600_read_tidig_x:
15860 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_x, 0, 1024);
15861 case AMDGPU::BI__builtin_r600_read_tidig_y:
15862 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_y, 0, 1024);
15863 case AMDGPU::BI__builtin_r600_read_tidig_z:
15864 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_z, 0, 1024);
15865 case AMDGPU::BI__builtin_amdgcn_alignbit: {
15866 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
15867 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
15868 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
15869 Function *F = CGM.getIntrinsic(Intrinsic::fshr, Src0->getType());
15870 return Builder.CreateCall(F, { Src0, Src1, Src2 });
15871 }
15872
15873 case AMDGPU::BI__builtin_amdgcn_fence: {
15874 if (ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(0)),
2
Calling 'CodeGenFunction::ProcessOrderScopeAMDGCN'
6
Returning from 'CodeGenFunction::ProcessOrderScopeAMDGCN'
7
Taking false branch
15875 EmitScalarExpr(E->getArg(1)), AO, SSID))
15876 return Builder.CreateFence(AO, SSID);
15877 LLVM_FALLTHROUGH[[gnu::fallthrough]];
15878 }
15879 case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
15880 case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
15881 case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
15882 case AMDGPU::BI__builtin_amdgcn_atomic_dec64: {
15883 unsigned BuiltinAtomicOp;
8
'BuiltinAtomicOp' declared without an initial value
15884 llvm::Type *ResultType = ConvertType(E->getType());
15885
15886 switch (BuiltinID) {
9
'Default' branch taken. Execution continues on line 15897
15887 case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
15888 case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
15889 BuiltinAtomicOp = Intrinsic::amdgcn_atomic_inc;
15890 break;
15891 case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
15892 case AMDGPU::BI__builtin_amdgcn_atomic_dec64:
15893 BuiltinAtomicOp = Intrinsic::amdgcn_atomic_dec;
15894 break;
15895 }
15896
15897 Value *Ptr = EmitScalarExpr(E->getArg(0));
15898 Value *Val = EmitScalarExpr(E->getArg(1));
15899
15900 llvm::Function *F =
15901 CGM.getIntrinsic(BuiltinAtomicOp, {ResultType, Ptr->getType()});
10
1st function call argument is an uninitialized value
15902
15903 if (ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(2)),
15904 EmitScalarExpr(E->getArg(3)), AO, SSID)) {
15905
15906 // llvm.amdgcn.atomic.inc and llvm.amdgcn.atomic.dec expects ordering and
15907 // scope as unsigned values
15908 Value *MemOrder = Builder.getInt32(static_cast<int>(AO));
15909 Value *MemScope = Builder.getInt32(static_cast<int>(SSID));
15910
15911 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
15912 bool Volatile =
15913 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
15914 Value *IsVolatile = Builder.getInt1(static_cast<bool>(Volatile));
15915
15916 return Builder.CreateCall(F, {Ptr, Val, MemOrder, MemScope, IsVolatile});
15917 }
15918 LLVM_FALLTHROUGH[[gnu::fallthrough]];
15919 }
15920 default:
15921 return nullptr;
15922 }
15923}
15924
15925/// Handle a SystemZ function in which the final argument is a pointer
15926/// to an int that receives the post-instruction CC value. At the LLVM level
15927/// this is represented as a function that returns a {result, cc} pair.
15928static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF,
15929 unsigned IntrinsicID,
15930 const CallExpr *E) {
15931 unsigned NumArgs = E->getNumArgs() - 1;
15932 SmallVector<Value *, 8> Args(NumArgs);
15933 for (unsigned I = 0; I < NumArgs; ++I)
15934 Args[I] = CGF.EmitScalarExpr(E->getArg(I));
15935 Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs));
15936 Function *F = CGF.CGM.getIntrinsic(IntrinsicID);
15937 Value *Call = CGF.Builder.CreateCall(F, Args);
15938 Value *CC = CGF.Builder.CreateExtractValue(Call, 1);
15939 CGF.Builder.CreateStore(CC, CCPtr);
15940 return CGF.Builder.CreateExtractValue(Call, 0);
15941}
15942
15943Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID,
15944 const CallExpr *E) {
15945 switch (BuiltinID) {
15946 case SystemZ::BI__builtin_tbegin: {
15947 Value *TDB = EmitScalarExpr(E->getArg(0));
15948 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
15949 Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin);
15950 return Builder.CreateCall(F, {TDB, Control});
15951 }
15952 case SystemZ::BI__builtin_tbegin_nofloat: {
15953 Value *TDB = EmitScalarExpr(E->getArg(0));
15954 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
15955 Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat);
15956 return Builder.CreateCall(F, {TDB, Control});
15957 }
15958 case SystemZ::BI__builtin_tbeginc: {
15959 Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy);
15960 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08);
15961 Function *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc);
15962 return Builder.CreateCall(F, {TDB, Control});
15963 }
15964 case SystemZ::BI__builtin_tabort: {
15965 Value *Data = EmitScalarExpr(E->getArg(0));
15966 Function *F = CGM.getIntrinsic(Intrinsic::s390_tabort);
15967 return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort"));
15968 }
15969 case SystemZ::BI__builtin_non_tx_store: {
15970 Value *Address = EmitScalarExpr(E->getArg(0));
15971 Value *Data = EmitScalarExpr(E->getArg(1));
15972 Function *F = CGM.getIntrinsic(Intrinsic::s390_ntstg);
15973 return Builder.CreateCall(F, {Data, Address});
15974 }
15975
15976 // Vector builtins. Note that most vector builtins are mapped automatically
15977 // to target-specific LLVM intrinsics. The ones handled specially here can
15978 // be represented via standard LLVM IR, which is preferable to enable common
15979 // LLVM optimizations.
15980
15981 case SystemZ::BI__builtin_s390_vpopctb:
15982 case SystemZ::BI__builtin_s390_vpopcth:
15983 case SystemZ::BI__builtin_s390_vpopctf:
15984 case SystemZ::BI__builtin_s390_vpopctg: {
15985 llvm::Type *ResultType = ConvertType(E->getType());
15986 Value *X = EmitScalarExpr(E->getArg(0));
15987 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
15988 return Builder.CreateCall(F, X);
15989 }
15990
15991 case SystemZ::BI__builtin_s390_vclzb:
15992 case SystemZ::BI__builtin_s390_vclzh:
15993 case SystemZ::BI__builtin_s390_vclzf:
15994 case SystemZ::BI__builtin_s390_vclzg: {
15995 llvm::Type *ResultType = ConvertType(E->getType());
15996 Value *X = EmitScalarExpr(E->getArg(0));
15997 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
15998 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
15999 return Builder.CreateCall(F, {X, Undef});
16000 }
16001
16002 case SystemZ::BI__builtin_s390_vctzb:
16003 case SystemZ::BI__builtin_s390_vctzh:
16004 case SystemZ::BI__builtin_s390_vctzf:
16005 case SystemZ::BI__builtin_s390_vctzg: {
16006 llvm::Type *ResultType = ConvertType(E->getType());
16007 Value *X = EmitScalarExpr(E->getArg(0));
16008 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
16009 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
16010 return Builder.CreateCall(F, {X, Undef});
16011 }
16012
16013 case SystemZ::BI__builtin_s390_vfsqsb:
16014 case SystemZ::BI__builtin_s390_vfsqdb: {
16015 llvm::Type *ResultType = ConvertType(E->getType());
16016 Value *X = EmitScalarExpr(E->getArg(0));
16017 if (Builder.getIsFPConstrained()) {
16018 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt, ResultType);
16019 return Builder.CreateConstrainedFPCall(F, { X });
16020 } else {
16021 Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
16022 return Builder.CreateCall(F, X);
16023 }
16024 }
16025 case SystemZ::BI__builtin_s390_vfmasb:
16026 case SystemZ::BI__builtin_s390_vfmadb: {
16027 llvm::Type *ResultType = ConvertType(E->getType());
16028 Value *X = EmitScalarExpr(E->getArg(0));
16029 Value *Y = EmitScalarExpr(E->getArg(1));
16030 Value *Z = EmitScalarExpr(E->getArg(2));
16031 if (Builder.getIsFPConstrained()) {
16032 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
16033 return Builder.CreateConstrainedFPCall(F, {X, Y, Z});
16034 } else {
16035 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
16036 return Builder.CreateCall(F, {X, Y, Z});
16037 }
16038 }
16039 case SystemZ::BI__builtin_s390_vfmssb:
16040 case SystemZ::BI__builtin_s390_vfmsdb: {
16041 llvm::Type *ResultType = ConvertType(E->getType());
16042 Value *X = EmitScalarExpr(E->getArg(0));
16043 Value *Y = EmitScalarExpr(E->getArg(1));
16044 Value *Z = EmitScalarExpr(E->getArg(2));
16045 if (Builder.getIsFPConstrained()) {
16046 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
16047 return Builder.CreateConstrainedFPCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
16048 } else {
16049 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
16050 return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
16051 }
16052 }
16053 case SystemZ::BI__builtin_s390_vfnmasb:
16054 case SystemZ::BI__builtin_s390_vfnmadb: {
16055 llvm::Type *ResultType = ConvertType(E->getType());
16056 Value *X = EmitScalarExpr(E->getArg(0));
16057 Value *Y = EmitScalarExpr(E->getArg(1));
16058 Value *Z = EmitScalarExpr(E->getArg(2));
16059 if (Builder.getIsFPConstrained()) {
16060 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
16061 return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y, Z}), "neg");
16062 } else {
16063 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
16064 return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg");
16065 }
16066 }
16067 case SystemZ::BI__builtin_s390_vfnmssb:
16068 case SystemZ::BI__builtin_s390_vfnmsdb: {
16069 llvm::Type *ResultType = ConvertType(E->getType());
16070 Value *X = EmitScalarExpr(E->getArg(0));
16071 Value *Y = EmitScalarExpr(E->getArg(1));
16072 Value *Z = EmitScalarExpr(E->getArg(2));
16073 if (Builder.getIsFPConstrained()) {
16074 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
16075 Value *NegZ = Builder.CreateFNeg(Z, "sub");
16076 return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y, NegZ}));
16077 } else {
16078 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
16079 Value *NegZ = Builder.CreateFNeg(Z, "neg");
16080 return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, NegZ}));
16081 }
16082 }
16083 case SystemZ::BI__builtin_s390_vflpsb:
16084 case SystemZ::BI__builtin_s390_vflpdb: {
16085 llvm::Type *ResultType = ConvertType(E->getType());
16086 Value *X = EmitScalarExpr(E->getArg(0));
16087 Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
16088 return Builder.CreateCall(F, X);
16089 }
16090 case SystemZ::BI__builtin_s390_vflnsb:
16091 case SystemZ::BI__builtin_s390_vflndb: {
16092 llvm::Type *ResultType = ConvertType(E->getType());
16093 Value *X = EmitScalarExpr(E->getArg(0));
16094 Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
16095 return Builder.CreateFNeg(Builder.CreateCall(F, X), "neg");
16096 }
16097 case SystemZ::BI__builtin_s390_vfisb:
16098 case SystemZ::BI__builtin_s390_vfidb: {
16099 llvm::Type *ResultType = ConvertType(E->getType());
16100 Value *X = EmitScalarExpr(E->getArg(0));
16101 // Constant-fold the M4 and M5 mask arguments.
16102 llvm::APSInt M4 = *E->getArg(1)->getIntegerConstantExpr(getContext());
16103 llvm::APSInt M5 = *E->getArg(2)->getIntegerConstantExpr(getContext());
16104 // Check whether this instance can be represented via a LLVM standard
16105 // intrinsic. We only support some combinations of M4 and M5.
16106 Intrinsic::ID ID = Intrinsic::not_intrinsic;
16107 Intrinsic::ID CI;
16108 switch (M4.getZExtValue()) {
16109 default: break;
16110 case 0: // IEEE-inexact exception allowed
16111 switch (M5.getZExtValue()) {
16112 default: break;
16113 case 0: ID = Intrinsic::rint;
16114 CI = Intrinsic::experimental_constrained_rint; break;
16115 }
16116 break;
16117 case 4: // IEEE-inexact exception suppressed
16118 switch (M5.getZExtValue()) {
16119 default: break;
16120 case 0: ID = Intrinsic::nearbyint;
16121 CI = Intrinsic::experimental_constrained_nearbyint; break;
16122 case 1: ID = Intrinsic::round;
16123 CI = Intrinsic::experimental_constrained_round; break;
16124 case 5: ID = Intrinsic::trunc;
16125 CI = Intrinsic::experimental_constrained_trunc; break;
16126 case 6: ID = Intrinsic::ceil;
16127 CI = Intrinsic::experimental_constrained_ceil; break;
16128 case 7: ID = Intrinsic::floor;
16129 CI = Intrinsic::experimental_constrained_floor; break;
16130 }
16131 break;
16132 }
16133 if (ID != Intrinsic::not_intrinsic) {
16134 if (Builder.getIsFPConstrained()) {
16135 Function *F = CGM.getIntrinsic(CI, ResultType);
16136 return Builder.CreateConstrainedFPCall(F, X);
16137 } else {
16138 Function *F = CGM.getIntrinsic(ID, ResultType);
16139 return Builder.CreateCall(F, X);
16140 }
16141 }
16142 switch (BuiltinID) { // FIXME: constrained version?
16143 case SystemZ::BI__builtin_s390_vfisb: ID = Intrinsic::s390_vfisb; break;
16144 case SystemZ::BI__builtin_s390_vfidb: ID = Intrinsic::s390_vfidb; break;
16145 default: llvm_unreachable("Unknown BuiltinID")::llvm::llvm_unreachable_internal("Unknown BuiltinID", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 16145)
;
16146 }
16147 Function *F = CGM.getIntrinsic(ID);
16148 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
16149 Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5);
16150 return Builder.CreateCall(F, {X, M4Value, M5Value});
16151 }
16152 case SystemZ::BI__builtin_s390_vfmaxsb:
16153 case SystemZ::BI__builtin_s390_vfmaxdb: {
16154 llvm::Type *ResultType = ConvertType(E->getType());
16155 Value *X = EmitScalarExpr(E->getArg(0));
16156 Value *Y = EmitScalarExpr(E->getArg(1));
16157 // Constant-fold the M4 mask argument.
16158 llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext());
16159 // Check whether this instance can be represented via a LLVM standard
16160 // intrinsic. We only support some values of M4.
16161 Intrinsic::ID ID = Intrinsic::not_intrinsic;
16162 Intrinsic::ID CI;
16163 switch (M4.getZExtValue()) {
16164 default: break;
16165 case 4: ID = Intrinsic::maxnum;
16166 CI = Intrinsic::experimental_constrained_maxnum; break;
16167 }
16168 if (ID != Intrinsic::not_intrinsic) {
16169 if (Builder.getIsFPConstrained()) {
16170 Function *F = CGM.getIntrinsic(CI, ResultType);
16171 return Builder.CreateConstrainedFPCall(F, {X, Y});
16172 } else {
16173 Function *F = CGM.getIntrinsic(ID, ResultType);
16174 return Builder.CreateCall(F, {X, Y});
16175 }
16176 }
16177 switch (BuiltinID) {
16178 case SystemZ::BI__builtin_s390_vfmaxsb: ID = Intrinsic::s390_vfmaxsb; break;
16179 case SystemZ::BI__builtin_s390_vfmaxdb: ID = Intrinsic::s390_vfmaxdb; break;
16180 default: llvm_unreachable("Unknown BuiltinID")::llvm::llvm_unreachable_internal("Unknown BuiltinID", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 16180)
;
16181 }
16182 Function *F = CGM.getIntrinsic(ID);
16183 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
16184 return Builder.CreateCall(F, {X, Y, M4Value});
16185 }
16186 case SystemZ::BI__builtin_s390_vfminsb:
16187 case SystemZ::BI__builtin_s390_vfmindb: {
16188 llvm::Type *ResultType = ConvertType(E->getType());
16189 Value *X = EmitScalarExpr(E->getArg(0));
16190 Value *Y = EmitScalarExpr(E->getArg(1));
16191 // Constant-fold the M4 mask argument.
16192 llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext());
16193 // Check whether this instance can be represented via a LLVM standard
16194 // intrinsic. We only support some values of M4.
16195 Intrinsic::ID ID = Intrinsic::not_intrinsic;
16196 Intrinsic::ID CI;
16197 switch (M4.getZExtValue()) {
16198 default: break;
16199 case 4: ID = Intrinsic::minnum;
16200 CI = Intrinsic::experimental_constrained_minnum; break;
16201 }
16202 if (ID != Intrinsic::not_intrinsic) {
16203 if (Builder.getIsFPConstrained()) {
16204 Function *F = CGM.getIntrinsic(CI, ResultType);
16205 return Builder.CreateConstrainedFPCall(F, {X, Y});
16206 } else {
16207 Function *F = CGM.getIntrinsic(ID, ResultType);
16208 return Builder.CreateCall(F, {X, Y});
16209 }
16210 }
16211 switch (BuiltinID) {
16212 case SystemZ::BI__builtin_s390_vfminsb: ID = Intrinsic::s390_vfminsb; break;
16213 case SystemZ::BI__builtin_s390_vfmindb: ID = Intrinsic::s390_vfmindb; break;
16214 default: llvm_unreachable("Unknown BuiltinID")::llvm::llvm_unreachable_internal("Unknown BuiltinID", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 16214)
;
16215 }
16216 Function *F = CGM.getIntrinsic(ID);
16217 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
16218 return Builder.CreateCall(F, {X, Y, M4Value});
16219 }
16220
16221 case SystemZ::BI__builtin_s390_vlbrh:
16222 case SystemZ::BI__builtin_s390_vlbrf:
16223 case SystemZ::BI__builtin_s390_vlbrg: {
16224 llvm::Type *ResultType = ConvertType(E->getType());
16225 Value *X = EmitScalarExpr(E->getArg(0));
16226 Function *F = CGM.getIntrinsic(Intrinsic::bswap, ResultType);
16227 return Builder.CreateCall(F, X);
16228 }
16229
16230 // Vector intrinsics that output the post-instruction CC value.
16231
16232#define INTRINSIC_WITH_CC(NAME) \
16233 case SystemZ::BI__builtin_##NAME: \
16234 return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E)
16235
16236 INTRINSIC_WITH_CC(s390_vpkshs);
16237 INTRINSIC_WITH_CC(s390_vpksfs);
16238 INTRINSIC_WITH_CC(s390_vpksgs);
16239
16240 INTRINSIC_WITH_CC(s390_vpklshs);
16241 INTRINSIC_WITH_CC(s390_vpklsfs);
16242 INTRINSIC_WITH_CC(s390_vpklsgs);
16243
16244 INTRINSIC_WITH_CC(s390_vceqbs);
16245 INTRINSIC_WITH_CC(s390_vceqhs);
16246 INTRINSIC_WITH_CC(s390_vceqfs);
16247 INTRINSIC_WITH_CC(s390_vceqgs);
16248
16249 INTRINSIC_WITH_CC(s390_vchbs);
16250 INTRINSIC_WITH_CC(s390_vchhs);
16251 INTRINSIC_WITH_CC(s390_vchfs);
16252 INTRINSIC_WITH_CC(s390_vchgs);
16253
16254 INTRINSIC_WITH_CC(s390_vchlbs);
16255 INTRINSIC_WITH_CC(s390_vchlhs);
16256 INTRINSIC_WITH_CC(s390_vchlfs);
16257 INTRINSIC_WITH_CC(s390_vchlgs);
16258
16259 INTRINSIC_WITH_CC(s390_vfaebs);
16260 INTRINSIC_WITH_CC(s390_vfaehs);
16261 INTRINSIC_WITH_CC(s390_vfaefs);
16262
16263 INTRINSIC_WITH_CC(s390_vfaezbs);
16264 INTRINSIC_WITH_CC(s390_vfaezhs);
16265 INTRINSIC_WITH_CC(s390_vfaezfs);
16266
16267 INTRINSIC_WITH_CC(s390_vfeebs);
16268 INTRINSIC_WITH_CC(s390_vfeehs);
16269 INTRINSIC_WITH_CC(s390_vfeefs);
16270
16271 INTRINSIC_WITH_CC(s390_vfeezbs);
16272 INTRINSIC_WITH_CC(s390_vfeezhs);
16273 INTRINSIC_WITH_CC(s390_vfeezfs);
16274
16275 INTRINSIC_WITH_CC(s390_vfenebs);
16276 INTRINSIC_WITH_CC(s390_vfenehs);
16277 INTRINSIC_WITH_CC(s390_vfenefs);
16278
16279 INTRINSIC_WITH_CC(s390_vfenezbs);
16280 INTRINSIC_WITH_CC(s390_vfenezhs);
16281 INTRINSIC_WITH_CC(s390_vfenezfs);
16282
16283 INTRINSIC_WITH_CC(s390_vistrbs);
16284 INTRINSIC_WITH_CC(s390_vistrhs);
16285 INTRINSIC_WITH_CC(s390_vistrfs);
16286
16287 INTRINSIC_WITH_CC(s390_vstrcbs);
16288 INTRINSIC_WITH_CC(s390_vstrchs);
16289 INTRINSIC_WITH_CC(s390_vstrcfs);
16290
16291 INTRINSIC_WITH_CC(s390_vstrczbs);
16292 INTRINSIC_WITH_CC(s390_vstrczhs);
16293 INTRINSIC_WITH_CC(s390_vstrczfs);
16294
16295 INTRINSIC_WITH_CC(s390_vfcesbs);
16296 INTRINSIC_WITH_CC(s390_vfcedbs);
16297 INTRINSIC_WITH_CC(s390_vfchsbs);
16298 INTRINSIC_WITH_CC(s390_vfchdbs);
16299 INTRINSIC_WITH_CC(s390_vfchesbs);
16300 INTRINSIC_WITH_CC(s390_vfchedbs);
16301
16302 INTRINSIC_WITH_CC(s390_vftcisb);
16303 INTRINSIC_WITH_CC(s390_vftcidb);
16304
16305 INTRINSIC_WITH_CC(s390_vstrsb);
16306 INTRINSIC_WITH_CC(s390_vstrsh);
16307 INTRINSIC_WITH_CC(s390_vstrsf);
16308
16309 INTRINSIC_WITH_CC(s390_vstrszb);
16310 INTRINSIC_WITH_CC(s390_vstrszh);
16311 INTRINSIC_WITH_CC(s390_vstrszf);
16312
16313#undef INTRINSIC_WITH_CC
16314
16315 default:
16316 return nullptr;
16317 }
16318}
16319
16320namespace {
16321// Helper classes for mapping MMA builtins to particular LLVM intrinsic variant.
16322struct NVPTXMmaLdstInfo {
16323 unsigned NumResults; // Number of elements to load/store
16324 // Intrinsic IDs for row/col variants. 0 if particular layout is unsupported.
16325 unsigned IID_col;
16326 unsigned IID_row;
16327};
16328
16329#define MMA_INTR(geom_op_type, layout) \
16330 Intrinsic::nvvm_wmma_##geom_op_type##_##layout##_stride
16331#define MMA_LDST(n, geom_op_type) \
16332 { n, MMA_INTR(geom_op_type, col), MMA_INTR(geom_op_type, row) }
16333
16334static NVPTXMmaLdstInfo getNVPTXMmaLdstInfo(unsigned BuiltinID) {
16335 switch (BuiltinID) {
16336 // FP MMA loads
16337 case NVPTX::BI__hmma_m16n16k16_ld_a:
16338 return MMA_LDST(8, m16n16k16_load_a_f16);
16339 case NVPTX::BI__hmma_m16n16k16_ld_b:
16340 return MMA_LDST(8, m16n16k16_load_b_f16);
16341 case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
16342 return MMA_LDST(4, m16n16k16_load_c_f16);
16343 case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
16344 return MMA_LDST(8, m16n16k16_load_c_f32);
16345 case NVPTX::BI__hmma_m32n8k16_ld_a:
16346 return MMA_LDST(8, m32n8k16_load_a_f16);
16347 case NVPTX::BI__hmma_m32n8k16_ld_b:
16348 return MMA_LDST(8, m32n8k16_load_b_f16);
16349 case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
16350 return MMA_LDST(4, m32n8k16_load_c_f16);
16351 case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
16352 return MMA_LDST(8, m32n8k16_load_c_f32);
16353 case NVPTX::BI__hmma_m8n32k16_ld_a:
16354 return MMA_LDST(8, m8n32k16_load_a_f16);
16355 case NVPTX::BI__hmma_m8n32k16_ld_b:
16356 return MMA_LDST(8, m8n32k16_load_b_f16);
16357 case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
16358 return MMA_LDST(4, m8n32k16_load_c_f16);
16359 case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
16360 return MMA_LDST(8, m8n32k16_load_c_f32);
16361
16362 // Integer MMA loads
16363 case NVPTX::BI__imma_m16n16k16_ld_a_s8:
16364 return MMA_LDST(2, m16n16k16_load_a_s8);
16365 case NVPTX::BI__imma_m16n16k16_ld_a_u8:
16366 return MMA_LDST(2, m16n16k16_load_a_u8);
16367 case NVPTX::BI__imma_m16n16k16_ld_b_s8:
16368 return MMA_LDST(2, m16n16k16_load_b_s8);
16369 case NVPTX::BI__imma_m16n16k16_ld_b_u8:
16370 return MMA_LDST(2, m16n16k16_load_b_u8);
16371 case NVPTX::BI__imma_m16n16k16_ld_c:
16372 return MMA_LDST(8, m16n16k16_load_c_s32);
16373 case NVPTX::BI__imma_m32n8k16_ld_a_s8:
16374 return MMA_LDST(4, m32n8k16_load_a_s8);
16375 case NVPTX::BI__imma_m32n8k16_ld_a_u8:
16376 return MMA_LDST(4, m32n8k16_load_a_u8);
16377 case NVPTX::BI__imma_m32n8k16_ld_b_s8:
16378 return MMA_LDST(1, m32n8k16_load_b_s8);
16379 case NVPTX::BI__imma_m32n8k16_ld_b_u8:
16380 return MMA_LDST(1, m32n8k16_load_b_u8);
16381 case NVPTX::BI__imma_m32n8k16_ld_c:
16382 return MMA_LDST(8, m32n8k16_load_c_s32);
16383 case NVPTX::BI__imma_m8n32k16_ld_a_s8:
16384 return MMA_LDST(1, m8n32k16_load_a_s8);
16385 case NVPTX::BI__imma_m8n32k16_ld_a_u8:
16386 return MMA_LDST(1, m8n32k16_load_a_u8);
16387 case NVPTX::BI__imma_m8n32k16_ld_b_s8:
16388 return MMA_LDST(4, m8n32k16_load_b_s8);
16389 case NVPTX::BI__imma_m8n32k16_ld_b_u8:
16390 return MMA_LDST(4, m8n32k16_load_b_u8);
16391 case NVPTX::BI__imma_m8n32k16_ld_c:
16392 return MMA_LDST(8, m8n32k16_load_c_s32);
16393
16394 // Sub-integer MMA loads.
16395 // Only row/col layout is supported by A/B fragments.
16396 case NVPTX::BI__imma_m8n8k32_ld_a_s4:
16397 return {1, 0, MMA_INTR(m8n8k32_load_a_s4, row)};
16398 case NVPTX::BI__imma_m8n8k32_ld_a_u4:
16399 return {1, 0, MMA_INTR(m8n8k32_load_a_u4, row)};
16400 case NVPTX::BI__imma_m8n8k32_ld_b_s4:
16401 return {1, MMA_INTR(m8n8k32_load_b_s4, col), 0};
16402 case NVPTX::BI__imma_m8n8k32_ld_b_u4:
16403 return {1, MMA_INTR(m8n8k32_load_b_u4, col), 0};
16404 case NVPTX::BI__imma_m8n8k32_ld_c:
16405 return MMA_LDST(2, m8n8k32_load_c_s32);
16406 case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
16407 return {1, 0, MMA_INTR(m8n8k128_load_a_b1, row)};
16408 case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
16409 return {1, MMA_INTR(m8n8k128_load_b_b1, col), 0};
16410 case NVPTX::BI__bmma_m8n8k128_ld_c:
16411 return MMA_LDST(2, m8n8k128_load_c_s32);
16412
16413 // NOTE: We need to follow inconsitent naming scheme used by NVCC. Unlike
16414 // PTX and LLVM IR where stores always use fragment D, NVCC builtins always
16415 // use fragment C for both loads and stores.
16416 // FP MMA stores.
16417 case NVPTX::BI__hmma_m16n16k16_st_c_f16:
16418 return MMA_LDST(4, m16n16k16_store_d_f16);
16419 case NVPTX::BI__hmma_m16n16k16_st_c_f32:
16420 return MMA_LDST(8, m16n16k16_store_d_f32);
16421 case NVPTX::BI__hmma_m32n8k16_st_c_f16:
16422 return MMA_LDST(4, m32n8k16_store_d_f16);
16423 case NVPTX::BI__hmma_m32n8k16_st_c_f32:
16424 return MMA_LDST(8, m32n8k16_store_d_f32);
16425 case NVPTX::BI__hmma_m8n32k16_st_c_f16:
16426 return MMA_LDST(4, m8n32k16_store_d_f16);
16427 case NVPTX::BI__hmma_m8n32k16_st_c_f32:
16428 return MMA_LDST(8, m8n32k16_store_d_f32);
16429
16430 // Integer and sub-integer MMA stores.
16431 // Another naming quirk. Unlike other MMA builtins that use PTX types in the
16432 // name, integer loads/stores use LLVM's i32.
16433 case NVPTX::BI__imma_m16n16k16_st_c_i32:
16434 return MMA_LDST(8, m16n16k16_store_d_s32);
16435 case NVPTX::BI__imma_m32n8k16_st_c_i32:
16436 return MMA_LDST(8, m32n8k16_store_d_s32);
16437 case NVPTX::BI__imma_m8n32k16_st_c_i32:
16438 return MMA_LDST(8, m8n32k16_store_d_s32);
16439 case NVPTX::BI__imma_m8n8k32_st_c_i32:
16440 return MMA_LDST(2, m8n8k32_store_d_s32);
16441 case NVPTX::BI__bmma_m8n8k128_st_c_i32:
16442 return MMA_LDST(2, m8n8k128_store_d_s32);
16443
16444 default:
16445 llvm_unreachable("Unknown MMA builtin")::llvm::llvm_unreachable_internal("Unknown MMA builtin", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 16445)
;
16446 }
16447}
16448#undef MMA_LDST
16449#undef MMA_INTR
16450
16451
16452struct NVPTXMmaInfo {
16453 unsigned NumEltsA;
16454 unsigned NumEltsB;
16455 unsigned NumEltsC;
16456 unsigned NumEltsD;
16457 std::array<unsigned, 8> Variants;
16458
16459 unsigned getMMAIntrinsic(int Layout, bool Satf) {
16460 unsigned Index = Layout * 2 + Satf;
16461 if (Index >= Variants.size())
16462 return 0;
16463 return Variants[Index];
16464 }
16465};
16466
16467 // Returns an intrinsic that matches Layout and Satf for valid combinations of
16468 // Layout and Satf, 0 otherwise.
16469static NVPTXMmaInfo getNVPTXMmaInfo(unsigned BuiltinID) {
16470 // clang-format off
16471#define MMA_VARIANTS(geom, type) {{ \
16472 Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type, \
16473 Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type##_satfinite, \
16474 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \
16475 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
16476 Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type, \
16477 Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type##_satfinite, \
16478 Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type, \
16479 Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type##_satfinite \
16480 }}
16481// Sub-integer MMA only supports row.col layout.
16482#define MMA_VARIANTS_I4(geom, type) {{ \
16483 0, \
16484 0, \
16485 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \
16486 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
16487 0, \
16488 0, \
16489 0, \
16490 0 \
16491 }}
16492// b1 MMA does not support .satfinite.
16493#define MMA_VARIANTS_B1(geom, type) {{ \
16494 0, \
16495 0, \
16496 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \
16497 0, \
16498 0, \
16499 0, \
16500 0, \
16501 0 \
16502 }}
16503 // clang-format on
16504 switch (BuiltinID) {
16505 // FP MMA
16506 // Note that 'type' argument of MMA_VARIANT uses D_C notation, while
16507 // NumEltsN of return value are ordered as A,B,C,D.
16508 case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
16509 return {8, 8, 4, 4, MMA_VARIANTS(m16n16k16, f16_f16)};
16510 case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
16511 return {8, 8, 4, 8, MMA_VARIANTS(m16n16k16, f32_f16)};
16512 case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
16513 return {8, 8, 8, 4, MMA_VARIANTS(m16n16k16, f16_f32)};
16514 case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
16515 return {8, 8, 8, 8, MMA_VARIANTS(m16n16k16, f32_f32)};
16516 case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
16517 return {8, 8, 4, 4, MMA_VARIANTS(m32n8k16, f16_f16)};
16518 case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
16519 return {8, 8, 4, 8, MMA_VARIANTS(m32n8k16, f32_f16)};
16520 case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
16521 return {8, 8, 8, 4, MMA_VARIANTS(m32n8k16, f16_f32)};
16522 case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
16523 return {8, 8, 8, 8, MMA_VARIANTS(m32n8k16, f32_f32)};
16524 case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
16525 return {8, 8, 4, 4, MMA_VARIANTS(m8n32k16, f16_f16)};
16526 case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
16527 return {8, 8, 4, 8, MMA_VARIANTS(m8n32k16, f32_f16)};
16528 case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
16529 return {8, 8, 8, 4, MMA_VARIANTS(m8n32k16, f16_f32)};
16530 case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
16531 return {8, 8, 8, 8, MMA_VARIANTS(m8n32k16, f32_f32)};
16532
16533 // Integer MMA
16534 case NVPTX::BI__imma_m16n16k16_mma_s8:
16535 return {2, 2, 8, 8, MMA_VARIANTS(m16n16k16, s8)};
16536 case NVPTX::BI__imma_m16n16k16_mma_u8:
16537 return {2, 2, 8, 8, MMA_VARIANTS(m16n16k16, u8)};
16538 case NVPTX::BI__imma_m32n8k16_mma_s8:
16539 return {4, 1, 8, 8, MMA_VARIANTS(m32n8k16, s8)};
16540 case NVPTX::BI__imma_m32n8k16_mma_u8:
16541 return {4, 1, 8, 8, MMA_VARIANTS(m32n8k16, u8)};
16542 case NVPTX::BI__imma_m8n32k16_mma_s8:
16543 return {1, 4, 8, 8, MMA_VARIANTS(m8n32k16, s8)};
16544 case NVPTX::BI__imma_m8n32k16_mma_u8:
16545 return {1, 4, 8, 8, MMA_VARIANTS(m8n32k16, u8)};
16546
16547 // Sub-integer MMA
16548 case NVPTX::BI__imma_m8n8k32_mma_s4:
16549 return {1, 1, 2, 2, MMA_VARIANTS_I4(m8n8k32, s4)};
16550 case NVPTX::BI__imma_m8n8k32_mma_u4:
16551 return {1, 1, 2, 2, MMA_VARIANTS_I4(m8n8k32, u4)};
16552 case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1:
16553 return {1, 1, 2, 2, MMA_VARIANTS_B1(m8n8k128, b1)};
16554 default:
16555 llvm_unreachable("Unexpected builtin ID.")::llvm::llvm_unreachable_internal("Unexpected builtin ID.", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 16555)
;
16556 }
16557#undef MMA_VARIANTS
16558#undef MMA_VARIANTS_I4
16559#undef MMA_VARIANTS_B1
16560}
16561
16562} // namespace
16563
16564Value *
16565CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E) {
16566 auto MakeLdg = [&](unsigned IntrinsicID) {
16567 Value *Ptr = EmitScalarExpr(E->getArg(0));
16568 clang::CharUnits Align =
16569 CGM.getNaturalPointeeTypeAlignment(E->getArg(0)->getType());
16570 return Builder.CreateCall(
16571 CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
16572 Ptr->getType()}),
16573 {Ptr, ConstantInt::get(Builder.getInt32Ty(), Align.getQuantity())});
16574 };
16575 auto MakeScopedAtomic = [&](unsigned IntrinsicID) {
16576 Value *Ptr = EmitScalarExpr(E->getArg(0));
16577 return Builder.CreateCall(
16578 CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
16579 Ptr->getType()}),
16580 {Ptr, EmitScalarExpr(E->getArg(1))});
16581 };
16582 switch (BuiltinID) {
16583 case NVPTX::BI__nvvm_atom_add_gen_i:
16584 case NVPTX::BI__nvvm_atom_add_gen_l:
16585 case NVPTX::BI__nvvm_atom_add_gen_ll:
16586 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E);
16587
16588 case NVPTX::BI__nvvm_atom_sub_gen_i:
16589 case NVPTX::BI__nvvm_atom_sub_gen_l:
16590 case NVPTX::BI__nvvm_atom_sub_gen_ll:
16591 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E);
16592
16593 case NVPTX::BI__nvvm_atom_and_gen_i:
16594 case NVPTX::BI__nvvm_atom_and_gen_l:
16595 case NVPTX::BI__nvvm_atom_and_gen_ll:
16596 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E);
16597
16598 case NVPTX::BI__nvvm_atom_or_gen_i:
16599 case NVPTX::BI__nvvm_atom_or_gen_l:
16600 case NVPTX::BI__nvvm_atom_or_gen_ll:
16601 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E);
16602
16603 case NVPTX::BI__nvvm_atom_xor_gen_i:
16604 case NVPTX::BI__nvvm_atom_xor_gen_l:
16605 case NVPTX::BI__nvvm_atom_xor_gen_ll:
16606 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E);
16607
16608 case NVPTX::BI__nvvm_atom_xchg_gen_i:
16609 case NVPTX::BI__nvvm_atom_xchg_gen_l:
16610 case NVPTX::BI__nvvm_atom_xchg_gen_ll:
16611 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E);
16612
16613 case NVPTX::BI__nvvm_atom_max_gen_i:
16614 case NVPTX::BI__nvvm_atom_max_gen_l:
16615 case NVPTX::BI__nvvm_atom_max_gen_ll:
16616 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E);
16617
16618 case NVPTX::BI__nvvm_atom_max_gen_ui:
16619 case NVPTX::BI__nvvm_atom_max_gen_ul:
16620 case NVPTX::BI__nvvm_atom_max_gen_ull:
16621 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E);
16622
16623 case NVPTX::BI__nvvm_atom_min_gen_i:
16624 case NVPTX::BI__nvvm_atom_min_gen_l:
16625 case NVPTX::BI__nvvm_atom_min_gen_ll:
16626 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E);
16627
16628 case NVPTX::BI__nvvm_atom_min_gen_ui:
16629 case NVPTX::BI__nvvm_atom_min_gen_ul:
16630 case NVPTX::BI__nvvm_atom_min_gen_ull:
16631 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E);
16632
16633 case NVPTX::BI__nvvm_atom_cas_gen_i:
16634 case NVPTX::BI__nvvm_atom_cas_gen_l:
16635 case NVPTX::BI__nvvm_atom_cas_gen_ll:
16636 // __nvvm_atom_cas_gen_* should return the old value rather than the
16637 // success flag.
16638 return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false);
16639
16640 case NVPTX::BI__nvvm_atom_add_gen_f:
16641 case NVPTX::BI__nvvm_atom_add_gen_d: {
16642 Value *Ptr = EmitScalarExpr(E->getArg(0));
16643 Value *Val = EmitScalarExpr(E->getArg(1));
16644 return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::FAdd, Ptr, Val,
16645 AtomicOrdering::SequentiallyConsistent);
16646 }
16647
16648 case NVPTX::BI__nvvm_atom_inc_gen_ui: {
16649 Value *Ptr = EmitScalarExpr(E->getArg(0));
16650 Value *Val = EmitScalarExpr(E->getArg(1));
16651 Function *FnALI32 =
16652 CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_inc_32, Ptr->getType());
16653 return Builder.CreateCall(FnALI32, {Ptr, Val});
16654 }
16655
16656 case NVPTX::BI__nvvm_atom_dec_gen_ui: {
16657 Value *Ptr = EmitScalarExpr(E->getArg(0));
16658 Value *Val = EmitScalarExpr(E->getArg(1));
16659 Function *FnALD32 =
16660 CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_dec_32, Ptr->getType());
16661 return Builder.CreateCall(FnALD32, {Ptr, Val});
16662 }
16663
16664 case NVPTX::BI__nvvm_ldg_c:
16665 case NVPTX::BI__nvvm_ldg_c2:
16666 case NVPTX::BI__nvvm_ldg_c4:
16667 case NVPTX::BI__nvvm_ldg_s:
16668 case NVPTX::BI__nvvm_ldg_s2:
16669 case NVPTX::BI__nvvm_ldg_s4:
16670 case NVPTX::BI__nvvm_ldg_i:
16671 case NVPTX::BI__nvvm_ldg_i2:
16672 case NVPTX::BI__nvvm_ldg_i4:
16673 case NVPTX::BI__nvvm_ldg_l:
16674 case NVPTX::BI__nvvm_ldg_ll:
16675 case NVPTX::BI__nvvm_ldg_ll2:
16676 case NVPTX::BI__nvvm_ldg_uc:
16677 case NVPTX::BI__nvvm_ldg_uc2:
16678 case NVPTX::BI__nvvm_ldg_uc4:
16679 case NVPTX::BI__nvvm_ldg_us:
16680 case NVPTX::BI__nvvm_ldg_us2:
16681 case NVPTX::BI__nvvm_ldg_us4:
16682 case NVPTX::BI__nvvm_ldg_ui:
16683 case NVPTX::BI__nvvm_ldg_ui2:
16684 case NVPTX::BI__nvvm_ldg_ui4:
16685 case NVPTX::BI__nvvm_ldg_ul:
16686 case NVPTX::BI__nvvm_ldg_ull:
16687 case NVPTX::BI__nvvm_ldg_ull2:
16688 // PTX Interoperability section 2.2: "For a vector with an even number of
16689 // elements, its alignment is set to number of elements times the alignment
16690 // of its member: n*alignof(t)."
16691 return MakeLdg(Intrinsic::nvvm_ldg_global_i);
16692 case NVPTX::BI__nvvm_ldg_f:
16693 case NVPTX::BI__nvvm_ldg_f2:
16694 case NVPTX::BI__nvvm_ldg_f4:
16695 case NVPTX::BI__nvvm_ldg_d:
16696 case NVPTX::BI__nvvm_ldg_d2:
16697 return MakeLdg(Intrinsic::nvvm_ldg_global_f);
16698
16699 case NVPTX::BI__nvvm_atom_cta_add_gen_i:
16700 case NVPTX::BI__nvvm_atom_cta_add_gen_l:
16701 case NVPTX::BI__nvvm_atom_cta_add_gen_ll:
16702 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_cta);
16703 case NVPTX::BI__nvvm_atom_sys_add_gen_i:
16704 case NVPTX::BI__nvvm_atom_sys_add_gen_l:
16705 case NVPTX::BI__nvvm_atom_sys_add_gen_ll:
16706 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_sys);
16707 case NVPTX::BI__nvvm_atom_cta_add_gen_f:
16708 case NVPTX::BI__nvvm_atom_cta_add_gen_d:
16709 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_cta);
16710 case NVPTX::BI__nvvm_atom_sys_add_gen_f:
16711 case NVPTX::BI__nvvm_atom_sys_add_gen_d:
16712 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_sys);
16713 case NVPTX::BI__nvvm_atom_cta_xchg_gen_i:
16714 case NVPTX::BI__nvvm_atom_cta_xchg_gen_l:
16715 case NVPTX::BI__nvvm_atom_cta_xchg_gen_ll:
16716 return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_cta);
16717 case NVPTX::BI__nvvm_atom_sys_xchg_gen_i:
16718 case NVPTX::BI__nvvm_atom_sys_xchg_gen_l:
16719 case NVPTX::BI__nvvm_atom_sys_xchg_gen_ll:
16720 return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_sys);
16721 case NVPTX::BI__nvvm_atom_cta_max_gen_i:
16722 case NVPTX::BI__nvvm_atom_cta_max_gen_ui:
16723 case NVPTX::BI__nvvm_atom_cta_max_gen_l:
16724 case NVPTX::BI__nvvm_atom_cta_max_gen_ul:
16725 case NVPTX::BI__nvvm_atom_cta_max_gen_ll:
16726 case NVPTX::BI__nvvm_atom_cta_max_gen_ull:
16727 return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_cta);
16728 case NVPTX::BI__nvvm_atom_sys_max_gen_i:
16729 case NVPTX::BI__nvvm_atom_sys_max_gen_ui:
16730 case NVPTX::BI__nvvm_atom_sys_max_gen_l:
16731 case NVPTX::BI__nvvm_atom_sys_max_gen_ul:
16732 case NVPTX::BI__nvvm_atom_sys_max_gen_ll:
16733 case NVPTX::BI__nvvm_atom_sys_max_gen_ull:
16734 return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_sys);
16735 case NVPTX::BI__nvvm_atom_cta_min_gen_i:
16736 case NVPTX::BI__nvvm_atom_cta_min_gen_ui:
16737 case NVPTX::BI__nvvm_atom_cta_min_gen_l:
16738 case NVPTX::BI__nvvm_atom_cta_min_gen_ul:
16739 case NVPTX::BI__nvvm_atom_cta_min_gen_ll:
16740 case NVPTX::BI__nvvm_atom_cta_min_gen_ull:
16741 return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_cta);
16742 case NVPTX::BI__nvvm_atom_sys_min_gen_i:
16743 case NVPTX::BI__nvvm_atom_sys_min_gen_ui:
16744 case NVPTX::BI__nvvm_atom_sys_min_gen_l:
16745 case NVPTX::BI__nvvm_atom_sys_min_gen_ul:
16746 case NVPTX::BI__nvvm_atom_sys_min_gen_ll:
16747 case NVPTX::BI__nvvm_atom_sys_min_gen_ull:
16748 return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_sys);
16749 case NVPTX::BI__nvvm_atom_cta_inc_gen_ui:
16750 return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_cta);
16751 case NVPTX::BI__nvvm_atom_cta_dec_gen_ui:
16752 return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_cta);
16753 case NVPTX::BI__nvvm_atom_sys_inc_gen_ui:
16754 return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_sys);
16755 case NVPTX::BI__nvvm_atom_sys_dec_gen_ui:
16756 return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_sys);
16757 case NVPTX::BI__nvvm_atom_cta_and_gen_i:
16758 case NVPTX::BI__nvvm_atom_cta_and_gen_l:
16759 case NVPTX::BI__nvvm_atom_cta_and_gen_ll:
16760 return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_cta);
16761 case NVPTX::BI__nvvm_atom_sys_and_gen_i:
16762 case NVPTX::BI__nvvm_atom_sys_and_gen_l:
16763 case NVPTX::BI__nvvm_atom_sys_and_gen_ll:
16764 return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_sys);
16765 case NVPTX::BI__nvvm_atom_cta_or_gen_i:
16766 case NVPTX::BI__nvvm_atom_cta_or_gen_l:
16767 case NVPTX::BI__nvvm_atom_cta_or_gen_ll:
16768 return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_cta);
16769 case NVPTX::BI__nvvm_atom_sys_or_gen_i:
16770 case NVPTX::BI__nvvm_atom_sys_or_gen_l:
16771 case NVPTX::BI__nvvm_atom_sys_or_gen_ll:
16772 return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_sys);
16773 case NVPTX::BI__nvvm_atom_cta_xor_gen_i:
16774 case NVPTX::BI__nvvm_atom_cta_xor_gen_l:
16775 case NVPTX::BI__nvvm_atom_cta_xor_gen_ll:
16776 return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_cta);
16777 case NVPTX::BI__nvvm_atom_sys_xor_gen_i:
16778 case NVPTX::BI__nvvm_atom_sys_xor_gen_l:
16779 case NVPTX::BI__nvvm_atom_sys_xor_gen_ll:
16780 return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_sys);
16781 case NVPTX::BI__nvvm_atom_cta_cas_gen_i:
16782 case NVPTX::BI__nvvm_atom_cta_cas_gen_l:
16783 case NVPTX::BI__nvvm_atom_cta_cas_gen_ll: {
16784 Value *Ptr = EmitScalarExpr(E->getArg(0));
16785 return Builder.CreateCall(
16786 CGM.getIntrinsic(
16787 Intrinsic::nvvm_atomic_cas_gen_i_cta,
16788 {Ptr->getType()->getPointerElementType(), Ptr->getType()}),
16789 {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
16790 }
16791 case NVPTX::BI__nvvm_atom_sys_cas_gen_i:
16792 case NVPTX::BI__nvvm_atom_sys_cas_gen_l:
16793 case NVPTX::BI__nvvm_atom_sys_cas_gen_ll: {
16794 Value *Ptr = EmitScalarExpr(E->getArg(0));
16795 return Builder.CreateCall(
16796 CGM.getIntrinsic(
16797 Intrinsic::nvvm_atomic_cas_gen_i_sys,
16798 {Ptr->getType()->getPointerElementType(), Ptr->getType()}),
16799 {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
16800 }
16801 case NVPTX::BI__nvvm_match_all_sync_i32p:
16802 case NVPTX::BI__nvvm_match_all_sync_i64p: {
16803 Value *Mask = EmitScalarExpr(E->getArg(0));
16804 Value *Val = EmitScalarExpr(E->getArg(1));
16805 Address PredOutPtr = EmitPointerWithAlignment(E->getArg(2));
16806 Value *ResultPair = Builder.CreateCall(
16807 CGM.getIntrinsic(BuiltinID == NVPTX::BI__nvvm_match_all_sync_i32p
16808 ? Intrinsic::nvvm_match_all_sync_i32p
16809 : Intrinsic::nvvm_match_all_sync_i64p),
16810 {Mask, Val});
16811 Value *Pred = Builder.CreateZExt(Builder.CreateExtractValue(ResultPair, 1),
16812 PredOutPtr.getElementType());
16813 Builder.CreateStore(Pred, PredOutPtr);
16814 return Builder.CreateExtractValue(ResultPair, 0);
16815 }
16816
16817 // FP MMA loads
16818 case NVPTX::BI__hmma_m16n16k16_ld_a:
16819 case NVPTX::BI__hmma_m16n16k16_ld_b:
16820 case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
16821 case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
16822 case NVPTX::BI__hmma_m32n8k16_ld_a:
16823 case NVPTX::BI__hmma_m32n8k16_ld_b:
16824 case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
16825 case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
16826 case NVPTX::BI__hmma_m8n32k16_ld_a:
16827 case NVPTX::BI__hmma_m8n32k16_ld_b:
16828 case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
16829 case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
16830 // Integer MMA loads.
16831 case NVPTX::BI__imma_m16n16k16_ld_a_s8:
16832 case NVPTX::BI__imma_m16n16k16_ld_a_u8:
16833 case NVPTX::BI__imma_m16n16k16_ld_b_s8:
16834 case NVPTX::BI__imma_m16n16k16_ld_b_u8:
16835 case NVPTX::BI__imma_m16n16k16_ld_c:
16836 case NVPTX::BI__imma_m32n8k16_ld_a_s8:
16837 case NVPTX::BI__imma_m32n8k16_ld_a_u8:
16838 case NVPTX::BI__imma_m32n8k16_ld_b_s8:
16839 case NVPTX::BI__imma_m32n8k16_ld_b_u8:
16840 case NVPTX::BI__imma_m32n8k16_ld_c:
16841 case NVPTX::BI__imma_m8n32k16_ld_a_s8:
16842 case NVPTX::BI__imma_m8n32k16_ld_a_u8:
16843 case NVPTX::BI__imma_m8n32k16_ld_b_s8:
16844 case NVPTX::BI__imma_m8n32k16_ld_b_u8:
16845 case NVPTX::BI__imma_m8n32k16_ld_c:
16846 // Sub-integer MMA loads.
16847 case NVPTX::BI__imma_m8n8k32_ld_a_s4:
16848 case NVPTX::BI__imma_m8n8k32_ld_a_u4:
16849 case NVPTX::BI__imma_m8n8k32_ld_b_s4:
16850 case NVPTX::BI__imma_m8n8k32_ld_b_u4:
16851 case NVPTX::BI__imma_m8n8k32_ld_c:
16852 case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
16853 case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
16854 case NVPTX::BI__bmma_m8n8k128_ld_c:
16855 {
16856 Address Dst = EmitPointerWithAlignment(E->getArg(0));
16857 Value *Src = EmitScalarExpr(E->getArg(1));
16858 Value *Ldm = EmitScalarExpr(E->getArg(2));
16859 Optional<llvm::APSInt> isColMajorArg =
16860 E->getArg(3)->getIntegerConstantExpr(getContext());
16861 if (!isColMajorArg)
16862 return nullptr;
16863 bool isColMajor = isColMajorArg->getSExtValue();
16864 NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
16865 unsigned IID = isColMajor ? II.IID_col : II.IID_row;
16866 if (IID == 0)
16867 return nullptr;
16868
16869 Value *Result =
16870 Builder.CreateCall(CGM.getIntrinsic(IID, Src->getType()), {Src, Ldm});
16871
16872 // Save returned values.
16873 assert(II.NumResults)(static_cast <bool> (II.NumResults) ? void (0) : __assert_fail
("II.NumResults", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 16873, __extension__ __PRETTY_FUNCTION__))
;
16874 if (II.NumResults == 1) {
16875 Builder.CreateAlignedStore(Result, Dst.getPointer(),
16876 CharUnits::fromQuantity(4));
16877 } else {
16878 for (unsigned i = 0; i < II.NumResults; ++i) {
16879 Builder.CreateAlignedStore(
16880 Builder.CreateBitCast(Builder.CreateExtractValue(Result, i),
16881 Dst.getElementType()),
16882 Builder.CreateGEP(Dst.getPointer(),
16883 llvm::ConstantInt::get(IntTy, i)),
16884 CharUnits::fromQuantity(4));
16885 }
16886 }
16887 return Result;
16888 }
16889
16890 case NVPTX::BI__hmma_m16n16k16_st_c_f16:
16891 case NVPTX::BI__hmma_m16n16k16_st_c_f32:
16892 case NVPTX::BI__hmma_m32n8k16_st_c_f16:
16893 case NVPTX::BI__hmma_m32n8k16_st_c_f32:
16894 case NVPTX::BI__hmma_m8n32k16_st_c_f16:
16895 case NVPTX::BI__hmma_m8n32k16_st_c_f32:
16896 case NVPTX::BI__imma_m16n16k16_st_c_i32:
16897 case NVPTX::BI__imma_m32n8k16_st_c_i32:
16898 case NVPTX::BI__imma_m8n32k16_st_c_i32:
16899 case NVPTX::BI__imma_m8n8k32_st_c_i32:
16900 case NVPTX::BI__bmma_m8n8k128_st_c_i32: {
16901 Value *Dst = EmitScalarExpr(E->getArg(0));
16902 Address Src = EmitPointerWithAlignment(E->getArg(1));
16903 Value *Ldm = EmitScalarExpr(E->getArg(2));
16904 Optional<llvm::APSInt> isColMajorArg =
16905 E->getArg(3)->getIntegerConstantExpr(getContext());
16906 if (!isColMajorArg)
16907 return nullptr;
16908 bool isColMajor = isColMajorArg->getSExtValue();
16909 NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
16910 unsigned IID = isColMajor ? II.IID_col : II.IID_row;
16911 if (IID == 0)
16912 return nullptr;
16913 Function *Intrinsic =
16914 CGM.getIntrinsic(IID, Dst->getType());
16915 llvm::Type *ParamType = Intrinsic->getFunctionType()->getParamType(1);
16916 SmallVector<Value *, 10> Values = {Dst};
16917 for (unsigned i = 0; i < II.NumResults; ++i) {
16918 Value *V = Builder.CreateAlignedLoad(
16919 Src.getElementType(),
16920 Builder.CreateGEP(Src.getElementType(), Src.getPointer(),
16921 llvm::ConstantInt::get(IntTy, i)),
16922 CharUnits::fromQuantity(4));
16923 Values.push_back(Builder.CreateBitCast(V, ParamType));
16924 }
16925 Values.push_back(Ldm);
16926 Value *Result = Builder.CreateCall(Intrinsic, Values);
16927 return Result;
16928 }
16929
16930 // BI__hmma_m16n16k16_mma_<Dtype><CType>(d, a, b, c, layout, satf) -->
16931 // Intrinsic::nvvm_wmma_m16n16k16_mma_sync<layout A,B><DType><CType><Satf>
16932 case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
16933 case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
16934 case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
16935 case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
16936 case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
16937 case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
16938 case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
16939 case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
16940 case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
16941 case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
16942 case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
16943 case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
16944 case NVPTX::BI__imma_m16n16k16_mma_s8:
16945 case NVPTX::BI__imma_m16n16k16_mma_u8:
16946 case NVPTX::BI__imma_m32n8k16_mma_s8:
16947 case NVPTX::BI__imma_m32n8k16_mma_u8:
16948 case NVPTX::BI__imma_m8n32k16_mma_s8:
16949 case NVPTX::BI__imma_m8n32k16_mma_u8:
16950 case NVPTX::BI__imma_m8n8k32_mma_s4:
16951 case NVPTX::BI__imma_m8n8k32_mma_u4:
16952 case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1: {
16953 Address Dst = EmitPointerWithAlignment(E->getArg(0));
16954 Address SrcA = EmitPointerWithAlignment(E->getArg(1));
16955 Address SrcB = EmitPointerWithAlignment(E->getArg(2));
16956 Address SrcC = EmitPointerWithAlignment(E->getArg(3));
16957 Optional<llvm::APSInt> LayoutArg =
16958 E->getArg(4)->getIntegerConstantExpr(getContext());
16959 if (!LayoutArg)
16960 return nullptr;
16961 int Layout = LayoutArg->getSExtValue();
16962 if (Layout < 0 || Layout > 3)
16963 return nullptr;
16964 llvm::APSInt SatfArg;
16965 if (BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1)
16966 SatfArg = 0; // .b1 does not have satf argument.
16967 else if (Optional<llvm::APSInt> OptSatfArg =
16968 E->getArg(5)->getIntegerConstantExpr(getContext()))
16969 SatfArg = *OptSatfArg;
16970 else
16971 return nullptr;
16972 bool Satf = SatfArg.getSExtValue();
16973 NVPTXMmaInfo MI = getNVPTXMmaInfo(BuiltinID);
16974 unsigned IID = MI.getMMAIntrinsic(Layout, Satf);
16975 if (IID == 0) // Unsupported combination of Layout/Satf.
16976 return nullptr;
16977
16978 SmallVector<Value *, 24> Values;
16979 Function *Intrinsic = CGM.getIntrinsic(IID);
16980 llvm::Type *AType = Intrinsic->getFunctionType()->getParamType(0);
16981 // Load A
16982 for (unsigned i = 0; i < MI.NumEltsA; ++i) {
16983 Value *V = Builder.CreateAlignedLoad(
16984 SrcA.getElementType(),
16985 Builder.CreateGEP(SrcA.getElementType(), SrcA.getPointer(),
16986 llvm::ConstantInt::get(IntTy, i)),
16987 CharUnits::fromQuantity(4));
16988 Values.push_back(Builder.CreateBitCast(V, AType));
16989 }
16990 // Load B
16991 llvm::Type *BType = Intrinsic->getFunctionType()->getParamType(MI.NumEltsA);
16992 for (unsigned i = 0; i < MI.NumEltsB; ++i) {
16993 Value *V = Builder.CreateAlignedLoad(
16994 SrcB.getElementType(),
16995 Builder.CreateGEP(SrcB.getElementType(), SrcB.getPointer(),
16996 llvm::ConstantInt::get(IntTy, i)),
16997 CharUnits::fromQuantity(4));
16998 Values.push_back(Builder.CreateBitCast(V, BType));
16999 }
17000 // Load C
17001 llvm::Type *CType =
17002 Intrinsic->getFunctionType()->getParamType(MI.NumEltsA + MI.NumEltsB);
17003 for (unsigned i = 0; i < MI.NumEltsC; ++i) {
17004 Value *V = Builder.CreateAlignedLoad(
17005 SrcC.getElementType(),
17006 Builder.CreateGEP(SrcC.getElementType(), SrcC.getPointer(),
17007 llvm::ConstantInt::get(IntTy, i)),
17008 CharUnits::fromQuantity(4));
17009 Values.push_back(Builder.CreateBitCast(V, CType));
17010 }
17011 Value *Result = Builder.CreateCall(Intrinsic, Values);
17012 llvm::Type *DType = Dst.getElementType();
17013 for (unsigned i = 0; i < MI.NumEltsD; ++i)
17014 Builder.CreateAlignedStore(
17015 Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), DType),
17016 Builder.CreateGEP(Dst.getPointer(), llvm::ConstantInt::get(IntTy, i)),
17017 CharUnits::fromQuantity(4));
17018 return Result;
17019 }
17020 default:
17021 return nullptr;
17022 }
17023}
17024
17025namespace {
17026struct BuiltinAlignArgs {
17027 llvm::Value *Src = nullptr;
17028 llvm::Type *SrcType = nullptr;
17029 llvm::Value *Alignment = nullptr;
17030 llvm::Value *Mask = nullptr;
17031 llvm::IntegerType *IntType = nullptr;
17032
17033 BuiltinAlignArgs(const CallExpr *E, CodeGenFunction &CGF) {
17034 QualType AstType = E->getArg(0)->getType();
17035 if (AstType->isArrayType())
17036 Src = CGF.EmitArrayToPointerDecay(E->getArg(0)).getPointer();
17037 else
17038 Src = CGF.EmitScalarExpr(E->getArg(0));
17039 SrcType = Src->getType();
17040 if (SrcType->isPointerTy()) {
17041 IntType = IntegerType::get(
17042 CGF.getLLVMContext(),
17043 CGF.CGM.getDataLayout().getIndexTypeSizeInBits(SrcType));
17044 } else {
17045 assert(SrcType->isIntegerTy())(static_cast <bool> (SrcType->isIntegerTy()) ? void (
0) : __assert_fail ("SrcType->isIntegerTy()", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 17045, __extension__ __PRETTY_FUNCTION__))
;
17046 IntType = cast<llvm::IntegerType>(SrcType);
17047 }
17048 Alignment = CGF.EmitScalarExpr(E->getArg(1));
17049 Alignment = CGF.Builder.CreateZExtOrTrunc(Alignment, IntType, "alignment");
17050 auto *One = llvm::ConstantInt::get(IntType, 1);
17051 Mask = CGF.Builder.CreateSub(Alignment, One, "mask");
17052 }
17053};
17054} // namespace
17055
17056/// Generate (x & (y-1)) == 0.
17057RValue CodeGenFunction::EmitBuiltinIsAligned(const CallExpr *E) {
17058 BuiltinAlignArgs Args(E, *this);
17059 llvm::Value *SrcAddress = Args.Src;
17060 if (Args.SrcType->isPointerTy())
17061 SrcAddress =
17062 Builder.CreateBitOrPointerCast(Args.Src, Args.IntType, "src_addr");
17063 return RValue::get(Builder.CreateICmpEQ(
17064 Builder.CreateAnd(SrcAddress, Args.Mask, "set_bits"),
17065 llvm::Constant::getNullValue(Args.IntType), "is_aligned"));
17066}
17067
17068/// Generate (x & ~(y-1)) to align down or ((x+(y-1)) & ~(y-1)) to align up.
17069/// Note: For pointer types we can avoid ptrtoint/inttoptr pairs by using the
17070/// llvm.ptrmask instrinsic (with a GEP before in the align_up case).
17071/// TODO: actually use ptrmask once most optimization passes know about it.
17072RValue CodeGenFunction::EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp) {
17073 BuiltinAlignArgs Args(E, *this);
17074 llvm::Value *SrcAddr = Args.Src;
17075 if (Args.Src->getType()->isPointerTy())
17076 SrcAddr = Builder.CreatePtrToInt(Args.Src, Args.IntType, "intptr");
17077 llvm::Value *SrcForMask = SrcAddr;
17078 if (AlignUp) {
17079 // When aligning up we have to first add the mask to ensure we go over the
17080 // next alignment value and then align down to the next valid multiple.
17081 // By adding the mask, we ensure that align_up on an already aligned
17082 // value will not change the value.
17083 SrcForMask = Builder.CreateAdd(SrcForMask, Args.Mask, "over_boundary");
17084 }
17085 // Invert the mask to only clear the lower bits.
17086 llvm::Value *InvertedMask = Builder.CreateNot(Args.Mask, "inverted_mask");
17087 llvm::Value *Result =
17088 Builder.CreateAnd(SrcForMask, InvertedMask, "aligned_result");
17089 if (Args.Src->getType()->isPointerTy()) {
17090 /// TODO: Use ptrmask instead of ptrtoint+gep once it is optimized well.
17091 // Result = Builder.CreateIntrinsic(
17092 // Intrinsic::ptrmask, {Args.SrcType, SrcForMask->getType(), Args.IntType},
17093 // {SrcForMask, NegatedMask}, nullptr, "aligned_result");
17094 Result->setName("aligned_intptr");
17095 llvm::Value *Difference = Builder.CreateSub(Result, SrcAddr, "diff");
17096 // The result must point to the same underlying allocation. This means we
17097 // can use an inbounds GEP to enable better optimization.
17098 Value *Base = EmitCastToVoidPtr(Args.Src);
17099 if (getLangOpts().isSignedOverflowDefined())
17100 Result = Builder.CreateGEP(Base, Difference, "aligned_result");
17101 else
17102 Result = EmitCheckedInBoundsGEP(Base, Difference,
17103 /*SignedIndices=*/true,
17104 /*isSubtraction=*/!AlignUp,
17105 E->getExprLoc(), "aligned_result");
17106 Result = Builder.CreatePointerCast(Result, Args.SrcType);
17107 // Emit an alignment assumption to ensure that the new alignment is
17108 // propagated to loads/stores, etc.
17109 emitAlignmentAssumption(Result, E, E->getExprLoc(), Args.Alignment);
17110 }
17111 assert(Result->getType() == Args.SrcType)(static_cast <bool> (Result->getType() == Args.SrcType
) ? void (0) : __assert_fail ("Result->getType() == Args.SrcType"
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 17111, __extension__ __PRETTY_FUNCTION__))
;
17112 return RValue::get(Result);
17113}
17114
17115Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
17116 const CallExpr *E) {
17117 switch (BuiltinID) {
17118 case WebAssembly::BI__builtin_wasm_memory_size: {
17119 llvm::Type *ResultType = ConvertType(E->getType());
17120 Value *I = EmitScalarExpr(E->getArg(0));
17121 Function *Callee =
17122 CGM.getIntrinsic(Intrinsic::wasm_memory_size, ResultType);
17123 return Builder.CreateCall(Callee, I);
17124 }
17125 case WebAssembly::BI__builtin_wasm_memory_grow: {
17126 llvm::Type *ResultType = ConvertType(E->getType());
17127 Value *Args[] = {EmitScalarExpr(E->getArg(0)),
17128 EmitScalarExpr(E->getArg(1))};
17129 Function *Callee =
17130 CGM.getIntrinsic(Intrinsic::wasm_memory_grow, ResultType);
17131 return Builder.CreateCall(Callee, Args);
17132 }
17133 case WebAssembly::BI__builtin_wasm_tls_size: {
17134 llvm::Type *ResultType = ConvertType(E->getType());
17135 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_size, ResultType);
17136 return Builder.CreateCall(Callee);
17137 }
17138 case WebAssembly::BI__builtin_wasm_tls_align: {
17139 llvm::Type *ResultType = ConvertType(E->getType());
17140 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_align, ResultType);
17141 return Builder.CreateCall(Callee);
17142 }
17143 case WebAssembly::BI__builtin_wasm_tls_base: {
17144 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_base);
17145 return Builder.CreateCall(Callee);
17146 }
17147 case WebAssembly::BI__builtin_wasm_throw: {
17148 Value *Tag = EmitScalarExpr(E->getArg(0));
17149 Value *Obj = EmitScalarExpr(E->getArg(1));
17150 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_throw);
17151 return Builder.CreateCall(Callee, {Tag, Obj});
17152 }
17153 case WebAssembly::BI__builtin_wasm_rethrow: {
17154 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_rethrow);
17155 return Builder.CreateCall(Callee);
17156 }
17157 case WebAssembly::BI__builtin_wasm_memory_atomic_wait32: {
17158 Value *Addr = EmitScalarExpr(E->getArg(0));
17159 Value *Expected = EmitScalarExpr(E->getArg(1));
17160 Value *Timeout = EmitScalarExpr(E->getArg(2));
17161 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_wait32);
17162 return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
17163 }
17164 case WebAssembly::BI__builtin_wasm_memory_atomic_wait64: {
17165 Value *Addr = EmitScalarExpr(E->getArg(0));
17166 Value *Expected = EmitScalarExpr(E->getArg(1));
17167 Value *Timeout = EmitScalarExpr(E->getArg(2));
17168 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_wait64);
17169 return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
17170 }
17171 case WebAssembly::BI__builtin_wasm_memory_atomic_notify: {
17172 Value *Addr = EmitScalarExpr(E->getArg(0));
17173 Value *Count = EmitScalarExpr(E->getArg(1));
17174 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_notify);
17175 return Builder.CreateCall(Callee, {Addr, Count});
17176 }
17177 case WebAssembly::BI__builtin_wasm_trunc_s_i32_f32:
17178 case WebAssembly::BI__builtin_wasm_trunc_s_i32_f64:
17179 case WebAssembly::BI__builtin_wasm_trunc_s_i64_f32:
17180 case WebAssembly::BI__builtin_wasm_trunc_s_i64_f64: {
17181 Value *Src = EmitScalarExpr(E->getArg(0));
17182 llvm::Type *ResT = ConvertType(E->getType());
17183 Function *Callee =
17184 CGM.getIntrinsic(Intrinsic::wasm_trunc_signed, {ResT, Src->getType()});
17185 return Builder.CreateCall(Callee, {Src});
17186 }
17187 case WebAssembly::BI__builtin_wasm_trunc_u_i32_f32:
17188 case WebAssembly::BI__builtin_wasm_trunc_u_i32_f64:
17189 case WebAssembly::BI__builtin_wasm_trunc_u_i64_f32:
17190 case WebAssembly::BI__builtin_wasm_trunc_u_i64_f64: {
17191 Value *Src = EmitScalarExpr(E->getArg(0));
17192 llvm::Type *ResT = ConvertType(E->getType());
17193 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_unsigned,
17194 {ResT, Src->getType()});
17195 return Builder.CreateCall(Callee, {Src});
17196 }
17197 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f32:
17198 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f64:
17199 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f32:
17200 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f64:
17201 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32x4_f32x4: {
17202 Value *Src = EmitScalarExpr(E->getArg(0));
17203 llvm::Type *ResT = ConvertType(E->getType());
17204 Function *Callee =
17205 CGM.getIntrinsic(Intrinsic::fptosi_sat, {ResT, Src->getType()});
17206 return Builder.CreateCall(Callee, {Src});
17207 }
17208 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f32:
17209 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f64:
17210 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f32:
17211 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f64:
17212 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32x4_f32x4: {
17213 Value *Src = EmitScalarExpr(E->getArg(0));
17214 llvm::Type *ResT = ConvertType(E->getType());
17215 Function *Callee =
17216 CGM.getIntrinsic(Intrinsic::fptoui_sat, {ResT, Src->getType()});
17217 return Builder.CreateCall(Callee, {Src});
17218 }
17219 case WebAssembly::BI__builtin_wasm_min_f32:
17220 case WebAssembly::BI__builtin_wasm_min_f64:
17221 case WebAssembly::BI__builtin_wasm_min_f32x4:
17222 case WebAssembly::BI__builtin_wasm_min_f64x2: {
17223 Value *LHS = EmitScalarExpr(E->getArg(0));
17224 Value *RHS = EmitScalarExpr(E->getArg(1));
17225 Function *Callee =
17226 CGM.getIntrinsic(Intrinsic::minimum, ConvertType(E->getType()));
17227 return Builder.CreateCall(Callee, {LHS, RHS});
17228 }
17229 case WebAssembly::BI__builtin_wasm_max_f32:
17230 case WebAssembly::BI__builtin_wasm_max_f64:
17231 case WebAssembly::BI__builtin_wasm_max_f32x4:
17232 case WebAssembly::BI__builtin_wasm_max_f64x2: {
17233 Value *LHS = EmitScalarExpr(E->getArg(0));
17234 Value *RHS = EmitScalarExpr(E->getArg(1));
17235 Function *Callee =
17236 CGM.getIntrinsic(Intrinsic::maximum, ConvertType(E->getType()));
17237 return Builder.CreateCall(Callee, {LHS, RHS});
17238 }
17239 case WebAssembly::BI__builtin_wasm_pmin_f32x4:
17240 case WebAssembly::BI__builtin_wasm_pmin_f64x2: {
17241 Value *LHS = EmitScalarExpr(E->getArg(0));
17242 Value *RHS = EmitScalarExpr(E->getArg(1));
17243 Function *Callee =
17244 CGM.getIntrinsic(Intrinsic::wasm_pmin, ConvertType(E->getType()));
17245 return Builder.CreateCall(Callee, {LHS, RHS});
17246 }
17247 case WebAssembly::BI__builtin_wasm_pmax_f32x4:
17248 case WebAssembly::BI__builtin_wasm_pmax_f64x2: {
17249 Value *LHS = EmitScalarExpr(E->getArg(0));
17250 Value *RHS = EmitScalarExpr(E->getArg(1));
17251 Function *Callee =
17252 CGM.getIntrinsic(Intrinsic::wasm_pmax, ConvertType(E->getType()));
17253 return Builder.CreateCall(Callee, {LHS, RHS});
17254 }
17255 case WebAssembly::BI__builtin_wasm_ceil_f32x4:
17256 case WebAssembly::BI__builtin_wasm_floor_f32x4:
17257 case WebAssembly::BI__builtin_wasm_trunc_f32x4:
17258 case WebAssembly::BI__builtin_wasm_nearest_f32x4:
17259 case WebAssembly::BI__builtin_wasm_ceil_f64x2:
17260 case WebAssembly::BI__builtin_wasm_floor_f64x2:
17261 case WebAssembly::BI__builtin_wasm_trunc_f64x2:
17262 case WebAssembly::BI__builtin_wasm_nearest_f64x2: {
17263 unsigned IntNo;
17264 switch (BuiltinID) {
17265 case WebAssembly::BI__builtin_wasm_ceil_f32x4:
17266 case WebAssembly::BI__builtin_wasm_ceil_f64x2:
17267 IntNo = Intrinsic::ceil;
17268 break;
17269 case WebAssembly::BI__builtin_wasm_floor_f32x4:
17270 case WebAssembly::BI__builtin_wasm_floor_f64x2:
17271 IntNo = Intrinsic::floor;
17272 break;
17273 case WebAssembly::BI__builtin_wasm_trunc_f32x4:
17274 case WebAssembly::BI__builtin_wasm_trunc_f64x2:
17275 IntNo = Intrinsic::trunc;
17276 break;
17277 case WebAssembly::BI__builtin_wasm_nearest_f32x4:
17278 case WebAssembly::BI__builtin_wasm_nearest_f64x2:
17279 IntNo = Intrinsic::nearbyint;
17280 break;
17281 default:
17282 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 17282)
;
17283 }
17284 Value *Value = EmitScalarExpr(E->getArg(0));
17285 Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
17286 return Builder.CreateCall(Callee, Value);
17287 }
17288 case WebAssembly::BI__builtin_wasm_swizzle_i8x16: {
17289 Value *Src = EmitScalarExpr(E->getArg(0));
17290 Value *Indices = EmitScalarExpr(E->getArg(1));
17291 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_swizzle);
17292 return Builder.CreateCall(Callee, {Src, Indices});
17293 }
17294 case WebAssembly::BI__builtin_wasm_extract_lane_s_i8x16:
17295 case WebAssembly::BI__builtin_wasm_extract_lane_u_i8x16:
17296 case WebAssembly::BI__builtin_wasm_extract_lane_s_i16x8:
17297 case WebAssembly::BI__builtin_wasm_extract_lane_u_i16x8:
17298 case WebAssembly::BI__builtin_wasm_extract_lane_i32x4:
17299 case WebAssembly::BI__builtin_wasm_extract_lane_i64x2:
17300 case WebAssembly::BI__builtin_wasm_extract_lane_f32x4:
17301 case WebAssembly::BI__builtin_wasm_extract_lane_f64x2: {
17302 llvm::APSInt LaneConst =
17303 *E->getArg(1)->getIntegerConstantExpr(getContext());
17304 Value *Vec = EmitScalarExpr(E->getArg(0));
17305 Value *Lane = llvm::ConstantInt::get(getLLVMContext(), LaneConst);
17306 Value *Extract = Builder.CreateExtractElement(Vec, Lane);
17307 switch (BuiltinID) {
17308 case WebAssembly::BI__builtin_wasm_extract_lane_s_i8x16:
17309 case WebAssembly::BI__builtin_wasm_extract_lane_s_i16x8:
17310 return Builder.CreateSExt(Extract, ConvertType(E->getType()));
17311 case WebAssembly::BI__builtin_wasm_extract_lane_u_i8x16:
17312 case WebAssembly::BI__builtin_wasm_extract_lane_u_i16x8:
17313 return Builder.CreateZExt(Extract, ConvertType(E->getType()));
17314 case WebAssembly::BI__builtin_wasm_extract_lane_i32x4:
17315 case WebAssembly::BI__builtin_wasm_extract_lane_i64x2:
17316 case WebAssembly::BI__builtin_wasm_extract_lane_f32x4:
17317 case WebAssembly::BI__builtin_wasm_extract_lane_f64x2:
17318 return Extract;
17319 default:
17320 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 17320)
;
17321 }
17322 }
17323 case WebAssembly::BI__builtin_wasm_replace_lane_i8x16:
17324 case WebAssembly::BI__builtin_wasm_replace_lane_i16x8:
17325 case WebAssembly::BI__builtin_wasm_replace_lane_i32x4:
17326 case WebAssembly::BI__builtin_wasm_replace_lane_i64x2:
17327 case WebAssembly::BI__builtin_wasm_replace_lane_f32x4:
17328 case WebAssembly::BI__builtin_wasm_replace_lane_f64x2: {
17329 llvm::APSInt LaneConst =
17330 *E->getArg(1)->getIntegerConstantExpr(getContext());
17331 Value *Vec = EmitScalarExpr(E->getArg(0));
17332 Value *Lane = llvm::ConstantInt::get(getLLVMContext(), LaneConst);
17333 Value *Val = EmitScalarExpr(E->getArg(2));
17334 switch (BuiltinID) {
17335 case WebAssembly::BI__builtin_wasm_replace_lane_i8x16:
17336 case WebAssembly::BI__builtin_wasm_replace_lane_i16x8: {
17337 llvm::Type *ElemType =
17338 cast<llvm::VectorType>(ConvertType(E->getType()))->getElementType();
17339 Value *Trunc = Builder.CreateTrunc(Val, ElemType);
17340 return Builder.CreateInsertElement(Vec, Trunc, Lane);
17341 }
17342 case WebAssembly::BI__builtin_wasm_replace_lane_i32x4:
17343 case WebAssembly::BI__builtin_wasm_replace_lane_i64x2:
17344 case WebAssembly::BI__builtin_wasm_replace_lane_f32x4:
17345 case WebAssembly::BI__builtin_wasm_replace_lane_f64x2:
17346 return Builder.CreateInsertElement(Vec, Val, Lane);
17347 default:
17348 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 17348)
;
17349 }
17350 }
17351 case WebAssembly::BI__builtin_wasm_add_sat_s_i8x16:
17352 case WebAssembly::BI__builtin_wasm_add_sat_u_i8x16:
17353 case WebAssembly::BI__builtin_wasm_add_sat_s_i16x8:
17354 case WebAssembly::BI__builtin_wasm_add_sat_u_i16x8:
17355 case WebAssembly::BI__builtin_wasm_sub_sat_s_i8x16:
17356 case WebAssembly::BI__builtin_wasm_sub_sat_u_i8x16:
17357 case WebAssembly::BI__builtin_wasm_sub_sat_s_i16x8:
17358 case WebAssembly::BI__builtin_wasm_sub_sat_u_i16x8: {
17359 unsigned IntNo;
17360 switch (BuiltinID) {
17361 case WebAssembly::BI__builtin_wasm_add_sat_s_i8x16:
17362 case WebAssembly::BI__builtin_wasm_add_sat_s_i16x8:
17363 IntNo = Intrinsic::sadd_sat;
17364 break;
17365 case WebAssembly::BI__builtin_wasm_add_sat_u_i8x16:
17366 case WebAssembly::BI__builtin_wasm_add_sat_u_i16x8:
17367 IntNo = Intrinsic::uadd_sat;
17368 break;
17369 case WebAssembly::BI__builtin_wasm_sub_sat_s_i8x16:
17370 case WebAssembly::BI__builtin_wasm_sub_sat_s_i16x8:
17371 IntNo = Intrinsic::wasm_sub_sat_signed;
17372 break;
17373 case WebAssembly::BI__builtin_wasm_sub_sat_u_i8x16:
17374 case WebAssembly::BI__builtin_wasm_sub_sat_u_i16x8:
17375 IntNo = Intrinsic::wasm_sub_sat_unsigned;
17376 break;
17377 default:
17378 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 17378)
;
17379 }
17380 Value *LHS = EmitScalarExpr(E->getArg(0));
17381 Value *RHS = EmitScalarExpr(E->getArg(1));
17382 Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
17383 return Builder.CreateCall(Callee, {LHS, RHS});
17384 }
17385 case WebAssembly::BI__builtin_wasm_abs_i8x16:
17386 case WebAssembly::BI__builtin_wasm_abs_i16x8:
17387 case WebAssembly::BI__builtin_wasm_abs_i32x4:
17388 case WebAssembly::BI__builtin_wasm_abs_i64x2: {
17389 Value *Vec = EmitScalarExpr(E->getArg(0));
17390 Value *Neg = Builder.CreateNeg(Vec, "neg");
17391 Constant *Zero = llvm::Constant::getNullValue(Vec->getType());
17392 Value *ICmp = Builder.CreateICmpSLT(Vec, Zero, "abscond");
17393 return Builder.CreateSelect(ICmp, Neg, Vec, "abs");
17394 }
17395 case WebAssembly::BI__builtin_wasm_min_s_i8x16:
17396 case WebAssembly::BI__builtin_wasm_min_u_i8x16:
17397 case WebAssembly::BI__builtin_wasm_max_s_i8x16:
17398 case WebAssembly::BI__builtin_wasm_max_u_i8x16:
17399 case WebAssembly::BI__builtin_wasm_min_s_i16x8:
17400 case WebAssembly::BI__builtin_wasm_min_u_i16x8:
17401 case WebAssembly::BI__builtin_wasm_max_s_i16x8:
17402 case WebAssembly::BI__builtin_wasm_max_u_i16x8:
17403 case WebAssembly::BI__builtin_wasm_min_s_i32x4:
17404 case WebAssembly::BI__builtin_wasm_min_u_i32x4:
17405 case WebAssembly::BI__builtin_wasm_max_s_i32x4:
17406 case WebAssembly::BI__builtin_wasm_max_u_i32x4: {
17407 Value *LHS = EmitScalarExpr(E->getArg(0));
17408 Value *RHS = EmitScalarExpr(E->getArg(1));
17409 Value *ICmp;
17410 switch (BuiltinID) {
17411 case WebAssembly::BI__builtin_wasm_min_s_i8x16:
17412 case WebAssembly::BI__builtin_wasm_min_s_i16x8:
17413 case WebAssembly::BI__builtin_wasm_min_s_i32x4:
17414 ICmp = Builder.CreateICmpSLT(LHS, RHS);
17415 break;
17416 case WebAssembly::BI__builtin_wasm_min_u_i8x16:
17417 case WebAssembly::BI__builtin_wasm_min_u_i16x8:
17418 case WebAssembly::BI__builtin_wasm_min_u_i32x4:
17419 ICmp = Builder.CreateICmpULT(LHS, RHS);
17420 break;
17421 case WebAssembly::BI__builtin_wasm_max_s_i8x16:
17422 case WebAssembly::BI__builtin_wasm_max_s_i16x8:
17423 case WebAssembly::BI__builtin_wasm_max_s_i32x4:
17424 ICmp = Builder.CreateICmpSGT(LHS, RHS);
17425 break;
17426 case WebAssembly::BI__builtin_wasm_max_u_i8x16:
17427 case WebAssembly::BI__builtin_wasm_max_u_i16x8:
17428 case WebAssembly::BI__builtin_wasm_max_u_i32x4:
17429 ICmp = Builder.CreateICmpUGT(LHS, RHS);
17430 break;
17431 default:
17432 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 17432)
;
17433 }
17434 return Builder.CreateSelect(ICmp, LHS, RHS);
17435 }
17436 case WebAssembly::BI__builtin_wasm_avgr_u_i8x16:
17437 case WebAssembly::BI__builtin_wasm_avgr_u_i16x8: {
17438 Value *LHS = EmitScalarExpr(E->getArg(0));
17439 Value *RHS = EmitScalarExpr(E->getArg(1));
17440 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_avgr_unsigned,
17441 ConvertType(E->getType()));
17442 return Builder.CreateCall(Callee, {LHS, RHS});
17443 }
17444 case WebAssembly::BI__builtin_wasm_q15mulr_sat_s_i16x8: {
17445 Value *LHS = EmitScalarExpr(E->getArg(0));
17446 Value *RHS = EmitScalarExpr(E->getArg(1));
17447 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_q15mulr_sat_signed);
17448 return Builder.CreateCall(Callee, {LHS, RHS});
17449 }
17450 case WebAssembly::BI__builtin_wasm_extmul_low_i8x16_s_i16x8:
17451 case WebAssembly::BI__builtin_wasm_extmul_high_i8x16_s_i16x8:
17452 case WebAssembly::BI__builtin_wasm_extmul_low_i8x16_u_i16x8:
17453 case WebAssembly::BI__builtin_wasm_extmul_high_i8x16_u_i16x8:
17454 case WebAssembly::BI__builtin_wasm_extmul_low_i16x8_s_i32x4:
17455 case WebAssembly::BI__builtin_wasm_extmul_high_i16x8_s_i32x4:
17456 case WebAssembly::BI__builtin_wasm_extmul_low_i16x8_u_i32x4:
17457 case WebAssembly::BI__builtin_wasm_extmul_high_i16x8_u_i32x4:
17458 case WebAssembly::BI__builtin_wasm_extmul_low_i32x4_s_i64x2:
17459 case WebAssembly::BI__builtin_wasm_extmul_high_i32x4_s_i64x2:
17460 case WebAssembly::BI__builtin_wasm_extmul_low_i32x4_u_i64x2:
17461 case WebAssembly::BI__builtin_wasm_extmul_high_i32x4_u_i64x2: {
17462 Value *LHS = EmitScalarExpr(E->getArg(0));
17463 Value *RHS = EmitScalarExpr(E->getArg(1));
17464 unsigned IntNo;
17465 switch (BuiltinID) {
17466 case WebAssembly::BI__builtin_wasm_extmul_low_i8x16_s_i16x8:
17467 case WebAssembly::BI__builtin_wasm_extmul_low_i16x8_s_i32x4:
17468 case WebAssembly::BI__builtin_wasm_extmul_low_i32x4_s_i64x2:
17469 IntNo = Intrinsic::wasm_extmul_low_signed;
17470 break;
17471 case WebAssembly::BI__builtin_wasm_extmul_low_i8x16_u_i16x8:
17472 case WebAssembly::BI__builtin_wasm_extmul_low_i16x8_u_i32x4:
17473 case WebAssembly::BI__builtin_wasm_extmul_low_i32x4_u_i64x2:
17474 IntNo = Intrinsic::wasm_extmul_low_unsigned;
17475 break;
17476 case WebAssembly::BI__builtin_wasm_extmul_high_i8x16_s_i16x8:
17477 case WebAssembly::BI__builtin_wasm_extmul_high_i16x8_s_i32x4:
17478 case WebAssembly::BI__builtin_wasm_extmul_high_i32x4_s_i64x2:
17479 IntNo = Intrinsic::wasm_extmul_high_signed;
17480 break;
17481 case WebAssembly::BI__builtin_wasm_extmul_high_i8x16_u_i16x8:
17482 case WebAssembly::BI__builtin_wasm_extmul_high_i16x8_u_i32x4:
17483 case WebAssembly::BI__builtin_wasm_extmul_high_i32x4_u_i64x2:
17484 IntNo = Intrinsic::wasm_extmul_high_unsigned;
17485 break;
17486 default:
17487 llvm_unreachable("unexptected builtin ID")::llvm::llvm_unreachable_internal("unexptected builtin ID", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 17487)
;
17488 }
17489
17490 Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
17491 return Builder.CreateCall(Callee, {LHS, RHS});
17492 }
17493 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_s_i16x8:
17494 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_u_i16x8:
17495 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_s_i32x4:
17496 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_u_i32x4: {
17497 Value *Vec = EmitScalarExpr(E->getArg(0));
17498 unsigned IntNo;
17499 switch (BuiltinID) {
17500 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_s_i16x8:
17501 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_s_i32x4:
17502 IntNo = Intrinsic::wasm_extadd_pairwise_signed;
17503 break;
17504 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_u_i16x8:
17505 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_u_i32x4:
17506 IntNo = Intrinsic::wasm_extadd_pairwise_unsigned;
17507 break;
17508 default:
17509 llvm_unreachable("unexptected builtin ID")::llvm::llvm_unreachable_internal("unexptected builtin ID", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 17509)
;
17510 }
17511
17512 Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
17513 return Builder.CreateCall(Callee, Vec);
17514 }
17515 case WebAssembly::BI__builtin_wasm_bitselect: {
17516 Value *V1 = EmitScalarExpr(E->getArg(0));
17517 Value *V2 = EmitScalarExpr(E->getArg(1));
17518 Value *C = EmitScalarExpr(E->getArg(2));
17519 Function *Callee =
17520 CGM.getIntrinsic(Intrinsic::wasm_bitselect, ConvertType(E->getType()));
17521 return Builder.CreateCall(Callee, {V1, V2, C});
17522 }
17523 case WebAssembly::BI__builtin_wasm_dot_s_i32x4_i16x8: {
17524 Value *LHS = EmitScalarExpr(E->getArg(0));
17525 Value *RHS = EmitScalarExpr(E->getArg(1));
17526 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_dot);
17527 return Builder.CreateCall(Callee, {LHS, RHS});
17528 }
17529 case WebAssembly::BI__builtin_wasm_popcnt_i8x16: {
17530 Value *Vec = EmitScalarExpr(E->getArg(0));
17531 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_popcnt);
17532 return Builder.CreateCall(Callee, {Vec});
17533 }
17534 case WebAssembly::BI__builtin_wasm_any_true_v128:
17535 case WebAssembly::BI__builtin_wasm_all_true_i8x16:
17536 case WebAssembly::BI__builtin_wasm_all_true_i16x8:
17537 case WebAssembly::BI__builtin_wasm_all_true_i32x4:
17538 case WebAssembly::BI__builtin_wasm_all_true_i64x2: {
17539 unsigned IntNo;
17540 switch (BuiltinID) {
17541 case WebAssembly::BI__builtin_wasm_any_true_v128:
17542 IntNo = Intrinsic::wasm_anytrue;
17543 break;
17544 case WebAssembly::BI__builtin_wasm_all_true_i8x16:
17545 case WebAssembly::BI__builtin_wasm_all_true_i16x8:
17546 case WebAssembly::BI__builtin_wasm_all_true_i32x4:
17547 case WebAssembly::BI__builtin_wasm_all_true_i64x2:
17548 IntNo = Intrinsic::wasm_alltrue;
17549 break;
17550 default:
17551 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 17551)
;
17552 }
17553 Value *Vec = EmitScalarExpr(E->getArg(0));
17554 Function *Callee = CGM.getIntrinsic(IntNo, Vec->getType());
17555 return Builder.CreateCall(Callee, {Vec});
17556 }
17557 case WebAssembly::BI__builtin_wasm_bitmask_i8x16:
17558 case WebAssembly::BI__builtin_wasm_bitmask_i16x8:
17559 case WebAssembly::BI__builtin_wasm_bitmask_i32x4:
17560 case WebAssembly::BI__builtin_wasm_bitmask_i64x2: {
17561 Value *Vec = EmitScalarExpr(E->getArg(0));
17562 Function *Callee =
17563 CGM.getIntrinsic(Intrinsic::wasm_bitmask, Vec->getType());
17564 return Builder.CreateCall(Callee, {Vec});
17565 }
17566 case WebAssembly::BI__builtin_wasm_abs_f32x4:
17567 case WebAssembly::BI__builtin_wasm_abs_f64x2: {
17568 Value *Vec = EmitScalarExpr(E->getArg(0));
17569 Function *Callee = CGM.getIntrinsic(Intrinsic::fabs, Vec->getType());
17570 return Builder.CreateCall(Callee, {Vec});
17571 }
17572 case WebAssembly::BI__builtin_wasm_sqrt_f32x4:
17573 case WebAssembly::BI__builtin_wasm_sqrt_f64x2: {
17574 Value *Vec = EmitScalarExpr(E->getArg(0));
17575 Function *Callee = CGM.getIntrinsic(Intrinsic::sqrt, Vec->getType());
17576 return Builder.CreateCall(Callee, {Vec});
17577 }
17578 case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
17579 case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
17580 case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
17581 case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4: {
17582 Value *Low = EmitScalarExpr(E->getArg(0));
17583 Value *High = EmitScalarExpr(E->getArg(1));
17584 unsigned IntNo;
17585 switch (BuiltinID) {
17586 case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
17587 case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
17588 IntNo = Intrinsic::wasm_narrow_signed;
17589 break;
17590 case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
17591 case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4:
17592 IntNo = Intrinsic::wasm_narrow_unsigned;
17593 break;
17594 default:
17595 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 17595)
;
17596 }
17597 Function *Callee =
17598 CGM.getIntrinsic(IntNo, {ConvertType(E->getType()), Low->getType()});
17599 return Builder.CreateCall(Callee, {Low, High});
17600 }
17601 case WebAssembly::BI__builtin_wasm_trunc_sat_zero_s_f64x2_i32x4:
17602 case WebAssembly::BI__builtin_wasm_trunc_sat_zero_u_f64x2_i32x4: {
17603 Value *Vec = EmitScalarExpr(E->getArg(0));
17604 unsigned IntNo;
17605 switch (BuiltinID) {
17606 case WebAssembly::BI__builtin_wasm_trunc_sat_zero_s_f64x2_i32x4:
17607 IntNo = Intrinsic::fptosi_sat;
17608 break;
17609 case WebAssembly::BI__builtin_wasm_trunc_sat_zero_u_f64x2_i32x4:
17610 IntNo = Intrinsic::fptoui_sat;
17611 break;
17612 default:
17613 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 17613)
;
17614 }
17615 llvm::Type *SrcT = Vec->getType();
17616 llvm::Type *TruncT =
17617 SrcT->getWithNewType(llvm::IntegerType::get(getLLVMContext(), 32));
17618 Function *Callee = CGM.getIntrinsic(IntNo, {TruncT, SrcT});
17619 Value *Trunc = Builder.CreateCall(Callee, Vec);
17620 Value *Splat = Builder.CreateVectorSplat(2, Builder.getInt32(0));
17621 Value *ConcatMask =
17622 llvm::ConstantVector::get({Builder.getInt32(0), Builder.getInt32(1),
17623 Builder.getInt32(2), Builder.getInt32(3)});
17624 return Builder.CreateShuffleVector(Trunc, Splat, ConcatMask);
17625 }
17626 case WebAssembly::BI__builtin_wasm_demote_zero_f64x2_f32x4: {
17627 Value *Vec = EmitScalarExpr(E->getArg(0));
17628 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_demote_zero);
17629 return Builder.CreateCall(Callee, Vec);
17630 }
17631 case WebAssembly::BI__builtin_wasm_promote_low_f32x4_f64x2: {
17632 Value *Vec = EmitScalarExpr(E->getArg(0));
17633 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_promote_low);
17634 return Builder.CreateCall(Callee, Vec);
17635 }
17636 case WebAssembly::BI__builtin_wasm_load32_zero: {
17637 Value *Ptr = EmitScalarExpr(E->getArg(0));
17638 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_load32_zero);
17639 return Builder.CreateCall(Callee, {Ptr});
17640 }
17641 case WebAssembly::BI__builtin_wasm_load64_zero: {
17642 Value *Ptr = EmitScalarExpr(E->getArg(0));
17643 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_load64_zero);
17644 return Builder.CreateCall(Callee, {Ptr});
17645 }
17646 case WebAssembly::BI__builtin_wasm_load8_lane:
17647 case WebAssembly::BI__builtin_wasm_load16_lane:
17648 case WebAssembly::BI__builtin_wasm_load32_lane:
17649 case WebAssembly::BI__builtin_wasm_load64_lane:
17650 case WebAssembly::BI__builtin_wasm_store8_lane:
17651 case WebAssembly::BI__builtin_wasm_store16_lane:
17652 case WebAssembly::BI__builtin_wasm_store32_lane:
17653 case WebAssembly::BI__builtin_wasm_store64_lane: {
17654 Value *Ptr = EmitScalarExpr(E->getArg(0));
17655 Value *Vec = EmitScalarExpr(E->getArg(1));
17656 Optional<llvm::APSInt> LaneIdxConst =
17657 E->getArg(2)->getIntegerConstantExpr(getContext());
17658 assert(LaneIdxConst && "Constant arg isn't actually constant?")(static_cast <bool> (LaneIdxConst && "Constant arg isn't actually constant?"
) ? void (0) : __assert_fail ("LaneIdxConst && \"Constant arg isn't actually constant?\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 17658, __extension__ __PRETTY_FUNCTION__))
;
17659 Value *LaneIdx = llvm::ConstantInt::get(getLLVMContext(), *LaneIdxConst);
17660 unsigned IntNo;
17661 switch (BuiltinID) {
17662 case WebAssembly::BI__builtin_wasm_load8_lane:
17663 IntNo = Intrinsic::wasm_load8_lane;
17664 break;
17665 case WebAssembly::BI__builtin_wasm_load16_lane:
17666 IntNo = Intrinsic::wasm_load16_lane;
17667 break;
17668 case WebAssembly::BI__builtin_wasm_load32_lane:
17669 IntNo = Intrinsic::wasm_load32_lane;
17670 break;
17671 case WebAssembly::BI__builtin_wasm_load64_lane:
17672 IntNo = Intrinsic::wasm_load64_lane;
17673 break;
17674 case WebAssembly::BI__builtin_wasm_store8_lane:
17675 IntNo = Intrinsic::wasm_store8_lane;
17676 break;
17677 case WebAssembly::BI__builtin_wasm_store16_lane:
17678 IntNo = Intrinsic::wasm_store16_lane;
17679 break;
17680 case WebAssembly::BI__builtin_wasm_store32_lane:
17681 IntNo = Intrinsic::wasm_store32_lane;
17682 break;
17683 case WebAssembly::BI__builtin_wasm_store64_lane:
17684 IntNo = Intrinsic::wasm_store64_lane;
17685 break;
17686 default:
17687 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 17687)
;
17688 }
17689 Function *Callee = CGM.getIntrinsic(IntNo);
17690 return Builder.CreateCall(Callee, {Ptr, Vec, LaneIdx});
17691 }
17692 case WebAssembly::BI__builtin_wasm_shuffle_i8x16: {
17693 Value *Ops[18];
17694 size_t OpIdx = 0;
17695 Ops[OpIdx++] = EmitScalarExpr(E->getArg(0));
17696 Ops[OpIdx++] = EmitScalarExpr(E->getArg(1));
17697 while (OpIdx < 18) {
17698 Optional<llvm::APSInt> LaneConst =
17699 E->getArg(OpIdx)->getIntegerConstantExpr(getContext());
17700 assert(LaneConst && "Constant arg isn't actually constant?")(static_cast <bool> (LaneConst && "Constant arg isn't actually constant?"
) ? void (0) : __assert_fail ("LaneConst && \"Constant arg isn't actually constant?\""
, "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 17700, __extension__ __PRETTY_FUNCTION__))
;
17701 Ops[OpIdx++] = llvm::ConstantInt::get(getLLVMContext(), *LaneConst);
17702 }
17703 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_shuffle);
17704 return Builder.CreateCall(Callee, Ops);
17705 }
17706 default:
17707 return nullptr;
17708 }
17709}
17710
17711static std::pair<Intrinsic::ID, unsigned>
17712getIntrinsicForHexagonNonGCCBuiltin(unsigned BuiltinID) {
17713 struct Info {
17714 unsigned BuiltinID;
17715 Intrinsic::ID IntrinsicID;
17716 unsigned VecLen;
17717 };
17718 Info Infos[] = {
17719#define CUSTOM_BUILTIN_MAPPING(x,s) \
17720 { Hexagon::BI__builtin_HEXAGON_##x, Intrinsic::hexagon_##x, s },
17721 CUSTOM_BUILTIN_MAPPING(L2_loadrub_pci, 0)
17722 CUSTOM_BUILTIN_MAPPING(L2_loadrb_pci, 0)
17723 CUSTOM_BUILTIN_MAPPING(L2_loadruh_pci, 0)
17724 CUSTOM_BUILTIN_MAPPING(L2_loadrh_pci, 0)
17725 CUSTOM_BUILTIN_MAPPING(L2_loadri_pci, 0)
17726 CUSTOM_BUILTIN_MAPPING(L2_loadrd_pci, 0)
17727 CUSTOM_BUILTIN_MAPPING(L2_loadrub_pcr, 0)
17728 CUSTOM_BUILTIN_MAPPING(L2_loadrb_pcr, 0)
17729 CUSTOM_BUILTIN_MAPPING(L2_loadruh_pcr, 0)
17730 CUSTOM_BUILTIN_MAPPING(L2_loadrh_pcr, 0)
17731 CUSTOM_BUILTIN_MAPPING(L2_loadri_pcr, 0)
17732 CUSTOM_BUILTIN_MAPPING(L2_loadrd_pcr, 0)
17733 CUSTOM_BUILTIN_MAPPING(S2_storerb_pci, 0)
17734 CUSTOM_BUILTIN_MAPPING(S2_storerh_pci, 0)
17735 CUSTOM_BUILTIN_MAPPING(S2_storerf_pci, 0)
17736 CUSTOM_BUILTIN_MAPPING(S2_storeri_pci, 0)
17737 CUSTOM_BUILTIN_MAPPING(S2_storerd_pci, 0)
17738 CUSTOM_BUILTIN_MAPPING(S2_storerb_pcr, 0)
17739 CUSTOM_BUILTIN_MAPPING(S2_storerh_pcr, 0)
17740 CUSTOM_BUILTIN_MAPPING(S2_storerf_pcr, 0)
17741 CUSTOM_BUILTIN_MAPPING(S2_storeri_pcr, 0)
17742 CUSTOM_BUILTIN_MAPPING(S2_storerd_pcr, 0)
17743 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq, 64)
17744 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq, 64)
17745 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq, 64)
17746 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq, 64)
17747 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq_128B, 128)
17748 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq_128B, 128)
17749 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq_128B, 128)
17750 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq_128B, 128)
17751#include "clang/Basic/BuiltinsHexagonMapCustomDep.def"
17752#undef CUSTOM_BUILTIN_MAPPING
17753 };
17754
17755 auto CmpInfo = [] (Info A, Info B) { return A.BuiltinID < B.BuiltinID; };
17756 static const bool SortOnce = (llvm::sort(Infos, CmpInfo), true);
17757 (void)SortOnce;
17758
17759 const Info *F = std::lower_bound(std::begin(Infos), std::end(Infos),
17760 Info{BuiltinID, 0, 0}, CmpInfo);
17761 if (F == std::end(Infos) || F->BuiltinID != BuiltinID)
17762 return {Intrinsic::not_intrinsic, 0};
17763
17764 return {F->IntrinsicID, F->VecLen};
17765}
17766
17767Value *CodeGenFunction::EmitHexagonBuiltinExpr(unsigned BuiltinID,
17768 const CallExpr *E) {
17769 Intrinsic::ID ID;
17770 unsigned VecLen;
17771 std::tie(ID, VecLen) = getIntrinsicForHexagonNonGCCBuiltin(BuiltinID);
17772
17773 auto MakeCircOp = [this, E](unsigned IntID, bool IsLoad) {
17774 // The base pointer is passed by address, so it needs to be loaded.
17775 Address A = EmitPointerWithAlignment(E->getArg(0));
17776 Address BP = Address(
17777 Builder.CreateBitCast(A.getPointer(), Int8PtrPtrTy), A.getAlignment());
17778 llvm::Value *Base = Builder.CreateLoad(BP);
17779 // The treatment of both loads and stores is the same: the arguments for
17780 // the builtin are the same as the arguments for the intrinsic.
17781 // Load:
17782 // builtin(Base, Inc, Mod, Start) -> intr(Base, Inc, Mod, Start)
17783 // builtin(Base, Mod, Start) -> intr(Base, Mod, Start)
17784 // Store:
17785 // builtin(Base, Inc, Mod, Val, Start) -> intr(Base, Inc, Mod, Val, Start)
17786 // builtin(Base, Mod, Val, Start) -> intr(Base, Mod, Val, Start)
17787 SmallVector<llvm::Value*,5> Ops = { Base };
17788 for (unsigned i = 1, e = E->getNumArgs(); i != e; ++i)
17789 Ops.push_back(EmitScalarExpr(E->getArg(i)));
17790
17791 llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
17792 // The load intrinsics generate two results (Value, NewBase), stores
17793 // generate one (NewBase). The new base address needs to be stored.
17794 llvm::Value *NewBase = IsLoad ? Builder.CreateExtractValue(Result, 1)
17795 : Result;
17796 llvm::Value *LV = Builder.CreateBitCast(
17797 EmitScalarExpr(E->getArg(0)), NewBase->getType()->getPointerTo());
17798 Address Dest = EmitPointerWithAlignment(E->getArg(0));
17799 llvm::Value *RetVal =
17800 Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment());
17801 if (IsLoad)
17802 RetVal = Builder.CreateExtractValue(Result, 0);
17803 return RetVal;
17804 };
17805
17806 // Handle the conversion of bit-reverse load intrinsics to bit code.
17807 // The intrinsic call after this function only reads from memory and the
17808 // write to memory is dealt by the store instruction.
17809 auto MakeBrevLd = [this, E](unsigned IntID, llvm::Type *DestTy) {
17810 // The intrinsic generates one result, which is the new value for the base
17811 // pointer. It needs to be returned. The result of the load instruction is
17812 // passed to intrinsic by address, so the value needs to be stored.
17813 llvm::Value *BaseAddress =
17814 Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int8PtrTy);
17815
17816 // Expressions like &(*pt++) will be incremented per evaluation.
17817 // EmitPointerWithAlignment and EmitScalarExpr evaluates the expression
17818 // per call.
17819 Address DestAddr = EmitPointerWithAlignment(E->getArg(1));
17820 DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), Int8PtrTy),
17821 DestAddr.getAlignment());
17822 llvm::Value *DestAddress = DestAddr.getPointer();
17823
17824 // Operands are Base, Dest, Modifier.
17825 // The intrinsic format in LLVM IR is defined as
17826 // { ValueType, i8* } (i8*, i32).
17827 llvm::Value *Result = Builder.CreateCall(
17828 CGM.getIntrinsic(IntID), {BaseAddress, EmitScalarExpr(E->getArg(2))});
17829
17830 // The value needs to be stored as the variable is passed by reference.
17831 llvm::Value *DestVal = Builder.CreateExtractValue(Result, 0);
17832
17833 // The store needs to be truncated to fit the destination type.
17834 // While i32 and i64 are natively supported on Hexagon, i8 and i16 needs
17835 // to be handled with stores of respective destination type.
17836 DestVal = Builder.CreateTrunc(DestVal, DestTy);
17837
17838 llvm::Value *DestForStore =
17839 Builder.CreateBitCast(DestAddress, DestVal->getType()->getPointerTo());
17840 Builder.CreateAlignedStore(DestVal, DestForStore, DestAddr.getAlignment());
17841 // The updated value of the base pointer is returned.
17842 return Builder.CreateExtractValue(Result, 1);
17843 };
17844
17845 auto V2Q = [this, VecLen] (llvm::Value *Vec) {
17846 Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandvrt_128B
17847 : Intrinsic::hexagon_V6_vandvrt;
17848 return Builder.CreateCall(CGM.getIntrinsic(ID),
17849 {Vec, Builder.getInt32(-1)});
17850 };
17851 auto Q2V = [this, VecLen] (llvm::Value *Pred) {
17852 Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandqrt_128B
17853 : Intrinsic::hexagon_V6_vandqrt;
17854 return Builder.CreateCall(CGM.getIntrinsic(ID),
17855 {Pred, Builder.getInt32(-1)});
17856 };
17857
17858 switch (BuiltinID) {
17859 // These intrinsics return a tuple {Vector, VectorPred} in LLVM IR,
17860 // and the corresponding C/C++ builtins use loads/stores to update
17861 // the predicate.
17862 case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry:
17863 case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B:
17864 case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry:
17865 case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B: {
17866 // Get the type from the 0-th argument.
17867 llvm::Type *VecType = ConvertType(E->getArg(0)->getType());
17868 Address PredAddr = Builder.CreateBitCast(
17869 EmitPointerWithAlignment(E->getArg(2)), VecType->getPointerTo(0));
17870 llvm::Value *PredIn = V2Q(Builder.CreateLoad(PredAddr));
17871 llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID),
17872 {EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), PredIn});
17873
17874 llvm::Value *PredOut = Builder.CreateExtractValue(Result, 1);
17875 Builder.CreateAlignedStore(Q2V(PredOut), PredAddr.getPointer(),
17876 PredAddr.getAlignment());
17877 return Builder.CreateExtractValue(Result, 0);
17878 }
17879
17880 case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci:
17881 case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci:
17882 case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci:
17883 case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci:
17884 case Hexagon::BI__builtin_HEXAGON_L2_loadri_pci:
17885 case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci:
17886 case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pcr:
17887 case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pcr:
17888 case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pcr:
17889 case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pcr:
17890 case Hexagon::BI__builtin_HEXAGON_L2_loadri_pcr:
17891 case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pcr:
17892 return MakeCircOp(ID, /*IsLoad=*/true);
17893 case Hexagon::BI__builtin_HEXAGON_S2_storerb_pci:
17894 case Hexagon::BI__builtin_HEXAGON_S2_storerh_pci:
17895 case Hexagon::BI__builtin_HEXAGON_S2_storerf_pci:
17896 case Hexagon::BI__builtin_HEXAGON_S2_storeri_pci:
17897 case Hexagon::BI__builtin_HEXAGON_S2_storerd_pci:
17898 case Hexagon::BI__builtin_HEXAGON_S2_storerb_pcr:
17899 case Hexagon::BI__builtin_HEXAGON_S2_storerh_pcr:
17900 case Hexagon::BI__builtin_HEXAGON_S2_storerf_pcr:
17901 case Hexagon::BI__builtin_HEXAGON_S2_storeri_pcr:
17902 case Hexagon::BI__builtin_HEXAGON_S2_storerd_pcr:
17903 return MakeCircOp(ID, /*IsLoad=*/false);
17904 case Hexagon::BI__builtin_brev_ldub:
17905 return MakeBrevLd(Intrinsic::hexagon_L2_loadrub_pbr, Int8Ty);
17906 case Hexagon::BI__builtin_brev_ldb:
17907 return MakeBrevLd(Intrinsic::hexagon_L2_loadrb_pbr, Int8Ty);
17908 case Hexagon::BI__builtin_brev_lduh:
17909 return MakeBrevLd(Intrinsic::hexagon_L2_loadruh_pbr, Int16Ty);
17910 case Hexagon::BI__builtin_brev_ldh:
17911 return MakeBrevLd(Intrinsic::hexagon_L2_loadrh_pbr, Int16Ty);
17912 case Hexagon::BI__builtin_brev_ldw:
17913 return MakeBrevLd(Intrinsic::hexagon_L2_loadri_pbr, Int32Ty);
17914 case Hexagon::BI__builtin_brev_ldd:
17915 return MakeBrevLd(Intrinsic::hexagon_L2_loadrd_pbr, Int64Ty);
17916
17917 default: {
17918 if (ID == Intrinsic::not_intrinsic)
17919 return nullptr;
17920
17921 auto IsVectorPredTy = [](llvm::Type *T) {
17922 return T->isVectorTy() &&
17923 cast<llvm::VectorType>(T)->getElementType()->isIntegerTy(1);
17924 };
17925
17926 llvm::Function *IntrFn = CGM.getIntrinsic(ID);
17927 llvm::FunctionType *IntrTy = IntrFn->getFunctionType();
17928 SmallVector<llvm::Value*,4> Ops;
17929 for (unsigned i = 0, e = IntrTy->getNumParams(); i != e; ++i) {
17930 llvm::Type *T = IntrTy->getParamType(i);
17931 const Expr *A = E->getArg(i);
17932 if (IsVectorPredTy(T)) {
17933 // There will be an implicit cast to a boolean vector. Strip it.
17934 if (auto *Cast = dyn_cast<ImplicitCastExpr>(A)) {
17935 if (Cast->getCastKind() == CK_BitCast)
17936 A = Cast->getSubExpr();
17937 }
17938 Ops.push_back(V2Q(EmitScalarExpr(A)));
17939 } else {
17940 Ops.push_back(EmitScalarExpr(A));
17941 }
17942 }
17943
17944 llvm::Value *Call = Builder.CreateCall(IntrFn, Ops);
17945 if (IsVectorPredTy(IntrTy->getReturnType()))
17946 Call = Q2V(Call);
17947
17948 return Call;
17949 } // default
17950 } // switch
17951
17952 return nullptr;
17953}
17954
17955Value *CodeGenFunction::EmitRISCVBuiltinExpr(unsigned BuiltinID,
17956 const CallExpr *E,
17957 ReturnValueSlot ReturnValue) {
17958 SmallVector<Value *, 4> Ops;
17959 llvm::Type *ResultType = ConvertType(E->getType());
17960
17961 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
17962 Ops.push_back(EmitScalarExpr(E->getArg(i)));
17963
17964 Intrinsic::ID ID = Intrinsic::not_intrinsic;
17965
17966 // Required for overloaded intrinsics.
17967 llvm::SmallVector<llvm::Type *, 2> IntrinsicTypes;
17968 switch (BuiltinID) {
17969 default: llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 17969)
;
17970 case RISCV::BI__builtin_riscv_orc_b_32:
17971 case RISCV::BI__builtin_riscv_orc_b_64:
17972 case RISCV::BI__builtin_riscv_clmul:
17973 case RISCV::BI__builtin_riscv_clmulh:
17974 case RISCV::BI__builtin_riscv_clmulr:
17975 case RISCV::BI__builtin_riscv_bcompress_32:
17976 case RISCV::BI__builtin_riscv_bcompress_64:
17977 case RISCV::BI__builtin_riscv_bdecompress_32:
17978 case RISCV::BI__builtin_riscv_bdecompress_64:
17979 case RISCV::BI__builtin_riscv_grev_32:
17980 case RISCV::BI__builtin_riscv_grev_64:
17981 case RISCV::BI__builtin_riscv_gorc_32:
17982 case RISCV::BI__builtin_riscv_gorc_64:
17983 case RISCV::BI__builtin_riscv_shfl_32:
17984 case RISCV::BI__builtin_riscv_shfl_64:
17985 case RISCV::BI__builtin_riscv_unshfl_32:
17986 case RISCV::BI__builtin_riscv_unshfl_64:
17987 case RISCV::BI__builtin_riscv_xperm_n:
17988 case RISCV::BI__builtin_riscv_xperm_b:
17989 case RISCV::BI__builtin_riscv_xperm_h:
17990 case RISCV::BI__builtin_riscv_xperm_w:
17991 case RISCV::BI__builtin_riscv_crc32_b:
17992 case RISCV::BI__builtin_riscv_crc32_h:
17993 case RISCV::BI__builtin_riscv_crc32_w:
17994 case RISCV::BI__builtin_riscv_crc32_d:
17995 case RISCV::BI__builtin_riscv_crc32c_b:
17996 case RISCV::BI__builtin_riscv_crc32c_h:
17997 case RISCV::BI__builtin_riscv_crc32c_w:
17998 case RISCV::BI__builtin_riscv_crc32c_d: {
17999 switch (BuiltinID) {
18000 default: llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 18000)
;
18001 // Zbb
18002 case RISCV::BI__builtin_riscv_orc_b_32:
18003 case RISCV::BI__builtin_riscv_orc_b_64:
18004 ID = Intrinsic::riscv_orc_b;
18005 break;
18006
18007 // Zbc
18008 case RISCV::BI__builtin_riscv_clmul:
18009 ID = Intrinsic::riscv_clmul;
18010 break;
18011 case RISCV::BI__builtin_riscv_clmulh:
18012 ID = Intrinsic::riscv_clmulh;
18013 break;
18014 case RISCV::BI__builtin_riscv_clmulr:
18015 ID = Intrinsic::riscv_clmulr;
18016 break;
18017
18018 // Zbe
18019 case RISCV::BI__builtin_riscv_bcompress_32:
18020 case RISCV::BI__builtin_riscv_bcompress_64:
18021 ID = Intrinsic::riscv_bcompress;
18022 break;
18023 case RISCV::BI__builtin_riscv_bdecompress_32:
18024 case RISCV::BI__builtin_riscv_bdecompress_64:
18025 ID = Intrinsic::riscv_bdecompress;
18026 break;
18027
18028 // Zbp
18029 case RISCV::BI__builtin_riscv_grev_32:
18030 case RISCV::BI__builtin_riscv_grev_64:
18031 ID = Intrinsic::riscv_grev;
18032 break;
18033 case RISCV::BI__builtin_riscv_gorc_32:
18034 case RISCV::BI__builtin_riscv_gorc_64:
18035 ID = Intrinsic::riscv_gorc;
18036 break;
18037 case RISCV::BI__builtin_riscv_shfl_32:
18038 case RISCV::BI__builtin_riscv_shfl_64:
18039 ID = Intrinsic::riscv_shfl;
18040 break;
18041 case RISCV::BI__builtin_riscv_unshfl_32:
18042 case RISCV::BI__builtin_riscv_unshfl_64:
18043 ID = Intrinsic::riscv_unshfl;
18044 break;
18045 case RISCV::BI__builtin_riscv_xperm_n:
18046 ID = Intrinsic::riscv_xperm_n;
18047 break;
18048 case RISCV::BI__builtin_riscv_xperm_b:
18049 ID = Intrinsic::riscv_xperm_b;
18050 break;
18051 case RISCV::BI__builtin_riscv_xperm_h:
18052 ID = Intrinsic::riscv_xperm_h;
18053 break;
18054 case RISCV::BI__builtin_riscv_xperm_w:
18055 ID = Intrinsic::riscv_xperm_w;
18056 break;
18057
18058 // Zbr
18059 case RISCV::BI__builtin_riscv_crc32_b:
18060 ID = Intrinsic::riscv_crc32_b;
18061 break;
18062 case RISCV::BI__builtin_riscv_crc32_h:
18063 ID = Intrinsic::riscv_crc32_h;
18064 break;
18065 case RISCV::BI__builtin_riscv_crc32_w:
18066 ID = Intrinsic::riscv_crc32_w;
18067 break;
18068 case RISCV::BI__builtin_riscv_crc32_d:
18069 ID = Intrinsic::riscv_crc32_d;
18070 break;
18071 case RISCV::BI__builtin_riscv_crc32c_b:
18072 ID = Intrinsic::riscv_crc32c_b;
18073 break;
18074 case RISCV::BI__builtin_riscv_crc32c_h:
18075 ID = Intrinsic::riscv_crc32c_h;
18076 break;
18077 case RISCV::BI__builtin_riscv_crc32c_w:
18078 ID = Intrinsic::riscv_crc32c_w;
18079 break;
18080 case RISCV::BI__builtin_riscv_crc32c_d:
18081 ID = Intrinsic::riscv_crc32c_d;
18082 break;
18083 }
18084
18085 IntrinsicTypes = {ResultType};
18086 break;
18087 }
18088 // Vector builtins are handled from here.
18089#include "clang/Basic/riscv_vector_builtin_cg.inc"
18090 }
18091
18092 assert(ID != Intrinsic::not_intrinsic)(static_cast <bool> (ID != Intrinsic::not_intrinsic) ? void
(0) : __assert_fail ("ID != Intrinsic::not_intrinsic", "/build/llvm-toolchain-snapshot-13~++20210629100611+bb2cfca2f323/clang/lib/CodeGen/CGBuiltin.cpp"
, 18092, __extension__ __PRETTY_FUNCTION__))
;
18093
18094 llvm::Function *F = CGM.getIntrinsic(ID, IntrinsicTypes);
18095 return Builder.CreateCall(F, Ops, "");
18096}