Bug Summary

File:build/llvm-toolchain-snapshot-15~++20220301100735+026fe5ffc352/clang/lib/CodeGen/CGBuiltin.cpp
Warning:line 16685, column 9
1st function call argument is an uninitialized value

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -clear-ast-before-backend -disable-llvm-verifier -discard-value-names -main-file-name CGBuiltin.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -ffp-contract=on -fno-rounding-math -mconstructor-aliases -funwind-tables=2 -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220301100735+026fe5ffc352/build-llvm -resource-dir /usr/lib/llvm-15/lib/clang/15.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I tools/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-15~++20220301100735+026fe5ffc352/clang/lib/CodeGen -I /build/llvm-toolchain-snapshot-15~++20220301100735+026fe5ffc352/clang/include -I tools/clang/include -I include -I /build/llvm-toolchain-snapshot-15~++20220301100735+026fe5ffc352/llvm/include -D _FORTIFY_SOURCE=2 -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-15/lib/clang/15.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220301100735+026fe5ffc352/build-llvm=build-llvm -fmacro-prefix-map=/build/llvm-toolchain-snapshot-15~++20220301100735+026fe5ffc352/= -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220301100735+026fe5ffc352/build-llvm=build-llvm -fcoverage-prefix-map=/build/llvm-toolchain-snapshot-15~++20220301100735+026fe5ffc352/= -O3 -Wno-unused-command-line-argument -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-15~++20220301100735+026fe5ffc352/build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220301100735+026fe5ffc352/build-llvm=build-llvm -fdebug-prefix-map=/build/llvm-toolchain-snapshot-15~++20220301100735+026fe5ffc352/= -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fcolor-diagnostics -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2022-03-01-235733-118493-1 -x c++ /build/llvm-toolchain-snapshot-15~++20220301100735+026fe5ffc352/clang/lib/CodeGen/CGBuiltin.cpp
1//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code to emit Builtin calls as LLVM code.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGCUDARuntime.h"
14#include "CGCXXABI.h"
15#include "CGObjCRuntime.h"
16#include "CGOpenCLRuntime.h"
17#include "CGRecordLayout.h"
18#include "CodeGenFunction.h"
19#include "CodeGenModule.h"
20#include "ConstantEmitter.h"
21#include "PatternInit.h"
22#include "TargetInfo.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/Attr.h"
25#include "clang/AST/Decl.h"
26#include "clang/AST/OSLog.h"
27#include "clang/Basic/TargetBuiltins.h"
28#include "clang/Basic/TargetInfo.h"
29#include "clang/CodeGen/CGFunctionInfo.h"
30#include "llvm/ADT/APFloat.h"
31#include "llvm/ADT/APInt.h"
32#include "llvm/ADT/SmallPtrSet.h"
33#include "llvm/ADT/StringExtras.h"
34#include "llvm/Analysis/ValueTracking.h"
35#include "llvm/IR/DataLayout.h"
36#include "llvm/IR/InlineAsm.h"
37#include "llvm/IR/Intrinsics.h"
38#include "llvm/IR/IntrinsicsAArch64.h"
39#include "llvm/IR/IntrinsicsAMDGPU.h"
40#include "llvm/IR/IntrinsicsARM.h"
41#include "llvm/IR/IntrinsicsBPF.h"
42#include "llvm/IR/IntrinsicsHexagon.h"
43#include "llvm/IR/IntrinsicsNVPTX.h"
44#include "llvm/IR/IntrinsicsPowerPC.h"
45#include "llvm/IR/IntrinsicsR600.h"
46#include "llvm/IR/IntrinsicsRISCV.h"
47#include "llvm/IR/IntrinsicsS390.h"
48#include "llvm/IR/IntrinsicsWebAssembly.h"
49#include "llvm/IR/IntrinsicsX86.h"
50#include "llvm/IR/MDBuilder.h"
51#include "llvm/IR/MatrixBuilder.h"
52#include "llvm/Support/ConvertUTF.h"
53#include "llvm/Support/ScopedPrinter.h"
54#include "llvm/Support/X86TargetParser.h"
55#include <sstream>
56
57using namespace clang;
58using namespace CodeGen;
59using namespace llvm;
60
61static
62int64_t clamp(int64_t Value, int64_t Low, int64_t High) {
63 return std::min(High, std::max(Low, Value));
64}
65
66static void initializeAlloca(CodeGenFunction &CGF, AllocaInst *AI, Value *Size,
67 Align AlignmentInBytes) {
68 ConstantInt *Byte;
69 switch (CGF.getLangOpts().getTrivialAutoVarInit()) {
70 case LangOptions::TrivialAutoVarInitKind::Uninitialized:
71 // Nothing to initialize.
72 return;
73 case LangOptions::TrivialAutoVarInitKind::Zero:
74 Byte = CGF.Builder.getInt8(0x00);
75 break;
76 case LangOptions::TrivialAutoVarInitKind::Pattern: {
77 llvm::Type *Int8 = llvm::IntegerType::getInt8Ty(CGF.CGM.getLLVMContext());
78 Byte = llvm::dyn_cast<llvm::ConstantInt>(
79 initializationPatternFor(CGF.CGM, Int8));
80 break;
81 }
82 }
83 if (CGF.CGM.stopAutoInit())
84 return;
85 auto *I = CGF.Builder.CreateMemSet(AI, Byte, Size, AlignmentInBytes);
86 I->addAnnotationMetadata("auto-init");
87}
88
89/// getBuiltinLibFunction - Given a builtin id for a function like
90/// "__builtin_fabsf", return a Function* for "fabsf".
91llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
92 unsigned BuiltinID) {
93 assert(Context.BuiltinInfo.isLibFunction(BuiltinID))(static_cast <bool> (Context.BuiltinInfo.isLibFunction(
BuiltinID)) ? void (0) : __assert_fail ("Context.BuiltinInfo.isLibFunction(BuiltinID)"
, "clang/lib/CodeGen/CGBuiltin.cpp", 93, __extension__ __PRETTY_FUNCTION__
))
;
94
95 // Get the name, skip over the __builtin_ prefix (if necessary).
96 StringRef Name;
97 GlobalDecl D(FD);
98
99 // TODO: This list should be expanded or refactored after all GCC-compatible
100 // std libcall builtins are implemented.
101 static SmallDenseMap<unsigned, StringRef, 8> F128Builtins{
102 {Builtin::BI__builtin_printf, "__printfieee128"},
103 {Builtin::BI__builtin_vsnprintf, "__vsnprintfieee128"},
104 {Builtin::BI__builtin_vsprintf, "__vsprintfieee128"},
105 {Builtin::BI__builtin_sprintf, "__sprintfieee128"},
106 {Builtin::BI__builtin_snprintf, "__snprintfieee128"},
107 {Builtin::BI__builtin_fprintf, "__fprintfieee128"},
108 {Builtin::BI__builtin_nexttowardf128, "__nexttowardieee128"},
109 };
110
111 // If the builtin has been declared explicitly with an assembler label,
112 // use the mangled name. This differs from the plain label on platforms
113 // that prefix labels.
114 if (FD->hasAttr<AsmLabelAttr>())
115 Name = getMangledName(D);
116 else {
117 // TODO: This mutation should also be applied to other targets other than
118 // PPC, after backend supports IEEE 128-bit style libcalls.
119 if (getTriple().isPPC64() &&
120 &getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad() &&
121 F128Builtins.find(BuiltinID) != F128Builtins.end())
122 Name = F128Builtins[BuiltinID];
123 else
124 Name = Context.BuiltinInfo.getName(BuiltinID) + 10;
125 }
126
127 llvm::FunctionType *Ty =
128 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
129
130 return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
131}
132
133/// Emit the conversions required to turn the given value into an
134/// integer of the given size.
135static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
136 QualType T, llvm::IntegerType *IntType) {
137 V = CGF.EmitToMemory(V, T);
138
139 if (V->getType()->isPointerTy())
140 return CGF.Builder.CreatePtrToInt(V, IntType);
141
142 assert(V->getType() == IntType)(static_cast <bool> (V->getType() == IntType) ? void
(0) : __assert_fail ("V->getType() == IntType", "clang/lib/CodeGen/CGBuiltin.cpp"
, 142, __extension__ __PRETTY_FUNCTION__))
;
143 return V;
144}
145
146static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
147 QualType T, llvm::Type *ResultType) {
148 V = CGF.EmitFromMemory(V, T);
149
150 if (ResultType->isPointerTy())
151 return CGF.Builder.CreateIntToPtr(V, ResultType);
152
153 assert(V->getType() == ResultType)(static_cast <bool> (V->getType() == ResultType) ? void
(0) : __assert_fail ("V->getType() == ResultType", "clang/lib/CodeGen/CGBuiltin.cpp"
, 153, __extension__ __PRETTY_FUNCTION__))
;
154 return V;
155}
156
157/// Utility to insert an atomic instruction based on Intrinsic::ID
158/// and the expression node.
159static Value *MakeBinaryAtomicValue(
160 CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E,
161 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
162
163 QualType T = E->getType();
164 assert(E->getArg(0)->getType()->isPointerType())(static_cast <bool> (E->getArg(0)->getType()->
isPointerType()) ? void (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 164, __extension__ __PRETTY_FUNCTION__
))
;
165 assert(CGF.getContext().hasSameUnqualifiedType(T,(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(0)->getType()->getPointeeType())) ? void
(0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 166, __extension__ __PRETTY_FUNCTION__
))
166 E->getArg(0)->getType()->getPointeeType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(0)->getType()->getPointeeType())) ? void
(0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 166, __extension__ __PRETTY_FUNCTION__
))
;
167 assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(1)->getType())) ? void (0) : __assert_fail
("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 167, __extension__ __PRETTY_FUNCTION__
))
;
168
169 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
170 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
171
172 llvm::IntegerType *IntType =
173 llvm::IntegerType::get(CGF.getLLVMContext(),
174 CGF.getContext().getTypeSize(T));
175 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
176
177 llvm::Value *Args[2];
178 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
179 Args[1] = CGF.EmitScalarExpr(E->getArg(1));
180 llvm::Type *ValueType = Args[1]->getType();
181 Args[1] = EmitToInt(CGF, Args[1], T, IntType);
182
183 llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
184 Kind, Args[0], Args[1], Ordering);
185 return EmitFromInt(CGF, Result, T, ValueType);
186}
187
188static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) {
189 Value *Val = CGF.EmitScalarExpr(E->getArg(0));
190 Value *Address = CGF.EmitScalarExpr(E->getArg(1));
191
192 // Convert the type of the pointer to a pointer to the stored type.
193 Val = CGF.EmitToMemory(Val, E->getArg(0)->getType());
194 unsigned SrcAddrSpace = Address->getType()->getPointerAddressSpace();
195 Value *BC = CGF.Builder.CreateBitCast(
196 Address, llvm::PointerType::get(Val->getType(), SrcAddrSpace), "cast");
197 LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType());
198 LV.setNontemporal(true);
199 CGF.EmitStoreOfScalar(Val, LV, false);
200 return nullptr;
201}
202
203static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) {
204 Value *Address = CGF.EmitScalarExpr(E->getArg(0));
205
206 LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType());
207 LV.setNontemporal(true);
208 return CGF.EmitLoadOfScalar(LV, E->getExprLoc());
209}
210
211static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
212 llvm::AtomicRMWInst::BinOp Kind,
213 const CallExpr *E) {
214 return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E));
215}
216
217/// Utility to insert an atomic instruction based Intrinsic::ID and
218/// the expression node, where the return value is the result of the
219/// operation.
220static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
221 llvm::AtomicRMWInst::BinOp Kind,
222 const CallExpr *E,
223 Instruction::BinaryOps Op,
224 bool Invert = false) {
225 QualType T = E->getType();
226 assert(E->getArg(0)->getType()->isPointerType())(static_cast <bool> (E->getArg(0)->getType()->
isPointerType()) ? void (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 226, __extension__ __PRETTY_FUNCTION__
))
;
227 assert(CGF.getContext().hasSameUnqualifiedType(T,(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(0)->getType()->getPointeeType())) ? void
(0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 228, __extension__ __PRETTY_FUNCTION__
))
228 E->getArg(0)->getType()->getPointeeType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(0)->getType()->getPointeeType())) ? void
(0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(0)->getType()->getPointeeType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 228, __extension__ __PRETTY_FUNCTION__
))
;
229 assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(T, E->getArg(1)->getType())) ? void (0) : __assert_fail
("CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 229, __extension__ __PRETTY_FUNCTION__
))
;
230
231 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
232 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
233
234 llvm::IntegerType *IntType =
235 llvm::IntegerType::get(CGF.getLLVMContext(),
236 CGF.getContext().getTypeSize(T));
237 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
238
239 llvm::Value *Args[2];
240 Args[1] = CGF.EmitScalarExpr(E->getArg(1));
241 llvm::Type *ValueType = Args[1]->getType();
242 Args[1] = EmitToInt(CGF, Args[1], T, IntType);
243 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
244
245 llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
246 Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent);
247 Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
248 if (Invert)
249 Result =
250 CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result,
251 llvm::ConstantInt::getAllOnesValue(IntType));
252 Result = EmitFromInt(CGF, Result, T, ValueType);
253 return RValue::get(Result);
254}
255
256/// Utility to insert an atomic cmpxchg instruction.
257///
258/// @param CGF The current codegen function.
259/// @param E Builtin call expression to convert to cmpxchg.
260/// arg0 - address to operate on
261/// arg1 - value to compare with
262/// arg2 - new value
263/// @param ReturnBool Specifies whether to return success flag of
264/// cmpxchg result or the old value.
265///
266/// @returns result of cmpxchg, according to ReturnBool
267///
268/// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics
269/// invoke the function EmitAtomicCmpXchgForMSIntrin.
270static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E,
271 bool ReturnBool) {
272 QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType();
273 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
274 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
275
276 llvm::IntegerType *IntType = llvm::IntegerType::get(
277 CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
278 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
279
280 Value *Args[3];
281 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
282 Args[1] = CGF.EmitScalarExpr(E->getArg(1));
283 llvm::Type *ValueType = Args[1]->getType();
284 Args[1] = EmitToInt(CGF, Args[1], T, IntType);
285 Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType);
286
287 Value *Pair = CGF.Builder.CreateAtomicCmpXchg(
288 Args[0], Args[1], Args[2], llvm::AtomicOrdering::SequentiallyConsistent,
289 llvm::AtomicOrdering::SequentiallyConsistent);
290 if (ReturnBool)
291 // Extract boolean success flag and zext it to int.
292 return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1),
293 CGF.ConvertType(E->getType()));
294 else
295 // Extract old value and emit it using the same type as compare value.
296 return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T,
297 ValueType);
298}
299
300/// This function should be invoked to emit atomic cmpxchg for Microsoft's
301/// _InterlockedCompareExchange* intrinsics which have the following signature:
302/// T _InterlockedCompareExchange(T volatile *Destination,
303/// T Exchange,
304/// T Comparand);
305///
306/// Whereas the llvm 'cmpxchg' instruction has the following syntax:
307/// cmpxchg *Destination, Comparand, Exchange.
308/// So we need to swap Comparand and Exchange when invoking
309/// CreateAtomicCmpXchg. That is the reason we could not use the above utility
310/// function MakeAtomicCmpXchgValue since it expects the arguments to be
311/// already swapped.
312
313static
314Value *EmitAtomicCmpXchgForMSIntrin(CodeGenFunction &CGF, const CallExpr *E,
315 AtomicOrdering SuccessOrdering = AtomicOrdering::SequentiallyConsistent) {
316 assert(E->getArg(0)->getType()->isPointerType())(static_cast <bool> (E->getArg(0)->getType()->
isPointerType()) ? void (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 316, __extension__ __PRETTY_FUNCTION__
))
;
317 assert(CGF.getContext().hasSameUnqualifiedType((static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
( E->getType(), E->getArg(0)->getType()->getPointeeType
())) ? void (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType( E->getType(), E->getArg(0)->getType()->getPointeeType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 318, __extension__ __PRETTY_FUNCTION__
))
318 E->getType(), E->getArg(0)->getType()->getPointeeType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
( E->getType(), E->getArg(0)->getType()->getPointeeType
())) ? void (0) : __assert_fail ("CGF.getContext().hasSameUnqualifiedType( E->getType(), E->getArg(0)->getType()->getPointeeType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 318, __extension__ __PRETTY_FUNCTION__
))
;
319 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(E->getType(), E->getArg(1)->getType())) ? void (0) :
__assert_fail ("CGF.getContext().hasSameUnqualifiedType(E->getType(), E->getArg(1)->getType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 320, __extension__ __PRETTY_FUNCTION__
))
320 E->getArg(1)->getType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(E->getType(), E->getArg(1)->getType())) ? void (0) :
__assert_fail ("CGF.getContext().hasSameUnqualifiedType(E->getType(), E->getArg(1)->getType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 320, __extension__ __PRETTY_FUNCTION__
))
;
321 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(E->getType(), E->getArg(2)->getType())) ? void (0) :
__assert_fail ("CGF.getContext().hasSameUnqualifiedType(E->getType(), E->getArg(2)->getType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 322, __extension__ __PRETTY_FUNCTION__
))
322 E->getArg(2)->getType()))(static_cast <bool> (CGF.getContext().hasSameUnqualifiedType
(E->getType(), E->getArg(2)->getType())) ? void (0) :
__assert_fail ("CGF.getContext().hasSameUnqualifiedType(E->getType(), E->getArg(2)->getType())"
, "clang/lib/CodeGen/CGBuiltin.cpp", 322, __extension__ __PRETTY_FUNCTION__
))
;
323
324 auto *Destination = CGF.EmitScalarExpr(E->getArg(0));
325 auto *Comparand = CGF.EmitScalarExpr(E->getArg(2));
326 auto *Exchange = CGF.EmitScalarExpr(E->getArg(1));
327
328 // For Release ordering, the failure ordering should be Monotonic.
329 auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release ?
330 AtomicOrdering::Monotonic :
331 SuccessOrdering;
332
333 // The atomic instruction is marked volatile for consistency with MSVC. This
334 // blocks the few atomics optimizations that LLVM has. If we want to optimize
335 // _Interlocked* operations in the future, we will have to remove the volatile
336 // marker.
337 auto *Result = CGF.Builder.CreateAtomicCmpXchg(
338 Destination, Comparand, Exchange,
339 SuccessOrdering, FailureOrdering);
340 Result->setVolatile(true);
341 return CGF.Builder.CreateExtractValue(Result, 0);
342}
343
344// 64-bit Microsoft platforms support 128 bit cmpxchg operations. They are
345// prototyped like this:
346//
347// unsigned char _InterlockedCompareExchange128...(
348// __int64 volatile * _Destination,
349// __int64 _ExchangeHigh,
350// __int64 _ExchangeLow,
351// __int64 * _ComparandResult);
352static Value *EmitAtomicCmpXchg128ForMSIntrin(CodeGenFunction &CGF,
353 const CallExpr *E,
354 AtomicOrdering SuccessOrdering) {
355 assert(E->getNumArgs() == 4)(static_cast <bool> (E->getNumArgs() == 4) ? void (0
) : __assert_fail ("E->getNumArgs() == 4", "clang/lib/CodeGen/CGBuiltin.cpp"
, 355, __extension__ __PRETTY_FUNCTION__))
;
356 llvm::Value *Destination = CGF.EmitScalarExpr(E->getArg(0));
357 llvm::Value *ExchangeHigh = CGF.EmitScalarExpr(E->getArg(1));
358 llvm::Value *ExchangeLow = CGF.EmitScalarExpr(E->getArg(2));
359 llvm::Value *ComparandPtr = CGF.EmitScalarExpr(E->getArg(3));
360
361 assert(Destination->getType()->isPointerTy())(static_cast <bool> (Destination->getType()->isPointerTy
()) ? void (0) : __assert_fail ("Destination->getType()->isPointerTy()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 361, __extension__ __PRETTY_FUNCTION__
))
;
362 assert(!ExchangeHigh->getType()->isPointerTy())(static_cast <bool> (!ExchangeHigh->getType()->isPointerTy
()) ? void (0) : __assert_fail ("!ExchangeHigh->getType()->isPointerTy()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 362, __extension__ __PRETTY_FUNCTION__
))
;
363 assert(!ExchangeLow->getType()->isPointerTy())(static_cast <bool> (!ExchangeLow->getType()->isPointerTy
()) ? void (0) : __assert_fail ("!ExchangeLow->getType()->isPointerTy()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 363, __extension__ __PRETTY_FUNCTION__
))
;
364 assert(ComparandPtr->getType()->isPointerTy())(static_cast <bool> (ComparandPtr->getType()->isPointerTy
()) ? void (0) : __assert_fail ("ComparandPtr->getType()->isPointerTy()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 364, __extension__ __PRETTY_FUNCTION__
))
;
365
366 // For Release ordering, the failure ordering should be Monotonic.
367 auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release
368 ? AtomicOrdering::Monotonic
369 : SuccessOrdering;
370
371 // Convert to i128 pointers and values.
372 llvm::Type *Int128Ty = llvm::IntegerType::get(CGF.getLLVMContext(), 128);
373 llvm::Type *Int128PtrTy = Int128Ty->getPointerTo();
374 Destination = CGF.Builder.CreateBitCast(Destination, Int128PtrTy);
375 Address ComparandResult(CGF.Builder.CreateBitCast(ComparandPtr, Int128PtrTy),
376 Int128Ty, CGF.getContext().toCharUnitsFromBits(128));
377
378 // (((i128)hi) << 64) | ((i128)lo)
379 ExchangeHigh = CGF.Builder.CreateZExt(ExchangeHigh, Int128Ty);
380 ExchangeLow = CGF.Builder.CreateZExt(ExchangeLow, Int128Ty);
381 ExchangeHigh =
382 CGF.Builder.CreateShl(ExchangeHigh, llvm::ConstantInt::get(Int128Ty, 64));
383 llvm::Value *Exchange = CGF.Builder.CreateOr(ExchangeHigh, ExchangeLow);
384
385 // Load the comparand for the instruction.
386 llvm::Value *Comparand = CGF.Builder.CreateLoad(ComparandResult);
387
388 auto *CXI = CGF.Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
389 SuccessOrdering, FailureOrdering);
390
391 // The atomic instruction is marked volatile for consistency with MSVC. This
392 // blocks the few atomics optimizations that LLVM has. If we want to optimize
393 // _Interlocked* operations in the future, we will have to remove the volatile
394 // marker.
395 CXI->setVolatile(true);
396
397 // Store the result as an outparameter.
398 CGF.Builder.CreateStore(CGF.Builder.CreateExtractValue(CXI, 0),
399 ComparandResult);
400
401 // Get the success boolean and zero extend it to i8.
402 Value *Success = CGF.Builder.CreateExtractValue(CXI, 1);
403 return CGF.Builder.CreateZExt(Success, CGF.Int8Ty);
404}
405
406static Value *EmitAtomicIncrementValue(CodeGenFunction &CGF, const CallExpr *E,
407 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
408 assert(E->getArg(0)->getType()->isPointerType())(static_cast <bool> (E->getArg(0)->getType()->
isPointerType()) ? void (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 408, __extension__ __PRETTY_FUNCTION__
))
;
409
410 auto *IntTy = CGF.ConvertType(E->getType());
411 auto *Result = CGF.Builder.CreateAtomicRMW(
412 AtomicRMWInst::Add,
413 CGF.EmitScalarExpr(E->getArg(0)),
414 ConstantInt::get(IntTy, 1),
415 Ordering);
416 return CGF.Builder.CreateAdd(Result, ConstantInt::get(IntTy, 1));
417}
418
419static Value *EmitAtomicDecrementValue(CodeGenFunction &CGF, const CallExpr *E,
420 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
421 assert(E->getArg(0)->getType()->isPointerType())(static_cast <bool> (E->getArg(0)->getType()->
isPointerType()) ? void (0) : __assert_fail ("E->getArg(0)->getType()->isPointerType()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 421, __extension__ __PRETTY_FUNCTION__
))
;
422
423 auto *IntTy = CGF.ConvertType(E->getType());
424 auto *Result = CGF.Builder.CreateAtomicRMW(
425 AtomicRMWInst::Sub,
426 CGF.EmitScalarExpr(E->getArg(0)),
427 ConstantInt::get(IntTy, 1),
428 Ordering);
429 return CGF.Builder.CreateSub(Result, ConstantInt::get(IntTy, 1));
430}
431
432// Build a plain volatile load.
433static Value *EmitISOVolatileLoad(CodeGenFunction &CGF, const CallExpr *E) {
434 Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
435 QualType ElTy = E->getArg(0)->getType()->getPointeeType();
436 CharUnits LoadSize = CGF.getContext().getTypeSizeInChars(ElTy);
437 llvm::Type *ITy =
438 llvm::IntegerType::get(CGF.getLLVMContext(), LoadSize.getQuantity() * 8);
439 Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
440 llvm::LoadInst *Load = CGF.Builder.CreateAlignedLoad(ITy, Ptr, LoadSize);
441 Load->setVolatile(true);
442 return Load;
443}
444
445// Build a plain volatile store.
446static Value *EmitISOVolatileStore(CodeGenFunction &CGF, const CallExpr *E) {
447 Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
448 Value *Value = CGF.EmitScalarExpr(E->getArg(1));
449 QualType ElTy = E->getArg(0)->getType()->getPointeeType();
450 CharUnits StoreSize = CGF.getContext().getTypeSizeInChars(ElTy);
451 llvm::Type *ITy =
452 llvm::IntegerType::get(CGF.getLLVMContext(), StoreSize.getQuantity() * 8);
453 Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
454 llvm::StoreInst *Store =
455 CGF.Builder.CreateAlignedStore(Value, Ptr, StoreSize);
456 Store->setVolatile(true);
457 return Store;
458}
459
460// Emit a simple mangled intrinsic that has 1 argument and a return type
461// matching the argument type. Depending on mode, this may be a constrained
462// floating-point intrinsic.
463static Value *emitUnaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
464 const CallExpr *E, unsigned IntrinsicID,
465 unsigned ConstrainedIntrinsicID) {
466 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
467
468 if (CGF.Builder.getIsFPConstrained()) {
469 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
470 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
471 return CGF.Builder.CreateConstrainedFPCall(F, { Src0 });
472 } else {
473 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
474 return CGF.Builder.CreateCall(F, Src0);
475 }
476}
477
478// Emit an intrinsic that has 2 operands of the same type as its result.
479// Depending on mode, this may be a constrained floating-point intrinsic.
480static Value *emitBinaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
481 const CallExpr *E, unsigned IntrinsicID,
482 unsigned ConstrainedIntrinsicID) {
483 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
484 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
485
486 if (CGF.Builder.getIsFPConstrained()) {
487 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
488 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
489 return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1 });
490 } else {
491 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
492 return CGF.Builder.CreateCall(F, { Src0, Src1 });
493 }
494}
495
496// Emit an intrinsic that has 3 operands of the same type as its result.
497// Depending on mode, this may be a constrained floating-point intrinsic.
498static Value *emitTernaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
499 const CallExpr *E, unsigned IntrinsicID,
500 unsigned ConstrainedIntrinsicID) {
501 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
502 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
503 llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
504
505 if (CGF.Builder.getIsFPConstrained()) {
506 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
507 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
508 return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1, Src2 });
509 } else {
510 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
511 return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
512 }
513}
514
515// Emit an intrinsic where all operands are of the same type as the result.
516// Depending on mode, this may be a constrained floating-point intrinsic.
517static Value *emitCallMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
518 unsigned IntrinsicID,
519 unsigned ConstrainedIntrinsicID,
520 llvm::Type *Ty,
521 ArrayRef<Value *> Args) {
522 Function *F;
523 if (CGF.Builder.getIsFPConstrained())
524 F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Ty);
525 else
526 F = CGF.CGM.getIntrinsic(IntrinsicID, Ty);
527
528 if (CGF.Builder.getIsFPConstrained())
529 return CGF.Builder.CreateConstrainedFPCall(F, Args);
530 else
531 return CGF.Builder.CreateCall(F, Args);
532}
533
534// Emit a simple mangled intrinsic that has 1 argument and a return type
535// matching the argument type.
536static Value *emitUnaryBuiltin(CodeGenFunction &CGF, const CallExpr *E,
537 unsigned IntrinsicID,
538 llvm::StringRef Name = "") {
539 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
540
541 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
542 return CGF.Builder.CreateCall(F, Src0, Name);
543}
544
545// Emit an intrinsic that has 2 operands of the same type as its result.
546static Value *emitBinaryBuiltin(CodeGenFunction &CGF,
547 const CallExpr *E,
548 unsigned IntrinsicID) {
549 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
550 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
551
552 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
553 return CGF.Builder.CreateCall(F, { Src0, Src1 });
554}
555
556// Emit an intrinsic that has 3 operands of the same type as its result.
557static Value *emitTernaryBuiltin(CodeGenFunction &CGF,
558 const CallExpr *E,
559 unsigned IntrinsicID) {
560 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
561 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
562 llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
563
564 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
565 return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
566}
567
568// Emit an intrinsic that has 1 float or double operand, and 1 integer.
569static Value *emitFPIntBuiltin(CodeGenFunction &CGF,
570 const CallExpr *E,
571 unsigned IntrinsicID) {
572 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
573 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
574
575 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
576 return CGF.Builder.CreateCall(F, {Src0, Src1});
577}
578
579// Emit an intrinsic that has overloaded integer result and fp operand.
580static Value *
581emitMaybeConstrainedFPToIntRoundBuiltin(CodeGenFunction &CGF, const CallExpr *E,
582 unsigned IntrinsicID,
583 unsigned ConstrainedIntrinsicID) {
584 llvm::Type *ResultType = CGF.ConvertType(E->getType());
585 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
586
587 if (CGF.Builder.getIsFPConstrained()) {
588 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
589 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID,
590 {ResultType, Src0->getType()});
591 return CGF.Builder.CreateConstrainedFPCall(F, {Src0});
592 } else {
593 Function *F =
594 CGF.CGM.getIntrinsic(IntrinsicID, {ResultType, Src0->getType()});
595 return CGF.Builder.CreateCall(F, Src0);
596 }
597}
598
599/// EmitFAbs - Emit a call to @llvm.fabs().
600static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) {
601 Function *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType());
602 llvm::CallInst *Call = CGF.Builder.CreateCall(F, V);
603 Call->setDoesNotAccessMemory();
604 return Call;
605}
606
607/// Emit the computation of the sign bit for a floating point value. Returns
608/// the i1 sign bit value.
609static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) {
610 LLVMContext &C = CGF.CGM.getLLVMContext();
611
612 llvm::Type *Ty = V->getType();
613 int Width = Ty->getPrimitiveSizeInBits();
614 llvm::Type *IntTy = llvm::IntegerType::get(C, Width);
615 V = CGF.Builder.CreateBitCast(V, IntTy);
616 if (Ty->isPPC_FP128Ty()) {
617 // We want the sign bit of the higher-order double. The bitcast we just
618 // did works as if the double-double was stored to memory and then
619 // read as an i128. The "store" will put the higher-order double in the
620 // lower address in both little- and big-Endian modes, but the "load"
621 // will treat those bits as a different part of the i128: the low bits in
622 // little-Endian, the high bits in big-Endian. Therefore, on big-Endian
623 // we need to shift the high bits down to the low before truncating.
624 Width >>= 1;
625 if (CGF.getTarget().isBigEndian()) {
626 Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width);
627 V = CGF.Builder.CreateLShr(V, ShiftCst);
628 }
629 // We are truncating value in order to extract the higher-order
630 // double, which we will be using to extract the sign from.
631 IntTy = llvm::IntegerType::get(C, Width);
632 V = CGF.Builder.CreateTrunc(V, IntTy);
633 }
634 Value *Zero = llvm::Constant::getNullValue(IntTy);
635 return CGF.Builder.CreateICmpSLT(V, Zero);
636}
637
638static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD,
639 const CallExpr *E, llvm::Constant *calleeValue) {
640 CGCallee callee = CGCallee::forDirect(calleeValue, GlobalDecl(FD));
641 return CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot());
642}
643
644/// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
645/// depending on IntrinsicID.
646///
647/// \arg CGF The current codegen function.
648/// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
649/// \arg X The first argument to the llvm.*.with.overflow.*.
650/// \arg Y The second argument to the llvm.*.with.overflow.*.
651/// \arg Carry The carry returned by the llvm.*.with.overflow.*.
652/// \returns The result (i.e. sum/product) returned by the intrinsic.
653static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
654 const llvm::Intrinsic::ID IntrinsicID,
655 llvm::Value *X, llvm::Value *Y,
656 llvm::Value *&Carry) {
657 // Make sure we have integers of the same width.
658 assert(X->getType() == Y->getType() &&(static_cast <bool> (X->getType() == Y->getType()
&& "Arguments must be the same type. (Did you forget to make sure both "
"arguments have the same integer width?)") ? void (0) : __assert_fail
("X->getType() == Y->getType() && \"Arguments must be the same type. (Did you forget to make sure both \" \"arguments have the same integer width?)\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 660, __extension__ __PRETTY_FUNCTION__
))
659 "Arguments must be the same type. (Did you forget to make sure both "(static_cast <bool> (X->getType() == Y->getType()
&& "Arguments must be the same type. (Did you forget to make sure both "
"arguments have the same integer width?)") ? void (0) : __assert_fail
("X->getType() == Y->getType() && \"Arguments must be the same type. (Did you forget to make sure both \" \"arguments have the same integer width?)\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 660, __extension__ __PRETTY_FUNCTION__
))
660 "arguments have the same integer width?)")(static_cast <bool> (X->getType() == Y->getType()
&& "Arguments must be the same type. (Did you forget to make sure both "
"arguments have the same integer width?)") ? void (0) : __assert_fail
("X->getType() == Y->getType() && \"Arguments must be the same type. (Did you forget to make sure both \" \"arguments have the same integer width?)\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 660, __extension__ __PRETTY_FUNCTION__
))
;
661
662 Function *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
663 llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y});
664 Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
665 return CGF.Builder.CreateExtractValue(Tmp, 0);
666}
667
668static Value *emitRangedBuiltin(CodeGenFunction &CGF,
669 unsigned IntrinsicID,
670 int low, int high) {
671 llvm::MDBuilder MDHelper(CGF.getLLVMContext());
672 llvm::MDNode *RNode = MDHelper.createRange(APInt(32, low), APInt(32, high));
673 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, {});
674 llvm::Instruction *Call = CGF.Builder.CreateCall(F);
675 Call->setMetadata(llvm::LLVMContext::MD_range, RNode);
676 return Call;
677}
678
679namespace {
680 struct WidthAndSignedness {
681 unsigned Width;
682 bool Signed;
683 };
684}
685
686static WidthAndSignedness
687getIntegerWidthAndSignedness(const clang::ASTContext &context,
688 const clang::QualType Type) {
689 assert(Type->isIntegerType() && "Given type is not an integer.")(static_cast <bool> (Type->isIntegerType() &&
"Given type is not an integer.") ? void (0) : __assert_fail (
"Type->isIntegerType() && \"Given type is not an integer.\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 689, __extension__ __PRETTY_FUNCTION__
))
;
690 unsigned Width = Type->isBooleanType() ? 1
691 : Type->isBitIntType() ? context.getIntWidth(Type)
692 : context.getTypeInfo(Type).Width;
693 bool Signed = Type->isSignedIntegerType();
694 return {Width, Signed};
695}
696
697// Given one or more integer types, this function produces an integer type that
698// encompasses them: any value in one of the given types could be expressed in
699// the encompassing type.
700static struct WidthAndSignedness
701EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) {
702 assert(Types.size() > 0 && "Empty list of types.")(static_cast <bool> (Types.size() > 0 && "Empty list of types."
) ? void (0) : __assert_fail ("Types.size() > 0 && \"Empty list of types.\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 702, __extension__ __PRETTY_FUNCTION__
))
;
703
704 // If any of the given types is signed, we must return a signed type.
705 bool Signed = false;
706 for (const auto &Type : Types) {
707 Signed |= Type.Signed;
708 }
709
710 // The encompassing type must have a width greater than or equal to the width
711 // of the specified types. Additionally, if the encompassing type is signed,
712 // its width must be strictly greater than the width of any unsigned types
713 // given.
714 unsigned Width = 0;
715 for (const auto &Type : Types) {
716 unsigned MinWidth = Type.Width + (Signed && !Type.Signed);
717 if (Width < MinWidth) {
718 Width = MinWidth;
719 }
720 }
721
722 return {Width, Signed};
723}
724
725Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) {
726 llvm::Type *DestType = Int8PtrTy;
727 if (ArgValue->getType() != DestType)
728 ArgValue =
729 Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data());
730
731 Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend;
732 return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue);
733}
734
735/// Checks if using the result of __builtin_object_size(p, @p From) in place of
736/// __builtin_object_size(p, @p To) is correct
737static bool areBOSTypesCompatible(int From, int To) {
738 // Note: Our __builtin_object_size implementation currently treats Type=0 and
739 // Type=2 identically. Encoding this implementation detail here may make
740 // improving __builtin_object_size difficult in the future, so it's omitted.
741 return From == To || (From == 0 && To == 1) || (From == 3 && To == 2);
742}
743
744static llvm::Value *
745getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) {
746 return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true);
747}
748
749llvm::Value *
750CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
751 llvm::IntegerType *ResType,
752 llvm::Value *EmittedE,
753 bool IsDynamic) {
754 uint64_t ObjectSize;
755 if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type))
756 return emitBuiltinObjectSize(E, Type, ResType, EmittedE, IsDynamic);
757 return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true);
758}
759
760/// Returns a Value corresponding to the size of the given expression.
761/// This Value may be either of the following:
762/// - A llvm::Argument (if E is a param with the pass_object_size attribute on
763/// it)
764/// - A call to the @llvm.objectsize intrinsic
765///
766/// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null
767/// and we wouldn't otherwise try to reference a pass_object_size parameter,
768/// we'll call @llvm.objectsize on EmittedE, rather than emitting E.
769llvm::Value *
770CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type,
771 llvm::IntegerType *ResType,
772 llvm::Value *EmittedE, bool IsDynamic) {
773 // We need to reference an argument if the pointer is a parameter with the
774 // pass_object_size attribute.
775 if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) {
776 auto *Param = dyn_cast<ParmVarDecl>(D->getDecl());
777 auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>();
778 if (Param != nullptr && PS != nullptr &&
779 areBOSTypesCompatible(PS->getType(), Type)) {
780 auto Iter = SizeArguments.find(Param);
781 assert(Iter != SizeArguments.end())(static_cast <bool> (Iter != SizeArguments.end()) ? void
(0) : __assert_fail ("Iter != SizeArguments.end()", "clang/lib/CodeGen/CGBuiltin.cpp"
, 781, __extension__ __PRETTY_FUNCTION__))
;
782
783 const ImplicitParamDecl *D = Iter->second;
784 auto DIter = LocalDeclMap.find(D);
785 assert(DIter != LocalDeclMap.end())(static_cast <bool> (DIter != LocalDeclMap.end()) ? void
(0) : __assert_fail ("DIter != LocalDeclMap.end()", "clang/lib/CodeGen/CGBuiltin.cpp"
, 785, __extension__ __PRETTY_FUNCTION__))
;
786
787 return EmitLoadOfScalar(DIter->second, /*Volatile=*/false,
788 getContext().getSizeType(), E->getBeginLoc());
789 }
790 }
791
792 // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't
793 // evaluate E for side-effects. In either case, we shouldn't lower to
794 // @llvm.objectsize.
795 if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext())))
796 return getDefaultBuiltinObjectSizeResult(Type, ResType);
797
798 Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E);
799 assert(Ptr->getType()->isPointerTy() &&(static_cast <bool> (Ptr->getType()->isPointerTy(
) && "Non-pointer passed to __builtin_object_size?") ?
void (0) : __assert_fail ("Ptr->getType()->isPointerTy() && \"Non-pointer passed to __builtin_object_size?\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 800, __extension__ __PRETTY_FUNCTION__
))
800 "Non-pointer passed to __builtin_object_size?")(static_cast <bool> (Ptr->getType()->isPointerTy(
) && "Non-pointer passed to __builtin_object_size?") ?
void (0) : __assert_fail ("Ptr->getType()->isPointerTy() && \"Non-pointer passed to __builtin_object_size?\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 800, __extension__ __PRETTY_FUNCTION__
))
;
801
802 Function *F =
803 CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()});
804
805 // LLVM only supports 0 and 2, make sure that we pass along that as a boolean.
806 Value *Min = Builder.getInt1((Type & 2) != 0);
807 // For GCC compatibility, __builtin_object_size treat NULL as unknown size.
808 Value *NullIsUnknown = Builder.getTrue();
809 Value *Dynamic = Builder.getInt1(IsDynamic);
810 return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic});
811}
812
813namespace {
814/// A struct to generically describe a bit test intrinsic.
815struct BitTest {
816 enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set };
817 enum InterlockingKind : uint8_t {
818 Unlocked,
819 Sequential,
820 Acquire,
821 Release,
822 NoFence
823 };
824
825 ActionKind Action;
826 InterlockingKind Interlocking;
827 bool Is64Bit;
828
829 static BitTest decodeBitTestBuiltin(unsigned BuiltinID);
830};
831} // namespace
832
833BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) {
834 switch (BuiltinID) {
835 // Main portable variants.
836 case Builtin::BI_bittest:
837 return {TestOnly, Unlocked, false};
838 case Builtin::BI_bittestandcomplement:
839 return {Complement, Unlocked, false};
840 case Builtin::BI_bittestandreset:
841 return {Reset, Unlocked, false};
842 case Builtin::BI_bittestandset:
843 return {Set, Unlocked, false};
844 case Builtin::BI_interlockedbittestandreset:
845 return {Reset, Sequential, false};
846 case Builtin::BI_interlockedbittestandset:
847 return {Set, Sequential, false};
848
849 // X86-specific 64-bit variants.
850 case Builtin::BI_bittest64:
851 return {TestOnly, Unlocked, true};
852 case Builtin::BI_bittestandcomplement64:
853 return {Complement, Unlocked, true};
854 case Builtin::BI_bittestandreset64:
855 return {Reset, Unlocked, true};
856 case Builtin::BI_bittestandset64:
857 return {Set, Unlocked, true};
858 case Builtin::BI_interlockedbittestandreset64:
859 return {Reset, Sequential, true};
860 case Builtin::BI_interlockedbittestandset64:
861 return {Set, Sequential, true};
862
863 // ARM/AArch64-specific ordering variants.
864 case Builtin::BI_interlockedbittestandset_acq:
865 return {Set, Acquire, false};
866 case Builtin::BI_interlockedbittestandset_rel:
867 return {Set, Release, false};
868 case Builtin::BI_interlockedbittestandset_nf:
869 return {Set, NoFence, false};
870 case Builtin::BI_interlockedbittestandreset_acq:
871 return {Reset, Acquire, false};
872 case Builtin::BI_interlockedbittestandreset_rel:
873 return {Reset, Release, false};
874 case Builtin::BI_interlockedbittestandreset_nf:
875 return {Reset, NoFence, false};
876 }
877 llvm_unreachable("expected only bittest intrinsics")::llvm::llvm_unreachable_internal("expected only bittest intrinsics"
, "clang/lib/CodeGen/CGBuiltin.cpp", 877)
;
878}
879
880static char bitActionToX86BTCode(BitTest::ActionKind A) {
881 switch (A) {
882 case BitTest::TestOnly: return '\0';
883 case BitTest::Complement: return 'c';
884 case BitTest::Reset: return 'r';
885 case BitTest::Set: return 's';
886 }
887 llvm_unreachable("invalid action")::llvm::llvm_unreachable_internal("invalid action", "clang/lib/CodeGen/CGBuiltin.cpp"
, 887)
;
888}
889
890static llvm::Value *EmitX86BitTestIntrinsic(CodeGenFunction &CGF,
891 BitTest BT,
892 const CallExpr *E, Value *BitBase,
893 Value *BitPos) {
894 char Action = bitActionToX86BTCode(BT.Action);
895 char SizeSuffix = BT.Is64Bit ? 'q' : 'l';
896
897 // Build the assembly.
898 SmallString<64> Asm;
899 raw_svector_ostream AsmOS(Asm);
900 if (BT.Interlocking != BitTest::Unlocked)
901 AsmOS << "lock ";
902 AsmOS << "bt";
903 if (Action)
904 AsmOS << Action;
905 AsmOS << SizeSuffix << " $2, ($1)";
906
907 // Build the constraints. FIXME: We should support immediates when possible.
908 std::string Constraints = "={@ccc},r,r,~{cc},~{memory}";
909 std::string MachineClobbers = CGF.getTarget().getClobbers();
910 if (!MachineClobbers.empty()) {
911 Constraints += ',';
912 Constraints += MachineClobbers;
913 }
914 llvm::IntegerType *IntType = llvm::IntegerType::get(
915 CGF.getLLVMContext(),
916 CGF.getContext().getTypeSize(E->getArg(1)->getType()));
917 llvm::Type *IntPtrType = IntType->getPointerTo();
918 llvm::FunctionType *FTy =
919 llvm::FunctionType::get(CGF.Int8Ty, {IntPtrType, IntType}, false);
920
921 llvm::InlineAsm *IA =
922 llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
923 return CGF.Builder.CreateCall(IA, {BitBase, BitPos});
924}
925
926static llvm::AtomicOrdering
927getBitTestAtomicOrdering(BitTest::InterlockingKind I) {
928 switch (I) {
929 case BitTest::Unlocked: return llvm::AtomicOrdering::NotAtomic;
930 case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent;
931 case BitTest::Acquire: return llvm::AtomicOrdering::Acquire;
932 case BitTest::Release: return llvm::AtomicOrdering::Release;
933 case BitTest::NoFence: return llvm::AtomicOrdering::Monotonic;
934 }
935 llvm_unreachable("invalid interlocking")::llvm::llvm_unreachable_internal("invalid interlocking", "clang/lib/CodeGen/CGBuiltin.cpp"
, 935)
;
936}
937
938/// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of
939/// bits and a bit position and read and optionally modify the bit at that
940/// position. The position index can be arbitrarily large, i.e. it can be larger
941/// than 31 or 63, so we need an indexed load in the general case.
942static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF,
943 unsigned BuiltinID,
944 const CallExpr *E) {
945 Value *BitBase = CGF.EmitScalarExpr(E->getArg(0));
946 Value *BitPos = CGF.EmitScalarExpr(E->getArg(1));
947
948 BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID);
949
950 // X86 has special BT, BTC, BTR, and BTS instructions that handle the array
951 // indexing operation internally. Use them if possible.
952 if (CGF.getTarget().getTriple().isX86())
953 return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos);
954
955 // Otherwise, use generic code to load one byte and test the bit. Use all but
956 // the bottom three bits as the array index, and the bottom three bits to form
957 // a mask.
958 // Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0;
959 Value *ByteIndex = CGF.Builder.CreateAShr(
960 BitPos, llvm::ConstantInt::get(BitPos->getType(), 3), "bittest.byteidx");
961 Value *BitBaseI8 = CGF.Builder.CreatePointerCast(BitBase, CGF.Int8PtrTy);
962 Address ByteAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, BitBaseI8,
963 ByteIndex, "bittest.byteaddr"),
964 CGF.Int8Ty, CharUnits::One());
965 Value *PosLow =
966 CGF.Builder.CreateAnd(CGF.Builder.CreateTrunc(BitPos, CGF.Int8Ty),
967 llvm::ConstantInt::get(CGF.Int8Ty, 0x7));
968
969 // The updating instructions will need a mask.
970 Value *Mask = nullptr;
971 if (BT.Action != BitTest::TestOnly) {
972 Mask = CGF.Builder.CreateShl(llvm::ConstantInt::get(CGF.Int8Ty, 1), PosLow,
973 "bittest.mask");
974 }
975
976 // Check the action and ordering of the interlocked intrinsics.
977 llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(BT.Interlocking);
978
979 Value *OldByte = nullptr;
980 if (Ordering != llvm::AtomicOrdering::NotAtomic) {
981 // Emit a combined atomicrmw load/store operation for the interlocked
982 // intrinsics.
983 llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or;
984 if (BT.Action == BitTest::Reset) {
985 Mask = CGF.Builder.CreateNot(Mask);
986 RMWOp = llvm::AtomicRMWInst::And;
987 }
988 OldByte = CGF.Builder.CreateAtomicRMW(RMWOp, ByteAddr.getPointer(), Mask,
989 Ordering);
990 } else {
991 // Emit a plain load for the non-interlocked intrinsics.
992 OldByte = CGF.Builder.CreateLoad(ByteAddr, "bittest.byte");
993 Value *NewByte = nullptr;
994 switch (BT.Action) {
995 case BitTest::TestOnly:
996 // Don't store anything.
997 break;
998 case BitTest::Complement:
999 NewByte = CGF.Builder.CreateXor(OldByte, Mask);
1000 break;
1001 case BitTest::Reset:
1002 NewByte = CGF.Builder.CreateAnd(OldByte, CGF.Builder.CreateNot(Mask));
1003 break;
1004 case BitTest::Set:
1005 NewByte = CGF.Builder.CreateOr(OldByte, Mask);
1006 break;
1007 }
1008 if (NewByte)
1009 CGF.Builder.CreateStore(NewByte, ByteAddr);
1010 }
1011
1012 // However we loaded the old byte, either by plain load or atomicrmw, shift
1013 // the bit into the low position and mask it to 0 or 1.
1014 Value *ShiftedByte = CGF.Builder.CreateLShr(OldByte, PosLow, "bittest.shr");
1015 return CGF.Builder.CreateAnd(
1016 ShiftedByte, llvm::ConstantInt::get(CGF.Int8Ty, 1), "bittest.res");
1017}
1018
1019static llvm::Value *emitPPCLoadReserveIntrinsic(CodeGenFunction &CGF,
1020 unsigned BuiltinID,
1021 const CallExpr *E) {
1022 Value *Addr = CGF.EmitScalarExpr(E->getArg(0));
1023
1024 SmallString<64> Asm;
1025 raw_svector_ostream AsmOS(Asm);
1026 llvm::IntegerType *RetType = CGF.Int32Ty;
1027
1028 switch (BuiltinID) {
1029 case clang::PPC::BI__builtin_ppc_ldarx:
1030 AsmOS << "ldarx ";
1031 RetType = CGF.Int64Ty;
1032 break;
1033 case clang::PPC::BI__builtin_ppc_lwarx:
1034 AsmOS << "lwarx ";
1035 RetType = CGF.Int32Ty;
1036 break;
1037 case clang::PPC::BI__builtin_ppc_lharx:
1038 AsmOS << "lharx ";
1039 RetType = CGF.Int16Ty;
1040 break;
1041 case clang::PPC::BI__builtin_ppc_lbarx:
1042 AsmOS << "lbarx ";
1043 RetType = CGF.Int8Ty;
1044 break;
1045 default:
1046 llvm_unreachable("Expected only PowerPC load reserve intrinsics")::llvm::llvm_unreachable_internal("Expected only PowerPC load reserve intrinsics"
, "clang/lib/CodeGen/CGBuiltin.cpp", 1046)
;
1047 }
1048
1049 AsmOS << "$0, ${1:y}";
1050
1051 std::string Constraints = "=r,*Z,~{memory}";
1052 std::string MachineClobbers = CGF.getTarget().getClobbers();
1053 if (!MachineClobbers.empty()) {
1054 Constraints += ',';
1055 Constraints += MachineClobbers;
1056 }
1057
1058 llvm::Type *IntPtrType = RetType->getPointerTo();
1059 llvm::FunctionType *FTy =
1060 llvm::FunctionType::get(RetType, {IntPtrType}, false);
1061
1062 llvm::InlineAsm *IA =
1063 llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
1064 llvm::CallInst *CI = CGF.Builder.CreateCall(IA, {Addr});
1065 CI->addParamAttr(
1066 0, Attribute::get(CGF.getLLVMContext(), Attribute::ElementType, RetType));
1067 return CI;
1068}
1069
1070namespace {
1071enum class MSVCSetJmpKind {
1072 _setjmpex,
1073 _setjmp3,
1074 _setjmp
1075};
1076}
1077
1078/// MSVC handles setjmp a bit differently on different platforms. On every
1079/// architecture except 32-bit x86, the frame address is passed. On x86, extra
1080/// parameters can be passed as variadic arguments, but we always pass none.
1081static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind,
1082 const CallExpr *E) {
1083 llvm::Value *Arg1 = nullptr;
1084 llvm::Type *Arg1Ty = nullptr;
1085 StringRef Name;
1086 bool IsVarArg = false;
1087 if (SJKind == MSVCSetJmpKind::_setjmp3) {
1088 Name = "_setjmp3";
1089 Arg1Ty = CGF.Int32Ty;
1090 Arg1 = llvm::ConstantInt::get(CGF.IntTy, 0);
1091 IsVarArg = true;
1092 } else {
1093 Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp" : "_setjmpex";
1094 Arg1Ty = CGF.Int8PtrTy;
1095 if (CGF.getTarget().getTriple().getArch() == llvm::Triple::aarch64) {
1096 Arg1 = CGF.Builder.CreateCall(
1097 CGF.CGM.getIntrinsic(Intrinsic::sponentry, CGF.AllocaInt8PtrTy));
1098 } else
1099 Arg1 = CGF.Builder.CreateCall(
1100 CGF.CGM.getIntrinsic(Intrinsic::frameaddress, CGF.AllocaInt8PtrTy),
1101 llvm::ConstantInt::get(CGF.Int32Ty, 0));
1102 }
1103
1104 // Mark the call site and declaration with ReturnsTwice.
1105 llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty};
1106 llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get(
1107 CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex,
1108 llvm::Attribute::ReturnsTwice);
1109 llvm::FunctionCallee SetJmpFn = CGF.CGM.CreateRuntimeFunction(
1110 llvm::FunctionType::get(CGF.IntTy, ArgTypes, IsVarArg), Name,
1111 ReturnsTwiceAttr, /*Local=*/true);
1112
1113 llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast(
1114 CGF.EmitScalarExpr(E->getArg(0)), CGF.Int8PtrTy);
1115 llvm::Value *Args[] = {Buf, Arg1};
1116 llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(SetJmpFn, Args);
1117 CB->setAttributes(ReturnsTwiceAttr);
1118 return RValue::get(CB);
1119}
1120
1121// Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code,
1122// we handle them here.
1123enum class CodeGenFunction::MSVCIntrin {
1124 _BitScanForward,
1125 _BitScanReverse,
1126 _InterlockedAnd,
1127 _InterlockedDecrement,
1128 _InterlockedExchange,
1129 _InterlockedExchangeAdd,
1130 _InterlockedExchangeSub,
1131 _InterlockedIncrement,
1132 _InterlockedOr,
1133 _InterlockedXor,
1134 _InterlockedExchangeAdd_acq,
1135 _InterlockedExchangeAdd_rel,
1136 _InterlockedExchangeAdd_nf,
1137 _InterlockedExchange_acq,
1138 _InterlockedExchange_rel,
1139 _InterlockedExchange_nf,
1140 _InterlockedCompareExchange_acq,
1141 _InterlockedCompareExchange_rel,
1142 _InterlockedCompareExchange_nf,
1143 _InterlockedCompareExchange128,
1144 _InterlockedCompareExchange128_acq,
1145 _InterlockedCompareExchange128_rel,
1146 _InterlockedCompareExchange128_nf,
1147 _InterlockedOr_acq,
1148 _InterlockedOr_rel,
1149 _InterlockedOr_nf,
1150 _InterlockedXor_acq,
1151 _InterlockedXor_rel,
1152 _InterlockedXor_nf,
1153 _InterlockedAnd_acq,
1154 _InterlockedAnd_rel,
1155 _InterlockedAnd_nf,
1156 _InterlockedIncrement_acq,
1157 _InterlockedIncrement_rel,
1158 _InterlockedIncrement_nf,
1159 _InterlockedDecrement_acq,
1160 _InterlockedDecrement_rel,
1161 _InterlockedDecrement_nf,
1162 __fastfail,
1163};
1164
1165static Optional<CodeGenFunction::MSVCIntrin>
1166translateArmToMsvcIntrin(unsigned BuiltinID) {
1167 using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1168 switch (BuiltinID) {
1169 default:
1170 return None;
1171 case ARM::BI_BitScanForward:
1172 case ARM::BI_BitScanForward64:
1173 return MSVCIntrin::_BitScanForward;
1174 case ARM::BI_BitScanReverse:
1175 case ARM::BI_BitScanReverse64:
1176 return MSVCIntrin::_BitScanReverse;
1177 case ARM::BI_InterlockedAnd64:
1178 return MSVCIntrin::_InterlockedAnd;
1179 case ARM::BI_InterlockedExchange64:
1180 return MSVCIntrin::_InterlockedExchange;
1181 case ARM::BI_InterlockedExchangeAdd64:
1182 return MSVCIntrin::_InterlockedExchangeAdd;
1183 case ARM::BI_InterlockedExchangeSub64:
1184 return MSVCIntrin::_InterlockedExchangeSub;
1185 case ARM::BI_InterlockedOr64:
1186 return MSVCIntrin::_InterlockedOr;
1187 case ARM::BI_InterlockedXor64:
1188 return MSVCIntrin::_InterlockedXor;
1189 case ARM::BI_InterlockedDecrement64:
1190 return MSVCIntrin::_InterlockedDecrement;
1191 case ARM::BI_InterlockedIncrement64:
1192 return MSVCIntrin::_InterlockedIncrement;
1193 case ARM::BI_InterlockedExchangeAdd8_acq:
1194 case ARM::BI_InterlockedExchangeAdd16_acq:
1195 case ARM::BI_InterlockedExchangeAdd_acq:
1196 case ARM::BI_InterlockedExchangeAdd64_acq:
1197 return MSVCIntrin::_InterlockedExchangeAdd_acq;
1198 case ARM::BI_InterlockedExchangeAdd8_rel:
1199 case ARM::BI_InterlockedExchangeAdd16_rel:
1200 case ARM::BI_InterlockedExchangeAdd_rel:
1201 case ARM::BI_InterlockedExchangeAdd64_rel:
1202 return MSVCIntrin::_InterlockedExchangeAdd_rel;
1203 case ARM::BI_InterlockedExchangeAdd8_nf:
1204 case ARM::BI_InterlockedExchangeAdd16_nf:
1205 case ARM::BI_InterlockedExchangeAdd_nf:
1206 case ARM::BI_InterlockedExchangeAdd64_nf:
1207 return MSVCIntrin::_InterlockedExchangeAdd_nf;
1208 case ARM::BI_InterlockedExchange8_acq:
1209 case ARM::BI_InterlockedExchange16_acq:
1210 case ARM::BI_InterlockedExchange_acq:
1211 case ARM::BI_InterlockedExchange64_acq:
1212 return MSVCIntrin::_InterlockedExchange_acq;
1213 case ARM::BI_InterlockedExchange8_rel:
1214 case ARM::BI_InterlockedExchange16_rel:
1215 case ARM::BI_InterlockedExchange_rel:
1216 case ARM::BI_InterlockedExchange64_rel:
1217 return MSVCIntrin::_InterlockedExchange_rel;
1218 case ARM::BI_InterlockedExchange8_nf:
1219 case ARM::BI_InterlockedExchange16_nf:
1220 case ARM::BI_InterlockedExchange_nf:
1221 case ARM::BI_InterlockedExchange64_nf:
1222 return MSVCIntrin::_InterlockedExchange_nf;
1223 case ARM::BI_InterlockedCompareExchange8_acq:
1224 case ARM::BI_InterlockedCompareExchange16_acq:
1225 case ARM::BI_InterlockedCompareExchange_acq:
1226 case ARM::BI_InterlockedCompareExchange64_acq:
1227 return MSVCIntrin::_InterlockedCompareExchange_acq;
1228 case ARM::BI_InterlockedCompareExchange8_rel:
1229 case ARM::BI_InterlockedCompareExchange16_rel:
1230 case ARM::BI_InterlockedCompareExchange_rel:
1231 case ARM::BI_InterlockedCompareExchange64_rel:
1232 return MSVCIntrin::_InterlockedCompareExchange_rel;
1233 case ARM::BI_InterlockedCompareExchange8_nf:
1234 case ARM::BI_InterlockedCompareExchange16_nf:
1235 case ARM::BI_InterlockedCompareExchange_nf:
1236 case ARM::BI_InterlockedCompareExchange64_nf:
1237 return MSVCIntrin::_InterlockedCompareExchange_nf;
1238 case ARM::BI_InterlockedOr8_acq:
1239 case ARM::BI_InterlockedOr16_acq:
1240 case ARM::BI_InterlockedOr_acq:
1241 case ARM::BI_InterlockedOr64_acq:
1242 return MSVCIntrin::_InterlockedOr_acq;
1243 case ARM::BI_InterlockedOr8_rel:
1244 case ARM::BI_InterlockedOr16_rel:
1245 case ARM::BI_InterlockedOr_rel:
1246 case ARM::BI_InterlockedOr64_rel:
1247 return MSVCIntrin::_InterlockedOr_rel;
1248 case ARM::BI_InterlockedOr8_nf:
1249 case ARM::BI_InterlockedOr16_nf:
1250 case ARM::BI_InterlockedOr_nf:
1251 case ARM::BI_InterlockedOr64_nf:
1252 return MSVCIntrin::_InterlockedOr_nf;
1253 case ARM::BI_InterlockedXor8_acq:
1254 case ARM::BI_InterlockedXor16_acq:
1255 case ARM::BI_InterlockedXor_acq:
1256 case ARM::BI_InterlockedXor64_acq:
1257 return MSVCIntrin::_InterlockedXor_acq;
1258 case ARM::BI_InterlockedXor8_rel:
1259 case ARM::BI_InterlockedXor16_rel:
1260 case ARM::BI_InterlockedXor_rel:
1261 case ARM::BI_InterlockedXor64_rel:
1262 return MSVCIntrin::_InterlockedXor_rel;
1263 case ARM::BI_InterlockedXor8_nf:
1264 case ARM::BI_InterlockedXor16_nf:
1265 case ARM::BI_InterlockedXor_nf:
1266 case ARM::BI_InterlockedXor64_nf:
1267 return MSVCIntrin::_InterlockedXor_nf;
1268 case ARM::BI_InterlockedAnd8_acq:
1269 case ARM::BI_InterlockedAnd16_acq:
1270 case ARM::BI_InterlockedAnd_acq:
1271 case ARM::BI_InterlockedAnd64_acq:
1272 return MSVCIntrin::_InterlockedAnd_acq;
1273 case ARM::BI_InterlockedAnd8_rel:
1274 case ARM::BI_InterlockedAnd16_rel:
1275 case ARM::BI_InterlockedAnd_rel:
1276 case ARM::BI_InterlockedAnd64_rel:
1277 return MSVCIntrin::_InterlockedAnd_rel;
1278 case ARM::BI_InterlockedAnd8_nf:
1279 case ARM::BI_InterlockedAnd16_nf:
1280 case ARM::BI_InterlockedAnd_nf:
1281 case ARM::BI_InterlockedAnd64_nf:
1282 return MSVCIntrin::_InterlockedAnd_nf;
1283 case ARM::BI_InterlockedIncrement16_acq:
1284 case ARM::BI_InterlockedIncrement_acq:
1285 case ARM::BI_InterlockedIncrement64_acq:
1286 return MSVCIntrin::_InterlockedIncrement_acq;
1287 case ARM::BI_InterlockedIncrement16_rel:
1288 case ARM::BI_InterlockedIncrement_rel:
1289 case ARM::BI_InterlockedIncrement64_rel:
1290 return MSVCIntrin::_InterlockedIncrement_rel;
1291 case ARM::BI_InterlockedIncrement16_nf:
1292 case ARM::BI_InterlockedIncrement_nf:
1293 case ARM::BI_InterlockedIncrement64_nf:
1294 return MSVCIntrin::_InterlockedIncrement_nf;
1295 case ARM::BI_InterlockedDecrement16_acq:
1296 case ARM::BI_InterlockedDecrement_acq:
1297 case ARM::BI_InterlockedDecrement64_acq:
1298 return MSVCIntrin::_InterlockedDecrement_acq;
1299 case ARM::BI_InterlockedDecrement16_rel:
1300 case ARM::BI_InterlockedDecrement_rel:
1301 case ARM::BI_InterlockedDecrement64_rel:
1302 return MSVCIntrin::_InterlockedDecrement_rel;
1303 case ARM::BI_InterlockedDecrement16_nf:
1304 case ARM::BI_InterlockedDecrement_nf:
1305 case ARM::BI_InterlockedDecrement64_nf:
1306 return MSVCIntrin::_InterlockedDecrement_nf;
1307 }
1308 llvm_unreachable("must return from switch")::llvm::llvm_unreachable_internal("must return from switch", "clang/lib/CodeGen/CGBuiltin.cpp"
, 1308)
;
1309}
1310
1311static Optional<CodeGenFunction::MSVCIntrin>
1312translateAarch64ToMsvcIntrin(unsigned BuiltinID) {
1313 using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1314 switch (BuiltinID) {
1315 default:
1316 return None;
1317 case AArch64::BI_BitScanForward:
1318 case AArch64::BI_BitScanForward64:
1319 return MSVCIntrin::_BitScanForward;
1320 case AArch64::BI_BitScanReverse:
1321 case AArch64::BI_BitScanReverse64:
1322 return MSVCIntrin::_BitScanReverse;
1323 case AArch64::BI_InterlockedAnd64:
1324 return MSVCIntrin::_InterlockedAnd;
1325 case AArch64::BI_InterlockedExchange64:
1326 return MSVCIntrin::_InterlockedExchange;
1327 case AArch64::BI_InterlockedExchangeAdd64:
1328 return MSVCIntrin::_InterlockedExchangeAdd;
1329 case AArch64::BI_InterlockedExchangeSub64:
1330 return MSVCIntrin::_InterlockedExchangeSub;
1331 case AArch64::BI_InterlockedOr64:
1332 return MSVCIntrin::_InterlockedOr;
1333 case AArch64::BI_InterlockedXor64:
1334 return MSVCIntrin::_InterlockedXor;
1335 case AArch64::BI_InterlockedDecrement64:
1336 return MSVCIntrin::_InterlockedDecrement;
1337 case AArch64::BI_InterlockedIncrement64:
1338 return MSVCIntrin::_InterlockedIncrement;
1339 case AArch64::BI_InterlockedExchangeAdd8_acq:
1340 case AArch64::BI_InterlockedExchangeAdd16_acq:
1341 case AArch64::BI_InterlockedExchangeAdd_acq:
1342 case AArch64::BI_InterlockedExchangeAdd64_acq:
1343 return MSVCIntrin::_InterlockedExchangeAdd_acq;
1344 case AArch64::BI_InterlockedExchangeAdd8_rel:
1345 case AArch64::BI_InterlockedExchangeAdd16_rel:
1346 case AArch64::BI_InterlockedExchangeAdd_rel:
1347 case AArch64::BI_InterlockedExchangeAdd64_rel:
1348 return MSVCIntrin::_InterlockedExchangeAdd_rel;
1349 case AArch64::BI_InterlockedExchangeAdd8_nf:
1350 case AArch64::BI_InterlockedExchangeAdd16_nf:
1351 case AArch64::BI_InterlockedExchangeAdd_nf:
1352 case AArch64::BI_InterlockedExchangeAdd64_nf:
1353 return MSVCIntrin::_InterlockedExchangeAdd_nf;
1354 case AArch64::BI_InterlockedExchange8_acq:
1355 case AArch64::BI_InterlockedExchange16_acq:
1356 case AArch64::BI_InterlockedExchange_acq:
1357 case AArch64::BI_InterlockedExchange64_acq:
1358 return MSVCIntrin::_InterlockedExchange_acq;
1359 case AArch64::BI_InterlockedExchange8_rel:
1360 case AArch64::BI_InterlockedExchange16_rel:
1361 case AArch64::BI_InterlockedExchange_rel:
1362 case AArch64::BI_InterlockedExchange64_rel:
1363 return MSVCIntrin::_InterlockedExchange_rel;
1364 case AArch64::BI_InterlockedExchange8_nf:
1365 case AArch64::BI_InterlockedExchange16_nf:
1366 case AArch64::BI_InterlockedExchange_nf:
1367 case AArch64::BI_InterlockedExchange64_nf:
1368 return MSVCIntrin::_InterlockedExchange_nf;
1369 case AArch64::BI_InterlockedCompareExchange8_acq:
1370 case AArch64::BI_InterlockedCompareExchange16_acq:
1371 case AArch64::BI_InterlockedCompareExchange_acq:
1372 case AArch64::BI_InterlockedCompareExchange64_acq:
1373 return MSVCIntrin::_InterlockedCompareExchange_acq;
1374 case AArch64::BI_InterlockedCompareExchange8_rel:
1375 case AArch64::BI_InterlockedCompareExchange16_rel:
1376 case AArch64::BI_InterlockedCompareExchange_rel:
1377 case AArch64::BI_InterlockedCompareExchange64_rel:
1378 return MSVCIntrin::_InterlockedCompareExchange_rel;
1379 case AArch64::BI_InterlockedCompareExchange8_nf:
1380 case AArch64::BI_InterlockedCompareExchange16_nf:
1381 case AArch64::BI_InterlockedCompareExchange_nf:
1382 case AArch64::BI_InterlockedCompareExchange64_nf:
1383 return MSVCIntrin::_InterlockedCompareExchange_nf;
1384 case AArch64::BI_InterlockedCompareExchange128:
1385 return MSVCIntrin::_InterlockedCompareExchange128;
1386 case AArch64::BI_InterlockedCompareExchange128_acq:
1387 return MSVCIntrin::_InterlockedCompareExchange128_acq;
1388 case AArch64::BI_InterlockedCompareExchange128_nf:
1389 return MSVCIntrin::_InterlockedCompareExchange128_nf;
1390 case AArch64::BI_InterlockedCompareExchange128_rel:
1391 return MSVCIntrin::_InterlockedCompareExchange128_rel;
1392 case AArch64::BI_InterlockedOr8_acq:
1393 case AArch64::BI_InterlockedOr16_acq:
1394 case AArch64::BI_InterlockedOr_acq:
1395 case AArch64::BI_InterlockedOr64_acq:
1396 return MSVCIntrin::_InterlockedOr_acq;
1397 case AArch64::BI_InterlockedOr8_rel:
1398 case AArch64::BI_InterlockedOr16_rel:
1399 case AArch64::BI_InterlockedOr_rel:
1400 case AArch64::BI_InterlockedOr64_rel:
1401 return MSVCIntrin::_InterlockedOr_rel;
1402 case AArch64::BI_InterlockedOr8_nf:
1403 case AArch64::BI_InterlockedOr16_nf:
1404 case AArch64::BI_InterlockedOr_nf:
1405 case AArch64::BI_InterlockedOr64_nf:
1406 return MSVCIntrin::_InterlockedOr_nf;
1407 case AArch64::BI_InterlockedXor8_acq:
1408 case AArch64::BI_InterlockedXor16_acq:
1409 case AArch64::BI_InterlockedXor_acq:
1410 case AArch64::BI_InterlockedXor64_acq:
1411 return MSVCIntrin::_InterlockedXor_acq;
1412 case AArch64::BI_InterlockedXor8_rel:
1413 case AArch64::BI_InterlockedXor16_rel:
1414 case AArch64::BI_InterlockedXor_rel:
1415 case AArch64::BI_InterlockedXor64_rel:
1416 return MSVCIntrin::_InterlockedXor_rel;
1417 case AArch64::BI_InterlockedXor8_nf:
1418 case AArch64::BI_InterlockedXor16_nf:
1419 case AArch64::BI_InterlockedXor_nf:
1420 case AArch64::BI_InterlockedXor64_nf:
1421 return MSVCIntrin::_InterlockedXor_nf;
1422 case AArch64::BI_InterlockedAnd8_acq:
1423 case AArch64::BI_InterlockedAnd16_acq:
1424 case AArch64::BI_InterlockedAnd_acq:
1425 case AArch64::BI_InterlockedAnd64_acq:
1426 return MSVCIntrin::_InterlockedAnd_acq;
1427 case AArch64::BI_InterlockedAnd8_rel:
1428 case AArch64::BI_InterlockedAnd16_rel:
1429 case AArch64::BI_InterlockedAnd_rel:
1430 case AArch64::BI_InterlockedAnd64_rel:
1431 return MSVCIntrin::_InterlockedAnd_rel;
1432 case AArch64::BI_InterlockedAnd8_nf:
1433 case AArch64::BI_InterlockedAnd16_nf:
1434 case AArch64::BI_InterlockedAnd_nf:
1435 case AArch64::BI_InterlockedAnd64_nf:
1436 return MSVCIntrin::_InterlockedAnd_nf;
1437 case AArch64::BI_InterlockedIncrement16_acq:
1438 case AArch64::BI_InterlockedIncrement_acq:
1439 case AArch64::BI_InterlockedIncrement64_acq:
1440 return MSVCIntrin::_InterlockedIncrement_acq;
1441 case AArch64::BI_InterlockedIncrement16_rel:
1442 case AArch64::BI_InterlockedIncrement_rel:
1443 case AArch64::BI_InterlockedIncrement64_rel:
1444 return MSVCIntrin::_InterlockedIncrement_rel;
1445 case AArch64::BI_InterlockedIncrement16_nf:
1446 case AArch64::BI_InterlockedIncrement_nf:
1447 case AArch64::BI_InterlockedIncrement64_nf:
1448 return MSVCIntrin::_InterlockedIncrement_nf;
1449 case AArch64::BI_InterlockedDecrement16_acq:
1450 case AArch64::BI_InterlockedDecrement_acq:
1451 case AArch64::BI_InterlockedDecrement64_acq:
1452 return MSVCIntrin::_InterlockedDecrement_acq;
1453 case AArch64::BI_InterlockedDecrement16_rel:
1454 case AArch64::BI_InterlockedDecrement_rel:
1455 case AArch64::BI_InterlockedDecrement64_rel:
1456 return MSVCIntrin::_InterlockedDecrement_rel;
1457 case AArch64::BI_InterlockedDecrement16_nf:
1458 case AArch64::BI_InterlockedDecrement_nf:
1459 case AArch64::BI_InterlockedDecrement64_nf:
1460 return MSVCIntrin::_InterlockedDecrement_nf;
1461 }
1462 llvm_unreachable("must return from switch")::llvm::llvm_unreachable_internal("must return from switch", "clang/lib/CodeGen/CGBuiltin.cpp"
, 1462)
;
1463}
1464
1465static Optional<CodeGenFunction::MSVCIntrin>
1466translateX86ToMsvcIntrin(unsigned BuiltinID) {
1467 using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1468 switch (BuiltinID) {
1469 default:
1470 return None;
1471 case clang::X86::BI_BitScanForward:
1472 case clang::X86::BI_BitScanForward64:
1473 return MSVCIntrin::_BitScanForward;
1474 case clang::X86::BI_BitScanReverse:
1475 case clang::X86::BI_BitScanReverse64:
1476 return MSVCIntrin::_BitScanReverse;
1477 case clang::X86::BI_InterlockedAnd64:
1478 return MSVCIntrin::_InterlockedAnd;
1479 case clang::X86::BI_InterlockedCompareExchange128:
1480 return MSVCIntrin::_InterlockedCompareExchange128;
1481 case clang::X86::BI_InterlockedExchange64:
1482 return MSVCIntrin::_InterlockedExchange;
1483 case clang::X86::BI_InterlockedExchangeAdd64:
1484 return MSVCIntrin::_InterlockedExchangeAdd;
1485 case clang::X86::BI_InterlockedExchangeSub64:
1486 return MSVCIntrin::_InterlockedExchangeSub;
1487 case clang::X86::BI_InterlockedOr64:
1488 return MSVCIntrin::_InterlockedOr;
1489 case clang::X86::BI_InterlockedXor64:
1490 return MSVCIntrin::_InterlockedXor;
1491 case clang::X86::BI_InterlockedDecrement64:
1492 return MSVCIntrin::_InterlockedDecrement;
1493 case clang::X86::BI_InterlockedIncrement64:
1494 return MSVCIntrin::_InterlockedIncrement;
1495 }
1496 llvm_unreachable("must return from switch")::llvm::llvm_unreachable_internal("must return from switch", "clang/lib/CodeGen/CGBuiltin.cpp"
, 1496)
;
1497}
1498
1499// Emit an MSVC intrinsic. Assumes that arguments have *not* been evaluated.
1500Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID,
1501 const CallExpr *E) {
1502 switch (BuiltinID) {
1503 case MSVCIntrin::_BitScanForward:
1504 case MSVCIntrin::_BitScanReverse: {
1505 Address IndexAddress(EmitPointerWithAlignment(E->getArg(0)));
1506 Value *ArgValue = EmitScalarExpr(E->getArg(1));
1507
1508 llvm::Type *ArgType = ArgValue->getType();
1509 llvm::Type *IndexType = IndexAddress.getElementType();
1510 llvm::Type *ResultType = ConvertType(E->getType());
1511
1512 Value *ArgZero = llvm::Constant::getNullValue(ArgType);
1513 Value *ResZero = llvm::Constant::getNullValue(ResultType);
1514 Value *ResOne = llvm::ConstantInt::get(ResultType, 1);
1515
1516 BasicBlock *Begin = Builder.GetInsertBlock();
1517 BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn);
1518 Builder.SetInsertPoint(End);
1519 PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result");
1520
1521 Builder.SetInsertPoint(Begin);
1522 Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero);
1523 BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn);
1524 Builder.CreateCondBr(IsZero, End, NotZero);
1525 Result->addIncoming(ResZero, Begin);
1526
1527 Builder.SetInsertPoint(NotZero);
1528
1529 if (BuiltinID == MSVCIntrin::_BitScanForward) {
1530 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
1531 Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
1532 ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
1533 Builder.CreateStore(ZeroCount, IndexAddress, false);
1534 } else {
1535 unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth();
1536 Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1);
1537
1538 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
1539 Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
1540 ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
1541 Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount);
1542 Builder.CreateStore(Index, IndexAddress, false);
1543 }
1544 Builder.CreateBr(End);
1545 Result->addIncoming(ResOne, NotZero);
1546
1547 Builder.SetInsertPoint(End);
1548 return Result;
1549 }
1550 case MSVCIntrin::_InterlockedAnd:
1551 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E);
1552 case MSVCIntrin::_InterlockedExchange:
1553 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E);
1554 case MSVCIntrin::_InterlockedExchangeAdd:
1555 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E);
1556 case MSVCIntrin::_InterlockedExchangeSub:
1557 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E);
1558 case MSVCIntrin::_InterlockedOr:
1559 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E);
1560 case MSVCIntrin::_InterlockedXor:
1561 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E);
1562 case MSVCIntrin::_InterlockedExchangeAdd_acq:
1563 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1564 AtomicOrdering::Acquire);
1565 case MSVCIntrin::_InterlockedExchangeAdd_rel:
1566 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1567 AtomicOrdering::Release);
1568 case MSVCIntrin::_InterlockedExchangeAdd_nf:
1569 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1570 AtomicOrdering::Monotonic);
1571 case MSVCIntrin::_InterlockedExchange_acq:
1572 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1573 AtomicOrdering::Acquire);
1574 case MSVCIntrin::_InterlockedExchange_rel:
1575 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1576 AtomicOrdering::Release);
1577 case MSVCIntrin::_InterlockedExchange_nf:
1578 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1579 AtomicOrdering::Monotonic);
1580 case MSVCIntrin::_InterlockedCompareExchange_acq:
1581 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Acquire);
1582 case MSVCIntrin::_InterlockedCompareExchange_rel:
1583 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Release);
1584 case MSVCIntrin::_InterlockedCompareExchange_nf:
1585 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Monotonic);
1586 case MSVCIntrin::_InterlockedCompareExchange128:
1587 return EmitAtomicCmpXchg128ForMSIntrin(
1588 *this, E, AtomicOrdering::SequentiallyConsistent);
1589 case MSVCIntrin::_InterlockedCompareExchange128_acq:
1590 return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Acquire);
1591 case MSVCIntrin::_InterlockedCompareExchange128_rel:
1592 return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Release);
1593 case MSVCIntrin::_InterlockedCompareExchange128_nf:
1594 return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Monotonic);
1595 case MSVCIntrin::_InterlockedOr_acq:
1596 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1597 AtomicOrdering::Acquire);
1598 case MSVCIntrin::_InterlockedOr_rel:
1599 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1600 AtomicOrdering::Release);
1601 case MSVCIntrin::_InterlockedOr_nf:
1602 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1603 AtomicOrdering::Monotonic);
1604 case MSVCIntrin::_InterlockedXor_acq:
1605 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1606 AtomicOrdering::Acquire);
1607 case MSVCIntrin::_InterlockedXor_rel:
1608 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1609 AtomicOrdering::Release);
1610 case MSVCIntrin::_InterlockedXor_nf:
1611 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1612 AtomicOrdering::Monotonic);
1613 case MSVCIntrin::_InterlockedAnd_acq:
1614 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1615 AtomicOrdering::Acquire);
1616 case MSVCIntrin::_InterlockedAnd_rel:
1617 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1618 AtomicOrdering::Release);
1619 case MSVCIntrin::_InterlockedAnd_nf:
1620 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1621 AtomicOrdering::Monotonic);
1622 case MSVCIntrin::_InterlockedIncrement_acq:
1623 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Acquire);
1624 case MSVCIntrin::_InterlockedIncrement_rel:
1625 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Release);
1626 case MSVCIntrin::_InterlockedIncrement_nf:
1627 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Monotonic);
1628 case MSVCIntrin::_InterlockedDecrement_acq:
1629 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Acquire);
1630 case MSVCIntrin::_InterlockedDecrement_rel:
1631 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Release);
1632 case MSVCIntrin::_InterlockedDecrement_nf:
1633 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Monotonic);
1634
1635 case MSVCIntrin::_InterlockedDecrement:
1636 return EmitAtomicDecrementValue(*this, E);
1637 case MSVCIntrin::_InterlockedIncrement:
1638 return EmitAtomicIncrementValue(*this, E);
1639
1640 case MSVCIntrin::__fastfail: {
1641 // Request immediate process termination from the kernel. The instruction
1642 // sequences to do this are documented on MSDN:
1643 // https://msdn.microsoft.com/en-us/library/dn774154.aspx
1644 llvm::Triple::ArchType ISA = getTarget().getTriple().getArch();
1645 StringRef Asm, Constraints;
1646 switch (ISA) {
1647 default:
1648 ErrorUnsupported(E, "__fastfail call for this architecture");
1649 break;
1650 case llvm::Triple::x86:
1651 case llvm::Triple::x86_64:
1652 Asm = "int $$0x29";
1653 Constraints = "{cx}";
1654 break;
1655 case llvm::Triple::thumb:
1656 Asm = "udf #251";
1657 Constraints = "{r0}";
1658 break;
1659 case llvm::Triple::aarch64:
1660 Asm = "brk #0xF003";
1661 Constraints = "{w0}";
1662 }
1663 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false);
1664 llvm::InlineAsm *IA =
1665 llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
1666 llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
1667 getLLVMContext(), llvm::AttributeList::FunctionIndex,
1668 llvm::Attribute::NoReturn);
1669 llvm::CallInst *CI = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0)));
1670 CI->setAttributes(NoReturnAttr);
1671 return CI;
1672 }
1673 }
1674 llvm_unreachable("Incorrect MSVC intrinsic!")::llvm::llvm_unreachable_internal("Incorrect MSVC intrinsic!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 1674)
;
1675}
1676
1677namespace {
1678// ARC cleanup for __builtin_os_log_format
1679struct CallObjCArcUse final : EHScopeStack::Cleanup {
1680 CallObjCArcUse(llvm::Value *object) : object(object) {}
1681 llvm::Value *object;
1682
1683 void Emit(CodeGenFunction &CGF, Flags flags) override {
1684 CGF.EmitARCIntrinsicUse(object);
1685 }
1686};
1687}
1688
1689Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E,
1690 BuiltinCheckKind Kind) {
1691 assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero)(static_cast <bool> ((Kind == BCK_CLZPassedZero || Kind
== BCK_CTZPassedZero) && "Unsupported builtin check kind"
) ? void (0) : __assert_fail ("(Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero) && \"Unsupported builtin check kind\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1692, __extension__ __PRETTY_FUNCTION__
))
1692 && "Unsupported builtin check kind")(static_cast <bool> ((Kind == BCK_CLZPassedZero || Kind
== BCK_CTZPassedZero) && "Unsupported builtin check kind"
) ? void (0) : __assert_fail ("(Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero) && \"Unsupported builtin check kind\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1692, __extension__ __PRETTY_FUNCTION__
))
;
1693
1694 Value *ArgValue = EmitScalarExpr(E);
1695 if (!SanOpts.has(SanitizerKind::Builtin) || !getTarget().isCLZForZeroUndef())
1696 return ArgValue;
1697
1698 SanitizerScope SanScope(this);
1699 Value *Cond = Builder.CreateICmpNE(
1700 ArgValue, llvm::Constant::getNullValue(ArgValue->getType()));
1701 EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin),
1702 SanitizerHandler::InvalidBuiltin,
1703 {EmitCheckSourceLocation(E->getExprLoc()),
1704 llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)},
1705 None);
1706 return ArgValue;
1707}
1708
1709/// Get the argument type for arguments to os_log_helper.
1710static CanQualType getOSLogArgType(ASTContext &C, int Size) {
1711 QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false);
1712 return C.getCanonicalType(UnsignedTy);
1713}
1714
1715llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction(
1716 const analyze_os_log::OSLogBufferLayout &Layout,
1717 CharUnits BufferAlignment) {
1718 ASTContext &Ctx = getContext();
1719
1720 llvm::SmallString<64> Name;
1721 {
1722 raw_svector_ostream OS(Name);
1723 OS << "__os_log_helper";
1724 OS << "_" << BufferAlignment.getQuantity();
1725 OS << "_" << int(Layout.getSummaryByte());
1726 OS << "_" << int(Layout.getNumArgsByte());
1727 for (const auto &Item : Layout.Items)
1728 OS << "_" << int(Item.getSizeByte()) << "_"
1729 << int(Item.getDescriptorByte());
1730 }
1731
1732 if (llvm::Function *F = CGM.getModule().getFunction(Name))
1733 return F;
1734
1735 llvm::SmallVector<QualType, 4> ArgTys;
1736 FunctionArgList Args;
1737 Args.push_back(ImplicitParamDecl::Create(
1738 Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"), Ctx.VoidPtrTy,
1739 ImplicitParamDecl::Other));
1740 ArgTys.emplace_back(Ctx.VoidPtrTy);
1741
1742 for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) {
1743 char Size = Layout.Items[I].getSizeByte();
1744 if (!Size)
1745 continue;
1746
1747 QualType ArgTy = getOSLogArgType(Ctx, Size);
1748 Args.push_back(ImplicitParamDecl::Create(
1749 Ctx, nullptr, SourceLocation(),
1750 &Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), ArgTy,
1751 ImplicitParamDecl::Other));
1752 ArgTys.emplace_back(ArgTy);
1753 }
1754
1755 QualType ReturnTy = Ctx.VoidTy;
1756
1757 // The helper function has linkonce_odr linkage to enable the linker to merge
1758 // identical functions. To ensure the merging always happens, 'noinline' is
1759 // attached to the function when compiling with -Oz.
1760 const CGFunctionInfo &FI =
1761 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, Args);
1762 llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI);
1763 llvm::Function *Fn = llvm::Function::Create(
1764 FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule());
1765 Fn->setVisibility(llvm::GlobalValue::HiddenVisibility);
1766 CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn, /*IsThunk=*/false);
1767 CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn);
1768 Fn->setDoesNotThrow();
1769
1770 // Attach 'noinline' at -Oz.
1771 if (CGM.getCodeGenOpts().OptimizeSize == 2)
1772 Fn->addFnAttr(llvm::Attribute::NoInline);
1773
1774 auto NL = ApplyDebugLocation::CreateEmpty(*this);
1775 StartFunction(GlobalDecl(), ReturnTy, Fn, FI, Args);
1776
1777 // Create a scope with an artificial location for the body of this function.
1778 auto AL = ApplyDebugLocation::CreateArtificial(*this);
1779
1780 CharUnits Offset;
1781 Address BufAddr = Address::deprecated(
1782 Builder.CreateLoad(GetAddrOfLocalVar(Args[0]), "buf"), BufferAlignment);
1783 Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()),
1784 Builder.CreateConstByteGEP(BufAddr, Offset++, "summary"));
1785 Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()),
1786 Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs"));
1787
1788 unsigned I = 1;
1789 for (const auto &Item : Layout.Items) {
1790 Builder.CreateStore(
1791 Builder.getInt8(Item.getDescriptorByte()),
1792 Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor"));
1793 Builder.CreateStore(
1794 Builder.getInt8(Item.getSizeByte()),
1795 Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize"));
1796
1797 CharUnits Size = Item.size();
1798 if (!Size.getQuantity())
1799 continue;
1800
1801 Address Arg = GetAddrOfLocalVar(Args[I]);
1802 Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData");
1803 Addr =
1804 Builder.CreateElementBitCast(Addr, Arg.getElementType(), "argDataCast");
1805 Builder.CreateStore(Builder.CreateLoad(Arg), Addr);
1806 Offset += Size;
1807 ++I;
1808 }
1809
1810 FinishFunction();
1811
1812 return Fn;
1813}
1814
1815RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) {
1816 assert(E.getNumArgs() >= 2 &&(static_cast <bool> (E.getNumArgs() >= 2 && "__builtin_os_log_format takes at least 2 arguments"
) ? void (0) : __assert_fail ("E.getNumArgs() >= 2 && \"__builtin_os_log_format takes at least 2 arguments\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1817, __extension__ __PRETTY_FUNCTION__
))
1817 "__builtin_os_log_format takes at least 2 arguments")(static_cast <bool> (E.getNumArgs() >= 2 && "__builtin_os_log_format takes at least 2 arguments"
) ? void (0) : __assert_fail ("E.getNumArgs() >= 2 && \"__builtin_os_log_format takes at least 2 arguments\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1817, __extension__ __PRETTY_FUNCTION__
))
;
1818 ASTContext &Ctx = getContext();
1819 analyze_os_log::OSLogBufferLayout Layout;
1820 analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout);
1821 Address BufAddr = EmitPointerWithAlignment(E.getArg(0));
1822 llvm::SmallVector<llvm::Value *, 4> RetainableOperands;
1823
1824 // Ignore argument 1, the format string. It is not currently used.
1825 CallArgList Args;
1826 Args.add(RValue::get(BufAddr.getPointer()), Ctx.VoidPtrTy);
1827
1828 for (const auto &Item : Layout.Items) {
1829 int Size = Item.getSizeByte();
1830 if (!Size)
1831 continue;
1832
1833 llvm::Value *ArgVal;
1834
1835 if (Item.getKind() == analyze_os_log::OSLogBufferItem::MaskKind) {
1836 uint64_t Val = 0;
1837 for (unsigned I = 0, E = Item.getMaskType().size(); I < E; ++I)
1838 Val |= ((uint64_t)Item.getMaskType()[I]) << I * 8;
1839 ArgVal = llvm::Constant::getIntegerValue(Int64Ty, llvm::APInt(64, Val));
1840 } else if (const Expr *TheExpr = Item.getExpr()) {
1841 ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false);
1842
1843 // If a temporary object that requires destruction after the full
1844 // expression is passed, push a lifetime-extended cleanup to extend its
1845 // lifetime to the end of the enclosing block scope.
1846 auto LifetimeExtendObject = [&](const Expr *E) {
1847 E = E->IgnoreParenCasts();
1848 // Extend lifetimes of objects returned by function calls and message
1849 // sends.
1850
1851 // FIXME: We should do this in other cases in which temporaries are
1852 // created including arguments of non-ARC types (e.g., C++
1853 // temporaries).
1854 if (isa<CallExpr>(E) || isa<ObjCMessageExpr>(E))
1855 return true;
1856 return false;
1857 };
1858
1859 if (TheExpr->getType()->isObjCRetainableType() &&
1860 getLangOpts().ObjCAutoRefCount && LifetimeExtendObject(TheExpr)) {
1861 assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar &&(static_cast <bool> (getEvaluationKind(TheExpr->getType
()) == TEK_Scalar && "Only scalar can be a ObjC retainable type"
) ? void (0) : __assert_fail ("getEvaluationKind(TheExpr->getType()) == TEK_Scalar && \"Only scalar can be a ObjC retainable type\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1862, __extension__ __PRETTY_FUNCTION__
))
1862 "Only scalar can be a ObjC retainable type")(static_cast <bool> (getEvaluationKind(TheExpr->getType
()) == TEK_Scalar && "Only scalar can be a ObjC retainable type"
) ? void (0) : __assert_fail ("getEvaluationKind(TheExpr->getType()) == TEK_Scalar && \"Only scalar can be a ObjC retainable type\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1862, __extension__ __PRETTY_FUNCTION__
))
;
1863 if (!isa<Constant>(ArgVal)) {
1864 CleanupKind Cleanup = getARCCleanupKind();
1865 QualType Ty = TheExpr->getType();
1866 Address Alloca = Address::invalid();
1867 Address Addr = CreateMemTemp(Ty, "os.log.arg", &Alloca);
1868 ArgVal = EmitARCRetain(Ty, ArgVal);
1869 Builder.CreateStore(ArgVal, Addr);
1870 pushLifetimeExtendedDestroy(Cleanup, Alloca, Ty,
1871 CodeGenFunction::destroyARCStrongPrecise,
1872 Cleanup & EHCleanup);
1873
1874 // Push a clang.arc.use call to ensure ARC optimizer knows that the
1875 // argument has to be alive.
1876 if (CGM.getCodeGenOpts().OptimizationLevel != 0)
1877 pushCleanupAfterFullExpr<CallObjCArcUse>(Cleanup, ArgVal);
1878 }
1879 }
1880 } else {
1881 ArgVal = Builder.getInt32(Item.getConstValue().getQuantity());
1882 }
1883
1884 unsigned ArgValSize =
1885 CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType());
1886 llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(),
1887 ArgValSize);
1888 ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy);
1889 CanQualType ArgTy = getOSLogArgType(Ctx, Size);
1890 // If ArgVal has type x86_fp80, zero-extend ArgVal.
1891 ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy));
1892 Args.add(RValue::get(ArgVal), ArgTy);
1893 }
1894
1895 const CGFunctionInfo &FI =
1896 CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args);
1897 llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction(
1898 Layout, BufAddr.getAlignment());
1899 EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args);
1900 return RValue::get(BufAddr.getPointer());
1901}
1902
1903static bool isSpecialUnsignedMultiplySignedResult(
1904 unsigned BuiltinID, WidthAndSignedness Op1Info, WidthAndSignedness Op2Info,
1905 WidthAndSignedness ResultInfo) {
1906 return BuiltinID == Builtin::BI__builtin_mul_overflow &&
1907 Op1Info.Width == Op2Info.Width && Op2Info.Width == ResultInfo.Width &&
1908 !Op1Info.Signed && !Op2Info.Signed && ResultInfo.Signed;
1909}
1910
1911static RValue EmitCheckedUnsignedMultiplySignedResult(
1912 CodeGenFunction &CGF, const clang::Expr *Op1, WidthAndSignedness Op1Info,
1913 const clang::Expr *Op2, WidthAndSignedness Op2Info,
1914 const clang::Expr *ResultArg, QualType ResultQTy,
1915 WidthAndSignedness ResultInfo) {
1916 assert(isSpecialUnsignedMultiplySignedResult((static_cast <bool> (isSpecialUnsignedMultiplySignedResult
( Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo
) && "Cannot specialize this multiply") ? void (0) : __assert_fail
("isSpecialUnsignedMultiplySignedResult( Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Cannot specialize this multiply\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1918, __extension__ __PRETTY_FUNCTION__
))
1917 Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) &&(static_cast <bool> (isSpecialUnsignedMultiplySignedResult
( Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo
) && "Cannot specialize this multiply") ? void (0) : __assert_fail
("isSpecialUnsignedMultiplySignedResult( Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Cannot specialize this multiply\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1918, __extension__ __PRETTY_FUNCTION__
))
1918 "Cannot specialize this multiply")(static_cast <bool> (isSpecialUnsignedMultiplySignedResult
( Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo
) && "Cannot specialize this multiply") ? void (0) : __assert_fail
("isSpecialUnsignedMultiplySignedResult( Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Cannot specialize this multiply\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1918, __extension__ __PRETTY_FUNCTION__
))
;
1919
1920 llvm::Value *V1 = CGF.EmitScalarExpr(Op1);
1921 llvm::Value *V2 = CGF.EmitScalarExpr(Op2);
1922
1923 llvm::Value *HasOverflow;
1924 llvm::Value *Result = EmitOverflowIntrinsic(
1925 CGF, llvm::Intrinsic::umul_with_overflow, V1, V2, HasOverflow);
1926
1927 // The intrinsic call will detect overflow when the value is > UINT_MAX,
1928 // however, since the original builtin had a signed result, we need to report
1929 // an overflow when the result is greater than INT_MAX.
1930 auto IntMax = llvm::APInt::getSignedMaxValue(ResultInfo.Width);
1931 llvm::Value *IntMaxValue = llvm::ConstantInt::get(Result->getType(), IntMax);
1932
1933 llvm::Value *IntMaxOverflow = CGF.Builder.CreateICmpUGT(Result, IntMaxValue);
1934 HasOverflow = CGF.Builder.CreateOr(HasOverflow, IntMaxOverflow);
1935
1936 bool isVolatile =
1937 ResultArg->getType()->getPointeeType().isVolatileQualified();
1938 Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
1939 CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
1940 isVolatile);
1941 return RValue::get(HasOverflow);
1942}
1943
1944/// Determine if a binop is a checked mixed-sign multiply we can specialize.
1945static bool isSpecialMixedSignMultiply(unsigned BuiltinID,
1946 WidthAndSignedness Op1Info,
1947 WidthAndSignedness Op2Info,
1948 WidthAndSignedness ResultInfo) {
1949 return BuiltinID == Builtin::BI__builtin_mul_overflow &&
1950 std::max(Op1Info.Width, Op2Info.Width) >= ResultInfo.Width &&
1951 Op1Info.Signed != Op2Info.Signed;
1952}
1953
1954/// Emit a checked mixed-sign multiply. This is a cheaper specialization of
1955/// the generic checked-binop irgen.
1956static RValue
1957EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1,
1958 WidthAndSignedness Op1Info, const clang::Expr *Op2,
1959 WidthAndSignedness Op2Info,
1960 const clang::Expr *ResultArg, QualType ResultQTy,
1961 WidthAndSignedness ResultInfo) {
1962 assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info,(static_cast <bool> (isSpecialMixedSignMultiply(Builtin
::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) &&
"Not a mixed-sign multipliction we can specialize") ? void (
0) : __assert_fail ("isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Not a mixed-sign multipliction we can specialize\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1964, __extension__ __PRETTY_FUNCTION__
))
1963 Op2Info, ResultInfo) &&(static_cast <bool> (isSpecialMixedSignMultiply(Builtin
::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) &&
"Not a mixed-sign multipliction we can specialize") ? void (
0) : __assert_fail ("isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Not a mixed-sign multipliction we can specialize\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1964, __extension__ __PRETTY_FUNCTION__
))
1964 "Not a mixed-sign multipliction we can specialize")(static_cast <bool> (isSpecialMixedSignMultiply(Builtin
::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) &&
"Not a mixed-sign multipliction we can specialize") ? void (
0) : __assert_fail ("isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && \"Not a mixed-sign multipliction we can specialize\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 1964, __extension__ __PRETTY_FUNCTION__
))
;
1965
1966 // Emit the signed and unsigned operands.
1967 const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2;
1968 const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1;
1969 llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp);
1970 llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp);
1971 unsigned SignedOpWidth = Op1Info.Signed ? Op1Info.Width : Op2Info.Width;
1972 unsigned UnsignedOpWidth = Op1Info.Signed ? Op2Info.Width : Op1Info.Width;
1973
1974 // One of the operands may be smaller than the other. If so, [s|z]ext it.
1975 if (SignedOpWidth < UnsignedOpWidth)
1976 Signed = CGF.Builder.CreateSExt(Signed, Unsigned->getType(), "op.sext");
1977 if (UnsignedOpWidth < SignedOpWidth)
1978 Unsigned = CGF.Builder.CreateZExt(Unsigned, Signed->getType(), "op.zext");
1979
1980 llvm::Type *OpTy = Signed->getType();
1981 llvm::Value *Zero = llvm::Constant::getNullValue(OpTy);
1982 Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
1983 llvm::Type *ResTy = ResultPtr.getElementType();
1984 unsigned OpWidth = std::max(Op1Info.Width, Op2Info.Width);
1985
1986 // Take the absolute value of the signed operand.
1987 llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero);
1988 llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed);
1989 llvm::Value *AbsSigned =
1990 CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed);
1991
1992 // Perform a checked unsigned multiplication.
1993 llvm::Value *UnsignedOverflow;
1994 llvm::Value *UnsignedResult =
1995 EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned,
1996 Unsigned, UnsignedOverflow);
1997
1998 llvm::Value *Overflow, *Result;
1999 if (ResultInfo.Signed) {
2000 // Signed overflow occurs if the result is greater than INT_MAX or lesser
2001 // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative).
2002 auto IntMax =
2003 llvm::APInt::getSignedMaxValue(ResultInfo.Width).zextOrSelf(OpWidth);
2004 llvm::Value *MaxResult =
2005 CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax),
2006 CGF.Builder.CreateZExt(IsNegative, OpTy));
2007 llvm::Value *SignedOverflow =
2008 CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult);
2009 Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow);
2010
2011 // Prepare the signed result (possibly by negating it).
2012 llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult);
2013 llvm::Value *SignedResult =
2014 CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult);
2015 Result = CGF.Builder.CreateTrunc(SignedResult, ResTy);
2016 } else {
2017 // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX.
2018 llvm::Value *Underflow = CGF.Builder.CreateAnd(
2019 IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult));
2020 Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow);
2021 if (ResultInfo.Width < OpWidth) {
2022 auto IntMax =
2023 llvm::APInt::getMaxValue(ResultInfo.Width).zext(OpWidth);
2024 llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT(
2025 UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax));
2026 Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow);
2027 }
2028
2029 // Negate the product if it would be negative in infinite precision.
2030 Result = CGF.Builder.CreateSelect(
2031 IsNegative, CGF.Builder.CreateNeg(UnsignedResult), UnsignedResult);
2032
2033 Result = CGF.Builder.CreateTrunc(Result, ResTy);
2034 }
2035 assert(Overflow && Result && "Missing overflow or result")(static_cast <bool> (Overflow && Result &&
"Missing overflow or result") ? void (0) : __assert_fail ("Overflow && Result && \"Missing overflow or result\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 2035, __extension__ __PRETTY_FUNCTION__
))
;
2036
2037 bool isVolatile =
2038 ResultArg->getType()->getPointeeType().isVolatileQualified();
2039 CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
2040 isVolatile);
2041 return RValue::get(Overflow);
2042}
2043
2044static llvm::Value *dumpRecord(CodeGenFunction &CGF, QualType RType,
2045 Value *&RecordPtr, CharUnits Align,
2046 llvm::FunctionCallee Func, int Lvl) {
2047 ASTContext &Context = CGF.getContext();
2048 RecordDecl *RD = RType->castAs<RecordType>()->getDecl()->getDefinition();
2049 std::string Pad = std::string(Lvl * 4, ' ');
2050
2051 Value *GString =
2052 CGF.Builder.CreateGlobalStringPtr(RType.getAsString() + " {\n");
2053 Value *Res = CGF.Builder.CreateCall(Func, {GString});
2054
2055 static llvm::DenseMap<QualType, const char *> Types;
2056 if (Types.empty()) {
2057 Types[Context.CharTy] = "%c";
2058 Types[Context.BoolTy] = "%d";
2059 Types[Context.SignedCharTy] = "%hhd";
2060 Types[Context.UnsignedCharTy] = "%hhu";
2061 Types[Context.IntTy] = "%d";
2062 Types[Context.UnsignedIntTy] = "%u";
2063 Types[Context.LongTy] = "%ld";
2064 Types[Context.UnsignedLongTy] = "%lu";
2065 Types[Context.LongLongTy] = "%lld";
2066 Types[Context.UnsignedLongLongTy] = "%llu";
2067 Types[Context.ShortTy] = "%hd";
2068 Types[Context.UnsignedShortTy] = "%hu";
2069 Types[Context.VoidPtrTy] = "%p";
2070 Types[Context.FloatTy] = "%f";
2071 Types[Context.DoubleTy] = "%f";
2072 Types[Context.LongDoubleTy] = "%Lf";
2073 Types[Context.getPointerType(Context.CharTy)] = "%s";
2074 Types[Context.getPointerType(Context.getConstType(Context.CharTy))] = "%s";
2075 }
2076
2077 for (const auto *FD : RD->fields()) {
2078 Value *FieldPtr = RecordPtr;
2079 if (RD->isUnion())
2080 FieldPtr = CGF.Builder.CreatePointerCast(
2081 FieldPtr, CGF.ConvertType(Context.getPointerType(FD->getType())));
2082 else
2083 FieldPtr = CGF.Builder.CreateStructGEP(CGF.ConvertType(RType), FieldPtr,
2084 FD->getFieldIndex());
2085
2086 GString = CGF.Builder.CreateGlobalStringPtr(
2087 llvm::Twine(Pad)
2088 .concat(FD->getType().getAsString())
2089 .concat(llvm::Twine(' '))
2090 .concat(FD->getNameAsString())
2091 .concat(" : ")
2092 .str());
2093 Value *TmpRes = CGF.Builder.CreateCall(Func, {GString});
2094 Res = CGF.Builder.CreateAdd(Res, TmpRes);
2095
2096 QualType CanonicalType =
2097 FD->getType().getUnqualifiedType().getCanonicalType();
2098
2099 // We check whether we are in a recursive type
2100 if (CanonicalType->isRecordType()) {
2101 TmpRes = dumpRecord(CGF, CanonicalType, FieldPtr, Align, Func, Lvl + 1);
2102 Res = CGF.Builder.CreateAdd(TmpRes, Res);
2103 continue;
2104 }
2105
2106 // We try to determine the best format to print the current field
2107 llvm::Twine Format = Types.find(CanonicalType) == Types.end()
2108 ? Types[Context.VoidPtrTy]
2109 : Types[CanonicalType];
2110
2111 Address FieldAddress = Address::deprecated(FieldPtr, Align);
2112 FieldPtr = CGF.Builder.CreateLoad(FieldAddress);
2113
2114 // FIXME Need to handle bitfield here
2115 GString = CGF.Builder.CreateGlobalStringPtr(
2116 Format.concat(llvm::Twine('\n')).str());
2117 TmpRes = CGF.Builder.CreateCall(Func, {GString, FieldPtr});
2118 Res = CGF.Builder.CreateAdd(Res, TmpRes);
2119 }
2120
2121 GString = CGF.Builder.CreateGlobalStringPtr(Pad + "}\n");
2122 Value *TmpRes = CGF.Builder.CreateCall(Func, {GString});
2123 Res = CGF.Builder.CreateAdd(Res, TmpRes);
2124 return Res;
2125}
2126
2127static bool
2128TypeRequiresBuiltinLaunderImp(const ASTContext &Ctx, QualType Ty,
2129 llvm::SmallPtrSetImpl<const Decl *> &Seen) {
2130 if (const auto *Arr = Ctx.getAsArrayType(Ty))
2131 Ty = Ctx.getBaseElementType(Arr);
2132
2133 const auto *Record = Ty->getAsCXXRecordDecl();
2134 if (!Record)
2135 return false;
2136
2137 // We've already checked this type, or are in the process of checking it.
2138 if (!Seen.insert(Record).second)
2139 return false;
2140
2141 assert(Record->hasDefinition() &&(static_cast <bool> (Record->hasDefinition() &&
"Incomplete types should already be diagnosed") ? void (0) :
__assert_fail ("Record->hasDefinition() && \"Incomplete types should already be diagnosed\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 2142, __extension__ __PRETTY_FUNCTION__
))
2142 "Incomplete types should already be diagnosed")(static_cast <bool> (Record->hasDefinition() &&
"Incomplete types should already be diagnosed") ? void (0) :
__assert_fail ("Record->hasDefinition() && \"Incomplete types should already be diagnosed\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 2142, __extension__ __PRETTY_FUNCTION__
))
;
2143
2144 if (Record->isDynamicClass())
2145 return true;
2146
2147 for (FieldDecl *F : Record->fields()) {
2148 if (TypeRequiresBuiltinLaunderImp(Ctx, F->getType(), Seen))
2149 return true;
2150 }
2151 return false;
2152}
2153
2154/// Determine if the specified type requires laundering by checking if it is a
2155/// dynamic class type or contains a subobject which is a dynamic class type.
2156static bool TypeRequiresBuiltinLaunder(CodeGenModule &CGM, QualType Ty) {
2157 if (!CGM.getCodeGenOpts().StrictVTablePointers)
2158 return false;
2159 llvm::SmallPtrSet<const Decl *, 16> Seen;
2160 return TypeRequiresBuiltinLaunderImp(CGM.getContext(), Ty, Seen);
2161}
2162
2163RValue CodeGenFunction::emitRotate(const CallExpr *E, bool IsRotateRight) {
2164 llvm::Value *Src = EmitScalarExpr(E->getArg(0));
2165 llvm::Value *ShiftAmt = EmitScalarExpr(E->getArg(1));
2166
2167 // The builtin's shift arg may have a different type than the source arg and
2168 // result, but the LLVM intrinsic uses the same type for all values.
2169 llvm::Type *Ty = Src->getType();
2170 ShiftAmt = Builder.CreateIntCast(ShiftAmt, Ty, false);
2171
2172 // Rotate is a special case of LLVM funnel shift - 1st 2 args are the same.
2173 unsigned IID = IsRotateRight ? Intrinsic::fshr : Intrinsic::fshl;
2174 Function *F = CGM.getIntrinsic(IID, Ty);
2175 return RValue::get(Builder.CreateCall(F, { Src, Src, ShiftAmt }));
2176}
2177
2178// Map math builtins for long-double to f128 version.
2179static unsigned mutateLongDoubleBuiltin(unsigned BuiltinID) {
2180 switch (BuiltinID) {
2181#define MUTATE_LDBL(func) \
2182 case Builtin::BI__builtin_##func##l: \
2183 return Builtin::BI__builtin_##func##f128;
2184 MUTATE_LDBL(sqrt)
2185 MUTATE_LDBL(cbrt)
2186 MUTATE_LDBL(fabs)
2187 MUTATE_LDBL(log)
2188 MUTATE_LDBL(log2)
2189 MUTATE_LDBL(log10)
2190 MUTATE_LDBL(log1p)
2191 MUTATE_LDBL(logb)
2192 MUTATE_LDBL(exp)
2193 MUTATE_LDBL(exp2)
2194 MUTATE_LDBL(expm1)
2195 MUTATE_LDBL(fdim)
2196 MUTATE_LDBL(hypot)
2197 MUTATE_LDBL(ilogb)
2198 MUTATE_LDBL(pow)
2199 MUTATE_LDBL(fmin)
2200 MUTATE_LDBL(fmax)
2201 MUTATE_LDBL(ceil)
2202 MUTATE_LDBL(trunc)
2203 MUTATE_LDBL(rint)
2204 MUTATE_LDBL(nearbyint)
2205 MUTATE_LDBL(round)
2206 MUTATE_LDBL(floor)
2207 MUTATE_LDBL(lround)
2208 MUTATE_LDBL(llround)
2209 MUTATE_LDBL(lrint)
2210 MUTATE_LDBL(llrint)
2211 MUTATE_LDBL(fmod)
2212 MUTATE_LDBL(modf)
2213 MUTATE_LDBL(nan)
2214 MUTATE_LDBL(nans)
2215 MUTATE_LDBL(inf)
2216 MUTATE_LDBL(fma)
2217 MUTATE_LDBL(sin)
2218 MUTATE_LDBL(cos)
2219 MUTATE_LDBL(tan)
2220 MUTATE_LDBL(sinh)
2221 MUTATE_LDBL(cosh)
2222 MUTATE_LDBL(tanh)
2223 MUTATE_LDBL(asin)
2224 MUTATE_LDBL(acos)
2225 MUTATE_LDBL(atan)
2226 MUTATE_LDBL(asinh)
2227 MUTATE_LDBL(acosh)
2228 MUTATE_LDBL(atanh)
2229 MUTATE_LDBL(atan2)
2230 MUTATE_LDBL(erf)
2231 MUTATE_LDBL(erfc)
2232 MUTATE_LDBL(ldexp)
2233 MUTATE_LDBL(frexp)
2234 MUTATE_LDBL(huge_val)
2235 MUTATE_LDBL(copysign)
2236 MUTATE_LDBL(nextafter)
2237 MUTATE_LDBL(nexttoward)
2238 MUTATE_LDBL(remainder)
2239 MUTATE_LDBL(remquo)
2240 MUTATE_LDBL(scalbln)
2241 MUTATE_LDBL(scalbn)
2242 MUTATE_LDBL(tgamma)
2243 MUTATE_LDBL(lgamma)
2244#undef MUTATE_LDBL
2245 default:
2246 return BuiltinID;
2247 }
2248}
2249
2250RValue CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
2251 const CallExpr *E,
2252 ReturnValueSlot ReturnValue) {
2253 const FunctionDecl *FD = GD.getDecl()->getAsFunction();
2254 // See if we can constant fold this builtin. If so, don't emit it at all.
2255 Expr::EvalResult Result;
2256 if (E->EvaluateAsRValue(Result, CGM.getContext()) &&
2257 !Result.hasSideEffects()) {
2258 if (Result.Val.isInt())
2259 return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
2260 Result.Val.getInt()));
2261 if (Result.Val.isFloat())
2262 return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
2263 Result.Val.getFloat()));
2264 }
2265
2266 // If current long-double semantics is IEEE 128-bit, replace math builtins
2267 // of long-double with f128 equivalent.
2268 // TODO: This mutation should also be applied to other targets other than PPC,
2269 // after backend supports IEEE 128-bit style libcalls.
2270 if (getTarget().getTriple().isPPC64() &&
2271 &getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad())
2272 BuiltinID = mutateLongDoubleBuiltin(BuiltinID);
2273
2274 // If the builtin has been declared explicitly with an assembler label,
2275 // disable the specialized emitting below. Ideally we should communicate the
2276 // rename in IR, or at least avoid generating the intrinsic calls that are
2277 // likely to get lowered to the renamed library functions.
2278 const unsigned BuiltinIDIfNoAsmLabel =
2279 FD->hasAttr<AsmLabelAttr>() ? 0 : BuiltinID;
2280
2281 // There are LLVM math intrinsics/instructions corresponding to math library
2282 // functions except the LLVM op will never set errno while the math library
2283 // might. Also, math builtins have the same semantics as their math library
2284 // twins. Thus, we can transform math library and builtin calls to their
2285 // LLVM counterparts if the call is marked 'const' (known to never set errno).
2286 if (FD->hasAttr<ConstAttr>()) {
2287 switch (BuiltinIDIfNoAsmLabel) {
2288 case Builtin::BIceil:
2289 case Builtin::BIceilf:
2290 case Builtin::BIceill:
2291 case Builtin::BI__builtin_ceil:
2292 case Builtin::BI__builtin_ceilf:
2293 case Builtin::BI__builtin_ceilf16:
2294 case Builtin::BI__builtin_ceill:
2295 case Builtin::BI__builtin_ceilf128:
2296 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2297 Intrinsic::ceil,
2298 Intrinsic::experimental_constrained_ceil));
2299
2300 case Builtin::BIcopysign:
2301 case Builtin::BIcopysignf:
2302 case Builtin::BIcopysignl:
2303 case Builtin::BI__builtin_copysign:
2304 case Builtin::BI__builtin_copysignf:
2305 case Builtin::BI__builtin_copysignf16:
2306 case Builtin::BI__builtin_copysignl:
2307 case Builtin::BI__builtin_copysignf128:
2308 return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::copysign));
2309
2310 case Builtin::BIcos:
2311 case Builtin::BIcosf:
2312 case Builtin::BIcosl:
2313 case Builtin::BI__builtin_cos:
2314 case Builtin::BI__builtin_cosf:
2315 case Builtin::BI__builtin_cosf16:
2316 case Builtin::BI__builtin_cosl:
2317 case Builtin::BI__builtin_cosf128:
2318 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2319 Intrinsic::cos,
2320 Intrinsic::experimental_constrained_cos));
2321
2322 case Builtin::BIexp:
2323 case Builtin::BIexpf:
2324 case Builtin::BIexpl:
2325 case Builtin::BI__builtin_exp:
2326 case Builtin::BI__builtin_expf:
2327 case Builtin::BI__builtin_expf16:
2328 case Builtin::BI__builtin_expl:
2329 case Builtin::BI__builtin_expf128:
2330 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2331 Intrinsic::exp,
2332 Intrinsic::experimental_constrained_exp));
2333
2334 case Builtin::BIexp2:
2335 case Builtin::BIexp2f:
2336 case Builtin::BIexp2l:
2337 case Builtin::BI__builtin_exp2:
2338 case Builtin::BI__builtin_exp2f:
2339 case Builtin::BI__builtin_exp2f16:
2340 case Builtin::BI__builtin_exp2l:
2341 case Builtin::BI__builtin_exp2f128:
2342 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2343 Intrinsic::exp2,
2344 Intrinsic::experimental_constrained_exp2));
2345
2346 case Builtin::BIfabs:
2347 case Builtin::BIfabsf:
2348 case Builtin::BIfabsl:
2349 case Builtin::BI__builtin_fabs:
2350 case Builtin::BI__builtin_fabsf:
2351 case Builtin::BI__builtin_fabsf16:
2352 case Builtin::BI__builtin_fabsl:
2353 case Builtin::BI__builtin_fabsf128:
2354 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::fabs));
2355
2356 case Builtin::BIfloor:
2357 case Builtin::BIfloorf:
2358 case Builtin::BIfloorl:
2359 case Builtin::BI__builtin_floor:
2360 case Builtin::BI__builtin_floorf:
2361 case Builtin::BI__builtin_floorf16:
2362 case Builtin::BI__builtin_floorl:
2363 case Builtin::BI__builtin_floorf128:
2364 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2365 Intrinsic::floor,
2366 Intrinsic::experimental_constrained_floor));
2367
2368 case Builtin::BIfma:
2369 case Builtin::BIfmaf:
2370 case Builtin::BIfmal:
2371 case Builtin::BI__builtin_fma:
2372 case Builtin::BI__builtin_fmaf:
2373 case Builtin::BI__builtin_fmaf16:
2374 case Builtin::BI__builtin_fmal:
2375 case Builtin::BI__builtin_fmaf128:
2376 return RValue::get(emitTernaryMaybeConstrainedFPBuiltin(*this, E,
2377 Intrinsic::fma,
2378 Intrinsic::experimental_constrained_fma));
2379
2380 case Builtin::BIfmax:
2381 case Builtin::BIfmaxf:
2382 case Builtin::BIfmaxl:
2383 case Builtin::BI__builtin_fmax:
2384 case Builtin::BI__builtin_fmaxf:
2385 case Builtin::BI__builtin_fmaxf16:
2386 case Builtin::BI__builtin_fmaxl:
2387 case Builtin::BI__builtin_fmaxf128:
2388 return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2389 Intrinsic::maxnum,
2390 Intrinsic::experimental_constrained_maxnum));
2391
2392 case Builtin::BIfmin:
2393 case Builtin::BIfminf:
2394 case Builtin::BIfminl:
2395 case Builtin::BI__builtin_fmin:
2396 case Builtin::BI__builtin_fminf:
2397 case Builtin::BI__builtin_fminf16:
2398 case Builtin::BI__builtin_fminl:
2399 case Builtin::BI__builtin_fminf128:
2400 return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2401 Intrinsic::minnum,
2402 Intrinsic::experimental_constrained_minnum));
2403
2404 // fmod() is a special-case. It maps to the frem instruction rather than an
2405 // LLVM intrinsic.
2406 case Builtin::BIfmod:
2407 case Builtin::BIfmodf:
2408 case Builtin::BIfmodl:
2409 case Builtin::BI__builtin_fmod:
2410 case Builtin::BI__builtin_fmodf:
2411 case Builtin::BI__builtin_fmodf16:
2412 case Builtin::BI__builtin_fmodl:
2413 case Builtin::BI__builtin_fmodf128: {
2414 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2415 Value *Arg1 = EmitScalarExpr(E->getArg(0));
2416 Value *Arg2 = EmitScalarExpr(E->getArg(1));
2417 return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod"));
2418 }
2419
2420 case Builtin::BIlog:
2421 case Builtin::BIlogf:
2422 case Builtin::BIlogl:
2423 case Builtin::BI__builtin_log:
2424 case Builtin::BI__builtin_logf:
2425 case Builtin::BI__builtin_logf16:
2426 case Builtin::BI__builtin_logl:
2427 case Builtin::BI__builtin_logf128:
2428 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2429 Intrinsic::log,
2430 Intrinsic::experimental_constrained_log));
2431
2432 case Builtin::BIlog10:
2433 case Builtin::BIlog10f:
2434 case Builtin::BIlog10l:
2435 case Builtin::BI__builtin_log10:
2436 case Builtin::BI__builtin_log10f:
2437 case Builtin::BI__builtin_log10f16:
2438 case Builtin::BI__builtin_log10l:
2439 case Builtin::BI__builtin_log10f128:
2440 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2441 Intrinsic::log10,
2442 Intrinsic::experimental_constrained_log10));
2443
2444 case Builtin::BIlog2:
2445 case Builtin::BIlog2f:
2446 case Builtin::BIlog2l:
2447 case Builtin::BI__builtin_log2:
2448 case Builtin::BI__builtin_log2f:
2449 case Builtin::BI__builtin_log2f16:
2450 case Builtin::BI__builtin_log2l:
2451 case Builtin::BI__builtin_log2f128:
2452 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2453 Intrinsic::log2,
2454 Intrinsic::experimental_constrained_log2));
2455
2456 case Builtin::BInearbyint:
2457 case Builtin::BInearbyintf:
2458 case Builtin::BInearbyintl:
2459 case Builtin::BI__builtin_nearbyint:
2460 case Builtin::BI__builtin_nearbyintf:
2461 case Builtin::BI__builtin_nearbyintl:
2462 case Builtin::BI__builtin_nearbyintf128:
2463 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2464 Intrinsic::nearbyint,
2465 Intrinsic::experimental_constrained_nearbyint));
2466
2467 case Builtin::BIpow:
2468 case Builtin::BIpowf:
2469 case Builtin::BIpowl:
2470 case Builtin::BI__builtin_pow:
2471 case Builtin::BI__builtin_powf:
2472 case Builtin::BI__builtin_powf16:
2473 case Builtin::BI__builtin_powl:
2474 case Builtin::BI__builtin_powf128:
2475 return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2476 Intrinsic::pow,
2477 Intrinsic::experimental_constrained_pow));
2478
2479 case Builtin::BIrint:
2480 case Builtin::BIrintf:
2481 case Builtin::BIrintl:
2482 case Builtin::BI__builtin_rint:
2483 case Builtin::BI__builtin_rintf:
2484 case Builtin::BI__builtin_rintf16:
2485 case Builtin::BI__builtin_rintl:
2486 case Builtin::BI__builtin_rintf128:
2487 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2488 Intrinsic::rint,
2489 Intrinsic::experimental_constrained_rint));
2490
2491 case Builtin::BIround:
2492 case Builtin::BIroundf:
2493 case Builtin::BIroundl:
2494 case Builtin::BI__builtin_round:
2495 case Builtin::BI__builtin_roundf:
2496 case Builtin::BI__builtin_roundf16:
2497 case Builtin::BI__builtin_roundl:
2498 case Builtin::BI__builtin_roundf128:
2499 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2500 Intrinsic::round,
2501 Intrinsic::experimental_constrained_round));
2502
2503 case Builtin::BIsin:
2504 case Builtin::BIsinf:
2505 case Builtin::BIsinl:
2506 case Builtin::BI__builtin_sin:
2507 case Builtin::BI__builtin_sinf:
2508 case Builtin::BI__builtin_sinf16:
2509 case Builtin::BI__builtin_sinl:
2510 case Builtin::BI__builtin_sinf128:
2511 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2512 Intrinsic::sin,
2513 Intrinsic::experimental_constrained_sin));
2514
2515 case Builtin::BIsqrt:
2516 case Builtin::BIsqrtf:
2517 case Builtin::BIsqrtl:
2518 case Builtin::BI__builtin_sqrt:
2519 case Builtin::BI__builtin_sqrtf:
2520 case Builtin::BI__builtin_sqrtf16:
2521 case Builtin::BI__builtin_sqrtl:
2522 case Builtin::BI__builtin_sqrtf128:
2523 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2524 Intrinsic::sqrt,
2525 Intrinsic::experimental_constrained_sqrt));
2526
2527 case Builtin::BItrunc:
2528 case Builtin::BItruncf:
2529 case Builtin::BItruncl:
2530 case Builtin::BI__builtin_trunc:
2531 case Builtin::BI__builtin_truncf:
2532 case Builtin::BI__builtin_truncf16:
2533 case Builtin::BI__builtin_truncl:
2534 case Builtin::BI__builtin_truncf128:
2535 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2536 Intrinsic::trunc,
2537 Intrinsic::experimental_constrained_trunc));
2538
2539 case Builtin::BIlround:
2540 case Builtin::BIlroundf:
2541 case Builtin::BIlroundl:
2542 case Builtin::BI__builtin_lround:
2543 case Builtin::BI__builtin_lroundf:
2544 case Builtin::BI__builtin_lroundl:
2545 case Builtin::BI__builtin_lroundf128:
2546 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2547 *this, E, Intrinsic::lround,
2548 Intrinsic::experimental_constrained_lround));
2549
2550 case Builtin::BIllround:
2551 case Builtin::BIllroundf:
2552 case Builtin::BIllroundl:
2553 case Builtin::BI__builtin_llround:
2554 case Builtin::BI__builtin_llroundf:
2555 case Builtin::BI__builtin_llroundl:
2556 case Builtin::BI__builtin_llroundf128:
2557 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2558 *this, E, Intrinsic::llround,
2559 Intrinsic::experimental_constrained_llround));
2560
2561 case Builtin::BIlrint:
2562 case Builtin::BIlrintf:
2563 case Builtin::BIlrintl:
2564 case Builtin::BI__builtin_lrint:
2565 case Builtin::BI__builtin_lrintf:
2566 case Builtin::BI__builtin_lrintl:
2567 case Builtin::BI__builtin_lrintf128:
2568 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2569 *this, E, Intrinsic::lrint,
2570 Intrinsic::experimental_constrained_lrint));
2571
2572 case Builtin::BIllrint:
2573 case Builtin::BIllrintf:
2574 case Builtin::BIllrintl:
2575 case Builtin::BI__builtin_llrint:
2576 case Builtin::BI__builtin_llrintf:
2577 case Builtin::BI__builtin_llrintl:
2578 case Builtin::BI__builtin_llrintf128:
2579 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2580 *this, E, Intrinsic::llrint,
2581 Intrinsic::experimental_constrained_llrint));
2582
2583 default:
2584 break;
2585 }
2586 }
2587
2588 switch (BuiltinIDIfNoAsmLabel) {
2589 default: break;
2590 case Builtin::BI__builtin___CFStringMakeConstantString:
2591 case Builtin::BI__builtin___NSStringMakeConstantString:
2592 return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType()));
2593 case Builtin::BI__builtin_stdarg_start:
2594 case Builtin::BI__builtin_va_start:
2595 case Builtin::BI__va_start:
2596 case Builtin::BI__builtin_va_end:
2597 return RValue::get(
2598 EmitVAStartEnd(BuiltinID == Builtin::BI__va_start
2599 ? EmitScalarExpr(E->getArg(0))
2600 : EmitVAListRef(E->getArg(0)).getPointer(),
2601 BuiltinID != Builtin::BI__builtin_va_end));
2602 case Builtin::BI__builtin_va_copy: {
2603 Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer();
2604 Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer();
2605
2606 llvm::Type *Type = Int8PtrTy;
2607
2608 DstPtr = Builder.CreateBitCast(DstPtr, Type);
2609 SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
2610 return RValue::get(Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy),
2611 {DstPtr, SrcPtr}));
2612 }
2613 case Builtin::BI__builtin_abs:
2614 case Builtin::BI__builtin_labs:
2615 case Builtin::BI__builtin_llabs: {
2616 // X < 0 ? -X : X
2617 // The negation has 'nsw' because abs of INT_MIN is undefined.
2618 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2619 Value *NegOp = Builder.CreateNSWNeg(ArgValue, "neg");
2620 Constant *Zero = llvm::Constant::getNullValue(ArgValue->getType());
2621 Value *CmpResult = Builder.CreateICmpSLT(ArgValue, Zero, "abscond");
2622 Value *Result = Builder.CreateSelect(CmpResult, NegOp, ArgValue, "abs");
2623 return RValue::get(Result);
2624 }
2625 case Builtin::BI__builtin_complex: {
2626 Value *Real = EmitScalarExpr(E->getArg(0));
2627 Value *Imag = EmitScalarExpr(E->getArg(1));
2628 return RValue::getComplex({Real, Imag});
2629 }
2630 case Builtin::BI__builtin_conj:
2631 case Builtin::BI__builtin_conjf:
2632 case Builtin::BI__builtin_conjl:
2633 case Builtin::BIconj:
2634 case Builtin::BIconjf:
2635 case Builtin::BIconjl: {
2636 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2637 Value *Real = ComplexVal.first;
2638 Value *Imag = ComplexVal.second;
2639 Imag = Builder.CreateFNeg(Imag, "neg");
2640 return RValue::getComplex(std::make_pair(Real, Imag));
2641 }
2642 case Builtin::BI__builtin_creal:
2643 case Builtin::BI__builtin_crealf:
2644 case Builtin::BI__builtin_creall:
2645 case Builtin::BIcreal:
2646 case Builtin::BIcrealf:
2647 case Builtin::BIcreall: {
2648 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2649 return RValue::get(ComplexVal.first);
2650 }
2651
2652 case Builtin::BI__builtin_dump_struct: {
2653 llvm::Type *LLVMIntTy = getTypes().ConvertType(getContext().IntTy);
2654 llvm::FunctionType *LLVMFuncType = llvm::FunctionType::get(
2655 LLVMIntTy, {llvm::Type::getInt8PtrTy(getLLVMContext())}, true);
2656
2657 Value *Func = EmitScalarExpr(E->getArg(1)->IgnoreImpCasts());
2658 CharUnits Arg0Align = EmitPointerWithAlignment(E->getArg(0)).getAlignment();
2659
2660 const Expr *Arg0 = E->getArg(0)->IgnoreImpCasts();
2661 QualType Arg0Type = Arg0->getType()->getPointeeType();
2662
2663 Value *RecordPtr = EmitScalarExpr(Arg0);
2664 Value *Res = dumpRecord(*this, Arg0Type, RecordPtr, Arg0Align,
2665 {LLVMFuncType, Func}, 0);
2666 return RValue::get(Res);
2667 }
2668
2669 case Builtin::BI__builtin_preserve_access_index: {
2670 // Only enabled preserved access index region when debuginfo
2671 // is available as debuginfo is needed to preserve user-level
2672 // access pattern.
2673 if (!getDebugInfo()) {
2674 CGM.Error(E->getExprLoc(), "using builtin_preserve_access_index() without -g");
2675 return RValue::get(EmitScalarExpr(E->getArg(0)));
2676 }
2677
2678 // Nested builtin_preserve_access_index() not supported
2679 if (IsInPreservedAIRegion) {
2680 CGM.Error(E->getExprLoc(), "nested builtin_preserve_access_index() not supported");
2681 return RValue::get(EmitScalarExpr(E->getArg(0)));
2682 }
2683
2684 IsInPreservedAIRegion = true;
2685 Value *Res = EmitScalarExpr(E->getArg(0));
2686 IsInPreservedAIRegion = false;
2687 return RValue::get(Res);
2688 }
2689
2690 case Builtin::BI__builtin_cimag:
2691 case Builtin::BI__builtin_cimagf:
2692 case Builtin::BI__builtin_cimagl:
2693 case Builtin::BIcimag:
2694 case Builtin::BIcimagf:
2695 case Builtin::BIcimagl: {
2696 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2697 return RValue::get(ComplexVal.second);
2698 }
2699
2700 case Builtin::BI__builtin_clrsb:
2701 case Builtin::BI__builtin_clrsbl:
2702 case Builtin::BI__builtin_clrsbll: {
2703 // clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or
2704 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2705
2706 llvm::Type *ArgType = ArgValue->getType();
2707 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2708
2709 llvm::Type *ResultType = ConvertType(E->getType());
2710 Value *Zero = llvm::Constant::getNullValue(ArgType);
2711 Value *IsNeg = Builder.CreateICmpSLT(ArgValue, Zero, "isneg");
2712 Value *Inverse = Builder.CreateNot(ArgValue, "not");
2713 Value *Tmp = Builder.CreateSelect(IsNeg, Inverse, ArgValue);
2714 Value *Ctlz = Builder.CreateCall(F, {Tmp, Builder.getFalse()});
2715 Value *Result = Builder.CreateSub(Ctlz, llvm::ConstantInt::get(ArgType, 1));
2716 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2717 "cast");
2718 return RValue::get(Result);
2719 }
2720 case Builtin::BI__builtin_ctzs:
2721 case Builtin::BI__builtin_ctz:
2722 case Builtin::BI__builtin_ctzl:
2723 case Builtin::BI__builtin_ctzll: {
2724 Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero);
2725
2726 llvm::Type *ArgType = ArgValue->getType();
2727 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
2728
2729 llvm::Type *ResultType = ConvertType(E->getType());
2730 Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
2731 Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
2732 if (Result->getType() != ResultType)
2733 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2734 "cast");
2735 return RValue::get(Result);
2736 }
2737 case Builtin::BI__builtin_clzs:
2738 case Builtin::BI__builtin_clz:
2739 case Builtin::BI__builtin_clzl:
2740 case Builtin::BI__builtin_clzll: {
2741 Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero);
2742
2743 llvm::Type *ArgType = ArgValue->getType();
2744 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2745
2746 llvm::Type *ResultType = ConvertType(E->getType());
2747 Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
2748 Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
2749 if (Result->getType() != ResultType)
2750 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2751 "cast");
2752 return RValue::get(Result);
2753 }
2754 case Builtin::BI__builtin_ffs:
2755 case Builtin::BI__builtin_ffsl:
2756 case Builtin::BI__builtin_ffsll: {
2757 // ffs(x) -> x ? cttz(x) + 1 : 0
2758 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2759
2760 llvm::Type *ArgType = ArgValue->getType();
2761 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
2762
2763 llvm::Type *ResultType = ConvertType(E->getType());
2764 Value *Tmp =
2765 Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}),
2766 llvm::ConstantInt::get(ArgType, 1));
2767 Value *Zero = llvm::Constant::getNullValue(ArgType);
2768 Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
2769 Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
2770 if (Result->getType() != ResultType)
2771 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2772 "cast");
2773 return RValue::get(Result);
2774 }
2775 case Builtin::BI__builtin_parity:
2776 case Builtin::BI__builtin_parityl:
2777 case Builtin::BI__builtin_parityll: {
2778 // parity(x) -> ctpop(x) & 1
2779 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2780
2781 llvm::Type *ArgType = ArgValue->getType();
2782 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
2783
2784 llvm::Type *ResultType = ConvertType(E->getType());
2785 Value *Tmp = Builder.CreateCall(F, ArgValue);
2786 Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
2787 if (Result->getType() != ResultType)
2788 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2789 "cast");
2790 return RValue::get(Result);
2791 }
2792 case Builtin::BI__lzcnt16:
2793 case Builtin::BI__lzcnt:
2794 case Builtin::BI__lzcnt64: {
2795 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2796
2797 llvm::Type *ArgType = ArgValue->getType();
2798 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2799
2800 llvm::Type *ResultType = ConvertType(E->getType());
2801 Value *Result = Builder.CreateCall(F, {ArgValue, Builder.getFalse()});
2802 if (Result->getType() != ResultType)
2803 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2804 "cast");
2805 return RValue::get(Result);
2806 }
2807 case Builtin::BI__popcnt16:
2808 case Builtin::BI__popcnt:
2809 case Builtin::BI__popcnt64:
2810 case Builtin::BI__builtin_popcount:
2811 case Builtin::BI__builtin_popcountl:
2812 case Builtin::BI__builtin_popcountll: {
2813 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2814
2815 llvm::Type *ArgType = ArgValue->getType();
2816 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
2817
2818 llvm::Type *ResultType = ConvertType(E->getType());
2819 Value *Result = Builder.CreateCall(F, ArgValue);
2820 if (Result->getType() != ResultType)
2821 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2822 "cast");
2823 return RValue::get(Result);
2824 }
2825 case Builtin::BI__builtin_unpredictable: {
2826 // Always return the argument of __builtin_unpredictable. LLVM does not
2827 // handle this builtin. Metadata for this builtin should be added directly
2828 // to instructions such as branches or switches that use it.
2829 return RValue::get(EmitScalarExpr(E->getArg(0)));
2830 }
2831 case Builtin::BI__builtin_expect: {
2832 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2833 llvm::Type *ArgType = ArgValue->getType();
2834
2835 Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
2836 // Don't generate llvm.expect on -O0 as the backend won't use it for
2837 // anything.
2838 // Note, we still IRGen ExpectedValue because it could have side-effects.
2839 if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2840 return RValue::get(ArgValue);
2841
2842 Function *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
2843 Value *Result =
2844 Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval");
2845 return RValue::get(Result);
2846 }
2847 case Builtin::BI__builtin_expect_with_probability: {
2848 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2849 llvm::Type *ArgType = ArgValue->getType();
2850
2851 Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
2852 llvm::APFloat Probability(0.0);
2853 const Expr *ProbArg = E->getArg(2);
2854 bool EvalSucceed = ProbArg->EvaluateAsFloat(Probability, CGM.getContext());
2855 assert(EvalSucceed && "probability should be able to evaluate as float")(static_cast <bool> (EvalSucceed && "probability should be able to evaluate as float"
) ? void (0) : __assert_fail ("EvalSucceed && \"probability should be able to evaluate as float\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 2855, __extension__ __PRETTY_FUNCTION__
))
;
2856 (void)EvalSucceed;
2857 bool LoseInfo = false;
2858 Probability.convert(llvm::APFloat::IEEEdouble(),
2859 llvm::RoundingMode::Dynamic, &LoseInfo);
2860 llvm::Type *Ty = ConvertType(ProbArg->getType());
2861 Constant *Confidence = ConstantFP::get(Ty, Probability);
2862 // Don't generate llvm.expect.with.probability on -O0 as the backend
2863 // won't use it for anything.
2864 // Note, we still IRGen ExpectedValue because it could have side-effects.
2865 if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2866 return RValue::get(ArgValue);
2867
2868 Function *FnExpect =
2869 CGM.getIntrinsic(Intrinsic::expect_with_probability, ArgType);
2870 Value *Result = Builder.CreateCall(
2871 FnExpect, {ArgValue, ExpectedValue, Confidence}, "expval");
2872 return RValue::get(Result);
2873 }
2874 case Builtin::BI__builtin_assume_aligned: {
2875 const Expr *Ptr = E->getArg(0);
2876 Value *PtrValue = EmitScalarExpr(Ptr);
2877 Value *OffsetValue =
2878 (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr;
2879
2880 Value *AlignmentValue = EmitScalarExpr(E->getArg(1));
2881 ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue);
2882 if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment))
2883 AlignmentCI = ConstantInt::get(AlignmentCI->getType(),
2884 llvm::Value::MaximumAlignment);
2885
2886 emitAlignmentAssumption(PtrValue, Ptr,
2887 /*The expr loc is sufficient.*/ SourceLocation(),
2888 AlignmentCI, OffsetValue);
2889 return RValue::get(PtrValue);
2890 }
2891 case Builtin::BI__assume:
2892 case Builtin::BI__builtin_assume: {
2893 if (E->getArg(0)->HasSideEffects(getContext()))
2894 return RValue::get(nullptr);
2895
2896 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2897 Function *FnAssume = CGM.getIntrinsic(Intrinsic::assume);
2898 return RValue::get(Builder.CreateCall(FnAssume, ArgValue));
2899 }
2900 case Builtin::BI__arithmetic_fence: {
2901 // Create the builtin call if FastMath is selected, and the target
2902 // supports the builtin, otherwise just return the argument.
2903 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2904 llvm::FastMathFlags FMF = Builder.getFastMathFlags();
2905 bool isArithmeticFenceEnabled =
2906 FMF.allowReassoc() &&
2907 getContext().getTargetInfo().checkArithmeticFenceSupported();
2908 QualType ArgType = E->getArg(0)->getType();
2909 if (ArgType->isComplexType()) {
2910 if (isArithmeticFenceEnabled) {
2911 QualType ElementType = ArgType->castAs<ComplexType>()->getElementType();
2912 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2913 Value *Real = Builder.CreateArithmeticFence(ComplexVal.first,
2914 ConvertType(ElementType));
2915 Value *Imag = Builder.CreateArithmeticFence(ComplexVal.second,
2916 ConvertType(ElementType));
2917 return RValue::getComplex(std::make_pair(Real, Imag));
2918 }
2919 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2920 Value *Real = ComplexVal.first;
2921 Value *Imag = ComplexVal.second;
2922 return RValue::getComplex(std::make_pair(Real, Imag));
2923 }
2924 Value *ArgValue = EmitScalarExpr(E->getArg(0));
2925 if (isArithmeticFenceEnabled)
2926 return RValue::get(
2927 Builder.CreateArithmeticFence(ArgValue, ConvertType(ArgType)));
2928 return RValue::get(ArgValue);
2929 }
2930 case Builtin::BI__builtin_bswap16:
2931 case Builtin::BI__builtin_bswap32:
2932 case Builtin::BI__builtin_bswap64: {
2933 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bswap));
2934 }
2935 case Builtin::BI__builtin_bitreverse8:
2936 case Builtin::BI__builtin_bitreverse16:
2937 case Builtin::BI__builtin_bitreverse32:
2938 case Builtin::BI__builtin_bitreverse64: {
2939 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bitreverse));
2940 }
2941 case Builtin::BI__builtin_rotateleft8:
2942 case Builtin::BI__builtin_rotateleft16:
2943 case Builtin::BI__builtin_rotateleft32:
2944 case Builtin::BI__builtin_rotateleft64:
2945 case Builtin::BI_rotl8: // Microsoft variants of rotate left
2946 case Builtin::BI_rotl16:
2947 case Builtin::BI_rotl:
2948 case Builtin::BI_lrotl:
2949 case Builtin::BI_rotl64:
2950 return emitRotate(E, false);
2951
2952 case Builtin::BI__builtin_rotateright8:
2953 case Builtin::BI__builtin_rotateright16:
2954 case Builtin::BI__builtin_rotateright32:
2955 case Builtin::BI__builtin_rotateright64:
2956 case Builtin::BI_rotr8: // Microsoft variants of rotate right
2957 case Builtin::BI_rotr16:
2958 case Builtin::BI_rotr:
2959 case Builtin::BI_lrotr:
2960 case Builtin::BI_rotr64:
2961 return emitRotate(E, true);
2962
2963 case Builtin::BI__builtin_constant_p: {
2964 llvm::Type *ResultType = ConvertType(E->getType());
2965
2966 const Expr *Arg = E->getArg(0);
2967 QualType ArgType = Arg->getType();
2968 // FIXME: The allowance for Obj-C pointers and block pointers is historical
2969 // and likely a mistake.
2970 if (!ArgType->isIntegralOrEnumerationType() && !ArgType->isFloatingType() &&
2971 !ArgType->isObjCObjectPointerType() && !ArgType->isBlockPointerType())
2972 // Per the GCC documentation, only numeric constants are recognized after
2973 // inlining.
2974 return RValue::get(ConstantInt::get(ResultType, 0));
2975
2976 if (Arg->HasSideEffects(getContext()))
2977 // The argument is unevaluated, so be conservative if it might have
2978 // side-effects.
2979 return RValue::get(ConstantInt::get(ResultType, 0));
2980
2981 Value *ArgValue = EmitScalarExpr(Arg);
2982 if (ArgType->isObjCObjectPointerType()) {
2983 // Convert Objective-C objects to id because we cannot distinguish between
2984 // LLVM types for Obj-C classes as they are opaque.
2985 ArgType = CGM.getContext().getObjCIdType();
2986 ArgValue = Builder.CreateBitCast(ArgValue, ConvertType(ArgType));
2987 }
2988 Function *F =
2989 CGM.getIntrinsic(Intrinsic::is_constant, ConvertType(ArgType));
2990 Value *Result = Builder.CreateCall(F, ArgValue);
2991 if (Result->getType() != ResultType)
2992 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/false);
2993 return RValue::get(Result);
2994 }
2995 case Builtin::BI__builtin_dynamic_object_size:
2996 case Builtin::BI__builtin_object_size: {
2997 unsigned Type =
2998 E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue();
2999 auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType()));
3000
3001 // We pass this builtin onto the optimizer so that it can figure out the
3002 // object size in more complex cases.
3003 bool IsDynamic = BuiltinID == Builtin::BI__builtin_dynamic_object_size;
3004 return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType,
3005 /*EmittedE=*/nullptr, IsDynamic));
3006 }
3007 case Builtin::BI__builtin_prefetch: {
3008 Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
3009 // FIXME: Technically these constants should of type 'int', yes?
3010 RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
3011 llvm::ConstantInt::get(Int32Ty, 0);
3012 Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
3013 llvm::ConstantInt::get(Int32Ty, 3);
3014 Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
3015 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
3016 return RValue::get(Builder.CreateCall(F, {Address, RW, Locality, Data}));
3017 }
3018 case Builtin::BI__builtin_readcyclecounter: {
3019 Function *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
3020 return RValue::get(Builder.CreateCall(F));
3021 }
3022 case Builtin::BI__builtin___clear_cache: {
3023 Value *Begin = EmitScalarExpr(E->getArg(0));
3024 Value *End = EmitScalarExpr(E->getArg(1));
3025 Function *F = CGM.getIntrinsic(Intrinsic::clear_cache);
3026 return RValue::get(Builder.CreateCall(F, {Begin, End}));
3027 }
3028 case Builtin::BI__builtin_trap:
3029 return RValue::get(EmitTrapCall(Intrinsic::trap));
3030 case Builtin::BI__debugbreak:
3031 return RValue::get(EmitTrapCall(Intrinsic::debugtrap));
3032 case Builtin::BI__builtin_unreachable: {
3033 EmitUnreachable(E->getExprLoc());
3034
3035 // We do need to preserve an insertion point.
3036 EmitBlock(createBasicBlock("unreachable.cont"));
3037
3038 return RValue::get(nullptr);
3039 }
3040
3041 case Builtin::BI__builtin_powi:
3042 case Builtin::BI__builtin_powif:
3043 case Builtin::BI__builtin_powil: {
3044 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
3045 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
3046
3047 if (Builder.getIsFPConstrained()) {
3048 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3049 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_powi,
3050 Src0->getType());
3051 return RValue::get(Builder.CreateConstrainedFPCall(F, { Src0, Src1 }));
3052 }
3053
3054 Function *F = CGM.getIntrinsic(Intrinsic::powi,
3055 { Src0->getType(), Src1->getType() });
3056 return RValue::get(Builder.CreateCall(F, { Src0, Src1 }));
3057 }
3058 case Builtin::BI__builtin_isgreater:
3059 case Builtin::BI__builtin_isgreaterequal:
3060 case Builtin::BI__builtin_isless:
3061 case Builtin::BI__builtin_islessequal:
3062 case Builtin::BI__builtin_islessgreater:
3063 case Builtin::BI__builtin_isunordered: {
3064 // Ordered comparisons: we know the arguments to these are matching scalar
3065 // floating point values.
3066 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3067 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3068 Value *LHS = EmitScalarExpr(E->getArg(0));
3069 Value *RHS = EmitScalarExpr(E->getArg(1));
3070
3071 switch (BuiltinID) {
3072 default: llvm_unreachable("Unknown ordered comparison")::llvm::llvm_unreachable_internal("Unknown ordered comparison"
, "clang/lib/CodeGen/CGBuiltin.cpp", 3072)
;
3073 case Builtin::BI__builtin_isgreater:
3074 LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
3075 break;
3076 case Builtin::BI__builtin_isgreaterequal:
3077 LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
3078 break;
3079 case Builtin::BI__builtin_isless:
3080 LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
3081 break;
3082 case Builtin::BI__builtin_islessequal:
3083 LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
3084 break;
3085 case Builtin::BI__builtin_islessgreater:
3086 LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
3087 break;
3088 case Builtin::BI__builtin_isunordered:
3089 LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
3090 break;
3091 }
3092 // ZExt bool to int type.
3093 return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
3094 }
3095 case Builtin::BI__builtin_isnan: {
3096 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3097 Value *V = EmitScalarExpr(E->getArg(0));
3098 llvm::Type *Ty = V->getType();
3099 const llvm::fltSemantics &Semantics = Ty->getFltSemantics();
3100 if (!Builder.getIsFPConstrained() ||
3101 Builder.getDefaultConstrainedExcept() == fp::ebIgnore ||
3102 !Ty->isIEEE()) {
3103 V = Builder.CreateFCmpUNO(V, V, "cmp");
3104 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
3105 }
3106
3107 if (Value *Result = getTargetHooks().testFPKind(V, BuiltinID, Builder, CGM))
3108 return RValue::get(Result);
3109
3110 // NaN has all exp bits set and a non zero significand. Therefore:
3111 // isnan(V) == ((exp mask - (abs(V) & exp mask)) < 0)
3112 unsigned bitsize = Ty->getScalarSizeInBits();
3113 llvm::IntegerType *IntTy = Builder.getIntNTy(bitsize);
3114 Value *IntV = Builder.CreateBitCast(V, IntTy);
3115 APInt AndMask = APInt::getSignedMaxValue(bitsize);
3116 Value *AbsV =
3117 Builder.CreateAnd(IntV, llvm::ConstantInt::get(IntTy, AndMask));
3118 APInt ExpMask = APFloat::getInf(Semantics).bitcastToAPInt();
3119 Value *Sub =
3120 Builder.CreateSub(llvm::ConstantInt::get(IntTy, ExpMask), AbsV);
3121 // V = sign bit (Sub) <=> V = (Sub < 0)
3122 V = Builder.CreateLShr(Sub, llvm::ConstantInt::get(IntTy, bitsize - 1));
3123 if (bitsize > 32)
3124 V = Builder.CreateTrunc(V, ConvertType(E->getType()));
3125 return RValue::get(V);
3126 }
3127
3128 case Builtin::BI__builtin_elementwise_abs: {
3129 Value *Result;
3130 QualType QT = E->getArg(0)->getType();
3131
3132 if (auto *VecTy = QT->getAs<VectorType>())
3133 QT = VecTy->getElementType();
3134 if (QT->isIntegerType())
3135 Result = Builder.CreateBinaryIntrinsic(
3136 llvm::Intrinsic::abs, EmitScalarExpr(E->getArg(0)),
3137 Builder.getFalse(), nullptr, "elt.abs");
3138 else
3139 Result = emitUnaryBuiltin(*this, E, llvm::Intrinsic::fabs, "elt.abs");
3140
3141 return RValue::get(Result);
3142 }
3143
3144 case Builtin::BI__builtin_elementwise_ceil:
3145 return RValue::get(
3146 emitUnaryBuiltin(*this, E, llvm::Intrinsic::ceil, "elt.ceil"));
3147 case Builtin::BI__builtin_elementwise_floor:
3148 return RValue::get(
3149 emitUnaryBuiltin(*this, E, llvm::Intrinsic::floor, "elt.floor"));
3150 case Builtin::BI__builtin_elementwise_roundeven:
3151 return RValue::get(emitUnaryBuiltin(*this, E, llvm::Intrinsic::roundeven,
3152 "elt.roundeven"));
3153 case Builtin::BI__builtin_elementwise_trunc:
3154 return RValue::get(
3155 emitUnaryBuiltin(*this, E, llvm::Intrinsic::trunc, "elt.trunc"));
3156
3157 case Builtin::BI__builtin_elementwise_add_sat:
3158 case Builtin::BI__builtin_elementwise_sub_sat: {
3159 Value *Op0 = EmitScalarExpr(E->getArg(0));
3160 Value *Op1 = EmitScalarExpr(E->getArg(1));
3161 Value *Result;
3162 assert(Op0->getType()->isIntOrIntVectorTy() && "integer type expected")(static_cast <bool> (Op0->getType()->isIntOrIntVectorTy
() && "integer type expected") ? void (0) : __assert_fail
("Op0->getType()->isIntOrIntVectorTy() && \"integer type expected\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 3162, __extension__ __PRETTY_FUNCTION__
))
;
3163 QualType Ty = E->getArg(0)->getType();
3164 if (auto *VecTy = Ty->getAs<VectorType>())
3165 Ty = VecTy->getElementType();
3166 bool IsSigned = Ty->isSignedIntegerType();
3167 unsigned Opc;
3168 if (BuiltinIDIfNoAsmLabel == Builtin::BI__builtin_elementwise_add_sat)
3169 Opc = IsSigned ? llvm::Intrinsic::sadd_sat : llvm::Intrinsic::uadd_sat;
3170 else
3171 Opc = IsSigned ? llvm::Intrinsic::ssub_sat : llvm::Intrinsic::usub_sat;
3172 Result = Builder.CreateBinaryIntrinsic(Opc, Op0, Op1, nullptr, "elt.sat");
3173 return RValue::get(Result);
3174 }
3175
3176 case Builtin::BI__builtin_elementwise_max: {
3177 Value *Op0 = EmitScalarExpr(E->getArg(0));
3178 Value *Op1 = EmitScalarExpr(E->getArg(1));
3179 Value *Result;
3180 if (Op0->getType()->isIntOrIntVectorTy()) {
3181 QualType Ty = E->getArg(0)->getType();
3182 if (auto *VecTy = Ty->getAs<VectorType>())
3183 Ty = VecTy->getElementType();
3184 Result = Builder.CreateBinaryIntrinsic(Ty->isSignedIntegerType()
3185 ? llvm::Intrinsic::smax
3186 : llvm::Intrinsic::umax,
3187 Op0, Op1, nullptr, "elt.max");
3188 } else
3189 Result = Builder.CreateMaxNum(Op0, Op1, "elt.max");
3190 return RValue::get(Result);
3191 }
3192 case Builtin::BI__builtin_elementwise_min: {
3193 Value *Op0 = EmitScalarExpr(E->getArg(0));
3194 Value *Op1 = EmitScalarExpr(E->getArg(1));
3195 Value *Result;
3196 if (Op0->getType()->isIntOrIntVectorTy()) {
3197 QualType Ty = E->getArg(0)->getType();
3198 if (auto *VecTy = Ty->getAs<VectorType>())
3199 Ty = VecTy->getElementType();
3200 Result = Builder.CreateBinaryIntrinsic(Ty->isSignedIntegerType()
3201 ? llvm::Intrinsic::smin
3202 : llvm::Intrinsic::umin,
3203 Op0, Op1, nullptr, "elt.min");
3204 } else
3205 Result = Builder.CreateMinNum(Op0, Op1, "elt.min");
3206 return RValue::get(Result);
3207 }
3208
3209 case Builtin::BI__builtin_reduce_max: {
3210 auto GetIntrinsicID = [](QualType QT) {
3211 if (auto *VecTy = QT->getAs<VectorType>())
3212 QT = VecTy->getElementType();
3213 if (QT->isSignedIntegerType())
3214 return llvm::Intrinsic::vector_reduce_smax;
3215 if (QT->isUnsignedIntegerType())
3216 return llvm::Intrinsic::vector_reduce_umax;
3217 assert(QT->isFloatingType() && "must have a float here")(static_cast <bool> (QT->isFloatingType() &&
"must have a float here") ? void (0) : __assert_fail ("QT->isFloatingType() && \"must have a float here\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 3217, __extension__ __PRETTY_FUNCTION__
))
;
3218 return llvm::Intrinsic::vector_reduce_fmax;
3219 };
3220 return RValue::get(emitUnaryBuiltin(
3221 *this, E, GetIntrinsicID(E->getArg(0)->getType()), "rdx.min"));
3222 }
3223
3224 case Builtin::BI__builtin_reduce_min: {
3225 auto GetIntrinsicID = [](QualType QT) {
3226 if (auto *VecTy = QT->getAs<VectorType>())
3227 QT = VecTy->getElementType();
3228 if (QT->isSignedIntegerType())
3229 return llvm::Intrinsic::vector_reduce_smin;
3230 if (QT->isUnsignedIntegerType())
3231 return llvm::Intrinsic::vector_reduce_umin;
3232 assert(QT->isFloatingType() && "must have a float here")(static_cast <bool> (QT->isFloatingType() &&
"must have a float here") ? void (0) : __assert_fail ("QT->isFloatingType() && \"must have a float here\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 3232, __extension__ __PRETTY_FUNCTION__
))
;
3233 return llvm::Intrinsic::vector_reduce_fmin;
3234 };
3235
3236 return RValue::get(emitUnaryBuiltin(
3237 *this, E, GetIntrinsicID(E->getArg(0)->getType()), "rdx.min"));
3238 }
3239
3240 case Builtin::BI__builtin_reduce_xor:
3241 return RValue::get(emitUnaryBuiltin(
3242 *this, E, llvm::Intrinsic::vector_reduce_xor, "rdx.xor"));
3243 case Builtin::BI__builtin_reduce_or:
3244 return RValue::get(emitUnaryBuiltin(
3245 *this, E, llvm::Intrinsic::vector_reduce_or, "rdx.or"));
3246 case Builtin::BI__builtin_reduce_and:
3247 return RValue::get(emitUnaryBuiltin(
3248 *this, E, llvm::Intrinsic::vector_reduce_and, "rdx.and"));
3249
3250 case Builtin::BI__builtin_matrix_transpose: {
3251 auto *MatrixTy = E->getArg(0)->getType()->castAs<ConstantMatrixType>();
3252 Value *MatValue = EmitScalarExpr(E->getArg(0));
3253 MatrixBuilder MB(Builder);
3254 Value *Result = MB.CreateMatrixTranspose(MatValue, MatrixTy->getNumRows(),
3255 MatrixTy->getNumColumns());
3256 return RValue::get(Result);
3257 }
3258
3259 case Builtin::BI__builtin_matrix_column_major_load: {
3260 MatrixBuilder MB(Builder);
3261 // Emit everything that isn't dependent on the first parameter type
3262 Value *Stride = EmitScalarExpr(E->getArg(3));
3263 const auto *ResultTy = E->getType()->getAs<ConstantMatrixType>();
3264 auto *PtrTy = E->getArg(0)->getType()->getAs<PointerType>();
3265 assert(PtrTy && "arg0 must be of pointer type")(static_cast <bool> (PtrTy && "arg0 must be of pointer type"
) ? void (0) : __assert_fail ("PtrTy && \"arg0 must be of pointer type\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 3265, __extension__ __PRETTY_FUNCTION__
))
;
3266 bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified();
3267
3268 Address Src = EmitPointerWithAlignment(E->getArg(0));
3269 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(0)->getType(),
3270 E->getArg(0)->getExprLoc(), FD, 0);
3271 Value *Result = MB.CreateColumnMajorLoad(
3272 Src.getElementType(), Src.getPointer(),
3273 Align(Src.getAlignment().getQuantity()), Stride, IsVolatile,
3274 ResultTy->getNumRows(), ResultTy->getNumColumns(),
3275 "matrix");
3276 return RValue::get(Result);
3277 }
3278
3279 case Builtin::BI__builtin_matrix_column_major_store: {
3280 MatrixBuilder MB(Builder);
3281 Value *Matrix = EmitScalarExpr(E->getArg(0));
3282 Address Dst = EmitPointerWithAlignment(E->getArg(1));
3283 Value *Stride = EmitScalarExpr(E->getArg(2));
3284
3285 const auto *MatrixTy = E->getArg(0)->getType()->getAs<ConstantMatrixType>();
3286 auto *PtrTy = E->getArg(1)->getType()->getAs<PointerType>();
3287 assert(PtrTy && "arg1 must be of pointer type")(static_cast <bool> (PtrTy && "arg1 must be of pointer type"
) ? void (0) : __assert_fail ("PtrTy && \"arg1 must be of pointer type\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 3287, __extension__ __PRETTY_FUNCTION__
))
;
3288 bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified();
3289
3290 EmitNonNullArgCheck(RValue::get(Dst.getPointer()), E->getArg(1)->getType(),
3291 E->getArg(1)->getExprLoc(), FD, 0);
3292 Value *Result = MB.CreateColumnMajorStore(
3293 Matrix, Dst.getPointer(), Align(Dst.getAlignment().getQuantity()),
3294 Stride, IsVolatile, MatrixTy->getNumRows(), MatrixTy->getNumColumns());
3295 return RValue::get(Result);
3296 }
3297
3298 case Builtin::BIfinite:
3299 case Builtin::BI__finite:
3300 case Builtin::BIfinitef:
3301 case Builtin::BI__finitef:
3302 case Builtin::BIfinitel:
3303 case Builtin::BI__finitel:
3304 case Builtin::BI__builtin_isinf:
3305 case Builtin::BI__builtin_isfinite: {
3306 // isinf(x) --> fabs(x) == infinity
3307 // isfinite(x) --> fabs(x) != infinity
3308 // x != NaN via the ordered compare in either case.
3309 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3310 Value *V = EmitScalarExpr(E->getArg(0));
3311 llvm::Type *Ty = V->getType();
3312 if (!Builder.getIsFPConstrained() ||
3313 Builder.getDefaultConstrainedExcept() == fp::ebIgnore ||
3314 !Ty->isIEEE()) {
3315 Value *Fabs = EmitFAbs(*this, V);
3316 Constant *Infinity = ConstantFP::getInfinity(V->getType());
3317 CmpInst::Predicate Pred = (BuiltinID == Builtin::BI__builtin_isinf)
3318 ? CmpInst::FCMP_OEQ
3319 : CmpInst::FCMP_ONE;
3320 Value *FCmp = Builder.CreateFCmp(Pred, Fabs, Infinity, "cmpinf");
3321 return RValue::get(Builder.CreateZExt(FCmp, ConvertType(E->getType())));
3322 }
3323
3324 if (Value *Result = getTargetHooks().testFPKind(V, BuiltinID, Builder, CGM))
3325 return RValue::get(Result);
3326
3327 // Inf values have all exp bits set and a zero significand. Therefore:
3328 // isinf(V) == ((V << 1) == ((exp mask) << 1))
3329 // isfinite(V) == ((V << 1) < ((exp mask) << 1)) using unsigned comparison
3330 unsigned bitsize = Ty->getScalarSizeInBits();
3331 llvm::IntegerType *IntTy = Builder.getIntNTy(bitsize);
3332 Value *IntV = Builder.CreateBitCast(V, IntTy);
3333 Value *Shl1 = Builder.CreateShl(IntV, 1);
3334 const llvm::fltSemantics &Semantics = Ty->getFltSemantics();
3335 APInt ExpMask = APFloat::getInf(Semantics).bitcastToAPInt();
3336 Value *ExpMaskShl1 = llvm::ConstantInt::get(IntTy, ExpMask.shl(1));
3337 if (BuiltinID == Builtin::BI__builtin_isinf)
3338 V = Builder.CreateICmpEQ(Shl1, ExpMaskShl1);
3339 else
3340 V = Builder.CreateICmpULT(Shl1, ExpMaskShl1);
3341 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
3342 }
3343
3344 case Builtin::BI__builtin_isinf_sign: {
3345 // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0
3346 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3347 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3348 Value *Arg = EmitScalarExpr(E->getArg(0));
3349 Value *AbsArg = EmitFAbs(*this, Arg);
3350 Value *IsInf = Builder.CreateFCmpOEQ(
3351 AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf");
3352 Value *IsNeg = EmitSignBit(*this, Arg);
3353
3354 llvm::Type *IntTy = ConvertType(E->getType());
3355 Value *Zero = Constant::getNullValue(IntTy);
3356 Value *One = ConstantInt::get(IntTy, 1);
3357 Value *NegativeOne = ConstantInt::get(IntTy, -1);
3358 Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One);
3359 Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero);
3360 return RValue::get(Result);
3361 }
3362
3363 case Builtin::BI__builtin_isnormal: {
3364 // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
3365 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3366 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3367 Value *V = EmitScalarExpr(E->getArg(0));
3368 Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
3369
3370 Value *Abs = EmitFAbs(*this, V);
3371 Value *IsLessThanInf =
3372 Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
3373 APFloat Smallest = APFloat::getSmallestNormalized(
3374 getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
3375 Value *IsNormal =
3376 Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
3377 "isnormal");
3378 V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
3379 V = Builder.CreateAnd(V, IsNormal, "and");
3380 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
3381 }
3382
3383 case Builtin::BI__builtin_flt_rounds: {
3384 Function *F = CGM.getIntrinsic(Intrinsic::flt_rounds);
3385
3386 llvm::Type *ResultType = ConvertType(E->getType());
3387 Value *Result = Builder.CreateCall(F);
3388 if (Result->getType() != ResultType)
3389 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
3390 "cast");
3391 return RValue::get(Result);
3392 }
3393
3394 case Builtin::BI__builtin_fpclassify: {
3395 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3396 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3397 Value *V = EmitScalarExpr(E->getArg(5));
3398 llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
3399
3400 // Create Result
3401 BasicBlock *Begin = Builder.GetInsertBlock();
3402 BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
3403 Builder.SetInsertPoint(End);
3404 PHINode *Result =
3405 Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
3406 "fpclassify_result");
3407
3408 // if (V==0) return FP_ZERO
3409 Builder.SetInsertPoint(Begin);
3410 Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
3411 "iszero");
3412 Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
3413 BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
3414 Builder.CreateCondBr(IsZero, End, NotZero);
3415 Result->addIncoming(ZeroLiteral, Begin);
3416
3417 // if (V != V) return FP_NAN
3418 Builder.SetInsertPoint(NotZero);
3419 Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
3420 Value *NanLiteral = EmitScalarExpr(E->getArg(0));
3421 BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
3422 Builder.CreateCondBr(IsNan, End, NotNan);
3423 Result->addIncoming(NanLiteral, NotZero);
3424
3425 // if (fabs(V) == infinity) return FP_INFINITY
3426 Builder.SetInsertPoint(NotNan);
3427 Value *VAbs = EmitFAbs(*this, V);
3428 Value *IsInf =
3429 Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
3430 "isinf");
3431 Value *InfLiteral = EmitScalarExpr(E->getArg(1));
3432 BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
3433 Builder.CreateCondBr(IsInf, End, NotInf);
3434 Result->addIncoming(InfLiteral, NotNan);
3435
3436 // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
3437 Builder.SetInsertPoint(NotInf);
3438 APFloat Smallest = APFloat::getSmallestNormalized(
3439 getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
3440 Value *IsNormal =
3441 Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
3442 "isnormal");
3443 Value *NormalResult =
3444 Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
3445 EmitScalarExpr(E->getArg(3)));
3446 Builder.CreateBr(End);
3447 Result->addIncoming(NormalResult, NotInf);
3448
3449 // return Result
3450 Builder.SetInsertPoint(End);
3451 return RValue::get(Result);
3452 }
3453
3454 case Builtin::BIalloca:
3455 case Builtin::BI_alloca:
3456 case Builtin::BI__builtin_alloca_uninitialized:
3457 case Builtin::BI__builtin_alloca: {
3458 Value *Size = EmitScalarExpr(E->getArg(0));
3459 const TargetInfo &TI = getContext().getTargetInfo();
3460 // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__.
3461 const Align SuitableAlignmentInBytes =
3462 CGM.getContext()
3463 .toCharUnitsFromBits(TI.getSuitableAlign())
3464 .getAsAlign();
3465 AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
3466 AI->setAlignment(SuitableAlignmentInBytes);
3467 if (BuiltinID != Builtin::BI__builtin_alloca_uninitialized)
3468 initializeAlloca(*this, AI, Size, SuitableAlignmentInBytes);
3469 return RValue::get(AI);
3470 }
3471
3472 case Builtin::BI__builtin_alloca_with_align_uninitialized:
3473 case Builtin::BI__builtin_alloca_with_align: {
3474 Value *Size = EmitScalarExpr(E->getArg(0));
3475 Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1));
3476 auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue);
3477 unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue();
3478 const Align AlignmentInBytes =
3479 CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getAsAlign();
3480 AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
3481 AI->setAlignment(AlignmentInBytes);
3482 if (BuiltinID != Builtin::BI__builtin_alloca_with_align_uninitialized)
3483 initializeAlloca(*this, AI, Size, AlignmentInBytes);
3484 return RValue::get(AI);
3485 }
3486
3487 case Builtin::BIbzero:
3488 case Builtin::BI__builtin_bzero: {
3489 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3490 Value *SizeVal = EmitScalarExpr(E->getArg(1));
3491 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3492 E->getArg(0)->getExprLoc(), FD, 0);
3493 Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false);
3494 return RValue::get(nullptr);
3495 }
3496 case Builtin::BImemcpy:
3497 case Builtin::BI__builtin_memcpy:
3498 case Builtin::BImempcpy:
3499 case Builtin::BI__builtin_mempcpy: {
3500 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3501 Address Src = EmitPointerWithAlignment(E->getArg(1));
3502 Value *SizeVal = EmitScalarExpr(E->getArg(2));
3503 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3504 E->getArg(0)->getExprLoc(), FD, 0);
3505 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
3506 E->getArg(1)->getExprLoc(), FD, 1);
3507 Builder.CreateMemCpy(Dest, Src, SizeVal, false);
3508 if (BuiltinID == Builtin::BImempcpy ||
3509 BuiltinID == Builtin::BI__builtin_mempcpy)
3510 return RValue::get(Builder.CreateInBoundsGEP(Dest.getElementType(),
3511 Dest.getPointer(), SizeVal));
3512 else
3513 return RValue::get(Dest.getPointer());
3514 }
3515
3516 case Builtin::BI__builtin_memcpy_inline: {
3517 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3518 Address Src = EmitPointerWithAlignment(E->getArg(1));
3519 uint64_t Size =
3520 E->getArg(2)->EvaluateKnownConstInt(getContext()).getZExtValue();
3521 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3522 E->getArg(0)->getExprLoc(), FD, 0);
3523 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
3524 E->getArg(1)->getExprLoc(), FD, 1);
3525 Builder.CreateMemCpyInline(Dest, Src, Size);
3526 return RValue::get(nullptr);
3527 }
3528
3529 case Builtin::BI__builtin_char_memchr:
3530 BuiltinID = Builtin::BI__builtin_memchr;
3531 break;
3532
3533 case Builtin::BI__builtin___memcpy_chk: {
3534 // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
3535 Expr::EvalResult SizeResult, DstSizeResult;
3536 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
3537 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
3538 break;
3539 llvm::APSInt Size = SizeResult.Val.getInt();
3540 llvm::APSInt DstSize = DstSizeResult.Val.getInt();
3541 if (Size.ugt(DstSize))
3542 break;
3543 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3544 Address Src = EmitPointerWithAlignment(E->getArg(1));
3545 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
3546 Builder.CreateMemCpy(Dest, Src, SizeVal, false);
3547 return RValue::get(Dest.getPointer());
3548 }
3549
3550 case Builtin::BI__builtin_objc_memmove_collectable: {
3551 Address DestAddr = EmitPointerWithAlignment(E->getArg(0));
3552 Address SrcAddr = EmitPointerWithAlignment(E->getArg(1));
3553 Value *SizeVal = EmitScalarExpr(E->getArg(2));
3554 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
3555 DestAddr, SrcAddr, SizeVal);
3556 return RValue::get(DestAddr.getPointer());
3557 }
3558
3559 case Builtin::BI__builtin___memmove_chk: {
3560 // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
3561 Expr::EvalResult SizeResult, DstSizeResult;
3562 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
3563 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
3564 break;
3565 llvm::APSInt Size = SizeResult.Val.getInt();
3566 llvm::APSInt DstSize = DstSizeResult.Val.getInt();
3567 if (Size.ugt(DstSize))
3568 break;
3569 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3570 Address Src = EmitPointerWithAlignment(E->getArg(1));
3571 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
3572 Builder.CreateMemMove(Dest, Src, SizeVal, false);
3573 return RValue::get(Dest.getPointer());
3574 }
3575
3576 case Builtin::BImemmove:
3577 case Builtin::BI__builtin_memmove: {
3578 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3579 Address Src = EmitPointerWithAlignment(E->getArg(1));
3580 Value *SizeVal = EmitScalarExpr(E->getArg(2));
3581 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3582 E->getArg(0)->getExprLoc(), FD, 0);
3583 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
3584 E->getArg(1)->getExprLoc(), FD, 1);
3585 Builder.CreateMemMove(Dest, Src, SizeVal, false);
3586 return RValue::get(Dest.getPointer());
3587 }
3588 case Builtin::BImemset:
3589 case Builtin::BI__builtin_memset: {
3590 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3591 Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
3592 Builder.getInt8Ty());
3593 Value *SizeVal = EmitScalarExpr(E->getArg(2));
3594 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3595 E->getArg(0)->getExprLoc(), FD, 0);
3596 Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
3597 return RValue::get(Dest.getPointer());
3598 }
3599 case Builtin::BI__builtin___memset_chk: {
3600 // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
3601 Expr::EvalResult SizeResult, DstSizeResult;
3602 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
3603 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
3604 break;
3605 llvm::APSInt Size = SizeResult.Val.getInt();
3606 llvm::APSInt DstSize = DstSizeResult.Val.getInt();
3607 if (Size.ugt(DstSize))
3608 break;
3609 Address Dest = EmitPointerWithAlignment(E->getArg(0));
3610 Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
3611 Builder.getInt8Ty());
3612 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
3613 Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
3614 return RValue::get(Dest.getPointer());
3615 }
3616 case Builtin::BI__builtin_wmemchr: {
3617 // The MSVC runtime library does not provide a definition of wmemchr, so we
3618 // need an inline implementation.
3619 if (!getTarget().getTriple().isOSMSVCRT())
3620 break;
3621
3622 llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
3623 Value *Str = EmitScalarExpr(E->getArg(0));
3624 Value *Chr = EmitScalarExpr(E->getArg(1));
3625 Value *Size = EmitScalarExpr(E->getArg(2));
3626
3627 BasicBlock *Entry = Builder.GetInsertBlock();
3628 BasicBlock *CmpEq = createBasicBlock("wmemchr.eq");
3629 BasicBlock *Next = createBasicBlock("wmemchr.next");
3630 BasicBlock *Exit = createBasicBlock("wmemchr.exit");
3631 Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
3632 Builder.CreateCondBr(SizeEq0, Exit, CmpEq);
3633
3634 EmitBlock(CmpEq);
3635 PHINode *StrPhi = Builder.CreatePHI(Str->getType(), 2);
3636 StrPhi->addIncoming(Str, Entry);
3637 PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
3638 SizePhi->addIncoming(Size, Entry);
3639 CharUnits WCharAlign =
3640 getContext().getTypeAlignInChars(getContext().WCharTy);
3641 Value *StrCh = Builder.CreateAlignedLoad(WCharTy, StrPhi, WCharAlign);
3642 Value *FoundChr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 0);
3643 Value *StrEqChr = Builder.CreateICmpEQ(StrCh, Chr);
3644 Builder.CreateCondBr(StrEqChr, Exit, Next);
3645
3646 EmitBlock(Next);
3647 Value *NextStr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 1);
3648 Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
3649 Value *NextSizeEq0 =
3650 Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
3651 Builder.CreateCondBr(NextSizeEq0, Exit, CmpEq);
3652 StrPhi->addIncoming(NextStr, Next);
3653 SizePhi->addIncoming(NextSize, Next);
3654
3655 EmitBlock(Exit);
3656 PHINode *Ret = Builder.CreatePHI(Str->getType(), 3);
3657 Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Entry);
3658 Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Next);
3659 Ret->addIncoming(FoundChr, CmpEq);
3660 return RValue::get(Ret);
3661 }
3662 case Builtin::BI__builtin_wmemcmp: {
3663 // The MSVC runtime library does not provide a definition of wmemcmp, so we
3664 // need an inline implementation.
3665 if (!getTarget().getTriple().isOSMSVCRT())
3666 break;
3667
3668 llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
3669
3670 Value *Dst = EmitScalarExpr(E->getArg(0));
3671 Value *Src = EmitScalarExpr(E->getArg(1));
3672 Value *Size = EmitScalarExpr(E->getArg(2));
3673
3674 BasicBlock *Entry = Builder.GetInsertBlock();
3675 BasicBlock *CmpGT = createBasicBlock("wmemcmp.gt");
3676 BasicBlock *CmpLT = createBasicBlock("wmemcmp.lt");
3677 BasicBlock *Next = createBasicBlock("wmemcmp.next");
3678 BasicBlock *Exit = createBasicBlock("wmemcmp.exit");
3679 Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
3680 Builder.CreateCondBr(SizeEq0, Exit, CmpGT);
3681
3682 EmitBlock(CmpGT);
3683 PHINode *DstPhi = Builder.CreatePHI(Dst->getType(), 2);
3684 DstPhi->addIncoming(Dst, Entry);
3685 PHINode *SrcPhi = Builder.CreatePHI(Src->getType(), 2);
3686 SrcPhi->addIncoming(Src, Entry);
3687 PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
3688 SizePhi->addIncoming(Size, Entry);
3689 CharUnits WCharAlign =
3690 getContext().getTypeAlignInChars(getContext().WCharTy);
3691 Value *DstCh = Builder.CreateAlignedLoad(WCharTy, DstPhi, WCharAlign);
3692 Value *SrcCh = Builder.CreateAlignedLoad(WCharTy, SrcPhi, WCharAlign);
3693 Value *DstGtSrc = Builder.CreateICmpUGT(DstCh, SrcCh);
3694 Builder.CreateCondBr(DstGtSrc, Exit, CmpLT);
3695
3696 EmitBlock(CmpLT);
3697 Value *DstLtSrc = Builder.CreateICmpULT(DstCh, SrcCh);
3698 Builder.CreateCondBr(DstLtSrc, Exit, Next);
3699
3700 EmitBlock(Next);
3701 Value *NextDst = Builder.CreateConstInBoundsGEP1_32(WCharTy, DstPhi, 1);
3702 Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(WCharTy, SrcPhi, 1);
3703 Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
3704 Value *NextSizeEq0 =
3705 Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
3706 Builder.CreateCondBr(NextSizeEq0, Exit, CmpGT);
3707 DstPhi->addIncoming(NextDst, Next);
3708 SrcPhi->addIncoming(NextSrc, Next);
3709 SizePhi->addIncoming(NextSize, Next);
3710
3711 EmitBlock(Exit);
3712 PHINode *Ret = Builder.CreatePHI(IntTy, 4);
3713 Ret->addIncoming(ConstantInt::get(IntTy, 0), Entry);
3714 Ret->addIncoming(ConstantInt::get(IntTy, 1), CmpGT);
3715 Ret->addIncoming(ConstantInt::get(IntTy, -1), CmpLT);
3716 Ret->addIncoming(ConstantInt::get(IntTy, 0), Next);
3717 return RValue::get(Ret);
3718 }
3719 case Builtin::BI__builtin_dwarf_cfa: {
3720 // The offset in bytes from the first argument to the CFA.
3721 //
3722 // Why on earth is this in the frontend? Is there any reason at
3723 // all that the backend can't reasonably determine this while
3724 // lowering llvm.eh.dwarf.cfa()?
3725 //
3726 // TODO: If there's a satisfactory reason, add a target hook for
3727 // this instead of hard-coding 0, which is correct for most targets.
3728 int32_t Offset = 0;
3729
3730 Function *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
3731 return RValue::get(Builder.CreateCall(F,
3732 llvm::ConstantInt::get(Int32Ty, Offset)));
3733 }
3734 case Builtin::BI__builtin_return_address: {
3735 Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
3736 getContext().UnsignedIntTy);
3737 Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
3738 return RValue::get(Builder.CreateCall(F, Depth));
3739 }
3740 case Builtin::BI_ReturnAddress: {
3741 Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
3742 return RValue::get(Builder.CreateCall(F, Builder.getInt32(0)));
3743 }
3744 case Builtin::BI__builtin_frame_address: {
3745 Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
3746 getContext().UnsignedIntTy);
3747 Function *F = CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy);
3748 return RValue::get(Builder.CreateCall(F, Depth));
3749 }
3750 case Builtin::BI__builtin_extract_return_addr: {
3751 Value *Address = EmitScalarExpr(E->getArg(0));
3752 Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
3753 return RValue::get(Result);
3754 }
3755 case Builtin::BI__builtin_frob_return_addr: {
3756 Value *Address = EmitScalarExpr(E->getArg(0));
3757 Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
3758 return RValue::get(Result);
3759 }
3760 case Builtin::BI__builtin_dwarf_sp_column: {
3761 llvm::IntegerType *Ty
3762 = cast<llvm::IntegerType>(ConvertType(E->getType()));
3763 int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
3764 if (Column == -1) {
3765 CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
3766 return RValue::get(llvm::UndefValue::get(Ty));
3767 }
3768 return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
3769 }
3770 case Builtin::BI__builtin_init_dwarf_reg_size_table: {
3771 Value *Address = EmitScalarExpr(E->getArg(0));
3772 if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
3773 CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
3774 return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
3775 }
3776 case Builtin::BI__builtin_eh_return: {
3777 Value *Int = EmitScalarExpr(E->getArg(0));
3778 Value *Ptr = EmitScalarExpr(E->getArg(1));
3779
3780 llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
3781 assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&(static_cast <bool> ((IntTy->getBitWidth() == 32 || IntTy
->getBitWidth() == 64) && "LLVM's __builtin_eh_return only supports 32- and 64-bit variants"
) ? void (0) : __assert_fail ("(IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) && \"LLVM's __builtin_eh_return only supports 32- and 64-bit variants\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 3782, __extension__ __PRETTY_FUNCTION__
))
3782 "LLVM's __builtin_eh_return only supports 32- and 64-bit variants")(static_cast <bool> ((IntTy->getBitWidth() == 32 || IntTy
->getBitWidth() == 64) && "LLVM's __builtin_eh_return only supports 32- and 64-bit variants"
) ? void (0) : __assert_fail ("(IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) && \"LLVM's __builtin_eh_return only supports 32- and 64-bit variants\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 3782, __extension__ __PRETTY_FUNCTION__
))
;
3783 Function *F =
3784 CGM.getIntrinsic(IntTy->getBitWidth() == 32 ? Intrinsic::eh_return_i32
3785 : Intrinsic::eh_return_i64);
3786 Builder.CreateCall(F, {Int, Ptr});
3787 Builder.CreateUnreachable();
3788
3789 // We do need to preserve an insertion point.
3790 EmitBlock(createBasicBlock("builtin_eh_return.cont"));
3791
3792 return RValue::get(nullptr);
3793 }
3794 case Builtin::BI__builtin_unwind_init: {
3795 Function *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
3796 return RValue::get(Builder.CreateCall(F));
3797 }
3798 case Builtin::BI__builtin_extend_pointer: {
3799 // Extends a pointer to the size of an _Unwind_Word, which is
3800 // uint64_t on all platforms. Generally this gets poked into a
3801 // register and eventually used as an address, so if the
3802 // addressing registers are wider than pointers and the platform
3803 // doesn't implicitly ignore high-order bits when doing
3804 // addressing, we need to make sure we zext / sext based on
3805 // the platform's expectations.
3806 //
3807 // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
3808
3809 // Cast the pointer to intptr_t.
3810 Value *Ptr = EmitScalarExpr(E->getArg(0));
3811 Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
3812
3813 // If that's 64 bits, we're done.
3814 if (IntPtrTy->getBitWidth() == 64)
3815 return RValue::get(Result);
3816
3817 // Otherwise, ask the codegen data what to do.
3818 if (getTargetHooks().extendPointerWithSExt())
3819 return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
3820 else
3821 return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
3822 }
3823 case Builtin::BI__builtin_setjmp: {
3824 // Buffer is a void**.
3825 Address Buf = EmitPointerWithAlignment(E->getArg(0));
3826
3827 // Store the frame pointer to the setjmp buffer.
3828 Value *FrameAddr = Builder.CreateCall(
3829 CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy),
3830 ConstantInt::get(Int32Ty, 0));
3831 Builder.CreateStore(FrameAddr, Buf);
3832
3833 // Store the stack pointer to the setjmp buffer.
3834 Value *StackAddr =
3835 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
3836 Address StackSaveSlot = Builder.CreateConstInBoundsGEP(Buf, 2);
3837 Builder.CreateStore(StackAddr, StackSaveSlot);
3838
3839 // Call LLVM's EH setjmp, which is lightweight.
3840 Function *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
3841 Buf = Builder.CreateElementBitCast(Buf, Int8Ty);
3842 return RValue::get(Builder.CreateCall(F, Buf.getPointer()));
3843 }
3844 case Builtin::BI__builtin_longjmp: {
3845 Value *Buf = EmitScalarExpr(E->getArg(0));
3846 Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
3847
3848 // Call LLVM's EH longjmp, which is lightweight.
3849 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
3850
3851 // longjmp doesn't return; mark this as unreachable.
3852 Builder.CreateUnreachable();
3853
3854 // We do need to preserve an insertion point.
3855 EmitBlock(createBasicBlock("longjmp.cont"));
3856
3857 return RValue::get(nullptr);
3858 }
3859 case Builtin::BI__builtin_launder: {
3860 const Expr *Arg = E->getArg(0);
3861 QualType ArgTy = Arg->getType()->getPointeeType();
3862 Value *Ptr = EmitScalarExpr(Arg);
3863 if (TypeRequiresBuiltinLaunder(CGM, ArgTy))
3864 Ptr = Builder.CreateLaunderInvariantGroup(Ptr);
3865
3866 return RValue::get(Ptr);
3867 }
3868 case Builtin::BI__sync_fetch_and_add:
3869 case Builtin::BI__sync_fetch_and_sub:
3870 case Builtin::BI__sync_fetch_and_or:
3871 case Builtin::BI__sync_fetch_and_and:
3872 case Builtin::BI__sync_fetch_and_xor:
3873 case Builtin::BI__sync_fetch_and_nand:
3874 case Builtin::BI__sync_add_and_fetch:
3875 case Builtin::BI__sync_sub_and_fetch:
3876 case Builtin::BI__sync_and_and_fetch:
3877 case Builtin::BI__sync_or_and_fetch:
3878 case Builtin::BI__sync_xor_and_fetch:
3879 case Builtin::BI__sync_nand_and_fetch:
3880 case Builtin::BI__sync_val_compare_and_swap:
3881 case Builtin::BI__sync_bool_compare_and_swap:
3882 case Builtin::BI__sync_lock_test_and_set:
3883 case Builtin::BI__sync_lock_release:
3884 case Builtin::BI__sync_swap:
3885 llvm_unreachable("Shouldn't make it through sema")::llvm::llvm_unreachable_internal("Shouldn't make it through sema"
, "clang/lib/CodeGen/CGBuiltin.cpp", 3885)
;
3886 case Builtin::BI__sync_fetch_and_add_1:
3887 case Builtin::BI__sync_fetch_and_add_2:
3888 case Builtin::BI__sync_fetch_and_add_4:
3889 case Builtin::BI__sync_fetch_and_add_8:
3890 case Builtin::BI__sync_fetch_and_add_16:
3891 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
3892 case Builtin::BI__sync_fetch_and_sub_1:
3893 case Builtin::BI__sync_fetch_and_sub_2:
3894 case Builtin::BI__sync_fetch_and_sub_4:
3895 case Builtin::BI__sync_fetch_and_sub_8:
3896 case Builtin::BI__sync_fetch_and_sub_16:
3897 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
3898 case Builtin::BI__sync_fetch_and_or_1:
3899 case Builtin::BI__sync_fetch_and_or_2:
3900 case Builtin::BI__sync_fetch_and_or_4:
3901 case Builtin::BI__sync_fetch_and_or_8:
3902 case Builtin::BI__sync_fetch_and_or_16:
3903 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
3904 case Builtin::BI__sync_fetch_and_and_1:
3905 case Builtin::BI__sync_fetch_and_and_2:
3906 case Builtin::BI__sync_fetch_and_and_4:
3907 case Builtin::BI__sync_fetch_and_and_8:
3908 case Builtin::BI__sync_fetch_and_and_16:
3909 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
3910 case Builtin::BI__sync_fetch_and_xor_1:
3911 case Builtin::BI__sync_fetch_and_xor_2:
3912 case Builtin::BI__sync_fetch_and_xor_4:
3913 case Builtin::BI__sync_fetch_and_xor_8:
3914 case Builtin::BI__sync_fetch_and_xor_16:
3915 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
3916 case Builtin::BI__sync_fetch_and_nand_1:
3917 case Builtin::BI__sync_fetch_and_nand_2:
3918 case Builtin::BI__sync_fetch_and_nand_4:
3919 case Builtin::BI__sync_fetch_and_nand_8:
3920 case Builtin::BI__sync_fetch_and_nand_16:
3921 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E);
3922
3923 // Clang extensions: not overloaded yet.
3924 case Builtin::BI__sync_fetch_and_min:
3925 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
3926 case Builtin::BI__sync_fetch_and_max:
3927 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
3928 case Builtin::BI__sync_fetch_and_umin:
3929 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
3930 case Builtin::BI__sync_fetch_and_umax:
3931 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
3932
3933 case Builtin::BI__sync_add_and_fetch_1:
3934 case Builtin::BI__sync_add_and_fetch_2:
3935 case Builtin::BI__sync_add_and_fetch_4:
3936 case Builtin::BI__sync_add_and_fetch_8:
3937 case Builtin::BI__sync_add_and_fetch_16:
3938 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
3939 llvm::Instruction::Add);
3940 case Builtin::BI__sync_sub_and_fetch_1:
3941 case Builtin::BI__sync_sub_and_fetch_2:
3942 case Builtin::BI__sync_sub_and_fetch_4:
3943 case Builtin::BI__sync_sub_and_fetch_8:
3944 case Builtin::BI__sync_sub_and_fetch_16:
3945 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
3946 llvm::Instruction::Sub);
3947 case Builtin::BI__sync_and_and_fetch_1:
3948 case Builtin::BI__sync_and_and_fetch_2:
3949 case Builtin::BI__sync_and_and_fetch_4:
3950 case Builtin::BI__sync_and_and_fetch_8:
3951 case Builtin::BI__sync_and_and_fetch_16:
3952 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
3953 llvm::Instruction::And);
3954 case Builtin::BI__sync_or_and_fetch_1:
3955 case Builtin::BI__sync_or_and_fetch_2:
3956 case Builtin::BI__sync_or_and_fetch_4:
3957 case Builtin::BI__sync_or_and_fetch_8:
3958 case Builtin::BI__sync_or_and_fetch_16:
3959 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
3960 llvm::Instruction::Or);
3961 case Builtin::BI__sync_xor_and_fetch_1:
3962 case Builtin::BI__sync_xor_and_fetch_2:
3963 case Builtin::BI__sync_xor_and_fetch_4:
3964 case Builtin::BI__sync_xor_and_fetch_8:
3965 case Builtin::BI__sync_xor_and_fetch_16:
3966 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
3967 llvm::Instruction::Xor);
3968 case Builtin::BI__sync_nand_and_fetch_1:
3969 case Builtin::BI__sync_nand_and_fetch_2:
3970 case Builtin::BI__sync_nand_and_fetch_4:
3971 case Builtin::BI__sync_nand_and_fetch_8:
3972 case Builtin::BI__sync_nand_and_fetch_16:
3973 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E,
3974 llvm::Instruction::And, true);
3975
3976 case Builtin::BI__sync_val_compare_and_swap_1:
3977 case Builtin::BI__sync_val_compare_and_swap_2:
3978 case Builtin::BI__sync_val_compare_and_swap_4:
3979 case Builtin::BI__sync_val_compare_and_swap_8:
3980 case Builtin::BI__sync_val_compare_and_swap_16:
3981 return RValue::get(MakeAtomicCmpXchgValue(*this, E, false));
3982
3983 case Builtin::BI__sync_bool_compare_and_swap_1:
3984 case Builtin::BI__sync_bool_compare_and_swap_2:
3985 case Builtin::BI__sync_bool_compare_and_swap_4:
3986 case Builtin::BI__sync_bool_compare_and_swap_8:
3987 case Builtin::BI__sync_bool_compare_and_swap_16:
3988 return RValue::get(MakeAtomicCmpXchgValue(*this, E, true));
3989
3990 case Builtin::BI__sync_swap_1:
3991 case Builtin::BI__sync_swap_2:
3992 case Builtin::BI__sync_swap_4:
3993 case Builtin::BI__sync_swap_8:
3994 case Builtin::BI__sync_swap_16:
3995 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
3996
3997 case Builtin::BI__sync_lock_test_and_set_1:
3998 case Builtin::BI__sync_lock_test_and_set_2:
3999 case Builtin::BI__sync_lock_test_and_set_4:
4000 case Builtin::BI__sync_lock_test_and_set_8:
4001 case Builtin::BI__sync_lock_test_and_set_16:
4002 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
4003
4004 case Builtin::BI__sync_lock_release_1:
4005 case Builtin::BI__sync_lock_release_2:
4006 case Builtin::BI__sync_lock_release_4:
4007 case Builtin::BI__sync_lock_release_8:
4008 case Builtin::BI__sync_lock_release_16: {
4009 Value *Ptr = EmitScalarExpr(E->getArg(0));
4010 QualType ElTy = E->getArg(0)->getType()->getPointeeType();
4011 CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
4012 llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
4013 StoreSize.getQuantity() * 8);
4014 Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
4015 llvm::StoreInst *Store =
4016 Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr,
4017 StoreSize);
4018 Store->setAtomic(llvm::AtomicOrdering::Release);
4019 return RValue::get(nullptr);
4020 }
4021
4022 case Builtin::BI__sync_synchronize: {
4023 // We assume this is supposed to correspond to a C++0x-style
4024 // sequentially-consistent fence (i.e. this is only usable for
4025 // synchronization, not device I/O or anything like that). This intrinsic
4026 // is really badly designed in the sense that in theory, there isn't
4027 // any way to safely use it... but in practice, it mostly works
4028 // to use it with non-atomic loads and stores to get acquire/release
4029 // semantics.
4030 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent);
4031 return RValue::get(nullptr);
4032 }
4033
4034 case Builtin::BI__builtin_nontemporal_load:
4035 return RValue::get(EmitNontemporalLoad(*this, E));
4036 case Builtin::BI__builtin_nontemporal_store:
4037 return RValue::get(EmitNontemporalStore(*this, E));
4038 case Builtin::BI__c11_atomic_is_lock_free:
4039 case Builtin::BI__atomic_is_lock_free: {
4040 // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
4041 // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
4042 // _Atomic(T) is always properly-aligned.
4043 const char *LibCallName = "__atomic_is_lock_free";
4044 CallArgList Args;
4045 Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
4046 getContext().getSizeType());
4047 if (BuiltinID == Builtin::BI__atomic_is_lock_free)
4048 Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
4049 getContext().VoidPtrTy);
4050 else
4051 Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
4052 getContext().VoidPtrTy);
4053 const CGFunctionInfo &FuncInfo =
4054 CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args);
4055 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
4056 llvm::FunctionCallee Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
4057 return EmitCall(FuncInfo, CGCallee::forDirect(Func),
4058 ReturnValueSlot(), Args);
4059 }
4060
4061 case Builtin::BI__atomic_test_and_set: {
4062 // Look at the argument type to determine whether this is a volatile
4063 // operation. The parameter type is always volatile.
4064 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
4065 bool Volatile =
4066 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
4067
4068 Value *Ptr = EmitScalarExpr(E->getArg(0));
4069 unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
4070 Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
4071 Value *NewVal = Builder.getInt8(1);
4072 Value *Order = EmitScalarExpr(E->getArg(1));
4073 if (isa<llvm::ConstantInt>(Order)) {
4074 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
4075 AtomicRMWInst *Result = nullptr;
4076 switch (ord) {
4077 case 0: // memory_order_relaxed
4078 default: // invalid order
4079 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4080 llvm::AtomicOrdering::Monotonic);
4081 break;
4082 case 1: // memory_order_consume
4083 case 2: // memory_order_acquire
4084 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4085 llvm::AtomicOrdering::Acquire);
4086 break;
4087 case 3: // memory_order_release
4088 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4089 llvm::AtomicOrdering::Release);
4090 break;
4091 case 4: // memory_order_acq_rel
4092
4093 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4094 llvm::AtomicOrdering::AcquireRelease);
4095 break;
4096 case 5: // memory_order_seq_cst
4097 Result = Builder.CreateAtomicRMW(
4098 llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
4099 llvm::AtomicOrdering::SequentiallyConsistent);
4100 break;
4101 }
4102 Result->setVolatile(Volatile);
4103 return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
4104 }
4105
4106 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
4107
4108 llvm::BasicBlock *BBs[5] = {
4109 createBasicBlock("monotonic", CurFn),
4110 createBasicBlock("acquire", CurFn),
4111 createBasicBlock("release", CurFn),
4112 createBasicBlock("acqrel", CurFn),
4113 createBasicBlock("seqcst", CurFn)
4114 };
4115 llvm::AtomicOrdering Orders[5] = {
4116 llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire,
4117 llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease,
4118 llvm::AtomicOrdering::SequentiallyConsistent};
4119
4120 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
4121 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
4122
4123 Builder.SetInsertPoint(ContBB);
4124 PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
4125
4126 for (unsigned i = 0; i < 5; ++i) {
4127 Builder.SetInsertPoint(BBs[i]);
4128 AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
4129 Ptr, NewVal, Orders[i]);
4130 RMW->setVolatile(Volatile);
4131 Result->addIncoming(RMW, BBs[i]);
4132 Builder.CreateBr(ContBB);
4133 }
4134
4135 SI->addCase(Builder.getInt32(0), BBs[0]);
4136 SI->addCase(Builder.getInt32(1), BBs[1]);
4137 SI->addCase(Builder.getInt32(2), BBs[1]);
4138 SI->addCase(Builder.getInt32(3), BBs[2]);
4139 SI->addCase(Builder.getInt32(4), BBs[3]);
4140 SI->addCase(Builder.getInt32(5), BBs[4]);
4141
4142 Builder.SetInsertPoint(ContBB);
4143 return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
4144 }
4145
4146 case Builtin::BI__atomic_clear: {
4147 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
4148 bool Volatile =
4149 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
4150
4151 Address Ptr = EmitPointerWithAlignment(E->getArg(0));
4152 Ptr = Builder.CreateElementBitCast(Ptr, Int8Ty);
4153 Value *NewVal = Builder.getInt8(0);
4154 Value *Order = EmitScalarExpr(E->getArg(1));
4155 if (isa<llvm::ConstantInt>(Order)) {
4156 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
4157 StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
4158 switch (ord) {
4159 case 0: // memory_order_relaxed
4160 default: // invalid order
4161 Store->setOrdering(llvm::AtomicOrdering::Monotonic);
4162 break;
4163 case 3: // memory_order_release
4164 Store->setOrdering(llvm::AtomicOrdering::Release);
4165 break;
4166 case 5: // memory_order_seq_cst
4167 Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent);
4168 break;
4169 }
4170 return RValue::get(nullptr);
4171 }
4172
4173 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
4174
4175 llvm::BasicBlock *BBs[3] = {
4176 createBasicBlock("monotonic", CurFn),
4177 createBasicBlock("release", CurFn),
4178 createBasicBlock("seqcst", CurFn)
4179 };
4180 llvm::AtomicOrdering Orders[3] = {
4181 llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release,
4182 llvm::AtomicOrdering::SequentiallyConsistent};
4183
4184 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
4185 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
4186
4187 for (unsigned i = 0; i < 3; ++i) {
4188 Builder.SetInsertPoint(BBs[i]);
4189 StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
4190 Store->setOrdering(Orders[i]);
4191 Builder.CreateBr(ContBB);
4192 }
4193
4194 SI->addCase(Builder.getInt32(0), BBs[0]);
4195 SI->addCase(Builder.getInt32(3), BBs[1]);
4196 SI->addCase(Builder.getInt32(5), BBs[2]);
4197
4198 Builder.SetInsertPoint(ContBB);
4199 return RValue::get(nullptr);
4200 }
4201
4202 case Builtin::BI__atomic_thread_fence:
4203 case Builtin::BI__atomic_signal_fence:
4204 case Builtin::BI__c11_atomic_thread_fence:
4205 case Builtin::BI__c11_atomic_signal_fence: {
4206 llvm::SyncScope::ID SSID;
4207 if (BuiltinID == Builtin::BI__atomic_signal_fence ||
4208 BuiltinID == Builtin::BI__c11_atomic_signal_fence)
4209 SSID = llvm::SyncScope::SingleThread;
4210 else
4211 SSID = llvm::SyncScope::System;
4212 Value *Order = EmitScalarExpr(E->getArg(0));
4213 if (isa<llvm::ConstantInt>(Order)) {
4214 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
4215 switch (ord) {
4216 case 0: // memory_order_relaxed
4217 default: // invalid order
4218 break;
4219 case 1: // memory_order_consume
4220 case 2: // memory_order_acquire
4221 Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
4222 break;
4223 case 3: // memory_order_release
4224 Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
4225 break;
4226 case 4: // memory_order_acq_rel
4227 Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
4228 break;
4229 case 5: // memory_order_seq_cst
4230 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
4231 break;
4232 }
4233 return RValue::get(nullptr);
4234 }
4235
4236 llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
4237 AcquireBB = createBasicBlock("acquire", CurFn);
4238 ReleaseBB = createBasicBlock("release", CurFn);
4239 AcqRelBB = createBasicBlock("acqrel", CurFn);
4240 SeqCstBB = createBasicBlock("seqcst", CurFn);
4241 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
4242
4243 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
4244 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
4245
4246 Builder.SetInsertPoint(AcquireBB);
4247 Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
4248 Builder.CreateBr(ContBB);
4249 SI->addCase(Builder.getInt32(1), AcquireBB);
4250 SI->addCase(Builder.getInt32(2), AcquireBB);
4251
4252 Builder.SetInsertPoint(ReleaseBB);
4253 Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
4254 Builder.CreateBr(ContBB);
4255 SI->addCase(Builder.getInt32(3), ReleaseBB);
4256
4257 Builder.SetInsertPoint(AcqRelBB);
4258 Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
4259 Builder.CreateBr(ContBB);
4260 SI->addCase(Builder.getInt32(4), AcqRelBB);
4261
4262 Builder.SetInsertPoint(SeqCstBB);
4263 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
4264 Builder.CreateBr(ContBB);
4265 SI->addCase(Builder.getInt32(5), SeqCstBB);
4266
4267 Builder.SetInsertPoint(ContBB);
4268 return RValue::get(nullptr);
4269 }
4270
4271 case Builtin::BI__builtin_signbit:
4272 case Builtin::BI__builtin_signbitf:
4273 case Builtin::BI__builtin_signbitl: {
4274 return RValue::get(
4275 Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))),
4276 ConvertType(E->getType())));
4277 }
4278 case Builtin::BI__warn_memset_zero_len:
4279 return RValue::getIgnored();
4280 case Builtin::BI__annotation: {
4281 // Re-encode each wide string to UTF8 and make an MDString.
4282 SmallVector<Metadata *, 1> Strings;
4283 for (const Expr *Arg : E->arguments()) {
4284 const auto *Str = cast<StringLiteral>(Arg->IgnoreParenCasts());
4285 assert(Str->getCharByteWidth() == 2)(static_cast <bool> (Str->getCharByteWidth() == 2) ?
void (0) : __assert_fail ("Str->getCharByteWidth() == 2",
"clang/lib/CodeGen/CGBuiltin.cpp", 4285, __extension__ __PRETTY_FUNCTION__
))
;
4286 StringRef WideBytes = Str->getBytes();
4287 std::string StrUtf8;
4288 if (!convertUTF16ToUTF8String(
4289 makeArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) {
4290 CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument");
4291 continue;
4292 }
4293 Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8));
4294 }
4295
4296 // Build and MDTuple of MDStrings and emit the intrinsic call.
4297 llvm::Function *F =
4298 CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {});
4299 MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings);
4300 Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple));
4301 return RValue::getIgnored();
4302 }
4303 case Builtin::BI__builtin_annotation: {
4304 llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
4305 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::annotation,
4306 AnnVal->getType());
4307
4308 // Get the annotation string, go through casts. Sema requires this to be a
4309 // non-wide string literal, potentially casted, so the cast<> is safe.
4310 const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
4311 StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
4312 return RValue::get(
4313 EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc(), nullptr));
4314 }
4315 case Builtin::BI__builtin_addcb:
4316 case Builtin::BI__builtin_addcs:
4317 case Builtin::BI__builtin_addc:
4318 case Builtin::BI__builtin_addcl:
4319 case Builtin::BI__builtin_addcll:
4320 case Builtin::BI__builtin_subcb:
4321 case Builtin::BI__builtin_subcs:
4322 case Builtin::BI__builtin_subc:
4323 case Builtin::BI__builtin_subcl:
4324 case Builtin::BI__builtin_subcll: {
4325
4326 // We translate all of these builtins from expressions of the form:
4327 // int x = ..., y = ..., carryin = ..., carryout, result;
4328 // result = __builtin_addc(x, y, carryin, &carryout);
4329 //
4330 // to LLVM IR of the form:
4331 //
4332 // %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
4333 // %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
4334 // %carry1 = extractvalue {i32, i1} %tmp1, 1
4335 // %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
4336 // i32 %carryin)
4337 // %result = extractvalue {i32, i1} %tmp2, 0
4338 // %carry2 = extractvalue {i32, i1} %tmp2, 1
4339 // %tmp3 = or i1 %carry1, %carry2
4340 // %tmp4 = zext i1 %tmp3 to i32
4341 // store i32 %tmp4, i32* %carryout
4342
4343 // Scalarize our inputs.
4344 llvm::Value *X = EmitScalarExpr(E->getArg(0));
4345 llvm::Value *Y = EmitScalarExpr(E->getArg(1));
4346 llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
4347 Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3));
4348
4349 // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
4350 llvm::Intrinsic::ID IntrinsicId;
4351 switch (BuiltinID) {
4352 default: llvm_unreachable("Unknown multiprecision builtin id.")::llvm::llvm_unreachable_internal("Unknown multiprecision builtin id."
, "clang/lib/CodeGen/CGBuiltin.cpp", 4352)
;
4353 case Builtin::BI__builtin_addcb:
4354 case Builtin::BI__builtin_addcs:
4355 case Builtin::BI__builtin_addc:
4356 case Builtin::BI__builtin_addcl:
4357 case Builtin::BI__builtin_addcll:
4358 IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
4359 break;
4360 case Builtin::BI__builtin_subcb:
4361 case Builtin::BI__builtin_subcs:
4362 case Builtin::BI__builtin_subc:
4363 case Builtin::BI__builtin_subcl:
4364 case Builtin::BI__builtin_subcll:
4365 IntrinsicId = llvm::Intrinsic::usub_with_overflow;
4366 break;
4367 }
4368
4369 // Construct our resulting LLVM IR expression.
4370 llvm::Value *Carry1;
4371 llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
4372 X, Y, Carry1);
4373 llvm::Value *Carry2;
4374 llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
4375 Sum1, Carryin, Carry2);
4376 llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
4377 X->getType());
4378 Builder.CreateStore(CarryOut, CarryOutPtr);
4379 return RValue::get(Sum2);
4380 }
4381
4382 case Builtin::BI__builtin_add_overflow:
4383 case Builtin::BI__builtin_sub_overflow:
4384 case Builtin::BI__builtin_mul_overflow: {
4385 const clang::Expr *LeftArg = E->getArg(0);
4386 const clang::Expr *RightArg = E->getArg(1);
4387 const clang::Expr *ResultArg = E->getArg(2);
4388
4389 clang::QualType ResultQTy =
4390 ResultArg->getType()->castAs<PointerType>()->getPointeeType();
4391
4392 WidthAndSignedness LeftInfo =
4393 getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType());
4394 WidthAndSignedness RightInfo =
4395 getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType());
4396 WidthAndSignedness ResultInfo =
4397 getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy);
4398
4399 // Handle mixed-sign multiplication as a special case, because adding
4400 // runtime or backend support for our generic irgen would be too expensive.
4401 if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo))
4402 return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg,
4403 RightInfo, ResultArg, ResultQTy,
4404 ResultInfo);
4405
4406 if (isSpecialUnsignedMultiplySignedResult(BuiltinID, LeftInfo, RightInfo,
4407 ResultInfo))
4408 return EmitCheckedUnsignedMultiplySignedResult(
4409 *this, LeftArg, LeftInfo, RightArg, RightInfo, ResultArg, ResultQTy,
4410 ResultInfo);
4411
4412 WidthAndSignedness EncompassingInfo =
4413 EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo});
4414
4415 llvm::Type *EncompassingLLVMTy =
4416 llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width);
4417
4418 llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy);
4419
4420 llvm::Intrinsic::ID IntrinsicId;
4421 switch (BuiltinID) {
4422 default:
4423 llvm_unreachable("Unknown overflow builtin id.")::llvm::llvm_unreachable_internal("Unknown overflow builtin id."
, "clang/lib/CodeGen/CGBuiltin.cpp", 4423)
;
4424 case Builtin::BI__builtin_add_overflow:
4425 IntrinsicId = EncompassingInfo.Signed
4426 ? llvm::Intrinsic::sadd_with_overflow
4427 : llvm::Intrinsic::uadd_with_overflow;
4428 break;
4429 case Builtin::BI__builtin_sub_overflow:
4430 IntrinsicId = EncompassingInfo.Signed
4431 ? llvm::Intrinsic::ssub_with_overflow
4432 : llvm::Intrinsic::usub_with_overflow;
4433 break;
4434 case Builtin::BI__builtin_mul_overflow:
4435 IntrinsicId = EncompassingInfo.Signed
4436 ? llvm::Intrinsic::smul_with_overflow
4437 : llvm::Intrinsic::umul_with_overflow;
4438 break;
4439 }
4440
4441 llvm::Value *Left = EmitScalarExpr(LeftArg);
4442 llvm::Value *Right = EmitScalarExpr(RightArg);
4443 Address ResultPtr = EmitPointerWithAlignment(ResultArg);
4444
4445 // Extend each operand to the encompassing type.
4446 Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed);
4447 Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed);
4448
4449 // Perform the operation on the extended values.
4450 llvm::Value *Overflow, *Result;
4451 Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow);
4452
4453 if (EncompassingInfo.Width > ResultInfo.Width) {
4454 // The encompassing type is wider than the result type, so we need to
4455 // truncate it.
4456 llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy);
4457
4458 // To see if the truncation caused an overflow, we will extend
4459 // the result and then compare it to the original result.
4460 llvm::Value *ResultTruncExt = Builder.CreateIntCast(
4461 ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed);
4462 llvm::Value *TruncationOverflow =
4463 Builder.CreateICmpNE(Result, ResultTruncExt);
4464
4465 Overflow = Builder.CreateOr(Overflow, TruncationOverflow);
4466 Result = ResultTrunc;
4467 }
4468
4469 // Finally, store the result using the pointer.
4470 bool isVolatile =
4471 ResultArg->getType()->getPointeeType().isVolatileQualified();
4472 Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile);
4473
4474 return RValue::get(Overflow);
4475 }
4476
4477 case Builtin::BI__builtin_uadd_overflow:
4478 case Builtin::BI__builtin_uaddl_overflow:
4479 case Builtin::BI__builtin_uaddll_overflow:
4480 case Builtin::BI__builtin_usub_overflow:
4481 case Builtin::BI__builtin_usubl_overflow:
4482 case Builtin::BI__builtin_usubll_overflow:
4483 case Builtin::BI__builtin_umul_overflow:
4484 case Builtin::BI__builtin_umull_overflow:
4485 case Builtin::BI__builtin_umulll_overflow:
4486 case Builtin::BI__builtin_sadd_overflow:
4487 case Builtin::BI__builtin_saddl_overflow:
4488 case Builtin::BI__builtin_saddll_overflow:
4489 case Builtin::BI__builtin_ssub_overflow:
4490 case Builtin::BI__builtin_ssubl_overflow:
4491 case Builtin::BI__builtin_ssubll_overflow:
4492 case Builtin::BI__builtin_smul_overflow:
4493 case Builtin::BI__builtin_smull_overflow:
4494 case Builtin::BI__builtin_smulll_overflow: {
4495
4496 // We translate all of these builtins directly to the relevant llvm IR node.
4497
4498 // Scalarize our inputs.
4499 llvm::Value *X = EmitScalarExpr(E->getArg(0));
4500 llvm::Value *Y = EmitScalarExpr(E->getArg(1));
4501 Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2));
4502
4503 // Decide which of the overflow intrinsics we are lowering to:
4504 llvm::Intrinsic::ID IntrinsicId;
4505 switch (BuiltinID) {
4506 default: llvm_unreachable("Unknown overflow builtin id.")::llvm::llvm_unreachable_internal("Unknown overflow builtin id."
, "clang/lib/CodeGen/CGBuiltin.cpp", 4506)
;
4507 case Builtin::BI__builtin_uadd_overflow:
4508 case Builtin::BI__builtin_uaddl_overflow:
4509 case Builtin::BI__builtin_uaddll_overflow:
4510 IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
4511 break;
4512 case Builtin::BI__builtin_usub_overflow:
4513 case Builtin::BI__builtin_usubl_overflow:
4514 case Builtin::BI__builtin_usubll_overflow:
4515 IntrinsicId = llvm::Intrinsic::usub_with_overflow;
4516 break;
4517 case Builtin::BI__builtin_umul_overflow:
4518 case Builtin::BI__builtin_umull_overflow:
4519 case Builtin::BI__builtin_umulll_overflow:
4520 IntrinsicId = llvm::Intrinsic::umul_with_overflow;
4521 break;
4522 case Builtin::BI__builtin_sadd_overflow:
4523 case Builtin::BI__builtin_saddl_overflow:
4524 case Builtin::BI__builtin_saddll_overflow:
4525 IntrinsicId = llvm::Intrinsic::sadd_with_overflow;
4526 break;
4527 case Builtin::BI__builtin_ssub_overflow:
4528 case Builtin::BI__builtin_ssubl_overflow:
4529 case Builtin::BI__builtin_ssubll_overflow:
4530 IntrinsicId = llvm::Intrinsic::ssub_with_overflow;
4531 break;
4532 case Builtin::BI__builtin_smul_overflow:
4533 case Builtin::BI__builtin_smull_overflow:
4534 case Builtin::BI__builtin_smulll_overflow:
4535 IntrinsicId = llvm::Intrinsic::smul_with_overflow;
4536 break;
4537 }
4538
4539
4540 llvm::Value *Carry;
4541 llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry);
4542 Builder.CreateStore(Sum, SumOutPtr);
4543
4544 return RValue::get(Carry);
4545 }
4546 case Builtin::BI__builtin_addressof:
4547 return RValue::get(EmitLValue(E->getArg(0)).getPointer(*this));
4548 case Builtin::BI__builtin_function_start:
4549 return RValue::get(CGM.GetFunctionStart(
4550 E->getArg(0)->getAsBuiltinConstantDeclRef(CGM.getContext())));
4551 case Builtin::BI__builtin_operator_new:
4552 return EmitBuiltinNewDeleteCall(
4553 E->getCallee()->getType()->castAs<FunctionProtoType>(), E, false);
4554 case Builtin::BI__builtin_operator_delete:
4555 return EmitBuiltinNewDeleteCall(
4556 E->getCallee()->getType()->castAs<FunctionProtoType>(), E, true);
4557
4558 case Builtin::BI__builtin_is_aligned:
4559 return EmitBuiltinIsAligned(E);
4560 case Builtin::BI__builtin_align_up:
4561 return EmitBuiltinAlignTo(E, true);
4562 case Builtin::BI__builtin_align_down:
4563 return EmitBuiltinAlignTo(E, false);
4564
4565 case Builtin::BI__noop:
4566 // __noop always evaluates to an integer literal zero.
4567 return RValue::get(ConstantInt::get(IntTy, 0));
4568 case Builtin::BI__builtin_call_with_static_chain: {
4569 const CallExpr *Call = cast<CallExpr>(E->getArg(0));
4570 const Expr *Chain = E->getArg(1);
4571 return EmitCall(Call->getCallee()->getType(),
4572 EmitCallee(Call->getCallee()), Call, ReturnValue,
4573 EmitScalarExpr(Chain));
4574 }
4575 case Builtin::BI_InterlockedExchange8:
4576 case Builtin::BI_InterlockedExchange16:
4577 case Builtin::BI_InterlockedExchange:
4578 case Builtin::BI_InterlockedExchangePointer:
4579 return RValue::get(
4580 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E));
4581 case Builtin::BI_InterlockedCompareExchangePointer:
4582 case Builtin::BI_InterlockedCompareExchangePointer_nf: {
4583 llvm::Type *RTy;
4584 llvm::IntegerType *IntType =
4585 IntegerType::get(getLLVMContext(),
4586 getContext().getTypeSize(E->getType()));
4587 llvm::Type *IntPtrType = IntType->getPointerTo();
4588
4589 llvm::Value *Destination =
4590 Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType);
4591
4592 llvm::Value *Exchange = EmitScalarExpr(E->getArg(1));
4593 RTy = Exchange->getType();
4594 Exchange = Builder.CreatePtrToInt(Exchange, IntType);
4595
4596 llvm::Value *Comparand =
4597 Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType);
4598
4599 auto Ordering =
4600 BuiltinID == Builtin::BI_InterlockedCompareExchangePointer_nf ?
4601 AtomicOrdering::Monotonic : AtomicOrdering::SequentiallyConsistent;
4602
4603 auto Result = Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
4604 Ordering, Ordering);
4605 Result->setVolatile(true);
4606
4607 return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result,
4608 0),
4609 RTy));
4610 }
4611 case Builtin::BI_InterlockedCompareExchange8:
4612 case Builtin::BI_InterlockedCompareExchange16:
4613 case Builtin::BI_InterlockedCompareExchange:
4614 case Builtin::BI_InterlockedCompareExchange64:
4615 return RValue::get(EmitAtomicCmpXchgForMSIntrin(*this, E));
4616 case Builtin::BI_InterlockedIncrement16:
4617 case Builtin::BI_InterlockedIncrement:
4618 return RValue::get(
4619 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E));
4620 case Builtin::BI_InterlockedDecrement16:
4621 case Builtin::BI_InterlockedDecrement:
4622 return RValue::get(
4623 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E));
4624 case Builtin::BI_InterlockedAnd8:
4625 case Builtin::BI_InterlockedAnd16:
4626 case Builtin::BI_InterlockedAnd:
4627 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E));
4628 case Builtin::BI_InterlockedExchangeAdd8:
4629 case Builtin::BI_InterlockedExchangeAdd16:
4630 case Builtin::BI_InterlockedExchangeAdd:
4631 return RValue::get(
4632 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E));
4633 case Builtin::BI_InterlockedExchangeSub8:
4634 case Builtin::BI_InterlockedExchangeSub16:
4635 case Builtin::BI_InterlockedExchangeSub:
4636 return RValue::get(
4637 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E));
4638 case Builtin::BI_InterlockedOr8:
4639 case Builtin::BI_InterlockedOr16:
4640 case Builtin::BI_InterlockedOr:
4641 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E));
4642 case Builtin::BI_InterlockedXor8:
4643 case Builtin::BI_InterlockedXor16:
4644 case Builtin::BI_InterlockedXor:
4645 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E));
4646
4647 case Builtin::BI_bittest64:
4648 case Builtin::BI_bittest:
4649 case Builtin::BI_bittestandcomplement64:
4650 case Builtin::BI_bittestandcomplement:
4651 case Builtin::BI_bittestandreset64:
4652 case Builtin::BI_bittestandreset:
4653 case Builtin::BI_bittestandset64:
4654 case Builtin::BI_bittestandset:
4655 case Builtin::BI_interlockedbittestandreset:
4656 case Builtin::BI_interlockedbittestandreset64:
4657 case Builtin::BI_interlockedbittestandset64:
4658 case Builtin::BI_interlockedbittestandset:
4659 case Builtin::BI_interlockedbittestandset_acq:
4660 case Builtin::BI_interlockedbittestandset_rel:
4661 case Builtin::BI_interlockedbittestandset_nf:
4662 case Builtin::BI_interlockedbittestandreset_acq:
4663 case Builtin::BI_interlockedbittestandreset_rel:
4664 case Builtin::BI_interlockedbittestandreset_nf:
4665 return RValue::get(EmitBitTestIntrinsic(*this, BuiltinID, E));
4666
4667 // These builtins exist to emit regular volatile loads and stores not
4668 // affected by the -fms-volatile setting.
4669 case Builtin::BI__iso_volatile_load8:
4670 case Builtin::BI__iso_volatile_load16:
4671 case Builtin::BI__iso_volatile_load32:
4672 case Builtin::BI__iso_volatile_load64:
4673 return RValue::get(EmitISOVolatileLoad(*this, E));
4674 case Builtin::BI__iso_volatile_store8:
4675 case Builtin::BI__iso_volatile_store16:
4676 case Builtin::BI__iso_volatile_store32:
4677 case Builtin::BI__iso_volatile_store64:
4678 return RValue::get(EmitISOVolatileStore(*this, E));
4679
4680 case Builtin::BI__exception_code:
4681 case Builtin::BI_exception_code:
4682 return RValue::get(EmitSEHExceptionCode());
4683 case Builtin::BI__exception_info:
4684 case Builtin::BI_exception_info:
4685 return RValue::get(EmitSEHExceptionInfo());
4686 case Builtin::BI__abnormal_termination:
4687 case Builtin::BI_abnormal_termination:
4688 return RValue::get(EmitSEHAbnormalTermination());
4689 case Builtin::BI_setjmpex:
4690 if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 &&
4691 E->getArg(0)->getType()->isPointerType())
4692 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
4693 break;
4694 case Builtin::BI_setjmp:
4695 if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 &&
4696 E->getArg(0)->getType()->isPointerType()) {
4697 if (getTarget().getTriple().getArch() == llvm::Triple::x86)
4698 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp3, E);
4699 else if (getTarget().getTriple().getArch() == llvm::Triple::aarch64)
4700 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
4701 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp, E);
4702 }
4703 break;
4704
4705 case Builtin::BI__GetExceptionInfo: {
4706 if (llvm::GlobalVariable *GV =
4707 CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType()))
4708 return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy));
4709 break;
4710 }
4711
4712 case Builtin::BI__fastfail:
4713 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E));
4714
4715 case Builtin::BI__builtin_coro_size: {
4716 auto & Context = getContext();
4717 auto SizeTy = Context.getSizeType();
4718 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
4719 Function *F = CGM.getIntrinsic(Intrinsic::coro_size, T);
4720 return RValue::get(Builder.CreateCall(F));
4721 }
4722
4723 case Builtin::BI__builtin_coro_id:
4724 return EmitCoroutineIntrinsic(E, Intrinsic::coro_id);
4725 case Builtin::BI__builtin_coro_promise:
4726 return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise);
4727 case Builtin::BI__builtin_coro_resume:
4728 return EmitCoroutineIntrinsic(E, Intrinsic::coro_resume);
4729 case Builtin::BI__builtin_coro_frame:
4730 return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame);
4731 case Builtin::BI__builtin_coro_noop:
4732 return EmitCoroutineIntrinsic(E, Intrinsic::coro_noop);
4733 case Builtin::BI__builtin_coro_free:
4734 return EmitCoroutineIntrinsic(E, Intrinsic::coro_free);
4735 case Builtin::BI__builtin_coro_destroy:
4736 return EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy);
4737 case Builtin::BI__builtin_coro_done:
4738 return EmitCoroutineIntrinsic(E, Intrinsic::coro_done);
4739 case Builtin::BI__builtin_coro_alloc:
4740 return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc);
4741 case Builtin::BI__builtin_coro_begin:
4742 return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin);
4743 case Builtin::BI__builtin_coro_end:
4744 return EmitCoroutineIntrinsic(E, Intrinsic::coro_end);
4745 case Builtin::BI__builtin_coro_suspend:
4746 return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend);
4747
4748 // OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions
4749 case Builtin::BIread_pipe:
4750 case Builtin::BIwrite_pipe: {
4751 Value *Arg0 = EmitScalarExpr(E->getArg(0)),
4752 *Arg1 = EmitScalarExpr(E->getArg(1));
4753 CGOpenCLRuntime OpenCLRT(CGM);
4754 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4755 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4756
4757 // Type of the generic packet parameter.
4758 unsigned GenericAS =
4759 getContext().getTargetAddressSpace(LangAS::opencl_generic);
4760 llvm::Type *I8PTy = llvm::PointerType::get(
4761 llvm::Type::getInt8Ty(getLLVMContext()), GenericAS);
4762
4763 // Testing which overloaded version we should generate the call for.
4764 if (2U == E->getNumArgs()) {
4765 const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2"
4766 : "__write_pipe_2";
4767 // Creating a generic function type to be able to call with any builtin or
4768 // user defined type.
4769 llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty};
4770 llvm::FunctionType *FTy = llvm::FunctionType::get(
4771 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4772 Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy);
4773 return RValue::get(
4774 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4775 {Arg0, BCast, PacketSize, PacketAlign}));
4776 } else {
4777 assert(4 == E->getNumArgs() &&(static_cast <bool> (4 == E->getNumArgs() &&
"Illegal number of parameters to pipe function") ? void (0) :
__assert_fail ("4 == E->getNumArgs() && \"Illegal number of parameters to pipe function\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 4778, __extension__ __PRETTY_FUNCTION__
))
4778 "Illegal number of parameters to pipe function")(static_cast <bool> (4 == E->getNumArgs() &&
"Illegal number of parameters to pipe function") ? void (0) :
__assert_fail ("4 == E->getNumArgs() && \"Illegal number of parameters to pipe function\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 4778, __extension__ __PRETTY_FUNCTION__
))
;
4779 const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4"
4780 : "__write_pipe_4";
4781
4782 llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy,
4783 Int32Ty, Int32Ty};
4784 Value *Arg2 = EmitScalarExpr(E->getArg(2)),
4785 *Arg3 = EmitScalarExpr(E->getArg(3));
4786 llvm::FunctionType *FTy = llvm::FunctionType::get(
4787 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4788 Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy);
4789 // We know the third argument is an integer type, but we may need to cast
4790 // it to i32.
4791 if (Arg2->getType() != Int32Ty)
4792 Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty);
4793 return RValue::get(
4794 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4795 {Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign}));
4796 }
4797 }
4798 // OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write
4799 // functions
4800 case Builtin::BIreserve_read_pipe:
4801 case Builtin::BIreserve_write_pipe:
4802 case Builtin::BIwork_group_reserve_read_pipe:
4803 case Builtin::BIwork_group_reserve_write_pipe:
4804 case Builtin::BIsub_group_reserve_read_pipe:
4805 case Builtin::BIsub_group_reserve_write_pipe: {
4806 // Composing the mangled name for the function.
4807 const char *Name;
4808 if (BuiltinID == Builtin::BIreserve_read_pipe)
4809 Name = "__reserve_read_pipe";
4810 else if (BuiltinID == Builtin::BIreserve_write_pipe)
4811 Name = "__reserve_write_pipe";
4812 else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe)
4813 Name = "__work_group_reserve_read_pipe";
4814 else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe)
4815 Name = "__work_group_reserve_write_pipe";
4816 else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe)
4817 Name = "__sub_group_reserve_read_pipe";
4818 else
4819 Name = "__sub_group_reserve_write_pipe";
4820
4821 Value *Arg0 = EmitScalarExpr(E->getArg(0)),
4822 *Arg1 = EmitScalarExpr(E->getArg(1));
4823 llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy);
4824 CGOpenCLRuntime OpenCLRT(CGM);
4825 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4826 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4827
4828 // Building the generic function prototype.
4829 llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty};
4830 llvm::FunctionType *FTy = llvm::FunctionType::get(
4831 ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4832 // We know the second argument is an integer type, but we may need to cast
4833 // it to i32.
4834 if (Arg1->getType() != Int32Ty)
4835 Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty);
4836 return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4837 {Arg0, Arg1, PacketSize, PacketAlign}));
4838 }
4839 // OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write
4840 // functions
4841 case Builtin::BIcommit_read_pipe:
4842 case Builtin::BIcommit_write_pipe:
4843 case Builtin::BIwork_group_commit_read_pipe:
4844 case Builtin::BIwork_group_commit_write_pipe:
4845 case Builtin::BIsub_group_commit_read_pipe:
4846 case Builtin::BIsub_group_commit_write_pipe: {
4847 const char *Name;
4848 if (BuiltinID == Builtin::BIcommit_read_pipe)
4849 Name = "__commit_read_pipe";
4850 else if (BuiltinID == Builtin::BIcommit_write_pipe)
4851 Name = "__commit_write_pipe";
4852 else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe)
4853 Name = "__work_group_commit_read_pipe";
4854 else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe)
4855 Name = "__work_group_commit_write_pipe";
4856 else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe)
4857 Name = "__sub_group_commit_read_pipe";
4858 else
4859 Name = "__sub_group_commit_write_pipe";
4860
4861 Value *Arg0 = EmitScalarExpr(E->getArg(0)),
4862 *Arg1 = EmitScalarExpr(E->getArg(1));
4863 CGOpenCLRuntime OpenCLRT(CGM);
4864 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4865 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4866
4867 // Building the generic function prototype.
4868 llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty};
4869 llvm::FunctionType *FTy =
4870 llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()),
4871 llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4872
4873 return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4874 {Arg0, Arg1, PacketSize, PacketAlign}));
4875 }
4876 // OpenCL v2.0 s6.13.16.4 Built-in pipe query functions
4877 case Builtin::BIget_pipe_num_packets:
4878 case Builtin::BIget_pipe_max_packets: {
4879 const char *BaseName;
4880 const auto *PipeTy = E->getArg(0)->getType()->castAs<PipeType>();
4881 if (BuiltinID == Builtin::BIget_pipe_num_packets)
4882 BaseName = "__get_pipe_num_packets";
4883 else
4884 BaseName = "__get_pipe_max_packets";
4885 std::string Name = std::string(BaseName) +
4886 std::string(PipeTy->isReadOnly() ? "_ro" : "_wo");
4887
4888 // Building the generic function prototype.
4889 Value *Arg0 = EmitScalarExpr(E->getArg(0));
4890 CGOpenCLRuntime OpenCLRT(CGM);
4891 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4892 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4893 llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty};
4894 llvm::FunctionType *FTy = llvm::FunctionType::get(
4895 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4896
4897 return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4898 {Arg0, PacketSize, PacketAlign}));
4899 }
4900
4901 // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
4902 case Builtin::BIto_global:
4903 case Builtin::BIto_local:
4904 case Builtin::BIto_private: {
4905 auto Arg0 = EmitScalarExpr(E->getArg(0));
4906 auto NewArgT = llvm::PointerType::get(Int8Ty,
4907 CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
4908 auto NewRetT = llvm::PointerType::get(Int8Ty,
4909 CGM.getContext().getTargetAddressSpace(
4910 E->getType()->getPointeeType().getAddressSpace()));
4911 auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false);
4912 llvm::Value *NewArg;
4913 if (Arg0->getType()->getPointerAddressSpace() !=
4914 NewArgT->getPointerAddressSpace())
4915 NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT);
4916 else
4917 NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT);
4918 auto NewName = std::string("__") + E->getDirectCallee()->getName().str();
4919 auto NewCall =
4920 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg});
4921 return RValue::get(Builder.CreateBitOrPointerCast(NewCall,
4922 ConvertType(E->getType())));
4923 }
4924
4925 // OpenCL v2.0, s6.13.17 - Enqueue kernel function.
4926 // It contains four different overload formats specified in Table 6.13.17.1.
4927 case Builtin::BIenqueue_kernel: {
4928 StringRef Name; // Generated function call name
4929 unsigned NumArgs = E->getNumArgs();
4930
4931 llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy);
4932 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4933 getContext().getTargetAddressSpace(LangAS::opencl_generic));
4934
4935 llvm::Value *Queue = EmitScalarExpr(E->getArg(0));
4936 llvm::Value *Flags = EmitScalarExpr(E->getArg(1));
4937 LValue NDRangeL = EmitAggExprToLValue(E->getArg(2));
4938 llvm::Value *Range = NDRangeL.getAddress(*this).getPointer();
4939 llvm::Type *RangeTy = NDRangeL.getAddress(*this).getType();
4940
4941 if (NumArgs == 4) {
4942 // The most basic form of the call with parameters:
4943 // queue_t, kernel_enqueue_flags_t, ndrange_t, block(void)
4944 Name = "__enqueue_kernel_basic";
4945 llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy,
4946 GenericVoidPtrTy};
4947 llvm::FunctionType *FTy = llvm::FunctionType::get(
4948 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4949
4950 auto Info =
4951 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
4952 llvm::Value *Kernel =
4953 Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4954 llvm::Value *Block =
4955 Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4956
4957 AttrBuilder B(Builder.getContext());
4958 B.addByValAttr(NDRangeL.getAddress(*this).getElementType());
4959 llvm::AttributeList ByValAttrSet =
4960 llvm::AttributeList::get(CGM.getModule().getContext(), 3U, B);
4961
4962 auto RTCall =
4963 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name, ByValAttrSet),
4964 {Queue, Flags, Range, Kernel, Block});
4965 RTCall->setAttributes(ByValAttrSet);
4966 return RValue::get(RTCall);
4967 }
4968 assert(NumArgs >= 5 && "Invalid enqueue_kernel signature")(static_cast <bool> (NumArgs >= 5 && "Invalid enqueue_kernel signature"
) ? void (0) : __assert_fail ("NumArgs >= 5 && \"Invalid enqueue_kernel signature\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 4968, __extension__ __PRETTY_FUNCTION__
))
;
4969
4970 // Create a temporary array to hold the sizes of local pointer arguments
4971 // for the block. \p First is the position of the first size argument.
4972 auto CreateArrayForSizeVar = [=](unsigned First)
4973 -> std::tuple<llvm::Value *, llvm::Value *, llvm::Value *> {
4974 llvm::APInt ArraySize(32, NumArgs - First);
4975 QualType SizeArrayTy = getContext().getConstantArrayType(
4976 getContext().getSizeType(), ArraySize, nullptr, ArrayType::Normal,
4977 /*IndexTypeQuals=*/0);
4978 auto Tmp = CreateMemTemp(SizeArrayTy, "block_sizes");
4979 llvm::Value *TmpPtr = Tmp.getPointer();
4980 llvm::Value *TmpSize = EmitLifetimeStart(
4981 CGM.getDataLayout().getTypeAllocSize(Tmp.getElementType()), TmpPtr);
4982 llvm::Value *ElemPtr;
4983 // Each of the following arguments specifies the size of the corresponding
4984 // argument passed to the enqueued block.
4985 auto *Zero = llvm::ConstantInt::get(IntTy, 0);
4986 for (unsigned I = First; I < NumArgs; ++I) {
4987 auto *Index = llvm::ConstantInt::get(IntTy, I - First);
4988 auto *GEP = Builder.CreateGEP(Tmp.getElementType(), TmpPtr,
4989 {Zero, Index});
4990 if (I == First)
4991 ElemPtr = GEP;
4992 auto *V =
4993 Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy);
4994 Builder.CreateAlignedStore(
4995 V, GEP, CGM.getDataLayout().getPrefTypeAlign(SizeTy));
4996 }
4997 return std::tie(ElemPtr, TmpSize, TmpPtr);
4998 };
4999
5000 // Could have events and/or varargs.
5001 if (E->getArg(3)->getType()->isBlockPointerType()) {
5002 // No events passed, but has variadic arguments.
5003 Name = "__enqueue_kernel_varargs";
5004 auto Info =
5005 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
5006 llvm::Value *Kernel =
5007 Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
5008 auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5009 llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
5010 std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(4);
5011
5012 // Create a vector of the arguments, as well as a constant value to
5013 // express to the runtime the number of variadic arguments.
5014 llvm::Value *const Args[] = {Queue, Flags,
5015 Range, Kernel,
5016 Block, ConstantInt::get(IntTy, NumArgs - 4),
5017 ElemPtr};
5018 llvm::Type *const ArgTys[] = {
5019 QueueTy, IntTy, RangeTy, GenericVoidPtrTy,
5020 GenericVoidPtrTy, IntTy, ElemPtr->getType()};
5021
5022 llvm::FunctionType *FTy = llvm::FunctionType::get(Int32Ty, ArgTys, false);
5023 auto Call = RValue::get(
5024 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Args));
5025 if (TmpSize)
5026 EmitLifetimeEnd(TmpSize, TmpPtr);
5027 return Call;
5028 }
5029 // Any calls now have event arguments passed.
5030 if (NumArgs >= 7) {
5031 llvm::Type *EventTy = ConvertType(getContext().OCLClkEventTy);
5032 llvm::PointerType *EventPtrTy = EventTy->getPointerTo(
5033 CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
5034
5035 llvm::Value *NumEvents =
5036 Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty);
5037
5038 // Since SemaOpenCLBuiltinEnqueueKernel allows fifth and sixth arguments
5039 // to be a null pointer constant (including `0` literal), we can take it
5040 // into account and emit null pointer directly.
5041 llvm::Value *EventWaitList = nullptr;
5042 if (E->getArg(4)->isNullPointerConstant(
5043 getContext(), Expr::NPC_ValueDependentIsNotNull)) {
5044 EventWaitList = llvm::ConstantPointerNull::get(EventPtrTy);
5045 } else {
5046 EventWaitList = E->getArg(4)->getType()->isArrayType()
5047 ? EmitArrayToPointerDecay(E->getArg(4)).getPointer()
5048 : EmitScalarExpr(E->getArg(4));
5049 // Convert to generic address space.
5050 EventWaitList = Builder.CreatePointerCast(EventWaitList, EventPtrTy);
5051 }
5052 llvm::Value *EventRet = nullptr;
5053 if (E->getArg(5)->isNullPointerConstant(
5054 getContext(), Expr::NPC_ValueDependentIsNotNull)) {
5055 EventRet = llvm::ConstantPointerNull::get(EventPtrTy);
5056 } else {
5057 EventRet =
5058 Builder.CreatePointerCast(EmitScalarExpr(E->getArg(5)), EventPtrTy);
5059 }
5060
5061 auto Info =
5062 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6));
5063 llvm::Value *Kernel =
5064 Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
5065 llvm::Value *Block =
5066 Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5067
5068 std::vector<llvm::Type *> ArgTys = {
5069 QueueTy, Int32Ty, RangeTy, Int32Ty,
5070 EventPtrTy, EventPtrTy, GenericVoidPtrTy, GenericVoidPtrTy};
5071
5072 std::vector<llvm::Value *> Args = {Queue, Flags, Range,
5073 NumEvents, EventWaitList, EventRet,
5074 Kernel, Block};
5075
5076 if (NumArgs == 7) {
5077 // Has events but no variadics.
5078 Name = "__enqueue_kernel_basic_events";
5079 llvm::FunctionType *FTy = llvm::FunctionType::get(
5080 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
5081 return RValue::get(
5082 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
5083 llvm::ArrayRef<llvm::Value *>(Args)));
5084 }
5085 // Has event info and variadics
5086 // Pass the number of variadics to the runtime function too.
5087 Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7));
5088 ArgTys.push_back(Int32Ty);
5089 Name = "__enqueue_kernel_events_varargs";
5090
5091 llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
5092 std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(7);
5093 Args.push_back(ElemPtr);
5094 ArgTys.push_back(ElemPtr->getType());
5095
5096 llvm::FunctionType *FTy = llvm::FunctionType::get(
5097 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
5098 auto Call =
5099 RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
5100 llvm::ArrayRef<llvm::Value *>(Args)));
5101 if (TmpSize)
5102 EmitLifetimeEnd(TmpSize, TmpPtr);
5103 return Call;
5104 }
5105 LLVM_FALLTHROUGH[[gnu::fallthrough]];
5106 }
5107 // OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block
5108 // parameter.
5109 case Builtin::BIget_kernel_work_group_size: {
5110 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
5111 getContext().getTargetAddressSpace(LangAS::opencl_generic));
5112 auto Info =
5113 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
5114 Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
5115 Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5116 return RValue::get(EmitRuntimeCall(
5117 CGM.CreateRuntimeFunction(
5118 llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
5119 false),
5120 "__get_kernel_work_group_size_impl"),
5121 {Kernel, Arg}));
5122 }
5123 case Builtin::BIget_kernel_preferred_work_group_size_multiple: {
5124 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
5125 getContext().getTargetAddressSpace(LangAS::opencl_generic));
5126 auto Info =
5127 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
5128 Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
5129 Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5130 return RValue::get(EmitRuntimeCall(
5131 CGM.CreateRuntimeFunction(
5132 llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
5133 false),
5134 "__get_kernel_preferred_work_group_size_multiple_impl"),
5135 {Kernel, Arg}));
5136 }
5137 case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
5138 case Builtin::BIget_kernel_sub_group_count_for_ndrange: {
5139 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
5140 getContext().getTargetAddressSpace(LangAS::opencl_generic));
5141 LValue NDRangeL = EmitAggExprToLValue(E->getArg(0));
5142 llvm::Value *NDRange = NDRangeL.getAddress(*this).getPointer();
5143 auto Info =
5144 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(1));
5145 Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
5146 Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
5147 const char *Name =
5148 BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange
5149 ? "__get_kernel_max_sub_group_size_for_ndrange_impl"
5150 : "__get_kernel_sub_group_count_for_ndrange_impl";
5151 return RValue::get(EmitRuntimeCall(
5152 CGM.CreateRuntimeFunction(
5153 llvm::FunctionType::get(
5154 IntTy, {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy},
5155 false),
5156 Name),
5157 {NDRange, Kernel, Block}));
5158 }
5159
5160 case Builtin::BI__builtin_store_half:
5161 case Builtin::BI__builtin_store_halff: {
5162 Value *Val = EmitScalarExpr(E->getArg(0));
5163 Address Address = EmitPointerWithAlignment(E->getArg(1));
5164 Value *HalfVal = Builder.CreateFPTrunc(Val, Builder.getHalfTy());
5165 return RValue::get(Builder.CreateStore(HalfVal, Address));
5166 }
5167 case Builtin::BI__builtin_load_half: {
5168 Address Address = EmitPointerWithAlignment(E->getArg(0));
5169 Value *HalfVal = Builder.CreateLoad(Address);
5170 return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getDoubleTy()));
5171 }
5172 case Builtin::BI__builtin_load_halff: {
5173 Address Address = EmitPointerWithAlignment(E->getArg(0));
5174 Value *HalfVal = Builder.CreateLoad(Address);
5175 return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getFloatTy()));
5176 }
5177 case Builtin::BIprintf:
5178 if (getTarget().getTriple().isNVPTX() ||
5179 getTarget().getTriple().isAMDGCN()) {
5180 if (getLangOpts().OpenMPIsDevice)
5181 return EmitOpenMPDevicePrintfCallExpr(E);
5182 if (getTarget().getTriple().isNVPTX())
5183 return EmitNVPTXDevicePrintfCallExpr(E);
5184 if (getTarget().getTriple().isAMDGCN() && getLangOpts().HIP)
5185 return EmitAMDGPUDevicePrintfCallExpr(E);
5186 }
5187
5188 break;
5189 case Builtin::BI__builtin_canonicalize:
5190 case Builtin::BI__builtin_canonicalizef:
5191 case Builtin::BI__builtin_canonicalizef16:
5192 case Builtin::BI__builtin_canonicalizel:
5193 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::canonicalize));
5194
5195 case Builtin::BI__builtin_thread_pointer: {
5196 if (!getContext().getTargetInfo().isTLSSupported())
5197 CGM.ErrorUnsupported(E, "__builtin_thread_pointer");
5198 // Fall through - it's already mapped to the intrinsic by GCCBuiltin.
5199 break;
5200 }
5201 case Builtin::BI__builtin_os_log_format:
5202 return emitBuiltinOSLogFormat(*E);
5203
5204 case Builtin::BI__xray_customevent: {
5205 if (!ShouldXRayInstrumentFunction())
5206 return RValue::getIgnored();
5207
5208 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
5209 XRayInstrKind::Custom))
5210 return RValue::getIgnored();
5211
5212 if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
5213 if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents())
5214 return RValue::getIgnored();
5215
5216 Function *F = CGM.getIntrinsic(Intrinsic::xray_customevent);
5217 auto FTy = F->getFunctionType();
5218 auto Arg0 = E->getArg(0);
5219 auto Arg0Val = EmitScalarExpr(Arg0);
5220 auto Arg0Ty = Arg0->getType();
5221 auto PTy0 = FTy->getParamType(0);
5222 if (PTy0 != Arg0Val->getType()) {
5223 if (Arg0Ty->isArrayType())
5224 Arg0Val = EmitArrayToPointerDecay(Arg0).getPointer();
5225 else
5226 Arg0Val = Builder.CreatePointerCast(Arg0Val, PTy0);
5227 }
5228 auto Arg1 = EmitScalarExpr(E->getArg(1));
5229 auto PTy1 = FTy->getParamType(1);
5230 if (PTy1 != Arg1->getType())
5231 Arg1 = Builder.CreateTruncOrBitCast(Arg1, PTy1);
5232 return RValue::get(Builder.CreateCall(F, {Arg0Val, Arg1}));
5233 }
5234
5235 case Builtin::BI__xray_typedevent: {
5236 // TODO: There should be a way to always emit events even if the current
5237 // function is not instrumented. Losing events in a stream can cripple
5238 // a trace.
5239 if (!ShouldXRayInstrumentFunction())
5240 return RValue::getIgnored();
5241
5242 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
5243 XRayInstrKind::Typed))
5244 return RValue::getIgnored();
5245
5246 if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
5247 if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayTypedEvents())
5248 return RValue::getIgnored();
5249
5250 Function *F = CGM.getIntrinsic(Intrinsic::xray_typedevent);
5251 auto FTy = F->getFunctionType();
5252 auto Arg0 = EmitScalarExpr(E->getArg(0));
5253 auto PTy0 = FTy->getParamType(0);
5254 if (PTy0 != Arg0->getType())
5255 Arg0 = Builder.CreateTruncOrBitCast(Arg0, PTy0);
5256 auto Arg1 = E->getArg(1);
5257 auto Arg1Val = EmitScalarExpr(Arg1);
5258 auto Arg1Ty = Arg1->getType();
5259 auto PTy1 = FTy->getParamType(1);
5260 if (PTy1 != Arg1Val->getType()) {
5261 if (Arg1Ty->isArrayType())
5262 Arg1Val = EmitArrayToPointerDecay(Arg1).getPointer();
5263 else
5264 Arg1Val = Builder.CreatePointerCast(Arg1Val, PTy1);
5265 }
5266 auto Arg2 = EmitScalarExpr(E->getArg(2));
5267 auto PTy2 = FTy->getParamType(2);
5268 if (PTy2 != Arg2->getType())
5269 Arg2 = Builder.CreateTruncOrBitCast(Arg2, PTy2);
5270 return RValue::get(Builder.CreateCall(F, {Arg0, Arg1Val, Arg2}));
5271 }
5272
5273 case Builtin::BI__builtin_ms_va_start:
5274 case Builtin::BI__builtin_ms_va_end:
5275 return RValue::get(
5276 EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).getPointer(),
5277 BuiltinID == Builtin::BI__builtin_ms_va_start));
5278
5279 case Builtin::BI__builtin_ms_va_copy: {
5280 // Lower this manually. We can't reliably determine whether or not any
5281 // given va_copy() is for a Win64 va_list from the calling convention
5282 // alone, because it's legal to do this from a System V ABI function.
5283 // With opaque pointer types, we won't have enough information in LLVM
5284 // IR to determine this from the argument types, either. Best to do it
5285 // now, while we have enough information.
5286 Address DestAddr = EmitMSVAListRef(E->getArg(0));
5287 Address SrcAddr = EmitMSVAListRef(E->getArg(1));
5288
5289 llvm::Type *BPP = Int8PtrPtrTy;
5290
5291 DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), BPP, "cp"),
5292 Int8PtrTy, DestAddr.getAlignment());
5293 SrcAddr = Address(Builder.CreateBitCast(SrcAddr.getPointer(), BPP, "ap"),
5294 Int8PtrTy, SrcAddr.getAlignment());
5295
5296 Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val");
5297 return RValue::get(Builder.CreateStore(ArgPtr, DestAddr));
5298 }
5299
5300 case Builtin::BI__builtin_get_device_side_mangled_name: {
5301 auto Name = CGM.getCUDARuntime().getDeviceSideName(
5302 cast<DeclRefExpr>(E->getArg(0)->IgnoreImpCasts())->getDecl());
5303 auto Str = CGM.GetAddrOfConstantCString(Name, "");
5304 llvm::Constant *Zeros[] = {llvm::ConstantInt::get(SizeTy, 0),
5305 llvm::ConstantInt::get(SizeTy, 0)};
5306 auto *Ptr = llvm::ConstantExpr::getGetElementPtr(Str.getElementType(),
5307 Str.getPointer(), Zeros);
5308 return RValue::get(Ptr);
5309 }
5310 }
5311
5312 // If this is an alias for a lib function (e.g. __builtin_sin), emit
5313 // the call using the normal call path, but using the unmangled
5314 // version of the function name.
5315 if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
5316 return emitLibraryCall(*this, FD, E,
5317 CGM.getBuiltinLibFunction(FD, BuiltinID));
5318
5319 // If this is a predefined lib function (e.g. malloc), emit the call
5320 // using exactly the normal call path.
5321 if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
5322 return emitLibraryCall(*this, FD, E,
5323 cast<llvm::Constant>(EmitScalarExpr(E->getCallee())));
5324
5325 // Check that a call to a target specific builtin has the correct target
5326 // features.
5327 // This is down here to avoid non-target specific builtins, however, if
5328 // generic builtins start to require generic target features then we
5329 // can move this up to the beginning of the function.
5330 checkTargetFeatures(E, FD);
5331
5332 if (unsigned VectorWidth = getContext().BuiltinInfo.getRequiredVectorWidth(BuiltinID))
5333 LargestVectorWidth = std::max(LargestVectorWidth, VectorWidth);
5334
5335 // See if we have a target specific intrinsic.
5336 const char *Name = getContext().BuiltinInfo.getName(BuiltinID);
5337 Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
5338 StringRef Prefix =
5339 llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch());
5340 if (!Prefix.empty()) {
5341 IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix.data(), Name);
5342 // NOTE we don't need to perform a compatibility flag check here since the
5343 // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the
5344 // MS builtins via ALL_MS_LANGUAGES and are filtered earlier.
5345 if (IntrinsicID == Intrinsic::not_intrinsic)
5346 IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name);
5347 }
5348
5349 if (IntrinsicID != Intrinsic::not_intrinsic) {
5350 SmallVector<Value*, 16> Args;
5351
5352 // Find out if any arguments are required to be integer constant
5353 // expressions.
5354 unsigned ICEArguments = 0;
5355 ASTContext::GetBuiltinTypeError Error;
5356 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
5357 assert(Error == ASTContext::GE_None && "Should not codegen an error")(static_cast <bool> (Error == ASTContext::GE_None &&
"Should not codegen an error") ? void (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 5357, __extension__ __PRETTY_FUNCTION__
))
;
5358
5359 Function *F = CGM.getIntrinsic(IntrinsicID);
5360 llvm::FunctionType *FTy = F->getFunctionType();
5361
5362 for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
5363 Value *ArgValue;
5364 // If this is a normal argument, just emit it as a scalar.
5365 if ((ICEArguments & (1 << i)) == 0) {
5366 ArgValue = EmitScalarExpr(E->getArg(i));
5367 } else {
5368 // If this is required to be a constant, constant fold it so that we
5369 // know that the generated intrinsic gets a ConstantInt.
5370 ArgValue = llvm::ConstantInt::get(
5371 getLLVMContext(),
5372 *E->getArg(i)->getIntegerConstantExpr(getContext()));
5373 }
5374
5375 // If the intrinsic arg type is different from the builtin arg type
5376 // we need to do a bit cast.
5377 llvm::Type *PTy = FTy->getParamType(i);
5378 if (PTy != ArgValue->getType()) {
5379 // XXX - vector of pointers?
5380 if (auto *PtrTy = dyn_cast<llvm::PointerType>(PTy)) {
5381 if (PtrTy->getAddressSpace() !=
5382 ArgValue->getType()->getPointerAddressSpace()) {
5383 ArgValue = Builder.CreateAddrSpaceCast(
5384 ArgValue,
5385 ArgValue->getType()->getPointerTo(PtrTy->getAddressSpace()));
5386 }
5387 }
5388
5389 assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&(static_cast <bool> (PTy->canLosslesslyBitCastTo(FTy
->getParamType(i)) && "Must be able to losslessly bit cast to param"
) ? void (0) : __assert_fail ("PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) && \"Must be able to losslessly bit cast to param\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 5390, __extension__ __PRETTY_FUNCTION__
))
5390 "Must be able to losslessly bit cast to param")(static_cast <bool> (PTy->canLosslesslyBitCastTo(FTy
->getParamType(i)) && "Must be able to losslessly bit cast to param"
) ? void (0) : __assert_fail ("PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) && \"Must be able to losslessly bit cast to param\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 5390, __extension__ __PRETTY_FUNCTION__
))
;
5391 ArgValue = Builder.CreateBitCast(ArgValue, PTy);
5392 }
5393
5394 Args.push_back(ArgValue);
5395 }
5396
5397 Value *V = Builder.CreateCall(F, Args);
5398 QualType BuiltinRetType = E->getType();
5399
5400 llvm::Type *RetTy = VoidTy;
5401 if (!BuiltinRetType->isVoidType())
5402 RetTy = ConvertType(BuiltinRetType);
5403
5404 if (RetTy != V->getType()) {
5405 // XXX - vector of pointers?
5406 if (auto *PtrTy = dyn_cast<llvm::PointerType>(RetTy)) {
5407 if (PtrTy->getAddressSpace() != V->getType()->getPointerAddressSpace()) {
5408 V = Builder.CreateAddrSpaceCast(
5409 V, V->getType()->getPointerTo(PtrTy->getAddressSpace()));
5410 }
5411 }
5412
5413 assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&(static_cast <bool> (V->getType()->canLosslesslyBitCastTo
(RetTy) && "Must be able to losslessly bit cast result type"
) ? void (0) : __assert_fail ("V->getType()->canLosslesslyBitCastTo(RetTy) && \"Must be able to losslessly bit cast result type\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 5414, __extension__ __PRETTY_FUNCTION__
))
5414 "Must be able to losslessly bit cast result type")(static_cast <bool> (V->getType()->canLosslesslyBitCastTo
(RetTy) && "Must be able to losslessly bit cast result type"
) ? void (0) : __assert_fail ("V->getType()->canLosslesslyBitCastTo(RetTy) && \"Must be able to losslessly bit cast result type\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 5414, __extension__ __PRETTY_FUNCTION__
))
;
5415 V = Builder.CreateBitCast(V, RetTy);
5416 }
5417
5418 return RValue::get(V);
5419 }
5420
5421 // Some target-specific builtins can have aggregate return values, e.g.
5422 // __builtin_arm_mve_vld2q_u32. So if the result is an aggregate, force
5423 // ReturnValue to be non-null, so that the target-specific emission code can
5424 // always just emit into it.
5425 TypeEvaluationKind EvalKind = getEvaluationKind(E->getType());
5426 if (EvalKind == TEK_Aggregate && ReturnValue.isNull()) {
5427 Address DestPtr = CreateMemTemp(E->getType(), "agg.tmp");
5428 ReturnValue = ReturnValueSlot(DestPtr, false);
5429 }
5430
5431 // Now see if we can emit a target-specific builtin.
5432 if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E, ReturnValue)) {
5433 switch (EvalKind) {
5434 case TEK_Scalar:
5435 return RValue::get(V);
5436 case TEK_Aggregate:
5437 return RValue::getAggregate(ReturnValue.getValue(),
5438 ReturnValue.isVolatile());
5439 case TEK_Complex:
5440 llvm_unreachable("No current target builtin returns complex")::llvm::llvm_unreachable_internal("No current target builtin returns complex"
, "clang/lib/CodeGen/CGBuiltin.cpp", 5440)
;
5441 }
5442 llvm_unreachable("Bad evaluation kind in EmitBuiltinExpr")::llvm::llvm_unreachable_internal("Bad evaluation kind in EmitBuiltinExpr"
, "clang/lib/CodeGen/CGBuiltin.cpp", 5442)
;
5443 }
5444
5445 ErrorUnsupported(E, "builtin function");
5446
5447 // Unknown builtin, for now just dump it out and return undef.
5448 return GetUndefRValue(E->getType());
5449}
5450
5451static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF,
5452 unsigned BuiltinID, const CallExpr *E,
5453 ReturnValueSlot ReturnValue,
5454 llvm::Triple::ArchType Arch) {
5455 switch (Arch) {
5456 case llvm::Triple::arm:
5457 case llvm::Triple::armeb:
5458 case llvm::Triple::thumb:
5459 case llvm::Triple::thumbeb:
5460 return CGF->EmitARMBuiltinExpr(BuiltinID, E, ReturnValue, Arch);
5461 case llvm::Triple::aarch64:
5462 case llvm::Triple::aarch64_32:
5463 case llvm::Triple::aarch64_be:
5464 return CGF->EmitAArch64BuiltinExpr(BuiltinID, E, Arch);
5465 case llvm::Triple::bpfeb:
5466 case llvm::Triple::bpfel:
5467 return CGF->EmitBPFBuiltinExpr(BuiltinID, E);
5468 case llvm::Triple::x86:
5469 case llvm::Triple::x86_64:
5470 return CGF->EmitX86BuiltinExpr(BuiltinID, E);
5471 case llvm::Triple::ppc:
5472 case llvm::Triple::ppcle:
5473 case llvm::Triple::ppc64:
5474 case llvm::Triple::ppc64le:
5475 return CGF->EmitPPCBuiltinExpr(BuiltinID, E);
5476 case llvm::Triple::r600:
5477 case llvm::Triple::amdgcn:
5478 return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E);
5479 case llvm::Triple::systemz:
5480 return CGF->EmitSystemZBuiltinExpr(BuiltinID, E);
5481 case llvm::Triple::nvptx:
5482 case llvm::Triple::nvptx64:
5483 return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E);
5484 case llvm::Triple::wasm32:
5485 case llvm::Triple::wasm64:
5486 return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E);
5487 case llvm::Triple::hexagon:
5488 return CGF->EmitHexagonBuiltinExpr(BuiltinID, E);
5489 case llvm::Triple::riscv32:
5490 case llvm::Triple::riscv64:
5491 return CGF->EmitRISCVBuiltinExpr(BuiltinID, E, ReturnValue);
5492 default:
5493 return nullptr;
5494 }
5495}
5496
5497Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
5498 const CallExpr *E,
5499 ReturnValueSlot ReturnValue) {
5500 if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
5501 assert(getContext().getAuxTargetInfo() && "Missing aux target info")(static_cast <bool> (getContext().getAuxTargetInfo() &&
"Missing aux target info") ? void (0) : __assert_fail ("getContext().getAuxTargetInfo() && \"Missing aux target info\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 5501, __extension__ __PRETTY_FUNCTION__
))
;
5502 return EmitTargetArchBuiltinExpr(
5503 this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E,
5504 ReturnValue, getContext().getAuxTargetInfo()->getTriple().getArch());
5505 }
5506
5507 return EmitTargetArchBuiltinExpr(this, BuiltinID, E, ReturnValue,
5508 getTarget().getTriple().getArch());
5509}
5510
5511static llvm::FixedVectorType *GetNeonType(CodeGenFunction *CGF,
5512 NeonTypeFlags TypeFlags,
5513 bool HasLegalHalfType = true,
5514 bool V1Ty = false,
5515 bool AllowBFloatArgsAndRet = true) {
5516 int IsQuad = TypeFlags.isQuad();
5517 switch (TypeFlags.getEltType()) {
5518 case NeonTypeFlags::Int8:
5519 case NeonTypeFlags::Poly8:
5520 return llvm::FixedVectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad));
5521 case NeonTypeFlags::Int16:
5522 case NeonTypeFlags::Poly16:
5523 return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
5524 case NeonTypeFlags::BFloat16:
5525 if (AllowBFloatArgsAndRet)
5526 return llvm::FixedVectorType::get(CGF->BFloatTy, V1Ty ? 1 : (4 << IsQuad));
5527 else
5528 return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
5529 case NeonTypeFlags::Float16:
5530 if (HasLegalHalfType)
5531 return llvm::FixedVectorType::get(CGF->HalfTy, V1Ty ? 1 : (4 << IsQuad));
5532 else
5533 return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
5534 case NeonTypeFlags::Int32:
5535 return llvm::FixedVectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad));
5536 case NeonTypeFlags::Int64:
5537 case NeonTypeFlags::Poly64:
5538 return llvm::FixedVectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad));
5539 case NeonTypeFlags::Poly128:
5540 // FIXME: i128 and f128 doesn't get fully support in Clang and llvm.
5541 // There is a lot of i128 and f128 API missing.
5542 // so we use v16i8 to represent poly128 and get pattern matched.
5543 return llvm::FixedVectorType::get(CGF->Int8Ty, 16);
5544 case NeonTypeFlags::Float32:
5545 return llvm::FixedVectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad));
5546 case NeonTypeFlags::Float64:
5547 return llvm::FixedVectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad));
5548 }
5549 llvm_unreachable("Unknown vector element type!")::llvm::llvm_unreachable_internal("Unknown vector element type!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 5549)
;
5550}
5551
5552static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF,
5553 NeonTypeFlags IntTypeFlags) {
5554 int IsQuad = IntTypeFlags.isQuad();
5555 switch (IntTypeFlags.getEltType()) {
5556 case NeonTypeFlags::Int16:
5557 return llvm::FixedVectorType::get(CGF->HalfTy, (4 << IsQuad));
5558 case NeonTypeFlags::Int32:
5559 return llvm::FixedVectorType::get(CGF->FloatTy, (2 << IsQuad));
5560 case NeonTypeFlags::Int64:
5561 return llvm::FixedVectorType::get(CGF->DoubleTy, (1 << IsQuad));
5562 default:
5563 llvm_unreachable("Type can't be converted to floating-point!")::llvm::llvm_unreachable_internal("Type can't be converted to floating-point!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 5563)
;
5564 }
5565}
5566
5567Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C,
5568 const ElementCount &Count) {
5569 Value *SV = llvm::ConstantVector::getSplat(Count, C);
5570 return Builder.CreateShuffleVector(V, V, SV, "lane");
5571}
5572
5573Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
5574 ElementCount EC = cast<llvm::VectorType>(V->getType())->getElementCount();
5575 return EmitNeonSplat(V, C, EC);
5576}
5577
5578Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
5579 const char *name,
5580 unsigned shift, bool rightshift) {
5581 unsigned j = 0;
5582 for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
5583 ai != ae; ++ai, ++j) {
5584 if (F->isConstrainedFPIntrinsic())
5585 if (ai->getType()->isMetadataTy())
5586 continue;
5587 if (shift > 0 && shift == j)
5588 Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
5589 else
5590 Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
5591 }
5592
5593 if (F->isConstrainedFPIntrinsic())
5594 return Builder.CreateConstrainedFPCall(F, Ops, name);
5595 else
5596 return Builder.CreateCall(F, Ops, name);
5597}
5598
5599Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
5600 bool neg) {
5601 int SV = cast<ConstantInt>(V)->getSExtValue();
5602 return ConstantInt::get(Ty, neg ? -SV : SV);
5603}
5604
5605// Right-shift a vector by a constant.
5606Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift,
5607 llvm::Type *Ty, bool usgn,
5608 const char *name) {
5609 llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
5610
5611 int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue();
5612 int EltSize = VTy->getScalarSizeInBits();
5613
5614 Vec = Builder.CreateBitCast(Vec, Ty);
5615
5616 // lshr/ashr are undefined when the shift amount is equal to the vector
5617 // element size.
5618 if (ShiftAmt == EltSize) {
5619 if (usgn) {
5620 // Right-shifting an unsigned value by its size yields 0.
5621 return llvm::ConstantAggregateZero::get(VTy);
5622 } else {
5623 // Right-shifting a signed value by its size is equivalent
5624 // to a shift of size-1.
5625 --ShiftAmt;
5626 Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt);
5627 }
5628 }
5629
5630 Shift = EmitNeonShiftVector(Shift, Ty, false);
5631 if (usgn)
5632 return Builder.CreateLShr(Vec, Shift, name);
5633 else
5634 return Builder.CreateAShr(Vec, Shift, name);
5635}
5636
5637enum {
5638 AddRetType = (1 << 0),
5639 Add1ArgType = (1 << 1),
5640 Add2ArgTypes = (1 << 2),
5641
5642 VectorizeRetType = (1 << 3),
5643 VectorizeArgTypes = (1 << 4),
5644
5645 InventFloatType = (1 << 5),
5646 UnsignedAlts = (1 << 6),
5647
5648 Use64BitVectors = (1 << 7),
5649 Use128BitVectors = (1 << 8),
5650
5651 Vectorize1ArgType = Add1ArgType | VectorizeArgTypes,
5652 VectorRet = AddRetType | VectorizeRetType,
5653 VectorRetGetArgs01 =
5654 AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes,
5655 FpCmpzModifiers =
5656 AddRetType | VectorizeRetType | Add1ArgType | InventFloatType
5657};
5658
5659namespace {
5660struct ARMVectorIntrinsicInfo {
5661 const char *NameHint;
5662 unsigned BuiltinID;
5663 unsigned LLVMIntrinsic;
5664 unsigned AltLLVMIntrinsic;
5665 uint64_t TypeModifier;
5666
5667 bool operator<(unsigned RHSBuiltinID) const {
5668 return BuiltinID < RHSBuiltinID;
5669 }
5670 bool operator<(const ARMVectorIntrinsicInfo &TE) const {
5671 return BuiltinID < TE.BuiltinID;
5672 }
5673};
5674} // end anonymous namespace
5675
5676#define NEONMAP0(NameBase) \
5677 { #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 }
5678
5679#define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
5680 { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
5681 Intrinsic::LLVMIntrinsic, 0, TypeModifier }
5682
5683#define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \
5684 { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
5685 Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \
5686 TypeModifier }
5687
5688static const ARMVectorIntrinsicInfo ARMSIMDIntrinsicMap [] = {
5689 NEONMAP1(__a32_vcvt_bf16_v, arm_neon_vcvtfp2bf, 0),
5690 NEONMAP0(splat_lane_v),
5691 NEONMAP0(splat_laneq_v),
5692 NEONMAP0(splatq_lane_v),
5693 NEONMAP0(splatq_laneq_v),
5694 NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
5695 NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
5696 NEONMAP1(vabs_v, arm_neon_vabs, 0),
5697 NEONMAP1(vabsq_v, arm_neon_vabs, 0),
5698 NEONMAP0(vadd_v),
5699 NEONMAP0(vaddhn_v),
5700 NEONMAP0(vaddq_v),
5701 NEONMAP1(vaesdq_v, arm_neon_aesd, 0),
5702 NEONMAP1(vaeseq_v, arm_neon_aese, 0),
5703 NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0),
5704 NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0),
5705 NEONMAP1(vbfdot_v, arm_neon_bfdot, 0),
5706 NEONMAP1(vbfdotq_v, arm_neon_bfdot, 0),
5707 NEONMAP1(vbfmlalbq_v, arm_neon_bfmlalb, 0),
5708 NEONMAP1(vbfmlaltq_v, arm_neon_bfmlalt, 0),
5709 NEONMAP1(vbfmmlaq_v, arm_neon_bfmmla, 0),
5710 NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType),
5711 NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType),
5712 NEONMAP1(vcadd_rot270_v, arm_neon_vcadd_rot270, Add1ArgType),
5713 NEONMAP1(vcadd_rot90_v, arm_neon_vcadd_rot90, Add1ArgType),
5714 NEONMAP1(vcaddq_rot270_v, arm_neon_vcadd_rot270, Add1ArgType),
5715 NEONMAP1(vcaddq_rot90_v, arm_neon_vcadd_rot90, Add1ArgType),
5716 NEONMAP1(vcage_v, arm_neon_vacge, 0),
5717 NEONMAP1(vcageq_v, arm_neon_vacge, 0),
5718 NEONMAP1(vcagt_v, arm_neon_vacgt, 0),
5719 NEONMAP1(vcagtq_v, arm_neon_vacgt, 0),
5720 NEONMAP1(vcale_v, arm_neon_vacge, 0),
5721 NEONMAP1(vcaleq_v, arm_neon_vacge, 0),
5722 NEONMAP1(vcalt_v, arm_neon_vacgt, 0),
5723 NEONMAP1(vcaltq_v, arm_neon_vacgt, 0),
5724 NEONMAP0(vceqz_v),
5725 NEONMAP0(vceqzq_v),
5726 NEONMAP0(vcgez_v),
5727 NEONMAP0(vcgezq_v),
5728 NEONMAP0(vcgtz_v),
5729 NEONMAP0(vcgtzq_v),
5730 NEONMAP0(vclez_v),
5731 NEONMAP0(vclezq_v),
5732 NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType),
5733 NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType),
5734 NEONMAP0(vcltz_v),
5735 NEONMAP0(vcltzq_v),
5736 NEONMAP1(vclz_v, ctlz, Add1ArgType),
5737 NEONMAP1(vclzq_v, ctlz, Add1ArgType),
5738 NEONMAP1(vcnt_v, ctpop, Add1ArgType),
5739 NEONMAP1(vcntq_v, ctpop, Add1ArgType),
5740 NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0),
5741 NEONMAP0(vcvt_f16_v),
5742 NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0),
5743 NEONMAP0(vcvt_f32_v),
5744 NEONMAP2(vcvt_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5745 NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5746 NEONMAP1(vcvt_n_s16_v, arm_neon_vcvtfp2fxs, 0),
5747 NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0),
5748 NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0),
5749 NEONMAP1(vcvt_n_u16_v, arm_neon_vcvtfp2fxu, 0),
5750 NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0),
5751 NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0),
5752 NEONMAP0(vcvt_s16_v),
5753 NEONMAP0(vcvt_s32_v),
5754 NEONMAP0(vcvt_s64_v),
5755 NEONMAP0(vcvt_u16_v),
5756 NEONMAP0(vcvt_u32_v),
5757 NEONMAP0(vcvt_u64_v),
5758 NEONMAP1(vcvta_s16_v, arm_neon_vcvtas, 0),
5759 NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0),
5760 NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0),
5761 NEONMAP1(vcvta_u16_v, arm_neon_vcvtau, 0),
5762 NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0),
5763 NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0),
5764 NEONMAP1(vcvtaq_s16_v, arm_neon_vcvtas, 0),
5765 NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0),
5766 NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0),
5767 NEONMAP1(vcvtaq_u16_v, arm_neon_vcvtau, 0),
5768 NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0),
5769 NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0),
5770 NEONMAP1(vcvth_bf16_f32, arm_neon_vcvtbfp2bf, 0),
5771 NEONMAP1(vcvtm_s16_v, arm_neon_vcvtms, 0),
5772 NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0),
5773 NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0),
5774 NEONMAP1(vcvtm_u16_v, arm_neon_vcvtmu, 0),
5775 NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0),
5776 NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0),
5777 NEONMAP1(vcvtmq_s16_v, arm_neon_vcvtms, 0),
5778 NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0),
5779 NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0),
5780 NEONMAP1(vcvtmq_u16_v, arm_neon_vcvtmu, 0),
5781 NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0),
5782 NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0),
5783 NEONMAP1(vcvtn_s16_v, arm_neon_vcvtns, 0),
5784 NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0),
5785 NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0),
5786 NEONMAP1(vcvtn_u16_v, arm_neon_vcvtnu, 0),
5787 NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0),
5788 NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0),
5789 NEONMAP1(vcvtnq_s16_v, arm_neon_vcvtns, 0),
5790 NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0),
5791 NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0),
5792 NEONMAP1(vcvtnq_u16_v, arm_neon_vcvtnu, 0),
5793 NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0),
5794 NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0),
5795 NEONMAP1(vcvtp_s16_v, arm_neon_vcvtps, 0),
5796 NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0),
5797 NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0),
5798 NEONMAP1(vcvtp_u16_v, arm_neon_vcvtpu, 0),
5799 NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0),
5800 NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0),
5801 NEONMAP1(vcvtpq_s16_v, arm_neon_vcvtps, 0),
5802 NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0),
5803 NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0),
5804 NEONMAP1(vcvtpq_u16_v, arm_neon_vcvtpu, 0),
5805 NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0),
5806 NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0),
5807 NEONMAP0(vcvtq_f16_v),
5808 NEONMAP0(vcvtq_f32_v),
5809 NEONMAP2(vcvtq_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5810 NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5811 NEONMAP1(vcvtq_n_s16_v, arm_neon_vcvtfp2fxs, 0),
5812 NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0),
5813 NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0),
5814 NEONMAP1(vcvtq_n_u16_v, arm_neon_vcvtfp2fxu, 0),
5815 NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0),
5816 NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0),
5817 NEONMAP0(vcvtq_s16_v),
5818 NEONMAP0(vcvtq_s32_v),
5819 NEONMAP0(vcvtq_s64_v),
5820 NEONMAP0(vcvtq_u16_v),
5821 NEONMAP0(vcvtq_u32_v),
5822 NEONMAP0(vcvtq_u64_v),
5823 NEONMAP2(vdot_v, arm_neon_udot, arm_neon_sdot, 0),
5824 NEONMAP2(vdotq_v, arm_neon_udot, arm_neon_sdot, 0),
5825 NEONMAP0(vext_v),
5826 NEONMAP0(vextq_v),
5827 NEONMAP0(vfma_v),
5828 NEONMAP0(vfmaq_v),
5829 NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
5830 NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
5831 NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
5832 NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
5833 NEONMAP0(vld1_dup_v),
5834 NEONMAP1(vld1_v, arm_neon_vld1, 0),
5835 NEONMAP1(vld1_x2_v, arm_neon_vld1x2, 0),
5836 NEONMAP1(vld1_x3_v, arm_neon_vld1x3, 0),
5837 NEONMAP1(vld1_x4_v, arm_neon_vld1x4, 0),
5838 NEONMAP0(vld1q_dup_v),
5839 NEONMAP1(vld1q_v, arm_neon_vld1, 0),
5840 NEONMAP1(vld1q_x2_v, arm_neon_vld1x2, 0),
5841 NEONMAP1(vld1q_x3_v, arm_neon_vld1x3, 0),
5842 NEONMAP1(vld1q_x4_v, arm_neon_vld1x4, 0),
5843 NEONMAP1(vld2_dup_v, arm_neon_vld2dup, 0),
5844 NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0),
5845 NEONMAP1(vld2_v, arm_neon_vld2, 0),
5846 NEONMAP1(vld2q_dup_v, arm_neon_vld2dup, 0),
5847 NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0),
5848 NEONMAP1(vld2q_v, arm_neon_vld2, 0),
5849 NEONMAP1(vld3_dup_v, arm_neon_vld3dup, 0),
5850 NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0),
5851 NEONMAP1(vld3_v, arm_neon_vld3, 0),
5852 NEONMAP1(vld3q_dup_v, arm_neon_vld3dup, 0),
5853 NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0),
5854 NEONMAP1(vld3q_v, arm_neon_vld3, 0),
5855 NEONMAP1(vld4_dup_v, arm_neon_vld4dup, 0),
5856 NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0),
5857 NEONMAP1(vld4_v, arm_neon_vld4, 0),
5858 NEONMAP1(vld4q_dup_v, arm_neon_vld4dup, 0),
5859 NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0),
5860 NEONMAP1(vld4q_v, arm_neon_vld4, 0),
5861 NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
5862 NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType),
5863 NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType),
5864 NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
5865 NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
5866 NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType),
5867 NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType),
5868 NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
5869 NEONMAP2(vmmlaq_v, arm_neon_ummla, arm_neon_smmla, 0),
5870 NEONMAP0(vmovl_v),
5871 NEONMAP0(vmovn_v),
5872 NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType),
5873 NEONMAP0(vmull_v),
5874 NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType),
5875 NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
5876 NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
5877 NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType),
5878 NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
5879 NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
5880 NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType),
5881 NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts),
5882 NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts),
5883 NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType),
5884 NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType),
5885 NEONMAP2(vqadd_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts),
5886 NEONMAP2(vqaddq_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts),
5887 NEONMAP2(vqdmlal_v, arm_neon_vqdmull, sadd_sat, 0),
5888 NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, ssub_sat, 0),
5889 NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType),
5890 NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType),
5891 NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType),
5892 NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts),
5893 NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType),
5894 NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType),
5895 NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType),
5896 NEONMAP1(vqrdmlah_v, arm_neon_vqrdmlah, Add1ArgType),
5897 NEONMAP1(vqrdmlahq_v, arm_neon_vqrdmlah, Add1ArgType),
5898 NEONMAP1(vqrdmlsh_v, arm_neon_vqrdmlsh, Add1ArgType),
5899 NEONMAP1(vqrdmlshq_v, arm_neon_vqrdmlsh, Add1ArgType),
5900 NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType),
5901 NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType),
5902 NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
5903 NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
5904 NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
5905 NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
5906 NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
5907 NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
5908 NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0),
5909 NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0),
5910 NEONMAP2(vqsub_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts),
5911 NEONMAP2(vqsubq_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts),
5912 NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType),
5913 NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
5914 NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
5915 NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType),
5916 NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType),
5917 NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
5918 NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
5919 NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType),
5920 NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType),
5921 NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType),
5922 NEONMAP0(vrndi_v),
5923 NEONMAP0(vrndiq_v),
5924 NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType),
5925 NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType),
5926 NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType),
5927 NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType),
5928 NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType),
5929 NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType),
5930 NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType),
5931 NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType),
5932 NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType),
5933 NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
5934 NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
5935 NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
5936 NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
5937 NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
5938 NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
5939 NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType),
5940 NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType),
5941 NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType),
5942 NEONMAP1(vsha1su0q_v, arm_neon_sha1su0, 0),
5943 NEONMAP1(vsha1su1q_v, arm_neon_sha1su1, 0),
5944 NEONMAP1(vsha256h2q_v, arm_neon_sha256h2, 0),
5945 NEONMAP1(vsha256hq_v, arm_neon_sha256h, 0),
5946 NEONMAP1(vsha256su0q_v, arm_neon_sha256su0, 0),
5947 NEONMAP1(vsha256su1q_v, arm_neon_sha256su1, 0),
5948 NEONMAP0(vshl_n_v),
5949 NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
5950 NEONMAP0(vshll_n_v),
5951 NEONMAP0(vshlq_n_v),
5952 NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
5953 NEONMAP0(vshr_n_v),
5954 NEONMAP0(vshrn_n_v),
5955 NEONMAP0(vshrq_n_v),
5956 NEONMAP1(vst1_v, arm_neon_vst1, 0),
5957 NEONMAP1(vst1_x2_v, arm_neon_vst1x2, 0),
5958 NEONMAP1(vst1_x3_v, arm_neon_vst1x3, 0),
5959 NEONMAP1(vst1_x4_v, arm_neon_vst1x4, 0),
5960 NEONMAP1(vst1q_v, arm_neon_vst1, 0),
5961 NEONMAP1(vst1q_x2_v, arm_neon_vst1x2, 0),
5962 NEONMAP1(vst1q_x3_v, arm_neon_vst1x3, 0),
5963 NEONMAP1(vst1q_x4_v, arm_neon_vst1x4, 0),
5964 NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0),
5965 NEONMAP1(vst2_v, arm_neon_vst2, 0),
5966 NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0),
5967 NEONMAP1(vst2q_v, arm_neon_vst2, 0),
5968 NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0),
5969 NEONMAP1(vst3_v, arm_neon_vst3, 0),
5970 NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0),
5971 NEONMAP1(vst3q_v, arm_neon_vst3, 0),
5972 NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0),
5973 NEONMAP1(vst4_v, arm_neon_vst4, 0),
5974 NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0),
5975 NEONMAP1(vst4q_v, arm_neon_vst4, 0),
5976 NEONMAP0(vsubhn_v),
5977 NEONMAP0(vtrn_v),
5978 NEONMAP0(vtrnq_v),
5979 NEONMAP0(vtst_v),
5980 NEONMAP0(vtstq_v),
5981 NEONMAP1(vusdot_v, arm_neon_usdot, 0),
5982 NEONMAP1(vusdotq_v, arm_neon_usdot, 0),
5983 NEONMAP1(vusmmlaq_v, arm_neon_usmmla, 0),
5984 NEONMAP0(vuzp_v),
5985 NEONMAP0(vuzpq_v),
5986 NEONMAP0(vzip_v),
5987 NEONMAP0(vzipq_v)
5988};
5989
5990static const ARMVectorIntrinsicInfo AArch64SIMDIntrinsicMap[] = {
5991 NEONMAP1(__a64_vcvtq_low_bf16_v, aarch64_neon_bfcvtn, 0),
5992 NEONMAP0(splat_lane_v),
5993 NEONMAP0(splat_laneq_v),
5994 NEONMAP0(splatq_lane_v),
5995 NEONMAP0(splatq_laneq_v),
5996 NEONMAP1(vabs_v, aarch64_neon_abs, 0),
5997 NEONMAP1(vabsq_v, aarch64_neon_abs, 0),
5998 NEONMAP0(vadd_v),
5999 NEONMAP0(vaddhn_v),
6000 NEONMAP0(vaddq_p128),
6001 NEONMAP0(vaddq_v),
6002 NEONMAP1(vaesdq_v, aarch64_crypto_aesd, 0),
6003 NEONMAP1(vaeseq_v, aarch64_crypto_aese, 0),
6004 NEONMAP1(vaesimcq_v, aarch64_crypto_aesimc, 0),
6005 NEONMAP1(vaesmcq_v, aarch64_crypto_aesmc, 0),
6006 NEONMAP2(vbcaxq_v, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
6007 NEONMAP1(vbfdot_v, aarch64_neon_bfdot, 0),
6008 NEONMAP1(vbfdotq_v, aarch64_neon_bfdot, 0),
6009 NEONMAP1(vbfmlalbq_v, aarch64_neon_bfmlalb, 0),
6010 NEONMAP1(vbfmlaltq_v, aarch64_neon_bfmlalt, 0),
6011 NEONMAP1(vbfmmlaq_v, aarch64_neon_bfmmla, 0),
6012 NEONMAP1(vcadd_rot270_v, aarch64_neon_vcadd_rot270, Add1ArgType),
6013 NEONMAP1(vcadd_rot90_v, aarch64_neon_vcadd_rot90, Add1ArgType),
6014 NEONMAP1(vcaddq_rot270_v, aarch64_neon_vcadd_rot270, Add1ArgType),
6015 NEONMAP1(vcaddq_rot90_v, aarch64_neon_vcadd_rot90, Add1ArgType),
6016 NEONMAP1(vcage_v, aarch64_neon_facge, 0),
6017 NEONMAP1(vcageq_v, aarch64_neon_facge, 0),
6018 NEONMAP1(vcagt_v, aarch64_neon_facgt, 0),
6019 NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0),
6020 NEONMAP1(vcale_v, aarch64_neon_facge, 0),
6021 NEONMAP1(vcaleq_v, aarch64_neon_facge, 0),
6022 NEONMAP1(vcalt_v, aarch64_neon_facgt, 0),
6023 NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0),
6024 NEONMAP0(vceqz_v),
6025 NEONMAP0(vceqzq_v),
6026 NEONMAP0(vcgez_v),
6027 NEONMAP0(vcgezq_v),
6028 NEONMAP0(vcgtz_v),
6029 NEONMAP0(vcgtzq_v),
6030 NEONMAP0(vclez_v),
6031 NEONMAP0(vclezq_v),
6032 NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType),
6033 NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType),
6034 NEONMAP0(vcltz_v),
6035 NEONMAP0(vcltzq_v),
6036 NEONMAP1(vclz_v, ctlz, Add1ArgType),
6037 NEONMAP1(vclzq_v, ctlz, Add1ArgType),
6038 NEONMAP1(vcmla_rot180_v, aarch64_neon_vcmla_rot180, Add1ArgType),
6039 NEONMAP1(vcmla_rot270_v, aarch64_neon_vcmla_rot270, Add1ArgType),
6040 NEONMAP1(vcmla_rot90_v, aarch64_neon_vcmla_rot90, Add1ArgType),
6041 NEONMAP1(vcmla_v, aarch64_neon_vcmla_rot0, Add1ArgType),
6042 NEONMAP1(vcmlaq_rot180_v, aarch64_neon_vcmla_rot180, Add1ArgType),
6043 NEONMAP1(vcmlaq_rot270_v, aarch64_neon_vcmla_rot270, Add1ArgType),
6044 NEONMAP1(vcmlaq_rot90_v, aarch64_neon_vcmla_rot90, Add1ArgType),
6045 NEONMAP1(vcmlaq_v, aarch64_neon_vcmla_rot0, Add1ArgType),
6046 NEONMAP1(vcnt_v, ctpop, Add1ArgType),
6047 NEONMAP1(vcntq_v, ctpop, Add1ArgType),
6048 NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0),
6049 NEONMAP0(vcvt_f16_v),
6050 NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0),
6051 NEONMAP0(vcvt_f32_v),
6052 NEONMAP2(vcvt_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
6053 NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
6054 NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
6055 NEONMAP1(vcvt_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
6056 NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
6057 NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
6058 NEONMAP1(vcvt_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
6059 NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
6060 NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
6061 NEONMAP0(vcvtq_f16_v),
6062 NEONMAP0(vcvtq_f32_v),
6063 NEONMAP1(vcvtq_high_bf16_v, aarch64_neon_bfcvtn2, 0),
6064 NEONMAP2(vcvtq_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
6065 NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
6066 NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
6067 NEONMAP1(vcvtq_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
6068 NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
6069 NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
6070 NEONMAP1(vcvtq_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
6071 NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
6072 NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
6073 NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType),
6074 NEONMAP2(vdot_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
6075 NEONMAP2(vdotq_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
6076 NEONMAP2(veor3q_v, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
6077 NEONMAP0(vext_v),
6078 NEONMAP0(vextq_v),
6079 NEONMAP0(vfma_v),
6080 NEONMAP0(vfmaq_v),
6081 NEONMAP1(vfmlal_high_v, aarch64_neon_fmlal2, 0),
6082 NEONMAP1(vfmlal_low_v, aarch64_neon_fmlal, 0),
6083 NEONMAP1(vfmlalq_high_v, aarch64_neon_fmlal2, 0),
6084 NEONMAP1(vfmlalq_low_v, aarch64_neon_fmlal, 0),
6085 NEONMAP1(vfmlsl_high_v, aarch64_neon_fmlsl2, 0),
6086 NEONMAP1(vfmlsl_low_v, aarch64_neon_fmlsl, 0),
6087 NEONMAP1(vfmlslq_high_v, aarch64_neon_fmlsl2, 0),
6088 NEONMAP1(vfmlslq_low_v, aarch64_neon_fmlsl, 0),
6089 NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
6090 NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
6091 NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
6092 NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
6093 NEONMAP1(vld1_x2_v, aarch64_neon_ld1x2, 0),
6094 NEONMAP1(vld1_x3_v, aarch64_neon_ld1x3, 0),
6095 NEONMAP1(vld1_x4_v, aarch64_neon_ld1x4, 0),
6096 NEONMAP1(vld1q_x2_v, aarch64_neon_ld1x2, 0),
6097 NEONMAP1(vld1q_x3_v, aarch64_neon_ld1x3, 0),
6098 NEONMAP1(vld1q_x4_v, aarch64_neon_ld1x4, 0),
6099 NEONMAP2(vmmlaq_v, aarch64_neon_ummla, aarch64_neon_smmla, 0),
6100 NEONMAP0(vmovl_v),
6101 NEONMAP0(vmovn_v),
6102 NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType),
6103 NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType),
6104 NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType),
6105 NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
6106 NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
6107 NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType),
6108 NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType),
6109 NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType),
6110 NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
6111 NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
6112 NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0),
6113 NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0),
6114 NEONMAP1(vqdmulh_lane_v, aarch64_neon_sqdmulh_lane, 0),
6115 NEONMAP1(vqdmulh_laneq_v, aarch64_neon_sqdmulh_laneq, 0),
6116 NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType),
6117 NEONMAP1(vqdmulhq_lane_v, aarch64_neon_sqdmulh_lane, 0),
6118 NEONMAP1(vqdmulhq_laneq_v, aarch64_neon_sqdmulh_laneq, 0),
6119 NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType),
6120 NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType),
6121 NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts),
6122 NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType),
6123 NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType),
6124 NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType),
6125 NEONMAP1(vqrdmlah_v, aarch64_neon_sqrdmlah, Add1ArgType),
6126 NEONMAP1(vqrdmlahq_v, aarch64_neon_sqrdmlah, Add1ArgType),
6127 NEONMAP1(vqrdmlsh_v, aarch64_neon_sqrdmlsh, Add1ArgType),
6128 NEONMAP1(vqrdmlshq_v, aarch64_neon_sqrdmlsh, Add1ArgType),
6129 NEONMAP1(vqrdmulh_lane_v, aarch64_neon_sqrdmulh_lane, 0),
6130 NEONMAP1(vqrdmulh_laneq_v, aarch64_neon_sqrdmulh_laneq, 0),
6131 NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType),
6132 NEONMAP1(vqrdmulhq_lane_v, aarch64_neon_sqrdmulh_lane, 0),
6133 NEONMAP1(vqrdmulhq_laneq_v, aarch64_neon_sqrdmulh_laneq, 0),
6134 NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType),
6135 NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
6136 NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
6137 NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts),
6138 NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
6139 NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts),
6140 NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
6141 NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0),
6142 NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0),
6143 NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
6144 NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
6145 NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType),
6146 NEONMAP1(vrax1q_v, aarch64_crypto_rax1, 0),
6147 NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
6148 NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
6149 NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType),
6150 NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType),
6151 NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
6152 NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
6153 NEONMAP1(vrnd32x_v, aarch64_neon_frint32x, Add1ArgType),
6154 NEONMAP1(vrnd32xq_v, aarch64_neon_frint32x, Add1ArgType),
6155 NEONMAP1(vrnd32z_v, aarch64_neon_frint32z, Add1ArgType),
6156 NEONMAP1(vrnd32zq_v, aarch64_neon_frint32z, Add1ArgType),
6157 NEONMAP1(vrnd64x_v, aarch64_neon_frint64x, Add1ArgType),
6158 NEONMAP1(vrnd64xq_v, aarch64_neon_frint64x, Add1ArgType),
6159 NEONMAP1(vrnd64z_v, aarch64_neon_frint64z, Add1ArgType),
6160 NEONMAP1(vrnd64zq_v, aarch64_neon_frint64z, Add1ArgType),
6161 NEONMAP0(vrndi_v),
6162 NEONMAP0(vrndiq_v),
6163 NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
6164 NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
6165 NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
6166 NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
6167 NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
6168 NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
6169 NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType),
6170 NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType),
6171 NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType),
6172 NEONMAP1(vsha1su0q_v, aarch64_crypto_sha1su0, 0),
6173 NEONMAP1(vsha1su1q_v, aarch64_crypto_sha1su1, 0),
6174 NEONMAP1(vsha256h2q_v, aarch64_crypto_sha256h2, 0),
6175 NEONMAP1(vsha256hq_v, aarch64_crypto_sha256h, 0),
6176 NEONMAP1(vsha256su0q_v, aarch64_crypto_sha256su0, 0),
6177 NEONMAP1(vsha256su1q_v, aarch64_crypto_sha256su1, 0),
6178 NEONMAP1(vsha512h2q_v, aarch64_crypto_sha512h2, 0),
6179 NEONMAP1(vsha512hq_v, aarch64_crypto_sha512h, 0),
6180 NEONMAP1(vsha512su0q_v, aarch64_crypto_sha512su0, 0),
6181 NEONMAP1(vsha512su1q_v, aarch64_crypto_sha512su1, 0),
6182 NEONMAP0(vshl_n_v),
6183 NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
6184 NEONMAP0(vshll_n_v),
6185 NEONMAP0(vshlq_n_v),
6186 NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
6187 NEONMAP0(vshr_n_v),
6188 NEONMAP0(vshrn_n_v),
6189 NEONMAP0(vshrq_n_v),
6190 NEONMAP1(vsm3partw1q_v, aarch64_crypto_sm3partw1, 0),
6191 NEONMAP1(vsm3partw2q_v, aarch64_crypto_sm3partw2, 0),
6192 NEONMAP1(vsm3ss1q_v, aarch64_crypto_sm3ss1, 0),
6193 NEONMAP1(vsm3tt1aq_v, aarch64_crypto_sm3tt1a, 0),
6194 NEONMAP1(vsm3tt1bq_v, aarch64_crypto_sm3tt1b, 0),
6195 NEONMAP1(vsm3tt2aq_v, aarch64_crypto_sm3tt2a, 0),
6196 NEONMAP1(vsm3tt2bq_v, aarch64_crypto_sm3tt2b, 0),
6197 NEONMAP1(vsm4ekeyq_v, aarch64_crypto_sm4ekey, 0),
6198 NEONMAP1(vsm4eq_v, aarch64_crypto_sm4e, 0),
6199 NEONMAP1(vst1_x2_v, aarch64_neon_st1x2, 0),
6200 NEONMAP1(vst1_x3_v, aarch64_neon_st1x3, 0),
6201 NEONMAP1(vst1_x4_v, aarch64_neon_st1x4, 0),
6202 NEONMAP1(vst1q_x2_v, aarch64_neon_st1x2, 0),
6203 NEONMAP1(vst1q_x3_v, aarch64_neon_st1x3, 0),
6204 NEONMAP1(vst1q_x4_v, aarch64_neon_st1x4, 0),
6205 NEONMAP0(vsubhn_v),
6206 NEONMAP0(vtst_v),
6207 NEONMAP0(vtstq_v),
6208 NEONMAP1(vusdot_v, aarch64_neon_usdot, 0),
6209 NEONMAP1(vusdotq_v, aarch64_neon_usdot, 0),
6210 NEONMAP1(vusmmlaq_v, aarch64_neon_usmmla, 0),
6211 NEONMAP1(vxarq_v, aarch64_crypto_xar, 0),
6212};
6213
6214static const ARMVectorIntrinsicInfo AArch64SISDIntrinsicMap[] = {
6215 NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType),
6216 NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType),
6217 NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType),
6218 NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
6219 NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
6220 NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
6221 NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
6222 NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
6223 NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
6224 NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6225 NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
6226 NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType),
6227 NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
6228 NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType),
6229 NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6230 NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6231 NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
6232 NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
6233 NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
6234 NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
6235 NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
6236 NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
6237 NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
6238 NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
6239 NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
6240 NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
6241 NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
6242 NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
6243 NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
6244 NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6245 NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6246 NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6247 NEONMAP1(vcvtd_s64_f64, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6248 NEONMAP1(vcvtd_u64_f64, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6249 NEONMAP1(vcvth_bf16_f32, aarch64_neon_bfcvt, 0),
6250 NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6251 NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6252 NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6253 NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6254 NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6255 NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6256 NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6257 NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6258 NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6259 NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6260 NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6261 NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6262 NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
6263 NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6264 NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6265 NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6266 NEONMAP1(vcvts_s32_f32, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6267 NEONMAP1(vcvts_u32_f32, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6268 NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0),
6269 NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6270 NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6271 NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6272 NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6273 NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
6274 NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
6275 NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6276 NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6277 NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
6278 NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
6279 NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6280 NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6281 NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6282 NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
6283 NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
6284 NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
6285 NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
6286 NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
6287 NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
6288 NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
6289 NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0),
6290 NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType),
6291 NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType),
6292 NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6293 NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6294 NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6295 NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6296 NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6297 NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6298 NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6299 NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6300 NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
6301 NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
6302 NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
6303 NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType),
6304 NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
6305 NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType),
6306 NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
6307 NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
6308 NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType),
6309 NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType),
6310 NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
6311 NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
6312 NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType),
6313 NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType),
6314 NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors),
6315 NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType),
6316 NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors),
6317 NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0),
6318 NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType),
6319 NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType),
6320 NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
6321 NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
6322 NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
6323 NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
6324 NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType),
6325 NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
6326 NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
6327 NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
6328 NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType),
6329 NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
6330 NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType),
6331 NEONMAP1(vqrdmlahh_s16, aarch64_neon_sqrdmlah, Vectorize1ArgType | Use64BitVectors),
6332 NEONMAP1(vqrdmlahs_s32, aarch64_neon_sqrdmlah, Add1ArgType),
6333 NEONMAP1(vqrdmlshh_s16, aarch64_neon_sqrdmlsh, Vectorize1ArgType | Use64BitVectors),
6334 NEONMAP1(vqrdmlshs_s32, aarch64_neon_sqrdmlsh, Add1ArgType),
6335 NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors),
6336 NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType),
6337 NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
6338 NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
6339 NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType),
6340 NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType),
6341 NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
6342 NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
6343 NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType),
6344 NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType),
6345 NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType),
6346 NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType),
6347 NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
6348 NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
6349 NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
6350 NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
6351 NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType),
6352 NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
6353 NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
6354 NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6355 NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6356 NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6357 NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6358 NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType),
6359 NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType),
6360 NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6361 NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6362 NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6363 NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6364 NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType),
6365 NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType),
6366 NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType),
6367 NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType),
6368 NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
6369 NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
6370 NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType),
6371 NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType),
6372 NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType),
6373 NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
6374 NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
6375 NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
6376 NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
6377 NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType),
6378 NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
6379 NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
6380 NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
6381 NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
6382 NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType),
6383 NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType),
6384 NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
6385 NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
6386 NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType),
6387 NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType),
6388 NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType),
6389 NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType),
6390 NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType),
6391 NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType),
6392 NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType),
6393 NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType),
6394 NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType),
6395 NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType),
6396 NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType),
6397 NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType),
6398 NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0),
6399 NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0),
6400 NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0),
6401 NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0),
6402 NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType),
6403 NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType),
6404 NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType),
6405 NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType),
6406 NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
6407 NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType),
6408 NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
6409 NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType),
6410 NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType),
6411 NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType),
6412 NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
6413 NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType),
6414 NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
6415 NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType),
6416 // FP16 scalar intrinisics go here.
6417 NEONMAP1(vabdh_f16, aarch64_sisd_fabd, Add1ArgType),
6418 NEONMAP1(vcvtah_s32_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
6419 NEONMAP1(vcvtah_s64_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
6420 NEONMAP1(vcvtah_u32_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
6421 NEONMAP1(vcvtah_u64_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
6422 NEONMAP1(vcvth_n_f16_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
6423 NEONMAP1(vcvth_n_f16_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
6424 NEONMAP1(vcvth_n_f16_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6425 NEONMAP1(vcvth_n_f16_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6426 NEONMAP1(vcvth_n_s32_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6427 NEONMAP1(vcvth_n_s64_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6428 NEONMAP1(vcvth_n_u32_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6429 NEONMAP1(vcvth_n_u64_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6430 NEONMAP1(vcvth_s32_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6431 NEONMAP1(vcvth_s64_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6432 NEONMAP1(vcvth_u32_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6433 NEONMAP1(vcvth_u64_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6434 NEONMAP1(vcvtmh_s32_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6435 NEONMAP1(vcvtmh_s64_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6436 NEONMAP1(vcvtmh_u32_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6437 NEONMAP1(vcvtmh_u64_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6438 NEONMAP1(vcvtnh_s32_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6439 NEONMAP1(vcvtnh_s64_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6440 NEONMAP1(vcvtnh_u32_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6441 NEONMAP1(vcvtnh_u64_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6442 NEONMAP1(vcvtph_s32_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6443 NEONMAP1(vcvtph_s64_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6444 NEONMAP1(vcvtph_u32_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6445 NEONMAP1(vcvtph_u64_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6446 NEONMAP1(vmulxh_f16, aarch64_neon_fmulx, Add1ArgType),
6447 NEONMAP1(vrecpeh_f16, aarch64_neon_frecpe, Add1ArgType),
6448 NEONMAP1(vrecpxh_f16, aarch64_neon_frecpx, Add1ArgType),
6449 NEONMAP1(vrsqrteh_f16, aarch64_neon_frsqrte, Add1ArgType),
6450 NEONMAP1(vrsqrtsh_f16, aarch64_neon_frsqrts, Add1ArgType),
6451};
6452
6453#undef NEONMAP0
6454#undef NEONMAP1
6455#undef NEONMAP2
6456
6457#define SVEMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
6458 { \
6459 #NameBase, SVE::BI__builtin_sve_##NameBase, Intrinsic::LLVMIntrinsic, 0, \
6460 TypeModifier \
6461 }
6462
6463#define SVEMAP2(NameBase, TypeModifier) \
6464 { #NameBase, SVE::BI__builtin_sve_##NameBase, 0, 0, TypeModifier }
6465static const ARMVectorIntrinsicInfo AArch64SVEIntrinsicMap[] = {
6466#define GET_SVE_LLVM_INTRINSIC_MAP
6467#include "clang/Basic/arm_sve_builtin_cg.inc"
6468#include "clang/Basic/BuiltinsAArch64NeonSVEBridge_cg.def"
6469#undef GET_SVE_LLVM_INTRINSIC_MAP
6470};
6471
6472#undef SVEMAP1
6473#undef SVEMAP2
6474
6475static bool NEONSIMDIntrinsicsProvenSorted = false;
6476
6477static bool AArch64SIMDIntrinsicsProvenSorted = false;
6478static bool AArch64SISDIntrinsicsProvenSorted = false;
6479static bool AArch64SVEIntrinsicsProvenSorted = false;
6480
6481static const ARMVectorIntrinsicInfo *
6482findARMVectorIntrinsicInMap(ArrayRef<ARMVectorIntrinsicInfo> IntrinsicMap,
6483 unsigned BuiltinID, bool &MapProvenSorted) {
6484
6485#ifndef NDEBUG
6486 if (!MapProvenSorted) {
6487 assert(llvm::is_sorted(IntrinsicMap))(static_cast <bool> (llvm::is_sorted(IntrinsicMap)) ? void
(0) : __assert_fail ("llvm::is_sorted(IntrinsicMap)", "clang/lib/CodeGen/CGBuiltin.cpp"
, 6487, __extension__ __PRETTY_FUNCTION__))
;
6488 MapProvenSorted = true;
6489 }
6490#endif
6491
6492 const ARMVectorIntrinsicInfo *Builtin =
6493 llvm::lower_bound(IntrinsicMap, BuiltinID);
6494
6495 if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID)
6496 return Builtin;
6497
6498 return nullptr;
6499}
6500
6501Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
6502 unsigned Modifier,
6503 llvm::Type *ArgType,
6504 const CallExpr *E) {
6505 int VectorSize = 0;
6506 if (Modifier & Use64BitVectors)
6507 VectorSize = 64;
6508 else if (Modifier & Use128BitVectors)
6509 VectorSize = 128;
6510
6511 // Return type.
6512 SmallVector<llvm::Type *, 3> Tys;
6513 if (Modifier & AddRetType) {
6514 llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
6515 if (Modifier & VectorizeRetType)
6516 Ty = llvm::FixedVectorType::get(
6517 Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1);
6518
6519 Tys.push_back(Ty);
6520 }
6521
6522 // Arguments.
6523 if (Modifier & VectorizeArgTypes) {
6524 int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1;
6525 ArgType = llvm::FixedVectorType::get(ArgType, Elts);
6526 }
6527
6528 if (Modifier & (Add1ArgType | Add2ArgTypes))
6529 Tys.push_back(ArgType);
6530
6531 if (Modifier & Add2ArgTypes)
6532 Tys.push_back(ArgType);
6533
6534 if (Modifier & InventFloatType)
6535 Tys.push_back(FloatTy);
6536
6537 return CGM.getIntrinsic(IntrinsicID, Tys);
6538}
6539
6540static Value *EmitCommonNeonSISDBuiltinExpr(
6541 CodeGenFunction &CGF, const ARMVectorIntrinsicInfo &SISDInfo,
6542 SmallVectorImpl<Value *> &Ops, const CallExpr *E) {
6543 unsigned BuiltinID = SISDInfo.BuiltinID;
6544 unsigned int Int = SISDInfo.LLVMIntrinsic;
6545 unsigned Modifier = SISDInfo.TypeModifier;
6546 const char *s = SISDInfo.NameHint;
6547
6548 switch (BuiltinID) {
6549 case NEON::BI__builtin_neon_vcled_s64:
6550 case NEON::BI__builtin_neon_vcled_u64:
6551 case NEON::BI__builtin_neon_vcles_f32:
6552 case NEON::BI__builtin_neon_vcled_f64:
6553 case NEON::BI__builtin_neon_vcltd_s64:
6554 case NEON::BI__builtin_neon_vcltd_u64:
6555 case NEON::BI__builtin_neon_vclts_f32:
6556 case NEON::BI__builtin_neon_vcltd_f64:
6557 case NEON::BI__builtin_neon_vcales_f32:
6558 case NEON::BI__builtin_neon_vcaled_f64:
6559 case NEON::BI__builtin_neon_vcalts_f32:
6560 case NEON::BI__builtin_neon_vcaltd_f64:
6561 // Only one direction of comparisons actually exist, cmle is actually a cmge
6562 // with swapped operands. The table gives us the right intrinsic but we
6563 // still need to do the swap.
6564 std::swap(Ops[0], Ops[1]);
6565 break;
6566 }
6567
6568 assert(Int && "Generic code assumes a valid intrinsic")(static_cast <bool> (Int && "Generic code assumes a valid intrinsic"
) ? void (0) : __assert_fail ("Int && \"Generic code assumes a valid intrinsic\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 6568, __extension__ __PRETTY_FUNCTION__
))
;
6569
6570 // Determine the type(s) of this overloaded AArch64 intrinsic.
6571 const Expr *Arg = E->getArg(0);
6572 llvm::Type *ArgTy = CGF.ConvertType(Arg->getType());
6573 Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E);
6574
6575 int j = 0;
6576 ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0);
6577 for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
6578 ai != ae; ++ai, ++j) {
6579 llvm::Type *ArgTy = ai->getType();
6580 if (Ops[j]->getType()->getPrimitiveSizeInBits() ==
6581 ArgTy->getPrimitiveSizeInBits())
6582 continue;
6583
6584 assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy())(static_cast <bool> (ArgTy->isVectorTy() && !
Ops[j]->getType()->isVectorTy()) ? void (0) : __assert_fail
("ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy()"
, "clang/lib/CodeGen/CGBuiltin.cpp", 6584, __extension__ __PRETTY_FUNCTION__
))
;
6585 // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate
6586 // it before inserting.
6587 Ops[j] = CGF.Builder.CreateTruncOrBitCast(
6588 Ops[j], cast<llvm::VectorType>(ArgTy)->getElementType());
6589 Ops[j] =
6590 CGF.Builder.CreateInsertElement(UndefValue::get(ArgTy), Ops[j], C0);
6591 }
6592
6593 Value *Result = CGF.EmitNeonCall(F, Ops, s);
6594 llvm::Type *ResultType = CGF.ConvertType(E->getType());
6595 if (ResultType->getPrimitiveSizeInBits().getFixedSize() <
6596 Result->getType()->getPrimitiveSizeInBits().getFixedSize())
6597 return CGF.Builder.CreateExtractElement(Result, C0);
6598
6599 return CGF.Builder.CreateBitCast(Result, ResultType, s);
6600}
6601
6602Value *CodeGenFunction::EmitCommonNeonBuiltinExpr(
6603 unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic,
6604 const char *NameHint, unsigned Modifier, const CallExpr *E,
6605 SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, Address PtrOp1,
6606 llvm::Triple::ArchType Arch) {
6607 // Get the last argument, which specifies the vector type.
6608 const Expr *Arg = E->getArg(E->getNumArgs() - 1);
6609 Optional<llvm::APSInt> NeonTypeConst =
6610 Arg->getIntegerConstantExpr(getContext());
6611 if (!NeonTypeConst)
6612 return nullptr;
6613
6614 // Determine the type of this overloaded NEON intrinsic.
6615 NeonTypeFlags Type(NeonTypeConst->getZExtValue());
6616 bool Usgn = Type.isUnsigned();
6617 bool Quad = Type.isQuad();
6618 const bool HasLegalHalfType = getTarget().hasLegalHalfType();
6619 const bool AllowBFloatArgsAndRet =
6620 getTargetHooks().getABIInfo().allowBFloatArgsAndRet();
6621
6622 llvm::FixedVectorType *VTy =
6623 GetNeonType(this, Type, HasLegalHalfType, false, AllowBFloatArgsAndRet);
6624 llvm::Type *Ty = VTy;
6625 if (!Ty)
6626 return nullptr;
6627
6628 auto getAlignmentValue32 = [&](Address addr) -> Value* {
6629 return Builder.getInt32(addr.getAlignment().getQuantity());
6630 };
6631
6632 unsigned Int = LLVMIntrinsic;
6633 if ((Modifier & UnsignedAlts) && !Usgn)
6634 Int = AltLLVMIntrinsic;
6635
6636 switch (BuiltinID) {
6637 default: break;
6638 case NEON::BI__builtin_neon_splat_lane_v:
6639 case NEON::BI__builtin_neon_splat_laneq_v:
6640 case NEON::BI__builtin_neon_splatq_lane_v:
6641 case NEON::BI__builtin_neon_splatq_laneq_v: {
6642 auto NumElements = VTy->getElementCount();
6643 if (BuiltinID == NEON::BI__builtin_neon_splatq_lane_v)
6644 NumElements = NumElements * 2;
6645 if (BuiltinID == NEON::BI__builtin_neon_splat_laneq_v)
6646 NumElements = NumElements.divideCoefficientBy(2);
6647
6648 Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
6649 return EmitNeonSplat(Ops[0], cast<ConstantInt>(Ops[1]), NumElements);
6650 }
6651 case NEON::BI__builtin_neon_vpadd_v:
6652 case NEON::BI__builtin_neon_vpaddq_v:
6653 // We don't allow fp/int overloading of intrinsics.
6654 if (VTy->getElementType()->isFloatingPointTy() &&
6655 Int == Intrinsic::aarch64_neon_addp)
6656 Int = Intrinsic::aarch64_neon_faddp;
6657 break;
6658 case NEON::BI__builtin_neon_vabs_v:
6659 case NEON::BI__builtin_neon_vabsq_v:
6660 if (VTy->getElementType()->isFloatingPointTy())
6661 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs");
6662 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs");
6663 case NEON::BI__builtin_neon_vadd_v:
6664 case NEON::BI__builtin_neon_vaddq_v: {
6665 llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, Quad ? 16 : 8);
6666 Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
6667 Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
6668 Ops[0] = Builder.CreateXor(Ops[0], Ops[1]);
6669 return Builder.CreateBitCast(Ops[0], Ty);
6670 }
6671 case NEON::BI__builtin_neon_vaddhn_v: {
6672 llvm::FixedVectorType *SrcTy =
6673 llvm::FixedVectorType::getExtendedElementVectorType(VTy);
6674
6675 // %sum = add <4 x i32> %lhs, %rhs
6676 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
6677 Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
6678 Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn");
6679
6680 // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
6681 Constant *ShiftAmt =
6682 ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
6683 Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn");
6684
6685 // %res = trunc <4 x i32> %high to <4 x i16>
6686 return Builder.CreateTrunc(Ops[0], VTy, "vaddhn");
6687 }
6688 case NEON::BI__builtin_neon_vcale_v:
6689 case NEON::BI__builtin_neon_vcaleq_v:
6690 case NEON::BI__builtin_neon_vcalt_v:
6691 case NEON::BI__builtin_neon_vcaltq_v:
6692 std::swap(Ops[0], Ops[1]);
6693 LLVM_FALLTHROUGH[[gnu::fallthrough]];
6694 case NEON::BI__builtin_neon_vcage_v:
6695 case NEON::BI__builtin_neon_vcageq_v:
6696 case NEON::BI__builtin_neon_vcagt_v:
6697 case NEON::BI__builtin_neon_vcagtq_v: {
6698 llvm::Type *Ty;
6699 switch (VTy->getScalarSizeInBits()) {
6700 default: llvm_unreachable("unexpected type")::llvm::llvm_unreachable_internal("unexpected type", "clang/lib/CodeGen/CGBuiltin.cpp"
, 6700)
;
6701 case 32:
6702 Ty = FloatTy;
6703 break;
6704 case 64:
6705 Ty = DoubleTy;
6706 break;
6707 case 16:
6708 Ty = HalfTy;
6709 break;
6710 }
6711 auto *VecFlt = llvm::FixedVectorType::get(Ty, VTy->getNumElements());
6712 llvm::Type *Tys[] = { VTy, VecFlt };
6713 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6714 return EmitNeonCall(F, Ops, NameHint);
6715 }
6716 case NEON::BI__builtin_neon_vceqz_v:
6717 case NEON::BI__builtin_neon_vceqzq_v:
6718 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ,
6719 ICmpInst::ICMP_EQ, "vceqz");
6720 case NEON::BI__builtin_neon_vcgez_v:
6721 case NEON::BI__builtin_neon_vcgezq_v:
6722 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE,
6723 ICmpInst::ICMP_SGE, "vcgez");
6724 case NEON::BI__builtin_neon_vclez_v:
6725 case NEON::BI__builtin_neon_vclezq_v:
6726 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE,
6727 ICmpInst::ICMP_SLE, "vclez");
6728 case NEON::BI__builtin_neon_vcgtz_v:
6729 case NEON::BI__builtin_neon_vcgtzq_v:
6730 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT,
6731 ICmpInst::ICMP_SGT, "vcgtz");
6732 case NEON::BI__builtin_neon_vcltz_v:
6733 case NEON::BI__builtin_neon_vcltzq_v:
6734 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT,
6735 ICmpInst::ICMP_SLT, "vcltz");
6736 case NEON::BI__builtin_neon_vclz_v:
6737 case NEON::BI__builtin_neon_vclzq_v:
6738 // We generate target-independent intrinsic, which needs a second argument
6739 // for whether or not clz of zero is undefined; on ARM it isn't.
6740 Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
6741 break;
6742 case NEON::BI__builtin_neon_vcvt_f32_v:
6743 case NEON::BI__builtin_neon_vcvtq_f32_v:
6744 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6745 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad),
6746 HasLegalHalfType);
6747 return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
6748 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
6749 case NEON::BI__builtin_neon_vcvt_f16_v:
6750 case NEON::BI__builtin_neon_vcvtq_f16_v:
6751 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6752 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float16, false, Quad),
6753 HasLegalHalfType);
6754 return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
6755 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
6756 case NEON::BI__builtin_neon_vcvt_n_f16_v:
6757 case NEON::BI__builtin_neon_vcvt_n_f32_v:
6758 case NEON::BI__builtin_neon_vcvt_n_f64_v:
6759 case NEON::BI__builtin_neon_vcvtq_n_f16_v:
6760 case NEON::BI__builtin_neon_vcvtq_n_f32_v:
6761 case NEON::BI__builtin_neon_vcvtq_n_f64_v: {
6762 llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty };
6763 Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
6764 Function *F = CGM.getIntrinsic(Int, Tys);
6765 return EmitNeonCall(F, Ops, "vcvt_n");
6766 }
6767 case NEON::BI__builtin_neon_vcvt_n_s16_v:
6768 case NEON::BI__builtin_neon_vcvt_n_s32_v:
6769 case NEON::BI__builtin_neon_vcvt_n_u16_v:
6770 case NEON::BI__builtin_neon_vcvt_n_u32_v:
6771 case NEON::BI__builtin_neon_vcvt_n_s64_v:
6772 case NEON::BI__builtin_neon_vcvt_n_u64_v:
6773 case NEON::BI__builtin_neon_vcvtq_n_s16_v:
6774 case NEON::BI__builtin_neon_vcvtq_n_s32_v:
6775 case NEON::BI__builtin_neon_vcvtq_n_u16_v:
6776 case NEON::BI__builtin_neon_vcvtq_n_u32_v:
6777 case NEON::BI__builtin_neon_vcvtq_n_s64_v:
6778 case NEON::BI__builtin_neon_vcvtq_n_u64_v: {
6779 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
6780 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6781 return EmitNeonCall(F, Ops, "vcvt_n");
6782 }
6783 case NEON::BI__builtin_neon_vcvt_s32_v:
6784 case NEON::BI__builtin_neon_vcvt_u32_v:
6785 case NEON::BI__builtin_neon_vcvt_s64_v:
6786 case NEON::BI__builtin_neon_vcvt_u64_v:
6787 case NEON::BI__builtin_neon_vcvt_s16_v:
6788 case NEON::BI__builtin_neon_vcvt_u16_v:
6789 case NEON::BI__builtin_neon_vcvtq_s32_v:
6790 case NEON::BI__builtin_neon_vcvtq_u32_v:
6791 case NEON::BI__builtin_neon_vcvtq_s64_v:
6792 case NEON::BI__builtin_neon_vcvtq_u64_v:
6793 case NEON::BI__builtin_neon_vcvtq_s16_v:
6794 case NEON::BI__builtin_neon_vcvtq_u16_v: {
6795 Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
6796 return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
6797 : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
6798 }
6799 case NEON::BI__builtin_neon_vcvta_s16_v:
6800 case NEON::BI__builtin_neon_vcvta_s32_v:
6801 case NEON::BI__builtin_neon_vcvta_s64_v:
6802 case NEON::BI__builtin_neon_vcvta_u16_v:
6803 case NEON::BI__builtin_neon_vcvta_u32_v:
6804 case NEON::BI__builtin_neon_vcvta_u64_v:
6805 case NEON::BI__builtin_neon_vcvtaq_s16_v:
6806 case NEON::BI__builtin_neon_vcvtaq_s32_v:
6807 case NEON::BI__builtin_neon_vcvtaq_s64_v:
6808 case NEON::BI__builtin_neon_vcvtaq_u16_v:
6809 case NEON::BI__builtin_neon_vcvtaq_u32_v:
6810 case NEON::BI__builtin_neon_vcvtaq_u64_v:
6811 case NEON::BI__builtin_neon_vcvtn_s16_v:
6812 case NEON::BI__builtin_neon_vcvtn_s32_v:
6813 case NEON::BI__builtin_neon_vcvtn_s64_v:
6814 case NEON::BI__builtin_neon_vcvtn_u16_v:
6815 case NEON::BI__builtin_neon_vcvtn_u32_v:
6816 case NEON::BI__builtin_neon_vcvtn_u64_v:
6817 case NEON::BI__builtin_neon_vcvtnq_s16_v:
6818 case NEON::BI__builtin_neon_vcvtnq_s32_v:
6819 case NEON::BI__builtin_neon_vcvtnq_s64_v:
6820 case NEON::BI__builtin_neon_vcvtnq_u16_v:
6821 case NEON::BI__builtin_neon_vcvtnq_u32_v:
6822 case NEON::BI__builtin_neon_vcvtnq_u64_v:
6823 case NEON::BI__builtin_neon_vcvtp_s16_v:
6824 case NEON::BI__builtin_neon_vcvtp_s32_v:
6825 case NEON::BI__builtin_neon_vcvtp_s64_v:
6826 case NEON::BI__builtin_neon_vcvtp_u16_v:
6827 case NEON::BI__builtin_neon_vcvtp_u32_v:
6828 case NEON::BI__builtin_neon_vcvtp_u64_v:
6829 case NEON::BI__builtin_neon_vcvtpq_s16_v:
6830 case NEON::BI__builtin_neon_vcvtpq_s32_v:
6831 case NEON::BI__builtin_neon_vcvtpq_s64_v:
6832 case NEON::BI__builtin_neon_vcvtpq_u16_v:
6833 case NEON::BI__builtin_neon_vcvtpq_u32_v:
6834 case NEON::BI__builtin_neon_vcvtpq_u64_v:
6835 case NEON::BI__builtin_neon_vcvtm_s16_v:
6836 case NEON::BI__builtin_neon_vcvtm_s32_v:
6837 case NEON::BI__builtin_neon_vcvtm_s64_v:
6838 case NEON::BI__builtin_neon_vcvtm_u16_v:
6839 case NEON::BI__builtin_neon_vcvtm_u32_v:
6840 case NEON::BI__builtin_neon_vcvtm_u64_v:
6841 case NEON::BI__builtin_neon_vcvtmq_s16_v:
6842 case NEON::BI__builtin_neon_vcvtmq_s32_v:
6843 case NEON::BI__builtin_neon_vcvtmq_s64_v:
6844 case NEON::BI__builtin_neon_vcvtmq_u16_v:
6845 case NEON::BI__builtin_neon_vcvtmq_u32_v:
6846 case NEON::BI__builtin_neon_vcvtmq_u64_v: {
6847 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
6848 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
6849 }
6850 case NEON::BI__builtin_neon_vcvtx_f32_v: {
6851 llvm::Type *Tys[2] = { VTy->getTruncatedElementVectorType(VTy), Ty};
6852 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
6853
6854 }
6855 case NEON::BI__builtin_neon_vext_v:
6856 case NEON::BI__builtin_neon_vextq_v: {
6857 int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
6858 SmallVector<int, 16> Indices;
6859 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
6860 Indices.push_back(i+CV);
6861
6862 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6863 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6864 return Builder.CreateShuffleVector(Ops[0], Ops[1], Indices, "vext");
6865 }
6866 case NEON::BI__builtin_neon_vfma_v:
6867 case NEON::BI__builtin_neon_vfmaq_v: {
6868 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6869 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6870 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
6871
6872 // NEON intrinsic puts accumulator first, unlike the LLVM fma.
6873 return emitCallMaybeConstrainedFPBuiltin(
6874 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
6875 {Ops[1], Ops[2], Ops[0]});
6876 }
6877 case NEON::BI__builtin_neon_vld1_v:
6878 case NEON::BI__builtin_neon_vld1q_v: {
6879 llvm::Type *Tys[] = {Ty, Int8PtrTy};
6880 Ops.push_back(getAlignmentValue32(PtrOp0));
6881 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1");
6882 }
6883 case NEON::BI__builtin_neon_vld1_x2_v:
6884 case NEON::BI__builtin_neon_vld1q_x2_v:
6885 case NEON::BI__builtin_neon_vld1_x3_v:
6886 case NEON::BI__builtin_neon_vld1q_x3_v:
6887 case NEON::BI__builtin_neon_vld1_x4_v:
6888 case NEON::BI__builtin_neon_vld1q_x4_v: {
6889 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType());
6890 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
6891 llvm::Type *Tys[2] = { VTy, PTy };
6892 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6893 Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN");
6894 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
6895 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6896 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
6897 }
6898 case NEON::BI__builtin_neon_vld2_v:
6899 case NEON::BI__builtin_neon_vld2q_v:
6900 case NEON::BI__builtin_neon_vld3_v:
6901 case NEON::BI__builtin_neon_vld3q_v:
6902 case NEON::BI__builtin_neon_vld4_v:
6903 case NEON::BI__builtin_neon_vld4q_v:
6904 case NEON::BI__builtin_neon_vld2_dup_v:
6905 case NEON::BI__builtin_neon_vld2q_dup_v:
6906 case NEON::BI__builtin_neon_vld3_dup_v:
6907 case NEON::BI__builtin_neon_vld3q_dup_v:
6908 case NEON::BI__builtin_neon_vld4_dup_v:
6909 case NEON::BI__builtin_neon_vld4q_dup_v: {
6910 llvm::Type *Tys[] = {Ty, Int8PtrTy};
6911 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6912 Value *Align = getAlignmentValue32(PtrOp1);
6913 Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint);
6914 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
6915 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6916 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
6917 }
6918 case NEON::BI__builtin_neon_vld1_dup_v:
6919 case NEON::BI__builtin_neon_vld1q_dup_v: {
6920 Value *V = UndefValue::get(Ty);
6921 PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType());
6922 LoadInst *Ld = Builder.CreateLoad(PtrOp0);
6923 llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
6924 Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
6925 return EmitNeonSplat(Ops[0], CI);
6926 }
6927 case NEON::BI__builtin_neon_vld2_lane_v:
6928 case NEON::BI__builtin_neon_vld2q_lane_v:
6929 case NEON::BI__builtin_neon_vld3_lane_v:
6930 case NEON::BI__builtin_neon_vld3q_lane_v:
6931 case NEON::BI__builtin_neon_vld4_lane_v:
6932 case NEON::BI__builtin_neon_vld4q_lane_v: {
6933 llvm::Type *Tys[] = {Ty, Int8PtrTy};
6934 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6935 for (unsigned I = 2; I < Ops.size() - 1; ++I)
6936 Ops[I] = Builder.CreateBitCast(Ops[I], Ty);
6937 Ops.push_back(getAlignmentValue32(PtrOp1));
6938 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), NameHint);
6939 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
6940 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6941 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
6942 }
6943 case NEON::BI__builtin_neon_vmovl_v: {
6944 llvm::FixedVectorType *DTy =
6945 llvm::FixedVectorType::getTruncatedElementVectorType(VTy);
6946 Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
6947 if (Usgn)
6948 return Builder.CreateZExt(Ops[0], Ty, "vmovl");
6949 return Builder.CreateSExt(Ops[0], Ty, "vmovl");
6950 }
6951 case NEON::BI__builtin_neon_vmovn_v: {
6952 llvm::FixedVectorType *QTy =
6953 llvm::FixedVectorType::getExtendedElementVectorType(VTy);
6954 Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
6955 return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
6956 }
6957 case NEON::BI__builtin_neon_vmull_v:
6958 // FIXME: the integer vmull operations could be emitted in terms of pure
6959 // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of
6960 // hoisting the exts outside loops. Until global ISel comes along that can
6961 // see through such movement this leads to bad CodeGen. So we need an
6962 // intrinsic for now.
6963 Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
6964 Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
6965 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
6966 case NEON::BI__builtin_neon_vpadal_v:
6967 case NEON::BI__builtin_neon_vpadalq_v: {
6968 // The source operand type has twice as many elements of half the size.
6969 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
6970 llvm::Type *EltTy =
6971 llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
6972 auto *NarrowTy =
6973 llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2);
6974 llvm::Type *Tys[2] = { Ty, NarrowTy };
6975 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
6976 }
6977 case NEON::BI__builtin_neon_vpaddl_v:
6978 case NEON::BI__builtin_neon_vpaddlq_v: {
6979 // The source operand type has twice as many elements of half the size.
6980 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
6981 llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
6982 auto *NarrowTy =
6983 llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2);
6984 llvm::Type *Tys[2] = { Ty, NarrowTy };
6985 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
6986 }
6987 case NEON::BI__builtin_neon_vqdmlal_v:
6988 case NEON::BI__builtin_neon_vqdmlsl_v: {
6989 SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
6990 Ops[1] =
6991 EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal");
6992 Ops.resize(2);
6993 return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint);
6994 }
6995 case NEON::BI__builtin_neon_vqdmulhq_lane_v:
6996 case NEON::BI__builtin_neon_vqdmulh_lane_v:
6997 case NEON::BI__builtin_neon_vqrdmulhq_lane_v:
6998 case NEON::BI__builtin_neon_vqrdmulh_lane_v: {
6999 auto *RTy = cast<llvm::FixedVectorType>(Ty);
7000 if (BuiltinID == NEON::BI__builtin_neon_vqdmulhq_lane_v ||
7001 BuiltinID == NEON::BI__builtin_neon_vqrdmulhq_lane_v)
7002 RTy = llvm::FixedVectorType::get(RTy->getElementType(),
7003 RTy->getNumElements() * 2);
7004 llvm::Type *Tys[2] = {
7005 RTy, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false,
7006 /*isQuad*/ false))};
7007 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
7008 }
7009 case NEON::BI__builtin_neon_vqdmulhq_laneq_v:
7010 case NEON::BI__builtin_neon_vqdmulh_laneq_v:
7011 case NEON::BI__builtin_neon_vqrdmulhq_laneq_v:
7012 case NEON::BI__builtin_neon_vqrdmulh_laneq_v: {
7013 llvm::Type *Tys[2] = {
7014 Ty, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false,
7015 /*isQuad*/ true))};
7016 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
7017 }
7018 case NEON::BI__builtin_neon_vqshl_n_v:
7019 case NEON::BI__builtin_neon_vqshlq_n_v:
7020 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
7021 1, false);
7022 case NEON::BI__builtin_neon_vqshlu_n_v:
7023 case NEON::BI__builtin_neon_vqshluq_n_v:
7024 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n",
7025 1, false);
7026 case NEON::BI__builtin_neon_vrecpe_v:
7027 case NEON::BI__builtin_neon_vrecpeq_v:
7028 case NEON::BI__builtin_neon_vrsqrte_v:
7029 case NEON::BI__builtin_neon_vrsqrteq_v:
7030 Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic;
7031 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
7032 case NEON::BI__builtin_neon_vrndi_v:
7033 case NEON::BI__builtin_neon_vrndiq_v:
7034 Int = Builder.getIsFPConstrained()
7035 ? Intrinsic::experimental_constrained_nearbyint
7036 : Intrinsic::nearbyint;
7037 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
7038 case NEON::BI__builtin_neon_vrshr_n_v:
7039 case NEON::BI__builtin_neon_vrshrq_n_v:
7040 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n",
7041 1, true);
7042 case NEON::BI__builtin_neon_vsha512hq_v:
7043 case NEON::BI__builtin_neon_vsha512h2q_v:
7044 case NEON::BI__builtin_neon_vsha512su0q_v:
7045 case NEON::BI__builtin_neon_vsha512su1q_v: {
7046 Function *F = CGM.getIntrinsic(Int);
7047 return EmitNeonCall(F, Ops, "");
7048 }
7049 case NEON::BI__builtin_neon_vshl_n_v:
7050 case NEON::BI__builtin_neon_vshlq_n_v:
7051 Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
7052 return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
7053 "vshl_n");
7054 case NEON::BI__builtin_neon_vshll_n_v: {
7055 llvm::FixedVectorType *SrcTy =
7056 llvm::FixedVectorType::getTruncatedElementVectorType(VTy);
7057 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
7058 if (Usgn)
7059 Ops[0] = Builder.CreateZExt(Ops[0], VTy);
7060 else
7061 Ops[0] = Builder.CreateSExt(Ops[0], VTy);
7062 Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false);
7063 return Builder.CreateShl(Ops[0], Ops[1], "vshll_n");
7064 }
7065 case NEON::BI__builtin_neon_vshrn_n_v: {
7066 llvm::FixedVectorType *SrcTy =
7067 llvm::FixedVectorType::getExtendedElementVectorType(VTy);
7068 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
7069 Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false);
7070 if (Usgn)
7071 Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]);
7072 else
7073 Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]);
7074 return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n");
7075 }
7076 case NEON::BI__builtin_neon_vshr_n_v:
7077 case NEON::BI__builtin_neon_vshrq_n_v:
7078 return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n");
7079 case NEON::BI__builtin_neon_vst1_v:
7080 case NEON::BI__builtin_neon_vst1q_v:
7081 case NEON::BI__builtin_neon_vst2_v:
7082 case NEON::BI__builtin_neon_vst2q_v:
7083 case NEON::BI__builtin_neon_vst3_v:
7084 case NEON::BI__builtin_neon_vst3q_v:
7085 case NEON::BI__builtin_neon_vst4_v:
7086 case NEON::BI__builtin_neon_vst4q_v:
7087 case NEON::BI__builtin_neon_vst2_lane_v:
7088 case NEON::BI__builtin_neon_vst2q_lane_v:
7089 case NEON::BI__builtin_neon_vst3_lane_v:
7090 case NEON::BI__builtin_neon_vst3q_lane_v:
7091 case NEON::BI__builtin_neon_vst4_lane_v:
7092 case NEON::BI__builtin_neon_vst4q_lane_v: {
7093 llvm::Type *Tys[] = {Int8PtrTy, Ty};
7094 Ops.push_back(getAlignmentValue32(PtrOp0));
7095 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "");
7096 }
7097 case NEON::BI__builtin_neon_vsm3partw1q_v:
7098 case NEON::BI__builtin_neon_vsm3partw2q_v:
7099 case NEON::BI__builtin_neon_vsm3ss1q_v:
7100 case NEON::BI__builtin_neon_vsm4ekeyq_v:
7101 case NEON::BI__builtin_neon_vsm4eq_v: {
7102 Function *F = CGM.getIntrinsic(Int);
7103 return EmitNeonCall(F, Ops, "");
7104 }
7105 case NEON::BI__builtin_neon_vsm3tt1aq_v:
7106 case NEON::BI__builtin_neon_vsm3tt1bq_v:
7107 case NEON::BI__builtin_neon_vsm3tt2aq_v:
7108 case NEON::BI__builtin_neon_vsm3tt2bq_v: {
7109 Function *F = CGM.getIntrinsic(Int);
7110 Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
7111 return EmitNeonCall(F, Ops, "");
7112 }
7113 case NEON::BI__builtin_neon_vst1_x2_v:
7114 case NEON::BI__builtin_neon_vst1q_x2_v:
7115 case NEON::BI__builtin_neon_vst1_x3_v:
7116 case NEON::BI__builtin_neon_vst1q_x3_v:
7117 case NEON::BI__builtin_neon_vst1_x4_v:
7118 case NEON::BI__builtin_neon_vst1q_x4_v: {
7119 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType());
7120 // TODO: Currently in AArch32 mode the pointer operand comes first, whereas
7121 // in AArch64 it comes last. We may want to stick to one or another.
7122 if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be ||
7123 Arch == llvm::Triple::aarch64_32) {
7124 llvm::Type *Tys[2] = { VTy, PTy };
7125 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
7126 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
7127 }
7128 llvm::Type *Tys[2] = { PTy, VTy };
7129 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
7130 }
7131 case NEON::BI__builtin_neon_vsubhn_v: {
7132 llvm::FixedVectorType *SrcTy =
7133 llvm::FixedVectorType::getExtendedElementVectorType(VTy);
7134
7135 // %sum = add <4 x i32> %lhs, %rhs
7136 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
7137 Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
7138 Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn");
7139
7140 // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
7141 Constant *ShiftAmt =
7142 ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
7143 Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn");
7144
7145 // %res = trunc <4 x i32> %high to <4 x i16>
7146 return Builder.CreateTrunc(Ops[0], VTy, "vsubhn");
7147 }
7148 case NEON::BI__builtin_neon_vtrn_v:
7149 case NEON::BI__builtin_neon_vtrnq_v: {
7150 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
7151 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7152 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
7153 Value *SV = nullptr;
7154
7155 for (unsigned vi = 0; vi != 2; ++vi) {
7156 SmallVector<int, 16> Indices;
7157 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
7158 Indices.push_back(i+vi);
7159 Indices.push_back(i+e+vi);
7160 }
7161 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
7162 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
7163 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
7164 }
7165 return SV;
7166 }
7167 case NEON::BI__builtin_neon_vtst_v:
7168 case NEON::BI__builtin_neon_vtstq_v: {
7169 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7170 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7171 Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
7172 Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
7173 ConstantAggregateZero::get(Ty));
7174 return Builder.CreateSExt(Ops[0], Ty, "vtst");
7175 }
7176 case NEON::BI__builtin_neon_vuzp_v:
7177 case NEON::BI__builtin_neon_vuzpq_v: {
7178 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
7179 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7180 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
7181 Value *SV = nullptr;
7182
7183 for (unsigned vi = 0; vi != 2; ++vi) {
7184 SmallVector<int, 16> Indices;
7185 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
7186 Indices.push_back(2*i+vi);
7187
7188 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
7189 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
7190 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
7191 }
7192 return SV;
7193 }
7194 case NEON::BI__builtin_neon_vxarq_v: {
7195 Function *F = CGM.getIntrinsic(Int);
7196 Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
7197 return EmitNeonCall(F, Ops, "");
7198 }
7199 case NEON::BI__builtin_neon_vzip_v:
7200 case NEON::BI__builtin_neon_vzipq_v: {
7201 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
7202 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7203 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
7204 Value *SV = nullptr;
7205
7206 for (unsigned vi = 0; vi != 2; ++vi) {
7207 SmallVector<int, 16> Indices;
7208 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
7209 Indices.push_back((i + vi*e) >> 1);
7210 Indices.push_back(((i + vi*e) >> 1)+e);
7211 }
7212 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
7213 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
7214 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
7215 }
7216 return SV;
7217 }
7218 case NEON::BI__builtin_neon_vdot_v:
7219 case NEON::BI__builtin_neon_vdotq_v: {
7220 auto *InputTy =
7221 llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
7222 llvm::Type *Tys[2] = { Ty, InputTy };
7223 Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
7224 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vdot");
7225 }
7226 case NEON::BI__builtin_neon_vfmlal_low_v:
7227 case NEON::BI__builtin_neon_vfmlalq_low_v: {
7228 auto *InputTy =
7229 llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
7230 llvm::Type *Tys[2] = { Ty, InputTy };
7231 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_low");
7232 }
7233 case NEON::BI__builtin_neon_vfmlsl_low_v:
7234 case NEON::BI__builtin_neon_vfmlslq_low_v: {
7235 auto *InputTy =
7236 llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
7237 llvm::Type *Tys[2] = { Ty, InputTy };
7238 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_low");
7239 }
7240 case NEON::BI__builtin_neon_vfmlal_high_v:
7241 case NEON::BI__builtin_neon_vfmlalq_high_v: {
7242 auto *InputTy =
7243 llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
7244 llvm::Type *Tys[2] = { Ty, InputTy };
7245 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_high");
7246 }
7247 case NEON::BI__builtin_neon_vfmlsl_high_v:
7248 case NEON::BI__builtin_neon_vfmlslq_high_v: {
7249 auto *InputTy =
7250 llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
7251 llvm::Type *Tys[2] = { Ty, InputTy };
7252 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_high");
7253 }
7254 case NEON::BI__builtin_neon_vmmlaq_v: {
7255 auto *InputTy =
7256 llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
7257 llvm::Type *Tys[2] = { Ty, InputTy };
7258 Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
7259 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmmla");
7260 }
7261 case NEON::BI__builtin_neon_vusmmlaq_v: {
7262 auto *InputTy =
7263 llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
7264 llvm::Type *Tys[2] = { Ty, InputTy };
7265 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusmmla");
7266 }
7267 case NEON::BI__builtin_neon_vusdot_v:
7268 case NEON::BI__builtin_neon_vusdotq_v: {
7269 auto *InputTy =
7270 llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
7271 llvm::Type *Tys[2] = { Ty, InputTy };
7272 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusdot");
7273 }
7274 case NEON::BI__builtin_neon_vbfdot_v:
7275 case NEON::BI__builtin_neon_vbfdotq_v: {
7276 llvm::Type *InputTy =
7277 llvm::FixedVectorType::get(BFloatTy, Ty->getPrimitiveSizeInBits() / 16);
7278 llvm::Type *Tys[2] = { Ty, InputTy };
7279 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vbfdot");
7280 }
7281 case NEON::BI__builtin_neon___a32_vcvt_bf16_v: {
7282 llvm::Type *Tys[1] = { Ty };
7283 Function *F = CGM.getIntrinsic(Int, Tys);
7284 return EmitNeonCall(F, Ops, "vcvtfp2bf");
7285 }
7286
7287 }
7288
7289 assert(Int && "Expected valid intrinsic number")(static_cast <bool> (Int && "Expected valid intrinsic number"
) ? void (0) : __assert_fail ("Int && \"Expected valid intrinsic number\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 7289, __extension__ __PRETTY_FUNCTION__
))
;
7290
7291 // Determine the type(s) of this overloaded AArch64 intrinsic.
7292 Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E);
7293
7294 Value *Result = EmitNeonCall(F, Ops, NameHint);
7295 llvm::Type *ResultType = ConvertType(E->getType());
7296 // AArch64 intrinsic one-element vector type cast to
7297 // scalar type expected by the builtin
7298 return Builder.CreateBitCast(Result, ResultType, NameHint);
7299}
7300
7301Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr(
7302 Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp,
7303 const CmpInst::Predicate Ip, const Twine &Name) {
7304 llvm::Type *OTy = Op->getType();
7305
7306 // FIXME: this is utterly horrific. We should not be looking at previous
7307 // codegen context to find out what needs doing. Unfortunately TableGen
7308 // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32
7309 // (etc).
7310 if (BitCastInst *BI = dyn_cast<BitCastInst>(Op))
7311 OTy = BI->getOperand(0)->getType();
7312
7313 Op = Builder.CreateBitCast(Op, OTy);
7314 if (OTy->getScalarType()->isFloatingPointTy()) {
7315 if (Fp == CmpInst::FCMP_OEQ)
7316 Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy));
7317 else
7318 Op = Builder.CreateFCmpS(Fp, Op, Constant::getNullValue(OTy));
7319 } else {
7320 Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy));
7321 }
7322 return Builder.CreateSExt(Op, Ty, Name);
7323}
7324
7325static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
7326 Value *ExtOp, Value *IndexOp,
7327 llvm::Type *ResTy, unsigned IntID,
7328 const char *Name) {
7329 SmallVector<Value *, 2> TblOps;
7330 if (ExtOp)
7331 TblOps.push_back(ExtOp);
7332
7333 // Build a vector containing sequential number like (0, 1, 2, ..., 15)
7334 SmallVector<int, 16> Indices;
7335 auto *TblTy = cast<llvm::FixedVectorType>(Ops[0]->getType());
7336 for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) {
7337 Indices.push_back(2*i);
7338 Indices.push_back(2*i+1);
7339 }
7340
7341 int PairPos = 0, End = Ops.size() - 1;
7342 while (PairPos < End) {
7343 TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
7344 Ops[PairPos+1], Indices,
7345 Name));
7346 PairPos += 2;
7347 }
7348
7349 // If there's an odd number of 64-bit lookup table, fill the high 64-bit
7350 // of the 128-bit lookup table with zero.
7351 if (PairPos == End) {
7352 Value *ZeroTbl = ConstantAggregateZero::get(TblTy);
7353 TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
7354 ZeroTbl, Indices, Name));
7355 }
7356
7357 Function *TblF;
7358 TblOps.push_back(IndexOp);
7359 TblF = CGF.CGM.getIntrinsic(IntID, ResTy);
7360
7361 return CGF.EmitNeonCall(TblF, TblOps, Name);
7362}
7363
7364Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) {
7365 unsigned Value;
7366 switch (BuiltinID) {
7367 default:
7368 return nullptr;
7369 case ARM::BI__builtin_arm_nop:
7370 Value = 0;
7371 break;
7372 case ARM::BI__builtin_arm_yield:
7373 case ARM::BI__yield:
7374 Value = 1;
7375 break;
7376 case ARM::BI__builtin_arm_wfe:
7377 case ARM::BI__wfe:
7378 Value = 2;
7379 break;
7380 case ARM::BI__builtin_arm_wfi:
7381 case ARM::BI__wfi:
7382 Value = 3;
7383 break;
7384 case ARM::BI__builtin_arm_sev:
7385 case ARM::BI__sev:
7386 Value = 4;
7387 break;
7388 case ARM::BI__builtin_arm_sevl:
7389 case ARM::BI__sevl:
7390 Value = 5;
7391 break;
7392 }
7393
7394 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
7395 llvm::ConstantInt::get(Int32Ty, Value));
7396}
7397
7398enum SpecialRegisterAccessKind {
7399 NormalRead,
7400 VolatileRead,
7401 Write,
7402};
7403
7404// Generates the IR for the read/write special register builtin,
7405// ValueType is the type of the value that is to be written or read,
7406// RegisterType is the type of the register being written to or read from.
7407static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF,
7408 const CallExpr *E,
7409 llvm::Type *RegisterType,
7410 llvm::Type *ValueType,
7411 SpecialRegisterAccessKind AccessKind,
7412 StringRef SysReg = "") {
7413 // write and register intrinsics only support 32 and 64 bit operations.
7414 assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64))(static_cast <bool> ((RegisterType->isIntegerTy(32) ||
RegisterType->isIntegerTy(64)) && "Unsupported size for register."
) ? void (0) : __assert_fail ("(RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64)) && \"Unsupported size for register.\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 7415, __extension__ __PRETTY_FUNCTION__
))
7415 && "Unsupported size for register.")(static_cast <bool> ((RegisterType->isIntegerTy(32) ||
RegisterType->isIntegerTy(64)) && "Unsupported size for register."
) ? void (0) : __assert_fail ("(RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64)) && \"Unsupported size for register.\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 7415, __extension__ __PRETTY_FUNCTION__
))
;
7416
7417 CodeGen::CGBuilderTy &Builder = CGF.Builder;
7418 CodeGen::CodeGenModule &CGM = CGF.CGM;
7419 LLVMContext &Context = CGM.getLLVMContext();
7420
7421 if (SysReg.empty()) {
7422 const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts();
7423 SysReg = cast<clang::StringLiteral>(SysRegStrExpr)->getString();
7424 }
7425
7426 llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) };
7427 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
7428 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
7429
7430 llvm::Type *Types[] = { RegisterType };
7431
7432 bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32);
7433 assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64))(static_cast <bool> (!(RegisterType->isIntegerTy(32)
&& ValueType->isIntegerTy(64)) && "Can't fit 64-bit value in 32-bit register"
) ? void (0) : __assert_fail ("!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64)) && \"Can't fit 64-bit value in 32-bit register\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 7434, __extension__ __PRETTY_FUNCTION__
))
7434 && "Can't fit 64-bit value in 32-bit register")(static_cast <bool> (!(RegisterType->isIntegerTy(32)
&& ValueType->isIntegerTy(64)) && "Can't fit 64-bit value in 32-bit register"
) ? void (0) : __assert_fail ("!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64)) && \"Can't fit 64-bit value in 32-bit register\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 7434, __extension__ __PRETTY_FUNCTION__
))
;
7435
7436 if (AccessKind != Write) {
7437 assert(AccessKind == NormalRead || AccessKind == VolatileRead)(static_cast <bool> (AccessKind == NormalRead || AccessKind
== VolatileRead) ? void (0) : __assert_fail ("AccessKind == NormalRead || AccessKind == VolatileRead"
, "clang/lib/CodeGen/CGBuiltin.cpp", 7437, __extension__ __PRETTY_FUNCTION__
))
;
7438 llvm::Function *F = CGM.getIntrinsic(
7439 AccessKind == VolatileRead ? llvm::Intrinsic::read_volatile_register
7440 : llvm::Intrinsic::read_register,
7441 Types);
7442 llvm::Value *Call = Builder.CreateCall(F, Metadata);
7443
7444 if (MixedTypes)
7445 // Read into 64 bit register and then truncate result to 32 bit.
7446 return Builder.CreateTrunc(Call, ValueType);
7447
7448 if (ValueType->isPointerTy())
7449 // Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*).
7450 return Builder.CreateIntToPtr(Call, ValueType);
7451
7452 return Call;
7453 }
7454
7455 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
7456 llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1));
7457 if (MixedTypes) {
7458 // Extend 32 bit write value to 64 bit to pass to write.
7459 ArgValue = Builder.CreateZExt(ArgValue, RegisterType);
7460 return Builder.CreateCall(F, { Metadata, ArgValue });
7461 }
7462
7463 if (ValueType->isPointerTy()) {
7464 // Have VoidPtrTy ArgValue but want to return an i32/i64.
7465 ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType);
7466 return Builder.CreateCall(F, { Metadata, ArgValue });
7467 }
7468
7469 return Builder.CreateCall(F, { Metadata, ArgValue });
7470}
7471
7472/// Return true if BuiltinID is an overloaded Neon intrinsic with an extra
7473/// argument that specifies the vector type.
7474static bool HasExtraNeonArgument(unsigned BuiltinID) {
7475 switch (BuiltinID) {
7476 default: break;
7477 case NEON::BI__builtin_neon_vget_lane_i8:
7478 case NEON::BI__builtin_neon_vget_lane_i16:
7479 case NEON::BI__builtin_neon_vget_lane_bf16:
7480 case NEON::BI__builtin_neon_vget_lane_i32:
7481 case NEON::BI__builtin_neon_vget_lane_i64:
7482 case NEON::BI__builtin_neon_vget_lane_f32:
7483 case NEON::BI__builtin_neon_vgetq_lane_i8:
7484 case NEON::BI__builtin_neon_vgetq_lane_i16:
7485 case NEON::BI__builtin_neon_vgetq_lane_bf16:
7486 case NEON::BI__builtin_neon_vgetq_lane_i32:
7487 case NEON::BI__builtin_neon_vgetq_lane_i64:
7488 case NEON::BI__builtin_neon_vgetq_lane_f32:
7489 case NEON::BI__builtin_neon_vduph_lane_bf16:
7490 case NEON::BI__builtin_neon_vduph_laneq_bf16:
7491 case NEON::BI__builtin_neon_vset_lane_i8:
7492 case NEON::BI__builtin_neon_vset_lane_i16:
7493 case NEON::BI__builtin_neon_vset_lane_bf16:
7494 case NEON::BI__builtin_neon_vset_lane_i32:
7495 case NEON::BI__builtin_neon_vset_lane_i64:
7496 case NEON::BI__builtin_neon_vset_lane_f32:
7497 case NEON::BI__builtin_neon_vsetq_lane_i8:
7498 case NEON::BI__builtin_neon_vsetq_lane_i16:
7499 case NEON::BI__builtin_neon_vsetq_lane_bf16:
7500 case NEON::BI__builtin_neon_vsetq_lane_i32:
7501 case NEON::BI__builtin_neon_vsetq_lane_i64:
7502 case NEON::BI__builtin_neon_vsetq_lane_f32:
7503 case NEON::BI__builtin_neon_vsha1h_u32:
7504 case NEON::BI__builtin_neon_vsha1cq_u32:
7505 case NEON::BI__builtin_neon_vsha1pq_u32:
7506 case NEON::BI__builtin_neon_vsha1mq_u32:
7507 case NEON::BI__builtin_neon_vcvth_bf16_f32:
7508 case clang::ARM::BI_MoveToCoprocessor:
7509 case clang::ARM::BI_MoveToCoprocessor2:
7510 return false;
7511 }
7512 return true;
7513}
7514
7515Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
7516 const CallExpr *E,
7517 ReturnValueSlot ReturnValue,
7518 llvm::Triple::ArchType Arch) {
7519 if (auto Hint = GetValueForARMHint(BuiltinID))
7520 return Hint;
7521
7522 if (BuiltinID == ARM::BI__emit) {
7523 bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb;
7524 llvm::FunctionType *FTy =
7525 llvm::FunctionType::get(VoidTy, /*Variadic=*/false);
7526
7527 Expr::EvalResult Result;
7528 if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
7529 llvm_unreachable("Sema will ensure that the parameter is constant")::llvm::llvm_unreachable_internal("Sema will ensure that the parameter is constant"
, "clang/lib/CodeGen/CGBuiltin.cpp", 7529)
;
7530
7531 llvm::APSInt Value = Result.Val.getInt();
7532 uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue();
7533
7534 llvm::InlineAsm *Emit =
7535 IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "",
7536 /*hasSideEffects=*/true)
7537 : InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "",
7538 /*hasSideEffects=*/true);
7539
7540 return Builder.CreateCall(Emit);
7541 }
7542
7543 if (BuiltinID == ARM::BI__builtin_arm_dbg) {
7544 Value *Option = EmitScalarExpr(E->getArg(0));
7545 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option);
7546 }
7547
7548 if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
7549 Value *Address = EmitScalarExpr(E->getArg(0));
7550 Value *RW = EmitScalarExpr(E->getArg(1));
7551 Value *IsData = EmitScalarExpr(E->getArg(2));
7552
7553 // Locality is not supported on ARM target
7554 Value *Locality = llvm::ConstantInt::get(Int32Ty, 3);
7555
7556 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
7557 return Builder.CreateCall(F, {Address, RW, Locality, IsData});
7558 }
7559
7560 if (BuiltinID == ARM::BI__builtin_arm_rbit) {
7561 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7562 return Builder.CreateCall(
7563 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
7564 }
7565
7566 if (BuiltinID == ARM::BI__builtin_arm_cls) {
7567 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7568 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls), Arg, "cls");
7569 }
7570 if (BuiltinID == ARM::BI__builtin_arm_cls64) {
7571 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7572 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls64), Arg,
7573 "cls");
7574 }
7575
7576 if (BuiltinID == ARM::BI__clear_cache) {
7577 assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments")(static_cast <bool> (E->getNumArgs() == 2 &&
"__clear_cache takes 2 arguments") ? void (0) : __assert_fail
("E->getNumArgs() == 2 && \"__clear_cache takes 2 arguments\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 7577, __extension__ __PRETTY_FUNCTION__
))
;
7578 const FunctionDecl *FD = E->getDirectCallee();
7579 Value *Ops[2];
7580 for (unsigned i = 0; i < 2; i++)
7581 Ops[i] = EmitScalarExpr(E->getArg(i));
7582 llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
7583 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
7584 StringRef Name = FD->getName();
7585 return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
7586 }
7587
7588 if (BuiltinID == ARM::BI__builtin_arm_mcrr ||
7589 BuiltinID == ARM::BI__builtin_arm_mcrr2) {
7590 Function *F;
7591
7592 switch (BuiltinID) {
7593 default: llvm_unreachable("unexpected builtin")::llvm::llvm_unreachable_internal("unexpected builtin", "clang/lib/CodeGen/CGBuiltin.cpp"
, 7593)
;
7594 case ARM::BI__builtin_arm_mcrr:
7595 F = CGM.getIntrinsic(Intrinsic::arm_mcrr);
7596 break;
7597 case ARM::BI__builtin_arm_mcrr2:
7598 F = CGM.getIntrinsic(Intrinsic::arm_mcrr2);
7599 break;
7600 }
7601
7602 // MCRR{2} instruction has 5 operands but
7603 // the intrinsic has 4 because Rt and Rt2
7604 // are represented as a single unsigned 64
7605 // bit integer in the intrinsic definition
7606 // but internally it's represented as 2 32
7607 // bit integers.
7608
7609 Value *Coproc = EmitScalarExpr(E->getArg(0));
7610 Value *Opc1 = EmitScalarExpr(E->getArg(1));
7611 Value *RtAndRt2 = EmitScalarExpr(E->getArg(2));
7612 Value *CRm = EmitScalarExpr(E->getArg(3));
7613
7614 Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
7615 Value *Rt = Builder.CreateTruncOrBitCast(RtAndRt2, Int32Ty);
7616 Value *Rt2 = Builder.CreateLShr(RtAndRt2, C1);
7617 Rt2 = Builder.CreateTruncOrBitCast(Rt2, Int32Ty);
7618
7619 return Builder.CreateCall(F, {Coproc, Opc1, Rt, Rt2, CRm});
7620 }
7621
7622 if (BuiltinID == ARM::BI__builtin_arm_mrrc ||
7623 BuiltinID == ARM::BI__builtin_arm_mrrc2) {
7624 Function *F;
7625
7626 switch (BuiltinID) {
7627 default: llvm_unreachable("unexpected builtin")::llvm::llvm_unreachable_internal("unexpected builtin", "clang/lib/CodeGen/CGBuiltin.cpp"
, 7627)
;
7628 case ARM::BI__builtin_arm_mrrc:
7629 F = CGM.getIntrinsic(Intrinsic::arm_mrrc);
7630 break;
7631 case ARM::BI__builtin_arm_mrrc2:
7632 F = CGM.getIntrinsic(Intrinsic::arm_mrrc2);
7633 break;
7634 }
7635
7636 Value *Coproc = EmitScalarExpr(E->getArg(0));
7637 Value *Opc1 = EmitScalarExpr(E->getArg(1));
7638 Value *CRm = EmitScalarExpr(E->getArg(2));
7639 Value *RtAndRt2 = Builder.CreateCall(F, {Coproc, Opc1, CRm});
7640
7641 // Returns an unsigned 64 bit integer, represented
7642 // as two 32 bit integers.
7643
7644 Value *Rt = Builder.CreateExtractValue(RtAndRt2, 1);
7645 Value *Rt1 = Builder.CreateExtractValue(RtAndRt2, 0);
7646 Rt = Builder.CreateZExt(Rt, Int64Ty);
7647 Rt1 = Builder.CreateZExt(Rt1, Int64Ty);
7648
7649 Value *ShiftCast = llvm::ConstantInt::get(Int64Ty, 32);
7650 RtAndRt2 = Builder.CreateShl(Rt, ShiftCast, "shl", true);
7651 RtAndRt2 = Builder.CreateOr(RtAndRt2, Rt1);
7652
7653 return Builder.CreateBitCast(RtAndRt2, ConvertType(E->getType()));
7654 }
7655
7656 if (BuiltinID == ARM::BI__builtin_arm_ldrexd ||
7657 ((BuiltinID == ARM::BI__builtin_arm_ldrex ||
7658 BuiltinID == ARM::BI__builtin_arm_ldaex) &&
7659 getContext().getTypeSize(E->getType()) == 64) ||
7660 BuiltinID == ARM::BI__ldrexd) {
7661 Function *F;
7662
7663 switch (BuiltinID) {
7664 default: llvm_unreachable("unexpected builtin")::llvm::llvm_unreachable_internal("unexpected builtin", "clang/lib/CodeGen/CGBuiltin.cpp"
, 7664)
;
7665 case ARM::BI__builtin_arm_ldaex:
7666 F = CGM.getIntrinsic(Intrinsic::arm_ldaexd);
7667 break;
7668 case ARM::BI__builtin_arm_ldrexd:
7669 case ARM::BI__builtin_arm_ldrex:
7670 case ARM::BI__ldrexd:
7671 F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
7672 break;
7673 }
7674
7675 Value *LdPtr = EmitScalarExpr(E->getArg(0));
7676 Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
7677 "ldrexd");
7678
7679 Value *Val0 = Builder.CreateExtractValue(Val, 1);
7680 Value *Val1 = Builder.CreateExtractValue(Val, 0);
7681 Val0 = Builder.CreateZExt(Val0, Int64Ty);
7682 Val1 = Builder.CreateZExt(Val1, Int64Ty);
7683
7684 Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
7685 Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
7686 Val = Builder.CreateOr(Val, Val1);
7687 return Builder.CreateBitCast(Val, ConvertType(E->getType()));
7688 }
7689
7690 if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
7691 BuiltinID == ARM::BI__builtin_arm_ldaex) {
7692 Value *LoadAddr = EmitScalarExpr(E->getArg(0));
7693
7694 QualType Ty = E->getType();
7695 llvm::Type *RealResTy = ConvertType(Ty);
7696 llvm::Type *PtrTy = llvm::IntegerType::get(
7697 getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
7698 LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
7699
7700 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_ldaex
7701 ? Intrinsic::arm_ldaex
7702 : Intrinsic::arm_ldrex,
7703 PtrTy);
7704 Value *Val = Builder.CreateCall(F, LoadAddr, "ldrex");
7705
7706 if (RealResTy->isPointerTy())
7707 return Builder.CreateIntToPtr(Val, RealResTy);
7708 else {
7709 llvm::Type *IntResTy = llvm::IntegerType::get(
7710 getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
7711 Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
7712 return Builder.CreateBitCast(Val, RealResTy);
7713 }
7714 }
7715
7716 if (BuiltinID == ARM::BI__builtin_arm_strexd ||
7717 ((BuiltinID == ARM::BI__builtin_arm_stlex ||
7718 BuiltinID == ARM::BI__builtin_arm_strex) &&
7719 getContext().getTypeSize(E->getArg(0)->getType()) == 64)) {
7720 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
7721 ? Intrinsic::arm_stlexd
7722 : Intrinsic::arm_strexd);
7723 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty);
7724
7725 Address Tmp = CreateMemTemp(E->getArg(0)->getType());
7726 Value *Val = EmitScalarExpr(E->getArg(0));
7727 Builder.CreateStore(Val, Tmp);
7728
7729 Address LdPtr = Builder.CreateElementBitCast(Tmp, STy);
7730 Val = Builder.CreateLoad(LdPtr);
7731
7732 Value *Arg0 = Builder.CreateExtractValue(Val, 0);
7733 Value *Arg1 = Builder.CreateExtractValue(Val, 1);
7734 Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy);
7735 return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd");
7736 }
7737
7738 if (BuiltinID == ARM::BI__builtin_arm_strex ||
7739 BuiltinID == ARM::BI__builtin_arm_stlex) {
7740 Value *StoreVal = EmitScalarExpr(E->getArg(0));
7741 Value *StoreAddr = EmitScalarExpr(E->getArg(1));
7742
7743 QualType Ty = E->getArg(0)->getType();
7744 llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
7745 getContext().getTypeSize(Ty));
7746 StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
7747
7748 if (StoreVal->getType()->isPointerTy())
7749 StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty);
7750 else {
7751 llvm::Type *IntTy = llvm::IntegerType::get(
7752 getLLVMContext(),
7753 CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
7754 StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
7755 StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty);
7756 }
7757
7758 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
7759 ? Intrinsic::arm_stlex
7760 : Intrinsic::arm_strex,
7761 StoreAddr->getType());
7762 return Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex");
7763 }
7764
7765 if (BuiltinID == ARM::BI__builtin_arm_clrex) {
7766 Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex);
7767 return Builder.CreateCall(F);
7768 }
7769
7770 // CRC32
7771 Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
7772 switch (BuiltinID) {
7773 case ARM::BI__builtin_arm_crc32b:
7774 CRCIntrinsicID = Intrinsic::arm_crc32b; break;
7775 case ARM::BI__builtin_arm_crc32cb:
7776 CRCIntrinsicID = Intrinsic::arm_crc32cb; break;
7777 case ARM::BI__builtin_arm_crc32h:
7778 CRCIntrinsicID = Intrinsic::arm_crc32h; break;
7779 case ARM::BI__builtin_arm_crc32ch:
7780 CRCIntrinsicID = Intrinsic::arm_crc32ch; break;
7781 case ARM::BI__builtin_arm_crc32w:
7782 case ARM::BI__builtin_arm_crc32d:
7783 CRCIntrinsicID = Intrinsic::arm_crc32w; break;
7784 case ARM::BI__builtin_arm_crc32cw:
7785 case ARM::BI__builtin_arm_crc32cd:
7786 CRCIntrinsicID = Intrinsic::arm_crc32cw; break;
7787 }
7788
7789 if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
7790 Value *Arg0 = EmitScalarExpr(E->getArg(0));
7791 Value *Arg1 = EmitScalarExpr(E->getArg(1));
7792
7793 // crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w
7794 // intrinsics, hence we need different codegen for these cases.
7795 if (BuiltinID == ARM::BI__builtin_arm_crc32d ||
7796 BuiltinID == ARM::BI__builtin_arm_crc32cd) {
7797 Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
7798 Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty);
7799 Value *Arg1b = Builder.CreateLShr(Arg1, C1);
7800 Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty);
7801
7802 Function *F = CGM.getIntrinsic(CRCIntrinsicID);
7803 Value *Res = Builder.CreateCall(F, {Arg0, Arg1a});
7804 return Builder.CreateCall(F, {Res, Arg1b});
7805 } else {
7806 Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty);
7807
7808 Function *F = CGM.getIntrinsic(CRCIntrinsicID);
7809 return Builder.CreateCall(F, {Arg0, Arg1});
7810 }
7811 }
7812
7813 if (BuiltinID == ARM::BI__builtin_arm_rsr ||
7814 BuiltinID == ARM::BI__builtin_arm_rsr64 ||
7815 BuiltinID == ARM::BI__builtin_arm_rsrp ||
7816 BuiltinID == ARM::BI__builtin_arm_wsr ||
7817 BuiltinID == ARM::BI__builtin_arm_wsr64 ||
7818 BuiltinID == ARM::BI__builtin_arm_wsrp) {
7819
7820 SpecialRegisterAccessKind AccessKind = Write;
7821 if (BuiltinID == ARM::BI__builtin_arm_rsr ||
7822 BuiltinID == ARM::BI__builtin_arm_rsr64 ||
7823 BuiltinID == ARM::BI__builtin_arm_rsrp)
7824 AccessKind = VolatileRead;
7825
7826 bool IsPointerBuiltin = BuiltinID == ARM::BI__builtin_arm_rsrp ||
7827 BuiltinID == ARM::BI__builtin_arm_wsrp;
7828
7829 bool Is64Bit = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
7830 BuiltinID == ARM::BI__builtin_arm_wsr64;
7831
7832 llvm::Type *ValueType;
7833 llvm::Type *RegisterType;
7834 if (IsPointerBuiltin) {
7835 ValueType = VoidPtrTy;
7836 RegisterType = Int32Ty;
7837 } else if (Is64Bit) {
7838 ValueType = RegisterType = Int64Ty;
7839 } else {
7840 ValueType = RegisterType = Int32Ty;
7841 }
7842
7843 return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType,
7844 AccessKind);
7845 }
7846
7847 // Handle MSVC intrinsics before argument evaluation to prevent double
7848 // evaluation.
7849 if (Optional<MSVCIntrin> MsvcIntId = translateArmToMsvcIntrin(BuiltinID))
7850 return EmitMSVCBuiltinExpr(*MsvcIntId, E);
7851
7852 // Deal with MVE builtins
7853 if (Value *Result = EmitARMMVEBuiltinExpr(BuiltinID, E, ReturnValue, Arch))
7854 return Result;
7855 // Handle CDE builtins
7856 if (Value *Result = EmitARMCDEBuiltinExpr(BuiltinID, E, ReturnValue, Arch))
7857 return Result;
7858
7859 // Find out if any arguments are required to be integer constant
7860 // expressions.
7861 unsigned ICEArguments = 0;
7862 ASTContext::GetBuiltinTypeError Error;
7863 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
7864 assert(Error == ASTContext::GE_None && "Should not codegen an error")(static_cast <bool> (Error == ASTContext::GE_None &&
"Should not codegen an error") ? void (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 7864, __extension__ __PRETTY_FUNCTION__
))
;
7865
7866 auto getAlignmentValue32 = [&](Address addr) -> Value* {
7867 return Builder.getInt32(addr.getAlignment().getQuantity());
7868 };
7869
7870 Address PtrOp0 = Address::invalid();
7871 Address PtrOp1 = Address::invalid();
7872 SmallVector<Value*, 4> Ops;
7873 bool HasExtraArg = HasExtraNeonArgument(BuiltinID);
7874 unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0);
7875 for (unsigned i = 0, e = NumArgs; i != e; i++) {
7876 if (i == 0) {
7877 switch (BuiltinID) {
7878 case NEON::BI__builtin_neon_vld1_v:
7879 case NEON::BI__builtin_neon_vld1q_v:
7880 case NEON::BI__builtin_neon_vld1q_lane_v:
7881 case NEON::BI__builtin_neon_vld1_lane_v:
7882 case NEON::BI__builtin_neon_vld1_dup_v:
7883 case NEON::BI__builtin_neon_vld1q_dup_v:
7884 case NEON::BI__builtin_neon_vst1_v:
7885 case NEON::BI__builtin_neon_vst1q_v:
7886 case NEON::BI__builtin_neon_vst1q_lane_v:
7887 case NEON::BI__builtin_neon_vst1_lane_v:
7888 case NEON::BI__builtin_neon_vst2_v:
7889 case NEON::BI__builtin_neon_vst2q_v:
7890 case NEON::BI__builtin_neon_vst2_lane_v:
7891 case NEON::BI__builtin_neon_vst2q_lane_v:
7892 case NEON::BI__builtin_neon_vst3_v:
7893 case NEON::BI__builtin_neon_vst3q_v:
7894 case NEON::BI__builtin_neon_vst3_lane_v:
7895 case NEON::BI__builtin_neon_vst3q_lane_v:
7896 case NEON::BI__builtin_neon_vst4_v:
7897 case NEON::BI__builtin_neon_vst4q_v:
7898 case NEON::BI__builtin_neon_vst4_lane_v:
7899 case NEON::BI__builtin_neon_vst4q_lane_v:
7900 // Get the alignment for the argument in addition to the value;
7901 // we'll use it later.
7902 PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
7903 Ops.push_back(PtrOp0.getPointer());
7904 continue;
7905 }
7906 }
7907 if (i == 1) {
7908 switch (BuiltinID) {
7909 case NEON::BI__builtin_neon_vld2_v:
7910 case NEON::BI__builtin_neon_vld2q_v:
7911 case NEON::BI__builtin_neon_vld3_v:
7912 case NEON::BI__builtin_neon_vld3q_v:
7913 case NEON::BI__builtin_neon_vld4_v:
7914 case NEON::BI__builtin_neon_vld4q_v:
7915 case NEON::BI__builtin_neon_vld2_lane_v:
7916 case NEON::BI__builtin_neon_vld2q_lane_v:
7917 case NEON::BI__builtin_neon_vld3_lane_v:
7918 case NEON::BI__builtin_neon_vld3q_lane_v:
7919 case NEON::BI__builtin_neon_vld4_lane_v:
7920 case NEON::BI__builtin_neon_vld4q_lane_v:
7921 case NEON::BI__builtin_neon_vld2_dup_v:
7922 case NEON::BI__builtin_neon_vld2q_dup_v:
7923 case NEON::BI__builtin_neon_vld3_dup_v:
7924 case NEON::BI__builtin_neon_vld3q_dup_v:
7925 case NEON::BI__builtin_neon_vld4_dup_v:
7926 case NEON::BI__builtin_neon_vld4q_dup_v:
7927 // Get the alignment for the argument in addition to the value;
7928 // we'll use it later.
7929 PtrOp1 = EmitPointerWithAlignment(E->getArg(1));
7930 Ops.push_back(PtrOp1.getPointer());
7931 continue;
7932 }
7933 }
7934
7935 if ((ICEArguments & (1 << i)) == 0) {
7936 Ops.push_back(EmitScalarExpr(E->getArg(i)));
7937 } else {
7938 // If this is required to be a constant, constant fold it so that we know
7939 // that the generated intrinsic gets a ConstantInt.
7940 Ops.push_back(llvm::ConstantInt::get(
7941 getLLVMContext(),
7942 *E->getArg(i)->getIntegerConstantExpr(getContext())));
7943 }
7944 }
7945
7946 switch (BuiltinID) {
7947 default: break;
7948
7949 case NEON::BI__builtin_neon_vget_lane_i8:
7950 case NEON::BI__builtin_neon_vget_lane_i16:
7951 case NEON::BI__builtin_neon_vget_lane_i32:
7952 case NEON::BI__builtin_neon_vget_lane_i64:
7953 case NEON::BI__builtin_neon_vget_lane_bf16:
7954 case NEON::BI__builtin_neon_vget_lane_f32:
7955 case NEON::BI__builtin_neon_vgetq_lane_i8:
7956 case NEON::BI__builtin_neon_vgetq_lane_i16:
7957 case NEON::BI__builtin_neon_vgetq_lane_i32:
7958 case NEON::BI__builtin_neon_vgetq_lane_i64:
7959 case NEON::BI__builtin_neon_vgetq_lane_bf16:
7960 case NEON::BI__builtin_neon_vgetq_lane_f32:
7961 case NEON::BI__builtin_neon_vduph_lane_bf16:
7962 case NEON::BI__builtin_neon_vduph_laneq_bf16:
7963 return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane");
7964
7965 case NEON::BI__builtin_neon_vrndns_f32: {
7966 Value *Arg = EmitScalarExpr(E->getArg(0));
7967 llvm::Type *Tys[] = {Arg->getType()};
7968 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vrintn, Tys);
7969 return Builder.CreateCall(F, {Arg}, "vrndn"); }
7970
7971 case NEON::BI__builtin_neon_vset_lane_i8:
7972 case NEON::BI__builtin_neon_vset_lane_i16:
7973 case NEON::BI__builtin_neon_vset_lane_i32:
7974 case NEON::BI__builtin_neon_vset_lane_i64:
7975 case NEON::BI__builtin_neon_vset_lane_bf16:
7976 case NEON::BI__builtin_neon_vset_lane_f32:
7977 case NEON::BI__builtin_neon_vsetq_lane_i8:
7978 case NEON::BI__builtin_neon_vsetq_lane_i16:
7979 case NEON::BI__builtin_neon_vsetq_lane_i32:
7980 case NEON::BI__builtin_neon_vsetq_lane_i64:
7981 case NEON::BI__builtin_neon_vsetq_lane_bf16:
7982 case NEON::BI__builtin_neon_vsetq_lane_f32:
7983 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
7984
7985 case NEON::BI__builtin_neon_vsha1h_u32:
7986 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops,
7987 "vsha1h");
7988 case NEON::BI__builtin_neon_vsha1cq_u32:
7989 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops,
7990 "vsha1h");
7991 case NEON::BI__builtin_neon_vsha1pq_u32:
7992 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops,
7993 "vsha1h");
7994 case NEON::BI__builtin_neon_vsha1mq_u32:
7995 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops,
7996 "vsha1h");
7997
7998 case NEON::BI__builtin_neon_vcvth_bf16_f32: {
7999 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vcvtbfp2bf), Ops,
8000 "vcvtbfp2bf");
8001 }
8002
8003 // The ARM _MoveToCoprocessor builtins put the input register value as
8004 // the first argument, but the LLVM intrinsic expects it as the third one.
8005 case ARM::BI_MoveToCoprocessor:
8006 case ARM::BI_MoveToCoprocessor2: {
8007 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI_MoveToCoprocessor ?
8008 Intrinsic::arm_mcr : Intrinsic::arm_mcr2);
8009 return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0],
8010 Ops[3], Ops[4], Ops[5]});
8011 }
8012 }
8013
8014 // Get the last argument, which specifies the vector type.
8015 assert(HasExtraArg)(static_cast <bool> (HasExtraArg) ? void (0) : __assert_fail
("HasExtraArg", "clang/lib/CodeGen/CGBuiltin.cpp", 8015, __extension__
__PRETTY_FUNCTION__))
;
8016 const Expr *Arg = E->getArg(E->getNumArgs()-1);
8017 Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(getContext());
8018 if (!Result)
8019 return nullptr;
8020
8021 if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
8022 BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
8023 // Determine the overloaded type of this builtin.
8024 llvm::Type *Ty;
8025 if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
8026 Ty = FloatTy;
8027 else
8028 Ty = DoubleTy;
8029
8030 // Determine whether this is an unsigned conversion or not.
8031 bool usgn = Result->getZExtValue() == 1;
8032 unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
8033
8034 // Call the appropriate intrinsic.
8035 Function *F = CGM.getIntrinsic(Int, Ty);
8036 return Builder.CreateCall(F, Ops, "vcvtr");
8037 }
8038
8039 // Determine the type of this overloaded NEON intrinsic.
8040 NeonTypeFlags Type = Result->getZExtValue();
8041 bool usgn = Type.isUnsigned();
8042 bool rightShift = false;
8043
8044 llvm::FixedVectorType *VTy =
8045 GetNeonType(this, Type, getTarget().hasLegalHalfType(), false,
8046 getTarget().hasBFloat16Type());
8047 llvm::Type *Ty = VTy;
8048 if (!Ty)
8049 return nullptr;
8050
8051 // Many NEON builtins have identical semantics and uses in ARM and
8052 // AArch64. Emit these in a single function.
8053 auto IntrinsicMap = makeArrayRef(ARMSIMDIntrinsicMap);
8054 const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap(
8055 IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted);
8056 if (Builtin)
8057 return EmitCommonNeonBuiltinExpr(
8058 Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
8059 Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1, Arch);
8060
8061 unsigned Int;
8062 switch (BuiltinID) {
8063 default: return nullptr;
8064 case NEON::BI__builtin_neon_vld1q_lane_v:
8065 // Handle 64-bit integer elements as a special case. Use shuffles of
8066 // one-element vectors to avoid poor code for i64 in the backend.
8067 if (VTy->getElementType()->isIntegerTy(64)) {
8068 // Extract the other lane.
8069 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8070 int Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
8071 Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
8072 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
8073 // Load the value as a one-element vector.
8074 Ty = llvm::FixedVectorType::get(VTy->getElementType(), 1);
8075 llvm::Type *Tys[] = {Ty, Int8PtrTy};
8076 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys);
8077 Value *Align = getAlignmentValue32(PtrOp0);
8078 Value *Ld = Builder.CreateCall(F, {Ops[0], Align});
8079 // Combine them.
8080 int Indices[] = {1 - Lane, Lane};
8081 return Builder.CreateShuffleVector(Ops[1], Ld, Indices, "vld1q_lane");
8082 }
8083 LLVM_FALLTHROUGH[[gnu::fallthrough]];
8084 case NEON::BI__builtin_neon_vld1_lane_v: {
8085 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8086 PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType());
8087 Value *Ld = Builder.CreateLoad(PtrOp0);
8088 return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
8089 }
8090 case NEON::BI__builtin_neon_vqrshrn_n_v:
8091 Int =
8092 usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
8093 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
8094 1, true);
8095 case NEON::BI__builtin_neon_vqrshrun_n_v:
8096 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
8097 Ops, "vqrshrun_n", 1, true);
8098 case NEON::BI__builtin_neon_vqshrn_n_v:
8099 Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
8100 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
8101 1, true);
8102 case NEON::BI__builtin_neon_vqshrun_n_v:
8103 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
8104 Ops, "vqshrun_n", 1, true);
8105 case NEON::BI__builtin_neon_vrecpe_v:
8106 case NEON::BI__builtin_neon_vrecpeq_v:
8107 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
8108 Ops, "vrecpe");
8109 case NEON::BI__builtin_neon_vrshrn_n_v:
8110 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
8111 Ops, "vrshrn_n", 1, true);
8112 case NEON::BI__builtin_neon_vrsra_n_v:
8113 case NEON::BI__builtin_neon_vrsraq_n_v:
8114 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8115 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8116 Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
8117 Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
8118 Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]});
8119 return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
8120 case NEON::BI__builtin_neon_vsri_n_v:
8121 case NEON::BI__builtin_neon_vsriq_n_v:
8122 rightShift = true;
8123 LLVM_FALLTHROUGH[[gnu::fallthrough]];
8124 case NEON::BI__builtin_neon_vsli_n_v:
8125 case NEON::BI__builtin_neon_vsliq_n_v:
8126 Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
8127 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
8128 Ops, "vsli_n");
8129 case NEON::BI__builtin_neon_vsra_n_v:
8130 case NEON::BI__builtin_neon_vsraq_n_v:
8131 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
8132 Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
8133 return Builder.CreateAdd(Ops[0], Ops[1]);
8134 case NEON::BI__builtin_neon_vst1q_lane_v:
8135 // Handle 64-bit integer elements as a special case. Use a shuffle to get
8136 // a one-element vector and avoid poor code for i64 in the backend.
8137 if (VTy->getElementType()->isIntegerTy(64)) {
8138 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8139 Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
8140 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
8141 Ops[2] = getAlignmentValue32(PtrOp0);
8142 llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()};
8143 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
8144 Tys), Ops);
8145 }
8146 LLVM_FALLTHROUGH[[gnu::fallthrough]];
8147 case NEON::BI__builtin_neon_vst1_lane_v: {
8148 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
8149 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
8150 auto St = Builder.CreateStore(
8151 Ops[1], Builder.CreateElementBitCast(PtrOp0, Ops[1]->getType()));
8152 return St;
8153 }
8154 case NEON::BI__builtin_neon_vtbl1_v:
8155 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
8156 Ops, "vtbl1");
8157 case NEON::BI__builtin_neon_vtbl2_v:
8158 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
8159 Ops, "vtbl2");
8160 case NEON::BI__builtin_neon_vtbl3_v:
8161 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
8162 Ops, "vtbl3");
8163 case NEON::BI__builtin_neon_vtbl4_v:
8164 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
8165 Ops, "vtbl4");
8166 case NEON::BI__builtin_neon_vtbx1_v:
8167 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
8168 Ops, "vtbx1");
8169 case NEON::BI__builtin_neon_vtbx2_v:
8170 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
8171 Ops, "vtbx2");
8172 case NEON::BI__builtin_neon_vtbx3_v:
8173 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
8174 Ops, "vtbx3");
8175 case NEON::BI__builtin_neon_vtbx4_v:
8176 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
8177 Ops, "vtbx4");
8178 }
8179}
8180
8181template<typename Integer>
8182static Integer GetIntegerConstantValue(const Expr *E, ASTContext &Context) {
8183 return E->getIntegerConstantExpr(Context)->getExtValue();
8184}
8185
8186static llvm::Value *SignOrZeroExtend(CGBuilderTy &Builder, llvm::Value *V,
8187 llvm::Type *T, bool Unsigned) {
8188 // Helper function called by Tablegen-constructed ARM MVE builtin codegen,
8189 // which finds it convenient to specify signed/unsigned as a boolean flag.
8190 return Unsigned ? Builder.CreateZExt(V, T) : Builder.CreateSExt(V, T);
8191}
8192
8193static llvm::Value *MVEImmediateShr(CGBuilderTy &Builder, llvm::Value *V,
8194 uint32_t Shift, bool Unsigned) {
8195 // MVE helper function for integer shift right. This must handle signed vs
8196 // unsigned, and also deal specially with the case where the shift count is
8197 // equal to the lane size. In LLVM IR, an LShr with that parameter would be
8198 // undefined behavior, but in MVE it's legal, so we must convert it to code
8199 // that is not undefined in IR.
8200 unsigned LaneBits = cast<llvm::VectorType>(V->getType())
8201 ->getElementType()
8202 ->getPrimitiveSizeInBits();
8203 if (Shift == LaneBits) {
8204 // An unsigned shift of the full lane size always generates zero, so we can
8205 // simply emit a zero vector. A signed shift of the full lane size does the
8206 // same thing as shifting by one bit fewer.
8207 if (Unsigned)
8208 return llvm::Constant::getNullValue(V->getType());
8209 else
8210 --Shift;
8211 }
8212 return Unsigned ? Builder.CreateLShr(V, Shift) : Builder.CreateAShr(V, Shift);
8213}
8214
8215static llvm::Value *ARMMVEVectorSplat(CGBuilderTy &Builder, llvm::Value *V) {
8216 // MVE-specific helper function for a vector splat, which infers the element
8217 // count of the output vector by knowing that MVE vectors are all 128 bits
8218 // wide.
8219 unsigned Elements = 128 / V->getType()->getPrimitiveSizeInBits();
8220 return Builder.CreateVectorSplat(Elements, V);
8221}
8222
8223static llvm::Value *ARMMVEVectorReinterpret(CGBuilderTy &Builder,
8224 CodeGenFunction *CGF,
8225 llvm::Value *V,
8226 llvm::Type *DestType) {
8227 // Convert one MVE vector type into another by reinterpreting its in-register
8228 // format.
8229 //
8230 // Little-endian, this is identical to a bitcast (which reinterprets the
8231 // memory format). But big-endian, they're not necessarily the same, because
8232 // the register and memory formats map to each other differently depending on
8233 // the lane size.
8234 //
8235 // We generate a bitcast whenever we can (if we're little-endian, or if the
8236 // lane sizes are the same anyway). Otherwise we fall back to an IR intrinsic
8237 // that performs the different kind of reinterpretation.
8238 if (CGF->getTarget().isBigEndian() &&
8239 V->getType()->getScalarSizeInBits() != DestType->getScalarSizeInBits()) {
8240 return Builder.CreateCall(
8241 CGF->CGM.getIntrinsic(Intrinsic::arm_mve_vreinterpretq,
8242 {DestType, V->getType()}),
8243 V);
8244 } else {
8245 return Builder.CreateBitCast(V, DestType);
8246 }
8247}
8248
8249static llvm::Value *VectorUnzip(CGBuilderTy &Builder, llvm::Value *V, bool Odd) {
8250 // Make a shufflevector that extracts every other element of a vector (evens
8251 // or odds, as desired).
8252 SmallVector<int, 16> Indices;
8253 unsigned InputElements =
8254 cast<llvm::FixedVectorType>(V->getType())->getNumElements();
8255 for (unsigned i = 0; i < InputElements; i += 2)
8256 Indices.push_back(i + Odd);
8257 return Builder.CreateShuffleVector(V, Indices);
8258}
8259
8260static llvm::Value *VectorZip(CGBuilderTy &Builder, llvm::Value *V0,
8261 llvm::Value *V1) {
8262 // Make a shufflevector that interleaves two vectors element by element.
8263 assert(V0->getType() == V1->getType() && "Can't zip different vector types")(static_cast <bool> (V0->getType() == V1->getType
() && "Can't zip different vector types") ? void (0) :
__assert_fail ("V0->getType() == V1->getType() && \"Can't zip different vector types\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8263, __extension__ __PRETTY_FUNCTION__
))
;
8264 SmallVector<int, 16> Indices;
8265 unsigned InputElements =
8266 cast<llvm::FixedVectorType>(V0->getType())->getNumElements();
8267 for (unsigned i = 0; i < InputElements; i++) {
8268 Indices.push_back(i);
8269 Indices.push_back(i + InputElements);
8270 }
8271 return Builder.CreateShuffleVector(V0, V1, Indices);
8272}
8273
8274template<unsigned HighBit, unsigned OtherBits>
8275static llvm::Value *ARMMVEConstantSplat(CGBuilderTy &Builder, llvm::Type *VT) {
8276 // MVE-specific helper function to make a vector splat of a constant such as
8277 // UINT_MAX or INT_MIN, in which all bits below the highest one are equal.
8278 llvm::Type *T = cast<llvm::VectorType>(VT)->getElementType();
8279 unsigned LaneBits = T->getPrimitiveSizeInBits();
8280 uint32_t Value = HighBit << (LaneBits - 1);
8281 if (OtherBits)
8282 Value |= (1UL << (LaneBits - 1)) - 1;
8283 llvm::Value *Lane = llvm::ConstantInt::get(T, Value);
8284 return ARMMVEVectorSplat(Builder, Lane);
8285}
8286
8287static llvm::Value *ARMMVEVectorElementReverse(CGBuilderTy &Builder,
8288 llvm::Value *V,
8289 unsigned ReverseWidth) {
8290 // MVE-specific helper function which reverses the elements of a
8291 // vector within every (ReverseWidth)-bit collection of lanes.
8292 SmallVector<int, 16> Indices;
8293 unsigned LaneSize = V->getType()->getScalarSizeInBits();
8294 unsigned Elements = 128 / LaneSize;
8295 unsigned Mask = ReverseWidth / LaneSize - 1;
8296 for (unsigned i = 0; i < Elements; i++)
8297 Indices.push_back(i ^ Mask);
8298 return Builder.CreateShuffleVector(V, Indices);
8299}
8300
8301Value *CodeGenFunction::EmitARMMVEBuiltinExpr(unsigned BuiltinID,
8302 const CallExpr *E,
8303 ReturnValueSlot ReturnValue,
8304 llvm::Triple::ArchType Arch) {
8305 enum class CustomCodeGen { VLD24, VST24 } CustomCodeGenType;
8306 Intrinsic::ID IRIntr;
8307 unsigned NumVectors;
8308
8309 // Code autogenerated by Tablegen will handle all the simple builtins.
8310 switch (BuiltinID) {
8311 #include "clang/Basic/arm_mve_builtin_cg.inc"
8312
8313 // If we didn't match an MVE builtin id at all, go back to the
8314 // main EmitARMBuiltinExpr.
8315 default:
8316 return nullptr;
8317 }
8318
8319 // Anything that breaks from that switch is an MVE builtin that
8320 // needs handwritten code to generate.
8321
8322 switch (CustomCodeGenType) {
8323
8324 case CustomCodeGen::VLD24: {
8325 llvm::SmallVector<Value *, 4> Ops;
8326 llvm::SmallVector<llvm::Type *, 4> Tys;
8327
8328 auto MvecCType = E->getType();
8329 auto MvecLType = ConvertType(MvecCType);
8330 assert(MvecLType->isStructTy() &&(static_cast <bool> (MvecLType->isStructTy() &&
"Return type for vld[24]q should be a struct") ? void (0) : __assert_fail
("MvecLType->isStructTy() && \"Return type for vld[24]q should be a struct\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8331, __extension__ __PRETTY_FUNCTION__
))
8331 "Return type for vld[24]q should be a struct")(static_cast <bool> (MvecLType->isStructTy() &&
"Return type for vld[24]q should be a struct") ? void (0) : __assert_fail
("MvecLType->isStructTy() && \"Return type for vld[24]q should be a struct\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8331, __extension__ __PRETTY_FUNCTION__
))
;
8332 assert(MvecLType->getStructNumElements() == 1 &&(static_cast <bool> (MvecLType->getStructNumElements
() == 1 && "Return-type struct for vld[24]q should have one element"
) ? void (0) : __assert_fail ("MvecLType->getStructNumElements() == 1 && \"Return-type struct for vld[24]q should have one element\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8333, __extension__ __PRETTY_FUNCTION__
))
8333 "Return-type struct for vld[24]q should have one element")(static_cast <bool> (MvecLType->getStructNumElements
() == 1 && "Return-type struct for vld[24]q should have one element"
) ? void (0) : __assert_fail ("MvecLType->getStructNumElements() == 1 && \"Return-type struct for vld[24]q should have one element\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8333, __extension__ __PRETTY_FUNCTION__
))
;
8334 auto MvecLTypeInner = MvecLType->getStructElementType(0);
8335 assert(MvecLTypeInner->isArrayTy() &&(static_cast <bool> (MvecLTypeInner->isArrayTy() &&
"Return-type struct for vld[24]q should contain an array") ?
void (0) : __assert_fail ("MvecLTypeInner->isArrayTy() && \"Return-type struct for vld[24]q should contain an array\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8336, __extension__ __PRETTY_FUNCTION__
))
8336 "Return-type struct for vld[24]q should contain an array")(static_cast <bool> (MvecLTypeInner->isArrayTy() &&
"Return-type struct for vld[24]q should contain an array") ?
void (0) : __assert_fail ("MvecLTypeInner->isArrayTy() && \"Return-type struct for vld[24]q should contain an array\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8336, __extension__ __PRETTY_FUNCTION__
))
;
8337 assert(MvecLTypeInner->getArrayNumElements() == NumVectors &&(static_cast <bool> (MvecLTypeInner->getArrayNumElements
() == NumVectors && "Array member of return-type struct vld[24]q has wrong length"
) ? void (0) : __assert_fail ("MvecLTypeInner->getArrayNumElements() == NumVectors && \"Array member of return-type struct vld[24]q has wrong length\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8338, __extension__ __PRETTY_FUNCTION__
))
8338 "Array member of return-type struct vld[24]q has wrong length")(static_cast <bool> (MvecLTypeInner->getArrayNumElements
() == NumVectors && "Array member of return-type struct vld[24]q has wrong length"
) ? void (0) : __assert_fail ("MvecLTypeInner->getArrayNumElements() == NumVectors && \"Array member of return-type struct vld[24]q has wrong length\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8338, __extension__ __PRETTY_FUNCTION__
))
;
8339 auto VecLType = MvecLTypeInner->getArrayElementType();
8340
8341 Tys.push_back(VecLType);
8342
8343 auto Addr = E->getArg(0);
8344 Ops.push_back(EmitScalarExpr(Addr));
8345 Tys.push_back(ConvertType(Addr->getType()));
8346
8347 Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys));
8348 Value *LoadResult = Builder.CreateCall(F, Ops);
8349 Value *MvecOut = UndefValue::get(MvecLType);
8350 for (unsigned i = 0; i < NumVectors; ++i) {
8351 Value *Vec = Builder.CreateExtractValue(LoadResult, i);
8352 MvecOut = Builder.CreateInsertValue(MvecOut, Vec, {0, i});
8353 }
8354
8355 if (ReturnValue.isNull())
8356 return MvecOut;
8357 else
8358 return Builder.CreateStore(MvecOut, ReturnValue.getValue());
8359 }
8360
8361 case CustomCodeGen::VST24: {
8362 llvm::SmallVector<Value *, 4> Ops;
8363 llvm::SmallVector<llvm::Type *, 4> Tys;
8364
8365 auto Addr = E->getArg(0);
8366 Ops.push_back(EmitScalarExpr(Addr));
8367 Tys.push_back(ConvertType(Addr->getType()));
8368
8369 auto MvecCType = E->getArg(1)->getType();
8370 auto MvecLType = ConvertType(MvecCType);
8371 assert(MvecLType->isStructTy() && "Data type for vst2q should be a struct")(static_cast <bool> (MvecLType->isStructTy() &&
"Data type for vst2q should be a struct") ? void (0) : __assert_fail
("MvecLType->isStructTy() && \"Data type for vst2q should be a struct\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8371, __extension__ __PRETTY_FUNCTION__
))
;
8372 assert(MvecLType->getStructNumElements() == 1 &&(static_cast <bool> (MvecLType->getStructNumElements
() == 1 && "Data-type struct for vst2q should have one element"
) ? void (0) : __assert_fail ("MvecLType->getStructNumElements() == 1 && \"Data-type struct for vst2q should have one element\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8373, __extension__ __PRETTY_FUNCTION__
))
8373 "Data-type struct for vst2q should have one element")(static_cast <bool> (MvecLType->getStructNumElements
() == 1 && "Data-type struct for vst2q should have one element"
) ? void (0) : __assert_fail ("MvecLType->getStructNumElements() == 1 && \"Data-type struct for vst2q should have one element\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8373, __extension__ __PRETTY_FUNCTION__
))
;
8374 auto MvecLTypeInner = MvecLType->getStructElementType(0);
8375 assert(MvecLTypeInner->isArrayTy() &&(static_cast <bool> (MvecLTypeInner->isArrayTy() &&
"Data-type struct for vst2q should contain an array") ? void
(0) : __assert_fail ("MvecLTypeInner->isArrayTy() && \"Data-type struct for vst2q should contain an array\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8376, __extension__ __PRETTY_FUNCTION__
))
8376 "Data-type struct for vst2q should contain an array")(static_cast <bool> (MvecLTypeInner->isArrayTy() &&
"Data-type struct for vst2q should contain an array") ? void
(0) : __assert_fail ("MvecLTypeInner->isArrayTy() && \"Data-type struct for vst2q should contain an array\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8376, __extension__ __PRETTY_FUNCTION__
))
;
8377 assert(MvecLTypeInner->getArrayNumElements() == NumVectors &&(static_cast <bool> (MvecLTypeInner->getArrayNumElements
() == NumVectors && "Array member of return-type struct vld[24]q has wrong length"
) ? void (0) : __assert_fail ("MvecLTypeInner->getArrayNumElements() == NumVectors && \"Array member of return-type struct vld[24]q has wrong length\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8378, __extension__ __PRETTY_FUNCTION__
))
8378 "Array member of return-type struct vld[24]q has wrong length")(static_cast <bool> (MvecLTypeInner->getArrayNumElements
() == NumVectors && "Array member of return-type struct vld[24]q has wrong length"
) ? void (0) : __assert_fail ("MvecLTypeInner->getArrayNumElements() == NumVectors && \"Array member of return-type struct vld[24]q has wrong length\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8378, __extension__ __PRETTY_FUNCTION__
))
;
8379 auto VecLType = MvecLTypeInner->getArrayElementType();
8380
8381 Tys.push_back(VecLType);
8382
8383 AggValueSlot MvecSlot = CreateAggTemp(MvecCType);
8384 EmitAggExpr(E->getArg(1), MvecSlot);
8385 auto Mvec = Builder.CreateLoad(MvecSlot.getAddress());
8386 for (unsigned i = 0; i < NumVectors; i++)
8387 Ops.push_back(Builder.CreateExtractValue(Mvec, {0, i}));
8388
8389 Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys));
8390 Value *ToReturn = nullptr;
8391 for (unsigned i = 0; i < NumVectors; i++) {
8392 Ops.push_back(llvm::ConstantInt::get(Int32Ty, i));
8393 ToReturn = Builder.CreateCall(F, Ops);
8394 Ops.pop_back();
8395 }
8396 return ToReturn;
8397 }
8398 }
8399 llvm_unreachable("unknown custom codegen type.")::llvm::llvm_unreachable_internal("unknown custom codegen type."
, "clang/lib/CodeGen/CGBuiltin.cpp", 8399)
;
8400}
8401
8402Value *CodeGenFunction::EmitARMCDEBuiltinExpr(unsigned BuiltinID,
8403 const CallExpr *E,
8404 ReturnValueSlot ReturnValue,
8405 llvm::Triple::ArchType Arch) {
8406 switch (BuiltinID) {
8407 default:
8408 return nullptr;
8409#include "clang/Basic/arm_cde_builtin_cg.inc"
8410 }
8411}
8412
8413static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID,
8414 const CallExpr *E,
8415 SmallVectorImpl<Value *> &Ops,
8416 llvm::Triple::ArchType Arch) {
8417 unsigned int Int = 0;
8418 const char *s = nullptr;
8419
8420 switch (BuiltinID) {
8421 default:
8422 return nullptr;
8423 case NEON::BI__builtin_neon_vtbl1_v:
8424 case NEON::BI__builtin_neon_vqtbl1_v:
8425 case NEON::BI__builtin_neon_vqtbl1q_v:
8426 case NEON::BI__builtin_neon_vtbl2_v:
8427 case NEON::BI__builtin_neon_vqtbl2_v:
8428 case NEON::BI__builtin_neon_vqtbl2q_v:
8429 case NEON::BI__builtin_neon_vtbl3_v:
8430 case NEON::BI__builtin_neon_vqtbl3_v:
8431 case NEON::BI__builtin_neon_vqtbl3q_v:
8432 case NEON::BI__builtin_neon_vtbl4_v:
8433 case NEON::BI__builtin_neon_vqtbl4_v:
8434 case NEON::BI__builtin_neon_vqtbl4q_v:
8435 break;
8436 case NEON::BI__builtin_neon_vtbx1_v:
8437 case NEON::BI__builtin_neon_vqtbx1_v:
8438 case NEON::BI__builtin_neon_vqtbx1q_v:
8439 case NEON::BI__builtin_neon_vtbx2_v:
8440 case NEON::BI__builtin_neon_vqtbx2_v:
8441 case NEON::BI__builtin_neon_vqtbx2q_v:
8442 case NEON::BI__builtin_neon_vtbx3_v:
8443 case NEON::BI__builtin_neon_vqtbx3_v:
8444 case NEON::BI__builtin_neon_vqtbx3q_v:
8445 case NEON::BI__builtin_neon_vtbx4_v:
8446 case NEON::BI__builtin_neon_vqtbx4_v:
8447 case NEON::BI__builtin_neon_vqtbx4q_v:
8448 break;
8449 }
8450
8451 assert(E->getNumArgs() >= 3)(static_cast <bool> (E->getNumArgs() >= 3) ? void
(0) : __assert_fail ("E->getNumArgs() >= 3", "clang/lib/CodeGen/CGBuiltin.cpp"
, 8451, __extension__ __PRETTY_FUNCTION__))
;
8452
8453 // Get the last argument, which specifies the vector type.
8454 const Expr *Arg = E->getArg(E->getNumArgs() - 1);
8455 Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(CGF.getContext());
8456 if (!Result)
8457 return nullptr;
8458
8459 // Determine the type of this overloaded NEON intrinsic.
8460 NeonTypeFlags Type = Result->getZExtValue();
8461 llvm::FixedVectorType *Ty = GetNeonType(&CGF, Type);
8462 if (!Ty)
8463 return nullptr;
8464
8465 CodeGen::CGBuilderTy &Builder = CGF.Builder;
8466
8467 // AArch64 scalar builtins are not overloaded, they do not have an extra
8468 // argument that specifies the vector type, need to handle each case.
8469 switch (BuiltinID) {
8470 case NEON::BI__builtin_neon_vtbl1_v: {
8471 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 1), nullptr,
8472 Ops[1], Ty, Intrinsic::aarch64_neon_tbl1,
8473 "vtbl1");
8474 }
8475 case NEON::BI__builtin_neon_vtbl2_v: {
8476 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 2), nullptr,
8477 Ops[2], Ty, Intrinsic::aarch64_neon_tbl1,
8478 "vtbl1");
8479 }
8480 case NEON::BI__builtin_neon_vtbl3_v: {
8481 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 3), nullptr,
8482 Ops[3], Ty, Intrinsic::aarch64_neon_tbl2,
8483 "vtbl2");
8484 }
8485 case NEON::BI__builtin_neon_vtbl4_v: {
8486 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 4), nullptr,
8487 Ops[4], Ty, Intrinsic::aarch64_neon_tbl2,
8488 "vtbl2");
8489 }
8490 case NEON::BI__builtin_neon_vtbx1_v: {
8491 Value *TblRes =
8492 packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 1), nullptr, Ops[2],
8493 Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1");
8494
8495 llvm::Constant *EightV = ConstantInt::get(Ty, 8);
8496 Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV);
8497 CmpRes = Builder.CreateSExt(CmpRes, Ty);
8498
8499 Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
8500 Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
8501 return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
8502 }
8503 case NEON::BI__builtin_neon_vtbx2_v: {
8504 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 2), Ops[0],
8505 Ops[3], Ty, Intrinsic::aarch64_neon_tbx1,
8506 "vtbx1");
8507 }
8508 case NEON::BI__builtin_neon_vtbx3_v: {
8509 Value *TblRes =
8510 packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 3), nullptr, Ops[4],
8511 Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2");
8512
8513 llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24);
8514 Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4],
8515 TwentyFourV);
8516 CmpRes = Builder.CreateSExt(CmpRes, Ty);
8517
8518 Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
8519 Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
8520 return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
8521 }
8522 case NEON::BI__builtin_neon_vtbx4_v: {
8523 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 4), Ops[0],
8524 Ops[5], Ty, Intrinsic::aarch64_neon_tbx2,
8525 "vtbx2");
8526 }
8527 case NEON::BI__builtin_neon_vqtbl1_v:
8528 case NEON::BI__builtin_neon_vqtbl1q_v:
8529 Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break;
8530 case NEON::BI__builtin_neon_vqtbl2_v:
8531 case NEON::BI__builtin_neon_vqtbl2q_v: {
8532 Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break;
8533 case NEON::BI__builtin_neon_vqtbl3_v:
8534 case NEON::BI__builtin_neon_vqtbl3q_v:
8535 Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break;
8536 case NEON::BI__builtin_neon_vqtbl4_v:
8537 case NEON::BI__builtin_neon_vqtbl4q_v:
8538 Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break;
8539 case NEON::BI__builtin_neon_vqtbx1_v:
8540 case NEON::BI__builtin_neon_vqtbx1q_v:
8541 Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break;
8542 case NEON::BI__builtin_neon_vqtbx2_v:
8543 case NEON::BI__builtin_neon_vqtbx2q_v:
8544 Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break;
8545 case NEON::BI__builtin_neon_vqtbx3_v:
8546 case NEON::BI__builtin_neon_vqtbx3q_v:
8547 Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break;
8548 case NEON::BI__builtin_neon_vqtbx4_v:
8549 case NEON::BI__builtin_neon_vqtbx4q_v:
8550 Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break;
8551 }
8552 }
8553
8554 if (!Int)
8555 return nullptr;
8556
8557 Function *F = CGF.CGM.getIntrinsic(Int, Ty);
8558 return CGF.EmitNeonCall(F, Ops, s);
8559}
8560
8561Value *CodeGenFunction::vectorWrapScalar16(Value *Op) {
8562 auto *VTy = llvm::FixedVectorType::get(Int16Ty, 4);
8563 Op = Builder.CreateBitCast(Op, Int16Ty);
8564 Value *V = UndefValue::get(VTy);
8565 llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
8566 Op = Builder.CreateInsertElement(V, Op, CI);
8567 return Op;
8568}
8569
8570/// SVEBuiltinMemEltTy - Returns the memory element type for this memory
8571/// access builtin. Only required if it can't be inferred from the base pointer
8572/// operand.
8573llvm::Type *CodeGenFunction::SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags) {
8574 switch (TypeFlags.getMemEltType()) {
8575 case SVETypeFlags::MemEltTyDefault:
8576 return getEltType(TypeFlags);
8577 case SVETypeFlags::MemEltTyInt8:
8578 return Builder.getInt8Ty();
8579 case SVETypeFlags::MemEltTyInt16:
8580 return Builder.getInt16Ty();
8581 case SVETypeFlags::MemEltTyInt32:
8582 return Builder.getInt32Ty();
8583 case SVETypeFlags::MemEltTyInt64:
8584 return Builder.getInt64Ty();
8585 }
8586 llvm_unreachable("Unknown MemEltType")::llvm::llvm_unreachable_internal("Unknown MemEltType", "clang/lib/CodeGen/CGBuiltin.cpp"
, 8586)
;
8587}
8588
8589llvm::Type *CodeGenFunction::getEltType(const SVETypeFlags &TypeFlags) {
8590 switch (TypeFlags.getEltType()) {
8591 default:
8592 llvm_unreachable("Invalid SVETypeFlag!")::llvm::llvm_unreachable_internal("Invalid SVETypeFlag!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 8592)
;
8593
8594 case SVETypeFlags::EltTyInt8:
8595 return Builder.getInt8Ty();
8596 case SVETypeFlags::EltTyInt16:
8597 return Builder.getInt16Ty();
8598 case SVETypeFlags::EltTyInt32:
8599 return Builder.getInt32Ty();
8600 case SVETypeFlags::EltTyInt64:
8601 return Builder.getInt64Ty();
8602
8603 case SVETypeFlags::EltTyFloat16:
8604 return Builder.getHalfTy();
8605 case SVETypeFlags::EltTyFloat32:
8606 return Builder.getFloatTy();
8607 case SVETypeFlags::EltTyFloat64:
8608 return Builder.getDoubleTy();
8609
8610 case SVETypeFlags::EltTyBFloat16:
8611 return Builder.getBFloatTy();
8612
8613 case SVETypeFlags::EltTyBool8:
8614 case SVETypeFlags::EltTyBool16:
8615 case SVETypeFlags::EltTyBool32:
8616 case SVETypeFlags::EltTyBool64:
8617 return Builder.getInt1Ty();
8618 }
8619}
8620
8621// Return the llvm predicate vector type corresponding to the specified element
8622// TypeFlags.
8623llvm::ScalableVectorType *
8624CodeGenFunction::getSVEPredType(const SVETypeFlags &TypeFlags) {
8625 switch (TypeFlags.getEltType()) {
8626 default: llvm_unreachable("Unhandled SVETypeFlag!")::llvm::llvm_unreachable_internal("Unhandled SVETypeFlag!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 8626)
;
8627
8628 case SVETypeFlags::EltTyInt8:
8629 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
8630 case SVETypeFlags::EltTyInt16:
8631 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8632 case SVETypeFlags::EltTyInt32:
8633 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8634 case SVETypeFlags::EltTyInt64:
8635 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8636
8637 case SVETypeFlags::EltTyBFloat16:
8638 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8639 case SVETypeFlags::EltTyFloat16:
8640 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8641 case SVETypeFlags::EltTyFloat32:
8642 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8643 case SVETypeFlags::EltTyFloat64:
8644 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8645
8646 case SVETypeFlags::EltTyBool8:
8647 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
8648 case SVETypeFlags::EltTyBool16:
8649 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8650 case SVETypeFlags::EltTyBool32:
8651 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8652 case SVETypeFlags::EltTyBool64:
8653 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8654 }
8655}
8656
8657// Return the llvm vector type corresponding to the specified element TypeFlags.
8658llvm::ScalableVectorType *
8659CodeGenFunction::getSVEType(const SVETypeFlags &TypeFlags) {
8660 switch (TypeFlags.getEltType()) {
8661 default:
8662 llvm_unreachable("Invalid SVETypeFlag!")::llvm::llvm_unreachable_internal("Invalid SVETypeFlag!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 8662)
;
8663
8664 case SVETypeFlags::EltTyInt8:
8665 return llvm::ScalableVectorType::get(Builder.getInt8Ty(), 16);
8666 case SVETypeFlags::EltTyInt16:
8667 return llvm::ScalableVectorType::get(Builder.getInt16Ty(), 8);
8668 case SVETypeFlags::EltTyInt32:
8669 return llvm::ScalableVectorType::get(Builder.getInt32Ty(), 4);
8670 case SVETypeFlags::EltTyInt64:
8671 return llvm::ScalableVectorType::get(Builder.getInt64Ty(), 2);
8672
8673 case SVETypeFlags::EltTyFloat16:
8674 return llvm::ScalableVectorType::get(Builder.getHalfTy(), 8);
8675 case SVETypeFlags::EltTyBFloat16:
8676 return llvm::ScalableVectorType::get(Builder.getBFloatTy(), 8);
8677 case SVETypeFlags::EltTyFloat32:
8678 return llvm::ScalableVectorType::get(Builder.getFloatTy(), 4);
8679 case SVETypeFlags::EltTyFloat64:
8680 return llvm::ScalableVectorType::get(Builder.getDoubleTy(), 2);
8681
8682 case SVETypeFlags::EltTyBool8:
8683 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
8684 case SVETypeFlags::EltTyBool16:
8685 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8686 case SVETypeFlags::EltTyBool32:
8687 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8688 case SVETypeFlags::EltTyBool64:
8689 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8690 }
8691}
8692
8693llvm::Value *
8694CodeGenFunction::EmitSVEAllTruePred(const SVETypeFlags &TypeFlags) {
8695 Function *Ptrue =
8696 CGM.getIntrinsic(Intrinsic::aarch64_sve_ptrue, getSVEPredType(TypeFlags));
8697 return Builder.CreateCall(Ptrue, {Builder.getInt32(/*SV_ALL*/ 31)});
8698}
8699
8700constexpr unsigned SVEBitsPerBlock = 128;
8701
8702static llvm::ScalableVectorType *getSVEVectorForElementType(llvm::Type *EltTy) {
8703 unsigned NumElts = SVEBitsPerBlock / EltTy->getScalarSizeInBits();
8704 return llvm::ScalableVectorType::get(EltTy, NumElts);
8705}
8706
8707// Reinterpret the input predicate so that it can be used to correctly isolate
8708// the elements of the specified datatype.
8709Value *CodeGenFunction::EmitSVEPredicateCast(Value *Pred,
8710 llvm::ScalableVectorType *VTy) {
8711 auto *RTy = llvm::VectorType::get(IntegerType::get(getLLVMContext(), 1), VTy);
8712 if (Pred->getType() == RTy)
8713 return Pred;
8714
8715 unsigned IntID;
8716 llvm::Type *IntrinsicTy;
8717 switch (VTy->getMinNumElements()) {
8718 default:
8719 llvm_unreachable("unsupported element count!")::llvm::llvm_unreachable_internal("unsupported element count!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 8719)
;
8720 case 2:
8721 case 4:
8722 case 8:
8723 IntID = Intrinsic::aarch64_sve_convert_from_svbool;
8724 IntrinsicTy = RTy;
8725 break;
8726 case 16:
8727 IntID = Intrinsic::aarch64_sve_convert_to_svbool;
8728 IntrinsicTy = Pred->getType();
8729 break;
8730 }
8731
8732 Function *F = CGM.getIntrinsic(IntID, IntrinsicTy);
8733 Value *C = Builder.CreateCall(F, Pred);
8734 assert(C->getType() == RTy && "Unexpected return type!")(static_cast <bool> (C->getType() == RTy && "Unexpected return type!"
) ? void (0) : __assert_fail ("C->getType() == RTy && \"Unexpected return type!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8734, __extension__ __PRETTY_FUNCTION__
))
;
8735 return C;
8736}
8737
8738Value *CodeGenFunction::EmitSVEGatherLoad(const SVETypeFlags &TypeFlags,
8739 SmallVectorImpl<Value *> &Ops,
8740 unsigned IntID) {
8741 auto *ResultTy = getSVEType(TypeFlags);
8742 auto *OverloadedTy =
8743 llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), ResultTy);
8744
8745 // At the ACLE level there's only one predicate type, svbool_t, which is
8746 // mapped to <n x 16 x i1>. However, this might be incompatible with the
8747 // actual type being loaded. For example, when loading doubles (i64) the
8748 // predicated should be <n x 2 x i1> instead. At the IR level the type of
8749 // the predicate and the data being loaded must match. Cast accordingly.
8750 Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy);
8751
8752 Function *F = nullptr;
8753 if (Ops[1]->getType()->isVectorTy())
8754 // This is the "vector base, scalar offset" case. In order to uniquely
8755 // map this built-in to an LLVM IR intrinsic, we need both the return type
8756 // and the type of the vector base.
8757 F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[1]->getType()});
8758 else
8759 // This is the "scalar base, vector offset case". The type of the offset
8760 // is encoded in the name of the intrinsic. We only need to specify the
8761 // return type in order to uniquely map this built-in to an LLVM IR
8762 // intrinsic.
8763 F = CGM.getIntrinsic(IntID, OverloadedTy);
8764
8765 // Pass 0 when the offset is missing. This can only be applied when using
8766 // the "vector base" addressing mode for which ACLE allows no offset. The
8767 // corresponding LLVM IR always requires an offset.
8768 if (Ops.size() == 2) {
8769 assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset")(static_cast <bool> (Ops[1]->getType()->isVectorTy
() && "Scalar base requires an offset") ? void (0) : __assert_fail
("Ops[1]->getType()->isVectorTy() && \"Scalar base requires an offset\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8769, __extension__ __PRETTY_FUNCTION__
))
;
8770 Ops.push_back(ConstantInt::get(Int64Ty, 0));
8771 }
8772
8773 // For "vector base, scalar index" scale the index so that it becomes a
8774 // scalar offset.
8775 if (!TypeFlags.isByteIndexed() && Ops[1]->getType()->isVectorTy()) {
8776 unsigned BytesPerElt =
8777 OverloadedTy->getElementType()->getScalarSizeInBits() / 8;
8778 Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt);
8779 Ops[2] = Builder.CreateMul(Ops[2], Scale);
8780 }
8781
8782 Value *Call = Builder.CreateCall(F, Ops);
8783
8784 // The following sext/zext is only needed when ResultTy != OverloadedTy. In
8785 // other cases it's folded into a nop.
8786 return TypeFlags.isZExtReturn() ? Builder.CreateZExt(Call, ResultTy)
8787 : Builder.CreateSExt(Call, ResultTy);
8788}
8789
8790Value *CodeGenFunction::EmitSVEScatterStore(const SVETypeFlags &TypeFlags,
8791 SmallVectorImpl<Value *> &Ops,
8792 unsigned IntID) {
8793 auto *SrcDataTy = getSVEType(TypeFlags);
8794 auto *OverloadedTy =
8795 llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), SrcDataTy);
8796
8797 // In ACLE the source data is passed in the last argument, whereas in LLVM IR
8798 // it's the first argument. Move it accordingly.
8799 Ops.insert(Ops.begin(), Ops.pop_back_val());
8800
8801 Function *F = nullptr;
8802 if (Ops[2]->getType()->isVectorTy())
8803 // This is the "vector base, scalar offset" case. In order to uniquely
8804 // map this built-in to an LLVM IR intrinsic, we need both the return type
8805 // and the type of the vector base.
8806 F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[2]->getType()});
8807 else
8808 // This is the "scalar base, vector offset case". The type of the offset
8809 // is encoded in the name of the intrinsic. We only need to specify the
8810 // return type in order to uniquely map this built-in to an LLVM IR
8811 // intrinsic.
8812 F = CGM.getIntrinsic(IntID, OverloadedTy);
8813
8814 // Pass 0 when the offset is missing. This can only be applied when using
8815 // the "vector base" addressing mode for which ACLE allows no offset. The
8816 // corresponding LLVM IR always requires an offset.
8817 if (Ops.size() == 3) {
8818 assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset")(static_cast <bool> (Ops[1]->getType()->isVectorTy
() && "Scalar base requires an offset") ? void (0) : __assert_fail
("Ops[1]->getType()->isVectorTy() && \"Scalar base requires an offset\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 8818, __extension__ __PRETTY_FUNCTION__
))
;
8819 Ops.push_back(ConstantInt::get(Int64Ty, 0));
8820 }
8821
8822 // Truncation is needed when SrcDataTy != OverloadedTy. In other cases it's
8823 // folded into a nop.
8824 Ops[0] = Builder.CreateTrunc(Ops[0], OverloadedTy);
8825
8826 // At the ACLE level there's only one predicate type, svbool_t, which is
8827 // mapped to <n x 16 x i1>. However, this might be incompatible with the
8828 // actual type being stored. For example, when storing doubles (i64) the
8829 // predicated should be <n x 2 x i1> instead. At the IR level the type of
8830 // the predicate and the data being stored must match. Cast accordingly.
8831 Ops[1] = EmitSVEPredicateCast(Ops[1], OverloadedTy);
8832
8833 // For "vector base, scalar index" scale the index so that it becomes a
8834 // scalar offset.
8835 if (!TypeFlags.isByteIndexed() && Ops[2]->getType()->isVectorTy()) {
8836 unsigned BytesPerElt =
8837 OverloadedTy->getElementType()->getScalarSizeInBits() / 8;
8838 Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt);
8839 Ops[3] = Builder.CreateMul(Ops[3], Scale);
8840 }
8841
8842 return Builder.CreateCall(F, Ops);
8843}
8844
8845Value *CodeGenFunction::EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags,
8846 SmallVectorImpl<Value *> &Ops,
8847 unsigned IntID) {
8848 // The gather prefetches are overloaded on the vector input - this can either
8849 // be the vector of base addresses or vector of offsets.
8850 auto *OverloadedTy = dyn_cast<llvm::ScalableVectorType>(Ops[1]->getType());
8851 if (!OverloadedTy)
8852 OverloadedTy = cast<llvm::ScalableVectorType>(Ops[2]->getType());
8853
8854 // Cast the predicate from svbool_t to the right number of elements.
8855 Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy);
8856
8857 // vector + imm addressing modes
8858 if (Ops[1]->getType()->isVectorTy()) {
8859 if (Ops.size() == 3) {
8860 // Pass 0 for 'vector+imm' when the index is omitted.
8861 Ops.push_back(ConstantInt::get(Int64Ty, 0));
8862
8863 // The sv_prfop is the last operand in the builtin and IR intrinsic.
8864 std::swap(Ops[2], Ops[3]);
8865 } else {
8866 // Index needs to be passed as scaled offset.
8867 llvm::Type *MemEltTy = SVEBuiltinMemEltTy(TypeFlags);
8868 unsigned BytesPerElt = MemEltTy->getPrimitiveSizeInBits() / 8;
8869 Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt);
8870 Ops[2] = Builder.CreateMul(Ops[2], Scale);
8871 }
8872 }
8873
8874 Function *F = CGM.getIntrinsic(IntID, OverloadedTy);
8875 return Builder.CreateCall(F, Ops);
8876}
8877
8878Value *CodeGenFunction::EmitSVEStructLoad(const SVETypeFlags &TypeFlags,
8879 SmallVectorImpl<Value*> &Ops,
8880 unsigned IntID) {
8881 llvm::ScalableVectorType *VTy = getSVEType(TypeFlags);
8882 auto VecPtrTy = llvm::PointerType::getUnqual(VTy);
8883 auto EltPtrTy = llvm::PointerType::getUnqual(VTy->getElementType());
8884
8885 unsigned N;
8886 switch (IntID) {
8887 case Intrinsic::aarch64_sve_ld2:
8888 N = 2;
8889 break;
8890 case Intrinsic::aarch64_sve_ld3:
8891 N = 3;
8892 break;
8893 case Intrinsic::aarch64_sve_ld4:
8894 N = 4;
8895 break;
8896 default:
8897 llvm_unreachable("unknown intrinsic!")::llvm::llvm_unreachable_internal("unknown intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 8897)
;
8898 }
8899 auto RetTy = llvm::VectorType::get(VTy->getElementType(),
8900 VTy->getElementCount() * N);
8901
8902 Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy);
8903 Value *BasePtr= Builder.CreateBitCast(Ops[1], VecPtrTy);
8904 Value *Offset = Ops.size() > 2 ? Ops[2] : Builder.getInt32(0);
8905 BasePtr = Builder.CreateGEP(VTy, BasePtr, Offset);
8906 BasePtr = Builder.CreateBitCast(BasePtr, EltPtrTy);
8907
8908 Function *F = CGM.getIntrinsic(IntID, {RetTy, Predicate->getType()});
8909 return Builder.CreateCall(F, { Predicate, BasePtr });
8910}
8911
8912Value *CodeGenFunction::EmitSVEStructStore(const SVETypeFlags &TypeFlags,
8913 SmallVectorImpl<Value*> &Ops,
8914 unsigned IntID) {
8915 llvm::ScalableVectorType *VTy = getSVEType(TypeFlags);
8916 auto VecPtrTy = llvm::PointerType::getUnqual(VTy);
8917 auto EltPtrTy = llvm::PointerType::getUnqual(VTy->getElementType());
8918
8919 unsigned N;
8920 switch (IntID) {
8921 case Intrinsic::aarch64_sve_st2:
8922 N = 2;
8923 break;
8924 case Intrinsic::aarch64_sve_st3:
8925 N = 3;
8926 break;
8927 case Intrinsic::aarch64_sve_st4:
8928 N = 4;
8929 break;
8930 default:
8931 llvm_unreachable("unknown intrinsic!")::llvm::llvm_unreachable_internal("unknown intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 8931)
;
8932 }
8933 auto TupleTy =
8934 llvm::VectorType::get(VTy->getElementType(), VTy->getElementCount() * N);
8935
8936 Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy);
8937 Value *BasePtr = Builder.CreateBitCast(Ops[1], VecPtrTy);
8938 Value *Offset = Ops.size() > 3 ? Ops[2] : Builder.getInt32(0);
8939 Value *Val = Ops.back();
8940 BasePtr = Builder.CreateGEP(VTy, BasePtr, Offset);
8941 BasePtr = Builder.CreateBitCast(BasePtr, EltPtrTy);
8942
8943 // The llvm.aarch64.sve.st2/3/4 intrinsics take legal part vectors, so we
8944 // need to break up the tuple vector.
8945 SmallVector<llvm::Value*, 5> Operands;
8946 Function *FExtr =
8947 CGM.getIntrinsic(Intrinsic::aarch64_sve_tuple_get, {VTy, TupleTy});
8948 for (unsigned I = 0; I < N; ++I)
8949 Operands.push_back(Builder.CreateCall(FExtr, {Val, Builder.getInt32(I)}));
8950 Operands.append({Predicate, BasePtr});
8951
8952 Function *F = CGM.getIntrinsic(IntID, { VTy });
8953 return Builder.CreateCall(F, Operands);
8954}
8955
8956// SVE2's svpmullb and svpmullt builtins are similar to the svpmullb_pair and
8957// svpmullt_pair intrinsics, with the exception that their results are bitcast
8958// to a wider type.
8959Value *CodeGenFunction::EmitSVEPMull(const SVETypeFlags &TypeFlags,
8960 SmallVectorImpl<Value *> &Ops,
8961 unsigned BuiltinID) {
8962 // Splat scalar operand to vector (intrinsics with _n infix)
8963 if (TypeFlags.hasSplatOperand()) {
8964 unsigned OpNo = TypeFlags.getSplatOperand();
8965 Ops[OpNo] = EmitSVEDupX(Ops[OpNo]);
8966 }
8967
8968 // The pair-wise function has a narrower overloaded type.
8969 Function *F = CGM.getIntrinsic(BuiltinID, Ops[0]->getType());
8970 Value *Call = Builder.CreateCall(F, {Ops[0], Ops[1]});
8971
8972 // Now bitcast to the wider result type.
8973 llvm::ScalableVectorType *Ty = getSVEType(TypeFlags);
8974 return EmitSVEReinterpret(Call, Ty);
8975}
8976
8977Value *CodeGenFunction::EmitSVEMovl(const SVETypeFlags &TypeFlags,
8978 ArrayRef<Value *> Ops, unsigned BuiltinID) {
8979 llvm::Type *OverloadedTy = getSVEType(TypeFlags);
8980 Function *F = CGM.getIntrinsic(BuiltinID, OverloadedTy);
8981 return Builder.CreateCall(F, {Ops[0], Builder.getInt32(0)});
8982}
8983
8984Value *CodeGenFunction::EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags,
8985 SmallVectorImpl<Value *> &Ops,
8986 unsigned BuiltinID) {
8987 auto *MemEltTy = SVEBuiltinMemEltTy(TypeFlags);
8988 auto *VectorTy = getSVEVectorForElementType(MemEltTy);
8989 auto *MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
8990
8991 Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
8992 Value *BasePtr = Ops[1];
8993
8994 // Implement the index operand if not omitted.
8995 if (Ops.size() > 3) {
8996 BasePtr = Builder.CreateBitCast(BasePtr, MemoryTy->getPointerTo());
8997 BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Ops[2]);
8998 }
8999
9000 // Prefetch intriniscs always expect an i8*
9001 BasePtr = Builder.CreateBitCast(BasePtr, llvm::PointerType::getUnqual(Int8Ty));
9002 Value *PrfOp = Ops.back();
9003
9004 Function *F = CGM.getIntrinsic(BuiltinID, Predicate->getType());
9005 return Builder.CreateCall(F, {Predicate, BasePtr, PrfOp});
9006}
9007
9008Value *CodeGenFunction::EmitSVEMaskedLoad(const CallExpr *E,
9009 llvm::Type *ReturnTy,
9010 SmallVectorImpl<Value *> &Ops,
9011 unsigned BuiltinID,
9012 bool IsZExtReturn) {
9013 QualType LangPTy = E->getArg(1)->getType();
9014 llvm::Type *MemEltTy = CGM.getTypes().ConvertType(
9015 LangPTy->castAs<PointerType>()->getPointeeType());
9016
9017 // The vector type that is returned may be different from the
9018 // eventual type loaded from memory.
9019 auto VectorTy = cast<llvm::ScalableVectorType>(ReturnTy);
9020 auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
9021
9022 Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
9023 Value *BasePtr = Builder.CreateBitCast(Ops[1], MemoryTy->getPointerTo());
9024 Value *Offset = Ops.size() > 2 ? Ops[2] : Builder.getInt32(0);
9025 BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Offset);
9026
9027 BasePtr = Builder.CreateBitCast(BasePtr, MemEltTy->getPointerTo());
9028 Function *F = CGM.getIntrinsic(BuiltinID, MemoryTy);
9029 auto *Load =
9030 cast<llvm::Instruction>(Builder.CreateCall(F, {Predicate, BasePtr}));
9031 auto TBAAInfo = CGM.getTBAAAccessInfo(LangPTy->getPointeeType());
9032 CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
9033
9034 return IsZExtReturn ? Builder.CreateZExt(Load, VectorTy)
9035 : Builder.CreateSExt(Load, VectorTy);
9036}
9037
9038Value *CodeGenFunction::EmitSVEMaskedStore(const CallExpr *E,
9039 SmallVectorImpl<Value *> &Ops,
9040 unsigned BuiltinID) {
9041 QualType LangPTy = E->getArg(1)->getType();
9042 llvm::Type *MemEltTy = CGM.getTypes().ConvertType(
9043 LangPTy->castAs<PointerType>()->getPointeeType());
9044
9045 // The vector type that is stored may be different from the
9046 // eventual type stored to memory.
9047 auto VectorTy = cast<llvm::ScalableVectorType>(Ops.back()->getType());
9048 auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
9049
9050 Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
9051 Value *BasePtr = Builder.CreateBitCast(Ops[1], MemoryTy->getPointerTo());
9052 Value *Offset = Ops.size() == 4 ? Ops[2] : Builder.getInt32(0);
9053 BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Offset);
9054
9055 // Last value is always the data
9056 llvm::Value *Val = Builder.CreateTrunc(Ops.back(), MemoryTy);
9057
9058 BasePtr = Builder.CreateBitCast(BasePtr, MemEltTy->getPointerTo());
9059 Function *F = CGM.getIntrinsic(BuiltinID, MemoryTy);
9060 auto *Store =
9061 cast<llvm::Instruction>(Builder.CreateCall(F, {Val, Predicate, BasePtr}));
9062 auto TBAAInfo = CGM.getTBAAAccessInfo(LangPTy->getPointeeType());
9063 CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
9064 return Store;
9065}
9066
9067// Limit the usage of scalable llvm IR generated by the ACLE by using the
9068// sve dup.x intrinsic instead of IRBuilder::CreateVectorSplat.
9069Value *CodeGenFunction::EmitSVEDupX(Value *Scalar, llvm::Type *Ty) {
9070 auto F = CGM.getIntrinsic(Intrinsic::aarch64_sve_dup_x, Ty);
9071 return Builder.CreateCall(F, Scalar);
9072}
9073
9074Value *CodeGenFunction::EmitSVEDupX(Value* Scalar) {
9075 return EmitSVEDupX(Scalar, getSVEVectorForElementType(Scalar->getType()));
9076}
9077
9078Value *CodeGenFunction::EmitSVEReinterpret(Value *Val, llvm::Type *Ty) {
9079 // FIXME: For big endian this needs an additional REV, or needs a separate
9080 // intrinsic that is code-generated as a no-op, because the LLVM bitcast
9081 // instruction is defined as 'bitwise' equivalent from memory point of
9082 // view (when storing/reloading), whereas the svreinterpret builtin
9083 // implements bitwise equivalent cast from register point of view.
9084 // LLVM CodeGen for a bitcast must add an explicit REV for big-endian.
9085 return Builder.CreateBitCast(Val, Ty);
9086}
9087
9088static void InsertExplicitZeroOperand(CGBuilderTy &Builder, llvm::Type *Ty,
9089 SmallVectorImpl<Value *> &Ops) {
9090 auto *SplatZero = Constant::getNullValue(Ty);
9091 Ops.insert(Ops.begin(), SplatZero);
9092}
9093
9094static void InsertExplicitUndefOperand(CGBuilderTy &Builder, llvm::Type *Ty,
9095 SmallVectorImpl<Value *> &Ops) {
9096 auto *SplatUndef = UndefValue::get(Ty);
9097 Ops.insert(Ops.begin(), SplatUndef);
9098}
9099
9100SmallVector<llvm::Type *, 2>
9101CodeGenFunction::getSVEOverloadTypes(const SVETypeFlags &TypeFlags,
9102 llvm::Type *ResultType,
9103 ArrayRef<Value *> Ops) {
9104 if (TypeFlags.isOverloadNone())
9105 return {};
9106
9107 llvm::Type *DefaultType = getSVEType(TypeFlags);
9108
9109 if (TypeFlags.isOverloadWhile())
9110 return {DefaultType, Ops[1]->getType()};
9111
9112 if (TypeFlags.isOverloadWhileRW())
9113 return {getSVEPredType(TypeFlags), Ops[0]->getType()};
9114
9115 if (TypeFlags.isOverloadCvt() || TypeFlags.isTupleSet())
9116 return {Ops[0]->getType(), Ops.back()->getType()};
9117
9118 if (TypeFlags.isTupleCreate() || TypeFlags.isTupleGet())
9119 return {ResultType, Ops[0]->getType()};
9120
9121 assert(TypeFlags.isOverloadDefault() && "Unexpected value for overloads")(static_cast <bool> (TypeFlags.isOverloadDefault() &&
"Unexpected value for overloads") ? void (0) : __assert_fail
("TypeFlags.isOverloadDefault() && \"Unexpected value for overloads\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 9121, __extension__ __PRETTY_FUNCTION__
))
;
9122 return {DefaultType};
9123}
9124
9125Value *CodeGenFunction::EmitAArch64SVEBuiltinExpr(unsigned BuiltinID,
9126 const CallExpr *E) {
9127 // Find out if any arguments are required to be integer constant expressions.
9128 unsigned ICEArguments = 0;
9129 ASTContext::GetBuiltinTypeError Error;
9130 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
9131 assert(Error == ASTContext::GE_None && "Should not codegen an error")(static_cast <bool> (Error == ASTContext::GE_None &&
"Should not codegen an error") ? void (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 9131, __extension__ __PRETTY_FUNCTION__
))
;
9132
9133 llvm::Type *Ty = ConvertType(E->getType());
9134 if (BuiltinID >= SVE::BI__builtin_sve_reinterpret_s8_s8 &&
9135 BuiltinID <= SVE::BI__builtin_sve_reinterpret_f64_f64) {
9136 Value *Val = EmitScalarExpr(E->getArg(0));
9137 return EmitSVEReinterpret(Val, Ty);
9138 }
9139
9140 llvm::SmallVector<Value *, 4> Ops;
9141 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
9142 if ((ICEArguments & (1 << i)) == 0)
9143 Ops.push_back(EmitScalarExpr(E->getArg(i)));
9144 else {
9145 // If this is required to be a constant, constant fold it so that we know
9146 // that the generated intrinsic gets a ConstantInt.
9147 Optional<llvm::APSInt> Result =
9148 E->getArg(i)->getIntegerConstantExpr(getContext());
9149 assert(Result && "Expected argument to be a constant")(static_cast <bool> (Result && "Expected argument to be a constant"
) ? void (0) : __assert_fail ("Result && \"Expected argument to be a constant\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 9149, __extension__ __PRETTY_FUNCTION__
))
;
9150
9151 // Immediates for SVE llvm intrinsics are always 32bit. We can safely
9152 // truncate because the immediate has been range checked and no valid
9153 // immediate requires more than a handful of bits.
9154 *Result = Result->extOrTrunc(32);
9155 Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), *Result));
9156 }
9157 }
9158
9159 auto *Builtin = findARMVectorIntrinsicInMap(AArch64SVEIntrinsicMap, BuiltinID,
9160 AArch64SVEIntrinsicsProvenSorted);
9161 SVETypeFlags TypeFlags(Builtin->TypeModifier);
9162 if (TypeFlags.isLoad())
9163 return EmitSVEMaskedLoad(E, Ty, Ops, Builtin->LLVMIntrinsic,
9164 TypeFlags.isZExtReturn());
9165 else if (TypeFlags.isStore())
9166 return EmitSVEMaskedStore(E, Ops, Builtin->LLVMIntrinsic);
9167 else if (TypeFlags.isGatherLoad())
9168 return EmitSVEGatherLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
9169 else if (TypeFlags.isScatterStore())
9170 return EmitSVEScatterStore(TypeFlags, Ops, Builtin->LLVMIntrinsic);
9171 else if (TypeFlags.isPrefetch())
9172 return EmitSVEPrefetchLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
9173 else if (TypeFlags.isGatherPrefetch())
9174 return EmitSVEGatherPrefetch(TypeFlags, Ops, Builtin->LLVMIntrinsic);
9175 else if (TypeFlags.isStructLoad())
9176 return EmitSVEStructLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
9177 else if (TypeFlags.isStructStore())
9178 return EmitSVEStructStore(TypeFlags, Ops, Builtin->LLVMIntrinsic);
9179 else if (TypeFlags.isUndef())
9180 return UndefValue::get(Ty);
9181 else if (Builtin->LLVMIntrinsic != 0) {
9182 if (TypeFlags.getMergeType() == SVETypeFlags::MergeZeroExp)
9183 InsertExplicitZeroOperand(Builder, Ty, Ops);
9184
9185 if (TypeFlags.getMergeType() == SVETypeFlags::MergeAnyExp)
9186 InsertExplicitUndefOperand(Builder, Ty, Ops);
9187
9188 // Some ACLE builtins leave out the argument to specify the predicate
9189 // pattern, which is expected to be expanded to an SV_ALL pattern.
9190 if (TypeFlags.isAppendSVALL())
9191 Ops.push_back(Builder.getInt32(/*SV_ALL*/ 31));
9192 if (TypeFlags.isInsertOp1SVALL())
9193 Ops.insert(&Ops[1], Builder.getInt32(/*SV_ALL*/ 31));
9194
9195 // Predicates must match the main datatype.
9196 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
9197 if (auto PredTy = dyn_cast<llvm::VectorType>(Ops[i]->getType()))
9198 if (PredTy->getElementType()->isIntegerTy(1))
9199 Ops[i] = EmitSVEPredicateCast(Ops[i], getSVEType(TypeFlags));
9200
9201 // Splat scalar operand to vector (intrinsics with _n infix)
9202 if (TypeFlags.hasSplatOperand()) {
9203 unsigned OpNo = TypeFlags.getSplatOperand();
9204 Ops[OpNo] = EmitSVEDupX(Ops[OpNo]);
9205 }
9206
9207 if (TypeFlags.isReverseCompare())
9208 std::swap(Ops[1], Ops[2]);
9209
9210 if (TypeFlags.isReverseUSDOT())
9211 std::swap(Ops[1], Ops[2]);
9212
9213 // Predicated intrinsics with _z suffix need a select w/ zeroinitializer.
9214 if (TypeFlags.getMergeType() == SVETypeFlags::MergeZero) {
9215 llvm::Type *OpndTy = Ops[1]->getType();
9216 auto *SplatZero = Constant::getNullValue(OpndTy);
9217 Function *Sel = CGM.getIntrinsic(Intrinsic::aarch64_sve_sel, OpndTy);
9218 Ops[1] = Builder.CreateCall(Sel, {Ops[0], Ops[1], SplatZero});
9219 }
9220
9221 Function *F = CGM.getIntrinsic(Builtin->LLVMIntrinsic,
9222 getSVEOverloadTypes(TypeFlags, Ty, Ops));
9223 Value *Call = Builder.CreateCall(F, Ops);
9224
9225 // Predicate results must be converted to svbool_t.
9226 if (auto PredTy = dyn_cast<llvm::VectorType>(Call->getType()))
9227 if (PredTy->getScalarType()->isIntegerTy(1))
9228 Call = EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty));
9229
9230 return Call;
9231 }
9232
9233 switch (BuiltinID) {
9234 default:
9235 return nullptr;
9236
9237 case SVE::BI__builtin_sve_svmov_b_z: {
9238 // svmov_b_z(pg, op) <=> svand_b_z(pg, op, op)
9239 SVETypeFlags TypeFlags(Builtin->TypeModifier);
9240 llvm::Type* OverloadedTy = getSVEType(TypeFlags);
9241 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_and_z, OverloadedTy);
9242 return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[1]});
9243 }
9244
9245 case SVE::BI__builtin_sve_svnot_b_z: {
9246 // svnot_b_z(pg, op) <=> sveor_b_z(pg, op, pg)
9247 SVETypeFlags TypeFlags(Builtin->TypeModifier);
9248 llvm::Type* OverloadedTy = getSVEType(TypeFlags);
9249 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_eor_z, OverloadedTy);
9250 return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[0]});
9251 }
9252
9253 case SVE::BI__builtin_sve_svmovlb_u16:
9254 case SVE::BI__builtin_sve_svmovlb_u32:
9255 case SVE::BI__builtin_sve_svmovlb_u64:
9256 return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllb);
9257
9258 case SVE::BI__builtin_sve_svmovlb_s16:
9259 case SVE::BI__builtin_sve_svmovlb_s32:
9260 case SVE::BI__builtin_sve_svmovlb_s64:
9261 return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllb);
9262
9263 case SVE::BI__builtin_sve_svmovlt_u16:
9264 case SVE::BI__builtin_sve_svmovlt_u32:
9265 case SVE::BI__builtin_sve_svmovlt_u64:
9266 return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllt);
9267
9268 case SVE::BI__builtin_sve_svmovlt_s16:
9269 case SVE::BI__builtin_sve_svmovlt_s32:
9270 case SVE::BI__builtin_sve_svmovlt_s64:
9271 return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllt);
9272
9273 case SVE::BI__builtin_sve_svpmullt_u16:
9274 case SVE::BI__builtin_sve_svpmullt_u64:
9275 case SVE::BI__builtin_sve_svpmullt_n_u16:
9276 case SVE::BI__builtin_sve_svpmullt_n_u64:
9277 return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullt_pair);
9278
9279 case SVE::BI__builtin_sve_svpmullb_u16:
9280 case SVE::BI__builtin_sve_svpmullb_u64:
9281 case SVE::BI__builtin_sve_svpmullb_n_u16:
9282 case SVE::BI__builtin_sve_svpmullb_n_u64:
9283 return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullb_pair);
9284
9285 case SVE::BI__builtin_sve_svdup_n_b8:
9286 case SVE::BI__builtin_sve_svdup_n_b16:
9287 case SVE::BI__builtin_sve_svdup_n_b32:
9288 case SVE::BI__builtin_sve_svdup_n_b64: {
9289 Value *CmpNE =
9290 Builder.CreateICmpNE(Ops[0], Constant::getNullValue(Ops[0]->getType()));
9291 llvm::ScalableVectorType *OverloadedTy = getSVEType(TypeFlags);
9292 Value *Dup = EmitSVEDupX(CmpNE, OverloadedTy);
9293 return EmitSVEPredicateCast(Dup, cast<llvm::ScalableVectorType>(Ty));
9294 }
9295
9296 case SVE::BI__builtin_sve_svdupq_n_b8:
9297 case SVE::BI__builtin_sve_svdupq_n_b16:
9298 case SVE::BI__builtin_sve_svdupq_n_b32:
9299 case SVE::BI__builtin_sve_svdupq_n_b64:
9300 case SVE::BI__builtin_sve_svdupq_n_u8:
9301 case SVE::BI__builtin_sve_svdupq_n_s8:
9302 case SVE::BI__builtin_sve_svdupq_n_u64:
9303 case SVE::BI__builtin_sve_svdupq_n_f64:
9304 case SVE::BI__builtin_sve_svdupq_n_s64:
9305 case SVE::BI__builtin_sve_svdupq_n_u16:
9306 case SVE::BI__builtin_sve_svdupq_n_f16:
9307 case SVE::BI__builtin_sve_svdupq_n_bf16:
9308 case SVE::BI__builtin_sve_svdupq_n_s16:
9309 case SVE::BI__builtin_sve_svdupq_n_u32:
9310 case SVE::BI__builtin_sve_svdupq_n_f32:
9311 case SVE::BI__builtin_sve_svdupq_n_s32: {
9312 // These builtins are implemented by storing each element to an array and using
9313 // ld1rq to materialize a vector.
9314 unsigned NumOpnds = Ops.size();
9315
9316 bool IsBoolTy =
9317 cast<llvm::VectorType>(Ty)->getElementType()->isIntegerTy(1);
9318
9319 // For svdupq_n_b* the element type of is an integer of type 128/numelts,
9320 // so that the compare can use the width that is natural for the expected
9321 // number of predicate lanes.
9322 llvm::Type *EltTy = Ops[0]->getType();
9323 if (IsBoolTy)
9324 EltTy = IntegerType::get(getLLVMContext(), SVEBitsPerBlock / NumOpnds);
9325
9326 SmallVector<llvm::Value *, 16> VecOps;
9327 for (unsigned I = 0; I < NumOpnds; ++I)
9328 VecOps.push_back(Builder.CreateZExt(Ops[I], EltTy));
9329 Value *Vec = BuildVector(VecOps);
9330
9331 SVETypeFlags TypeFlags(Builtin->TypeModifier);
9332 Value *Pred = EmitSVEAllTruePred(TypeFlags);
9333
9334 llvm::Type *OverloadedTy = getSVEVectorForElementType(EltTy);
9335 Value *InsertSubVec = Builder.CreateInsertVector(
9336 OverloadedTy, UndefValue::get(OverloadedTy), Vec, Builder.getInt64(0));
9337
9338 Function *F =
9339 CGM.getIntrinsic(Intrinsic::aarch64_sve_dupq_lane, OverloadedTy);
9340 Value *DupQLane =
9341 Builder.CreateCall(F, {InsertSubVec, Builder.getInt64(0)});
9342
9343 if (!IsBoolTy)
9344 return DupQLane;
9345
9346 // For svdupq_n_b* we need to add an additional 'cmpne' with '0'.
9347 F = CGM.getIntrinsic(NumOpnds == 2 ? Intrinsic::aarch64_sve_cmpne
9348 : Intrinsic::aarch64_sve_cmpne_wide,
9349 OverloadedTy);
9350 Value *Call = Builder.CreateCall(
9351 F, {Pred, DupQLane, EmitSVEDupX(Builder.getInt64(0))});
9352 return EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty));
9353 }
9354
9355 case SVE::BI__builtin_sve_svpfalse_b:
9356 return ConstantInt::getFalse(Ty);
9357
9358 case SVE::BI__builtin_sve_svlen_bf16:
9359 case SVE::BI__builtin_sve_svlen_f16:
9360 case SVE::BI__builtin_sve_svlen_f32:
9361 case SVE::BI__builtin_sve_svlen_f64:
9362 case SVE::BI__builtin_sve_svlen_s8:
9363 case SVE::BI__builtin_sve_svlen_s16:
9364 case SVE::BI__builtin_sve_svlen_s32:
9365 case SVE::BI__builtin_sve_svlen_s64:
9366 case SVE::BI__builtin_sve_svlen_u8:
9367 case SVE::BI__builtin_sve_svlen_u16:
9368 case SVE::BI__builtin_sve_svlen_u32:
9369 case SVE::BI__builtin_sve_svlen_u64: {
9370 SVETypeFlags TF(Builtin->TypeModifier);
9371 auto VTy = cast<llvm::VectorType>(getSVEType(TF));
9372 auto *NumEls =
9373 llvm::ConstantInt::get(Ty, VTy->getElementCount().getKnownMinValue());
9374
9375 Function *F = CGM.getIntrinsic(Intrinsic::vscale, Ty);
9376 return Builder.CreateMul(NumEls, Builder.CreateCall(F));
9377 }
9378
9379 case SVE::BI__builtin_sve_svtbl2_u8:
9380 case SVE::BI__builtin_sve_svtbl2_s8:
9381 case SVE::BI__builtin_sve_svtbl2_u16:
9382 case SVE::BI__builtin_sve_svtbl2_s16:
9383 case SVE::BI__builtin_sve_svtbl2_u32:
9384 case SVE::BI__builtin_sve_svtbl2_s32:
9385 case SVE::BI__builtin_sve_svtbl2_u64:
9386 case SVE::BI__builtin_sve_svtbl2_s64:
9387 case SVE::BI__builtin_sve_svtbl2_f16:
9388 case SVE::BI__builtin_sve_svtbl2_bf16:
9389 case SVE::BI__builtin_sve_svtbl2_f32:
9390 case SVE::BI__builtin_sve_svtbl2_f64: {
9391 SVETypeFlags TF(Builtin->TypeModifier);
9392 auto VTy = cast<llvm::VectorType>(getSVEType(TF));
9393 auto TupleTy = llvm::VectorType::getDoubleElementsVectorType(VTy);
9394 Function *FExtr =
9395 CGM.getIntrinsic(Intrinsic::aarch64_sve_tuple_get, {VTy, TupleTy});
9396 Value *V0 = Builder.CreateCall(FExtr, {Ops[0], Builder.getInt32(0)});
9397 Value *V1 = Builder.CreateCall(FExtr, {Ops[0], Builder.getInt32(1)});
9398 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_tbl2, VTy);
9399 return Builder.CreateCall(F, {V0, V1, Ops[1]});
9400 }
9401
9402 case SVE::BI__builtin_sve_svset_neonq_s8:
9403 case SVE::BI__builtin_sve_svset_neonq_s16:
9404 case SVE::BI__builtin_sve_svset_neonq_s32:
9405 case SVE::BI__builtin_sve_svset_neonq_s64:
9406 case SVE::BI__builtin_sve_svset_neonq_u8:
9407 case SVE::BI__builtin_sve_svset_neonq_u16:
9408 case SVE::BI__builtin_sve_svset_neonq_u32:
9409 case SVE::BI__builtin_sve_svset_neonq_u64:
9410 case SVE::BI__builtin_sve_svset_neonq_f16:
9411 case SVE::BI__builtin_sve_svset_neonq_f32:
9412 case SVE::BI__builtin_sve_svset_neonq_f64:
9413 case SVE::BI__builtin_sve_svset_neonq_bf16: {
9414 return Builder.CreateInsertVector(Ty, Ops[0], Ops[1], Builder.getInt64(0));
9415 }
9416
9417 case SVE::BI__builtin_sve_svget_neonq_s8:
9418 case SVE::BI__builtin_sve_svget_neonq_s16:
9419 case SVE::BI__builtin_sve_svget_neonq_s32:
9420 case SVE::BI__builtin_sve_svget_neonq_s64:
9421 case SVE::BI__builtin_sve_svget_neonq_u8:
9422 case SVE::BI__builtin_sve_svget_neonq_u16:
9423 case SVE::BI__builtin_sve_svget_neonq_u32:
9424 case SVE::BI__builtin_sve_svget_neonq_u64:
9425 case SVE::BI__builtin_sve_svget_neonq_f16:
9426 case SVE::BI__builtin_sve_svget_neonq_f32:
9427 case SVE::BI__builtin_sve_svget_neonq_f64:
9428 case SVE::BI__builtin_sve_svget_neonq_bf16: {
9429 return Builder.CreateExtractVector(Ty, Ops[0], Builder.getInt64(0));
9430 }
9431
9432 case SVE::BI__builtin_sve_svdup_neonq_s8:
9433 case SVE::BI__builtin_sve_svdup_neonq_s16:
9434 case SVE::BI__builtin_sve_svdup_neonq_s32:
9435 case SVE::BI__builtin_sve_svdup_neonq_s64:
9436 case SVE::BI__builtin_sve_svdup_neonq_u8:
9437 case SVE::BI__builtin_sve_svdup_neonq_u16:
9438 case SVE::BI__builtin_sve_svdup_neonq_u32:
9439 case SVE::BI__builtin_sve_svdup_neonq_u64:
9440 case SVE::BI__builtin_sve_svdup_neonq_f16:
9441 case SVE::BI__builtin_sve_svdup_neonq_f32:
9442 case SVE::BI__builtin_sve_svdup_neonq_f64:
9443 case SVE::BI__builtin_sve_svdup_neonq_bf16: {
9444 Value *Insert = Builder.CreateInsertVector(Ty, UndefValue::get(Ty), Ops[0],
9445 Builder.getInt64(0));
9446 return Builder.CreateIntrinsic(Intrinsic::aarch64_sve_dupq_lane, {Ty},
9447 {Insert, Builder.getInt64(0)});
9448 }
9449 }
9450
9451 /// Should not happen
9452 return nullptr;
9453}
9454
9455Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
9456 const CallExpr *E,
9457 llvm::Triple::ArchType Arch) {
9458 if (BuiltinID >= AArch64::FirstSVEBuiltin &&
9459 BuiltinID <= AArch64::LastSVEBuiltin)
9460 return EmitAArch64SVEBuiltinExpr(BuiltinID, E);
9461
9462 unsigned HintID = static_cast<unsigned>(-1);
9463 switch (BuiltinID) {
9464 default: break;
9465 case AArch64::BI__builtin_arm_nop:
9466 HintID = 0;
9467 break;
9468 case AArch64::BI__builtin_arm_yield:
9469 case AArch64::BI__yield:
9470 HintID = 1;
9471 break;
9472 case AArch64::BI__builtin_arm_wfe:
9473 case AArch64::BI__wfe:
9474 HintID = 2;
9475 break;
9476 case AArch64::BI__builtin_arm_wfi:
9477 case AArch64::BI__wfi:
9478 HintID = 3;
9479 break;
9480 case AArch64::BI__builtin_arm_sev:
9481 case AArch64::BI__sev:
9482 HintID = 4;
9483 break;
9484 case AArch64::BI__builtin_arm_sevl:
9485 case AArch64::BI__sevl:
9486 HintID = 5;
9487 break;
9488 }
9489
9490 if (HintID != static_cast<unsigned>(-1)) {
9491 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint);
9492 return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID));
9493 }
9494
9495 if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
9496 Value *Address = EmitScalarExpr(E->getArg(0));
9497 Value *RW = EmitScalarExpr(E->getArg(1));
9498 Value *CacheLevel = EmitScalarExpr(E->getArg(2));
9499 Value *RetentionPolicy = EmitScalarExpr(E->getArg(3));
9500 Value *IsData = EmitScalarExpr(E->getArg(4));
9501
9502 Value *Locality = nullptr;
9503 if (cast<llvm::ConstantInt>(RetentionPolicy)->isZero()) {
9504 // Temporal fetch, needs to convert cache level to locality.
9505 Locality = llvm::ConstantInt::get(Int32Ty,
9506 -cast<llvm::ConstantInt>(CacheLevel)->getValue() + 3);
9507 } else {
9508 // Streaming fetch.
9509 Locality = llvm::ConstantInt::get(Int32Ty, 0);
9510 }
9511
9512 // FIXME: We need AArch64 specific LLVM intrinsic if we want to specify
9513 // PLDL3STRM or PLDL2STRM.
9514 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
9515 return Builder.CreateCall(F, {Address, RW, Locality, IsData});
9516 }
9517
9518 if (BuiltinID == AArch64::BI__builtin_arm_rbit) {
9519 assert((getContext().getTypeSize(E->getType()) == 32) &&(static_cast <bool> ((getContext().getTypeSize(E->getType
()) == 32) && "rbit of unusual size!") ? void (0) : __assert_fail
("(getContext().getTypeSize(E->getType()) == 32) && \"rbit of unusual size!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 9520, __extension__ __PRETTY_FUNCTION__
))
9520 "rbit of unusual size!")(static_cast <bool> ((getContext().getTypeSize(E->getType
()) == 32) && "rbit of unusual size!") ? void (0) : __assert_fail
("(getContext().getTypeSize(E->getType()) == 32) && \"rbit of unusual size!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 9520, __extension__ __PRETTY_FUNCTION__
))
;
9521 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9522 return Builder.CreateCall(
9523 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
9524 }
9525 if (BuiltinID == AArch64::BI__builtin_arm_rbit64) {
9526 assert((getContext().getTypeSize(E->getType()) == 64) &&(static_cast <bool> ((getContext().getTypeSize(E->getType
()) == 64) && "rbit of unusual size!") ? void (0) : __assert_fail
("(getContext().getTypeSize(E->getType()) == 64) && \"rbit of unusual size!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 9527, __extension__ __PRETTY_FUNCTION__
))
9527 "rbit of unusual size!")(static_cast <bool> ((getContext().getTypeSize(E->getType
()) == 64) && "rbit of unusual size!") ? void (0) : __assert_fail
("(getContext().getTypeSize(E->getType()) == 64) && \"rbit of unusual size!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 9527, __extension__ __PRETTY_FUNCTION__
))
;
9528 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9529 return Builder.CreateCall(
9530 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
9531 }
9532
9533 if (BuiltinID == AArch64::BI__builtin_arm_cls) {
9534 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9535 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls), Arg,
9536 "cls");
9537 }
9538 if (BuiltinID == AArch64::BI__builtin_arm_cls64) {
9539 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9540 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls64), Arg,
9541 "cls");
9542 }
9543
9544 if (BuiltinID == AArch64::BI__builtin_arm_frint32zf ||
9545 BuiltinID == AArch64::BI__builtin_arm_frint32z) {
9546 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9547 llvm::Type *Ty = Arg->getType();
9548 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint32z, Ty),
9549 Arg, "frint32z");
9550 }
9551
9552 if (BuiltinID == AArch64::BI__builtin_arm_frint64zf ||
9553 BuiltinID == AArch64::BI__builtin_arm_frint64z) {
9554 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9555 llvm::Type *Ty = Arg->getType();
9556 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint64z, Ty),
9557 Arg, "frint64z");
9558 }
9559
9560 if (BuiltinID == AArch64::BI__builtin_arm_frint32xf ||
9561 BuiltinID == AArch64::BI__builtin_arm_frint32x) {
9562 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9563 llvm::Type *Ty = Arg->getType();
9564 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint32x, Ty),
9565 Arg, "frint32x");
9566 }
9567
9568 if (BuiltinID == AArch64::BI__builtin_arm_frint64xf ||
9569 BuiltinID == AArch64::BI__builtin_arm_frint64x) {
9570 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9571 llvm::Type *Ty = Arg->getType();
9572 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint64x, Ty),
9573 Arg, "frint64x");
9574 }
9575
9576 if (BuiltinID == AArch64::BI__builtin_arm_jcvt) {
9577 assert((getContext().getTypeSize(E->getType()) == 32) &&(static_cast <bool> ((getContext().getTypeSize(E->getType
()) == 32) && "__jcvt of unusual size!") ? void (0) :
__assert_fail ("(getContext().getTypeSize(E->getType()) == 32) && \"__jcvt of unusual size!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 9578, __extension__ __PRETTY_FUNCTION__
))
9578 "__jcvt of unusual size!")(static_cast <bool> ((getContext().getTypeSize(E->getType
()) == 32) && "__jcvt of unusual size!") ? void (0) :
__assert_fail ("(getContext().getTypeSize(E->getType()) == 32) && \"__jcvt of unusual size!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 9578, __extension__ __PRETTY_FUNCTION__
))
;
9579 llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9580 return Builder.CreateCall(
9581 CGM.getIntrinsic(Intrinsic::aarch64_fjcvtzs), Arg);
9582 }
9583
9584 if (BuiltinID == AArch64::BI__builtin_arm_ld64b ||
9585 BuiltinID == AArch64::BI__builtin_arm_st64b ||
9586 BuiltinID == AArch64::BI__builtin_arm_st64bv ||
9587 BuiltinID == AArch64::BI__builtin_arm_st64bv0) {
9588 llvm::Value *MemAddr = EmitScalarExpr(E->getArg(0));
9589 llvm::Value *ValPtr = EmitScalarExpr(E->getArg(1));
9590
9591 if (BuiltinID == AArch64::BI__builtin_arm_ld64b) {
9592 // Load from the address via an LLVM intrinsic, receiving a
9593 // tuple of 8 i64 words, and store each one to ValPtr.
9594 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_ld64b);
9595 llvm::Value *Val = Builder.CreateCall(F, MemAddr);
9596 llvm::Value *ToRet;
9597 for (size_t i = 0; i < 8; i++) {
9598 llvm::Value *ValOffsetPtr =
9599 Builder.CreateGEP(Int64Ty, ValPtr, Builder.getInt32(i));
9600 Address Addr =
9601 Address::deprecated(ValOffsetPtr, CharUnits::fromQuantity(8));
9602 ToRet = Builder.CreateStore(Builder.CreateExtractValue(Val, i), Addr);
9603 }
9604 return ToRet;
9605 } else {
9606 // Load 8 i64 words from ValPtr, and store them to the address
9607 // via an LLVM intrinsic.
9608 SmallVector<llvm::Value *, 9> Args;
9609 Args.push_back(MemAddr);
9610 for (size_t i = 0; i < 8; i++) {
9611 llvm::Value *ValOffsetPtr =
9612 Builder.CreateGEP(Int64Ty, ValPtr, Builder.getInt32(i));
9613 Address Addr =
9614 Address::deprecated(ValOffsetPtr, CharUnits::fromQuantity(8));
9615 Args.push_back(Builder.CreateLoad(Addr));
9616 }
9617
9618 auto Intr = (BuiltinID == AArch64::BI__builtin_arm_st64b
9619 ? Intrinsic::aarch64_st64b
9620 : BuiltinID == AArch64::BI__builtin_arm_st64bv
9621 ? Intrinsic::aarch64_st64bv
9622 : Intrinsic::aarch64_st64bv0);
9623 Function *F = CGM.getIntrinsic(Intr);
9624 return Builder.CreateCall(F, Args);
9625 }
9626 }
9627
9628 if (BuiltinID == AArch64::BI__builtin_arm_rndr ||
9629 BuiltinID == AArch64::BI__builtin_arm_rndrrs) {
9630
9631 auto Intr = (BuiltinID == AArch64::BI__builtin_arm_rndr
9632 ? Intrinsic::aarch64_rndr
9633 : Intrinsic::aarch64_rndrrs);
9634 Function *F = CGM.getIntrinsic(Intr);
9635 llvm::Value *Val = Builder.CreateCall(F);
9636 Value *RandomValue = Builder.CreateExtractValue(Val, 0);
9637 Value *Status = Builder.CreateExtractValue(Val, 1);
9638
9639 Address MemAddress = EmitPointerWithAlignment(E->getArg(0));
9640 Builder.CreateStore(RandomValue, MemAddress);
9641 Status = Builder.CreateZExt(Status, Int32Ty);
9642 return Status;
9643 }
9644
9645 if (BuiltinID == AArch64::BI__clear_cache) {
9646 assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments")(static_cast <bool> (E->getNumArgs() == 2 &&
"__clear_cache takes 2 arguments") ? void (0) : __assert_fail
("E->getNumArgs() == 2 && \"__clear_cache takes 2 arguments\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 9646, __extension__ __PRETTY_FUNCTION__
))
;
9647 const FunctionDecl *FD = E->getDirectCallee();
9648 Value *Ops[2];
9649 for (unsigned i = 0; i < 2; i++)
9650 Ops[i] = EmitScalarExpr(E->getArg(i));
9651 llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
9652 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
9653 StringRef Name = FD->getName();
9654 return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
9655 }
9656
9657 if ((BuiltinID == AArch64::BI__builtin_arm_ldrex ||
9658 BuiltinID == AArch64::BI__builtin_arm_ldaex) &&
9659 getContext().getTypeSize(E->getType()) == 128) {
9660 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
9661 ? Intrinsic::aarch64_ldaxp
9662 : Intrinsic::aarch64_ldxp);
9663
9664 Value *LdPtr = EmitScalarExpr(E->getArg(0));
9665 Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
9666 "ldxp");
9667
9668 Value *Val0 = Builder.CreateExtractValue(Val, 1);
9669 Value *Val1 = Builder.CreateExtractValue(Val, 0);
9670 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
9671 Val0 = Builder.CreateZExt(Val0, Int128Ty);
9672 Val1 = Builder.CreateZExt(Val1, Int128Ty);
9673
9674 Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64);
9675 Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
9676 Val = Builder.CreateOr(Val, Val1);
9677 return Builder.CreateBitCast(Val, ConvertType(E->getType()));
9678 } else if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
9679 BuiltinID == AArch64::BI__builtin_arm_ldaex) {
9680 Value *LoadAddr = EmitScalarExpr(E->getArg(0));
9681
9682 QualType Ty = E->getType();
9683 llvm::Type *RealResTy = ConvertType(Ty);
9684 llvm::Type *PtrTy = llvm::IntegerType::get(
9685 getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
9686 LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
9687
9688 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
9689 ? Intrinsic::aarch64_ldaxr
9690 : Intrinsic::aarch64_ldxr,
9691 PtrTy);
9692 Value *Val = Builder.CreateCall(F, LoadAddr, "ldxr");
9693
9694 if (RealResTy->isPointerTy())
9695 return Builder.CreateIntToPtr(Val, RealResTy);
9696
9697 llvm::Type *IntResTy = llvm::IntegerType::get(
9698 getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
9699 Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
9700 return Builder.CreateBitCast(Val, RealResTy);
9701 }
9702
9703 if ((BuiltinID == AArch64::BI__builtin_arm_strex ||
9704 BuiltinID == AArch64::BI__builtin_arm_stlex) &&
9705 getContext().getTypeSize(E->getArg(0)->getType()) == 128) {
9706 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
9707 ? Intrinsic::aarch64_stlxp
9708 : Intrinsic::aarch64_stxp);
9709 llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty);
9710
9711 Address Tmp = CreateMemTemp(E->getArg(0)->getType());
9712 EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true);
9713
9714 Tmp = Builder.CreateElementBitCast(Tmp, STy);
9715 llvm::Value *Val = Builder.CreateLoad(Tmp);
9716
9717 Value *Arg0 = Builder.CreateExtractValue(Val, 0);
9718 Value *Arg1 = Builder.CreateExtractValue(Val, 1);
9719 Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)),
9720 Int8PtrTy);
9721 return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp");
9722 }
9723
9724 if (BuiltinID == AArch64::BI__builtin_arm_strex ||
9725 BuiltinID == AArch64::BI__builtin_arm_stlex) {
9726 Value *StoreVal = EmitScalarExpr(E->getArg(0));
9727 Value *StoreAddr = EmitScalarExpr(E->getArg(1));
9728
9729 QualType Ty = E->getArg(0)->getType();
9730 llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
9731 getContext().getTypeSize(Ty));
9732 StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
9733
9734 if (StoreVal->getType()->isPointerTy())
9735 StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty);
9736 else {
9737 llvm::Type *IntTy = llvm::IntegerType::get(
9738 getLLVMContext(),
9739 CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
9740 StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
9741 StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty);
9742 }
9743
9744 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
9745 ? Intrinsic::aarch64_stlxr
9746 : Intrinsic::aarch64_stxr,
9747 StoreAddr->getType());
9748 return Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr");
9749 }
9750
9751 if (BuiltinID == AArch64::BI__getReg) {
9752 Expr::EvalResult Result;
9753 if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
9754 llvm_unreachable("Sema will ensure that the parameter is constant")::llvm::llvm_unreachable_internal("Sema will ensure that the parameter is constant"
, "clang/lib/CodeGen/CGBuiltin.cpp", 9754)
;
9755
9756 llvm::APSInt Value = Result.Val.getInt();
9757 LLVMContext &Context = CGM.getLLVMContext();
9758 std::string Reg = Value == 31 ? "sp" : "x" + toString(Value, 10);
9759
9760 llvm::Metadata *Ops[] = {llvm::MDString::get(Context, Reg)};
9761 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
9762 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
9763
9764 llvm::Function *F =
9765 CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty});
9766 return Builder.CreateCall(F, Metadata);
9767 }
9768
9769 if (BuiltinID == AArch64::BI__builtin_arm_clrex) {
9770 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex);
9771 return Builder.CreateCall(F);
9772 }
9773
9774 if (BuiltinID == AArch64::BI_ReadWriteBarrier)
9775 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
9776 llvm::SyncScope::SingleThread);
9777
9778 // CRC32
9779 Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
9780 switch (BuiltinID) {
9781 case AArch64::BI__builtin_arm_crc32b:
9782 CRCIntrinsicID = Intrinsic::aarch64_crc32b; break;
9783 case AArch64::BI__builtin_arm_crc32cb:
9784 CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break;
9785 case AArch64::BI__builtin_arm_crc32h:
9786 CRCIntrinsicID = Intrinsic::aarch64_crc32h; break;
9787 case AArch64::BI__builtin_arm_crc32ch:
9788 CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break;
9789 case AArch64::BI__builtin_arm_crc32w:
9790 CRCIntrinsicID = Intrinsic::aarch64_crc32w; break;
9791 case AArch64::BI__builtin_arm_crc32cw:
9792 CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break;
9793 case AArch64::BI__builtin_arm_crc32d:
9794 CRCIntrinsicID = Intrinsic::aarch64_crc32x; break;
9795 case AArch64::BI__builtin_arm_crc32cd:
9796 CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break;
9797 }
9798
9799 if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
9800 Value *Arg0 = EmitScalarExpr(E->getArg(0));
9801 Value *Arg1 = EmitScalarExpr(E->getArg(1));
9802 Function *F = CGM.getIntrinsic(CRCIntrinsicID);
9803
9804 llvm::Type *DataTy = F->getFunctionType()->getParamType(1);
9805 Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy);
9806
9807 return Builder.CreateCall(F, {Arg0, Arg1});
9808 }
9809
9810 // Memory Operations (MOPS)
9811 if (BuiltinID == AArch64::BI__builtin_arm_mops_memset_tag) {
9812 Value *Dst = EmitScalarExpr(E->getArg(0));
9813 Value *Val = EmitScalarExpr(E->getArg(1));
9814 Value *Size = EmitScalarExpr(E->getArg(2));
9815 Dst = Builder.CreatePointerCast(Dst, Int8PtrTy);
9816 Val = Builder.CreateTrunc(Val, Int8Ty);
9817 Size = Builder.CreateIntCast(Size, Int64Ty, false);
9818 return Builder.CreateCall(
9819 CGM.getIntrinsic(Intrinsic::aarch64_mops_memset_tag), {Dst, Val, Size});
9820 }
9821
9822 // Memory Tagging Extensions (MTE) Intrinsics
9823 Intrinsic::ID MTEIntrinsicID = Intrinsic::not_intrinsic;
9824 switch (BuiltinID) {
9825 case AArch64::BI__builtin_arm_irg:
9826 MTEIntrinsicID = Intrinsic::aarch64_irg; break;
9827 case AArch64::BI__builtin_arm_addg:
9828 MTEIntrinsicID = Intrinsic::aarch64_addg; break;
9829 case AArch64::BI__builtin_arm_gmi:
9830 MTEIntrinsicID = Intrinsic::aarch64_gmi; break;
9831 case AArch64::BI__builtin_arm_ldg:
9832 MTEIntrinsicID = Intrinsic::aarch64_ldg; break;
9833 case AArch64::BI__builtin_arm_stg:
9834 MTEIntrinsicID = Intrinsic::aarch64_stg; break;
9835 case AArch64::BI__builtin_arm_subp:
9836 MTEIntrinsicID = Intrinsic::aarch64_subp; break;
9837 }
9838
9839 if (MTEIntrinsicID != Intrinsic::not_intrinsic) {
9840 llvm::Type *T = ConvertType(E->getType());
9841
9842 if (MTEIntrinsicID == Intrinsic::aarch64_irg) {
9843 Value *Pointer = EmitScalarExpr(E->getArg(0));
9844 Value *Mask = EmitScalarExpr(E->getArg(1));
9845
9846 Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
9847 Mask = Builder.CreateZExt(Mask, Int64Ty);
9848 Value *RV = Builder.CreateCall(
9849 CGM.getIntrinsic(MTEIntrinsicID), {Pointer, Mask});
9850 return Builder.CreatePointerCast(RV, T);
9851 }
9852 if (MTEIntrinsicID == Intrinsic::aarch64_addg) {
9853 Value *Pointer = EmitScalarExpr(E->getArg(0));
9854 Value *TagOffset = EmitScalarExpr(E->getArg(1));
9855
9856 Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
9857 TagOffset = Builder.CreateZExt(TagOffset, Int64Ty);
9858 Value *RV = Builder.CreateCall(
9859 CGM.getIntrinsic(MTEIntrinsicID), {Pointer, TagOffset});
9860 return Builder.CreatePointerCast(RV, T);
9861 }
9862 if (MTEIntrinsicID == Intrinsic::aarch64_gmi) {
9863 Value *Pointer = EmitScalarExpr(E->getArg(0));
9864 Value *ExcludedMask = EmitScalarExpr(E->getArg(1));
9865
9866 ExcludedMask = Builder.CreateZExt(ExcludedMask, Int64Ty);
9867 Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
9868 return Builder.CreateCall(
9869 CGM.getIntrinsic(MTEIntrinsicID), {Pointer, ExcludedMask});
9870 }
9871 // Although it is possible to supply a different return
9872 // address (first arg) to this intrinsic, for now we set
9873 // return address same as input address.
9874 if (MTEIntrinsicID == Intrinsic::aarch64_ldg) {
9875 Value *TagAddress = EmitScalarExpr(E->getArg(0));
9876 TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
9877 Value *RV = Builder.CreateCall(
9878 CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
9879 return Builder.CreatePointerCast(RV, T);
9880 }
9881 // Although it is possible to supply a different tag (to set)
9882 // to this intrinsic (as first arg), for now we supply
9883 // the tag that is in input address arg (common use case).
9884 if (MTEIntrinsicID == Intrinsic::aarch64_stg) {
9885 Value *TagAddress = EmitScalarExpr(E->getArg(0));
9886 TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
9887 return Builder.CreateCall(
9888 CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
9889 }
9890 if (MTEIntrinsicID == Intrinsic::aarch64_subp) {
9891 Value *PointerA = EmitScalarExpr(E->getArg(0));
9892 Value *PointerB = EmitScalarExpr(E->getArg(1));
9893 PointerA = Builder.CreatePointerCast(PointerA, Int8PtrTy);
9894 PointerB = Builder.CreatePointerCast(PointerB, Int8PtrTy);
9895 return Builder.CreateCall(
9896 CGM.getIntrinsic(MTEIntrinsicID), {PointerA, PointerB});
9897 }
9898 }
9899
9900 if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
9901 BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
9902 BuiltinID == AArch64::BI__builtin_arm_rsrp ||
9903 BuiltinID == AArch64::BI__builtin_arm_wsr ||
9904 BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
9905 BuiltinID == AArch64::BI__builtin_arm_wsrp) {
9906
9907 SpecialRegisterAccessKind AccessKind = Write;
9908 if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
9909 BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
9910 BuiltinID == AArch64::BI__builtin_arm_rsrp)
9911 AccessKind = VolatileRead;
9912
9913 bool IsPointerBuiltin = BuiltinID == AArch64::BI__builtin_arm_rsrp ||
9914 BuiltinID == AArch64::BI__builtin_arm_wsrp;
9915
9916 bool Is64Bit = BuiltinID != AArch64::BI__builtin_arm_rsr &&
9917 BuiltinID != AArch64::BI__builtin_arm_wsr;
9918
9919 llvm::Type *ValueType;
9920 llvm::Type *RegisterType = Int64Ty;
9921 if (IsPointerBuiltin) {
9922 ValueType = VoidPtrTy;
9923 } else if (Is64Bit) {
9924 ValueType = Int64Ty;
9925 } else {
9926 ValueType = Int32Ty;
9927 }
9928
9929 return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType,
9930 AccessKind);
9931 }
9932
9933 if (BuiltinID == AArch64::BI_ReadStatusReg ||
9934 BuiltinID == AArch64::BI_WriteStatusReg) {
9935 LLVMContext &Context = CGM.getLLVMContext();
9936
9937 unsigned SysReg =
9938 E->getArg(0)->EvaluateKnownConstInt(getContext()).getZExtValue();
9939
9940 std::string SysRegStr;
9941 llvm::raw_string_ostream(SysRegStr) <<
9942 ((1 << 1) | ((SysReg >> 14) & 1)) << ":" <<
9943 ((SysReg >> 11) & 7) << ":" <<
9944 ((SysReg >> 7) & 15) << ":" <<
9945 ((SysReg >> 3) & 15) << ":" <<
9946 ( SysReg & 7);
9947
9948 llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysRegStr) };
9949 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
9950 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
9951
9952 llvm::Type *RegisterType = Int64Ty;
9953 llvm::Type *Types[] = { RegisterType };
9954
9955 if (BuiltinID == AArch64::BI_ReadStatusReg) {
9956 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
9957
9958 return Builder.CreateCall(F, Metadata);
9959 }
9960
9961 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
9962 llvm::Value *ArgValue = EmitScalarExpr(E->getArg(1));
9963
9964 return Builder.CreateCall(F, { Metadata, ArgValue });
9965 }
9966
9967 if (BuiltinID == AArch64::BI_AddressOfReturnAddress) {
9968 llvm::Function *F =
9969 CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
9970 return Builder.CreateCall(F);
9971 }
9972
9973 if (BuiltinID == AArch64::BI__builtin_sponentry) {
9974 llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry, AllocaInt8PtrTy);
9975 return Builder.CreateCall(F);
9976 }
9977
9978 if (BuiltinID == AArch64::BI__mulh || BuiltinID == AArch64::BI__umulh) {
9979 llvm::Type *ResType = ConvertType(E->getType());
9980 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
9981
9982 bool IsSigned = BuiltinID == AArch64::BI__mulh;
9983 Value *LHS =
9984 Builder.CreateIntCast(EmitScalarExpr(E->getArg(0)), Int128Ty, IsSigned);
9985 Value *RHS =
9986 Builder.CreateIntCast(EmitScalarExpr(E->getArg(1)), Int128Ty, IsSigned);
9987
9988 Value *MulResult, *HigherBits;
9989 if (IsSigned) {
9990 MulResult = Builder.CreateNSWMul(LHS, RHS);
9991 HigherBits = Builder.CreateAShr(MulResult, 64);
9992 } else {
9993 MulResult = Builder.CreateNUWMul(LHS, RHS);
9994 HigherBits = Builder.CreateLShr(MulResult, 64);
9995 }
9996 HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
9997
9998 return HigherBits;
9999 }
10000
10001 // Handle MSVC intrinsics before argument evaluation to prevent double
10002 // evaluation.
10003 if (Optional<MSVCIntrin> MsvcIntId = translateAarch64ToMsvcIntrin(BuiltinID))
10004 return EmitMSVCBuiltinExpr(*MsvcIntId, E);
10005
10006 // Find out if any arguments are required to be integer constant
10007 // expressions.
10008 unsigned ICEArguments = 0;
10009 ASTContext::GetBuiltinTypeError Error;
10010 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
10011 assert(Error == ASTContext::GE_None && "Should not codegen an error")(static_cast <bool> (Error == ASTContext::GE_None &&
"Should not codegen an error") ? void (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 10011, __extension__ __PRETTY_FUNCTION__
))
;
10012
10013 llvm::SmallVector<Value*, 4> Ops;
10014 Address PtrOp0 = Address::invalid();
10015 for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
10016 if (i == 0) {
10017 switch (BuiltinID) {
10018 case NEON::BI__builtin_neon_vld1_v:
10019 case NEON::BI__builtin_neon_vld1q_v:
10020 case NEON::BI__builtin_neon_vld1_dup_v:
10021 case NEON::BI__builtin_neon_vld1q_dup_v:
10022 case NEON::BI__builtin_neon_vld1_lane_v:
10023 case NEON::BI__builtin_neon_vld1q_lane_v:
10024 case NEON::BI__builtin_neon_vst1_v:
10025 case NEON::BI__builtin_neon_vst1q_v:
10026 case NEON::BI__builtin_neon_vst1_lane_v:
10027 case NEON::BI__builtin_neon_vst1q_lane_v:
10028 // Get the alignment for the argument in addition to the value;
10029 // we'll use it later.
10030 PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
10031 Ops.push_back(PtrOp0.getPointer());
10032 continue;
10033 }
10034 }
10035 if ((ICEArguments & (1 << i)) == 0) {
10036 Ops.push_back(EmitScalarExpr(E->getArg(i)));
10037 } else {
10038 // If this is required to be a constant, constant fold it so that we know
10039 // that the generated intrinsic gets a ConstantInt.
10040 Ops.push_back(llvm::ConstantInt::get(
10041 getLLVMContext(),
10042 *E->getArg(i)->getIntegerConstantExpr(getContext())));
10043 }
10044 }
10045
10046 auto SISDMap = makeArrayRef(AArch64SISDIntrinsicMap);
10047 const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap(
10048 SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted);
10049
10050 if (Builtin) {
10051 Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1)));
10052 Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E);
10053 assert(Result && "SISD intrinsic should have been handled")(static_cast <bool> (Result && "SISD intrinsic should have been handled"
) ? void (0) : __assert_fail ("Result && \"SISD intrinsic should have been handled\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 10053, __extension__ __PRETTY_FUNCTION__
))
;
10054 return Result;
10055 }
10056
10057 const Expr *Arg = E->getArg(E->getNumArgs()-1);
10058 NeonTypeFlags Type(0);
10059 if (Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(getContext()))
10060 // Determine the type of this overloaded NEON intrinsic.
10061 Type = NeonTypeFlags(Result->getZExtValue());
10062
10063 bool usgn = Type.isUnsigned();
10064 bool quad = Type.isQuad();
10065
10066 // Handle non-overloaded intrinsics first.
10067 switch (BuiltinID) {
10068 default: break;
10069 case NEON::BI__builtin_neon_vabsh_f16:
10070 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10071 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, HalfTy), Ops, "vabs");
10072 case NEON::BI__builtin_neon_vaddq_p128: {
10073 llvm::Type *Ty = GetNeonType(this, NeonTypeFlags::Poly128);
10074 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10075 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10076 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10077 Ops[0] = Builder.CreateXor(Ops[0], Ops[1]);
10078 llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
10079 return Builder.CreateBitCast(Ops[0], Int128Ty);
10080 }
10081 case NEON::BI__builtin_neon_vldrq_p128: {
10082 llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
10083 llvm::Type *Int128PTy = llvm::PointerType::get(Int128Ty, 0);
10084 Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy);
10085 return Builder.CreateAlignedLoad(Int128Ty, Ptr,
10086 CharUnits::fromQuantity(16));
10087 }
10088 case NEON::BI__builtin_neon_vstrq_p128: {
10089 llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128);
10090 Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy);
10091 return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr);
10092 }
10093 case NEON::BI__builtin_neon_vcvts_f32_u32:
10094 case NEON::BI__builtin_neon_vcvtd_f64_u64:
10095 usgn = true;
10096 LLVM_FALLTHROUGH[[gnu::fallthrough]];
10097 case NEON::BI__builtin_neon_vcvts_f32_s32:
10098 case NEON::BI__builtin_neon_vcvtd_f64_s64: {
10099 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10100 bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
10101 llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
10102 llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
10103 Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
10104 if (usgn)
10105 return Builder.CreateUIToFP(Ops[0], FTy);
10106 return Builder.CreateSIToFP(Ops[0], FTy);
10107 }
10108 case NEON::BI__builtin_neon_vcvth_f16_u16:
10109 case NEON::BI__builtin_neon_vcvth_f16_u32:
10110 case NEON::BI__builtin_neon_vcvth_f16_u64:
10111 usgn = true;
10112 LLVM_FALLTHROUGH[[gnu::fallthrough]];
10113 case NEON::BI__builtin_neon_vcvth_f16_s16:
10114 case NEON::BI__builtin_neon_vcvth_f16_s32:
10115 case NEON::BI__builtin_neon_vcvth_f16_s64: {
10116 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10117 llvm::Type *FTy = HalfTy;
10118 llvm::Type *InTy;
10119 if (Ops[0]->getType()->getPrimitiveSizeInBits() == 64)
10120 InTy = Int64Ty;
10121 else if (Ops[0]->getType()->getPrimitiveSizeInBits() == 32)
10122 InTy = Int32Ty;
10123 else
10124 InTy = Int16Ty;
10125 Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
10126 if (usgn)
10127 return Builder.CreateUIToFP(Ops[0], FTy);
10128 return Builder.CreateSIToFP(Ops[0], FTy);
10129 }
10130 case NEON::BI__builtin_neon_vcvtah_u16_f16:
10131 case NEON::BI__builtin_neon_vcvtmh_u16_f16:
10132 case NEON::BI__builtin_neon_vcvtnh_u16_f16:
10133 case NEON::BI__builtin_neon_vcvtph_u16_f16:
10134 case NEON::BI__builtin_neon_vcvth_u16_f16:
10135 case NEON::BI__builtin_neon_vcvtah_s16_f16:
10136 case NEON::BI__builtin_neon_vcvtmh_s16_f16:
10137 case NEON::BI__builtin_neon_vcvtnh_s16_f16:
10138 case NEON::BI__builtin_neon_vcvtph_s16_f16:
10139 case NEON::BI__builtin_neon_vcvth_s16_f16: {
10140 unsigned Int;
10141 llvm::Type* InTy = Int32Ty;
10142 llvm::Type* FTy = HalfTy;
10143 llvm::Type *Tys[2] = {InTy, FTy};
10144 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10145 switch (BuiltinID) {
10146 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 10146)
;
10147 case NEON::BI__builtin_neon_vcvtah_u16_f16:
10148 Int = Intrinsic::aarch64_neon_fcvtau; break;
10149 case NEON::BI__builtin_neon_vcvtmh_u16_f16:
10150 Int = Intrinsic::aarch64_neon_fcvtmu; break;
10151 case NEON::BI__builtin_neon_vcvtnh_u16_f16:
10152 Int = Intrinsic::aarch64_neon_fcvtnu; break;
10153 case NEON::BI__builtin_neon_vcvtph_u16_f16:
10154 Int = Intrinsic::aarch64_neon_fcvtpu; break;
10155 case NEON::BI__builtin_neon_vcvth_u16_f16:
10156 Int = Intrinsic::aarch64_neon_fcvtzu; break;
10157 case NEON::BI__builtin_neon_vcvtah_s16_f16:
10158 Int = Intrinsic::aarch64_neon_fcvtas; break;
10159 case NEON::BI__builtin_neon_vcvtmh_s16_f16:
10160 Int = Intrinsic::aarch64_neon_fcvtms; break;
10161 case NEON::BI__builtin_neon_vcvtnh_s16_f16:
10162 Int = Intrinsic::aarch64_neon_fcvtns; break;
10163 case NEON::BI__builtin_neon_vcvtph_s16_f16:
10164 Int = Intrinsic::aarch64_neon_fcvtps; break;
10165 case NEON::BI__builtin_neon_vcvth_s16_f16:
10166 Int = Intrinsic::aarch64_neon_fcvtzs; break;
10167 }
10168 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvt");
10169 return Builder.CreateTrunc(Ops[0], Int16Ty);
10170 }
10171 case NEON::BI__builtin_neon_vcaleh_f16:
10172 case NEON::BI__builtin_neon_vcalth_f16:
10173 case NEON::BI__builtin_neon_vcageh_f16:
10174 case NEON::BI__builtin_neon_vcagth_f16: {
10175 unsigned Int;
10176 llvm::Type* InTy = Int32Ty;
10177 llvm::Type* FTy = HalfTy;
10178 llvm::Type *Tys[2] = {InTy, FTy};
10179 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10180 switch (BuiltinID) {
10181 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 10181)
;
10182 case NEON::BI__builtin_neon_vcageh_f16:
10183 Int = Intrinsic::aarch64_neon_facge; break;
10184 case NEON::BI__builtin_neon_vcagth_f16:
10185 Int = Intrinsic::aarch64_neon_facgt; break;
10186 case NEON::BI__builtin_neon_vcaleh_f16:
10187 Int = Intrinsic::aarch64_neon_facge; std::swap(Ops[0], Ops[1]); break;
10188 case NEON::BI__builtin_neon_vcalth_f16:
10189 Int = Intrinsic::aarch64_neon_facgt; std::swap(Ops[0], Ops[1]); break;
10190 }
10191 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "facg");
10192 return Builder.CreateTrunc(Ops[0], Int16Ty);
10193 }
10194 case NEON::BI__builtin_neon_vcvth_n_s16_f16:
10195 case NEON::BI__builtin_neon_vcvth_n_u16_f16: {
10196 unsigned Int;
10197 llvm::Type* InTy = Int32Ty;
10198 llvm::Type* FTy = HalfTy;
10199 llvm::Type *Tys[2] = {InTy, FTy};
10200 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10201 switch (BuiltinID) {
10202 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 10202)
;
10203 case NEON::BI__builtin_neon_vcvth_n_s16_f16:
10204 Int = Intrinsic::aarch64_neon_vcvtfp2fxs; break;
10205 case NEON::BI__builtin_neon_vcvth_n_u16_f16:
10206 Int = Intrinsic::aarch64_neon_vcvtfp2fxu; break;
10207 }
10208 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
10209 return Builder.CreateTrunc(Ops[0], Int16Ty);
10210 }
10211 case NEON::BI__builtin_neon_vcvth_n_f16_s16:
10212 case NEON::BI__builtin_neon_vcvth_n_f16_u16: {
10213 unsigned Int;
10214 llvm::Type* FTy = HalfTy;
10215 llvm::Type* InTy = Int32Ty;
10216 llvm::Type *Tys[2] = {FTy, InTy};
10217 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10218 switch (BuiltinID) {
10219 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 10219)
;
10220 case NEON::BI__builtin_neon_vcvth_n_f16_s16:
10221 Int = Intrinsic::aarch64_neon_vcvtfxs2fp;
10222 Ops[0] = Builder.CreateSExt(Ops[0], InTy, "sext");
10223 break;
10224 case NEON::BI__builtin_neon_vcvth_n_f16_u16:
10225 Int = Intrinsic::aarch64_neon_vcvtfxu2fp;
10226 Ops[0] = Builder.CreateZExt(Ops[0], InTy);
10227 break;
10228 }
10229 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
10230 }
10231 case NEON::BI__builtin_neon_vpaddd_s64: {
10232 auto *Ty = llvm::FixedVectorType::get(Int64Ty, 2);
10233 Value *Vec = EmitScalarExpr(E->getArg(0));
10234 // The vector is v2f64, so make sure it's bitcast to that.
10235 Vec = Builder.CreateBitCast(Vec, Ty, "v2i64");
10236 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
10237 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
10238 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
10239 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
10240 // Pairwise addition of a v2f64 into a scalar f64.
10241 return Builder.CreateAdd(Op0, Op1, "vpaddd");
10242 }
10243 case NEON::BI__builtin_neon_vpaddd_f64: {
10244 auto *Ty = llvm::FixedVectorType::get(DoubleTy, 2);
10245 Value *Vec = EmitScalarExpr(E->getArg(0));
10246 // The vector is v2f64, so make sure it's bitcast to that.
10247 Vec = Builder.CreateBitCast(Vec, Ty, "v2f64");
10248 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
10249 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
10250 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
10251 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
10252 // Pairwise addition of a v2f64 into a scalar f64.
10253 return Builder.CreateFAdd(Op0, Op1, "vpaddd");
10254 }
10255 case NEON::BI__builtin_neon_vpadds_f32: {
10256 auto *Ty = llvm::FixedVectorType::get(FloatTy, 2);
10257 Value *Vec = EmitScalarExpr(E->getArg(0));
10258 // The vector is v2f32, so make sure it's bitcast to that.
10259 Vec = Builder.CreateBitCast(Vec, Ty, "v2f32");
10260 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
10261 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
10262 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
10263 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
10264 // Pairwise addition of a v2f32 into a scalar f32.
10265 return Builder.CreateFAdd(Op0, Op1, "vpaddd");
10266 }
10267 case NEON::BI__builtin_neon_vceqzd_s64:
10268 case NEON::BI__builtin_neon_vceqzd_f64:
10269 case NEON::BI__builtin_neon_vceqzs_f32:
10270 case NEON::BI__builtin_neon_vceqzh_f16:
10271 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10272 return EmitAArch64CompareBuiltinExpr(
10273 Ops[0], ConvertType(E->getCallReturnType(getContext())),
10274 ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz");
10275 case NEON::BI__builtin_neon_vcgezd_s64:
10276 case NEON::BI__builtin_neon_vcgezd_f64:
10277 case NEON::BI__builtin_neon_vcgezs_f32:
10278 case NEON::BI__builtin_neon_vcgezh_f16:
10279 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10280 return EmitAArch64CompareBuiltinExpr(
10281 Ops[0], ConvertType(E->getCallReturnType(getContext())),
10282 ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez");
10283 case NEON::BI__builtin_neon_vclezd_s64:
10284 case NEON::BI__builtin_neon_vclezd_f64:
10285 case NEON::BI__builtin_neon_vclezs_f32:
10286 case NEON::BI__builtin_neon_vclezh_f16:
10287 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10288 return EmitAArch64CompareBuiltinExpr(
10289 Ops[0], ConvertType(E->getCallReturnType(getContext())),
10290 ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez");
10291 case NEON::BI__builtin_neon_vcgtzd_s64:
10292 case NEON::BI__builtin_neon_vcgtzd_f64:
10293 case NEON::BI__builtin_neon_vcgtzs_f32:
10294 case NEON::BI__builtin_neon_vcgtzh_f16:
10295 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10296 return EmitAArch64CompareBuiltinExpr(
10297 Ops[0], ConvertType(E->getCallReturnType(getContext())),
10298 ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz");
10299 case NEON::BI__builtin_neon_vcltzd_s64:
10300 case NEON::BI__builtin_neon_vcltzd_f64:
10301 case NEON::BI__builtin_neon_vcltzs_f32:
10302 case NEON::BI__builtin_neon_vcltzh_f16:
10303 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10304 return EmitAArch64CompareBuiltinExpr(
10305 Ops[0], ConvertType(E->getCallReturnType(getContext())),
10306 ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz");
10307
10308 case NEON::BI__builtin_neon_vceqzd_u64: {
10309 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10310 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
10311 Ops[0] =
10312 Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty));
10313 return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd");
10314 }
10315 case NEON::BI__builtin_neon_vceqd_f64:
10316 case NEON::BI__builtin_neon_vcled_f64:
10317 case NEON::BI__builtin_neon_vcltd_f64:
10318 case NEON::BI__builtin_neon_vcged_f64:
10319 case NEON::BI__builtin_neon_vcgtd_f64: {
10320 llvm::CmpInst::Predicate P;
10321 switch (BuiltinID) {
10322 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 10322)
;
10323 case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break;
10324 case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break;
10325 case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break;
10326 case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break;
10327 case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break;
10328 }
10329 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10330 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
10331 Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
10332 if (P == llvm::FCmpInst::FCMP_OEQ)
10333 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
10334 else
10335 Ops[0] = Builder.CreateFCmpS(P, Ops[0], Ops[1]);
10336 return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd");
10337 }
10338 case NEON::BI__builtin_neon_vceqs_f32:
10339 case NEON::BI__builtin_neon_vcles_f32:
10340 case NEON::BI__builtin_neon_vclts_f32:
10341 case NEON::BI__builtin_neon_vcges_f32:
10342 case NEON::BI__builtin_neon_vcgts_f32: {
10343 llvm::CmpInst::Predicate P;
10344 switch (BuiltinID) {
10345 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 10345)
;
10346 case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break;
10347 case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break;
10348 case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break;
10349 case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break;
10350 case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break;
10351 }
10352 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10353 Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
10354 Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy);
10355 if (P == llvm::FCmpInst::FCMP_OEQ)
10356 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
10357 else
10358 Ops[0] = Builder.CreateFCmpS(P, Ops[0], Ops[1]);
10359 return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd");
10360 }
10361 case NEON::BI__builtin_neon_vceqh_f16:
10362 case NEON::BI__builtin_neon_vcleh_f16:
10363 case NEON::BI__builtin_neon_vclth_f16:
10364 case NEON::BI__builtin_neon_vcgeh_f16:
10365 case NEON::BI__builtin_neon_vcgth_f16: {
10366 llvm::CmpInst::Predicate P;
10367 switch (BuiltinID) {
10368 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 10368)
;
10369 case NEON::BI__builtin_neon_vceqh_f16: P = llvm::FCmpInst::FCMP_OEQ; break;
10370 case NEON::BI__builtin_neon_vcleh_f16: P = llvm::FCmpInst::FCMP_OLE; break;
10371 case NEON::BI__builtin_neon_vclth_f16: P = llvm::FCmpInst::FCMP_OLT; break;
10372 case NEON::BI__builtin_neon_vcgeh_f16: P = llvm::FCmpInst::FCMP_OGE; break;
10373 case NEON::BI__builtin_neon_vcgth_f16: P = llvm::FCmpInst::FCMP_OGT; break;
10374 }
10375 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10376 Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
10377 Ops[1] = Builder.CreateBitCast(Ops[1], HalfTy);
10378 if (P == llvm::FCmpInst::FCMP_OEQ)
10379 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
10380 else
10381 Ops[0] = Builder.CreateFCmpS(P, Ops[0], Ops[1]);
10382 return Builder.CreateSExt(Ops[0], Int16Ty, "vcmpd");
10383 }
10384 case NEON::BI__builtin_neon_vceqd_s64:
10385 case NEON::BI__builtin_neon_vceqd_u64:
10386 case NEON::BI__builtin_neon_vcgtd_s64:
10387 case NEON::BI__builtin_neon_vcgtd_u64:
10388 case NEON::BI__builtin_neon_vcltd_s64:
10389 case NEON::BI__builtin_neon_vcltd_u64:
10390 case NEON::BI__builtin_neon_vcged_u64:
10391 case NEON::BI__builtin_neon_vcged_s64:
10392 case NEON::BI__builtin_neon_vcled_u64:
10393 case NEON::BI__builtin_neon_vcled_s64: {
10394 llvm::CmpInst::Predicate P;
10395 switch (BuiltinID) {
10396 default: llvm_unreachable("missing builtin ID in switch!")::llvm::llvm_unreachable_internal("missing builtin ID in switch!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 10396)
;
10397 case NEON::BI__builtin_neon_vceqd_s64:
10398 case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break;
10399 case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break;
10400 case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break;
10401 case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break;
10402 case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break;
10403 case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break;
10404 case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break;
10405 case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break;
10406 case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break;
10407 }
10408 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10409 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
10410 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
10411 Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]);
10412 return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd");
10413 }
10414 case NEON::BI__builtin_neon_vtstd_s64:
10415 case NEON::BI__builtin_neon_vtstd_u64: {
10416 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10417 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
10418 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
10419 Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
10420 Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
10421 llvm::Constant::getNullValue(Int64Ty));
10422 return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd");
10423 }
10424 case NEON::BI__builtin_neon_vset_lane_i8:
10425 case NEON::BI__builtin_neon_vset_lane_i16:
10426 case NEON::BI__builtin_neon_vset_lane_i32:
10427 case NEON::BI__builtin_neon_vset_lane_i64:
10428 case NEON::BI__builtin_neon_vset_lane_bf16:
10429 case NEON::BI__builtin_neon_vset_lane_f32:
10430 case NEON::BI__builtin_neon_vsetq_lane_i8:
10431 case NEON::BI__builtin_neon_vsetq_lane_i16:
10432 case NEON::BI__builtin_neon_vsetq_lane_i32:
10433 case NEON::BI__builtin_neon_vsetq_lane_i64:
10434 case NEON::BI__builtin_neon_vsetq_lane_bf16:
10435 case NEON::BI__builtin_neon_vsetq_lane_f32:
10436 Ops.push_back(EmitScalarExpr(E->getArg(2)));
10437 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
10438 case NEON::BI__builtin_neon_vset_lane_f64:
10439 // The vector type needs a cast for the v1f64 variant.
10440 Ops[1] =
10441 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 1));
10442 Ops.push_back(EmitScalarExpr(E->getArg(2)));
10443 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
10444 case NEON::BI__builtin_neon_vsetq_lane_f64:
10445 // The vector type needs a cast for the v2f64 variant.
10446 Ops[1] =
10447 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 2));
10448 Ops.push_back(EmitScalarExpr(E->getArg(2)));
10449 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
10450
10451 case NEON::BI__builtin_neon_vget_lane_i8:
10452 case NEON::BI__builtin_neon_vdupb_lane_i8:
10453 Ops[0] =
10454 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 8));
10455 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10456 "vget_lane");
10457 case NEON::BI__builtin_neon_vgetq_lane_i8:
10458 case NEON::BI__builtin_neon_vdupb_laneq_i8:
10459 Ops[0] =
10460 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 16));
10461 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10462 "vgetq_lane");
10463 case NEON::BI__builtin_neon_vget_lane_i16:
10464 case NEON::BI__builtin_neon_vduph_lane_i16:
10465 Ops[0] =
10466 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 4));
10467 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10468 "vget_lane");
10469 case NEON::BI__builtin_neon_vgetq_lane_i16:
10470 case NEON::BI__builtin_neon_vduph_laneq_i16:
10471 Ops[0] =
10472 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 8));
10473 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10474 "vgetq_lane");
10475 case NEON::BI__builtin_neon_vget_lane_i32:
10476 case NEON::BI__builtin_neon_vdups_lane_i32:
10477 Ops[0] =
10478 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 2));
10479 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10480 "vget_lane");
10481 case NEON::BI__builtin_neon_vdups_lane_f32:
10482 Ops[0] =
10483 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2));
10484 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10485 "vdups_lane");
10486 case NEON::BI__builtin_neon_vgetq_lane_i32:
10487 case NEON::BI__builtin_neon_vdups_laneq_i32:
10488 Ops[0] =
10489 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4));
10490 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10491 "vgetq_lane");
10492 case NEON::BI__builtin_neon_vget_lane_i64:
10493 case NEON::BI__builtin_neon_vdupd_lane_i64:
10494 Ops[0] =
10495 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 1));
10496 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10497 "vget_lane");
10498 case NEON::BI__builtin_neon_vdupd_lane_f64:
10499 Ops[0] =
10500 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1));
10501 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10502 "vdupd_lane");
10503 case NEON::BI__builtin_neon_vgetq_lane_i64:
10504 case NEON::BI__builtin_neon_vdupd_laneq_i64:
10505 Ops[0] =
10506 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
10507 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10508 "vgetq_lane");
10509 case NEON::BI__builtin_neon_vget_lane_f32:
10510 Ops[0] =
10511 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2));
10512 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10513 "vget_lane");
10514 case NEON::BI__builtin_neon_vget_lane_f64:
10515 Ops[0] =
10516 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1));
10517 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10518 "vget_lane");
10519 case NEON::BI__builtin_neon_vgetq_lane_f32:
10520 case NEON::BI__builtin_neon_vdups_laneq_f32:
10521 Ops[0] =
10522 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 4));
10523 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10524 "vgetq_lane");
10525 case NEON::BI__builtin_neon_vgetq_lane_f64:
10526 case NEON::BI__builtin_neon_vdupd_laneq_f64:
10527 Ops[0] =
10528 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 2));
10529 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10530 "vgetq_lane");
10531 case NEON::BI__builtin_neon_vaddh_f16:
10532 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10533 return Builder.CreateFAdd(Ops[0], Ops[1], "vaddh");
10534 case NEON::BI__builtin_neon_vsubh_f16:
10535 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10536 return Builder.CreateFSub(Ops[0], Ops[1], "vsubh");
10537 case NEON::BI__builtin_neon_vmulh_f16:
10538 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10539 return Builder.CreateFMul(Ops[0], Ops[1], "vmulh");
10540 case NEON::BI__builtin_neon_vdivh_f16:
10541 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10542 return Builder.CreateFDiv(Ops[0], Ops[1], "vdivh");
10543 case NEON::BI__builtin_neon_vfmah_f16:
10544 // NEON intrinsic puts accumulator first, unlike the LLVM fma.
10545 return emitCallMaybeConstrainedFPBuiltin(
10546 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy,
10547 {EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), Ops[0]});
10548 case NEON::BI__builtin_neon_vfmsh_f16: {
10549 // FIXME: This should be an fneg instruction:
10550 Value *Zero = llvm::ConstantFP::getZeroValueForNegation(HalfTy);
10551 Value* Sub = Builder.CreateFSub(Zero, EmitScalarExpr(E->getArg(1)), "vsubh");
10552
10553 // NEON intrinsic puts accumulator first, unlike the LLVM fma.
10554 return emitCallMaybeConstrainedFPBuiltin(
10555 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy,
10556 {Sub, EmitScalarExpr(E->getArg(2)), Ops[0]});
10557 }
10558 case NEON::BI__builtin_neon_vaddd_s64:
10559 case NEON::BI__builtin_neon_vaddd_u64:
10560 return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd");
10561 case NEON::BI__builtin_neon_vsubd_s64:
10562 case NEON::BI__builtin_neon_vsubd_u64:
10563 return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd");
10564 case NEON::BI__builtin_neon_vqdmlalh_s16:
10565 case NEON::BI__builtin_neon_vqdmlslh_s16: {
10566 SmallVector<Value *, 2> ProductOps;
10567 ProductOps.push_back(vectorWrapScalar16(Ops[1]));
10568 ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2))));
10569 auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4);
10570 Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
10571 ProductOps, "vqdmlXl");
10572 Constant *CI = ConstantInt::get(SizeTy, 0);
10573 Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
10574
10575 unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16
10576 ? Intrinsic::aarch64_neon_sqadd
10577 : Intrinsic::aarch64_neon_sqsub;
10578 return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl");
10579 }
10580 case NEON::BI__builtin_neon_vqshlud_n_s64: {
10581 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10582 Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
10583 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty),
10584 Ops, "vqshlu_n");
10585 }
10586 case NEON::BI__builtin_neon_vqshld_n_u64:
10587 case NEON::BI__builtin_neon_vqshld_n_s64: {
10588 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64
10589 ? Intrinsic::aarch64_neon_uqshl
10590 : Intrinsic::aarch64_neon_sqshl;
10591 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10592 Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
10593 return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n");
10594 }
10595 case NEON::BI__builtin_neon_vrshrd_n_u64:
10596 case NEON::BI__builtin_neon_vrshrd_n_s64: {
10597 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64
10598 ? Intrinsic::aarch64_neon_urshl
10599 : Intrinsic::aarch64_neon_srshl;
10600 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10601 int SV = cast<ConstantInt>(Ops[1])->getSExtValue();
10602 Ops[1] = ConstantInt::get(Int64Ty, -SV);
10603 return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n");
10604 }
10605 case NEON::BI__builtin_neon_vrsrad_n_u64:
10606 case NEON::BI__builtin_neon_vrsrad_n_s64: {
10607 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64
10608 ? Intrinsic::aarch64_neon_urshl
10609 : Intrinsic::aarch64_neon_srshl;
10610 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
10611 Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2))));
10612 Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty),
10613 {Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)});
10614 return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty));
10615 }
10616 case NEON::BI__builtin_neon_vshld_n_s64:
10617 case NEON::BI__builtin_neon_vshld_n_u64: {
10618 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
10619 return Builder.CreateShl(
10620 Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n");
10621 }
10622 case NEON::BI__builtin_neon_vshrd_n_s64: {
10623 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
10624 return Builder.CreateAShr(
10625 Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
10626 Amt->getZExtValue())),
10627 "shrd_n");
10628 }
10629 case NEON::BI__builtin_neon_vshrd_n_u64: {
10630 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
10631 uint64_t ShiftAmt = Amt->getZExtValue();
10632 // Right-shifting an unsigned value by its size yields 0.
10633 if (ShiftAmt == 64)
10634 return ConstantInt::get(Int64Ty, 0);
10635 return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt),
10636 "shrd_n");
10637 }
10638 case NEON::BI__builtin_neon_vsrad_n_s64: {
10639 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
10640 Ops[1] = Builder.CreateAShr(
10641 Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
10642 Amt->getZExtValue())),
10643 "shrd_n");
10644 return Builder.CreateAdd(Ops[0], Ops[1]);
10645 }
10646 case NEON::BI__builtin_neon_vsrad_n_u64: {
10647 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
10648 uint64_t ShiftAmt = Amt->getZExtValue();
10649 // Right-shifting an unsigned value by its size yields 0.
10650 // As Op + 0 = Op, return Ops[0] directly.
10651 if (ShiftAmt == 64)
10652 return Ops[0];
10653 Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt),
10654 "shrd_n");
10655 return Builder.CreateAdd(Ops[0], Ops[1]);
10656 }
10657 case NEON::BI__builtin_neon_vqdmlalh_lane_s16:
10658 case NEON::BI__builtin_neon_vqdmlalh_laneq_s16:
10659 case NEON::BI__builtin_neon_vqdmlslh_lane_s16:
10660 case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: {
10661 Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
10662 "lane");
10663 SmallVector<Value *, 2> ProductOps;
10664 ProductOps.push_back(vectorWrapScalar16(Ops[1]));
10665 ProductOps.push_back(vectorWrapScalar16(Ops[2]));
10666 auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4);
10667 Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
10668 ProductOps, "vqdmlXl");
10669 Constant *CI = ConstantInt::get(SizeTy, 0);
10670 Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
10671 Ops.pop_back();
10672
10673 unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 ||
10674 BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16)
10675 ? Intrinsic::aarch64_neon_sqadd
10676 : Intrinsic::aarch64_neon_sqsub;
10677 return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl");
10678 }
10679 case NEON::BI__builtin_neon_vqdmlals_s32:
10680 case NEON::BI__builtin_neon_vqdmlsls_s32: {
10681 SmallVector<Value *, 2> ProductOps;
10682 ProductOps.push_back(Ops[1]);
10683 ProductOps.push_back(EmitScalarExpr(E->getArg(2)));
10684 Ops[1] =
10685 EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
10686 ProductOps, "vqdmlXl");
10687
10688 unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32
10689 ? Intrinsic::aarch64_neon_sqadd
10690 : Intrinsic::aarch64_neon_sqsub;
10691 return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl");
10692 }
10693 case NEON::BI__builtin_neon_vqdmlals_lane_s32:
10694 case NEON::BI__builtin_neon_vqdmlals_laneq_s32:
10695 case NEON::BI__builtin_neon_vqdmlsls_lane_s32:
10696 case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: {
10697 Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
10698 "lane");
10699 SmallVector<Value *, 2> ProductOps;
10700 ProductOps.push_back(Ops[1]);
10701 ProductOps.push_back(Ops[2]);
10702 Ops[1] =
10703 EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
10704 ProductOps, "vqdmlXl");
10705 Ops.pop_back();
10706
10707 unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 ||
10708 BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32)
10709 ? Intrinsic::aarch64_neon_sqadd
10710 : Intrinsic::aarch64_neon_sqsub;
10711 return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl");
10712 }
10713 case NEON::BI__builtin_neon_vget_lane_bf16:
10714 case NEON::BI__builtin_neon_vduph_lane_bf16:
10715 case NEON::BI__builtin_neon_vduph_lane_f16: {
10716 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10717 "vget_lane");
10718 }
10719 case NEON::BI__builtin_neon_vgetq_lane_bf16:
10720 case NEON::BI__builtin_neon_vduph_laneq_bf16:
10721 case NEON::BI__builtin_neon_vduph_laneq_f16: {
10722 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10723 "vgetq_lane");
10724 }
10725
10726 case AArch64::BI_InterlockedAdd: {
10727 Value *Arg0 = EmitScalarExpr(E->getArg(0));
10728 Value *Arg1 = EmitScalarExpr(E->getArg(1));
10729 AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
10730 AtomicRMWInst::Add, Arg0, Arg1,
10731 llvm::AtomicOrdering::SequentiallyConsistent);
10732 return Builder.CreateAdd(RMWI, Arg1);
10733 }
10734 }
10735
10736 llvm::FixedVectorType *VTy = GetNeonType(this, Type);
10737 llvm::Type *Ty = VTy;
10738 if (!Ty)
10739 return nullptr;
10740
10741 // Not all intrinsics handled by the common case work for AArch64 yet, so only
10742 // defer to common code if it's been added to our special map.
10743 Builtin = findARMVectorIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID,
10744 AArch64SIMDIntrinsicsProvenSorted);
10745
10746 if (Builtin)
10747 return EmitCommonNeonBuiltinExpr(
10748 Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
10749 Builtin->NameHint, Builtin->TypeModifier, E, Ops,
10750 /*never use addresses*/ Address::invalid(), Address::invalid(), Arch);
10751
10752 if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops, Arch))
10753 return V;
10754
10755 unsigned Int;
10756 switch (BuiltinID) {
10757 default: return nullptr;
10758 case NEON::BI__builtin_neon_vbsl_v:
10759 case NEON::BI__builtin_neon_vbslq_v: {
10760 llvm::Type *BitTy = llvm::VectorType::getInteger(VTy);
10761 Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl");
10762 Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl");
10763 Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl");
10764
10765 Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl");
10766 Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl");
10767 Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl");
10768 return Builder.CreateBitCast(Ops[0], Ty);
10769 }
10770 case NEON::BI__builtin_neon_vfma_lane_v:
10771 case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types
10772 // The ARM builtins (and instructions) have the addend as the first
10773 // operand, but the 'fma' intrinsics have it last. Swap it around here.
10774 Value *Addend = Ops[0];
10775 Value *Multiplicand = Ops[1];
10776 Value *LaneSource = Ops[2];
10777 Ops[0] = Multiplicand;
10778 Ops[1] = LaneSource;
10779 Ops[2] = Addend;
10780
10781 // Now adjust things to handle the lane access.
10782 auto *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v
10783 ? llvm::FixedVectorType::get(VTy->getElementType(),
10784 VTy->getNumElements() / 2)
10785 : VTy;
10786 llvm::Constant *cst = cast<Constant>(Ops[3]);
10787 Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(), cst);
10788 Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy);
10789 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane");
10790
10791 Ops.pop_back();
10792 Int = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_fma
10793 : Intrinsic::fma;
10794 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla");
10795 }
10796 case NEON::BI__builtin_neon_vfma_laneq_v: {
10797 auto *VTy = cast<llvm::FixedVectorType>(Ty);
10798 // v1f64 fma should be mapped to Neon scalar f64 fma
10799 if (VTy && VTy->getElementType() == DoubleTy) {
10800 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
10801 Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
10802 llvm::FixedVectorType *VTy =
10803 GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, true));
10804 Ops[2] = Builder.CreateBitCast(Ops[2], VTy);
10805 Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
10806 Value *Result;
10807 Result = emitCallMaybeConstrainedFPBuiltin(
10808 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma,
10809 DoubleTy, {Ops[1], Ops[2], Ops[0]});
10810 return Builder.CreateBitCast(Result, Ty);
10811 }
10812 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10813 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10814
10815 auto *STy = llvm::FixedVectorType::get(VTy->getElementType(),
10816 VTy->getNumElements() * 2);
10817 Ops[2] = Builder.CreateBitCast(Ops[2], STy);
10818 Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(),
10819 cast<ConstantInt>(Ops[3]));
10820 Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
10821
10822 return emitCallMaybeConstrainedFPBuiltin(
10823 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
10824 {Ops[2], Ops[1], Ops[0]});
10825 }
10826 case NEON::BI__builtin_neon_vfmaq_laneq_v: {
10827 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10828 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10829
10830 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
10831 Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
10832 return emitCallMaybeConstrainedFPBuiltin(
10833 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
10834 {Ops[2], Ops[1], Ops[0]});
10835 }
10836 case NEON::BI__builtin_neon_vfmah_lane_f16:
10837 case NEON::BI__builtin_neon_vfmas_lane_f32:
10838 case NEON::BI__builtin_neon_vfmah_laneq_f16:
10839 case NEON::BI__builtin_neon_vfmas_laneq_f32:
10840 case NEON::BI__builtin_neon_vfmad_lane_f64:
10841 case NEON::BI__builtin_neon_vfmad_laneq_f64: {
10842 Ops.push_back(EmitScalarExpr(E->getArg(3)));
10843 llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
10844 Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
10845 return emitCallMaybeConstrainedFPBuiltin(
10846 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
10847 {Ops[1], Ops[2], Ops[0]});
10848 }
10849 case NEON::BI__builtin_neon_vmull_v:
10850 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10851 Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull;
10852 if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull;
10853 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
10854 case NEON::BI__builtin_neon_vmax_v:
10855 case NEON::BI__builtin_neon_vmaxq_v:
10856 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10857 Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax;
10858 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax;
10859 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
10860 case NEON::BI__builtin_neon_vmaxh_f16: {
10861 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10862 Int = Intrinsic::aarch64_neon_fmax;
10863 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmax");
10864 }
10865 case NEON::BI__builtin_neon_vmin_v:
10866 case NEON::BI__builtin_neon_vminq_v:
10867 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10868 Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin;
10869 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin;
10870 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
10871 case NEON::BI__builtin_neon_vminh_f16: {
10872 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10873 Int = Intrinsic::aarch64_neon_fmin;
10874 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmin");
10875 }
10876 case NEON::BI__builtin_neon_vabd_v:
10877 case NEON::BI__builtin_neon_vabdq_v:
10878 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10879 Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd;
10880 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd;
10881 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
10882 case NEON::BI__builtin_neon_vpadal_v:
10883 case NEON::BI__builtin_neon_vpadalq_v: {
10884 unsigned ArgElts = VTy->getNumElements();
10885 llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType());
10886 unsigned BitWidth = EltTy->getBitWidth();
10887 auto *ArgTy = llvm::FixedVectorType::get(
10888 llvm::IntegerType::get(getLLVMContext(), BitWidth / 2), 2 * ArgElts);
10889 llvm::Type* Tys[2] = { VTy, ArgTy };
10890 Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp;
10891 SmallVector<llvm::Value*, 1> TmpOps;
10892 TmpOps.push_back(Ops[1]);
10893 Function *F = CGM.getIntrinsic(Int, Tys);
10894 llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal");
10895 llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType());
10896 return Builder.CreateAdd(tmp, addend);
10897 }
10898 case NEON::BI__builtin_neon_vpmin_v:
10899 case NEON::BI__builtin_neon_vpminq_v:
10900 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10901 Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp;
10902 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp;
10903 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
10904 case NEON::BI__builtin_neon_vpmax_v:
10905 case NEON::BI__builtin_neon_vpmaxq_v:
10906 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10907 Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp;
10908 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp;
10909 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
10910 case NEON::BI__builtin_neon_vminnm_v:
10911 case NEON::BI__builtin_neon_vminnmq_v:
10912 Int = Intrinsic::aarch64_neon_fminnm;
10913 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm");
10914 case NEON::BI__builtin_neon_vminnmh_f16:
10915 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10916 Int = Intrinsic::aarch64_neon_fminnm;
10917 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vminnm");
10918 case NEON::BI__builtin_neon_vmaxnm_v:
10919 case NEON::BI__builtin_neon_vmaxnmq_v:
10920 Int = Intrinsic::aarch64_neon_fmaxnm;
10921 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm");
10922 case NEON::BI__builtin_neon_vmaxnmh_f16:
10923 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10924 Int = Intrinsic::aarch64_neon_fmaxnm;
10925 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmaxnm");
10926 case NEON::BI__builtin_neon_vrecpss_f32: {
10927 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10928 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy),
10929 Ops, "vrecps");
10930 }
10931 case NEON::BI__builtin_neon_vrecpsd_f64:
10932 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10933 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy),
10934 Ops, "vrecps");
10935 case NEON::BI__builtin_neon_vrecpsh_f16:
10936 Ops.push_back(EmitScalarExpr(E->getArg(1)));
10937 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, HalfTy),
10938 Ops, "vrecps");
10939 case NEON::BI__builtin_neon_vqshrun_n_v:
10940 Int = Intrinsic::aarch64_neon_sqshrun;
10941 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n");
10942 case NEON::BI__builtin_neon_vqrshrun_n_v:
10943 Int = Intrinsic::aarch64_neon_sqrshrun;
10944 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n");
10945 case NEON::BI__builtin_neon_vqshrn_n_v:
10946 Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn;
10947 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n");
10948 case NEON::BI__builtin_neon_vrshrn_n_v:
10949 Int = Intrinsic::aarch64_neon_rshrn;
10950 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n");
10951 case NEON::BI__builtin_neon_vqrshrn_n_v:
10952 Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn;
10953 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n");
10954 case NEON::BI__builtin_neon_vrndah_f16: {
10955 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10956 Int = Builder.getIsFPConstrained()
10957 ? Intrinsic::experimental_constrained_round
10958 : Intrinsic::round;
10959 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrnda");
10960 }
10961 case NEON::BI__builtin_neon_vrnda_v:
10962 case NEON::BI__builtin_neon_vrndaq_v: {
10963 Int = Builder.getIsFPConstrained()
10964 ? Intrinsic::experimental_constrained_round
10965 : Intrinsic::round;
10966 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda");
10967 }
10968 case NEON::BI__builtin_neon_vrndih_f16: {
10969 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10970 Int = Builder.getIsFPConstrained()
10971 ? Intrinsic::experimental_constrained_nearbyint
10972 : Intrinsic::nearbyint;
10973 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndi");
10974 }
10975 case NEON::BI__builtin_neon_vrndmh_f16: {
10976 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10977 Int = Builder.getIsFPConstrained()
10978 ? Intrinsic::experimental_constrained_floor
10979 : Intrinsic::floor;
10980 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndm");
10981 }
10982 case NEON::BI__builtin_neon_vrndm_v:
10983 case NEON::BI__builtin_neon_vrndmq_v: {
10984 Int = Builder.getIsFPConstrained()
10985 ? Intrinsic::experimental_constrained_floor
10986 : Intrinsic::floor;
10987 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm");
10988 }
10989 case NEON::BI__builtin_neon_vrndnh_f16: {
10990 Ops.push_back(EmitScalarExpr(E->getArg(0)));
10991 Int = Builder.getIsFPConstrained()
10992 ? Intrinsic::experimental_constrained_roundeven
10993 : Intrinsic::roundeven;
10994 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndn");
10995 }
10996 case NEON::BI__builtin_neon_vrndn_v:
10997 case NEON::BI__builtin_neon_vrndnq_v: {
10998 Int = Builder.getIsFPConstrained()
10999 ? Intrinsic::experimental_constrained_roundeven
11000 : Intrinsic::roundeven;
11001 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn");
11002 }
11003 case NEON::BI__builtin_neon_vrndns_f32: {
11004 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11005 Int = Builder.getIsFPConstrained()
11006 ? Intrinsic::experimental_constrained_roundeven
11007 : Intrinsic::roundeven;
11008 return EmitNeonCall(CGM.getIntrinsic(Int, FloatTy), Ops, "vrndn");
11009 }
11010 case NEON::BI__builtin_neon_vrndph_f16: {
11011 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11012 Int = Builder.getIsFPConstrained()
11013 ? Intrinsic::experimental_constrained_ceil
11014 : Intrinsic::ceil;
11015 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndp");
11016 }
11017 case NEON::BI__builtin_neon_vrndp_v:
11018 case NEON::BI__builtin_neon_vrndpq_v: {
11019 Int = Builder.getIsFPConstrained()
11020 ? Intrinsic::experimental_constrained_ceil
11021 : Intrinsic::ceil;
11022 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp");
11023 }
11024 case NEON::BI__builtin_neon_vrndxh_f16: {
11025 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11026 Int = Builder.getIsFPConstrained()
11027 ? Intrinsic::experimental_constrained_rint
11028 : Intrinsic::rint;
11029 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndx");
11030 }
11031 case NEON::BI__builtin_neon_vrndx_v:
11032 case NEON::BI__builtin_neon_vrndxq_v: {
11033 Int = Builder.getIsFPConstrained()
11034 ? Intrinsic::experimental_constrained_rint
11035 : Intrinsic::rint;
11036 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx");
11037 }
11038 case NEON::BI__builtin_neon_vrndh_f16: {
11039 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11040 Int = Builder.getIsFPConstrained()
11041 ? Intrinsic::experimental_constrained_trunc
11042 : Intrinsic::trunc;
11043 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndz");
11044 }
11045 case NEON::BI__builtin_neon_vrnd32x_v:
11046 case NEON::BI__builtin_neon_vrnd32xq_v: {
11047 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11048 Int = Intrinsic::aarch64_neon_frint32x;
11049 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd32x");
11050 }
11051 case NEON::BI__builtin_neon_vrnd32z_v:
11052 case NEON::BI__builtin_neon_vrnd32zq_v: {
11053 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11054 Int = Intrinsic::aarch64_neon_frint32z;
11055 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd32z");
11056 }
11057 case NEON::BI__builtin_neon_vrnd64x_v:
11058 case NEON::BI__builtin_neon_vrnd64xq_v: {
11059 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11060 Int = Intrinsic::aarch64_neon_frint64x;
11061 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd64x");
11062 }
11063 case NEON::BI__builtin_neon_vrnd64z_v:
11064 case NEON::BI__builtin_neon_vrnd64zq_v: {
11065 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11066 Int = Intrinsic::aarch64_neon_frint64z;
11067 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd64z");
11068 }
11069 case NEON::BI__builtin_neon_vrnd_v:
11070 case NEON::BI__builtin_neon_vrndq_v: {
11071 Int = Builder.getIsFPConstrained()
11072 ? Intrinsic::experimental_constrained_trunc
11073 : Intrinsic::trunc;
11074 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz");
11075 }
11076 case NEON::BI__builtin_neon_vcvt_f64_v:
11077 case NEON::BI__builtin_neon_vcvtq_f64_v:
11078 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11079 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad));
11080 return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
11081 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
11082 case NEON::BI__builtin_neon_vcvt_f64_f32: {
11083 assert(Type.getEltType() == NeonTypeFlags::Float64 && quad &&(static_cast <bool> (Type.getEltType() == NeonTypeFlags
::Float64 && quad && "unexpected vcvt_f64_f32 builtin"
) ? void (0) : __assert_fail ("Type.getEltType() == NeonTypeFlags::Float64 && quad && \"unexpected vcvt_f64_f32 builtin\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 11084, __extension__ __PRETTY_FUNCTION__
))
11084 "unexpected vcvt_f64_f32 builtin")(static_cast <bool> (Type.getEltType() == NeonTypeFlags
::Float64 && quad && "unexpected vcvt_f64_f32 builtin"
) ? void (0) : __assert_fail ("Type.getEltType() == NeonTypeFlags::Float64 && quad && \"unexpected vcvt_f64_f32 builtin\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 11084, __extension__ __PRETTY_FUNCTION__
))
;
11085 NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false);
11086 Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
11087
11088 return Builder.CreateFPExt(Ops[0], Ty, "vcvt");
11089 }
11090 case NEON::BI__builtin_neon_vcvt_f32_f64: {
11091 assert(Type.getEltType() == NeonTypeFlags::Float32 &&(static_cast <bool> (Type.getEltType() == NeonTypeFlags
::Float32 && "unexpected vcvt_f32_f64 builtin") ? void
(0) : __assert_fail ("Type.getEltType() == NeonTypeFlags::Float32 && \"unexpected vcvt_f32_f64 builtin\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 11092, __extension__ __PRETTY_FUNCTION__
))
11092 "unexpected vcvt_f32_f64 builtin")(static_cast <bool> (Type.getEltType() == NeonTypeFlags
::Float32 && "unexpected vcvt_f32_f64 builtin") ? void
(0) : __assert_fail ("Type.getEltType() == NeonTypeFlags::Float32 && \"unexpected vcvt_f32_f64 builtin\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 11092, __extension__ __PRETTY_FUNCTION__
))
;
11093 NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true);
11094 Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
11095
11096 return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt");
11097 }
11098 case NEON::BI__builtin_neon_vcvt_s32_v:
11099 case NEON::BI__builtin_neon_vcvt_u32_v:
11100 case NEON::BI__builtin_neon_vcvt_s64_v:
11101 case NEON::BI__builtin_neon_vcvt_u64_v:
11102 case NEON::BI__builtin_neon_vcvt_s16_v:
11103 case NEON::BI__builtin_neon_vcvt_u16_v:
11104 case NEON::BI__builtin_neon_vcvtq_s32_v:
11105 case NEON::BI__builtin_neon_vcvtq_u32_v:
11106 case NEON::BI__builtin_neon_vcvtq_s64_v:
11107 case NEON::BI__builtin_neon_vcvtq_u64_v:
11108 case NEON::BI__builtin_neon_vcvtq_s16_v:
11109 case NEON::BI__builtin_neon_vcvtq_u16_v: {
11110 Int =
11111 usgn ? Intrinsic::aarch64_neon_fcvtzu : Intrinsic::aarch64_neon_fcvtzs;
11112 llvm::Type *Tys[2] = {Ty, GetFloatNeonType(this, Type)};
11113 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtz");
11114 }
11115 case NEON::BI__builtin_neon_vcvta_s16_v:
11116 case NEON::BI__builtin_neon_vcvta_u16_v:
11117 case NEON::BI__builtin_neon_vcvta_s32_v:
11118 case NEON::BI__builtin_neon_vcvtaq_s16_v:
11119 case NEON::BI__builtin_neon_vcvtaq_s32_v:
11120 case NEON::BI__builtin_neon_vcvta_u32_v:
11121 case NEON::BI__builtin_neon_vcvtaq_u16_v:
11122 case NEON::BI__builtin_neon_vcvtaq_u32_v:
11123 case NEON::BI__builtin_neon_vcvta_s64_v:
11124 case NEON::BI__builtin_neon_vcvtaq_s64_v:
11125 case NEON::BI__builtin_neon_vcvta_u64_v:
11126 case NEON::BI__builtin_neon_vcvtaq_u64_v: {
11127 Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas;
11128 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
11129 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta");
11130 }
11131 case NEON::BI__builtin_neon_vcvtm_s16_v:
11132 case NEON::BI__builtin_neon_vcvtm_s32_v:
11133 case NEON::BI__builtin_neon_vcvtmq_s16_v:
11134 case NEON::BI__builtin_neon_vcvtmq_s32_v:
11135 case NEON::BI__builtin_neon_vcvtm_u16_v:
11136 case NEON::BI__builtin_neon_vcvtm_u32_v:
11137 case NEON::BI__builtin_neon_vcvtmq_u16_v:
11138 case NEON::BI__builtin_neon_vcvtmq_u32_v:
11139 case NEON::BI__builtin_neon_vcvtm_s64_v:
11140 case NEON::BI__builtin_neon_vcvtmq_s64_v:
11141 case NEON::BI__builtin_neon_vcvtm_u64_v:
11142 case NEON::BI__builtin_neon_vcvtmq_u64_v: {
11143 Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms;
11144 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
11145 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm");
11146 }
11147 case NEON::BI__builtin_neon_vcvtn_s16_v:
11148 case NEON::BI__builtin_neon_vcvtn_s32_v:
11149 case NEON::BI__builtin_neon_vcvtnq_s16_v:
11150 case NEON::BI__builtin_neon_vcvtnq_s32_v:
11151 case NEON::BI__builtin_neon_vcvtn_u16_v:
11152 case NEON::BI__builtin_neon_vcvtn_u32_v:
11153 case NEON::BI__builtin_neon_vcvtnq_u16_v:
11154 case NEON::BI__builtin_neon_vcvtnq_u32_v:
11155 case NEON::BI__builtin_neon_vcvtn_s64_v:
11156 case NEON::BI__builtin_neon_vcvtnq_s64_v:
11157 case NEON::BI__builtin_neon_vcvtn_u64_v:
11158 case NEON::BI__builtin_neon_vcvtnq_u64_v: {
11159 Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns;
11160 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
11161 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn");
11162 }
11163 case NEON::BI__builtin_neon_vcvtp_s16_v:
11164 case NEON::BI__builtin_neon_vcvtp_s32_v:
11165 case NEON::BI__builtin_neon_vcvtpq_s16_v:
11166 case NEON::BI__builtin_neon_vcvtpq_s32_v:
11167 case NEON::BI__builtin_neon_vcvtp_u16_v:
11168 case NEON::BI__builtin_neon_vcvtp_u32_v:
11169 case NEON::BI__builtin_neon_vcvtpq_u16_v:
11170 case NEON::BI__builtin_neon_vcvtpq_u32_v:
11171 case NEON::BI__builtin_neon_vcvtp_s64_v:
11172 case NEON::BI__builtin_neon_vcvtpq_s64_v:
11173 case NEON::BI__builtin_neon_vcvtp_u64_v:
11174 case NEON::BI__builtin_neon_vcvtpq_u64_v: {
11175 Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps;
11176 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
11177 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp");
11178 }
11179 case NEON::BI__builtin_neon_vmulx_v:
11180 case NEON::BI__builtin_neon_vmulxq_v: {
11181 Int = Intrinsic::aarch64_neon_fmulx;
11182 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
11183 }
11184 case NEON::BI__builtin_neon_vmulxh_lane_f16:
11185 case NEON::BI__builtin_neon_vmulxh_laneq_f16: {
11186 // vmulx_lane should be mapped to Neon scalar mulx after
11187 // extracting the scalar element
11188 Ops.push_back(EmitScalarExpr(E->getArg(2)));
11189 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
11190 Ops.pop_back();
11191 Int = Intrinsic::aarch64_neon_fmulx;
11192 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmulx");
11193 }
11194 case NEON::BI__builtin_neon_vmul_lane_v:
11195 case NEON::BI__builtin_neon_vmul_laneq_v: {
11196 // v1f64 vmul_lane should be mapped to Neon scalar mul lane
11197 bool Quad = false;
11198 if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v)
11199 Quad = true;
11200 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
11201 llvm::FixedVectorType *VTy =
11202 GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, Quad));
11203 Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
11204 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
11205 Value *Result = Builder.CreateFMul(Ops[0], Ops[1]);
11206 return Builder.CreateBitCast(Result, Ty);
11207 }
11208 case NEON::BI__builtin_neon_vnegd_s64:
11209 return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd");
11210 case NEON::BI__builtin_neon_vnegh_f16:
11211 return Builder.CreateFNeg(EmitScalarExpr(E->getArg(0)), "vnegh");
11212 case NEON::BI__builtin_neon_vpmaxnm_v:
11213 case NEON::BI__builtin_neon_vpmaxnmq_v: {
11214 Int = Intrinsic::aarch64_neon_fmaxnmp;
11215 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm");
11216 }
11217 case NEON::BI__builtin_neon_vpminnm_v:
11218 case NEON::BI__builtin_neon_vpminnmq_v: {
11219 Int = Intrinsic::aarch64_neon_fminnmp;
11220 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm");
11221 }
11222 case NEON::BI__builtin_neon_vsqrth_f16: {
11223 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11224 Int = Builder.getIsFPConstrained()
11225 ? Intrinsic::experimental_constrained_sqrt
11226 : Intrinsic::sqrt;
11227 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vsqrt");
11228 }
11229 case NEON::BI__builtin_neon_vsqrt_v:
11230 case NEON::BI__builtin_neon_vsqrtq_v: {
11231 Int = Builder.getIsFPConstrained()
11232 ? Intrinsic::experimental_constrained_sqrt
11233 : Intrinsic::sqrt;
11234 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11235 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt");
11236 }
11237 case NEON::BI__builtin_neon_vrbit_v:
11238 case NEON::BI__builtin_neon_vrbitq_v: {
11239 Int = Intrinsic::bitreverse;
11240 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit");
11241 }
11242 case NEON::BI__builtin_neon_vaddv_u8:
11243 // FIXME: These are handled by the AArch64 scalar code.
11244 usgn = true;
11245 LLVM_FALLTHROUGH[[gnu::fallthrough]];
11246 case NEON::BI__builtin_neon_vaddv_s8: {
11247 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
11248 Ty = Int32Ty;
11249 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11250 llvm::Type *Tys[2] = { Ty, VTy };
11251 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11252 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
11253 return Builder.CreateTrunc(Ops[0], Int8Ty);
11254 }
11255 case NEON::BI__builtin_neon_vaddv_u16:
11256 usgn = true;
11257 LLVM_FALLTHROUGH[[gnu::fallthrough]];
11258 case NEON::BI__builtin_neon_vaddv_s16: {
11259 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
11260 Ty = Int32Ty;
11261 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11262 llvm::Type *Tys[2] = { Ty, VTy };
11263 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11264 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
11265 return Builder.CreateTrunc(Ops[0], Int16Ty);
11266 }
11267 case NEON::BI__builtin_neon_vaddvq_u8:
11268 usgn = true;
11269 LLVM_FALLTHROUGH[[gnu::fallthrough]];
11270 case NEON::BI__builtin_neon_vaddvq_s8: {
11271 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
11272 Ty = Int32Ty;
11273 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11274 llvm::Type *Tys[2] = { Ty, VTy };
11275 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11276 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
11277 return Builder.CreateTrunc(Ops[0], Int8Ty);
11278 }
11279 case NEON::BI__builtin_neon_vaddvq_u16:
11280 usgn = true;
11281 LLVM_FALLTHROUGH[[gnu::fallthrough]];
11282 case NEON::BI__builtin_neon_vaddvq_s16: {
11283 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
11284 Ty = Int32Ty;
11285 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11286 llvm::Type *Tys[2] = { Ty, VTy };
11287 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11288 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
11289 return Builder.CreateTrunc(Ops[0], Int16Ty);
11290 }
11291 case NEON::BI__builtin_neon_vmaxv_u8: {
11292 Int = Intrinsic::aarch64_neon_umaxv;
11293 Ty = Int32Ty;
11294 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11295 llvm::Type *Tys[2] = { Ty, VTy };
11296 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11297 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11298 return Builder.CreateTrunc(Ops[0], Int8Ty);
11299 }
11300 case NEON::BI__builtin_neon_vmaxv_u16: {
11301 Int = Intrinsic::aarch64_neon_umaxv;
11302 Ty = Int32Ty;
11303 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11304 llvm::Type *Tys[2] = { Ty, VTy };
11305 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11306 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11307 return Builder.CreateTrunc(Ops[0], Int16Ty);
11308 }
11309 case NEON::BI__builtin_neon_vmaxvq_u8: {
11310 Int = Intrinsic::aarch64_neon_umaxv;
11311 Ty = Int32Ty;
11312 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11313 llvm::Type *Tys[2] = { Ty, VTy };
11314 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11315 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11316 return Builder.CreateTrunc(Ops[0], Int8Ty);
11317 }
11318 case NEON::BI__builtin_neon_vmaxvq_u16: {
11319 Int = Intrinsic::aarch64_neon_umaxv;
11320 Ty = Int32Ty;
11321 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11322 llvm::Type *Tys[2] = { Ty, VTy };
11323 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11324 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11325 return Builder.CreateTrunc(Ops[0], Int16Ty);
11326 }
11327 case NEON::BI__builtin_neon_vmaxv_s8: {
11328 Int = Intrinsic::aarch64_neon_smaxv;
11329 Ty = Int32Ty;
11330 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11331 llvm::Type *Tys[2] = { Ty, VTy };
11332 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11333 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11334 return Builder.CreateTrunc(Ops[0], Int8Ty);
11335 }
11336 case NEON::BI__builtin_neon_vmaxv_s16: {
11337 Int = Intrinsic::aarch64_neon_smaxv;
11338 Ty = Int32Ty;
11339 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11340 llvm::Type *Tys[2] = { Ty, VTy };
11341 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11342 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11343 return Builder.CreateTrunc(Ops[0], Int16Ty);
11344 }
11345 case NEON::BI__builtin_neon_vmaxvq_s8: {
11346 Int = Intrinsic::aarch64_neon_smaxv;
11347 Ty = Int32Ty;
11348 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11349 llvm::Type *Tys[2] = { Ty, VTy };
11350 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11351 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11352 return Builder.CreateTrunc(Ops[0], Int8Ty);
11353 }
11354 case NEON::BI__builtin_neon_vmaxvq_s16: {
11355 Int = Intrinsic::aarch64_neon_smaxv;
11356 Ty = Int32Ty;
11357 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11358 llvm::Type *Tys[2] = { Ty, VTy };
11359 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11360 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11361 return Builder.CreateTrunc(Ops[0], Int16Ty);
11362 }
11363 case NEON::BI__builtin_neon_vmaxv_f16: {
11364 Int = Intrinsic::aarch64_neon_fmaxv;
11365 Ty = HalfTy;
11366 VTy = llvm::FixedVectorType::get(HalfTy, 4);
11367 llvm::Type *Tys[2] = { Ty, VTy };
11368 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11369 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11370 return Builder.CreateTrunc(Ops[0], HalfTy);
11371 }
11372 case NEON::BI__builtin_neon_vmaxvq_f16: {
11373 Int = Intrinsic::aarch64_neon_fmaxv;
11374 Ty = HalfTy;
11375 VTy = llvm::FixedVectorType::get(HalfTy, 8);
11376 llvm::Type *Tys[2] = { Ty, VTy };
11377 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11378 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11379 return Builder.CreateTrunc(Ops[0], HalfTy);
11380 }
11381 case NEON::BI__builtin_neon_vminv_u8: {
11382 Int = Intrinsic::aarch64_neon_uminv;
11383 Ty = Int32Ty;
11384 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11385 llvm::Type *Tys[2] = { Ty, VTy };
11386 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11387 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11388 return Builder.CreateTrunc(Ops[0], Int8Ty);
11389 }
11390 case NEON::BI__builtin_neon_vminv_u16: {
11391 Int = Intrinsic::aarch64_neon_uminv;
11392 Ty = Int32Ty;
11393 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11394 llvm::Type *Tys[2] = { Ty, VTy };
11395 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11396 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11397 return Builder.CreateTrunc(Ops[0], Int16Ty);
11398 }
11399 case NEON::BI__builtin_neon_vminvq_u8: {
11400 Int = Intrinsic::aarch64_neon_uminv;
11401 Ty = Int32Ty;
11402 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11403 llvm::Type *Tys[2] = { Ty, VTy };
11404 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11405 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11406 return Builder.CreateTrunc(Ops[0], Int8Ty);
11407 }
11408 case NEON::BI__builtin_neon_vminvq_u16: {
11409 Int = Intrinsic::aarch64_neon_uminv;
11410 Ty = Int32Ty;
11411 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11412 llvm::Type *Tys[2] = { Ty, VTy };
11413 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11414 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11415 return Builder.CreateTrunc(Ops[0], Int16Ty);
11416 }
11417 case NEON::BI__builtin_neon_vminv_s8: {
11418 Int = Intrinsic::aarch64_neon_sminv;
11419 Ty = Int32Ty;
11420 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11421 llvm::Type *Tys[2] = { Ty, VTy };
11422 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11423 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11424 return Builder.CreateTrunc(Ops[0], Int8Ty);
11425 }
11426 case NEON::BI__builtin_neon_vminv_s16: {
11427 Int = Intrinsic::aarch64_neon_sminv;
11428 Ty = Int32Ty;
11429 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11430 llvm::Type *Tys[2] = { Ty, VTy };
11431 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11432 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11433 return Builder.CreateTrunc(Ops[0], Int16Ty);
11434 }
11435 case NEON::BI__builtin_neon_vminvq_s8: {
11436 Int = Intrinsic::aarch64_neon_sminv;
11437 Ty = Int32Ty;
11438 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11439 llvm::Type *Tys[2] = { Ty, VTy };
11440 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11441 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11442 return Builder.CreateTrunc(Ops[0], Int8Ty);
11443 }
11444 case NEON::BI__builtin_neon_vminvq_s16: {
11445 Int = Intrinsic::aarch64_neon_sminv;
11446 Ty = Int32Ty;
11447 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11448 llvm::Type *Tys[2] = { Ty, VTy };
11449 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11450 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11451 return Builder.CreateTrunc(Ops[0], Int16Ty);
11452 }
11453 case NEON::BI__builtin_neon_vminv_f16: {
11454 Int = Intrinsic::aarch64_neon_fminv;
11455 Ty = HalfTy;
11456 VTy = llvm::FixedVectorType::get(HalfTy, 4);
11457 llvm::Type *Tys[2] = { Ty, VTy };
11458 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11459 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11460 return Builder.CreateTrunc(Ops[0], HalfTy);
11461 }
11462 case NEON::BI__builtin_neon_vminvq_f16: {
11463 Int = Intrinsic::aarch64_neon_fminv;
11464 Ty = HalfTy;
11465 VTy = llvm::FixedVectorType::get(HalfTy, 8);
11466 llvm::Type *Tys[2] = { Ty, VTy };
11467 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11468 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11469 return Builder.CreateTrunc(Ops[0], HalfTy);
11470 }
11471 case NEON::BI__builtin_neon_vmaxnmv_f16: {
11472 Int = Intrinsic::aarch64_neon_fmaxnmv;
11473 Ty = HalfTy;
11474 VTy = llvm::FixedVectorType::get(HalfTy, 4);
11475 llvm::Type *Tys[2] = { Ty, VTy };
11476 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11477 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
11478 return Builder.CreateTrunc(Ops[0], HalfTy);
11479 }
11480 case NEON::BI__builtin_neon_vmaxnmvq_f16: {
11481 Int = Intrinsic::aarch64_neon_fmaxnmv;
11482 Ty = HalfTy;
11483 VTy = llvm::FixedVectorType::get(HalfTy, 8);
11484 llvm::Type *Tys[2] = { Ty, VTy };
11485 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11486 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
11487 return Builder.CreateTrunc(Ops[0], HalfTy);
11488 }
11489 case NEON::BI__builtin_neon_vminnmv_f16: {
11490 Int = Intrinsic::aarch64_neon_fminnmv;
11491 Ty = HalfTy;
11492 VTy = llvm::FixedVectorType::get(HalfTy, 4);
11493 llvm::Type *Tys[2] = { Ty, VTy };
11494 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11495 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
11496 return Builder.CreateTrunc(Ops[0], HalfTy);
11497 }
11498 case NEON::BI__builtin_neon_vminnmvq_f16: {
11499 Int = Intrinsic::aarch64_neon_fminnmv;
11500 Ty = HalfTy;
11501 VTy = llvm::FixedVectorType::get(HalfTy, 8);
11502 llvm::Type *Tys[2] = { Ty, VTy };
11503 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11504 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
11505 return Builder.CreateTrunc(Ops[0], HalfTy);
11506 }
11507 case NEON::BI__builtin_neon_vmul_n_f64: {
11508 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
11509 Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy);
11510 return Builder.CreateFMul(Ops[0], RHS);
11511 }
11512 case NEON::BI__builtin_neon_vaddlv_u8: {
11513 Int = Intrinsic::aarch64_neon_uaddlv;
11514 Ty = Int32Ty;
11515 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11516 llvm::Type *Tys[2] = { Ty, VTy };
11517 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11518 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11519 return Builder.CreateTrunc(Ops[0], Int16Ty);
11520 }
11521 case NEON::BI__builtin_neon_vaddlv_u16: {
11522 Int = Intrinsic::aarch64_neon_uaddlv;
11523 Ty = Int32Ty;
11524 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11525 llvm::Type *Tys[2] = { Ty, VTy };
11526 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11527 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11528 }
11529 case NEON::BI__builtin_neon_vaddlvq_u8: {
11530 Int = Intrinsic::aarch64_neon_uaddlv;
11531 Ty = Int32Ty;
11532 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11533 llvm::Type *Tys[2] = { Ty, VTy };
11534 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11535 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11536 return Builder.CreateTrunc(Ops[0], Int16Ty);
11537 }
11538 case NEON::BI__builtin_neon_vaddlvq_u16: {
11539 Int = Intrinsic::aarch64_neon_uaddlv;
11540 Ty = Int32Ty;
11541 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11542 llvm::Type *Tys[2] = { Ty, VTy };
11543 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11544 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11545 }
11546 case NEON::BI__builtin_neon_vaddlv_s8: {
11547 Int = Intrinsic::aarch64_neon_saddlv;
11548 Ty = Int32Ty;
11549 VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11550 llvm::Type *Tys[2] = { Ty, VTy };
11551 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11552 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11553 return Builder.CreateTrunc(Ops[0], Int16Ty);
11554 }
11555 case NEON::BI__builtin_neon_vaddlv_s16: {
11556 Int = Intrinsic::aarch64_neon_saddlv;
11557 Ty = Int32Ty;
11558 VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11559 llvm::Type *Tys[2] = { Ty, VTy };
11560 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11561 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11562 }
11563 case NEON::BI__builtin_neon_vaddlvq_s8: {
11564 Int = Intrinsic::aarch64_neon_saddlv;
11565 Ty = Int32Ty;
11566 VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11567 llvm::Type *Tys[2] = { Ty, VTy };
11568 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11569 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11570 return Builder.CreateTrunc(Ops[0], Int16Ty);
11571 }
11572 case NEON::BI__builtin_neon_vaddlvq_s16: {
11573 Int = Intrinsic::aarch64_neon_saddlv;
11574 Ty = Int32Ty;
11575 VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11576 llvm::Type *Tys[2] = { Ty, VTy };
11577 Ops.push_back(EmitScalarExpr(E->getArg(0)));
11578 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11579 }
11580 case NEON::BI__builtin_neon_vsri_n_v:
11581 case NEON::BI__builtin_neon_vsriq_n_v: {
11582 Int = Intrinsic::aarch64_neon_vsri;
11583 llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
11584 return EmitNeonCall(Intrin, Ops, "vsri_n");
11585 }
11586 case NEON::BI__builtin_neon_vsli_n_v:
11587 case NEON::BI__builtin_neon_vsliq_n_v: {
11588 Int = Intrinsic::aarch64_neon_vsli;
11589 llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
11590 return EmitNeonCall(Intrin, Ops, "vsli_n");
11591 }
11592 case NEON::BI__builtin_neon_vsra_n_v:
11593 case NEON::BI__builtin_neon_vsraq_n_v:
11594 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11595 Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
11596 return Builder.CreateAdd(Ops[0], Ops[1]);
11597 case NEON::BI__builtin_neon_vrsra_n_v:
11598 case NEON::BI__builtin_neon_vrsraq_n_v: {
11599 Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl;
11600 SmallVector<llvm::Value*,2> TmpOps;
11601 TmpOps.push_back(Ops[1]);
11602 TmpOps.push_back(Ops[2]);
11603 Function* F = CGM.getIntrinsic(Int, Ty);
11604 llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true);
11605 Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
11606 return Builder.CreateAdd(Ops[0], tmp);
11607 }
11608 case NEON::BI__builtin_neon_vld1_v:
11609 case NEON::BI__builtin_neon_vld1q_v: {
11610 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
11611 return Builder.CreateAlignedLoad(VTy, Ops[0], PtrOp0.getAlignment());
11612 }
11613 case NEON::BI__builtin_neon_vst1_v:
11614 case NEON::BI__builtin_neon_vst1q_v:
11615 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
11616 Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
11617 return Builder.CreateAlignedStore(Ops[1], Ops[0], PtrOp0.getAlignment());
11618 case NEON::BI__builtin_neon_vld1_lane_v:
11619 case NEON::BI__builtin_neon_vld1q_lane_v: {
11620 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11621 Ty = llvm::PointerType::getUnqual(VTy->getElementType());
11622 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11623 Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0],
11624 PtrOp0.getAlignment());
11625 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
11626 }
11627 case NEON::BI__builtin_neon_vld1_dup_v:
11628 case NEON::BI__builtin_neon_vld1q_dup_v: {
11629 Value *V = UndefValue::get(Ty);
11630 Ty = llvm::PointerType::getUnqual(VTy->getElementType());
11631 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11632 Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0],
11633 PtrOp0.getAlignment());
11634 llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
11635 Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
11636 return EmitNeonSplat(Ops[0], CI);
11637 }
11638 case NEON::BI__builtin_neon_vst1_lane_v:
11639 case NEON::BI__builtin_neon_vst1q_lane_v:
11640 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11641 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
11642 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
11643 return Builder.CreateAlignedStore(Ops[1], Builder.CreateBitCast(Ops[0], Ty),
11644 PtrOp0.getAlignment());
11645 case NEON::BI__builtin_neon_vld2_v:
11646 case NEON::BI__builtin_neon_vld2q_v: {
11647 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
11648 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11649 llvm::Type *Tys[2] = { VTy, PTy };
11650 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys);
11651 Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
11652 Ops[0] = Builder.CreateBitCast(Ops[0],
11653 llvm::PointerType::getUnqual(Ops[1]->getType()));
11654 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11655 }
11656 case NEON::BI__builtin_neon_vld3_v:
11657 case NEON::BI__builtin_neon_vld3q_v: {
11658 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
11659 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11660 llvm::Type *Tys[2] = { VTy, PTy };
11661 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys);
11662 Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
11663 Ops[0] = Builder.CreateBitCast(Ops[0],
11664 llvm::PointerType::getUnqual(Ops[1]->getType()));
11665 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11666 }
11667 case NEON::BI__builtin_neon_vld4_v:
11668 case NEON::BI__builtin_neon_vld4q_v: {
11669 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
11670 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11671 llvm::Type *Tys[2] = { VTy, PTy };
11672 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys);
11673 Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
11674 Ops[0] = Builder.CreateBitCast(Ops[0],
11675 llvm::PointerType::getUnqual(Ops[1]->getType()));
11676 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11677 }
11678 case NEON::BI__builtin_neon_vld2_dup_v:
11679 case NEON::BI__builtin_neon_vld2q_dup_v: {
11680 llvm::Type *PTy =
11681 llvm::PointerType::getUnqual(VTy->getElementType());
11682 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11683 llvm::Type *Tys[2] = { VTy, PTy };
11684 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys);
11685 Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
11686 Ops[0] = Builder.CreateBitCast(Ops[0],
11687 llvm::PointerType::getUnqual(Ops[1]->getType()));
11688 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11689 }
11690 case NEON::BI__builtin_neon_vld3_dup_v:
11691 case NEON::BI__builtin_neon_vld3q_dup_v: {
11692 llvm::Type *PTy =
11693 llvm::PointerType::getUnqual(VTy->getElementType());
11694 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11695 llvm::Type *Tys[2] = { VTy, PTy };
11696 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys);
11697 Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
11698 Ops[0] = Builder.CreateBitCast(Ops[0],
11699 llvm::PointerType::getUnqual(Ops[1]->getType()));
11700 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11701 }
11702 case NEON::BI__builtin_neon_vld4_dup_v:
11703 case NEON::BI__builtin_neon_vld4q_dup_v: {
11704 llvm::Type *PTy =
11705 llvm::PointerType::getUnqual(VTy->getElementType());
11706 Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11707 llvm::Type *Tys[2] = { VTy, PTy };
11708 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys);
11709 Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
11710 Ops[0] = Builder.CreateBitCast(Ops[0],
11711 llvm::PointerType::getUnqual(Ops[1]->getType()));
11712 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11713 }
11714 case NEON::BI__builtin_neon_vld2_lane_v:
11715 case NEON::BI__builtin_neon_vld2q_lane_v: {
11716 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
11717 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys);
11718 std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
11719 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11720 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11721 Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
11722 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane");
11723 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
11724 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11725 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11726 }
11727 case NEON::BI__builtin_neon_vld3_lane_v:
11728 case NEON::BI__builtin_neon_vld3q_lane_v: {
11729 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
11730 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys);
11731 std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
11732 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11733 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11734 Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
11735 Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
11736 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
11737 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
11738 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11739 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11740 }
11741 case NEON::BI__builtin_neon_vld4_lane_v:
11742 case NEON::BI__builtin_neon_vld4q_lane_v: {
11743 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
11744 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys);
11745 std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
11746 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11747 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11748 Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
11749 Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
11750 Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty);
11751 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld4_lane");
11752 Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
11753 Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11754 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11755 }
11756 case NEON::BI__builtin_neon_vst2_v:
11757 case NEON::BI__builtin_neon_vst2q_v: {
11758 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11759 llvm::Type *Tys[2] = { VTy, Ops[2]->getType() };
11760 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys),
11761 Ops, "");
11762 }
11763 case NEON::BI__builtin_neon_vst2_lane_v:
11764 case NEON::BI__builtin_neon_vst2q_lane_v: {
11765 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11766 Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
11767 llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
11768 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys),
11769 Ops, "");
11770 }
11771 case NEON::BI__builtin_neon_vst3_v:
11772 case NEON::BI__builtin_neon_vst3q_v: {
11773 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11774 llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
11775 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys),
11776 Ops, "");
11777 }
11778 case NEON::BI__builtin_neon_vst3_lane_v:
11779 case NEON::BI__builtin_neon_vst3q_lane_v: {
11780 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11781 Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
11782 llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
11783 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys),
11784 Ops, "");
11785 }
11786 case NEON::BI__builtin_neon_vst4_v:
11787 case NEON::BI__builtin_neon_vst4q_v: {
11788 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11789 llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
11790 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys),
11791 Ops, "");
11792 }
11793 case NEON::BI__builtin_neon_vst4_lane_v:
11794 case NEON::BI__builtin_neon_vst4q_lane_v: {
11795 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11796 Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
11797 llvm::Type *Tys[2] = { VTy, Ops[5]->getType() };
11798 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys),
11799 Ops, "");
11800 }
11801 case NEON::BI__builtin_neon_vtrn_v:
11802 case NEON::BI__builtin_neon_vtrnq_v: {
11803 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
11804 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11805 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11806 Value *SV = nullptr;
11807
11808 for (unsigned vi = 0; vi != 2; ++vi) {
11809 SmallVector<int, 16> Indices;
11810 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
11811 Indices.push_back(i+vi);
11812 Indices.push_back(i+e+vi);
11813 }
11814 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
11815 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
11816 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
11817 }
11818 return SV;
11819 }
11820 case NEON::BI__builtin_neon_vuzp_v:
11821 case NEON::BI__builtin_neon_vuzpq_v: {
11822 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
11823 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11824 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11825 Value *SV = nullptr;
11826
11827 for (unsigned vi = 0; vi != 2; ++vi) {
11828 SmallVector<int, 16> Indices;
11829 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
11830 Indices.push_back(2*i+vi);
11831
11832 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
11833 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
11834 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
11835 }
11836 return SV;
11837 }
11838 case NEON::BI__builtin_neon_vzip_v:
11839 case NEON::BI__builtin_neon_vzipq_v: {
11840 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
11841 Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11842 Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11843 Value *SV = nullptr;
11844
11845 for (unsigned vi = 0; vi != 2; ++vi) {
11846 SmallVector<int, 16> Indices;
11847 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
11848 Indices.push_back((i + vi*e) >> 1);
11849 Indices.push_back(((i + vi*e) >> 1)+e);
11850 }
11851 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
11852 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
11853 SV = Builder.CreateDefaultAlignedStore(SV, Addr);
11854 }
11855 return SV;
11856 }
11857 case NEON::BI__builtin_neon_vqtbl1q_v: {
11858 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty),
11859 Ops, "vtbl1");
11860 }
11861 case NEON::BI__builtin_neon_vqtbl2q_v: {
11862 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty),
11863 Ops, "vtbl2");
11864 }
11865 case NEON::BI__builtin_neon_vqtbl3q_v: {
11866 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty),
11867 Ops, "vtbl3");
11868 }
11869 case NEON::BI__builtin_neon_vqtbl4q_v: {
11870 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty),
11871 Ops, "vtbl4");
11872 }
11873 case NEON::BI__builtin_neon_vqtbx1q_v: {
11874 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty),
11875 Ops, "vtbx1");
11876 }
11877 case NEON::BI__builtin_neon_vqtbx2q_v: {
11878 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty),
11879 Ops, "vtbx2");
11880 }
11881 case NEON::BI__builtin_neon_vqtbx3q_v: {
11882 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty),
11883 Ops, "vtbx3");
11884 }
11885 case NEON::BI__builtin_neon_vqtbx4q_v: {
11886 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty),
11887 Ops, "vtbx4");
11888 }
11889 case NEON::BI__builtin_neon_vsqadd_v:
11890 case NEON::BI__builtin_neon_vsqaddq_v: {
11891 Int = Intrinsic::aarch64_neon_usqadd;
11892 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd");
11893 }
11894 case NEON::BI__builtin_neon_vuqadd_v:
11895 case NEON::BI__builtin_neon_vuqaddq_v: {
11896 Int = Intrinsic::aarch64_neon_suqadd;
11897 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd");
11898 }
11899 }
11900}
11901
11902Value *CodeGenFunction::EmitBPFBuiltinExpr(unsigned BuiltinID,
11903 const CallExpr *E) {
11904 assert((BuiltinID == BPF::BI__builtin_preserve_field_info ||(static_cast <bool> ((BuiltinID == BPF::BI__builtin_preserve_field_info
|| BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID ==
BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value
) && "unexpected BPF builtin") ? void (0) : __assert_fail
("(BuiltinID == BPF::BI__builtin_preserve_field_info || BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID == BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value) && \"unexpected BPF builtin\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 11908, __extension__ __PRETTY_FUNCTION__
))
11905 BuiltinID == BPF::BI__builtin_btf_type_id ||(static_cast <bool> ((BuiltinID == BPF::BI__builtin_preserve_field_info
|| BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID ==
BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value
) && "unexpected BPF builtin") ? void (0) : __assert_fail
("(BuiltinID == BPF::BI__builtin_preserve_field_info || BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID == BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value) && \"unexpected BPF builtin\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 11908, __extension__ __PRETTY_FUNCTION__
))
11906 BuiltinID == BPF::BI__builtin_preserve_type_info ||(static_cast <bool> ((BuiltinID == BPF::BI__builtin_preserve_field_info
|| BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID ==
BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value
) && "unexpected BPF builtin") ? void (0) : __assert_fail
("(BuiltinID == BPF::BI__builtin_preserve_field_info || BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID == BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value) && \"unexpected BPF builtin\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 11908, __extension__ __PRETTY_FUNCTION__
))
11907 BuiltinID == BPF::BI__builtin_preserve_enum_value) &&(static_cast <bool> ((BuiltinID == BPF::BI__builtin_preserve_field_info
|| BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID ==
BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value
) && "unexpected BPF builtin") ? void (0) : __assert_fail
("(BuiltinID == BPF::BI__builtin_preserve_field_info || BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID == BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value) && \"unexpected BPF builtin\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 11908, __extension__ __PRETTY_FUNCTION__
))
11908 "unexpected BPF builtin")(static_cast <bool> ((BuiltinID == BPF::BI__builtin_preserve_field_info
|| BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID ==
BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value
) && "unexpected BPF builtin") ? void (0) : __assert_fail
("(BuiltinID == BPF::BI__builtin_preserve_field_info || BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID == BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value) && \"unexpected BPF builtin\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 11908, __extension__ __PRETTY_FUNCTION__
))
;
11909
11910 // A sequence number, injected into IR builtin functions, to
11911 // prevent CSE given the only difference of the funciton
11912 // may just be the debuginfo metadata.
11913 static uint32_t BuiltinSeqNum;
11914
11915 switch (BuiltinID) {
11916 default:
11917 llvm_unreachable("Unexpected BPF builtin")::llvm::llvm_unreachable_internal("Unexpected BPF builtin", "clang/lib/CodeGen/CGBuiltin.cpp"
, 11917)
;
11918 case BPF::BI__builtin_preserve_field_info: {
11919 const Expr *Arg = E->getArg(0);
11920 bool IsBitField = Arg->IgnoreParens()->getObjectKind() == OK_BitField;
11921
11922 if (!getDebugInfo()) {
11923 CGM.Error(E->getExprLoc(),
11924 "using __builtin_preserve_field_info() without -g");
11925 return IsBitField ? EmitLValue(Arg).getBitFieldPointer()
11926 : EmitLValue(Arg).getPointer(*this);
11927 }
11928
11929 // Enable underlying preserve_*_access_index() generation.
11930 bool OldIsInPreservedAIRegion = IsInPreservedAIRegion;
11931 IsInPreservedAIRegion = true;
11932 Value *FieldAddr = IsBitField ? EmitLValue(Arg).getBitFieldPointer()
11933 : EmitLValue(Arg).getPointer(*this);
11934 IsInPreservedAIRegion = OldIsInPreservedAIRegion;
11935
11936 ConstantInt *C = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
11937 Value *InfoKind = ConstantInt::get(Int64Ty, C->getSExtValue());
11938
11939 // Built the IR for the preserve_field_info intrinsic.
11940 llvm::Function *FnGetFieldInfo = llvm::Intrinsic::getDeclaration(
11941 &CGM.getModule(), llvm::Intrinsic::bpf_preserve_field_info,
11942 {FieldAddr->getType()});
11943 return Builder.CreateCall(FnGetFieldInfo, {FieldAddr, InfoKind});
11944 }
11945 case BPF::BI__builtin_btf_type_id:
11946 case BPF::BI__builtin_preserve_type_info: {
11947 if (!getDebugInfo()) {
11948 CGM.Error(E->getExprLoc(), "using builtin function without -g");
11949 return nullptr;
11950 }
11951
11952 const Expr *Arg0 = E->getArg(0);
11953 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(
11954 Arg0->getType(), Arg0->getExprLoc());
11955
11956 ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
11957 Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue());
11958 Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++);
11959
11960 llvm::Function *FnDecl;
11961 if (BuiltinID == BPF::BI__builtin_btf_type_id)
11962 FnDecl = llvm::Intrinsic::getDeclaration(
11963 &CGM.getModule(), llvm::Intrinsic::bpf_btf_type_id, {});
11964 else
11965 FnDecl = llvm::Intrinsic::getDeclaration(
11966 &CGM.getModule(), llvm::Intrinsic::bpf_preserve_type_info, {});
11967 CallInst *Fn = Builder.CreateCall(FnDecl, {SeqNumVal, FlagValue});
11968 Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
11969 return Fn;
11970 }
11971 case BPF::BI__builtin_preserve_enum_value: {
11972 if (!getDebugInfo()) {
11973 CGM.Error(E->getExprLoc(), "using builtin function without -g");
11974 return nullptr;
11975 }
11976
11977 const Expr *Arg0 = E->getArg(0);
11978 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(
11979 Arg0->getType(), Arg0->getExprLoc());
11980
11981 // Find enumerator
11982 const auto *UO = cast<UnaryOperator>(Arg0->IgnoreParens());
11983 const auto *CE = cast<CStyleCastExpr>(UO->getSubExpr());
11984 const auto *DR = cast<DeclRefExpr>(CE->getSubExpr());
11985 const auto *Enumerator = cast<EnumConstantDecl>(DR->getDecl());
11986
11987 auto &InitVal = Enumerator->getInitVal();
11988 std::string InitValStr;
11989 if (InitVal.isNegative() || InitVal > uint64_t(INT64_MAX(9223372036854775807L)))
11990 InitValStr = std::to_string(InitVal.getSExtValue());
11991 else
11992 InitValStr = std::to_string(InitVal.getZExtValue());
11993 std::string EnumStr = Enumerator->getNameAsString() + ":" + InitValStr;
11994 Value *EnumStrVal = Builder.CreateGlobalStringPtr(EnumStr);
11995
11996 ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
11997 Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue());
11998 Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++);
11999
12000 llvm::Function *IntrinsicFn = llvm::Intrinsic::getDeclaration(
12001 &CGM.getModule(), llvm::Intrinsic::bpf_preserve_enum_value, {});
12002 CallInst *Fn =
12003 Builder.CreateCall(IntrinsicFn, {SeqNumVal, EnumStrVal, FlagValue});
12004 Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
12005 return Fn;
12006 }
12007 }
12008}
12009
12010llvm::Value *CodeGenFunction::
12011BuildVector(ArrayRef<llvm::Value*> Ops) {
12012 assert((Ops.size() & (Ops.size() - 1)) == 0 &&(static_cast <bool> ((Ops.size() & (Ops.size() - 1)
) == 0 && "Not a power-of-two sized vector!") ? void (
0) : __assert_fail ("(Ops.size() & (Ops.size() - 1)) == 0 && \"Not a power-of-two sized vector!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 12013, __extension__ __PRETTY_FUNCTION__
))
12013 "Not a power-of-two sized vector!")(static_cast <bool> ((Ops.size() & (Ops.size() - 1)
) == 0 && "Not a power-of-two sized vector!") ? void (
0) : __assert_fail ("(Ops.size() & (Ops.size() - 1)) == 0 && \"Not a power-of-two sized vector!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 12013, __extension__ __PRETTY_FUNCTION__
))
;
12014 bool AllConstants = true;
12015 for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
12016 AllConstants &= isa<Constant>(Ops[i]);
12017
12018 // If this is a constant vector, create a ConstantVector.
12019 if (AllConstants) {
12020 SmallVector<llvm::Constant*, 16> CstOps;
12021 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
12022 CstOps.push_back(cast<Constant>(Ops[i]));
12023 return llvm::ConstantVector::get(CstOps);
12024 }
12025
12026 // Otherwise, insertelement the values to build the vector.
12027 Value *Result = llvm::UndefValue::get(
12028 llvm::FixedVectorType::get(Ops[0]->getType(), Ops.size()));
12029
12030 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
12031 Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i));
12032
12033 return Result;
12034}
12035
12036// Convert the mask from an integer type to a vector of i1.
12037static Value *getMaskVecValue(CodeGenFunction &CGF, Value *Mask,
12038 unsigned NumElts) {
12039
12040 auto *MaskTy = llvm::FixedVectorType::get(
12041 CGF.Builder.getInt1Ty(),
12042 cast<IntegerType>(Mask->getType())->getBitWidth());
12043 Value *MaskVec = CGF.Builder.CreateBitCast(Mask, MaskTy);
12044
12045 // If we have less than 8 elements, then the starting mask was an i8 and
12046 // we need to extract down to the right number of elements.
12047 if (NumElts < 8) {
12048 int Indices[4];
12049 for (unsigned i = 0; i != NumElts; ++i)
12050 Indices[i] = i;
12051 MaskVec = CGF.Builder.CreateShuffleVector(MaskVec, MaskVec,
12052 makeArrayRef(Indices, NumElts),
12053 "extract");
12054 }
12055 return MaskVec;
12056}
12057
12058static Value *EmitX86MaskedStore(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
12059 Align Alignment) {
12060 // Cast the pointer to right type.
12061 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
12062 llvm::PointerType::getUnqual(Ops[1]->getType()));
12063
12064 Value *MaskVec = getMaskVecValue(
12065 CGF, Ops[2],
12066 cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements());
12067
12068 return CGF.Builder.CreateMaskedStore(Ops[1], Ptr, Alignment, MaskVec);
12069}
12070
12071static Value *EmitX86MaskedLoad(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
12072 Align Alignment) {
12073 // Cast the pointer to right type.
12074 llvm::Type *Ty = Ops[1]->getType();
12075 Value *Ptr =
12076 CGF.Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
12077
12078 Value *MaskVec = getMaskVecValue(
12079 CGF, Ops[2], cast<llvm::FixedVectorType>(Ty)->getNumElements());
12080
12081 return CGF.Builder.CreateMaskedLoad(Ty, Ptr, Alignment, MaskVec, Ops[1]);
12082}
12083
12084static Value *EmitX86ExpandLoad(CodeGenFunction &CGF,
12085 ArrayRef<Value *> Ops) {
12086 auto *ResultTy = cast<llvm::VectorType>(Ops[1]->getType());
12087 llvm::Type *PtrTy = ResultTy->getElementType();
12088
12089 // Cast the pointer to element type.
12090 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
12091 llvm::PointerType::getUnqual(PtrTy));
12092
12093 Value *MaskVec = getMaskVecValue(
12094 CGF, Ops[2], cast<FixedVectorType>(ResultTy)->getNumElements());
12095
12096 llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_expandload,
12097 ResultTy);
12098 return CGF.Builder.CreateCall(F, { Ptr, MaskVec, Ops[1] });
12099}
12100
12101static Value *EmitX86CompressExpand(CodeGenFunction &CGF,
12102 ArrayRef<Value *> Ops,
12103 bool IsCompress) {
12104 auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType());
12105
12106 Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements());
12107
12108 Intrinsic::ID IID = IsCompress ? Intrinsic::x86_avx512_mask_compress
12109 : Intrinsic::x86_avx512_mask_expand;
12110 llvm::Function *F = CGF.CGM.getIntrinsic(IID, ResultTy);
12111 return CGF.Builder.CreateCall(F, { Ops[0], Ops[1], MaskVec });
12112}
12113
12114static Value *EmitX86CompressStore(CodeGenFunction &CGF,
12115 ArrayRef<Value *> Ops) {
12116 auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType());
12117 llvm::Type *PtrTy = ResultTy->getElementType();
12118
12119 // Cast the pointer to element type.
12120 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
12121 llvm::PointerType::getUnqual(PtrTy));
12122
12123 Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements());
12124
12125 llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_compressstore,
12126 ResultTy);
12127 return CGF.Builder.CreateCall(F, { Ops[1], Ptr, MaskVec });
12128}
12129
12130static Value *EmitX86MaskLogic(CodeGenFunction &CGF, Instruction::BinaryOps Opc,
12131 ArrayRef<Value *> Ops,
12132 bool InvertLHS = false) {
12133 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
12134 Value *LHS = getMaskVecValue(CGF, Ops[0], NumElts);
12135 Value *RHS = getMaskVecValue(CGF, Ops[1], NumElts);
12136
12137 if (InvertLHS)
12138 LHS = CGF.Builder.CreateNot(LHS);
12139
12140 return CGF.Builder.CreateBitCast(CGF.Builder.CreateBinOp(Opc, LHS, RHS),
12141 Ops[0]->getType());
12142}
12143
12144static Value *EmitX86FunnelShift(CodeGenFunction &CGF, Value *Op0, Value *Op1,
12145 Value *Amt, bool IsRight) {
12146 llvm::Type *Ty = Op0->getType();
12147
12148 // Amount may be scalar immediate, in which case create a splat vector.
12149 // Funnel shifts amounts are treated as modulo and types are all power-of-2 so
12150 // we only care about the lowest log2 bits anyway.
12151 if (Amt->getType() != Ty) {
12152 unsigned NumElts = cast<llvm::FixedVectorType>(Ty)->getNumElements();
12153 Amt = CGF.Builder.CreateIntCast(Amt, Ty->getScalarType(), false);
12154 Amt = CGF.Builder.CreateVectorSplat(NumElts, Amt);
12155 }
12156
12157 unsigned IID = IsRight ? Intrinsic::fshr : Intrinsic::fshl;
12158 Function *F = CGF.CGM.getIntrinsic(IID, Ty);
12159 return CGF.Builder.CreateCall(F, {Op0, Op1, Amt});
12160}
12161
12162static Value *EmitX86vpcom(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
12163 bool IsSigned) {
12164 Value *Op0 = Ops[0];
12165 Value *Op1 = Ops[1];
12166 llvm::Type *Ty = Op0->getType();
12167 uint64_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
12168
12169 CmpInst::Predicate Pred;
12170 switch (Imm) {
12171 case 0x0:
12172 Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
12173 break;
12174 case 0x1:
12175 Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
12176 break;
12177 case 0x2:
12178 Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
12179 break;
12180 case 0x3:
12181 Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
12182 break;
12183 case 0x4:
12184 Pred = ICmpInst::ICMP_EQ;
12185 break;
12186 case 0x5:
12187 Pred = ICmpInst::ICMP_NE;
12188 break;
12189 case 0x6:
12190 return llvm::Constant::getNullValue(Ty); // FALSE
12191 case 0x7:
12192 return llvm::Constant::getAllOnesValue(Ty); // TRUE
12193 default:
12194 llvm_unreachable("Unexpected XOP vpcom/vpcomu predicate")::llvm::llvm_unreachable_internal("Unexpected XOP vpcom/vpcomu predicate"
, "clang/lib/CodeGen/CGBuiltin.cpp", 12194)
;
12195 }
12196
12197 Value *Cmp = CGF.Builder.CreateICmp(Pred, Op0, Op1);
12198 Value *Res = CGF.Builder.CreateSExt(Cmp, Ty);
12199 return Res;
12200}
12201
12202static Value *EmitX86Select(CodeGenFunction &CGF,
12203 Value *Mask, Value *Op0, Value *Op1) {
12204
12205 // If the mask is all ones just return first argument.
12206 if (const auto *C = dyn_cast<Constant>(Mask))
12207 if (C->isAllOnesValue())
12208 return Op0;
12209
12210 Mask = getMaskVecValue(
12211 CGF, Mask, cast<llvm::FixedVectorType>(Op0->getType())->getNumElements());
12212
12213 return CGF.Builder.CreateSelect(Mask, Op0, Op1);
12214}
12215
12216static Value *EmitX86ScalarSelect(CodeGenFunction &CGF,
12217 Value *Mask, Value *Op0, Value *Op1) {
12218 // If the mask is all ones just return first argument.
12219 if (const auto *C = dyn_cast<Constant>(Mask))
12220 if (C->isAllOnesValue())
12221 return Op0;
12222
12223 auto *MaskTy = llvm::FixedVectorType::get(
12224 CGF.Builder.getInt1Ty(), Mask->getType()->getIntegerBitWidth());
12225 Mask = CGF.Builder.CreateBitCast(Mask, MaskTy);
12226 Mask = CGF.Builder.CreateExtractElement(Mask, (uint64_t)0);
12227 return CGF.Builder.CreateSelect(Mask, Op0, Op1);
12228}
12229
12230static Value *EmitX86MaskedCompareResult(CodeGenFunction &CGF, Value *Cmp,
12231 unsigned NumElts, Value *MaskIn) {
12232 if (MaskIn) {
12233 const auto *C = dyn_cast<Constant>(MaskIn);
12234 if (!C || !C->isAllOnesValue())
12235 Cmp = CGF.Builder.CreateAnd(Cmp, getMaskVecValue(CGF, MaskIn, NumElts));
12236 }
12237
12238 if (NumElts < 8) {
12239 int Indices[8];
12240 for (unsigned i = 0; i != NumElts; ++i)
12241 Indices[i] = i;
12242 for (unsigned i = NumElts; i != 8; ++i)
12243 Indices[i] = i % NumElts + NumElts;
12244 Cmp = CGF.Builder.CreateShuffleVector(
12245 Cmp, llvm::Constant::getNullValue(Cmp->getType()), Indices);
12246 }
12247
12248 return CGF.Builder.CreateBitCast(Cmp,
12249 IntegerType::get(CGF.getLLVMContext(),
12250 std::max(NumElts, 8U)));
12251}
12252
12253static Value *EmitX86MaskedCompare(CodeGenFunction &CGF, unsigned CC,
12254 bool Signed, ArrayRef<Value *> Ops) {
12255 assert((Ops.size() == 2 || Ops.size() == 4) &&(static_cast <bool> ((Ops.size() == 2 || Ops.size() == 4
) && "Unexpected number of arguments") ? void (0) : __assert_fail
("(Ops.size() == 2 || Ops.size() == 4) && \"Unexpected number of arguments\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 12256, __extension__ __PRETTY_FUNCTION__
))
12256 "Unexpected number of arguments")(static_cast <bool> ((Ops.size() == 2 || Ops.size() == 4
) && "Unexpected number of arguments") ? void (0) : __assert_fail
("(Ops.size() == 2 || Ops.size() == 4) && \"Unexpected number of arguments\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 12256, __extension__ __PRETTY_FUNCTION__
))
;
12257 unsigned NumElts =
12258 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
12259 Value *Cmp;
12260
12261 if (CC == 3) {
12262 Cmp = Constant::getNullValue(
12263 llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts));
12264 } else if (CC == 7) {
12265 Cmp = Constant::getAllOnesValue(
12266 llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts));
12267 } else {
12268 ICmpInst::Predicate Pred;
12269 switch (CC) {
12270 default: llvm_unreachable("Unknown condition code")::llvm::llvm_unreachable_internal("Unknown condition code", "clang/lib/CodeGen/CGBuiltin.cpp"
, 12270)
;
12271 case 0: Pred = ICmpInst::ICMP_EQ; break;
12272 case 1: Pred = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break;
12273 case 2: Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break;
12274 case 4: Pred = ICmpInst::ICMP_NE; break;
12275 case 5: Pred = Signed ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break;
12276 case 6: Pred = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break;
12277 }
12278 Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
12279 }
12280
12281 Value *MaskIn = nullptr;
12282 if (Ops.size() == 4)
12283 MaskIn = Ops[3];
12284
12285 return EmitX86MaskedCompareResult(CGF, Cmp, NumElts, MaskIn);
12286}
12287
12288static Value *EmitX86ConvertToMask(CodeGenFunction &CGF, Value *In) {
12289 Value *Zero = Constant::getNullValue(In->getType());
12290 return EmitX86MaskedCompare(CGF, 1, true, { In, Zero });
12291}
12292
12293static Value *EmitX86ConvertIntToFp(CodeGenFunction &CGF, const CallExpr *E,
12294 ArrayRef<Value *> Ops, bool IsSigned) {
12295 unsigned Rnd = cast<llvm::ConstantInt>(Ops[3])->getZExtValue();
12296 llvm::Type *Ty = Ops[1]->getType();
12297
12298 Value *Res;
12299 if (Rnd != 4) {
12300 Intrinsic::ID IID = IsSigned ? Intrinsic::x86_avx512_sitofp_round
12301 : Intrinsic::x86_avx512_uitofp_round;
12302 Function *F = CGF.CGM.getIntrinsic(IID, { Ty, Ops[0]->getType() });
12303 Res = CGF.Builder.CreateCall(F, { Ops[0], Ops[3] });
12304 } else {
12305 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
12306 Res = IsSigned ? CGF.Builder.CreateSIToFP(Ops[0], Ty)
12307 : CGF.Builder.CreateUIToFP(Ops[0], Ty);
12308 }
12309
12310 return EmitX86Select(CGF, Ops[2], Res, Ops[1]);
12311}
12312
12313// Lowers X86 FMA intrinsics to IR.
12314static Value *EmitX86FMAExpr(CodeGenFunction &CGF, const CallExpr *E,
12315 ArrayRef<Value *> Ops, unsigned BuiltinID,
12316 bool IsAddSub) {
12317
12318 bool Subtract = false;
12319 Intrinsic::ID IID = Intrinsic::not_intrinsic;
12320 switch (BuiltinID) {
12321 default: break;
12322 case clang::X86::BI__builtin_ia32_vfmsubph512_mask3:
12323 Subtract = true;
12324 LLVM_FALLTHROUGH[[gnu::fallthrough]];
12325 case clang::X86::BI__builtin_ia32_vfmaddph512_mask:
12326 case clang::X86::BI__builtin_ia32_vfmaddph512_maskz:
12327 case clang::X86::BI__builtin_ia32_vfmaddph512_mask3:
12328 IID = llvm::Intrinsic::x86_avx512fp16_vfmadd_ph_512;
12329 break;
12330 case clang::X86::BI__builtin_ia32_vfmsubaddph512_mask3:
12331 Subtract = true;
12332 LLVM_FALLTHROUGH[[gnu::fallthrough]];
12333 case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask:
12334 case clang::X86::BI__builtin_ia32_vfmaddsubph512_maskz:
12335 case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask3:
12336 IID = llvm::Intrinsic::x86_avx512fp16_vfmaddsub_ph_512;
12337 break;
12338 case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
12339 Subtract = true;
12340 LLVM_FALLTHROUGH[[gnu::fallthrough]];
12341 case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
12342 case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
12343 case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
12344 IID = llvm::Intrinsic::x86_avx512_vfmadd_ps_512; break;
12345 case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
12346 Subtract = true;
12347 LLVM_FALLTHROUGH[[gnu::fallthrough]];
12348 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
12349 case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
12350 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
12351 IID = llvm::Intrinsic::x86_avx512_vfmadd_pd_512; break;
12352 case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
12353 Subtract = true;
12354 LLVM_FALLTHROUGH[[gnu::fallthrough]];
12355 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
12356 case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
12357 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
12358 IID = llvm::Intrinsic::x86_avx512_vfmaddsub_ps_512;
12359 break;
12360 case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
12361 Subtract = true;
12362 LLVM_FALLTHROUGH[[gnu::fallthrough]];
12363 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
12364 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
12365 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
12366 IID = llvm::Intrinsic::x86_avx512_vfmaddsub_pd_512;
12367 break;
12368 }
12369
12370 Value *A = Ops[0];
12371 Value *B = Ops[1];
12372 Value *C = Ops[2];
12373
12374 if (Subtract)
12375 C = CGF.Builder.CreateFNeg(C);
12376
12377 Value *Res;
12378
12379 // Only handle in case of _MM_FROUND_CUR_DIRECTION/4 (no rounding).
12380 if (IID != Intrinsic::not_intrinsic &&
12381 (cast<llvm::ConstantInt>(Ops.back())->getZExtValue() != (uint64_t)4 ||
12382 IsAddSub)) {
12383 Function *Intr = CGF.CGM.getIntrinsic(IID);
12384 Res = CGF.Builder.CreateCall(Intr, {A, B, C, Ops.back() });
12385 } else {
12386 llvm::Type *Ty = A->getType();
12387 Function *FMA;
12388 if (CGF.Builder.getIsFPConstrained()) {
12389 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
12390 FMA = CGF.CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, Ty);
12391 Res = CGF.Builder.CreateConstrainedFPCall(FMA, {A, B, C});
12392 } else {
12393 FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ty);
12394 Res = CGF.Builder.CreateCall(FMA, {A, B, C});
12395 }
12396 }
12397
12398 // Handle any required masking.
12399 Value *MaskFalseVal = nullptr;
12400 switch (BuiltinID) {
12401 case clang::X86::BI__builtin_ia32_vfmaddph512_mask:
12402 case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
12403 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
12404 case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask:
12405 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
12406 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
12407 MaskFalseVal = Ops[0];
12408 break;
12409 case clang::X86::BI__builtin_ia32_vfmaddph512_maskz:
12410 case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
12411 case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
12412 case clang::X86::BI__builtin_ia32_vfmaddsubph512_maskz:
12413 case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
12414 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
12415 MaskFalseVal = Constant::getNullValue(Ops[0]->getType());
12416 break;
12417 case clang::X86::BI__builtin_ia32_vfmsubph512_mask3:
12418 case clang::X86::BI__builtin_ia32_vfmaddph512_mask3:
12419 case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
12420 case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
12421 case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
12422 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
12423 case clang::X86::BI__builtin_ia32_vfmsubaddph512_mask3:
12424 case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask3:
12425 case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
12426 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
12427 case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
12428 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
12429 MaskFalseVal = Ops[2];
12430 break;
12431 }
12432
12433 if (MaskFalseVal)
12434 return EmitX86Select(CGF, Ops[3], Res, MaskFalseVal);
12435
12436 return Res;
12437}
12438
12439static Value *EmitScalarFMAExpr(CodeGenFunction &CGF, const CallExpr *E,
12440 MutableArrayRef<Value *> Ops, Value *Upper,
12441 bool ZeroMask = false, unsigned PTIdx = 0,
12442 bool NegAcc = false) {
12443 unsigned Rnd = 4;
12444 if (Ops.size() > 4)
12445 Rnd = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
12446
12447 if (NegAcc)
12448 Ops[2] = CGF.Builder.CreateFNeg(Ops[2]);
12449
12450 Ops[0] = CGF.Builder.CreateExtractElement(Ops[0], (uint64_t)0);
12451 Ops[1] = CGF.Builder.CreateExtractElement(Ops[1], (uint64_t)0);
12452 Ops[2] = CGF.Builder.CreateExtractElement(Ops[2], (uint64_t)0);
12453 Value *Res;
12454 if (Rnd != 4) {
12455 Intrinsic::ID IID;
12456
12457 switch (Ops[0]->getType()->getPrimitiveSizeInBits()) {
12458 case 16:
12459 IID = Intrinsic::x86_avx512fp16_vfmadd_f16;
12460 break;
12461 case 32:
12462 IID = Intrinsic::x86_avx512_vfmadd_f32;
12463 break;
12464 case 64:
12465 IID = Intrinsic::x86_avx512_vfmadd_f64;
12466 break;
12467 default:
12468 llvm_unreachable("Unexpected size")::llvm::llvm_unreachable_internal("Unexpected size", "clang/lib/CodeGen/CGBuiltin.cpp"
, 12468)
;
12469 }
12470 Res = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
12471 {Ops[0], Ops[1], Ops[2], Ops[4]});
12472 } else if (CGF.Builder.getIsFPConstrained()) {
12473 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
12474 Function *FMA = CGF.CGM.getIntrinsic(
12475 Intrinsic::experimental_constrained_fma, Ops[0]->getType());
12476 Res = CGF.Builder.CreateConstrainedFPCall(FMA, Ops.slice(0, 3));
12477 } else {
12478 Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ops[0]->getType());
12479 Res = CGF.Builder.CreateCall(FMA, Ops.slice(0, 3));
12480 }
12481 // If we have more than 3 arguments, we need to do masking.
12482 if (Ops.size() > 3) {
12483 Value *PassThru = ZeroMask ? Constant::getNullValue(Res->getType())
12484 : Ops[PTIdx];
12485
12486 // If we negated the accumulator and the its the PassThru value we need to
12487 // bypass the negate. Conveniently Upper should be the same thing in this
12488 // case.
12489 if (NegAcc && PTIdx == 2)
12490 PassThru = CGF.Builder.CreateExtractElement(Upper, (uint64_t)0);
12491
12492 Res = EmitX86ScalarSelect(CGF, Ops[3], Res, PassThru);
12493 }
12494 return CGF.Builder.CreateInsertElement(Upper, Res, (uint64_t)0);
12495}
12496
12497static Value *EmitX86Muldq(CodeGenFunction &CGF, bool IsSigned,
12498 ArrayRef<Value *> Ops) {
12499 llvm::Type *Ty = Ops[0]->getType();
12500 // Arguments have a vXi32 type so cast to vXi64.
12501 Ty = llvm::FixedVectorType::get(CGF.Int64Ty,
12502 Ty->getPrimitiveSizeInBits() / 64);
12503 Value *LHS = CGF.Builder.CreateBitCast(Ops[0], Ty);
12504 Value *RHS = CGF.Builder.CreateBitCast(Ops[1], Ty);
12505
12506 if (IsSigned) {
12507 // Shift left then arithmetic shift right.
12508 Constant *ShiftAmt = ConstantInt::get(Ty, 32);
12509 LHS = CGF.Builder.CreateShl(LHS, ShiftAmt);
12510 LHS = CGF.Builder.CreateAShr(LHS, ShiftAmt);
12511 RHS = CGF.Builder.CreateShl(RHS, ShiftAmt);
12512 RHS = CGF.Builder.CreateAShr(RHS, ShiftAmt);
12513 } else {
12514 // Clear the upper bits.
12515 Constant *Mask = ConstantInt::get(Ty, 0xffffffff);
12516 LHS = CGF.Builder.CreateAnd(LHS, Mask);
12517 RHS = CGF.Builder.CreateAnd(RHS, Mask);
12518 }
12519
12520 return CGF.Builder.CreateMul(LHS, RHS);
12521}
12522
12523// Emit a masked pternlog intrinsic. This only exists because the header has to
12524// use a macro and we aren't able to pass the input argument to a pternlog
12525// builtin and a select builtin without evaluating it twice.
12526static Value *EmitX86Ternlog(CodeGenFunction &CGF, bool ZeroMask,
12527 ArrayRef<Value *> Ops) {
12528 llvm::Type *Ty = Ops[0]->getType();
12529
12530 unsigned VecWidth = Ty->getPrimitiveSizeInBits();
12531 unsigned EltWidth = Ty->getScalarSizeInBits();
12532 Intrinsic::ID IID;
12533 if (VecWidth == 128 && EltWidth == 32)
12534 IID = Intrinsic::x86_avx512_pternlog_d_128;
12535 else if (VecWidth == 256 && EltWidth == 32)
12536 IID = Intrinsic::x86_avx512_pternlog_d_256;
12537 else if (VecWidth == 512 && EltWidth == 32)
12538 IID = Intrinsic::x86_avx512_pternlog_d_512;
12539 else if (VecWidth == 128 && EltWidth == 64)
12540 IID = Intrinsic::x86_avx512_pternlog_q_128;
12541 else if (VecWidth == 256 && EltWidth == 64)
12542 IID = Intrinsic::x86_avx512_pternlog_q_256;
12543 else if (VecWidth == 512 && EltWidth == 64)
12544 IID = Intrinsic::x86_avx512_pternlog_q_512;
12545 else
12546 llvm_unreachable("Unexpected intrinsic")::llvm::llvm_unreachable_internal("Unexpected intrinsic", "clang/lib/CodeGen/CGBuiltin.cpp"
, 12546)
;
12547
12548 Value *Ternlog = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
12549 Ops.drop_back());
12550 Value *PassThru = ZeroMask ? ConstantAggregateZero::get(Ty) : Ops[0];
12551 return EmitX86Select(CGF, Ops[4], Ternlog, PassThru);
12552}
12553
12554static Value *EmitX86SExtMask(CodeGenFunction &CGF, Value *Op,
12555 llvm::Type *DstTy) {
12556 unsigned NumberOfElements =
12557 cast<llvm::FixedVectorType>(DstTy)->getNumElements();
12558 Value *Mask = getMaskVecValue(CGF, Op, NumberOfElements);
12559 return CGF.Builder.CreateSExt(Mask, DstTy, "vpmovm2");
12560}
12561
12562Value *CodeGenFunction::EmitX86CpuIs(const CallExpr *E) {
12563 const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts();
12564 StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString();
12565 return EmitX86CpuIs(CPUStr);
12566}
12567
12568// Convert F16 halfs to floats.
12569static Value *EmitX86CvtF16ToFloatExpr(CodeGenFunction &CGF,
12570 ArrayRef<Value *> Ops,
12571 llvm::Type *DstTy) {
12572 assert((Ops.size() == 1 || Ops.size() == 3 || Ops.size() == 4) &&(static_cast <bool> ((Ops.size() == 1 || Ops.size() == 3
|| Ops.size() == 4) && "Unknown cvtph2ps intrinsic")
? void (0) : __assert_fail ("(Ops.size() == 1 || Ops.size() == 3 || Ops.size() == 4) && \"Unknown cvtph2ps intrinsic\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 12573, __extension__ __PRETTY_FUNCTION__
))
12573 "Unknown cvtph2ps intrinsic")(static_cast <bool> ((Ops.size() == 1 || Ops.size() == 3
|| Ops.size() == 4) && "Unknown cvtph2ps intrinsic")
? void (0) : __assert_fail ("(Ops.size() == 1 || Ops.size() == 3 || Ops.size() == 4) && \"Unknown cvtph2ps intrinsic\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 12573, __extension__ __PRETTY_FUNCTION__
))
;
12574
12575 // If the SAE intrinsic doesn't use default rounding then we can't upgrade.
12576 if (Ops.size() == 4 && cast<llvm::ConstantInt>(Ops[3])->getZExtValue() != 4) {
12577 Function *F =
12578 CGF.CGM.getIntrinsic(Intrinsic::x86_avx512_mask_vcvtph2ps_512);
12579 return CGF.Builder.CreateCall(F, {Ops[0], Ops[1], Ops[2], Ops[3]});
12580 }
12581
12582 unsigned NumDstElts = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
12583 Value *Src = Ops[0];
12584
12585 // Extract the subvector.
12586 if (NumDstElts !=
12587 cast<llvm::FixedVectorType>(Src->getType())->getNumElements()) {
12588 assert(NumDstElts == 4 && "Unexpected vector size")(static_cast <bool> (NumDstElts == 4 && "Unexpected vector size"
) ? void (0) : __assert_fail ("NumDstElts == 4 && \"Unexpected vector size\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 12588, __extension__ __PRETTY_FUNCTION__
))
;
12589 Src = CGF.Builder.CreateShuffleVector(Src, ArrayRef<int>{0, 1, 2, 3});
12590 }
12591
12592 // Bitcast from vXi16 to vXf16.
12593 auto *HalfTy = llvm::FixedVectorType::get(
12594 llvm::Type::getHalfTy(CGF.getLLVMContext()), NumDstElts);
12595 Src = CGF.Builder.CreateBitCast(Src, HalfTy);
12596
12597 // Perform the fp-extension.
12598 Value *Res = CGF.Builder.CreateFPExt(Src, DstTy, "cvtph2ps");
12599
12600 if (Ops.size() >= 3)
12601 Res = EmitX86Select(CGF, Ops[2], Res, Ops[1]);
12602 return Res;
12603}
12604
12605// Convert a BF16 to a float.
12606static Value *EmitX86CvtBF16ToFloatExpr(CodeGenFunction &CGF,
12607 const CallExpr *E,
12608 ArrayRef<Value *> Ops) {
12609 llvm::Type *Int32Ty = CGF.Builder.getInt32Ty();
12610 Value *ZeroExt = CGF.Builder.CreateZExt(Ops[0], Int32Ty);
12611 Value *Shl = CGF.Builder.CreateShl(ZeroExt, 16);
12612 llvm::Type *ResultType = CGF.ConvertType(E->getType());
12613 Value *BitCast = CGF.Builder.CreateBitCast(Shl, ResultType);
12614 return BitCast;
12615}
12616
12617Value *CodeGenFunction::EmitX86CpuIs(StringRef CPUStr) {
12618
12619 llvm::Type *Int32Ty = Builder.getInt32Ty();
12620
12621 // Matching the struct layout from the compiler-rt/libgcc structure that is
12622 // filled in:
12623 // unsigned int __cpu_vendor;
12624 // unsigned int __cpu_type;
12625 // unsigned int __cpu_subtype;
12626 // unsigned int __cpu_features[1];
12627 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
12628 llvm::ArrayType::get(Int32Ty, 1));
12629
12630 // Grab the global __cpu_model.
12631 llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
12632 cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
12633
12634 // Calculate the index needed to access the correct field based on the
12635 // range. Also adjust the expected value.
12636 unsigned Index;
12637 unsigned Value;
12638 std::tie(Index, Value) = StringSwitch<std::pair<unsigned, unsigned>>(CPUStr)
12639#define X86_VENDOR(ENUM, STRING) \
12640 .Case(STRING, {0u, static_cast<unsigned>(llvm::X86::ENUM)})
12641#define X86_CPU_TYPE_ALIAS(ENUM, ALIAS) \
12642 .Case(ALIAS, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
12643#define X86_CPU_TYPE(ENUM, STR) \
12644 .Case(STR, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
12645#define X86_CPU_SUBTYPE(ENUM, STR) \
12646 .Case(STR, {2u, static_cast<unsigned>(llvm::X86::ENUM)})
12647#include "llvm/Support/X86TargetParser.def"
12648 .Default({0, 0});
12649 assert(Value != 0 && "Invalid CPUStr passed to CpuIs")(static_cast <bool> (Value != 0 && "Invalid CPUStr passed to CpuIs"
) ? void (0) : __assert_fail ("Value != 0 && \"Invalid CPUStr passed to CpuIs\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 12649, __extension__ __PRETTY_FUNCTION__
))
;
12650
12651 // Grab the appropriate field from __cpu_model.
12652 llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0),
12653 ConstantInt::get(Int32Ty, Index)};
12654 llvm::Value *CpuValue = Builder.CreateGEP(STy, CpuModel, Idxs);
12655 CpuValue = Builder.CreateAlignedLoad(Int32Ty, CpuValue,
12656 CharUnits::fromQuantity(4));
12657
12658 // Check the value of the field against the requested value.
12659 return Builder.CreateICmpEQ(CpuValue,
12660 llvm::ConstantInt::get(Int32Ty, Value));
12661}
12662
12663Value *CodeGenFunction::EmitX86CpuSupports(const CallExpr *E) {
12664 const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts();
12665 StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString();
12666 return EmitX86CpuSupports(FeatureStr);
12667}
12668
12669Value *CodeGenFunction::EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs) {
12670 return EmitX86CpuSupports(llvm::X86::getCpuSupportsMask(FeatureStrs));
12671}
12672
12673llvm::Value *CodeGenFunction::EmitX86CpuSupports(uint64_t FeaturesMask) {
12674 uint32_t Features1 = Lo_32(FeaturesMask);
12675 uint32_t Features2 = Hi_32(FeaturesMask);
12676
12677 Value *Result = Builder.getTrue();
12678
12679 if (Features1 != 0) {
12680 // Matching the struct layout from the compiler-rt/libgcc structure that is
12681 // filled in:
12682 // unsigned int __cpu_vendor;
12683 // unsigned int __cpu_type;
12684 // unsigned int __cpu_subtype;
12685 // unsigned int __cpu_features[1];
12686 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
12687 llvm::ArrayType::get(Int32Ty, 1));
12688
12689 // Grab the global __cpu_model.
12690 llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
12691 cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
12692
12693 // Grab the first (0th) element from the field __cpu_features off of the
12694 // global in the struct STy.
12695 Value *Idxs[] = {Builder.getInt32(0), Builder.getInt32(3),
12696 Builder.getInt32(0)};
12697 Value *CpuFeatures = Builder.CreateGEP(STy, CpuModel, Idxs);
12698 Value *Features = Builder.CreateAlignedLoad(Int32Ty, CpuFeatures,
12699 CharUnits::fromQuantity(4));
12700
12701 // Check the value of the bit corresponding to the feature requested.
12702 Value *Mask = Builder.getInt32(Features1);
12703 Value *Bitset = Builder.CreateAnd(Features, Mask);
12704 Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
12705 Result = Builder.CreateAnd(Result, Cmp);
12706 }
12707
12708 if (Features2 != 0) {
12709 llvm::Constant *CpuFeatures2 = CGM.CreateRuntimeVariable(Int32Ty,
12710 "__cpu_features2");
12711 cast<llvm::GlobalValue>(CpuFeatures2)->setDSOLocal(true);
12712
12713 Value *Features = Builder.CreateAlignedLoad(Int32Ty, CpuFeatures2,
12714 CharUnits::fromQuantity(4));
12715
12716 // Check the value of the bit corresponding to the feature requested.
12717 Value *Mask = Builder.getInt32(Features2);
12718 Value *Bitset = Builder.CreateAnd(Features, Mask);
12719 Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
12720 Result = Builder.CreateAnd(Result, Cmp);
12721 }
12722
12723 return Result;
12724}
12725
12726Value *CodeGenFunction::EmitX86CpuInit() {
12727 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy,
12728 /*Variadic*/ false);
12729 llvm::FunctionCallee Func =
12730 CGM.CreateRuntimeFunction(FTy, "__cpu_indicator_init");
12731 cast<llvm::GlobalValue>(Func.getCallee())->setDSOLocal(true);
12732 cast<llvm::GlobalValue>(Func.getCallee())
12733 ->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
12734 return Builder.CreateCall(Func);
12735}
12736
12737Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
12738 const CallExpr *E) {
12739 if (BuiltinID == X86::BI__builtin_cpu_is)
12740 return EmitX86CpuIs(E);
12741 if (BuiltinID == X86::BI__builtin_cpu_supports)
12742 return EmitX86CpuSupports(E);
12743 if (BuiltinID == X86::BI__builtin_cpu_init)
12744 return EmitX86CpuInit();
12745
12746 // Handle MSVC intrinsics before argument evaluation to prevent double
12747 // evaluation.
12748 if (Optional<MSVCIntrin> MsvcIntId = translateX86ToMsvcIntrin(BuiltinID))
12749 return EmitMSVCBuiltinExpr(*MsvcIntId, E);
12750
12751 SmallVector<Value*, 4> Ops;
12752 bool IsMaskFCmp = false;
12753 bool IsConjFMA = false;
12754
12755 // Find out if any arguments are required to be integer constant expressions.
12756 unsigned ICEArguments = 0;
12757 ASTContext::GetBuiltinTypeError Error;
12758 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
12759 assert(Error == ASTContext::GE_None && "Should not codegen an error")(static_cast <bool> (Error == ASTContext::GE_None &&
"Should not codegen an error") ? void (0) : __assert_fail ("Error == ASTContext::GE_None && \"Should not codegen an error\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 12759, __extension__ __PRETTY_FUNCTION__
))
;
12760
12761 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
12762 // If this is a normal argument, just emit it as a scalar.
12763 if ((ICEArguments & (1 << i)) == 0) {
12764 Ops.push_back(EmitScalarExpr(E->getArg(i)));
12765 continue;
12766 }
12767
12768 // If this is required to be a constant, constant fold it so that we know
12769 // that the generated intrinsic gets a ConstantInt.
12770 Ops.push_back(llvm::ConstantInt::get(
12771 getLLVMContext(), *E->getArg(i)->getIntegerConstantExpr(getContext())));
12772 }
12773
12774 // These exist so that the builtin that takes an immediate can be bounds
12775 // checked by clang to avoid passing bad immediates to the backend. Since
12776 // AVX has a larger immediate than SSE we would need separate builtins to
12777 // do the different bounds checking. Rather than create a clang specific
12778 // SSE only builtin, this implements eight separate builtins to match gcc
12779 // implementation.
12780 auto getCmpIntrinsicCall = [this, &Ops](Intrinsic::ID ID, unsigned Imm) {
12781 Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm));
12782 llvm::Function *F = CGM.getIntrinsic(ID);
12783 return Builder.CreateCall(F, Ops);
12784 };
12785
12786 // For the vector forms of FP comparisons, translate the builtins directly to
12787 // IR.
12788 // TODO: The builtins could be removed if the SSE header files used vector
12789 // extension comparisons directly (vector ordered/unordered may need
12790 // additional support via __builtin_isnan()).
12791 auto getVectorFCmpIR = [this, &Ops, E](CmpInst::Predicate Pred,
12792 bool IsSignaling) {
12793 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
12794 Value *Cmp;
12795 if (IsSignaling)
12796 Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]);
12797 else
12798 Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
12799 llvm::VectorType *FPVecTy = cast<llvm::VectorType>(Ops[0]->getType());
12800 llvm::VectorType *IntVecTy = llvm::VectorType::getInteger(FPVecTy);
12801 Value *Sext = Builder.CreateSExt(Cmp, IntVecTy);
12802 return Builder.CreateBitCast(Sext, FPVecTy);
12803 };
12804
12805 switch (BuiltinID) {
12806 default: return nullptr;
12807 case X86::BI_mm_prefetch: {
12808 Value *Address = Ops[0];
12809 ConstantInt *C = cast<ConstantInt>(Ops[1]);
12810 Value *RW = ConstantInt::get(Int32Ty, (C->getZExtValue() >> 2) & 0x1);
12811 Value *Locality = ConstantInt::get(Int32Ty, C->getZExtValue() & 0x3);
12812 Value *Data = ConstantInt::get(Int32Ty, 1);
12813 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
12814 return Builder.CreateCall(F, {Address, RW, Locality, Data});
12815 }
12816 case X86::BI_mm_clflush: {
12817 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_clflush),
12818 Ops[0]);
12819 }
12820 case X86::BI_mm_lfence: {
12821 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_lfence));
12822 }
12823 case X86::BI_mm_mfence: {
12824 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_mfence));
12825 }
12826 case X86::BI_mm_sfence: {
12827 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_sfence));
12828 }
12829 case X86::BI_mm_pause: {
12830 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_pause));
12831 }
12832 case X86::BI__rdtsc: {
12833 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtsc));
12834 }
12835 case X86::BI__builtin_ia32_rdtscp: {
12836 Value *Call = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtscp));
12837 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
12838 Ops[0]);
12839 return Builder.CreateExtractValue(Call, 0);
12840 }
12841 case X86::BI__builtin_ia32_lzcnt_u16:
12842 case X86::BI__builtin_ia32_lzcnt_u32:
12843 case X86::BI__builtin_ia32_lzcnt_u64: {
12844 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
12845 return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
12846 }
12847 case X86::BI__builtin_ia32_tzcnt_u16:
12848 case X86::BI__builtin_ia32_tzcnt_u32:
12849 case X86::BI__builtin_ia32_tzcnt_u64: {
12850 Function *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType());
12851 return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
12852 }
12853 case X86::BI__builtin_ia32_undef128:
12854 case X86::BI__builtin_ia32_undef256:
12855 case X86::BI__builtin_ia32_undef512:
12856 // The x86 definition of "undef" is not the same as the LLVM definition
12857 // (PR32176). We leave optimizing away an unnecessary zero constant to the
12858 // IR optimizer and backend.
12859 // TODO: If we had a "freeze" IR instruction to generate a fixed undef
12860 // value, we should use that here instead of a zero.
12861 return llvm::Constant::getNullValue(ConvertType(E->getType()));
12862 case X86::BI__builtin_ia32_vec_init_v8qi:
12863 case X86::BI__builtin_ia32_vec_init_v4hi:
12864 case X86::BI__builtin_ia32_vec_init_v2si:
12865 return Builder.CreateBitCast(BuildVector(Ops),
12866 llvm::Type::getX86_MMXTy(getLLVMContext()));
12867 case X86::BI__builtin_ia32_vec_ext_v2si:
12868 case X86::BI__builtin_ia32_vec_ext_v16qi:
12869 case X86::BI__builtin_ia32_vec_ext_v8hi:
12870 case X86::BI__builtin_ia32_vec_ext_v4si:
12871 case X86::BI__builtin_ia32_vec_ext_v4sf:
12872 case X86::BI__builtin_ia32_vec_ext_v2di:
12873 case X86::BI__builtin_ia32_vec_ext_v32qi:
12874 case X86::BI__builtin_ia32_vec_ext_v16hi:
12875 case X86::BI__builtin_ia32_vec_ext_v8si:
12876 case X86::BI__builtin_ia32_vec_ext_v4di: {
12877 unsigned NumElts =
12878 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
12879 uint64_t Index = cast<ConstantInt>(Ops[1])->getZExtValue();
12880 Index &= NumElts - 1;
12881 // These builtins exist so we can ensure the index is an ICE and in range.
12882 // Otherwise we could just do this in the header file.
12883 return Builder.CreateExtractElement(Ops[0], Index);
12884 }
12885 case X86::BI__builtin_ia32_vec_set_v16qi:
12886 case X86::BI__builtin_ia32_vec_set_v8hi:
12887 case X86::BI__builtin_ia32_vec_set_v4si:
12888 case X86::BI__builtin_ia32_vec_set_v2di:
12889 case X86::BI__builtin_ia32_vec_set_v32qi:
12890 case X86::BI__builtin_ia32_vec_set_v16hi:
12891 case X86::BI__builtin_ia32_vec_set_v8si:
12892 case X86::BI__builtin_ia32_vec_set_v4di: {
12893 unsigned NumElts =
12894 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
12895 unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
12896 Index &= NumElts - 1;
12897 // These builtins exist so we can ensure the index is an ICE and in range.
12898 // Otherwise we could just do this in the header file.
12899 return Builder.CreateInsertElement(Ops[0], Ops[1], Index);
12900 }
12901 case X86::BI_mm_setcsr:
12902 case X86::BI__builtin_ia32_ldmxcsr: {
12903 Address Tmp = CreateMemTemp(E->getArg(0)->getType());
12904 Builder.CreateStore(Ops[0], Tmp);
12905 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
12906 Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
12907 }
12908 case X86::BI_mm_getcsr:
12909 case X86::BI__builtin_ia32_stmxcsr: {
12910 Address Tmp = CreateMemTemp(E->getType());
12911 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
12912 Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
12913 return Builder.CreateLoad(Tmp, "stmxcsr");
12914 }
12915 case X86::BI__builtin_ia32_xsave:
12916 case X86::BI__builtin_ia32_xsave64:
12917 case X86::BI__builtin_ia32_xrstor:
12918 case X86::BI__builtin_ia32_xrstor64:
12919 case X86::BI__builtin_ia32_xsaveopt:
12920 case X86::BI__builtin_ia32_xsaveopt64:
12921 case X86::BI__builtin_ia32_xrstors:
12922 case X86::BI__builtin_ia32_xrstors64:
12923 case X86::BI__builtin_ia32_xsavec:
12924 case X86::BI__builtin_ia32_xsavec64:
12925 case X86::BI__builtin_ia32_xsaves:
12926 case X86::BI__builtin_ia32_xsaves64:
12927 case X86::BI__builtin_ia32_xsetbv:
12928 case X86::BI_xsetbv: {
12929 Intrinsic::ID ID;
12930#define INTRINSIC_X86_XSAVE_ID(NAME) \
12931 case X86::BI__builtin_ia32_##NAME: \
12932 ID = Intrinsic::x86_##NAME; \
12933 break
12934 switch (BuiltinID) {
12935 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 12935)
;
12936 INTRINSIC_X86_XSAVE_ID(xsave);
12937 INTRINSIC_X86_XSAVE_ID(xsave64);
12938 INTRINSIC_X86_XSAVE_ID(xrstor);
12939 INTRINSIC_X86_XSAVE_ID(xrstor64);
12940 INTRINSIC_X86_XSAVE_ID(xsaveopt);
12941 INTRINSIC_X86_XSAVE_ID(xsaveopt64);
12942 INTRINSIC_X86_XSAVE_ID(xrstors);
12943 INTRINSIC_X86_XSAVE_ID(xrstors64);
12944 INTRINSIC_X86_XSAVE_ID(xsavec);
12945 INTRINSIC_X86_XSAVE_ID(xsavec64);
12946 INTRINSIC_X86_XSAVE_ID(xsaves);
12947 INTRINSIC_X86_XSAVE_ID(xsaves64);
12948 INTRINSIC_X86_XSAVE_ID(xsetbv);
12949 case X86::BI_xsetbv:
12950 ID = Intrinsic::x86_xsetbv;
12951 break;
12952 }
12953#undef INTRINSIC_X86_XSAVE_ID
12954 Value *Mhi = Builder.CreateTrunc(
12955 Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty);
12956 Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty);
12957 Ops[1] = Mhi;
12958 Ops.push_back(Mlo);
12959 return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
12960 }
12961 case X86::BI__builtin_ia32_xgetbv:
12962 case X86::BI_xgetbv:
12963 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_xgetbv), Ops);
12964 case X86::BI__builtin_ia32_storedqudi128_mask:
12965 case X86::BI__builtin_ia32_storedqusi128_mask:
12966 case X86::BI__builtin_ia32_storedquhi128_mask:
12967 case X86::BI__builtin_ia32_storedquqi128_mask:
12968 case X86::BI__builtin_ia32_storeupd128_mask:
12969 case X86::BI__builtin_ia32_storeups128_mask:
12970 case X86::BI__builtin_ia32_storedqudi256_mask:
12971 case X86::BI__builtin_ia32_storedqusi256_mask:
12972 case X86::BI__builtin_ia32_storedquhi256_mask:
12973 case X86::BI__builtin_ia32_storedquqi256_mask:
12974 case X86::BI__builtin_ia32_storeupd256_mask:
12975 case X86::BI__builtin_ia32_storeups256_mask:
12976 case X86::BI__builtin_ia32_storedqudi512_mask:
12977 case X86::BI__builtin_ia32_storedqusi512_mask:
12978 case X86::BI__builtin_ia32_storedquhi512_mask:
12979 case X86::BI__builtin_ia32_storedquqi512_mask:
12980 case X86::BI__builtin_ia32_storeupd512_mask:
12981 case X86::BI__builtin_ia32_storeups512_mask:
12982 return EmitX86MaskedStore(*this, Ops, Align(1));
12983
12984 case X86::BI__builtin_ia32_storesh128_mask:
12985 case X86::BI__builtin_ia32_storess128_mask:
12986 case X86::BI__builtin_ia32_storesd128_mask:
12987 return EmitX86MaskedStore(*this, Ops, Align(1));
12988
12989 case X86::BI__builtin_ia32_vpopcntb_128:
12990 case X86::BI__builtin_ia32_vpopcntd_128:
12991 case X86::BI__builtin_ia32_vpopcntq_128:
12992 case X86::BI__builtin_ia32_vpopcntw_128:
12993 case X86::BI__builtin_ia32_vpopcntb_256:
12994 case X86::BI__builtin_ia32_vpopcntd_256:
12995 case X86::BI__builtin_ia32_vpopcntq_256:
12996 case X86::BI__builtin_ia32_vpopcntw_256:
12997 case X86::BI__builtin_ia32_vpopcntb_512:
12998 case X86::BI__builtin_ia32_vpopcntd_512:
12999 case X86::BI__builtin_ia32_vpopcntq_512:
13000 case X86::BI__builtin_ia32_vpopcntw_512: {
13001 llvm::Type *ResultType = ConvertType(E->getType());
13002 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
13003 return Builder.CreateCall(F, Ops);
13004 }
13005 case X86::BI__builtin_ia32_cvtmask2b128:
13006 case X86::BI__builtin_ia32_cvtmask2b256:
13007 case X86::BI__builtin_ia32_cvtmask2b512:
13008 case X86::BI__builtin_ia32_cvtmask2w128:
13009 case X86::BI__builtin_ia32_cvtmask2w256:
13010 case X86::BI__builtin_ia32_cvtmask2w512:
13011 case X86::BI__builtin_ia32_cvtmask2d128:
13012 case X86::BI__builtin_ia32_cvtmask2d256:
13013 case X86::BI__builtin_ia32_cvtmask2d512:
13014 case X86::BI__builtin_ia32_cvtmask2q128:
13015 case X86::BI__builtin_ia32_cvtmask2q256:
13016 case X86::BI__builtin_ia32_cvtmask2q512:
13017 return EmitX86SExtMask(*this, Ops[0], ConvertType(E->getType()));
13018
13019 case X86::BI__builtin_ia32_cvtb2mask128:
13020 case X86::BI__builtin_ia32_cvtb2mask256:
13021 case X86::BI__builtin_ia32_cvtb2mask512:
13022 case X86::BI__builtin_ia32_cvtw2mask128:
13023 case X86::BI__builtin_ia32_cvtw2mask256:
13024 case X86::BI__builtin_ia32_cvtw2mask512:
13025 case X86::BI__builtin_ia32_cvtd2mask128:
13026 case X86::BI__builtin_ia32_cvtd2mask256:
13027 case X86::BI__builtin_ia32_cvtd2mask512:
13028 case X86::BI__builtin_ia32_cvtq2mask128:
13029 case X86::BI__builtin_ia32_cvtq2mask256:
13030 case X86::BI__builtin_ia32_cvtq2mask512:
13031 return EmitX86ConvertToMask(*this, Ops[0]);
13032
13033 case X86::BI__builtin_ia32_cvtdq2ps512_mask:
13034 case X86::BI__builtin_ia32_cvtqq2ps512_mask:
13035 case X86::BI__builtin_ia32_cvtqq2pd512_mask:
13036 case X86::BI__builtin_ia32_vcvtw2ph512_mask:
13037 case X86::BI__builtin_ia32_vcvtdq2ph512_mask:
13038 case X86::BI__builtin_ia32_vcvtqq2ph512_mask:
13039 return EmitX86ConvertIntToFp(*this, E, Ops, /*IsSigned*/ true);
13040 case X86::BI__builtin_ia32_cvtudq2ps512_mask:
13041 case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
13042 case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
13043 case X86::BI__builtin_ia32_vcvtuw2ph512_mask:
13044 case X86::BI__builtin_ia32_vcvtudq2ph512_mask:
13045 case X86::BI__builtin_ia32_vcvtuqq2ph512_mask:
13046 return EmitX86ConvertIntToFp(*this, E, Ops, /*IsSigned*/ false);
13047
13048 case X86::BI__builtin_ia32_vfmaddss3:
13049 case X86::BI__builtin_ia32_vfmaddsd3:
13050 case X86::BI__builtin_ia32_vfmaddsh3_mask:
13051 case X86::BI__builtin_ia32_vfmaddss3_mask:
13052 case X86::BI__builtin_ia32_vfmaddsd3_mask:
13053 return EmitScalarFMAExpr(*this, E, Ops, Ops[0]);
13054 case X86::BI__builtin_ia32_vfmaddss:
13055 case X86::BI__builtin_ia32_vfmaddsd:
13056 return EmitScalarFMAExpr(*this, E, Ops,
13057 Constant::getNullValue(Ops[0]->getType()));
13058 case X86::BI__builtin_ia32_vfmaddsh3_maskz:
13059 case X86::BI__builtin_ia32_vfmaddss3_maskz:
13060 case X86::BI__builtin_ia32_vfmaddsd3_maskz:
13061 return EmitScalarFMAExpr(*this, E, Ops, Ops[0], /*ZeroMask*/ true);
13062 case X86::BI__builtin_ia32_vfmaddsh3_mask3:
13063 case X86::BI__builtin_ia32_vfmaddss3_mask3:
13064 case X86::BI__builtin_ia32_vfmaddsd3_mask3:
13065 return EmitScalarFMAExpr(*this, E, Ops, Ops[2], /*ZeroMask*/ false, 2);
13066 case X86::BI__builtin_ia32_vfmsubsh3_mask3:
13067 case X86::BI__builtin_ia32_vfmsubss3_mask3:
13068 case X86::BI__builtin_ia32_vfmsubsd3_mask3:
13069 return EmitScalarFMAExpr(*this, E, Ops, Ops[2], /*ZeroMask*/ false, 2,
13070 /*NegAcc*/ true);
13071 case X86::BI__builtin_ia32_vfmaddph:
13072 case X86::BI__builtin_ia32_vfmaddps:
13073 case X86::BI__builtin_ia32_vfmaddpd:
13074 case X86::BI__builtin_ia32_vfmaddph256:
13075 case X86::BI__builtin_ia32_vfmaddps256:
13076 case X86::BI__builtin_ia32_vfmaddpd256:
13077 case X86::BI__builtin_ia32_vfmaddph512_mask:
13078 case X86::BI__builtin_ia32_vfmaddph512_maskz:
13079 case X86::BI__builtin_ia32_vfmaddph512_mask3:
13080 case X86::BI__builtin_ia32_vfmaddps512_mask:
13081 case X86::BI__builtin_ia32_vfmaddps512_maskz:
13082 case X86::BI__builtin_ia32_vfmaddps512_mask3:
13083 case X86::BI__builtin_ia32_vfmsubps512_mask3:
13084 case X86::BI__builtin_ia32_vfmaddpd512_mask:
13085 case X86::BI__builtin_ia32_vfmaddpd512_maskz:
13086 case X86::BI__builtin_ia32_vfmaddpd512_mask3:
13087 case X86::BI__builtin_ia32_vfmsubpd512_mask3:
13088 case X86::BI__builtin_ia32_vfmsubph512_mask3:
13089 return EmitX86FMAExpr(*this, E, Ops, BuiltinID, /*IsAddSub*/ false);
13090 case X86::BI__builtin_ia32_vfmaddsubph512_mask:
13091 case X86::BI__builtin_ia32_vfmaddsubph512_maskz:
13092 case X86::BI__builtin_ia32_vfmaddsubph512_mask3:
13093 case X86::BI__builtin_ia32_vfmsubaddph512_mask3:
13094 case X86::BI__builtin_ia32_vfmaddsubps512_mask:
13095 case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
13096 case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
13097 case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
13098 case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
13099 case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
13100 case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
13101 case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
13102 return EmitX86FMAExpr(*this, E, Ops, BuiltinID, /*IsAddSub*/ true);
13103
13104 case X86::BI__builtin_ia32_movdqa32store128_mask:
13105 case X86::BI__builtin_ia32_movdqa64store128_mask:
13106 case X86::BI__builtin_ia32_storeaps128_mask:
13107 case X86::BI__builtin_ia32_storeapd128_mask:
13108 case X86::BI__builtin_ia32_movdqa32store256_mask:
13109 case X86::BI__builtin_ia32_movdqa64store256_mask:
13110 case X86::BI__builtin_ia32_storeaps256_mask:
13111 case X86::BI__builtin_ia32_storeapd256_mask:
13112 case X86::BI__builtin_ia32_movdqa32store512_mask:
13113 case X86::BI__builtin_ia32_movdqa64store512_mask:
13114 case X86::BI__builtin_ia32_storeaps512_mask:
13115 case X86::BI__builtin_ia32_storeapd512_mask:
13116 return EmitX86MaskedStore(
13117 *this, Ops,
13118 getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign());
13119
13120 case X86::BI__builtin_ia32_loadups128_mask:
13121 case X86::BI__builtin_ia32_loadups256_mask:
13122 case X86::BI__builtin_ia32_loadups512_mask:
13123 case X86::BI__builtin_ia32_loadupd128_mask:
13124 case X86::BI__builtin_ia32_loadupd256_mask:
13125 case X86::BI__builtin_ia32_loadupd512_mask:
13126 case X86::BI__builtin_ia32_loaddquqi128_mask:
13127 case X86::BI__builtin_ia32_loaddquqi256_mask:
13128 case X86::BI__builtin_ia32_loaddquqi512_mask:
13129 case X86::BI__builtin_ia32_loaddquhi128_mask:
13130 case X86::BI__builtin_ia32_loaddquhi256_mask:
13131 case X86::BI__builtin_ia32_loaddquhi512_mask:
13132 case X86::BI__builtin_ia32_loaddqusi128_mask:
13133 case X86::BI__builtin_ia32_loaddqusi256_mask:
13134 case X86::BI__builtin_ia32_loaddqusi512_mask:
13135 case X86::BI__builtin_ia32_loaddqudi128_mask:
13136 case X86::BI__builtin_ia32_loaddqudi256_mask:
13137 case X86::BI__builtin_ia32_loaddqudi512_mask:
13138 return EmitX86MaskedLoad(*this, Ops, Align(1));
13139
13140 case X86::BI__builtin_ia32_loadsh128_mask:
13141 case X86::BI__builtin_ia32_loadss128_mask:
13142 case X86::BI__builtin_ia32_loadsd128_mask:
13143 return EmitX86MaskedLoad(*this, Ops, Align(1));
13144
13145 case X86::BI__builtin_ia32_loadaps128_mask:
13146 case X86::BI__builtin_ia32_loadaps256_mask:
13147 case X86::BI__builtin_ia32_loadaps512_mask:
13148 case X86::BI__builtin_ia32_loadapd128_mask:
13149 case X86::BI__builtin_ia32_loadapd256_mask:
13150 case X86::BI__builtin_ia32_loadapd512_mask:
13151 case X86::BI__builtin_ia32_movdqa32load128_mask:
13152 case X86::BI__builtin_ia32_movdqa32load256_mask:
13153 case X86::BI__builtin_ia32_movdqa32load512_mask:
13154 case X86::BI__builtin_ia32_movdqa64load128_mask:
13155 case X86::BI__builtin_ia32_movdqa64load256_mask:
13156 case X86::BI__builtin_ia32_movdqa64load512_mask:
13157 return EmitX86MaskedLoad(
13158 *this, Ops,
13159 getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign());
13160
13161 case X86::BI__builtin_ia32_expandloaddf128_mask:
13162 case X86::BI__builtin_ia32_expandloaddf256_mask:
13163 case X86::BI__builtin_ia32_expandloaddf512_mask:
13164 case X86::BI__builtin_ia32_expandloadsf128_mask:
13165 case X86::BI__builtin_ia32_expandloadsf256_mask:
13166 case X86::BI__builtin_ia32_expandloadsf512_mask:
13167 case X86::BI__builtin_ia32_expandloaddi128_mask:
13168 case X86::BI__builtin_ia32_expandloaddi256_mask:
13169 case X86::BI__builtin_ia32_expandloaddi512_mask:
13170 case X86::BI__builtin_ia32_expandloadsi128_mask:
13171 case X86::BI__builtin_ia32_expandloadsi256_mask:
13172 case X86::BI__builtin_ia32_expandloadsi512_mask:
13173 case X86::BI__builtin_ia32_expandloadhi128_mask:
13174 case X86::BI__builtin_ia32_expandloadhi256_mask:
13175 case X86::BI__builtin_ia32_expandloadhi512_mask:
13176 case X86::BI__builtin_ia32_expandloadqi128_mask:
13177 case X86::BI__builtin_ia32_expandloadqi256_mask:
13178 case X86::BI__builtin_ia32_expandloadqi512_mask:
13179 return EmitX86ExpandLoad(*this, Ops);
13180
13181 case X86::BI__builtin_ia32_compressstoredf128_mask:
13182 case X86::BI__builtin_ia32_compressstoredf256_mask:
13183 case X86::BI__builtin_ia32_compressstoredf512_mask:
13184 case X86::BI__builtin_ia32_compressstoresf128_mask:
13185 case X86::BI__builtin_ia32_compressstoresf256_mask:
13186 case X86::BI__builtin_ia32_compressstoresf512_mask:
13187 case X86::BI__builtin_ia32_compressstoredi128_mask:
13188 case X86::BI__builtin_ia32_compressstoredi256_mask:
13189 case X86::BI__builtin_ia32_compressstoredi512_mask:
13190 case X86::BI__builtin_ia32_compressstoresi128_mask:
13191 case X86::BI__builtin_ia32_compressstoresi256_mask:
13192 case X86::BI__builtin_ia32_compressstoresi512_mask:
13193 case X86::BI__builtin_ia32_compressstorehi128_mask:
13194 case X86::BI__builtin_ia32_compressstorehi256_mask:
13195 case X86::BI__builtin_ia32_compressstorehi512_mask:
13196 case X86::BI__builtin_ia32_compressstoreqi128_mask:
13197 case X86::BI__builtin_ia32_compressstoreqi256_mask:
13198 case X86::BI__builtin_ia32_compressstoreqi512_mask:
13199 return EmitX86CompressStore(*this, Ops);
13200
13201 case X86::BI__builtin_ia32_expanddf128_mask:
13202 case X86::BI__builtin_ia32_expanddf256_mask:
13203 case X86::BI__builtin_ia32_expanddf512_mask:
13204 case X86::BI__builtin_ia32_expandsf128_mask:
13205 case X86::BI__builtin_ia32_expandsf256_mask:
13206 case X86::BI__builtin_ia32_expandsf512_mask:
13207 case X86::BI__builtin_ia32_expanddi128_mask:
13208 case X86::BI__builtin_ia32_expanddi256_mask:
13209 case X86::BI__builtin_ia32_expanddi512_mask:
13210 case X86::BI__builtin_ia32_expandsi128_mask:
13211 case X86::BI__builtin_ia32_expandsi256_mask:
13212 case X86::BI__builtin_ia32_expandsi512_mask:
13213 case X86::BI__builtin_ia32_expandhi128_mask:
13214 case X86::BI__builtin_ia32_expandhi256_mask:
13215 case X86::BI__builtin_ia32_expandhi512_mask:
13216 case X86::BI__builtin_ia32_expandqi128_mask:
13217 case X86::BI__builtin_ia32_expandqi256_mask:
13218 case X86::BI__builtin_ia32_expandqi512_mask:
13219 return EmitX86CompressExpand(*this, Ops, /*IsCompress*/false);
13220
13221 case X86::BI__builtin_ia32_compressdf128_mask:
13222 case X86::BI__builtin_ia32_compressdf256_mask:
13223 case X86::BI__builtin_ia32_compressdf512_mask:
13224 case X86::BI__builtin_ia32_compresssf128_mask:
13225 case X86::BI__builtin_ia32_compresssf256_mask:
13226 case X86::BI__builtin_ia32_compresssf512_mask:
13227 case X86::BI__builtin_ia32_compressdi128_mask:
13228 case X86::BI__builtin_ia32_compressdi256_mask:
13229 case X86::BI__builtin_ia32_compressdi512_mask:
13230 case X86::BI__builtin_ia32_compresssi128_mask:
13231 case X86::BI__builtin_ia32_compresssi256_mask:
13232 case X86::BI__builtin_ia32_compresssi512_mask:
13233 case X86::BI__builtin_ia32_compresshi128_mask:
13234 case X86::BI__builtin_ia32_compresshi256_mask:
13235 case X86::BI__builtin_ia32_compresshi512_mask:
13236 case X86::BI__builtin_ia32_compressqi128_mask:
13237 case X86::BI__builtin_ia32_compressqi256_mask:
13238 case X86::BI__builtin_ia32_compressqi512_mask:
13239 return EmitX86CompressExpand(*this, Ops, /*IsCompress*/true);
13240
13241 case X86::BI__builtin_ia32_gather3div2df:
13242 case X86::BI__builtin_ia32_gather3div2di:
13243 case X86::BI__builtin_ia32_gather3div4df:
13244 case X86::BI__builtin_ia32_gather3div4di:
13245 case X86::BI__builtin_ia32_gather3div4sf:
13246 case X86::BI__builtin_ia32_gather3div4si:
13247 case X86::BI__builtin_ia32_gather3div8sf:
13248 case X86::BI__builtin_ia32_gather3div8si:
13249 case X86::BI__builtin_ia32_gather3siv2df:
13250 case X86::BI__builtin_ia32_gather3siv2di:
13251 case X86::BI__builtin_ia32_gather3siv4df:
13252 case X86::BI__builtin_ia32_gather3siv4di:
13253 case X86::BI__builtin_ia32_gather3siv4sf:
13254 case X86::BI__builtin_ia32_gather3siv4si:
13255 case X86::BI__builtin_ia32_gather3siv8sf:
13256 case X86::BI__builtin_ia32_gather3siv8si:
13257 case X86::BI__builtin_ia32_gathersiv8df:
13258 case X86::BI__builtin_ia32_gathersiv16sf:
13259 case X86::BI__builtin_ia32_gatherdiv8df:
13260 case X86::BI__builtin_ia32_gatherdiv16sf:
13261 case X86::BI__builtin_ia32_gathersiv8di:
13262 case X86::BI__builtin_ia32_gathersiv16si:
13263 case X86::BI__builtin_ia32_gatherdiv8di:
13264 case X86::BI__builtin_ia32_gatherdiv16si: {
13265 Intrinsic::ID IID;
13266 switch (BuiltinID) {
13267 default: llvm_unreachable("Unexpected builtin")::llvm::llvm_unreachable_internal("Unexpected builtin", "clang/lib/CodeGen/CGBuiltin.cpp"
, 13267)
;
13268 case X86::BI__builtin_ia32_gather3div2df:
13269 IID = Intrinsic::x86_avx512_mask_gather3div2_df;
13270 break;
13271 case X86::BI__builtin_ia32_gather3div2di:
13272 IID = Intrinsic::x86_avx512_mask_gather3div2_di;
13273 break;
13274 case X86::BI__builtin_ia32_gather3div4df:
13275 IID = Intrinsic::x86_avx512_mask_gather3div4_df;
13276 break;
13277 case X86::BI__builtin_ia32_gather3div4di:
13278 IID = Intrinsic::x86_avx512_mask_gather3div4_di;
13279 break;
13280 case X86::BI__builtin_ia32_gather3div4sf:
13281 IID = Intrinsic::x86_avx512_mask_gather3div4_sf;
13282 break;
13283 case X86::BI__builtin_ia32_gather3div4si:
13284 IID = Intrinsic::x86_avx512_mask_gather3div4_si;
13285 break;
13286 case X86::BI__builtin_ia32_gather3div8sf:
13287 IID = Intrinsic::x86_avx512_mask_gather3div8_sf;
13288 break;
13289 case X86::BI__builtin_ia32_gather3div8si:
13290 IID = Intrinsic::x86_avx512_mask_gather3div8_si;
13291 break;
13292 case X86::BI__builtin_ia32_gather3siv2df:
13293 IID = Intrinsic::x86_avx512_mask_gather3siv2_df;
13294 break;
13295 case X86::BI__builtin_ia32_gather3siv2di:
13296 IID = Intrinsic::x86_avx512_mask_gather3siv2_di;
13297 break;
13298 case X86::BI__builtin_ia32_gather3siv4df:
13299 IID = Intrinsic::x86_avx512_mask_gather3siv4_df;
13300 break;
13301 case X86::BI__builtin_ia32_gather3siv4di:
13302 IID = Intrinsic::x86_avx512_mask_gather3siv4_di;
13303 break;
13304 case X86::BI__builtin_ia32_gather3siv4sf:
13305 IID = Intrinsic::x86_avx512_mask_gather3siv4_sf;
13306 break;
13307 case X86::BI__builtin_ia32_gather3siv4si:
13308 IID = Intrinsic::x86_avx512_mask_gather3siv4_si;
13309 break;
13310 case X86::BI__builtin_ia32_gather3siv8sf:
13311 IID = Intrinsic::x86_avx512_mask_gather3siv8_sf;
13312 break;
13313 case X86::BI__builtin_ia32_gather3siv8si:
13314 IID = Intrinsic::x86_avx512_mask_gather3siv8_si;
13315 break;
13316 case X86::BI__builtin_ia32_gathersiv8df:
13317 IID = Intrinsic::x86_avx512_mask_gather_dpd_512;
13318 break;
13319 case X86::BI__builtin_ia32_gathersiv16sf:
13320 IID = Intrinsic::x86_avx512_mask_gather_dps_512;
13321 break;
13322 case X86::BI__builtin_ia32_gatherdiv8df:
13323 IID = Intrinsic::x86_avx512_mask_gather_qpd_512;
13324 break;
13325 case X86::BI__builtin_ia32_gatherdiv16sf:
13326 IID = Intrinsic::x86_avx512_mask_gather_qps_512;
13327 break;
13328 case X86::BI__builtin_ia32_gathersiv8di:
13329 IID = Intrinsic::x86_avx512_mask_gather_dpq_512;
13330 break;
13331 case X86::BI__builtin_ia32_gathersiv16si:
13332 IID = Intrinsic::x86_avx512_mask_gather_dpi_512;
13333 break;
13334 case X86::BI__builtin_ia32_gatherdiv8di:
13335 IID = Intrinsic::x86_avx512_mask_gather_qpq_512;
13336 break;
13337 case X86::BI__builtin_ia32_gatherdiv16si:
13338 IID = Intrinsic::x86_avx512_mask_gather_qpi_512;
13339 break;
13340 }
13341
13342 unsigned MinElts = std::min(
13343 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(),
13344 cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements());
13345 Ops[3] = getMaskVecValue(*this, Ops[3], MinElts);
13346 Function *Intr = CGM.getIntrinsic(IID);
13347 return Builder.CreateCall(Intr, Ops);
13348 }
13349
13350 case X86::BI__builtin_ia32_scattersiv8df:
13351 case X86::BI__builtin_ia32_scattersiv16sf:
13352 case X86::BI__builtin_ia32_scatterdiv8df:
13353 case X86::BI__builtin_ia32_scatterdiv16sf:
13354 case X86::BI__builtin_ia32_scattersiv8di:
13355 case X86::BI__builtin_ia32_scattersiv16si:
13356 case X86::BI__builtin_ia32_scatterdiv8di:
13357 case X86::BI__builtin_ia32_scatterdiv16si:
13358 case X86::BI__builtin_ia32_scatterdiv2df:
13359 case X86::BI__builtin_ia32_scatterdiv2di:
13360 case X86::BI__builtin_ia32_scatterdiv4df:
13361 case X86::BI__builtin_ia32_scatterdiv4di:
13362 case X86::BI__builtin_ia32_scatterdiv4sf:
13363 case X86::BI__builtin_ia32_scatterdiv4si:
13364 case X86::BI__builtin_ia32_scatterdiv8sf:
13365 case X86::BI__builtin_ia32_scatterdiv8si:
13366 case X86::BI__builtin_ia32_scattersiv2df:
13367 case X86::BI__builtin_ia32_scattersiv2di:
13368 case X86::BI__builtin_ia32_scattersiv4df:
13369 case X86::BI__builtin_ia32_scattersiv4di:
13370 case X86::BI__builtin_ia32_scattersiv4sf:
13371 case X86::BI__builtin_ia32_scattersiv4si:
13372 case X86::BI__builtin_ia32_scattersiv8sf:
13373 case X86::BI__builtin_ia32_scattersiv8si: {
13374 Intrinsic::ID IID;
13375 switch (BuiltinID) {
13376 default: llvm_unreachable("Unexpected builtin")::llvm::llvm_unreachable_internal("Unexpected builtin", "clang/lib/CodeGen/CGBuiltin.cpp"
, 13376)
;
13377 case X86::BI__builtin_ia32_scattersiv8df:
13378 IID = Intrinsic::x86_avx512_mask_scatter_dpd_512;
13379 break;
13380 case X86::BI__builtin_ia32_scattersiv16sf:
13381 IID = Intrinsic::x86_avx512_mask_scatter_dps_512;
13382 break;
13383 case X86::BI__builtin_ia32_scatterdiv8df:
13384 IID = Intrinsic::x86_avx512_mask_scatter_qpd_512;
13385 break;
13386 case X86::BI__builtin_ia32_scatterdiv16sf:
13387 IID = Intrinsic::x86_avx512_mask_scatter_qps_512;
13388 break;
13389 case X86::BI__builtin_ia32_scattersiv8di:
13390 IID = Intrinsic::x86_avx512_mask_scatter_dpq_512;
13391 break;
13392 case X86::BI__builtin_ia32_scattersiv16si:
13393 IID = Intrinsic::x86_avx512_mask_scatter_dpi_512;
13394 break;
13395 case X86::BI__builtin_ia32_scatterdiv8di:
13396 IID = Intrinsic::x86_avx512_mask_scatter_qpq_512;
13397 break;
13398 case X86::BI__builtin_ia32_scatterdiv16si:
13399 IID = Intrinsic::x86_avx512_mask_scatter_qpi_512;
13400 break;
13401 case X86::BI__builtin_ia32_scatterdiv2df:
13402 IID = Intrinsic::x86_avx512_mask_scatterdiv2_df;
13403 break;
13404 case X86::BI__builtin_ia32_scatterdiv2di:
13405 IID = Intrinsic::x86_avx512_mask_scatterdiv2_di;
13406 break;
13407 case X86::BI__builtin_ia32_scatterdiv4df:
13408 IID = Intrinsic::x86_avx512_mask_scatterdiv4_df;
13409 break;
13410 case X86::BI__builtin_ia32_scatterdiv4di:
13411 IID = Intrinsic::x86_avx512_mask_scatterdiv4_di;
13412 break;
13413 case X86::BI__builtin_ia32_scatterdiv4sf:
13414 IID = Intrinsic::x86_avx512_mask_scatterdiv4_sf;
13415 break;
13416 case X86::BI__builtin_ia32_scatterdiv4si:
13417 IID = Intrinsic::x86_avx512_mask_scatterdiv4_si;
13418 break;
13419 case X86::BI__builtin_ia32_scatterdiv8sf:
13420 IID = Intrinsic::x86_avx512_mask_scatterdiv8_sf;
13421 break;
13422 case X86::BI__builtin_ia32_scatterdiv8si:
13423 IID = Intrinsic::x86_avx512_mask_scatterdiv8_si;
13424 break;
13425 case X86::BI__builtin_ia32_scattersiv2df:
13426 IID = Intrinsic::x86_avx512_mask_scattersiv2_df;
13427 break;
13428 case X86::BI__builtin_ia32_scattersiv2di:
13429 IID = Intrinsic::x86_avx512_mask_scattersiv2_di;
13430 break;
13431 case X86::BI__builtin_ia32_scattersiv4df:
13432 IID = Intrinsic::x86_avx512_mask_scattersiv4_df;
13433 break;
13434 case X86::BI__builtin_ia32_scattersiv4di:
13435 IID = Intrinsic::x86_avx512_mask_scattersiv4_di;
13436 break;
13437 case X86::BI__builtin_ia32_scattersiv4sf:
13438 IID = Intrinsic::x86_avx512_mask_scattersiv4_sf;
13439 break;
13440 case X86::BI__builtin_ia32_scattersiv4si:
13441 IID = Intrinsic::x86_avx512_mask_scattersiv4_si;
13442 break;
13443 case X86::BI__builtin_ia32_scattersiv8sf:
13444 IID = Intrinsic::x86_avx512_mask_scattersiv8_sf;
13445 break;
13446 case X86::BI__builtin_ia32_scattersiv8si:
13447 IID = Intrinsic::x86_avx512_mask_scattersiv8_si;
13448 break;
13449 }
13450
13451 unsigned MinElts = std::min(
13452 cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements(),
13453 cast<llvm::FixedVectorType>(Ops[3]->getType())->getNumElements());
13454 Ops[1] = getMaskVecValue(*this, Ops[1], MinElts);
13455 Function *Intr = CGM.getIntrinsic(IID);
13456 return Builder.CreateCall(Intr, Ops);
13457 }
13458
13459 case X86::BI__builtin_ia32_vextractf128_pd256:
13460 case X86::BI__builtin_ia32_vextractf128_ps256:
13461 case X86::BI__builtin_ia32_vextractf128_si256:
13462 case X86::BI__builtin_ia32_extract128i256:
13463 case X86::BI__builtin_ia32_extractf64x4_mask:
13464 case X86::BI__builtin_ia32_extractf32x4_mask:
13465 case X86::BI__builtin_ia32_extracti64x4_mask:
13466 case X86::BI__builtin_ia32_extracti32x4_mask:
13467 case X86::BI__builtin_ia32_extractf32x8_mask:
13468 case X86::BI__builtin_ia32_extracti32x8_mask:
13469 case X86::BI__builtin_ia32_extractf32x4_256_mask:
13470 case X86::BI__builtin_ia32_extracti32x4_256_mask:
13471 case X86::BI__builtin_ia32_extractf64x2_256_mask:
13472 case X86::BI__builtin_ia32_extracti64x2_256_mask:
13473 case X86::BI__builtin_ia32_extractf64x2_512_mask:
13474 case X86::BI__builtin_ia32_extracti64x2_512_mask: {
13475 auto *DstTy = cast<llvm::FixedVectorType>(ConvertType(E->getType()));
13476 unsigned NumElts = DstTy->getNumElements();
13477 unsigned SrcNumElts =
13478 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13479 unsigned SubVectors = SrcNumElts / NumElts;
13480 unsigned Index = cast<ConstantInt>(Ops[1])->getZExtValue();
13481 assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors")(static_cast <bool> (llvm::isPowerOf2_32(SubVectors) &&
"Expected power of 2 subvectors") ? void (0) : __assert_fail
("llvm::isPowerOf2_32(SubVectors) && \"Expected power of 2 subvectors\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 13481, __extension__ __PRETTY_FUNCTION__
))
;
13482 Index &= SubVectors - 1; // Remove any extra bits.
13483 Index *= NumElts;
13484
13485 int Indices[16];
13486 for (unsigned i = 0; i != NumElts; ++i)
13487 Indices[i] = i + Index;
13488
13489 Value *Res = Builder.CreateShuffleVector(Ops[0],
13490 makeArrayRef(Indices, NumElts),
13491 "extract");
13492
13493 if (Ops.size() == 4)
13494 Res = EmitX86Select(*this, Ops[3], Res, Ops[2]);
13495
13496 return Res;
13497 }
13498 case X86::BI__builtin_ia32_vinsertf128_pd256:
13499 case X86::BI__builtin_ia32_vinsertf128_ps256:
13500 case X86::BI__builtin_ia32_vinsertf128_si256:
13501 case X86::BI__builtin_ia32_insert128i256:
13502 case X86::BI__builtin_ia32_insertf64x4:
13503 case X86::BI__builtin_ia32_insertf32x4:
13504 case X86::BI__builtin_ia32_inserti64x4:
13505 case X86::BI__builtin_ia32_inserti32x4:
13506 case X86::BI__builtin_ia32_insertf32x8:
13507 case X86::BI__builtin_ia32_inserti32x8:
13508 case X86::BI__builtin_ia32_insertf32x4_256:
13509 case X86::BI__builtin_ia32_inserti32x4_256:
13510 case X86::BI__builtin_ia32_insertf64x2_256:
13511 case X86::BI__builtin_ia32_inserti64x2_256:
13512 case X86::BI__builtin_ia32_insertf64x2_512:
13513 case X86::BI__builtin_ia32_inserti64x2_512: {
13514 unsigned DstNumElts =
13515 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13516 unsigned SrcNumElts =
13517 cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements();
13518 unsigned SubVectors = DstNumElts / SrcNumElts;
13519 unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
13520 assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors")(static_cast <bool> (llvm::isPowerOf2_32(SubVectors) &&
"Expected power of 2 subvectors") ? void (0) : __assert_fail
("llvm::isPowerOf2_32(SubVectors) && \"Expected power of 2 subvectors\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 13520, __extension__ __PRETTY_FUNCTION__
))
;
13521 Index &= SubVectors - 1; // Remove any extra bits.
13522 Index *= SrcNumElts;
13523
13524 int Indices[16];
13525 for (unsigned i = 0; i != DstNumElts; ++i)
13526 Indices[i] = (i >= SrcNumElts) ? SrcNumElts + (i % SrcNumElts) : i;
13527
13528 Value *Op1 = Builder.CreateShuffleVector(Ops[1],
13529 makeArrayRef(Indices, DstNumElts),
13530 "widen");
13531
13532 for (unsigned i = 0; i != DstNumElts; ++i) {
13533 if (i >= Index && i < (Index + SrcNumElts))
13534 Indices[i] = (i - Index) + DstNumElts;
13535 else
13536 Indices[i] = i;
13537 }
13538
13539 return Builder.CreateShuffleVector(Ops[0], Op1,
13540 makeArrayRef(Indices, DstNumElts),
13541 "insert");
13542 }
13543 case X86::BI__builtin_ia32_pmovqd512_mask:
13544 case X86::BI__builtin_ia32_pmovwb512_mask: {
13545 Value *Res = Builder.CreateTrunc(Ops[0], Ops[1]->getType());
13546 return EmitX86Select(*this, Ops[2], Res, Ops[1]);
13547 }
13548 case X86::BI__builtin_ia32_pmovdb512_mask:
13549 case X86::BI__builtin_ia32_pmovdw512_mask:
13550 case X86::BI__builtin_ia32_pmovqw512_mask: {
13551 if (const auto *C = dyn_cast<Constant>(Ops[2]))
13552 if (C->isAllOnesValue())
13553 return Builder.CreateTrunc(Ops[0], Ops[1]->getType());
13554
13555 Intrinsic::ID IID;
13556 switch (BuiltinID) {
13557 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 13557)
;
13558 case X86::BI__builtin_ia32_pmovdb512_mask:
13559 IID = Intrinsic::x86_avx512_mask_pmov_db_512;
13560 break;
13561 case X86::BI__builtin_ia32_pmovdw512_mask:
13562 IID = Intrinsic::x86_avx512_mask_pmov_dw_512;
13563 break;
13564 case X86::BI__builtin_ia32_pmovqw512_mask:
13565 IID = Intrinsic::x86_avx512_mask_pmov_qw_512;
13566 break;
13567 }
13568
13569 Function *Intr = CGM.getIntrinsic(IID);
13570 return Builder.CreateCall(Intr, Ops);
13571 }
13572 case X86::BI__builtin_ia32_pblendw128:
13573 case X86::BI__builtin_ia32_blendpd:
13574 case X86::BI__builtin_ia32_blendps:
13575 case X86::BI__builtin_ia32_blendpd256:
13576 case X86::BI__builtin_ia32_blendps256:
13577 case X86::BI__builtin_ia32_pblendw256:
13578 case X86::BI__builtin_ia32_pblendd128:
13579 case X86::BI__builtin_ia32_pblendd256: {
13580 unsigned NumElts =
13581 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13582 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
13583
13584 int Indices[16];
13585 // If there are more than 8 elements, the immediate is used twice so make
13586 // sure we handle that.
13587 for (unsigned i = 0; i != NumElts; ++i)
13588 Indices[i] = ((Imm >> (i % 8)) & 0x1) ? NumElts + i : i;
13589
13590 return Builder.CreateShuffleVector(Ops[0], Ops[1],
13591 makeArrayRef(Indices, NumElts),
13592 "blend");
13593 }
13594 case X86::BI__builtin_ia32_pshuflw:
13595 case X86::BI__builtin_ia32_pshuflw256:
13596 case X86::BI__builtin_ia32_pshuflw512: {
13597 uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13598 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13599 unsigned NumElts = Ty->getNumElements();
13600
13601 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
13602 Imm = (Imm & 0xff) * 0x01010101;
13603
13604 int Indices[32];
13605 for (unsigned l = 0; l != NumElts; l += 8) {
13606 for (unsigned i = 0; i != 4; ++i) {
13607 Indices[l + i] = l + (Imm & 3);
13608 Imm >>= 2;
13609 }
13610 for (unsigned i = 4; i != 8; ++i)
13611 Indices[l + i] = l + i;
13612 }
13613
13614 return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts),
13615 "pshuflw");
13616 }
13617 case X86::BI__builtin_ia32_pshufhw:
13618 case X86::BI__builtin_ia32_pshufhw256:
13619 case X86::BI__builtin_ia32_pshufhw512: {
13620 uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13621 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13622 unsigned NumElts = Ty->getNumElements();
13623
13624 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
13625 Imm = (Imm & 0xff) * 0x01010101;
13626
13627 int Indices[32];
13628 for (unsigned l = 0; l != NumElts; l += 8) {
13629 for (unsigned i = 0; i != 4; ++i)
13630 Indices[l + i] = l + i;
13631 for (unsigned i = 4; i != 8; ++i) {
13632 Indices[l + i] = l + 4 + (Imm & 3);
13633 Imm >>= 2;
13634 }
13635 }
13636
13637 return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts),
13638 "pshufhw");
13639 }
13640 case X86::BI__builtin_ia32_pshufd:
13641 case X86::BI__builtin_ia32_pshufd256:
13642 case X86::BI__builtin_ia32_pshufd512:
13643 case X86::BI__builtin_ia32_vpermilpd:
13644 case X86::BI__builtin_ia32_vpermilps:
13645 case X86::BI__builtin_ia32_vpermilpd256:
13646 case X86::BI__builtin_ia32_vpermilps256:
13647 case X86::BI__builtin_ia32_vpermilpd512:
13648 case X86::BI__builtin_ia32_vpermilps512: {
13649 uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13650 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13651 unsigned NumElts = Ty->getNumElements();
13652 unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
13653 unsigned NumLaneElts = NumElts / NumLanes;
13654
13655 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
13656 Imm = (Imm & 0xff) * 0x01010101;
13657
13658 int Indices[16];
13659 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
13660 for (unsigned i = 0; i != NumLaneElts; ++i) {
13661 Indices[i + l] = (Imm % NumLaneElts) + l;
13662 Imm /= NumLaneElts;
13663 }
13664 }
13665
13666 return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts),
13667 "permil");
13668 }
13669 case X86::BI__builtin_ia32_shufpd:
13670 case X86::BI__builtin_ia32_shufpd256:
13671 case X86::BI__builtin_ia32_shufpd512:
13672 case X86::BI__builtin_ia32_shufps:
13673 case X86::BI__builtin_ia32_shufps256:
13674 case X86::BI__builtin_ia32_shufps512: {
13675 uint32_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
13676 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13677 unsigned NumElts = Ty->getNumElements();
13678 unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
13679 unsigned NumLaneElts = NumElts / NumLanes;
13680
13681 // Splat the 8-bits of immediate 4 times to help the loop wrap around.
13682 Imm = (Imm & 0xff) * 0x01010101;
13683
13684 int Indices[16];
13685 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
13686 for (unsigned i = 0; i != NumLaneElts; ++i) {
13687 unsigned Index = Imm % NumLaneElts;
13688 Imm /= NumLaneElts;
13689 if (i >= (NumLaneElts / 2))
13690 Index += NumElts;
13691 Indices[l + i] = l + Index;
13692 }
13693 }
13694
13695 return Builder.CreateShuffleVector(Ops[0], Ops[1],
13696 makeArrayRef(Indices, NumElts),
13697 "shufp");
13698 }
13699 case X86::BI__builtin_ia32_permdi256:
13700 case X86::BI__builtin_ia32_permdf256:
13701 case X86::BI__builtin_ia32_permdi512:
13702 case X86::BI__builtin_ia32_permdf512: {
13703 unsigned Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13704 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13705 unsigned NumElts = Ty->getNumElements();
13706
13707 // These intrinsics operate on 256-bit lanes of four 64-bit elements.
13708 int Indices[8];
13709 for (unsigned l = 0; l != NumElts; l += 4)
13710 for (unsigned i = 0; i != 4; ++i)
13711 Indices[l + i] = l + ((Imm >> (2 * i)) & 0x3);
13712
13713 return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts),
13714 "perm");
13715 }
13716 case X86::BI__builtin_ia32_palignr128:
13717 case X86::BI__builtin_ia32_palignr256:
13718 case X86::BI__builtin_ia32_palignr512: {
13719 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
13720
13721 unsigned NumElts =
13722 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13723 assert(NumElts % 16 == 0)(static_cast <bool> (NumElts % 16 == 0) ? void (0) : __assert_fail
("NumElts % 16 == 0", "clang/lib/CodeGen/CGBuiltin.cpp", 13723
, __extension__ __PRETTY_FUNCTION__))
;
13724
13725 // If palignr is shifting the pair of vectors more than the size of two
13726 // lanes, emit zero.
13727 if (ShiftVal >= 32)
13728 return llvm::Constant::getNullValue(ConvertType(E->getType()));
13729
13730 // If palignr is shifting the pair of input vectors more than one lane,
13731 // but less than two lanes, convert to shifting in zeroes.
13732 if (ShiftVal > 16) {
13733 ShiftVal -= 16;
13734 Ops[1] = Ops[0];
13735 Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType());
13736 }
13737
13738 int Indices[64];
13739 // 256-bit palignr operates on 128-bit lanes so we need to handle that
13740 for (unsigned l = 0; l != NumElts; l += 16) {
13741 for (unsigned i = 0; i != 16; ++i) {
13742 unsigned Idx = ShiftVal + i;
13743 if (Idx >= 16)
13744 Idx += NumElts - 16; // End of lane, switch operand.
13745 Indices[l + i] = Idx + l;
13746 }
13747 }
13748
13749 return Builder.CreateShuffleVector(Ops[1], Ops[0],
13750 makeArrayRef(Indices, NumElts),
13751 "palignr");
13752 }
13753 case X86::BI__builtin_ia32_alignd128:
13754 case X86::BI__builtin_ia32_alignd256:
13755 case X86::BI__builtin_ia32_alignd512:
13756 case X86::BI__builtin_ia32_alignq128:
13757 case X86::BI__builtin_ia32_alignq256:
13758 case X86::BI__builtin_ia32_alignq512: {
13759 unsigned NumElts =
13760 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13761 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
13762
13763 // Mask the shift amount to width of a vector.
13764 ShiftVal &= NumElts - 1;
13765
13766 int Indices[16];
13767 for (unsigned i = 0; i != NumElts; ++i)
13768 Indices[i] = i + ShiftVal;
13769
13770 return Builder.CreateShuffleVector(Ops[1], Ops[0],
13771 makeArrayRef(Indices, NumElts),
13772 "valign");
13773 }
13774 case X86::BI__builtin_ia32_shuf_f32x4_256:
13775 case X86::BI__builtin_ia32_shuf_f64x2_256:
13776 case X86::BI__builtin_ia32_shuf_i32x4_256:
13777 case X86::BI__builtin_ia32_shuf_i64x2_256:
13778 case X86::BI__builtin_ia32_shuf_f32x4:
13779 case X86::BI__builtin_ia32_shuf_f64x2:
13780 case X86::BI__builtin_ia32_shuf_i32x4:
13781 case X86::BI__builtin_ia32_shuf_i64x2: {
13782 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
13783 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13784 unsigned NumElts = Ty->getNumElements();
13785 unsigned NumLanes = Ty->getPrimitiveSizeInBits() == 512 ? 4 : 2;
13786 unsigned NumLaneElts = NumElts / NumLanes;
13787
13788 int Indices[16];
13789 for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
13790 unsigned Index = (Imm % NumLanes) * NumLaneElts;
13791 Imm /= NumLanes; // Discard the bits we just used.
13792 if (l >= (NumElts / 2))
13793 Index += NumElts; // Switch to other source.
13794 for (unsigned i = 0; i != NumLaneElts; ++i) {
13795 Indices[l + i] = Index + i;
13796 }
13797 }
13798
13799 return Builder.CreateShuffleVector(Ops[0], Ops[1],
13800 makeArrayRef(Indices, NumElts),
13801 "shuf");
13802 }
13803
13804 case X86::BI__builtin_ia32_vperm2f128_pd256:
13805 case X86::BI__builtin_ia32_vperm2f128_ps256:
13806 case X86::BI__builtin_ia32_vperm2f128_si256:
13807 case X86::BI__builtin_ia32_permti256: {
13808 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
13809 unsigned NumElts =
13810 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13811
13812 // This takes a very simple approach since there are two lanes and a
13813 // shuffle can have 2 inputs. So we reserve the first input for the first
13814 // lane and the second input for the second lane. This may result in
13815 // duplicate sources, but this can be dealt with in the backend.
13816
13817 Value *OutOps[2];
13818 int Indices[8];
13819 for (unsigned l = 0; l != 2; ++l) {
13820 // Determine the source for this lane.
13821 if (Imm & (1 << ((l * 4) + 3)))
13822 OutOps[l] = llvm::ConstantAggregateZero::get(Ops[0]->getType());
13823 else if (Imm & (1 << ((l * 4) + 1)))
13824 OutOps[l] = Ops[1];
13825 else
13826 OutOps[l] = Ops[0];
13827
13828 for (unsigned i = 0; i != NumElts/2; ++i) {
13829 // Start with ith element of the source for this lane.
13830 unsigned Idx = (l * NumElts) + i;
13831 // If bit 0 of the immediate half is set, switch to the high half of
13832 // the source.
13833 if (Imm & (1 << (l * 4)))
13834 Idx += NumElts/2;
13835 Indices[(l * (NumElts/2)) + i] = Idx;
13836 }
13837 }
13838
13839 return Builder.CreateShuffleVector(OutOps[0], OutOps[1],
13840 makeArrayRef(Indices, NumElts),
13841 "vperm");
13842 }
13843
13844 case X86::BI__builtin_ia32_pslldqi128_byteshift:
13845 case X86::BI__builtin_ia32_pslldqi256_byteshift:
13846 case X86::BI__builtin_ia32_pslldqi512_byteshift: {
13847 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
13848 auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType());
13849 // Builtin type is vXi64 so multiply by 8 to get bytes.
13850 unsigned NumElts = ResultType->getNumElements() * 8;
13851
13852 // If pslldq is shifting the vector more than 15 bytes, emit zero.
13853 if (ShiftVal >= 16)
13854 return llvm::Constant::getNullValue(ResultType);
13855
13856 int Indices[64];
13857 // 256/512-bit pslldq operates on 128-bit lanes so we need to handle that
13858 for (unsigned l = 0; l != NumElts; l += 16) {
13859 for (unsigned i = 0; i != 16; ++i) {
13860 unsigned Idx = NumElts + i - ShiftVal;
13861 if (Idx < NumElts) Idx -= NumElts - 16; // end of lane, switch operand.
13862 Indices[l + i] = Idx + l;
13863 }
13864 }
13865
13866 auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts);
13867 Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
13868 Value *Zero = llvm::Constant::getNullValue(VecTy);
13869 Value *SV = Builder.CreateShuffleVector(Zero, Cast,
13870 makeArrayRef(Indices, NumElts),
13871 "pslldq");
13872 return Builder.CreateBitCast(SV, Ops[0]->getType(), "cast");
13873 }
13874 case X86::BI__builtin_ia32_psrldqi128_byteshift:
13875 case X86::BI__builtin_ia32_psrldqi256_byteshift:
13876 case X86::BI__builtin_ia32_psrldqi512_byteshift: {
13877 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
13878 auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType());
13879 // Builtin type is vXi64 so multiply by 8 to get bytes.
13880 unsigned NumElts = ResultType->getNumElements() * 8;
13881
13882 // If psrldq is shifting the vector more than 15 bytes, emit zero.
13883 if (ShiftVal >= 16)
13884 return llvm::Constant::getNullValue(ResultType);
13885
13886 int Indices[64];
13887 // 256/512-bit psrldq operates on 128-bit lanes so we need to handle that
13888 for (unsigned l = 0; l != NumElts; l += 16) {
13889 for (unsigned i = 0; i != 16; ++i) {
13890 unsigned Idx = i + ShiftVal;
13891 if (Idx >= 16) Idx += NumElts - 16; // end of lane, switch operand.
13892 Indices[l + i] = Idx + l;
13893 }
13894 }
13895
13896 auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts);
13897 Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
13898 Value *Zero = llvm::Constant::getNullValue(VecTy);
13899 Value *SV = Builder.CreateShuffleVector(Cast, Zero,
13900 makeArrayRef(Indices, NumElts),
13901 "psrldq");
13902 return Builder.CreateBitCast(SV, ResultType, "cast");
13903 }
13904 case X86::BI__builtin_ia32_kshiftliqi:
13905 case X86::BI__builtin_ia32_kshiftlihi:
13906 case X86::BI__builtin_ia32_kshiftlisi:
13907 case X86::BI__builtin_ia32_kshiftlidi: {
13908 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
13909 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13910
13911 if (ShiftVal >= NumElts)
13912 return llvm::Constant::getNullValue(Ops[0]->getType());
13913
13914 Value *In = getMaskVecValue(*this, Ops[0], NumElts);
13915
13916 int Indices[64];
13917 for (unsigned i = 0; i != NumElts; ++i)
13918 Indices[i] = NumElts + i - ShiftVal;
13919
13920 Value *Zero = llvm::Constant::getNullValue(In->getType());
13921 Value *SV = Builder.CreateShuffleVector(Zero, In,
13922 makeArrayRef(Indices, NumElts),
13923 "kshiftl");
13924 return Builder.CreateBitCast(SV, Ops[0]->getType());
13925 }
13926 case X86::BI__builtin_ia32_kshiftriqi:
13927 case X86::BI__builtin_ia32_kshiftrihi:
13928 case X86::BI__builtin_ia32_kshiftrisi:
13929 case X86::BI__builtin_ia32_kshiftridi: {
13930 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
13931 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13932
13933 if (ShiftVal >= NumElts)
13934 return llvm::Constant::getNullValue(Ops[0]->getType());
13935
13936 Value *In = getMaskVecValue(*this, Ops[0], NumElts);
13937
13938 int Indices[64];
13939 for (unsigned i = 0; i != NumElts; ++i)
13940 Indices[i] = i + ShiftVal;
13941
13942 Value *Zero = llvm::Constant::getNullValue(In->getType());
13943 Value *SV = Builder.CreateShuffleVector(In, Zero,
13944 makeArrayRef(Indices, NumElts),
13945 "kshiftr");
13946 return Builder.CreateBitCast(SV, Ops[0]->getType());
13947 }
13948 case X86::BI__builtin_ia32_movnti:
13949 case X86::BI__builtin_ia32_movnti64:
13950 case X86::BI__builtin_ia32_movntsd:
13951 case X86::BI__builtin_ia32_movntss: {
13952 llvm::MDNode *Node = llvm::MDNode::get(
13953 getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
13954
13955 Value *Ptr = Ops[0];
13956 Value *Src = Ops[1];
13957
13958 // Extract the 0'th element of the source vector.
13959 if (BuiltinID == X86::BI__builtin_ia32_movntsd ||
13960 BuiltinID == X86::BI__builtin_ia32_movntss)
13961 Src = Builder.CreateExtractElement(Src, (uint64_t)0, "extract");
13962
13963 // Convert the type of the pointer to a pointer to the stored type.
13964 Value *BC = Builder.CreateBitCast(
13965 Ptr, llvm::PointerType::getUnqual(Src->getType()), "cast");
13966
13967 // Unaligned nontemporal store of the scalar value.
13968 StoreInst *SI = Builder.CreateDefaultAlignedStore(Src, BC);
13969 SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
13970 SI->setAlignment(llvm::Align(1));
13971 return SI;
13972 }
13973 // Rotate is a special case of funnel shift - 1st 2 args are the same.
13974 case X86::BI__builtin_ia32_vprotb:
13975 case X86::BI__builtin_ia32_vprotw:
13976 case X86::BI__builtin_ia32_vprotd:
13977 case X86::BI__builtin_ia32_vprotq:
13978 case X86::BI__builtin_ia32_vprotbi:
13979 case X86::BI__builtin_ia32_vprotwi:
13980 case X86::BI__builtin_ia32_vprotdi:
13981 case X86::BI__builtin_ia32_vprotqi:
13982 case X86::BI__builtin_ia32_prold128:
13983 case X86::BI__builtin_ia32_prold256:
13984 case X86::BI__builtin_ia32_prold512:
13985 case X86::BI__builtin_ia32_prolq128:
13986 case X86::BI__builtin_ia32_prolq256:
13987 case X86::BI__builtin_ia32_prolq512:
13988 case X86::BI__builtin_ia32_prolvd128:
13989 case X86::BI__builtin_ia32_prolvd256:
13990 case X86::BI__builtin_ia32_prolvd512:
13991 case X86::BI__builtin_ia32_prolvq128:
13992 case X86::BI__builtin_ia32_prolvq256:
13993 case X86::BI__builtin_ia32_prolvq512:
13994 return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], false);
13995 case X86::BI__builtin_ia32_prord128:
13996 case X86::BI__builtin_ia32_prord256:
13997 case X86::BI__builtin_ia32_prord512:
13998 case X86::BI__builtin_ia32_prorq128:
13999 case X86::BI__builtin_ia32_prorq256:
14000 case X86::BI__builtin_ia32_prorq512:
14001 case X86::BI__builtin_ia32_prorvd128:
14002 case X86::BI__builtin_ia32_prorvd256:
14003 case X86::BI__builtin_ia32_prorvd512:
14004 case X86::BI__builtin_ia32_prorvq128:
14005 case X86::BI__builtin_ia32_prorvq256:
14006 case X86::BI__builtin_ia32_prorvq512:
14007 return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], true);
14008 case X86::BI__builtin_ia32_selectb_128:
14009 case X86::BI__builtin_ia32_selectb_256:
14010 case X86::BI__builtin_ia32_selectb_512:
14011 case X86::BI__builtin_ia32_selectw_128:
14012 case X86::BI__builtin_ia32_selectw_256:
14013 case X86::BI__builtin_ia32_selectw_512:
14014 case X86::BI__builtin_ia32_selectd_128:
14015 case X86::BI__builtin_ia32_selectd_256:
14016 case X86::BI__builtin_ia32_selectd_512:
14017 case X86::BI__builtin_ia32_selectq_128:
14018 case X86::BI__builtin_ia32_selectq_256:
14019 case X86::BI__builtin_ia32_selectq_512:
14020 case X86::BI__builtin_ia32_selectph_128:
14021 case X86::BI__builtin_ia32_selectph_256:
14022 case X86::BI__builtin_ia32_selectph_512:
14023 case X86::BI__builtin_ia32_selectps_128:
14024 case X86::BI__builtin_ia32_selectps_256:
14025 case X86::BI__builtin_ia32_selectps_512:
14026 case X86::BI__builtin_ia32_selectpd_128:
14027 case X86::BI__builtin_ia32_selectpd_256:
14028 case X86::BI__builtin_ia32_selectpd_512:
14029 return EmitX86Select(*this, Ops[0], Ops[1], Ops[2]);
14030 case X86::BI__builtin_ia32_selectsh_128:
14031 case X86::BI__builtin_ia32_selectss_128:
14032 case X86::BI__builtin_ia32_selectsd_128: {
14033 Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
14034 Value *B = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
14035 A = EmitX86ScalarSelect(*this, Ops[0], A, B);
14036 return Builder.CreateInsertElement(Ops[1], A, (uint64_t)0);
14037 }
14038 case X86::BI__builtin_ia32_cmpb128_mask:
14039 case X86::BI__builtin_ia32_cmpb256_mask:
14040 case X86::BI__builtin_ia32_cmpb512_mask:
14041 case X86::BI__builtin_ia32_cmpw128_mask:
14042 case X86::BI__builtin_ia32_cmpw256_mask:
14043 case X86::BI__builtin_ia32_cmpw512_mask:
14044 case X86::BI__builtin_ia32_cmpd128_mask:
14045 case X86::BI__builtin_ia32_cmpd256_mask:
14046 case X86::BI__builtin_ia32_cmpd512_mask:
14047 case X86::BI__builtin_ia32_cmpq128_mask:
14048 case X86::BI__builtin_ia32_cmpq256_mask:
14049 case X86::BI__builtin_ia32_cmpq512_mask: {
14050 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
14051 return EmitX86MaskedCompare(*this, CC, true, Ops);
14052 }
14053 case X86::BI__builtin_ia32_ucmpb128_mask:
14054 case X86::BI__builtin_ia32_ucmpb256_mask:
14055 case X86::BI__builtin_ia32_ucmpb512_mask:
14056 case X86::BI__builtin_ia32_ucmpw128_mask:
14057 case X86::BI__builtin_ia32_ucmpw256_mask:
14058 case X86::BI__builtin_ia32_ucmpw512_mask:
14059 case X86::BI__builtin_ia32_ucmpd128_mask:
14060 case X86::BI__builtin_ia32_ucmpd256_mask:
14061 case X86::BI__builtin_ia32_ucmpd512_mask:
14062 case X86::BI__builtin_ia32_ucmpq128_mask:
14063 case X86::BI__builtin_ia32_ucmpq256_mask:
14064 case X86::BI__builtin_ia32_ucmpq512_mask: {
14065 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
14066 return EmitX86MaskedCompare(*this, CC, false, Ops);
14067 }
14068 case X86::BI__builtin_ia32_vpcomb:
14069 case X86::BI__builtin_ia32_vpcomw:
14070 case X86::BI__builtin_ia32_vpcomd:
14071 case X86::BI__builtin_ia32_vpcomq:
14072 return EmitX86vpcom(*this, Ops, true);
14073 case X86::BI__builtin_ia32_vpcomub:
14074 case X86::BI__builtin_ia32_vpcomuw:
14075 case X86::BI__builtin_ia32_vpcomud:
14076 case X86::BI__builtin_ia32_vpcomuq:
14077 return EmitX86vpcom(*this, Ops, false);
14078
14079 case X86::BI__builtin_ia32_kortestcqi:
14080 case X86::BI__builtin_ia32_kortestchi:
14081 case X86::BI__builtin_ia32_kortestcsi:
14082 case X86::BI__builtin_ia32_kortestcdi: {
14083 Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
14084 Value *C = llvm::Constant::getAllOnesValue(Ops[0]->getType());
14085 Value *Cmp = Builder.CreateICmpEQ(Or, C);
14086 return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
14087 }
14088 case X86::BI__builtin_ia32_kortestzqi:
14089 case X86::BI__builtin_ia32_kortestzhi:
14090 case X86::BI__builtin_ia32_kortestzsi:
14091 case X86::BI__builtin_ia32_kortestzdi: {
14092 Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
14093 Value *C = llvm::Constant::getNullValue(Ops[0]->getType());
14094 Value *Cmp = Builder.CreateICmpEQ(Or, C);
14095 return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
14096 }
14097
14098 case X86::BI__builtin_ia32_ktestcqi:
14099 case X86::BI__builtin_ia32_ktestzqi:
14100 case X86::BI__builtin_ia32_ktestchi:
14101 case X86::BI__builtin_ia32_ktestzhi:
14102 case X86::BI__builtin_ia32_ktestcsi:
14103 case X86::BI__builtin_ia32_ktestzsi:
14104 case X86::BI__builtin_ia32_ktestcdi:
14105 case X86::BI__builtin_ia32_ktestzdi: {
14106 Intrinsic::ID IID;
14107 switch (BuiltinID) {
14108 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 14108)
;
14109 case X86::BI__builtin_ia32_ktestcqi:
14110 IID = Intrinsic::x86_avx512_ktestc_b;
14111 break;
14112 case X86::BI__builtin_ia32_ktestzqi:
14113 IID = Intrinsic::x86_avx512_ktestz_b;
14114 break;
14115 case X86::BI__builtin_ia32_ktestchi:
14116 IID = Intrinsic::x86_avx512_ktestc_w;
14117 break;
14118 case X86::BI__builtin_ia32_ktestzhi:
14119 IID = Intrinsic::x86_avx512_ktestz_w;
14120 break;
14121 case X86::BI__builtin_ia32_ktestcsi:
14122 IID = Intrinsic::x86_avx512_ktestc_d;
14123 break;
14124 case X86::BI__builtin_ia32_ktestzsi:
14125 IID = Intrinsic::x86_avx512_ktestz_d;
14126 break;
14127 case X86::BI__builtin_ia32_ktestcdi:
14128 IID = Intrinsic::x86_avx512_ktestc_q;
14129 break;
14130 case X86::BI__builtin_ia32_ktestzdi:
14131 IID = Intrinsic::x86_avx512_ktestz_q;
14132 break;
14133 }
14134
14135 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
14136 Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
14137 Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
14138 Function *Intr = CGM.getIntrinsic(IID);
14139 return Builder.CreateCall(Intr, {LHS, RHS});
14140 }
14141
14142 case X86::BI__builtin_ia32_kaddqi:
14143 case X86::BI__builtin_ia32_kaddhi:
14144 case X86::BI__builtin_ia32_kaddsi:
14145 case X86::BI__builtin_ia32_kadddi: {
14146 Intrinsic::ID IID;
14147 switch (BuiltinID) {
14148 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 14148)
;
14149 case X86::BI__builtin_ia32_kaddqi:
14150 IID = Intrinsic::x86_avx512_kadd_b;
14151 break;
14152 case X86::BI__builtin_ia32_kaddhi:
14153 IID = Intrinsic::x86_avx512_kadd_w;
14154 break;
14155 case X86::BI__builtin_ia32_kaddsi:
14156 IID = Intrinsic::x86_avx512_kadd_d;
14157 break;
14158 case X86::BI__builtin_ia32_kadddi:
14159 IID = Intrinsic::x86_avx512_kadd_q;
14160 break;
14161 }
14162
14163 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
14164 Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
14165 Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
14166 Function *Intr = CGM.getIntrinsic(IID);
14167 Value *Res = Builder.CreateCall(Intr, {LHS, RHS});
14168 return Builder.CreateBitCast(Res, Ops[0]->getType());
14169 }
14170 case X86::BI__builtin_ia32_kandqi:
14171 case X86::BI__builtin_ia32_kandhi:
14172 case X86::BI__builtin_ia32_kandsi:
14173 case X86::BI__builtin_ia32_kanddi:
14174 return EmitX86MaskLogic(*this, Instruction::And, Ops);
14175 case X86::BI__builtin_ia32_kandnqi:
14176 case X86::BI__builtin_ia32_kandnhi:
14177 case X86::BI__builtin_ia32_kandnsi:
14178 case X86::BI__builtin_ia32_kandndi:
14179 return EmitX86MaskLogic(*this, Instruction::And, Ops, true);
14180 case X86::BI__builtin_ia32_korqi:
14181 case X86::BI__builtin_ia32_korhi:
14182 case X86::BI__builtin_ia32_korsi:
14183 case X86::BI__builtin_ia32_kordi:
14184 return EmitX86MaskLogic(*this, Instruction::Or, Ops);
14185 case X86::BI__builtin_ia32_kxnorqi:
14186 case X86::BI__builtin_ia32_kxnorhi:
14187 case X86::BI__builtin_ia32_kxnorsi:
14188 case X86::BI__builtin_ia32_kxnordi:
14189 return EmitX86MaskLogic(*this, Instruction::Xor, Ops, true);
14190 case X86::BI__builtin_ia32_kxorqi:
14191 case X86::BI__builtin_ia32_kxorhi:
14192 case X86::BI__builtin_ia32_kxorsi:
14193 case X86::BI__builtin_ia32_kxordi:
14194 return EmitX86MaskLogic(*this, Instruction::Xor, Ops);
14195 case X86::BI__builtin_ia32_knotqi:
14196 case X86::BI__builtin_ia32_knothi:
14197 case X86::BI__builtin_ia32_knotsi:
14198 case X86::BI__builtin_ia32_knotdi: {
14199 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
14200 Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
14201 return Builder.CreateBitCast(Builder.CreateNot(Res),
14202 Ops[0]->getType());
14203 }
14204 case X86::BI__builtin_ia32_kmovb:
14205 case X86::BI__builtin_ia32_kmovw:
14206 case X86::BI__builtin_ia32_kmovd:
14207 case X86::BI__builtin_ia32_kmovq: {
14208 // Bitcast to vXi1 type and then back to integer. This gets the mask
14209 // register type into the IR, but might be optimized out depending on
14210 // what's around it.
14211 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
14212 Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
14213 return Builder.CreateBitCast(Res, Ops[0]->getType());
14214 }
14215
14216 case X86::BI__builtin_ia32_kunpckdi:
14217 case X86::BI__builtin_ia32_kunpcksi:
14218 case X86::BI__builtin_ia32_kunpckhi: {
14219 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
14220 Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
14221 Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
14222 int Indices[64];
14223 for (unsigned i = 0; i != NumElts; ++i)
14224 Indices[i] = i;
14225
14226 // First extract half of each vector. This gives better codegen than
14227 // doing it in a single shuffle.
14228 LHS = Builder.CreateShuffleVector(LHS, LHS,
14229 makeArrayRef(Indices, NumElts / 2));
14230 RHS = Builder.CreateShuffleVector(RHS, RHS,
14231 makeArrayRef(Indices, NumElts / 2));
14232 // Concat the vectors.
14233 // NOTE: Operands are swapped to match the intrinsic definition.
14234 Value *Res = Builder.CreateShuffleVector(RHS, LHS,
14235 makeArrayRef(Indices, NumElts));
14236 return Builder.CreateBitCast(Res, Ops[0]->getType());
14237 }
14238
14239 case X86::BI__builtin_ia32_vplzcntd_128:
14240 case X86::BI__builtin_ia32_vplzcntd_256:
14241 case X86::BI__builtin_ia32_vplzcntd_512:
14242 case X86::BI__builtin_ia32_vplzcntq_128:
14243 case X86::BI__builtin_ia32_vplzcntq_256:
14244 case X86::BI__builtin_ia32_vplzcntq_512: {
14245 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
14246 return Builder.CreateCall(F, {Ops[0],Builder.getInt1(false)});
14247 }
14248 case X86::BI__builtin_ia32_sqrtss:
14249 case X86::BI__builtin_ia32_sqrtsd: {
14250 Value *A = Builder.CreateExtractElement(Ops[0], (uint64_t)0);
14251 Function *F;
14252 if (Builder.getIsFPConstrained()) {
14253 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
14254 F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
14255 A->getType());
14256 A = Builder.CreateConstrainedFPCall(F, {A});
14257 } else {
14258 F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
14259 A = Builder.CreateCall(F, {A});
14260 }
14261 return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
14262 }
14263 case X86::BI__builtin_ia32_sqrtsh_round_mask:
14264 case X86::BI__builtin_ia32_sqrtsd_round_mask:
14265 case X86::BI__builtin_ia32_sqrtss_round_mask: {
14266 unsigned CC = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
14267 // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
14268 // otherwise keep the intrinsic.
14269 if (CC != 4) {
14270 Intrinsic::ID IID;
14271
14272 switch (BuiltinID) {
14273 default:
14274 llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 14274)
;
14275 case X86::BI__builtin_ia32_sqrtsh_round_mask:
14276 IID = Intrinsic::x86_avx512fp16_mask_sqrt_sh;
14277 break;
14278 case X86::BI__builtin_ia32_sqrtsd_round_mask:
14279 IID = Intrinsic::x86_avx512_mask_sqrt_sd;
14280 break;
14281 case X86::BI__builtin_ia32_sqrtss_round_mask:
14282 IID = Intrinsic::x86_avx512_mask_sqrt_ss;
14283 break;
14284 }
14285 return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
14286 }
14287 Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
14288 Function *F;
14289 if (Builder.getIsFPConstrained()) {
14290 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
14291 F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
14292 A->getType());
14293 A = Builder.CreateConstrainedFPCall(F, A);
14294 } else {
14295 F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
14296 A = Builder.CreateCall(F, A);
14297 }
14298 Value *Src = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
14299 A = EmitX86ScalarSelect(*this, Ops[3], A, Src);
14300 return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
14301 }
14302 case X86::BI__builtin_ia32_sqrtpd256:
14303 case X86::BI__builtin_ia32_sqrtpd:
14304 case X86::BI__builtin_ia32_sqrtps256:
14305 case X86::BI__builtin_ia32_sqrtps:
14306 case X86::BI__builtin_ia32_sqrtph256:
14307 case X86::BI__builtin_ia32_sqrtph:
14308 case X86::BI__builtin_ia32_sqrtph512:
14309 case X86::BI__builtin_ia32_sqrtps512:
14310 case X86::BI__builtin_ia32_sqrtpd512: {
14311 if (Ops.size() == 2) {
14312 unsigned CC = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
14313 // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
14314 // otherwise keep the intrinsic.
14315 if (CC != 4) {
14316 Intrinsic::ID IID;
14317
14318 switch (BuiltinID) {
14319 default:
14320 llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 14320)
;
14321 case X86::BI__builtin_ia32_sqrtph512:
14322 IID = Intrinsic::x86_avx512fp16_sqrt_ph_512;
14323 break;
14324 case X86::BI__builtin_ia32_sqrtps512:
14325 IID = Intrinsic::x86_avx512_sqrt_ps_512;
14326 break;
14327 case X86::BI__builtin_ia32_sqrtpd512:
14328 IID = Intrinsic::x86_avx512_sqrt_pd_512;
14329 break;
14330 }
14331 return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
14332 }
14333 }
14334 if (Builder.getIsFPConstrained()) {
14335 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
14336 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
14337 Ops[0]->getType());
14338 return Builder.CreateConstrainedFPCall(F, Ops[0]);
14339 } else {
14340 Function *F = CGM.getIntrinsic(Intrinsic::sqrt, Ops[0]->getType());
14341 return Builder.CreateCall(F, Ops[0]);
14342 }
14343 }
14344
14345 case X86::BI__builtin_ia32_pmuludq128:
14346 case X86::BI__builtin_ia32_pmuludq256:
14347 case X86::BI__builtin_ia32_pmuludq512:
14348 return EmitX86Muldq(*this, /*IsSigned*/false, Ops);
14349
14350 case X86::BI__builtin_ia32_pmuldq128:
14351 case X86::BI__builtin_ia32_pmuldq256:
14352 case X86::BI__builtin_ia32_pmuldq512:
14353 return EmitX86Muldq(*this, /*IsSigned*/true, Ops);
14354
14355 case X86::BI__builtin_ia32_pternlogd512_mask:
14356 case X86::BI__builtin_ia32_pternlogq512_mask:
14357 case X86::BI__builtin_ia32_pternlogd128_mask:
14358 case X86::BI__builtin_ia32_pternlogd256_mask:
14359 case X86::BI__builtin_ia32_pternlogq128_mask:
14360 case X86::BI__builtin_ia32_pternlogq256_mask:
14361 return EmitX86Ternlog(*this, /*ZeroMask*/false, Ops);
14362
14363 case X86::BI__builtin_ia32_pternlogd512_maskz:
14364 case X86::BI__builtin_ia32_pternlogq512_maskz:
14365 case X86::BI__builtin_ia32_pternlogd128_maskz:
14366 case X86::BI__builtin_ia32_pternlogd256_maskz:
14367 case X86::BI__builtin_ia32_pternlogq128_maskz:
14368 case X86::BI__builtin_ia32_pternlogq256_maskz:
14369 return EmitX86Ternlog(*this, /*ZeroMask*/true, Ops);
14370
14371 case X86::BI__builtin_ia32_vpshldd128:
14372 case X86::BI__builtin_ia32_vpshldd256:
14373 case X86::BI__builtin_ia32_vpshldd512:
14374 case X86::BI__builtin_ia32_vpshldq128:
14375 case X86::BI__builtin_ia32_vpshldq256:
14376 case X86::BI__builtin_ia32_vpshldq512:
14377 case X86::BI__builtin_ia32_vpshldw128:
14378 case X86::BI__builtin_ia32_vpshldw256:
14379 case X86::BI__builtin_ia32_vpshldw512:
14380 return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
14381
14382 case X86::BI__builtin_ia32_vpshrdd128:
14383 case X86::BI__builtin_ia32_vpshrdd256:
14384 case X86::BI__builtin_ia32_vpshrdd512:
14385 case X86::BI__builtin_ia32_vpshrdq128:
14386 case X86::BI__builtin_ia32_vpshrdq256:
14387 case X86::BI__builtin_ia32_vpshrdq512:
14388 case X86::BI__builtin_ia32_vpshrdw128:
14389 case X86::BI__builtin_ia32_vpshrdw256:
14390 case X86::BI__builtin_ia32_vpshrdw512:
14391 // Ops 0 and 1 are swapped.
14392 return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
14393
14394 case X86::BI__builtin_ia32_vpshldvd128:
14395 case X86::BI__builtin_ia32_vpshldvd256:
14396 case X86::BI__builtin_ia32_vpshldvd512:
14397 case X86::BI__builtin_ia32_vpshldvq128:
14398 case X86::BI__builtin_ia32_vpshldvq256:
14399 case X86::BI__builtin_ia32_vpshldvq512:
14400 case X86::BI__builtin_ia32_vpshldvw128:
14401 case X86::BI__builtin_ia32_vpshldvw256:
14402 case X86::BI__builtin_ia32_vpshldvw512:
14403 return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
14404
14405 case X86::BI__builtin_ia32_vpshrdvd128:
14406 case X86::BI__builtin_ia32_vpshrdvd256:
14407 case X86::BI__builtin_ia32_vpshrdvd512:
14408 case X86::BI__builtin_ia32_vpshrdvq128:
14409 case X86::BI__builtin_ia32_vpshrdvq256:
14410 case X86::BI__builtin_ia32_vpshrdvq512:
14411 case X86::BI__builtin_ia32_vpshrdvw128:
14412 case X86::BI__builtin_ia32_vpshrdvw256:
14413 case X86::BI__builtin_ia32_vpshrdvw512:
14414 // Ops 0 and 1 are swapped.
14415 return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
14416
14417 // Reductions
14418 case X86::BI__builtin_ia32_reduce_add_d512:
14419 case X86::BI__builtin_ia32_reduce_add_q512: {
14420 Function *F =
14421 CGM.getIntrinsic(Intrinsic::vector_reduce_add, Ops[0]->getType());
14422 return Builder.CreateCall(F, {Ops[0]});
14423 }
14424 case X86::BI__builtin_ia32_reduce_fadd_pd512:
14425 case X86::BI__builtin_ia32_reduce_fadd_ps512:
14426 case X86::BI__builtin_ia32_reduce_fadd_ph512:
14427 case X86::BI__builtin_ia32_reduce_fadd_ph256:
14428 case X86::BI__builtin_ia32_reduce_fadd_ph128: {
14429 Function *F =
14430 CGM.getIntrinsic(Intrinsic::vector_reduce_fadd, Ops[1]->getType());
14431 Builder.getFastMathFlags().setAllowReassoc();
14432 return Builder.CreateCall(F, {Ops[0], Ops[1]});
14433 }
14434 case X86::BI__builtin_ia32_reduce_fmul_pd512:
14435 case X86::BI__builtin_ia32_reduce_fmul_ps512:
14436 case X86::BI__builtin_ia32_reduce_fmul_ph512:
14437 case X86::BI__builtin_ia32_reduce_fmul_ph256:
14438 case X86::BI__builtin_ia32_reduce_fmul_ph128: {
14439 Function *F =
14440 CGM.getIntrinsic(Intrinsic::vector_reduce_fmul, Ops[1]->getType());
14441 Builder.getFastMathFlags().setAllowReassoc();
14442 return Builder.CreateCall(F, {Ops[0], Ops[1]});
14443 }
14444 case X86::BI__builtin_ia32_reduce_fmax_pd512:
14445 case X86::BI__builtin_ia32_reduce_fmax_ps512:
14446 case X86::BI__builtin_ia32_reduce_fmax_ph512:
14447 case X86::BI__builtin_ia32_reduce_fmax_ph256:
14448 case X86::BI__builtin_ia32_reduce_fmax_ph128: {
14449 Function *F =
14450 CGM.getIntrinsic(Intrinsic::vector_reduce_fmax, Ops[0]->getType());
14451 Builder.getFastMathFlags().setNoNaNs();
14452 return Builder.CreateCall(F, {Ops[0]});
14453 }
14454 case X86::BI__builtin_ia32_reduce_fmin_pd512:
14455 case X86::BI__builtin_ia32_reduce_fmin_ps512:
14456 case X86::BI__builtin_ia32_reduce_fmin_ph512:
14457 case X86::BI__builtin_ia32_reduce_fmin_ph256:
14458 case X86::BI__builtin_ia32_reduce_fmin_ph128: {
14459 Function *F =
14460 CGM.getIntrinsic(Intrinsic::vector_reduce_fmin, Ops[0]->getType());
14461 Builder.getFastMathFlags().setNoNaNs();
14462 return Builder.CreateCall(F, {Ops[0]});
14463 }
14464 case X86::BI__builtin_ia32_reduce_mul_d512:
14465 case X86::BI__builtin_ia32_reduce_mul_q512: {
14466 Function *F =
14467 CGM.getIntrinsic(Intrinsic::vector_reduce_mul, Ops[0]->getType());
14468 return Builder.CreateCall(F, {Ops[0]});
14469 }
14470
14471 // 3DNow!
14472 case X86::BI__builtin_ia32_pswapdsf:
14473 case X86::BI__builtin_ia32_pswapdsi: {
14474 llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext());
14475 Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast");
14476 llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_3dnowa_pswapd);
14477 return Builder.CreateCall(F, Ops, "pswapd");
14478 }
14479 case X86::BI__builtin_ia32_rdrand16_step:
14480 case X86::BI__builtin_ia32_rdrand32_step:
14481 case X86::BI__builtin_ia32_rdrand64_step:
14482 case X86::BI__builtin_ia32_rdseed16_step:
14483 case X86::BI__builtin_ia32_rdseed32_step:
14484 case X86::BI__builtin_ia32_rdseed64_step: {
14485 Intrinsic::ID ID;
14486 switch (BuiltinID) {
14487 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 14487)
;
14488 case X86::BI__builtin_ia32_rdrand16_step:
14489 ID = Intrinsic::x86_rdrand_16;
14490 break;
14491 case X86::BI__builtin_ia32_rdrand32_step:
14492 ID = Intrinsic::x86_rdrand_32;
14493 break;
14494 case X86::BI__builtin_ia32_rdrand64_step:
14495 ID = Intrinsic::x86_rdrand_64;
14496 break;
14497 case X86::BI__builtin_ia32_rdseed16_step:
14498 ID = Intrinsic::x86_rdseed_16;
14499 break;
14500 case X86::BI__builtin_ia32_rdseed32_step:
14501 ID = Intrinsic::x86_rdseed_32;
14502 break;
14503 case X86::BI__builtin_ia32_rdseed64_step:
14504 ID = Intrinsic::x86_rdseed_64;
14505 break;
14506 }
14507
14508 Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
14509 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0),
14510 Ops[0]);
14511 return Builder.CreateExtractValue(Call, 1);
14512 }
14513 case X86::BI__builtin_ia32_addcarryx_u32:
14514 case X86::BI__builtin_ia32_addcarryx_u64:
14515 case X86::BI__builtin_ia32_subborrow_u32:
14516 case X86::BI__builtin_ia32_subborrow_u64: {
14517 Intrinsic::ID IID;
14518 switch (BuiltinID) {
14519 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 14519)
;
14520 case X86::BI__builtin_ia32_addcarryx_u32:
14521 IID = Intrinsic::x86_addcarry_32;
14522 break;
14523 case X86::BI__builtin_ia32_addcarryx_u64:
14524 IID = Intrinsic::x86_addcarry_64;
14525 break;
14526 case X86::BI__builtin_ia32_subborrow_u32:
14527 IID = Intrinsic::x86_subborrow_32;
14528 break;
14529 case X86::BI__builtin_ia32_subborrow_u64:
14530 IID = Intrinsic::x86_subborrow_64;
14531 break;
14532 }
14533
14534 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID),
14535 { Ops[0], Ops[1], Ops[2] });
14536 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
14537 Ops[3]);
14538 return Builder.CreateExtractValue(Call, 0);
14539 }
14540
14541 case X86::BI__builtin_ia32_fpclassps128_mask:
14542 case X86::BI__builtin_ia32_fpclassps256_mask:
14543 case X86::BI__builtin_ia32_fpclassps512_mask:
14544 case X86::BI__builtin_ia32_fpclassph128_mask:
14545 case X86::BI__builtin_ia32_fpclassph256_mask:
14546 case X86::BI__builtin_ia32_fpclassph512_mask:
14547 case X86::BI__builtin_ia32_fpclasspd128_mask:
14548 case X86::BI__builtin_ia32_fpclasspd256_mask:
14549 case X86::BI__builtin_ia32_fpclasspd512_mask: {
14550 unsigned NumElts =
14551 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14552 Value *MaskIn = Ops[2];
14553 Ops.erase(&Ops[2]);
14554
14555 Intrinsic::ID ID;
14556 switch (BuiltinID) {
14557 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 14557)
;
14558 case X86::BI__builtin_ia32_fpclassph128_mask:
14559 ID = Intrinsic::x86_avx512fp16_fpclass_ph_128;
14560 break;
14561 case X86::BI__builtin_ia32_fpclassph256_mask:
14562 ID = Intrinsic::x86_avx512fp16_fpclass_ph_256;
14563 break;
14564 case X86::BI__builtin_ia32_fpclassph512_mask:
14565 ID = Intrinsic::x86_avx512fp16_fpclass_ph_512;
14566 break;
14567 case X86::BI__builtin_ia32_fpclassps128_mask:
14568 ID = Intrinsic::x86_avx512_fpclass_ps_128;
14569 break;
14570 case X86::BI__builtin_ia32_fpclassps256_mask:
14571 ID = Intrinsic::x86_avx512_fpclass_ps_256;
14572 break;
14573 case X86::BI__builtin_ia32_fpclassps512_mask:
14574 ID = Intrinsic::x86_avx512_fpclass_ps_512;
14575 break;
14576 case X86::BI__builtin_ia32_fpclasspd128_mask:
14577 ID = Intrinsic::x86_avx512_fpclass_pd_128;
14578 break;
14579 case X86::BI__builtin_ia32_fpclasspd256_mask:
14580 ID = Intrinsic::x86_avx512_fpclass_pd_256;
14581 break;
14582 case X86::BI__builtin_ia32_fpclasspd512_mask:
14583 ID = Intrinsic::x86_avx512_fpclass_pd_512;
14584 break;
14585 }
14586
14587 Value *Fpclass = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14588 return EmitX86MaskedCompareResult(*this, Fpclass, NumElts, MaskIn);
14589 }
14590
14591 case X86::BI__builtin_ia32_vp2intersect_q_512:
14592 case X86::BI__builtin_ia32_vp2intersect_q_256:
14593 case X86::BI__builtin_ia32_vp2intersect_q_128:
14594 case X86::BI__builtin_ia32_vp2intersect_d_512:
14595 case X86::BI__builtin_ia32_vp2intersect_d_256:
14596 case X86::BI__builtin_ia32_vp2intersect_d_128: {
14597 unsigned NumElts =
14598 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14599 Intrinsic::ID ID;
14600
14601 switch (BuiltinID) {
14602 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 14602)
;
14603 case X86::BI__builtin_ia32_vp2intersect_q_512:
14604 ID = Intrinsic::x86_avx512_vp2intersect_q_512;
14605 break;
14606 case X86::BI__builtin_ia32_vp2intersect_q_256:
14607 ID = Intrinsic::x86_avx512_vp2intersect_q_256;
14608 break;
14609 case X86::BI__builtin_ia32_vp2intersect_q_128:
14610 ID = Intrinsic::x86_avx512_vp2intersect_q_128;
14611 break;
14612 case X86::BI__builtin_ia32_vp2intersect_d_512:
14613 ID = Intrinsic::x86_avx512_vp2intersect_d_512;
14614 break;
14615 case X86::BI__builtin_ia32_vp2intersect_d_256:
14616 ID = Intrinsic::x86_avx512_vp2intersect_d_256;
14617 break;
14618 case X86::BI__builtin_ia32_vp2intersect_d_128:
14619 ID = Intrinsic::x86_avx512_vp2intersect_d_128;
14620 break;
14621 }
14622
14623 Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID), {Ops[0], Ops[1]});
14624 Value *Result = Builder.CreateExtractValue(Call, 0);
14625 Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
14626 Builder.CreateDefaultAlignedStore(Result, Ops[2]);
14627
14628 Result = Builder.CreateExtractValue(Call, 1);
14629 Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
14630 return Builder.CreateDefaultAlignedStore(Result, Ops[3]);
14631 }
14632
14633 case X86::BI__builtin_ia32_vpmultishiftqb128:
14634 case X86::BI__builtin_ia32_vpmultishiftqb256:
14635 case X86::BI__builtin_ia32_vpmultishiftqb512: {
14636 Intrinsic::ID ID;
14637 switch (BuiltinID) {
14638 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 14638)
;
14639 case X86::BI__builtin_ia32_vpmultishiftqb128:
14640 ID = Intrinsic::x86_avx512_pmultishift_qb_128;
14641 break;
14642 case X86::BI__builtin_ia32_vpmultishiftqb256:
14643 ID = Intrinsic::x86_avx512_pmultishift_qb_256;
14644 break;
14645 case X86::BI__builtin_ia32_vpmultishiftqb512:
14646 ID = Intrinsic::x86_avx512_pmultishift_qb_512;
14647 break;
14648 }
14649
14650 return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14651 }
14652
14653 case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
14654 case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
14655 case X86::BI__builtin_ia32_vpshufbitqmb512_mask: {
14656 unsigned NumElts =
14657 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14658 Value *MaskIn = Ops[2];
14659 Ops.erase(&Ops[2]);
14660
14661 Intrinsic::ID ID;
14662 switch (BuiltinID) {
14663 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 14663)
;
14664 case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
14665 ID = Intrinsic::x86_avx512_vpshufbitqmb_128;
14666 break;
14667 case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
14668 ID = Intrinsic::x86_avx512_vpshufbitqmb_256;
14669 break;
14670 case X86::BI__builtin_ia32_vpshufbitqmb512_mask:
14671 ID = Intrinsic::x86_avx512_vpshufbitqmb_512;
14672 break;
14673 }
14674
14675 Value *Shufbit = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14676 return EmitX86MaskedCompareResult(*this, Shufbit, NumElts, MaskIn);
14677 }
14678
14679 // packed comparison intrinsics
14680 case X86::BI__builtin_ia32_cmpeqps:
14681 case X86::BI__builtin_ia32_cmpeqpd:
14682 return getVectorFCmpIR(CmpInst::FCMP_OEQ, /*IsSignaling*/false);
14683 case X86::BI__builtin_ia32_cmpltps:
14684 case X86::BI__builtin_ia32_cmpltpd:
14685 return getVectorFCmpIR(CmpInst::FCMP_OLT, /*IsSignaling*/true);
14686 case X86::BI__builtin_ia32_cmpleps:
14687 case X86::BI__builtin_ia32_cmplepd:
14688 return getVectorFCmpIR(CmpInst::FCMP_OLE, /*IsSignaling*/true);
14689 case X86::BI__builtin_ia32_cmpunordps:
14690 case X86::BI__builtin_ia32_cmpunordpd:
14691 return getVectorFCmpIR(CmpInst::FCMP_UNO, /*IsSignaling*/false);
14692 case X86::BI__builtin_ia32_cmpneqps:
14693 case X86::BI__builtin_ia32_cmpneqpd:
14694 return getVectorFCmpIR(CmpInst::FCMP_UNE, /*IsSignaling*/false);
14695 case X86::BI__builtin_ia32_cmpnltps:
14696 case X86::BI__builtin_ia32_cmpnltpd:
14697 return getVectorFCmpIR(CmpInst::FCMP_UGE, /*IsSignaling*/true);
14698 case X86::BI__builtin_ia32_cmpnleps:
14699 case X86::BI__builtin_ia32_cmpnlepd:
14700 return getVectorFCmpIR(CmpInst::FCMP_UGT, /*IsSignaling*/true);
14701 case X86::BI__builtin_ia32_cmpordps:
14702 case X86::BI__builtin_ia32_cmpordpd:
14703 return getVectorFCmpIR(CmpInst::FCMP_ORD, /*IsSignaling*/false);
14704 case X86::BI__builtin_ia32_cmpph128_mask:
14705 case X86::BI__builtin_ia32_cmpph256_mask:
14706 case X86::BI__builtin_ia32_cmpph512_mask:
14707 case X86::BI__builtin_ia32_cmpps128_mask:
14708 case X86::BI__builtin_ia32_cmpps256_mask:
14709 case X86::BI__builtin_ia32_cmpps512_mask:
14710 case X86::BI__builtin_ia32_cmppd128_mask:
14711 case X86::BI__builtin_ia32_cmppd256_mask:
14712 case X86::BI__builtin_ia32_cmppd512_mask:
14713 IsMaskFCmp = true;
14714 LLVM_FALLTHROUGH[[gnu::fallthrough]];
14715 case X86::BI__builtin_ia32_cmpps:
14716 case X86::BI__builtin_ia32_cmpps256:
14717 case X86::BI__builtin_ia32_cmppd:
14718 case X86::BI__builtin_ia32_cmppd256: {
14719 // Lowering vector comparisons to fcmp instructions, while
14720 // ignoring signalling behaviour requested
14721 // ignoring rounding mode requested
14722 // This is only possible if fp-model is not strict and FENV_ACCESS is off.
14723
14724 // The third argument is the comparison condition, and integer in the
14725 // range [0, 31]
14726 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x1f;
14727
14728 // Lowering to IR fcmp instruction.
14729 // Ignoring requested signaling behaviour,
14730 // e.g. both _CMP_GT_OS & _CMP_GT_OQ are translated to FCMP_OGT.
14731 FCmpInst::Predicate Pred;
14732 bool IsSignaling;
14733 // Predicates for 16-31 repeat the 0-15 predicates. Only the signalling
14734 // behavior is inverted. We'll handle that after the switch.
14735 switch (CC & 0xf) {
14736 case 0x00: Pred = FCmpInst::FCMP_OEQ; IsSignaling = false; break;
14737 case 0x01: Pred = FCmpInst::FCMP_OLT; IsSignaling = true; break;
14738 case 0x02: Pred = FCmpInst::FCMP_OLE; IsSignaling = true; break;
14739 case 0x03: Pred = FCmpInst::FCMP_UNO; IsSignaling = false; break;
14740 case 0x04: Pred = FCmpInst::FCMP_UNE; IsSignaling = false; break;
14741 case 0x05: Pred = FCmpInst::FCMP_UGE; IsSignaling = true; break;
14742 case 0x06: Pred = FCmpInst::FCMP_UGT; IsSignaling = true; break;
14743 case 0x07: Pred = FCmpInst::FCMP_ORD; IsSignaling = false; break;
14744 case 0x08: Pred = FCmpInst::FCMP_UEQ; IsSignaling = false; break;
14745 case 0x09: Pred = FCmpInst::FCMP_ULT; IsSignaling = true; break;
14746 case 0x0a: Pred = FCmpInst::FCMP_ULE; IsSignaling = true; break;
14747 case 0x0b: Pred = FCmpInst::FCMP_FALSE; IsSignaling = false; break;
14748 case 0x0c: Pred = FCmpInst::FCMP_ONE; IsSignaling = false; break;
14749 case 0x0d: Pred = FCmpInst::FCMP_OGE; IsSignaling = true; break;
14750 case 0x0e: Pred = FCmpInst::FCMP_OGT; IsSignaling = true; break;
14751 case 0x0f: Pred = FCmpInst::FCMP_TRUE; IsSignaling = false; break;
14752 default: llvm_unreachable("Unhandled CC")::llvm::llvm_unreachable_internal("Unhandled CC", "clang/lib/CodeGen/CGBuiltin.cpp"
, 14752)
;
14753 }
14754
14755 // Invert the signalling behavior for 16-31.
14756 if (CC & 0x10)
14757 IsSignaling = !IsSignaling;
14758
14759 // If the predicate is true or false and we're using constrained intrinsics,
14760 // we don't have a compare intrinsic we can use. Just use the legacy X86
14761 // specific intrinsic.
14762 // If the intrinsic is mask enabled and we're using constrained intrinsics,
14763 // use the legacy X86 specific intrinsic.
14764 if (Builder.getIsFPConstrained() &&
14765 (Pred == FCmpInst::FCMP_TRUE || Pred == FCmpInst::FCMP_FALSE ||
14766 IsMaskFCmp)) {
14767
14768 Intrinsic::ID IID;
14769 switch (BuiltinID) {
14770 default: llvm_unreachable("Unexpected builtin")::llvm::llvm_unreachable_internal("Unexpected builtin", "clang/lib/CodeGen/CGBuiltin.cpp"
, 14770)
;
14771 case X86::BI__builtin_ia32_cmpps:
14772 IID = Intrinsic::x86_sse_cmp_ps;
14773 break;
14774 case X86::BI__builtin_ia32_cmpps256:
14775 IID = Intrinsic::x86_avx_cmp_ps_256;
14776 break;
14777 case X86::BI__builtin_ia32_cmppd:
14778 IID = Intrinsic::x86_sse2_cmp_pd;
14779 break;
14780 case X86::BI__builtin_ia32_cmppd256:
14781 IID = Intrinsic::x86_avx_cmp_pd_256;
14782 break;
14783 case X86::BI__builtin_ia32_cmpps512_mask:
14784 IID = Intrinsic::x86_avx512_mask_cmp_ps_512;
14785 break;
14786 case X86::BI__builtin_ia32_cmppd512_mask:
14787 IID = Intrinsic::x86_avx512_mask_cmp_pd_512;
14788 break;
14789 case X86::BI__builtin_ia32_cmpps128_mask:
14790 IID = Intrinsic::x86_avx512_mask_cmp_ps_128;
14791 break;
14792 case X86::BI__builtin_ia32_cmpps256_mask:
14793 IID = Intrinsic::x86_avx512_mask_cmp_ps_256;
14794 break;
14795 case X86::BI__builtin_ia32_cmppd128_mask:
14796 IID = Intrinsic::x86_avx512_mask_cmp_pd_128;
14797 break;
14798 case X86::BI__builtin_ia32_cmppd256_mask:
14799 IID = Intrinsic::x86_avx512_mask_cmp_pd_256;
14800 break;
14801 }
14802
14803 Function *Intr = CGM.getIntrinsic(IID);
14804 if (IsMaskFCmp) {
14805 unsigned NumElts =
14806 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14807 Ops[3] = getMaskVecValue(*this, Ops[3], NumElts);
14808 Value *Cmp = Builder.CreateCall(Intr, Ops);
14809 return EmitX86MaskedCompareResult(*this, Cmp, NumElts, nullptr);
14810 }
14811
14812 return Builder.CreateCall(Intr, Ops);
14813 }
14814
14815 // Builtins without the _mask suffix return a vector of integers
14816 // of the same width as the input vectors
14817 if (IsMaskFCmp) {
14818 // We ignore SAE if strict FP is disabled. We only keep precise
14819 // exception behavior under strict FP.
14820 // NOTE: If strict FP does ever go through here a CGFPOptionsRAII
14821 // object will be required.
14822 unsigned NumElts =
14823 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14824 Value *Cmp;
14825 if (IsSignaling)
14826 Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]);
14827 else
14828 Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
14829 return EmitX86MaskedCompareResult(*this, Cmp, NumElts, Ops[3]);
14830 }
14831
14832 return getVectorFCmpIR(Pred, IsSignaling);
14833 }
14834
14835 // SSE scalar comparison intrinsics
14836 case X86::BI__builtin_ia32_cmpeqss:
14837 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 0);
14838 case X86::BI__builtin_ia32_cmpltss:
14839 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 1);
14840 case X86::BI__builtin_ia32_cmpless:
14841 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 2);
14842 case X86::BI__builtin_ia32_cmpunordss:
14843 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 3);
14844 case X86::BI__builtin_ia32_cmpneqss:
14845 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 4);
14846 case X86::BI__builtin_ia32_cmpnltss:
14847 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 5);
14848 case X86::BI__builtin_ia32_cmpnless:
14849 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 6);
14850 case X86::BI__builtin_ia32_cmpordss:
14851 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 7);
14852 case X86::BI__builtin_ia32_cmpeqsd:
14853 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 0);
14854 case X86::BI__builtin_ia32_cmpltsd:
14855 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 1);
14856 case X86::BI__builtin_ia32_cmplesd:
14857 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 2);
14858 case X86::BI__builtin_ia32_cmpunordsd:
14859 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 3);
14860 case X86::BI__builtin_ia32_cmpneqsd:
14861 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 4);
14862 case X86::BI__builtin_ia32_cmpnltsd:
14863 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 5);
14864 case X86::BI__builtin_ia32_cmpnlesd:
14865 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 6);
14866 case X86::BI__builtin_ia32_cmpordsd:
14867 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 7);
14868
14869 // f16c half2float intrinsics
14870 case X86::BI__builtin_ia32_vcvtph2ps:
14871 case X86::BI__builtin_ia32_vcvtph2ps256:
14872 case X86::BI__builtin_ia32_vcvtph2ps_mask:
14873 case X86::BI__builtin_ia32_vcvtph2ps256_mask:
14874 case X86::BI__builtin_ia32_vcvtph2ps512_mask: {
14875 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
14876 return EmitX86CvtF16ToFloatExpr(*this, Ops, ConvertType(E->getType()));
14877 }
14878
14879// AVX512 bf16 intrinsics
14880 case X86::BI__builtin_ia32_cvtneps2bf16_128_mask: {
14881 Ops[2] = getMaskVecValue(
14882 *this, Ops[2],
14883 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements());
14884 Intrinsic::ID IID = Intrinsic::x86_avx512bf16_mask_cvtneps2bf16_128;
14885 return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
14886 }
14887 case X86::BI__builtin_ia32_cvtsbf162ss_32:
14888 return EmitX86CvtBF16ToFloatExpr(*this, E, Ops);
14889
14890 case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
14891 case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: {
14892 Intrinsic::ID IID;
14893 switch (BuiltinID) {
14894 default: llvm_unreachable("Unsupported intrinsic!")::llvm::llvm_unreachable_internal("Unsupported intrinsic!", "clang/lib/CodeGen/CGBuiltin.cpp"
, 14894)
;
14895 case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
14896 IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_256;
14897 break;
14898 case X86::BI__builtin_ia32_cvtneps2bf16_512_mask:
14899 IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_512;
14900 break;
14901 }
14902 Value *Res = Builder.CreateCall(CGM.getIntrinsic(IID), Ops[0]);
14903 return EmitX86Select(*this, Ops[2], Res, Ops[1]);
14904 }
14905
14906 case X86::BI__emul:
14907 case X86::BI__emulu: {
14908 llvm::Type *Int64Ty = llvm::IntegerType::get(getLLVMContext(), 64);
14909 bool isSigned = (BuiltinID == X86::BI__emul);
14910 Value *LHS = Builder.CreateIntCast(Ops[0], Int64Ty, isSigned);
14911 Value *RHS = Builder.CreateIntCast(Ops[1], Int64Ty, isSigned);
14912 return Builder.CreateMul(LHS, RHS, "", !isSigned, isSigned);
14913 }
14914 case X86::BI__mulh:
14915 case X86::BI__umulh:
14916 case X86::BI_mul128:
14917 case X86::BI_umul128: {
14918 llvm::Type *ResType = ConvertType(E->getType());
14919 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
14920
14921 bool IsSigned = (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI_mul128);
14922 Value *LHS = Builder.CreateIntCast(Ops[0], Int128Ty, IsSigned);
14923 Value *RHS = Builder.CreateIntCast(Ops[1], Int128Ty, IsSigned);
14924
14925 Value *MulResult, *HigherBits;
14926 if (IsSigned) {
14927 MulResult = Builder.CreateNSWMul(LHS, RHS);
14928 HigherBits = Builder.CreateAShr(MulResult, 64);
14929 } else {
14930 MulResult = Builder.CreateNUWMul(LHS, RHS);
14931 HigherBits = Builder.CreateLShr(MulResult, 64);
14932 }
14933 HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
14934
14935 if (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI__umulh)
14936 return HigherBits;
14937
14938 Address HighBitsAddress = EmitPointerWithAlignment(E->getArg(2));
14939 Builder.CreateStore(HigherBits, HighBitsAddress);
14940 return Builder.CreateIntCast(MulResult, ResType, IsSigned);
14941 }
14942
14943 case X86::BI__faststorefence: {
14944 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
14945 llvm::SyncScope::System);
14946 }
14947 case X86::BI__shiftleft128:
14948 case X86::BI__shiftright128: {
14949 llvm::Function *F = CGM.getIntrinsic(
14950 BuiltinID == X86::BI__shiftleft128 ? Intrinsic::fshl : Intrinsic::fshr,
14951 Int64Ty);
14952 // Flip low/high ops and zero-extend amount to matching type.
14953 // shiftleft128(Low, High, Amt) -> fshl(High, Low, Amt)
14954 // shiftright128(Low, High, Amt) -> fshr(High, Low, Amt)
14955 std::swap(Ops[0], Ops[1]);
14956 Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
14957 return Builder.CreateCall(F, Ops);
14958 }
14959 case X86::BI_ReadWriteBarrier:
14960 case X86::BI_ReadBarrier:
14961 case X86::BI_WriteBarrier: {
14962 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
14963 llvm::SyncScope::SingleThread);
14964 }
14965
14966 case X86::BI_AddressOfReturnAddress: {
14967 Function *F =
14968 CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
14969 return Builder.CreateCall(F);
14970 }
14971 case X86::BI__stosb: {
14972 // We treat __stosb as a volatile memset - it may not generate "rep stosb"
14973 // instruction, but it will create a memset that won't be optimized away.
14974 return Builder.CreateMemSet(Ops[0], Ops[1], Ops[2], Align(1), true);
14975 }
14976 case X86::BI__ud2:
14977 // llvm.trap makes a ud2a instruction on x86.
14978 return EmitTrapCall(Intrinsic::trap);
14979 case X86::BI__int2c: {
14980 // This syscall signals a driver assertion failure in x86 NT kernels.
14981 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
14982 llvm::InlineAsm *IA =
14983 llvm::InlineAsm::get(FTy, "int $$0x2c", "", /*hasSideEffects=*/true);
14984 llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
14985 getLLVMContext(), llvm::AttributeList::FunctionIndex,
14986 llvm::Attribute::NoReturn);
14987 llvm::CallInst *CI = Builder.CreateCall(IA);
14988 CI->setAttributes(NoReturnAttr);
14989 return CI;
14990 }
14991 case X86::BI__readfsbyte:
14992 case X86::BI__readfsword:
14993 case X86::BI__readfsdword:
14994 case X86::BI__readfsqword: {
14995 llvm::Type *IntTy = ConvertType(E->getType());
14996 Value *Ptr =
14997 Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 257));
14998 LoadInst *Load = Builder.CreateAlignedLoad(
14999 IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
15000 Load->setVolatile(true);
15001 return Load;
15002 }
15003 case X86::BI__readgsbyte:
15004 case X86::BI__readgsword:
15005 case X86::BI__readgsdword:
15006 case X86::BI__readgsqword: {
15007 llvm::Type *IntTy = ConvertType(E->getType());
15008 Value *Ptr =
15009 Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 256));
15010 LoadInst *Load = Builder.CreateAlignedLoad(
15011 IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
15012 Load->setVolatile(true);
15013 return Load;
15014 }
15015 case X86::BI__builtin_ia32_encodekey128_u32: {
15016 Intrinsic::ID IID = Intrinsic::x86_encodekey128;
15017
15018 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1]});
15019
15020 for (int i = 0; i < 3; ++i) {
15021 Value *Extract = Builder.CreateExtractValue(Call, i + 1);
15022 Value *Ptr = Builder.CreateConstGEP1_32(Int8Ty, Ops[2], i * 16);
15023 Ptr = Builder.CreateBitCast(
15024 Ptr, llvm::PointerType::getUnqual(Extract->getType()));
15025 Builder.CreateAlignedStore(Extract, Ptr, Align(1));
15026 }
15027
15028 return Builder.CreateExtractValue(Call, 0);
15029 }
15030 case X86::BI__builtin_ia32_encodekey256_u32: {
15031 Intrinsic::ID IID = Intrinsic::x86_encodekey256;
15032
15033 Value *Call =
15034 Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1], Ops[2]});
15035
15036 for (int i = 0; i < 4; ++i) {
15037 Value *Extract = Builder.CreateExtractValue(Call, i + 1);
15038 Value *Ptr = Builder.CreateConstGEP1_32(Int8Ty, Ops[3], i * 16);
15039 Ptr = Builder.CreateBitCast(
15040 Ptr, llvm::PointerType::getUnqual(Extract->getType()));
15041 Builder.CreateAlignedStore(Extract, Ptr, Align(1));
15042 }
15043
15044 return Builder.CreateExtractValue(Call, 0);
15045 }
15046 case X86::BI__builtin_ia32_aesenc128kl_u8:
15047 case X86::BI__builtin_ia32_aesdec128kl_u8:
15048 case X86::BI__builtin_ia32_aesenc256kl_u8:
15049 case X86::BI__builtin_ia32_aesdec256kl_u8: {
15050 Intrinsic::ID IID;
15051 StringRef BlockName;
15052 switch (BuiltinID) {
15053 default:
15054 llvm_unreachable("Unexpected builtin")::llvm::llvm_unreachable_internal("Unexpected builtin", "clang/lib/CodeGen/CGBuiltin.cpp"
, 15054)
;
15055 case X86::BI__builtin_ia32_aesenc128kl_u8:
15056 IID = Intrinsic::x86_aesenc128kl;
15057 BlockName = "aesenc128kl";
15058 break;
15059 case X86::BI__builtin_ia32_aesdec128kl_u8:
15060 IID = Intrinsic::x86_aesdec128kl;
15061 BlockName = "aesdec128kl";
15062 break;
15063 case X86::BI__builtin_ia32_aesenc256kl_u8:
15064 IID = Intrinsic::x86_aesenc256kl;
15065 BlockName = "aesenc256kl";
15066 break;
15067 case X86::BI__builtin_ia32_aesdec256kl_u8:
15068 IID = Intrinsic::x86_aesdec256kl;
15069 BlockName = "aesdec256kl";
15070 break;
15071 }
15072
15073 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[1], Ops[2]});
15074
15075 BasicBlock *NoError =
15076 createBasicBlock(BlockName + "_no_error", this->CurFn);
15077 BasicBlock *Error = createBasicBlock(BlockName + "_error", this->CurFn);
15078 BasicBlock *End = createBasicBlock(BlockName + "_end", this->CurFn);
15079
15080 Value *Ret = Builder.CreateExtractValue(Call, 0);
15081 Value *Succ = Builder.CreateTrunc(Ret, Builder.getInt1Ty());
15082 Value *Out = Builder.CreateExtractValue(Call, 1);
15083 Builder.CreateCondBr(Succ, NoError, Error);
15084
15085 Builder.SetInsertPoint(NoError);
15086 Builder.CreateDefaultAlignedStore(Out, Ops[0]);
15087 Builder.CreateBr(End);
15088
15089 Builder.SetInsertPoint(Error);
15090 Constant *Zero = llvm::Constant::getNullValue(Out->getType());
15091 Builder.CreateDefaultAlignedStore(Zero, Ops[0]);
15092 Builder.CreateBr(End);
15093
15094 Builder.SetInsertPoint(End);
15095 return Builder.CreateExtractValue(Call, 0);
15096 }
15097 case X86::BI__builtin_ia32_aesencwide128kl_u8:
15098 case X86::BI__builtin_ia32_aesdecwide128kl_u8:
15099 case X86::BI__builtin_ia32_aesencwide256kl_u8:
15100 case X86::BI__builtin_ia32_aesdecwide256kl_u8: {
15101 Intrinsic::ID IID;
15102 StringRef BlockName;
15103 switch (BuiltinID) {
15104 case X86::BI__builtin_ia32_aesencwide128kl_u8:
15105 IID = Intrinsic::x86_aesencwide128kl;
15106 BlockName = "aesencwide128kl";
15107 break;
15108 case X86::BI__builtin_ia32_aesdecwide128kl_u8:
15109 IID = Intrinsic::x86_aesdecwide128kl;
15110 BlockName = "aesdecwide128kl";
15111 break;
15112 case X86::BI__builtin_ia32_aesencwide256kl_u8:
15113 IID = Intrinsic::x86_aesencwide256kl;
15114 BlockName = "aesencwide256kl";
15115 break;
15116 case X86::BI__builtin_ia32_aesdecwide256kl_u8:
15117 IID = Intrinsic::x86_aesdecwide256kl;
15118 BlockName = "aesdecwide256kl";
15119 break;
15120 }
15121
15122 llvm::Type *Ty = FixedVectorType::get(Builder.getInt64Ty(), 2);
15123 Value *InOps[9];
15124 InOps[0] = Ops[2];
15125 for (int i = 0; i != 8; ++i) {
15126 Value *Ptr = Builder.CreateConstGEP1_32(Ty, Ops[1], i);
15127 InOps[i + 1] = Builder.CreateAlignedLoad(Ty, Ptr, Align(16));
15128 }
15129
15130 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), InOps);
15131
15132 BasicBlock *NoError =
15133 createBasicBlock(BlockName + "_no_error", this->CurFn);
15134 BasicBlock *Error = createBasicBlock(BlockName + "_error", this->CurFn);
15135 BasicBlock *End = createBasicBlock(BlockName + "_end", this->CurFn);
15136
15137 Value *Ret = Builder.CreateExtractValue(Call, 0);
15138 Value *Succ = Builder.CreateTrunc(Ret, Builder.getInt1Ty());
15139 Builder.CreateCondBr(Succ, NoError, Error);
15140
15141 Builder.SetInsertPoint(NoError);
15142 for (int i = 0; i != 8; ++i) {
15143 Value *Extract = Builder.CreateExtractValue(Call, i + 1);
15144 Value *Ptr = Builder.CreateConstGEP1_32(Extract->getType(), Ops[0], i);
15145 Builder.CreateAlignedStore(Extract, Ptr, Align(16));
15146 }
15147 Builder.CreateBr(End);
15148
15149 Builder.SetInsertPoint(Error);
15150 for (int i = 0; i != 8; ++i) {
15151 Value *Out = Builder.CreateExtractValue(Call, i + 1);
15152 Constant *Zero = llvm::Constant::getNullValue(Out->getType());
15153 Value *Ptr = Builder.CreateConstGEP1_32(Out->getType(), Ops[0], i);
15154 Builder.CreateAlignedStore(Zero, Ptr, Align(16));
15155 }
15156 Builder.CreateBr(End);
15157
15158 Builder.SetInsertPoint(End);
15159 return Builder.CreateExtractValue(Call, 0);
15160 }
15161 case X86::BI__builtin_ia32_vfcmaddcph512_mask:
15162 IsConjFMA = true;
15163 LLVM_FALLTHROUGH[[gnu::fallthrough]];
15164 case X86::BI__builtin_ia32_vfmaddcph512_mask: {
15165 Intrinsic::ID IID = IsConjFMA
15166 ? Intrinsic::x86_avx512fp16_mask_vfcmadd_cph_512
15167 : Intrinsic::x86_avx512fp16_mask_vfmadd_cph_512;
15168 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
15169 return EmitX86Select(*this, Ops[3], Call, Ops[0]);
15170 }
15171 case X86::BI__builtin_ia32_vfcmaddcsh_round_mask:
15172 IsConjFMA = true;
15173 LLVM_FALLTHROUGH[[gnu::fallthrough]];
15174 case X86::BI__builtin_ia32_vfmaddcsh_round_mask: {
15175 Intrinsic::ID IID = IsConjFMA ? Intrinsic::x86_avx512fp16_mask_vfcmadd_csh
15176 : Intrinsic::x86_avx512fp16_mask_vfmadd_csh;
15177 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
15178 Value *And = Builder.CreateAnd(Ops[3], llvm::ConstantInt::get(Int8Ty, 1));
15179 return EmitX86Select(*this, And, Call, Ops[0]);
15180 }
15181 case X86::BI__builtin_ia32_vfcmaddcsh_round_mask3:
15182 IsConjFMA = true;
15183 LLVM_FALLTHROUGH[[gnu::fallthrough]];
15184 case X86::BI__builtin_ia32_vfmaddcsh_round_mask3: {
15185 Intrinsic::ID IID = IsConjFMA ? Intrinsic::x86_avx512fp16_mask_vfcmadd_csh
15186 : Intrinsic::x86_avx512fp16_mask_vfmadd_csh;
15187 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
15188 static constexpr int Mask[] = {0, 5, 6, 7};
15189 return Builder.CreateShuffleVector(Call, Ops[2], Mask);
15190 }
15191 }
15192}
15193
15194Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
15195 const CallExpr *E) {
15196 SmallVector<Value*, 4> Ops;
15197
15198 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
15199 if (E->getArg(i)->getType()->isArrayType())
15200 Ops.push_back(EmitArrayToPointerDecay(E->getArg(i)).getPointer());
15201 else
15202 Ops.push_back(EmitScalarExpr(E->getArg(i)));
15203 }
15204
15205 Intrinsic::ID ID = Intrinsic::not_intrinsic;
15206
15207 switch (BuiltinID) {
15208 default: return nullptr;
15209
15210 // __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we
15211 // call __builtin_readcyclecounter.
15212 case PPC::BI__builtin_ppc_get_timebase:
15213 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter));
15214
15215 // vec_ld, vec_xl_be, vec_lvsl, vec_lvsr
15216 case PPC::BI__builtin_altivec_lvx:
15217 case PPC::BI__builtin_altivec_lvxl:
15218 case PPC::BI__builtin_altivec_lvebx:
15219 case PPC::BI__builtin_altivec_lvehx:
15220 case PPC::BI__builtin_altivec_lvewx:
15221 case PPC::BI__builtin_altivec_lvsl:
15222 case PPC::BI__builtin_altivec_lvsr:
15223 case PPC::BI__builtin_vsx_lxvd2x:
15224 case PPC::BI__builtin_vsx_lxvw4x:
15225 case PPC::BI__builtin_vsx_lxvd2x_be:
15226 case PPC::BI__builtin_vsx_lxvw4x_be:
15227 case PPC::BI__builtin_vsx_lxvl:
15228 case PPC::BI__builtin_vsx_lxvll:
15229 {
15230 if(BuiltinID == PPC::BI__builtin_vsx_lxvl ||
15231 BuiltinID == PPC::BI__builtin_vsx_lxvll){
15232 Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy);
15233 }else {
15234 Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
15235 Ops[0] = Builder.CreateGEP(Int8Ty, Ops[1], Ops[0]);
15236 Ops.pop_back();
15237 }
15238
15239 switch (BuiltinID) {
15240 default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!")::llvm::llvm_unreachable_internal("Unsupported ld/lvsl/lvsr intrinsic!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 15240)
;
15241 case PPC::BI__builtin_altivec_lvx:
15242 ID = Intrinsic::ppc_altivec_lvx;
15243 break;
15244 case PPC::BI__builtin_altivec_lvxl:
15245 ID = Intrinsic::ppc_altivec_lvxl;
15246 break;
15247 case PPC::BI__builtin_altivec_lvebx:
15248 ID = Intrinsic::ppc_altivec_lvebx;
15249 break;
15250 case PPC::BI__builtin_altivec_lvehx:
15251 ID = Intrinsic::ppc_altivec_lvehx;
15252 break;
15253 case PPC::BI__builtin_altivec_lvewx:
15254 ID = Intrinsic::ppc_altivec_lvewx;
15255 break;
15256 case PPC::BI__builtin_altivec_lvsl:
15257 ID = Intrinsic::ppc_altivec_lvsl;
15258 break;
15259 case PPC::BI__builtin_altivec_lvsr:
15260 ID = Intrinsic::ppc_altivec_lvsr;
15261 break;
15262 case PPC::BI__builtin_vsx_lxvd2x:
15263 ID = Intrinsic::ppc_vsx_lxvd2x;
15264 break;
15265 case PPC::BI__builtin_vsx_lxvw4x:
15266 ID = Intrinsic::ppc_vsx_lxvw4x;
15267 break;
15268 case PPC::BI__builtin_vsx_lxvd2x_be:
15269 ID = Intrinsic::ppc_vsx_lxvd2x_be;
15270 break;
15271 case PPC::BI__builtin_vsx_lxvw4x_be:
15272 ID = Intrinsic::ppc_vsx_lxvw4x_be;
15273 break;
15274 case PPC::BI__builtin_vsx_lxvl:
15275 ID = Intrinsic::ppc_vsx_lxvl;
15276 break;
15277 case PPC::BI__builtin_vsx_lxvll:
15278 ID = Intrinsic::ppc_vsx_lxvll;
15279 break;
15280 }
15281 llvm::Function *F = CGM.getIntrinsic(ID);
15282 return Builder.CreateCall(F, Ops, "");
15283 }
15284
15285 // vec_st, vec_xst_be
15286 case PPC::BI__builtin_altivec_stvx:
15287 case PPC::BI__builtin_altivec_stvxl:
15288 case PPC::BI__builtin_altivec_stvebx:
15289 case PPC::BI__builtin_altivec_stvehx:
15290 case PPC::BI__builtin_altivec_stvewx:
15291 case PPC::BI__builtin_vsx_stxvd2x:
15292 case PPC::BI__builtin_vsx_stxvw4x:
15293 case PPC::BI__builtin_vsx_stxvd2x_be:
15294 case PPC::BI__builtin_vsx_stxvw4x_be:
15295 case PPC::BI__builtin_vsx_stxvl:
15296 case PPC::BI__builtin_vsx_stxvll:
15297 {
15298 if(BuiltinID == PPC::BI__builtin_vsx_stxvl ||
15299 BuiltinID == PPC::BI__builtin_vsx_stxvll ){
15300 Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
15301 }else {
15302 Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
15303 Ops[1] = Builder.CreateGEP(Int8Ty, Ops[2], Ops[1]);
15304 Ops.pop_back();
15305 }
15306
15307 switch (BuiltinID) {
15308 default: llvm_unreachable("Unsupported st intrinsic!")::llvm::llvm_unreachable_internal("Unsupported st intrinsic!"
, "clang/lib/CodeGen/CGBuiltin.cpp", 15308)
;
15309 case PPC::BI__builtin_altivec_stvx:
15310 ID = Intrinsic::ppc_altivec_stvx;
15311 break;
15312 case PPC::BI__builtin_altivec_stvxl:
15313 ID = Intrinsic::ppc_altivec_stvxl;
15314 break;
15315 case PPC::BI__builtin_altivec_stvebx:
15316 ID = Intrinsic::ppc_altivec_stvebx;
15317 break;
15318 case PPC::BI__builtin_altivec_stvehx:
15319 ID = Intrinsic::ppc_altivec_stvehx;
15320 break;
15321 case PPC::BI__builtin_altivec_stvewx:
15322 ID = Intrinsic::ppc_altivec_stvewx;
15323 break;
15324 case PPC::BI__builtin_vsx_stxvd2x:
15325 ID = Intrinsic::ppc_vsx_stxvd2x;
15326 break;
15327 case PPC::BI__builtin_vsx_stxvw4x:
15328 ID = Intrinsic::ppc_vsx_stxvw4x;
15329 break;
15330 case PPC::BI__builtin_vsx_stxvd2x_be:
15331 ID = Intrinsic::ppc_vsx_stxvd2x_be;
15332 break;
15333 case PPC::BI__builtin_vsx_stxvw4x_be:
15334 ID = Intrinsic::ppc_vsx_stxvw4x_be;
15335 break;
15336 case PPC::BI__builtin_vsx_stxvl:
15337 ID = Intrinsic::ppc_vsx_stxvl;
15338 break;
15339 case PPC::BI__builtin_vsx_stxvll:
15340 ID = Intrinsic::ppc_vsx_stxvll;
15341 break;
15342 }
15343 llvm::Function *F = CGM.getIntrinsic(ID);
15344 return Builder.CreateCall(F, Ops, "");
15345 }
15346 case PPC::BI__builtin_vsx_ldrmb: {
15347 // Essentially boils down to performing an unaligned VMX load sequence so
15348 // as to avoid crossing a page boundary and then shuffling the elements
15349 // into the right side of the vector register.
15350 int64_t NumBytes = cast<ConstantInt>(Ops[1])->getZExtValue();
15351 llvm::Type *ResTy = ConvertType(E->getType());
15352 bool IsLE = getTarget().isLittleEndian();
15353
15354 // If the user wants the entire vector, just load the entire vector.
15355 if (NumBytes == 16) {
15356 Value *BC = Builder.CreateBitCast(Ops[0], ResTy->getPointerTo());
15357 Value *LD =
15358 Builder.CreateLoad(Address(BC, ResTy, CharUnits::fromQuantity(1)));
15359 if (!IsLE)
15360 return LD;
15361
15362 // Reverse the bytes on LE.
15363 SmallVector<int, 16> RevMask;
15364 for (int Idx = 0; Idx < 16; Idx++)
15365 RevMask.push_back(15 - Idx);
15366 return Builder.CreateShuffleVector(LD, LD, RevMask);
15367 }
15368
15369 llvm::Function *Lvx = CGM.getIntrinsic(Intrinsic::ppc_altivec_lvx);
15370 llvm::Function *Lvs = CGM.getIntrinsic(IsLE ? Intrinsic::ppc_altivec_lvsr
15371 : Intrinsic::ppc_altivec_lvsl);
15372 llvm::Function *Vperm = CGM.getIntrinsic(Intrinsic::ppc_altivec_vperm);
15373 Value *HiMem = Builder.CreateGEP(
15374 Int8Ty, Ops[0], ConstantInt::get(Ops[1]->getType(), NumBytes - 1));
15375 Value *LoLd = Builder.CreateCall(Lvx, Ops[0], "ld.lo");
15376 Value *HiLd = Builder.CreateCall(Lvx, HiMem, "ld.hi");
15377 Value *Mask1 = Builder.CreateCall(Lvs, Ops[0], "mask1");
15378
15379 Ops.clear();
15380 Ops.push_back(IsLE ? HiLd : LoLd);
15381 Ops.push_back(IsLE ? LoLd : HiLd);
15382 Ops.push_back(Mask1);
15383 Value *AllElts = Builder.CreateCall(Vperm, Ops, "shuffle1");
15384 Constant *Zero = llvm::Constant::getNullValue(IsLE ? ResTy : AllElts->getType());
15385
15386 if (IsLE) {
15387 SmallVector<int, 16> Consts;
15388 for (int Idx = 0; Idx < 16; Idx++) {
15389 int Val = (NumBytes - Idx - 1 >= 0) ? (NumBytes - Idx - 1)
15390 : 16 - (NumBytes - Idx);
15391 Consts.push_back(Val);
15392 }
15393 return Builder.CreateShuffleVector(Builder.CreateBitCast(AllElts, ResTy),
15394 Zero, Consts);
15395 }
15396 SmallVector<Constant *, 16> Consts;
15397 for (int Idx = 0; Idx < 16; Idx++)
15398 Consts.push_back(Builder.getInt8(NumBytes + Idx));
15399 Value *Mask2 = ConstantVector::get(Consts);
15400 return Builder.CreateBitCast(
15401 Builder.CreateCall(Vperm, {Zero, AllElts, Mask2}, "shuffle2"), ResTy);
15402 }
15403 case PPC::BI__builtin_vsx_strmb: {
15404 int64_t NumBytes = cast<ConstantInt>(Ops[1])->getZExtValue();
15405 bool IsLE = getTarget().isLittleEndian();
15406 auto StoreSubVec = [&](unsigned Width, unsigned Offset, unsigned EltNo) {
15407 // Storing the whole vector, simply store it on BE and reverse bytes and
15408 // store on LE.
15409 if (Width == 16) {
15410 Value *BC =
15411 Builder.CreateBitCast(Ops[0], Ops[2]->getType()->getPointerTo());
15412 Value *StVec = Ops[2];
15413 if (IsLE) {
15414 SmallVector<int, 16> RevMask;
15415 for (int Idx = 0; Idx < 16; Idx++)
15416 RevMask.push_back(15 - Idx);
15417 StVec = Builder.CreateShuffleVector(Ops[2], Ops[2], RevMask);
15418 }
15419 return Builder.CreateStore(
15420 StVec, Address(BC, Ops[2]->getType(), CharUnits::fromQuantity(1)));
15421 }
15422 auto *ConvTy = Int64Ty;
15423 unsigned NumElts = 0;
15424 switch (Width) {
15425 default:
15426 llvm_unreachable("width for stores must be a power of 2")::llvm::llvm_unreachable_internal("width for stores must be a power of 2"
, "clang/lib/CodeGen/CGBuiltin.cpp", 15426)
;
15427 case 8:
15428 ConvTy = Int64Ty;
15429 NumElts = 2;
15430 break;
15431 case 4:
15432 ConvTy = Int32Ty;
15433 NumElts = 4;
15434 break;
15435 case 2:
15436 ConvTy = Int16Ty;
15437 NumElts = 8;
15438 break;
15439 case 1:
15440 ConvTy = Int8Ty;
15441 NumElts = 16;
15442 break;
15443 }
15444 Value *Vec = Builder.CreateBitCast(
15445 Ops[2], llvm::FixedVectorType::get(ConvTy, NumElts));
15446 Value *Ptr = Builder.CreateGEP(Int8Ty, Ops[0],
15447 ConstantInt::get(Int64Ty, Offset));
15448 Value *PtrBC = Builder.CreateBitCast(Ptr, ConvTy->getPointerTo());
15449 Value *Elt = Builder.CreateExtractElement(Vec, EltNo);
15450 if (IsLE && Width > 1) {
15451 Function *F = CGM.getIntrinsic(Intrinsic::bswap, ConvTy);
15452 Elt = Builder.CreateCall(F, Elt);
15453 }
15454 return Builder.CreateStore(
15455 Elt, Address(PtrBC, ConvTy, CharUnits::fromQuantity(1)));
15456 };
15457 unsigned Stored = 0;
15458 unsigned RemainingBytes = NumBytes;
15459 Value *Result;
15460 if (NumBytes == 16)
15461 return StoreSubVec(16, 0, 0);
15462 if (NumBytes >= 8) {
15463 Result = StoreSubVec(8, NumBytes - 8, IsLE ? 0 : 1);
15464 RemainingBytes -= 8;
15465 Stored += 8;
15466 }
15467 if (RemainingBytes >= 4) {
15468 Result = StoreSubVec(4, NumBytes - Stored - 4,
15469 IsLE ? (Stored >> 2) : 3 - (Stored >> 2));
15470 RemainingBytes -= 4;
15471 Stored += 4;
15472 }
15473 if (RemainingBytes >= 2) {
15474 Result = StoreSubVec(2, NumBytes - Stored - 2,
15475 IsLE ? (Stored >> 1) : 7 - (Stored >> 1));
15476 RemainingBytes -= 2;
15477 Stored += 2;
15478 }
15479 if (RemainingBytes)
15480 Result =
15481 StoreSubVec(1, NumBytes - Stored - 1, IsLE ? Stored : 15 - Stored);
15482 return Result;
15483 }
15484 // Square root
15485 case PPC::BI__builtin_vsx_xvsqrtsp:
15486 case PPC::BI__builtin_vsx_xvsqrtdp: {
15487 llvm::Type *ResultType = ConvertType(E->getType());
15488 Value *X = EmitScalarExpr(E->getArg(0));
15489 if (Builder.getIsFPConstrained()) {
15490 llvm::Function *F = CGM.getIntrinsic(
15491 Intrinsic::experimental_constrained_sqrt, ResultType);
15492 return Builder.CreateConstrainedFPCall(F, X);
15493 } else {
15494 llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
15495 return Builder.CreateCall(F, X);
15496 }
15497 }
15498 // Count leading zeros
15499 case PPC::BI__builtin_altivec_vclzb:
15500 case PPC::BI__builtin_altivec_vclzh:
15501 case PPC::BI__builtin_altivec_vclzw:
15502 case PPC::BI__builtin_altivec_vclzd: {
15503 llvm::Type *ResultType = ConvertType(E->getType());
15504 Value *X = EmitScalarExpr(E->getArg(0));
15505 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
15506 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
15507 return Builder.CreateCall(F, {X, Undef});
15508 }
15509 case PPC::BI__builtin_altivec_vctzb:
15510 case PPC::BI__builtin_altivec_vctzh:
15511 case PPC::BI__builtin_altivec_vctzw:
15512 case PPC::BI__builtin_altivec_vctzd: {
15513 llvm::Type *ResultType = ConvertType(E->getType());
15514 Value *X = EmitScalarExpr(E->getArg(0));
15515 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
15516 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
15517 return Builder.CreateCall(F, {X, Undef});
15518 }
15519 case PPC::BI__builtin_altivec_vec_replace_elt:
15520 case PPC::BI__builtin_altivec_vec_replace_unaligned: {
15521 // The third argument of vec_replace_elt and vec_replace_unaligned must
15522 // be a compile time constant and will be emitted either to the vinsw
15523 // or vinsd instruction.
15524 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
15525 assert(ArgCI &&(static_cast <bool> (ArgCI && "Third Arg to vinsw/vinsd intrinsic must be a constant integer!"
) ? void (0) : __assert_fail ("ArgCI && \"Third Arg to vinsw/vinsd intrinsic must be a constant integer!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 15526, __extension__ __PRETTY_FUNCTION__
))
15526 "Third Arg to vinsw/vinsd intrinsic must be a constant integer!")(static_cast <bool> (ArgCI && "Third Arg to vinsw/vinsd intrinsic must be a constant integer!"
) ? void (0) : __assert_fail ("ArgCI && \"Third Arg to vinsw/vinsd intrinsic must be a constant integer!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 15526, __extension__ __PRETTY_FUNCTION__
))
;
15527 llvm::Type *ResultType = ConvertType(E->getType());
15528 llvm::Function *F = nullptr;
15529 Value *Call = nullptr;
15530 int64_t ConstArg = ArgCI->getSExtValue();
15531 unsigned ArgWidth = Ops[1]->getType()->getPrimitiveSizeInBits();
15532 bool Is32Bit = false;
15533 assert((ArgWidth == 32 || ArgWidth == 64) && "Invalid argument width")(static_cast <bool> ((ArgWidth == 32 || ArgWidth == 64)
&& "Invalid argument width") ? void (0) : __assert_fail
("(ArgWidth == 32 || ArgWidth == 64) && \"Invalid argument width\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 15533, __extension__ __PRETTY_FUNCTION__
))
;
15534 // The input to vec_replace_elt is an element index, not a byte index.
15535 if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt)
15536 ConstArg *= ArgWidth / 8;
15537 if (ArgWidth == 32) {
15538 Is32Bit = true;
15539 // When the second argument is 32 bits, it can either be an integer or
15540 // a float. The vinsw intrinsic is used in this case.
15541 F = CGM.getIntrinsic(Intrinsic::ppc_altivec_vinsw);
15542 // Fix the constant according to endianess.
15543 if (getTarget().isLittleEndian())
15544 ConstArg = 12 - ConstArg;
15545 } else {
15546 // When the second argument is 64 bits, it can either be a long long or
15547 // a double. The vinsd intrinsic is used in this case.
15548 F = CGM.getIntrinsic(Intrinsic::ppc_altivec_vinsd);
15549 // Fix the constant for little endian.
15550 if (getTarget().isLittleEndian())
15551 ConstArg = 8 - ConstArg;
15552 }
15553 Ops[2] = ConstantInt::getSigned(Int32Ty, ConstArg);
15554 // Depending on ArgWidth, the input vector could be a float or a double.
15555 // If the input vector is a float type, bitcast the inputs to integers. Or,
15556 // if the input vector is a double, bitcast the inputs to 64-bit integers.
15557 if (!Ops[1]->getType()->isIntegerTy(ArgWidth)) {
15558 Ops[0] = Builder.CreateBitCast(
15559 Ops[0], Is32Bit ? llvm::FixedVectorType::get(Int32Ty, 4)
15560 : llvm::FixedVectorType::get(Int64Ty, 2));
15561 Ops[1] = Builder.CreateBitCast(Ops[1], Is32Bit ? Int32Ty : Int64Ty);
15562 }
15563 // Emit the call to vinsw or vinsd.
15564 Call = Builder.CreateCall(F, Ops);
15565 // Depending on the builtin, bitcast to the approriate result type.
15566 if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt &&
15567 !Ops[1]->getType()->isIntegerTy())
15568 return Builder.CreateBitCast(Call, ResultType);
15569 else if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt &&
15570 Ops[1]->getType()->isIntegerTy())
15571 return Call;
15572 else
15573 return Builder.CreateBitCast(Call,
15574 llvm::FixedVectorType::get(Int8Ty, 16));
15575 }
15576 case PPC::BI__builtin_altivec_vpopcntb:
15577 case PPC::BI__builtin_altivec_vpopcnth:
15578 case PPC::BI__builtin_altivec_vpopcntw:
15579 case PPC::BI__builtin_altivec_vpopcntd: {
15580 llvm::Type *ResultType = ConvertType(E->getType());
15581 Value *X = EmitScalarExpr(E->getArg(0));
15582 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
15583 return Builder.CreateCall(F, X);
15584 }
15585 case PPC::BI__builtin_altivec_vadduqm:
15586 case PPC::BI__builtin_altivec_vsubuqm: {
15587 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
15588 Ops[0] =
15589 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int128Ty, 1));
15590 Ops[1] =
15591 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int128Ty, 1));
15592 if (BuiltinID == PPC::BI__builtin_altivec_vadduqm)
15593 return Builder.CreateAdd(Ops[0], Ops[1], "vadduqm");
15594 else
15595 return Builder.CreateSub(Ops[0], Ops[1], "vsubuqm");
15596 }
15597 // Rotate and insert under mask operation.
15598 // __rldimi(rs, is, shift, mask)
15599 // (rotl64(rs, shift) & mask) | (is & ~mask)
15600 // __rlwimi(rs, is, shift, mask)
15601 // (rotl(rs, shift) & mask) | (is & ~mask)
15602 case PPC::BI__builtin_ppc_rldimi:
15603 case PPC::BI__builtin_ppc_rlwimi: {
15604 llvm::Type *Ty = Ops[0]->getType();
15605 Function *F = CGM.getIntrinsic(Intrinsic::fshl, Ty);
15606 if (BuiltinID == PPC::BI__builtin_ppc_rldimi)
15607 Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
15608 Value *Shift = Builder.CreateCall(F, {Ops[0], Ops[0], Ops[2]});
15609 Value *X = Builder.CreateAnd(Shift, Ops[3]);
15610 Value *Y = Builder.CreateAnd(Ops[1], Builder.CreateNot(Ops[3]));
15611 return Builder.CreateOr(X, Y);
15612 }
15613 // Rotate and insert under mask operation.
15614 // __rlwnm(rs, shift, mask)
15615 // rotl(rs, shift) & mask
15616 case PPC::BI__builtin_ppc_rlwnm: {
15617 llvm::Type *Ty = Ops[0]->getType();
15618 Function *F = CGM.getIntrinsic(Intrinsic::fshl, Ty);
15619 Value *Shift = Builder.CreateCall(F, {Ops[0], Ops[0], Ops[1]});
15620 return Builder.CreateAnd(Shift, Ops[2]);
15621 }
15622 case PPC::BI__builtin_ppc_poppar4:
15623 case PPC::BI__builtin_ppc_poppar8: {
15624 llvm::Type *ArgType = Ops[0]->getType();
15625 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
15626 Value *Tmp = Builder.CreateCall(F, Ops[0]);
15627
15628 llvm::Type *ResultType = ConvertType(E->getType());
15629 Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
15630 if (Result->getType() != ResultType)
15631 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
15632 "cast");
15633 return Result;
15634 }
15635 case PPC::BI__builtin_ppc_cmpb: {
15636 if (getTarget().getTriple().isPPC64()) {
15637 Function *F =
15638 CGM.getIntrinsic(Intrinsic::ppc_cmpb, {Int64Ty, Int64Ty, Int64Ty});
15639 return Builder.CreateCall(F, Ops, "cmpb");
15640 }
15641 // For 32 bit, emit the code as below:
15642 // %conv = trunc i64 %a to i32
15643 // %conv1 = trunc i64 %b to i32
15644 // %shr = lshr i64 %a, 32
15645 // %conv2 = trunc i64 %shr to i32
15646 // %shr3 = lshr i64 %b, 32
15647 // %conv4 = trunc i64 %shr3 to i32
15648 // %0 = tail call i32 @llvm.ppc.cmpb32(i32 %conv, i32 %conv1)
15649 // %conv5 = zext i32 %0 to i64
15650 // %1 = tail call i32 @llvm.ppc.cmpb32(i32 %conv2, i32 %conv4)
15651 // %conv614 = zext i32 %1 to i64
15652 // %shl = shl nuw i64 %conv614, 32
15653 // %or = or i64 %shl, %conv5
15654 // ret i64 %or
15655 Function *F =
15656 CGM.getIntrinsic(Intrinsic::ppc_cmpb, {Int32Ty, Int32Ty, Int32Ty});
15657 Value *ArgOneLo = Builder.CreateTrunc(Ops[0], Int32Ty);
15658 Value *ArgTwoLo = Builder.CreateTrunc(Ops[1], Int32Ty);
15659 Constant *ShiftAmt = ConstantInt::get(Int64Ty, 32);
15660 Value *ArgOneHi =
15661 Builder.CreateTrunc(Builder.CreateLShr(Ops[0], ShiftAmt), Int32Ty);
15662 Value *ArgTwoHi =
15663 Builder.CreateTrunc(Builder.CreateLShr(Ops[1], ShiftAmt), Int32Ty);
15664 Value *ResLo = Builder.CreateZExt(
15665 Builder.CreateCall(F, {ArgOneLo, ArgTwoLo}, "cmpb"), Int64Ty);
15666 Value *ResHiShift = Builder.CreateZExt(
15667 Builder.CreateCall(F, {ArgOneHi, ArgTwoHi}, "cmpb"), Int64Ty);
15668 Value *ResHi = Builder.CreateShl(ResHiShift, ShiftAmt);
15669 return Builder.CreateOr(ResLo, ResHi);
15670 }
15671 // Copy sign
15672 case PPC::BI__builtin_vsx_xvcpsgnsp:
15673 case PPC::BI__builtin_vsx_xvcpsgndp: {
15674 llvm::Type *ResultType = ConvertType(E->getType());
15675 Value *X = EmitScalarExpr(E->getArg(0));
15676 Value *Y = EmitScalarExpr(E->getArg(1));
15677 ID = Intrinsic::copysign;
15678 llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
15679 return Builder.CreateCall(F, {X, Y});
15680 }
15681 // Rounding/truncation
15682 case PPC::BI__builtin_vsx_xvrspip:
15683 case PPC::BI__builtin_vsx_xvrdpip:
15684 case PPC::BI__builtin_vsx_xvrdpim:
15685 case PPC::BI__builtin_vsx_xvrspim:
15686 case PPC::BI__builtin_vsx_xvrdpi:
15687 case PPC::BI__builtin_vsx_xvrspi:
15688 case PPC::BI__builtin_vsx_xvrdpic:
15689 case PPC::BI__builtin_vsx_xvrspic:
15690 case PPC::BI__builtin_vsx_xvrdpiz:
15691 case PPC::BI__builtin_vsx_xvrspiz: {
15692 llvm::Type *ResultType = ConvertType(E->getType());
15693 Value *X = EmitScalarExpr(E->getArg(0));
15694 if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim ||
15695 BuiltinID == PPC::BI__builtin_vsx_xvrspim)
15696 ID = Builder.getIsFPConstrained()
15697 ? Intrinsic::experimental_constrained_floor
15698 : Intrinsic::floor;
15699 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi ||
15700 BuiltinID == PPC::BI__builtin_vsx_xvrspi)
15701 ID = Builder.getIsFPConstrained()
15702 ? Intrinsic::experimental_constrained_round
15703 : Intrinsic::round;
15704 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic ||
15705 BuiltinID == PPC::BI__builtin_vsx_xvrspic)
15706 ID = Builder.getIsFPConstrained()
15707 ? Intrinsic::experimental_constrained_rint
15708 : Intrinsic::rint;
15709 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip ||
15710 BuiltinID == PPC::BI__builtin_vsx_xvrspip)
15711 ID = Builder.getIsFPConstrained()
15712 ? Intrinsic::experimental_constrained_ceil
15713 : Intrinsic::ceil;
15714 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz ||
15715 BuiltinID == PPC::BI__builtin_vsx_xvrspiz)
15716 ID = Builder.getIsFPConstrained()
15717 ? Intrinsic::experimental_constrained_trunc
15718 : Intrinsic::trunc;
15719 llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
15720 return Builder.getIsFPConstrained() ? Builder.CreateConstrainedFPCall(F, X)
15721 : Builder.CreateCall(F, X);
15722 }
15723
15724 // Absolute value
15725 case PPC::BI__builtin_vsx_xvabsdp:
15726 case PPC::BI__builtin_vsx_xvabssp: {
15727 llvm::Type *ResultType = ConvertType(E->getType());
15728 Value *X = EmitScalarExpr(E->getArg(0));
15729 llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
15730 return Builder.CreateCall(F, X);
15731 }
15732
15733 // Fastmath by default
15734 case PPC::BI__builtin_ppc_recipdivf:
15735 case PPC::BI__builtin_ppc_recipdivd:
15736 case PPC::BI__builtin_ppc_rsqrtf:
15737 case PPC::BI__builtin_ppc_rsqrtd: {
15738 FastMathFlags FMF = Builder.getFastMathFlags();
15739 Builder.getFastMathFlags().setFast();
15740 llvm::Type *ResultType = ConvertType(E->getType());
15741 Value *X = EmitScalarExpr(E->getArg(0));
15742
15743 if (BuiltinID == PPC::BI__builtin_ppc_recipdivf ||
15744 BuiltinID == PPC::BI__builtin_ppc_recipdivd) {
15745 Value *Y = EmitScalarExpr(E->getArg(1));
15746 Value *FDiv = Builder.CreateFDiv(X, Y, "recipdiv");
15747 Builder.getFastMathFlags() &= (FMF);
15748 return FDiv;
15749 }
15750 auto *One = ConstantFP::get(ResultType, 1.0);
15751 llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
15752 Value *FDiv = Builder.CreateFDiv(One, Builder.CreateCall(F, X), "rsqrt");
15753 Builder.getFastMathFlags() &= (FMF);
15754 return FDiv;
15755 }
15756 case PPC::BI__builtin_ppc_alignx: {
15757 ConstantInt *AlignmentCI = cast<ConstantInt>(Ops[0]);
15758 if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment))
15759 AlignmentCI = ConstantInt::get(AlignmentCI->getType(),
15760 llvm::Value::MaximumAlignment);
15761
15762 emitAlignmentAssumption(Ops[1], E->getArg(1),
15763 /*The expr loc is sufficient.*/ SourceLocation(),
15764 AlignmentCI, nullptr);
15765 return Ops[1];
15766 }
15767 case PPC::BI__builtin_ppc_rdlam: {
15768 llvm::Type *Ty = Ops[0]->getType();
15769 Value *ShiftAmt = Builder.CreateIntCast(Ops[1], Ty, false);
15770 Function *F = CGM.getIntrinsic(Intrinsic::fshl, Ty);
15771 Value *Rotate = Builder.CreateCall(F, {Ops[0], Ops[0], ShiftAmt});
15772 return Builder.CreateAnd(Rotate, Ops[2]);
15773 }
15774 case PPC::BI__builtin_ppc_load2r: {
15775 Function *F = CGM.getIntrinsic(Intrinsic::ppc_load2r);
15776 Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy);
15777 Value *LoadIntrinsic = Builder.CreateCall(F, Ops);
15778 return Builder.CreateTrunc(LoadIntrinsic, Int16Ty);
15779 }
15780 // FMA variations
15781 case PPC::BI__builtin_vsx_xvmaddadp:
15782 case PPC::BI__builtin_vsx_xvmaddasp:
15783 case PPC::BI__builtin_vsx_xvnmaddadp:
15784 case PPC::BI__builtin_vsx_xvnmaddasp:
15785 case PPC::BI__builtin_vsx_xvmsubadp:
15786 case PPC::BI__builtin_vsx_xvmsubasp:
15787 case PPC::BI__builtin_vsx_xvnmsubadp:
15788 case PPC::BI__builtin_vsx_xvnmsubasp: {
15789 llvm::Type *ResultType = ConvertType(E->getType());
15790 Value *X = EmitScalarExpr(E->getArg(0));
15791 Value *Y = EmitScalarExpr(E->getArg(1));
15792 Value *Z = EmitScalarExpr(E->getArg(2));
15793 llvm::Function *F;
15794 if (Builder.getIsFPConstrained())
15795 F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
15796 else
15797 F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
15798 switch (BuiltinID) {
15799 case PPC::BI__builtin_vsx_xvmaddadp:
15800 case PPC::BI__builtin_vsx_xvmaddasp:
15801 if (Builder.getIsFPConstrained())
15802 return Builder.CreateConstrainedFPCall(F, {X, Y, Z});
15803 else
15804 return Builder.CreateCall(F, {X, Y, Z});
15805 case PPC::BI__builtin_vsx_xvnmaddadp:
15806 case PPC::BI__builtin_vsx_xvnmaddasp:
15807 if (Builder.getIsFPConstrained())
15808 return Builder.CreateFNeg(
15809 Builder.CreateConstrainedFPCall(F, {X, Y, Z}), "neg");
15810 else
15811 return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg");
15812 case PPC::BI__builtin_vsx_xvmsubadp:
15813 case PPC::BI__builtin_vsx_xvmsubasp:
15814 if (Builder.getIsFPConstrained())
15815 return Builder.CreateConstrainedFPCall(
15816 F, {X, Y, Builder.CreateFNeg(Z, "neg")});
15817 else
15818 return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
15819 case PPC::BI__builtin_vsx_xvnmsubadp:
15820 case PPC::BI__builtin_vsx_xvnmsubasp:
15821 if (Builder.getIsFPConstrained())
15822 return Builder.CreateFNeg(
15823 Builder.CreateConstrainedFPCall(
15824 F, {X, Y, Builder.CreateFNeg(Z, "neg")}),
15825 "neg");
15826 else
15827 return Builder.CreateFNeg(
15828 Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")}),
15829 "neg");
15830 }
15831 llvm_unreachable("Unknown FMA operation")::llvm::llvm_unreachable_internal("Unknown FMA operation", "clang/lib/CodeGen/CGBuiltin.cpp"
, 15831)
;
15832 return nullptr; // Suppress no-return warning
15833 }
15834
15835 case PPC::BI__builtin_vsx_insertword: {
15836 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw);
15837
15838 // Third argument is a compile time constant int. It must be clamped to
15839 // to the range [0, 12].
15840 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
15841 assert(ArgCI &&(static_cast <bool> (ArgCI && "Third arg to xxinsertw intrinsic must be constant integer"
) ? void (0) : __assert_fail ("ArgCI && \"Third arg to xxinsertw intrinsic must be constant integer\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 15842, __extension__ __PRETTY_FUNCTION__
))
15842 "Third arg to xxinsertw intrinsic must be constant integer")(static_cast <bool> (ArgCI && "Third arg to xxinsertw intrinsic must be constant integer"
) ? void (0) : __assert_fail ("ArgCI && \"Third arg to xxinsertw intrinsic must be constant integer\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 15842, __extension__ __PRETTY_FUNCTION__
))
;
15843 const int64_t MaxIndex = 12;
15844 int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
15845
15846 // The builtin semantics don't exactly match the xxinsertw instructions
15847 // semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the
15848 // word from the first argument, and inserts it in the second argument. The
15849 // instruction extracts the word from its second input register and inserts
15850 // it into its first input register, so swap the first and second arguments.
15851 std::swap(Ops[0], Ops[1]);
15852
15853 // Need to cast the second argument from a vector of unsigned int to a
15854 // vector of long long.
15855 Ops[1] =
15856 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int64Ty, 2));
15857
15858 if (getTarget().isLittleEndian()) {
15859 // Reverse the double words in the vector we will extract from.
15860 Ops[0] =
15861 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
15862 Ops[0] = Builder.CreateShuffleVector(Ops[0], Ops[0], ArrayRef<int>{1, 0});
15863
15864 // Reverse the index.
15865 Index = MaxIndex - Index;
15866 }
15867
15868 // Intrinsic expects the first arg to be a vector of int.
15869 Ops[0] =
15870 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4));
15871 Ops[2] = ConstantInt::getSigned(Int32Ty, Index);
15872 return Builder.CreateCall(F, Ops);
15873 }
15874
15875 case PPC::BI__builtin_vsx_extractuword: {
15876 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw);
15877
15878 // Intrinsic expects the first argument to be a vector of doublewords.
15879 Ops[0] =
15880 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
15881
15882 // The second argument is a compile time constant int that needs to
15883 // be clamped to the range [0, 12].
15884 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[1]);
15885 assert(ArgCI &&(static_cast <bool> (ArgCI && "Second Arg to xxextractuw intrinsic must be a constant integer!"
) ? void (0) : __assert_fail ("ArgCI && \"Second Arg to xxextractuw intrinsic must be a constant integer!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 15886, __extension__ __PRETTY_FUNCTION__
))
15886 "Second Arg to xxextractuw intrinsic must be a constant integer!")(static_cast <bool> (ArgCI && "Second Arg to xxextractuw intrinsic must be a constant integer!"
) ? void (0) : __assert_fail ("ArgCI && \"Second Arg to xxextractuw intrinsic must be a constant integer!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 15886, __extension__ __PRETTY_FUNCTION__
))
;
15887 const int64_t MaxIndex = 12;
15888 int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
15889
15890 if (getTarget().isLittleEndian()) {
15891 // Reverse the index.
15892 Index = MaxIndex - Index;
15893 Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
15894
15895 // Emit the call, then reverse the double words of the results vector.
15896 Value *Call = Builder.CreateCall(F, Ops);
15897
15898 Value *ShuffleCall =
15899 Builder.CreateShuffleVector(Call, Call, ArrayRef<int>{1, 0});
15900 return ShuffleCall;
15901 } else {
15902 Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
15903 return Builder.CreateCall(F, Ops);
15904 }
15905 }
15906
15907 case PPC::BI__builtin_vsx_xxpermdi: {
15908 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
15909 assert(ArgCI && "Third arg must be constant integer!")(static_cast <bool> (ArgCI && "Third arg must be constant integer!"
) ? void (0) : __assert_fail ("ArgCI && \"Third arg must be constant integer!\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 15909, __extension__ __PRETTY_FUNCTION__
))
;
15910
15911 unsigned Index = ArgCI->getZExtValue();
15912 Ops[0] =
15913 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
15914 Ops[1] =
15915 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int64Ty, 2));
15916
15917 // Account for endianness by treating this as just a shuffle. So we use the
15918 // same indices for both LE and BE in order to produce expected results in
15919 // both cases.
15920 int ElemIdx0 = (Index & 2) >> 1;
15921 int ElemIdx1 = 2 + (Index & 1);
15922
15923 int ShuffleElts[2] = {ElemIdx0, ElemIdx1};
15924 Value *ShuffleCall =
15925 Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleElts);
15926 QualType BIRetType = E->getType();
15927 auto RetTy = ConvertType(BIRetType);
15928 return Builder.CreateBitCast(ShuffleCall, RetTy);
15929 }
15930
15931 case PPC::BI__builtin_vsx_xxsldwi: {
15932 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
15933 assert(ArgCI && "Third argument must be a compile time constant")(static_cast <bool> (ArgCI && "Third argument must be a compile time constant"
) ? void (0) : __assert_fail ("ArgCI && \"Third argument must be a compile time constant\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 15933, __extension__ __PRETTY_FUNCTION__
))
;
15934 unsigned Index = ArgCI->getZExtValue() & 0x3;
15935 Ops[0] =
15936 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4));
15937 Ops[1] =
15938 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int32Ty, 4));
15939
15940 // Create a shuffle mask
15941 int ElemIdx0;
15942 int ElemIdx1;
15943 int ElemIdx2;
15944 int ElemIdx3;
15945 if (getTarget().isLittleEndian()) {
15946 // Little endian element N comes from element 8+N-Index of the
15947 // concatenated wide vector (of course, using modulo arithmetic on
15948 // the total number of elements).
15949 ElemIdx0 = (8 - Index) % 8;
15950 ElemIdx1 = (9 - Index) % 8;
15951 ElemIdx2 = (10 - Index) % 8;
15952 ElemIdx3 = (11 - Index) % 8;
15953 } else {
15954 // Big endian ElemIdx<N> = Index + N
15955 ElemIdx0 = Index;
15956 ElemIdx1 = Index + 1;
15957 ElemIdx2 = Index + 2;
15958 ElemIdx3 = Index + 3;
15959 }
15960
15961 int ShuffleElts[4] = {ElemIdx0, ElemIdx1, ElemIdx2, ElemIdx3};
15962 Value *ShuffleCall =
15963 Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleElts);
15964 QualType BIRetType = E->getType();
15965 auto RetTy = ConvertType(BIRetType);
15966 return Builder.CreateBitCast(ShuffleCall, RetTy);
15967 }
15968
15969 case PPC::BI__builtin_pack_vector_int128: {
15970 bool isLittleEndian = getTarget().isLittleEndian();
15971 Value *UndefValue =
15972 llvm::UndefValue::get(llvm::FixedVectorType::get(Ops[0]->getType(), 2));
15973 Value *Res = Builder.CreateInsertElement(
15974 UndefValue, Ops[0], (uint64_t)(isLittleEndian ? 1 : 0));
15975 Res = Builder.CreateInsertElement(Res, Ops[1],
15976 (uint64_t)(isLittleEndian ? 0 : 1));
15977 return Builder.CreateBitCast(Res, ConvertType(E->getType()));
15978 }
15979
15980 case PPC::BI__builtin_unpack_vector_int128: {
15981 ConstantInt *Index = cast<ConstantInt>(Ops[1]);
15982 Value *Unpacked = Builder.CreateBitCast(
15983 Ops[0], llvm::FixedVectorType::get(ConvertType(E->getType()), 2));
15984
15985 if (getTarget().isLittleEndian())
15986 Index = ConstantInt::get(Index->getType(), 1 - Index->getZExtValue());
15987
15988 return Builder.CreateExtractElement(Unpacked, Index);
15989 }
15990
15991 case PPC::BI__builtin_ppc_sthcx: {
15992 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_sthcx);
15993 Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy);
15994 Ops[1] = Builder.CreateSExt(Ops[1], Int32Ty);
15995 return Builder.CreateCall(F, Ops);
15996 }
15997
15998 // The PPC MMA builtins take a pointer to a __vector_quad as an argument.
15999 // Some of the MMA instructions accumulate their result into an existing
16000 // accumulator whereas the others generate a new accumulator. So we need to
16001 // use custom code generation to expand a builtin call with a pointer to a
16002 // load (if the corresponding instruction accumulates its result) followed by
16003 // the call to the intrinsic and a store of the result.
16004#define CUSTOM_BUILTIN(Name, Intr, Types, Accumulate) \
16005 case PPC::BI__builtin_##Name:
16006#include "clang/Basic/BuiltinsPPC.def"
16007 {
16008 // The first argument of these two builtins is a pointer used to store their
16009 // result. However, the llvm intrinsics return their result in multiple
16010 // return values. So, here we emit code extracting these values from the
16011 // intrinsic results and storing them using that pointer.
16012 if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc ||
16013 BuiltinID == PPC::BI__builtin_vsx_disassemble_pair ||
16014 BuiltinID == PPC::BI__builtin_mma_disassemble_pair) {
16015 unsigned NumVecs = 2;
16016 auto Intrinsic = Intrinsic::ppc_vsx_disassemble_pair;
16017 if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc) {
16018 NumVecs = 4;
16019 Intrinsic = Intrinsic::ppc_mma_disassemble_acc;
16020 }
16021 llvm::Function *F = CGM.getIntrinsic(Intrinsic);
16022 Address Addr = EmitPointerWithAlignment(E->getArg(1));
16023 Value *Vec = Builder.CreateLoad(Addr);
16024 Value *Call = Builder.CreateCall(F, {Vec});
16025 llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, 16);
16026 Value *Ptr = Builder.CreateBitCast(Ops[0], VTy->getPointerTo());
16027 for (unsigned i=0; i<NumVecs; i++) {
16028 Value *Vec = Builder.CreateExtractValue(Call, i);
16029 llvm::ConstantInt* Index = llvm::ConstantInt::get(IntTy, i);
16030 Value *GEP = Builder.CreateInBoundsGEP(VTy, Ptr, Index);
16031 Builder.CreateAlignedStore(Vec, GEP, MaybeAlign(16));
16032 }
16033 return Call;
16034 }
16035 if (BuiltinID == PPC::BI__builtin_vsx_build_pair ||
16036 BuiltinID == PPC::BI__builtin_mma_build_acc) {
16037 // Reverse the order of the operands for LE, so the
16038 // same builtin call can be used on both LE and BE
16039 // without the need for the programmer to swap operands.
16040 // The operands are reversed starting from the second argument,
16041 // the first operand is the pointer to the pair/accumulator
16042 // that is being built.
16043 if (getTarget().isLittleEndian())
16044 std::reverse(Ops.begin() + 1, Ops.end());
16045 }
16046 bool Accumulate;
16047 switch (BuiltinID) {
16048 #define CUSTOM_BUILTIN(Name, Intr, Types, Acc) \
16049 case PPC::BI__builtin_##Name: \
16050 ID = Intrinsic::ppc_##Intr; \
16051 Accumulate = Acc; \
16052 break;
16053 #include "clang/Basic/BuiltinsPPC.def"
16054 }
16055 if (BuiltinID == PPC::BI__builtin_vsx_lxvp ||
16056 BuiltinID == PPC::BI__builtin_vsx_stxvp ||
16057 BuiltinID == PPC::BI__builtin_mma_lxvp ||
16058 BuiltinID == PPC::BI__builtin_mma_stxvp) {
16059 if (BuiltinID == PPC::BI__builtin_vsx_lxvp ||
16060 BuiltinID == PPC::BI__builtin_mma_lxvp) {
16061 Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
16062 Ops[0] = Builder.CreateGEP(Int8Ty, Ops[1], Ops[0]);
16063 } else {
16064 Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
16065 Ops[1] = Builder.CreateGEP(Int8Ty, Ops[2], Ops[1]);
16066 }
16067 Ops.pop_back();
16068 llvm::Function *F = CGM.getIntrinsic(ID);
16069 return Builder.CreateCall(F, Ops, "");
16070 }
16071 SmallVector<Value*, 4> CallOps;
16072 if (Accumulate) {
16073 Address Addr = EmitPointerWithAlignment(E->getArg(0));
16074 Value *Acc = Builder.CreateLoad(Addr);
16075 CallOps.push_back(Acc);
16076 }
16077 for (unsigned i=1; i<Ops.size(); i++)
16078 CallOps.push_back(Ops[i]);
16079 llvm::Function *F = CGM.getIntrinsic(ID);
16080 Value *Call = Builder.CreateCall(F, CallOps);
16081 return Builder.CreateAlignedStore(Call, Ops[0], MaybeAlign(64));
16082 }
16083
16084 case PPC::BI__builtin_ppc_compare_and_swap:
16085 case PPC::BI__builtin_ppc_compare_and_swaplp: {
16086 Address Addr = EmitPointerWithAlignment(E->getArg(0));
16087 Address OldValAddr = EmitPointerWithAlignment(E->getArg(1));
16088 Value *OldVal = Builder.CreateLoad(OldValAddr);
16089 QualType AtomicTy = E->getArg(0)->getType()->getPointeeType();
16090 LValue LV = MakeAddrLValue(Addr, AtomicTy);
16091 auto Pair = EmitAtomicCompareExchange(
16092 LV, RValue::get(OldVal), RValue::get(Ops[2]), E->getExprLoc(),
16093 llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Monotonic, true);
16094 // Unlike c11's atomic_compare_exchange, accroding to
16095 // https://www.ibm.com/docs/en/xl-c-and-cpp-aix/16.1?topic=functions-compare-swap-compare-swaplp
16096 // > In either case, the contents of the memory location specified by addr
16097 // > are copied into the memory location specified by old_val_addr.
16098 // But it hasn't specified storing to OldValAddr is atomic or not and
16099 // which order to use. Now following XL's codegen, treat it as a normal
16100 // store.
16101 Value *LoadedVal = Pair.first.getScalarVal();
16102 Builder.CreateStore(LoadedVal, OldValAddr);
16103 return Builder.CreateZExt(Pair.second, Builder.getInt32Ty());
16104 }
16105 case PPC::BI__builtin_ppc_fetch_and_add:
16106 case PPC::BI__builtin_ppc_fetch_and_addlp: {
16107 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
16108 llvm::AtomicOrdering::Monotonic);
16109 }
16110 case PPC::BI__builtin_ppc_fetch_and_and:
16111 case PPC::BI__builtin_ppc_fetch_and_andlp: {
16112 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
16113 llvm::AtomicOrdering::Monotonic);
16114 }
16115
16116 case PPC::BI__builtin_ppc_fetch_and_or:
16117 case PPC::BI__builtin_ppc_fetch_and_orlp: {
16118 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
16119 llvm::AtomicOrdering::Monotonic);
16120 }
16121 case PPC::BI__builtin_ppc_fetch_and_swap:
16122 case PPC::BI__builtin_ppc_fetch_and_swaplp: {
16123 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
16124 llvm::AtomicOrdering::Monotonic);
16125 }
16126 case PPC::BI__builtin_ppc_ldarx:
16127 case PPC::BI__builtin_ppc_lwarx:
16128 case PPC::BI__builtin_ppc_lharx:
16129 case PPC::BI__builtin_ppc_lbarx:
16130 return emitPPCLoadReserveIntrinsic(*this, BuiltinID, E);
16131 case PPC::BI__builtin_ppc_mfspr: {
16132 llvm::Type *RetType = CGM.getDataLayout().getTypeSizeInBits(VoidPtrTy) == 32
16133 ? Int32Ty
16134 : Int64Ty;
16135 Function *F = CGM.getIntrinsic(Intrinsic::ppc_mfspr, RetType);
16136 return Builder.CreateCall(F, Ops);
16137 }
16138 case PPC::BI__builtin_ppc_mtspr: {
16139 llvm::Type *RetType = CGM.getDataLayout().getTypeSizeInBits(VoidPtrTy) == 32
16140 ? Int32Ty
16141 : Int64Ty;
16142 Function *F = CGM.getIntrinsic(Intrinsic::ppc_mtspr, RetType);
16143 return Builder.CreateCall(F, Ops);
16144 }
16145 case PPC::BI__builtin_ppc_popcntb: {
16146 Value *ArgValue = EmitScalarExpr(E->getArg(0));
16147 llvm::Type *ArgType = ArgValue->getType();
16148 Function *F = CGM.getIntrinsic(Intrinsic::ppc_popcntb, {ArgType, ArgType});
16149 return Builder.CreateCall(F, Ops, "popcntb");
16150 }
16151 case PPC::BI__builtin_ppc_mtfsf: {
16152 // The builtin takes a uint32 that needs to be cast to an
16153 // f64 to be passed to the intrinsic.
16154 Value *Cast = Builder.CreateUIToFP(Ops[1], DoubleTy);
16155 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_mtfsf);
16156 return Builder.CreateCall(F, {Ops[0], Cast}, "");
16157 }
16158
16159 case PPC::BI__builtin_ppc_swdiv_nochk:
16160 case PPC::BI__builtin_ppc_swdivs_nochk: {
16161 FastMathFlags FMF = Builder.getFastMathFlags();
16162 Builder.getFastMathFlags().setFast();
16163 Value *FDiv = Builder.CreateFDiv(Ops[0], Ops[1], "swdiv_nochk");
16164 Builder.getFastMathFlags() &= (FMF);
16165 return FDiv;
16166 }
16167 case PPC::BI__builtin_ppc_fric:
16168 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
16169 *this, E, Intrinsic::rint,
16170 Intrinsic::experimental_constrained_rint))
16171 .getScalarVal();
16172 case PPC::BI__builtin_ppc_frim:
16173 case PPC::BI__builtin_ppc_frims:
16174 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
16175 *this, E, Intrinsic::floor,
16176 Intrinsic::experimental_constrained_floor))
16177 .getScalarVal();
16178 case PPC::BI__builtin_ppc_frin:
16179 case PPC::BI__builtin_ppc_frins:
16180 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
16181 *this, E, Intrinsic::round,
16182 Intrinsic::experimental_constrained_round))
16183 .getScalarVal();
16184 case PPC::BI__builtin_ppc_frip:
16185 case PPC::BI__builtin_ppc_frips:
16186 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
16187 *this, E, Intrinsic::ceil,
16188 Intrinsic::experimental_constrained_ceil))
16189 .getScalarVal();
16190 case PPC::BI__builtin_ppc_friz:
16191 case PPC::BI__builtin_ppc_frizs:
16192 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
16193 *this, E, Intrinsic::trunc,
16194 Intrinsic::experimental_constrained_trunc))
16195 .getScalarVal();
16196 case PPC::BI__builtin_ppc_fsqrt:
16197 case PPC::BI__builtin_ppc_fsqrts:
16198 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
16199 *this, E, Intrinsic::sqrt,
16200 Intrinsic::experimental_constrained_sqrt))
16201 .getScalarVal();
16202 case PPC::BI__builtin_ppc_test_data_class: {
16203 llvm::Type *ArgType = EmitScalarExpr(E->getArg(0))->getType();
16204 unsigned IntrinsicID;
16205 if (ArgType->isDoubleTy())
16206 IntrinsicID = Intrinsic::ppc_test_data_class_d;
16207 else if (ArgType->isFloatTy())
16208 IntrinsicID = Intrinsic::ppc_test_data_class_f;
16209 else
16210 llvm_unreachable("Invalid Argument Type")::llvm::llvm_unreachable_internal("Invalid Argument Type", "clang/lib/CodeGen/CGBuiltin.cpp"
, 16210)
;
16211 return Builder.CreateCall(CGM.getIntrinsic(IntrinsicID), Ops,
16212 "test_data_class");
16213 }
16214 case PPC::BI__builtin_ppc_swdiv:
16215 case PPC::BI__builtin_ppc_swdivs:
16216 return Builder.CreateFDiv(Ops[0], Ops[1], "swdiv");
16217 }
16218}
16219
16220namespace {
16221// If \p E is not null pointer, insert address space cast to match return
16222// type of \p E if necessary.
16223Value *EmitAMDGPUDispatchPtr(CodeGenFunction &CGF,
16224 const CallExpr *E = nullptr) {
16225 auto *F = CGF.CGM.getIntrinsic(Intrinsic::amdgcn_dispatch_ptr);
16226 auto *Call = CGF.Builder.CreateCall(F);
16227 Call->addRetAttr(
16228 Attribute::getWithDereferenceableBytes(Call->getContext(), 64));
16229 Call->addRetAttr(Attribute::getWithAlignment(Call->getContext(), Align(4)));
16230 if (!E)
16231 return Call;
16232 QualType BuiltinRetType = E->getType();
16233 auto *RetTy = cast<llvm::PointerType>(CGF.ConvertType(BuiltinRetType));
16234 if (RetTy == Call->getType())
16235 return Call;
16236 return CGF.Builder.CreateAddrSpaceCast(Call, RetTy);
16237}
16238
16239// \p Index is 0, 1, and 2 for x, y, and z dimension, respectively.
16240Value *EmitAMDGPUWorkGroupSize(CodeGenFunction &CGF, unsigned Index) {
16241 const unsigned XOffset = 4;
16242 auto *DP = EmitAMDGPUDispatchPtr(CGF);
16243 // Indexing the HSA kernel_dispatch_packet struct.
16244 auto *Offset = llvm::ConstantInt::get(CGF.Int32Ty, XOffset + Index * 2);
16245 auto *GEP = CGF.Builder.CreateGEP(CGF.Int8Ty, DP, Offset);
16246 auto *DstTy =
16247 CGF.Int16Ty->getPointerTo(GEP->getType()->getPointerAddressSpace());
16248 auto *Cast = CGF.Builder.CreateBitCast(GEP, DstTy);
16249 auto *LD = CGF.Builder.CreateLoad(
16250 Address(Cast, CGF.Int16Ty, CharUnits::fromQuantity(2)));
16251 llvm::MDBuilder MDHelper(CGF.getLLVMContext());
16252 llvm::MDNode *RNode = MDHelper.createRange(APInt(16, 1),
16253 APInt(16, CGF.getTarget().getMaxOpenCLWorkGroupSize() + 1));
16254 LD->setMetadata(llvm::LLVMContext::MD_range, RNode);
16255 LD->setMetadata(llvm::LLVMContext::MD_invariant_load,
16256 llvm::MDNode::get(CGF.getLLVMContext(), None));
16257 return LD;
16258}
16259
16260// \p Index is 0, 1, and 2 for x, y, and z dimension, respectively.
16261Value *EmitAMDGPUGridSize(CodeGenFunction &CGF, unsigned Index) {
16262 const unsigned XOffset = 12;
16263 auto *DP = EmitAMDGPUDispatchPtr(CGF);
16264 // Indexing the HSA kernel_dispatch_packet struct.
16265 auto *Offset = llvm::ConstantInt::get(CGF.Int32Ty, XOffset + Index * 4);
16266 auto *GEP = CGF.Builder.CreateGEP(CGF.Int8Ty, DP, Offset);
16267 auto *DstTy =
16268 CGF.Int32Ty->getPointerTo(GEP->getType()->getPointerAddressSpace());
16269 auto *Cast = CGF.Builder.CreateBitCast(GEP, DstTy);
16270 auto *LD = CGF.Builder.CreateLoad(
16271 Address(Cast, CGF.Int32Ty, CharUnits::fromQuantity(4)));
16272 LD->setMetadata(llvm::LLVMContext::MD_invariant_load,
16273 llvm::MDNode::get(CGF.getLLVMContext(), None));
16274 return LD;
16275}
16276} // namespace
16277
16278// For processing memory ordering and memory scope arguments of various
16279// amdgcn builtins.
16280// \p Order takes a C++11 comptabile memory-ordering specifier and converts
16281// it into LLVM's memory ordering specifier using atomic C ABI, and writes
16282// to \p AO. \p Scope takes a const char * and converts it into AMDGCN
16283// specific SyncScopeID and writes it to \p SSID.
16284bool CodeGenFunction::ProcessOrderScopeAMDGCN(Value *Order, Value *Scope,
16285 llvm::AtomicOrdering &AO,
16286 llvm::SyncScope::ID &SSID) {
16287 if (isa<llvm::ConstantInt>(Order)) {
3
Assuming 'Order' is not a 'ConstantInt'
4
Taking false branch
16288 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
16289
16290 // Map C11/C++11 memory ordering to LLVM memory ordering
16291 assert(llvm::isValidAtomicOrderingCABI(ord))(static_cast <bool> (llvm::isValidAtomicOrderingCABI(ord
)) ? void (0) : __assert_fail ("llvm::isValidAtomicOrderingCABI(ord)"
, "clang/lib/CodeGen/CGBuiltin.cpp", 16291, __extension__ __PRETTY_FUNCTION__
))
;
16292 switch (static_cast<llvm::AtomicOrderingCABI>(ord)) {
16293 case llvm::AtomicOrderingCABI::acquire:
16294 case llvm::AtomicOrderingCABI::consume:
16295 AO = llvm::AtomicOrdering::Acquire;
16296 break;
16297 case llvm::AtomicOrderingCABI::release:
16298 AO = llvm::AtomicOrdering::Release;
16299 break;
16300 case llvm::AtomicOrderingCABI::acq_rel:
16301 AO = llvm::AtomicOrdering::AcquireRelease;
16302 break;
16303 case llvm::AtomicOrderingCABI::seq_cst:
16304 AO = llvm::AtomicOrdering::SequentiallyConsistent;
16305 break;
16306 case llvm::AtomicOrderingCABI::relaxed:
16307 AO = llvm::AtomicOrdering::Monotonic;
16308 break;
16309 }
16310
16311 StringRef scp;
16312 llvm::getConstantStringInfo(Scope, scp);
16313 SSID = getLLVMContext().getOrInsertSyncScopeID(scp);
16314 return true;
16315 }
16316 return false;
5
Returning zero, which participates in a condition later
16317}
16318
16319Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID,
16320 const CallExpr *E) {
16321 llvm::AtomicOrdering AO = llvm::AtomicOrdering::SequentiallyConsistent;
16322 llvm::SyncScope::ID SSID;
16323 switch (BuiltinID) {
1
Control jumps to 'case BI__builtin_amdgcn_fence:' at line 16657
16324 case AMDGPU::BI__builtin_amdgcn_div_scale:
16325 case AMDGPU::BI__builtin_amdgcn_div_scalef: {
16326 // Translate from the intrinsics's struct return to the builtin's out
16327 // argument.
16328
16329 Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3));
16330
16331 llvm::Value *X = EmitScalarExpr(E->getArg(0));
16332 llvm::Value *Y = EmitScalarExpr(E->getArg(1));
16333 llvm::Value *Z = EmitScalarExpr(E->getArg(2));
16334
16335 llvm::Function *Callee = CGM.getIntrinsic(Intrinsic::amdgcn_div_scale,
16336 X->getType());
16337
16338 llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z});
16339
16340 llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0);
16341 llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1);
16342
16343 llvm::Type *RealFlagType = FlagOutPtr.getElementType();
16344
16345 llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType);
16346 Builder.CreateStore(FlagExt, FlagOutPtr);
16347 return Result;
16348 }
16349 case AMDGPU::BI__builtin_amdgcn_div_fmas:
16350 case AMDGPU::BI__builtin_amdgcn_div_fmasf: {
16351 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
16352 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
16353 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
16354 llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
16355
16356 llvm::Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_div_fmas,
16357 Src0->getType());
16358 llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3);
16359 return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool});
16360 }
16361
16362 case AMDGPU::BI__builtin_amdgcn_ds_swizzle:
16363 return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_ds_swizzle);
16364 case AMDGPU::BI__builtin_amdgcn_mov_dpp8:
16365 return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_mov_dpp8);
16366 case AMDGPU::BI__builtin_amdgcn_mov_dpp:
16367 case AMDGPU::BI__builtin_amdgcn_update_dpp: {
16368 llvm::SmallVector<llvm::Value *, 6> Args;
16369 for (unsigned I = 0; I != E->getNumArgs(); ++I)
16370 Args.push_back(EmitScalarExpr(E->getArg(I)));
16371 assert(Args.size() == 5 || Args.size() == 6)(static_cast <bool> (Args.size() == 5 || Args.size() ==
6) ? void (0) : __assert_fail ("Args.size() == 5 || Args.size() == 6"
, "clang/lib/CodeGen/CGBuiltin.cpp", 16371, __extension__ __PRETTY_FUNCTION__
))
;
16372 if (Args.size() == 5)
16373 Args.insert(Args.begin(), llvm::UndefValue::get(Args[0]->getType()));
16374 Function *F =
16375 CGM.getIntrinsic(Intrinsic::amdgcn_update_dpp, Args[0]->getType());
16376 return Builder.CreateCall(F, Args);
16377 }
16378 case AMDGPU::BI__builtin_amdgcn_div_fixup:
16379 case AMDGPU::BI__builtin_amdgcn_div_fixupf:
16380 case AMDGPU::BI__builtin_amdgcn_div_fixuph:
16381 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_div_fixup);
16382 case AMDGPU::BI__builtin_amdgcn_trig_preop:
16383 case AMDGPU::BI__builtin_amdgcn_trig_preopf:
16384 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_trig_preop);
16385 case AMDGPU::BI__builtin_amdgcn_rcp:
16386 case AMDGPU::BI__builtin_amdgcn_rcpf:
16387 case AMDGPU::BI__builtin_amdgcn_rcph:
16388 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rcp);
16389 case AMDGPU::BI__builtin_amdgcn_sqrt:
16390 case AMDGPU::BI__builtin_amdgcn_sqrtf:
16391 case AMDGPU::BI__builtin_amdgcn_sqrth:
16392 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sqrt);
16393 case AMDGPU::BI__builtin_amdgcn_rsq:
16394 case AMDGPU::BI__builtin_amdgcn_rsqf:
16395 case AMDGPU::BI__builtin_amdgcn_rsqh:
16396 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq);
16397 case AMDGPU::BI__builtin_amdgcn_rsq_clamp:
16398 case AMDGPU::BI__builtin_amdgcn_rsq_clampf:
16399 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq_clamp);
16400 case AMDGPU::BI__builtin_amdgcn_sinf:
16401 case AMDGPU::BI__builtin_amdgcn_sinh:
16402 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sin);
16403 case AMDGPU::BI__builtin_amdgcn_cosf:
16404 case AMDGPU::BI__builtin_amdgcn_cosh:
16405 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_cos);
16406 case AMDGPU::BI__builtin_amdgcn_dispatch_ptr:
16407 return EmitAMDGPUDispatchPtr(*this, E);
16408 case AMDGPU::BI__builtin_amdgcn_log_clampf:
16409 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_log_clamp);
16410 case AMDGPU::BI__builtin_amdgcn_ldexp:
16411 case AMDGPU::BI__builtin_amdgcn_ldexpf:
16412 case AMDGPU::BI__builtin_amdgcn_ldexph:
16413 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_ldexp);
16414 case AMDGPU::BI__builtin_amdgcn_frexp_mant:
16415 case AMDGPU::BI__builtin_amdgcn_frexp_mantf:
16416 case AMDGPU::BI__builtin_amdgcn_frexp_manth:
16417 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_frexp_mant);
16418 case AMDGPU::BI__builtin_amdgcn_frexp_exp:
16419 case AMDGPU::BI__builtin_amdgcn_frexp_expf: {
16420 Value *Src0 = EmitScalarExpr(E->getArg(0));
16421 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
16422 { Builder.getInt32Ty(), Src0->getType() });
16423 return Builder.CreateCall(F, Src0);
16424 }
16425 case AMDGPU::BI__builtin_amdgcn_frexp_exph: {
16426 Value *Src0 = EmitScalarExpr(E->getArg(0));
16427 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
16428 { Builder.getInt16Ty(), Src0->getType() });
16429 return Builder.CreateCall(F, Src0);
16430 }
16431 case AMDGPU::BI__builtin_amdgcn_fract:
16432 case AMDGPU::BI__builtin_amdgcn_fractf:
16433 case AMDGPU::BI__builtin_amdgcn_fracth:
16434 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_fract);
16435 case AMDGPU::BI__builtin_amdgcn_lerp:
16436 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_lerp);
16437 case AMDGPU::BI__builtin_amdgcn_ubfe:
16438 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_ubfe);
16439 case AMDGPU::BI__builtin_amdgcn_sbfe:
16440 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_sbfe);
16441 case AMDGPU::BI__builtin_amdgcn_uicmp:
16442 case AMDGPU::BI__builtin_amdgcn_uicmpl:
16443 case AMDGPU::BI__builtin_amdgcn_sicmp:
16444 case AMDGPU::BI__builtin_amdgcn_sicmpl: {
16445 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
16446 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
16447 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
16448
16449 // FIXME-GFX10: How should 32 bit mask be handled?
16450 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_icmp,
16451 { Builder.getInt64Ty(), Src0->getType() });
16452 return Builder.CreateCall(F, { Src0, Src1, Src2 });
16453 }
16454 case AMDGPU::BI__builtin_amdgcn_fcmp:
16455 case AMDGPU::BI__builtin_amdgcn_fcmpf: {
16456 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
16457 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
16458 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
16459
16460 // FIXME-GFX10: How should 32 bit mask be handled?
16461 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_fcmp,
16462 { Builder.getInt64Ty(), Src0->getType() });
16463 return Builder.CreateCall(F, { Src0, Src1, Src2 });
16464 }
16465 case AMDGPU::BI__builtin_amdgcn_class:
16466 case AMDGPU::BI__builtin_amdgcn_classf:
16467 case AMDGPU::BI__builtin_amdgcn_classh:
16468 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_class);
16469 case AMDGPU::BI__builtin_amdgcn_fmed3f:
16470 case AMDGPU::BI__builtin_amdgcn_fmed3h:
16471 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fmed3);
16472 case AMDGPU::BI__builtin_amdgcn_ds_append:
16473 case AMDGPU::BI__builtin_amdgcn_ds_consume: {
16474 Intrinsic::ID Intrin = BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_append ?
16475 Intrinsic::amdgcn_ds_append : Intrinsic::amdgcn_ds_consume;
16476 Value *Src0 = EmitScalarExpr(E->getArg(0));
16477 Function *F = CGM.getIntrinsic(Intrin, { Src0->getType() });
16478 return Builder.CreateCall(F, { Src0, Builder.getFalse() });
16479 }
16480 case AMDGPU::BI__builtin_amdgcn_ds_faddf:
16481 case AMDGPU::BI__builtin_amdgcn_ds_fminf:
16482 case AMDGPU::BI__builtin_amdgcn_ds_fmaxf: {
16483 Intrinsic::ID Intrin;
16484 switch (BuiltinID) {
16485 case AMDGPU::BI__builtin_amdgcn_ds_faddf:
16486 Intrin = Intrinsic::amdgcn_ds_fadd;
16487 break;
16488 case AMDGPU::BI__builtin_amdgcn_ds_fminf:
16489 Intrin = Intrinsic::amdgcn_ds_fmin;
16490 break;
16491 case AMDGPU::BI__builtin_amdgcn_ds_fmaxf:
16492 Intrin = Intrinsic::amdgcn_ds_fmax;
16493 break;
16494 }
16495 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
16496 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
16497 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
16498 llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
16499 llvm::Value *Src4 = EmitScalarExpr(E->getArg(4));
16500 llvm::Function *F = CGM.getIntrinsic(Intrin, { Src1->getType() });
16501 llvm::FunctionType *FTy = F->getFunctionType();
16502 llvm::Type *PTy = FTy->getParamType(0);
16503 Src0 = Builder.CreatePointerBitCastOrAddrSpaceCast(Src0, PTy);
16504 return Builder.CreateCall(F, { Src0, Src1, Src2, Src3, Src4 });
16505 }
16506 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f64:
16507 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f32:
16508 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2f16:
16509 case AMDGPU::BI__builtin_amdgcn_global_atomic_fmin_f64:
16510 case AMDGPU::BI__builtin_amdgcn_global_atomic_fmax_f64:
16511 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f64:
16512 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmin_f64:
16513 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmax_f64: {
16514 Intrinsic::ID IID;
16515 llvm::Type *ArgTy = llvm::Type::getDoubleTy(getLLVMContext());
16516 switch (BuiltinID) {
16517 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f32:
16518 ArgTy = llvm::Type::getFloatTy(getLLVMContext());
16519 IID = Intrinsic::amdgcn_global_atomic_fadd;
16520 break;
16521 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2f16:
16522 ArgTy = llvm::FixedVectorType::get(
16523 llvm::Type::getHalfTy(getLLVMContext()), 2);
16524 IID = Intrinsic::amdgcn_global_atomic_fadd;
16525 break;
16526 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f64:
16527 IID = Intrinsic::amdgcn_global_atomic_fadd;
16528 break;
16529 case AMDGPU::BI__builtin_amdgcn_global_atomic_fmin_f64:
16530 IID = Intrinsic::amdgcn_global_atomic_fmin;
16531 break;
16532 case AMDGPU::BI__builtin_amdgcn_global_atomic_fmax_f64:
16533 IID = Intrinsic::amdgcn_global_atomic_fmax;
16534 break;
16535 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f64:
16536 IID = Intrinsic::amdgcn_flat_atomic_fadd;
16537 break;
16538 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmin_f64:
16539 IID = Intrinsic::amdgcn_flat_atomic_fmin;
16540 break;
16541 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmax_f64:
16542 IID = Intrinsic::amdgcn_flat_atomic_fmax;
16543 break;
16544 }
16545 llvm::Value *Addr = EmitScalarExpr(E->getArg(0));
16546 llvm::Value *Val = EmitScalarExpr(E->getArg(1));
16547 llvm::Function *F =
16548 CGM.getIntrinsic(IID, {ArgTy, Addr->getType(), Val->getType()});
16549 return Builder.CreateCall(F, {Addr, Val});
16550 }
16551 case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f64:
16552 case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f32: {
16553 Intrinsic::ID IID;
16554 llvm::Type *ArgTy;
16555 switch (BuiltinID) {
16556 case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f32:
16557 ArgTy = llvm::Type::getFloatTy(getLLVMContext());
16558 IID = Intrinsic::amdgcn_ds_fadd;
16559 break;
16560 case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f64:
16561 ArgTy = llvm::Type::getDoubleTy(getLLVMContext());
16562 IID = Intrinsic::amdgcn_ds_fadd;
16563 break;
16564 }
16565 llvm::Value *Addr = EmitScalarExpr(E->getArg(0));
16566 llvm::Value *Val = EmitScalarExpr(E->getArg(1));
16567 llvm::Constant *ZeroI32 = llvm::ConstantInt::getIntegerValue(
16568 llvm::Type::getInt32Ty(getLLVMContext()), APInt(32, 0, true));
16569 llvm::Constant *ZeroI1 = llvm::ConstantInt::getIntegerValue(
16570 llvm::Type::getInt1Ty(getLLVMContext()), APInt(1, 0));
16571 llvm::Function *F = CGM.getIntrinsic(IID, {ArgTy});
16572 return Builder.CreateCall(F, {Addr, Val, ZeroI32, ZeroI32, ZeroI1});
16573 }
16574 case AMDGPU::BI__builtin_amdgcn_read_exec: {
16575 CallInst *CI = cast<CallInst>(
16576 EmitSpecialRegisterBuiltin(*this, E, Int64Ty, Int64Ty, NormalRead, "exec"));
16577 CI->setConvergent();
16578 return CI;
16579 }
16580 case AMDGPU::BI__builtin_amdgcn_read_exec_lo:
16581 case AMDGPU::BI__builtin_amdgcn_read_exec_hi: {
16582 StringRef RegName = BuiltinID == AMDGPU::BI__builtin_amdgcn_read_exec_lo ?
16583 "exec_lo" : "exec_hi";
16584 CallInst *CI = cast<CallInst>(
16585 EmitSpecialRegisterBuiltin(*this, E, Int32Ty, Int32Ty, NormalRead, RegName));
16586 CI->setConvergent();
16587 return CI;
16588 }
16589 case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray:
16590 case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_h:
16591 case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_l:
16592 case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_lh: {
16593 llvm::Value *NodePtr = EmitScalarExpr(E->getArg(0));
16594 llvm::Value *RayExtent = EmitScalarExpr(E->getArg(1));
16595 llvm::Value *RayOrigin = EmitScalarExpr(E->getArg(2));
16596 llvm::Value *RayDir = EmitScalarExpr(E->getArg(3));
16597 llvm::Value *RayInverseDir = EmitScalarExpr(E->getArg(4));
16598 llvm::Value *TextureDescr = EmitScalarExpr(E->getArg(5));
16599
16600 // The builtins take these arguments as vec4 where the last element is
16601 // ignored. The intrinsic takes them as vec3.
16602 RayOrigin = Builder.CreateShuffleVector(RayOrigin, RayOrigin,
16603 ArrayRef<int>{0, 1, 2});
16604 RayDir =
16605 Builder.CreateShuffleVector(RayDir, RayDir, ArrayRef<int>{0, 1, 2});
16606 RayInverseDir = Builder.CreateShuffleVector(RayInverseDir, RayInverseDir,
16607 ArrayRef<int>{0, 1, 2});
16608
16609 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_image_bvh_intersect_ray,
16610 {NodePtr->getType(), RayDir->getType()});
16611 return Builder.CreateCall(F, {NodePtr, RayExtent, RayOrigin, RayDir,
16612 RayInverseDir, TextureDescr});
16613 }
16614
16615 // amdgcn workitem
16616 case AMDGPU::BI__builtin_amdgcn_workitem_id_x:
16617 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_x, 0, 1024);
16618 case AMDGPU::BI__builtin_amdgcn_workitem_id_y:
16619 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_y, 0, 1024);
16620 case AMDGPU::BI__builtin_amdgcn_workitem_id_z:
16621 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_z, 0, 1024);
16622
16623 // amdgcn workgroup size
16624 case AMDGPU::BI__builtin_amdgcn_workgroup_size_x:
16625 return EmitAMDGPUWorkGroupSize(*this, 0);
16626 case AMDGPU::BI__builtin_amdgcn_workgroup_size_y:
16627 return EmitAMDGPUWorkGroupSize(*this, 1);
16628 case AMDGPU::BI__builtin_amdgcn_workgroup_size_z:
16629 return EmitAMDGPUWorkGroupSize(*this, 2);
16630
16631 // amdgcn grid size
16632 case AMDGPU::BI__builtin_amdgcn_grid_size_x:
16633 return EmitAMDGPUGridSize(*this, 0);
16634 case AMDGPU::BI__builtin_amdgcn_grid_size_y:
16635 return EmitAMDGPUGridSize(*this, 1);
16636 case AMDGPU::BI__builtin_amdgcn_grid_size_z:
16637 return EmitAMDGPUGridSize(*this, 2);
16638
16639 // r600 intrinsics
16640 case AMDGPU::BI__builtin_r600_recipsqrt_ieee:
16641 case AMDGPU::BI__builtin_r600_recipsqrt_ieeef:
16642 return emitUnaryBuiltin(*this, E, Intrinsic::r600_recipsqrt_ieee);
16643 case AMDGPU::BI__builtin_r600_read_tidig_x:
16644 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_x, 0, 1024);
16645 case AMDGPU::BI__builtin_r600_read_tidig_y:
16646 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_y, 0, 1024);
16647 case AMDGPU::BI__builtin_r600_read_tidig_z:
16648 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_z, 0, 1024);
16649 case AMDGPU::BI__builtin_amdgcn_alignbit: {
16650 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
16651 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
16652 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
16653 Function *F = CGM.getIntrinsic(Intrinsic::fshr, Src0->getType());
16654 return Builder.CreateCall(F, { Src0, Src1, Src2 });
16655 }
16656
16657 case AMDGPU::BI__builtin_amdgcn_fence: {
16658 if (ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(0)),
2
Calling 'CodeGenFunction::ProcessOrderScopeAMDGCN'
6
Returning from 'CodeGenFunction::ProcessOrderScopeAMDGCN'
7
Taking false branch
16659 EmitScalarExpr(E->getArg(1)), AO, SSID))
16660 return Builder.CreateFence(AO, SSID);
16661 LLVM_FALLTHROUGH[[gnu::fallthrough]];
16662 }
16663 case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
16664 case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
16665 case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
16666 case AMDGPU::BI__builtin_amdgcn_atomic_dec64: {
16667 unsigned BuiltinAtomicOp;
8
'BuiltinAtomicOp' declared without an initial value
16668 llvm::Type *ResultType = ConvertType(E->getType());
16669
16670 switch (BuiltinID) {
16671 case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
16672 case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
16673 BuiltinAtomicOp = Intrinsic::amdgcn_atomic_inc;
16674 break;
16675 case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
16676 case AMDGPU::BI__builtin_amdgcn_atomic_dec64:
16677 BuiltinAtomicOp = Intrinsic::amdgcn_atomic_dec;
16678 break;
16679 }
16680
16681 Value *Ptr = EmitScalarExpr(E->getArg(0));
9
'Default' branch taken. Execution continues on line 16681
16682 Value *Val = EmitScalarExpr(E->getArg(1));
16683
16684 llvm::Function *F =
16685 CGM.getIntrinsic(BuiltinAtomicOp, {ResultType, Ptr->getType()});
10
1st function call argument is an uninitialized value
16686
16687 if (ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(2)),
16688 EmitScalarExpr(E->getArg(3)), AO, SSID)) {
16689
16690 // llvm.amdgcn.atomic.inc and llvm.amdgcn.atomic.dec expects ordering and
16691 // scope as unsigned values
16692 Value *MemOrder = Builder.getInt32(static_cast<int>(AO));
16693 Value *MemScope = Builder.getInt32(static_cast<int>(SSID));
16694
16695 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
16696 bool Volatile =
16697 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
16698 Value *IsVolatile = Builder.getInt1(static_cast<bool>(Volatile));
16699
16700 return Builder.CreateCall(F, {Ptr, Val, MemOrder, MemScope, IsVolatile});
16701 }
16702 LLVM_FALLTHROUGH[[gnu::fallthrough]];
16703 }
16704 default:
16705 return nullptr;
16706 }
16707}
16708
16709/// Handle a SystemZ function in which the final argument is a pointer
16710/// to an int that receives the post-instruction CC value. At the LLVM level
16711/// this is represented as a function that returns a {result, cc} pair.
16712static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF,
16713 unsigned IntrinsicID,
16714 const CallExpr *E) {
16715 unsigned NumArgs = E->getNumArgs() - 1;
16716 SmallVector<Value *, 8> Args(NumArgs);
16717 for (unsigned I = 0; I < NumArgs; ++I)
16718 Args[I] = CGF.EmitScalarExpr(E->getArg(I));
16719 Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs));
16720 Function *F = CGF.CGM.getIntrinsic(IntrinsicID);
16721 Value *Call = CGF.Builder.CreateCall(F, Args);
16722 Value *CC = CGF.Builder.CreateExtractValue(Call, 1);
16723 CGF.Builder.CreateStore(CC, CCPtr);
16724 return CGF.Builder.CreateExtractValue(Call, 0);
16725}
16726
16727Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID,
16728 const CallExpr *E) {
16729 switch (BuiltinID) {
16730 case SystemZ::BI__builtin_tbegin: {
16731 Value *TDB = EmitScalarExpr(E->getArg(0));
16732 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
16733 Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin);
16734 return Builder.CreateCall(F, {TDB, Control});
16735 }
16736 case SystemZ::BI__builtin_tbegin_nofloat: {
16737 Value *TDB = EmitScalarExpr(E->getArg(0));
16738 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
16739 Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat);
16740 return Builder.CreateCall(F, {TDB, Control});
16741 }
16742 case SystemZ::BI__builtin_tbeginc: {
16743 Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy);
16744 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08);
16745 Function *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc);
16746 return Builder.CreateCall(F, {TDB, Control});
16747 }
16748 case SystemZ::BI__builtin_tabort: {
16749 Value *Data = EmitScalarExpr(E->getArg(0));
16750 Function *F = CGM.getIntrinsic(Intrinsic::s390_tabort);
16751 return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort"));
16752 }
16753 case SystemZ::BI__builtin_non_tx_store: {
16754 Value *Address = EmitScalarExpr(E->getArg(0));
16755 Value *Data = EmitScalarExpr(E->getArg(1));
16756 Function *F = CGM.getIntrinsic(Intrinsic::s390_ntstg);
16757 return Builder.CreateCall(F, {Data, Address});
16758 }
16759
16760 // Vector builtins. Note that most vector builtins are mapped automatically
16761 // to target-specific LLVM intrinsics. The ones handled specially here can
16762 // be represented via standard LLVM IR, which is preferable to enable common
16763 // LLVM optimizations.
16764
16765 case SystemZ::BI__builtin_s390_vpopctb:
16766 case SystemZ::BI__builtin_s390_vpopcth:
16767 case SystemZ::BI__builtin_s390_vpopctf:
16768 case SystemZ::BI__builtin_s390_vpopctg: {
16769 llvm::Type *ResultType = ConvertType(E->getType());
16770 Value *X = EmitScalarExpr(E->getArg(0));
16771 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
16772 return Builder.CreateCall(F, X);
16773 }
16774
16775 case SystemZ::BI__builtin_s390_vclzb:
16776 case SystemZ::BI__builtin_s390_vclzh:
16777 case SystemZ::BI__builtin_s390_vclzf:
16778 case SystemZ::BI__builtin_s390_vclzg: {
16779 llvm::Type *ResultType = ConvertType(E->getType());
16780 Value *X = EmitScalarExpr(E->getArg(0));
16781 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
16782 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
16783 return Builder.CreateCall(F, {X, Undef});
16784 }
16785
16786 case SystemZ::BI__builtin_s390_vctzb:
16787 case SystemZ::BI__builtin_s390_vctzh:
16788 case SystemZ::BI__builtin_s390_vctzf:
16789 case SystemZ::BI__builtin_s390_vctzg: {
16790 llvm::Type *ResultType = ConvertType(E->getType());
16791 Value *X = EmitScalarExpr(E->getArg(0));
16792 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
16793 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
16794 return Builder.CreateCall(F, {X, Undef});
16795 }
16796
16797 case SystemZ::BI__builtin_s390_vfsqsb:
16798 case SystemZ::BI__builtin_s390_vfsqdb: {
16799 llvm::Type *ResultType = ConvertType(E->getType());
16800 Value *X = EmitScalarExpr(E->getArg(0));
16801 if (Builder.getIsFPConstrained()) {
16802 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt, ResultType);
16803 return Builder.CreateConstrainedFPCall(F, { X });
16804 } else {
16805 Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
16806 return Builder.CreateCall(F, X);
16807 }
16808 }
16809 case SystemZ::BI__builtin_s390_vfmasb:
16810 case SystemZ::BI__builtin_s390_vfmadb: {
16811 llvm::Type *ResultType = ConvertType(E->getType());
16812 Value *X = EmitScalarExpr(E->getArg(0));
16813 Value *Y = EmitScalarExpr(E->getArg(1));
16814 Value *Z = EmitScalarExpr(E->getArg(2));
16815 if (Builder.getIsFPConstrained()) {
16816 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
16817 return Builder.CreateConstrainedFPCall(F, {X, Y, Z});
16818 } else {
16819 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
16820 return Builder.CreateCall(F, {X, Y, Z});
16821 }
16822 }
16823 case SystemZ::BI__builtin_s390_vfmssb:
16824 case SystemZ::BI__builtin_s390_vfmsdb: {
16825 llvm::Type *ResultType = ConvertType(E->getType());
16826 Value *X = EmitScalarExpr(E->getArg(0));
16827 Value *Y = EmitScalarExpr(E->getArg(1));
16828 Value *Z = EmitScalarExpr(E->getArg(2));
16829 if (Builder.getIsFPConstrained()) {
16830 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
16831 return Builder.CreateConstrainedFPCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
16832 } else {
16833 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
16834 return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
16835 }
16836 }
16837 case SystemZ::BI__builtin_s390_vfnmasb:
16838 case SystemZ::BI__builtin_s390_vfnmadb: {
16839 llvm::Type *ResultType = ConvertType(E->getType());
16840 Value *X = EmitScalarExpr(E->getArg(0));
16841 Value *Y = EmitScalarExpr(E->getArg(1));
16842 Value *Z = EmitScalarExpr(E->getArg(2));
16843 if (Builder.getIsFPConstrained()) {
16844 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
16845 return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y, Z}), "neg");
16846 } else {
16847 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
16848 return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg");
16849 }
16850 }
16851 case SystemZ::BI__builtin_s390_vfnmssb:
16852 case SystemZ::BI__builtin_s390_vfnmsdb: {
16853 llvm::Type *ResultType = ConvertType(E->getType());
16854 Value *X = EmitScalarExpr(E->getArg(0));
16855 Value *Y = EmitScalarExpr(E->getArg(1));
16856 Value *Z = EmitScalarExpr(E->getArg(2));
16857 if (Builder.getIsFPConstrained()) {
16858 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
16859 Value *NegZ = Builder.CreateFNeg(Z, "sub");
16860 return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y, NegZ}));
16861 } else {
16862 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
16863 Value *NegZ = Builder.CreateFNeg(Z, "neg");
16864 return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, NegZ}));
16865 }
16866 }
16867 case SystemZ::BI__builtin_s390_vflpsb:
16868 case SystemZ::BI__builtin_s390_vflpdb: {
16869 llvm::Type *ResultType = ConvertType(E->getType());
16870 Value *X = EmitScalarExpr(E->getArg(0));
16871 Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
16872 return Builder.CreateCall(F, X);
16873 }
16874 case SystemZ::BI__builtin_s390_vflnsb:
16875 case SystemZ::BI__builtin_s390_vflndb: {
16876 llvm::Type *ResultType = ConvertType(E->getType());
16877 Value *X = EmitScalarExpr(E->getArg(0));
16878 Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
16879 return Builder.CreateFNeg(Builder.CreateCall(F, X), "neg");
16880 }
16881 case SystemZ::BI__builtin_s390_vfisb:
16882 case SystemZ::BI__builtin_s390_vfidb: {
16883 llvm::Type *ResultType = ConvertType(E->getType());
16884 Value *X = EmitScalarExpr(E->getArg(0));
16885 // Constant-fold the M4 and M5 mask arguments.
16886 llvm::APSInt M4 = *E->getArg(1)->getIntegerConstantExpr(getContext());
16887 llvm::APSInt M5 = *E->getArg(2)->getIntegerConstantExpr(getContext());
16888 // Check whether this instance can be represented via a LLVM standard
16889 // intrinsic. We only support some combinations of M4 and M5.
16890 Intrinsic::ID ID = Intrinsic::not_intrinsic;
16891 Intrinsic::ID CI;
16892 switch (M4.getZExtValue()) {
16893 default: break;
16894 case 0: // IEEE-inexact exception allowed
16895 switch (M5.getZExtValue()) {
16896 default: break;
16897 case 0: ID = Intrinsic::rint;
16898 CI = Intrinsic::experimental_constrained_rint; break;
16899 }
16900 break;
16901 case 4: // IEEE-inexact exception suppressed
16902 switch (M5.getZExtValue()) {
16903 default: break;
16904 case 0: ID = Intrinsic::nearbyint;
16905 CI = Intrinsic::experimental_constrained_nearbyint; break;
16906 case 1: ID = Intrinsic::round;
16907 CI = Intrinsic::experimental_constrained_round; break;
16908 case 5: ID = Intrinsic::trunc;
16909 CI = Intrinsic::experimental_constrained_trunc; break;
16910 case 6: ID = Intrinsic::ceil;
16911 CI = Intrinsic::experimental_constrained_ceil; break;
16912 case 7: ID = Intrinsic::floor;
16913 CI = Intrinsic::experimental_constrained_floor; break;
16914 }
16915 break;
16916 }
16917 if (ID != Intrinsic::not_intrinsic) {
16918 if (Builder.getIsFPConstrained()) {
16919 Function *F = CGM.getIntrinsic(CI, ResultType);
16920 return Builder.CreateConstrainedFPCall(F, X);
16921 } else {
16922 Function *F = CGM.getIntrinsic(ID, ResultType);
16923 return Builder.CreateCall(F, X);
16924 }
16925 }
16926 switch (BuiltinID) { // FIXME: constrained version?
16927 case SystemZ::BI__builtin_s390_vfisb: ID = Intrinsic::s390_vfisb; break;
16928 case SystemZ::BI__builtin_s390_vfidb: ID = Intrinsic::s390_vfidb; break;
16929 default: llvm_unreachable("Unknown BuiltinID")::llvm::llvm_unreachable_internal("Unknown BuiltinID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 16929)
;
16930 }
16931 Function *F = CGM.getIntrinsic(ID);
16932 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
16933 Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5);
16934 return Builder.CreateCall(F, {X, M4Value, M5Value});
16935 }
16936 case SystemZ::BI__builtin_s390_vfmaxsb:
16937 case SystemZ::BI__builtin_s390_vfmaxdb: {
16938 llvm::Type *ResultType = ConvertType(E->getType());
16939 Value *X = EmitScalarExpr(E->getArg(0));
16940 Value *Y = EmitScalarExpr(E->getArg(1));
16941 // Constant-fold the M4 mask argument.
16942 llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext());
16943 // Check whether this instance can be represented via a LLVM standard
16944 // intrinsic. We only support some values of M4.
16945 Intrinsic::ID ID = Intrinsic::not_intrinsic;
16946 Intrinsic::ID CI;
16947 switch (M4.getZExtValue()) {
16948 default: break;
16949 case 4: ID = Intrinsic::maxnum;
16950 CI = Intrinsic::experimental_constrained_maxnum; break;
16951 }
16952 if (ID != Intrinsic::not_intrinsic) {
16953 if (Builder.getIsFPConstrained()) {
16954 Function *F = CGM.getIntrinsic(CI, ResultType);
16955 return Builder.CreateConstrainedFPCall(F, {X, Y});
16956 } else {
16957 Function *F = CGM.getIntrinsic(ID, ResultType);
16958 return Builder.CreateCall(F, {X, Y});
16959 }
16960 }
16961 switch (BuiltinID) {
16962 case SystemZ::BI__builtin_s390_vfmaxsb: ID = Intrinsic::s390_vfmaxsb; break;
16963 case SystemZ::BI__builtin_s390_vfmaxdb: ID = Intrinsic::s390_vfmaxdb; break;
16964 default: llvm_unreachable("Unknown BuiltinID")::llvm::llvm_unreachable_internal("Unknown BuiltinID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 16964)
;
16965 }
16966 Function *F = CGM.getIntrinsic(ID);
16967 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
16968 return Builder.CreateCall(F, {X, Y, M4Value});
16969 }
16970 case SystemZ::BI__builtin_s390_vfminsb:
16971 case SystemZ::BI__builtin_s390_vfmindb: {
16972 llvm::Type *ResultType = ConvertType(E->getType());
16973 Value *X = EmitScalarExpr(E->getArg(0));
16974 Value *Y = EmitScalarExpr(E->getArg(1));
16975 // Constant-fold the M4 mask argument.
16976 llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext());
16977 // Check whether this instance can be represented via a LLVM standard
16978 // intrinsic. We only support some values of M4.
16979 Intrinsic::ID ID = Intrinsic::not_intrinsic;
16980 Intrinsic::ID CI;
16981 switch (M4.getZExtValue()) {
16982 default: break;
16983 case 4: ID = Intrinsic::minnum;
16984 CI = Intrinsic::experimental_constrained_minnum; break;
16985 }
16986 if (ID != Intrinsic::not_intrinsic) {
16987 if (Builder.getIsFPConstrained()) {
16988 Function *F = CGM.getIntrinsic(CI, ResultType);
16989 return Builder.CreateConstrainedFPCall(F, {X, Y});
16990 } else {
16991 Function *F = CGM.getIntrinsic(ID, ResultType);
16992 return Builder.CreateCall(F, {X, Y});
16993 }
16994 }
16995 switch (BuiltinID) {
16996 case SystemZ::BI__builtin_s390_vfminsb: ID = Intrinsic::s390_vfminsb; break;
16997 case SystemZ::BI__builtin_s390_vfmindb: ID = Intrinsic::s390_vfmindb; break;
16998 default: llvm_unreachable("Unknown BuiltinID")::llvm::llvm_unreachable_internal("Unknown BuiltinID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 16998)
;
16999 }
17000 Function *F = CGM.getIntrinsic(ID);
17001 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
17002 return Builder.CreateCall(F, {X, Y, M4Value});
17003 }
17004
17005 case SystemZ::BI__builtin_s390_vlbrh:
17006 case SystemZ::BI__builtin_s390_vlbrf:
17007 case SystemZ::BI__builtin_s390_vlbrg: {
17008 llvm::Type *ResultType = ConvertType(E->getType());
17009 Value *X = EmitScalarExpr(E->getArg(0));
17010 Function *F = CGM.getIntrinsic(Intrinsic::bswap, ResultType);
17011 return Builder.CreateCall(F, X);
17012 }
17013
17014 // Vector intrinsics that output the post-instruction CC value.
17015
17016#define INTRINSIC_WITH_CC(NAME) \
17017 case SystemZ::BI__builtin_##NAME: \
17018 return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E)
17019
17020 INTRINSIC_WITH_CC(s390_vpkshs);
17021 INTRINSIC_WITH_CC(s390_vpksfs);
17022 INTRINSIC_WITH_CC(s390_vpksgs);
17023
17024 INTRINSIC_WITH_CC(s390_vpklshs);
17025 INTRINSIC_WITH_CC(s390_vpklsfs);
17026 INTRINSIC_WITH_CC(s390_vpklsgs);
17027
17028 INTRINSIC_WITH_CC(s390_vceqbs);
17029 INTRINSIC_WITH_CC(s390_vceqhs);
17030 INTRINSIC_WITH_CC(s390_vceqfs);
17031 INTRINSIC_WITH_CC(s390_vceqgs);
17032
17033 INTRINSIC_WITH_CC(s390_vchbs);
17034 INTRINSIC_WITH_CC(s390_vchhs);
17035 INTRINSIC_WITH_CC(s390_vchfs);
17036 INTRINSIC_WITH_CC(s390_vchgs);
17037
17038 INTRINSIC_WITH_CC(s390_vchlbs);
17039 INTRINSIC_WITH_CC(s390_vchlhs);
17040 INTRINSIC_WITH_CC(s390_vchlfs);
17041 INTRINSIC_WITH_CC(s390_vchlgs);
17042
17043 INTRINSIC_WITH_CC(s390_vfaebs);
17044 INTRINSIC_WITH_CC(s390_vfaehs);
17045 INTRINSIC_WITH_CC(s390_vfaefs);
17046
17047 INTRINSIC_WITH_CC(s390_vfaezbs);
17048 INTRINSIC_WITH_CC(s390_vfaezhs);
17049 INTRINSIC_WITH_CC(s390_vfaezfs);
17050
17051 INTRINSIC_WITH_CC(s390_vfeebs);
17052 INTRINSIC_WITH_CC(s390_vfeehs);
17053 INTRINSIC_WITH_CC(s390_vfeefs);
17054
17055 INTRINSIC_WITH_CC(s390_vfeezbs);
17056 INTRINSIC_WITH_CC(s390_vfeezhs);
17057 INTRINSIC_WITH_CC(s390_vfeezfs);
17058
17059 INTRINSIC_WITH_CC(s390_vfenebs);
17060 INTRINSIC_WITH_CC(s390_vfenehs);
17061 INTRINSIC_WITH_CC(s390_vfenefs);
17062
17063 INTRINSIC_WITH_CC(s390_vfenezbs);
17064 INTRINSIC_WITH_CC(s390_vfenezhs);
17065 INTRINSIC_WITH_CC(s390_vfenezfs);
17066
17067 INTRINSIC_WITH_CC(s390_vistrbs);
17068 INTRINSIC_WITH_CC(s390_vistrhs);
17069 INTRINSIC_WITH_CC(s390_vistrfs);
17070
17071 INTRINSIC_WITH_CC(s390_vstrcbs);
17072 INTRINSIC_WITH_CC(s390_vstrchs);
17073 INTRINSIC_WITH_CC(s390_vstrcfs);
17074
17075 INTRINSIC_WITH_CC(s390_vstrczbs);
17076 INTRINSIC_WITH_CC(s390_vstrczhs);
17077 INTRINSIC_WITH_CC(s390_vstrczfs);
17078
17079 INTRINSIC_WITH_CC(s390_vfcesbs);
17080 INTRINSIC_WITH_CC(s390_vfcedbs);
17081 INTRINSIC_WITH_CC(s390_vfchsbs);
17082 INTRINSIC_WITH_CC(s390_vfchdbs);
17083 INTRINSIC_WITH_CC(s390_vfchesbs);
17084 INTRINSIC_WITH_CC(s390_vfchedbs);
17085
17086 INTRINSIC_WITH_CC(s390_vftcisb);
17087 INTRINSIC_WITH_CC(s390_vftcidb);
17088
17089 INTRINSIC_WITH_CC(s390_vstrsb);
17090 INTRINSIC_WITH_CC(s390_vstrsh);
17091 INTRINSIC_WITH_CC(s390_vstrsf);
17092
17093 INTRINSIC_WITH_CC(s390_vstrszb);
17094 INTRINSIC_WITH_CC(s390_vstrszh);
17095 INTRINSIC_WITH_CC(s390_vstrszf);
17096
17097#undef INTRINSIC_WITH_CC
17098
17099 default:
17100 return nullptr;
17101 }
17102}
17103
17104namespace {
17105// Helper classes for mapping MMA builtins to particular LLVM intrinsic variant.
17106struct NVPTXMmaLdstInfo {
17107 unsigned NumResults; // Number of elements to load/store
17108 // Intrinsic IDs for row/col variants. 0 if particular layout is unsupported.
17109 unsigned IID_col;
17110 unsigned IID_row;
17111};
17112
17113#define MMA_INTR(geom_op_type, layout) \
17114 Intrinsic::nvvm_wmma_##geom_op_type##_##layout##_stride
17115#define MMA_LDST(n, geom_op_type) \
17116 { n, MMA_INTR(geom_op_type, col), MMA_INTR(geom_op_type, row) }
17117
17118static NVPTXMmaLdstInfo getNVPTXMmaLdstInfo(unsigned BuiltinID) {
17119 switch (BuiltinID) {
17120 // FP MMA loads
17121 case NVPTX::BI__hmma_m16n16k16_ld_a:
17122 return MMA_LDST(8, m16n16k16_load_a_f16);
17123 case NVPTX::BI__hmma_m16n16k16_ld_b:
17124 return MMA_LDST(8, m16n16k16_load_b_f16);
17125 case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
17126 return MMA_LDST(4, m16n16k16_load_c_f16);
17127 case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
17128 return MMA_LDST(8, m16n16k16_load_c_f32);
17129 case NVPTX::BI__hmma_m32n8k16_ld_a:
17130 return MMA_LDST(8, m32n8k16_load_a_f16);
17131 case NVPTX::BI__hmma_m32n8k16_ld_b:
17132 return MMA_LDST(8, m32n8k16_load_b_f16);
17133 case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
17134 return MMA_LDST(4, m32n8k16_load_c_f16);
17135 case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
17136 return MMA_LDST(8, m32n8k16_load_c_f32);
17137 case NVPTX::BI__hmma_m8n32k16_ld_a:
17138 return MMA_LDST(8, m8n32k16_load_a_f16);
17139 case NVPTX::BI__hmma_m8n32k16_ld_b:
17140 return MMA_LDST(8, m8n32k16_load_b_f16);
17141 case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
17142 return MMA_LDST(4, m8n32k16_load_c_f16);
17143 case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
17144 return MMA_LDST(8, m8n32k16_load_c_f32);
17145
17146 // Integer MMA loads
17147 case NVPTX::BI__imma_m16n16k16_ld_a_s8:
17148 return MMA_LDST(2, m16n16k16_load_a_s8);
17149 case NVPTX::BI__imma_m16n16k16_ld_a_u8:
17150 return MMA_LDST(2, m16n16k16_load_a_u8);
17151 case NVPTX::BI__imma_m16n16k16_ld_b_s8:
17152 return MMA_LDST(2, m16n16k16_load_b_s8);
17153 case NVPTX::BI__imma_m16n16k16_ld_b_u8:
17154 return MMA_LDST(2, m16n16k16_load_b_u8);
17155 case NVPTX::BI__imma_m16n16k16_ld_c:
17156 return MMA_LDST(8, m16n16k16_load_c_s32);
17157 case NVPTX::BI__imma_m32n8k16_ld_a_s8:
17158 return MMA_LDST(4, m32n8k16_load_a_s8);
17159 case NVPTX::BI__imma_m32n8k16_ld_a_u8:
17160 return MMA_LDST(4, m32n8k16_load_a_u8);
17161 case NVPTX::BI__imma_m32n8k16_ld_b_s8:
17162 return MMA_LDST(1, m32n8k16_load_b_s8);
17163 case NVPTX::BI__imma_m32n8k16_ld_b_u8:
17164 return MMA_LDST(1, m32n8k16_load_b_u8);
17165 case NVPTX::BI__imma_m32n8k16_ld_c:
17166 return MMA_LDST(8, m32n8k16_load_c_s32);
17167 case NVPTX::BI__imma_m8n32k16_ld_a_s8:
17168 return MMA_LDST(1, m8n32k16_load_a_s8);
17169 case NVPTX::BI__imma_m8n32k16_ld_a_u8:
17170 return MMA_LDST(1, m8n32k16_load_a_u8);
17171 case NVPTX::BI__imma_m8n32k16_ld_b_s8:
17172 return MMA_LDST(4, m8n32k16_load_b_s8);
17173 case NVPTX::BI__imma_m8n32k16_ld_b_u8:
17174 return MMA_LDST(4, m8n32k16_load_b_u8);
17175 case NVPTX::BI__imma_m8n32k16_ld_c:
17176 return MMA_LDST(8, m8n32k16_load_c_s32);
17177
17178 // Sub-integer MMA loads.
17179 // Only row/col layout is supported by A/B fragments.
17180 case NVPTX::BI__imma_m8n8k32_ld_a_s4:
17181 return {1, 0, MMA_INTR(m8n8k32_load_a_s4, row)};
17182 case NVPTX::BI__imma_m8n8k32_ld_a_u4:
17183 return {1, 0, MMA_INTR(m8n8k32_load_a_u4, row)};
17184 case NVPTX::BI__imma_m8n8k32_ld_b_s4:
17185 return {1, MMA_INTR(m8n8k32_load_b_s4, col), 0};
17186 case NVPTX::BI__imma_m8n8k32_ld_b_u4:
17187 return {1, MMA_INTR(m8n8k32_load_b_u4, col), 0};
17188 case NVPTX::BI__imma_m8n8k32_ld_c:
17189 return MMA_LDST(2, m8n8k32_load_c_s32);
17190 case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
17191 return {1, 0, MMA_INTR(m8n8k128_load_a_b1, row)};
17192 case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
17193 return {1, MMA_INTR(m8n8k128_load_b_b1, col), 0};
17194 case NVPTX::BI__bmma_m8n8k128_ld_c:
17195 return MMA_LDST(2, m8n8k128_load_c_s32);
17196
17197 // Double MMA loads
17198 case NVPTX::BI__dmma_m8n8k4_ld_a:
17199 return MMA_LDST(1, m8n8k4_load_a_f64);
17200 case NVPTX::BI__dmma_m8n8k4_ld_b:
17201 return MMA_LDST(1, m8n8k4_load_b_f64);
17202 case NVPTX::BI__dmma_m8n8k4_ld_c:
17203 return MMA_LDST(2, m8n8k4_load_c_f64);
17204
17205 // Alternate float MMA loads
17206 case NVPTX::BI__mma_bf16_m16n16k16_ld_a:
17207 return MMA_LDST(4, m16n16k16_load_a_bf16);
17208 case NVPTX::BI__mma_bf16_m16n16k16_ld_b:
17209 return MMA_LDST(4, m16n16k16_load_b_bf16);
17210 case NVPTX::BI__mma_bf16_m8n32k16_ld_a:
17211 return MMA_LDST(2, m8n32k16_load_a_bf16);
17212 case NVPTX::BI__mma_bf16_m8n32k16_ld_b:
17213 return MMA_LDST(8, m8n32k16_load_b_bf16);
17214 case NVPTX::BI__mma_bf16_m32n8k16_ld_a:
17215 return MMA_LDST(8, m32n8k16_load_a_bf16);
17216 case NVPTX::BI__mma_bf16_m32n8k16_ld_b:
17217 return MMA_LDST(2, m32n8k16_load_b_bf16);
17218 case NVPTX::BI__mma_tf32_m16n16k8_ld_a:
17219 return MMA_LDST(4, m16n16k8_load_a_tf32);
17220 case NVPTX::BI__mma_tf32_m16n16k8_ld_b:
17221 return MMA_LDST(4, m16n16k8_load_b_tf32);
17222 case NVPTX::BI__mma_tf32_m16n16k8_ld_c:
17223 return MMA_LDST(8, m16n16k8_load_c_f32);
17224
17225 // NOTE: We need to follow inconsitent naming scheme used by NVCC. Unlike
17226 // PTX and LLVM IR where stores always use fragment D, NVCC builtins always
17227 // use fragment C for both loads and stores.
17228 // FP MMA stores.
17229 case NVPTX::BI__hmma_m16n16k16_st_c_f16:
17230 return MMA_LDST(4, m16n16k16_store_d_f16);
17231 case NVPTX::BI__hmma_m16n16k16_st_c_f32:
17232 return MMA_LDST(8, m16n16k16_store_d_f32);
17233 case NVPTX::BI__hmma_m32n8k16_st_c_f16:
17234 return MMA_LDST(4, m32n8k16_store_d_f16);
17235 case NVPTX::BI__hmma_m32n8k16_st_c_f32:
17236 return MMA_LDST(8, m32n8k16_store_d_f32);
17237 case NVPTX::BI__hmma_m8n32k16_st_c_f16:
17238 return MMA_LDST(4, m8n32k16_store_d_f16);
17239 case NVPTX::BI__hmma_m8n32k16_st_c_f32:
17240 return MMA_LDST(8, m8n32k16_store_d_f32);
17241
17242 // Integer and sub-integer MMA stores.
17243 // Another naming quirk. Unlike other MMA builtins that use PTX types in the
17244 // name, integer loads/stores use LLVM's i32.
17245 case NVPTX::BI__imma_m16n16k16_st_c_i32:
17246 return MMA_LDST(8, m16n16k16_store_d_s32);
17247 case NVPTX::BI__imma_m32n8k16_st_c_i32:
17248 return MMA_LDST(8, m32n8k16_store_d_s32);
17249 case NVPTX::BI__imma_m8n32k16_st_c_i32:
17250 return MMA_LDST(8, m8n32k16_store_d_s32);
17251 case NVPTX::BI__imma_m8n8k32_st_c_i32:
17252 return MMA_LDST(2, m8n8k32_store_d_s32);
17253 case NVPTX::BI__bmma_m8n8k128_st_c_i32:
17254 return MMA_LDST(2, m8n8k128_store_d_s32);
17255
17256 // Double MMA store
17257 case NVPTX::BI__dmma_m8n8k4_st_c_f64:
17258 return MMA_LDST(2, m8n8k4_store_d_f64);
17259
17260 // Alternate float MMA store
17261 case NVPTX::BI__mma_m16n16k8_st_c_f32:
17262 return MMA_LDST(8, m16n16k8_store_d_f32);
17263
17264 default:
17265 llvm_unreachable("Unknown MMA builtin")::llvm::llvm_unreachable_internal("Unknown MMA builtin", "clang/lib/CodeGen/CGBuiltin.cpp"
, 17265)
;
17266 }
17267}
17268#undef MMA_LDST
17269#undef MMA_INTR
17270
17271
17272struct NVPTXMmaInfo {
17273 unsigned NumEltsA;
17274 unsigned NumEltsB;
17275 unsigned NumEltsC;
17276 unsigned NumEltsD;
17277
17278 // Variants are ordered by layout-A/layout-B/satf, where 'row' has priority
17279 // over 'col' for layout. The index of non-satf variants is expected to match
17280 // the undocumented layout constants used by CUDA's mma.hpp.
17281 std::array<unsigned, 8> Variants;
17282
17283 unsigned getMMAIntrinsic(int Layout, bool Satf) {
17284 unsigned Index = Layout + 4 * Satf;
17285 if (Index >= Variants.size())
17286 return 0;
17287 return Variants[Index];
17288 }
17289};
17290
17291 // Returns an intrinsic that matches Layout and Satf for valid combinations of
17292 // Layout and Satf, 0 otherwise.
17293static NVPTXMmaInfo getNVPTXMmaInfo(unsigned BuiltinID) {
17294 // clang-format off
17295#define MMA_VARIANTS(geom, type) \
17296 Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type, \
17297 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \
17298 Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type, \
17299 Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type
17300#define MMA_SATF_VARIANTS(geom, type) \
17301 MMA_VARIANTS(geom, type), \
17302 Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type##_satfinite, \
17303 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
17304 Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type##_satfinite, \
17305 Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type##_satfinite
17306// Sub-integer MMA only supports row.col layout.
17307#define MMA_VARIANTS_I4(geom, type) \
17308 0, \
17309 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \
17310 0, \
17311 0, \
17312 0, \
17313 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
17314 0, \
17315 0
17316// b1 MMA does not support .satfinite.
17317#define MMA_VARIANTS_B1_XOR(geom, type) \
17318 0, \
17319 Intrinsic::nvvm_wmma_##geom##_mma_xor_popc_row_col_##type, \
17320 0, \
17321 0, \
17322 0, \
17323 0, \
17324 0, \
17325 0
17326#define MMA_VARIANTS_B1_AND(geom, type) \
17327 0, \
17328 Intrinsic::nvvm_wmma_##geom##_mma_and_popc_row_col_##type, \
17329 0, \
17330 0, \
17331 0, \
17332 0, \
17333 0, \
17334 0
17335 // clang-format on
17336 switch (BuiltinID) {
17337 // FP MMA
17338 // Note that 'type' argument of MMA_SATF_VARIANTS uses D_C notation, while
17339 // NumEltsN of return value are ordered as A,B,C,D.
17340 case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
17341 return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m16n16k16, f16_f16)}}};
17342 case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
17343 return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m16n16k16, f32_f16)}}};
17344 case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
17345 return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m16n16k16, f16_f32)}}};
17346 case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
17347 return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, f32_f32)}}};
17348 case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
17349 return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m32n8k16, f16_f16)}}};
17350 case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
17351 return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m32n8k16, f32_f16)}}};
17352 case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
17353 return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m32n8k16, f16_f32)}}};
17354 case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
17355 return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, f32_f32)}}};
17356 case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
17357 return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m8n32k16, f16_f16)}}};
17358 case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
17359 return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m8n32k16, f32_f16)}}};
17360 case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
17361 return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m8n32k16, f16_f32)}}};
17362 case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
17363 return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, f32_f32)}}};
17364
17365 // Integer MMA
17366 case NVPTX::BI__imma_m16n16k16_mma_s8:
17367 return {2, 2, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, s8)}}};
17368 case NVPTX::BI__imma_m16n16k16_mma_u8:
17369 return {2, 2, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, u8)}}};
17370 case NVPTX::BI__imma_m32n8k16_mma_s8:
17371 return {4, 1, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, s8)}}};
17372 case NVPTX::BI__imma_m32n8k16_mma_u8:
17373 return {4, 1, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, u8)}}};
17374 case NVPTX::BI__imma_m8n32k16_mma_s8:
17375 return {1, 4, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, s8)}}};
17376 case NVPTX::BI__imma_m8n32k16_mma_u8:
17377 return {1, 4, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, u8)}}};
17378
17379 // Sub-integer MMA
17380 case NVPTX::BI__imma_m8n8k32_mma_s4:
17381 return {1, 1, 2, 2, {{MMA_VARIANTS_I4(m8n8k32, s4)}}};
17382 case NVPTX::BI__imma_m8n8k32_mma_u4:
17383 return {1, 1, 2, 2, {{MMA_VARIANTS_I4(m8n8k32, u4)}}};
17384 case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1:
17385 return {1, 1, 2, 2, {{MMA_VARIANTS_B1_XOR(m8n8k128, b1)}}};
17386 case NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1:
17387 return {1, 1, 2, 2, {{MMA_VARIANTS_B1_AND(m8n8k128, b1)}}};
17388
17389 // Double MMA
17390 case NVPTX::BI__dmma_m8n8k4_mma_f64:
17391 return {1, 1, 2, 2, {{MMA_VARIANTS(m8n8k4, f64)}}};
17392
17393 // Alternate FP MMA
17394 case NVPTX::BI__mma_bf16_m16n16k16_mma_f32:
17395 return {4, 4, 8, 8, {{MMA_VARIANTS(m16n16k16, bf16)}}};
17396 case NVPTX::BI__mma_bf16_m8n32k16_mma_f32:
17397 return {2, 8, 8, 8, {{MMA_VARIANTS(m8n32k16, bf16)}}};
17398 case NVPTX::BI__mma_bf16_m32n8k16_mma_f32:
17399 return {8, 2, 8, 8, {{MMA_VARIANTS(m32n8k16, bf16)}}};
17400 case NVPTX::BI__mma_tf32_m16n16k8_mma_f32:
17401 return {4, 4, 8, 8, {{MMA_VARIANTS(m16n16k8, tf32)}}};
17402 default:
17403 llvm_unreachable("Unexpected builtin ID.")::llvm::llvm_unreachable_internal("Unexpected builtin ID.", "clang/lib/CodeGen/CGBuiltin.cpp"
, 17403)
;
17404 }
17405#undef MMA_VARIANTS
17406#undef MMA_SATF_VARIANTS
17407#undef MMA_VARIANTS_I4
17408#undef MMA_VARIANTS_B1_AND
17409#undef MMA_VARIANTS_B1_XOR
17410}
17411
17412} // namespace
17413
17414Value *
17415CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E) {
17416 auto MakeLdg = [&](unsigned IntrinsicID) {
17417 Value *Ptr = EmitScalarExpr(E->getArg(0));
17418 clang::CharUnits Align =
17419 CGM.getNaturalPointeeTypeAlignment(E->getArg(0)->getType());
17420 return Builder.CreateCall(
17421 CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
17422 Ptr->getType()}),
17423 {Ptr, ConstantInt::get(Builder.getInt32Ty(), Align.getQuantity())});
17424 };
17425 auto MakeScopedAtomic = [&](unsigned IntrinsicID) {
17426 Value *Ptr = EmitScalarExpr(E->getArg(0));
17427 return Builder.CreateCall(
17428 CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
17429 Ptr->getType()}),
17430 {Ptr, EmitScalarExpr(E->getArg(1))});
17431 };
17432 switch (BuiltinID) {
17433 case NVPTX::BI__nvvm_atom_add_gen_i:
17434 case NVPTX::BI__nvvm_atom_add_gen_l:
17435 case NVPTX::BI__nvvm_atom_add_gen_ll:
17436 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E);
17437
17438 case NVPTX::BI__nvvm_atom_sub_gen_i:
17439 case NVPTX::BI__nvvm_atom_sub_gen_l:
17440 case NVPTX::BI__nvvm_atom_sub_gen_ll:
17441 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E);
17442
17443 case NVPTX::BI__nvvm_atom_and_gen_i:
17444 case NVPTX::BI__nvvm_atom_and_gen_l:
17445 case NVPTX::BI__nvvm_atom_and_gen_ll:
17446 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E);
17447
17448 case NVPTX::BI__nvvm_atom_or_gen_i:
17449 case NVPTX::BI__nvvm_atom_or_gen_l:
17450 case NVPTX::BI__nvvm_atom_or_gen_ll:
17451 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E);
17452
17453 case NVPTX::BI__nvvm_atom_xor_gen_i:
17454 case NVPTX::BI__nvvm_atom_xor_gen_l:
17455 case NVPTX::BI__nvvm_atom_xor_gen_ll:
17456 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E);
17457
17458 case NVPTX::BI__nvvm_atom_xchg_gen_i:
17459 case NVPTX::BI__nvvm_atom_xchg_gen_l:
17460 case NVPTX::BI__nvvm_atom_xchg_gen_ll:
17461 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E);
17462
17463 case NVPTX::BI__nvvm_atom_max_gen_i:
17464 case NVPTX::BI__nvvm_atom_max_gen_l:
17465 case NVPTX::BI__nvvm_atom_max_gen_ll:
17466 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E);
17467
17468 case NVPTX::BI__nvvm_atom_max_gen_ui:
17469 case NVPTX::BI__nvvm_atom_max_gen_ul:
17470 case NVPTX::BI__nvvm_atom_max_gen_ull:
17471 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E);
17472
17473 case NVPTX::BI__nvvm_atom_min_gen_i:
17474 case NVPTX::BI__nvvm_atom_min_gen_l:
17475 case NVPTX::BI__nvvm_atom_min_gen_ll:
17476 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E);
17477
17478 case NVPTX::BI__nvvm_atom_min_gen_ui:
17479 case NVPTX::BI__nvvm_atom_min_gen_ul:
17480 case NVPTX::BI__nvvm_atom_min_gen_ull:
17481 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E);
17482
17483 case NVPTX::BI__nvvm_atom_cas_gen_i:
17484 case NVPTX::BI__nvvm_atom_cas_gen_l:
17485 case NVPTX::BI__nvvm_atom_cas_gen_ll:
17486 // __nvvm_atom_cas_gen_* should return the old value rather than the
17487 // success flag.
17488 return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false);
17489
17490 case NVPTX::BI__nvvm_atom_add_gen_f:
17491 case NVPTX::BI__nvvm_atom_add_gen_d: {
17492 Value *Ptr = EmitScalarExpr(E->getArg(0));
17493 Value *Val = EmitScalarExpr(E->getArg(1));
17494 return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::FAdd, Ptr, Val,
17495 AtomicOrdering::SequentiallyConsistent);
17496 }
17497
17498 case NVPTX::BI__nvvm_atom_inc_gen_ui: {
17499 Value *Ptr = EmitScalarExpr(E->getArg(0));
17500 Value *Val = EmitScalarExpr(E->getArg(1));
17501 Function *FnALI32 =
17502 CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_inc_32, Ptr->getType());
17503 return Builder.CreateCall(FnALI32, {Ptr, Val});
17504 }
17505
17506 case NVPTX::BI__nvvm_atom_dec_gen_ui: {
17507 Value *Ptr = EmitScalarExpr(E->getArg(0));
17508 Value *Val = EmitScalarExpr(E->getArg(1));
17509 Function *FnALD32 =
17510 CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_dec_32, Ptr->getType());
17511 return Builder.CreateCall(FnALD32, {Ptr, Val});
17512 }
17513
17514 case NVPTX::BI__nvvm_ldg_c:
17515 case NVPTX::BI__nvvm_ldg_c2:
17516 case NVPTX::BI__nvvm_ldg_c4:
17517 case NVPTX::BI__nvvm_ldg_s:
17518 case NVPTX::BI__nvvm_ldg_s2:
17519 case NVPTX::BI__nvvm_ldg_s4:
17520 case NVPTX::BI__nvvm_ldg_i:
17521 case NVPTX::BI__nvvm_ldg_i2:
17522 case NVPTX::BI__nvvm_ldg_i4:
17523 case NVPTX::BI__nvvm_ldg_l:
17524 case NVPTX::BI__nvvm_ldg_ll:
17525 case NVPTX::BI__nvvm_ldg_ll2:
17526 case NVPTX::BI__nvvm_ldg_uc:
17527 case NVPTX::BI__nvvm_ldg_uc2:
17528 case NVPTX::BI__nvvm_ldg_uc4:
17529 case NVPTX::BI__nvvm_ldg_us:
17530 case NVPTX::BI__nvvm_ldg_us2:
17531 case NVPTX::BI__nvvm_ldg_us4:
17532 case NVPTX::BI__nvvm_ldg_ui:
17533 case NVPTX::BI__nvvm_ldg_ui2:
17534 case NVPTX::BI__nvvm_ldg_ui4:
17535 case NVPTX::BI__nvvm_ldg_ul:
17536 case NVPTX::BI__nvvm_ldg_ull:
17537 case NVPTX::BI__nvvm_ldg_ull2:
17538 // PTX Interoperability section 2.2: "For a vector with an even number of
17539 // elements, its alignment is set to number of elements times the alignment
17540 // of its member: n*alignof(t)."
17541 return MakeLdg(Intrinsic::nvvm_ldg_global_i);
17542 case NVPTX::BI__nvvm_ldg_f:
17543 case NVPTX::BI__nvvm_ldg_f2:
17544 case NVPTX::BI__nvvm_ldg_f4:
17545 case NVPTX::BI__nvvm_ldg_d:
17546 case NVPTX::BI__nvvm_ldg_d2:
17547 return MakeLdg(Intrinsic::nvvm_ldg_global_f);
17548
17549 case NVPTX::BI__nvvm_atom_cta_add_gen_i:
17550 case NVPTX::BI__nvvm_atom_cta_add_gen_l:
17551 case NVPTX::BI__nvvm_atom_cta_add_gen_ll:
17552 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_cta);
17553 case NVPTX::BI__nvvm_atom_sys_add_gen_i:
17554 case NVPTX::BI__nvvm_atom_sys_add_gen_l:
17555 case NVPTX::BI__nvvm_atom_sys_add_gen_ll:
17556 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_sys);
17557 case NVPTX::BI__nvvm_atom_cta_add_gen_f:
17558 case NVPTX::BI__nvvm_atom_cta_add_gen_d:
17559 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_cta);
17560 case NVPTX::BI__nvvm_atom_sys_add_gen_f:
17561 case NVPTX::BI__nvvm_atom_sys_add_gen_d:
17562 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_sys);
17563 case NVPTX::BI__nvvm_atom_cta_xchg_gen_i:
17564 case NVPTX::BI__nvvm_atom_cta_xchg_gen_l:
17565 case NVPTX::BI__nvvm_atom_cta_xchg_gen_ll:
17566 return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_cta);
17567 case NVPTX::BI__nvvm_atom_sys_xchg_gen_i:
17568 case NVPTX::BI__nvvm_atom_sys_xchg_gen_l:
17569 case NVPTX::BI__nvvm_atom_sys_xchg_gen_ll:
17570 return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_sys);
17571 case NVPTX::BI__nvvm_atom_cta_max_gen_i:
17572 case NVPTX::BI__nvvm_atom_cta_max_gen_ui:
17573 case NVPTX::BI__nvvm_atom_cta_max_gen_l:
17574 case NVPTX::BI__nvvm_atom_cta_max_gen_ul:
17575 case NVPTX::BI__nvvm_atom_cta_max_gen_ll:
17576 case NVPTX::BI__nvvm_atom_cta_max_gen_ull:
17577 return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_cta);
17578 case NVPTX::BI__nvvm_atom_sys_max_gen_i:
17579 case NVPTX::BI__nvvm_atom_sys_max_gen_ui:
17580 case NVPTX::BI__nvvm_atom_sys_max_gen_l:
17581 case NVPTX::BI__nvvm_atom_sys_max_gen_ul:
17582 case NVPTX::BI__nvvm_atom_sys_max_gen_ll:
17583 case NVPTX::BI__nvvm_atom_sys_max_gen_ull:
17584 return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_sys);
17585 case NVPTX::BI__nvvm_atom_cta_min_gen_i:
17586 case NVPTX::BI__nvvm_atom_cta_min_gen_ui:
17587 case NVPTX::BI__nvvm_atom_cta_min_gen_l:
17588 case NVPTX::BI__nvvm_atom_cta_min_gen_ul:
17589 case NVPTX::BI__nvvm_atom_cta_min_gen_ll:
17590 case NVPTX::BI__nvvm_atom_cta_min_gen_ull:
17591 return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_cta);
17592 case NVPTX::BI__nvvm_atom_sys_min_gen_i:
17593 case NVPTX::BI__nvvm_atom_sys_min_gen_ui:
17594 case NVPTX::BI__nvvm_atom_sys_min_gen_l:
17595 case NVPTX::BI__nvvm_atom_sys_min_gen_ul:
17596 case NVPTX::BI__nvvm_atom_sys_min_gen_ll:
17597 case NVPTX::BI__nvvm_atom_sys_min_gen_ull:
17598 return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_sys);
17599 case NVPTX::BI__nvvm_atom_cta_inc_gen_ui:
17600 return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_cta);
17601 case NVPTX::BI__nvvm_atom_cta_dec_gen_ui:
17602 return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_cta);
17603 case NVPTX::BI__nvvm_atom_sys_inc_gen_ui:
17604 return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_sys);
17605 case NVPTX::BI__nvvm_atom_sys_dec_gen_ui:
17606 return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_sys);
17607 case NVPTX::BI__nvvm_atom_cta_and_gen_i:
17608 case NVPTX::BI__nvvm_atom_cta_and_gen_l:
17609 case NVPTX::BI__nvvm_atom_cta_and_gen_ll:
17610 return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_cta);
17611 case NVPTX::BI__nvvm_atom_sys_and_gen_i:
17612 case NVPTX::BI__nvvm_atom_sys_and_gen_l:
17613 case NVPTX::BI__nvvm_atom_sys_and_gen_ll:
17614 return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_sys);
17615 case NVPTX::BI__nvvm_atom_cta_or_gen_i:
17616 case NVPTX::BI__nvvm_atom_cta_or_gen_l:
17617 case NVPTX::BI__nvvm_atom_cta_or_gen_ll:
17618 return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_cta);
17619 case NVPTX::BI__nvvm_atom_sys_or_gen_i:
17620 case NVPTX::BI__nvvm_atom_sys_or_gen_l:
17621 case NVPTX::BI__nvvm_atom_sys_or_gen_ll:
17622 return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_sys);
17623 case NVPTX::BI__nvvm_atom_cta_xor_gen_i:
17624 case NVPTX::BI__nvvm_atom_cta_xor_gen_l:
17625 case NVPTX::BI__nvvm_atom_cta_xor_gen_ll:
17626 return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_cta);
17627 case NVPTX::BI__nvvm_atom_sys_xor_gen_i:
17628 case NVPTX::BI__nvvm_atom_sys_xor_gen_l:
17629 case NVPTX::BI__nvvm_atom_sys_xor_gen_ll:
17630 return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_sys);
17631 case NVPTX::BI__nvvm_atom_cta_cas_gen_i:
17632 case NVPTX::BI__nvvm_atom_cta_cas_gen_l:
17633 case NVPTX::BI__nvvm_atom_cta_cas_gen_ll: {
17634 Value *Ptr = EmitScalarExpr(E->getArg(0));
17635 return Builder.CreateCall(
17636 CGM.getIntrinsic(
17637 Intrinsic::nvvm_atomic_cas_gen_i_cta,
17638 {Ptr->getType()->getPointerElementType(), Ptr->getType()}),
17639 {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
17640 }
17641 case NVPTX::BI__nvvm_atom_sys_cas_gen_i:
17642 case NVPTX::BI__nvvm_atom_sys_cas_gen_l:
17643 case NVPTX::BI__nvvm_atom_sys_cas_gen_ll: {
17644 Value *Ptr = EmitScalarExpr(E->getArg(0));
17645 return Builder.CreateCall(
17646 CGM.getIntrinsic(
17647 Intrinsic::nvvm_atomic_cas_gen_i_sys,
17648 {Ptr->getType()->getPointerElementType(), Ptr->getType()}),
17649 {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
17650 }
17651 case NVPTX::BI__nvvm_match_all_sync_i32p:
17652 case NVPTX::BI__nvvm_match_all_sync_i64p: {
17653 Value *Mask = EmitScalarExpr(E->getArg(0));
17654 Value *Val = EmitScalarExpr(E->getArg(1));
17655 Address PredOutPtr = EmitPointerWithAlignment(E->getArg(2));
17656 Value *ResultPair = Builder.CreateCall(
17657 CGM.getIntrinsic(BuiltinID == NVPTX::BI__nvvm_match_all_sync_i32p
17658 ? Intrinsic::nvvm_match_all_sync_i32p
17659 : Intrinsic::nvvm_match_all_sync_i64p),
17660 {Mask, Val});
17661 Value *Pred = Builder.CreateZExt(Builder.CreateExtractValue(ResultPair, 1),
17662 PredOutPtr.getElementType());
17663 Builder.CreateStore(Pred, PredOutPtr);
17664 return Builder.CreateExtractValue(ResultPair, 0);
17665 }
17666
17667 // FP MMA loads
17668 case NVPTX::BI__hmma_m16n16k16_ld_a:
17669 case NVPTX::BI__hmma_m16n16k16_ld_b:
17670 case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
17671 case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
17672 case NVPTX::BI__hmma_m32n8k16_ld_a:
17673 case NVPTX::BI__hmma_m32n8k16_ld_b:
17674 case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
17675 case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
17676 case NVPTX::BI__hmma_m8n32k16_ld_a:
17677 case NVPTX::BI__hmma_m8n32k16_ld_b:
17678 case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
17679 case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
17680 // Integer MMA loads.
17681 case NVPTX::BI__imma_m16n16k16_ld_a_s8:
17682 case NVPTX::BI__imma_m16n16k16_ld_a_u8:
17683 case NVPTX::BI__imma_m16n16k16_ld_b_s8:
17684 case NVPTX::BI__imma_m16n16k16_ld_b_u8:
17685 case NVPTX::BI__imma_m16n16k16_ld_c:
17686 case NVPTX::BI__imma_m32n8k16_ld_a_s8:
17687 case NVPTX::BI__imma_m32n8k16_ld_a_u8:
17688 case NVPTX::BI__imma_m32n8k16_ld_b_s8:
17689 case NVPTX::BI__imma_m32n8k16_ld_b_u8:
17690 case NVPTX::BI__imma_m32n8k16_ld_c:
17691 case NVPTX::BI__imma_m8n32k16_ld_a_s8:
17692 case NVPTX::BI__imma_m8n32k16_ld_a_u8:
17693 case NVPTX::BI__imma_m8n32k16_ld_b_s8:
17694 case NVPTX::BI__imma_m8n32k16_ld_b_u8:
17695 case NVPTX::BI__imma_m8n32k16_ld_c:
17696 // Sub-integer MMA loads.
17697 case NVPTX::BI__imma_m8n8k32_ld_a_s4:
17698 case NVPTX::BI__imma_m8n8k32_ld_a_u4:
17699 case NVPTX::BI__imma_m8n8k32_ld_b_s4:
17700 case NVPTX::BI__imma_m8n8k32_ld_b_u4:
17701 case NVPTX::BI__imma_m8n8k32_ld_c:
17702 case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
17703 case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
17704 case NVPTX::BI__bmma_m8n8k128_ld_c:
17705 // Double MMA loads.
17706 case NVPTX::BI__dmma_m8n8k4_ld_a:
17707 case NVPTX::BI__dmma_m8n8k4_ld_b:
17708 case NVPTX::BI__dmma_m8n8k4_ld_c:
17709 // Alternate float MMA loads.
17710 case NVPTX::BI__mma_bf16_m16n16k16_ld_a:
17711 case NVPTX::BI__mma_bf16_m16n16k16_ld_b:
17712 case NVPTX::BI__mma_bf16_m8n32k16_ld_a:
17713 case NVPTX::BI__mma_bf16_m8n32k16_ld_b:
17714 case NVPTX::BI__mma_bf16_m32n8k16_ld_a:
17715 case NVPTX::BI__mma_bf16_m32n8k16_ld_b:
17716 case NVPTX::BI__mma_tf32_m16n16k8_ld_a:
17717 case NVPTX::BI__mma_tf32_m16n16k8_ld_b:
17718 case NVPTX::BI__mma_tf32_m16n16k8_ld_c: {
17719 Address Dst = EmitPointerWithAlignment(E->getArg(0));
17720 Value *Src = EmitScalarExpr(E->getArg(1));
17721 Value *Ldm = EmitScalarExpr(E->getArg(2));
17722 Optional<llvm::APSInt> isColMajorArg =
17723 E->getArg(3)->getIntegerConstantExpr(getContext());
17724 if (!isColMajorArg)
17725 return nullptr;
17726 bool isColMajor = isColMajorArg->getSExtValue();
17727 NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
17728 unsigned IID = isColMajor ? II.IID_col : II.IID_row;
17729 if (IID == 0)
17730 return nullptr;
17731
17732 Value *Result =
17733 Builder.CreateCall(CGM.getIntrinsic(IID, Src->getType()), {Src, Ldm});
17734
17735 // Save returned values.
17736 assert(II.NumResults)(static_cast <bool> (II.NumResults) ? void (0) : __assert_fail
("II.NumResults", "clang/lib/CodeGen/CGBuiltin.cpp", 17736, __extension__
__PRETTY_FUNCTION__))
;
17737 if (II.NumResults == 1) {
17738 Builder.CreateAlignedStore(Result, Dst.getPointer(),
17739 CharUnits::fromQuantity(4));
17740 } else {
17741 for (unsigned i = 0; i < II.NumResults; ++i) {
17742 Builder.CreateAlignedStore(
17743 Builder.CreateBitCast(Builder.CreateExtractValue(Result, i),
17744 Dst.getElementType()),
17745 Builder.CreateGEP(Dst.getElementType(), Dst.getPointer(),
17746 llvm::ConstantInt::get(IntTy, i)),
17747 CharUnits::fromQuantity(4));
17748 }
17749 }
17750 return Result;
17751 }
17752
17753 case NVPTX::BI__hmma_m16n16k16_st_c_f16:
17754 case NVPTX::BI__hmma_m16n16k16_st_c_f32:
17755 case NVPTX::BI__hmma_m32n8k16_st_c_f16:
17756 case NVPTX::BI__hmma_m32n8k16_st_c_f32:
17757 case NVPTX::BI__hmma_m8n32k16_st_c_f16:
17758 case NVPTX::BI__hmma_m8n32k16_st_c_f32:
17759 case NVPTX::BI__imma_m16n16k16_st_c_i32:
17760 case NVPTX::BI__imma_m32n8k16_st_c_i32:
17761 case NVPTX::BI__imma_m8n32k16_st_c_i32:
17762 case NVPTX::BI__imma_m8n8k32_st_c_i32:
17763 case NVPTX::BI__bmma_m8n8k128_st_c_i32:
17764 case NVPTX::BI__dmma_m8n8k4_st_c_f64:
17765 case NVPTX::BI__mma_m16n16k8_st_c_f32: {
17766 Value *Dst = EmitScalarExpr(E->getArg(0));
17767 Address Src = EmitPointerWithAlignment(E->getArg(1));
17768 Value *Ldm = EmitScalarExpr(E->getArg(2));
17769 Optional<llvm::APSInt> isColMajorArg =
17770 E->getArg(3)->getIntegerConstantExpr(getContext());
17771 if (!isColMajorArg)
17772 return nullptr;
17773 bool isColMajor = isColMajorArg->getSExtValue();
17774 NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
17775 unsigned IID = isColMajor ? II.IID_col : II.IID_row;
17776 if (IID == 0)
17777 return nullptr;
17778 Function *Intrinsic =
17779 CGM.getIntrinsic(IID, Dst->getType());
17780 llvm::Type *ParamType = Intrinsic->getFunctionType()->getParamType(1);
17781 SmallVector<Value *, 10> Values = {Dst};
17782 for (unsigned i = 0; i < II.NumResults; ++i) {
17783 Value *V = Builder.CreateAlignedLoad(
17784 Src.getElementType(),
17785 Builder.CreateGEP(Src.getElementType(), Src.getPointer(),
17786 llvm::ConstantInt::get(IntTy, i)),
17787 CharUnits::fromQuantity(4));
17788 Values.push_back(Builder.CreateBitCast(V, ParamType));
17789 }
17790 Values.push_back(Ldm);
17791 Value *Result = Builder.CreateCall(Intrinsic, Values);
17792 return Result;
17793 }
17794
17795 // BI__hmma_m16n16k16_mma_<Dtype><CType>(d, a, b, c, layout, satf) -->
17796 // Intrinsic::nvvm_wmma_m16n16k16_mma_sync<layout A,B><DType><CType><Satf>
17797 case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
17798 case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
17799 case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
17800 case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
17801 case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
17802 case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
17803 case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
17804 case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
17805 case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
17806 case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
17807 case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
17808 case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
17809 case NVPTX::BI__imma_m16n16k16_mma_s8:
17810 case NVPTX::BI__imma_m16n16k16_mma_u8:
17811 case NVPTX::BI__imma_m32n8k16_mma_s8:
17812 case NVPTX::BI__imma_m32n8k16_mma_u8:
17813 case NVPTX::BI__imma_m8n32k16_mma_s8:
17814 case NVPTX::BI__imma_m8n32k16_mma_u8:
17815 case NVPTX::BI__imma_m8n8k32_mma_s4:
17816 case NVPTX::BI__imma_m8n8k32_mma_u4:
17817 case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1:
17818 case NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1:
17819 case NVPTX::BI__dmma_m8n8k4_mma_f64:
17820 case NVPTX::BI__mma_bf16_m16n16k16_mma_f32:
17821 case NVPTX::BI__mma_bf16_m8n32k16_mma_f32:
17822 case NVPTX::BI__mma_bf16_m32n8k16_mma_f32:
17823 case NVPTX::BI__mma_tf32_m16n16k8_mma_f32: {
17824 Address Dst = EmitPointerWithAlignment(E->getArg(0));
17825 Address SrcA = EmitPointerWithAlignment(E->getArg(1));
17826 Address SrcB = EmitPointerWithAlignment(E->getArg(2));
17827 Address SrcC = EmitPointerWithAlignment(E->getArg(3));
17828 Optional<llvm::APSInt> LayoutArg =
17829 E->getArg(4)->getIntegerConstantExpr(getContext());
17830 if (!LayoutArg)
17831 return nullptr;
17832 int Layout = LayoutArg->getSExtValue();
17833 if (Layout < 0 || Layout > 3)
17834 return nullptr;
17835 llvm::APSInt SatfArg;
17836 if (BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1 ||
17837 BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1)
17838 SatfArg = 0; // .b1 does not have satf argument.
17839 else if (Optional<llvm::APSInt> OptSatfArg =
17840 E->getArg(5)->getIntegerConstantExpr(getContext()))
17841 SatfArg = *OptSatfArg;
17842 else
17843 return nullptr;
17844 bool Satf = SatfArg.getSExtValue();
17845 NVPTXMmaInfo MI = getNVPTXMmaInfo(BuiltinID);
17846 unsigned IID = MI.getMMAIntrinsic(Layout, Satf);
17847 if (IID == 0) // Unsupported combination of Layout/Satf.
17848 return nullptr;
17849
17850 SmallVector<Value *, 24> Values;
17851 Function *Intrinsic = CGM.getIntrinsic(IID);
17852 llvm::Type *AType = Intrinsic->getFunctionType()->getParamType(0);
17853 // Load A
17854 for (unsigned i = 0; i < MI.NumEltsA; ++i) {
17855 Value *V = Builder.CreateAlignedLoad(
17856 SrcA.getElementType(),
17857 Builder.CreateGEP(SrcA.getElementType(), SrcA.getPointer(),
17858 llvm::ConstantInt::get(IntTy, i)),
17859 CharUnits::fromQuantity(4));
17860 Values.push_back(Builder.CreateBitCast(V, AType));
17861 }
17862 // Load B
17863 llvm::Type *BType = Intrinsic->getFunctionType()->getParamType(MI.NumEltsA);
17864 for (unsigned i = 0; i < MI.NumEltsB; ++i) {
17865 Value *V = Builder.CreateAlignedLoad(
17866 SrcB.getElementType(),
17867 Builder.CreateGEP(SrcB.getElementType(), SrcB.getPointer(),
17868 llvm::ConstantInt::get(IntTy, i)),
17869 CharUnits::fromQuantity(4));
17870 Values.push_back(Builder.CreateBitCast(V, BType));
17871 }
17872 // Load C
17873 llvm::Type *CType =
17874 Intrinsic->getFunctionType()->getParamType(MI.NumEltsA + MI.NumEltsB);
17875 for (unsigned i = 0; i < MI.NumEltsC; ++i) {
17876 Value *V = Builder.CreateAlignedLoad(
17877 SrcC.getElementType(),
17878 Builder.CreateGEP(SrcC.getElementType(), SrcC.getPointer(),
17879 llvm::ConstantInt::get(IntTy, i)),
17880 CharUnits::fromQuantity(4));
17881 Values.push_back(Builder.CreateBitCast(V, CType));
17882 }
17883 Value *Result = Builder.CreateCall(Intrinsic, Values);
17884 llvm::Type *DType = Dst.getElementType();
17885 for (unsigned i = 0; i < MI.NumEltsD; ++i)
17886 Builder.CreateAlignedStore(
17887 Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), DType),
17888 Builder.CreateGEP(Dst.getElementType(), Dst.getPointer(),
17889 llvm::ConstantInt::get(IntTy, i)),
17890 CharUnits::fromQuantity(4));
17891 return Result;
17892 }
17893 default:
17894 return nullptr;
17895 }
17896}
17897
17898namespace {
17899struct BuiltinAlignArgs {
17900 llvm::Value *Src = nullptr;
17901 llvm::Type *SrcType = nullptr;
17902 llvm::Value *Alignment = nullptr;
17903 llvm::Value *Mask = nullptr;
17904 llvm::IntegerType *IntType = nullptr;
17905
17906 BuiltinAlignArgs(const CallExpr *E, CodeGenFunction &CGF) {
17907 QualType AstType = E->getArg(0)->getType();
17908 if (AstType->isArrayType())
17909 Src = CGF.EmitArrayToPointerDecay(E->getArg(0)).getPointer();
17910 else
17911 Src = CGF.EmitScalarExpr(E->getArg(0));
17912 SrcType = Src->getType();
17913 if (SrcType->isPointerTy()) {
17914 IntType = IntegerType::get(
17915 CGF.getLLVMContext(),
17916 CGF.CGM.getDataLayout().getIndexTypeSizeInBits(SrcType));
17917 } else {
17918 assert(SrcType->isIntegerTy())(static_cast <bool> (SrcType->isIntegerTy()) ? void (
0) : __assert_fail ("SrcType->isIntegerTy()", "clang/lib/CodeGen/CGBuiltin.cpp"
, 17918, __extension__ __PRETTY_FUNCTION__))
;
17919 IntType = cast<llvm::IntegerType>(SrcType);
17920 }
17921 Alignment = CGF.EmitScalarExpr(E->getArg(1));
17922 Alignment = CGF.Builder.CreateZExtOrTrunc(Alignment, IntType, "alignment");
17923 auto *One = llvm::ConstantInt::get(IntType, 1);
17924 Mask = CGF.Builder.CreateSub(Alignment, One, "mask");
17925 }
17926};
17927} // namespace
17928
17929/// Generate (x & (y-1)) == 0.
17930RValue CodeGenFunction::EmitBuiltinIsAligned(const CallExpr *E) {
17931 BuiltinAlignArgs Args(E, *this);
17932 llvm::Value *SrcAddress = Args.Src;
17933 if (Args.SrcType->isPointerTy())
17934 SrcAddress =
17935 Builder.CreateBitOrPointerCast(Args.Src, Args.IntType, "src_addr");
17936 return RValue::get(Builder.CreateICmpEQ(
17937 Builder.CreateAnd(SrcAddress, Args.Mask, "set_bits"),
17938 llvm::Constant::getNullValue(Args.IntType), "is_aligned"));
17939}
17940
17941/// Generate (x & ~(y-1)) to align down or ((x+(y-1)) & ~(y-1)) to align up.
17942/// Note: For pointer types we can avoid ptrtoint/inttoptr pairs by using the
17943/// llvm.ptrmask instrinsic (with a GEP before in the align_up case).
17944/// TODO: actually use ptrmask once most optimization passes know about it.
17945RValue CodeGenFunction::EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp) {
17946 BuiltinAlignArgs Args(E, *this);
17947 llvm::Value *SrcAddr = Args.Src;
17948 if (Args.Src->getType()->isPointerTy())
17949 SrcAddr = Builder.CreatePtrToInt(Args.Src, Args.IntType, "intptr");
17950 llvm::Value *SrcForMask = SrcAddr;
17951 if (AlignUp) {
17952 // When aligning up we have to first add the mask to ensure we go over the
17953 // next alignment value and then align down to the next valid multiple.
17954 // By adding the mask, we ensure that align_up on an already aligned
17955 // value will not change the value.
17956 SrcForMask = Builder.CreateAdd(SrcForMask, Args.Mask, "over_boundary");
17957 }
17958 // Invert the mask to only clear the lower bits.
17959 llvm::Value *InvertedMask = Builder.CreateNot(Args.Mask, "inverted_mask");
17960 llvm::Value *Result =
17961 Builder.CreateAnd(SrcForMask, InvertedMask, "aligned_result");
17962 if (Args.Src->getType()->isPointerTy()) {
17963 /// TODO: Use ptrmask instead of ptrtoint+gep once it is optimized well.
17964 // Result = Builder.CreateIntrinsic(
17965 // Intrinsic::ptrmask, {Args.SrcType, SrcForMask->getType(), Args.IntType},
17966 // {SrcForMask, NegatedMask}, nullptr, "aligned_result");
17967 Result->setName("aligned_intptr");
17968 llvm::Value *Difference = Builder.CreateSub(Result, SrcAddr, "diff");
17969 // The result must point to the same underlying allocation. This means we
17970 // can use an inbounds GEP to enable better optimization.
17971 Value *Base = EmitCastToVoidPtr(Args.Src);
17972 if (getLangOpts().isSignedOverflowDefined())
17973 Result = Builder.CreateGEP(Int8Ty, Base, Difference, "aligned_result");
17974 else
17975 Result = EmitCheckedInBoundsGEP(Int8Ty, Base, Difference,
17976 /*SignedIndices=*/true,
17977 /*isSubtraction=*/!AlignUp,
17978 E->getExprLoc(), "aligned_result");
17979 Result = Builder.CreatePointerCast(Result, Args.SrcType);
17980 // Emit an alignment assumption to ensure that the new alignment is
17981 // propagated to loads/stores, etc.
17982 emitAlignmentAssumption(Result, E, E->getExprLoc(), Args.Alignment);
17983 }
17984 assert(Result->getType() == Args.SrcType)(static_cast <bool> (Result->getType() == Args.SrcType
) ? void (0) : __assert_fail ("Result->getType() == Args.SrcType"
, "clang/lib/CodeGen/CGBuiltin.cpp", 17984, __extension__ __PRETTY_FUNCTION__
))
;
17985 return RValue::get(Result);
17986}
17987
17988Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
17989 const CallExpr *E) {
17990 switch (BuiltinID) {
17991 case WebAssembly::BI__builtin_wasm_memory_size: {
17992 llvm::Type *ResultType = ConvertType(E->getType());
17993 Value *I = EmitScalarExpr(E->getArg(0));
17994 Function *Callee =
17995 CGM.getIntrinsic(Intrinsic::wasm_memory_size, ResultType);
17996 return Builder.CreateCall(Callee, I);
17997 }
17998 case WebAssembly::BI__builtin_wasm_memory_grow: {
17999 llvm::Type *ResultType = ConvertType(E->getType());
18000 Value *Args[] = {EmitScalarExpr(E->getArg(0)),
18001 EmitScalarExpr(E->getArg(1))};
18002 Function *Callee =
18003 CGM.getIntrinsic(Intrinsic::wasm_memory_grow, ResultType);
18004 return Builder.CreateCall(Callee, Args);
18005 }
18006 case WebAssembly::BI__builtin_wasm_tls_size: {
18007 llvm::Type *ResultType = ConvertType(E->getType());
18008 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_size, ResultType);
18009 return Builder.CreateCall(Callee);
18010 }
18011 case WebAssembly::BI__builtin_wasm_tls_align: {
18012 llvm::Type *ResultType = ConvertType(E->getType());
18013 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_align, ResultType);
18014 return Builder.CreateCall(Callee);
18015 }
18016 case WebAssembly::BI__builtin_wasm_tls_base: {
18017 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_base);
18018 return Builder.CreateCall(Callee);
18019 }
18020 case WebAssembly::BI__builtin_wasm_throw: {
18021 Value *Tag = EmitScalarExpr(E->getArg(0));
18022 Value *Obj = EmitScalarExpr(E->getArg(1));
18023 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_throw);
18024 return Builder.CreateCall(Callee, {Tag, Obj});
18025 }
18026 case WebAssembly::BI__builtin_wasm_rethrow: {
18027 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_rethrow);
18028 return Builder.CreateCall(Callee);
18029 }
18030 case WebAssembly::BI__builtin_wasm_memory_atomic_wait32: {
18031 Value *Addr = EmitScalarExpr(E->getArg(0));
18032 Value *Expected = EmitScalarExpr(E->getArg(1));
18033 Value *Timeout = EmitScalarExpr(E->getArg(2));
18034 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_wait32);
18035 return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
18036 }
18037 case WebAssembly::BI__builtin_wasm_memory_atomic_wait64: {
18038 Value *Addr = EmitScalarExpr(E->getArg(0));
18039 Value *Expected = EmitScalarExpr(E->getArg(1));
18040 Value *Timeout = EmitScalarExpr(E->getArg(2));
18041 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_wait64);
18042 return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
18043 }
18044 case WebAssembly::BI__builtin_wasm_memory_atomic_notify: {
18045 Value *Addr = EmitScalarExpr(E->getArg(0));
18046 Value *Count = EmitScalarExpr(E->getArg(1));
18047 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_notify);
18048 return Builder.CreateCall(Callee, {Addr, Count});
18049 }
18050 case WebAssembly::BI__builtin_wasm_trunc_s_i32_f32:
18051 case WebAssembly::BI__builtin_wasm_trunc_s_i32_f64:
18052 case WebAssembly::BI__builtin_wasm_trunc_s_i64_f32:
18053 case WebAssembly::BI__builtin_wasm_trunc_s_i64_f64: {
18054 Value *Src = EmitScalarExpr(E->getArg(0));
18055 llvm::Type *ResT = ConvertType(E->getType());
18056 Function *Callee =
18057 CGM.getIntrinsic(Intrinsic::wasm_trunc_signed, {ResT, Src->getType()});
18058 return Builder.CreateCall(Callee, {Src});
18059 }
18060 case WebAssembly::BI__builtin_wasm_trunc_u_i32_f32:
18061 case WebAssembly::BI__builtin_wasm_trunc_u_i32_f64:
18062 case WebAssembly::BI__builtin_wasm_trunc_u_i64_f32:
18063 case WebAssembly::BI__builtin_wasm_trunc_u_i64_f64: {
18064 Value *Src = EmitScalarExpr(E->getArg(0));
18065 llvm::Type *ResT = ConvertType(E->getType());
18066 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_unsigned,
18067 {ResT, Src->getType()});
18068 return Builder.CreateCall(Callee, {Src});
18069 }
18070 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f32:
18071 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f64:
18072 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f32:
18073 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f64:
18074 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32x4_f32x4: {
18075 Value *Src = EmitScalarExpr(E->getArg(0));
18076 llvm::Type *ResT = ConvertType(E->getType());
18077 Function *Callee =
18078 CGM.getIntrinsic(Intrinsic::fptosi_sat, {ResT, Src->getType()});
18079 return Builder.CreateCall(Callee, {Src});
18080 }
18081 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f32:
18082 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f64:
18083 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f32:
18084 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f64:
18085 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32x4_f32x4: {
18086 Value *Src = EmitScalarExpr(E->getArg(0));
18087 llvm::Type *ResT = ConvertType(E->getType());
18088 Function *Callee =
18089 CGM.getIntrinsic(Intrinsic::fptoui_sat, {ResT, Src->getType()});
18090 return Builder.CreateCall(Callee, {Src});
18091 }
18092 case WebAssembly::BI__builtin_wasm_min_f32:
18093 case WebAssembly::BI__builtin_wasm_min_f64:
18094 case WebAssembly::BI__builtin_wasm_min_f32x4:
18095 case WebAssembly::BI__builtin_wasm_min_f64x2: {
18096 Value *LHS = EmitScalarExpr(E->getArg(0));
18097 Value *RHS = EmitScalarExpr(E->getArg(1));
18098 Function *Callee =
18099 CGM.getIntrinsic(Intrinsic::minimum, ConvertType(E->getType()));
18100 return Builder.CreateCall(Callee, {LHS, RHS});
18101 }
18102 case WebAssembly::BI__builtin_wasm_max_f32:
18103 case WebAssembly::BI__builtin_wasm_max_f64:
18104 case WebAssembly::BI__builtin_wasm_max_f32x4:
18105 case WebAssembly::BI__builtin_wasm_max_f64x2: {
18106 Value *LHS = EmitScalarExpr(E->getArg(0));
18107 Value *RHS = EmitScalarExpr(E->getArg(1));
18108 Function *Callee =
18109 CGM.getIntrinsic(Intrinsic::maximum, ConvertType(E->getType()));
18110 return Builder.CreateCall(Callee, {LHS, RHS});
18111 }
18112 case WebAssembly::BI__builtin_wasm_pmin_f32x4:
18113 case WebAssembly::BI__builtin_wasm_pmin_f64x2: {
18114 Value *LHS = EmitScalarExpr(E->getArg(0));
18115 Value *RHS = EmitScalarExpr(E->getArg(1));
18116 Function *Callee =
18117 CGM.getIntrinsic(Intrinsic::wasm_pmin, ConvertType(E->getType()));
18118 return Builder.CreateCall(Callee, {LHS, RHS});
18119 }
18120 case WebAssembly::BI__builtin_wasm_pmax_f32x4:
18121 case WebAssembly::BI__builtin_wasm_pmax_f64x2: {
18122 Value *LHS = EmitScalarExpr(E->getArg(0));
18123 Value *RHS = EmitScalarExpr(E->getArg(1));
18124 Function *Callee =
18125 CGM.getIntrinsic(Intrinsic::wasm_pmax, ConvertType(E->getType()));
18126 return Builder.CreateCall(Callee, {LHS, RHS});
18127 }
18128 case WebAssembly::BI__builtin_wasm_ceil_f32x4:
18129 case WebAssembly::BI__builtin_wasm_floor_f32x4:
18130 case WebAssembly::BI__builtin_wasm_trunc_f32x4:
18131 case WebAssembly::BI__builtin_wasm_nearest_f32x4:
18132 case WebAssembly::BI__builtin_wasm_ceil_f64x2:
18133 case WebAssembly::BI__builtin_wasm_floor_f64x2:
18134 case WebAssembly::BI__builtin_wasm_trunc_f64x2:
18135 case WebAssembly::BI__builtin_wasm_nearest_f64x2: {
18136 unsigned IntNo;
18137 switch (BuiltinID) {
18138 case WebAssembly::BI__builtin_wasm_ceil_f32x4:
18139 case WebAssembly::BI__builtin_wasm_ceil_f64x2:
18140 IntNo = Intrinsic::ceil;
18141 break;
18142 case WebAssembly::BI__builtin_wasm_floor_f32x4:
18143 case WebAssembly::BI__builtin_wasm_floor_f64x2:
18144 IntNo = Intrinsic::floor;
18145 break;
18146 case WebAssembly::BI__builtin_wasm_trunc_f32x4:
18147 case WebAssembly::BI__builtin_wasm_trunc_f64x2:
18148 IntNo = Intrinsic::trunc;
18149 break;
18150 case WebAssembly::BI__builtin_wasm_nearest_f32x4:
18151 case WebAssembly::BI__builtin_wasm_nearest_f64x2:
18152 IntNo = Intrinsic::nearbyint;
18153 break;
18154 default:
18155 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 18155)
;
18156 }
18157 Value *Value = EmitScalarExpr(E->getArg(0));
18158 Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
18159 return Builder.CreateCall(Callee, Value);
18160 }
18161 case WebAssembly::BI__builtin_wasm_swizzle_i8x16: {
18162 Value *Src = EmitScalarExpr(E->getArg(0));
18163 Value *Indices = EmitScalarExpr(E->getArg(1));
18164 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_swizzle);
18165 return Builder.CreateCall(Callee, {Src, Indices});
18166 }
18167 case WebAssembly::BI__builtin_wasm_add_sat_s_i8x16:
18168 case WebAssembly::BI__builtin_wasm_add_sat_u_i8x16:
18169 case WebAssembly::BI__builtin_wasm_add_sat_s_i16x8:
18170 case WebAssembly::BI__builtin_wasm_add_sat_u_i16x8:
18171 case WebAssembly::BI__builtin_wasm_sub_sat_s_i8x16:
18172 case WebAssembly::BI__builtin_wasm_sub_sat_u_i8x16:
18173 case WebAssembly::BI__builtin_wasm_sub_sat_s_i16x8:
18174 case WebAssembly::BI__builtin_wasm_sub_sat_u_i16x8: {
18175 unsigned IntNo;
18176 switch (BuiltinID) {
18177 case WebAssembly::BI__builtin_wasm_add_sat_s_i8x16:
18178 case WebAssembly::BI__builtin_wasm_add_sat_s_i16x8:
18179 IntNo = Intrinsic::sadd_sat;
18180 break;
18181 case WebAssembly::BI__builtin_wasm_add_sat_u_i8x16:
18182 case WebAssembly::BI__builtin_wasm_add_sat_u_i16x8:
18183 IntNo = Intrinsic::uadd_sat;
18184 break;
18185 case WebAssembly::BI__builtin_wasm_sub_sat_s_i8x16:
18186 case WebAssembly::BI__builtin_wasm_sub_sat_s_i16x8:
18187 IntNo = Intrinsic::wasm_sub_sat_signed;
18188 break;
18189 case WebAssembly::BI__builtin_wasm_sub_sat_u_i8x16:
18190 case WebAssembly::BI__builtin_wasm_sub_sat_u_i16x8:
18191 IntNo = Intrinsic::wasm_sub_sat_unsigned;
18192 break;
18193 default:
18194 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 18194)
;
18195 }
18196 Value *LHS = EmitScalarExpr(E->getArg(0));
18197 Value *RHS = EmitScalarExpr(E->getArg(1));
18198 Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
18199 return Builder.CreateCall(Callee, {LHS, RHS});
18200 }
18201 case WebAssembly::BI__builtin_wasm_abs_i8x16:
18202 case WebAssembly::BI__builtin_wasm_abs_i16x8:
18203 case WebAssembly::BI__builtin_wasm_abs_i32x4:
18204 case WebAssembly::BI__builtin_wasm_abs_i64x2: {
18205 Value *Vec = EmitScalarExpr(E->getArg(0));
18206 Value *Neg = Builder.CreateNeg(Vec, "neg");
18207 Constant *Zero = llvm::Constant::getNullValue(Vec->getType());
18208 Value *ICmp = Builder.CreateICmpSLT(Vec, Zero, "abscond");
18209 return Builder.CreateSelect(ICmp, Neg, Vec, "abs");
18210 }
18211 case WebAssembly::BI__builtin_wasm_min_s_i8x16:
18212 case WebAssembly::BI__builtin_wasm_min_u_i8x16:
18213 case WebAssembly::BI__builtin_wasm_max_s_i8x16:
18214 case WebAssembly::BI__builtin_wasm_max_u_i8x16:
18215 case WebAssembly::BI__builtin_wasm_min_s_i16x8:
18216 case WebAssembly::BI__builtin_wasm_min_u_i16x8:
18217 case WebAssembly::BI__builtin_wasm_max_s_i16x8:
18218 case WebAssembly::BI__builtin_wasm_max_u_i16x8:
18219 case WebAssembly::BI__builtin_wasm_min_s_i32x4:
18220 case WebAssembly::BI__builtin_wasm_min_u_i32x4:
18221 case WebAssembly::BI__builtin_wasm_max_s_i32x4:
18222 case WebAssembly::BI__builtin_wasm_max_u_i32x4: {
18223 Value *LHS = EmitScalarExpr(E->getArg(0));
18224 Value *RHS = EmitScalarExpr(E->getArg(1));
18225 Value *ICmp;
18226 switch (BuiltinID) {
18227 case WebAssembly::BI__builtin_wasm_min_s_i8x16:
18228 case WebAssembly::BI__builtin_wasm_min_s_i16x8:
18229 case WebAssembly::BI__builtin_wasm_min_s_i32x4:
18230 ICmp = Builder.CreateICmpSLT(LHS, RHS);
18231 break;
18232 case WebAssembly::BI__builtin_wasm_min_u_i8x16:
18233 case WebAssembly::BI__builtin_wasm_min_u_i16x8:
18234 case WebAssembly::BI__builtin_wasm_min_u_i32x4:
18235 ICmp = Builder.CreateICmpULT(LHS, RHS);
18236 break;
18237 case WebAssembly::BI__builtin_wasm_max_s_i8x16:
18238 case WebAssembly::BI__builtin_wasm_max_s_i16x8:
18239 case WebAssembly::BI__builtin_wasm_max_s_i32x4:
18240 ICmp = Builder.CreateICmpSGT(LHS, RHS);
18241 break;
18242 case WebAssembly::BI__builtin_wasm_max_u_i8x16:
18243 case WebAssembly::BI__builtin_wasm_max_u_i16x8:
18244 case WebAssembly::BI__builtin_wasm_max_u_i32x4:
18245 ICmp = Builder.CreateICmpUGT(LHS, RHS);
18246 break;
18247 default:
18248 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 18248)
;
18249 }
18250 return Builder.CreateSelect(ICmp, LHS, RHS);
18251 }
18252 case WebAssembly::BI__builtin_wasm_avgr_u_i8x16:
18253 case WebAssembly::BI__builtin_wasm_avgr_u_i16x8: {
18254 Value *LHS = EmitScalarExpr(E->getArg(0));
18255 Value *RHS = EmitScalarExpr(E->getArg(1));
18256 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_avgr_unsigned,
18257 ConvertType(E->getType()));
18258 return Builder.CreateCall(Callee, {LHS, RHS});
18259 }
18260 case WebAssembly::BI__builtin_wasm_q15mulr_sat_s_i16x8: {
18261 Value *LHS = EmitScalarExpr(E->getArg(0));
18262 Value *RHS = EmitScalarExpr(E->getArg(1));
18263 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_q15mulr_sat_signed);
18264 return Builder.CreateCall(Callee, {LHS, RHS});
18265 }
18266 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_s_i16x8:
18267 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_u_i16x8:
18268 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_s_i32x4:
18269 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_u_i32x4: {
18270 Value *Vec = EmitScalarExpr(E->getArg(0));
18271 unsigned IntNo;
18272 switch (BuiltinID) {
18273 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_s_i16x8:
18274 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_s_i32x4:
18275 IntNo = Intrinsic::wasm_extadd_pairwise_signed;
18276 break;
18277 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_u_i16x8:
18278 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_u_i32x4:
18279 IntNo = Intrinsic::wasm_extadd_pairwise_unsigned;
18280 break;
18281 default:
18282 llvm_unreachable("unexptected builtin ID")::llvm::llvm_unreachable_internal("unexptected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 18282)
;
18283 }
18284
18285 Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
18286 return Builder.CreateCall(Callee, Vec);
18287 }
18288 case WebAssembly::BI__builtin_wasm_bitselect: {
18289 Value *V1 = EmitScalarExpr(E->getArg(0));
18290 Value *V2 = EmitScalarExpr(E->getArg(1));
18291 Value *C = EmitScalarExpr(E->getArg(2));
18292 Function *Callee =
18293 CGM.getIntrinsic(Intrinsic::wasm_bitselect, ConvertType(E->getType()));
18294 return Builder.CreateCall(Callee, {V1, V2, C});
18295 }
18296 case WebAssembly::BI__builtin_wasm_dot_s_i32x4_i16x8: {
18297 Value *LHS = EmitScalarExpr(E->getArg(0));
18298 Value *RHS = EmitScalarExpr(E->getArg(1));
18299 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_dot);
18300 return Builder.CreateCall(Callee, {LHS, RHS});
18301 }
18302 case WebAssembly::BI__builtin_wasm_popcnt_i8x16: {
18303 Value *Vec = EmitScalarExpr(E->getArg(0));
18304 Function *Callee =
18305 CGM.getIntrinsic(Intrinsic::ctpop, ConvertType(E->getType()));
18306 return Builder.CreateCall(Callee, {Vec});
18307 }
18308 case WebAssembly::BI__builtin_wasm_any_true_v128:
18309 case WebAssembly::BI__builtin_wasm_all_true_i8x16:
18310 case WebAssembly::BI__builtin_wasm_all_true_i16x8:
18311 case WebAssembly::BI__builtin_wasm_all_true_i32x4:
18312 case WebAssembly::BI__builtin_wasm_all_true_i64x2: {
18313 unsigned IntNo;
18314 switch (BuiltinID) {
18315 case WebAssembly::BI__builtin_wasm_any_true_v128:
18316 IntNo = Intrinsic::wasm_anytrue;
18317 break;
18318 case WebAssembly::BI__builtin_wasm_all_true_i8x16:
18319 case WebAssembly::BI__builtin_wasm_all_true_i16x8:
18320 case WebAssembly::BI__builtin_wasm_all_true_i32x4:
18321 case WebAssembly::BI__builtin_wasm_all_true_i64x2:
18322 IntNo = Intrinsic::wasm_alltrue;
18323 break;
18324 default:
18325 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 18325)
;
18326 }
18327 Value *Vec = EmitScalarExpr(E->getArg(0));
18328 Function *Callee = CGM.getIntrinsic(IntNo, Vec->getType());
18329 return Builder.CreateCall(Callee, {Vec});
18330 }
18331 case WebAssembly::BI__builtin_wasm_bitmask_i8x16:
18332 case WebAssembly::BI__builtin_wasm_bitmask_i16x8:
18333 case WebAssembly::BI__builtin_wasm_bitmask_i32x4:
18334 case WebAssembly::BI__builtin_wasm_bitmask_i64x2: {
18335 Value *Vec = EmitScalarExpr(E->getArg(0));
18336 Function *Callee =
18337 CGM.getIntrinsic(Intrinsic::wasm_bitmask, Vec->getType());
18338 return Builder.CreateCall(Callee, {Vec});
18339 }
18340 case WebAssembly::BI__builtin_wasm_abs_f32x4:
18341 case WebAssembly::BI__builtin_wasm_abs_f64x2: {
18342 Value *Vec = EmitScalarExpr(E->getArg(0));
18343 Function *Callee = CGM.getIntrinsic(Intrinsic::fabs, Vec->getType());
18344 return Builder.CreateCall(Callee, {Vec});
18345 }
18346 case WebAssembly::BI__builtin_wasm_sqrt_f32x4:
18347 case WebAssembly::BI__builtin_wasm_sqrt_f64x2: {
18348 Value *Vec = EmitScalarExpr(E->getArg(0));
18349 Function *Callee = CGM.getIntrinsic(Intrinsic::sqrt, Vec->getType());
18350 return Builder.CreateCall(Callee, {Vec});
18351 }
18352 case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
18353 case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
18354 case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
18355 case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4: {
18356 Value *Low = EmitScalarExpr(E->getArg(0));
18357 Value *High = EmitScalarExpr(E->getArg(1));
18358 unsigned IntNo;
18359 switch (BuiltinID) {
18360 case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
18361 case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
18362 IntNo = Intrinsic::wasm_narrow_signed;
18363 break;
18364 case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
18365 case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4:
18366 IntNo = Intrinsic::wasm_narrow_unsigned;
18367 break;
18368 default:
18369 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 18369)
;
18370 }
18371 Function *Callee =
18372 CGM.getIntrinsic(IntNo, {ConvertType(E->getType()), Low->getType()});
18373 return Builder.CreateCall(Callee, {Low, High});
18374 }
18375 case WebAssembly::BI__builtin_wasm_trunc_sat_zero_s_f64x2_i32x4:
18376 case WebAssembly::BI__builtin_wasm_trunc_sat_zero_u_f64x2_i32x4: {
18377 Value *Vec = EmitScalarExpr(E->getArg(0));
18378 unsigned IntNo;
18379 switch (BuiltinID) {
18380 case WebAssembly::BI__builtin_wasm_trunc_sat_zero_s_f64x2_i32x4:
18381 IntNo = Intrinsic::fptosi_sat;
18382 break;
18383 case WebAssembly::BI__builtin_wasm_trunc_sat_zero_u_f64x2_i32x4:
18384 IntNo = Intrinsic::fptoui_sat;
18385 break;
18386 default:
18387 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 18387)
;
18388 }
18389 llvm::Type *SrcT = Vec->getType();
18390 llvm::Type *TruncT = SrcT->getWithNewType(Builder.getInt32Ty());
18391 Function *Callee = CGM.getIntrinsic(IntNo, {TruncT, SrcT});
18392 Value *Trunc = Builder.CreateCall(Callee, Vec);
18393 Value *Splat = Constant::getNullValue(TruncT);
18394 return Builder.CreateShuffleVector(Trunc, Splat, ArrayRef<int>{0, 1, 2, 3});
18395 }
18396 case WebAssembly::BI__builtin_wasm_shuffle_i8x16: {
18397 Value *Ops[18];
18398 size_t OpIdx = 0;
18399 Ops[OpIdx++] = EmitScalarExpr(E->getArg(0));
18400 Ops[OpIdx++] = EmitScalarExpr(E->getArg(1));
18401 while (OpIdx < 18) {
18402 Optional<llvm::APSInt> LaneConst =
18403 E->getArg(OpIdx)->getIntegerConstantExpr(getContext());
18404 assert(LaneConst && "Constant arg isn't actually constant?")(static_cast <bool> (LaneConst && "Constant arg isn't actually constant?"
) ? void (0) : __assert_fail ("LaneConst && \"Constant arg isn't actually constant?\""
, "clang/lib/CodeGen/CGBuiltin.cpp", 18404, __extension__ __PRETTY_FUNCTION__
))
;
18405 Ops[OpIdx++] = llvm::ConstantInt::get(getLLVMContext(), *LaneConst);
18406 }
18407 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_shuffle);
18408 return Builder.CreateCall(Callee, Ops);
18409 }
18410 case WebAssembly::BI__builtin_wasm_fma_f32x4:
18411 case WebAssembly::BI__builtin_wasm_fms_f32x4:
18412 case WebAssembly::BI__builtin_wasm_fma_f64x2:
18413 case WebAssembly::BI__builtin_wasm_fms_f64x2: {
18414 Value *A = EmitScalarExpr(E->getArg(0));
18415 Value *B = EmitScalarExpr(E->getArg(1));
18416 Value *C = EmitScalarExpr(E->getArg(2));
18417 unsigned IntNo;
18418 switch (BuiltinID) {
18419 case WebAssembly::BI__builtin_wasm_fma_f32x4:
18420 case WebAssembly::BI__builtin_wasm_fma_f64x2:
18421 IntNo = Intrinsic::wasm_fma;
18422 break;
18423 case WebAssembly::BI__builtin_wasm_fms_f32x4:
18424 case WebAssembly::BI__builtin_wasm_fms_f64x2:
18425 IntNo = Intrinsic::wasm_fms;
18426 break;
18427 default:
18428 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 18428)
;
18429 }
18430 Function *Callee = CGM.getIntrinsic(IntNo, A->getType());
18431 return Builder.CreateCall(Callee, {A, B, C});
18432 }
18433 case WebAssembly::BI__builtin_wasm_laneselect_i8x16:
18434 case WebAssembly::BI__builtin_wasm_laneselect_i16x8:
18435 case WebAssembly::BI__builtin_wasm_laneselect_i32x4:
18436 case WebAssembly::BI__builtin_wasm_laneselect_i64x2: {
18437 Value *A = EmitScalarExpr(E->getArg(0));
18438 Value *B = EmitScalarExpr(E->getArg(1));
18439 Value *C = EmitScalarExpr(E->getArg(2));
18440 Function *Callee =
18441 CGM.getIntrinsic(Intrinsic::wasm_laneselect, A->getType());
18442 return Builder.CreateCall(Callee, {A, B, C});
18443 }
18444 case WebAssembly::BI__builtin_wasm_relaxed_swizzle_i8x16: {
18445 Value *Src = EmitScalarExpr(E->getArg(0));
18446 Value *Indices = EmitScalarExpr(E->getArg(1));
18447 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_relaxed_swizzle);
18448 return Builder.CreateCall(Callee, {Src, Indices});
18449 }
18450 case WebAssembly::BI__builtin_wasm_relaxed_min_f32x4:
18451 case WebAssembly::BI__builtin_wasm_relaxed_max_f32x4:
18452 case WebAssembly::BI__builtin_wasm_relaxed_min_f64x2:
18453 case WebAssembly::BI__builtin_wasm_relaxed_max_f64x2: {
18454 Value *LHS = EmitScalarExpr(E->getArg(0));
18455 Value *RHS = EmitScalarExpr(E->getArg(1));
18456 unsigned IntNo;
18457 switch (BuiltinID) {
18458 case WebAssembly::BI__builtin_wasm_relaxed_min_f32x4:
18459 case WebAssembly::BI__builtin_wasm_relaxed_min_f64x2:
18460 IntNo = Intrinsic::wasm_relaxed_min;
18461 break;
18462 case WebAssembly::BI__builtin_wasm_relaxed_max_f32x4:
18463 case WebAssembly::BI__builtin_wasm_relaxed_max_f64x2:
18464 IntNo = Intrinsic::wasm_relaxed_max;
18465 break;
18466 default:
18467 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 18467)
;
18468 }
18469 Function *Callee = CGM.getIntrinsic(IntNo, LHS->getType());
18470 return Builder.CreateCall(Callee, {LHS, RHS});
18471 }
18472 case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_i32x4_f32x4:
18473 case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_i32x4_f32x4:
18474 case WebAssembly::BI__builtin_wasm_relaxed_trunc_zero_s_i32x4_f64x2:
18475 case WebAssembly::BI__builtin_wasm_relaxed_trunc_zero_u_i32x4_f64x2: {
18476 Value *Vec = EmitScalarExpr(E->getArg(0));
18477 unsigned IntNo;
18478 switch (BuiltinID) {
18479 case WebAssembly::BI__builtin_wasm_relaxed_trunc_s_i32x4_f32x4:
18480 IntNo = Intrinsic::wasm_relaxed_trunc_signed;
18481 break;
18482 case WebAssembly::BI__builtin_wasm_relaxed_trunc_u_i32x4_f32x4:
18483 IntNo = Intrinsic::wasm_relaxed_trunc_unsigned;
18484 break;
18485 case WebAssembly::BI__builtin_wasm_relaxed_trunc_zero_s_i32x4_f64x2:
18486 IntNo = Intrinsic::wasm_relaxed_trunc_zero_signed;
18487 break;
18488 case WebAssembly::BI__builtin_wasm_relaxed_trunc_zero_u_i32x4_f64x2:
18489 IntNo = Intrinsic::wasm_relaxed_trunc_zero_unsigned;
18490 break;
18491 default:
18492 llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 18492)
;
18493 }
18494 Function *Callee = CGM.getIntrinsic(IntNo);
18495 return Builder.CreateCall(Callee, {Vec});
18496 }
18497 default:
18498 return nullptr;
18499 }
18500}
18501
18502static std::pair<Intrinsic::ID, unsigned>
18503getIntrinsicForHexagonNonGCCBuiltin(unsigned BuiltinID) {
18504 struct Info {
18505 unsigned BuiltinID;
18506 Intrinsic::ID IntrinsicID;
18507 unsigned VecLen;
18508 };
18509 Info Infos[] = {
18510#define CUSTOM_BUILTIN_MAPPING(x,s) \
18511 { Hexagon::BI__builtin_HEXAGON_##x, Intrinsic::hexagon_##x, s },
18512 CUSTOM_BUILTIN_MAPPING(L2_loadrub_pci, 0)
18513 CUSTOM_BUILTIN_MAPPING(L2_loadrb_pci, 0)
18514 CUSTOM_BUILTIN_MAPPING(L2_loadruh_pci, 0)
18515 CUSTOM_BUILTIN_MAPPING(L2_loadrh_pci, 0)
18516 CUSTOM_BUILTIN_MAPPING(L2_loadri_pci, 0)
18517 CUSTOM_BUILTIN_MAPPING(L2_loadrd_pci, 0)
18518 CUSTOM_BUILTIN_MAPPING(L2_loadrub_pcr, 0)
18519 CUSTOM_BUILTIN_MAPPING(L2_loadrb_pcr, 0)
18520 CUSTOM_BUILTIN_MAPPING(L2_loadruh_pcr, 0)
18521 CUSTOM_BUILTIN_MAPPING(L2_loadrh_pcr, 0)
18522 CUSTOM_BUILTIN_MAPPING(L2_loadri_pcr, 0)
18523 CUSTOM_BUILTIN_MAPPING(L2_loadrd_pcr, 0)
18524 CUSTOM_BUILTIN_MAPPING(S2_storerb_pci, 0)
18525 CUSTOM_BUILTIN_MAPPING(S2_storerh_pci, 0)
18526 CUSTOM_BUILTIN_MAPPING(S2_storerf_pci, 0)
18527 CUSTOM_BUILTIN_MAPPING(S2_storeri_pci, 0)
18528 CUSTOM_BUILTIN_MAPPING(S2_storerd_pci, 0)
18529 CUSTOM_BUILTIN_MAPPING(S2_storerb_pcr, 0)
18530 CUSTOM_BUILTIN_MAPPING(S2_storerh_pcr, 0)
18531 CUSTOM_BUILTIN_MAPPING(S2_storerf_pcr, 0)
18532 CUSTOM_BUILTIN_MAPPING(S2_storeri_pcr, 0)
18533 CUSTOM_BUILTIN_MAPPING(S2_storerd_pcr, 0)
18534 // Legacy builtins that take a vector in place of a vector predicate.
18535 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq, 64)
18536 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq, 64)
18537 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq, 64)
18538 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq, 64)
18539 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq_128B, 128)
18540 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq_128B, 128)
18541 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq_128B, 128)
18542 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq_128B, 128)
18543#include "clang/Basic/BuiltinsHexagonMapCustomDep.def"
18544#undef CUSTOM_BUILTIN_MAPPING
18545 };
18546
18547 auto CmpInfo = [] (Info A, Info B) { return A.BuiltinID < B.BuiltinID; };
18548 static const bool SortOnce = (llvm::sort(Infos, CmpInfo), true);
18549 (void)SortOnce;
18550
18551 const Info *F = std::lower_bound(std::begin(Infos), std::end(Infos),
18552 Info{BuiltinID, 0, 0}, CmpInfo);
18553 if (F == std::end(Infos) || F->BuiltinID != BuiltinID)
18554 return {Intrinsic::not_intrinsic, 0};
18555
18556 return {F->IntrinsicID, F->VecLen};
18557}
18558
18559Value *CodeGenFunction::EmitHexagonBuiltinExpr(unsigned BuiltinID,
18560 const CallExpr *E) {
18561 Intrinsic::ID ID;
18562 unsigned VecLen;
18563 std::tie(ID, VecLen) = getIntrinsicForHexagonNonGCCBuiltin(BuiltinID);
18564
18565 auto MakeCircOp = [this, E](unsigned IntID, bool IsLoad) {
18566 // The base pointer is passed by address, so it needs to be loaded.
18567 Address A = EmitPointerWithAlignment(E->getArg(0));
18568 Address BP = Address(Builder.CreateBitCast(
18569 A.getPointer(), Int8PtrPtrTy), Int8PtrTy, A.getAlignment());
18570 llvm::Value *Base = Builder.CreateLoad(BP);
18571 // The treatment of both loads and stores is the same: the arguments for
18572 // the builtin are the same as the arguments for the intrinsic.
18573 // Load:
18574 // builtin(Base, Inc, Mod, Start) -> intr(Base, Inc, Mod, Start)
18575 // builtin(Base, Mod, Start) -> intr(Base, Mod, Start)
18576 // Store:
18577 // builtin(Base, Inc, Mod, Val, Start) -> intr(Base, Inc, Mod, Val, Start)
18578 // builtin(Base, Mod, Val, Start) -> intr(Base, Mod, Val, Start)
18579 SmallVector<llvm::Value*,5> Ops = { Base };
18580 for (unsigned i = 1, e = E->getNumArgs(); i != e; ++i)
18581 Ops.push_back(EmitScalarExpr(E->getArg(i)));
18582
18583 llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
18584 // The load intrinsics generate two results (Value, NewBase), stores
18585 // generate one (NewBase). The new base address needs to be stored.
18586 llvm::Value *NewBase = IsLoad ? Builder.CreateExtractValue(Result, 1)
18587 : Result;
18588 llvm::Value *LV = Builder.CreateBitCast(
18589 EmitScalarExpr(E->getArg(0)), NewBase->getType()->getPointerTo());
18590 Address Dest = EmitPointerWithAlignment(E->getArg(0));
18591 llvm::Value *RetVal =
18592 Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment());
18593 if (IsLoad)
18594 RetVal = Builder.CreateExtractValue(Result, 0);
18595 return RetVal;
18596 };
18597
18598 // Handle the conversion of bit-reverse load intrinsics to bit code.
18599 // The intrinsic call after this function only reads from memory and the
18600 // write to memory is dealt by the store instruction.
18601 auto MakeBrevLd = [this, E](unsigned IntID, llvm::Type *DestTy) {
18602 // The intrinsic generates one result, which is the new value for the base
18603 // pointer. It needs to be returned. The result of the load instruction is
18604 // passed to intrinsic by address, so the value needs to be stored.
18605 llvm::Value *BaseAddress =
18606 Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int8PtrTy);
18607
18608 // Expressions like &(*pt++) will be incremented per evaluation.
18609 // EmitPointerWithAlignment and EmitScalarExpr evaluates the expression
18610 // per call.
18611 Address DestAddr = EmitPointerWithAlignment(E->getArg(1));
18612 DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), Int8PtrTy),
18613 Int8Ty, DestAddr.getAlignment());
18614 llvm::Value *DestAddress = DestAddr.getPointer();
18615
18616 // Operands are Base, Dest, Modifier.
18617 // The intrinsic format in LLVM IR is defined as
18618 // { ValueType, i8* } (i8*, i32).
18619 llvm::Value *Result = Builder.CreateCall(
18620 CGM.getIntrinsic(IntID), {BaseAddress, EmitScalarExpr(E->getArg(2))});
18621
18622 // The value needs to be stored as the variable is passed by reference.
18623 llvm::Value *DestVal = Builder.CreateExtractValue(Result, 0);
18624
18625 // The store needs to be truncated to fit the destination type.
18626 // While i32 and i64 are natively supported on Hexagon, i8 and i16 needs
18627 // to be handled with stores of respective destination type.
18628 DestVal = Builder.CreateTrunc(DestVal, DestTy);
18629
18630 llvm::Value *DestForStore =
18631 Builder.CreateBitCast(DestAddress, DestVal->getType()->getPointerTo());
18632 Builder.CreateAlignedStore(DestVal, DestForStore, DestAddr.getAlignment());
18633 // The updated value of the base pointer is returned.
18634 return Builder.CreateExtractValue(Result, 1);
18635 };
18636
18637 auto V2Q = [this, VecLen] (llvm::Value *Vec) {
18638 Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandvrt_128B
18639 : Intrinsic::hexagon_V6_vandvrt;
18640 return Builder.CreateCall(CGM.getIntrinsic(ID),
18641 {Vec, Builder.getInt32(-1)});
18642 };
18643 auto Q2V = [this, VecLen] (llvm::Value *Pred) {
18644 Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandqrt_128B
18645 : Intrinsic::hexagon_V6_vandqrt;
18646 return Builder.CreateCall(CGM.getIntrinsic(ID),
18647 {Pred, Builder.getInt32(-1)});
18648 };
18649
18650 switch (BuiltinID) {
18651 // These intrinsics return a tuple {Vector, VectorPred} in LLVM IR,
18652 // and the corresponding C/C++ builtins use loads/stores to update
18653 // the predicate.
18654 case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry:
18655 case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B:
18656 case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry:
18657 case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B: {
18658 // Get the type from the 0-th argument.
18659 llvm::Type *VecType = ConvertType(E->getArg(0)->getType());
18660 Address PredAddr = Builder.CreateElementBitCast(
18661 EmitPointerWithAlignment(E->getArg(2)), VecType);
18662 llvm::Value *PredIn = V2Q(Builder.CreateLoad(PredAddr));
18663 llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID),
18664 {EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), PredIn});
18665
18666 llvm::Value *PredOut = Builder.CreateExtractValue(Result, 1);
18667 Builder.CreateAlignedStore(Q2V(PredOut), PredAddr.getPointer(),
18668 PredAddr.getAlignment());
18669 return Builder.CreateExtractValue(Result, 0);
18670 }
18671
18672 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstoreq:
18673 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorenq:
18674 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentq:
18675 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentnq:
18676 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstoreq_128B:
18677 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorenq_128B:
18678 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentq_128B:
18679 case Hexagon::BI__builtin_HEXAGON_V6_vmaskedstorentnq_128B: {
18680 SmallVector<llvm::Value*,4> Ops;
18681 const Expr *PredOp = E->getArg(0);
18682 // There will be an implicit cast to a boolean vector. Strip it.
18683 if (auto *Cast = dyn_cast<ImplicitCastExpr>(PredOp)) {
18684 if (Cast->getCastKind() == CK_BitCast)
18685 PredOp = Cast->getSubExpr();
18686 Ops.push_back(V2Q(EmitScalarExpr(PredOp)));
18687 }
18688 for (int i = 1, e = E->getNumArgs(); i != e; ++i)
18689 Ops.push_back(EmitScalarExpr(E->getArg(i)));
18690 return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
18691 }
18692
18693 case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci:
18694 case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci:
18695 case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci:
18696 case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci:
18697 case Hexagon::BI__builtin_HEXAGON_L2_loadri_pci:
18698 case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci:
18699 case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pcr:
18700 case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pcr:
18701 case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pcr:
18702 case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pcr:
18703 case Hexagon::BI__builtin_HEXAGON_L2_loadri_pcr:
18704 case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pcr:
18705 return MakeCircOp(ID, /*IsLoad=*/true);
18706 case Hexagon::BI__builtin_HEXAGON_S2_storerb_pci:
18707 case Hexagon::BI__builtin_HEXAGON_S2_storerh_pci:
18708 case Hexagon::BI__builtin_HEXAGON_S2_storerf_pci:
18709 case Hexagon::BI__builtin_HEXAGON_S2_storeri_pci:
18710 case Hexagon::BI__builtin_HEXAGON_S2_storerd_pci:
18711 case Hexagon::BI__builtin_HEXAGON_S2_storerb_pcr:
18712 case Hexagon::BI__builtin_HEXAGON_S2_storerh_pcr:
18713 case Hexagon::BI__builtin_HEXAGON_S2_storerf_pcr:
18714 case Hexagon::BI__builtin_HEXAGON_S2_storeri_pcr:
18715 case Hexagon::BI__builtin_HEXAGON_S2_storerd_pcr:
18716 return MakeCircOp(ID, /*IsLoad=*/false);
18717 case Hexagon::BI__builtin_brev_ldub:
18718 return MakeBrevLd(Intrinsic::hexagon_L2_loadrub_pbr, Int8Ty);
18719 case Hexagon::BI__builtin_brev_ldb:
18720 return MakeBrevLd(Intrinsic::hexagon_L2_loadrb_pbr, Int8Ty);
18721 case Hexagon::BI__builtin_brev_lduh:
18722 return MakeBrevLd(Intrinsic::hexagon_L2_loadruh_pbr, Int16Ty);
18723 case Hexagon::BI__builtin_brev_ldh:
18724 return MakeBrevLd(Intrinsic::hexagon_L2_loadrh_pbr, Int16Ty);
18725 case Hexagon::BI__builtin_brev_ldw:
18726 return MakeBrevLd(Intrinsic::hexagon_L2_loadri_pbr, Int32Ty);
18727 case Hexagon::BI__builtin_brev_ldd:
18728 return MakeBrevLd(Intrinsic::hexagon_L2_loadrd_pbr, Int64Ty);
18729 } // switch
18730
18731 return nullptr;
18732}
18733
18734Value *CodeGenFunction::EmitRISCVBuiltinExpr(unsigned BuiltinID,
18735 const CallExpr *E,
18736 ReturnValueSlot ReturnValue) {
18737 SmallVector<Value *, 4> Ops;
18738 llvm::Type *ResultType = ConvertType(E->getType());
18739
18740 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
18741 Ops.push_back(EmitScalarExpr(E->getArg(i)));
18742
18743 Intrinsic::ID ID = Intrinsic::not_intrinsic;
18744 unsigned NF = 1;
18745 constexpr unsigned TAIL_UNDISTURBED = 0;
18746
18747 // Required for overloaded intrinsics.
18748 llvm::SmallVector<llvm::Type *, 2> IntrinsicTypes;
18749 switch (BuiltinID) {
18750 default: llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 18750)
;
18751 case RISCV::BI__builtin_riscv_orc_b_32:
18752 case RISCV::BI__builtin_riscv_orc_b_64:
18753 case RISCV::BI__builtin_riscv_clmul:
18754 case RISCV::BI__builtin_riscv_clmulh:
18755 case RISCV::BI__builtin_riscv_clmulr:
18756 case RISCV::BI__builtin_riscv_bcompress_32:
18757 case RISCV::BI__builtin_riscv_bcompress_64:
18758 case RISCV::BI__builtin_riscv_bdecompress_32:
18759 case RISCV::BI__builtin_riscv_bdecompress_64:
18760 case RISCV::BI__builtin_riscv_bfp_32:
18761 case RISCV::BI__builtin_riscv_bfp_64:
18762 case RISCV::BI__builtin_riscv_grev_32:
18763 case RISCV::BI__builtin_riscv_grev_64:
18764 case RISCV::BI__builtin_riscv_gorc_32:
18765 case RISCV::BI__builtin_riscv_gorc_64:
18766 case RISCV::BI__builtin_riscv_shfl_32:
18767 case RISCV::BI__builtin_riscv_shfl_64:
18768 case RISCV::BI__builtin_riscv_unshfl_32:
18769 case RISCV::BI__builtin_riscv_unshfl_64:
18770 case RISCV::BI__builtin_riscv_xperm_n:
18771 case RISCV::BI__builtin_riscv_xperm_b:
18772 case RISCV::BI__builtin_riscv_xperm_h:
18773 case RISCV::BI__builtin_riscv_xperm_w:
18774 case RISCV::BI__builtin_riscv_crc32_b:
18775 case RISCV::BI__builtin_riscv_crc32_h:
18776 case RISCV::BI__builtin_riscv_crc32_w:
18777 case RISCV::BI__builtin_riscv_crc32_d:
18778 case RISCV::BI__builtin_riscv_crc32c_b:
18779 case RISCV::BI__builtin_riscv_crc32c_h:
18780 case RISCV::BI__builtin_riscv_crc32c_w:
18781 case RISCV::BI__builtin_riscv_crc32c_d:
18782 case RISCV::BI__builtin_riscv_fsl_32:
18783 case RISCV::BI__builtin_riscv_fsr_32:
18784 case RISCV::BI__builtin_riscv_fsl_64:
18785 case RISCV::BI__builtin_riscv_fsr_64: {
18786 switch (BuiltinID) {
18787 default: llvm_unreachable("unexpected builtin ID")::llvm::llvm_unreachable_internal("unexpected builtin ID", "clang/lib/CodeGen/CGBuiltin.cpp"
, 18787)
;
18788 // Zbb
18789 case RISCV::BI__builtin_riscv_orc_b_32:
18790 case RISCV::BI__builtin_riscv_orc_b_64:
18791 ID = Intrinsic::riscv_orc_b;
18792 break;
18793
18794 // Zbc
18795 case RISCV::BI__builtin_riscv_clmul:
18796 ID = Intrinsic::riscv_clmul;
18797 break;
18798 case RISCV::BI__builtin_riscv_clmulh:
18799 ID = Intrinsic::riscv_clmulh;
18800 break;
18801 case RISCV::BI__builtin_riscv_clmulr:
18802 ID = Intrinsic::riscv_clmulr;
18803 break;
18804
18805 // Zbe
18806 case RISCV::BI__builtin_riscv_bcompress_32:
18807 case RISCV::BI__builtin_riscv_bcompress_64:
18808 ID = Intrinsic::riscv_bcompress;
18809 break;
18810 case RISCV::BI__builtin_riscv_bdecompress_32:
18811 case RISCV::BI__builtin_riscv_bdecompress_64:
18812 ID = Intrinsic::riscv_bdecompress;
18813 break;
18814
18815 // Zbf
18816 case RISCV::BI__builtin_riscv_bfp_32:
18817 case RISCV::BI__builtin_riscv_bfp_64:
18818 ID = Intrinsic::riscv_bfp;
18819 break;
18820
18821 // Zbp
18822 case RISCV::BI__builtin_riscv_grev_32:
18823 case RISCV::BI__builtin_riscv_grev_64:
18824 ID = Intrinsic::riscv_grev;
18825 break;
18826 case RISCV::BI__builtin_riscv_gorc_32:
18827 case RISCV::BI__builtin_riscv_gorc_64:
18828 ID = Intrinsic::riscv_gorc;
18829 break;
18830 case RISCV::BI__builtin_riscv_shfl_32:
18831 case RISCV::BI__builtin_riscv_shfl_64:
18832 ID = Intrinsic::riscv_shfl;
18833 break;
18834 case RISCV::BI__builtin_riscv_unshfl_32:
18835 case RISCV::BI__builtin_riscv_unshfl_64:
18836 ID = Intrinsic::riscv_unshfl;
18837 break;
18838 case RISCV::BI__builtin_riscv_xperm_n:
18839 ID = Intrinsic::riscv_xperm_n;
18840 break;
18841 case RISCV::BI__builtin_riscv_xperm_b:
18842 ID = Intrinsic::riscv_xperm_b;
18843 break;
18844 case RISCV::BI__builtin_riscv_xperm_h:
18845 ID = Intrinsic::riscv_xperm_h;
18846 break;
18847 case RISCV::BI__builtin_riscv_xperm_w:
18848 ID = Intrinsic::riscv_xperm_w;
18849 break;
18850
18851 // Zbr
18852 case RISCV::BI__builtin_riscv_crc32_b:
18853 ID = Intrinsic::riscv_crc32_b;
18854 break;
18855 case RISCV::BI__builtin_riscv_crc32_h:
18856 ID = Intrinsic::riscv_crc32_h;
18857 break;
18858 case RISCV::BI__builtin_riscv_crc32_w:
18859 ID = Intrinsic::riscv_crc32_w;
18860 break;
18861 case RISCV::BI__builtin_riscv_crc32_d:
18862 ID = Intrinsic::riscv_crc32_d;
18863 break;
18864 case RISCV::BI__builtin_riscv_crc32c_b:
18865 ID = Intrinsic::riscv_crc32c_b;
18866 break;
18867 case RISCV::BI__builtin_riscv_crc32c_h:
18868 ID = Intrinsic::riscv_crc32c_h;
18869 break;
18870 case RISCV::BI__builtin_riscv_crc32c_w:
18871 ID = Intrinsic::riscv_crc32c_w;
18872 break;
18873 case RISCV::BI__builtin_riscv_crc32c_d:
18874 ID = Intrinsic::riscv_crc32c_d;
18875 break;
18876
18877 // Zbt
18878 case RISCV::BI__builtin_riscv_fsl_32:
18879 case RISCV::BI__builtin_riscv_fsl_64:
18880 ID = Intrinsic::riscv_fsl;
18881 break;
18882 case RISCV::BI__builtin_riscv_fsr_32:
18883 case RISCV::BI__builtin_riscv_fsr_64:
18884 ID = Intrinsic::riscv_fsr;
18885 break;
18886 }
18887
18888 IntrinsicTypes = {ResultType};
18889 break;
18890 }
18891 // Vector builtins are handled from here.
18892#include "clang/Basic/riscv_vector_builtin_cg.inc"
18893 }
18894
18895 assert(ID != Intrinsic::not_intrinsic)(static_cast <bool> (ID != Intrinsic::not_intrinsic) ? void
(0) : __assert_fail ("ID != Intrinsic::not_intrinsic", "clang/lib/CodeGen/CGBuiltin.cpp"
, 18895, __extension__ __PRETTY_FUNCTION__))
;
18896
18897 llvm::Function *F = CGM.getIntrinsic(ID, IntrinsicTypes);
18898 return Builder.CreateCall(F, Ops, "");
18899}